Skip to main content

Full text of "Journal"

See other formats


. 


JflSiMJlAi 


ty 


'-yS^rarw 


far 


Digitized  by  the  Internet  Archive 

in  2011  with  funding  from 

University  of  Toronto 


http://www.archive.org/details/journals41soci 


.>Phys 


JOURNAL 

OF  THE 

SOCIETY  OF  CHEMICAL 

INDUSTRY 


VOL.  XLI 

1922 


<SVy    '>•■ 


LONDON 

W.  SPEAIGHT    &    SONS,  LTD. 

98  &  99,  FETTER  LANE,  E.C.  4. 


77 

SS  ? 

- 


LIST  OF  PAPERS  COMMUNICATED  TO  THE  SOCIETY. 


The  SOCIETY  of  CHEMICAL  INDUSTRY 


LIST  OF  PAPERS  PRESENTED  TO  THE  SOCIETY  & 
PUBLISHED  IN  THE  TRANSACTIONS  DURING  1922 


N.B. — The  words  within  (     )  indicate  the  Section  or  Group  oj  the  Society  (if  any)  before 
which  the  paper  was  read  and  the  issue  of  the  Journal  in  which  it  appears. 


Armstrong,  E.  F.  Enzyme  action  in  the  light 
of  modern  theories  of  catalysis.  (Notting- 
ham,  Apr.   29)  HOT 

Armstrong,  H.  E.  Rhapsodies  culled  from  the 
thionic  epos.  Chemical  change  and  cata- 
lysis. First  Messel  Memorial  Lecture. 
(Annual  Meeting,  Aug.  15) 253t 

Baillie,  W.  L.,  and  F.  E.  Wilson.  Autoclave 
test  for  the  grading  of  chemical  glassware. 
(London,  Feb.  28) 45t 

Bain,  J.  C.     See  Butler,  G.  S 10  7t 

Bean,  P.  L.     See  Schidrowitz,  P 324t 

Beilby,  G.     Structure  of  coke  :    its  origin  and 

development.     (London,  Nov.  15)  . .  . .  341t 

Bishop,  R.  O.     See  Eaton,  B.  J.  . .  . .     374t 

Blair,  E.  W.,  and  T.   S.   Wheeler.     Improved 

form  of  gas-analysis  apparatus.     (June  15)      187t 

Oxidation  of  hydrocarbons,  with  special  refer- 
ence to  the  production  of  formaldehyde. 
(Sept.  15)         303t 

See  Reilly,  J 302t 

See  Wheeler,  T.  S 59t,  331t 

Brazier,  S.  A.     See  Twiss,  D.  F.  ..  ..       81t 

Britton,     H.     T.     S.     Extraction     of     glucina 

(beryllia)  from  beryl.     (Nov.  30)  .  .  ..      349t 

Bury,     F.    W.     Volumetric     determination    of 

phosphate  in  solution.     (Nov.  30)  . .  . .      352t 

Bush,  H.  J.  Electrical  precipitation.  (Man- 
chester,  Feb.    15) 21t 

Butler,  G.  S.,  H.  B.  Dunnieliff,  and  J.  C.  Bain. 
An  adjustable  water-sealed  valve  for  use 
in  volatile  solvent  recovery.      (Apr.   15)   .  .      107t 

Callan,  T.,  and  J.  A.  R.  Henderson.  Estimation 
of  the  nitro  group  in  aromatic  organic 
compounds.  Part  II.  (Manchester,  May 
31) 157t 

Use    of    potassium    bromate    in    volumetric 

organic  analysis.     (Manchester,  May  31)  . .      161t 

Chambers,  E.  V.     Tar  distillation.     (Newcastle, 

June   15).     (Abridged)  178t 

Chazan,  S.     See  Morgan,  G.  T.  . .  . .  It 


PAGE 

Cobb,  J.  W.     See  Greenwood,  H.  D 18  It 

Cocks,  L.  V.,  and  A.  H.  Salway.  Method  for 
the  determination  of  trimothyleneglycol 
in  crude  glycerin.      (Jan.  31)  . .  .  .        17t 

Errata       32t 

Collins,     S.     H.     Determination     of     ljevulose 

(fructose)  in  straw.     (Newcastle,  Feb.  28)       56t 

Comber,     N.     M.     Characterisation     of     clay. 

(Yorkshire,  Mar.  15)  . .  . .  . .  . .        77t 

Cowlishaw,  G.  E.     See  Pickering,  G.  F.  . .        74t 

Craven,  M.  B.  Note  on  the  cause  of  the  "  split- 
ting "  of  a  pottery  body.  (Manchester, 
Oct.    16)  329T 

Crawford,  A.     See  Sayce,  L.  A.  .  .  . .        57t 

Crawford,  F.  A.  F.  Organic  impurities  in  com- 
mercial nitric  acid  and  their  effect  in  the 
manufacture   of  nitroglycerin.     (Sept.    30)     321t 

Erratum     332t 

Cullen,  W.     Gold  metallurgy  of  the  Witwaters- 

rand  (Transvaal).     (London,  Sept.   30)    . .      316t 

Gumming,  W.  M.  Apparatus  for  the  deter- 
mination  of  methoxyl  groups.     (Jan.    31)       20t 

Dodd,    A.     H.     Determination    of    guanidine. 

(May  15)         145t 

Drakeley,  T.  J.,  and  L.  H.  Williams.      Efficiency 

in  centrifugal  draining.     (Nov.    15)  . .      347t 

Drummond,     A.     A.     Manufacture     of     1.3.5- 

trinitrobenzene.     (Oct.  31)  .  .  .  .  .  .      338t 

Drummond,  J.  C,  and  S.  S.  Zilva.  Preparation 
of  cod  liver  oil  and  the  effect  of  the  processes 
on  the  vitamin  value  of  the  oils.  (Aug.  15)  280t 
Studies  of  the  nutritive  value  of  the  edible 
oils  and  fats.  I.  The  oil-bearing  seeds 
and  crude  vegetable  oils  and  fats.     (Apr.  29)     125t 

Dunnieliff,  H.  B.     See  Butler,  G.  S 107t 

Dyer,  J.  W.  W.,  and  A.  R.  Watson.  Deter- 
mination of  sulphur  in  vulcanised  rubber. 
(July  31  and  Oct.  16)  . .  .  .      251t,   332t 

Eaton,  B.  J.,  and  R.  O.  Bishop.  Acceleration 
of  vulcanisation  by  cinchona  alkaloids. 
(Dec.  30)         374t 

Elliott,  F.  L.     See  Martin,  G 225t 

a2 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


TAGE 

Evans,  E.  C.     -See  Sutclifle,  E.  R.         . .          .  .      196t 
Fairbrother,  T.  H.,  and  A.  Renshaw.     Relation 
between    chemical   constitution    and   anti- 
septic   action    in    the    coal    tar    dyestuffs. 
(Manchester,  May   15)  134t 

Findlay,  A.,  and  C.  Rosebourne.  Note  on  the 
decomposition  and  stabilisation  of  ammon- 
ium nitrate  in  presence  of  oxidisable 
material.     (Feb.  28) 58t 

Findley,  A.  E.  Some  effects  of  cljorides  on  the 
products  of  distillation  of  coal.  (Liverpool, 
Feb.    15)  30t 

Fleming,  A.  G.  Study  of  conditions  causing 
disintegration  of  cement  under  the  "  accel- 
erated "  test.  (Montreal,  Sept.  15).  (Ab- 
stract)   300T 

Fox,   J.   J.     Cresylic  acid.     Corrigenda.     (Oct. 

31) 338t 

and  A.  J.  H.  Gauge.  Determination  of  tar 
acids  and  tar  bases  in  road  drainage  and 
mud.     (London,  June  15)   ..  ..  ..      173t 

Foxwell,  G.  E.  Thermal  dissociation  of 
ammonia,  with  special  reference  to  coke 
oven   conditions.     (Apr.    29)  ..  ..      114t 

Errata      172t 

Francis,     A.     G.     Recovery    of    radium    from 

luminous  paint.     (Mar.  31)  . .  ..  ..        94t 

French,    R.    de   L.     Carbonisation   of   Western 

lignite.     (Montreal,   Jan.    31)  . .  . .        16t 

Fyleman,    E.     Separation    of    adherent    oil    or 

bitumen  from  rock.     (London,  Jan.  31)   .  .        14t 

Garner,  W.  E.,  and  C.  A.  Waters.  Simple 
apparatus  for  electrometric  titration. 
(Oct.  31)  337t 

Gauge,  A.  J.  H.     Disposal  and  purification  of 

tlax  retting  effluents.      (London,   June   15)      177t 

See  Fox,  J.  J 173t 

Gibbs,   W.    E.      Industrial    treatment   of   fumes 

and  dusty  gases.      (Liverpool,  June  30)   . .      189t 

Gilmour,  H.     See  Morgan,  G.  T.  ..  3t,  6  It 

Gilmour,  R.     Vapour  pressure  of  acetaldehyde. 

(Aug.   31)  293 

(  Heaves-Walker,  A.  F.     Development  of  a  new 

refractory.     (American,  Jan.   31)    . .  .  .        13t 

Greenwood,  H.  D.,  and  J.  W.  Cobb.     Structure 

of   coke.     (Yorkshire,    June    15)    .  .  .  .      181t 

and  H.  J.  Hodsman.  Factors  influencing 
tho  ammonia  yield  in  the  carbonisation  of 
coal.  Part  I.  The  role  of  oxidation. 
(Yorkshire,  Aug.  15) 273t 

imds,  A.  Contribution  to  the  study  of  the 
constitution  of  anthracite.  (Bristol  and 
South  Wales,  Mar.  31)         88t 

Hall,  J.  A.,  A.  Jaques,  and  M.  S.  Leslie.     Nitric 

acid  absorption  towers.      (Aug.   31)  ..      285t 

Henderson,  J.  A.  R.     See  Callan,  T.   . .        157t,  IGIt 

Hepworth,    H.     Some    recent    applications    of 
magnesium  in  synthetic  organic  chemistry. 
(Glasgow,  Jan.  16)    . .  .  .  . .  . .  7t 

Hew  is,  II.  W.     See  Prideaux,  E.  B.  R.  .  .      H>7t 

Himus,   G.   \V.     Notes  on  a   Manchurian  coal 

fn.m  Fushun.     (Oct.  31) 333t 

Hinchley,    J.    W.     De-watering    of    peat    by 
(Chemical    Engineering    Group, 

Dec.   30.)     (Abridge!)  3G5t 

The  general    problem   of  evaporation.     (An- 
ting, Chemical  Kn^'ineering  Group, 

July   31.)     (Abridged)  242t 

Hodgson,     H.      V.     Determination     of     small 

quantities  of  silica  in  thorium  nitrate      ..     2S4t 


Hodsman,  H.  J.     See  Greenwood,  H.  D. 
See  Wedgwood,   P. 

Hoffert,  W.  H.  Determination  of  phenol  in 
mixtures  of  tar  acids.     (Oct.  31)   .  . 

Huebner,  J.,  and  F.  Kaye.  Effect  of  water  and 
of  certain  organic  salts  upon  celluloses. 
(Preliminary  note.)     (Manchester,  Mar.  31) 

and  J.  N.  Sinha.  Action  of  iodine  upon 
celluloses,  silk,  and  wool.  (Preliminary 
note.)     (Manchester,  Mar.  31) 

Imison,  C.  S.,  and  W.  Russell.  Oxidation  of 
ammonia.     (Liverpool,   Feb.   28)    .  . 

Lirnan,  W.  M.  Developments  in  the  use  of 
bleaching  agents  for  textiles  and  paper  pulp. 
(Liverpool,   Dec.    30.) 

Jaques,  A.     See  Hall,  J.  A. 

Joseph,  A.  F..  and  B.  W.  Whitfeild.  Sudan 
essential  oils.     (May  15  and  31)    .  .        144t 

Kaye,  F.     See  Huebner,  J. 

King,  A.  M.     Effect  of  high  concentration  of 

salt  upon  the  viscosity  of  a  soap  solution 

(May  15)         

Lane,     K.     W.     Analysis     of     crude     Chinese 

camphor,  with  a  note  on  sampling.     (Feb. 

15) 

Lathe,     F.     E.     Analytical     problems    in     the 

metallurgy  of  nickel.     (Canadian,  Aug.  15) 

Leslie,  M.  S.     See  Hall,  J.  A 

Lewis,  E.  Composition  of  the  residue  on  dis- 
tillation of  crude  glycerin.  (Bristol  and 
South  Wales,  Apr.  15) 

Ling,  A.  R.,  and  D.  R.  Nanji.  Action  of 
ammonia  and  of  amino-compounds  on 
reducing  sugars.  I.  Action  of  ammonia 
on  dextrose  and  laivulose.  (Birmingham, 
May   31)  

New  method  of  preparing  gluconic  acid. 
(Birmingham,  Feb.  15) 

and  W.  J.  Price.  "  Miero-Kjeldahl  "  method 
of  determining  nitrogen.  (Birmingham, 
May   31)  

Lowe,  H.  M.  New  apparatus  for  technical  gas 
analysis  and  for  the  rapid  determination 
of  ammonia  in  waste  liquor.      (Jan.   16)   .  . 

McDavid,  J.  W-  Heat  developed  on  mixing 
sulphuric    acid,    nitric    acid,    and    water. 

(July     31) 

Rapid  and  accurate  method  for  the  cali- 
bration of  storage  tanks.  (Annual  Meeting, 
Sept.    15.)     (Abridged)  

Macnab,  W.  Some  achievements  of  chemical 
industry  during  the  war  in  this  country 
and  in  France.  Hurter  Memorial  Lecture. 
(Liverpool,  Dec.  15) 

Martin,  t ;.,  and  F.  L.  Elliott.  Coefficient  of 
vulcanisation  of  rubber.     (July  15) 

Miles,  F.  D.,  and  W.  Sarginson.  Occurrence 
and  effect  of  fluctuating  combustion  in  the 
sulphur  burners  of  the  Grillo  oleum  plant. 
(June  15) 

Monro,  A.  D.  Occlusion  of  gases  in  coal.  (Apr. 
29) 

Morgan,  G.  T.,  and  S.  Chazan.  5-Amino-1.2- 
naphtho-p-tolyltriazole.   (Birmingham,  Jan. 

10) 

and  H.  Gilmour.  Aminonaphthotriazoles 
as  colour  intermediates.  (Birmingham,  Mar. 

15) 

Employment  of  a  new  group  of  naphthalene 
intermediates  in  the  production  of  azo-  and 
disazo-dyes.      (Birmingham,   Jan.    16) 


PAGE 

273t 
372t 

334t 


94t 

93t 

37t 

368t 

285t 

172t 
94t 

147t 

32t 

270t 
285t 

97t 


15  It 
28t 

149r 

llT 

246t 
295t 

o-33t 
225t 

183t 
129r 


lT 


61t 


3t 


LIST  OF  PAPERS  COMMUNICATED  TO  THE  SOCIETY. 


Morgan  and  H.  S.  Rooke.  Methyl-/?-naphthyla- 
mine-6-sulphonic  acid.  (Birmingham, 
Jan.  16)  . .  . .  . .  . .  It 

Morrell,  R.  S.  Transformation  of  methyl 
a-elaeostearate  into  methvl  p'-elreostearate 
(Sept.  30)         . .  . .      ' 328t 

J.     Note    on    pre-Roman    iron    bars. 
(Bristol  and  South  Wales,  May  15)         ..      133t 

Xanji.  D.  R.     See  Ling,  A.  R 28t,  151t 

Xierenstein,      M.      Gallotannin.     (Bristol      and 

South  Wales,  Feb.  15)         29t    j 

Parkes,  J.  W.     The  Kvnoeh  oleum  plant.     (Apr. 

15)         ..  . .  100t 

Parrish,  P.  Observations  on  the  design  and 
working  of  ammoniacal  liquor  stills.  (An- 
nual Meeting,  Chemical  Engineering  Group, 
July  31.)     (Abridged)  229t 

Pentecost,  S.  J.     See  Trot  man,  S.  R 73t 

Perman,  E.  P.  Method  of  testing  the  degree 
of  incorporation  of  explosives  and  other 
powders.      (London,    May    31)        .  .  .  .      155t 

Pickering,  G.  F.,  and  G.  E.  Cowlishaw.  Relation 
between  the  refractive  index  and  the 
chemical  characteristics  of  oils  and  fats 
(glycerides).     (Yorkshire,    Mar.    15)  .  .        74t 

Price,  W.  J.     See  Ling,  A.  R.  ..  ..      149r 

Prideaux,  E.  B.  R.,  and  H.  W.  Hewis.  Anodic 
corrosion  of  bismuth,  with  some  notes  on 
bismuth  compounds.    (Nottingham,  May  31)     107t 

Rawling,  S.  O.  Electric  heating  and  control- 
ling apparatus  for  a  small  thermostat. 
(July  31)         250t 

Rayner,  A.  Xotes  on  the  composition  of  the 
residue  on  distillation  of  crude  glycerin 
(July  15)  224t 

Reilly.  J.,  and  E.  W.  Blah.  Thermal  decompo- 
sition of  petroleum  residues  at  reduced 
pressures.      (Preliminary  note)     (Sept.   15.)     302t 

Renshaw,  A.     See  Fan-brother,  T.  H 134t 

Richards,  E.  H.,  and  G.  C.  Sawyer.  Further 
experiments  with  activated  sludge.  (Lon- 
don, Mar.  15)  .  .  . .  . .  . .  .  .        62t 

Rooke,  H.  S.     See  Morgan,  G.  T It 

Roseboume,  C.     See  Findlay,  A.  .  .  .  .       58t 

Russell,  W.     See  Imison,  C.  S.  .  .  .  .        37t 

Ruttan,  R.  F.     Presidential  address.     (Annual 

Meeting,  July  15) 21  It 

Sal  way,  A.  H.     See  Cocks,  L.  V.         .  .  .  .        17t 

Sarginson,  W.     Sec  Miles,  F.  D.  . .  . .      183t 

Sawyer,  G.  C.     See  Richards,  E.  H 62t 

Sayce,  L.  A.,  and  A.  Crawford.  Estimation  of 
carbon     dioxide    in     mineral    carbonates. 

(Newcastle,    Feb.    28)  57t 

Erratum       80t 
Sehidrowitz.   P..   and   P.    L.   Bean.     Studies  in 
vulcanisation.     Some     further     effects     of 
acceleration    on    the    rubber    stress-strain 

curve.    (Sept,    30) 324t 

Sharpe,  F.  H.     See  Short.  A.  . .  . .      109t 

Shipley,  J.  W.     Corrosion  of  cast  iron  and  lead 

pipes  in  alkaline  soils.     (Canadian,  Sept.  30)     31  It 

Short,  A.,  and  F.  H.  Sharpe.  Composition  of 
golden  sulphide  of  antimony  used  in  the 
rubber  industry.     (Newcastle,  Apr.  29)   . .      109t 

Simpkin,  X.     See  Sinnatt,  F.  S.  .  .  .  .      164t 


PAGE 

Sinha,  J.  N.     See  Huebner,  J.  . .  .  .        93t 

Sinnatt,  F.  S.,  and  X.  Simpkin.  Inorganic 
constituents  of  coal,  with  especial  reference 
to  Lancashire  seams.  Part  II.  The  iron 
in  coal.     (Manchester,  May  31)     . .  . .      164t 

Smith,  H.  G.  Note  on  the  wax  coating  the  stems 
of  the  Australian  "  Cane-grass  "  (Qlyceria 
ramigcra,  F.v.M.)     (Sydney,  Dec.   30)      .  .      372t 

Stevens,  H.  P.  Effect  of  the  acetone-soluble 
constituents  of  rubber  on  the  vulcanising 
properties.      (Sept.   30)  326t 

Sutcliffe,  E.  R,,  and  E.  C.  Evans.  Influence 
of  structure  on  the  combustibility  and 
other  properties  of  solid  fuels.  (London, 
June  30)  196t 

Taylor,  M.     See  Webb,  H.  W.  . .  ■  •      362t 

Thomas,  F.     See  Twiss,  D.  F.  .  .  .  .        81t 

Thomas,  R.      Recovery  of  alcohol  vapour  from 

air.     (Livorpool,  Feb.  28) 34t 

Vapour  pressures  of  dilute  alcohol  solutions. 

(Liverpool,  Feb.  2S) 33t 

Trotman,  S.  R.     Chlorination  of  wool.  (Xotting- 

liam,    July    15)  219t 

and  S.  J.  Pentecost.  Xotes  on  recent  ad- 
vances in  cotton  bleaching.  (Nottingham, 
Mar.    15)  73t 

Twiss,  D.  F.  Determination  of  available 
sulphur  in   golden   sulphide  of  antimony. 

(Jan.   31)  "..        20t 

Note    on    the    composition     of     "  golden 
antimony    sulphide"  ..  ..  ..      171t 

S.  A.  Brazier,  and  F.  Thomas.  The  ditliio- 
carbamate  accelerators  •  of  vulcanisation. 
(Birmingham,  Mar.  31)         ..  ..  ..        81t 

Vogel,     J.     C.     Determination    of    phosphoric 

oxide  in  fertilisers.     (Apr.   29)      . .  .  .      127t 

Waites,   H.     Limits  of  the  agglutination  test 

for  ricin.      (Yorkshire,  Apr.  29)      ..  ..      113t 

Wallin,  C.  E.  The  operation  of  Koppers  by- 
product coke  oven  plant.  (Canadian, 
Sept.   15)  29ST 

Walmsley,     W.     A.     Tar     distilling.     (Annual 

Meeting,   Sept.    15.)     (Abridged)    .  .  .  .     29Ct 

Waters,  C.  A.     See  Garner,  W.  E 337t 

Watson,  A.  R.     See  Dyer,  J.  W.  W.     .  .        25  It,  332t 
Webb,    H.    W.,    and    M.    Taylor.     Nitrometer 
method  for  the  determination  of  nitrogen 
in  nitrates  and  nitric  acid.      (Dec.   15)     .  .      362t 

Wedgwood,  P.,  and  H.  J.  Hodsman.  Xote  on 
the  determination  of  volatile  matter  hi 
fuels.     (Yorkshire,   Dec.    30)  ..  ..      372t 

Weighell,     A.     Agglutinating    value    of    some 

Durham  coals.     (Xewcastle,  Jan.   31)      .  .        17t 

Wheeler,  T.  S.,  and  E.  W.  Blair.  Action  of 
ozone  on  hydrocarbons,  with  special  refer- 
ence to  the  production  of  formaldehyde. 
(Oct,   16)         331t 

Receiver   for   fractionation   in   a   current   of 

gas  or  under  reduced  pressure.     (Feb.  28)       59t 

See   Blair,    E.    W 

Whitfeild,  B.  W.     See  Joseph,  A.  F.     . 

Williams,  L.  H.     See  Drakeley,  T.  J. 

Wilson,  F.  E.     See  Baillie,  W.  L. 


Zilva,  S.  S.     See  Drummond,  J.  C, 


187T,  30  3t 

144t,  172t 

. .      347t 

45t 

125t,  280t 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


J 


ournal   of  the   Society  of   Chemical   Industry 

Vol.  XLI.   1922 


Name  Index 


N.B. — The  Review,  Transactions,  and  Abstracts  Sections  of  the  Journal  are  paged 
separately  and  are  indicated  by  the  letters  r,  t,  and  a  respectively  following  the 
number  of  the  page. 

The  letter  (P)  indicates  that  the  matter  referred  to  is  a  patent. 

An  asterisk  appended  to  the  number  of  a  page  indicates  that  the  title  only  of  an 
article  is  given,  or  in  the  case  of  patents,  either  the  title  only  or  the  title   and   a 
reference  to  a  previous  patent. 
The  titles  of  new  books  are  given  within  quotation  marks. 


Aanerud,   S.  A.,  and  others.    Impregnating  compositions ; 

Production  of  (P)         23a* 

Abbott,  W.  H.     See  Blass,  T.  110a 

Abbott,  W.  J.     See  Remus,  W.  F 267A* 

Ab-der-Halden,  C.     Distilling  coal  tar  and  like  products ; 

Apparatus  for  (P)         . .         . .         . .         . .     457A 

Tar  oil ;  Continuous  steam  distillation  of for  small 

daily  outputs    . .  . .  . .  . .  . .  . .     2S6A 

Abderhalden,  E.     Alcoholic  fermentation  by  means  of  yeast 

cells  under  various  conditions  . .  . .  . .       28A 

Alcoholic  fermentation  by  yeast  cells  under  various 
conditions.  Influence  of  animal  charcoal  and  other 
adsorbents  on  the  course  of  fermentation.  Forma- 
tion of  acetaldehyde  . .         . .         . .         . .         . .       28a 

Silk  fibroin  ;    Composition  and  structure  of  . .     539a 

and  A.  Fodor.    Yeast  cells  ;  Functions  of .    Zymase 

and  carboxylase  action  . .  . .  . .  . .       28a 

and  E.  Wertheimer.  Polypeptidases,  carbohydrases,  and 
esterases  :  Influence  of  substances  extracted  from 
yeast  cells  and  organs  on  decomposition  of  sub- 
strates by 605a 

Ab   der   Halden.     Guncotton ;    Method  of  measuring  the 

coefficient  of  gelatinisation  of  . .         . .     349a 

Abraham,  A.  C,  and  others.     Opium  433a 

Abrams,  D.  A.     Concrete  ;  Flexural  strength  of  plain 757a 

Abrams,  R.  B.     Brass  ;    Dezinciflcation  of  . .  . .     761a 

Abrasive  Co.     See  Brockbank,  C.  J.  142A 

Abrey,  R.  H.    Plastic  material  made  from  casein  (P)       . .     775a 

Acel.  D.    Nitrogen  ;   Micro-determination  of . .         . .     159A 

Acheson,  E.  G.     Deflocculating  solid  materials  (P)..    240A*,  317a* 
Paper  product  and  process  of  making  it  (P)  . .         . .     628a 
Soap  composition  and  process  of  making  it  (P)         . .     639a 
Acheson,  E.  G.,  jun.     Graphitised  vulcanised  fibre ;  Methods 

of  preparing  (P)  855a*.  894a* 

Acheson,  G.  W.,  and  Acheson  Corp.    Colour  lake  and  method 

of  preparing  it  (!')  ..         ..         ..         ..     906A 

Pigment  oil  .   Method,  of  preparing (P)    906a 

Varnishes  ;    Method  of  preparing  (P)       . .  . .     906a 

Acheson  Corp.     See  Acheson,  G.  W.  ..         „         ..     906a 

Acheson  Graphite  Co.    See  Mardick,  J.  R.  ..         ..     524a 

Achtmeyer,  W.     Condensation  product  of  phenol  and  form- 
aldehyde and  method  of  making  it  (P)     ..         ..     868A 
Friction  composition  and  process  for  making  it  (P)  ..     542a 
Phenolic  condensation  product  and  method  of  making 

It  (P) 868A 

Acker,  E.    See  Kunert,  F 855A* 

Acme  Artificial  Silk  Co.    See  Huttinger,  C.  A 747a 

Acrcc,  S.  F.     Muclc  acid  and  other  products  ;    Method  of 

converting  wood  into (P)        916a 

Sugar  and  other  producta  ;   Method  of  converting  wood 

into (P) 910a 

Actien-Gea.     8ee  Akthn-Ges. 

Adam,  H.  R.     Antimonial  gold  ores  ;   Application  of  flota- 
tion to  817a 


page 
Adam,  M.  A.     Cellulose  or  materials  containing  cellulose : 

Treatment  of  (P)  139a* 

and  D.  A.  Legg.     Butyric  aldehyde ;   Production  of 

and  butyric  acid  therefrom  (P)       . .         . .         . .     197a 

See  Legg,  D.  A 89a*,  567A* 

Adam,  N.     See  Gail,  J.  B 665A 

Adam,  W.  G.     Coal-gas  ;   Purification  of (P)  . .  . .     454A 

See  Galbraith,  W.  L 743a 

See  Holmes,  W.  C,  and  Co.,  Ltd 982a 

See  Lewcock,  W 566a 

Adams,    A.     Rumania ;     Report   on    economic    conditions 

In 335E 

Adams,  C.  C.     See  Grob,  A.  R 663a 

Adams,  C.  E.,  and  R.  J.  Williams.    Acetaldehyde  ;   Labora- 
tory preparation  of  . .         . .         . .         . .     156a 

Adams,  E.  B.     See  British  Dyesturls  Corp.,  Ltd.     ..      62Ga.  977a 

Adams,  E    T.     See  Hammett,  F.  S.  612a 

Adams,  F.  E.,  and  others.     Mixing  machines  (P)   . .  . .     620a 
Adams,  F.  S.    Copper  ;    Process  of  and  apparatus  for  pre- 
cipitating    from  solutions  (P)  . .          . .  . .     901a 

Adams,  F.  W.     Glass ;    Practical  notes  on  manufacture  of 

white  in  a  tank  furnace         . .         . .         . .     241R 

Adams,  G.  H.    See  Adams,  F.  E 620a 

Adams,  J.  H.,  and  Texas  Co.    Hydrocarbon  liquids,  fluids         , 

and  oils  ;    Conversion  of  into  lower-boiling 

products  (P) 975a 

Oils  ;  Transformation  of  (P)  850a 

Adams,  J.  R.     See  Bull,  A.  W 246a 

Adams,  R.     "  Organic  syntheses "  . .         . .         . .     165R 

See  Voorhees,  V 566a 

Adamson,  G.  P.,  and  General  Chemical  Co.    Alkylsulphuric 

acid  ;   Manufacture  of  (P) 79A 

Adanac,  Ltd.     See  Hayward,  W.  H.  302a 

Adcoek,  F.     Cupronickel ;  Internal  mechanism  of  cold  work 

and  recrystaliisatiou  in . .         . .      125R,  257a 

Adeney,  W.  E.,  and  others.    Aeration  of  quiescent  columns 
of    distilled    water    and    of    solutions    of    sodium 

chloride 781a 

Adkins,    H.,   and   A.    C.    Krause.    Alumina,   titania,    and 

thoria  ;    Action  of  upon  ethyl  and  Isopropy] 

acetates S08A 

Adler,  O.     Wood  ;  Reaction  of and  notes  on  anethol . .      346a 

and  W.  Wiechowski.    Melanin  ;   Formation  of from 

organic  substances       . .  . .  . .  . .  . .     956a 

Adler,    R.     Decolorising    charcoal    of   high    activity    from 
sulphite-cellulose    waste   liquor ;    Manufacture    of 

(P)  702a 

Gases  and  vapours ;    Absorption  and   purification  of 

(P)  926a 

l.ixiviation  ;    Method  and  apparatus  for  (P)     ..     926a 

Adler  und  Oppenheimer,  Lederfabr.  A.-G.     Tannery  waste 

liquor  containing  sulphides  ;  Purification  of (P)     949a 

Adolphi,  W.    Tellurium  poisoning  ;   Rare  case  of . .     6S2a 

Agnew,  A.  J.,  and  others.    Photographic  materials  ;    High- 

teiNpiTature  development  of (P)       ..         ..     690a* 


NAME  INDEX 


PAGE 

Agricultural  Chemical  Corp.    See  Tuttle,  A.  L 70a 

Aikens,  W.  J.     Tin;    Electrolytic  refining  of  (P)     ..     861A 

Aims,  W.  D.  P.     Distilling  heavy  hydrocarbons,  shale,  and 

the  like  ;    Apparatus  for  (P) 210aT 

Ainscough,  T.  M.    India  ;   General  review  of  conditions  and 

prospects  of  British  trade  in during  1919-20. .       14R] 

Airilla,  Y.    See  Rona,  P 782a 

L'Air  Liqnide,   Soc.  Anon,  pour  Etude  et  l'Exploit.  des 
Proc.  G.  Claude.     Ammonia  ;    Catalytic  materials 

for  use  in  synthesis  of  (P)      ..         M         .^     215a 

Ammonia  ;  Synthetic  production  of  (P) 

99a,  173a,  371A,  590a,  669a 

Hydrogen  ;  Manufacture  of by  partial  liquefaction 

of  mixtures  of  gases  containing  it  (P)       . .      403a,  670a 
Liquids  under  gaseous  pressure  ;   Devices  for  the  with- 
drawal of  (P) 657a 

Separation  of  the  elementary   constituents  of  air  or 

other  gaseous  mixtures  ;   Process  for  the e.g., 

recovery  of  argon  from  air  (P)       . .         . .         . .     859a 

Sodium   bicarbonate   and   ammonium   chloride ;    Pro- 
duction of  (P) 589A 

5m  Claude,  G 755a*,  860a* 

See  Jordan,  E 735a 

Air    Redaction    Co.    Acetylene ;     Storage   receptacles    for 

(P)  536a 

Hydrocyanic  acid  ;  Method  of  producing (P)   463a*,  708a* 

See  Metzger,  F.  J.  . .  . .    294a,  580a*,  670a 

See  Von  Recklinghausen,  M.         . .  . .  . .  . .     163a 

Airdry  Corp.    See  Bassette,  J.  G 574a 

See  Watrous,  D.  J.  574a 

Aitchison,  L.     "  Engineering  steels "  ..         ..         ..     358R 

Unstainable  steel  and  iron  or  alloys  thereof ;    Manu- 
facture of  (P) 985a 

and  G.  R.  Woodvine.     Steels  ;  Changes  of  volume  of 

during     heat     treatment.    Air-hardening     nickel- 
chrome  steels    . .  . .  . .  . .  . .  . .     760a 

See  Dyson,  W.  H.  332a,  505a 

Aitken,  J.  E.    Paper  pulp  ;  Fractional  digestion  of  esparto 

grass  and  the  like  in  the  production  of . .       52a 

Ajon,  G.    Lemon  oil ;    Adulteration  of  with  terpenes    958a 

Akkumulatoren-Fabr.    A.-G.     Accumulators ;     Manufacture 

of  diaphragms  for  (P) 299a 

Aktiebolaget    Cellulosa.    Fibrous    material;      Process    of 

retting (P)  498a 

Waste  liquors  from  pulp  mills  or  the  like  ;    Apparatus 

for  evaporation  and  dry  distillation  of (P)  450a,  936a* 

Aktiebolaget    Ferrolegeringar.     Chromium     or     alloys     of 

chromium  ;   Method  for  producing (P)         . .     555a 

Aktiebolaget  Karlstads   Mekaniska    Verkstad.     Expressing 
liquid  from  fibrous  substances,  such  as  mechanical 

pulp  or  cellulose  ;    Rotary  apparatus  for (P)     543a* 

Paper  pulp  and  the  like  ;  Apparatus  for  pressing  liquid 

out  of  —  (P)  666a* 

Aktiebolaget  Keros.    Incandescence  mantles  ;   Manufacture 

of (P) 931a 

Aktiebolaget    Ljungstroms    Angturbin.     Transfer    of    heat 
between  liquids  and  gases  ;  Apparatus  for  effecting 

(P)  795A 

Aktiebolaget  Separator.    Centrifugal  separators  ;  Apparatus 

for  cleaning  the  bowls  of  (P)  . .  . .     885a 

Aktiebolaget      Vaporackumulator.     Heating      of      liquids ; 

Arrangement  for (P) 315a 

Aktien-Ges.    fur    Anilin-Fabrikation.    Acridine    dyestuffs ; 

Manufacture  of (P)       ..  ..  ..      365a,  365a 

Animal  fibres  ;   Process  for  protecting in  treating 

them  with  alkaline  liquids  (P)         . .         . .     584a,  705a 

Azo  dyestuffs  (P) 212a*,  288a,  323a* 

Betaine  and  other  organic  bases  ;    Preparation  of  pure 

(P)  687a 

4-Dimethylamino  - 1  -  phenyl  -  2.3  -  dimethyl- 5 -pyrazo- 
lone ;    Preparation  of  a  derivative  of readily 

soluble  in  water  (P)    . .         . .         . .         . .         . .     959a 

Di-  and  polyhalogen  substitution  products  of  mono- 

hydric  phenols  ;   Preparation  of (P)  . .         . .     687a 

Dyeing  animal  or  mixed  fibres  ;   Process  for (P)  . .     978a 

Dyeing  skins,  hairs,  and  the  like  ;   Process  for (P) 

543A,  585A,  666a* 
Film  for  the  episcopic  projection  of  photographs  and 

cinematographs  (P)      ..  ..  ..  ..  ..917a 

Fuel  for  internal  combustion  engines  (P)  . .  ..  ..     580a 

Hydrosulphites  ;  Electrolytic  preparation  of (P)  . .     100a 

o-Hydroxyazo  dyes  (P)      . .      288a,  583a,  583a*,  744a,  892a 
o-Hydroxyazo  d.  estuffs  for  wool  (P)       . .  . .  . .     247a* 

o-Hydroxymonoazo  dyes  (P)         ..  ..  ..  ..     288a 

Monoaminoacridine  dyestuff  ;  Manufacture  of  a (P)     458a 

Paints,  varnishes,  polishes,  and  the  like  ;    Production 

of (P)        300a 

Phosphatic  fertiliser  ;  Process  for  making  a (P)  . .     829a 

Photographic  reliefs  ;  Manufacture  of (P)  . .  . .       80a 

Quinine  ;    Preparation  of  a  derivative  of (P)       . .     959a 

Resinous  condensation  products  of  phenol  alkyl  ethers 

and  formaldehyde  ;    Manufacture  of (P)       . .     948a 

Safranines ;   Preparation  of  antliraquinonyl  derivatives 

of  (P) •     853a,  934a 

Trisazo  dyes  ;   Manufacture  of  diazotisable (P)  . .     497a 

Trypsin  -hydrochloric   acid   preparations  ;    Process   for 

making  stable (P)  787a 

Vat  dyes  (P)  583a,  892a 


A.-G.  fiir  Brennstoffvergasung.     Carbonising  and  gasifying 

bituminous  fuels  ;  Apparatus  for (P)--  ••     403a 

Distilling  fuel  having  a  high  moisture  content  (P)      . .     244a 

Gas  producer  (P) 167a,  283a 

Gas  producer  in  which  the  fuel  is  dried  by  means  of 

superheated  steam  (P)  . .         . .         . .         . .     494a 

A.-G.  Brown,  Boveri  &  Co.    See  under  Brown. 

A.-G.  der  Chem.  Produkten-Fabr.  Ponimerensdorf,  and  R. 
Siegler.  Crystals ;  Continuous  process  for  pro- 
ducing well-formed,  uniform    —  from  solutions  (P)    737a 

A.-G.  "  Eos."     See  Schneiders,  G 536A 

A.G    vorm.  Haaf  und  Co.     See  under  Haaf. 

A.-G.  Kuminler  und  Matter.    See  under  Kummler. 

A.-G.  der  Maschinenfabr.  Eseher,  Wyss  und  Co.  See  under 
Escher. 

A.-G.  Mix  und  Genest  Telephon-  und  Telegraphen-Werke. 
See  under  Mix. 

A.-G.  Seeriet,  Bleicherei,  Filiale  Arbon.     See  Bosshard,  G.  A.      55a* 

A.-G.  fur  Stickstoffdunger.     Urea  ;   Catalysts  for  use  in  the 

manufacture  of  from  calcium  cyanamide  (P)     440a 

A./S.    Hoyangsfaldene    Norsk    Aluminium    Co.    Alumina ; 

Preparation  of from  clay  (P)  . .         . .         . .     372a 

A./S.  Labrador.    See  Mejdell,  T 415A 

A./S.  Norsk  Staal.     Reducing  gases  ;    Preparation  of  

for  metallurgical  purposes  (P)         . .         . .         . .     555A 

A./S.  North- Western  Cyanamide  Co.    See  Lie,  E 391a 

A./S.,  Sulfltkul.     See  under  Sulfltkul. 

Albach,  J.  B.    Flavouring  extract ;  Preparation  of (P)    192a 

Albert,  E.  Printing  plates  ;  Photographic  process  for  pro- 
ducing   (P)  879a 

Albertus,  F.  A.,  and  C.  S.  Flint.     Aluminium  ;    Soldering 

composition  for (P)       . .  . .  . .  . .     506A 

Alby  United  Carbide  Factories,  Ltd.,  and  J.  W.  Mitchley. 

Calcium  carbide  ;   Production  of (P)  . .  . .       99a 

Alcock,  F.  H.    Vulcanisation  ;  Dithiocarbamate  accelerators 

of .     Discussion    . .         . .         . .         . .         . .       88t 

Alcock,  H.  J.    Vulcanisation  ;  Dithiocarbamate  accelerators 

of .    Discussion    . .         . .         . .         . .         . .       88T 

Aldred,  J.  W.  H.     See  Mathers,  F.  C.  S5GA 

Aldrich,  T.  B.,  and  J.  E.  Blanner.     Trihalogen-tert.-butyl 

alcohols  ;    Derivatives  of  .    Benzoyl  ester  of 

tribromo-ferf. -butyl  alcohol  (brometone  benzoyl  ester)     783a 

Aldridge,  J.  G.  W.     Charging  and  discharging  gas  retorts  ; 

Apparatus  for  — —  (P)  . .  . .  . .  . .     975a* 

Alefeld,    G.     "  Molecular    filters  "  ;     Process    of   preparing 

(P)  ..  ..     737A 

Alexander,  C.  M.,  and  Gulf  Refining  Co.  Gasoline  ;  Manu- 
facture of  (P) 321a 

Hydrocarbons  ;  Production  of  low-boiling     (P) 

209a,  404a 
Hydrocarbon  oils  ;    Purifying (P)  . .  . .  . .     132a 

Alexander,   H.     Carbonaceous  substances ;    Kilns  for  the 

drying  and  distillation  of (P) 624a 

Alexander,  H.  H.,  and  American  Smelting  and  Refining  Co. 

Tin  ;    Recovering from  concentrates  (P)       . .     766a 

Alexander,  W.,  and  De  Laval  Separator  Co.     Butter  oil ; 

Separation  of  from  milk,  cream,  buttermilk, 

butter,  etc.  (P) 115a 

Alger,  H.  P.     See  Frood,  H 772a 

Alioth,  M.,  and  others.    Mordant  dyestuffs  ;    Manufacture 

of  (P) 170a 

Allan,  J.  M.     See  Cammell,  Laird  &  Co.,  Ltd 821a 

Allan,  W.  G.  Electrolytic  generation  of  hydrogen  and 
oxygen,  with  special  reference  to  utilisation  of  off- 
peak  power       . .  . .  . .  . .  . .  . .     423a 

AUbright,  W.  B.     Hydrogenating  process  and  apparatus  (P)    223a 

Allen,  A.  F.,  and  others.     Paper  ;   Removal  of  printer's  ink 

from (P) 248a 

Allen,  A.  O.,  and  J.  Lucas  &  Co.,  Inc.    Lead  arsenate; 

Method  of  manufacturing (P)  . .  . .  . .     753a 

Allen,  A.  W.    Rand  metallurgical  practice    . .         . .         . .     243R 

Scientific  instruments :    their  construction  and  appli- 
cation    . .  ...  M  . .  . .  . .  . .     370R 

See  Ryding,  H.  C 715a 

Allen,  B.  J.    Pottery  and  like  articles  ;  Casting (P)  . .       15a* 

Allen.  C.     Grinding  circuit ;  Closed (P) 281a 

Hydraulic  classifier  (P) 317a 

Settling  tank  (P) 240a 

Settling  and  thickening  device  (P)  . .  . .  . .     281A 

Allen,  C.  H.,  and  others.     Paper-making  stock  ;  Process  and 

apparatus  for  preparing (P)     . .  . .  .  .     324A* 

Allen,  E.  A.     Electrolysis  ;  Apparatus  for (P)  . .  . .     259A 

and  others.     Electrolytic  ceil  for  production  of  alkali  and 

chlorine  (P) 380a 

Allen,  F.  M.,  and  General  Chemical  Co.     Sulphur  dioxide  ; 

Process  of  gassing  liquors  with (P)     . .  . .     670A 

Allen,  H.  I.     See  Allen,  E.  A 380a 

Allen,  P.   W.,  and  Penick  and  Ford,  Ltd.     Grape  sugar  ; 

Manufacture  of (P) 679a 

Allen,  W.  H.    Clay  ;  Weather-proofiug (P)      . .         . .     634a 

Allen,  W.  P.     See  Paul,  C.  F.,  jun 316a 

Allender,  H.  L.  P.     See  Badder,  H.  C.  16a* 

Alles,  R.     See  Wieland,  H 607a 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Allgem.    EIcktrizitats-Ges.     Burning   ceramic   materials   in 

tunnel  Ulna  (l'i          374a 

Evaporating  Bolutlona  by  means  of  compressed  waste 

strain;   M-ans  for  regulating  processes  for (P)  317a 

Pulverulent  fuel  and  air  ;  Means  for  supplying  a  mixture 

of to  furnaces  and  the  like  (P)  . .         ..         ..  454a 

Vulcanite;  Method  of  making  chemical  apparatus 
i.  it  tnt  to  alkalis,  acids  and  chlorine  by  manu- 
facturing it  from  or  sheathing  it  with (P)    . .  111a 

and  F.  Miinzinger.    Heat-exchanging  apparatus  (P)     ..  531a* 
Tar  ;    Process  for  increasing  the  yield  and  quality  of 

by   carbonisation   and   gasification   of   solid 

fuels  (P)            700a 

Allgem.  Ges.  fur  Chem.  Ind.    Lubricating  oil ;   Production 

of  viscous and  paraffin  from  the  high-boiling 

fractions  of  producer  and  low-temperature  tar  (P)  48a 

Tar  ;  Recovering  creosote  etc.  from (P)     . .         . .  50a 

Allgem.  Vergasungsges.     Explosion  pipette  for  gas  analysis 

(P)          444a 

Allingham,  J.     Gold,  silver,  zinc,  lead,  and  copper  ;  Electro- 
lytic extraction  of  from  ores  (P)       ..          -.  146a 

Allis  Chalmers  Mfg.  Co.    See  Newhouse,  R.  C 89a 

Allison,  V.  C,  and  others.    Nitrogen  oxides  ;  Determination 

of  small  quantities  of in  the  air..         ..         ..  230a 

Alloy  Welding  Processes,  Ltd.    See  Jones,  E.  H 866A 

Allsebrook,  W.  A.    See  Hethcrington,  H 676a 

Allsop,  T.,  and  others.    Drying  machine  (P)          . .     400a,  449a 
Almy,  L.  H-,  and  E.  Field.    Fish  frozen  in  chilled  brine  ; 

Penetration  of  salt  in  . .         . .         . .         . .  29a 

Fish  frozen  in  chilled  brine  ;    Preservation  of  . .  342a 

and  others.     Eggs  ;    Methods  of  minimising  shrinkage  in 

shell  during  storage      . .         . .         . .         . .  780a 

Alpha  Products  Co.    See  Forcellon,  H.        . .         . .         . .  20a 

Alsgaard,  P.  S.     Sodium  perborate  ;   Electrolytic  production 

of  326a 

Alsop,  J.  N.,  and  Packers  Meat  Smoking  Corp.     Organic 
and  inorganic  substances,  e.g.,  meat ;    Treatment 

of  (P) 192a 

Organic  substances  ;    Treatment  of  (P)   . .         . .  192a 

Alt,  H.    Fabrics  ;   Testing  of after  various  treatments  51A 

Altenkirch,   E.    Refrigerating  machines ;    Regeneration  of 
heat  at  high  temperature  produced  during  adiabatic 

compression  operations  in  compression (P)  . .  44a 

Altwegg,  J.,  and  D.  Ebin.     2.4-Diketotetrahydro-oxazulcs  ; 

Preparation  of  twice-substituted (P)  . .         . .  438A 

and   Soc.   Chun,  des  Usines  du  Rh6ne.    Acetylsalicylic 
acid  ;    Process  for  obtaining  the  calcium  salt  of 

(P)            910a 

Diaikylaminoethyl  derivatives  of  theobromine ;  Pre- 
paration of  (P) 484A* 

Silver  alcosols  ;    Production  of  organic  (P)         . .  438a 

and   others.    Mono-  and   di-£-hydroxyethylaminobenzoic 

esters  ;    Manufacture  of  (P) 507a* 

Aluminium  Co.  of  America.    See  Edwards,  J.  D.              . .  332a 

See  Frary,  F.  C 422a,  G31a,  638a 

See  Hoopes,  YV 463A 

See  Milligan,  L.  H.              ..          ..           ..           ..           ..  17U 

.See  Sherwin,  R.  S.             - 

Aluminium-Industrie  A.-G.    Calcium  nitrate  ;   Manufacture 

of (P) 501A 

Alvord,  C.    Yam  printing  mechanism  (P)   . .         . .         . .  249a 

Amalgamated  Zinc  (De  liavay's),  Ltd.    See  Avery,  D.     ..  147a* 

Amberger,  C.  and  K.  Bromig.    Fats  ;   Synthesis  of . .  675a 

See  Paal,  C.              . .         . .          . .          . .          . .          . .  522a 

tut  rn-ter,  H.  W.     Calcium  arsenate  ;   Manufacture  of 667a 

American  Aggregate  Co.     Moulded  articles ;  Manufacture  of 

an  aggregate  or  mat-rial  utilisable  mi  making 

(P)          ..  15a 

American  Balsa  Co.    See  Twombly,  A.  H.              ..         ..  15a 

American  Bromine  Co.    See  Tobler,  H 259a* 

American  Cellulose  and  Chem.  Mfg.  Co.    See  Briggs,  J.  F. 

11a*,  705* 

in  Coke  and  Chemical  Co.    See  Lomax,  C.  S.       ..  284 1 

S«    Roberts,  A.        ..    3a.  46a,  91a,  91a«,  283a,  455a*,  455a* 
American  Cotton  Oil  Co.    Hydrogenation  of  oils  and  liquid 

„      fats  (P) . ,  260a 

See  Lamb.  K.  B.     . .          . .          . .          . .          , .  771a 

See  Phillips,  CO.                         . .         , '.    343a,  903a*,  954a* 

hi  Cyanamid  Co.    See  Washburn,  F.  S 58a 

ti   Dressier  runnel    Kilns,  Inc.    See  Wilputte,   L.  845a 

American   i;quipiucnt  Co.     v      Myers,  T.  L.            ..          ..  142a 

American  Magnesium  Corp.    See  Seward,  G.  O.     ..    259a*,  299a 

American  Manganese  Steel  Co.    See  Nichols,  W.  G.        767a*,  821a 

American  Metal  Co.,  Ltd.    See  Burkey,  H.  M.  403a 

See  Carstens,  A.  H.            490a 

See  Hayward,  C.  R.           "         "  5qia 

American  Potash  Corp.    See  Cliarlton,  H.  W 11a 

American  Raylo  Corp.    See  Decks,  H.  C.  J 879a 

American  Rubber  Co.    Set    I    boons,  \v.  A.            ..         ..  827a 
American  Smelting  and  Refining  Co.     Tin  ;    Treatment  of 

(P)                          ..          ..          ..  717i* 

Ucxandcr,  H.  H.                                                           '  76«, 

C"    |!"v;in!     ''     ''                ••           -           '■'■       50U.  501A,  502a* 

See  Howard,   \\  .   1[.                                                                     '  .■-.. 

See  Lannon,  F.  P.,  jim.    ..         .' .'         '.'.         \]         "  422A 


PAGE 

American  Smelting  and  Refining  Co. — continued. 

See  Mather-.  F.  C.              20a 

See  Wagstaff,  R,  A 379a 

American  Writing  Paper  Co.    See  Kamm,  0 475a 

See  Rindfusz,  R.  E.           894a 

American  Zeolite  Corp.    See  Wiilcox,  O.  W 811a 

American  Zinc,  Lead,  and  Smelting  Co.    See  Rossman,  W.  F.  711a 

See  Wettengel,  C.  A 822a 

Ammon,  H.  F.    Wood  ;    Process  of  treating  (P)     . .  757a 

Amos,  A.    Hops  ;    Cultivation  of  . .         . .         . .  293R 

Ampere-Ges,   m.b.H.,  and  others.    Molybdenum  metal  or 

iron-molybdenum  alloys  ;   Manufacture  of (P)  597a* 

Amphlett.  H.  P..  and  Hume  Pipe  and  Concrete  Construction 

Co.,     Ltd.      Vitreous     material ;      Manufacturing 

objects  from  (P)           295a,  328a 

Amsterdamsche  Superfosfaatfabriek.    See  Hirschel,  W.  N.  14a* 

Anaconda  Copper  Mining  Co.    See  Laist,  F.           . .         . .  864a 

Andant,  A.    See  Lambert,  P.             636a 

Anders,    P.,   and    P.   M.    Ginnings,     Distilling   apparatus ; 

Laboratory  (P) 569a 

Anderson,  D.  G.,  and  R.  Maclaurin.     Resins  ;    Preparation 

of  synthetic  (P) 772a 

Anderson,    E.    Electrical    precipitation ;     Recent   progress 

in  180a 

and  International  Precipitation  Co.   Suspended  [particles 

from  gases  ;    Electrical  precipitation  of (P) . .  316a 

Anderson,  F.  B.    Filter  (P) 164a 

Anderson,  J.  A.     See  Fred,  E.  B 72a 

See  Peterson,  W.  H 778a 

Anderson,  L.    See  Boots'  Pure  Drug  Co.,  Ltd 438a 

Anderson,    P.     Hydrogen    desorbed    from    platinum    and 

palladium ;    Properties  of  . .         . .         . .  589a 

Anderson,  R.  J.,  and  International  Fuel  Conservation  Co. 

Combustion  process  (P)         . .         . .         . .         . .  931a* 

Sodium   sulphide  ;    Converting   sodium   sulphate    into 

(P)            57a 

Anderson,  V.  G.    See  Avery,  D 154a 

Anderson,  W.    Coal  tar  and  the  like  ;    Process  of  treating 

(P)            8a* 

Anderson,  W.  T.,  jun.    See  McCay,  L.  W 140a,  500a 

Ando,  K,     See  Osaka,  Y 839a 

Andre,    E.     Oil   of    grape    seeds.    The    solid    fatty   acids. 

Method  of  separating  stearic  and  palmitic  acids  . .  639a 

Andre,  G.     Oranges ;    Changes  in  on  keeping           . .  74a 

Vegetable  juices;    Filtration  of  ..          ..          ..  C'-v 

Andreau,  R.  L.,  and  E.  I.  du  Pont  de  Nemours  and  Co. 

Acetylisoborneol ;    Process  of  making  (P)  . .  04  >a 

Andrew,  J.  H.,  and  R.  Higgins.     Grain-size  and  diffusion 

in  metals           . .          . .          . .          . .          . .          . .  819a 

Andrews,  C.  E.,  and  others.     Naphthalene  and  other  volatile 

solid  organic  substances  ;    Purification  of  (P)  539a 

Andrews,  E.  P.    Iron  and  steel ;    Rust-proofing (P) . .  597a 

Andrews,  F.  W.     See  Liversedge,  S.  G 683a 

Andrews,  H.  I.     See  Clark,  R.  H 67a 

Andrews,  W.  C.     See  Mayer,  G.  K 912a 

Andrews,  W.  O.    See  Victoria  Falls  and  Transvaal  Power 

Co.,  Ltd.           527a 

Andrlik,  K.    Beetroots  ;    Odoriferous  constituents  of  

and  their  separation   . .         . .         . .         . .         . .  226a 

and  W,  Kohn.    Beet  sugar  syrups,  molasses,  and  liquors  ; 

Use  of  dolomitic  lime  for  carbonatation  of 

385a,  385a 
Sugar   juices    treated    with    magnesium    bicarbonate ; 

Simultaneous  saturation  applied  to  . .          . .  5G2a 

and  V.  Skola.     Sugar  manufacture  ;  Recovery  of  ammonia 

from  evaporator  condensed  water  in  beet  . .  38Ca 

Angelescu,   E.     Origanum   vulqare'.     Essential  oil  of  

from  plants  collected  in  different  parts  of  Italy  . .  346a 

See  Leone,  P 269a,  269a,  346a 

Angeli,  A,     Nitrocellulose  ;    Changes  undergone  by  ..  789a 

Smokeless  powder  ;    Detection  of  acidity  in  . .  789a 

Angenot,  H,    Antimony  ;  Electrolytic  determination  of 37a 

Anhydrous  Food  Products  Co.    See  Beckworth,  O.  Q.     . .  621a 
Annett,  H,  E.,  and  M.  N.  Bose.     Narcotine  and  papaverine 

in  opium  ;    Estimation  of  ..          ..          ..  475R 

Opium  ;    Determination  of  meconic  acid  in  ■ 242R,  835a 

and  R.  R.  Sanghi.     Codeine  ;    Estimation  of  • . .  475R 

and  H.  D.  Singh.     Opium  ;   Loss  in  morphine  content  of 

powdered  on  storage    . .         . .         . .         . .  874a 

Ansaldo  &  Co.,  Soc.  Anon.  Ital.  Gio.    See  Delacourt,  A.  F.  89a* 

Anschutz,  R.     See  Von  Richter,  V 207R 

Anselmi,  S.     See  Mazzucchelli,  A 326a 

Anthony,  M.  O.,  and  M.  C.  Rosenfcld.     Grinding  mill  (P)    . .  127a 
Applebey,  M.  P.,  and  R.  D.  Reid.     Oxides  ;    Isomerism  of 

metallic  .     Lead  monoxide       980a 

and   S.   H.   Wilkes.     Ferric  oxide-sulphuric  acid-water ; 

The  system  371a 

Aquazone    Laboratories,     Inc.    Oxygen ;      Production    of 

aqueous  solutions  containing (P)       . .         . .  859a 

Arbenz,  E.     Phytin  content  of  foods  ;  Determination  of  —  681a 
Arehbutt,   L.     Lead  sheathing  of  electric  cables ;    Failure 

of  106a 


NAME INDEX- 


page 

Archer,  L.  B.    See  Burrows.  L.  P .      763a,  765a 

Archer,  B.  S.    See  Jeffries,  Z.            ..       219a,  941a,  941a,  984a 
Arent,   A.    Fireprooflng    and    waterproofing  treatment  of 

wood,  etc.  (P) 712a 

and  A.  Arent  Laboratories,  Inc.     Wood  and  the  like  ; 

Protectively  treating (P)         548a 

Arent  Laboratories,  Inc.    See  Arent,  A 548a 

Arentz,  F.  B.    See  Backhaus,  A.  A.             ..         ..       79a,  787a 

Arie,  E.     Paint  ;  Manufacture  of for  ships'  bottoms  (P)  510A 

Aris,  O.    Ice-colours  ;  Fixing  of upon  textile  fibres  (P)  895a 

Arldt,    A.    W.    Catalysts    for   hydrogenation ;    Process  of 

manufacturing  ■ (P)         ..          ..          ».          ..  770a 

Turpentine  oil  obtained,  e.g.,   in  the   manufacture  of 
sulphate -cellulose ;      Improving     the     odour     of 

(P)             948A 

Arledter,  H.     Paper-making  and  like    purposes ;    Beating, 

comminuting,  or  pulping  machinery  for (P). .  249a* 

Armour  Fertilizer  Works.     See  Baum,  E.  C.          ...         ..  502a* 

See  MacDowell,  C.  H 14U,  631a 

See  Shoeld,  M 100a,  174a,  373a 

Armstrong,  A.  C.     Hydrocarbon  oil ;   Distillation  of (P)  285a 

Armstrong,  E.  F.     Annual  Meeting  proceedings        . .          . .  218t 

Catalysis  at  solid  surfaces  . .         ..         ..         ..         ..  67R 

Chemical  industry  ;  Some  problems  In . .         . .  500k 

Chemist;  Importance  of  the to  the  nation. .         ..  445r 

Dyestuffs  industry  ;   The  home 232k 

Enzyme  action  in  the  light  of  modern  theories  of  catalysis 

HOT,  124k 

Fatigue  ;  Industrial in  chemical  works      . .         . .  2r 

Hydrogenation  of  fats         392R 

Hydrogenation  of  fats  ;    Practice  and  theory  in  an  in- 
dustrial problem,  viz.,  . .          . .          . .          . .  41,">k 

and  T.  P.  Hilditeh.     Catalysis  through  American  spectacles  304k 
Catalytic  actions  at  solid  surfaces.     Action  of  copper  in 
promoting  the  activity  of  nickel  catalyst  in  hydro- 
genation of  oils . .          . .          . .          . .          . .          . .  903A 

Catalytic  actions  at  solid  surfaces.    Action  of  sodium 

carbonate  in  promoting  hydrogenation  of  phenol  . .  891a 
Catalytic  actions  at  solid  surfaces.     Influence  of  pressure 
on  rate  of  hydrogenation  of  liquids  in  presence  of 

nickel ^ 32a 

Armstrong,  H.  E.     Chemical  change  and  catalysis.     Rhap- 
sodies culled  from  the  thionic  epos  (First   Mcssel 

Memorial  Lecture)       . .          . .          . .          . .          . .  253T 

Fuels  ;   Influence  of  structure  on  the  combustibility  and 

other  properties  of  solid  .     Discussion..       ..  207T 

Indigo  situation  in  India  . .          . .          .  .          . .          . .  155B 

Legislative  and  departmental  interference  with  industry 

and  the  common  weal  . .          . .          . .          . .          . .  559r 

Tobacco  smoke;    Carbonic  oxide  in  ..          ..  313r 

Armstrong,  P.  A.  E.     Heating  element ;   Electrical (P)  507a 

Arndt,  H.     See  Bauer,  0 220a 

Arndt,  K.,  and  O.  Clemens.     Electroplating  baths  ;   Current 
distribution   and   cathodic  electrodepositiou   upon 

surface  cavities  of  bodies  in . .          . .          . .  862a 

and  W.  Fehse.     Carbon  anodes  ;    Stability  of . .  S65a 

and   E.    Hantge.     Sodium   perborate ;     Electrolytic  pro- 
duction of  587A 

and  F.  Korner.     Graphite;    Artificial  and  natural  718a 

Arnold,  E.  E.,  and  others.    Ammonia-soda  process  ;  Method 

of  conducting  the (P)    . .          . .          . .          . .  6U9a 

Sodium  bicarbonate  ;    Production  of (P)  . .          . .  859a* 

Arnold,  H.     See  Schertel,  L.     .-          901a 

Arnold,  W.    Fatty  acids  ;   Determination  of by  vola- 
tilisation in  steam       ..         ..         ..         ..         ..  181a 

Arnoldi,  C.  L.    Milk  ;  Process  of  preserving (P)        . .  154a 

Arnot,  It.     Azo  dyes  obtained  from  coniferous  resins  aud 

their  process  of  manufacture  (P)     . .         . .         . .  170a 

Dyes;   Manufacture  of (P) 408a* 

Axon,  H.     See  Gralka,  R 266a 

Aronowsky,  A.    See  Pringsheim,  H.    ..         ..         ..         ..  513a 

Arpin,  M.,  and  M.  T.  Pecaud.    Flour  ;    Determination  of 

acidity  of S32A 

Arquint,    H.     Insulating  material  against  loss   or  gain  of 

heat  (P)..         S86A 

Arrhenius,  O.     Analysis ;    Quantitative  by  centrifuge  272a 

Clay  as  an  ampholyte         . .         . .         . .         . .         . .  337a 

Rice  soils ;    Possible  correlation  between  the  fertility 

of and  their  titration  curves    . .          . .          . .  870a 

Arthur,  A.     Open-hearth  furnace  device  (P)  . .          . .          . .  596a 

Artzinger,  E.     Coke-oven  (P)   . .          . .          . .          . .          . .  80lA 

Asahina,  Y.,  and  Y.  Ishida.    Dihydroxystearic  acid  ;    Oxi- 
dation of . .          . .          . .          . .          . .          . .  557A 

and  S.  Kuwada.     Elsholtzic  acid  ;  Constitution  of . .  835a 

Asano,  K.     Rubber  ;   Properties  of  raw . .         . .  301a 

Aschan,  O.     Colophenic  acids  . .          . .          . .          . .          . .  183a 

Pinabietic  acid  and  abietic  acid  (Levy),  Nitrosochloride, 

nitrosite,  and  nitrosate  of  .     Constitution  of 

abietic  acid  and  abietene      . .          . .          . .          . .  947a 

Asehkenasi,  S.    Perborates  and  di-sodium  perphosphates  ; 

Manufacture  of (P)         416a* 

Asehkenasi.    Furfural ;     Process    for    making    soaps    con- 
taining   (P)           ....              867a 

Ashmore,  F.  O.    See  Calico  Printers'  Assoc,  Ltd 55a 


page 
Ashworth,    A.,    and    International    Textile    Devices,    Inc. 
Dyeing  tops,  yarns,  and  the  like  ;    Apparatus  for 
(P) 325a* 

Asiatic  Petroleum  Co.,  and  W.  Cameron.  Hydrocarbon 
emulsions  ;  Dehydrating and  distilling  hydro- 
carbon oil3  (P)             131a 

Askenasy,  P.,  and  F.  Grude.    Nitrogen  ;   Action  of on 

mixtures  of  barium  oxide  aud  carbon  at  high  tem- 
peratures . .  . .  . .  . .  . .  . .     462a 

Aston,  F.  W.     "Isotopes"        139r 

Isotopes         473r 

Aston,  J.,  and  A.  M.  Byers  Co.     Wrought  iron  ;   Process  of 

making  (P)  . .  . .  . .  . .        19a,  470a 

Astruc,  A.,  and  others.    Aconite  extract ;   Determination  of 

alkaloids  in  ■         ..  ..  ..  ..  ..     345A 

See  Jadin,  F 908a 

Atack,  F.  W.    Aromatic  hydrocarbons;    Oxidation  of ■ 

(p)  662a 

o-Benzoylbenzoic    acid ;     Condensation    of    for 

preparation  of  ant hraquinone  (P)     ..  ..  ..     323a 

and   G.   Robertson.     Anthraquinone   derivatives ;     Halo- 

geuation  of  (P) 134a,  109a* 

and  C.  \V.  Soutar.    Anthraquinone  dvestuffs  ;  Manufacture 

of (P)  ." 805A 

Dyestuff  of  the  anthraquinone  series  ;  Manufacture  of  3- 
chloro-2-aminoanthraquinone  and  3-chloro-2-amino- 

l-bromoanthraquinone,  and  a  (P)     ..  ..     170a 

and  L.  Whinvates.     "Chemists'  year-book"        ..         ..       20R 

See  Haworth,  W.  N 743a* 

Athanaslu,    G.    Actinometer    with    electrodes    of    mercury 

halides  or  sulphide     . .         . .         . .         . .         •  •     689a 

Athol  Mfg.  Co.     See  Mitchell,  R.  B.  . .  . .  10a,  53a 

Atkin,  W.  R.     Chrome  leather  ;  Application  of  Procter-Searlc 

method  to  determination  of  acidity  of . .  . .     303a 

Hides  ;    Factors  influencing  the  plumping  of  in 

tan  liquors         ..  ..  ..  ..  ■■  ••     470a 

Lime  liquors  ;  Chemistry  of  tannery . .  . .     559a 

Sodium  sulphide  ;   Analysis  of  commercial       . .         . .     029a 
and  D.  Burton.     Chrome  tanning.     Determination  of  the 
basicity  of  clirome  liquors  by  electrical  conductivity 

method 150a 

and  K.  H.  Hassan.     Indian  vegetable  tannins      . .         . .       24a 

See  Thompson,  F.  C 560a 

Atkins,   W.   R.   G.    Hydrogen-ion  concentration  of  plant 

cells         225A 

Soil ;    Factors  affecting  hydrogen-ion  concentration   of 

the and  its  relation  to  plant  distribution        . .     225A 

Hydrogen-ion  concentration  of  natural  waters  and  some 
etching  reagents  and  their  relation  to  action  on 

metals 534R 

Atkinson,  C.  P.     Dyestuff  intermediates  ;   Apparatus  for  use 

in  titrating with  unstable  diazo  solutions      . .     135a 

Atkinson,  E.,  and  E.  O.  Hazleton.     Tannin  test ;  Qualitative 

907A 

Atkinson,  J.  S.,  and  Stein  and  Atkinson,  Ltd.    Furnaces  ; 

Continuous for  heat  treatment   of   billets  etc. 

of  irregular  shape  (P) 33    I  • 

Glass  furnaces  (P) 711a 

Refuse  destructor  furnaces  (P) 835a* 

Atkinson,  W.,  and  Vacuum  Co.     Drying  goods  ;  Method  of 

(P) 449a 

Atlas  Powder  Co.     See  Aurand,  E.  P.  880a 

See  Bacon,  <;.  C 53a. 

See  Cook,  R.  M 27lA 

See  Mitscherling,  W.  0 459a,  971a 

Atmospheric  Nitrogen  Corp.    See  Scott,  W.  W 58a* 

Atmosterol,  Ltd.     See  Wallis,  R.  L.  M 156a 

Atomized  Products  Corp.    See  Faber,  H.  B.  . .         . .  575a 

Aubel,  E.    See  Cambier,  R 605a 

Auerbach,    F.,    and    E.    Bodlander.    Sugars ;     Iodometric 

determination  of •. .         ..         ..         ..         ..  991a 

and  G.  Borries.    Artificial  honey  ;    Refractometric  deter- 
mination of  the  dry  substance  of . .         . .  603a 

and  G.  Riess.    Potassium  nitrate  and  sodium    nitrite ; 

Use  of in  pickling  meat  . .  . .  . .  . .  606a 

Auerbach,  R.     Cotton  dyeing  with  substantive  dyestuffs  . .  324a 
Textile  fibres  ;    Colour  absorption  from  dye  liquors  by 

666A 

August,  J.  R.  C.     Furnace  for  hardening  or  tempering  steel 

tools   or  for  heating   or  annealing   metals,   glass, 

pottery,  or  the  like  (P)  943a* 

Muffle  furnace  (P) 451a*,  451a* 

Auld,  D.,  and  Sons,  Ltd.,  and  D.  Rose.    Cooling  or  heating  of 

fluids  ;  Apparatus  for (P)        163a 

Aurand,  E.  P.,  and  Atlas  Powder  Co.  Burning  composi- 
tions ;    Binder  for (P) 8S0a 

Torch  fuse-lighter  (P)         8S0a 

Aurich,  R.    Vegetable  material,  especially  green  foodstuffs  ; 

Preserving (P) 054a 

Austin,  A.  O.,  and  Ohio  Brass  Co.     Filter-press  sack  fabrics  ; 

Process  of  producing  a  repair  in (P)  . .         . .     697a 

Austin,  C.  R.    Steel ;   Decarbonisatiou  of  carbon by 

hydrogen,  aud  related  phenomena     . .         . .         . .     419a 

Austin,  M.  M.,  and  S.  W.  Parr.    Potash  shales  of  Illinois  . .     140a 


10 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


. .      291a, 
a  new  anti- 
Preparation 


Automatic  Telephone  Mfg.  Co.,  and  P.  N.  Roseby.     Electric 
furnace  for  obtaining  high  temperatures  (P) 
Electric  furnaces  (P) 

Electrical  resistance  material ;   Manufacture  of (P) 

Auty.    Ammonia  yield  in  carbonisation  of  coal ;    Factors 

influencing  the .     Discussion 

A  vera,  A.  U.    Nitrogen  ;   Electric  arc  furnace  for  oxidation 

of  atmospheric (P) 

Avery,  D.,  and  Amalgamated  Zinc  (De  Bavay's).  Ltd.     Lead 

and  silver  ;    Recovery  of  from  sulphide  ores 

and  metallurgical  products  (P) 
and  others.    Lead  in  water ;    Determination  of  minute 

amounts  of ■ 

Ores  containing  zinr,  cadmium,  and  copper ;    Electro- 
lytic treatment  of (P) 

Zinc  ;   Recovery  of by  electrolysis  (P) 

Ave  sta    J  ernverks    Aktiebolag.     Silicon-mangauese-chronie 

steel ;  Method  of  producing (P) 

Avrutik,  J.     Separation  of  liquids  and  solids  (P) 

Awbery,  3.  H.     See  Griffiths,  E 474R, 

Ayres,  E.  B.,  and  others.     Dryer  (P) 

Ayres,  H.  D.,  and  B.  F.  Goodrich  Co.     Vulcanising  rubber 

articles  (P) 
Azadian,  A.     Caffeine  ;   Application  of  silicotungstic  acid  to 

determination  of . . 

Milk  from  Egyptian  goats  ;  Fat  from 

L' Azote  Francais,  Soc.  Anon.     See  Guye,  P.  A 

B 

Babb,  C.  J.     Pine  oil  disinfectants  (P) 

Babbitt,  H.  E.     "  Sewerage  and  sewage  treatment " 

Babcock,  E.  P.    See  Power,  D.  P 

Babor.  J.    See  Carpenter,  CD. 

Bachem,   C.     Diethylenedisulphidetetraiodide, 

septic  of  high  iodine  content 
Bache-Wiig,  C.  and  J.     Fibrous  pulp  material 

of (P)        

Bache-Wiig,  J.     Sec  Bachc-YViig,  C 

Bachmann,  F.     See  Sieburg,  E. 

Bachmann,  W.     See  Zsigmondy,  R.    . . 

Bachrach,  E.,  and  H.  Cardot.     Lactic  add  fermentation  ; 

Effect  of  acids  on  ■ 

See  Richet,  C 228a, 

Bachstez,.  M.     See  Akt.-Ges.  fur  Anilin-Fabr 

Backhaus,  A.  A.,  and  U.  S.  Industrial  Alcohol  Co.     Catalysis  ; 

Apparatus  for (P) 

Crystals    containing   foreign    materials    of    a    different 

specific  gravity  therefrom  ;  Purification  of (P) 

Distillery  waste  ;   Treatment  of (P) 

Esters  ;  Apparatus  for  production  of (P) 

Esters  ;  Manufacture  of  (P)  . .      119a,  119a*, 

Ethylene  ;   Apparatus  for  making  (P) 

Halogenated  hydrocarbons  ;    Apparatus  for  production 

of  • (P) 

Halogenated  hvdrocarbons  ;    Production  of (p)  . . 

Liquid  fuel   (P) 

Organic  acids  ;  Production  of from  distillery  waste 

(P)  

and  others.     Aldehydes  ;   Apparatus  for  making and 

separating  them  from  other  products  formed  (P) 

Aldehydes  ;  Manufacture  of and  separation  from 

the  other  products  formed  (P) 

Distillery  waste  ;  Treating (P) 

See  Whitaker,  M.  C.  157a, 

Bacon,  C.  V.    Iron  oxide  and  other  products ;    Recovering 

from  spent  iron  sludge  (P) 

Bacon,  G.  C,  and  others.    Nitrocellulose  ;  Process  of  treating 

(P)  

Bacon,  N.  T.,  and  Solvay  Process  Co.    Ammonium  chloride  ; 

Recovering from  solution  (P) 

Bacon,  E.  F.,  and  W.  A.  Hamor.    "  American  fuels  *' 
Baddcr,  H.  C,  and  others.     Cements,  concretes,  and  mortars  ; 

Production  of  waterproof (P)  . . 

Baddiley,  J.    See  British  DyestufTs  Corp.,  Ltd.  287A,  853a,  933a 

Bader,  M.    See  Siflerlen,  E 

Bader,    W.,   and    Levinstein,   Ltd.    jj-Aminobenzoic  acid; 
Production  of  aminoalkyl  esters  and  alkylaminoalkyl 

esters  of (P) 

and  D.  A.  Nightingale.     Aromatic  derivatives,  e.g.,  alkyl- 

amidea  of  sulphonic  acids  ;  Manufacture  of (P) 

See  British  Cellulose  and  Chemical  Mfg.  Co.,  Ltd.    309a, 

Badler,  L.  G.     See  Holliday,  L.  B 

Badlschc  Anilin-  und  Soda-Fabrik.     Alcohols  ;   Manufacture 

of (P)         347a,  523A 

Ammonium  salts  ;   Manufacture  of from  ammonia 

produced  catalytically  (P) 

IVnthraqulnone  derivatives;    Manufacture  of  (P) 

Carbon  oxysulphide ;    Removal  of from  gases  (P) 

i  atalyste  for  hydrogenation  and    dehydrogenatlon  of 

carbon  compounds  (P) 
Coal  gases  ;  Recovery  of  valuable  products  from  - —  (P) 

Dyeli         i  —  <p) 

1  'yiings  and  colour  lakes  fast  to  light ;    Production  of 
(P)  


20A 
473A 
259A 

279T 

813A 

147a* 

154a 

767a* 
147A* 

S32A 
317A* 
9GU 
C57A 

302a* 

194a 
563a 
982a 


31a 
299R 

657A 


435A 

541a 
541a 
267A 
622a* 

679a 
341a 
959A 

2a 

2a 

73a 

157a 

786* 

157a 

157a 
157A 
624a 

73a 

787A 

79A 

73a 
648a 

813a 

53a 

501a 
544R 

16a* 
,934a 

457A 


36a* 

997a* 

372a 

442a* 

997a 

753a 

8a 
373a 

689a 

454a 

895a* 


Badische  Anilin-  und  Soda-Fabrik — continued. 

Dyestuif ;  Manufacture  of  a  green suitable  for  the 

production  of  colour  lakes  (P)         . .         . .         . .  458A 

Emulsions  of  tars  and  oils  ;    Dehydrating  (P)  . .  743a 

Fertilisers  ;    Manufacture  of  (P)     . .          . .          . .  26a 

Fertilisers;    Preparation  of  stable  mixed  (P)     ..  512a 

Gases  ;  Desulphurising (P) 167A,  890a* 

Gases,  e.g.,  hydrogen  ;  Process  for  purifying (P)  . .  546A 

Green  colour  lakes  ;   Manufacture  of (P)  . .         . .  600a 

Hydrogen  sulphide  ;    Process  for  removing  ■ ■  from 

gases    (P)          373a 

Lithium  formate,  methyl  alcohol,  acetone,  etc. ;    Pro- 
duction of  (P) 198a 

Nitrov'en  oxides ;  Production  of from  ammonia  by 

catalytic  oxidation  (P)            755A* 

3-NitroquinoIinc  and  its  derivatives ;    Preparation  of 

(P)          522a 

Organic  acids  ;  Preparation  of  salts  of from  waste 

liquors  from  digestion  of  wood,  straw,  etc.  (P)  ..  11a 

Oxalic  acid  ;   Manufacture  of  ■ (P)  . .          . .          . .  S37a 

Paper  ;  Sizing with  animal  glue  or  proteins  (P)  . .  705a 

Resins  ;    Manufacture  of  artificial  (P)      . .          . .  23a 

Resins  ;   Solvents  for ,  especially  for  artificial  resins 

(P)          382a 

Sodium  hydroxide;    Manufacture  of  pure (P)     ..  295a 

Sulphur  oxides  ;   Preparation  of from  calcium  sul- 
phate   (P)          98a 

Sulphur  ;    Manufacture  of  finely-divided  (P)    373A,  860a* 

Sulphur  ;  Preparation  of from  calcium  sulphate  <P)  100a 

Sulphur  ;    Preparation  of  oxygen  compounds  of  

from  natural  sulphates  (P)   ..          ..          ..          ..  174a 

Sulphur;    Recovery  of  from  material  containing 

it,  especially  spent  gas-purifying  material  (P)     167a,  859a 

Sulphur  ;    Separation  of  from  suspensions  (P)  . .  100a 

Tanning  (P) 225A 

Tanning  agents  ;  Production  of (P)             . .     225A,  427a* 

Thymol  ;  Manufacture  of (P)  ..  ..       438A,  879a* 

Urea  ;  Manufacture  of (P) 647a,  878a 

Urea  melts  from  carbonic  acid  compounds  of  ammonia  ; 

Treatment  of (P) 523a 

Yellow   colouring   matters   for   dyeing   animal   fibres ; 

Manufacturing (P)         892a 

Backstrom,  H.  L.  J.     Calcite  and  aragonite  ;   Solubilities  of 

896a 

Backstrom,  H.  M.    See  Cederberg,  I.  W 14a*,  589a 

Biihr,  H.     Benzol  in  gas  ;   Determination  of . .          . .  803a 

Biijen,  W.    See  Schmidt,  E 523a 

Baekeland.    L.    H.    Plastic    condensation    products    from 

o-cresol   (P) 149a 

Baer  und  Co.,  Metalihiitte.    Aluminium  and  other  metals ; 

Casting  of  (P) 37^a 

Rust-  and  heat-resisting  coatings  of  aluminium  bronze 

on  iron  articles  ;   Production  of (P)  . .  . .     258a 

Rust-resisting  coatings  of  aluminium  on  iron  articles  ; 

Production  of  (P)        19a 

Bagajoli,  N.,  and  G.  De  Florentiy.  Sporting  cartridges 
charged  with  smokeless  powders  ;  Use  of  petards 
of      black     powder     in 998a 

Bagley,  J.  D.     Photographic  dry  plates  or  films  ;    Method 

of  treating  (P) 567A 

Bagley  and  Sewall  Co.    Paper-making  machines  (P)       628a*,  705a* 
Paper-making  machines  ;   Controlling  the  water  content 

of  the  pulp  on  the  wires  of  Fourdrinier (P)  . .     410a* 

Paper;  Method  of  manufacturing at  high  speeds  (P)     584A 

Balilke,  W.  H.    See  Rogers,  T.  H 155a 

Bailey,  C.  F.    Kilns  for  firing  pottery  and  other  ware  (P) 

15A,  756A,  814a 
Bailey,  C.  H.,  and  A.   C.   Peterson.    Wheat   flour  grades. 

Buffer  action  of  water  extracts        . .         . .         . .       29a 

and  M.  Wcigley.    Flour  strength.;   Loss  of  carbon  dioxide 

from  dough  as  an  index  of . .         . .         . .     3S7a 

Bailey,  G.  C,  and  Barrett  Co.    Maleic  acid  ;    Purification 

of  by  reducing  agents  (P)  . .  . .     119a 

and  R.  S.  Potter.    Indigo  ;  Synthesis  of from  fumaric 

acid  and  aniline  . .  . .  . .  . .  . .     246a 

and  others.    Formaldehyde ;    Manufacture  of  (P)    729a* 

Maleic  acid  ;    Purification  of  substances,  e.g.,  by- 
distillation  with  a  solvent  (P)         . .         . .         . .     6S7A 

Bailey,  Q.  E.,  and  A.  E.  Sedgwick.  Lithium  and  potassium 
salts  ;  Process  for  extracting  from  lithium- 
potassium  ores  and  also  forming  potassium  alum 
from  such  ores  (P)     . .         . .         . .         . .         . .     897a 

Bailey,  H.  J.     Anthracite  ;    Constitution  of Discussion      92T 

Bailey,  K.  C.     Urea  ;    Direct  synthesis  of from  carbon 

dioxide  and  ammonia  . .  . .  . .  . .  . .     6S5A 

Bailey,  R.  A.     See  Baly,  E.  C.  C 856a 

Bailey,  R.  W.,  and  Metropolitan  Vickers  Electrical  Co.,  Ltd. 
Corrosion  of  apparatus  or  plant ;  Means  for  treating 

steam  to  reduce  or  prevent  in  which  it  is 

utilised  (P)         358a 

Corrosion  of  turbine  blading  ;    Means  for  reducing  or 

preventing  (P) 358a 

Bailey,    W.    E.    Electrolysis    (P) 507a 

Baillc-Barrelle,  A.  Coke  for  metallurgical  purposes  ;  Manu- 
facture of (P) 4a 

Bailleul,  G.    See  Meyer,  F 896a 


NAME  INDEX 


11 


PAGE 

BaiUie,   W.   L.     Glasses ;    Examination   r.nd   extension   of 
Zulkowski's  theory  of  relation  between  composition 

and  durability- of  57E,  464A 

and  F.  E.  Wilson.     Glassware  ;  Autoclave  test  for  grading 

of  chemical  . .         . .         . .         . .         -  •  45T 

Bally,  T.  F.    Graphite  ;   Process  of  producing (P)  . .  632a 

Bain,  D.  B.    See  Keith,  G 35SA 

Bain,  E.  0.    Martensite  formed  spontaneously  from  austenite; 

X-ray  data  on . .         . .         . .         .  •         ■  •  330A 

Metals  ;   Crystal  structure  of  solid  solutions  of . .  298a 

Bain,  J.  C.    See  Butler,  G.  S 107T 

Bainbridge,  E.  G.    See  British  Dyestufls  Corp.  . .      S53a,  933a 

Baines,  C.  W.     Src  Lavaud,  D.  S 63a*,  637a 

Bains,  T.  M.,  jun.     Electrotherniic  zinc  developments        . .  467a 

Bak,  A.    See  Kolthoff,  I.  M.                158a 

Bakelite  Ges.     Resinous  condensation  products  soluble  in 

benzene  and  oil ;  Preparation  of from  phenols 

and   aldehydes   (P) ...         ..  23a 

and   R.    Hesseu.     Condensation   products   from    phenols 

and  aldehydes  ;  Manufacture  of (P)  . .  771a 

Baker,  E.  M.,  and  V.  H.  Waite.     Salt  solutions  ;    Boiling 

point  of under  varying  pressures        . .         . .  87a 

Vapour  pressure  of  system  calcium  chloride-water     . .  87A 
Baker,  H.  B.     Drving  :  Change  of  properties  of  substances  on 

12SR,  435a 

Baker,  H.  H.     See  Merz  and  McLellan         577A* 

Baker,  J.,  and  Sons.    See  Prescott,  W.  E 307a* 

Baker,  J.  C.    Flour;   Bleaching  and  maturing (P)  ..  267a* 

and  A.  W.  Johnston.     Milk  fat ;  Manufacture  of (P)  479A 

and    Wallace   and   Tiernan   Co.    Flour ;    Maturing   and 

bleaching  (P) 229a 

Paper  and  fabrics  ;    Bleaching (P)  . .         . .         . .  461a 

Water  and  sewage  ;  Sterilising (P)  . .         ..         ..  481a 

See  Phelps,  E.  B.              192a 

See  Wallace,  C.  F.              174A 

Baker,  J.  L.    Glassware  ;  Autoclave  test  for  grading  chemical 

Discussion          . .         . .         . .         . .         . .  55T 

Tar  acids  and  tar  bases  in  road  drainage  and  mud  ;  Deter- 
mination of Discussion  ..         ..                    ..  1761 

and  H.  F.  E.  Hulton.    Amylase  of  barley  ;  Insoluble 871A 

Baker,  L.  R.     Paint  pigment  (P) 425A* 

Pigments  ;  Process  of  making (P) 720a* 

Baker,  N.  D.    See  Milligan,  L.  H 632a 

See  Sweeney.  O.  R.              438a 

See  Trumbull,  H.  L 137A 

Baker  and  Co.,  Inc.    See  Carter,  F.  E.             379a* 

Balarew,    D.    Phosphoric    acid ;     Separation    of    ■    in 

qualitative  analysis     . .          . .          . .          . .          . .  4S5A 

Pyrophosphoric     acid ;       Structure      of     . .  12a 

Sulphuric    acid ;     Determination    of    as    barium 

sulphate.     Existence  of  a  complex  barium-sulphuric 

acid        963A 

Balcke,  H.    Cooling  hot  solutions  (P) 2a 

Balcom,  R.  W.,  and  E.  Yanovskv.     Vinegars ;   Polarisation 

of 341a 

Bales,  S.  H.,  and  S.  A.  Nickelson.     (SJ  -Dlchlorodiethyl  sul- 
phide ;     Hydrolysis   of  Synthesis  oi   divinvl 

sulphide  and  preparation  of  a  non-vesicant  isomeride 

of  /3/3'-dichlorodiethyl  sulphide        996a 

Balke,    P.,    and    G.    Leysieffer.    Rubber ;     Production    of 

plastic  bodies  resembling  vulcanised . .          (P)  383a 

Ball,  J.  P.     Sewage  puriBer  (P)             344a,  481a 

Balla,  F.    See  Bayer  und  Co.,  Farbenfabr.  vorm.  F.              . .  773A 
Ballantine,  W.  B.    Ferro- chromium  alloys  ;   Manufacture  of 

(P)             554a,  901a* 

Ballantync,  H.     Patent  laws  ;    Chemists  and  the . .  121R 

Ballard,  W.  E.    See  Vaudrey,  R.  H.  >T 105a 

Ballay,  M.    See  Galibourg,  J 419a 

Balmer,  R.    Fertilisers;  Production  of (P)       ..         ..  304a 

Baly,    E.    C.    C,    and   R.    A.    Bailey.    Alkali  bisulphites ; 

Equilibria  in  aqueous  solutions  of  ..         ..  856a 

and  H.  M.  Duncan.     Ammonia  ;   Reactivity  of 197k,  586a 

and  others.     Photocatalysis.     Photosynthesis  of  nitrogen 

compounds  from  nitrates  and  carbon  dioxide    197R,  609A 

Bambach.  A.    Ammonium  nitrate ;    Preparation  of  

from  nitric  acid  and  ammonia  (P)  . .          . .          . .  58A 

Bambach  und  Co.    Calcium   cyanamide  ;    Preparation   of 

ammonium  sulphate  from  crude (P)  . .         . .  858a 

Fertiliser  ;    Treatment  of  calcium  cyanamide  for  pro- 
duction of  a (P) 870a 

Bamber,  H.  W.,  and  J.  W.  Parker.     Producer-gas   gener- 
ators ;    Combined  grate  and  water  evaporator  for 

(P)            405A* 

Suction  or  producer  gas  ;    Means  of  cooling  pre- 
paratory to  its  admission  to  internal-combustion 

engines  (P)        . .         . .         . .         . .         . .         . .  455a* 

See  Parker.  J.  W.              455a* 

Bamberger,  M.,  and  others.    Asphodel  tubers ;    Technical 

utilisation  of for  production  of  alcohol     -  . .  190a 

Bancroft.  W.  D.     Mordants.     Alumina           666a 

Mordants  ;    Chrome  . .          . .          . .          . .          . .  978a 

Bandemer,  S.  1.    See  Robinson,  C.  S 388a,  428a 

Banderet,  E.    See  Dosne,  P 485a 


pace 

Banerji,  B,  C,  and  N.  R.  Dhar.     Nitric  acid  ;  Action  of 

on  metals,  and  an  example  of  a  periodic  reaction  . .  900A 

Bangle,  J.  A.    See  Touchstone,  B.  F.              324a 

Banigan,  T.  F.     Iron  ;  Failure  of  cast  and  high  silicon 

in  fuming  sulphuric  acid       . .         . .         . .         . .  411a 

Bannerjee,  B.    See  Fowler,  G.J 227a 

Bannister,  C.  O.    Fumes  and  dusty  gases  ;  Industrial  treat- 
ment of .    Discussion     . .         . .         . .         . .  196r 

Bansen,  H.    See  Mannstaedt  und  Co.      489a,  505a,    764a,  930a 
Banting,  F.  G.,  and  C.  H.  Best.    Insulin  ;    Preparation  of 

for  treatment  of  diabetes          . .         . .         . .  537R 

Barba,  W.  P.,  and  H.  M.  Howe.    Steels  ;   Acid  open-hearth 

process  for  manufacture  of  gun  steels  and  fine 143A 

Barbe.  A.  L.     Pigment ;  Manufacture  of  a  white (P)  . .  23a* 

Baruet,  E.,  et  Fils  et  Cie.    Distilling  and  rectifying  columns  ; 

Plates  for (P) 43a 

Evaporating  apparatus  (P)           . .         . .         . .         ■  ■  620a 

Liquid  air  ;   Continuous  rectification  of (P)         . .  813a 

Barbet,  E.  A.     Distilling  and  rectifying  column  (P)  . .         . .  797a* 

Glycerin  ,  Continuous  distillation  of from  the  weak 

glyoerinous  liquors  obtained  in  fermentation  pro- 
cesses (P)          478a* 

Barbier,  A.    See  Pictet,  A 32a 

Barclay,  W.  R.     Cobalt  and  its  uses 167R 

Bardt,  H.     Metal  constituents  of  metalliferous  materials  ; 

Recovering  the (P)        767a. 

Metals  ;   Separation  of from  their  solutions  (P)  . .  673a 

and  Soc.  Hidro-Metalurgica.     Electric  storage  battery  (P)  718a. 

Electrodes  ;  Process  for  manufacturing (P)        . .  674a, 

Metals,  e.q.  copper  ;   Process  for  recovering (P)  . .  716a 

Metals;   Precipitating from  solutions  (P)  . .         ..  674a. 

Barducci,  P.    Drying  apparatus  (P)  . .         . .         . .         -  •  316a 

Barfleld,  E.  P.    See  Wild,  L.  W 180a 

Bargate,  A.  F.    See  Walkey,  W.  R.             ..         ..        29a,  931a 

Barger,  G.    Biochemistry  ;  Recent  advances  in . .  529R 

Barker,  B.  T.  P.     Cider-making  ;  Microbiology  of . .  605a 

Barker,  J.  T.,  and   United  Alkali  Co.     Electrolytic  cells, 

especially  for  production  of  alkali  chlorates  (P)    . .  99A 
Barkhausen,  C.     Photographic  devcloping-out  paper  ;   Pro- 

m      duction  of  platinum  tones  on (P)        . .         . .  441a 

Barlot,  J.,  and  M.  T.  Brenet.     Fatty  acids  ;    Detection  of 

by  formation  of  their  sodium-uranyl  salts    . .  156a 

Barna,  H,    See  Scherer,  R 337A 

Barnard,  D.  P.    See  Wilson,  R.  E 2A,  3a,  929a 

Barnebey,  O.  L.     Cyanides ;    Manufacture  of (P)     . .  57a 

Barnes,  G.  C,  and  J.  R.  Morgan.     Centrifugal  separators  (P)  575a 
Barnett,  E.  de  B„  and  J.  W.  Cook.    Anthracene  series  ; 

Studies  in  the  704a 

and  P.  C.  L.  Thome.     "  Organic  analysis,  qualitative  and 

quantitative  "   . .         . .         . .         . .         . .         . .  165R 

Barnickel,  W.  S.    Emulsions  of  petroleum  ;    Apparatus  for 

treating  natural  (P) 850a 

Barnstead,  S.  G.     Condenser  (P)         450a 

Barrett  Co.    See  Bailey.  G.  C.            . .         . .      119a.  687a,  729a* 

See  Dodge,  F.  E 322a 

See  Downs,  C.  R 197a 

See  Gould,  D.  F 662a,  891a* 

See  Miller,  S.  P 23a*,  23a* 

See  Murphy,  W.  B.               322a 

See  Phillips,  R.  O.               426a 

See  Reeve,  C.  S 48a 

See  Rhodes,  F.  H 425a* 

See  Schulze,  J.  F.  W 531a 

See  Weisberg,  L 676a 

See  Weiss,  J.  M 539a* 

See  Williams,  A.  G.              6S7a 

Barrie,  W.  S.,  and  L.  Chadwick.    Cement ;  Aromatic  hydro- 
carbon    (P)          . .         . .         . .         . .         . .  375a 

Barringer,  L.  E..  and  General  Electric  Co.     Cementing  and 

protecting  composition  (P)   ..         ..         ..         ..  671a* 

Barrolher,  J.     See  BeUeaud,  R.  L.  M.              211a 

Barron,  C.  A.    See  Barron,  W.              863a 

Barron,  W.  and  C.  A.     Annealing  and  other  heat  treatment 

of  metals  (P) 863a 

Barrs,  E.     Coal ;  Low-temperature  distillation  of (P)  . .  362a 

Coking  the  discharged  material  from  low-temperature 

distillation  apparatus  (P)      . .         . .         . .         . .  455a 

Cooling,  condensing,  or  heating  apparatus  (P)  ..         ..  735a 

Low-temperature   coal  distillation  purposes  or    other 
purposes  where  a  like  movement  of  the  material  is 

required  ;    Rabbles  for (P) 455A 

Barry,    F.     Calorimetry ;     Maintenance    of    the    adiabatic 

condition  in  . .         . .         . .         . .         . .  525A 

Barstow,  J.  W.    Skin  ;  Prepared for  diaphragms,  sound 

plates  and  amplifiers  of  gramophones  (P)  . .         . .  990A 

Bart,   H.    Arsenious  acids  ;    Formation  of  aromatic  

by  interaction  of  isodiazo  compounds  and  arsenite 

ions         . .          . .          . .          . .          . .          . .          . .  915A 

Arsenious  acids  ;    Synthesis  of  aromatic  ..          ..  914A 

3.3  -  Diamino  -  4.4  -  dihydroxyarsenobenzenc  (salvarsau 

base)  ;  Two  new  syntheses  of . .         . .         . .  915a 

Nitral  (moist  nitrous  oxide) ;   Biological  action  of 

and  its  significance  for  the  hygiene  of  nutrition    . .  725a 


12 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAOE 

Bartcll,  F.  E.    Ammonia  ;  Production  of by  the  sodium 

cyanide  method          ..         ..        ..        ..         ..  B44A 

Nitrogen  fixation  by  the  cyanide  process..         ..         ..  6G7a 

and  E.  J.  Miliar.    Adsorption  of  Methylene  Blue  by  acti- 

vated  sugar  charcoal  ..         ..         ..         ..         ..  801a 

and  L.  B.  Sims.    Colloidal  materials  ;  Relation  of  anoraa- 

to  swelling  of . .          . .          . .  303a 

Bartclt,  F.  L.     Fibres,  yarns,  fabrics,  and  the  like  ;   Appar- 
atus for  washing  and  treating  (P)    . .     291A,  325a* 

Barth,  A.     Electrolytic  cell  for  the  treatment  of  metals  and 

ores  (P) 717a 

Barthe,  E.     Alcohol  as  motor  fuel 371B 

Bartleson,  T.  L.,  and  E.  I.  du  Pont  dc  Xemours  &  Co.    Phos- 
phorus oxychloride  ;    Process  for  making  (P)  708a 

Bartlett,    .1.    M,     Borax   in   mixed  fertilisers;     Distillation 

ne  tliod  for  determination  of  26a 

'i"ii   i    B.,  and  Titanium  Figment  Co.,  Inc.    Titanic  oxide 

is;  Method  of  producing|composite (P)  335a 

Bam,  It.    See  Margoschea,  B.  M 1571 

Barwell,  ,r.  \v..  ami  Blatchford  Calf  Meal  Co.    Food  product ; 

Manufacture  of (P) 343A 

Bary,  P.     Rubber  ;  State  of in  solution 559a 

com,  P.  H.,  and  The  Dorr  Co.    Control  of  reactions; 

Electrieal  automatic (P)           43a 

■  ille,  C.     Obituary          230B 

Basore,  C.  A.     Alcohol ;   Production  of from  gas  con- 
taining ethylene  (P) 33A,  879A* 

Bass   i..  w.    See  Baudisch,  O.             917a 

1-.  P.     Iron  and  steel ;  Manufacture  of (P)  597a*,  703a 

Bassett,  H.,  and  R.  G.  Durrant.    Cupric  tetranimhie  nitrite, 
and  corrosion  of  copper  by  aqueous  solutions  of 

ammonia  and  of  ammonium  nitrate 447b 

l  itt,  H.  P.     Alumina  and  potash  ;    Process  of  producing 

■ (P)             372a 

Bleaching  cotton  (P)           139a 

.Magnesia;    Production  of (P)          216a 

Bassette,  J.  C,  and  Airdry  Corp.    Drying  machine  (P)  . .  574a 
i      Jler,  E.  M.    Drying  materials  ;  Process  of  and  apparatus 

for  (P) 631A* 

i   'I'lielor,  II.     Ores;    Desulphurising  and  production 

of  a  combustible  gas  (r)        140a 

See  British  Dyestuffs  Corp 853a 

Bateman,  W.  II.     Liquids  of  different  density,  e.g.  nil  and 

water;   Separators  for  separation  of (P)    489a,  622a* 

Bates,  L.  W.     Fuel  ;   Apparatus  for  the  production  of  

.     (P)           452A 

Fuel ;  Fireproof  storing  of  mobile (P)        . .         . .  0a* 

Fuel  ;     Treatment    of    solid    for    transportation 

thereof  (P)        405a 

Fuels;  Methods  of  storing  composite  mobile (P)  . .  452a 

Fuels  ;   Production  of  composite  mobile (P)        . .  405a* 

Method  of  producing (P)        455a* 

Liquid  fuel  and  method  of  manufacturing  it  (P)..          ..  537A* 
Liquid  fuel ;    Method  of  raising  the  specific  gravity  and 

Hash  point  of  (P)          537a* 

Batta,  G.,  and  H.  Thyssen.    Carbon  in  iron  and  steel ;   De- 
termination of by  the  Corleis  apparatus        . .  370a 

Battegay,  M.,  and  J.  Bernhardt.     Carbamldes  of  authra- 

quiuone 804a 

Urethanes  of  anthraquinone         805a 

and  P.  Brandt.     .Nitration  of  hydrocarbons .  cj..  anthracene 

and  naphthalene,  in  basic  or  neutral  media  . .          . .  891A 

and    J.    Claudia.    Dibenzoyldiaminoantliraquinones       . .  8a 

Dibromoanthraquinones      . .          . .          . .          . .          . .  7a 

Cat  dyestuffs;    Contribution  to  study  of  ..  50a 

Koechlin,  E 136a,  136a 

Pokorny,  J.                ..         ..         ..         ..        ..  290a 

Battellc,G.    See  Waring,  ^    G             ..         ..       864a,  868a,  901a 

Baty,  E.  ,T.     See  Cox.  K 849a 

Bau,     A.     Fermentation    without    yeast 189A 

Baud,  p.    See  Deguidc,  C 428A 

Baudt.  li.    (i.   and    L.    W.  Bass.    Iron   as   photochemical 
catalysl ,     L>ecompositiou  of  potassium  ferrocyanide 

in  daylight        917a 

•""'    II.  ■'.  Deuel.     Acctol.     Test  for  carbohydrates      ..  678a 

■'""'  t    B.Johnson.    Thymine;  Detection  of ..  194a 

See  Deuel,  H.  J 684a 

Bauer,  B.,  and  others.     Lleetric  resistance  heater  for  high 

temperatures  (P)        866a* 

Bauer,  E.    See  Deutsche  Petroleum  A.-G 456a,852a* 

Bauer,  E.  E.    S«  Bichart,  F.  E 670a 

I.B.Haas.    Plant  and  soil  acidity ;   In- 
I  aching,  form  of  phosphate  aud 

a  salt  on  .  and  relation  of  these  to  the 

in  iling  power  of  the  plant 677a 

Bauer,   G.     Lignite   dryers  ;      Apparatus  for  separation   of 

dust  from  the  gases  escaping  from U>)       ..  453a 

II   i-    Set  Lenders,  A.  \7.  H.             004a 

K.   II.    Ferula  oil         ..         ..  7101 

and K.  Herberts.    Tung  oil .,  638a 

Bauer,    O.,    and    II.    Arndt.    Segregation    phenomena    in 

allies  forming  mlxi  >i -         220a 

and  \  ollcnbruck.    Copper ;"  Hydrogen  sickness  "  ot 713a 


PAGE 

Bauer,  W.,  and  Eohm  und  Has?,  A.-G.    Acetylene;  Produc- 
ing chemical  compounds  from and  hydrohalo- 

genic  aeiils  (P)  . .  ..  ..  ..  ..  ..     484a 

Baughman,  W.  F..  and  G.  S.  Jamieson.    Maize  oil ;  Chemical 

composition  of  . .  . .  . .  . .  . ,     222a 

Baum,  E  C,  and  others.     Aluminium   chloride  ;   Production 

of (P) 502a* 

Baum,    G\,    and    Chem.    Fabr.    "SVeissenstein    Ges.    m.b.H. 

Sulphuric  acid  ;    Process  for  distilling (P)  . .     540a* 

Baumann.    K..    and    ,T.    Kuhlmann.     Confectionery  ;     Cal- 
culation of  added  sugar  and  fat  in ..  ..       74a 

Baumann.   O.     Iron  and  iron  ores  ;*  Removal  of  sulphur 

from (P) 764a 

Baumann,   P.    Electrical  dry  accumulator  (P)      . .         . .     108a 
Baumhauer,  H.,  and  Patent  Tr-uhand  Ges.  fur  Elektriseho 

Giuldampen.     Electric  glow  lamp  (P)       ..  ..       93a 

Baur,  E.     Hydrogen  and  oxygen  ;    Electrolytic  preparation 

Of  (P) 181A 

Oxyhyi ''  gas  cell,  employing  fused  alkali  as  electro- 
lyte     il'i  866a 

Sodium  ;    Manufacture  of  by  the  electrolysis  of 

molten  sodium  hydroxide  (P)         ..         ..         ..     472\ 

and  E.  Herzfeld.     Peptone  fermentation  ..         ..         ..     911a 

Baur,  II.  and  W.    Vegetable  and  animal  oils ;    Process'  or 

thickening  (P) 424A 

Baur,  W.     See  Baur,  H.  424A 

Bausch,  H.    See  Binz,  A.         ..         ..         ..         ..         ..     478A 

Bavaria  Ges.  Fabrikations-  und  Export-Ges.  Chem.  Prod, 
u.  landw.  Maschinen   und    derate.     Destruction  of 

rodents  (rats,  mice,  etc.);    Means  for (P)  ..     193a 

Baxter,  H.  R.    Drying ;    Methods  of  6b 

Bayer,   F..   und   Co..   Farbenfabr.   vorin.    Aralkyl  ethers; 

Preparation  of  symmetrical  (P)         . .  . .     347A 

Aryl  ethers  of  phenols  and  cresols  for  use  as  inse     ici 

and  fungicides  (P) 782a 

Azo  dyestuffs ;    Manufacture  of  copper  compounds  of 

substantive  (P) 664A 

Basic  dyestuffs  ;  Material  for  standardising (P)    . .     325a 

Basic  dyestuifs  ;    Process  for  fixing on  cotton  (P)     325a 

Bromodialkylacetylureas ;    Preparation  of  (P)   ..     523a 

Cadmium    pigment ;     Manufacture    of   a    yellow   

(P)  149a,  261a 

Carbamic  ester  of  trichloroethyl  alcohol ;    Production 

of  the (P) 959a 

Cellulose  ethers  ;    Process  for  making  artificial  fibres, 

such  as  artificial  silk,  from (P)  ..         ..     807a 

Cholic  acid;    Preparation  of  compounds  of with 

aldehydes  (P) 34A 

Cinchona  alkaloids  ;   Preparation  of  mixed  carbonic  acid 

esters  of (P)         521a 

Dihydro-dcrivatives    of    benzene    hydrocarbons ;     Pre- 
paration of (P) 35a 

Disinfecting,  insecticidal,  and  fungicidal  compositions  (P)     339a 
Elei  trolytie  cells  ;   Diaphragm  for  horizontally  stratified 

(P)  222a 

Ethylene  derivatives  :    Manufacture  of  from  coal 

'-■as   IP) 391A 

i        >cts  ,i{  drugs;    Preparation  of (P)  . .         ..     688a 

Fungicide  and  insecticide  (P)         ..         ..      193a,  51Ga,  835a 

Glyoxylic  acid  ;    Electrolytic  preparation  of  from 

llic  arid  (P)  440A 

Gold  compounds  of  tin-  Methylene  Blue    group;    Pre- 
paration of (P) 522.1 

Hydrosulphites ;    Manufacture  of (P)     ..         ..     752a 

o-Hydroxydisazo  dyestuffs  ;    Manufacture  of  secondary 

(P)  247a 

Iron  compounds  of  phosphoric  esters  of  higher  aliphatic 

polyhydroxy  compounds  ;    Preparation  of  complex 

(P) 34A 

Manganese  violet;    Preparation  of  (P)   ..         ..     149a 

Minerals  or  oxides  ;   Decomposing  or  dissolving  refrac- 
tory    (P) 75U 

U azo  dyestuffs;    Production  of (P)   ..         ..     137a 

Mordants   for   basic   dyestuifs  ;     Manufacture   of   

and  process  of  dyeing  basic  dyestuifs  on  cotton  (P)     139a 
Nitration  processes  ;    Purification  of  emulsified  reaction 

mixtures  obtained  in (P)         . .  . .  . .     310A 

Organic  acids  and  their  salts  ;  Manufacture  of from 

hydrocarbons    (P)       . .         . .         . .         . .         . .     270a 

Organic  gases  or  vapours  oi  organic  products  ;   Separat- 
ing or  isolating  (P) 281a* 

Pharmaceutical  products  (P)         786a,  837a 

Photographic  brown-tone  printing-out  emulsions  (P)  . .     72'.'a 
Photographic  silver  lialide  emulsions;    Decreasing  the 

sensitiveness  of  (P)  ..  ..  ..     310a 

Photographic  transfer  films  (P)      ..         ..       729a,  917a,  998a 
Photographic  transparencies  on  glass,  transfer  images, 

etc.  (P) 998A 

Printing  pigments  on  textiles;    Process  for using 

cellulose  acetate  as  fixing  agi  at  (P)  ..         . .        . .     325a 

Rcsinnu-    condensation   products   from   hydrocarbons ; 

Production   of  (P)         640a 

Sterilising  serums,  vaccines,  and  the  like  (P)  ..         ..     688a 
Sublimation  and  distillation;    Apparatus  for  collecting 
solid  and  viscous  products  obtained  by  processes  of 

(P)         128a 

Sulphinides  ;   Preparation  of  gold  compounds  of (P)     522a 

Sulphonamides  :    Preparation  of  mono-substituted.  

(P)  ..         ..     021a 


NAME  INDEX 


13 


Bayer,  F..  und  Co.,  Farbenfabr.  vorm — continued. 

Sulphurised  oils,  particularly  factice  ;    Manufacture  of 

(P)  773A 

Textile   materials  ;     Production   of   white   or  coloured 

effects  in  (P) ~       95a 

Triacetin  ;    Preparation  of (P)         . .  . .  .-     347a 

Vulcanisates  ;   Improving  the  properties  of (P)  . .     224a 

Waterproofing  fabrics  containing  animal  and  vegetable 

fibres,  and  sizing  paper  (P)  . .         . .         . .         . .     291a 

Wool  and  other  materials  ;    Protecting from  moths 

(P)  138A,   289A,   541A 

Yeast  and  tannin  ;  Production  of  compounds  of (P)     916a 

Bayer,  G.     Glycogen  ;    Change  in under  the  influence 

of  light 231A 

Bayerische  A.-G.  fiir  chem.  und  landwirtschaftl.-chem. 
Fabrikate,  and  H.  Hackl.  Dibasic  calcium  phos- 
phate ;    Mean3  for  reducing  the  amount  of  acid 

required  in  the  production  of (P)  . .       723a,  753a 

Bayerische  Stickstoff-Werke  A.-G.  Calcium  cyanamide ; 
Process   for   conglomerating   sludge    produced    by 

decomposition  of (P)   ..         ..         ..         ..     253a 

Beall,  F.  F.     See  Ramage,  A.  S 132a 

Bean,  P.  L.    Vulcanisation  ;    Supposed  retarding  effect  of 

dimethylamine   dimethyldithiocarbaniate   ou  261a 

See  Schidrowitz,  P.  324T 

Beasley,  W.  H.    See  Stenning,  W.  W.  800a 

Beatty,  J.  M.    See  Tncker,  O.  31 142a* 

Beatty,  W.  A.     Rubber  ;   Treatment  of (P)    . .         . .     559a 

Beaumont,   H.   D.     Venezuela  ;    Report  on  econom  c  aud 

commercial  conditions  of . .  . .  . .       14r 

Beaver,  J.J.     See  Kendall,  J.  93a 

Beccard,  E.  Bacteria  capable  of  forming  lactic  and  acetic 
acids ;    Producing  and  utilising  pure  cultures  of 

leavening (P)      ..         ..         ..         ..         ..     565A 

Bechhold,  H.,  and  F.  Hebler.     Turbidity  standard  . .     839a 

Beck,  F.  Artificial  fibres  ;  Manufacture  of from  solu- 
tions of  cellulose  in  concentrated  salt  solutions  (P)     807A 

Cellulosic  material ;    Rendering resistant  to  water 

(P)  936a 

BeCka,  I.    Volumetric  analysis  ;   Refractometric  and  Inter- 

ferometric . .  . .  . .  . .  . .     790a 

Becker,  A.     Radium  solutions  ;  Durability  of . .  . .     938a 

Becker,  A.  G.     See  Speyer,  E 516a 

Becker,  E.     Liquid  fuel ;  Combustion  of (P)         362a,  362a 

See  Sclrwalbe,  C.  G.  367a 

Becker,  G.     See  Speyer,  E 516a 

Becker,  H.  G.     Gas  blowpipe  burners  for  use  in  laboratories, 

etc.  (P) 731A* 

Becker,  J.,  and  Hoppers  Co.     Coking  retort  oven  (P)         . .     493a 

Becker,  J.  E.     See  McColluni,  E.  V 873a 

Becker,  R.    Antimony  sulphide  pigment ;  Preparation  of  an 

(P)  224A 

Becket,  F.  M.  Ferro-tungstea  ;  Method  of  purifying  tin- 
bearing  (P)  S63a 

and  Electro  Metallurgical  Co.     Tungsten  ores  ;  Method  of 

treating  tin-bearing (P)  . .  ..  ..  ..     901a 

Zirconium  alloy  and  process  of  making  it  (P)  . .  . .     766a 

and  others.    Molybdenum  or  alloys  thereof  ;    Production 

of  (P) 180a 

Beckinsale,  S.     See  Moore,  H.  ..  ..      105a,  126E,   2      . 

Beckmann,  E.     Feeding-stuffs  ;    Manufacture  of  from 

straw  and  the  like  (P)  .  .  7S1a 

Lupins  ;    Removing  bitter  substances  from . .        75a 

and  F.  Lehmann.     Lupins  ;    Testing  freedom  of  treated 

from  bitter  substances  . .  . .  . .     606a 

and   others.     Lignin   from   winter   rye   straw  ;     Physico- 
chemical  characterisation  of  . .  . .  . .     137a 

Beckmann,  H.  Diaphragm  for  electric  batteries  and  electro- 
lytic cells  (P) 109a 

Beckworth,  O.  Q.,  and  others.     Dehydrating  ;    Process  and 

apparatus  for (P)  . .  . .  . .  . .     621a 

Bedford,  C.  W.,  and  Goodyear  Tire  and  Rubber  Co.  Caout- 
chouc ;  Vulcanising (P)  . .         ..         ..         ..     559a* 

and  L.  B.  Sebrell.     Vulcanisation  :    Reactions  of  acceler- 
ators during  • .     Carbosulph-hydryl  accelerators 

and  the  action  of  zinc  oxide  . .  . .  . .  . .     110a 

Vulcanisation ;    Reaction  of  accelerators  during  -. 

Mechanism  of  action  of  zinc  compounds     . .  . .     262a 

and  others.     Caoutchouc  ;   Vulcanising <P)  . .  . .     559a* 

Rubber  compound  ;    Halogenated  and  method  of 

preparing  it  (P)  . .  . .  . .  . .  . .     475a 

Bedford,  R.  A.     See  Fuller,  H.  20a* 

Beer,  A.  W.    Seeds  ;  Treatment  of (P) 829a 

Behre,  A.     Artificial  honey  ;    Determination  of  sucrose  and 

starch  syrup  in . .  . .  . .  . .  . .     429a 

and    A.    During.     Sucrose ;     Determination    of    in 

presence  of  other  sugars  by  means  of  alkaline-earth 
hydroxides         . .  . .  . .  . .  . .  . .     871a 

and  others.     Starch  syrup  and  sugar  from  potatoes  and 

maize      ..  ..  ..  ..  ..  ..  ..       71a 

Beiel,  A.     See  Chem.  Fabr.  Greisheim-Elektron        . .  . .     715a 

Beilby,  G.  T.     Carbonisation  of  coal,  shale,  peat,  or  other 

materials  (P) 456a 

Coke ;    Structure  of  ;   its  origin  and  development 

241R,  341T 


PAGE 

Beilby,  G.  T. — continued. 

Fuels  ;  Influence  of  structure  on  the  combustibility  and 

other  properties  of  solid .     Discussion  . .  . .     207T 

"Solids;  Aggregation  and  flow  of "         ..         ..       20r. 

Beisler,  W.  H.,  and  L.  W.  Jones.     1-Hydroxylaminoanthra- 

quinone  and  some  of  its  derivatives  . .  . .  . .     934a 

Belaiew,  N.  T.     Pearlite  grain  in  steel ;   Inner  structure  of 

the  419a 

Belcher,  D.     See  Eustis,  F.  A.  422a,  985a 

Belgian  American  Coke  Ovens  Corp.    See  Piette,  O.  . .     851a* 

Belke,  W.  E.     Electroplating  ;   Process  and  apparatus  for 

(P)  766a 

Bell,  J.     See  Werner,  E.  A ..     876a 

Bell,  J.  E.     Cement  kilns  ;    Utilising  waste-heat  gases  of 

(P) 635A 

Waste-heat  boiler  system  for  cement  plants  (P)  . .  . .     280A 

and  Power  Specialty  Co.     Oil  heater  for  topping  stills  (P)     537a* 

See  Isom,  E.  W 975a 

Bell,   J.   M.,   and  J.   L.   McEwen.     Nitrotoluenes.     Binary 
systems    of    m-nitro toluene    with    another    mono- 
nitrotoluene       . .  . .  . .  . .  ...  . .     563a 

Bellamy,  H.  T.,  and  others.     Glass  composition  (P)  . .  . .     502a 

Belleaud,  R.  L.  M.,  and  J.  Barrollier.     Electric  lamp  ;  Mer- 
cury vapour (P)  . .  ..  ..  ■-  •■     211a 

Belleville,  W.     Steel  alloy  ;  Non-corrosive (P)  . .  . .     763a 

Bellwood,  R.  A.    Vegetable  oils  ;   Progress  in  extraction  of 

213R 

Benda,  L.    See  Cassella,  L.,  und  Co.            . .         . .      309a,  S05a 
Bencdetti,  C.  O.,  and  others.    Aldehydes  and  their  substi- 
tution derivatives  ;    Production  of (P)         . .     232a 

Benedetti-Pichler,    A.     Micro-analysis    of    mixtures     with 

special  reference  to  organic  ultimate  analysis        . .     790a 
Benedicks,  C.    Metals  ;   Beilby's  theory  and  the  amorphous 

state  of . .  . .  . .  . .  . .  . .     762a 

Benedict,  A.  J.    See  Sheppard,  S.  E.  908a 

Benedix,  B.     Incendiary  and  explosive  compositions  (P)  ..     839A 
Beneker,  J.  C,  and  others.     Steel ;  Method  of  manufacturing 

■  (p)  900a 

Bengen,  F.    Amyl  alcohol ;   Recovery  of from  labora- 
tory residues     . .         . .         . .         . .         . .         . .       S2a 

Bengough,  G.   D.     Condenser  tubes  ;    Corrosion  and  pro- 
tection of 125R 

and  J.  M.  Stuart.     Corrosive  action  ;   Nature  of and 

the  function  of  colloids  in  corrosion  . .         . .     417r,  820a 

Bengough,    R.     Light   rays,    eathode    rays,    Rontgeu   rays 

or  the  like  ;   Treating (P)  524a 

Benirschke,  F.     See  Zielstorff.  W 953A 

Benjamin.  E.  O.     Rubber  products  ;    Manufacture  of  ■ 

(P)  335A 

Benjamin,  G.  H.     Drying  fruit-    \<  getables,  and  other  sub- 
stances ;   Apparatus  for (PJ     . .  . .  .'.     480a 

Melting  furnace  for  metals  (P)     . .  . .  . .  . .     107a 

Tunnel  kiln  (P)         465a 

Benko,    R.     Iodine    compounds ;     Manufacture   of   organic 

(P)  33A 

Benn,  C,  C.  H.,  and  C.  L.     Tar-distillation  and  like  stills  (P)    211a 
Bennejeant,  C.     Noble  metals  ;   Recovery  in  a  pure  state  of 

the particularly  gold  and  platinum,  by  chlorin- 

ation  (P)  764a 

Benner,  H.  W.    See  Kaenimerling,  G.  H 974a 

Benner,  R.  C,  aud  others.    Batteries  ;  Depolariser  for  alka- 
line primary (P)  . .         . .         . .         . .         . .  507a 

Electric  battery  (P) 768a 

Electric  battery  electrodes  (P)     . .  . .  . .  . .  943a 

Beunert,  C.     Vat  dyestuff  preparations  for  use  in  printing 

and  dyeing  ;   Manufacture  of (P)        . .  . .  809a 

Bennett.  A.  H.     Lemon  seeds  ;   Oil  of . .  . .  . .  639a 

and  F.  K.  Donovan.    Aldehydes  and  ketones  ;    Deter- 
mination of by  means  of  hydroxylamine    99r,  391a 

Bennett,  A.  L.    See  Benson,  H.  K 3S0a 

Bennett,  C.  M.,  and  Film  Cooling  Towers,  Ltd.     Cooling 

towers  ;  Distributing  troughs  for (P)  . .         . .  796a 

Bennett,  C.  W.    See  Saunders,  C.  L.  66a 

Bennett,  G.  M.     Sulphurous  acid  ;  Autoreduction  of . .  856a 

Bennett,  H.  G.     Gelatin  swelling  ;   The  lyotrope-adsorption 

theory  of . .  . .  . .  . .  . .  . .  641a 

and  N.  L.  Holmes.     Density  of  a  tanning  solution  ;  Factor 

relating  the to  its  concentration  . .  . .  336a  \ 

Tanning  materials  ;    Relative  adsorption  from  liquors 

prepared  with  different . .         . .         . .         . .  224a 

Bennett,  H.  T.     See  Francis,  C.  K 623a 

Bennett,  M.  H.,  and  Scovill  Mfg.  Co.    Electric  furnace  (P)  . .  222a* 
Benrath,  A.,  and  A.  Obladen.     Actinometers  ;   Chemistry  of 

879a 

Bensel,  F.  H.     See  Szarvassy,  1 6a* 

Benson,  H.  K.,  and  A.  L.  Bennett.    Rosin  extraction  ;  New 

solvents  for 380a 

Benson,  L.  E.     Iron  and  steel ;   Nitrogenisation  of by 

sodium  nitrate  . .          . .          . .          . .          . .          . .  760a 

Bentivoglio,  M.     See  Read,  J.              436a 


14 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PACE 

Berczeller,  L.    Bread  cereals   ..         .,         479a 

FoodstutFs  ;    Biological  valuation  of  ..  ..     479A 

MUling  process  ;  Investigation  of  the  influence  oi  the  flour 

479A 

Nutrition  ;    Biological  correlation  of  protein  and  car- 
bohydrate foodstuffs  in . .         . .         . .         . .     479a 

Proteins  ;   R6le  of  specificity  of in  nutrition        . .     479a 

Soya-bean    meal       ..         ..         ..         ..         ..         ..     479A 

Taste  (instinct) ;    Rale  of Innutrition 479A 

Berendes,  R.    See  Bayer  und  Co.,  F 786a,  837a 

Berenyi,  L.    Adsorption  of  vapours  at  various  temperatures  ; 

Calculation    of    489A 

Beretta,  M.  Hides  and  skins  ;  Tanning  arrangement  for 

(P)  774A 

P.crge,  P.    See  Griinstein,  N 917a* 

Bergell,  P.     Lupins ;    Removal  of  bitter  substances  from 

(P)  510a 

Berger,  E.    Formaldehyde  ;    Lamp  for  producing  . .     565a 

Reduction    of    oxides    by    hydrogen     . .  . .  . .     500A 

Berger,  W.    See  Doerr,  R . .     916a 

Berghausen,  0.,and  L.  A.  Steinkoenlg.    Cod-liver  oil ;  Thera- 
peutic action  of  some  derivatives  of . .         . .       32A 

Bergius,  F.    Coal  or  the  like  ;    Manufacture  of  liquid  or 

soluble  organic  compounds  from (P)  . .         . .     930a 

Fatty  matter ;    Recovery  of  from  raw  materials 

of  organic  origin  (P)  . .  . .  . .  . .  . .     825A 

and  Chemical  Foundation,  Inc.  Hydrogenating  carbon 
compounds  under  high  pressure  and  elevated 
temperature   (P)  . .         . .         . .         . .         . ,     438a 

Bergman,  8.    See  Von  Euler,  H 777a 

Bergznann,  E.     Gelatin  and  glue  ;    Recovering  from 

bones  (P)  . .  . .  . .  . .  . .  . .     225A 

Bergmann-EIektrizitats-Werke  A.-G.    Incandescence  bodies ; 

Production  of  — —  from  tungsten  (P)        . .         . .     851a 
i:>Tu'3trom,  A.    Carbon   electrodes ;    Increasing  the   dura- 
bility and  conductivity  of (P) 768a 

BergstrOm,  H.    Furfural ;    Distillation  of  aqueous  solutions 

of „         784a 

Beringer,    C.    A.    Barium    compounds   with   alumina   and 

silica  ;   Manufacture  of (P) 253a 

Berk,  F.  W.,  and  Co.,  and  H.  V.  A.  Briscoe.    Separating 

solids  by  crystallisation  from  solvents  (P)  . .         . .     489a 

Berka,  F.    See  Kubelka,  V.   . 773a 

Berkhout,    J.    D.    Guncotton    and    smokeless    powders ; 

Apparatus  for  determining  stability  of . .     310a 

Berl,  E.,  and  O.  Samtleben.     Nitric  acid  and  mixtures  of 
-nitric  and  sulphuric  acids  ;    Distillation  of  aqueous 

461A 

and  O.  Schmidt.    Methane  ;    Concentration  of  In 

mine-damp        . .  . .  . .  . .  . .  . .     972a 

and  "W.  Schwebel.  Cresol ;  Formation  of  addition  com- 
pounds of with  ether,  alcohol,  acetone,  benzene, 

etc 662a 

Volatile  substances ;    Separation   of  from  gases 

absorbed  with  difficulty,  e.g.,  air.    Use  of  cresols.    399a 
and    H.    Vierheller.    Washery    waste    from    collieries ; 

Treatment  of  ■ 207a 

Berlin-Anhaltische      Maschinenbau-Akt.-Ges.      Ammonium 

sulphate  ;    Saturator  for  producing  (P)      . .     754a 

Gas  scrubber  (P) 930a 

Hydrogen  ;   Drying by  compression  and  cooling  (P)    859a 

Berliner,  J.  F.  T.    See  Rawdon,  H.  S 145a,  179a,  219a 

Berndt,  W.    See  Schaller,  K.  A 964a 

Bernfeld.    Yeast ;    Coloration  of  fat  of  as  criterion 

of  age,  quality,  and  degeneration 77SA 

Bemhard,  H.    See  Soc.  of  Chem.  Ind.  in  Basle        . .         . .     325a 

Bernhardt,  J.    See  Battegay,  M 804a,  805a 

Bemhart,  C.  B.    See  Kirby,  J.  58a 

Bernot,  V..  and  P.  R.  Fournier.     Paper  pulp  ;  Manufacture 

of  (P) 542A 

Bernthscn,  A.     "Organic   chemistry;    Textbook  of  ." 

(Revised  by  J.  J.  Sudborough)         341R 

Berry,    A.    J.    Thallium    compounds ;     Analytical    studies 

on 394a 

Berry,  H..  and  Co.,  Ltd.,  and  P.  G.  Bradford.    Rubber, 
liouc,      balata,     guttapercha     and     similar 
substances  ;    Machines  for  washing,  milling,  mace- 
rating, and  cleaning  (P)  559a* 

Berry,  H.  R.    Hydrocarbons  ;    Process  for  the  constructive 

conversion  of (P) 889A 

Berry,  W.  M„  and  others.    Gas  burners  ;   Design  of  atmos- 

pherlc  286a 

Berryman,  J.  G.    See  Reed,  C.  J 468a 

Bertelsmann,    W.    See   Thau,   A 90a 

Berthelon,  E.     Wood  products  ;    Obtaining— — by  destruc- 
tive distillation  (P) 742a 

Berthoud,  A.    Sulphur  trioxide  ;  Physical  properties  of 628a 

Bertlaux,  L.     White  metal  and  similar  anti-friction  alloys ; 

Rapid  analysis  of  . .         . .         _.         . .     297a 

Bertolo,    P.     Mulberry    juice;     Fermentation    of   ..     265a 

Berton,  A.  L.    Set  Vavon,  G 785a 


PAGE 

Bertrand,    G.,    and    Mokragnatz.     Arable    soil;     Presence 

of  nickel  and  cobalt  in 641a 

Cobalt  and  nickel  In  plants  ;   Presence  of . .         . .     873a 

and  others.    Sea  water ;    Variations   in   chemical   com- 
position of  and  evaluation  of  its  salinity  . .     462a 

Bertrand,  L.,  and  A.  Lanquine.     Clays  ;    Composition  and 

microscopic  structure  of  ,  their  fusibility  and 

their  transformations  at  high  temperature  . .         . .     813a 
Bertsch,   E.     Photographic  paper ;    Manufacture  of   ferro- 

prussiate    (P) 789a 

Bertschy,  A.  J.  P.    Iron,  steel,  and  alloys  thereof  ;    Car- 

burising  (P)         -.  . .     298a 

Best,  C.  H.    See  Banting,  F.  G 537k 

Best,   W.  N.     Oxidation  of  finely-subdivided  material  (P)        2a* 
Besta,  P.    Electrical  purification  of  gases  (P)       ..         ..     316a 
Beth,  W.  F.  L.     Air  filters  ;   Filter-bag  cleaning  device  for 

(P)  698a* 

Filters  for  purifying  air  or  gases  (P)     . .         . .         . .         2a* 

Bethe,  A.     Protein  sols  ;    Influence  of  hydrogen  ion  concen- 
tration  on    permeability   of   dead    membranes   to 

dyestuffs,  on  adsorption  by and  on  metabolism 

of  cells  and  tissues     . .         . .         . .         . .         . .     288a 

Bethke,   J.   P.,   and   R.   H.   Stearns.    Magnetic  separating 

process  and  apparatus  (P)    ..         ..         ..         ..     471a 

Bethlehem  Steel  Co.     See  Madden,  J.  P 649a 

Beudet,  M.    See  Koetschet,  J.  ..         ..         ..         ..     855a* 

Beutel,  E.,  and  K.  Suchy.     Wood  ;    Process  for  facilitating 
the  cleavage  of  — —  particularly  for  lead  pencil 

manufacture   (P)  677a 

Beyer,  G.  F.    Flavouring  extracts  ;   Determination  of  esters 

in  imitation  . .  . .  . .  . .  . .     391A 

Beyer,  O.    Sweetening  agents ;    Synthetic  . .         . .     505a 

Beyersdorfer,  P.     Explosion  of  sugar  dust,  its  causes  and 

prevention         . .         . .         . .         . .         . .         . .     830a 

Beylik,  F.  G.,  and  X.  W.  Schwartzlose.     Pectin-containing 

material ;  Process  of  making (P)  . .      781a,  954a* 

Beyne,  E.    Zinc  dust ;    Apparatus  for  gasometric  deter- 
mination of  metallic  zinc  in  . .         . .         . .       60A 

Beyschlag,  C.    See  Schroeter,  G 133a 

Bezssonoff,  N.     See   Truffaut,  G 908a 

Bhatnagar,  S.  S.    Emulsions.     Reversal  of  typo  by  electro- 
lytes   22a 

Waterproofing  efficiency  of  some  di-  and  trivalent  salts 
of  the  higher  fatty  acids  and  their  adsorption  by 
the  fibres  of  paper     . .         . .         . .         . .         . .     324a 

and  K.  K.  Mathur.     Banded  minerals  ;    Synthesis  of 588a 

Biach,  L.  K.    Dyeing  material ;   Apparatus  for  and  method 

of  (P) 461a 

Bibb,   C.   H.  and  J.   T.     Aldehydes  and  other  oxidation 

products  ;    Manufacture  of  (P)       . .         . .     959a 

Bibb,  D.  H.    Furnace  or  kiln  (P)        357a 

Bibb,  J.  T.    See  Bibb,  C.  H 959a 

Bicheroux,  Lambotte  et  Cie.     Glass  ;    Manufacture  of  raw 

plate (P) 634a* 

Biehowsky,     F.     R.    Heat     interchangers ;      Experiments 

with  279a 

Sulphur  dioxide  and  water  ;    Equilibrium  in  a  reaction 

between  . .         . .         . .         . .         . .         . .     251a 

Bidaud,   F.,   and   Soc.   Chim.   Usines  du    Rhone.      Hydr- 

oxyaldehydes  ;    Manufacture  of  aromatic  (P)    567a* 

Biddison,  S.    Combustible  gas  and  method  and  apparatus 

for  generating  and  burning  it  (P)     . .  . .  . .     974A 

Biddulph-Smith,  T.     Carbonisation  of  coal ;    Effect  of  some 

physical  conditions  during upon  the  quality  of 

the     coke  ..         ..         ..         ..         ..         ..     451a 

Bidwell,  G.  L.    See  Bopst,  L.  E 478a 

Biedermann,  W.    Diastase  ;    Action  of  pepsin  and  trypsin 

on 305a 

Diastase ;    Regeneration  of  and   its   dependence 

upon    oxygen    . .  . .  . .  . .  . .  . .     513a 

Biehl,  C.    See  Griin,  R.  815a 

Bielenberg,   W.    See  VonTWalther 318A 

Bielmaun,  C.    See  Bielmann,  O.         ..         ..         ..         ..       30a 

Bielmann,  O.  and  C.    Fruit  juices  and  jellies  or  marmalade 

and  conserve  ;   Manufacture  of from  fruits  or 

like   vegetable  constituents   (P)      . .         . .         . .       30a 

Bielouss.E.    See  Gardner,  H.  A.  639a,  904a 

Bigot,  A.    Furnace,  kiln,  or  the  like  for  ceramic  and  re- 
fractory products  (P) 217A* 

Kaolins,    clays,    bauxites,   etc. ;     Loss   on    firing   and 

porosity  of . .         . .         . .         . .         . .     465a 

Bigum,  H.  J.  J.    Cooling  apparatus  for  fatty  substances, 

emulsions,  and  the  like  (P) „     388a 

Bilham,  P.    See  Coleman,  J.  B ..     904A 

Billings,  J.  R.,  and  J.  R.  Billings  Iron  and  Steel  Co.     Cast 

iron  ;   Purifying and  eliminating  objectionable 

gases  and  oxides  (P)  . .  . .  . .  . .  . .     554a 

Billings  Iron  and  Steel  Co.    See  Billings,  J.  R 554a 

Blitz,  K.     Artificial  silk  ;    Behaviour  of  in  dyeing  . .     461a 

See   Krais,   P 808a 

Bing,   L.,  and  A.  Hildesheimer.    Lacquers ;    Manufacture 

of  flexible  irom  nitrocellulose  (P)     . .         . .     510a 

Bingham,  E.  C.    See  Booge,  J.  E 599A 


NAME  INDEX 


15 


PAGE 

Binns,  C.  F..  and  T.  Burdick.    Porcelain  ;   Low-flre  217A 

Binz,  A.,  and  H.  Bausch.    Barley  parasite  ;   Chemico-thera- 

peutics  of  the  478a 

See  Meister,  Lucius,  und  Briining  . .         . .         . .         . .     916a 

Bird,  H.  A.    See  Thompson,  A.  D 861a 

Bird,  M,     Bagasse  ;    Use  of  hot  water  for  washing  sugar 

from  . .         . .         •  >         . .         •  •         •  •     187a 

Birdsey,  C.  R.,  and  United  States  Gypsum  Co.    Gypsum 

rock  and  the  like;    Calcining  (P)     ..         ..     415a 

Birk,  C.    Sec  Laaser,  E.  659a 

Birkholz,  A.     Illuminating- gas  ;   Production  of (P)  ..         4a 

Bisacre,  F.  F.  P.     "  Calculus  ;   Applied  "         . .  . .     207k 

Bisbee,  D.  B.     Shorts  (middlings) ;    Detection  of  adulter- 
ation of 29a 

Bishop,  E.  R.,  and  others.    Titrations  in  ethyl  alcohol  as 

solvent 273a 

Bishop,  H.  B.    See  Mullen,  G.  W 42:1a 

Bishop,  R.  O.     Rubber  ;   Undercured  smoked  sheet . .     188A 

See  Eaton,  B.  J o7»t 

Bismarckhiitte.     Coal  tar ;    Method  of  and  apparatus  for 

separating  water  from (P)        . .         . .         . .     662a 

Coking  chambers  for  gas  generators  (P) 628a 

Bissett,  C.  C.     See  Mundey,  A.  H 819A 

Bjerregaard,  A.  P.    Mineral  oils  ;  Effect  of  paraffin  wax  on 

properties  of . .         . .         . .         . .         . .     320A 

Black,  3.  C.     Hydrocarbons;    Production  of  of  low 

boiling  point  (P)         741a,  931A 

Black,  J.  S.     Retorts  for  the  distillation  of  oil-bearing  shales 

or  other  like  materials  (P) 537A 

Black,  O.  F.,  and  3.  W.  Kelly.    Samuela  carnerosana  ;   Ex- 
amination of  fruit  of . .         . .         . .         . .     645a 

Blackadder,   T.    Tannin  solutions ;    Colour  measurements 

on 476a 

See  Reed,  H.  C 150a,  302a,  336a 

Blagden,  J.  W.    See  Howards  and  Sons,  Ltd.       . .       33a,  686a 
Blair,  A.  W.,  and  A.  L.  Prince.    Soils  ;   Variation  of  nitrate 

nitrogen  and  pn-values  of  from  the  nitrogen 

availability  plots         870a 

Blair,  E.  W.,  and  T.  S.  Wheeler.    Formaldehyde  and  acetai- 

dehyde  ;  Estimation  of . .         . .         . .         . .     560E 

Formaldehyde  ;  Oxidation  of  hydrocarbons,  with  special 

reference  to  production  of . .  . .  . .     303T 

Gas-analysis  apparatus  ;   Improved  form  of . .     187T 

See  Reilly,  3.  302T 

See  Wheeler,  T.  S.  59T,  331T 

Blair,   J.    S.,   and   J.   M.   Braham.     Guanidine  formation; 

Mechanism  of  in  fused  mixtures  of  dicyano- 

diamide  and  ammonium  salts  . .         . .         . .     956a 

Blair,  R.  J.,  and  E.  Parke-Cameron.     Wood  pulp  ;    Use  of 
clean  water  as  a  preservative  for  storing  mechanical 

247A 

Biair,  W.  W.     Peat  ;  Treatment  of (P) 48A* 

Blair,   Campbell  and  McLean,  Ltd.,  and  J.  L.  Ferguson. 

Evaporators  and  distilling  apparatus  (P)  . .  . .     886a 

Blake,  S.  W.    Alcohol  fuels  (P)         454a,  975a 

Blakeman,  W.  N.    Mineral  oil  composition  (P)        . .         . .     906a 

Paint  composition  (P)        906a 

Paint  vehicles  and  compositions  (P)        720A 

Blanc,  G.  A.     Aluminium  and  potassium  chlorides  ;   Separ- 
ation of  ■  In  mixed  solutions  obtained  in  the 

treatment  of  leucite  (P)  812a 

and  F.  Jourdan.    Potassio  rocks,  e.g.,  leucite  ;   Separation 

of  the  constituents  of (P)  293a 

Potassium   compounds ;    Treatment   of   leueitic   rocks 

for  the  purpose  of  rendering available  (P)    . .     562a 

Blanc,  H.     Glass  ;    Gathering  of (P) 634a 

Bla'nc,  L.  G.    See  Francois,  M.  645a,  684a 

Blanchard,    G.    N.     Chlorine    gas   for   water   purification ; 

Method  of  producing (P)         995A 

Blanchard,  T.  R.,  and  E.  B.  Keneflc.     Retort  furnace  (P)  . .     625a 

Blanchi,  E.    Sulphur  in  metallurgy  of  iron 816a 

Blangey,  L.    See  Badische  Anilin  und  Soda  Fabr.  . .         . .     427a* 

See  Romer,  A.  476a 

Blanner,  3.  E.    See  Aldrich,  T.  B 783a 

Blass,  F.  M.  E.,  and  Chemical  Foundation,  Inc.    Gas  pro- 
ducer (P)  453a 

Blass,  T.,  and  W.  H.  Abbott.    Paint ;  Manufacture  of  water- 
proof   (P) 110A 

Blasweiler,  T.     Hydrochloric  acid  ;    Electrolytic  method  of 

manufacturing  ■ (P)         . .  . .  . .  . .     752a 

Paper  pulp  ;  Use  of  sodium  silicate  in  sizing . .       95a 

Blasweiler,  T.  E.     Straw  ;    Digestion  of  by  Steffen's 

process   ..         ..         ..         ..         ..     746a 

Blatchford  Calf  Meal  Co.    See  Barwell,  J.  W.  . .         . .     343a 

Blau,  E.    Air  ;    Plant  for  liquefaction  of and  for  pro- 
duction of  oxygen  and  nitrogen      . .         . .         . .     173a 

Blaylock.  S.  G.     See  Lee,  F.  E.  62a 

See  Thorn,  C.  63A 

Blechta,  F.    Trimethyleneglycol  dinitrate     . .         . .         . .     441a 

Bleecker,   W.  F.,   and   Tungsten   Products   Co.    Tungsten 
metal ;     Process    of    reducing    tungstic    oxide    to 

(P)  822a 

Tungstic  oxide  ;  Process  of  producing (P)  . .         . .       68a 


page 
Bleecker,  W.  F. — continued. 

Vanadium,  uranium,  and  radium  ;    Extraction  of  

from  ores  (P) 63a 

Bleicken,  B.     Distilled  water ;    Regulating  and  controlling 

apparatus  for  production  of (P)          ..         ..  230a* 

Water  ;   Apparatus  for  production  of  distilled (P)  344a* 

Blei  und  Silberhiitte  Braubach  A.-G.    Precious  metals,  e.g., 
gold  ;    Metallurgical  treatment  of  ores  containing 

and  a  Volatile  metal,  e.g.,  antimony  (P)       . .  764a 

Bleloch,  W.  E.,  and  H.  A.  Stockman.     Crushing  minerals, 

ores,  etc. ;   Machines  for (P)  . .         . .         . .  927a 

Bleyer,  B.     Baking  powder  (P)         874a 

Casein  ;  Preparation  of  compounds  of ■  (P)  . .         . .  432a 

Lactose  ;  Preparation  of  pure from  whey  and  whey 

products  (P) 71A 

and  R.  Seidl.    Casein  of  cow's  milk  . .         . .         . .         . .  342a 

Casein  ;    Ultramicroscopical  investigation  of . .  266a 

Bliss,  A.  R-,  jun.    Alkaloids  ;   Determination  of . .  6S3A 

Bliss,  J.    Burner  for  fluid  fuel  (P) 975a* 

Blizard,  3.     "  Powdered  coal ;   Preparation,  transportation, 

and  combustion  of  "     ..          ..          ..          ..  185R 

Bloch,  L.    Manganese  Bronze  ;   Method  for  dyeing . .  214a 

Bloch,  O.     Photographic  dry  plates  ;    Uniform  development 

of 36a 

Block,  B.     Plauson  ultra-fllter-press  and  processes  involved 
in  defecation,  carbouatation,  and  filtration  of  sugar 

juices      ..         ..         ..         ..         ..         ..'        ..  226a 

Bloede,  V.  G.     Vegetable  glue  ;  Manufacture  of (P)  . .  25a 

Blohm,  G.  3.,  and  others.     Vitamin  B  and  water-soluble 

biocatalysts       . .         . .         . .         . .         . .         .  ■  953A 

Bloomer,  F.  3.    Anthracite ;    Constitution  of  .    Dis- 
cussion      92T 

Bloomfleld,  J.  J.    See  Katz,  S.  H 433a 

Bliicher,   H.     "  Chemische   Industrie ;    Auskunftsbuch  fiir 

die  "         65R 

See  Krause,  E 602a 

Bliimner,  E.    Tars  or  oils  ;    Continuous  distillation  of 

(P)           407A,  496A,  663a* 

Blue,  A.  A.    Aluminium-bronze  ;    Heat-treatment  of  61a 

Bluett,   H.   A.  N.    Netherlands  East  Indies ;    Report  on 

the  economic  situation  in  the . .         . .         . .  458R 

Blum,  3.  K.     Disintegrators  (P)         620a 

Blume,   G.  A.    Cyanamides  ;    Manufacture   of  from 

carbides  (P) 14a 

Biumenthal,  G.,  jun.     Glazes  ;   Hardness  of . .         . .  102a 

Blumenthal,  M.     See  TreadweU,  W.  D 919A 

Blunk,  H.    See  Imhoff,  K 76a*,  954a 

Blyth,  C.  E.    Combustion  of  pulverised  fuel  (P)      . .         . .  740a 

Pulverising  fuel ;  Machines  for (P)            . .         . .  243a 

Blyth,  J.  S.  S.    See  Crew,  F.  A.  E 626a 

Board  of  Trade  Secretary.    See  Boys,  C.  V.              . .         . .  569a 

Boardman,  F.    See  West,  J 973a 

Boas,  F.     Yeast  cells  ;  Action  of  saponin  substances  on 679a 

Bobbitt,    R.    L.     Cyclone    separators    or    centrifugal    dust 

collectors  (P) 44a* 

Bobst,  3.,  et  Fits,  Soc.  Anon.     Peat;  Travelling  apparatus 

for  extracting  and  kneading (P)         . .         . .  322a* 

Bockmiihl,  M.    See  Meister,  Lucius,  und  Briining    . .         . .  786a 

Bodin,  V.     Refractory  products  ;   Resistance  tests  on  ■ 

under  load  at  different  temperatures         . .         . .  176a 

Bodlander,  E.    See  Auerbach,  F 991a 

See  Kopke,  0 644a 

Bodmau,  J.  \V.,  and  W.  Garrigue  &  Co.    Extracting  appar- 
atus ;    Rotary (P)           697A 

Bodmer,  E.    See  Alioth,  M 170a 

Boeck,  3.  \V.     See  Woyski,  B.              553a 

Bocker,  F.,  and  A.  Eichhoff.     Galvanic  cell  (P)        . .         . .  333a 

B6hm,  K.    See  Spath,  E 954a 

Boehm,    M.    Coal  for   carbonisation ;     Noxious   effects   of 

saline  substances  in .    Corrosion  of  refractories 

and  tar  stills    . .         . .         . .         . .         . .         . .  359a 

Boehm,    W.    Magnesium  foil ;    Method  of  manufacturing 

(P)            901a 

Bohme,    H.    T.,    A.-G.    Fat-dissolving    substances ;     Pro- 
duction of (P) 22a 

Paper  yams  and  fabrics  ;    Waterproof  impregnation  of 

(P)            213a 

and  E.  Last.     Montan  wax  ;    Production  of  solid  colloids 

from  crude (P) 660a 

See  Last,  E 660a,  660a 

Bohme,  O.    See  Freudenberg,  K >.  601a 

Boehringer,    C.   F.,    und    Soehne.     Carbonic   acid   esters   of 

monohydric  alcohols  ;    Preparation  of  ■ (P)  . .  687a 

Boehringer  Sohn,  C.  H.    a-Lobeline  ;  Production  of (P)  483a 

Skins  and  hides  ;   Process  for  bating (P)  . .         . .  721a 

Bomer,  A.     Lard  ;    Examination  of  for  adulteration  431a 

and  H.  Merten.    Goose  fat ;   Glycerides  of  ■ . .         . .  423A 

Boersch,  K.     Sarcina ;    Classification  of  on  basis  of 

their    cultural    and    morphological    behaviour    on 

different    media           28a* 

Boever,  A.    See  Dutoit,  P 716a 

Bogert,    M.    T.,    and    M.    Meyer.     2-p-TolylbenzothiazoIe- 

dehydrothio-p-toluidine  and  related  compounds  . ,  664a 


16 


JOURNAL   OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Boggio-Lera,    E.     See   Piutti,    A.        .• 880A 

Bogitch,   B.    Refractory    materials ;     Expansion   of   some 

at  high  temperatures   . .          . .          . .          . .  58a 

Boguc,  It.  H.     Gelatin  gels  ;    Structure  of  elastic . .  5G0a 

"  I  ..-latin  and  glue  ;   Chemistry  and  technology  of "  576r 

Gelatin  and  glue  ;  Evaluation  of ..  ..       101R,  828a 

Gelatin-sols;    Viscosity  of Ill  A 

Gelatin  ;   Swelling  and  gelation  of ...         . .         . .  262a 

Protein    systems,    z.g.     gelatin  ;      Sol-gel    equilibrium 

in  M          560A 

Bohrraaun,  L.  H.  A.    Evaporating  liquids  (P)      . .         . .  574a 
Boileau,  \V.  K.,  and  Pittsburgh  Oil  Refining  Corp.     Trans- 
mission and  motor  oil  (P) 702a 

Boiry,  F.     Rubber  ;    Vulcanisation  of in  solution       . .  640a 

Boisen,  M.    Electrolytic  gas  generator  (P) 108a 

Bokorny,  T.     Hippuric  acid  and  urea  as  nutrient  substances 

for  plants         . .         . .         . .         . .         . .         . .  050a 

Boldue,  A.  G.    Picric  acid  as  an  antiseptic  . .         . .         . .  11R 

Boldy,  T.     See  Waite,  T 607A* 

Bole,  G.   A.     Plasticity  ;    Mechanism  of  from  colloid 

standpoint         . .          . .          . .          . .          . .          . .  709A 

and   J.   B.   Shaw.     Sorel  cements  ;    Caustic  calcination 

of  dolomite  and  its  use  in  ■       ..          ..          ..  084a 

See  Shaw,  J.  B 634a 

Boiling,  J.  E.,  and  Drying  Systems>  Inc.     Drying  apparatus 

(P)          _          M          . .          ..  927A 

Bollmann,  H.     Extractive  matters  ;    Separating  from 

solutions   of   mixtures   of  solvents  and  recovering 

the   latter   (P) 491a 

Fat  and  oil ;   Extraction  of from  raw  materials  (P)  380a* 

Fats  and  oils;  Bleaching with  fuller's  earth  (P)  182a,261a 

Fats  and  oils  ;    Separating  fatty  acids,   resins,  bitter 

and  mucilaginous  substances  from  (P)         . .  509A 

Bollmann,  M.     See  Fischer,  O.              703a 

Bolm,  F.    See  Gronover,  A 913a 

Bologa,  N.     Still  (P) 927a* 

Bolton,  E.  R.     Hydrogenation  ;    Technical  aspects  of 384R 

and  D.  G.  Hewer.     Oilseeds  ;    Tropical . .          . .  768a 

and  E.  J.  Lush.  Fuller's  earth,  charcoal  and  the  like 
purifiers  of  fats  and  fatty  oils  and  catalysts  used 
in  hydrogenating  fats  and  fatty  oils  ;   Regenerating 

(P)           S25A 

and  others.     Oils  and  fats  ;    Neutralisation  of (P)  . .  557a* 

Bolton,  J.,  and  M.  W.  Mills.     Sewage  and  other  foul  waters  ; 

Means  for  aerating  and  circulating (P)         . .     389a 

Bomberg,    M.     Petroleum    mixtures    and    paraffin    wax ; 

Colour  of 319a 

Bonardi,    J.    P.,    and    J.    C.    Williams.     Tungsten    ores    of 

Boulder  County,  Colo.  ;    Treatment  of  ■         . .     553A 

Bone,  S.  C.     See  Wilson  Bros.  Bobbin  Co.,  Ltd.    '..  ..     538A 

Bone,  W.  A.    Lignites  and  brown  coals  and  their  importance 

to  the  Empire  . .  . .  . .  . .  . .  . .     126R 

and  others.  Coals  ;  Resinic  constituents  and  coking  pro- 
pensities of  . .  . .  . .  . .         58R,  240a 

Bonifazi,  G.     Brandy  ;    Analysis  of  643a 

Boniu,  P.  See  Dede  L.  .. 919A 

Bonis,  A.     Lead  dioxide  in  red  lead  ;    Volumetric  deter- 
mination of  ..  ..  ..  ..  ..     557a 

See  Moreau,    E 998a 

Bonnard,  L.  H.     Carbonising  furnaces  or  retorts  (P)      . .     661a 

Bonnell,  J.,  and  E.  P.  Perman.     Iron  alum  ;    Colour  of 96a 

Bonnet,  E.     Lead  salts  ;    Action  of  soluble  on  plants     226a 

Bonnier,    M.     Alkali   carbonates   and   hydroxides  ;     Deter- 
mination of  in  presence  of  phenolphthalein, 

e.g.,  in  determination  of  carbon  in  steel  . .  . .   1000a 

Bousor,   W.,  and  W.  C.   Steenburg.     Carbonising  method 

for  ferrous  metals  (P)  . .  . .  . .  . .  . .     673a 

Bonwetsch,  T.     Reducing  sugars  ;    Determination  of  477a 

Boocr,  J.  R.,  and  District  Chemical  Co.     Acetylene  gas  ; 

Materials  for  purifying  (P)    . .  . .  . .     579a 

Booge,  J.  E.,  and  E.  I.  du  Pont  de  Nemours  and  Co.     Arti- 
ficial leather  ;     Non-cracking  coating  composition 

and  made  therewith  (P)         476a 

Oils  ;    Deodorising  blown  or  polymerised  vegetable  or 

animal  (P)  599a* 

Zinc  oxide  ;    Process  of  treating  by-product  (P)     753a 

and  others.     Paints  ;   Relation  of  yield  value  and  mobility 

of to  their  so-called  painting  consistency      . .     599a 

Boord,   C.   E.,  and  F.   F.  Cope.     Selenium   monochloride  ; 

Lotion    of    upon    propylene,    butylene,    and 

iunylene  ..  ..  ..  ..  ,.  ..      308a 

Boormau,  H.  G.  T.     See  Browning,  R.  G 50^a 

Boorue,  W.  II.     Electrodes forarc  welding  and  metal  cutting  ; 

Manufacture   of  (P) 806a 

Booth,  A.  L.  Coal;  Inorganic  constituents  of .  Discussion     167T 

Booth,  G.  W.    Tunnel  kiln  (P) 177A. 

Boot's  Pure  Drug  Co.,  Ltd.,  and  L.  Anderson.     3.3'-Diamino- 
4.4'-dihydroxyarsenobenzene ;      Manufacture       of 

derivatives  of (P)        438a 

Bopst,  L.  E„  and  G.  L.  Bldwell.     Crude  fibre  ;    Study  of 

Gcphart  mcthud  for  determination  of  ..      47sa 

Bordler,  R.    See  Astrue,  A 345a 

Borelli  &  Co.,  V.    See  Brusa,  G 14a* 


PAGE 

Bornand,  M.     Clilorides  In  foods  ;    Determination  of  ■ 68lA 

Bornemann,  G.     Scheele's  green  ;    Composition  of  . .     946a 

Sodium,    potassium,   or  their   alloys ;     Preparation   of 

bright  metallic  469a 

Bornemann,    K.,   and   F.    Sauerwald.     Metals   and   alloys; 

Density  measurements  on at  high  temperatures. 

The  systems  Cu-Sb,  Cu-Zn,  and  Cu-Al      . .  . .     553a 

Metals  and  alloys  ;    Density  measurements  on at 

high  temperatures.     The  systems   copper-tin  and 
copper-aluminium        . .  . .  . .  . .  .  .     421a 

and  M.  Schmidt.     Aluminium  ;    Removal  of  from 

aluminous  zinc  alloys   (P) 108a 

Bornhauser,    O.     Gelatin   or   similar    material ;     Producing 
uniform   colorations   of  exact   shade   required   on 

,  e.g.,  for  preparation  of  photometer  scales  (P)     561a 

Borofski.H.     Seelsing,  G 506a,  943a 

Borries,  G.     See  Auerbach,  F.  603a 

Borst,  W.  R.     Sewage  treatment  (P) 31a 

Borzykowski,  B.     Artificial  threads  ;   Production  of (P)       11a* 

Cellulose  etc.  ;    Production  of    masses  or  solutions  of 

free  from  air  and  other  gases  (P)     . .  . .       11a* 

Bosch,  C.     See  Badische  Anilin-  und  Soda-Fabrik  . .       755a*,  878a 
Bose,  M.  N.     .See  Annett,  H.  E.  . .  . .        242R,  475R,  835a 

Bosnian,    L.    P.     Casteiin,   a   new   glucoside   from   Casteta 

Nicholsojii  . .  . .  . .  . .  . .  . .     607a 

Bosse,  O.,  and  H.  von  Wartenberg.     Osmium  ;   Recovery  of 

• from  microscopical  preparations         . .  . .     790A 

Bosshard,  G.  A.,  and  A.-G.  Seeriet,  Bleicherei,  Filiale  Arbon. 

Cotton  fabrics  ;  Producing  wool-like  effects  on 

(P)  55a* 

Bosshard,  H.     See  Elektrochem.    Werke        . .       426a,  67Ga,  774a 

Bosshard,  J.  A.     See  Korner,  T 773a 

Bossi,  A.     See  Treadwell,   W.  D 919a 

Bossuet,  R.     See  Jolibois,  P.  215a 

Bostaph  Engineering  Corp.     See  Ramage,  A.  S.  . .       285a,  933a 

Boswall,  R.  O.     See  Stoney,  G.  242a 

Boswell,  P.  G.  H.     Separation  of  the  finer  constituents  of 

sedimentary   rocks       . .  . .  . .  . .  . .     173R 

Botkin,    C.    W.     Shale-oil   residue ;     Relation   of  to 

other    bitumens  . .  . .  . .  . .  . .     281a 

Shale  ;    Saturated  and  unsaturated  oils  from  ..     241a 

Botolfsen,  E.     Calcium  carbide  937a 

Bottomley,  A.  E.     See  Fawcett,  Ltd.,  T.  C.  . .  . .     622a* 

Bottomley,  J.  F.     Obituary 88r 

Bottomley,  J.  W.     See  Fawcett,  T.  C,  Ltd.  . .  . .     548a* 

Bottomley,  W.  T.     See  Merz  and  McLellan       ..  48a,  279a,  279a 

Boucherie,     M.    Impregnating     animal,     vegetable,     and 

mineral    fibres    (P) 52a 

Boudouard.   O.     Porcelain  for  technical  electrical  purposes     101a 

and  J.  Lcfranc.     Clays  ;    Chemical  composition  of  983a 

Bougault,  J.,  and  R.  Gros.     Ammonia  ;   Presence  of  acetone 

in  commercial  . .  . .  . .  . .  . .     750a 

Nessler's  reagent ;    New  analytical  applications  of  . 

Characterisation  of  ketones.     Estimation  of  alde- 
hydes        646A 

Bouillon,  C.     Leaching  minerals  ;    Apparatus  for  (V)     258a 

Soapy  waste  waters  ;   Process  for  decomposing (P)     344a 

Bouillot,  J.     Strychnine  ;    Acid  methylarsinate  of  . .     194a 

Bourcoud,   A.   E.     Reducing  metallic  oxides ;    Method  of 

and  apparatus  for (P)  . .  . .  . .  . .     379a1- 

Bourgeois,    L.     Calcium   sulphate  ;     Process   for   obtaining 

crystallised  . .  . .  . .  . .  . .     250a 

Bourgoin,  P.     Colloidal  explosive  powders  ;  Velocity  of  com- 
bustion of  ..  ..  ..  ..  ..     -M  ± 

Bourry,  H.     See  Sunder,  H 139a 

Boussu,    R.    G.     Akohol-petroleum    spirit    mixtures    and 
ternary  mixtures  containing  alcohol  and  petroleum 

spirit ;   Limits  of  inflammability  of  vapours  of 57SA 

Boutin,  A.  M.     See  Sanfourche,  A 610a 

Bouvii  r,  M.,  and  Soc.  Chim.  des  Fsines  du  Rh6ne.     Dye- 

stutfs  of  the  indigo  series  (P)  . .  . .  . .  . .     366a0 

Indigo  ;    Process  for  obtaining  halogeu  derivatives  of 

and  of  its  homologues  (P)      . .  . .  . .     458a* 

Bowden,    H.    and    T.    W.    Scouring,    bleaching,    dyeing, 

shrinking    or  otherwise  treating  cloth,  yarns    and 

the  like  ;    Machines  for  (P) 139a* 

Bowden,  T.  W.     See  Bowden,  H 139a* 

Bowcn,   D.   R.,  and   others.     Rubber  and  like   materials  ; 

Machines  for  mixing  or  masticating  (P) 

262a*,  426* 

Bowen,  N.  R.    See  Morey,  G.  W 587a 

Bowen,  R.     Artificial  fuel;  Process  for  production  of  

(1')  659a 

and  Laminated  Coal,  Ltd.     Fuel  ;   Produetion  of  artifleial 

(P)  6A* 

Bowen,  W.  S.    Producing  heat ;    Method  of  (P)      . .  454a 

Bowker,   R.   ('.     Sole   leather  filled   with  sulphite -cellulose 

extract;    Durability  of  773a 

and    E.    L.    Wallace.     Leather ;     Sampling   of    for 

chemical  analysis         . .  . .  . .  . .  . .  476a 

Bowles,  I'.  B.     Antlcorrosive  and  antifouling  compositions  402b 


NAME  INDEX. 


17 


Brady,  F. 

Brady,  O.  L. 

and  others. 


500a 
559a« 
11a* 

827a 
14a 

88a 
743a 


932a 
740a 
822a 
673A 
766a 
673A 
298A 
50a 

497a 


363A 

A,  955A 

.      366R 

76H 

.     447R 
956A 


PAOE 
Bowman,  F.  J.,  and  Grasselli  Chemical  Co.    Furnace  lor 

treating  ores  (P)         . .         . .         . .         . .         . .       63a 

Boyce  and  Veeder.    See  Louder,  E.  A.        . .         . .         . .     887a 

Boyd,  T.  A.    See  Midgley,  T.,  jun 79R,  678a 

Boyer,  J.    Brick  kilns  (P)       59a 

Boynton,    K.    S.,    and    others.    Magnesium ;     Electrolytic 

recovery  of  from  salt  works  residue . .         . .     378a 

Boynton,  V.  K.    See  Perry,  R.  S 295a 

Bovs,  C.  V.     Gas  calorimeter ;    Recording  and  integrating 

263R,  533a,  (P)  569a 

Braam,  G.     Bleaching,  past,  present,  and  future  . .         . .     808a 

Braden,  M.    See  Heuser,  E 112a 

Bradfield.  R.  Colloidal  ferric  hydroxide,  aluminium  hydrox- 
ide, and  silicic  acid  ;  Centrifugal  method  for  pre- 
paring   ■ 

Bradford,  P.  G.     See  Berry,  H.,  and  Co.,  Ltd 

Bradford  Dyers*  Assoc,  Ltd.     See  Thornber,  3.     . . 
Bradley,    C.    E..    and    others.     Rubber    latex;     Treating 

(P)  

Bradley,  C.  S.     Carbon  ;    Production  of  (P)  . . 

Bradley,  L.     Gases  ;    Apparatus  for  electrical  treatment  of 

See  Glossop,  W.      ..         ..         '.'.         .. 
Bradley,    M.    J.,    and    S.    W.    Parr.     Coal    carbonisation ; 
Decomposition  processes  applicable  to  certain  pro- 
ducts of  ,  i.e.,  xylol 

Bradley,  W.  E.  F.     Carbon  ;    Production  of (P)      . . 

Electric-furnace  construction  for  reducing  ores  (P)    . . 

Iron  and  steel ;    Method  of  producing  (P) 

Magnetic  separator  (P) 
Metallurgical  process  (P) 

Ores;    Reduction  of  ■  (P) 

Bradshaw,  G.  B.    Phenols  ;    Production  of (P) 

Bradshaw,   G.   G.,  and  A.   G.   Perkin.    2-Hydroxybenzan- 

throne  ;    Derivatives  of  

L.     Eutectics  ;    Structure  of  . .     418R,  820a 

Nitration  of  m-nitrotoluene  . .         . .         . .     393a 

Dinitrotoluidines 

Braecke,  M.    See  Bridel,  M 517a 

Bragg,  W.     Crystal  structure  ;    Significance  of  

Bragg,  W.  H.    Ice  ;    Crystal  structure  of  

and    J .    W.    Mellor.     Kaolinite ;     X-radiogram    of 
and  thermal  decomposition  of  clay 

Braham,  J.  M.     See  Blair,  J.  S 

See  Hetherington,  H.  C 686a 

Brahm,  C.     Lupins  and  their  utilisation       . .         . .         . .     191a 

Braly,  A.     Gold  and  silver  ;    Detection  of in  minerals 

by  means  of  the  blowpipe    . .         . .         . .         . .     443a 

Brarne,  J.  S.  S.    Fuel  oil ;   Possible  economic  development 

of  home  supplies  of  . .         . .         . .         . .     193R 

Bramwell,  B.     Sand  niters  (P) ..     607a 

Brand,  J.  J.  F.     Clay  ware  ;   Cause  and  cure  of  lamination 

in  633a 

Drand,  K.,  and  J.  Steiner.    p-Arylhydroxylamines ;   Cata- 
lytic reduction  of  aromatic  nitro  compounds  and 

preparation  of  . .         . .         . .         . .         . .     363a 

Brandenberger,  ,T.   E.    Photographic  films  with  a  carrier 

permeable  to  water  (P)  . .  . .  . .      524a,  524a 

Sensitive  films  for  photographic  purposes  ;    Production 

of  (P) 484a 

Textile  fabric  ;    Manufacture  of  artificial (P)     . .     936a 

and  Soc.  La  Cellophane.     Photographic  film  ;    Cellulosic 

and  process  for  producing  it  (P)      . .         . .     234A 

Brandl,  P.     Steel  or  iron  ;    Production  of  from  scrap 

with  earburising  material  on  acid  hearths  (P)     . .     470a 
Brandt,    3.    Azo    dyes ;     Production    of    on    wool. 

(Report  by  O.  Michel.)         136a 

Brandt,  P.     See  Battegay,  M.  891A 

Brandt,    W.,   and   M.    Wolff.    Anise   fruit      Testing   and 

valuation  of  . .         . .         .  -         . .         . .     346a 

Brandwood,  J.,  T.,  and  J.     Dveing, bleaching, and  analogous 

treatment  of  textile  fibres  (P)         666A 

Dyeing  and  other  treatment  of  textile  fibres  in  the 

loose  state  (P)  936a* 

Brandwood,  T.    See  Brandwood,  J.  . .         . .      666a,  936a« 
Bransky,  O.  E.,  and  Standard  Oil  Co.     Petroleum  hydro- 
carbons ;    Purification  of  (P)  . .  . .  . .         5A 

Brat,  P.    Nitrogen  ;  Process  for  recovering in  the  form 

of  ammonia  from  peat  (P)   . .       371a,  414a,  462a,  501a 
Brauchli,  E.    Paste  adapted  to  serve  as  a  neutral  basis  for 

ointments  ;   Production  of  a  durable  infusible  soft 

(P)  347a 

Brauer,  E.    See  Geiger,  A 774A 

Brauer,  K.    Hardened  fats  ;   Ability  of to  hold  water 

in  suspension    . .         . .         . .         . .         . .         . .  769a 

Margarine  ;    Water  content  of . .         . .         . .  833a 

Braun,    H.    Animal    membranes ;     Removing    poisonous 

material  from  (P)  . .  . .  . .  . .  516A 

Braun,   E.    Boring  and  cooling  oils  (water-soluble  oils) ; 

Examination  of  . .         . .         . .         . .  988a 


PAGE 

Braunholtz,  W.  T.  K.    Carbocyanines  ;  Comparison  of  three 

isomeric . .         . .         . .         . .         . .         . .     198a 

and  YV.  H.  Mills.    Cyantne  dyes  containing  a  quinoline 

and  a  benzothiazole  nucleus.     Thioisocyanines    . .     997A 

See  Mills,  W.  H 804a 

Braunsdorf,  K.     See  Schmidt,  E 608A 

Braunsdorf,  O.     See  Von  Braun,  3 608A 

Braxton,  E.  M.,  and  M.  R.  Spellman.     Gas  producer  and 

process  (P)        700A 

Brazier,  S.  A.    See  Twiss,  D.  F 49R,  81T 

Breckenridge,  3.  E.     Dicyanodiamide  ;    Formation  of  

in  fertilisers       . .  . .  . .  . .  . .  . .     385A 

Bredig,  G.,  and  .1.  Michel.    Perchloric  acid  and  its  salts; 

Chemical  kinetics  of 326A 

Breedis,  J.    See  Zohn,  S 336a,  828a 

Breest,   F.     Phosphoric   acid   in   soils   and   water.     After- 
effects   of    phosphatic    fertilisers    and    dissolved 
phosphate  in  ponds    . .         . .         . .         . .         . .       70A 

Brcgeat,  J.  H.     Intermingling  of  fluid  streams  ;   Means  for 

effecting  intimate  — ■ —  (P)  . .         . .         . .         . .         1a 

Brehm,  H.     See  Lottermoser,  A.         . .  . .  . .  . .     106A 

Breisch,    K.,    and    K.    Chalupny.    Nickel ;     Analysts    of 

technical  •  . .  . .  . .  . .  . .  . .     504A 

Nickel ;    Determination  of  small  quantities  of  zinc  in 

technical  • 256a 

See  Chalupny,  K 612a 

156a 

134a 


109a 
859a 


950A 


381a 


Brenet,  M.  T.    See  Barlot,  G.  

Breuer,  P.  K.    See  Fischer,  F.  

Breuning,  E.  Diaphragm  for  electric  batteries  and  electro- 
lytic cells  (P) 

Brewer  and  Co.,  Inc.     See  Davis,  L. 

Brewster,    J.    F.,    and    W.    G.    Raines,    jun.     Sugarhouse 

evaporator   syrups  ;    Precipitate   formed   in  

after  clarification 

Breyer,   F.   G.,   and  others.     Llthopone ;    Manufacture  of 

(P)  

See  Singmaster,  J.  A 381a,  474a 

Bridel,  M.,  and  M.  Braecke.  Alelampyrum  arvense ; 
Presence  of  melampyritol  and  aucubin  in  foliated 

stems  of  . . 

Melampyrum  arvense  seeds  ;    Presence  of  sucrose  and 

aucubin  in  

Rhinanthin  and  aucubin  :    identification  of  rhinanthin 
as  impure  aucubin 
Bridge,  A.    Metals  etc. ;    Method  of    and  apparatus  for 
reducing  — ■ —  (P) 

Bridgeport  Brass  Co.    See  Clark,  W.  R 

Briefs,  H.     Vanadium  ;    Analytical  chemistry  of with 

special  reference   to   examination  of   steel   works 
materials 
Brieger,  W.     See  Fonrobert,  E. 
Briggs,  A.  P.     Magnesium  ;    Colorimetric  determination  of 

small  amounts  of  

Briggs,  J.  F.     Dyeing  of  cellulose  acetate  artificial  silk   . . 
and   American   Cellulose   and   Chemical   Mfg.    Co.,   Ltd. 

Cellulose  acetate  products  ;   Treatment  of (P) 

and  others.     Cellulose  acetate ;    Dyeing  fibres,  threads, 

or  fabrics  of  (P) 

See  British  Cellulose  and  Chemical  Mfg.  Co.,  Ltd. 

Briggs,  I.  M.    See  Briggs,  T.  L 

Briggs,  T.  L.,  and  General  Chemical  Co.     Contact  material ; 

Process  for  cleaning  (P) 

and  others.     Chlorosulphonic  acid  ;    Method   of   making 

(P)  

Briggs,  T.  R.     Copper  ;   Electrolytic  solution  and  deposition 


517A 
727a 


955a 


471a 
20A 


594A 
109R 

649A 
54A 

705A* 

11A« 
543A 
668a 

846a 
668a 


of 


60A 


Briggs,  W.  B.,  and  S.  H.  Buxton.     Heating  and  boiling 

liquids  ;    Means  for  (P) 

Bright,  R.  E.,  and  Stein-Hall  Mfg.    Co.    Preparation  for 
use  in  improving  dough  (P) 
Starch-conversion  products  (P) 

Brigl,  P.     Dextrose  ;    The  1.2-anhydridc  of  

and  E.  Fuchs.    Lignocerlc  acid  and  Its  derivatives 
Brill,  H.  C,  and  R.  E.  Brown.    Papain ;    Digestive  pro- 
perties of  Philippine  

Brindle,  R.  G.,  and  Corn  Products  Refining  Co.     Starch  ; 

Separating  gluten  from  (P) 

and    others.     Evaporating    liquid    or    semi-liquid    sub- 
stances (P) 
Briner,  E.,and  A.  Trampler.     Hydrolysis  of  fats  ;  Mechanism 

of  catalytic  action  in 

and   others.     Nitric  oxide ;    Peroxidation   of  and 

recovery  of  nitrogen  oxides  from  mixtures  with  air 
Briotet.     Nitrocellulose  powders  ;   Application  of  a  mercury 

vapour  lamp  to  investigate  the  stability  of ■    . . 

Hertzian    waves ;     Action   of   on    powders    and 

explosives 
Briscoe,  H.  V.  A.    See  Berk,  F.  W.,  and  Co. 

See  Faber,  0 816a 

Briscoe.  R.  L.    Hops  :    Extraction  of in  brewing  beer 

or  the  like  (P) 29a 

Brislee,  F.   J.    Electrical  industries ;    Chemical   problems 

of ..    „  ..    * 172R 

B 


657A 

388A 
388a 
910A 
424a 

645a 

777A 
450A 
181a 
544A 
349a 

349a 

489a 


18 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

British  Cellulose   and   Chemical   Mfg.   Co.,   Ltd.,   and   w. 

Bader.     J>ialkyl  sulphates ;    Manufacture  of  

<P)  309A 

Pyrosulphates ;    Manufacture  of (P)        ..        ..     372a 

and   W.  A.  Dickie.     Coating  wire  with  varnish  and  the 

like;    Apparatus  for  (P)  ..  ..      475a* 

and    H.    R.    A.    Mallock.    Spinning   artificial   threads  ; 
Rotarv  pompa  of  the  geai  type  tor  use  in  apparatus 

for  (P> 584a* 

and    L.    Q.    Richardson.     Cellulose    acetate    products  ; 

Treatment   of  to  increase  their  atfinitv   for 

dyestuffs  (P) 289a,  289a 

and    others.    Arufldal    filaments,    threads,    and    films ; 

Manufacture  of (P)        459a.  542a 

Dyeing  union  fabrics  containing  cellulose  acetate  fibres; 

Process  of (P) 543a 

British  Dyestuffs  Corp.,  Ltd.,  and  others.     Basic  dyeatuffa 
(triarylmethane  derivatives  containing  a   thiazole 

ring) ;   Manufacture  of ■  possessing  affinity  for 

irnmordanted  vegetable  fibres  (P)    ..         ..         ..     034a 

Benzanthrone  derivatives;    Manufacture  of  — —  (P)     744a 

Direct  cotton  dyestuffs  ;    Manufacture  of  (P)   . .     853a 

Hydroxy  ethyl,     hydroxy  propyl,     etc.     derivatives      of 
oxazine,  azine,  and  thiazine  dvestuffs  ;  Manufacture 

of  (P) B26A 

Intermediates  for  the  production  of  colouring  matters, 
rir.,       nitroso-oxyalkvlaryla  mines,       oxyalkylated 

thiosulphonic  acids,  etc.  ;   Manufacture  of  new 

(P)  977a 

1.4-XaphtholsuIphonic  acid;    Manufacture  of  (P)     933a 

Phenylglycine  compounds;    Manufacture  of  (P)     170a 

Phthalimide  ;   Manufacture  of (P) 663a 

o-Sulphonic  acids  of  aromatic  amines  ;   Manufacture  of 

(P)  287A 

Triarylniethane    colouring    matters ;     Manufacture    of 

(P)  853a 

See  Fyfe,  A.   W 170a 

See  Green,  A.  G.    . .  ..  .,  ..  ..  ..     626a 

See  Segaller,  D 408a 

British  Research  Association  for  the  Woollen  and  Worsted 
Industry.     Wool;     Sorption    of   neutral    soap    by 

and    its    bearing    on    scouring   and    milling 

processes  . .        . .         . .        . .        . .        . .     626a 

Wool;  Standard  method  for  the  estimation  of  soap  in 

626a 

British  Thomson-Houston  Co.,  Ltd.     See  Langmuir,  I.    . .     133a* 

See  Steenstrup,  C 505a 

Britons,  Ltd.     See  Mayers,  H.  P" 223a 

Brittaln,  A.,  and  C.  Elliott.     Gypsum  industry     ..         ..     533r 

Britton,"  H.  T.  S.    Aluminium  ;    Separation  of  from 

glucinum  . .  . .  . .  . .  . .  . .     273a 

Beryl;    Extraction  of  glucina  from  ..         ..     349t 

-ium    sulphate-aluminium    sulphate-water ;     The 

system at  25°  C.  . .         . .         . .         . .     5S9a 

Britton,   P.,   and   Griffiths   Bros.,   and   Co.,    London,   Ltd. 
Rubberised  fabrics  and  rubber  goods  ;   Preparation 

of  (P) 827a 

Brlzon,  A.     See  Galibourg.  J.  ..  ..  ..  ..     106a 

Broadbent,  H.     See  Broadbent,  T..  and  Sons,  Ltd.  ..     230a 

Broadbent,  T.,  and  Sons,  Ltd.  ,and  H.  Broadbent.     Centri- 
fugal   machines   (P)    . .  . .  . .  . .  . .     280A 

Broadbridu'e.  W..  and  E.  Edser.     Fertilisers  ;    Manufacture 

oi    (P) 26a 

and  others.     Caliche  ;  Treatment  of for  extraction  of 

sodium   nitrate   (P) 669a 

Broadhead,  B.     See  Dempster,  E.  and  J.,  Ltd 975a, 

Broadley,  .^.  E.     Ores  ;   Apparatus  for  grinding,  classifying, 

and  decanting  (P)         ..  ..  ..  ..     555a* 

Brochet,  A.     Cy clohexanol ;    Preparation  of ..         ..     956a 

Brock,  F.   P.     See  Redman,  L.  V 149a* 

Brockbank,   C.   J.,   and   Abrasive   Co.     Abrasives ;     Manu- 

i    of  artificial from  bauxite  and  emery  (P)     142a 

H.     Gas  generating  apparatus  (P)  . .  ..  ..     322a* 

■  .  i  .     i  in  :    Precipitation  of from  alkaline 

tlons   (P)    ..         ..         ..         ..         ..         ..     327a 

Broga,  W.  (_'.,  and  C.  J.  Hudson.     Shrinkage  measurements 

on  ceramic  products  ;   Instrument  for  making 217a 

Bromlg,  K.    See  Ambergcr,  C.  675a 

Bromley,  J.,  and  Sons.     See  Grundy,  J.  A.  . .  . .     139a 

Bron .i  ind  T.  Costlgan.     Shale  and  like  materials  ; 

tratus  for  recovering  the  volatile  constituents 

o*  (P) 404a 

Bronn,  .1.     Combustion  temperatures  .  .  ..  ..  ..     5774 

Meth  1      keel  cylinders  as  motor  fuel  ..        ..     888a 

Bronn,  .1.  I.    I  ;    Treatment  of (P)       40a.  92a* 

Bronncrt.  B.     Artificial  silk  Industry  ;    Progress  in  the 540a 

Artificial  silk;    Manufacture  of  viscose  (P)  Ha*, 

52a,  248a,  248A*,  584a*.  628a*,  749a* 
:i   Foundation,   in'-.     Vis©  Uanufa<  tur 

crude  — —  bv  means  of 
warm    mineral    acids   (P)     . .         . .    *    . .        . .     410a* 
In     F.    B      and    Trojan    Powder    Co.    Nitrostarch 

Ives;   Manufacture  of (P)        ..        ..      81a 

Brooke,  K.  M..  and  \v.  Whltworth,     Gas;    Manufacture  of 

iu  horizontal  retorts  with  steaming  (P)       . .     453a 

is  ami  the  like;    Furnaces  used  In  manu- 
facture of  (P) 91a 


PACE 

Brooks,  A.  P.     See  Larson,  A.  T 325a 

Brooks,   B.    T.     "  Hydrocarbons    Chemistry    of    the    non- 

benzenoid  and  their  simple  derivatives  '*    . .     407R 

and  others.     Borneols   and  camphene  ;     Manufacture   of 

(P)  786a 

Brooksbank,    J.    Photographic    emulsions;     Darkening    of 
Bilver  bromide  grains  on  exposure  to  light  as  further 

evidence  of  their  heterogeneity  in ..         ..       36a 

Brose  und  Co.,  Metallwerk  M.     Alloy  for  medical  and  dental 

purposes  (P)     . .  . .  . .  . .  . .  . .     673a 

Brotmau,  A.  G.     Formaldehyde -gelatin  combination         . .       25a 

Brown,  C.  A.     Heat  exchangers  ;   Tubular (P)  . .      317a* 

Sand  filters  ;    Cleaning (P) 240a 

Brown,  C.  H.,  and  A.  A.  Coldrey.     Drying  apparatus  (P)  . .     575a 
Brown,  C.  L.     Mixing  machines  for  concrete,  mortar,  paint 
and  other  materials  ;    Means  for  preventing  entry 

of  material  into  the  bearings  of  (P)  ..     317a* 

Brown,  C.  M.     Felspar  ;    Recovering  potassium  and  alum- 
inium compounds  from  (P)    . .  . .  . .     141a 

Brown,    E.     Autoclaves    and   the    like   apparatus  ;     Cover 

for (P) 149A 

Brown,  I.     See  Mason,  F.  A.  830A 

Brown,  G.  G.     Automobile  ;    A  chemically  controlled  

157R,  279A 
Gasoline  consumption  by  motor  cars    . .  . .  . .     510R 

Maximum  temperatures  developed  in  chemical  reactions, 
e.g.,  combustion  ;    Rapid  calculation  of  theoretical 

795a 

Brown,  G.  R.,  and  Electrostatic  Separation  Co.,  Ltd.    Elec- 
trostatic   separation    of     finely    divided    discrete 

material   (P) 638a* 

Brown,    H.    E.,    and    others.     Binding    and    waterproofing 

material ;    Plastic  aud  process  of  making  it 

(P)  906a 

Brown,  J.  H.     Coke-ovens  ;    Regenerative  ■  (P)  . .     243a 

Brown,  J.  L.,  and  others.     Electric  furnace  ;  Induction 

(P)  147a 

Brown,  O.  W.,  and  C.  O.  Henke.    Aniline;    Catalytic  pre- 
paration of 322a,  406a 

Copper ;    Catalytic  action  of  in  preparation  of 

aniline    . .  . .  . .  . .  . .  . .  . .     976a 

and   J.    C.    Warner.     o-Aniino phenol ;     Electrolytic   pre- 
paration   of    . .  . .  . .  . .  . .     406a 

and    others.     Lead    oxides ;     Effect    of    grinding    upon 

apparent  density  of  . .  . .  . .  . .     588A 

See  Henke,  CO 406a,  976a 

Brown,   P.   E..   and   J.   H.   Stallings.     Inoculated   legumes 

as  nitrogenous   fertilisers       . .  . .  . .  . .       26a 

Brown,  R.  E.     See  Brill,  H.  C.  645a 

Brown,  R.  L.     Gas  from  destructive  distillation  of  a  mixture 

of  water-gas  tar  and  coal     . .  . .  . .  . .     241a 

Gas ;    Gum-    and    resin-forming    constituents   in   car- 

buretted  699a 

and    Koppers    Co.     Purification    of   phenol-contaminated 

liquors    (P) 726A 

See  Sperr,  F.  W.,  jun.        . .         . .         . .         . .         . .     4.">7a 

Brown,  S.,  and  Griscom-  Russell  Co.     Evaporator  and  feed 

water  heating  system  ;    Combined  water  for 

use  on  ships  (P)  ..  ..  ..  ..  ..       31a* 

Evaporator  systems   (P) 31a*,  206a 

Evaporator  systems;    High  heat  level  (P)         ..       31a* 

Brown,  T.  E.     See  Hoover,  W.  W 624a* 

Brown,    W.    A.     Hydrocarbons  ;     Separating   and    topping 

from  a  water  mixture  (P)     ..         ..         ..     5S0A 

Brown,  W.  F.,  and  Libbey-Owens  Sheet  Glass  Co.     Glass ; 

Stirring  molten in  continuous  tank  furnaces  (P)     417a 

Brown  Co.     See  Burningham,  F.  A.  . .  . .  . .       10a 

S«  Richter,  G.  A 10a,  983a 

Brown,    Boveri,    &    Co.,    A.-G.    Air    pumps;     Mercury 

vapour  ejector (P)         698a* 

Mercury  vapour  pumps  for  high  vacua  (P)        . .  . .         1a 

Muffle  furnace  ;  Electrically  heated (P)        . .       109a,  637a* 

Transport    of    loose    materials    by    means    of    gaseous 
media;    Process    and    apparatus    for    regulating 

the (P) 797a* 

Browne,  A.    See  Jackman,  D.  X.       ..         ..         ..         ..     412a 

Browne,    C.    A.     Sugars    and     carbohydrates ;     Moisture 

absorptive  power  of  different  under  varying 

conditions  of  atmospheric  humidity  ..  ..     723a 

Browning,  C.  H.,  and  others.    Antiseptic  action  and  chemical 

constitution;     Relationships    between    with 

special   reference   to   compounds   of  the   pyridine, 
quinoline,  acrldlne  and  phenazine  series  ..         ..     480a 
Browning,  E.  C.  and  H.  G.  T.  Boorman.     Nitrates  ;  Treat- 
ment of .  particularly  those  used  for  fertiliser 

purposes   (P) 562a 

Browning,  VY.  .T.     Hydrogen  sulphide  ;   Production  of 

from  sulphurous  gases  (P)    ..  ..  ..  ..     253a* 

Metals;    Extraction  of (P) 259a* 

Brownlee,   H.  J.     See  Miner,  C.  S.  ..         ..       784a,  784a 

Brownlee,  R.  H.,  and  C.  F.  de  Ganahl.     Oils  ;    Cracking  of 

(P)  131a 

Hvdrocarbon  oils;    Process   for   lowering   viscosity   of 

(P)  404a 

Brownsdon,      H.      W.     Vulcanisation ;       Dithioearbamate 

accelerators  of  Discussion      . .         . .         . .       88t 


NAME  INDEX. 


19 


PAGE 

Bruce,    H.    D.     See    Booge,    J.    E 599a 

Bruce,  J.     Training  in  chemistry  ;    Scheme  of  drawn 

up  by  Institute  of  Chemistry  and  Board  of  Education     1 27R 

Brock,  W.     See  Akt.-Ges.f.-Amliu-Fabr 934a 

Erode,  G.     See  Fester,  G 857a 

Bruhn,  A.,  and  F.  Krupp  A.-G.  Superphosphate  masses; 
Process  of  and  apparatus  for  ageing  and  disintegrat- 
ing    <P) 909a* 

Bruins,  H.  R.     See  Cohen,  E 37a 

Brukl,  A.    See  Moser,  L 327a 

Brumbaugh.  I.  V.     See  Berry,  W.  M.  286a 

Brune,  II.,  and  others.     Coal  slimes  ;    Utilising (P)  ■  •     455a* 

Bruni,  G.  Rubber;  Natural  and  artificial  ageing  of  vul- 
canised       . .  . .  . .  . .  . .  . ■     475a 

and   E.  Romani.     Vulcanisation  accelerators  ;    Mercapto- 

thiazoles  as  601a 

Brunkow,    O.    R.,   and  others.      Sauerkraut  ;    Influence  of 

certain  factors  on  chemical  composition  of . .     115a 

Brunner,    G.    E.     Pankulatine,  the  alkaloid    of   Aconitum 

pan '•.■'datum       . .  . .  . .  . .  . .  . .     914a 

Brunskill.   W.   B.     Iron  or  steel  surfaces ;    Treatment  for 

obviating  the  rusting  or  oxidation  of (P)     . .     715A 

Brusa,  G.,  and  V.  Borelli  &  Co.  Mercuric  oxide;  Manu- 
facture of  (P) 14a* 

Brutzkus.  M.     Chemical  production  and  research  ;  Apparatus 

f0r  (P) 87a 

Chemical  reactions  ;    Process  for  effecting  in  the 

interior  of  air  compressors  (P)         ..         ..         ..     735a 

Bryan,  L.   O.,  and  E.   I.  du  Pont  de  Nemours  and  Co. 

Explosive  composition  (P)  ..  ..  ..     649a 

Bryan,    O.    C.     Nodule    formation    of   soya-beans ;     Effect 

of  different  reactions  on  the  growth  and  . .     511A 

Bryant,  F.     Aeration  of  brewers'  wort  and  other  liquors  (P)     832a 
Brydon.  S.,  and  E.  Cummings.     Galvanic  batteries  or  cells  ; 

Dry  electrolytic  mixture  for (P)        ..         ..     147a 

Bryant,  W.  T.,  and  E.  R.  Ratcliff.     Petroleum  ;  Treatment 

of  (P) 132a 

Bube,  K.     Drying  oils  ;   Manufacture   of from  lignite 

and  producer-gas  tar  (P)      ..  ..  ..  ..     245a 

Bucherer,  H.  Condensation  products  of  formaldehyde 
and  phenols  ;    Preparation  of  water-soluble  alkali 

salts  of  (P)         728a 

Condensation    products    of    aldehydes    and    phenols ; 

Production  of  derivatives  of  (P)        . .  . .     197a 

Resinous  condensation  products  of  phenols  and  formalde- 
hyde ;    Production  of  derivatives  of  (P)     . .     110a 

Bucherer,   H.   T.,  and  R.  Wahl.      2.5.1-Aminonaphtholsul- 

phonic  acid  (A-acid)  and  its  derivatives    . .         . .     135a 

Buchler,  C.  C.     See  Gomberg,  M 71a 

Buchncr,  M.     Hydrogen  sulphide  ;   Manufacture  of (P) 

174a,  327a 
Insoluble  precipitates,  e.g.,  of   aluminium    hydroxide  ; 

Separation  of  from  solutions  (P)      . .  . .     859a 

Nitric  acid  ;    Process  of  fixing  synthetical  (P)   . .     811a 

See  De  Haen,  E.,  Chem.  Fabr.     "List"  G.m.b.H.    ..     874a 
Buck,  H.  A.   and  G.  Moore.     Pigments  ;   Method  of  making 

binders  for  for  printing  ink  (P)         . .  . .     639a 

Buckingham,  C.  L.  Retort  furnace  and  condensing  apparatus 
for  the  eduction  of  oil  and  fuel  gas  from  oil  shales 

and  sands  (P) 741a 

Buckley,  H.     See  Gilbert,  L.  F 857a 

See  Masson,  I.         ..         ..         ..         ..         ..         ..     175a 

Buckley,  P.     See  Gillespie,  W.  M 637a 

Buckman,  H.  H.     Titanium  pigments  ;    Production  of  

(P)  22a,   149A,   381a,   868a 

and  others.     Refractory  article  ;    Highly  (P)         . .     417A 

Buckman  and  Pritchard,  Inc.     See  Buckman,  H.  H.         ..     417a 
Budde,  C.  C.  L.  G.     Hydra-oxy-cellulose,  a  xanthogenated 
compound  obtained  therefrom  and  a  solid  compact 
material   obtained   by   coagulation   of  the   latter  ; 

Manufacture  of  (P) 806a 

Buddeus,  W.  Pyrites,  blende,  and  other  sulphide  ores  ; 
Process   for   the   sulphatising-  or  dead-roasting  of 

(P)  298a 

Buddington,  A.  F.    Melilites  ;    Natural  and  synthetic 141a 

Budnikow,  P.  P.     Gilding  of  glazed  pottery 755a 

and  K.  E.  Krause.    Sulphides  ;   Determination  of by 

oxidation  with  ferric  sulphate  . .  . .  . .     706a 

and  P.  W.  Solotarew.     Cellulose  ;   Saccharification  of 745a 

and  J.  K.   Syrkin.    Gypsum ;    Setting  and  velocity  of 

solution  of  burnt ..  ..  ..  ».  757a 

Biihring,   O.      Silica ;    Production  of  dense,  acid-resisting 

articles  from (P)  . .         . .         . .         . .     756a 

Vapours  and  gases  ;   Apparatus  for  purifying (P)     316a 

Buell,  H.  D.     Uranium  ;   Qualitative  test  for . .         . .     595a 

Buell,  R.  N.     Burning  of  pulverised  fuel ;    Apparatus  for 

(P)  624A* 

Euffalo  Foundry*  and  Machine  Co.     See  Engel,  G.     . .  «       43a 

Buffalo  Refractory  Corp.     Refractory  composition  (P)      . .     328a 
Bull,  A.  W.,  and  J.  R.  Adams.     Alizarin-iron  lakes  . .  ..     246A 

Bull,  H.  .T.,  and  A./S.  De  Norske  Saltverker.     Evaporation  ; 

Treatment  of  liquids  containing  calcium  sulphate 

to  prevent  formation  of  scale  during (P)     . .       44a* 


page 

Bullard,  C.  M.     Sulphur  dioxide  ;  Purification  of (P)  . .     415a 

Bullls,  D.  E.     See  Robinson,  R.  H.  677a 

Bullock,   E.   R.     Photographic  development  ;    Restraint  of 

by  borax  and  similar  Baits        . .         . .         . .       79a 

Bunbury,  H.  M.     Carbonyl  chloride  ;   Sorption  of  by 

beechwood  charcoal    . .         . .         . .         , .         . .     782a 

Bunel,   L.    J.     Photographic   developers ;    Preservation  of 

diaiuinophenol    . .  . .  . .  . .  . .       36a 

Bunge,  C.     Perchlorate  explosives  ;   Manufacture  of  —  (P)     649a 

Bunnell,  M.  D.     See  Nagai,  W.  N 79a* 

Buute,  H.,  and  E.  Terres.     Iron-earbonyl  ;    Formation    of 

in  use  of  coal  gas  for  lighting  railway  carriages, 

and  its  prevention       . .  . .  . .  . .  . .     241A 

Bunte,  K.,  and  E.  Frei.    Benzol  washing  ;    Chemical  and 

physical  basis  of ..  ..  ..  ..  ..     452a 

and  F.  Schwarzkopf.     Lignites  ;    Comparison  of  technical 

and  laboratory  carbonisation  of  . .  . .     492a 

Bunting,    E.    N.     Glass    melted    under    reduced    pressure  ; 

Effect  of  manganese  in ■  . .  . .  . .  . .     813a 

See  Washburn,  E.  W 176a,  217a,  253a,  710a 

Bunzl,  C.     See  Klemenc,  A 896a 

Bunzlauer  Werke  Lengersdorff  und  Co.     See  under  Len^ers- 

dorff 

Buratti,  R.     He xa methylene! etra mine  ;  Chlorine  derivatives 

of  (P) 520a 

Burch,  E.  F.     Petroleum  ;    Distillation  of (P)  . .  . .         5A 

Burden,    A.    G.    N.     Disintegrating   minerals     and   similar 

materials  ;    Machines  for (P)  . .  . .  . .     796a 

Burden,   E.     Aluminium  alloys,  and  their  preparation  (P)     146a 

Burdick,  0.  L.     Nitric  oxide  ;    Oxidation  of  and  its 

catalysis  291a 

Nitrogen  oxides  in  gas  mixtures  ;  Determination  of 412a 

Burdick,  T.     See  Binns,  C.  F 217a 

Burdon,  M.  M.     See  Burdon,  W.  M.  702a* 

Burdon,   W.  M.,  and  others.     Liquid  fuel  ;    Preheating  of 

for  liquid  fuel-fired  furnaces  of  the  Burdon 

type  (P)  702a* 

Burdons,  Ltd.    See  Burdon,  W.  M.  702a* 

Burford,   S.   F.     Industrial  chemistry,  its  importance  and 

progress  ..         ..         ..         ..         ..         ..     471r 

Burger,  A.     Filter-press  (P) 316a 

Burger,  H.     Leather;  Impregnation  and  currying  of (P)     722a* 

Burger,    P.     Galvanic    cell    with    electrodes    composed    of 

manganese  dioxide  and  acetylene  soot  (P)  . .         . .     866a 
Burgess,  G.  K.,  and  R.  W.  Woodward.     Steel  plates  con- 
taining   zirconium    and    other    elements ;     Manu- 
facture and  properties  of  . .  . .  . .     760A 

Burgess,   L.     Aluminium   oxide  ;    Reducing  to  form 

carbide  or  aluminium  alloys  (P)      . .  . .  . .     669a 

Glucinum  compounds  ;    Production  of (P)  . .     546a 

Zirconium  compounds  ;    Production  of  ■  (P)         . .     546a 

and  Standard  Oil  Co.     Aluminium  cldoride  ;  Production  of 

anhydrous ■  (P)     ..         ..         ..         ..         ..     216a 

Aluminium  chloride  ;    Treatment  of    residues  resulting 

from  treatment  of  hydrocarbons  with (P)      . .     132a 

Burgess  Laboratories,  C.  F.     See  Weiss,  H.  F 329a* 

Burgess,  Ledward,  and  Co.,  Ltd.,  and  W.  Harrison.     Cellulose 

acetate  ;   Process  for  dyeing (P)       . .         . .     543a 

Burghart,  L.  M.f  and  U.S.  Industrial  Alcohol  Co.  Dis- 
tillery    waste ;      Process     of     recovering     volatile 

organic  acids  from (P)  . .         . .         . .         . .     779a 

Burke,  C.  R.  and  L.  P.    Hydrocarbons  ;  Production  of  light 

(P)  741a 

Burke,  L.  P.    See  Burke,  C.  R.  741a 

Burkey,    H.    M.,    and    others.      Aluminium   sulphate   etc. ; 

Decomposition  of  (P)   . .  . .  . .  . .     463a 

Burkhardt,  J.  Silicic  acid-tannin-albumin  and  silicic  acid- 
formaldehyde-tannin-albumin  compounds ;  Pro- 
duction of  ■  (P) H9a 

Burklin,  E.     See  Karrer,  P 304a 

Burlin,  A.  E.     Pulp  for  paper,  cardboard,  artificial  leather, 

and  the  like  from  peat ;    Manufacture  of (P)     628a* 

Burnell,  A.  G..  and  R.  W.  Dawe.     Motor  spirit  (P)  . .  . .         5a 

Oil-gas  ;    Hydrocarbon  liquid  from  compressed . .     281a 

Burnet,  E.     Retorts  for  destructive  distillation  ;     Vertical 

(P)  538a 

Burnett,  A.  J.     See  McBain,  J.  W 719a 

Burnham,  G.  B.     Sodium  carbonate-sulphate  ;    Recovering 

from  saline  waters  (P)  . .  . .  . .  . .     502a 

Burningham,   F.   A.,   and  others.     Waterproof  fibre  tube  ; 

Manufacture  of  (P) 10a 

Burrell,  B.  A.    Ricin  ;  Limits^of  agglutination  test  for . 

Discussion  ..  ..  ..  ..  ..  ..     H4T 

Burrell,  G.  A.     Gasoline  ;   Extraction  of from  natural 

gas.    Extraction  with  charcoal,  and  plant  design    549R 
Gasoline  ;  Extractionof from  natural  gas.     Extrac- 
tion by  compression  and  by  absorption  in  oil     . .     524R 
and  others.    Gasoline,  naphtha,  and  the  like  ;  Recovering 

and  recondensing  (P>    . .  . .  . .  . .     494a 

Vapours  ;    Apparatus  for  extracting from  gaseous 

mixtures    (P) 127a 

Vapours  ;    Method  of  dissipating  heat  in  process  for 

extracting from  gaseous  mixtures  (P)  . .  . .     490a 

P.  2 


20 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Burrell.    Volatile  matter  In  fuels  ;    Determination  of  . 

Discussion         ..          ..          ..          ..          ..          ..  374T 

Burrows,  L.  P.  Alloy  for  forging  steel  and  method  of  produc- 
ing it  from  nickel  ore  (P)     . .         . .         . .         . .  763a 

Nickel  ores;    Process  of  treating  (P)      ..         ..  765a 

Borrow*,  S.  F.     See  Badder,  H.  C.               16a* 

Burstin,  H.,  and  B.  Spanier.     Naphthenic  acids  ;   Technical 

purlllcation  of  crude  ..          ..          ..          ..  46a 

See  Galizlsche  Naphtha  A.-G.     "  Galicia "       ..          ..  660a 

Burton,  A.  E.     Gas  retort  mouthpieces  (P)  ..          ..          ..  702a* 

and  A.  H.  Jackson.     Gas  retort  mouthpieces  (P)  . .          . .  624a* 

Burton,  D.  Chrome  tanning  liquors  ;  Relation  between  pro- 
perties of and  the  leather  they  produce        . .     511a 

Chrome  tanning;    Modern  problems  in  ..  ..     640a 

and  A.  Glover.    Chrome  tanning.    Influence  of  neutral  salts 

on  the  progress  of  tanning    . .  . .  . .  . .     149a 

Tanning  agent  for  the  chrome  tannage  or  dyeing  of 

leather  ;  Preparation  of  a (P)  . .  . .  . .     774a 

and  others.     Chrome  tanning.     Determination  of  basicity 

figures  of  chrome  liquors       . .  . .  . .  .  -     302a 

Chrome   tanning   liquor ;    Properties  of  common  907a 

See  Atkln,  W.  R.  150a 

Burton,   W.  M.    Petroleum  "  cracking "   process ;    Origin 

of  the  50r 

Burtt-Davy,  J.    Maize;   Industrial  value  of ..         ..     131R 

Bury,  F.  W.  Phosphate  in  solution  ;  Volumetric  deter- 
mination of  . .  . .  . .  . .  . .     352t 

and  J.  R.  Partington.     Stannous  oxide  and  hydroxides; 

Preparation  and  reactions  of . .         . .         . .     980a 

Busch,  A.     See  Elektrizitatswerk  Lonza  ..  ..       607a,  659a 

Busch,   H.     See   Knoevenagel,   E-       . .  458a 

Bush,  H.  J.    Electrical  precipitation  . .  . .  . .  . .       21t 

Bush,  V.,  and  L.  H.  Connell.     Glass  ;  Effect  of  absorbed  gas 

on  conductivity  of . .  . .  . .  . .     708a 

Bushneli,  L.  S.    Sulphur  ;  Fertilising  value  of . .  . .     292R 

Bussey,  C.  C,  and  S.  E.  Darby.     Carbonaceous  material ; 

Treatment  of to  recover  volatile  hydrocarbon 

constituents   (P)  93lA* 

Bustamante,   G.   J.     Cellulose ;    Production  of  from 

vegetable  matter  (P) 138a,  248a* 

Buston,  H.  W.,  and  S.  B.  Sthryver.  Amido-acids  ;  Separa- 
tion of  from  products  of  hydrolysis  of  proteins 

and   other  sources      . .  . .  . .  . .  . .       75A 

Buswell,   A.   M.,  and   G.   P.   Edwards.     Water ;    Residual 

alum  in  filtered . .  . .  . .  . ,  . .     480a 

See  Greenfield,  R.  E.  682a 

Butkewitsch,  W.    A&pergMu*  niger ;    Formation  of  oxalic 

acid  and  ammonia  in  cultures  of on  peptone     514a 

Citric  acid ;    Consumption  and  formation  of  ■ in 

cultures  of  Citromycee  glaber  on  sugar       . .  . .     83lA 

Citric  and  oxalic  acids ;   Formation  of in  cultures 

of    Citromyces   on    sugar,    and    determination    of 
these   acids       . .  . .  . .  .  .  . .  . .     831a 

("ttromiia-s   cultures  on   salts   of  organic   acids;    For- 
mation and  accumulation  of  oxalic  acid  in . .     514a 

CUromtjces ;    Utilisation  of  peptone  as  source  of  carbon 

by 514a 

Butler,  G.   S.,  and  others.     Volatile  solvents;    Adjustable 

water-sealed  valve  for  use  in  recovery  of . .     107T 

Butler,  P.  P.,  and  others.     Copper ;     Process  of  extracting 

from  slag  in  reverberating  furnaces  (P)      . .     506a 

Butt,  C.  A.    Fertiliser ;    Method  of  conditioning  (P)     603a 

Butterneld,    E.    E.     Blood  ;     Recovery    of    peptones    and 

hajmatin  from (P)          198a 

Buxton,  E.  C.     Uruguay  ;  Report  on  economic  and  financial 

situation  is ..         ..         ..         ..         ..  182r 

Buxton,  J.  and  S.      Drying  matter  containing  moisture; 

Rotary  multiple  cylinder  for (P)        . .          . .  885a 

Buxton,  S.     Drying  systems  (P)         926a 

See   Buxton,   J 835a 

Buxton,  S.  H.     See  Briggs,  W.  B 657a 

«  o.,  A.  M.     See  Aston,  J.  19a,  470a 

Byk-Guldenwerke    Chem.     Fabr.     A.-G.     Fats,     especially 

waste  fats  ;    Process  for  refining (P)  . .           . .  42i.v 

I   itty  add  alkyl  esters;    Manufacture  of  (P)   ..  380a 

Fatty  acids  ;  Recovery  of from  fatty-acid  mixtures 

(P)  424a 

acid  ;  Production  of from  rotten  potatoes  (P)  952a 

olutlons;    Preparation  of  oily (P)     ..  63Sa 

iucta  Recovery  Co.     Set    Kellott,  H.  8 6S2a 

Byrnes.  '  oyde-fatty  acids ;   Separating from 

by-products  and  manufacture  of  soaps  from  these 

acida    (P)  1S2a 

C 

Cable,  D.  E.     See  Mahood,  S.  A 664a,  934a 

Cabot,  S.,  and  S.  Cabot,  Inc.     Varnish  ;    Manufacture  of 

<P>  126A 

toe.    See  Cabot,  S.  425a 

Cadwell,  s.  m..  and  Naugatuck  Chemical  Co.  Vulcanisation 
of  rubber  employing  amines  ami  open-chain  alde- 
hydes and  similar  substances  (P) 559a 

Cain,  J.  C      "Dye-;    Manilla,  ture  of ..  M     517R 


Cain,  J.  It.,  and  J.  C.  Hostetter.  Vanadic  acid;  Co-pre- 
cipitation   of    with     ammonium    phospho- 

molybdate  in  analysis  of  steels        272a 

See  Neville,  R.  P.  899a 

Cajori,  F.  A.    Pecan  nut  as  a  source  of  adequate  protein. .     154a 

Cake,  W.  E.    Dextrose ;    Catalytic  hydrogenation  of  386a 

Calbeck,  J.  H.,  and  C.  P.  Olander.  Pigments;  Application 
of  Pfund  colorimeter  to  determination  of  tinting 

strength  of  white  ■  . .         . .         . .         . .     600a 

Calcagni,  G.     Fuels,;    Origin  of  natural  . .  . .     318a 

Calcion  Ges.  m.b.H.  Calcium  chloride  preparation ;  Pro- 
duction of  a  non-hygroscopic,  easily  soluble (P)     787a 

Calder,  R.  B.    See  Savage,  W.  G 573r 

Caldwell,  M.  L.    See  Sherman,  H.  C 152a 

Caldwell,  W.  H.    Vapour  for  use  in  engines  ;  Production  of 

vapour,  specially  (P)    . .  . .  . .  . .     454a 

Calico  Printers'  Assoc,  Ltd.,  and  G.  Xelson.     Printing  of 

textile  fabrics  (P)        411a,  809a 

and  others.    Colour  effects  on   fabrics ;    Production  of 

(P)  55a 

California  Alkali  Co.     See  Hirschkind,  W 14a 

California  Central  Creameries.  See  Rew,  W.  O.  . .  . .  954a. 
Callan,  T.,  and  J.  A.  R.  Henderson.     Nitro  group  in  aromatic 

organic  compounds  ;   Estimation  of  the 7">R,  157t 

Potassium  bromate  ;   Use  of in  volumetric  organic 

analysis              . .          . .          . .          . .          . .        75R,  161t 

Cailimachi,  M.  T.    See  Courtaulds,  Ltd 627a 

Calorizing  Corp.  of  America.     Alloys  (P)      . .  . .  . .     821a 

Calorising  metals  ;  Furnace  apparatus  more  particularly 

adapted  for (P)  ..  863a 

Calvert,  H.  T.     Sewage  sludge  ;  Activated .     Discussion       72r 

Cambi,  L.    Zinc ;    Electrolytic  extraction  of  . .     504a. 

Cambier,  R.,  and  E.  Aubel.     Bacteria  ;   Cultivation  of 

on  media  containing  pyruvic  acid.     Decomposition 

of  pyruvic  acid  ..  .*  ..  ..  ..     605a 

Cambridge  and  Paul  Instrument  Co.  See  Daynes,  H.  A.  353a 
Cameron,  D.  H.     See  Holmes,  H.  N.  . .       239a,  239a,  335a 

Cameron,  W".     See  Asiatic  Petroleum  Co 131a 

Cammell,  Laird  and  Co.,  Ltd.,  and  others.     Iron,  steel  and 

ferrous  alloys  ;   Cementation  of  ■  (P)  . .  . .     821a 

Campbell,  A.  F.     Cresols  ;    Separation  of  »i-  and  p-  

from  coal-tar  crude  carbolic  acid    . .         . .         . .     661a 

0-Naphthylamine ;    Preparation  of from    naph- 

thalene-0-sulphonic    acid     without     isolation      of 
intermediate    0-naphthol       . .  . .  . .  . .     364a 

Sulphonation  of  phenols  ;    Speed  of  .     Effect  of 

temperature  and  the  methyl  group  . .  . .     496a 

Campbell,  E.  D.     Brinell  machine  attachment  for  use  with 

small  specimens  . .  . .  . .  . .  . .     762a 

and  E.  R.  Johnson.     Steels  ;   Preliminary  magnetic  study 

of  some  heat-treated  . .  . .  . .  . .     759a 

Campbell     F.    H.     Starch ;     Manufacture    of    ■    from 

wheaten  flour  (PJ        ..         ..         ..         ..         ..     777a 

Campbell,  H.  L.     See  La  Mer,  V.  K.  266a 

See  Sherman,  H.  C.  266a 

Campbell,  N.  R.,  and  H.  Ward.  Electric  discharge  ;  Dis- 
appearance of  gas  in  the  . .  . .         . .     405a 

Campbell  Baking  Co.     See  Harrel,  C.  G 873a 

Set    Patterson,  C.  J.  874a 

Canadian  American  Finance  and  Trading  Co.  Distilling 
bituminous  sand,  coal,  oil  shale,  and  other  materials 
which  yield  hydrocarbons  (P)  . .  . .  . .         6a 

Hydrocarbons;   Treatment  of  (P)..  ..  ..     209a 

Hydrocarbons  ;    Volatilising  and  decomposing (P)     244a 

Petroleum  products ;    Producing  saturated  from 

unsaturated  compounds  (P)  . .  . .  . .  . .     168a 

Canals,  E.     Sucrose ;   Inversion  of by  alkaline  copper 

solution  . .  . .  . .  . .  . .  . .  . .     603a 

See  Astruc,  A.  ..  ..  ..  ..  ..  ..     345a 

Candlot,  C.  Lime  kilns,  cement  kilns,  and  the  like  ;  Fur- 
nace-drawing apparatus  for  (P)         ..  ..     801a* 

Candlot,   Etabl.  C.   H.,  Soc.  Anon.     Crushing,  pulverising, 

grinding,  and  like  mills  (P)  . .  ..  ..  ..  1a 

Candor,  E.  R.     Refrigeration  apparatus  (PJ  ..  ..     12Sa 

Cannan,  R.  K.     See  Drummond,  J.  C.  ..  ..  ..     345a 

Cannon,  F.  P.     Carburising  ferrous  articles  (P)      ..  ..       63a* 

Cannon,  H.  B.     Furnaces  (P) 887A* 

Canter,  V.  C.     See  Burrell,  G.  A 490a,  494a 

See  Voress,  C.  L.    ...         622a 

Cauzler,     H.     Copper ;      Autogenous    electric    welding    of 

(P)  765A 

Capro,  A.  M.     Filrer  <P)  846a* 

Water  filters  (P) 116a 

Caputi,  N.  G.     Gas  retort  ascension  pipes  ;  Thin  metal 699a 

Caracristi,  V.  Z.     Burning  pulverised  fuel  in  furnaces  (P)  493a 

Carbide  and  Carbon  Chemicals  Corp.     See  Curme,  G.  O.,  jun.  686a 

See  Thompson,  H.  E 849a 

Carbonit   A.-G.,   and   E.    Eohler.     Explosives ;     Increasing 

the  density  of  and  gelatinising  (P)  . .  ..  44lA 


NAME  INDEX. 


21 


PAOK 

?arbo-Oxvgen  Co.    See  Harris,  J 638a* 

See  Rose,  J.  R. 2cisi 

?arborunduin  Co.     See  Hutchins,  O.  . .         . .         . .     822a 

Carbozit  A.-G.     Bituminous  coal ;  Recovery  of  good  quality, 

non-deliquescent from  fuels  of  lower  value  (P)    453a 

Furnace  ;   Shaft for  continuous  distillation  of  solid 

fuels  by  a  circulating  current  of  hot  distillation 

.   gases  (P)  92a 

Cardem  Process  Co.    See  Carr,  0 206a 

Cardin,  W.  O.,  and  J.  \V.  Freeman.     Dehydrator  (P)     ..     657a 
Cardoso,  E.      Piezometry.     Comparison   of   gravity    mano- 
meter and  glass  compression  manometers  . .     350A 
and  T.  Levi.    Piezometry.     Comparison  of  gravity  mano- 
meter and   nitrogen  manometer.     Compressibility 

of  nitrogen  at  16°  C.  350A 

Cartfot,  H.     See  Bachrach,  E.  679a 

See  Kichet,  C 228a,  341a 

Carey,  A.     Bleaching  agents  for  textiles  and  paper  pulp. 

Discussion         . .         . .         . .         . .         .  -         ■  •     371T 

Carlsson,  F.    See  Sieurin,  E 416a,  591a 

Carlton,   C.   A.     jym.-Diphenylguanidlne    as    standard    in 

acidimetry  and  alkalimetry  . .         . .         • .     690A 

Cannlchael,  T.  I'..,  and  W.  H.  Ockleston.     Hides,  skins  and 

the  like  ;   Treatment  of for  the  production  of 

leather  (P)         304A 

Hides ;    Unhairing (P)  225A 

Tanning  (P) 304a,  602 a 

See  Ockleston,  W.  H 427a* 

Carnation  Milk  Products  Co.    See  Grindrod,  G 266a 

See  Kinzer,  P.  G 994a 

Carnot,  P.,  and  M.  Tiffeneau.     Hypnotic  of  the  barbituric 

acid  series;   Butylethyfmalonylurea,  a  new ..     635a 

Carnrick  Co.,  G.  W.     See  Neun,  D.  E 198a 

Caro,   H.    Fuels ;    Improvement  of   low-grade  ,   e.g., 

peat,  by  the  Madruck  process         . .         . .         . .       45a 

Caro,  N.,  and  A.  R.  Frank.     Ethane  ;    Preparation  of 

from  acetylene  and  hydrogen  (P)     . .         . .       34a 

Carothers,  J.  N.,  and  Federal  Phosphorus  Co.     Phosphorus 
content  of  phosphatic  materials  ;    Recovery  of  the 

(P)  373a 

Carozzl,  E.    See  Losana,  L 594a,  671a,  940a 

Carpenter,  A.  H.,  and  Colorado  Vanadium  Corp.     Vanadium  ; 

Recovering  (P) 20A 

Carpenter,  C.    Gas  burners      . .         . .         . .         . .         . .     537A 

Gas  ;   Device  used  for  collecting from  one  or  more 

retorts  (P)         361a 

Carpenter,  C.  C,  and  U.S.  Light  and  Heat  Corp.     Spongy 

lead  for  storage  batteries  ;    Method  of  preparing 

(P)  " 507A 

Storage-battery  separators  ;    Preparation  of (P)-.       64a 

Carpenter,    C.    D.,   and  J.   Babor.    Nitric  acid  solutions ; 

Concentrating  dilute  291a,  667a 

Carpenter,  C.  H.,  and  Westinghouse  Electric  and  Mfg.  Co. 

Crucible  furnace  ;   Three-phase  electric (P) . .     507a 

Electric  furnace  ;    Crucible  for  ■  (P)  . .  . .     333a 

Carpenter,  H.  C.  H.,  and  C.  F.  Elam.    Aluminium  ;    Pro- 
duction of  single  crystals  of and  their  tensile 

properties  ..         .,         ..         ..         ..         ..       17a 

Iron  ;    Effect  of  oxidising  gases  at  low  pressures  on 

heated  419a 

Carpentier,  G.     See  Thomas,  P 3"A 

Carr,  F.  H.     Annual  Meeting  proceedings    . .  . .  . .     211T 

Indicator  ;    Use  of  a  universal  . .         . .         . .     525a 

Carr,  O.,  and  Cardem  Process  Co.     Evaporating  apparatus  (P)     206a 
Carr,  R.  H.     Soil  toxicity,  acidity,  and  basicity  ;  Measuring 

25a 

See  Showalter,  M.  F S32.V 

Carr  and  Co.,  Ltd.    See  Greenwood,  R 845a 

Carre,  M.  H.     Pectic  constituents  of  stored  fruit ;    Changes 

which  occur  in  ■  ..  ..  ..  ..     993A 

and    D.    Haynes.     Pectin  ;     Determination    of    as 

calcium  pectate,  and  application  to  determination 

of  soluble  pectin  In  apples    . .  . .  . .  . .     342a 

Carrier  Engineering  Corp.    See  Harrison,  B.  S.     ..     280a,  281a 
Carroll,  S.   J.,  and  Eastman  Kodak   Co.     Cellulose  ether 
solvent  and  composition  (P) 

213a,   367a,   748a,   807a,  894a 
Nitrocellulose  and  cellulose  ether  ;    Composition  con- 
taining    and  solvent  used  therein  (P)  . .     894a 

Carruthers,   A.,   and   E.   L.    Hirst.    Xylose ;    Methylation 

of 991a 

Carruthers,  J.  L.    Terra-cotta  ;    Shivering  of  . .     710a 

Carstens,  A.  B.,  and  American  Metal  Co.    Kiln  ;    Rotary 

(P)  490a 

Carter,  E.  G.    See  Greaves,  J.  E 511a,  678a 

Carter,  F.  E.,  and  Baker  and  Co.,  Inc.    Alloys  (P)  . .     379a' 
Carter,  S.  R.    Nitrogen  ;    Micro-Kjeldahl  method  of  deter- 
mining   .     Discussion      . .         . .         . .         . .     151T 

Carteret,  G.,  and  M.  Devaux.    Pigments  ;    Preparation  of 

from  titanium  compounds  contaminated  with 

sulphuric  acid  (P)       . .         . .         . .         . .         . .  771A 

Titanium  ores  containing  iron  ;    Treating (P)    . .  821a 

Titanium  oxide  ;    Production  of  crystalline (P) . .  812a 

Cartland,  J.    See  Mundey,  A.  H 819a 

Cartoceti,  A.    See  Sirovich,  G.           17a,  595a 


paqe 

Carus,  M.     Iron  and  manganese  ;    Separation  of  ■     . .       82A 

Oarvalho,  J.  B.  do  M.     Vegetable-oil  industry  In  Brazil  . .     374a 
Casale,  L.,  and  U.  Leprestre.    Ammonia;    Apparatus  for 

catalytic  synthesis  of  (P)        ..    294a,  295a*,  812a 

Case,  T.  W.    Photo-electric  cells  (P) 423a* 

Casein  Mfg.  Co.    See  Dunham,  A.  A.  . .         . .      372a,  432a 

Caspari,    F.     Carbonisation ;     Apparatus    for    with 

endless   belt   for   the   material   to    be   carbonised 

and  internal  heating  (P)       53SA 

Caspersson,  K.  A.    See  Gufstafson,  G.  . .         . .         . .     715a 

Cassano,    R.   M.    S.    Cork   board ;     Method   of   producing 

(P)  138A 

Cassella   und   Co.,    L.     Acridlne   derivatives ;   Preparation 

of  (P) 787A 

Acridinium  compounds  ;    Manufacture  of  (P)     . .     805a 

Arsenical  compound  of  the  acridlne  series  ;  Preparation 

of  ■  (P) 309A 

Dyeing  giac6  leather  with  coal  tar  dyestuffs  (P)         . .     249A 

Dyeings  fast  to  washing  ;  Production  of on  animal 

and  vegetable  fibres  (P)        249a 

Dyestuffs  ;    Manufacture  of  (P)     . .         . .         . .     365a 

Effect  threads  ;    Process  for  making  from  cotton 

or  other  vegetable  fibres  (P)  . .         . .     214a,  249a 

Effect    threads ;     Production    of    from    animal 

fibres  (P)  249a 

Glycerin  substitutes  ;    Manufacture  of  metal  salt  com- 
pounds of  pyridine-betaine  for  use  as  (P)  . .     158A 

Reserves  in  printing  ;  Preparation  of  especially  resistant 

(P)  291A 

Serum  and  lymph  preparations  ;    Process  for  making 

stable  (P)  788a 

Sulphur  dyestuffs  ;    Manufacture  of (P)  . .         . .  136A 

Triphenylmethane  dyestuffs  ;    Manufacture  of  chlorin- 
ated products  of  toluene  and therefrom  (P). .  805a* 

Triphenylmethane    dyestuffs     which     can     be     after- 
chromed ;    Manufacture  of  (P)  ..         ..  212a 

Casseus,  H.    See  Heuser,  E 540A 

Cassidy,  F.  F.    See  St.  John,  G.I.  301A 

Castellan!,  A.,  and  F.  E.  Taylor.     Inulln  ;  Identification  of 

by  a  mycological  method       . .         . .         . .  992a 

Castle,  S.  N.     Electric  furnace  (P) 638A 

Cataldl,    B.,    and    A.    Pomiiio.    Cellulose ;     Extraction    of 

from  vegetable  fibres  (P)         . .  . .  . .  747A 

Catalpo,  Ltd.    See  Schldrowitz,  P 559A* 

Cathcart,  P.  H.     Hydrogen  generator  ;   Simple for  use 

in  making  hydrogen  ion  determinations    . .          . .  442A 

Catlett,  C.     Oxyalt  composition  (P) 670a 

Catolre,  M.    See  Malfltano,  G.            429A 

Cattley,  L.  de  M.    Accumulator  plates  (P)             . .         . .  64a 
Cavel,  L.     Sewage  purification  ;    Applicability  of  activated 

sludge  process  of to  the  separative  system  . .  229a 

Cawood,  R.  L.     Plastic  material  ;    Manufacture  of (P)  417A 

Cayola,  R.    See  Gatti,  G 483a 

Cazaubon.     See  De  Vihnorin,  J.          ..          ..          ..          ..  602a 

Cederberg,    I.    W.,    and    H.    M.    Biickstrom.     Ammonia ; 

Catalytic  oxidation  of with  oxygen  (P)       . .  589A 

and  others.    Ammonia  ;   Process  of  producing (P). .  14a* 

Cellon-Werke  A.   Elchengriin.    See  under  Eichengriin. 
Cellophane    Soc.   Anon.,   La.     Photographic    films    perme- 
able to  water  ;    Preparation  of  (P)    . .         . .  309a 

Celluloid  Co.    See  Lindsay,  W.  G 854a 

Central  Commercial  Co.     See  Warden,  H.  R.          . .         . .  5a 
Central  Mining  and   Investment   Corp.,  Ltd.    See   Wood- 
worth,  L.  B 673A 

Cerighelli,  R.    See  Maquenne,  L.        . .         . .         . .         . .  477a 

Cerruti,  A.    Cellulose  ;    Industrial  preparation  of  by 

the  chlorine  method    . .          . .          . .          . .          . .  366A 

Chabot,  G.     Proteins  ;    Proteolysis  of  780a 

Chadboume,    F.    G.    Saponaceous    compositions ;     Manu- 
facture of  ■  (P) 334A 

Chadeloid  Chemical  Co.    See  Ellis,  C.           261a 

Chadwick,  L.    See  Barrie,  W.  S 375A 

Challlaux,    P.     Sulphurs    and    vermilions    of    antimony ; 

Manufacture  of  gold-coloured  (P)      . .         . .  510a* 

Chalas,  A.    Meat  extract ;    Preparation  of  in  a  dry 

state  (P)           432A* 

Chalkley,  H.  O.    Argentine  Republic  ;    Report  on  financial 

and  economic  conditions  of  . .         . .         , ,  106R 

Chalupny,  K.,  and  K.  Breisch.    Aluminium  ;   Separation  of 

from  iron  by  means  of  o-phenetidine. .         ..  612A 

See  Breisch,  K 256i,  504a 

Chambard,  M.    Leather  ;    Analysis  of  . .         . .  990a 

Chambard,  P.,  and  L.   Meunier.     Chrome  tanning ;    One- 
bath  with  chrome  alum           . .          . .          . ,  828a 

Chamberlain,    H.    P.,    and    Standard    Oil    Co.     Distilling 
petroleum    and    other    hydrocarbon    oils    under 

pressure  (P)       . .          . .          . .          . .          . .          . .  5a 

Motor    spirit    and    kerosene ;     Obtaining    from 

higher-boiling  petroleum  (P)            . .         . .         . .  48A 

Chamberlin,  E.     Detergent  with  disinfecting  properties  (P)  770a 

Chambers,  E.  V.     Tar  distillation 49R,  178T 

and  others.    Ferrous  chloride  ;    Treating  waste  or  other 

liquors  containing  (P) 372a 


I 


22 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Chambers,  P.     S«  Fisher,  W.  II.      ..         ..         •■         v>      62a 

I     „      "Microscopy;  Elementary  chemical 87R 

primers;    Microscopy  ol  BmaJl  arms ..        •■     »'•>■* 

Champion,  A.,  and  others.     Ceramic  insulating  material  (P)    103a 
pion  Ignition  Co.    See  Champion,  A.  ~        ..     103a 

See  McDougal,  T.  0 -     ""'  "" 

Chandler    P     See  South  Metropolitan  Gas  Co.    353a,  596a,  698a* 
Chandratreya    V.  L.    See  Winch,  H.  J.      ~        ~        •  -     «3a 

Chang    M.  Y.    See  Kern,  E.  F. 420a 

Chapman,  A.  C.     Liver  oil  ol  the'tope  (Galeus  galeus)     ..     608A 
Pasteur  commemoration  fund       ■■_••.,    ••  ■■       ,', 

Presidential  nddress  to  Institute  of  Chemistry  ..       98K 

Sulphites;     Examination    of    [foods    for    presence    of 

* . .  . ,  . .  , .  . .      156R,  510A 

Chapman   C.  E  ,  and  J.  Goodfellow.     Burning  hydrocarbon 

oils  (P)  930A 

Chapman,  E.  B.    Separators  J  Magnetic for  removing 

solids  from  liquids  (P)  ..       ...  ..        ...     622a* 

Straining  apparatus  with  magnetic  strainer  for  removing 

solids  from  liquids  (P)  240a* 

Chapman,  J.  A.     See  Kellogg,  C.  A.  127a 

Chapman,    W.    B.,    and    Chapman    Engineering    Co.    Gas 

producer  (P)     . .  . .  . .  -  •  •  •  •  •     403A 

Chapman  Engineering  Co.     .See  Chapman,  W.  B 403A 

Chappell,  H.  F.    Alunite  ;   Method  of  calcining (P)  . .     100A 

Chappell,  M.  L.,    and    others.     Petroleum  oils ;    Clarifying 

and  improving  the  colourXof  (P)       . .  . .     209a 

Charitschkov,  K.     Gels  of  inorganic  salts  ;    General  method 

for  preparation  of and  its  relation  to  theories 

of  the  colloidal  state 938a 

Pseudo-extraction ;    Winkelbach's  phenomenon  or . 

Method  of  extracting  solids  . .         . .         . .         . .     925a 

Charles,  H.  L.    Furnaces  ;    Ore-smelting  (P) . .         . .     943a 

Ores  ;    Smelting  (P) 943a 

Charles,  V.  de  B.     Spain;     Report  on  industries  and  com- 
merce of  203R 

Charlton,  H.  W.,  and  American  Potash'Corp.     Oreensand  ; 

Reducing    sludge    from    treatment    of    to 

powder  (P) 14A 

See  Meadows,  T.  C.  982a 

Charpy,  A.  G.  A.    Coke  ovens  (P) 3a 

(  harpy,  G.,  and  L.  Grenet.     Steel  ;    Penetration  of  harden- 
ing effect  of  quenching  in  . .         . .         . .     467A 

Charriou,   A.    Ferric   oxide   and   alumina ;     Separation   of 

from  magnesia  by  nitrate  method    . .  . .     962a 

Ferric  oxide  ;    Carrying  down  of  lime  by  precipitates 

of 81a 

Charriou.    Oxides  of  iron  and  aluminium  ;    Separation  of 

from  admixture  with  calcium  oxide  by  the 

nitrate  method  ..         ..         ..         ..         ■-     351a 

Chase,    M.    F.     Nitric    acid    manufacture    at    U.S.    Govt. 

explosives  plant  C,  Nitro,  W.  Virginia      . .          . .  666a 
and  others.     Sulphuric  anhydride    aud    sulphuric  acid  ; 

Manufacture  of  (P) 215A 

Chater,  W.  J.,  and  D.  Woodroffe.     Leathers  ;    Determina- 
tion of  water-soluble  matter  in  vegetable-tanned 

828A 

Tanned  hide  bellies  ;  Water-soluble  matter  in  vegetable- 

23A 

Chatfleld,  C.  G.    Amines  ;    Process  of  making  substituted 

(P)            878a 

Chatterjee,  K.  P.    Sulphate  ion  ;    Estimation  of  as 

barium  sulphate            ..          ..           ..           ..           ..  442a 

Chaudlere,  E.  F.    Shaft  furnaces  and  the  like  (P) . .         . .  764a 

Chaudron,  G.,  and  G.  Juge-Boirard.    PyTites  ;    Determina- 
tion of  sulphur  in  ..          ..          ..          ..  249A 

Chaudun,  A.    See  Colin,  H 152a 

i  haviara,  J.  N.     See  Clayton,  W 192A 

Chazan,  S.    See  Morgan,  C.  T.           It 

Cheetham,  H.  C.     See  Lewis,  W.  L.              117A 

Chemical  Construction  Co.    See  Hechenbleikner,  T. 

462a,  631A,  702A,  851A 

Chemical  Development  Co.    See  Eldred,  B.  E 290A 

Chemical  Foundation,  Inc.    See  Bergius,  F.            . .         . .  438a 

See  Blass,  F.  M.  E.           453a 

See  Bronnert,  E 410a* 

See  Classen,  A 832a* 

Set  Daniel,  A 71a* 

i:           F 67a* 

See    I                             410a* 

i  altelowltz,  A.            76a 

See  Qoldschmldt,   H 638a* 

Korsclt,  J 855A* 

SeeKuttn.r.  i:    W.                943a 

See  Kunert,  1' 855a* 

Inz,  A.              411a 

fflnck,  1  -    II 807a 

See  Miiller,  P 240a 

Mttnder,   W 931a 

See  Oehme,  II 788a* 

!     F 178A 

Rohm,  O.  427a*,  641a* 

r    A 476a 

i  Brlch,  Q 180a 

See  Von  Wleruax-Kowalski,  M 188a 


tage 
Chemical  Foundation,  Inc. — continued. 

See   Wolrf,   A 802A 

See  Zuelzer,  G 79A 

Chemical  Fuel  Co.  of  America.     See  Stevens,  E.   W.  494a, 

6S7A»,  577a 

Chemical  Machinery  Corp.    See  Field.  C 1U4a,  657a 

Chemical  and  Metallurgical  Corp.,  Ltd.    See  Elmore,  F.  E. 

597a,  821a,  9S5A 
Chemical  Research  Syndicate,  Ltd.     See  Ramage,  A.  S.  ..     321A 
Chem.  Fabr.  auf  Aktien  vorra.  E.  Schering.     See  under  Schering 
Chem.  Fabr.  und  Asphaltwerke  A.-G.    Tanning  materials  ; 
Manufacture  of and  process  of  tanning  there- 
with   (P)            

Chem.  Fabr.   Buckau.    Magnesium   chloride ;    Preparation 

of  magnesia  and  hydrochloric  acid  from  (P) 

Chem.  Fabr.  Budenheim,  L.  Utz.     See  under  Utz 

Chem.  Fabr.  Coswig-Anhalt,  and  W.  von  Dietrich.     Barium 

chloride  ;    Manufacture  of  pure  from  barium 

carbonate  and  magnesium  chloride  lye  (P)  . . 
Chem.  Fabr.  Dubois  und  Kaufmann.        See  under  Dubois 
Chem.  Fabr.  Flora.     Silver-thioglycollatc  of  sodium  ;   Manu- 
facture of (P) 

Chem.  Fabr.   Grieshcim-Elektrou.     Acetic  acid  ;    Recovery 

of  chemically  pure from  acetic  acid  containing 

mercury    (P)    . . 

Aluminium  compounds  ;    Preparation  of  ,  nearly 

free  from  iron,  from  solutions  of  ferruginous  alumina 

(P)  

Anthraquinone    dyestuffs  ;     Manufacture    of   ■ (P) 

Arylides   of   aromatic   hydroxycarboxylic   acids ;     Pre- 
paration of  (P) 

Calcium    hypochlorite ;     Process    for    rendering    

stable  (P)  

Calcium  hypochlorite  ;  Production  of  stable  compounds 

of  (P) 

Carbon  bisulphide  ;  Production  of from  its  elements 

(P)  

Coal  yielding  a  low  percentage  of  ash  ;    Manufacture 

of  from  peat  or  lignite  (P)      . .  . .  . .     403a 

Disinfectants  ;  Manufacture  of (P)  . .  . .  . .     ' 

Electrode  carbon  ;    Manufacture  of  ,  especially  for 

use  in  production  of  aluminium  (P) 
Hydrogcnating  unsaturated  hydrocarbons,  e.g.,  prepara- 
tion of  ethane  and  ethylene  from  acetylene  (P) 
Light  metals  ;    e.g.,  magnesium  and  aluminium  alloys  ; 

Recovering  from  scrap  (P) 

Magnesium  and  its  alloys  ;  Process  for  colouring (P) 

Magnesium  and  its  alloys  ;  Process  for  purifying (P) 

Magnesium  carbonate  ;    Process  for  producing  (P) 

Nitrogen  compounds  ;    Method  of  producing  (P) 

Nitrogen   compounds,   e.g.,   cyanides,   cyanamides,  nit- 
rides, etc.  ;   Process  of  producing (P) 

Phosphoric  add  ;  Manufacture  of  liquid  esters  of (P) 

647A,  729A 

Potassium  bicarbonate  ;  Electrolytic  production  of  

from   potassium   chloride    solutions    (P) 
Sodium    carbonate   from    common    salt ;     Electrolytic 

manufacture  of ,  employing  a  diaphragm  cell  (P) 

Softening  agents  for  treating  articles  of  celluloid,  or  the 

like  ;    Preparation  of  — ■ —  (P) 
Valves  of  cylinders  for  high-pressure  gas  ;    Preventing 

the  burning-out  of  pressure-reducing  (P)   . . 

Washing  material  which  has  been  separated  by  centri- 
fugal action  ;    Apparatus  for  (P) 

Wool,  fur,  etc. ;  Insecticide,  more  especially  for  protect- 
ing    against  moth  (P) 

Chem.  Fabr.  Kalk,  and  H.  Oehme.     Nitration  products  of 
unsaturated  gaseous  hydrocarbons  ;    Separation  of 

from  mixed  acids  (P) 

Nitric   esters   of   ethyleneglycol   and   its   homologues ; 

Manufacture  of  (P) 

Wood    and    similar    materials ;     Obtaining    chemical 

products  from  (P) 

Chem.  Fabr.  "  Liminer."    See  Sichel,  F 

Chem.  Fabr.  Lindcnhof  C.  Weyl  und  Co.     See  under  YVeyl. 
Chom.  Fabr.  "  List."    See  under  De  Haeu. 
Chem.  Fabr.  Plagwitz-Zerbst,  G.m.b.H.,  and  J.  von  Bosse. 
Inks,  printing  colours,  and  the  like  ;    Manufacture 

of  a  binding  agent  for from  solutions  of  glycerin 

pitch  (P)  

Chem.  Fabr.  von  Heyden,  A.-G.    Ammonium  pcrchlorate 

explosives  ;  Process  for  making  easily  cast (P) 

Cellulose  acetate  tilm  to  be  used  in  the  manufacture  of 

cigarette  mouthpieces  ;  Manufacture  of (P)  .. 

Chem.  Fabr.  vorm.  Weiler-tcr  Meer.     Acetyl  chloride  and 

its  homologues  ;    Preparation  of (P) 

Artificial  fabrics  containing  nitrocellulose  ;  Increasing  the 

Boftness  and  elasticity  of (P)  .. 

Celluloid-like  plastic  masses;    Preparation  of 

a-Chlorocrotonaldehyde ;    Preparation  of  

Condensation     products     of    o^-unsaturated 

and  phenols  ;    Preparation  of  (P) 

Nitrocellulose   solutions  ;     Production   of  

Resinous    products    from    phenols    methylated    in    11: 

nucleus  ;    Preparation  of (P) 

Tanning  hides  (P) 

Chem.  Fabr.   Welssenstcin  Ges.     Sulphuric  acid;    Process 

for  distilling (P) 

See   Baum,  G. 


(P) 

ll'l  .. 
ketones 


002a 
58a 


752a 


347A 


522A 


939A 
246A 


523a 
590a 


609a 
70SA 


727A 
2224 

484A 

715A 
767a 

472A 
812a 
327A 

753A 


753A 
632a 


367A 
163a 


971a 
747A 


441A 
81A 


S02A 
562a 


51 0A 
7S9A 


541A 
728A 

704A 

410A 

72SA 

959A 
138A 

772A 

mil 


B01A 

546A* 


NAME  INDEX. 


23 


PAGE 

Chem.  Fabr.  Worms,  A.-G.    Anthraquinone  and  its  deriva- 
tives ;    Manufacture  of  (P) 407a 

Anthraquinone  ;    Manufacture  of  (P)       . .         . .     496a 

Distillation  ;    Process  and  apparatus  for  (P)    . .     200a 

Lacquers,  varnishes,  and  the  like  ;    Manufacture  of  a 

base  for (P)        382a 

Lubricating  oils  ;    Production  of  highly  viscous  

from  coal-tar  oils  (P) 539a,  803a 

Mercury :     Regenerating    metallic    from    spent 

catalysts    (P) 232A 

Motor  fuel  (P)  321a 

Printing  colours  ;  Double-tone (P)  . .         . .      382a,  749a 

Tanning  agents  ;   Manufacture  of (P)  _  224a,  263a,  303a 

Tanning  agents  ;    Manufacture  and  application  of  

(P)  151A,  476a 

Tanning  animal  hides  (P) 225a,  774a 

Chem.  Verwertungsges.    Albumin  :   Manufacture  of  foliated 

(P)  267A 

Chem.  Werke  vorm.  Auerges.    Vacuum-insulated  vessels  (P)    102a 
Chem.    Werke    Carbon    Ges.     Charcoal ;     Preparation    of 

absorbent ,  especially  for  gas  masks  (P)     742a,  742a 

Decolorising  carbon  ;  Manufacture  of (P)  . .         . .     742a 

Chem.  Werke  Grenzach    A.-G.    Marine  animal  oils  ;    Pre- 
paration of  solid  derivatives  from  fatty  acids  of 

(P)  35A 

Monohydroxyethyl  catechol  ether  ;   Preparation  of 

(P)  ..         ..     689a 

L'-rh<'!iylquinoline-4-carboxylic    acid ;     Preparation    of 

derivatives  of  hydrogenated  (P)       . .         . .     688a 

Resinous  condensation  products  of  cresols  and  xylenols  ; 

Manufacture  of  (P) 948a 

Chem,  Werke  Lothringen,  and  T.  W.  Pflrrmann.    Potassium 
nil r;it<-  and  ammonium  sulphate;    Manufacture  of 

(P)  733a 

Chem.  Werke  Rhenania,  and  A.  Messerschmitt.   Silicate  rocks ; 

Utilisation  of especially  for  use  as  fertilisers  (P)     151a 

Chem.   Werkstatten  Ges.    Wax   and  resin  colloids ;    Pre- 
paration of  neutral  solid (P)  . .         . .         . .     945a 

Chen,  K.  S.    See  Rhodes,  F.  H 334a 

Chenard,  E.  A.  R.    Fractional-distilling  apparatus  (P)    240a*,  573a 

Chenard,  J.     See  Chenard,  E.  A.  R.  240a* 

Cheneveau,  G.     Slightly  miscible  liquids  ;    Optical  method 

for  determining  mutual  solubility  o  1 . .         . .     352a 

Solubility   of  one  liquid  in   another  ;     Application   of 

optical  method  of  determining . .  . .  . .     395A 

Cheney    F.  de  W.  Electrolyte  ;    Storage  battery  (P)     598a 

Chenoweth,   A.   A.    See  Dykema,   W.  P 799a 

Cherbuliez,  E.,  and  K.  N.  Stavritch.    Pyrimidines ;    New 

syntheses  of  ■       . .         . .         . .         . .         . .     481a 

Chervet,  D.     See  Treadwell,  W.  D 880a 

Chevenard,    P.    Chromium    and    nickel-chromium    alloys ; 

Expansion  of over  a  wide  range  of  temperature     144a 

Ferronickel  ;    Strength  of  at  low  temperatures   . .     420A 

Nickel  alloys  which  retain  their  rigidity  over  an  extensive 

range  of  temperature  . .  . .  . .  . .  . .     863a 

Chevenard.     Thermal  analysis  of    metals  etc. ;    Apparatus 

for   220a 

Chiba,  T.    See  Kumagae,  S 855a,  978a* 

Chibnall,  A.  C.    Nitrogen  in  the  dead  leaves  of  the  runner 

bean  :    Distribution  of  the  . .         . .         . .     993a 

Nitrogen  in  the  leaves  of  the  runner  bean  ;    Effect  of 

low-temperature  drying  on  distribution  of . .     993a 

Nitrogenous  metabolism  of  higher  plants.    Distribution 

of  nitrogen  in  the  leaves  of  the  runner  bean       . .     602a 
Chicago  Trust  Co.    See  Roberts,  A.      .         . .         . .    322a*,  930a 

Chidlow,  A.    See  Rangeley,  A.  214a* 

Chikashige,    M.    Steels ;     Honda"s   conception   of   the    Al 

transformation  and  mechanism  of  quenching  in 940A 

and  D.  Uno.     Selenium  and  noble  metals  ;  Recovering 

from  electrolytic  slimes  and  the  like  (P)  ..         ..     472a* 

Chilton,  T.  H.    See  McKee,  R.  H 750A 

Chinnaswami,  V.  S.    See  Fowler,  G.  J 426a 

Chiris,  A.    Lavender  oils  distilled  by  open  fire  and  by  steam    118a 
Chmelar,  J.    See  Stoklasa,  ,J.  ..         ..         ..         ..     775a 

Cholet,  L.  A.  C.     Preserving  in  the  fresh  condition  organic 

matters,  particularly  meat  and  fish  (P)     . .        30a,  565a* 
Chouchak,    D.    Arsenic ;     Colorimetric    determination    of 

by  means  of  quinine  molybdate        . .         . .     612a 

Choudhury,  K.  N.    See  Saha,  H 607a 

Chown,   J.   A.    Carbonisation   and   distillation   of  carbon- 
aceous material  (P)    ..         ..         ..         ..         ..     132a 

Christensen,    J.    H.     Photography ;     Multicolour    screens 

for   (P) 729a 

Christensen,  N.   C.    Lead-zinc  sulphide  ores ;    Process  of 

treating  (P) 472a 

Zinc  ores  and  zinc  products  ;  Process  of  treating ■  (PJ    472a 

Christenson,    O.    L.,    and    others.    Ammonium    chloride ; 

Producing from  coal  etc.  (P)     . .         4A,   536a,   537a* 

Ammonium  chloride;     Method  of  producing  in 

distilling  alum  slate  or  similar  bituminous  shales  (P)     537a* 
Christiansen,  W.  G.    Arsphenamine  (salvarsan)  and  related 
compounds  ;    Relation  between  mode  of  synthesis 

and  toxicity  of  . .  . .  . .  . .  . .     117a 

Arsphenamine   (salvarsan)  ;    Sulphur   content   of  

and  its  relation  to  mode  of  synthesis  and  toxicity 

390A,  390a,  956A 


PAGE 

Christin,  P.    See  Wenger,  P 707A 

Chubb,  L.  W.,  and  Westinghouse  Electric  and  Mfg.  Co. 

Electrical  precipitating  system  (P)              . ,         . .  44A 

Churchill,  H.  V.     See  Edwards,  J.  D 332a 

Churchward,  J.,  and  Wilson  Welder  and  Metals  Co.    Arc 

welding;  Electrical (P) „  716A 

Welding;   Electrode  for  metallic  arc (P)  ..         ..  146a 

Ciamician,  G.,  and  A.  Galizzi.     Organic  substances  in  plants  ; 

Behaviour  of  some  . .          . .          . .          . .  33SA 

Ciusa,  P.,  and  R.  Vois.     Wax  ;   Fossil of  Monte  Falo  320a 

Ciusa,  R.,  and  M.  Croce.     Lignites  ;    Constituents  of  318a 

Claassen,   H.    Sucrose  lost  in  beet   carbonatation  scums ; 

Determination  of  . .         . .         . .         . .         . .  603a 

Claessen,  C.     Artificial  leather  ;    Manufacture  of  (P)  990A 

Nitrocellulose ;       Manufacture      of     compound     sheet 

material  from  (P)         542a,  027  a 

Waterproof  material ;   Manufacture  of (P)  ..     459a,  627a 

Claflin,  H.  C.     Screw-cutting  oils  ;  Manufacture  of (P)  91A 

Clancy.  J.  C,  and  Nitrogen  Corp.    Ammonia  ;   Synthesis  of 

(P)            633a* 

Ammonia  ;   Synthesis  of and  catalyst  therefor  (P)  707a 

Catalyst  and  method  of  preparing  it  (P)  . .          . .          . .  737A 

Gas  mixtures  ;   Process  of   preparing  purified (P)  753a 

Gases  ;   Purifying  and  drying (P) 127a 

Gasoline  and  the  like  ;    Process  for  producing (P)  702a 

Hydrogen  and  ammonia  ;    Preparation  of  (P)  . .  631a 

Hydrogen   and   hydrogen-nitrogen   mixtures  ;    Process 

of  generating  (P)         . .         . .         . .         . .  753a 

Hydrogen;   Process  of  preparing (P)        ..         ..  813a* 

Mineral  oil ;    Desulphurising  (P)   . .          . .          . .  701a 

Sulphur  compounds  ;    Process  for  obtaining  from 

mineral  oils  and  the  like  (P) 701a 

Clapp  Rubber  Co.,  E.  H.     See  Pratt,  W.  B.               . .          . .  336A 

Clapp,  H.  B.     See  Ferolite,  Ltd.         •. 711A 

Claremont,  C.  L.    Rat  poisons  ;  Analysis  and  use  of  red  squill 

in 230A 

Clarenbach,  L.     Textile  fabrics  and  yarns  ;    Apparatus  for 

treating  with  liquids  (P)          96a* 

Ciarens,  J.     Catalysts  and  chemical  equilibrium.    Formation 

of  chlorine  from  hydrochloric  acid 413a 

(lark,  A.  W.,  and  R.  F.  Keeler.     Phosphoric  acid  ;    Deter- 
mination of . .         . .         . .         • .         ■  •  82a 

Clark,  B.  F.     See  Lavaud,  D.  S 63a*,  637a 

Clark,  C.  H.  D.     Sliding  scale  for  use  in  titrating  strong 

solutions  against  weaker  standards  . .         . .         . .  560R 

Clark,  E.  M„  and  Standard  Oil  Co.    Mineral  oils ;   Pressure 

distillation  of  heavy  (P)         210a 

Petroleum  oil ;    Refining  of  (P) 405a 

Petroleum  oils  ;    Pressure  distillation  of  (P)      . .  401a 

Petroleum  ;    Process  of  distilling  crude  (P)         . .  405a* 

Clark,    E.    P.    Fucose ;     Structure   of 992a 

Mannose ;    Preparation  of  ..          ..          ..          ..  339a 

Raffinose  ;    Preparation  of 264A 

Clark,  E.  V.    See  Petersen,  W.              509a 

Clark,  G.  L.,  and  W.  A.  Mann.    Adsorption  in  solution  and 
at  interfaces  of  sugars,  dextrin,  starch,  gum  arable, 
and  egg  albumin,  and  mechanism  of  their  action 

as  emulsifying  agents  . .         . .         . .         . .         . .  603a 

Clark,  H.  H.     Enamelling  furnace  ;    New  type  of  gas-fired 

vitreous . .         . .         . .         . .         .  •         ■  •  710a 

Clark,  L.     Petroleum  ;    Apparatus  for  treating  (P)  . .  580A 

Clark,  N.  A.    Yeast ;    Rate  of  formation  and  yield  of 

in  wort 340a 

Clark,  R.     See  Dillon,  T ~         ..  790a 

Clark,  R.  H.     Sugar  hydrolysis  ;   Velocity  of ..         ..  112a 

and  H.  I.  Andrews.    Tannin  content  of  Pacific  Coast  conifen  674 
Clark,  R.  I.,  and  Co.,  and  J.  N.  Tervet.     Oils  ;    Heat  treat- 
ment of  drying  or  semi-drying (P)    . .         . .  261A 

Clark,    W.     Photographic    development ;     Grain    structure 

versus  light  quanta  in  theory  of . .         . .  689a 

and  others.     Pulverising,  mixing  and  grading  ;  Apparatus 

for  (P) 845A 

See  Bawling    S.  O.            563a 

Clark,  W.  G.     Glass  ;  Apparatus  for  forming  window by 

the  lifting  process  (P) 634A* 

Glass  furnace  ;   Electro-fining (P) 7Ua 

Glass  furnaces  ;    Feed  troughs  for  (P      . .         ...  939a 

Glass  ;  Moulding  and  annealing (P)            . .         . .  177a 

Clark,  W    R.,  and  Bridgeport  Brass  Co.     Brass  and  similar 

scrap ;    Melting  (P) 20A 

Clark,  MacMullen,  and  Riley.     Sec  Jones,  A.  B.              . .  971a 

Clarke,  B.  E.    Food  compound  (P) 75a 

Clarke,  G.  S.     Sec  Gaudin,  R.  F.  B.               177a 

Clarke,  H.  E.    See  Cookson,  and  Co.,  Ltd 148a 

Clarke,    H.   T.,  and   Eastman  Kodak  Co.     Cellulose  ester 

composition    (P)           53a,  248a 

and     others.      Acetylmono-methylarylamines ;      Process 

of  manufacturing  (P) 392a 

Clarke,  J.  R.    See  Woegerer,  C.  V.              889a 

Clarke,  W.  H.    See  Woegerer,  C.  V.              889a 

Classen,  A.    Metals,  e.g.,  iron  ;  Production  of  glossy  metallic 

coatings  of  zinc  on (P) 900A 

Sugar  ;    Manufacture  of  fermentable  from  wood 

and  other  cellulosic  substances  (P)   . .         ..    080a,  725a 


24 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Classen,  A. — continued. 

and    Chemical    Foundation,     Inc.     Fermentable    sugars 
from  substances  containing  cellulose ;    Process  for 

Obtaining  — -   (P). 832a* 

Classen,  W.     See  Fischer,  A 413a 

Claude,  G.     Ammonia  ;   Accidents  observed  in  the  synthesis 

of at  very  high  pressures  and  means  of  avoiding 

them 140A 

Ammonia  ;    Elimination  of  the  heat  of  reaction  in  the 

synthesis  of at  very  high  pressures  ..         ..     249a 

Hydrogen;     Manufacture  of  from  water-gas  and 

coke-oven  gas  . .         . .         . .         . .         . .         . .     475R 

and  Soc.  L'Air  Liquide.    Hydrogen  ;   Production  of 

(P)  755A* 

Separating  constituents  of  gaseous  mixtures  ;    Method 

of ,  e.g.,  recovery  of  argon  from  air  (P)  . .         . .     860a* 

Claudia,  J.     See  Battegay,  M 7a,  8a,  50a 

Clausen,  S.  W.    Lactic  acid  ;  Determination  of  small  amounts 

of 609a 

Clavel,  It.    Dyeing  cellulose  acetate  ;    Process  for (P) 

320a*,  666a 
Union  or  mixed  fabrics  containing  cellulose  acetate  ; 

Dyeing  of  (P) 666a 

Clavera,  J.  M.     Terpin  ;    Melting  point  of  commercial  877a 

Clavey,  G.  A.    See  Morgan,  G.  U 286a* 

Clawson,  M.  S.    Electric  furnace  (P) 866A 

Clayson,  D.  H.  F.,  and  others.    Pectic  substances  of  plants. 
Investigation  of  the  chemistry  of  the  cell  wall  of 
plants     . .  . .  . .  . .  . .  . .  . .       75a 

Clayton,   G.   C.    Bleaching  agents  for  textiles  and  paper 

pulp.     Discussion        . .         . .         , .         . .         . .     371T 

Clayton,    W.,   and   G.    Nodder.     Butter  substitutes,  edible 

fats,  and  the  like  ;    Manufacture  of  (P)     . .       30A* 

and  others.    Margarine  and  other  edible  fats ;    Manu- 
facture of (P) 192a 

Cleghora,   C.  A.    Coating  substances  to  protect  them  or 
render  them  non-porous  ;    Production  of  materials 

for  (P) 23a* 

Clemens,  O.    See  Arndt,  K 862a 

Clement,  A.  W.,  and  Cleveland  Brass  Mfg.  Co.    Alloy  (P)     107a 

Titanium  alloy  (P) 943a 

Clement,  L.,  and  C.  Riviere.    Mother-of-pearl ;    Synthetic 

567E 


Pearls ;     Attempted    synthetic    manufacture    of 

by  production  of  chemical  tracery 499a 

Clement.     Cellulose    acetate    cinematograph    films ;     Non- 
inflammable  233a 

Clements,  F.    Siemens  furnace  practice  ;    British  ■   . .     550a 

Clemm,  H.,  and  others.    Cellulose  ;  Recuperation  of  the  sul- 
phurous acid  and  heat  from  waste  gases  coming 

from  boilers  for  (P)      . .  . .  . .  . .     855A* 

See  Zellstoff-fabrik  Waldhof         213a,  855a 

Clennell,   J.   E.     Aluminium  ;     Experiments   on  the  oxide 

method  of  determining 418R,  840a 

Clerc,  C,  and  A.  Nihoul.     Magnesia  ;    Manufacture  of 

from  dolomite  (P) 982a 

Tin  ;  Extracting from  tin-plate  chips  (P)  . .         . .     422a 

Zinc  sulphide  ;    Manufacture  of  (P)         . .         . .     509a 

Clerici,  E.    Minerals  ;   Heavy  liquids  for  separation  of 596a 

Cleveland  Brass  Mfg.  Co.    See  Clement,  A.  W.       . .      107a,  943a 

See  Smith,  W.  H.  763a 

Clevenger,  G.   H.,  and   others.    Gold  and  silver  bullion  ; 
Dusting   and   volatilisation   losses   during   melting 

of  cyanide  precipitate  and  air  refining  of  . .     144a 

Clewlow,   C.   W.   G.    Peat;    Dewatering  and  compressing 

(P)  929A 

■    Peat  for  fuel  or  distillation  purposes ;    Disintegrating, 

dehydrating,  and  otherwise  treating  (P)    . .     700A 

Clews,  F.  A.,  and  H.  V.  Thompson.    Sodium  chloride  and 

silica  ;    Interaction  of 706a 

Clifford,  W.  M.     Carnosine  of  muscle  ;   Effect  of  cold  storage 

on 606a 

Clifton,  H.  B.    See  Steele,  C.  C.  D.  209a 

Cltmie,  W.     lias  producers  (P) 740a,  889a 

(ias  producers  ;  Fuel  rakes  of (P) 851a* 

Clough,  R.  E.     Ice  manufacturing  apparatus  (P)   . .  . .     622a* 

. .     519a 


secondary 


Hydrocarbons  ;    Crack- 


Clover,  A.  M.    Ether  ;    Autoxidation  of 

Cluzct,    J.,    and    others.    X-rays ;     Action 
radiation  of  on  microbes 

Coad-Pryor,  E.  A.     Glassware  ;    Autoclave  test  for  grading 
chemical  .    Discussion 

Coast,  J.  W.,  and  The  Process  Co. 
■ng  (P)     . . 

Coates,  C.  E.    Decolorising  charcoal  from  bagasse  ;    Pre- 
paration and  evaluation  of  a  

and  B.   Y.   Tims.    Gasoline;     Unusual   type   of   casing- 
head  

Coates,  L.  R.    Phosphatlc  fertiliser  material ;   Manufacture 

oi  (P) 775A 

Coates,  R.  C.    Steel  Ingots  ;    Casting  of (P)  . .         . .     180a' 

Cobb,  E.  B.,  and  Standard  Oil  Co.    Petroleum  oils  ;   Desul- 
phurising    (P) 404A 

Cobb,   J.   W.    Ammonia  yield   in   carbonisation   of  coal ; 

Factors  influencing  the  .    Discussion  . .     2791 


914a 

55T 

91A 

385A 

320a 


PAGE 

Cobb,  J.  W.— continued. 

Coal  and  smoke       ..         ..         ..         ..         ..         ..     132R 

Volatile    matter    in    fuels ;     Determination    of    . 

Discussion  . .  . .  . .  . .  . .  . .     373T 

See  Greenwood,  H.  D 94R,  181T 

See  Houldsworth,  H.  S 447R,  709 1 

See  Monkhouse,  A.  C 263R,  532a 

Cobb  Electro  Reduction  Corp.     Ores  ;   Reduction  of (P)     379A 

Cobet,  R.,  and  V.  van  der  Reis.     Bacteria  ;    Influence  of 

arsenious  acid  on  growth  of . .         . .         . .     430a 

Cochrane,  F.    See  Calico  Printers'  Assoc,  Ltd.      ..         ..       55a 
Cochrane,  W.  F.,  and  U.S.  Industrial  Alcohol  Co.    Catalyser 

apparatus  (P)   . .  . .  . .  . .  . .  . .  1A 

Cochrane  Corp.,  H.  S.  B.  W.    See  Yoder,  J.  D 156a 

Cock,  R.  B.,  and  W.  W.  Williams.     Tanning  composition  (P)     151a* 
Cockerton,  S.  E.,  and  tienatosan,  Ltd.     Aspirin  and  similar 
compounds ;    Manufacture   of  compressed   tablets 

of (P) 33a 

Cocking,  A.  T-,  and  C.  H.  Lilly.     Glycerin  ;    Production  of 

by  fermentation  (P)     ..         ..         ..         ..     779a* 

Cocks,   L.  V.,  and   A.  H.   Salway.     Trimethyleneglycol   in 

crude  glycerin;    Determination  of  ..         ..       17T 

Codding,    M.    K.    Mercury ;     Extraction    of    from 

ores  (P)  146a 

Ores;    Process  of  treating  (P)       ..         ..         ..     146a 

Coffey,  S.     Drying  oils  ;    Mechanism  of  oxidation  of  

as   elucidated    by   a   study   of   the    true    oxygen 
absorption.    Action  of  driers  . .         . .         . .     182A 

Sulphur  monochloride  and  aniline  ;    Reaction  between 

49A 

Cofiun,  C.  F.,  inn.    See  Mork,  H.  S.  628a 

Coffin,  J.  G.    See  Bradley.  C.  E 827a 

Cogswell,  A.  G.    See  King,  F.  W.  G 110a 

Cohen,  A.    Mixed  indicators;    Use  of ..         ..         ..     918a 

Xylenol  Blue  and  Us  proposed  use  as  indicator         . .     351a 

Cohen,  C.     See  Neuberg,  C 139a 

Cohen,  E.,  and  H.  R.  Bruins.    Interferometer  ;   Use  of  Zeiss 
(Rayleigh-Lowe)  water  for  analysis  of  non- 
aqueous solutions         . .          . .  . .  . .  . .       37a 

Cohen,  J.    See  Brown,  J.  L.      _.         „         ..         ..         ..     147a 

Cohen,   J.    B.    Smoke   and   noxious   vapours   abatement ; 

Report  of  the  committee  on ..         ..         ..         1R 

and  H.  G.  Crabtree.    Azine  Scarlets  ;  Structure  and  colour 

of  the 94A 

See  Browning,  C.  H.  480a 

Cohn,  R.     Formaldehyde  solutions  ;    Manufacture  of  solid 

water-soluble (P)        439a 

Coke  Oven  Construction  Co.,  Ltd.    See  Marr,  J 982a 

Coke  &  Gas  Ovens,  Ltd.,  and  H.  F.  Kimbell.    Coke  ovens  ; 

Regenerative (P)  . .  . .  . .  . ,     320a 

and  A.  R.  Smee.     Coke  ovens  ;   Gas  burners  of (P) . .         4a 

Colby,  A.  V.    See  Mayer,  G.  K.  912a 

Colby,  O.  A.,  and  Westinghouse  Electric  and  Manufacturing 

Co.    Electric  furnace  (P)       423a 

Glass-annealing  furnace  ;  Electric (P)        . .         . .     102a 

Coldrey,  A.  A.     See  Brown,  C.  H 575a 

Cole,  H.  I.    Alcohol  and  alcohol  motor  fuel ;    Manufacture 

of  industrial ■  in  the  Philippine  Islands  . .     973A 

Ambergris  ;  Identification  of . .         . .         . .     517A 

Cole,  R.  M.    Monosulphonic  acid  ;    Obtaining  a  sodium  salt 

from  a  hydrocarbon (P)  . .         . .         . .        8a 

Coleman,  C.  E.    See  Davis,  J.  D 168a 

Coleman,  J.  B.,  and  P.  Bilham.    Dekalin  ;    Properties  and 

composition  of . .         . .         . .         . .         . .     904a 

Coles,  H.  L.,  and  Miles-Bement  Pond  Co.     Cast  iron  ;   Com- 
position for  treatment  of (P)    . .         . .         . .       19a 

Colin,  H.,  and  A.  Chaudun.     Invertase  ;    Law  of  the  action 

of  :    velocity  of  hydrolysis    and    reaction    of 

medium  . .         . .         . .         . .         . .         . .     152a 

Collard,  C.     Gelatin  ;   Extraction  of (P)  . .      869a,  908a* 

Collet,  P.    Films  ;   Thin  •  formed  by  mixtures  of  gly- 

cerides 223a 

Collier,  A.     Slags  ;    Extraction  of  metallic  compounds  from 

blast-furnace  and  similar (P)    . .         . .         . .     379A 

Collin,  F.  J.,  A.-G.  zur  Vertwertung  von  Brennstoffen  und 

Metallen.    Vertical  gas  retorts  (P) 623a 

Collings,  \V.  A.    Coating  composition  ;   Production  of  

(P)  826* 

Paint  vehicle  (P) 826a 

Collins,  B.  W.,  and  E.  I.  du  Pont  dc  Nemours  and  Co. 

Filtering  ;   Process  of (P)  449a 

Collins,  C.  G.,  and  C.  A.  Stevens.    Aluminium  ;  Reduction 

of from  its  ores  (P)         . .         . .         . .         . .     555a 

Collins,  D.  E.    Refractory  composition  (P)    . .         . .         . .     375a 

Collins,  E.  F.,  and  General  Electric  Co.     Electric  furnace 

heater  (P)    • 987a 

Collins,  J.  J.    Tin  ;  Purification  of (P) 422a* 

Tin;   Winning  of (P)  422A« 

Collins,  S.  H.     Laevulose  in  straw  ;  Determination  of . .       56T 

and  B.  Thomas.    Oat  straw ;    Sugars  and  albuminoids 

of 993a 

Colombo  and  lug.  de  Bartolomeis.     See  Soc.  Ital.  Asfaltl 

Bitumi,  Catrami  e  Derivati  (A.B.C.D.)        . .         . .     183a 


NAME  INDEX. 


25 


PAGE 

Colorado  Vanadium  Corp.     See  Carpenter,  A.  H 20a 

See  Thews,  K.  B 901a 

Colour  Photography,  Ltd.    See  Shepherd,  J.  F 270a 

Colson,  L.     Methane  and  hydrogen  ;  Production  of  a  gaseous 

mixture  of (P) 802a* 

Comber,  N.  M.    Clay  ;   Characterisation  of . .         27R,  77t 

Soils  ;  Flocculation  of 69a 

Combes,  R.     Anthocyanidins  ;   Detection  of  pseudo-bases  of 

in  plant  tissues    . .  . .  . .  . .  . .     130a 

Anthocyanin  pigments  ;   Formation  of . .     136a 

Cornelia,  G.     See  Oliveri-Mandala,  E.  327a 

Comment,  P.,  and  Fabr.  de  Prod.  Chim.  de  Thann  et  de 
Mulhouse.     Potassium   sulphate   and   hydrochloric 

acid  ;  Manufacture  of (P)  . .  . .  . .     546a* 

Commin,  F.  J.     Pitch  ;   Treatment  of (P)         . .  . .     933a* 

Commonwealth  Chemical  Corp.    See  Stockelbach,  F.  E.     . .       10a 
Comp.  des  Forges  ct  d'Acieries  de  la  Marine  et  d'Homecourt. 
High  fluid  pressures  ;    Apparatus  for  measurement 

of (P)         163A 

Comp.  dea  Prod.  Chim.  d'Alais  et  de  la  Caraarguc.    Sec 

Guyot,  A 309a* 

Compton,  A.     Maltase  ;    Occurrence  of in  mammalian 

blood 227a 

Compton,  A.  H.,  and  Wcstinghouse  Lamp  Co.     Glass  ;  Manu- 

of (P)         634a 

Compton,  K.  T.    Tungsten  electric  furnace  for  experiments 

on  dissociation  and  ionisation  . .         . .         . .     986a 

Corns  tock,  G.  F.    Slag  containing  titanium  dioxide  ;    Fusi- 
bility of  open-hearth 178a 

Conant,  J.  B.,  and  others.     Reduction  of  organic  compounds  ; 

Electrochemical  study  of  reversible . .         . .     539a 

Concentrators,  Ltd.    See  Ondra,  F 716a 

Condensite  Co.  of  America.     See  Kendall,  D.  S.         . .      558a,  558a 
Conduche,    A.     '*  Cuivre ;     Les   progres   de   la   metallurgie 

du "  487E 

Cone,  L.  E.  H.,  and  Dow  Chemical  Co.    Phenvglvcine  bodies  ; 

Method  of  making (P) 581A 

Congdon,  L.  A.,  and  H.  R.  Ingersoll.    Sucrose  ;  Influence  of 

dextrose  on  dialysis  of  through  a  parchment 

membrane.    Possibility  of  separation  of  dextrose 

from  sucrose  by  dialysis  . .  . .  . .  . .     226a 

and  C.  R.  Stewart.     Sucrose  ;   Qualitative  test.for in 

presence  of  dextrose     . .  . .  . .  . .  . .     152a 

Conn,  H.  J.     Soil  ;    Microscopical  detection  of  fungi  and 

actinomycetes  in . .         . .         . .         . .         . .     950a 

Connell,  L.  H.     See  Bush,  V 708a 

Conner,  S.  D.,  and  O.  H.  Sears.     Aluminium  salts  and  acids 
at  varying  hydrogen-ion  concentrations,  in  relation 
to  plant  growth  in  water  cultures     . .  . .  . .     263a 

Conover,    C.     Reactions    between    gases ;     Apparatus    for 

bringing  about  and  controlling (P)      ..  ..     317a* 

and  H.  D.  Gibbs.     Phthalic  anhydride  ;    Preparation  of 

by   catalysis  of  the   vapour   phase   reaction 

between  naphthalene  and  atmospheric  air  . .  . .     363a 

See  Andrews,  C.  E.  539a 

Conradty,  C.     Silicon  carbide  electrical  resistance  material 

for  use  immersed  in  oil  (P) 148a 

Consolidated  Mining  and  Smelting  Co.  of  Canada.    See  Lee, 

F.  E 62a 

See  Thorn,  C.  63A 

Consortium  fiir  Elektrochem.  lud.     Alcohol  and  dry  sodiun 

••■  :    Recovery  of from  ethyl  acetate  (P)       33a 

Chlorinated  derivatives  of  acetylene  or  the  like  ;   Manu- 
facture of  stable (P) 439a 

Chloroform  ;   Production  of from  acetyldehyde  (P)     523a 

Crotonaldehyde  ;   Preparation  of (P)  . .  . .     688a 

Mercury  ;     Electrolytic   oxidation   of   in    sodium 

carbonate  solution  (P)  . .  . .  . .  . .     754A 

Continental  Gas  Compressing  Corp.    See  Schill,  E.  . .     450a 

Continuous  Centrifugal  Separators,  Ltd.     See  Mauss,  W.    . .     577a* 
Continuous  Centrifugals,  Ltd.     See  Mauss,  W.  . .  . .     577a* 

Continuous  Process  Coke  Co.    See  Helmholtz,  A.  W.  . .     661A 

Continuous  Reaction  Co.,  Ltd.     See  Skelley,  H.  A.  . ,     821a 

See  Skelley,  J.  M 820a 

Contzen,  J.     See  Popp,  M 995a 

Conyers,  F.  G.,  and  others.     Cholesterol  materials,  such  as 

wool-fat ;   Treatment  of  crude (P)       . .  . .     508a 

Cook,  F.  C.     Copper  ;    Absorption   of  from  soil  by 

potato  plants 26a 

Cook,  J.  YV.     See  Barnett,  E.  de  B 704a 

Cook,  L.  W.     Acetyl  values  of  fats  ;   Determination  of 299a 

Cook,  M.     Antimony-bismuth  system  . .  . .      418R,  819a 

Cook,   R.   M.,   and  others.    Detonators;    Composition  for 

(P) 271a 

Cook,  S.  V.     See  Brown,  O.  W.  588A 

Cooke,  J.  J.     See  South  Metropolitan  Gas  Co.  ..  ..     698a« 

Cooke,  M.  B.     Petroleum  products  ;    Temperature-pressure 

curves  of 800a 

See  Dean,  E.  W 534a 

Cooke,  M.  C.    See  Tower,  O.  F.  980a 

Cookson,  W.  S.,  and  L.  M.  Smith.     Coconut  oil  ;    Manufac- 
ture of  neutral (P)  300a 


page 
Cookson  and  Co.,  and  H.  E.  Clarke.     Oil  pigment  pastes  ; 

Manufacture  of from  water  pastes  (P)  . .     148A 

Coolbaugh,  M.  F.     Sulphur-bearing  gases  ;    Purification  of 

and  concentration  of  their  sulphur  content  (P)     415a 

Cooley  &  Marvin  Co.    See  Kent,  R.  W 142a 

Cooling,  J.  W.    See  Jeffreys,  J.,  and  Co.,  Ltd 797a* 

Cooper,  A.  S.     Carbon  black  ;  Manufacture  of (P)      . .     720a 

Cooper,  C.    See  Holmes,  W.  C,  and  Co.,  Ltd.  . .         . .     982a 

Cooper,  E.  A.    See  Morgan,  G.  T 76a 

Cooper,  R.  A.     Osmirldium  concentrate  ;    Manipulation  of 

— ' —        . .  . .  . .  . .  . .  . .  . .     377a 

Cooper,  W.  R.     Electrolysis  ;    Electrochemical  effects  pro- 
duced by  superimposing  alternating  currents  upon 

direct  currents  during ■    ..         ..         ..         ..     291R 

Cope,  F.  F.     See  Boord,  C.  B.  308A 

Copeland,  W.  R.     See  "Wilson,  J.  A 389A 

Copisarow,  M.     Friedel-Crafts'  reaction.     Migration  of  alkyl 

groups  in  the  benzene  nucleus  . .         . .         . .         7a 

Coplan,  A.  H.     Alloy  suitable  for  exposure  to  hot  conditions 

(P) . .     986a 

Copley,  F.  J.     Mercerisation  of  yarns  in  hank  form  ;  Machine 

for (P) 585A 

Coppee,  E.,  et  Cie.    Coking  ovens  (P)  166a 

Coppens,  A.  J.  G.     Conical  mills  (P) 399a 

Coppetti,  V.     Sulphurous  acid  ;    Determination  of ..       82a 

Corby,  R.  L.     Yeast ;    Method  for  treating  and  preparing 

(P)  605a 

Cordes,  C.     See  Thiele,  F.  C 285A 

Corell,  M.     See  Meister,  Lucius,  u.  Briinlng    . .  . .  . .     689a* 

Cork,  C.  F.     See  Remus,  W.  F.  267a* 

Corn  Products  Refining  Co.     See  Brindle,  R.  G.        . .      450A,  777a 

See  Merrill,  J.  J 778a,  830a 

Cornelius,  C.  E.     Electric  rotating  furnace  for  melting  zinc 

powder  (P)        20a* 

Zinc  ;  Production  of (P)       62a 

«     Zinc  or  zinc  and  lead  ;  Production  of from  ores  (P)       62A 

Corning  Glass  Works.     Tank  furnaces  principally  for  use  in 

glass  manufacture  ;  Bridge  walls  for (P)       . .     898a* 

See  Sullivan,  E.  C 295a 

See  Taylor,  W.  C 374a,  465a 

Cornog,  J.     Sodium  hydroxide  solutions  free  from  carbon 

dioxide  ;     Preparation   of   . .  . .  . .     272a 

Cornubert,      R.     "  Dictionnaire      anglais-francais-allemand 
de  mots  et  locutions  interessant   la  physique  et 
la    chimie"       ..         ..         ..         ..         ..         ..     342r 

Cornu-Thenard,  A.     Steel  ;    Importance  of  the  temperature 

of  the  charge  in  the  manufacture  of  in  the 

converter  . .         . .         . .         . .         . .         . .     218a 

Correns,  E.     Pectin  substances'of  flax  . .  . .  . .     366a 

Corson,  B.  I.     Fire-extinguishing  liquid  (P)  ..  ..  ..     127a 

Cos  Process  Co.     See  Chase,  M.  F 215a 

Costa,   D.     Pyrethrum  insecticide  powder    ..  .,  ..     834a 

Coster,  T.  J.    See  Petersen,  P.  154a 

Coster  van  Voorhout,  A.   W.    See  under  Van  Voorhout. 

Costigan,   T.     See   Bronder,    G.   A 404a 

Costy,  P.    See  Goris,  A.  434a,  783a 

Couch,  J.  F.     Greasewood  (Sarcobatus  vermiculatus)  ;   Toxic 

constituent  of  . .         . .         . .         . .         . .     955a 

Oil  of  Agastaehe  Pallidiflora         520a 

Coulson,  J.,  and  Westinghouse  Electric  and  Mfg.  Co.     Electro- 
lyte for  electrolytic  condensers,  lightning  arresters, 

rectifiers,   etc.   (P) 423a 

Counas,  A.     Ores  ;    Electric  furnace  for  treating  (P)     901a 

Courmont,  P.,  and  others.     Sewage  purification  by  activated 
sludge  process  ;    Disappearance  of  organic  matter 

in 76a 

Sewage  purification  by  activated  sludge  process  ;  Rhyth- 
mic variations  in  disappearance  of  ammonia  in ■     116a 

Cournot,   J.     See   GuiUet,  L 220a 

Courrier,  A.     Paper  pulp;  Production  of  mechanical (P)    249a* 

Coursen,  W.  L.,  and  New  Jersey  Zinc  Co.    Zinc  oxide  ;  Manu- 
facture of  (P) 416A* 

Courtaulds,  Ltd.,  and  M.  T.  Callimachi.    Viscose  ;    Manu- 
facture of  threads,  filaments,  strips  or  films  of 

(P)  627A 

and  A.  E.  Delph.     Carbon  bisulphide ;    Manufacture  of 

(P)  546A 

and    H.    J.    Hegan.     Viscose;     Manufacture   of   threads, 

filaments,  and  the  like  of (P) 627a 

and  R.  O.  Jones.     Caustic  soda  ;  Manufacture  of (P)    669a 

Sodium  carbonate  ;    Separation  of  ,  from  liquors 

or  solutions  containing  caustic  soda  (P)   . .  . .     631a 

and  others.     Starch  and  starchy  matter  and  sulphuric 
acid  ;    Manufacture  of  compounds  or  mixtures  of 

•  for  use  in  manufacture  of   viscose  silk  etc.  (P)     604a 

Viscose  ;    Manufacture  of   coloured   tlireads,  strips   or 

films  of  (P)         627a 

Cousen,  A.,  and  W.  E.  S.  Turner.     Glass  ;   Use  of  selenium 

in  production  of  colourless  . .  . .  . .     708a 

See  Turner,  W.  E.  S 127R 

Cowan,  J.  A.    Straw- briquetting  machine  (P)       ..         ..     130a 


26 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Coward,  H.  F.,  and  O.  M.  Wlgley.     Cottos  fabrics;   Dete  - 
i nd  determination  of  acidity  and  alkalinity 

in 497A 

i  I,  K.  H.,  and  J.  C.  Drummond.     Vitamin  A;  Slgniflc- 

aucc  of in  the  nutrition  of  Ash 993A 

See  Drummond,  J.  C -         ..      561R,  913a 

-      Goldlng,  J - 

meson,  H.  L.  ..        ..        ..        ~.        ..     913a 

A.  H.  Fertiliser  (P) 304A 

Cowlfshaw,   G.   E.    See  Pickering,   G.  F TIT 

ILL.     See  Nicolct,  B.  H.  259a 

Cox,  F.  N.    See  Graham,  C 136R 

Cox,  K.,  and  others.  Gas  purification  ;  Process  and  appar- 
atus for  — -  (P) ..     849a 

Coysh,  K.  II.     See  Francis,  F.  360A 

Crabtnc.  1L  G.,  and  R.  Robinson.     Isobrazilcin  and  certain 

related  anhydiopyranol  salts;    Synthesis  of  . 

Synthesis   of   isohacniatein 582a 

See  Cohen,  J.   B 94a 

Crabtree,    J.    I.    Developers;     Photographic    methods    of 

testing  343a 

Craig,  E.H.C.     Kukkersite,  the  oil-shale  of  Esthonia    217R,    799a 

Craig,  B.N.    .See  Pearson,  R.  E 637a,  864a 

Craig,  T.  J.  I.,  and  Whipp  Bros,  and  Tod,  Ltd.    Fireproofing 

textile  fabrics  and  other  porous  articles  (P)         ..       11a* 

Craig,  W.  A.    See  Hicks,  J.  F.  G 668A 

Craig,     Electrical    precipitation.     Discussion  ..         ..       28T 

('rail,  A.  O.     Wood  ;    Process  for  seasoning  (P)         . .     503A 

<  ramer,  C.     See  Chem.  Fabr.  Griesheim-Elektron   . .  . .     S12A 

Cramer,  W.,  and  others.  Blood-platelets;  their  behaviour 
in  vitamin  A  deficiency  and  after  radiation  and 
their  nlation  to  bacterial  infections         ..         ..     216R 

Cramer,  W.  E.    Tunnel  kiln  ;    The  Harrop  . .         . .     710a 

Crane,   J.  E.    See  Underwood,   K.   C 459a 

Craven,  A.  B.    Mordanting  wool  for  dyeing  with  Hiematin    368a 
Craven,  E.  C.    See  Ormandy,  W.  R.      30r,  49r,  96k,  184a, 

4U'.»A.  4IIL'A,  406A 
(ravin,  M.  B.     Pottery  bodv  ;    Cause  of   the  "splitting" 

of   a   329T 

Craver,  A.  E.    See  Bailey,  Q.  C 729a* 

Crawford,  A.    See  Sayce,  L.  A 57T 

Crawford,  A.  G.,  and  H.  W.  Seaman.     Refrigerant  (P)   ..     165a* 
Refrigeration  process  (P)  . .         . .         . .         . .         . .         1a 

Crawford,  F.  A.  F.  Nitroglycerin  ;  Organic  impurities  in 
commercial  nitric  acid  and  their  effect  in  the  manu- 
facture of . .  . .  . .  . .  . .  . .     321T 

Crawford,  J.  V..  and  YV.  J.  Kelly.    Filters  for  boiler-feed 

water  (P) 516a 

Crawford,   J.   L.     Clay   briquettes;    Determination  of  dry 

volume   of  . .  . .  . .  . .  . .     633a 

Crawford,  W.    Lubricating  compound  (P)   . .         ..         ..       22a 

(rede,   E.     See   Kohn,   S 336a,  828a 

Cregor,   X.  SI.    See  Hoffman,   C 913a 

Creighton,  H.  J.  M.     Methyl  Violet ;  Method  for  making 323a 

Nitric    in  i'i  :     Electrolytic    concentration    of    aqueous 

solutions  of  ■         ..         ..         ..         ..         ..     172a 

Creighton,  W.  H.  P.     Evaporating  apparatus  ;    Means  for 

controlling  the  level  of  liquids  in (P)  . .         . .     574a 

Evaporator   (!')       ..        ..        ..        ..        ..        ..     736a 

Cremer,  C.  J.    See  Kolthoff,  I.  M 76a 

Cremer,  F.,  and  others.    Fire  extinguishers;    Antifreezing 

charge  for  (P) S584 

Crespl,  M.    See  Moles,  E 3l:ua 

<  n-sse,  c.  E.     Sulphuric  acid  tanks ;   Leaks  in caused 

by    wood    borers        ..         ..         ..         ..         ..     139a 

'  r-  utzfeldt,  W.  H.     Cathodic  deposits  from  mixed  solutions 

in  two  simple  metallic  salts  ..         ..         ..         ..     332a 

Crew,  F.  A.  E.,  and  J.  S.  S.  Blyth.     Wool  fleece  of  the  Black- 

(acelamb;  Micrological  study  of  the ..         ..     626a 

Crichton,  R.  H.    Milk  foods  ;   Analysis  of . .         . .     680a 

Cripps,  F.  S.,  and  R.  J.  Milbourne.  Paraffin  or  other  liquids  ; 
Apparatus  for  evaporating  — —  and  mixing   tin 

vapours  produced  with  coal  gas  (P) 455a 

Croad,  R.  B.,  and  F.  G.  A.  Enna.    Leather;    Microscope 

as  applied  in  manufacture  of ..        ..        ..      68a 

and   H.    M.   .McArthur  and   Co.,   Ltd.     Tanning  a{ 

Manufacture  of  (P) 774a 

and  others.    Tanning  agents;    Manufacture  of  (P)     774  \ 

Crot  e,  M.    See  I  lusa,   It.         . .         . .         . .        . .         . .     318a 

I  roll,  1'.  R.  i  ■.  G.  381a 

Croqui  or  classifying  mixed  materials 

of   different   specific   gravities  or  volumes  (P)    . .     971a* 
Crosflcld,  ,r.,  and  Snns.   Ltd.,  and  II.  J.  Wheaton.     Uase- 

"ging  compounds ;  Manufacture  of  new 

(?)  372A 

Cross,  C.  F.    Cellulose:    Manufacture  of  webs  or  sh 

fibrous  IP  i  - 1  v 

the  chemist  and  the  manufacturer 

and  c.  Dnree.    "Cellulose:    Researches  on  ,  1910- 

1921" 516R 

Products  Co.    Petroleum  oil ;  Crack- 
ing    (P  )    . .  „ 889a 


PACE 

Cross,  W.  A.    See  Zynkara  Co.,  Ltd 845 

Crossley,  P.  B.    Mica,  mica  compounds  and  the  like  ;  Adapta- 
tion, construction,  and  reconstruction  of  — —  (P)    102a 

Crouch,  A.  P.     See  Speedy,  A.  67a 

Crowe,   E.  T.  F.,  and  G.  B.  Sansom,     Japan;    Report  on 
commercial,  industrial,   and   financial  situation  iu 

539R 

Crowe,  R.  L.     Quinine  silver  phosphate  germicide  ;    Manu- 
facture of  (P) 79A 

Crowley,  J.  1*.,  and  others.    Glass;    Manufacture  of  sheet 

(P)  634a 

Crowther,  D.     Organisms ;  Process  and  apparatus  for  destroy- 
ing    (P) 433a 

Crowther,  R.  E.     Photographic  desensitisers  ;   New . .     567A 

Crum,   R.   W.     Concrete  pavements ;    Use  of  excess  sand 

and  pit -run  gravel  in  ■  . .         . .         . .         . .     593a 

Crum   Brown,   A.    Obituary    . .         . .         . .         . .         . .     489R 

Csanyi,  W.    See  Willstatter,  R 228a 

Cuisiuier,  V.     Bismuth-sodium   thlosulphate ;    its  prepara- 
tion and  its  use  in  determination  of  potassium  . .     981a 
Cullen,    G.    E.     Hydrogen   electrode    vessel ;     Modification 

of  the  Clark to  permit  accurate  temperature 

control 649a 

and  A.  B.  Hastings.  Hydrogen  ion  concentrations: 
Comparison  of  colorimetric  and  electrometric  deter- 
minations of  in  solutions  containing  carbon 

dioxide 649A 

Cullen,  W.     Gold  metallurgy  of  the  Witwatersrand  (Trans- 
vaal)        124R,  316T 

Rand    metallurgical    practice 243it 

Culmer,  H.  H.     Dye,  and  process  of  producing  dyes  from 

bitumen    (P) 288A 

Vulcanisable  hydrocarbon  product  and  process  of  making 

it  (P)     . .         „         906A 

Cumberland  Coal  Power  and  Chemicals,  Ltd.,  and  others. 
Hydrogen  ;    Production  of  in  coal  carboni- 
sation (P)           . .          . .          . .  . .  . .  . .     579a 

Gumming,  W.  M.  Methoxyl  groups  ;  Apparatus  for  deter- 
mination of  . .         . .         . .         . .         . .       20T 

Cummings,  E.    See  Brydon,  S.  ..         ..         ..         ..     147a 

Cunningham,  O.  D.,  and  National  Aniline  and  Chemical  Co. 

Mixing  solid  materials  with  liquids  (P)    . .         . .     736a 

Curme,  G.  O.,  jun.,  and  Carbide  and  Carbon  Chemicals  Corp. 

Chlorinating   gaseous  hydrocarbons  (P)    . .         . .     686a 

and    Union    Carbide    Co.     Ethylene ;     Separating    

from  gaseous  mixtures  (P)    . .  . .  . .  . .     686A 

Gaseous  mixtures;    Treatment  of  (P)      ..  ..     6S6A 

Hydrocarbon  mixtures  ;    Treating  gaseous  (P)   . .     686A 

Curran,  J.  H.  See  Johns,  G.  McD 92a 

Currau,J.J.     Aluminium-silicon alloys  ;  Modification  of 761A 

Currey,  G.     Colouring  matter  of  red  roses  . .         . .         . .     246a 

Currey,  G.  S.     Colouring  matter  of  scarlet  pelargonium     . .     365A 

Currie,  J.     Sandstone  blocks  ;    Columnar  structure  in  241R 

Curtis,  A.  L.     Refractories  ;    Examination  of  by  the 

oxy-hydrogen    blowpipe        . .         . .         . .         . .     447R 

Curtis,  H.  A.     Ammonia;  Oxidation  of at  the  Sheffield 

(U.S.A.)  experiment  station 896a 

Curtis,  H.  E.     Evaporator  or  dryer  (P)        44a 

Curtis,  T.  S„  and  Universal  Optical  Corp.     Electric  furnace 

(P)  987a 

Curtmau,  L.  J.  Hydrofluoric  acid ;  Apparatus  of  trans- 
parent bakelite  for  increasing . .         . .         . .     629a 

Cushman,   A.    S.     Antiseptic   solution   (P)    . .  . .  . .        76A 

Cutler-Hammer  Mfg.  Co.  Calorific  value  of  combustible 
gases  or  other  chemically  reactive  agents ;  Appar- 
atus for  measuring,  indicating  and  recording (P)    4S5a 

Calorific   value   of   gas ;     Combustion   of   proportioned 

quantities  of  fluid  for  measuring  the  (P)   . .     692a 

Gas  calorimeters  (P)         731a 

Cuttica,    V.     Potassium    fcrricyanide ;     Decomposition    of 

on  heating  326a 

Steel  Co.    See  Evans,  C.  T.  332a 

t  yliax,  G.    Liquid  manure  ;   Process  for  making  an  artificial 

(P)  82MA,  S29A 

Czochralski,  J.    Aluminium  ;    Solubility  of  gases  in . .     714a 

Red  brass;    Influence  of  bismuth  in ..         ..     297a 

Silumin,  a  new  light  alloy  219a 

D 

Dfl    I  osta-Vot.     Aluminium    alloys,  especially   duralumin; 

Analysis  of  . .  . .  . .  . .  . .     533A 

D'Adrian,  A.  L.  D.    Glass;    Process  of,  and  mixture  for 

malting  (Pi         898a 

□  chromium  oxide;    Process  of  making  (P)     897A 

Opal  glass;    Composition  for (P)..        ••        ..     54Sa 

and    A.    L.    Duval    d'Adrian    Chemical    To.     Zirconium 

oxide  ;    Prodm -tion  of  articles  of  fused  (P)  . .     S98A 

Daeves,    K .     Steels  ;     Limits    of    solubility    of    carbon    in 

ternary : 

The  system :  chroniiuni-iron-carbou    ..         ..       16a 
The  Bysfcem  ;   tungsten-iron-earbon       . .  . .        17a 

Dahl.   A.    Tunnil-kiln   tor   baking  ceramic    articles  etc.; 

Uas-tlred  (P) 756a 


NAME  INDEX. 


27 


PAGE 
114A 

742A 
506A 

791a 

262K 

218R 


Dainier,  J.    See  Merl,  T 

Daimler,  K.    See  Meistcr,  Lucius,  und  Briiuing     . . 

D'Aix,  F.  C.  L.     See  Wilcox,  H.  M.  

Dale,  A.  G.  Gases  ;  Apparatus  for  the  analysis  and  record- 
ing of  the  volumetric  composition  of  (P)   . . 

Dale,  H.  H.  Chemical  and  physiological  "properties;  Re- 
lationship between 

Specific  remedies  ;    Search  for  

Dalhoff,  L.  G.,  and  W.  K.  Lunn.  Concrete  ;  Manufacture 
of  a  material  consisting  of  moler,  infusorial  earth, 
and  the  like,  suitable  for  production  of  light (P) 

Dalladay,  A.  J.,  and  F.  Twyman.     Glass  ;   Measurement  of 
*  small    variations    of    refractive    index   throughout 
meltings  of  optical  

Damiens,  A.     Ethylene  ;    Absorption  of  by  sulphuric 

acid.     Production  of  ethyl  alcohol,  diethyl  sulphate, 
and  liquid  hydrocarbons 

Damra,  P.    See  Hofmann,  F.  

Damon,  S.  R.    Bacteria  as  source  of  water-soluble  B  vitamin 

Dampfkessel  u.  Gasometer-Fabr.  A.-G.  vorm  A.  Wilke  und 
Co.    See  under  Wilke. 

Dauckwardt,  P.    Oil  shale?  ;  Method  for  distilling (P) 

Danforth,  G.  L.,  and  Miami  MetalslCo.  Furnace  ;  Open- 
hearth  (P) 

Danforth,  G.  L.,  jun.     Furnaces;    Open-hearth  i.P'i.. 

Daniel,  A.,  and  Chemical  Foundation,  Inc.  Inulin  and 
hevulose  ;    Purifying  juices  containing (P)  . . 

Daniels,  E.,  and  others.  Centrifugal  machines  ;  Plough 
for  removing  accumulation  of  sugar  or  cake  from 
the  filtering  walls  of (P)         

Darndson,  R.  R.,  and  H.  P.  Reinecker.     Enamels  for  cast 

iron  ;    Wet-process  

Enamels  for  copper ;    Production  of  white  

Danneel.  H.    Metaldehyde  as  a  fuel.. 
See  Elektrizitatsu.  rk  Lonza 
See  Tommasi,  X.  C. 

Dantsizen,  C,  and  General  Electric  Co.  Electrolytic  iron  ; 
Production  of  lamina?  of  (P)  . . 

Darby,  S.  E.     See  Bussey,  C.  C 

D'Arcambal,  A.   H.     Steel  ;    Hardness  of  high-speed  

Steel  ;    Mushet  

Darco  Corp.     See  Mumford,  R.  W 6a, 

Darimont  L.     Electric  primary  cells  (P) 

Darling,  C.  R.     Cold  ;    Generation  and  utilisation  of  . 

Measurement  of  low  temperatures 

Darlington,  F.,  and  Westinghouse  Electric  and  Mfg.  Co. 
Nitrogen  fixation  ;    Apparatus  for  (P)         _. 

Darrah,  W.  A.     Incandescence  lamp  (P) 

Darrasse,  E.     See  Darrasse,  L.  

Darrasse,  L.,  and  others.  Synthetic  camphor  ;  Manufacture 
of  (P) 

Das,  B.  M.  and  S.  R. 
Manufacture  of 
Indian  oils 

Das,  S.  R.     See  Das,  B.  M.     .. 
See  Dhavale,  B.  B. 

Datauziet,  R.    See  Semichon,  L. 

Daub,  G.    See  Wilson,  J.  A. 

Davenport,  E.  S.    See  Phillips,  A.     . 

Davidheiser,  L.  Y.,  and  W.  A.  Patrick, 
tion  of by  silica  gel 

Davidsen,  M.  J.     Grinding  or  crushin 

Davidson,  C.  X.     See  Parr,  S.  W 

Davidson,  L.  P.    See  Laist,  F.  

Davidson.  S.  C.     Rubber  latex  ;  Preparation  of  preservative 

substances  for  (P) 

Rubber ; 

Davidson,    T 
Ltd. 

Davidson,  W.  B.     Calorimeters ;    Gas  (P) 

Davios,  A.  E.     See  Thompson,  H.  H. 

Davies,  A.  H.,  and  Scottish  Dyes,  Ltd.     Hydroxyanthra- 

quinones,  e.g.,  alizarin  ;    Manufacture  of   (P) 

and  others.    Colouring  matter  of  the  anthracene  series 

Production  of  a  (P) 

See  Thomas,  J. 

Davies,  D.  B.,  and  E.  P.  Strong.  Sulphite  liquor  ;  Proces: 
for  preparation  of  (P)  

Davies,  E.  C,  and  J.  Grier.     Colchicine  :    its  assay,  isohv 

tion,  and  special  properties  . .  . .  .*.  . .     782a 

Davies,  G.  R.    See  Morgan,  G.  T 531R 

Davies,    J.,    and    W.    H.    Miles.     Magnesium    oxychloride 

cements  ;  Paint  for  use  in  laying  of on  metallic 

surfaces  (P)       . .  . .  . .  . .  . .  . .     905a 

Davies,   J.   W.     Photographic   paper ;    Means   for   coating 

webs  of  (P)         . .  . .  . .  . ,  . .      392a 

Photographic   papers ;     Drying    apparatus   for   use    in 

manufacture  of  (P) 524a 

Photographic  papers  ;    Means  for  the  manufacture  of 

(P) 392a 


Fat-liquor   for   chrome    leather; 
readv-made    stable    from 


Ammonia  ;  Adsorp- 
:  apparatus  (P) 


Treatment  of  raw  (P)    . . 

M.    See    Low    Temperature    Carbonisation, 
623A, 


178  A 
175A 
957a 

31*A 

74A 


715a 

704a 


65SA* 

898a 
102  a 
798a 
216a 
245a* 

506  a* 
931A* 
104a 
60A 
152A 
556a 

961a 

99a 
495A 
610a 

610a 


990a 
990a 
907a 
386a 
6Sa 
329a 

250a 
127a 
92Sa 
864a 

425  a 
510a 

851a 

38a 

596a 

212  a 

582a 

170a 


TALE 

Davies,  O.  B.  Cooling,  cleansing  or  scrubbing  gases  in  con- 
nexion with  all  types  of  gas  producers  ;  Apparatus 

for  (P) 701A 

Davies,     S.     H.     Clay ;      Characterisation    of    .     Dis- 
cussion   . .         . .         . .         . .         ..         . .  79t,  80t 

Coke;    Structure  of  .     Discussion  ..  ..  ..      18ST 

Micro-organisms  in  industry  ..  ..  ..  ..     214r 

Ricin     Limits  of  agglutination  test  for .    Discussion     114t 

Davies,    W.     7>-Xitrophenylhydrazine    and    other   aromatic 

hydrazines  ;    Preparation  of  . .  . .  . .     435A 

Davis,  A.  V.     Electrolytic  cell  (P) 768A 

Davis,  C.  E.,  and  D.  J.  Maveety.     Leavens  :    their  action 

and  measurement        . .  . .  . .  . .  . .     342a 

and  E.  T.  Oakes.     Gelatin  solutions ;    Physical  charac- 
teristics of  . .  . .  . .  . .  . .     337a 

See  Oakes,  E.  T 721a 

Davis,  H.    See  Levy,  L.  A 230a 

Davis,  H.  E.     Terra-cotta  ;    Data  on  viscosity  of  Indiana 
clay   slip   with   electrolytes    in    regard   to    easting 

of  89SA 

See  Ortman,  F.  B.  102a 

Davis,  H.  X.,  and  Research  Corp.     Air  ;    Liquefaction  of 

(P)  632a 

Davis,  H.  R.     See  Levy,  L.  A 83a 

Davis,  H.  S.,  and  others.     Sulphur  ;   Distillation  of <P)       58a 

Davis,  J.  D.,  and  C.  E.  Coleman.     Distillation  of  mixtures 

of    non-coking    coal    and    asphaltic    oils  ;      Low- 
temperature  . .  . .  . .  . .  . .     16SA 

and   others.    Distillation  of  mixtures  of  oil  and   coal ; 

Destructive  . .         . .         . .         . .         . .       92a 

Davis,  L.,  and  Brewer  and  Co.,  Inc.     Iodine  ;    Tablet  for 

producing  (P) 859a 

Davis,  R.,  and  F.  M.  Walters,  jun.     Photographic  emulsions  ; 

Sensitometry  of and  survey  of  characteristic  - 

of  plates  and  films  of  American  manufacture       . .     960a 

See  Walters,  F.  M.,  jun.  648A 

Davis,  R.  A.     See  Dunstan,  J.  H 10a* 

Davis,  R.  H.     See  Levy,  L.  A 433a* 

Davis,  T.  L.     Dicyanodiamide  ;    Action  of  ammonia  water 

on  118a 

Explosive  (P)  998a 

Guanidine  nitrate;   Preparation  of  ..         ..     118a 

Guanidine  ;    Preparation  of  (P)      . .  . .  . .     521A 

High  explosive:    Manufacture  of  (P)       ..  ..     568a 

Naphthalene  ;   Role  of  mercuric  nitrate  in  the  catalysed 

nitration  of  690a 

Xitrocellulose  powder  grains  ;    Coating  for (P)  . .     998a 

Xitroguanidine  ;    Action  of  sulphuric  acid  on  ..     518a 

Nitrophenols ;    Mercury  nitrate  as  a  reagent  for  the 

preparation  of  (P)         ..  ..  ..  ..     521a 

Davis,   W.   A.     Indigo;    Xature  of  the  changes  occurring 

during  extraction   of  from   the   Java  plant 

(Indigofera  arrecta).     Relation  between  the  acidity 
developed  in  the  steeping  and  the  yield  and  purity 
of  the  indigo  obtained  . .  . .  . .  . .     246a 

Davis,  W.  H.     Dyeing  apparatus  (P)  . .  . .      214a,  249a 

Daw,  H.     Sewage  and  the  like;    Treatment  of (P).-     505a 

Dawe,  R.  W.    See  Buxnell,  A.  G 5a,  281a 

Dawkins,  A.  E.     Sodium  sulphate-sodium  carbonate -water ; 

The  ternary  system  ..  ..  ..  ..     499a 

Dawson,  G.    See  Clark,  W 845a 

Dawson,  J.  A.     Loganberry  juice  ;    Composition  and  pro- 
perties of  261R 

Dawson,  J.  J.     Copper  ;   Apparatus  for  producing (P)    146a 

Dawson,  W.  A.     See  Clark.  W 845a 

Dawson,  W.  H.     Anthraquinone  ;    Purification  of  (P)     212a 

Leuco  Alizarin  Bordeaux  and  ita  halogen  derivatives ; 

Manufacture  of  (P) 212a 

Day,  D.  T.    Hydrocarbon  oils  ;  Process  for  treating (P) 

494A, 624A 

Day,  J.  X.  E.     See  Brady,  O.  L 363a 

Daynes,  H.  A.,  and  Cambridge  and  Paul  Instrument  Co., 

Ltd.    Gases  ;   Detection  and  measurement  of 

(P)  353a 

Dayton,  W.  C.,  and  General  Oil  Gas  Corp.     Oil-gas  ;   Manu- 
facture of (P)    ..  ..  ..  ..  ..     535a 

Oil-gas  producers  ;    Apparatus  for  protecting  (P)     131a 

Dean,  D.  A.     Mineral  oils  ;   Apparatus  for  distilling (P)       43a 

Dean,  E.  W.,  and  M.  B.  Cooke.     Paraffin  wax  ;    Effect  of 

on  viscosity  of  petroleum  oils         . .         . .     534a 

and  W.  A.  Jacobs.     Gasoline  ;    Production  of  by 

cracking  heavier  oils  . .  . .  . .  . .  . .     534a 

Deane,  H.,  and  W.  E.  Edmonton.     Scammony  resin  ;   Solu- 
bility of in  ether 6S4a 

De  Bacho,  F.    Hydrosulphurous  and  sulphoxylic  acids  ;  Volu- 
metric determination  of  . .         . .         . .     250a 

De  Bartolomeis,  R.     See  Soe.  Ital.  Asfalti  Bitumi,  Catrami, 

e  Derivati  (A.B.C.D.) 168a 

Debucquet,  L.     Adrenaline  solution  for  injections  . .  . .     230a 

Eserine  salicylate  ;    Preparation  and  preservation   of 

colourless  solutions  of . .  . .  . .  . .     481a 

Decarriere,  E.     Ammonia  ;     Role  of  gaseous  impurities  in 

catalytic  oxidation  of ..         ..         ..         ..     291a 

Ammonia";     Role   of   gaseous   impurities   in    catalytic 

oxidation  of .  Influence  of  hydrogen  phosphide    214a 


28 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 


335A* 
138a 


506a 
821A 

919a 

187a 
497A 
860A 

477A 


DeCew,  J.  A.,  and  R.  J.  Marx.     Rosin  soap.;    Methods  of 

preparing  dilute  solutions  of (P) 

and  Process  Engineers,  Inc.    Paper;    Engine-sizing  com- 
position    lor     (P) 

in   material   for  sizing   (P) 978a 

De  Charmoy,  D.  D'E.    See  Tempany,  H.  A.  . .         . .     775a 

DeClamecy, P., and  P>. F.  Sturtevant  Co.     Aluminium:  Com- 
ii   of   matter  for  and   method   of  soldering 

.1  ml  welding   (P) 

Steel  and  iron  alloy  (P)  .. 
Dede,  L.,  and  P.  Bonin.     Hydrogen  sulphide  ;   Prevention  of 

[pltatlon  by by  neutral  chlorides 

Dedek,  J.    Curboraflin  decolorising  carbon ;    Experiments 

with  

Dedichen,  J.    See  Akt.-Ges.  fiir  Anilin-Fabr. 

De    Dietrich    et    Cle.    Enamelling    processes    (P) 

De  Dominicis.  A.,  and  F.  Gangitano.    Nitrogen  assimilation 

by  plants  ;   Activity  of  roots  in 

li.'.'ks  11    c.  .r.,  and  American  Ravlo  Corp.     Colour  photo- 

Iry     (P) 879a 

Deerns,  W.  \V.     Boric  acid;    Estimation  of  — — ■  ..  1001 A 

Boric  acid  in  shrimps  ;  Determination  of . .  . .     873a 

Deerr,  N.     "  Cane  sugar ;    a  text-book  of  the  agriculture 
of  the  sugar  cane,  the  manufacture  of  cane  sugar, 
and  the  analysis  of  sugar-house  products  "        . .       86R 
Sucrose,  kevulose,  dextrose,  aud  invert  sugar  ;   Relative 

sweetness  of . .         . .         . .         . .         . .     871a 

De  Fazi,  E.     Glncosldes  ;  Synthesis  of  new •     ..         ..     608a 

De  Fazi,  R.  and  R.     SaccJiaromyces  cerevisice  ;    Action  of 

ultra-violet  rays   on  992a 

De  Fine  Olivarius,  H.    See  under  Olivarius. 

De  Florentiy,  G.    See  Bagajoli,  N 998a 

De  Fonblanque,  L.    See  Moeller,  J 167a,  452a 

De  Ganahl,  C.  F.    See  Brownlee,  R.  H 131a,  404a 

De  Gouvea,  J.  M.  S.    See  Schidrowitz,  P 601a 

De  Gramont,  A.    Spectrographic  analysis  ;    Use  of  in 

metallurgy.    Dissociation  spectra  of  special  steels    296a 

Deguide,  C.     Alkali  silicates  ;  Manufacture  of (P)      216a,  546a* 

Barium  hydroxide  ;    Continuous  process  for  the  manu- 
facture of  (P)     . .         . .         . .         . .         . .     545a 

Hydroxides  of  sodium  and   potassium  ;    Manufacture 

Of  (P) 216A,  708a« 

and  P.  Baud.     Baryta  ;    Industrial  manufacture  of 

for  treatment  of  molasses    . .         . .         . .         . .     428a 

ii,   E.,   Chem.   Fabr.    "  List."     Colloid  membranes 
for  nitration  purposes  ;    Production  of  cloudy  or 

opaque  (P)  206a 

Diaphragms  for  use  in  electrolysis  of  aqueous  solutions  (P)     109a 
and  M.  Buchner.     Disinfecting  and  preserving  with  col- 
loidal aluminium  hydroxide  (P) 874a 

De  Hemptlnne,  A.    Manganese  dioxide  ;   Properties  of 750a 

De  Hesselle,  L.    Sulphite-cellulose  ;  Cinchonine  for  detection 

and  determination  of in  tanning  extracts     . .       24A 

Dehn,  W.  M.     Detonating  composition  ;    Primary (P)    234a 

Detonators  ;   Modifications  of  the  sand  test  for . .     961a 

Explosive  compositions  ;    Increasing  the  sensitiveness 

and  power  of (P) 839a 

Delghton.    T.     Soils;     Electrical    method    of    determining 

moisture  in  ..         ..         ..         ..         ..     991a 

Delmel,  F.    Cerium-iron  sparking  alloy  ;    Production  of  a 

surface  capable  of  being  soldered  on (P)     . .     147A 

Deininger,  J.    See  Holzmann,  S 872A 

De  Izaguirre,  R.    See  Ostwald,  Wo.  489a 

De  Jong,  A.  \V.  K.,  and  A.  Reclaire.    Citronella  oil ;   Deter- 
mination of  total  geraniol  content  of  - — -  . .      836a,  958a 

Dekker,  J.     Beef  fat ;   Composition  of 333a 

Delacourt,  A.  F.,  and  Soc.  Anon.  Ital.  Gio.  Ansaldo  &  Co. 

Furnace  ;   Heating ■  with  removable  hearth  (P)       89a* 

Delafond,  E.     Sugar ;    Manufacture  of  (P)    . .  . .     478A» 

Delange,  R.     Odour  and  Its  relationship  to  molecular  struc- 
ture         728a 

Delano,  F.    See  Power,  D.  P.  657a 

Delaplace,  R.    Sulphur  ;   Solubility  of in  some  organic 

liquids 707a 

De  la  Rosee,  P.,  and  Chemical  Foundation,  Inc.     Caoutchouc- 
like substances  ;  Manufacture  of (P)  . .         . .       67a« 

Dclaroziere,  F.  F.    Sodium  ferrocyanide  ;    Manufacture  of 

(P)  545a 

De  Laval  Separator  Co.    See  Alexander,  W.  . .         . .     115a 

See  Hall,  S.  H 358a,  657a 

SeeHapgood,  c.  H.  658a,  741a 

Heller,  J.  B 4O0A 

See  Lcitih.  M 491A 

De  Lavandeyra,    A.     Aluminium   allovs ;     Manufacture   of 

(P)  62A 

Delaware  Chemical  Engineering  Co.     See  Du  Pont,  F.  I.     127a 
DeUwik-Flelscher  \  Qea.  m.b.H.  Gas;    Production 

of  a of  high  calorific  value,  similar  to  water- 

y   of  tarry  by-products  (P)    ..     660A 
Delmarcel,    G..    and    E.    Mertens.     Coal ;     Determination 

of  volatile  matter  in  45A 

Delph,  A.  E.     See  Courtaulds,  Ltd.  546A 


PAGE 

Del   Rosario,   M.    V.,   and    P.    Valenzuela.     Acetylsalicylic 

acid ;    Commercial . .         . .         . ,         . .     519a 

De  Mahler,  E.  Carbides  of  metalloids  ;  General  method  of 
obtaining and  existence  of  carbides  of  phos- 
phorus  and    arsenic.  ..         ..         ..         ..       57a 

De  Mandrot,   B.    See  Perrier,  A 939a 

Demant,  J.    Hydrocarbons ;    Refining  (P)   . .         . .     539a 

Demeure,  E.     See  Magnee,  C.  . .  . .  . .  . .     575A 

Demolon,  A.    Slags ;  Accessory  elements  of  dephosphorising 

594A 

Soil ;   Sulphur-oxidising  power  of . .         . .         . .       70A 

Dempster,  R.  and  J..  Ltd.,  and  R.  Broadhead.  Gas  puri- 
fiers ;    Mechanism  for  holding  down  covers  of 

(P)  975A» 

and  W.  F.  Rodger.     Extracting  coke  from  vertical  retorts 

or  chambers  ;    Means  for (P)  . .  . .  . .     975a* 

Dunham,  W.  S.    See  Irvine,  J.  C 362R 

Deniges,  G.  Terpin  ;  Detection  of in  a  complex  mix- 
ture          727A 

and  R.  Tourrou.     Dulein  (p-phenetolurea) ;  Microchemical 

reactions  of  . .  . .  . .  . .  . .       78a 

Denis,  M.     Viscose  threads  ;  Machine  for  spinning,  washing, 

and  drying  (P) 248a* 

Denison,  I.  A.  Aluminium  salts  in  soil ;  Nature  of  certain 
and  their  intluence  on  ammonification  and  nitri- 
fication   337A 

Dennett,  J.  H.    See  Friend,  J.  A.  N.  179a 

Dennis,  L.  M.,  and  J.  Papish.    Germanium  ;    Extraction  of 

from   germanium-bearing  zinc  oxide.    Non- 
occurrence of  germanium  in  samarskite   . .         . .       97a 

Denny,  H.  S.,  and  N.  V.  S.  Knibbs.    Producer-gas  power 

plant  ;    Working  results  of  a  207A 

Denoel,  J.     Decantation  apparatus  (P)  . .  . .  . .     797a* 

Paper  ;    Apparatus  for  testing  the  sizing  of  by 

the  ink  method  (P) 249a* 

De  Nolly,  H.,  and  La  Soc.  Metallurgique  du  Frayol.    Electric 

furnace  (P)         507a* 

Dentists'  Supply  Co.    See  Whiteley,  J.  O.  ..         ..     901a 

Deo,  R.  R.    See  Fowler,  G.  J.  432a 

De  Olaueta,  H.,  and  Winchester  Repeating  Arms  Co.     Dry 

cells ;    Manufacture  of  (P) 902a 

Primary  cells  ;    Manufacture  of (P)         . .  . .     147A 

De  Perdiguier.     Cellulose  ;  Manufacture  of and  bleach- 
ing pulps  by  means  of  chlorine     . .         . .         . .     288A 

D'Ercole,   A.    Fertilisers;    Manufacture  of  — —  (P)      ..     991a 
Deremer,  J.  G.    Refrigerating  apparatus  (P)         ..         ..     795a 

Derks,  T.  J.  G.    See  Eijkman,  C 305a 

Dermatological  Research  Laboratories.  See  Schamberg,  J .  F.     610a 

Dernikos,   D.    See  Pringsheim,   H 513a 

De   Roiboul,   M.     Filaments   of   silica,   alumina,   and   other 

refractory    materials ;     Manufacture    of   (P)     142a 

Silica,  alumina,  and  other  refractory  materials  ;   Fusing 

and  casting and  obtaining  castings  therefrom 

(P)  177A 

De  Saint-Rat.    See  Meillere,  G 200A 

Desch,    C.    H.    "  Metallography " 358k 

Streatfeild  Memorial  Lecture.    The  metallurgical  chemist    478R 

Deschauer,  A.     Montan  wax  ;    Chlorination  of  (P)  . .     916a 

Desenberg,  J.     Glass  ;    Production  of  optical  almost 

free  from  strire   (P)    ..  ..  ..  ..  ..     814A 

Desgrez,  A.,  and  others.     Mustard  gas  ;    Protection  against 

100K 

Desmaroux,   J.     Guncotton ;    Determination  of  coefficient 

of  gelatinisatlon  of  . .         . .         . .         . .     348A 

De   Sperati,  M.    Photocollographic  printing ;    Preparation 

of  plates  for  (P)  484A 

Dessauer  Vertikal-Ofen  Ges.    Gas  retorts  or  chamber  ovens  ; 

Vertical  with  regenerative  heating  (P)      . .     209a 

De  Steigner,  W.  G.    Kilns  for  burning  ceramic  ware  (P)  . .     634a 
De  Sveshnikoff,  W.     Nitric  acid  fumes  from  manufacture 

of   nitrocellulose  etc. ;   Recovering  waste  (P)    271a 

Detoeuf,  A.    Monochlorourea.    Preparation  of  chlorhydrins 

by  its  action  on  cthylenic  hydrocarbons  . .         . .     196a 
Deuel,  H.  J.,  and  O.  Baudlsch.    Thymine;    Detection  of 

in  presence  of  sugar   . .         . .         . .         . .     684a 

See  Baudlsch,   0 678a 

Deuel,  H.  J.,  jun.     See  Langworthy,  C.  F 606a 

Deussing,  P.    Artificial  meerschaum  ;   Method  of  producing 

(P)  .. 815a*,  939a* 

Deutsch,    B.     Sulphite-cellulose    industry ;     Determination 

of  sulphurous  acid  and  lime  in  the  liquors  of  the 409a 

Deutsche    Conservierungs^es.     Coating    and     impregnating 

material ;    Manufacture  of  a  varnish-like  (P)    425a 

Deutsche  Erdbl-A.  G.     Hydrocarbon  oils ;    Purification  of 

(P)  802a 

Hvdrocarbons  ;    Separating  solid  and  liquid  from 

each  other  (P)  91A 

Low-temperature   tar  and   semi-coke  ;     Production   of 

by   distilling   bituminous   material,   such   as 

coal  or  lignite  (Pj 890a 

Paraltin  wax  ;    Recovery  of  from  petroleum  or 

tar-oils  (P)        455a 

See  Schick,  F 931a 


NAME  INDEX. 


29 


PAGE 

Deutsche    Evaporator-A.-G.    Heat   contained    In   the   fuel 

residues  of  furnaces  ;    Utilising  the  (P)      . .     "40a 

Kilns  (P) 490a 

See  Gelpke,  V 738a* 

Deutsche  Gliihfadenfabrik  It,   Kurtz  und  P.  Schwarzkopf 

G.m.b.H.    See  Schwarzkopf,  P 982a 

Deutsche  Gold-  und  Silber-Scheideanstalt  vorm.  Roesslor. 
Detergent  and  bleaching  agent ;    Manufacture  of 

(P)  tm  . .  . .  . .  . .  . .     P4uA 

Hydrocyanic  acid  ;   Increasing  the  stability  of (P)     754a 

Hydrogen  peroxide;    Process  for  producing (P)..     754a 

Fcrcarbonates  and  perborates  ;    Electrolytic  manufac- 
ture of  (P)  ...     502a 

Producer-gas ;    Production  of  from  wet  material, 

e.g.,  lignite  (P)  403a 

Sodium  cyanide  ;    Production  of  (P)        . .         . .     501a 

and  O.  Liebknecht.    Hydrocyanic  acid ;   Manufacture  of 

(P)  . . 589A 

Hydrocyanic   acid ;     Method    of    generating   for 

fumigating  (P)  . .         . .         . .         . .         . .     565a 

Hydrogen   peroxide  ;    Method   of  producing  solutions 

containing (P)    . .         . .         . .         . .         . .     897a* 

Platinum  anodes  for  electrolysis  (P)      . .         . .         . .     507a 

Deutsche  Luftfllter-Bauges.     Air  niters  (P) 43a 

Deutsche  Peerless-Ges.  m.b.H.  Extraction  and  impregna- 
tion  purposes ;     Production   of  liquid  agents  for 

and  for  addition  to  rubber  (P)         . .         . .     382a 

Deutsche  Petroleum  A.-G.,  and  others.  Retorts  for  dis- 
tillation of  bituminous  materials  (P)         . .      456a,  852a* 

Deutsche   Ton-   u.   Steinzeugwerke   A.-G.,  and  F.   Plinke. 

Absorption    tower   and    cooler ;     Combined   , 

e.g.,  for  hydrochloric  acid  (P)         . .         . .         . .     736a 

Deutsche     Zellstoff-Textilwerke.    Viscose ;      Precipitating 

cellulose  from  ■  (P)         . .         . .         . .         . .       95a 

Deutsch-Koloniale  Gerb-  und  Farbstoff  Ges.  m.b.H.  Tanning 
materials  ;  Production  of from  sulphite-cellu- 
lose waste  liquor  (P)             . .         . .         . .         . .     384a 

See  Romer,  A 225a 

Deutsch-Luxcmburglsche     Bergwerks     und     Hutten-A.-G. 

Resinous  substances  ;  Recovery  of from  waste 

sulphuric  acid  from  refining  tar  oils  (P)   . .         . .     335a* 
and  S.  Hilpert.    Resin  completely  or  for  the  most  part 

soluble  in  benzol ;    Production  of from  crude 

benzol  (P)         23a 

and  A.  Schneider.     Dynamo  iron  ;  Manufacture  of (P)     422a 

and  E.  H.  Schulz.    Steel,  especially  alloy  steel ;    Harden- 
ing    (P) 19a 

See  Hilpert,  S 803A 

Devaux,  M.     See  Carteret,  G.  ..         ..      771a,  812a,  821a 

De  Vecchis,  I.    Wood;    Preservation  of  (P)..         ..     296a* 

Devercux,  P.  S.    See  Mellor,  J.  W.  . .         „         „     176a 

De  Vilmorin,  J.,  and  Cazaubon.     Catalase  of  seeds . .         ..     602a 
De  Vries,  O.    Latex  and  rubber ;    Influence  of  soil  upkeep 

on  827a 

Latex  and  rubber  from  individual  trees.    Difference  in 

properties  of  rubber  from  different  trees  . .  . .     827a 

Latex  and  rubber  from  young  trees      . .         . .         . .     827a 

Rubber  ;    Relation  between  coefficient  of  vulcanisation 

and  mechanical  properties  of  vulcanised  . .       23a 

De  Waele,  A.    Inks  and  other  pigmenting  and  like  com- 
positions (P)     . .         . .         . .         . .         . .         . .     771a 

Dewar,  J.    Soap  films  and  molecular  forces  . .         . .       29R 

De  Whalley,  H.  C.  S.    Meat  foods  for  pigs  and  poultry  ; 

Classification  and  valuation  of  . .  . .     211R 

Molasses  for  feeding  purposes       . .  . .  . .  . .     169R 

and  The  Micanite  and  Insulators  Co.,  Ltd.    Varnish  and 

other  ingredients  ;    Recovery  of  from  waste 

micanite  and  the  like  (P)      . .  . .  . .  . .     301A 

See  Molassine  Co.,  Ltd 187a 

Dews,  H.  C.  Non-ferrous  alloys  ;  Use  of under  super- 
heat         940a 

De  Wurstemberger,  F.    See  Von  Wurstemberger. 

Dhar,  N.  R.    See  Banerji,  B.  C 900a 

See  Sarkar,  P.  B 443a 

Dhavale,  B.  B.,  and  S.  R.  Das.  Tannin  from  sundri  bark  ; 
Determination  of  optimum  temperature  for  maxi- 
mum extraction  of . .         . .         . .         . .     907a 

Diamalt  A.-G.    Diastatic  preparations  ;   Process  for  making 

stable,  dry  (P) 779a 

Fulling ;     Improving   and    shortening    the    process   of 

(P)  747a 

Diamond,  R.  W.     See  Thom,  C 63A 

Diamond  Match  Co.     See  Fairburn,  W.  A.  ..  ..     271a 

See  Haferkamp,  C.  C 887a 

Diamond  State  Fibre  Co.    See  Mcintosh,  J.  . .         . .     747a 

Dible,  J.  K.  V.     Algeria  ;    Report  on  the  economic  and 

commercial  situation  in  . .         . .         . .       37R 

Di  Capua,  C.     Lead  ;    Solubility  of  bismuth  and  cadmium 

in  in  the  solid  state     . .         . .         , .         . .     595a 

Dick,  S.  M.    See  International  Dry-Milk  Co 781a* 

Dickens,  C.  S.,  and  others.  Paraffin  wax-sweating  appar- 
atus (P) 890a 

Dickenson,  J.  H.  S.    Steels  ;    Flow  of  at  a  low  red 

heat,  and  scaling  of  heated  steels  . .         . .      417R,  759a 
Dickerson,  W.  H.     Pulp-liquors  ;    Recovering  the  solids  of 

waste  (P)  11a 


PAGE 

Dickey,   C.  B.,  and  Pittsburgh   Plate  Glass  Co.    Calcium 

arsenate  ;    Manufacture  of  (P)  . .         . .     S13A 

Dickliart,  W.  H.    See  Lauro,  M.  F.  423a 

Dickie,  W.  A.    See  British  Cellulose  and  Chemical  Mfg.  Co., 

Ltd 459a,  475a*,  542a 

Dickin,  W.  H.    See  Reynolds,  W.  H.  575A 

Dickins,  E.  J.     Iron  and  steel :    Composition  for  use  in  the 

case-hardening,  hardening,  and  tempering  of (P)    863a 

Dickinson,  F.    See  Roberston,  G.  S.  531R 

Dickson,  D.  B.     Gas  producers  ;    Feeding  and  distributing 

fuel  in  (P)  322A* 

Dickson,    W.,    and    W.    C.    Easterbrook.    Nitro-compound 

mixtures  ;    Quantitative  separation  of  from 

nitroglycerin      . .  . .  . .  . .  . .        58R,  310a 

Dieckmann,  T.,  and  E.  Houdremont.  Basic  slag ;  Some 
compounds    in    the    system    CaO-P3Os   and    their 

relations  to  . .         . .         . .         . .         . .     304a 

Diefenthaler,  O.    See  Ampere-Ges.  m.b.H.  ..         ..     597a* 

Diehl,  L.  H.     Ores  or  the  like  ;   Smelting (P)..         ..     901a* 

Dienert,  F.,  and  F.  Wandenbulcke.  Chlorine  In  hypo- 
chlorite solutions  ;  Determination  of  available 979A 

Dienst,  K.    Flour ;    Sterilising  and  improving  the  baking 

qualities  of  ■  (P) 30A,  565A* 

Diepolder,  E.     Micro-analysis  ;   Furnace  and  burner  for  use 

in  . .         .  /        612A 

Diepschlag,  E.  Blast-furnace  operations  ;  Process  for  con- 
veying  the    mouth-dust   and   other    fine    ores    in 

(P)  596a 

Blast-furnace  operations  ;    Process  for  regulating  flow 

of  waste  gases  in  (P)  . .         . .         . .         ■ .     472a* 

Shaft  furnaces,  especially  blast  furnaces  ;    Process  for 

the  working  of  (P)       596a 

Shaft-furnaces,  gas  producers,  and  the  like  ;    Feeding 

of  fine  materials  to  (P)  596a 

Diesser,  G.  Glycerin  and  albumin  ;  Manufacture  of  pro- 
ducts insoluble  in  water  from  (P)    . .         .  -     949a 

Dieter,  W.     Yeast ;    Capacity  of  to  decompose  acid 

amides    ..         ..         ..         ..         -.         ..         ••     563A 

Dieterle,  H.    Xanthosterol 517a 

Dieterle,  W.     Photographic  developer  (P) 998a 

Diethelm,  A.    See  JeUinek.K -         ..     972a 

Dietrich,  C.    See  Schroetcr,  G 133a 

Dietrich,      W.    Brewery      laboratory ;       Physico-chemical 

methods  in  the  . .         . .         . .         . .         . .     911a 

See  Voltz,  \V 779A 

See  Windisch    W 72a,  951a,  951a 

Dietsche,   O.,  and  Gebr.   Siemens  und   Co.     Rare  earths ; 

Manufacture  of  compounds  of  metals  of  the (P)    374a* 

Dletz,  A.     Printing  process  (P)  809a 

Digby,  H.  E.     See  Abraham,  A.  C.  433A 

Diggs,  S.  H.,  and  Standard  Oil  Co.    Petroleum  oil  sludges  ; 

Separation  of  (P)  537a 

Di  Godio,  A.  G.    See  Longan  y  Senan,  E.  . .         . .     254a 

Dillon,  T.,  and  others.     Isotopes  of  lead;   Chemical  method 

of  separating  •      . .         . .         . .         . .         . .     790a 

Dimbleby,  V.,  and  others.  Glass  ;  Effect  of  magnesia  on 
resistance  of  to  corroding  agents  and  com- 
parison of  durability  of  lime  and  magnesia  glasses    464a 

Glass ;     Properties   of   lime-magnesia   and   their 

application        . .         . .         . .         . .         . .         . .     175A 

Dimroth,    O.,    and    V.    Hilckcn.    Anthradiquinones    and 

anthratriquinones        . .         . .         . .         . .         . .       51 A 

and  others.     Quinzarin  and  alizarin  ;    Action  of  bromine 

on  •  ..         ..         ..         ..         ..         ..       51a 

Dine,  J.  H.,  and  S.  H.  Sieff.  Boilers  and  the  like  ;  Pre- 
paration for  removal  of  scale  from  and  for 

preventing  its  formation  (P)  . .         . .         . .     735a 

Dinger,  E.    Artificial  honey;    Manufacture  of  (P)  ..     113a 

Dingle,  H.     Stellar  chemistry  283R 

Dinglersche-Maschinenfabrik.    Blast-furnace  and  like  gases ; 

Preheating  in  dry  gas-purifying  plants  (P) 

6a*.  801a 
Dinin,  A.     Electric  accumulators :    Method  of  drying  the 

negative  plates  of  (P) 824a 

Dior,   R.    E.     Sulphuric  acid   chambers ;    Construction   of 

(P)  755a* 

District  Chemical  Co.    See  Boocr,  J.  R 579a 

Ditz,  H.     Manganese  ;    Detection  of  with  benzidine, 

and  detection  of  cobalt  by  the  thiocyanate  reaction    235a 
Dix,  E.  H.,  jun.    Manganese  bronze  ;    Occurrence  of  blue 

constituent  in  high-strength  . .         . .         . .     552a 

and     A.     J.     Lyon.    Copper-silicon-aluminium     alloys ; 

Physical  properties  of  when  sand  cast         . .     594a 

Dixon  Co.,  H.  L.    See  Milner,  E.  E.              ..         ..    755a,  756a 
Dobbelstein,  O.     Coal  briquettes  ;    Production  of with- 
out the  addition  of  a  binding  material  (P) . .         . .     740a 
Dobrjansky,  A.  F.    Toluenesulphamides  ;  Thermal  analysis 

of  the  system  o-  and  -p . .         . .         . .     996a 

Dobrowolski,  R.    See  Smolenski,  K.  402a 

Doctor,  E.    See  Moser,  L.        . .         . .         . .         . .         . .       13a 

Dodd,  A.  H.     Guanidine  ;    Determination  of  ■  . .     145T 

Dodge,  B.  F.    Solvent  recovery  ;    Explosion-proof  process 

of  - 239A 


30 


JOURNAL  OF  THE'  SOCIETY   OF  CHEMICAL  INDUSTRY. 


U") 


Re- 


1  fuels  ; 


Dodge,  F.  D.    Vanillin  glyccride        

Dodge,   F.    E.,   and   The    Barrett   Co.    Solvent    naphtha ; 

Cracking  (P) 

ickel,  F.     Copper  and  brass;    Relation  between  the 

ipresslon  force  and  reduction  in  height  of  

[,  11.  H.     < tils  and  fate;    Crystallising  (P)    .. 

Doerr,  R..  and  W.  Berger.     Oligodynamic  action  of  silver 
:     C.     Lead  sulphide  ores;    Behaviour  of  barytes 

and  zinc  Wcnde  in  blast  roasting  of  .. 

Dohcrty,  H.  L.    Gas ;    Process  of  producing  and  for 

carbonising  coal  (P)  . . 
Water-gas;    Method  of  manufacturing 

See  Laird,  « .  '■ 

Doh  rt]    i:    «  arch  Co.     See  richer,  J.  P. 

i.  0.   E.,  and  others.     Potassium  compounds 

covering from  brines  (P) 

Dolbear,  S.  H.    Shales  ;  Treatment  of  oil (P)  . 

Dolch,  M.     Tar  :   Economy  of  production  of . 

and  ■  ;   GerstendSrfer.     Distillation  gases  from  soli 

Composition  of 

:.v.  E.     Gas  producers  (P)        

hintzky,  .T.     Synthetic  milk  from  soya  beans  (P)  .. 

Dominik.  \V.     Calcium  sulphate  :   Sulphuric  acid  from 

Potassium  hydroxide  ;  Application  of  Schcelc's  reaction 

to  preparation  of .. 

Sodium  sulphate  ;  Preparation  of from  ammonium 

sulphate  and  sodium  chloride 

Donaldson,  A.    Zinc  furnace  (P)  

Donath.  E.,  and  A.  Lissner.    Coal;  Origin  of .. 

Donohue.  J.  M„  and  Eastman  Kodak  Co.     Cellulose  ethers  ; 

Process  of  making (P)    . . 

Donovan,  F.  K.     See  Bennett,  A.  H.            . .          . .        99E, 
Dony-Henault,  O.    Nickel ;   Use  of  granulated for  elec- 
trical heating 

Dorie,  C.    See  Cross,  C.  F 

Dorfman,  A.,  aud  Mclntyre  Porcupine  Mines,  Ltd.     Gold 

and  silver  ores ;  Treatment  of (P) 

Dorn,  C.    See  Wolff,  H.  

Dornhecker.  K.     Pig  iron  ;  Manufacture  of  synthetic . . 

Dorr  Co.     See  Bascom,  P.  H.    . . 

See  Morgan.  H.  W.  

S«  Peck,  C.  L 770a, 

Made,  J.  V 

Dorsey,  F.  M.    See  Lenher,  V 

Dosenbach,  B.  H.     Ore-concentration  process  (P) 
and  others.     Concentrating  ores  by  flotation  (P) 
Dosenbach,  E.  M.     See  Dosenbach,  B.  H. 

Dosne,  P.     Colorimetry  ;    New  method  of  (Report  by 

E.  Banderet) 

Dossett,  J.  M.     Copper  sulphate  ;    Crystallising (P)  . . 

Doubleday,  I.     See  Hardy,  W.  B 242A, 

Doucet,  A.    See  Luce,  E 

Douglas,  R.  P.    Ammonium  sulphate  ;  Apparatus  for  manu- 

facture  of (P) 

Douglas,  W.,  and  Sons,  Ltd.,  and  J.  S.  Nicol.    Fats  ;  Treat- 
ment of  edible  (P)  

Dovan  Chemical  Corp.    See  Weiss,  M.  L 383A, 

Dow,  H.  H.,  and  Dow  Chemical  Co.     Bromine  ;    Extraction 

of (P)        

Chemical  fusions  ;    Blanketing  medium  for  and 

method  of  making  it  (P) 

Drying  materials  ;   Apparatus  for (P) 

Insecticides;  Method  of  making  (P)         ..      5651, 

hemical  Co.     Electrolytic  cells  (P) 

s-    Cone,  L.  E.  H.  

See  Dow,   H.   H 253a,   358a,    449a,    565a, 

See  Harlow,  I.  F 100a, 

■  Tones,  C.  W.      . . 
kforrison,  C.  N. 

See  Putnam,  M.  E.  10a, 

aton,  M.  Y. 

See  Strosacker,  C.  J.  198A, 

El  ,    md    Barrett   Co.     Catalytic  agents  for  oxi- 
dation of  organic  compounds  ;  Manufacture  of 

(P)  ..         .. 

See  Weiss.  J.  M 

I'.  A.     See  Supplee,  G.  C 

Dowson  and   U  Qi      plant  Co.,  Ltd.,  and  E.  Wilson. 

Gas  producers  ;   Stirrer  and  fuel-feeding  device  for 

<P)  

Dox-,  A.  W.,  and  L.  Yodcr.     Alkylbenzylbarblturic  acids  .  . 
Pyrimidines    from    alkylmalonic  esters  and    aromatic 

amidines 

i  i    3turtovant  Mill  Co. 

Manufacture  of (P) 

Ions  metals  ;  Recovering from  ashes 

and  I  .  .  . .  

I    I.,  and  F.  w.  Smith      I     J       Ultimate  coni- 

position  of  British 

and  L.  H.  Williams.    Centrifugal  draining;    Efficiency  in 

Drayton.    Eleetrlcal   precipitation.    Discussion 


TAKE 

566a 

322a 

504a 
770a 
916a 

255a 

742a* 
361a 

575a 
022a 

373a 

47a 
133a 

847a 
405a' 
432a 
749a 

750a 

370a 
986A 
847A 

542a 
391a 

768a 
516K 

379a 
947a 
103A 
43A 
995a* 
874a 
206a 
070a 
471A 
107A 
471A 

485a 
812A 

739a 
515a 

99a 

606a 
686a 

253A 

358a 

449A 

644A 

259a* 

581a 

644a 

670a 

57a 
357A 
248a 

53A 
892a 


197a 
519a 
431a 


>sphate  ; 


518A 

307a 

151a 

472a 

165a 

347T 
28T 


PACE 

Dreaper,  W.  P.     Artificial  silk  and  the  like  ;    Manufacture 

of (P)        027a 

Artificial  silk  threads  ;    Manufacture  of (P)        ..  52a 

Artificial  textile  filaments  of  organic  origin;  Manu- 
facture  ami  treatment  of to  render  them  fire- 
proof and  waterproof  (P)       ..          ..          ..          ..  289A 

Threads  or  filaments  ;  Manufacture  of  artificial (P)  54:U* 

Viscose  solutions;  Manufacture  of  (P)    ..     459a,  543a* 

Dreffein,  H.  A.     Gasoline  or  the  like  ;  Apparatus  for  manu- 
facture of (P) 404a 

DreifuBS,  M.     Lead-tellurium  alloys  and  tellurium-antimony- 

lead  allovs         . .          . .          . .          . .          . .          . .  595a 

So    1  'read-well,  W.  D 919a 

Dreising,  J.     Thyroid  gland  ;    Preparation  of  a  serum  for 

treating  diseases  of  the (P)      ..        ,.        ..  959a 

Drescher,  T.     Coal ;   Spontaneous  ignition  of . .         . .  797a 

Drew,  A.  H.    See  Cramer,  W.              216r 

Drey,  N.    See  Moseley:  .T.  F.              110a 

Dreyer,  A.     See  Korber,  F.        ..          ..          ..          ,.          ..  466a 

Dreyfus,  H.    Acetic  anhydride  ;  Manufacture  of (P)..  916a 

Alkyl  sulphates  ;    Manufacture  of (P)         ..          ..  438a 

Cellulose    acetate  :     Manufacture   of   plastic    materials 

having  a  basis  of (P) 542a 

Cellulose  acetate  ;  Manufacture  of  solutions  or  com- 
positions made  with  (P)          . .          . .          . .  807a 

Cellulose    derivatives  ;     Manufacture    of    artificial    silk 

and  the  like  from (P) 627a 

Cellulose  ethers  ;   Manufacture  of (P)        ..         ..  324a 

Cellulose  ethers ;    Manufacture  of  Alms,   celluloid-like 

masses,  etc.,  from (P)    . .          . .          . .          . .  248A 

Resin  products  ;   Manufacture  of  artificial (P)     . .  600a 

Viscose;    Manufacture  of (P)         ..         ..         ..  748a 

Drouin,  H.     See  Grenet,  H 269a 

Druce,  J.  G.  F.     Toning  with  tin  salts ;   Photographic 648a 

Drucker,  C.    Primary  galvanic  cell,  having  a  zinc  electrode 
in  an  alkaline  solution,  and  a  carbon  electrode  in 

acid  chromate  solution  (P)    . .         . .         . .         . .  333a 

Drummond,   A.   A.     Chemist ;    The  and   the   manu- 
facturer    330R 

Formaldehyde-resins  ;    Recent  research  on  . .  522R 

1.3.5-Trinitrobenzeue  ;    Manufacture  of ..          ..  338T 

See  Lorival  Mfg.  Co.,  Ltd.              826a 

Drummond,  J.  C.     Liver  oils ;    Sulphuric  acid  reaction  for 

and  its  significance        . .         . .         . .         . .  197R 

Vitamins        396R 

and  R.   K.   Cannan.     Tethelin,   the   alleged   growth-con- 
trolling  substance   of   the   anterior   lobe    of   the 

pituitary  gland             . .          . .          . .          . .          . .  345a 

and   K.   H.   Coward.     Cod-liver  oil ;    Chemistry  of  the 

vitamin-A  fraction  of . .         . .         . .         . .  561R 

aud  A.  F.  Watson.    Liver  oils  ;  Sulphuric  acid  reaction  for 

718A 

Vitamins  ;    Testing  of  foodstuffs  for  ■ ■         . .          . .  563a 

and  S.  S.  Zilva.     Cod-liver  oil ;    Preparation  of ■  and 

effect  of  the  processes  on  the  vitamin  value  of  the  oils  280T 

Oils   and   fats  ;     Nutritive   value    of  the   edible  . 

I.  Oil-benring  seeds  and  crude  vegetable  oils  and 

fats          125T 

and   others.    Cod-liver   oil  in    winter   feeding   of   milch 

cows       . .         . .         . .         . .         . .         . .         . .  561R 

Vitamin-A  in  'isli  oils  and  fish  liver  oils  ;  Origin  of 913a 

See  Coward,  K.  H.              "..         ..  993a 

See  Golding,  J 606a 

See  Jameson,  H.  L.               913a 

Dry  Oil  Products,  Ltd.    See  Dunham,  H.  V.         ..    954a*,  954a* 

Drying  Products  Co.,  Ltd.,  A.,S.     Dryer  ;  Plate (P)  . .  164a 

Drying  Systems,  Inc.    See  Boiling,  J.  E.       ..        ..        ..  927a 

Dubbs,  C.  P.,  and  Cnivi  r-.il  t  til  Products  Co.     Oils;  Process 

of  crackiug (P) 404a 

Dubin,  H.  E.     See  Funk.  C 72a 

Duboc,  T.    Tribromoxvlenol ;    Action  of  on  tubercle 

bacilli 726a 

Dubois,  E.,  and  G.  Miiller.    Lignite  ;    Gasification  of  raw 

■        888a 

Dubois  und  Kaufmann,  Chem.  Fabr.    Lubricants  ;    Process 
for  raising  the  viscosity  and  boiling  point  of  mineral 

oils  for  producing (P)    ..         ..         ..         ..  245a 

Etubber  substitute  ;   Preparation  of  coloured (P)  . .  827a 

Dubourg,  E.     Brewing  beer  by  means  of  moulds  (P)         . .  28A 

Duchon,  F.    Se*  Memec,  A USA,  264a 

Ducktiam,  A.  McD.     Gasification  of  coal  or  other  carbon- 
aceous material  (P) 802a* 

Kiln  ;  Gas-fired  pottery (P) 670A* 

Kilns;  New  forms  of ..          ..          ..          ..          ..  446B 

and  A.  T.  Kent.    Kiln:   Tunnel (P) 712A* 

S«   Thermal  Industrial  and  Chemical  (T.I.C.)  Research 

Co           205a 

S  ■■  Woodall,  Duckham  and  Jones  (1920),  Ltd.  47a,  328a, 

357a,  417a,  848a 

Duckham,  R.    See  Gibson,  W.  H 271a 

Duckworth,  E.     See  Stockport  Furnaces,  Ltd 637a 

Duelaux,  J.     Cellulose  esters  ;    Process  for  improving  the 

dyeing  properties  of (P)  . .         ..         ..         ..  74SA 

"Colloides;     I. is " 431R 

Hydrogen  peroxide  ;   Catalysis  of by  ferric  salts  . .  9S1a 

and   P.   Jeantet.    Photographic   plates  for  the  extreme 

ultra-violet        233A 


NAME  INDEX. 


31 


Use  of 


in  micro- 


Ducloux,  E.  H.     Cajsiuni  chloride 

chemistry 

Dudley,  H.  M.     Dyeing  machine  (P) 

Diirener  Fabr.  Phot.   Papiere   Renker  und  Co.    See  under 

Renker. 
During,  A.     See  Behre,  A.       ..         ..         ..         ..        71a, 

Duffleld.  F.  L..  and  C.  A.  Longbottom.     Furnaces  ;   Rotary 

(P)  ■■        " 

Duffing.     Lubricating  oils  ;  Bearing  friction  and  friction  tests 

on    

Dufour,    G.     See   Dufour,    L 

Dufour,   L.  and   G.     Tanning   process  (P)    .. 

Dufraisse,  C.     See  Moureu.  C  . .         . .         . .      195a, 

Dufton.  A.  F.     Distillation  ;  Separation  of  misrible  liquids 

by  — — 121A, 

Duhr,  J.     See  Wiist,  F 

Duke,  K.F.H.     Belgium;  Report  on  the  economic  situation 

of 

Dumont,  P.     Lime  kilns  and  the  like  ;  Discharge  apparatus 

for  (P) 

Duncan,  C.  A.,  and  A.  Nelson.     Ball  mills  ;    Outlet  device 

for  (P) 

Duncan,  H.  M.    See  Baly,  E.  C.  C.  ..         ..      197R, 

Duncan,  J.  H.     Coal;    Physical  testing  of • 

Duncan.   W.  M.     Distillation ;    Method  and  apparatus  for 

destructive  (P)   .. 

Dundon,  M.  L.,  and  W.  E.  Henderson.  Solubility;  Measure- 
ment of  by  floating  equilibrium.    Solubility 

of  lead  acetate 
Dunham,  A.  A.,  and  Casein  Mfg.  Co.     Alkali  silicate  ;    Dry 

(P)  

Casein  and  alkaline-earth  hydroxde  ;    Production  of  a 

composition    of    (P) 

Dunham,  H.  V.     Casein  products;  Production  of (P)  . . 

and    Dry    Oil    Products,    Ltd.     Casein-oil  composition ; 

Manufacture   of  (P) 

Shortening  agent  ;  Manufacture  of  a  pulverulent (P) 

Dunkley,  J.,  and  E.  J.  Ryan.     White  metal  alloy  (P) 

Dunkley,  S.  J.,  and  Dunkley  Co.  Lye  solution  ;  Means  for 
regulating  and  controlling  the  strength  of (P) 

Dunkley  Co.     See  Dunkley,  S.  J 

Dunlop  Rubber  Co.    See  Twiss,  D.  F 

Dunn,  M.  S.,  and  H.  B.  Lewis.    Casein  ;   Action  of  nitrous 

acid  on 

Casein  ;    Comparative  study  of  hydrolysis  of  and 

of  deaminised  casein  by  proteolytic  enzymes 
and  C.  L.  A.  Schmidt.    Amino-nitrogen  ;  Influence  of  posi- 
tion and  of  temperature  upon  reaction  of  aliphatic 
with  nitrous  acid 

Dunnicliff,  H.  B.     .See  Butler,  G.  S.  

Dunning,  W.  G.     See  Murphy,  W.  B. 

Dunningham,  A.  C.     See  Hargreaves,  L. 

Dunsford,  F.  T.    Meat ;   Preserving  and  storing (P)  . . 

Dunsmore,  A.  F.     See  Robertson,  A.  R.      . .         . .        88a, 

Dunstan,  A.  E.     Hydrocarbons  ;   Refining  of  liquid (P) 

and  F.  B.  Thole.     Petroleum  and  petroleum  distillates  ; 
Treatment  of  (P)  

Dun-tan,  J.  H.,  and  R.  A.  Davis.  Wood  impregnating 
tanks  or  retorts  ;   Evacuation  of (P)  . . 

Dunstone,  W.  H  ,  jun.     Decolorising  carbon  for  use  in  the 

sugar  industry  ;   Essential  qualities  of  a  good 

Norit  decolorising  carbon  ;  Technical  application  of 

Dunwell,   S.   H.    Waxed  paper  stock  ;    Treating  to 

remove  the  wax,  and  reduce  the  paper  to  pulp  (P) 

Duparc,  L.,  and  L.  Ramadier.  Methyl  alcohol ;  Volatili- 
sation of  arsenic  and  antimony  by  

Du  Pont,*F.  I.,  and  Delaware  Chemical  Engineering  Co. 
Steam  boilers ;  Means  for  preventing  formation 
of  scale  in  (P) 

Dupont,  G.     Oil  of  maritime  pine  ;    (Bordeaux  turpentine) ; 

Constituents  of 

Turpentine  of  oil  from  Aleppo  pine  ;  Composition  of 

Turpentine  ;    Role  of  the  various  constituents  of  ■ 

in  industrial  syntheses 

Du  Pont,  3 .  R.  Nitrocellulose  for  pyroxylin  plastics  ;  Manu- 
facture of ■ 

Dupont,  L.     See  Darrasse,  L, 

Du  Pont  de  Nemours  and  Co.,  E.  I.  Ore  concentrator  tables 
(P) 

Manufacture  of  (P) 


Propellent  explosives 
See  Andreau,  R.  L. 
See  Bartleson,  T.  L. 
See  Booge,  J.  E. 
See  Bryan,  L.  0. 
See  Collins,  B.  W. 
See  Gibbs,  H.  D.    .. 
See  Grob,  A.  R.      .. 
See  Horton,  G.  D. 
See  Jacobs,  C.  B. 
See  Kessler,  J.  M. 
See  Moran,  R.  C.     . . 
See  Rocker,   G. 
See  Rogers,  H. 
See  Singer,  N. 


470a,  599A* 


157A,   290a, 


81A 
55a 


871A 

400A 

929a 
869a* 
869a* 
645a 

274a 
4t57A 

31SR 

17Sa* 

399a 

586a 
504r 

245A 

545a 

372a 

432a 
564a 

954a* 
954a» 

298a 

846a 

846a 
426a 

154A 

154A 

881A 

107T 
322a 

99a 
192a 
401a* 
741a 

975a 

16a* 

909a 

'J  10a 

367a 
630a 


127A 

fli:, a 
223A 

916A 

137A 
610  a 

985a 

199a 

64SA 

7H-A 

753A 

649a 

449  a 

670a 

663a 

832a 

415a 

855a* 

135a 

730a 

407a« 

459A 


E.  I.- 


c  mlinited. 


Du  Pont  de  Nemours  and  Co. 

See  Stine,  CM 

See  Swint,  W.  R.  

See  Tanberg  A.  P.  

See  Underwood.   K.  C. 
.s,v   Woodbridge,   R.   G.,  jun 
Durand,  J.     Cast-iron  ;   Modification  of by  heat  treat- 
ment 

Cast-irons  ;   Thermal  treatment  of  some  

Durand  &  Huguenin.     Acridine  dyestuffs  ;  Manufacture  of 

halogen  derivatives  of  basic  (P) 

Mordant  dyeing  colouring  matters  ;  Manufacture  of 

(P)  

See  Alioth,  M 

Durato  Asbestos  Flooring  Co..  Ltd.,  and  A.  Z.  Nerneth. 
Roofing  material  or  tile  (P)  .. 

Durelco,  Ltd.    See  Pearson,  R.   E 637a, 

Durgin,  C.  B.    See  Ross,  W.  H 

Duriron  Co.     See  Schenck,  P.   D 

Durrans,  T.   H.     Sulphuryl  chloride  ;    Action  of  on 

organic  substances.    Simple  niouosubstituted  ben- 
zenes 

Durrant,  R.  G.     See  Bassett,  H        

Durst,  G.    Cottotf;  Action  of  fireprooflug  solutions  on 

Duschek,  A.     See  Miiller,  R 

Duschsky,  J.  E.,  and  P.  G.  Galabutsky.     Beet  sugars  ;  Loss 

of  sucrose  in  the  refinery  in  the  working  of  raw 

Butcher,  R.  A.     See  Kennedy,  C. 

Dutoit,  P.,  and  A.  Boever.     Brass  ;  Manufacture  of (P) 

and   E.    Grobet.     Physico-chemical   volumetric   method ; 

Application  of  a  new  to  some  problems  of 

inorganic   chemistry 

Precipitates  ;  Carrying  down  of  soluble  salts  by . . 

Dutt,  E.  E.  and  P.  C.     Titanium  dioxide  from  bauxite  ; 

Preparation  of  (P) 

Dutt,  P.  C.    See  Dutt,  E.  E.  

Dutt,  S.  Dyestuffs  derived  from  phenantliraquinone 
Naphthaflavindulines 

See  Sircar,  A.  C 703a, 

See  Watson,  E.  R.  

Duval  d'Adrian,  A.  L.     See  under  D'Adrian. 
Duval  d'Adrian  Chemical  Co.    See  D'Adrian,  A.  L.  D. 

Duysen,  F.     See  Schmidt,  E.  

Dyche-Teague,  F.  C.     Callactite  ;  Preparation  and  properties 

Dyckerhoff,  E.  Building  material ;  Preparation  of  a  raw 
material  from  peat  for  making  a (P)  . . 

Dj*er,  B.  Tar  acids  and  tar  bases  in  road  drainage  and  mud  ; 
Determination  of  .     Discussion 

Dyer,  J.  W.  W.,  and  A.  R.  Watson.  Rubber ;  Determina- 
tion of  sulphur  in  vulcanised . .         . .      251T, 

Dyffryn  Works,  Ltd.,  and  others.    Valves  ;    Water-cooled 

for  controlling  the  delivery  of  hot  gases  from 

furnaces  and  other  sources  (P) 

Dykema,  W.  P.,  and  A.  A.  Chenoweth.  Gasoline  recovery 
plant ;  Design  and  operation  of  a  low-pressure 
absorption  

Dynamidon-Werke  Englehorn  und  Co     See  wider  Engelhorn. 

Dynamit  A.-G.  vorm.  A.  Nobel  und  Co.    See  under  Nobel. 

Dyson,  W.  H.,  and  L.  Aitchison.    Metallic  ores  and  residues 

containing  metallic  oxides  ;  Purification  of (P) 

Oxides  of  clrroniiuni  or  tungsten  ;  Purification  of  ores 
and  residues  containing  (P) 


393a 

648a* 

459a 

37a 

899a 
296a 


170a 

816a 

864a 

544A 

62A 

Hl.'.A 
447k 
539a 

074  a 

642a 
306a 
716a 

568a 
613a 

631a 
631a 

852a 

852a 
852a 

898a 
94A 

96R 

816A 

176T 

332T 

401a* 

799a 

505A 
332a 


Eagle,  H.  Y.     Electrolytic  apparatus.  (P) 

Early,   R.    G.,    and   T.    M.    Lowry.     Ammonium   nitrate ; 

Properties  of .    Ammonium  nitrate  and  sodium 

nitrate 
Easterbrook,  W.  C.     See  Dickson,  W.  . .         . .        58R, 

Eastern  Potash  Corp.  See  Meadows,  T.  C. 
Easterwood,  H.  W.  See  Waggaman,  W.  H. 
Eastman,  E.  D.      Iron-carbon-oxygen  and  iron-hydrogen- 


oxygen  ;  Equilibria  in  the  systems  - 
free  energies  of  the  oxides  of  iron     . . 
Eastman  Kodak  Co.    See  Carroll,  S.  J.  213a, 


-,  and  the 


367a 


748a, 
807A, 
53a,  248a, 


See  Clarke,  H.  T 

See  Donohue,  J.  M. 

See  Eberlin,  L.  W. 

See  Elliot,  F.  A 

See  McDaniel,  A.  S. 

See  Malone,  L.  J 53a, 

See  Seel,  P.  C 53A,    24SA,    4S4A,    807a, 

See  Stmchfleld,   R.   L 

See  Sulzer,  A.  F 53a,    567a,  854a,  997a, 

See  Tozier,  G.  H 

See VonBramer   H. 

See  Webb,  W.  R 542a,  854a, 

Ea'ston,  R.     Bleaching  agents  for  textiles  and  paper  pulp. 

Discussion 
Eaton,  B.  J.,  and  R.  O.  Bishop.     Vulcanisation  ;  Acceleration 
of  by  cinchona  alkaloids 


902a 

587a 
310a 
590a 

292R 

503a 

894a 
392a 
542a 
G49a 
393A 
917a 
807A 
917a 
978a 
998a 
858A 
648a 
97SA 

37  IT 

374T 


32 


JOURNAL  OF  THE  SOblETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Eaton,  E.  O.    Camphor;    Determination  of  monobromated 

269A 

Peppermint    oils ;      Differentiation    of    Japanese    and 

American . .  . .  . .  . .  . .  . .     685A 

Ebbw  Vale  Steel,  Iron  and  Coal  Co.,  Ltd.,  and  D.  rhlcklns. 
Ammonium  sulphate  ;    Manufacture  of  dry  neutral 

(P)  631A 

i  ird,  R.     Iron  ore  containing  phosphates  :   Process  for 

opening  up  (P)   . .  . .     187A 

Manure  ;    Manufacture  of  a  natural  plant  (P    . .     187a 

Eberhardt.  K.     Charcoal  for  decolorising  and  other  purposes  ; 

Manufacture  of  (P) 286a 

Ebcrlein,  W.    Charcoal     Manufacture  of  decolorising (P) 

363A,  456a 
Eberlin,  L.  W.,  and  others.     Light-diffusing  medium;   Pre- 
paration of  (P) 649A 

Ebin,  D.     See  Altwegg,  J 438A 

Ebler,  E.,  and  A.  J.  Van  Rhyn.    Radioactive  substances  ; 

Adsorption  of . .         . .         . .         . .         . .  12A 

Eckart,  H.    Fat  of  ox-bone  and  neatsfoot  oil 768A 

Eckles,  C.  H.     See  Kennedy,  C 306a 

Eddingston,  A.  T.    See  Pokorny,  J.  1 983a 

Eddison,  W.  B.,  and  others.    Furnace-retort  for  carbonisation 

of  coal  (P)        453a 

Eddy,  H.  C,  and  Petroleum  Rectifying  Co.     Dehydrators  for 
petroleum  emulsions  ;    Adjustable  field  and  double 

field (P) 890A 

and  others.     Dehydrators  for  petroleum  emulsions  (P)  . .     890a 
Eddy,  W.  H.,  and  others.     Yeast  growth  ;   Water-soluble  B 

and  bios  in  ■         . .  . .  . .  . .  . .     340a 

Edelman,  P.  E.    Control  of  reactions  ;  Electrical (P)  . .       43a 

Edelmann,  R.  F.     See  Treadwell,  W.  D 919a 

Edens,  H.  N.     Cleaning  air  and  other  gases  ;   Apparatus  for 

(P)  846A 

Eder,  A.    Cobalt  in  steel ;   Determination  of . .         . .     467a 

Eder,  R.,  and  C.  Widmer.    Chrysophanic  acid  (1.8-dihydroxy- 

3-methylanthraquinone)    and    1.5-dihydroxy-3-me- 

thylanthraquinone  ;    Synthesis  of  . .  . .     194a 

Edert,  H.    Steels  ;    High  temperature  tests  on  special ■    593a 

Edgar,  G.    Fertiliser ;    Manufacture  of (P)     . .         . .     428A 

and  R.  B.  Purdum.     Electrolysis  ;  Rapid without  ro- 
tating electrodes          613a 

See  Lamb,  A.  B.      . .         . .         . .         . .         . .         . .     414a 

Edge,  A.    Animal  fibres  ;    Protective  agent  for 128k,  497a 

Edison,  T.  A.    Steel  and  iron  ;   Protective  coating  for 

<P)  332A 

Edmonton,  W.  E.    See  Deane,  H „         . .     684a 

Edser,  E.    See  Broadbridge,  W 26a,  669a 

Edwards,   C.  A.,  and  A.  J.  Murphy.     Copper  and  phos- 
phorus ;    Rate  of  combination  of  at  various 

temperatures 126R,  257a 

Edwards,  E.  B.    See  Smith,  C.  H 453a,  453a,  493a 

Edwards.    E.    J.     Newfoundland  ;     Report    on    trade    and 

industrial  resources  of  ..  ...  ..  ..     250k 

Edwards,  F.   W.    Mixing  liquid  with  powdered  materials 

continuously  ;  Apparatus  for (P)        . .         . .     279a 

Edwards,  G.  P.    See  Buswell,  A.  M 480A 

Edwards,  J.   B.,  and  Tide  Water    Oil    Co.     Oil    cracking 

apparatus  (P) 321a 

Edwards,    J.    D.,    and    others.     Aluminium-silicon   alloys ; 

Process  for  making  castings  of (P)       . .  . .     332a 

Edwards,    K.   B.    Arsenical  compounds ;    Manufacture   of 

(P)  670a* 

Effront,  0.    Alcohol ;    Denaturation  of  in  relation  to 

the  State  and  to  alcoholism  . .         . .         . .         . .     154a 

Amylases  of  different  origin  ;    Distinctive  properties  of 

152a 

Egger,  L.    See  Treadwell,  W.  D 919a 

Eggert,  J.    Explosives  ;    Sensitiveness  of  highly  sensitive 

. .  .  .  . .  . .  . .  . .      121a 

and  W.  Noddack.     Photographic  dry  plates  ;    Verification 

of  the  photochemical  equivalent  law  with ■    . .  232a 

Egnell,  Aktiebolaget  Ingeniorsfirma  F.    See  Rodhe,  O.     . .  650a  • 

Ehlers,  C.  R.     Mineral  oils  ;    Refining  of  (P)       362a,  802a* 

Ehmer,  W.    See  Zinke,  A 509a 

Ehn,  E.  W.     Steel  ;   Influence  of  dissolved  oxides  on  carbu- 

rislng  and  hardening  qualities  of . .         . .  419a 

See  McQuaid,  H.  W 330a 

.  H.     See  Bchre,  A 7lA 

Ehrenberg,  R.    Protein  enzymes         430a 

Ehrhart,  R.  N.     Condenser  (P) 240a* 

and  Elliott  Co.     Water  ;  System  for  removing  air  and  gases 

from  (P) 155A 

Ehrlicb,  J.     See  Moser,  L 273a,  273a 

rgsche  Stoombleekerij,  voorh.  G.  J.  ten  Cate  A  Zonen, 

and  R.  Mohr.     Bleaching  textile  fibres  and  fabrics  ; 

I  ii  ■■  ice  for (P) 55A« 

Eichel,  K.  H.    Steel  ;  Economy  of  manganese  in  manufacture 

of  iron  and  by  the  basic  converter  and  open-  " 

hearth  process  ..         ..         ..         ..         ..         ..  178a 

Elchelberger,  M.     Navy  beans ;    Carbohydrate  content  of 

564A 


Eichenberger,  F.,  and  S.-A.  Kummler  u.  Matter.     Electrical 
resistance    material ;     Process    of    manufacturing 

(P)  638a* 

Eichengriin,  A.     Fire  extinguishing  and  prevention  oi  the 

ignition  of  combustible  matter  ;  Processfor (P)     747a 

Eichengriin.   Cellon-Werke   A.     Cellulose   acetate  and   like 
cellulose    derivatives ;      Production    of    moulded 

articles  from (P) 52a 

Cellulose    acetates  ;     Production    of    moulded    articles 

from (P) 52a 

Eichhoff,  A.     See  Bockcr,  F . .     333a 

Eichler,  F.    See  Otto,  E 914a 

Eichwald.  E.     Fatty  acids  and  their  glycerides  ;   Action  of 

the  brush  discharge  on  free  . .  . .  . .     S24A 

Eijkman,  C,  and  others.    Vitamin  content  of  micro-organ- 
isms in  relation  to  the  composition  of  the  culture 
medium  . .         . .         . .         . .         . .         . .     305a 

Eilert,  A.    Platinum  film  electrodes  ;    Preparation  and  use 

of  718A 

Eimer,  A.    Electric  furnaces  (P)         . .         . .         . ,         . .     259A 

Einbeck,  H.    See  Schroeter,  G.  133a* 

Eisenwerkges.    Maximilianshiitte.    Phosphorus    compounds 

suitable  for  manurial  purposes ;  Treatment  of 

(P)  909a 

and  G.  Leuchs.     Sulphur  dioxide  gas  from  sulphite-cellu- 
lose waste  liquor  ;  Production  of (P)  . .  . .     410a 

Ekkert,  L.    Phenacetin  and  acetanilide  ;  Colour  reactions  of 

77a 

Eklund,  T.  A.,  and  C.  G.  Lofveberg.     Insulating  and  building 

material,  and  method  of  producing  it  (P)  . .  . .     899a* 

Elam,  C.  F.    See  Carpenter,  H.  C.  H 17a,  419a 

Eldred,  B.  E.,  and  Chemical  Development  Co.     Celluiosc- 

ester  composition  (P)  . .         . .         . .         . .         . .     290a 

Eldridge,  E.  F.    See  Ewing   D.  T 691a 

Electric  Dehydrating  Co.    See  Giebner  S.  A.  . .         . .     405a 

Electric  Smelting  and  Aluminium  Co.     See  Guernsey,  F.  H.     599a 
Electric  Water  Sterilizer  and  Ozone  Co.     See  Hartman,  H.  B.     718A 

Electrical  Alloy  Co.    See  Mandell,  A.J 1S0A 

Etectro  Chemical  Products  Co.    See  Hoofnagle,  W.  T.  . .     858a 

Electro  Metallurgical  Co.    See  Becket,  F.  M.     180a,  766a,  901a 

Electrol  Mfg.  Co.    See  Hacking,  E 507a 

See  Williams,  H.  M.  507a 

Electrolytic  Zinc  Co    of  Australasia  Proprietary,  Ltd.    See 

Avery,  D 147a*,  767a* 

Electron  Chemical  Co.    See  Allen,  E.  A 380a 

Electrostatic  Separation  Co.     See  Brown,  G.  R 638a* 

Elektrische  Gliihlampenfabriek  "  Watt  "  A.-G.  Electrodes 
in  vacuum  tubes,   especially  in   Rontgen   tubes ; 

Fastening  the  (P)         6a 

Elektrizitats-A.-G.    vorm.    Schuckert   und    Co.    See   under 

Schuckert. 
Elektrizitatswerk    Lonza.     Crotonic   acid ;     Production     of 

from  crotonaldehyde  (P)         . .  . .  . .  . .     959A 

Metaldehyde  ;    Burner  for (P)        403a 

and  A.  Busch.    Metaldehyde  ;    Burner  for  burning  

(P)  607a,  659a 

and    H.    Danneel.    Sodium    carbonate    and    ammonium 

chloride  ;   Manufacture  of from  crude  calcium 

cyanamide  (P)  . .         . .         . .         . .         . .         . .     216a 

See  Lichtenhahn,  T.  57A,  198a* 

See  Tommasi,  N.  C.  24ja*,  890a  • 

Elektrochem.  Werke  G.m.b.H.,  and  others.  Condensation 
product    from    naphthalene    and    glycollic    acid ; 

Production  of  a  •  (P) 676A 

Tanning  agents  ;   Production  of  sulphonated (P)  . .     774A 

Tanning    agents    etc.  ;     Preparation    of     water-soluble 
derivatives  of  aryl  ethers  of  aliphatic  alcohols  of 

high  molecular  weight  for  use  as (P)  . .  . .     426A 

Elcktro-Osmose  A.-G.  (Graf  Schwerin  Ges.).  Alkaloids, 
bitter  substances,   and  the  like  ;     Removing  and 

obtaining from  vegetable  and  animal  products, 

especially  lupins  (P)   . .         . .         . .         . .         . .     432a 

Electro-osmotic  dehydration  (P)  ..         ..         ..         ..     358a 

Electro-osmotic  dehydration  plant;     Method  of  oper- 
ating a  complete (P) 206a 

Nitrocellulose  ;    Stabilising (P)        350a 

Oils,  fats  and  aqueous  emulsions  ;  Electrical  dehydration 

of (P)        300a 

Ore  concentration,  more  especially  for  purifying  graplute 

(P)  864a 

Ores;    Concentration  of by  flotation  (P)  ..  ..     864a 

Tanning  or  impregnating  hides  and  skins  ( PI    ..  ..       69a 

Vaccines;  Process  for  making  specific (P)..        ..     119a 

Vulcanised  fibre  ;   Separating  chlorine  compounds  irom 

(P)  936a 

See  Wolf,  K.  549A* 

Elektrowerke  A.-G..  and  H.  Luftschitz.  Cement  ;  Manu- 
facture of  hydraulic from  lignite  ash  (P)       . .     103a 

"  Elga,"  Elektrische  Gasreinigungs-Ges.  Electrical  purifi- 
cation of  itases  for  the  removal  of  very  fine  dust 
particles  (P) 399A 

Elias,  H.,  and  S.  Weiss.    Yeast  cells  ;    Acid  and  alkali  in 

their  action  on  carbohydrate  metabolism  of . .     305a 

Eliasberg,  P.    See  Kostytschew,  S 265a 

Elliott,  C.     See  Brittain,  A 533a 


NAME  INDEX. 


33 


PAGE 

Elliott,  F.  A.,  and  Eastman  Kodak  Co.     Photographic  bath 

(P)  393a 

See  Sheppard.  S.  E.  303a 

Elliott,  F.  L.     See  Martin,  G.  225T 

Elliott,  J.  P.    Insulating  brine-  and  water-proof  material ; 

Manufacture  of (P)         259a 

Elliott,  M.  B.     See  Elliott,  J.  P 259a 

Elliott,  R.     Sugarcane;   Deterioration  of after  cutting     187a 

Elliott,  W.  E.     Gas-producing  apparatus  (P) 889a 

Elliott  Co.     See  Ehrhart,  R.  N.  1 55  v 

Ellis,  C.     Edible  product ;    Esterifled (P)        . .  .  -     388a 

Edible  product ;   Manufacture  of (P)  . .  . .     504a 

Gasoline  substitute  ;   Manufacture  of (P)  . .  . .         5a 

Hydrogenation  ;    Catalyst  for and  the  preparation 

thereof  (P)         770a 

and  Chadelold  Chemical  Co.     Paint  and  varnish  remover 

(P)  261A 

and  Ellis-Foster  Co.     Concrete  coating  and  the  like  (P)  . .     103a 

and  S.  B.  Hunt.     Oleflnes  etc. ;  Process  of  oxidising 

(P)  567A 

and  J.  V.  Meigs.     "  Gasoline  and  other  motor  fuels  "     . .     185R 

and  New  Jersey  Testing  Laboratories      Fuel ;  Motor 

(P)  404a 

and  Standard  Oil  Co.     Cracking  oils  under  pressure  (P)  .  .     494a 

and  V.  T.  Stewart.     Arsenic  acid  ;    Manufacture  of  

(P)  462a 

Bills,  H.  E.     Ozone  ;   Apparatus  for  producing (P)    . .     507a 

Ellis,  O.  W.     Brass  ;   Experiences  of  season  cracking  of 

during  the  war  . .  . .  . .  . .  . .  . .     1  05a 

Ellis,  R.     Ice  manufacture  (P) 480a 

Ores  ;   Concentration  of (P) 765a 

Ellis-Foster  Co.     See  Ellis,  C 103a 

See  Rabinovitz,  L.   . .  . .  . .  . .  . .  . .     510a 

Ellsworth,    J.  T.    Zinc   from   complex    ores ;    Process   for 

recovering  (P) 864a 

Zinc  ;    Effect  of  single  impurities  on  electrodeposition 

of  from  sulphate  solutions      . .  . .  . .     862a 

Elmen,  G.  W.,  and  Western  Electric  Co.     Insulating  metal 

particles  ;    Method  of (P)         507a 

Elmore,    F.    E.,    and    Chemical    and    Metallurgical    Corp. 
Argentiferous  lead-zinc  sulphide  ores  ;    Treatment 

of  (P) 821a 

Lead-bearing  mattes  and  the  like  ;    Treatment   of 

(P)  597a 

Lead  ;   Process  for  the  production  of  metallic from 

lead    sulphate    (P) 9S5A 

Elsaesser,    E.,    and    Chemical   Foundation,    Inc.     Spinning 

viscous  liquids  in  flowing  feeding  liquids  (P)      . .     410a* 

Elsdon,  G.  D.     See  Evers,  M".  519A 

Elserbast,  A.  S.,  and  W.  L.  Jordan.     Insulating  cement  or 

mortar    (P) 635A 

Eisner,  W.     See  Meyer,  F.  H.  367a 

Elster,  J.     Textile   fibres  ;     Production   of   from   the 

stems  of  nettles  and  other  plants  (P)         . .       498a,  541a 

Typha  and  rush  fibres  ;   Method  for  improving (P)    808a 

Elvove,  E.     Neosalvarsan  ;    Estimation  of  sulphate  in 608a 

El  worthy,  R.  T.     Natural  gas  ;  Chemical  products  from 261 R 

Emde,  H.     See  Schering,  E 433A,  521a,  960a 

Emerson,  P.     Soil ;    Colorimetric  determination  of  nitrates 

in in  a  coloured  water  extract  . .  . .  . .       25  a 

Emery,  J.  A.,  and  R.  R.  Henley.     Rancidity  in  oils  and  fats  ; 
Influence  of  air,  light,  and  metals  on  development 

of 945a 

Emmott,  R.,  and  T.  Mercer.     Pulverising  or  disintegrating 

machines   (P)    . .  . .  . .  . .  . .  . .     164a 

Emslander,  R.     See  Gutbier,  A 270a 

Endell,  K.     Iron  ores;    Sintering  of ..  ..  ..     549a 

Silica  brick  industry  ;    Comparative  study  of  American 

and  German  quartzites  as  raw  materials  for  the 176A 

Silica  brick  ;   Testing  of 416a 

Enderlein,   G.  F.     Sulphate  digester  gases ;    Deodorisation 

of     95  a 

Enderli,  M.     Basic  sodium-calcium  sulphate ;    Preparation 

of   (P) 174A 

Enequist,  E.  W.     Glass  ;   Manufacture  of (P)  . .  . .     177a 

Enge,  L.   Wood  pulp  ;  Process  for  making (P)  . .  . .     704a 

Engel,  G.,  and  Buffalo. Foundry  and  Machine  Co.     Condenser 

(P)  43A 

Engel,  H.     Oils  and  the  like  ;   Apparatus  for  the  extraction 

of (P) 474a* 

Engeland,    R.     Monoamino-acids ;     Detection    and    deter- 
mination of in  proteins  . .         . .         . .         . .     515a 

Engelhardt,  A.     Benzol  ;    Recovery  of  from  coal  gas 

by  means  of  active  charcoal  . .  . .  . .  . .     659a 

Engelhorn  und  Co.,  Dynamidon-Werke.     Bauxite ;    Manu- 
facture of  objects  of  dense  structure  from (P)     502a 

Engelke,  E.  F.     Hydrocarbon  oils  ;    Treating  (P)    . .         5a 

Engfeldt,   N.   O.     Dakin's    hypochlorite    solution ;    Action 

of on  certain  organic  substances         . .  . .     682a 

England,  E.  H.     See  Richmond,  H.  D 902a 

Englis,  D.  T.,  and  C.  Y.  Tsang.     Reducing  sugars  ;   Clarifica- 
tion of   solutions   containing  by   basic   lead 

acetate   . .  . .  . .  . .  . .  . .  . .     385a 


page 
English,  S.,  and  W.  E.  S.  Turner.     Glasses  ;  Properties  of 

lime-magnesia and  their  application  ..        ..     175a 

Enna,  F.  G.  A.     See  Croad,  R.  B 68a 

See  Grasser,    G 141r 

Ens,  H.     See  Jellinek,  K 1000a 

Entat,  M.,  and  E.  Vulquin.     Cellulo  e    >     I  itea  ;   Detection 
and    determination    of    free    sulphuric    acid    and 

sulphoacetates  in ..  ..  ..  ..     541a 

Ephraim,  F.     "  Anorganische  Chemie"         ..         ..         ..     407r 

Eppenberger,  J.     Fat-containing  granular  products ;    Pro- 
cess for  rendering  ■  impalpable  (P)     . .  . .     834a 

Eppley,  M.,  and  W.  C.  Vosburgh.  Bichromate  ;  Electrometric 

titration  of with  ferrous  sulphate       . .  . .   1001a 

Epstein,  A.  K.     Preserved  eggs  and  process  therefor  (P)  . .     781a 

Epstein,  S.     See  Rawdon,   H.  S 899a 

Erdahl,  B.  F.     Alginate  composition  and  article  (P)  . .  . .     475A 

Alginates;    Method  of  producing  gelling  metal (P)     475A 

Concrete  ;  Process  of  rendering resistant  to  waters 

charged    with    soluble    compounds    and    products 

thereof  (P)        466£ 

Erdman,  L.  W.    Soil  reaction  ;  Effect  of  gypsum  on . .     186a 

Erdmann,  E.     Coals  and  lignites  ;    Spontaneous  combustion 

of • 887A- 

Lignite  tar  and  shale  tar  ;    Treatment  of (P)       . .     457a* 

Lubricating  oils  ;    Process  for  obtaining  highly  viscous 

from  peat  tar  (P)         285a 

Lubricating  oils  ;    Process  for  obtaining  paraffin  and 

highly  viscous from  lignite  tar  and  shale  tar  (P)     285a 

Paraffin  wax  ;    Obtaining particularly  from  lignite 

tar  or  shale  tar  (P) 404a 

Erdol-  uud  Kohle-Verwertung  A.-G.,  and  F.  Zernik.  Oint- 
ments ;   Preparation  of which  leave  no  greasy 

appearance  on  the  skin  (P)  . .         . .         . .         . .     523a 

Erickson,  A.  N.,  and  Union  Carbide  and  Carbon  Research 
Laboratories,  Inc.  Vanadium  solutions  ;  Remov- 
ing phosphorus  from (P)  ..         ..         ..     632a 

Eriksson,  H.  F.     Reduction  of  oxide  ores  (P)  . .  . .     107a. 

Ermen,  W.  F.    A.     Photographic    developers ;     Conditions 

affecting  apparent  activity  of  some  organic . .     270a 

Ernesta,  A.     Gases  ;    New  apparatus  for  washing  . .     998a 

Ernstrbm,  E.  Starch  ;  Temperature  coefficients  in  degra- 
dation of  and  thermostability  of  malt  diastase 

and  ptyalin        . .         . .         . .         . .         . .         . .     429a 

Errera,  J.     Cuprous  oxide  ;    Compounds  of  . .         . .       56a 

Ertl,  K.    See  Moser,  L.  13a 

Erwin,  R.  G.,  and  International  Bituconcrete  Co.    Plastic 

composition;  Manufacture  of (I1)       ..         ..     296a 

Erzrost,  Ges.  m.b.H.,  and  J.  Walmrath.     Roasting  furnace  ; 

Mechanical   for    pyrites    etc.    (P)     . .  . .     822a 

Esch,  W.     Magnesium  chloride  lyes  ;   Treatment  of (P)     754a 

Vulcanisation  accelerator  ;    Production  of  a  (P)     183a 

Escher,  Wyss  u.  Co.,  Akt.-Ges.  der  Maschinenfabriken. 
Cooling  vapours  expelled  from  a  solution  in  a  distill- 
ing plant ;   Apparatus  for (P)  . .  . .  . .     735a 

Fibrous  materials  ;  Process  for  boiling and  a  device 

for  carrying  out  the  process  (P)       . .         . .         . .     541a 

Eschholz,  O.  H.,  and  Westinghouse  Electric  and  Manuf.  Co. 

Discharge  electrodes  for  precipitating  systems  (P)     737a 
Eskola,  P.     Silicates  of  strontium  and  barium         . .  . .     980a 

Esselen,  G.  J.,  jun.,  and  others.  Cellulose  butyrate  ;  Pre- 
paration of (P) 748A,  894A,  936A* 

Cellulose  derivatives  ;  Preparation  of (P)  . .  . .     748a 

Cellulose  esters  ;  Production  of (P)  . .  ..  ..     855a* 

See  Mork,   H.   S 493a 

Essery,  R.   E.     Fish  ;    Value  of  fish-scales  as  a  means  of 

identification  of  the  used   in   manufactured 

products  98R,  387a 

Estabrooke,  W.  I.,  and  others.  Iron  ores,  iron  and  steel,  and 
coke  used  in  the  metallurgy  of  iron  ;  Desulphurising 

(P)  

Etabl.   C.  H.   Candlot  Soc.  Anon.     See  under  Candlot. 
Etter,  R.  R.,  and  General  Electric  Co.     Adsorption  apparatus 

for  solvent  recovery  etc.  (P) 
Ettisch,  M.,  and  others.    Metal  wires  ;    Fibrous  structure 

in  hard-drawn  .. 

Eucken,   A.,   and   O.   Neumann.     Intermetallic  compounds 

in  the  form  of  vapour  ;  Existence  of . . 

Eustis,  F.  A.,  and  C.  P.  Perin.     Chromium  ;    Treating  iron 

ore  for  recovery  of (P) 

and  others.     Electrolytic  iron  ;    Manufacture  of  (P) 

422a, 

Evans,  B.  B.     Rubber  ;  Tearability  of 

Evans,  B.  S.     Antimony  ;   Determination  of  small  quantities 

of in  copper  and  brass 

Evans,  C.  T.,  and  Cyclops  Steel  Co.     Alloys  (P)     .. 
Evans,    E.    C.     Distillation    of    carbonaceous   substances ; 

Destructive  (P) 

See  Sutcliffe,  E.  R.  147R,  196T,  492a 

Evans,  E.  V.  Fuels  ;  Influence  of  structure  on  the  com- 
bustibility   and    other    properties    of    solid    . 

Discussion  206t 

Gas  works  chemistry  ;    Some  solved  and  unsolved  pro- 
blems in  . .         . .         . .         . .         . .         . .       58k 

O 


764A 


846A 
145A 

819a 
146a 

985a 
989a 

144a 
332a 

6a 


34 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY 


PA    1 

Evans,  E.  V. — continued. 

Tar  adds  and  tar  bases  in  road  drainage  and  mud  ; 

Det  termination  of  .     Discussion  ..  ..     176x 

Treasurer's  report    . .         . .         . .         . .         . .         . .     211t 

South  Metropolitan  Gas  Co 215a 

Brans,  J.  W-     See  Levenhagen,  F.  A.  261a 

Evans,   L.     See  Whitman,  W.  G 895a 

Evans,  O.  B.,  and  others.    Gas  making;     Using  heavy  oil 

in   (P) 535a 

Evans,  T.  A.     See  Hamilton,  W.  B,.  220a 

Evans, fcU.";R.     Passivity'and  over-potential  . .  ..  . .       78R 

Evans,  W.  L.,  and  P.  R.  Hines.     Potassium  acetate  ;  Oxida- 
tion of to  potassium  oxalate  . .  . .  6S5a 

and   L.   B.    .Sc-fton.     Acetone:     Oxidation  of  with 

potassium   permanganate  . .  . .  . .     957a 

Isopropyl  alcohol ;    Oxidation  of  with  potassium 

permanganate  . .  . .  . .  . .  . .  . .     956a 

See  Ross,   W.  H 959a 

See  Trumbull,  H.  L 137a 

Evans,   W.   W.     Rubber  goods ;    Accelerated  ageing  tests 

on -  601a 

Evaporating  and  Drying  Machinery  Co.     See  Miller,  J.  C. 

280a,  450A,  913a 
Everest,  A.  E.,  and  A.  J.  Hall.     Anthocyans  and  certain 

related  pigments  ;  Tinctorial  properties  of  some 136a 

Everhart,  E.    Bauxite;    Process  for  purifying (P)  ..       14a 

Evers,  E.  W.     See  Kelley,  G.  L 60a 

Evers,  F.    Mineral  waters  ;    Preparation  of (P)        . .     306a 

Harries,    C 23a 

Evers,   N.     Quinine  and  strychnine  ;     Extraction  of  

from  solutions  of  varying   hydrogen  ion   concen- 
tration.    Separation  of    strychnine    from  quinine 

329R. 

and  G.  D.  Elsdon.     Ointments;  Examination  of  B.  P. 519a 

and  H.  J.  Foster.    Fish-liver  oils  ;    Sulphuric  acid  test 

for 561R 

See  Lizius,  J.  L 197R,  730a 

Ewing,  D.  T.,  and  E.  F.  Eldridge.     Uranium  ;  Electrometric 

titration  of with  potassium  permanganate  and 

bichromate        . .  . .  . .  . .  . .  . .     691A 

See  Harkins,  W.  D.  87a 

Export  in  geni  cure  fur  Papier  und  Zellstofftechnik.     Paper, 
cardboard,   and  like  materials  ;    Impregnation  of 

(P)  460a 

Paper  or  fabric  surfaces  that  have  been  treated  with 
proteins  ;    Producing  water-  and  friction-resisting 

print  or  colourings  on (P)         . .  . .  . .     705A 

Evrich,  H.  R.,  and  J.  A.  Schreiber.     Paper  ;   Removing  ink 

from  printed  (P)  894a 

and  others.     Paper  ;  Removing  ink  from  printed (P)     623a 


F 

Faber,  H.  B.,  and  others.    Desiccator  for  liquids  (P)        . .     575a 

Fabcr,  O.,  and  H.  V.  A.  Briscoe.    Rotary  cement  kilns  ;  Heat 

insulation  for (P) 816a 

Faber,  O.  V.    Iodine  ;   Process  for  recovering (P)    . .     755a 

Fabre,  E.     Veronal  and  hypnotics  derived  from  barbituric 

acid  ;    Reaction  of  . .  . .  . .  . .     576a 

Fabr.  de  Prod.  Chim.  de  Thann  et  de  Mulhouse.     Borneol ; 

Manufacture  of  (P) 438a 

Zinc   sulphide   pigment  ;     Manufacture    of   anhvdrous 

(P)  474a 

•rament,  P 546a* 

-      Haller,  A 4sja* 

Fabr.  de  Soie  Artiflcielle  de  Tubize.   Nitrocellulose  solution ; 

-  of  spinning (P)  . .  ..  ..  ..     250a 

Fabris,  F..     Potassium  ferrocyanidc  ;    Solubility  of  in 

water 250A 

Fabrv,  R.  F.  F.    Drving  machine  for  coal  or  other  granular 

material;    Centrifugal  (P)        621a 

Facoueisen  Walzwerk  L.  Mannstaedt  und  Co.  See  under 
Mannstaedt. 

Farber,  E.     See  Hagglund,  B.  247a 

Fahrenwald,  F.  A.,  and  Rhotanium  Co.  Platinum  substitute 
in  chemical  apparatus  and  other  uses  ;  Manufacture 
Of  (P)         471A 

Fahrion.  V>".     Colophenic  acid 300A 

F.its  ;    Analysis  of  partly  hydrolyscd ..  ..     300A 

Fahrni.  J.  Introducing  solid  matter  at  the  foot  of  a  tall 
column  of  liquid,  without  occasioning  loss  of  liquid  : 
Apparatus  for  (P)         658A 

Fairbaim,  R.    See  Gibson,  W.  H 271a 

Fairbank  Co.,  N.  K.     See  Godfrey,  T.  M 474a 

Fairbrother,  F.,  and  E.  Swan.     Gelatin;    Iii-olution  of 721a 

Fairbrother.  T.  H.,  and  A.  Renshaw.     Dyestuffs  :    Relation 
n     chemical     constitution     and     antiseptic 
action  in  coal-tar ..  ..  ..      134T,  146R 

Fairburn,  W.  A.,  and  Diamond  Match  Co.  Match  com- 
positions;  Treatment  o( (P) 271a 

Falrchild.  C.  O.,  and  H.  M.  Bchmltt.  Platinum:  platinum- 
rhodium  thermocouples  ;   Life  tests  of ..     199a 

Fairlic.  A.  M.     Sulphuric  acid  manufacture  ;    Recovery  of 

oxides  of  nitrogen  in (P)         630a 


page 
Faitelowitz,  A.,  and  Chemical  Foundation.  Inc.     Preserving 

vegetables,  fruit,  and  the  like  (P) 76a 

Falciola,  P.     Nitrites ;    Detection  of ..         ..         ..     856a 

Thiosulphuric  and  nitrous  ions  ;  Reaction  between 413a 

Falk,  C.    See  Falk,  H.  169a 

Falk.  C,  jun.    See  Falk,  H 169a 

II.     Tar;    Manufacture  of (P) 169A 

Falk,   H.   L.,   and   L.    D.    Wood.     Coating  metals   for  the 
purpose  of  permitting  electric  currents  to  operate 

by  the  action  of  light ;  Composition  for (P)  . .     690a 

Falk,  K.     See  Lottermoser,  A.  857a 

Falk,  K.  G.    "  Catalytic  action "        340R 

Falley,  L.  H.    Separating  and  classifying  apparatus  (P)    . .     239a 
.  and  F.   Neumann.    Alkaloids  of  Pareira  root. 

Isochondodendrine 390a 

Fankhauser,  C.  A.    Oils  and  fats  from  oily  and  fatty  sub- 
stances ;    Expressing (P)  508a 

Faragher,  W.  F.,  and  others.    Gasolines  ;    Iodine  values  of 

unsaturated  hydrocarbons  and  cracked . .       90a 

Farbenfabr.  vorm.  F.  Bayer  und  Co.    See  wider  Layer. 

Farber,  C.  W.    See  Breyer,  F.  G 381a 

See  Singmaster,  J.  A . .     381a 

Farbwerke  vorm  Meister,  Lucius,  und  Bruning.    See  under 

Mei^tcr 
Farmer,  R.  C.     Explosives  ;    Velocity  of  decomposition  of 

high in  a  vacuum.    Mercury  fulminate        . .     199a 

Farmers  Standard  Carbide  Co.    See  Rogatz,  W.  B.  . .     670a 

Farrel  Foundry  and  Machine  Co.    See  Bowen,  D.  R.    262a*,  426a 
Farrell,   J.    Carbonising   compounds ;    Process  of   making 

(P)  422a 

Farup.  P.    Destructive  distillation  of  coal  and  other  material 

(P)  456a 

Fascetti.  G.     Butter;  Use  of  acetic  index  (improved  Valenta 

test)  in  detecting  adulteration  of . .         . .     912a 

Faserwerke,  G.m.b.H.    Textile  fibres  ;    Production  of 

from  typha,  rushes,  and  the  like  (P)  . .         . .         . .     498a 

Fasting,  J.   S.,   and  F.   L.   Smidth   &  Co.     Cement  kiln  ; 

Rotary (P)  217a 

Faulstich,  P.  Colour  photography  ;  Manufacture  of  multi- 
colour screens  for  natural (P)  . .  . .  . .     19SA 

Faurholt,  C.    Ammonium  carbamate  ;    Conversion  of 

into  ammonium  carbonate     . .         . .         . .         . .     292a 

Ammonium  carbonate-carbamate  equilibrium  . .         . .     896a 

Faust,  E.  H.    See  Ott,  E 917a 

Fawcett,  D.  L.     See  Fawcett,  T.  C,  Ltd 548a»,  622a* 

Fawcett,  Ltd.,  T.  C,  and  others.  Grinding  mills  of  the  pan 
type  and  other  machines  ;    Bearings  for  vertical 

shafts  of  (P) 622a« 

Pug  mills  for  clay  mixtures  (P)    . .  . .  . .  . .     548a 

Fay,  H.     See  Hurum,  F 218a* 

Fayolle  and  C.  Lormand.  Extraction  of  liquids  by  im- 
miscible liquids  ;    Apparatus  for  . .  . .     839a 

Fearon,    W.    R.,   and   D.    L.   Foster.     Beef  and   mutton; 

Autolysis  of 993a 

Feculose  Co.  of  America.    Paper  ;   Sizing (P)  . .         . .     248a 

Feder,    E.     Meat    products,    especially    meat    with   a   high 

content  of  water ;   Composition  of . .         . .     478a 

Federal  Phosphorus  Co.    See  Carothers,  J.  N 373a 

Federal  Products  Co.     See  Rowland,  A.  J 3S2a 

Feeney,  J.    Lamp  wicks  ;   Process  for  treating (P)    . .     931a 

Fehse,  W.    See  Arndt,  K 865a 

Feigl.  F.     Charcoal  suspensions ;  Oxidising  properties  of 57a 

Phosphoric  acid  ;   Use  of  benzidine  in  detection  of 963a 

K.,    and    A.    Futtermenger.      Catechin ;      Optical 

activity  of 384a 

Feld,  G.  W.    See  Riesenfeld,  E.  H 55a 

abelmer,  W.,  and  W.  W.  Plowman.    Clay;  Treatment 

Of  (P) 254A,   756A,  939a 

and  others.     Rubber;   Manufacture  of (P>  . .         ..     111a 

Plowman,  \v.  w 708a 

Felder,  W.  A.,  ami  Taylor  White  Extracting  Co.    Logwood 

•    (P)        368a 

FeMer-Clement,  Akt.-Ges.  B.    Metal  oxides;    Reduction  of 

by  means  of  aluminium  in  the  furnace  (P)  . 

Tungsten  carbides  ;    Manufacture  of  without  free 

carbon  for  use  as  tools  and  implements  of  all  kinds 

(P)  863A 

Feldman,  H.    Plastic  masses  ;   Production  of (P)      . .       22a 

Felheim,  E.    Cocoa  and  calcium  chloride  ;    Preparation  of 

a  homogeneous  durable  mixture  of (P)        . .     388a 

i  mo,  J.  M.    See  West,  A.  P 866a 

Feltden,   H.   P.,   and  F.   Huberty  ct  Cie.     Milk  vinegar ;   . 

Process  for  obtaining (P)        341a* 

Felix,  K.     Protein  derivative  ;  A  basic ■ 192a 

Felix,  K.  S..  Sachsische  Malzindustrie  und  Nahrmittelfabr. 

Malted  milk  preparation  ;    Production  of   a 

(P)  ....         388a 

Fellncr  u.  Ziegler,  and  M.  Konig.  Lixiviating  salts,  more 
especially  crude  potassium  salts ;  Continuous 
process  of  (P) 632a,  754a 


NAMfl  INDEX. 


35 


PAGE 

Felser,  S .     Si  e  TLiduschka,  A.  674a 

Felten    and    Guilleaume    Carlswerk    A.-G.     Condensation 

products  of  phenols  and  aldehydes  ;  Manufacture  of 

(P)..         W8a 

Insulating  material  for  luting  electrical  conductors  and 

cables  (P)         ..         ..         944a 

Fenaroli,  P.     Mannitol ;    Manufacture  of . .         - .     429a 

Fenton,  J.  T.    Distilling  oils  ;  Process  and  apparatus  for ■ 

(P)  741A 

Feeding  material  to  airtight  treating  chambers  ;  System 

of (P) ' 971a 

Oil-bearing  solids  ;    Treating  (P)  . .         .  -  5a,  537a* 

Oils  ;  Apparatus  for  cracking  and  distilling (P)  . .         5a 

Sulphur  extraction  (P)       ..  ..  327a 

Ferber,  3.     See  Gottschalk,  M.  378a 

Ferencz,  J.     Tube  mill  (P) S45a 

Ferenez,  A.     Cnicus  Bsnedictns  seeds;    Fatty  oil  from  ■     334a 

Ferguson,  J.  B.    Sodium  chloride  ;  Melting  point  and  freezing 

point  of  979a 

Williams,  G.  A.  983a 

Ferguson,  J.  L.     See  Blair,  Campbell  and  McLean,  Ltd.    S86a 

Ferguson,  It.  F.    See  Howe,  R.  M 253a 

Fergusson,  M.,  and  P.  A.  Wagner.     Vanadinite  deposits  in 

the  Transvaal 32a 

Ferjanclc,  S.     See  Samec,  M.   . .  ..  ..  ..  .-       94a 

Fernaudez,  O.,  and  T.  Garmendia.    Bac.  coli;    Biology  of 

.     Endo's  reaction  ..  ..  ..  ..     229a 

Fernandez  Ladreda,  J.  M.     Copper;    Electrolytic    refining 

of  — — .  Separation  of  silver  from  argentiferous  slime    862a 
Fernbach,  L.  A.     Pasteur  ;    What  chemical  industry  owes 

to 519U 

Ferolite,   Ltd.,  and   H.   B.   Clapp.     Gas  producers,  electric 

furnaces,  crucible  furnaces,  and  the  like  ;  Refractory 

linings  for (P) 711a 

Ferre,  L.     Wines  ;    Detection  of  addition  of  a  neutralising 

agent  to  sour  . .         . .         . .         .  -         - .     604a 

Ferro  Chemicals,  Inc.    See  McElroy,  K.  P.  . .         . .     294a 

Fesca,  C.  A.,  und  Sohn.    See  Von  May,  L.  . .         . .     317a* 

Fest,  A.  D.    Recovering  solid  or  liquid  matter  from  a  solution 

or  semi-solution  (P)       ..         ..         ..         ..         ..     450a 

Fester,  G.     Carbon  monoxide  ;    Catalytic  reduction  of 847a 

and  G.  Brude.     Potassium  permanganate  ;    Properties  of 

857a 

Fetkenheuer,   B.    Fluorine  ;    Detection  of  . .         . .     690a 

Fewster,  L.  L,    See  Newton,  S 713a 

Fiberloid  Corp.     See  Brooks,  B.  T 786a 

Flchter,  F.     Oxidation  of  organic  compounds  ;   Biochemical 

and  electrochemical  . .  . .  . .  . .       20a 

and  W.  Jaeck.     Azobenzene  ;    Electrochemical  oxidation 

of      20a 

and  E.  Jenny.     Aluminium  nitride  ;    Heat  of  formation 

of 629A 

and  H.  Lowe.     o-Toluenesulphonamide  ;    Electrochemical 

oxidation  of to  saccharin         .  .  .  .  . .     195a 

and  E.  Kothenberger.     Dimethylaniline  ;    Electrochemical 

oxidation  of  . .         . .         . .         . .         . .     287a 

and  R.  Sitter.     Magnesium  cyanide  . .  . .  . .  . .     462a 

Nitrogen ;    Cathodic  reduction  of  elementary  . .     293a 

Fiechter,  L.  B.     Filter  for  gases  ;    Sand  (P)  . .  . .     239a 

Fiechtl,  F.     Smelting  furnace  ;    Vertical  (P)   . .  . .     673a 

Field,  C,   and    Chemical  Machinery  Corp.     Drying  process 

and    apparatus   (P)     . .  . .  . .  . .  . .     657a 

Heating  at  high  temperatures  ;    Method  of (P)  . .     164a 

Field,  D.  F.     Fuel  for  internal-combustion  engines  (P)     . .     974a 

Field,  E.     See  Almy,  L.  H 29a,  342a 

Field,  S..  and  Metals  Extraction  Corp.,  Ltd.    Zinc  solutions  ; 

Purification  of (P)         823a* 

Fieldner,  A.  C,  and  G.  W.  Jones.     Carburettor  adjustment 

by  gas  analysis  . .  . .  . .  . .  . .  . .     622a 

and  others.     Coal  ash  ;    Comparison  of  standard  gas  fur- 
nace and  micropyrometer  methods  of  determining 

fusibility  of  738A 

Rock  dust  in  air  ;  Sugar-tube  method  of  determining 526a 

Fierz,  H.    E.     Swiss  chemical  industry  and  the  movement 

for  protection  in  allied  countries      ..         ..         ..     113R 

and  H.  A.   Prater.    Nickel ;    Production  of  from 

niekel-carbonyl    (P)      . .  . .  . .  . .  . .     943a 

and  R.  Sallmann.    pm-Naphthindigo  ;   Attempts  to  pre- 
pare   ,  and  behaviour   of    azo    dyestuffs  from 

naphthylglycines  . .  . .  . .  . .  . .     625a 

and  R.  Tobler.     2.3.2'.3'.-Naphthindigo 625a 

Fierz-David,  H.  E.     "  Farbenchemie  ;    Grundlegene  Opera- 

tionen    der  ."       . .  . .  . .  . .  . .     517r 

Fieser,  L.  F.     Sec  Conant,  J.  B 539a 

Fillius,  M.  F.       ee  Jones,  L.  A.  392a 

Film  Coolin  ■  Towers.     See  Bennett,  CM.  . .         . .     796a 

Finch,  G.    .,  and  R.  H.  K.  Peto.     Phosphoric  oxide  ;   Puri- 

tiration    of    . .  . .  . .  . .  . .     414a 

Finckh.  £.,  and  Patent -Treuhand-Ges.  fiir  Elektrische  Gliih- 

lampen  m.b.H.     Electrical  glow  lamps  and  the  like  ; 

Exhausting  and  sealing  (P)    . .  . .  . .     363A 

Findlay,    A.,    and    C.    Rosebourne.     Ammonium    nitrate ; 

Decomposition  and  stabilisation  of in  presence 

of  oxidisable  material  . .         . .         . .         . .         . .       58t 


page 
Findley,  A.  E.     Coal  ;   Some  effects  of  chlorides  on  products 

of  distillation  of 30T 

and  R.  Wigginton.     Coal ;    Separation  of  constituents  of 

banded  bituminous  . .         . .         . .         . .     531a 

Fink,  G.  J.     Whitewashes  and  aqueous  lime  paints  ;  Investi- 
gation of  ..  ..  ..  ..  ..     557A 

See  Holmes,  M.  L.  750A 

Finks,  A.  J.     See  Jones,  D.  B.  342a,  873a 

Fioroni,  W.    See  Karrer,  P 910a 

Fireman.  P.,  and  Magnetic  Pigment  Co.     Pigments  ;   Manu- 
facture of (P) 639a,  771A,  947A 

Firth,  J.  B.     Safeguarding  of  Industries  Act  ..  ..       59R 

Fischer,    A.,    and    W.    Classen.     Dithionates ;     Volumetric 

determination  of  . .         . .         . .         . .     413a 

Fischer,  C.  W.     See  Bailey,  G.  C 687a 

Fischer,  F.     Coal ;  Formation  and  chemical  structure  of 207a 

Lignite  producer-gas  tar   . .  . .  . .  . .  . .     245a 

Motor  spirit ;  Manufacture  of from  low -temperature 

tars  from  coal  and  lignite,  and  conversion  of  the 
phenols  or  creosote  into   benzol      . .  . .  . .       46a 

Resinous  substances  ;   Production  of from  phenols 

(P)  22a 

S^ajis  ;  Process  for  making  odourless from  marine 

animal  oils  (P)  ..  ..  ..  ..  ..  ..      720a 

Toluene  and  benzene ;  Reactions  upon  organic  substances 
at  temperatures  of  red  heat  or  above,  e.g.,  produc- 
tion of from  cresol  (P) 212a 

and  H.  Schrader.     Benzol  from  lignite 932a 

Coal ;   Formation  and  chemical  structure  of ■        . .     317a 

and  H.  Tropsch.     Fatty  acids;    Manufacture  of from 

montan  wax  (P)  261A 

and  others.     Activated  carbon  ;    Suitability   of   different 

coals  and  vegetable  materials  for  preparation  of 851a 

Benzol ;    Conversion  of  phenols  of  coke-oven  tar  and 

low-temperature  tar  into  in  an  experimental 

installation 891a,  931a 

Gas  of  high  calorific  value  ;   Obtaining by  treating 

distillation  gases  with  active  charcoal  under  pressure     451a 
Low-temperature  tar  ;  Absence  of  naphthalene  and  pre- 
sence of  naphthalene  derivatives  in . .         . .     211a 

Phenols ;     Extraction   of  with  sodium  sulphide 

solution  ..  ..  ..  ..  ..  .-.     134a 

Fischer,  H.     See  Schmidt,  E.  198A 

Fischer,  M.  H.,  and  others.     "Soaps  and  proteins:    their 

colloid  chemistry  in  theory  and  practice  "  . .  . .     139s 
Fischer,  O.    o-Aminoazo  compounds  and  aldehydes  ;    Con- 
stitution of  products  of  interaction  of . .     703a 

and   M.    Bolimann.    Fluorescein ;    Formation   and    pro- 
perties of  "  . .  . .  . .  . .  . .     703A 

Fischer,  R.     Carbon  oxysulphide  ;   Pharmacology  of . .     231A 

and  H.  Siegrist.     Colouring  matters  ;    Formation  of 

by  oxidation  by  means  of  silver  halides  exposed 

to  light 838A 

Fischl,  J.     See  Frankel,  S 430a 

Fish,  J.  R.    See  Jackson  &  Bro.,  Ltd.  . .         . .         . .     705a* 

Fish,    F.    K.,    jun.,  and    Wood  Products  and  By-Products 

Corp.     Paper  pulp  ;    Process  of  making  from 

wood    <P)  459a 

Fishenden,  M.  W.     Coke ;    Efficiency  of    low-temperature 

in  domestic  appliances  . .         ..         ..         ..       13a 

Fisher,  H.  F.,  and  Research  Corp.     Electric  precipitator  ; 

Self-cleaning (P) 971a 

Fisher,  H.  L.,  and  others.     Rubber  hydrocarbon  ;    Tetra- 

bromide  method  of  estimating  the . .         . .     110a 

Fisher,  J.  P.,  and  Doherty  Research  Co.     Gases  ;  Apparatus 

for  removing  suspended  matter  from  (P)   . .     622a 

Fisher,  L.     See  Madden,  J.  P.  649a 

Fisher,  R.  B.     See  Dyffryn  Works,  Ltd 401a* 

Fisher,  W.  H.,  and  P.  Chambers.     Cementation  of  iron  and 

iron  alloys  (P) 62a 

Fisk  Rubber  Co.     See  Naylor,  R.  B 559A 

Fitzgerald,  F.  W.  V.     Blood  ;    Processes  for  preserving  the 

fluidity  of (P) 78lA 

Fitzpatrick,  J.     Ozone  generator  (P)  181 A 

Fleck,  A.     See  Wallace,  T 12a 

Flecker,  O.  J.,  and  M.  Taylor.     Soap  solutions  ;  Constitution 

of .     Sodium  behenate  and  sodium  nonoate  . .     599a 

Fleetwood,  J.  H.     Filter  (P) 400a 

Fleischer,    E.     Coal  distillation  products  ;     Manufacture   of 

(P)  322a* 

Ores ;  Simultaneous  preheating  or  roasting  and  re- 
duction of  (P) 471a 

Fleischhauer,  C.     See  Schxoeter,  G.  133a 

Fleischmann,  W.    See  Fiixth,  0 306a 

Fleischmann   Co.     See  McDermott,   F.   A 232a 

See   Nilsson,   M 190a 

Fleitmann,  Witte  und  Co.     See  Vereinigte  Deutsche  Nickel- 

Werke  A.-G 

Fleming,  A.  G.     Cement ;    Study  of  conditions  causing  dis- 
integration of  under  the  "accelerated"  test     300T 

Fleming,  W.  D.     Vitamin  content  of  rice  by  the  yeast  method. 
Organic  nitrogen  as  a  possible  factor  in  the  stimu- 
lation of  yeast . .  ..         ..         ..         ..         ..       74a 

Fletcher,  H.  P.,  and  A.  J.  Parker.     Oil  paints  ;   Conversion 

of  water  pastes  into  ■ (P) 301a* 

c2 


36 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Fletcher,  J.  A.    Solids  of  different  specific  gravities  ;  Means 

for  separating  (P) 698a* 

Fletcher,  L.     See  Tait,  A 724a 

Fletcher,  E.  J.,  and  Fletcher  Electro  Salvage  Co.,  Ltd.     Iron 
alloys  of  iron;    Electrodeposition  of  metals 

upon   — —  (P)  555A* 

Fletcher    Electro  Salvage  Co.,  Ltd.     See  Fletcher,  II.  J.    555a* 

Flett,  L.  H.    See  Balph,  W.  M.  458a 

Floury,  P.,  and  G.  Poirot.     Furfural ;    Colorimetric  deter- 
mination of  small  quantities  of . .  . .  . .     685a 

and  D.  L.  Robertson.     Drying  apparatus  (P)  . .     971a* 

Flight,  W.  S.    Insulating  materials  ;  Effect  of  heat  on  electric 

Btrength  of  some ..        ..        ..        ..        ..     222a 

Flint,  A.  H.     See  Brindle,  R.  G 450a 

Flint,  C.  S.    See  Albertus,  F.  A 506a 

Flood,  S.  H.     See  Hall,  L 890a* 

Florentln,    I).     Carbon   and    coal;     Oxidation   of   different 

varieties  of by  chromic  acid    . .  . .  . .     972a 

Florentln.     See  Marqueyrol        . .  . .  . .  . .  . .     349a 

Florin,  A.     Gas  washers  (P) 740a 

Fodor,  A.     Proteins;   Colloid-chemistry  of ..  ..     515a 

See  Abderhalden,  E. . .       28a 

Foerstcr,  F.     Nitrous  anhydride  ..  ..  .,  ..     249a 

and   W.  Geislcr.     Sulphur  of  coal ;    Behaviour  of 

during  dry  distillation  ..  ..  ..  ..     401A 

Folilen,  J.     Calorific  power  of  fuel  ;    Calculation  of  as 

a  function  of  its  content  of  water  and  mineral  matter     798a 
Foix,  A.    Coal  from  deep  strata  ;  Composition  and  calorific 

power  of 797a 

See  Muller,  J.  A 731a,  731a 

Folchi,    P.      Naphthalene-formaldehyde    condensation    pro- 
ducts;   Preparation  of  ■  and  their  suitability 

for  the  varnish  industry         . .  . .  . ,  . .     720a 

Folin,  O.,  and  J.  M.  Looney.     Tyrosine,  tryptophan,  ami 
cystine ;     Colorimetric    methods   for   the   separate 

estimation  of in  proteins  . .  . .  . .     526a 

Fonda,  G.  R.,  and  H.  N.  Van  Aernera.     Methane  ;    Puri- 
fication of  gases  from . .  . .  . .  . .     537a 

Fonrobert,   E.     Phenol-aldehyde  condensation  products  as 
substitutes    for    shellac    in    spirit    varnishes    and 
polishes  . .  . .  . .  . .  . .  . .  . .     558a 

and  others.     "  Kautschuk  und  Flechtenstoffe  "  . .  . .     109R 

Fonzes-Dlacon.     Goats'  milk  ;  Simplified  molecular  constant 

of 191a 

Fooks,  N.  H.  ,  Food  and  other  substances  ;    Cooking  and 

sterilisation  of  by  heat  in  sealed  containers 

(P)  30a*,  432a* 

Footitt,  F.  F.     See  "Washburn,  E.  "W.  176a 

Forbes,  D.  L.   H.     Precious  metals  ;    Cyanide  process  for 

treating  ores  of (P)        ..         ..         ..         ..     901a 

Forbes,  E.    Bleaching  composition  (P)         139a 

Forcellon.  H.,  and  Alpha  Products    Co.     Sparking  alloys  ; 

Protecting (P) 20a 

Ford,  G.  W.     See  Haughton,  J.  L 291k 

Ford,  O.  A.,  and  M.  J.  Thompson.     Peat,  lignite,  and  other 

carbonaceous  substances  ;    Conversion  of into 

artificial  coal  (P)  740A 

Formby,  G.  M.,  and  Forraby  Petrinite  Corp.     Plastic  com- 
position ;   Manufacture  of (P)  . .  . .  . .     329a 

Formby  Petrinite  Corp.     See  Formby,  G.  M.  . .  . .     329a 

Formstecher,  F.     Colloidal  silver  toning  with  tin  salts  . .       80a 

Photographic  print-out  images  ;    Change  of  colour  of 

on  fixing 960a 

Fornandcr,  E.     Ores  ;    Reducing in  electric  blast  fur- 
naces (PJ            901a 

Fornas,  L.     Gas  producer  (P) 624a* 

Fornet,  A.     Flours  ;   Method  of  determining  and  identifying 

in  bakery  products  and  foods  by  examining 

the  crude  fibre 953a 

Forrer,  M.     Lead  chamber  sulphuric  acid  process  ;  Physico- 
chemical  study  of  the . .  . .  . .  . .     809a 

Forscillo,  L.  F.     Condensing  or  heating  device ;   Fluid 

(P)  358a 

Forster,  A.,  and  J.  Reilly.    Colloid  mill ;  The . .  435E 

Forstcr,  C.     Sec  Forster,  H 855A* 

Forster,  H.     Cotton  and  mixed  fabrics  ;   Process  for  obtain- 

insparent  effects  on (P) 291a 

and  C.    Forster,     Cotton;    Process  for  imparting  trans- 

parent  effects  to (P) 855a* 

Forster,  M.  O.,  and  W.  B.  Saville.     Picroroeellin,  a  diketo- 
pIperaEine    derivative    from     Jiocella    /uciformis; 

•    m  i  it  ution  of ..  ..  ..  ..  ..     517a 

Forster.     Nitro    croup    in    aromatic    organic    compounds ; 

Estimation  Of  — — .     Discussion      ..         ..         ..     161t 

Volatile  matter  In  fuels  ;   Determination  of .     Dls- 

m 373T 

Fortescue,  C.  Le  <:.,  and  Westinghouse  Electric  and  Mfg.  Co. 

leal  precipitation  j  Apparatus  for (P)  ..     790a 

brode  for  precipitating  apparatus;    Ionising  

C)  797a 

Fosse,  R.     Hydrogen  cyanide;    Synthesis  of  by  oxi- 

dat  ion  of  ammonia  and  of  carbohydrates,  glycerol,  or 
formaldehyde    . .        . .        . .        . .         . .         , .       "~a 


Fosse,  R. — continued. 
and  A.  Hleulle.     Hydrocyanic  acid  ;    Synthesis  of  

by  oxidation  of  alcohols,  phenols,  and  amines  in 

ammoniacal  silver  solution     . . 
Foster,  A.  S.     Gasification  of  coal  and  other  carbonaceous 

material  (P) 

Foster,  D.  L.     See  Fearon,  W.  R 

Foster,  H.     Furnaces  (P) 

Foster,  H.  J.     See  Evers,  N 

Foster,  J.  P.     Motor  fuel ;   Composite ■  (P) 

Foster,  S.  B.     See  Thomas,  A.  W 135a, 

Foster-Reinhold  Laboratories.    See  Reinhold,  O.  F. 
Fothergill,  H.     Gases  ;    Apparatus  for  removing from 

liquids  <P)  43A, 

Foulk,  C.  W.,  and  S.  Morris.     Iodine  ;    Comparative  value 

of  different  specimens  of for  use  in  chemical 

measurements 
Fouracre,  R.     Refractive  indices  of  liquids  ;    Simple  instru- 
ment for  measuring 

Fourncau,  E.     "  Medicaments  organiques  ;    Preparation  des 

andJ.Puyal.     Novocaine  ;  Homologucs  of .. 

Fournier,  P.  R.     See  Bernot,  V. 

Fournier  d'Albe,  E.  E.     See  Von  Richter,  V. 

Fowler,  G.  J.     Sewage  sludge  ;  Activated .     Discussion 

and   B.    Bannerjee.     Megasse   (sugar  cane  refuse)  ;     Ex- 
periments   on    production   of    power   alcohol   and 

paper  pulp  from 

and  R.  R.  Deo.     Water  ;  Purification  of by  activati  1 

silt  

and  D.  L.  Sen.    Bacteria  associated  with  rice  and  other 

cereals 
and  M.   Srinivasiah.     Indigo  dye  vat ;    Biochemistry  of 

the  indigenous 

and  others.     Glue  and  gelatin ;    Use  of  antiseptics  in 

manufacture  of .. 

Fowler,  H.     Non-ferrous  metals  used  in  locomotives  ;  Effect 

of  superheated  steam  on . .         . .      417R, 

Fox,  J.  J.     Cresylic  acid.     Corrigenda. . 

and  A.  J.  H.  Gauge.     Tar  acids  and  tar  bases  in  road 

drainage  and  mud ;    Determination  of  ■   173T, 

Fox  well,  G.  E.     Ammonia  ;    Thermal  dissociation  of  

with  special  reference  to  coke-oven  conditions     .. 
Frankel,  H.  A.     Coke  ;   Plant  for  quenching  and  conveying 

(P)  

Frankel,  S.     Vitamins 

and  J.   Fischl.     Fusel  oil ;    Increasing  the  yield   of  

during  fermentation  (P) 
and  J.  Hager.     Vitamins.    Acceleration  of  yeast  fermen- 
tation by  extracts  of  animal  organs 
and  P.  Jeilinek.     Casein;    Products  of  prolonged  try  pile 

digestion  of 

and  A.  Seharf.     Vitamins  ;  Adsorption  of ■ 

Vitamins  ;    Chemistry  of 

Vitamins.  Fermentation-accelerating  iurluence  of  ex- 
tracts from  plants,  and  action  of  choline  and  amino- 
ethyl  alcohol  on  fermentation 

Fraenkel,  W.     Gold  ;  Recrystallisation  of  pure solidified 

from  the  molten  metal  and  mechanically  unstrained 

and  E.  Scheuer.     Aluminium  alloys  ;    Ageing  of ■    . . 

France,  A.     Coal  and  the  like  ;  Washing  of (P). . 

Francis,  A.  G.     Radium  ;   Recovery  of from  luminous 

paint 
Francis,  C.  K.,  and  H.  T.  Bennett.     Petroleum  ;    Surface 

tension  of . . 

Francis,   F.,   and   others.     Paraffin   wax  ;     Composition   of 

300a, 

Franeke,  C.     Gas  retort ;   Fireclay with  iron  reinforce- 
ment (P)            

Franck-Philipson,   A.     Disinfectants ;     Producing   solidified 

soluble  (P)  31a 

Franco,  C.    See  Sborgl,  U 

Francois,  M.,  and  L.  G.  Blanc.    Alkaloidal  bismuthic  iodides  ; 

Preparation  of  crystallised 

Alkaloidal  mercuric  iodides  ;    Preparation  of  crystalline 


156a 

974a 
993a 
357a 
561E 
5A 
302A 
379a 

451a* 


of 


-in   cresol-soap 


Frank,  A.  R.     See  Caro,  N. 
Frank,  F.     See  Marckwald,  E. 
Frank,    L.     Cresol  ;     Determination 
solutions 

Franklin,  II.  J.,  and  J.  Puttingall.     Fuel  (P) 

Franzen,    H.     Shaking    machine    for    large    quantities    of 

liquids  ;    Laboratory 

and  F.  llelwert.     Cherry  (Prunus  avium) ;   Acids  present 

in  the 

and   E.  Kcyssner.     Green  plants  ;    Chemical  constituents 

of    .     Presence    of    ethylidenelactic    acid    in 

blackberry  (Habits  fructicosits)  leaves 
and  E.  Stern.     Lactic  and  succinic  acids  ;    Occurrence  of 

in  the  leaves  of  the  raspberry 

Frary,  F.  C,  and  Aluminium  Co.  of  America.     Aluminium 

alloy  (P)     422a, 

Aluminium  chloride  ;  Method  of  manufacturing (P) 

See  Edwards,  J.  D. 


690A 
65E 

518A 

542a 

207R 

72T 

227A 
432A 
431A 

410a 
126a 

819a 
338T 

194a 

114T 

624a* 
563A 

430A 

265A 

789A 
205A 
265A 

205a 

900A 
331 A 

•?93a 

94T 

623A 

800A 

209A 

,  77a* 
810a 

6S4a 

645A 

34A 

906A 

433a 
973a 

S80A 
875A 

194a 
783a 

638a* 
031a 

332a 


NAME  INDEX. 


37 


PAGE 

Fraser,  W.  G.     Paper  manufacture  ;    Chemical  engineering 

of ..  531R 

Fraymouth,  W.  A.,  and  others.  Extraction  of  soluble  matt.r 
from  powdered  or  crushed  material  or  substances 

other  than  tanstuffs  (P)  ...     400a 

Sticklac  ;    Separating  impurities  from  to  obtain 

pure  lac  resin  (P)         . .         . .         . .         . .         •  •     300a 

Tannin  ;   Extraction  of from  tanstuffs  (P)  . .     476a 

Frazier,  C.  E.     Glass-annealing  lehrs  ;   Operation  of . .     217A 

Frazier,  W.  C.,  and  E.  B.  Fred.  Legume  bacteria  ;  Move- 
ment of in  soil     . .         . .         . .         . .         .  ■     869a 

FTe.i.    E.    B.,    and    othere.    Pentose-destroying    bacteria; 

Characteristics  of  certain especially  as  concerns 

their  action  on  arabinose  and  xylose  ..         ..       "-^ 

SeeBrunkow.  O.  E.  USA 

See  Frazier,  W.  C 869a 

See  Peterson,  W.  H.  778a,  992a 

Waksman.  S.  A.  S69a 

Frederiksstad  Elektrokemiske  Fabriker  A./S.  See  Lang- 
hard,  J.  K 253a* 

Frederking,  H.    See  Heermann,  P 54A,  2!  4a 

Fredriksson,  J.,  and  Kalbfleisch  Corp.     Hydrochloric  acid  ; 

Production  of  highly  concentrated (P)  . .       57a 

Free,  E.  E.    Fertiliser  and  its  use  (P)  338a 

Freedman,  P.,  and    E.   Greetham.    Metals ;   Extraction  of 

from  their  compounds  (P)       . .         . .      596A,  986a* 

Freeman,  3.  W.     See  Cardin,  W.  0 657a 

"  Freeses   Patent "    Eisenschutz    und    Schraubenwellenbe- 

kleidung  fiir  Schiffe  Ges.  Coating  composition  for 
preservation  of  wood,  pasteboard,  masonry,  leather, 
sheet  iron,  fabrics,  etc.  (P)      . .         . .         . .         . .       66a 

See  Heck,  E.  559a* 

Frel,  E.    See  Bunte,  K.  452a 

Frelse,  H.     Coking  installation  with  internal  heating  (P)    . .     283a 
Frejacques,  M.    See  Matignon,  C.        . .     231a.  413a,  519a, 

587a,  646a 

French,  A.  W.    Presses;  Oil  and  like (P)         ..         ..     S2fiA* 

French,  C.  A.,  and  International  Harvester  Co.    Refractory 

material ;   Process  of  making (P)         . .  . .     548A 

French,    E.    H.    Lime-sulphur    composition ;     Method    of 

making  dry  soluble (P) 683a 

French,  H.  F.    See  Benner,  R.  C 507a,  768a,  943a 

French,  H.  J.  Boiler  plate  after  cold-work  or  work  at  blue- 
heat         712a 

Steel  boiler  plate  ;    Effect  of  rate  of  loading  on  tensile 

properties  of . .         . .         . .         . .         . .     759a 

Wrought  iron  boiler  plate  ;    Strength  and  elasticity  of 

at  elevated  temperatures  . .  . .  . .     635a 

French,  J.   W.     Glass ;    Abrasives  and  polishing  powders 

for 173R 

French,  R.  De  L.    Lignite  ;   Carbonisation  of  Western ■       16t 

Frentrup,  H.  M.,  and  P.  Kiederich.  Hydrocarbon  oils  and 
other  oils  and  fats  ;    Increasing  the  consistency  of 

(P)  889a 

Fresenius,  L.     See  Lemmexmann,  O.  384A 

Fresenius.    W.,   and  L.  Griinhut.    Formic  acid  in    wine ; 

Detection  of . .         . .         . .         . .         . .     190a 

Freudenberg,  K.     Catechin       601a 

and  L.  Orthuer.    Flavanone  ;   Reduction  of ..     601a 

and  W.  Scilasi.     Chinese  tannin       906a 

and  E.  Vollbrecht.    Tannase  67a,  184a 

Tannin  of  German  oak 906a 

and  others.    Catechins ;    Stereoisonieric  . .         . .     601a 

See  Vollbrecht,  E 24a 

Freudenberger,  J.    Bacteria  ;  Process  for  killing  and 

sterilising  articles  (P)  . .         . .         . .         . .         . .     433a 

Freuler,  A.    See  Treadwell,  W.  D 919a 

Freund,  E.    See  Schering,  E.               438a 

Freundler.    See  Bertrand,  G.               462a 

Frey,  R.  W.     See  Veitch,  F.  P.              907a 

Frick,  F.  F.    See  Laist,  F 864a 

Frick,  O.  Electric  induction  furnaces  for  melting  and  re- 
fining steel,  etc.  (P) 673a 

Fricke,  K.    Glycerin  ;    Precipitation  of  impurities  in  crude 

with  lead  hydroxide     . .         . .         . .         . .  148a 

See  Lamberts,  M 223a 

Fricke,  R.  Acetaldehyde,  aldol,  and  glyoxylic  acid  ;  Analy- 
tical recognition  and  differentiation  of . .     268a 

Acetaldehyde    and    other   aldehydes ;     Silver    method 

for  determination  of  . .         . .         . .         . .     345a 

See  Stepp,  W 197a 

Friedebach,  M.     See  Kaufmann,  H.  P 598a 

Friedemann,  W.  G.  Proteins  extracted  by  0'2%  sodium 
hydroxide  solution  from  cottonseed  meal,  soya  beans, 
and  coconut ;    Nitrogen  distribution  of  . .     342a 

Friederich,  E.,  and  General  Electric  Co.    Arc  lamp;  Inclosed 

and  method  of  starting  it  (P)  . .         . .         . .     661a 

Friederich,  W.  Detonating  caps  for  mining  and  military  pur- 
poses ;  Manufacture  of  (P) 730a* 

Priming  compositions  ;    Manufacture  of  (P)       . .     568a 

Friederich.     Compositions  for  fuses  ;  Preparation  of (P)     441a 


pact 

Friedlander,  P.    Dyestuffs  from  Purpura  aperta  and  P.  lapUlus    582a 

and   K.    Kunz,     N.N'-Diphenylindigotin    ..         ..         ..     582a 

and    others.    Indigoid    dyestuffs    of    phenanthrenc    and 

indanthrene   series       . .         . .         . .         . .         . .     582a 

Friedrich,  A.    See  Zinke,  A 509a 

Friedrich,  K.     Glaze  for  building  materials,  in  particular 

cement;  Producing  a  cold (P) 143a* 

Friedrich,  W.    See  Meyer,  J 667a 

Friend,  J.  N.     "Corrosion  of  iron"  ..         ..         ..         ..     300R 

and  J.  H.  Dennett.     Iron  :  Rate  of  solution  of  ■  in 

dilute   sulphuric  acid   both   when  stationary  and 
under  rotation  . .         . .         . .         . .         . .         . .     179a 

and  R.H.  Vallance.     Colloids;  Influence  of  protective 

on  corrosion  of  metals  and  on  velocity  of  chemical 

and  physical  change   ..         ..         ..         .,         . .     378a 

Fries,  A.  A.,  and  C.  J.  West.     "  Chemical  warfare  "  . .         . .     229r 

Friese,  R.  M.    Insulating  oils  ;  Dielectric  (breakdown)  value 

of 147a 

Friese-Greene,  C.  H.    See  Humphery,  R.  O.  P 729a 

Frink,  R.  L.     Glass-melting  furnaces ;    Tank  (P)    . .     102a 

Moulds  ;   Metallic for  forming  glass  articles  (P)  . .     711a 

Viscosity  of  highly  viscous  materials,  e.g.,  molten  glass, 

pitch,  tar,  etc. ;    Determination  of  (P)      . .       83a 

Frisak,  A.     Sulphuric  acid  ;  Attack  of  lead  in  concentration 

of 412a 

Frischer,  H.     Nitric  acid  ;  Manufacture  of  highly  concentrat- 
ed   ■  (P) 98a 

Sulphur  ;  Recovery  of from  gases  containing  hydro- 
gen sulphide  (P)         502a 

Sulphuric  acid  solutions  from  concentration  of  nitric 
acid  and  denitration  processes  ;  Concentrating 

(P)  ISA 

Frltsch,  A.    See  Kurtenacker,  A 

Fritsche,  W.    Fuels  ;    Systematic  examination  of  soli  1  

with  particular  reference  to  direct  determination 

of  volatile  matter        ..         ..         ..         ..         ..     128a 

Fritschi,  J.    See  Staudinger,    H S68a 

Fritzmaun,  E.     Hydrocyanic  acid  ;    Laboratory  preparation 

of  large  quantities  of . .  . .  . .  . .     979a 

and  K.  Macjulevitsch.    Volatile  substances  in  air  of  rubber 

factories,  etc. ;    Determination  of    . .         . .     9S9A 

Frobocse,  K.     See  Froboese,  V SSli 

Froboese,    V.     Artificial    leather   as    substitute    for   sweat 

leathers  ((hat  linings,  etc.),  and  its  testing  . .          . .       68a 
and  K.  Froboese.     Aluminium  in  tungsten  ;    Determina- 
tion  of  331A 

Froelich,  R.    Kaolin ;    Process  of  producing    (P)     . .     756a 

Froschel,  P.,  and  R.  Weiss.    Depilatory  (P) 959a 

Froeschl,  N.    See  Philippi,  E 727a 

Frog,  F.,  and  S.  Schmidt-Nielsen.    Butter  fat ;  Distribution 

of  fatty  acids  of 306a 

Frohman,  E.  D.     Refractory  material  (P) 939a* 

Froidevaux,     J.    Ammoniacal     nitrogen     in     nitrogenous 
organic  substances ;    Determination  of  ,  par- 
ticularly in  proteins  and  their  hydrolytic  products    526a 
Fromm,  E.,  and  E.  Honold.     Cyanamidoethyl  alcohol  and 

guanidoethyl  alcohol.    Syntheses  with  cyanamide    391a 
Fromont,  G.    Electrolyte  for  use  in  lead  accumulators  (P)     IOSa 

Fronda,  F.  M.    See  Maynard,  L.  A.  606a 

Frood,  H.     Composition  applicable  for  use  as  floor  coverings 

and  the  like  and  for  other  purposes  (P)    . .         . .     335a 
and  H.  P.  Alger.     Caoutchouc  and  caoutchouc-like  sub- 
stances and  compounds  thereof ;  Fireproofing  natural 

and  artificial (P) 772a 

Frost,  H.,  and  Co.    See  Frost,  W 919a 

Frost,  T.  H.     See  McAdams,  W.  H.  279A 

Frost,  W..  and  H.  Frost  and  Co.    Vulcanisable  compositions 

(P)  949a 

Fry,  F.  B.,  and  H.  A.  Wilson  Co.     Platinum  alloy  (P)   ..     258a 

Fry,  H   E.    Manure  (P) 70a 

Fuchs.  C.  S.     Colour-lakes  insoluble  in  oils  ;    Manufacture 

of  (P) 1 

Fuchs,  E.    See  Brigl,  P.  424a 

Fuchs,  F.  J.    See  Kendall,  J.  98a 

Fuchs,  K.    See  Spatb,  E 390a 

Fiirth,  O.,  and  W.  Fleischmann.    Tyrosine  content  of  pro- 
teins ;     Determination    of   . .  . .  . .     306a 

and  F.  Lieben.     Lactic  acid  ;    Decomposition  of by 

yeast 952a 

Tryptophan ;      Colorimetric     experiments     on     . 

Tryptophan  content  of  some  foods  . .         . .         . .     192a 

Fuhrmann,  W.    See  Renger,  L 1a,  163a 

Fujibayashi,  T.    Metals  ;    Preparation  of  some  special 

by  Goldschmidt's  aluniinothermic  process  . .         . .     595a 

Fujino,  K.    Wood;    Drying  (P)  417a 

Fukuta,  S.     Steels  ;  Effect  of  longitudinal  stress  on  electrical 

resistance  of  carbon  . .         . .         . .         . .     759a 

Fulcher,  W.  H.     Pulveriser  ;    Rotary  (P)        . .         . .     845a 

Fulcra  Tan  Co.    See  Tullis,  J.  K 869a 

Fulda,  W.    See  Vereinigte  Aluminiumwerke  A.-G.  . .     754a 

Fuller,  D.  H.     Clay  mixtures  ;   Bond ■  for  glass  pots  . .     101a 

Fuller,  E.  W.    See  Wilson,  R.  E „     743a 


38 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY 


PAQE 

Fuller,  F.  A.    See  McKirahan,  S 766a 

Fuller  II.,  and  others.     Furnaces  for  heat  treatmentof  metal 

hars  etc.,  by  the  salt-bath  process  (P)         . .         . .  20a* 

Fuller-Lchigh  Co.    See  ICacmmerling,  G.  II.              . .         . .  074a 
E.  T.,  and  V.  E.  Nelson.    Yeast  growth  ;    Water- 
soluble  B  and  bios  in  . .         . .         . .         . .  340a 

Fulton,  C.  E.,  and  Pittsburgh  Plate  Glass  Co.    Earthenware  ; 

Manufacture  of  (P) 59a 

Fulton,  K.  H.    Cellular  rubber  material ;  Process  ot  producing 

(D           . .  869a 

Fulton,  It.  K.  Pyrotechnic  composition  (P)  . .                    . .  81a 

Fulweiler,  \V.  II.     Presentation  of  Grasselli  Medal              . .  499R 
Viscosity  of  petroleum  and  other  oils  ; 

Determination  of  absolute  - — —      . .          . .         . .  928A 

Funk,  C,  and  IT.  E.  Dubin.    Vitamin  requirements  of  certain 

and  bacteria    . .          . .          . .          . .          . .  72A 

Funk,  n.    See  Manchot,  W 251a,  900A 

Funke,  G.  I.,     amylase  of  Aspergillus  niger  :    Influence  of 
hydrogen  ion  concentration  upon  the  action  of  the 

- — 604A 

Furness,  R.    Sodium  silicate  as  an  adhesive  . .         . .         . .  381R 

i'urusaki,  H.     Calcium  carbide  ;    Calculation  of  power  con- 
sumption in  manufacture  of ..         ..         ..  544a 

Futtermengcr,  A.    See  Feist,  K 384a 

Fuwa,  T.     See  Hnrsch,  W.  G.               421A 

oable,  C.  S.             183a 

See  Wilson,  It.  E.              925a 

FviV,  A.  W.,  and  British  Dyestuffs  Corp.     l-Chloro-2-amino- 

antliraquinone  ;  Manufacture  of (P)  . .         . .  170a 

Fyleman,  E.    Oil  or  bitumen  ;   Separation  of  adherent 

from    rock           14T 

G 

Gadais,  L.    Pyrites  ;    Determination  of  sulphur  in  . .  12a 

Caddy,  V.  1.."   See  Erase,  N.  W 610A 

Gadre,  S.  T.,  and  B.  C.  Mukerji.     Otto  of  rose  ;  Indian 192K 

"  Gafag "    Gasfeuerungsges.    Wentzel    und    Co.    See  under 
Wentzi-1. 

Qaffy,  P.  J.     Explosive  (P) 81a 

Gage,  H.  P.    See  Taylor,  W.  C.             374a 

Gail,  J.  B.,  and  N.  Adam.    Water  purifiers  (P)     ..         ..  565a 

Galley,  Z.  J.    See  Tartar,  H.  V 969a 

Gaillard,  E.  A.  .Sulphuric  acid;    Manufacture  of (P)  546a* 

Gaillard,  F.  A.    Sulphuric  acid  chambers  or  towers  ;  Improv- 
ing the  working  of (P) 215A 

Gaillet,   P.   H.   A.     Filling  material ;    Pyramidal  for 

apparatus    for    purification    of    liquids,    vapours, 

and  gases  (P) 128a* 

Gaiser,  O.     Electric  gas  cell  (P)            259a 

Galabutsky,  P.  G.    See  Duschsky,  J.  E 642a 

Oalanos,  S.    See  Pflzenmaier,  K 784a 

Galbraith,   W.   L.,  and  others.    Amines ;    Manufacture  of 

■ from  phenolic  compounds  (P)  . .         . .         . .  743a 

See  Lewcock,  W 566a 

Galibourg,  J.,  and  M.   Batlay.    Cementation ;    Protection 

against by  direct  application  of  a  paint  coating  419a 

and  A.  Brlson.     Aluminium  bronze  ;   Use  of  uterography 

for  control  of  casting  of . .         . .         . .         . .  106a 

Galibourg.    Steels ;    Utilisation  of  contact  thermo-electric 

force  for  identification  of  some . .         . .  218a 

Galizische  Naphtha  A.-G.  "  Galicia,"  and  H.  Burstin.    Lu- 
bricating oils ;    Production  of  of  low  setting 

point  P             660a 

Galizzi,  A.    See  Ciamician,  G.              338a 

Gallagher.  A.  II.,  and  National  Retarder  Co.     Yeast  food  ; 

Production  of (P)           913A 

Gallsworthy,  B.     Oil-topping  plant  (P)            850A 

Galusha,  A.  L.    Gas  producer  (P)        849a 

Gas  producer  ;  Attachment  for (P)            . .         . .  321a 

Gamage,    W.    T.,    and    Gorton    Pew    Fisheries    Co.    Food 

product ;   Preparation  of (P)    . .          . .          . .  343A 

Gamer,  C.     Gas  producer  (P) 321a 

Garnmal,  C.  A.    See  Taylor,  M.  C 586a 

Gams,  A.    See  Soc.  of  Chcm.  Ind.  in  Basle     . .         . .    623a*.  878a 

Ganassini,  D.     Quinine  salts  ;   Quinotoxins  in . .          . .  434A 

Ganclln,  S.    Zinc-lead  ores  ;  Treating  complex (P)     . .  20a* 

Gangltano,  F.    See  Dominicis.  A 477a 

Ganswindt,  A.    Dyeing  wool  with  chrome-mordant  dyestuffs  411a 

Garbutt,  W.  C.    Electric  accumulators  ;   Dcsulphatlng 

(P)          866a 

Qardan,  0,  E.     Manure;    Extracting  fertiliser  elements  from 

— —  (P)            678a 

Gardiner,  W.    Storage  batteries  .    Electrolyte  for  dry 

(P)            674A 

r.C.E.     Mixing  and  dl  Integrating  machines  (P)    057a,  730a 

Gardner,   E.    Precious   metals ;     Recovery   of   from 

photographic  and  other  trade-waste  solutions       . .  285R 

:,  II.  A.    i  i                                                les         . .  903a 

Pain!  and  varnish;    Physical  testing  of  ■ ..  903a 

Paints;    Exposure  tests  on ..          ..          ..          ..  040a 


TAQE 

Gardner,  H.  A. — continued. 

Paints  and  the  like ;    Manufacture   of  a  vehicle  for 

(P)  22A 

Paints  and  pigments  ;    Reflection  factors  of  industrial 

903A 

Paints ;    Storage  conditions  in  white  and  tinted  

with  reference  to  soap  formation    ..         ..         ..     904a 

"  Paints,  varnishes  and  colours  ;   Physical  and  chemical 

examination  of  "  ..  ..  ..  ..     577B 

Vanadium  as  drier  for  linseed  oil  . .  . .  . .     047a 

and  E.  Bielouss.  Drying  oils  from  petroleum  and  other 
products,  produced  by  chlorination  and  dechlorina- 
tion   639a 

and  P.  C.  Holdt.    Pfund  paint  gauge 903a 

Resins  ;    Esterification  of  fossil  and  production 

of  neutral  varnishes  therefrom 

Varnish  ;    Measurement  of  consistency  of  . .     905a 

Varnish  ;    Standardised  apparatus  for  air  bubble  con- 
sistency test  on  ..         ..         ..         ..     905A 

and  A.  Reilly.    Tung  oil ;    Japanese  . .         . .     904a 

and  others.  "Paint  and  varnish  films  ;  Speed  of  evapora- 
tion of  thinners  from  . .         . .         . .         . .     904a 

Pigments  ;    Fineness  and  bulk  of  . .         . .     946a 

Gardner,  H.  C.  T.    Sodium  chaulmoograte  or  gynocardate  ; 

Preparation  of  . .  . .  . .  . .  . .     GS5A 

Gardner,  S.    See  Gardner,  W.  J.        328a 

Gardner,  T.  E.    See  Touchstone,  B.  F 324a 

Gardner,    W.    T.,    and    Isbell-Porter   Co.     Retort   for    car- 
bonising coal ;    Vertical  (P)    . .         . .  245a* 

and   others.    Refractory  and   other   goods ;    Stoves   for 

drying  (P)  328a 

GarelU,  F.    Ammoniacal  saponification  and  industrial  manu- 
facture of  ammonia    . .         . .         . .         . .         . .     260a 

Garland,  C.  M.     Coking  coal ;   Apparatus  for (P)     . .     130A 

Garmendia,  T.    See  Fernandez,  0 229a 

Garner,  F.  H.    See  Faragher,  W.  F.  90A 

Garner,  W.  E.,  and  K.  Matsuno.    Acetylene  and  nitrogen  ; 

Explosion  of  mixtures  of  ■ ..         ..       90a,  s;,7a 

and    C.    A.    Waters.     Electrometric    titration ;     Simple    ' 

apparatus  for  . .         . .         . .         . .         . .     337T 

Garrigue,  W.,  and  Co.    See  Bodman,  J.  W 697a 

Gartlan,  S.  L.     Petroleum  oils  ;    Treatment  of (P)  . .     S90A* 

and  A.  E.  Gooderham.     Petroleum  oils  ;   Distillation  and 

cracking  of  (P) 536a 

Gary,  M.     See  Rieke,  R 591a 

Gas  Research  Co.    See  Smith,  H.  F. 

47A,  47a,  535a,  536a,  536a,  889a 

Gaskell,  J.    See  Pilkington  Bros.,  Ltd 375a 

Gaskill,  J.  A.    Furnace ;    Combination  double-muffle  pre- 
heating and  heat-treating  (P)  ..  ..     179a 

Furnace ;    Crucible  (P)        505a 

Gasoline  Products  Co.     See  Cross,  R.  . .  . .  . .     SS9A 

Gasoline  Recovery  Corp.     See  Burrell,  G.  A.       127a.  490a,  494a 

See  Vi  ress,  C.  L 622a 

Gass,  G.  P.     See  Jackson  and  Bro.,  Ltd 705a* 

Gassaway,  S.  G.    See  Parker,  T.  H.  ..         ..      310a.  S58a 

Gasser,  A.    See  Raupp,  H 373a 

Gasser  und  Frank  Ges.     Benzene  ;    Recovery  of from 

washing  oils  (P)  . .  . .  . .  . .  . .     245a 

Gassman,    H.    Viscose ;     Manufacture    of   durable   masses 

from  (P) "7i 

Gastaldi,  C.    Methylene-citric  acid ;    Preparation  of  646a 

Gattefosse\    Perfumes ;    Advantages  of  extraction  process 

for  preparation  of  ..         ..         ..         .,     231a 

Gatti,  G.,  and  R.  Cayola.     Essential  oils  ;  Therapeutic  (anti- 
septic) action  of  ■  . .         . .         . .         . .     483a 

Bauberc,  P.     Metals;  Recrystallisation  of by  annealing       ISA 

Gaudart,  E.  E.  R.     Coconut  butter  ;   Extraction  of (P)     903a* 

Gaudln,  R.  F.  B.,  and  G.  S.  Clarke.     China  clay  ;    Drying 

(P)  177A 

Gauge,    A.    J.    H.    Flax-retting   effluents ;     Disposal    and 

purification  of  177T,  194R 

See  Fox,  J.  J 173T.  194R 

Gaunt,  R.    See  Browning,  C.  H 480a 

Gavett,  W.    Sewage  disposal  (P)       644a 

Gay,  L.    Benzene,  toluene,  and  m-xylene  ;    Distillation  of 

a  mixture  of  . .         . .         . .         . .         . .     538a 

Distillation  and  rectification         . .         . .         . .         . .       43a 

Gayler,  M.  L.  V.     Alloys  of  aluminium  with  copper,  mag- 
nesium, and  silicon  in  the  solid  state  ;   Constitution 

and  age-hardening  of  . .         . .         . .      417R,  818a 

See  Hanson,  I) 126R,  256a 

Gayley,  H.  B.    See  Gayley,  J.  471a 

Gaylcy,  J.     Potassium  values  from    blast-furnace  fun. 

Recovery  of  (P)  471a 

Geere,  E.  W.    See  Geerc,  W.  A 913a* 

Geere,  W.  A.  and  E.  W.     Yeast ;    Composition  of  matter 

for  increasing  growth  of  when   mixed   with 

dough  (P)  913a* 

Gcgcnbaucr,    V.    Formaldehyde ;     Disinfecting    action    of 

aqueous  solutions  of  . .         . .         . .         . .     307A 

Gchc    und    Co.    A.-G.     Iodine-malt    preparations ;     Manu- 
facture of (P) ■  ri 


NAME  INDEX. 


39 


with 


Gehring,  A.     Carbon  dioxide  ;    Fertilising  value  of  — 
Humus ;     Determination   of   by   oxidation 

chromic  acid 
Geiger,  A.,  and  E.  Brauer.     Leather  ;  Process  for  rendering 

gas-tight  (P) 

Geisinger,  E.  E.     Enamel  reactions ;    Microscopical  study 

of  ground  coat  and  cover  coat  ■ 

Glass  enamel ;    Electric  smelting  of  ■ 

Geisler,  W.    See  Foerster,  F 

Geith,  R.     Sodium  in  aluminium  and  in  alumina  ;    Deter- 
mination of  small  quantities  of  

Geldermann,  H.     See  A.-G.  fur  Anilin-Fabr. 

Geller,  H.     See  Schroeter,  G.  

Geller,  R.  F.     Terracotta  casting  ;   Possibilities  of . . 

and    B.    J.    "Woods.     Porcelain   bodies ;     Use   of  special 

oxides  in  . .         . .         . .         . .     -  . . 

Geloso,   M.    Manganese  dioxide ;    Adsorption   of^itm   by 

precipitates  of  . .         . .         . .   -^T. 

Geloso.    See  Nicolardot 

Gelpke,  V.,  and  Deutsche  Evaporator-Akt.-Ges.    Kiln  with 

beating  chambers  and  cooling  chambers  (P) 
Gemmell,   G.   H.     Oxides  for  gas  purification ;    Valuation 

Genatosan,  Ltd.    See  Cockerton,  S.  E 

Genbcrg,  G.  P.     Sulphite  acid  ;  Analysis  of  reclaimed 

General  Abrasive  Co.     See  Richmond,  H.  A. 
General  Bond  and  Share  Co.    See  Stevenson,  E.  P. 

463a,  463a, 
General  Chemical  Co.    See  Adamson.  G.  P. 

S( .-  Allen,  F.  M 

See  Briggs,  T.  L 668a, 

General  Electric  Co.    Alloys  (P)         

Aluminium  alloys  (P) 

Carbon ;    Manufacture  of  active  (P) 

Chemical  apparatus  for  precipitation  purposes  (P)     . . 

Coating  materials  ;    Manufacture  of (P) 

Coating  metals  with  metals  (sherardising) ;    Apparatus 

for  (P) 

Conductors    for    making    electrical    connexion    with 
mercury  (P) 

Electric  conductors  ;    Method  of  insulating  (P) . . 

Electric  furnace  regulators  (P) 

Electric  resistance  material  ;    Mamifacture  of  (P) 

Gas-impervious    material    from    animal    membranes ; 

Method  of  making  (P). . 

Indurated  materials  ;    Method  of  manufacturing  

from  woven  fabrics  (P) 
Iron-aluminium  alloys  (P) 
Iron ;      Electrolytic    methods    of    depositing    metals, 

especially  (P) 

Porcelain  (P) 

Radiographic    screens ;     Manufacture    of    fluorescent 

e.g.   (P)  

Silicon  steel  and  other  metals  and  alloys  ;    Methods  of 

refining  (P)         

Silver  mirrors ;  Preparation  of  metal  reflecting  surfaces, 

e.g. (P) 

Tungsten  alloys  ;    Method  of  manufacturing  bodies  oi 

,    e.g.,    filaments    for    incandescence    electric 

lamps,  discharge  tubes,  etc.  (P) 
and  F.  S.  Goucher.    Tungsten   etc.    filaments ;     Drawn 

wire  (P) 

See  Barringer,  L.  E. 

See  Collins,  E.  F 

See  Dantsizen,  C.    . . 

See  Etter,  R.  R 

See  Friederich,  E.    . . 

See  Hurstkotte,  E.  H 

See  Laise,  C.  A 

See  Lenher,  V 

See  Ortiz,  A.  

See  Pacz,  A. 
See  Unger,  M. 

See  Van  Keuren,  W.  L.    . .         

See  Weintraub,  E. 
General  Electric  Co.,  Ltd.,  and  C.  J.  Smithells.    Tungsten  ; 

Manufacture  of for  lamp  filaments  (P) 

General  Electric  Co.  (London)  ;    Research  staff  of  the  

Balance  ;  Rapid-weighing 

Density  of  fine  wires  ;  Apparatus  for  measurement  of 

Voltmeter  ;   Electrostatic 

See  Campbell,  N.  R 

See  Goucher,  F.  S.  

See  Smithells,  C.  J.  257a, 

General  Oil  Gas  Corp.     See  Dayton,  W.  C.  . .      131a, 

General  Petroleum  Corp.    See  Prutzman,  P.  W.     5A,  48A, 
General  Research  Laboratories.     See  Moisant,  A.  J. 

General  Rubber  Co.    See  Bradley,  C.  E 

See  Hopkinson,  E. 

Gcnsecke,  W.     Evaporating  liquors  ;    Method  of  and 

apparatus    therefor    (P) 

Set  Josse,  E.  206a 

See  Metallbank  u.  Metallurgische  Gee.  A.-G. 
Genter,  A.  L.,  and  United  Filters  Corp.  Filtering  apparatus  (P) 
Gentle,  J.  A.  H.  R.    See  Sldgwick,  N.  V. 
Genty,  Hough  et  Cie.    See  Morin,  H. 
George,  H.    Mercury  vapour  lamp  (P) 


PAGE 

111a 


774A 

633a 
465a 
401a 

714a 
323  a* 
133A 
102a 

101a 

613a 
376A 

738a* 

739a 

I 
534a 
417a 

463a 
79A 
670a 
846a 
221a 
943a 
322a 
970a 
867a 

379a 

718A 
506A 
507a* 
333a* 

774a 

808a* 
505a 

505a 
814a 

271a 

763A 

332A 


67;;  a 

211a 

671A* 

987A 

506a* 

846A 

661a 

823a 

716a 

670a 

332A 

147A* 

902A 

803a* 

658a 

891a 

96R 
96R 
96R 
405A 
925a 
980A 
535a 
737A 
232a 
827a 
827a* 

736a 

698a* 
620a 
20J  \ 
857a 
225A* 
49a 


PAGE 

George,  J.  R.,  and  Morgan  Construction  Co.     Gas  producer  (P)  244a 
George,    R.    D.     Hydrocarbon    oils ;     Decomposing    heavy 

into  lighter  oils  (P) 91a 

Oils ;    Process  for  cracking  (P) 024a 

Georgs-Marien-Bergwerks-  und    Hiitten-Verein,    A.-G.    Gas 

producers  (P) 361a 

Gerard,  J.  M.     See  Masson,  H.  J 658a 

Gerb-  und  Farbstoflwerke  H.  Reuner  und  Co.     See    under 
Renner. 

Gericke,  W.  F.     Protein  content  of  grain  ;  Differences  effected 

in by  applications  of  nitrogen  at  different  stages 

of  growth  9;,0a 

Gerlach,  O.,  and  others.  Clay  mixtures  ;  Process  of  preparing 

for  moulding  (P)    . .         . .         . .         . .         . .     898a 

Gerlach,   W.,   and   E.   Koch.     Spectroscopy ;    New  method 

of  absorption  . .         . .         . .         . .         . .     310a 

Gerlinger,  P.    See  Grosheintz,  H 290a 

Gerngross,  O.     Pelt ;  Influence  of  formaldehyde  on  adsorptive 

power  of  animal for  acids  and  alkalis  . .  149a 

Plaster  casts  and  moulds  ;  Method  of  separating (P)      59a 

and  H.  Roser.     Hide  powder  ;  Influence  of  treatment  with 

formaldehyde    on   adsorptive    power    of   for 

vegetable    tannins        426a 

Tannin  ;    Influence  of  formaldehyde  on  adsorption  of 

by  animal  hide    . .         . .  . .         . .     302a 

Gerretsen,  F.  C.    Nitrification  and  denitriflcation  in  tropical 

soils         186a 

Gersdorff,  C.  E.  F.  See  Jones,  D.  B.    .  . .      342a,  873a 

. .  326A 
. .  847a 
. .  872A 


Gersdorff,  W.  A.    See  Taylor,  M.  C. 

Gerstenddrfer,   G.     See   Dolch,   M. 

Gerum,  J.,  and  C.  Metzer.     Wheat  gluten 

Ges.  fiir  Cheni.  Ind.  in  Basel.    See  Soc.  of  Chem.  Ind.  in  Basle. 

Ges.  f.  Elektrochem.  Ind.     See  Kaufltr,  F. 

Ges.  fiir  Kohlentechnik.     Ammonium  sulphide  ;    Conversion 

of  into  ammonium  sulphate  (P) 

Hydrogen  sulphide  ;    Removal  of  from  gases  (P) 

502A,  546a,  708a 
Ges.  fiir  Landwirtschaftlichen  Bedarf,  and  R.  Mandelbaum. 
Gas  liquor  ;    Treatment  of  to  extract  a  fer- 
tiliser (P)           

Ges.  fiir  Lindes  Eismaschinen  A.-G.  Gaseous  mixtures ; 
Recovery  of  valuable  constituents  present   in  very 

small  proportions  in e.g.,  of  nitrogen  oxides  from 

nitrous  gases  or  benzol  from  coke-oven  gas,  etc.  (P) 
Ges.  fiir  Maschinelle  Druckentwasserung  (Madruck).   Briquet- 
ting  or  drying  ;  Presses  for (P)  . 

See  Brune,  H. 
See  Horst,   H. 
Ges.  f.  Technik  m.b.H.    Material  resembling  horn  ;  Production 

of  (P) 

Ges.  f.  Teerverwertung  m.b.H.  Thionaphthene  ;  Produc- 
tion of — — from  coal-tar  (!') 

and  R.  Weissgerber.     Indene  ;    Production  of from 

tar  or  benzene  fractions  (P) 
Thionaphthenesulphonic   acid ;     Process   for   preparing 

-  (P) 
and    others.      Thionaphthenecarboxylic  acids ;    Prepara- 
tion of (P) 

Ges.  fiir  Tuff-  und  Ton- Technik  m.b.H.     Ceramic  materials, 

glass  and  glazing  ;   Production  of (P)  . . 

Ges.  fiir  Verwertung  Chem.  Produkte.     Oxides,  hydroxides, 

and  basic  salts  of  tri-  and  quadrivalent  elements  ; 

Manufacture   of   (P) 

Plastic  masses  (P)  . . 

Respirators  ;    Cartridge   for  charging  -,   employing 

a  replaceable  mass  of  peroxides  (P) 
Ges.  zur  Verwertung  von  Stubbenholz.     Wood,   chips  and 

the  like  ;    Vertical  retort  for  the  carbonisation  of 

(P) 

Gevers-Orban,   E.     Hydrocarbon ;    Presenting  —  —  in  the 

form  of  a  thin  film  of  large  surface  area  to  the  action 
of  an  oxidising  agent  (P) 

Gewerkschaft  ver.  Constantin  der  Grosse.  Furnace  for  pro- 
duction of  gas  and  coke  (P)     . .         . .         . .        47a,  91a* 

Gewerkschaft  des  Steiukohlen-Bergwerks  "  Lothringen." 
Chemical  reactions  ;  Method  of  carrying  on  vigorous 

(P)  _         . .         . .      401a,  738a 

Geys,  K.     Beer  ;  Turbidity  in  due  to  oxalic  acid,  and 

related  problems 
See   Liiers,    H. 

Ghislain,  R.  E.  Phenol ;  Production  of  pure  -  —  free 
from  homologues,  from  coal-tar  oils  (P) 

Ghose,  S.  N.    Vitamin  content  of  some  Indian  foodstuffs 

Giaja,  J.    Amygdalin  ;    Decomposition  of  from  point 

of  view  of  conjugated  fermentation  reactions    . . 

Gibbous,  W.  A.,  and  American  Rubber  Co.  Rubber  com- 
pounds ;     Method    of    working    quick    vulcanising 

(P)  

Gibbs,  H.  D.,  and  E.  I.  du  Pont  de  Nemours  and  Co.  Alumin- 
ium chloride  ;  Process  of  making (P) 

See  Conover,   C. 

Gibbs,  W.  E.    Food  ;    Manufacture  of  ice  and  use  thereof 

for   preserving  (P) 

lumes  and  dusty  gases  ;    Industrial  treatment  of  ■ 

125R,  180T 


648A* 
99a 


151a 


44a 

243A 

455a* 

975A* 

722a 

663a 

407A 

803a 

8a 

711a 


174A 

542A 


230a 


406a 


211a* 


190a 
604a 


703A 
343A 


113a 


670a 
363a 


873a 


40 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Gibbs,  W.  «£.,  and  C.  H.  Werkman.     Soils  ;    Effect  of  tree 

products    on    bacteriological    activities    in    . 

Ammoniflcation  and  nitrification     .. 

Gibson.    W.     .see    itadilifle,    L.    G 

Gibson,  W.  H.,  and  others.    Toluene  ;   Products  of  nitration 

Giebner,  S.  A.,  and  Electric  Dehydrating  Co.     Oils  ;  Appara- 
tus lor  dehydrating (P) 

Gicriseh,  .1.  O.  W.,  and  others.    Fibres  ;  Method  of  obtaining 

le  from  bast-fibre  bundles,  in  a  condition 

for   spinning    (P) 
Glesecke,  C.    Agglomerates  of  One  ores,  etc,  to  be  sintered 

in  shaft  furnaces  ;    Process  of  making (P)  . . 

Gieslcr,  H.,   and  Heberlein  u.  Co.  A.-G.    Patterned  textile 

fabrics  :    Process  for  producing (P)  . . 

Gilbert,   K.     Alloys  of  lead,  tin,  and  aluminium  ;    Volume 

changes   of   binary  

Gilbert,    L.    F..  and    others.     Chromium    trioxide-sulphur 

trioxide-water ;    The  system  .. 

See  Masson,  I. 
Gilchrist,  H.  8.     Synthetic  fats  containing  a  carbohydrate 

chain  ;    Preparation  and  constitution  of  . . 

Gilchrist,  P.  s.     Sulphuric  acid;    Modern  methods  of  con- 

<  int  rating   

later,  A.     Vanadium;   Treatment  of  ores  of (P) 

Gllfillan,  F.  A.    Ethyl  alcohol;    Dehydration  and  addition 

reactions  of  .    Formation  of  acctal  and  mer- 

captans    . . 
Gill,  <'.  M.     Control  of  plants  and  processes  ;  Co-operation  of 

r  and  chemist  in  the  

Gil),  J.  F.     See  Clayton,  W 

Gilles,  J.  W.     Blast-furnace  flue  dust  ;    Pyrophoric  . . 

Gillespie,    W.    M.,    and    P.    Buckley.     Metallic    powders; 

Manufacture  of  (P) 

Gillet  et  Fils.    See  Schwartz,  C 11a*,  55a* 

Gillette,    H.    C.     Storage   batteries;     Effect   of   impurities 

on 423.1 

Gillott,  .T.  C.     Cliromium-iron  alloys;    Production  of  low- 
carbon   (P)  9424 

Gilmour,  H.    See  Morgan,  G.  T 3t,  61t 


511A 
476U 


271A 


405A 


460a* 
472a* 


48a* 


553a 


857A 
175A 


365R 


5S5A 
471A 


5C6a 

5R 
192A 

505A 

637a 


Gilmour,  R.    Acetaldehyde  ;    Vapour  pressure  of  ■ .. 

yeast ;     Manufacture    of    (P) 

Giloy,  V.     See  Meister,  Lucius,  u.  Briining    . . 

Ginet,  .r.  11.     Bituminous  shales;    Treating  (P) 

Ginnlngs,   P.   M.     See  Anders,  P 

Girin.   P.,    nil  Soc.  Anon,  de  Commentry,  Fourchambault, 
.  i tie.     Alloy     containing    iron      nickel, 
and  chromium  (P) 
lv.  I.  51.     See  Christenson,  O.  L.    4a,  536A,  537a*, 

Giua,  M.     Quiuoline  ;    Red  colouring  matter  from  .. 

Giuffre,    D\     Atractylia  irwunifera  (mastic);     Detection    of 

extract  of in  liquorice  extract  . . 

Given,  a..,and  MvorthCo.     Sulphur;  Extraction 

of  from  spent  oxide  from  gas  works  (P)   . . 

r,    W.    Potassium-containing    Bilicates;     Extraction 

of  soluble  potassium  co  >m  (P)  .. 

Extraction  Corp.     Hydrochloric  add ;   Manu- 
facture  of  in   process  for   the  extraction  of 

Sium    compounds    (P)    .. 

),   K.    Pepsin;   Determination  of  

lv.     Mineral  oils  ;   Apparatus  for  determining  resist- 
ance to  cold  of  

Glasgow,  R,.    See  McDcrmott,  F.  A.  

ne,  S.    Lead  dioxide;    Electromotive  behaviour  of 


293T 

503A 

749a* 

580a* 

569A 


6S8A* 
5S7A* 

497a 

995a 
216A 


669a 
306A 


751A 
986a 


172a 


7.-.I  l 
98a 


702a* 
31. ".A 


1  and  lead  dioxide;    Anodic  behaviour  of  .. 

I    oxidesi     Physical  chemistry  of Hydrated 

lead  monoxide 
Lead  oxide       Physical  chemistry  of  .     Bed 

and  lead  sesquioxide 
Lead  peroxide  ;    Direct  iodometric  estimation  of 
>v.     BrlQuette-forming  materials;  Method  of  mixing 

with  a  fluid  binding  agent  (P)  . . 

Glazcbrook,  R.  T.    Specific  heats  of  air,  steam,  and  carbon 

dioxide  

Glcltz,   W.    Glyceridcs ;    Process  of  removing  acids  from 

(P)  334a,599a« 

Glinka,  C.     Peat;    Dehydrating  raw  (P)        ..         ..     S00a 

Gloss..;.,  \\\,  and  others.     Distilling  tar  and  other  liquids  (P)     743a 
Glover,    L,  and  G.  Martin.     Dyes;    Manufacture  of  house- 
hold    (P) 40SA 

.    leather;    Preparation  of  a (l't     611a 

rton,   I' 149a,  302a,   771. 

Glover,  S.,  and  others.     Tar  and  oils  ;  Means  for  fadlitatln ; 

separation  of  liquor  from  (P) 

Gluud,   \v.     Ammonium  bicarbonate;    Advantages  of  use 

and  production  of  for  fertiliser  purposes     - 

per  sulphide 

dphide;    Structural  formula  of  .. 

and  G.  Schneider.     Pyridine;   Recovery  of in  coking 

Installations      . .         . .         . .        

IM  i. iii..-  ;    tiecovery  of in  manufacture  of  ammon- 
ium sulphate 


93a 

72-2  1 
370A 
588A 

739a 


Gluud,  W. — continued. 

Solvent  naphtha  ;    Recovery  of  sodium  phenoxide  in 
washing  of 

Glysyn  Corp.    See  Saunders,  H.  F 

Godal,  A.    Sulphoaromatic  substances  for  use  in  the  decom- 
position of  fats ;    Process  of  producing  (P) 

Godden,  YV.     Clay  ;    Characterisation  of  .     Discussion 

Godfrey,  T.   M.,  and  N.  K.  Fairbank  Co.     Soap ;    Manu- 
facture of  ■  (P)     . . 

Goecke,  R.  F.     Condenser  (P) 

Goedicke,  R.     Ozone  ;    Apparatus  for  generating  (P) 

Goehtz,  H.     Generators,  gas  producers,  shaft  furnaces,  and 
the  like  ;    Revolving  grate  for  (P)   . . 

Gossel,  F.     Sulphite-cellulose  waste  liquor  ;    Treatment  of 
-r-  (P>  

Goldberg.  1'.     See  Akt.-Ges.  fib-  Anilin-Fabr 

Goldberg,  S.     Colloidal  carbon  ;    Cataphoresis  of  

Goldenberg,  Geromont,  und  Co.,  Chem.  Fabr,    See  Wolffeu- 
stein,  R.  . .         . .         . .         M 

Golding,  J.     Vitamin  A  ;    Importance  of  in  rearing 

of  pigs 

and    others.     Fat-soluble   factor  ;     Relation    of   to 

rickets  aud  growth  in  pigs   . . 
See  Drummond,  J.  C. 

Goldmann,  H.     See  Rheinisch-Nassauisehe  Bergwcrks-  und 
llutten-A.-G.  zu  Stolberg      ..  .. 

Goldschmidt,  F.,  and  G.  "Weiss.     Marine  animal  oils  ;   Deter- 
mination of  highly  unsaturated  fatty  acids  present 

Goldschmidt,  H.,  and  others.    Nitro-compounds  ;  Reduction 
of  with  stannous  chloride 

Zinc  alloy  (P)  

See  Stock,  A. 
Goldschmidt,  S.,  and  B.  Wurzschmitt.    Aniline  ;    Oxidation 

Goldschmidt,  T.,  A.-G.     Bearing-metal  alloy  (P)  221a, 

Hydrochloric  acid  and  alkali  sulphate  ;    Production  of 

(P)  

Solid    substances    produced    by    chemical    reactions ; 

Modifviii'-i  the  physical  characteristics  of  (Pj 

and  L.  Schertel.     Metals;    Treatment  of (P) 

Goldschmidt,  V.  M.     Magnesium  chloride  ;    Manufacture  of 

(P)  

and  others.    Alumina  poor  in  iron  ;   Process  of  producing 

(P)  

Goldstein,   E.     Benzene  vapour ;    Recovery  of  from 

air  (P) 

Goldstein,  K.     See  Pringsheim,  H.     . . 

Gotlert,  R.     Plastic  mass  especially  suited  for  use  as  a  tyrc- 

flller  ;    Producing  and  using  a  (P)    . . 

Gomberg,  M.,  and  C.  C.  Buchler.     Benzyl  ethers  of  car- 
bohydrates 
Good,  R..  and  Hazel  Atlas  Glass  Co      Glass  ;    Manufacture 

of  (P) 

Goodale,  A.    See  Sage,  C.  E.  

Goode,    K.    H.    Electrotitration    apparatus ;     Continuous- 
reading  

Gooderham,  A.  E.     See  Gartlan,  S.  L. 

Goodfellow,  3.    See  Chapman,  C.  E.  

Goodman,  P.  L.    Garbage  reducer  and  distillator  (P) 
Goodrich  Co.,  B.  F.    Vulcanisation  of  rubber  articles  (P). . 

See  Ayrcs,  H.  D 

Goodson,  J.  A.    Artemieia  afra  ;    Constituents  of  flowering 

tops  of  

Dakamballi  starch  . . 

In,  C.  J.     -Nitrogen  fixation  ;   HSusser  process  of 

Retort ;    The  "  fusion "   patent  rotary  for  dis- 
tillation of  shale,  etc. 

Goodwin,  G.  L.    See  Prutzman,  P 

ml  \.     See  I'oindcxter,  R.  \v. 

!  Etubber  Co.     Rubber;   Vulcanising 

and  manufacture  of  an  accelerator  for  use  therein  (P) 

1      :     i.l,   C.  W.  475a,  559a», 

0   Martong.  R.  C. 

Kelly,  W.  J 

See  Lewis.  \Y.  K.    . . 

North,  CO 

Goodyear's  Metallic  Rubber  Shoe  Co.     See  Randall,  C.  J. 
Gordon,  N.  E.,  and  E.  B.  Starker.    Soil  colloids  ;  Influence 

of  on  availability  of  .-alts 

Gordon,  YV.     See  Von  Laue,  M.  ..  „ 

Goris,  A.,  and  P.  Costy,     Alkaloids  of  belladonna  extracts 

prepared  in  different   ways;    Nature  of  ■ 

Hyoscyamine  and  its  sulphate     Preparation  and  race- 
mlsation 
'•..iv  iu.  A.,  C,  and  S.     Centrifugal  separator  (P).. 

i  Hoffman,  w     '  

Iiarp    r    i 

Gnrtiin-Pew  Fi.-li.iie,  Co.     See  Gamage,  W.  T 

C-knr,  T.  A.      Drying  coal  or  other  niateii.il  (P)  ..       282.1, 
and  11.  B.  Hitch.    Case-hardening  iron  and  steel ;  Manu- 
facture of  composition  for  (P) 

I,  -N.     Oils  and  fats  ;    Purification  of (P)     769a, 


169a 
484a* 

474a» 
79T 

474A 

44A 

148A* 

975A* 

665A 

584A 
414a 

33a 

396R 

606A 
501R 


322A 

63SA* 

822a 

933A 

942a 


87A 
S64A 


669A 
416A* 


364a 

.".13  A 


6S4A 

197A 

272a 
536a 
930a 
607A 

302A 

SUA 
512a 
394R 

580A 
48A 
149A 

149A 

.V.'.lA* 

23A* 
197A 

55SA 
07A* 
509A 

870a 
B02a 

43  1a 

783a 
1171a 
306A 
341a 
343A 
698A* 

672a 
945A 


NAME  I3STDEX. 


41 


PAGE 

Gosrow,  It.  C.  Pig  iron  ;  Comparison  between  shaft  and 
open-top  furnaces  in  manufacture  of  elec- 
trically from  iron  ore            . .         . .         . .         . .     549a 

Gott,  J.,  and  F.  Wallis.    Textile  materials  ;    Apparatus   for 

dyeing  or  bleaching  (P)  . .         . .         .  ■     979a* 

Gottschalk,   M.,    and   others.     Cupola   furnaces   and   blast 

furnaces  ;    Blast  of  (P)  378a 

Goucher,  F.  S.,  and  H.  Ward.     Viscosity  ;  Problem  in . 

Thickness  of  liquid  films  formed  on  solid  surfaces 
under  dynamic  conditions      . .         . .         . .         . .     925a 

See  General  Electric  Co 211a 

Goudriaan,    F.     Sodium    ahimiuates.     Equilibria    in    the 

system  Na.O-Al,0,-H.O        215A 

Gouin.    P.,    and    E.   Eoesel.     Storage   batteries ;    Alkaline 

(P)  13lA* 

Gould,  D.  F.,  and  Barrett  Co.    Naphthalene  ;   Purification 

of (P) 662a,  S91a* 

Gowen-Lecesne,  A.  V.  Refractory  or  abrasive  products  ; 
Charging  apparatus  for  furnaces  for  production 
of  (P) 177a" 

Gowland,  W.     Obituary  274B 

Graefe,  E.     Distillation  under  a  high  vacuum  in  the  lignite 

t;ir  industry      ..  ..  ..  ..  ..  ..     495A 

Phenols ;    Formation   of  from   bituminous   con- 
stituents of  lignite      ..         ..         ..         ..         ..     211a 

Graefe,  P.    Air,  gas,  or  vapour  ;    Apparatus  for  purifying 

(P)  621a 

Graeffe,  R.  Insulating  material ;  Treating  peat  for  manu- 
facturing an  — —  (P)  866a* 

Gracmiger,  B.     Evaporation  of  liquids  (P) 44a 

Granachcr,  C,  and  P.  Schaufelberger.  Aliphatic  hydro- 
carbons;  Oxidation  of with  nitrogen  peroxide     152A 

Grate,  V.     Sep  Fourobert,  E.  109R 

Graham,  O,  and  F.  N.  Cox.  Panama  and  Costa  Rica ; 
Report  on  commercial  and  economic  situation 
in  136K 

Graham,  E.  E.  Cork  substitute  and  process  of  manu- 
facture (P)        808A 

Graham,  J .  J .  T.  Insecticides  and  fungicides ;  Deter- 
mination of  arsenic  in  . .         . .         . .       31a 

and  C.  M.  Smith.  Arsenic ;  Errors  caused  by  nitrates 
and  nitrites  in  determination  of  by  the  dis- 
tillation method,  and  a  means  for  their  prevention     311A 

Grainer.  J.  S.     Enamels ;    Factory  control  of  fish-scaling 

of 253a 

Gralka,  R.,  and  H.  Axon.    Food  factors  ;    Accessory  266a 

Grandchamp,  L.     See  Malvezin,  P ..       55a 

Grandjean,    C.     Ferrotitanium  ;     Rapid    complete   analysis 

of 713a 

Grandmougin,  E.     Halogenatcd  indigotins   . .         . .         . .       50a 

Ealogenated  isatins  . .         . .         . .         . .         . .     246a 

Leucoindigos ;    Acylatcd  and  alkylated ..         ..     287a 

Octobromoindigotin  . .         . .         . .         . .         . .         8a 

Granger,  A.  Ceramic  products  ;  Burning  of  in  elec- 
trically heated  furnaces          . .          . .          . .  . .     633A 

Granger,  A.  A.  Selenium  red  ;  Nature  of  colouring  pro- 
perties of  ..  ..  ..  ..  ..     177a 

Granger,  L.,  and  others.     Distilling  liquids,  such  as  mineral 

oils,  alcohol,  and  the  like  (P)  . .         . .         . .         4a 

Grant,  G.  G.     See  Tartar,  H.  V 413A 

Grant.  ,{.     vibrations  in  plates,  membranes,  etc. ;   Method 

of  exciting  .    Application  to  construction  of 

sirens      . .  . .  . .  . .  . .  . .  . .       76E 

Graphikus-Ges.    m.b.H.     Photographic    print-out    images ; 

Toning  process  for  (P)  83SA 

Graphitwerk  Kropfmiihl  A.-G.     Graphite  ;    Purification  of 

by  means  of  an  electric  current  (P)  . .     939a 

Graser,  J.    See  Willstatter,  R.  952a 

Grasselli  Chemical  Co.     See  Bowman,  F.J.  . .  . .       63a 

See  Howard,  H 859a 

See  Jordan,  H 664a« 

See  Lihme,  I.  P 174a 

See  Toepfer,  H 544a 

Crasser,  G.     "  Tannins  ;    Synthetic  :    their  synthesis, 

industrial   production,   and   application."     (Trans- 
lated by  F.  G.  A.  Enna) 141r 

Grattan,  G.  E.    See  Matheson,  H.  W 786a 

Gravell,  J.  H.     Cleaning  metals  ;   Method  and  composition 

for  (P) 63A 

Hetals  ;    Cleaner  for  and  method  of  cleaning (P)  822a 

Metals  ;    Preventing  from  rusting  (P)      . .         . .  822a 

Paint    for   and    method   of    preventing   heated   metal 

surfaces  from  rusting  (P)       . .          . .          . .          . .  822a 

Rust-resisting  steel ;   Manufacture  of (P) . .         . .  322a 

Soldering  solution  (P)         822a 

Gray,  A.  D.     See  Plummer,  F.  A 874A 

Gray,  H.     See  Fisher,  H.  L 110a 

Gray,  J.  H.  Regenerator  chamber  for  metallurgical  fur- 
naces (P)           298a 

Gray,  T.  H.  Glycerin ;  Historical  development  of  dis- 
tillation of  281E 

Grayson,  J.     Sulphur  dioxide ;    Manufacture  of  (P)  141a* 

Graziani,    F.     Cast    iron ;     Influence    of    temperature    on 

mechanical  properties  of  . .         . .         . .  375A 


TAOE 

Graziani,  F. — continued. 
and  L.  Losana.     Phosphorus  in  cast  iron ;    Determina- 
tion of  418A,  503a 

Great  Northern  Paper  Co.    See  Allen,  C.  H.  . .         . .     324a* 

Greaves,    J.    E.,    and    E.    G.    Carter.     Soil  ;     Influence    of 
moisture  and  soluble  salts  on  bacterial  activities 

Of  511A 

and  C.  T.  Hirst.    Soil  solution 304a 

and  others.    Azoflcation  in  soil    Influence  of  salts  on 678a 

See  Hirst,  C.  T 511A 

Greaves,  T.   G.    Chestnut  extract ;    Measurement  of  iron 

contamination  of  ..         ..         ..         ..     149a 

Greaves- Walker,    A.    F.     Refractory ;     Development   of    a 

new  13T 

Grebel,  A.     Gas;    New  controller  for  quality  of  ..     699a 

Green,  A.  G.,  and  K.  H.  Saunders.     Ionamines,  a  new  class 

of  dyestuffs  for  cellulose  acetate  silk         . .         . .     532R 
and    others.    Soluble    acid    colouring    matters ;     Manu- 
facture of  a  new  series  of and  of  intermediate 

compounds  for  the  manufacture  thereof  (P)         . .     625a 
See  British  Dyestuffs  Corp.,  Ltd.         626a,  663a,  853a,  977a 

Green,  A.  T.     Refractories  ;    Thermal  conductivity  of 

at  high  temperatures  . .         . .         . .      263R,  547a 

Green,  A.  W.  F.    Steels  ;  Black  fractures  in  carbon  tool 713A 

Green,  E.    Sewage  ;    Purification  of  by  treatment  in 

centrifugal  separators  (P)      . .  . .  . .  . .     874a 

Green,    F.    J.    Antliracite ;     Constitution    of    .    Dis- 

cussion 92T 

Green,  G.  W.     Steel ;    Mechanism  of  failure  of upon 

and  after  hardening    . .         . .         . .         . .         •  •     104a 

Green,  H      Rubber ;    Micro-sectioning  of  . .         •  •       2:3a 

Rubber ;    Volume  increase  of  compounded  under 

strain H°A 

Green,  B.  E.    See  Woodroffe,  D 641a 

Green,  8.  J.    See  British  Dyestuffs  Corp.,  Ltd 663a 

Green,  S.  M.     Electrolytic  cell  (P) 222A 

.  W.    See  Lewis,  W.  K.  927a* 

Green,  W.  D.     Coal  and  coke  ;   Recovery  of from  ashes     359A 

Greenawalt,   J,    E.     Sintering  pans  and  the  like ;    Grate 

for  tiltable  vessels  such  as  (P)  ..         ••     471a 

Greene,  C.  D.    See  Venable,  C.  S 382a 

Greenfield,  G.  J      Chemical  engineer  ;    Training  of  the 397B. 

Greenfield,  R.  E.,  and  A.  M.  Buswell.     Water  purification  ; 

Eteactions  involved  in  ..         ..         ..         ••     682a 

Greenish,  H.  G.     Pharmacognosy  and  the  pharmaceutical 

curriculum         ...         . .  . .  . .  . .  329R 

and  C.  E.  Pearson.    Santonin  ;  Occurrence  of 329R,  684a 

Greenstreet,   C.   J.    Artificial  fuel ;    Method  of  producing 

(P)  493A,  890A*,  973A 

Greenwood,  F.  E.     Determining  moisture ;    Apparatus  for 

_!_  (P)  486a 

Greenwood,   H.   D.,   and   J.   W.   Cobb.    Coke ;    Structure 

of  94::,   ISlT 

and  H.  J.  Hodsman     Ammonia  yield  in  the  carbonisation 

of  coal ;    Factors  influencing  the .    Role  of 

oxidation  215R,  2731 

Greenwood,    J.    N.     Steels ;     Failure    of    metals    through 

action  of  internal  stress  irregularities,  with  special 

reference  to  tool  . .         . .         . .         .  -     105a 

Greenwood,  R.,  and  Carr  and  Co.,  Ltd.     Baking  or  drying 

substances  at  high  temperatures  ;    Apparatus  for 

and  subsequently  cooling  them  (P)  . .         . .     845a 

Greer,  F.  E.    See  Heyl,  F.  W 214a 

Greetham,  E.     See  Freedman,  P 596a,  986a* 

Gregoropoulos,  G.    See  Logothetis,  A.  611a 

Gregory,  M.    See  Hazeltine,  H.  H 511a' 

Gregory,  P.     Gasification  and  carburation ;    Rincker  pro- 
cesses of  complete  . .         . .         . .         . .     738A 

Greider,  H.  W.    Rubber  compounded  with  light  magnesium 

carbonate  ;    Physical  properties  of  . .         . .  425a 

Greiner,  I.     Dextrose ;    Determination  of  small  quantities 

of  by  Bertrand's  process         . .         .  -         . .  338a 

Greiner,  W.     Worts  ;    Pre-fermentation  of  under  the 

conditions    of   natural    and    absolute    pure    yeast 

culture  (P)        387a 

Grelot,  P.     Wines  ;   Action  of  sulphited on  metals  . .  992a 

Grenet,  H.,  and   H.   Drouin.     Bismuth  compound  of  the 

aromatic  series  and  its  therapeutic  activity         . .  269a 

Grenet,  L.    See  Cliarpy,  G 467a 

Greutert,  E.,  und  Co.    See  Schmiedel,  T 58a* 

Grey,  R.,  and  National  Finance  Co.     Ball  grinding  machine 

(P)           358a 

Grey,  R.  B.    Mixing  apparatus  (P) 317a* 

Griee,  W.,  and  Sons,  Ltd.    See  Herring,  W.  R 401a* 

Grier,  J.    See  Davies,  E.  C 782a 

Griffin,  R.  ft,  and  H.  C.  Parish.    Filter  paper ;    Penetra- 
bility of  350a 

Griffith,  A.  J.     See  Griffith,  J.  K 207a* 

Griffith,  J.  K.  and  A.  J.    Grinding  or  crushing  machines  (P)  207a* 

Griffiths,  E.    Materials  of  low  thermal  conductivity         . .  925a 
and  J.  H.  Awbery.    Thermometric  lag,  with  particular 

reference  to  cold-storage  practice    . .         . .      474R,  961a 


42 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL   INDUSTRY. 


PAGE 

Griffiths,   E.  A.     Liquefied  gases;      Use  of  - in  acro- 

li  :il  work    . .          . .          . .          . .          . .          ..  475R 

Griffiths,  H.     "  Chemical  engineering  design  ;   General  prin- 
ciples of "            ..          ..          ..          ..          ..  576k 

**  Chemical    plant    construction  ;     .Materials    of    . 

Non-metals  "     . .          . .          . .          . .          . .          . .  576R 

Griffiths,  J.    See  Illingworth,  S.  R.              42B 

Griffiths  Bros  and  Co.,  London,  Ltd.    See  Brltton,  P.     ..  827a 

Griggs,  M.  A.     Casein  ;    Alkaline  hydrolysis  of . .  74a 

Grigsby,  H.  D.     See  Hoffman,  C.           913a 

Griliches,    E.    Formaldehyde-tanned    leather ;      Chroming 

of  --  869a 

Grimes,  0.  C.     Furnace  ;    Ore-treating  (P)     . .          . .  863a 

M.     Kiln  ;    King with  smoking  device  (P)  . .  103a 

Grimmer,  J.    See  Society  of  Chem.  Ind.  in  Basle  ..         ..  137a 
ape,   E.     Celluloid  photographic  films;     Reducing  the 

inflammability  of  (P) 961a 

Grindle,  A.  J.,  and  Grindle  Fuel  Equipment  Co.     Melting 

furnace  (P) 637a 

Grindle  Fuel  Equipment  Co.     See  Grindle,  A.  J.              ..  637a 

Grindley,  H.  S.    See  Hamilton,  T  S.            75a 

Grindrod,    G.,    and    Carnation    Milk    Products    Co.     Milk 

samples  lor  analysis       Pn     rvation  of (P)  ..  -66a 

Grinlinton.  H.  G.     Metals  ;    Coating  of with  metals  of 

a   lower  fusing  point  (P) 90lA* 

Griscom-Russell  Co.    See  Brown,  S.              . .         . .      31a*,  206a 

See  Price,  J.            279a 

Griswold,  S.  G.     See  Sheridan,  G.  E.            716a 

Griswold,  G.  G.,  jun.    See  Sheridan,  G.  G.             ..         ..  822a 
Grob,  A.  R.,  and  others.    Sulphonating  carbon  compounds 

(P)          663a 

Grobet,  E.     Aluminium  salts  ;    Reactions  of  caustic  soda 

with    545a 

See   Dutoit,   P 568A,613A 

Groeneuv-v,  J.  Dimitr'tli-ation  with  formates,  and  influence  of 

the  cation  on  the  process     . .          . .          . .          . .  950a 

Groff,   J.   S.     Electroplating   metallic  bodies  (P)    . .          . .  259a* 

Grogan,  J.  D.    See  Eosenhaln,  W 417r,  818a 

Gronover,  A.,  and  F.  Bolm.     Margarine  ;    Water  content  of 

..          ..      " 913a 

Groom,  P.     Oak  wood  used  in  construction  of  beer  casks  ; 

American    . .         . .         . .         . .         . .     831a 

Groom,    S.    H.     Artificial    daylight    (Sheringham    system) ; 

Application  of to  laboratory  purposes  . .         . .     918a 

Gros.  R.     See  Bougault,  J 646a,  750a 

Gros  et  Bouchardy,  F.     See  Guye,  P.  A 253a* 

Groshcintz,  H.     Mordanting  wool  ;    Substitution  of  alumina 

for  tin  in .     (Report  by  P.  Gerlinger)  . .  . .     290a 

Gross,  R.  E.     Protamines         ..  ..  ..  ..  ..     564a. 

Grosse,  L.  C.     Gases  and  vapours;  Dry  method  of  purifying 

(P)  359A* 

Grossfeld,  J.     Egg  albumin  and  yolk  ;    Manufacture  of  a 

substitute  for  (P)  115a 

Lecithin  ;  Recovery  of from  organs  of  cold-blooded 

animals   (P)      —         . .     916a 

Minced    meat    and    sausage-meat ;     Determination    of 

added  water  in  . .         . .         . .         . .         . .       74a 

See  Kuhlmann,  J 682a 

Grossmann,   J.     Potassium    iodide  ;     Adulteration    of   

with   potassium    bromide       . .  . .  . .  . .     706a 

Grossmann,  M.  A.     High-speed  steel  ;   Shrinkage  and  expan- 
sion of due  to  heat  treatment  . .  . .  . .     861a 

Grosspeter,  H.  K.    See  Schuen,  W 378a 

Grotta,  B.    Detonators  ;   Lead-plate  test  as  applied  to  com- 

ial   ..         ..         ..         ..         ..         ..     567a 

See  Cook,  R.  M 271a 

Grounds,  A.     Anthracite;    Constitution  of ..  ..       88t 

Boiler  plant  efficiency ;    Chemistry  in  relation  to  504r 

1    Etl;    Inorganic  constituents  of  .    Discussion    ..     166t 

Grove,  D„  A.-G.    See  Loss,  O.  971a* 

Groves,  S.  E.,  and  T.  W.  Holzapfel.    Dope  or  varnish  used 

in  aeroplane  construction  (P)  66a* 

Grube,   G.     "  Elektrochemie  ;     Grundziige  der  angewandten 

.     Band  I.  Elektrochemie  der  Losungen  "   . .     463R 

G rube nholzimpragnic rung  G.m.b.H.    Wood-preserving  agent 

(P)  757a 

Grade,  F.    See  Askenasy,  P 462a 

i  'institution  of from  standpoint 

of    co-ordination    theory        . .  . .  . .  . .     334a 

Patty  acids;  Separation  of  saturated  from 

unsaturated    ..  ..  ..  ..  ..        21a 

and   T.    Wirth.     St-Dccylenic  acid,   a   hitherto  unknown 

arid,   from    butter 680a 

2t-Decylenic  acid;    Synthesis  of  — 075a 

and  F.  Wittka.    Cellulose  esters ;  Preparation  and  inter- 
change of  alky]  groups  of- .    Cellulose  stcaratc 

and  laurate      . .         . .         . .         . .         . .         . .       94a 

See   Schlcht,    G.,    A..-G 719a,  945a 

Griin,  R.,  and  C.  1  |  turnacc  slags  ;   Conversion  of 

acid  into  basic  slags  and  cement  by  remelting    B15  \ 

(rings  on  paper ;  Fixing  and  blacken- 
ing     (P) 948a 


PAGE 

Griinhut,    L.     See   Fresenius,    W 190a 

Griinsteln,  N\     Aldol ;    Manufacture  of from  acetalde- 

hyde   (P)  78a 

Butyraldebyde  and  butyl  aKohol ;  Manufacture  of 

trom  crotonaldehyde  (P)        ..        ..        ..         ..      78i 

and  P.  Berge.  Mercury  compounds  ;  Process  of  extending 
the  catalytic  activity  of in  oxidation  of  acety- 
lene (P)  ." 017a' 

See  Chem.  Fabr.  Griesheim-Elektron 522a 

Grundv,  J.    \  .  and  J.  Bromley  and  Sons.     Dyeing  yarns 

and  the  like  (P)  139a 

Grunert,  K.,  and  K.  E.  M.  Schreiner.     Mercerised  fabrics; 

and  washing  out  in  the  piece  (P)  ..       96a* 

i'aragher,  W.  F.  90a 

q  .  C.  W.     Pyritic  concentrates  containing  tin  ;  Treat- 
ment of  . .  . .     468A 

Giimbel.     Lubrication  ;    Present  position  of  theory  of  243a 

Giinter,  F.     Oil  and  varnish  colours  miscible  with  water  (P)    772a 

Gunther,  E.     Pure  nickel  ;   Preparation  of from  impure 

nickel  sulphate  (P) 864a 

Gunther,  F.    See  Badische  Anilin  und  Soda  Fabr.  438a,  B92  k 

Giinthcr-Schulzc,    A.     Copper   salts ;     Detecting   formation 

of  complex  formation  in  aqueous  solutions  of 

by    means    of    permutite       . .  . .  . .  . .     587a 

Electrode  for  production  of  oxy-hydrogen  gas  . .         . .     472a 

Metals  ;    Relation  between  maximum  velocity  of  electro- 
lytic separation  of  and  the  hydration  of  the 

m<  tal  ions 
Permutite ;     Dependence   of  equilibrium   of   bases   in 

on    the    concentration    of    the    surrounding 

solution..  ..  ..  ..  ..  ..  ..     587A 

Guerbet,  M.     Saffron  ;    Characterisation  of  colouring  matter 

of  ,  and   its  application  to  investigations   in 

connexion  with  laudanum  poisoning  . .  ..  ..      375A 

Guernsey,  E.  W.,  and  J.  Y.  Yee.     Phosphoric  acids  ;   Process 

of  producing ■  (P) 668a 

Guernsey,  F.  II.,  and  Electric  Smelting  and  Aluminium  Co. 

Detergent  compound  ;   Manufacture  of (P)  ..    599a 

Guertler,  W.     Cast  iron  ;    Improving by  addition  of 

new  elements   . .         ..         ...         ..         ..         ..       L6a 

Gufstafson,     G.,     and     others.    Silicon-manganese-chromc 

steel ;    Method  of  producing (P)         . .  . .     715A 

Guggenheim,  M.,  and  Hoffmann-La  Roche  Chemical  Works. 

Silver   salts  of  a-amino-acids  ;    Complex  (P)     524a* 

Guichard,  M.    Adsorption  and  its  bearing  on  catalysis  . .     697a 

Guignard,    G.    P.     Ammonia  ;     Production    of    from 

nitrogen  or  cyanogen  compounds  of  titanium  (P)     415a* 
Xitroaeu   compounds  of  titanium;    Decomposition   of 

(P)  .-  ~  -.  ~     372a 

Guild,  F.  N.    Terpin  hydrate  ;  Occurrence  of in  nature    269a 

Guillemard,  H.     Air  containing  carbon  monoxide  or  other 

poisonous  impurities  ;   Purifying (P)  . .  . .     389A 

See  Desgrez,  A 100R 

Guillet,  L.    Aluminium  alloys ;    Heat  treatment  of  certain 

complex  ..  ..  ..  ..  ..  ..       17a 

Aluminium  as  a  coating  metal   . .  . .  . .  . .     408a 

Aluminium -silicon  alloys  and  their  industrial  uses    . .     46Sa 
Chromium -steels  and  their  recent  applications  . .  . .     760A 

Hardening  of  metals  ;   Phenomena  of  and  their 

generalisation    . .  . .  . .  . .  . .  . .     297a 

Lead-thallium  alloys ;    Constitution  of  ..  ..      106a 

Magnesium-cadmium  alloys  . .  . .  . .  . .     553a 

Mild  steel;    Repeated  impact  tests  on  ..  ..     104a 

and  J.  Corn-not.  Metals  and  alloys  ;  Variation  of  mechani- 
cal properties  of at  low  temperatures  . .         . .     220a 

and    A.    Porte vin.     "  Metallography    and    macrography  ; 

Introduction     to     study     of     ."     (Translated 

by    L.    Taverner.) 166r 

GuUlochin,  A.,  and  .T.  Guimct.     Ultramarine;    Manufacture 

of  (P) 66a* 

t .  J.    See  Guillochin,  A.  66a* 

Gulbransen,  R.     See  Browning,  C.  H.  480a 

Gulf  Refining  Co.    See  Alexander,  C.  M.      132a,  209a,  321a,  404a 

See  McAfee,  A.  McD 209a,  216a,  702a* 

Gumlich,  E.  Chromium  steels  for  permanent  magnets     . .     143a 

Gumz,    L.     Gas ;      Continuous    manufacture    of    in 

vertical  retorts  or  chambers  (P) 283a 

Gundcrsen,   A.    S.     Copper;     Case-hardening  — —   (P)    ..     221a 
Guntz,  A.  A.     Zinc  sulphide  ;    Phosphorescent  —  . .  . .     500a 
Gurney,   H.    P.,   and    C.    H.   Tavener.     Rubber;     Energy- 
absorbing  capacity  of  vulcanised  ..         ..     183a 

Gusmer,  A.    Fruit  Juices;    Clarifying  ■  (P)     ..         ..     267a 

Gustafson,  A.  F.    Soils ;    Effect  of  drying  on  water- 
soluble  constituents    ..        ..        ..        ..        ..    427a 

Gut  bier,  A.,  and   It.   Emslander.     Selenium  ;    Influence  of 

freezing  on  colloidal  ..         ..         ..        ..     270a 

and   J.    Huber.     Carragheen    moss   as  protective  colloid. 
Colloid-chemical   investigation  of   extract  of  Irish 

157a 
and  K    Btaib.    Zinc;   Determination  of as  zinc  sul- 
phate     . .         . .         . .         . .         . .         . .         . ,     851a 

and  others.    Cai  saspi  itective  colloid.  Action 

with  colloidal  silver     ..  ..  ..  ..  . ,     157a 


NAME  INDEX 


43 


Gutbier,  A.,  and  others — continued. 

Colloid -disperse  systems  ;   Analytical  chemistry  of . 

Determination  of  silver  ion  in  presence  of  colloidal 

silver 308a 

Dialyser  ;    Rapid fill  A 

Gelatin  as  protective  colloid.  Colloidal  silver  . .         . .     519a 

Glue  ;    Action  of  alum  on  animal , .  . .  . .     COlA 

Gutekunst,  G.    See  Mees,  C.  E.  K.  689a 

Guttmann,    A.     Concrete     vessels ;      Production    of    

impermeable  to  oil  and  similar  liquids  (P)  . .  . .     375A 

Guy,  W.  B.     Soil  inoculation  ;    Composition  of  matter  for, 

and  method  of  (P) 385a 

Guye,  P.  A.     Obituary 187R 

and  L' Azote  Francais  Soc.  Anon.     Nitric  acid  ;  Recovering 

nitrous  vapours  in  the  form  of  aqueous (P)  . .     982a 

and  F.  Gros  ct  Bouchardy.     Nitric  acid  ;   Manufacture  of 

(P)  ..  ..  ...  ..  «     253A* 

'  I  nyot,  A.,  and  Comp.  des  Prod.  China.  d'Alais  et  de  la  Camar- 
gue.  Acetic  acid  ;  Process  of  making by  oxida- 
tion of  acetic  aldehyde  (P) 309A* 

Gwosdz.     Producer  gas  generation  ;    Critical  consideration 

of 2a 

Gyllenram,  B.  R.    Illuminating  gas  from  peat  etc. ;   Retort 

and  process  for  producing (P)  ..  . .  , .     361a 

H 

Haaf  und  Co.,  A.-G.  vorm.  Healing  and  nutritive  pro- 
ducts ;    Manufacture  of  (P) 198a* 

Haag,  E.,  and  C.  Riemer.     Furnace  for  supplying  hot  gases 

to  dryers  and  the  like  (P)   . .         . .         . .         . .     451a 

Haas,  A.  K.  C.    See  Bauer,  F.  C 677a 

Haas,  B.    Ferro-concrete ;    Corrosive  action  of  gas  liquor 

on 142a 

Xylolith  ;    Improvements  in  preparation  of . .     178A 

Haas,  L.,  and  Soc.  Chim.  de  la  Grande  Paroisse.    Nitro- 

amines  ;    Preparation  of  aromatic  ■  (P)         . .     838A* 

Haas,    P.    Carrageen    (Chondrus   crispus) ;     Occurrence    of 

ethereal  sulphates  in  . .         . .         . .         . .     230A 

and  B.  Russell-Wells.     Carbohydrates  ;  Oxidation  of 

with  nitric  acid  . .         . .         . .         . .         . .     991a 

Haas,  Masehinenfabr.  F.,  Ges.  Neuwcrk.  See  Schiissler,  A.  969a 
Haase,  A.  P.,  and  Ozone  Pure  Airifler  Co.  Ozone  machine  (P)  147a 
Habbema,  H.  T.    Artificial  milk  products  ;    Preparation  of 

(P)  192A 

Haber,  F.  Amorphous  precipitates  and  crystalline  sols  . .  588a 
Habcr,  H.  J.,  and  others.    Charcoal ;    Method  of  treating 

(P)  245A 

Hablutzel,  H.     Yarn  ;  Apparatus  for  treating  hanks  of 

with  a  liquid  contained  in  a  trough  tP)       . .         . .  11a* 

Hackford,  J.  E.    Oil  from  the  D'Arcy  well  in  Scotland  . .  245R 
Oil  seepages  ;  Significance  of  interpretation  of  chemical 

analyses  of  78K,  401a 

Hacking,  E.     Electrolyte  for  electric  storage  battery  (P)  . .  638a 
and  Electrol  Mfg.  Co.     Storage  battery ;  Mixture  for  use 

in  electric  (P) 507a 

Hackl,  H.    See  Bayerische  A.-G.  fiir  chem.  und  landwirt- 

schaftl.-chem.      Fabrikate      . .         . .         . .      723a,  753a 

Hackl,   O.    Arsenic ;    Determination  of  traces  of  in 

silicate  rocks 82A 

Ferrosilicon  ;   Formation  of in  carbide  factories  . .  707a 

Nickel   and    cobalt ;     Detection  and    determination   of 

small  quantities  of in  silicate  rocks  . .         . .  443a 

HackspiU,    L:    "  L' Azote  " 321b 

Hadaway,  W.  S.,  jun.    Electric  furnace  (P)             . .         . .  380a 

Heater  and  heat  insulation  (P)   . .          . .          . .          . .  845a 

Hadfield,  R.     Con-osion  of  iron  and  steel     . .         . .      155R,  761a 

Steel ;   Manufacture  of (P) 332a* 

Haege,  T.  Fertilisers  containing  phosphoric  acid  and  po- 
tassium ;   Production  of (P)      . .         . .    385a,  562a* 

Haegermann,  G.    See  Lorenz,  R 15a 

Hagglund,  E.,  and  others.     Cellulose  acetates  from  wood 

cellulosea           . .         . .         . .         . .         . .         . .  247a 

Haehn,  H.    Fats  ;   Synthesis  of by  means  of  enzymes 

of  moulds  and  yeaste  . .         . .         . .         . .         . .  260A 

See  Hayduck,  F 430A,  562a 

See  Schroeter,  G 133a 

Hauselmann,  L.    See  Zschokke,  H 370a 

Hausser,    F.     Coke ;     Determination    of    apparent   specific 

gravity  of 207a 

Nitric  acid  ;    Technical  synthesis  of  by  means  of 

gaseous  explosions       . .         . .         . .         . .         . .  253R 

Haussler,  E.  P.     Protein  hydrolysis  ;    Solubility  of  calcium 

sulphate  in  products  of . .         . .         . .  192a 

Haferkamp,    C.    C,   and    Diamond    Match    Co.     Crystals ; 

Apparatus  for  the  production  of (P)  . .         . .  887a 

Haferkorn,  P.    Antimony  ;  Detection  of ■         . .         . .  272a 

Had,  R.  C.    See  Rhodes,  E.  O.             375a 

Hagen,  O.    Soap  ;  Determination  of  unsaponifled  fat  in ■  769a 

Hagenbuch,  H.     Electric-arc  furnace  for  roasting,  burning, 

and  sintering  minerals  and  the  like  (P)           . .         . .  109a 

Hager,  J.    See  Frankel,  S 265a 

Haggard,  H.  W.    See  Henderson,  Y.            ...         . .      307A,  344a 


tage 
Haglund,    G.     Copper-nickel    matte ;     Process   of   treating 

(P)  379A,  555A* 

Electrolytic  tanks  with  diaphragm  cells  ;    Arrangement 

in (P)        768a* 

Hague,  A.  P.    See  Cammell,  Laird  &  Co.,  Ltd 821a 

Hahl,  H.     See  Bayer  und  Co.,  F 786a,  837a 

Hahn,   A.   W.     Cyanide   process  for  recovery  of  precious 

metals  (P)         62a 

Hahn,  D.  A.    See  Henrich,  F.  543R 

Hahn,  F.  L.    Arsenic,  antimony,  and  tin  ;    Separation  of 

962 1 

and  G.   Leimbach.     Copper  ;    Catalytic  reaction  for  de- 
tection and  determination  of  traces  of . .     902a 

and  others.     Aluminium  ;    Precipitation  of by  thio- 

sulphate  and  its  separation  from  iron.     Ageing  of 
volumetric  thiosulphate  solutions     ..         ..         ..     9GJ\ 

Haid,  A.    See  East,  H.  789a,  961a 

Hailer,     E.     Disinfectants ;      Comparison    of     methods    of 

testing  and  valuation  of  . .         . .         . .     267a 

Formaldehyde  ;    Relation  between  and   bacteria 

and  spores        229a 

Formaldehyde  solutions  ;  Bactericidal  action  of . .     ~'.)a 

llailwood,    E.   A.    Glass-making    machines    for  producing 

pressed  cups  etc.  <P)    . .         . .         . .         . .         . .     984a* 

Glass  manufacture  ;    Press  moulding  machines  for 

(P)  592a* 

Haimann,  M.    See  Vintilesco,  J 872a 

Haines,  F.  W.,  and  others.     Metallic  coatings  ;    Depositing 

on  metal  objects  (P) 62a 

Haines,  H.  B.    See  Kins,  J.  F.  325a 

Halbergerhiitte  Ges.  Blast-furnace  and  like  gases ;  Puri- 
fication of (P) 244a 

Gas  purifiers  ;   Dry (P)        209A 

Haley,  D.  E.,  and  J.  F.  Lyman.    Lipase  ;  Castor  bean , 

its  preparation  and  properties         ..         ..         ..     223A 

Hall,  A.    See  Sugden,  T 576a 

HaU,  A.  J.    See  Everest,  A.  E.  136a 

Hall,    B.    J.     Sensitising    photographic    papers   and    other 

fabrics;   Machines  for (P)        611a 

Hall,  C.  H.,  jun.    Bone-black  ;   Decolorising  action  of 264A 

Colloids  ;   Electrical  precipitation  of . .         . .     556a 

HaU,  C.  W.    See  Schofleld,  J.  A 199a 

Hall,    D.    Molybdenum    in    tungsten ;     Determination    of 

small  amounts  of  . .  . .  . .  . .     671a 

See  WUlard,  H.  H.  ..         ..      999a,  999a,  999a, 

Hall,  E.  L.,  and  H.  Papst.     Gas  making  (P) 361a 

HaU,   F.   W.,   and   The   Texas   Co.    Aluminium   cldoride ; 

Manufacture  of  (P) 216.1,  670a 

HaU,  H.  C,  and  RoUs-Royce,  Ltd.    Aluminium  alloy  (P)  . .     555a* 

HaU,  J.  A.,  and  others.    Nitric  acid  absorption  towers        . .     285T 

HaU,  J.  H.,  and  others.     Ferromanganese  ;  Melting (P)     «'.:;7a 

HaU,  L.    Iron-nickel  alloy  for  use  in  making  melting  pots 

and  other  articles  to  be  subjected  to  heat  (P)        . .     179a 
and  S.  H.  Flood.    Fuel  burners  ;   Liquid . .         . .     S90a* 

HaU,  S.  H.     Centrifugal  separators  (P)  927a* 

and    De    Laval    Separator  Co.    Centrifugal    separator 

(P) 358a,  057a 

Hall,    W.    C.    Diamagnetic   minerals ;     Concentration   and 

separation  of (P)  . .         . .         . .         . .         . .     506a 

HaUer,  A.,  and  Fabr.  de  Prod.  Chim.  de  Thann  et  de  Mul- 

house.    Borneol;    Manufacture  of  (P)         ..     4S4a* 

HaUer,  R.    Alizarin  Red  dyeings  ;    Brightening  of by 

means  of  tin  compounds        . .         . .         . .         . .       55a 

and  F.  Kurzweil.     Alizarin  Red;    Quantitative  relations 

in  the  fixing  of in  calico  printing        . .  . .     139a 

and    H.   Russina.     Substantive   dyestuffs ;    Dyeing   and 

physical  properties  of  . .         . .         . .         . .     460a 

HaUimond,  A.  F.  Steels  ;  Delayed  crystallisation  in  carbon 
:  formation  of  pearlite,  troostite,  and  marten- 
site         41SA 

Halter   E.  S.    Dyeing  machine  (P) 543a 

Halvoisen,  B.  F.,  and  Norsk    Hydro-Elektrisk    Kvaelstof- 

aktieselskab.     Ammonium  uitrate  fertiliser  (P)   . .     2G4a* 
See  Aanerud,  S.  A.  23A* 

Hambloch,  E.    BrazU  ;    Report  on  economic  and  financial 

conditions  in  . .         . .         . .         . .         . .       83R 

Hambly,  F.  J.  Chemists  and  their  work :  present  ten- 
dencies   . .         . .         . .         . .         . .         . .         . .     143rv 

Hamburger,   S.    Mixed  acids  ;    Recovery  of  in  the 

manufacture  of  nitric  esters  or  nitro-compounds  (P)      81A 
Protocatechuic  aldehyde  ;    Preparation  of (P)     . .       35a 

Hamer,    F.    M.    Isocyanines ;     Optical    and    photographic 

properties  of  some  isomeric ..         ..         ..     120a 

HamUton,  E.  H.     Lead  blast  furnace  ;    Powdered  coal  in 

the  900a 

and  U.S.  Smelting,  Refining,  and  Mining  Co.     Lead  ores  ; 

Method  of  reducing (P)  . .         ..         ..         ..     221a 

HamUton,  E.  M.,  and  HamUton,  Beauchamp,  Woodworth, 
Inc.  Molybdenum ;  Extraction  of  metals,  e.g., 
from  ores  (P)  . .         . .         . .         . .       6:3a 

HamUton,  H.  J.  E.  Sulphide  and  oxidised  ores  ;  Treat- 
ment of (P)        422a 


44 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY 


on,  R.  F.,  &  Co.,  and  others.  Pyrometers  of  the 
tbeimo-couple  type;  Counteracting  effects  of 
temperature    variations   at   the    cold   junction   of 

electrical  (P) 122a* 

Hamilton,  s.  II.    Fire-extinguishing  liquid  and  method  of 

using  it  (P) 927a 

Hamilton,  T.  S.,  and  others.    Amino-acids  of  feeding-stuffs  ; 

Determination  of . .         . .         . .         . .       75a 

Hamilton,  W.  B.,  and  T.  A.  Evans.    Steel  and  alloy  steels ; 

Manufacture  of (P)         . .  . .  . .  . .     220A 

Hamilton,   Beauchamp,    Woodworth,    Inc.    See   Hamilton, 

E.  M 63A 

Haniister,  V.  C,  and  National  Carbon  Co.    Electroplating 

carbon  articles  (P)      . .         . .         . .         . .         . .     181a 

Hamler,  P.  J.    Fertiliser  dryer  (P) 512a* 

Harnlink,  L.  C.     See  Kersting,  A.  F.  ..  ..  ..     623A 

Haminersten,   0.    Chymosin  and   pepsin ;    Purification  of 

784a 

Stomach  enzymes  of  the  calf  and  pig  ;    Relative  sensi- 

-s  of to  alkali       784a 

Hammett,  F.  S.,  and  E.  T.  Adams.    Magnesium  ;    Colori- 

rnetric  determination  of  small  amounts  of ...     612a 

Hammond,  R.     Sec  Jackson  and  Bro.,  Ltd.  . .  . .     705A* 

Hammond,  T.  C.     See  Chambers,  E.  V 372a 

Hamor,  W.  A.    See  Bacon,  R.  F 544E 

See  Davis,  H.  S 58A 

Hampshire,  P.    Beer  deposits ;    Isolation  of  bacteria  from 

340a 

Worts  and  beers  ;    Cause  of  ropiness  in . .         . .     831a 

Hanak,  A.     Sucrose  ;    Determination  of  by  titration 

of  precipitated  cuprous  oxide  with  alkali    ..         ..       71a 
Handorf,  H.     Extraction  of  small  quantities  of  liquids  in  a 

Soxhlet  apparatus 612a 

Handovsky,  H.     Sensitiveness  of  cells  to  poisons  as  a  function 

of  their  colloid-chemical  condition  . .  . .  . .     517a 

Hanemann,  H.    Steel  castings  ;  Process  of  making (P)    422a 

Steel :   Plating  metal  objects  with (P)      . .         . .     4G9A 

See  Stockmeyer,  W.  717a 

Haner,  C,  jun.,  and  U.S.  Industrial  Alcohol  Co.    Distillery 

waste  ;    Treatment  of (P)        73a 

See  Backhaus,  A.  A.  73a 

Hanff,  E.  A.,  and  Pittsburgh  Engineering  Works.     Electric 

furnace  (P)        . .  . .  . .  . .  . .  . .     902a 

Hangleiter,  C.    See  Clemm,  H.  855a* 

See  ZeUstoff-fabr.  Waldhof  855a 

Hanke,  M.  T.,  and  K.  K.  Koesslcr.    Histamine  and  other 

iminazoles  ;    Production  of from  histidine  by 

action  of  micro-organisms     . .         . .         . .         . .     268a 

Phenols  ;    Separation  and  estimation  of including 

phenol,  cresols,  j)-hydroxyphenylacetic,  p-hydroxy- 
phenylpropionic   and  p-hydroxyphenyllactic  acids, 
tyrosine,  and  tyramine  . .  . .  . .  . .     268A 

Tyrosine,  tyramine,  and  other  phenols  ;   Microchemical 

colorimetric  method  for  estimating . .         . .     268a 

Hanna,  R.  w.,  and  Standard  Oil  Co.  of  California.  Low 
boiling  point  hydrocarbons  ;  Continuous  produc- 
tion of  from  petroleum  oils  (P)        . .      285A,  580a 

Petroleum  oils  ;   Refining  viscous (P)        . .         . .     209a 

Hannan,  F.     See  Wolninn,  A.  30a,  30a 

Hanner,  A.     See  Pfyl,  B 73a,  78a 

Hanselmayer,  F.    See  Zinke,  A 509a 

Hansen,  A.  Sulphur ;  Kiln  and  tower  plant  for  the  com- 
bustion of  (P) 327a 

Hansen,  C.  E.    White  metal  (P)        943a 

Hansen,  J.  E.     Glaze  and  enamel  calculations  ;  Modification 

of  the  empirical  formula  in . .         . .         . .     634a 

-lord,   J.   B.    Ammonium  sulphate ;    Manufacture   of 

neutral  (P)  173A 

Ammonium  sulphate  and  other  salts  ;    Apparatus  for 

drying  (P)  501A 

Hansgirg,  F.     Fractional  distillation  ;  Method  of (P)  . .       43A 

Hanson,   A.   W.    Procaine   (novocaine) ;     Examination   of 

*.  345A 

Hanson.  I).     Steel;    Intercrystallino  fracture  in ..     104a 

and  M.  L.  V.  Gayler.    Aluminium-zinc  alloys     . .     126e,  250a 

Hantge,  E.    Set  Aradt,  X 587a 

Hauwicke,  R.  F.    See  Savage,  W.  G.  573E 

iwa,  T.     See  Rice,  F.  E.  341A 

Hapgood,  C.  H.,  and  De  Laval  Separator  Co.    Centrifugal 

-,.  machine  (P) 658a 

Transformer  oil ;   Process  of  purifying  and  dehydrating 

(P)  741a 

Haroerd,  E.  H.    See  Sonsthagou,  A.  797a* 

Hubert,  W.  O.    See  rpthegrove,  C.  551a 

Harbord,  F.  W.    Zinc  sulphide  ores  or  the  like  ;    Roasting 

complex  (P)        038a* 

Harden,  A.    Biochemical  method       27r,  89b 

and  F.  R.  Henley.    Dextrose  ;   Function  of  phosphates  in 

oxidation  of  by  hydrogen  peroxide  . .         . .     339a 

Hardle,  O.  D.,  and  Maclaurin  Carbonisation,  Ltd.  Dis- 
charging coke  or  residues  from  retorts,  producers, 

and  the  like  ;    Means  for ■  (P) 624a* 

Gas  retorts,  producers,  or  the  like  ;    Charging  di 

'or (P) 405a* 

Hardin,  J.  E.    See  Touchstone,  B.  F.  . .   .>     . . 


l'AGE 

Harding,    K.,    and    B.    D.    Jones.     Sodium    pentaborate  ; 

Production  of  from  boron  ores  (P)  . .         . .  293a 

Harding,  T.  S.     Lavulose  ;    Preparation  of  . .         . .  776a 

Harding,  W.  H..  jun.     See  Faber.  H.  B 575a 

Hardinge,  H.  W.     Classifying  powdered  materials  ;   Appar- 
atus for (P)        ..         ..         ..         ..         ..  44A* 

Hardy,  P.     Alkaloids ;    Relation  between  the  constitution 

of  and  the  Vitali  reaction       . .  . .  . .     782a 

Atropine  ;     Volatilisation   and   hydrolysis   of   in 

toxicology  875a 

Hardy,  W.  A.    Wood  ;   Destructive  distillation  yields  from 

British  Columbia  fir  and  alder  ..         ..     362a 

Hardy,  W.  B.,  and  I.  Doubleday.     Lubrication  ;   Boundary 

.     The  paraffin  series     ..         ..         ..         ..     242a 

Lubrication  ;     Boundary   .     The   temperature   co- 
efficient   ;    ij 

and  J.  J.  Pique.    Fish  and  the  like  ;  Apparatus  for  cooling 

and  freezing  .  (P)  644a* 

•Harger,  J.,  and  Woodcroft  Mfg.  Co.,  Ltd.    Hydrogen  and 
mixtures  of  hydrogen  and  nitrogen;   Manufacture 

of  (P) 295A 

Hargreaves,    L.,   and    A.    C.    Dunningham.    Sodium   thio- 

sulphate  ;    Manufacture  of  (P)  . .         . .       99a 

Harker,  G.    Vapour  arising  from  boiling  saline  solutions  ; 

Temperature  of . .         . .         . .         . .         . .       56a 

Harker.  J.  A.     Nitrogen  fixation  ;  Post-war  progress  in 387R 

Harkins,  W.  D.,  and  D.  T.  Ewing.     Charcoal;  High  pressure, 
due  to  adsorption,  and  density  and  volume  relations 

of ..  ..  „  87a 

Harkort,  H.    Glazes  and  enamels  free  from  lead  and  boron  ; 

Preparing  frits  for  (P)  103a 

Harlow,   I.   F.,   and   Dow   Chemical   Co.    Potassium   car- 
bonate ;    -Manufacture  of  (P) 100a 

Potassium  salts  ;   Extracting from  bitterns  (P)  . .     670a 

Harnist,  C.     Cellulose  ;    Treatment  of  crude  (P)     . .     584a 

Harper,  G.  D.     Lubricating  oils  ;   Production  of (P)..     494a 

Harrel,  C.  G.,  and  Campbell  Baking  Co.     Wheaten  flour; 

Method  of  blending (P)  873a 

Harries,   C.    Fatty   acids,   aldehydes,   and   ketones ;     Pre- 
paration of  from  mineral  oil  hydrocarbons 

and  tar  oils  (P)  35a 

and  F.  Evers.     Caoutchouc  ;   Determination  of  molecidar 

magnitude  of  by  chemical  methods..  ..       23A 

and  V  vleuritic  acid  from  shellac         . .         ..     474a 

See  Fonrobert,  E 109E 

Harris,  F.  W.     Brasses ;    Hardness  of  the  and  some 

experiments  on  its  measurement  by  means  of  a 
strainless  indentation  ..         ..         ..      4isn.  817a 

Dehydrator  for  petroleum  emulsions  (P)  ..  214  a 

and  Petroleum  Rectifying  Co.    Dehydrator  for  petroleum 

emulsions  (P) lA* 

Emulsions ;    Electrical  dehydration  of  ,  especially 

of  petroleum  emulsions  (P) 210a,  890a 

Oils;    Dehydrating  heavy  (P)        494a 

Harris,    G.    D-,   and    National    Evaporator    Corp.    Drying 

apparatus;    Conveyor (P)       ..         ..         ..     205a 

Evaporating  moisture-containing  materials  ;  Apparatus 

for (P) 200a 

Harris,  G.  W.    See  Clevenger,  G.  H.  144a 

Harris,  H.     Lead  ;    Refining  of (P) 

Refining  metals;    Apparatus  for (P)        ..         ..     821a 

Harris,  J.,  and  Carbo-Oxygen  Co.     Electrolytic  cell  (P)  . .     638a* 

and  J.  R.  Rose.     Electrolytic  cell  (P)       299a 

See  Rose,  J.  R - "- 1 

Harris,  .T.   E.  i;.,  and  W.  J.  Pope.    Isoquinoline  and  the 

Isoquiuoline  Reds       ..         ..         ..         ..         ..     381a 

Harris,  M.    See  Parkin,  S 743a 

Harris,  R.  W.     See  Mueller,  F.  F 985A 

Harrison,    B.    S.,    and    Carrier   Engineering    Corp.     Drying 

materials  ;    Method  of  and  apparatus  for (P)     280a 

Heating  system  ;    High-temperature  (P) . .         . .     281a 

Harrison,  C.  W.    Santal  oil ;   Distillation  method  for  deter- 
mination of  santalol  in  . .         . .         . .     340a 

Harrison,  N.  S.    See  Nilsson,  M 190a 

Harrison,  W.    See  Burgess,  Ledward,  and  Co.,  Ltd.         . .     543a 
Hart,  E.,  and  I.  J.  Stewart.    Dyestuffs ;    Manufacture  of 

(P)  51a* 

Hart,    E.    B.,    and    others.    Antiscorbutic    vitamin.    Its 

solubility  from  desiccated  orange  juice      . .         . .     606a 
Hart,  M.  C,  and  W.  B.  Payne.    Neosalvarsan  ;    Toxicity 

of 618A 

Harter,  E.     Heat-exchange  apparatus  (P) 92a* 

Barthan,  J.    See  Von  Bichowsky,  F.  ..         ..      294a,  540a 

Hartley,  C.  J.    See  Hartley,  J.  W 344a 

Hartley,  H.    See  Hinslielwood,  C.  N.  263a 

Hartley,  J.  W.  and  C.  J.    Sewage;   Purification  of (P)     ::iia 

Hartman,  H.  B.    Ozone  generating  apparatus  <p)..         ..     944a* 
and    Electric    Water    sterilizer    and    Ozone    Co.     Ozone 

generator  (P)    . .         . .         . .         . .         . .         . .     718a 

Hartman,  L.  H.     See  RUB*,  J.  B 374a 

Hartman,  W.  w.     See  Clarke,  H.  T.  392a 

Hartmann,  A.     Coke-oven  gas  ;    Recovery  of  benzol  hydro- 
carbons from  (P)  405a* 


NAME  INDEX. 


45 


PAOE 

Hartmann,  H.     See  Ruff,  0 371a 

Hartmann,    W.     Extraction    of    substances    with    solvent 

vapours  . .         . .         . .         . .         . .         . .         ■  ■  81a 

Hartong,  R.  C,  and  Goodyear  Tire  and  Rubber  Co.    Rubber 

compounds  ;    Compounding  of  (P)    . .         . .  23a* 

Hartshorn.    Y\\    X.     Grinding    and    mixing    machines    for 

chocolate  (P) 480a* 

Hartung,  E.  J.     Silver  bromide  ;  Action  of  light  on 75R,  440a 

Harukawa,  C.     Lime-sulphur  insecticklal  mixture  ;    Studies 

on  834a 

Harvey,  A.    Tanwood  waste  ;    Spent 150a 

Harvey,  E.  M.     Serb-Croat-Slovene  Kingdom  ;    Report  on 

economic  and  industrial  conditions  in  the  . .  513R 

Harvey,  L.  C.    Furnace  (P) 451a* 

"Pulverised  coal  systems  in  America"..         ..         ..  185R 

Harvie,  D.  and  D.     Coal ;    Rakes  or  scrapers  for  vertical 

dryers  for  wet  (P)        245a* 

Harzer  Werke  zu  Riibeland  und  Zorge.    Iron  ores  ;   Smelt- 
ing low-grade  calcareous  (P)  . .         . .         . .  298a 

Hase,  R.     Gases;    Apparatus  for  testing  (P)..         ..  353a 

Hasenbaumer,  J.    See  Konig,  J.         . .         . .         . .       25a,  384a 

Hascnohrl,  R.,  and  J.  Zellner.    Fungi ;    Chemical  relations 

between  higher and  their  substrates . .         . .  602a 

Hassan,  K.  H.    See  Atkin,  W.  R 24a 

See  Thompson,  F.  C.                    68a 

Hasse,  H.  R.    See  Henderson,  J.  B.             199A 

Hasse,  P.     Bcnzaldehyde  ;   Test  for  nitrobenzene  in ..  30Sa 

Vanillin  ;     Refractometric    determination    of    in 

vanilla-sugar     . .         . .         . .         . .         . .         . .  306a 

Hassel,  O.    See  Goldschmidt,  H 322a 

Hastings,  A.  B.    See  Cullen,  G.  E 649a 

Hatfield,  A.  S.    Alloy  (P)        986a 

Hatfield,   W.   H.     Metals  ;     Mechanism  of  failure  of  

from  internal  stress    . .         . .         . .         . .         . .  105a 

Hathaway,  C.  S.,  and  J.  A.  Lock,'.     Paint  (P)      ..         ..  3S2a 

Hatschek,    E.     "  Colloids :     Introduction    to   physics    and 

chemistry  of  "                . .          . .          . .          . .  139R 

Hatton,  C.  A.    Set  Knecht,  E 128R 

Hauber,  M.,  jun.     See  Meadows,  T.  C 982a 

Hauff,  J.,  und  Co.     Photographic  developers  (P)  . .         . .  567a* 

Haugerod,  J.    See  Heuser,  E.             288a 

Haughton,  J.  L.,  and  G.  W.  Ford.    Metals ;    Systems  in 

which  crystallise            . .         . .         . .         . .  291R 

Haugwitz,  R.     See  Akt.-Ges.  f.  Anilinfabr.               ..    212a*,  583a 
Haun,   J.    C,  and   A.   Silver.    Cyaniding   precious   metal- 
bearing  materials  (P)             . .         . .         . .         . .  63A 

Hauptmeyer,  F.     Internal  members  of  the  human  body ; 

Steel  for  artificial  (P) 637a 

Haverstick,  E.  J.     See  Slepian,  J.                  . .          . .          . .  2lA 

Hawes,  J.    Alcohol  fuel  (P) S01A 

Hawkins,     L.     A.    Grapefruit :      Physiological    study     of 

ripening  and  storage  of  . .          . .          . .  29a 

Hawkins,  T.,  and  C.  R.  H.  Rex.    Explosives  ;  Manufacture 

of  (P) 8lA,  484A 

Hawkins,  W.    See  Larson,  A.  T 292a 

Hawley,  L.  F.    Wood  ;    Effect  of  adding  various  chemicals 

to  previous  to  distillation       . .         . .         . .  286a 

and  H.  M.  Pier.    Electrical    precipitation ;    Application 

of to  wood-distillation  process           . .         . .  495a 

Haworth,  J.  P.     Alloy  for  repairing  defective  castings  (P). .  62a 
Haworth,  W.  N.,  and  F.  W.  Atack.    Aromatic  alkylamino- 

anthraquinone  compounds  ;    Manufacture  of  

(P)           743A* 

and  J.  C.  Irvine.    Dimethyl  sulphate ;    Preparation  of 

(P)            119a* 

and  G.  C.  Leitch.    Amygdaline  ;   Biose  of . .         . .  875A 

Hayduck,  F.,  and  H.  Haehn.    Zymase  ;   Formation  of 

in  yeast  430a,  562a 

Hayes,  A.,  and  U.S.  Industrial  Alcohol  Co.     Liquid  fuel; 

Method  of  forming  a  (P)        . .         „         . .  850a 

Haynes,  D.     See  Carr6,  M.  H.             _          ..  342a 

Haynes,  P.  E„  and  The  Linde  Air  Products  Co.    Explosive 

mixture  (P) 310a 

Gaseous  mixtures  ;   Separation  of (P)        . .      846a,  886a 

Haynn,  R.     See  Miinz,  F 895a 

Hayward,  C.  R.    Nickel  and  alumina  ;    Extraction  of 

from  Cuban  iron  ores  . .         . .         . .         . .         . .  219a 

and  others.    Ores  and  the  like  ;   Method  of  treating 

(P)           422a 

Slate  ;    Treatment  of  for  recovery  of  potassium 

and  aluminium  salts  (P)      . .          . .          . .          . .  501a 

Steel ;    Effect  of  time  in  reheating  quenched  medium- 
carbon  below  the  critical  range  . .         . .         . .  330a 

See  Eustis,  F.  A 422a,  985a 

Hayward,  W.  H.,  and  Adanac,  Ltd.     Tyre-filling  composi- 
tion ;    Manufacture  of  (P) 302a 

Hazel  Atlas  Glass  Co.    See  Good,  R.              634a 

Hazeltine,  H.  H.,  and  others.    Rubber  substitute ;    Manu- 
facture of  (P) „         ..  511a* 


Hazen,  W. 


of 


PAGE 


691A 
706a 
907a 

633a* 
849a 

49a 

49A 

266a 

763A 

216R 

748a* 

839a 

321a 


462a 

491A 
702a 
291R 
537A* 
370a 

251a 

399a 


Potash  ;    Determination  of  small  amounts 
-  by  the  Lindo-Gladding  method 

See  Ross,  \V.  H 

Hazleton,  E.  O.    See  Atkinson,  E 

Head,  C.  J.    Chromic  oxide  and  sodium  sulphide  ;  Manu- 
facture of from  sodium  eliminate  (P) 

Healy,  J.     Gas  producers  and  retorts  (P) 

Heany,   J.  A.    Incandescence  electric  lamps ;    Glower  for 

(P)  

Heap,  J.  G.,  and  others.     Pyridine  and  certain  of  its  homo- 

logues  ;   Preparation  of in  a  state  of  purity  . . 

Heath,  W.  P.,  and  II.  M.  Washburn.    Powdered  milk  and 

other  food  products  ;    Manufacture  of  (P)   . . 

Heathcote,  H.  L.,  and  C.  G.  Whlnfrey.    Metals ;    Tearing 

tests  on  

Heaton,  N.    Titanium  oxide  ;    Production  of  and  its 

use  as  a  paint  material 

Hcberlein  u.  Co.,  A.-G.     See  Giesler,  H 

Hebler,  F.    See  Bechhold,  H.  

Hechenbleikner,  I.,  and  Southern  Electro  Chemical  Co.  Gases  ; 

Method  of  and  apparatus  for  producing (P). . 

and  others.    Sludge  acids  from  refining  of  mineral  oils  ; 

Treatment  of (P)  . .         . .  631a,  702a,  851a 

Waste-acid  ;    Concentrating  (P) 

Hedberg,  C.  W.  J.,  and  Research  Corp.  High-velocity  classi- 
fier ;   Electric  for  grading  particles  removed 

from  gases  (P) 

Hedges,  E.  E.    Shale  ;  Process  of  distilling (P)  . . 

Hedges,  J.  J.    See  Porter,  A.  W 

Hedman,  B.  A.    See  Christenson,  O.  L.     4a,  536a,  537a*. 

Hedvall,  J.  A.    Ferric  oxide  ;  Colour  of 

Oxides  stable  at  red  heat,  produced  by  different  methods 
of  preparation  ;  Study  of  the  variation  of  properties 

of  by  means  of  the  X-ray  spectrum 

Hecnan  and  Froude,  Ltd.,  and  G.  H.Walker.    Dust;  Separa- 
tion of and  other  mechanical  impurities  from 

air  or  gases  (P)  . . 
Refrigerating  apparatus;    Concentration  of  brine  and 
similar  solutions  used  as  the  circulating  medium 

in  (P) 

Heennaun,  P.    Dyeings  ;    Fastness  of  to  gases,  and 

detection  of  formaldehyde 
and  H.  Frederking.     Cotton  ;    Influence  of  concentration 

of  bleach  liquor  in  prolonged  bleaching  of on 

its  durability 
Cotton  ;    Influence  of  temperature  of  bleach  liquor  in 

prolonged  bleaching  of  on  its  durability     . . 

and  H.  Sommer.    Asbestos  and  cotton  ;   Analysis  of  mix- 
tures of  

Heft,  H.  L.     See  Eddy,  W.  H.  

Hegan,  H.  J.     See  Courtaulds,  Ltd. 

Heidelberger,  M.     Oxyhemoglobin  ;    Preparation  of  crystal- 
line     

and  W.  A.  Jacobs.    Dihydrocinchonicinol  and  the  dihy- 
droquinicinols 
Quinicine  and   benzoylcinchona  salts,  crystalline  ethyl 
dihydrocupreine  (optochin)  base  and  other  deriva- 
tives 

See  Jacobs,  W.  A 516a,  516a 

Heiduschka,  A.,  and  S.  Felser.    Arachis  oil ;    Chemical  com 

position  of  

and  E.   Komm.     Keratin 

Heigis,  O.    See  Miiller,  M 

Heike,  W.     "  Reversed  chilled  iron 
Heil,  A.     Galvanic  cell  (P) 
Heil,  R.     See  Mayer,  F. 
Heilbron,  I.  M.    Plant  products  ; 

thesis  of . . 

See  Baly,  E.  C.  C. 

Heimann,   H.  See   Otto,    E 

Heimbuchcr,  G.  A.  Oil-bearing  shale  ;  Apparatus  for  treating 

(P)  

Heinemann,  A.    Coffee  beans  ;    Production  of  a  substitute 

for  raw  (P)         

Pearl-barley ;    Production  of  malted  (P) 

Phenolformaldehyde  resins  ;    Production  of (P)  . . 

Heinemann,  K.,  and  Hoesch  und  Co.     Caustic  alkali ;  Recov- 
ery of  pure from  impure  lyes  (P) 

Heinemann    und    Hanka,     Militarkonservenfabr.      Bones ; 

Separating  fat  and  albumin  from (P) 

Heinrich,  R.  F.  Gases  ;  Separating  mixed by  centrifugal 

diffusion    (P) 

Oxygen  and  nitrogen  ;  Separating  from  the  air  by 

centrifugal  diffusion  (P) 
Heiuze,  F.     See  Dimroth,  O. 
Heinzelmann,  A.    Mercury  in  ore? ;   Rapid  determination 

Heirich,   C.    Gases  ;    Obtaining  pure  by  application 

of  the  principle  of  hydraulic  compression 

Heisig,  H.  M.    See  Wilson,  J.  A.  389a 

Helberger,  H.    Quartz  ;  Fusion  of (P) 295a 

Helbig,  M.    Dicalcium  phosphate  ;    Manufacture  of (P)    939a 

and   O.   Rossler.     Soil  stored  under  natural  conditions ; 
Evaporation  of  water  from  . . 


'  and  related  phenomena 


657 


290a 


54a 

214a 

745A 
340a 
627A 


7S1A 
517A 


517a 


674A 
773a 
324a* 
255a 
865A 
663a 


Photo-    and    phyto-syn- 

89R,  197R 

609A 

914A 


624a 

76a 
76a* 
826a 

174a 

267A 

859A 

859a 
51a 

61a 

735a 


477a 


-16 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 
Helbronncr,  A.,  and  P.  Pipereaut.     Sulphuric  acid  ;  Manu- 

(P) 668A 

and  W.  Rudolfs.     Bacteria;    Attack  of  minerals  by 

tl  too  of  blende   . .        . .        . .        . .         . .     500a 

Heldcrmaii,   W.  D.     Cane  juices;   Betermination    of    Brix 

degree  of  raw  ..         ..         ..        ..        ..  642a 

Can.-  molasses  ;  Nature  and  composition  of . .         . .     70a 

and  V.  Khainovsky.     Cane  molasses  ;  Influence  of  colloids 

on  viscosity  of  Java  226a 

Hetfenstein,  A.     Electric  furnace   with   suction   device  for 

gases    (P)         044a 

Electrical  gasification  of  fuels;  Possibilities  of  ..     208a 

Roasting,  calcining,  etc.,   materials  containing  oxygen 

or  carbon   dioxide  (P)  622a 

Helferich  B.     Emulsln 228a 

Hell,  J.     Tanning  of  skins  and  hides  (P) 602A 

Heller,  A.,  and  O.  von  Rosthorn.     Copper  alloys;    Mann- 

sin  nrc  of  (P) 506a 

Heller,  B.    Meat  preservative  ;  Method  of  making  a (P)     154A 

Heller,  H.     Tin  ;    Detection  of 443A 

Heller,  J.  B.,  and   Be   Laval   Separator   Co.    Emulsions; 

Process  of  resolving (P)  . .         ..         ..         ..     400a 

Heller,  P.  A.     Uranium  alloys  with  nickel,  iron,  and  aluminium     810a 
Helmholtz,  A.  W.,  and  Continuous  Process  Coke  Co.     Coal ; 

Distillation  of  (P)  661a 

Helmholz,  K.     See  Marckwald,  W 938A 

Helmick,  H.  H.    Thorium  in  monazite  sand  ;  Determination 

of  by  an  emanation  method  . .  . .  . .       96a 

Helps,   G.     Gas   manufacture    (P) 579a 

Mixing  gases  or  vapours  ;   Means  for (P)  . .  . .     451a* 

Helvey,  T.     Paraffin  wax  ;    Production  of from  lignite 

tars,  producer  gas  tars,  etc.  (P)      . .  . .  . .     933a 

Helwert,  F.    See  Franzeu,  H.  875a 

Hemingway,  A.  J.     See  Avery,  D.  154a 

Hemmelmayr,  F.     1.5-Dihydroxynaphthalene  ;  Dicarboxylic 

acid  formed  from  by  heating  with  potassium 

bicarbonate  under  pressure   . .  . .  . .  . .     662a 

Hemmi,  T.     Aluminium-zinc  alloys   . .  . .  . .  . .     552a 

See  Ohtani,  B 377a 

Henderson,  G.  G.    Annual  Meeting  proceedings      ..         ..     270T 
Henderson,  H.  L.     See  Henderson,  N.  H.     . .  . .  . .     657a 

Henderson,  J.  A.  R.     See  Callan,  T 75R,  157t,  161t 

Henderson,  J.  B.,  and  H.  R.  Hasse.     Explosions  ;    Thermo- 

dynamical  theory  of ..  ,.  ..  ..     199a 

Henderson,  J.  H.     Italy  ;   Report  on  commercial,  industrial, 

and  economic  situation  in  ■      ..  ..  ..     223R 

Henderson,  N.  H.  and  H.  L.    Dry  kiln  (P) 657a 

Henderson,  W.  E.     See  Dundon,  M.  L 545a 

Henderson,  Y.,  and  H.  W.  Haggard.     Deodorising  offensive 

gaseous  emanations  from  organic  matter  (P)      . .     344a 

Ventilation ;     Physiological    principles    governing   

when  the  air  is  contaminated  with  carbon  monoxide     307a 
Hcndrick,  J.     Fertilisers  before  aud  after  the  war  . .  . .     537a 

Hendricks,  J.     Cements  of  high  strength     . .  . .  . .     860a 

Henke,  C.  O.,  and  O.  W.  Brown.    Azobenzene  and  aniline  ; 

Catalytic  preparation  of  . .  . .       406a,  976a 

See  Brown,  O.  W 322a,  406a,  070a 

Henkel,  G.     Sec  Meyer,  F 896a 

Henkel  und  Co.     Soaps  containing  water ;    Treatment  of 

liquid or  their  fatty  acids  (P)  . .  . .  . .       65a 

Henlein,  S.,  and  E.  Molkentin.     Aluminium  alloys  ;    Manu- 
facture of  (P) 717a 

Henley,  F.  R.     See  Harden,  A.  339A 

Henley,  It.  R.     See  Emery,  J.  A 945a 

Hcnnebutte,  H.  G.     Gas  retorts ;    Vertical  and  gas 

producers  (P)   . .  . .  . .  . .  . .  . .       46a 

Henning,    A.     Fire    extinguishers ;      Carbon    tetrachloride 

and  methyl  bromide  in . .  . .  . .  ...     218r 

Henon,  J.  D.     Dyeing  apparatus  (P) 979a 

Henrieh,    F.     "  Organic    chemistry  ;     Theories    of    ." 

i         lated  and  revised  by  T.  B.  Johnson  and  D.  A. 

Hahnl 543E 

i  mini  ral ;  New  ■ 483R 

and   G.   lliller.     Mineral   containing   rare  earths  as  chief 

constituents  ;  New    938a 

and  G.  Prell.     Gases;  Examination  of  naturally  occurring 

938J 

Henry,  G.  J.     See  Dolbear,  C.  E 373A 

Henry,  N.  3  '  o.     Oil  presses;    Cage-forming 

and  cage-loading  mechanism  for (P)  ..        ..     599a* 

Henry,  T.  A.     Inthelmli  at  work  on ..     !■ 

and  H.  Paget.    Chenopodinm  oil   ..         ..        ...        ..      33a 

nflw i.  A.  B.    See  Thornbor,  J 585a 

iman,  H.    Timber;  Treatment  of         -  with  a  gaseous 

Bold    (V)  329a 

Henstock,  H.     Phenanthreno  ;   Solubility  of in  various 

. .     975a 

Hentzo,   E,     Bitumen;    PoasibOitj  of  extracting from 

In  its  original  form        ..         ..     B78i 

Hepburn,  »;.  G.     Water;    Softening  of (P)  ..      193a,  782a* 

Hepburn,  a*.  S.    See  Almy,  I..  H ^     780a 


PAGE 

Hepworth,   H.     Magnesium  ;     Recent  applications  of 

in  synthetic  organic  chemistry         ..  ..  ..         7t 

Hepworth.     Glycerin  ;    Composition  of  residue  of  distillation 

of  crude  .     Discussion    ..  ..  ..  ..     100t 

Tannins  ;    Synthesis  of 472R 

Hera-us,  W.  C,  G.m.b.H.     Osmium  alloys  (P)         ..  ..     505a 

and  others.     Furnace  ;    Induction  smelting  (P)     . .     179a 

Herbers,  H.     See  Wulf,  H 456a 

Herberts,  K.    See  Bauer,  K.  H.  _         638a 

Herbig,  W.    Turkey-red  oils;    Valuation  and  examination 

of 22A 

Herbst,  K.  T.    See  Lundsgaard,  C.  J.  S 690a 

Herdey,  O.     Paper  ;   Process  for  the  chemical  and  mechani- 
cal  disintegration   of  raw    materials   used   in   the 

manufacture  of (P) 808a 

Heriot,  T.  H.  P.     Sugar  ;   Crystallisation  of ■     . .  . .       95r 

Herkenratb,    r.   G.     Atomising  fusible  metals;    Apparatus 

for  —  (P) 717a* 

Hernandez,  G.  B.  y.    Bricks  ;   Process  for  making (P)    899a 

Hernu,  H.     Gas  generators  (P) 361A 

Gases  :    Apparatus  for  purifying  aud  treating (P) 

284A,  405a* 

Hero,  N.  C.     Drying  machine  (P)        205a 

Herold,  J.    See  Steinkopf,  W.  703a 

Herring,  W.  R.,  and  W.  Grice  and  Sons,  Ltd.     Drying  air 
or   other   gases   after   purification    in   wet   filters ; 

Apparatus  for  (P)         401a* 

Herrly,  C.  J.,  and  Union  Carbide  Co.    Fen-ous  sulphate  ; 

Oxidation  of (P) 939a 

Herrmann,  E.    See  Schwarz,  R.         ._.         ..         ..         ..     744a 

Herrmann,  P.     Dulcin  ;  Derivatives  of . .  . .  . .     915a 

Herron  Co.,  James  H.     See  Holmberg,  E.  T.  . .  . .     217a 

Herschel,  "W.  H.    Bingham  viscosimeter ;    Drainage  error 

in  the  964A,  1001a 

Viscosimeters  :   Fuel  oil . .         . .         . .         . .     659a 

Viscosity  of  oils  ;   Change  in  — —  with  the  temperature    929a 
Herstein,  B.     Parchment  paper  or  vulcanised  fibre  ;   Manu- 
facture of from  nitrocellulose  (P)        . .  . .     894a 

Herting,  C.  F.  C.    Lampblack  ;   Refining  crude (P)  - .     509a 

Herz,    W.,    and    P.    Scbuftan.     Tetralin    (tetrahydronaph- 
thalene)     and     dekalin     (decahydronaphthalene) ; 

Physico-chemical  investigations  on . .         . .     538a 

See  Lorenz,  R 885a 

Herzberg,  S.     See  Scheffer,  W.  661a 

Herzberg,  W.    See  Akt.-Ges.  f.  Anilinfabr.     247a*.  2S8a, 

583A,  583a*.  744a,  892a,  892a,  934a 

Herzfeld,  E.     See  Baur,  E 91lA 

Herzig,  J.,  and  H.  Lieb.     Desamino proteins  . .  . .  . .     228a 

Herzig,  P.     Alkaloids  ;    Determination  of . .  . .     517a 

See  Liining,  O.        . .         . .         . .         . .         . .         . .     114a 

Herzinger,  E.     Glue  ;   Preparation  of  a  liquid (P)      . .     225a 

Herzog,  A.,  and  P.  Krais.     Bast  fibres  ;   Retting  process  for 

(P)  665a 

Herzog,  J.     Albumose-siiver  ;    Estimation  of  silver  in  835a 

Herzog,  R.  O.     Cellulose  ;    Investigation  of  by  means 

of  Rontgen  rays  . .  . .  . .  . .  . .         8A 

Fibres  ;  Recovery  of from  mixtures  (P)    . .         . .     808a 

Herzog,  W.,  and  J.  Kxeidl.     Resins  ;    New  process  for  pre- 
paration   of    synthetic    ■ .     Relation    between 

ability  to  form  resins  and  chemical  constitution 

771a,  988A 
Saccharin   and  ;>-su!phaniinobenzoic  acid  ;    Separation 

of 195a 

See  Friedlander,  P.  5S2a 

Heslinga,  .'.     Manganese;    Oxidation  of  to  perman- 

in  alkaline  solution     ..  ..  ..  ..     613a 

Manganese   in   steels,   alloys,   and   ores;     Colorimetric 

d   i  ■■[  inination  of ..  M  ..  ..  ..     635a 

Hess,    K.     Cellulose  ;     New    degradation    of    .    Con- 
version of  cellulose  into  a  biose-anhydride  . .  . .         9A 

Light  metals;  Recovering from  scrap  (P)  . .         ..     146a 

and  0.  Walil.     Scopolamine  and  scopoline  ;    Constitution 

of 683a 

and  W.   Wittclsbach.     Ethyl  cellulose  ;    Depolynierisation 

Of  94A 

and  others.     Cellulose-copper  compounds  ..  ..  ..     892a 

Hi,  and  R.  Reitler,     Sera;   Action  of  metals  on  194A 

Hess,  V.  F.     Radium  conteut  of  carnotite  ores  and  other 

products  of  low  activity  ;  Determination  of . .     462a 

It.     Colouring  matter  ;  Photographic  determination 

of  concentration  of  a . .         . .         . .         . .     40Sa 

Hcsscn,  R.     See  Bakelitc-Ges.m.b.H.  771a 

■i    <'.     Phenyiacetylene ;   Preparation  of ..     308a 

Hetherington,  H.,  and  W.  A.  Allsebrook.     Lead  chroraate 

pigments  ;   Manufacture  of (p) 676a 

Hetherington,  H.  C  .  and  J.  M.  Braham.     Dicyanodiamide  ; 

Preparation  of  (P)        686a 

Henser,  i;   and  :i.  I  asseus.    Cellulose  content  of  wood  and 

other  material.-*  ;    Determination  of by  action 

ol  chlorine  di  solved  in  carbon  tetrachloride        ..     540a 
and   J.    HaugerOd.    Tyrpha  domingeneis ;    Digestion   of 

for  manufacture  oi  paper  pulp  . .         . .         . .     288a 

and  W .  Ruppel,     Xylan  ;  Methyl  ethers  of . .     679a 


NAME  INDEX. 


47 


Heuser,  E. — continued. 
and    S.    Samuelsen.     Lignin    and    lignosulphonic    acid ; 

Oxidation  of  the  methyl  ethers  of ■      . .         . .     665a 

Sulphite-wood  pulp  ;    Reddening  of  and  its  pre- 
vention            . .          . .         . .         . .         . .         . .    893a 

and  F.  Stockist.     Oxycellulose         583A 

and  W.  Von  Neuenstein.    Hydrocellulose  . .         . .         .  •     977a 

and  others.    Pentosans  ..         ..         ..         ..         ■  •     112a 

Spirit  from  sulphite -cellulose  waste  liquors  ;  Amount  of 

acetaldehyde  and  paraldehyde  in . .         . .     190a 

Heuser,  H.  Beverages  ;  Preparing  low-alcoholic  and  non- 
alcoholic  (P)         19U 

Dealcoholising  beverages  (P)        ..         ..         ..         ..     779A 

Hewer,  D.  G.     See  Bolton,  E.  R "63a 

Hewis,  H.  W.     See  Pridcaux,  E.  B.  R 123R,   IGTt 

Hewitt,  J.  A.,  and  D.  B.  Steabben.     f-lnositol  ;  Formation 

of- 227A 

Hey,  A.  M.    Formaldehyde  tannage  ..         ..         ..         ■•     476a 

Hey,   H.     Oils  and  solvents   containing  oils   in  solution : 

Removing  suspended  matter  from  liquid  (P)     334a 

Lead  and  silver  ;  Recovery  of from  ores  and  metal- 
lurgical products  (P)  . .          . .  . .  . .  -  -     986a 

Hey],  F.  W.     Phytosterols  of  ragweed  pollen 955a 

and  F.  E.  Greer.     Sodium  hydrosulphite  ..         ..         ..     214A 

See  Pomeroy,  C.  A.  645a 

Heylandt.    P.     Liquefiable    gases ;     Filling    high-pressure 

vessels  with (P)  . .  ..  ..  ..  ..     451a* 

Heylandt  Ges.  fur  Apparatebau.  Liquefiable  gases  such  a3 
oxygen,  nitrogen,  hydrogen,  or  air ;  Filling  high- 
pressure  vessels  with  (P)         . .  . .  . .     205A 

Liquefied   gas ;    Storing,  transporting,  and  delivering 

for  use  gas  under  pressure  from (P)    . .  . .      165a* 

Transport  of   industrial  supplies  of  large   volumes  of 

oxygen  and  other  liquefiable  gases  (P)        . .         . .       S9a 
and  M.  von  Unruh.     Cooling  and  liquefying  air  and  other 

gases  (P)  576a 

Heyn,  E.    Iron  ;   Baumann's  sulphur  test  and  behaviour  of 

phosphorus  in  . .         . .         . .         . .         . .       60a 

Metals  ;   Theory  of  behaviour  of during  cold  draw- 
ing            18a 

Heyrovsky,  J.     Electrolysis  with  electrodes  formed  of  drops 

of  mercury         . .  . .  . .  . .  . .  . .     9S6a 

Heys,  W.  E.     See  Macphcrson,  B 914a 

Hibbard,  H.  D.     Metallurgical  furnaces  (P) 637a* 

Puddling  iron  ;   Furnace  for  and  art  of (P)  . .     900a 

Hibbard,  P.  L.     Alkali  soils;    Reclamation  of  infertile 

by  means  of  gypsum  and  other  treatments  . .  . .     337a 

Hibbert,  E.    See  Knecht,  E 867a 

Hickey,  J.  H.     Matte  ;   Apparatus  for  treatment  of (P)     471a 

Hickinbottom,  W.  J.    See  Morgan,  G.  T 32a 

Hickman,  K.,  and  Imperial  Trust  for  Encouragement  of 
Scientific  and  Industrial  Research.  Siphon  appar- 
atus (P) 1a 

Hickman,  K.  C.  D.,  and  D.  A.  Spencer.  Photographic  pro- 
ducts ;    "Washing  of . .  . .  . .  . .     440a 

Hicks,  J.  F.  G.,  and  W.  A.  Craig.    Reactions  in  fused  salt 

media.     Solvolvsis 668a 

See  Boynton,  K.  S.  37SA 

Hidden,  C.  P.,  and  Nitrogen  Products  Co.    Furnaces  for 

fixation  of  nitrogen  (P)  ..  ..  ..  ..     415a* 

Nitrogen  ;  Process  for  fixing  atmospheric  (P)     . .     463a* 

Hidnert,  P.    See  Souder,  W.  H 762a 

Hiedemann,  E.    Ammonia  ;   Electronic  synthesis  of . .     214a 

Hieulle,  A.     See  Fosse,  R 156a 

Higgins,  R.     See  Andrew,  J.  H.  819a 

Highfleld,  J.  S.    See  Osmosis  Co.,  Ltd 328a 

Higson,   G.   I.     Potassium  persulphate  as  a   photographic 

reducer  . .  . .  . .  . .  . .  . .  ..234a 

Hijikata,  Y.     Cow's  milk  ;    Do  amino-acids  occur  in ?     341a 

Hilcken,  V.    See  Dimroth,  O.  51a 

Hild,  W.  Chromium  in  chrome-nickel  steel  ;  Rapid  deter- 
mination of ..  ..  ..  ..  ..     671a 

Hildebrand,  J.  H.     See  Bishop,  E.  R.  273a 

Hildebrandt,  C.  F.  Lupins  ;  Preparation  of  products  con- 
taining albumin  and  free  from  bitter  constituents 

from (P) 516a 

Hildesheimer,  A.     See  Bing,  L.  510a 

Hilditch,  T.  P.     See  Armstrong,  E.  F.        32a,  304r,  891a,  903a 
Hilger,  A.,  Ltd.,  and  F.  Twyman.     Annealing  glass,  porce- 
lain, metals,  and  apparatus  used  therein  (P)         . .     898a 

Hill,  A.  E.,  and  T.  M.  Smith.     Oxalic  acid  ;   Hydrated 

as  an  oxidimetric  standard    . .  . .  . .  . .     351a 

Hill,  E.  C.    Terracotta  body  ;  Effect  of  fluxes  on  absorption 

and  transverse  strength  of  a . .  . .  . .     983a 

Terracotta  ;    Fire-cracking  of 633a 

Hill,  F.  J.     Sulphur  ;   Treating  and  handling (P)        . .       14a 

Hiller,  A.,  and  D.  D.  Van  Slyke.     Protein  precipitants       . .     88lA 

Hiller,  G.     See  Henrich,  F 938a 

Hiller,  S.     Copper  sulphate  ;  Production  of from  waste 

material  containing  copper  or  its  alloys  (P) . .         . .     939a 
Hills,  H.  A.     Distillation  process  (P) 450a 


PAGE 

Hilpert,  S.,  and  Deutsch-Luxemburgische  Bergwerks  und 
Hiitten  A.-G.     Waste  sulphuric  acid  from  refining 

tar  oils  ;    Treatment  of  to  recover  resinous 

products  (P) 803A 

See   Deutsch-Luxemburgische    Bergwerks-   u.    Hutten- 

A.-G 23a 

Himus,  G.  W.     Coal ;    Notes  on  a  Manchurian  from 

Fushun 333T 

Hinard,  G.     Preserved  fish  ;    Chemical  examination  of 387a 

Hinchley,  J.  W.     Evaporation  ;    General  problem  of  

■24 2t,  280R 
Expressing    liquids    from    materials    containing   them, 

e.g.,  from  peat  (P) 88a 

Glassware  ;    Autoclave  test  for  grading  chemical  . 

Discussion  . .  . .  . .  . .  . .  . .       55t 

Institution  of  Chemical  Engineers  ;   Proposed . .       59R 

Peat ;  De-watering  of  by  pressure  . .      365t,  506r 

Hinchy,  V.  M.     See  Dillon,  T.  790A 

Hinckley,  E.  H.     Metals,  e.g.,  iron  ;    Process  and  apparatus 

for  pickling (P) 985a 

Hindle,  T.     Printing  two  patterns  simultaneously  on  cotton 

and  woven  fabrics  (P). .         . .         . .         . .         . .       55a* 

Hines,  P.  R.    See  Evans,  W.  L 685a 

Hinselmann,  Koksofenbaugcs.m.b.H.     Sulphur ;     Recovery 

of from  gases  (P)  . .         . .         . .         . .     502a 

Hinshelwood,  C.  N.,  and  others.  Formic  acid  ;  Influence  of 
temperature  on  two  alternative  modes  of  decom- 
position of  . .  . .  . .  . .  . .     268a 

See  Tingey,  H.  C 785a 

Hint. m(  A.     Sorghum  syrup  ;    Manufacture  of (P)     ..     189A 

Hinton,  C.  L.     Sucrose  ;    Analysis  of  products  containing 

by  neutral  double  polarisation  method         . .       70a 

Hiuze,  A.     Massecuite  ;  Manufacture  of  refined  (P)  ..     777a 

Hinzke,  A.  G.     Sulphur  burner  (P) 630a 

Sulphur  burners  ;    Oxidising  device  for (P)  .  .  327a 

Hiorth,   A.,   and  A./S.    Hiorth's  Elektriske  Induktionsovn. 

Electric  induction  furnace  (P)  . .         . .         . .  333a* 

Hiorth,  K.  A.  F.     Electric  induction  smelting  furnace  (P)  . .  259a 

Hiorth's  Elektriske  Induktionsovn  A./S.  See  Hiorth,  A.  333a* 

Hirano,  S.     Cou  mar  one-resin  ;  Preparation  of ..  ..  826a 

Hird,   H.   P.     Carbonisation  of  coal,  shale,  peat,  and  the 

like  ;    Apparatus  for (P)  802a 

Hirose,  W.     See  Joachimogiu,  G 231a,  231a 

Hirsch,  A.  and  M.     Flotation  agent;    Manufacture  of 

(P)  298a 

Hirsch,  F.     Chrome  tanning  ;   Process  of (P)  . .         . .  225a* 

Hirsch,  G.    Acoine  ;    Process  for  making  clear  solutions  of 

(P)  7S8A 

Hirsch,  J.     Carboligase.    Biosynthetic  linking  of  carbon  to 

carbon  in  the  aliphatic  series  . .  . .  . .  . .  830a 

See  Neuberg,  C 430a 

Hirsch,  M.     Osmium  ;   Detection  of  traces  of ■  . .  . .  443a 

See  Hirsch,  A 298a 

Hirschel,    W.  N.,   and  Auisterdamsche  Superfosfaatfabriek. 

Phosphoric  acid  ;  Manufacture  of (P) 14a* 

Hirschkind,  W.,  and  California  Alkali  Co.    Sodium  sesqui- 

carbonate  ;    Preparation  of  ■  (P)         . .         . .  14a 

Hirst,  C.  T.,  and  J.  E.  Greaves.    Sulphates  in  soil ;  Factors 

influencing  determination  of . .  . .  . .  511a 

See  Greaves,  J.  E.  304a 

Hirst.  E.  L.     Esparto  cellulose  ;   Composition  of . .  392r 

I   uruthers,  A.  991a 

See  Irvine,  J.  C 362r,  723a,  745a 

Hirt.  J.  F.     Dry  kiln  (P)  969a 

Hitch,  H.  B.     See  Goskar,  T.  A 672a 

Hitchcock,  D.  I.     See  Nelson,  J.  M.  ..  ..        72a,  227a 

H  ixon.  R.  M.     Plant  growth  ;  Effect  of  reaction  of  a  nutritive 

solution  on  germination  and  first  stages  of . .  90Sa 

Hixson,  A.  W.     Yeast ;    Manufacture  of  dried (P)     . .  643A 

Hjort,   J.     Vitamins  ;    Distribution  of  fat-soluble  in 

marine  animals  and  plants   . .         . .         . .      21  6r,  564a 

Hobson,  O.  J.     See  Beckworth,  O.  Q.  621a 

Hochofenwerk  Liibeck  A.-G.     Peat ;  Recovery  of  bath-oil  in 

production  of  oils  from (P)       ..  ..  ..  741a 

Hochstadter,  I.     Gelatin  ;  Process  for  bleaching (P)  . .  432a 

Hocnstetter,  F.  W.,  and  W.  I.  Ohmer.     Photographic  film 

and  paper  ;    Sensitising  (P)     . .  . .  . .  234a 

Hocking,  H.     Evaporators  or  heaters,  heated  by  waste  hot 

gases  ;   Water  or  other  liquid (P)        . .         . .  796a 

Hocks,    W.    See    Rheirasch-Nassauische    Bergwerks-    und 

Hutten-A.-G 887a* 

Hodgson,  H.  V.     Thorium  nitrate  ;    Determination  of  small 

quantities  of  silica  in . .  . .  . .  . .  284T 

Hodkin,  F.  W.,  and  W.  E.  S.  Turner.  Glass  batches  con- 
taining soda-ash  and  saltcake  ;  Relative  advantages 
and  disadvantages  of  limestone,  burnt  lime,  and 

slaked  lime  as  constituents  of ■  . .  . .  . .  99R 

See  Dimbleby,  V 175a 

Hodsman,  H.  J.     Ammonia  and  its  stability  in  the  coke  oven  166a 

Coke  ;   Structure  of .     Discussion    . .  . .  . .  183t 

See  Greenwood,  H.  D 215R,  273T 

See  Mott,  R.  A 505R 

See  Wedgwood,  P.  372t,  505R 


48 


JOUKXAI.  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


nodson,  J.    Bleaching  textile  fabrics  (P) 

b&dter,    M.    Metallised    paper    for-  making    electric 

cables  (P) 
U,   M.,  <>.,  and  E.     Paint;    Preparation  of  a  rapidly 

drying from  tar  and  lime  (P)  . . 

is-BUlesholms  Aktiebolag.    See  Sieurin,  S.  E. 

Hdnig,  R.     Se«  MiiUer,  R 

HOppler,  E.  F.    Analysis  ;    Quantitative by  measure- 
ment of  degree  of  supersaturation 

Hoesch  und  Co.    See  Hehiemann.  K.  

Hiivermann,  B.     Hydraulic  powder  ;  Production  of  a  rapidlv 

hardening from  cement  and  alkali  carbonate  (P) 

Hoflert,  W.  H.     Phenol ;  Determination  of in  mixtures 

of  tar  acids 
Hoffman,  A.  F.    Fertiliser  material  and  process  of  producing 

it  (P) . . 

Hoffman,  C,  and  others.     Bread  ;   Manufacture  of  leavened 

(P)  

Hoffman,  C.  C,  and  others.     Gas  producer  ;   Preventing  the 

accumulation  of  sticky  condensed   products  of  a 

■ upon  the  fuel-feeding  mechanism  (P) 

Hoffman,  W.  F.,  and  R.  A.  Gortner.     Proteins  ;   Sulphur  in 

.    Effect  of  acid  hydrolysis  upon  cystine 

Hoffmann,   F.    Oxygen   absorption   and    concentration   of 

pyrogaflol  solutions  in  gas  analysis 

Hoffmann,  L.    Sulphur ;    Process  for  obtaining  pure  

from  gas-purifying  materials  (P) 
Hoffmann,  R.,  and  W.  Stahl.    Silver ;    Density  of  molten 


See  Guggenheim,  M. 
Allylarsenic  acid  ; 


Hoffmann-La  Roche  Chemical  Works. 

See  Preiswerk,  E.    . . 
Hoffmann-La  Roche  u.   Co.  A.-G.,  1' 

Manufacture  of (P) 

l-Allyl-3.7-dimethylxanthine  ;   Manufacture  of (P) 

l-Allyl-3.7-dimethylxanthine ;     Manufacture    of    easily 

and  neutrally  soluble  double  compounds  of (P) 

"CC-Isopropylbarbituric  acid  ;   Manufacture  of  — —  (P) 
Organic  silver   compounds ;    Preparation  of   complex 

Hofmann,  A.  Drying  pulverulent,  granular,  or  other  sub- 
stances (P) 

Hofmann,  F„  and  P.  Damm.  Coals  ;  Results  of  pyridine 
extraction  of  Upper  Silesian 

Hofmann,  J.    See  Lecher,  H.  

Hofmann,  K.  A.     Oxygen  and  hydrogen  ;   Catalysis  of 

by  platinum  metals  and  contact  potential  in  pres- 
ence of  aqueous  electrolytes 
Platinum  ;  Mode  of  action  of in  the  oxygen-hydro- 
gen catalysis,  and  use  of  titanium  sulphate  for 
control  of  the  course  of  the  change 
and  E.  Will.  Acetylene  and  ammonia ;  Formation  of 
in  incomplete  combustion 

Hogan,  T.  I.     See  Reid,  J.  H.  

Efoge,  D.  W.,  and  Izash  Oil  and  Refining  Co.  Petroleum 
vapour  ;   Apparatus  for  treating (P) 

Hohage,  R.     See  Maurer,  E 

ll.il.uift,  C.  T.    Annealing  malleable  cast  iron  (P)  . . 

Bfoldcroft,  G.  F.     See  Mcllwaine,  A.  W 

Holde,  D.     Mineral  oils  ;    Capillarity  properties  of ■    .. 

and  K.  Schmidt.     Brassidic  anhydride,  and  formation  of 

anhydrides  by  means  of  phosgene 
and  C.  Wilke.    Erucic  acid  and  erucic  anhydride    260a, 

424a 
and  others.     Iodine  value  of  aliphatic  and  aromatic  un- 
saturated compounds;    Determination  of  .. 

Holden,  H.  C.  L.,  and  others.  Gas  producer;  Convertible 
heating  stove  and (P) 

Holdt,  P.  C.    See  Gardner,  H.  A.    903a,  904a,  905a,  905a; 

Holgatc.    Electrical  precipitation.     Discussion 

Solladay,  J.  A.    See  Bccket,  F.  II 

Holland,  A.  A.    Sugar  ;    Manufacture  of  without  the 

production  of  molasses  (P)    . .  . .  . .      386A 

Holland,  C.  E.     Coal  ;    Recovering ,  held  in  suspension 

from  coal-bearing  water  and  streams  (P) 

Holland,  J.     See  Gardner,  W.  J 

Holle,  A.,  and  Maschinenbau  A.-G.  Balcke.     Scale  or  sludge  ; 

Preventing  deposition  of  from  cooling  w.tt.  c 

in  surface  steam  condensers  (P) 

HoUiday,  L.  lv.  and  others.  Picric  acid  ;  Manufacture  of 
from  dinitrophenol  in  crystal  form  and  elimi- 
nation therefrom  of  the  sulphate  of  lead  (P) 

HoUiday,  L.  B.,  *  Co.,  Ltd.     See  HoUiday,  L.  B 

Holm,  G.  E.  Dried  milk ;  Determination  of  moisture 
content  of  

Holmberg,  E.  T  .  and  James  H.  Herron  Co.  Heat-insulating 
and  resisting  material  (P) 

Holmes,  ('.  W.  II.  Moulding  sands ;  Factors  influencing 
the  grain  and  bond  in 

Holmes,  E.  O.,  jun.,  and  W.  A.  Tatri.k      Ultra-violet  light  ; 

Action  of  on  gels.     Embrittling  of  celluloid 

and  decomposition  of  acetic  acid  andacctono 

Holmes,  F.  M.,  and  others.  Electric  battery  electrodes  : 
Material  for  use  in  the  manufacture  of (P)    . . 


PAGE 

368a 
894A 

66A 
141A* 
504a 

962A 

174a 

758a 
33  4T 
870a 
913A 

453A 
306a 
613a 
740a 

713a 

524a* 
484a* 

785a 

483a 

483A 
6S6A 

878A 

164a 

318A 
391A 


923A 
63A 

536a 
604A 

673a 

334a* 

208A 

825a 

598A 

557a 

579A 

947a 

28T 

180A 

72:!.v 

931 A  • 
828a 

207a  • 

442a* 
442A* 

680a 
217a 
763A 

323A 
987A 


f-AGE 


Holmes,  H.  N.    "  Colloid  chemistry  ;    Laboratory  manual 

and  D.  H.  Cameron.     Emulsions  ;   Chromatic 

NitroceUulose  as  emulsifying  agent 

Printing  or  lithographing  ink  (P) 

Holmes,  M.  L.,  and  G.J.  Fink.     Lime;  Physical  and  chemical 

properties    of    commercial   .    Available    lime 

content 750a 

Holmes,  N.  L.     See  Bennett,  H.  G.  . .  . .      224a,  336a 

Holmes,  W.  C.     Paper ;    Application  of  direct  dyestuffs  in 

colouring 

Holmes,  W.  C,  &  Co.,  Ltd.,  and  others.  Ammonium  sul- 
phate ;    Manufacture  of  neutral (P)  .. 

Holmgren,  C.  H.    Centrifugal  separator  (P) 

Hoist,  G.,  and  others.    Electric  vacuum  tubes,  incandescence 

lamps,  etc. ;   Removing  gas  residues  and  purifying 

inert  gases  in (P) 

Holstrom,  J.  G.    See  Malmberg,  C.  J.  G 

Holt,  A.     Bleaching  agents   for  textUes   and   paper  pulp. 

Discussion 

Holtz,  F.    Micro-analysis  ;  Pregl's  method  of 

Holwerda,  B.  J.     Lactic  acid  fermentation ;    Influence  of 

lactic  acid  on 

Holzapfel,  A.  C.    Paint  (P) 

Holzapfel,  T.  W.    See  Groves,  S.  E.  

Holzhausen,  A.     Drying  and  carbonising  fuel ;    Apparatus 

for  (P) 

Holzmann,  S.,  and  J.  Deininger.     Sausages ;    Detection  of 

added  water  in . . 

Holzverkohlungs-Industrie     A.-G.    Ammonium      chloride ; 

Production  of (P)         

Paper  ;    Manufacture  of  hard-sized  (P) 

and  K.  R6ka.     Methane  ;    Chlorination  of  (P)     . . 

See   R6ka,   K 

Hommel,  W.    Alloys  ;    Graphic  representation  of  melting 

point  curves  of  ternary  and  quaternary  

Hommon,  H.  B.  Strawboard  mills ;  Treatment  and  dis- 
posal of  effluents  from 

Honda,   K.     Iron-carbon  system ;    Constitutional   diagTam 

of  the based  on  recent  investigations 

Metals  :   Theory  of  hardening  of 

and  T.   Kikuta      Steel ;    Stepped  Al   transformation  in 

carbon  during  rapid  cooling 

Honigmann,   L.     Low-temperature    coking ;      Ring-shaped 

plate  furnace  for  continuous  (P) 

Honold,  E.    See  Fromm,  E. 

Hood,  J.  J.,  and  OU  Refining  Improvements  Co.    Petroleum 

oils  ;    Purification  of (P)         

Hood,   O.   P.     Coal ;    Factors  in  spontaneous  combustion 

Hoofnagle,  W.  T.,  and  Electro  Chemical  Products  Co.  Treat- 
ing air  and  gases  electricaUy,  e.g.,  for  oxidation  of 
nit        n    (P) 858A 

Hooft,  M.     See  TreadweU,  W.  D 

Hooker,  A.  H.,  and  Hooker  Electrochemical  Co.  Solutions 
Electrolysis  of and  apparatus  therefor  (P)  . 

Hooker,  M.  C.    See  Fischer,  M.  H.  

See  Hooker,  A.  11. 


489b 
239a 
239a 
335a 


935A 


982a 
491a 


133a 
763a 

371T 
525a 

430a 
677a 
66a* 

801a 

872A 

754A 

95a 
916a 
567a 

220A 

781a 

418a 
18A 

418a 

456a 
391a 

211a* 

535b 


919a 


674A* 

139R 

674a* 

146a 

824A 

501A 

753a 

211T 


Hooker  Electrochemi.  .,i  Co. 

See  Ralston,  O.  C. 

See  Sherwood,  J.  J-. 

See  Townsend.  C.  P 

See  Williams,   C.  E.  

Hooper,  E.  G.    Annual  Meeting  proceedings  .. 

Hoopes,  W..  and  Aluminium  Co.  of  America.    Aluminium 

nil  ride    and    other    substances ;     Apparatus    for 

making  (P)         463a 

Hoover,    C.    O.,    and    Hoover    Co.     Aluminium    chloride  ; 

Separating  from  heavy  hydrocarbons  (P)   ..     741a 

Hoover,  W.  W.,  and  T.  E.  Brown.     OU  shales;   Method  for 

working  (P) 624a* 

Hoover  Co.    See  Hoover,  CO.  741a 

See  Owen,  E.  V 801A,  890a 

Hopkins,   M.   S.     Lime  and  sulphur  ;    Compound  of  

stabilised  with  an  aromatic  compound  (P)  . .  . .     683A 

See  Kirby,  J 58A 

Hopkins,  R.  H.     Hydrogen  ions  in  biochemical  processes  . .     123R 

Hopkinsou,  E.    Fibrous  material ;   Process  of  treating 

with  rubber  (P)  383A 

Latex ;     Products    obtained    from    rubber-containing 

(P)  677A 

Rubber-containing  latex  ;   Process  for  treating (P)     721a 

and    General    Rubber    Co.      Rubber-containing     latex; 

Process  for  treating (!')  827a* 

Hoppe,  G.    See  Akt.-Ges.  f.  Anilin-  Fabr 583a,  892a 

Horiuchi,  It.  Triphenylpararosaniline  hydrochloride  ;  For- 
mation of  from  diphenylaminc  and  chloral- 
ammonia            . .  . .  . .  . .  . .  . .     804a 

Horn,  G.     Retort  for  gas  furnaces  (P) 848a 

Home,  W.  D.     Sugar  purity  determinations  . .  . .  . .     950a 

Hornsey,  J.  W.    Leaching  ores  and  the  like  (P)     . .         . .       63a 

Hornstcin,  E.     Cork  ;    Manufacture  of  slabs  of  compressed 

(P)  290a 

Hornung,  F.     Washing  salts;    Apparatus  for  (P)   ..     846a 


NAME  INDEX. 


49 


PAGE 

Horsch,  W.  G.,  and  T.  Fuwa.     Zinc  plating  solutions  ;  Throw- 
ing power  and  current  efficiency  of . .         . .     421A 

Horsnell,  J.  H.  See  Simplex  Patent  Dyeing  Machine  Co.  17::.i 
Horst,    H.,   and   Ges.   fur   Maschinelle   Druckentwasserung 

m.b.H.    Briquetting  or  drying  press  (P)  ..         ..     975a* 

See  Brune,  H 455A* 

Horst,  J.  H.    Vine  louse  (Phylloxera) ;  Means  of  exterminat- 
ing    (P) 193A,  344a 

Horsters,  H.    See  Scherins.  E.  960a 

Horton,  E.,  and  E.  S.  Salmon.    Fungicidal  properties  of 

certain  spray   fluids    ..  ..  ..  ..  ..     995A 

Horton,  G.  D.,  and  E.  I.  du  Pont  de  Xemours  and  Co.  Butyl 

alcohol  and  acetone  ;    Process  for  producing  

by  fermentation  (P) S32A 

Hoseason,  J.  H.     See  Xorris,  W.  H.  H 31A 

Hoskius,  W.    Paper  filler  (P) 748a 

Hostetter.  J.,  and  H.  S.  Roberts.     Glass  ;    Dissociation  of 

ferric  oxide  dissolved  in  and  its  relation  to 

colour  of  iron-bearing  glasses         . .         . .         . .     100a 

Hostetter,  J.  C.     See  Cain,  J.  R 272a 

Hottenroth,  V.    See  Zelistoff-fabr  Waldhof 720a 

Hottenroth.     Bleaching  of  wood  pulp  ;    Alkaline  and  acid 

408a 

Houben,  J.     "  OrganischenChemie;  Die  Methoden  der " 

(Weyl's   Methoden) 141R 

Houdremont,  E.    See  Dieckmann,  T.  . .         . .         . .     304a 

Hough,  A.  T.    Leather  ;  Apparatus  for  extraction  of  soluble 

matter  from  leather,  and  analysis  of . .  . .     907A 

See  Thuau,  U.  J.  907a 

Houghton,  A.  S.    Rubber  ;  Thermal  effect  of  vapours  on 507R 

Houldsworth,  H.  S.:  and  J.  W.  Cobb.     Fireclay,  bauxite,  etc. ; 

Behaviour  of  on  heating         . .  . .  . .     447R 

Silica  ;  Reversible  thermal  expansion  of . .         . .     709a 

Houmollcr,  A.    Briquetting  cast  iron  turnings  (P)  . .         . .     221a 
Briquetting   iron   chips   for   use   in   cupola  furnaces  ; 

Method  of (P) 379a 

Housholder,  A.  Wax-sweating  apparatus  (P)  ..  ..  2S6a 
Howard,  A.,  and  J.  S.  Remington.  Safflower  oil  . .  ..  109a 
Howard.  F.  A.,  and  others.     Evaporation  of  stored  liquids; 

Prevention   of  (P)       ..         ..  ..  491a 

Howard,  G.  C,  and  American  Smelting  and  Refining  Co. 
Sulphur   dioxide ;     Enriching    metallurgical    gases 

containing  (P)   . .         . .         . .         . .         . .     501A 

Sulphur  dioxide  ;    Recovering  from  waste  metal- 
lurgical  gases  (P)       . .         . .         . .         . .         . .     501a 

Sulphur  ;  Process  for  making from  sulphur  dioxide 

(P)  ..  ..     502a* 

Howard,  G.  E.  See  Howard  Automatic  Glass  Feeder  Co.  177a» 
Howard,  H.,  and  Grasselli  Chemical  Co.   Aluminium  chloride 

crystals;     Method  of  preparing (P)  . .         . .     859a 

Howard,    N.    J.    Water ;     Chlorination   of   — — -   prior   to 

nitration  994a 

Water  ;   Modern  practice  in  removal  of  taste  and  odour 

from  994A 

Water ;    Statistical  record  of  purification  of  Toronto 

,   1912-1921  994A 

Howard,  W.  H.,  and  American  Smelting  and  Refining  Co. 

Gases  ;  Process  of  discharging  smelter into  the 

atmosphere    (P)  673A 

Howard  Automatic  Glass  Feeder  Co.,  and  G.  E.  Howard. 

Glass;    Feeding  molten  (P)  ..         ..     177a* 

Howards   and   Sons,   Ltd.,   and   J.    W.    Blagden.    Acetyl- 
salicvlates  ;    Manufacture  of  calcium,  magnesium, 

and  lithium  (P)  33a 

and  others.    Cinchona  alkaloids  and  their  derivatives  : 
Preparation  of  amino-derivatives  of  hydrogeuated 

(P)  6S6a 

Howarth,  O.  J.  R.     "  British  Association  for  the  Advance- 
ment of  Science  :    a  retrospect  1831-1921 "         . .     272r 

Howe,  H.  M.    See  Barba,  W.  P 143a 

Howe,  J.  A.    Mineralogy  ;  Economic . .         . .         . .       21K 

Howe,  R.  M.,  and  W.  R.  Kerr.     Silica  brick  ;   Influence  of 

grind  and  burn  on  characteristics  oi . .         . .     416a 

and  others.     Refractory  brick  ;  Effect  of  weather  upon  the 

strength  of  253A 

Howse,  G.  H.    Steel  or  iron  work  ;  Materials  for  and  method 

of  treating,  or  preserving  against  corrosion 

and  rusting  (P)  . .         . .         . .         . .         . .     554a 

Howson,     C.     W.     H.    Vulcanisation ;      Dithiocarbamate 

accelerators  of  .    Discussion    . .         . .         . .       88T 

Howson,  H.,  and  Proctor  and  Schwartz,  Inc.  Dryer  (P)  . .  205A 
Hoxie,  G.  L.    Cracking  oils ;   Process  of  and  apparatus  for 

(P)  536A 

Hoylc,  H.  P.     Centrifugal  dryers  (P) -         -     358a 

Hoynesite  Explosives  Co.     See  Werner,  E.  M.       M  . .     880a 
Hoyt,    L.   F.,   and   H.    V.    Pemberton.     Glycerol ;     Deter- 
mination of  in  presence  of  sugars  in  trans- 
parent soaps,   etc.      ..         ..         ..         ..         ..     260a 

Hoyt,  W.     See  Haber,  H.  J 245a 

Hristie,   P.     See  Treadwell,  W.  D 919a 

Hruda,  I.     See  Eallauner,  O.  814A 

Hubbell,    J.    E.,    and   others.     Coke    oven ;     Regenerative 

(P)  _         ..  130a 


PAtiE 

Hubbuch,  W.    See  Koenig.  A.  585a 

Huber,  F.  W.     Pectic  substances  ;   Manufacture  of (P)    388* 

Huber,  J.    Manganese  ;    Determination  of as  sulphate    351a 

SeeGutbier,  A 157a,  308a,  519a,  611a 

Huberty,  F.,  et  Cie.    See  Felicien,  H.  P 341a* 

Hudson,  A.,  and  V.   S.   Lyles.     Drying  textile  materials; 

Apparatus  for  (P)         213a* 

Hudson,  C.  J.    See  Broza,  W.  C 217a 

Hudson,  D.  P.    See  Baly,  E.  C.  C 197r,  609a 

Hiibers,  G.     Hydrogen  ;   Liquefaction  of (P)  . .         . .     373a 

Huebner,  J.     Cotton  fabrics  ;  Effect  of  scouring  and  bleaching 

upon  the  structure  and  strength  of . .         . .     213a 

and  F.  Kaye.     Celluloses  ;   Effect  of  water  and  of  certain 

organic  salts  upon  . .         . .         . .         . .       94t 

and  J.  N.  Sinha.     Cellulose,  silk,  and  wool ;    Action  of 

iodine  upon  93t 

Hulsmeyer,    C.     Feed-water    for    boilers  ;     Separating    air 

and  gases  from  liquids,  particularly  (P)    954a,  954a* 

Huerre,  R.    Cade  oil ;    Roie  played  by  various  elements  of 

wood  of  Juniperus  oxycedrug  in  formation  of  346a 

Huff,  W.  J.     Tar ;    Dehydration  of  in  the  laboratory    169a 

and  Koppers  Co.     Dehydration  of  pyridine  (P)  . .         . .     496A 
Huffman,  C.  C,  and  Sunbeam  Chemical  Co.     Dye  combined 

with  soap  ;    Production  of  dark (P)..         ..     408A 

Hug,    E.     Indiarubber ;     Improvement    and    regeneration 

of  (P) 72U 

Hughes,  E.  J.    See  Moerk,  F.  X 937a 

Hughes,  G.,  and  W.  Mitchell.     Gas  producers  (P)  . .         . .     403a 
Hughes,  W.  E.     Electrodeposited  metal  ;    Idiomorpliic  and 

hyp-idiomorphic  structures  in  . .  . .     421a 

Lead  :    Electrodeposition  of  from   Mather's  per- 

chlorate   bath  421a 

Huillard,  A.     Drying  apparatus  (P) 317A* 

Hull,  R.  W.     Refractory  material ;   Process  of  making 

(P)  548a 

Hulot,  P.     Tellurium  ;    Hydrometallurgy  of  . .  . .       61A 

Hultman,  G.  H.     Chrome  alums  ;    Manufacture  of (P) 

174a,  295a 
Hulton,  H.  F.  E.    Barley;  Report  on  relation  of  nitrogenous 

matter  in to  brewing  value     . .         . .        38R,  265a 

See  Baker,  J.  L 871a 

Humann    und  Teisler.     Sodium-aluminium   fluoride ;     Pro- 
cess for  the  preparation  of  almost  free  from 

silica   (P)  327A 

Hume    Pipe    and    Concrete    Construction    Co.,    Ltd.     See 

Amphlett,    H.    P 295a,  328a 

Humphery,   R.   O.   P.,   and   C.   H.  Friese-Greene.     Colour 

kinematograpny    (P)  . .         . .         . .         . .         . .     729a 

Humphreys,    D.   L.,   and   C.   L.   Pittman.     Electric   cells ; 

Crude  copper  sulphate  for  liquid-battery  (P)    423a 

Humphreys,  R.  J.  E.     Hungary  ;  Report  on  the  commercial 

and   industrial  situation  of  . .  . .  . .     335R 

Hunt,  B.     Sulphur,  metallic  sulphides  and  the  like  ;   Recov- 
ery of  ■  from  a  condition  of  emulsion  without 

filtration  or  evaporation  (P)  . .  . .  . .      ...     631a 

Hunt,  S.  B.     Esters  and  materials  containing  esters  ;    Pro- 
duction of  from  oleflnes  (P) 997a« 

See  Ellis,  C.  567A 

See  Wells,  A.  A 580a 

Hunter,  J.  H.    Propellent  powders  ;    Converting  into 

detonating  explosives  (P)      . .         . .         . .         . .     484a 

Hunter,  M.  A.,  and  A.  Jones.     Alloys  used  as  heating  ele- 
ments ;    Electrical  properties  of  — — ■  at  high  tem- 
peratures . .         . .         . .         . .         . .         . .     865a 

and  others.    Nickel  and  monel  metal  wires  ;    Electrical 

properties  of  . .         . .         . .         . .         . .     552a 

Hunvadv.  I.,  and  M.  Malbaski.    Sugar  juices  ;   Purification 

of  (P) 188a 

Hurley,  J.  E.     Glass-tank  furnace  (P)  „         „         . .         . .     898A 

Hurrell,  G.  C.     Filter  and  filter-press  (P) 449a 

Filters  or  strainers  and  sifting  surfaces  (P)     . .         . .     846a 

See  Johnson,  R.  M.  _.         „         „         ..         ..     315a 

Hurst,  E.    See  Read,  J.  . .         ._         „         . .         . .     609A 

Hurst,  J.  E.     Casting  of  metals  and  alloys  (P)        .^         . .     221a 

Hurst,  W.  T.,  and  Slag  Rock  Machine  Co.     Slag;    Method 

of  casting  (P) 142a 

Hurstkotte,  E.  H.,  and  General  Electric  Co.    Electric  furnace 

(P)  823A 

Hurt,  G.  F.  and  J.    Sulphuric  acid  manufacture  (P)         ..     462a 
Hurt,    H.    H.     Waterproofing    material ;     Manufacture    of 

— —  from  sulphite-cellulose  waste  lye  (P)   . .         . .       52a 
Hurt,  J.     See  Hurt,  G.  F.         „  „  ..  „  ..     462A 

Hurum,  F.,  and  H.  Fay.    Steel ;   Determination  of  nitrogen 


Husband,  A.  D.    See  Taylor,  W.      . . 

Hussey,  J.  M.    Eggs  ;  Freezing  and  preserving (P) 

Hussey,  R.  E.     See  Mears,  B.  ..         ...         ~ 

Husson,   A.     See  Vavon,   G.    . .         ...         M         _. 

Husson,  J.     Soil  mixture   for  forced   growing    of   potatoes 

and  method  for  its  manufacture  (P)  . . 
Hutchings,  G.  B.     Emulsions  ;   Manufacture  of (P)  . . 


218a 

515a 

75A 

82a 

685a 

562a 

846a  J 


50 


JOURNAL  OF  THE"  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Hutchins,    0.,    and    <  arljorunduni    Co.    Zirconium    ores; 

Treatment  of  (P) 

Hutchison,   u.     Flour :    Process    for    ageing  wheaten 

to  improve  Its  baldng  qualities  (P)  . . 
Huttinger,   C.   A.,  and  Acme  Artificial  silk  Co.    Artificial 

silk  threads;    Producing  lustrous  (P) 

Eybinette,  N    V.     Biatte  and  other  materials  and  solutions 

containing  copper  and  nickel ;    Treatment  of 

<!')  

Distals ;    Separating  by  electrolysis  (P)  .. 

and     Kristianssands     rilkkelrarBneringsTerke.     Copper; 

Extraction  ami  recovery  of (P) 

Hyde,  C.  W.     Brewing  of  malt  liquors  (P) 

Hydraulic  Pros  Mf«.  Co.     N.v  Stevenson,  F.  E. 

Hydrogenated  Oil  Co.     See  Wimmer,  K.  H. 

Hynes,  D.  P.     Flotation  ;   Separating  finely-divided  minerals 

from  their  ores  by  froth (P) 


PAGE 

S22A 
644a. 

747a 


864A* 
l'.lA 

258A 
912A 

205a 
474a* 

107a 


I 

[atrides,    D.     See   Wiuterstein,    E 230a 

Ibiug,  H.     Exchange  of  heal  between  two  immiscible  fluids 

of  different  derail  Lea  :    Effecting (P)  . .         . .  315a 

Ihran,    It.     Colouring    matters  ;     Reduction    of    by 

exposure    to    light       . .          . .          . .          . .          . .  838A 

Ilford,  Ltd.     See  Agnew,  A.J.               690a* 

Illig,  R.     Oil  containing  sulphur  ;    Production  of  and 

water-glass  from   bituminous   kieselguhr  (P)          ..  495A 
miii-worth.  S.  R.     Coking  of  coal  (P)  . .          . .      283a,  624a*,  930a 

Smokeless  fuels  and  coke  ;    Production  of (P)    889a,  973a 

and  J.  Griffiths.     "  Coal  and  its  by-products  ;    Analysis 

Of   "            42R 

Imbert,  G.    See  British  Dyestufrs  Corp 170a 

Imbery,  A.     Annealing  of  steel  or  other   metal   wire  and 

strip    (P)           1S0A* 

Electrical  furnaces  (P) 333a 

Tmhaiisen.  A.     Soap  powder  ;    Production  of  (P)     ..  1S2a* 

Imhoff,  K.     Sewage;    Treatment   of  in  underdrained 

settling  basins  (P) 8S4A 

and  H.  Blunk.     Sewage  simile  ;    Process  of  withdrawing 

from  Beptic  tanks  (P)    ..         ..         ..         ..  954a 

Sewage  sludge  ;   Treatment  of (P) 76a* 

liaison,  C.  S.     Fumes  and  dusty  gases  ;   Industrial  treatment 

of  .     Discussion   ..          ..          ..          ..          ..  195T 

and  W.  Russell.    Ammonia  ;   Oxidation  of . .  28R,  37r 

Immendorfer    and    Pfahler.     Chrome    leather ;     Action    of 

soap  on  303A 

Imoto,  M,     See  Yoshitomi,  E.               832a 

Imperial  Trust  for  Encouragement  of  Scientific  and  Indus- 
trial   Research,   and   F.    Kidd.     Preserving   fruits, 
vegetables,   and   other  plant   tissues   and  organic 

material  (P)      ..           ..          ..          ..          ..           ..  11 5a 

and  S.  B.  Schryver.     Coating  compositions  ;    Manufacture 

of  (P) 905a 

Plastic  material  for  flooring  and  other  purposes  ;  Manu- 
facture of  (P) 905A 

See   Hickman,   K.                . ,          . .          . .          . .          . .  1a 

See  Piqu6,  J.  J 644a* 

Inagaki,  T.    Ultra-violet  rays ;  Protective  spectacles  for 374a 

Indianapolis  Mfg.  Co.     See  Nordyke.  H.  W.            ..         ..  473a 

Industrial  chemical  Co.     See  Statham,  X.              ..         ..  380a* 

Wiekenden,  L.    . .          . .          . .          . .          . .          . .  66a 

Industrial  Process  Engineering  Co.    See  Johns,  G.McD.  . .  803a* 

Industrial  Research  Laboratories.     ><•■  Gerlach,  <).               ..  898a 

Ingalls,  w.  R.    Zinc  smelting;    Blue  powder  in  ..  377a 

Ingersoll,  H.  R.     See  Congdon,  L.  A.               226a 

ii.    Obituary 42b 

Oils  and  fats;    Relation  between  refractive  index  and 

chemical    characteristics    of   .     Discussion    . .  77t 

Ingold,  C.  K.    Benzene  nucleus;   .-structure  of  the ..  76r 

■  ■   Wilson.     Nitrogen,  carbon,  and  Bodium  carbonate  ; 

Reversibility  of  the  reaction  between  ..  979a 

Inichorf.es.     k.  nm  t  ,    chemical  action  of ..         ..  833a 

Inman,  W.  M.     Bleaching  agents  for  textiles  and  paper  pulp  : 

Developmi  nts  En  use  of . .         . .         . .      wist,  473r 

Innes,   R.    F.     Sodium   peroxide   .solution;     Decomposition 

of  by   metallic  iron  in  analysis  of   chrome 

leather    ..          ..          ..          ..          ..          ..          ..  150a 

Innocent    .r    \,     Furnaces  for  heating  metal  to  be  forged  or 

steel  to  be  hardened  (P)        S23a* 

Fermentation  accelerators    ..        ..        ..        ..  72i\ 

International  Bituconcrete  Co.    See  Erwin,  It.  G 296a 

International  Coal  Products  Corp.     See  Eddlson,  \V.  B.    ..  453a 

Set   Runge,  W,         . .         . .         . .         . .         . .         . .  322a 

St     Smith,  C.  H.   320A,  322A*,  105a*,  105*.  458a,  453a, 

455a*,  455a*,  493a 
International   Cotton    Protecting   Co.     Cotton   bales;     Im- 

ited (P) 878  \ 

International  Btj  Mdk  Co.,  and  s.  m.  Dirk.     Dehydrated 

milk  (P)             781  a* 

International  Fuel  Conservation  Co.     See  Anderson,  R.  J. 

57a,  931A* 


PAGB 

International  Harvester  Co.     See  French,  C.  A.        ..          ..  54SA 
International    Meat    Smoking    Corp.     Meat,    fish,    and   like 

edible  mbstances;  Treating for  curing  and  like 

purposes  (P)     ..          ..          ..          ..          ..          ..  564a 

International  Nitrogen  Co.     See  Reid,  J.  H.     14a*,  141a, 

167a,  859a 
International  Taper  Co.     Paper;    Feeding  the  pulp  to  the 
forming    wire    in    apparatus    for    manufacturing 

—  (P)              543a* 

>..   White,  A.  H 324a* 

International  Precipitation  Co.     See  Anderson,  E 316a 

See  Moon,  F.  S 141a 

5c»  Petersen,  A.       ..        ..         ..        ..        ..        ..  44a 

>■■    K bodes.  S.  H 399a 

Se*  Schmidt,  W.  A.            399a 

See  Welch,  H.  V 597a 

See  Witte,  G.  A 239a,  280a 

See  Woleott,  E.  R.              491a 

International  Textile  Devices.     See  Ashworth,  A 325a* 

Interstate  Iron  and  Steel  Co.    See  McConnell,  J.      ..         ..  637a 

Invisible  Process  Co.    See  Morse,  C.  F.         ..         ..         ..  677a 

lonite  Storage  Battery  Co.     See  Williams,  A.  H.      . .          . .  147a 

Irinyi,  A.    See  Lowenstein,  K.  Prinz  zu       ..         ..         ..  890a 

Irion,  C.  E.     See  Wendt,  G.  L.              900a 

Irvine,  .1.  C.     Research;    Organisation  of ..          ..  361R 

and    E.    L.    Hirst.     Cellulose;    Yield    of   dextrose   from 

cotton  . .          . .          . .          . .          . .          . .  745a 

2.3.6-TrimethyIglucose        . .          . .          . .          . .          . .  723a 

and  J.  Macdonald.     Starch  ;    Constitution  of . .  363R 

and  J.  W.  H.  Oldham.     Polysaccharides  ;  Constitution  of 

.     Relationship    of    2-glucosan     to    (/-glucose 

and  to  cellulose           . .         . .         . .         . .         . .  27a 

and  others.     Cellulose  ;   Constitution  of . .          . .  362R 

Inulin  ;  Constitution  of  ■ — -        364n,  603a 

See  Haworth,  W.  N 119a* 

Isaacs,    M.    L.     Hydrogen    peroxide;     Colorimctric    deter- 
mination of  ..          ..          ..          ..          ..  751a 

Isabellen-Hutte  Ges.     Alloys  (P)           108A* 

Copper  alloys  ;   Treatment  of (P) 901a 

Silver  alloys  (P) 298a 

Isbell-Porter  Co.     See  Gardner,  W.  T.               245a* 

Isco  Chemical  Co.,  Inc.     See  Ladd,  E.  T 327a,  632a 

Isenburg,   A.     Electric  storage   batteries ;    Manufacture   of 

separators  for (P)           473a 

Ishida,  Y.    See  Asahina,  Y.                 . .         . .         . .         . .  557a 

Isihara,  T.     Alloys  ;    Relation  between  equilibrium  diagram 

and  hardness  in  binary . .          . .          . .          . .  941a 

Ising,  G.,  and  H.  Borofski.     Bearing  metals  and  the  like 
containing  embedded  material  which  does  not  form 

an  alloy  with  metal  ;    Manufacture  of (P)     ..  943a 

Metal  or  metals  and  other  material,  especially  graphite  ; 

Production  of  a  mixture  containing  a (P)     ..  506a 

Islip,  H.  T.     See  Roberts,  O.  D 557A 

Isom,  E.  W.,  and  others.     Oil  still  (P) 975a 

Itagaki.   T.      S,y.    Murayama.    Y.             ..            ..            ..            ,.  118A 

Iwanoff,  N.  N.     Yeast  ;    Changes  undergone  by  nitrogenous 

substances  in  the  final  phases  of  autolysis  of ■  . .  113a 

Yeast  :    Fission  of  proteins  in during  fermentation  113a 

Yeasts  ;    Influence  of  fermentation  products  on  decom- 
position of  proteins  in . .          . .          . .          . .  113a 

Iwasaki,  C.     Japanese  coal ;   Fundamental  study  of ■  . .  577a 

Iyer,  K.  R.  K.     See  Moudgill,  K.  L 785a 

lytaka,    I.,    and    Mitsubishi    Zosen    Kaisha,    Ltd.     Copper- 

aluminlum  alloys  (P)  ..        ..        ..        ..         ..  505a 

Izash  Oil  and  Refining  Co.     See  Hoge,  D.  W.              . .          . .  536a 


Jablonskl,  L.    Leather  ;  Investigations  on . .         . .     773a 

Jackman,  D.  N.,  and  A.  Browne.  Magnesium  nitrate- 
sodium  nitrate- water  and  magnesium  sulphate- 
magnesium   nitrate-water ;   The    25;    isotherms   of 

the  systems ..         ..         ..        ..         ..     412a 

Jackson,  A.  H.    See  Burton,  A.  E 624a* 

Jackson,  D.  D.     Potash  ;    Recovery  of  from  cement 

mixtures  (]')..  ..  ..  ..  ...  ..      4C6A 

Potassium  salts;    Obtaining  from  natural  potas- 
sium compounds  (P)    ..          ..  ..  .,  ..      546a 

See  Bstabrooke,  w.  1 764a 

Jackson,  L.   E.     Producer-gas  cooling  system  ;    Corrosion 

of  a 129a 

Jackson  and  Pro.,  Ltd.,  and  others.    Dyeing  apparatus  (P)  . .      705a* 
and  Co.     Ores  or  metallurgical  products  ;  Preparatory 

treatment  of  (P)  107a,  596a 

Jacob,  Gebr.      Coating  metal  articles  (P)         417a 

Jacobs,  B.  R.  Cartion  dioxide  in  self-raising  flour  ;  Deter- 
mination of ..  ..  ..  ..  ..     779a 

Jacobs,  C.  I'...  and  E.  I.  du  Pont  de  Nemours  &  Co.  Fixation 
of    nitrogen ;     Product  Ion   of   compounds    by    ga  9 

reactions,  e.g.,  (P)         415a 

Jacobs,  H.  M.     See  Jacobs,  T.  0 871a 

Jacobs,  K.  W.  J.  H.     Brown  coals  and  peat  ;   Improvement 

of  interior  (P) . .      578A 

Drying  of  lignite,  peat,  turf,  and  the  like  (P)    ..  ..     739a 


NAME  INDEX. 


51 


Jacobs,  K.  \Y.  J,  H. — continued 

Gas-coal  substitute  ;    Production  of  a  fuel  capable  of 

application  as  a (P) 

Methane  ;   Process  for  recovery  of (P) 

Jacobs,  T.  C.  and  H.  M.    Sugar    manufacture  ;    System  of 

pan  boiling  in  by  using  an  auxiliary  Btorage 

tank  (P)  

Jacobs,  W.  A.,  and  M.  Heidelberger.     5.8-Diaminodihydro- 

quinine  and  5.8-diamino-6-methoxyquinoline    and 

their   conversion    into   the    corresponding    amino- 

hydroxy  and  dihydroxy  bases 

Dihydrocinchonine,    cinchonine,    and    dihydroqulnine ; 

Hydrogenation  of  ■ 

See  Dean,  E.  W 

See  Heidelberger,  M.  ..         ..         ..         ..      51 7A, 

Jacobsohn.    M.     Lubricating    oils ;     Preparation    of    

from  lignite  tar  oil 
Jacobson,  P.  L.,  and  Koppers  Co.    Fuel  gases  ;  Purification 

of (P)       

Jacoby,  M.     Zymogens  ;    Artificial 

and"  T.  Shimizu.     Enzymes  and  zymogens  ;    Adsorption 

Taka-diastase  :  Inactivation  and  reactivation  of . . 

Urease;   Action  of  cholesterol  on .. 

Zymogens  ;  Artificial 

Jadin,    F.,    and    A.    Astruc.     Leaves;     Relation    between 

manganese  content  and  amount  of  ash  from  young 

and  old  

Jaeck,  O.     See  Jenny,  G.  

See  Soc.  of  Chem.  Ind.  in  Basle    .. 

Jaeck,  W.     See  Fichter,  F 

Jaeger,  E.     See  Smidt,  K.  J.  

Jagla     E.     See  Hess,  K. 

Jahn,  B.    See  Pictct,  A 

Jaitschnikov,   I.   S.      Alanine ;    Identification  of  by 

crystallo-chemical  analysis 
Jakeman,  ('.     Steam-pipe  coverings  ;   Determining  efficiency 

of  at  high  temperatures 

Jakes,  M.     Soaps  ;   Simplification  of  Goidsehmidt's  titration 

method  for  determination  of  total  fat  in . . 

Jakob,    M.     Thermal    conductivity    of    liquids,    insulating 

materials,  and  metals  ;    Measuring  the  

Jalabert,  E.  P.  F.     Ores  ;    Apparatus  for  classifying  

according  to  density  (P)       ..         ..         ..    299a*, 

Jaloustre,  L.     See  Lemay,  P. 

James,  J.  H.     Petroleum  products  ;  New 

James,  X.     Tin.  terne,  and  other  like  metal-coated  plates  ; 

Machinery  for  manufacture  of (P) 

James,  W.     See  Meyer,  S.  M. 

Jameson,  II.  I.  .  and  others.     Vitamin  A  ;   Synthesis  of 

by  a  marine  diatom  [Nilzeehia  closterium)  growing 

in  pure  culture 
Jamet,  M.     Tanning  materials  and  extracts  ;    Qualitative 

analysis  of and  detection  of  adulteration 

Jamieson,  G.  S.     See  Baughman,  W.  F. 

Jander,  G.     Membrane  filters  ;   Chemical  analysis  with 

Application    of    membrane    filters    in    volumetric 

analysis.     Determination  of  manganese  and  chro- 
mium 

Membrane  filters  ;    Treatment  of 

and  E.   Wendehorst.     Aluminium ;    Determination    and 

separation  of  in  alloys  rich  in  aluminium     . . 

Jander,  W.     See  Tammann,  G. 

Janke,  A.     See  Bamberger,  M. 

Janko,  J.     See  Griin,  A. 

Jannek,  J.     See  Badische  Anilin-  und  Soda-Fabr. 

Jannin,  L.     Steels  ;    Rapid  determination  of  elongation  and 

resistance  to  impact  of 

Jansen,  J.  D.,  and  others.     "  Cyclon  "  ;  Absorption  of 

by  different  foodstuffs.     Detection  of  hydrocyanic 

acid 
Jansky,  V.     See  Stoklasa,  J.    . . 

Jantzon,  H.    See  Voltz,  W.        

Jaqnes,  A      See  Cumberland  Coal  Power  and  Chemicals,  Ltd. 

See  Hall,  J.  A 

See  West,  J.  H 

Jarraud,  A.,  and  O.  M.  G.  Roussel.     Wines,  spirits,  vinegar, 

and   similar   products ;    Maturing   and   improving 

(P)  

Jaworski,  P.     Coking  chamber  for  gas  generators  (P) 

Jeautet,  P.    See  Duclaux,  J.    . . 

Jefferson,  A.     Silver-plated  work  ;    Cause  of  red  stains  on 

418E, 

Jeffery,  J.  A.,  and  Jeffery-Dewitt  Co. 

Ceramic  (P) 

Jeffery-Dewitt  Co.    See  Jeffery,  J.  A. 

Jeffreys,  J.,  and  Co.,  Ltd.,  and  others.     Heat  interchanging 

devices   (P) 
■  Jeffries,  Z.,  and  R.  S.  Archer.    Metals  ;  Effect  of  temperature, 

pressure,  and  structure  on  mechanical  properties 

of . .  

Metals  ;    Mechanical  properties  of  as  affected  by 

grain  size 


579a 

453a 


Insulating  material ; 


.Mi!  v 
534A 

517a 


975A* 
340A 

340a 
340A 
340A 
340A 


908a 
855a* 
325a 
20a 
989a 
892a 
871A 

996a 

697a 

825A 

735a 

333a» 
141A 

208A 

180A* 
766A 

913a 

989a 

222a 


442a 
568a 

468a 
941a 
190a 
21a 
454a 

759a 


873A 
775a 
779a 

579A 
285T 
702a* 


28A 
660a 
233a 

817A 

329A 
329a 

797a* 

I 
941a 

941a 


PAGE 

Jeifries,  Z.,  and  R.  S.  Archer — continued. 

Metals  ;  Properties  of  cold-worked . .         . .         . .     984a 

Metals  ;  Slip  interference  theory  of  hardening  of . .     219A 

Jellinek,  K.,  and  A.  Diethelm.     Producer-gas  equilibrium  at 

high  pressures  . .         . .         . .         . .         . .         . .     972a 

and    H.    Ens.     Sulphates,    lead,    acids,    and    ammonia  ; 

Volumetric  determination  of  ■ 1000a 

Jellinek,  P.    See  Friinkel,  S.  780a 

Jenge,  W.  Alloys;  Chemical  and  electrochemical  behaviour 
of  some  series  of 

Jenkin,  C.  F.     Ethyl  chloride  as  a  refrigerating  agent 

Jenkins,  H.  C.     Electrolytic  cell  (P) 

Jennings,   J.   M.,   and   Standard   Oil   Co.     Stable  foam   for 
preventing  the  evaporation  of  stored  liquids  (P)  .. 
See  Howard,  F.  A. 
See  Sogers,  T.  H.  

Jenny,  E.    See  Fichter,  F 629a 

Jenny,  G.,  and  others.  Textile  materials ;  Degumming 
(P)  

Jensen,  A.,  and  Jensen  Creamery  Machinery  Co.  Pasteurising 
milk,  cream,  etc.  (P) 

Jensen,  A.  J.  M.    Yeast;  Manufacture  of (P)  . . 

Jensen,  G.,  and  Westinghouse  Electric  and  Mfg.  Co.  Tem- 
pi irature-measuring  device  (P) 

Jensen  Creamery  Machinery  Co.     See  Jensen,  A. 

Jentgen,  H.  Artificial  threads,  films  and  the  like  ;  Produc- 
tion of from  viscose  {P)  . . 

Jespcrsen,  T.,  and  Lincoln  Trust  Co.  Paper ;  Eemoving 
printer's  ink  from  waste (P) 

Jesser,  H.    See  Mczger,  0. 

Jewell,  A.  C.     Stills  (P) 

Joachimoglu,  G.  Chloro -derivatives  of  methane,  ethane, 
and  ethylene  ;  Comparative  experiments  on  anti- 
septic action  of 

Yeast ;  Action  of  mercuric  chloride,  phenol,  and  quinine 


18a 
474K 
333A* 

697a 
491a 
155a 


855A* 


30a 
114A 


395a 
30a 


628a* 


•48a 
73a 
97a* 


679a 


and 


W.     Hirose.     Selenium    and    tellurium  ;      Pharma- 
cology of .     Action  of  their  acids  on  diphtheria 

bacilli  and  on  the  organs  of  the  circulation  . .       231A 
Joffe,   J.   S.     Sulphur  oxidation   in  sulphur-floats-soil   mix- 
tures        338a 

Sulphur-oxidising    bacteria ;     Isolation    of    ■    from 

sulphur-"  floats  "-soil     composts      . .  . .  . .     427a 

See   Lipman,  J.  G. 
See  Waksman,  s.  A. 
Johaunsen,  A.     See  Paneth,  F. 
Johannsen,  O.     See  Zinke,  A. 
Johansen,  E.  M.     Petroleum  products 

values  of  — — 
Johansson,    K.    E.    V.     Glass-melting    furnace 

recuperative    (P) 

Johl,  O.     Iron  and  manganese  oxides 

containing or  sludges  containing  such  ores  (P) 

H.     Resinous    condensation    products    of_  formaldi 
hyde  and  urea  or  urea  derivatives 
of  (P) 


Iodine  and  bromine 


Gas-fired 


Treatment  of  ores 


231a 


1S7a 
20:Sa 
293a 
509a 

402a 

Uli 

673A 


John, 


Manufacture 


183A. 

John,  K.  B.     See  Andrews,  C.  E 539a 

873a 
88a 


Johns,  C.  O.     Sec  Jones,  D.  B.  

Johns,  G.  McD.     Condensing  apparatus  ;    Vapour  (P) 

Distillation  of  material,  e.g.,  oil  shale,  carrying  volatile 
matter    (P) 
and  Industrial   Process  Engineering   Co.     Distillation  of 
material  carrying  a  percentage  of  volatile  matter,  e.g. 

shale  etc.  (P) 

and   others.    Retorts    (P)     . . 

Johns-Manville,  Inc.    See  Walsh,  J.  H. 

Johnson,  A.  W.     See  Phelps,  E.  B.  

Johnson,  C.  M.     Alloy  steel  (P)         

Johnson,  E.  E.    See  Campbell,  E.  D.  

Johnson,  F.,  and  W.  G.  Jones.    Cast  metals  and  alloys  ;  New 
forms    of    apparatus    for    determining    the    linear 

shrinkage  and  for  bottom-pouring  of .    Shrink 

age  and  hardness  of  cast  copper-zinc  alloys      418R,  817a 

Johnson,  H.  F.    See  Rhodes,  F.  H.  380a 

Johnson,   H.   W.    Soils  ;    Relation   of   hydrogen   ion   con- 
centration in  to  their  lime  requirements     . . 

Johnson,  E.  M.,  and  G.  C.  Hurrell.     Filter  ;  Rotary (P) 

Johnson,  T.  B.     See  Baudisch,  O 

See  Henrich,  F.      . . 

Johnston,  A.,  and  North  British  Rubber  Co.    Fabric  used 
in  manufacture  of  balloons  and  dirigible  airships  (P) 

Johnston,  A.  W.     See  Baker,  J.  C.  

See  Stevenson,  A.  F. 

Johnston,  G.     Pulverising  ore  and  the  like  (P) 
See  Johnston,  H.  G. 

Johnston,  H.  G.  and  G.     Gas  producer  (P) 

Johnston,   J.  H.     Sewage   sludge  :     Activated  .    Dis- 
cussion 

Johnston,  T.  R.     Printing  fabrics  ;    Rotary  offset  machines 
for  (P) 

Johnstone,  S.  J.     "  Potash  " 

Jolibois,  P.,  and  E.  Bossuet.     Uranium  oxides  ;    Relations 

between  the  different  215a 


92a 

803a* 
92a 
909a 
192a 
637A 
759a 


263a 
315a 
194a 
543K 

248a* 
479a 
75a 
43A 
403a 
403a 

7  It 

749a* 
403R 


d2 


62 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


TAGE 
Joliot,   P.     Cellulose   threads ;     Process  for  manufacturing 

brilliant  (P) 367a 

Jonea,A.     Electric  furnace  (P) 473a 

Zinc-smelting  furnace  ;    Vertical  retort  (P)         . .  765A 

See  Hunter,  .U.  A.  552a,  863a 

Jones,  A.  B.,  and  Clark,  MaeMullen,  and  Biley.     Absorp- 
tion and  cooling  apparatus  (P)      ..          ..          ..  971a 

Jones,  A.  H.    See  Jones,  J.  B.              860a 

Jones,  A.  J.     Arsenic  content  of  some  marine  algae  . .          . .  684a 

Jnii.'s.  B.  D.     See  Harding,  K.               293a 

See  Kelly,  A.A 040a 

Jones,  C.  W.,  and  Dow  Chemical  Co.     Hydrobromic  acid ; 

Manufacture  of  (P)      ..          ..          ..          ..  .">7a 

Jones,  D.   A.     Refractory    materials ;     Standardisation    of 

after- contraction  test  for ..  . .       14a,  o47a 

Jones,  D.  B.     Zinc  ore  briquette  (P)  . .          . .          . .          . .  597a 

and    others.    Proteins    of    the    adsuki    bean,    Phaseolus 

tintjularis            . .          . .          . .          . .          . .          . .  342  \ 

Proteins  of  the  lima  bean  {Phaseolus  lunatus)  . .          . .  873a 

Jones,  D.  O.,  and   H.   R.   Lee.    Azo  dyestuffs ;    Electro- 
metric   titration   of  ..          ..          ..          ..  136a 

See  Baum,  E.   C 502a* 

See  Lee,  H.  R 932a 

Jones,    E.   BT.,   and    Alloy   Welding    Processes,    Ltd.     Iron 
welding  rods  for  electrodes  and  soldering  sticks  ; 

Composition  for  coating  (P)   ..          ..          ..  866A 

Jones,  F.  B.,  and  Minerals  Separation,  Ltd.     Concentration 

of   coal   (P) 700A 

Jones,   F.   C.     Rubber  articles  ;    Manufacture   of  by 

moulding  rubber  gel  (P) 906a* 

Jones,  G.  W.,  and  W.  L.  Parker.     Gas  analysis  ;  Formation 
of    oxides    of    nitrogen    in    slow    combustion    and 

explosion  methods  in  ..          ..          ..          ..  159a 

5ft    Allison,  V.  C.               230a 

See  Fieldner,  A.  C.              622a 

Jones,  J.  A.    Steel ;   Intercrystalline  cracking  of  mild 

in  salt  solutions          . .          . .          . .          . .          . .  104a 

Jones,  J.  B.  and  A.  H.    Kilns  for  burning  bricks,  tiles,  terra- 
cotta and  the  like  ;    Construction  of (P)        . .  860a 

Jones,  J.  S.,  and  J.  C.  Rcedcr,     Potassium  in  soils  ;    Use  of 

silica  crucibles  for  determination  of . .          . .  25a 

Jones,   L.   A.,  and  M.   F.     Fillius.     Photographic  papers; 

Gloss  characteristics  of 392a 

Jones,  L.  W.     See  Beisler,  W.  H 934a 

Jones,  R.  M.     See  Ross,  W.  H,               544a 

Jones,  R.  O.     See  Courtaulds,  Ltd.  ..  ..       631a,  669A 

Jones,  W.,  and  Sylvette,  Ltd.     Nickel  alloys  (P)  . .          . .  942a 

Jones,  W.  G.  '  See  Johnson,  F.  418R,  817a 

Jones,  W.  J.     Essential  oils  ;    Congealing  temperatures  of 

446R 

See  Heap,  J.  G 49a 

Joncsco,    S.     Anthocyanidins ;     Distribution    of    in 

coloured  organs  of  plants     . .          . .          . .          . .  582a 

Chromogens   of    certain    plants ;     Conversion    of   

into  a  red  pigment  by  oxidation     . .          . .          . .  8a 

Jonescu,  A.     See  Minovici,  S.               ..          ..          ..          ..  394a 

Joost,  K.     Paper  ;   Process  for  loading in  the  hollander 

(P)           808A 

Jordan,  C.  W.     See  Fulweiler,  W.  H.               928a 

Jordan,  E.,  and  Soc.  L'Air  Llquide.     Cooling  a  gas  ;   Means 

for  (P) 735a 

Jordan,  H.,  and  Grasselli  Chemical  Co.     Cotton  dyes  (P)  ..  664a* 

Jordan,  R.D.     See  Hall,  J.  H.              637a 

Jordan,  W.  L.     See  Elsenbast,  A.  S.               635a 

Jordon,  J.  M.     Rosin;    Extracting  crude  spirits  and  

from  yellow  and  green  pine  stumps  (P)     . .          . .  772a 

Joret,  G.     Copper  ;    Volumetric  determination  of  by 

means  of  sodium  nitroprusside          . .          . .          . .  1000a 

Jorgensen,  H.  F.  B.     Heat-exchanging  bodies  ;    Production 

of (P)        797a* 

Joseph,  A.  F.,  and  F.  J.  Martin.     Milk  ;    Composition  of 

cow's in  the  Sudan         . .           . .          . .          . .  242u 

and  B.  W.  Whltfeild,     Sudan  essential  oils         ..      144T,  17^t 

See  Millicun,  I.  L 587a 

Josephson,  K.     See  Von  Euler,  H 513a,  778a,  911a 

Joshi,  X.  V.     Nitrogen  losses  from  dung  and  urine  during 

storage  ;   Methods  of  preventing . .          . .  723a 

Joshi,  S.  S.    SeeSanyal,  R.  P.              599a 

Josse,  E.,  and  W.  Gensccke.     Gases  or  vapours  ;   Removing 

moisture  from ,  and  heating  gases  and  vapours 

(P)           206a 

Liquors  ;    Evaporation  of (P)          69SA* 

Jouett,   C.  A.     Petroleum-refining  apparatus  ;    Continuous 

(P>             494a 

Jourdan,  F.     Rocks  ;   Process  for  obtaining  in  soluble  state 

some  of  the  constituents  of  complex (P)        . .  540a* 

See  Blanc,  G 293a,  562a 

Joussen,  J.    See  Meerweln,  H.             915a 

Joyner,    R.    A.     Cellulose    in    cuprammonium    hydroxide 

solution  ;   Determination  of  viscosity  of 276R,  806a 

Nitrating  apparatus  (P)        918a 

r.nirard,  G.     See  Chaudron,  G. 249A 


(P) 


(P) 


Jung,  H.     Filter  beds  ;   Continuous  washing  of  — 
Filter-presses;    Removing  solid  residues  from 

Filters  ;   Rotary  disc (P) 

Juugbhith,  H.    Nickel  steel  and  chromium  steel ;    Charac- 
teristic curves  of 

See  Oberhoffer,  P.  

Junger  und  Gebhardt  Ges.     Water  ;   Softening (P)    .. 

Jungkunz,  R.     See  Pritzker,  J. 
Jungmarker,  A.  A.    See  Gufstafson,  G. 

Junk.     Potassium   nitrate  ;     Impurities    in   synthetic  

used  in  manufacture  of  gunpowder 
See  Maass 
Jurisch,  K.  \Y\,  and  H.  von  Schleinitz.     Potassium  chlorate  ; 

Purifying for  use  in  manufacture  of  explosives 

and  matches  (P) 
Justice,  I.  M.,  and  G.  A.  Willigman.     Kilns  ;  Downdraught 

(P)  

Justin-Mueller,     E.     Cellulose,     hydrocellulose,     and     oxy- 

cellulose  ;   Comparative  action  of  heat  on and 

characterisation  of  hydrocellulose  by  action  of  dry 
heat 

Water  ;    Precision  in  determination  of  hardness  of 

and   aqueous   preparation   of   the   standard   soap 
solution  . . 


K 


Kacser,  S.    See  Deutsche  Petroleum  A.-G 
Kaelin,  F.  T.    Steam  ;  Generation  of  — 


. .      450a, 
by  electricity 
94R, 
Kaemmerling,  G.  H.,  and  others.    Carburetted  water-gas  ; 

Manufacture  of (P)        

Kiiinpf,   A.    Viscose ;    Recovery   of  carbon   bisulphide   in 

the  working  up  of into  artificial  fibres,  films, 

and  similar  products  (P) 
and  Koln-Rottweil  A.-G.    Alkali-cellulose  and   the  like  ; 

Apparatus  for  use  in  reducing (P) 

See  Neumann,  G.     . . 
Kagan,    A.    Anthracene   and   carbazole ;     Separating   and 

purifying (P) 

Kahlenberg,  L.     Cholesterol ;    New  colour  reactions  of 

Kahn,  H.  M.    See  Conant,  J.  B 

Kai,  S.    Trypsin  ;  Determination  of 

Kaiser,  K.    Alkali  hydroxides  ;    Production  of  from 

alkali  sulphates  (P) 

Magnesium  nitride  ;  Manufacture  of (P) 

Nitrides   of   aluminium,    magnesium,    calcium,    boron, 

etc.  ;   Process  for  making (P) 

Kaiser,  O.    See  Soc.  of  Chem.  Ind.  in  Basle 

Kalb,  L.     See  Willstatter,  R 

Kalbtlcisch  Corp.    See  Fredriksson,  J. 

Kaleta,   T.     Blast-furnace   gas ;    Determination  of  carbon 

monoxide  in  

Boring  and  cooling  oils  (soluble  oils)  ;  Examination  of 

Kallab,  F.  V.    Manganese  Bronze  ;  Method  for  dyeing 

Kallauner,  O.,  and  I.  Hruda.    Vanadium  in  ceramic  pro- 
ducts and  its  action 
Kalle    und    Co.,    A.-G.     2-Amino-5-hydroxynaphthalene-7- 
sulphonic  acid  ;    Manufacture  of  a  derivative  of 

(P)  

l-Arvlamino-4-hydroxynaphthalenes  ;     Manufacture    of 

(P)  

a-Chloronaphthftlene  ;    Manufacture    of    derivatives  of 

(P)  

Condensation  products  of  benzene  derivatives  halogen- 
ated  in  the  side  chain  and  aromatic  hydroxy  com- 
pounds ;   Preparation  of (P)    . . 

Dianiinodinaphthylsulphonic  acids  and  dinaphtho- 
iminosulphonic  acids  ;    Manufacture  of (P)  .. 

Disazo  dyestuffs  ;  Manufacture  of  secondary (P)  . . 

Dyeing  with  vat  dyestuffs  in  alkaline  vats  (P)  . . 

Naphthasultemesulphonic  acid  chlorides;  Manufacture  of 

(P)  

Vat  dyestulfs  ;    Production  of (P) 

Kallmann,  11.     Carbon  monoxide-oxygen  cells  with  glass  as 

electrolyte 
Kalmus,  Comstock,  and  Wescott,  Inc.    See  Wescott,  E.  s. 
Kalshoven,    H.     Molasses ;     Exhaustability    of    cane    

considered  in  connexion  with  its  composition 
Kaltcnbacb,  M.  H.     Sulphuric  acid  ;    Manufacture  of  

(P)  

Kaltwasser,  O.     See  A.-G.  fur  Anilin-Fabr. 

Kaminka,  R.     See  Marotta,  D. 

Kamm,  O.,  and  American  Writing  Paper  Co.     Resin  soap  ; 

Emnlsiileation  of in  water  (P) 

and  E.  H.  Volwiler.     Anaesthetic  compound  (P)  . . 
Kampshoff,  A.     Moulds  of  peat  and  plaster  (P) 
Kandlcr,  E.    Peat  :  Dehydration,  drying,  and  carbonisation 

of-      ir,        .".         

Kaanappel,  E.    See  streeker.  W. 

Kano,  T.     See  Yamamoto,  Y.  

Kansas  City  City  Gasoline  Co.  See  Lasher,  II.  M.  . .  4j4a, 


page 
658A 
846a 
390a 

817a 
861a 
116a 
65A 
715a 

158A 
639a 


253a 
254a 


9a 
644A 

852a* 

412R 

974A 

459A 

542A 
983A 

93a 

608a 
539a 
614a 

669a 
216a 

216a 

523a» 

893a 

57a 

452a 

800a 
214a 

814A. 

170a 
134  A 
134A 

510A. 

134A 
664a 
96a 

134a 
137a 

597a 
258A 

776a. 

98A 
543a 

832a 

475  a 
.-.77a 
329a 

130a 
810A 
954a* 
536a 


NAME  INDEX. 


53 


PAGE 

Kantorowicz.   J.     Adhesives ;    Manufacture   of  from 

potato  starch  (P)         562a 

Starch  paste  ;  Manufacture  of (P) 429a 

Starch ;    Preventing  formation   of   lumps   when  

which  swells  in  cold  water  is  dissolved  (P)  . .         . .       27a 

Kapmeyer,  G.    See  Gleitz,  W.  334a 

Karczag,  L.     Oxidation  catalysis        IJGa 

Kardos,  E.,  and  Metal  and  Thermit  Corp.     Zinc  solution  ; 

Method  of  producing  pure (P)..         ■•         ••     379a 

Karlsson,  S.    See  Von  Euler,  H 778a 

Kara,  W.     Ethyl  alcohol :   Production  of from  acetyl  • 

ene  or  ethylene  (P)      ..         ..         ..         ..         --     788A 

Karplus,  H.     Colloidal  suspensions  :    Process  of  producing 

stable in  organic  media  immiscible  with  water 

(P)  ?87a 

Karr-r,  T\    Alkali-cellulose,  and  structure  of  cellulose         ..     170a 

Amino-alcohols  ;   Preparation  of  ■ (P)  . .         . .     523A 

Cellulose  ;    New  degradation  of  .     Conversion  of 

cellulose  into  a  biose-anhydride        ..         ..         . .     171a 

Polysaccharides.    Glycogen  . .         . .         . .         . .       27a 

and  E.  Burklin.    Amyloses 304a 

and  W.  Fioroni.     Polysaccharides    . .  . .  . .  . .     910a 

and  J.  Peyer.    Saccharic  and  mucic  acids  ;    Methylation 

of 645a 

and  J.  O.  Rosenberg.     Carbohydrates  ;    Sublimation  ex- 
periments with . .  . .  . .  . .  . .     642a 

and  H.  R.  Salomon.    Tannins  ;  Crystalline  synthetic 184A 

and  A.  P.  Smirnoff.    Amyloses.     Constitution  of  diamylose 

and  the  anhydro-sugar  (cellosan)  of  cellulose        . .     305a 

Anhydro-sugars  ;  Constitution  and  configuration  of L88i 

and  others.    Inulin,  and  alkali  hydroxide  compounds  of 

anhydro-sugars  . .         . .         . .         . .         . .     1S8a 

Kasai,  K.,  and  Mitsui  Mining  Co.    p-Xitroaniline  ;    Manu- 
facture of from  p-nitroaeetanilide  (P)  . .  . .       94a* 

Kashima,  K.    See  Komatsu,  S.  777a 

Kashiwagi,  K.     Diastase  or  a  solution  of  diastase  ;    Pro- 
duction of  (P) 478A 

Kast,  H.,  and  A.  Haid.     Chlorate  explosives  ;    Toxicity  of 

fumes  from  ..         ..         ..         ..         ..     961A 

Mercury  oxycyanide  ;    Explosibility  of  . .         . .     789a 

Kato,  T.     Zinc  dust ;  Process  of  manufacturing (P)    . .     765a 

Kattwinkel,   R.    Ammonium  sulphate  ;    Melting  point   of 

normal . .         . .         . .         . .         . .         . .     370a 

Sulphur  ;   Recovery  of from  spent  oxide  by  means 

of  tetralin  928A 

Katz,  S.  H.,  and  J.  J.  Bloomfleld.    Carbon  monoxide  ;  Tests 

of  an  iodine  pentoxide  indicator  for . .  . .     433a 

and  G.  W.  Smith.     Suspended  matter  in  gases  ;  Determin- 
ation of by  collection  on  filter  paper  . .         . .     791A 

See  Fieldner,  A.  C.  526a 

Kauffman,  M.     Caramels  in  cane  sugar  factory  products  ; 

Determination  of ■  . .         . .         . .         . .     477a 

Kaufler,  F-,  and  others.    Dichloroethylene  ;  Manufacture  of 

(P)  648a* 

Kaufman,  W.  F.    See  Scholes,  S.  R.  15A* 

Kauf  mann,  A.    Alloys  for  die-casting  . .         . .         . .         . .     297a 

Kaufmann,  H.  P.    Adhesive  ;   Preparation  of  an from 

waste  cellulose  liquors  (P)   . .         . .         . .         . .     705a 

Glue  from  the  waste  liquors  from  cellulose  manufacture  ; 

Production  of  (P)         641a 

Pyromucic  acid  ;    Bactericidal  action  of  . .  . .     193A 

and  M.  Friedebach.    "Wax  from  pine  needles,  and  abietic 

acid  esters        . .         . .         . .         . .         . .         . .     598a 

and  H.  Zobel.     Duleigenic  groups;    Isomeric  naphthoic 
acid  sulphinides,  a  contribution  to  the  theory  of 

f C08A 

Kauko,  Y.    Flue  and  waste  gases  ;    Graphic  representation 

of  analyses  of  623a 

Kawabe,  T.    Ramie,  hemp,  and  the  like  ;  Process  of  treat- 
ing    (P) 138a 

Kawai,  S.     Petroleum  oils  ;  Iodine  values  of ■  . .         . .     535a 

Kay,  A.     Heat  exchangers  for  heating  liquids  and  for  like 

purposes    (P)    . .         . .         . .         -.         . .         . .         2a* 

Kaye,  F.    Rubber  latex  in  paper-making      „  He,  369R,  806a 

See  Huebner,  J.  . .         . .         . .         . .         . ,       94T 

Kaye,  G.  W.  C,  and  T.  H.  Laby.     "  Physical  and  chemical 

constants  and  some  mathematical  functions  "  . .       66r 

Kayser,  T.    See  Lowenstein,  K.  Prinz  zu 890a 

Keats,  J.  L.    See  Whitman,  W.  G.  315A 

Keeler,  E.  A.    Ion  concentration  measurements  ;    Applica- 
tion of to  control  of  industrial  processes     . .     790a 

Keeler,  R.  F.    See  Clark,  A.  W 82a 

Keen,    B.    A.    Soil ;     Evaporation    of    water   from    . 

Influence  of  soil  type  and  manurial  treatment  . .       69a 
and  H.  Raczkowski.    Soil ;  Relation  between  clay  content 

and  physical  properties  of  . .         . .         . .       70a 

Keene,  E.  W.  W.    Filtering  apparatus  (P) 846a* 

Filtering  apparatus  ;    Rotating  valve  for (P)     . .     490a 

Filtering  apparatus  ;  Vacuum (P)  . .         . .         . .     400a 

Kehrmann,  F.    Colour  and  constitution      . ,         . ,         . .     288a 
and  others.     Nitro  derivatives  of  quinol   . .  . .  . .         7a 

Triphenylmethane    dyestuffs ;    So-called    peroxidation 

products  of  leuco-derivatives  of  . .         . .     287A 

Keil,  J.    See  KSnig,  W.  663a 

Keister,  J.  T.    Malted  milk  ;  Determination  of  fat  in 341a 


page 
Keith,  C.  H.,  and  others.     Balata  ;    Deresinating  and  puri- 
fying   (P) 262a 

Keith,  G.,  and  others.    Heating  and  drying  apparatus  (P)  . .     358a 

Keithline,  J.  S.    Filter  (P)        . .         . .    - 887a 

Kelen,  D.  E.,  and  U.S.  Industrial  Alcohol  Co.     Oxalic  acid  ; 

Refining  (P) 33a 

Keller,  A.     Heating,  evaporating,   or  distilling  liquids  or 

molten  substances  ;   Process  of  atomising  and 

<P)  738A 

Kelley,  A.  P.     Soil  types  ;  Plant  indicators  of . .         . .     677A 

Kelley,  G.  L.,  and  E.  W.  Evers.     Carbon  dioxide  ;    Solid 

sodium  hydroxide  as  absorbent  for  in  steel 

analysis 60a 

and  J.  A.  Wiley.  Chromium  in  ferrochromium  ;  Deter- 
mination of  by  electrometric  titration         . .       60a 

Kelley,  W.  Van  D.     Photographic  images  ;    Treating  and 

dyeing  (P)  690a* 

and    Prizma,    Inc.     Photographic    images ;     Production 

of  bleached  and  coloured (P) 393a 

Kellner,  W.    Obituary  . .         . .         . .         . .         . .         . .     432R 

Kellogg,  C.  A.,  and  others.    Furnaces  ;   Method  and  appara- 
tus for  firing (P) 127a 

Kellogg,  D.  R.    Iron  ;    Electrolytic  deposition  of  for 

building  up  worn  or  undersized  parts         . .  . .     330a 

Kellogg,  J.  W.     Sampling  horn  ;    Kellogg's  . .  . .     611A 

Kellogg,  S.,  and  Sons  Inc.    See  Schwarcman,  A.  ..     301A 

Kells,  C.  E.     Water-distilling  apparatus  (P) 344a 

Kelly,  A.     Phosphoric  acid  ;    Production  of (P)        . .     589a 

and  R.  B.  R.  Walker.  Borax  and  boric  acid  ;  Manu- 
facture of  (P) 252A 

Kelly,  A.  A.,  and  B.  D.  Jones.    Sodium  pentaborate  ;  Pro- 
duction of direct  from  boron  ores  (P)  . .         . .     546a 

Kelly,  J.  W.     See  Black,  O.  F.  645a 

Kelly,  M.  W.    See  Thomas,  A.  W 262a,  383a,  640a 

Kelly,  W.  J.     Vulcanised  rubber  :  Determination  of  true  free 
sulphur  and   true    coefficient  of   vulcanisation    in 

301a 

and  others.     Thioureas  ;    Process  of  making  (P)   . .      197a 

See  Bedford,  0.  W.  475a 

See  Crawford,  J.  F.  ..         ..         ..         ..         ..     516a 

Kelly-Springfield  Tire  Co.    See  Mackintosh,  W.  M.  ..     111a 

Kemp,  A.  V.    See  Wellman  Smith  Owen  Engineering  Corp., 

Ltd.    (P)  637A 

Kemp,  W.  W.,  and  W.  H.  Van  Horn.    Metals;  Apparatus  and 

method  for  heating  easily  fusible (P)  . .         . .     221a 

Kemper,  A.    See  Schuen,  W.  378a 

Kempf,  R.    See  Maasa,  E.      . .         . .         . .         . .         . .     946a 

Kempton,  W.  H.,  and  Westinghouse  Electric  and  Mfg.  Co. 

Arc  shield  (P)  . .         . .         . .         . .         . .         . .     987a 

Insulation  ;  Moulded and  method  of  making  it  (P)    987a 

Kendall,  D.  S.,  and  Condensite  Co.  of  America.    Phenol- 
aldehyde  condensation  products  (P)  . .  . .     558a 
Phenolic    condensation    product ;     Process   of   making 

a    (P) 558a 

See  Novotny,  E.  E.  66a 

Kendall,  H.  A.    Nitrocellulose  ;   Apparatus  for  making 

(P)  393a 

Kendall,   J.,   and  J.   J.   Beaver.    Phenol-cresol   mixtures ; 

Compound-formation  in  . .         . .         . .       93a 

and  F.  J.  Fuchs.  Catalytic  influence  of  foreign  oxides 
on  decomposition  of  silver  oxide,  mercuric  oxide, 
and  barium  peroxide  . .         . .         . .         . .         . .       98a 

Keneflc,  E.  B.    See  Blanchard,  T.  R.  625a 

Kennan,  T.    Blast  furnaces  and  the  like  ;  Sealing  cracks 

in  the  linings  of  (P)     . .         . .         . .         . .     715a 

Kennedy,  C,  and  others.    Milk  ;  Influence  of  the  diet  of  the 
cow  upon  the  quantity  of  vitamins  A  and  B  in  the 

■ 306a 

Kennedy,  H.    Mixing  and  agitating  machines  (P)  . .         . .     128a* 

Kenney,  W.  J.     See  Nordell,  C.  H.  89a 

Kenny,  A.    See  Ostberg,  A.J.  67a,  677a* 

Kent,  A.  T.    See  Duckham,  A.  McD.  712a* 

See  Woodall,  Duckliam  and  Jones  (1920),  Ltd.  . .     417a 

Kent,  R.  W.,  and  Cooley  and  Marvin  Co.    Dry  kiln  for 

timber    (P) 142A 

Kent-Jones,    D.    W.    See    Watson,    W 607a,  644a 

Kenyon,  G.  1.  T.    See  Reynolds,  W.  H 575a 

Keppeler,  G.    Peat ;    Artificial  dehydration  of  raw . .     847a 

Kerb,    J.,    and    K.    Zeckendorf.    Alcoholic    fermentation ; 

Course  of in  presence  of  calcium  carbonate  . .     189a 

Kereszty,  G.    See  under  Von  Kereszty. 

Kern,  E.    See  Madelung,  W.  434a 

Kern,  E.  F.,  and  M.  Y.  Chang.    Copper  refining  electrolytes  ; 

Conductivity  of 420a 

Kern,  E.  J.    See  Wilson,  J.  A 24a,  68a,  232 1 

Kerr,  H.  H.    See  O'Connell,  J.  229a 

Kerr,  R.  P.    See  Cox,  K 849a 

Kerr,  W.  R.     See  Howe,  R.  M.  416a 

Kershaw,    H.     Sweden ;     Report   on    the   economic,    com- 
mercial, and  industrial  situation  of  . .         . .     296r 

Kershaw,    J.    Dyeing    wool,    slubbing,    yarns,    and    other 

fibrous  material ;  Apparatus  for (P)  . .         . .     214a* 


54 


JOURNAL  OF  THtf  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Eeisten,  J.     Alkali  chlorides     Decomposition  of  — 
Kerstlng,  A.  F.,  and  L.  C.  Ilamlink.    Coat  gas; 


PAGE 

(P)  ..       13a 
Manu- 
facture of <P)     .  ..         ••     023a 

Ki  rr,    /    p.     Mica  bI>  i  i-  ;    Manufacture  of  refractory  

from  mica  waste  <P)  756a 

Eeseelcr,  H.,  and  others.    Citric  esters ;    Determination  of 

nitrogen  in  . .  . .  . .  . .  . .     349a 

!i-  :  If.  J.  N.,  and  N.  L.  Sohngen.  Sugar;  Recovery 
of from  press  and  diffusion  waters  and  satura- 
tion scum  (P) 386a 

Kessler,  J,  M.,  and  E.  I.  du  Pont  de  Nemours  and  Co.    Cam- 
phor;   Purification  of  crude  Bynthetic (P)  ..     L57A 

Cellulose  ester  compositions  (P)  ..  ..  ..       290a,  855A* 

See  Underwood,  K.  C „.         . .     459a 

Kessler,  M.    Filter  (P) 316a 

ffestner,  1*.     Edible  product  obtained  from  the  sugar  juices 

of  beets  and  process  of  obtaining  it  (P)   ..  ..     562a* 

Peed  water  of  steam  generators  ;  Heating  and  decanting 

apparatus  for  use  in  purifying (P)    . .         .  .481a,  683a 

Oxygen  ;    Process  of  removing  from  water  (P)  ..     389a 

Kestner   Evaporator  Co.    .See  Mellor,  R.      ..         ..         ..     697a 

Kestnei  Evaporator  and  Engineering  Co.,  Ltd.    See  Fray- 
mouth,  \V.  A.  300a,  400a, 476a 

See  Eteavell,  J.  A.  945a 

Kewley,  J.     Crude  oils  of  Borneo      ..  ..  ..  ..         2a 

Key,    T.    D.     Crude    oil  ;     Apparatus    connected    with    an 
internal  combustion   or  oil  engine   for  converting 

into  fuel  (P) 702a 

Keyes,  H.  E.    See  Tartar,  H.  V 145a 

Keyssner,  E.    See  Franzen,  H.  ..         ..         ..         ..     194a 

Khainovsky,  V.    See  Helderman,  W.  D.     ..        ...        ..     226a 

Kharasch,  M.  S.     Mercuric  derivatives  ;   Indirect  method  of 

preparation    of    organic   ,    and    a    method   of 

linking  carbon  to  carbon      ..  ..  ..  ..117a 

Kibler,  A.  L.     Platinum  ;  Recovery  of from  used  contact 

mass        ..  ..  ..  ..  ..  ..  ..      588A 

Eickinger,  M-     Citric  arid  in  milk;    Decomposition  of 

b]    bacteria 953a 

Kidd,  F.     See  Imperial  Trust  for  Encouragement  of  Scientific 

and   Industrial  Research    . .  . .  . .  . .     115a 

Kido,  K.     Steel  ;    Magnetic  researches  on  nitrogenised  551a 

Kiederich,   r.     See  Frentrup,  H.  M.  889a 

Kiesel,    A.     Gluten-casein   of   buckwheat 306a 

Pinna  sylvestria  ;    Constituents  of  pollen  grains  of 520a 

Yeast    protein  ..  ..  ..  ..  ..  ..     305a 

KJesewalter,    A.     Calcium    hydride;     Electric    furnace    for 

producing  from  lime  and  hydrogen  (P)         ..     216a 

Kiess,    v.    See  Guthier,  A.  ..         ..         ..         ..     157a 

Kikuta.T.     Iron;  Growth  of  grey  cast during  repeated 

heatings  and  coolings  .  .  ..  ..  ..  ..     712a 

See  Honda,  K.         ..  ..  .,  ..  . .     418A 

Kiliani,  H.     Sugars;    chemistry  of  the  ..      188a,  910a 

Killing,    A.     Blast-furnaces  ;     Little-known    difficulties    in 

occurring  through  "  sulphur-misery  "  . .     593a 

Kilner,  N.  S.     Drying  solid  substances  ;   Apparatus  for 

(P)  574a 

Kimbell,  H.  F.     See  Coke  and  Gas  Ovens,  Ltd 320a 

Kimens,  R.  i;.     Poland;    Report  on  industrial,  commercial, 

and  economic  situation  of  ..         ..         ..  404R 

Kimura,  S.     See  Matsui,  M 369a 

Kinugasa,  V..  and  H.  Tatsuno.     0-Naphthol  ;   Detection  of 

in  foods,  spices,  and  beverages  . .  . .  . .  387a 

Kind,  W.     Bleaching  defects  in  linen  due  to  metallic  im- 
purities , .  , ,  .,  . .  .,  . ,  .,  410a 

Kindermann,  E.     See  Schroeter,  G I  S3  ^ 

Kindler,  K.     See  Rabe,  P 267a 

King,  A.  M.     Soap  solution;    Effect  of  high  concentration 

Of  Bait  upon  the  \  Iscosity  of  a . .         . .         . .     147t 

King,  E.  C.     Ores  ;  Method  of  reducing (P)      ..  ..     766a 

King,  F.     Iron  and  other  magnetically  permeable  metals; 
Apparatus  tor  separating  — —  from  flour,  grain. 

and  the  like  (P)  

King.  F.  W.  ('..,  and  A.  G.  Cogswell.     Rubber;    Permanent 

set  of 

King,  G.     Vulcanisation;    Dithiocarbamate  accelerators  of 

.     Discussion 

King,  ll.     Muscarine,  the  potent  principle  of  Amanita mus- 

carta;  Isolation  of 

King,  II.  J.  S.    See  Morgan,  G.  T 

King,  H.  T.    S«Noyes,H.A.  

1      1       and    11      ]'..    Haines.     Dveing    and    bleaching; 

Process  of <P) 

1    Q,     Hydrogen  and  paraffin  hydrocarbons  ;  Analysis 


Of  mixtures  of 

King,  R.     Picric  acid  :    Production  of  —  nlphonic 

acids  of  phenol 

3    P.,  and  0    51    J.   Perrott.     Coke  ;    shatter  and 

tumbler  tests  for  metallurgical  

Kinzcr,    P.    G.,   and    Carnation    Milk    Products    Co.    Milk 
1  '  ;  and  process  0J  making  it  (P) 
rgei  and  Co.    See  Forthcim,  C  . .  „      l  69a  . 


TliBA* 

U0a 

88T 

875a 

85  I  v 
384A 

325a 

533A 

L20A 

928A 

994A 
169a' 


PAGE 

Kirby,  J.,  and  others.     Lead  arsenate  ;   Preparation  of 

(P)  58a 

Kirby,  W.     Coal-tar  constituents  ;   Toxicity  of  certain 218R. 

Tar  acids  and  tar  bases  in  road  drainage  and  mud  ; 

Determination  of .     Discus-i.ni  ..  ..     177T 

Kircheisen,  P.     Sulphurous  acid  ;  Manufacture  of from 

materials  containing  small  quantities  of  sulphur, 
such  as  pyrites,  spent  oxide,  etc.  (P)  ..  ..     216a 

Kirchhof,  F.     Rubbers  ;    Action  of  concentrated  sulphuric 

acid  on  natural  and  artificial . .  . .  . .     335A 

Kirchhoff    R.     Galvanised  or  tinned  metals  ;    Production  of 

coloured  coatings  on (P)  ..  ..  ..     717a 

Kirchner,  R.  E.     Zirconia  ;    New  possibilities  for  utilisation 

of 221R 

Kirk,    C.    J.     Earthenware ;     Heat-treating    furnace    and 

method  for (P) 548A 

Kirpach,  N.     See  Wiist,  F 550a 

Kirschbaum,  G.     See  Von  Braun,  J 581A 

Kirschbraun,    L.    Bituminous    compositions ;     Process    of 

making  coloured (P)       ..  ..  ..  ..     536a 

Emulsions  ;   Process  of  making (P)  . .  . .     536a 

Felt  ;   Process  of  saturating (P)        536a 

Fibrous   compositions  ;    Process  of   treating  saturated 

(P)  536a 

Floor  coverings  ;  Manufacture  of (P)  ..  ..     867 A 

Friction  facing  ;   Manufacture  of (P)  . .  . .     867a 

Waterproof  composition  ;   Process  of  making (P). .     536a 

Waterproof  paper  ;   Production  of (P)        . .  . .     213a 

Kirst,  W.  E.    See  Putnam,  M.  B 248a 

Kisskalt,  K.     Water;    Efficiency  of  open  and  closed  filters 

in  removal  of  iron  from . .  . .  . .     343a 

Kissock,  A.     Molybdenum  ores  ;   Treatment  of (P)     .  .      146a 

K  itching,  A.  F.     Ultra-violet  light  ;    Use  of in  analysis     525a 

Kitsee,    I.     Photography ;      Production    of     multicoloured 

screens  for (P) "88a 

Kittredge,  K.  B.     See  Bishop,  E.  R.  273a 

Kiutsi,  M.     Ferment  filter  (P) 387a* 

Kjellberg,  B.  P.  F.     Minerals  containing  iron,  titanium,  and 

vanadium  ;  Process  of  treating (P)     . .         . .     638a* 

Kjellgren,  B.     See  Sieurin,  E 416A,  501A 

Kjerrman,  B.    Hypo-eutoctoid  steels  ;J  New  annealing  process 

for 467a 

K  larding,  N.     Gas  ;   Purification  of (P)  . .  . .     131a 

Klason,  P.     Lignin  of  fir  wood  ;   Constitution  of ..     627A 

Lignin  as  it  occurs  in  wood  . .         . .         . .         . .     247a 

Lignin;   Constitution  of  pine ..  ..  ..      217a 

Klebergcr.     Fertilisers  ;  Technique  in  experiments  with 226a 

Klebext,  E.,  and  J.  Pintsch  A.-G.     Acetylene  dissolved  in 
liquids  ;   Porous  charge  for  containers  serving  for 

storage  of (P) 580a* 

Klee,  F.  H.  M.     Flash  point  of  oils;    Apparatus  for  deter- 
mining   (P)  920a 

Kleemann.     Kjeldahl  method  ;    Effect  of  hydrogen  peroxide 
on  the  decomposition  of  plant  and  animal  material 

in  the  determination  of  nitrogen  by  the . .      274A 

Klein,  A.  A.,  and  L.  S.  Ramsdell.     Silica  brick;    Variation 

on  heat  treatment  of in  the  crown  of  a  tunnel 

kiln         101a 

Klein,  C.  A.     Indiarubber  industry  ;   Constructive  industrial 

hygiene  In  the . .         . .         . .         . .         . .     325B 

White  pigments  ;   New ..  ..  ..  ..     209b 

Klein,  E.     Edible  fatty  product  from  fixed  oils  and  fats  : 

manufacture  of (P)        ..        ..         ..         ..     500a 

feast;    Drying (P)     ..  643A,  64SA*,  725A,  779a 

Yeast;   Drying  pressed (P)  ..         ..         ..         ..     605a 

Klein,  P.     See  Traube,  I.  7> 2  *. 

Kleine-MollholT,  0.     See  Konig,  J 25a 

KJelnschmidt,  D.  II.     Evaporating  apparatus  (P)     ..  ..     400a 

Klemenc,  A.,  and  C.  Bunzl.     Nitric  oxide  ;    Determination 

of S96A 

and  F.  Pollak.     Nitrous  acid  ;   Decomposition  of 412a 

Nitrous  acid  ;    Titration  of  and  determination  of 

nitrous  acid  and  arsenious  acid  in  presence  ot  i  a<  h 

other 963a 

Klemenz,  .1 .     Picric  acid;    Removal  of  from  effluents 

from  picric  acid  works,  etc.  (P)  . .  . .      27lA, 

Klemmer,  A.     Sulphur  in  illuminating  gas  ;    I'se  of  hydrogi  □ 
peroxide  of  high  concentration  for  determination  of 

total  166A 

Klencke,  H.     See  Schmiedel,  T.  58 A*,  082a 

KJepctko,  ]■;.    See  Laist,  F B64a 

Kletti,  ,1      Se  Schaber,  A.        ..        ..        -.         ..        -■     :;i7\ 
Clever,  P.  w.    Distillation  of  lignite  producer-gas  tar(P)     7a,  50a 
Klimont,  J.     Chlorine  in  organic  compounds  ;   Determina- 
tion of  — 614A 

Hydrogenation  at  ordinary  pressures;    Apparatu 

300a 

Kling,  A.,  and    v.  Lassleur.    Copper,  lead,  antimony,  and 

tin  ;       Separation     and     determination     of     . 

Analysis  of  white  metals        ..         ..         ..         ..       17a 

Electro-analysis;    Rapid  of  brat  es,  bronzes,  and 

whitr  metals      ..  ..  ..  ..  ..  ..      551a 


NAME  INDEX. 


55 


Kling,  A.,  and  A.  Lassieur — continued. 

Hydrogen  ion  concentration  ;  Apparatus  for  determina- 
tion of .     Application  to  detection  of  mineral 

acids  in  vinegar  . .         . .         . .         . .         . .     153a 

Milk  ;  Analysis  of  sour . .         . .         . .         . .     387a 

Kling,  F.  E.,  and  L.  B.  Weidlein.     Filtering-mat  for  cleaning 

gases  (P)  1a 

Kling,  K.    See  Strache,  H 963a 

Knapp,  A.  W.,  and  K.  V.  Wadsworth.  Fatty  acids;  Re- 
actions between  the  higher  and  salts  of  the 

lower  fatty  acids  . .         . .         . .         . .         . .     148a 

Kuecht,  E.    Nitro  group  in  aromatic  organic  compounds  ; 

Estimation  of .    Discussion       . .         . .         . .     1C1T 

and  C.  A.  Hatton.    Cotton  fibre  ;    Isolation  of  the  nitro- 
genous cell  content  of  the ..         ..         ..     128R 

and  E.  Hibbert.    rf-Pimaric  of  m.p.  212°  C. ;   Preparation 

of 8G7a 

and  F.  P.  Thompson.     Cellulose  ;    Behaviour  of  oxidised 

128k,  497a 

Knibbs,  X.  V.  s.     Distillation  of  solid  hydrocarbon-contain- 
ing materials  (P)  . .         . .         . .         . .         . .     456a 

See  Denny,  H.  S 207a 

Knight,  F.  P.,  and  J.  T.  Shimmin.     Felspar  and  quartz  ; 

Separation  of (P)  327a 

Knipe,  O.  C.  Gold  ;  Recovering and  apparatus  there- 
for (P)      7i',4a 

Knipping,  A.     See  Oberhoffer,  P 60A 

Knoevenagel,  E.,  and  FT.  Busch.  Cellulose ;  Alkali- 
soluble  modification  of ..         .,         ..         ..     458a 

Knoll    und    Co.     Cellulose    esters ;     Preparation    of    easily 

soluble (P)  248a,  41iia 

Digitalis  clucosides  ;    Preparation  of  tannic  acid  com- 
pounds of (P) 35a 

Knoth,  G.     See  Ost,  H.  409A 

Knowles,  G.  E.  'Synthetic  tannins  and  their  uses  in  leather 

manufacture      . .  . .  . .  . .  . .  . .     150a 

S  e  (road.  R.  B 774a 

Knowles,  J.  A.     Glass  painting  ;    Processes  and  methods  of 

mediaeval . .  . .  . .  . .  . .  . .     475R 

Knowlton,  X.  P.,  and  H.  C.  Mounee.     Orthophosphoric  acid  ; 

Specific  gravity  table  for at  25°/25°  C.  . .     140a 

Knox,  W.  J.,  and  E.  D.  Warren.     Compounds  preferably  of 

a  hydrocarbon  nature  ;  Treatment  of (P)  '    ..     850a 

Kobayashi,  K.     Hvdrocarbons  ;   Manufacture  of  liquid 

from  fish  oils  (P)  701a 

Petroleum  :    Artificial  from  soya-bean,   coconut, 

and  chrysalis  oils  and  stearine  ..         ..         ..     24  ja 

and  E.  Yamaguchi.    Fish  oils  ;    Artificial  petroleum  from 

242a 

Kobayashi,  S.     Alligator  and  crocodile  oils     . .  . .  . .     598a 

iilipe  fat ;   Unsaponifiable  matter  (a  highly  unsaturated 

hydrocarbon  and  alcohols)  in  commercial . .     987a 

See  Nakatogawa,  S.  . .         . .         . .         . .         . .     556a 

Kober,  P.  A.,  and  E.  R.  Squibb  and  Sous.     Arsanilic  acid  ; 

Process  of  making (P) 232a 

Kobseff,  J.  Disincrustants  and  apparatus  for  preparing 
and  continuously  introducing  them  into  steam 
boilers  (P)  280a 

Koch,  A.     Glycerol ;   Manufacture  of by  fermentation 

(P)  7.3a 

Resinous    condensation    products    of    aldehydes    and 

phenols  ;  Preparation  of (P)     . .         . .         . .     772a 

Koch,  E.    See  Gerlach,  W 310a 

Koch,  G.  T.,  and  Ohio  Fuel  Supply  Co.  Chlorinated  deriva- 
tives of  hydrocarbons  ;   Manufacture  of (P) . .     997a 

Koch,  M.    See  Scheib,  G.  982a 

Koeehlin,  E.  Azo  dyes  :  Nitroamino  base  for  the  produc- 
tion of .     (Report  by  M.  Battecay)      . .  . .     136a 

Cotton  ;    Formation  on of  a  diazotisable  colour  for 

producing  red  shades  (Report  by  M.  Battegay)     . .     136A 

Kogel,  R.    Photographic  reflection  copies  ;    Production  of 

(P)  120a 

Kbhler,  B.     See  Kubelka,  V 828a 

Kohler,  B.    See  Carbonit  A.-G.  441A 

Kohler,  K.    See  Konig,  W 663a 

Koehler  and  Marqueyrol.     Cotton  ;  Copper  numbers  of 323a 

Guncotton  and  **  poudrc  B  "  ;   Temperatures  of  ignition 

of in  a  vacuum  and  in  air         . .         . .         . .     348a 

Koln-Rottweil  A.-G.     Nitrocellulose  ;   Process  for  dissolving 

(P)  730A 

Plastic  masses  from  cellulose  derivatives  ;   Manufacture 

of (P)        665a 

See  Kampf,  A 542a 

Koelsch,   H.     See   Schuckert   und   Co.,    Elektrizitats-A.-G. 

vorm 333A,  380a 

Koenig,  A.,  and  W.  Hubbuch.  Hydrocyanic  acid  ;  Forma- 
tion of from  nitrogen  and  hydrocarbons  in  the 

electric  arc         . .  . .  . .  . .  . .  . .     585a 

Konig,  F.  Ligninsulphonic  acids  and  lignin.  Utilisation 
of  sulphite-cellulose  waste  lyes  in  preparation  of 
electrodes  for  accumulators    . .  . .  . .  . .         9a 

Perehlorate  ;    Determination  of  by  Rothmund's 

method 292a 

Konig,  G.     Gases;  Measuring  the  density  of (P)         ..     692a* 


tic  ;  v 
3a 

644a 

16a 

466a 

551A 
718a 


268A,  268A 
. .     941A 

. .     848a 


89a* 
855a* 

564a 
434A 

914A 


Konig,  J.,  and  J.  Schneiderwirth.    Foods  ;  Relation  between 
the  determined  and  calculated  calorific  values  of 

and  nutrition 

and  others.     Soil  acidity  ;  Factors  in  development  of 

Soils  ;    Recent  methods  for  examination  of 

Konig,  M.     See  Fellner  u.  Ziegter         632a 

Konig,  "W.     Pinacyanols  ;   Constitution  of 

and  J.  Keil.     1.8-Naphthosultam-4-sulphonic  acid  and  its 

derivatives 
and   K.    Kohler.     1.8-Xaphthosultam   and   its   N-methyl 
derivative  as  azo  components 

K  r.ig-Hietzing, F.     Asphalt;   Syrian 

K     ke,  O.,  and  E.  Bodlander.    Margarine  ;    Determination 

of  benzoic  acid  in 

Korber,  F.     Iron  ;   Blue  brittleness  of 

and  A.  Dreyer.     Iron  ;  Blue-brittleness  and  ageing  of 

and  P.  J.  H.  Wieland.     Copper-zinc  alloys  ;    Cold  rolling 

and  annealing  of 

Korner,  F.     See  Amdt,  K 

Korner,   T.,   and    .T.    A.    Bosshard.     Tannins  and   tanning 

extracts;   Differentiation  of 

Koessler,  K.  K.     See  Hanke,  M.  T 268A 

Koster,  W.    See  Tammann,  G.  

Koetschau.  R.     Petroleum  ;   Ozonides  from 

Koetschet.  J.,  and  Soc.  Chim.  Usines  du  Rhone.     Catalysis  ; 

Carrying  out  chemical  reactions  by (P) 

and  others.     Cellulose  esters  ;  Manufacture  of (P)  . . 

Kofler,  L.     Saponins  ;   Differentiation  and  determination  of 

in  lemonades  etc. 

Saponins  ;  Surface  activity  and  poisonous  action  of 

Kofman,  T.     See  Cluzet,  J 

Kogerman.  P.  N.  Oil-bearing  mineral  "  kukkrr-it.  '  ; 
Composition  of  the  Esthonian  Middle   Ordovician 

Kohl,  H.  Clay  :  Influence  of  small  additions  of  electrolytes 
on  stability  of  clay  suspensions  and  application  to 
the  purification  of 

Kohlschiitter,  v..  and  H.  Schodl.  Nickel ;  Effect  of  super- 
posing alternating  current  upon  direct  current  ou 

deposition  and  solution  potential  of . . 

Nickel;    Structure  of  electrolytically -deposited  .. 

Kolunan,  E.  E.  Hydrogen  sulphide  evolved  by  foods  when 
cooked  at  various  temperatures  ;  Method  for  deter- 
mining   

Kohman,  E.  F.  Lye  hominy  :  its  discoloration  and  a  new 
process  for  its  manufacture 

Kohman,  H.  A.,  and  Ward  Baking  Co.  Bread  ;  Manufac- 
ture of  leavened (P) 

Kohn,  M.    Arsenious  acid  ;  Reducing  actions  of 

Kohn,  P.     See  Moser,  L. 

Kohn,  S.,  and  others.    Tanning  materials  ;    Determination 

of  active  constituents  of  synthetic by  the  hide 

powder  method 
Tanning    properties    of    vegetable    tanning    materials, 
synthetic  tans,  and  mixtures 

Kohn,    W.     Sugar   juice  ;     Distillation    of   ammonia    from 

limed  and  carbonated  beet  and  its  influence 

on  the  composition  of  the  juice 
See  Andrlik,  K 385a,  385a, 

Kohn-Abrest,  E.  Toxicity  index  of  lighting  and  heating 
apparatus  and  of  internal-combustion  engines 

Koizumi,   S.    Isoamyl  alcohol ;    Electrolytic  oxidation  of 

Kolbach,    P.     Hop   bitter   principles ;     Nomenclature    and 

analysis  of 

See  Windisch,  W 72a,  227a,  951a, 

Kolkwitz,  R.    Fermentation  of  yeast  ;    Pressure  developed 

by 

Kolle,  W.     See  Meister,  Lucius,  und  Briining 

Koller,  K.     Gas  producers  ;  Grates  for (P) 

Kollo,  C.    See  Minovici,  S 

Kolshorn,  E.     Fats,  albumins,  and  products  containing  the 

same  ;  Preparation  of  aqueous  solutions  of (P) 

Kolthoff,  I.  M.    Acids  or  bases  ;    Titration  of  moderately 

strong in  presence  of  very  weak  ones. . 

Arsenic  ;   Qualitative  reactions  for 

Boric  acid  ;   Titration  of in  presence  of  phosphoric 

acid 
Bromides  and  chlorides  ;  Determination  of  small  quan- 
tities of in  iodides 

Conductivity   methods  ;     Application   of   in   pre- 
cipitation analysis 
Conductometric  titrations  with  barium  salts 
Electrometric  titrations  with  lead  nitrate 
Eleetrometric  titrations  with  mercuric  perehlorate 
Hydrogen  ion  concentration  ;    Colorimetric  determina- 
tion of without  buffer  mixtures 

Indicators  ;   Salt  error  with  coloured 

Iodine  electrode  ;  Application  of in  potentiometric 

titrations 

Iron  ;  Iodometric  determination  of 

Lsevulose  ;  Identification  of in  presence  of  aldoses 

Phosphoric  acid  ;   Argentometric  titration  of 

Potassium  ferricyanide  as  reagent  in  iodimetry 
Potassium   ferro'cyanide ;    Potentiometric    titration   of 
zinc  by  means  of 


115a 

384A 

25A 

754a 

934A 

663A 


799A 


636A 
636a 


780a 

781a 

30a* 
56a 
918a 

336a 

828a 


562a 
562a 


836a 

911a 

951A 

28A 
916a 
537a* 
919a 

35a 

272a 
526a 

963a 


442a 

!H12a 
840A 
730a 

235A 
158A 

352a 

37A 

188a 

272a 

272a 

612a 


56 


JOURNAL  OF  THE'SOCIETY  OF  CHEMICAL  INDUSTRY. 


Kolthoff,  I.  M.— continued. 

Potassium  ferrocyanide  ;    Potentiometric .  titrations  or 

by   means  of  .     Titration  of   potassium 

ferrocyanido  by  means  of  potassium  permanganate 

Silver    nitrate  ;     Electrometric    titrations    with    . 

Determination  of  chlorides,  iodides,  and  bromides, 
and  of  iodides  in  the  presence  of  chlorides  and 
bromides 

Silver  ;   Separation  of from  mercurous  salts 

Sodium  hydroxide  solution  free  from  carbonate;    Pre- 
paration of 

Water  analysis  ;    Active  carbonic  acid  and  hydrogen 

ion  concentration  in . .  . . 

and  A.  Bak.     Halides  ;    Substitution  of  mercuric  nitrate 

for  silver  nitrate  in  titration  of 

and  I'.  J.  Cremer.  Copper  and  arsenic  in  Paris  and 
Schweinfurth's  greens  ;  Iodometric  determination 
of ■ 

Komarek,  G.,  and  Malcolmson  Engineering  and  Machine 
Corp.  Fuel  for  briquetting  purposes  ;  Method  of 
treating (P)         

Komatsn,    S.,   and    K.    Kashima.    Xylan   and    its   acetyl 

derivatives.     Constitution  of  polysaccharides 

■and  B.  Masumoto.    d-Camphor ;    Catalytic  reduction  of 


485a 


649a 
121a 

393A 

480a 

158A 

76a 

848A 

777a 

957A 

Komm,  E.     See  Heidusehka,  A.  ..  ..  ..  ..     773a 

Kondo,   H.t  and   T.  Takahashi.     Collidine  ;     Condensation 

of ■  with  acetyldehyde      . .         . .         . .         . .     976a 

JKopatschek,  F.    Milk  ;    Determination  of  added  water  in 

431A 

Kopetschni,  E.    Anthraquinone  vat  dyestuff  ;  Manufacture 

of  a  blue (P)         853a,  977a 

and  H.  Wiesler.    Anthraquinone  series  ;    Double  decom- 
position in catalysed  by  copper  . .  . .     664a 

Thiazole    derivatives    of    anthraquinone   series ;     New 

method  of  preparation  of . .  . .  . .     664a 

Kopke,  E.    See  Daniels,  E 658a* 

Koppers,  H.     Alkali  cyanides  ;   Production  of (P)       . .     670a 

Blast   furnaces ;     Method   of   operating   smelting   and 

reducing  furnaces,  more  particularly (P)       . .     554a 

Cement  clinker  and  the  like  ;  Shaft  furnace  for  burning 

(P)  417a 

Chamber  oven  for  the  manufacture  of  gas  and  coke  (P)    535a 
Coke  for  blast  furnace  and  foundry  purposes  ;  Testing 

375A 

Cupola  furnaces  ;   Operation  of (P)  . .  . .     108a* 

Gas  producer  (P) 494a 

Gas  producers  with  means  for  utilising  waste  heat  (P). .     283a 

Gas  retort  settings  ;  Regenerative (P)        . .  . .     283a 

Iron  ;    Operation  of  cupola  furnaces  for  smelting  ■ 

(P)  715a 

Iron  smelting  blast  furnaces  ;   Operation  of  smelting  and 

reducing  furnaces,  particularly (P)      . .  . .     108a* 

Iron  and  steel ;   Desulphurising (P)  . .    470a,    763a 

Kiln    for    burning   refractory    bricks,    especially   lime- 
bonded  silica  or  Dinas  bricks,  and  other  ceramic 

ware  (P)  548a,  898 A 

Kiln  ;    Continuous  chamber  for  burning  ceramic 

wares,  lime,  dolomite,  etc.  (P)  ..  ..  ..     711a 

Kiln  ;   Ring  chamber for  burning  ceramic  material, 

lime,  dolomite,  etc.  (P)  . .  . .  . .  . .     814a 

Ores  of  zinc  and  other  volatile  metals  ;    Reduction  of 

and   calcining   marble,  dolomite,   magnesite, 

and  the  like  (P)  716a 

Ovens  for  producing  gas  and  coke  (P)      . .  . .  . .     167a 

Producer-gas  ;  Recovery  of  iron  used  in  the  purification 

of from  sulphur  by  means  of  highly  heated 

iron  or  iron  oxide  (P)  . .  . .  . .  . .  . .     403a 

Silica  bricks  ;   Manufacture  of (P) 502a 

Tunnel  kilns  for  pottery,  lime  burning,  and  the  like  (P)     254a 

Zinc  and  other  volatile  metals  ;    Recovering from 

ores  etc.  (P) 716a 

Koppers  Co.     See  Becker,  J 493a 

See  Brown,  R.  L.      . .  . .  . .  . .  . .  . .     726a 

£ee  Huff,  W.J 496a 

JSee  Jacobson,  P.  L.  ..  ..  ..  ..  ..     975a* 

JSee  Sperr,  F.  W.,  jun 415a*.  457a,  556a 

See  Thompson,  J.I.  358  a 

See  Van  Ackeren,  J.  130a,  360a 

Korczynski,  A.     Catalytic  action  of  metal  salts  in  reactions 

of  organic  compounds  .  .  . .  . .  . .     196a 

and  W.  Mrozinski.     Carbon  monoxide,  hydrogen  chloride, 
and    aromatic    hydrocarbons ;     Catalysts    for    the 

reaction  between *  . .  . .  . .  . .     196a 

^and  others.     Diazo  compounds  ;  New  catalysts  for  decom- 
position of 196a 

Koreva;ir,  A.     Q&s  producers;    Theory  of  ■ .    Applica- 
tion to  the  blast  furnace          698a 

Kormann,  F.  A.,  and  United  Refineries  Co.     Petroleum  re- 
duction ;  Process  of (P)  405a* 

Kornick,  E.     See  Merck,  E 689a 

Korselt,    J.     Wool,    hair,    and    feathers ;     Increasing    the 

tth  and  elasticity  of (P)    ..         ..     410a,  541a 

and   Chemical   Foundation,  Inc.     Animal   and    vegetable 

fibres  ;    Method  ol  rendering active  (P)         . .     855a* 

Korten,  E.    See  Siebcrt,  G 707a 

Koschmieder,  H.     Gas  producer  ;   Tmipcratures  in  the ■ 

during  operation  . .         . .  . .         . .     166a 


PA'iE 

Kosln,  N.  I.     Cellulose  ;   Aerobic  decomposition  of by 

mould  fungi 854a 

Kossak,  K.     See    awadzki,  J.               749.4 

Koster,  P.     Water-gas  generators  ;    Shaft  construction  for 

with  automatic  discharge  of  slag  (P)  . .          . .  92a* 

Kostytschew,   S.,  and  P.   Eliasberg.    Invertase  of  Mucor 

racemosus           . .          . .          . .          . .          . .          . ,  265a 

Kowastch,    A.     Cartridges    for    blasting    with    liquid    air; 

Production  of (P)             . .          . ,          . .          . .  730A 

Fuses  for  blasting  with  liquefied  gas  :    Production   of 

(P)              880a* 

Kranzlein,  G.     See  Meister,  Lucius,  u.  Briining        . ,         . .  689a* 
Krais,  P.     "  Werkstoffe  ;    Handworterbuch  der  technischen 

Waren  und  ihrer  Bestandteile  "         . .          . .          . .  406r 

and  K.  Biltz.     Hair ;    Improving  the  textile  qualities  of 

human  and  animal (p)  . .          . .          , .          , .  808a 

and  H.  Wislicenus.     Colour  lakes  ;    Preparation    of  

(P)           948a 

See  Herzog,  A oi35a 

Krais,  P.  M.     See  Gierisch,  J.  O.  W 460a 

Kraisy,  A.     Sucrose  ;    Preparation  of  chemically  pure  151a 

Krall,  S.     See  Shepard,  N.  A.    ..          ..          ..          ..          ..  949a 

Kramer,  S.  P.     Oil  emulsions  ;    Preparation  of  with 

the  aid  of  colloidal  silicic  acid,  and  relationship  to 

the  processes  of  tuberculosis  . .          . .          . .          . .  825a 

Kranseder    und    Co.,    and    Luppo- Cramer.     X-ray    plates ; 

Preparation  of (P)          690a 

Krantz,  H.     Textile  materials  ;  Drying (P)      ..      459a.  541a 

Krase,  N.  W.     Urea  ;    Manufacture  of  — —  from  ammonia 

and  carbon  dioxide  (P)            . .          . .          . .          . .  878a 

and  V.  L.  Gaddy.     Urea  ;    Synthesis  of  from  am- 
monia and  carbon  dioxide      . .          . .          . .          . .  610a 

Kratochwill,  R.  A.     Artificial  fuel  (P)              623a 

Kraus,  C.  A.     "  Electrically  conducting  systems  ;  Properties 

of "            518R 

Metallic  substances  ;    Constitution  of . .          . .  554a 

Kraus,  E.  J.     Aluminium  ;  Volumetric  determination  of ■  81a 

Krause,  A.  C.  _See  Adkins,  H.             308a 

Krause,    E.,    and    H.    Blucher.     Casein ;     Manufacture    of 

plastie  material  from (P)           002a 

Krause,  G.  A.,  und  Co.     Atomising  and  dilfusing  liquids 

prior  to  evaporation  (P)          316a 

Evaporation  ;    Recovery  of  solid  matter  from  liquids 

by (P) 316a,  697a 

Separating  solid  particles  from  the  exit  gases  of  evapo- 
rators ;  Process  for (P)            . .         . .         . .  316a 

Krause,  K.  E.     See  Budnikow,  P.  P.               706a 

Krause,  L.     Furnaces  ;   Oil-fired (P) 531a 

See  Rosenheim,  A.                . .          . .          . .          . .          . .  13a* 

Krause,    O.     Mixing    granular   substances,    such   as   seeds, 

grain,  mineral  products,  and  the  like  (P)     . .          . .  240a* 

Kraze,  F.     Zirconium  fluoride  opaque  glazes             . .          . .  592a 

Krebitz,  P.     Lime  sludge  ;   Process  for  completely  removing 

the  soap  from (P)           . .          , ,      770a,  S67a*,  946a* 

Krebs,    W.     Blast-furnace    slags  ;     Hydraulic   setting   pro- 
perties of  basic . .          . .          . .          . .          . .  295a 

Krcidl,  J.     See  Herzog,  W 195a,  771a,  988a 

Kreis,  W.    See  Staudinger,  H.             . .         . .         . .         . .  877a 

Kreiss,   A.    L.     Phosphate   fertiliser   containing   potassium 

or  sodium  ;  Manufacture  of (P)           . .          . .  423a 

Kreitz,  K.     Cobalt- tungsten  alloys       . .          . .          . .          . .  378a 

Krcmann,  R.,  and  F.  Schopfer.     Acid  value  of  fatty  acids 

or  fats  ;    Electrometric  determination  of  the  675a 

Kremers,  R.  E.     Mentha  aquatica,  L.  ;  Volatile  oil  of , 

and  occurrence  of  pule  gone     ..          ..          ..          ..  047a 

Peppermint  oil ;  Biogenesis  of    . .          . .          . .  269a 

Kreuger,  H.    Cement ;    Effect  of  low  temperatures  on  the 

hardening  of . .          . .          . .          . .          . .  635a 

Kreulen,  D.  J.  W.     Cane-sugar  juice  ;    Purifying . .  991a 

Krcutzer,  A.    See  Tropsch,  H.  208a,  659a 

Kricka,  P.     See  Stoklasa,  J 775a 

Krieger,     A.     Ammonia-recovery     processes;      Steam-con- 
sumption in  various . .          . .          . .          , .  129  a 

Benzol  in  gases  ;  Determination  01 . .          . .          . .  577a 

Bring,  O.  O.    See  Stalhane,  O.            767a* 

K  rlsl  Kuissands  Nikkelraffineringsverke.   See  Hybinette,  X.  V.  258a 

Kroger,  E.     See  Konig,  J 384a 

CiCger,    M.     Silicic    acid    and    tungsten    hydroxide    sols; 

Preparation  of with  the  aid  of  Hildebraud  cells  140a 

Kroll,   G.  J.     Metals  from   metal  alloys  ;    Separation  and 

recovery  of (P) 822a 

Kroll,  W.     Segregation  in  liquid  metals         636a 

Kropf,  A.     Vanadium  in  steels  ;    Determination  of . .  594a 

Kroseberg,  C.    Fertiliser  ;   Production  of  a (P)          . .  723a 

Kruber,  O.     See  Ges.  fur  Teerverwertung 8a 

Krii^er,  M.     Lignite  and  peat ;   Dehydrating by  treat- 
ment with  solvents  miscible  with  water  (P)            . .  243a 

Krii^rr,  R.     Sea  Miehaelis,  L.                121a 

Krull,    H.,    and   B.    Mandelkow.     Printing   paper;     Deter- 
mination of  mechanical  wood  pulp  in . .  S06a 


NAME  INDEX. 


57 


TAGE 

Krupp,  F..  A.-G.    Cement  etc. ;    Shaft  kiln  for  burning 

(P)  329a 

M-.-tal    articles;     Producing   an    electrically    insulating 

and  mechanically  adhesive  coating  on (P)    . .     596a 

See  Bruhn,  A 909a* 

Krupp,  F..  A.-G.  Grusonwerk.  Magnetic  material ;  Removal 
of  —  from  admixture  with  non-magnet  ic  materials 

(P)  ..         ..         ..     298a 

Krynitsky.  A.  I.     See  Rawdon,  H.  S.  145a,  179a,  219a,  713a 

Kryz,  F.     Sucrose  ;   Colour  reaction  of . .         . .         . .     188a 

Kubasta,  J.  C.  M.     Steel ;  Heat  treatment  of (P)      . .     332a 

Kubelka,  B..  and  F.  Berka.     Tannin  analysis  ..  ..     773a 

and  B.  Kohler.    Tannin  analysis 828a 

Kubierschkv,  K.     Fatty  acids  ;    Process  for  distilling  

rP>  ..     300a 

Pitch  and  the  like  ;   Carbonisation  of (P)  . .         . .     802a 

Kiibler,  L.    Lead  oxide  ;   Apparatus  for  production  of 

by  oxidising  molten  lead  (P)  632a 

Litharge  ;  Process  for  making from  molten  lead  (P)    813a 

Kiihi,  F.    Formaldehyde  ;  Determination  of in  impure 

solutions  . .  . .  . .  . .  . .  . .     785a 

Sodium  bisulphite  ;   Determination  of . .         . .     544a 

Kiirschner,  E.    See  Heuser,  E.  112a 

Kuttner.  E.  W\,  and  Chemical  Foundation, Inc.     Aluminium  ; 

Manufacture  of  electric  coils  of (P)      . .         . .     943a 

Kuttner  Kunstseidespinnerei,  F.,  and  E.  Profeld.  Alkali 
Ives  coloured  and  contaminated  with  hemicellulose  ; 

Purifying (P) 752a 

Kufferath,  H.,  and  M.  H.  Van  Laer.    Lambic  yeasts  . .       28A 

Kngelmass,  I.  X.    Xephelectrometer 730a 

Kuh,   E.     Alkvl  esters  of  sulphuric  acid  ;    Production  of 

neutral (P)  348a* 

Kuhlmann,  J.,  and  J.  Grossfeld.  Sulphate  in  water  ;  Volu- 
metric determination  of . .         . .         . .     682a 

See  Baumann,  K.     . .         . .         . .         . .         . .         . .       74a 

Kuhn,  A.     Gelatin  ;    Swelling  of in  aqueous  solutions 

of  organic  acids  ..         ..         ..         ..         ..     111a 

See  Ostwald,  Wo 431a 

Kuhn,  K.     See  Willstatter,  R.  ..         ..      189a,  189a,  952a 

Kuhn,  W.     Coating  metal  wires  with  metals  by  heating  in 

metallic  dusts  (P)        108a 

Kuhtz,  E.    See  Merck,  E 89a 

Kulas,    K.,    and    C.    Pauling.     Phenol ;     Manufacture    of 

products  of  condensation  from (P)      . .      425a,  475a* 

Kulka,  0.     See  Wilke,  A.,  und  Co 89a 

Kumagae.  S.,  and  T.  Chiba.    Printed  papers  ;   Recovery  of 

paper  fibres  or  pulp  from (P)    ..         ..      855a,  978a* 

Kumagawa,  H.    Aldehydes  ;    Dismutation  of  various  

by  yeast  189a 

Saecharomyees    Sake",  Zygosaeeharomyces  major,  and  Z. 
salsus ;    Second  and  third  forms  of  fermentation 

with 831a 

Yeasts  ;    Effect  of  salts  on  decolorisation  of  methylene 

blue  by  various  species  of . .         . .         . .     153a 

Kummltr  und  Matter,  A.-G.     Corrosion  in  evaporating  and 

distilling  apparatus  ;   Preventing (P) . .  . .     926a 

Evaporating  liquids  ( P) 736a,  846a 

Evaporation  of  liquids,  with  subsequent  compression  of 

the  vapour  produced  (P)        . .         . .         . .         . .     450a 

See  Eichenberger,  F.  638a* 

Kunert,  K-,  and  others.    Printing  ;  Multicolour (P)  . .     855y* 

Kunz,  E.    Reducing  sugars  ;    Iodometric  determination  of 

477a 

Kunz,  J.    Filtering  plant  (P) 128A 

Kunz,  K.     See  Friedlander,  P.  582a 

Kunz-Krause,   H.     Ellagic  acid  :     Occurrence   of  in 

Rubus  Idaeus.     Cause  of  formation  of  turbidity  in 
raspberry  juice  . .         . .         . .         . .         . .     115a 

Kupfer,  O.    See  Staudlnger,  H.  877a 

Kuppinger,  0.    See  Gutbier,  A.  308a 

Kumakow,  X.,  and  G.  Erasow.  Ferrosilicon  ;  Toxic  pro- 
perties of  commercial . .         . .         . .         . .     940a 

Kuroda,  C.    See  Majima,  C.      ..         ..         ..         ..         ..     744a 

Kurtenacker,  A.,  and  A.  Fritsch.    Polythionates  ;   Analysis 

of 499a 

and  J.  Wagner.    Hydroxylamine  and  hydrazine  ;    Volu- 
metric determination  of . .         . .         . .     308a 

and  F.   Werner.    Bismuth ;    Determination  of  as 

metal 963a 

Kurtz,  S.  S.,  jun.    See  Conant,  J.  B.  539a 

Kurzweil,  F.    See  Haller,  R 139a 

Kutner,  S.,  and  Rapid  Roller  Co.  Printers'  rollers  ;  Manu- 
facture of (P) 66a 

Kuwada,  S.    See  Asahina,  T 835a 

Kuzell,  C.  R.     Lithopone  ;  Manufacture  of (P)  . .       65A 

and  J.  R.  Marston.    Zinz  sulphate  solutions  ;  Purification 

of from  arsenic  (P)         813a 

Kyhlberger,  G.  A.    See  Cederberg,  I.  W 14a* 

Kyle,  R.  T.    Tunnel  kiln  (P) 756a 

Kyroupoulos,  S.  Aluminium  and  chromium ;  Metallo- 
graphic  investigation  of  cathodic  deposition  of 
metals  on ,.         ..         ..         ..         ,.       61A 


L 

PAGE 

Laaser,  E.,  and  C.  Birk.     Peat ;    riant  for  the  continuous 

decomposition  and  dehydration  of (P)  . .     659a 

Labarthe,  J.     Lead  ore  blast  furnace  and  the  venting  thereof 

(P)  20A 

Labat,  A.     See  Desgrcz,  A 100R 

Laby,  T.  H.    See  Kaye,  G.  W.  C 66R 

Lachartee.    Iodates  in  potassium  iodide  ;  Detection  of 706a 

La  Cour,  D.,  and  C.  V.  Schou.     Heat ;    Production  of 

and  its  application  for  heating  liquids  and  other 
purposes  (P) 495a* 

Ladd,  E.  T.,  and  others.     Bleaching  powder ;    Manufacture 

of (P)         327a,  632a 

Ladiseh,  K.     Dryer  (P) 490a 

Liideniann,  0.     See  Otto,  E 914a 

La  Fayette,  L.  N.    Yarns  ;   Apparatus  for  the  treatment  of 

with  dyes  or  other  liquids  (P)  . .  . .  . .      978a 

La  Forge,  F.  B.     Furfural ;  Production  of by  action  of 

superheated  water  on  aqueous  maize  cob  extract  . .       78a 
Lage,    E.    A.     Tricolour   photography  ;     Producing    photo- 
graphic plates  for  indirect (P)  . .  . .  . .      729a 

Lagerqvist,  J.     Rubber  and  rubber  goods  ;    Determination 

of  acetone -soluble  matter  in . .  , .  . .      183a 

Lahey,  F.  T.     Insulating  and  resistant  articles  ;    Manufac- 

of (P)         674A 

Laidlaw,  P.  P.,  and  W.  W.  Payne.     Calcium  ;    Determina- 
tion of  small  quantities  of . .  . .  . .     918a 

Laing,  B.     See  "Ward,  J.  F 969a 

Laing,  M.  E.     See  McBain,  J.  W 424a 

Laird,  J.  S.     See  Riddle,  F.  H.  633a,  710a 

Laird,  W.  G.,  and  H.  L.  Doherty.    Scrubber  (P)      . .         . .     575a 
Laise,  C.  A.     Tungsten  alloy  for  contact  bodies  and  ignition 

points  (P)  555a 

and  General  Electric  Co.     Alloys  ;    Manufacture  of  

(P)  716a 

Laist,  F.,  and  others.    Copper  ;    Process  for  colouring 

<P)  864A 

Lakhani,  J.  V.,  and  others.    Thymol ;  Manufacture  of 

from  ajowan      . .  . .  . .  . .  . .  . .     435a 

Lai,  R.     See  Singh,  B.  K 704a 

Lalor,  J.  C.     See  Middleton,  P.  R 62a,  180a 

Lamb,  A.  B.,  and  others.     Carbon  monoxide  ;    Preferential 

catalytic  combustion  of in  hydrogen  . .     414a 

Lamb,  K.  B.(  and  American  Cotton  Oil  Co.     Pigment  and 

pigment  composition  <P)         . .  . .  . .  . .     771a 

Lambert,  B.    Vulcanisation  of  rubber  and  apparatus  for 

use  therein  (P) 772a 

Lambert,  P.,  and  A.  Andant.     Metallising  large  surfaces  by 

cathodic  projection  ;  Apparatus  for . .         . .     636a 

Lamberts,  M.,  and  K.  Fricke.     Palm-oil  fatty  acids  ;    Ob- 
taining a  crystallisable  distillate  from (P)     . .     223a 

Lambris,  G.     Acids  injurious  to  plants  ;    Determination  of 

small  quantities  of in  air  . .  . .  . .     3S9a 

La    Mer,    V.    K.    Vitamins   from    standpoint   of   physical 

chemistry  . .         . .         . .         . .         . .         . .     191a 

and  others.  Antiscorbutic  vitamin  (vitamin  C) ;  Effect 
of  temperature  and  concentration  of  hydrogen  ions 

on  rate  of  destruction  of . .  . .  . .     266a 

See  Sherman,  H.  C.  266a 

Laminated  Coal,  Ltd.     See  Bowen,  R.  . .  . .  . .         6a* 

Laming,  R.  V.    Netherlands  ;    Report  on  economic,  finan- 
cial, and  industrial  conditions  of  the . .  . .     297R 

Lampe,  B.    Colour  of  worts  and  beer ;   Colour  standard  for 

determining ..  ..  ..  ..  ..     911a 

Lamplough,  F.     Steam ;    Generation  and  superheating  of 

(P)  795A 

and  Townmead  Construction  Co.,  Ltd.  Binding  or  pre- 
serving agents  ;  Manufacture  of  bituminous  com- 
positions for  use  a3 (P)  . .  . .  . .  . .     454a 

Lamy,  V.     Sewage  water ;    Apparatus  for  the   treatment 

of (P)        7  6a 

Lance,  R.  D.,  and  C.  Shragt-r.    Artificial  silk  (P)      . .         . .       11a* 

Landauer,  M.     See  Liiers,  H 681a,  780a 

Landergren,  S.     See  Von  Euler,  H 777a,  911a 

Landis,  W.  S.     Cyanamide  in  some  fertiliser  mixtures      292r,  385a 
Landrivon,  J.     See  Altwegg,  J.  ..  ..  ..  ..     567a* 

Lane,  H.    Catalytic  material  employed  for  the  promotion 
of  synthetic   chemical   reactions ;    Apparatus  for 

preparation  of (P)  ..  ..  ..  ..     797a* 

Lane,  K.  W.     Camphor;    Analysis  of  crude  Chinese  , 

and  note  on  sampling  . .  . .  . .  . .  . .        32t 

Lang,  N.     See  Spath,  E.  117a,  117a,  390a 

Lang,  R.     Copper  ;    Iodometric  method  for  the  determina- 
tion of 351a 

Iodometric  methods     depending     on     formation    and 

estimation  of  cyanogen  iodide  . .         . .         . .     920a 

Langbein  Pfanhauser-Werke,  A.-G.     Tin  deposits  ;    Produc- 
tion of  electrolytic (P) 472a 

Lange,  B.     Cresol ;    Comparison  of  antiseptic  value  of 

in  aqueous  and  in  soap  solutions       . .  . .  . .     193a 

Lange,  \V.    See  Akt.-Ges.  fur  Anilin-Fabr 288a 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAG] 

I  ik<  r.  II.    Basic  lead  acetate ;   Preparation  of ..     172a 

Langer,  C.    Metals;   Electrolytic  separation  of (P)  ..     471a 

Langer,  11.    Lubricant  suitable  for  use  in  the  cylinders  of 

Bteam  engines,  etc.  (P)  ..         ..        ..        ..     321a 

Lubricating  on  emulsion  (F)         ..        ..        ..        ..     155a 

Langford,  V.     N.v  lioynton,  X.  S 37Sa 

Langguth,  E.     Zinc  :    Apparatus  for  the  electrolytic  pro- 
duction of (P)      ..  ..  ..  ..  ..     717A 

Langbanfl,  A.    Mercury  fulminate  ;    Pyrofulmin,  a  decom- 
position product  of . .         . .         . .         . .     2  ;  I  \ 

Langhard,  J.  K..  and   Frederiksstad    Elektrokemiskc    Fab- 

riker  A./S.    Perborates  ;   Manufacture  of (P)    253a* 

Langheinrich,  M.     Graphite;    Purification  of (P)  9834 

Langmuir.    I.,    and     British    Thomson-Houston    Co.,    Ltd. 

Electric  discharge  apparatus  (P)       ..        ..        ..     133a* 

Langsdale,  D.  A.    See  Trotman,  S.  H.  _ 529a 

Langton,   H.   M.     Saponification  of  fatty  oils ;    Problems 

connected  with . .  . .  . .  . .  . .     559R 

Saponification  of  oils  and  fats        77R,  825A 

Langworthy,    C.    F.,    and    H.    J.    Deuel,    jun.     Starches ; 
Digestibility  of  raw  rice,  arrowroot,  canna.  cas  Java, 

faro,    tree-fern,  and  potato 606a 

Lannon,  F.  P.,  jun.,  and  American  Smelting  and  Refining 

Co.     Zinc  dust  ;   Treatment  of (P)      ..  ..     422a 

Lanoline  Extractors,  Ltd.    See  Conycrs,  F.  G.  ..         ..     50SA 

Lanphier,  C.  H.     Calorific  value  of  gases  ;    Determination 

of (P)        964A* 

Lanphier,  E.  R.     Calorific  value  oi  gas  ;    Measuring  the 

(P)  701a 

Lanquine,  A.    .See  Bertrand,  L.  813a 

Lunt,  R.     Coking;    Determination  of  degree  of  swelling  of 

coal  in 319a 

Producer-gas    processes  :     Determination   of   extent   of 

decomposition  of  steam  in ..  ..  ..     452a 

and  E.  Lant-Ekl.     Coal;  Determination  of  sulphur  in — —      89a 

Lant-Ekl,  E.    SasLant,  B 89a 

Lantsberry,  F.  O.  A.  H.     Steels;  Structure  of from  the 

standpoint  of  colloid  chemistry         ..  ..  ..     409R 

la  Porte,  N.  M..  and  sharp  and   Dohme.     Aluminium  and 

potassium  ;   Double  salt  of (P)  . .  . .     483a 

Lapp,  6.  W,     Clay  bodies;   method  of  producing (Pi..     815a 

Laquer,  F.     Micro-extraction  apparatus         351a 

Larison,   E.  L.     Sulphuric  acid  ;    Introduction  of  nitre  as 

mixed  acid  in  manufacture  of ..         ..         ..     369a 

Sulphuric  acid  ;   Packed  cell  process  for . .  . .     461A 

Larrabee,  B.  T.     Sulphite  pulp  ;  Variables  in  cooking  of 52a 

Larson,  A.  T.     Ammonia  catalysts.     Effect  of  pressure  on 

catalytic  activity  369a 

and   A.  P.  Brooks.     Ammonia  catalysts  ;    Apparatus  for 

small-scale  testing  of at  variable  pressures    . .     325a 

and  R.  S.  Tour.     Ammonia  catalysts.      ISehaviour  of  an 
iron  catalyst  under  varying  conditions  of  pressure, 
temperature,  and  gas  velocity  ..        ..        ..     369a 

and  E.  C.    White.     Hydrogen;    Determination  of  traces 

of  oxygen  in 252a 

and  others.     Ammonia  catalysts  ;    Apparatus  for  small- 
scale  testing  of at  atmospheric  pressure         ..     292a 

Lasher,  H.  II.,  and    Kansas   City   Gasoline  Co.     Cracking 

hydrocarbons  (P)  454a,  536a 

Laska,  A.  L.     See  (hem.  Fabr.  Griesheim-Elektron. .         ..     729a* 

Lasnitzki.A.     S«  Bona,  P 782a 

I.a-icur.  A.     .sv,  Kline.  A 17a,  153A,  S87a,  551a 

Lassmann.  M.    See  Pringsheim,  H 513a 

I.a-t,  E.,  and  H.  T.  Bohme  A.-G.     Lubricants  :    Production 

of of  high  viscosity  or  consistency  (P). .         ..     660a 

Montan  wax  ;    Production  of  solid  colloids  from  crude 

(P)  660A 

Sec  Bohme,  H.  T.,  A.-G 660a 

Lathe,  F.  E.     Nickel  ;    Analytical  problems  in  the  metal- 
lurgy of 270T 

Laube,  H.     Wood  preserving  method  (P)       ..         ..         ..     466a 

Laughlin,  M.  P.,  and  Research  Corp.     Precipitator;    Self- 
cleaning  electrical (P)     ..         ..         ..         ..     399a 

Laupin,  F.     See  Courmont,  P.  76a,  116a 

Lauro,  M.  F.,  and  W.  H.  Iiickbart.     Palm  oil  ;   Refining  of 

for  edible  purposes         ..        ..        ..        ..     423a 

Lautcrbach,  H.     See  Miillcr.  K.  ..  ..       394a,  840a. 

Lava    Crucible   Co.     Ceramic  articles  ;     Production  of 

(Pi  815A* 

Lavaud,    D.    S.,   and   nihil-.    Tempering   and   annealing; 

Apparatus  for (P)  63a*,  637a 

Layers,    H.     Tungsten  ;     Notes    on    with    particular 

reference  to  scheelite  treatment  ami  assay  of  low- 
grade  material 145a 

Laves,   Lecinwerk    E.     Basic   aluminium    Baits    containing 
-Hi  i'  and;    Preparation  of  solid  mixtures  containing 

basic  aluminium  acetate  or (P)  ..  687a 

Basic  aluminium  salts  containing  silicic  acid;  Prepara- 
tion of  solutions  of  —     (P)     .  ..  687a 
Calcium  glycerophosphate  ;    Preparation  of  solutions  of 

capable  of  being  sterilised  (P). .  439a 

Mineral  waters  and  beverages  ;    Preparation  of  artificial 
containing  silicic  acid  (P)         


PACE 

Lavoye.     Resorcinoi  :     Application  of  in  qualitative 

inorganic  analysis         . .  . .  . .  . .  . .     569A 

La  Wall,  C.  H.     Freezing  of  water  in  automobile  radiators; 

(iliiriisc  as  a  preventive  of ..  ..  ..     205A 

Lax,  II.     Cod-liver  oil ;   Vitamin  of 230a 

l.aviiL'.  II.  R.  Ores;  Method  of  treating by  volatilisa- 
tion (P) 822A 

Lea,  F.  C.     Metals  ;   Effect  of  temperature  on  the  properties 

of  some . .         . .         . .         . .         . .         . .     595a 

and  R.  E.  Stradling.     Concrete  and  reinforced  concrete  ; 

Resistance  to  fire  of ■       . .  . .  . .  . .     395R 

Leach,  T.     See  Willows,  R.  S.  55a,  369a 

Leadbeater,   -1     W.    Coke ;    Manufacture  of  metallurgical 

(P)  46A 

Leadizing  Co.     Iron  or  steel  articles  ;    Coating  with 

had  with  or  without  other  metals  (P) 
Si  e  Shoemaker,  R.  J. 

r,  K.,  and  Ludlum  Electric  Furnace  Corp.     Electric 
furnace (P) 

Leavenworth,  C.  S.    See  Osborne,  T.  B 74a 

Leaver,  E.  S.  and  C.  E.  van  Barneveld.  Metals;  Recover- 
ing   from  their  ores  (P) 

Lebeau,  G.  L.  Liquids;  Apparatus  for  heating  or  cooling 
(P)  

Lebeau,  P.     Uranium  oxides     .. 

Lebo,  R.  B.,  and  Standard  Oil  Co.  Alcohols  ;  Purification 
of  higher  secondary (P) 

Le  Breton,  P.  Sulphuric  acid  ;  Intensive  manufacture  of 
by  the  chamber  process 

Le  Chatelier,  H.     Sodium  carbonate;   Manufacture  of 

by  the  ammonia  process 

Lecher,  H.,  and  J.  Hofmann.  Hydroxylamine  ;  Prepara- 
tion of  free 

Lecinwerk  E.  Laves.     See  under  Laves. 

Lecoq,  R.     Cocoa;    Torrefaction  of 

Malt  and  malt  extracts,  etc.  ;    Diastatic  action  of 

Lederle,  P.     See  Mach,  F 

Ledger,  C.  K..  and  E.  D.  Watt.  Dominican  Republic  and 
Republic  of  Haiti ;  Report  on  economic  and  com- 
mercial conditions  in 

Ledoux,  A.  R.     Copper  bars  and  pigs  ;   Water  in  blister ■ 

Lee,  F.  E.,  and  others.     Zinc  ;    Extraction  of (P) 

Lee,  G.,  and  Sons,  Ltd.,  and  G.  Binder.  Dyeing  hanks  of 
yarn  and  the  like  ;  Bearings  for  agitator  spindles 
of  machines  for (P) 

Lee,  H.  R.     H-Acid  ;   Determination  of 

and  D.  O/Jones.     /S-Naphthylamiiie  ;  Analysis  of . . 

See  Jones,  D.  O 

Leek,  C,  and  Sons,  Ltd.,  ana"  H.  Leek.  Dyeing,  bleaching, 
tin  weighting,  scouring,  and  the  like  machines  (p) 

Leek,  H.     See  Leek,  C,  and  Sons,  Ltd. 

Lees.  W.,  and  B.  Shore.  Crushing  cokes,  resin,  and  other 
materials  ;   Machines  for (P)     . . 

I. 'lb  r.  L.  a.     Cereals  and  fish  no  longer  in  a  fresh  condition  ; 

Regenerating (P) 

Cocoa  substitute  ;    Manufacture  of  a  foo'L-tutf  serving 
as (P)        

I.cfrane,  J.     See  Boudouard,  O.  

Legg,  D.  A.,  and  M.  A.  Adam 

fact  lire  of (P) 

Copper  catalyst  (P) 

s.      \<] mi,  M.  A. 

See  \V>  i/iiiaiin.  c.      .  . 

Lehmann,  F.     See   Beckmann,   E. 

Lehner,  F.     Pyridine;   Test  for .. 

Leibbrandt,    F.     Petroleum-like    product-  ;     Production    of 

(P)  

Terpenes  and  tiemiterpenes  ;    Preparation  of  (P) 

Leibu,  .1.     Metallic  salts ;    Production  of  from  ores, 

slags,   residues,    etc.    (P) 

Leichtentritt,  B.,  and  M.  Zielaskowski.  Lemon  juice; 
Growth-promoting  factor  of  . .  . .       913a, 

Leimbach,  G,    SeeHahn,  F.  L.  962a, 

Leimdorfer,    J.     "  Kolloide    Losungen " 

Leim-Industrie  Ges.     Casein-glue;   Water-resistant (P) 

Leinbach,  L.  R.    See  Veitch,  F    P.  

Leiser,  II.     Copper-zinc  alloys  ;   Refining (P)  .. 

i       sni;nt    juice  :     Quantity    of    non-sugars    pre- 
cipitated   in    clarification   of   by    defecation, 

Bulphitation,   and  carbonatation   respectively 

i     •  b    i.    C.     See  Hawortb,  w.  N.  

Leitch,  M.  and  i»r  Laval  Separator  Co.  Centrifugal  ml 
purifier     ( P) 

l.e  Marcchal.   W.  II.     See  Oberlauder,  O 

Lemay,  P..  and  L.  Jaloustre.  Thorium  X;  Oxidising 
properties   of  

Lemmermann,  O.,  and  L.  Presenilis.  Soils;  Acidity  of 
- —  and  its  action  on  germinating  plants  .. 

Lemmon,   r.  1 1 . .  and  Louisville  Cement  i  <>.     Kiln  (P)     .. 

Lenmiiiii,     It.    .1,.    and    others.     Cold;     Recovery    of    

from  pyrltlc  ores  (P) 


Butyric  aldehyde  ;   Manu- 


187a 


636a 
221a 

i-.:'- i 
873A 

379a 

886A 
215a 

686a 

291a 

325a 

391a 

681A 
1  52  I 

521A 

182R 

899A 

62a 


585a» 

94a 

932a 

136A 

368a 
368a 


115a 
983a 

567a« 

,uA< 

197a 

270a 
606a 
852a 

U«]  v 
270a 

754a 

913a 
962A 

431R 
225A 

907A 

1-m 


428A 

375a 


191  \ 

712  1 


3811 

127A 


NAME  INDEX. 


59 


Le  Moal.    See  Warcollier 

Lemoine,  H.  G.     Electric  resistance  heater  (P) 

Lenders,  A.  W.  H.,  and  Penick  and  Ford,  Ltd.     Maize  starch  ; 

Manufacture  of  (P) 

and  others      Starch  products  ;   Method  of  making  soluble 

(P)  •■         ■•  

Lendrich,    K.    Coffee    substitutes ;     Manufacture    of   

from  cereals  and  the  malt  of  cereals  (P) 
Lengersdorff,  N.     Gas  producer  ;   Continuous  decomposition 
of    steam    by    passage    through    strongly    heated 

fuel  in  a  (P) 

Lengersdorff  u.  Co.,  Bunzlauer  Werkc.     Gas  and  ammonia 

yield  in  carbonisation  of  coal ;   Increasing  the 

(P)  

Gas  producer  of  large  capacity  with  attached  distillation 

units    (P)  ..         

Lenher,  V.    Selenium  oxybromide      . .         . .         — 

Selenium  oxychloride ;    Properties   of   

Selenium  oxychloride  ;    Use  of  in  the  preparation 

of  chemical  compounds,  etc.  (P) 
and  M.  Tosterud.     Potassium  perchlorate  ;  Rapid  analysis 

of 

and  others.    Carbon  ;    Method  of  purifying  (P)   . . 

Potassium  perchlorate  ;   Formation  of from  potas- 
sium chlorate 
Lentz,  H.     Oven  for  semi-coking  of  fuels  (P) 

Soda  :  Recovery  of from  feed  water  of  locomotives 

(P)  

Leonard,  A.   G.  G.     See  Adeney,   W.   E 

Leonard,    C.    S.    Diethylrhodanine 

Leonard,  H.  A.    See  Nelson,  B.  E.  

Leone,  P.,  and  E.  Angeluscu.     Satureja  montana  ;   Essential 

oil  of  Italian  ■ 

Thymus  striu!/i*  ;  Essential  oil  of  Italian . . 

Thymus  vulgaris  ;  Essential  oil  of  Italian 

Lepeschkin,  W.  W.    Proteins  ;  Heat-coagulation  of . . 

Lepkovsky,  S.    See  Hart,  E.  B 

Lepper,  H.  A.     See  Viehoever,  A 

Leprestre,  R.     See  Casale,  L 294A,  295a* 

Lesage,  P.     Seeds  ;    Determination  of  germinating  capacity 

of  otherwise  than  by  germination 

Leslie,  M.  S.     See  Hall,  J.  A.  

Lessing,  R..     Ammonium  sulphate  ;  Manufacture  of (P) 

Coal;    Treatment  of  to  facilitate  its  breaking  or 

crushing    (P)     . . 
Fuels  ;   Influence  of  structure  on  the  combustibility  and 

other  properties  of  solid  .    Discussion 

Tar  ;    Separation  of  oils  and  pitch  from  (P)     . . 

Le  Sueur,  E.  A.    Electrolytic  cell  (P) 

Leubli,  C.  F.     Grinding  mills  ;    Means  for  exerting  elastic 

pressure  on  rollers  in  (P) 

Leuchs,    G.     See   Eisenwerk-Ges.   Maximilianshutte 
Leuchs,  H.     Strychnos  alkaloids.    Violet  and  green  colour 
reactions  of  cacothelin 

and  R.  Nitsehke.     Isostrychnine  ;   Preparation  of . . 

Leuchs,  K.     See  Spinnstoff-fabrik  Zehlendorf  G.m.b.H.  (P). . 
Levene,  P.  A.    Nucleic  acid  ;    Preparation  and  analysis  of 

animal  

and  I.  P.  Rolf.    Lecithin;  Unsaturated  fatty  acids  of 

and  H.  S.  Simms.     Lecithin  ;    Unsaturated  fatty  acids  of 

liver  

Levenhagen,  F.  A.,  and  J.  W.  Evans.  Paint  oil ;  Manu- 
facture of (P) 

Levi,  G.  R.     Chlorites  ;    Oxidation  and  reduction  reactions 

with  

Dyestuffs  derived  from  dehydrothio-n-toluidine  and  the 
two  Primulines  and  their  affinity  for  cotton 

Levi,  T.    See  Cardoso,  E 

Levin,  E.    See  Rowe,  F.  M 93.1, 

Levine.  B.  S.    Hide  soaking  experiments 

Tannery  liquors  ;  Prevention  of  fermentation  in . . 

Levine,  M.    Bacteria  fermenting  lactose  and  their  signifi- 
cance in  water  analysis 
Levine,  V.  E.,  and  others.     Antineuritic  substance,  water- 
soluble  B  ;    Glacial  acetic  acid  as  a  solvent  for 

the  

Levinstein,  E.    Vulcanisation  ;  Process  of (P) 

Levinstein,  H.     See  British  Dyestuffs  Corp. 
Levinstein,  Ltd.     See  Bader,  W. 

Levitt,  E.     Clay  ;    Process  for  decomposing (P) 

Potassium-bearing  silicates  ;   Process  for  treating  

(P)         5SA, 

Levy,  L.  A.     Respirators  for  firemen 
and  H.  R.  Davis.     Carbon  monoxide  ;   Apparatus  for  de- 
tection and  estimation  of (P)  . . 

Oxygen  gas  ;  Generation  of for  respirators  etc.  (P) 

and  R.  H.  Davis.     Respirators  ;    Apparatus  for  use   with 

for    the    detection   of    small   quantities    of 

carbon  monoxide  (P) 

Levy,  L.  R.  Mixing  liquids  of  different  temperatures  to 
produce  a  mixture  of  definite  temperature  ;  Appar- 
atus for (P)        89a, 

Levy,  M.     See  Terrisse    H 531A,  910a, 


PA'iE 
266A 
902a 

513a* 

601a 

994a* 

131a 

660a 

47A 

752a 
751a 

858a 

326a 

<;7ha 

250A 
801a 

267a 
781a 
915a 
307a 

209a 
346a 
269A 
993a 
606a 
342A 
812a 

304  a 
28  5T 
414A 

130A 

207T 

212A* 

902a 

698a* 
410a 

307a 
954a 
754a 

875a 
479a 

345A 

201 A 
5S7A 

364A 
350a 
744a 
827a 
336a 

682a 


781a 

262a 

170a 
36a* 
58a 

374a* 
170R 

83a 

230a 


359a* 
943a* 


PAGE 
Lewcock,    W.,    and    others.    Amino-phenols    or    aromatic 

amino-aeids  ;    Production  of  (P)         . .  . .     566a 

Lewis,  E.    Glycerin  ;    Composition  of  residue  of  distillation 

of  crude 97T 

Lewis,  G.  C.  Gases  ;  Apparatus  for  deposition  and  collec- 
tion of  suspended  matter  in  (P)  . .  . .     127A 

Lewis,  G.  P.     Carbonising  coal  and  the  like  (P)         ..         ..     283a 

Fuels  ;   Combination  of  solid  and  liquid (P)        . .       40a 

Gas  generator  and  retort  apparatus  ;    Combined  

(P)  851a* 

Gasification  of  solid  carbonaceous  matters;    Protective 

progressive  distillation  and  (P)  ..      362a,  302a 

Lewis,  H.  B.     See  Dunn,  M.  S 154a    154a 

Lewis,  H.  F.,  and  National  Aniline  and  Chemical  Co.,  Inc. 

Anthraquinones  ;  Purification  of  (P)        625a,  852a 

Lewis,  S.  J.  Cellulose,  sugars,  and  other  substances  ;  Quan- 
titative determination  of  fluorescent  powers  of 

99R,  366a 
Photometers,  especially  sector  spectrophotometers  (P)    201a 
Lewis,  W.  K.     Evaporation  of  a  liquid  into  a  gas       ..         ..     885a 
Rectifying  columns  for  binary  mixtures  ;    Efficiency  and 

design  of ..         ..         ..         ..         ..         ..     573A 

and  Goodyear  Tire  and  Rubber  Co.    Lampblack  ;    Pre- 
paration of (P) 558A 

and    W.    Green.     Drying    materials    carrying   a    volatilo 

inflammable  solvent  ;    Apparatus  for  and  for 

recovering  the  solvent  (P)     . .  ..  ..  ..     927a* 

and  H.  C.  Weber.     Heats  of  vaporisation  ;  Determination 

of from  vapour  pressure  data  . .         . .         . .     573a 

Heats  of  vaporisation  :  Molal  entropy  of  vaporisation  as 

a  means  of  determination  of ..         ..         ..     573A 

Lewis,    W.    L.,   and    H.    C.    Cheetham.     Arseuated    benzo- 

pheuonc  and  its  derivatives  ..  ..  ..  ..     117a 

Lewis,  W.  V.     Dryer  (P)  35SA 

Lewkowitsch,  J.  "  Oils,  fats,  and  waxes  ;  Chemical  tech- 
nology and  analysis  of ."     (Revised  by  G.  H. 

Warburton) 461k 

Lexow,  T.     Prickly  dog-fish  liver  oil 300A 

Leys,  A.    Acetyl  value  of  fats  ;  Rapid  determination  of 148A 

Leyser,  F.     See  Nathansohn,  A 820a 

See  Rosenheim,  A.  ..  ..  ..  ..  ..        56a 

Leysieffer,  cl.     Cellulose  ethers;    Manufacture  of  moulded 

articles  from (P) 808A* 

Set  Balke,  P 383a 

l.iiiii.  v  Owens  Sheet  Glass  Co.     Sheet  glass  ;   Drawing 

(P)  712a*,  815a*,  860A*,  898A* 

See  Brown,  W.  F 417a 

See  Crowley,  J.  P.  634a 

Libman,  E.  E.     Zinc  oxide  ceramic  bodies    ..         ..         ..     710a 

Lichtenhahn,   T.,   and    Elebtrizitatswerk    Lonza.     Alcohol ; 

Manufacture  of  from  acetaldchyde  (P)         ..     193a* 

Ammonium  chloride  liquors  from  ammonia-soda  pro- 
cess ;    Working  up  residuary (P)  . .  . .       57A 

Lichtenthaeler,  F.   E.     Alcohol-ether  mixtures,  e.g.,  motor 

fuels  ;   Manufacture  of (Pj        974a 

and  W.  E.  Lummus  Co.     Distilling  columns  (P)    . .         . .     697a 
Lidholm,  J.  H.     See  Wargons  Aktiebolag     . .  . .      347a,  .877a 

Lie,  E.     Urea  ;    Producing from  cyanamide  (P)         . .     610a* 

and    A. IS.    North-Western    Cyanamide    Co.     Urea    from 

cyanamides  ;    Producing  (P)  . .         . .         . .     391a 

Lieb,  H.     See  Herzig,  J 22Sa 

Lieben,  F.    Amino-acids  ;    Behaviour  of  some  towards 

oxygenated  yeast         . .  . .  . .  . .  . .     952a 

Lactic  acid;  Destruction  of by  yeast  cells  . ,         ..     042a 

See  Fiirth,  0 192A,  952a 

Liebermann,  L.     See  Neuberg,  C.        . .  . .  . .      152A,  153a 

Liebknecht,    O.     Alkali    cyanates ;     Method    of    producing 

(P)  253a 

and  Roessler  and  Hasslacher  Chemical  Co.    Alkali  per- 
borates ;    Manufacture  of (P)  . .  .  .  . .     374a* 

See  Deutsche  Gold-  und  Silbcr-Scheide-Anstalt     507a, 

565a,  589a,  897a* 

Liebreich,  E.     Chromium  ;    Electrolytic  separation  of  

(P)  62a 

Liedtke,  A.    Dryer;    Rotating  drum  (P)         ..         ..     449a 

Lierg,  F.  Coking  process  ;  Chemistry  of  the  .  Pre- 
paration of  high-melting  bitumen  and  its  application 
to  production  of  metallurgical  coke  from  non- 
caking  coals       . .          . .          . .          . .          . .  . .     532a 

Liesche,  O.    See  Beckmann,  E.  137a 

Liese,   H.     Fluids  ;     Apparatus  for   measuring,   mixing  or 

separating  (P) 847a* 

Liesegang.  R.  E.     "  Kolloidchemie    des   Lcbens ;    Beitriige 

zu  einer "  . .  . .  . .  . .  . .     360R 

Lievin,  O.    Alkaline  solutions  of  iodine  ;    Kinetic  study  of 

326a 

Lifschiitz,  I.     Cholesteryl  dibromide   . .  . .  . .  . .     156A 

Gynocardia  oil ;    Colour  reaction  and  spectroscopic  de- 
tection of 109a 

Metacholesterol  and  its  by-products        . .         . .         -  ■     434a 

Wool-fat ;    Obtaining  alcohols  and  a.  ids  from  ■  (P)     223a 

Light  Metals  Co.     See  Thofehrn,  H.  (i.  C 597A 

Lihme,  C.  B.     See  Gerlach,  O.  898A 

Lihme,   I.    P.,   and   The    Grasselli    Chemical   Co.     Sodium 

silicate  ;   Manufacture  of  flaky (P)    . .         . .     174a 


60 


JOURNAL  OF  THE-  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Ullenfeld,  J.  E.,  and  Rfetallbanh  und  Mctallurgisehe  Ges. 
Gases;     Apparatus   for   electrical    purification   of 

—  (P)  

Gases ;     Electrical    method    of    separat  ing    dust    from 

(P)  

LEUenfeld,  L.     Alkali-cellulose  ;   Manufacture  of (P)  .. 

Cellulose   or   Its   conversion    products   or   derivatives; 

manufacture  of  ethers  of (P)  . . 

Cellulose  ethers  :    Production  of (P) 

Colloidally  soluble  substances  and  suspensions  or  emul- 
sions ;  Manufacture  of  (P)      . .  . .      686a, 

Dialkyl  sulphates  ;   Manufacture  of (P)     .. 

Ethers  of  carbohydrates,  their  conversion  products  and 
derivatives ;  Manufacture  of  compositions  con- 
taining    (P)  53A 

Ethers  of  carbohydrates,  their  conversion  products  and 

derivatives  ;   Preparation  of (P) 

Oils  of  high  boiling  point ;    Production  of  from 

aromatic  hydrocarbons  (P) 
Remedy  for  malignant  tumor  ;  Manufacture  of  colloidal 

metallic  selenides  and  teUurides  as  a (P) 

Lilienfeld.     Hydrogen;    Apparatus  for  liquefying  (P) 

Lilly,  C.  H.     See  Cocking,  A.  T 

Limmer,  F.    Photographic  plates ;    Removal  of  the   fllm 

from 

Lincoln  Trust  Co.    See  Jespersen,  T. 

Lind,    J.     Electric    conductors ;     Method    of    making  alu- 
minium   (P) 

Liodberg,  E.     Fermentation  activators 
Linde  Air  Products  Co.     See  Haynes,  P.  E.    310a,    846a, 
See  Wucherer,  R.     . . 

Lindenberg,  Stahlwerke  R.     See  Hcraeus,  W.  C 

Lindner,  J.     Carbon  and  hydrogen  in  organic  compounds  ; 

Volumetric  determination  of 

Lindner,  M.     Carbon  for  hardening  steel  and  iron  ;   Process 

for  obtaining  extracts  and  from  nitrogenous 

organic  matter  (P) 
Lindner,  P.    Fermentation  and  yeast ;  Action  of  ultra-violet 

rays  on 

Lindsay,  W.  G.,  and  Celluloid  Co.     Pyroxylin  compositions  ; 

Manufacture  of ■  (P) 

Lindsay  Light  Co.     See  Ryan,  L.  W.  

Ling,  A.  R.     Biology  and  chemistry  .. 

Starch  and  its  estimation  in  barley  and  wheat  .. 
and  D.  R.  Nanji.     Gluconic  acid  ;    New  method  of  pre- 
paring   

Glucose-ammonia  and  isoglucosamine  ;   Crystalline 

Reducing  sugars  ;  Action  of  ammonia  and  of  amino- 
compounds  on  — — .  Action  of  ammonia  on  dex- 
trose- and  lievulose      . .         . .         . .         . .      151T, 

Yeast ;  Longevity  of  certain  species  of 

and  W.  J.  Price.     Nitrogen  ;    Miero-Kjeldahl  method  of 

determining . .  . .  . .  . .      149T, 

Linkie,  T.  L».  M.    See  Adams,  F.  E.  

Linkmeyer,    R.     Viscose    solutions  ;     Preparation    of   

suitable  for  the  manufacture  of  threads  (P)  . . 
Linnemann,  F.     Fibrous  or  artificial  filamentary  materials  ; 

Apparatus  for  treating with  liquids  (P) 

Linnmann,  W.     Cast-iron  ;    Production  of  raw  iron  or  

from  clippings  (P) 
Linz,  A.,  and  Chemical  Foundation,  Inc.     Dyeing;    Method 

of (P) 

Lipman,  C.  B.     Soil ;    Ferrous  sulphate  treatment  of  

as  influencing  the  soil  solution  obtained  by  the 
Lipman  pressure  method 
Lipman.  J.  G.     Fertiliser  industry  in  the  United  States    . . 

Sulphur-oxidising  bacteria  ;    Culture  of  and  their 

application  (P) 
and  others.     Sulphur  ;    Oxidation  of  by  soil  micro- 
organisms 

Lissner,  A.     See  Donath,  E 

Litinsky,    L.     "  Gasmengen  ;    Messung  grosser  .     An- 

lcitung  zur  praktischen  Ermittlung  grosser  Mengcn 
von  Gas-  und  Luft-Stromen  in  technischen  Betrieb- 
en  " 

Litterscheid,  F.  M.      Honey  etc.  ;    Detection  of  technical 

invert  sugar  in 

Litte,  A.  D.,  Inc.    See  Esselen,  G.  J.,  jun.     748a,  748a, 

855*,  894a, 

See  Mork,  H.  S 

Littleton,   C.     Oils,   resins,   gums,   etc.,   which  have   been 

hardened  ;     Treating    and    recovering    for    re-use 

■  <P)  

Llversedge,   S.   '■  .  and  F.  W.  Andrews.     Quinine  salts  in 

tablets  ;    Rapid  determination  of 

Lizius,  J.  L.,  and  X.  Evers.     Acids  and  bases;    Titration 

of  197B, 

LizounoiT,  v..  and  M.  A.  Rosanoff.     FerrosUlcon  ;  Operation 

of  blast-furnaces  to  produce  (P) 

Llewellyn,  I.  P.    See  Spence,  H 

Lloyd,  D.  .i.    Gelatin;   Properties  of  dlalyaed .. 

and  C.  Mayes.     Gelatin  ;  Titration  curve  Ot ■ 

Lloyd,  H.  E.,and  F.  W.  Xeager.     Pitch  coke  ;  Determination 

of  volatile  combustible  matter  in 

Lloyd,  J.  A.    See  Courtaulds,  Ltd.  


88a 

1A 

10a 

53a 
10A 

997A 
838a* 


95a 

10a 
50a 

786A 

175a 
779a* 

648A 
748A 


952a 
886a 
022  a* 
17HA 

691A 


851A- 

951A 

854A 

294A 

29R 

530R 

28T 
871a 

172r 
27a 

172R 
620A 

807A 

936a 

469A 

411A 

263a 

233R 


187a 
84  7  a 


273R 
112a 


936a* 
493a 


66A 

683a 

730a 

106a 
174a 

1)0  7  a 

224a 

319a 
604a 


PAGE 

Lloyd,  L.  L.  Oils  and  fats ;  Relation  between  refractive 
index  and  chemical  characteristics  of  .  Dis- 
cussion   . .          . .          . .          . .          . .           . .  . .        77T 

Oils ;    Oxidation  of 505R 

Lloyd,  R.  L.    Sintering  iron-bearing  materials      . .         . .     899a 
Lobel,  L.     Photographic  developers  ;    Comparative  tests  on 

stabilisers  for  diaminophenol . .  . .  . .       36a 

Lobley,  A.  G.  Electric  crucible  furnace  for  melting  alum- 
inium       862a 

Locke,  J.  A.     See  Hathaway,  C.  S.  382a 

Lockemann,  G.     Reagents  free  from  arsenic;    Preparation 

of 629a 

Lockett,  W.  T.     See  Sinnatt,  F.  S.  282a 

Lockhart,  R.  H.  B.  Czechoslovakia  ;  Report  on  the  indus- 
trial   and    economic   situation    in    . .  . .     459R 

Lockhoven,   M.     Pyrometer ;     Optical  for   measuring 

high  temperatures  (P)  964a 

Locquin,    R.,   and   S.    WOuseng.     Alcohols   of   the   linalool 

type  ;    Transformation  of   tertiary  ethylenic  ■ 

into  primary  ethylenic  alcohols  of  the  geraniol  type     609a 
Lodati,  D.     Explosive   power ;    Trauzl  lead   block   method 

of  determining  . .  . .  . .  . .  . .     441a 

Lodge  Fume  Co.,  and  N.  Stallard.     Electrical  precipitation 

apparatus  (P)  . .         . .         . .         . .         . .         . .     310a 

Loeb,   J.    Gelatin ;    Significance   of   iso-electric   point   for 

preparation  of  ash-free . .  . .  . .  . .     262a 

and  R.  F.  Loeb.     Casein  and  gelatin  ;  Influence  of  electro- 
lytes on  solution  and  precipitation  of . .         . .       69a 

Loeb,   K.  F.    See  Loeb,  J 69a 

Lbffelbeiu,  W.     Chromium  in  metals  ;  Determination  of 672a 

Ldffler,  It.  J.     Artificial  threads,  films,  and  plastic  material  ; 

Manufacture  of  (P) 665a 

Ldffler,  8.     Coal,  hydrocarbons,  and  the  like ;    Process  for 

decomposing   under   high   temperatures   and 

pressures   (P)    . .  . .  . .  . .  . .  . .     801a 

Hydrocarbons  and  their  derivatives  ;  Process  for  making 

by  heating  coal  or  hydrocarbons  with  hydrogen 

(P)  850A 

Lofman,  N.     See  Hagglund,  E.  247A 

Lbfveberg,  C.  G.     See  Eklund,  T.  A.  899a* 

Lbschl,  J.     See  Prandtl,  W.  897a 

Loeser,  C.    Drying  apparatus  ;    Process  of  heating by 

means  of  furnace  gases  (P)  . .         . .         . .         M     845a 

Refractory  concrete  ;  Manufacture  of  — —  (P)  . .         . .     758a 

Loewe,     B.     Gas-purifying     material  ;      Preparation     and 

revivification  of  spent to  recover  the  contained 

free  sulphur  (P)  244a 

Lowe,   H.     See  Fichter,  F 195a 

LowensteinAK.  Prinz  zu,  and  others.     Coal,  shale,  and  other 

bituminous  material ;  Process  for  distilling (P)    890a 

Loewenthal,  A.     Water-soluble  oils  ;    Manufacture  of  

or  emulsifying  oils  with  water  (P)  . .  . .  . .     110a 

Lofts,  G.  H.     Electric  heating  appliances  ;   Alloy  for  use  in 

(P)  717a* 

Logan,  L.  Specific  gravity  of  solutions  ;  Means  for  regulat- 
ing the (P)         165a* 

Logothetis,     A.,     and    G.     Gregoropoulos.     Nitrocellulose; 

Behaviour  of  on  heating  with  water  under 

pressure..  ..  ..  .,  ..  ..  ..611a 

Lohmann,  A.  P.  Mixing  and  kneading  ;  Method  and  appara- 
tus for (P)  240a* 

Lohmann,    H.     Alloys  ;     Manufacture  of  very   hard  , 

capable  of  withstanding  breakages,  for  tools  and 

the  like  (P) 470a,  673a 

Metals   of    high    melting    temperature    e.g.,    tungsten, 

uranium.etc.  ;  Withdrawal  of  carbon  from  (P)     332a 

Lohmann -Metall  G.m.b.H.,  formerly  Voigtlander  und 
Lohmann  Metall  Fabrikations  Ges.  Tungsten 
or    molybdenum    carbide ;     Process    for    making 

blocks  of  any  form  or  desired  size  from  ■ for 

tools  and  articles  of  all  kinds  (P)      . .  . .     502a*,  548a 
Tungsten  or  molybdenum  carbide  ;    Process  for  manu- 
facture of  pieces  of of  any  desired  size  (P)      . .     502a* 

Lohrey,  W.,  and  Magna  Metal  Corp.    Electric  furnace  for 

alloying  metals  (P) 20a 

Loke,  J.  3.    Iron  or  steel ;    Manufacture  of  refined  

directly  from  oxidised  titanic  iron  (P)     . .         . .     422a* 

Lomax,  C.  S.,  and  American  Coke  and  Chemical  Co.     Gases  ; 

Recovery  of  by-products  from  distillation (P)    284a 

Lomax,  J.  R.    See  Sinnatt,  F.  S 887a 

Lombaers,  R.    See  Van  Laer,  M.  H.  71a 

Lombard,  M.    Nitrous  acid  ;   Action  of on  iodides  in 

presence  of  oxygen.     lodometric  determination  of 
nitrites 250a 

Lo  Monaco,  D.     Fertilisers  (P)  . .  603a 

Fertilising   substances ;     Treatment   of    undecomposcd 

(V)  151a 

Nitrogenous  manures;    Manufacture  of (P)         ..     829a 

Long,  A.  W.     See  Parker,  T.  338a 

Longan  y  Senan,   E.,  and  A.   G.  di  Godio.    Cement  and 

concrete  (P)      ..  ..  ..  ..  ..  ..  254a 

Lougbottom  ;C.  A.     See  Duffield,  F.  L 400a 


NAME  INDEX. 


61 


603A 
526a 

837A 

271A 
526a 

258A* 

426A 
17A 

984a» 

15A 

885A 


76a 
349a 


826a 
839a 
442a 

1 v 


Longbottom,  H.  L.    Tannin  extracts  of  analytical  strength  ; 

Estimation  of  reducing  sugars  in ■ 

Longchambon,   H.     Sucrose ;    Spectrometry  study  of  tri- 

boluminescence  of  

Longfellow,  E.  S.    See  Fieldner,  A.  C.  

Loomis,    C.    C,    and    Semet-Solvay  Co.     Salicylaldehyde ; 

Process  of  producing  (P) 

Looucy,  J.M.     Collodion  membranes  ;  Preparation  of  flexible 

See  Folin,  O.  1 !         '..         '..         ..         '.. 

Loosll,   H.     See  North,   W 

Lorentz,    B.    E.,    and    R.    T.    Vanderbilt    Co.     Vulcanising 

rubber  compounds  ;    Accelerator  in  (P) 

Lorentz,  M.  G.     See  Rawdon,  H.  S. 

Lorentz,   V.     Glass   blowing ;    Method   of  and   means   for 

—    (P)  

Lorenz,  R.,  and  G.  Haegermann.    Cement  and  lime  water  ; 

Equilibrium  between  ■ 

and  W.  Herz.    Melting  point ;  Relation  of to  boiling 

point 
Lorenzo,  V.  G.     Water  ;    Preparation  for  neutralisation  of 
the  acids  and  precipitation  of  the  salts  contained 

in  <P) 

Loriette.     See    Marqueyrol 

Lorival  Mfg.   Co.,   Ltd.,  and   A.   A.   Drummond.     Conden- 
sation products  of  phenolic  bodies  with  aldehydie 

compounds  ;     Manufacture   of  (P) 

Lormand,    C.    See  Fayolle 

Losana,  L.     Phosphorus  ;    Colorimetric  estimation  of 

Selenium  ;    Determination  of  

Sulphur  ;   Rapid  determination  of . .  . .       614a,  691a 

and  E.  Carozzi.     Chromium  in  steel  ;    Determination  of 

594A 

Ferrotungsten  ;   Rapid  analysis  of . .  . .  . .     671a 

Titanium  ;  Determination  of in  ferrous  products  . .     940a 

See    Graziani,    F 418a,  503a 

Loss,  O.,  and  D.  Grove  A.-G.     Steam,  compressed  air  and 
gases ;    Separating  apparatus  for  removing  water, 

dust,  etc.,  from  (P) 

Lott,  C.  R.    Molten  glass  ;    Producing  charges  of (P) 

Lottermoser,  A.     Colloidal  part  in  tungsten  powder  ;  Deter- 
mination of 

and  H.  Brehm.     Tin  ;  Electrodeposition  of 

and   K.   Falk.     Chromate  ;    Electrolysis  of  with  a 

diaphragm 
Louder,  E.  A.,  and  Boyce  and  Veeder.    Fire-extinguishing 

composition   (P) 
Louisville  Cement  Co.     See  Lemmon,  J.  H. 

Lourens,  C.     Cane  juice  ;    Influence  of  non-sugars  of  

in  inhibiting  Inversion  . .  . .  . .  . .     909a 

Low,  F.  S.,  and  Niagara  Alkali  Co.     Chloridising  process 
and    apparatus    (P)     . . 

Low,  L.  W.     See  Smith,  H.  

Low  Temperature  Carbonisation,  Ltd.,  and  T.  M.  Davidson. 
Gas  retorts  (P)  . . 
and  others.     Retorts  for  the  distillation  of  coal  and  other 
carbonaceous  substances  (P) 
Low  Temperature  Construction,   Ltd.    See  Low  Tempera- 
ture  Carbonisation,   Ltd. 

Lowe,  F.  W.    See  Johns,  G.  McD 

Lowe,  H.     Mercerisation  and  spinning  ;  Inter-relation  of 

Saccharin  ;    Manufacture  of  (P) 

Soldering  of  aluminium  (P) 
Lowe,  H.  M.     Gas  analysis ;    New  apparatus  for  technical 

and  for  the  rapid  determination  of  ammonia 

in  waste  liquor 
Lowe,  J.     Gas-generating  plant  (P) 

Water-gas  ;   Lowe's  plant  for  manufacture  of  blue 

in  conjunction  with  coal  gas 
Lowry,  T.  M.     Elutriator  for  rapid  use         . .  . .       173R,  310a 

"Inorganic  chemistry"      ..  ..  ..  ..  ..     359R 

Intramolecular  ionisation   . .  . .  . .  . .  . .     533R 

TNT  ;    Manufacture  of  ■  during  the  war   . .  . .         3r 

and  L.  P.  McHatton.     Powdering  of  minerals  by  decrepita- 
tion          29lR 

Powders  ;    Grading  of by  elutriation         . .       173r,  310a 

and    E.    E.    Walker.     Potassium   carbonate  ;     Expansion 

and  shrinkage  during  caking  of  

See  Early,   R.   G.  

See  Millican,  I.  L. 
Lowy,   A.,   and    C.    M.    Moore.     Isoeugenol ;     Electrolytic 

oxidation   of  

Loy,    G.     Kilns   for   burning   ceramic   and  refractory  pro- 
ducts (P)  

Luboshey,    N.    E.     Sensitive   plates    and    films    for    X-ray 
photography  (P) 

X-ray  photography  ;    Intensifying  screen  for  (P) 

X-ray  photography  ;  Sensitive  film  supports  for (P) 

Lubowsky,  S.  J.,  and  Metal  and  Thermit  Corp.     Tungsten 

trioxide  ;     Recovery   of   from  tungsten   ores 

and  the  like  (P)         

Lucas,  A.     Chemistry  in  the  museum  . . 

"  Forensic   chemistry  " 
Lucas,  J.  and  Co.,  Inc.     See  Allen,  A.  O.     . . 
Lucas,  O.  D.     See  V.  M.  L.  Experimental,  Ltd 


971a* 
984a* 


145A 
106A 


857A 


887A 
127A 


901a 
16a 


623A 

851A 

851A 
92A 
54A 

f.Sf.A 

379 


11T 

455A* 

699A 


29 1R 
587A 
587A 

876A 

142A 

611a 
689A 
838A 


373A 
23R 
41R 

753a 
838A 


PACE 

Lucas,  R.  D.     Filter-press  (P) 450a 

Luce,  E.,  and  A.  Doucet.     Mustard  ;   Determination  of  allyl 

mustard  oil  in  ..         ..         ..         ..         ..     515A 

Luckenbach,  R.,  and  Luckenbach  Processes,  Inc.     Flotation 

process   (P) 765a 

Ores  ;    Concentrating  by  notation  (P)     . .  . .     506A 

Luckenbach  Processes,  Inc.     Flotation ;    Manufacture  and 

use  of  a  reagent  for  concentration  of  ores  by (P)    179A 

See   Luckenbach,   R.  . .  . .  . .  . .       506a,  765a 

Luckhard,  K.  L.     Ceramic  ware  ;   Burning with  thermit 

as  a  source  of  heat  (P)         ..         ..         ..         ..     328A 

Ludlum  Electric  Furnace  Corp.     See  Leander,  K.  . .     638A 

Ludwig,  E.     Gaseous  and  liquid  substances  ;    Treatment  of 

by  irradiation  for  use  in  the  brewing  industry 

(P)  .^  113A 

See  Pauly,  H.  784a 

Ludwig,  ,T.  N.     Propellant  or  explosive  ;    Producing  a 

from  picric  acid  (P)      . .  . .  . .  . .  . .     350A 

Liick,  A.  Resin  ;  Extraction  of from  wood  with  tur- 
pentine oil  (P) 149A 

Lucck,  R.  H.     Nitrogen  pentoxide  ;   Thermal  decomposition 

of in  solution        . .  . .  . .  . .  . .     412a 

Llilirig,  H.  Butter  and  other  edible  fats ;  Semi-micro- 
chemical  determination  of  water,  fat,  and  salt  in 

872A 

Microchemical    and    semi-microchemical    methods    in 

analysis  of  fats  . .  . .  . .  . .  . .     508a 

Milk  analysis  ;   Semi-microchemical  methods  of ■  . .     725a 

Liming,  O.,  and  P.  Herzig.     Proteins  of  curd  and  whey  ; 

Determination  of in  mixtures   . .  . .  . .     114a 

Liippo-Cramer.      Colloid-chemistry        and        photography. 
*'  Schwellenwert  '*  (threshold  value)  and  physical 
development     . .         . .         . .         . .         . .         . .       79a 

Colloid  chemistry  and  photography.     Theory  of  accele- 
ration of  development  by  iodides      . .         . .         . .     348A 

Photographic  desensitising  of  silver  bromide  and  the 

Safranine  process  (development  in  bright  light)  . .     233a 

Photographic  development ;    Acceleration  of  and 

production  of  "  fog  "  by  dyestuffs    . .  . .  . .     233a 

See  Kranseder  und  Co.        . .  . .  . .  . .  . .     690a 

Liiers,  H.  Colouring  matter  for  beer  or  the  like  ;  Manufac- 
ture of (P)  431A,  478A*,  563A* 

Malts  produced  by  processes  involving  resting  periods 

in  presence  of  carbon  dioxide  . .  . .  . .     189a 

and  K.  Geys.     Yeast ;    Flocculation  of  . .  . .     604a 

and    M.    Landauer.     "  Leucosin "  ;     Isoelectric    point    of 

the  vegetable  albumin  . .  . .  . .     681a 

Proteins  ;    Kinetics  of  heat-coagulation  of . .     780a 

Luscher,  E.    Tryptophan  estimation  in  protein ;    Nitrogen 
distribution   in   Bence-Jones   protein,   and   colori- 
metric method  for  — ■  —        ..         ..         ..         ..     993a 

Luttringhaus,  A.     See  Badische  Anilin  u.  Soda  Fabr.       . .     427a* 

Luff,  G.     Zinc  ;    Separation  of from  other  metals  with 

ammonium  phosphate  . .  . .  . .  . .     394a 

Luft,   M.     Viscose  ;     Manufacture  of  artificial   goods  from 

(P)  290A 

Viscose  ;   Treatment  of  artificial  goods  from (P). .     248a 

Luftschitz,  H.     See  Elektrowerke  A.-G 103a 

Lumiere,  L.  Capillary  attraction,  diffusion,  and  displace- 
ment ;  Application  of  — — -  to  washing  photo- 
graphic plates,  etc.      ..  ..  ..  ..  ..     524a 

Lummer,  O.     Carbon  ;  Fusion  of  (P)  . .         . .         .  -       49a, 

Lummus  Co.,   W.  E.     See  Lichtenthaeler,  F.  E.  ..     697a 

Lund,  J.     Fats  ;    Relations  between  constants  of  . .     944a 

Metallurgical  apparatus  (P)  ..  ..  ..  ..     597a 

Lund,  Y.     See  Greaves,  J.  E.  ..  ..  ..  ..     678a 

Lundegardh,    H.     Carbon   dioxide    in   air ;     Apparatus  for 

determination  of  — — -  . .         - .         . .         .  ■     841a 

Lundell,  G.  E.  F.,  and  J.  A.  Scherrer.     Bronze  ;    Analysis 

of  cast  420a 

Lundeu,  H.  L.  R.     See  Thorssell,  C.  T.        . .       173a,  175a,  294a 

Lundgaard,  I.     Refrigerating  machines  (P) 449a. 

Lundin,  A.  P.     See  Twombly,  A.  H.  15a 

Lundin,  H.     Malt ;    Proteolytic  enzymes  of  . .  . .     830a 

Lundsgaard,  C.  J.  S-,  and  K.  T.  Herbst.     Explosive  (P)..     690a 

Lunn,  W.  K.     See  Dalhoff,  L.  G 178a 

Lupascu,  I.     Separators  for  granular  materials  ;    Hydraulic, 

pneumatic,  or  hydro-pneumatic  (P)  . .     240a* 

Lush,  E.  J.     Formaldehyde  or  its  polymers ;    Preparation 

of  from  mixtures  of  carbon  monoxide  and 

hydrogen  (P)    . .         . .         . .         . .         -  -         •  •     566a 

See  Bolton,  E.  R.  557a*,  825a 

Lustron  Co.     See  Mork,  H.  S.  628A 

Lutz,  A.     Paper,  cardboard,  woven  fabrics  and  like  materials  ; 

Sizing  and  impregnating  of  (P)         . .      367a,  367a 

Lutz,  G.     See  Kesseler,  H 349a 

Lutz,  O.     Strontium  ;  Sensitiveness  of  reactions  for  detection 

of  200A 

Lyder,  E.  E.     See  MeKee,  R.  H 45a* 

Lyle,  R.  F.     See  Simpson,  G.  W.  S.  113a* 

Lyles,  V.  S.     See  Hudson,  A.  213a* 

Lyman,  J.  F.     See  Haley,  D.  E 223a 


62 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


substances ; 
127a,  620a, 


under 


Lynch,  I>.  F.  J.  H-acid  and  its  Intermediates  obtained 
from  naphthalene-:!. 7-disulphonic  acid  ;  Identify- 
in-  

Lyon,  A.  J.    See  Dix,  E.  H.,  jun.     . . 

Lyon,  ,;    l'.     Wood  ;    Artificial  seasoning  of (P) 

Lyon,  T.  C,  and  J.  K.  Wilson.  Organic  matter  ;  Liberation 
of  by  roots  of  growing  plants 

Lysaght,  D.  C,  and  J.  Lysaght,  Ltd.  Annealing  metal 
:  Cover  carrying  :i  depending  tube  for  use 
of  pyrometers  in  pots  for  (P) 

Lysaght.  .'..  Ltd.    .s<r  Lysaght,  D.  C 

■  H.  C.  Milk  analyses;  Application  of  theory  of 
probability  to  Interpretation  of 

Lytle,  W.  3.     See  Milner,  K.  K 755a, 


M 

Maase,    E.     Producer    gas ;     Determination    of    moisture 

content  of  

Has       E.,  anil  B.  Kempf.     Litliopoue  ;   Present  knowledge 

Maass,  0.  Separating  aqueous  and  other  vapours  from 
tluids  and  solids,  and  preparing  dilute  sulphuric 
acid  (P)  

Maass  and  Junk.     Boiled-oil    substitutes  ;    Examination  of 

with  special  reference  to  their  rust-inhibiting 

properties 

Mabee,  C.  B.     Centrifugal  dryer  (P)  

Centrifugal  separator  and  evaporator  (P) 

Evaporating  apparatus  (P) 

Evaporation    of    liquids    and    drying    of 

Device  for  (P)    . . 

Evaporation  ;    Method  of . . 

McAdam,   D.   J.,  jun.     steel;    Endurance  of 

repeated  stresses 
McAdams,  \V.  H.,  and  T.  H.  Frost.    Heat  transfer 

See  Wilson,  It.  E.  

McAfee,  A.  at.,  and  Gulf  Refining  Co.     Aluminium  chloride  ; 

Manufacture  of from  hydrocarbon  residues  (P) 

Gasoline;    Manufacture  of  (P) 

Petroleum  oils;    Converting  (P)    .. 

McArthur,    D.    N.     Agriculture;     Some    physico-chemical 

problems  in  

McArthur,  H.  M.,  and  Co.,  Ltd.     See  Croad,  E.  B.       774A, 
Macaulay,  B.  M.     Iodine  and  sulphurous  acid  ;    Beaction 

between  .. 

McBain,  J.  \V.     Soap  solutions  ;    Study  of  

and  A.  J.   Burnett.     Soap  ;    Effect  of  an  electrolyte  on 

solutions  of  pure  .     Phase  rule  equilibria  in 

the  system  sodium    laurate-sodium    chloride-water 

and     others.     Soap    solutions ;      Constitution     of    . 

Solutions  of  sodium  palmitate  and  ctfeet  of  excess 
of  palmitic  acid  or  sodium  hydroxide 
See  Norris,  M.  H. 
Macbeth,    A.    K.,    and    J.    Pryde.     Indican ;     Constitution 

of  

and  B.  Bobiuson.     Cevadine 

McCallum,  A.  L.     See  Lee,  F.  E 

Maccallum,   P.   F.     Combustion   products ;     Generation  of 

under  pressure  (P) 

McCallum.  S.  T.     Alcoholic  potassium  hydroxide  volumetric 

solution;    Preparation  of  ■ 

MacCarthy,  F.  B.,  and  Mineral  and  Chemical  Co.  of  Utah. 

Alunite ;      Treating    sulphur-containing    ores    of 

aluminium,  especially  (P) 

McCaskcll,  J.  A.    Clarifying  solutions  (P) 

McCaslin,  J.     See  Hoffman,  C.     C 

McCay,  L.  W.,  and  W.  T.  Anderson,  jun.    Ferric  salts ; 

Beduction  of  ■ ■  with  mercury 

Vanadic  acid  solutions  ;  Beduction  of* with  mercury 

McClain,  J.  B.,  and  B.  Meier.     Melting  pot  (P)     . . 
McClenalian,  F.  M.     Metals,  e.g.,  aluminium  ;    Recovery  of 

from  silicates  (P) 

McCollum,    E.   V.,   and   others.     Vitamin   which   promotes 

calcium  deposition;    Existence  of  a  .. 

See  Levine,  V.  E.  

■See  Ortou,  C.  B 

McConnell,  J.,  and  Interstate  Iron  and  Steel  Co.    Alloy 

steel;    Process  of  making (P) 

McCormack,  H      Resorclnol ;    Manufacture  of  (P)    .. 

McCoy,  A.  F.    See  Allen,  A.  F 

0.     Kiln  and  dryer ;    Cylindrical  (P) 

Pulveriser  or  grinding  machine  (P)        

McCrary.  I'.  K.     Abstracting  heat  from  fluids;    Apparatus 

for  (P) 

Mcculloch,  a.    See  Slnnatt,  F.  s 

McCulloch,  I..    Sherardising  experiments 

McDanlel,    \    8.,  and   Eastman   Kodak  Co.    Photographic 

lihn  :    Antistatic  —  (P) 

McDavld,  J.  \v.     Calibration  of  storage  tanks ;   Eapld  and 

irate  method  tor  27m:. 

Sulphuric  acid,  oltrii  acid,  and  water;   Heat  developed 
on  mixing  


933a 
594  a 
712a 

427a 


147a* 
147a* 


29a 
750a 


972A 
946A 

531a* 


639a 
620a 
620a 
620A 

971a 

021 IA 

60a 
279a 
357A 

216a 
209a 
702A* 

75R 
774A 

394a 
393R 


719a 


424a 
719a 

743a 

835a 
62a 

4  7a 


415a 

2A 

453a 

140a 

.' i 

886A 

766A 

873a 
781a 
780A 

637A 
246A 
24SA 
44A 
127A 

971A 
887A 
296a 

917a 

295T 

246T 


PACE 

McDermott,  F.  A.,  and  others.  Butvric  acid;  Manufacture 

of  (P) 232a 

Macdonald,  J.     .See  Irvine,  J.  C.         . .  . .  . .  . .  363R 

McDonald,  J.  V.     Gas;    Process  for  making (P)     322a*,  661a* 

Macdonald.   It.,  jun.     See  Richmond,  H.  A.  ..         ..  417a 

McDougal,    T.    G.,    and    Champion    Ignition    Co.     Ceramic 

wares  :    Burning and  apparatus  therefor  (P). .  548a 

and  others.     Synthetic  jewel  bearing  (P)  ..         ..  711a 

s,     Champion,  A.   . .         ..         ..         ..         ..         ..  io3a* 

MacDougall,  F.  II.     See  Sharp,  P.  F.  568a 

MacDowcll.  C.  H.,  and  Armour  Fertilizer  Works.     Sulphuric 

acid  ;    Production  of  (P)  141a 

aiul  others.     Ammonia;    Oxidation  of  (P)  ..  631a 

Catalysl  (P) 631a 

Sulphuric  acid ;    Manufacture  of (P)        ..         ..  631a 

McDowell,  s,  .1.     See  McDougal,  T.  G 711a 

McElroy.    K.    P.,    and    Ferro    Chemicals,    Inc.     Nitrogen ; 

Fixation  of  (P)  . .         . .         , .         . .  294a 

McEwcn,  J.  L.     See  Bell,  J.  M 568a 

McGahan,    F.    L.     Combustion    products ;     Treating    and 

handling  (P)        . .       47A 

McGall,  A.     Metals;    Preparing  finely-divided  (P)   ..       20a 

McGee,    F.   1!..  and  G.   W.   Vreeland.     Gas  cleaner;    Dry 

(P)  4A 

McGill,  W.  J.     Alkaloids  ;  Use  of  newer  indicators  in  titration 

of  995a 

McGinnis,  W.  E.,  and  Pilsbry-Becker  Engineering  and 
Supply  Co.     Gasoline;    Apparatus  for  recovery  of 

from  casing-head  gas  (P)         580a 

McGowan,  G.     Sewage  sludge  ;  Activated .     Discussion      71T 

Mach.  F.,  and  P.  Lederle.  Citric  acid,  tartaric  acid,  and 
other  organic  acids  which  form  calcium  salts 
soluble    with    difficulty    in    water;     Preparation 

of  (P) 52U 

and      F.      Sindlinger      Fertilisers     containing     nitrite-  ; 

Determination  of  total  nitrogen  in  and  of 

nitrite-nitrogen^in  presence  of  nitrates      ..         ..     90Sa 

McHargue.  ,T.  S.     Manganese  in  plants  ;    Role  of  . .     B78i 

and  A.  M.  Peter.     Plant-food  ;    Removal  of  mineral 

by  natural  drainage  waters  ..         ..         ..         ..     561 A 

McHatton,  L.  P.     .See  Lowry,  T    M.  ..      173it.  291R,  310a 

Macheleldt.    Potassium;    Volumetric  determination  of 200a 

Machold,  C.  M.    Coal  briquettes  ;   Manufacture  of (P)     208a 

Mcllvaine,  T.  C.     Buffer  solution  for  colorimetric  comparison      81a 
M  uilwainc.    A.   W.     Cotton   seed  :     Preservation  and  pre- 
paration  for   transportation  of  (P)    ..  ..      S67A* 

Oil-bearing  materials,  such  as  nuts,  seeds  and  copra  ; 
Preservation  and  preparation  for  transportation  of 

by  compression  in  bulk  (P)     . .  .  .  . .     867a* 

Pea-nuts,  ground  nut-,  etc.  ;    Preservation  and  trans- 
portation of  (P)  946a* 

and    G.    F.    Holdcroft.     Oil;     Extraction    of    by 

volatile  solvents  (P) '.      3S4a* 

Maclnnes,  D.  A.,  and  E.  B.  Townsend.  Lead;  Electro- 
volumetric  method  for  determination  of ..     443a 

McJntosh,  F.  F.    See  Beneker,  J.  C.  900a 

Mcintosh.  .1..  and  Diamond  State  Fibre  Co.     Waterproofing 

vulcanised  fibre  (P) 747a 

■     i       re,  J.     Grinding,  refining  and  mixing  machines  (P),     796a 
Mixing,  reducing,  or  grinding  and  like  machines  (P)   ..     620a 

Mclntyre,  3.  D.     See  Sievers,  A.  F 333a 

Mclntyre  Porcupine  Mines,  Ltd.    See  Dorfman,  A.  ..     379a 

Maejulevitsch,  K.    See  Fritzmann,  E.  989a 

Mack.  K.     Hut acids;    Influence  of on  assimilation 

of  phosphoric  acid  by  plants 186a 

McKay.  B.  .1.     Corrosion  by  electrolyte  concentration  cells    421a 

McEee,  A.  <•■     Gases;   Apparatus  for  cleaning (P)    ..       47a 

McKi ie,  R.  H.     Chromic  acid  regeneration  (P)         ..         ..     294a 

Ferrozirconiutn  ;  Manufacture  of (P)  ..         ..     107A 

Zirconium  and  iron  ;  Alloying (P)  . .         ..         ..     107a 

and  T.  H.  Chilton.     Causticising  in  the  presence  of  silicate     750a 
and  E.  E.  Lydcr.     Shales  ;  Apparatus  for  studying  thermal 

decomposition  of  oil ■      . .         . .         . .         . .       45A 

McKellar,  D.     Textile  fabrics  ;  Treatment  of to  remove 

urease,  wax,  and  the  like  preparatory  to  the  bleach- 
ing, scouring,  or  finishing  operations  (P)  . .         . .     461a 
M'KeKev,  3    H.,  and  C.  F.  Byan.     Glass;  Process  of  making 

plate (P) 15a* 

McKenzle,  T.  M.     Petroleum,  with  special  reference  to  lubri- 

oil  .  .  . .  . .  . .  . .  .  .        7.">K 

Mackey,  W.  McD.     Ammonia  yield  in  carbonisation  of  coal   ; 

Factors  influencing  the .     Discussion  . .  . .     27'.vr 

Clay;   Characterisation  of .     Discussion     ..         ..       80T 

Coke;   Structure  of .    Discussion  ..        ..     183T 

Volatile  matter  In  fuels ;   Determination  of .    Dis- 
cussion     373T 

McKinlay,  G.     See  Daniels,  E.  658a* 

Mackintosh,  .'.    See  Drummond,  J.  C.  561R 

Mackintosh,  W.  M..  and  Kelly-Springtlcld  Tire  Co.     Rubber, ; 

Vulcanising  (P)  ..         ..        ..        ..        ..     111a 

McKJrahan,  s..  and  F.  A.  Fuller.  Metals  from  ores  ;  Ex- 
tracting  (P)        766a 


NAME  INDEX. 


63 


Maelaehlan.  A.  Gases  from  treatment  of  garbage  ;  Deodor- 
ising  (P) 

Waste  matter  ;    Continuous  treatment  of (P) 

Waste  organic  substances;    Treatment  of  (P)     .. 

McLaehlan.    J.   A.     Volatile   combustible   matter   in   coals  ; 

Determination  of  

MacLachlan,  J.  C.     Food  substances:    Reducing  semi-fluid 

to  dry  powdered  form  (P) 

and  Standard  Food  Products  Co.     Meat  product  ;    Pow- 
dered   (P) 

Milk  ;   Desiccating  mixtures,  e.g., (P) 

Maclaren,  A.  F.     Fuel ;    Utilisation  of  wet  powdered 

(P)  

McLaughlin,  G.  D.,  and  G.  E.  Rockwell.  Steer  hide  ;  Bac- 
teriology of  fresh  

and  E.  R.  Theis.     Hide  curing  ;   Practice  of  heavy . . 

Hide  curing  ;   Science  of 

See  Fischer,  M.  H 

McLaughlin,  W.,  and  C.  E.  Norton.     Glass  furnaces  and  the 

like  ;   Recuperator  for (P) 

Maclaurin,  J.  S.     Putrefaction  ;  Formation  of  phenol  during 

Maclaurin.  R,     Water-gas  plant  ;    Enriched (P) 

See  Anderson,  D.  G. 

Maclaurin  Carbonisation,  Ltd.     See  Hardie,  G.  D.       405a*, 

McLean,  D.  H.     See  Thofehrn,  H.  G.  C 

Maclean,  L.  S.  Yeast  cell;  Conditions  influencing  the  for- 
mation of  fat  in  the 

McLean.  S.  Gases  absorbed  by  charcoals  and  carbonised 
lignites;    Thermal  evolution  of 

McLeUan,  W.    See  Michie,  A.  C 

Maclennan,  A.     Cleansing  and  sterilising  textile  fabrics  and 

other  materials  :    Preparations  for (P) 

Rubber ;     Treatment   of   leather  with  (P)      560a, 

McLennan,  J.  C.     Hydrogen  ;  Liquefaction  of 

MacLeod,  J.,  and  H.  Reid.  Condenser;  Air-cooled  or 
evaporative  surface (P)  . . 

HacMahon,  J.  H.,  and  Mathieson  Alkali  Works,  Inc.  Barium 

chloride  ;   Method  of  producing (P) 

Hypochlorite  solutions  ;    Preparation  of  liquid (P) 

MacMillan.  J .  R.,  and  Niagara  Alkali  Co.  Trichloroethylene  ; 
Manufacture  of (P) 

McMorran.  E.  E.     See  Cremer,  F 

McMullan,  O.  W.     See  Wood,  W.  P. 

HacMollin,  R.  B.  Carbon  dioxide  indicator  for  flue  gas; 
Automatic  

Macnab,   W.     Chemical   industry  ;     Some   achievements   of 

during  the  war  in  this  country  and  in  France 

(Hurler  memorial  lecture)     ..         ". .  ..      353T, 

McNeil.  A.  A.     See  Remus,  \V.  F 

MacKeil,  D.  M.    See  Hayward,  C.  R.  

Macomber,  H.  I.     See  Almy,  L.  H.     . . 

HcOwan,  G.     See  Irvine,  J.  C. 

Macpherson,  R..  and  W.  E.  Heys.  Soap  or  compound ; 
Antiseptic  and  insecticidal (P) 

McQuaid,  H.  W.,  and  E.  W.  Ehn.  Steel  ;  Effect  of  quality 
of on  case-carburising  results    . . 

Macredie,  A.  E.     See  Remus,  W.  F.    . . 

Macri,  V.     Qualitative  analysis 

McWiUiam,  A.     Obituary  

Madden,  H.  D.    See  West,  J.  

Madden,  J.  P.,  and  others.  High  explosive  containers; 
Method  of  filling  (P) 

Maddox,  R.  D.  Mixing  and  grinding  apparatus  eccentrically 
operated  (P) 

Maddy,  J.  H.     Iron  or  steel  ;    Preparation  of for  lead 

and  tin  coating  (P) 

Madelung,  W.,  and  E.  Kern.     Dicyanamide 

Madge.  N.  G.     See  Keith,  C.  H 

Madinaveitia,  A.     Abietic  acid  . . 
Hydroxydimethylbenzylamine 

Maeder.  H.     See  Merck,  E 

See  Willstatter,  R.  

See  Wolfes,  O 

Maennchen.  F.     See  Meister,  Lucius,  u.  Briining 

Magasanik,  J.    See  Wiegner,  G. 

Magna  Metal  Corp.     See  Lohrey,  W. 

Magnee,  C,  and  E.  Demeure.  Furnaces  of  steam  boilers 
and  other  similar  furnaces  ;  Heating  method  applic- 
able to  the (P) 

Magnetic  Pigment  Co.     See  Fireman,  P.       . .       639a,  771a 

Magno  Storage  Battery  Corp.     See  Meyer,  S.  M 

Magnolia  Petroleum  Co.    See  Dickens,  C.  S. 

Magnus,  H.    See  Heuser,  E 

Magrath,  H.  J.  "Water  for  softening,  sterilising  and  like 
purposes  ;    Treatment  of  (P)   . . 

Magri,  G.  Distilling  fuel  and  bituminous  rocks  ;  Apparatus 
for (P) 

Mahler.  E.     Pulp  beating  engines  (P)  . . 
Mahler,    W.    H.     Chemical   apparatus   for    containing    and 
mixing  a  chemically  reacting  charge  (P) 


436A 


787a, 
!!  567a*, 


344a 
116a 
116a* 


.  5A 
7.")  A 

243A 

640a 
773  a 
773  a 
139R 

983a 

644  a 

660A 

772a 

624a* 

597a 

604a 

357a 

661a* 

B55a 

7  7.-- a* 
371A 

797A* 

813a 
753a 

33A 
358a 

550a 

650a 


505R 
267A 
330A 
780a 
364R 

914a 

330a 

267a* 

S39A 

208B 

973a 

649a 

399a 

470A 
434a 
262a 
97>7A 

77A 
787A 
.-.'17  A* 
648A. 
749a» 
606a 

20a 


575a 

947a 
766a 
890a 
190a 

683a* 

48A 
324a* 

206a 


Mahler,  W.  H. — continued. 

Hvdrazobenzene  and  i  ts  homologues  ;    Preparation  of 

(P)  ..  ..  : 212a 

Mahood,  S.  A.,  and  D.  E.  Cable.     Wood  cellulose  and  cotton 

cellulose  ;    Comparison  of  . .  . .  . .     664A 

Wood  o;  eucalyptus  (B.    globulus)    and   western  white 

pine  (P.  monticota)  ;    Analysis  of  . .  . .     934A 

Many,  I.  J.     Flax,  hemp,  or  other  fibrous  stems  or  straws  ; 

Treatment  of (P)  133a 

Mailhe,  A.     Arachis  oil ;    Catalytic  decomposition  of . .     598a 

Catalytic  decomposition  of  lower  fatty  acids     ..  ..     727a 

Ketones  ;    Decomposition  of  aliphatic . .         . .     915a 

Oleic  acid  ;    I  at  alytic  decomposition  of ..         ..     334a 

Shark  oil  :   Catalytic  decomposition  of . .  . .     334a 

Mains,  G.  H.     Furfural-water;    The  system ..  ..     48lA 

Maitland.  H.  T..  and  Sun  Co.     Hvdrocarbon  oils  ;  Treatment 

Of (P)         741A 

Mineral  oil  derivatives  (P)  . .         ..         ..         ..        ..     741a 

Majima,  R.  Japanese  lac  ;  Main  constituent  of .  Chem- 
ical investigation  of  different  naturally  occurring 
species  of  lac  closely  allied  to  Japanese  lac  . .  . .     182a 

Japanese  lac  ;    Main  constituent  of  .     Position  of 

double  bonds  in  side  chain  of  urushiol  and  demon- 
stration that  urushiol  is  not  homogeneous  . .  . .     182a 
and  C.  Kuroda.     Lithospermum  erytfirorhizon ;    Colouring 

matter  of . .         . .         . .         . .         . .         . .     744a 

Major,  J.  L.     Distillation  or  evaporation  of  liquids  (P)       . .     451a* 
Malan,  H.  L.,  and  A.  T.  Robinson.     "  Weighing  and  measur- 
ing of  chemical  substances  ". .  ..  ..  ..     576R 

Malbaski.  M.     See  Hunyady,  I.  188a 

Ualcolmson  Engineering  and  Machine  Corp.    See  Komarek, 

G.  ..       ' 848a 

Malfitano,  G.,  and  M.  Catoire.     Amylocellulose  considered 

as  a  compound  of  silicic  acid  and  amy  lose  . .  . .     42'^a 

Malherbe,    I.    de    V.     Fertiliser  works   at   Somerset   West, 

S.  Africa  :    New 219R 

Mallet,   P.     Coal   gas  enrichment  ;     Catalytic  products  for 

739a 

Mallock,  H.  R.  A.     See  British  Cellulose  and  Chemical  Mfg. 

Co.,  Ltd.  5S4a* 

Malmberg,  C.  J.  G.,  and  J.  G.  Holstrom.  Iron  and  steel ; 
Apparatus  for  the  determination  of  the  percentage 

of  carbon  in (P) 763a 

Malone,  L.  J.,  and  Eastman  Kodak  Co.  Cellulose  esters  and 
ethers  ;    Composition  and  film  containing  mixtures 

of (P)        807A 

Nitrocellulose  compositions;    Manufacture  of  coloured 

(P)  03a 

Malvezin,  P.     Wine  ;    Determination  of  free  and  combined 

volatile  acids  in  — —  . .  . .  . .  . .  . .     992a 

and  others.  Hydrosulphite-formaldehyde  preparation ; 
New  and  an  economical  generator  of  hydro- 
sulphurous  acid  . .  . .  . .  . .  . .       55a 

Mameli,  E.     Calcium  sulphate ;  Solubility  of in  presence 

of  calcium  benzenesuiphonate  . .  . .  . .     662a 

Digitalis  leaves  ;    Extraction  of  active  principles  of 914a 

Guaiacol  ;   Di-niereury  derivatives  of . .  . .     876a 

p-Iodothymol ;   Mercury  derivatives  of . .         . .     876a 

Mercury-phenol ;   Acetates  and  hydroxides  of and 

their  derivatives  . .  . .  . .  . .  . .     518a 

and  A.  Mameli-Mannessier.     Thymolmercuriacetates  and 

their  derivatives  ..  ..  ..  ..  ..     S75a 

Mameli-Mannessier,  A.    See  Mameli,  E.         ..         ..         ..     875a 

Manchot,    W,     Silicon:     Modification    of   soluble    in 

hydrofluoric  acid  . .  . .  . .  . .  . .       98A 

and  H.  Funk.     Silicon  from  copper  silicide  . .  . .  . .     900a 

Silicon  ;    Modifications  of .     Solubility  of  silicon  in 

hydrofluoric  acid         ..         ..         -.         ..         ..     251a 

and  K.  Ortner.     Selenium  dioxide  ;   Hydrates  of . .     2.">1a 

Mandelbaum,  R.     See  Ges.  fur  Landwirtschaftlichen  Bedarf    151a 

Mandelkow,  B.     See  Krull,  H.  806a 

Mandell.  A.  J.,  and  Electrical  Alloy  Co.     Alloy  for  electrical 

resistance  elements  (P)  . .  . .  . .  . .     1S0A 

Mandutz,  H.,  and  M.  Wohlleben.     Tar  etc. ;   Device  for  the 

dehydration  of  (P)         ..  ..  ..  ..     2^7a 

Mangelsdorff,     M.     F.     Vegetable     particles ;      Preventing 

adherence  of  moist during  drying  (P)  . .  -       . .     115a 

Mangold,  M.     Cellulosic  material  ;   Manufacture  of  sheets  of 

with  a  compact  surface  (P)      . .  . .  . .     936a 

Mauley,  F.  T.,  and  Texas  Co.     Hydrocarbon  oils  ;   Cracking 

(P)  S50a 

Manley,  J.  J.     Brass  weights ;   Protection  of ..  ..     961a 

Drying  agent;    Use" of  phosphoric  oxide  treated  with 

ozone  as  a . .         . .         . .         . .         . .     393a 

Mann,   A.     Nitrolim  ;     Process  for   making   granular  

from  nitrolim  and  sulphite-cellulose  pitch  (P)       ..     829a 

Mann,  F.  G.,  and  W.  J.  Pope.  00-Dichlorodiethyl  sul- 
phide ;   Production  and  reactions  of . .  . .     435a 

Mann,  M.     Potatoes,  onions,  tomatoes,  apples,  or  the  like ; 

Preparation  of  dried  products  from (P)         . .     516A 

Mann,  M.  D.,  and  Standard  Oil  Co.  Alcoholic  liquid  ;  Puri- 
fying  (P) 438a 

Mann,  W.  A.    See  Clark,  G.  L.  603a 

Manners,  F.  W.     Peru  ;    Report  on  finance,  industry,  and 

trade  of 162K 


64 


JOURNAL  OF  TfiE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Mannstaedt  und  Co.,  A.-G.,  Faconeisen-Walzwerk  L., 
and  H.  Hansen.  Furnaces;  Continuous  reheating 
or  annealinff  — —  (P)  . .  . .  . .  . .  . .     505a 

Furnace;  Ht-arth  smelting  or  heating (P).-         ..     764a 

Produi , t --as  :    Increasing  the  yield  of  tar  and  the  like 

in  purifying  hot (P) 930a 

Recuperators  for  use  in  connexion  with  furnaces  (P)  . .     489a 

Manoury,  H.     Molasses  ;  Extraction  of  sugar  from  beet ■ 

by  a  modification  of  the  baryta  process       . .         . .     829a 

Manson,  M.  E.     Enamelling  of  cast  iron  ;    Effect  of  sources 

of  pig  iron  on . .  . .  . .  . .  . .     983a 

Bfansuri,  Q.  A.     Aluminium-arsenic;  The  system ..     984a 

Thallium-arsenic  ;  The  system  ■ ■       ..  ..      418R,  819a 

C.  L.     Carbon-electrode  industry ;    Technology  of 

the 718A 

Carbon-electrode  industry ;    Teclinology  of  the  ■ . 

Baking,  and  baking  furnaces  . .  . .  . .  . .     767a 

Carbon-electrode   industry  ;    Technology   of  the  . 

Cleaning  testing  and  shipping  ..  ..  ..     768a 

Carbon -elect  rode  industry  ;  Technology  of .  Grind- 
ing, mixing,  moulding,  and  extrusion         . .  . .     718a 

Mantius,  O.    See  Simonson,  W.  H.      . .         . .         . .         . .         4a 

Manuf.  de  Prod.  Chim.  du  Nord  Etabl.  Kuhlmann.  Furnace 
for  roasting  pvrites  and  like  ores ;    Mechanically 

operated (P)         942a 

Sulphuric  anhydride  ;    Apparatus  for  the  manufacture 

of by  the  contact  process  (P)  . .  . .  . .     414a 

See  Pascal,  P.  14a* 

Maquenne,    L.     Sucrose ;    Inversion   of   by  alkaline 

copper  solutions        . .  . .  . .  . .  . .  . .     830a 

and  R.  Cerighelli.     Seeds  ;  Influence  of  lime  on  yield  from 

during  the  germinative  period  . .  . .  . .     477a 

Marais,  J.  S.  Phosphates  of  aluminium,  iron,  and  calcium  : 
Comparative  agricultural  value  of  insoluble  mineral 

561A 

Marchal,  G.     See  Matignon,  C.  811a 

Marchand,  R.     Terpin  ;    Preparation  of  hydrate  of (P)     392a* 

Terpineol ;  Preparation  of  (P)        ..  ..      231a,  309a  • 

Marcille,  R.     Wine  ;    Determination  of  volatile  acidity  of 

sulphited 911a 

Marckwald,  E.,  and  F.  Frank.  Lampblack  in  rubber  mix- 
ings          906A 

Marckwald,  W.,  and  K.  Helrnholz.     Phosphorus      ..  ..     938A 

Marckworth,  O.  S.     Glass ;    Production  of  non-shatterable 

(P)  634A 

Marcusson,  J.     Fatty  oils  ;  Polymerisation  of . .  . .     866a 

and  M.   Picard.     Coal  tar  and  pitch  therefrom  ;    Com- 
position of  low-temperature . .  . .  . .     803a 

Peat  and  shale  tars  ;   Composition  of . .  . .     496a 

and  H.   Smelkus.     Montau  wax  ;    Colouring  matters  of 

659A 

See  Schwarz,  F 535a 

Mardcn,  J.  W.,  and  Westinghouse  Lamp  Co.     Rare  metals, 

e.g.,  zirconium  ;   Preparation  of (P)    . .  . .     942a 

Mardick,  J.  R.,  and  Acheson  Graphite  Co.     Explosive  (P)  . .     524a 
Marek,    A.     Tinning    articles    by    electroplating    and   heat 

treatment  (P)   ..         ..         ..         ..         ..         ,,       19a 

Hargoschee,  B.  M.,  and  R.  Baru.     Di-,  tri-,  and  per-chloro- 

ethylene;   Saturation  character  of ..         ..     157a 

and  E.   Vogel.     Kjeldahl  method  applied  to  mononitro- 
phenols,  mononitrobenzoic  acids,  and  mononitro- 
cinnamic  acids  ...  . .  . .  . .  . .  . ,     518a 

Margotton,  P.  J.  C.     Tanning  of  hides  and  skins  (P)  . .  . .     828a 

Marnier,  C.    Fractionation  of  liquid  mixtures  and  application 

to  preparation  of  a  motor  spirit        . .  . .         3a 

and  Van  Ruymbeke.     Alcohol;    Production  of  industrial 

absolute and  its  application  to  preparation  oi 

a  liquid  fuel      . .  . .  . .  . .  . .  . .     952a 

See  Granger,  L 4a 

Marino,  Q.     Metallising  articles  of  porcelain,  pottery,  china, 

and  the  like  ;   Electrically (P) 103a 

Nickel,  cobalt,  and  their  alloys;    Electrolyte  for  use 

in  electrode  position  of (P)        . .  . .  .  .      14".  a 

Plating  electrolyte  ;  Preparation  of  a (P)  . .  . .     1S0a* 

Marinot,  A.     Fuels;   Determination  of  water  in ..     165a 

Sulphur  in  iron  and  steel ;  Determination  of . .     178a 

Mario,  T.     Sodium  hypochlorite  solutions;    Red  coloration 

of 413a 

Markle,  D.     Fuel;  Process  of  forming (P)         ..  ..     2S2a 

Markley,  A.  R.    See  Rhodes,  F.  H 134a 

Marlow,  J.  H.     Gas  producer  for  firing  or  heating  purposes 

(P)  974a 

Marotta,  D.,  and  R.  Kaminka.  Flour;  Decomposition  of 
hydrogen  peroxide  as  means  of  determining  degree 

of  extraction  of ..        ..        ..        ..        ..     832a 

Marqueyrol,  M.,  and  FlorenUn.      Guncotton  ;    Gelatinising 

agents  for 349A 

and  Lorit-ttf.     Mixed  acid;   Method  of  analysing ..     349a 

and  A.  Scohy.     1.2.4-Dmitrophenctol  and  1.2.4.6-trinitro- 

tol;    Preparation  of ..  ..  .,      349a 

See  K  odder S23A,  348a 

Marr,  II.  V      Sandalwood  oil ;  Solubility  of  West  Australian 

957a 


TAGE 

Marr,  J.,  and  Coke  Oven  Construction  Co.,  Ltd.  Ammonium 
sulphate ;  Continuous  drying  of  pulverulent  or 
granular  materials,  applicable  to  the  manufacture 

of  neutral (P) 982a 

Marr,  R.  A.     Paper  ;   Recovering  used (P)        . .  . .       10a 

See  Twombly,  A.  H.  15a 

Marr  is,  H.  C,  and  W.  Walker  and  Sons,  Ltd.  Tanning; 
Means  of  supplying  liquor  to  the  pits  in  the  process 

Of (P)         225a* 

Mars,  G.     Distillation  gases  and  producer  gas;    Apparatus 

for  the  separate  production  of (P)        . .  . .     403a 

Marsh,  F.  W.    See  Scales,  F.  M 263a 

Marsh,  L.  G.     Picric  acid  ;  Hygroscopicity  of . .         . .     441a 

Marshall,  A.  G.     See  Tizard,  H.  T 402a 

Marshall,  F.  D.     Discharging  or  charging  devices  for  rotary 

dryers,  kilns,  furnaces,  retorts,  and  the  like  (P>  .".     927a* 

Retorts ;    Rotary  for  treatment  of  carbonaceous 

or  other  material  (P)  . .         . .         . .         . .         . .     930a 

Marshall,  M.  G.     Adsorption  of  gases  by  charcoal    . .  . .     122b 

Marstou,  J.  R.     Cadmium  pigment;    Manufacture  of 

(P)  65a 

See  Kuzell,  C.  R 813a 

Marten,    H.     Wooden   poles  and   the   like ;     Impregnating 

with  fluorides,  and  copper,  zinc,  and  mercurv 

salts  (P)  861A 

Martin,  F.     Codeine  salts.     Preparation  of  solutions  of  the 

hydrobromide  for  injection    . .         . .         . .         . .     782a 

Martin,  F.  J.     See  Joseph,  A.  F 242k 

Martin,   G.,  and  F.   L.   Elliott.     Vulcanisation  of  rubber ; 

Coefficient  of . .  . .  . .  . .  . .     2261 

See  Glover,  A :  ..      40Sa,  641a 

See  Roche,  J.  W 115a,  343a 

See  Wallis,  R.  A 192a 

Martin,  J.     Gases  ;    Separation  of  solid  particles  from 

by  centrifugal  action  (P)        . .  . .  . .  . .       88a 

Martin,  O.  C,  and  Nichols  Copper  Co.     Copper  ;    Refining 

(P) 107A 

Martin,  R.  B.     Rubber  ;  Treating  manufactured (P)  . .     383a 

Martin,  W.  G.     Drying  ;  Methods  of 6r 

Martinet,  3.     I  sat  in  Yellow  series  ;   Colouring  matters  of  the 

169a 

Martini    and    A.     Nourrisson.     Wine;      Determination    of 

sulphur  dioxide  in . .  . .  . .  M     386a 

Martoccio,  F.  A.     Dryer  (P) 531a 

Martsolf,  J.  H.    See  Noyes,  H.  A 384a 

Marx,  C.     See  Akt.-Ges.  f.  Anilin-Fabr M     948A 

Marx,  R.     Muffle  furnace  (P) 44a 

Paper-making  machines,  board  machines,  pulp-drying 

machines,  and  the  like  ;  Couch  rolls  for (Pj  . .       54a* 

Marx,  R.  J.     Dehydrating  plastic  and  other  materials,  e.g. 

paper  (P) . .     665a 

See  De  Cew,  J.  A.  335A* 

Marx,  T.    See  Schaum,  K 788a 

Maschhaupt,  J.  G.     Soil ;    Influence  of  kind  of and  of 

manuring  on  content  of  nitrogen  and  ash  in  culti- 
vated plants 26A 

Maschinenbau-A.-G.    Balcke.     Crystallisation    of    hot    salt 

solutions  ;    Apparatus  for  the  continuous (P)     401a 

Potassium  salts  ;   Manufacture  of of  varying  grain 

size  by  cooling  hot  liquors  in  vacuo  (P)       . .          . .     502a 
Salts  ;    Apparatus  for  crystallising ■  from  hot  solu- 
tions (P)             294A 

Saltfl  ;  Recovery  of from  hot  solutions  (P)  . .  . .     708a 

See  Holle,  A 207a* 

Maschinenbau-Anstalt    Humboldt.     Flotation    process    for 

dressing  mineral  mixtures  (P)  . .  . .  . .     766a 

Flotation  process  by  means  of  electrolytic  gas  bubbles  ; 

Recovery  of  minerals  from  ore  mixtures  by  a 

(P)  ..         ••     4721 

Maschinenfabr.  Augsburg-Niirnberg  A.-G.    Bituminous  fuels  ; 

Extracting  and  distilling (P)    . .  . .  . .     2S6a 

Distillation  in  rotating  drama  ;    Apparatus  for  convey- 
ing steam  to  material  during (P)        . .  . .     128a 

Fuel ;    Production  of  liquid  from  oils  containing 

creosote  (P) 702a 

Maschinenfabr.    Esslingen.     Fcrrosilicon  ;     Manufacture    of 

shaped  pieces  of (P)      . .  . .  . .  . .       19a 

Mase,  R.  P.,  and  Mine  Safety  Appliances  Co.     Gas-purifying 

compositions  and  their  production  (P)         . .          . .     344a 
Hasing,  G.     Recrystallisation  of  tin  ;    Primary  and  secon- 
dary    672a 

Tin;    Recrystallisation  of  cold-worked  ..  ..     256a 

Mason,  F.  A.     Barley  and  malt ;  Pests  and  diseases  of . 

Fungi,  and  fun  mi-  diseases  oi  barley..         ..         ..     339a 

and  F.  Brown.     Malt;  "Speckled" 830a 

Mason,  W.     Nitric  acid  ;   Valeutiner  system  for  manufacture 

of 11a 

and  R.  V.  Wheeler.    Ignition  of  gases  by  a  heated  surface. 

Mixtures  of  methane  and  air  . .  ..  ..  ..     972l 

Haasera,    V.     Cinnamomttm    glatiduliferum ;     Essential   oil 

of  ■ 836a 

Massey,  J.    See  Stoney,  G 242A 

Massink,  A.    Phenol-red  as  indicator  for  acidity      ..         ..     272a 


NAME  INDEX. 


65 


PAGE 

Masson,   H.   J.,  and   J.  M.   Gerard.     Carbon  black,  lamp- 
black and  hydrogen  ;   Manufacture  of (P)    . .  558a 

Masson,  I.,  and  others.     Glass  ;  Suggested  method  for  deter- 
mination of  absolute  viscosity  of  molten . .  175a 

See  Gilbert,  L.  F 857a 

Massy.     Cedrus  atiantica  ;    Preparation  in  Morocco  of  tar 

of :   some  chemical  and  physical  characters  . .  168a 

Mastbaura,  H.     Olives  ;    Extraction  of  oil  from . .  674a 

Masterman,  A.  T.    Millboard  and  similar  substances  ;  Manu- 
facture of using  tauyard  refuse  (P)    . .          - .  665a 

Shell  fish  ;   Purifying  edible (P)        192a 

See  Rogers,  D.  McG 252a,  333a* 

Masters,    H.     Cellulose;     Reactions   of  with   sodium 

chloride  and  other  neutral  salt  solutions    . .          . .  977a 

Masucci,  P.     Salvarsan  solution  ;  Stability  of . .          . .  518a 

Ma^umoto,  B.     See  Komatsn,  S.         ..          ..          ..          ..  957a 

Mather,  P.    Condensers,  preheaters,  heat-exchangers,  and  the 

like  (P) 738a* 

Distillation  of  crude  oil  ;   Fractional (P)    . .          . .  701a 

Settings  for  stills  and  similar  purposes  (P)        ..          ..  969a 

Stills  for  crude  oil  (P)        28  u 

Mather,   W.     Soil  ;     Effect   of  lime  containing  magnesium 

upon  the  composition  of  the and  upon  plant 

behaviour           . .          . .          . .          . .          . .          . .  561a 

Mathers,  F.  C,  and  J.  W.  H.  Aldred.     Perchlorates ;    Pre- 
paration of by  heating  chlorates          . .          . .  856a 

and  American  Smelting  and  Refining  Co.    Tin  ;   Electro- 
lytic refining  of (P)        20a 

Mathesius,  W.     Briquetting  iron  oxide  ores  (P)        . .          . .  147a* 

Cements  ;    Production  of  aluminate (P)    . .          . .  757a 

Fatty  acids  ;  Preparation  of from  hydrocarbons  (P)  728a 

Lead  alloys  for  bearing  metals  (P)         . .         . .         . .  470a 

Montan  wax  ;  Manufacture  of  fatty  acids  from (P)  945a 

Matheson,  A.     Superphosphates  ;    Utilisation  of  alunite  ore 

in  the  process  of  making (P) 428a* 

Matheson,  H.  W.     Acetaldehyde  ;  Manufacture  of (P)  788a* 

Acetic  acid  ;    Manufacture  of (P) 347a 

and  others.     Acetic  anhydride  ;    Manufacture  of (P)  786a 

Mathieson    Alkali    Works,    Inc.     Ammonia-soda    process ; 

Recover}'  of  ammonia  in  the (P)          . .          . .  328a* 

See  MacMahon,  J.  H  753a,  813a 

Mathis,    H.     Sugar    beet  ;     Preserving    extracted    slices   of 

(P)             * 429a 

Mathur,  K.  K.     See  Bhatnagar,  S.  S.               ..  588a 

Mathy.  M.     Furnace  ;    Regenerative (P)          . .          . .  207a* 

Glass  ;   Crucible  furnace  for  melting (P)    . .         . .  103a* 

Matignon,   C.     Nitric  acid  ;    Economic  realisation  of  oxi- 
dising reactions  in  manufacture  of  synthetic  585a 

Nitrogen-products  industry  in  Germany  . .          . .          . .  400R 

and  M.  Frejacques.     Ammonium  carbamate ;    Conditions 

of  formation  and  stability  of . .          . .          . .  413a 

Ammonium  carbamate ;    Transformation  of  into 

urea         . .          . .          . .          . .          . .          . .          . .  519a 

Calcium  sulphate ;    Conversion  of into  ammonium 

sulphate            587a 

TJrca  ;  Conversion  of  ammonia  into  . .      231a,  646a 

and  G.  Marchal.     Sodium  formate ;    Conversion  of  

into  oxalate      ..         ..         ..         ..         ..         ..  811a 

Matsui,  M.,  and  S.  Kimura.     Sodium  sulphate  in  commercial 

salteake  ;  Rapid  estimation  of ..          ..          ..  369a 

Matsuno,  K.     See  Garner,  W.  E _.        90a,  857a 

Matsuno,  T.     Bronze  ;    Constituents  of  ancient  and 

constitutional  relation  between  the  original  alloy  and 

its  patina          . .         . .         . .         . .         . .         . .  2o5\ 

Copper  sulphate  ;    Technical  preparation  of . .  981a 

Matsuo,  K.     Glass-covered  rolls  (P) 177a 

Matsuoka,  C.     Agar-agar  ;   Manufacture  of (P)          . .  75a 

Matter,  O.     Alcohols  ;   Production  of  polyhydric (P)  . .  36a* 

Chlorinated  nitron  aphtha  lenes  ;   Preparation  of (P)  687a 

Matter,  P.  E.     Liquids  ;   Evaporating (P)        . .          . .  317a 

Matthew,  J.  A.     Yarns  ;   Elastic  properties  of . .          . .  212a 

Matthews,    J.    M.     '*  Bleaching    and    related    processes    as 

applied  to  textile  fibres  and  other  materials  "      . .  108a 

Matthies,  M.     See  Paneth,  F.  293a,  293a 

Matthis,  A.  R.     Volatility  of  oils  ;  Determination  of . .  699a 

Matzerath,  O.     Gas  analysis;    Apparatus  for without 

stopcocks  and  valves  (P)        . .          . .          „          . .  353a 
Maudere,  P.  A.  P.  V.     Inflammable  liquids  ;   Apparatus  for 

storing  and  delivering (P)         . .          . .          . .  44a* 

Inflammable  and  other  liquids  in  tanks  and  pipings  in 
which  it  is  protected  from  contact  with  air  ;   Safety 

storage  and  distribution  of (P)  . .          ..          ..  128a* 

Maue,  G.    Albumose-silver  ;   Estimation  of  silver  in . .  835a 

Maurer,  E.     Gases  in  iron  and  steel 16a 

/3-Iron,  and  theories  of  hardening            . .         . .         . .  143a 

and  R.  Hohage.     Steels  ;    Heat  treatment  of  special 

particularly  of  chromium  steels       . .          . .          . .  504a 

and   W.   Schmidt.     Iron ;    Influence  of  various  alloying 

metals  and  carbon  on  physical  properties  of . .  143A 

and  R.  Schrodter.     Steel  furnaces  ;   Influence  of  difference 
in  height  of  and  distance  between  producers  and 

furnace  in  operation  of  open-hearth . .          . .  550a 

Maurer,  J.     Precious  and  other  metals  ;    Welding  or  solder- 
ing of (P) 765a 


page 

Mauri,  D.     Electric  furnaces  ;   Tilting  and  other  mechanical 

arrangements  for  three-phase (P)       ..         ..       21a* 

Mans,    F.,    and    S.    J.    Spoelstra.     Dehydrating    material; 

Method  of  and  apparatus  for (P)        . .         . .     531a 

Dehydrator  (P)        127a,  449a 

Maus,  K.     Peat  and  similar  material ;    Pressing (P)  . .     659a 

Mauss,  W.     Filter  ;    Centrifugal (P) 165a* 

Filters  ;  Vacuum  (P)  315a,  358a 

Filtration   of   colloidal    matter   from   liquid    mixtures ; 

Vacuum  (P)         ..  ..  M  ..  _.     576a 

Heat  treatment  of  liquid  (P)         . .  . .  . .  . .     163a 

Sugar-juice  ;    Treatment  of (P) 777a 

and  Continuous  Centrifugal  Separators,  Ltd.     Centrifugal 

decantation  (P)  577a* 

and  Continuous  Centrifugals,  Ltd.    Vacuum  filter  (P)    ..     577a* 

Mauthner,  F.     Isoferulic  acid  ;    Synthesis  of . .         . .     727a 

Maveety,  D.  J.    See  Davis,  C.  E ;4Ja 

Mawer,  J.    See  Parr,  F.  J 715a 

Mawson,  J.     Gas  producers  (P)  167a 

Maxted,   E.  B.     Catalysis  of  hydrogen  peroxide  by  finely 

divided  platinum.     Influence  of  inhibitants  . .     857a 

Nitrogen  fixation  ;    Relationship  between  water-power 

and  394r 

Vulcanisation  ;    Dithiocarbarnate  accelerators  of  . 

Discussion  . .  . .  . .  . .  . .  . .       88T 

May,  F.  W.     Multicoloured  screen-plates  ;    Preparation  of 

(P)  729A 

Mayeda,  K.     See  Murayama,  Y.  268A 

Mayer,  F.,  and  R.  Heil.  Pyrazoleanthrone  Yellow  ;  Con- 
stitution of 663a 

and     T.     Schulte.     1.6-Dimethylnaphthalene ;      Hydro- 

genation  of 662a 

Mayer,    G.    K.,    and    others.     Beverage-making    material ; 

Manufacture  of (P)         912a 

Mayer,  P.     Yeasts  ;    Influence  of  mineral  spring  water  on 

carbohydrate  interchange  in ■    . .  . .  . .     830a 

Mayers,  H.,  and  Briton's,  Ltd.  Zinc  white  and  lead  sul- 
phate pigments ;  Furnace  and  apparatus  for  pro- 
ducing metallic  fumes,  e.g.,  of  definite  com- 
position (P) 223a 

Mayes,  C.    See  Lloyd,  D.  J 224a 

Maynard,  L.  A.,  and  F.  M.  Fronda.     Coconut  meal;  Relative 

growth-promoting  value  of  protein  of and  of 

combinations  of  it  with  protein  from  various  other 

feeding  stuffs 606a 

Maypole  Margarine  Works,  Ltd.,  and  O.  Michelsen.  Mar- 
garine ;   Consolidating  and  blending  of (P)  . .     834a* 

Mayweg,  R.     Wood  distillation  gases ;    Recovery  of  wood 

spirit,  pyroligneous  acid,  and  tar  from (P)  . .       48a 

Maze,  A.  E.  Chlorine  products  from  unsaturated  hydro- 
carbons ;    Producing (P)  . .  . .  . .     786a 

Mazza,  E.  N.     Gaseous  mixtures  ;    Separating  constituents 

of (P)        163a 

Separation  of  gaseous  mixtures ;    Centrifugal  means  for 

the  (P) 280a 

Mazzucchelli,  A.,  and  S.  Anselmi.     Ammonium  perchlorate  ; 

Density  of  aqueous  solutions  of . .  . .     o26a 

Mead,  A.     See  Stockport  Furnaces,  Ltd.       . .  . .  . .     637a 

Meade,  A.     "  Gasworks'  practice  ;   Modern "  . .  . .     463R 

Meade,  R.  K.     Lime  kiln  (P) 503a 

Meadows,  T.  C,  and  others.     Caustic  alkali ;    Eliminating 

colour  from  (P)  . .  . .  . .  . .  . .     590a 

Saltpetre  manufacture  ;    Process  for (P)    . .  . .     982a 

Meaker  Galvanizing  Co.     Electro  galvanizing  machines  (P)     638a* 
Mears,   B.,  and   R.   E.   Hussey.     Kjeldahl   nitrogen   deter- 
mination ;    Use  of  perchloric  acid  as  an  aid  to 

digestion  in  the . .  . .  . .  . .  . .       82a 

Medes,  G.     See  Smith,  E 74a 

Medicus,  F.     Lacquers  ;    Production  of  flexible  from 

cellulose  esters  (P)      ..  ..  ..  ..  ..     510a 

Meerwein,  H.,  and  J.  Joussen.     Bornylene  ;    Preparation  of 

915a 

See  Von  Richter,  V 207R 

Mees,  C.  E.  K.     Motion  picture  ;   Chemistry  and  the . .     171R 

and    G.    Gutekunst.     Photographic    sensitisers    for    the 

deep  red  689a 

Mees,   G.     Peat ;    Generation  of  mechanical  energy  from 

without  previous  drying  (P)   -  •  ■  •  4a,  282a 

Mees,  R.  T.  A.     Detergent  power  of  soap  solutions    . .  . .     260a 

Meguin  A.-G.,  and  H.  Possekel.     Filter  ;  Method  of  applying 

material  to  a  suction (P)  . .  . .  . .     450a 

Mehler,  V.,  Segeltuchweberei  A.-G.     Waterproofing  fabrics  ; 

Continuous  process  of (P)         . .  . .  . .     248a 

Mehncr,  H.     Cyanic  compounds ;    Formation  of  by 

fixation  of  nitrogen  (P)  ..  ..  ..  ..     372a 

Meier,  R.     See  McClair,  J.  B.  886a 

Meigen,  W.,  and  A.  Neuberger.     Fatty  acids  ;    Separation 

of  solid  and  liquid . .  . .  . .  . .     944a 

Meigs,  J.  V.     See  Ellis,  C 185k 

Meniere,  G.,  and  De  Saint-Rat.     Nitrogen  ;    Apparatus  for 

collecting  ammonia  in  determination  of  total . 

Application  to  determination  of  albnmin  in  milk  . .     200a 

Meisenheimer,  J.     Yeast ;   Nitrogenous  constituents  of . 

Purine  bases  and  diamino -acids        . .  . .  . .     153a 


66 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Meiser,  F.  and  K.     Gas-Bred  shaft  furnace  (P)  . .  . .     531A 

Kiln ;  Method  for  heating  a  periodic  — —  by  producer 

gas(P) 756a 

Lampblack  ;  Process  for  transferring  heat  for  preventing 
deposition  of  oil  and  water  in  chambers  for  collect- 
ing  (P) 943A 

Lime-burning  in  a  shaft  kUn  ;    Method  and  appliance 

for (P) 296a 

Sagger  furnace  ;  Annular in  which  the  saggers  can 

be  manipulated  from  above  (P)         . .         . .         . .     756a 

Meiser,  K.     See  Meiser,  F.         . .        296a,  531a,  756a,  756a,  948a 
Meiser,  W      See  Badische  Anilin  u.  Soda  Fabr.  . .  . .     878A 

Meissner,  K.  L.     Copper  containing  bismuth ;    Process  of 

rendering suitable  for  technical  use  (P)  . .     717A 

Helster,  J.    Degumming  textile  fibres  (P)       ..         ..         ..       11a* 

Meister,  Lucius,  und  Briining,  Farbwerke  vorm.  Acridine 
derivatives ;    Manufacture  of  new  therapeutically 

active (P) 347a 

4-Amino-l-phenyl-2.3-dialkyl-5-pyrazolone ;  Prepara- 
tion of  N-aminoacetyl  compounds  of (P)         . .     917a 

1.2-Anthraquinone-iso-oxazoles ;    Manufacture  of  

(P)  50A 

Arsenobenzene  derivatives  ;   Preparation  of  stable 

(P)  916a 

Aurothiophenols  ;  Manufacture  of  complex (P)     . .     440a* 

Aurothiosalicylic  acid  ;   Manufacture  of  a  complex 

(P)         347A* 

Battick  effects  on  paper  ;  Producing (P)     ..  ..       11a 

Condensation  products  from  aromatic  hy  droxy  car  boxy  1- 

ic  acids  ;  Preparation  of  resinous (P)   . .  . .     301a 

Condensation  products  of  phenol  car  boxylic  acids  or 
their  derivatives  and  aldehydes  ;    Manufacture  of 

(Py 639a,  94Sa 

Dialkylaminoalkyl  compounds ;  Manufacture  of  ali- 
phatic  (P) 877a,  997a 

a-  DialkylaminoethyI-£-aracyl-  hydroxy  butyric  acid  es- 
ters ;   Manufacture  of (P)  520a 

Diarninodl-/>-xylylniet!i;ine  ;    Preparation  of  from 

commercial  xylidine  (P)  . .  . .  . .  . .     960A 

Dihy  droxy  diethyl  sulphide  ;    Manufacture  of  esters  of 

(P) 309A,  689a* 

Emulsifying  agent  for  liquids  insoluble  in  water  (P)        . .     742a 
2.3-Hydroxynaphthoic  acid  arylides  ;    Manufacture  of 

sulphonic  acids  of (P)  . .  . .  . .     853A 

Indigo  fermentation  vat ;  Manufacture  of  stable  concen- 
trated preparations  suitable  for  the (P)  . .     979a 

Ketones  of  quinoline  series  ;  Manufacture  of  cyclic 

(P)  135A 

Methane  ;  Manufacture  of (P)  33a 

MetbylsuJphites  of  secondary  aromatic -aliphatic  amines  ; 

Manufacture  of (P)  786a,  878a 

Monoazo '  dvestuffs  for  dyeing  wool ;    Manufacture  of 

(P)  8a* 

Nitrogen  oxides,  Recovery  of (P) 669a 

Resinous  condensation  products  ;    Manufacture  of 

from  naphthylamines  (P)         . .  . .  . .  „     382a 

Seed  corn  ;  Fungicide  for  treating (P)         . .  . .     775a 

Selenium  compounds  ;  Preparation  of  aromatic (P)     687a 

Urea  ;  Production  of from  calcium  cyanamide(P). .     521a 

Vat    preparations ;     Manufacture    of   stable    dry,    and 

readily-soluble (P)  . .  . .  705A,  749a*,  S09a 

Mejdell,  T.,  and  A./S.  Labrador.     Alumina  ;    Production  of 

,  from  aluminium  nitrate  solutions  (P)  . .  . .     415a 

Melamid,  M.  Ethers  of  homologucs  of  hydroxybenzyl  alco- 
hols, containing  methyl  groups  attached  to  the 
nucleus,  for  use  as  linseed  oil  substitutes  ;  Process  of 

making (P)  728a 

Oil  for  cores  for  foundry  purposes  ;  Manufacture  of  - — - 

from  tar  oils  (P)  ..  ..  ..  ..  ..      457A 

Resinous  substances  and  tanning  materials  ;  Manufac- 
ture of (P)  261 A 

Tanning  substances  ;  Manufacture  of  artificial (P) . .     560a 

Melbye,   G.   S.     Copper  hydroxide  ;    Solubility  of  in 

caustic  soda  solution    ..  .,  ,.  ..  .-.     750a 

Melland.W.     See  Nield,  W.  H.  535A 

Mellon,  M.  G.  Lead  ;  Determination  of in  lead  amal- 
gam      984a 

Mell or,  J.  W.  "  Inorganic  and  theoretical  chemistry  ;  Com- 
prehensive treatise  on .    Vol.  I.    Hydrogen  and 

oxygen."  227R 

"  Inorganic  and  theoretical  chemistry  ;    Comprehensive 

treatise  on .*'    Vol.11.    ..         ..         ...         ...     407r 

and  others.     Clays;  Dehydration  of  dried ..  ..     176a 

&     Bragg,  W.  H 447r 

See  Moore,  B. M     710a 

Mellor,  K.,  and  Kestner  Evaporator  Co.    Evaporator  (P)     . .     697a 
Mellott,  H.  S.,  and  By-Products  Recovery  Co.    Milk  product ; 

Method  of  producing  a  condensed (P)   . .  . .     682a 

Meloche,  C.  C,  and  H.  H.  Wlllard.     Bromide  in  brines  and 

mineral  waters  ;  Determination  of ..  ..     413a 

Melton,  P.O.     Alloy  for  repair  purposes  (P) 901a 

Merrill,  F.  L.     Sheep-dip  ;  Oxidation  of  polysulphides  during 

use  of 307a 

Melvill,  T.  L.    Arsenite  ;  Effect  of  iron  on  the  iodine  titration 

Of—- 840a 

Menager.    See  Bertrand,  G 462a 

Menaul,  P.     [Jrea  ;  Hypobromite  reaction  on ..        ..     345a 

Mende,  II.     Aluminium  alloys  ;  Analysis  of ..  ..     144a 


PAGE 

Mendel,  L.  B.     See  Osborne,  T.  B 605a 

Mengel,  J.     Parasiticide  (P) 193a 

Mente,  O.     Photographic  developing  paper ;    Manufacture 

of (P)         690a 

Menzles,  R.  C.     y-Methylfructoside 992a 

Mercer,  T.     S^Emmott,  R 1G4A 

Merck,  E.     N-AIkylpvridinecarboxylic  acid  esters  ;  Prepara- 
tion of (P) 439a 

N-Alkylpyridine-3-carboxylic  acid  esters  ;     Preparation 

of  hydrogenated (P) 439A 

Betaines  of  the  pyridine  series  ;  Preparation  of (P)     439A 

Cerium  and  its  alloys ;   Coating with  other  metals 

(P)  717A 

Hydrargyrum  oxycyanatum  ;  Explosions  caused  by        . .     346a 

Magnesium  hypochlorite  ;   Preparation  of  basic (P) 

373a,  415A 
Tropinonemonocarboxylic  acid  esters ;   Manufacture  of 

(P)  270a,  270a,  270a* 

and  O.  Wolfes.     Tropinonemonocarboxylic   acid    esters ; 

Preparation  of (P)  436a 

and  others.     Carboxylic  acids  of  the  quinine  series  ;    Pre- 
paration of (P) 689a 

Catalysts  ;  Production  of  highly  efficient (P)         . .       89A 

Esters  of  tropinonedicarboxylic  acid  ;    Preparation  of 

(P) 787A 

Tropinonemonocarboxylic  acid  esters ;    Preparation    of 

(P) 436A 

Tropinonemonocarboxylic  acids  ;  Preparation  of (P)     787a 

Meredith,  W.,  and  Petroleum  Rectifying  Co.    Dehydrator  for 

petroleum  oils  (P)         890a 

Dehydrators  for  emulsions  (P)        ..  ..  ..  ..     850a 

Merl,T.,and  J.  Daimer.     Flour;  Calataseof ..  ..     114a 

Merling,  R.     See  Fisher,  H.  L.  110A 

Merrefleld,  G.  W.     Thermit  mixture  (P)  943a 

Merrell,  I.  S.,  and  Merrell-Soule  Co.     Condensing  apparatus 

(P)  164A 

Condensing  process  and  apparatus  for  milk  and  the  like 

(P)  343a 

Fruit-juice;  Treatment  of (P)  ..  ..  ..       75a 

Merrell-Soule  Co.     See  Merrell,  I.  S 75a,  164a,  343a 

Merrill,  A.  R.  T.     Cystine  231a 

Merrill,  D.  R.,  and  C.  C.  Scalione.     Carbon  monoxide  ;  Cata- 
lytic oxidation  of at  ordinary  temperatures     . .     155A 

Merrill,  F.  H.    Sodium  carbonate  and  the  like  ;    Purifying 

(P) 632a 

Merrill,  H.  B.     Columbium  and  tantalum  ;    Separation  of 

by  means  of  selenium  oxychloride         . .  . .     158A 

Molybdenum  and  tungsten  ;  Separation  of by  means 

of  selenium  oxychloride  ..  ..  ..  ..     159a 

Merrill,  J.  J.,  and  Corn  Products  Refining  Co.     Dextrin; 

Manufacture  of (P)  778a,   830a 

Merry,  E.  W.,  and  Pryotan  Leather  Corp.     Tanning  hides  and 

skins  (P) 477A,  829a 

Merson,  J.     See  Skelley,  J.  M.    M  820a 

Merten,  H.     See  Bdmer,  A 423a 

Mertens,  E.     Coal ;   Oxidisability  of and  determination 

of  moisture        . .  . .  . .  . .  . .  . .     577a 

See  Delmarcel ,  G.     ..         ..         ..         ..         ..         ..       45a 

Merz,  A.  R.    See  Ross,  W.  H «         . .         . .     413a 

Merz.C  H.    S^  Michie,  A.  C ~         ..         ". .     661a* 

Merz  and  McLellan,  and  E.  G.  Weeks.     Cement  manufacture 

and  low- temperature  carbonisation  (P)         ..         ..     635a 
and  others.    Air  heaters  (P)      ..         ..         ..         ..  B77A* 

Distillation  of  fuel ;  Low-temperature (P)  . .  . .       48a 

Fuel-distillation    and    steam-power    apparatus ;     Plant 

comprising (P)     ..         ..         ..         ..         ..     279a 

Low-temperature  distillation  by  steam  of  solid  fuel,  e.g., 

coal ;  Large-scale  power  production  by (P)      . .     279a 

Retorts,  gas-producers  and  like  apparatus  ;    Charging 

means  for (P) 890a* 

Messerschmitt,  A.     See  Chem.  Werke  Rhenania  ..  ..     151a 

See  Rhenania  Verein  Chem.  Fabr.  A.-G.  . .  . .     338a 

Messmer,  E.     See  Hess,  K 892a 

Messner,  J.     Benzyl  compounds  . .  . .  . .  . .     117A 

Metal  Protection  Laboratory.     See  Haines,  F.  W.      . .  . .       62a 

Metal  and  Thermit  Corp.     See  Kardos,  E.        . .  . .  . .     379a 

See  Lubowsky,  S.  J.  373a 

Metallbank  und   Mctallurgische   Ges.     Alloys  ;     Production 

of with  the  aid  of  intermediary  alloys  (P)         . .     107a 

Alloys  ;  Separation  and  recovery  of  metals  from (P)       62a 

Aluminium  oxide  ;   Manufacture  of  — —  from  materials 

containing  alumina  and  silica  (P)       . .  . .  . .     754a 

Ammonia  ;  Separation  of from  the  gaseous  mixture 

obtained  in  the  synthetic  production  of  ammonia  (P)     501a 
Electrical  gas-cleaning  apparatus  (P)        . .  . .  . .     797a 

Electrical  purification  of  gases,  employing  precipitating 

electrodes  of  the  plate  form  (P)  . .  . .     737a 

Evaporating  and  concentrating  solutions ;    Process  for 

,  and  for  effecting  chemical  reactions  (P)  . .     450a 

Gases  or  liquids  ;    Electrifl ration  and  precipitation  of 

suspended  particles  from (P)      . .  . .  . .     206a 

Insulator  for  electrodes  of  electrical  gas  purifiers  (P)       . .     576a 

Liquid,  powdered,  or  gaseous  material ;    Treating 

by  injection  into  a  steam  of  air  or  other  gases  (P)  . . 

317A,  450A,  737a 
Ores,  especially  iron  ores  and  the  like ;  Treatment  of 

by  sintering  (P) 20a 


NAME  INDEX. 


67 


PAGE 

Metallbank  und  Metallurgische  Ges. — continued. 

Ores  and  the  like  ;    Chlorinating  in  mechanical 

roasting  furnaces  (P)  . .         . .         . .         . .         . .     555a 

Ores  ;  Treatment  of previous  to  blast  sintering  (P)     767a 

Oxides  of  sulphur  ;   Production  of from  sulphates, 

especially  calcium  sulphate  . .         . .         . .       14a,  253a 

Precipitation  of  solid  or  liquid  suspended  matter  from 

gases  by  high-tension  electricity  (P)  . .      491a,  697a 

Sulphide  ores  ;  Treatment  of  slimy preparatory  to 

roasting  (P) 822a 

Sulphur  dioxide  ;    Manufacture  of  from  calcium 

(or  barium)  sulphide  (P)        294A,  415a 

Sulphur ;   Recovery  of  — —  from  calcium  silicate  slags, 

e.g.,  blast-furnace  slag  <P)     . .         . .         . .         .  -     415A 

Sulphurous   acid  from   calcium  sulphide ;    Process  of 

producing (P)     . .         . .         . .         . .         .  ■     373a 

Urea  ;      Evaporation,    concentration,    and    drying    of 

solutions  of (P) 391A 

Whey ;    Manufacture  of  stable  powdered  from 

dried  whey  (P)  192a 

Zinc  ;  Preparation  of  pure (P)         . .         . .         . .     716A 

and  W.  Gensecke.     Waste  heat ;  Utilisation  of (P)  . .     620a 

and  W.  Schopper.    Sal-ammoniac  waste  ;    Treatment  of 

(P)  754a 

See  Lilienfeld,  J.  E Ia,  S8a 

Metalhiitte  Baer  und  Co.    See  under  Baer. 

Metallurgical   Plant   Construction   Co.,   Ltd.     See  Lavaud, 

D.  s 637A 

Metallwerk  M.  Brose  und  Co.    See  wider  Brose. 

Metals  Extraction  Corp.,  Ltd.    See  Field,  S.              . .         . .  823a« 

See  Schwarz,  A 470a  j 

Metals  Recovery  Co.    See  Robbins,  H.  R.    . .         . .         . .  63a 

•'  Metan "    Spolka    z    ograniczona    odp.    Fractionation    of 
volatile,  and  more  especially  easilv  volatile  liquid 

mixtures  (P) 698a 

Metcalfe,  E.  T.    See  Usher,  F.  L 309a 

Metcalfe,  R.  F.,  and  Skinner  Engine  Co.    Fuel ;    Method 

and  apparatus  for  burning (P)  . .          . .          . .  130A 

Metropolitan  Yickers  Electrical  Co.,  Ltd.    See  Bailey,  R.W.  358a 

See  Slepian,  J.         . .         . .         . .         . .         . .         . .  21a 

See  Weber,  H.  C.  P 978a 

Metz,  H.  A.    See  Schirmacher,  K 663a 

Metzer,  C.    See  Gerum,  J 872a 

Metzger,  F.  J.,  and  Air  Reduction  Co.    Acetylene  storage 

tank  (P)            5S0A* 

Hydrocyanic  acid  ;  Transportation  of (P)  . .         . .  294a 

Retort  for  production  of  alkali  cyanide  (P)         . .          . .  670A 
Meunier,  G.     Celluloses  ;    Action  of  mineral  acids  on  crude 

.     Formation  and  concomitant  destruction  of 

reducing   substances.     Utilisation    of    by-products 

formed 212a 

Meunier,  L.    See  Chambard.  P 828a 

Meurer,  X.     Carbon  and  articles  containing  carbon  ;  Coating 

with  enamel,  quartz,  or  glass  (P)         . .         . .  757a 

Enamelling  and  glazing  ;  Process  for  (P)       254a,  295a 

Enamels,  glazes  and   like  substances ;    Coating  heat- 
resisting  articles  by  spraying  with (P)  . .         . .  502a 

Meurice,  R.    Ammoniacal  nitrogen ;    Rapid  determination 

of 200A 

Phosphates  ;   Determination  of  calcium  in  natural 667A 

Mewes,  R.  and  R.    Nitrogen  and  oxygen  mixtures  ;   Separ- 
ating   (P) 755a 

Mews,  J.    Fertilising  with  crude  gas  liquor -  263A 

Meyer,  A.     Tin  alloys  containing  iron  ;  Analysis  of . .  256A 

Meyer,  F.    Sulphur  ;    Obtaining  in  a  finely  divided 

form  (P)           755a 

and  others.     Sulphur  tetroxide  ;   Existence  of . .  896a 

See  Akt.-Ges.  f.  Anilinfabr.          323a« 

Meyer,  F.  H.,  Sudenburger  Maschinenfabr.  u.  Eisengiesserei 
A.-G.    zu    Magdeburg,    Zweigniederlassung,    and 

others.  Spinning  nozzles  for  artificial  threads  (P)  . .  367A 

Meyer,  J.    Selenium  dioxide  ;  Preparation  of . .         . .  668a 

and  W.  Friedrich.     Barium-sulphuric  acid  and  barium- 

selenic  acid        . .          . .          . .          . .          . .          . .  667a 

and  H.  Moldenhauer.     Telluric  acid  ;  Preparation  of 56a 

See  Ruzicka,  L 482a,  482a,  646a 

Meyer,  M.     See  Bogert,  M.  T 664a 

Meyer,  R.,  and  Poulenc  Freres.     Diaminoacridine ;    Manu- 
facture of (P) 348a" 

Meyer,  S.  M.,  and  others.    Alloy  (P)              766a 

Meyers,  H.  H.    See  MacDowell,  C.  H.              . .         . .         „  631a 

ilezger,  O.,  and  H.  Jesser.     German  rum        . .          . .          M  73a 

Mezger,  R.    Benzol  refining  plant ;   Continuous t.  49a 

MiaU,  S.    Annual  Meeting  proceedings          . .         . .         _.  211T 

British  Industries  Fair  ;   Impressions  of  the . .  92k 

Miami  Metals  Co.    See  Danforth,  G.  L.        . .         . .         . .  715a 

Micanite  and  Insulators  Co.,  Ltd.    See  De  Whalley,  H.  C.  S.  301a 
Micewicz,  S.    Sulphuric  acid  ;    Nitre  losses  in  manufacture 

of in  tower  systems      . .         . .         . .         . .  810a 

Michael  und  Co.     Silicic  acid  ;    Preparation  of  amorphous 

free  from  alkali  (P)        327a 

See  Siegel,  W 813a 

Michaelis,  L.     Water  ;    Determination  of  hydrogen  ion  con- 
centration in  drinking,  river,  and  sea  with 

indicators  without  buffer  salts         . .         . .         . .  116a 


PAGE 
Michaelis,  L. — continued. 
and  R.  Kriiger.     Hydrogen  ion  concentration  ;   Indicator 

method  of  determining  without  the  use  of 

buffers 121A 

Michel,  J.    See  Bredig,  G.         „         326a 

Michel,  O.    See  Brandt,  J 136a 

Michel,  W.  G.    Electrodes  and  abrasives ;    Manufacture  of 

(P)  ..„„.._„     222a* 

Michelsen,  O.    See  Maypole  Margarine  Works,  Ltd.  ...     834a* 

Michie,  A.  C.,  and  others.    Distillation  ;    Low-temperature 

(P)  661a* 

Michler,    J.    Soda    and    hydrogen    sulphide    from    sodium 

sulphate  and  coal ;  Production  of . .         . .     5S6A 

Middleton,  G.  N.    See  Stuart,  A.  T 531a 

Middleton,  P.  R.,  and  J.  C.  Lalor.     Copper-bearing  solu- 
tions ;  Electrolysis  of (P)  62a 

Silver-bearing  ores  or  residues  ;   Treatment  of (P)     180a 

Middleton,  T.    See  Cammell,  Laird  and  Co.,  Ltd 821a 

Midgley,  T.,  and  T.  A.  Boyd.    Fuel  efficiency  in  high-com- 
pression motors  . .         . .         . .         . .         . .       79R 

Hydrocarbons ;     Detonation   characteristics   of   blends 

of  aromatic  and  paraffin . .         . .         . .     578A 

Mielcke,  O.     Lime  ;  Production  of  adherent for  paints 

(P)  510A 

Mikolasek,  J.     Sugar  factory  products  ;   Factors  to  be  used 
for  conversion  of  sulphated  ash  to  carbonated  ash 

of 264a 

Milbauer,  J.,  and  J.  Pazourek.     Sulphites  ;    Oxidation  of 

in  concentrated  solutions  . .         . .         . .     706A 

Milbourne,  R.  J.     See  Cripps,  F.  S 455a 

Miles,  C.  W.    Nitrogen  fixation  ;  Method  of (P)         . .     294a 

Miles,  F.  D.,  and  W.  Sarginson.     Grillo  oleum  plant ;  Occur- 
rence and  effect  of  fluctuating  combustion  in  the 

sulphur  burners  of  the ■  . .         . .         . .         . .     1S3T 

Miles,  G.  W.     Resin  ;   Method  of  modifying (P)         . .     149a 

and  Ross  Chemical  Co.    Resin  ;  Method  of  oxidising 

(P)  335A 

Miles,  J.     Glazes  ;    Spit-out  of  on  passing  through  an 

enamel  kiln       . .         . .         . .         .  •         . .         . .     416a 

Miles,  W.  H.     See  Davies,  J 905A 

Militarkonservenfabr.    Heinemann  und  Hanka.    See   under 
Heinemann. 

Millar,  C.  E.    Soils  ;  Soluble  salt  content  of  field >.     677a 

Miller,  A.     Road  surfaces  ;   Process  for  making (P)  t.     503A 

Miller,  E.  J.     See  Bartell,  F.  E.  . .  891A 

See  Robinson,  C.  S.  26a 

Miller,  E.  W.     Invertase  activity  of  yeast ;  Effect  of  certain 

stimulating  substances  on . .  . .  . .       72a 

Miller,  H.  G.    Lucerne  hay  ;    Nitrogen  compounds  in  228a 

Miller,  J.  C,  and  Evaporating  and  Drying  Machinery  Co. 
Drying   of   liquids   and   semi-liquids ;    Apparatus 

for (P) 2S0A 

Evaporator  (P)        450a 

Food  product  obtained  from  brewers'  yeast  (P)  . .         . .     913a 

Miller,  J.  H.    See  Dolbear,  C.  E 373a 

Miller,  R.  N.,  and  W.  H.  Swanson.    Sulpliite  pulp  process  ; 

Chemistry  of  the  583A 

Miller,  S.  P.,  and  Barrett  Co.     Resin  ;   Manufacture  of 

(P)  23a* 

and  others.    Resin  ;   Production  of (P)        . .         . .       23a* 

Miller,  W.  J.     Glass  ;  Apparatus  for  feeding (P)   329a*,  939a* 

Glass  ;   Apparatus  for  forming  articles  of (P)        . .     375a* 

Glass  articles ;    Moulding  machines  for  manufacturing 

(P)  329a* 

Miller  Reese  Hutchison,  Inc.    See  Pedersen,  A.  Z.  . .     531a* 

Millican,  I.  L.,  and  others.    Ammonium  nitrate  ;   Properties 

of .    Ammonium  nitrate  and  water     . .         . .     587a 

Milligan,  C.  H.,  and   E.   E.   Reid.    Alcohol ;     Transfer  of 

hydrogen  from  an to  an  aldehyde        ..  ..     268A 

Benzene  and  naphthalene  ;  Ethylation  of . .         . .     245A 

Milligan,  L.  H.,  and  Aluminium  Co.  of  America.    Aluminium 

fluoride  ;  Production  of  granular (P)  . .         . .     174a 

and  N.  D.  Baker.    Arsenic  trichloride  ;  Process  of  making 

(P)  632a 

Mllliken,  F.    AUoys  (P)  180a*,  986a 

Milliken,  H.    Dust  and  fume ;    Apparatus  for  extracting 

suspended  from  gases  or  air  (P)        „         . .  206a 

Mills,  M.  W.     See  Bolton,  J ~  . .  389A 

Mills,  W.  H.     Cyanine  dyes  of  the  benzothiazole  series       . .  365a 
and  W.  T.  K.  Braunholtz.     Cyanine  dyes.     Virtual  tau- 

tomerism  of  the  thiocyanines  . .         . .         . .  804a 

and      W.      J.      Pope.    2-p-Dimethylaminostyrylpyridine 

methiodide,  a  new  photographic  sensitiser  . .  . .  524A 

Photographic  sensitiser  ;    Green  . .         . .         . .  293a 

See  Braunholtz,  W.  T.  K.  997a 

Milne,  S.     Paper-making  machines  ;  Fourdrinier (P)  . .  543A* 

Paper  pulp  refining  engines  (P)     . .  . .  . .  . .  324a* 

Milner,    E.    E..   and   others.    Annealing  lehr ;    Plate-glass 

(P)  -  ..  756a 

Muffle-flattening  oven  and  leer  (P)  755a 

Milo  Machinery  Co.  Proprietary,  Ltd.    See  Wriedt,  F.       . .     971a 

E  2 


68 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Mimosa  A.-G.     Photographic  silver  pictures;    Toning 

with  selenium  (P)         . .           . . 
Photographic  transfer  films  ;   Preparation  of (P)  . . 

M  in  a  mi  Manshu  Tetsudo  Kabu>hiki  Kalshi.  Anhydrous 
chlorides  of  alkaline-earth  metals  ;  Manufacture  oi 
(P)  

Minck,  P.  H.,  and  Chemical  Foundation,  Inc.  Spun  mate- 
rial resembling  wool,  cotton,  or  chappe ;  Pro- 
ducing    from  vlSCOSe  solutions  (P) 

Miner,  C.  S.,  and  others.     Furfural  ;    Commercial  ,  its 

properties  and   uses     ..  ..  . .  ..      784a, 

M  Ine  Safety  Appliances  Co.    See  Mase,  EL  P. 

Mineral  and  Chemical  Co.  of  Utah.     See  MacCarthy,  F.  B. 

(P)  

See  Jones,  F.  B. 


S7A 

729a 


784a 
344A 


415a 

700a 
-298a 
888A 
415a 

800A 


Minerals  Separation,  Ltd 
See  Lemmon,  R.  J. 
See  Price,  F.  G 

S     Simpson,  T.  R. 
See  Stenning,  W.  W. 
Minerals  Separation  North  American  Corp.     See  Dosenbach, 

B.  H 107A 

See  Wilkinson,  E.  W 63a* 

MinLMzzinl,  M.     See  Ruzicka,  L.  ..  ..  ..  ..     4S2A 

Mining  and  Metallurgical  Processes  Proprietary,  Ltd.     See 

Rigg,  G.  108A* 

Minovici,  S.,  and  A.  Jonescu.     Copper  ;    Volumetric  deter- 
mination of . .  . .  . .  . .  . .     394a 

and  C.  Kollo.     Manganese;  Determination  of ..     919a 

Minton,  L.     Lubricant  for  yarns  and  weaving  machines  (P)  . .     498a 
Miiitun,  O.     Drying  or  otherwise  treating  paper  (p)  . .     460a 

Mirat,  G.,  and  P.  Pipereaut.     Sulphuric  acid  ;   Manufacture 

Of (P)  707a 

MIsson,  G.  Phosphorus  in  minerals  and  coke  ashes  ;  Colon- 
metric  determination  of ..  ..  ..  ..     731a 

Vanadium  in  steel ;  Determination  of . .         . .     420A 

Mitchell,  A.  M.,  and  K.  M.   Widmer.     Fireproof  building 

material ;   Process  of  making (P)  . .         . .     296a 

Mitchell,  B.  A.     Ore  crusher  (P)  847a* 

Mitchell,  C.  A.  "  Documents  and  their  scientific  examina- 
tion " 429b 

Graphites  ;  Microscopical  examination  of . .  . .     197a 

<  Graphites  and  other  pencil  pigments         . .  . .  . .     826a 

Inks;   Chemistry  of ..  ..  ..  ..  ..        93R 

Pyrogallol,  gallotannin,  and  gallic  acid  ;    Colorimetric 

estimation  of . .  . .  . .  . .  . .     475R 

Mitchell,  C.  T.     Drying;  Volume  of  air  required  in  air ..       43A 

Mitchell,  F.  W.,  and  J.  E.  Pfetfer.    Electrical  purification  of 

liquids  (P)  944A 

Mitchell,  J.     Lithopone  ;  Manufacture  of (P)     . .         . .     149a* 

Mitchell,  J.  L.     Lithopone  ;  Apparatus  for  the  manufacture 

of (P)         381a 

Mitchell,  J.  S.     See  Parker,  T 338a 

Mitchell,  R.  B.,  and  Athol  Manufacturing  Co.     Pyroxylin 

solvent  (P)         10a,  53a 

Mitchell,  W.     See  Hughes,  G 403a 

Mitchell,  W.  A.     Waterproofing  fabrics  (P)  . .  . .       52a 

Mitchley,  J.  W.     See  Alhy  United  Carbide  Factories,  Ltd.    . .       99a 
Mitscherlich,  A.     Detonating  (oxyhydrogen)  gas  ;    Ignition 

point  of . .  . .  . .  . .         . .  . .     327a 

Mitscherling,  W.  O.,  and  Atlas  Powder  Co.    Acid  or  alkaline 

reductions;  Process  for  carryhu;  out (P)         ..     97lA 

Viscose  solutions  of  cellulose ;    Preparation  and  preser- 
vation of for  the  production  of  films,  threads 

and  filaments  (P)     . .  . .  . .  . .  . .     459a 

Mitsubishi  Zosen  Kaisha,  Ltd.     See  Tytaka,  T.  ..  ..     505A 

Mitsui  Mining  Co.     See  Kasai,  K 94a* 

Mittasch,  A.     See  Badische  Anilin  und  Soda-Fabr.  454a,  860a*,  890a* 

Miura,  M.     See  Zilva,  S.  S 74a 

Mix  und  Genest  Telephon-  und  Telegraphen-Werke,  A.-G. 

Electrical  cell  (P)         556a 

Miyamoto,  S.  Chemical  reactions  caused  by  the  silent  elec- 
tric discharge.  Ethylene  and  nitrogen.  Benzene 
and  carbon  dioxide       . .  . .  . .  . .  . .     380a 

Ferrous  hydroxide  ;    Reducing  action  of  .     Deter- 

minauon.  of  nitrates  and  nitrites        ..        ..        ..     811a 

Mizusawa,  I.     See  Yamamoto,  Y 509a,  954a* 

Moa  Iron  and  Development  Corp.     See  Hayward,  C.  R.         . .      4JJa 
tie,  P.     Powdered  sulphur;    Process  for  making  an 

exceedingly   fine   incorporated   with   charred 

sugar  (P)  878a 

Mock,  H.    Heal  Insulator  (P) 984a 

Moller,  E.     Electrical  precipitation  of  suspended  matter  from 

electrically  insulating  fluids,  espei  dally  gases  (  P)  697a,  737a 
Mocller,  J.,  and   l..  de  Fonblanque.     Illuminating  gas  and 

by-products  ;   Manufacture  of (P)         ..  ..     167a 

Peal      1 1.  , tin. ■nt  of (P)        452a 

Gelatin;  Mechanism  of  tanning  of ..  303a 

Gelatin  ;   Relation  between  hydrolysis  of  and  adsorption 

_. .  by 560a 

Hide ;  Action  of  halogens  on . .         . .        . .         . .  4Jti  v 

Hide  and  pell  .    Biological  and  chemical  study  of  — -. 

Mineral  constituents oi  bid.' and  pelt. .  ..  336a 


Moeller,  W. — continual. 

Hide    powder;     Relation    between   hydrolysis   of   and 

adsorption  by . .  . .  . .  . .  . .     33Ga 

Hide  substance  ;    Action    of   lactic  and  butyric  acids 

on 426a 

Iron-tanned  leather  ;    Behaviour  of  towards  hot 

water 426A 

Leather  ;  Examination  of by  Rontgen  rays . .  . .     185a 

Leather  ;    Progress  of  hydrolysis  of  in  Falirion's 

boiling  test        . .  . .  . .  . .  . .  . .     185a 

Leather;  Reactions  in  fat-liquoring  of ..  ..     185a 

Leather  tanned  with  synthetic  tannins  ;    Action  of  hot 

water  on 303a 

I  eathers  ;   Resistance  of  various to  acid      . .         . .     560a 

Pelt  ;    Hydrolytic  action  of  neutra  salts  on .  .     184a 

Proteins  ;    Researches  on  connected  with  leather 

chemistry  . .  . .  . .  . .  . .  . .     560a 

Tanning  process  in  presence  of  alkali  . .  . .     185a 

Tanning  ;  Proteolytic  constant  in  vegetable . .     184a 

Tanning  with  aldehydes  ;    Influence  of  the  Cannizzaro 

reaction  in . .  . .  . .  . .  . .     337a 

Tannins  ;  Hormone  theory  of  formation  of . .  . .     559a 

Tannins  ;  Properties  of  the  sulphonic  groups  in  synthetic 

559a 

-Stellcnner.H 150a,  185a 

Mfirch,  K.     Sulphite-cellulose  liquor  ;  Continuous  process  for 

decomposing  waste (P)   . .  . .  . .  . .     543a 

Morck,  A.     See  Nordstrom,  O 659a 

Moerk,  F.  K.     Phosphoric  acid,  sodium  phosphate,  and  pyro- 
phosphates ;  Volumetric  determination  of ..      937a 

and  E.  J.  Hughes.     Phosphoric  acid  and  sodium  phosphate  ; 

Methyl-red  in  assay  of ..  ..  ..  .-     937a 

Morner,  C.  T.     o-Hydroxyquinoline  ;   Magnesium  compound 

of .     Detection  of  magnesium    ..  ..  ..     691a 

Motfatt,  A.,  and  E.  H.  Wolcott.     Vegetable  albuminoid  and 

process  of  producing  it  (P)      . .  . .  . .  . .     781a 

Moffat,  D.  D.     Flotation  process  of  ore  concentration  (P)     . .     107a 
Moffat,  J.  W.     Ores  ;  Treatment  of  — .     (P)  . .  . .       20A* 

Mohr,  A.  L.,  G.m.b.H.     Brown  colouring  matter;    Produc- 
tion of for  adding  to  margarine  (P)       . .  . .     497a 

Mohr,  E.     Nitrogen  in  compounds  rich  in  nitrogen  ;  Accuracy 

of  the  Dumas  method  of  determining . .     83a.  274a 

Mohr,  R.,  and  Naaml.  Vennoots.  de  Eibergsche  Stoombleek- 
erij.  voorh.  G.  J.  Ten  Gate  en  Zonen.     Bleaching 
textile  fibres  and  fabrics,  tissues,  and  the  like  (P)    . .     214a* 
See  Eibergsche  Stoombleekerij,  voorh.  G.  J.  ten  Gate 

&.  Zonen  . .         . .         . .         . .         . .         . .       55a* 

Mohrdieck,  G.     Binder  for  briquettes  ;   Production  of  a 

(P)  3A 

Mohs,  K.     Water  ;   Determination  of ■  with  Meihuizen's 

apparatus  . .  . .  . .  . .  . .  . .     569a. 

Moir,  J.     Azo  dyes  and  related  coloured  substances  ;   Calcu- 
lation of  the  colour  of . .  . .  . .  . .     804a 

Phenols  ;  Sensitive  test  for . .  . .  . .  . .     287a 

Moisant,  A.  J.,  and  General  Research  Laboratories.    Ozone 

compounds  ;   Preparation  of (P)  . .  . .     232a. 

Mokragnatz,  M.     See  Bertrand,  G 641a,  873a 

Molassine  Co.,  Ltd.,  and  H.  C.  S.  de  Whalley.     Fertiliser  (P)     187a 
Moldcnhauer,  H.    See  Meyer,  J.  . .         . .         . .         . .       56a 

Moles,  E.,  and  M.  Crespl.     Potassium  permanganate  ;    Ther- 
mal decomposition  of . .  . .  . .  . .     326a 

Molinari,  E.     Tartar  industry  in  Italy 159R 

Molkentin,  E.     See  Henlein,  S.  717a 

Moltke- Hansen,  I.  J.     Electric  furnaces  (P) 823a 

Monasch,  E.    Zinc ;  Titration  of 121a 

Mond,  R.  L.,  and  A.  E.  Wallis.     Carbonyls  ;    Metallic 17SA 

Car  bony  Is  ;  Action  of  nitric  oxide  on  metallic ..     173  a 

Mondain-Monval,  P.     See  under  Monval. 
Monier- Williams,  G.  W.     "  Alcohol ;    Power :    its  pro- 
duction and  utilisation  "         . .          . .  . .  . .     206R 

Monkhouse,  A.  C,  and  J.  W.  Cobb.    Coal  and  coke  ;  Libera- 
tion of  nitrogen  and  sulphur  from . .      263R,  532a 

Monnier,  R.    See  Kehrmann,  F.  7a 

Monpillard.  F.     Photographic  preparations  ;    Method  of  in- 
creasing the  sensitiveness  of . .  . .  . .     484a 

Monro,  A.  D.     Coal;  Occlusion  of  gases  in ..  ..     129T 

M'  >ntrin,n  t  jni,  C        Keartimis  produced    by   tvrnna  disehaiL'.' 

in  direct  current  circuits  ;  Chemical . .         . .  865A 

Monti,  E.     Grape  extract ;  Manufacture  of (P). .          ..  i:.4a 

Jams,  jellies,  and  marmalades  ;  Manufacture  of (P)  30a* 

Montonna,  E.  E.,  and  Semet-Solvay  Co.     Benzyl  alcohol  ; 

Process  of  producing (P)             ..          ..          ..  521 A 

ttbnval,  P,  M.    Ammonium  chloride  ;   Preparation  of ..  369a 

Ammonium  chloride  ;    Preparation  of— —  at  low  tem- 
peratures          . .          . .          . .          . .          . .          . .  629a 

Moody,  H.  N.     Viscosimeter  (P)            235a 

Moou,  F.  S.,  and  international  Precipitation  Co.    Potassium 

chloride  ;   Obtaining from  flue  dust  of  cement 

kilns  (P).,            uia 

Mooney,  P,  M.    Chromic  sulphate  ;  Manufacture  of  a  solution 

of (P)         14a* 

Moore,  B.     Obituary 142R 

and  J.  W.  MeUor.     Adsorption  and  dissolution  of  gases  by 

silicates,     *'  SpH  out  "  in  glazes       710a 


NAME  INDEX. 


69 


105A 

255A 

209a 

537a* 

481a 

374A 

177A 

135  a 

379a* 

998A 

465A 
587a 


531R 


150T 
IT 


PAGE 

Moore,  C.  E.    Fireclays  ;   Changes  taking  place  in  low-tem- 
perature burning  of  Stourbridge ■  ..  ..     447R 

Moore,  C.  M.     See  Lowy,  A 876a 

Moore,  D.  P.     Water  stills  (P) 481a' 

Moore,  G.     Se«  Buck,  H.  A 639a 

Moore,  H.    Petroleum  oils  used  in  Diesel  engines  ;    Charac- 
teristics of 174R,  319A 

and  S.  Beckinsale.     Brass  ;  Prevention  of  season  cracking 

in by  removal  of  internal  stress 

Brass  ;    Season-cracking  in   and   its  prevention  : 

condenser  tubes  . .  . .  . .  . .      126R 

Moore,  M.  M.     SeeChappell.M.  L. 
Moore,  S.     Gas  generator  (P) 
Moore,  W.     Insecticides  (P) 

Moorshead,  T.  C.    Glass;  Delivery  of  molten (P) 

Glass  furnaces  (P)     .. 
Moran,  R.  C,  and  E.  I.  du  Pont  de  Nemours  and  Co.  Dinitro- 

diphenylamine  ;  Preparation  of (P) 

Mordey,  W.  M.     Iron  and  steel  and  alloys  thereof ;    Heat 

treatment  of  articles  of -{P) 

Moreau,  E.,  and  A.  Bonis.     Colorimeter 

Morey,   G.   W.     Solubility   and   decomposition  in  complex 
systems.     Action  of  water  on  glass  and  ceramic  ware 

and  N.  L.  Bowen.     Felspar  ;  Melting  of  potash 

Morgan,  E.  W.     Textile  piece  goods  ;  Apparatus  for  treating 

with  liquids  (P)    ..         ..  ....        11a*,  55a* 

Morgan,    G.    T.     0y-Di-^-toIyIamino-»-butanes ;     The   four 

stereoisomer ic .     Studies  in  the  n-butyl  series. . 

Nitrogen  ;   Micro-Kjeldahl  method  of  determining . 

Discussion 
and  S.  Chazan.    5-Amino-1.2-naphtho-/)-tolyltriazole 
and  E.  A.  Cooper.     Bactericidal  action  of  quinones  and 
allied  compounds 

and  G.  R.  Da  vies.     Diazotisability  ;    Upper  limit  of 

in    the    benzene    series.     Aminomesitylene-ftis-di- 
azonium  salts 
and  H.  Gilmour.    Aminonaphthotriazoles  as  colour  inter- 
mediates 
Azo-  and  disazo-dyes  ;    Employment  of  a  new  group  of 

naphthalene  intermediates  in  the  production  of 

and  W.  J.  Hickinbottom.     Aryl  K-propyl  ketones 
and  H.  J.  S.  King.     NiU'0  dyestuffs  ;   Cobaltammine  salts 
of  .     Researches  on  residual  affinity  and  co- 
ordination 
and  H.  G.  Reeves.     Acetylpropionylmethane  ;  Interaction 
of and  the  tetrachlorides  of  selenium  and  tel- 
lurium.    Researches  on   residual  affinity  and   co- 
ordination 
and  H.  S.  Rooke.     Methyl-/3-naphthylaniine-6-sulphonic 
acid 
Morgan,  G.  U.,  and  G.  A.  Clavey.     Burning  liquid  fuel  alone 
or  in  conjunction  with  solid  fuel  and  colloidal  mix- 
tures ;  Atomisers  for (P) 

Morgan,  H.  W.,  and  Dorr  Co.     Sewage  treatment  (P) . . 
Morgan,  J.  J.,  and  R.  P.  Soule.     Coal  carbonisation  ;  Mech- 
anism of 

Tar  ;  Characteristics  of  low-temperature  coal 

Morgan,  J.  R.    See  Barnes,  G.  C,  

Morgan,  J.  S.,  and  Thermal  Industrial  and  Chemical  {T.I.C. ) 
Research  Co.     Gases  which  have  been  absorbed  by 

solids  ;  Recovering (P) 

See  Thermal  Industrial  and  Chemical  (T.I.C.)  Research 

Co.         . .  4a,  62a, 205a, 239A,  315a, 357a, 622a,  700a,  803a 
Morgan  Construction  Co.     See  George,  J.  R.  . .  . .     244a 

Morgan  Crucible  Co.,  Ltd.     See  Speirs,  C.  W.  ..  ..     556a 

Morgenroth,  J.,  and  others.     2-Ethoxy-6.9-diaminoacridine 

hydrochloride,  a  new  antiseptic 
Morin,  H.,  and  Genty,  Hough  et  Cie.    Tanning  leathers  and 

skins  (P)  

Moriondi,  C,  and  Soc.  Anon,  des  Brevets  Peufailiit.    Veget- 
able fibres  ;   Disintegrating for  use  in  the  tex- 
tile and  paper  industries 
Morison,  D.  B.    De-aerating  and  de-oxidising  boiler  feed  and 
other  water  (P) . . 
Heating  and  de-aerating  liquids,  e.g.,  boiler-feed  water 

(P)  193a 

Moritz,   E.   R.     Refrigeration  and   flocculation   of  brewery 
worts 

Yeast  cells  ;  Shape  of  well-drained  and  pressed . . 

Moritz,  R.     Acids  or  other  liquids  ;   Apparatus  for  delivering 

measured  quantities  by  volume  of (P) 

Sulphate  furnaces  ;    Mechanically-operated  stirring  de- 
vices for (P) 

Mork,  H.  S.,  and  others.     Cellulose  ester  products  and  arti- 
ficial silk  of  standardised  dyeing  speed  ;    Preparing 

(P) 

Combustible  material ;  Process  of  making (P) 

See  Esaelen,  G.  J.,  jun.  748a,  748a,  855a*,  894a,  936a 

Morrell,  R.  S.     Methyl  a-elsostearate  ;    Transformation  of 

into  methyl  0-elaeostearate 

Morris,  F.     Separators  for  gaseous  substances,  dust  collectors, 
spark  anestors,  dust-extractors,  and  the  like  (P)     . . 

Morris,  R.     Potassium  ;   Estimation  of by  the  perchlor- 

ate  and  cobaltinitrite  methods 

Morris,  S.    See  Foulk,  C.  W 

Morrison,  C.  N.,  and  The  Dow  Chemical  Co.    Furnace  (P)    . . 


7GA 


531R 
61T 


3T 
32a 


853a 


531R 
IT 


286a* 
995a* 

491a 
495A 
575A 


128a* 


193a 


225a* 


324a* 


193A 
726a 


71a 
72A 


969a 

858A 


628a 
493A 


328T 

88a 

476R 
311A 

357a 


PAGE 


Invisible  ink  (P) 
-(P) 


254A 

677A 

531a* 

59a 

69A 

iioa 

525a 

327A 
13A 


73a 

73a 

13a 

918a 

81  6a 
265a 

505R 
622a* 
216r 
838A 

785  a 

610a 


645a 
195a 


490a 
715a 


Morrison,  W.  L.     Cast  iron  ;   Manufacture  of  synthetic  - 

in  the  electric  furnace 
Morse,  C.  F.,  and  Invisible  Process  Co. 
Morterud,  E.     Liquids  ;  Evaporating 
Morton,  H.     See  Morton,  J. 

Morton,  J.  and  H.     Kilns  ;  Gas-fired  continuous (P) 

Moseley,  .T.  F.,  and  N.  Drey.    Detergents  and  bleaching 
agents  (P) 

Moser,  L.     Gas  analysis  ;  Absorption-meter  for 

and  A.  Brukl.    Phosphine  ;  Gravimetric  estimation  of 

and  a  new  apparatus  for  gas  analysis 

and  E.  Doctor.     Hydrogen  selenide  ;   Preparation  of 

from  metallic  selenides 
and  J.  Ehrlich.    Arsenic  ;   Separation  of from  tungs- 
ten,   vanadium,    and    molybdenum    by    means    of 
methyl  alcohol  in  a  current  of  air 

Arsenic  ;  Theory  of  distillation  of and  separation  of 

arsenic  from  metals  in  a  current  of  air 

and  K.  Ertl.     Hydrogen  telluride  ;    Preparation  of  

from  metallic  tellurides 

and  P.  Kohn.     Sulphuric  acid  ;   Determination  of as 

barium  sulphate  in  presence  of  aluminium  salts 

Moscicki,  I.    Wrought  iron  ;    Direct  smelting  of  from 

ore  by  the  Basset  process 

Moskowitz,  M.    See  Porst,  C.  E.  G 

Mott,  It.  A.,  and  H.  J.  Hodsman.    Ammonia  ;   Factors  which 

influence  the  yield  of in  the  carbonisation  of 

coal 
Mott,  R.  J.     Refrigerating  and  ice-making  apparatus  (P) 

Mottram,  J.  C.    See  Cramer,  W.  

Moudgill,  K.  L.     Isocyanines  ;   Brominated 

and  K.  R.  K.  Iyer.     Essential  oil  from  "  Inchi  "  grass 

(Cymbopogon  ccesius) 
and  P.  N.  Vridhachalam.     Essential  of  Lantana  camara 

Moulton,  G.  F.    See  Berry,  W.  M 286a 

Mounce,  H.  C.     See  Knowlton,  N.  P 140a 

Moureu,C.,andC.Dufraisse.  Autoxidation.  Anti-oxygens  and 
various  phenomena  related  to  anti-oxidising  effects 
Autoxidation  of  organic  substances.     Anti-oxygens 
Mower,  G.  A.,  and  A.  Ogilvie.     Separating  flue   material  ; 

Apparatus  for •  (P) 

Moxham,  A  J.     Iron  ;    Treatment  of  ore  to  produce  pure 

(P) 

Mrozinski,  W.     See  Korczynski,  A 196a,  196a 

Muchka,  J.     Inflammable  liquids  ;  Storage  of  highly (P)     240a* 

Nitrogen  and  carbon  dioxide  ;   Production  of  a  mixture 

of deficient  in  oxygen  (P)  . .  . .     328a*,  328a* 

Protective  gas  ;  Production  of by  means  of  internal- 
combustion  engines  (P)            . .  . .  . .      453a,  455a* 

Muck,  F.  J.     Antimony  and  tin  in  red  brass  ;    Volumetric 

determination  of . .  . .  . .  . .  . .     761a 

Miilertz,  A.     Sterilisation  or  pasteurisation  of  liquids  ;    Ap- 
paratus for (P)       ..  ,.  ..  ..  ..       31a* 

MUUer,  A.     Milk  ;  Preservation  of with  small  quantities 

of  hydrogen  peroxide    . .         . .  . .  . .      228a,  341a 

Miiller,    C.     Evaporator   incrustations    in    sugar   factories  ; 

Significance  of  presence  of  oxalates  in .    Colour 

test  for  oxalic  acid 
Miiller,  E.     "  Alcoholic  fermentation  "  of  formaldehyde  by 
osmium 

Alcohols;  Dehydroxidation  of 

Electrochemical  oxidation  of  organic  compounds 
Formaldehyde  ;    Inner  or  catalytic  dehydroxidation  of 

118a 

Formic  acid  ;  Catalytic  decomposition  of ■    . .  . ,     836a 

Tellurium  and  selenium  ;    Cathodic  deposition  of 

from  their  oxy-acids,  and  their  analytical  determina- 
tion          35lA 

and  H.  Lauterbach.     Cyanides  ;  Electrometric  determina- 
tion of in  presence  of  halogens   . .  . .  . .     394a 

Ferrocyanides  ;  Electrometric  titration  of . .     840a 

Nickel ;  Electrometric  determination  of with  silver 

nitrate 962a 

Miiller,  F.     Lime-burning;   Oval  shaft-kiln  for (P)       ..     417a 

See  Wohler,  L 293A 

Mueller,  F.  F.,  and  others.     Electric  furnace  (P)         . .  . .     985A 

Ferro-uranium  ;  Process  of  making (P)       . .         . .     985a 

Miiller,  G.     See  Dubois,  E 888a 

Miiller,  H.     Fats  and  carbohydrates  ;  Relations  between 306a 

Formaldehyde  ;  "  Alcoholic  fermentation  "  of . .     642a 

Miiller,  H.  and  L.     Glycerol ;  Fermentation  of in  pres- 
ence of  sulphur  . .         . .         . .         . .         . .         . .     642a 

Miiller,  H.  A.     Peat ;  Process  for  increasing  the  carbon  con- 
tent of (P) 360a 

Miiller,  J.  H.     Germanium  and  arsenic  ;   Separation  of 273a 

Muller,  K.     Fuller's  earth  ;  Revivifying  spent (P)         ..     165a 

See  Goldschinidt,  H.  638a* 

Muller,  L.     See  Muller,  H 642a 

Muller,  M.    Aluminium  sulphate  for  paper  making  ;  Process 

for  making (P) 812a 

and  O.  Heigis.     Plant  fibres  and  the  like  ;    Treatment  of 

(P) 324a* 

Mueller,  M.  E.     Cyanides;  Extracting from  gases  (P)  . .     415a 

Hydrocyanic  acid  ;  Extracting from  gases  (P)        ..     415a 


909a 

118A 

118a 
597a 


70 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Mueller,  M.  L.,  and  Northwest  Blower  Kiln  Co.     Drying  kiln 

and  process  (P) - 657A 

Muller,   P.,  and   Chemical  Foundation,   Inc.     Evaporating 

liquids  ;  Apparatus  for (P)         240a 

Milk  and  other  liquid  substances  ;  Device  for  atomising 

and  drying  or  evaporating (P)   . .  . .  . .       30a* 

Muller,  K.    Electrolysis  of  solutions  of  metallic  salts  in 
pyridine ;     Measurement   of    cuirent   density   and 

potential  difference  in . .  . .  . .  . .     674a 

and  A.  Duschek.     Electrolysis  of  silver  nitrate  in  pyridine  ; 
Decomposition  potential  and  electrode  potentials  in 

and  potential  of  silver  in  these  solutions  . .     674a 

and    R.    H6nlg.    Silver    amalgam    of    the  composition, 

Hg,Agj ;  Preparation  of  a ..  ..  ..     504a 

Muller,  W.     Copper;  Corrosion  of by  saline  solutions  ..     713a 

Phosphate  to  milk  ;  Volumetric  determination  of ..     680a 

Muller,  Speisefettfabr.  A.-G.  C.   und  G.     Catalysts  ;   Produc- 
tion of for  the  hydrogenation  of  unsaturated 

organic  compounds  (P)  . .  . .  . .  . .     676a 

Catalysts  ;    Production  of  metallic  non-pyrophoric 

for  hydrogenating  oils  (P)        ..  ..  ..  ..     474a 

Muller-Clemm,  H.    See  Schwarz,  R 9a 

Miinder,  W.,  and  Chemical  Foundation,  Inc.   Hydrocarbons  ; 

Treatment  of (P) 931a 

Miinz,  F.,  and  It.  Haynn.    Woollen  piece  goods  ;   Production 

of  special  effects  in  dyeing . .         . .         . .     895a 

Miinzinger,  F.     See  Allgem.  Elektrizitats-Ges.  . .   531a*.   700a 

Miirbe,  E.     Sulphite-cellulose  waste  liquor  ;  Utilisation  of  the 
free  sulphurous  acid  and  that  combined  with  lignin 

present  in (P) 290a,  543a 

Muirhead,  C.  M.  M.,  and  W.  E.  S.  Turner.     Glass  ;  Effect  of 

magnesia  on  durability  of 

See  Dimbleby,  V 464a 

Mukerji.B.  C,     See  Gadre,  S.  T.  192K 

Mukerji,    D.    N.      Colouring    matters    from    1.2.4.5-tetra- 

hydroxybenzene  and  related  substances       . .         . .     364a 
Mullen,  G.  W.,  and  H.  B.  Bishop.     Metallic  constituents  ; 

Recovering from  a  mixture  (P)  . .  . .  . .     422a 

Muller,  J.  A.,  and  A.  Foix.    Gold  ;    Colorimetric  determina- 
tion of  small  quantities  of as  colloidal  gold       . .     731a 

Hydrogen  ;    Determination  of  and  its  separation 

from  paraffin  hydrocarbons  by  palladous  chloride  . .     731A 

Mulligan,  A.  de  W.     Alloys  ;  Readily  fusible  ■ (P)  . .     863a 

Mulock,  E.  H.     Egypt ;    Report  on  economic  and  financial 

situation  of . .  . .  . .  . .  . .     486R 

Mulock,  F.  S.     See  Clevenger,  G.  H 144a 

Mumford,  N.  V.  S.     See  Porst,  C.  E.  G.  338a 

Mumford,  R.  W.,  and  Darco  Corp.     Decolorising  carbon  ; 

Manufacture  of (P)         . .  . .  . .  . .         6a 

Decolorising  carbon  for  sugar  refining  ;   Manufacture  of 

(P)  152a 

Mumford,  T.  H.,  jun.     Agitating  apparatus  for  tanks  for 

electrolytic  cells  (P)    ..  ..  „  ..  ..     902a 

Mundey,  A.  H.,  and  others.     White  metals  . .  . .  . .     819a 

Munesada,  T.     Colouring  matter  of  fruit  of  Gardenia  florida    976a 

Munroe,  C.  E.     Ammonium  nitrate  ;    Explosibility  of 349a 

Muns,  G.  E.     See  Washburn,  F.  M.  . .  . .  «     658a 

Muntwyler,  O.     See  Staudinger,  H.  877a 

Murayama,  Y.     "  Hsiung-ch'  uang  "    (Cnidium    officinale); 

Chemical  constituents  of  the  Chinese  drug . .     268A 

and  T.  Itagaki.     Essential  oil  of  Nepeta  japonica  . .  ..     118A 

and    K.    Mayeda.     Kawa-kawa    resin        268a 

Muren,  A.  L.     Electrolyte  for  alkaline  battery  (P)  . .  . .     507a 

Murmann,    E.     Methane  ;     Absorption    of    carbon    dioxide 

obtained  in  determination  of  small  quantities  of 650a 

Murphy,  A.  J.     See  Edwards,  C.  A.  . .  . .       126R,  257a 

Murphy,  W.  B.,  and  others.     Sublimation  of  hydrocarbons 

(P)  322a 

Murray,  A.  J.     Animal  bodies  ;  Chemical  composition  of 515a 

Murray,  E.  F.     Water-gas ;    Apparatus  and  process   prim- 
arily intended  for  manufacture  of  carburetted 

but  which  may  be  used  for  manufacture  of  other 

gases  (P)  849a 

Murray,  S.  K.     Liquefaction  of  gases  ;  Industrial  methods  of 

and  practical  applications  of  low  temperatures     475r 

Murray  Co.     Oil-bearing  material ;    Forming  and  wrapping 

prior  to  the  expression  of  oil  therefrom  (P)    826a* 

See  Henry,  N.  B 699a* 

Murschhauser,  H.     Dextrose  ;    Influence  of  sodium  chloride 

on  mutarotation  of in  alkaline  solution        . .     338a 

Dextrose  ;  Influence  of  sodium  chloride  on  mutarotation 

of  In  hydrochloric  acid  solution      . .       264a,  339a 

Dextrose ;     Mutarotation  of  under  the  influence 

of  sodium  chloride      . .  . .  . .  . .  . .     226a 

Dextrose ;     Relation    between    mutarotation    of    

and  the  acid  concentration  . .  . .  . .  . .     339a 

Musslcr,  C.     See  Treadweil,  W.  D 857a 

Math,    G.     Aluminium    compounds   for    sizing    paper    and 

other  purposes  ;    Preparation  of  ■ (P)  . .  . .     546a 

Paper  ;  Sizing in  the  hollandcr  (P) 665a 

•    0.  V.     Applr  juice  in  jams  ;   Detection  of . .      726a 

Coconut  oil  in  butter  ;    Detection  of . .  . .     191a 

Fata  ;    Detection  of  vegetable  oils  In  animal .    Pre- 
cipitation of  phytosterol  by  digitonin      «         M       65a 


PAGE 

Myers,  H.  A.,  and  H.  A.  Myers  Co.     Glass  ;    Manufacture 

of  (P) 416a 

Myers,   J.     Pre-Roman   iron   bars       ..  ..  ..  ..     133T 

Myers,  T.   L.,  and  American   Equipment  Co.     Dryers  for 

use  in  manufacture  of  articles  from  tender  clay  (P)     142a 

Myers  Co.,  H.  A.     See  Myers,  H.  A.  416a 

Mylius,  F.     Aluminium ;    Hydrochloric  acid  test  for  resist- 
ance of  to  corrosion   . .         . .         . .         . .     652a 

Myrback,  K.    See  Von  Euler,  H.      190a,  429a,  478a,  724a,  778a 
Mzourek,  J.    Lignite  producer-gas  tar  ;  Asphaltic  substances 

In 133a 


N 

Naaml.    Vennoots.    de    Eibergscne    Stoombleekerij,    voorh. 

G.  J.  Ten  Cate  en  Zonen.    See  Mohr,  R.  . ,     214a* 
Naaml.   Vennoots.   Netherland   Colonial  Trading  Co.     Pre- 
serving wood  and  other  vegetable  materia  1 ;   Com- 
position for (P)  . .         . .         . .         . .         . .     103a 

Naaml.   Vennoots.   Philips'   Gloeilampenfabrieken.     Electric 

discharge   tubes  . .  . .  . .  . .  . .     4j7a 

Electric  discharge  tubes  ;    Gas-filled with  indepen- 
dent discharge  (P) 803a 

Electric  incandescence  lamps  ;   Manufacture  of (P)     245a 

Gas-filled    electric    incandescence    lamps ;     Preventing 

blackening  of  the  bulbs  of (P) 890a 

Glass  ;   Materials  or  receptacles  for  handling  of  molten 

(P)  860a 

Glass  tubes,   rods,   etc.  ;     Continuous   manufacture   of 

(P)  592a* 

See  Hoist,    G 133a 

Xacken,   R.     Cement ;    Thennocheniical   investigations   on 

815a 

Naef,    E.    E.     Metals ;     Manufacture    of   from   their 

sulphides   (P) 146a 

Sodium    compounds ;     Manufacture   of   and    by- 
products   (P) .* .     215a 

Sulphur ;    Recovery  of  ■  from  hydrogen  sulphide 

and  ammonium  sulphide  and  gases  containing  them 

(P)  58A 

Naegell,  H.     Phosphate  slags  ;    Utilisation  of  basic (P)     767a 

Nagai,  S.     Heliotropin  ;    Preparation  of from  isosafrol    835a 

See   Tanaka,   Y 973a 

Nagai,  W.  N.,  and  M.  D.  Bunnell.     Adrenaline  ;    Sj*nthetic 

production  of  ■  (P)  . .  . .  . .  . .       79a* 

Nagel,  J.     Tin  ;    Rapid  determination  of  in  bearing 

metal  and  like  alloys  ..  ..  ..  ..  .".     714a 

Nagel,   W.     See   Harries,   C 474a 

Nagelvoort,  A.,  and  The  Nitrogen  Corp.     Sodium  bicarbonate 

and  hydrogen ;  Method  of  producing (P)    253a*,  328a* 

Nagle,  J.  C.     See  Fraymouth,  W.  A.  300a 

Naito,  A.  Magnetic  sand  or  finely  divided  iron  ore  ;  Treat- 
ment of (P)         985a 

Nakano,  M.    Cellulose  solutions  ;  Determination  of  viscositv 

of 977a 

Cellulose ;     Studies    on    .     A    new    form    of    the 

hydrogen    capillary    viscosimeter    . .  . .  . .     366a 

Nakatogawa,  S.,  and  S.  Kobayashi.     Oils  of  the  sea  animals 

of  the  family  Delphinidew  ;    Head  . .  . .     556a 

Nakayasu,   K.     Milk ;    Detection  of  soya-bean  protein  in 

cow's    114a 

Nalle,  E.     See  Paul,  C.  F.,  Jun 316a 

Nanji,  D.  R.  See  Ling,  A.  R.  27a,  28t,  151t,  172r,  871a 
Naoum,  P.  See  Nobel,  Dynamit-A.-G.  vorm.  A.,  u.  Co.  839a 
Narayan,    A.    L.     Spectrophotometer ;     Modified   form    of 

double    slit 350a 

and  G.  Subrahmanyam.     Soap  solutions  ;  Surface  tension 

of for  different  concentrations  . .         . .         . .     334a 

Narbut,  H.     See  Zawadzki,  J.  749a 

Narbutt,  J.    Shale  ;    Isolation  of  the  organic  substance  of 

Eastern 452a 

Narr,  W.,  sen.     Copper-plating  metal  parts  ;  Manufacture  of 

a  solution  for  — —  (P)         . .         . .         . .         . .     506a 

Nasini,  A.  G.     See  Sborgi,  U.  629a 

Nass,  A.  H.  Gas  producer  with  means  for  separately  pro- 
ducing and  removing  the  distillation  and  pro- 
ducer  gases   (P)  . .  . .  . .  . .  . .     700a 

Nathan-Institut    A.-G.    Beer    wort ;     Cooling    and 

separating  sludge   therefrom   (P)    ..  ..  ..     341a* 

Nathansohn,  A.,  and  F.  Leyser.     Lead  ;    Recovery  of  

from  technical  products,  e.g.,   lead  sulphide  ores, 

by  way  of  lead  tetrachloride  . .  . .  . .  . .     820a 

National  Aniline  and  Chemical  Co.     See  Cunningham,  O.  D.     736a 

See  Lewis,  H.  F 625a,  852a 

See  Ralph,  W.  M.  458a 

See  Slimm,  J.   B.  581a 

National  Biscuit  Co.     See  Oakes,  E.  T 382a 

National  Carbon  Co.     See  Benner,  R.  C.  507a,   768a,  943a  • 

Src  llamistcr,  V.  C.  181A  1 

See  Wells,  A.  A 423a  ' 

National  Evaporator  Corp.     See  Harris,  G.  D.         . .      205a,  206a 

National  Finance  Co.     See  Grey,  R.  358A 

National  Lead  Co.    White  lead  ;  Manufacture  of (P)  . .     905a 


NAME  INDEX. 


71 


PAGE 

National  Rctarder  Co.    See  Gallagher,  A.  H.  . .         . .  913a 

See  Stagner,  B.  A.  779A 

Natural  Air  Dryers,  Inc.     Drying  apparatus  for  timber  (P)  861a* 
Nauerz,  G.    Absorbing  gases  and  gaseous  acids  ;    Method 

Of   (P) 1A 

Naugatuck  Chemical  Co.    Set  Cadwell,  S.  M.  . .         . .     569A 

Naugle,  J.  J      Filter-press  and  dryer  ;  Combination (P)    449a 

Navias,  L.    See  Washburn,  E.  W 813a 

Navone,   J.   O.    Rubber;    Reclaiming  (P)    ..         ..     772a 

Naylor,  N.  M.    See  Renshaw,  R.  R.  365a 

Naylor,    R.    B.,    and    Fisk    Rubber    Co.     Vulcanisation    of 

rubber  ;    Accelerated  (P)         . .         . .         . .     559a 

Neal,  R.  O.,  and  G.  St.  J.  Perrott.     Carbon  black:    its 

manufacture,  properties,  and  uses  . .         . .         . .     770A 

Nederlandsche  Veenverwerking  Maatschappij.    Peat ;    De- 
watering  (P) 848a 

Negro,  L.    Wheat ;   Treatment  of for  the  manufacture 

of  bread  (P) 306a 

Nellsen,  H.    See  Ward,  J.  F.  969a 

Neilson,    M\     Paper ;     Utilisation   of  jack   pine   in   manu- 
facture of  news  print  . .  . .  . .  . .     247a 

Neller,  J.  R.     Soil ;  Influence  of  growing  plants  on  oxidation 

processes  in  the . .         , .         . .         . .         . .     427a 

Nelson,  A.     Mercerising  of  cotton  (P)  . .         . .         . .         . .     291a 

See  Duncan,  C.  A.  39flA 

Nelson,  B.  E.,  and  H.  A.  Leonard.  Alkaloids ;  Identi- 
fication of  under  the  microscope  from  the 

form  of  their  picrate  crystals  . .         . .         . .         . .     307A 

Nelson,  G.    See  Calico  Printers'  Assoc,  Ltd.  . .      411a,  809a 

Nelson,  H.  A.     Paints  ;   Accelerated  weathering  of on 

wood  and  metal  surfaces      . .         . .         . .         . .     600a 

Nelson,    J.    Carbon    for    pigmental    and    other   purposes ; 

Manufacture  of  (P) 65a,  475a* 

Cement  kilns  (P) 103a* 

Hydrocarbon   oils   and   the   like ;    Apparatus   for   the 

cracking  of  (?) 362a* 

Nelson,  3.  E.,  and  Sons.    See  Tanner,  I.  P..  ..        43a,  240a 

Nelson,   J.   M.,   and   D.   I.   Hitchcock.     Invertase  action  ; 

Uniformity  in  227a 

Invertase  ;    Activity  of  adsorbed  . .         . .         . ,       72a 

Nelson,  L.     Gas  producers  (P)         286a* 

Nelson,   O.   A.,   and   C.   E.    Senseman.     Anthraquinone ; 

Determination  of . .  . .  . .  . .     932a 

Naphthalene,  anthracene,  phenanthrene,  and  anthra- 
quinone ;     Vapour    pressure    determinations    on 

between  their  melting  and  boiling  points  . .     134a 

Nelson,  V.  E.     See  Fulmer,  E.  1 340a 

Nemec,     A.      and     F.     Duchon.     Saccharophosphatase ; 

Occurrence  and  action  of  in  organism  of 

the  plant       ..  ..  ..  ..  ..  ..      113A 

Seeds  ;    Estimating  vitality  of by  a  biochemical 

method  264a 

Nemecek,  H.     Ozoniscr  ;    New  form  of . .         . .     986a 

Nerneth,  A.  Z.     See  Durato  Asbestos  Flooring  Co.,  Ltd.     816a 
Nesfleld,  A.  C.     Desulphurising  oils,  e.g.,  shale  oil ;  Means 

for (P) 701A 

Nessel-Anhau-G.m.b.H.     Fibrous    material;     Production 

of  from  plants  (P) 498A 

Nettleton,  S.  Separating  minerals  and  other  substances 
by  means  of  differences  in  their  frictional  resist- 
ance (P)         207a* 

Neuberg,  C,  and  C.  Cohen.  Fermentation  ;  Formation 
of  acetaldehyde  and  realisation  of  second  form 

of with  various  fungi  . .         ..         ..         ..     189a 

and  J.  Hirsch.     Carboligase  ;    Classification  of . .     430a 

and  L.  Liebermann.     Carboligase  . .  . .  . .      153A 

Dextrose  and  sucrose  ;    Monosulphates  of ..      152A 

and  H.  Ohle.     Agar  ;   Sulphur  content  of . .         . .     228a 

Carboligase  305a,  430a 

and  M.  Sandberg.     Alcoholic  fission  of  sugar  ;    Stimu- 

ants  of  — -  227a,  265a 

and  others.     Alcoholic  sugar  fission  ;    New  classes  of 

stimulators  of . .         . .         . .         . .  . .     153a 

Neuberger,  A.     See  Meigen,  W.        . .         . .  . .  . .     944a 

Neugebauer,  H.     Plaster  ;    Dispersoid  chemistry  of 

Investigations  on  anhydrite  . .         . .  . .     671a 

Neuhausen,  B.  S.  Calcium  amalgam  ;  Electrolytic  pre- 
paration of  . .         . .  . .         . .  . .     672a 

Gases  ;    Solubility  of in  liquids    . .  . .  . .      668a 

and    W.    A.    Patrick.     Ammonia-water;     The   system 

as  basis  for  a  theory  of  solution  of  gases  in 

liquids  249a 

Neumann,  B.  Deacon  chlorine  process  ;  Graphic  repre- 
sentation of  the  reactions  in  the ■       . .  . .     293A 

Sulphur  dioxide  ;    Specific  heat  of  . .  . .     586a 

Hydrochloric  acid  ;    Production  of from  chlorine 

and  hydrogen,  with  the  aid  o  icontact  substances, 
without  explosion     _.         _.         . ,         . ,         . .       55a 

Neumann,  F.     See  Faltis,  F.  390a 

Neumann,  G-,  and  Kampf,  A.  Spinning  nozzles  ;  Manu- 
facture of from  ceramic  materials  (P)        . .     983a 

Neumann,  0.     See  Eucken,  A.        _.         _.         ..         ..     819a 


Neumann,  R.     Lignite  tar  ;    Plant  for  distilling  in  a 

high  vacuum 
Neumann,    W.     Zinc,   calcium,   aluminium,   silicon,    and 

the  like  ;  Electrothermic  recovery  of (P)     . . 

Neun,  D.  E.,  and  G.  W.  Carnrick  Co.     Pancreatin  ;   Manu- 
facture and  stabilisation  of  activated ■  (P)  . . 

Nevens,  W.  B.     See  Hamilton,  T.  S.  

Nevett,  R.  D.     See  Palmer.  T.  H.  

Nevill,  P.  W.,  and  H.  Soanes.     Copper;    Extraction  of 

from  its  ores  (P) 

Neville,  H.  A.     See  Taylor,  H.  S 

Neville,   R.  P.,  and  J.   R.   Cain.     Alloys  of  electrolytic 
iron  with  carbon  and  manganese  ;    Preparation 

and  mechanical  properties  of  vacuum-fused  

New,  G.  F.     Yarns  ;    Stress-strain  curves  of  various  

New  Jersey  Testing  Laboratories.     See  Ellis,  C. 
New  Jersey  Zinc  Co.     See  Breyer,  F.  G.    . . 
See  Coursen,  W.  L. 
See  Singmaster,  J.  A.     ..         ..         ..      381a,  474a, 

New  York  Belting  and  Packing  Co.     See  Ostromislensky,  I. 

Newberry,  S.  B.     Refractory  brick  ;   Basic (P) 

Rotary  cement  furnaces  (P) 
Newhaus,  F.  W.     Burnt  pyrites  and  the  like  ;    Removing 

zinc  from (P) 

Newhouse,    R.    C,   and   AUis-Chalmers   Mfg.   Co.     Tube- 
mill  (P)  

Newman,  F.  H.     Hydrogen  and  nitrogen  ;    Active  modi- 
fications of produced  by"  a-rays 

Newman,  M.  F.,  and  W.  B.  Scaife  and  Sons  Co.     Water  ; 

Purifying  and  decolorising ■  (P) 

Newton,  A.  Drying  cylinders  for  fabrics  and  the  like  (T) 
Newton,  J.  W.  See  Dickens,  C.  S. 
Nowton,  S.,  and  L.  L.  Fewster.  Gold  precipitation  by 
zinc  dust  in  conjunction  with  de-aeration  of  the 
solution 
Newton,  W.  L.  See  Larson,  A.  T. 
Niagara  Alkali  Co.     See  Low,  F.  S. 

See  MacMillan,  J.  R 

Nicholls,  J.  R.     Morphine  ;    Estimation  of  — 
Nichols,  W.  G.     American  Manganese  Steel    Co.     Man- 
ganese steel  ;    Heat  treatment  of  ■  (P) 

Manganese  steel ;   Method  of  recovering (P)    . . 

Nichols  Copper  Co.     See  Martin,  O.  C. 
Nicholson,  S.  L.,  and  Westlnghouse  Electric  and  Manuf. 
Co.     Phosphor    metals  ;     Method    of    producing 

■  (P)        

Nicholson,  T.     Coke-oven  gas  for  town's  use 

Nickelson,  S.  A.     See  Bales,  S.  H.  

NIckum,  W.  D.     Electrolytic  apparatus  and  method  of 

depolarising  it  (P) 
Nicol,  J.  S.     See  Douglas,  W.,  and  Sons 
Nicolardot   and    others.     Manganese  ;     Determination    of 

by  Knorre's  persulphate  process  in  ferro- 

manganese  and  spiegeleisen 

Nicolet,  B.  H.     Oleic  and  elaidio  acids  ;   Relation  of ■ 

to  their  halogen  addition  products 
and    H.    L.    Cox.     Linolic   acid ;     Four   tetrahydroxy- 
stearic  acids  derived   from   and   their  sig- 
nificance with  regard  to  the  linolic  acid  of  common 
oils 

Nicols,  L.  W.     See  Scholes,  S.  R 

Niece,  F.  G.     Cracking  hydrocarbons  (P) 

Niedenzu,     K.     Fertilisers ;      Manufacture    of    artificial 

nitrogenous  (P) 

Nield,  W.  H.,  and  W.  Melland.     Coal ;  Method  of  burning 

•  in  furnaces  (P) 

Nielsen,  H.  Distilling  or  roasting  plant  and  apparatus, 
more  particularly  intended  for  the  medium  and 
low  temperature  distillation  of  carbonaceous 
materials  (P) 
Nielsen,  N.  J.  Sterilising  and  filling  of  receptacles  with 
substances  such  as  milk  or  alimentary  liquids  (P) 
Sterilising  milk  (P) 

Nierenstein,  M.     Catechin  ;  Constitution  of 

Catechutannins.     Paullinia    tannin 

Gallotannin 

Glycerin  ;     Composition   of  residue  of  distillation   of 

crude  .     Discussion 

Tannase  from  Aspergillus  Luchtiensis  ;    New ■     . . 

See  Howards  and  Sons,  Ltd. 

Niessen,  K.     Glue  ;    Extracting  from  raw  materials 

(P) 384a, 

Nieuwland,  J.  A.     See  Rombaut,  L.  E. 

See  Vogt,  R.  R.  

Niewiazskl,  S.     See  Briner,  E. 
Nightingale,  D.  A.     See  Bader,  W. 

Nihoul,  A.     See  Clerc,  C 422a,  509a, 

Nijk,  D.  R.     Phenylphosphinic  and  phenylarsinic  acids  ; 

Comparative  study  of  ring-substituted  

Nikolai,   F.     Sulphides  of  arsenic  and  antimony  ;     Iodo- 

metric  determination  of 

Niles-Bement-Pond  Co.     See  Coles,  H.  L. 


717A 

198a 

75a 

108a* 

765A 
141a 

899a 

212A 

404a 

381a 

41«A* 

546a* 

989a 

103A 

503A 

555a 

89A 

252a 

565A 

498A* 
890A' 


713a 
292a 
901a 
33a 
476R 

821A 

767A. 

107a 


760a 
451a 
996A 

824A 
606a 


376A 


259A 
15  A* 
850a 

602a 

535a 

456a 

834a* 
834a* 
407a 
184a 
29T 

100T 
907A 
6S6A 

602A 

835a 

118a 

544a 

997a* 

982A 

783A 

650A 
19A 


72 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


-<P) 

PAGE 
190a 

868A 

(X'.lA, 

702A, 

753a, 

253a», 

859a' 

813a< 
328a' 

658a 

415a«, 

463A' 

157A 

954a 

—  to 
Irom 

375a 
698a 

Nilason,  M.,  and  others.     Yeast ;    Production  of  — 
Nishizawa,  Y.     See  Shibata,  Y. 
Nitrogen  Corp.     See  Arnold,  E.  E. 

See   Clancy,   J.    C.      127a,   031a,   633a*,   701a, 
707A,  737A,   753A, 

See  Nagelvoort,  A. 

See  St.  Clair,  P.,  jun. 
Nitrogen  Products  Co.     See  Hidden,  C.  P. 
Nitrum  A.-G.     See  Nydegger 

Nitsehke,  E.     See  Leuchs,  H 

Nitzsche,    H.     Cement- mortars  ;     Resistance  of   — 
abrasion 

Coal  ashes  ;    Recovery  of  combustible  material 

Nobel  und  Co.,  Dynaniit  A.-G.  vorm.  A.  Resinous  con- 
densation products  of  phenols  ;    Preparation  of 

(P)  ..  ..  772A 

and  P.  Naoum.     Explosives  ;    Production  of  gelatinous 

proof  against  firedamp  (P)    ..  ..  ..     839a 

Nobel's  Explosives  Co.,  Ltd.     See  Rintoul,  W 961A* 

Noddack,  W.,  and  others.     Photographic  plates  ;    Study 

of  the  "  threshold-value  "  of  by  counting 

the  grains      . .  . .  . .  . .  . .  . .     960a 

See  Eggert,  J -32a 

Nodder,   C.    R.     Flax   and    kindred   fibres.      Method   for 

distinguishing  flax  from  hemp       ..  ..  ..     853a 

Nodder,  G.     See  Clayton,  W 30a*,  102a 

Nodon,  A.     Photogenic  action  of  ultra-radiations  . .  . .      440a 

Noding,   M.     Hydrogen  ;     Retort   furnace   with    external 

firing  lor  generation  of from  iron  and  steam 

(P) 14i 

Noetzel,    O.     Eggs  ;    Detection    of   constituents   of   

in  baked  foods         ..         ..         ..         . .         ..     114a 

Nolan,  T.  J.     See  Rintoul,  W 961a* 

Noll,  H.  Alkalinity  of  water  and  culture  media  ;  Deter- 
mination of  . .  . .  . .  . .  . .     995a 

Nolte,  O.     Nitrate  nitrogen  in    urine  etc.  ;    Detection  and 

determination  of  . .  . .  -  -  .  ■     650a 

Noreross,  D.  C.     See  Dolbear,  C.  E.  373a 

Nordell,  C.  H.,  and  W.  J.  Kennev.     Sedimentation  process 

(P) 89A 

Norden    und    Co.,  Vereinigte   Chem.   Fabr.    J.     Fur  and 

wool  ;     Protecting   from    moth   and   other 

insects  (P) 854a 

Nordlund,  F.     See  Yon  Euler,  H 190a 

Nordstrom,  O.,  and  A.  Morck.  Fuel;  Means  for  con- 
tinuous predrying  of  (P)       ..  ..  ..      659a 

Nordyke,  H.  W.,  and  Indianapolis  Mfg.  Co.     Separators 

for  storage  batteries  ;    Process  of  treating  

(P) 473A 

Norman,  P.  W.     Yeast ;    Device  for  collection  of and 

separation  of  beer  therefrom  (P)         . .  . .  . .     478a* 

Normandy,  G.    See  Wahl,  A 363a 

Norinanii.  W.     Fat  hardening  ;  Present  position  of ..     469R 

Hydrogenation  ;    Catalytic  .     Influence  of  oxygen 

on  the  catalyst 399R,  675a 

Norris,  F.  W.     See  Clayson,  D.  H.  F 75a 

Norris,  M.  H.,     Soap  solutions  ;  Constitution  of  Hexa- 

decanesulphonic    (cetylsulphonic)   acid   and    other 
sulphonates        . .  . .  . .  . .  . .  . .    988a 

and  J.  W.  McBain.    Saponification  of  oils  and  fats  ;   Rate 

of by  aqueous  alkali  under  various  conditions . .     719a 

Norris,  W.  H.  H.,  and  J.  H.  Hoseason.  Chlorine  compounds 
which  may  be  rendered  dispersible  for  use  as  anti- 
septics (P)         „         _ 3lA 

Norske  Aktieselskab  for  Elektrokem.  Ind.  Norsk  Ind.-Hypo- 

tekbank,  Det.    Electric  furnaces  (P) 597a 

See  Goldschmidt,  V.  M 416a* 

See  Sem,  M.  0 766a 

Norske  Saltverker,  A./S.  De.    See  Bull,  H.  J.  . .         . .       44a* 

Norsk  Hydro-Elektrisk  Kva  cist of  aktieselskab.      Ammonia; 

Catalyst  for  the  synthetic  manufacture  of and 

process  of  producing  it  (P)       ..         ..         ..         ..     371a 

Ammonia  ;  Manufacture  of (P)         . .  . .  . .     669a 

Crystallisation   of  solutions ;     Apparatus   for   effecting 

continuous (P) 317a* 

Dinitrophenol ;  Production  of  ■  —  (P)    . .  . .  50a 

Nitric  acid  ;  Converting  nitrous  gases  into  concentrated 

(P) 502a* 

Nitric  add;  Production  of  concentrated (P)  ..     545a 

Nitrogen  oxides  ;  Removing  solid from  refrigeration 

devices  (P)         416a* 

Nitrous  gases  ;  Manufacture  of  concentrated (P)   ..     502a* 

See  Aanerud,  S.  A 23a* 

See  Halvorsen,  B.  F.  264a* 

North,  C.  E.     Milk  and  cream  ;    Extracting  butter  fat  or  oil 

from— ( I') 515A 

Mineral  rubber  224a 

and  Goodyear  Tire  and  Rubber  Co.     Rubber  products  ; 

Method  of  compounding (P)      ..  ..  ..       67a* 

North,  P.    See  Haber,  H.  3 245a 

North,    W.     Hvdrogen   and   carbon   dioxide;    Method    of 

making (P)  100A 

and  H.  Loosli.    Zirconium  ;  Production  of (P)  . .     258a* 


North  British  Rubber  Co. 

SeePorritt.B.  D.      . 

North  Kommandit  Ges. 


See  Johnston,  A. 


Zirconium  oxide  or  zircon  earth  ; 


PAGE 

248A* 
559a* 

328a 
328a 
657a 
9S3a 
30a 


Binding  and  compai  ting  oodles  made  from (P) 

Nort hall-Laurie,  D.     See  Osmosis  Co.,  Ltd. 

Northwest  Blower  Kiln  Co.     See  Mueller,  M.  L. 

Norton,  C.  E.     See  McLaughlin,  W. 

Noseworthy,  J.     Drying  fish,  fruit,  and  the  like  (P)   . . 

Nottin,  P.    Maize  ;    Enzymic  conversion  and  degradation  of 

nitrogenous   substances   of   .    Application   to 

manufacture  of  yeast  . .         . .         . .         . .         . .     265a 

Nourrisson,  A.     See  Martini       ..  ..  ..  ..  ..     386a 

Novotny,  E.  E..  and  others.     Resin  composition  ;  Synthetic 

(P) 66a 

Nowotny,  R.     Wood  ;    Impregnation  of with  mercuric 

chloride 860a 

Wood  preservatives  ;  Practical  experience  with . .     465a 

Noyes,  H.  A.,  and  others.     Nitrogen  fertilisation  ;  Cultivation 

and 384a 

Noyes,  W.  A.,  and  T.  A.  Wilson.  Hypochlorous  acid; 
Ionisation  constant  of .  Evidence  for  ampho- 
teric ionisation  . .          . .  . .  . .  . .  . .     749a 

Nuss,  M.  Peat  or  the  like  ;  Production  of  solid  fuel,  liquid 
distillates,  and  vapour  from  wet in  one  opera- 
tion (P) 403a 

Nusselt,    W.     Hydrogen  issuing   from   jets;     Spontaneous 

ignition  of ..  ..  ..  ..  ..  ..     371a 

Nydegger,    O.      Sodium    nitrite    and    potassium    nitrate ; 

Preparation    of    from    mixtures    of    sodium 

nitrate  and  nitrite  (P)  ..  ..  ..  174a 

and  A.  Sehaus.     Phosphates  ;    Determination  of  iron  and 

aluminium  in  natural . .  . .  . .  . .     706a 

and  H.  Schellenberg.     Urea  ;    Manufacture  of  from 

calcium  cyanamide  (P)  . .  . .  . .  . .     524a* 

Nydegger  and  others.     Urea  ;  Process  for  effecting  the  change 

of  calcium  cyanamide  into (P)    ..  ..  ..     157a 


Oakes,   E.   T.,  and   C.   E.   Davis.     Gelatin  solutions;    Jell 

strength  and  viscosity  of . .  . .  . .     721a 

and  National  Biscuit  Co.    Impregnating  and  coating  com- 
position ;  Manufacture  of (P)   . .  . .  . .     382a 

See  Davis,  C.  E 337a 

Oberfell,  G.  G.     See  Burrell,  G.  A 127a 

Obergassner.M.     Colour-photography  ;  Process  for  atomising 
colloids,  with  exception  of  soaps,  free  from  bubbles, 

for  preparation  of  colour  screens  for  use  in (P) . .     730a 

Photographs  ;  Producing  opaque  — —  in  natural  colours 

(P)  648a 

Oberhoffer,  P.     Steels  ;   Influence  of  rate  of  solidification  on 

double-carbide 817a 

and  H.  Jungbluth.     Iron ;    Recrystallisation  of  technical 

861A 

and  A.   Krupping.     Iron  ;    Baumann  s  sulphur  test  and 

behaviour  of  phosphorus  in . .  . .  . .       60a 

and  E.  Piwowarsky.     Iron  ;  Determination  of  gases  in 466a 

and  W.  Poensgen.    Cast  iron  ;  Influence  of  cross-section  of 
test-piece  on  results  of  tensile  and  bending  strength 

tests  of 712a 

Oberlander,  O.,  and  W.  H.  le  Marechal.    Filaments  for  incan- 
descence electric  lamps  and  the  like  ;    Drawn  wire 

(P)  742a 

Oberschlesische  Zinkhutten  A.-G.     Zinc  ashes  or  zinc  oxide 

containing  chlorides  ;    Method  of  working for 

the  recovery  of  zinc  (P)  ..  ..  ..  ..     555A 

Obladen,  A.     See  Benrath,  A 879a 

O'Brien,  L.    See  Roche,  J.  W.  343a 

O'Brien,  W.  G.     Rubber  ;  Compounding (P)     . .         . .       67a* 

Ocean  Bond  Co.     See  Rogers,  A.  25a,  476a 

Ochmann,  O.     Retting  flax  and  hemp  (P)        10a 

Ockleston,  W.  H.,  and  T.  B.  Carmiehael.     Tanning  (F)         . .      427a* 

See  Carmiehael,  T.  B 225a,  304a,  304a,  602a 

O'Connell,  J.,  and  H.  H.  Kerr.    Milk  and  like  liquids  ;    In- 
ternally heated  or  cooled  rollers  especially  applicable 

to  drying,  heating,  or  cooling  of (P)      ..  ..     229a* 

Odajima.  Y.     Lead  ;   Determination  of in  metallic  lead 

by  the  permanganate  method  . .  . .  *        . .     595a 

Odell,  W.  W.     Coal  and  coke  mixtures  as  water-gas  generator 

fuel  492a 

Water-gas  tar  emulsions      ..  ..  ..  ..  ..     363a 

Odrich,  G.     Fibres  and    cellulose ;    Obtaining   textile  

from  plants  containing  much  bast  and  little  wood, 

such  as  flax,  straw,  sisal,  and  jute  (P)  ..  ..     80"A 

Oeehslin,  C.     See  Poulenc  Freres  2H2a 

Oehlkers,  F.     See  Schnegg,  H.  724a 

Oehm,  W.     Furnaces  for  melting  metals  (P)    ..  ..  ..     822a 

Oehmc,  H.,  and  Chemical  Foundation,  Inc.     Dinitroglycol 

and  its  homologues  ;  Preparation  of (P)  ..     788a 

See  Chem.  Fabr.  Kalk         81a,  441a,  802a 

Oehrn,  H.     See  Akt.-Ges.  fur  Anilinfabr 543a 

Oelwerke  Germania  Ges.     Fat  resembling  butter  ;   Manufac- 
ture of (P) M  . .      945a 


NAME  INDEX. 


73 


Oelwerke  Stern-Sonneborn  A.-G.  Lubricants  and  bearings; 
Apparatus  for  testing under  conditions  simu- 
lating those  of  aetual  practice  (P) 444a* 

Naphthasulphonic  acids  ;    Extraction  of  produced 

in  the  refining  of  mineral  oils  with  acids  (P)  . .         . .  850a 

Sul  phonic  acids  from  petroleum  ;  Purification  of (P)  676a 

Oertel,  F.     Furnaces  for  fuel  in  dust  or  powdered  form  (P)   . .  848a 

Oesterlin,  C.     See  Schroeter,  G.            133a 

Offerhaus,  C.     Lead  ;    Losses  of in  smelting  low-grade 

materials           ..         ..         ..         ..         ..         ••  106a 

Offner,  M.     See  Zanettt,  J.  B 836a 

Ogden,  E.  P.,  and  J.  B.  Owens.     Tunnel  kiln  (?)         . .          . .  548A 

Ogilvie,  A.     S«e  Mower,  G.  A 490a 

Ogilvie,  G.     Explosives  Act  in  Canada;    Administration  of 

the 94R 

Ogilvie,  H.  K.     Steel ;   Practical  notes  on  manufacture  and 

treatment  of  high-speed ..          ..          ..      417R,  760a 

Ogilvie,  J.  P.  Sugars  ;  Comparative  sweetness  and  preserv- 
ing quality  of  cane  and  beet ..         ..  343R 

Sugars  ;   Insoluble  matter  content  of  direct  consumption 

;           .  .  642A 

Ohio  Brass  Co.     See  Austin,  A.  0 697A 

Ohio  Fuel  supply  Co.     See  Koch,  G.  T.             997a 

Ohle,  H.     See  Keuberg,  C 228A,  305a,  430A 

Ohmer,  W.  I.     See  Hochstetter,  F.  W.              234a 

Olmo,  A.     Centrifugal  separators  ;    Stabilising  arrangement 

for (P) 44A* 

Ohno,  T.     Natural  gas;  Composition  of  Japanese ..  799a 

Ohtani.  L\     Aluminium-magnesium  alloys      . .          . .          . .  377a 

and  T.  Hemmi.     Aluminium-copper  alloys  . .          . .          . .  377A 

Oil  Refining  Improvements  Co.     See  Hood,  J.J 211a* 

Olander,  C.  P.     See  Calbeck,  J.  H 600a 

Oldburv  Electro  Chemical  Co.  Alkali  formates  ;  Manufacture 

of (P)         173a 

Alkali  oxalates  ;  Manufacture  of (P)            . .          . .  174a 

S ■■   Wallace,  W 173A 

Oldham,  .1.  W.  H.    See  Irvine,  J.  C 27A 

Olin,  H.  L.,  and  R.  E.  Wilkin.    Calorimetric  determinations  ; 

Effect  of  bomb  corrosion  on  accuracy  of . .  393a 

Olivarius.  H.  de  F.    Molasses  ;    Recovering  materials  from 

(P) 188A 

Oliver,  E.     Zinc  ;   Preparation  of  test  papers  containing  lead 

salts  and  observations  on  the  titration  of with 

sodium  sulphide            ..          ..          ..          ..          ..  442a 

Oliver,  S.  E.     Still  (P) 574A 

Oliver,  T.  C.    See  Hechenbleikner,  I.           462a,  631a,  702a,  851a 
Oliveri-Mandala,  E.,  and  G.  Cornelia.     Chromium  nitride  ; 

Normal and  formation  of  its  complex  salts      . .  327a 

O'Loughlin,  J.  A.  Feeding  material  for  animals  ;  Manufac- 
ture of (P) 479a 

Olsson,  U.     Amylases  ;  Inhibition  phenomena  in ■        . .  227a 

Starch  ;    Method  for  measuring  the  liquefaction  of 339a 

Olympia  Oil  and  Cake  Co.,  Ltd.     See  Weston,  P.  D 334a* 

Ondra,  F.  Concentrating,  classifying,  or  separating  pulveru- 
lent material  (P)          359a* 

and  Concentrators,  Ltd.     Pulverulent  material  ;    Concen- 
trating   (P)            716a 

O'Neill,  F.     Glass;  Apparatus  for  feeding  molten (P)  ..  548a* 

Oniki,  M.     Soy  ;  Rice  for  manufacture  of (P)    . .         . .  228a 

Onuertz,  P.     See  Akt.-Ges.  fiir  Amlin-Fabr.                . .          . .  584a 

Onnes,  H.  K.     Lowest  temperature  yet  obtained        . .          . .  474a 
Ono,  A.     Metals  ;    X-ray  examination  of  inner  structure  of 

strained .     Copper  wires . .         ..         ..         ..  818a 

Ono,    K.     a-Naphthylamine   and   nr-tetrahydro-a-naphthyl- 

amine  ;  Electrolytic  oxidation  of  ..         ..  804a 

Oosterhuis,  E.     See  Hoist,  G 133A 

Opalski,  H.     See  Zerner,  E 581a 

Oppenheimer,  G.     See  Willstatter,  R.               . .  . .      153a,  783a 

Ormandy,  W.  R,,  and  E.  C.  Craven.  Alcohol-water-aromattc 
hydrocarbons  ;   The  system  ethyl from  30°  to 

—  30°  C.             134A 

Benzene  ;  Solubility  of in  weak  alcohol       . .          . .  406a 

Ethyl  alcohol-water-paraffins  ;    The  systems from 

+  30°  to  —  30'  C 402a 

Flash-point    temperatures ;      Physico-chemical    signifi- 
cance of 30R,  402a 

Motor  fuels  ;  Physical  properties  of . .          . .          . .  96R 

Refrigeration  ;  Potential  developments  in . .         . .  49r 

Ormlston,  C.  P.     Solder  for  aluminium  and  other  metals  and 

alloys  (P)            258A 

Ornstein,  L.    Colour  effects  ;  Process  for  producing (P) . .  325a 

Orthner,  L.    See  Freudenberg,  K 601a 

Ortiz,  A.,  and  General  Electric  Co.    Compound  metal  body  ; 

Manufacture  of (PJ          332a 

Ortlepp,  J.  A.  Copper-nickel  ores  of  the  Rustenburg  dis- 
trict (S.  Africa) 899a 

Ortman,  F.  B.,  and  H.  E.  Davis.  Terracotta  ;  Humidity  sys- 
tem of  drying . .          . .          . .          . .          . .  102a 

Ortner,  K.     See  Manchot,  W 251A 

Orton,  C.  R.,  and  others.  Antineuritic  substance,  water- 
soluble  B  ;  Presence  of  the in  chlorophyll-free 

plants                 780a 


page 
Orywall,      P.     Photographic      flxing-bath ;       Regeneration 

of  (P)      . .  . .  729A 

Osaka,  Y.     Calcium  carbonate  ;    Solubility  of in  water 

in   equilibrium    with   a    gaseous    phase   containing 
carbon  dioxide  . .  .  .  .  .  . .  . .     937A 

and  K.  Ando.     Potassium  blnoxalate  and  standardisation 

of  alkali  solutions       . .  . .  . .  . .  . .     839A 

Osborne,  F.  G.     See  Schidrowitz,  P.  601A 

Osborne,  T.   B.,  and  L.   B.  Mendel.     Milk  as  a  source  of 

water-soluble    vitamin  . .  . .  . .  .  .     605a 

and  others.     Lucerne  plant ;    Water-soluble  constituents 

of  the  873a 

Proteins  of  the  alfalfa  (lucerne)  plant   . .  . .  . .       74a 

O'Shaughncssy,  F.  R.     Nitrogen ;    Miero-Kjeldahl  method 

of  determining  .     Discussion  . .         . .         . .     150t 

Sewage  sludge  ;    Activated  .     Discussion  . .         . .       70T 

Osmosis  Co.,  Ltd.,  and  others.     Clay  ;    Mining  or  concen- 
tration of  (P) 328A 

Ost,  H.,  and  G.  Knoth.     Celloisobiose 409A 

Ostberg,  A.  J  ,  and  A.  Kenny.     Rubber  material  ;    Manu- 
facture of  (P) 67A 

and  others.     Sponge  rubber ;    Manufacture  of  (P)     677a* 

Ostermeier,  H.    See  Weil,  H.  93a 

Ost  preussische    Impragnicrwerke    G.m.b.H.     Wood  ;      Im- 
pregnating   with  oil  (P)  . .  . .  . .  . .     549a 

Wood  ;   Preservation  of (P) 296A,  549a 

Ostroniislensky,  I.,  and  New  York  Belting  and  Packing  Co. 

Rubber;     Vulcanising  (P) 989a 

Ostwald,  W.    Metal  parts  ;   Repair  of  worn by  electro- 
deposition  (P) 108A 

Ostwald,  Wo.     Peat;  Dispersoid -chemistry  of .     Nature 

of  the  water-holding  power  of  peat  .  .  . .  . .     318a 

and  R.  de  Izaguirre.     Adsorption  of  solutions  ;    General 

theory  of 489a 

and  A.  Kuhn.     Peptic  digestion  ;   R61e  of  acids  in . .     431A 

and  F.  V.  von  Hahn.     Coagulation  of  colloids  ;  Apparatus 

for  measuring  rate  of  . .         . .         . .         . .     839a 

and  A.  Wolf.     Peat ;    Removal  of  water  from below 

100°  C.  972a 

and   P.    Wolski.     Peat  ;    Dispersoid-chemical  changes    in 

on    steaming    under    pressure    (ten    Bosch 

process) 318a,  319a 

Osugi,  S.,  and  N.  Soyama.     Soil  reaction  ;   Changes  of 

by   manuring    . .         . .         . .         . .         . .         . .     829a 

Ott,  A.  F.  M.     Cinematograph  films  ;    Coating  the  surface 

of  ■ (P) 838a 

Ott,  E.,  and  E.  H.  Faust.     Explosive  ;   Manufacture  of 

(P)  917a 

and    K.    Schmidt.     Carbon    suboxide  ;     Preparation    of 

large  quantities  of and  properties  of  the  pure 

suboxide  . .  . .  . .  . .  . .  . .     668a 

and  K.  Zimmermann.     Pepper  substances  ;    Natural  and 

artificial    and    relations    between    chemical 

constitution  and  pepper-like  taste   . .  . .  . .       77a 

and  others.     Chavieine  from  pepper-resin,  the  active  con- 
stituent of  black  pepper      . .  . .  . .  . .     914a 

Otto,  F.  A.     Dryer;  Trough (P) 205a 

Otto,  O.  T.    Tar  acids  ;    Separation  of  solid  from  tar 

oils  (P) 287a 

Owen,  E.  A.,  and  G.  D.  Preston.     Metal  crystals  ;  Modifica- 
tion of  the   powder   method   of   determining  the 

structure  of  ..  ..  ..  ..  ..     562R 

and  B.  Taylor.     Radium  content  of  sealed  metal  tubes  ; 

Measurement  of . .  . .  . .  . .  . .       76R 

Owen,  E.  V.,  and  Hoover  Co.     Hydrocarbon  oils  ;  Catalysing 

and  revivifying  the  catalyst  (P)  . .  . .     801a 

Hydrocarbons  ;      Separating     from     aluminium 

chloride  (P) 890a 

Owen,    W.    L.,    and   Penick   and   Ford,   Ltd.     Syrups   and 

molasses  in  storage  ;    Preservation  of  (P)   . .     604a 

Owens,  H.  S.    See  Eddison,  W.  B.  453a 

Owens,  J.  B.     See  Ogden,  E.  P 548A 

Owens,  J.  8.     Air  ;  Suspended  impurity  in  the . .         ..     344a 

Atmospheric  dust    . .  . .  . .  . .  . .  . .     438R 

Ozone  Pure  Airifier  Co.    See  Haase,  A.  P.  ^.         ..     147a 


Paal,  C,  and  C.  Amberger.    Catalysts  for  use  in  reducing  and 

hydrogenating  organic  compounds  (P)      . .         . .     522a 

and  H.  Steyer.    Copper  hydroxide ;    Colloidal  . .     140a 

Copper ;     Modifications   of   colloidal  of  different 

colours    . .  . .  . .  . .  . .  •  •  •  •     270a 

Pacher,  F      Steel;    Defects  in  ingots  of  open-hearth  silicon 

and  their  avoidance      . .  . .  . .  . .     375A 

Packers  Meat  Smoking  Corp.    See  Alsop,  J.  N 192a 

Pacz,  A.     Alloys,    e.g.,  aluminium-silicon    alloys ;    Method 

of  producing (P)  . .  . .  . .  . .  . .     637A 

Alloys  and  process  of  treating  them  (P) 472a* 

Ferrous  metals  ;    Improving  (P) 19a 

Refractory   oxides  ;    Producing  high  temperatures  for 

reducing  (P) 715A 

and  General  Electric  Co.     Alloys ;    Method  of  producing 

(P)  147A* 


74 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Paddon,  W.  W.     Dyeing  of  deaminated  wool         . .         . .  411a 
Fibres    dyed    with    chrysanillne   and    fuchsin  ;     Effect 

of  light  on  . .         . .         . .         . .         . .  411a 

Mordanting  wool  with  potash  alum 978a 

Paechtner,  J.    Fodder  ;    Manufacture  of  from  straw 

(P)             515A 

Paetsch,  W.    See  Bieke,  R 592a 

Paget,  H.     See  Henry,  T.  A.                S3A 

Painter,  W.  J.    Starch  indicator  solution 393a 

Painton,  W.    See  Parr,  F.  J.              715a 

Palkin,  S.,  and  M.  Harris.     a^Quinolines  ;    Preparation  of 

.  Preparation  of  2. 4-dimethyl-6-ethoxyquinoline  743a 

Palmer,  C.  S.    Hydrogen  ;    Manufacture  of  (P)        . .  175a 

Water-gas ;    Manufacture  of  sulphur-free  (P)   . .  209a 

Palmer,  C.  W.     See  Briggs,  J.  F 11a* 

See  British  Cellulose  and  Chemical  Mfg.  Co.,  Ltd.     459a,  542a 

Palmer,  F.  and  F.     Metals  ;  Treatment  of (P)  . .         „  986a 

Palmer,  L.  A.    Potash  brines  ;    Evaporation  of . .  499a 

Palmer,   L.   S.    Lipase ;    Influence   of   antiseptics   on  the 

activity  of  675a 

Palmer,  T.  H.,  and  others.    Flotation  separation  of  mineral 

substances  (P)  . .          . .          . .          . .          . .          . .  108A* 

Palmer,  W.  G.    Catalytic  activity  of  copper  in  dehydio- 

genation  of  alcohols   . .          . .          . .          . .          . .  482a 

Pamfllow,  A.  W.     Chlorates  ;   Role  of  chromates  in  electro- 
lytic preparation  of  . .          . .          . .          . .  750A 

o-ToIuenesulphamide  ;    Oxidation  of . .         . .  783a 

Paneth,  F.    Radioelements  as  indicators  in  chemical  in- 
vestigations      . .         . .         . .         . .         . ,         . .  881a 

Surface  of  adsorbent  powders ;   Method  of  determining 

the  485a 

and  others.     Hydrides  ;    Preparation  of  gaseous  metallic 

from  alloys  and  solutions         . .          . .          . .  293a 

Hydrides ;    Preparation  of   gaseous   metallic  by 

the  spark  discharge    . .          . .          . .          . .          . .  293a 

Parmertz,  F.     Benzol  and  naphthalene ;    Examination  of 

washing  oils  for  removal  of from  gases        . .  241a 

Pantenburg,  V.     Gases  ;   Washing by  means  of  liquid 

condensed  from  them  (P) 451a 

Paoli,  H.  3.    Sulphur  dioxide  ;   Manufacture  of  liquid ■  896a 

Paolini,  V.    Amyrols  ;  Isomeric . .         . .         . .         . .  608a 

Pape,  H.     Coals  and  other  tar-yielding  materials  ;    Coking 

of by  means  of  the  continuous  action  of  hot 

combustible  gases  (P)  . .         . .         . .         . .         . .  701a 

Lignite,  peat  and   similar  materials ;   Production  of  a 

smokeless  fuel  from  (P)         . .          . .          . .  320a 

Zinc  oxide  and  similar  material  containing  lead  ;  Remov- 
ing lea<l  from (P) 765a 

Paper  De-Inking  Co.    See  Eyrich,  H.  R 628a 

Papish,  3.     See  Dennis,  L.  M 97a 

Papst,  H.     See  Hall,  E.  L 361a 

Paramor,  J.    See  Watford  Engineering  Works,  Ltd.         . .  705a* 
Paris,  F.  W.    Paraguay  ;  Report  on  economic  and  financial 

conditions  in  . .         . .         , .         . .         . .  136r 

Parish,  H.  C.    See  Griffin,  R.  C 350a 

Park,  N.  V.     Electroplating  process  (P)         673a 

Parke-Cameron,  E.    See  Blair,  R.  J.            247a 

Parker,  A.  J.    See  Fletcher,  H.  P 301a* 

Parker,  F.  W.     Soil  moisture ;     Classification  of  —        . .  263a 
Parker,  J.  G.,  and  J.  T.  Terrell.     Nitrogen  in  leather ;   Use 
of  perchloric  acid  for  Ejeldahl  digestion  in  deter- 
mination of  „         . .  68a 

Parker,  J.   W.,  and   H.   W.   Bamber.     Gas  producers  for 

automobiles;    Grates  of  ■ (P) 455a* 

See  Bamber,  H.  W.  405a*,  455a* 

Parker,  T.,  and  others.    Soil  sterilisation  for  tomatoes     . .  338A 

Parker,  T.  H.     Gas  producers  and  carbonisers  (P)  . .         . .  361a 

and  others.    Centrifugal  filter  (P) 316a,  358a 

Parker,  W.  L.    See  Allison,  V.  C 230a 

See  Fieldner,  A.  C.               738a 

See  Jones,   G.  W.                159a 

Parker.    Nitrogen  ;    Mlcro-Kjcldahl  method  of  determining 

.     Discussion        . .         . .         . .         . .         . .  150T 

Parkes,  J.  W.     Oleum  plant ;   The  Kynoch . .         . .  100T 

Parkhurst,  R.  B.     See  Smith,  W.  T.              896a 

Parks,  H.     See  Gardner,  H.  A.            946a 

Parmelee,  C.  W.    Clay  wares  ;    Soluble  salts  and  . .  709a 

Parmeter,  M.  A.     Dehydrating  and  recovering  values  from 

slimes    (P)        450a 

Parodi,  P.    Fats  and  oils  ;   Apparatus  for  refining (P)  260a 

Parow,  E.     Maize  starch  syrup 777A 

Starch  in  starch  pulp  ;    Determination  of  technically 

recoverable  . ,         . .         . .         . .         . .  512a 

Parr,  F.  J.,  and  others.    Steels  and  the  like;    Annealing 

and  hardening  high  and  low  carbon  (P)     . .  715a 

Parr,  S.  W.     Coal;    Classification  of  927a 

Coal;    Short  method  for  ultimate  analysis  of  ..  738a 

and  C.  J. .  Davidson.     Woods  ;  Calorific  values  of  American 

. .           . .           . .          . ,  92SA 

See  Austin,  M.   M.                                                               "  i7n. 

See  Bradley,  M.  J.               ..          *|          \\          ['_          \\  939^ 


PAGE 

Parrish,  P.    Ammoniacal  liquor  stills  ;    Design  and  working 

of  ■ 229T,  279R 

See  South  Metropolitan  Gas  Co.  . .  215A,  371a,  372a 

Parsons,  L.  B.     See  Walton,  J.  H 25Ll 

Parsons,  L.  W.,  and  O.  G.  Wilson,  jun.     Oil-water  emulsions  ; 

Factors  affecting  stability  and  inversion  of . .     181A 

and  R.  E.  Wilson.     Oils  ;  New  method  of  colour  measure- 
ment for 402a 

Partington,  E.    Paper  pulp  ;    Reclaiming  from  waste 

waters  of  paper-making  machines  (P)        . .        54a,  324a* 
Partington,  F.  O.    Cotton  seeds ;    Method  and  means  for 

cleaning  (P) 988a 

Partington,  J.  It.     Gaseous  molecules  ;    Energy  of  — —  . .       77b 
"  Inorganic  chemistry  ;    Text-book  of  for  univer- 
sity students"..          ..          ..          ..  ..  ..       19r 

See  Bury,  F.  W 980a 

Pascal,  P.,  and  La  Manuf.  de  Prod.  Chim.  du  Nord,  Etabl. 
Kuhlmann.  Sulphurous  acid  ;  Manufacture  of  liquid 

■ from  dilute  sulphurous  acid  gas  (P)  . .         . .       14a* 

Paschke,  F.     Lignin ;   Derivatives  of  straw . .         . .     247a 

Sulphite-cellulose  waste  liquors  and  similar  solutions  ; 

Apparatus  for  evaporating  (P)         . .         . .     498A 

Pascoe,  C.  F.    See  Roast,  H.  J 297A 

Passalacqua,  A.    Aluminium  ;   Soldering  of ■  (P)      147a,  221a 

Patch,  W.  E.     Enamel ;    Removing  from  enamelled 

metal  articles  (P)      . .         . .         . .         . .         . .     548a 

Patchell,  W.  H.     Fuels ;    Influence  of  structure  on  the 

combustibility  and  other  properties  of  solid . 

Discussion      . ,         . .         . .         . .         . .  . .     207T 

Patek,  J.     Hydrogen  peroxide  ;  Production  of (P)  . .     939a 

Patent-Treuhand-Ges.  fiir  Elektrische  Gliihlampen.     Elec- 
tric lamp  bulbs  or  the  like  ;    Evacuation  of 

(P) 581a* 

Inert  gases,  e.g.,  nitrogen  and  argon  ;  Producing 

free  from  oxygen  and  hydrogen  (P)          . .          . .     755a 
Tungsten  incandescence  lamps ;    Preventing  blacken- 
ing of (P)         363a 

Tungsten  wires  ;    Manufacture  of  drawn (P)    . .     764a 

See  Baumhauer,  H.  . .  . .  . .  . .  . .       93a 

See  Finckh,  K 363a 

Paterno,  E.     Aniline  arsenates         . .         . .         . .         . .     876a 

Paterson,  W.     Filtering  apparatus  for  water  (P)  . .  ..     955a 

Filtering  apparatus  for  water  and  the  like  ;    Regu- 
lating discharge  of . .         . .         . .         . .     481A* 

Paton     J.    D.     Coal ;     Inorganic    constituents    of    . 

Discussion      . .  . .  . .  . .  , .  . .      167T 

Electrical  precipitation.     Discussion    . .         . .  . .       27T 

Patrick,  W.  A.     Silica  gels  ;    Preparation  of impreg- 
nated with  metallic  oxides  (P)     ..          ..  ..     812a 

See  Davidheiser,  L.  Y.  . .  . .  . .  . .     250A 

See  Holmes,  E.  O.,  jun.  . .         . .         . .  . .     323a 

See  Neuhausen,  B.  S.      . .         . .  . .         . .  . .     249a 

Patterson,    C.    J.,    and    Campbell    Baking    Co.     Dough ; 
Determining  condition  of  for  baking  pro- 
ducts during  fermentation  process  (P)     . .  . .     874a 

Patterson,    D.    W..   and    H.    L.    Woolfenden.     Minerals ; 

Agent  for  the  flotation  of (P)  . .         . .     422a 

Patterson,    W.    H.    "  Mixed   acid  "  ;     Determination   of 

496E 

Pattison,  W.  B.    See  MacDowell,  C.  H 631a 

Paul,  C.  F.,  jun.,  and  others.     Centrifugal  separator  for 

two  liquids  (P)         . .  . .     316A 

Pauli,    R.     Sweetening    power    of    artificial    sweetening 

agents  ;    Measurement  of  . .         . .         . .     228A 

Pauli,  W.     Protein  ions  ;   Mobility  of . .  . .  . .     306a 

Paulin,  R.     Gold  ;   Assay  of  carat . .         . .         . .     179A 

Pauling,  C.     See  Kulas,  K.  425.1,  475a* 

Pauling,    H.     Nitrous    gases ;     Absorption    of    by 

means  of  water  (P)  . .         . .     216a 

Paulus,  H.  W.,  and  Royal  Baking  Powder  Co.     Amalgams  ; 
Apparatus   for   effecting   chemical   reactions   by 

means  of  (P) 37'.U.  63U 

Chemical  reactions  ;    Apparatus  for  use  in  effecting 

(P)         631A 

Electrolytic    reduction    and    oxidation  ;     Method    of 

and  apparatus  for  (P)  ..  ,.  ..     631A 

Evaporator  (P)     . .  . .  . .  . .  . .  . .     577a 

Hydrochloric  acid  and  carbon  monoxide  ;    Process  of 

manufacturing  ■  (P)     . .         . .         . .         . .     631a 

Oxalates  ;    Manufacture  of  metal (P)     . .         . .     631a 

Pauly,  H.,  and  E.  Ludwig.     Glyoxalinedicarboxylic  acid 

for  detection  and  separation  of  organic  bases     , .     784a 
Paus,  C.  L.     Norway  ;  Report  ou  industrial  and  economic 

conditions  in  . .  . .  . .  . .  . .     222R 

Paxton,  B.     White  lead  ;    Graphic  analysis  of  sublimed 

509A 

Paxton,  T.  (Lord  Provost  of  Glasgow).     Annual  Meeting 

proceedings    . .         . .         . .         . .         . .         . .     209r 

Payman,  J.  B.     See  British  Dyestuffs  Corp.,  Ltd.    287a, 

853a,  933a 
Payman,  W.,  and  R.  V.  Wheeler.     Combustion  of  complex 

gaseous  mixtures     ..         ..  ..         ..  ..     359a 

Payne,  W.  B.     See  Hart,  M.  C 518a 

Payne,  W.  W.     See  Laidlaw,  T.  P.  918a 


NAME  INDEX. 


75 


PACE 

Paynor,  C.  L.     Fertilisers  ;    Manufacture  of (P)     . .       "Oa 

Pazourek,  J.     See  Millbauer,  J 706a 

Peabody,  J.  C.     Paper,  fibre-board,  and  similar  materials  ; 

Process  of  making  (P)  . .         . .         . .     460a 

Peachey,  S.  J.  Cementing  or  uniting  leather,  leather 
containing  rubber  or  rubber-containing  surfaces 
or  the  like  together  or  to  one  another  (P)  . .         . .     302A 

Proofing  materials  ;   Process  for (P)        . .         , ,     383a 

Rubber  ;    Cold  vulcanisation  of . .  . .         . .     301a 

Rubber  goods  ;    Wet  moulding  of  . .         . ,     200R 

and  A.  Skipsey.     Vulcanisation  of  materials  related  to 

rubber  (P) 111A 

Peacock,  D.  H.     See  Segaller,  D 408a 

Peacock,  H.  A.     Sulphur  dioxide  ;    Absorption  of  ■ 

by  cattle  cakes  and  meals  . .  . .  . .         . .     560R 

Peacock,  S.,  and  C.  W.  Waggoner.     Alkali  silicates  for 

glass-making ;     Process    of    producing    in 

blast  furnaces  (P)   . .  . .  . .  . .         . .     755a 

and  Wheeling  Steel  and  Iron  Co.     Steel  sheets  ;  Coating 

with  tin  (P) 19a 

Pearson,  A.     Zinc  oxide  pigment ;    Manufacture  of  

(P) :.  ..     335A 

Pearson,  A.  R.     See  Bone,  W.  A.  ..         ..        58R,  240a 

Pearson,  C.  E.     See  Greenish,  H.  G 329R,  684a 

Pearson,  R.  E.,  and  others.  Oxides  of  tungsten  or  molyb- 
denum ;    Reduction  of (P)    ..  ..  ..      637A 

Tungsten   or   molybdenum  ;     Electrolytic   treatment 

of  metalliferous  materials  containing (P)  . .     864a 

Pease,  E.  L.  Fertilising  material ;  Manufacture  of  mate- 
rial suitable  for  use  as (P)    ..         ..         ..     991a 

Heat-interchangiug  apparatus  (P)        . .         . .         . .     971a 

Pease,  R.  N.,  and  H.  S.  Taylor.  Catalytic  formation  of 
water  vapour  from  hydrogen  and  oxygen  in 
presence  of  copper  and  copper  oxide        . .         . .     751a 

Copper  oxide  ;   Reduction  of by  hydrogen        . .       98a 

Pecaud,  M.  T.     See  Arpin,  M. 832a 

Pech,  P.  L.  E.     Soap  ;   Manufacture  of (P)  . .         . .     425a 

Pechkranz,   R.     Electrolyser  (P) 473a* 

Peck,  C.  L.,  and  Dorr  Co.     Sewage  sludge  ;    Dehydrating 

activated  (P)  . .  . .  . .  . .  . .     874A 

Waste  tanning  liquors  ;    Selective  removal  of  organic 

matter  from (P)  ..         ..         ..  ..     775a 

Peck,  H.  T.,  and  Peters  Cartridge  Co.     Primer  for  small- 
arms  ammunition  (P)         ..         ..         ..         ..     524a 

Peck,  W.  H.     Differential  flotation  separator  (P)  . .  . .     716a 

Mineral  particles  of  different  degrees  of  specific  gra- 
vity ;  Separating  mixed (P)  . .         . .  . .     716a 

Pecker,     H.     Cherry-laurel     water ;      Characteristics     of 

distilled  482a 

Peddle,  C.  J.     Optical  glass  ;   Manufacture  of . .       30R 

Pedersen,    A.    Z.     Anti-freeze    mixture ;     Non-corroding 

■  (P)        206a 

and    Miller    Reese    Hutchison,    Inc.     Liquids  ;     Non- 
corroding  and  non-freezing (P)        . .  . .     531a* 

Pehrson,  A.  H.     Furnace  for  electric  heating  (P)  . .         . .     823a 
Peirce,  W.  M.     Zinc-base  alloys  ;    Constitution  of  binary 

297a 

Peiser,  E.     See  Steudel,  H 153a,  565a 

Pelabon,  H.     Selenium  ;    Constitution  of . .         . .       98a 

Pemberton,  H.  V.     See  Hoyt,  L.  F.  260a 

Penfold,  A.  R.  DorypJioTa  sassafras  (Eudlicher);  Essen- 
tial oil  of  leaves  of . .  . .         . .         . .     647a 

Eucalyptus  oils ;    Aromatic  aldehydes  occurring  in 

certain . .         . .         . .  . .         . .  . .     269a 

Leptospermum  flavescens,   var.   grandiflorum   and  L. 

odoratum  ;   Essential  oils  of . .  . .  . .       78a 

Piperitone  ;   Position  of  double  linkage  in  . .     836a 

See  Smith,  H.  G.  78a 

Penhale,  J.     Fuel ;   Alcohol (P)  ^ 454a 

Penick  and  Ford,  Ltd.     See  Allen,  P.  W.  . .         . .     679a 

See  Lenders,  A.  W.  H.  513a*.  604a 

See  Owen,  W.  L.  . .  . .  _ 604a 

Penkava,  J.     See  Stoklasa,  J.  . .         . .         . .         . .     775a 

Pennell,  R.  H.  L.     Turbid  water  or  liquid  ;    Filtration  of 

(P)         874a 

Penniman,  W.  B.  D.     Oils  ;   Apparatus  for  cracking 

(P) 889a 

Pennsylvania  Crusher  Co.     Crusher  rolls  ;    Sectional 

(P) 971a* 

Penny,  F.  G.     Crucible  furnaces  for  melting  metals  (P)  . .     505a 

Pentecost,  S.  J.     See  Trotman,  S.  R 49R,  73T 

Pepin,  C,  and  G.  Reaubourg.  Sulphurised  hydrocarbons 
(ichthyol) ;    Sulphonated  derivatives  of  natural 

— - _ 877a 

Peretti  und  Funck.     Furnace  ;    Shaft  for  calcining 

materials  (P)  . .         . .         . .  . .  . .     164a 

Perin,  C.  P.     See  Eustis,  F.  A.      ..         „       146a,  422a,  985a 
Perkin,  A.  G.     Dyeing  :   ancient  and  modern        . .  . .       97R 

Steam    oven ;     Modified    for    experiments    on 

steaming  of  fabrics  . .         . .         . .  . .  . .     628a 

and  G.  D.  Spencer.     Benzanthrone  ;    Some  reactions  of 

365A 

and  Y.  Uyeda.     Tannin  ;    Occurrence  of  a  crystalline 

in  the  leaves  of  Acer  ginnala  . .         . .  . .     184a 


page 
Perkin.  A.  G. — continued. 

and  T.  W.  Whattam.     2-Kydroxyanthraquinone  ;  Some 

products  of  the  reduction  of . .         . .         . .     246a 

See  Bradshaw,  G.  G ..     497a 

See  British  Dyestuffs  Corp.,  Ltd.         . .         „         . .     744a 

Perkins,  G.  A.     Drugs  for  treatment  of  leprosy  ;    Manu- 
facture of  -» — ,  e.g.,  chaulmoogra  esters,  etc.  . .     996a 
See  Wells,  A.  H.  612a,  987a 

Perkins,  H.  F.,  and  Rosanoff  Process  Co.     Distillation  of 

petroleum  or  like  liquids  ;  Fractional (P)  . .     168A 

Perkins,  W.  G.     Copper,  nickel,  and  lead  ores  ;  Treatment 

of  oxidised  (P)  555A 

Sulphide  ores  ;   Treatment  of  complex  — —  (P)        . .       62a 

See  Sulman,  H.  L.  863a 

Perkins  Glue  Co.     Starch  ;   Modifying  or  converting 

(P) 7lA* 

Perling,  A.     Phenolcarboxylic  acids  ;    Liberation  of 

from  their  bismuth  salts  by  hydrolysis    . .  . .      195A 

Perman,  E.  P.     Explosives  and  other  powders  ;    Method 

of  testing  the  degree  of  incorporation  of . .     155T 

See  Bonnell,  J 96A 

Permutit      A.-G.     Filters      containing      base-exchanging 

material ;   Operation  of (P)  . .         . .         . .     116a 

Perquin,  J.  N.  J.     See  Waterman,  H.  I.  ..  3a,  281a 

Perrier,  A.,  and  B.  de  Mandrot.     Quartz  ;    Elasticity  and 

symmetry  of at  high  temperatures  . .  . .     939a 

Perrott,  G.  St.  J.     See  Kinney,  S.  P 928a 

See  Neal,  R.  O.  770a 

Perry,  J.  E.,  and  Valley  Mould  and  Iron  Corp.     Steel  ingots  ; 

Casting (P)  902a* 

Perry,  R.  S.,  and  others.     Sulphur  ;    Process  for  obtaining 

—  (P)  295a 

Perry  and  Webster,  Inc.    See  Perry,  R.  S 295a 

Persapol  Ges.    See  Stiepel,  C 826a* 

Persch,  J.  P.  Petroleum  or  other  hydrocarbon  oils  ;  Treat- 
ing  (P) 580a 

Persch,  W.    See  Pringsheim,  H.  112a,  512a 

Pe3si,  A.    Steam  boilers  ;  Preventing  incrustation  in (P)    735A 

Peter,  A.  M.     See  McHargue,  J.  S 561A 

Peters,  A.    See  Akt.-Ges.  fiir  Anilin-Fabr 584a 

Peters,  F.  Phenols  from  low-temperature  tar  as  wood  pre- 
servatives . .         . .         . .         . .         . .         . .     671A 

Peters,  M.  F.    Carborundum  brick 416a 

Peters,  W.  A.,  jun.    Fractionating  columns  ;   Efficiency  and 

capacity  of . .         . .         . .         . .         . .     619A 

Peters  Cartridge  Co.    See  Peck,  H.  T.  524a 

Petersen,  A.,  and  International  Precipitation  Co.    Electrical 

fume  precipitators  ;  Cleaning  the  electrodes  in 

(P)  44A 

Petersen,  K.    Furnaces  adapted  to  burn  various  kinds  of  fuel 

(P)  622a* 

Petersen,  P.,  and  T.  J.  Coster.     Lactic  ferment  culture  for 

milk;  Process  of  producing (P)..         ..         ..     154a. 

Petersen,  P.  W.     Comestibles  ;  Preserving (P)  . .         . .     614a 

Petersen,  W.,  and  E.  V.  Clark.  Plastic  materials  ;  Manufac- 
ture of  —  (P). .         ..         - 509a 

Peterson,  A.  C.    See  Bailey,  C.  H 29a 

Peterson,  T.  B.,  and  L.  C.  Sharp.     Liquids;    Mixing  — — 

with  dry  material  (P)  . .         . .         . .         . .         . .     451A 

Peterson,  W.  H.,  and  others.  Fermentation  of  hexoses  and 
related  compounds  by  certain  pentose-fermenting 
bacteria  . .  . .  . .  . .  . .  . .  . .     778a 

Pentoses  ;  Fermentation  of by  moulds         . .         . .     992a 

See  Brunkow,  O.  R.  H5A 

See  Fred,  E.  B 72a 

Petinot,  N.     Ferro-alloys  ;    Production  of  low-carbon  

(P)  821A 

Peto,  R.  H.  K.    See  Finch,  G.  1 414a 

Petri  und  Stark,  Ges.m.b.E.     Oils  suitable  for  Impregnating 

films  and  keeping  them  soft ;  Manufacture  of 

(P)  640a 

Petroleum  Rectifying  Co.    See  Eddy,  H.  C 890a 

See  Harris,  F.  W 210a,  494a,  851a*,  890a 

See  Meredith,  W 850a,  890a 

Petsch,  H.    See  Still,  C.  490a 

Pettingall,  J.    See  Franklin,  H.J 973a 

Pettis,  E.  S.    Drum-filter  agitator  (P) 316a 

Petz,  F.    See  Schuckert  u.  Co 380a 

Petzel,  G.  Filling  columns,  towers,  etc.,  or  the  like  through 
which  gas  is  passed  in  an  opposite  direction  to 

liquid;   Bodies  for (P) 620a 

Peyer,  J.    See  Karrer,  P.  645a 

Peytral,  E.    Acetic  acid  ;  Mode  of  sudden  pyrogenicdecom- 

position  of at  high  temperatures  . .  . .     196a 

Acetone  ;   Mode  of  pyrogenic  decomposition  of at 

high  temperatures        . .         . .         . .         . .         . .     196a 

Methyl  acetate ;    Mode  of  pyrogenic  decomposition  of 

at  high  temperatures 196a 

Pfahler.    See  Immendorfer        303a 

Pfannkuch,  E.    See  Rosenmund,  K.  W.  915a 

Pfautsch,  M.     Phenols  ;    Production  of  pale,  non-darkening 

from  lignite  tar  or  its  distillates  (P)      _.         ~       93a 


76 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Pfeffer,  J.  E.    See  Mitchell,  F.  W 

PfJnmann,  T.  W.    See  Chem.  Werke  Lothringen 
PfllSchiDgei  Mincrahverke  Gebr.  Wildhagen  und  Falk.     Su 
under  Wildhagen. 

Pflstcrcr,  K.     Mixing  apparatus  (P) 

Pfizenmaier,  K.,  and  S.  Galanos.    Creatinine  ;  Determination 

Pfleidcrcr,  W.     Refrigerating  machines  ;  Boiler  applicable  for 
use  as  absorber  in  absorption (P) 

Pflugfeldcr,  R.  II.     Dealcoholising  apparatus  (P) 

Pfyl,  B.     Ash  of  foodstuffs;  Alkalinity  of  the .. 

and    others.      Formaldehyde ;    Detection   of with 

phenols.    Detection  of  methyl  alcohol 
Methyl  alcohol  in  spirits  ;   Replacement  of  morphine  in 
detection  of 

Phelps,  E.  B.,  and  others.    Butter  fat  ;  Manufacture  of 

(P)  

Phelps.  S.  M.    See  Howe,  R.  M.  

Phelps  Dodge  Corp.    See  Butler,  P.  P.  

Philadelphia  Drying  Machinery  Co.     See  Allsop,  T.  400a, 

Philip,  A.    Tar  acids  and  tar  bases  in  road  drainage  and 
mud  ;  Determination  of .     Discussion . . 

ThiJippi,  E.     Mellitic  acid  and  pyromellitic  acid  and  their 
formation  by  the  oxidation  of  carbon 

and  G.  Rie.    Carbon;  Oxidation  of with  nitric  acid. . 

and  R.  Thelen.    Carbon;  Oxidation  of with  sulphuric 

acid 

and  others.    Pyromellitic  acid  ;    Synthesis  of  from 

technical  xylene 

Phillips,  A.,  and  E.  S.  Davenport.     Cast  iron  ;   Conversion  of 
white into  malleable  iron 

rhillips,  A.  W.   Cellulose-ester  products,  e.g.,  smokeless  pow- 
der ;  Treating (P)  

rhillips,  C.  O.,  and  American  Cotton  Oil  Co.    Cottonseed 

meats;  Treatment  of (P) 

Food  for  animals  ;  Manufacture  of (P) 

Food  product  (P)       . .         . .         

Soap  ;  Apparatus  for  moulding (P) 

Phillips,  M.     6.6'-Di-(a-hydroxyisopropyl-)indigo ;    Prepara- 
tion of from  para-cymene 

Thymol;  Manufacture  of  synthetic (P) 

Phillips,  R.  O.,  and  Barrett  Co.    Vulcanised  composition  ; 
Manufacture  of (P) 

Phillpotts,  O.  S.     Austria  ;    Report  on  economic  and  com- 
mercial situation  of 

Photometric  Products  Corp.     Photometric  devices  (P) 

Phragmen,  G..   See  Westgren,  A.  ..         ..         ..     413a, 

Physikalisch-Chemische  Werke  A.-G.     Galvanic  cell  ;    High- 
potential  (P) 

Picard,  H.  F.  K.     See  Sulman,  H.  L 

Picard,  M.     See  Marcusson,  J.  ..  ..  ..      496a 

Piccard,  J.     Oxygen  in  organic  compounds  ;    Detection  of 


PAGE 

944a 
753a 


207a* 

7S4a 

165A 

7:U 

643A 

7SA 

73A 

192A 
253A 
506a 
449a 

176T 

727A 
727a 


329A 
393A 

343A 

954A* 

343A 

903A* 

743a 
997a 

42C.A 

513R 
841A" 

758a 

147a 

863A 

,  803A 

311A 

534a* 

225a 

541a 

560A 

584a* 

730A 
114A 
361 A 


Pichard,  C,  and  Pichard  Freres.  Carroting  hairs  ;  Process 
for (P) 

Pichard,  G.     See  Riviere,  G 

Pichard  Freres.     Carroting  hairs  ;  Process  for (P) 

Hides  ;  Process  for  unhairing (P)     ._ 

See  Pichard,  C 

Pichier,  A.B.  Solvents,  e.g.,  ether  ;  Recovery  of  low-boiling 
from  extraction  residues  in  the  laboratory 

Pichon-Vendeuil,  J.  E.    Milk  ;  Amino-acids  of 

Pick,  S.    See  Strafford,  W.  W.  

Pickering,  G.  F.,  and  G.  E.  Cowlishaw.  Oils  and  fats  (gly- 
cerides) ;  Relation  between  refractive  index  and 
chemical  characteristics  of . .  . .  . .       74T 

Tickles,  A.    Ferric  chloride  ;  Reduction  of ...         ..     292a 

Picon.     Mercuric  methylarsinate  ;    Preparation  of and 

of  a  solution  of  this  salt  suitable  for  injection  . .       32a 

Methylarsinate  of  quinine  and  of  iron  ;  Solutions  of 

suitable  for  injection    ..         ..         ..         ..         ..     117a 

Plctet,  A.,  and  A.  Barbier.    Glycerol  and  a-glucoheptitol ; 

New  syntheses  of . .         . .         . .         . .       32a 

and  R.  Jaiin.    Starch  ;   New  product  of  depolymcrisation 

of 871A 

and  .T.  H.  Ross.    /-Glucosan  ;  Polymerisation  of ..     428A 

and  H.  Vernct.    Galactosan 642a 

Pier,  H.  M.    See  Hawley,  L.  F.  495 1 

Pierce,  F.  E.    See  Chase,  M.  F.  215a 

Pierce,  H.  H.,  and  Scoria  Products  Co.  Slag  ;  Plastic  compo- 
sition from (P) 178a 

Pieroh,  K.    See  Schulzc,  H 914a 

Pierson,  J.  and  O.  G.  Gas  generators  for  generating  low- 
grade  gas  (P) 494a 

Pierson,  O.  G.     See  Pierson.  J.  J'.u  i 

Pietcrs,  J.    Distillation  gases  in  vertical  retorts  ;  Apparatus 

for  evolving (P) 362a* 

Piettc,  O.,  and  Belgian  American  Coke  Ovens  Corp.  Coke- 
oven  wall  (P) 851A* 

Piggot,  C.  S.    Ammonia  ;   Manganese  in  catalytic  oxidation 

of 96a 

See  Rogers,  T.  H 155a 


PAOE 

Pihlblad,  N.    See  Gardner,  H.  A 946a 

Pike,  R.  D.     Magnesite  ;   Treating for  manufacture  of 

oxycluoride  cements  (P)  . .  . .  . .  . .     593a 

Pile.  F.  S.  J.    Metal ;   Testing  the  elasticity  or  hardness  of 

(P) 841A* 

See  Hamilton,  R.  F.,  and  Co 122a* 

Pilgrim,  J.  A.  "  Goran  "  (Cerinps  Roxbitrghiana)  bark.    Opti- 
mum   temperature   and   state   of   sub-divisiou   for 
maximum  extraction    . .  . .  . .  . .  . .     828A 

Pilkington,  A.  C.    See  Pilkington  Bros.,  Ltd.  . .         . .     375a* 

Pilkington  Bros.,  Ltd.,  and  others.     Glass  ;    Apparatus  for 

gathering  - —  from  a  molten  mass  (P)         . .         . .     375a* 

Pilling,  N.  B.    Iron  ;   Effect  of  heat  treatment  on  hardness 

and  micro-structure  of  electrolytic . .         . .     861A 

Pilsbry-Becker  Engineering  and  Supply  Co.     See  McGinnis, 

W.  R 580a 

Pincass,  H.     Calcium  cyanamide  ;   Formation  of from 

calcium  ferrocyanide    . .         . .         . .         . .         . .     667a 

Pincussen,  L.    Urea  ;  Detection  of and  determination  of 

proteolytic  enzymes     . .         . .         . .         . .         . .     964a 

Pinder,  G.    See  Lee,  G.,  and  Sons,  Ltd.  585A* 

Pinkard,  F.  W.    See  Wardlaw,  W 172a 

Pinnow,  J.     Quinol-potassium  sulphite  developers  ;    Ageing 

and  deterioration  of . .         . .         . .         . .     879a 

Pintsch,  J.,  A.-G.     Electric  lamp  with  glow  discharge  (P)     . .     742a 
I .     producer  for  gasification  of  caking  coals,  with  re- 
covery of  low-temperature  tar  (P)     . .         . .         . .     131A 

Gas  producer  with  separate  discharges  for  distillation 
gases    and    tar-free    producer    gas ;     Recovery    of 

ammonia  from (P)  . .  . .  . .  . .     494A 

See  Klebert,  E 580a* 

Pipereaut,  P.    See  Helbronner,  A 668a 

See  Mirat,  G.  707a 

Pique,  J.J.     Fish  and  the  like  ;  Cooiiug  and  freezing  of ■ 

(I>)  913A* 

and  Imperial  Trust  for  the  Encouragement  of  Scientific 
and  Industrial  Research.    Cooling  and  freezing  flsh 

and  the  like  ;  Apparatus  for (P)  . .         . .     644a* 

See  Hardy,  W.  B 644a' 

Piron,  E.     Coke  ovens ;    Recuperative  (P)     . .         . .     848a 

Distillation ;    Relation  between  composition  of  vapour 

and  liquor  in . .         . .         . .         . .         .  ■     239a 

Pistor,  G.    See  Chera.  Fabr.  Griesheim-Elektron   . .         . .     669a 

Pittman,  C.  L.    See  Humphreys,  D.  L 423a 

Pittsburgh  Engineering  Works.    See  Hanff,  E.  A.  . .     902a 

Pittsburgh  Oil  Refining  Corp.     See  Boileau,  W.  K.  . .     702a 

Pittsburgh  Plate  Glass  Co.     See  Dickey,  C.  B 813A 

See  Fulton,  C.   E.  59A 

See  Wilson,  R.  E.  954A 

Piutti,  A.,  and  E.  Boggio-Lera.    Arsenic ;    Microchemical 

detection  of  ■        880a 

Piwowarsky,  E.     Grey  cast  iron  ;    Annealing  of . .     861A 

Iron  ;    Addition  of  steel  to  pig  and  "  reversed 

chilled  iron  "    . .  . .  . .  . .  . .  . .       59A 

Strontium-lead  alloys ;    Equilibrium  diagram  of  714A 

See  Oberhoffer,  P.  466a 

Place,  P.  B.    See  Davis,  J.  D.  92a 

Plaisted,  H.  M.,  and  Williams  Patent  Crusher  and  Pulverizer 

Co.     Grinding  ;   Fine  - — ■  (P)        576a 

Plank,  R.    Refrigerating  machine  ;  Test  of  a  carbon  dioxide 

using  auxiliary  compression  and  high  condenser 

pressures  . .         . .         . .         . .         M         . .     489a 

Planowsky,  N.  J.    Calico  printing  ;   Dressing  materials  used 

in  from  the  colloid-chemical  standpoint     . .     749a 

Plantefol,  L.     Nitrophenols  ;    Toxicity  of  various  ■ to- 
wards Sterigmaiocystis  nigra  ..          ..          ..  ..     155A 

Piatt,  W.  H.  H.     Aluminium  sheet  and  castings  ;   Repairing 

and  attaching  copper,  brass,  steel,  etc.,  to 

aluminium  (P)  ^  . .  . .  . .  . .  . .     107A 

Platzmann,  C.  R.     Portland  cement  ;    Influence  of  calcium 

chloride  on  strength  of ..         ..         ..         ..     142a 

Plauson,  G.     Oxidation  of  hydrocarbons  to  fatty  acids,  pro- 
duction of  nitrates,  "hydrogenat  ion,  etc. ;   Processes 

for  carrying  out and  apparatus  for  use  therein 

(P)  638A 

Plauson,  H.    Alkali  from  felspar  and  other  minerals  ;  Extrac- 
tion of  (P)  938A 

Cellulose  ethers,  esters,  etc.  ;    Manufacture  of  (P)     74S.I 

Clay,  especially  china  clay  ;   Refining (P)  . .  . .     815A 

<  nlloids  and  colloidal  solutions  ;  Preparation  of (P)     686a 

Compositions  of  oils  or  other  organic  substances  ;   Manu- 
facture of  (P) 837a 

Disintegrators;    High-speed  — —  (P) 886A 

Fruit  juices,  conserves,  or  other  products,  e.g.,  sugar, 
from  fruits,  vegetables,  and  the  like ;   Manufacture 

of   (P) 953a 

Glue;   Manufacture  of (P) 641a* 

ll>  xamethylenctctraniine  ;   Manufacture  of  — —  (P)    ..     309a 
lchthyol  oil.  iehthyol  preparations  and  the  like  ;   Manu- 
facture of — -  (P) 786a 

Inks,  water  colour  paints,  and  like  compositions  (P)  . .     989a* 
Lubricants  from  mineral  and  other  oils ;    Manufacture 

of  (P) 889a 

Milk  ;    Process  of  dissolving  dried  or  concentrated 

(P)  681A 


NAME  INDEX. 


77 


Plauson,  H. — continued. 

Plastic  masses  ;  Preparation  of from  blood,  haemo- 
globin, or  like  protein  substances,  and  manufacture 
of  articles  therefrom  (P) 

Kubber-like  substances;    Manufacture  of  (P)   .. 

Vinyl  halides  ;    Manufacture  of  (P) 

Viscose  ;    Manufacture  and  treatment  of (P) 

Viscous  oily  compositions  ;    Manufacture  of  and 

treatment  of  waxes  for  use  therein  (P) 

Yeast  ;    Improving  the  odour,  taste,  and  digestibility 

of  (P) 

and   D.    R.    Kotman.     Dispersoids,   colloid   powder,   and 

plastic  masses  therefrom  ;   Manufacture  of (P) 

and  J.  A.  Vielle.     Oils,  fats,  and  tars  ;  Refining  and  other- 
wise treating (P) 

Resins  and  oil-soluble  dyestuffs  ;  Manufacture  of (P) 

Plauson's  Forschungsinstitut.     Albuminous  matter  ;    Separ- 
ating   from  glue  solutions  prepared  from  bones 

(P)  

Artificial  resin  ;  Preparation  of  a  white  insoluble (P) 

Filtering  surfaces  for  continuously  operated  suit  ion 
drum  filters  (P)  

Filter-press ;    Continuous  (P)  . .  . .       12Sa, 

Fire-extinguishing  and  washing  materials ;  Manu- 
facture of  (P)     . . 

Fish  refuse  and  the  like  ;  Production  of  a  plastic  mass 
from (P) 

Glue ;     Obtaining   from   bones,    fish,   or   leather 

refuse,  etc.  (P) 

Glycol  and  formaldehyde  ;   Manufacture  of (P)  . . 

Inks  and  water-colours  ;    Manufacture  of  (P)     . . 

Lubricating  oils,  leather  grease,  artificial  vaseline, 
lanoline-like  materials,  etc.  ;    Production  of  very 

viscous  from  mineral,  animal,  or    vegetable 

oils  (P) 300a, 

Mineral  oils  and  the  like  ;    Refining (P) 

Plastic  compositions  ;    Production  of  from  solid 

or  semi-solid  acid  tars  or  the  like  (P) 

Proteins ;  Deodorising  products  from  hydrolysis  of 
especially  those  yielding  glue  (P) 

Resin  ;  Manufacture  of  high-grade  from  turpen- 
tine and  crude  resins  containing  turpentine  (P)  . . 

Resins,  pitch,  and  the  like  ;   Hardening (P) 

Shales  ;    Process  for  the  treatment  of  oil (P) 

Vulcanite -like  materials  ;    Production  of  (P) 

Pleuz,  F.     Coke  breeze  from  lignite  ;    Ignition  temperature 

of . .         . .         «         -.         

Plinke,   F.     See    Deutsche   Ton-  u.    Steinzeugwerke  A.-G. 
Plonnis   und   Co.     Building  material  ;     Manufacture   of  an 

unflred from  clay  and  sulphite-cellulose  waste 

liquor  (P) 

Building  materials ;    Production  of  (P)   . . 

Carbolineum  paint ;  Manufacture  of  a  binder  for (P) 

Paint ;   Water-resistant (P)  . . 

Plonski,  M.  L.     See  Konig,  J.  

Plotnikow,  J.     Caoutchouc;    Photo-polymerisation  of  vinyl 

chloride  and  the  problem  of 

Plowman,   W.   W.,   and    W.   Feldenheimer.     Alkaline-earth 

(P) 


lllA,  254a,  756A 
Milk  ;  Process  and  appar- 
-  (P)         

Manufacture  of (P) 


carbonates  ;    Purifying 
See  Feldenheimer,  W. 
Plummer,  F.  A.,  and  A.  D.  Gray. 

atus  for  acting  upon  — 
Pocius,  R.     Phenols  and  the  like 
Poensgen,  W.    See  Oberhoffer,  P. 
Poetschke,    P.    Hydrogen   peroxide,    its    manufacture    and 

preservation 
Pohl,  0.     Proteins  ;    Obtaining  from  leguminous  seeds 

(?)      

Pohl,  M.    Match  composition  (P) 

Pohl  und  Von  Dewitz,  Torfverwertungsges.    Peat  and  the 

like ;     Dry    distillation   and    coking   of   (P) 

6A, 581a*,  624a* 
Peat  and  the  like  ;    Process  of  drying  and  compressing 

raw (P) 

Peat  and  the  like  ;  Treatment  of  raw (P)  . . 

Poindexter,  R.  W.,  and  N.  Goodwin.     Carbon  ;   Production 

of  finely  divided  (P) 

Poirot,   G.    See  Fleury,   P 

Pokorny,  J.  Cotton  mercerised  by  means  of  sodium  hydroxide 
or  sodium   chromite   (alkaline  chrome   mordant)  ; 

Important  but  overlooked  properties  of  

Discharges  on  basic  dyes  with  antimony  tannate  mordant 
by  means  of  hydrosulphite  N  F  and  Leucotrope. 
(Report  by  M.  Battegay) 
Pokorny,    J.    T.,    and    A.    T.    Eddlngston.     Waterproofing 

tile  and  the  like  (P) 

Polanyi,  M.     See  Ettisch,  M 

Poldihiitte,    Tiegelguss-stahlfabrik.     Steel    alloy    containing 
chromium,  nickel,  and  silicon  (P) 

Polhamus,  L.  G.     Cottonseed  ;   Delinting (  P)    . . 

Polla,  A.     Building  materials  ;    Manufacture  of  with 

ligneous  fragments  (P) 

Pollacsek,  E.     Briquettes  ;    Manufacture  of (P) 

Sulphite  lye  ;   Manufacture  of  a  mastic  or  binding  sub- 
stance from (P) 

Pollak,  F.    Paper  ;    Process  for  stiffening  hats  or . . 

See  Klemenc,  A 412a 


304a 
475a* 

729a* 
806a 

946a* 

480a* 

948a* 

474a 
676a 


775a 
720A 

89A 

281A 

946a 

722A 

186A 
392a 

826a 


826A 
802a 

868A 

186A 

261a 
720A 
284A 

111A 

658A 
736a 


103A 
758A 
510A 
510a 
25a 

261a 

708A 
939a 

874a 
852a 
712a 

292a 


802a 


802a* 
130a 


149a 
685a 


983a 
145a 

470a 

769a 

375a 
360a 

368a 
459a 
963a 


TAiiE 
Pollak,  L.     Pickling  meat  with  solutions  containing  potas- 
sium nitrate  and  sodium  nitrite     ..         ..      606a,  912a 
Tannin  analysis,  with  special  reference  to  analysis  of 

gambler    extract         . .         . .         , ,         . .         . .     773a 

Pollitt,  F.  T.    See  Willows,  R.  S 55a,  369a 

Pollitzer.  F.     See  Wucherer,  R 622a* 

Polonovski,  M.  Alkaline-earth  metals  ;  Qualitative  separa- 
tion of  840a 

Barium  ;  Approximate  volumetric  determination  of 840a 

Polysius,    G.     Cement    raw    materials ;     Manufacture    of 

moulded  pieces  or  agglomerates  of  (P)         . .       16A 

Drum  filters  ;    Operation  of  (P) 737A 

Low  temperature  carbonisation  of  materials  (P)         . .     702a 

Pomeranz,  H.     Dextrin  ;    Testing  value  of  for  cloth 

dressing  ..         ..         ..         ..         ..         ..     411a 

Pomcroy,  C.  A.,  and  F.  W.  Heyl.     Strophanthus  extracts  ; 

Stability  of  645A 

Pomeroy,  R.  E.  H.     Dry-pulverising  apparatus  (P)  . .         . .     796a 

Pulverising  apparatus  (P) 927a,  972a* 

Pomilio,  A.    See  Cataldi,  B.  747A 

Pomilio,  V.     Cellulose  ;  Manufacture  of by  the  chlorine 

gas   process       . .  . .  . .  . .  . .  . .     704a 

Leucites ;     Production    of    potassium    and    aluminium 

compounds  from  Italian by  means  of  chlorine    370a 

Pomilio  Bros.  Corp.    See  Rebuffat,  0 634a* 

Ponder,     E.     Sodium     glycocholate ;      Hcemolytic     action 

of 231A 

Ponndorf,  W.     Coumarin  and  its  homologues  ;   Preparation 

of  (P) 34A 

Pontio,M.     Hemp  (Cannabis  satiru)  and  pseudo-hemp (Crota- 

laria  juncea) ;    Differentiation  of  ■      ..         ..     458a 

Pool,  J.  C.     Oil  separator  (P) 580a 

Pool,  J.  F.  A.    Methyl  alcohol  in  alcoholic  drinks  ;  Detection 

of 871A 

Poore,  P.     Distillation  of  wood,  woody  fibre,  and  similar 

carbonaceous  substances  (P)  . .  . .  . .  . .         7A* 

Treating    substances    in    a    finely-divided    condition ; 

Apparatus  for  (P)         622a* 

Pope,  J.  C.     See  Francis,  F 360a 

Pope,  W.J.     Annual  Meeting  proceedings    . .         . .         . .     253T 

Emil  Fischer's  recollections  . .  . .  . .  . .     495R 

Therapeutic  progress  ;    The  chemist's  part  in  . .     368R 

Therm  system  of  charging  for  gas         . .         . .         . .     411R 

See  Harris,  J.  E.  G.  581A 

See  Mann,  F.  G 435a 

See  Mills,  W.  H 293E,  524a 

Popp,  M.,  and  J.  Coutzen.    Nicotine  in  tobacco  and  tobacco 

smoke  ;   Determination  of . .         . .         . .     995A 

Porritt,  B.  D-,  and  North  British  Rubber  Co.     Rubber  and 

other  like  substances  ;    Vulcanisation  of  ■  (P)    559a* 

Porst,  C.  E.  G.,  and  M.  Moskowitz.     Starches  ;  Comparison  of 

various    maize    product   as   shown    by    the 

Bingham-Greene    plastometer  . .  . .  .  .     265A 

and    N.    V.    S.    Mumford.     Dextrose :     Manufacture    of 

chemically  pure 338a 

Porter,  A.  W.     Vapour  pressure  of  ternary  mixtures         . .       78R 
and  J.  J.  Hedges.     Colloidal  suspensions;    Law  of  dis- 
tribution of  particles  in  . .         . .         . .     291R 

Porter,  C.  W.  Rust ;  Process  and  composition  for  pre- 
venting    (P) 985A 

Porter,  E.  C.     Hide  powder  ;    Swelling  of . .  . .     303a 

Porter,  WT.  H. ,  and  J.  W.  Spensley.  Density  of  water  in 
a  steam  boiler  or  of  other  liquids  in  evaporating 
plants  ;    Apparatus  for  measuring  or  indicating 

the  (P)  205a,  317a* 

Porteus,  G.     Air  purifying  apparatus  (P)  . .  . .  . .         2a* 

Portevin,  A.  Cast  irons  ;  Mechanical  and  elastic  pro- 
perties of and  use  of  ball  hardness  test      . .     103a 

Cast  steel  ;    Microstructure  of  ..  ..  ..     418a 

See  Guillet,  L 166k 

Portheim,    E.,    and    Kinzlberger    und    Co.     Anthracene  ; 

Purification  of  crude (P) 169a* 

Anthraquinone  ;    Purificaton  of  crude  (P)        . .      169a 

Porzellanfabr.    Kahla.     Porcelain    bodies ;     Cement    for 

joining after  burning  (P)       . .  . .  . .        15a 

Possanner  von  Ehreuthal,  B.  Cotton  substitutes  ;  Manu- 
facture of  (P)  498A,  628a* 

Possekel,  H.     See  Meguin  A.-G 450a 

Poste,  E.  P.     Enamel-burning  racks  ;    Relative  merits  of 

heat-resisting  alloys  for  . .  . .  . .     983a 

Potash  Extraction  Co.     See  Glaeser,  W 669a 

Potash  Reduction  Co.     See  Runev,  C.  F.  ..  ..      327a 

See  Stevens,  T.  E 316a 

Potter,  G.  M.     See  Haber,  H.J 245a 

Potter,  R.  S.     See  Bailey,  G.  C 246a 

See  Weisberg,  L.  . .  . .         . .  . .  . .     676a 

Potts,  H.  E.     "  Patents  and  chemical  research  "  . .  . .     140R 

Pouchain,  A.     Electric  accumulators  ;    Negative  plate  for 

(P)         64a*,  866a* 

Poucholle,  A.     Hardening  of  steel  . .  . .         . .  . .     255a 

Poulenc  Freres,  and  C.  Oechslin.  Arsines  ;  Manufacture 
of  dichlorides  of  monoarylarsines  and  mono- 
chlorides  of  diaryl (P)  232a 

See  Meyer,  R 348A* 


78 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Toulson,  A.,  and  C.  J.  Rourke.     Foundry  sand  ;   Treating 

or  renovating  (P)       ..  ..  .t 

Powdered  Fuel  Plant  Co.,  Ltd.     See  Soc.  Anon.  La  Com- 

bastion  Rationelle  ..         ..  '..  128a*,  455a 

See  Stein,  CM.  

Powell,  A.  R.     See  Schoeller,  W.  R. 
Powell,  H.  J.     Obituary 

Stained  and  painted  glass  ;   Modern  developments  in 

making  of 

Powell,  J.    See  Dyffryn  Works,  Ltd 

Power,  D.  P.,  and  others.     Dehydrator  or  dryer  (P) 
Power  Specialty  Co.     Oils  ;   Apparatus  for  distilling  - 

(P) 

Oils  ;    Means  of  effecting  heat  interchange  between 

two  fluids,  particularly  for  use  in  distilling 

(P) 

Stills  (P) 

See  Bell,  J.  E.  

See  Primrose,  J. 
Powers,  H.    See  Umpleby,  F. 
Powers,  W.  L.     Soils  ;   Field  moisture  capacity  and  wilt- 
ing point  of 

Prache.    Iron  castings  ;    "  Hard  "  

Prager,  H.  A.    See  Fierz,  H.  E 

Prandtl,  W.,  and  J.  Losch.     Rare  earths  ;    Separation  of 
by  basic  precipitation.     Quantitative  separ- 
ation of  cerium  from  other  earths 
and   J.   Rauchenberger.     Rare  earths ;    Separation   of 

by  basic  precipitation  . .         . .      292a 

Prat,  E.     Heat  exchanger  (P) 

Pratt,  D.  D.,  and  R.  Robinson.     Pyrilium  salts  of  antho- 

cyanidin  type  ;    Synthesis  of  ■ 

Tratt,  J.  T.     See  Estabrooke,  W.  I.  

Pratt,  W.B.,  and  Clapp  Rubber  Co.     Ebonite  solution  (P) 
Prax,  J.     Olive  oils  and  Villavecchia's  reaction 
Preiswerk,  E.,  and  Hoffmann-La  Roche  Chemical  Works. 

l-Ailyl-3.7-dimethylxanthine ;     Manufacture    of 

(P)         

Prcll,  G.     See  Henrich.  F 938a 

Presbrey,  R.  L.     See  Hayward,  C.  R. 

Prescott,  W.  E.,  and  J.  Baker  and  Sons.  Chocolate  and 
other  plastic  materials ;  Apparatus  for  heating 
or  cooling (P) 

Prest-O-Lite  Co.     See  Skinner,  O.  H 

Preston,  G.  D.     See  Owen,  E.  A 

Price,  F.  G.,  and  Minerals  Separation,  Ltd.  Coal ;  Treat- 
ment of by  flotation  (P) 

Price,  J.,  and  Griscom-Russell  Co.  Evaporators  and 
other  apparatus  ;  Apparatus  for  regulating  the 
discharge  of  liquid  from (P) 

Price,  T.  8.,  and  D.  F.  Twiss.  "  Organic  chemistry  ; 
Course  of  practical "  . . 

Price,  W.  J.     See  Ling,  A.  R 149T, 

Prideaux,  E.  B.  R.,  and  H.  Hewis.  Bismuth  ;  Anodic 
corrosion  of  and  notes  on  bismuth  com- 
pounds          . .         . .         . .         . .         . .      123B, 

Priest,  C.  F.     Kilns  ;    Vertical  gas-fired  for  burning 

limestone  or  the  like  (P) 

Priestley,  W.  J.  Steel ;  Effect  of  sulphur  and  oxides  in 
ordnance  - — 

Prigge,  C.     See  Schroeter,  G. 

Prillwitz,  H.  H.  C.     See  Chem.  Fahr.  Griesheim-Elektron 


Primrose,  J.,  and  Power  Specialty  Co. 
control  for (P) . . 

Prince,  A.  L.     See  Blair,  A.  W. 


Oil  stills  ;  Damper 


PAGE 

179a 

576a 

88a 

121a 

546B 

475R 

401A* 

657A 

284a 


489A 

284A 

537a* 

742a' 

801A 

049a 
217a 
943a 


897a 

897a 
315a 

804A 
764A 
336a 

556a 


484a  • 

938a 

330a 

307a* 

244a 

502R 

888A 


105R 
172R 

167T 

816a 

330A 
133a 
729a* 

742a* 

870a 

109R 


Pring,  J.  N.     "  Electric  furnace  ;   The " 

Pringsheim,    H.     Albumin ;     Preparation    of    pure   

free  from  salts  and  acid  from   its  solutions  in 

salts  or  acids  (P)       ..  ..  ..  ..  ..        35a 

Saccharified  wood  spent  washes  ;    Detection  of  un- 

fermented  sugar  in  . .  . .  . .  . .     679a 

and  A.  Aronowsky.     Inulin  . .  . .  . .  . .     613A 

and  D.  Dernikos.     Polyamyloses  . .  . .  . .  . .     513a 

and  K.  Goldstein.     Starch  grain  ;    Relation  of    a-  and 
^-polyamyloses  to  inner  content  and  integument 

substance  of  the  ..  ..  ..  ..     513a 

and  M.  Lassmann.     Inulin  and  glycogen  . .  . .      513a 

and    W.    Person.     Polyamyloses ;     Methyl   and   acetyl 

derivatives  of . .         . .         . .         . .         . .     512a 

Starch  ;    Chemistry  of  .     Methylation  of  poly- 
amyloses       ..         ..         ..         ..         ..  ..     112a 

and  K.  Schmalz.     Tctralrevoglucosan  and  tetraglucosan     950a 

Prins,  H.  J.     Metals  ;   Acceleration  of  solution  of in 

acids  by  reducible  compounds     ..         ..         ..     554a 

Nitro-compounds  ;    Detection  of ..  ..  ..     957A 

Pritchard,  G.  A.     See  Buckman,  H.  H 417a 

Pritzker,  J.,  and  R.  Jungkunz.     Hazel-nut  oil,  and  determi- 
nation of  araehidic  acid      . .  . .  . .  . .       65a 

l'ri/.ina,  Inc.     See  Kelloy,  W.  V.  D.  393A 

Process  Co.    See  Coast,  J.  W 91a 

Process  Engineers,  Inc.     See  De  Cew,  J.  A.        ..      138a,  978a 
Procoudinc-Gorsky,  S.  M.     Colour  photography  (P)        . .     484a 


Procter,   H.   R.     "  Leather   manufacture ;    Principles   of 

Procter,  J.  Kilns  for  clayware ;  Appliance  for  regular 
and  certain  firing  of  top-fired  continuous  and 
chamber  —  by  mechanical  means  (P) 

Proctor  and  Schwartz,  Inc.     See  Ayres,  E.  B. 

See  Howson,  H. 
Profeld,  E.     Sue  Kiittner  Kunstseidespinnerei 
Projahn,   F.     See   Rhenania   Verein   Chem.   Fabr.   A.-Q 

633a 
Proskouriakoff,  A.     See  Raiziss,  G.  W. 
Proud,  K.    See  Spencer,  J.  F. 
Prutzman,    P.    W.,   and   General    Petroleum    Corp.     De 

colorising  material  for  oils  ;    Production  of  

(B) 

Washing  insoluble  powders  ;    Apparatus  for  ■  (P) 

and    others.     Mineral    oils :     Treatment    of    asphaltic 

(P)        

Pryde,  J.     Nitrogenous  sugar  derivative  ;    New  type  of 


See  Macbeth,  K.  

Prym,  H.     Absorption  and  reaction  towers  ;  Filling  bodies 

for (P)  ..         

Prym  und  Co.     Filling  material  for  absorption  and  re 

action  towers  (P) 

Puening,  F.     Coal ;    Coking (P)  

Hydrocarbons  ;    Cracking (P) 

Puiggari,  M.,  and  N.  Venezia.     Water ;    Purifying  and 

clarifying (P)  .. 

Pummerer,  R.     "  Organische  Chemie.     Wissenschaftliche 

Forschungsberichte  III." 

Resins  ;   Production  of  artificial (P) 

Puppe,    J.     Steel ;     Comparison    of    Talbot    process   for 

manufacture   of   with    other   open-hearth 

refining  processes 

Purdura,  R.  B.     See  Edgar,  G 

Purdy,  R.  C.     American  Ceramic  Society  ;    The  ■ 

Purgotti,  A.     Magnesium  ;   Detection  of  in  presence 

of  manganese  and  phosphoric  acid 
Purrmann,  L.     See  Freudenberg,  K. 
Puryear,  S.  R.     Separating  solids  from  liquids  ;    Appar 

atus  for (P) 

Putnam,  M.  E.,  and  others.     Cellulose  acetate  solution  (P) 

Cellulose  esters  ;  Method  of  making (P)  . . 

Puyal,  J.     See  Fourneau,  E. 

Pye,  D.  R.     See  Tizard,  H.  T 

Pyhiila,  E.     Paraffin  wax  and  vaseline ;    Examination  of 

Petroleum ;     Origin   of  .     Nitrogen   compounds 

in  petroleum,  particularly  Baku  petroleum 
Pyman,  F.  L.,  and  L.  B.  Timmis.     Arylazoglyoxalines 
Pyrotan  Leather  Corp.     See  Merry,  E.  W.  ..      477a 

Pyzel,  D.     Distilling  bituminous  materials  (P) 


PAGE 
321R 


592A 

657A 
205A 
752A 

752A 
390a 
668A 


6A 

737a 


365R 
743A 

797a* 

165a 
579a 
6a* 

31a 

165R 
905a 


143a 

613A 

25R 

37a 
601a 

89a 
248a 

10A 
518A 
622A 

800A 

799a 
976A 
829A 
108A 


Q 

Quaglia,  A.     See  Sandonnini,  C.       . .  . .         . .  . .     707a 

Quarzlampen     Ges.     Mercury    vapour     lamp ;       Quartz 

(P)         712a 


R 

Rabak,  F.     Grape-seed  oil     „         ..         ..         ..  ..       21a 

Rabbeno,  A.     See  Viale,  G.  725A 

Rabe,    P.,    and    others.     Quinatoxins    and    quinaketones 

containing  no  vinyl  groups  ;    Synthesis  of  267a 

Rabinovich,  A.  G.     Latent  image  ;    Conductivity  of  the 

689a 

Rabinovitz,    L.,    and    Ellis-Foster    Co.    Coumarone    resin ; 

Manufacture    of    (P) 510a 

Racke,  F.    See  Willst&tter,  R.  386a 

RaozkowskI,   H.     See  Keen,   B.  A 70A 

Radcliffe,   L.   G.    Nitro  group  in  aromatic   organic   com- 
pounds ;  Estimation  of .     Discussion  . .         . .  101T 

and    W.    Gibson.     Hydroxystearic    acid  ;     A    and 

some  of  its  derivatives  . .  . .  . .  , .  476R 

Rae,  J.    See  Abraham,  A.  C.  43Sa 

Racburn,  C.     See  Simon,  H.,  Ltd 515A 

Rath,  K.    See  Von  Braun,  J.  608a 

Rafsky,  H.  R.     Filler,  loading,  base,  compounding  material, 

pigment  or  the  like  (P)         . .  . .  . .  . .  474a 

Paper  ;    Coated  (P) 367A 

Pigment;  White (P) 510a* 

Rahn,   O.     Butter ;    Formation  of  .     Effect   of  tem- 
perature           ..         ..         ..         ..         ..         ..  514a 

Butter ;    Process  of  churning  .     A  surface-tension 

theory     ..  ..  ..  ..  ..  ..  ..  114a 

'  'ream  ;    Formation  of  — - —         . .  . .  . .  . .  266a 

Dairy  work  ;  Importance  of  surface  tension  phenomena 


in 


514A 


NAME  INDEX. 


79 


Rai,  E.     See  Singh,  B.  K 

Raimbert,  L.  E.    Sand  filter  (P)        

Raines,  W.  G.,  Jan.    See  Brewster,  J.  F 

Rainey-Wood  Coke  Co.    See  Tiddy,  W 

Eaitt,  W.     Cellulose  or  paper  pulp  ;    Extracting from 

fibrous  vegetable  materials  (P) 
Raiziss,  G.  W.,  and  A.  Proskouriakoff.     Nitro  -compounds 

containing  mercury  ;  Organic ■ 

See  Schamberg,  J.  F 

Eak,  A.     Diffusion  apparatus  for  the  extraction  of  sugar 

from    the    beet   (P)    . . 
Rakshit,  J.N.     Opium;  Determination  of  morphine,  codeine, 

and  narcotine  in  Indian  

Rakusin.  M.  A.    Adsorption  and  electrolytic  dissociation  ; 

Relation   between  

Floridin  ;   Limits  of  adsorptive  power  of 

Petroleum  ;    Solid  paraffins  in  

Proteins   and    their   derivatives ;     Characterisation    of 

by    colour   reactions 

Proteins  and  their  derivatives ;    Fractionation  method 

for  separating  

Sulphur  and  solid  paraffins  ;    Probability  of  interaction 

of in  oil-bearing  strata 

Ralph,  W.  M.,  and  others.     Disazo  dye  ;  Production  of 

(P)  ~         

Ralston,   O.   C,   and   Hooker   Electro-Chemical   Co.     Brass 

scrap  ;    Treatment  of  (P) 

and  A.   P.   Wichmann.     Coal ;    Froth   flotation  of  

and  G.  Yamada.     Coal ;  Froth  flotation  tests  on  bituminous 

Ramadier,  L.    See  Duparc,  L. 

Ramage,   A.    S.,   and  F.   F.    Beall.     Hydrocarbons ;    Pro- 
duction  of  saturated   of   low   boiling   point 

from  heavy  hydrocarbon  oils  (P)   . . 
and  Bostaph  Engineering  Corp.    Aromatic  hydrocarbons  ; 

Production  of  (P)         

Hydrocarbon  oils ;   Method  of  treating  (P) 

and  Chemical  Research  Syndicate,  Ltd.    Motor  fuel  (P) 

and  Sugar  Research  Synd.,  Ltd.     Sugar  residues :    e.g., 

those    resulting    from    the    polarisation    of    sugar 

products  ;    Recovering  litharge  from  (P)    . . 

Rambush,  N.  E.     Gas  producers  and  the  like  (P)  . . 

Ramm,  M.     See  Kehrmann,  F. 

Ramsay,  D.  McN.     Evaporative  condenser  (P) 

Ramsdell,  L.  S.    See  Klein,  A.  A 

Randall,  A.  V7.  Alloy  (P)         

Randall,  C.  J.,  and  Goodyear's  Metallic  Rubber  Shoe  Co. 
Carbon  black  and  similar  materials ;    Solidifying 

(P)  

Rangeley,   A.,  and  A.   Chidlow.     Bleaching  kier ;    Wagon 

for  nigh-pressure  open  width  ■  (P) 

Ranklne,  A.  O.,  and  C.  J.  Smith.     Sulphur  dioxide  molecule  ; 

Structure  of  the 

Rapid  Roller  Co.    See  Kutner,  S 

Rasmussen,   B.     See   Winther,  C. 

Rassow,  E.     Aluminium  ;   Influence  of  kind  of  deformation 

undergone  by on  its  recrystallisation  diagram 

and  L.  Velde.     Aluminium ;  Recrystallisation  diagram  of 

technical 

Rast,  K.    Molecular  weight ;    Micro-determination  of  

in  a  melting-point  apparatus 

Ratajezak,  F.  F.    See  Sworski,  S.  F.  

Ratcliff,  E.  R.    See  Bryant,  W.  T.  

Rathsburg,  H.     Detonating  and  priming  substance ;    Pro- 
duction of  a (P) 

Explosives  and  primers  ;    Manufacture  of  (P)  . . 

Initial  primers  and  a  process  for  their  manufacture  (P) 
Mercury  fulminate 

Ratliff,  W.  C.    See  Selyig,  W.  A 

Rau,  M.  G.,  and  J.  L.  Simonsen.     Oils  and  fats  from  seeds 
of  Indian  forest  trees 
See  Simonsen,  J.  L. 
Rauchenberger,  J.     See  Prandtl,  W.  . .         . .      292a 

Rauert,  D.     Gas  engines  ;  Gas  requirements  and  composition 

of  exhaust  gases  of  large  ■ 

Raupp,  H.,  and  A.  Gasser.     Alkali  sulphides  ;   Evaporating 

solutions  of (P) 

Rautenstrauch,  W.     Skins  and  hides  ;    Unhairing  (P) 

Havner,  O.     See  Goldschmidt,  V.  M.  

Itawdon,  H.  S.,  and  S.  Epstein.     Graphitisation  in  a  carbon 
tool   steel 
and  A.  I.  Krynitsky.     Chromium  steels ;    Resistance  to 

corrosion  of  various  types  of 

and  M.  G.  Lorentz.     Nickel ;    Concentrated  hydrochloric 

acid  as  metallographic  etching  reagent  for . . 

and    others.    Aluminium    and    duralumin ;     Brittlenes3 

developed  in by  stress  and  corrosion 

Corrosion  patterns  on  cold-worked  tin  and  zinc 

Lead  ;    Brittleness  developed  in  pure  by  stress 

and  corrosion 
Rawling,  S.  O.     Electric  heating  and  controlling  apparatus 
for  a  small  thermostat 

Photographic  toning  ;   Sepia with  colloidal  sulphur 

and  W.  Clark.     Gelatin  ;  Iso-electric  condition  of . . 


PAGE 

704A 
317A* 
950A 
559A 

53a 

390A 
610a 

777a 

77a 

674a 
578a 
129A 

681A 

780a 

492a 

458a 

146a 
31 8A 

532a 
630A 


933a 
285A 
321A 


992a 
209a 
287A 
845A 
101A 
555A 

509a 

214a* 

507R 

66A 

879A 

219A 
219a 

393a 
535a 

132a 

121a 

441a 
880A 
121a 
359a 

902a 
520A 
897A 

888A 

373A 
69a 
416a* 

899a 
713A 

17a 

179A 
219A 

145A 

250T 

80a 

563E 


PAGE 

Rawlins,  E.  C.  D.  Greece  ;  Report  on  the  Industrial  and 

economic  situation  in  . .    . .    . .    . .  425R 

Ray,  J.  R.  See  Ray,  T 846a 

Ray,  U.  C.     Quartz ;    Heat  of  crystallisation  of  . .     755A 

Ray,  T.,  and  others.     Vacuum  evaporating  apparatus  (P)  . .     846A 

Ray  Bros.  Corp.     See  Ray,  T. 846a 

Raybestos   Co.    Friction   facings,   and   process   of   making 

them  (P)  248A 

Raymond,  E.     Rape  oil ;   Fatty  acids  of . .         . .     508A 

Rayner,  A.     Glycerin  ;    Composition  of  the  residue  on  dis- 
tillation of  crude . .         . .         . .         . .         . .     224T 

Rea,    R.     Dehydrators    for    fruits,    vegetables    and    other 

foods   (P)  606A 

Read,   J.,   and    E.    Hurst.     Glyceryl    chloro-   and    bromo- 

hydrins  ;   Conversion  of  allyl  alcohol  to . .     609A 

and  H.  G.  Smith.     Benzylldene-dZ-piperitone      . .         . .     435A 
(W-Piperitone ;     Interaction  of  <f/-piperitone  and  semi- 

carbazide,  and  isolation  of  pure  . .  . .     876a 

and  others.     rfZ-Piperitone  ;    Oximes  of  — —         . .  . .     436a 

Read,  J.  B.,  and  S.  Tour.     Brass  artillery  cartridge  cases ; 

Testing   ■ 468a 

Read,  J.  W.    Soils  ;  Practical  significance  of  organic  carbon  : 

nitrogen  ratio  in . .         . .         . .         . .         . .     186A 

and  R.   H.   Rldgell.    Soil  organic  matter ;    Use  of  the 

conventional  carbon  factor  in  estimating  . .     263a 

Read,  T.  A.    See  Avery,  D 154a 

Read,     W.     T.      4-Phenyl-4-ethylhydantoin      (nirvanol) ; 

Synthesis  of  the  soporific  . .         . .         . .     783a 

Real,  P.     Electric  arc  furnaces  ;  Apparatus  for  the  treatment 

of  gases  In  (P) 768a 

Gases  ;   Treating ■  in  the  electric  flame  arc  (P)     . .     768A 

Reaubourg,  G.    See  Pepin,  C. 877a 

Reavell,   J.   A.     Electrical   precipitation.     Discussion       . .       27T 
and  Kestncr  Evaporator  and  Engineering  Co.     Oils,  fats, 

waxes,  and  the  like  ;   Extraction  of (P)        . .     945a 

See  Fraymouth,  W.  A 400A,  476a 

Rebs,  H.     Brewers'  pitch  ;    Production  of  pitchy  materials 

suitable  for (P) 110.1 

Mineral  oil  and  its  distillates  ;  Purification  of (P)  . .     321a 

Rebulfat,  O.     Dinas  bricks  of  constant  volume     . .          . .     176a 
and  Pomilio  Bros.  Corp.    Refractory  silica  brielc ;   Manu- 
facture of  (P) 634a* 

Rebuffat  fu  Antonio,  O.     Refractory  articles  ;   Manufacture 

of  (P) 465a 

Rechenberg,  J.     Beers  from  mashes  boiled  under  pressure  . .       27a 
Reck,  E-,  and  Freeses  Patents  Eisenchutz  und  Schraubenwell- 
enbekleidung  fiir  Schiffe  G.m.b.H.     Preservation  of 
wood,    pasteboard,    masonry,   leather,   sheet  iron, 

etc. ;    Coating  for  the  (P) 

Reclaire,  A.    Acetic  anhydride  ;  Analysis'of 

Nitrobenzene  ;    Detection  of In  benzaldehyde     . . 

See  De  Jong,  A.  W.  K 836a 

Reddie.    Clay ;    Characterisation  of  .     Discussion 

Redman,  L.  V.,  and  others.    Phenolic  condensation  products ; 
Manufacture  of (P) 

Redmanol   Chemical   Products  Co.    Phenolic   condensation 

products  ;  Manufacture  of (P)  . . 

See  Redman,  L.  V. 


Reed,  A.  J.     Water ;   Apparatus  for  purifying  (P)  . . 

Reed,  C.  J.     Sulphide  ores  ;    Treating  (P)     . . 

Sulphuric  acid  ;   Process  of  making (P)    . . 

and  J.  G.  Berryhill.     Manganese  dioxide  and  nitric  acid  ; 

Process  of  obtaining  (P) 

Reed,  H.  C.    Hides  ;   Versatility  of  a  plumping  method  for 

Tannin  ;    Effect  of  hard  water  upon  

Non-tannin  enigma  ;   Solution  of  the 

Tanning    materials ;     Preparation    of    fresh for 

analysis 
and  T.  Blackadder.    Tan  liquors  ;  Measurement  of  plump- 
ing value  of ■ 

Tannin  analysis  ;   Official  method  of . .      150a, 

Reed,  J.  B.    Shorts  (middlings) ;   Detection  of  ground  bran 

Reed,  W.  S.    See  Gayley,  J.  ...         ..         „ 

Reeder,  J.  C.    See  Jones,  J.  S.  

Reedy,  J.  H.    Arsenic  sulphide  ;   Precipitation  of from 

arsenates 
Rees,  C,  and  Rees  Blow  Pipe  Mfg.  Co.     Drying  apparatus  (P) 

Rees,  W.  J.     Refractories;  Testing  of .. 

Refractory  materials  used  in  the  glass  industry  ;  Review 

of  the  preliminary  specifications  for 

See  Robinson,  P.  B. 
Rees  Blow  Pipe  Mfg.  Co.     See  Rees,  C. 

Reese,  A.  K.     Blast-furnace  practice  ;  Bases  of  modern' 

Reeve,  C.  S.,  and  Barrett  Co.     Bituminous  emulsion  (P)  . . 
and  F.  W.  Yeager.    Creosote  oils  ;    Coke  residue  test  for 


Reeves,  H.  G.    See  Morgan,  G.  T. 
Reeves,  W.  A.    See  Tucker,  O.  M. 
Regenbogen,  A.     See  Schoorl,  N. 
Reglade.     See  Nicolardot 


559a* 
519a 
957a 
95SA 
79T 

149A* 

224a* 
149a* 

3lA 
506A 
100a* 

463a 

827A 
150A 
224A 

24A 

302A 
336A 

29a 

471a 

25A 

140a 

400a 
95R 

127E 
446R 
400A 
712A 
48a 

932a 
531E 

142a* 
308A 
376A 


80 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 


pre- 


855a 
439A 

609a 

953a 

823a 
245A,  268a 

. .   345a 
..  797a* 

. .   207A* 


Production  of  - 


938a 
63a 


859a 
14a* 

167A 
141A 
980A 

176T 

113A 
73a,  78A 
. .      904a 

302T 
435R 

504A 
331a 


Reichelt,  J.  J.     Liquid  washing  blue  and  bleachin 

paration  ;    Manufacture  of  (P) 

Reichert,     L.     Iodine    pastilles :      Preparation    of    

containing  a  high  percentage  of  iodine  (P) 
Rcichsmonopolamt  fur  Branntwein.     Alcohol  for  use  in  the 
preparation   of   perfumes  and   cosmetics  ;     Sub- 
stances for  denaturing  

mschuss  fur  pflanzlirhe  und  tierische  Oele  mid 
Fette.  Fermentation  residues;  Utilising  nitro- 
genous material  in (P) 

Reid,  A.  E.     Electric  furnace  for  production  of  calcium 

carbide  (P)    . . 
Reid,    B.  E.     See  MUligan,  C.  H.    .. 

See  Rosen,  R. 
Reid,  H.     See  MacLeod,  J.    .. 
It,  iii,  J.     Furnace  fronts  (P) 
Reid,  J.  H.     Gas  and  calcium  carbide 

<P> 

and  T.  I.  Hogan.     Ores  ;   Reduction  of and  manu- 
facture of  gas  (P)     .. 
and    International     Nitrogen     Co.     Calcium    cyanide  ; 

Process  for  making  with  the  aid  of  gaseous 

catalysts  (P)  . .  

Carbides  ;    Process  for  making (P) 

Lignite  ;    Producing  and  securing  products  from 

(P)         

Nitric  acid  ;    Process  of  making (P) 

Reid,  R.  D.     See  Applebey,  M.  P 

Reid,  W.  F.     Tar  acids  and  tar  bases  in  road  drainage 

and  mud  ;    Determination  of .     Discussion 

Reif,  G.     Acetone  in  spirits  ;   Determination  of with 

hydroxylamine  hydrochloride 

See  Plyl,  B 

Reilly,  A.     See  Gardner,  H.  A 

Rcilly,  J„  and  E.  W.  Blair.     Petroleum  residues  ;  Thermal 

decomposition  of at  reduced  pressures 

See  Forster,  A. 
Reimann,  H.     Aluminium  alloys  ;  Applicability  of  molyb- 
denum for  improving 

Aluminium-molybdenum  alloys 
Reinders,    W.,    and    P.    Van    Groningen.     Iron-carbon- 
oxygen  ;     Equilibria   in  the  system .     The 

equilibrium  :   /3-iron-inartensite-ferrous  oxide-gas 
Reinecker,  H.  P.     See  Danielson,  R.  R.  ..      102a,  898a 

Reinfurth,  E.     Lactic  acid  compounds  ;    Preparation  of 

solid  (P)  

See  Neuberg,  C.    . . 

Refnger,  E.     Sativic  acid 

Reinhard,  H.  Mixing  solid  materials  and  treating  them 
with  gases,  e.g.,  roasting  zinc  blende  ;  Appar- 
atus for (P) 

Reinhold,  O.  F.,  and  Foster-Reinhold  Laboratories.     Sol- 
dering flux  (P) 
Reinshagen,  A.     See  Gottschalk,  M. 
Reinshagen    und    Co.,    Yulkan-Werk.      Cupola  and   blast 

furnaces  ;  Improving  the  operation  of (P)  . . 

Reis,  A.,  and  L.  Zimmermann.     Hardness  of  solid  sub- 
stances and  its  relation  to  chemical  constitution 
Reisenegger,  H.     Pyrites  cinders  ;    Recovery  of  zinc  and 

copper  from  lyes  obtained  on  leaching  

Reisert,  H..  und  Co.,   Komm.-Ges.  auf  Aktien.     Water  ; 

Softening    by    means    of    base-exchanging 

materials  and  lime  (P) 

Reiss,  F.     Milk  ;    Relation  of  fat  to  solids-not-fat  in  

Reissert,  A.  Vat  dyestuffs  containing  sulphur  and  nitro- 
gen ;    New  class  of • 

Reitler,  R.     See  Hess,  L. 

Reitz,  H.     See  Chem.  Fabr.  Griesheim-Elektron  590a 

Remington,  J.  S.     See  Howard,  A. 

Remus,  "W.  F.,  and  others.     Meat  powder  ;    Manufacture 

of  (P) 

Remy,  E.     Soya  bean  milk 

Renck,  H.     Gelatin  printing  plates  ;    Production  of 

(P) 

Rengadc,  E.     Soluble  salts  ;    Equilibria  of  double  decom- 
position  between   and   some  of   its   appli- 
cations.    Preparation  of  ammonium  nitrate 
Renger,  L.,  and  W.  Fuhrmann.     Corrosion  and  formation 
of  scale  in  steam   boilers,   condensers,   and   the 

like;  Preventing (P)  ..  ..  l.i, 

Renker  und  Co,  Diirener  Fabr.  phot.  Papicre.  "  Blue- 
print" paper;    Preparation  of (P)  .. 

Renncr,  H.,  and  \V.  Uoeller.  Tanning  agents;  Manu- 
facture of (P)  150a,  185A 

Rcnner  und  Co.,  Gerb-  und  Farbstoffwerke   H.     Skins  ; 

Tanning (P)     ..  ..  ..  ..  ..      722a 

Tanning  agents  ;    Manufacture  of (P)    69a,  'H 

150A,    185a,    185a 
Tanning  oils  and  fat-Ilquoring  agents;    Manufacture 

of from  hydroxy-fatty  aolda  and  phenol  (P)     774a 

Rennerfelt,  I.     Electric  furnaces  (P)  ..      472a,  823a,  902a 

Electric  furnaces  ;    Method  of  operating  (P)    . .     823a 

Uenshaw,  A.     See  Fairbrother,  T.  H 134T,  146R 


59a 


440a 
153A 
508A 


736a 

379a 
378A 

764a 

885A 

219A 

782a 
515a 

364a 

194a 

i   669a 

109A 

267a  • 
681a 

611a 

629a 

163a 
80a 


PAGE 

Renshaw,  R.  R..  and  N.  M.  Naylor.     Dyes  containing  the 

furanc  ring    . .  . .  . .  . .  . .  . .     365a 

Renwiek,  F.  F.     See  Agnew,  A.  J.  690a* 

Research  Corp.     See  Davis,  H.  N.  ..  ..  ..  632a 

See  Fisher,  H.  F.  971a 

See  Hedberg,  C.  W.  J.  491a 

See  Laughlin,  M.  P.        ..         ..         ..         ..         ..  399a 

See  Winterm'ute,  H.  A.  . .  . .  . .  . .  316a 

Reubig,  C.  R.     Leathers  ;   Treating  and  finishing (P)     774a 

Reuss,  A.     Water  ;   Determination  of  nitric  acid  in  drink- 
ing   by  Mayrhofer's  method  . .         . .         . .     480a 

Revere  Rubber  Co.    See  Keith,  C.  H 262a 

Kew,  W.  O.,  and  California  Central  Creameries.     Desic- 
cator for  milk  powder  (P)  . .  . .  . .  . .     954a 

Rex,  C.  R.  H.     See  Hawkins,  T 81A,  484a 

Reychler,  A.     Starch  grains  . .         . .         . .         . .         , ,     188a 

Reynard,  O.     See  Conyers,  F.  G.     . .  . .  . .  . .      508a 

Reynolds,  F.     See  Silica  Syndicate,  Ltd.    . .  . .  . .     851A 

Reynolds,  J.  A.     Coffee  ;    Roasting  and  packing  ground 

or  whole (P)    ..         ..         ..         ..         '.     781a 

Reynolds,  M.     Oils;    Refining (P) 599a 

Reynolds,  S.  H.     Geology  ;    Local  (Bristol  and  S.  Wales 

district)  aspects  of  industrial  . .         . .       74R 

Reynolds,  W.  H.,  and  others.     Separation  or  grading  of 
powdered  materials  and  the  treatment  thereof  by 
air  or  other  gases  or  vapours  (P) 
Rheinberg,  J.     Collodion  coating  mixture  and  film  ;  Light- 
sensitive  (P) 

Rheinisch-Nassauische     Bergwerks-     und     Hiitten-A.-G. 
Furnaces  ;     Mechanical    roasting    and    calcining 

(P)         

and  A.  Spieker.     Zinc  dust  with  a  high  content  of  me- 
tallic zinc;  Preparation  of  (P)  180A, 

Zinc  ;    Extraction  of from  lead-slags,  zinc-retort 

residues,  poor  zinc  ores,  or  the  like  (P) 
Zinc ;     Preparation   of    metallurgical    products    con- 
taining        for    the    blast-furnace    or    con- 
verter (P) 
and  others.     Furnaces  ;    Rabble  stones  for  mechanical 

roasting  and  calcining  (P) 

Lead  ashes  and  the  like  containing  tin  ;   Recovery  of 

tin  from  (P) 

Zinc  dust  with  a  high  content  of  metallic  zinc  ;    Pre- 
paration of  (P) 

Rheinisch-Westfalische    Kupferwerke   A.-G.     Autogenous 

cutting  and  welding  ;    Process  for (P) 

Rheinisch-Westfalische  Sprengstoff  A.-G.     Priming  com- 
position (P) 
Rhenania  Verein   Chem.  Fabr.   A.-G.     Sulphur  dioxide ; 

Process  for  the  manufacture  of (P) 

and    A.     Messerschmitt.     Calcium     cyanamide ;      Pro- 
duction   of   a    non-dusty,    readily    distributable 

crude (P) 

and  F.  Projahn.     Sodium  carbonate,  caustic  soda  and 

sulphur  ;   Production  of (P)  .. 

Sulphur  ;    Contact  furnace  for  producing  from 

hydrogen  sulphide  or  gases  containing  it  (P)     . . 
and   G.    A.    Voerkelius.     Calcium   cyanamide ;     Manu- 
facture of  non-injurious (P)  . . 

Ithenania    Ver.    Chem.    Fab.    A.-G.,    Zweigniederlassung 
Mannheim.     Aluminium  compounds  ;  Separation 

of from  other  substances  (P) 

Calcium   bisulphite  lye  and  sulphur  ;     Simultaneous 

production  of (P) 

Nitric  acid  ;   Preparation  of  free  from  chlorine 

and  from  lower  oxides  of  nitrogen  (P)   . . 
Propellants  ;    Process  for  making  from  ammo- 
nium nitrate  and  carbonaceous  matter  (P) 

Sulphuric  acid  ;    Purification  of  monohydrated 

from  the  distillation  of  oleum  (P)  .. 

Rhind,  D.,  and  F.  E.  Smith.     Tannase        

Rhoads,  T.  H.     See  Ayres,  E.  B 

Rhodes,  E.  O.,  and  others.     Potash  salts  ;    Recovery  of 

from    potassiferous    materials    in    cement 

manufacture  (P) 

Rhodes,  F.  H.,  and  K.  S.  Chen.     Vanadium  compounds  as 


driers  for  linseed  oil 
and  H.  F.  Johnson.     Varnish  resins  ; 

on  heating     . . 
and     A.     L.    Markley.     Phenol-wa'.-r  ; 

diagram  of  the  system  

and  others.     Resins  ;   Method  of  preparing 
See  Miller,  S.  P 


Changes  in 

Freezing-point 

"<p)  ;; 


Rhodes,  S.  H.,  and  International  Precipitation  Co.  Elec- 
trical separation  of  suspended  partii-les  from 
gases  (P) 

Rhotanium  Co.     See  Fahrenwald,  F.   A.    .. 

Rhys-Jenkins,  G.  W.  Colombia ;  Report  on  finance, 
industry,  and  trade  of 

Ricard,  AJlenct,  et  Cie.  Acetone  and  butyl  alcohol; 
Manufacture  of by  fermentation  (P) 

Rlcardo,  H.  R.  Fuel  for  use  in  internal  combustion 
engines  (P)  .. 


575a 
37a* 

107a 

472a* 

555a 

221A 

887a* 

472a 

180a 

716a 

568a 

858a 

338a 
752a 
633A 
264a 

754a 

632a 

327a 

998a 

414a 
336a 

057a 

375a 

334a 

380a 

134a 
425a* 

23a* 

399a 

471a 

162R 
34U 
701a 


NAME  INDEX. 


81 


Rice,  C.  W.     Water;    Method  for  determining  t lie  quan- 
tity of  an  appropriate  ehemical  that  should  be 

added  per  unit  of  volume  of  in  order  to  fit 

it  for  use  in  the  arts  (P)    . .  . .         . .  . .     344a 

Riee,  F.  E.,  and  T.  Hanzawa.     Milk  ;    Quantitative  deter- 
mination of  peroxydase  in  ..  ..         ..     341a 

Richard,  J.  C.     Medicine  and  hygienic  food  (P)    ..  ..     567A 

Richards,   E.    H.,   and   G.    C.   Sawyer.     Sewage  sludge ; 

Experiments  with  activated  . .  27R,  62T 

Richards,  W.  E.  W.     Cement ;    Manufacture  of  moulded 

articles  from  (P)         254a* 

Richardson,  A.     See  Adeney,  W.  E.  781a 

Richardson,  F.  W.     Expert  evidence  ;    Ethics  of . .     533R 

Oils  and  fats  ;   Relation  between  refractive  index  and 

chemical  characteristics  of  .     Discussion   . .       77t 

Richardson,   L.   G.     .See  British   Cellulose  and   Chemical 

Mfg.  Co.,  Ltd 289A,  289a,  543a 

Richardson,  W.  B.     Bye  ;    Manufacture  of  a  brown  

(P) 408A 

Richardson,  W.  D.     Clay  products  ;    Adaptability  of  gas- 
fired  compartment  kiln  for  burning  of  . .     405a 

and  Swift  and  Co.     Catalysts  ;   Manufacture  of (P)     622a 

Catalysts  ;   Regeneration  of (P)  . .         . .         . .     400a 

Richart,  F.  E.,  and  E.  E.  Bauer.     Cement  mortars  ;  Rela- 
tions  between   voids   and   plasticity  of  at 

different  relative  water  contents  . .  . .  . .     670a 

Richaud,  A.     Adrenaline  ;   Physiological  action  of  racemic 

and  lfflvorotatory  . .  . .  . .  . .      684A 

Adrenaline    preparations  ;      Limits    of    accuracy    of 

physiological  method  for  control  of . .         . .     481a 

Richet,  C,  and  others.     Lactic  ferment ;    Behaviour  of 

to  poisons        . .  . .  . .  . .  . .     228a 

Lactic  fermentation.     "  Remembrance "  in  bacteria     341a 
Richmond,  H.  A.,  and  others.     Corundum  ;    Manufacture 

of  artificial  (P)  417a 

Richmond,  H.  D.,  and  E.  H.  England.     Liver  oils  ;    Sul- 
phuric acid  reaction  for . .         . .  . .     902a 

Richter,  E.     Colloidal  metals  ;    Preparation  of  (P) 

119A,   232a 

Richter,  F.     See  Tiede,  E 172a 

Richter,  G.  A.     Carbon  bisulphide  ;    Manufacture  of 858a 

and  Brown  Co.     Fibre  liberation  ;   Process  of (P)  . .     807A 

and  others.     Catalyst ;    Method  of  restoring  the  activity 

of  a (P) !>s-;a 

Waterproof  fibrous  material ;   Manufacture  of (P)      10a 

See  Burningham,  F.  A.  . .         . .         . .         . .       10a 

Richter,  O.    Hides  and  skins  ;  Depilation  of (P)     304a,  641a 

Richter,  R.    See  Zinkc,  A „     509a 

Riddle.  F.  H.    Porcelain  (P) 417a 

and  J.  S.  Laird.    Glaze  fit ;   Control  of by  means  of 

tensile   test   specimens  . .  . .  . .  . .     710a 

Porcelain  ;   Tensile  strength  of . .  . .  . .     633a 

Rideal,  E.  K.     Hydrogenation  of  ethylene  in  contact  with 

nickel 269a 

and  W.  Thomas.    Fuller's  earth  ;  Adsorption  and  catalysis 

in  981A 

See  Rideal,  S 66r 

Rideal,  S.  and  E.  K.     "  Disinfectants  ;    Chemical  and 

sterilisation  "    . .         . .         . .         . .         . .         . .       66r 

Rider,   D.     See  Thermal  Industrial  and   Chemical   (T.I.C.) 

Research  Co.,  Ltd 803a 

Ridgell,  R.  H.     See  Read,  J.  W 263A 

Rie,  G.    See  Philippi,  E 727a 

Riebeck'sche  Montanwerke  A.-G.,  A.    Montan  wax  :     Pro- 
duction of from  lignite  (P)        . .         . .        48a,  660a 

Riebensahm,  E.    See  Schroeter,  G 1SSA,  133a 

Riedel,   A.    Ammonium   chloride  solution ;    Treatment  of 

(P)  858a 

Riedel,  B.     Weather-proof  stone ;    Production  of  (P)     758a 

Riedel,  F.,  and  Chemical  Foundation.  Inc.     Slag  ;    Device 

for  dry  granulation  of (P)        178a 

Riedel,    J.    D.    Alcoholic    fermentation  ;     Production    of 
material  from  pancreas  or  yeast  for  accelerating 

(P)  514a 

Antimonides  ;    Preparing  calcium  and  magnesium 

(P)  100a 

Arsenical  dust ;  Production  of (P)  . .         . .      726a,  954a 

Bile  acid  ;    Preparation  of  an  unsaturated  (P)   . .     688a 

Bile  acids  ;    Preparation  of  compounds  of  (P)   . .       34a 

Cholic  acid  ;    Preparation  of  derivatives  of (P)  . .       34a 

Colloidal  silver  halides  ;    Production  of  solid  (P) 

728a,  754a 
Colloidal   solutions  of  silver  halides  ;   .Process  of  pro- 
ducing        (P)        392A 

Hexamethylenetetramine ;     Preparation   of  derivatives 

of  (P) 520a 

Hexamethylenetetramine   with  monohalogen  fatty  acid 

esters  ;  Preparation  of  addition  products  of ■  (P)     520A 

p-Hydroxyphenylurea  ;    Preparation  of  ethers  of  

(P)  79A 

Yeast ;  Preparation  of  material  from for  accelerat- 
ing alcoholic  fermentation  (P)         . .         . .         . .     430a 

Riedinger,  K.     Feeding-stuffs  ;    Drying  bulky  (P)    . .       76A 

Rieke,  R.     Ceramic  materials  ;  Rational  analysis  of for 

works    control    purposes        . .  . .  . .  . .     590a 


Rieke,  R. — continued. 

and  M.  Gary.     Porcelain  ;    Testing  of  

and    W.    Paetsch.    Ceramic    colouring    materials ;     Con- 
stitution of  some  

Riemer,  C.     See  Haag,  E. 

Ricpe,  E.  Furnace  for  the  continuous  production  of  gas  and 
coke    (P) 

Riesenberg,  H.     See  Sabalitschka,  T.  

Riesenfeld,  E.  H.,  and  G.  W.  Feld.  Polythionic  acids  and 
polythionates 

and  G.  M.  Schwab.     Ozone         

Riesenfeld,  H.     Dry  batteries  ;    Preparation  of  with 

manganese  dioxide-graphite  electrodes  (P) 

Riess,  G.    See  Auerbach,  F 

Eiffart,  H.  Triketohydrindene  hydrate  (ninhydrin)  reaction 
for  colorimetric  determination  of  amino-acid 
nitrogen 

Riffle,  J.  B.,  and  L.  H.  Hartman.    Kiln  (P) 374a 

lligby,  T.     China  clay  or  like  clays  ;  Treatment  of (P)    756a 

Distilling,  concentrating,  or  drying  apparatus  (P)     . .     573A 
Drying  of  peat  or  similar  material  (P)  . .  . .       574A,  800a 

Heating  and  cooling  of  liquids  or  admixed  solids  and 
liquids   in   evaporative  or  like  treatment  thereof 

-   (P)  

Peat ;    Treatment  of  (P) 

Rigg,  G.,  and  Mining  and  Metallurgical  Processes  Pro- 
prietary, Ltd.     Zinc  sulphide  ores  ;    Desulphurisa- 

tion  of  (P)         

Righter,  F.  L.    See  Trivelli,  A.  P.  H.  

Rigsby,  G.  D.    See  Holmes,  F.  M 

Rinck,  A.    Starch  syrup  in  fruit  juices,  jams,  etc.  ;  Formula* 

for  calculation  of  

Rindfusz,  R.  E.,  and  others.     Flax  fibre  ;  Process  for  making 

high-grade  paper  pulp  from  '(P) 

Ringbauer,  P.    Tanning  skins  (P) 

Ringer,  F.  Sorel  cement ;  Process  for  facilitating  the 
working   and   increasing   the   stability   of   objects 

made  of  (P) 

Ringer,  W.  E.     Trypsin  ;  Influence  of  reaction  on  the  action 

of 

Rinkenbach,  W.  H.    See  Taylor,  C.  A 524a 

Rintoul,  W.,  and  others.     Explosive  (P) 961A 

Riou,  P.     Carbon  dioxide  ;    Velocity  of  absorption  of  

by  alkaline  solutions   ..  ..  ..  ..       370A,  545a 

Carbon  dioxide ;    Velocity  of  absorption  of  by 

ammoniacal    solutions 
Rippl,  F.     Distillation  or  gasification  of  organic  matter  or 
minerals   containing  organic  matter  ;     Process  and 

oven  for  the  continuous (P)     . . 

Rischbieth,  P.     Hydrogen  and  methane  in  admixture  with 

air ;    Fractional  combustion  of  

Ristenpart,   E.    Cotton  ;    Bleaching  of  with  acid  and 

alkaline   hypochlorite   solutions 
and  P.  Wieland.     Dyed  fabrics  ;  Influence  of  gases  on  fast- 
ness of  

Rivalland,  C.    See  Malvezin,  P 

Rivett,  A.  C.  D.  Ammonium  chloride-sodium  sulphate- 
ammonium  sulphate-sodium   chloride-water ;    The 

quaternary   system 

Riviere,  C.    See  Clement,  L 449a,  567k 

Riviere,  G.     Gas  producer  for  gas-coke  smalls  ;    Marconnet 

fused-ash 

and  G.  Pichard.     Soil ;    Partial  sterilisation  of  . . 

Roa,  Ltd.    See  Wickham,  H.  A 

Roast,  H.  J.,  and  C.  F.  Pascoe.    Bearing  metals  ;   Arsenical 


591A 

592A 

451A 

535A 
343a 

65A 
668a 

656a 
606a 


841a 


970a 
800a 


108a* 
788a 
987a 

191a 

894a 

721a 

329a 

192a 


856a 


457a* 

798a 

808a 

895a 
55a 


369a 


739a 
225a 
383a 


Robbins.  H.  R.     Ores  ;   Concentration  of (P)  . . 

and  Metals  Recovery  Co.    Copper  sulphide  ores  ;    Flota- 
tion concentration  of  (P) 

Roberts,    A.    By-products ;     Recovering    from    dis- 
tillate gases  (P) 

Coking  coal   (P) 

and  American  Coke  and  Chemical  Co.    By-product  con- 
denser and  method  of  operating  it  (P) 

Coal  distillation  retort  (P) 

Coke-oven  walls  ;    Heating  (P) 

Coke  ovens  or  the  like  (P)  . . 
Coke  ovens  and  the  like  ;    Heating  wall  for 
and  Chicago  Trust  Co.  Coke  oven  (P) 

Roberts,  A.  E.    See  Rhodes,  F.  H 

Roberts,  A.  S.,  and  Surpass  Chemical  Co.,  Inc.    Bleaching 
and  dyeing  vegetable  and  animal  fibres  (P) 

Roberts,   C.    See  Fuller,  H 

Roberts,  C.  H.  M.     Gas  ;    Detecting   the   presence  of  one 

in  another  (P) 

Roberts,    E.,    and    Western    States    Machine    Co.     Centri- 
fugal apparatus  (P)    . . 

Roberts,  F.  C.     Gases  ;   Removing  solids  suspended  in 

(P)  

Roberts,  H.  S.    See  Hostetter,  J.  C 

Roberts,  J.     Carbonisation  of  coal  (P)  . . 
Roberts,  O.  D.,  and  H.  T.  Islip.    Beeswax  ;    Constants  of 
Indian    


297A 
63a 


801a 
245a* 


455A* 

..     283a 

91a* 

3A,  91a,  455A* 

(P)   ..        46A 

322a*,  930a ^ 

.  .      425A* 


855A 
20a* 

650a 

450a 

127a 
100a 
973a 

557a 


82 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Robertson,  A.  R.,  and  A.  F.  Dunsinore.    Centrifugal  machines 

(P)  88A 

(Vnhiu  Ml  machines;  Plough  discharging  device  for 

(p)  401a* 

Robertson,  I).  L.     See  Fleury,  P 971a* 

Robertson,    F.    D.    S.     Oxides,    e.g.,    molybdenum    oxide ; 

Ining  volatilisable  (P)      ..  ..         99A,  755a* 

Robertson,  G.     See  Atack,  F.  W 134a,  169a* 

Robertson,  G.  S.    "  Basic  s!ag3  and  rock  phosphates  "     . .     320r 
Basic  slags  and  rock  phosphates;    Fertilising  value  of 

484R 

and   F.   Dickinson.     Phosphate ;    Valuation  of  insoluble 

by  means  of  a  modilied  citric  acid  test      ..         ..     53lR 
Robertson,  T.     Bauxite  and  chromite  in  Togoland  . .  . .     159R 

Robertson  Co.,  H.  H.     See  Young,  J.  H.      ..    48a,  899a*,  989a 
Robin,  J.  T.     Gas  mantles  and  other  articles  or  materials  ; 

atus  for  testing  the  tensile  strength  of (P) 

322a,  507r 

Robinson,  A.  T.     See  Malan,  H.  L 576r 

Robinson,    C.    I.,   and    Standard    Oil    Co.     Fuller's   earth ; 

Treating  spent  (P) 132a 

Petroleum  refining  ;  Recovery  of  by-products  of (P)     931a 

See  Howard,  F.  A.  491a 

Robinson,  C.  J.     See  Robinson,  T.,  and  Son,  Ltd.  44a*,  128a* 
Robinson,  C.  S.    Alcohol  still ;    Plate  efficiency  of  a  con- 
tinuous        . .          . .          . .          . .          . .  . .     605a 

Ammonium     citrate ;      Composition    and     preparation 

of  a  neutral  solution  of ■  . .  . .  . .  . .       82a 

Baking  powder  ;   Determination  of  total  carbon  dioxide 

in 431a 

Wood  as  a  chemical  engineering  material  . .  . .     619a 

and    S.    L.    Bandemer.    Ammonium    citrate    solutions ; 

Analysis  of  ■ ■         428a 

Baking  powder  ;  Determination  of  carbon  dioxide  in 388a 

and    others.     Organic    nitrogenous    compounds ;     Avail- 
ability of in  soils  . .  , .  . .  . .  . .       26a 

Robinson,  G.  C.     Acetone  and  butyl  alcohol  fermentation 

of  various  carbohydrates      ..  ..  ..  ..     778a 

Robinson,  G.  W.     Soils  ;  Mechanical  analysis  of  humus 990a 

Soils  and  other  dispersions  ;  Mechanical  analysis  of 990a 

Robinson,  I.  E.     Furnaces,  stoves  or  the  like ;    Method  of 
and  means  for  raising  and  maintaining  the  tem- 

pirrature  in  (P) 796a 

Robinson,  J.  G.     Steam  generators  ;    Means  for  using  pul- 
verised fuel  in  the  furnaces  of (P)     . .  . .     451A* 

Robinson,  P.  B.,  and  W.  J.  Rees.     Silica  bricks  ;    Grading 

of 446R 

Robinson,  R.  ■  See  Crabtree,  H.  G 582a 

See  .Macbeth,  A.  K.  835a 

See  Pratt,  D.  D 804a 

Robinson,  R.  H.     Lead  arsenates  ;    Physical  properties  of 

commercial  . .  . .  . .  . .  . .     433A 

and  D.  E.  Bullis.     Soils  ;   Influence  of  calcium  carbonate, 
calcium   oxide,   and   calcium   sulphate  on   soluble 

soil  nutrients  of  acid . .  . .  . .  . .     677a 

Robinson,  W.  0.    Soil  colloids  ;  Absorption  of  water  by 991a 

Robinson.     Nitro   group  in  aromatic  organic  compounds ; 

Estimation    of   .     Discussion    . .  . .  . .     161T 

Robinson,  T.,  and  Son,  Ltd.,  and  C.  J.  Robinson.     Centri- 
fugal apparatus  for  separating  solid  particles  from 

air  (P) 44a*.  128a* 

Robison,  F.  W.,  and  Utility  Compressor  Co.     Refrigerating 

systems  ;    Method  of  using  sulphur  dioxide  in 

(P)  240a 

Robison,  R.    Gelatin  ;  Value  of  in  relation  to  nitrogen 

requirements  of  man  . ,  . .  . .  . .  . .     342a 

Robson,  J.  T.    Silica  ;    Influence  of  heat  on  microscopical 

properties  of in  its  different  mineral  forms  . .     897a 

Robus,  A.  J.     Peat ;   Apparatus  for  distillation  of and 

recovery  of  the  products  (P)    . .  . .  . .  . .     132a 

Rochaix,   A.     See   Cluzet,   J 914a 

See  Courmont,  P 76a,  110a 

Roche,  J.  W.,  and  others.     Condensed  milk ;    Manufacture 

of  sweetened  (P)  343a 

Condensed  milk;  Manufacture  of  unsweetened (P)     343a 

Milk  powder;  Manufacture  of (P)  . .  ..  ..     115a 

Rocker,  G.,  and  E.  I.  du  Pont  de  Nemours  and  Co.     Cellu- 
losic  colloids;  Method  of  controlling  the  stabiliser 

content  of  (P) 730a 

Rockwell,  G.  E.     See  McLaughlin,  G.  D 040a 

Itodd,  E.  H.     See  British  Dycstulfs  Corp 934A 

Rodd,  F.  .1.  H.     Bulgaria;    Report  on  the  commercial  and 

in  335R 

Rodelmsh,  \V.  H.,  and  0.S.  Industrial  Alcohol  Co.    Esters; 

:illking (P) 87SA 

■■I  ;    -Method  of  making  (P) 157a 

Tetrahalogenated    hydrocarbons;    Apparatus   for  pro- 

i  157a 

Rodger,  W.  F.     See  Dempster,  R.  and  J.,  Ltd 975a* 

Rodhe,   O.,   and  Aktiebolagct  Ingeniorsfirma  F.   Egncll. 

Gas-anuly.-inu'  apparatus  (P)  ..  ..  ..      650a* 

Rodman,  C.  J.     Insulating  compounds ;    Arc  action  on 

some  liquid . .  . .  . .  . .  . .     865A 

Insulating  oils  ;   Determination  of  moisture  in . .     180a 


PAQH 

Rodman,  H.,  and  Rodman  Chemical  Co.     Carbonaceous 

char  ;    Method  of  making  finely-divided (P)  974a 

Carbonaceous  product ;    Manufacture  of (P)     . .  623a 

Rodman  Chemical  Co.     See  Rodman,  H.              ..      623a,  974a 
Rodrian,  R.,  and  Rodrian  Electro-Metallurgical  Co.,  Inc. 

Smelting  and  electrolysing  process  (P)     . .          . .  766a 

Rodrian  Electro-Metallurgical  Co.     See  Rodrian,   R.      . .  766A 
Roebuck,  J.   R.     Platinum  thermometers  and  resistance 

coils  ;    Construction  of ■          . .         . .         . .  998a 

Roder,  H.     See  Spath,  E 683a 

Rohm,  O.     Chrome  leather;  Neutralising  (P)     722a,  774a 

Glue  and  the  like  ;    Process  for  making  from 

glue  material  (P)     . .          . .          . .          . .          . .  225a* 

Hides    and    skins ;     Depilation,    neutralisation,    and 

bating  of (P) 225a 

Leather  ;  Manufacture  of  iron-tanned  (P)    69a,  151a* 

Mineral-tanned  leather  ;   Neutralisation  of (P)  . .  774a 

and  Chemical  Foundation,  Inc.     Oil  tanning  ;  Means  for 

greasing  leather  of  all  kinds  and  for (P)    . .  427a* 

Tanning  with  aluminium  salts  (P)       ..          ..          ..  641a* 

Rohm,  R.     See  Kesseler,  H.               . .          . .          . .          . .  349a 

Rohm  und  Haas,  A.-G.     See  Bauer,  W.     . .          . .          . .  484a 

Romer,  A.,  and   Deutsch-Koloniale  Gerb-  und  Farbstoff 
Ges.     Tanning  materials  ;    Process  for  obtaining 

■ from  sulphite -cellulose  waste  lyes  (P)         ..  225a 

and  others.     Tanning  (P) ..          ..          ..  476a 

Roesel,  E.     See  Gouin,  P ...          ..  181a* 

Rossler,  O.     See  Helbig,  M.               ..          ..          ..          ..  477a 

Roessler  and  Hasslacher  Chemical  Co.     See  Liebknecht,  O.  374a* 
Rogatz,  "W.  B.,  and  Farmers  Standard  Carbide  Co.     Cal- 
cium carbide  ;  Method  of  manufacturing (P)  670a 

Rogers,  A.     "  Tanning  ;   Practical "  . .          . .          . .  488R 

and  Ocean  Bond  Co.     Shark  skins  and  the  like  ;   Process 

for  treating  ■ (P)          25a,  476a 

Rogers,  C.  E.     Evaporating  pan  for  milk  etc.  (P)    ..          ..  564a 

Rogers,    D.    McG.,    and   A.    T.    Masterman.     Electrolytic 
apparatus  for  preparing  hypochlorite  solutions  (P) 

252a,  333a* 

Rogers,  F.     Corrosion  of  metals       . .          . .          . .          . .  124a 

Rogers,    G.   L.     Guatemala ;     Report   on   economic   and 

financial  conditions  in  . .         . .         . .  250r 

See  Brown,  J.  L.               147a 

Rogers,  H.,  and  E.  I.  du  Pont  de  Nemours  and  Co.     Alkyl- 

anilines  ;  Method  of  producing  — — (P)  ..          ..  407a* 

Rogers,  J.  S.     Leather  ;   Determination  of  acid  in . .  476a 

Rogers,  T.  H.,  and  others.     Carbon  monoxide  ;    Catalytic 

oxidation  of ..          ..          ..          ..          ..  155a 

Rohn,  "W.     Induction  electric  furnace  (P)  . .          . .          . .  902a* 

Liquefied  gases  ;    Vessels  for  conveying  and  storing 

(P)         317a* 

See  Heraeus,  W.  C 179a 

Rohrs,  F.  W.     Motor  fuel  (P)         48a,  741a 

Rojdestwensky,    A.     Sandalwood    oil ;      Properties     and 

preparation  of  in  Dutch  East  Indies          ...  836a 

R6ka,   K.,  and   Holzverkohlungs-Ind.  A.-G.     Acetylene ; 

Chlorination  of (P) 567a 

See  Holzverkohlungs-Ind.  A.-G.            916a 

Rolf,  I.  P.     See  Levene,  P.  A 479a 

Rolla,  L.     Aluminium  alloys  ;   Corrosion  of . .          . .  331a 

Roller,  C.  C.     Metallurgical  furnace  (P)     _          ..          ..  863A 

Rolls-Royce,  Ltd.     See  Hall,  H.  C.               M          . .          . .  555a* 

Rolt,  W.  J.  W.     See  Brady,  O.  L 363A 

Romani,  E.     See  Bruni,  G.               601a 

Rombaut,  L.  E.,  and  J.  A.  Nieuwland.     Hexamethylene- 

tetraraine  ;    Catalytic  synthesis  of . .          . .  835a 

Romijn,  G.     Arsenic  reaction  ;  Aluminium  for  the . .  526a 

Rona,  E.     Radium  residues  ;  Ionium  content  of  ■ ■    . .  250a 

Bona,  P.,  and  others.     Invertase  ;    Combined  action  of 

quinine   and    narcotics   on    and    action   of 

arsenic  compounds  on  maltasc  and  a-methylglu- 

cosidase         782a 

Rondelli,  T.,  and  others.     Metallic  surfaces  ;    Coloration 

of  (P) 506a* 

Rooke,  H.  S.     See  Morgan,  G.  T It 

Root,  F.  J.     Coal  ;    Treating  to  obtain  a  smokeless 

furl  (P)          740a 

Rosanoff,  M.  A.     See  Lizounoff,  V 106a 

Kosanoff  Process  Co.     See  Perkins,  H.  F.              . .         . .  168a 
Roschier,    II.     Cellulose ;     Determination    of    degree    of 

digestion  of . .          . .          . .          . .          .  -  746a 

lloschmann,  C.     Furnace  ;    Calcining  with  indirect 

heating  (P) 164a,  531a 

Furnaces  ;   Air  or  gas  heater  for  calcining (P)  . .  164a 

Rose,  C.  W.,and  L.  Rosenthaler.     Squill-  (SeiUaot  Urginea 
maritima)  ;    Extracting  a  therapeutic  drug  from 

(p)         878a 

Rose,  D.     See  Auld,  D.,  and  Sons,  Ltd 163A 

Rose,  H.  J.     See  Sperr,  F.  W 556A 

Rose,  J.  R-,  and  others.     Gaseous  fuel  (P) 208a 

See  Harris,  J 299a 

Roscbourne,  C.     See  Findlay,  A 58t 


NAME  INDEX. 


83 


PAGE 

Roseby,  P.  N.     See  Automatic  Telephone  Mfg.  Co.    20a, 

259A,   473a 

Roselius,  H.     Caffeine  ;    Extraction  of  from  coffee 

beans   (P) 479a 

Rosen,  R.,  and  E.  E.  Reid.     Sesqui-mustard  gas  or  bis- 

£-chloroethyl  ether  of  ethylenedithioglycol        . .     345A 
Rosenbaum,  J.  L.     Rubber  mixtures  and  accelerators  ..        77k 

Rosenberg,  E.     See  Morgenroth.  J.  193a 

Rosenberg,  J.  O.     See  Karrer,  P 642a 

Rosenfeld,  M.  C.     See  Anthony,  M.  O 127A 

Rosengrcn,  E.     See  Paul,  C.  F.,  jun 316a 

Rosenhain,  W.   "  Aluminium  "  allovs  ;  Causes  of  failure  in 

126K,  255A 

and  J.  D.  Grogan.     Aluminium  ;   Effects  of  over-heating 

and  repeated  melting  on  . .  . .      417R,  818A 

Rosenheim,  A.,  and  L.  Krause.     Selenious  acid  ;    Deter- 
mination of  and  heteropolyselenites  ..       13a 

and     F.     Leyser.     Polyborates     in    aqueous    solution. 

Detection  and  determination  of  boric  acid         . .       56a 
Rosenmund,    K.    W.     Aldehydes ;     Reduction    of    acid 

chlorides  to by  means  of  nickel  catalysts  . .     785a 

and   E.    Pfannkuch.     Gallic  aldehyde  and    its  deriva- 
tives     915a 

Rosenthaler,  L.     Alkaloid  content ;  Relation  between  total 

nitrogen  and  . .  . .  . .  . .  . .        77a 

Arsenic  acid  ;   Determination  of . .  . .  . .     650a 

<r-Einulsin    (oxynitrilese),     S-eniulsin     (oxynitrilasej, 

and  carboligase         . .  . .  . .  . .  . .     430a 

Oxalic  acid  ;     Detection  and  determination  of 

and  its  application  as  a  standard   in   iodimetry 

and  silver  titrations  . .  . .  . .  . .     649a 

and  H.  B.  Weber.     Strychnos  and  kola  seeds  ;  Alkaloid 

content  of  ..  ..  ..  ..  ..        77a 

See  Rose,  C.  W 878a 

Roser,  H.     See  Gerngross,  0 „      302a,  426a 

Rosner,  R.     Electric  gas-generator  (P)      . .  . .      380a,  902a 

Ross,  J.  H.     See  Pictet,  A 428a 

Ross  J.   O.,  and  B.  F.  Sturtevant  Co.     Drying  webs  of 

paper,  fabric,  or  the  like  ;  Apparatus  for (P)     498a* 

Paper  ;   Method  of  and  apparatus  for  making (P)     460a* 

Ross,  W.  H.;  and  W.  L.  Evans.     Ethylene  and  other  un- 
saturated hydrocarbons  ;   Preparation  of (P)     959a 

and  W.  Hazen.     Potash  ;    Elimination  of  borates  from 

American  ■         . .  . .  . .  . .  . .      706A 

and  A.  R.  Merz.     Potash  as  by-product  in  blast-furnace 

industry  ;    Recovery  of . .  . .  . .     413A 

and   others.     Phosphoric  acid ;    Composition  of  com- 
mercial   . .  . .  . .  . .  . .  . .     544a 

Ross  Chemical  Co.     See  Miles,  G.  W.  335a 

Rossi,   C.     Fertilisers  ;    Production  of  potash- containing 

(P)         112a* 

Rossi,   G.     Colloidal  sulphur ;    Physico-chemical  investi- 
gation of . .  . .  . .  . .  . .     414a 

Soil ;   Microbiology  of  the and  possible  existence 

of  invisible  germs  therein  . .         . .  . .         . .       25a 

Rossman,  W.  F.,  and  American  Zinc,  Lead  and  Smelting 
Co.     Zinc  retorts  and  other  refractory  shapes  ; 

Making  of (P) 711a 

Rost,  C.  O.     Peat  soils  ;  Occurrence  of  sulphides  in  Minne- 
sota   949A 

Roth,  G.     Separation  of  fine  material ;    Pneumatic  

(P) 927a* 

Roth,  K.     See  Merck,  E 89i 

Roth,  W.     Metallic  articles  ;    Coating —  with  a  chemi- 
cally inactive  acid-resisting  substance  (P)  . .      767A 
Roth,  W.  A.     Calorimetric  bomb     . .          . .          . .  . .     350A 

Rothe,  F.     See  Ampere-Ges.m.b.H.  597a* 

Rothenberger,  E.     See  Fichter,  F.  287a 

Rotman,  D.  R.     See  Plauson,  H 948A* 

Roucka,  O.     Cement  and  concrete  materials  ;    Process  of 

manufacturing  (P)     . .  . .  . .         . .     758a 

Rourke,  C.  J.     See  Poulson,  A.        ..  ..         ..         ..     179a 

Rouse,  T.     Iron  and  steel ;    Manufacture  of  (P)     . .     822a* 

Roussel,  O.  M.  G.     See  Jarraud,  A.  . .  ..  ..        28a 

Rowe,  F.  M.     Colour  index  ;    The  new  . .  . .      54.'»r 

"Colour  index.     Part  I."  ..  ..  ..  ..     517k 

and  E.  Levin.     ar-Dihydronaphthols  and  their  deriva- 
tives   . .  . .  ...  . .  . .  . .  . .       93a 

Pigment  Chlorine  GG  (M.L.  &  B.)  and  Lithol  Fast 

Yellow  GG  (B.A.S.F.)  ;    Constitution  of  ..     714a 

Rowland,  A.  J.,  and  Federal  Products  Co.      Coating   and 

impregnating  agent,  and  process  of  making  it  (P)       382a 

Rowlands,  M.  H.     See  Veitch,  W.  W 88a 

Rowlandson  (Engineers),  Ltd.     See  Veitch,  W.  W.         ..       88A 

Rowley,  C.  A.     See  Crowley,  J.  P.  634a 

Roy,  G.     See  Kehrmann  F.  . .  . .  . .  . .      2S7a 

Royal  Baking  Powder  Co.     See  Paulus,  H.  W.    379a,  577a,  631a 
Royer,  J.     Hypochlorite  bleaching  solutions  ;    Determina- 
tion of  available  chlorine  in . .  . .  . .     544a 

Ruben,  S.     Promoting  chemical  reactions  between  gases  ; 

Method  of  and  apparatus  for (P)     . .  . .     902a 

Rubricius,  H.     Nickel ;  Determination  of in  steels  . .     144a 


page 
Rudolf,    J.     Dryiug,    evaporating,    etc.,   substances    con- 
taining or  yielding  free  alkali  or  acid  (P)  . .  . .     736A 
Rudolfs,  W.     Pyrites  ;   Oxidation  of  iron by  sulphur- 
oxidising   organisms   and   their   use   for   making 
mineral  phosphates  available         . .          . .          . .      949a 

Rock  phosphate  ;    Composting  with  sulphur  in 

slightly  alkaline  calcareous  soils  . .  . .  . .     870a 

Rock    salt  ;      Experiments     with    .     Effect    on 

asparagus.     Eradication  of   weeds  and  cleaning 
of  roadsides.     After-effects  of  salt  ..  ..      187A 

Sulphur  oxidation  in  "  black  alkali"  soils     ..  ..      4^7a 

See  Helbronner,  A.  . .  . .  . .  . .  . .      500a 

Riilke,  K.     Disinfectants  ;    Standardisation  of . .     S74a 

Rutgerswerke      A.-G.     Coumarone-resin  ;       Process      for 

rendering  capable  of  emulsiflcation  (P)     . .     382a 

and  E.  Senger.     Evaporator;    Vacuum  (P)         ..     40ua 

and    H.    Teichmann.     Dissolution   of   wood   and   other 
cellulose -containing      materials      of       vegetable 

origin    (P) 851a 

Printing  inks  ;    Manufacture  of  black  (P)         . .      550A 

See  Szarvassy,  I.  ..  ..  ..  ..  ..  6a* 

Ruff,   O.,  and  H.  Hartmann.     Nitrogen  ;    Absorption  of 

by  calcium  and  its  alloys     ..  ..  ..     371a 

Ruhemann,  S.     Lignite  producer-gas  tar  . .  . .         . .         7a 

Ruhni,  H.  D.     See  Meadows,  T.  C.  590a 

Rule,   A.     Wood  ;    Artificial  seasoning   of  by   the 

ozone  process  ..         ..         ..         ..  547R 

Rumbarger,   B.    W.,   and   Southern   Carbon   Co.     Carbon 

black  ;    Method  of  producing (P)     . .  . .     149a 

Runey,  C.  F.,  and  others.     Sodium  carbonate  ;    Treating 
alkali  metal  salts  and  alkali  metal    salt    brine3 

for  the  recovery  of (P)  . .  . .  . .      327A 

Runge,  W.,  and  International  Coal  Products  Corp.    Tar 

acids  ;    Obtaining  (P)  322a 

Ruppel,  W.     See  Heuser,  E 679a 

Rupright,  H.  J.     See  Strosacker,  C.  J 892a 

Russell,  A.  S.     '*  Radioactive  substances  ;    Chemistry  of 

"  360r 

Russell,  E.  J.     Barley  :    a  study  in  modern  agricultural 

chemistry       . .  . .  . .  . .  . .  . .     193R. 

Russell,  W.     See  Imison,  C.  S 28R,  37T 

Russell,  W.  C.     See  Wise,  L.  E 366a 

Russell- Wells,  B.     Carrageen  (Chondrus  crinpus)  ;     Consti- 
tution of  the  cell  wall  of 996A 

See  Haas,  P 991a 

Russina,  H.     See  Haller,  R.  460a 

Ruth,  C.  E.     See  Andrews,  C.  E 539A 

Rutherford,    E.     Elements ;     Artificial    disintegration    of 

the   120R 

Ruttan,  R.  F.     Annual  Meeting  proceedings        . .       209t,  253T 

Chemical  engineer  ;    Training  of  the . .  . .     282k 

Presidential  address         ..  ..  ..  ..  21  IT 

Ruzicka,  L.,  and  J.  Meyer.     Abietic  acid   . .  . .  . .     482a 

Abietic  acid  ;    Conversion  of  into  methylretene     646a 

and  C.  F.  Seidel.     Cadaline  ;  Synthesis  of . .  . .     4tK3A 

and  others.     Cadaline  and  eudaline  ;    The  naphthalene 

hydrocarbons   ,   two   aromatic  fundamental 

compounds  of  the  sesquiterpene  series     . .  . .     482A 

Ryan,  C.  F.     See  McKelvey,  J.  H.  15a* 

Ryan,  E.  J.     See  Dunkley,  J 298a 

Ryan,    L.    W.,   and    Lindsay    Light   Co.     Thorium   com- 
pounds ;    Recovery  of  (P)   ..  ..  ..     294a 

Ryan,  T.  J.     Mineral  oils  ;    Apparatus  for  distilling  ■ 

(P) 47a 

Ryding,  H.  C,  and  A.  W.  Allen.     Steel ;    Manufacture  of 

open-hearth  (P)  ..  ..  ..  ..      715a 

Ryschkewitsch,  E.     Carbon  ;    Behaviour  of  at  high 

temperatures  . .  . .  . .  . .  . .     811a 

Graphite  ;   Electrical  conductivity  of  compressed 597a 

s 

Saaman,  K.     Strophanthus  ;    Action  of ■         . .  . .     329R 

Saar,  R.     Pycnometry  ..  ..  ..  ..  ..     612a 

Sabalitschka,  T.     Anilineglucoside  ..  ..  ..  ..     194A 

and    H.    Riesenberg.     Spice   powder   from    mushrooms 

and  a  spice  extract  and  basis  for  pills  from  yeast     343a 

and  H.  Schmidt.     Antimony  ;    Detection  of . .     526a 

Sabner,  M.     Textile  fibres  ;    Degumming  or  preparatory 

treatment  of (P)         ..  ..  ..  ..      584a 

Sacio,  V.  P.  Y.     Ores  ;   Smelting (P) 637A 

Sadler,    H.    S.     Gas    purifiers,    scrubbers   and    the    like ; 

Grids  for  (P) 537a* 

Siichsische  Malzindustrie  u.  Nahrmittelfabr.  K.  S.  Felix. 

See  under  Felix. 

Sage,  C.  E.     Acetic  anhydride  ;  Analysis  of . .  . .     609a 

and  A.  Goodale.     Oil  of  Spanish  fennel  . .  . .  . .      197a 

Saha,  H.,  and  K.  N.  Choudhury.     Capsularin,  a  glucoside 

from  jute  leaf  . .  . .  . .  . .  . .     607a 

Sailer,  F.     Yeast ;    Process  for  making  pressed from 

beet  juice  (P)  . .  . .  . .  . .  . .     832a 

Saillard,  E.     Beetroots  ;    Composition  of  wild  ■         . .     226a 

Decolorising     carbons ;      Comparative    results  J^with 

various  ■  . .  . .  . .  . .  . .     909a 

f2 


84 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

St.  Clair,  P.,  jun..  anil  Nitrogen  Corp.     Heat  exchanger 

or  condenser  (P)      . .  . .  . .  ■  ■  •  ■      658a 

See  Arnold,  E.  i: 660a,  859a* 

ire  Deville,   E.     Coal;    Determination  of  volatile 

matter  in  ..         ..         ■•         ••         ••     "98a 

St.  John,  G.  I.,  and  F.  F.  Cassidy.     Paint  oU  (P)  . .         ..     301a 
Salamon,   M.  S.     i  itronclla  oil;    Determination  of  total 

geraniol  content  of  . .  . .  . .  . .     958A 

Salathe,    F.,    and    Western    Gas    Construction    Co.     Oil 

refineries  ;   Treatment  of  sludge  from (P)  . .     322a 

Sale,  J.  W.,  and  W.  W.  Skinner.     Invert  sugar  ;    Relative 

sweetness  of . .         . .         . .         . .         . .     776a 

Salerni,   P.   M.     Distillation   of  carbonaceous   materials  ; 

Apparatus  for  the  (P)  ..  ..  ..      661a 

Salgc,    W.,    u.    Co.,    Technische    Ges.m.b.H.     Atomising 
process   for    separating    and    drying   substances 
iu  solution  (P)         . .         . .         . .         . .         . .     736a 

Salkowski,  E.     Toxins  and  antitoxins  ;    Chemical  nature 

of  955A 

Xylan         339a 

Yeast  gum  and  invertase  ..  ..  ..  ..     153a 

Sallmann,  R.     See  Fierz,  H.  E 625A 

Salmon,  C.  S.  Soap  solutions  ;  Effect  of  electrolytes  on 
constitution  of  as  deduced  from  electro- 
motive force             . .         . .         . .         . .         . .     424a 

Salmon,  E.  S.     See  Horton,  E 995A 

Salmon,  W.  H.     Paper  ;   Bleaching  of  "  stuff  "  or  fibres  in 

the  manufacture  of and  apparatus  therefor 

(P) 542A 

Salomon,  H.  R.     See  Karrer,  P 184a 

Salt,  H.     Marri  kino  (red  gum  from  Eucalyptus  calophylla)       67a 
Salway,  A.  H.,  and  P.  N.  Williams.     Catalytic  oxidation  of 

saturated  paraffin  hydrocarbons  and  fatty  acids     719a 
See  Cocks,  L.  V.  ..  ..  ..  ..  ..  ..        17T 

Samec,  M.,  and  S.  Ferjancic.  Cellulose  ;  Action  of  formal- 
dehyde on . .  . .         . .         . .         . .       94a 

and  V.  Ssajevic.     Agar  ;    Composition  of . .  . .     112A  ; 

Sammartino,  U.     Thyroid  ;    New  constituent  of  the 955A  ; 

Vitamins.     Effect  on  enzymes  ..         ..         ..         ..     227a 

Sams,  E.  H.     Fertiliser  ;    Manufacture  of  (P)         . .     991A 

Samtleben,  O.     See  Berl,  E.  461A 

Samuelsen,  S.     See  Heuser,  E 665a,  893a 

San  Diego  Consolidated  Gas  and  Electric  Co.     See  'Watson, 

W.  V.  224A 

Sanborne,  E.  L.,  and  Smith  Engineering  Works.     Crushers 

(P) 240a' 

See  Smith,  T.  L.  2A* 

Sandberg,  E.  S.  Evaporating  liquids ;  Method  of  con- 
tinuously   (P) 970a 

Sandberg,  M.     Alcoholic  fermentation  in  presence  of  urea     340a 

See  Neuberg,  C.  153a,  227a,  265a 

Sandelin,  A.  E.     Fat-hydrolysing  catalysts  . .         . .     769a 

Twitchell's  reagent ;    Constitution  of  . .  . .     769a 

Yeasts  isolated  from  butter  ;    Action  of on  con- 
stituents of  milk     . .          . .         . .         . .  . .     872a 

Sander,  F.     See  Chcm.  Fabr.  Griesheim-Elektron            . .     971a 
Sandison,  W.  G.  W.     Mineral  product  for  use  as  an  abra- 
sive, polish,  and  the  like  (P)  860a 

Sandland,  G.  E.     See  Smith,  R.  L.  762a 

Sandmeyer,  T.     Obituary     ..         ..  ..         ..         ..     187R 

Sandonnini,    C.     Catalysts ;     Behaviour   of   some    metals 

as  707a 

and  A.   Quaglia.     Oxyhydrogen  gas  ;    Combination  of 

in  presence  of  colloidal  palladium  . .  . .     707a 

Sandoz,  M.     See  Kehrmann,  F.         . .  . .  . .  . .  7a 

Sandqvist,  H.     Pine  oil  ("  liquid  resin,"  "  polyterpene," 

"  sulphate-resin  ")   . .         . .         . .         . .         . .     867a 

Sandreczki,  A.     Soaps  ;    Electrolytic  production  of  

(P) 770a 

Sands,  l.     See  Upson,  F.  W.  ..  957a 

Sanfourche,    A.     Nitrogen    oxides ;     Reaction    between 

gaseous and  alkaline  solutions         . .         . .     855a 

Nitrogen  peroxide  ;    Analysis  of  liquid ..  ..     412a 

and  A.  M.Boutin.     Alcohol-ether-water;  Specific  gravi- 
ties and  refractive  indices  of  mixtures  of  at 

15°  C.  610a 

Sanghl,  R.  R.     See  Annett,  H.  E.  475R 

im,  6.  B.     See  Crowe,  E.  T.  F.  539R 

Santesson,  C.  G.     See  Blohm,  G.J.  . .         . .         . .     953a 

Sanyal,  R.  P.,  and  S.  S.  Joshi.     Emulsion  ;   Formation  of 

a  water-in-oil  type ■  by  concentration  of  the 

oil  phase        599a 

t,  (1.   W..  and  .1.  W.  Weitzenkorn.     Alloy  steel  (P)     106a 

Molybdenum  ;    Recovery  of  from  molybdenite 

(P) 108A 

Sarginson,  W.     See  Miles,  F.  D 183t 

Sarin.  E.      II  I      [nation  and  ripening  of  ..     112a 

Honey  ;    Influence  of  organic  acids  on  formation  and 

ripening  of ..  ..  ..  ..  ..      112a 

Sarkar,  r.  B.,  and  X.  R.  Dhar.     Manganese  ;    Estimation 

of  ■ by  permanganate,  and   investigation  of 

some  mangaidtes     ..         ..         ..         ..         ..     443a 


Sasaki,  N.     Barium  peroxide  ;    Velocity  of  formation  of 


215a 


Sato,  M.     Liquid  fuel  resembling  petroleum  :    Preparation 

of  a  by  distillation  of  the  calcium  salts  of 

soya-bean  oil  fatty  acids 

Sato,  T.     Coke  ovens  (P) 

Satow,   H.   E.     Syria ;    Report  on  trade,  industry,  and 

finance  of _         M 

Satow,     S.     Condensation     products     from     phenol     and 

formaldehyde ;    Manufacture  of   insoluble  

(P) 

Soya  bean  ;    Extraction  of  oil  and  proteins  from 

Vegetable  proteid  substances  ;    Manufacture  of  ■ 

(P) 

Sauer,  E.     See  Gutbier,  A.    . . 

Sauer,  F.     Y'east  preparations;    Production   of  durable 

wine  (P) 

Sauer,  J.  N.  A.     Decolorising  carbon  ;  Manufacture  of 

(P) 

Decolorising  carbon  ;   Regeneration  of (P) 

Decolorising  carbon  ;    Production  of  a  product  con- 
taining    adapted  particularly  for  sanitary, 

medicinal,  and  therapeutic  uses  (P) 
Sauerbrey,    G.,    Maschinenfabr.    A.-G.     Potassium    salts 

and  the  like  ;  Dissolving  crude (P) 

Sauerwald,  F.     Carbon  ;   Behaviour  of at  high  tem- 
peratures 
Heating  to  very  high  temperatures  ;   Electric  furnace 

and  apparatus  for  direct  resistance  with 

simultaneous  application  of  mechanical  pressure 

Metallic  bodies  formed  from  powdered  material    by 

pressure   or   sintering ;     Grain    growth    without 

previous  cold-working  in  

See  Bornemann,  K.         ..  ..  ..  ..      421a,  553a 

Saunders,  C.  L.,  and  others.     Varnish  ;  Fireproof (P)       66a 

Saunders,    H.   F.,   and   others.     Trichlorhydrin ;     Manu- 
facture of (P) 484A' 

Saunders,    H.    L.     Ammonium    nitrate ;     Decomposition 

of by  heat        412a 

Saunders,  K.  H.     See  British  Dyestuffs  Corp..  Ltd.    626a, 

853a,  977a 

See  Green,  A.  G.  532K,  625a 

Sauvegeon,  V.  M.     Glass  ;    Manufacture  of in  the 

electric  furnace 

Savage,  W.     Hides  ;    Deliming  (P) 

Savage,  W.  G.,  and  others.    Canned  meat  and  fish  ;    Bac- 
teriology of 

Savelsberg,   A.     Building   material ;    Process   of   manufac- 
turing   (P)  

Saves,  P.     Calcium  cyanamide  ;    Granulating  (P) 

Saville,  W.  B.     See  Forster,  M.  O 

Sawyer,  G.  C.     See  Richards,  E.  H T< 


360a 
243A 


356R 


676a 
C4a 


834A* 
601a 


l'.nil 


132A 
386a 


232a 
294a 


811a 


823A 


900a 


374a 
511a 

573R 

758A 

70a* 

517A 

R,  62T 


810a 


629a 


841a 


12a 
585A 


150A 


263a 


Saxton,  B.     Nitre-cake;   Recrystallisation  of at  12°  0.     41 2A 

Sayce,  L.  A.,  and  A.  Crawford.     Carbon  dioxide  in  mineral 

carbonates  ;    Estimation  of  . .         . .         . .       07T 

Sborgi,  U.,  and  C.  Franco.     Borax  ;   Alternate  precipitation 

of  borax  and  ammonium  chloride  in  manufacture 

of 

and   A.    G.   Nasini.     Boron  nitride ;    Reaction   of  

with  various  metallic  oxides  with  production  of 

nitric   oxide 
Sborowsky,  I.    See  Sborowsky,  M.    . .         . .         . .         . .     841a 

Sborowsky,  M.  and  I.     Nitrogen  ;   New  method  of  accelerat- 
ing decomposition  of  organic  matter  in  determina- 

t  ion  of by  K jeldahl  method 

Scagliarini,  G.,  and  G.  Torelli.     Ammonia  :   Catalytic  action 

of  copper  iu  oxidation  of with  persulphate  . . 

Scaife  and  Sons  Co.,  W.  B.    See  Newman,  M.  F. 

Scala,  A.     Gelatin ;    Action  of  some  mixtures  of  salts  on 

swollen 

Scales,  F.  M..  and  F.  W.  Marsh.    Soil  dispersoids ;    Tynd- 

allmeter  reading  of 

Scalione,  C.  C.     See  Lamb,  A.  B 414a 

See  Merrill,  D.  R 155a 

Schaal,  E.  V.     Brazing ;    Dip  with  S0:20  brass  and 

brat  treatment  of  brazed  joints 551a 

Schaap,  O.  P.  A.  II.    Theobromine  and  caffeine  ;  Apparatus 

for  extraction  of with  boiling  chloroform     ..     781a 

Schaber,  A.,  and  J.  Kletti.     Drying  chamber  (P)   . .  . .     317a 

Sch&ffer,  E.     Rum  ;    Testing  by  the  odour  developed 

on  treatment   with  sulphuric  acid 912a 

Schaer,  C.    Tar;    Distillation  of (P)     ..         ..      457a,  703a 

Schallcr.  K.  A.,  and  W.  Berndt.     Gas  analysis  ;   Apparatus 

for  exact  964a 

Schamberg,  .T.   F.,  and  others.    Araroba  extract;    Manu- 
facture oi  reduced (P) 610A 

Schantz,  K.     Mercuric  chloride;    Manufacture  of  (P)       58a* 

Scharf,  A.     See  Frankel,  S 265a,  265a,  265a 

Scharfenberg,  O.    See  Akt.-Ges.  f .  Anllinfabr.    247a«,  288a, 

583a*,  744a,  892a 

Scharllbbe,  L.     Cast  iron;   Desulphurisation  of  molten 296a 

Schaufelberger,  P.    See  Gr&nacher,  C -.    452a 


NAME  INDEX. 


85 


Schauin,    K  .   and   T.   Marx.     Photochlorides  and  colloidal 

silver;    Colour  of  ..         ..         ..         ..     788A 

Schaus,  A.     See  Nydegger,  0.  . .         . .         . .         . .     706a 

Schecker,   G.    Molasses   mother-syrup ;     Relation   between 

concentration  and  purity  of  beet . .  . .       27A 

Raffinose  ;    Determination  of  in  beet  molasses  . .     188A 

Scheel,  W.  H.     Rosin  ;    Compound  for  hardening and 

method  of  using  it  (P)  826A 

Scheele,  W.  T.     Pyrotechnic  composition  (P)  . .  . .     690A 

and  If.  M.  Specht.     Cellulose  solution  (l») 290A 

Scheffer,  W.     Paraffin  ;    Continuous  production  of  (P)     802a 

and  S.  Herzberg.     Paraffin  :    Direct  production  of  

from  bituminous  earths  (P)    . .  . .  . .  . .     661a 

Scheffers,  H.    See  Noddack,  w 960A 

Scheib,  G.,  and  M.  Koch.     Nitrogen-carbonic  acid  mixture  ; 

Manufacture  of  pure from  combustion  gases  (P)    982a 

Scheiblcr,    H.     Fatty  acid   esters ;    Preparation  of  enolic 

alkali  metal  compounds  of  simple (P)  ..        ..     521a 

Sulphur  preparations  of  the  thlophene  scries;    Manu- 
facture    of    -    —   from   bituminous    rock   ricli    in 
32SA» 


sulphur   (P) 
Sehellenberg,   A.    See  Tropsch,   H.    . . 

ScheUenberg,  H.     See  Nydegger,  0 156a, 

Schelliug,  F.    See  Gutbier,  A.  

Schenck,  P.  D.,  and  Duriron  Co.    Iron;   Acid-resisting 

(P)  

Iron  ;    Heat-resisting  (P)     . . 

Schenk,  M.,  and  Stein-Hall  Mfg.  Co.     Food  ;  Article  of ■ 

(P)  

Scherer,   R.,   and    H.   Barna.     Adhesive  and   coating  com- 
position (P) 

Scherhag,  A.     Drying  apparatus  (P)  .. 

Exhaust  gases  of  internal  combustion  engines ;  Utilisation 

of  the (P) 

Schering,    Chem.    Fabr  aui   Actien.   vorm.    E.     Camphcno 

hydrochloride  ;   Preparation  of  true (P) 

Charcoal ;    Manufacture  of  active ■  (P) 

Charcoal ;   Manufacture  of  active;  wood (P) 

Diethylbarbituric  acid  compound;     Manufacture  of  a 

new  (P)    . . 

Hexamethylenetetramine ;     Preparation   of   derivatives 

of  (P) 

Hydrocarbons  of  the  terpene  series  ;    Process  for  pre- 
paring polycyelic  (P) 

Quinine  esters  ;    Manufacture  of (P) 

Quinol ;  Manufacture  of (P) 

and  H.  Emde.    Aminoacetic  acid  arylides  ;    Preparation 

of  (P) 

and  others.     Aminopyridincs ;    Preparation   of   (P) 

2-'//--'iVtrahydronaphthylquinoline-4-carboxylie      a-  ids  , 

Preparation  of (P) 

Scheringa,  .  K.     Camphor ;     The    system    camphor-alcohol- 
water  in  relation  to  the  titration  of  spirit  of . . 

Scherk,  T.     Distillation  of  poor  fuels  ;    Partial (P)    . . 

Fuel  :    Production  of  high-grade,  non-hygroscopic  

from  low-grade  fuel,  such  as  lignite,  peat,  or  the  like 

(I')  

Scherrer,  .r.  A.    See  Lundell,  G.  E.  F.  

Schertel,    L.,    and    H.    Arnold.     Metals ;     Separation    and 

purification  of  bv  treatment  with  gases  (P) 

See   Goldschmidt,   T.,   A.-G 

Scheucher,  H.    Arsenic,  antimony,  and  bismuth  ;    Invisible 

mirrors  in  detection  of ■ 

Scheuer,  E.  See  Fraenkel,  W. 

Schicht,  G.,  A.-G.,  and  A.  Griin.    Fats ;    Manufacture  of 

nutritions  (P) 

Synthetic  waxes  ;    Manufacture  of  (P) 

Schick,  F.,  and  Deutsche  Erdol  A.-G.     Hydrocarbon  oils  ; 

Refining  (P) 

Schidrowitz,  P.,  and  P.  L.  Bean.    Vulcanisation ;    Studies 

in .     Effects  of  acceleration  on  rubber-stress 

strain  curve 
and  Catalpo,  Ltd.     Caoutchouc  and  caoutchouc-like  pro- 
duct ;    Manufacture  of  (P) 

and    others.     Vulcanisation ;     Comparative    accelerating 
effect   of   dimethylamine    dimethyldithiocarbamate 

and  diethylamine  diethyldithiocarbamate  on 

See  Feldenheimer,    W. 

Schieber,  W.  See  Gutbier,  A.  

Schiff,  S.    Dental  cement  (P) 

Schiffmann,  J.     Dye  for  documents ;    Method  of  making 

an  indestructible  black  stamp  (P)    . . 

Stamping-ink    (P) 
Schill,    E.,    and    others.     Gases ;     Extracting,    liquefying, 

and  separating  liqueflable  constituents  of  (P) 

Schilsky,  W.  O.  F.     Drying  oils,  lacquers,  varnishes,  anti- 
rust   coatings,    lubricating   oils,    etc.  ;     Production 

of  a  substitute  for (P) 382a; 

Schilt,  W.    See  Staudinger,  H.  

Schimansky,  S.  G.     Calico  printing ;    Possibility  of  using 

phosphorescent  substances  in 

Schiotz,  A.  B.     Cerium  salts  ;    Electrolysis  of  aqueous  solu- 
tions of .    Deposition  of  a  cerium-iron  alloy  . . 

Schirmacher,  K.,  and  H.  A.  Metz.    9.10-Dihalogenanthracene- 
£-mouosulphonic  acid  ;    Manufacture  of  (P) 


364a 
166A 
524a* 
601a 

62A 

62a 


337A 
S7A 


347A 
456a 

456A 

438A 

437A 

83  7A 
U9A 
232a 

621a 

900A 


610A 
163A* 


46A 

420A 


901A 
864A 


525A 
331a 


945A 
719a 


324T 
559A* 

601a 
111a 
611A 
295a* 

640a* 
66A 


510A 
877a 

749a 

ISA 

663A 


PAGE 

Schliipfer,  P.    Coke  ;    Dry  cooling  of  . .         . .         . .     798a 

Schlatter,    G.     Lactic    acid    fermentation    of    dextrose    by 

peptone..         ..         ..         ..         ..         ..         ..     911a 

Schleicher,  H.  M.     See  Burkey,  H.  M.  463a 

See  Eustis,  F.  A 422a,  985a 

See  Hayward,  C.  R.  422a,  501a 

Schleipen,   R.     Current  of  gas ;    Gasometer  for  providing 

a  continuous ..  ..  ..  ...  M     525A 

Schlesische  A.-G.  fur  Bergbau  und  Zinkhuttenbctrieb.     Roast- 
ing furnace  ;   Rotary ■  for  zinc  ores  and  the  like 

(P)         221a 

Schleussner,     C.     Photographic     emulsions ;      Process    for 

intensifying  the  action  of  X-rays  on (P)        . .     838a 

Schley,  T.  E.     See  Dickens,  C.  S 890a 

Schlichting,   O.     See   Wieland,   H 345a 

Schliewiensky,  H.     Aldehydes  ;    Reduction  of  acid  chlorides 

to  by  means  of  nickel  catalysts         . .  . .     785A 

Schlink,    II.,   und   Cu.     llvdn^rnal  ion   ,,t   unsaturated  fats 

in  the  fluid  state  (P) 109a 

Schlotter,  M.     Electrolytic  iron  ;    Bath  for  the  production 

of  (P) 764a 

Iron  deposits  ;    Production  of  electrolytic  (P)     . .     900a 

Tin   deposits ;     Producing    dense   ami    firmly-adhering 

(P)  767a* 

Tin  ;    Electrolytic  process  of  depositing  free  from 

pores    (P)         766a 

Tin   and   lead ;     Electrolytic   production   of   adherent 

deposits  of  — —  (P) 766a 

Schlotterhose  und  Co.     Oil  ;    Apparatus  for  extraction  of 

from  oil-bearing  materials  (P)  ..         ..      261a,  945a 

Fish-livers;     Preserving    the    residues    from    steaming 

(P)  300A 

Schluck,  G.    See  Bamberger,  M 190a 

Schmalz,  K.     See  Pringsheim,  H.  950a 

Schmatolla,    O.     Cresols   in   cresol-soap   solutions ;    Deter- 
mination of  682a 

Schrnid,  A.  W.     Silk  to  be  dyed  black  ;  Process  of  weighting 

or  charging (P) 499a 

Schmld,  Gebr.     Dyeing  silk  black  (P)         895a 

Schmidding,  W.     Iron  and  steel ;   Process  for  covering 

with  a  rust-resisting  coating  (P)         . .         . .         . .  764a 

"Waste  gases  from  internal-combustion  engines  ;    Clean- 

sing  and  deodorising (P)  . .         ..         ..         ..  211a* 

See  Wachtel,  P 131a,  453a 

Schmidlin,  J.    See  Cassella  und  Co.,  L.            805a* 

Schmidt,  C.  L.  A.    See  Dunn,  M.  S 88lA 

Schmidt,    E.,    and    W.    Bajen.    Aromatic    nitro-alcohols ; 

Preparation  of (P)           523A 

and  K.  Braunsdorf.    Proteins  ;   Natural .    Behaviour 

of  chlorine  dioxide  towards  organic  compounds       . .  608a 

and  F.  Duysen.    Incrusting  substances  of  plants    . .         . .  94a 
and     H.     Fischer.     N-Nitroso-derivatives     of     secondary 

amines  ;  Preparation  of ■  (P)       . .         . .         . .  198a 

and  A.  Wagner.    p-Nitropropcuyl  compounds  ;    Prepara- 
tion of (P) 523a 

Schmidt,  E.G.     See  Peterson,  W.  H 992a 

Schmidt,  H.    See  Sabalitschka,  T 526a 

Schmidt,  J.  H.    Aniline  ;  Action  of  arsenious  chloride  on ■  156a 

Schmidt,  K.     See  Holde,  D 825a 

SeeOtt,  E 668a 

Schmidt,  M.     See  Bornemami,  1C.         . .         . .         . .         . .  108a 

Schmidt,  O.    SeeBerl,  E 972a 

Schmidt,  W.     See  Maurer,  E 143a 

Schmidt,  W.  A.,  and  International  Precipitation  Co.     Gases  ; 

Collecting  suspended  material  from  furnace (P)  399a 

Schmidt-Hebbel,  E.     See  Paneth,  F 293A 

Schmidt-Nielsen,  S.     Zoomaric  acid 300a 

See  Frog,  F 306a 

Schmiedel,  T.     Sulphuric  acid  ;   Producing  the  effect  of  the 

Glover  tower  in  the  manufacture  of ,  without 

the  use  of  Glover  towers  (P)    . .          . .          . .          . .  858A 

and  H.  Klcneke.    Sulphuric  acid  ;  Productionof (P)..  982a 

and  others.     Sulphuric  acid  ;    Production  of without 

chambers  and  towers  (P)         ..          ..          ..          ..  58A* 

Schmitt,  H.  M.     See  Fairchild,  C.  0 199a 

Schmitt,  J.H.     Carburising  compound  (P) 298a 

Schmitz,  H.     Wood  decay.    Toxicity  of  Western  yellow  pine 

crude  oil  to  Lenzites  Saepiaria,  Fries            . .         . .  635a 

Schmitz,  W.     Beer  containing  lecithin  ;  Brewing (P)   . .  725A 

Schmolke,  A.     Coke  ;  Volumetric  determination  of  true  and 

apparent  specific  gravity  of . .          . .          . .  708A 

Schnabel,  G.     Meat ;  Preservation  of (P)           . .         . .  207a 

Schnegg,  H.,  and  F.  Oehlkers.    Saecliammyces  Odessa,  n.sp.  724a 

Schneible,  J.     Distilling  alcoholic  and  other  liquids  (P)    643a,  680a 
Schneider,    A.      See    Deutsch-Luxernburgische    Bergwerks- 

und  Hutten-A.-G *22a 

See  Zellstoff-fabr.  Waldhof 847a* 

Schneider,  G.     Coumarone-resin ;    Method  for  preparation 

of  pale,  elastic 223a 

See  Gluud,  W 169A,  208a,  739a 

Schneider,  J.,  jun.    Tannin  analysis 641a 

Schneider,  P.     Oil  from  rape  seed  and  the  like  ;   Apparatus 

for  extracting (P) 473A 


8(5 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Schneider,  W.  Steels ;  Influence  of  velocity  of  cooling  on 
position  of  the  critical  points  and  structure  of  car- 
bon    940A 

Stone  ;  Process  and  composition  for  coating  natural  and 

artificial (P)         635A 

Schneiders,  G.,  and  A.-G.  "  Eos."     .Mineral  oil  and  hydro- 
carbon gas-extracting  process  (P)      . .  . .  . .     536a 

Schueiderwirth,  J.     See  Konig,  J.         ..  ..  ..  ..     115a 

Schnetzer,  K.  Scale  in  steam  boilers,  evaporators,  econo- 
mises, and  the  like  ;   Preventing  the  formation  of 

(P) 969a 

Schnitzer,  K.    See  Morgenroth,  J 193a 

Schnuck,  C.  F.    See  Bowen,  D.  R 262a*,  426a* 

School,  H.    See  Kohlschiitter,  V 636a,  636a 

Sehoeller,  A.     Ash;  Micro-determination  of ..  ..     691A 

Micro-elementary  analysis  by  Pregl's  method.     Micro- 

Kipp  apparatus,  etc.    . .         . .         . .         . .         . .       SlA 

Sehoeller,  W.,  and  W.  Schrauth.    Mercuridicarboxylic  acids  ; 

Preparation  of  complex  esters  of  and    their 

saponification  products  (P)     . .         . .         . .         . .       34a 

See  Weigert,  F 120A 

Sehoeller,  W.  R.,  and  A.  R.  Powell.  Tantalum,  columbium, 
and  their  mineral  associates  ;  Analvtica  I  chemistry 

of 121a 

Schondeling,  P.    Coal-dust  firing  arrangements  (P)   . .         . .     166a 

Schoner,  B.     See  Akt.-Ges.  fur  Anilin-Fabr.    . .  . .  . .     288A 

Schonext,  K.    See  Tammann,  G.  . .         . .         , .         . .     549a 

Schoep,  A.    Soddite,  a  new  radioactive  mineral         . .         . ,     264k 

and  W.  Steinknhler.     Uranium  ;  Determination  of in 

presence  of  phosphoric  acid     . .         . .         . .         . .     569a 

Schopfer,  F.    Sec  Kremann,  R.  675a 

Schofleld,  J.  A.,  and  C.  W.  Hall.     Explosives  ;   Method  of 

handling  high (P)..  . .'         199a 

Schol,  C.  H.     Slag  ;  Obtaining  highly  porous (P)         . .     939A 

Slag ;     Obtaining   porous   In   as   dry  a  state   as 

possible  (P)        103a* 

Scholes,  S.  R.,  and  others.    Glass  ;    Removing  stria}  from 

melted (P) 15a. 

Scholl,  G.  D.    Zinc  ;  Effect  of  impurities  on . .         . .     331a 

Scholz,  A.     Decolorising  carbon  ;    Water-absorptive  power 

of ..  642a 

Schomer,  A.    Yohimbine  ;  Determination  of in  yohimbS 

bark 875a 

Schonebaum,  C.  W.     Dextrose,  lrevulose,  and  sucrose  ;  Action 

of  ozone  on  solutions  of ..  ..  ..  ..     152a 

Dextrose,  Uevulose,  sucrose,  lactose,  and  maltose  ;  Action 

of  hydrogen  peroxide  on  solutions  of ■     . .  . .     776a 

Lactose  ;  A-ction  of  ozone  on  solutions  of ■     . .         . .     562a 

Maltose  ;  Action  of  ozone  on  solutions  of . .         . .     776a 

Schoofs,  M.     Essential  oil  of  Myrica  Gale         610a 

Schoorl,  N.    Cinchona  alkaloids  and  their  salts  ;    Titration 

of- 434a 

and  A.  Regenlogen.  Water-alcohol-carbon  bisulphide ; 
The  system .  Miscibility  of  the  three  compon- 
ents in  different  proportions,  and  practical  applica- 
tions.    Determination  of  water  in  alcohol    . .  . .     308a 

Water-alcohol-chloroform;  The  system .  Miscibility 

of  the  components  in  different  proportions,  and  some 
practical  applications  . .         . .         . .         . .         . .     157a 

Schopper,    W.    Sal-ammoniac   skimmings ;     Treatment    of 

(P) 141a* 

See  Metallbank  u.  Metallurgische  Ges.  A.-G 754a 

Schorlemmer,  K.    Chrome  tanning  process  ;    Effect  of  acid 

containing  arsenic  on  the  reduction  bath  of  the 24a 

Schott,  A.  S.  Oxide  copper  ores  ;  Hydrometallurgy  of  low- 
grade  calcareous  and  magnesian . .  . .     377a 

Schott,  H.     Briquettes  ;    Presses  for  manufacture  of  hard, 

durable,  and  well-shaped (P)      . .  . .  . .       92a* 

Schott  und  Gen.     Boronatrocalcite  ;  Process  of  decomposing 

(P) 252a 

Schottik,  B.,  und  Co.    See  Von;Ordody,  L.  B.  . .         . .     498a 

Schou,  C.  V.    See  La  Cour,  D.  " 495A* 

Schou,  E.  V.    Emulsions  for  painting  and  priming  or  like 

purposes  ;  Preparation  of (P) 301a 

Oleaginous  emulsifying  materials,  and  manufacture  of 

edible  substances  (P)   . .         . .         . .         . .         . .     994a 

Schou,   S.  A.     Carrel-Dakin  antiseptic  solution  of  sodium 

hypochlorite  ;  Preparation  and  stability  of ..       76a 

Schoutissen,  H.  A.  J.    Phenols;   Action  of  nitrous  acid  on 

50a 

Schrader,  H.     Llgnin,  natural  humus  substances,  and  coal ; 

Autoxidation  of and  effect  of  alkali  thereon    . .     491 A 

See  Fischer,  F.  211a,  317a,  451a,  851a,  891a,  931a,  932a 

Schrauth,  W.    Alcohols  ;   Production  of  wax-like from 

wool-fat  (]>) 676a 

Fertiliser;    Manufacture   of   a   dustless,   non-corrosive 

SoWent  for  resins,  espedaUy  artificial  reams  (P)  '.'.     425a,  677a 
ana  O.  von  Keussler.     Hydrogenated  compounds  ;  Draco- 

rubin  test  of «i . 

See  Sehoeller,  W.      „         Sii 

Schroeter,  G.      ..         .'.         .'."         .'.'  169a'*',  169a'*,  169a* 
scureioer,    H.     Photographic    material    for    production    of 

I"1    '"'     (!')..          ..  7»9a 

Photographic  plates;  Preparation  of (P)    '..        "  729a 


rv,  i: 

Schreiber,  J.  A.    See  Eyrich,  H.  R 628a,  894a 

Sclireiber,  W.  T.,  and  U.S.  Industrial  Alcohol  Co.     Fuel  ; 

Production  of  liquid (P)  ..  ..      209a,  211a* 

Motor  fuel  (P)  48a 

Motor  fuel;  Aeroplane (P)     ..         ..         ..       6a*,  802a* 

Schreier,  A.     Micro-organism3  in  liquids ;    Destruction  of 

(P) 116a 

Schreiner,  E.    See  Wintrier,  C.  . .         . .         . .         . .     S79a 

Schreiner,  K.  E.  M.     See  Grunert,  K 96a* 

Schroder,  W.     Coke  ovens  ;   Installation  of ■  with  regen- 
erators on  both  sides  of  a  battery  of  ovens  (P)  . .     131a 

Schrodter,  R.    See  Maurer,  E.  . .         . .         . .         . .     550a 

Schroeter,   G.    a-ICetotetrahydronaphthalene ;    Preparation 

of  (P) 522a 

and  W.  Schrauth.     Nitro  compounds  of  tetrahydronaph- 

thalene  and  its  derivatives  ;  Preparation  of (P)     169a* 

Tetrahydronaphthalene     and     its     derivatives ;      Pre- 
paration of  reduction  products  of  nitro  compounds 

of  169a* 

ar-Tetrahydro-/3-naphthol ;     Preparation    of    (P)     169A* 

and  Tetralin  G.m.b.H.     a-Ketohydronaphthalenes ;    Pre- 
paration of  (P)  . .         . .         . .         . .         . .     703a 

sym. -Octohydroanthracene ;    Preparation   of   (P)     663a 

sym. -Octohydrophenanthrene  ;    Preparation  of (P)     663a 

and  others.     Hydronaphthalenes  and  their  transformations     133A 
Hydronaphthalenes  and  their  transformations.     Nitro- 

and   amino-  derivatives  of  tetrahydronaphthalene     133A 
Hydronaphthalenes  and  their  transformations.     Tetra- 
hydionaphthalenesulphonic     acids.      Tetrahydro- 
naplithoB  and  their  derivatives       ..  ..  ..     133a 

Schryver,  S.  B.     Oaks  used  in  construction  of  beer  casks  ; 

Chemical  examination  of  . .  . .  . .     S3lA 

See  Buston,  H.  W.  75a 

See  Clayson,   D.  H.  F 75a 

See  Imperial  Trust  for  the  Encouragement  of  Scientific 

and   Industrial  Research      . .         . .         . .         . .     905a 

Schubert,    Gebr.     Oils    and    fats ;     Process    for    retarding 

occurrence  of  rancidity  in (P)  . .         . .         . .     676a 

Schuckert  und  Co.,  Elektrizltats-A.  G.  vorm.      Electrolytic 

ceU  (P) 824a* 

and  H.  Roelsch.    Electrolytic  decomposition  of  solutions 

etc.  (P)  333a 

and  others.     Electrolytic  cell  for  electrolysis  of  water  (P)    380a 
Sehueler,  G.  R.     Oil  or  like  presses  or  expressing  apparatus  of 

the  worm  screw  type  (P)      . .  . .  . .  . .     639a* 

Schiilke,  E.    Artificial  fibres  ;    Production  of  (P)     . .       52a 

Artificial  threads ;    Producing  ,  more  particularly 

multiple  filament  threads,  from  cellulose  solution  (P)     748A* 
Viscose  ;  Removal  of  sulphur  compounds  from  coagulat- 
ing baths  and  waste  gases  produced  in  the  manu- 
facture of  (P) 542a 

See  Meyer,  F.  H 367a 

Schiimann,  M.     See  Badische  Anilin  und  Soda  Fabr.         . .     890a* 
Schuen,  W.,  and  others.     Alloys  of  sodium  containing  one 
or  more  of  the  metals  iron,  manganese,  and  silicon  ; 

Manufacture  of  (P) 378A 

Schiissler,  A.,  and  Maschinenfabrik  F.  Haas  Ges.  Neuwerk. 

Tunnel  dryer  with  air  circulation  (P)         . .  . .     969a 

Schiitz,  H.  C.     Iron  and  other  metals  and  alloys  ;  Removing 

carbon  from (P)  . .  . .  . .  . .  . .     469a 

Schiitze,  W.    See  Tillmans  J 114a 

Schiiz,  E.    Ferrite-graphite  eutectic  as  frequent  phenomenon 

in   cast   iron      . .  .  .  . .  .  .  . .  . .      758A 

Grey  cast  iron  ;    Determination  of  critical  temperature 

in    annealing    ..  ..  ..  ..  ..      86lA 

Schuftan,  P.    See  Herz,  W 538a 

Schuler,  J.     See  Soc.  of  Chem.  Ind.  in  Basle 520a 

Schull,  M.     Exhaust  ""steam  ;   Purifying  and  condensing 

and  for  purifying  the  condensate  (P)        . .         . .     738a* 

Schulte,  L.     Electrotinning  ;   Electrolyte  for (P)        . .     673A 

Schultz,  G.     Lubricating  oil  substitute  (P)   . .  . .  . .     539A 

Schultz,  G.  W.     Leather ;    Determination  of  water-soluble 

matter  in . .  . .  . .  . .  . .  . ,     476A 

Tannin  analysis  ;    Wilson-Kern  method  of 24A,  641a 

Schultze,  E.    See  Dimroth,  O.  51a 

Schultze,  H.  S.  See  Chem.  Fabr.  Griesheim-Elcktron  . .  669a 
Schulz,  E.  It.     See  Deutsch-Luxemburgische  Bergwerks-  u. 

HUtten-  A.-G 19a 

Schulz,  F.     Petroleum  ;    Analyses  of  Czechoslovakia!!  281A 

Schulz,  H.     Regenerators  for  heating  air  or  gas  for  com- 
bustion  (P) 797A* 

Schulze,   A.     Aluminium-zinc   alloys  ;     Thermal   expansion 

Of  17A 

Schulze,  H.,  and  K.  Pieroh.    Betulin 914a 

Schulze,   J.   F.    W.,  and   Barrett   Co.    Fractional   conden- 

sation;    1'roeess  of (P) 531a 

See  Bailey,  G.  C 687a 

Schumacher,  A.   J.     Hydrogen  peroxide ;    Manufacture  of 

(P)  53a 

Schumacher,  W.     Slag  ;   Method  of  obtaining  granular 

(P)  503a 

Schumann,  G.  C.  See  Badische  Anilin  und  Soda  Fabr.  . .  347A 
Schurccht,  H.  G.    Clay  particles  ;  Sedimentation  as  a  d 

of  classifying  extremely  fine . .        . .         . .     ioia 


NAME  INDEX. 


87 


PAGE 
Schurecht,  H.  G. — continued. 

Clays ;    Use  of  electrolytes  in  purification  and  prepara- 
tion of  646a 

Clays  :  Microscopical  examination  of  mineral  constituents 

of  some  American  . .         . .         . .         . .     217a 

Schut,  W.    See  Jansen,  J.  D.  873a 

Schwab,  G.  M.    See  Riesenfeld,  E.  H.  668a 

Schwalbe,   C.    G.     Sulphate   pulp   manufacture ;    Removal 

of  disagreeable  odours  in  . .         . .         . .     747a 

and  E.  Becker.     Viscose  process  ;  Behaviour  of  incrusting 

substances  in  the  . .         . .         . .         . .     367a 

and  H.   Wenzl.     Wood  pulps  ;    "  Baryta-resistance "  of 

409a 

Schwarcman,  A.,  and  S.  Kellogg  and  Sons,  Inc.     Varnish 

oils  ;    Manufacture  of (P)         . .         . .         . .     301A 

Schwartz,  C,  and  Gillet  et  Fils.  Vegetable  fibres  ;  Treat- 
ment of  (P) 11a*,  55a* 

Schwartz.  Y.  A.  F.    Photographic  printing  processes  and 

solutions  (P) 270a, 441a* 

Schwartzlose,  N.  W.    See  Beylik,  F.  G 781A,  954a* 

Schwarz,  A.,  and  Metals  Extraction  Corp.    Zinc;  Separation 

of from  ores  (P) 470A 

Schwarz,  F.,  and  J.  Marcusson.    Transformer  and  turbine 

oils  ;    Determination  of  sludge  values  of  . .     535a 

Schwarz,  K.    See  Heuser,  E 190a 

Schwarz,  P.    Petroleum  spirit ;  Detection  of  benzene  in 493a 

Schwarz,  R.,  and  E.  Herrmann.    Toluidine  Blue ;    Meta- 

chromism  of . .  . .  . .  . .  . .     744a 

and    H.    Miiller-Clemm.     Sulphite    liquor    (acid    calcium 

bisulphite    solution)    . .         . .         . .         . .  9a 

and   H.    Stock.     Silver   bromide   emulsions ;     Action   of 

colloids  on  . .         . .         . .         . .         . .     879a 

Schwarzenauer,  W.    Fertilisers ;    Preventing  disintegration 

of more  especially  of  calcium  cyanamide  (P)     775a 

Schwarzenberg,  K.    See  Troger,  J.    . .         . .         . .         . .     116a 

Schwarzkopf,  F.    See   Bunte,   K 492a 

Schwarzkopf,  P.,  and  Deutsche  Gluhfadeniabrik  R.  Kurtz 
und  P.  Schwarzkopf  G.m.b.H.  Hydrogen  ;  Purify- 
ing    (P) 982A 

Schwarzkopf,  R.  Glass  nozzles  for  use  in  production  of 
artificial  silk  and  other  fibres  by  spinning  ;  Manu- 
facture of  (P) 102a 

Schwebel,  W.    See  Berl,  E 399a,  6C2a 

Schweiger,    K.     Cellulose    acetate ;     Solubility    of in 

salts  of  alkalis  and  alkaline  earths  . .  . .  . .     323a 

Schweitzer,  H.  L.  A.  Separating  or  sorting  fragmentary 
materials  by  electric  conductivity ;  Apparatus 
for  (P) 847  A* 

Schweizer,  T.    Vegetable  materials  ;  Conservation  of (P) 

229a,  432a* 

Schweizerische  Sodafabrik.    Aluminium  oxide  ;    Production 

of  from  bauxite  (P)     . .         . .         . .         . .     754a 

Schwenk,     E.     Hydroxyanthraquinones ;      Preparation    of 

from   nitroanthraquinones      . .         . .         . .       94a 

Schwenke,  H.    See  Zeche  de  Wendel 660a 

Schwerin  Ges.,  Graf.     See  Elektro-Osmose  A.-G. 

Scilasi,  W.     See  Freudenberg,  K 906A 

Scohy,  A.     See  Marqueyrol,  M.         . .  . .         . .         . .  349a 

Scoria  Products  Co.     See  Pierce,  H.  H.       . .  . .  . .  178a 

Scott,  G.  S.     See  Davis,  J.  D 92a 

Scott,  H.  R.  and  L.  E.     Nut  kernels ;    Treating  to 

produce  food  ingredients  (P)         . .         . .  . .  515a 

Scott,  J.  J.     Gas  pipes  ;    Deposit  in  steel . .         . .  45a 

Scott,  L.  E.     See  Scott,  H.  R 515a 

Scott,  R.  D.,  and  E.  G.  Will.     Cider  preservatives         . .  153a 

Scott,  W.  A.     See  Dosenbach,  B.  H 107a 

Scott,  W.  F.  V.  Chile  ;  Report  on  economic  and  in- 
dustrial situation  in . .  . .  . .  . .  270R 

Scott,  W.  W.  Gases;  Determination  of  suspended  im- 
purities in . .  . .  . .  . .         . .  613a 

Uranium   in  carnotite ;     Glacial  acetic  acid  method 

fcr  determining  . .  . .         . .         . .  762a 

and    Atmospheric    Nitrogen    Corp.     Nitrogen    oxides ; 

Catalyst  for  and  process  of  producing (P)  . .       58a* 

Scott-Moncrieti,  W.  D.     Retorts  ;   Apparatus  for  charging 

and  discharging  (P)  . .  . .         . .         . .  658a* 

Scottish  Dyes,  ltd.     See  Davies,  A.  H 212A,  582a 

See  Thomas,  J.     ..  ..  ..  ..  ..  ..  170a 

Scovill  Mfg.  Co.     See  Bennett,  M.  H 222a* 

Scrive,  P.     Drying  apparatus  (P)   . .  . .  . .  . .  927a 

Seabright  Co.,  Inc.     See  Wright,  W.  L 543a 

Seale,  H.  V.     See  Palmer,  T.  H 108a* 

Seaman,  H.  W.    See  Crawford,  A.  G 1A,  105a« 

Searle,  A.  B.     Clay;  Characterisation  of- .   Discussion       79T 

Searle,  R.  M.,  and  U.G.I.  Contracting  Co.     Vertical-retort 

gas-making  apparatus  (P)  ..         ..  ..         ..  740A 

Sears,  J.  D.     See  Estabrooke,  W.  I.  764a 

Sears,  O.  H.    See  Conner,  S.  D 263a 

Sears,  S.  A.,  and  W.  R.  Twigg.     Furnaces  (P         . .  . .  575a 

Seaton,  M.  Y.,  and  The  Dow  Chemical  Co.     Cellulose  ester 

solvent  and  composition  (P)  . .  . .  . .       53a 

Sebast,  F.  M.     See  Hunter,  M.  A 552a 


Sebrell,  L.  B.     See  Bedford,  C.  W.  ..  ..      110a, 

Secure   Castings,   Ltd.,  and    W.   H.   Wright.     Coke-oven 
doors  and  the  like  (P) 

Sedbcrry,  J.  B.     Grinding  mill  (P) 

Sedgwick,  A.  E.     See  Bailey,  G.  E.  

Sedgwick,  A.  K.     Sulphur  ;   Extraction  of (P) 

Sedlmeyer,  J.     Fat  of  barley  and  malting  products 
See,  J.  D.,  and  Soc.  Anon,  des  Etabl.  Hutchinson.    Water- 
proofing and  gasproofing  composition  (P) 
Seel,  K.     Tungsten  alloys ;    Analysis  of  high-percentage 

Seel,  P.  C,  and  Eastman  Kodak  Co.     Cellulose  ester  com- 
position (P) 
Cellulose  ether  solvents  and  compositions  (P) 

Nitrocellulose;    Dehydrating  and  reducing  the 

fire  risk  thereof  (P)  .. 
Photographic  film  ;  Base  for  antistatic and  com- 
position for  making  it  (P)            ..         ..      484A, 

Sefton,  L.  B.     See  Evans,  W.  L 956a, 

Segaller,  D.,  and  others.     Hydroxy-  and  sulphohydroxy- 
derivatives  of  anthraquinone  ;    Manufacture  of 

(P)         

Segerfelt,  B.  N.     Sulphate  pulp  mills ;    Removal  of  odour 

from  

Seidel,  C.  F.     See  Ruzicka,  L 

Seidell,  A.     Antineuritic  vitamin;     Experiments  on  iso- 
lation of  the  191A, 

Seidenschnur,    F.     Paraffin    wax ;      Preparation    of    sub- 
stances which  solidify  on  cooling,  e.y., from 

oily  substances  (P)  .. 

Seidl,  R.     See  Bleyer,  B 288A, 

Seiffert,  R.     Zinc  dust ;   Production  of  - — —  (P)  . . 

Seiffert  Nachf.,  W.     Porcelain  ;    Multiple  oven  for  

(P) 

Seigle,  A.  A.  F.  M.     Hydrocarbons  or  other  oils  ;    Appar- 
atus for  cracking (P)  . . 

Peat  and  like  substances  ;     Distilling  and   gasifying 

and  production  of  cement  (P) 

Seigle,  J.    Steels;  Resistance  of to  torsion  or  bending 

between  the  ordinary  temperature  and  visible 
red  heat 

Seigle.     Electric  blast-furnaces ;    Nature  of  reactions  in 

Seka,  R.     See  Philippi,  E 

Sekera,  F.     Colloids  ;    Theory  of  mechanical  synthesis  of 

Fog  process  of  preparing  colloids 
Selas    Turner    Co.,    Ltd.,    and    E.    Turner.     Furnaces; 

Crucible  type  (P)       ... 

Selch,  E.     Clay  substance  ;    Attack  of  by  lime 

Seldcn,  C.  G.     See  Selden  Co 163a, 

Selden,  J.  McC,  and  Selden  Co.     Catalysing  apparatus  (P) 

See  Selden  Co 163a, 

Selden  Co.,  and  others.     Condensing  apparatus  (P) 

Fractional  condensation  of  mixtures  of  vapours  of 

volatile  bodies  ;   Apparatus  for  effecting (P) 

1C3a, 

See  Selden,  J.  McC 

Seligman,    R.,    and    P.    Williams.     Aluminium    utensils ; 

Cleaning  of  418R, 

Sell,  M.  T.     See  Steenbock,  H 

Sellers,  W.  G.     See  Broadbridge,  W.  

Seltzer,  M.     See  Wilson,  R.  E 

Selvig,  W.  A.,  and  W.  C.  Ratliff.     Acid  water  from  coal 

mines  ;     Nature  of and   determination   of 

acidity 

See  Fieldner,  A.  C 

Sem,  M.  O.,  and  Det  Norske  Aktieselskab  for  Elektro- 
kemisk    Industri.     Metals :      Process    of    freeing 

from  copper  (P) 

Semet-Solvay  Co.     See  Loomis,  C.  C. 

See  Montonna,  R.  E. 

Semichon,  L.     Wine  from  lees  and  lees  of  wine  ;    Compo- 
sition of  ■ 

and    R.    Datauziet.     Wine    from    flooded    vineyards: 
Composition  of  

Sen,  D.  L.     See  Fowler,  G.  J 

Senger,  E.     See  Riitgerswerke  A.-G. 

Senseman,  C.  E.     Benzenedisulphonic  acid  from  benzene- 
monosulphonic  acid 
See  Nelson,  O.  A.  134.1. 

Seshachalam,  K.     See  Thompson,  F.  C 

Sestini,  Q.     See  Roudelli,  T.  

Sestron  (Foreign  Patents),  Ltd.     See  Rondelli,  T. 

Setlik,  B.     Dyestuffs  ;    Determination  of  fastness  of 

Seward,  G.  O.     Magnesium ;    Electrolytic  apparatus  for 

production  of  light  metals,  especially (P)  .. 

and   American    Magnesium    Corp.     Electrolytic   appar- 
atus (P)         259a*, 

Seyer,  W.  F.     Lubricating  properties  of  various  series  of 
hydrocarbons;    Oiliness  or .. 

Seyewetz  and  Vignat.     Nitrobenzene;    Action  of  sodium 
sulphite  on  


PAGE 

262a 

168  a* 
971a 
897a 
253A 
71A 

894a* 

984a 

807a 
248a 


917a 
957a 


138  a 
483A 

833A 

245a 
342A 

147a* 

254A 
849A 
538a 

330A 

296A 
727A 

795A 
795A 

179a 
295A 
164a 
797a 
164a 
164A 

104a 
797a 

818a 
343A 
669a 
357a 


359A 
738a 


766a 
837a 
521a 

430a 

386a 
431A 
400a 

169  a 
932a 
68a 
506a* 
506a* 
891a 

19a 

299a 

360a 

169A 


88 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Scyler,  C.  A.  Anthracite;  Constitution  of  .  Dis- 
cussion 

Seymour,  P.     Furnace,  and  process  of  combustion  (P)    . . 

Shampay,  P.  J.    Drying  machine  (P)         

Shannan,  W.  V.     See  Galbraith,  W.  L 

Shannon,  M.  I.    See  Irvine,  J.  C.  . .         . .      364R, 

Sharp,  L.  i'.    See  Peterson,  T.  B 

Sharp,    P.    F.,    and    It.    A.    Gortner.     Flours ;     Physico- 

chemieal  studies  of  strong  and  weak  .     Im- 

bibitional     properties     of     the     glutens     from 
ag  and  weak  flours 
and    F.    H.    MacDougall.     Electrometric    titration    in 
acidimetry  and  alkalimetry  ;    Simple  method  of 

Sharp  and  Dohme.     See  La  Porte,  N.  M. 

Sharpe,  F.  H.     See  Short,  A 

Sharpies,  P.  T.     Centrifugal  machine  (P) . . 

Petroleum;   Refining (P)  . . 

Sharpies  Specialty  Co.  Centrifugal  separation  of  sub- 
stances, e.g.,  paraffin  wax  from  oil  (P) 

Emulsions  ;   Process  for  resolving (P)    . . 

J.  A.     Carbon  dioxide;   Determination  of  free  and 

combined in  water 

Shaw.  J.  B.,  and  G.  A.  Bole.     Oxychloride  stucco  and 

Flooring;   New  developments  in 

See  Bole,  G.  A 

Shaw,  J.  C.     Animal  substances ;    Chilling  and  freezing 

(P)        

shaw.  J.  II.     See  Runey,  C.  F 

Shawinigan  laboratories,  Ltd.    See  Matheson,  H.  W.    .. 

See  Skirrow,  F.  W 

Shawn,  G.  B.     See  Berry,  W.  M 

Sheaff,  H.  M.     Oxygen  ;  Determination  of  minute  amounts 

of  gaseous and  its  application  to  respiratory 

air 
Shearer,   G.     X-ray  crystal   analysis  ;    Relation   between 
molecular  and   crystal  symmetry  as  shown   by 

Sbedd,  O.  M.  Calcium  content  of  some  virgin  and  culti- 
vated soils  of  Kentucky  ;    Comparison  of . . 

Shell  Co.  Petroleum  oils  ;  Still  for  fractionally  distilling 
(P)         

Shelton,  A.  J.  Anthracite  ;  Constitution  of  .  Dis- 
cussion 

Shenefleld,  S.  L.,  and  others.  Sulphites  for  standard 
sulphur  dioxide  solutions  ;   Sulphate-free . . 

Shepaid,  N.  A.,  and  S.  Krall.  Rubber  vulcanisation. 
Relation  between  chemical  and  physical  state  of 
cure  of  rubber  vnlcanised  in  presence  of  certain 
accelerators 

Shepherd,  .'.  F.,  and  Colour  Photography,  Ltd.  Colour 
photography  (P) 

Sheppard.   S.   E.     Nitrocellulose ;    Removal  of  freo  acid 

from  with  special  reference  to  use  of  saline 

leaches 
Photographic   emulsion  ;    Action  of  soluble   iodides 

and  cyanides  on  the 

Photographic  reduction  with  ammonium  persulphate  ; 

Action  of  soluble  chlorides  and  bromides  on 

and  F.  A.  Elliott.     Gelatin  ;    Drying  and  swelling  of 

and  A.  P.  H.  Trivelli.     Photographic  emulsions  ;    Grain 

analysis  of  

Photographic    emulsions ;     Relation    between    sensi- 
tiveness and  size  of  grain  in 

and  others.     Gelatin  jellies  ;    Elasticity  of  purified  

as  a  function  of  hydrogen  ion  concentration 

See  Eberlin,  L.  \V.    '  

See  Trivelli,  A.  P.  H.  4 lit, 

See  Wightman,  E.  P.  119A, 

slur l.an,  D.  V.     Pulverising  mill  (P) 
Sheridan,  G.  E.,  and  G.  G.  Griswold,  jun.     Concentration 
of  ores  by  flotation  (PI 

Lead  and  iron  sulphide  ores  ;    Concentration  of 

(P) 

Sherman,  H.  C,  and  M.  L.  Caldwell.  Starch  ;  Influence 
of  arginlne,  histidine,  tryptophane,  and  cystine 

upon  hydrolysis  of by  purified  pancreatic 

amylase 
and  S.  L.  Smith.     "Vitamins"    .. 
and  F.  Walker.     Starch  ;    Influence  of  certain  amino- 

acids  upon  enzyniic  hydrolysis  of 

and  M.  Wayman.     Amylases;    Elfect  of  certain  anti- 
septics upon  activity  of 

and  others.     Antiscorbutic  vitamin  (vitamin  C)  ;   Quan- 
titative determination  of 

See  La  Mer,  V.  K 

Sherrard,  E.  C.     Ethyl  alcohol  from  Western  larch,  Larix 
oceidentalis 
and  C.  F.  Suhm.     Sugar  formation  in  a  sulphite  digester 
in,  R.  S.,  and  Aluminium  Co.  of  America.     Alu 

Process  of  obtaining (P) 

Sherwood.  C.  M.     Turpentine,  rosiu,  etc.,  from  dead  pine 

trees       

Sherwood,   J.   J.    and   Booker   Electrochei J   Co      Elec 

trolytlc  method  and  apparatus  (P) 


PAGE 

92T 
6A* 
886a 
743a 
603A 
451a 


341A 

568A 
483A 
109T 
89a* 

244a 
580a 


634A 
984a 

044a* 

v.r,\ 
786A 
878a 
286a 


613A 

562R 

561A 

624a 

92T 

37A 

949a 
270a 

120A 

233A 

611A 

S03A 

348A 

79a 

908A 
649A 

788A 
960a 
796a 


251E 
152A 

266a 

952A 
935a 

632a 

101B 

824a 


Sherwood,  S.  F.  Honey  ;  Detection  of  invert  sugar  in 

Shibata,  Y.,  and  Y.  Nishizawa.  Japanese  lacquer  ;  Process 


PAOB 
477A 


(P) 


S68A 
372a 
146A 
327A 


of  drying  (P) 

Shimadzu,  G.    Lead  oxides ;    Manufacture  of 

Shimer,  H.  M.    Metals  ;   Refining (P)  . . 

Shimmin,  J.  T.     See  Knight,  F.  P 

Shimizu,  T.    See  Jacoby,  M 340a,  340a,  340a,  340a 

Shipley,  J.  W.     Corrosion  of  cast  iron  and  lead  pipes  in 

alkaline  soils 261R,  311T 

Shoeld,  M.,  and  Armour  Fertilizer  Works.     Alunite  ;  Process 

of  treating  (P) 

Phosphate-rock;    Calcining  (P) 

Potassium  chloride  ;    Production  of  (P)   . . 

Shoemaker,  It.  J.,  and  Leadizing  Co.     Lead-coating  process 
(P)  ••         

Shohl,  A.  T.     Calcium  ;    Effect  of  hydrogen  ion  concentra- 
tion upon  the  estimation  of  

Shore,  B.     See  Lees,  W.  

Short,  A.,  and  F.  H.  Sharpe.     Golden  sulphide  of  antimony 

used  in  the  rubber  industry  ;    Composition  of ■ 

Showalter,  M.  F.,  and  R.  H.  Carr.     Maize  ;  Characteristic  pro- 
teins in  high-  and  low-protein . . 

Shrader,  J.   H.     See  Sievers,  A.  F 

Shrager,  C.    See  Lance,  R.  D.  

Shreve,  R.  N.     "  Dyes  classified  by  intermediates  " 

Shuck,  G.  R.     See  Williams,  C.  E 

Shutt,  F.  T.     Canadian  Department  of  Agriculture.     Interim 
report  of  the  Dominion  Chemist 

Sibley,  R.  L.    See  Bedford,  C.  W 559a« 

Sibson,  W.  W.     See  Allsop,  T.  400a,  449a 

Sicard,  H.  C.  and  United  States  Ferro  Alloys  Corp.     Electric- 
furnace  linings  ;  Method  of  preserving (P)  . . 

Sichel,  F.,  and  E.  Stern.     Colloidal  solutions  of  metals  and 
metallic   oxides   (P) 

Painter's  size ;   Process  for  the  preparation  of (P) 

Resin  oils  ;   Preparation  of  products  resembling (P) 

Wood  glue  ;    Manufacture  of  (P) 

and  others.     Dextrin  substitute  ;    Production  of  a  

from  extracted  beet  residues  (P)    . . 
Sidebotham,  E.  J.    Staining  of  cotton  fabrics  ;    Causes  of 

57R,  366a 

Siderfln,  N.  E.     See.  Galbraith,  W.  L.  743a 

See  Lewcock,  W.     . .         . .         . .         . .         . .         . .     566a 

Sidersky,    D.    Strontium   hydroxide ;     Solubility    of    

in  sucrose  solutions 
Sidgwick,  N.  V.,  and  J.  A.  H.  R.  Gentle.     Alkali  formates 

and  acetates  ;   Solubility  of in  water 

and   S.    L.   Turner.     Chlorophenols ;     Solubility   of  ■ 

Sieben,   K.     Carbonisation    of    coking   coal ;    Is  the   

endothermic  ? 

Siebeneck,  H.     Paraffin  wax;    Oxidation  of  .. 

Paraffins  ;    Influence  of  elements  of  the  oxygen  group 


100A 
373a 
174a 

22U 

351A 

4:,1a« 

1091 

832A 
473a  1 
11A* 
341R 
865a 

3Sr 


507A 

232A 

868a 
510a 
384a 

562a 


264a 


857a 
976a 


65SA 

SSM 


282a 
746a 


Sieber,   B.     Resin   sizing 

Sulphite    liquor    (acid    calcium    bisulphite    solution) ; 

Occurrence  of  thiosulphate  and  polythionate  in 

Sulphite  liquors;    Analytical   methods  for  

Sulphite  pulps  ;   Determination  of  chlorine-consumption 

number  of  

Wood  pulps  ;    Determination  of  chlorine-consumption 

values  of . . 

Siebcrt,  G.,  Platin-Affinerie  und  Schemelze,  and  E.  Korten. 
Zirconium  and  similar  metals.  e.g.,  titanium, 
cerium,    thorium    and    the    like ;     Treatment    of 

materials   containing   (P) 

Siebcrt,  O.    See  Akt.-Ges.  fur  Anilin-Fabr 288a,  948a 

Sieburg,  E.     Yeast  fermentation  ;   Apparatus  for  automatic 

registration  of  

and  F.  Bachmann.     Saponin-like  substances ;    Influence 
on  the  physiological  activity  and  foam-producing 

power  of of  treatment  with  alkali  or  bromine 

Sieff,  S.  H.     See  Dine,  J.  H 

Siegel,  W.,  and  J.     Michael  und  Co.     Red  phosphorus  and 

arsenic;    Separation  of  a  mixture  of  (P)   .. 

Sieglcr,  R.  See  A.-G.  der  Chem.  Produkten-Fabr.  Pom- 
merensdorf 

Siegrist,  H.     See  Fischer,  R 

Siemens,  F      Gas  producer  (P) 

Ores  ;    Roasting  (P)  . . 

Roasting    furnace;      Mechanical    (P)     .. 

Sulphate;    Manufacture  of  ■ by  the    Hargreaves 

process   (P) 
Siemens  und  Co.,  Gebr.     Pitch;    Apparatus  for  producing 

high-boiling  oil  and  coke  from  (P)   .. 

See    1  tilts. he,    O. 

Siemens  u  Halske  A.-G.    Concentration  of  one  c 

of  a  gaseous  mixture;    Apparatus  for  determining 

the  - —  (P) 

Depolorising  material  of  dry  batteries;    Regenerating 

Furnace ;    Sigh-pressure  (P) 

Gases  j  Apparatus  for  detecting  the  presence  of  impuri- 
ties in  ,  especially  detection  of  firedamp  (P) 

Indicating  the  presence  of  impurities  in  a  gas  ;  Appar- 
atus for  (P) 444a 


499A 


540A 
409a 


767A 


773a 


267A 
735a 

813  a 

737a 

838A 

283A 

20A 

63a 

632a 

283A 

374a« 


411a 


222A 

317a 


353a 


NAME  IOTEX. 


89 


PAGE 


Siemen  u  Halske  A.-G. — czntin 

Ozone ;    Production  of  of  anv  desired   concen- 
tration   (P) 216a 

RuM  -ion  of  natural  or  artificial  into 

other  varieties  of  rubber  or  into  material  resembling 

percha    (P)         949a 

Siemens-Schuckertwerke      Ges.      Electrical       gas-purifying 
plant:     Arrangement    of    discharge    eled 
(P)  206a 

Ele  trical  precipitating  plant  for  separating  dry  material 

from  v  ii 239a 

Electrical      precipitating     plant?;      Arrangement     of 

insulators  in (P)  . .  ..  ..  ..  737.4 

Electrical  precipitators;    Device  for  cleaning  electrodes 

of    <p) SSa 

Gases  :   Purifying by  electricity  (P)  . .         . .     399a 

Porcelain  and  the  like  ;   Firing (P)  ..  ..  ..     757a 

Precipitating  dust  from  gases  by  electricity  (P)  . .  . .     576a 

Sieurin,  E.,  and  others.     Firebricks  ;    Resistance    test?;   on 

under  loads  at  high  temperatures   . .  416a 

Refractory   bricks;    Testing  the  compressive  strength 

of  at  high  temperatures         . .         . .         - .     591a 

Sieurin,  S.  E.,  and  Hoganas-Billesholms  Aktiebolag.  Alumin- 
ium chloride  crystals  ;    Production  of (P)   ..     141a* 

Sievers,    A.    F.     Maize    oils    obtained    by    expression    and 

benzol  extraction  methods  ;    Comparison  of  507a 

and  J.  D.  Mclntyre.     Vegetable   oils;     Xon-inflammable 

mixtures  of  organic  solvents  for  extraction  of 333a 

and  J.  H.  Shrader.    Maize  oil ;   Preparation  of  an  edible 

oil  from  crude  . .         . .         . .         . .         . .     473a 

Sieverts,    A.     Air;     Determination   of   small    quantities   of 

impurities,  especially  in  form  of  mists  or  fog,  in 155a 

Sifferlen.  E.     Dyestuffs ;    Hydrosulphite  solution  for  deter- 
mination of .     (Report  by  M.  Bader)  . .  . .     407a 

Sijlman-.  C.     Sucrose  ;    Correction  for  volume  of  precipitate 
when  using  basic  lead  nitrate  as  clarifying  agent 

in  double  polarisation  method  of  determining   

Silbereisen,  M.     Scouring,  dyeing  and  similar  treating  with 
liquids  fabrics  in  piece  form  in  continuous  process  ; 

Apparatus  for  (P)  809a 

Silberrad.    0.     Sulphuryl    chloride.    A    new    chlorinating 
Preparation    of    polychloro-derivatives    of 
benzene  . .  . .  . .         ". .  . .  . .  . .     586a 

Sulphuryl  chloride  ;    Researches  on .     Influence  of 

its.     Convenient     method     of     chlorinating 
benzene..         ..         ..         ..         ..         ..         ..       93a 

Silberstein,  L.,  and  A.  P.  H.  Trivelli.  Photographic  exposure  ; 

Quantum  theory  of . .  . .  . .  . .     960a 

Silica  Syndicate,  Ltd.,  and  F.   Reynolds.     Gas-tight   seals 
or  closures  between  metals  "and  vitreous  materials  ; 

Production   of   (P)  - 85lA 

Silonit  Bauges.  m.  b.  H.     Building    materials  ;     Treatment 

of  ■  made   of   unfired  loam,   water-glass,   and 

sulphite    waste    (P) 758a 

Silsbee,  J.  L.     Potassium  chloride;    Recovering  from 

brine   (P)  9S2a 

Silver,  A.     See  Haun,  J.   C 63a 

Simmersbach,  L.     See  Sommer,  F.     . .  ..  ..  ..       47a 

Simmonds,  X.     See  levin.-,  v.  E.     ..         ..         ..         ..     7sia 

See   McCollum,    E.    V - 1  '■  \ 

-      Ozton,  C.  B 780a 

Simmons,  W.  H.     Phenols  in  essential  oils  ;    Determination 

of 32a 

Simms,  H.  S.     See  Levene,  P.  A 345a 

Simon,  F.     Steel ;    Determination  of  chromium  and  nickel 

in 504a 

Simon,  H.,  Ltd.,  and  H.  YValder.     Stoking  apparatus  for 

furnaces  for  pulverised  fuel  (P) 702a* 

and  others.     Rice  ;    Parboiling,  gelatinising,  and  similarly 

treating and  apparatus  therefor  (P)  ..         . .     515a 

Simon,  L.  J.    Acetic  acid  ;  Oxidation  of  homologues  of 

with    chromic    acid     . .  . .  . .  . .  . .     646a 

Oxidation  by  mixtures  of  sulphuric  acid  and  chromates    614a. 
Oxidation  with  mixtures  of  sulphuric  and  chromic  acids  ; 

'Role  of  chromic  oxide  in  . .         . .         . .  1001a 

and  L.  Z'wy.     Tartaric  acid;    Neutralisation  of  by 

potash  in  presence  of  alkaline- earth  chlorides    . .     956A 

Simons,  H.  L.    Gases  in  metals  ;   Determination  of . .     714a 

Simonsen,  J.  L.     Abies  Pindroic,  Spach.  ;  Essential  oil  from 

the  leaves  of  646A 

Andropogon   iicarancusa   oil ;    Constitution  of  terpene 

present  in ..         ..         ..         ..         ..         ..     997a 

and  M.  6.  Ran.     Essential  oil  from  Blumea  Malcomii    . .     520a 

See  Rau?  M.  G 902a 

Simonson,   W.    H.,   and   O.   Mantius.     Petroleum  refining ; 

Reclaiming    sludge    acid    in    (P)    ..         ..         5a 

Simpkin,  N.    See  Sinnatt,  F.  S 164T 

Simplex  Patent  Dyeing  Machine  Co.,  and  J.  H.  HorsnelL 

Dyeing,  washing,  andthelike;  Apparatus  for (P)     172a 

Simpson,  A.  G.     See  Simon,  H.  Ltd.  . .  . .  . .     515a 

Simpson.  G.  W.  8.,  and  R.  F.  Lvle.    Sugar  liquors  ;  Filtration 

of  (P) 113a» 

Simpson.    J.    F.     Complete    gasification    of    carbonaceous 

fuel ;    Apparatus  for  (P)  . .  . .  . .     493a 

Simpson,    S.    G.     Permanganate-oxalate  titrations ;     Effect 

of  presence  of  filter  paper  on 158A 


Simpson,  T.  R.,  and  Minerals  Separation.  Ltd.     Sulphur; 

Concentration  of  ores  containing  elemental (P)  415a 

Sims,  C.  E.    See  Williams,  C.  E B49a 

Sims,  L.  B.     See  Bartell,  F.  E.  303a 

Siinsohn,  J.  S.     Water,  sewage,    or    the    like  ;  Process  for 

automatically  regulating  the  addition  of  a  treating 

agent  to  (P) 565a* 

Sinclair,  G.     Milk  ;   Treating  liquids,  e.g., (P)  . .  . .        75A 

Sinclair,  X.     See  Mellor,  J.  W.  176a 

Sinclair  Refining  Co.     See  Isom,  E.  W 975A 

Sindlinger,   F.     See   Mach,   F 908a 

Singer,    L.     Ammonium   salts    containing   tarry    matter; 

Purifying ■  (P) 754a 

Singer,  X..  and  E.  I.  du  Pont  de  Xemours  and  Co.  Bristles  ; 

Process  of  treating  (P)         . .  . .  . .  459a 

Singh,  B.   K.,  and  others.     Dyes  ;    Studies  in  optically 

active  .     Camphoreins  . .  . .  . .  704a 

Singh,  H.  D.     See  Annett,  H.  E 874a 

Singh,  L.     Jelly  making;     Relation  of  pectin  and  acidity 

in ..  ..  ..  ..  726a 

Singleton,    W.     Daylight   lamp;      Use   of    in    volu- 
metric and  colorimetric  anal  ..      242R,  918a 
and  H.  "Williams.     Calcium  carbonate  ;    Inadequacy  of 

"  A.R."  test  for  alkalis  in  . .  . .      197r,  545a 

Singmaster,  J.  A.,  and  X'ew  Jersey  Zinc  Co.     Zinc  oxide  ; 

Manufacture  of (P) 546a* 

and    others.     Lithopoue ;      Manufacture    of    (P) 

381a,   474a 

Sinha,  J.  X".     See  Hnebner,  J 93T 

Sinkinson,  E.     See  Bone,  W.  A 5SR,   240a 

Sinnatt,  F.  S.  Anthracite;  Constitution  of  .  Dis- 
cussion             93T 

Coal   seams  ;     Method    of   representing   structure   of 

and  proportion  and  properties  of  the  four 

constituents  (vitrain,  clarain,  durain,  and  fusain) 
contained  in  certain  seams  . .  . .  . .      698a 

and    "W.   T.    Lockett.     Combustible   materials  ;     Manu- 
facture of  from  carbonaceous  solids  such 

as   coals,  peats,   and   the  like,  and  sewage  and 
trade  waste  activated  sludges  (P)  . .  ..  ..      2^Ca 

and  X.  Simpkin.     Coal;    Inorganic  constituents  of ■ 

with    especial    reference    to    Lancashire    sea  ma . 

The  iron  in  the  coal . .  . .  . .  . .  . .      104T 

and  L.  Slater.     Pulverised  fuel;  Producer  gas  from ■     166a 

and  others.     Stone  dusting  of  coal  mines  . .  . .     887a 

Sircar,  A.  C,  and  S.  Dutt.     Dyes  derived  from  camphoric 

anhydride      . .  . .  . .  . .  . .  .  -     703a 

Dyestuffs  derived   from  phenanthraquinone.     Phen- 

anthranaphthazines  ..  ..  ..         ..     852a 

sirovieh,  G.,  and  A.  Cartoceti.  Metals;  Diffusion  pheno- 
mena in  solid  and  cementation  of  non- 
ferrous  metals.  Cementation  of  copper  by  means 
of  ferro manganese    ..  ..  ..  ..  ..        17a 

Metals;     Phenomena  of  diffusion  in  solid  and 

cementation     of     non-ferrous     metals.     Cemen- 
tation of  copper  by  chromium-manganese         . .     595a 

Sjoberg,  K.     See  Svanberg,  0 963a 

Sjostrom,  O.  A.     Glucose  ;  Determination  of    the  p  -value 

of  commercial  as  substitute  for  the   candy 

test 950a 

Skark,  E.  W.  L.     Jute  half-stuff  and  beaten  pulp;    Changes 

in during  storage        . .  . .  . .  . .     664a 

Paper  pulp  ;    Determination  of  degree  of  beating  of 

9a,  583a 

Skaupy,  F.     Electric  gas  or  vapour  lamps  (P)        . .  . .         6a 

Skellev,  H.  A.,  and  others.     Ferrous  alloys  ;    Manufacture 

Of (P) ?2lA 

Skelley,    J.    M.,   and   others.     Ferrotungsten   and    ferro- 

molybdenum  ;  Manufacture  of (P)  . .  . .     820a 

Skinkle,  W.  B.     See  Beneker,  J.  C.  900a 

Skinner,  H.  H.     See  Lenher,  V 250a 

Skinner,    L.    B.     Furnacing   operation-  :     Apparatus   for 

conducting  e.g.,   manufacture  of  salt-cake 

(P) 294a 

Skinner,  O.  H.,  and  others.     Acetylene;     Manufacture  of 

cylinders  for  dissolved  (P)    . .  . .         . .     244a 

Skinner,  W.  W.     See  Sale,  J.  W 776a 

Skinner  Engine  Co.     See  Metcalfe,  R.  F 130a 

Skipsey,  A.     See  Peachey,  S.  J 111a 

Skirrow,  F.  "W.,  and  Shawinigan  Laboratories,  Ltd.  Alde- 
hydes and  anhvdrides :    Process  of  manufacturing 

from  di-esters  (P) 878a 

Skita.  A.     Hydrogenation;    Mechanism  of  catalytic  195a 

Sklenar,  YV.  F.     Furnace  ;   Reverberatory for  melting 

metals  (P) 221a 

Skola,    V.     Decolorising    carbon;     Mineral    constituents 

retained  by  carboraffin during  treatment  of 

sugar  refinery  liquors  . .  . .  . .  . .      151a 

Sugar  diffusion  juice  ;   Defecation  of and  settling 

of  the  saturation  scum       . .  . .         . .  . .     775a 

See  Andrlik,  K 3S6a 

Slade,  J.  V.,  and  The  Dorr  Co.  Pulp  thickener  ;  Gravi- 
tational   ■  (P) 206a 

Slag  Rock  Machine  Co.     See  Hurst,  \Y.  T.  . .  . .      142a 


90 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Slansky,  P.     Drying  of  fatty  oils  ;   Mechanism  of . .     904a 

Slater,     H.     B.     Hypochlorite    solutions;      Electrolytic 

production  of (P)       . .         . .         . .         . .       14a 

Slater,  L.     See  Sinnatt,  F.  S.  166a 

Slatineanu,    E.     Platinum ;     Electrolytic    separation    of 

from  other  metals  contained  in  platiuiferous 

materials   (P)  470a 

Slator,  A.     Yeast  cell;    Oxygen  requirements  of  the 11  1r 

Slepian,  J.,  and  others.     Electrolytes  for  use  in  electro- 
lytic  cells,  e.g.,   lightning  arresters,   condensers, 
rectifiers,  etc.  (P)     . .  ..  ..  ..  ..       21A 

Slimm,  J.  B.,  and  National  Aniline  and  Chemical  Co.,  Inc. 

?,;-Hydroxybenzaldehyde ;     Production    of  

(P) 5S1A 

Smalley,  O.  Brass  and  bronze;  Development  and  manu- 
facture of  high-tensile  ..  ..  ..     761A 

Cast  iron  and  its  chemical  composition           . .          . .     758a 
Smallwood,    A.     Furnaces       Recuperative   and   regener- 
ative   (P)  164a 

Smee,  A.  E.     See  Coke  and  Gas  Ovens,  Ltd 4a 

Smelkus,  H.    See  Marcusson,  J.      . .         . .         . .         . .     659a 

Smidth,  F.  L.,  and  Co.     See  Fasting,  J.  S.  . .  . .     217a 

Smidt,  K.  J.,  and  R.  Jaeger.  Printers'  ink  from  sulphite- 
cellulose  waste  lyes  ;   Production  of (P)    . .     989a 

Smiley,  C.  W.    See  Brown,  J.  L 147a 

Smirnoff,  A.  P.     See  Karrer,  P 188a,  305a 

Smith,  A.     Obituary 432K 

Smith,  A.  B.     Lubricators  ;   Mechanical  . .         . .     279a 

See  Skelley,  H.  A.  821a 

Smith,  A.  D.  Purifying  liquids,  e.g.,  water  used  in  laun- 
dries ;    Electrolytic  apparatus  for (P)        . .     433a 

Stills  ;    Apparatus  for  effecting  circulation  and  main- 
taining clean  surfaces  in (P)  . .         . .         . .     165a 

Smith,  A.  M.     Grcensand  composts  ;    Pot  culture  tests  on 

availability  of  potassium  from  . .  . .       26a 

Smith,  A.   T.     Bleaching  agents  for  textiles  and  paper 

pulp.     Discussion     . .         . .         . .         . .         . .     371T 

Smith,  A.  W.     Electrolytic  apparatus  for  decomposition 

of  water  ;    Electrodes  used  in  (P)    ..  ..     824a 

Smith,  C.  G.  Secondary  cells  or  batteries  for  electricity 
storage  ;  Means  of  preventing  buckling  of  the 
plates  of (P) 823a 

Smith,    C.   H.,   and   International    Coal    Products    Corp. 

Carbonising  furnace  retort  (P)     . .          . .      320a,  322a* 

Coal;  Plant  for  and  method  of  treating (P)  405a*,  455a* 

Furnace-retort  (P)           455a* 

Furnace  retort  for  carbonisation  of  coal  (P)  . .          . .  453a 

Furnace  retort  and  discharge  mechanism  therefor  (P)  320a 

Gasification  of  coal  and  obtaining  of  by-products  (P)  405a* 

and  others.     Furnace  retort  (P) 493a 

Furnace-retort  for  carbonisation  of  coal       . .      453a,  453a 

See  Kelly,  W.  J.              197a 

Smith,  C.  J.  Hydrogen  selenide ;  Viscosity  and  mole- 
cular dimensions  of . .         . .         . .          . .  534r 

See  Rankine,  A.  0 507R 

Smith,  C.  M.    See  Graham,  J.  J.  T.              311a 

Smith,  D.  J.     See  Holden,  H.  C.  L.              579a 

•See  Tulloch,  T.  G 361a,  579a 

Smith,  E.,  and  G.  Medes.    Antiscorbutic  vitamin  ;   Effect 

of  heating in  presence  of  invertase  . .         . .  74a 

Smith,  E.  S.     See  Stewart,  J 950a 

Smith,  E.  W.  Fuels  ;  Influence  of  structure  on  the  com- 
bustibility and  other  properties  of  solid  . 

Discussion      . .          . .          . .          . .          . .          . .  207T 

Gas;    Industrial  and  industrial  furnaces         ..  45a 

Smith,  F.  E.     See  Rhind,  D.              336a 

Smith,  F.  S.  Foods  and  like  products  ;  Electrical  treat- 
ment of  (P) 30a 

Smith,  F.  W.     See  Drakeley,  T.  J.              165a 

Smith,  G.  F.    See  Willard,  H.  H.              979a 

Smith,  G.  W.    See  Katz,  S.  H 791a 

Smith,   H.,  and  others.     Heat  insulation ;    Composition 

for (P) 16a 

Smith,  H.  B.,  and  Surpass  Chemical  Co.     Dyeing  process 

(P)       ..           ..           ...  96a* 

Smith,  H.  E.  Feeding,  mixing,  and  proportioning  of 
graded  substances,  including  fuels  and  the  like; 

Apparatus  for  (P) 401a* 

See  Wood,  W.  H.           S24A*,  987a 

Smith,  H.  Y..  and  Gas  Research  Co.     Gas  ;   Apparatus  for 

maintaining  at  a  constant  heat  \alue  (P)  .  .  535A 

Gas  producers  ;  Distributing  fuel  in  • (P)  . .          . .  47a 

Gas  producers  ;    Method  of  fuel  agitation  in  (P)  536a 

Gas  producers ;     Method  of   preventing   wall  action 

„      in  (P) 536a 

Uas  producers ;    steam  and   moisture  regulation  in 

„     — r  <P)       47a 

Gas  purification  (P)        889a 

Smith,  II.  G.     Wax  coating  the  stems  of  tho  Australian 

"  Cane  grass,"  Olyceria  ramigera,   l-.v.M.           ..  372t 
and  A.  R.  Penfold.     Thymol,  menthone,  and  menthol; 

Manufacture  of from  eucalyptus  oils         . .  78a 

bee  Read,  J 43 51    430.  876a 


PAGE 

Smith,  H.  H.     Concentration  of  ores,  especially  oxidised 

copper  ores,  by  flotation  (P)  . .  . .  . .      942a 

Smith,  H.  M.,and  Stanley  Insulating  Co.!  \  Enamel  to  • 

Uethod    of    producing    and   applying    to 

metallic  surfaces  (P)  . .  . .  . .  . .      756a 

Smith,  H.  S.     See  Skinner,  O.  H 244a 

Smith,  L.     Tin  ;   Titration  of with  ferric  chloride  . .     351A 

Smith.  L.  M.     Coconut  food  products  (P) 229A 

Coconuts   and    the    milk   thereof ;     Preparing   foods 

from  (P)  432a 

See  Cookson,  W.  S 300a 

Smith,  It.  L.,  and  G.  E.  Sandland.     Hardness  of  metals  ; 

Accurate    method    of    determining    ,    with 

particular  reference  to  those  of  a  high  degree  of 
harduess        . .  . .  . .  . .         . .  . .     762a 

Smith,  S.  Grinding  paints,  enamels,  inks,  and  similar 
substances  ;  Mechanical  improvements  in  mills  for 

(P)         475a* 

Smith,  S.  J.     Fertiliser  (P) 187a 

Smith,  S.  L.     See  Sherman,  H.  C 251R 

Smith,  T.  D.     Wool ;   Process  of  scouring (P)         . .     248a 

Smith,  T.  L.,  and  others.     Crushers  (P) 2a* 

Smith,  T.  M.     See  Hill,  A.  E 351A 

Smith,  W.     Clay  ;    Treatment  of  ■ — —  and  manufacture 

of  articles  therefrom  (P) 939a* 

Smith,  W.  B.     Soya-bean  oil ;    Composition  of . .  768a 

Smith,  W.  C.     Copper-cadmium  wire  for  electrical  trans- 
mission          ..         ..         ..         ..          ..         ..  105a 

Smith,  W.  H.,  and  ClevelandBrass  Mfg.  Co.     Iron  alloy  (P)  763a 
Smith,  W.  T.,  and  R.  B.  Parkhurst.     Sulphur  dioxide  ; 

Solubility  of  in  suspensions  of  calcium  and 

magnesium  hydroxides       ..         ..         ..         .-  896a 

Smith  Engineering  Works.     See  Sanborne,  E.  L.              ..  240a* 

See  Smith,  I.  L.              2a* 

Smithells,  A.     Atom :    Models  of  the  Lewis-Langmuir 

with  explanations    . .         . .         . .          . .         . .  31R 

Smithells.  C.  J.     Metals;  Effect  of  impurities  on  recrystal- 

lisation  and  grain  growth  in . .      126R,  257a 

Thorium    oxide;      Reduction    of    by    metallic 

tungsten         980A 

See  General  Electric  Co.,  Ltd.              891a 

Smithey,  I.  W.     See  Wheeler,  A.  S.              231a 

Smitt,    N.   K.     Acetaldehyde ;     Rapid   determination   of 

345A 

Fluorides;    Detection  and  determination  of ..  810a 

Smolenski,    E.   and    K.     Amines ;     Preparation   of   

from  alcohols  and  ammonia          . .         . .         . .  196A 

Smolenski,  K.,  and  others.     Petroleum  ;   Cracking  of 402a 

See  Smolenski,  E.           196a 

Smorodincev,  I.  A.     Flesh  of  swine  ;  Organic  bases  of 953a 

Reductase  of  potato  starch  ;    Conditions  for  action 

of  . .          „          952A 

Smulders,  F.,  TJtrechtsche  Machinefabriek  opgericht  door. 

Oil  presses  and  the  like  (P)  . .         . .          . .          . .  599a 

Snelling,  W.  O.     Acids  ;  Manufacture  of (P)..          ..  858a 

Ammonia  :   Method  of  performing  chemical  reactions, 

e.g.,  production  of  (P)           ..          ..          ..  57a 

Halogen    compounds,    e.g.,    hydrochloric    acid    and 

methyl  chloride  ;    Preparation  of  P)        . .  631a 

Hydrocarbons;    Apparatus  for  refining (P)      ..  132a 

Photochemical  apparatus  (P)   . .         . .          . .         . .  520a 

Plastic  product  (P)         868a 

Vulcanised  oil  product  (P)         . .          . .          . .          . .  867a 

and  Trojan  Powder  Co.     Explosives  ;    .Manufacture  of 

(P)         37A 

Fertiliser  (P)         338a 

Snyder,  C.  A.  Artificial  silk ;  Composition  for  the  treat- 
ment of  (P) 704a 

Soanes,  H.     See  Nevill,  P.  W 765A 

SoeiedadHidro-Metalurgica.    See  Bardt,  H.    674a',  C74a*, 

716a,  718a* 

Soc.  Metalurgica  Chilena  "  Cuprum."     Ores  ;    Process  for 

treating (P) 864a* 

Socicte  Anon.des  Appareils  de  Manutention  et  Fours  Stein, 
and  Stein  and  Atkinson.  Ltd.     Heat  exchanging 
apparatus  or  recuperators  (P)       . .         . .         . .     622a* 

Reheating  furnaces  (P)  638a* 

Soc.  Anon.  Les  Ateliers  Reunis.     Pulverisers  and  crushing 

mills  (P) 576a 

Soc.  Anon,  des  Ateliers  de  Secheron.     See  Bauer,  B.       ..     S66a* 

Soc.     Anon.     l'Azote     Francais.     Nitrogen     dioxide    and 

trioxide  ;      Preparation     of     concentrated     

from  admixtures  with  dry  gases  (P)         ..  ..       99A 

Soe.  Anon,  des  Brevets  Peufaillet.     See  Moriondi,  C.       ..       324* 

Soc.    Anon.    Brevetti   Beccari.     Refuse :     Plant   for   tho 

aerobie  fermentation  of  and  the  production 

of  manure  therefrom  (P)   ..  ..  ..  ..     603A 

Soc.  Anon  le   Carbone.     Ceramic  products ;    Process  of 

manufacturing  porous  (P)  ..         ..         ..     757a 

Electric  batteries  tP) 823a 

Soc,  Anon.  La  Combustion  Rationclle.  and  ivwdered 
Fuel  Plant  Co.,  Ltd.  Powdered  fuel;  Supply- 
ing  to  furnaces  (P)     ..  ..  ..  ..     455a* 


NAME  INDEX. 


91 


PAGE 

Soc.  Anon.  La  Combustion  Rationelle.  and  Powdered  Fuel 
Plant  Co.,  Ltd. — continued. 
Pulverising  coal  and  other  substances  ;    Apparatus 

for (P) 128A* 

Pulverising  or  grinding  apparatus  (P)  . .  . .         . .     576a 

Soc.  Anon,  de  Commentry,  Fourchambault  et  Decazeville. 

Alloys  (P) 37i)A,  470A,  470a 

See  Girin,  P 638a* 

Soc.  Anon.  Comp.  des  Caoutchoucs  de  Padang.     Rubber 

latex;    Rolling  freshly  coagulated  (P)       ..     302a* 

Soc.  Anon.  d'Exploit.  des  Brevets  Cousin  dite  le  Chauffage 
Industriel.  Combustion  of  gaseous  fuel  in  fur- 
naces (P) 579a 

Soc.  Anon,  des  Etabl.  Hutchinson.    See  See,  J.  D.  . .     894a* 

Soc.  Anon,  pour  l'Etude  et  l'Exploit.  des  Proc.  G.  Claude. 
See  L'Air  Liquide. 

Soc.  Anon.  "  Fours  Speciaux."  Distillation  of  mineral 
and  organic  substances  ;  Apparatus  for  destruc- 
tive    (P)  92A 

Soc.  Anon.  "  Le  Nickel."     Nickel ;    Manufacture  of  pure 

(P)         943a 

Nickel ;     Preparation  of  agglomerates  of  pure  

from  crude  nickel  oxide  (P)         ..  ..         ..     765a 

Soc.  Anon,  des  Matieres  Colorantes  et  Prod.  Chim.  de 
St.    Denis,   and   A.    E.    Wahl.     ClJorotoluenes ; 

Separation  of (P)        287a 

Soc.  Anon.  "  Proc.  Torrida."     See  Tribes,  G.  E.  F.        ..     154a» 
Soc.  Anon,  de   Prod.   Chim.   Etabl.   Maletra.     Acetalde- 

hyde  ;   Production  of from  acetylene  (P)  . .     837a 

Sodium  sulphate  ;    Continuous  production  of (P)    812a 

See  Trevoux,  L.  E.  M 838a* 

Soc.  "  Le  Basalte."     Basalt ;    Continuous  melting  of 

(P) 15A 

Soc.  La  Cellophane.     See  Brandenberger,  J.  E.    . .  . .     234a 

Soc.    Chim.    de   la    Grande    Paroisse.     Amino-nitro-coni- 

pounds  ;    Preparation  of  aromatic (P)        . .     647a 

Sulphur  dyestuffs  ;   Brown (P) 892a 

See  Haas,  L 838a* 

Soc.  Chim.  des  Usines  du  Rh6ne.  Aromatic  hydroxy- 
aldehydes  and  their  derivatives;     Manufacture 

of (P) 197a,  566a 

Basic  aluminium  salicvlate  :   Preparation  of (P)     787A 

Coating  wires  and  the  like  (P) 9S6a* 

Saccharin  ;    Manufacture  of  (P)  . .  . .  .  .      483a 

Silver   alcosols ;      Production    of   with    aid    of 

organic  substances  (P)        . .  . .  . .  . .     729a* 

See  Altwegg,  J 438a,  484a*,   567a*,  916a 

See  Bidaud,  F 567a* 

See  Bouvier,  M.  366a*,  458a« 

See  Koetschet,  J.  S9a*.  S55a* 

Soc.  d'Electro-Chimie  et  d'EIectro-Metallurgie.     Metallic 

electrolytic    deposits ;      Obtaining    easily 

detachable  from  the  cathode  (P) 821a 

Soc.  d'Etudcs  Chim.  pour  l'lndustrie.  Fertiliser ;  Pre- 
paration of  a  nitrogenous  (P)  ..  ..     112a 

Fertilisers;    Manufacture  of  mixed (P)  ..      lllA 

Fertilisers ;    Manufacture  of   mixed  nitro-phosphate 

(P)  lllA 

Urea  ;    Conversion  of  cyanamide  salts  into  (P)       79A 

Soc.  "  Entreprises  et  Mat6riel."     Gas  retorts  ;   Apparatus 

for  discharging  ■  (P) 537a* 

Soc.  du  Feutre.     Carrotting  fur  and  hair  (P)      . .      808a,  808a* 
Soc.  des   Fours   a   Coke   Semet-Solvay  et   Piette.     Coke 

ovens  (P) 282a 

Soc.   Franc,   de   Materiel   Agricole    et   Industriel.     Com- 
bustion  process  and  apparatus  for  use  in  fur- 
naces (P)       . .         . .         . .         . .  . .         . .     454a 

Soc.  Franco-Beige  de  Fours  a  Coke.  Gases  from  gas  pro- 
ducers ;    Treatment  of  (P) 284a 

Gases  and  liquids      Apparatus  for  effecting  intimate 

intermingling  of (P)  . .  . .         . .         . .       87a 

Soc.  du  Gaz  de  Paris.     Illuminating-gas  ;    Purification  of 

(P)         „         ..         ..     494a 

Soc.  des  Gaz  Radioactifs  Naturels  de  Colombieres  sur  Orb. 

Cooling  beverages  and  charging  them  with  gas 

by  use  of  snow-like  carbonic  anhydride  (P)        . .       28a 

Soc.  Gen.  d'Evaporation  Proc.  Prache  et  Bouillon.  Crys- 
tallisation ;     Process    of    and    apparatus 

therefor    (P)  620a 

Leaching  minerals  ;   Apparatus  for (P)  . .         . .     281a* 

See  Granger,  L.    . .  . .  . .  . .         . .         . .         4a 

Soc.    Gen.    de   Fours    a    Coke,    Systemes    Lecocq.     Coke 

ovens;  Doors  for (P)..         ..         ..  ..     455a* 

Coke  ovens  ;    Regenerative (P)    . .  . .  . .       90a 

Soc.  Ind.  de  Prod.  Chim.  Ammonium  sulphate  ;  Obtain- 
ing    by  the  interaction  of  ammonium  car- 
bonate and  calcium  sulphate  (P)  . .         . .  . .     546a 

Soc.  Ital.  Asfalti  Bitumi.  Catrami,  e  Derivati  (A.B.C.D.), 

and  others.     Distillation  of  fuels  (P)       . .  . .     168a 

Soc.  Metallurgique  du  Frayol.     See  de  Nolly,  H.  . .     507a* 

Soc.  les  Petits  Fils  de  F.  de  Wendel  et  Cie.     See  Weber,  G. 

81a,  234A,  918a 

Soc.  Pichard  Freres.     See  under  Pichard. 

Soc.  de  Recherches  et  de  Perfectionnements  Industriels. 

Wood  ;  Impregnation  of  (P)  . .      816a,  899a 


FA'-.E 
Society  of  Chem.  Ind.  in  Basle.     Allyl  ether  of  ethenylparadi- 

hydroxydiphenylamidine  ;    Unsaturated  (P)     520a 

Aminoalcohols ;      Manufacture    of    optically    active 

aromatic  (P) 878a,  960a* 

Aminoalcohols  of  the  quinoline  series;    Manufacture 

of  (P) 958a 

Aralkyl  ester  of  2-phenylquinoline-4-carboxylic  acid 

(P) 523a* 

Azo    dyestuffs ;     Manufacture    of    chromium    com- 
pounds of  (P)  137a,  934a 

Azo  dyestuffs  ;    Manufacture  of  easily  soluble  diazo- 

tisable  (P) 51a 

Camphoric  acid  ;    Manufacture  of  soluble  derivatives 

of  (P) 198A 

Dyestuffs  ;    Manufacture  of (P)  . .  . .  . .       51A* 

Mordant-dyeing  dyestuffs  and   chromium  compounds 

thereof;    Manufacture  of (P)  ..         ..     539a* 

Nicotinic  acid  dialkylamides  ;  Preparation  of (P) 

688a,  877a 
Raw  silk  ;   Degumming in  presence  of  vat-dyed 

silk  (P)  325a 

Resins  ;    Manufacture  of (P)        . .  . .         . .     905a 

/3-Thionaphthisatin  ;    Manufacture  of (P)         . .     977a 

Soddy,  F.  Coal  gas  ;  Purifying  by  means  of  char- 
coal (P)          624a* 

Sohngen,  N.  L.     See  Kessener,  H.J.N 386A 

Soejima,  R.     See  Yoshitomi,  E 832a 

Sokol,  R.     Colloidal  clay  ;    Determination  of  ■ — —  in  soils  829a 

Solotarew,  P.  W.     See  Budnikow,  P.  P 745a 

Solvay,  E.     Obituary  231R 

Solvay  Process  Co.     See  Bacon,  N.  T 501a 

SomerviUe,  J.  L.     Sandalwood  oil;     Abnormal  solubility 

of  West  Australian in  alcohol  . .  . .  647A 

Sommer,  F.,  and  L.  Simmcrsbaeh.     Gas ;    Production  of 

by-products  in  manufacture  of  mixed  by 

alternate  action  of  steam  and  oxygen  on  fuel  ( P)       47a 
Sommer,  H.     See  Heermann,  P.       . .         . .         . .  . .     745a 

Somogyi,  R.     Fibrin;    Swelling  of by  acids  ..  ..     lllA 

Yeast  fermentation  ;    Action  of  acids  on  . .     113a 

See  Traube,  1 116a 

Sona  Corp.     See  Brown,  H.  E 906a 

Sonden,  K.     Colorimetric  investigations ;    Use  of  coloured 

glasses  instead  of  liquids  in . .  . .         . .     962a 

Sonsthagen,  A.,  and  E.  II.  Harberd.     Atomising  more  or 

less  viscid  materials  (P)     . .  . .         . .  . .     797a* 

Soper,  E.  C.     Phosphates:    Treatment  of (P)  ..       26a 

Sorel,  A.  Cereals ;  Rational  utilisation  of  for  ob- 
taining maximum  yield  of  products  for  utilisation 
as  foodstuffs  and  in  industry        . .         . .         . .     642a 

Sorensen,  F.  L.     See  Haines,  F.  W.  62A 

Sorger,  C.     Tanning  material  ;  Manufacture  of  a (P)     477A 

Sortwell,  H.  H.     Earthenware  bodies  and  glazes  ..  ..     177a 
Soteria    G.m.b.H.,    Chem.-pharmazeutisehe    Fabr.     San- 
tonin ;      Preparation    of    from    indigenous 

species  of  Artemisia  (P)      ..  ..  ..  ..     521a 

Souder,  W.  H.,  and  P.  Hidnert.  Nickel,  monel  metal, 
stellite,  stainless  steel,  and  aluminium  ;   Thermal 

expansion  of  . .  . .  . .  . .  . .     762a 

Soudure  Autogene  Franraise,  La.     Welding  of  cast  iron  ; 

Electrical (P) 820a 

Soule,  R.  P.     See  Morgan,  J.J 491A,  495a 

Soulie-Cottineau,  H.  P.     Copper  ;    Process  for  obtaining 

from  lyes  resulting  from  the  treatment  of 

cupriferous  pyrites  (P)        . .  . .  . .  . .      901A* 

Soutar,  C.  W.     See  Atack,  F.  W.  ..         ..      170a,  805a 

South  Metropolitan  Gas  Co.,  and  D.  Chandler.  Gas ; 
Apparatus    for    controlling    or    regulating    the 

flow  of to  a  testing  instrument  or  the  like  (P)     3E3a 

Metallurgical  furnaces ;    Gas-fired  (P)    ..  ..     596a 

and   P.   Parrish.     Ammonium  sulphate ;     Manufacture 

of (P) S71A 

Ammonium  sulphate ;     Manufacture  of  neutral  

(P) 372A 

and  others.     Ammonium  sulphate;   Manufacture  of 

(P) 215A 

Gas  and  air  valves  of    gas-heated    furnaces  and  the 

like ;  Means  for  actuating (P)  . .         . .     698a* 

Southern  Carbon  Co.  See  Rumbarger,  B.  W.  ..  ..  149a 
Southern  Electro  Chemical  Co.  Sec  Hechenbleikner,  I.  ..  321a 
Southworth,  H.  W.     Paper  stock  ;    Hollanders  or  similar 

machinery  for  cleaning (P)    . .         . .  . .     584a* 

Sowden,  W.     See  Chambers,  E.  V.  372a 

Sowers,    O.     Iron   castings ;     Method   of   controlling   the 

condition,  i.e.,  rendering  malleable (P)     . .     554a 

Soyama,  N.     See  Osugi,  S 829a 

Spacu,  G.     Chlorides  and  bromides  in  presence  of  thio- 

cyanates  ;    Detection  of . .  . .         . .     S81a 

Copper ;    Microchemical  estimation  of ■  . .  . .     918a 

Copper,  thiocyanates,  and  pyridine;  Sensitive  reaction 

"  for . .         . .         880a 

Spath,  E.     Anhaline  ;    Constitution  of . .         . .     390a 

Pellotine,    anhalonidine,    and    anhalamine ;     Consti- 
tution of .     Anhalonium  (cactus)  alkaloids    . .       77a 

and  K.  Bohm.     Alkaloids  of  Colombo  root ;    Constitu- 
tion of  — — 954A 


92 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Spath,  E. — conti 

and    K.    Fuchs.     Coto    bark ;     Active   constituents   of 

true .     Synthesis  of  cotoin    . .  . .         . .     390a 

and   N.    Lang.     Berberine ;     Conversion   of   into 

paimatine       ..  ..  ..  ..  ..  ..      117a 

Corydaline ;    Constitution  of ..  ..  ..      117A 

Laudanine  :   Synthesis  of . .  . .  . .  . .     390A 

and  H.  Roder.     Anhalamine ;    Synthesis  of  ..     C83A 

and  E.  Tschemitz.     Rlcfnlne;    Constitution  of ..     390a 

Spalteholz,   W.     Tar  distillation  ;    Stoppage  of  the  con- 
denser in  . .  . .  . .  . .  . .     538A 

Spanier,   11.     See  Burstin,  H.  ..  ..  ..  ..        46a 

Speakman,  J.  B.     Sec  Heap,  J.  G.  49a 

See  Whytlaw-Gray,  It SU3u 

Spear,  C.  O.     See  Spear,  W 001a 

Spear,  W.  and  C.  O.    Food  products;   Manufacture  of 

from  meats  and  vegetable  substances  (P). .         . .     564A 
Specht.  II    M       -,.   Schoele,  W.  T.  ..  -.         ..     290a 

Speckan.     C.     Dulcin    (p-phenetolurea) ;      Alteration    of 
sweetness  of  as  a  result  of  chemical  modi- 
fication   of    individual    radicles    and    sweetening 
power  of  derivatives  of  p-hydroxyphenylurea  . .     434A 
Specketer,  H.     See  Chem.  Fabr.  Griesheim-Elektron      . .     327a 
Speedy,  A.,  and  A.  P.  Crouch.     Rubber  mixing  (P)        . .       07a 

Spciden,  E.  C.     See  Ladd,  E.  T 327a,  632a 

Speirs,  C.  W.,  and  Morgan  Crucible  Co.,  Ltd.     Furnace  ; 

Electrically  heated  — —  (P)  556a* 

Speller,  F.  N.     Corrosion  ;   Control  of by  deactivation 

of  water        389A 

Spellman,  M.  P..     See  Braxton,  E.  M 700A 

Spencc,  H.,  and  others.     Silicious  substances  ;   Drying  and 

calcining (P)  ..  ..  ..  ..  ..     174a 

Spence,  P.,  and  Sons,  Ltd.     See  Spence,  H.  ..         ..     174a 

Spencer,  C.  G.     Electrolysis  (P) 902a 

Spencer,  D.  A.    See  Hickman,  K.  C.  D 440a 

Spencer,  G.  D.     See  British  Dyestun's  Corp.,  Ltd.  ..     744a 

See  Pcrkin,  A.  O.  305a 

Spencer,  J.  F.,  and  K.  Proud.     Sodium  silicate  solutions  ; 

Electrolysis  of ..  ..  ..  ..  ..     G68A 

Spensley,  J.  W.     Grinding  or  crushing  machine  (P)         . .     886a 

See  Porter,   W.  H 205a,  317a* 

Sperr,  F.  W.     Coal  gas :    Liquid  purification  of ..     359a 

Sperr,  F.  W.,  jun.,  and  Koppers  Co.     Ammonium  sulphate ; 

Manufacture  of  (P)     ..  ..  ..  ..     415a* 

and  others.     Electric  furnace  (P)  ..  ..  ..     550a 

Pyridine  ;     Recovery  of from  ammonium  sul- 
phate solutions  (P)  . .  . .  . .  . .  . .     457a 

Sperry,    E.  'A.     Lead    matte ;     Separating    foreign   sub- 
stances from (P)        ..         ..         ..  ..     107a 

Speyer,    E.,    and    A.    G.    Becker.     Cinchona    alkaloids; 

Action  of  hydrogen  peroxide  on   . .  . .     516a 

and  G.  Becker.     Morphine  ..         ..         ..         ..     516a 

Speyer-Haus,    G.  3.3'-Diamino-4.4'-dihydroxyarseno- 

benzene  ;    Manufacture  of  derivatives  of (P)     347A 

Spiegel,  L.     Fats  ;    Enzymic  synthesis  of . .  . .     513A 

Spieker,    A.     See    Rheinish-Nassauische   Bergwerks   und 

Hiitten  A.-G.  ..  ..      180A,   221a,   472a*,   555a 

Spiel,   H.     Electrochemical   gas   reactions;     Method   and 

apparatus  for  carrying  out (P)         ..  ..      299A* 

Spiess  und  Ev.     Ozone  ;   Apparatus  lor  the  production  of 

(P)         299a 

Spinnstolf-fabrik   Zehlendorf   G.m.b.H.,   and    K.    Leuchs. 

Sodium  bisulphate ;     Separation  of  in  the 

solid  state  from  solutions  (P)        ..         ..         ..     751a 

Spitz,  W.     Calcium  iodide  ;    Manufacture  of  preparations 

of for  therapeutic  purposes  (P)         . .         . .     270a* 

Spoelstra,  S.  J.     See  Maus,  F 127a,  449a,  531a 

Spoon,  W.     Boehringer's  coagulating  powder  (aluminium 

lactate);    Experiments  on  rubber  latex  with 827a 

Hevea-latex  ;    Presence  of  quebrachitol  and  sugar  in 

under  different  circumstances  . .         . .     827a 

Sprengluft  Ges.     Blasting  witli  liquid  air  ;    Cartridges  for 

(P)  199a 

Fuses  or  ignitors  for  blasting  witli  liquid  air  or  oxygen 

(P) 80a 

Sprengstoif    A.-G.    Carbonit.     PerchJorates ;     Production 

and  utilisation  of  fusible (  P)  . .  ..  ..     484A 

Spent  acids  from  nitration  ;   Purifying (P)        . .     350A 

Springer,  J.  E.     Alloy  (P) 470a 

Sproat,  I.  E.     Biscuit  losses  ;    Control  of  . .  . .     814a 

Sprockhoff.     Dextrin  ;    Speciflo  heat  and  heat  of  wetting 

of 723a 

;er,  W.  C,  and  G.  B.  Caylor.     Nitric  acid;    Vapour 

pressures  of  aqueous  solutions  of ..         ..       96a 

Spude,  H.     Iron  oxide;    Preparation  of  finest  hydrated 

magnetic (P)   ..  ..  ..  ..  ..     689a 

Spurrier,  H.     Ceramic  bodies;    Suggested  new  methods  in 

preparation  of  dust-pressed ..         ..         ..     295a 

White    ware    flred    in    carborundum    saggars;     Dis- 
coloration of ..  ..  ..  ..  ..      101A 

Squibb,  E.  R.,  and  Sons.     See  Kobcr,  P.  A 232a 

Srinivas.in,  k.  C.     See  Fowler,  ii.  .' 426a 

Srinivaslah,  M.    See  Fowler,  G.  J.  410a 


pace 
112a 
380a 
97A 
919A 
711A 


Ssajevic,  V.     See  Samec,  M. 

Stackpole  Carbon  Co.     See  Sullivan,  A.  P. 

Staehling,  C.     Uranium  oxides ;    Radioactivity  of  — 

Starkle,  M.     See  Treadwell,  W.  D. 

Stafford,  C.  S.     Glass  and  other  furnaces  (P) 

Stagner,    B.    A.,    and    National    Retarder    Co.     Yeast ; 

Growing  of  (P)          779a 

Stan],  F.     See  Schroeter,  G.              ..          ..          ..         ..  133a 

Stahl,    Vy.     Lead    refining ;     Complete    analysis    of   lead 

dross  from . .         . .         . .         . .         . .  468a 

See  Holfmann,  R.            ..          ..          ..          ..          ..  713a 

Staib,  K.     See  Gutbier,  A 351a 

Stalhane,   O.,  and   O.   O.   Kring.     Coating  metal  objects 

with  a  layer  of  another  metal  (P)  . .          ..          ..  707a* 

Stallard,  N.     See  Lodge  Fume  Co.               ..          ..          ..  316a 

stalling*,  J.  H.     See  Brown,  P.  E.              26a 

Stalmann,  G.     p-Cymene  ;    Manufacture  of  (P)     ..  997 A* 

Standard  Chemical  Co.     See  Mueller,  F.  F 985A 

Standard  Food  Products  Co.     See  MacLachlan,  J.  C.    75a,  75a 

Standard  Oil  Co.     See  Bransky,  O.  E.       . .         . .         . .  5a 

See  Burgess,  L 132a,  216a 

See  Chamberlain,  H.  P.  ..         ..         ..  5a,  48a 

See   (lark,  E.  M.      ..     ..   210A,  405a,  405a*,  494a 

See  Cobb,  E.  B 404a 

See  Diggs,  S.  H.             537a 

See  Ellis,  C 494A 

S«    Howard,  F.  A 491a 

See  Jennings,  J.  M.         ..         ..         ..         ..         ..  697a 

Si'.'     f.el.n,     I'..    P..                     686A 

See   Minn.   M.  D.                 .  .  438a 

See  Robinson,  C.  I.  132a,  931a 

Standard  Oil  Co.  of  California.    See  Chappell,  M.  L.              ..  209a 

See  Hanna,  R.  W 209a,  285a,  580a 

Standard  Oil  Co.  of  New  York.     See  Stockford,  C.  E.     ..  741a 

Standard  Rubber  Works  Proprietary,  Ltd.    See  Ostberg,  A.  .1.  677a* 
Stanek,    V.     Carbonatation  press  scums  from  beet  sugar 

manufacture ;    Sand  in  and  its  influence  on 

filtration  and  washing  . .         . .                    . .         . .  70a 

Sugar   juice ;     Action   of   lime    on   protein   substances 

separated  during  defecation  of . .          . .          . .  870a 

and  J.  Vondrak.     Sugar  juice;    Separation  previous  to 
carbonatation  of  the  precipitate  produced  by  the 

liming  of 3S5A 

Stankowitsch,  P.  N.     Blasting  powder  (P) 441a 

Stanley.  G.  C.    See  Saunders,  C.  L 66a 

Stanley,  J.  C.  W.,  and  Title  Guarantee  and  Trust  Co.    Fish 

oil  and  the  like  ;  Apparatus  for  treating (P)  . ,  769a 

Stanley  Insulating  Co.     See  Smith,  H.  M 750a 

Stansfleld,  A.     Ores  ;  Reduction  of (P) 180a 

Stansfleld,  E.     Carbonising  coal  and  the  like  (P)   . .          . .  362a 
Stanton,  W.  II.     Sodium  silicate  and  the  like;   Furnace  for 

producing  (P)     . .          . .          . .          . .          . .  753a 

Starezcwska,  H.    See  Swietoslawski,  W.      . .         . .         . .  790A 

Stark,  A.  L..  and  Stibium  Products  Co.     Antimony  sulphide  ; 

Method  of  making  precipitated  (P)  . .          . .  474a 

>,    E.   J'..     See  Gordon,  X.   E.             870a 

Starling,  S.  G.     "  Electricity  " 545R 

Starrels,  ,T.     Fatty  acids  of  high  puritv  and  melting  point  ; 

Production  of  (P)          22a* 

Statham,    N..    and   Industrial   Chemical    Co.     Electrolytic 

caustic  soda  cell  (P)  . .         ..         ..         ..         ..  380a* 

and  West  Virginia  Pulp  and  Paper  Co.     Acetate  distil- 
lation ;  Apparatus  for  dry (P)  . .          ..          ..  363A 

A.  W.     .See  Merz  and  McLellan 890A* 


Caoutchouc  ;    Hydrogena- 


Staub,   M.     Sec   Karrcr,  P. 
Staudlnger,  11.,  and  J.  Fritsehi. 

1 1 nut  constitution  of 

and    others.    Isoprene ;     Addition   of   hydrogen    halldes 

Esoprene  dlbromide  . . 

Stavritch,  K.  N.    See  Cherbuliez,  E 

Steabben,  D.  B.    See  Hewitt,  J.  A 

Stearns,  R.  H.    See  Bethke,  J.  P 

Steel,    T.     Calcium   oxalate;    Occurrence   of  in   the 

Gidgee  wattle  (Aeacia  Cami  Baker)   .. 

Sugar   canes,   Myoporum   exudation,    Australian    fungi 

and  fruits  ;  Analyses  of  Fijian 

Ulmite,  a  constituent  of  black  sandstone 

'     I'  .  and  II.  B.  Clifton.    Fuel ;   Liquid (P) 

Steele,  E.  S.     See  Irvine,  J.  C 364R,  603a 

Steele,   I,.  L.     Abietic  acid  and  certain  metal  abletates     ..     558a 
and   Q.   i..   Sward.     Tung  oil  aud  other  vegetable  oils; 

Determination  of  acid  value  of 

Steen,  T.     Filter;    Drum  suction (P)  . . 

Slag  ;   Granulating and  separating  moisture  there- 
from   (P)           

Steenboek.     It.,    and    M.    T.    Sell.     Fat-soluble    vitamin; 

nine  of with  yellow  plant  pigments     . 

See   Hart ,    E.    B 

Steenburg,  W.  C.    See  Bonsor,  W 673a 

Steenstrup,    C,    and    British   Thomson-Houston   Co.,    Ltd. 

Composite  metal  articles  (P)  . .  ..  ..  ..     505A 


188A 
868a 

877a 
877a 
481A 
227a 
471a 

32a 

386a 
263a 
209a 


260a 
128a 

555A 

343a 
80«a 


NAME  INDEX. 


03 


Steerup,    G..    and    U.S.    Light    and    Heat    Corp.     Storage- 
battery  separator  (P)  ..  ..  ..  ..  ..     507A 

Steffens,  J.  A.,  and  U.S.  Industrial  Alcohol  Co.     Catalysts  ; 

Production  of  (P)         89a 

Esters  ;  Manufacture  of (P) 64Sa 

Glycerin  ;   Recovering from  fermentation  products 

(P)  * 725A 

Steger,  W.     Porcelain  ;    Translucency  of  . .  . .     592a 

Refractory  materials;    Determination  of  softening  tem- 

perature  of underload..         ..         ..         ..     591a 

Stehle,  R.  L.     Urea  ;    Gasometric  determination  of . .     345a 

Steibelt,  W.     See  Willstiitter,  R 189a,  190a 

Steimmlg,  F.    Viscose  ;    Precipitation  of (P)  . .         . .       54a* 

Stemmig,  G.    See  Badische  Anilin  u.  Soda  Fabr.    . .         . .     347a 
Stein,  C.  M.,  and  Powdered  Fuel  Plant  Co.     Separating  solid 

matter  in  suspension  from  a  gas  ;    Means  for 

(P)  ..  88a 

Stein,     L.     Sulphite-cellulose     waste     liquors ;      Utilisation 

of (P) 54A,  138a 

Stein  and  Atkinson,  Ltd.     See  Atkinson,  J.  S.       333a*,  711a,  835a* 
See  Soc.  Anon,  des  Appareils  de  Manut cation  ct  Fours 

Stein 622a*,  638a* 

Steinan.     Lithopone  ;   Manufacture  of . .  . .  . .       65a 

Steindorff,  A.     See  Meister,  Lucius,  u.  Briining     . .  . .      749a* 

Sterner,  A.     Filtration  ;    Determination  of  velocity  of  — ■ —     998a 

Steiner,  J.    See  Brand,  K 363a 

Stein-Hall  Mfg.  Co.     See  Bright,  R.  E 388a 

See  Schenk,  M 388a 

Stciahardt,  A.     Ceramic  articles  ;    Production  of  — —  with 

electric  heating  (P)    . .         . .         . .         . .         . .       59a 

Steinhilber,  H.     Cellulose;    Producing from  reeds  and 

similar  kinds  of  plants  by  mechanical  grinding  (P)     S55a* 
Paper-pulp :     Mechanical    process   for   manufacture   of 

(P)  

Steinkoenig,  L.  A.     See  Berghausen,  O. 

Steinkopf,  W.,  and  J.  Herold.     Acetylene;    Action  of 

on    pyrites 
Steinkuhler,    W.     See   Schoep,   A. 
Steinmann,  W.     Gas  producer  (P) 

Lignite,  peat,  etc. ;   Drying  of (P)  . . 

Steinschneider,    L.     Condenser   for   vacuum    distillation   of 

petroleum,  tar,  etc.  (P) 

Shaft    furnace    for    drying,    calcining,    and    oxidising 

granular  and  powdered  materials  (P) 

Stenger,  E.     Sensitising  and  stability  of  photographic  plates 

Stenning,  W.  "W.,  and  others.     Coal  briquettes  ;   Production 

of  (P) 

Stentzel,  H.  Sugar  factory  waste  waters;  Biological  puri- 
fication of  (P)     . . 

Stephan,    A.     Antiseptic;     Preparation    of   an    from 

phenol,  formaldehyde,  and  bole  (P) 

Iron  yeast  compound  ;    Preparation  of  an (P)     . . 

Kola  extract ;    Preparation  of  a (P) 

Stephan,  C.     Isatin-a-arylides ;    Preparation  of  compounds 

of  with  sulphur  dioxide  (P) 

Stephens,  F.  C,  and  Wittemann  Co.    Drying  apparatus  (P) 

Stephens  Engineering  Co.     Fuel ;    Combustion  of  (P) 

Stepp,   W.,   and   R.   Fricke.     Acetaldehyde   in  presence  of 

acetone  ;    Direct  determination  of  

Steps,  R.  A.,  and  Sugar  Machinery  Co.     Sugar  centrifugals  ; 

Washing  (P) 

Stern,  E.      Linseed  oil;    Substitute  for  for  varnishes 

etc.  (P) 

See  Franzen,  H. 

See  Sichel,  F.  . .  . .       232a,  384a,  510a,  562a,  868a 

Stern,  M.     Nickel  or  nickel-rich  alloys  :   Preparation  of 

from  low-grade  nickel-iron  alloys  (P) 

Sternherger,  R.  O.    See  Allen,  A.  F 

Stettiner  Chamotte-Fabr.  A.-G.  vorm.  Didier.  Gas-heated 
oven  and  retorts  (P) 

Steuart,   D.   W.  Fats  ;     Unsaponifiable  matter  of  . . 

Steudel,  H-,  and  E.  Peiser.     Yeast  nucleic  acid 

Steven,  A.  B.     Artificial  silk 

Stevens,   B.     Flotation  process;     Differential  (P)    .. 

Stevens,  A.  L.     Gas  ;    Purifying  (P) 

Stevens,   C.  A.     See  Collins,   C.   G 

Stevens,  E.  W.,  and  Chemical  Fuel  Co.  of  America.  Catalytic 
processes  involving  gaseous  or  vapourous  carbon 
compounds;    Carrying  out  of  -  ---  (P)     .. 

Motor  fuel  (P)        

Motor  fuels  containing  alcohol ;    Preparing (P)  . . 

Stevens,     H.     P.     Plantation    rubber    industry ;      Recent 

developments  in  the  

Rubber  ;    Ageing  of  plantation  

Rubber  coagulated  with  acid  extracted  from  coconut 
shell  and  husk 

Rubber  ;  Colour  of  smoked  sheet 

Rubber  compounded  with  sulphur  and  litharge  ;    Com- 
parative tests  with  

Rubber  ;    Dryness  of  plantation  

Rubber  ;   Effect  of  acetone-soluble  constituents  of 

on    vulcanising    properties    . .  . .  . .  . .     326T 

Rubber  ;  Effect  of  acids  in  retarding  rate  of  cure  of 67a 


543a* 

. .     703A 

. .     569a 

131a, 167a 

. .     360A 


539a 

400a 

440A 

800A 

27A 

307a 
439a 
533a 

805a 

280a 
702a* 

197a 

777a 

224a 
783A 


765a 
248a 


535a 

-    ..      5G0r 

153A,  565a 

. .      504R 

864A 

660a 

555a 


577a 
494a 
537a* 

506R 
6GA 

66A 

110a 

9S9a 
66A 


Stevens,  H.  P. — continued. 

Rubber ;    Effect  of  mould  on  quality  of  smoked  sheet 

Rubber;    Effect  of  proportion  of  coagulant  on  rate  of 

cure  of  

Rubber ;     Elongation  at  constant  load   as  a   measure 

of  state  of  cure  of and  relationsliip  to  *'  slope  *' 

Rubber  latex  ;    Application  of  hydrogen  sulphide  and 

sulphur    dioxide    gases    direct    to    

Rubber  latex  ;    Coagulation  of  with  "  toddy  *'   . . 

Rubber  latex  ;    Partial  coagulation  of 

Rubber  latex  ;    Preservation  of  

Rubber  latex  ;  Properties  of  dried 

Rubber  ;    Mould  on  sheet .     Treatment  of  mouldy 

sheets  and  its  effects  on  vulcanising  properties  . . 

Rubber  ;    Prevention  of  mould  on 

Rubber  ;  Sodium  silicofluoride  as  a  preventive  of  mould 

on 510a, 

Rubber ;   Tests  on  dryness  of  plantation 

Rubber;    Tests  on   plantation   with  zinc   oxide 

and  litharge  mixings 

Rubber ;    Tests  for  variability  of  

Rubber  ;     Uniformity   in  rate   of  cure  of   crepe   from 

"slab"   :    advantages  and  disadvantages  of 

latter  form  of  manufacture 
Sheet  rubber  manufacture;    Use  of  sodium  bisulphite 


PAGE 

721a 

335a 

67A 

772A 
475A 
475A 
S68A 
261A 

66a 
335A 

721A 
66a 

601A 
67A 

67a 

510A 

621A 

767A* 

316a 

216A 

75A 

75A 
192A 

463A 

463a 
463a 

205a 
340a 
152a 

51  A» 
950A 

950A 


Stevens,  M.  T.,  and  Sons,  Co.     Sse  Stone,  G. 

Stevens,  R.  H.     See  Avery,  D 147a* 

Stevens,  T.  E.,  and  Potash  Reduction  Co.     Crystalliser  (P) 

Stevens- Ay  Is  worth  Co.    See  Given,  A. 

Stevenson,  A.  F.,  and  A.  W.  Johnston.  Butter  fats  ;  Treat- 
ment of  (P) 

Milk-fat;    Manufacture  of  (P) 

See  Phelps,  E.  B 

Stevenson,  E.  P.,  and  General  Bond  and  Share  Co.  Alka- 
line brines  and  deposits  ;    Recovering  valuable 

constituents  from (P)  . . 

Potash  ;   Extracting   from   saline   deposits   and 

brines  (P) 463a, 

Potash  ;    Recovering (P) 

Stevenson,  F.  E.,  and  Hydraulic  Pres-  Mfg.  Co.  Filter 
and  hydraulic  press;    Combined  (P) 

Stevenson,  H.  C.     See  Eddy,  W.  H.  

Stewart,  C.  R.     See  Congdon,  L.  A. 

Stewart,  I.  J.     See  Hart,  E.  

Stewart,  J.     Arsenic  ;    Relations  of  to  plant  growth 

and  E.  S.  Smith.     Arsenic  ;    Relations  of to  plant 

growth 

Stewart,    L.    M.,    and    W.    Wardlaw.     Sulphur    dioxide  ; 

Oxidising    and     reducing     properties     of    

towards  mercury  chlorides. .  . .  . .  . .      750A 

Stewart,  V.  T.     See  Ellis,  C 462a 

Stewart,    W.     Refrigeration  ;     Process    and    machine   for 

(P)         846A 

Steyer,  H.     See  Paal,  C 140a,  £70a 

Stibium  Products  Co.     See  Stark,  A.  L.     . .  . .  . .     474a 

Stiekland,  O.  W.     See  Rintoul,  YV 961a* 

Stiepcl,  C,  and  Persapol  Ges.  Fatty  acids  with  several 
double  linkages  or  their  glycerides ;  Con- 
version of into  oleic  acid-like  fatty  acids 

or  their  soaps  (P)     . .  . .  . .  . .  . .     S26a* 

Still,  C.  Ammonia  ;  Direct  recovery  of  ■ from  pro- 
ducts of  destructive   distillation  of  coal  or  the 

like  (P)  4a 

"  Coke-oven  industry  ;     Critical  survey  of  questions 

affecting  the  "  . .  . .  . .  . .      544R 

Coke  oven  and  like  gases  ;    Separating  constituents 

from  (P)  167A 

Solid    salts,    e.g.,    ammonium    sulphate  ;     Saturators 

for  producing  by  treatment  of  gases  with 

liquid  (P)  ..*         328a* 

and  H.  Petsch.     Distillation  columns  (P)  . .  . .     490a 

Stillesen,  J.  M.  A.  Crude  calcium  cyanamide ;  Treat- 
ment of  (P) 870A 

Stillman,  F.  O.     See  Hayward,  C.  R 422a 

Stiuchfield,  R.  L.,  and  Eastman  Kodak  Co.  Cellulose- 
ether  solvent  and  composition  (P)  ..  ..     978 A 

Stine,  C.  M.,  and  E.  I.  du  Pont  de  Nemours  and  Co.  Ex- 
plosive compounds  ;   Manufacture  of (P)  . .        37a 

Stirzaker,  H.  A.     See  Jeffreys,  J.,  and  Co.,  Ltd.  ..  ..     797A* 

Stock,  A.,  and  H.  Goldschmidt.     Beryllium  ;    Electrolytic 

manufacture  of  compact  metallic  (P)..    ••     822a 

Stock,  H.     See  Schwarz,  R S79a 

Stockdale,    D.      Aluminium-copper    alloys  ;     Copper-rich 

41SR,  818A 

Stockelbach,  F.  E.,  and  Commonwealth  Chemical   Corp. 

Carbohydrate  esters  ;    Process  of  colloiding  

(P) 10a 

Stockford,   C.   E.,   and   Standard   Oil  Co.   of  New   York. 

Petroleum  ;    Distilling  under  high  pressure 

(P) 741A 

Stockholms  Superfosfat  Fabr.  Aktiebolag.     Acetaldehyde  ; 

Manufacture  of from  acetylene  (P)  . .  . .      391a 

Acetone;   Manufacture  of from  acetic  acid  (P)  ..     786a 

Calcium  cyanamide  ;    Granulating* (P)   ..  ..     950a 


94 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


LG] 

Stockings,  W.  E.     See  Bone,  W.  A.          .,          ..        58k,  240a 

Stockman,  H.  A.     See  Bleloch,  W.  E 927a 

Stockxneyer,    W.,    and    H.    Hanemann.     Alloys    of   lead 

'with  liizlit  metals  and  cadmium  (P)        ..          ..  717a 
Stockport  Furnaces,   Ltd.,  and  others.    Furnaces  of  the 

crucible  type  ;    Gas  or  oil  heated  (P)        ..  637A 

II.  H.     See  British  Dyestuffs  Corp 934a 

Stockigt,  F.     See  Heuser,  E.             583a 

Stohn,    G.     See    Rheinisch-Nassauischc    Berawerks-    und 

Hiitten-A.-G.             887a* 

Stohr,  F.  Milk  food  preparations  containing  iron  :  Manu- 
facture of (P) 2G7A* 

Stokes,  J.  S.     See  Novotny,  E.  E G6A 

Stokes,  J.  W.  B.,  and   ('.  J.   Waldie.     Gas  cooling  and 

purifying  apparatus  (P)     . .         . .         . .          . .  403a 

Stokes,  \V.  E.,  and  United  States  Processes,  Inc.  Vana- 
dium ;   Recovery  of (P)        822a 

Stokes,  W.  H.     See  Courtaulds,  Ltd 604A 

Btoklasa,  3.     Germination  of  seeds  ;  Influence  of  selenium 

and  radium  on  . .          . .          . .          . .  428a 

and  others.     Selenium  ;    Action  of  on  metabolism 

of  plants  in  presence  of  radioactivity  of  the  air 

and  of  the  soil         775A 

StoU,  A.     Ergot           914a 

StoUberg,  B.     Fertiliser  (P) 187a 

Stolle,  It.  N- Substituted  :<-dih:iIogeuo\iudoles  ;  Prepar- 
ation of (P) 93A 

Sulphuric  and  hydrochloric  acids  ;    Manufacture  of 

(P)         752A 

Stoltzenberg,    H.     Plants ;     Prevention    of    damage    to 

,  especially  by  nematodes  (P)          ..         ..  723a 

Stone,    E.    V.     Hydrocarbons ;     Apparatus   for   cracking 

(P)         132a 

Mineral  oils  ;    Apparatus  for  treating  (P)           ..  132a 

Stone,  G.,  and  M.  T.  Stevens  and  Sons  Co.     Drying  machine 

(P) 621a 

Stone,  G.  E.  M.     See  Hamilton,  It.  F.,  and  Co 122a* 

Stone,  H.  W.     See  Lenher,  V.           250a 

Stone,  J.  A.     Oil-cracking  process  and  apparatus  (P)       ..  850A 
Stoney,  G.,  and  others.     Oil  films  in  high-speed  bearings ; 

Thickness  and  resistance  of . .          . .          . .  242a 

Storm,  E.     See  Goldschmidt,  H 322a 

Storr.  B.  V.     Photographic  sensitisers        . .         . .          . .  477R 

Stott,   V.     Pipettes 200A 

Stout,  H.  H.     See  Butler,  P.  P 506A 

Stover,  J.  H.     See  Brown,  H.  E 906a 

Straatman,  J.  F.     Decolorising  sugar  juices  (P)     ..     429a,  478a 
Strachan,  3.     China  clay  for  paper  making;    Suggested 

standards  for  moisture  and  grit  in ■  . .          . .  323a 

Piezo-micrometer    and    its    applications    to    testing 

paper  etc.      . .         . .         . .         . .         . .          . .  936a 

Strache,    H.     Acids ;     Production   of   organic   from 

natural  gas,  mineral  oils,  producer-gas  tar,  etc.  (P)  210a 
Combustion   of    bituminous   fuels   with   recovery   of 

by-products  (P) 208a 

Gas  mixture  ;   Continuous  production  of  a from 

water-gas  and  the  volatile  matter  from  coal  (P)  740a 
and  K.  Kling.     Gas  analysis  ;    Portable  apparatus  for 

by  the  dry  method 963a 

Strack,  O.     Heat-accumulators;    Brick-work  for  (P)  128 A' 

Stradling,  It.  E.     Sec  Lea,  F.  C S95R 

Strafford,  W.  W.     Fuel  briquettes  ;   ArtlBcial (P)..  890a* 

and  S.  Pick.     Fuel  ;   Manufacture  of  solid and  dis- 
tillation of  tar  (P)   361a 

Straight,  H.  R.     Kilns;  Furnace  for  brick  and  tile (P)     374a 

Strassenbau  A.-G,  Luzeru.  Bituminous  macadam  for 
paving  roads  and  like  surfaces;     Preparation  of 

- (P)  15a 

Stratford,  C.  W.  Petroleum  products ;  Method  of 
preparing  and  recovering  clay  used  in  the  bleach- 
ing of (P)         286a 

Straub,  F.     See  Society  of  Chem.  Ind.  in  Basle      ..     137A,  934a 

Straube,  H.     See  Von  der  Heide,  C.  912a 

Strauss,    B.     Nickel-chrome    Btcel ;     Heat    treatment    of 

(P)  22lA 

Steel   alloys   which    contain   chromium   and   nickel ; 

Method  of  treating  (P)         221a 

Strauss,  D.     See  Elektrochem.  Werkc       . .      426a,  670a,  774a 
Strauss,    M.    I.     Coating   composition:     Manufacture   of 

(P)         868a 

Coating  or  scaling  composition  (P)      ..  ..  ..  720A 

Strecker,  W..  and  E.  Kannappei.  Boric  acid ;  Deter- 
mination of ..  ..  ..  ..  ..  810a 

Streuber,  F.     See  Noddack,  W 960a 

Strickland,  I).  M.     Corrosion  of  iron  and  Bteel.     Infli 

of    molecular    concentration    on    Immersion-test 

in\i  . .  . .  . .  . .  593A 

Spelter  coating  of  iron  and  steel  Bheets;    Method  of 

determining  the  ..         ..         ..         ..  551a 

a.    See  Welnland,  K 897a 

Strohccker,  B.     See  Tillmans,  J 114a 

Stromcyer,  H.     Power  production  from  water  (P)  . .         ..  401a 


PAGE 

Strong,  E.  P.     See  Davies,  D.  B 747a 

Mhi,,'i.!,li     i      .r  ,   and    Dow   Chemical   Co.      Acetic  anhy- 
dride;   Manufacture  of  (P)  ..  ..  ..     198a 

and  others.     Brominated  indigocs  ;    Method  of  making 

(P)         892a 

Strubell,  I.     Antigenes  of  pathogenic  bacteria ;  Obtaining 

partial   resistant   or  non-resistant  against 

acids  (P)        197a 

Strzoda,  W.     Roasting  furnace  ;   Shelf (P)  . .         . .     422a 

Stuart,  A.  T..  and  others.     Chemical  and  physical  oper- 
ations;  Apparatus  for (P)  ..         ..         ..     531a 

Stuart,  .1.  M.     See  Bengough,  G.  D 417R,  820A 

Stuart  Electrolytic  Cells,  Inc.     Electrodes  for  electrolytic 

batteries  (P) 108A 

Stubbs,    A.    J.     Earthy   minerals    stained    by    colouring 

matters  ;   Bleaching (P)        . .  . .  . .     590a 

\  L.  C.     Ores,  concentrates,  and  smelter  products  ; 
Valuation  of ..         . .    ~    ..         ..         ..     257a 

Studebaker  Corp.     Wood  ;   Treatment  of (P)  . .     939A 

in,  It.  A.     Centrifugal  separators  (P)  . .         . .     239a 

Sturm,  H.     Kilns  for  drying  and  burning  ceramic  products 

and  the  like  (P)        254a 

Sturtcvant.  T.  J.,  and  Sturtevant  Mill  Co.     Superphos- 


phate ;    Apparatus  for  manufacture  of 


(B) 

1S7A, 

.MltiA, 
400A*, 


Sturtevant  Co.,  B.  F.     See  De  Clamecy,  P. 
See  Ross,  J.  O.    . . 

Sturtevant  Mill  Co.     See  Doyle,  W.  T 

See  Sturtevant,  T.  J.     ..  ..         ..         ..      187a, 

Sturzencgger,  P.     See  Treadwell,  W.  D. 

Stutterheim,  G.  A.     Foodstuffs  ;   Determination  of  moist- 

ure^in  

Stutzke  Co..  R.     See  Zimmermann,  H.  J.  ..      127A, 

Subrahmanyam,  G.     See  Narayan,  A.  L.  . . 

Surhy,  K.     See  Beutel,  E.     . . 

Suchy,  R.     See  Chem.  Fabr.  Griesheim-Elektron 

Sudborough,  J.  J.     See  Bernthsen,  A. 

See  Lakhani,  J.  V. 
Siissmann,  E.     See  Silssmann,  R.     . . 
Sussmann,    R.    and    E.     Incandescence    mantle    bodies ; 

Manufacture  of  strong,  impregnated  (P)  . . 

Sugar  Machinery  Co.     See  Steps,  R.  A. 

Sugar  Research  Synd.,  Ltd.     See  Ramage,  A.  S.  . . 

Sngden,    S.     Surface    tension ;     Determination    of    

from  the  maximum  pressure  in  bubbles 
Sugden,  T.,  and  A.  Hall.     Heat-transferring  systems  (P)  . . 

Suhm,  C.  F.     See  Sherrard,  E.  C 

Sulfltkul  A./S.  Sulphite-cellulose  waste  liquors;  De- 
composition of  (P) 

Sullivan,  A.  P.,  and  Stackpole  Carbon  Co.     Graphitised 

material;   Manufacture  of (P) 

Sullivan,    B.     Luxembourg ;     Report   on    economic   and 

commercial  conditions  in  Grand  Duchy  of  

Sullivan,  D.  M.     See  Touchstone,  B.  F 

Sullivan,  E.  C,  and  others.     Glass  (P)        

Sulman,  H.  L.,  and  others.  Ores  containing  copper  sili- 
cate ;   Treatment  of (P)        

See  Lemmon,  R.  J. 
Sulzberger,  N.     Asbestos  paper,  sheets  and  the  like  (P)  . . 

Catalysts;     Non-pyrophoric    and    process    for 

effecting  hydrogenation  therewith  (P) 

Hydroxylamines  ;    Salts  of  aromatic  (P) 

Sulzer,  A.  F.,  and  Eastman  Kodak  Co.      Cellulose  acetate 
composition  (P) 
Nitrocellulose  composition  for  films  (P) 

Photographic  film  (P)  

Photographic  film  ;  Antistatic  (P)        . .      567a, 

Sulzer  Freres.  Coke  ;  Apparatus  for  conveying  and  dis- 
charging incandescent into  cooling  chambers 

(P) 

Summers,  L.  L.     Coke  oveus  (P)    ..  ..  ..      493A, 

Sun  to.     See  Maltland,  H.  T 

Sunbeam  Chemical  Co.     See  Huffman,  C.  C 

Suudberg,  T.     Hydrocyanic  acid  ;    Sensitiveness  of  some 

reactions  for 

Sunder,  C.     Aniline  Black  (Prud'homme  style)  ;    Coloured 

reserves  under by  means  of  tun     I  ite   i 

M  mil::iio    '    Bronze  ;  Method  for  dyeing 

Suuder  H.  Chlorate-prussiate  discharge,  modified  to 
prevent  attack  of  the  rollers,  doctors,  and  fabric. 

lit' port  by  H.  Bourry.) 

Supf,  F.      Starcb  ;    Process  for  making  a  which  forms 

a  paste  with  cold  water  (P) 
Supplee,  G.  C,  and  others.     Milk,  Variations  in  bacteria 

counts  from as  affected  by  media  and  incu- 

bation  temperature 
Surpass  I    i   m     ■    Co.,  Inc.     See  Roberts,  A.  S.    .. 

S      Smith,  II.  B 

Sutcliffe,  E.  It.,  and  E.  C.  Evans.  Fuels  ;  Influence  of 
struct ure  on  the  combustibility  and  other  pro- 
perties of  solid ..  ..  ..      117R, 


829a 

821a 

498A* 

151A 

829A 

919A 

191A 
736A 
334A 
677A 
753A 
S41R 
435a 
661A 

661A 
777A 
992A 

525A 
676a 
935a 

11a 

3S0A 

202R 
324a 
295A 

863a 
298A 

894a 

770a 
878a 

53A 
854A 
998a 
997a 


931a. 
624A* 
741a 
408A 

352a 

461A 

214A 


139a 
721a 


431 A 
B56A 

96a* 


196T 


NAME  INDEX. 


95 


PAGE 

Sntcliffe,  E.  K  ,  and  E.  C.  Evans — conti 

Smokeless  fuel ;    Low  versu3  high  temperature  car- 
bonisation for  production  of  . .  . .     492a 

Sntcliffe.   J.   A.     Vulcanised  fibre;    Preparation  of  

(P) 747A 

Suter,  R.     See  Fichter,  F 293a,  462a 

Sutermeister.    E.     Sulphite    pulp ;     Use    of    rotten    and 

stained  wood  for  making . .         . .  . .     5S4A 

Sutherland,  L.  T.     See  Saunders,  H.  F 484a* 

Suydam,  J.  R.,  jun.     See  Zanetti,  J.  E 836a 

Svanberg,  O.,  and  others.     Phosphoric  arid  ;    Iodometric 

micro- determination  of  and  of  phosphorus 

in  organic  substances  . .  . .  . .     963a 

See  Von  Euler,  H 153a,  429a,  952a 

Svanoe.     See  Schroeter,  G.   . .         . .  . .  - .  . .     133a 

Svedberg,  T.     "  Kolloider  Losungen  anorganiseher  Stoffe  ; 

"Die  Methoden  zur  Herstellung  "     ..  ..     489R 

Photographic   emulsion ;     Reducibility   of  individual 

halide  grains  in  a  . .  . .  . .     348A 

Photographic    emulsions ;     Relation    between    sensi- 
tiveness and  size  of  grain  in . .  . .  . .     348a 

Photography  ;  Interpretation  of  light  sensitivity    in 

~Z— 217R,  610a 

Svenska      Aktiebolaget      Gas-Accumulator.     Acetylene ; 

Storing  gas,  e.g.,  under  pressure  (P)         . .     361a 

Svenska   Aktiebolaget   Mono.     Gas   analysing   apparatus 

(P) 964a 

Gas   analysing   apparatus ;     Registering   devices   for 

for  recording  two  or  more  series  of  analyses 

(P)  614a 

Swan,  E.     See  Fairbrother,  F.          721a 

Swann,  T.     Phosphoric  acid  ;   Manufacture  of in  the 

electric  furnace  by  the  condensation  and  elec- 
trical precipitation  method            . .          . .          . .  585a 

Swanson,  W.  H.     See  Miller,  R.  N.               583a 

Sward,  G.  G.     See  Steele,  L.  L 260a 

Sweely,  B.  T.     Enamels  ;  Fish-scaling  of  ground  coat 814a 

Enamels  ;    Relation  of  composition  to  thermal  shock 

i ..           ..           ..           ..           ..           ..  465A 

See  Bellamy,  H.  T 502a 

Sweeney,  O.  R.,  and  N.  D.  Baker.     Chloropicrin  ;  Process 

*  of  making (P) 438a 

Sweet,  S.  S.     See  Sheppard,  S.  E 908a 

Sweetland,  E.  J.     Filter  (P) 971a 

Swenarton,    W.    H.     Arsenate   insecticides ;     Process    of 

making  (P) 565a 

Swientoslawski,  "W.     Calorimeter  ;    New  tvpe  of  adiabatic 

200a 

Swietoslawski,  W.,  and   H.  Starczewska.      Heat    of    com- 
bustion of  benzoic  acid,  sucrose,  and  naphthalene  790a 

Swift  and  Co.     See  Richardson,  W.  D 400a,  622a 

Swindin,  N.     "  Flow  of  liquids  in  pipes  "  . .          . .          . .  576r 

"Pumping  in  the  chemical  works"                ..          ...  576R 

Swint,  W.  R.,  and  E.  I.  du  Pont  de  Nemours  and  Co. 

High  explosive  (P) 393a 

Swiss  Ferment  Co.,  Ltd.     See  Jenny,  G.    . .          . .          . .  855a* 

Swoboda,  F.  K.     Yeast  ;   Nitrogen  nutrition  of ..  604a 

Sworski,   S.   F.,  and  F.   F.   Ratajezak.     Retort  for  gas- 
producing  apparatus  (P)    . .          . .          . .          . .  535A 

Sylvette,  Ltd.     See  Jones,  W 942a 

Syndicaat  Electro-Staal.     See  Vermaes,  S.  J.       . .          . .  89a* 

Syniewski,  W.     Amylodextrin  ;    Oxidation  of . .  951a 

Syrian,  J.  K.     See  Budnikow,  P.  P.               757a 

Szarvasy,  E.     Hydrogen  and  nitrogen ;    Process  of  pro- 

"  during  mixtures  of (P)           . .          . .          . .  546a 

Szarvasy,  I.     Carbon  electrodes  ;   Manufacture  of (P)  473a* 

Carbon  ;    Manufacture  of  pure  retort (P)    464a*,  590a* 

Gases  ;    Apparatus  for  treating  mixtures  of with 

silent  electric  discharges  (P)         . .          . .         . .  299a 

and   others.     Soot-carbon,    retort-graphite,    and    other 

carbon    products ;      Production    of    from 

natural  gas  (P)         . .         . .          . .          . .         . .  6a* 

Szilard,  B.     Radium  ;   Direct  determination  of  very  small 

quantities  of by  its  penetrating  radiation  . .  613a 


Tabary,  A.  R.     Bituminous  compositions  ;  Manufacture  of 

suitable  for  building  or  for  forming  road  or 

like  surfaces  (P) 816a 

Tacke,  I.     See  Holde,  D 557a 

Taffel,  A.     Gelatin  gels;    Thermal  expansion  of  ..     990a 

Taffin.     Glass  ;    Annealing  and  mechanical  properties  of 

141A 

Tainton,  U.  C.     Zinc  ;   Hydrogen  overvoltage  and  current 

density  in  electrodeposition  of . .  . .     421a 

Tait,    A.,    and   L.    Fletcher.     Yeast  ;     Development   and 

nutrition  of  . .  . .  . .  . .  . .     724a 

Takahashi,  T.     See  Kond6,  H 976a 

Takamine,  J.     Obituary         . .  . .  . .  464R 

and  J.  Takamine,  jun.     Textile  and  other  fabrics,  thread, 

yarn,   and  the  like  ;    Treating  to  remove 

starches,  gums,  and  other  impurities  (P)  ..         ..     627a 


page 
Takamine,  J.,  jun.     See  Takamine,  J.         . .  . .  . .      627a 

Takegami,  S.     Magnesium  sulphate  octahydrate  . .  . .     937a 

Tamburello,  A.     See  Van  der  Haar,  A.  W.  . .  . .     117a 

I    Tammann,    G.     Cementite ;    Transformation  of  at 

210°  C 593a 

Chromium  steels  ;    Spontaneous  passivity  of . .     376a 

Metals  ;    Development  of  surface  colours  on  by 

heating  in  gases  and  vapours 

Metals  ;  Substance  between  the  crystallites  of . .     469A 

Nitrides  of  metals  ;    Velocity  of  formation  of  some 

•• 942a 

and  W.  Jander.  Metals  dissolved  in  mercury;  Be- 
haviour of  two towards  one  another  . .      941a 

and    W.     Koster.     Oxygen,    hydrogen    sulphide,    and 

halogens  ;    Velocity  of  action  of  on  metals     941a 

and  K.  Schonert.     Carbon  ;    Diffusion  of in  metaU 

and  mixed  crystals  of  iron  . .  . .  . .  . .     549a 

See  Vogel,  R 939a 

Tanaka,  H.     Storage  battery  plates  ;    Theoretical  studies 
on  change  of  density  of  electrolyte  within  pores 

of during  discharge     . .        * . .  . .  . .     108A 

Tanaka,    Y.,   and   S.    Nasui.     Petroleum  acids  and   pure 

naphthenic  s  tion  of  from  waste 

lyes  from  refining  petroleum  distillates    . .  . .     973a 

Tanberg,  A.  P.,  and  E.  I.  du  Pont  de  Nemours  and  Co. 

Diphenylamine  ;    Manufacture  of  (P)         . .     648a* 

Tankard,  A.  R.     Science  ;   Influence  of on  human  life     221  r 

Tanner,  H.  G.     Decolorising  action  of  adsorptive  charcoals     428a 

See  Turrentine,  J.  W 264a 

Tanner,   I.    B.,   and   J.    E.    Nelson   and   Sons.     Filtering 

apparatus  (P)  . .  . .  . .  . .  . .        43a 

Li  quid -treating  apparatus  (P)    . .  . .  . .  . .     240a 

Tanret,  G.     Ergot  of  diss  and  ergot  of  oats  ;    Chemical 

composition  of  . .  . .  . .  . .      345a 

Taplin,  T.  J.,  jun.     See  Sulman,  H.  L S63a 

Tartar,  H.  V.,  and  Z.  J.  Gailey.     Colloids  ;   Role  of  hydro- 
gen ion  concentration  in  precipitation  of . .      969a 

and  G.  G.  Grant.  Lead  arsenate;  Electrolytic  prepar- 
ation of  ..  ..  ..  ..  ..      413a 

and  H.  E.  Keyes.  Zinc  sulphate  ;  Electrical  conduc- 
tivity of  solutions  of  in  presence  of  sul- 
phuric acid    . .          . .          . .  . .     145A 

Tarugi,    N.     Phosphoric    acid ;     Separation    of    in 

qualitative  analysis. .  ..  ..  ..  ..     881 A 

Tassilly,   E.     Aluminium ;    Treatment   of  prior  to 

nickel-plating  ..  ..  ..  ..  ..     984a 

Tate,  A.  O.     Dyeing  and  waterproofing  ;   Process  for 

(P)        461a* 

Tatsuno,  H.     See  Kinugasa,  Y.         ..  ..  ..  ..      387A 

Tavener,  C.  H.     See  Gurney,  H.  P.  183a 

Taverner,  L.     See  Guillet,  L.  ..  ..  ..  ..     166R 

Tavroges,  J.     See  Roche,  J.  W 115a,  343a 

Taylor,  B.     See  Owen,  E.  A.  76r 

Taylor,  C.     Bleaching;  Method  and  apparatus  for (P)       11a* 

Taylor,  C.  A.,  and  W.  H.  Rinkenbach.     Detonating  and 

priming  mixtures  ;    Analysis  of  . .  . .     524a 

Taylor,  C.  E.     Cupola  furnaces  (P)  . .  . .  . .  . .     258A 

Taylor,  F.  E.     See  Castellani,  A.       . .  . .  . .  . .     992a 

Taylor,    G.    B.     Ammonia    oxidation ;     Some    economic 

aspects  of  . .  . .  . .  . .  . .     586a 

See  Sproesser,  W.  C.        . .  . .  . .  . .  . .        96a 

Taylor,  H.  S.,  and  H.  A.  Neville.     Catalysis  in  interaction 

of  carbon  with  steam  and  with  carbon  dioxide  . .      141a 

See  Pease,  R.  N.  98a,  751a 

Taylor,  L.     Dyeing  and  padding  or  treating  fabrics  and 
such  like  ;  Supporting  and  actuating  the  padding 

roller  in  machines  for (P)      . .  . .  . .     411a* 

Taylor,  M.     See  Flecker,  O.J 599a 

See  McBain.  J.  W 424a 

See  Webb,  H.  W.  362t 

Taylor,  M.  C-,  and  C.  A.  Gammal.     Chlorine  and  hypo- 
chlorous  acid  ;    Determination  of  free  in 

concentrated  salt  solutions  ..  ..  ..     586a 

and  others.     Chromic  chloride  ;    Electrolytic  reduction 

of  ■  to  the  divalent  salt  . .  . .  . .      326A 

Taylor,  R.  L.     Hypochlorous  acid  and  chlorine  ;    Notes 

on and  comparison  of  their  bleaching  action 

57R,  368a 

Taylor,  W.     Goat's  milk:    Non-protein  nitrogen  in  993a 

Refractometers  ;    Mechanical  improvements  in  

(P) 444a* 

and  A.  D.  Husband.     Milk  ;   Effect  on  percentage  com- 
position of of  variations  in  daily  volume  and 

variations  iu  nature  of  diet  ..  ..  ..     515a 

Taylor,  W.  C,  and  Corning  Glass  Works.     Glass  (P)    374a,  465a 

and  others.     Glass  (P) 374a 

See  Sullivan,  E.  C 295a 

Taylor's.     See  Wadsworth,  P.  C 229a 

Taylor- Wharton  Iron  and  Steel  Co.     See  Hall,  J.  H.       . .     637a 
Taylor  White  Extracting  Co.     See  Felder,  W.  A.  ..     368a 

Technical  Research  Works,  Ltd.     See  Bolton,  E.  R.        ..     557a* 
Technochemia    A.-G.     Artificial    silk    and    like    threads ; 

Manufacture  of  (P) 52a 

Mixed  fibre  textile  goods  ;   Production  of (P)  . .     854a 


96 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Technochemla  A.-G. — continued. 

Textile  products  derived  from  animal  Bores  :    Mauu- 

facture  of  (P) 

Viscose  ;    Preliminary  treatment  of  cellulose  intended 

the  manufacture  of (P)  . 

Tcchno-Chemlcal    Laboratories,    Ltd.    See 


Xestrup,    N. 

4P.IA. 


Teed,  P.  L.     Hydrogen;   Industrial 

,  G.  S.     See  Keith,  G.  

Tcichmann,  H.     Sec  ROtgerswerke  A.-G.  ..      559a, 

leichner,  G.     Hydrogenatlng  catalyst  (P) 

r.     Crucible  furnaces ;   Gas  heated (P) 

...  ,t      Set    w  Intel  rtein,   E 

Tellier.  K.  G.     Fuller's  earth  :    Process  ol  treating (P) 

...  n     \     and  ii.  D'E.  de  Charmoy.     Sugar;   De- 
terioration of  white during  storagi    .. 

Ter  Meulen,  II.     Oxygen  in  organic  compounds  :    Deter- 
mination of 

Sulphur  In  iron  and  steel ;   Determination  of .. 

Sulphur  in  organic  compounds  and  in  petroleum,  coal, 

ga9,  and  rubber  ;    Determination  of  

Tern,  It.     Lubricating  and  motor  oils  ;  Production  of 

(P) 

Triglycerides ;     Hydrolysing   into    fatty    acids 

and  glycerin  (P) 

Terrell,  C.     Inventors  in  Government  employ  ;    Reward 

of  

Terrell,  .1.  T.     See  Parker,  J.  G 

Terres,  E.     See  Bunt e,  H 

Tcrrill,  E.  H.     Haemoglobin  :    Colorinietrie  determination 

of  with  special  reference  to  production  of 

stable  standards 
Tcrrisse.  H.,  and  M.  Levy.     Acid-proof  casting  (P) 

Drving  solids  ;   Process  and  apparatus  for (PI  . . 

Glucose  and  dextrin  ;    Obtaining  from  wood  (P) 

Terroine,    E.    F.,    and    R.    Wurmser.     Aspergillus    niger  ; 
Utilisation  of  ternary  substances  in  growth  of 


Terry,  H.  L.     Coal  ;   Inorganic  constituents  of .     Dis 

cussion 

Terry,  T.  B.     See  Williams,  H.  M.  

Tervet.  .1.  N.     See  Clark,  R.  I.,  ami  Co 

Terwelp,  J.     Hydrogen  sulphide  ;    Separating  from 

coal  gas  (P) 
Terwen,  A.  J.  L.,  and  C.  J.  C.  van  Hoogenhuyze.     Albu- 
mins ;  Manufacture  of  decolorised,  odourless,  and 

tasteless  from  blood  (P) 

Terziam,  H.  G.     See  Evans,  O.  B 

Tesla,  N.     High  vacua  ;  Production  of (P)  . . 

Testrup,    N.,    and    Techno-Chemical    Laboratories,    Ltd. 
Drving  processes  and  apparatus  (P) 
Peat   or  similar  fuel  ;     Utilisation  of  surplus  power 
from    hvdro-clectric    plant    for   the    preparation 

of (P) 

Tetralin  Ges.     Cells,  parasites,  tissues,  and  organs;    De- 
composition ami  extraction  of (P) 

Hydrocoumarins  and  their  derivatives  ;    Process  for 

preparing (P) 

Hydrogenated    anthraquinonc    derivatives ;     Prepar- 
ation of  (P) 

ar-Tetrahydro-3-naphtholearhoxylic      acid      and     its 
esters    and    acyl    derivatives;     Preparation    of 

(P)        

ar-Tetrahydronaphthylthioacetic  acids  ;    Preparation 

of (P) 

See  Schroeter,  G.  663a, 

Texas  Co.     S«  Adams,  J.  H.         ..         ..         ..      850a, 

See   Hall,  F.  W.  216a, 

See  Mauley,  F.  I.  

Texas  Gulf  Sulphur  Co.     See  Davis,  U.S. 

Thau,  A.     Benzol  in  coal  gas  ;    Determination  of . . 

Coal ;   Cleaning ,  especially  for  the  production  of 

coke  low  in  ash 
and    \V.     Bertelsmann.     Coke-oven  "  gas ;      Obtaining 

alcohol  and  ether  from  ethylene  of 

Thayer,  R.     Platinum  and  similar  metals  ;    Extraction  of 

from  their  sands  and  ores  ( P) 

Thews,  K.  B..  and  Colorado  Vanadium  Corp.     Vanadium  ; 

Recovery  of  (P) 

Thcin,  H.     Gases;    Apparatus  for  electrical  precii 

of  dust  from (P) 

Theis,  E.  R.     See  McLaughlin,  O.  D 773  i. 

Theiscn,    H.    E.     Gases;     Centrifugal    machine   for   puri- 

fyiug,  cooling,  and  mixing (P) 

Thelen,  R.     Drying  kiln  (1") 

Philippi,  E. 
Thermal   Industrial   and   Chemical    (T.I.l'.l    Research   Co., 
Ltd.,  and  J.  S.  Morgan.     Chemical  reactions  {e.g., 
manufacture  ol  phenol  and  ol  sodium  nitrite)  by 

,  tionofheat:   Producing (P)-. 

Coal  used  for  manufacture  of  coal  gas ;   Testing 



Dctinning  iron  (P) 


705A» 
854A 

889A 
168k 
358a 
851a 
770a 
764a 
481A 
132a 

775a 

790a 

218A 

235A 

6a 

945a 

259E 

68A 

241A 


790a 
943a» 
531a 
910a 


679a 

166T 
466A 
261A 

244A 

480A* 

535A 

449A 

449A 

8S9A 
688A 
837A 

497A 

878a 

211a 
703A 
975a 
670a 
850a 
58  a 
972a 

797a 

90A 

901A 

901A 

lA 

73a 


621A 

727a 


4a 

62a 


PACE 

Thermal  Industrial  and  Chemical    (T.I.C.)   Research    Co., 
Itl.  and  J.  S.  Morgan     ■■•■'.        '' 
Heating   substances   for   producing   certain   chemical 
changes,  e.g.,  wood  distillation,  and  oxidation  of 
methane  to  formaldehyde  (P)       ..         ..         ..     315a 

i  ng    subdivided   solids   or   liquids   in   liquid-. 

particularly  applicable  for  immersing  solids  or 

liquids  in  molten  metal  (P)  239a 

Peat  and  the  like,  e.g,  sewage  sludge  ;    Treatment  of 

(P)         700a 

Removing  a  liquid  from  the  surface  of  molten  metal 

(P) 622A 

and  others.     HeatiiiL'  materials  at  successively  different 

temperatures  (P) 205A 

Tar;    instillation  of (P) 803A 

Morgan,  J.  S 128A» 

Thermokept   Products  Corp.     .Sec  Willison,  \V.  \V.         ..     644a 
Thickins,    I).     See  Ebbw  Vale  Steel,  Iron  and  Coal  Co., 

Ltd 6S1A 

Thlel,  A.     Lead  trees  ;    Disglomcration  and  formation  of 

autogenous  . .         . .         . .         . .  . .       18A 

Thiele,  F.  C,  and  C.  Cordes.     Lubricating  and  cylinder 

oils  ;   Preparation  of (P)        285A 

Thieme,  C.     Naphthenic  acids  and  their  salts  from  petro- 
leum refining  ;   Purification  of (P)  ..  ..  6A 

Thieme,      H.     Trypaflavin     (3.6-diamino-N-methylacri- 

dinium  chloride)       . .  . .  . .  . .  . .       31a 

Thicrfelder,  H.     Glutamine  ;    Constitution  of . .     156A 

Thiess,  K.     See  Meister,  Lucius,  u.  Briining  ..  ...     749a* 

Thofehrn,  H.  G.  C,  and  others.     Metal  scavenging  alloy  ; 

.Manufacture  and  use  of (P)  . .  ..  ..     597a 

Thole,  F.  B.     See  Dunstan,  A.  E 975a 

Tholin,   T.     Yeast ;     Thermo-stability  of  the   co-enzyme 

and  its  separation  from  vitamin  B  of . .      190a 

Thorn,  C,  and  others.     Magnetic  separation  of  sulphide 

ores  (P)         «3a 

Thomas,  A.  W.,  and  S.  B.  Foster.     Hide  substance;    in- 
fluence of  sodium  chloride,  sodium  sulphate,  and 

sucrose  on  combination  of  chromic  ion  with 185a 

Tanning  extracts,  Colloid  content  of  vegetable  . 

Attempts  to  correlate  astringency  with  the  po- 
tential  difference   of   the   particles   against   the 
aqueous  phase  . .  . .  . .  ■  ■  •  ■     302a 

and  M.  W.  Kelly.  Chrome  tanning.  Equilibria  be- 
tween tetrachrome-collagen  and  chrome  liquors. 
Formation  of  octachrome-collagen  . .  . .     640a 

Collagen;    Iso-electric  point  of  ..  ..  ..     262a 

Tannin  ;    Time  and  concentration  factors  in  combina- 
tion of with  hide  substance  . .  ..  ..     383a 

Thomas,  B.     See  Collins,  S.  H 993a 

Thomas,  C.  T.     See  Thompson,  M.  R 862a 

Thomas,  F.     See  Twiss,  D.  F 49R,  81T 

Thomas,    J.,    and    others.     Aminoanthraquinones  ;     Pro- 
duction of (P) 1  70a 

See  Davles,    \     ll.  582a 

Thomas,  J.  S.  G.     Air  ;    Discharge  of  through  small 

orifices,  and  entrainment  of  air  by  the  issuing  jet     025A 
Anemometer  ;    Thermometric  — ■ —      . .  . .  . .     350a 

Thomas,  p.,  and  G.  Carpentier.     Copper;  Sensitive  reagent 

for  .     The  Kastle-Meyer  reagent      . .  . .       37a 

Thomas,    R.     Alcohol    solutions  ;     Vapour    pressures    of 

dilute  33T 

Alcohol  vapour  ;   Recovery  of from  air  . .         . .       34T 

Thomas,  W.     See  Rideal,  E.  K 9S1A 

Thompson,    A.    D„    and    H.    A.    Bird.     Composition    for 
hard    tennis    courts,    skating    rinks,    paths,    and 

the  like  ;   Production  of  -»- (P) 861A 

Thompson,   C.   W.     Hydrocarbons  from  oU  shale ;     Re- 
covery of (P)  . .         . .         . .         . .  . .     850a 

Thompson,  F.  C,  and  W.  R.  Atkin.      Chrome  tannin-  ; 

Theory  of 560a 

and  E.  Whitehead.  Nickel-silvers  ;  Mechanical  pro- 
perties of  the 256a 

and  others.     Tannin  content  of  solutions  ;    Influence  of 

-  of  acidity  on ..  ..         ..         ..       68a 

Thompson,     F.    M.     Chamois-leather    substitute;      Pro- 

ductionofa (P)         IHa 

Thompson,  F.  P.     See  Knecht,  E.  ..  ..      12SR,  497a 

Thompson,  G.  R.     Public  analyst ;    Experiences  of  a 6R 

Thompson,    11.    E.,   and   Carbide  and   Carbon   Che, 

Corp.      Natural  gas;   Process  of  treating (P)     849a 

Thompson,  H.  H.,  and  A.   E.  Davie!.     Uagni    ic  separ- 

il'l 596a 

Thompson,  H.  V.     See  (lews.  F.  H 706a 

Thompson,  J.  G.    See  Walker,  P.  H 

rhompson,  J.  I.,  and  Koppers  Co.     Heat  exchanger  (P)  ..     35Si 
Thompson,    M.   do    K.     Bucher   process   for    fixation    oi 

nitrogen  as  sodium  cyanide  ..         ..         ..     140a 

Thompson,  M.  J.     S«  Ford,  O.  A 740a 

Thompson,  M.  R.     Nickel  depositing  solutions;    Acidity 

of 169A 

and   C.  T.  Thomas.      Nickel  salts  used  for  elect  rodepo- 

Bitlon  ;    Effect  of  impurities  in ..  ..     862a 


NAME  INDEX. 


97 


Thomson,  D.     Proteins;  Preparation  of  alcoholic  solutions 

of  animal (P)  . .  . .  . .         . .  . .     229a 

Vaccines:   Preparation  of  detoxicated (P)        ..     34Sa* 

Whey;   Extraction  of  proteins  from (P)..  ..     192a 

Whey  ;   Extraction  of  proteins  and  lactose  from 

(P) 834A 

Thomson,  J.     Zinc  oxide ;    Production  of (P)  ..     753a 

Thomson,  J.  J.     Positive  rays  ;    Analysis  by  of  the 

heavier  constituents  of  the  atmosphere  ;    of  the 
gases  in  a  vessel  in  which  radium  cliloride  had 
been  stored  for  13  years  ;   and  of  the  gases  given 
off  by  deflagrated  metals  . .  . .  . .  . .     630a 

Thomson,  R.  F.     See  Davies,  A.  H.  ...  ..  ..     582a 

Thorman,  J.  S.     Carbonisiug  coal    ..  ..  ..  ..     319a 

Thornber,  J.,  and  Bradford  Dyers'  Assoc.,  Ltd.  Bleach- 
ing,   dyeing,    finishing,    and    otherwise    treating 

fabrics;    Apparatus  for (P)  ..  ..         ..       11a* 

and  A.  B.   Henshilwood.     Bleaching,  dyeing,  finishing 
and    otherwise    treating    fabrics  ;     Machines    for 

(P)  585A 

Thorne,  P.  C.  L.     Colloidal  solutions  of  carbon  in  water  . .     811a 

See  Barnett,  E.  de  B 165k 

Thornhill,  E.  B.     Copper  ;    Treatment  of  ores  containing 

oxides  of (P) 258a 

-Thornton,  W.  M..  jun.     Copper  and  iron  ;    Determination 

of in  the  presence  of  each  other      . .         . .     526a 

Thornycroft,  J.  E.     See  Thornycroft,  J.  I.,  and  Co.         . .     974a 
Thornycroft,  J.  I.,  and  Co.,  Ltd.,  and  J.  E.  Thornycroft. 
Suction  gas  producer  plants  with  special  refer- 
ence to  vehicle  driving  (P)  . .  . .  . .  . .     974a 

Thornycroft,   O.     Petrols  for  road  vehicles  and  aircraft. 
Effect  of  fuel  composition  upon  engine  perform- 
ance   . .         . .         . .  . .  . .  . .  . .     847a 

Thorpe,  E.     Chemical  warfare  and  the  Washington  Con- 
ference . .  . .  . .  . .  . .  . .        43R 

"  Dictionary  of  applied   chemistry.     Vol.   III.     Ex- 
plosives— K"  ..  ..  ..  ..  ..     251R 

Thorssell,  C.  T.,  and  H.  L.  It.  Lunden.  Ammonia  ;  Pro- 
duction of  from  cyanides  <P)  . .  . .     173A 

Nitrogen    compounds  ;     Production   of   by   the 

absorption  of  nitrogen  in  a  mixture  of  reaction  (P)     294A 

Nitrogen;    Production  of  pure  (P)         ..  ..      175a 

and    0.    Troell.     Pulverous    material,    e.g.,    for    fixing 

nitrogen;    Agglomerating  (P)  ..  ..     589a 

Thoumyre  Fils.     Antimony-lead  alloys ;    Preparation  of 

hard  acid-resisting  (P)  ..  ..  ..     767a 

Lead  alloys  (P) 865a* 

Thresh,  J.  C.     Lead  ;    Action  of  natural  waters  on  242r 

Thron,  H.     See  Zimmer  und  Co . .  . .     484a* 

Thuau,  U.  J.,  and  A.  T.  Hough.     Synthetic  tannins        . .     907a 

Thum,  E.  E.     Steel  ;    Effect  of  sulphur  on  rivet  . .     650a 

Thumann,  F.     Gas  producer  (P)     . .  . .         . .         . .         6a* 

Thunholm,  K.  L.  E.     Evaporating  liquids  ;  Apparatus  for 

(P)         163a 

Thurlow,  J.  R.     Osmiridium  . .  . .  . .  . .     672a 

Thyssen,  H.     See  Batta,  G 376a 

Tibaldi,  C.     Superphosphate  ;    Analysis  of  . .  . .     678a 

Tiburzi,  A.     Paper  ;   Manufacture  of (P)       . .         . .     324a 

Tiddy,  W.,  and  Rainey-Wood  Coke  Co.  Paints,  var- 
nishes, etc.  ;    Removal  of  (P)         . .  . .      559a 

Tide  Water  Oil  Co.     See  Edwards,  J.  B 321a 

Tidewater  Paper  Mills  Co.     See  Allen,  A.  F.        . .          . .     248a 
Tiede,  E.     Tungstic  acid  ;    Production  of  non-phosphor- 
escent,   highly    fluorescent   compounds    of   

for  X-ray  photography  (P)  . .         . .  . .     729a 

and  F.  Richter.     Magnesium  sulphide  ;    Preparation  of 

pure  and  its  phosphorescence         ..         ..     172a 

Tiemann,  F.     Sugar  juices  ;    Purifying  by  nitration 

and  decantation  (P)  871a*,  911a 

Tiffany,  W.  S.     See  Cremer,  F _     358a 

Tiffeneau,  M.     See  Carnot,  P.  . .         . .         . .         _.     685a 

Tilgner,  M.  Water  treated  with  hydrochloric  acid  by 
the  Balcke  process  and  added  to  circulating 
water  in  counter-current  cooling  apparatus  ; 
Preventing  increase  of  hardness  due  to  residual 

carbonate  in  (P)         ..  ..  ..  ..        31a 

Tillery,  R.  G.  Xorit  decolorising  carbon  ;  Cost  of  revivi- 
fication of . .  . .  . .         . .  . .     910a 

Tillmans,  J.     Water  analysis  ;    Free  carbonic  acid  and 

hydrogen  ion  concentration  in  ..  ..     116a 

and  others.     Putrefaction  of  meat ;    Detection  of  com- 
mencement of  ..  ..  ..     114a 

Timm,  F.   C.  W.     Zinc  oxide ;    Recovery  of  from 

zinciferous  materials,  especially  slags  (P)  . .     328a* 

Timmis,  L.  B.     See  Pyman,  F.  L.  . .         ..         ..         ..     976a 

Timpe,  H.     Colloidal  iron  solution  having  a  neutral  or 

feebly  alkaline  reaction  ;   Production  of (P)     632a 

Tims,  B.  Y.  See  Coates,  C.  E.  . .  .,  . .  . .  320a 
Tinfos  Jernverk  A./S.  Kiln  for  burning  limestone  (P)  . .  178a 
Tingey,  H.   C,  and   C.  N.  Hinshelwood.     Formic  acid ; 

Catalytic  decomposition  of on  surfaces  of 

platinum  and  silver  . .         . ,         . .         . .     785a 


Tingle,  A.     Aluminium  sulphate  solutions  ;    Alleged  ad- 
sorption of  alumina  from by  cellulose        . .     289a 

Bleaching  ;    Determination  of  "  bromine  figure  "  or 
"  chlorine  factor  "  of  wood  pulp,  and  utilisation 

of  those  quantities  in  . .  . .  . .     137a 

Paper  problems  and  some  solutions     . .         . .         . .     122R 

Tisdall,   F.   F.     Phosphorus ;    Rapid   colorimetric  deter- 
mination of  inorganic  in  small  amounts  of 

serum  . .  . .  . .  . .  . .  . .     311A 

Titan  Co.     See  Washburn,  W.  F 335A* 

Titanium     Pigment     Co.     Glassware ;      Manufacture    of 

(P)         329a* 

See  Barton,  L.  E.  335a 

Title    Guarantee   and    Trust    Co.     Fish   and   other   oils ; 

Treatment  of (P)         825a 

See  Stanley,  J.  C.  W 769A 

Titschack,    E.     Clothes    moth,    Tincola    MseUieUa ;     Re- 
searches on  . .  . .  . .  . .  . .     892a 

Tizard,  II.  T.,  and  A.  G.  Marshall.     Hydrocarbon  fuels  ; 
Determination  of  vapour  pressure  of ,  and  deter- 
mination of  dissolved  air    . .          . .  . .  . .     402a 

and  D.  R.  Pye.     Gases  ;    Ignition  of  by  sudden 

compression  . .  . .  . .  . .         . .  . .     622,4 

Tobler,    H.,    and    American    Bromine    Co.     Electrolytic 

apparatus  (P)  259a* 

Tobler,  R.     See  Fierz,  H.  E.  625i 

Tocher,  J.  F.     Phosphates  ;    Citric-solubility  of  mineral 

512a 

Dyeing  ;   Process 


544a 


153A 


890a* 


245A* 


12a 
343A 


Toepfer,  H.,  and  Grasselli  Chenii*  :il  Co 

of (P) 

Tomita,  M.  (^-Galactose  ;  Decomposition  of accord- 
ing to  the  second  mode  of  fermentation 

Tommasi,  C,  and  Elektrizitatswerk  Lonza.  Metalde- 
hyde  ;    Burner  for  ■ •  (P) 

Tommasi,  N.  C,  and  others.  Fuel ;  Manufacture  of  solid 
(P)         

Tomula,  E.  S.  Antimonic  acid,  and  use  of  sodium  anti- 
monate  in  analysis 

Tongue,  H.     See  Roche,  J.  W 

Topley,  B.     See  Hinshelwood,  C.  N 268a 

Toporescu,  E.     Sodium  bicarbonate  ;   Preparation  of 

325a,  667a 

ToreUi,  G.     See  Scagliarini,  G 12a 

Torfverwertungsges.  Pohl  und  Von  Dewitz.  See  under 
Poh!. 

Torii,  O.     Cellulose  acetate  ;    Technical  analysis  of  367a 

Toronto  Power  Co.,  Ltd.     See  Stuart,  A.  T 531a 

Tosterud,  M.     See  Lenher,  V 326a 

Tostmann,  C.  Ceramic  tiles  ;  Cold-glazes  on  cement,  and 
"  Kerament  "  slabs  in  comparison  with  

Tottereau,  L.  Filter  for  wines,  sugar  liquors  and  the  like 
(P) 

Touceda,  E.  A.     Centrifugal  machine  (P)  .. 

Touchstone,  B.  F.,  and  others.  Dyeing  or  otherwise 
treating  warps  or  other  materials  (P) 

Tour,  R.  S.  Ammonia  catalysts  ;  Apparatus  for  mode- 
rate-scale testing  of at  100  atm.  pressure  . . 

See  Larson,  A.  T. 

Tour,  S.     See  Read,  J.  B 

Tourrou,  R.     See  Deniges,  G. 

Tovrea,  E.  J.     See  Taylor,  M.  C 

Tower,  O.  F..  and  M.  C.  Cooke.  Colloidal  solutions  of 
nickel  and  cobalt  hydroxides  ;  Preparation  of 
and  some  other  compounds  of  these  metals 

Townmead  Construction  Co.,  Ltd.      See   Lamplough,  F. 

Townsend,  C.  P.,  and  Hooker  Electrochemical  Co.  Hydro- 
chloric acid  ;   Method  of  making (P) 

Townsend.  D.  W.  Sewage  disposal  plant ;  Activated 
sludge  

Townsend,  E.  B.     See  Maelnnes,  D.  A. 

Toy,  F.  C.  Photographic  emulsion  ;  Theory  of  character- 
istic curve  of  a  

Silver     halide      crystals ;      Photo-sensitiveness      of 

geometrically  identical 

Toyama,  Y.     Behenic  and  erucic  acids ;    Derivatives  of 


592a 

576a 
S9A 

324A 

325a 
369  a 
468a 
78A 
326a 


980a 
454a 


501a 


344A 
443a 


788a 
36A 


Rape  oil ;  Composition  of  fatty  acids  of 

See  Tsujimoto,  M. 
Tozier,    G.    H.,    and    Eastman    Kodak    Co.     Nitric   acid 

purification  ;    Apparatus  for (P) 

Tracy,  L.  D.     Pulverised  coal ;    Explosion  risks  in  use  of 


988a 
988a 
222a 

858a 

349R 
555A 


Traliot,  A.     Soldering  composition  (P) 

Trails,    R.     Bituminous   clay   and   lime ;     Utilisation   of 

(P)         

Paints  ;    Manufacture  of (P) 

Pig   iron ;     Smelting   ferruginous   and    carbonaceous 

materials  to  produce (P) 

Trampler,  A.     See  Briner,  E. 

Transvaal  Consolidated  Land  and  Exploration  Co.,  Ltd. 

See  Woodworth,  L.  B 673a 

Traub,  W.  S.     Zinc  ;    Electroplated and  diffusion  of 

electro-deposits  into  zinc   . .  . .         . .  . .     862a 

U 


103  a 

475a 


106A 
181a 


9S 


JOUBNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Trnubc,     A.     Photographic     pictures  ;       Production     of 

coloured (P)     .. 

Traube,  I.     Stalagmometer  and  stagonometer  ;    New 

Surface  tension  and  viscosity  of  liquids  ol  very  differ- 
ent fluidity  ;  New  vis  cost  alag  mo  meter  for  deter- 
mination of  

and   P.    Klein.     Poisons  ;     Use  of   ultramicroscope   for 

Lying   action   of  on   cells   of   bacteria, 

erythrocytes,  and  yeast 

and  It.  Somogyi.     Disinfection  ;   Theory  of 

Traube,  W.     Alkaline  copper  oxide  solutions  and  copper 
oxide-animine  cellulose  solutions  . .        97a, 

Ethyl  chloro-  and  fluorosulphonutes  ;    Production  of 

(P)         

Traun's  Forsehungslaboratoriuiu,  H.  O.     Acetaldehyde  or 

acetic  acid  ;   Manufacture  of (P)    ..      437a, 

Acetaldehyde;    Oxidation  of  to  acetic  acid  (P) 

Chlorinated  hydrocarbons;  Manufacture  of  low- 
boiling  (P) - 

Colloidal     dispersions ;      Apparatus     for     producing 

<P)         

Dioleflnes  and  derivatives  thereof;    Manufacture  of 

(P)         

1  tioleflnes     and     polymerisation     products     thereof ; 

Manufacture  of  (P)     . . 

Dispersoids  ;    Disintegrator  for  producing (P)  .. 

Dispersoids,  colloid   powder  and  masses  therefrom; 

Manufacture  of (P) 

Dispersoids;    Manufacture  of  (P) 

Electrodes  for  electrolysis  ;   Filter (P) 

Filter  presses  (P) . . 

Formaldehyde  and  methyl  alcohol  ;    Manufacture  of 

(P)         

Hexamethylenetetramine  and  formaldehyde  ;  Manu- 
facture of (P) 

Hydrocarbons ;      Extraction     of     unsaturated     

from  hydrocarbon  mixtures  or  carbonaceous 
material,  e.g.,  coal,  lignite,  etc.  (P) 

Lubricating  oils  ;    Manufacture  of  (P)   .. 

Montan  wax  ;    Extraction  of from  bituminous 

coal  (P)  

Paraffin  wax  or  the  like  ;  Oxidising and  obtain- 
ing soaps  therefrom  (P) 

Phosphatic  manures;    Manufacture  of (P) 

Plastic  masses  ;   Manufacture  of (P) 

Resinous  condensation  products  and  varnishes ; 
Manufacture  of  (P)   .. 

Rubber-like  substances ;  Manufacture    of    ■    (P) 

336a*. 

Rubber;   Reclaiming  waste (P)  .. 

Varnishes,   lacquers   and   the   like  ;     Manufacture   of 

(P)         

Vinyl  compounds  and  polymerisation  products  thereot ; 

Manufacture  of  (P) 

Vinyl  hatides  :    Manufacture  of  (P) 

Vinylsulphuric  acid  and  homologues  thereof  ;  Manu- 
facture of (P)  . . 

Yeast  ;  improving  the  odour,  taste,  and  digesti- 
bility of  raw (P) 

Trautz,    M.     Sulphurous   acid  ; 

heating  Bulphates  (P) 

and  K.  Winkler.     Propylene 

pure  condition 

Trimethylene  isomerism 

gasea 

Trimethylene  ;   Preparation  of  pure 

Travers,   A.     Carbon  in  iron  and  steel;     Determination 

Travers,  M.  W.     Glasshouse  pot  furnaces  (P) 
Treadwell,  W.  D.     Chemical  analyses;    Table  for  calcu- 
lation of  

Solubility  of  some  salts  in  aqueous  alcohol  and  water  ; 

Formulas  for  

and  D.  Chervct.     Titration  of  some  metals  with  ferro- 

cyanide  ;  Influence  of  alkali  on 

and    C.    Mussler.     Arsenic    trichloride  ;     Solubilit  y    of 

in  concentrated  hydrochloric  acid  at  100°  C. 

and  others.     Reductions   with   cadmium  and   lead    in 
volumetric  analysis 
Reductions  with  cadmium  in  volumetric  analysis   .  . 
Trefois,  L.     Gas  producers  and  other  furnaces;    Rotary 
grates  for  ■ — —  (P) 

Tregaskls,  S.  T.     See  Woodworth,  L.  B 

Trent,  L.  C.     Sewage  and  other  waste  liquors  ;  Treat  menl 

of (P) 

Trent.    W.    E.     Carbonaceous    materials;     Treatment    of 

■    (P)         

and  Trent  Process  Corp.     Coal  ;    Method  of  cleaning 

(P)         

Coke;   Process -of  producing (P)  .. 

Distillation  of  hydrocarbon  oils  (P)     .. 

Grinding  machine  (P) 

iron  ores  ;   Process  of  reducing (P) 

Ores  and  like  materials  ;    Treating (P)    .. 

Ores  and  minerals  ;    Process  for  collecting  and  puri- 
fying    (P)         

Separating  oils  from  emulsions  ;    Process  of (P) 

Trent  Process  Corp.     Sm  Trent,  W.  E.  207a*,    163a,    170a, 

570a,  624a*,   701a 
Trepka,    B.      Naphthalenesulphonic    acids    as    agents    for 
hydrolysis  of  fats 


Production   of 


by 


Preparation  of in  a 

Velocity  of  ring  fission  in 


120  a 
790a 


782a 
118A 

587A 
300A 

437a 
437a 

391a 

449a 

436a 

436A 
357a 

381a 
357a 
333a* 
619a 

438A 

437A 


403A 
404A 


425A 
385A 
381A 


383A 
383A 


436A 
437  a 

483a 

432a* 

752a 

785A 

727a 
785A 

376A 
374a 

37A 

13a 

880A 

857A 

919  a 
919  a 

624a* 
673a 

481A* 

243a 

624a* 
453a 
701a 
207a* 

71. '-A 
470A 

470  a 
579  a 

7 1 64 

7194 


PAGE 

92a 


79A,  348a 
. .  960a 
. .   960A 


116a 
589a 


Trescott,  J.  B.     See  Johns,  G.  McD. 

Trevoux,   L.   E.  M.,  and  Soc.  Anon.   Prod.  Chim.  Etabl. 

Maletra.     Acetaldehyde  ;      Production    of    

from  acetylene  (P)  . .  . .  . .  . .  . .     838a* 

Tribes,  G.  E.  F.,  and  Soc.  Anon.  "  Proc.  Torrida."  Organic 
substances ;      Drying,     baking,     roasting,     and 

cooling (P) 154a* 

Trickey,  J.  P.     See  Miner,  C.  S 784a,  784a 

Trifonow,   I.     Pernitric  acid ;    Properties  and  structure 

of 936a 

Pernitric  acid  ;    Use  of  for  analytical  purposes. 

Detection  of  aniline,  benzene,  hydrogen  peroxide, 

and  nitrites  . .  . .  . .  . .  . .  . .     932a 

Trillich,  H.     Colours  ;    Standardisation  of  ■   . .  . .        22a 

Trimbey,  E.  J.     See  Allen,  C.  H 324a* 

Trimble,  H.  M.     Potassium  permanganate  ;    Solubility  of 

in  solutions  of  potassium  sulphate  and  of 

sodium  sulphate       . .  . .  . .  . .  . .      326a 

Trivelli,  A.  P.  H-,  and  S.  E.  Sheppard.     "  Photographic 

emulsions  ;    Silver  bromide  grain  of  "        . .        41r 

and  others.     Photographic  emulsions  ;    Mutual  infection 

of  contiguous  silver  halide  grains  in  . .     788a 

See  Sheppard,  S.  E. 
See  Silberstein,  L. 

See  Wightman,  E.  P 

Troger,  J.,  and  K.  Schwarzenberg.     Cocaine  ;    New  base 
isomeric    with   tropine   and   pseudotropine   from 

residues  of  hydrolytic  products  of 

Troell,  O.     See  Thorssell,  C.  T 

Troeller,    W.     Zinc  and   other  volatile   metals  or  metal- 
loids ;   Distillation  of from  ores  (P)  . .  . .      765a 

Troise,    A.     Acetone ;     Source    of    error    in    colorimetric 

detection  of  ..  ..  ..  ..  ..     566a 

Trojan  Powder  Co.     See  Bronstcin,  J.  B.  ..  ..        81a 

See  Snelling,  W.  0 37a,  338a 

Tropsch,  H.,  and  A.  Kreutzer.     Montan  wax  ;    Acids  of 

■ 208a,   659a 

and   A.    Sehellenberg.     Methane  ;     Formation   of   

from  water-gas         ..  ..  ..  ..  ..      166a 

See  Fischer,  F 134a,  261a 

Trostel,  A.  O.     Animal  fibres  (hair,  wool,  furs)  ;    Treating 

to  improve  their  spinning  and  felting  pro- 
perties (P) 10a,  705a* 

Trostel,  G.  M.     Pulp  ;   Bleaching" (P) 324a 

Trotmau,    S.    R.      Bleaching    cotton   with    hypochlorous 

acid 529R 

Wool;  Chlorination  of  214r,  219t 

and    D.    A.    Langsdale.     Wool   and   chlorinated   wool  ; 

Action  of  ozone  on . .  . .  . .  . .      529n 

and  S.  J.  Pentecost.     Bleaching  ;    Recent  advances  in 

cotton  49R,  73T 

Trottier,  R.  E.     Classifying  and  separation  of  solids  (P)  . .        44a* 
TrurTaut.  G.,  and  X.  Bezssonoff.     Nitrogen-fixing  bacillus  ; 

New  . .         . .         . .         . .         . .         . .     908a 

Trumbull,   H.   L.,   and   others.     Crystal  Violet ;    Process 

for  making  (P)  ..  ..  ..  ..      137a 

Trutzer,   E.     Adhesives  containing  casein ;    Manufacture 

of  durable (P) 25a 

Graphite  ;     Manufacture    of    shaped    pieces    of    pure 

(P)  757A 

Lactose;    Purifying (P)     ..  ..  ..  ..      777a 

Tsang,  C.  Y.     See  Englis,  D.  T 385a 

TschelnitZj  E.     See  Sp&th,  E 390a 

Tschirch,    A.     Secede  comutum  and  so-called  ergot  sub- 
stitutes ..  ..  ..  ..  ..  ..      607A 

Tschudi-Freuler,    P.     Glassy    material ;     Manufacture    of 

(P)         374A 

Tschudy,   E.  A.     Linseed  and  soya  bean  oils  ;    Effect  of 

variation    in    analytical    constants    of    on 

determination  of  linseed  oil  in  mixtures  of  the 
two  oils  by  means  of  the  iodine  and  hexabromide 
values  of  the  fatty  acids     . .  . .  . .  . .        21a 

Tsujimoto,  M.     Clupanodonic  acid  ..  ..  ..  ..      719a 

shark,  ray,  and  chimceras  liver  oils      . .  . .  . .      598a 

and   Y.   Toyama.     Shark  and  ray-fish  Hver  oils  ;    Un- 

saponifiable  constituents  (higher  alcohols)  of 222a 

Tsukiye,  S.     Vitamin  B  ;    Preparation  and  properties  of 

833a 

Tucker,   O.   M.,   and   others.     Glass  ;     Obtaining  viscous 

charges  of from  a  viscous  mass  thereof  (Pi     142a* 

Tullis,  J.  K.,  and  Fulcra  Tan  Co.     Tanning  preparation  (P)     869a 
Tulloi  li,  T.  G.     Salts  ;    Recovery  of from  their  solu- 
tions (P) 463A 

and   D.   J.   Smith.     Gas ;     Cleansing  and  enriching   of 

■ (P)  579a 

Gas  producer  (P) 3tUA 

n  e  Holden,  H.  C.  L 579a 

Tullock,  J.     See  Smith,  H 18a 

Tungsten  Products  Co.     See  Bleccker,  W.  F.    58a,    63a,    822a 
lunison,    B.   R.,   and   U.S.   Industrial   Alcohol   Co.     Fuel; 

Liquid  (P)  701a 

Tunnell,  F.  H.     Glue,  gelatin,  and  the  like  ;    Apparatus  for 

the  extraction  of (P) 641a 

Turina,  B.     Selenium,  sulphur  and  tellurium  salts  ;    Action  of 

onplants  ..  ..  . ;  ..  ..     512a 


NAME  INDEX. 


99 


PAGE 

Turner,  E.     Gas  generators  (P)  ..  ..  ..  ..     974a 

See  Selas  Turner  Co.,  Ltd.  179a 

Turner,  K.  M.     Denmark  ;    Report  on  economic  situation 

Of   405R 

Turner,  S.  L.     See  Sidgwick,  IV.  V 976a 

Turner,  W.  E.  S.     British  glass  industry:    its  development 

and    outlook     . .         . .         . .         . .         . .         . .     196R 

Glass;     Critical    examination    of    methods    commonly 

used  in  determining  durability  of . .        57k,  464a 

and  A.   Consen.     Glass;    Production  of  colourless  

i  in  tank  furnaces         . .  . .  . .  . .  . .     127R 

and  T.  E.  Wilson.     Glassware  ;  Action  of  various  analytical 

reagents  on  chemical . .  . .  . .  . .     465A 

See  Cousen,  A.         M  , ,     708a 

Sa    Dimbleby.   V 175a,  464a 

See   English,    S.  ..         M         . .         ..         ...     17&A 

See  Hodkin,  P.  W.  99r 

See   Muirhead,  C.  M.  M 57r 

Turner,     W.     L.     Ferro-molybdenum ;     Manufacture    of 

carbon-free  (P) 821a 

Turowicz,   S.     See   Smolensk!,   K.       . .  . .  . .  . .     402a 

Turrentine,  J.  "W..  and  H.  G.  Tanner.     Potash  from  kelp. 
Applicability  of  kelpchar  as  a  bleaching  and  purify- 
ing agent  . .  . .  . .  . .  . .  . .     264a 

Turton,   W.     Metals;    Apparatus  for  the  elect  rodeposit  ion 

of     (P)  298a 

Tuttle,    A.    L.,    and    Agricultural    Chemical    Corp.     Super- 
phosphate ;    Manufacture  of  (P)         ..  ..       70a 

Twells,  R.,  jun.     Porcelain  ;   Beryl  as  a  constituent  in  high- 
tension  insulator  . .  . .  . .  . .     465a 

Porcelain  glazes  maturing  between  cones  17  and  20  ..     633a 

Porcelains  ;    Talc  as  flux  for  high-tension  insulator S97a 

Twigg,  C.  F.     Bricks  or  such  like  ;    Utilising  waste  heat  for 

effecting  the  drying  of  (P) 815a* 

Twigg,  W.  K.     5     Sears,  S.  A 575a 

Twlss,     D.     F.      "  Golden    antimony    sulphide  *' ;     Com- 
position of  ..  ..  ..  ..  ..      171T 

Golden  sulphide  of  antimony ;    Determination  of  avail- 
able sulphide  in . .  . .  . .  . .  . .       20T 

and  Dunlop  Rubber  Co.,  Ltd.     Vulcanisation  of  rubber 

and   similar   materials   (P)    . .  . .  . .  . .     426a 

and  others.     Vulcanisation.;    The  dithiocarbamate  accel- 
erators of ; 49r,  81t 

See  Price,  T.   S 165R 

Twombly,  A.  H.,  and  others.     Wood;    Process  of  treating 

(P)  15a 

Twyman,    F.     Glassware ;     Apparatus   for   controlling   an- 
nealing of  and  annealing  without  pyrometers     464a 

See  Dalladav,  A.  J.  175a 

See  Hilgcr,  A.,   Ltd 898a 

Tyler,  S.  L.     Hydrochloric  acid  ;    Vessel  for  absorption  of 

706a 

Tyrer,  D.     Alumina  ;    Extraction  of  (P)         . .  . .       55a 

Red  oxide  of  iron  ;   Manufacture  of (P)    . .       183a,  771a 


u 

Cbbelohde,  L.    Impregnation  of  textile,  fabric,  paper,  etc.  (P)  854a 

Sizing  paper  (P) 704a 

Uebel,  C.    Acids  ;  Concentrating  volatile (P)  . .         . .  811A 

Ueno,  S.     Fatty  oils  ;    Mechanism  of  alkali  refining  of 556A 

Hydrogenation  of  oils  ;  Promoters  of  the . .         . .  824a 

U.G.I.  Contracting  Co.     See  Searle,  E.  M 740A 

Uhde,  F.     Cooling  tower  (P) 44a* 

Thiemann,  C.     Bushes  as  raw  material  for  board  making  665A 

Ulke,  W.     Skins  and  hides  ;   Mixture  for  depilating (P)  677A 

Ullrich,  G.,  and  Chemical  Foundation,  Inc.     Magnetic  ore 

separator  (P) 180a 

Ullmann,    A.     Tyramine    (p-hydroxyphenylethvlamine)     as 

active  constituent  of  the  drug,  Semina  eardui  Maries  434a 
Ullmann,    M.    Photographic    negatives ;    Manufacture    of 

from  opaque  originals  (P)     . .         . .         . .  611a 

Ultee,  A.  J.     Stearic  acid  in  Fictts  fulra  latex  ..  ..  948a 

Xanthosterol  and  lupeol ;    Identity  of 955a 

Umpleby,  F-,  and  H.  Powers.     Gas  generators  and  retorts  (P)  801a 
Underwood,    K.    C,    and   others.     Cellulose    compositions ; 

Apparatus  for  treating with  solvent  vapours  (P)  . .  459a 

Unger,   M-,   and    General   Electric   Co.    Electric  induction 

furnace  linings  ;   Preparation  of (P)  . .  . .  902a 

Union    Apparatebau-Ges.     Gas    mixtures ;    Apparatus  for 

continuous  testing  of  (P)         . .  . .  235a 

Gases  ;    Determination  of  heat  value  of (P)         . .  274a* 

Union  Carbide  and  Carbon  Research  Laboratories,  Inc.     See 

Erickson,  A.N 632a 

Union  Carbide  Co.     See  Curme,  G.  O.,  jun 686a 

See  Herrly,  C.  J 939a 

Union  Thermique.     Oxygen  ;  Removing from  liquids  (P)  834a 

Union  Trust  Co.    Furnaces ;    Regenerative  (P)      . .  796a 

See  Kellogg,  C.  A 127a 

United  Alkali  Co.    See  Barker,  J.  T 99a 

United  Filters  Corp.     See  Center,  A.  L 205a 

United  Gas  Improvement  Co.    See  Evans,  O.  B 535a 

United  Refineries  Co.    See  Kormann,  F.  A.  . .         . .         . .  405a* 


page 

United  States  Ferro  Alloys  Corp.     See  Sicard,  H.  C.              . .  507a 

United  States  Gypsum  Co.     See  Birdsey,  C.  R 415a 

U.S.  Industrial  Alcohol  Co.     .See  Backhaus,  A.  A.     2a.  2a, 

73a,  73a,  79a,  119a,  119a*,  157a,  157a,  624a,  786a,  737a 

SeeBurchart.  L.  M.             779a 

n.v   i  .H-liran.'.    W.    F I* 

See  Haner,  C,  jun.              73a 

See  Hayes,  A 850a 

See  Helen,  D.  E S3A 

-       I:...,,  l.i.  :i.  U     11                           157.1,  >7-v 

See   Schreiber,   W.    T.        ..      6a*,    48a,    209a,    211a*.  B02A* 

See  Stcifens,  J.  A 89a,  648a,  725a 

See  TunLson,  B.  R.               701a 

See  YVhitaker.  M.  C.  . .    2a,  209a,  216a,  624a,  648a,  701a 

See  VYillkie,  H.  F 213a,  232a,  301a 

See  Wiiu ir.  E.  J 832a 

U.S.  Light  and  Heat  Corp.    See  Carpenter,  C.  C.    . .        64a,  507a 

See  Steerup,  G 507a 

United  States  Processes,  Inc.    See  Stokes,  VY.  E 822a 

U.S.  Smelting,  Refining,  and  Mining  Co.     See  Hamilton,  E.  H.  221a 
Universal  Oil  Products  Co.     Cracked  petroleum  oils ;  Pro- 
duction of (P) 849a 

See  Dubbs,  C.  P *0*A 

Universal  Optical  Corp.    See  Curtis,  T.  S 9S7a 

Uno,  D.    See  Chikashige,  M 472a* 

Upson,  F.  W.,  and  L.  Sands.     Amines  ;    Decomposition  of 

in  the  vapour  stage     . .         . .         . .         . .  957A 

Upthegrove,  C,  and  W.  G.  Harbert.    Brass  ;   Physical  pro- 
perties of  cartridge ..         ..         •■         ••  551a 

Urasow,   G.     See  Kurnakow,  N 940a 

Urbain,  G.    See  Urbain,  P 500a 

Urbain,  P.  and  G.     Scandium  ;   Extraction  and  purification 

of from  thorveitite  from  Madagascar  . .         . .  500a 

Urban,  K.     Sugar  syrups  and  molasses  ;  Purification  of  beet 

by  simultaneous  liming  and  carbonatation  . .  128a 

Urbason,  S.    Zinc  ;    Volumetric  and  gravimetric  determina- 
tion of  in  ores  etc.      . .         . .         . .         . .  218A 

Usher,  F.  L.,  and  E.  T.  Metcalfe.     Essential  oils  and  other 

volatile  substances  ;   Extracting (P)  . .         . .  309a 

Usines  Metallurgiques  de  la  Basse-Loire  (Soc.  Anon.).     Steel ; 

Production  of  basic  (P) TliA,  821A 

Utility  Compressor  Co.     See  Robison,  F.  \V.               ..          ..  240a 

Utrechtsche  Machinefabriek  opger.  door  F.  Smulders.       See 
under  Smulders. 

Utz,  F.     Rubber  ;  Determination  of as  tetrabromide  . .  383a 

Utz.     Petroleum  and  its  products  ;  Refractometric  examina- 
tion of  2a 

Soya  beau  oil ;   Uranium  nitrate  test  for . .         . .  222a 

Utz,  Chem.  Fabr.  Budenheim,  L.     Pyrophosphates  ;  Process 

of  obtaining  alkali  and  alkaline-earth  acid (P)  100a 

Sodium  or  potassium  pyrophosphate  ;    Preparing  acid 

suitable  for  use  in  baking  powder  (P)  . .          . .  100a 

Uycda,  Y.    See  Perkin,  A.  G.  . .         „         184a 


Vaccaro,  F.  M.     Desiccators  for  paper,  cloth,  etc.  (P)  460a 

Vacuum  Co.    See  Atkinson,  W 449a 

Vageler,  P.     "  Erze  ;    Die  Schwimmaufbcreitung  der "  207B 

Vahle,  H.     Briquettes ;    Treatment  of  coal  sludge  or  the 

like  for  the  manufacture  of (P)  . .         •-         ■•  106a 

Valentine,  W.  L.     See  Holmes,  F.  M.               987a 

Valenzuela,  P.     See  Del  Rosario,  M.  V 519a 

Vallance,  R.  H.     See  Friend,  J.  A.  X.               378A 

Valley  Holding  Corp.     Magnetic  alloy  sheets  ;    Manufacture 

■       of   (P) 636A 

Vallev  Mould  and  Iron  Corp.     Steel  ingots  ;  Casting (P)  865A* 

See  Perry,  J.  E 902a* 

VaUez,  H.  A.     Filters ;    Rotary  (P) 619a 

Vails,   R.   C.     Kapok  and   other  fibres ;    Rendering  

incombustible    (P) 665a 

Van  Ackeren,  J.,  and  Koppers  Co.     Coke  ovens  ;    Carbon- 
consuming  means  for  (P)      . .         . .         .  ■  360a 

Coking  retort  oven  (P)        130a,  360a 

Van  Aernem,  H.  N.     See  Fonda,  G.  R.            537a 

Van  Arsdel,  W.  B.     See  Burnincham,  F.  A.               . .          . .  10A 

See  Richter,  G.  A 10a,  988a 

Van  Barneveld,  C.   E.     See  Leaver,  E.  S 379a 

Van  Bers,  G.  H.  C.     See  Vurtheim,  A.             962a 

Vanderbilt  Co.,  R.  T.     See  Lorentz,  B.  E 426A 

Van  der  Haar,  A.  W.     Saponins         390A 

Saponins.    a-Hederin  and  its  hedcragenin      . .         . .  117a 
Saponins  from  leaves  of  Aralia  metntana  (Galacturonoid 

saponins,  and  their  magnesium  and  calcium  salts)  . .  955a 
and   A.   Tamburello.     Saponins.    Hederagenin    . .         . .  1 1  7a 
Van  der  Hoeven,  C.    Leather ;    Determination  of  free  sul- 
phuric acid  in  . .         . .         •  ■         -  •         •  •  68a 

Van  der  Nolle,  J.  A.     Insulating  material  J    Manufacture  of 

(P)           181 A 

Van  der  Reis,  V.     See  Cobet,  R 430A 

Van  der  Spek,   J.     Soils  ;    Action  of  solutions  of  neutral 

salts  on  .     Determination  of  soil  acidity      . .  991a 

g2 


100 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Van  Groningen,  P.     See  Reinders,  W.  . .  . .  . .       59a 

Van  Hoogeuhuijze,  C.  J.  C.    See  Eijkman,  C.  . .         . .     305a 

See  Tenven,  A.  J.  L 480a* 

Van  Horn,  W.  II.     See  Kemp,  W.  W 221a 

Van   Keurcn,   W.   L.,   and   General   Electric   Co.     Incan- 
descence   electric   lamps.      Hermetical    Beal    for 

leading-in  wires  of  (P)         803a* 

Van  Laer,  M.  II.     Enzymes;    Action  of  hydroly^iug ■       28a 

s    and    bacteria  ;     Influence    of    hydrogen    EOD 

concentration  on  growth  of and  on  stability 

of  beer  . .         . .         . .         . .         . .         . .     951a 

and  II.  Lombaers.     Osazones  of  sugars ;    Formation  of 

71A 

See  Kufferath,  II.  28a 

Vanlaetham,  E.     Drying  wood  and  other  material  ;  Means 

for (P) 15a 

Van    Llgten,    J.    \V.    L.     Cane   juice ;     Influence   of   the 

amino-acids  of in  inhibiting  inversion        . .     7  7 < '•  a 

Van  Meter,  J.  W.     Chlorination  apparatus  (P)      ..          ..        79a 
Poisonous  gases  ;   Production  of for  use  as  insec- 
ticide (P) 76a 

Van  Khyu,  A.  J.     See  Ebler,  E 12a 

Van  Kuynibeke,  J.     Alcohol ;   Dehydration  of (P)  . .      779a 

Van.  Ruymbekc.     See  Mariller,  C.    ..         ..         ..         ,.     952a 

Vanselow,  A.     See  Benedetti,  C.  O.  232a 

Vanselow,  P.     See  Benedetti,  CO.  232a 

Vanselow,  W.     See  Benedetti,  CO.  232a 

Van  Slyke,  D.  D.     Buffer  values  ;    Measurement  of  

and  relationship  of  buffer  value  to  dissociation 
constant  of  the  buffer  and  concentration  and 
reaction  of  the  buffer  solution       . .  . .  . .     649a 

See  Hiller,  A 881a 

Van  Steenbergh,  B.     Gasoline  ;    Cracking  mineral  oils  to 

produce  (P)     . .  321a 

Van  Tussenbroek,  M.  J.     Vegetable  oils  ;    Dccolorisation 

of  557a 

See  Waterman,  H.  I 339a 

Van    Voorhout,    A.    W.    C.     Petroleum    refineries  ;     Re- 
covery of  sulphuric  acid  from  waste  acid  in 282a 

Van     Wolzogen    Kiihr,    C.    A.     H.     Sulphate-reduction  ; 

Occurrence  of  in  the  deeper  layers  of  the 

earth  . .  . .  . .  . .  . .  . .  . .     90SA 

Vasseux,  A.     White  beet  sugar  ;    Manufacture  of at 

Oxnard,   Cal.,   U.S.A 909a 

Vaubel,  W.,    Nickel  ;    Gravimetric  determination  of  

as  nickel  dioxide      . .  . .  . .  . .  . .     962a 

Vaudrey,  R.  H.  N.,  and  W.  E.   Ballard.     Brass  tubes  ; 

Internal  stresses  in  ..  ..  ..  ..     105a 

Vavon,  G.,   and  A.   L.  Berton.     Borneol  obtained  from 

magnesium   compound   of  pinene  hydro  chloride     785a 
and  A.  Husson.     Catalysis  by  platinum  black  . .  . .     685a 

Veil,  C     Soil ;    Relation  between  the  chlorine  index  and 

nitrogen  content  of ..  ..  ..  ..     186a 

Veitch,  F.  P.     Wool-scouring  wastes  for  fertiliser  purposes 

292B,  427a 
and  others.     Leather  ;    Influence  of  atmospheric  humi- 
dity on  strength  and  stretch  of . .  . .     907a 

Veitch,  W.  W.,  aud  others.     Mixing,  stirring,  or  agitating 

apparatus  (P)  . .  . .  . .  . .  . .       88a 

Velde,  L.     See  Rassow,  E.     . .  . .  . .  . .  . .     219a 

Velio,  L.  S.     Lamp-bulbs  and  other  glass  ware;    Melting 

together  of  glass  parts  of by  means  of  soluble 

fluxes  (P) 756a 

Venable,  C.  S.,  and  T.  Fuwa.     Rubber  and  rubber  stock  ; 

Solubility  of  gases  in and  effect  of  solubility 

on  penetrability       . .  . .  . .  . .  . .     183a 

and  C.  D.  Greene.     Rubber  ;    Solubility  of  sulphur  iu 

382a 

Venable,  F.  P.     "  Zirconium  and  its  compounds  "           . .     229R 
Vcnditti,    L.     Sugar   solutions  ;     Apparatus    for    crystal- 
lisation of (P) 305a 

Venezia,  N.     See  Puiggari,  M.  . .  . .  . .  . .       31a 

Venter,    O.     Cellulose  ;     Reducing   to    fibres    and 

transforming  it  into  the  liquid  state  for  the 
manufacture  of  artificial  threads  (P)       . .  . .     459a 

Veredelungsges.  fiir  Nahrungs-  und  Futtermittel.   Fodder  ; 

Manufacture  of  by  the  decomposition   of 

finely  divided  straw  (P)     ..  ..  ..  ..     432a 

Verein     Cbem.     Fabr.     in    Mannheim.     Charcoal  ;      Pro- 
ducing vacua  by  means  of (P)         ..  ,.     737a 

Explosive;    Preparation  of  an  from  ammonium 

nitrate  and  carbonaceous  material  (P)   . .  . .     880a 

Explosive  aud  propellant ;    Process  for  preparing  an 

from     ammonium    nitrate    and     nitrates, 

oxalates,    and   similar  salts   of   ammonium   and 
amines   (P)    ..  ..  ..  ..  ..  ..     789a 

Propcllants  ;    Process  for  making  from  ammo- 
nium nitrate  and  carbonaceous  matter  (P)         ..     998a 

Shells  ;     Process   for  filling  projectiles  such  as  

with  an  explosive  mixture  consisting  mainly  of 
ammonium  nitrate  and  charcoal  (P)         ..  ..     789a 

Sulphur  dioxide  ;  Manufacture  of from  alkaline- 

earth  sulphates,  magnesium,  and  iron  (P)         . .        13a 


page 

Verein  der  Spiritus-Fabrikanten  in  Deutschland.  Froth 
of  fermenting  or  boiling  liquids  ;    Treatment  of 

(P) 386a 

Yeast  ;   Production  of  (P)  . .  . .    305a*.  341a* 

Yeast;  Treatment  of (P) 305a* 

Vereinigte  Aluminiumwerke  A.-G.,  and  W.  Fulda.  Alu- 
minium   sulphate  ;     Preparation    of    from 

aluminium  hydroxide  (PJ  ..  ..  ..  ..     754a 

Vereinigte  Chem.  Fabr.  J.^Norden  und  Co.  See  under 
Xorden. 

Vereinigte  Chem.  Werke.     Glycerin  ;    Production  of  

from  sugar  (P)  . .  . .  . .  . .  . .      514a 

Vereinigte  Chininfabr.  Zimmer  und  Co.     See  under  Zimmer. 

Vereinigte  Deutsche  Nickel- Werke  A.-G.  vorm.  West- 
falisches  Nickelwalzwerk  Fleitmann,  Witte  und 
Co.  Welding  of  nickel  and  nickel-rich  alloys,  e.g., 
cupronickel,  nichrome,  and  German  silver; 
Autogenous  (PJ  . .  . .  . .  . .     258a 

Vereinigte  Glanzstoff-Fabrik  A.-G.  Artificial  silk  fila- 
ments ;    Manufacture  of  fine (P)     . .  . .     807a 

Cellulose  threads  ;    Rapid  dryiug  of  freshly  precipi- 
tated    (P)  807a 

Vereinigte  Koln-Rottweiler  Pulverfabriken.  Ammonium 
nitrate  explosives  ;  Manufacture  of  easily  cast 
with  a  low  content  of  nitro-compounds  (P)     199a 

Vcrkadc,  P.  E.     Benzoic  acid  standard  for  calorimetry  . .     880a 

Vermaes,    S.    J.,    and    Syndicaat    Electro -Staal.     Kiln  ; 

Rotary (P) 89a* 

Vermast,  P.  G.  F.     Disinfection  in  terms  of  the  Meyer- 

Overton  theory         . .  . .  . .  . .  . .     229a 

Vermeylen,  G.     See  Wahl,  A 363a 

Vernadsky,  W.  J.     Kaolin ;    Decomposition  of  by 

organisms       ..  ..  ..  ..  ..  ..     869a 

Vernet,   G.     Hevea  Brasiliensls   latex  ;     Role  of   calcium 

chloride  in  coagulation  of . .  . .  . .     948a 

Vernet,  H.     See  Pictet,  A 642a 

Vernon,  F.  S.     Tunnel  ovens  or  kilns  (P)  . .  . .  . .     254a 

Vernon,  G.  B.     Grinding  machine  (P)  ..  ..  ..     399a 

Vesme,  E.     Gas  under  pressure  ;   Apparatus  for  production 

of by  electrolysis  (P)  . .  . .  . .  . .       64a 

Vesterberg,  K.  A.     Amyrin  ;    Occurrence  and  extraction 

of  728a 

and  S.  Westerlind.     Amyrins  ;    Separation  of   a-  and 

)S-  ■ .     Preparation  of  a-amyrilene       . .  . .     728a 

Viale,  G.,  and  A.  Rabbeno.     Condensed  milk  ;   Analytical 

investigation  of  ageing  of ..  ..  ..     725a 

Vickery,   H.  B.     Wheat  gliadin  ;     Rate  of  hydrolysis  of 

872a 

Victoria  Falls  and  Transvaal  Power  Co.,  Ltd.,  and  W.  O. 
Andrews.  Carbon  dioxide  and  combustible  gases 
containing    carbon  ;     Quantitative    detection    of 

(P)         527a 

Victoria   Iron    Rolling    Co.     Proprietary,    Ltd.     Tinplate 

scrap  ;    Treatment  of  (P)      . .  . .  . .     985a 

Victoria  Rubber  Co.,  Ltd.     See  Wneatley,  R 640a 

Vie,    G.     Tanning    extracts  ;     Recovery    of     acetic    acid 

during  evaporation  of  . .  . .  . .       24a 

Viehoever,  A.     Plant  products  ;   Microsublimation  of 684a 

and  H.  A.  Lepper.     Robusta  coffee         ..  _.  ..     342a 

Yielau,  W.     See  Korczynski,  A.       ..  ..  ..  ..     196a 

Vielle,  J.  A.     See  Plauson,  H 474a,  676a 

Vierheller,  H.     See  Berl,  E 207a 

Vieweg,  W.     Artificial  silk  ;    Alterations  in  the  cellulose 

complex  id  manufacture  of ..  ..  ..     541a 

Vignat.    See  Seyewetz  . .  . .  . .  . .         . .     169a 

Vilbrandt,  F.  C.     See  Shenefield,  S.  L 37a 

Villacorta,  J.  S.     Tobacco-leaf;   Treatment  of (P)  . .      119a 

Villedieu,  G.  and  G.     Cupric  fungicidal  sprays     . .  . .     267a 

Villigcr,  V.,  aud  H.  von  Krannichfeldt.     Dyestuff  ;   Green 

and  process  of  making  it  (P)  . .  . .         8a* 

See  Badische  Anilin  und  Soda  Fabr.  . .  . .  . .     895a* 

Vincent,  F.  S.  Extracting  gases  from  liquids  ;  Electro- 
lytic process  for (P)  ..  ..  ..  ..        C4a 

Viutilesco,  J.,  and  M.  Haimann.  Maize  flour  ;  Bio- 
chemical reaction  of  stale ..  ..  ..     872a- 

Vis,  G.  N.     Alkali  monochromates  ;    Transforming  

into  bichromates  or  chromic  acid  (P)     . .  . .     813a* 

Viscoloid  Co.     See  Brooks,  B.  T 786a 

Vita,  A.     Iron  and  steel ;   Determination  of  gases  iu 330a 

Vivian,  A.  C     Flotation  process  for  concentrating  ores  and 

the  like  (P) 942a 

Ores  and  the  like  ;    Treatment  of (P)     ..  ..     258a 

V.M.L.   Experimental.  Ltd.,  and  O.  D.  Lucas.     Smoke; 

Production  of  coloured (P)  . .  . .  . .     838a 

Voltz,   W.,   and  others.     Urea:     Utilisation  of  for 

increasing  yield  of  milk  from  cows  ..  ..     779a 

Voerkeliu;-,  G.  A.     See  Rhenania  Verein  Chem.  Fabriken 

A.-G.  264a 

Vogel,  E.     See  Margoschcs,  B.  M.     . .  . .  . .  . .     518a 

Vogel,  II.     See  Wintgen,  R.  ..         ..         ..         ..     150a 

Vogel,  J.  C.  Phosphoric  oxide  in  fertilisers  ;  Determina- 
tion of . .  . .  . .  . .  . .  . .     1271 


NAME  INDEX. 


101 


PAGE 

Vogel,  0.     Iron  and  steel ;  Pickling in  acid  baths  (P) 

258a,  505a 
Iron  and  steel  wire  ;    Solution  for  use  in  drawing 

(P) 863a 

Iron  and  steel  wires  ;    Solution  for  use  in  wet  drawing 

of ,  also  for  pickling  (P)  863a 

Pickling  metals  (P)  986a* 

Vogel,  R.,  and  G.  Tammann.     Iron-boron-carbon  ;    The 

ternary  system  ■  . .  . .  . .  . .     939a 

Vogel  and  E.  Weber.     Lupin3  ;    Influence  of  nitrogenous 

fertilisers  on  content  of  bitter  substances  in 477a 

Vogelenzang,    E.    H.     Potato    flour ;     Determination    of 

moisture  in  . .  . .  . .  . .  . .     563a 

Voglhut,  F.     Electric  incandescence  lamps  ;  Regeneration 

of  <P) 93a 

Vogt,  E.     Flour  and  bread  ;   Detection  and  determination 

of  adulterants  in  . .  . .  . .  . .       73a 

Vogt,  R.  It.,  and  J.  A.  Nieuwland.     Paraldehyde;    R6le 

of  mercury  salts  in  catalytic  transformation  of 

acetylene  into  acctaldehyde,  and  a  commercial 

process  for  manufacture  of . .  . .  . .      118a 

Voicu,  J.     Azotobaeler  Chroococcum  ;    Influence  of  humus 

on  sensitiveness  of towards  boron  . .  . .     723a 

Voigt,  J.     Metal  hydrosols  ;     Medicinal  use  of  protected 

and  significance  of  their  after-effects         . .     483a 

Voigt,  W.     German  silver  ;    Investigation  of  . .     256a 

Yoigtliinder  nnd  Lohmann  Metall  Fabrikations  Ges.     See 

under  Lohmann-Metall  Ges. 

Vois,  R.     See  Ciusa,  P 320a 

Voith.  J.  M.     Paper-making  machines  (P) 628a* 

Volkommer,  T.  J.     Recuperator  ;   Furnace (P)         .  .      127A 

Vollbrecht,  E.,  and  K.  Frcudenberg.     Tannin  in  German 

oaks    ..  ..  ..  ..  ..  ..  ..        24a 

See  Freudenberg,  K" 67a,  184a,  906a 

Vollenbruck.     See  Bauer,  O.  ..  ..  ..  ..     713a 

Vollmann,  H.     Varnishes  etc.  ;     Detection  of  lead,  man- 
ganese, and  cobalt  in  . .  . .  . .     381a 

Vollmar.     Wafer  supplies  ;   Chlorination  of . .  . .      913a 

Volmer,    M.     Copper   coatings  ;     Production   of   on 

non-metallic  materials  (glass,  celluloid)  (P)        ..      378a 

Volwiler,  E.  H.     See  Kanim,  0 877a 

Yolz,  O.     Hair  dyes  ;    Manufacture  of  in  the  form 

of  oils,  pomades,  emulsions,  and  the  like  (P)   . .     365a 
Von  Antropoff,  A.     Electrolysis  of  alkali  chlorides  with 

mercury  cathodes  ;    Model  apparatus  for . .      597a 

Von  Bichowsky,  F.     Silicon  and  nitrogen  ;    Production  of 

compounds  containing (P)         . .  . .  . .     463a 

and  J.  Harthan.     Cyanides  ;   Production  of (P)       . .     546a 

Titanium  nitrogen  compounds  ;    Production  of (P)     294a 

Von  Biehler,  A.     See  Bayer  und  Co.,  F 998a,  998a 

Von  Bosse,  J.     See  Chem.  Fabr.  Plagwitz-Zerbst,  G.m.b.H.     510a 
Von  Bramer,  H..  and  Eastman  Kodak  Co.     Quinol ;  Process 

of  making (P) 648a 

Von  Braun,  J.,  and  G.  Kirschbaum.     Hydrogenation  under 

pressure  in  presence   of   nickel ;    Catalytic  . 

Indene  and  aceuaphthene       . .  . .  . .  . .     5S1a 

and  others.     Benzoic  and  tropic  esters  of  alkylamines  ; 
Relations  between  constitution  and  pharmacological 

action  of 608a 

Von  der  Heide,  C.,  and  H.  Straube.     Citric  acid  in  wine  and 

musts  ;   Detection  of . .  . .  . .  . .     912a 

Von  Dietrich,  W.     See  Chem.  Fabr.  Coswig-Anhalt  . .  . .     752a 

Von    Ditmar,    P.     Photographs ;     Production    of    coloured 

(P)  690a 

Vondrak,   J.     Non-sugar  substances ;     Velocity  of  decom- 
position of  nitrogenous by  lime  . .  . .     776a 

See  Stanek,  V 385a 

Von  Ehrenthal,  B.  P.     Cotton  substitutes  ;   Manufacture  of 

(P)  498A 

Von  Euler,  A.  C.    Spruce  needles ;    Lignin-like  resins  and 

tannins  of ..  ..  ..  ..  ..      171a 

Yon  Euler,  H.     Vitamin  A  ;    Conditions  of  activity  of 953a  ' 

Vitamin  A  from  carrots       . .  . .  . .  . ,  . .     953a 

and  S.  Bergman.     Iodine  and  starch  ;  Combination  of 777a 

and  E.   Josephson.     Invertase  preparations ;    Analytical 

investigation  of . .  . .  . .  . .  , .     778a 

Invertase  ;  Silver  compound  of 911a 

Sacckaromyces   Marxianus  and  top -fermentation  yeast 

R  ;   Experiments  with . .  . .  . .  . .     513a 

and  S.  Karlsson.     Fermentation  ;  Acceleration  of . .     778a 

and  S.  Landergren.     Invertase  ;    Inactivation  of by 

iodine     ..  ..  ..  ..  ..  ..  ..911a 

Iodine  and  starch  ;   Combination  of . .  . .     777a 

and  K.   Myrback.     Invertase  ;    Inactivation  of  by 

small  quantities  of  silver  salts  . .  . .  . .     778a 

Starch  ;   Compounds  of  iodine  with  constituents  of 429a 

Vitamin  B  and  co-enzymes  ..  ..  ..  ..     190A 

Yeast ;   Dried 478a 

Yeast  invertase  ;    Action  of  foreign  enzymes  on  . 

Role  of  phosphate  in  the  degradation  of  carbo- 
hydrates ..  ..  . .  ..  ..  ..     724a 

and   F.   Nordlund.     Fructose    diphosphate   (hexosephos- 

phate) ;   Enzyniic  synthesis  of . .  . .     190a 

and  O.  Svanberg.     Bac.  macerans  ;    Acidity  conditions  for 

growth  of and  course  of  hydrolysis  of  starch. .     429a 


Yon  Eider,  H.,  and  O.  Svanberg — cofttii 

Invertase  preparations  ;   Phosphorus  content  of  purified 

9.V2a 

Invertase  ;    ReLr>neration  of  inactivated by  dialysis     153a 

and  G.  Zimmerlund.     Adsorption  of  salts  on  metal  surfaces     938a 
See  Blohm,  G.  J.      . .  . .  . .  . .  , .  . .     953a 

Von  Faber,  O.     Iodine;  Recovery  of (P)         ..  ..      755a 

Von  Fellenberg,  T.     Vanillin  in  brandy ;    Detection  and 

determination  of . .  . .  . .  . .     643a 

Wine  ;   Determination  of  the  various  acids  in . .     514a 

Von  Girsewald,  C.  F.     Amines ;    Manufacture  of  aromatic 

(P)  135A 

Von  Glasenapp,  M.     Calcium  hydroxide  ;   Colloidal . .     981a 

Von  Grab,  M.     Alcoholic  fission  of  sugar  ;    Pyruvic  acid  as 

an  intermediate  product  in . .  . .  . .     189a 

Von    Groeling,    A.   E.      Shale    oil  ;      Recent    methods    of 

obtaining . .  . .     534a 

Von  Hahn,  D.     See  Yon  Halm,  F.  V.  S39a 

Von  Hahn,  F.  V.  and  D.     Sedimentation  analvsis  ;  Technical 

839a 

See  Ostwald,  Wo 839 A 

Von  Haken,  K.     Peat ;   Drying (P)        . .  . .      130a,  700a 

Von  Herz,  E.     Detonating  compositions  for  detonators  or 

primers  ;    Manufacture  of (P)  . .  . .  . .     961a 

Explosive  (P)  15SA* 

Priming  compositions  ;    Manufacture  of  for  per- 
cussion and  friction  fuses,   detonators,   cartridges 

and  the  like  (P)  839a,  839a 

Von  Juptner,  H.     Gas  producers  and  blast  furnaces  ;    Pro- 
cesses in 593A 

Von  Keresztv,  <;..  and  E.  Wolf.     Arylsulphonic  acid  esters  of 
halogenated    aliphatic    alcohols ;     Preparation    of 

(P)  728a 

Basic   magnesium  hypochlorite;     Production     of  solid 

.     d')         58a* 

Morphine  allyl  ether  ;  Manufacture  of (P)  . .     158a 

Von  Keussler,  O.     See  Schrauth,  W 3a 

Yon  Krannichfeldt,  H.     See  Badische  Anilin  und  Soda  Fabr.     S95a* 
See  Villiger,  V.         ..         ..         ..         ..         ..         ..         8A 

Yon   Laue,   M..   and   W.    Gordon.     Thermal   conductivity  ; 
Determination  of  at  temperatures  of  incan- 
descence, e.g.,  of  incandescence  filaments    . .  . .     802a 

Von  Lippmann,  E.  O.     Botanical-chemical  notes      . .      117a,  956a 
Von  May,  L.,  and  C.  A.  Fesca  und  Sohn.     Centrifuge  (P)    . .     317a* 

Von  Miller,  G.     See  Willstatter,  R 893a 

Yon  Neuenstein,  W.     See  Heuser,  E.  . .  . .  . .  . .     977a 

Von  Nostitz,    A.     Magnesium  salts ;    Harmful  mechanical 

effect  of on  soils  . .         ..         ..         ..         ..     1S6a 

Soil  potash  ;   Significance  of  displaccable for  plant 

nutrition  . .  . .  . .  . .  . .     678a 

Von  Ordody,  L.  B.,  and  B.  Schottik  und  Co.     Textile  fibres 
and    half-stuff    suitable    for    paper    manufacture ; 

ultaueous  production  of from  reeds  and  the 

like  (P) 498a 

Von  Pazsiczky,  G.     Glass  ;  Production  of  spun (P)    . .     375a* 

Von  Rechenberg,  C.  and  W.     Cresol ;  Formation  of  addition 

compounds  of  with  ether,    alcohol,   acetone, 

benzene,  etc.      . .  . .  . .  . .  . .  . .     662a 

Von  Rechenberg,  W.     See  Rechenberg,  C 662a 

Von  Recklinghausen,  M.,  and  Air  Reduction  Co.     Gases  ; 

Apparatus  for  separating (P)    ..  ..  ..     163a 

Von   Richter,    Y.     "  Organic    chemistry."     (Edited    by    R. 
Anschtitz  and  H.  Meerwein,  and  translated  by  E.  E. 

Founder  d'AJbe.)  207R 

Von  Rosthorn,  O.     See  Heller,  A 596a 

Yon  Sehk-initz,  H.     See  Jurisch,  E.  W 253a 

Yon  Springbom,  E.     Peat  moss  ;    Treatment  of to  be 

employed   in  the  purification   of  sewage   effluent, 
waste  liquors  from  factories  and  the  like  (P)         . .     389A 

Peat ;    Treating  to  obtain  a  dry  product  of  high 

calorific  value  (P)         360a 

Von  Thai.  C.     Steel  ;  Production  of in  the  blast-furnace 

fired  with  liquid  fuel  (P)  221a 

Von  Unruh,  M.     See  Heylandt  Ges.  fiir  Apparatebau  m.b.H.     576A 
Von    Yajdafy,    A.     Nitrocellulose ;     Automatic    and    con- 
tinuous production  of (P)  . .  . .  . .     485a 

Yon  Yoss,  G.     See  Friedlander,  P 582a 

You  Walther  and  W.  Bielenberg.     Lignite  ;    Increased  ab- 
sorptive power  for  oxygen  of after  moistening 

with  alkali         318a 

Von  Wartenberg,  H.     See  Bosse,  0 790a 

Von    Wassermann,   A.     Material  for  the   serodiagnosis   of 

syphilis  ;  Purification  of (P) 917a 

Von    Wierusz-Kowalksi,    M.,    and    Chemical    Foundation. 
Sugar ;     Sulphuring    the    juices    obtained    during 

manufacture  of (P)         188A 

Von  Wrangell.  M.     Phosphoric  acid  assimilation  by  plants; 

Regulatities  in . .  . .  . .  . .  . .     561a 

Von    Wurstemberger,   F.    Brass;     Selective   corrosion   and 

dezincificat  ion  of . .  .  .  . .  . .       6lA 

Electrolytic   corrosion  in  surface   condensers  and  like 

heat  exchange  apparatus  ;    Prevention  of (P)     845a 


102 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Von  Wurstemberger,  F. — continued. 

Selective  corrosion  ;    Prevention  of in  machines  or 

apparatus  of  metallic  parts  made  of  copper  and 
copper-containing  alloys,  and  subject  to  the  corro- 
sive action  of  water  containing  ions  (P)       . .  . .     795a 

Von  Zeerledi  r,  A.     See  Bauer,  B 866a* 

Von  Zelewski,  R.     Barium  compounds  ;  Preparation  of 

from  zinc  blende  or  other  ores  containing  barvtes 

(P)  141a 

Zinc  and  other  readily  volatile  metals;    Smelting  ores 

Of (P)  147A 

Zinc  reduction  furnace  with  interchangeable  muffles  (P)     422a 

Zinc  sulphide  ores  ;  Roasting (P)    ..  ..  ..     146a 

Voorhees,  V„  and  R.  Adams.     Reduction  of  organic  com- 
pounds :    Use  of  oxides  of  platinum  for  catalytic 

566A 

S      Kindfusz,  R.  E.  894A 

Vorce,   La   F.    D.     Alkali   hypochlorites;    Manufacture  of 

(P)  415A 

VoresSj  C.  L.,  and  others.     Volatilising,  distilling,  or  separ- 
ating: absorbed  vapours  ;  Method  of (P)       . .     622a 

Burrell,  G.  A 127a,  490a,  494a 

argil,    W.    0.     Potassium   bichromate   as   standard    in 
iodimetry,    and    determination    of    chromates   by 

iodide  method 1000a 

See  Eppley,  M 1001a 

Voss    n      Fatty  acids;  Manufacture  of ..         ..       21a 

Superheated  steam;    Use  of  for  heating  melting 

pots  and  stills   . .         . .         . .         . .         . .         . .       S7A 

Votocek,  E.     Chlorine  ;  Rapid  estimation  of in  organic 

compounds        . .  . .  . .  . .  . .  . .  1001a 

Vreeland,  O.  \\       ?«M<  Gee,  F.  B 4a 

Vridhachalam    P   M.     See  Moudgill,  K.  1 610a 

Vurtheim,  A.     Magnesium  in  potassium  salts;  Volumetric 

determination  of ..         ..         ..         ..  1000a 

and  G.  H.  C.  Van  Bers.     Calcium  ;  Volumetric  determina- 
tion of 962a 

Vuilieumier,  E.  A.     Nickel  deposition;   Application  of  con- 

tractometer  to  study  of ..  ..  ..     862a 

Vulkan-Werk   Reinshagen  und  Co.     See  under  Reinshagen. 

Vulquin,  L.     Sec  Entat,  M 541A 

Vydra,   F.     Malt   preparation;    Production  of  a  for 

brewing  purposes  (P)  . .  . .  . .  . .  . .     779a 

Vytopil,  Z.     Beet  carbonatation  scums  ;   Utilisation  of 

for  production  of  a  decolorising  carbon       . .        27a,  264a 
Feeding  stuff  from  non-sugar  substances  of  beet  juice. .     226a 


w 

Wachtel,  C.    Morphine  and  other  alkaloids  ;  Detection  and 

determination  of in  animal  excreta  etc.  . .     116a 

Wachtel,  P..  and  W.  Schmidding.     Exhaust  gases  of  internal 
combust  ion   engines  and  the  like  ;    Arrangement 

for  purifying  and  rendering  odourless  the (P) 

131A,  453a 

Wachter,  W.     Sodium  carbonate  and  fluxes  containing  it ; 

Preparation  of by  the  ammonia-soda  process 

(P) ..     175A 

Wacker,  A.,  Ges.  fur  Elektrochem.  Ind.     Acetylene ;    Puri- 
fying   from  hydrogen  phosphide  a'nd  hvdrogen 

sulphide  (P) •  .,     o44l 

Aluminium  acetate  ;  Production  of  — —  (P)  415A 

See  Kaufler,  F ', '.         "     648a* 

Wadsworth,  P.  C,  and  Taylor's.     Citrus  fruit  ;    Manufac- 
ture of  ft  food  product  from (P)  . .  . .     229a 

Wadsworth,  R.  V.     Theobromine  content  of  cacao  beans 

„      "'"'  ''  _ 9SR,  388a 

See  Knapp,  A.  W.    . .         . .         , .         . .         , ,  _  14SA 

Walti,  A.     See  Karrer.  P.  ..  ..  , .  im  t  issa 

Waentig,  H.  P.     see  Gicrisch,  J.  O.  W "  460a* 

Waentig,  p.    a-Cellulose;    Determination  of  alkali-resistant 

„  „  t ■■  ■  •     , 408a,  935a 

Cellulose;    Influence   of   mechanical  ion  of 

on  the  viscosits  ofcelluloa   solutions  ..  409a 

Fibrous  vegetable  mat,  rial,  especially  wood  ;    Decom- 

posing ,  e.?..  for  the  production  of  fodder  (P)..  515a 

Wood  pulp  manufacture  ;    Importance  of  decree  of  dis- 
integration in ..  ..  ..  M  _  743A 

Waeser,  B.     Gold,  silver,  copper,  etc;    Electrolytic  separa- 
tion of from  alloys  (P)   ..  ..    "     ..  ..      7i;A 

Wagenaar,  M~.    See  Jansen,  J.  D 873a 

Wagganian.  W.  H..  and   H.   w.   Easterwood      Phosphoric 
Applicability  "f  furnace  ■  produc- 
tion ol from  ruu-of-minc  phosphate  ..     292r 

Waggoner,  C.  W.     >,,  Peacock,  S 755a 

Wagner,  A      See  Schmidt,  £ 523a 

Wagner,   F.    W.     Purification   of   waste    liquid    containing 

hydrocarbons  (P)  g03A 

Wagner,  H.     Tannin.   "  Tamol,"  and  "  Katanol  "  : 

parison  ol as  mordants  for  basic  dyestuffs 

■'.     See  Kurtenackcr,  A "     ..         ..     308a 

Wagner,  O.     See  Rabc,  P .']     26<A 

Wagner,  P.  A.     See  Fei  M 32r 


PAGE 

Wagner,  T.  Oxygen  ;  Possibility  of  using  in  blast- 
furnace practice            . .          . .          . .          . .          . .  329a 

Wagstaff,  R.  A.,  and  American  Smelting  and  Refining  Co. 
Blast-furnace  work  ;    Distributing  pulverised  coal 

in (P)         379a 

Wahl,  A.,  and  others.    Monochlorotoluenes  . .         . .         . .  363a 

Wahl,  A.  R.     See  Soc.  Anon,  des  Matieres  Colorantcs  et  Prod. 

Chim.  de  St.  Denis 287a 

Wahl,  O.     See  Hess,  K.              683a 

Wahl.  R.     Malted  food  ;  Manufacture  of (P)    ..          ..  388a 

Si  l  Bucherer,  H.  T.             135A 

Wahlberg,   H.   E.     Pines  and  spruces ;    Investigations  on 

Swedish 805a 

Wood  ;  Cellulose  value  of  pulp 805a 

Waite,  T.,  and  T.  Boldy.  Trade  effluents  and  the  like  ; 
Apparatus  for  separating  the  solid  matter  from 

(P)            607a* 

Waite,  V.  H.     See  Baker,  E.  M S7A,  87A 

Wattes,   H.     Ricin ;    Limits  of  the  agglutination  test  for 

94K,  113T 

Wakeman,  A.  J.     See  Osborne.  T.  B.  . .  . .        74a,  873a 

Waksman,  S.  A.  Micro-organisms  concerned  in  oxidation 
of  sulphur  in  the  soil.     Media  used  for  isolation  of 

sulphur  bacteria  from  the  soil            . .          . .          . .  561A 

Silk  fibres  ;  Degumming (P)            978a 

Soil ;   Growth  of  fungi  in . .          . .          . .          . .  949a 

Soil ;    Microbiological  analysis  of  as  index  of  soil 

fertility.     Mathematical  interpretation  of  numbers 

of  micro-organisms  in  the  soil            . .          . .          .  .  S69A 

Soil  reaction:    Influence  of upon  growth  of  acti- 

nomycetes  causing  potato  scab          . .          . .          . .  870a 

and    E.    B.    Fred.     Micro-organisms   in  the   soil ;     Plate 

method  for  determining  the  number  of . .  869a 

and  J.  S.  Joffe.    Sulphur  ;  Chemistry  of  oxidation  of 

by   micro-organisms  to  sulphuric  acid  and  trans- 
formation of  insoluble  phosphates  into  soluble  forms  263a 

See  Llpman,  J.  G ■ 187A 

Walbum,    L.    E.     Bacterial   toxins ;     Production   of   . 

Staphylolsysin  . .          . .          . .          . .          . .          . .  480a 

Walder,  H.    See  Simon,  H 702a* 

Waldie,  C.  J.     See  Stokes,  3.  W.  B 403A 

Waldo,  L.     Magnesium  compounds  :    Reduction  of (PJ  717a* 

Waldschmidt-Lcitz.  E.     See  Willstatter,  B 1224 

Wales,    H.     Naphthalenesulphonic    acids ;     Solubilities    of 

some  amino-salts  of . .          . .          . .  407A 

Walker,  A.N.     Hides;  Apparatus  for  treating (P)     ..  25a* 

Walker,  E.  E.    See  Lowry,  T.  M 291K 

Walker,  F.     Set  Sherman,  H.  C 152a 

Walker,  F.  T.     Chemical  warfare  and  the  Washington  Con- 
ference  . .         . .         . .         . .         . .         . .         . .  103r 

Walker,  G.  H.     See  Heenan  and  Froudc,  Ltd.           . .      399a,  657a 

Walker,  H.     Pulverising  mills  (P)        165a* 

Walker,  P.   H.,  and  J.   G.  Thompson.    Paints;    Physical 

properties  of . .          . .          . .          . .          . .  599a 

Walker.  R.  B.  R.     See  Kelly,  A 252a 

Walker,  R.  S.    See  Worthlngton,  E.  B 848a 

Walker,  V.  K.     See  McGahan,  F.  L 47a 

Walker,  W.,  and  Sons,  Ltd.    See  Marrls,  H.  C 225a* 

Walkey,  W.  R.,  and  A.  F.  Bargate.  Desulphurising  petro- 
leum and  similar  oil  (P)          ..          ..          ..          ..  931a 

Alcohol  ;    Preparation  of from  seaweed  (P)           . .  29a 

Wallace,  C.  P.,  and  others.  Hypochlorite  solutions  ;  Manu- 
facture of (P) 174a 

Wallace,  E.  L.     Sec  Bowker,  R.  C 476a 

Wallace,  G.  W.     Carbonising  carbonaceous  materials  (P)  . .  211a* 

Distilling  carbonaceous  materials;  Apparatusfor (P)  7A* 

Wallace,  T.,  aud  A.  Fleck.     Sodium  hydroxide  ;    Properties 

of  fused . .          . .          . .          . .          . .  12a 

Wallace,  W.,  aud  Oldbury  Electro-Chemical  Co.     Oxalate  - 

and  oxalic  acid  ;  "Manufacture  of (P)  . .          . .  17SA 

Wallace  and  Tiernan  Co.    See  Baker,  J.  C.    ..      229a,  461a.  4s1a 

See  Wallace,  C.  F _ 174a 

Waller,  A.  D.     Obituary           186e 

Wallin,    C.     E.     Koppers    by-product    coke-oven    plant  : 

Operation  of 29ST 

Wallington,  R.  W.     See  Francis,  F 800A 

Wallis,  A.  B.     .S.v  Mond,  R.  L.              173a,  173a 

Wallis,  B.    Annealing  kilns  (P)            . .         . .         . .         . .  576a 

Wallis,  F.    Se«Gott..r.             979a* 

Wallis,  R.  A.,  and  G.  Martin.  Condensed  milk  ;  Manufac- 
ture of (P)           192a 

Wallis,  R.  L.  M.,  and  Atmosterol,  Ltd.  Antiseptic,  disin- 
fectant, and  preservative  agents  ;    Employment  of 

(I')            156a 

Wallis,  T.  E.     Wheat  starch  ;   Characteristics  of 329R,  680a 

Walmrath,  J.     See  Erzrost  Ges.m.b  H.           8224 

Walmaley,  W.  \      Tar  distilling          279R,  296T 

Walsh,  J.  H.,  and  Johns-Manville,  Inc.    Dryer  (P)  ..         ..  969a 
Walter,  R.     Alloys  of  silicon  with  metals  of  the  iron  and 

chromium  groups  ;   Casting  ol (P)       . .          . .  19a 

Iron ;    Manufacture  of capable  of  being  hardened 

(P)           715A 


NAME    INDEX. 


103 


Walter,  R. — continued. 

Metals  ami  allovs  containing  boron ;    Manufacture  of 

(P)  63A 

Metals  and  alloys  ;    Briquetting  turnings  and  scrap  of 

(P)  766A 

Walters,  F.  M.,  jun.,  and   R.  Davis.      Colour-sensitising  of 

photographic  plates  by  bathing         . .          . .          . .  648a 

See  Davis,  It.             960a 

Walton,  J.  H.,  and  L.  B.  Parsons.     Hydrogen  persulphides ; 

Preparation  and  properties  of . .          . .          . .  251a 

\V:nidenbulcke,  F.     See  Dienert,  F 979a 

Wangemann,  M.     See  Falk,  H.              169a 

Warburton,  G.  H.     See  Lewkowitsch,  J 461r 

Warcollier  and  Le  Moal.     Apple  juice  ;    Progressive  disap- 
pearance of  free  sulphurous  acid  in  preserved 266a 

Ward,  C.  A.     Paint  ;  Manufacture  of (P)         . .          . .  639a 

Ward,  H.    See  Campbell,  N.  R..           405a 

See  Goucher,  F.  S 925a 

Ward,  J.  F.,  and  others.     Gases,  oil  vapours,  or  gaseous 

mixtures  ;  Treatment  of (P) 969a 

Ward  Baking  Co.     See  Hoffman,  C 913a 

i  .liman,  H.A.              30a* 

Warden",    H.    R.,    and    Central   Commercial    Co.     Asphalt  ; 

Manufacture  of (P)         . .  . .  . .  . .         5a 

Warden,  E.  H.     Coking  retort  oven  heating  flues  (P)  . .     660a 

Coking  retort  ovens  (P) 660a 

Wardenburg,  F.  A.     Guneotton  or  other  fibrous  materials ; 

Treating (P)         199a 

Wardlaw,    W.,    and    F.    W.    Pinkard.     Sulphur    dioxide ; 

Oxidising  action  of on  copper  chlorides  . .     ^  72a 

See  Stewart,  L.  M 750a 

Wargons    Aktiebolag,    and    J.    H.    Lidhohn.     Cyanamide ; 

Production  of from  calcium  cyanamide  (P)    . .     347a 

Cyanamide  ;     Production   of  a  solution  of  from 

calcium  cyanamide  (P)  . ,  . .  . .  . .     877a 

Waring,  W.  G.,  and  G.  Battelle.     Lead  and  zinc  ;    Extrac- 
tion of (P)  864a 

Zinc;     Extraction  of  from  materials  containing 

lead  and  zinc  (P)  . .  . .  . .  . .  . .     901a 

Zinc-lead  fume  ;  Treatment  of (P) 868a 

Wark,  1.  W.     Copper  and  iron  ;    Rapid  iodometric  estima- 
tion of in  mixtures  of  their  salts  . .        97R,  394a 

Warner,  F.  M.     Photographs  in  natural  colours  ;  Production 

of (P)         271A 

Warner,  J.  C.     See  Brown,  O.  W 406a,  5S8a 

Warren,  E.  D.     See  Knox,  W.  J.  850a 

Wartenweiler,  F.     Gold  ore  ;  Metallurgy  of  a  refractory 376a 

Washburn,  E.  W.,  and  E.  N.  Banting.     Ceramic  bodies; 

Determination  of  porosity  of  highly  vitrified  710a 

Porosity  of  ceramic  products  ;    Determination  of  

by  the  method  of  gas  expansion        . .  . .  . .     253a 

Porosity  of  ceramic  products  ;   Recommended  procedure 

for  determining by  absorption  methods         . .     217a 

Porosity  of  ceramic  products.     Use  of  petroleum  pro- 
ducts as  absorption  liquids     . .  . .  . .  . .     176a 

and  F.  F.  Footitt.     Porosity  of  ceramic  products.     Water 

as  absorption  liquid     . .  . .  . .  . .  . .     176a 

and  L.  Navias.     Flint  and  chalcedony  ;    Products  of  the 

calcination  of . .  . .  . .  . .  . .     813a 

Washburn,  F.  M.,  and  G.  E.  Muns.    Tar  recovery  from  by- 
product coke-oven  gas  ;    Distribution  of . .     658a 

Washburn,    F.    S.,    and    American    Cyanamid    Co.     Ferro- 

cyanides  ;   Production  of (P)    . .  . .  . .       58a 

Washburn,  B.  M.     See  Heath,  W.  P 266a 

Washburn,   W.   F.,  and   Titan  Co.  A./S.     Titanium  oxide 

pigment  ;  Manufacture  of (P)  . .  . .  . .     S35a* 

Wason,  L.  C.     Concrete  in  sea  water  ;   Tests  of . .     815a 

Waterman,  H.  I.,  and  J.  N.  J.  Perquin.     Aromatic  hydro- 
carbons in  fractious  of  mineral  oils  ;   Determination 

of 281a 

Mineral  oils  ;   Increase  of  degree  of  unsaturation  of 

in  the  Bergius  hydrogenation  process  . .  . .         3a 

and  M.  J.   Van  Tussenbroek.     Dextrose  ;    Formation  of 

formic  acid  in  decomposition  of  in  alkaline 

solution 339a 

Waters,  C.  A.     See  Garner,  W.  E 337t 

Waters,  C.   E.     Petroleum  oils  ;    Sulphur  compounds  and 

oxidation  of 928a 

Watford  Engineering  Works,  Ltd.,  and  J.  Faramor.     Paper- 
pulp  strainers,  paper-  and  rag-dusters  and  similar 

machines  (P) 705A* 

WTatkins,  C.  M.     See  Francis,  F.  800a 

Watkins,    R.    T.     Glaze    compositions ;     Degree   to    which 

different take  vapour  lustres     . .  . .  . .     217a 

Watrous,  D.  J.,  and  Airdry  Corp.     Drying  apparatus  (P)  . .     574a 
Watson,  A.  F.     See  Drummond,  J.  C.  . .  . .      563a,  718a 

Watson,  A.  R.     See  Dyer,  J.  W.  W 251t,  332T 

Watson,    E.    R.,    and   S.    Dutt.     Red    sulphide    dyestuffs ; 

Attempts  to  prepare . .  . .  . .  . .     S52a 

Watson,  H.  E.     See  Lakhani,  J.  V 435a 

Watson,    S.    J.     Potassium ;     Determination    of    in 

presence    of    sodium,    magnesium,    sulphates    and 
phosphates  by  Atkinson's  process     . .  . .  . .     649a 


page 

Watson,  W.,  and  others.     Bread  ;  Manufacture  of (P) 

607a,  644a 
Watson,  W.  V.,  and  San  Diego  Consolidated  Gas  and  Electric 
Co.     Gas-purifying    material ;     Composition    from 

spent  and  process  for  preserving  wood  and 

metals  (P)  M  M  _.  224a 

Watt,  E.  D.     See  Ledger,  C.  K.  M  182r 

Watt,  H.  E.     Industrial  chemist ;    Training  and  career  of 

the 472R 

Wattson,  W.  B.     Liquid-fuel  burner  (P)         931a* 

Wayland,  F.     Tanning  process  (P) 869A 

Wayman,  M.     See  Sherman,  H.  C 152a 

Webb,  H.  W.     Ammonia  ;   Oxidation  of . .  . .     558it 

and   M.   Taylor.     Nitrogen  in   nitrates   and    nitric  acid; 

Nitrometer  method  for  determination  of . .     362T 

Webb,   W.   R.,   and   Eastman  Kodak   Co.     Cellulose  ether 

films  ;  Treatment  of (P)  854a 

Cellulose-ether  solvent  and  composition  (P)        . .      542a,  97Sa 

Weber,  A.     See  Treadwell,  W.  D 919a 

Weber,  E.     See  Vogel 477  v 

Weber,  G.,  and  Soc.  Les  Petits  Fils  de  F.  de  Wendel  el  Cie. 

Explosive  having  liquid  air  as  a  base  (P)     8lA,  234a,  918a 

Weber,  H.  B.     See  Rosenthaler,  L 77a 

Weber,  H.  C.     See  Lewis,  W.  K 573a,  573a 

Weber,  H.   C.   P.     Varnishes ;     Changes   in  electrical  con- 

ductivity  of  insulating during  drying. .  . .     867A 

and  Metropolitan- Vickers  Electrical  Co.,  Ltd.  Composite 
material  formed  with  condensation  products  ;  Manu- 
facture of (P) 978a 

Weber,  P.     Lead  accumulators  ;   Viscid  electrolyte  for 

(P)  943a 

Weber,  U.     Yeasts;   Ester-forming ■       ..         ..         ..     430a 

Weber,  W.,  and  Weber  u.  Co.,  Ges.  fiir  Bergbau,  Industrie, 

und  Bahnbau.     Coke ;    Plant  for  separating  

from  waste  fuel  and  residues  (P)       ..          ..          ..  851a* 

Weber  u.  Co.,  Ges.  fiir  Bergbau,  Industrie  und  Bahnbau. 

See  Weber,  W 851a* 

Webster,  H.     Brick  kilns  (P) 374a 

Webster,  J.  P.  B.     Retorts  for  distilling  shale  etc.  (P)         . .  742a 
Webster,  P.  W.     Vapours  and  gases  formed  by  heating  fatty 
oils,    gums,    resins    and   other   organic    materials  ; 

Treating  the (P) 676a 

See  Perry,  B.  S 295a 

Webster,  W.  R.     Brass  ;   Method  of  making (P)          . .  766A 

Weddell,  E.  G.     Separators  for  minerals  and  other  solids ; 

Hydraulic (P) 2a* 

Wedgwood,   P.,  and   H.  J.   Hodsman.     Volatile  matter  in 

fuels  ;   Determination  of . .  . .      372T,  505K 

Weeks,  E.  G.     See  Merz  and  McLellan  48a,  279a,  270a, 

577A*,  635A,  S90A* 

See  Michie,  A.  C 661a* 

Weeks,  L.     Kilns  ;  System  of (P)          217a 

Weeks,  11.  M..  and  Weeks  Photo-Engraving  Co.     Electrical 

etching  (P)         824a 

Weeks  Photo- Engraving  Co.    See  Weeks,  R,.  M S24a 

Wegner,  M.     Soap  powder ;   Self -heating  of ..          ..  424  a 

Weidenthal,  H.  G.,  and  Westinghouse  Electric  and  Mfg.  Co. 

Eli « trie  furnace  (P) 556a* 

Weidlein,  L.  B.     See  Kling,  F.  E 1a 

Weigert.  F.     Photochemical  equivalent  law  of  Einstein     . .  309a 

and  W.  Scholler.     Photochemistry  of  silver  compounds  . .  120A 
Weighcll,  A.     Coals  ;    Agglutinating  value  of  some  Durham 

17T 

Weight,  O.  W.    See  South  Metropolitan  Gas  Co 215a 

Weigley,  M.    See  Bailey,  C.  H.            387a 

Weil,  H.,  and  H.  Ostermeier.     Naphthalene-  and  naphthol- 

carboxylic  acids  ;   Reduction  of . .          . .  93a 

Weil,  K.     See  Windaus,  A 684a 

Weil,  L.     Anthracene  ;    Production  of  high-percentage  pure 

(P)             581A 

Weil.     Electrical  precipitation.     Discussion   . .          . .          . .  27t 

Weinberg,  A.  A.     Nephelometry.     A  nephelometer  with  a 

constant  standard        . .          . .          . .          . .          . .  235a 

Weindel,  A.     Phenols  of  low-temperature  tar           ..         ..  852a 

Weinland,  R.,  and  R.  Stroh.     Lead  salts ;    Constitution  of 

basic 897a 

Weinlig,  A.  F.     Milk  ;    Physical  and  chemical  changes  in 

on  pasteurising    . .          . .          . .          . .          . .  833a 

Weintraub,     E.,     and     General    Electric    Co.     Catalysing 

material ;   Preparation  of (P)    . .          . .          . .  658a 

Weisberg,  L.,  and  others.     Resin  ;  Polyglycerol (P)  . .  676a 

Weise,  P.     Copper-tin  alloys  ;  Electrolytic  separation  of 672a 

Weiser,  H.  B.     Chromium  oxides  ;  Hydrous . .          . .  588a 

Stannic  oxide  ;   Hydrous . .          . .          . .          . .  979a 

Weiss,  G.     See  Goldschmidt,  F.             473a 

Weiss,  H.     Brewers'  grains  ;    Determination  of  unsacchari- 

fied  starch  in . .          . .          . .          . .          .  •  725a 

See  Zerner,  E 581a 

Weiss,  IT.  F.,  and   C.  F.  Burses-;    Laboratories.       Wood; 

Transforming  and  colouring (P)            . .          . .  329a* 


104 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

;  M    and  Barrett  Co.    Tar  distillation  process  (P)  . .     539a* 

and'  C     It.    Downs.     Malic    acid ;     Formation    of    r. 

Detect] '  maleic  acid  in  admixture  with  fumaric 

and  malic  acids  519a 

Weiss    M    L.,  and  Dovan  Chemical  Corp.    Diphenylguani- 

i  u£ .(P)      686A 

Vuli  id 383a 

chel,  P 959a 

Weiss,  S.     See  Ellas,  H.  305a 

Welssenborg,  K.    See  Etttsch,  M I45A 

i;.     Propellants;     Drying   in   tunnel 

dryers     . .  . .  . .  . .  -  •  ■  •       80A 

and  A.  Zoder.    Chlorosulphonic.  acid  :  Analysis  of ..     369A 

rber,  E.    See  Ges.  lor Teerverwertnng  8a,  407a,  803a 

i:  dman,  L.  V 149a* 

Wcitzenkorn,    J.    W.     High-speed    and    tungsten    steels; 

ufactnre  of ..         ..         ..         ..         -•     331a 

Molvbdenun  trioxide  ;  Production  of (P)   . .         . .       99a 

See  Sargent,  G.  W.  106a,  108a 

Weizrnann,  C,  and  D.  A.  Legg.     Butyl  alcohol ;  Production 

ol  secondary (P)  270a» 

Weizmiiller,  F.    Diastase  of  cow's  milk  ;   Power  of to 

decompose  different  kinds  of  starches  . .         . .     228a 

Welch  F.  C.    Mason's  hydrated  lime  ;  Improving  the  quality 

of (P)         329A 

Welch,  H.  v..  and  International  Precipitation  Co.    Metallic 

values  from  slag  ;  Recovery  of (P)     . .         . .     597a 

Welford,  A.    Air  or  other  gases  ;  Cleansing  and  humldifyinE 

apparatus  for (P)  797a* 

Wellman-Seaver-Morgan  Co.     See  Hoffman,  C.  C 453a 

Welhnan  Smith  Owen  Engineering  Corp.,  Ltd.,  and  A.  V. 
Kemp.     Furnace  for  metallurgical  and  analogous 
purposes  (P)      . .         . .         . .         . .         .  -         •  ■     637a 

Wells,  A.   A.,  and  S.   B.   Hunt.     Hydrocarbon  material ; 

Manufacture  of  unsaturated (P)  ..  ..     580A 

and  National  Carbon  Co.,  Inc.     Dcpolariser  from  used  dry 

batteries  ;  Purifying (P)  423A 

Wells.  A.  H.     Tikitiki  (rice  polishings)  extract  ;  Preparation 

of for  treatment  of  beriberi      . .         . .         . .       77a 

and  G.  A.  Perkins.     Copra  drying  ;   Use  of  sulphur  fumes 

in 987A 

Nipa-sugar    manufacture  ;     Recent    improvements     in 

512a 

Wells,  F.  E.     See  Wells,  W.  C.  . .  . .       975A,  975a,  975a 

Wells,    H.    G.     Anthracite ;     Constitution    of    .     Dis- 

ii    . .  ..  ..  ..  ..  ..  ..       92T 

Wells,  J.  F.,    Gas  coolers,  cleaners,  or  condensers  0?)       ••     131a 

Gas  producers  (P) 4a,  47a 

Wells,  P.  V.     Nephelometer ;   simple  theory  of  the ..     310a 

Wells,  R.  C.    Silica  ;   Determination  of in  filtered  sea- 
water      980A 

Wells,  W.  C.  and  F.  E.     Oil  vapours ;    Process  of  filtering 

(P)  975A 

Oils,  pitch,  and  the  like  ;  Process  of  obtaining (P) . .     975a 

Petroleum,  shale  oil,  coal  tar,  and  the  like ;    Refining 

(P)  975a 

Welter,  A.    Finely  granulated  compounds  :    Production  of 

(P)  205A 

Potassium  and  sodium  carbonates  ;    Preparation  of  a 

non-hygroscopic  mixture  of (P)  ..         ..     753a 

Saponaceous  soda  ;  Manufacture  of (P)      ..  ..      182A 

Soaps  ;  Spontaneous  heating  of . .  . .  . .     50SA 

Welter.  T.     Nitrate  powders  ;    Process  for  making  cohesive 

cords  of (P)         350A 

Welwart,  N.     Tin  alloys  containing  iron  ;   Analysis  of 762A 

Wendehorst,  E.    See  Jander,  G 468A 

Wendel,  F.    Yeast ;    Composition  of  the  nutrient  solution 

in  manufacture  of  pressed . .  . .  . .     605A 

Wendt,  G.  L.     Tungsten  ;   Atomic  disintegration  of . .     292E 

and  C.  E.  Irion.    Tungsten;  Attempts  to  decompose 

at  nigh  temperatures  ..         ..         ..         ..         •■     900a 

Wenger,    P.,    and    P.    Christin.     Monazite ;     Attack    and 

analysis  of . .  . .  . .  . .  .  ■     707A 

Wenjacit    Ges.m.b.H.     Resinous    masses;     Production"  of 

(P)  " 720A 

Wentzel  und  Co.,  "Gafag"  Gasfeuerungsges.     Peat;    Pre- 
paration of for  gasification  in  producers  (P)  . .     130a 

Wenzi,  H.     Cellulose  ;   Removal  of  resin  from  wood  prior  to 

iifacture  of ..        ..         ..        ..         ..     935a 

See  Schwalbe.  C   G.  409a 

Wcrkman,  C.  H.    See  Gibbs,  W.  M 511a 

Werner,  E.  A.     Urea  ;    Decomposition  of  by  sodium 

romite  in   alkaline  solution,  and  estimation 

oi  una 996A 

and    J.     Bell.      Uethylguanidine     and     0j9-diniethyl- 

guanidine;    Preparation  of ..         ..         ..     feTtiA 

Werner.   E.   E.     Emulsoids ;    Hethod  for  producing  

(P) 240a 

Werner,  E.  M..  and  Soyneslte  Explosives  <  o.     Explosive 

positions;   Manufacture  of (P)  . .         ..     880a 

Werner,  F.     See  Kurtenacker,  A 903a 

Werner,  J.     B                     ,  linen,  half-linen,  and  cotton  . .      til  a 
Werner,  P.     See  Holde,  D 557a 


PACE 

790A 
605A 
948a 


Wertheim,    E.     Schiffs    solution ;     Modified    for 

detection  of  aldehydes 

Wertheimer,  E.     See  Abderhalden,  E. 

Weschc,  H.     See  Akt.-Ges.  f.  Anilin-Fabr. 

Wescott,  E.  S.,  and  Kalmus,  Comstock,  and  Wescott,  Inc. 

Arsenical  cobalt-nickel  ores;   Treatment  of 

(P) 258a 

Wessel,  !>.,  Akt.-Ges.  fur  Porzellan  u.  Steingutfabr. 
Fluxes  in  ceramic  masses;  Process  for  tho- 
roughly distributing (P)        ..         ..         ..     757a 

Wessels  und  Wilhelmi.  Distillation  of  fuels  of  all  kinds, 
and  particularly  of  peat ;    Ring  furnace  for  the 

(P)  45CA 

West,  A.  P.,  and  J.  M.  Feliciano.  Copra  cake ;  Extrac- 
tion of with  solvents  . .         . .         . .         . .     866a 

West,  C.  J.     See  Fries,  A.  A.  229R 

West,  J.,  and  others.     Charging  means  for  retorts  for  the 

distillation  of  carbonaceous  materials  (P)  ..     322a* 

Destructive  distillation  of  coal  and  like  carbonaceous 

materials  (P)  973A 

See  Glover,  S 93a 

West,  J.  H.    Ammonia;   Raw  materials  for  synthetic . 

Manufacture  of  hydrogen  and  nitrogen    . .  . .     393R 

and  A.  Jaques.     Hydrogen  in  coal  gas  ;    Increasing  the 

yield  of  (P) 702a* 

See  Cumberland  Coal  Power  and  Chemicals,  Ltd.     . .     571>a 
West,  P.     Corrosion  of  metals  by  water  iu  a  closed  system  ; 

Prevention  of . .         . .         . .         . .         . .     672a 

Westerberg,  A.     Electric  furnace  (P)         ..         ..         ..     473A 

Westerlind,  S.     See  Vesterberg,  K.  A 728a 

Western    Electric    Co.,    Inc.     Thermionic    cathodes    for 

vacuum  tubes  ;    Manufacture  of (P)  . .     533a 

See  Bellamy,  H.  T 502A 

See  Elmcn,  (i  .  W.  507a 

See  Wilson,  W 581a 

Western  Gas  Construction  Co.     See  Salathe,  F 322a 

Western  Precipitation  Co.     See  Rhodes,  E.  O.     . .  . .     375a 

i   Rubber  Co.     See  Hazeltine,  H.  H 511A* 

Western  States  Machine  Co.     See  Roberts,  E.       . .  . .     450a 

Westfalisch-Anhaltische      Sprengstoff      A.-G.     Snin 

powders    and    waste    from    their    manufacture; 

Converting  into  celluloid  etc.  (P)    ..  ..     199a 

Solvents  ;    Recovery  of  from  the  raw  material 

for  smokeless  powder  etc.  (P)      . .         . .         . .     730a 

Westgren,  A.,  and  G.  Phragmen.     Iron  and  steel ;  Crystal 

structure  of  ..  ..  ..  ..  ..      758A 

Steel;   X-ray  studies  on  crystal  structure  of ..     41?a 

Westinghouse  Electric  and  Mfg.  Co.     See  Carpenter,  0.  H. 

333a,  507a 

See  Chubb,  L.  W.  44a 

See  Colby,  O.  A.  102a,  423a 

See  Coulson,  J.  ..         ..         ..         ..         ..     423a 

See  Darlington,  1'.  99a 

See  Eschholz.  O.  H 737a 

See  Fortescue,  C.  Le  G.  796a,  797a 

See  Jensen,  G.  . .  . .  . .  . .  . .     395a 

See  Kempton,  W.  11.  ..         ..         ..         .. 

See  Nicholson,  S.  L.         . .  . .  . .  . .  . .      768A 

See  Weidenthal,  H.  G 556a* 

West  innhouse  Lamp  Co.     See  Compton,  A.  H.       ..         ..     034a 

See  Marden,  J.  W.  942a 

Weston,  P.  D„  and  Olympia  Oil  and  Cake  Co.,  Ltd.  Oil- 
cake-meal forming  presses  ;  Apparatus  for  con- 
trolling the  operations  of  (P)  ..  ..     334a* 

West's  Gas  Improvement  Co.     See  Glover,  S.       ..  ..       93a 

See  West,  J 322a*,  B73a 

See  Wild,  W 80Sa* 

West  Virginia  Pulp  and  Paper  Co.     See  Statham,  N.     ..     363a 

WTestwood,  A.     Gold  bullion  ;   Assay  of . .  . .      255a 

Wettengel,  C.  A.,  and  American  Zinc,  Lead,  and  Smelting 

Co.     Condenser  for  zinc  furnaces  (P)       . .  ,  .*  822A 

Wever,    F.     Steels ;     Atomic    arrangement    of    iron    in 

austeuitic  . .  . .         . .         . .         . .     550a 

Weyers,    A.    W.    F.     Kiln ;     Continuous    down-draught 

chamber (P) ..712a 

Weyl   und   Co.,   Chem.  Fabr.   Lindenhof  C.     Lubricating 

oils  ;    Production  of (P)         . .  . .  . .  5a 

Weyland,  H.     See  Bayer  und  Co.,  F 786a,  837a 

Weyman,  G.     Ammonium  sulphate  ;    Neutralisation  and 

drying  of  (P) I 

Carbonisatiou  of  coal  ;    Increasing  the  rate  of  

.:,   532a 
Fuels  ;    Influence  of  structure  on  the  combustibility 

and  other  properties  of  solid  .     Discussion     207T 

Whattam,  T.  W.     See  Perkin,  A.  G 246a 

Whcatley,    It.,  and   Victoria   Rubber  Co.,    Ltd.     Rubber; 

Heat  vulcanisation  of (P)     . .         . .         . .     640a 

Wheaton,  H.  J.     See  Crosfteld,  J.,  and  Sons,  Ltd.         ..     372a 
Wheeler,  A.  S.,  and  I.  W.  Smithcy.     2-Amino-p-cynene  ; 

Bromination  of  ..         ..         ..  231A 

Wheeler,  R.  V.     Resins  iu  bituminous  coal  ..  ..      liy>v 

See  Mason,  W 972a 

See  l'ayman,  W.  .  .  ..  ..  ..  ..  ..      359a 


NAME  INDEX. 


105 


PAGE 

Wheeler,  T.  L.     Charcoal  ;    Apparatus  for  making  active 

(P)         406a 

Wheeler,  T.  S.,  and  E.  W.  Blair.     Formaldehyde  ;   Action 
of  ozone  on  hydrocarbons  with  special  reference 

to  production  of  ..  ..  ..  ..     331t 

Fractionation  in  a  current  of  gas  or  under  reduced 

pressure  ;    Receiver  for  . .         . .         . .       59T 

See  Blair,  E.  W.  1S7T,  303t,  560r 

Wheeling  Steel  and  Iron  Co.     See  Peacock,  S.     . .         ..       19a 

Wheelwright,  H.  M.     Paper  ;   Beater  sizing  of (P)  . .     894a* 

Whinfrey,  C.  G.     See  Heathcote,  H.  L 763a 

Whinyates,  L.     See  Atack,  F.  W 20R 

Whipp  Bros,  and  Tod,  Ltd.     See  Craig,  T.  J.  1 11a* 

Whitaker,  J.  and  R.     Dyeing,  scouring  and  washing  wool 
and    other    fibrous    materials ;     Lifting    gear    of 

machines  for (P)         . .  . .  . .  . .     461a* 

Whitaker,  M.  C,  and  U.S.  Industrial  Alcohol  Co.     Cata- 

lysei  apparatus  (P)  . .  . .  . .  . .  . .  2a 

Distillery    slop  ;      Obtaining    potassium    compounds 

from  (P)  216A 

Fuel  for  internal  combustion  engines  (P)      ..      624a,  701a 

Fuel;    Liquid  (P) 209a 

and  ethers.     Ethylene;    Apparatus  for  producing 

(P) L57A 

Ethylene;   Process  of  producing- (P)       ..         ..     648a 

Whitaker,  B.     See  Whitaker,  J 461a* 

Whitby,  G.  S.,  and  H.  N.  Stephens.     Rubber ;   Lcevulinic 

acid  from  oxidised  . .  . .  . .  . .     475a 

White,  A.  G.     Ammonia  with  air  and  oxygen  ;    Limits 
for  propagation  of  flame  at  various  temperatures 

in  mixtures  of  . .  . .       ■  . .  . .     S56a 

Propagation  of  flame  in  vapour-air  mixtures  ;    Limits 

of .     Mixtures  of  air  and  one  vapour  at  the 

ordinary  temperature  and  pressure  . .  . .     699a 

White,    A.    H.,    and    International    Paper    Co.     Paper  ; 

Drying  (P) 324a* 

White,  D.  H.     See  Burningham,  F.  A 10a 

See  Richter,  G.  A 10a 

White,  E.  C.     See  Larson,  A.  T 252a 

White,  E.  F.     Drying  method  and  mean3  (P)        . .  . .      736a 

Sulphur  ;    Purifying (P)   . .  . .  . .  . .       14a 

White,  F.  G.     Coal  tar  paint ;    Production  of (P)    . .       23a 

White,  G.  N.     See  Worcester   Royal   Porcelain    Co.,    Ltd.     353a 
Whitehead,  E.     Mixing  and  other  purposes  ;    Apparatus 
for  regulating  feed  of  finely  divided  substances 

for (P) 

See  Thompson,  F.  C. 
Whiteley,  J.  H.     Pearlite  in  steel ;   Formation  of  globular 

through 


Steel  ;    Diminution  of  lag  at  Arl   in 
deformation 

Whiteley,  J.  O.,  and  Dentists'  Supply  Co.     Alloy  (P)  .. 

Whitfeild,  B.  W.     See  Joseph,  A.  F 144T, 

Whitfield,  C.     Drying  apparatus  (P) 

Whitford,  H.  N.     Liquid  fuel  ;  Possibilities  of  plant  growth 
of  the  moist  tropics  to  furnish  materials  for 

Whiting,  W.  A.     See  Supplee,  G.  C 

Whitman,  W.  G.,  and  L.  Evans.     Nitric  acid  ;   Air  bleach- 
ing of  

and   J.    L.   Keats.     Heat   transfer   between   gases   and 
liquids  ;    Rates  of  absorption  and 

Whitmore,  F.  C.     "  Organic  compounds  of  mercury  "     . . 

Whitson,  J.  W.     See  Parker,  T.  H.  . .  . .      316a, 

Whittles,  C.  L.     Soils  ;    Classification  of on  the  basis 

of  mechanical  analyses 

Whitworth,  W.     See  Brooke,  R.  M 91a, 

Whyte,  D.     Lead  sulphate  water  paste  ;    Conversion  of 
into  oil  paste  (P) 

Whytlaw-Gray,  R.,  and  J.  B.  Speakman.     Aerosols,  or 
solid  disperse  systems  in  air 

Wibaut,  J.  P.     Amorphous  carbon  ;    Behaviour  of  ■ 

on  heating  with  sulphur.     Carbon  sulphides  13a, 

Carbon  monoxide  ;    Preparation  of  carbon  from 

by  means  of  contact  substances 
Sulphur  compounds  of  coal,  their  behaviour  on  de- 
structive distillation,  and  sulphur  compounds  of 
coke 

Wiberg,   F.   M.     Reducing  ores   and  oxygen   compounds 
utilised  as  ores  (P)  .. 

Wichmann,  A.  P.     See  Ralston,  O.  C. 

Wichmann,  G.  H.      Metals  and  alloys  containing  graphite  ; 
Manufacture  of  (P)  ..  ..    108a*, 

Wickenden,  L.(  and  Industrial  Chemical  Co.     Acid-resist- 
ing paint  or  varnish  composition  etc.  (P) 

Wickham,  H.  A.,  and  Roa,  Ltd.     Rubber  latex  ;  Apparatus 
for  the  treatment  of (P)  . . 

Wickham,    W.    G.     South    Africa ;     Report    on    economic 
conditions    in   

Widmer,  C.     See  Eder,  R 

Widmer,  K.  M.     See  Mitchell,  A.  M.  . . 

Wiebking,    Iv.     Photographic   plate3   (P) 

Wiechowski,    W.     See    Adler,    O. 


927a* 
256a 

419a 

758  a 
901a 
172T 
490a 

158R 
431A 

895a 
31  5a 

19R 

358a 

511A 
453a 

600a 

393r 

281a 
545A 

888a 

108a* 
318a 

258A 

66a 

383a 

572R 
194a 
296a 
730A 
956a 


Wiedbrauch,    E.     Specific    gravity    of    small    quantities    of 

liquids  ;  Apparatus  for  rapid  determination  of ■     918a 

Wiegner,    G.,    and    J.    Magasanik.     Volatile    fatty    acids; 

Determination  of  in  silage      . .  . .  . .     606a 

Wieland,  H.,and  R.  Alles.     Toad;  Toxic  principle  of  the 607a 

and  O.  Schlichting.     Bile  acids.     Oxidation  of  cholic  acid    345a 

Wieland,    P.     See   Ristenpart,    E 895a 

Wieland,  P.  J.  H.     See  Korber,  F . .     551a 

Wienges,  H.     Filling  material  for  cooling  towers,  reaction 

towers  or  the  like  (P)  . .  . .  . .  . .  . .     451a 

Wiesler,  H.     See  Kopetschni,   E 664a,  664a 

Wietzel,  G.     See  Badische  Anilin-  und  Soda-Fabr.    . .  . .     454a 

Wiggins,  J.  H.     Petroleum  ;    Evaporation  loss  of  in 

the    Mid -continent    field        699a 

Wigginton,  R.    See  Findley,  A.  E 531a 

Wightman,    E.    P.,    and    S.    E.    Sheppard.    Photographic 
emulsions  ;    Size-frequency  distribution  of  particles 

of  silver  halides  in and  its  relation  to  sensito- 

metric    characteristics  . .  . .  . .  . .     119a 

and    others.     Photographic    emulsions ;     Distribution    of 

sensitiveness  and  size  of  grain  in  - — —     . .  . .     960a 

Wigley,  G.  II.     See  Coward,  H.  F 497a 

Wignall,  H.     See  British  Dyestuffs  Corp.,  Ltd 287A 

Wikle,  H.   H.     Electrolytic  cell  for  precipitating  metallic 

oxides    (P)        147a 

Wikner,  S.  A.     Tar  ;   Preparation  of  road in  gas  works     457a 

Wilbuschewitsch,     M.     Oils ;      Continuous     extraction     of 

(P)  109A 

Wilcox,  H.  M.,  and  F.  O.  L.  D'Aix.     Copper  ;    Recovering 

from  solutions  of  copper  sulphate  (P)  . .     506A 

Wild,  L.  W.,  and  E.  P.  Barfield.     Electric  furnaces ;    Pre- 
venting burning  out  of  (P)    . .  . .  . .     180a 

Wild,  W.,  and  West's  Gas  Improvement  Co.,  Ltd.     Carbon- 
aceous materials  ;  Heating  of  vertical  retorts  for  the 

distillation  of  (P)  803a* 

See  West,  J.  „  ...  .. 322a* 

Wilder  man,  M.     Electrolytic  decomposition  of  alkali  salts, 

employing  mercury  cathodes  (P)    . .  . .  . .     812a 

Hypochlorites  and  chlorates  ;    Production  of  (P)     812a 

Wildhagen  und  Falk,  Pflrschinger  Mineralwerke  Gebr.     De- 
colorising power  of  silicates  for  fatty  and  mineral 

oils  etc.  ;    Increasing  the (P)    . .  . .  . .     676a 

Wiley,  J.  A.     See  Kelley,  G.  L.  60a 

Wilhelm,  K.  F.     Oil  and  like  extractor  (P) 557a 

Wilke,   A.,    und   Co.,   and   O.    Kulka.     Vacuum  distillation 

plant  for  oil  recovery  (P)     . .  . .  . .  . .       89a 

Wilke,  C.     See  Holde,  D 260a,  424a,  557a,  598a 

Wilkes,  S.  H.     See  Applebey,  M.  P 371a 

Wilkin,  R.  E.     See  Olin,  H.  L.  393a 

Wilkinson,  E.  W.,  and  Minerals  Separation  North  American 

Corp.     Ores  ;    Concentration  of  (P)   . .  . .       63a* 

Wilkinson,    W.    T.     Photographic    process ;     Modified    for- 
mulae for  wet-collodion  ..  ..  ..     120a 

Will,  E.     See  Hofmann,  K.  A. 92    t 

Will,  E.  G.     See  Scott,  R.  D 153a 

Willaman,  J.  J.     Inulin  ;    Preparation  of ,  with  special 

reference  to  artichoke  tubers  as  a  source     . .          . .     339a 
WUlard,    A.,    and    Willard    Storage    Battery    Co.     Storage- 
battery  plates  ;  Paste  for (P) 944a* 

Willard,  H.  H.,  and  D.  Hall.     Cobalt ;    Gravimetric  deter- 
mination   of   . .  . .  . .  . .  . .     999a 

Cobalt ;    Separation  of  by  means  of  phenylthio- 

hydantoic    acid  . .         . .         . .         . .         . .     999a 

Cobalt  ;    Volumetric  determination  of  and  deter- 
mination of  cobalt  in  alloy  steels  . .  . .  . .     999a 

Copper  ;    Separation  of  by  means  of  phenylthio- 

hydantoic    acid  . .  . .  . .  . .  . .     999a 

and  G.  F.  Smith.     Magnesium  perchlorate  ;    Preparation 

and  properties  of and  its  use  as  a  drying  agent     979a 

See  Meloche.C.  C 413a 

Willard  Storage  Battery  Co.     See  Willard,  A 944a* 

Willcox,  O.  W.,  and  American  Zeolite  Corp.     Base-exchang- 
ing substances ;    Preparation  of  artificial  (P)     811a 

Willemse,  N.  J.  M.    Water-gas;   Production  of (P)  . .      '91a 

Williams,    A.    E.     Glasses ;     Disintegration    of    soda-lime 

in  water  . .  . .  . .  . .  . .  . .     709a 

Williams,  A.  G.     Phenanthrene  ;    Determination  of ..       49a 

and    Barrett    Co.     Dicarboxylic    acids ;     Preparation    of 

(P)  687A 

Williams,  A.  H.,  and  Ionite  Storage  Battery  Co.     Storage 

batteries;    Non-fluid  electrolytes  for  ■ (P)    ..     147a 

Williams,  C.  E.,  and  Hooker  Electrochemical  Co.     Antimony 
trichloride  ;    Preparation  of  aqueous  solutions  of 

fP)  753a 

and   G.   R.   Shuck.     Resistor    carbons ;     Resistivities    of 

some  granular  . .  . .  . .  . .  . .     865a 

and  C.  E.    Sims.      Cast    iron ;    Carburisation   in   manu- 
facture of  synthetic . .  . .  . .  . .     549a 

Williams,  F.  W.  R.     Superphosphate  ;  Apparatus  for  manu- 
facture of  (P) 26a* 

Williams,  G.  A.,  and  J.  B.  Ferguson.     Silica  glass  and  other 
glasses  ;  Diffusion  of  hydrogen  and  helium  through 


106 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Williams,  H.    See  Singleton,  W 197R,  545a 

Williams,   H.  M.,  and  Electrol  Mfg.  Co.     Electric  storage 

batteries;    Process  oi  making  (P)     ..         ■-     507a 

and  T.  It.  Terry.     Cast  iron  ;  Melting  of  - — —  in  the  Booth 

rotating   electric   furnace       ..         ..         ..         ..     466a 

Williams,  J.  C.     See  Bonanli,  J.  P 553a 

Williams,  J.  G.    Soluble  phd  pnatee  :    Manufacture  of 

(P)  752a 

Williams,  1..  T>.  Gas  Indite]  Catalyst  in  German  auto- 
matic  — . .  . .  . .  . .  . .  - .       76R 

Williams,  L.  H.    See  Drafceley,  T.  J.  347T 

Williams,  M.  F..  and  Williams'  Patent  Crusher  and  Pul- 
verizer Co.    Crusher  and   pulveriser  il*)   ..        ..     C21a 

WttHams.P.     See  Seligman,  It.  418r,818a 

Williams,  P.  N".     S&    E  ilws        \.  II.  719A 

Williams,  R.  J.     See  Adams,   C.    E.  156a 

Williams.    It.   It.     Vitamins  from  standpoint  of  structural 

chemistry         ..         ..         ..        ..        ..        ..     191a 

Williams,  it.  T.  D.    See  Avery,  D 767a* 

Williams,  W.  W.    See  Cock,   R.  B 151a* 

Williams  Patent  Crusher  and  Pulverizer  Co.     See  Plaisted, 

MM 576A 

See  Williams,   H.   E 621a 

Williamson,    E.    D.    Compressibilities;     Determination   of 

up  to  high  pressure  and  applications  to  high- 

pres   ore  chemistry      . .         . .         . .         . .         . .     392r 

Glass;    Mathematical  note  on  annealing  of ..     176a 

Williamson,  F.  O.    Crushing  mill  (P)         450a 

Willtgman,  G.  A.    See  Justice,  I   M,  254a 

Willison, W. W., and Thermokepf  Products*  orp.  Vegetables; 

Treating  in  preparation  for  canning  (P)     ..     644a 

Willkie,  H.  F.,  and  U.S.  Industrial  Alcohol  Co.  Cellulose 
esters;  Producing  homogeneous  products,  in- 
cluding films,  from (P) 213a 

Methyl  format)  ;    Process"  ol  making (P)  . .         ..     232a 

Varnish,  paint  or  cement  ;   Manufacture  of (P)     . .     301a 

Willmer,   H.     Enamel   for   coating  the   surfaces   of  steam- 
engines  liable  to  corrosion  (P)         ..  ..  ..     502a 

Willows,  R.  S.,  and  others.  Pattern  effect  on  ■  ottons  and  other 
vegetable  fibre  fabrics,  also  including  silk;  Pro- 
duction of (P) 55A,  369a* 

Willsdon,  R.  P.     See  Glossop,  W 743a 

Willstfitter,  R.    Formaldehyde  ;    Production  of  from 

ethylene   (P) 566a 

and  W.  Csanyl.     Emulsin 228a 

and  R..   Kuhn.     Invcrtase  and   maltase ;    Extraction  of 

adsorbed  from  the  adsorption  products      ..     189a 

Invertase  and  raffinase  ;    Specific  nature  of . .     189a 

and    G.    Oppenheimer.     Emulsin    . .  . .  . .  . .     783a 

Lactose-fermenting  yeasts ;  Lactase  content  and  ferment- 
ing power  of  . .  . .  . .  . .  . .     153a 

and  F.  Rackc.     Invertase 386a 

and     W.    Steibelt.     Maltase    and    a-glucosidase ;      Non- 
identity  of  190a 

Yeasts  poor  in  maltase  ;  Fermenting  activity  of . .     189a 

and  E.  Waldschinidt-Leitz.     Amino-acids   and  peptides ; 

Alkalimetric  determination  of . .  . .  . .     122a 

and   others.     Invertase  . .  . .  . .  . .  . .     952a 

Lignin    and    carbohydrates  ;     Reduction  of  with 

hydriodic  acid   and   phosphorus      . .         . .         . .     893a 

Tropinonemonocar  boxy  lie    acid     esters  ;       Preparation 

of  ■ (P) 567A* 

Wilputte,  A.  A.     See  Hubbell,  J.  E.  130a 

Wilputte,  L.     Coke  oven  doors  and  doorways  (P)  , .          . .     637A* 
and  American  Dressier  Tunnel  Kilns,  Inc.     Tunnel-kiln  air- 
heater    (P)        845a 

See  Hubbell,  J.  E.  130a 

"Wilson,  D.     See  Ingold,  C.  K 979a 

Wilson,  E.      See    Dowson   and    Mason  Gas  Plant  Co.,  Ltd.     623a 

Wilson,  F.  E.    See  Baillie,  W.  1 45t 

Wilson,  J.  A.,  and  G.  Daub.     Bating  ;  Critical  study  of 68a 

and  E.  J.  Kern.     Gelatin  jelly  ;   Effect  of  change  of  acidity 

upon  rate  of  diffusion  of  tan  liquor  into . .     262a 

Tan  liquor  ;    Colour  value  of  a  as  a  function  of 

the  hydrogen  ion  concentration      ..  ..  ..       68a 

Tannin  analysis  ;  Wilson-Kern  method  of . .  . .       24a 

and  others.     Sewage  sludge  process  ;    Activated . .     389a 

Wilson,  J-  K.     See  Lyon,  T.  L.  427a 

Wilson,  J.  L.     Distillation  of  liquids,  such  as  tar  and  oils  (P)     538a 
Wilson,  J.  W.     Vitamin  A  In  plants  ;    Relation  of  photo- 
synthesis to  production  of ..  ..  ..     479a 

Wilson,  L.  J.     See  Courtaulds,  Ltd.     . .  ^.  . .  . .     027a 

Wilson,  L.  P.    sec  Courtaulds,  Ltd 627a 

Wilson,  O.  G-,  jun.     See  Parsons,  L.  W 181a 

Wilson,  R.  E.,  and  D.  P.  Barnard.     Gasoline  and  kexosi  ae  ; 

Condensation    temperatures   of    mixtures   of  

with  air  . .  . .  .  .  .  .  .  .  .  .  2a 

Lubrication  ;  Mechanism  of .    Methods  of  measur- 
ing the  property  of  oiliness..        ..         ..        ..     929a 

Motor  fuels  and  t In  ir  mixtures  with  air  ;    Total  sensible 

heats  of  . .         . .         . .         . .         . .         . .         3a 

and   E.    \\.    Fuller.     Phosgene;    Reactions  of  with 

ae  and  m-xylene  in  tin-  present  e  oi  aluminium 
chloride..         ..         ..         ..         ..         ,.         „     743a 


PAGE 
Wilson.  R.  E. — continued. 
and  T.  Fuwa.     Humidity  equilibria  of  various  common 

substances         . .  . .  . .  . .  . .  . .     925a 

and   Pittsburgh  Plate  Glass  Co.     Lead  arsenate  insecti- 

cides ;    Manufacture  of  (P)       ..  ..  ..      954a 

and  others.     Flow  of  fluids  through  commercial  pipe  lines     357a 
See  Parsons,  L.  W.  402a 

Wilson,  T.  A.     See  Noyes,  W.  A 749a 

Wilson,  T.  E.     See  Turner,  W.  E.  S.  465a 

Wilson,  W.,  and  Western  Electric  Co.,  Inc.     Thermionically- 

ive  lilament  (P)  ..  ..  ..  ..     581a 

Wilson,  W.  C.     See  Bacon,  G.  C 53a 

Wilson  Bros.  Bobbin  Co.,  Ltd.,  and  S.  C.  Bone.     Charcoal ; 

Vegetable (P) 538a 

Wilson  &  Co.     Meats  ;    Manufacture  of  cured  or  pickled 

(P)  432A 

Wilson  Co.,  H.  A.     See  Fry.  F.  B 258a 

Wilson  Welder  &  Metals  Co.     See  Churchward,  J.       146a,  716a 
Wilton,   K.     Ammonium  sulphate  ;     Purification   of   crude 

(P)  374a* 

Wilton,  T.  O.     Fuel  ;   Combustion  of in  furnaces  with 

recovery  of  the  by-products  (P)       . .  . .  . .     454a 

Wimmer,  K.  H.,  and  Hydrogenated  Oil  Co.     Catalyst  for 

hydrogenating  oils  (P)  . .  . .  . .  . .     474a* 

Winch,  H.  J.,  and  V.  L.     Chandratrcya ;    Titania  ;    Volu- 
metric determination  of  . .  . .  . .     413a 

Winchester  Repeating  Arms  Co.    See  De  Olaneta,  H.    147a,    902a 

\\  in  bus,  A.     Cholesterol  481a 

and  K.  Weil.     Digitonin  and  its  derivatives        . .  . ,     684a 

Windisch,  H.     See  Hahn,  F.  L 962a 

Windisch,  K.     See  Meister,  Lucius,  und  Briining      . .  . .     786a 

Windisch,  W.     Beer  ;  Use  of  zeanin  in  production  of . .       72a 

and    P.    Kolbach.     Hydrogen   ion   concentration   in    the 

brewery  . .  . .  . .  . .  . .  . .  . .     227a 

and  others.     Diastatic  power  ;   Determination  of . .     951a 

Hydrogen-ion  concentration  in  the  brewery      . .  .  .     951a 

Hydrogen-ion  concentration  in  the  brewery.  Colori- 
metric  method  of  Michaelis  for  determining  pti  and 
its  application  in  brewing      ..        ..  ..      72a 

Winkel,  It.     Filter  (P) 400a 

Winkelman,  W.     Blast  furnace  (P) 146a 

Winkler,  F.     See  Badische  Anilin  u.  Soda  Fabr 860a* 

Winkler,  H.     Incineration  by  KjeldahTs  method  ;  Apparatus 

for on  the  micro-scale     . .  . .  . .  . .     841a 

Winkler,  K.     Mortar,  cement,  concrete  and  the  like  ;  Process 

for  imparting  to  complete  impciviousness.  a 

considerably  increased  adhering  power,  and  the 
property  of  setting  extraordinarily  quickly  (P)  ..  466a 
Cement,  mortar,  concrete  and  the  like  ;  Process  for 
rendering  suitable  for  use  in  stopping  incur- 
sions of  water  or  for  waterproofing  or  hydraulic  or 
other  similar  purposes  (PJ     ..  ..  417a,  503a 

See  Trautz,  M 727a,  785a,  785a 

Winkler,  L.  W.     Alkali  iodides  ;  Analysis  of . .  . .     856a 

Iodine-bromine  value  of  fats  ;    Determination  of  

without  using  potassium  iodide       ..         ..         ..     473a 

Manganese ;    Gravimetric  determination  of ..     612a 

Winqvist,  N.     Kiln  ;   Rotating for  burning  cement  and 

the  like  (P) 466a* 

Winslow,  H.  F.     Grinding  nulls  ;    Method  of  grinding,  and 

attachment  for (P)        . .  . .  . .  . .     657a 

Winter,  E.  J.,  and  U.S.  Industrial  Alcohol   Co.     Distilling 

process  and  apparatus  (P)    . .         . .         . .         . .     S32a 

Winter,  O.  B.    See  Robinson,  C.  S.  26a 

Wintermute,  H.  A.,  and  Research  Corp.     Electrical  precipi- 
tators ;    Magnetic  steadying  device  for  electrodes 

in  (P) 316a 

Wintersteln,  E.,  and  D.  latrides.    Taxine,  the  alkaloid  from 

1 1n   \<  w  tree  (Taxus  baecata)  . .  . .  . .  . .     230a 

and  J.  Teleczky.    Saffron  ;   Constituents  of .    Picro- 

crocin     ..         ..         ..         ..         ..         ..         ..     481a 

Wintgen,    R.,    and    H.    Vogel.     Gelatin-hydrochloric    acid 

equilibrium        . .  . .  . .  . .  . .  . .     150a 

Whither,  C.     Sensitising;    Optical- ..         ..         ..     392a 

Sensitising  ;   Optical .    Ozone  formation  by  optical 

g<  Qsitising         . .         . .         . .         . .         . .         . .     392a 

Zinc  oxide  as  an  optical  sensitiser  . .        ..         ..        ..     392a 

and   others.     Ultra-violet  ;    Measurement   of   absorption 

iu  the  879a 

Wlpfier,  A.     oxalic  acid  ;   Preparation  of from  leached 

tan  bark  (P) 72Sa 

Wirth,  A.     Wood  ;  Preservation  of (P) 375a 

Wirth,    E.     Sulphite-cellulose    waste    liquor ;     Combustion 

of  171a 

Wirth,  T.     See  Griin,  A 675a,  680a 

Wiith-Fiey,  E.     Brine;    Evaporating (P)       ..         ..     463a 

I     iporation  of  liquids  (Pj  ..         ..         ..         ..     206a 

Wirtz,  L.     Oils  ;    Purifying  and  vaporising (P)         ..     132a* 

Wisi  ho,  ]  i  oner,  L 194a 

Wise,  L.  E.,  and  \V.  <     Russell.     Wood  cellulose  ;  Chemistry 

of .    Acetolysis  of  spruce  pulp  ..         ..     366a 

WIsllcenus,   il.     Se.    Krais,  P.  948a 

Wiswald,  J.    See  Briner,  E 5!4a 


NAME  INDEX. 


107 


PAGE 

Witherspoon.     Calcium  carbide;     Manufacture  of ...     558R 

Withrow,  J.  B.     See  Shenefleld,  S.  L.  37a 

Witt,  J.  C.     Oxalic  acid  ;    Oxidation  of  ■ by  perman- 
ganate in  absence  of  other  acids       . .  . .  . .     609a 

Witte,  G.  A.,  and  International  Precipitation  Co.  Elec- 
trical precipitation  of  suspended  particles  from 

gases  ;    Apparatus  for (P)     . .  . .  . .     239a 

"Waste  furnace  gases  ;    Utilising (P)  . .  . .     280a 

Wittelsbach,  W.     See  Hess,  K.  94a 

Wittemann  Co.     See  Stephens,  P.  C 280a 

Wittka,  F.     Coconut  oil  ;  Content  of  oleic  acid  in  fatty  acids 

of  soap  stock  from  refining  of . .  . .  . .     824a 

See  Griin,  A.  94a 

Witzeek,  R.     Gas-producing  furnaces  (P)      . .  ..  ..     453A 

Wober,  A.     Copper  ;    Iodometric  determination  of  in 

presence  of  iron,  e.g.,  in  commercial  copper  sulphate    545a 
Woegerer,  C.   V.,  and  others.     Hydrocarbons ;    Producing 

lighter  hydrocarbons  from  heavier  (P)        ..     889a 

Wohler,  L.,  and  F.  Miiller.     Calcium  silicides  . .  . .  . .     293a 

Wohack,  F.  Foods  ;  Microanalytical  methods  in  examina- 
tion of .     Determination  of  vanillin  and  formic 

acid        115A 

Wohl,  A.     Acetaldehyde  and  acetic  acid  ;    Production  of 

(P)  308a 

Diethyl  sulphate  ;    Preparation  of (P)       . .  . .     728a 

Explosive  (P)  271a* 

Hydrocarbons  ;    Oxidation  of  to  carbonyl  com- 
pounds or  acids  (P)      . .          . .  . .  . .      407a,  457a 

Wohlgemuth,  L.  M.  Filter  masses  for  analytical  or  indus- 
trial processes  for  separating  copper,  cadmium,  zinc, 
or  the  like,  from  solutions  (P)  . .  . .  . .     353A 

Silk  and  other  fibres  ;   Weighting  of (P)    . .  . .     289a 

Wohlleben,  M.     See  Maudutz,  H 2S7a 

Woidich,  F.     See  Schill,  E 450a 

Wolcott,  E.  H.     See  Moffatt,  A 7S1a 

Wolcott,  E.  It.     Aluminium  chloride  ;  Process  for  producing 

(P)  252a 

and  International  Precipitation  Co.     Separation  of  sus- 
pended material  from  gases  (P)       . .  . .  . .     491a 

Wolde,  P.     Desiccation  or  concentration  of  solutions  etc.  by 

atomising  ;    Apparatus  for  (P)  . .  . .       44a 

Wolf,  A.     See  Gu^bier,  A 157a 

See  Ostwald,  Wo 972a 

Wolf,  E.     See  Von  Kereszty,  G 58a*.  158a,  7Z8A 

Wolf,    H.     Nitro   compounds   of   aromatic   hydrocarbons ; 

Preparation  of  (P)         . .  . .  . .  . .     407a 

Wolf,  K.  Magnesia  cement,  suitable  for  wall- covering, 
glazier's  putty  and  like  purposes  ;    Manufacture  of 

(P) 417a 

and      Elektro-Osmose      A.-G.     Magnesium      oxychloride 

material  ;    Manufacture  of  suitable  for  wall 

covering,  putty,  or  the  like  (P)       , .         . .         . .     549a* 
Wolfes,   O.,  and  H.   Maeder.      Tropinonemonocarboxylic 

acid  esters  ;  Preparation  of  (P)     . .    567a*.  648a* 

See  Merck,  E 436a,  436a,  689a,  787a,  787a 

See  Willstatter,  11 567a* 

Wolff,    A.     Germ-free    air ;     Continuous    production    of 

. (P)         230a 

Sterilising  air  (P)  835a* 

and  Chemical  Foundation,   Inc.     Sulphonic  acid  from 
mineral    oils  ;     Removing    iuorganic    salts   from 

(P)         802a 

Wolff,   E.     Colour  photography  ;    Negative   material  for 

(P)         917a* 

Photographic  film  (P)     ..  ..  ..  ..  ..     567a 

Wolff,  H.     Alcohols  ;    Determination  of  by  acetyl- 

ation  . .  . .  . .  . .  . .  . .  . ,     156a 

"  Fette,    Oele,    Wachse,   und   Harze  ;     Die   Losungs- 

mittel  der  " 430R 

Glass;    Measurement  of  surface  of  powdered ..     328a 

Shellac  ;    Solubility  of  in  alkalis  and  alkaline 

salts    . .  . .  . .  . .  . .  . .  . .     771a 

Varnishes  ;   Changes  occurring  during  storage  of 148a 

Varnishes  ;    Determination  of  hardness  of ..      558a 

and  C.  Dorn.     Solvents  ;   Evaporation  of ~     947a 

Wolff,  J.     Fats  ;  Some  less  common . .  . .         . .       21a 

Wolff,  M.     See  Brandt,  W 346a 

Wolff,  O.  Coke  and  gas  ;  Preheating  air  and,  if  necessary, 
gas  in  chamber  ovens  with  vertical  heating  con- 
duits for  the  manufacture  of  ■ (P)    . .  . .     701a 

Wolffenstein,  B.  Acid  alkylated,  hydrogenated  N-alkyl- 
pyridine-3-carboxylic   acid   esters ;     Preparation 

of (P) 439a 

Hydrogenated       N-alkylpyridine-3-car  boxy  lie       acid 

esters  ;    Preparation  of (P)  . .  . .  . .     439a 

Pyridine-3-carboxylic  acid  alkyl  esters  ;    Production 

of  quaternary  ammonium  salts  of (P)         . .     158a 

and  Chem.  Fabr.  vorm.  Goldenberg,  Geromont,  und  Co. 
Aluminium    formate ;     Production    of    solutions 

containing  an  alkali  salt  and (P)    . .  . .       33a 

Wollers,   G.     Carbon  monoxide  and  small  quantities  of 

combustible  gases  ;    Determination  of . .     577a 

Hydrocarbons  in  technical  gases  ;    Determination  of 

..  ^ 798a 


PAGE 
Wolman,    A.,    and    F.    Hannan.     Water    filter   effluents  ; 

Besidual  aluminium  compounds  in . .          . .  30a 

Waters  ;    Hydrogen-ion  concentration  of  natural 30a 

Wolski,  P.     See  Ostwald,  Wo.         ..          ...          „      318a,  319a 

Woltron,    F.     Steel   and    iron  ;     Production    of    in 

Martin  furnaces  from  material  rich  in  phosphorus 

and  sulphur  (P)         19A 

Wolvekamp,  M.  E.     Alkali  salts  of  oxidised  protalbinic  acid 

and  of  oxidised  lysalbinic  acid  as  stable  protective 

colloids  for  mercury  compounds  (P)         . .          . .  916a 
Womersley,  W.  D.     Specific  heats  of  air,  steam,  and  carbon 

dioxide           163a 

Wood,  A.  B.     Cathode-ray  oscillograph      . .          . .          . .  563R 

Wood,  C.  J.     Separator  and  dryer  (P)         . .          . .          . .  491a 

Wood,  D.  H.     See  Wood,  W.  H 20a* 

Wood,  H.     Gas  retorts  (P)   . .           *          700a 

Wood,    L.    D.     Photographic    coating    composition    and 

process  (P) 879a 

See  Falk,  H.  L 690a 

Wood,  B.  P.     See  Burton,  D 302a,  907a 

Wood,    B.    W.     Incandescence   of  substances  in  atomic 

hydrogen  gas  ;    Spontaneous  . .         . ,  897a 

Wood,  W.  H.     Separator  for  storage  batteries  (P)  . .          . .  987a 

Storage  battery  (P)         222a 

Storage  battery  plate  (P)           . .          . .          . .          . .  987a 

and.  H.  E.  Smith.     Electric  battery  separator  (P)         . .  987a 

Storage  batteries  (!')       .,          ..          ..          ..          ..  824a* 

and  D.  H.  Wood.     Cupolas  or  melting  or  heating  fur- 
naces or  the  like  (P)         . .          . .              . .          . .  20a* 

Wood,   W.   P.,  and  O.  W.  McMullan.     Case-carburising  ; 

Selective  550a 

Wood,  W.  B.     Fuel  feeding  and  drying  apparatus  (P)    . .  93lA* 

Fuel  supplied  to  furnaces  or  the  like  ;  Drying (P)  742a* 

Wood  Products  and  By-Products  Corp.     See  Fish,  F.  K., 

jun 459a 

Woodall,  Duckham,  and  Jones  (1920),  Ltd.,  and    A.  McD. 

Duckham.   Carbonising  fuel  in  vertical  retorts  (P)  848a 

Furnaces  for  producing  chemical  changes  (P). .          . .  357a 

Gasification  of  coal  (P)  . .          . .          . .          . .          . .  47a 

Pottery  kilns  ;    Gas-fired (P)         328a 

and  others.     Tunnel  kilns  (P) 417a 

Woodbridge,  B.  G.,  jun.,  and  E.  I.  du  Pont  de  Nemours 

and    Co.     Propellent    powder  ;     Manufacture    of 

(P)         37a 

Woodcroft  Mfg.  Co.,  Ltd.     See  Harger,  J.               . .          . .  295a 

Woodlands,  Ltd.     See  Watson,  W.             ..          ..      607a,  G44a 
Woodman,  H.   E.     Wheat  flour  ;    Chemistry  of  strength 

of 993a 

Woodroffe,  D.     Chrome  leather  analysis.     Extraction  of 

oils  and  fats  from  chrome  leather  . .          . .          . .  303a 

and  B.  E.  Green.     Chrome  leather  ;    Determination  of 

alkali  salts  in . .          . .          . .          . .          . .  641a 

See  Chater,  W.  J 23a,  828a 

Woods,  B.  J.     See  Geller,  B.  F 101a 

Woodvine,   G.   B.     See  Aitchison,   L.          . .          . .          . .  760a 

Woodward,  B.  W.     See  Burgess,  G.  K 760a 

Woodworth,  L.  B.,  and  others.     Magnetic  separator  (P)  . .  673a 
Woog,   P.     Hydrocarbons  ;     Relation  between  molecular 

properties  and  iodine-fixing  capacity  of . .  90a 

Woolcock,  W.  J.  V.     Dyestuffs  Act,  1920  ;  Administration 

of  the  H2r 

Woolcott,  A.  W.    Milling  flour;  Method  for  use  in (P)  834a 

Wooldridge,  H.  B.     Wooldridge  brewing  process  . .          . .  340a 

Woolfenden,  H.  L.     See  Patterson,  D.  W.              ..          . .  422a 
Worcester  Boyal  Porcelain  Co.,  Ltd.,  and  G.  N.  White. 

Funnels  for  laboratory  and  other  purposes  (P)  ..  353a 
Woroshtzow,   N.   W.     Azo  dyestuff3  of  the  naphthalene 

series  ;    Synthesis  of  substantive  . .          . .  744a 

Worthington,  E.  B.,  and  R.  S.  Walker.     Pulverulent  fuels  ; 

Burning  (P) 848a 

Worthington,  J.  T.     See  Eddy,  H.  C 890A 

Wotzel,    E.    B.     Ammonia  ;     Preparation   of   from 

ionised  nitrogen  and  nascent  hydrogen  (P)         . .  99A 

Wouseng,  S.     See  Locquin,  B.          ..          ..          ..          ..  609a 

Woyski,  B.,  and  J.  W.  Boeck.     Non-ferrous  metals  ;    Gas 

absorption  and  oxidation  of . .          . .          . .  553a 

Wrede,  F.     Carbon  and  hydrogen  in  organic  substances  ; 

Micro-determination  of  -  -          . .          . .  274a 

Wriedt,   F.,   and   Milo   Machinery   Co.    Proprietary,   Ltd. 

Crushing  and  grinding  mill  (P)     . .          ..          -.  971A 

Wright,  O.  K.     Yeast-growth  stimulant  ;    Action  of 340A 

Wright,    B.     Alcohol  ;     Selective   solvent   action   by   the 

constituents  of  aqueous  . .          . .          . .  996a 

Molecular  weight  of  substances  ;     Determination  of 

in  alcoholic  solution  from  elevation  of  flash 

point 1001A 

Wright,  S.     Antiscorbutic  substances  ;    Combined  action 

of  raw  cow's  milk  and  orange-juice  as . .  22Sa 

Wright,  T.  H.     Alum;  Process  for  making  potash (P)  14a 

Wright,  W.  H.     See  Secure  Castings,  Ltd.               . .          . .  168a* 
Wright,  W.  L.,  and  Seabright  Co.,  Inc.     Paper  and  paper 

containers;    Benderiug  greaseproof  (P)     ..  543a 


108 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Wrobel,  M.  See  Rheinisch-Nassauische  Bergwcrks  und 
Hiitten  A.-GK 

"Wucherer,  It.,  and  others.  Air  or  other  gaseous  mixtures  ; 
Recovering  constituents  of (P) 

Wiilfing,  J.  A.,  Chem.  Fabr.  Aluminium  formate  ; 
Preparation    of     water-soluble     compounds    of 

(I1)         

Diethylbarbituric  acid  and  its  homologues  ;  Prepar- 
ation of  water-soluble  compounds  of (P)  . . 

P.     Iron;    Basset  process  for  direct  production  of 

and  J.  Duhr.     Steel  and  iron  ;  Determination  of  nitrogen 

in  ,  and  absorption  of  nitrogen  by  steel  and 

iron  in  smelting  processes 

and  N.  Kirpach.     Steel  ;    Determination  of  slag  in 

Wulf,  H.,  and  H.  Herbcrs.     Vertical  retort  for  distillation 

of  coal,  shale,  etc.  (41) 
^Vunderlich,  H.     Coke  ;    Dry  cooling  of  with  inert 

gases  . . 
Wurl,  W.     Drying  apparatus  (P)     . . 
Wurm,   A.     Concentrating   liquids   without   employing   a 

vacuum;  Apparatus  for (P)  . . 

Wurmbach,  E.     Gases  ;    Disintegrator  for  use  in  the  wet 

process  for  separating  dust  from  (P) 

Wurmser,  R.     See  Terroine,  E.  F. 

Wurniser.     Ammonium  nitrate  ;    Preparation  of . . 

Wurzschmitt,  B.     See  Goldschmidt,  S. 

Wussow.     Gases;    Improving  low-grade 

Wybert,  E.     See  Soc.  of  Chem.  Ind.  in  Basle 

Wyporek,  A.     See  Rheinisch-Nassauische  Bergwerks-  und 

niitten-A.-G.  zu  Stolberg  .. 


Yamada,  G.     See  Ralston,  0.  C 

Yamada,  N.     Austenite  ;    Heat  of  transformation  of 

to  martensite  and  of  martensite  to  pearlite 
Yamaguchi,  E.     See  Kobayashi,  K. 

Yamamoto,    Y.,    and    I.    Mizusawa.     Soya    bean  ;     Pre- 
paring   odourless    and    colourless    oil    and    Hour 

from  (P)  

and    others.     Soya    beans  ;     Preparation    of    odourless 

and  colourless  oil  and  flour  from (p) 

Yanagisawa,  H.     Cyanogen  ;    Determination  of 

Yanovsky,  E.     See  Balcom,  R.  W. 

Yardley,  J.  L.  MeK.     Electrode  manufacture  ;  Production 

of  shrunk  coke  in 

Yeadon,  J.  A.     Distillation  of  coal  tar,  mineral  oils,  and 

the  like  ;   Stills  for  continuous  ( 1') 

Low-temperature  carbonisation  ;    System  of (P) 

i    F.  W.     See  Lloyd,  H.  E rf 

See  Reeve,  C.  S.  . . 

STee,  J.  Y.     See  Guernsey,  E.  Yvr       

Yoder,  J.  D.,  and  H.  S.  B.  "W.  Cochrane  Corp. 

Filtering (P) 

Yoder,  L.     See  Dox,  A.  W. 
Yoshitomi,  E.,  and  others. 

brandy 
Young,  E.  G.     Ovalbumin  and  serum  albumin 

rotatory  power  of  crystalline 

Protein  ;   Coagulation  of by  sunlight 

Young,  F.  W.     Carbonising  apparatus  (P) 

Young,    G.     Ethers    of    carbohydrates  ;     Production 

(P)         

Young,  J.  H.,  and  H.  H.  Robertson  Co.     Asphalt  or  like 

hydrocarbonaceous  material ;   Fire-resisting 

(P) 48A, 

Varnish  ;  Method  of  making (P) 

Young,    S.,    and    others.     "  Distillation    principles    and 

processes  "     . . 
Young,  W.     Sugar  juice  ;   Quantity  of  non-sugars  precipi- 

tated  in  clarification  of  by  defecation,  sul- 

phitation,  and  carbouatation  respectively 
Yunck,  J.   A.     Alloy  of  refractory  metals  for  filaments  ; 

Manufacture  of (P)     . . 


Water: 


307a, 

Fusel  oil  from    sweet-potato 


Optical 


of 


Zack,  M.     Pump  ;    Piston  for  raising  liquids  which 

easily  evaporate  at  low  temperature  and  are 
under  vacuum,  e.g.,  liquid  air,  carbon  dioxide, 
etc.  (P)  

Zahlbruckner,   K.     Alloys  ;    Analysis  of  by  means 

o]    peciflc  heats 

Zahm,  E.,  and  Zahm  and  Nagel  Co.  Concentrating  liquids  (F) 

Zahm  and  Nagel  Co.     See  Zahm,  E. 

Zanetti,  J.  E.,  and  others.  Butadiene  ;  Formation  of 
from  ethylene  . . 

Zawadzki,  J.,  and  others.  Calcium  sulphate;  Reduction 
of with  carbon  monoxide 

Zechc  de  Wendcl,  and  h.  Schwenke.  Coke;  Cooling 
with  inert  gases  (P)  .. 

Zechncr,  L.,  and  F.  Wischo.     Adrenaline  ;   Tots  for 

/-'■<  kendorf,  K.     See  Kerb,  J 


TAGE 
180A 
622a* 

33A 

521a 

59A 

467A 
550a 

45CA 

90a 
317a* 

737A 

491a 
679a 
544a 

933a 
359a 
878a 

472a 


419a 
242a 


509a 

954a* 
613  a 
341a 

259A 

703a 
851a 
319  a 
932  a 
668a 

15Ga 
518A 

832A 

154a 

266a 

6a 

854A 


899a* 
989A 

380K 

428A 
637a 


43a 

636a 
206a 
206A 

836a 

749a 

660a 
194a 
189a 


TAGB 

Zehnder,    A.     Kneading,    mixing,    stirring, '"and    beating 

machines;    Apparatus  for  actuating (P)  ..     622a* 

Zcisberg,  F.  C.     Sulphuric  acid  concentration;    Thermal 

considerations  in  . .  . .  . .  . .     628A 

Zeiss,  C.     Refractometers  (P)  ..  ..  ..  ..     352a 

:..i,  ,T.     See  Stoklasa,  J.  ..  ..  ..  ..      775a 

Zellner,  J.     See  HasenShrl,  E, 602a 

Zcllstotf-fabr.    Waldhof.     Bleaching   fibres,    textiles,    and 

the  like  with  hypochlorites  (P)     . .  . .  . .      666a 

Carbon  dioxide  ;  Removing from  gases  (P)       ..     708a 

Sulphite   pulp   digesters;     Blowing-off  of  with 

recovery  of  sulphur  dioxide  and  heat  (P)  . .  . .     855a 

Waste  cases  from  chemical  processes,  especially  from 
cellulose  manufacture  ;    Method  of  disposing  of 

by  burning  (P)  ..     808a 

ami   II.  Clemm.     Pulp  boilers;    Process  of  filling  

with  heated  sulphite  lye  (P)         . .  . .  . .     855a 

Sulphite-cellulose  waste  liquors  ;    Treatment  of  

before  conversion  into  sizing  compositions,  ad- 
hesives,  feeding  stuffs,  etc.  (P)     ..  ..  ..      213a 

and  V.  Hottenroth.     Resins  and  resinous  substances  ; 

Production  of from  cellulosic  materials       . .      720a 

and  A.  Schneider.     Furnaces  ;  Sealing  device  for  travel- 
ling grate (P) 847a* 

and  others.     Sulphite  pulp  boilers;    Recovery  of  sul- 
phurous  acid   and    heat   from   the    waste   gases 

from  (P)  855A 

See  Clemm,  H 855a* 

Zerbc,  C.     See  Fischer,  F 211a,  451a 

Zerbe,  K.     See  Fischer,  F 851a,  S91a,  931a 

Zerner,  E.,  and  others.     Hydrocarbons,  fats,  and  liquid 

sulphur  dioxide  ;    Mutual  solubility  of . .     581a 

Zernik,  F.     See  Erdol-  und  Kohle-Verwertung  A.-G.      ..     523a 
Zielaskowski,  M.     See  Leichtentritt,  B.     . .  . .      913a,  913a 

Zielstorff,  W.,  and  F.  Benirschke.     Silage  ;   Determination 

of  acids  in  . .  , .  . .  . .  . .     953a 

Zieren,  V.     Acid-resisting  lining  for  vessels  (P)  ..     738a 

Roasting  or  calcining  the  products  of  reaction  of  solid 

and  liquid  materials  in  a  muffle  furnace  (P)       ..     128a 
Sodium  sulphide,  sodium  bisulphate,  etc.  ;  Atomising 

fused  masses  of (P) 632a 

Zilva,  S.  S.     Accessory  food  factors  (vitamins)  ;  Conditions 

of  inactivation  of  . .  . .  . .  . .     343a 

and   M.   Minra.     Fat-soluble  factor  (vitamin)  ;     Deter- 
mination of  the  . .  . .  . .  . .       74a 

See  Drummond,  J.  C 125T,  280T,  561R,  913a 

See  Golding,  J.     . .  . .  . .  . .  . .  . .     606a 

Zimmer  und  Co.,  Vereinigte  Chiuinfabr.  O-Alkyl  deriva- 
tives of  hydrocupreine  ;    Preparation  of (P)     439a 

and  U.  Thron.     O-AIkyl  derivatives  of  hydrocupreine; 

Manufacture  of  (P) 184A* 

Zimmerlund,  G.     See  Svanberg,  O.  . .  . . 

See  Von  Euler,  H.  938a 

Zimmermann,    H.    J.,   and    R.    Stutzkc   Co.     Desiccation 

apparatus;    Spray  (P)  ..  ..         ..     736a 

Evaporation  of  liquids  (P)  ..  ..  ..  ..      127a 

Zimmermann,  K.     See  Ott,  E.         ..  ..  ..  ..        77a 

Zimmermann,  L.     See  Reis,  A.         . .  . .  . .  . .     885A 

Zimmern,  A.  Radiographic  emulsions  ;  Inllucnce  of  tem- 
perature on  the  sensitiveness  of . .  . .     233a 

Zink,  J.  R.     Hides;   Tanning  of r  (P) 384a 

Tanning  agents  ;    Manufacture  of  (P)  ..  ..  ,.     426a 

Zinke,  A.     Dihydroxyperylene  ;    Manufacture  of (P)     119a 

Perylene  ;    Manufacture  of (P)     ..  ..  ..      119a 

and  others.     a-Amyrin  from  elemi  resin  . .  . .     509A 
d-Siaresinolic   acid   and   lubanyl    benzoate ;    Decom- 
position of  . .          . .          . .          . .  . .     509A 

Zivy,  L.     See  Simon,  L.  J.    . .  . .  . .  . .  . .     956a 

Zobel,  H.     See  Kaufmann,  H.  P.  ..  ..  ..     608A 

Zodcr,  A.     See  Wcissenberger,  G.   ..  ..  ..  ..      369a 

Zollinger -Jenny,    E.     Esters  ;     Converting   organic    acids 

into (P)  7S6A 

Zscheye,   H.     Sugar  after-products  ;     Diilicult   boiling  of 

beet  ..  ..  ..  ..  ..  ..     151a 

Zschokke,  U.,  and  L.  Hauselmann.     Aluminium  sulphate  ; 

i  M  i  ermination  of  free  acid  in  solutions  of . .     370a 

Zsigmondv,  R..  and  W.  Bachm.mn.  Filters  ;  Prepar- 
ation of  (P) 022a* 

Zuckmayer,    P.     Hydrogenated    2-phenylquinoline-4-car- 

boxylic    acids    and    their    -salts  ;     Preparation    of 

substitution  products  of — —  (P)  ..  ..     439a 

2  PhenylquinoIine-4-carboxylic    and    and    its   homo- 

Preparation  of  hydroxy-derivatives  of 

and  their  salts  (P) 36a 

Zuelzer,   C,   and   Chemical  Foundation,   Inc.     Means  for 

reducing  blood-pressure;  Manufacture  of (P)       79a 

Zufall,  J.     Zinc  alloy  (P)        >06a 

Zweigle,  A.     See  Gutbier,  A.  ..  ..  .,  ..      519A 

Zwikker,  J.  J.  L.     Polysaccharides;  Constitution  of  

152a,   305A 

ZwilHnger,  B.     Coke  ovens  (P)         LS0A 

Coke-ovens  ;    By-product with  sole  firing  (P)   . .     851a* 

Zynkara  Co.,  Ltd.,  and  \V.  A.  Cross.  Boilers  and  the 
lil<«  ;  Compositions  for  preventing  corrosion 
and  removing  incrustation  in (P)     . .  ..       S45A 


SUBJECT  INDEX. 


109 


Subject  Index 


N.B, 


-The  lleview,  Transactions,  and  A  bstracis  Sections  oj  the  Journal  are  paged 
separately  and  are  indicated  by  the  letters  r,  t,  and  a  respectively  following 
the  number  oj  the  page. 

The  letter  (P)   indicates  that  the  matter  rej erred  to  is  a  patent. 
An  asterisk   appended  to  the  number  oj  a  page  indicates  that   the  title   only  oj 
an   article    is  given,    or  in  the  case   oj  patents,   either  the   title   only   or   the   title 
and   a   rejerence   to   a  previous  patent. 


A-Acid.     See  2.5.1-AminonaphthoIsulphonic  acid. 

Abies  Pindrow  ;  Essential  oil  from  leaves  of .     Sinionsen  646a 

Abietene  ;   Constitution  of .    Aschan      . .         . .         . .  947a 

Abietic  acid: 

Madiuaveitia     . .  . .  . .  . .  . .  . .  957a 

Ruzicka  and  Meyer      . .  . .  . .  . .  . .  482a 

and  certain  of  its  metallic  salts.     Steele  . .  . .  . .  558a 

Constitution  of .     Aschan      . .  . .  . .  . .  947a 

Conversion  of  into  methylretene.    Ruzicka  and 

Meyer 646a 

Nit roso chloride,  nitrosite,  and  nitrosate  of .   Aschan  947a 

Abietic  esters.     Kaufmann  and  Fricdebach  . .  . .  . .  598a 

Abrasive  materials  in  U.S.A.  in  1919  and  1920  . .  . .       80R 

Abrasives  and  the  like ;    Mineral  product  for  use  in  . 

(P)  Sandison 860a 

Manufacture  of  .     (P)  Michel  222a* 

Manufacture  of  artificial from  bauxite  and  emery. 

(P)  Brockbank,  aud  Abrasive  Co.     . .  . .  . .  142a 

Absorption  and  cooling  apparatus.     (P)  Jones,  and  Clark, 

MacMullen,  and  Riley 971a 

meter,  an  apparatus  for  gas  analysis.     Moser    . .  . .  525a 

tower  and  cooler  ;   Combined .     (P)  Deutsche  Ton- 

und  Steinzeugwerkc  A.-G.,  and  Plinke        . .  . .  736a 

Abstracts  ;    Facilities  for  filing 240it 

Acacia  CambayH  ;    Occurrence  of  calcium  oxalate  in  wood 

and  bark  of .     Steel        32a 

Acanthias  vulgaris  liver  oil.     Lexow    . .  . .  . .  . .  300a 

Acenaphthene ;     Catalytic    hydrogenation    of    .     Von 

Braun  and  Kirschbaum  ..  ..  ..  ..  58lA 

Acer  ginnaia  leaves  ;    Occurrence  of  a  crystalline  tannin  in 

.     Perkin  and  Uyeda      . .  . .  . .  . .  184a 

Acetal ;  Formation  of from  carbon  dioxide  and  alcohol. 

Gilfillan  566a 

Acetaldehyde  ;    Amount  of  in  alcohol  from  sulphite- 
cellulose  waste  liquors.     Heuser  and  others        .  .  190a 
Analytical  characterisation  and  differentiation  of  aldol, 

glyoxylic  acid,  and  .     Fricke     . .  . .  . .  268a 

Condensation    of    collidine    with    .     Kondo    and 

Takahashi  976a 

Density  of  .     Gilmour  . .  . .  . .  . .  294T 

Determination  of .     Blair  and  Wheeler      . .  . .  560R 

Direct  estimation  of in  presence  of  acetone.     Stepp 

and  Frick  196a 

Formation  of in  fermentation.     Abderhalden     . .  28a 

Formation  of and  realisation  of  second  form  of 

fermentation    with    various    fungi.     Neuberg    and 

Celien 189a 

Hydrogenation  of . .  . .  . .  . .  . .  190r 

Laboratory  preparation  of ■      Adams  and  Williams  156a 

Latent  heat  of  vaporisation  of .     Gilmour  . .  . .  294T 

Manufacture  of : 

(P)  Matheson        788a* 

(P)  Traun's  Forschungslaboratorium  Ges.  437a,  437a 

(P)  Wohl 308a 

Manufacture  of from  acetylene        . .  . .  . .  189r 

(P)  Soc.  Anon.  Prod.   Clnm.   Etabi.    Maletra 

837a,  838a* 

(P)  Stockholms   Superfosfat  Fabr.  Aktiebolag  391a 

Manufacture  of  alcohol  from  .     (P)  Lichtenhahn, 

and  Elektrizitatswerk  Lonza  . .  . .  . .  . .  198a* 

Oxidation  of to  acetic  acid.     (P)  Traun's  Forsch- 
ungslaboratorium Ges.  . .  . .  . .  . .  437a 

Preparation  of  chloroform  from .     (P)  Consortium 

fur  Elektrochem.  Ind.  . .  . .  . .  . .  523a 

Rapid  determination  of .     Smitt     . .  . .  . .  345a 

Role  of  mercury  salts  in  catalytic  transformation  of 

acetylene  into  .     Vogt  and  Nieuwland  . .  118a 

Use  of  "  silver  method  "  in  estimation  of .    Fricke  345a 

Vapour  pressure  of .     Gilmour  . .  . .  . .  293T 

Acetanilidc  ;   Colour  reactions  of .     Ekkert      . .         . .  77a 


page 

Acetates;     Apparatus    for    dry    distillation    of    .     (P) 

Statham,   and  West  Virginia   Pulp  and  Paper  Co.     363a 

Solubilities  of  alkali  formates  and in  water.     Sidg- 

wick  and  Gentle  . .  . .  . .  . .  . ,     857a 

Acetic  acid  absorbed  by  silica  gel  ;    Decomposition  of  

by  ultra-violet  light.     Holmes,  jun.,  and  Patrick  . .     323a 
industry  in  Japan     ..  ..  ...  ..  ..  ..     220R. 

Manufacture  of : 

(P)  Matheson 347a 

(P)  Traun's  Forschungslaboratorium  Ges.  437a,  437a 

(P)  Wohl 308A 

Manufacture  of  from  acetaldehyde.     (P)   Guyot, 

and  Comp.  des  Prod.  Chim.  d'Alais  et  dc  la  Camargue     309a* 

Manufacture   of  acetone  from  .     (P)    Stockholms 

Superfosfat  Fabr 786a 

Manufacture  of from  acetylene       . .  . .  . .     189it 

manufacture  in  Germany  . .  . .  . .  . .  . .     511R 

Mode  of  sudden  pyrogenic  decomposition  of  at 

high  temperatures.     Peytral 196a 

Oxidation  of  acetaldehyde  to .    (P)  Traun's  Forsch- 
ungslaboratorium Ges.            . .  . .  . .  . .     437a 

Oxidation    by    chromic   acid   of   homologues   of   . 

Simon .     64GA 

Recovery   of   chemically   pure  from   acetic   acid 

containing  mercury.     (P)  Chem.  Fabr.  Griesheim- 

Elektron  522a 

Recovery  of  during  evaporation  of  tanning  ex- 
tracts.    Vie       . .  . .  . .  , .  . .  . .       24a 

Acetic  anhydride  ;    Analysis  of  : 

Reclaire 5i9A 

Sage  609a 

Manufacture  of ; 

(P)  Dreyfus  916a 

(P)  Matheson  and  others  . .  . .  . .     786a 

(P)  Strosacker,  and  Dow  Chemical  Co.  . .     19SA 

Acetol ;    Production  of  as  a  test  for  carbohydrates. 

Baudisch  and  Deuel    . .  . .  . .  . .  . .     678a 

Acetone  absorbed  by  silica  gel ;    Decomposition  of by 

ultra-violet  light.     Holmes,  jun.,  and  Patrick       . .     323a 
and  butyl  alcohol  fermentation  of  various  carbohydrates. 

Robinson  . .  . .  . .  . .  . .  . .     778a 

Determination  of in  spirits  by  means  of  hydroxyl- 

amine.     Reif     . .  . .  . .  . .  . .  . .     113a 

Direct  estimation  of  acetaldehyde  in  presence  of  . 

Stepp  and  Fricke  . .  . .  . .  . .  . .     197a 

Formation  of  addition  products  of  cresols  with : 

Berl  and  Schwebel  . .  . .  . .  . .     662a 

Von  Rechenberg  and  Von  Rechenberg  . .     662a 

Manufacture  of from  acetic  acid.     (P)  Stockholms 

SupiTfosfnt  Fabr.         ..  ..  ..  ..  ..     786a 

Manufacture  of  butyl  alcohol  and by  fermentation  : 

(P)  Horton,  and  Du  Pont  de  Nemours  and  Co.     832a 

(P)  Ricard,  Allenet  et  Cie 341a 

Mode  of  pyrogenic  decomposition  of at  high  tem- 
peratures.    Peytral      . .          . .          . .  . .  . .     196a 

Oxidation  of with  potassium  permanganate.   Evans 

and  Sefton         . .  . .  . .  . .  . .  . .     957a 

Presence  of  in  commercial  ammonia.     Bougault 

and  Gros  . .  . .  . .  . .  . .  . .     750a 

Production  of in  Czechoslovakia      . .  . .  . .     537R 

Source  of  error  in  color  imetric  detection  of .   Troise     566a 

Acctylcellulose.     See  Cellulose  acetate. 

Acetyl  chloride  and  its  homologues ;    Preparation  of  . 

(P)  Chem.  Fabr.  Weiler-ter  Meer 728a 

Acetyl  silk.     See  under  Silk,  Artificial. 

value  of  fats  ;   Determination  of .     Cook    . .  . .     299a 

value  of  oils  and  fats  ;    Rapid  determination  of  . 

Leys 148A 

Acetylene  ;  Action  of on  pyrites.     Steinkopf  and  Herold     703a 

Chlorination  of .     (P)  Roka,  and  Holzverkohlungs- 

Ind.  A.-G 567a 

dissolved  in  a  liquid  ;    Porous  charge  for  containers  for 

storage  of — — .     (P)  Klebert/and   Pintsch  A.-G.     580a* 


110 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


917A* 
923A 


-   ISA* 

391a 
788a 


244A 
34A 

439a 

579a 

857A 

484A 
244a 

118a 

536A 
580A* 

361A 
189R 


Acetylene — conti» 

Extending  catalytic  activity  r.f  mercury -compounds  in 

oxidation  of .    (P)  Griinstein  and  Berge 

Formation    of    during    incomplete    combustion. 

EIofmanD  and  Will 

Manufacture  <if  acetaldohyde  from  : 

<n  Sue.  Anon.  Prod.  Chim.  Etabl.  Maletra 

837a, 
(P)  Stockhoims  Superfosfat  Fabr.  Aktiebolag 

Manufacture  of  alcohol  from .     (P)  Kars    .. 

Manufacture   of   chemical   compounds   from  and 

hydrohalogenic  acids.    (P)  Bauer,  and  Rohm  und 

Haas 
Manufacture    of    cylinders    for    dissolved    .     (P) 

Skinner  and  others 

Manufacture  of  ethane  from .     (P)  Caro  and  Frank 

Manufacture   of   stable    chloro-derivatives   from   . 

(P)  Consortium  fiir  Elektrochem.  Ind. 
Materials  for  purifying  .     (P)  Booer,  and  District 

Chemical  Co. 
and  nitrogen  ;    Explosion  of  mixtures  of .     Garner 

and  Matsuno     . .  . .  . .  . .  . .        90a, 

Preparation   of   ethane  and   ethylene  from  .     (P) 

Chem.  Fabr.  Griesheim-Elektron 
Purification    of    from    hydrogen    phosphide   and 

hydrogen  sulphide.     (P)  Wacker     . . 
R61e  of  mercury  salts  in   catalytic  transformation  of 

into  acetaldehyde.     Vogt  and  Nieuwland     . . 

Storage   receptacles   for .     (P)  Air    Reduction    Co. 

storage  tank.     (P)  Metzger,  and  Air  Reduction  Co.     . . 
Storing under  pressure.    (P)  Svenska  Aktiebolaget 

Gas-Accumulator 

in  technical  syntheses  ;   Use  of 

Acetylisoborneol ;     Manufacture    of    .     (P)    Andreau, 

and  Du  Pont  de  Nemours  and  Co. 
Acetylmonomethylarylamines  ;    Manufacture   of  .     (P) 

Clarke  ajid  others 
Acetylpropionylmethane  ;    Interactions  of  with  tetra- 
chlorides of  selenium  and  tellurium.     Morgan  and 

Reeves   ...         . .         . .         M 

Acetylsalicylatcs  ;   Manufacture  of  calcium,  magnesium,  and 

lithium  .     (P)  Howards  and  Sons,  Ltd.,  and 

Blagden 
Acetylsalicylic  acid  ;    Commercial  .     Del  Rosario  and 

Valenzuela 
and  similar  compounds  ;    Manufacture  of  compressed 

tablets  from .     (P)  Cockerton,  and  Genatosan, 

Ltd 

Acid,  mixed  ;   Analysis  of : 

Marqueyrol  and  Loriette 
Patterson 
mixed  ;     Recovery   of  in   manufacture   of   nitric 

esters  or  nitro-compounds.     (P)  Hamburger 
-proof  castings.     (P)  Terrisse  and  L6vy 
-proof  constructional  material ;    Physical  properties  of 

cellactite,  an .     Dyche-Teague 

-resisting  antimony-lead  alloys ;    Manufacture  of  hard 

.     (P)  Thoumyre  Fils 

-resisting  articles  ;    Manufacture   of   dense   from 

silica.     (P)  Biihring 
-resisting  coating  on  metallic  articles.     (P)  Roth 
-resisting  iron.     (P)  Schenck,  and  Duriron  Co. 
-resisting  lining  for  vessels.     (P)  Zieren 
-resisting  paint  or  varnish  composition.    (P)  Wickenden, 

and  Industrial  Chemical  Co. 
sludge    from    oil    refining ;     Treatment    of    .     (P) 

Salathe,  and  Western  Gas  Construction  Co. 
sludge- ;    Reclaiming  in  petroleum  refining.     (P) 

Simonson  and  Mantiua 
sludge-  ;    Treating  from  refining  of  mineral  oils. 

(P)  Hechenbleikner  and  others  ..     631a,  702a, 

spent ;   Purifying from  nitration.     (P)  Sprengstoff 

A.-G.  Carbonit 
waste ;     Concentration    of    .     (P)    Hechenbleikner 

and  others 
Acidimetry ;     s-Diphenylguauidine    as    standard    in    . 

Carlton 
Acids,  aldehyde-fatty  ;   Separation  of from  by-products 

and  manufacture  of  soap  therefrom.     (P)  Byrnes  . . 
Apparatus  for  delivering  measured  quantities  by  volume 

of .     (P)  Moritz 

Catalytic  oxidation  of  hydrocarbons  to  (P)  Wohl 

Determination  of  small  quantities  of  injurious  in 

air.     Lambris 
Effect  of  at  various  hydrogen-ion  concentrations 

on  plant  growth  in  water  cultures.     Conner  and 

Sears 
fatty  ;    Action  of  the  brush  discharge  on  .     Eich- 

wald 

fatty  ;  The  CI8 .     Nicolet 

fatty ;      C,9    .      Four    tetrahydroxy  stearic    acids 

derived  from   Hnolic   acid,   and  their  significance 

with  regard  to'linolic  acid  of  common  oils.     Nicolet 

and  Cox  . .  . .  . .  . .  . .  . .     259a 

fatty;   Catalytic  decomposition  of of  low  molecular 

weight.      Mailhe  727A 

fatty;    Catalytic  oxidation  of  .     Galwav  and  Wil- 
liams        719a 

tatty  ;    Conversion  of with  several  double  linkages 

into  nl,-ie  arid-like  fatty  acids  or  their  soaps.     (P) 

Stiepel,  and  Persapol  Ges.     . .  . .  . .  . .     826a* 

fatty  .    Detection  of by  formation  of  their  sodium 

uranyl  salts.     Harlot  and  lire-net 156a 


33A 

519A 

33a 

349a 
49GR 

SlA 
943a* 

96R 

767  a 

756a 

767A 

62A 

738a 

66A 

322a 

5A 

851A 

250a 

462A 

690a 

182a 

969a 
457A 


263a 


824a 
109a 


Acids — continued. 

fatty  ;    Determination  of  highly  unsaturated  in 

marine  animal  oils.     Goldschmidt  and  Weiss 
fatty  ;   Determination  of by  volatilisation  in  steam. 

Arnold 

fatty  ;    Distillation  of .     (P)  Kubierschky 

fatty  ;    Electrochemical  oxidation  of  hydrocarbons  to 

.     (P)  Plausou 

fatty  ;     Eleetrometric   determination   of   neutralisation 

value  of  .     Kremann  and  Schopfer 

fatty  ;   Hydrolysing  triglycerides  into  glycerin  and . 

(P)  Tern  

fatty  ;   Manufacture  of .     Voss 

fatty  ;    Manufacture  of  alky]  esters  of .     (P)  Byk- 

Guldenwerke  Chem.  Fabr. 
fatty  ;    Manufacture  of of  high  purity  and  melting 

point.     (P)  Starrels     .. 
fatty  ;    Manufacture  of  from  hydrocarbons.     (P) 

Mathesius 
fatty  ;    Manufacture  of  from  mineral  oil  hydro- 

carbons  and  tar  oils.    (P)  Harries    .. 

fatty  ;    Manufacture  of from  montan  wax  : 

(P)  Fischer  and  Tropsch 
(P)  Mathesius 
fatty  ;    Method  of  calculating  content  of  in  oils 

and  fats,     Pickering  and  Cowlishaw 
fatty  ;    Reactions  between  the  higher and  salts  of 

the  lower  fatty  acids.     Knapp  and  Wads  worth    . . 
fatty  ;    Recovery  of  from  mixtures.     (P)   Byk- 

Guldenwerke  Chem.  Fabr. 
fatty  ;    Separation  of  saturated  from  unsaturated  . 

Griin  and  Janko 
fatty  ;   Separation  of  solid  and  liquid .     Meigen  and 

Neuberger 

Manufacture  of  .     (P)   Snelling 

Method   of  absorbing  gaseous  .     (P)   Xanerz 

organic  ;    Converting  into  esters.     (PJ  ZoUinger- 

Jcnny 
organic  ;     Manufacture  of  from  distillery  waste. 

(P)  Backhaus,  and  U.S.  Industrial  Alcohol  Co.  .. 
organic  ;  Manufacture  of from  natural  gas,  mineral 

oil  and  its  distillation  products,  producer-gas  tar, 

etc.     (P)    Strache 

organic  ;    Manufacture  of  and  of  their  salts  from 

hydrocarbons.     (P)    Bayer   und    Co. 
organic  ;     Preparation   of   which   form   sparingly 

soluble  calcium  salts.     <P)  Mach  and   Lederle    .. 
organic  ;   Preparation  of  salts  of from  waste  liquors 

from  digestion  of  wood,  straw,  etc.     (P)  Badische 

Anilin-    und    Soda-Fabr. 
organic ;     Recovery    of    volatile    from    distillery 

waste.     (P)  Burghart,  and  U.S.  Industrial  Alcohol 

Co 

Oxidation  of  hydrocarbons  to  .     (P)  Wohl 

present  in   the  cherry  (Primus  avium).     Franzen   and 

Helwert  

Production  of in  U.S.A.  in  1921 

Titration  of  .     Lizius  and  Evers     ..  ..       197r 

Titration  of  moderately  strong in  presence  of  very 

weak  ones.     Kolthoff 

volatile ;     Concentrating   .     (P)    Uebel 

volatile  fatty  ;   Determination  of in  silage.     Wieg- 

ner  and  Magasanik 
Volumetric  determination  of  .     Jellinek  and  Ens 

Production  of  clear  solutions  of in  oils.     (P) 

Hirsch    .. 


Aconite  extract ;  Determination  of  alkaloids  in .   Astruc 

and    others 

AconUum  panieulatum;    Paniculatine,  the  alkaloid  of . 

Brunner 
Acridine  derivatives  ;   Manufacture  of  therapeutically  active 

.     (P)  Meister,  Lucius,  und  Briining 

derivatives  ;   Preparation  of .     (P)  Cassella  und  Co. 

derivatives ;      Relationships     between     chemical     con- 
st it ution  and  antiseptic  action  of .     Browning 

and    others 

series  ;    Manufacture  of  an  arsenic  compound  of  . 

(P)  Cassella  und  Co. 
Acridine  dyestuffs  : 

Cbxysaniline ;    Effect    of    light    on    fibres    dyed    with 

Fuchsine  and  .    Paddon 

Manufacture  of .     (P)  A.-G.  fiir  Anilin-Fabr. 


365a, 
365a. 


Manufacture    of    halogen    derivatives    of    basic 

(P)  Durand  &  Huguenin  A.-G. 
Acridiniuin  compounds  ;   Manufacture  of .     (P)  Cassella 

und  Co. 
Actinometer  with  electrodes  of  mercury  halides  or  sulphide. 

Athanasiu 

Actinomcters  ;    Chemistry  of  .     Benrath  and  Obladen 

Actinoinycetes ;     Microscopical    method  for  demonstrating 

in  soil.     Conn    . . 

AcHnomycete*    scabies ;     Influence    of    soil    reaction    upon 

growth  of .     Waksman 

Adhesive  compositions.     (P)  Schercr  and  Barna 
Adhesives  containing  casein  ;    Manufacture  of  durable . 

(P)   Trutzcr 

31  an u 1. 1. 1  Mir    iii  -    from    cellulose    waste    liquors. 

| i'i  Kaufman!) 
Manufacture  of from  potato  starch.     (P)  Kantoro- 

wicz 


473A 

1S1A 
300A 

633A 

675a 

945A 
21A 

380a 
22a* 

723a 

35a 

261A 
945A 

75T 
148A 
424A 

21 A 

944a 

858a 
1a 

786a 

73a 

210a 
270a 
521a 

llA 

778A 
407a 

875a 
568r 
730a 

272a 
811a 

606a 
1000a 

788a 

345a 

914a 

347a 

7S7\ 

480A 
309a 

411a 

458A 

625A 

805A 

689A 
879a 

950A 

870a 
337a 

25a 

705a 
562A 


SUBJECT  INDEX. 


Ill 


Adrenaline ;      Comparative  activity  of  racemic  and  kevo- 

rotatory   ■   in    increasing   the   blood   pressure. 

Richard  6S4a 

Manufacture  of  synthetic .     (P)  Nagai  and  Brunnell       79a* 

preparations  ;    Limits  of  accuracy  of  the  physiological 

method  of  control  of  .     Richard         ..  ..     431a 

solutions  for  injections.     Debucquet      . .  . .  . .     230a 

Tests  for  .    Zechner  and  Wischo 194a 

Adsorbent  powders  ;   Estimation  of  surface  of .     Paneth     485a 

Adsorption  apparatus  for  solvent  recovery  etc.     (P)  Etter, 

and   General   Electric  Co 846a 

and  its  bearing  on  catalysis.     Guichard  . .  . .  . .     697a 

of  gases  by  charcoal.     Marshall   . .  . .  . .  . .     122R 

High  pressure  due  to  ■  and  density  and   volume 

relations  of  charcoal.     Harkins  and  Ewing  . .  . .       87a 

Relation    between    electrolytic   dissociation    and    . 

Rakusin  . .  . .  . .  . .  . .  . .     674a 

of  salts  at  metal  surfaces.     Von  Euler  and  Zimmerlund     938a 

of  solutions  ;    General  theory  of  .     Ostwald  and 

De  Izaguirre 489a 

of  vapours  at  different  temperatures  ;    Calculation  of 

.     Ber6nyi  489a 

Adsuki  beans  ;  Proteins  of .     Jones  and  others  . .  . .     342a 

Aeration  of  brewers*  wort  and  other  liquors.     (P)  Bryant    832a 
of  quiescent  columns  of  distilled  water  and  of  solutions 

of  sodium  chloride.     Adeney  and  others   . .  . .     781a 

of  sewage  and  other  foul  waters  ;    Circulation  and . 

(P)  Bolton  and  Mills 389a 

Aerosols.     Whytlaw-Gray  and   Speakman     . .  _  . .     393R 

Agar  ;    Composition  of .     Samec  and  Ssajevic  . .  . .     112a 

Manufacture  of  .     (P)     Matsuoka  . .  . .  . .       75a 

Sulphur  content  of .     Neuberg  and  Ohle  . .  . .     228a 

Afjastitcte  pallidifiora  ;   Essential  oil  of .     Couch  . .     520a 

Agates  ;     Preparation    of    artificial    .     Bhatnagar    and 

Mathur 538a 

AL"_rregate  for  making  moulded  articles  ;    Manufacture  of  an 

.     (P)  American  Aggregate  Co.  . .  . .       15A 

Agitating  apparatus;    Stirring  or  .    (P)   Veitch  and 

others 88a 

apparatus    for   tanks,    e.g.,    for   electrolytic    cells.     (P) 

Mumford,  jun.  ..  ..  ..  ..  ..     902A 

and  mixing  apparatus.     (P)  Kennedy   . .  . .  . .     128a* 

Agriculture  ;    Physico-chemical  problems  in .    McArthur      75r 

Air;    Analysis  by  positive  rays  of  the  heavier  constituents 

of    .     Thomson 630a 

Apparatus  for  cleaning  .     (P)  Edens         . .  . .     S46a 

Apparatus   for   drying  after   purification   in   wet 

filters.     (P)  Herring,  and  Grice  and  Sons,  Ltd.   . .     401a* 

Apparatus  for  extracting  dust  and  fume  from  . 

(P)   Milliken 206a 

Apparatus  for  purifying  : 

(P)Graefe 621a 

(P)   Porteus  2a* 

Centrifugal    apparatus    for    separating    solid    particles 

from .     (P)  Robinson  and  Son,  and  Robinson       44a* 

Cleansing   and    humidifying   apparatus   for   .     (P) 

Welford  797a* 

compressed  ;   Apparatus  for  removing  water,  dust,  etc., 

from  .     (P)  Loss,  and  Grove  A.-G 971a* 

containing  carbon  monoxide  or  other  poisonous  impuri- 
ties ;    Purifying  .    (P)  Guillemard     . .         . .     389a 

Continuous  production  of  germ-free  .     (P)   Wolff     230a 

Cooling   and    liquefying   .     (P)    Heylandt    Ges.    f. 

Apparatebau,   and    Von    Unruh       . .  . .  . .     576a 

Determination  of  minute  amounts  of  oxygen  in  respira- 
tory   .    Sheaff 613a 

Determination  of  small  quantities  of  impurities,  especi- 
ally condensed  vapours,  in  .     Sieverts         . .     155a 

Determination  of  small  quantities  of  injurious  acids  in 

.     Larnbris 389a 

Determination  of  volatile  substances  in  .     Fritz- 

mann  and   Macjulevitsch       . .  . .  . .  . .     989a 

Discharge  of through  small  orifices,  and  entrainment 

of  air  by  the  issuing  jet.     Thomas  . .         . .         . .     925a 

Drying  by  calcium  carbide.     Thomas      . .  . .       33t 

Electrical  treatment  of  : 

(P)  Hoofnagle,  and  Electro- Chemical  Products  Co.  858a 
(  V)  h  M|U,-h  '     l/n'riili  t-IIiu.^  ..  ..        43a 

Filters  for  purifying  .     (P)  Beth 2a* 

heaters.     (P)  Merz  and  McLellan,  and  others  ..  ..     577a* 

Liquefaction  of  .     (P)  Davis,  and  Research  Corp.     632a 

liquid  ;    Cartridges  for  blasting  with .     (P)  Spreng- 

luft    Ges.  199a 

liquid  ;    Continuous  rectification  of  .     (P)  Barbet 

et  Fils  et  Cie.  813a 

liquid;    Explosive  having  a  base  of .     (P)  Weber, 

ft»*     and  Soc.  Les  Pet'ts  Fils  de  De  Wendel  et  Cie.       . .     913a 

liquid;    Manufacture  of  fuses  for  blasting  with  : 

(P)   Kowastch 880a* 

(P)    Sprengluft    Ges 80a 

liquid];    Piston  pump  for  raising  .     <P)  Zack     . .       43a 

liquid;    Plant  for  production  of  .     Blau  ..  ..     173a 

liquid  ;  Production  of  cartridges  for  blasting  with : 

(P)   Kowastch 730a 

(P)    Sprengluft    Ges 199a 

Means  for  cleaning  blades  of  rotary  valves  for  \ise  with 
centrifugal  apparatus  for  separating  solid  particles 

from    .     (P)    Robinson    and    Son,    Ltd.,    and 

Robinson  . .  . .  . .  . .  . .  . .     128a* 

pumps ;     Mercury    vapour    ejector    .     (P)    A.-G. 

Brown,  Boveri  &  Co.  —         698a* 


Air — continued. 

Recovering  constituents  of  .    (P)   Wucherer  and 

others 
Separation   of   dust   and   other   mechanical   impurities 

from  .     (P)   Heenan  and   Froude,   Ltd.,   and 

Walker 

Separation   of    elementary    constituents   of   .     (P) 

L'Air  Liquide 

Specific  heat  of  : 

Glazebrook 
Woniersley 

Sterilising  .     (P)   Wolff         

Sugar-tube  method  of  determining  rock  dust  in  . 

Fieldner  and  others 

Suspended  impurities  in  the  .     Owens 

Tunnel    kilns    for    heating    .    (P)    Wilputte,    and 

American  Dressier  Tunnel  Kilns,   Inc. 

Airship  ;    The  new  Borner  . 

Airships  ;  Gas  for . 

Ajowan  seeds  ;  Manufacture  of  thymol  from .    Lakhani 

and    others 

Alanine ;      Identification     of    by    crystallo-chcmical 

analysis.     Jaitschnikov 

Alaska  ;    Mining  industry  of -^in  1920 

Alberta.     See  tinder  Canada. 

Albumin,  egg- ;    Study  of  adsorption  in  solution  and  at 

interfaces  of and  mechanism  of  its  action  as  an 

emulsifying  agent.     Clark  and  Mann 

Isoelectric  point  of  leucosin,  a  vegetable  .    Liiers 

and  Landauer 
Manufacture  of  compounds  of  tannin,    silicic  acid,    and 
albumin,   or    formaldehyde,     tannin,   silicic    acid, 

and .(P)     Burkhardt 

Manufacture    of    foliated  .      (P)    Chem.    Verwert- 

ungsges. 
Manufacture  of  products  insoluble  in  water  from  glycerin 

and  .    (P)  Diesser         

Preparation  of  pure ,  free  from  salts  and  acid,  from 

its  solutions  in  salts  or  acids.     (P)  Pringsheim     .. 

serum- ;   Optical  rotatory  power  of .     Young 

Albuminoid  ;  Manufacture  of  a  vegetable .     (P)  Moffatt 

and  Wolcott 
Albumins  and  products  containing  the  same  ;    Preparation 

of  aqueous  solutions  of .     (P)  Kolshorn 

Alcohol- carbon  bisulphide  -water  ;    The  system  •.     Mis- 

cibility  of  the  three  components  in  different  pro- 
portions and  practical  applications  derived  there- 
from.    Schoorl  and  Regenbogen 

Catalytic  dehydration  and  addition  reactions  of  . 

Gilfillan  

-chloroform-water ;     The    system    .    Schoorl    and 

Regenbogen 

Dehydration  of  .     (P)  Van  Ruyrabeke 

Denaturing from  the  point  of  view  of  the  State  and 

of    alcoholism.     Effront 
Determination  of  water  in  .     Schoorl  and  Regen- 
bogen 

l  listUlation  of .    (P)  Granger  and  others 

-ether  mixtures  ;   Manufacture  of for  use  as  motor 

fuel.     (P)    Lichtenthaeler 
-ether-water  mixtares  ;    Specific  gravities  and  refractive 

indices  at  15°  C.  of .     Sanfourche  and  Boutin 

Formation  of  addition  products  of  cresols  with  : 

Berl  and  Schwcbel 

Von  Rechenberg  and  Von  Rechenberg 

Formula?  for  solubility  of  certain  salts  in  aqueous . 

Treadwell 
fuel: 

(P)  Blake 454a, 

(P)  Hawes 

(P)  Penhale  

fuel,  natalite  ;   Manufacture  of in  South  Africa  . . 

industry  in  Canada 

industry  ;    Prospects  of  in  Palestine 

Manufacture  of .     (P)  Badische  Anilin-  und  Soda- 

Fabrik 

Manufacture  of    from  acetaldehyde.     (P)    Licht- 

enhahn,  and  Elektrizitatswerk  Lonza 

Manufacture  of  from  acetylene 

Manufacture  of  from  acetylene  or  ethylene.     (P) 

Karo 

Manufacture  of  ether  and  from  the  ethylene  of 

coke-oven  gas.     Thau  and  Bertelsmann 

Manufacture  of from  ethylene.     Damiens 

Manufacture    of    from    gas    containing    ethylene. 

(P)  Basore         . .  . .        33A 

Manufacture  of  industrial  absolute  and  its  appli- 
cation to  preparation  of  liquid  fuel.  Mariller  and 
Van   Ruymbeke 

Manufacture  of  industrial in  Germany 

Manufacture  of   industrial and  motor  fuel  in  the 

Philippine   Islands.     Cole 

Manufacture    of    motor    fuels    containing    .     (P) 

Stevens,  and  Chemical  Fuel  Co.  of  America 

Manufacture  of  from  seaweed.     (P)  Walkey  and 

Bargate 
as   motor  fuel : 

Bartle        

Howe 
-petrol ;     Limit   of   inflammability   of   vapours   of  the 

system and  of  a  ternary  system  with  a  basis 

of  alcohol   and  petrol.     Boussu 


399a 

859a 

315  a 
163  a 
835a* 

526a 
344a 

845a 

42lR 
180R 

435a 

996a 
158R 


603A 
681A 

119a 

267  a 

949a 

35a 
154a 

781a 

35a 

308A 
566a 

157a 

779a 


308a 
4a 

974a 

610a 

662a 
662a 

13a 

975A 
801a 
454a 
79R 
332R 
484R 

523A* 

198a* 
190R 


90A 
95  7  A 


879A* 


952A 
511R 


537a* 

29a 

354R 

371R 

79R 


IV2 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Alcohol— continued 

Power in  Cuba 

Power  from   vegetation 

from  the  prickly  pear  in  South  Africa  .. 
Production  of  paper  pulp  and  power  from  sugar- 
cane refuse.     Fowler  and  Bannerjee 

Recovery  of  dry  sodium  acetate  and  from  ethyl 

acetate.     (P)    Consortium   fiir    Elektrochem.    lud. 
Selective  solvent  action  by  the  components  of  anurous 

— -.     Wright  

Solubility   of   benzene  in   weak   .     Ormandy    and 

(raven 

solutions  ;    Titrations  in  .     Bishop  and  others   . . 

solutions  ;    Vapour  pressures  of  dilute  ■   - ■-.     Thomas 

still;    Plat  "t  a  continuous  .     Robinson 

Substances  for  denaturing for  use  in  preparation 

of  perfumes  and  cosmetics 
from    sulphite-cellulose    waste    liquors ;      Amount    of 

arrtuldehyde   and    paraldehyde    iu   .     Heuser 

and    others 

Sweet  potatoes  as  a  source  of 

Synthetic  in  Germany 

Transfer  of  hydrogen  from  an  to  an  aldehyde. 

Milligan  and   Reid 

Tropical  plants  as  possible  sources  of  .     Whitford 

Utilisation  of  asphodel  tubers  for  production  of  . 

Bamberger  and  others 
Utilising  component  substances  of  grain  for  maximum 

production  of  yeast  and  .     Sorei 

vapours;    Recovery  of  from  air.     Thomas 

-water-aromatic    hydrocarbons;      The     systems    

from  30°  C.  to    -  30°  C.     Ormandy  and  Craven.. 

-water-paraffins  ;   The  systems  ethyl from  +  30"  to 

— 30°  C.     Ormandy  and  Craven 
from  western  larch  (Lariz  occidentalis).     Sherrard 
See  also  Spirit. 
Alcoholic  fermentation.     See  under  Fermentation. 

liquids  ;    Distillation  of .     (P)  Schneible     ..     643a, 

liquids  ;   Purifying .     (P)  Mann,  and  Standard  Oil 

Co 

Alcohols  ;  Catalytic  activity  of  copper  in  dehydrogenation  of 

.     Palmer  . . 

Dehydroxidation  of  .     Miiller 

Determination  of by  acetylation.     VA*olff 

of  the  linalool  type  ;    Conversion  of  tertiary  ethylenic 

Into  primary  ethylenic  alcohols  of  the  geraniol 

type.     Locquin  and  Wouseng 

Manufacture  of  .     (P)  Badischc  Anilin-  und  Soda- 

Fabrik 19Sa,  347a, 

polyhydric  ;  Manufacture  of .     (P)  Matter 

Production  of  wax-like from  wool-fat.  (P)  Schrauth 

secondary  ;     Purifying    higher    — — .     (P)    Lebo,    and 

Standard  Oil  Co 

Aldehyde ;  Transfer  of  hydrogen  from  an  alcohol  to  an . 

Milligan  and  Reid 

Aldehyde-fatty  acids  ;   Separation  of from  by-products 

and  manufacture  of  soaps  therefrom.     (P)  Byrnes 

Aldehydes ;     Apparatus   for   making  and   separating 

them  from  other  products  formed.     (P)  Backhaus 
and  others 

Determination   of  by  means  of  hydroxylaminc. 

Bennett  and  Donovan 

Determination  of  ■ by  means  of  Nessler's  reagent. 

Bougault  and  Gros 

Determination  of by  the  '*  silver  method  "     Fricke 

Dtsmutation  of  various by  yeast.     Kumagawa    .  . 

Influence  of  Cannizzaro  reaction  on  tanning  by  . 

Moeller 

Manufacture  of  anhydrides  and   from   di-esters. 

(P)  Skirrow,  and  Shawinigan  Laboratories,  Ltd.  . . 

Manufacture  of from  mineral  oil  hydrocarbons  and 

tar  oils.     (P)  Harries 

Manufacture  of and  of  other  oxidation  products  of 

hydrocarbons.     (P)  Bibb,  and  Bibb,  sen. 

Manufacture  of  and  separation  from   the   other 

products  formed.     (P)  Backhaus  and  others 

Modified  SchifTs  solution  for  detection  of .    Wert- 

heim 

occurring    in   eucalyptus    oil ;     Examination   of   . 

Penfold 

and   other    volatile   substances ;    Separation   of  

from  body  fluids.     Fricke 

Reduction  of  acid  chlorides  to by  means  of  nickel 

catalysts : 

Rosenmund 
Scliliewiensky 
and    their    substitution    derivatives ;     Manufacture 

aromatic .     (P)  Benedetti  and  others 

Aldina  insignis  fruit ;  Starch  from .     Goodson 

Aldol ;    Analytical   characterisation  and   differentiation 

,m  etaldehyde,  glyoxylic  acid,  and .     Fricke  .  . 

Manufacture  of from  acetaldehyde.     (P)  Griinstein 

Aleuritic  acid  from  shellac.     Harries  and  Nagel 
Alfalfa.     See  Lucerne. 

Alga?  ;  Marine .     See  Seaweeds. 

Algeria  ;   Exports  of  minerals  from in  1921 

Paint  and  varnish  market  in 

Report  on  economical  and  commercial  situation  in . 

Dible 

Alginates;    Production  and  utilisation  of  gelling  metallic 
.    (P)  Erdahl       


of 


of 


570R 

32r 

536K 

227A 

33a 

996a 

406a 

273a 

33T 

605A 

609a 


190a 

8r 

35R 

2GSA 
1GSR 


642A 
34T 


134a 


402a 

952a 


680a 
438a 

482a 
118a 
156  a 

609a 

997a 
36a* 
676a 

686a 


787A 

391a 

646a 
345a 

189a 

337a 

878A 
35a 
959a 
79a 
790a 
269a 
345A 


785A 
785A 

232a 
512a 

268a 
78a 
474a 


244R 
40R 


37R 
475  a 


PAGE 
Alizarin.     See  under  Anthracene  dyestuffs. 

Alkali,  caustic  ;  Eliminating  colour  from .     (P)  Meadows 

1  ''hers         . .  . .  . .  . .  . .  . .     590a 

caustic;  Recovery  of from  impure  lyes.  (P)  Heine- 

mann,  and  Hoesch  und  Co.    . .  . .  . .  . .     174a 

:         rolytic  cell  for  production  of  chlorine  and  . 

([')  Allen  and  others    . .  . .  . .  . .  . .     380a 

lyes    coloured   and    contaminated   with   hemicellulosc  ; 

Purification  of .     (P)  Kuttncr  and  Profeld     ..     752a 

manufacture  in  Australia  ;    Possibilities  of . .     536R 

solutions  ;    Use  of  potassium  binoxalate  for  standard- 
isation of .     Osaka  and  Ando    . .  . .  . .     839a 

etc.  works  ;   Fifty-eighth  annual  report  on . .     316R 

etc.  works  ;  Stamp  duties  on  registration  certificates  for 

267R 

Alkali  acid  pyrophosphates  ;  Manufacture  of .     (P)  Utz     100a 

acetates  ;    Solubilities  of  alkali  formates  and  in 

water.     Sidgwick  and  Gentle  . .  . .  . .     857a 

bisulphites  ;    Equilibria  in  aqueous  solutions  of  . 

Baly  and  Bailey  S56a 

carbonates    and    hydroxide ;     Estimation    of   in 

presence  of  phenolphthalein.     Bonnier        . .  . .   1000a 

-cellulose.     See  under  Cellulose, 
chlorates  ;     Electrolytic  cells  for  production  of  — — . 

(P)  Barker,  and  United  Alkali  Co 99a 

chlorides  ;    Decomposition  of .     (P)  Kersten         . .       13a 

chromates  ;     Transforming   into   bichromates   or 

chromic  acid.     (P)  Vis  . .  . .  . .  . .     813a* 

cyanates  ;    Manufacture  of .     (P)  Licbknecht       . .     253a 

cyanides  ;   Manufacture  of : 

(P)  Koppers         670a 

(P)  Mchner  372a 

cyanides  ;   Retort  for  production  of .     (P)  Metzger, 

and  Air  Reduction  Co.  . .  . .  . .  . .     670a 

formates ;  Manufacture  of .     (P)  Oldbury  Electro- 
Chemical  Co 173a 

formates  ;    Solubilities  of  alkali  acetates  and  in 

water.     Sidgwick  and  Gentle  . .  . .  . .     857A 

hydroxides  ;  Manufacture  of from  alkali  sulphates. 

(P)  Kaiser         G69a 

hypochlorites  ;   Manufacture  of .     (P)  Yorce        . .     415a 

iodides  ;    Analysis  of  .     "Winkler     . .  . .  . .     856a 

metal  compounds  of  simple  fatty  acid  esters  ;   Prepar- 
ation of  enolic .     (P)  Scheibler  . .  . .  . .     520a 

oxalates  ;   Manufacture  of .     (P)  Oldbury  Electro- 
Chemical  Co.     . .          . .  . .  . .  . .  . .     174a 

perborates  ;  Manufacture  of .     (P)  Liebknecht,  and 

Roessler  and  Hasslacher  Chemical  Co.        ..          ..     374a* 
salts  ;  Extraction  of from  felspar  and  other  mine- 
rals.    (P)  Plauson 938a 

salts;    Operation  of  processes  and  cells  for  electrolytic 

decomposition  of  .     (P)  Yv'ilderman   . .  . .     812a 

silicates   for   glass-making  ;     Manufacture   of   in 

blast  furnaces.     (P)  Peacock  and  Waggoner         . .     755a 

silicates  ;  Manufacture  of  .     (P)  Deguide  216a,  546a* 

silicates  ;   Manufacture  of  dry .     (P)  Dunhan,  and 

Casein  Mfg.  Co.  372a 

silicates  ;  Production  of  oil  containing  sulphur  and 

from  bituminous  kicselguhr.     (P)  Hlig        . .  ..     495a 

sulphides  ;    Evaporating  solutions  of prepared  by 

passing  gases  containing  hydrogen  sulphide  through 
alkali  carbonate  solutions.     (P)  Raupp  and  Gasser    373a 

Alkalimetry  ;     s-Diphenylguanidine    as    standard    in    . 

Carlton 690a 

Alkaline- earth  acid  pyrophosphates  ;    Manufacture  of  . 

(P)Utz 100a 

carbonates  ;  Purifying .     (P)  Plowman  and  Felden- 

heimer    . .         . .         . .         . .         . .         . .         . .     708a 

chlorides ;      Manufacture     of     anhydrous     ■ .     (P) 

Minaml  Manshu  Tetsudo  Kabushiki  Kaishi  . .     752a 

metals;  Qualitative  separation  of .    Polonovski  . .     840a 

Alkalinitv  of  water  and  culture  media ;   Estimation  of . 

Noll         995A 

Alkaloid  of  Aconiium  panicidatum  ;   Paniculatine,  the . 

Brunner  . .  . .  . .  . .  . .  . .     914a 

content  of  lupins  ;    Effect  of  nitrogenous  fertilisers  on 

.     Vogel  and  Weber       . .  . .  .  .  , .     477a 

content ;    Relation  between  total  nitrogen  and  . 

ltosenthalcr       . .  . .  . .  . .  . .  . .       77a 

content  of  Strychnos  and  Cola  seeds.      Rosenthaler  and 
Weber    . . 

New ,  isomeric  with  tropineand  pseudotropine.  from 

residues  of  hydrolytic  products  of  cocaine.     Troger 
and  Sehwarzenberg 

from  the  yew  tree  (Tarns  baccata)  ;    Taxine,  an  

Winte'rstcin  and  latrides 

Alkaloidal  bismuth  iodides  ;    Preparation  of 
talline  form.    Francois  and  Blanc 

mercuric  iodides  ;    Preparation  of 

condition.     Francois  and  Blanc 

Alkaloids  ;  Anhalonium  (cactus) : 

SpSth         

Spathand  Roder 
in  belladonna  extracts ;    Nature  of  - 

Costy 
cinchona ;     Acceleration    of    vulcanisation 

Baton  and  Bishop 
cinchona  ;  Action  of  hydrogen  peroxide  on  — 

and  Becker 
cinchona  ;   Preparation  of  mixed  carbonic  acid  esters  of 
.     (P)  Baver  und  Co 


m  a  crys- 
in  a  crystalline 


Goris  and 

by    '-'. 

— .  Speyer 


,  .A 

116a 

230a 

684a 

645a 

390a 
683a 

434a 

874T 

516a 

521a 


SUBJECT  INDI'X 


113 


Alkaloids — continued. 

Cinchona    .     Synthesis    of    vinyl-free    quinatoxins 

and  quinaketones.     Rabe  and  others  . .  . .     267a 

of  Colombo  root ;    Constitution  of  .     Spath  and 

Bohra 954a 

Detection  and  determination  of in  animal  excreta 

and  organs.     Wachtel  . .         . .         . .         . .     116a 

Determination  of .     Herzig    . .  . .  . .  . .     517a 

Determination  of in  aconite  extract.     Astruc  and 

others 345a 

Identification  of under  the  microscope  from  the  form 

of  their  picrate  crystals.     Nelson  and  Leonard     . .     307a 
of  Pareira  root.     Faltts  and  Neumann    ..  ..  ..     390a 

Relation    between    constitution    of    and    Yitali's 

reaction.     Hardy         ..  ..  ..  ..  ..     782a 

etc.  ;  Removing  and  obtaining from  vegetable  and 

animal   products,   especially   lupins.     (P)   Elektro- 

Osmose  A.-G 432a 

Report  on  determination  of .     Bliss,  jun.  . .     6S3a 

Strychnos  .     Leuchs  . .  . .  . .  . .  . .     307a 

Strychnos .     Preparation  of  isostrychnine.    Leuchs 

and  Nitschke    . .  . .  . .  . .  . .  . .     954a 

Use  of  newer  indicators  in  titration  of .     McGill  . .     995a 

Alkylamides  of  aromatic  sulphonic  acids  ;    Manufacture  of 

.     (P)  Bader  and  Nightingale  . .  . .  . .     997a* 

Alkylamines ;  Relationship  between  constitution  and  pharma- 
cological action  in  the  case  of  benzoic  and  tropic 

esters  of .    Von  Braun  and  others      . .         . .     608a 

Alkylaminoalkyl    esters    of    p-aminobenzoic    acid  ;     Manu- 
facture of .    (P)  Bader,  and  Levinstein,  Ltd.      36a* 

Alkylaminoanthraquinone     compounds  ;      Manufacture     of 

aromatic .     (P)  Haworth  and  Atack  . .  . .     743A* 

Alkylanilines  ;    Manufacture  of  .     (P)  Rogers,  and  Du 

Pont  de  Nemours  and  Co.       . .  . .  . .  . .     407a* 

Alkylbenzyl  barbituric  acids.     Dox  and  Yoder  ..  ..     518a 

Alkyl-compounds  ;   Preparation  of  metallic  and  non-metallic 

.     Hepworth  . .  . .  . .  . .  . .         8t 

N-Allrvlhydropyridine-3-carboxylic  acid  esters  ;   Preparation 

of : 

(P)  Merck  

(P)  Wolffenstein 

acid  esters  ;    Preparation  of  acid  alkylated  .     (P) 

Wolffenstein 


acid     esters ;     Preparation    of 


(P)  Dreyfus 

.     (P)  Kuh     . . 

— .     (P)  Adamson, 


Zahl- 


N-Alkvlpvridinecarboxylic 

.     (P)  Merck 

Alkyl  sulphates  ;   Manufacture  of . 

sulphates  ;    Preparation  of  neutral 
Alkylsulphuric  acid  ;    Manufacture  of  - 

and  General  Chemical  Co. 
Alligator  oil.     See  under  Oils,  Fatty. 

Alloy  ;  New  light 

Alloys  ;  Analysis  of by  the  aid  of  specific  heats. 

bruckner 

anti-friction  ;    Rapid  analysis  of .     Bertiaux 

Apparatus  for  determining  the  linear  slirinkage  and  for 

bottom -pouring  of  cast  .     Johnson  and  Jones 

Bearing  metal .     (P)  Goldschmidt 

Bearing-metal  of  high  lead  content.     (P)   Gold- 
schmidt A.-G. 
binary  ;    Relation  between   equilibrium  diagram  and 

hardness  in  .     Isihara 

Briquetting  turnings  and  scrap  of .     (P)  Walter  . . 

Casting .     (P)  Hurst 

Chemical  and  electrical  behaviour  of  some  series  of . 

Jenge 

containing  boron  ;  Manufacture  of .     (P)  Walter  . . 

containing  graphite  ;   Manufacture  of .     (P)  Wich- 

mann      . .  . .  . .  . .  . .  . .    108a* 

for  die-casting.     Kaufmann  . .  . . 

for  electric  heating  appliances.    (P)  Lofts 

for   electrical    resistance   elements.     (P)   Mandell,   and 

Electrical  Alloy  Co. 
forming    mixed    crystals  ;     Segregation    phenomena   in 

.     Bauer  and  Arndt 

Graphical   representation   of   melting   point   curves   of 

ternary  and  quaternary .     Hommel 

Manufacture  of : 

(P)  Calorizing  Corp.  of  America 

(P)  Carter,  and  Baker  and  Co. 

(P)  Clement,  and  Cleveland  Brass  Mfg.  Co.  . . 

(P)  Evans,  and  Cyclops  Steel  Co. 

(P)  General  Electric  Co.  

(P)  Hatfield  

(P)  Isabellen-Hutte         

(P)  Laise,  and  General  Electric  Co. 
(P)  Meyer  and  others     .. 

(P)  Milliken  180a*. 

(P)  Pacz 

(P)  Pacz,  and  General  Electric  Co. 

(P)  Randall  

Manufacture  of  ferrous  : 

(P)  Skelley  and  others 

(P)  Soc.  Anon,  de  Commentry,  Fourchanibault 
et  Decazeville  . .  . .       373a,  470a, 

(P)  Springer 
(P)  Whiteley,  and  Dentists'  Supply  Co. 

Manufacture  of  sheets  of  magnetic  .     (P)  Valley 

Holding  Corp. 

Manufacture  of  very  hard ,  capable  of  withstanding 

breakage,  for  tools  and  the  like.     (P)  Lohmann  . . 


439a 
439a 

439a 

439a 
438a 
348a* 

79a 
35b 

636a 
297a 

817a 
942a 

221a 

941a 
766a 
221a 

18a 
63a 

258a 
297a 
717a* 

180a 

220a 

220a 

821a 

379a* 

107a 

332a 

221a 

986a 

108a* 

716a 

766a 

986a 

637a 

147a* 

555a 

821A 

470a 
470a 
901a 


Alloys — continued. 

Manufacture  of with  the  aid  of  intermediary  alloys. 

<P)  Metallbank  u.  Metallurgisehe  Ges 

Manufacture   and    use  of  nv'  i  z   .     (P) 

Thofehrn,  and  Light  Metals  Co. 
for    medical    and    dental    purposes.      (P)  Brose    und 

Co 

non-ferrous  ;    Use  of under  superheat.     Dews 

and  process  of  treating  them.     (P)  Pacz 

Readily  fusible .     (P)  Mulligan         

Recovery  of  metals  from ,     (P)  Kroll 

Refining .     (P)  General  Electric  Co 

of  refractory  metals  for  filaments  ;  Manufacture  of . 

(P)   Yunck         

Relative  merits  of  heat-resisting for  enamel-burning 

racks.     Poste 

Removing  carbon  from .     (P)  Schiitz 

for  repair  purposes.     (P)  Melton 

for  repairing  defective  castings.     (P)  Haworth 

Separation    and    recovery   of    metals    from    .     [P) 

Metallbank  u.  Metallurgische  Ges. 
of  silicon  with  metals  of  the  iron  and  chromium  gn 

Casting  of  .     (P)  Walter 

sparking ;     Production   of  a  surface   capable  of  being 

foldered  on   .     (P)   Deimel 

sparking  ;    Protecting  .     (P)  Forcellon,  and  Alpha 

Products    Co. 
suitable  for  exposure  to  hot  conditions.    (P)  Coplan  . . 
used  as  electrical  heating  elements  ;  Electrical  properties 

of at  high  temperatures.    Hunter  and  Jones 

Variation  of  mechanical  properties  of at  low  tem- 
peratures.    Guillet  and  Cournot 

White  metal  : 

(P)  Dunkley  and  Ryan 

(P)   Hansen 

Allyl  alcohol  ;    Conversion  of into  glyceryl  chloro-  and 

bromohydrins.     Read   and   Hurst 

AUylarsenic  acid  ;    Manufacture  of .     (P)  Hoffmann-La 

Roche   und    Co. 

l-AHyl-3.7-dimethylxanthine  ;      Manufacture    of    : 

<P)  Hoffmann-La  Roche  und  Co. 
(P)     Preiswerk,     and     Hoffmann-La     Roche 
Chemical   Works 
Manufacture  of  easily   and    neutrally    soluble    double 

compounds  of .  (P)  Hoffmann-La  Roche  und  Co. 

Allyl      ether      of        ethenyl-p-dihydroxydiphenylaraidine  ; 

Preparation  of .     (P)  Soc.  Chem.  Ind.  in  Basle 

Allyl   isothiocyanate ;    Determination  of  in  mustard. 

Luce   and   Doucet 

O-Allylmorphme  ;    Manufacture  of .     (P)  Yon  Kereszty 

and   Wolf 

Alsace ;  Potash  in .... 

Alum  ;    Action  of on  animal  glue.     Gutbier  and  others 

Chrome  .     See  under  Chrome 

Iron  .     See  wider  Iron 

potash-  ;    Manufacture  of .     (p)  Wright 

potassium-;    Manufacture    of  from  lithium-potas- 
sium ores.     (P)  Bailey  and  Sedgwick 

Alumina  ;   Action  of upon  ethyl  and  isopropyl  acetates. 

Adkins  and   Krause 

Alleged  adsorption  of  from  aluminium  sulphate 

solutions    by    cellulose.     Tingle 

Determination  of in  nickel  ores.     Lathe  . .  . , 

Determination  of  small  quantities  of  sodium  in  

Geith 

Extraction  of  .     (V)  Tyrer   .. 

Fusing  and  casting and  obtaining  castings  therefrom. 

(P)  De  Rolboul . .  . .     177A 

Manufacture   of   .     (P)    Sherwin,   and   Aluminium 

Co.  of  America  . .  ..  ..  ..  ..  .,     632a 

Manufacture  of from  aluminium  nitrate  solutions. 

(P)  Mejdell,  and  A./S.  Labrador 415a 

Manufacture  of  from  clay.     (P)  A./S.  Hoyangs- 

faldene  Norsk  Aluminium  Co.  . .  . .  . .     372a 

Manufacture  of  filaments  of  .     (P)  De  Rolboul   . .     142a 

Manufacture  of  poor  in  iron.     (P)   Goldschmidt 

and  others         ..  ..  ..  ..  ..  ..     416a* 

Manufacture  of  potash  and .     (P)  Bassett  . .  .  .     372a 

as   mordant.     Bancroft 666a 

Separation  of  ferric  oxide  and from  magnesia  by  the 

nitrate   method.     Charriou    . .  . .  . .     962a 

-sodium  oxide-water ;    Equilibria  in  the  system  . 

Goudriaan  . .  . .  . .  . .  . .  . .     215a 

Use  of  as  substitute  for  tin  in  mordanting  wool. 

Grosheintz         . .  . ,  . .  . .  . .  . .     290a 

See  also  Aluminium  oxide. 

Aluminate  cements  ;    Manufacture  of  .     (P)  Mathesius     757a 

Aluminium  alloy;    Silumin,  a  new  light .     Czochralski     219a 

alloys  ;    Ageing  of  .     Fraenkel  and  Scheuer       . .     331a 

alloys  ;   Analysis  of : 

Da     Costa- Vet 553a 

Mende        . .  . .  . .  . .  . .  . .     144a 

alloys  ;    Causes  of  failure  in  so-called  .     Rosenhain 

126r,  255a 

alloys  ;    Corrosion  of  .     Rolla  . .  . .  . .     331a 

alloys  ;    Manufacture  of  : 

(P)    Burden  146a 

(P)  De  Lavandeyra        ....  . .  . .       62a 

(P)  Frary,  and  Aluminium  Co.  of  America   422a,  638a* 

(P)  General  Electric  Co.  943a 

(P)  Hall,  and  Rolls-Royce,  Ltd 555a* 

(P)  Henlein  and  Molkentin      . .  . .  . .     717a 


107a 

597a 

673A 

940a 

472a* 

863A 

822a 

763a 

637a 

98  'k 
469a 
901a 


20a 
986a 


203a. 
943a 


609a 
785a 


483a 

484a* 

483a 

520a 

515A 

158A 

377R 
601a 


897a 
308a 


289a 
273T 


714a 
o7a 


114 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Aluminium — continued. 

alloys;     Reduction  of  aluminium  oxide  "to  form  . 

'  ( P)   Burgess 669A 

and  its  alloys;    Soldering  .     (P)  Passalacqua     ..     221a 

alloys  ;    Thermal  treatment  of  certain  complex  . 

Guillet 17a 

alloys  ;   Use  of  molybdenum  for  improving  fhe  properties 

of  .     Reimann      . .  . .  . .  . .  . .      504a 

and  its  alloys  with  zinc  ;  Density  determinations  on 

at  high  temperatures.     Borncmann  and  Sauerwald     553a 
-arsenic  alloys.     Mansuri   . .  . .  . .  . .  . .     984a 

Attaching  topper,  brass,  steel,  and  other  metals  to 

by  tinning,  sweating,  and  burning  processes.     (P) 

Piatt 107a 

Brittleness  developed  in  by  stress  and  corrosion. 

Itawdon  and  others    ..  ..  ..  ..  ..     179a 

-bronze  ;    Heat  treatment  of  .     Blue         . .  . .       61a 

-bronze  ;   Production  of  rust-  and  heat-resisting  coatings 

oi on  iron.     (P)  Baer  und  Co.  . .  . .  . .     258a 

-bronze  ;   Use  of  macrography  for  controlling  the  casting 

of  .     Galibourg   and    Brizon 106a 

Casting .    (P)  Baer  und  Co.  378a 

as  a  coating  metal.    Guillet         . .         . .         . .         . .     468a 

Composition   for  use   in   soldering   and   welding  . 

<P)  J)e  Clamecy,  and  Sturtcvant  Co.  ..  ..     506a 

Constitution  and  age-hardening  of  alloys  of  with 

copper,  magnesium,    and  silicon  in  the  solid  state. 

Gayler 417r,  818a 

-copper  alloys  : 

(P)  Iytaka,  and  Mitsubishi  Zosen  Kaisha    . .     505a 

Ohtani   and    Hemmi 377a 

-copper  alloys  ;    Copper-rich .     Stockdale  . .       418r,  818a 

-copper  alloys  ;    Effect  of  temperature  on  properties  of 

.     Lea        . .  . .     * 595a 

-copper  ;   Density  determinations  in  the  system at 

high    temperatures.     Bornemann    and    Sauerwald     421a 
-copper-silicon  alloys  ;    Physical  properties  of  sand-cast 

.     Dix,  jun.,  and  Lyon  . .  . .  . .  . .     594a 

Determination  of  iron  and in  natural  phosphates. 

N ydegger  and  Schaus  . .  . .  . .  . .  . .     706a 

Determination  and  separation  of  in  alloys  rich 

in  aluminium.     .lander  and  Wendehorst    ..  ..     468a 

Determination  of  small  quantities  of  sodium  in  . 

Geith 714a 

Determination    of    in    tungsten.     Froboese    and 

Froboese  . .  . .  . .  •  •  -  -  •  •     331a 

Effects  of  over-heating   and  repeated  melting  on  . 

Rosenhaln  and  Grogan  ..         ..         ..      417r.  818a 

electrical  conductors  ;    Manufacture  of  .     (P)  Lind     866a 

Experiments   on   oxide   method   of   determining   . 

Clcnnell 418R,  840a 

Extraction  of  nickel  and  from   Cuban  iron  ores. 

Hayward  219a 

Hydrochloric  acid  test  for  resistance  to  corrosion  of . 

Mylius 552a 

Industry    in    Switzerland    ..  ..  ..  ..  ..     374r 

Influence  of  nature  of  deformation  undergone  by  

on  the  recrystallisation  diagram.     "Rassow  . .  . .     219a 

-iron  alloys.     (P)  General  Electric  Co 505a 

and   the  "like;    Electrothermic  recovery  of  .     (P) 

Neumann  . .  .  -t         . .  -  -  . .  .  •     717a 

-magnesium    alloys.     Ohtani        . .  . .  . .  . .     377a 

Manufacture   of   electric   coils   of  .     (P)    Kiittner, 

and   Chemical   Foundation,   Inc.      ..  ..  ..     943a 

Manufacture  of  electrode  carbon  for  use  in  production  of 

.    (P)     Chem.  Fabr.  Griesheim-Elektron       ..     222a 

Metallographic    investigations    on    cathodic    deposition 

of  metals  on  .    Kyropoulos 61a 

-molybdenum  alloys.     Reimann 331a 

ores    containing    sulphur ;     Treatment    of    .     (P) 

MacCarthy,  and  Mineral  and  Chemical  Co.  of  Utah     415a 

Precipitation  of by  thiosulphate  and  its  separation 

from  iron.     Hahn  and  others  . .  . .  . .     962a 

Prizes  for  methods  of  soldering 35R 

Production  of  rust-resisting  coatings  of  on  iron 

articles.     (P)  Baer  und  Co 19a 

Production  of  single  crystals  of  and  their  tensile 

properties.     Carpenter  and   Elam    . .  . .  . .       17a 

Recovering   magnesium  or  or  their  alloys   from 

scrap.    (P)    Chem.    Fabr.    Griesheim-Elektron    ..     715a 

Recovery  of  from  silicates.     (P)  McClenahan    . .     766a 

Recrystallisation  diagram  of  .     Rassow  and  Velde     219a 

Reduction  of  metallic  oxides  by in  the  furnace.     (P) 

Felder-Clement  985a 

Reduction    of   from    its    ores.    (P)    Collins    and 

Stevens 555a 

Removal    of    from    aluminium-zinc    alloys.     (P) 

Bornemann  and  Schmidt      ..  ..  ..  ..     108a 

Separation    of    glucinum    and    .     Britton  ..     273a 

Separation  of  iron  and by  means  of  o-phenetidine. 

Chalupnv  and   Brelsch  ..         ..         ..         ..     612a 

sheet  and  casting:    Repairing  of  .     (P)  Piatt  ..     107a 

-silicon  alloys  and   their  industrial  use.     Guillet  ..      468a 

-Silicon    alloys;     Manufacture   of   .     (P)    Pacz    ..     637a 

-silicon  alloys  ;   Modification  of .     Curran  . .  ..     761a 

-silicon   alloys  ;    Production  of  castings  of  ,     (P) 

Edwards  and  others 332a 

Simple  crucible  furnace  for  melting  .     Lobley   . .     862a 

Soldering  : 

(P)  Lowe 379a 

in   Passalacqua 147a 

Soldering    composition    for    .     (P)    Albertus    and 

Flint 506A 

Solubility  of  gases  in  — — .     Czochralski  ..  ..     714a 


page 
Aluminium — continued. 

Thermal  conductivity  of .     Jakob  . .  . .  . .     735a 

Thermal  expansion  "of  .     Souder  and   Hidnert    ..     762a 

Treatment  of  before  nickel-plating.     Tassilly    ..     984a 

utensils;  Cleaning  of .     Seligman  and  Williams  418B,8184 

Volumetric  determination  of  .    Kraus      ..         ..       8lA 

-zinc    alloys.     Hemmi        . .  . .  . .  . .  . .     B52a 

-zinc    alloys ;      Constitution     of    .     Hanson     and 

Gayler 126r,  256a 

-zinc  alloys;    Thermal  expansion  of .     Schulze  ..       17a 

Aluminium   acetate ;     Manufacture   of   .     (P)    Wacker    415a 

Aluminium    acetate,    basic ;     Preparation    of    solutions    or 

solid    mixtures   containing   silicic   acid    and   . 

(P)     Laves         687a 

Aluminium    carbide ;     Reduction    of    aluminium    oxide    to 

.     (P)  Burgess 669a 

Aluminium  chloride  crystals  ;    Preparation  of  : 

(P)  Howard,  and  Grasselli  Chemical  Co.  . .  859a 
(P)    Sieurin,  and    Hoganas-Billesholms    Aktie- 

bolag  141a* 

Manufacture  of  : 

(P)  Baum  and  others 502a* 

(P)  Frary,  and  Aluminium  Co.  of  America  ..  631a 
(P)  Gibbs,  and  Du  Pont  de  Nemours  and  Co.  670a 
(P)  Hall,  and  Texas  Co.  '. .  . .       216a,  670a 

(P)  Wolcott  252a 

Manufacture    of    anhydrous    .     (P)    Burgess,    aud 

Standard    Oil    Co 216a 

Manufacture  of  from  hydrocarbon  residues.    (P) 

McAfee,  and   Gulf  Refining  Co 216a 

Separation    of    ■ from    heavy    hydrocarbons.     (P) 

Hoover,  and  Hoover  Co.        ..  ,.  ..  ..     741a 

Separating  hydrocarbons  from  .     (P)   Owen,  and 

Hoover  Co ..     890a 

Separation  of  potassium  cldoride  and  in  mixed 

solutions   obtained    in    treatment   of   leucite.     (P) 

Blanc SI  2  a 

Treatment  of  residues  resulting  from  treatment  of 
hydrocarbons  with  .  (P)  Burgess,  and  Stan- 
dard Oil  Co 132a 

Aluminium   compounds  ;     Manufacture   of  for  sizing 

paper  and  other  purposes.     (P)  Muth         . .      _   . .     546a 

compounds  :   Preparation  of ,  nearly  free  from  iron 

from  solutions  of  ferruginous  alumina.     (P)  Chem. 

Fabr.  Griesheim-Elektron 939a 

compounds  ;    Production  of  potassium  compounds  and 

from  Italian  leucite.     Pomilio  . .  . .  . .     370a 

compounds;  Recovery  of from  felspar.     (P)  Brown     141a 

compounds  ;    Separation  of from  other  substances, 

especially    iron    compounds.     (P)    Rhenania    Ver. 
Chem.  Fabr.  A.-G.,  Zweigniederlassung  Mannheim     754a 

compounds   in   water   filter   effluents  ;     Residual   . 

Wolman  and  Hannan  . .  . .  . .  . .  . .       30A 

Aluminium   fluoride;    Manufacture  of  granular  .     (P) 

Milligan,  aud  Aluminium  Co.  of  America    . .  . .     174a 

Aluminium  formate  ;  Manufacture  of  solutions  containing  an 
alkali  salt  and .  (P)  Woltfenstein,  and  Golden- 
berg,  Geromont  und  Co.         . .  . .  . .  . .       33A 

Manufacture  of  water-soluble  compounds  of  .     (P) 

Wulflng  33A 

Aluminium  hydroxide  ;    Centrifugal   method   for  preparing 

colloidal .     Bradfleld 500a 

Disinfecting  and  preserving  with  colloidal  .     (P) 

De  Haen  and  Buchner  ..  ..  ..  ..     874a 

Manufacture  of  in  different  degrees  of  dispersion. 

(P)  Goldschmidt  A.-G 87a 

Separation  of  precipitates  of  from  solutions.     (P) 

Buchner  859a 

Aluminium  nitride ;    Apparatus  for  making and  other 

substances.     (P)   Hoopes,   and   Aluminium    Co.  of 
America  ..  ..  ..  ..  ..  ..     403a 

Heat  of  formation  of .     Fichter  and  Jenny  . .     629a 

Manufacture  of  .     (P)  Kaiser  ..  ..  .  •     216a 

Aluminium  oxide  ;   Manufacture  of from  bauxite.     (P) 

Schweizerische  Sodafabr.        . .  . .  . .  . .     754a 

Manufacture  of from  materials  containing  alumina 

and  silica.     (P)  Metallbank  und  Metallurgische  Ges.     754a 
Reduction  of  to  form  aluminium  carbide  or  alu- 
minium alloys.     (P)  Burgess 669A 

Separation  of  from  calcium  oxide  by  the  nitrate 

method.     Charriou       . .  . .  . .  . .  .  -     351a 

See  also  Alumina. 

Aluminium-potassium  nitrates  ;    Preparation  of  .     (P) 

La  Porte,  and  Sharp  and  Dohme     . .  . .  . .     483a 

Aluminium    salicylate,    basic ;     Preparation    of   .     (P) 

Soc.  China.  Usines  du  Rhone  . .         . .         . .         . .     787a 

Aluminium   salts   containing   silicic   acid  ;     Preparation    of 

solutions   of,   or  solid    mixtures   containing   . 

(P)  Laves  687a 

salts  ;    Effect  of at    various  hydrogen-ion  concen- 
trations on  plant  growth  in  water  cultures.     Conner 

and  Sears  263a 

salts ;     Reactions    of    sodium    hydroxide    with    . 

Grobet 545a 

salts  ;    Recovery  of from  slate.     (P)  Hayward  and 

others 501a 

salts  in  the  soil  ;    Nature  of and  their  influence  on 

ammonitication  and  nitrification.     Dcnison  . .     337a 

Aluminium  sulphate;    Decomposition  of .     (P)  Burkey 

and  others         ..  ..  . .  ..  ..  ■•     463a 


SUBJECT  INDEX. 


115 


Aluminium  sulphate — continued. 

Manufacture  of  from  aluminium  hydroxide.     (P) 

Ver.  Aluminiumwerke  A.-G.,  and  Fulda 

Manufacture  of for  paper-making,     (P)  Muller    .. 

solutions  ;     Determination   of  free  acid   in   acid   . 

Zschokke  and  Hauselmann 

The  system  water- potassium  sulphate  at  25°  C. 

Britton  . . 

Alunite  ;   Calcining .     (P)  Chappell 

containing    sulphur;     Treatment    of    .     (P)    Mac- 

Carthy,  and  Mineral  and  Chemical  Co.  of  Utah    . . 
ore;    Utilisation  of in  manufacture  of  superphos- 
phate.    (P)  Matheson 

Treatment  of .     (P)  Shoeld,  and  Armour  Fertilizer 

Works 

Amalgams  ;    Apparatus  for  effecting  chemical  reactions  by 

means   of   .     (P)   Paulus,   and    Royal   Baking 

Powder  Co 379a, 

Amanita    nutscaria ;     Isolation    of    muscarine,    the    potent 

principle  of .     King 

Ambergris  ;    Identification  of  .     Cole 

American  Ceramic  Society  ;    The .     Purdy 

American  Chemical  Society       ..  ..      131R, 

American  Electrochemical  Society 

Amides  ;   Capacity  of  yeast  to  decompose  acid .     Dieter 

Amines  ;  Decomposition  of in  the  vapour  stage.   Upson 

and  Sands 

Manufacture  of  aromatic  .     (P)  Von  Girsewald  . . 

Manufacture  of  methyl-sulphites  of  secondary  aromatic 

aliphatic  .     (P)   Meister,   Lucius,   u.   Briining 

786a, 

Manufacture  of  from   phenolic   compounds.     (P) 

Galbraith  and  others 

Manufacture   of   o-sul phonic    acids    of   aromatic   . 

(P)  British  Dyestuffs  Corp.,  and  others 

Preparation  of from  alcohols  and  ammonia.     Smo- 

lenski  and  Smolenski 

Preparation  of  substituted  .     (P)  Chatfleld 

Proteinogenous  .     Hanke  and  Koessler  268a,  268a, 

Aminoacetarylides  ;   Preparation  of .     (P)  Schering  and 

Grude 
N-Aminoacetyl  compounds  of  4-amino-l-phenyl-2.3-dialkyl- 

5 -pyrazolone  ;    Preparation  of  .    (P)  Meister, 

Lucius,  und  Briining 
Amino-acid    nitrogen ;     Triketohydrindene    (ninhydrin)    re- 
action   for    colorimetric    determination    of    . 

Riffart 

Amino-aeids  ;    Alkalimetric  estimation  of .     Willstatter 

and  Waldschmidt-Leitz 

Behaviour  of  towards  oxygenated  yeast.     Lieben 

Complex  silver  salts  of     a .        (P)     Guggenheim, 

and  Hoffmann-La  Roche  Chemical    Works 

of  feeding  stuffs  ;    Determination  of  .     Hamilton 

and  others 

Influence  of  certain  upon  the  enzymic  hydrolysis 

of  starch.     Sherman  and  Walker 

Manufacture  of  aromatic .     (P)  Lewcock  and  others 

Separation  of  from  the  products  of  hydrolysis  of 

proteins  and  other  sources.     Buston  and  Schryver 
Aminoalcohols.     Homologues  of  novocaine.     Fourneau  and 

Puyal 

Preparation  of .     (P)  Karrer 

Preparation    of    optically    active    aromatic    .     (P) 

Soc.  of  Chem.  Ind.  in  Basle  . .  . .      878a, 

of  quinoline  series  ;    Manufacture  of  .     (P)  Soc.  of 

Chem.  Ind.  in  Basle 
Aminoalkyl  esters  of  p-aminobenzoic  acid  ;    Manufacture  of 

.     (P)  Bader,  and  Levinstein,  Ltd. 

Aminoanthraquinones  ;  Manufacture  of  .     (P)  Thomas 

and  others 
o-Aminoazo  compounds  ;    Constitution  of  products  formed 

by  condensation  of  with  aldehydes.     Fischer 

p-Aminobenzoic    acid  ;     Manufacture    of    aminoalkyl    and 

alkylaminoalkyl   esters   of  .     (P)   Bader,   and 

Levinstein,  Ltd. 

Amino-compounds  ;     Action    of   on    reducing    sugars 

(dextrose  and  ltevulose).     Ling  and  Nanji  . . 

2-Amino-p-cymenc ;     Bromination    of   .     Wheeler   and 

Smithey 
Amino-derivatives  of  hydrogenated  cinchona  alkaloids  and 

t  heir     derivatives ;      Preparation     of     .     (P) 

Howards  and  Sons,  and  others 
-derivatives  of  tetrahydronaphthalene.     Schroeter  and 
others 

Aminoethyl    alcohol ;     Action    of    on    fermentation. 

Frankel  and  Scharf 
2-Amino-5-hydroxynaphthalene-7-suIphonic     acid  ;      Manu- 
facture of  a  derivative  of .     (P)  Kalle  und  Co. 

Aminomesitylene-fiiVdiazonium  salts.     Morgan   and  Davies 

5-Amino-l  .2-naphtho-4'-aminophenyltriazole.     Morgan    and 
Gilmour 

8- Amino-1 .2-naphtho-4'-aminophenyItriazole.     Morgan     and 
Gilmour 

1.8-Aminonaphthol-3.6-disiUphonic  acid  ;    Determination  of 

.     Lee 

and  its  intermediates  obtained  from  naphthaIene-2.7- 
disulphonic  acid;     Identifying  .     Lynch 


754  a 

812  a 


589a 

iooa 

415A 

428a* 

100a 

631a 

875a 
517a 
25H 
219R 
449K 
563A 

957A 
135a 

878A* 

743a 

287A 

196A 

878a 
268a 

521A 


122a 
952a 


524a* 
75a 


152  a 

566a 


518a 
523a 

960a* 

958A 

36a* 

170a 

703a 

36a* 

151T 

231A 

686a 

133A 

265a 

170A 
531R 

61T 

62T 

94a 

933a 


2.5.1-Aminonaphtholsulphonic    acid 
Bucherer  and  Wahl     . . 


and     its     derivatives. 


5-Amino-l. 2-naphtho-p-tolyltriazole.     Morgan     and   Chazan 
8-Amino-1.2-naphtho-p-tolyltriazole.     Morgan   and    Gilmour 
Aminonaphthotriazoles    as    colour    intermediates.    Morgan 
and  Gilmour 

Amino-uitro-compounds ;     Preparation    of    aromatic    . 

(P)  Soc.  Chim.  Grande  Paroisse 
Amino-nitrogen  ;    Influence  of  position  and  of  temperature 

upon  reaction  of  aliphatic  with  nitrous  acid. 

Dunn  and  Schmidt 

o-Aminophenol ;    Electrolytic  preparation  of  .     Brown 

and  Warner 

Aminophenols ;     Manufacture   of   .     (P)    Lewcock   and 

others     . . 

p-Aminophenylarsinic  acid  ;    Preparation  of .     Nijk  . . 

4-Amino-]-phen>l-2.3-dialkyl-5-pyrazolone  ;    Preparation  of 

N-aminoacetyl  compounds  of  .     (P)  Meister, 

Lucius,  und  Briining 

Aminopyridines  ;    Preparation  of  .     (P)   Chem.   Fabr. 

Schering 

Ammonia ;   Accidents  observed  in  synthesis  of at  very 

high  pressures  and  means  of  avoiding  them.   Claude 

Action  of on  reducing  sugars  (dextrose  and  lsevu- 

lose).     Ling  and  Nanji 

Adsorption    of   by   silica   gel.    Davidheiser   and 

Patrick  . .  . .  . .  . .  .... 

Ammoniacal  saponification  and  industrial  manufacture 

of .     Garelli  

Apparatus  for  catalytic  synthesis  of  — — .     (P)  Casale 

and  Leprestre 294a,  295a*, 

Apparatus    for    collecting    in    determination    of 

nitrogen,  e.g.,  in  determination  of  albumin  in  milk. 
Meillere  and  De  Saint-Rat 

Apparatus  for  rapid  determination  of  in  waste 

liquor.    Lowe 
catalyst ;  Behaviour  of  an  iron under  varying  con- 
ditions of  pressure,  temperature,  and  gas  velocity. 
Larson  and  Tour 
catalysts ;     Apparatus    for    moderate-scale    testing    of 

at  100  atm.  pressure.     Tour 

catalysts  ;    Apparatus  for  small-scale  testing  of  

at  atmospheric  pressure.     Larson  and  others 
catalysts  ;    Apparatus   for  small-scale  testing  of  — 

at  variable  pressures.     Larson  and  Brooks 
catalysts  ;   Effect  of  pressure  on  activity  of  — 


Lar- 


Catalytic  action  of  copper  in  oxidation  of by  per- 

sulphates.     Scagliarini  and  Torelli  ... 
Catalytic  oxidation  of with  oxygen.     (P)  Cedcrberg 

and  Backstrbm 
Direct  recovery'  of  from   distillation   gases.     (P) 

Still         

Distillation  of  from  limed  and   carbonated  beet 

juice,  and  its  influence  on  the  composition  of  the 

juice.     Kohn     . . 

Electronic  synthesis  of .    Hiedemann 

Elimination  of  heat  of  reaction  in  synthesis  of at 

very  high  pressures.     Claude 
Factors  influencing  yield  of  in   carbonisation  of 

coal  .     Mott  and  Hodsman 

Factors  influencing  yield  of  in  carbonisation  of 

coal.     Role  of  oxidation.     Greenwood  and  Hodsman 

21 5R 
Formation  of  ■ by  cathodic  reduction  of  elementary 

nitrogen.     Fichter  and  Suter 
Formation    of    during    incomplete    combustion. 

Hofmann  and  WTill 
Formation  of  oxalic  acid  and in  cultures  of  Asper- 
gillus niger  on  peptone.     Butkewitsch 
Increasing  the  yield  of  gas  and  in  the  carbon- 
isation of  coal.     (P)  Lengersdorff  und  Co 

Liberation   of  nitrogen   from  coal   and    coke  as  . 

Monkhouse  and  Cobb 
Limits  for  propagation  of  flame  at  various  temperatures 

in  mixtures  of with  air  and  oxygen.     White  . . 

Manganese  alloys   as   catalysts  in  oxidation  of  . 

Piggot 

Manufacture  of  : 

(P)  Cederberg  and  others  

(P)  Norsk  Hydro- Elektrisk  Kvaelstofaktiesels- 

kab         ~ 

(P)  Snelling  

Manufacture  of  catalysts  for  use  in  syrthesis  of : 

(P)  L'Air  Liquide 

(P)     Norsk    Hydro-Elektrisk    Kvaelstofaktie- 
selskab 
Manufacture  of from  cyanides.     (P)  Thorssell  and 

Lunden  . .  . .  . .  .  •  •  •  ■ ■ 

Manufacture  of  hydrogen  and  .     (P)  Clancy,  and 

Nitrogen  Corp.  . .  ~ 

Manufacture  of from  ionised  nitrogen  and  nascent 

hydrogen.     (P)  Wotzel  

Manufacture  of  from  nitrogen  or  cyanogen  com- 
pounds of  titanium.     (P)  Guignard 

Manufacture  of  nitrogen  oxides  by  catalytic  oxidation 

of .     (P)  Badische  Anilin  u.  Soda  Fabr. 

nitrogen  ;   Determination  of in  nitrogenous  organic 

substances.     Froidevoux 
nitrogen  ;    Rapid  determination  of  .    Meurice 


h2 


IT 

61T 

61T 
647a 

881A 

406a 

566A 
783A 

917A 
960a 
140a 
151T 
250A 
260a 
812a 

200A 

11T 

369A 
325A 

292a 
325a 
369a 
12a 
589a 

4  A 

214a 

249a 
505k 

273T 

293A 

928A 

514a 

660A 

532a 

856a 

96a 

14a* 

669a 
57a 

215A 

371A 

173a 

631A 

99a 

415a* 

755a* 

526a 
IOOA 


116 


JOURNAL  OF  THE 'SOCIETY   OF  CHEMICAL  INDUSTRY. 


PAGE 

Ammonia — continued. 

Oxidation  of : 

Imison  and  Russell         2Sr,  37T 

(P)  MacDowell  and  others         631a 

Webb  55SR 

oxidation;  Economic  aspects  of .     Taylor..  ..     586a 

Oxidation  of at  the  Sheffield  (U.S.A.)  Experiment 

Station.     Curtis  ..  ..  „  ..  ..     890a 

Presence  of  acetone  in  commercial .    Bougault  and 

Gros 750A 

processes  ;  Post-war  progress  in  synthetic .   Harker     388R 

Production  of  ■  by   the  sodium   cyanide   method. 

Bartell 544a 

Raw  materials  for .    Manufacture  of  hydrogen  and 

nitrogen.     West  393R 

Reactivity  of  ■ .     Baly  and  Duncan  . .      197R,  586a 

Recovery  of  in  the  ammonia-soda  process.    (P) 

Mathieson  Alkali  Works  328a* 

Recovery  of  from  evaporator  condensed  water  of 

liif  sugar  factory.     Andrlik  and  Skola       ..  ..     386a 

Recovery  of from  gas  producers.     (P)  Pintsch    . .     494a 

Recovery  of  from  peat  and  the  like.     (P)  Brat 

371A,  414A,  462a,  501a 
-recovery   processes ;     Steam   consumption   in   various 

.     Krieger  . .  . . 129a 

Rdle  of  gaseous  impurities  in  catalytic  oxidation  of . 

Decarriere         . .         . .         . .         . .         . .         . .     291a 

R61e  of  gaseous  impurities  in  catalytic  oxidation  of . 

Influence  of  hydrogen  phosphide.     Decarriere      . .     214a 

Separation  of from  the  gaseous  mixture  obtained  in 

synthetic  production  of  ammonia.     (P)  Metallbank 

u.  Metallurgische  Ges.  . .  . .  . .  . .     501A 

Solubility  of  in  water  and  in  methyl  and  ethyl 

alcohols.     Neuhausen . .         ..         ..         ..         ..     668a 

and  its  stability  in  the  coke  oven.     Hodsman    . .  . .     160a 

stills ;    Purification   of  waste  liquors   from  .     (P) 

Brown,  and  Koppers  Co.        . .  . .  . .  . .     726a 

Synthesis  of . 

(P)  L'Air  Liquide  . .         99a,  173a,  371a,  590a,  669a 
(P)  Clancy,  and  Nitrogen  Corp.  . .  . .     633a* 

Synthesis  of  and  catalyst  therefor.    (P)  Clancy, 

and  Nitrogen  Corp 707a 

synthetic  ;   Manufacture  of  ammonium  salts  from . 

(P)  Badische  Anilin-  und  Soda-Fabrik         . .  . .     753a 

Thermal  dissociation  of  with  special  reference  to 

coke-oven  conditions.     Foxwell        ..  ..  . .     114T 

Volumetric  determination  of .     Jellinek  and  Ens  . .   1000A 

-water  ;  The  system as  a  basis  for  theory  of  solution 

of  gases  in  liquids.     Neuhausen  and  Patrick       . .     249a 
Ammonia-soda.     See  under  Soda. 

Ammoniacal   liquor  stills  ;     Design   and   working  of   . 

Parrish 229t,  279r 

liquor ;    Treatment  of  effluent  spent  liquors  from  dis- 
tillation of  682a 

Ammonium  bicarbonate  as  fertiliser  . .  . .  . .  . .     399r 

Manufacture  of and  its  use  as  fertiliser.     Gluud  . .     722a 

Ammonium     carbamate ;     Conditions     of     formation     and 

stability  of  .     Matignon  and  Frejacques      . .     413a 

Equilibrium  between  ammonium  carbonate  and  in 

aqueous  solution.     Faurholt  . .  . .     292a,  896a 

Transformation    of    into    urea.     Matignon    and 

Frejacques         . .  . .  . .  . .  . .  . .     519a* 

Ammonium    carbonate-ammonium    carbamate    equilibrium. 

Faurholt  292a,  896a 

Ammonium  chloride  liquors  ;    Working  up  residuary  

from  the  ammonia-soda  process.     (P)  Lichtenhahn, 

and  Elektrizitatswerk    Lonza  . .  . .  . .       57a 

Manufacture  of .     (P)  Holzverkohlungs-Ind.  A.-G.     754a 

Manufacture    of    sodium    bicarbonate    and    .     (P) 

L'Air  Liquide  . .  . .  . .  . .  . .  . .     589a 

Manufacture  of  sodium  carbonate  and  from  crude 

calcium  cyanamide.     (P)  Elektrizitatswerk  Lonza, 

and  Danneel 216a 

Preparation   of   .     Monval    . .  . .  . .  . .     369a 

Preparation  of  at  low  temperatures.     Mondain- 

Monval 629A 

Production   of from   coal     etc.     (P)   Cliristenson 

and  others         4a,  536a,  537a* 

Production  of  from  shale.     (P)   Cliristenson  and 

others     „         M  ...     537a* 

The  quaternary  system,  sodium  sulphate,  ammonium 

sulphate,  sodium  chloride,  water,  and .  Rivett     369a 

Recovery    of    from    solution.     (P)    Bacon,    and 

Solvay    Process   Co.    ..  ..  ..  ..  ..     501a 

skimmings;    Treatment  of  .     (P)  Schopper         ..     141a* 

solution ;    Treatment  of  .     (P)   Riedel      . .  . .     853a 

waste;    Treatment  of  .     (P)  Metallbank  u-Metal- 

lurgische  Ges.,  and  Schopper  . .  . .  . .  . .     754A 

works  ;    Report  on by  the  Alkali  Inspector         . .     317R 

Ammonium  citrate  solution  ;     Composition  and  preparation 

of  neutral .     Robinson    . .  . .  . .  . .       82a 

solutions  ;    Analysis  of .     Robinson  and  Bandemer     428a 

Ammonium    nitrate;     Decomposition    of    ■    by    heat. 

Saunders  ..         ..         ..         ..         ..         ..     412a 

Decomposition   and   stabilisation   of   in   presence 

of   uxiii liable   material.     Findlay  and   Rosebourne       58T 

Equilibrium  in  mixtures  of  sodium  nitrate  and  . 

Early  and    Lowry 587a 

Explo^ibility  of  .     Munroe 349a 

explosives.     See    under    Explosives. 

irrtilisr-r.     (P)   Ilalvorseu,  and   Norsk  Hydro-El ektrisk 

Xviu-lstofakt  iesi  1-kat.  264a* 


Ammonium  nitrate — continued. 

Manufacture  of  during  the  war.     Macnab 

Manufacture  of  from  nitric  acid   and  ammonia. 

(P)  Bambach     .. 

Preparation    of   : 

Rengade 
Wurmser 

Storage  of  ■ 

and  water ;    Equilibrium  of  the  system .    MUlican 

and    others 
Ammonium  perchlorate  ;     Density  of   aqueous  solutions    of 

.     Mazzucchelli  and  Anselmi 

explosives.     See  under   Explosives. 
Ammonium  salts  containing  tarry  matter ;    Purification  of 

.     (P)   Singer 

Manufacture  of  from  ammonia  produced  cataly- 
tic-ally.    (P)    Badische    Anilin-    und    Soda-Fabrik 
of    pyridine-3-carboxylic    acid    alkyl     esters ;     Manu- 
facture of  quaternary  .     (P)  Woltfenstein    . . 

Ammonium    sulphate ;     Apparatus    for    drying  .     (P) 

Hansford 

Apparatus  for  manufacture  of  .     (P)  Douglas    . . 

Conversion     of    gypsum     into     .     Matignon     and 

Frejacques 

Manufacture  of  : 

(P)    Lessing 

(P)  South  Metropolitan  Gas  Co.,  and  Parrish 
(P)  South  Metropolitan  Gas  Co.,  and  others  .. 
(P)  Sperr,  jun.,  and  Koppers  Co. 

Manufacture  of  from  ammonium  sulphide.     (P) 

Ges.  fur  Konientechnik 

Manufacture    of    from    calcium    sulphate.     (P) 

Soc.  Ind.  Prod.  Chim. 

Manufacture  of  from  crude  calcium   cyanamide. 

(P)  Bambach  und  Co. 

Manufacture  of  neutral  : 

(P)  Ebbw  Vale  Steel,  Iron  and  Coal  Co.,  and 
Thickius 

(P)    Hansford 

<P)  Holmes  and  Co.,  and  others 

(P)  Marr,  and  Coke  Oven  Construction  Co. 

(P)  South  Metropolitan  Gas  Co.,  and  Parrish 

Manufacture    of    potassium    nitrate     and     .     (P) 

Chem.  Werke  Lothringen,  and  Pflrrmann 

Melting  point  of  normal  .     Kattwinkel 

Neutralisation  and  drying  of  .     (P)   Weyman    . . 

Prices  of  in  Germany 

Purification  of  crude .     (P)  Wilton 

The  quaternary  system,   sodium   chloride,   ammonium 

chloride,  water,  sodium  sulphate,  and Rivett 

Saturator  for  producing  .     (P)  Berlin-Anhaltisehe 

Maschinenbau-A.-G. 
Saturators  for  producing  solid  salts,  e.g.,  by  treat- 
ment of  gases  with  liquid.     (P)  Still 

saturators ;     Recovery    of    pyridine    in    .     Gluud 

and  Schneider 
as  weed-killer 

works  ;    Report  on  by  the  Alkali  Inspector 

Ammonium     sulphide ;     Conversion   of    into     ammo- 
nium sulphate.     (P)  Ges.  fur  Kohlentechnik 
Recovery  of  sulphur  from  and   from  gases  con- 
taining the  same.     (P)  Naef 

Amygdalin  ;   Biose  of .     Haworth  and  Leitch 

Decomposition  of  from  the  point  of  view  of  con- 
jugated   fermentation    reactions.     Giaja    .. 

Amyl  alcohol  ;    Recovery  of from  laboratory  residues. 

Bengen 
Amylase  of  Aspergillus  niger ;     Influence  of  hydrogen  ion 

concentration  on  the  action  of  .     Funke 

of  barley  ;    Insoluble  .     Baker  and  Hulton 

Influence  of   amino-acids   on  hydrolysis   of  starch   by 

purified   pancreatic  .     Sherman  and   Caldwell 

See  also  Diastase. 
Amylases    from    different    sources ;     Distinctive    properties 

of    .     Effront 

Elfeet  of  certain  antiseptics  upon  the  activity  of . 

Sherman    and    Wayman 

Inhibition   phenomena  in  .     Olssou 

Amyleue  ;   Action  of  selenium  monochloride  on .     Boord 

and  Cope 
Amylocellulose  considered  as  composed  of  silicic  acid  and 
amylose.    Malfltano    and    Catoire 

Amylodextrin ;     Oxidation    of   .     Syuiewski 

Amyloses  : 

Karrer   and   Burklin 
Karrer   and   Smirnoff     . . 

a-Amyrilenc  ;   Preparation  of .     Vesterbcrg  and  Wester- 

lind         

Amyrin  ;    Extraction  of  .     Vesterbcrg  .. 

Si  juration  of  a-  and  0 .     Vesterberg  and  Westcrlind 

a-Amyrin  from  clemi  resin.     Zinke  and  others 

Amyrols ;     Isomeric Paolini    . . 

AnsBSthetic  compounds.     (P)  Kamra  and  Volwiler 
Analyses  ;    Table  for  calculation  of  chemical  .     Tread- 
well         

Analysis  ;    Application  of  conductometric  methods  to  pre- 
cipitation     .     Kolthoff 

Application  of  resorcinol  in  qualitative  inorganic  . 

Lavoye 


PAGE 
357T 

58a 

629A 

544a 
62r 

587a 

326a 

754a 

753a 

158a. 

501a 
99a 

587a 

414a 
371a 

215a 
415a* 

99a 

546a 

858a. 

631a 
173a 
982a 
932a 
372A 

753a 

370a 

669a 

40R 

374a* 

369A 

754a 

328a* 

208a 
160R 
317R 


58a. 
875a 

113A 

82a 

604a 
871A 

152a 


152A  ' 
227a 


429a 
951A 

304a 

305a 

728a 

728A 
728a 
509a 
608a 
877a 

37a 

442a 

569a. 


SUBJECT  INDEX. 


117 


Analysis — ami 

Mechanical of  soils  and  other  dispersions.    Robin- 
son            990A 

Micro of  mixtures,  with  special  reference  to  organic 

ultimate    analysis.     Benedetti-Pichler        . .  . .     790a 

Micro-elementary by  Pregl's  method  : 

Holtz  525a 

Schoeller 81a 

micro- ;  Furnace  and  burner  for  use  in .     Diepolder     612a 

Qualitative     .     Macri 839a 

Quantitative by  centrifuge.     Arrheninus  . .  . .     272a 

Quantitative by  measurement  of  degree  of  super- 
saturation.     Hbppler  . .  . .  . .  . .  . .     962a 

Use  of  potassium  bromate  in  volumetric  organic  . 

Callan   and    Henderson  ..  ..  ..         75r,  161t 

volumetric  :     New   physico-chemical    method   of   , 

applied  to  some  problems  of  inorganic  chemistry. 
Dutoit  and  Grobet      . .  . .  . .  . .  . .     563a 

Analyst ;    Experiences  of  a  public  .     Thompson         . .         6r 

Andropogon  itoaraneusa  oil.     See  under  Oils,   Essential. 

Anemometer ;    The  thermometric  .     Thomas   . .  . .     350a 

Anethole  ;    Colour  reaction  of  commercial  .     Adlcr   . .     346a 

Anhalamine  :    Constitution  of .     Spath  . .  . .  . .       77a 

Synthesis  of  .     Spath  and  Roder 683a 

Anhaline ;    Constitution  of  .     Spath 390a 

Anhalonidine ;    Constitution  of  .    Spath  . .         . .       77a 

Anhalonium  alkaloids : 

Spath  77a,  390a 

Spath  and  Rbder 683a 

Anhydrides  ;     Manufacture    of    aldehydes    and    from 

di-esters.     (P)    Skirrow,    and    Shawinigan    Labora- 
tories,   Ltd 878A 

Preparation  of by  means  of  phosgene.    Holde  and 

Schmidt  825a 

Anhydrite  ;    Investigation  on  -.     Neugebauer   . .  . .     671a 

Anhydropyranol  salts  related  to  isobrazilein  ;    Synthesis  of 

.     Crabtree   and    Robinson       . .  . .  . .      582a 

Anhydro-sugars.    See  under  Sugars. 

Aniline  ;    Action  of  arsenious  chloride  on .     Schmidt  . .     156a 

Catalytic   activity   of   copper  in   preparation   of  . 

Brown   and  Henke      . .  . .  . .  . .  . .     976a 

Catalytic    preparation    of    .     Brown    and    Henke 

332a,   406a,   406a,   976a 

Detection    of    by    means     of    pernitric    acid. 

Trifonow  932a 

Determination  of  .     Callan  and  Henderson  ..     162t 

Oxidation  of  —. — .     Goldschmidt  and  Wurzschmitt   . .     933a 

Reaction  between  sulphur  monochloride  and .  Coffey       49A 

Aniline    arsenates.     Patem6      . .  . .  . .  . .  . .     S76a 

Aniline  Black  ;    Printing  coloured  .reserves  under  by 

means  of  tungsten  lakes.     Sunder  . .  . .  . .     461a 

Aniline    giucoside.     Sabalitschka         . .  . .     194a 

Animal  bodies  ;    Chemical  composition  of .     Murray  . .     515A 

membranes  ;    Manufacture  of  gas-impervious   material 

from  .     (P)   General    Electric   Co 774a 

membranes  ;    Removing  poisonous  material  from . 

(P)  Braun         516a 

oils.     See  under  Oils,  Fatty. 

Anise  fruit ;    Testing  and  evaluation  of  .     Brandt  and 

Wolff ■ 346a 

Annealing  ;  Apparatus  for  tempering  and .     (P)  Lavaud 

and  others         . .  . .  . .  . .  . .  . .     637a 

glass,    porcelain,    metals,    etc.     (P)    HUger,    Ltd.,    and 

Twvman  898a 

kilns.     (P)  Wallis 576a 

metal  sheets  ;    Cover  carrying  a  depending  tube  for  use 

of  pyrometers  in  pots  for .     (P)  Lysaght,  and 

iit.  Ltd 147a* 

of  steel  or  other  metal  wire  and  strip.     (P)  Imbery         . .     180a* 

Anode  carbons  ;  Stability  of .     Arndt  and  Fehse  . .     865a 

Anodes  ;  Platinum for  electrolysis.     (P)  Deutsche  Gold- 

und  Silber-Scheide-Anstalt,  and  Liebknecht  . .     507a 

Anthelmintics  ;  Recent  work  on .     Henry  . .         . .     467r 

Anthocyanidin  type  ;  Synthesis  of  pyrylium  salts  of  the . 

Pratt  and  Robinson 804a 

Anthocyanidins  ;    Detection  of  the  pseudo-bases  of  in 

plant  tissues.     Combes  . .  . .  . .  . .     136a 

Distribution  of  in  the  coloured  organs  of  plants. 

Jonesco  . .  . .  . .  . .  . .  . .  . .     582a 

Anthocyanin  pigments  ;  Formation  of .     Combes  . .     136a 

Anthocyans  and  related  plant  pigments  ;    Tinctorial  proper- 
ties of  some .     Everest  and  Hall  ..  ..     136a 

Anthracene ;     Manufacture    of   high-percentage    .     (P) 

"Weil ."         . .  . .     581a 

Nitration  of in  a  basic  or  neutral  medium.  Battegay 

and  Brandt 891a 

Purification  of  crude  .     (P)  Portheim,  and  Kinzl- 

berger  und  Co.  169a* 

Separating  and  purifying  carbazole  and .  (P)  Eagan       93a 

series  ;  Studies  in  the .     Barnett  and  Cook  . .  . .     704a 

Vapour  pressure  of between  its  melting  and  boiling 

points.     Nelson  and  Senseman  . .         . .         . .     134a 

Anthracene  dyestuffs  : 

Alizarin  ;  Action  of  bromine  on .  Dimroth  and  others     51a 

Alizarin-iron  lakes.     Bull  and  Adams       . .  . .  . .     240a 

Alizarin  ;    Manufacture  of .     (P)  Davies,  and  Scot- 
tish Dyes,  Ltd.             212a 


Anthracene  dyestuffs — co»t<> 

Alizarin  Red  dyeings  ;   Brightening  of by  means  of 

tin  compounds.     Haller 
Alizarin  Red  ;   Quantitative  relations  in  fixation  of  — — 
in  calico  printing.     Haller  and  Kurzweil 

Antliraquinonc  dyestuffs  ;    Manufacture  of  .     (P) 

Atack  and  Soutar 
Anthraquinone   series  ;     Manufacture  of  intermediates 

and  of  dyestuffs  of  the .     (P)  Atack  and  Soutar 

Indanthrene  ;  Manufacture  of .     (P)  Kopetschni   .. 

Leuco  Alizarin  Bordeaux  and  its  halogen  derivatives; 

Manufacture  of .     (P)  Dawson 

Manufacture  of : 

(P)  Chem.  Fabr.  Griesheim-Elektron 

(P)  Davies  and  others 

Manufacture  of  blue  vat .     (P)  Kopetschni 

Pyrazolean throne  Yellow ;  Constitution  of .    Maver 

and  Heil  

Anthracite  ;   Constitution  of .     Grounds 

Anthracoal 

Anthradiquinones.     Dimroth  and  Hilcken 

Anthraquinone  ;   Carbaraides  of .     Battegay  and  Bern- 


(P) 


Atack   and 
..      134a, 
(r)    Badische 

.     (PJ'chem! 


(P) 


hardt 

derivatives ;     Halogenatiou    of   

Robertson 
derivatives ;        Manufacture    of     — 

Auilin-  und  Soda-Fabr. 
and  its  derivatives  ;  Manufacture  of 

Fabr.   Worms 

derivatives;     Preparation  of  hydro. 

Tetralin  Ges 

Determination  of .     Nelson  and  Senseman 

Manufacture  of : 

(P)  Atack 

(P)  Chem.  Fabr.  Worms  A.-G. 
Manufacture  of  hydroxy  and  sulphohydroxy  derivatives 

of .     (P)  Segaller  and  others 

Purification  of : 

(P)  Dawson 

(P)  Lewis,  and  National  Aniline  and  Chemical 

Co 625a, 

(P)  Portheim,  and  Kinzlberger  und  Co. 

series  ;  Double  decompositions  in  the catalysed  by 

copper.     Kopetschni  and  Wiesler 
series  ;   New  mode  of  formation  of  thiazole  derivatives  of 

the .  ..Kopetschni  and  Wiesler   .. 

TJrethanes  of .     Battegay  and  Bernhardt 

Vapour  pressure  of between  its  melting  and  boiling 

points.     Nelson  and  Senseman 
Anthraquinone  dyestuffs.     See  under  Anthracene  dyestuffs. 

1.2-Anthraquinone-iso-oxazples;    Manufacture  of  .     (P) 

Meister,  Lucius,  u.  Briining 
Anthraquinonesulphonic  acids  ;    Electrochemical    study    of 

reversible  reduction  of .     Conant  and  others    . . 

Anthraquinonyl  derivatives  of  Safranines ;    Preparation  of 

.     (P)  Akt.-Ges.  fur  Anilih-Fabr.  . .      853a, 

Anthratriquinones,     Dimroth  and  Hilcken 

Anthrax  spores ;   Relation  between  formaldehyde  aud . 

Hailer 
in  the  tanning  industry 
Anticorrosive  compositions.     Bowles 
Antifouling  compositions.     Bowles 

Anti-freeze  mixture  ;   Non-corroding : 

(P)  Pedersen 

(P)  Pedersen,  and  Miller  Reese  Hutchison,  Inc. 

Antigenes  of  pathogenic  bacteria;  Production  of  partial 

respectively,    non-resistaut    and    resistant    against 

acids.     (P)  Strubell 

Antimonic  acid.     Tomula 

Antimony  and  its  alloys  with  copper ;    Density  determina- 
tions on  at  high  temperatures.    Bornemann 

and  Sauerwald 

-bismuth  alloys.     Cook 418r, 

Detection  of : 

Haferkorn.. 
Sabalitschka  and  Schmidt 

Determination  of  small   quantities  of  ■  in  copper 

and  brass.     Evans 

Determination  of as  sodium  antimonate.     Tomula 

Electrolytic  determination  of .     Angenot 

Invisible  mirrors  in  detection  of .     Scheucher 

-lead  allovs  ;    Manufacture  of  hard  acid-resisting  . 

(P)  Thoumyre  Fils        

Separation  of  arsenic,  tin,  and .     Hahn 

Separation  and  determination  of  copper,  lead,  tin,  and 

.     Kling  and  Lassieur 

-tellurium-lead  alloys.     Dreifuss 

Volatilisation  of by  methyl  alcohol.     Duparc  and 

Ramadier 

Volumetric  determination  of in  red  brass.     Muck  . . 

Antimony  sulphide  ;  Composition  of  golden .     Twiss    . . 

Determination  of  available  sulphur  in  golden .  Twis3 

Iodometric  determination  of .     Nikolai 

Manufacture    of    precipitated    .     (P)    Stark,    and 

Stibium  Products  Co. 
pigments  of   good   covering   power  and   heat-resistant 

properties  ;   Manufacture  of .     (P)  Becker 

used  in  the  rubber  industry ;    Composition  of  golden 
.     Short  and  Sharpe 


PAGE 

55a 

139a 

805a 

170a 
977a 


246a 
582a 

853a 

663a 
8ST 

536R 
51a 

804a 

169a* 

8a 

40  7  a 

497a 
932a 

490a 
408a 
212a 

852a 

109  A 

664A 

664A 
805a 


934a 
51a 

229a 
419R 

492R 
492R 

206a 
531a* 


197a 
12a 


553a 

819a 

272  a 
526a 

144A 
12A 
37a 

525a 

767a 
962a 

17a 
595a 

630a 
761a 
171T 
20T 
650a 

474a 


109T 


118 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

\ntlmony  sulphurs  and  vermilions  ;    Manufacture  of  gold- 
coloured  .     (P)  Chaillaux  510a* 

Antimony  trichloride;    Preparation  of  aqueous  solutions  of 

.     (P)  Williams,  and  Hooker  Electrochemical 

Co 763a 

Anti-oxygens,  substances  which  inhibit  the  auto-oxidation  of 

organic  substances,     Moureu  and  Dufraisse  ..     195a 

and  various  phenomena  related  to  anti-oxidising  effects 

in  autoxidation.     Moureu  and  Dufraisse      . .  . .     645a 

Antiscorbutic  substances  ;    Combined  action  of  raw  cow's 

milk  and  orance  juice  as .     Wright       ..  ..     228a 

vitamin.     See  Vitamin  0. 

Antisepsis;  Chemotherapeutic .     Morgenroth  and  others     193a 

Antiseptic  action  of  coal-tar  dyestuffs  ;    Relation  between 

chemical  constitution  and  .     Fairbrother  and 

Renshaw  134-r,  146r 

action  of  picric  acid . .         . .  . .  . .  . .  •  •       HR 

action  ;    Relationships  between and  chemical  con- 
stitution.    Browning  and  others        . .  . .  . .     480a 

action  of  some  chloro -derivatives  of  methane,  ethane, 

and  ethylene.     Joachimoglu  . .  . .  . .  . .     229a 

agents  ;    Employment  of .      (P)  Wallis,  and  Atmo- 

sterol,  Ltd 156a 

with   a   hi^h   iodine   content ;     Diethylene   disulphide- 

tetra-iodide,  a  new .     Bachem    . .         . .  . .     435a 

and  insecticidal  soap  or  compound.     (P)  Macpherson  and 

Heys 914a 

New  ,  2-ethoxy-6.9-diaminoacridine  hydrochloride. 

Morgenroth  and  others  ..        ..        ..         ..     193a 

solution.     (P)  Cushman      . .         . .         . .         . .         . .       76a 

Antiseptics  ;    Preparation  of  chlorine  compounds  which  may 

be  rendered  dispersiblc  for  use  as .     (P)  Norris 

and  Hoseason    . .  . .  . .  . .  . .  . .       31a 

Preparation  of  from  phenol,  formaldehyde,  and 

bole.     (P)  Stcphan 307a 

Antitoxins;  Chemical  nature  of .     Salkowski     ..  ..     955a 

Apocholie  acids  :    Preparation  of  compounds  of  .     (P) 

RiedelA.-G 34a 

Apple  juice  ;  Detection  of in  jams.     Muttelet  . .  . .     726a 

juice  ;  Progressive  disappearance  of  free  sulphurous  acid 

in  preserved .     Warcollier  and  Le  Moal  . .     26Ga 

Apples  ;  Determination  of  soluble  pectin  in .     Carre,  and 

Haynea 342a 

or  the  like;  Preparation  of  dried  products  from .  (P) 

Mann  . .  516a 

Preservation  of by  cold-storage  and  gas-storage     . .     485R 

Arabinose  ;   Action  of  certain  pentose-destroying  bacteria  on 

.     Fred  and  others  . .  . .  . .  . .       72a 

Araehidic  acid  ; .  Determination  of .     Pritzker  and  Jung- 

kunz       . .  . .  . .  . .  . .  . .  . .       65a 

Arachis  oil.    See  under  Oils,  Fatty. 

Aragonite  ;   Solubility  of .     B&ckstrdm    ..  ..  ..     896a 

Aralia  montana  ;  Saponins  from  leaves  of .     VanderHaar    955a 

Aralkyl  ethers  ;  Preparation  of  symmetrical .     (P)  Bayer 

und  Co.  347a 

Araroba  extract ;  Manufacture  of  reduced .     (P)  Scham- 

berg  and  others  . .         . .         . .         . .         . .     610a 

Argentina;  Glass-bottle  factory  in ..  ..  ..     102R 

Market  for  perfumer}  and  essences  in ..         ..     164R 

Report  on  financial  and  economic  conditions  of  . 

Chalkley 106r 

Argon;   Extraction  of from  air.     (P)  L'Air  Liquide  859a,  SGOa* 

Production  of free  from  oxygen  and  hydrogen.   (P) 

Patent-Treuhand  Ges.  f.  elektr.  Gluhlampenfabr.   . .     755a 
Aromatic  hydrocarbons.    See  under  Hydrocarbons. 

Arsanilic  acid  ;    Manufacture  of  primary  .     (P)  Kober, 

and  Squibb  and  Sons 232a 

Arsenate  Insecticides  ;  Manufacture  of .    <P)  Swenarton    565a 

Arsenates  ;    Precipitation   of  arsenic   sulphide  from  . 

Reedy 140a 

Arsenic-aluminium  alloys.     Mansuri   . .         . .         . .         . .     984A 

Colorimetric  determination  of by  means  of  quinine 

molybdate.     Chouchak  . .  . .  . .  . .     612a 

content  of  some  marine  alga?.     .Tones    . .         . .         . .     684a 

Determination  of  in  insecticides  and  fungicides. 

Graham  3lA 

Determination    of   minute   traces    of   in    silicate 

rocks.     Hackl 82A 

Errors  caused  by  nitrates  and  nitrites  in  determination 

of  by  the  distillation  method,  and  a  means 

for  their  prevention.     Graham  and  Smith  . .         . .     311a 

-free  reagents  ;    Preparation  of  .     Lockemann    . .     629a 

Invisible  mirrors  in  detection  of  .     Scheucher   . .     525a 

Iodometric  determination  of  copper  and  present 

together.    Kolthoff    and    Cremer    ..         ..         ..       76a 

Microchemical  detection  of  .     Piutti  and  Boggio- 

Lera         880a 

Prodiirtji.ii,  import-,  ami  exports  o in  1921  ..      352R 

Qualitative    reactions   for   .     Kolthoff       ..  ..     526a 

s.  paration  of  antimony,  tin.  and  - — -.     Halm  . .         . .     962a 
Separation  of  germanium  and  -     MUller    ..         ..     273a 

Separation  of  a  mixture  of  red  phosphorus  and  . 

(I'l  Slegel,  and  Michael  und  Co 813a 

Separation    of    from    tun  'sten,    vanadium,    and 

molybdenum    by    means    oi    methyl   alcohol   in   a 
current  of  air.     Moser  and  Bhrlich  ..         ..         ..     273a 

-thallium    alloys.     Mansurl  418R,  819a 


Arsenic— continued. 

Theory  of  distillation  of and  separation  of  arsenic 

from  metals  in  a  current  of  air.     Moser  and  Ehrlieh  273a 

Use  of  aluminium  in  detection  of .     Romijn        . .  526a 

Volatilisation  of  by  methyl  alcohol.     Duparc  and 

Kamadier          630a 

Arsenic  acid  ;    Determination  of  .     Rosenthaler         . .  650a 

Manufacture  of  .     (P)  Ellis  and  Stewart   ..          ..  462A 

Arsenic  carbide  ;  Preparation  of .    De  Mahler  . .         . .  57a 

Arsenic    compound    of    acridine    series  ;     Manufacture  of 

.     (P)  Cassella  und  Co.  309a 

Arsenic  compounds  ;   Action  of on   maltase   and   a- 

methvlfilucosidase.     Rona    and    others      . .  . .     782a 

Manufacture   of  .     (P)    Edwards 670a* 

Some  relations  of to  plant  growth  : 

Stewart 950a 

Stewart    and    Smith       . .  . .  . .  . .     950a 

Arsenic    sulphide  ;      Iodometric     determination     of . 

Nikolai 650a 

Precipitation  of from  arsenates.     Reedy  . .  . .     140a 

Arsenic   trichloride ;     Manufacture    of   .     (P)    Milligau 

and   Baker        632a 

Solubility   of   in   concentrated   hydrochloric  acid 

at    100°  C.     Treadwell   and    Mussler  . .  . .     857a 

Arsenical    cobalt-nickel    ores ;     Treatment    of    .     (P) 

Wescott,  and  Kalmus,  Corns tock,  and  Wescott  . .     258a 

dust  ;   Production  of .     (P)  Riedel  . .  . .       726a,  954a 

Arsenlous   acid  ;     Influence   ot    on   bacterial   growth. 

Cobet   and    Van   der   Reis    ..  ..  ..  ..     430A 

Reducing  actions  of  .     Kohn  . .  . .  . .       56a 

Titration  of  nitrous  acid  in  presence  of .     Klemeuc 

and    Pollak 963a 

Arseuious  acids  ;  Synthesis  of  aromatic .     Bart..       914a,  915a 

Arsenious  chloride  ;    Action  of  on  aniline.     Schmidt     156a 

Arsenites  ;  Effect  of  iron  on  iodine  titration  of .     Mefvill     840a 

Arsenobenzcnc    derivatives  ;     Manufacture   of   stable   . 

<P)  Meister,  Lucius,  und  Briining    .-  ..  ..     916a 

Arsphenamine.     See   Salvarsan 

Artemisia   Afra  ;    Constituents   of   flowering  tops  of  . 

Goodson  ..  ..  ..  ..  ..  ..     914a 

Artichoke  tubers  ;   Preparation  of  inulin  from .     Wllla- 

man        . .         . .         . .         . .         . .         . .         • .     339a 

l-AryIamino-4-hydroxvnaphthalencs  ;    Manufacture  of . 

(P)  Kalle  und  Co.      . . 134a 

Arylarsenious    acids    and    substitution    derivatives ;     Pre- 
paration of .     Bart 914a,  915a 

Arylazoglyoxalines.     Pyman   and   Timmls 976a 

Aryl  compounds  ;    Preparation  of  metallic  and  non-metallic 

.     Hepworth         ST 

0-Arylhydroxylamines  ;      Preparation  of  .     Brand  and 

Steiner -  363A 

Arylides  of  aromatic  hydroxycarboxvlic  acids  ;   Preparation 

of    .     (P)    Chem.    Fabr.     Griesheim-Elektron     523a 

Aryl   n-propyl    ketones.     Morgan   and    Hickinbottom       . .       32a 
Arylsulphonic  acid  esters  of  halogenated  aliphatic  alcohols  ; 

Preparation  of .    (P)  Von  Kereszty  and  Wolf    728a 

Asbestos  ;   Analysis  of  mixtures  of  cotton  and .     Heer- 

mann   and   Sommer    . .         . .         . .         . .         . .     745a 

industry  in  Canada  . .  . .  . .  . .  . .  . .     332r 

industry  in  Quebec  . .  . .  . .  . .  . .  . .         7ft 

paper,  sheets,  and  the  like  ;   Manufacture  of .     (P) 

Sulzberger         894a 

Ascension  pipes.     See  under  Gas  retorts. 

Ash   of   foodstuffs ;     Determination   of   alkalinity   of  . 

Pfyl         643A 

Micro-method  for  determination  of  .     Schoeller  . .     691a 

Ashes  ;    Recovering  coal  and  coke  from  .     Green     . .     359a 

Aspergillus  LuehuensU  ;    Tannasc  from  .    Kiercnstein    907a 

Aspergillus  niger  ;    Formation  of  oxalic  acid  and  ammonia 

in  cultures  of  on  peptone.     Butkewitsch    ..     514a 

Influence  of  hydrogen  ion  concentration  on  action  of 

amylase   of  .     Funke      ..  ..  ..  ..      604a 

Utilisation   of   the   ternary   substances   in   the   growth 

of  .     Terroiue  and  Wurmser   . .  . .  . .     679a 

Asphalt  ;   Apparatus  for  determining  softening  point  of 443a 

Fire-resisting .     (P)  Young,  and  Robertson  Co.    4Sa,  899a* 

Manufacture  of  .     (P)  Wardcll,  and  Central  Com- 
mercial   Co.       . .  . .  . .  . .  . .  . .         5a 

Syrian    .     Konig-Hietzing     ..  ..  .,  ..         3a 

Asphodel   tubers;     Utilisation   of   for    production   of 

alcohol.     Bamberger   and    others    . .  . .  . .     190a 

Aspirin.    See   Acetylsfllicytic  acid. 

Association  of   British  Chemical   Manufacturers      ..  ..     306ft 

At  mospherio   dust.    Owens      . .        . .         . .        . .        . .     438R 

Atomic  weights  ;    German  commission  on  . .  . .     4.">2r 

Atomising  and  diffusing  liquids  prior  to  evaporation.     (P) 

Krause    und   Co.  ..  ..  ..  ..  ..      316A 

fused  masses  of  sodium  sulphide,  sodium  bisulphate, 

etc.     (P)     Zieren         632a 

aud  heating,  evaporating,  or  distilling  liquids  or  molten 

substances.     (V)     Keller        738a 

more    or   less   viscid    materials.     (P)    Sonsthagen    and 

Harberd  797A» 

process  for  separating  and  drying  substances  in  solution. 

(P)   Balge   und   Co 736A 


SUBJECT  INDEX. 


119 


PAGE 
Atomising: — continued. 

Treatment  of  liquid,  powdered,  and  gaseous  materia 

by  in  a  current  of  air  or  other  gases.    (P) 

Metallbank  u.  Metallurgisehe  Ges.    ..         ..      450a,  737a 

JtraetylU  gwmmifera  extract;   Detection  of in  liquorice 

extract.     Giuffre          . . 995A 

Atropine  ;    Volatilisation  and  hydrolysis  of  in  toxic- 
ology.    Hardy              ..          ..          ..          ..          ..  875A 

Aucubin ;    Presence  of in  the  foliated  stems  of  Meluni- 

pyrum  arvense.     Bridel  and  Braecke          . .          . .  517A 

Presence  of in  seeds  of  Melampyrum  arvense.    Bridel 

and   Braecke     ..          ..          ..          ..          ..  7-7 a 

Aurothiophenols ;     Manufacture     of     complex     .     (P) 

Meister,  Lucius,  und  Briining          . .          . .          . .  440a* 

Aurothiosalicylie   acid  ;     Manufacture   of    a   complex   

(P)  Meister,  Lucius,  und  Briining  . .          . .          . .  347a* 

Austenite.     See  under  Steel. 

Australia  ;    Alterations  in  the  patent  law  in . .          . .  130R 

Analyses  of  fungi  and  fruits  of  .     Steel   . .          . .  386a 

Beet  sugar  in  Victoria      . .          . .          . .          . .          . .  508R 

Bounty  on  shale-oil  production  in . .          . .          . .  569R 

Cane-sugar  crop  in  Queensland   ..          ..          ..          ..  481R 

Closing  of  the  Commonwealth  calcium  acetate  factory 

in 264R 

Experiments  in  paper-making  in  . .          . .          . .  79r 

Industrial   notes       . .          . .          . .          . .          . .          . .  31r 

Lead  smelting  in  New  South  Wales      . .          . .          . .  264R 

Lignite  deposits  in  South  Australia      .  .          . .          . .  175R 

Metals  and  minerals  in  in  1021    ..          ..          ..  130R 

Mineral  output  of  New  South   Wales    . .          . .          . .  32r 

New  tanning  bark  in  Western  Australia  . .          . .          . .  157R 

Possibilities  of  alkali  manufacture  in . .          . .  536R 

Pottery  clay  from  Victoria          . .          . .          . .          . .  292r 

Shale-oil  industry  in ..          ..          ..          ..          ..  3lR 

Sugar-beet  cultivation  in  South  Australia         ..          ..  156R 

Timbers  for   paper-making   in   Queensland       ..          ..  1~>Tr 

Water  power  in   North   Queensland      ..          ..          ..  351R 

White  lead  industry  in  398R 

Australian  Chemical  Institute  . .          . .          . .          . .          . .  60R 

Australian    Gas-Light    Co.        ..          ..          ..          ..          ..  32R 

Austria;    Matmesite  production  in  ..          ..          ..  30R 

Mica  deposits  in . .          . .          . .          . .          . .  455R 

Mining   in   . .          . .          . .          . .          . .          . .  266R 

Patent  fees  in 266R 

Proposed  nitrogen-fixation  works  in  . .          . .  266R 

Report  on  economic  and  commercial  situation  of  . 

Phillpotts           513R 

Talc  deposit  in  538b 

Autoclaves  and  like  apparatus  ;   Cover  of .     (P)  Brown  449a 

Automobile  ;   Chemically  controlled .     Brown  . .       157R,  279a 

radiators ;   Glucose  as  a  preventive  of  freezing  of  water 

in  .     La  Wall 205a 

Autoxidation.     Anti-oxygens,  and  various  phenomena  related 

to   anti- oxidising   effects.     Moureu   and    Dufraisse     645a 
of    organic    substances.     Anti-oxygens.     Moureu    and 

Dufraisse  . .         . .         . .         . .         . .         . .     195a 

Azine  dyestuffs  : 

Azine  Scarlets   ;     Structure  and  colour  of  the    . 

Cohen  and  Crabtree    . .         . .         . .         . .         . .       94a 

Manufacture  of  hydroxyalkyl  derivatives  of .     (P) 

British  Dyestuffs  Corp..  and  others 626a 

Safranines  ;    Preparation  of  autlvraquinonvl  derivatives 

of  .     (P)  Akt.-Ges.  f.  Anilin-Fabr.      . .       853a,  934a 

Azo    components;     1.8-Naphthosultam    and    its    N-methyl 

derivative  as  .    Konig  and  Kohler  . .         . .     663a 

Azo  dyestuffs : 

Arylazoglyoxalines.     Pyman   and    Timmis       . .  . .     976a 

Behaviour  of  ■  from  naphthylglycines.    Fierz  and 

Sallmann  . .  . .  . .  . .  . .  . .     625a 

Calculation  of  the  colour  of .    Moir  . .         . . "        . .     804a 

Constitution   of   products   formed   by   condensation   of 

o-amino  with  aldehydes.     Fischer    .  .  . .     703a 

Electrometric  titration  of  .     Jones  and  Lee         . .     136a 

Employment   of  a  new   group  of   naphthalene   inter- 
mediates in  the  production  of  mono-  and  dis . 

Morgan  and  Gilmour  . .  . .  . .  . .  . .         3T 

Ice  colours  ;    Fixing  of  upon  textile  fibres.     (P) 

Aris         895A 

Manufacture  of  .     (P)    Akt.-Ges.    f.    Anilin-Fabr. 

212A*,  288A,  323a* 
Manufacture   of    chromium    compounds    of    .     (P) 

Soc.  Chcm.  Ind.  in  Basle 137a,  934a 

Manufacture  of from  coniferous  resins.     (P)  Arnot     170a 

Manufacture  of  copper  compounds  of  substantive . 

(P)    Bayer  und   Co 664a 

Manufacture     of    diazotisable    tris    .     (P)    A.-G. 

fiir  Anilinfabr.  . .  . .  .  .  . .  . .     497a 

Manufacture    of    dis .     (P)    Ralph   and    others     458a 

Manufacture  of  easily  soluble,  diazotisable  .     (P) 

Soc.  of  Chem.  Ind.  in  Basle  . .         . .         . .         . .       51a 

Manufacture   of  o-hydroxv    .     (P)    Akt.-Ges.    fiir 

Anilin-Fabr.       ..     288a,  288a,  583a.  583a*,   744a,  892a 
Manufacture    of    o-hydroxyazo    for    wool.     (P) 

Akt.-Ges.  f.  Anilin-Fabr 247a* 

Manufacture  of  mono  .     (P)  Bayer  und  Co.         . .     137a 

Manufacture  of  mono for  dyeing  wool.     (P)  Meister, 

Lucius,  und  Briining  . .  . .  . .  . .  . .         8a* 

Manufacture  of  mordant-dyeing  and  of  chromium 

compounds  thereof.     (P)  Soc.  Chem.  Ind.  in  Basle     539a* 


Azo  dyestuffs — continued. 

Manufacture  of  pyrazolone  containing  two   aryl- 

benzothiazole  residues.     (P)  British  Dyestuffs  Corp., 

and    others 

Manufacture  of  secondary  dis .     (P)  Kalle  und  Co. 

Manufacture    of    secondary    o-hydroxydis    .     (P) 

Bayer  und  Co. 
Nitroamino    base    for    manufacture    of    azo    dyestuffs. 

Koechlin 
Preparation  of  from  dehydrothio-p-toluidine  and 

the  two  Primulines,  and  their  affinity  for  cotton. 

Levi 

Production  of on  wool.     Brandt 

Synthesis  of  substantive of  the  naphthalene  series. 

Woroshtzow 
Azobenzene  ;     Catalytic  preparation  of  .     Henke  and 

Brown 406a, 

Electrochemical  oxidation  of .     Fichter  and  jaeck . . 

Azotob(u:trr  chrixicnccuw  ;   Influence  of  humus  on  sensitiveness 

of towards  boron.     Voicu 


B 


Bae. 


853A 
664A 


247A 
136a 


364a 

l:;oa 


976a 
20a 


coli  ;    Biology  of  .     Endo's  reaction.     Fernanda 

and  Garmendia. . 

Bac.  maeerans  ;    Conditions  of  acidity  for  growth  of  . 

Von  Euler  and  Svanberg 
Bac,  Truffauti,  a  new  nitrogen- fixing  bacillus.     Truffaut  and 

Bezssonoff 
Bacteria  associated  with  rice  and  other  cereals.     Fowler  and 
Sen 

Attack  of  minerals  by .     Oxidation  of  blende.   Hel- 

bronner  and  Rudolfs 
capable  of  forming  lactic  and  acetic  acids;    Producing 

and  utilising  pure  cultures  of  leavening .     (P) 

Beccard 

Culture   of   on    media   containing   pyruvic   acid. 

Cambier  and  Aubel 

Instruction  of •     (P)  Freudenberger.  . 

Influence  of  arsenious  acid  on  growth  of  .     Cobet 

and  Van  der  Reis 
Influence  of  hydrogen-ion  concentration  on  development 

of .     Van  Laer 

Isolation  of from  beer  deposits.     Hampshire 

Lactose-fermenting and  their  significance  in  water 

analysis.     Lcvine 

Manufacture  of  partial   antigenes  of  pathogenic  

respectively    non-resistant    and    resistant    against 

acids.     (P)  Strubell 

pentose-destroying ;     Characteristics    of    certain    

especially  as  concerns  their  action  on  arabinose  and 
xylose.     Fred  and  others 
pentose-fermenting ;    Fermentation  of  hexoses  and  re- 
lated compounds  by .     Peterson  and  others     .  . 

"  Remembrance  "  in .     Richet  and  others 

and  spores  ;    Relation  between  formaldehyde  and . 

Hailer 

sulphur-oxidising  ;  Culture  of and  their  application. 

(P)  Lipman 

sulphur-oxidising ;     Isolation    of    from    sulphur- 

floats-soil  composts.     Joffe 
Use  of  ultramicroscope  for  examination  of  action   of 

poisons  on  cells  of .     Traube  and  Klein 

Vitamin  requirements  of  certain .     Funk  and  Dubin 

Bactericidal  action  of  pyromucic  acid.     Kaufmann 

action  of  quinones  and  allied  compounds.     Morgan  and 
Cooper 
Bagasse  ;  Manufacture  of  "  celotex,"  a  new  building  material, 

from 

Preparation  and  evaluation  of  decolorising  charcoal  from 

.     Coates 

Bakelite ;     Apparatus   of   transparent   for   measuring 

hydrofluoric  acid.     Curtman  .  . 

Bakelite  Corporation  ;   New 

Baking   and   cooling   organic  substances.     <P)   Tribes,   and 
Soc.  Anon.     "  Proc.  Torrida  " 

substances  at  high  temperatures  ;    Apparatus  for  

and  subsequently  cooling  them.   (P)  Greenwood,  and 
Carr  and  Co. 
Baking-powder.     (P)  Bleyer 

Determination  of  carbon  dioxide  in : 

Robinson 

Robinson  and  Bandemer 
Manufacture  of  acid  sodium  and  potassium  pyrophos- 
phates for  use  in .     (P)  Utz 

Manufacture  of  casein  compounds  for .     (P)  Bleyer 

Balance  ;   Rapid-weighing for  very  small  masses.     Re- 
search staff  of  General  Electric  Co.  (London) 

Balata  ;    Deresinating  and  purifying  .     (P)  Keith  and 

others 

Vulcanisation  of .     (P)  Peaehcy  and  Skipsey 

Ball-mills  ;  Outlet  device  for .     (P)  Duncan  and  Nelson . . 

Bamboo-grass.     See  Cane-grass. 

Banded  structures.     Synthesis  of  banded  minerals.     Bhat- 
nagar  and  Mathur 

Barbituric  acid  ;    Reaction  of  hypnotics  derived  from  . 

Fabre 

Barium  ;  Approximate  volumetric  estimation  of .    Polo- 

novski 


23a 


229  a 
429a 
908a 
431a 
500a 

565a 

605a 

4:}  3  A 


951A 
3  40  A 


778A 
341A 

229A 

112a 

427a 

782a 

72a 

193A 

76a 

9R 

385A 

629a 
320R 


845A 
>74a 

431 A 
388a 

100a 
432  a 

96R 

262a 
111A 
399A 


588a 
876a 
B40a 


120 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


PAGE 

Barium  chloride  ;    Manufacture    of    .     (P)  MacMahon, 

and  Mathieson  Alkali  Works   . .  ." 813A 

Manufacture  of  pure from  barium  carbonate  and 

magnesium  chloride  lye.     (P)  Chem.  Fabr.  Coswig- 

Anhalt,  and  Von  Dietrich         752A 

Barium  compounds  with  alumina  and  silica  ;   Preparation  of 

.     (P)  Beringer 253a 

compounds  ;    Manufacture  of from  zinc  blende  or 

other  ores  containing  barytes.     (P)  Von  Zelewski   . .     141a 
i       urn  hydroxide;    Continuous    process    for    manufacture 

of .     (P)  Deguide  545a 

Barium  peroxide ;    Catalytic  influence  of  foreign  oxides  on 

decomposition  of .     Kendall  and  Fucha  . .       98A 

Velocity  of  formation  of .     Sasaki     ..     215a 

Barium  products  in  U.S.A.  in  1920        1S1E 

Barium-selenicacid.     Meyer  and  Friedrich       ..  ..  ..     667a 

Barium  silicates.     Eskola  ..  ..  ..  ..  ..     980A 

Barium-sulphuric  acid.     Meyer  and  Friedrich . .  . .  . .     667a 

Evidence  for  existence  of  a  complex .     Balarew      . .     963a 

Barley  ;  Determination  of  starch  in .     Ling        . .  . .     530R 

Fat  of .     Sedlmeyer 7lA 

l'untnis  diseases  of .     Mason..  ..  ..  ..     339A 

Insoluble  amylase  of .     Baker  and  Hulton   ..  ..     871a 

Manufacture  of  malted  pearl .     (P)  Heinemann      . .       76a* 

parasite  ;    Chemico -therapeutics  of  the .     Binz  and 

Bauseh 478a 

Report  on  relation  of  nitrogenous  matter  in  to 

brewing  value.     Hulton  38r,  265a 

a  study  in  modern  agricultural  chemistry.     Russell        . .     193R 

Baryta ;    Manufacture  of  for  treatment  of  molasses. 

Deguide  and  Baud       . .         . .         . .         . .         . .     428a 

Barvtes  ;    Behaviour  of in  blast-roasting  of  lead  ores. 

1>  r=ehel  255a 

Decolorising  impure .     (P)  Stubbs     . .  . .  . .     590a 

i    S.A.  in  1920 131R 

Basalt;  Continuous  melting  of .     (P)  Soc.  "  LeBasalte  "       15a 

Proposed  use  of in  chemical  industry  . .  . .     263R 

Base-exchanging   compounds  ;     Manufacture  of  .     (P) 

<  rosfleld  and  Sons,  and  Svheaton       . .  . .  . .     372a 

-exchanging  material  ;    Operation  of  filters  containing 

.     (P)  Permutit  A.-G 116a 

-exchanging  substaners  ;    reparation  of  artificial  . 

I  P)  Willeox,  and  American  Zeolite  Corp.      . .  . .     811a 

Bases  of  the  flesh  of  swine  ;   Organic .     Smorodincev     . .     953a 

Glyoxalinedicarboxylic  acid  for  recognition  and  separa- 
tion of  organic .     Pauly  and  Ludwig     ..  ..     784a 

organic  ;    Preparation  of  pure  .     (P)  Akt.-Ges.  far 

Anilinfabr 687a 

Titration  of .     Lizius  and  Evers         ..  ..      197R,  730a 

i'it ration  of  moderately  strong in  presence  of  very 

weak  ones.     Kolthoff  . .  ..  ..  ..  ..     27:1a 

Basic  slag.     See  under  Stag. 

Basset  process  for  direct  production  of  iron.     Wiist    ..  ..       59a 

Baesia  Parkii.     See  Butyrospermum  Parkii. 
Bating.     See  wider  Hides. 

Battick  effects  ;   Production  of on  paper.    (P)  Meister, 

Lucius,  und  Briining     ..  ..  ..  ..  ..        11a 

ite  ;   Behaviour  of on  heating.     Houldsworth  and 

Cobb 447R 

Decolorising  impure .     (P)  Stubbs      ..  ..  ..      590A 

Determination  of  titanium  dioxide  in .     Winch  and 

Chandratreya    ..  ..  ..  ..  ..  ..413a 

Loss  on  burning and  porosity  of  the  product.  Bigot     465a 

Manufacture  of  objects  of  dense  structure  from  . 

(P)  Engelhorn  und  Co.  502a 

Manufacture  of  titanium  dioxide  from .     (P)  Dutt 

and  Dutt  631a 

Purification  of .     (P)  Everhart  14a 

in  Togoland.    Robertson 159r 

Beans,  adsuki- ;  Proteins  of .     Jones  and  others . .  . .     342a 

lima-;  Proteins  of .     Jones  and  others         ..  ..     873a 

navy- ;   Carbohydrate  content  of .     Eichelberger  . .     564a 

runner- ;  Distribution  of  nitrogen  in  dead  leaves  of . 

Chibnatl 993A 

runner- ;    Distribution  of  nitrogen   in  leaves  of  . 

Chibnall  602a 

runner-  ;    Effect  of  low-temperature  drying  on  distribu- 
tion of  nitrogen  in  leaves  of .     Chibnall  . .     993a 

Bearing  metal.    See  under  Metal. 

Beef;  Autolysis  of .     Fearon  and  Foster. .  ..  ..     993a 

bone  fat.     Eckart    . .  . .  . .  . .  . ,  . .     768a 

fat  ;   Composition  of .     Dekker         . .  . .  . .     333a 

Beer;  Brewing by  means  of  moulds.     (P)  Duhourg     ..       28A 

casks  ;  American  oak  wood  used  in  construction  of . 

Groom S3U 

:    Chemical  examination  of  oaks  used  in  construc- 
tion of .     Schryver  831a 

containing  lecithin ;  Brewing .    (P)  Schmitz  ..     725a 

deposits  ;  Isolation  of  bacteria  from .     Hampshire. .     340A 

influence  of  hydrogen-ion  concentration  on  stability  of 

.     Van  Laer  . .  . .  . .  . .  . .     951a 

Lambic-;   Y<  astsof .     Kufferath  and  Van  Laer     . .       28a 

Manufacture  of  a  colouring  matter  for .     (P)  Liiers 

-1:;ia,  47,sa*.  56:u* 
from  mashes  boiled  under  pressure.    Bechooberg         . .       27a 

uxalic   acid   turbidity   in  and   related  problems. 

Geys 190a 

1       of  zeanin  in  production  of .    Windisch...         ..       72a 

wort ;  Aeration  of .    (P)  Bryant 832a 


Beer — continued. 

wort ;    Cooling  and  separating  sludge  therefrom. 

(P)  Nathan -Institut  A.-G. 

and  worts ;  Causation  of  "  ropiness  "  in .    Hampshire 

worts ;  Refrigeration  and  flocculation  of .     Moritz . . 

and  worts ;    Standard  solution  for  estimation  of  colour 

in .     Lampe  .... 

Beeswax  ;  Constants  of  Indian .     Roberts  and  Islip 

Beetroot  crop  ;  The  Dutch  sugar 

cultivation  in  South  Australia  ;  Sugar 

juice ;    Action  of  lime  on  protein  substances  separated 

during  defecation  of .     Stanek 

juice ;    Liming  raw and  separation  of  the  resulting 

precipitate  by  subsidence.     Skola 
juice;    Manufacture  of  pressed  yeast  from  .     (P) 

Sailer 
juice  ;    Production  of  a  fodder  from  the  non-sugars  of 

.     Vytopil 

juice  ;    Rate  of  decomposition  of  some  nitrogenous  con- 
st it uents  of by  lime.     Vondrak.. 

molasses  mother-syrups  ;   Relationship  between  concen- 
tration and  purity  of .     Schecker 

residues  ;    Manufacture  of  dextrin  substitute  from  ex- 
tracted   .     (P)  Sichel  and  others 

Beetroots  ;  Composition  of  wild .     Saillard 

Home-grown  sugar 

Manufacture  of  sugar  from at  Kelham,  Notts 

Odoriferous  constituents  of  and  their  separation. 

Andrlik 

Preserving  extracted  slices  of  sugar  .     (P)  Mathis 

Behenic  acid  ;    Derivatives  of  .     Toyama 

Belgium  ;  Artificial  silk  trade  in 

Glass  industry  in  

Report  on  the  economic  situation  of  .     Duke   . . 

Zinc  production  in in  1921 

Belladonna  extracts  ;   Nature  of  alkaloids  contained  in . 

Gori3    and    Costy 
Bence-Jones'      protein ;       Nitrogen-distribution     in     . 

Luscher 
Benzaldehyde ;    Detection  of  nitrobenzene  in  : 

Hasse 

Reclaire 
Benzanthrone     derivatives ;      Manufacture     of     .     (P) 

British  DyestuIIs  Corp.,  and  others 

Reactions  of  .     Perkin  and  Spencer 

Benzene  ;   Chlorinating  with  sulphury!  chloride.     Sil- 

berrad 
Conversion  of  phenols  of  coke-oven  tar  and  low-tem- 
perature tar  into  in  an  experimental  instal- 
lation.    Fischer  and  others 

Detection  of by  means  of  pernitric  acid.     Trifonow 

Detection   of  in   petroleum  spirit.     Sehwarz 

Determination  of  in  gases.     Krieger 

Distillation   of   a    mixture   of   toluene,    m-xylene,    and 

.     Gay 

Ethylation  of .     Milligan  and  Reid 

Experimental  plant  for  production  of from  phenols. 

Fischer  and   others 
Formation  of  addition  products  of  crcsols  with  : 

Berl  and  Schwebel 

Von  Rechenberg  and  Von  Rechenberg 
Interaction    of    carbon    dioxide    and under    the 

influence  of  the  silent  electric  discharge.     Miyamoto 
from  lignite.     Fischer  and  Schrader 

nucleus  ;    Structure  of  the  .     Ingold  and   Piggott 

poisoning ;     Treatment    of    acute   with    lecithin 

emulsion 

Production  of  toluene  and from  cresol.     (P)  Fischer 

Reaction   of  carbonyl   chloride  with  in   presence 

of  aluminium  chloride.     Wilson  and  Fuller 
Recovery   of   from    wash    oils.     (P)    Gasser   und 

Frank.    .. 
Solubility    of    in    weak    alcohol.     Ormandy    and 

Craven 

vapour ;    Recovery  of  ■ from  air.     (P)  Go!tstein  . . 

See  also  Benzol. 
Benzeneazomethyl-i3-naphthylamine-6-sulphonic  acid.     Mor- 

gan  and  Rooke  . . 
Benzenedisulphonic  acid  from  benzenernonosulrhonic  acid. 
i  man 

Benzoic  acid  ;   Adoption  of as  ther  mo  chemical  standard 

i  determination    of    in    margarine.     Kopke    and 

Bodlander 
Heat    of    combustion    of    .     Swietoslawski    and 

st:uvzewska 

si  andard for  calorimetrie  determinations.     Verkade 

Benzoic     esters     of     alkylamines ;      Relationship     between 

constitution    and    pharmacological    action    in    the 

case  of  tropic  and .    Von  Braun  and  others  . . 

Benzol ;  Conversion  of  phenols  or  creosote  into .     Fischer 

Determination  of  in  coal  gas.     Than 

Determination  of  in  gas.     Bahr   .. 

hydrocarbons;    Recovery  of  from  coke-oven  gas. 

(P)  Hartmaun 
Manufacture  of  resin  soluble  in  benzol  from  crude . 

OP)     Deutach-Luxemburgische      lierywerks-      u. 

Hutten    A.   G.,    and   Hilpcrl 
production  in  United  Kingdom   .. 
Recovery  of  from  coke-oven  gas.     (r)  Ges.  fur 

Lindes  Eismaschinen  A.-G.   .. 


341a* 
S31A 

71 A 

911A 
557A 

133R 
156R 

870A 


832A 

226a 


27a 

562a 
226a 

542R 
149R 

226A 
429A 
988A 
401R 
353R 
318R 
26GR 

434A 

993a 

303a 
957  a 

74U 
365A 


931 A 
932A 

4!-;:  a 
."■  1 1  v 

5  I8i 

245A 

891A 

662a 
662a 

9;;2a 
70R 

353R 

21 2  A 

743A 

245A 

406a 
364a 


169a 
328b 

64  4  a 

790a 
880a 


6iWA 

46A 

972a 

S03A 

405A* 


23A 

336R 


SUBJECT  INDEX. 


121 


PAGE 

£enzol — continued. 

Recovery  of  from  illuminating  gas  by  means  of 

active  carbon.     Engelhardt  ..  ..  ..  ..     659a 

refining  plant ;     Continuous  .     Mezger      . .  . .       49a 

Wash   oils   for  removing   naphthalene  and   from 

gas.     Pannertz  . .  . .  . .  . .  _.     241a 

washing  ;    Chemical  and  physical  basis  of .     Bunte 

and    Frei  . .         . .         . .         . .         . .         ..     ii>2\ 

See  also  Benzene. 
Benzophenone-4-arsonic    acid    and    its  derivatives.     Lewis 

and  Cheetham 117a 

o-Benzoylbenzoic  acid  ;    Condensation    of    to  antnra- 

quinone.     (P)  Atack . .     323A 

Benzyl  alcohol ;    Manufacture  of .     (P)  Montonna,  and 

Semet-Solvay    Co.        ..  ..  ..  ..  ..     521A 

Benzyl  compounds  ;    Instability  of .     Messner  . .  . .     117a 

ethers  of  carbohydrates.    Gomberg  and   Buchler      . .       71a 
Benzylidene-rf/-piperitone.     Read   and    Smith  . .  . .     435a 

Berberine  ;    Conversion  of into  palmatine.    Spiith  aud 

Lang       ..  ..  ..  ..  ...  ..  ..     117a 

Beriberi;     Preparation  of  tikitiki  (rice  polishings)   extract 

for  treatment  of  .     Wells         77a 

Beryl    as    constituent    in    high-tension    insulator   porcelain. 

Twells,   jun 465a 

Extraction  of  glucina  from  .     Britton      . .  . .     349T 

Beryllia  and  Beryllium.     See  Glucina  and  Glucinum 

Betaine  ;  Preparation  of  pure .     (P)  Akt.-Ges.  fur  Anilin- 

fabr 687a 

Betaines  of  the  pyridine  series  ;  Preparation  of  .     (P) 

Merck 439a 

Betulin.    Schulze  and  Pieroh  . .         . .         . .         . .         . .     914a 

Beverages  ;    Cooling  and  carbonating by  use  of  snow- 
like carbon  dioxide.     (P)  Soc.  des  Gaz  Radioactifs      23a 

Dealcoholising  .     (P)   Heuser  779a 

.Manufacture  of  low-alcoholic  and   non-alcoholic  . 

(P)    Heuser 191A 

Manufacture  of  materials  for  making .     (P)  Mayer 

and    others 912a 

Preparation  of  containing  silicic  acid.     (P)  Laves     565a 

Bichromate ;    Electrometric  titration  of with  ferrous 

sulphate.     Eppley  and  Vosburgh    ..  ..  ..   1001a 

Bile  acid  ;    Preparation  of  an  unsaturated .     (P)  Itiedel 

A.-G 688a 

acids.     Oxidation  of  cholic  acid.     Wieland  and  Schlicht- 

ing  345a 

acids  ;    Preparation  of  compounds  of .     (P)  Riedcl 

A.-G i  ..  ..       34a 

Binding    materials  ;      Manufacture    of    plastic    .     <P) 

Brown  and  others      . .  . .  . .  . .  . .     906A 

Bingham  viscosimeter  ;  Drainage  error  in  the, .     Herschel 

064a,  1001a 
Biocatalysts  ;    Physiological  researches  on  vitamin  B   and 

water-soluble  .     Blohm  and  others    . .  . .     953a 

Biochemical  method.     Harden 27r,  89r 

Biochemical  Society        . .  . .  . .  . .  . .  . .     561R 

Biochemistry  ;    Recent  advances  in .    Barger  . .         . .     529R 

Biological  Society  of  Birmingham  University  . .  . .  . .       29r 

Biology  and  chemistry.     Ling  . .  . .  . .  . .  . .       29R 

Bios  ;    Water-soluble  B  vitamin  and  Wildier's  in  yeast 

growth  : 

Eddy  and  others  . . 340A 

Fulmer    and    Nelson       . .  . .  . .  . .     340A 

Birmingham  University  ;    Oil  technology  at . .  . .     422r 

Bismuth  ;    Anodic  corrosion  of  .    Prideaux  and  Hewia 

123R,  1G7T 

-antimony  alloys.     Cook 418R,  819a 

Estimation  of as  metal.     Kurtenacker  and  Werner     963a 

Influence  of  in  red  brass.     Czochralski     . .  . .     297a 

Invisible  mirrors  in  detection  of .     Scheucher     . .     525a 

Solubility  of in  lead  in  the  solid  state.     Di  Capua     595a 

in    Tenasserim  . .  . .  . .  . .  . .  . .       61R 

Volume  changes  in  binary  alloys  of  lead,  tin,  and . 

Gilbert 553a 

Bismuth  compound  of  the  aromatic  series  and  its  therapeutic 

activity.     Grenet  and  Drouin  ..  ..  ..     269a 

compounds  ;    Notes  on  .     Prideaux  and  Hewis   . .     123R 

Bismuth  hydride  ;   Preparation   of   gaseous   .     Paneth 

and  others         293A 

Bismuth  hydroxide  ;     Preparation  of  .      Prideaux  and 

Hewis 169T 

Bismuth    salts     of     pbenolcarboxylic     acids  ;      Hydrolytic 

decomposition    of    .     Perling  . .  . .     195a 

Bismuth-sodium  thiosulphate  ;   Double ,  its  preparation 

and  use  in  estimation  of  potassium.     Cuisinier  . .     981A 

Bismuth  tribromophenoxide;  Preparation  of .    Prideaux 

and   Hewis         170T 

Bismuthic  iodides  of  alkaloids  ;    Preparation  of  in  a 

crystalline  form.     Francois  and  Blanc         . .  . .     684a 

Bisulphites  ;    Equilibria  in  aqueous  solutions  of  alkali . 

Baly  and  Bailey  856a 

Bitumen  ;  Attempted  isolation  of in  its  original  condition 

from   bituminous   rocks.     Hentze    . .  . .  . .     578a 

Manufacture  of  dyestuffs  from  .     (P)  Culmer     . .     288a 

Separation  of  adherent  from  rock.     Fyleman    . .       14T 

Bitumens  ;    Relation  of  various  to  shale  oil  residue. 

Botkin    .. 281A 


Bituminous  compositions  ;    Manufacture  of  coloured  . 

(P)   Kirschbraun  . .  . .  . .  . .  . .     536a 

compositions  suitable  for  building  or  for  forming  roads 

or  like  surfaces  ;  Manufacture  of .     (P)  Tabary     816a 

compositions  for  use  as  binding  or  preserving  agents  ; 
Manufacture  of .  (P)  Lamplough,  and  town- 
mead    Construction    Co 454a 

emulsion.     (P)  Reeve,  and  Barrett  Co.  . .  . .  . .       48a 

Blackberry   leaves  ;     Presence   of    ethylidenelactic    acid    in 

.     Franzen  and  Keyssner  . .  . .  -  -     194a 

Blanketing  medium  for  chemical  fusions  ;    Manufacture  of 

a .     (P)  Dow,  and  Dow  Chemical  Co.  . .     358a 

Blast-furnace  flue-dust;    Pyrophoric  .     Gilles  ..         ..     505a 

gas.    See  under  Gas. 
slag.     See  under  Slag. 
Bleaching  action  of  hypochlorous  acid  and  chlorine ;    Com- 
parison  of  .     Taylor 57n,  368a 

agents;    Manufacture  of  detergents   and   : 

(P)  Deutsche  Gold-  und    Silber-Sehcideanstalt     945a 

(P)  Moseley  and  Drey HOA 

agents  for  textiles  and  paper  pulp  ;    Developments  in 

use  of .     Inman 368T,  473R 

composition.     (P)  Forbe3  ..  ..  ..  ..  ••     139a 

cotton.     (P)   Bassett  139a 

cotton  with  acid  and  alkaline  liquors.     Ristenpart     . .     808a 
cotton  with  hypochlorous  acid.     Trotman         ..         ..     529R 
defects  in  linen  due  to  metallic  impurities.     Kind     . .     410a 
Determination    of    "  bromine    figure "     or    "  chlorine 
factor  "  of  wood  pulp  and  utilisation  of  these  quanti- 
ties in  Tingle 137a 

and  dyeing  process.     (P)  King  and  Haines        . .  . .     325a 

and  dyeing  vegetable  and  animal  fibres.     (P)  Roberts, 

and  Surpass  Chemical  Co.     . .  . .  . .  •  •     S55A 

Effect  of  prolonged with  bleach  liquors  at  differemt 

temperatures  on  cotton.     Heermann  and  Frederking     214a 

Effect  of  prolonged with  bleach  liquors  of  various 

strengths  on   cotton.     Heermann  and  Frederking      54a 

Effect  of  scouring  and upon  structure  and  strength 

of  cotton  fabrics.     Huebner  . .  . .  .  -  •  •     213A 

fabrics;    Apparatus  for  : 

(P)  Thornber,  and  Bradford  Dyers'  Assoc,  Ltd. 

(P)  Thornber  and  HenshUwood 

fibres,  textUes,  and  the  like  with  hypochlorites.  (P) 
ZeUstoff-fabr.    Waldhof  . .  . .      ... 

kiers ;     Wagons    for     high-pressure    open- width    . 

(P)  Rangeley  and  Chidlow 

Machines  for  .     (P)  Leek  and  Sons,  and  Leek   . . 

or  otherwise  treating  cloth,  yarns,  and  the  like  ;  Machines 

for  .     (P)  Bowden  and  Bowdeu 

paper  and  fabrics.     (P)  Baker,  and  Wallace  and  Tiernan 

Co. 
in  the  past,  present,  and  future.     Braam 
preparation  ;    Manufacture   of   a   liquid   washing   blue 

and  .     (P)  Reichelt         

process  and  apparatus.     (P)  Taylor 

processes  ;    Discussiou  on  

pulp.     (P)  Trostel 

pulp  with  chlorine.     De  Perdiguier 

Recent     advances     in     cotton     .     Trotman     and 

Pentecost  *9R, 

solutions  ;  Determination  of  available  chlorine  in  hypo- 
chlorite   .     Royer 

solutions  ;    Preparation  of  .     (P)  MacMahon,  and 

Mathieson  Alkali  Works 
textile  fabrics  and  materials.    (P)  Hodson 
textile  fibres.     (P)  Brandwood  and  others 
textile   fibres  and   fabrics,   tissues,  and  the   like.     (P) 
Mohr,   and    N.    V.   de   Eibergsche    Stoombleekerij 
voorh.  Ten  Cate  en  Zoncn   . . 

textile  materials  ;    Apparatus  for 

Wallia 

of  wood  pulp  ;  Alkaline  and  acid 

Bleacliing  powder  ;    Manufacture  of  . 

others 
Blende.     See  under  Zinc. 
Blood    enzymes.     Occurrence    of    maltase 
blood.     Compton 
Manufacture   of   decolorised 

albumins     from     . 

Hoogenhuyze 

Manufacture  of  plastic  masses  from .     (P)  Plauson 

-platelets  ;    Behaviour  of in  vitamin-A  deficiency 

and  after  exposure  to  radium  emanation.     Cramer 

and  others         . .  . .  . .  . .  

Preserving  fluidity  of  .     (P)  Fitzgerald     . . 

pressure  ;     Manufacture   of   means  for  reducing  . 

(P)  Zuelzer,  and  Chemical  Foundation,  Inc. 

Recovery  of  peptones  and  hcematin  from  .     (P) 

Butterfleld         

Blue  ;    Manufacture  of  a  liquid  bleaching  preparation  and 

washing  .     (P)  Reichelt  

"  Blue-print  "  paper.     See  under  Photographic. 

Blumea    Malcomii ;     Essential    oil   from    .     Simonsen 

and  Rau 

Boiler-plant    efficiency  ;     Chemistry    in    relation    to    . 

Grounds 
-plant ;    Use  of  carbonised  fuel  of  high  combustibility 

in  steam  .     Sutcliffe  and  Evans 

-plate  after  cold  work  at  blue  heat.     French 
-plate  ;    Effect  of  rate  of  loading  on  tensile  properties 
of .    French         _.         . .         ~ 


llA* 

585a 


666a 


214a* 
368a 


461a 
808A 

855a 

llA* 

57  R 

324A 

28SA 

73T 

544A 

753  a 

3  68  A 
666A 


55a*,  214A* 
(P)  Gott  and 

..  ..     979A* 

Hottenroth  . .     408a 
(P)  Ladd  and 

. .      327A,  632A 


mammalian 

odourless,   and   tasteless 
(P)     Terwen     and     Van 


227A 


480a* 
304a 


216R 
781A 


79a 


504R 


203T 
712A 


■59A 


122 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY, 


"BoUrt— continued. 

-plates  ;    Strength  and  elasticity  of  :  at  elevated 

temperatures.     French  . .  . .  . .  . .     635A 

system  for  cement  plants  ;    Waste-heat .    (P)  Bell    280a 

Boilers  ;  Apparatus  for  measuring  or  Indicating  the  density 

of  water  in  steam .     (P)  Porter  and  Spensley. .     205a 

Device    for    introducing  scale-removing  material  into 

.     (P)  Fahrni 658a 

Disincrustants  and  apparatus  for  preparing  and  con- 
tinuously introducing  them  into  steam  .     (P) 

Kobseff 280a 

and  the  like  ;    Compositions  for  preventing  corrosion 

and  removing  incrustation  in .     (P)  Zynkara 

Co.,  and  Cross  . .  . .  . .  . .  . .     846A 

and  the  like  ;    Preparation  for  removal  of  scale  from 

and  for  preventing   its  formation.     (P)   Dine 

and  Si.  if  735a 

and  the  like  ;    Preventing  formation  of  scale  in  . 

(P)  Schnetzer 969a 

Preventing  corrosion  and  formation  of  scale  in  steam 

.     (P)  Renger  and  Funrmann  ..         ..         U,  163a 

Preventing    formation    of    scale    in    steam    .     (P) 

1  Mi  Pont,  and  Delaware  Chemical  Engineering  Co.     L27A 

Preventing  incrustation  in  steam  .    (P)  Pessi     . .     735a 

waste-heat;    Cleaning  system  for .    (P)  Bell      ..     280a 

Boiling  point  ;   Relation  of  melting  point  to .     Lorenz 

and  Herz  885a 

Bombay.     See  under  India. 

Bone-black  ;    Decolorising  action  of ,     Hall,  jun.       ..     264a 

Bones ;     Recovery    of   gelatin    and    glue   from   .     (P) 

Bergmann  . .  . .  . .  . .  . .  . .     225A 

Separating  fat  and  albumin  from .     (P)  Heinemann 

uud  Hanka        . .  . .  . .  . .  . .  . .     267a 

Book  reviews.     19r,  41lt,  65R,  86n,  108R.  ISOis,  165r,  185r, 
206R,   227R.   251R,   272R.   299R,   320R,   340R.   358R, 

378R,  406R,  429K,  46lR,  487R,  516R,  543R,  576R 

Borates  ;  Elimination  of from  American  potash.     Ross 

and  Hazen        . .  . .  . .  . .  . .  . .     706a 

Borax  ;    Alternate  precipitation  of  borax  and  ammonium 

chloride  in  industrial  preparation  of  .     Sborgi 

and  Franco 810A 

D ist  i  1  la t  ion    method    for    determ inat  ion    of    in 

fertilisers.     Bartlett 26a 

Extraction   of  from  saline  deposits  and   brines. 

(P)  Stevenson,    and    General  Bond  and  Share    Co.     463a 

Manufacture  of .     (P)  Kelly  aad  Walker  . .     252a 

Boric  acid  ;    Detection  and  determination  of .     Rosen- 
heim and  Leyser         . .          . .          . .  ...  . .       56a 

Determination  of  : 

Deems 1001a 

Strecker  and  Kannappel  ..         ..         ..     810a 

Estimation  of  in  shrimps.     Deems  . .  . .     873A 

Manufacture  of  .     (P)  Kelly  and  Walker..  ..     252a 

Position  of under  the  Safeguarding  of  Industries 

Act  287R 

Titration    of    in    presence    of    phosphoric    acid. 

Kolthoff 963A 

Boring  oils;    Examination  of  water-soluble  : 

Brann         988a 

Kaleta        800a 

Borneo  ;    Crude  oils  of  .     Kewley  . .  . .  . .         2a 

Borneo  1  ;    Manufacture   of  .     (P)   Fabr.   Prod.    Chim. 

Thann  et  Mulhouse 43SA,  484a* 

obtained  from  magnesium  compound  of  pinene  hydro- 
chloride.    Vavon  and  Bcrton  . .  . .  . .     785A 

Borneols  ;    Manufacture  of  ■ .     (P)  Brooks  and  others..     786a 

Bornylenc  ;  Preparation  of  .     Mecrwein  and  Joussen     915a 

Borou-iron-carbon  ;    The  ternary  system  .     Vogel  and 

Tammann  939a 

Manufacture    of    metals   and    alloys    containing   . 

(P)  Walter         63a 

Boron  nitride;    Manufacture  of  .     (P)  Kaiser..  ..     216a 

Reaction  between  and  metallic  oxides  with  pro- 
duction of  nitric  oxide.     Sborgi  and  Nasini         . .     629a 

Boronatrocalcite  ;      Method     of     decomposing     .     (P) 

Schott  uud  Gen 252a 

Botanical-chemical  observations.    Von  Lippmann  ..       117a,  956a 

Bran  ;    Detection  of  ground  in  middlings.     Reed     . .       29a 

Brandy  ;    Analysis  of  .     Bonifazi  ..  ..  ..      642a 

Detection  and  determination  of  vanillin  in  .     Von 

Fellenberg  . .  . .  . .  . .  . .  . .     643a 

Brass  artillery  cartridge  cases  ;    Testing  - — -.     Head  and 

Tour 468a 

condenser  tubes;    Corrosion   and   protection   of  . 

Bcngough  ..  ..  ..  ..  ..  ..      U.iK 

condenser   tubes  ;     Season-cracking    of   and    its 

prevention.     Moure  and    Iteckinsale  ..      126k,  255A 

Determination  of  small  quantities  of  antimony  in . 

Evans 144a 

Development   and    manufacture    of   high-tensile   . 

Smalley 761a 

Dezincification  of by  solution.    Abrams  ..     761a 

Experiences  of  season  cracking  of during  the  war. 

Ellis         105A 

Manufacture  of  — -: 

(P)  Dutoit  and  Boever 716a 

(P)    Webster  766A 


Brass — continued. 

Physical    properties    of    cartridge    .     Upthegrove 

and  Harbert 
Prevention  of  season  cracking  in  ■  by  removal  of 

internal  stress.     Moore  and  Beckinsale 

Rapid  electro-analysis  of .    Kling  and  Lassieur.. 

red-  ;  Influence  of  bismuth  in  .     Czochralski 

red- ;    Volumetric  determination  of  tin  and  antimony 

in  - — -.     Muck 
Relation  between  compression  force  and  reduction  in 

height  of  test-pieces  of .     Doerinckel.. 

scrap  ;   Melting .     (P)  Clark,  and  Bridgeport  Brass 

Co 

scrap  ;     Treatment  of  .     (P)  Ralston,  and  Hooker 

Electro-Chemical  Co. 

tubes  ;   Internal  stresses  in .     Vaudrey  and  Ballard 

weights  ;    Protection  of  .     Mauley 

Hardness  of  and  some  experiments  on  its 

measurement  by  means  of  a  strainless  indentation. 

Harris 418R, 

Selective    corrosion   and    dezincification   of   .     De 

Wurstemberger 

Brassidic  anhydride.     Holde  and  Schmidt    .. 
Brazil  ;    Caustic  soda  in  

Dyestuffs  manufacture  in  .. 

Exhibition    to    celebrate    centenary    of    independence 

Exports  of  carnauba  wax  from 

.Mineral  exports  of  .. 

New  electric-steel  plant  in  

Report  on  economic  and  financial  conditions  in  . 

Hambloch 

Trade  of  in  dyestuffs 

Vegetable  oil  industry  in  .     Carvalho 

Brazing  ;    Dip  with  80  :  20  brass,  and  heat  treatment 

of  brazed  joints.     Schaal 
Bread  cereals.     Berczeller 

Detection    and    estimation    of    adulteration    in    . 

Vogt 

Manufacture  of  .     (P)  Watson  and  others        607a, 

Manufacture  of  leavened  : 

(P)  Hoffman  and  others 

(P)  Kohman,  and  Ward  Baking  Co. 


Treatment 
Negro 

Brewers'  grains 


of    wheat    for    manufacture   of 


(P) 


;    Determination  of  unsaccha rifled  starch  in 
Weiss 
Brewers'  pitch.     See  under  Pitch. 

Brewery  laboratories  ;    Physico-chemical  methods  in  . 

Dietrich 

practice  ;    Hydrogen-ion  concentration  in  .     Win- 

disch  and  others 
Brewing  of  beer  or  like  liquor;    Extraction  of  hops  in  the 

(P)  Briscoe 

Colorimetric    method    of     Michaelis    for    determining 
hydrogen-ion  concentration  and  its  application  in 

.     Windisch  and  others 

Hydrogen-ion    concentration    in   .     Windisch    and 

Kolbach 

industry;    Research  in  the  .. 

industry  ;    Treatment  of  gases  and  liquids  by  irradia- 
tion for  use  in  the  .     (P)  Ludwig 

malt  liquors.     (P)  Hyde 

materials  ;    Consumption  of  

process  ;    Notes  on  the  Wooldridge  .     Wooldridge 

Brick  kilns  : 

(P)  Boyer 

(P)  .Toues  and  Jones 

(P)  Webster  

Bricks;    Manufacture  of  .     (P)  Hernandez 

Utilising  waste  heat  for  drying  .     (P)  Twigg 

Brine-proof  material ;    Manufacture  of  insulating  and  . 

(P)  Elliott 

Brinell  machine  with  attachment  for  use  with  small  speci- 
mens.    Campbell 

Brines;    Evaporation  of .    (P)  Wlrth-Frey 

Recovery  of  valuable  constituents  from  alkaline  deposits 

and  .     (P)  Stevenson,  and  General  Bond  and 

Share  Co. 

Treating  for  recovery  of  sodium  carbonate.     (P) 

Kuney  and  others 
Briquette-forming  materials  ;   Mixing with  a  fluid  bind- 
ing agent.    (P)  Giawe 

Briquettes;  Manufacture  of .     (P)  Pollacsek 

Manufacture  of  a  binder  for from  sulphite-cellulose 

liquor  and  tar  distillation  residues.     (P)  Mohrdieck 

Manufacture  of  coal : 

tl'i   Machold  

(P)  Stenning  and  others . . 

Manufacture  of   hard,   durable  and   well-shaped  . 

I  P)  Schott         

Manufacture  of  fuel .     (P)  Strafford 

Treatment  of  coal  sludge  or  the  like  for  manufacture  of 

.    (P)  Vahle         

Briquctting  cast-iron  turnings.     (P)  Houmoller 

iron  chips  for  use  in  cupula  furnaces,     (pj  Houmoller     . . 
iron  oxide  ore.     (P)Mathesius 

peal  or  coal  slimes,  etc.     (P)  Ges.  fur  UaschineUe  Druck- 
entwasserung  (Madruok) 


105A 
55U 
297A 

761a 

504A 

•20A 

146A 
105a 
961A 

817A 

61 A 

S25A 
320R 
133R 

64R 

460R 
266R 
102R 

83R 

160R 
374R 

551A 

479A 

73a 

644a 

913  a 
30* 


,'ZoA 

911A 
951A 
29a 

72a 

227a 
293R 

113A 
912  a 
161R 
340A 

59A 
860a 
374A 
899A 
81 5A* 

259a 

762a 
463A 

463A 
327A 

702a- 
360A 


208a 

.SI  ,1  I  v 

92a* 

690a* 

166a 

221A 
379A 
147  a* 

243A 


SUBJECT  INDEX. 


123 


Briquetting — continued. 

press.     (P)  Horst,  and  Ges.   fiir   MaschineUe   Druckent- 

wiisseruug  . .  . .  . .  . .  . .  . .     975a* 

straw  ;  Machine  for .     (P)  Cowan 130a 

Treatment  of  fuel  for .     (P)  Komarek,  and  Malcolm- 
son  Engineering  and  Machine  Corp.   . .  . .  . .     848a 

Bristles  ;    Treatment  of .     (P)  Singer,  and  Du  Pont  de 

Nemours  and  Co.  . .  . .  . .  . .  . .     459a 

Bristol  district ;    Some  local  aspects  of  industrial  geology  in 

the .     lteynolds    ..         ..         ..         ..         ..       74r 

British-America  Nickel  Corporation  ;    Government  holding 

in 201R 

British  Association,  Hull,  1922  ;  Chemistry  at  the . .     361R 

meeting  at  Hull         891b 

reprints  . .  . .  102R,  134R 

British  Association  of  Chemists 507R 

British  Cellulose  and  Chemical  Manufacturing  Co. ;   Govern- 
ment interest  in 202R,  247R 

British  Chemical  Plant  Manufacturers*  Association    ..        36r,  454r 
British  Columbia.     See  under  Canada. 

British  Dyestuffs  Corporation 2G7R,  295R,  336R 

Government  interest  in .,  ..  ..      247R,  315R 

and  reparation  dyestuffs     ..  ..  ..  ..  -.     571R 

British  Empire  Exhibition  511R,  542R 

British  Engineering  Standards  Association      . .  . .  . .     330R 

British  Farina  Mills  ;   Government  interest  in . .      104R,  160R 

British  Guiana  ;   Trade  of ■  in  1921  377R 

Trade  and  industry  of in  1920  246R 

British  Industries  Fair 138R,  428R 

Impressions  of  the .     Miall     . .  . .  . .  . .       92b 

British  Leather  Manufacturers'  Research  Association  . .     561R 

British  Non-ferrous  Metals  Research  Association       . .  . .     102R 

British  Pharmaceutical  Conference       ..  ..  ..  ..     329R 

British  Phosphates  Commission  481R 

Broken  Hill  Mines  ;   Lead  poisoning  at ..  ..  . «,     481R 

Brometone.     See  Tribromo-rerf. -butyl  alcohol. 

Bromides  ;    Detection  of in  presence  of  thiocyanates. 

Spacu 881a 

Determination  of  in  brines  and  mineral  waters. 

M  cloche  and  Willard    ..  ..  ..  ..  ..     413a 

Determination  of  by  electrometric  titration  with 

silver  nitrate.     Kolthoff  649A 

Determination  of  small  quantities  of  in  iodides. 

Kolthoff 12a 

Bromine  ;   Extraction  of .     (P)  Dow,  and  Dow  Chcmcal 

Co 253A 

Extraction  of  potash  and in  Tunisia  . .  . .     4S1R 

Bromodinlkvlacetylureas  ;    Preparation  of .     (P)  Bayer 

und  Co.  523a 

Bromohydrins  ;  Conversion  cf  allyl  alcohol  into  glyceryl . 

Read  and  Hurst  M     609a 

Bromoindigoes  ;    Manufacture  of .     (P)  Strosacker  and 

others 892a 

Bronze,  aluminium- ;  Heat  treatment  of .     Blue  . .       61a 

aluminium-  ;   Use  of  macrography  for  controlling  the 

casting  of .     Galibourg  and  Brizon       . .  . .     106a 

Analysis  of  cast .     Lundcll  and  Scherrer     . .         . .     420a 

Constituents  of  ancient ,  and  constitutional  re'ation 

between  original  alloy  and  its  patina.     Matsuno  ..     255a 

Development  and   manufacture  of    high-tensile . 

Smalley 761a 

manganese- ;   Occurrence  of  blue  constituent  in  high- 
strength .     Dix,  jun.       ..  ..  ..  ..     552a 

powders  ;   Exports  of from  Germany  . .  . .     358R 

Rapid  electro-analysis  of .     Kling  and  Lassieur    . .     551a 

Bucher  process  for  fixation  of  nitrogen  as  sodium  cyanide. 

Thompson  «  . .     140a 

Buckwheat ;   Gluten  casein  of .     Kicsel 306a 

Budget ;   The 201R 

Buffer  solutions  for  colorimetric  comparison.     Mcllvaine    . .       81a 

values;  Measurement  of and  relationship  of  buffer 

value  to  dissociation  constant  of  buffer  and  con- 
centration and  reaction  of  the  buffer  solution.    Van 

Slyke 649a 

Bufotoxin.  the  poisonous  substance  of  toads.     Wieland  and 

AHes 607a 

Building  materials  made  of  un fired  loam,  water-glass,  and 

sulphite  waste  ;    Treatment  of  .     (P)   Silonit 

Bauges.  758a 

materials  ;   Manufacture  of .     (P)  Savelsberg        . .     758a 

materials  ;  Manufacture  of with  ligneous  fragments. 

(P)  Polla  375a 

materials  ;   Manufacture  of  fireproof .     (P)  Mitchell 

and  Widmer 296a 

materials  ;    Manufacture  of  insulating  and  .     (P) 

Eklund  and  Lofveberg 899a' 

materials;   Manufacture  of  unfired  .      (P)  Plonnis 

und  Co.  . .     7»&a 

materials  ;    Manufacture  of  unfired from  clay  and 

sulphite-cellulose  waste  liquor.     (P)  Plonnis  u.  Co.     103a 
Bulgaria  ;    Report  on  commercial  and  financial  situation  in 

.     Rodd 335R 

Union  of  producers  of  otto  of  roses  in . .  . .     429r 

Burner  and  furnace  for  use  in  micro-analysis.    Diepolder  . .     612a 


Burning  compositions  ;    Binder  for .     (P)  Durand,  and 

Atlas  Powder  Co 880a 

liquid  fuel.     (P)  Metcalfe,  and  Skinner  Engine  Co.       . .     130a 
liquid  fuel  alone  or  in  conjunction  with  solid  fuel  and 

colloidal     mixtures ;      Atomisers     for     .     (P) 

Morgan  and  Clavey      ..  ..  ..  ..  ..     286a* 

Butadiene  ;    Formation  of from  ethylene.     Zanetti  and 

others 836a 

Butter ;   Acetic  index  {improved  Valenta  test)  for  detecting 

adulteration  of .     Fascetti  . .  . .  . .     912a 

Action  of  yeast  types  isolated  from on  constituents 

of  milk.     Sandelin 872a 

(?c-DecyIenic  acid,  a  previously  unknown  acid  from  . 

Griin  and  Wirth  680a 

Detection  of  coconut  oil  in .     Muttelet        . .  . .     191a 

fat ;     Distribution   of   fatty  acids  in  .     Frog  and 

Schmidt-Nielsen  306a 

fat;   Manufacture  of .     (P)  Phelps  and  others       ..     192a 

fat  or  oil  ;    Extracting from  milk  and  cream.     (P) 

North 515a 

fat  ;    Treatment  of .     (P)  Stevenson  and  Johnston       75a 

formation  ;    Effect  of  temperature  on .     Rahn      . .     514a 

Manufacture    of    fat    resembling    .     (P)    Oclwerke 

Germania  . .  . .  . .  . .  . .  . .     945a 

-oil  ;     Separating  from   milk,  skim   milk,   cream, 

butter  milk,  butter,  etc.     (P)  Alexander,  and  De 

Laval  Separator  Co.     . .  . .  . .  . .  . .     115a 

Process  of  churning  .     A   surface-tension   theory. 

Rahn 114A 

Semi-mlcrochemical   determination   of   water,   fat,   and 

sodium  chloride  in .     Luhrig      . .  . .  . .     872a 

substitutes;     Manufacture  of  .     (P)   Clayton   and 

Nodder 30A* 

n-Butyl  series  ;    Studies  in  the .     Aryl  n-propyl  ketones. 

Morgan  and  Hickinbottom     ..  ..  ..  ..       32a 

series  ;    Studies  in  the  .     The  four  stereo -isomeric 

0y-di-^-tolylamino-/i-butanes.     Morgan        ..  ..     531K 

Butyl  alcohol  and  acetone  fermentation  of  various  carbo- 
hydrates.    Robinson   .  .  . .  . .  . .  . .     778a 

Manufacture  of  acetone  and by  fermentation: 

(P)  Horton,  and  Du  Pont,  de  Nemours  and  Co.     832a 

(P)  Riccard,  Allenet  et  Cie 341 A 

Manufacture   of   from  crotonaldehyde.    (P)  Griin- 

stein        . .  . .  . .  . .  . .  . .  . .       78a 

Manufacture  of  secondary  .     (P)   Weizmann  and 

Legg 270a* 

Bntylethylmalonylurea,  a  new  hypnotic    of    the  barbituric 

acid  series.     Carnot  and  Tiffeneau    . .  . .  . .     685a 

Butylene ;     Action    of    selenium    monocldoride    on    . 

Boord  and  Cope  308a 

Butyraldehyde ;     Manufacture    of    •.     (P)    Adam    and 

Legg 197a,   567a* 

Manufacture  of from  crotonaldehyde.     (P)  Griin- 

stein        . .  . .  . .  . .  . .  . .  . .       78A 

Butyric  acid  ;   Action  of on  hide  substance.     Mocller . .     426a 

Manufacture  of : 

(P)  Adam  and  Legg        197a 

(P)  McDerraott  and  others  ..  ..  ..     232a 

Butyrospermum  Parkii  kernels ;    Fat  from .     Wolff     ..       21a 


Cacao  heans  ;    Theobromme'content  of  .     Wadsworth 

98R,  3  88 A 

Cacothelin  ;     Violet    and    green    colour    reactions    of    . 

Leuchs 307a 

Cactus  alkaloids.     Spiith  77a,  390a 

Cadaline.     Ruzicka  and  others  .  .  .  .  . .  . .  . .  482a 

Synthesis  of .     Ruzicka  and  Seidel  . .         . .         . .  483a 

Cade  oil.     See  under  Oils,  Essential. 

Cadmium-copper  wire  for  electrical  transmission.     Smith  . .  105a 
Electrolytic  treatment  of  ores  containing  zinc,  copper, 

and .     (P)  Avery  and  others      . .  .  .  . .  767a* 

Filter  masses  for  separating  from  solutions.     (P) 

Wohlgemuth 353a 

Influence  of  the  alkalis  on  the  titration  of  with 

ferrocyanide.     Treadwell  and  Chervet         . .         . .  880a 

-magnesium  alloys.     Guillet  . .  . .  . .  . .  553a 

Reductions  with in  volumetric  analysis.     Treadwell 

and  others  919a,  <919a 

Solubility  of in  lead  in  the  solid  state.     Di  Capua . .  595a 

in  U.S.A.  in  1921 419R 

Cadmium  pigments  ;    Manufacture  of .     (P)  Marston  . .  65a 

pigments ;     Manufacture   of   yellow   .     (P)    Bayer 

und  Co.  149a,  261a 

Caesium  chloride  ;   Use  of in  micro  chemistry.      Ducloux  S1a 

Caffeine  ;    Apparatus  for  extraction  of   with  boiling 

chloroform.     Scliaap    . .  . .  . .  . .  . .  781a 

Extraction  of from  coffee  beans.     (P)  Rosclius    . .  479a 

Silicotungstic    acid    applied    to    estimation    of    . 

Azadian  . .         . .         . .         . .         . .         . .  194a 

Calcining   materials   containing  oxygen   or   carbon   dioxide. 

(P)  Helfenstein  G22a 

products  of  reaction  of  solid  and  liquid    materials    in 

a  muffle  furnace.     (P)  Zieren  . .         . .         . .  128a 

silicious  substances  ;   Drying  and .     (P)  Spence  and 

others 174a 

Caicite ;    Solubility  of  .    Backstrom 896a 


124 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Calcium  and  its  alloys  ;    Absorption  of  nitrogen  by  . 

Rulf  and  Hartmann   ..  ..         -. 371a 

amalgam;  Electrolytic  preparation  of .     Neuhausen    672a 

Determination  of in  natural  phosphates.    Meuricc    667a 

Determination   of  small   quantities   of  .     Laidlaw 

and    Payne 91Sa 

Effect  of  hydrogen  ion  concentration  upon  estimation 

of  .     Shohl  351A 

and  the  like;     Electrothermic  recovery  of  .     (P) 

Neumann  ..  ..  ..  ..  ..  ..     717a 

Volumetric   estimation   of   .    Viirthcim   and   Van 

Bera        

Calcium  acetate  factory  ;  Closing  of  the  Commonwealth 264R 

Calcium    acetylsalicylatc ;     Preparation    of    : 

(P)  Altwegg,  and  Soc.  Chim.  Usines  du  Rhone     916A 
(P)  Howards  and  Suns,  Ltd.,  and  Blagden  ..       33a 

Calcium    antimonide  ;     Manufacture    of    .     (P)    Riedel 

AH ...  ..      100A 

:i    arsenate ;     Manufacture    of    : 

Ambruster  . .  . .  . .  . .  . .     667a 

(P)   Dickey,   and   Pittsburgh   Plate  Glass   Co.     813a 
Calcium  benzenesulphonate  ;   Solubility  of  calcium  sulphate 

in  presence  of .     Mameli  . .  . .  . .     662A 

Calcium  bisulphite  lye  ;   Simultaneous  production  of  sulphur 

and ,    (P)  Rhenania  Verein  Chem.  Fabr.        . .     632a 

solution,  acid  ;    Occurrence  of  thiositfphates  and  poly- 

thionates  in .     Sieber      . .  . .  . .  . .     499a 

solution  ;   Analysis  of  reclaimed  acid .     Genberg  . .     584a 

Calcium  carbide.     Botolfsen       . .  . .  . .  . .  . .     937a 

Calculation  of  power  consumption  in  manufacture  of 

Furusaki  . .  . .  . .  . .  . .  . .     544a 

Electric  furnace  for  production  of .     (P)  Reid       . .     823A 

Formation  of  ferrosilicon  in  manufacture  of .     Hackl     707a 

industry  in  Dalmatia  . .  . .  . .  . .  . .       40R 

Manufacture  of  : 

(P)  Albv  United  Carbide  Factories,  Ltd.,  and 

Mitcbley  

(P)  Itogatz,  and  Farmers  Standard  Carbide  Co.     670a 

Wirherspoon 55SR 

Manufacture  of  gas  and .     (P)  Reid 

manufacture  in  Tasmania  . .  . .  . .  . .  . .     2U2k 

Position     of   nnder   Safeguarding     of   Industries 

Art  44u 

Removing  water  vapour  from  air  by .     Thomas  . .       33T 

Calcium  carbonate;   Inadequacy  of  "A  II"  test  for  alkalis 

in .     Singleton  and  Williams      . .  . .      197r,  545a 

Solubility  of in  water  in  equilibrium  with  a  gaseous 

containing  carbon  dioxide.     Osaka    ..  ..     937a 

Calcium  chloride;    Manufacture  of  a  homogeneous  durable 

mixture  of  cocoa  and .     (P)  Felheim    . .  . .     SSSa 

preparation  ;   Manufacture  of  a  non -hygroscopic,  easily 

soluble .     (P)  Calcion  Ges.  . .  ..  ..     787a 

solution  ;    Temperature  of  vapour  arising  from  boiling 

.     Harker..         ..         ..         ..         ..         ..       56a 

-water  ;    Vapour  pressure  of  the  system  .     Baker 

and  YVaite  . .  . .  . .  . .  . .  . .       87a 

Calcium  citrate ;  Imports  of ..  ^.  _.  ..     135R 

Calcium  eyanamide  ;    Catalysts  for  use  in  manufacture  of 

urea  from .     (!')  A.-G,  fur  Stickstoffdiingei  ..     440a 

Conglomerating  slu  <1   by  decomposition  of 

.     (PJ  Bayerische  Stickstoff-Werke  A.-G. 

Formation  of from  calcium  ferrocyanide.     Pincass     C67a 

Granulating : 

-  ivfia  70a* 

(P)  Stockholms   Superfosfat    Fabriks     Aktie- 

bolag 950a 

Manufacture  of  ammonium  sulphate  from  crude  . 

(P)  Bambach  und  Co.  S58a 

Manufacture     of     dustless,     non-corrosive    .     (P) 

Scnrauth  ..         ..         ..         ..        ..        ..     775a 

Manufacture  of  granular  crude .     (P)  Mann  . .     S29a 

Manufacture  of  non-dusty   crude  which  can  be 

readily    distributed.     (P)     Khcnania    Ver.     Chem. 

Fabr.,  and  Messerschmitt 338a 

Manufacture  of  non-injurious .    (P)  Rhcnania  Ver. 

Chem.  Fabr.,  and  Yon kelhis  ..  ..  ..     264a 

Manufacture    of    sodium    carbonate    and    ammonium 

chloride   from   crude  .     (P)   Elektrizitatsw  rk 

Lonza,  and  Dannecl     ..  ..  ..  ..  ..     216a 

Manufacture  of  urea  from  : 

(P)  Meister,  Lucius,  und  Briining         . .  . .     521a 

(P)  Nydegger  and  others  ..        ..        ..     157a 

(I1)  Sue.  d" Etudes  Chim.  pour  1'Ind 79a 

Preparation  of  a  solution  of  cyanamide  from .     (P) 

Wargons  Aktiebolag,  and  Lidholu     ..  ..  ..     877a 

Preventing  disintegration  of  .    (P)  Schwarzenauer     775a 

process  of  nitrogen  fixation  ;   Post-war  progress  in . 

Harker 

in  Rumania  :   Manufacture  of 1  78B 

Treatment  of  crude .     (P)  Stillesen 870a 

Treatment  of  for  production  of  a  fertiliser.    (P) 

Bambach  und  Co.         . .  . .  . .  . .  . .     S70a 

Calcium   cyanide:     Manufacture   of  with  the  aid  of 

italysts.     (P)    Reid,    and    International 

Nitrogen  Co 859a 

Calcium  glycerophosphate  solutions  capable  of  being  steri- 

I'r- paration  of .     (P)  Laves       ..  ..     439a 

Calcium  hydride  ;    Electric  furnace  for  producing .     (P) 

Kiese waiter . .         ..         ..         ..         ..        ..        ..     216a 

Calcium  hydroxide  ;  Colloidal .    Von  Glascnapp  . .     981a 


PAGE 

Calcium  hypochlorite  ;   Manufacture  of  stable  compounds  of 

.     (P)  Chem.  Fabr.  Grieshcim  Elektron  . .     669a 

Rendering  stable.    (P)  Chem.  Fabr.   Griesheim- 

Elcktron,  and  Reitz     . .  . .  . .  . .  . .     590a 

Calcium   iodide  preparations  fit  for  therapeutic  purposes  ; 

Manufacture  of .     (P)  Spitz 

Calcium  nitrate ;    Manufacture  of  .     (P)   Aluminium- 

Ind.  A.-G 501A 

Calcium  nitride  ;   Manufacture  of .     (P)  Kaiser. .  . .     216a 

Calcium  oxalate ;    Occurrence  of in  the  Gidgee  wattle. 

Steel 32A 

Calcium  oxide  ;    Carrying  down  of  by  precipitates  of 

ferric  oxide.     Charriou  . .  . .  . .       8lA 

Separation  of  oxides  of  iron  and  aluminium  from  

by  the  nitrate  method.     Charriou     . .  . .  . .     351a 

See  also  Lime. 
Calcium  oxyebioride  composition.    (P)  Catlett 
Calcium  phosphate  ;    Reducing  amount  of  acid  required  in 

production  of  dibasic  .     (P)  Bayerische  A    '•- 

f.  Chem.-  u.  Landw.-Chcm.  Fabr.,  and  Hackl      723A,   .  5  tA 
Calcium  phosphates  and  their  relation  to  basic  slag.     I 
maun  and  Houdremont 

Calcium  silicides.     Wohler  and  Muller 293a 

Calcium  succinate ;    Occurrence  of on  leaves  of  white 

anemone.     Von  Lippmann     ..  ..  ..  ..117a 

Calcium   sulphate ;    Conversion    of  into   ammonium 

sulphate.     Matignon  and  Frejacques  . .  . .     587A 

Decomposition  of with  recovery  of  sulphur  oxideo. 

(P)  Metallbauk  u.  Mctallurgische  Ges  ..  ..     253A 

.Manufacture    of   hydrogen   sulphide   from   .    (P) 

Buchner  . .         . .         . .        . .         .  ■         ■  ■     174a 

Manufacture    of    sulphur    from    .     (P)    Badische 

Aniliu- u.  Soda-Fabr.  ..  ..  ..  ..     100a 

Manufacture  of  sulphur  oxides  from : 

(P)  Badische  Anil  in-  u.  Soda-Fabrik  . .       98A 

:  itallbank  u.  Metallurgische  Ges.  . .       14a 

Reduction  of  by  carbon  monoxide,  carbon,  and 

hydrogen  sulphide.     Zawadzki  and  others  . .  . .     749a 

Solubility  of  in  presence  of  calcium  bcn:..<  i 

phonate,     Mameli     ..  ..         ..         ..         ..     662A 

Solubility   of  in  products  of  protein  hydrolysis. 

Hausslei  192a 

See  also  Gypsum. 
Calcium  sulphide  ;    Manufacture  of  sulphurous  acid  from 

.     (P)  Metallbank  u.  Metallurgische  Ges.     873A,  415A 

Calibration  of  storage  tanks  ;   Rapid  and  accurate  method 

for .     M'David 295T 

Calico  printing.    See  wider  Printing. 

Calomel  ointment  ;  Examination  of .     Evers  and  Elsdon     519a 

CalophyUum   Wightianum  ;    Fatty  oil  from  seeds  of    . 

Rau  and  Simonseu       . .  . .  . .  . .  . .     902a 

Calorific  power  of  a  commercial  fuel ;   Calculation  of in 

terms  of  its  content  of  water  and  mineral  mailer. 

Fohlen 798a 

value  of  combustible  gases  or  other  chemically  reactive 
agents  ;  Apparatus  for  indicating  and  recording  the 

.    (P)  Cutler-Hammer  Mfg.  Co.  . .         . .     485a 

value  of  fluids  ;  Combustion  of  proportioned  quantities 

of  fluid  for  the  purpose  of  measuring  the .     (P) 

Cutler-Hammer  Mfg.  Co 692a 

value  of  gases  ;    Determination  of  ■ : 

(P)  Lanphier         791a,  964a* 

(P)  "  Union '"  Apparatebauges.  ..  ..     274a* 

Calorimeter  ;   New  type  of  adiabatic .     Swientoslawski     200a 

Calorimeters;   Benzoic  aeid  for  standardising ..  ..     328B 

Gas : 

ll')  tutlrr-Hammer  Mfg.  Co 7:;i  \ 

(P)  Davidson         38A 

Recording  and  integrating  gas .     Boys 

^P)     569a 
Calorimetric  bomb.     Roth         . .         . .         . .         . .         . .     350a 

determinations  ;     Effect    of    bomb  corrosion  on  . 

Olin  and  Wilkin  393A 

ninations;     Standard    benzoic    acid    for    . 

Yerkade  SS0A 

Calorimetry  ;    Maintenance   of   the  adiabatic   condition   in 

.     Barry    . .  . .  . .  . .  . .  . .     525a 

Calorising  metals  ;    Furnace  particularly  adapted  for  . 

(P)  Calorizing  Corp.  of  America         . .  . .  . .     863a 

Camphene  ;  Manufacture  of .     (P)  Brooks  and  others. .     786A 

Camphene  hydrochloride;    Preparation  of  true  .     (P) 

ring  347a 

Camphor  ;    Action  of  the  Grignard  reagent  on .     Hep- 

i 9T 

Analysis  of  crude  Chinese ,  and  note  on  sampling. 

32T 

ruination  of  monobromated  .     Bates  ..      269a 

Exports  of from  Japan  ..  ..  ..  ..     51  jr 

Industry  in  U.S. A 153B 

Manufacture  of  synthetic .     (r)  Parm^se  and  others     610A 

Purification  of  crude  synthetic  .     (PJ  Kessler,  and 

Du  Pont  de  Nemours  and  Co.  ..         ..         ..     157a 

spirit  ;     The  system  camphor-alcohol-water  in  relation 

to  titration  of  - — — .     Scheringa       010a 

synthetic;   Position  of undei  thi    3  afeguardlng  of 

i  '.ries  Act 2S7R 

trade  in  Japan  ..  .,  ..  ..  ..  ..     104k 


SUBJECT  INDEX. 


125 


d-Camphor  ;    Catalytic  reduction  of  .     Koinatsu   and 

Masumoto 
Camphoreins.     See  under  Phthalein  dyestuffs. 
Camphoric  acid  ;  Manufacture  of  soluble  derivatives  of 

(P)  Soc.  Cheni.  Ind. in  Basle 
Camphoric  acid  imide  ;  Manufacture  of  N -substituted  deriva 

tives  of .     (P)  Soc.  Chern.  Ind.  in  Basle 

Camphoric  anhydride  ;  Dyestuffs  derived  from .     Sircar 

and  Dutt 
Canada  ;    Administration  of  the  Explosives  Act  in  — 

Ogilvie 

Alberta  tar-sands  ;   Exploitation  of 

Alcohol  industry  in 

Animal  and  vegetable  oil  refining  in  British  Columbia 

Asbestos  industry  in 

Asbestos  industry  in  Quebec 
Ceramic  industry  in  Saskatchewan 

Chemical  industries  in 

Cotton  textile  industry  in 

Explosives  industry  in . .  . : 

Exports  of 

Forests  and  forest  products  in 

General  council  of  Society  of  Chemical  Industry  for 

94k 

Imports  of  dyestuffs  into 

Industrial  notes        . .  7R,  6lR,  132R,  220R,  264R, 

332R,  371R.  419R,  453R 

Interim  report  of  the  Dominion  Chemist  for  the  year 

ending  Mar.  31,  1921.     Shutt 

Metallurgical  industries  in 

Mineral  and  metallurgical  production  of in  1921 

Minerals  in 

Minerals  and  mining  in 

Mining  developments  in . .       19SR, 

Mining  and  metallurgical  developments  in 

372R, 

Oil-shale  deposits  in 

Petroleum  developments  in . .  7r,  176r,  2C5r, 

350r,  454k 

Petroleum  refining  industry  in in  191S 

Platinum  metals  in  Northern  Ontario 

Production  of  chemicals  in 

Proposed  nitrogen  fixation  plant  in 

Proposed  wood  pulp  industry  in  Alberta 

Pulp  and  paper  industry  in . .       80R,  176r,  245k, 

312R,  350R,  510k 

Rubber  manufacture  in in  1920 

Soapstone  In  Ontario 

Starch  and  glucose  industry  in in  191S 

Starch  and  glucose  industry  in in  1920 

Tanning  industry  in in  1918 

Trade  of in  1921         

Canadian  Institute  of  Mining  and  Metallurgy 
Canadian  National  Exhibition 
Cane-grass  ;    Wax  coating  stems  of  Australian  - 
Cannabis  sativa.     See  Hemp. 

Cantharidin  ointment ;    Examination  of  .     Evers  and 

Elsdon 
Caoutchouc  ;     Determination    of    molecular    magnitude    of 

by  chemical  methods.     Harries  and  Evers     . . 

Hydrogenation   and  constitution  of  .     Staudinger 

and  Fritschi 
and    like   substances    and    compounds    thereof ;     Fire- 
proofing   natural   and   artificial   -.     (P)   Frood 

and  Alger 

-like   substances ;     Manufacture   of   .     (P)    De   la 

Rosec,  and  Chemical  Foundation,  Inc. 

Manufacture  of  and  of  caoucthouc-like  products. 

(P)  Schidrowitz,  and  Catalpo,  Ltd. 
Photopolymerisation  of  vinyl  chloride,  and  problem  of 

.     Plotnikow 

Vulcanisation    of    : 

(P)  Bedford,  and  GoodyearTire  and  Rubber  Co. 

(P)  Bedford  and  others 

See  also  Rubber. 
Capillary  attraction,  diffusion,  and  displacement ;    Applica- 
tion of  to  washing  photographic  plates,  etc. 

Lumiere 
Capsularin.a  glucoside  from  jute  leaf.     Saha  and  Choudhuiy 

Caramel ;   Determination  of in  sugar  factory  products. 

Kautf  man 

Carbamic  acid    trichloro ethyl   ester  ;    Preparation  of   . 

(P)  Bayer  und  Co. 
Carbamide.    See  Urea. 
Carbarn  ides  of  anthraquinone.     Battegay  and  Bernhardt  . . 

Carbazole ;    Separating  and  purifying  anthracene  and . 

(P)  Kagan  

Carbides;    Manufacture  of  .     (P)  Rcid,  and  Interna- 
tional Nitrogen  Co. 

of  metalloids  ;   General  method  for  preparation  of . 

De  Mahler         

Carbocyanines.     See  under  Quinoline  dyestuffs. 
Carbohydrases  ;  Influence  of  substances  obtained  from  yeast 
cells  and  organs  on  time  course  of  fission  of  sub- 
strates by .     Abderhalden  and  Wertheimer    . . 

Carbohydrates ;     Benzyl    ethers    of    .    Gomberg    and 

Buchler 


Smith 


PAGE 
957A 

198A 

198A 

703a 

94R 
100R 
332R 

7R 
332R 

7R 
198R 
557R 

19SR 

245B 

339R 
372b 

400R 
85K 

482R 

3Sr 
31  2r 

100R 

132R 

33R 

482R 

534R 
61R 

510R 

7R 

312b 

312r 

420R 

80R 

534R 
19SR 
399R 

80R 
245R 

33R 
107R 
195R 
184R 
372T 


519a 

23A 

868A 

772a 
67a* 
559a* 
261A 

559a* 

559a* 


524a 
607A 

477A 

959A 

804a 

93a 

14a* 

57a 

605A 
71A 


PAGE 

Carbohydrates — continued. 

and  their  conversion  products  and  derivatives  ;    Manu- 
facture of  ethers  of .     (P)  Lilienfeld     . .  10a,  53a 

Manufacture  of  compositions  containing  ethers  of , 

their    conversion    products    and    derivatives.     (P) 
Lilienfeld 

Manufacture  of  ethers  of .     (P)  Young 

Moisture-absorptive  power  of  various  under  vary- 
ing conditions  of  atmospheric  humidity.     Browne 

New  anhydride  (1.2)  of  dextrose.     Brigl 

Oxidation  of with  nitric  acid.     Haas  and  R-ussell- 

Wella 

Preparation  of  complex  iron  compounds  of  phosphoric 
acid  esters  of .     (P)  Bayer  und  Co. 

Process  of  colloiding  esters  of  .     (P)  Stockelbach, 

and  Commonwealth  Chemical  Corp. 

Production  of  acetol  as  a  test  for .     Baudisch  and 

Deuel 

Reduction  of with  hydriodic  acid  and  phosphorus. 

YVillstattcr  and  others 

Relations  between  fats  and .     Miiller 

Research  problems  in  the .     Irvine 

Role  of  phosphates   in   enzymic  degradation   of  . 

Von  Euler  aud  Myrback 

Sublimation  experiments  with -.     Karrcr  and  Rosen- 
berg         

Carboligase  : 

Neuberg  and  Liebermanu 

Neuberg  and  Ohle  . .         . .         . .     305a 

Classification  of .     Neuberg  and  Hirsch 

(r-emulsin,  and  S-emulsin.     Rosen  thaler 

Union  of  carbon  to  carbon  biosynthetically  in  the  ali- 
phatic scries  by .     Hirsch 

Carbolineura  paint ;    Manufacture  of  a  binder  for  coloured 

.     (P)  Plbnnis  und  Co 

Carbon,  activated  ;    Suitability  of  different  coals  and  veget- 
able matter  for  preparation  of .     Fischer  and 

others 

anodes  ;   Stability  of .     Arndt  and  Fehse 

and  articles  containing  it ;    Coating  with  enamel, 

quartz,  or  glass.     (P)  Meurer 

articles ;      Electroplating     .     (P)     Hamister,     and 

National  Carbon  Co. 

Behaviour  of  amorphous on  heating  with  sulphur. 

Wibaut  13A; 

Behaviour  of at  high  temperatures  : 

Ryschkewitsch 
Sauerwald 

black  ;  Manufacture  of : 

<P)  Cooper 

(P)  Rumbarger,  and  Southern  Carbon  Co. 

black  ;  Manufacture  of  hydrogen  and .     (P)  Masson 

and  Gerard 

black ;     Manufacture,    properties,    and    uses    of    . 

Neal  and  Perrott 

black  produced  from  natural  gas  in  U.S.A.  in  1920 

black   and   similar   materials  ;     Compacting  .     (P) 

Randall,  and  Goodyear's  Metallic  Rubber  Shoe  Co. 

Cataphoresis  of  colloidal .     Goldberg 

Catalysis  in  interaction  of  with  steam  and  with 

carbon  dioxide.     Taylor  and  Neville 

Colloidal  solutions  of in  water.     Thome 

Determination  of  in  cast-iron  and  steel   by  the 

CorhMs  apparatus.     Batta  and  Thyssen 

Determination  of ■  in  iron  and  steel.     Travers 

Diffusion  of ■  in  metals,  and  mixed  crystals  of  iron. 

Tammanu  and  Schonert 

electrodes.     See  under  Electrodes. 

Fusion  of .     (P)  Lummer 

for  hardening  steel  and  iron  ;    Obtainin; 

from     nitrogeneous     organic 

Lindner 

Hardness  of  vitreous .     Beilby 

Manufacture  of .     (P)  Bradley 

Manufacture  of  active .     (P)   General   Electric 


extracts  and 
matter.     (P) 


14a, 
Co. 


95A 

854a 

723a 

910a 

991A 
34A 
10A 

678a 

893a 
306a 
362R 

724a 

642a 

153A 

430a 
430A 
430A 

830A 
510A 


851A 
865a 


757a 

181a 


281a 


811a 
811a 


720a 
149a 


558a 


770a 
60B 


509A 
414A 


141a 
811a 


376a 
376a 


549A 
49A 


(P)     Chein.     Fabr. 


Manufacture    of    electrode 

Griesheim-EIektron 
Manufacture    of    finely-divided    .     (P)    Poindexter 

and  Goodwin 
Manufacture  of for  pigmental  and  other  purposes. 

(P)  Nelson  65a, 

in    organic   substances ;     Microchernical   determination 

of .     Wrede 

Oxidation  of  different  varieties  of by  cliromic  acid. 

Florentin 

■  by  nitric  acid.     Philippi  and  Rie    . . 
—   by   sulphuric   acid.     Philippi   and 


851a 
343T 
740a 
322a 


222a 


972a 
727a 


Oxidation  of 

Oxidation   of 
Thelen    . 

Preparation  of  from  carbon  monoxide  by  means 

of  an  iron  oxide  catalyst.     Wibaut 

products  ;    Manufacture  of from  natural  gas.     (P) 

Szarvassy  and  others 

Purifying .     (P)  Lenher  and  others 

retort- ;  Manufacture  of  pure .     (P)  Szarvasy  464a*,  590a 

in  steel  ;  Estimation  of  alkali  carbonates  and  hydroxide 
in  presence  of  phenolphthalein,  e.g.,  in  determina- 
tion of .     Bonnier 

Volumetric  estimation  of  hydrogen  and in  organic 

compounds.     Lindner 

Carbon  bisulphide -alcohol -water  ;     The  system  .     Mis- 

cibility  of  the  three  components  in  different  pro- 
portions and  practical  applications  derived  there- 
from.    Schoorl  and  Regenbogen        


727A 
545a 


6a* 
670A 


1000a 
691a 


308a 


126 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Carbon  bisulphide — continued. 

Manufacture  of  : 

(P)  Courtaulds,  Ltd.,  and  Delph  . .  . .     546a 

Richter 858a 

Manufacture   of   from    its   elements.     (P)   Chcm. 

1'alir.  Griesheim-Elektron       ..  ..  ..  ..     "08A 

Recovery  of in  working  up  of  viscose  into  artificial 

fibres,  films,  etc.     (P)  Kampf  459a 

Carbon  chlorides.     Saturation  character  of  di-,  tri-,  and  per- 

chloroethylene.    Margosches  and  Baru       . .         . .     157a 

Carbon  dioxide ;    Absorption  of in  gas  analysis.     Mux* 

mann 650a 

Apparatus  for  determination  of  in  air.     Lundc- 

gardh sua 

Determination  of  .     (p)  Victoria  Falls  and  Trans- 
vaal Power  Co.,  and  Andrews  . .         . .         . .     527a 

Determination  of in  baking  powder  : 

Robinson    . .  . .  . ,  . .  ,.  . .     431A 

Robinson  and  Bandemer  388a 

Determination   of  free  and   combined   in   water. 

Shaw      ..         ..         ..         ..         ..         ..         ..     193a 

Determination  of  in  mineral  carbonates.     Sayce 

and  Crawford    . .  . .  . .  , .  . .  . .       57t 

Determination  of in  self-raising  flour.     Jacobs     . .     779a 

Fertilising  value  of .     Gehring  ..         ..         ..     111a 

Hydration  of to  carbonic  acid.     Faurholt. .  ..     292A 

indicator  for  flue  gases;    Automatic  .    MacMulliu     050a 

Interaction  of  benzene  and  under  the  influence  of 

the  silent  electric  discharge.     Miyamoto       . .  . .     380a 

liquid  ;   Piston  pump  for  raising .   (P)  Zack  . .       43a 

Manufacture  of  hydrogen  and .      (P)  North  . .     100a 

Manufacture  of  mixtures  of  nitrogen   and  : 

<P)  Muchka  328a*,  328a* 

(P)  Scheib  and  Koch 982a 

Portable  apparatus  for  determination  of  in  gases 

by  the  dry  method.     Straehe  and  Kling     . .  . .     963a 

Removing from  gases.     (P)  Zellstoff-fabr.  Waldhof.     708a 

Solid  sodium  hydroxide  as  absorbent  for .     Kelley 

and  Evers  . .  . .  . .  . .  . .  . .       60A 

Solubility  of  in  water  and  in  methyl  and  ethyl 

alcohols.     Neuhausen  ..  ..  ..  ..     668A 

Specific  heat  of : 

Glazebrook  ..  ..  ..  ..  .,     315a 

Womersley  . .  . .  .  .  . .  . .     163a 

Velocity  of  absorption  of  by  alkaline  solutions. 

Riou 370a,  545a 

Velocity  of  absorption  of by  ammoniacal  solutions. 

Riou 856a 

Carbon  monoxide  ;   Apparatus  for  detection  and  determina- 
tion of .     (P)  Levy  and  Davis 83a 

Apparatus  for  use  with  respirators  for  detecting  small 

quantities  of .     (P)  Levy  and  Davis     . .  . .     433a* 

Catalytic  oxidation  of .    Rogers  and  others  . .     155a 

Catalytic  oxidation  of  at  ordinary  temperatures. 

Merrill  and  Scalione     . .  . .  . .  . .  . .      155A 

Catalytic  reduction  of .     Fester       . .  . .  . .     847a 

in  coal  gas     . .  . .  . .  . .  , .  . .  . .       82r 

Determination  of .     Wollers  . .  . .  . .  . .     577a 

Determination  of in  blast-furnace  gas.     Kaleta  . .     452a 

in  hydrogen  ;    Preferential  combustion  of .     Lamb 

and  others         ..  ..  ..  ..  ..  ..414a 

Manufacture    of    hydrochloric     acid     and    .     (P) 

Paulus,  and  Royal  Baking  Powder  Co 631a 

Physiological  principles  governing  ventilation  when  the 

air   is   contaminated   with  .     Henderson   and 

Haggard  . .  307a 

poisoning 20lR 

Possible  explanation  of  r6Ie  of  water  in  oxidation  of 

by  oxygen.     Smithells 3lR 

Preparation  of  carbon  from  by  means  of  an  iron 

oxide  catalyst.     Wibaut         545a 

Purifying  air  containing .     (P)  Guillemard  . .     389a 

Tests  of  an  iodine  pentoxide  indicator  for  .     Rati, 

and  Bloomfleld  . .  . .  . .  . .  . .      433A 

in  tobacco  smoke.     Armstrong      ..  ..  ..  ..     313R 

Carbon  oxysulphide  ;    Pharmacology  of .     Fischer       . .     231a 

Removal  of from  gases.     (P)  Badische  Anilin-  uud 

Soda-Fabrik      . .  . .  , .  . .  . .  . .     373a 

Carbon  suboxide  ;    Preparation  and  properties  of  pure . 

ott  and  Schmidt  ..  ..  ..  ..  ..     668a 

Carbon  sulphides.     Wibaut        . .  ..  ..  ..        13a,  281a 

Carbon  tetrachloride  fire-extinguishers  ;    Danger  from . 

Levy 170R 

Methyl  bromide  and in  fire  extinguishers.    Helming     218b 

Carbonaceous  char ;    Manufacture  of  finely  divided  . 

(P)  Rodman,  and  Rodman  Chemical  Co.     ..  ..     974a 

materials  ;     Apparatus    for    distillation    of    : 

(P)  Salerni  661a 

(P)  Wallace  7a* 

materials ;     Apparatus   for   drying   and   distillation   of 

.     (P)  Alexander 624a 

materials;    Instructive  distillation  of  : 

(P)  Evans 6a 

(P)  West  and  others         . .  . .  . .  , .     it:,;  v 

materials  ;   Gasification  of .     (P)  Foster      . .  . .     974a 

materials  ;  Treatment  of .     (P)  Trent         . .         . .     24.;  v 

materials  ;    Treatment  of  for  recovery  of  volatile 

hydrocarbon  constituents.     (P)  Busscy  and  Darby      931a* 
matter  ;   Protective  progressive  distillation  and  gasifica- 
tion of  solid .     (P)  Lewis  . .  . .      302a,  362a 

product  ;     Manufacture    of    .     (P)    Rodman,    and 

Rodman  Chemical  Co.  623a 


Carbonates  ;    Determination   of  carbon  dioxide  in   mineral 

.     Sayce  and  Crawford 

Purifying     alkaline-earth     .     (P)     Plowman     and 

Feldenheimer 
Carbonating  liquids   by   use  of  snow-like  carbon   dioxide  ; 

Cooling  and .     (P)  Soc.  des  Gaz  Radioactifs  . . 

Carbonic  acid  ;    Dissociation  constant  of .     Faurholt  . . 

esters   of   monohydric   alcohols  ;   Preparation   of  . 

<P)  Boehringer  und  Sonne 
See  also  Carbon  dioxide. 
Carbonic  oxide.     See  Carbon  monoxide. 
Carbonising  apparatus.    (P)  Young     .. 

Apparatus  for with  endless  belt  for  material  to  be 

carbonised  and  internal  heating.     (P)  Caspari 
apparatus  and  gas  producers.     (P)  Parker 

bituminous  fuels  ;    Apparatus  for  gasifying  and  . 

(P)  A.-G.  fur  Brennstotfvergasung    .,  M 

carbonaceous  material  : 

(P)  Chown  _ 

(P)  Wallace  

of  coal ;   Effect  of  some  physical  conditions  during  

upon  quality  of  resulting  coke.     Biddulph-Smith . . 

of  coal ;  Increasing  the  rate  of .    Weyman 

coal  and  the  like  : 

(P)  Lewis   . . 

(P.)  Stansfleld         

coal,  shale,  peat,  and  the  like ;    Apparatus  for  . 

<P)  Hird 

coal,  shale,  peat,  or  other  materials.     (P)  Beilby 

fuel  ;    Apparatus  for  drying  and .     (P)  Holzhausen 

fuel  in   vertical  retorts.     (P)   Woodall,   Duekham  and 

Jones  (1920),  Ltd.,  and  Duekham 

furnace    retorts.     (P)    Smith,    and    International    Coal 

Products  Corp.  320a, 

Low-temperature : 

(P)  Polysius 
(P)  Yeadon 

Low-temperature  and  cement  manufacture.     (P) 

Merz  and  McLellan,  and  Weeks 

Low-temperature .     Report  of  Fuel  Research  Board 

Low-temperature    versus    high-temperature    for 

production  of  smokeless  fuel.     Sutclitfe  and  Evans 
pitch  and  the  like.     (P)  Kubierschky   .. 

plant ;    Corrosion  of  refractories  in due  to  presence 

of  saline  substances  in  the  coal.     Boehm 
solid   fuels  ;    Increasing  the  yield  and   quality  of  the 

tar     in     .    (P)     Allgem.     Elektrizitats-Ges., 

and  Miinzinger 

wood,   chips,  and  the  like ;    Vertical  retort  for  . 

(P)  Ges.  zur  Verwertung  von  Stubbcnholz 

Carbons  ;     Resistivities    of    some    granular    resistor    . 

Williams  and  Shuck   .. 

Carbonyl   chloride  ;     Reactions  of  with   benzene  and 

»i-xylene     in     presence     of    aluminium     chloride. 
Wilson   and  Fuller 

Sorption  of  by  beechwood  charcoal.     Bunbury  . . 

Carbonyl  compounds  ;    Oxidation  of  hydrocarbons  to  . 

(P)  Wohl  407a, 

Carbonyls  ;   Action  of  nitric  oxide  on  metallic .     Mond 

and    Wallis 

Metallic  .     Mond   and   Wallis  

Carboraffin.     See  under  Decolorising  carbon. 
Carborundum    brick.     Peters    .. 

Carboxylase  and  zymase  actions  of  yeast  cells.     Abderhalden 
and    Fodor 

Carboxylic  acids  of  the  purine  series  ;    Preparation  of . 

(P)  Merck  and  others 
Carburettor    adjustments    by    gas    analysis.     Fieldner    and 
Jones 

Carburising    compounds  ;      Manufacture    of    : 

(P)Farrell 

(P)  Schmitt  

ferrous  metals  : 

(P)   Bonsor  and   Steenburg 

(P)  Cannon 
See  also   Case-hardening. 

Cardboard  and  like  materials  ;    Impregnation  of .     (P) 

Exportingenteure  fur  Papier  u.  Zellstofftechn.     .. 

Rushes  as  material  for  making  .     Unlemann 

Sizing  and  impregnating  .     (P)  Lutz         . .       367a, 

Carnauba  wax  ;    Exports  of  from  Brazil 

Carnosine  content  of  muscle  ;   Effect  of  cold  storage  on . 

Clifford 

Carnotite ;     Glacial    acetic    acid    method    for    determining 

uranium   in   .     Scott 

Carrageen  ;    Constitution  of  the  cell-wall  of  .     Russell- 
Wells      

Occurrence  of  ethereal  sulphates  in  .     Haas 

as  protective  colloid : 

Gutbier    and    Huber 
Gutbier    and    others 

Carrel-Dakin  solution  ;    Preparation  and  stability  of  . 

Schou 

Carrots  ;   Vitamin  A  from .     Von  Euler  . . 

Carrotting  hair.     (P)  Piehard  Freres  ..         ..         ..      541a, 

Case-hardening;    Selective  .     Wood  and  McMullan   .. 

See  also  Carburising. 


PAGE 
57T 

708a 
28A 

292  a 


6a 

538a 
361a 

403A 

132a 
211a* 

451A 

532A 

283A 
362a 

802a 
456a 
801a 

848a 

322a* 

702a 
851a 

635a 
270R 

492  a 

802a 

359a 


700A 
406A 
865a 


743  a 
782A 


173A 

173A 

416a 

23a 

689A 

622a 

422  a 
298a 

673A 

63a* 


4C.ua 
665a 
367a 
460R 

606A 


996a 
2:u»a 

157A 

157a 

76a 
953a 
584a* 
550a 


SUBIECT  INDEX. 


127 


Casein  ;    Action  of  nitrous  acid  on  .     Dunn  and  Lewis 

and     alkaline-earth     hydroxide  ;      Manufacture     of     a 

composition   of   .    (T)    Dunham,   and    Casein 

Mfg.    Co 

Alkaline  hydrolysis  of  .     Griggs 

compounds  ;   Manufacture  of tor  baking  powders. 

(P)   Bleyer         

from  cow's  milk.     Bleyer  and  Seidl 

-glue  ;    Water-resistant  .     (P)  Leim-Industrie  Ges. 

Hydrolysis  of  and  of  deaminised  casein  by  pro- 

teolytic  enzymes.     Dunn  and  Lewis 
Influence  of  electrolytes  on  solution  and  precipitation 

of  .     Loeb  and  Loeb 

Manufacture    of    durable    adhesives    containing    . 

(P)   Trutzer 

Manufacture  of  plastic  material  from  : 

(P)  Abrey 

(P)  Krause  and  Bliicher 

-oil  compositions  ;   Manufacture  of .     (P)  Dunham, 

and  Dry  Oil  Products.  Ltd.  

products  ;    Manufacture  of  .     (P)  Dunham 

Products  of  prolonged  tryptic  digestion  of .     Frankel 

and  Jellinek 

T  Itramicroscopical      investigation      of      .     Bleyer 

and    Seidl 
Castelin,  a  glucoside  from  Castela  Nicholsoni.     Bosman   .. 

Catalogue  of  scientific  periodicals ;  Proposed .  .. 

Catalase  of  flour.     Merl  and  Daimer  . . 

of  seeds.     De  Vilmorin  and  Cazaubon   .. 

Catalysis  in  action  of  nitric  acid  on  metals,  and  an  example 
of  a  periodic  reaction.    Banerji  and  Dhar 

Adsorption  and  its  bearing  on  .     Guichard 

Apparatus  for  : 

(P)  Baclchaus,  and  U.S.  Industrial  Alcohol  Co. 
(P)  Cochraue,  and  U.S.  Industrial  Alcohol  Co. 

(P)    Selden,   and   Selden    Co 

(P)  Whitaker,  and  V.S.  Industrial  Alcohol  Co. 

Carrying  out  chemical  reactions  by .     (P)  Koetschet, 

and  Soc.  Chim.  Usines  du  Rhone 

Chemical  action  and .    Armstrong 

in    dehydration    and    addition    reactions     of    alcohol : 
formation  of  acetal  and  mercaptans.     Gilflllan     . . 

Discussion  on 

Enzyme  action  in  light  of  modern  theories  of  . 

Armstrong 
in  the  interaction  of  carbon  with  steam  and  with  carbon 
dioxide.     Taylor  and   Neville 

Oxidation    .     Karcza^ 

at  solid  surfaces  ;    Recent  work  on  .     Armstrong 

through  American  spectacles.     Armstrong  and  Hilditch 

Catalysts ;      Behaviour     of      certain     metals     as     . 

Sandonnini 
and  chemical  equilibrium.     Formation  of  chlorine  from 
hydrochloric  acid.     Clarens 

Copper  .     (P)   Legg  and  Adam 

Fat-hydrolysing    .     Sandelin  

for  hydrogenation  and  dehydrogenation  of  carbon  com- 
pounds.    (P)  Badische  Aniiin  u.  Soda-Fabr. 
for  hydrogenation  of  fats  and  fatty  oils  ;    Regenerating 

.    (P)  Bolton  and  Lush 

for    hydrogenation  ;     Manufacture    of    : 

(P)Arldt 

(P)  EUis 

(P)   Teichner 
for  hydrogenation  of  oils. 

genated   Oil   Co. 
for   hydrogenation    of   oils 
non-pyrophoric 


(P)   Wimmer,  and  Hydro- 

;     Manufacture    of    metallic 
(P)    Midler  Speisefettfabr. 


for  hydrogenation  of  unsaturated  organic  compounds  : 

Production    of    .       (P)  Miiller  Speisefettfabr. 

Influence  of  oxygen  on  hydrogenation .    Normann 

Manufacture  of  : 

(P)  Clancy,  and  Nitrogen  Corp. 

(P)   MacDowell   and   others 

(P)  Richardson,  and  Swift  and  Co.   .. 

(P)  Steffens,  and  U.S.  Industrial  Alcohol  Co. 

(P)  Weintraub,  and  General  Electric  Co. 

Manufacture  of  highly  efficient  .    (P)  Merck  and 

others 

Non-pyrophoric and  process  for  effecting  reactions 

therewith.     (P)   Sulzberger 
for  oxidation  of  organic  compounds  ;    Manufacture  of 

.    (P)  Downs,  and  Barrett  Co. 

for   production    of   nitrogen    oxides.    (P)    Scott,    and 

Atmospheric  Nitrogen  Corp. 
for  promotion  of  synthetic  chemical  reactions  ;  Appar- 
atus for  the  .     (P)  Lane 

for  reaction  between  carbon  monoxide,  hydrogen 
chloride,  and  aromatic  hydrocarbons.  Korczynski 
and  Mrozinski 

Regeneration  of  : 

(P)  Richardson,  and  Swift  and  Co.    .. 
(P)  Richter  and  others 
for  synthesis  of  ammonia.    (P)  L'Air  Liquide 
for  use  in  reducing  and  hydrogenating  organic  com- 
pounds.   (P)  Paal  and  Amberger 
See  also  Contact  material. 


PACE 
15*4 


432a 
74a 

432a 
342a 

2  2:.  A 

154A 

69A 

25a 

775a 
602a 

954a* 
564A 

780a 

2C6a 
607a 
9R 
114a 
602a 

900a 
697a 

2  a 
1a 

2  A 

89a* 
258T 

566a 
5K 

HOT 

141A 
156a 
67b 

30411 

707A 

413a 

89A* 
769A 

689a 

825A 

770A 
770A 
770a 

474A* 

474a 

676a 
675a 

737a 
631a 
622a 
89A 
658a 

89a 
770a 
197a 

58a* 

797a* 


196a 

400a 
988a 
215a 

522a 


Catalytic  action  of  salts  of  metals  on  reactions  of  organic 

compounds.     Korczynski       . .         . .         . .         . .     196a 

action  at  solid  surfaces.  Action  of  sodium  carbonate  in 
promoting  hydrogenation  of  phenol.  Armstrong 
and  Hilditch 891a 


Catalytic — continued. 

actions   at    solid   surfaces.    Influence   of   pressure   on 
rate   of   hydrogenation   of   liquids   in   presence   of 
nickel.     Armstrong  and  Hilditch 
processes  involving  gaseous  or  vaporous  carbon  com- 
pounds ;    Carrying  out  of  .     (P)  Stevens,  and 

Chemical  Fuel  Co.  of  America        


32a 


577a 


Catechin.    Freudenberg  . .         . .         . .         . .         . .  601a 

Constitution  of  .    Nierenstein  ..         ..         ..  407a 

Optical  activity  of .    Feist  and  Futtermcnger    . .  384a 

Catechins  ;  Stereoisomer^ .    Freudenberg  and  others. .  601a 

Catechol  monohydroxyethyl  ether;    Manufacture  of  . 

(P)  Chem.  Werke  Grenzach  A.-G.  ..         . . 

Catechu-tannins.     Nierenstein 

Cathode-ray  oscillograph.     Wood        

Cathode  rays  ;   Treatment  of .    (P)  Bengough . . 

Cathodic    deposits   from    mixed    solutions   of    two    simple 

metallic  salts.     Creutzfeldt    .. 
Cattle-feed  cakes  and  meals  ;  Absorption  of  sulphur  dioxide 

by  .     Peacock 

Cedrus  atlantica  ;    Preparation  in   Morocco  of  the  tar  of 

:     some    physical    and    chemical    characters. 

Massy 
Cellactite,  an  acid-proof  constructional  material;    Physical 

properties  of  .     Dyche-Teague 

Celloisobiose.     Ost  and  Knoth 

Cellosan,  the  anhydro-sugar  of  cellulose      Constitution  of 

.     Karrer  and  Smirnoff 

Cells     Decomposition  and  extraction  of .    (P)  Tetralin 

Ges. 


184A 
563R 
524A 

332a 

560E 

168A 

96R 
409a 

305a 

688a 

199a 
323a 
961a 
410a 


Celluloid  ;   Conversion  of  smokeless  powders  and  of  waste 

from  their  manufacture  into .     (P)  Westfalisch- 

Anhaltische  Sprengstoff  A.-G. 
Embrittling  of by  ultra-violet  light.    Holmes,  jun., 

and  Patrick      . .         .  <         

Alms  ;     Reducing    the    inflammability    of    .    (P) 

(Jrimpe 
-like  plastic  masses  ;    Preparation  of  .    (P)  Chem. 

1'abr.  vorm.  Weiler-ter  Meer.  . 
and    the    like ;     Preparation    of    softening    agents    for 

treating  articles  of  .    (P)  Chem.  Fabr.  Gries- 

heim-Elektron  . .         . .         . .         . .         .  •         .  •     367a 

Production  of  copper  coatings  on .     (P)  Volmer. .     378A 

Cellulose  ;    Action  of  formaldehyde  on  .    Samec  and 

Ferjancic  . .  . .  . .  . .  ■  ■  . .       94A 

Action  of  iodine  upon  .     Huebner  and  Sinha      . .       93T 

Aerobic  decomposition  of by  mould  fungi.     Kosin     854A 

alkali-;    Apparatus  for  use  in  reducing  and  the 

like.    (P)  Kampf,  and  Koln-Rottweil  A.-G.         ..     542a 

alkali-;    Manufacture  of  .     (P)  Lilienfeld. .  ..       10A 

Alkali-soluble  modification  of .     Knoevenagel  and 

Busch 458A 

Alkali-  and  structure  of  cellulose.     Karrer         . .     170a 

Alleged  adsorption  of  alumina  from  aluminium  sulphate 

solutions  by  .     Tingle 289a 

Behaviour  of    oxidised .      Knecht  and  Thompson 

128R,  497a 

Benzyl  ethers  of .     Gomberg  and  Buchler. .         . .       71a 

Comparative   action   of   heat   on  hydrocellulose     r  - 

cellulose,  and  .     Justin-Mueller  . .         . .       9A 

complexes  ;   Transformations  of during  the  manu- 
facture of  artificial  silk.    Vieweg 541a 

compositions  ;     Apparatus    for    treating with 

solvent  vapours.     (P)  Underwood  and  others     . .     459A 
Constitution  of  cellosan,   the  anhydro-sugar  of  . 

Karrer  and  Smirnoff  . .  . .  . .  . .  . .     305A 

Conversion  of  into  a  biose-anhydride.     Karrer  . .     171a 

or   its   conversion   products   and    derivatives  ;     Manu- 
facture of  ethers  of  .     (P)  Lilienfeld  . .  . .       53A 

Copper  compounds  of  .     Hess  and  others  . .     892a 

cotton- ;  Yield  of  glucose  from .    Irvine  and  Hirst    745a 

and  its  derivatives  ;    Quantitative  fluorescence  of . 

Lewis 99R 

Determination  of  fluorescent  power  of  .     Lewis  . .     366a 

Determination  of  viscosity  of  in  cuprammonium 

hydroxide  solution.     Joyner  . .         . .     276R,  806a 

Determination  of in  wood  and  other  raw  materials. 

Heuser  and  Casseus    . .         . .         . .         . .         . .     540a 

Effect  of  water  and  of  certain  organic  salts  upon . 

Huebner  and  Kaye     . .         . .         94T 

esparto-  ;  Composition  of  .     Hirst  . .         . .     392R 

Extraction  of  from  vegetable  fibres.    (P)  Cataldi 

and  Pomilio 747A 

fibres  ;   Behaviour  of  incrustants  of  — —  in  the  viscose 

process .    Schwalbe  and  Becker       367a 

Industrial  preparation  of by  the  chlorine  process. 

Cerruti 366a 

industry  in  Germany         . .         . .         .  •         •  •         •  •     373R 

Manufacture  of  .     De  Perdiguier 288A 

Manufacture  of  artificial  fibres  from  solutions  of  ■ ■ 

in  concentrated  salt  solutions.     (P)  Beck  ..     807A 

Manufacture  of  from  fibrous  vegetable  materials. 

(P)  Raitt  ■•       53A 

Manufacture  of  masses  or  solutions  of  free  from 

air  and  other  gases.     (P)  Borzykowski      . .  . .       HA* 

Manufacture  of by  means  of  chlorine  gas.     Pomilio     704a 

manufacture  ;  Method  of  disposing  of  waste  gases  from 

by  burning.    (P)  Zellstoff-fabr.  Waldhof     . .     808a 


128 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Cellulose — continued. 

Manufacture  of  from  reeds  and  similar  kinds  of 

plants  by  mechanical  grinding.     (P)  Stclnhilber  . . 
Manufacture  of  textile  fibres  and from  plants  con- 
taining much  bast  and  little  wood,  such  as  flax, 

straw,  sisal,  and  jute.     (P)  Odrich.. 
Manufacture    of    from    vegetable    matter.    (P) 

Bustamante       ..  ..  ..  ..  ..      138a, 

Manufacture  of  webs  or  sheets  of  fibrous  .    (P) 

Cross 
or  materials  containing   it  ;    Treatment  of  .     (P) 

Adam 
New  degradation  of .     Its  conversion  into  a  biose- 

anhydrlde.    Hess 
Precipitating from  viscose.    (P)  Deutsche  Zellstoff- 

Textilwerke 
Reactions   of  with   sodium    chloride   and   other 

neutral  salt  solutions.     Masters 
Reducing to  fibres  and  converting  it  into  a  liquid 

state   for   manufacture   of   artificial   threads.     (P) 

Venter    . . 

Kriationship  of  ?-glucosan  to .     Irvine  and  Oldham 

Removal  of  resin  from  wood  prior  to  manufacture  of 

.     Wenzl 

Rout  gen -spectrographic  investigation  of  .    Herzog 

Rotary  apparatus  for  expressing  liquid  from  mechanical 

pulp  or .     (P)  Aktiebolaget  Karlstads  Mekan- 

iska  Verkstad 

Saccharification  of  .     Budnikow  and  Solotarew  . . 

solution.     (P)  Scheele  and  Specht 

solutions  ;    Copper  oxide-ammine  .     Traube       97a, 

solutions  ;   Effect  of  mechanical  disintegration  of  cellu- 
lose on  viscosity  of .     Waentig 

solutions  ;   Viscosity  determinations  on .     Nakano 

Studies  on  .     Irvine  and  others 

Studies    on   .     New   form   of   hydrogen    capillary 

viscosimeter.     Nakano 
Study    of    .     Depolyinerlsation    of    ethylcellulose. 

Hess  and  Wittelsbach 
sulphate-;   Dcodorisation  of   digester   gases   in   manu- 
facture of .     Enderlein 

sulphate-  ;     Improving    the    odour    of    turpentine    oil 

obtained  in  manufacture  of  .     (P)  Arldt 

sulphito- ;    Detection    and    determination    of    in 

tanning    extracts    by    means    of    cinchonine .     De 

Hesselle 
sulphite- ;    Determination  of  sulphurous  acid  and  lime 

in  lyes  used  in  manufacture  of .     Deutsch   . . 

sulphite- ;    Sugar  formation  in  manufacture  of  . 

Sherrard  and  Suhni 
sulphite--;    Waste  liquors  from  manufacture  of  ■ . 

See  under  Sulphite-cellulose. 

threads  ;    Manufacture  of  brilliant  .     (P)  Joliot  . . 

threads  ;  Method  for  quicklv  drying  freshly  precipitated 

.     (P)  Ver.  Glanzstoff-Fabr 

Treatment  of  crude  .     (P)  Harnist 

Treatment  of  plant  fibres  and  the  like  for  manufacture 

of  .     (P)  Muller  and  Heigis 

value  of  pulp  wood.     Wahlberg 

waste  liquors ;    Manufacture  of  adhesives  from . 

(P)  Kaufmann  641a, 

wood-  ;  "  Baryta  resistance  "  value  of .     Schwalbe 

and  Wenzl 
wood-  ;    Cellulose  acetate  from  .     Hagglund  and 

others 
wood- ;   Chemistry  of .     Acctolysis  of  spruce  pulp. 

Wise  and  Russell 
from   wood   and  from   cotton  ;    Comparison   of  . 

Mahood  and  Cable 

a-Cellulose ;      Determination      of      alkali-resistant     . 

Waentig 408A, 

Celluloses  ;  Action  of  mineral  acids  on  crude .     Meunier 

Cellulose   acetate   cinematograph   films ;    Non-inflammable 

.     Clement 

composition.     (P)  Sulzer,  and  Eastman  Kodak  Co.   . . 
Detection  and  determination  of  free  sulphuric  acid  and 

sulphoacetates  in .     Entat  and  Vulquin 

Dyeing  : 

(P)  Burgess,  Ledward,  and  Co.,  and  Harrison 

(P)  €lavel  325A*, 

Dyeing  fibres,  threads,  or  fabrics  of  .     (P)  Briggs 

and  others 
fibres;     Dyeing    union   fabrics    containing    .     (P) 

British  Cellulose  and  Chemical  Mfg.  Co.,  and  others 
films  for  cigarette  mouthpieces  ;    Manufacture  of . 

(P)  Chem.  Fabr.      von  Heyden 

Manufacture    of    moulded    articles    from    .     (P) 

Cellon-Werke  Eichengriin 
Manufacture  of  solutions,  compositions,  or  articles  made 

with  .     (P)  Dreyfus        542a, 

products;    Manufacture  of  .     (P)  British  Cellulose 

and  Chemical  Mfg.  Co.,  and  others 
products  ;      Treatment    of    .      (P)     Briggs,     and 

American  Cellulose  and  Chemical  Mfg.  Co. 
produ.  u  ;    Treatment  of  to  increase  their  affinity 

for  dyestutfs.     (P)  British  Cellulose  and  Chemical 
Co.,  and  Richardson     ..  ..  ..      289A, 

silk.     See  under  Silk,  Artificial. 

Solubility  of in  salts  of  the  alkalis  and  alkaline- 
metals.     Schweiger 
solution.    (P)  Putnam  and^  others  


855a* 

807a 
248a* 
171a 
139a* 
9a 
95a 
977a 

459a 

27a 

935a 
8a 

543a* 

745a 
290a 
587a 

409a 
977a 
362R 

366A 
94a 
95a 

948a 

24a 
409a 
935A 

367A 

807a 
584a 

324a* 
805a 

705a 

409a 

247A 

366a 

664a 

935a 
212A 

233a 
53a 


543A 

66(1  a 

11  A* 

543A 

541A 

52a 

807a 

-J.MIA 
705A* 

289a 


323a 

248a 


PAGE 

Cellulose  acetate — continued. 

Technical  analysis  of  .     Toril  . .  . .  . .     367a 

Use  of  as  fixing  agent  in  printing  pigments  on 

textiles.     (P)  Bayer  und  Co.  325a 

from  wood  celluloses.     Hagglund  and  others  . .  . .     247a 

Cellulose    butyrate  ;     Manufacture    of    .     (P)    Esselen, 

jun.,  and  others  748a,  894a,  936a* 

Cellulose  derivatives  ;    Manufacture  of  .     (P)  Esselen, 

jun.,  and  others  . .  . .  . .  . .  . .     748a 

derivatives  ;   Manufacture  of  artificial  silk  and  the  like 

from  — — .     (P)  Dreyfus 627a 

derivatives  ;     Manufacture    of    moulded    articles   from 

.    (P)  Cellon-Werke-Eichengriin  . .         . .       52a 

ester  composition  : 

(P)  Clarke,  and  Eastman  Kodak  Co.  . .       53a 

(P)  Eldred,  and  Chemical  Development  Co.  . .     20OA 
(P)  Kesslcr,  and  Du  Pont  de  Nemours  and  Co.     855a* 
ester  plastics.     (P)  Kessler,  and  Du  Pont  de  Nemours 

and  Co.  290a 

ester  products  ;    Manufacture  of  .     (P)  Mork  and 

others 628a 

ester  products  ;  Treatment  of  — — .     (P)  Phillips  . .     S93a 

ester  solvent  and  composition.     (P)  Seaton,  and  Dow 

Chemical  Co.     ..  ..  ..  ..  ..  ,.       53a 

esters  and  ethers;    Compositions  and  films  containing 

mixtures  of .     (P)  Malone,  and  Eastman  Kodak 

Co 807a 

esters  ;    Improving  the  dyeing  properties  of .     (P) 

Duclaux 748a 

esters  ;    Manufacture  of  : 

(P)  Esselen,  jun.,  and  others     . .  . ,  . .     855a 

(P)  Koetschet  and  others  . .  . .  . .     855a* 

(P)  Putnam,  and  Dow  Chemical  Co.    . .  . .       10a 

esters  ;    Manufacture  of  easily  soluble .     (P)  Knoll 

und  Co.  248a,  410a 

esters  ;     Manufacture   of   flexible   lacquers   from   . 

(P)  Medicus 510a 

esters  ;  Manufacture  of  homogeneous  products,  including 

films,  from  .     (P)  Willkie,  and  U.S.  Industrial 

Alcohol  Co 213a 

esters ;    Plastic  masses  from  .     (P)  Ges.  fur  Ver- 

wertung  Chem.  Produkte        . .  . .  . .  542a 

esters ;    Preparation  and  interchange  of  alkyl  groups  of 

.     Griin  and  Wittka        . .  . .  . .  . .       94a 

esters ;    Process  of  colloiding  .     (P)   Stockelbaeh, 

and  Commonwealth  Chemical  Corp.  ..  ..  ..       10a 

ester  compositions  : 

(P)  Clarke,  and  Eastman  Kodak  Co 248a 

(P)  Seel,  and  Eastman  Kodak  Co 807a 

ether  films  ;   Treatment  of .     (P)  Webb,  and  East- 
man Kodak  Co.            . .  . .  . .  . .  , .     854a 

ether  and  nitrocellulose  ;    Composition  containing  

and  solvent  for  use  therein.     (P)  Carroll,  and  East- 
man Kodak  Co.  . .  . .  . .  . .  . .     894a 

ether  solvent  and  composition  : 

(P)  Carroll,  and  Eastman  Kodak   Co.     213a, 

367a,  748a,  807a,  894a 
(P)  Seel,  and  Eastman  Kodak  Co.         ..  ..     "J4sa 

(P)  Stinchfield,  and  Eastman  Kodak  Co.         ..     978A 
(P)  Webb,  and  Eastman  Kodak  Co.     ..      542a,  B7&A 

ethers,  esters,  etc.  ;  Manufacture  of .     (P)  Plauson . .     748a 

ethers  ;   Manufacture  of : 

(P)  Donohue,  and  Eastman  Kodak  Co.  . .     5  \2x 

(P)  Dreyfus  324A 

(P)  Lilienfeld        10a,  53a,  53a 

(P)  Young 854a 

ethers  ;  Manufacture  of  artificial  fibres,  such  as  artificial 

silk,  from .     (P)  Bayer  und  Co.  . .  . .     807a 

ethers ;    Manufacture  of  celluloid-like  masses,  etc.  from 

.     (P)  Dreyfus 248a 

ethers  ;    Manufacture  of  compositions  containing  . 

(P)  Lilienfeld 95A 

ethers  ;    Manufacture  of  moulded   articles  from  . 

(P)  Leysicffer 808a* 

94A 


Cellulose  Iaurate.  Griin  and  Wittka 
Cellulose  nitrate.  See  Nitrocellulose. 
Cellulose  stearate.  Griin  and  Wittka 
Cellulose  xanthate.     See  Viscose. 

Cellulosic  colloids  ;   Controlling  the  stabiliser  content  of 

(P)  Rocker,  and  Du  Pont  de  Nemours  and  Co. 

materials  ;     Dissolution    of    .     (P)    Riitgcrswerke 

A.-G.,  and  Teichmann 
materials  ;  Manufacture  of  sheets  of  — —  with  a  compact 
surface.     (P)  Mangold 

materials  ;   Production  of  fermentable  sugar  from : 

(P)  Classen         680a, 

(P)  Classen,  and  Chemical  Foundation,  Inc. 
matr-rials  ;    Recovery  of  resins  and  resinous  substances 

Hum  .     (P)  Zellstoff-fabr.-Waldhof,  and  Hot- 

tenroth 

materials  ;  Rendering resistant  to  water.     (P)  Beck 

"  Celotex  "  :    Manufacture  of  a  new  building  material  

from  bagasse 
Cement;     Aromatic    hydrocarbon    — .     (P)    Barrie    and 
Chadwick 
from  blast-furnace  slags 

clinker  ;  Shaft  furnace  for  burning .     (P)  Koppera .  . 

Cold  glazes  on and  comparison  of  Kerament  slabs 

with  ceramic  tiles.     Tostmann 


730a 
851a 
936a 

725a 

832a* 


720a 
936a 


375a 
511R 

417a 

592a 


SUBJECT  INDEX. 


129 


Cement — continued. 

Conversion  of  acid  blast-furnace  slags  into  basic  slags  and 

by  re-melting.     Griin  and  Biehl 

Discovery  of  an  equilibrium  between  lime  water  and . 

Lorenz  and  Haegermaun 
Distilling  and  gasifying  peat  and  like  substances,  and 

production  of .     (P)  Seigle 

Effect  of  low  temperatures  on  hardening  of .  Kreuger 

flooring  ;   New  developments  in  oxychloride .   Shaw 

and  Bole 
of  high  strength.    Hendrickx 

imported  from  Norway  ;  Price  of 

Imports  of ■ 

Insulating .     (P)  Elsenbast  and  Jordan 

for  joining  porcelain  bodies.    (P)  Porzellanfabr.  Kahla . . 

kilns.     (P)  Nelson    .. 

kilns ;  Heat  insulation  for  rotary .     (P)  Fabcr  and 

Briscoe 
kilns  and  the  like  ;  Furnace-drawing  apparatus  for . 

(P)  Candlot 

kilns  ;    Obtaining  potassium  chloride  from  flue  dust  of 

.  (P)  Moon,  and  International  Precipitation  Co. 

kilns     Rotary : 

(P)  Fasting,  and  Smidth  &  Co. 
(P)  Newberry 

kilns;  Utilising  waste-heat  gases  of .     (P)  Bell 

and   the   like ;    Production   of   waterproof  .    (P) 

Winkler 

and  the  like  ;  Rendering suitable  for  use  in  stopping 

incursions  of  water  or  for  waterproofing  or  hydraulic 

or  like  purposes.     (P)  Winkler 

magnesia- ;  Manufacture  of .    (P)  Wolf 

Manufacture  of : 

(P)  Longan  y  Senan  and  Di  Godio 

(P)  Willkie,  and  U.S.  Industrial  Alcohol  Co.    . . 

Manufacture  of  aluminate .     (P)  Mathesius 

Manufacture  of  hj'draulic  from  lignite  ash.     (P) 

Elektrowerke  A.-G.,  and  Luftschitz 
manufacture  and  low-temperature  carbonisation.     (P) 

Merz  and  McLellan,  and  Weeks 
Manufacture    of     moulded     articles    from    .     (P) 

Richards 
Manufacture  of  a  rapidly  hardening  hydraulic  powder 

from  alkali  carbonate  and .     (P)  Hovermann  . . 

manufacture  ;  Recovery  of  potassium  salts  in .    (P) 

Rhodes  and  others 

materials;  Manufacture  of .     (P)  Roucka   .. 

mixtures  ;  Recovery  of  potash  from .    (P)  Jackson 

mortars  ;  Relations  between  voids  and  plasticity  of 

at  different  relative  water  contents.    Richart  and 

Bauer 

mortars;  Resistance  of to  abrasion.     Nitzsche     .. 

oxychloride ;    Treatment  of  magnesite  for  manufacture 

of .    (P)  Pike 

plants  ;  Waste-heat  boiler  system  for .     (P)  Bell    . . 

Portland  ;   Influence  of  calcium  chloride  on  strength  of 

.     Platzmann 

Portland  ;  Storage  of 

Process  for  making impervious  and  increasing  its 

adhering  power  and  speed  of  setting.     (P)  Winkler . . 

Production  of  a  cold  glaze  for .     (P)  Friedrich 

Production  of  waterproof .     (P)  Badder  and  others . . 

raw  materials  ;    Manufacture  of  moulded  pieces  or  ag- 
glomerates of .     (P)  Polysius 

Shaft  kiln  for  burning .     (P)  Krupp  A.-G.  Gruson- 

werk 
Sorel ;     Facilitating   the   working   and   increasing   the 

stability  of  objects  made  of .     (P)  Ringer 

Sorel ;   Use  of  calcined  dolomite  in  making .    Bole 

and  Shaw 
Study  of  conditions  causing  disintegration  of under 

the  "  accelerated  "  test.     Fleming     .. 
Thermo  chemical  research  on  — ■ — .     Nacken 

in  U.S.A.  in  1919  and  1920 - 

works  ;  Report  on by  the  Alkali  Inspector 

Cementation  of  non-ferrous  metals.     Sirovich  and  Cartoceti 
Cementing  and  protecting  composition.    (P)  Barringer,  and 

General  Electric  Co. 

Centrifugal  action  ;    Apparatus  for  washing  material  which 

has   been   separated   by  .     (P)   Chem.   Fabr. 

Griesheim-Elektron 
apparatus.   (P)  Roberts,  and  Western  States  Machine  Co. 
apparatus  for  separating  solid  particles  from  air  ;  Means 

for  cleaning  blades  of  rotary  valves  for  use  with . 

(P)  Robinson  and  Son,  Ltd.,  and  Robinson 
decantation.     (P)  Mauss,   and   Continuous   Centrifugal 
Separators,  Ltd. 

draining  ;  Efficiency  in .    Drakeley  and  Williams  . . 

dryers.  See  under  Dryers, 
filters.  See  under  Filters, 
machines  : 

(P)  Broadbent  and  Sons,  and  Broadbent 
(P)  Hall,  and  De  Laval  Separator  Co. 
(P)  Hapgood,  and  De  Laval  Separator  Co. 
(P)  Robertson  and  Dunsmore    . . 

(P)  Sharpies  

(P)  Touceda  

machines  ;    Plough  discharging  device  for  .    (P) 

Robertson  and  Dunsmore 
machines ;    Plough  for  removing  accumulation  of  sugar 

or  cake  from  filtering  walls  of  .    (P)  Daniels 

and  others 
separators.    See  under  Separators. 


538A 
635a 

634a 
860a 
315R 
337R 
635a 
15a 
103A* 

816a 

861a* 


21 7A 
503a 


417A 

417a 

254A 
301a 
757A 

103A 

635a 

254a* 

758a 

375a 

758a 
466a 


670A 
375a 

593A 
280A 

142A 

510R 

466A 
143a* 
16a* 

16a 


934a 

300T 
815A 
245R 
316R 
17a 

671a* 


971A 
450A 


128a* 


577a* 
347T 


280a 

657a 

658A 

88A 

89A* 

89a 

401a* 


658a* 


Centrifuge ;   Use  of in  quantitative  analysis.   Arrhenius 

Centrifuges.     (P)  Von  May,  and  Fesca  &  Sohn  M 

Ceramic  articles  ;   Gas-fired  tunnel  kiln  for  baking .     (P) 

Ban] ..  .. 

articles  ;  Manufacture  of with  electric  heating.   (P) 

Steinhardt 

articles;  Production  of .    (P)  Lava  Crucible  Co.    .. 

bodies  :■  Determination  of  porosity  of by  absorption 

methods.     Washburn  and  Bunting 

bodies  ;  Determination  of  porosity  of  highly  vitrified 
.     Washburn  and  Bunting 

bodies  ;  Properties  of  zinc  oxide .     Libman 

bodies  ;  Suggested  new  methods  in  preparation  of  dust- 
pressed  — — .     Spurrier  

colours  ;  Constitution  of  some  - — .     Rieke  and  Paetsch 

industry  in  China      . .  . ,  . , 

industry  in  Saskatchewan 

insulating  material  : 

(P)  Champion  and  others 

(P)  Jeffery,  and  Jeffery-Dewitt  Co 

masses  ;  Distribution  of  fluxes  in .     (P)  Wessel 

material  ;  Manufacture  of  plastic .     (P)  Cawood    . . 

material  ;    Ring  chamber  kiln  for  burning  .     (P) 

Koppers. . 

materials  ;    Burning in  tunnel  kilns.     (P)  Allgem. 

Elektrizitats-Ges. 

materials  ;  Manufacture  of .     (P)  Ges.  fur  Tuff-  nnd 

Ton-Technik 

materials  ;    Occurrence  of  vanadium  in  and  its 

action  on  the  refractoriness,  colour,  and  tendency  to 
form  scum  on  pure  kaolins  and  a  typical  brick  clay. 
Kallauner  and  Hruda 

materials ;    Rational  analysis  of  as  a  method  of 

works  control.     Rieke. . 

products  ;   Determination  of  porosity  of by  means 

of  gas  expansion.     Washburn  aud  Bunting. . 

products  ;  Determination  of  porosity  of  .  Petro- 
leum products  as  absorption  liquid.  Washburn  and 
Bunting.. 

products  ;  Determination  of  porosity  of .    Water  as 

absorption  liquid.     Washburn  and  Footitt 

products  ;    Firing  in  electrically-heated  furnaces. 

<P)  Granger 

products  ;  Instrument  for  making  shrinkage  measure- 
ments on .     Broga  and  Hudson 

products  ;  Manufacture  of  porous .     (P)  Soc.  Anon. 

Le  Carbone 

products  ;  Solubility  and  decomposition  in .  Morey 

Ceramic  Society    . .  . .  . .  . .  ._.  M      446R, 

Ceramic    spinning    nozzles ;      Manufacture    of .     (P) 

Neumann  and  Kampf 

ware ;    Burning  .     (P)  McDougal,  and  Champion 

Ignition  Co. 

ware  ;    Burning  ■  with  thermit  as  source  of  heat. 

(P)  Luckhard 

ware  ;    Kilns  for  burning  : 

(P)  Koppers 

(P)  De  Steigner   .. 

whiteware  ;   Discoloration  of fired  in  carborundum 

saggars.     Spurrier 

Cereal3  ;    Bacteria  associated  with  .    Fowler  and  Sen 

Bread  .     Berczeller 

Regenerating no  longer  in  a  fresh  condition.    (P) 

Leffer 

Ceriops    Rozburghiana    bark ;     Optimum    temperature   and 
state  of  subdivision   for   maximum   extraction   of 

tannin  from  .    Pilgrim  .. 

Cerium  and   its  alloys  ;    Coating  with  other  metals. 

(P)  Merck 

-iron  alloy  ;    Electrodeposition  of  a  .     Schiotz 

-iron  sparking  alloys  ;    Production  of  a  surface  capable 

of  being  soldered  on  .     (P)  Deimel    . . 

Quantitative  separation  of  from  the  other  rare 

eartlis.     Prandtl  and  Loschl 

Treatment  of  materials  containing  .    (P)  Siebert 

and  Korten 
Cerous  salts  ;    Electrolysis  of  aqueous  solutions  of  — 
Schiotz  . .         . .         . .         . .         . .         . . 

Cetylsulphonic  acid  and  other  sulphonates.    Morris 
Cevadine.    Macbeth  and  Robinson 

Ceylon  ;    African  oil-palm  in  

Chalcedony ;     Products   of   calcination   of   flint   and   — 

Washburn  and  Naviaa 
Chamber  process.     See  under  Sulphuric  acid. 
Char ;    Manufacture  of  finely  divided  carbonaceous  — 
(P)  Rodman,  and  Rodman  Chemical  Co.    . . 

Charcoal ;   Adsorption  of  gases  by .     Marshall . . 

Apparatus  for  making  active  .     (P)  Wheeler 

beechwood  ;    Sorption  of  carbonyl  chloride  by  — 
Bunbury 

Decolorising  .     See  under  Decolorising. 

Decolorising  action  of  adsorptive  .     Tanner 

for  decolorising  and  other  purposes  ;    Manufacture  of 

.    (P)  Eberdardt  

High  pressure  due  to  adsorption,  and  density  and 

volume  relations  of .  Harkins  and  Ewing 

Manufacture  of  adsorbent  for  gas  masks.  (P) 

Chem.  Werke  Carbon 742a 


page 
272a 


766a 


59A 
815A* 


710A 
710A 

295A 
592A 

293R 
198R 

103a* 
329a 
757a 
417a 

814A 

374A 

711A 


814A 

590A 
253a 

176A 
176A 
633A 

217A 

757a 
465A 

533R 

983A 

548A 

328A 

548A 
634a 


431A 
479A 


828A 

717A 
18A 

147a 

897a 

767a 

18a 
988a 
835A 
177R 

813A 


974a 
122R 
406a 

782a 

428A 

286A 

87a 

742A 

I 


130 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Charcoal — continued. 

Manufacture  of  active .     (P)  Chem.  Fabr.  Schering  456a 

Manufacture    of    active    from    sulphite-cellulose 

waste  liquor.     (P)  Adler        702a 

Manufacture  of  active  wood  .     (P)   Chem.  Fabr. 

Schering. .          . .          . .          . .          . .          . .          . .  456a 

Microstructure  of  .     Beilby  . .          . .          . .          . .  344T 

Regenerating used  for  purifying  fats  and  fatty  oils. 

(P)  Bolton  and  Lush              825a 

sugar- ;    Adsorption  of  Methylene  Blue  by   activated 

.     Bartell  and  Miller 891a 

suspensions  ;    Oxidising  properties  of  .    Feigl     . .  57a 

Thermal  evolution  of  gases  absorbed  by .     McLean  357a 

Treatment  of  .     (P)  Haber  and  others     . .          . .  245a 

Vegetable  .     (P)   Wilson   Bros.   Bobbin    Co.,   and 

Bone 538a 

Chaulmoogra  esters,  etc. ;    Manufacture  of  for  treat- 
ment of  leprosy.     Perkins                 . .          . .          . .  996a 

Chavicine    from    pepper-resin,    the    primarily    active    con- 
stituent of  black  pepper.     Ott  and  others            . .  914a 
Chemical  action  and  catalysis.     Armstrong  . .          . .          . .  258T 

engineer  ;    Definition  of  a  ■ . .          . .          . .          . .  314R 

engineer  ;    Training  of  the  : 

Greenfield 397R 

Ruttan 282R,  323R 

Chemical  Engineering  Group.     49r,  172r,  229t,  279R,  446r, 

506r,  531R 

Chemical  Industry  Club             282R,  450R,  527r 

Chemical  industry  ;    Some  achievements  of during  the 

war    in    this    country    and    in    France.     Hurter 

Memorial  Lecture.     Macnab              . .          . .      353T,  505R 

industry  ;    Some  problems  in  .     Armstrong          . .  500r 

operations  ;   Apparatus  for  use  in  connexion  with . 

(P)  Stuart  and  others            531A 

production    and   research  ;     Apparatus   for   .     (P) 

Brutzkus            . .          . .          . .          . .          . .          . .  87a 

Chemical  Society.     3lR,  75R,  97R,  128R,  197r,  242r,  262r, 

447R,  507R,  563R 

Chemical  ;    Suggested  definition  of  a  . .          . .          . .  48r 

trade  in  the  United  Kingdom      ^.          ..          ..          ..  64r 

Chemical  Warfare  Service  of  U.S.A.               157r 

Chemical  warfare  and  the  Washington  Conference  : 

Thorpe 43r 

Walker 103R 

workers  ;    Welfare  of 569r 

Chemist ;   Co-operation  of  the  engineer  and  the in  the 

control  of  plants  and  processes.     GUI        . .          . .  5r 

Importance  of  the  to  the  nation.     Armstrong  . .  445r 

The  7  and  the  manufacturer : 

Cross           ..          _ 348R 

Drammond            . .          . .          . .          . .          . .  330R 

"Fine  Chemical  Manufacturer"          ..         ..  348r 

Status  of  the  .     Armstrong,.          ,,          .,          ..  501  r 

Chemistry  ;    Biology  and  .     Ling            . .          . .          . .  29r 

Discussion  on  teaching  of . .          . .          . .          . .  28r 

Industrial ,  its  importance  and  progress.     Burford  471R 

in  the  museum.     Lucas     ...          ...          ..          ..          ..  23r 

Stellar .    Dingle         283r 

Chemists  in  public  life  in  U.S.A.        ..          ..          ..          ..  509R 

Training  and  career  of  industrial  .     Watt            . .  472r 

What  a  manufacturer  expects  of  his  . .          . .  78r 

and  their  work  :    present  tendencies.     Hambly           . .  143R 
Chenopodium  oil.    See  under  Oils,  Essential. 

Cherry  ;    Acids  present  in  the .     Franzen  and  Hclwcrt  875a 

Cherry-laurel    water ;      Characteristics    of    distilled    ■ . 

Pecker 482a 

Chestnut  extract;    Measurement  of  the  iron  contamination 

of  .     Greaves        . .          . .          . .          . .          . .  149a 

Chicle  gum  ;    Substitute  for .    (P)  Snelling     . .         . .  868a 

Chile  ;    Nitrate  industry  in  . .          . .          . .          . .  460r 

Nitrate  trade  of . .          . .          . .          . .          . .  226r 

Report  on  industrial  and  economic  situation  in  . 

Scott 270R 

Reported  new  nitrate  deposit  in  ..          ..          ..  102R 

Trade  of  in  1920 184r 

Chimccras  liver  oils.     See  under  Oils,  Fatty. 

China    and    like    electrically    non-conductive    substances ; 

Metallising  articles  made  of  .     (P)  Marino   . .  103a 

China  ;    Ceramic  industry  in  . .          . .          . .          . .  293r 

Glycerin  in  . .         . .         . .         . .         . .         . .  40r 

Indigo  market  in  . .          . .          . .          . .          . .  459r 

Mercury  ore  in  . .          . .          . .          . .          . .  484r 

Peppermint  oil  in  . .          . .          . .          . .          . .  422r 

China-clay.     See  Kaolin. 

China  wood  oil.     See  Tung  oil  under  Oils,  Fatty. 

Chinese  chemists;    Organisation  of in  U.S.A.              ..  265R 

Clilorates  ;    Electrolytic  cells  for  production  of  alkali  . 

(P)  Barker,  and  United  Alkali  Co.             . .          . .  99a 

Manufacture  of  .     (P)  Wilderman 812a 

Miiimfarture  of  in  Norway             ..          ..          ..  402r 

Preparation  of  perchlorates  by  heating .     Mathers 

and  Aldred        , 856a 

Reduction  with  cadmium  for  volumetric  determination 

of .     Treadwell  and  others       . .          , .          . .  919a 

R61e  of  chromate  in  electrolytic  preparation  of  ■ . 

Pamfilow           750a 


PAQB 
Chlorhydrins ;    Conversion    of    allyl   alcohol  Into    glyceryl 

.     Read  and  Hurst         609a 

Preparation  of  by  action  of  monochlorourea  on 

ethylenic  hydrocarbons.    Detoeuf    ..  ..  ..     196a 

Chlorides;    Decomposition  of  alkali  .     (P)  Kersten   ..       13a 

Detection  of in  presence  of  thiocyanates.     Spacu     881a 

Determination  of  by  electrometric  titration  with 

silver  nitrate.     Kolthoff         . .  . .  . .  . .     649a 

Determination  of  in  foodstuffs.     Bornand  . .     681a 

Determination  of  small  quantities  of  in  iodides. 

Kolthoff 12a 

Effects  of  on   products  of   distillation   of  coal. 

Findley  . .  . .  . .  . .  . .  . .  . .       30T 

Manufacture    of    anhydrous    alkaline-earth    .     (P) 

Minami  Manshu  Tetsudo  Kabushiki  Kaisha         . .     752a 

Reduction  of  organic  acid to  aldehydes  by  means 

of  nickel  catalysts  : 

Rosenmund  . .  . .  . .  . .  . .     785a 

Schliewiensky        . .  . .  . .  . .  . .     785a 

Chloridising  apparatus.     (P)   Wescott,   and   Kalmus,   Corn- 
stock,  and  Wescott     . .  . .  . .  . .  . .     258a 

process  and  apparatus.     (P)  Low,  and  Niagara  Alkali  Co.     901a 

Chlorinating  agent ;    New  .     Silberrad  . .  . .  . .     586a 

apparatus.     (P)  Van  Meter  . .  . .  . .  . .       79a 

gaseous    hydrocarbons    and    recovering    the    products. 
(P)  Curme,  jun.,  and  Carbide  and  Carbon  Chemicals 

Corp 686a 

methane.      (P)  Holzverkohlungsind.  A.-G.,  and  R6ka..     916a 

Chlorine ;    Determination    of   hypochlorous    acid  and  

in  concentrated  salt  solutions.     Taylor  and  Gammal     586a 

Effect  of  presence  of  on   absorption  of  nitrous 

fumes.     Hall  and  others        . .  . .  . .  . .     292T 

Electrolytic   cell   for   production    of   alkali    and   . 

(P>  Allen  and  others 380a 

Formation  of  ■ from  hydrochloric  acid.     Clarens  . .     413a 

gas ;     Manufacture    of    ■ for    water    purification. 

(P)  Blanchard 995a 

and  hypochlorous  acid  and  comparison  of  their  bleaching 

action.     Taylor  57R,  368a 

in     organic     compounds  ;      Determination     of     . 

Klimont 614a 

in    organic    compounds  ;     Rapid    estimation    of   . 

Votocek  1001a 

Reaction  equilibria  in  the  manufacture  of by  the 

Deacon  process.     Neumann  . .  . .  . .  . .     293a 

Chlorine  compounds  ;    Preparation  of  which  may  be 

rendered  dispersible  for  antiseptic  purposes.     (P) 
Norris  and  Hoseason  . .         ..         ..         ..         ..       31a 

Chlorine  dioxide ;    Behaviour  of towards  organic  sub- 
stances.    Schmidt    and    Braunsdorf  ..  ..     608a 

Chlorites  ;    Oxidation  and  reduction  reactions  with  . 

Levi       587a 

Chloroacetic   acid ;    Manufacture  of   from   tricldoro- 

ethylene  ..  ..  ..  ..  ..  ..     191R 

l-Chloro-2-aminoanthraquinone  ;   Manufacture  of .     (P) 

F'yfe,  and  British  Dyestuffs  Corp.   . .  . .  . .     170a 

3-Chloro-2-aminoanthraquinone ;       Manufacture     of     . 

(P)  Atack  and  Soutar  170a 

3-Chloro-2-amino-l-bromoanthraquinone ;     Manufacture    of 

.    (P)  Atack  and  Soutar         . .         . .         . .     170a 

o-Chlorocroton aldehyde ;    Preparation  of  -.     (P)  Chem. 

Fabr.   Weiler-ter  Meer  728a 

Chloro -derivatives  of  acetylene  or  the  like ;    Manufacture 
of  stable  — — .    (P)  Consortium  fur  Elektrochem. 

Ind 439a 

-derivatives  of  benzene  ;  Preparation  of .     Silberrad     586a 

-derivatives ;    Manufacture  of  from  unsaturated 

hydrocarbons.     (P)  Maze      . .  . .  . .  . .     786a 

-derivatives  of  methane,  ethane,  and  ethylene ;    Anti- 
septic action  of  some .     Joachimoglu. .  . .     229a 

Chloroform  -alcohol  -water  ;    The  system  .     Schoorl  and 

Regenbogen       . .  . .  . .  . .  . .  . .     157a 

Preparation  of from  acetaldehyde.     (P)  Consortium 

fur   Elektrochem.   Ind.  ..  ..  ..  ..     523a 

Chlorohydrocarbons ;     Manufacture    of    .     (P)    Koch, 

and  Ohio  Fuel  Supply  Co 997a 

Manufacture  of  low-boiling  ■ ■.     (P)  Traun's  Forsch- 

ungslaboratorium         . .  . .  . .  . .  . .     391a 

Saturation   character  of  di-,  tri-,*jind  per-chloroethyl- 

ene.     Margosches    and    Baru  ..  ..  ..     157a 

a-Chloronaphthalene    derivatives ;     Manufacture    of    . 

(P)  Kalle  und  Co 134a 

Chloronitronaphthalenes  ;    Preparation  of .     (P)  Matter     687a 

Chlorophenols  ;    Solubility  of  .     Sidgwick  and  Turner     976a 

Chloropicrin  ;  Manufacture  of .    (P)  Sweeney  and  Baker    433a 

Chlorosul phonic    acid ;     Analysis    of    .     Weissenberger 

and  Zoder  369a 

Manufacture  of .     (P)  Briggs,  and  General  Chemical 

Co 668a 

Chlorotoluenes  ;    Separation  of  .    (P)  Soc.  Anon,  des 

Matieres  Colorantcs  et  Prod.  Chirn.,  and  Wahl    . .     287a 
<  'hloroxijl&n  Smetenia  ;  Fatty  oil  from  seeds  of  — — .  Rau  and 

Simonsen  902a 

Chocolate ;    Grinding  and  mixing  machines  for  .     (P) 

Hartshorn         480a* 

and   other   plastic   materials ;     Apparatus    for   heating 

or  cooling .     (P)  Prescott,  and  Baker  and  Sons     307a* 


SUBJECT  INDEX. 


131 


PAGE 

Cholesterol ;  Action  of on  urease.     Jacoby  and  Shimizu     340a 

Colour  reactions  of .     Kahlenberg  . .  . .  . .     608a 

materials  ;    Treatment  of  crude .     (P)  Conyers  and 

others 508a 

derivatives.     Windaus         , .  . .  . .  . .  . .     481a 

Cholesteryl   dibromide.     Lifschiitz       . .  . .  . .  . .     156a 

Cholic  acid  ;    Oxidation  of .     Wieland  and  Schlichting     345a 

Preparation    of    compounds    of    with    aldehydes. 

(P)  Bayer  uud  Co.     ...  34a 

Preparation  of  derivatives  of  .    (P)  Riedel   A.-G.      34a 

Choline ;     Action   of on   fermentation.     Frankel   and 

Scharf 265a 

Chondrus   crispw  ;     Constitution   of  the   cell -wall   of  . 

Russell-Wells 996a 

Occurrence  of  ethereal  sulphates  in  .     Haas         . .     230a 

Chromates  ;    Determination  of  ■  by  the  iodide  method. 

Vosburgh  1000a 

Electrolysis  of with  diaphragms.     Lottermoser  and 

Falk        857A 

Transforming  alkali  into  bichromates  or  chromic 

acid.     (P)  Vis 813a* 

Chrome-alums  ;    Manufacture  of  .     (P)  Hultman     174a,  259a 

Chrome  mordant  ;    Important  but  overlooked  properties  of 

cotton    mercerised    by    means    of    alkaline    . 

Pokorny  894a 

mordants.     Bancroft  . .         . .         . .         . .         . .     978a 

Chrome  tanning.     See  under  Tanning. 

Chromic  acid  ;    Function  of  chromic  oxide  in  oxidation  by 

means   of    mixtures   of   sulphuric    acid  and  . 

Simon 1001a 

Regeneration   of  .     (P)   McKee 294a 

Chromic  chloride  ;  Electrolytic  reduction  of to  chromous 

chloride.     Taylor   and   others  . .  . .  . .     326a 

Chromic  oxide  ;    Function  of in  oxidation  by  means  of 

mixtures  of  su!phui*0and  chromic  acids.     Simon  . .   1001a 

Manufacture  of  sodium  sulphide  and  from  sodium 

chromate.     (P)  Head 633a* 

Chromic  oxides ;    Hydrous  .    Weiser 588a 

Chromic    sulphate    solution ;     Manufacture    of    .     (P) 

Mooney  . .  . .  . .  . .  . .  . .       14a* 

Chromite  in   Togoland.     Robertson    . .         . .         . .         . .     159r 

in  U.S.A.  in  1920 219r 

Chromium  or  its  alloys  ;    Manufacture  of .     (P)  Aktie- 

bolaget    Ferrolegeringar         . .  . .  . .  . .     655a 

and  its  alloys  with  nickel ;    Expansion  of  over 

a  wide  range  of  temperature.     Chevenard..         ..     144a 

Determination  of  in  metals.     Loffelbein  . .     672a 

Determination   of  in   ferrochromium   by   electro- 
metric  titration.     Kelley  and  Wiley  . .  . .       60a 

Determination  of  in  steels  : 

Losana  and   Carozzi       . .  . .  . .  . .     594a 

Simion        . .  . .  . .  . .  . .  . .     504a 

Determination  of with  the  aid  of  membrane  filters. 

Jander    . .  . .  . .  . .  . .  . .  . .     442a 

Electrolytic  separation  of .     (P)  Liebreich  . .  . .       62a 

group   metals  ;     Casting   alloys   of   silicon   with   . 

(P)  Walter        19a 

-iron  alloys  of  low  carbon  content  ;   Production  of . 

(P)    Gillott 942a 

-iron-carbon  ;    The  system  .     Daeves         . .  . .       16a 

Metallographic   investigations    on    cathodic    deposition 

of  metals  on  .     Kyropoulos    ..         ..         ..       61a 

-nickel  steel.     See  under  Steel. 

Preparation  of  by  Golds chniidt's  aluminothermic 

process.     Fujibayashi  ..  ..  ..  ..     595a 

Rapid  determination  of in  nickel-chiomium  steels. 

Hild        671A 

-steel.     See  tinder  Steel. 

Treating  iron  ore  for  recovery  of .    (P)  Eustis  and 

Perin 146A 

Chromium  nitride  :   Normal and  formation  of  complex 

salts.     Oliver i-Mandal a  and  Cornelia  . .  . .     327a 

Chromium  oxide  ;  Manufacture  of  green .     (P)  D'Adrian    897a 

oxides  ;  Purification  of  ores  and  residues  containing . 

(P)  Dyson  and  Aitchison 332a 

Chromium    trioxide-sulphur    trioxide-water ;     The    system 

.     Gilbert   and   others    . .  . .  . .  . .     857a 

Chromogens  of  some  plants  ;    Transformation  of  by 

oxidation  into  a  red  pigment.     Jonesco   . .         . .         8a 
Chromous    chloride ;     Electrolytic    reduction    of    chromic 

chloride  to .     Taylor  and  others         . .  . .     326a 

Chrysalis  oil.     See  under  Oils,  Fatty. 
Chrysaniline.    See  under  Acridine  dyestuffs. 

Chrysophanic  acid  ;    Synthesis  of .     Eder  and  Widmer     194a 

Chymosin  ;    Experiments   on   purification   of  .     Ham- 

marsten  . .  . .  . .  . .  . .  . .     784A 

Relative  sensitiveness  to  alkali  of from  the  stomachs 

of  the  calf  and  the  pig.     Hammarsten     . .         . .     784a 

Cider-making ;    Microbiology  of  .     Barker      . .         . .     605a 

preservatives.     Scott  and   Will    . .  . .  . .  . .     153a 

Cigarette   mouthpieces  ;    Manufacture  of  cellulose   acetate 

films  for .     (P)  Chem.  Fabr.  von  Heyden     . .     541A 

Cinchona  alkaloids  ;   Acceleration  of  vulcanisation  by  — — . 

Eaton  and   Bishop      . .  . .  . .  . .  . .     374T 

alkaloids  ;     Action    of    hydrogen    peroxide    on •. 

Speyer  and  Becker 516a 


Cinchona— continued. 

alkaloids  and  their  derivatives  ;    Preparation  of  amino- 

derivatives  of  hydrogenated  .    (P)   Howards 

and  Sons,  and  others 
alkaloids  ;    Preparation  of  mixed  carbonic  acid  esters 

of  .     (P)  Bayer  und  Co 

alkaloids.     Synthesis     of    vinyl-free     quinatoxins    and 

quinaketones.     Rabe   and   others 

bark;    Report  of  Indian  Trade  Inquiry  on  .    .. 

series  ;   Syntheses  in  the : 

Heidelberger  and   Jacobs 

Jacobs  and   Heidelberger  . .  . .       516A, 

series  ;    Syntheses  in  the  .     Certain  quinlcine  and 

benzoylcinchona    salts,     crystalline     ethyldihydro- 

cupreine    (optochln)    base    and    other    derivatives. 

Heidelberger  and  Jacobs 

Cinchonine  ;    Hydrogenation  of  .    Jacobs  and  Heidel- 
berger 

Cinematograph   films  ;    Coating  the   surface  of  .     (P) 

Ott  

films  ;  Non-inflammable  cellulose  acetate .     Clement 

pictures  ;    Chemistry  and .     Mees 

Cinematographs  ;    Films  for  episcopic  projection  of  . 

(P)  Akt.-Ges.  fur  Anilin-Fabr 

Cinematography  ;   Colour .     (P)  Humphrey  and  Friese- 

Greene    . . 

Cinnamomumglatidaliferum  ;  Essential  oil  of .      Massera 

Citric  acid  of  cow's  milk  ;  Decomposition  of by  bacteria. 

Kickinger 

Detection  of  in  wine  and  musts.     Von  der  Heide 

and  Straube 

Formation  of  oxalic  acid  and ■  in  CUronwjces  cultures 

on  sugar,  and  estimation  of  these  acids.  Butkewitsch 
Position  of  — ■ —  under  the  Safeguarding  of  Industries 

Act  

Preparation  of  .     (P)  Mach  and  Lederle  .. 

Presence  of  in  mountain-ash  berries.     Von  Lipp- 

mann 

Utilisation  and  formation  of in  cultures  of  Citro- 

myces  glaber  on  sugar.     Butkewitsch 
Citromyees ;    Formation  and  accumulation  of  oxalic  acid  in 
cultures  of on  salts  of  organic  acids.     Butke- 
witsch 

Formation  of  citric  and  oxalic  acids  in  cultures  of 

on    sugar.     Butkewitsch 
Peptone  as  source  of  carbon  for  species  of .     Butke- 
witsch   . . 
Citromijces  glaber  ;    Utilisation  and  formation  of  citric  acid 

in  cultures  of  on  sugar.     Butkewitsch 

CUrus    decamana  ;     Physiological    study    of    ripening    and 

storage  of  fruit  of .     Hawkins 

Citrus   fruit  ;     Manufacture   of   food    products   from   . 

(P)  Wadsworth,  and  Taylor's 
Clarifying  solutions.     (P)  McCaskell   .. 

Classifiers  ;    Hydraulic .     (P)  Allen 

Classifying.    See   Grading. 

Clay  ;    Action  of  vanadium  on  refractoriness,  colour,  and 

tendency  to  form  scum  on  a  typical  brick  . 

Kallauner  and   Hruda 
as  an  ampholyte.     Arrhenius 

bodies  ;  Production  of .     (P)  Lapp 

briquettes ;     Determination    of    dry    volume    of    . 

Crawford 

Cause  and  cure  of  lamination  in .     Brand  . . 

Characterisation  of  .     Comber 

China  .     See  Kaolin 

Determination  of  colloidal  in  soils.     Sokol 

Dryer  for  use  in  manufacture  of  articles  from  tender 

.     (P)   Myers,  and   American  Equipment   Co. 

and  lime;  Utilisation  [of   bituminous  .     (P)  Trails 

Loss  on  burning and  porosity  of  the  product.     Bigot 

Manufacture  of  alumina  from .     (P)  A./S.  Hbyangs- 

faldene  Norsk  Aluminium  Co. 
Mechanism  of  plasticity  of from  the  colloid  stand- 
point.    Bole 

Mining   or   concentration   of   .    (P)    Osmosis    Co. 

and    others 

mixtures  for  glass  pots  ;    Bond .     Fuller 

mixtures  ;    Preparing  plastic  for  moulding.     (P) 

Gerlach  and  others 

mixtures  ;     Pug    mills   for   .     (P)    Fawcett,    Ltd., 

and  others 
particles ;     Sedimentation   as    a    means    of    classifying 

extremely  fine  .    Schurecht 

Pottery from  Victoria 

Process  for  decomposing .     (P)  Levitt 

products  ;    Adaptability  of  the  gas-fired  compartment 

kiln  for  burning .    Richardson 

Refining .    (P)  Plauson  

slips  ;  Viscosity  of  Indiana with  added  electrolytes. 

Davis 

substance;  Attack  of by  lime.     Selch 

suspensions  ;   Influence  of  small  additions  of  electrolytes 

on  stability  of and  their  use  in  purification  of 

Kohl         

Thermal  decomposition  of .  Bragg  and  Mellor 

Treatment  of : 

(P)  Feldenheimer  and  Plowman  254a,  756a, 

(P)  Rigby 

I 


686A 
521A 


267A 
512R 


51 7A 
516A 


517A 

516a 

838A 
233a 
171R 

917A 

729A 

836A 

953A 
912A 
831a 

115R 

521A 

956A 
831A 

514A 
831A 
514a 

831A 

29A 

229a 

2a 

317  a 


814A 
337a 

815A 

633a 
633A 

R,  77T 

829a 

142a 
103  a 
465A 

372A 

709a 

328a 
101a 


101 A 

292R 

58A 

465a 
815a 

898a 
295a 


590a 
447R 


939a 
756a 


132 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Clay — continue'?. 

Treatment  of  and  manufacture  of  articles  there- 
from.    (P)  Smith         939a* 

Use  of  electrolytes  in  purification  and  preparation  of . 

Schurecht  546a 

used  in  bleaching  petroleum  products  ;   Preparation  and 

recovery  of .     (P)  Stratford        286a 

vessels  ;  Gilding  glazed .     Budnikow  . .  . .     755a 

wares  ;  Soluble  salts  and .     Parmelee  . .  . .     709a 

Weather-proofing .     (P)  Allen  634a 

Clays ;     Chemical    composition   of  .    Boudouard    and 

Lcfranc 983A 

Composition  and  microscopical  structure  of  ,  their 

fusibility    and    behaviour    at    high    temperatures. 

Bertrand  and  Lanquine  ..  ..  ..  ..     813a 

Dehydration  of  dried .     Mellor  and  others   ..  ..     176a 

Microscopical    examination   of    mineral  constituents  of 

some  American .     Schurecht      . .  . .  . .     217a 

Cleaning  and  sterilising  textile  fabrics  and  other  materials  ; 

Preparations  for .     (P)  Maclennan         . .  . .     855A 

Cloth;  Machines  for  scouring,  bleaching,  dyeing,  shrinking, 
or  otherwise  treating .  (P)  Bowden  and  Bow- 
den          139a* 

Clupanodonicacid.    Tsujiinoto..         ..         ..         ..         ....     719a 

Cnicus  Benedictus  ;  Fatty  oil  of .     Ferenez  ..  _     334a 

Cntdium  officinale  ;    Chemical  constituents  of  dried  roots  of 

.    Murayama        . .  . .  . .  . .  . .     2G8a 

Coal ;  Apparatus  for  carbonisation  of .     (P)  Hird  . .     802a 

Apparatus  for  coking .     (P)  Garland 130a 

Apparatus  for  drying .     (P)  Goskar 698a* 

Apparatus   for  pulverising .     (P)   Powdered   Fuel 

Plant  Co.,  and  Soc.  Anon.  La  Combustion  Rationello     128a* 
artificial ;   Conversion  of  peat,  lignite,  and  other  carbon- 
aceous substances  into .    (P)  Ford  and  Thomp- 
son           740a 

ash  ;    Comparison  of  standard  gas  furnace  and  micro- 
pyrometer  methods  for  determining  the  fusibility 

of .     Fieldner  and  others 738a 

ash ;    Recovery   of   combustible    material   from   ■ . 

Nitzsche 698a 

Autoxidation    of   and    effect   of   alkali   thereon. 

Schrader  491a 

Behaviour  of  sulphur  in in  dry  distillation.  Foerster 

and  Geisler        . .  . .  . .  . .  . .  . .     401a 

briquettes  ;  Manufacture  of : 

(P)  Mac-hold  208a 

(P)  Stenning  and  others. .  800a 

briquettes  ;    Production  of  without  addition  of  a 

binding  material.     (P)  Dobbelstein 740a 

Carbonisation  of : 

(P)  Beilby 456A 

(P)  Lewis 283a 

(P)  Roberts  973A 

(P)  Stansfield 362a 

Thorman 319a 

for  carbonisation  ;  Corrosion  of  refractories  and  tar  stills 

due  to  saline  substances  in .     Boehm    . .  . .     359a 

carbonisation  ;   Mechanism  of .     Morgan  and  Soule     491a 

carbonisation  ;    Production  of  hydrogen  in  .    (P) 

Cumberland  Coal  Power  and  Chemicals,  Ltd.,  and 
others     . .  . .  . .  . .  . .  . .  . .     579A 

Carbonising  and  production  of  combustible  gas. 

(P)  Doherty 742a* 

carbonisation  products  ;  Decomposition  processes  applic- 
able to .     Bradley  and  Parr        932a 

Centrifugal  drying  machine  for .     (P)  Fabry  . .     621a 

Classification  of .     Parr  927a 

Cleaning .     (P)  Trent,  and  Trent  Process  Corp.       . .     624a* 

Cleaning especially  for  production  of  coke  low  in 

ash.     Thau 797a 

Coking  of : 

(P)  Illingworth 283A,  624a*.  930a 

(P)  Puening         579a 

(P)  Roberts  245a* 

Coking  by  means  of  hot  combustible  gases.    (P) 

Pape 701a 

Comparison    between    the    American    and    S.    African 
methods  for  determination  of  volatile  combustible 

matter  in .     MacLachlan  797a 

Composition  and  calorific  power  of from  the  deeper 

workings  of  the  Kenadza  (Algeria)  mine.     Foix      . .     797a 
Concentration  of .     (P)  Jones,  and  Minerals  Separa- 
tion, Ltd.           700a 

Cost  of  raising 134n 

Destructive  distillation  of : 

(P)  Farup 456a 

(P)  West  and  others        973a 

Determination  of  sulphur  in : 

Lant  and  Lant-Ekl  89a 

Ter  Mculen  235a 

Determination  of  volatile  matter  in : 

Delmarce!  and  Mertens    . .  .  ,  . .  . .       45a 

St.  Claire  Deville 698a 

Wedgwood  and  Hodsman  372t 

Determination  of  water  in .     Marinot  . .  . .     165a 

Distillation  of : 

(P)  Canadian  American  Finance  and  Trading 

Co 6a 

(P)  Helmholtz,  and  Continuous  Process  Coke 

Co 661a 

(P)  Prlnz  zu  Lowenstcin,  and  others     ..  ..     890A 


PAQE 
Coal — contin  ued. 

distillation  ;    Furnace -retort  for  .    (P)  Smith  and 

others 453A 

distillation     products ;      Manufacture     of     .     (P) 

Fleischer  ..  ..  ..  ..  ..  ..     322a* 

distillation    purposes ;     Rabbles    for    low- temperature 

.     (P)  Barrs  455A 

-distillation  retort.     (P)  Roberts,  and  American  Coke 

and  Chemical  Co.  . .  . .  . .  . .         . .     283a 

Drying .     (P)  Goskar 282a 

dust ;  Firing  with .     (P)  Schondeling  . .  . .     166a 

Effects  of  chlorides  on  products  of  distillation  of . 

Findley 30T 

exports  104R,  225R 

exports  to  United  States 336r 

Extraction    of   unsaturated    hydrocarbons   from    . 

(P)  Traun's  Forschungslaboratorium  Ges.     . .          . .     403A 
Factors  influencing  the  yield  of  ammonia  in  carbonisa- 
tion of .     Mott  and  Hodsman 505R 

Factors  influencing  yield  of  ammonia  in  carbonisation  of 
.  R61e  of  oxidation.  Greenwood  and  Hods- 
man        . .  . .  . .  . .  . .  . .  . .      273T 

Factors  in  spontaneous  combustion  of .     Hood      . .     535R 

Formation  and  chemical  structure  of .     Fischer     . .     207a 

Froth  flotation  of .     Ralston  and  Wichmann  . .     318a 

Froth  flotation  tests  on  bituminous  coking  ■ ,  Ralston 

and  Yamada     . .  . .  . .  . .  . .  . .     532a 

Fundamental  study  of  Japanese .     Iwasaki  . .     577a 

Furnace- retort  for  carbonisation  of : 

(P)  Eddison  and  others 453a 

(P)  Smith,   and   International   Coal   Products 

Corp 453a 

(P)  Smith  and  others 453a 

The  "  fusion  "  patent  rotary  retort  for  distillation  of  oils 

from .     Goodwin  . .  . .  . .  . .  . .     580A 

Gas  from  destructive  distillation  of  a  mixture  of  water- 
gas  tar  and .     Brown       —        . .  . .  . .     241a 

gas- ;  Manufacture  of  a  fuel  capamfe  for  use  as  a  substi- 
tute for .    (P)  Jacobs 579a 

gas.    See  under  Gas. 

Gasification  of : 

(P)  Duckham 802a* 

(P)  Foster  974a 

(P)  Woodall,  Duckham  and  Jones  (1920),  Ltd., 

and  Duckham   . .  . .  . .  . .  . .       47a 

Gasification  of with  recovery  of  by-products.     (P) 

Smith,  and  International  Coal  Products  Corp.         . .     405a* 

Increasing  the  rate  of  carbonisation  of .     Weyman 

263R,  532a 
Increasing  the  yield  of  gas  and  ammonia  in  carbonisation 

of  ■ — — .    (P)  Lengersdorn"  und  Co 660a 

industry  in  Canada  . .         . .         . .         . .         . .         . .     558R 

Inorganic  constituents  of ,  with  especial  reference  to 

Lancashire  seams.    Iron  in  the  coal.    Sinnatt  and 

Simpkin 164T 

Is  the  carbonisation  of endothermic  ?    Sieben      . .     658a 

Large-scale  power  production  by  low-temperature  dis- 
tillation of by  steam.     (P)  Merz  and  McLellan 

and  others  ^  . .  . .     279A 

Liberation  of  nitrogen  from as  ammonia.  Monk- 
house  and  Cobb            263R,  532a 

Lignite  and in  Great  Britain  and  Germany  . .  . .     161R 

and  the  like  ;  Decomposing under  high  temperatures 

and  pressures.    (P)  Loffler 801A 

or  the  like ;    Manufacture  of  liquid  or  soluble  organic 

compounds  from .     (P)  Bergius . .  . .  . .     930A 

and  the  like  ;   Obtaining  oils,  pitch,  etc.  from .   (P) 

Wells  and  Wells  975a 

and  the  like  ;  Washing  of .     (P)  France        . .  . .     493a 

Low-temperature  distillation  of .     (P)  Barrs  . .     362a 

Low- temperature  distillation  of  mixtures  of  asphaltic 

oils  and  non-coking .     Davis  and  Coleman       . .     168a 

Manufacture  of yielding  a  low  percentage  of  ash, 

from  peat  or  lignite.    (P)  Chem.  Fabr.  Griesheim* 

Elektron  403a 

Method  of  burning  in  furnaces.     (P)  Nield  and 

Melland 535A 

mines.     See  under  Mines. 

Notes  on  a  Manchurian fromFushun.     Himus       ..     333T 

Occlusion  of  gases  in .     Monro  ..  ..  ..      129T 

and  oil ;    Destructive  distillation  of  mixtures  of  . 

Davis  and  others  . .  . .  . .         . .  . .       92a 

Origin  of .     Donath  and  Lissner         ..  ..  ..     847a 

Origin  and  chemical  structure  of  .    Fischer  and 

Schrader  317a 

output  207R 

output  per  man  in  Great  Britain  and  United  States        . .     541R 

Oxidation  of  different  varieties  of by  chromic  acid. 

Florentin  972a 

Oxidisability  oi  and  determination  of  moisture. 

Mertens  . .  . .  . .  . .  . .  . .  . .     577a 

Physical  testing  of .    Duncan  . .         . .         . .     504r 

Plant  for  and  method  of  treating .     (P)  Smith,  and 

International  Coal  Products  Corp.      . .  . .  . .     455a* 

powdered;  Use  of in  the  lead  blast  furnace.  Hamil- 
ton           900a 

Prices  of 224r 

Production  of in  1921 457R 

Production    of    ammonium    chloride    from    .    (P) 

Christenson  and  others  ..  ..  ..      536a,  537a* 

Production  and  exports  of . .  . .  . .  . .     201H 

Production  of  hydrocarbons  and  their  derivatives  by 

heating with  hydrogen.    (P)  Ld flier     ..         ..     850a 


SUBJECT    INDEX. 


133 


Coal— continued. 

Production  of  low-temperature  tar  and  semi-coke  by 

distillation  of .     (P)  Deutsche  Erdol-A.-G.       . .     890a 

Production  of in  Spitzbergen  . .  . .  . .  . .     159R 

pulverised  ;    Distribution  of in  blast-furnace  work. 

(P)  Wagstaff,  and  American  Smelting  and  Refining 

Co 379a 

pulverised  ;  Explosion  risks  with . .  . .  . .     349R 

Pyridine  extraction  of  Upper  Silesian  .     Hofmann 

and  Damm        . .  . .  . .  . .  . .  . .     318a 

Rakes  or  scrapers  for  vertical  dryers  for  wet .     (P) 

Harvie  and  Harvie       . .  . .  . .  . .  . .     245a* 

Recovering from  ashes.     Green         . .  , .  . .     359a 

Recovery  of  good  quality,  non-deliquescent,  bituminous 

from  fuels  of  lower  value.     (P)  Carbozit  A.-G.     453A 

Recovery  of ,  held  in  suspension,  from  coal-bearing 

water  and  streams.     (P)  Holland     . .  . .      930a,  931a* 

Reparation  . .  . .  . .  . .  . .  . .     180R 

Report  of  British  Association  committee  on  utilisation 

of 404R 

Tesearch  in  Germany  . .  . .  . .  . .  . .     373R 

Resinic  constituents  and  coking  propensities  of  . 

Bone   and   others         58R,  240A 

Resins  in  bituminous  .    Wheeler  and  Wigginton     165a 

resources  ;  Physical  and  chemical  survey  of  the  national 

34R 

Retorts  for  distillation  of .     (P)  Low  Temperature 

Carbonisation,  Ltd.,  and  others      . .         . .         . .     851a 

Rincker  process  of  complete  gasification  of  and 

carburation  of  the  gas.    Gregory   . .         . .         . .     738a 

Sales  of to  Germany  . .  . .  . .  . .  . .     315R 

Sampling  and  analysis  of . .  . .  . .  . .       8lR 

seams  ;    Method  of  representing  the  structure  of  

and  proportion  and  properties  of  the  four  constitu- 
ents (vitrain,  clarain,  durain,  aud  fusain)  contained 

in  certain  Beams.    Sinnatt   . .         . .         . .         . .     698a 

Separation  of  constituents  of  banded  bituminous . 

Findley    and    Wigginton       . .         . .         . .         . .     531a 

Short  method  for  ultimate  analyst  of  .     Parr   . .     738a 

Blimes ;     Briquetting    or    drying  .      (P)   Ges.    fur 

Maschinelle  Druckentwiisserung  (Madruck)  . .     243a 

slimes;   Utilising .     (P)  Brune  and  others  . .  ..     455a* 

sludge  or  the  like  ;   Treatment  of for  manufacture 

of  briquettes.     (P)  Vahle 166a 

and  smoke.     Cobb  ..  ..  ..  ..  ..  ..     132r 

smoke  abatement    . .         . .         . .         . .         . .         . .     143R 

Spontaneous  combustion  of .     Erdrnann      . .  . .     887a 

Spontaneous  ignition  of  — — .     Drescher  . .  . .     797a 

substitute  :    anthracoal      . .  . .  . .  . .  . .     536r 

Sulphur  compounds  of  and  their  behaviour  on 

distillation.     Wibaut 888A 

"Systematic  examination  of  with  particular  regard 

to  direct  determination  of  volatile  matter.     Fritsche     128a 
Testing    ■ to    be  used    for    manufacture    of    gas. 

(P)    Thermal    Industrial    and    Chemical    (T.I.C.) 

Research  Co.,  and  Morgan    . .  . .  . .  . .         4a 

Treating to  obtain  smokeless  fuel.     (P)  Root     . .     740a 

Treatment    of    .     (P)    Smith,    and    International 

Coal  Products  Corp.    . .         . .         . .         . .         . .     405a* 

Treatment  of to  cause  or  facilitate  its  breaking  up 

or  crushing.     (P)   Lesslng      . .  . .  . .  . .     130A 

Treatment  of by  flotation.     (P)  pTice,  and  Minerals 

Separation,     Ltd 888  a 

Vertical  retort  for  distillation  of  .     (P)  Wulf  and 

Hebers  456A 

washery  waste ;    Treatment  of  .    Berl  and  Vier- 

hcller 207A 

Coals  ;   Agglutinating  value  of  some  Durham .   Weighell       17t 

Lignites  and  brown  and  their  importance  to  the 

Empire.     Bone  . .  . .  . .  . .  . .     126R 

Suitability  of  different for  preparation  of  activated 

carbon.     Fischer  and  others  . .  ..  ..  ..     851a 

Ultimate  composition  of  British  .    Drakeley  and 

Smith 165A 

Coating  agents  ;    Manufacture  of  .     (P)  Rowland,  and 

Federal  Products  Co.  382a 

compositions  ;    Manufacture  of  : 

(P)   Collings  826a 

(P)    Imperial    Trust    for    Encouragement    of 
Scientific     and     Industrial     Research,     and 
Schryver  . .  . .  . .  . .  . .     905a 

(P)  Oakes,  and  National  Biscuit  Co.  . .     382a 

(P)  Scherer  and  Barna -.     337a 

(P)    Strauss  720a,  868a 

(P)  Traun's  Forschungslaboratorium  . .  . .     381a 

compositions  for  preservation  of  wood,  pasteboard, 
masonry,  leather,  sheet  iron,  fabric,  etc.  (P) 
"  Freeses  Patent "  Eisenschutz  und  Schrauben- 
wellenbekleidung  fiir  Schiffe  Ges.    . .  . .  . .       66a 

materials  ;    Manufacture  of ■.     (P)  General  Elcctrio 

Co 867a 

metal  articles.     (P)  Gebr.  Jacob  . .  . .  . .  . .     417a 

metal    objects    with    a    layer    of    another    metal.     (P) 

Stalhane  and  Kring    ..  ..  ..  ..  ..     767a* 

metal  wires  with  metals  by  heating  in  metallic  dusts. 

(P)    Kuhn  108a 

metals  for  the  purpose  of  permitting  electric  currents 
to  operate  by  the  action   of  light ;     Composition 

for  .     (P)  Falk  and  Wood         690A 

substances  to  protect  them  or  render  them  non-porous  ; 

Production  of  materials  for .    (P)  Cleghorn  . .       23a* 


Coating — continued. 

wire  with  varnish  and  the  like ;    Apparatus  for  . 

<P)  British  Cellulose  and  Chemical  Mfg.  Co.,  and 

Dickie 
wires  and  the  like.    (P)  Soc.  Chim.  Usines  du  Rhdne  . . 
wood  and  metals  ;  Composition  from  spent  gas-purifying 

material   for  .     (P)   Watson,   and   San   Diego 

Consolidated  Gas  and  Electric  Co 

Coatings  ;    Depositing  metallic  on  metal  articles.    (P) 

Haines  and  others 
Preservative for  wood,  pasteboard,  masonry,  leather, 

iron,  etc.     (P)  Reck,  and  Freeses  Patent  Eisenschutz 

und  Schraubenwellenbeklcidung  fiir  Schiffe 
Cobalt  and  its  alloys  ;  Electrolyte  for  use  in  electrodeposition 

of  .     (P)  Marino  

Detection    and    determination    of   small    quantities    of 

in  Bilicate  rocks.     Hackl 

Detection  of by  the  thiocyanate  reaction.    Ditz  . . 

Detection  of in  varnishes  and  oil  lacquers.    Voll- 

mann 

Determination  of in  nickel  ores.     Lathe  .. 

Determination  of  in  steel.     Eder 

Gravimetric  determination  of  .     Willard  and  Hall 

-nickel  ores  ;  Treatment  of  arsenical .    (P)  Wescott, 

and  Kalmus,  Comstock  and  Wescott 
Presence  of  in  arable  soil.     Bertrand  and  Mok- 

ragnatz 
Presence  of  nickel  and  in  plants.     Bertrand  and 

Mokragnatz 
Separation  of  by  means  of  phenylthiohydantoio 

acid.     Willard   and    Hall 

-tungsten  alloys.     Kreitz 
and   its  uses.     Barclay 

Volumetric  determination  of  -.     Willard  and  Hall 

Cobalt  hydroxide ;    Preparation    of    colloidal    solutions    of 

and  some  other  compounds  of  cobalt.    Tower 

and   Cooke 
Cobaltammine    salts     of     nitro-dyestuffs.     Researches    on 

residual   affinity   and   co-ordination.     Morgan   and 

King 

Coca  production  in  Java 

Cocaine  ;    Importation  of  

New  base,  isomeric  with  tropine  and  pseudotropine,  from 

residues  of  hydrolytic  products  of .     Troger  and 

Schwarzenberg 
production     ..  ..  ..  ..  ..  ..  ..     316r 

Cocoa  fermentation.     Davies    ..  ..  ..  ..  ..     214R 

Manufacture    of    a    homogeneous    durable    mixture    of 

calcium  chloride  and  .     (P)  Felheim  . .  . .     388a 

substitute  ;    Manufacture  of .     (P)  Leffer  . .  . .     115a 

Theobromine  content  of  .     Wadsworth      . .        98r,  388a 


475a* 

986a* 


224a 


62a 


559a* 
145a 

443a 
235a 

381A 
2721 
467A. 
999A 

258A 

641a 

873a 


378A 
167R 
999A 


980A 

853a 

402R 
336R 

116a 


Torrefaction  of  .     Lecoq 

Coconut  butter.     See  Coconut  oil  wider  Oils,  Fatty. 

food  products.     (P)   Smith  

meal ;     Relative    growth -promoting    value    of    protein 

of  and  of  combinations  of  it  with   protein 

from  various  other  feeding  stuffs.     Maynard  and 
Fronda 
oil.     See  under  Oils,  Fatty. 
Coconuts  ;   Manufacture  of  foods  from .     (P)  Smith    . . 

Nitrogen  distribution  of  proteins  extracted  by    0'2% 

sodium  hydroxide  solution  from .     Friedemann 

Codeine  ;    Determination  of  morphine,  narcotine,  and  ■ 

In  Indian  opium.    Rakshit 

Estimation  of  .    Annett  and  Sanghi 

Codeine  hydrobromide  ;   Properties  of and  preparation 

of  solutions  for  injection.     Martin  .. 
Cod-liver  oil.     See  wider  Oils,  Fatty. 
Co-enzymes  and  vitamin  B.    Von  Euler  and  Myrback   . . 
Coffee  beans;  Extraction  of  caffeine  from .     (P)Roselius 

beans  ;     Manufacture   of    a   substitute    for    raw   . 

(P)    Heinemann 

Fermentation  of  .     Davies 

Roasting    and    packing    ground    or   whole    .    (P) 

Reynolds 

Robusta .     Viehoever  and  Lepper 

substitutes  ;    Manufacture  of  .     (P)   Lendrich    . . 

Coke ;    Apparatus   for   conveying   and   discharging  incan- 
descent     into   cooling   chambers.     (P)   Sulzer 

Freres 

ash  ;   Colorimetric  determination  of  phosphorus  in . 

Misson 

breeze  ;    Marconnet  ash-fusion  gas  producer  for  gasi- 
fication of  .    Riviere 

Chamber  ovens  for  manufacture  of  gas  and  .    (P) 

Koppers 

Combustibility  of as  a  factor  in  reducing  fuel  con- 
sumption in  blast  furnaces.  Sutcliffe  and  Evans  . . 

Cooling with  inert  gases.    (P)  Zcche  de  Wendel,  and 

Schwenke 

Desulphurising  used  in  metallurgy  of  iron.     (P) 

Estabrooke  and  others 

Determination    of   apparent   specific   gravity   of   . 

Hausser 

Dry  cooling  of ■ 

Dry  cooling  of .     Schlapfer 

Dry  cooling  of with  indifferent  gases.     Wunderlich 

Effect  of  some  physical  conditions  during  carbonisation 

of  coal  upon  quality  of  resulting .     Biddulph- 

Smith 


681A 
229a 


606a 

432a 

342a 

77a 
475R 

782A 

190A 
479a 

76a. 

214R 

781A 
342A 
994A* 


731A 

739A 

535A 

205T 

660A 

764A 

207a 

422R 

798A 

90A 


134 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 
Cok  e — continued. 

Furnaces  for  production  of  gas  and : 

(P)  Gewerkschaft  ver.  Constantin  der  Grosse 

47a     91a* 

(P)  Riepe '  535a 

Liberation  of  nitrogen  from as  ammonia.  Monk- 
house  and   Cobb          263R,  632a 

lignite-  ;  Ignition  temperature  of .     Plenz  . .  . .     658a 

low  in  ash  :  Cleaning  coal  for  production  of .     Thau     797a 

Machines  for  crushing  .     (P)  Lees  and  Shore     . .     451a* 

Manufacture  of  : 

(P)    Illingworth 889a,  973a 

(P)  Trent,  and  Trent  Process  Corp 453a 

Manufacture  of  metallurgical  .     (P)  Leadbeater  . .       46a 

Manufacture  of  for  metallurgical   purposes.     (P) 

Baille-Barrelle  . .         . .         . .         . .         . .         4a 

Means    for    extracting   from    vertical    retorts   or 

chambers.     (P)   Dempster,    Ltd.,   and    Rodger    . .     975a* 

Microstructure  of .     Beilby  . .  . .  . .  . .     344T 

-oven    conditions ;     Thermal    dissociation    of   ammonia 

with  special  reference  to  .     Fox  well  . .  . .     114T 

-oven  doors  and  doorways.     (P)  Wilputte      . .  . .     537a* 

•oven  doors  and  the  like.     (P)  Secure  Castings,  Ltd., 

and   Wright 168a* 

-oven  gas.     See  under  Gas. 

-oven  plant ;    Operation  of  Koppers  by-product  . 

Wallin 298T 

-oven  wall.     (P)   Piette,  and   Belgian   American   Coke 

Ovens  Corp 851a* 

-oven  walls  ;  Heating .     (P)  Roberts,  and  American 

Coke   and    Chemical    Co.       ..  ..  ..  ..       91a* 

-ovens  — —  : 

(P)    Artzinger 801a 

(P)    Charpy  3a 

(P)  Coppee  et  Cie 166a 

(P)  Roberts,  and  American  Coke  and  Chemical 

Co.  .      455a* 

(P)  Roberts,"  and  Chicago'Trust  Co.     ' "     322a*,  930a 

(P)  Sato 243a 

(P)   Soc.   des  Fours  h  Coke   Semet-Solvay  et 

Piette 282a 

(P)  Summers        493a 

(P)   Zwillinger 130a 

-ovens  ;   Ammonia  and  its  stability  in .     Hodsman     166a 

-ovens  ;    Carbon-consuming  means  for  ■ .     (P)  Van 

Ackeren,  and  Koppers  Co.    . .  . .  . .  . .     360a 

-ovens  ;    Discussion  on  bricks  for . .  . .  . .     446R 

-ovens  ;    Doors  for  .     (P)  Soc.  G6n.   de  Fours  a 

Coke,    Systemes    Lecocq        . .  . .  . .  . .     455a* 

-ovens  ;   Gas  burners  of .     (P)  Coke  and  Gas  Ovens, 

Ltd.,  and  A.  R.  Smee 4a 

-ovens  ;    Installation  of with  regenerators  on  both 

sides  of  a  battery  of  ovens.     (P)  Schroder  . .  . .     131a 

-ovens  or  the  like.     (P)  Roberts,  and  American  Coke  and 

Chemical  Co 3a,  91a 

-ovens    and    the    like ;     Heating    wall    for    .     (P) 

Roberts,  and    American    Coke   and    Chemical  Co.       46a 

Ovens  for  producing  gas  and  .     (P)  Koppers     . .     167a 

-ovens ;     Recuperative  .     (P)   Piron  . .  . .     848a 

-ovens  ;    Regenerative  : 

(P)  Brown 243a 

(P)  Coke  and  Gas  Ovens,  Ltd.,  and  Kimbell  . .     320a 

(P)  Hubbell  and  others 130a 

(P)    Soc.    G6n.    de   Fours   a    Coke    Sysbemes 

Lecocq    . .  . .  . .  . .  . .  . .       90a 

-ovens  ;    Retort  .     (P)  Summers 624a* 

-ovens;    Sole-heated  .     (P)   Zwillinger      ..  ..     851a* 

pitch-  ;    Determination  of  volatile  combustible  matter 

in .     Lloyd  and  Yeager  . .         . .         . .         . .     319a 

Plant  for  quenching  and  conveying .     (P)  Frankel     624a* 

Plant  for  separating from  waste  fuel  and  residues. 

(P)  Weber,  and  Weber  und  Co 851a* 

Preheating  air,  and,  if  necessary,  gas  In  chamber  ovens 

for  manufacture  of  gas  and  .     (P)  Wolff     . .     701a 

Production  of  bituminous  substances  of  high  melting 
point  and  their  application  to  production  of  metal- 
lurgical    from  non-caking  coal.     Lierg  . .     532a 

Production  of  shrunk  in  electrode  manufacture. 

Yardley  259a 

Proposals  for  testing for  blast-furnace  and  foundry 

uses.     Koppers  . .  . .  . .  . .  . .     375a 

Recovering  from  ashes.     Green     . .  . .  . .     359a 

Report  on  efficiency  of  low-temperature in  domestic 

appliances.     Fishenden  . .  . .  . .  . .       13K 

or  residues  from  retorts,  producers,  and  the  like  ;  Means 

for  discharging  .     (P)  Hardie,  aud  Maclaurin 

Carbonisation,    Ltd.     . .  . .  . .  . .  . .     624a* 

semi-  ;    Oven  for  production  of  from  fuels.     (P) 

Lentz 801a 

Bemi- ;    Production  of  low-temperature  tar  and  

by    distilling    bituminous    material,    such    as    coal 

or    lignite.     (P)    Deutsche    Erdol-A.-G 890a 

Shatter  and  tumbler  tests   for  metallurgical       . 

Kinney  and  Perrott 928a 

Structure  of  .     Greenwood  and  Cobb,      . .         94r,  181t 

Structure  of :  its  origin  and  development.     Beilby 

241R,  341T 

Sulphur  compounds  of .     Wibaut 888a 

Volumetric  determination  of  true  and  apparent  specific 

gravity  of .     Schroolke 798a 

Coking  chambers  for  gas  generators.     (P)  Bismarckhutte  . .     623a 
coal  and  other  tar-yielding  materials  by  means  of  hot 

combustible  gases.     (P)  Pape  701a 


Coking — continued. 

Determination  of  degree  of  swelling  in  .     Lant  ..     319a 

installation  with  internal  heating.     (P)  Freise  . .  . .     283a 

material  discharged  from   low-temperature  distillation 

apparatus.     (P)     Barrs  ..  ..  ..  ..     455a 

of  peat  and  the  like.     (P)  Pohl  und  Von  Dewitz. .  6a,  802a 

processes  ;    Chemistry  of  .     Lierg   . .  . .  . .     532a 

retort  ovens : 

(P)  Becker,  and  Koppers  Co 493a 

(P)    Van   Ackeren,   and   Koppers   Co.         130a,  360a 

(P)  Warden  660a 

retort  ovens  ;    Heating  flues  of  .     (P)  Warden  . .     660a 

Ring-shaped    plate-furnace    for   low-temperature   . 

(P)    Honigmann  ..         ..         ..         ..         ..     456a 

Cola.     See  Kola. 

Colchicine  ;   Assay,  isolation,  and  special  properties  of . 

Davies  and   Grier 782a. 

Cold  ;   Generation  and  utilisation  of .     Measurement  of 

low  temperatures.     Darling 
-storage  practice  ;  Thermometric  lag,  with  special  refer- 
ence to  .     Griffiths  and  Awbery       . .       471R,  961a 

Collagen  ;   Isoelectric  point  of .    Thomas  and  Kelly  . .     262a. 

Collidine  ;  Condensation  of with  acetaldehyde.     Kondo 

and  Takahashi 976A 

Collodion  coating  mixture  and  film  ;    Light-sensitive  . 

(P)  Rheinberg 

membranes  ;    Preparation  of  flexible .     Looney  . . 

Colloid    chemistry  ;    Formation   of   a   society   for   ■   in 

Germany 
disperse  systems  ;    Analytical  chemistry  of .     Gut- 
bier  and  others 
membranes    for    filtration    purposes ;     Production    of 

cloudy  or  opaque  .     (P)  De  Haen 

mill.     Forster  and  Reilly 

powders ;     Manufacture    of    .     (P)    Plauson    and 

Rotman 
powders  and  masses  therefrom  ;    Manufacture  of  . 

(P)    Traun's    Forschungslaboratorium 
Colloidal  calcium  hydroxide.     Von  Glasenapp 

carbon ;     Cataphoresis   of  .     Goldberg 

clay  ;    Determination  of in  soils.     Sokol 

copper  hydroxide.     Paal  and  Steyer 

copper  ;  Variously  coloured  modifications  of .     Paal 

and    Steyer 
dispersions ;      Apparatus     for     producing     .     (P) 

Traun's   Forschungslaboratorium    Ges. 
dispersions    of    oils    and    organic    substances ;     Manu- 
facture  of   .     (P)    Plauson 

ferric    hydroxide,    aluminium    hydroxide,    and    silicic 

acid ;      Centrifugal    method    of    preparing    . 

Bradfield  

iron  solution  having  a  neutral  or  feebly  alkaline  reaction  ; 

Manufacture  of  .     (P)  Timpe 

material ;    Relation  of  anomalous  osmosis  to  swelling 

of .     Bartell  and  Sims 

matter  ;  Vacuum  filtration  of from  liquid  mixtures. 

(P)   Mauss 
metal  hydrosols  ;    Medicinal  use  of  protected  and 

significance  of  their  after-effects.     Voigt 

metals  ;    Preparation  of  .     (P)   Richter 

part    of    tungsten    powder ;     Determination    of    . 

Lottermoser 
selenides    or    tellurides  ;     Manufacture    of    as    a 

remedy   for   malignant   tumor.     (P)    LUienfeld    .. 
selenium  ;     Influence    of    freezing    on    .     Gutbier 

and    Emslander 
silver  with  gelatin  as  protective  colloid.     Gutbier  and 

others 
silver  halides  ;    Preparation  of  solid  — 
silver  and   photochlorides ;     Colour  of 

and   Marx 
solutions  of  carbon  in  water.     Thome 
solutions  of  metals  and  metallic  oxides  ; 

.     (P)  Sichel  and  Stern  . . 

solutions  of  metals  and  solid  colloidal  metals  ;    Manu- 
facture of  .     (P)   Richter  

solutions  of  nickel  and  cobalt  hydroxides ;    Preparation 

of and  some  other  compounds  of  these  metals. 

Tower  and   Cooke 980a 

solutions  ;    Preparation  of .     (P)  Plauson  . .  . .     686a 

solutions  of  silver  halides  ;    Manufacture  of  .     (P) 

Riedel  A.-G 392a 

solutions,  suspensions,  or  emulsions  ;    Manufacture  of 

.     (P)  LUienfeld 686a,  997a 

state  ;    General  method  for  obtaining  gels  of  inorganic 

salts  and  its  relation  to  theories  of  the .     Charit- 

schkov 938a 

sulphur;  Physico-chemical  investigation  of .     Rossi     414a 

suspensions  ;    Distribution  of  particles  in .     Porter 

and   Hedges      . .  . .  . .  29  lR 

suspensions  ;     Production    of    stable    in    organic 

media  immiscible  with  water.     (P)  Karplus         . .     787a. 

Colloids  ;    Absorption  of  water  by  soil  .     Robinson  . .     991A 

Apparatus  for  measuring  rate  of  coagulation  of  . 

Ostwald   and   Von   Hahn 839a 

Electrical  precipitation  of  .     Hall,  jun.    . .  ..     556a 

"Fog  process"  for  preparation  of  .     Sekcra      ..     795A 

Function  of in  corrosion.     Bengough  and  Stuart  . .     820a. 

Influence  of  protective on  corrosion  of  metals  and 

on    velocity    of    chemical    and    physical    change. 

Friend  and  Vallance 378a. 


(P)  Riedel 
-.     Schaum 


Preparation  of 


961a. 


37A* 

271a 


372R 
308A 


206a 
435R 


381A 
981A 
41  4A 
829A. 
140A- 

270A 

449A 

837A 

500a. 

632a. 

303a 

576A 

483a 
232a. 

145A 

786a 

270A 

519A 
728A 

788A 
811a. 

232a 

119a 


SUBJECT  INDEX. 


135 


(P) 


Colloids — continued. 

Preparation  of  .    (P)  Plauson 

Preparation  of  neutral  solid  wax  and  resin 

Chem.    Werkstatten 

Protective  : 

Gutbier   and    Huber 

Gutbier    and    others       ..         ;.  v..  ,.-' 

R6le  of  hydrogen  ion   concentration   in  precipitation 

of .    Tartar  and  Gailey  ....         . . 

Theory  of  the  mechanical  synthesis  of .     Sekera  . . 

Colombia  ;    New  oil-nuts  from  ■  ..         ■■         ■  ■         ■■ 

Report  on  finance,  Industry,  and  trade  of .    Rnys- 

Jenkins  . .         . .         •  -         •  •         ■  ■         •  • 

Colombo  root :    Constitution  of  alkaloids  of  .     Spath 

and    Bohni 
Colophenic  acids : 
Aschan 
Fahrion 

Colorimeter.    Moreau    and    Bonis 

Colorlmetric     determinations;      Application     of     coloured 

glasses  instead  of  liquids  in  .     Sonder. 

Colorimetry  ;  New  method  of .    Dosne 

Colour  of  azo  dyestuffs  and  related  coloured  substances  ; 

Calculation   of  the  .     Moir       . .  •  •  •  • 

in  beers  and  worts  ;   Standard  solution  for  estimation  ot 

.     Lampe 

and  constitution.     Kehrmann      . .         .  ■         •  •         •  • 

effects   on   fabrics;    Production   of   .    (P)    Calico 

Printers'  Assoc,  and  others 

effects  ;    Production  of  .     (P)  Ornstein 

index  ;    The  new  .    Rowe 

-lakes.     See  under  Lakes. 

measurement  of  oils.     Parsons  and   Wilson 

rule ;    Industrial  value  of  Ostwald's  

Colour    Users'    Association 

Colouring  matter  for  beer  and  the  like;    Manufacture  of 

.    (P)     Liiers       431A' 

matter  of  fruit  of  Gardenia  ftorida.     Munesada 
matter   of    Lilhospermum    Erythrorhizon.     Majima  and 
Kuroda  . .         .  ■         •  •         ■  •         •  ■ 

matter;    Manufacture  of  brown  for  margarine. 

(P)   Mohr  ••         ■■         " 

matter ;     Photographic    estimation    of    concentration 

of  a  .     Hess        

matter  of  red  roses.     Currey 

matter  of  the  scarlet  pelargonium.     Currey    . .         .. 

matters  ;   Formation  of by  oxidation  with  exposed 

silver  halides.    Fischer  and  Siegrist 

matters;    Reduction  of  ■  by  light.    Thran 

matters.     See  also  Dyestuffs. 

Colours  ;    German  trade  in  • 

Standardisation  of  .     Trllhch  . .  . .  •  • 

■    water- ;     Manufacture  of  .  (P)    Plauson  s  Forsch- 

ungsinst.  . .  ■  •  •  -  •  •  ■  ■  ". 

Columbium  ;    Separation  of  tantalum  and by  means  01 

selenium  oxvchloride.     Merrill  ••.;,•  j 

Separation    of    zirconium   from    .    hchoeller    and 

Powell 

Combustion  of  bituminous  fuels  with  recovery  of  by-products. 

(P)   Strache ■  ■  ■  ■ 

of  complex  gaseous  mixtures.     Payman  and  Wneeler 
Formation  of  acetylene  and  ammonia  during  incomplete 

.     Hofmann  and   Will    . .  .  •  •  •  ■  • 

of  fuel  in  furnaces  with  recovery  of  by-products.    (P) 

Wilton „ 

Furnace,  and  process  of .     (P)  Seymour    . .         . . 

of  gaseous  fuel  in  furnaces.     (P)  Soc.  Anon,  d  Exploit. 
Brevets    Cousin  •  •         •  •         •  •         •  • 

of  organic  compounds;    Wet  by  means  of  sul- 
phuric acid  and  chromates.     Simon  . .         . . 

process.    (P)   Anderson,  and  International  Fuel  Con- 
servation Co.    . .         . .         .  •         •  •         ••         •  • 

process  and  apparatus  for  use  in  furnaces.     (P)    Soc. 
Franc,  de  Materiel  Agricole  et  Industnel   . .         . . 

products ;     Generation   of   under   pressure.    (P) 

Maccallum         •  ■         -  • 

products  ;    Treating  and  handling  .     (P)  Mct.ahan 

Rapid  calculation  of  maximum  temperatures  developed 

in    .     Bronn         . .         .  ■         •  ■         ••     .    •  • 

of  solid  and  liquid  fuels  ;  Means  for .    (P)  Lewis  . . 

temperatures.    Bronn 
Committees  of  the  Council  of  the  Society 

Company  News: 

Alby  United  Carbide  Factories,  Ltd. 
American  Cyanamid  Co.    . .         .. 

Anglo-Continental  Guano  Works,  Ltd 

Anglo-Persian  Oil  Co.,  Ltd.  ;..     '■ 

Associated    Portland   Cement   Manufacturers,   Ltd.    .. 
British  Cellulose  and  Chemical  Manufacturing  Co.,  Ltd. 

British  Cotton  and  Wool  Dyers'  Association 
British  Cyanides  Co.,  Ltd. 

British   Dyestuffs  Corp.,   Ltd 

British  Glues  and  Chemicals,  Ltd 

British  Oil  and  Cake  Mills,  Ltd.  . .  .  • 

British  Sulphate  of  Ammonia  Federation,  Ltd 

Broken  Hill  Proprietary,  Ltd 

Brunner,  Mond  &  Co.,  Ltd. 

Fanti  Consolidated,  Ltd. 

Gas  Light  and  Coke  Co. 

Kaye'B  Rubber  Latex  Process,  Ltd 


5R 


18K,  84R, 


686a 

945a 

157a 
157a 

969a 
795a 
570R 

162R 

954A 

183A 
300a 
998a 

962a 
485A 

804a 

911a 

288a 

55A 
325a 
545R 

402A 
353R 
313R 

478A* 
976a 

744a 

497A 

408A 
246A 
365A 

838A 
838A 

339R 
22A 

826A 

158  A 

121A 

208a 
359a 

928a 

454A 
6A* 

579A 

614A 

931A* 

454a 

47A 
47A 

795A 
46A 
577A 
560R 

182R 
428R 
338R 
40R 
205R 

205R 
248R 
357R 
269R 
428R 
248R 
514R 

18R 
269R 
249R 

84R 
428R 


PAQE 
Company  News — continued. 

Lever  Bros.,  Ltd 181R 

Low  Temperature  Carbonisation,  Ltd.              . .         . .  18R 

Magadl  Soda  Co.,  Ltd 572R 

Maypole  Dairy  Co.,  Ltd 672R 

Minerals  Separation,  Ltd 18R,  357R 

Mond  Nickel  Co 338R 

National  Employers'   Mutual  General  Insurance  Asso- 
ciation,   Ltd.     . .          . .          . .          . .          . .          ■ •  205R 

Nitrate  companies    . .         . .         . .         . .         . .        40R,  427R 

Nobel  Industries,   Ltd 427R 

Peachey  Process  Co.,  Ltd.               . .          . .          . .          ■  •  57-R 

Societe  Industrielle  du  Radium  . .         . .         . .         . .  1°R 

South  African  Carbide  and  By-Products,  Ltd.               . .  40R 

Standard  Chemical  Co.,  Ltd.,  Canada 514R 

South   Metropolitan   Gas   Co 8*r 

Sulphide  Corporation.   Ltd i»r 

United  Alkali  Co.,  Ltd 204R 

Compressibilities  ;  Determination  of up  to  high  pressure 

and     applications    to     high-pressure     chemistry. 
Williamson 


392R 


Compressors ;      Process    for 
in  the  interior  of  air  ■ 


effecting    chemical    reactions 
(P)   Brutzkus 

Concentrating   apparatus.    (P)    Rigby  

liquids.     (P)  Zahm,  and  Zahm  and  Nagel  Co. 
pulverulent  material ; 

(P)  Ondra 

(P)  Ondra.  and  Concentrators,  Ltd 

solutions.     (P)    Metallbank    u.    Metallurgische   Ges.    . . 
solutions  and  similar  liquids  by  atomising  by  means 

of  hot  compressed  air ;    Apparatus  for  .    (P) 

Wolde 

Concrete.     (P)  Longan  y  Senan  and  Di  Godio  . . 

coating  and  the  like.     (P)  Ellis,  and  Ellis-Foster  Co.  . . 

ferro- ;    Corrosive  action  of  gas-liquor  on  .     Haas 

Flexural  strength  of  plain  .     Abrams      . .  ■  . 

and   the   like ;     Production   of   waterproof   .    (P) 

Winkler.  . .         . .         •  ■         ■  ■        •• 

and  the  like  ;  Rendering suitable  for  use  in  stopping 

incursions  of  water  or  for  waterproofing  or  hydraulic 
or  like  purposes.     (P)  Winkler        . .  . .  . . 

Manufacture  of  a  material  from  moler,  infusorial  earth, 

and  the  like,  suitable  for  production  of  light  . 

(P)  Dalhoff  and  Lunn 

Manufacture  of  refractory  .    (P)  Loeser 

materials;    Manufacture  of  .    (P)  Roucka         .. 

pavements;    Use  of  pit-run  gravel  and  excess  sand  m 

.    Crum     . .         . .         •  •         •  • 

Process  for  making  impervious  and  increasing  its 

adhering  power  and  speed  of  setting.     (P)  Winkler 

Production  of  waterproof .     (P)  Badder  and  others 

and  reinforced  concrete  ;    Resistance  to  fire  of  . 

Lea  and  Stradling .••         ■• 

Rendering resistant  to  water  charged  with  soluble 

compounds.    (P)   Erdahl 

Tests  of  in  sea-water.     Wason      . .  . . 

vessels  impermeable  to  oil  and  similar  liquids  ;    Manu- 
facture of  .    (P)   Guttmann 

Condensation ;    Fractional  .     (P)  Schulzc,  and  Barrett 

of  mixtures  of  vapours  of  volatile  substances ;  Apparatus 

for  effecting  fractional  .     (P)  Selden  Co.,  and 

others ,    ■■      1WA 

products  of  aliphatic  aldehydes  and  dl-  or  polyhydroxy- 
benzenes;  Manufacture  of  water-soluble .  (P)  Zink 

products  of  halogenated  benzene  derivatives  and  aroma- 
tic  hydroxy   compounds ;    Manufacture   of   . 

(P)  Kalle  und  Co 

products  ;    Manufacture  of  phenolic  : 

(P)  Redman  and  others 

(P)   Redmanol   Chemical   Products  Co. 

products  of  phenolcarboxylic  acids  or  their  derivatives 

and  aldehydes  ;  Manufacture  of .     (P)  Meister, 

Lucius,  und  Bruning  . .  ■•_■•-     4JL.       , ' ' 

products  of  phenols  and  aldehydes.     See  under  Phenol 

products;    Plastic  from  o-cresol.     (P)  Baekeland 

products    of    a/S-unsaturated     ketones    and    phenols ; 

Preparation  of  .     (P)  Chem.  Fabr.  Weller-ter 

Meer 


735A 

573A 
206A 

359A* 

716A 

450A 


44a 

254a 
103A 
142A 
757A 

503a 


417A 

178A 
758A 
758A 

593a 

466A 
16A* 

395R 

466A 
815A 

375A 
531a 

164A 
426A 

510a 

149a* 
224A* 

948A 
149a 

959a 


Condenser  tubes.     See  under  Brass. 

Condensers : 

(P)  Barnstead 

(P)  Ehrhart  ,,,•■-.      A' 

(P)  Engel,  and  Buffalo  Foundry  and  Machine  Co 

(P)  Goecke  •  ■ 

(P)  St.  Clair,  jun.,  and  Nitrogen  Corp.         .. 
Air-cooled  or  evaporative  surface  .     (P)MacLeod 

and    Reid         . .         -  ■         •  •         •  •         ■  •         -  \ 
By-product and  methods  of  operating  them.     (P> 

Roberts,  and  American    Coke    and    Chemical    Co 
Evaporative  for   steam   or   other  vapours.    (P> 

Ramsay 
and  the  like.     (P)  Mather  . .  . .  . .  ■  •  ■  • 

and  the  like  ;    Preventing  corrosion  and  formation  of 

scale  in .     (P)  Renger  and  Fuhrmann     .  1 

Preventing  deposition  of  scale  or  sludge  from  the  cooling 

water    in    surface    steam    .     (P)    Holle,    and 

Maschinenbau  A.-G.  Balcke  . .  ..  ■• 

Prevention    of    electrolytic    corrosion    in    surface    — — 

and    like    heat    exchange    apparatus.    (P)     von 

Wurstemberger  • 


45.0a 

240a* 

43a 

44A 

658A 

797A* 

455A* 

845a 
738a* 

A, 163A 
207A* 
845a 


136 


JOURNAL  OF  THE-SOCIETY  OF  CHEMICAL  INDUSTRY. 


Condensers — continued. 

for   vacuum    distillation   of    petroleum,   tar,   etc.     (P) 
Steinschneider 


539a 


Condensing  apparatus : 

(P)  Barrs 735a 

(P)   Merrell,  and   Merrell-Soule   Co 164a 

(P)  Selden  Co.,  and  others 164a 

apparatus  ;    Vapour  .     (P)  Johns   . .          . .          . .  88a 

device ;    Fluid  .     (P)  ForseUle         358a 

Conductometric    methods ;     Application    of    to    pre- 
cipitation    analysis.     Kolthoff          . .  . .      442a,  962a 

Confectionery  ;   Calculation  of  added  sugar  and  fat  in . 

Baumann  and  Kuhlmaun      . .          . .          . .          . .  74a 


Contact  material ;    Cleaning  ■ 
Chemical  Co.     . . 


(P)  Briggs,  and  General 


846a 


Cooler  ;  Combined  absorption  tower  and .    (P)  Deutsche 

Ton-  u.  Steinzeugwerke  A.-G.,  and  Plinke  . .         . .     736a 

Cooling  and  absorption  apparatus.     (P)  Jones,  and  Clark, 

MacMullen,  and  Riley 971a 

apparatus    (P)    Barrs        ..          ..          ..          ..          ..  735a 

apparatus   for    fatty    substances,    emulsions,    and    the 

like ;     Rotary  .     (P)   Bigum 383a 

fluids  ;    Apparatus  for  : 

(P)  Auld  and  Sons,  and  Rose 163a 

(P)    McCrary        971a 

gases  ;  Means  for .    (P)  Jordan,  and  L'Alr  Liquide  735a 

hot   solutions.     (P)    Balcke           2a 

liquids  ;   Apparatus  for .     (P)  Lebeau        . .          . .  886a 

liquids  and  charging  them  with  gas  by  use  of  snow-like 

carbon  dioxide.     (P)  Soc.  des  Gaz  Radioactiis   . .  28A 

oils  ;     Examination   of   water-soluble : 

Braun         988A 

Kaleta        800a 

tower.     (P)  Uhde . .          . .  44a* 

towers ;     Distributing    troughs    for    water    .     (P) 

Bennett,  and  Film  Cooling  Towers  . .          . .          . .  796a 

Co-ordination  ;   Researches  on   residual   affinity  and  . 

Interactions  of  acetylpropionylmethane  and  the 
tetrachlorides  of  selenium  and  tellurium.  Morgan 
and   Reeves      M  ..  ..  ..  ..  ..     53lR 

Copper  ;  Absorption  of from  the  soil  by  potato  plants. 

Cook 26a 

Action  of in  promoting  activity  of  nickel  catalyst 

in  hydrogenation  of  oils.     Armstrong  and  Hilditch     903a 
and  its  alloys  with  antimony  and  zinc  ;  Density  determin- 
ations on at  high  temperatures.     Bornemann 

and  Sauerwald  . .  . .  . .  . .  . .  . .     553a 

alloys ;     Manufacture   of   .     (P)    Heller    and    Von 

Rosthorn  596a 

and  its  alloys  ;   Prevention  of  selective  corrosion  of ■ 

subject   to   corrosive   action    of   water   containing 

ions.     (P)    Von    Wurstemberger       . .  . .  . .     795a 

alloys  ;    Treatment  of  .     (P)  Isabellen-Hiitte  Ges.     901a 

-aluminium  alloys : 

(P)  Iytaka,  and  Mitsubishi  Zosen  Kaisha     . .     505a 

Ohtani   and    Hemmi 377a 

-aluminium    alloys ;    Copper-rich    .     Stockdale    . .     818a 

-aluminium  alloys  ;   Effect  of  temperature  on  properties 

of  .     Lea   . .  . .  . .  . .  . .  . .     595a 

-aluminium ;     Density    determinations    in   the    system 

at     high     temperatures.     Bornemann    and 

Sauerwald  421a 

Apparatus  for  producing  .     (P)  Dawson   . .  . .     146a 

Autogenous  electric  welding  of  .     (P)  Canzler   . .     765a 

bars  and  pigs  ;    Water  in  blister  .     Ledoux         . .     899a 

-bearing  solutions  ;  Electrolysis  of .     (P)  Middleton 

and    Lalor        62a 

-cadmium  wire  for  electrical  transmission.     Smith    . .     105a 

Case-hardening  .     (P)   Gundersen    . .  . .  . .     221a 

catalysts.     (P>  Legg  and  Adam  . .  . .  . .  . .       89a* 

Catalytic  action  of  in  oxidation  of  ammonia  by 

persulphates.     Scagliarini    and    Torelli       . .  . .       12A 

Catalytic   activity   of  in  preparation   of   aniline. 

Brown  and  "Henke 976a 

Catalytic  activity  of in  dehvdrogenation  of  alcohols. 

Palmer 482a 

Catalytic  reaction  for  detection  and  method  for  esti- 
mation   of    smallest    traces    of    .     Hahn    and 

Leimbach  962a 

Cementation  of  by  means  of  chromomanganese. 

Sirovich  and   Cartoceti  . .  . .  . .  . .     595a 

Cementation    of   by    means    of    ferromanganese 

Sirovich  and   Cartoceti  . .  . .  . .  . .       17A 

coatings  ;   Production  of on  non-metallic  materials. 

(P)    Volmer 378A 

Colouring .     (P)  Laist  and  others  . .  .  .  . .     864a 

containing    bismuth ;      Rendering    suitable    for 

technical  use.     (P)  Meissner  . .  . .  . .  717a 

Corrosion  of  by  aqueous  solutions   of  ammonia 

and  of  ammonium  nitrate.     Bassett  and  Durrant     447r 

Corrosion  of  by  salt  solutions.     Miiller  . .  . .     713a 

Determination  of  iron  and  ■ — —  in  presence  of  one 

another.     Thornton,  jun.       ..  ..  ..  ..     526a 

Determination  of in  nickel  ores.     Lathe  . .  . .     270r 

Determination  of  small  quantities  of  antimony  in . 

Evans     ..  M  ..  ..  ..  ..     144a 

Electrolytic  extraction  of from  ores.     (P)  Allingham     146a 

Electrolytic  separation  of  gold,  silver,  and  from 

alloys.     (P)    Waeser 717a 

Electrolytic  solution  and  deposition  of .     Briggs  . .       60a 


Copper — continued. 

Electrolytic  treatment  of  ores  containing  zinc,  cadmium, 

and  .     (P)  Avery  and  others  . .  ; .  . .     767a* 

Extraction  of .    (P)  Hybinette,  and  Kristianssands 

Nikkelraffineringsverke  . .  . .  . .  . .      258a 

Extraction  of from  its  ores.    (P)  Neviil  and  Soanes     765a 

Extraction  of from  slag  in  reverberatory  furnaces. 

(P)  Butler  and  others 506a 

Filter  masses  for  separating  from  solutions.     (P) 

Wohlgemuth 353a 

Freeing    metals    from     .     (P)    Sein,    and    Norske 

Aktieselskab  for  Elektrokem.  Ind.  . .  . .  . .     766a 

"  Hydrogen  sickness  "  of .     Bauer  and  Vollenbruck     713a 

Idiomorphic  and  hypidiomorphic  structures  in  electro- 
deposited  zinc,  iron,  and  .     Hughes  ..  ..     421a 

Iodometric  determination  of  .     Lang         ..  ..     351a 

Iodometric  determination  of  arsenic  and  present 

together.     Kolthoff    and    Cremer    . .  . .  . .       76a 

Iodometric   determination   of   iron   and   .     Wober     545a 

Microchemical  estimation  of  .     Spacu      . .  . .     918a 

mines  of  Eastern  Finland  . .  . .  . .  . .  . .       35R 

mining  in  Papua     ..  ..  ..  ..  ..  ..     331R 

-nickel-lead   ores ;     Treatment   of   oxidised   .     (P) 

Perkins 555a 

-nickel  matte  ;    Treatment  of  : 

(P)    Haglund        

(P)   Hybinette 

-nickel  ores  of  the  Rustenburg  district,  S.  Africa.  Ortlepp 
ores  containing  lime  and  matrnesia;  Treatment  of  low- 
grade  ■ by  a  wet  method.     Schott 

ores  ;  Flotation  treatment  of  oxidised .    (P)  Smith 

oxide  ores  ;    Treatment  of  .    (P)  Thornhill 

and  phosphorus  ;  Rate  of  combination  of at  various 

temperatures.     Edwards    and    Murphy     . .      126R,  257a 
-plating  metal  parts  ;    Manufacture  of  a  solution  for 

.    (P)  Narr,  sen. 

Precipitation  of  from  solutions.     (P)  Adams 

Production,  exports,  and  imports  of  in  1921 

Production  of  white  enamels  for .     Danielson  and 

Reinecker 
Rapid  iodometric  estimation  of  iron  and in  mixtures 

of  their  salts.     Wark 
Recovering  or  dissolving  .     (P)   Bardt,   and   Soc. 

Hidro-Meta  turcica 
Recovery  of from  copper  sulphate  solutions.     (P) 

Wilcox  and  D'Aix 
Recovery  of  from  lyes  obtained  by  treatment  of 

cupriferous  pyrites.     (P)  Soulie-Cottineau  .. 
Recovery  of  zinc  and  from  the  leach  liquors  of 

burnt  pyrites.     Reisenegger 

Refining .     (P)    Martin,  and    Nichols    Copper    Co. 

-refining  electrolytes  ;  Conductivity  of .     Kern  and 

Chang 
Relation  between  compression  force  and  reduction  in 

height  of  test-pieces  of .     Doerinckel 

Sensitive  reaction  for  .     Spacu 

Separation  and  determination  of  lead,  antimony,  tin, 

and  .     Kling  and   Lassieur 

Separation  of  by  means  of  phenylthiohydantoic 

acid.     Willard    and    Hall 
Separation    of   silver   from    argentiferous    slimes   from 

electrolytic  refining  of  .     Fernandez  Ladreda 

silicate  ores  ;  Treatment  of .    (P)  Sulman  and  others 

-silicon-aluminium  alloys ;    Physical  properties  of  sand- 
cast  .     Dix,  jun.,  and  Lyon     .. 

sulphide  ores ;    Flotation  concentration  of  .     (P) 

Robbins,  and  Metals  Recovery  Co. 
-tin  ;  Density  determinations  in  the  system at  high 

temperatures.     Bornemann  and  Sauerwald 
Variously    coloured    modifications    of    colloidal    . 

Paal  and  Steyer  270A 

Very    sensitive   reagent    for   .     The    Kastle-Meyer 

reagent.    Thomas  and  Carpentier  . .         . .         . .       37a 

Volumetric     determination     of     .    Minovici     and 

Jonescu  . .         . .         . .         . .         . .         . .     394a 

Volumetric  determination  of by  means  of  sodium 

nitropru?side.     Joret  . .  . .  . .  . .  . .  1000A 

wires ;    X-ray  examination  of  inner  structure  of  . 

Ono         818A 

-zinc  alloys  ;    Cold-rolling  and  annealing  of .     Kor- 

ber    and    Wieland       . .  . .  . .  . .  . .     551a 

-zinc  alloys ;    Electrolytic  separation  of  .     Weise     672a 

-zinc  alloys;    Refining  — — .     (P)  Leiser          ..          ..      L80A 
-zinc  alloys ;     Shrinkage   and   hardness   of   cast   . 

Johnson  and  Jones     ..  ..  ..  ..      418R,  817a 

Copper  chlorides  ;    Oxidising  action  of  sulphur  dioxide  on 

.     Wardlaw  and  Pinkard 


379a,  555A* 
864a* 
899a 


377A 
942A 

258A 


506a 
901a 
315R 

102a 

394a 

716A 

506a 

901a* 

219a 
107a 

420a 

504a 

880a 

17a 

999a 

862a 
863a 

594a 

63a 

421a 


172a 

267a 
140A 
750a 


Copper  fungicidal  sprays.     Villedieu  and  Villedieu 

Copper  hydroxide  ;    Colloidal .     Paal  and  Steyer 

Solubility  of in  caustic  soda  solution.     Melbye  .. 

solutions ;     Alkaline  and   copper   oxide-ammine- 

cellulose  solutions.    Traube »- a 

Copper  oxide;    Reduction  of by  hydrogen.     Pease  and 

Taylor 98A 

solutions  ;  Alkaline and  copper-oxide  ammine-cellu- 

lose  solutions.     Traube  . .  . .  . .  . .     5S7a 

Copper    salts;     Determination    of    complex    formation    in 

solutions  of by  means  of  permutite.     Giinther- 

Schulze 587a 

Copper  sulphate  ;   Crude for  electric  cells.      (P)    Hum- 
phrey and  Pittman     . .  . .  . .  . .  . .     423a 

Crystallising  -.     (P)  Dossett 812a 


SUBJECT  INDEX. 


137 


Copper  sulphate — continued. 

Iodometric  determination  of  copper  and  iron  in  com- 
mercial  ■ ■.     Wober 

Manufacture  of by  means  of  synthetic  nitric  acid. 

Matignon 

Manufacture  of  from  waste  material  containing 

copper  or  its  alloys.     (P)  HUler 

Technical  preparation  of  .    Matsuno 

Copper  sulphide.     Gluud 

Structural  formula  for  .     Gluud 


545A 


939a 
981A 

370a 
588A 


Copra  cake  ;    Extraction  of  .     West  and  Feliciano   . .     S66a 

drying ;    Use  of  sulphur  fumes  in  .     Wells  and 

Perkins 9S7a 


Cork  board  ;    Manufacture  of  .     (P)  Cassano 

Manufacture  of  slabs  of  compressed .     (P)  Harnstein 

substitute  ;    Manufacture  of  .     (P)  Graham 

Corks  ;    Renovation  of  old  . 

Corn.     See  Maize. 

Corona  effect ;    Chemical  reactions  induced  by  the  in 

circuits  traversed   by  continuous  currents.    Mon- 

temartini 
Corrosion  of  aluminium  alloys.     RoIIa 

of  apparatus  or  plant ;   Means  for  treating  steam  to  re- 
duce or  prevent  in  winch  it  is  used.     (P) 

Bailey,  and    Metropolitan   Tickers   Electrical    Co. 
in  boilers  and  the   like  ;     Compositions   for  removing 

incrustations  and  preventing  .     (P)   Zynkara 

Co.,  and  Cross 

of  brasses  ;    Selective  .     De  Wurstemberger 

of  cast  iron  and  lead  pipes  in  alkaline  soils.     Shipley 

261R, 
of  copper  by  salt  solutions.     Miiller 
by  electrolyte  concentration  cells.     McKay 
in   evaporating   and   distilling   apparatus  ;     Preventing 

.     (P)  Kummler  und  Matter   . .  . .  . . 

of  ferrous  metals.     Hadfleld         

of  iron  ;    Control  of  by  de-activation  of  water. 

Speller 
of  iron  and  steel.     Hadfleld 
of  iron  and  steel ;   Influence  of  molecular  concentration 

on  immersion  tests  on .     Strickland 

of  metals.     Rogers 

of  metals  ;    Influence  of  protective  colloids  on  . 

Friend  and  Vallance 
of  metals  by  water  in  a  closed  system  ;    Prevention  of 

.     West 

Nature  of  corrosive  action  and  function  of  colloids  in 

.     Bengough  and   Stuart  . .         . .      417r, 

patterns  on  cold-worked  tin  and  zinc.     Rawdon  and 

others 

Preserving  steel  or  iron  work  against .     (P)  Howse 

Prevention  of  selective  ■  of  metallic  parts  made  of 

copper  and  cop  per- containing    alloys  and  subject 

to  the  corrosive   action   of  water  containing  ions. 

Von  Wurstemberger 
of  a  producer-gas  cooling  system.     Jackson 
and  protection  of  condenser  tubes.     Bengough 
in  steam  boilers,  condensers,  and  the  like  ;    Preventing 

.     (P)  Renger  and  Fuhrmann  . .  . .  1a, 

in  surface  condensers  and  like  heat  exchange  apparatus  ; 

Prevention  of  electrolytic .     (P)  Von  Wurstem- 
berger 
of  turbine  blading  ;    Means  for  reducing  or  preventing 

.     (P)     Bailey,     and     Metropolitan     Yickers 

Electrical  Co. 


138  A 
290A 
808a 


865a 
331A 


845A 
61a 

311T 
713A 

421A 

926a 
155R 

389a 
761A 

593a 
124R 

378A 

672a 

820a 

219a 
554A 


795a 
129  A 
125R 


358a 


Corundum  industry  in  North-eastern  Transvaal ;   New .     244R 

Manufacture    of    artificial    .    (P)    Richmond    and 

others 417a 


Corydaline  ; 
Costa  Rica  ; 


Constitution  of 


117a 


Spiith  and  Lang 
Report  on  commercial  and  economic  situation 

in .    Cox 136r 

Coto-bark  ;    Active  constituents  of  true  .    Spath  and 

Fuchs 390A 

Cotoin ;    Synthesis  of  .     Spath  and  Fuchs      . .         . .     390a 

Cotton  ;   Analysis  of  mixtures  of  asbestos  and .    Heer- 

niann  and  Sommer     . .  . .  . .  . .  . .     745a 

bales ;     Impregnated   .     (P)    International    Cotton 

Protecting  Co.  978A 

Bleaching  .     (P)   Bassett 139a 

Bleaching with  acid  and  alkaline  liquors      Risten- 

part         808a 

Bleaching  with  hypochlorous  acid.     Trotman   . .     529r 

bleaching  ;    Recent  advances  in  .    Trotman  and 

Pentecost  49r,  73t 

cellulose ;     Yield    of   glucose   from   .     Irvine   and 

Hirst 745A 

Dyeing  basic  dyestuffs  on  .     (P)  Bayer  und  Co.     139a 

dyeing  ;    Substantive .     Auerbach  . .  . .  . .     324a 

Dyestuff  for  ,  diazotisable  on  the  fibre,  for  the 

production  of  red  shades.    Koechlin         ..         ..     136a 

Effect  of  flreprooflng  solutions  on  .     Durst         . .     539a 

Effect  of  prolonged   bleaching  with   bleach  liquors  at 

different    temperatures   on  .     Heermann   and 

Frederking         214a 

Effect  of  prolonged  bleaching  with  bleach  liquors  of 
various  strengths  on .  Heermann  and  Freder- 
king         54a 

effect  tlireads  ;  Production  of .    (P)  Cassella  und  Co. 

214a,  249a 


PAGE 
Cotton — continued. 

fabrics  ;    Causes  of  staining  of  .    Sidebotham    . .     366a 

fabrics ;     Detection    and    estimation    of    acidity    and 

alkalinity  in  .     Coward  and  Wigley   . .  . .     497A 

fabrics  ;   Effect  of  scouring  and  bleaching  upon  structure 

and  strength  of  .     Huebner     . .  . .  . .     213a 

fabrics  ;     Obtaining  transparent   effects  on  .     (P) 

Forster 291A 

fabrics ;    Production  of  wool-like  effects  on  .     (P) 

Bosshard,  and  A.-G.  Seeriet,  Bleicherei     ..  ..       55a* 

fibre ;    Isolation  of  the  nitrogenous  cell-content  of  the 

.     Knecht  and  Hatton 128R 

Fixing   basic   dyestuffs   on   .     (P)  Bayer  und  Co.     325a 

Imparting   transparent    effects    to    .     (P)    Forster 

and   Forster 855a* 

Inter-relation  of  mercerisation  and  spinning  of  . 

Lowe       . .  . .  . .  . .  . .  . .  . .       54a 

linters  ;    Uses  of  . .         . .         . .         . .         . .     352a 

Manufacture  of  dyestuffs  for  .    (P)  Jordan,  and 

Grasselli   Chemical   Co.  664A* 

mercerised  by  means  of  sodium  hydroxide  or  sodium 

chromite   (alkaline  chrome  mordant)  ;    Important 

but  overlooked  properties  of  .     Pokorny     . .     894a 

Mercerising  .     (P)  Nelson      . .  . .  . .  . .     291a 

Production   of   pattern   effects   on  .     (P)    Willows 

and    others 55a,  369a* 

substitutes  ;      Manufacture    of    .     (P)     Possanner 

von  Ehrenthal 498a,  628a* 

textile  industry  in  Canada  . .         . .         . .         . .     198R 

Cottons  ;  Copper  numbers  of .     Koehler  and  Marqueyrol    323a 

Cottonseed  ;    Cleaning  .    (P)  Partington  . .         . .     988a 

Deiiuting  .     (P)  Polhamus 769a 

meal ;    Nitrogen  distribution  of  proteins  extracted  by 

0-2%  sodium  hydroxide  solution  from .  Friede- 

mann 342a 

meats  ;  Treatment  of .     (P)  Phillips,  and  American 

Cotton  Oil  Co.  343a 

Preservations    and    preparation    for   transportation    of 

by  compression  in  bulk-     (P)  Macllwaine  . .     867a* 

Coumarin  and  its  homologues  ;    Preparation  of  .    (P) 

Ponndorf  34A 

Coumarone -resin.     See  under  Resin. 

Council ;    Committees  of  the  . .  . .  . .  5U,  560R 

Report  of  209t 

Reports  of  meetings  of  the . .  . .     4r,  26r  171R,  532R 

Coupling  reactions ;  Mechanism  of .    1.8-Naphthosultam 

and  its  N-methyl  derivative  as  azo  components. 
KSnig  and  Kbhler      . .         . .         . .         . .         . .     663a 

Cream  ;    Formation  of  .     Rahn  . .         . .         . .         . .     266a 

Pasteurising  •.     (P)  Jensen,  and  Jensen  Creamery 

Machinery  Co.  . .  . .  . .  . .  . .       30A 

Cream  of  tartar.    See  under  Tartar. 

Creatinine  ;   Determination  of  — .     Piizenmaier  and  Galanos     784a 

Creosote;  Conversion  of into  benzol.     Fischer..  ..       46a 

oils  ;   Coke  residue  test  for .     Reeve  and  Yeager  . .     932a 

ointment ;    Examination  of  .     Evers  and   Elsdon     519a 

Cresol ;    Comparison  of  antiseptic  value  of  in  aqueous 

and  in  soap  solutions  : 

Lange         193a 

Schmatolla  682a 

Determination  of in  cresol  soap  solutions.     Frank     433a 

-phenol    mixtures ;     Non-formation    of    compounds    in 

.     Kendall  and  Beaver  . .  . .  - .  . .       93a 

Production   of   toluene   and    benzene   from   .     (P) 

Fischer 212a 

o-Cresol ;    Plastic  condensation   products   from  .    (P) 

Baekeland  149a 

Cresols  ;    Aryl  ethers  of as  insecticides  and  fungicides. 

(P)    Bayer  und    Co 782a 

Formation   of   addition   products   of  with   ether, 

alcohol,   acetone,    benzene,   etc. : 

Berl  and  Schwebel 662a 

Von  Rechenberg  and  Von  Rechenberg  . .  _        . .     662a 

Manufacture  of  resinous  condensation  products  of . 

(P)  Chem.-Werke  Grenzach 948a 

Preparation  of  ethers  of  hydroxybenzyl  alcohols  made 

from  formaldehyde  and  .     (P)  Melamid         . .     728A 

Separation   of   m-   and  p-  from   coal   tar   crude 

carbolic    acid.     Campbell       . .  . .  . .  . .     661a 

Separation  and  estimation  of .     Hanke  and  Koessler     268a 

Cresylic    acid.     Corrigenda.    Fox        . .         . .         . .         .  ■     338t 

Crocodile  oil.     See  under  Oils,  Fatty. 

Crotolaria  juncea  (pseudo-hemp)  and  Cannabis  sativa,  (hemp) ; 

Differentiation  between in  fabrics  ropes,  etc. 

Pontio 453A 

Crotonaldehyde ;    Manufacture  of  butyraldehyde  and  butyl 

alcohol  from (P)  Griinstein 78a 

Preparation  of .    (P)  Consortium  f .  Elektrochem.  Ind.     688a 

Crotonic  acid  ;    Manufacture  of  from  crotonaldehyde. 

(P)  Elektrizitatswerk  Lonza 959a 

Crucibles  for  electric  furnaces.    (P)  Carpenter,  and  Westing- 
house  Electric  and  Mfg.  Co.  . .  . .  ■  •  •  -     333a 
Crude  fibre.     See  under  Fibre. 
Crude  oil.     See  under  Oils,  Hydrocarbon. 
Crusher  rolls;    Sectional—.    (P)  Pennsylvania  Crusher  Co.    971a* 


138 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Crushers : 

(P)  Sanborne,  and  Smith  Engineering  Works 
(P)  Smith  and  others     .. 
(P)    Williams,   and    Williams'   Patent   Crusher 
and  Pulverizer  Co. 

Ore  .    (P)  Mitchell 

Crushing  apparatus.     (P)  Davidsen 

cokes,  resin,  and  other  materials  ;    Machines  for  . 

(P)  Lees  and  Shore 
and  grinding  mill.    (P)  Wriedt,  and  Milo  Machinery  Co. 
Proprietary,    Ltd. 

and  like  mills.     (P)   Etabl.  Candlot 

machines : 

(P)  Griffith  and  Griffith 

(P)  Soc.  Anon.  Ateliers  Reunis 
(P)    Spensley 
(P)  Williamson 

minerals,  ores,  and  other  materials  ;  Machines  for . 

(P)  Bleloch  and  Stockman 
Crystal  structure  of  metallic  solid  solutions.     Bain 

structure  ;  Significance  of .    Bragg 

symmetry ;    Relation    between    molecular    and as 

shown  by  X-ray  crystal  analysis.    Shearer 
Crystal    Violet.    See    under    Triphenylmethane    dyestuffs. 
Crystallisation  of  hot  salt  solutions  ;   Apparatus  for  continu- 
ous   .    (P)  Maschinenbau  A.-G.  Balcke 

process  and  apparatus.     (P)  Soc.  Gen.  d'Evaporation 
Prache  et  Bouillon 

of  salts  from  hot  solutions  ;    Apparatus  for  .     (P) 

Maschinenbau  A.-G.  Balcke 

Separation  of  solids  by  .    (P)  Berk  and  Co.,  and 

Briscoe 

of  solutions  :    Apparatus  for  effecting  continuous  . 

(P)   Norsk    Hydro-Elektrisk    Kvaelstofaktieselskab 
Crystalliser.    (P)  Stevens,  and  Potash  Reduction  Co.      . . 

Crystals;  Apparatus  for  production  of -.     (P)  Haferkamp 

and  Diamond  Match  Co. 
containing  foreign  materials  of  different  specific  gravity  ; 

Purification    of   .    (P)    Backhaus,    and    U.S. 

Industrial   Alcohol   Co. 

Continuous    production    of    well-formed    uniform   

from  solutions.     (P)  A.-G.  der  cheni.   Produkten- 
Fabr.  Pommerensdorf,  and  Siegler 

Cuba  ;    Power  alcohol  in 

Culture  media  ;    Estimation  of  alkalinity  of .    Noll  . . 

Cupolas.    See  under  Furnaces. 

Cupric  tetrammine  nitrite.     Bassett  and  Durrant 

Cupro-nickel ;     Autogenous    welding    of    .    (P)    Ver. 

Deutsche    Nickel-Werke 
Internal  mechanism  of  cold  work  and  recrystallisation 

in    .     Adcock       . .  . .  . .  . .      125R 

Cuprous  oxide  ;    Compounds  of .    Errera 

Curd.     See  under  Milk. 

Customs  tariffs.     See  under  Tariffs. 

Cyanamide  in  fertiliser  mixtures.     Landis 

Manufacture    of   from    calcium    cyanamide.     (P) 

Wargons  Aktiebolag,  and  Lidholm     . .  . .       347a, 

Synthesis    of     cyanamidoethyl    alcohol    and    guanido- 

ethyl  alcohol  from  ."   Fromm  and  Honold    . . 

Cyanamidcs ;      Manufacture    of    .     (P)    Chem.    Fahr. 

Griesheim-Elektron 

Manufacture  of from  carbides.    (P)  Blume 

Manufacture  of  urea  from  .     (P)   Lie,  and  A./S. 

North- Western   Cyanamide   Co. 

Cyanamidoethyl  alcohol ;  Synthesis  of from  cyanamide. 

Fromm  and  Honold 

Cyanates  ;   Manufacture  of  alkali .     (P)  Liebknecht  . . 

Cyanide  process  of  nitrogen  fixation  ;    Post-war  progress  in 

.     Harker 

process  for  recovery  of  precious  metals.    (P)  Hahn     . . 

Cyanides  ;    Electrometric  estimation  of  in  presence  of 

halides.     Miiller  and  Lauterbach 

Extraction  of from  gases.     (P)  Mueller 

Manufacture  of : 

(P)  Barnebey        

(P)  Chem.  Fabr.  Griesheim-Elektron 
(P)  Von  Bichowsky  and  Harthan 

Manufacture  of  alkali : 

(P)  Koppers 

(P)  Mehner  

Manufacture   of   ammonia   from   .    (P)    Thorssell 

and  Lunden 

Retort  for  production  of  alkali .    (P)  Mctzger,  and 

Air  Reduction  Co. 
Cyaniding  precious  metal-bearing  materials.     (P)  Haun  and 

Silver 

Cyanines.    See  under  Quinoline  dyestuffs. 

Cyanogen  ;  Determination  of .    Yanagisawa 

Cyanogen  iodide  ;   Iodometric  method  based  on  formation 

and  estimation  of .    Lang 

Cyclohexanol ;  Preparation  of .     Brochet 

"  Cyclon  "  ;     Absorption    of   by    different   foodstuffs 

Jansen  and  others 
Cyclone  separators.    See  under  Separators. 

Cymbopoqon  catiut ;    Essential  oil  of .     Moudgill  and 

Iyer        


240A* 
2a* 

621A 

847a* 

127A 

451A* 

971A 
1A 

207a* 
576a 
886a 
450A 

927A 
298a 
366k 

562a 


401A 

620a 

294a 

489a 

317a* 
316A 

887a 


737a 
570R 
995a 

447R 

258a 

257a 
56a 

385a 
877a 
391A 

753a 
14a 

391a 

391a 
253a 

390R 
62a 

394a 
415a 

57a 
753a 
546a 

670a 
372A 

173A 

670a 

63a 

613a 

920a 
956a 

873a 


?85a 


Cymbopogon  nervaius  ;    Essential  oil  of 
Whitfeild  


Joseph  and 


p-Cymene  ;  Manufacture  of .    (P)  Stalmann 

Preparation    of    6.6'-di-a-hydroxyisopropylindigo    from 

.     Phillips  

Purification  of .    Wheeler  and  Smithey 

Cyperus  roliindus  ;   Essential  oil  of .     Joseph  and  Whit- 
feild         

Cyprus  ;  Trade  of in  1920  

Cystine.    Merrill 

Colorimetric   determination   of   tyrosine,   tryptophane, 

and in  proteins.    Folin  and  Looney 

Effect   of  acid  hydrolysis  upon  .    Hoffman   and 

Gortner 

Czechoslovakia  ;   Analyses  of  petroleum  from .     Schulz 

Beet-sugar  crop  in 

Glass  industry  in .     Turner 

Production  of  fusel  oil  and  acetone  in 

Radium  monopoly  in 

Report  on  the  industrial  and  economic  situation  in . 

Lockhart 

Salt  deposits  in 

Sugar  production  in 

Trade  of in  1921         


Dairy   practice  ;     Significance  of  surface  tension  for  . 

Rahn 

Dakamballi  starch.     Goodson 

Dakin's  hypochlorite  solution  ;    Effect  of  on  certain 

organic  substances.     Engfeldt 

Dalmatia  ;  Carbide  industry  in 

Daylight,  artificial ;    Application  of  Sheringham  system  of 

to  laboratory  purposes.     Groom 

lamp ;     Use   of  in  volumteric  and   colorimetric 

analysis.     Singleton     . .  . .  . .  . .      242R, 

De-aerating  and  heating  liquids.    (P)  Morison 
Dealcoholising  apparatus.     (P)  Pflugfelder 
Decahydronaphthalene  ;    Physico-chemical  investigation  of 

.     Herz  and  Schuftan 

Decantation  apparatus.     (P)  Denoel 

Centrifugal  .     (P)  Mauss,  and  Continuous  Centri- 
fugal Separators,  Ltd. 

Decolorising  carbon  ;   Capacity  of for  absorbing  water. 

Scholz 

carbon  ;   Cost  of  revivication  of  Norit .    Tillery  . . 

carbon  ;    Experiments  on  use  of  "  carboraffin  "  . 

Dedek     

carbon  ;    Manufacture  of : 

(P)  Chem.  Werke  Carbon  

(P)  Mumford,  and  Darco  Corp. 

(P)  Sauer 

carbon  ;    Manufacture  of  a  product  containing for 

sanitary,    medicinal,    and    therapeutic    uses.     (P) 
Sauer 

carbon  ;    Manufacture  of  for  sugar  refining.    (P) 

Mumford,  and  Darco  Corp. 
carbon  ;    Mineral  constituents  retained  by  carboraffin 

during  treatment  of  sugar  refinery  liquors. 

Skola 

carbon  ;  Regeneration  of  .     (P)  Sauer 

carbon  for  sugar  refining  ;    Essential  qualities  of  an 

efficient .     Dunstone,  jun. 

carbon  ;    Technical  application  of  Norit  .     Dun- 
stone,  jun. 
carbon  ;    Utilisation  of  beet  carbonatation  scums  for 

production  of .    Vytopil  . .         . .       27a, 

carbons  ;   Experiments  with  various .     Saitlard     . . 

charcoal  from  bagasse  ;    Preparation  and  evaluation  of 

.     Coates 

charcoal ;  Manufacture  of .    (P)  Eberlein  . .      363a, 

liquids.    (P)  Straatman      . .         . .         . .         . .      429a, 

material  for  oils  ;    Production  of  .     (P)  Prutzman, 

and  General  Petroleum  Corp. 
power  of  silicates  for  fatty  and  mineral  oils,  etc.  ;   In- 
creasing the .     (P)  Gebr.  Wildhagen  und  Falk 

Decrepitation :     Powdering   of   minerals   by  -.    Lowry 

and  McHatton  . . 
0t-Decylenic  acid,  a  previously  unknown  acid  from  butter. 

Grim  and  Wirth  

Synthesis  of .     Griin  and  Wirth 

Deflocculating  solid  substances.     (P)  Acheson  . .    240a*, 

Degumming  textile  fibres.    (P)  Meister 
Dehydrating  apparatus : 

(P)  Beckworth  and  others 
(P)  Maus  and  Spoelstra 
hydrocarbon    emulsions.    (P)    Asiatic    Petroleum    Co., 

and  Cameron 
materials.     (P)  Maus  and  Spoelstra 
plant  comprising  a  steam  engine,  dynamo,  filter  press, 
and  drying  plant ;   Process  of  operating  a  complete 

electro-osmotic ,  utilising  the  waste  heat  of  the 

process.    (P)  Elektro-Osmose  A.-G. 
plastic  and  other  materials.     (P)  Marx    .. 
process.    (P)  Beckworth  and  others 
slimes.    (P)  Parmeter 
See  alio  Drying. 


PAGE 
144T 


743a 
231A 

172T 

85R 

231A 

526A 

306a 
281a 
177R 
532R 
537R 
177R 

459R 

SIR 

315R 

225R 


514A 
512A 

682a 
40R 

918a 

918a 
193a 
73a 

538a 
797A* 


642a 
910a 

187A 

742a 

6a 

132a 


232A 
152a 

151A 

386a 

909a 

910a 

264a 
909A 

385A 
456a 
478a 

5a 

676a 

291R 

684a 
675a 
317A* 
llA* 

621a 
449a 

131A 
631A 


206a 
665a 
621A 
450a 


SUBJECT  INDEX. 


139 


Electro-osmotic 


(P)   Elektro-Osmose 


PAGE 


(P)    Zimmermann, 
MacLachlan,     and 


Dehydration  ; 

A.-G 

Dehydrators : 

(P)  Cardin  and  Freeman  

(P)  Maus  and  Spoelstra 

Electrical  for  oil  emulsions.    (P)  Meredith,  and 

Petroleum  Rectifying  Co. 
for  fruits,  vegetables,  and  other  foods.    (P)  Rea 
for  petroleum  emulsions  : 

(P)  Eddy  and  others       

(P)  Harris 

(P)  Harris,  and  Petroleum  Rectifying  Co. 

(P)  Meredith,   and   Petroleum   Rectifying   Co. 

Dehydrogenation  of  carbon  compounds  ;   Catalysts  for . 

(P)  Badische  Anilin  u.  Soda  Fabr. 

Dehydro-p-thiotoluidine  ;    Azo  dyestuffs  from and  their 

affinity  for  cotton.     Levi 
and  some  related  compounds.     Bogert  and  Meyer 

Dekalin ;     Physico-chemical    investigation    of   .     Herz 

and  Schuftan 

Properties    and    composition    of    .     Coleman    and 

Bilham   . . 

Delphinidce  ;  Head  oils  of  the  sea  animals  of  the  family . 

Nakatogawa  and  Kobayashi 
Denitriflcation  in  presence  of  formates  ;    Influence  of  the 

cation  in .     Groenewege 

Denmark  ;    Report  on  economic  situation  of .     Turner    405R 

Density  of  liquids  in  containers ;    Apparatus  for  measuring 

or  indicating  the  .    (P)  Porter  and  Spensley    317a* 

of  a  solution  ;  Factor  relating to  its  concentration. 

Bennett  and  Holmes 
of  water  in  a  steam  boiler  or  of  other  liquids  In  evaporat- 
ing plants  ;   Apparatus  for  measuring  or  indicating 

the  .     (P)  Porter  and  Spensley 

Dental   cement.     (P)   Schitf 

Deodorising  offensive  gases.    (P)  Henderson  and  Haggard 
Department  of  Scientific  and  Industrial  Research 

Depilatory.    (P)  Froschel  and  Weiss 

Desaminoproteins.     Herzig    and    Lieb 

Desiccating    apparatus  ;     Spray    . 

and    Stutzke    Co. 
fluid     mixtures,     e.g.,     milk.    (P) 
Standard  Food   Products  Co. 
solutions  and  similar  liquids  by  atomising  by  means 

of  hot  compressed  air  ;    Apparatus  for  .    (P) 

Wolde 

See  also  Drying. 
Desiccators  for  liquids.    (P)  Faber  and  others 

for   milk   powder.     (P)    Rew,   and    California    Central 
Creameries 

Detergents ;     Manufacture    of    .     (P)    Guernsey,    and 

Electric  Smelting  and  Aluminium  Co. 

Manufacture  of  bleaching  agents  and  : 

(P)  Deutsche  Gold-  und  Silber  -Scheidcanstalt     945A 

(P)  Moseley  and  Drey 110A 

Manufacture  of  fire-extinguishing  materials  and  . 

(P)    Plauson's    Forschungsinst.       . .         . .         . .     946a 

with  disinfecting  properties.     (P)  Chamberlin  . .  . .     7T0A 

Detaining    iron.      (P)    Thermal    Industrial    and    Chemical 

(T.I.C.)  Research  Co.,  and  Morgan 62A 

Detonating   caps ;     Manufacture   of  .     (P)   Friederich     730a* 

compositions ;     Manufacture    of    for    detonators 

or  primers.     (P)  Von  Herz  ..  ..  ..  ..     961a 

compositions ;     Primary   .     (P)    Dehn       . .  . .     234A 

gas.    See  Oxyhydrogen  gas. 

mixtures  ;    Analysis  of  .    Taylor  and  Rinkenbach    524a 

substances ;      Manufacture    of    .     (P)    llathsburg     121A 

Detonators  ;    Composition  for  .     (P)  Cook  and  others     271a 

Lead-plate  test  applied  to  commercial  .     Grotta    567a 

Modifications  of  the  sand  test  for  .     Dehn      . .     961a 

Dextrin  ;    Apparatus  for  manufacturing  .    (P)  Merrill, 

and   Corn  Products  Refining  Co 778a 

Estimating  the  value  of for  cloth  dressing.     Pom- 

cranz       . .  . .  . .  . .  .  •  • •  • •     411a 

Manufacture  of  .    (P)  Merrill,  and  Corn  Products 

Refining    Co 830a 

Manufacture  of  ethers  of  : 

(P)    Lilienfeld 53a 

(P)    Young  854a 

Production  of  glucose  and from  wood.    (P)  Terrisse 

and  Levy         910a 

Specific  heat  and  heat  of  wetting  of  .     Sprockhoff    723a 

Study  of  adsorption  in  solution  and  at  interfaces  _  of 

and  mechanism  of  its  action  as  an  emulsifying 

agent.     Clark  and  Mann      . .         . .         . .         . .     603a 

substitute  ;    Manufacture  of  from  extracted  beet 

residues.    (P)  Sichel  and  others     . .         . .         . .     562a 

Dextrose  ;    Action  of  ammonia  on  .     Ling  and  Nanji 

151T,  172R 
Action  of  hydrogen  peroxide  on  pure  solutions  of . 

Schonebaum     . .         . .         . .         . .         . .         ■  •     776a 

Action  of  ozone  on  pure  solutions  of .     Schonebaum    152a 

Catalytic    hydrogenation    of   .    Cake         . .         . .     386a 

Determination  of  small  quantities  of by  Bertrand's 

process.     Greiner         . .         . .         . .         . .         . .     338a 

Formation  of  formic  acid  during  decomposition  of in 

alkaline   solutions.    Waterman   and    Van   Tussen- 

broek 339a 


358a 

657A 
127A 

850a 
606A 

890A 
244a 
890A 
890A 

689a 

364a 
664A 

538A 

904A 

556A 

950A 


336A 

205a 

295a« 

344A 

104R 

959A 

228A 

736A 

75a 

44a 
575a 
954a 
599a 


PAOE 
Dextrose — continued. 

Function  of  phosphates  in  oxidation  of by  hydrogen 

peroxide.     Harden  and   Henley      . .         . .         . .     339a 

Influence    of   on    dialysis   through    a    parchment 

membrane.     Possibility  of  separating  dextrose  from 
sucrose   by  dialysis.     Congdon   and    Ingersoll     . .     226a 

Influence  of  sodium  chloride  on  mutarotation  of in 

alkaline    solution.     Murschhauser    . .         . .         . .     338a 

Influence  of  sodium  chloride  on  mutarotation  of  

in  hydrochloric  acid  solution.     Murschhauser    264a,  339a 

Law  governing  mutarotation  of and  concentration 

of   acid.     Murschhauser 

Manufacture    of    chemically    pure    .     Porst    and 

Mumford 

Monosulphate  of  .     Neuberg  and  Liebermann 

Mutarotation  of   under  the   Influence   of  sodium 

chloride.     Murschhauser 

New  anhydride  (1.2)  of  .     Brigl     .. 

Relationship  of  £-glucosan  to .     Irvine  and  Oldham 

Relative  sweetness  of  sucrose,  laevulose,  invert  sugar, 

and    .     Deerr 

Test  for  sucrose  in  presence  of  .    Congdon  and 

Stewart 
See  also  Glucose. 
Diabetes  ;    Insulin  treatment  for  — — 
Dialkylaminoalkyl    compounds ;     Manufacture   of   aliphatic 

.    (P)  Meister,  Lucius,  und  Briining  . .      877a 

Diallylaminoalkyl  esters  of  benzoic  acid  and  its  substitution 
products  ;    Preparation  of for  use  as  anaesthet- 
ics.   <P)   Kamm  and   Volwiler 
a-Dialkylaminocthvl-/3-aracvl   hydroxybutyric  acid   esters; 

Manufacture   of   .     (P)    Meister,    Lucius,   und 

Briining 

Dialkyl   sulphates  ;     Manufacture   of   : 

(P)    British    Cellulose    and    Chem.    Mfg.    Co., 
and    Bader 

(P)    Lilienfeld 

Dialyser  ;    Rapid  .     Gutbier  and  others 

Diamino-acids  from  yeast.     Meisenheimer 

Diaminoacridine  ;     Manufacture   of  .     (P)   Meyer,  and 

Poulenc    Freres 
3.3'-Diamino-4.4'-dihydroxyarsenobenzene  ;    Manufacture  of 

derivatives   of   : 

(P)  Boot's  Pure  Drug  Co.,  and  Anderson   . . 
(P)  Speyer-Haus 

Two  new  syntheses  of  .    Bart 

5.8-Diaminodihydroquinine  and  its  conversion  into  the 
corresponding  aminohydroxy  and  dihydroxy  bases. 
Jacobs  and   Heidelberger 

Diaminodinaphthvlsulphonic  acids  ;    Manufacture  of  . 

(P)  Kalle  und   Co 

Diaminodi-p-xylylmethane ;      Preparation     of     from 

commercial    xylidine.     (P)    Meister,    Lucius,    und 
Briining 
5.8-Diamino-6-methoxyquinoline    and    its    conversion    into 
the   corresponding   aminohydroxy   and   dihydroxy 
bases.     Jacobs   and   Heidelberger 
3.6-Diamino-N-methylacridinium  chloride.    Thieme 
Dianiinonaphthothiam   Blue.     Reissert 
Diaminophenol     developers ;      Comparison     of     stabilisers 

recommended   for  .     Lobel 

developers ;    Preservation  of  .    Bunel 

Diamylose  ;   Constitution  of .    Karrer  and  Smirnoff  . . 

Diapliragms  for  electrolysis  of  aqueous  solutions.  (P) 
De   Haien 

Diarylarsines ;     Manufacture    of    monochlorides    of    . 

(P)  Poulenc  Freres,  and  Oechslin 

Diastase;  Action  of  trypsin  and  pepsin  on .     Biedermann    305A 

Preparation   of   or   of    a   solution   thereof.     (P) 

Kashiwagi 

Regeneration  of  and  its  dependence  on  oxygen. 

Biedermann       . .  . .  . .  •  •  ■  -  •  • 

taka-  ;    Inactivation  and  reactivation  of  .     Jacoby 

and  Shimizu 

Thermostability  of  malt  .     Ernstrom 

See  also  Amylase. 
Diastatic  power  of  cow's  milk  towards  various  starches. 
Weizmiiller        . .  . .  ■  •  ■  •  •  •  •  • 

power  ;    Determination  of  .    Windisch  and  others 

preparations ;     Manufacture   of   stable   dry   .     (P) 

Diamalt  A.-G. 
Diazo-compounds ;      Action   of    the    Grignard  reagent   on 

aliphatic  .     Hepworth 

-compounds  ;   New  catalysts  for  decomposition  of . 

Korczynski   and    others         . .  . .  •  ■  •  •     196A 

Diazotisability  ;    Upper  limit  of in  the  benzene  series. 

Aminoniesitylene-dis-diazoniuni  salts.     Morgan  and 
Davies 
Dibenzoyldiammoanthraquinones.     Battegay    and    Claudin 
Dibromoanthraquinones.     Battegay  and  Claudin 

Dicalcium  phosphate  ;    Manufacture  of  .     (P)   Helbig 

Dicarboxylic   acids;   Manufacture  of  .    (P)   Williams, 

and  Barrett  Co. 

oa'-Dichlorodiethyl  sulphide  ;    Preparation  of  .    Bales 

and  Nickelson 


339a 

338a 
152a 

226a 

910a 

27a 

871a 

152  a 

571R 

,997a 


877a 


520a 


309a 
838a* 
611a 
153a 

348a* 


438A 
347A 
915A 


516A 
134A 

960A 

51 6A 

3lA 

364a 

36a 

36a 

305a 

109a 

232a 


478A 
513a 


340a 
429A 


228A 
951A 


779A 


91 


531R 

8A 


939a 


687A 


996a 


140 


JOURNAL   OF   THE   SOCIETY   OP   CHEMICAL   INDUSTRY. 


flfl'-Dichlorodiethyl    sulphide ;     Hydrolysis    of    and 

preparation   of   a   non-vesicant    isonieride.    Bales 

and  Nickelson 

Production  and  reactions  of .     Mann  and  Pope  . . 

Dichloroethylene ;      Manufacture     of     .     (P)     Kaufler 

and  Wacker 

Saturation  character  of  .     Margosches  and   Baru 

Dicyanamide.     Madelung  and  Kern 

Dicyanodiamide  ;  Action  of  ammonia  water  on .     Davis 

Formation  of  in  fertilisers.    Breckenridge 

Manufacture  of  .     (P)  Hetherington  and  Braham 

Mechanism  of  guanidine  formation  in  fused  mixtures 

of  ammonium  salts  and  .     Blair  and  Braham 

Preparation    of      methylguanidine    and    ££-diin  ethyl  - 

guanidine  from  .     Werner  and  Bell 

Die-casting  ;    Alloys  for  .    Kaufmann 

Diesel   Engine   Users*  Association 

Diesel  engines.     See  under  Engines. 

Di-esters ;    Manufacture  of  aldehydes  and  anhydrides  from 

.     (P)  Skirrow,  and  Shawinigan  Laboratories, 

Ltd 

Diethylamine   diethyl  dithiocarbamate  ;    Comparative  effect 
of    dimethylamine    dimethyldithiocarbamate    and 

in    accelerating    vulcanisation.    Schidrowitz 

and    others 

Diethylbarbituric  acid   compound  ;     Manufacture  of  . 

(P)  Chem.  Fabr.  Schering 

and  its  homologues  ;   Preparation  of  water-soluble  com- 
pounds of  .     (P)  WiUflng 

Diethylenedisulphide  tetra-iodide,  a  new  antiseptic  with  a  high 

iodine    content.     Bachem 
Diethylrhodanine.     Leonard 

Diethyl  sulphate  ;  Preparation  of  ■ .  (P)  Wohl 

Production    of    saturated    liquid    hydrocarbons    and 

from  ethylene.    Damiens 

Diethyl  telluride  ;    Addition  of  to  gasoline  for  use  in 

high- compression    motors.    Midgeley    and    Boyd 
Digitalis  glucosides  ;   Preparation  of  tannic  acid  compounds 

of .     (P)  Knoll  und  Co.  

leaves ;     Extraction    of    active    principles   from   . 

Mameli 
Digitonin  and  its  derivatives.     Windaus  and  "Weil 

Diglycerol ;    Preparation  and  sp.  gr.  of  .    Lewis 

9. lO-DihaIogenanthracene-0-monosul phonic     acid  ;       Manu- 
facture of .     (P)  Schirmacher  and  Metz 

3-DihalogenoxindoIes  ;    Preparation  of  N-substituted  . 

(P).Stolle         

Dihydrobenzene  ;   Manufacture  of .     (P)  Bayer  und  Co. 

Dihydrocinchonicinol.    Heidelberger  and  Jacobs 
Dihydrocinchonine  ;    Hydrogenation  of  .     Jacobs  and 

Heidelberger 
Dihydro- derivatives  of  benzene  hydrocarbons 

of  .     (P)  Bayer  und  Co. 

Dihydronaphthalene  series ;    Studies   in  the 

and  Levin 
oz-Diliydro-a-naphthols   and   their  derivatives. 

Levin 
Dihydroquinicinols.     Heidelberger   and    Jacobs 
Dihydroquinine ;    Hydrogenation    of    .      Jacobs 

Heidelberger 
Dihydroxydiethyl  sulphide  ;    Manufacture  of  esters  of . 

(P)  Meister,  Lucius,  und  Briining     . .          . .      309a, 
6.6'-Di-a-hydroxyisopropylindigo ;      Preparation     of     

from    p-cymene.     Phillips     . . 
1.5-Dihydroxy-3-methylanthraqninoue 

Eder  and   Widmer 
1.8-Dihydroxy-3-methyIantlu-aquinone. 

acid 


Manufacture 


Rowe 


Rowe   and 


and 


Synthesis  of  . 

Chrysophanic 


See 


acid. 


HemmelmayT 
(P)  Zinkc  .. 
Asahina  and 


1.5-Dihydroxynaphthalenedicarboxylic 

Dihydroxyperylene  ;    Manufacture  of 

Dihydroxystearic  acid  ;   Oxidation  of 
Ishida     . . 

*ym.-1.4-Di-5-hydroxy-7'-sulpho-2'  -  naphthylaminobenzene ; 
Manufacture  of .     (P)  Kalle  und  Co. 

2.4-Diketotetrahydro-oxazoles ;       Preparation     of     di-sub- 
stituted  ■ .     (P)  Altwegg  and  Ebin      .. 

Dimethylamine      dimethyldithiocarbamate ;       Comparative 
effect  of  diethylamine  diethyldithiocarbamate  and 

in    accelerating    vulcanisation.     Schidrowitz 

and    others 

Suggested  retarding   effect   of  on  vulcanisation. 

Bean 

4-Dimcthy]amino-l-phenyl-2.3-dimethyl-5-pyrazolone  ;     Pre- 
paration of  a  derivative  of  readily  soluble  in 

water.     (P)  Akt.-Ges.  fur  Anilin-Fabr 

2-p-Dimethylaminostyrylpyrldine  methiodide,  a  new  photo- 
graphic sensitiser.     Mills  and  Pope 

Dimethylaniline ;      Determination    of    .    Callan    and 

Henderson 

Electrochemical  oxidation  of .     Fichter  and  Rothen- 

berger     . . 

2.4-Dimethyl-6-ethoxyqninoline;       Preparation      of     . 

Palkin  and  Harris 


996a 
435a 

648a* 

157a 

434a 

118A 

385A 

686A 

956a 

876a 
297a 
174a 


601A 

438A 

521a 

435a 
915a 

728A 

957A 
79B 
35A 

914a 

684A 
991 

663a 

93a 
35A 

517a 

516A 
35A 

93a 

93a 
517A 

516A 

689A* 

743a 

194A 

662a 

119a 

557a 
170A 
438a 

601a 
261a 

959a 
524a. 
162T 

287A 
743a 


££-Dimethylguanidine  ;     Preparation  of  - 
diamide.     Werner  and  Bell  . . 


1.6-Dimethylnaphthalene  ;    Hydrogenation  of 
and  Schulte 


from  dicyano- 
Mayer 


876a 
662a 


97Ga 

119a* 

134a 
176a 

548a 
135a 

788a* 

349A 

50A 

163T 
363a 

277R 
443R 

436A 

436a 

163T 

648A* 

686a 

690A 
582A 

231A 

875A 


279A 


ay-Dimethyl-a'-propenylpyridiue  ;    Preparation  of  by 

condensation     of     collidine     with     acetaldehyde. 
Kondo  and   Takahashi 

Dimethyl  sulphate  ;  Manufacture  of .     (P)  Haworth  and 

Irvine 
Dinaphthoiminosul phonic    acids ;     Manufacture    of 

(P)  Kalle  und  Co 

Dinas  bricks  of  constant  volume.     Rebuffat 

bricks ;     Kilns    for    burning    lime-bonded    .    (P) 

Koppers 

Dinitrodiphenylamine ;    Manufacture  of  .    (P)  Moran, 

and  Du  Pont  de  Nemours  and  Co. 

Dinitroglycol  and  its  homologues  ;  Preparation  of .    (P) 

Oehme,  and  Chemical  Foundation,  Inc. 

1.2.4-Dinitrophenetol ;     Preparation    of    .     MarqueyTol 

and    Scohy 

Dinitrophenol ;    Manufacture  of  .    (P)  Norsk  Hydro- 

Elektrisk     Kvaelstofaktieselskab 

1.2.4-Dinitrophenol ;     Determination  of  .     Callan  and 

Henderson 
Dinitrotolui dines.    Brady  and  others 

Dinner  ;   Annual 

of  the  Society ;    Annual  autumn  in  London 

Dioleflnes    and    derivatives ;     Manufacture    of    .     (P) 

Traun's   Forschungslaboratorium    Ges. 

and   polymerisation   products ;    Manufacture  of  . 

(P)  Traun's  Forschungslaboratorium  Ges. 
Diphenylamine ;  Determination  of .     Callan  and  Hen- 
derson 

Manufacture   of  .     (P)    Tanberg,   and    Du    Pont 

de  Nemours  and  Co. 

Diphenylguanidine  ;    Manufacture  of  .     (P)  Weiss,  and 

Dovan    Chemical    Corp. 
s- Diphenylguanidine  as  a  standard  in  acidimetry  and  alkali- 
metry.    Carlton 
NN'-Diphenylindigotin.     Friedlander   and    Kuhn 
Diphtheria  bacilli ;    Action  of  selenites,  selenates,  tellurites, 

and  tellurates  on  .     Joachimoglu  and  Hirose 

Disaccharides  ;    Constitution  of  .     Biose  of  amygdalin. 

Haworth  and  Leltch 
Discharge  of  liquid  from  evaporators  and  other  apparatus  ; 

Apparatus    for    regulating    the    -.     (P)    Price, 

and    Grisconi- Russell  Co. 
Discharges.     See   under   Printing. 

Disinfectant  agents  ;   Employment  of .     (P)  Wallis,  and 

Atmosterol,    Ltd.         . .  . .  . .  . .  . .     156a 

Propyl  alcohol  as  537R 

Disinfectants ;     Comparison    of    methods    of    testing    and 

valuing    .     Hailer  267a 

Detergents  and .     (P)  Chamberlin  ..  ..  ..     770a 

Manufacture  of .    (P)  Chem.  Fabr.  Griesheim-Elek- 

tron        727a 

Manufacture   of  solidified  soluble  .    (P)   Franck- 

Philipson  3lA,  77a* 

Pine  oil .    (P)  Babb 31a 

Standardisation  of .     Riilke  . .  . .  . .  . .     874a 

Disinfecting  action  of  aqueous  solutions  of  formaldehyde. 

Gegeubauer       . .  . .  . .  . .  . .  . .     307a 

with  colloidal  aluminium  hydroxide.     (P)  De  Haen  and 

Buchner  874a 

compositions  ;    Insecticidal,  fungicidal  and  .     (P) 

Bayer  und  Co.  389a 

Disinfection  in  terms  of  the  Meyer-Overton  theory.     Vermast     229a 

Theory  of .     Traube  and  Somogyi  . .  . .  . .     110a 

Disintegrating  machines.     (P)  Emmott  and  Mercer  . .  . .     164a 

minerals  and  Bimilar  materials ;   Machines  for  reducing 

or .     (P)  Burden 796a 

and  niixing-machines.     (P)   Gardner      . .  . .       657a,  736a 

Disintegrators.     (P)    Blum        620a 

High-speed .     (P)  Plauson 886a 

and  like  apparatus.     (P)   Bartmann      . .  . .  . .       89a* 

for    producing    dispersoids.    (P)    Traun's    Forschungs- 
laboratorium  Ges. 
Disodium     perphosphates ;      Manufacture     of     -  — .     (P) 
Aschkenasi 

Disperse  systems  in  air ;    Solid  .     Whytlaw-Gray  and 

Speakman 

Dispersoids  ;  Disintegrator  for  producing .    (P)  Traun's 

Forschungslaboratorium     Ges. 

Manufacture  of  : 

(P)  Plauson  and  Rotman 

(P)  Traun's  Forschungslaboratorium  Ges.    357a, 

Disposal  Board  ;    Expenditure  of  

Dissolving  crude  potassium  salts  and  the  like.     (P)  Sauerbrey 
Distillates  of  definite  composition  ;    Furnace  and  apparatus 

for  production  of  mineral  •.     (P)  Mayers,  and 

Britons,   Ltd. 
Distillation  of  absorbed  vapours.     (P)_Voress  and  others 


357A 
416a* 
393R 
357A 

948A* 

,  381A 

542R 

294a 


of  alcoholic  and  other  liquids, 
apparatus : 


(P)  Sihneiblc 


223a 

622A 

643a,  680a 


SUBJECT    INDEX. 


141 


Distillation — continued. 

apparatus:  (P)  Blair,  Campbell,  and  McLean,  Ltd.,  and 

Ferguson  . .  . .  . .  . .  . .     886a 

(P)  Chem.  Fabr.  Worms         205a 

(P)  Rigby 573a 

(P)  Winter,  and  U.S.  Industrial  Alcohol  Co.  832a 
Apparatus    for   collecting   solid   and    viscous    products 

obtained  by  .     (P)  Bayer  und  Co 128A 

Apparatus  for  cooling  vapours  expelled  from  a  solution 

by .     (P)  Escher,  Wyss  u.  Co.  ..  ..     735A 

Apparatus  for  fractional .     (P)  Chenard     . .     240a*,  573a 

apparatus;  Laboratory .    (P)  Anders  and  Ginnings    569a 

apparatus  ;  Preventing  corrosion  in  .    (P)  Kumm- 

ler  und  Matter 926a 

of  bituminous  fuels  ;    Extraction  and  .     (P)  Mas- 

chinenfabr.   Augsburg-Nurnberg       . .  . .  . .     286A 

of  bituminous  materials : 

(P)  Prinz  zu  Lowenstein,  and  others  . .         . .     890a 

(P)  Pyzel 168A 

of    bituminous    materials ;      Retorts    for    .    (P) 

Deutsche  Petroleum  A.-G.,  and  others      . .  . .     852a* 

of  bituminous  sand,  coal,  oil  shale,  aud  other  materials 
which  yield  hydrocarbons.  (P)  Canadian  American 
Finance  and  Trading  Co.      . .  . .  . .  . .         6a 

of   bituminous  substances  ;     Rotary  retorts   for  . 

(P)  Deutsche  Petroleum  A.-G.,  and  others  . .  . .     450a 

of  carbonaceous  material.    (P)  Chown  . .         . .         . .     132a 

of  carbonaceous  materials ;    Apparatus  for  : 

(P)    Salerni  661a 

(P)    Wallace         7A* 

of  carbonaceous  substances  ;    Apparatus  for  drying  and 

.    (P)    Alexander 624a 

carbonaceous    substances ;     Destructive    : 

(P)  Evans . .         6A 

(P)  West  and  others 973A 

of  coal  and  other  carbonaceous  substances  ;    Retorts 

for   .    (P)    Low   Temperature    Carbonisation, 

Ltd.,  and  others  851A 

of  coal  and  other   material ;    Destructive  .    (P) 

Farup 456a 

columns : 

(P)    Barbet  797a* 

(P)  Lichtenthaeler,  and  Lummus  Co.  . .     697a 

(P)   Still  and  Petsch 490a 

columns  ;  Plates  for  .     (P)  Barbet  et  Fils  et  Cie.       43a 

of  crude  oil  and  other  liquids  ;    Apparatus  for  . 

(P)   Mather 701a 

Fractional  .     (P)  Hansgirg 43a 

of  fuel  and  bituminous  rocks  ;  Apparatus  for .    (P) 

Magri 48a 

of  fuel  having  a  high  content  of  moisture.    (P)  A.-G. 

fur  Brennstoffvergasung        . .  . .  . .  . .     244a 

of  fuel;  Low- temperature .    (P)  MerzandMcLellan, 

and    others       . .  . .  . .  . .  . .  . .       48A 

of    fuels.     (P)    Soc.    Ital.    Asfalti    Bitumi,    Catrami    e 

Derivati,  and  others    . .  . .  . .  . .  . .     168a 

of  fuels ;    Ring   furnace  for  .    (P)   Weasels  und 

Wilhelmi  456a 

and  gasification  of  solid  carbonaceous  matter  ;  Protective 

progressive   .     (P)   Lewis  . .  . .       362a,  362a 

of  heavy  hydrocarbons,  shale,  and  the  like  ;   Apparatus 

for -.    (P)  Aims 210a 

of  liquids : 

(P)  Granger  and  others  . .         . .         . .         . .         4a 

(P)  Major 451a* 

(P)    Wilson  538a 

of  liquids  or  molten  substances  ;    Atomising  and  . 

(P)  Keller         738A 

Low-temperature : 

(P)  Barrs 362a 

(P)  Michie  and  others 661a* 

of  material  containing  volatile  matter : 

(P)  Johns 92a 

(P)  Johns,  and  Industrial  Process  Engineering 

Co 803a* 

of   mineral   and    organic   substances ;     Apparatus   for 

destructive .     (P)  Soc.  Anon.  "  Fours  Speciaux"       92a 

of  mixtures  of  non-coking  coal  and  asphaltic  oils.     Davis 

and  Coleman     ..  ..  ..  ..  ..  ..     168A 

of  oils  ;    Means  for  effecting  heat  interchange  between 

two  fluids,   particularly  applicable  in  .       (P) 

Power  Specialty  Co.   . .  . .  . .  . .  . .     489A 

of  organic  matter  or  minerals  containing  organic  matter  ; 

Continuous  .     (P)   Rippl  . .  . .  . .     457a* 

of  peat  and  the  like.    (P)  Pohl  und  Von  Dewitz        . .         6a 

of   petroleum   or   like   liquids ;    Fractional   .     (P) 

Perkins,  and  Rosanoff  Process  Co.  . .         . .     16Sa 

plant,    especially    for    medium    and    low    temperature 

distillation  of  carbonaceous  materials.    (P)  Nielsen    456a 

plant  for  oil  recovery  ;  Vacuum .    (P)  Wilke  u.  Co., 

and    Kulka       . .  ._.  . .  . .  . .  . .       89A 

of  poor  fuels  ;    Partial .    (P)  Scherk         . .         . .     168a* 

process : 

(P)  Chem.  Fabr.  Worms 205a 

(P)  Hills 450a 

(P)  Winter,  and  U.S.  Industrial  Alcohol  Co.  . .  832a 
and  rectification.  Gay  . .  . .  _.  . .  . .  43a 
Relation  between  composition  of  vapour  and  liquor  in 

Piron 239A 

in  rotating  drums ;  Apparatus  for  conveying  steam  to 
material  during .  (P)  Maschinenfabr.  Augsburg- 
Nurnberg  A.*G. 128a 


_.  ,  PAGE 

Distillation — continued. 

Separation  of  miscible  liquids  by  .     Dufton     121a,  274a 

of  solid  fuel ;    Large-scale  power  production  by  low- 
temperature  by  steam.    (P)  Merz  and  Mc- 

Lellan,   and  others     . .  . .  . .  . ,  , .     279a 

of  solid  fuels  by  means  of  a  current  of  distillation  gases  ; 

Shaft  furnace  for  .     (P)  Carbozit  A.-G.      . .       92a 

of  solid  hydrocarbon-containing  materials.     (P)  Knibbs     456a 
and    steam-power    apparatus ;     Plant    comprising   fuel 

.     (P)  Merz  and  McLellan,  and  others  . .  . .     279a 

of   substances ;     Destructive   .     (P)    Duncan       . .     245a 

of  tar  and  like  products  ;    Apparatus  for  .    (P) 

Ab-der-Halden  457a 

of  tar  and  other  liquids.     (P)  GIossop  and  others     . .     743a 

of  tars  or  oils.     (P)  Blumner        663a* 

of  waste  liquors  or  the  like  ;    Apparatus  for  dry . 

(P)  Aktiebolaget  Cellulosa 450a 

of  wood,  woody  fibre,  and  similar  carbonaceous  sub- 
stances.   (P)   Poore    ..         ,.         ..         ..         ..         7a* 

Distillery  materials  ;    Consumption  of ■ 161R 

slop  ;    Recovery  of  potassium  compounds  from  . 

(P)  Whitaker,  and  U.S.  Industrial  Alcohol  Co.   . .     216a 

waste  ;    Manufacture  of  organic  acids  from  .    (P) 

Backhaus,  and  U.S.  Industrial  Alcohol  Co.  . .       73a 

waste  ;    Recovery  of  volatile  organic  acids  from  . 

(P)  Burghart,  and  U.S.  Industrial  Alcohol  Co.   ..     779a 

waste  ;   Treating : 

(P)  Backhaus,  and  U.S.  Industrial  Alcohol  Co.      73a 
(P)  Backhaus  and  others  ..  ..  ..       73a 

(P)  Hancr,  jun.,  and  U.S.  Industrial  Alcohol  Co.      73a 

Dithiocarbamate  accelerators  of  vulcanisation.     Twiss  and 

others      . .  . .  . .  . .  . .  . .  . .       81t 

Dithionates ;    Volumetric  estimation  of  .    Fischer  and 

Classen   ..  ..  ..  ..  ..  ..  ..     413a 

N-Dithiophenylamine  ;    Preparation  of  .    Coffey      . .  49a 

£y-Di-p-toIylamino-n-butanes  ;  The  four  stereoisomer^ . 

Morgan 631R 

Divinyl  sulphide  ;   Synthesis  of .     Bales  and  Nickelson  996a 

Dolomite  ;    Caustic  calcination  of  — —  and  its  use  in  Sorel 

cement.     Bole  and  Shaw 984a 

and  the  like  ;    Calcining  -.    (P)  Eloppers  . .         . .  716a 

Manufacture  of  magnesia  from  ■.    (P)   Clerc  and 

Nihoul 982A 

Ring  chamber  kiln  for  burning .    (P)  Koppers  . .  814a 

Dominican  Republic  ;    Report  on  economic  and  commercial 

conditions   in   ■ .     Ledger    . .          . .          . .          . .  182R 

Dope  used  in  aeroplane  construction.    (P)  Groves  and  Holz- 

apfel 66a* 

Donjphora  sassafras  ;  Essential  oil  of  leaves  of -.  Penfold     647a 

Dough  ;    Composition  for  increasing  growth  of  yeast  when 

mixed  with  .     (P)  Geere  and  Geere  . .         . .     913a* 

Determining  condition  of  for  baking  products, 

during  the  fermentation   process.     (P)   Patterson, 

and  Campbell  Baking  Co.    . .  . .  . .  . .     874a 

Manufacture  of  starch-conversion  products  for  use  in 

improving     .     (P)     Bright,     and     Stein-Hall 

Mfg.    Co 38SA 

Production    of    pure    cultures    of    leavening    bacteria, 
capable   of   forming   lactic   and   acetic   acids,   for 

addition  to .     (P)  Bcccard        565a 

Dracorubin    test    of    hydrogenated    compounds.     Schrauth 

and   Von   Keussler      . .  . .  . .  . .  . .         3a 

Drawings    on   paper ;    Fixing   and   blackening   .    (P) 

Griinert  948a 

Driers.    See  Siccatives. 

Drugs  ;   Production  of  extracts  of .    (P)  Bayer  und  Co.     6S8a 

Dryers : 

(P)  Ayres  and  others 657a 

(P)  Curtis 44a 

(P)  Howson,  and  Proctor  and  Schwartz      . .     205a 

(P)   Ladisch  490a 

(P)  Lewis 358a 

(P)   Martoccio 531a 

(P)  Power  and  others 657a 

(P)  Walsh,  and  Johns -Manville,  Inc.  M     969a 

Centrifugal  : 

(P)  Hoyle -     358a 

(P)  Mabee 620a 

Combination  filter-presses  and  .     (P)  Naugle      . .     449a 

Cylindrical  kilns  and .     (P)  McCrae  . .  . .  . .       44a 

Furnace  for  supplying  hot  gases  to  .     (P)  Haag 

and   Riemer      . .  . .  . .  . .  . .  . .     451a 

and  the  like  ;    Discharging  and  charging  devices  for 

rotary  .     (P)  Marshall 927a* 

for  paper,  cloth,  etc.     (P)  Vaccaro         . .  . .  . .     460a 

Plate  .    (P)  Drying  Products  Co.,  Ltd 164a 

Rotating  drum  .     (P)  Liedtke         449a 

Separators  and .     (P)  Wood 491a 

Trough  .     (P)   Otto 205a 

Tunnel  with  air  circulation.    (P)  Schiissler,  and 

Haas  Ges 969a 

for  use  in  manufacture  of  articles  from  tender  clay. 

(P)  Myers,  and  American  Equipment  Co.  . .     142a 

Drying  ammonium  sulphate  and  other  salts ;    Apparatus 

for  .    (P)   Hansford SOU 

apparatus : 

(P)  Barducci 316a 

(P)  Boiling  and  Drying  Systems,  Inc.  ...     927a 


142 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Drying — continued. 

apparatus:  (P)  Brown  and  Coldrey         .-.         ..         ..  575a 

(P)  Dow,  and  Dow  Chemical  Co 449a 

(P)  Field,  and  Chemical  Machinery  Corp.     . .  657a 

(P)  Fleury  and  Robertson         971a* 

<P)   Huillard         317a* 

<P)  Rees,  and  Rees  Blow  Pipe  Mfg.  Co.     ..  400a 

(P)  Rigby              573a 

(P)  Scherhag        87a 

(P)  Scrive 927a 

(P)  Stephens,  and  Wittemann  Co 280a 

(P)  Testrup,  and  Techno- Chemical  Laboratories, 

Ltd 449a 

(P)  Watrous,  and  Airdry  Corp.             . .         . .  574a 

(P)  White 736a 

(P)  Whitfield        490a 

(P)  Wnrl 317a* 

apparatus  ;    Conveyor  .     (P)  Harris,  and  National 

Evaporator    Corp.        . .          . .          . .          . .          . .  205a 

apparatus  ;  Method  of  heating by  means  of  furnace 

gases.    (P)   Loeser      . .         . .         . .         . .         . .  845a 

apparatus  for  timber.     (P)   Natural  Air  Dryers,   Inc.  861a* 

bricks  and  the  like  ;     Utilising  waste  heat  for  . 

(P)  Twigg          815a* 

bulky  feeding  stuffs.     (P)   Riedinger      . .          . .          . .  76a 

and  calcining  silicious  substances.     (P)  Spence  and  others  174a 

chambers.     (P)  Schaber  and  Kletti         317a 

Change  of  properties  of  substances  on  .    Baker 

128B,  435a 
coal  or  other  material.     (P)  Goskar         . .          , .       282a,  698a* 
and  cooling  organic  substances.     (P)  Tribes,  and  Soc. 

Anon.     "  Proc.   Torrida "                  . .          . .          . .  154a* 

cylinders  for  fabrics  and  the  like.     (P)  Newton  . .          . .  498a* 

Discussion  on  methods  of  . .           . .          . .          . .  6R 

fish,  fruit,  and  the  like.     (P)  Noseworthy         . .          . .  30a 
fluids  and  solids,  and  preparing  dilute  sulphuric  acid. 

(P)  Maass          531a* 

fruits,   vegetables,   and   other  substances ;    Apparatus 

for  .     (P)   Benjamin 480a 

goods  ;    Method  of  .     (P)  Atkinson,  and  Vacuum 

Co 449a 

and  heating  apparatus.     (P)  Keith  and  others  . .          . .  358a 
kiln  and  process.     (P)  Mueller,  and  Northwest  Blower 

Co.           657a 

kiln  for  timber.     (P)  Kent,  and  Cooley  and  Marvin  Co.  142a 
kilns  : 

(P)  Henderson  and  Henderson 657a 

(P)  Hirt 969a 

(P)  Thclen             621a 

lignite,  peat,  turf,  and  the  like  : 

(P)  Jacobs 739a 

(P)  Steinmann 360a 

of  liquids  and  semi-liquids  ;    Apparatus  for  .     (P) 

Miller,  and  Evaporating  and  Drying  Machinery  Co.  280a 
machines  : 

(P)  Allsop  and  others 400a,  449a 

(P)  Bassette,  aud  Airdry  Corp.              . .         . .  574a 

(P)  Hero 205A 

(P)  Shampay        886a 

(P)  Stone,  and  Stevens  and  Sons  Co.               . .  621a 
machines  for  coal  or  other  granular  material ;    Centri- 
fugal  .     (P)  Fabry          621a 

materials : 

(P)  Bassler 531a* 

(P)   Harrison,  and  Carrier  Engineering  Corp.  280a 
materials  carrying  volatile  inflammable  solvent ;  Appar- 
atus for and  for  recovering  the  solvent.     (P) 

Lewis  and  Green         . .          . .          . .          . .          . .  927a* 

matter  containing  moisture ;    Rotary  multiple  cylinder 

for .     (P)  Buxton  and  Buxton  . .          ..          ..  885a 

moisture-containing    materials ;     Apparatus    for    . 

(P)  Harris,  and  National  Evaporation  Corp.           . .  206a 
oils.     See  under  Oils,  Fatty, 
peat  or  coal  slimes,  etc.    (P)  Ges.  fur  Maschinelle  Druck- 

entwasserung  (Madruck)       . .         . .         . .         . .  243a 

peat  or  similar  material.     (P)  Rigby     . .  . .       574a,  800a 

press.    (P)  Horst,  and  Ges.  fur  Maschinelle  Druckent- 

wSsserung          . .          . .          . .          . .          . .          . .  975a* 

Preventing  adherence  of  moist  vegetable  particles  during 

.     (P)    Mangelsdorfl 115a 

process : 

(P)  Field,  and  Chemical  Machinery  Corp.    . .  657a 
(P)    Testrup,    and    Techno- Chemical    Labora- 
tories,   Ltd 449a 

(P)  White 736a 

of  pulverulent  or  granular  materials  ;   Continuous . 

(P)  Marr,  and  Coke  Oven  Construction  Co.               . .  982a 
pulverulent,  granular,  or  other  substances.     (P)   Hof- 

maun      . .          . .          . .          . .          . .          . .          . .  164a 

refractory  and  other  materials ;    Stoves  for  .    (P) 

Gardner  and  others   . .         . .         . .         . .         . .  328a 

sheet  materials,  e.g.,  paper.     (P)  Minton          . .          . .  460a 

solid  substances  ;    Apparatus  for  .    (P)  Kilner  . .  574a 

solids.     (P)  Terrisse  and  Levy 531a 

substances  containing  or  yielding  free  alkali  or  acid. 

(P)    Rudolf 736a 

substances  ;    Device  for  .    (P)  Mabee      . .      127a,  971a 

Bubstances  at  high  temperatures ;    Apparatus  for  

and  subsequently  cooling  them.     (P)  Greenwood,  and 

Carr  and  Co 845a 

Bubstances  in  solution  ;    Atomising  process  for  . 

(P)  Salge  und  Co 736a 

systems.    (P)    Buxton       _         ...         _.         . .         . .  926a 


(P)  Krantz      . . 
Apparatus  for 


..       459a,  541a 
(P)    Hudson 

213a* 
43a 


Drying — continued. 
textile  materials. 
textile   materials 

and  Lyles 

Volume  of  air  required  in  air .     Mitchell 

webs  of  paper,  fabric,  or  the  like  ;    Apparatus  for . 

(P)  Ross,  and  Sturtevant  Co. 
wood  and  other  material  ;    Means  for .     (P)  Van- 

laetham 
See  also  Dehydrating  and  Desiccating. 

Dulcigenic  groups  ;     Isomeric  naphthoic  acid   sulphimides, 

a  contribution  to  the  theory  of  .     Kaufmann 

and  Zobel 

Dulein.    See   p-Phenetolurea. 


60SA 


Dung  ; 


Methods  to  prevent  nitrogen  losses  during  storage  of 
.     Joshi 


Duralumin  ;   Analysis  of  — — . 
Brittleness  developed  in 
Rawdon  and  others 


Da  Costa-Vet 
—  by  stress  and  corrosion. 


723a 
553a 

179a 


Dust ;   Atmospheric .     Owens       . .          . .          . .          . .  438R 

collectors  ;   Centrifugal .     (P)  Bobbitt         . .          . .  44a* 

collectors  and  extractors.     (P)  Morris      . .          . .          . .  88a 

filters  ;  Industrial . .          . .          . .          . .          . .  569R 

rock- ;    Sugar-tube  method  of  determining in  air. 

Fieldner  and  others     . .          . .          . .          . .          . .  526a 


Dutch  clinker  paving  bricks 

Dutch  East  Indies.     See  Netherlands  East  Indies. 

Dye  liquors  ;   Colour  absorption  from by  textile  fibres. 

Auerbach 

Dyed  fabrics  ;   Influence  of  gasc3  on  fastness  of .     Ris- 

tenpart  and  Wieland 

Dyeing  :  ancient  and  modern.     Perkin 

animal  or  mixed  fibres.     (P)  Akt.-Ges.  f.  Anilin-Fabr. 
apparatus.      : 

(P)  Davis 214A, 

(P)  Henon 

(P)  Jackson  and  Bro.,  Ltd.,  and  others 
and  bleaching  process.     (P)  King  and  Haines 
cellulose  acetate : 

(P)  Burgess,  Ledward,  and  Co.,  and  Harrison 

(P)  Clavel 

cellulose  acetate  or  products  and  fabrics  made  therewith. 

(P)  Clavel  

of  cellulose  acetate  silk.     Briggs 
deaminated  wool.     Paddon 

Effect  of on  artificial  silk.     Biltz 

fabrics  ;  Apparatus  for .  (P)  Thornber,  and  Brad- 
ford Dyers'  Assoc,  Ltd. 

fabrics  ;    Machines  for  .     (P)  Thornber  and  Hen- 

shilwood. . 
fibres,    threads,    or    fabrics    of    cellulose    acetate.     (P) 
Briggs  and  others 

Fast .     (P)  Badische  Anilin  und  Soda  Fabrik 

furs,  feathers,  skins,  and  like  material.    (P)  Akt.-Ges. 

fiir  Anilin-Fabr. 
glace  leather  with  coal-tar  dyestufls.     (P)  Cassella  und 

Co 

hanks  for  yarn  and  the  like  ;  Bearing  for  agitator  spindles 

of  machines  for .   (P)  Lee  and  Sons,  and  Pinder 

leather  ;   Preparation  of  an  agent  for (P)  Burton 

and  Glover 

of  linen,  half-linen,  and  cotton  ;  Blue .    Werner  . . 

Logwood .     (P)  Felder,  and  Taylor  White  Extract- 
ing Co. 
machine  : 

(P)  Dudley  

(P)  Halter 

(P)  Leek  and  Sons,  and  Leek 

Manganese  Bronze  ;  Method  for : 

Bloch  

Sunder  (Kallab) 

Manufacture    of  stable,   dry,   and  readily  soluble  vat 

preparations  for .     (P)   Meister,   Lucius,  und 

Briining  705a,  749a* 

Manufacture  of  vat  dyestuff  preparations  for  use  in . 

(P)  Bennert 

materials.     (P)  Biach 

Method  of : 

(P)  Linz,  and  Chemical  Foundation,  Inc. 
(P)  Smith,  and  Surpass  Chemical  Co. 
(P)  Toepfer,  and  Grasselli  Chemical  Co. 
and  other  treatment  of  textile  fibres  in  the  loose  state. 

( P)  Brandwood  and  others 
or  otherwise  treating  cloth,  yarns,  and  the  like  ;    Ma- 
chines for .     (P)  Bowden  and  Bowden 

or  otherwise  treating  warps  or  other  materials.    (P) 

Touchstone  and  others 
and  padding  or  treating  fabrics  ;    Means  for  supporting 
and  actuating  the  padding  roller  in  machines  for 

.     (P)  Taylor         

process  ;  Waterproofing  and .     (P)  Tate 

properties  of  cellulose  acetate  products  ;  Improving  the 
.  (P)  British  Cellulose  and  Chemical  Manufac- 
turing Co.,  and  Richardson     ..  ..  ..      289a, 

properties  of  cellulose  esters  ;  Improving  the .    (P) 

Duclaux.. 

properties  of  substantive  dyestuffs  ;  Physical  and . 

Haller  and  Ruasina 
silk  black.     (P)  Gcbr.  Schmid       


421 R 


97R 
978a 

249a 

979A 

705A* 

325a 

543a 
325A* 

666a 

54A 

411A 

461a 

11A* 

585A 

llA* 

895A* 

535a 

249a 

585a* 

774a 
411A 

368a 

55A 
543a 

368a 

214A 

214A 


809a 

809a 
461a 

411a 

96a* 
544a 

936a* 

139a* 

324a 


411a* 
461a* 


289a 
748a 


460a 
895a 


SUBJECT  INDEX. 


U3 


Dyeing — continued. 

and  similarly  treating  with  liquids  fabrics  in  piece  form 

in  continuous  process  ;    Apparatus  for  .    (P) 

Silbereisen         809a 

skins,  hairs,  and  the  like.    (P)  Akt.-Ges.  for  Anilinfabr. 

543a,  666a" 

Substantive  cotton .    Auerbach       . .         . .         . .     324a 

textile  fibres.     (P)  Brandwood  and  others  . .  . .     666a 

textile  materials  ;    Apparatus  for  .    (P)  Gott  and 

Wallis 979a« 

tops,  yarns,  and  the  like  ;    Apparatus  for  .    (P) 

Ashworth,  and  International  Textile  Devices,  Inc.     325a* 
union  fabrics  containing  cellulose  acetate  fibres.    (P) 

British  Cellulose  and  Chemical  Manufacturing  Co., 

and  others         . .         . .         . .         . .         . .         . .     543a 

with  vat  dyestuffs  in  alkaline  vats.     (P)  Kalle  und  Co.      96a 
vegetable  and  animal  fibres  ;  Bleaching  and  .    (P) 

Roberts,  and  Surpass  Chemical  Co.    . .  . .  . .     855A 

washing,  and  like  apparatus.     (P)  Simplex  Patent  Dye- 
ing Machine  Co.,  and  Horsnell  . .  . .  . .     172a 

and  washing  wool  and  other  fibrous  materials  ;   Lifting 

gear   of   machines   for  .    (P)    Whitaker   and 

Whitaker  461* 

wool  with  chrome  mordant  dyestuffs.     Ganswindt      . .     411a 
wool,    Blubbing,    yarns,    and    other    fibrous    material 

Apparatus  for .     (P)  Kershaw 

woollen  piece  goods  ;   Obtaining  special  effects  in 

Miinz  and  Haynn         . .  . .  , .  . .     895a 

yarns  ;  Apparatus  for .     (P)  La  Fayette    . .  . .     978a 

yarns  and  the  like.    (P)  Grundy,  and  Bromley  and  Sons    139a 
Dyeings  fast  to  light ;    Production  of  .     (P)  Badische 

Anilin-  and  Soda-Fabr.  . .         . .         . .         . .     249a 

Production  of  fast  to  washing,  on  animal  and 

vegetable  fibres.    (P)  Cassella  und  Co.        . .         . .     249a 

Dyes  ;  Manufacture  of  hair .     (P)  Volz  . .         . .     365a 

Manufacture  of  household .    (P)  Glover  and  Martin    408a 

Dyestuff   intermediates  ;    Aminonaphthotriazoles   as   . 

Morgan  and  Gilmour   . .  . .  . .  . .  . .       6lT 

intermediates  ;  Apparatus  for  use  in  titrating with 

unstable  diazo  solutions.    Atkinson  . .         . .     135a 

intermediates  ;  Manufacture  of : 

(P)  Atack  and  Soutar 170a 

(P)  British  Dyestuffs  Corp.,  and  others  . .     977a 

(P)  Thomas  and  others 170a 

Red from  quinoline.    Glua  . .         . .         . .         . .     497a 

Dyestuffs  for  acetate  silk  ;   Ionamines,  a  new  class  of . 

Green  and  Saunders     . .         . .         . .         . .         . .     532r 

Application  of  direct in  colouring  paper.     Holmes    935a 

basic ;    Discharging  ■  with  hydrosulphite  NF  and 

Leucotrope.    Pokorny  . .         . .         . .         . .     290a 

basic;  Dyeing ■  on  cotton.    (P)  Bayer  und  Co.     ..     139a 

basic  ;  Fixing on  cotton.     (P)  Bayer  und  Co.       . .     325a 

basic ;     Material   for   standardising   .    (P)    Bayer 

und  Co.  325a 

combined     with    soap  ;      Manufacture    of    .     (P) 

Huffman,  and  Sunbeam  Chemical  Co.  . .  . .     408a 

companies  ;    Agreement  between  French  and  German 

201R 

companies ;     Reported   arrangements   between   British 

and  French and  German  companies    . .  . .     224R 

containing  the  furane  ring.     Renshaw  and  Naylor      . .     365a 
for  cotton,  diazotisable  on  the  fibre,  for  the  production 

of  red  shades.     Koechlin        ..  ..  ..  ..     136a 

derived  from  camphoric  anhydride.     Sircar  and  Dutt . .     703a 
derived  from  phenanthraquinone  : 

Dutt  852a 

Sircar  and  Dutt    . .  . .  M  . .  . .     852a 

Determining  the  fastness  of .     Setlik  . .  . .     891A 

Dyeing  and  physical  properties  of  substantive  . 

Haller  and  Russina      . .  . .  . .  . .  . .     460a 

embargo  in  U.S.A.    . .         . .         . .         . .         . .         . .     332r 

Fastness  of to  gases.     Heermann    . .         . .         . .     290a 

German for  United  States     . .         . .         . .         . .     421R 

Dyestuffs  (Import  Regulation)  Act       . .     105R.  135R,  160R, 

180R,  201R,  224R,  295R 

Administration  of  the .     Woolcock  . .         ..         ..     112R 

Dyestuffs  ;  Imports  of into  Canada        . .         . .         . .       85R 

Imports  of into  U.S.A.  in  1921         205R 

industry  in  Germany  ;   Proposed  increases  of  capital  in 

the 10R,  460R 

industry  ;  Home . .         . .         . .         . .         . .     247R 

industry  ;   The  home .     Armstrong  . .  . .  . .     232R 

industry  in  Russia  in  1920-21  ;  Coal-tar ..         ..     179R 

industry  ;  State  assistance  for . .         . .         . .     336R 

industry  in  Switzerland  in  1921     . .  . .  . .  . .     133R 

industry  in  U.S.A.  ;  Census  of  the . .         . .         . .     419R 

Influence  of  hydrogen  ion  concentration  on  diffusion  of 

through  dead  membranes,  on  adsorption  by 

protein  sols,  and  on  metabolic  interchange  of  cells 

and  tissues.     Bethe     . .  . .  . .  . .  . .     288A 

Manchurian  trade  in . .         . .         . .         . .         . .     516R 

Manufacture  of : 

(P)  Arnot 408a 

(P)  British  Dyestuffs  Corp.  and  others  . .     626a 

(P)  Cassella  und  Co 365a 

(P)  Hart  and  Stewart 51a* 

(P)  Soc.  of  Chem.  Ind.  in  Basle  . .         . .       51a* 

Manufacture  of from  bitumen.    (P)  Culmer         . .     288a 

manufacture  in  Brazil         . .         . .         . .         . .         . .     133R 

Manufacture  of  brown .    (P)  Richardson    . .         . .     408a 

Manufacture  of  cotton .    (P)  Jordan,  and  Grasselli 

Chemical  Co _.         664a* 


(P)  British  Dye- 
Villiger    and    Von 


Battegay  and 
(P)  Kalle  und 

..    583a*, 
—  for  use  in 


Dyestuffs — continued. 

Manufacture  of  direct  cotton  

stuffs  Corp.,  and  others 
Manufacture    of    green    .     (P) 

Krannichfeldt   . .  . .  . .  . . 

Manufacture  of  green  suitable  for  production  of 

colour-lakes.     (P)  Badische  Anilin-  u.   Soda-Fabr. 

Manufacture  of  mordant : 

(P)  Alioth  and  others 

(P)  Durand  and  Huguenin  S.  A. 

Manufacture  of  oil-soluble .     (P)  Plauson  and  Vielle 

Manufacture  of  soluble  acid  and  of  intermediate 

compounds  for  their  manufacture.    (P)  Green  and 

others 
Manufacture  of  yellow  for  dyeing  animal  fibres. 

(P)  Badische  Anilin  und  Soda  Fabr. 

New  series  of 

Pigment  Chlorine  G  G  (M.L.B.)  and  Lithol  Fast  Yellow 

G  G  (B.A.S.F.) ;    Constitution  of  .    Rowe  and 

Levin 
from  Purpura  aperta  and  P.  lapillus.     Friedlander       . . 
Rejection  of  proposed  embargo  ou  imports  of  in 

Japan 
Relation  between  chemical  constitution  and  antiseptic 

action  of  coal-tar .    Fairbrother  and  Renshaw 

134T, 

Reparation ..         ..       135R,  160R,  180R,  511R, 

Studies  in  optically-active .    Singh  and  others     . . 

Sulphide .     See  Sulphur  dyestuffs. 

from  1.2.4.5-tetrahydroxybenzene  and  related  substances. 

Mukerji 
trade  in  Brazil 

trade  in  the  Red  Sea  district  

Use  of  hydrosulphites  in  estimation  of  .     Sifferlen 

I'm1  of ■  in  purifying  sewage 

vat ;    Contribution  to  study  of 

Claudin 
vat ;  Dyeing  with in  alkaline  vats. 

Co 

vat ;  Manufacture  of : 

(P)  Akt.-Ges.  fiir  Anilin-Fabr.   . 
(P)  Kalle  und  Co. 
vat ;    Manufacture  of  preparations  of  - 

printing  and  dyeing.    (P)  Bennert 
vat ;    Manufacture  of  stable,  dry  and  readily  soluble 

preparations    of    for    dyeing.     (P)    Meister, 

Lucius,  und  Briining 
vat ;  New  class  of containing  sulphur  and  nitrogen. 

Reissert 
World's  trade  in 


Earth,    fuller's:     Adsorption    and    catalysis.    Rideal    and 
Thomas 

fuller's  ;   Regenerating used  for  purifying  fats  and 

fatty  oils.     (P)  Bolton  and  Lush 

fuller's  ;   Revivifying  spent .    (P)  Miiller 

fuller's  ;  Treatment  of .     (P)  Tellier 

fuller's  ;   Treatment  of  spent .    (P)  Robinson,  and 

Standard  Oil  Co 

Fuller's in  U.S.A.  in  1920 

Fuller's .    See  also  Floridin. 

infusorial ;    Manufacture  of  a  material  from  suit- 
able for  production  of  light  concrete.     (P)  Dalhotf 
and  Lunn 
Earthenware  bodies  and  glazes.     Sortwell 

Heat-treating  furnace  and  method  for .    (P)  Kirk 

Manufacture  of .     (P)  Fulton,  and  Pittsburgh  Plate 

Glass  Co.  

Earths, rare;  Manufacture  of  compounds  of  the .  Dietsche, 

and  Gebr.  Siemens  und  Co. 

rare  ;  Separation  of by  basic  precipitation  : 

Prandtl  and  Loschl 

Prandtl  and  Rauchenberger       . .         . .      292a, 

rare  ;  New  mineral  containing as  main.component. 

Henrich  and  Hiller 483R, 

Ebonite  solution.    (P)  Pratt,  and  Clapp  Rubber  Co. 
Economisers  and  the  like  ;   Preventing  formation  of  scale  in 

.    (P)  Schnetzer 

Edible  product ;   Esterifled .     (P)  Ellis 

products  ;   Manufacture  of .     (P)  Ellis 

substances  ;  Manufacture  of .    (P)  Schou 

Effluents  and  the  like  ;  Apparatus  for  separating  solid  matter 

from  trade .     (P)  Waite  and  Boldy 

Egg  albumin  and  yolk  ;  Manufacture  of  a  substitute  for . 

(P)  Grossfeld - 

Eggs  ;    Detection  of  constituents  of  in  baked  foods. 

Noetzel 

Freezing  and  preserving .    (P)  Hussey 

Manufacture  of  preserved .    (P)  Epstein 

Methods  of  minimising  shrinkage  during  storage  of . 

Almy  and  others 

Egypt ;  Report  on  economic  and  financial  situation  of . 

Mulock 

Eichorn  ia  crassipes  ;  Ash  of as  a  source  of  potash 

Einstein  photochemical  equivalent  law.     Weigert 

Elaidic  acid  ;  Relation  of  oleic  acid  and to  their  halogen 

addition  products.     Nicolet 


PAGE 

853a 

8a* 

458a 

170a 

892a 
676a 

625A 

892a 
200R 


744a 

582a 


146R 
541R 
704A 


364A 
160R 
357R 
457A 
201 R 

50A 


137A 
809A 

809A 

364a 
460R 


981A 

825A 
165A 
132A 

132A 
158R 


178A 
177A 
548A 

59a 
3  74A* 

897a 
897A 

938a 
336a 

969a 
388a 
564a 
994a 

607A* 

115a 

114a 
75A 

781A 

780a 

46r 
401R 
309a 

109A 


144 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Electric  accumulators.     See  Electric  storage. batteries. 

arc    action    on    some    liquid    insulating    compounds. 

Rodman  865A 

arc  lamps  :  Inclosed and  method  of  starting  them. 

(P)  Fricdrich.  and  General  Electric  Co 661a 

arc  shield.     (P)  Kempton,  and  Westinghouse  Electric 

and  Mfg.  Co 087A 

batteries  : 

(P)  Benner  and  others 768a 

(P)  Soc.  Anon.  "  Le  Carbone  " 823a 

batteries  or  cells ;    Dry  electrolytic  mixture  for  . 

(P)  Brydon  and  Cummings    . .         . .         . .         . .     147a 

batteries  ;    Depolariser  for  alkaline  primary .    (P) 

Benner  and  others       . .         . .         . .         . .         . .     507a 

batteries  ;  Diaphragms  for  primary  and  secondary : 

(P)  Beckmann 109a 

(P)  Breuning         109a 

batteries  ;   Electrolyte  for  alkaline .     (P)  Muren  . .     607a 

battery  electrodes.    (P)  Benner  and  others      . .         . .     943a 
battery  electrodes ;   Material  for  use  in  manufacture  of 

.     (P)  Holmes  and  others  987a 

battery  separators.     (P)  Wood  and  Smith         . .         . .     987a 

cables;    Failure  of  lead  sheathing  of .    Archbutt. .     106a 

cables  ;  Manufacture  of  metallised  paper  for .    (P) 

Hochstiidter 894A 

cell  with  glass  as  electrolyte  ;  Carbon  monoxide-oxygen 

.     Kallmann         . .         . .         . .         ■ .         . .     597a 

cell ;  High-potential .     (P)  Physikalisch-C'hemische 

WerkeA.-G 147A 

cells : 

(P)  A.-G.  Mix  &  Genest 556A 

(P)  Bocker  and  Eichhofl  333A 

(P)  Heil 865a 

cells  ;   Crude  copper  sulphate  for .    (P)  Humphrey 

and  Pittman 423a 

cells  ;    Gaa  with  application  of  difference  of  gas 

potential  to  porous  electrodes.    (P)  Gaiser. .         . .     259a 

ceils  ;   Manufacture  of  primary  : 

(P)  De  Olaneta.and  Winchester  Repeating  Arms 

Co 147a 

(P)  Drucker  333a 

cells  ;   Oxyhydrogen  gas employing  fused  alkali  as 

electrolyte.    (P)  Baur  ..         ..         ..         ..     866a 

cells  with  electrodes  composed  of  manganese  dioxide 

and  acetylene  soot.     (P)  Burger       ..         ..         ..     866A 

coils  of  aluminium  ;  Manufacture  of .     (P)  Kiittner, 

and  Chemical  Foundation,  Inc.  . .  . .  . .     943a 

discharge  ;  Chemical  reactions  induced  by  the  corona 

in  circuits  traversed  by  continuous  currents. 

Montemartini    . .  . .  . .  . .  . .  . .     865A 

discharge  ;  Disappearance  of  gas  in  the .     Campbell 

and  Ward  405A 

discharge  tubes.    (P)  Naanil.  Vennoots.  Philips'  Gloei- 

lampenfabr.       . .         . .         . .         . .         . .         .  ■     457a 

discharge  tubes  ;  Gas-tilled  with  independent  dis- 
charge     (P)  N.  V.  Philips'  Gloeilampenfabr.         . .     803A 

discharges ;    Apparatus  for  treating  mixtures  of  

with  silent .     (P)  Szarvasy        . .  . .  . .     299a 

discharges ;    Chemical  reactions  caused  by  silent  . 

Miyamoto  . .  . .  . .  . .  . .  . .     380A 

dry  batteries  ;    Preparation  of .     (P)  Riesenfeld  . .     556A 

dry  batteries ;    Purifying  spent  manganese-containing 

depolarising  material  from  .     (P)  Wells,  and 

National  Carbon  Co.    . .  . .  . .  . .  .  ■     423a 

dry  batteries  ;    Regenerating  depolarising  material  of 

■ .     (P)  Siemens  und  Halske  A.-G 222a 

dry  cells  ;    Manufacture  of  .     (P)  De  Olaneta,  and 

Winchester  Repeating  Arms  Co.        . .  . .  . .     902a 

dry  storage  batteries.     (P)  Baumann     . .  . .  . .     108a 

dry    storage    batteries ;     Electrolyte    for    .    (P) 

Gardiner  674A 

filament  lamps  ;  Disappearance  of  gas  in in  presence 

of  phosphorus  vapour.     Campbell  and  Ward         . .     405a 

flame  arc  ;  Treatment  of  gases  in  the .    (P)  Real . .     768a 

gas  generator.    (P)  Rosner  3S0a,  902a 

gas  or  vapour  lamps.     (P)  Skaupy  . .         . .         . .         6a 

glow-discharge  lamps.    (P)  Pintsch         . .         . .         . .     742a 

glow  lamps.      (P)   Baumhauer,  and    Patent  Treuhand 

Ges.  f.  Elcktrischc  Gluhlampen         93A 

glow  lamps  ;  Imports  of . .         . .         . .         . .     267b 

glow  lamps  and  the  like  ;   Exhausting  and  sealing . 

(P)  Finckh,  and  Patcnt-Treuhand-Ges.  fur  Elek- 
trische  Gluhlampen      . .  . .  . .  . .  . .     363A 

incandescence  lamps : 

(P)  Darrah  495A 

(P)  N.  V.  Philips'  Gloeilampenfabr.      . .         . .     245a 
incandescence  lamps     Hermetic  seal  for  leading-in  wires 

of  .    (P)  Van  Keuren,  and  General  Electric  Co.    803a* 

incandescence  lamps  and  the  like  ;  Drawn  wire  filaments 

for .    (P)  Oberlander  and  Le  Marechal  . .     742a 

incandescence  lamps  and  the  like  ;  Removing  gas  resi- 
dues and  purifying  inert  gases  in .    (P)  Hoist 

and  others         . .         . .         . .         . .         . .         •  •     133a 

incandescence  lamps  ;  Preventing  blackening  of  bulbs 
of  gas-rlllcd .  (P)  N.  V.  Plulips'  Gloeilampen- 
fabr  890a 

incandescence  lamps  ;  Preventing  blackening  of  tungs- 
ten   .       (P)    Patent-Treuhand-Ges.    i.   Elek- 

trische  Gluhlampen      ..         ..         ..         ..         ..     363a 

incandescence    lamps ;     Regeneration    of    .    (P) 

Voglhut  93a 

lamp  bulbs  and  the  like  ;    Evacuation  of  .    (P) 

Patent-Treuhand-Ges.  fiir  Elektrische  Gluhlampen    581a» 


FAGS 

Electric — continued. 

lamp  filaments  ;    Manufacture  of  alloy  of  refractory 

metals  for .    (P)  Yunck  637a 

lamp   filaments ;     Manufacture   of  tungsten   for . 

(P)  General  Electric  Co.,  Ltd.,  and  Smithells         . .     891a 
lamps,  discharge  tubes,  etc. ;   Manufacture  of  filaments 

for  incandescence from  tungsten  alloys.    (P) 

General  Electric  Co 673a 

lamps  ;   Glower  for  incandescence .    (P)  Heany  . .       49a 

lamps  ;  Mercury  vapour : 

(P)  Belleaud  and  Barrollier        211a 

(P)  George  49a 

(P)  Quarzlampen-Ges 742a 

lamps ;     Removal   of   methane  from   gases   for   filling 

incandescence .    Fonda  and  Van  Aernen       . .     537a 

primary  cells.    (P)  Darimont        . .         . .         . .         . .     556a 

smelting  of  glass  enamel.     Geisinger        . .         . .         . .     465a 

storage  batteries : 

(P)  Bardt,  and  Soc.  Hidro-Metalurgica  „     718a» 

(P)  Wood 222a 

(P)  Wood  and  Smith        824a« 

storage  batteries  ;  Alkaline ■.    (P)  Gouin  and  Roesel    181a* 

storage  batteries  ;  Desulphating .     (P)  Garbutt    . .     866a 

storage  batteries ;   Drying  the  negative  plates  of . 

(P)  Dinin  824a 

storage  batteries  ;  Effect  of  impurities  on .    Gillette    423a 

storage  batteries  ;  Electrolyte  for : 

(P)  Cheney  598a 

(P)  Hacking  638a 

storage  batteries  ;  Electrolyte  for  use  in  lead .    (P) 

Fromont  . .  . .  . .  . .  .  ■  ■  •     108a 

storage  batteries  ;  Manufacture  of .    (P)  Williams, 

and  Electrol  Mfg.  Co.  507a 

storage  batteries  ;  Manufacture  of  diaphragms  for . 

(P)  Akkumulatoren-Fabr.  A.-G 299A 

storage  batteries ;    Manufacture  of  negative  plates  for 

.     (P)  Pouchain 64A«,  806a* 

storage  batteries  ;   Manufacture  of  separators  for . 

(P)  Isenberg 473A 

storage    batteries ;     Mixture    for    use    in    .    (P) 

Hacking,  and  Electrol  Mfg.  Co 507A 

storage  batteries  ;    Non-fluid  electrolytes  for (P) 

Williams,  and  Ionite  Storage  Battery  Co.  . .     147a 

storage  batteries  ;  Preparation  of  spongy  lead  paste  for 

■ .    (P)  Carpenter,  and  U.S.  Li-'ht  and  Heat  Corp.     507a 

storage   batteries ;    Preventing   buckling  of   plates  of 

.     (P)  Smith  823a 

storage  batteries ;    Treating  separators  for  .    (P) 

Nordyke,  and  Indianopolis  Mfg.  Co.  . .         . .     473A 

storage  batteries  ;  Viscid  electrolyte  for  lead .    (P) 

Weber 943a 

storage  battery  plates : 

(P)  Cattley  64A 

(P)  Wood 987a 

storage  battery  plates  ;  Change  of  density  of  electrolyte 

within  the  pores  of during  discharge.     Tanaka     108A 

storage-battery  plates  ;    Paste  for  .     (P)  Willard, 

and  Willard  Storage  Battery  Co 944A» 

storage  battery  separators  ;   Manufacture  of : 

(P)  Carpenter,  and  U.S.  Light  and  Heat  Corp.       64a 
(P)  Steerup,  and  U.S.  Light  and   Heat  Corp.     507a 

(P)  Wood 987a 

vacuum  tubes  and  the  like  ;  Removing  gas  residues  and 

purifying  inert  gases  in .    (P)  Hoist  and  others     133a 

Electrical  conductors  and  cables  ;  Insulating  material  for  luting 

.    (P)  Felten  und  Guilleaume  Carlswerk  A.-G.    944a 

conductors  for  making  connexion  with  mercury.    (P) 

General  Electric  Co.     . .         . .         . .         . .         . .     718a 

conductors  ;  Manufacture  of  aluminium .    (P)  Lind     866a 

conductors ;    Method  of  insulating  .    (P)  General 

Electric  Co 506a 

contact  bodies  and  ignition  points  ;   Tungsten  alloy  for 

.    (P)  Laise  555A 

control  of  reactions : 

(P)  Bascom,  and  Dorr  Co 43a 

(P)  Edelman         43a 

etching.    (P)  Weeks,  and  Weeks  Photo-Engraving  Co.      824a 
fume    precipitators  ;    Means  for  cleaning   electrodes  in 
.    (P)  Petersen,  and  International  Precipita- 
tion Co.  44a 

gas-cleaning  apparatus.    (P)  Metallbank   u.   Metallur- 

gische  Ges.        . .         . .         . .         . .         . .         •  •     797a 

gas  purifiers ;    Insulator  for  electrodes  of  .    (P) 

Metallbank  u.  Metallurgische  Ges 576a 

gas  purifying  plant ;    Arrangement  of  discharge  elec- 
trodes in  .     (P)  Siemens-Schuckertwerke  Ges.    206a 

gasification  of  fuel ;    Possibilities  of .     Helfenstein    208a 

generation  of  steam.    Kaelin         . .         . .         . .         . .     412b 

heating  appliances  ;  Alloy  for  use  in .    (P)  Lofts..     717A* 

heating  and  controlling  apparatus  for  a  small  thermo- 
stat.   Bawling  250T 

heating  elements.    (P)  Armstrong  507a 

heating  elements ;    Electrical  properties  of  alloys  used 

as at  high  temperatures.     Hunter  and  Jones . .     865a 

heating  in  manufacture  of  ceramic  articles.    (P)  Stcin- 

hardt 59a 

heating  ;    Use  of  granulated  nickel  for  .    Dony- 

Henault  768a 

industries;  Chemical  problems  of .     Brislee  ..     172b 

precipitating  apparatus ;    Ionising  electrode  for  . 

(P)  Fortcscue,  and  Westinghouse  and  Manuf .  Co.    797a 


SUBJECT  INDEX. 


145 


PAGE 
Electrical—  conti  nurd. 

precipitating  plant  for  separating  dry   material  from 

wet  gases.    (P)  Siemens-Schuckertwerke  Ges.       ..     239a 

precipitating  plants  ;  Arrangement  of  insulators  in . 

(!')  Sieniens-Schuckertwerke  Ges.      ..  ..  ..     737a 

precipitating   system.    (P)   Chubb,   and    Westinghouse 

Electric  and  Mfg.  Co 44a 

precipitating  systems;    Discharge  electrodes  for  . 

(P)  Escholz,  and  Westinghouse  Electric  and  Manuf, 

Co 737a 

precipitation.     Bush  . .  . .  . .  . .  . .       2lT 

precipitation  ;  Apparatus  for : 

(P)  Fortescue,  and  Westinghouse   Electric  and 

Mfg.  Co.  796a 

(P)  Lodge  Fume  Co.,  and  Stallard        . .         . .     316a 

precipitation  ;  Application  of to  the  wood  distilla- 
tion process.     Hawley  and  Pier        . .  . .  . .     495a 

precipitation  of  dust  from  gases  : 

(P)  Siemens-Schuckertwerke  Ges.  . .  . .     576a 

(P)  Thein lA 

precipitation  ;   Recent  progress  in .     Anderson     . .     180a 

precipitation  of  solid  or  liquid  suspended  matter  from 

gases.     (P)  Metallbank  u.  Metaliurgische  Ges.       ..     697a 
precipitation  of  suspended  material  from  furnace  gases. 

(P)  Schmidt,  and   International   Precipitation   Co.     399A 
precipitation  of  suspended  matter  from  electrically  in- 

sulating  fluids,  especially  gases.     (P)  Moller  ..     737a 

precipitation   of  suspended   particles  from   gases.     (P) 

Anderson,  and  International  Precipitation  Co.       . .     316a 
precipitation  of  suspended  particles  from  gases  ;   Appa- 
ratus   for    .     (P)    Witte,    and    International 

Precipitation  Co.  239A 

precipitation    of    suspended    particles    from    gases     or 

liquids.     (P)    Metallbank    u.    Metaliurgische    Ges.     206a 

precipitators  ;   Self-cleaning : 

(P)  Fisher,  and  Research  Corp.  . ,  . .     971a 

(P)  Laughlin,  and  Research  Corp.         . .  . .     399a 

precipitators ;    Device  for  cleaning  electrodes  of  . 

(P)  Siemens-Schuckertwerke  Ges.      . .  . .  . .       88A 

precipitators  ;   Magnetic  steadying  device  for  electrodes 

in .     (P)  Wintermute,  and  Research  Corp.     . .     316a 

purification  of  gases : 

(P)  Besta 316a 

(P)  Siemens-Schuckertwerke  Ges.  . .  . .     399A 

purification  of  gases  ;    Apparatus  for .     (P)  Lilien- 

feld,  and  Metallbank  u.  Metaliurgische  Ges.  . .       88a 

purification  of  gases,  employing  precipitating  electrodes 
of   the   plate  form.     (P)   Metallbank  u.   Metaliur- 
gische Ges.         . .  . .  . .  . .  . .  . .     737A 

purification   of    gases   for   removal   of   very   fine    dust 
particles.     (P)  "  Elga,"  Elektrische  Gasreinigungs- 

Ges 399a 

purification  of  liquids.,     (P)  Mitchell  and  Pfeffer           . .     944a 
resistance  coils  ;    Construction  of  platinum .     Roe- 
buck        998a 

resistance  elements  ;    Alloy  for .     (P)  Mandell,  and 

Electrical  Alloy  Co 180a 

resistance  heater  for  high  temperatures.     (P)  Bauer  and 

others 866a* 

resistance  heaters.     (P)  Lemoine  . .         . .         . .         . .     902a 

resistance  material ;    Manufacture  of  : 

(P)  Automatic  Telephone  Mfg.  Co.,  and  Roseby     259a 
(P)  Eichenberger,  and  Kummler  u.  Matter     . .     638a* 

(P)  General  Electric  Co.  333a* 

resistance  material ;    Silicon  carbide  for  use  im- 
mersed in  oil.     (P)  Conradty             148a 

separation    of    dust    from    gases.     (P)    Lilienield,    and 

Metallbank  u.  Metaliurgische  Ges.     . .  . .  . .         1a 

separation    of    suspended    material    from    gases.     (P) 

Wolcott,  and  International  Precipitation  Co.         . .     491a 
separation    of    suspended    particles    from    gases.     (P) 

Rhodes,  and  International  Precipitation  Co.  . .     399a 

separation  of  suspended  particles  from  insulating  Quids, 

especially  gases.     (P)  Moller  . .         . .         . .         . .     697a 

separation  of   suspended  solid   or   liquid   matter  from 

gase3.     (P)  Metallbank  u.  Metaliurgische  Ges.  A.-G.     491a 

transmission  ;    Copper-cadmium  wire  for .     Smith    105a 

treatment  of  gases  ;    Apparatus  for  .     (P)  Bradley       88A 

Electricity  ;  Indicator  of  static . .  . .  . .  . .     568R 

Electrochemical  developments  in  Italy  . .  . .  . .     498it 

gas  reactions  ;   Carrying  out .     (P)  Spiel     . .  . .     299a* 

oxidation  of  organic  compounds.     Midler  . .  . .     597A 

reactions  ;   Carrying  out .     (P)  Plauson       . .  . .     6U8a 

Electrochemistry  of  non-aqueous  solutions  : 

Muller        674a 

Miiller  and  Duschek         . .  . .  . .  . .     674a 

Electro-deposited  metal ;    Idiomorphic  and  hypidiomorphic 

structures  in .     Hughes  . .  . .  . .  . .     421a 

Electro-deposition  ;    Current  distribution  and  cathodic 

upon  surface  cavities  of  bodies  in  electrolytic  batlis. 

A  rndt  and  Clemens      ..  ..  ..  ..  ..     862a 

of  a  metal ;    Relation  between  maximum  velocity  of 

and  hydration  of  the  metallic  ions.     Gunther- 

Schulze 469a 

of  metals.     (P)  Hyhinette  . .  ..  ..  ..  ..       19a 

of  metals  ;  Apparatus  for .     (P)  Turton     . .  . .     298a 

Electrodes  for  accumulators  ;  Utilisation  of  sulphite-cellulose 

waste  lyes  in  preparation  of .     Konig  . .  . .         9a 

for  are  welding  and  metal  cutting  ;  Manufacture  of . 

(P)  Boorne         866a 

carbon  ;    Increasing  the  durability  and  conductivity  of 

.    (P)  Bergstrom  768a 


page 
Electrodes — continued. 

carbon  ;  Manufacture  of .     (P>  Szarvasy    . .         . .     473a* 

carbon;  Technology  of  the  manufacture  of Mantell 

718A,  718a,  707a,  768a 
for  electric  batteries  ;    Material  for  use  in  .     (F) 

Holmes  ami  others       . .  . .  . .  . .  . .     987a 

for  electrolytic  apparatus  for  decomposition  of  water. 

(P)  Smith  824a 

for  electrolytic  batteries.     (P)  Stuart  Electrolvtic  Cells, 

Inc 108A 

Filter  for  electrolysis.     (P)  Traun's  Forschungs- 

laboratorium     . .  . .  .  .  . .  . .         ". .     333A* 

Manufacture  of : 

(P)  Bardt,  and  Soc.  Hidro-Metalurgica  . .     674a* 

(P)  Michel  222A* 

Manufacture    of    carbon    for    .     (P)    Chem.    Fabr. 

Griesheim-Elektron      . .  . .  . .  . .  . .     222a 

Manufacture  of  plating .     (P)  Marino  . .  . .      180a* 

Preparation  and  applications  of   platinum   film  . 

Eilert 718a 

for  production  of  hydrogeu-oxygen  mixture.     Giinther- 

Schulze 472a 

Production  of  shrunk  coke   in  manufacture  of  . 

Yardley  259a 

Electrolysing  process;     Smelting   and   .     (P)    Rodrian, 

and  Rodrian  Electro-Metallurgical  Co.         . .  . .     766a 

Electrolysis.     (P)  Spencer  902a 

of  alkali   chlorides  ;     Model   apparatus   for   with 

mercury  cathodes.     Von  Antropoff  . .  . .  . .     597a 

of  aqueous  solutions  ;    Diaphragms  for  .     (P)  De 

Haen 109a 

Apparatus  for  production  of  gases  under  pressure  by 

.     (P)  Vincent 64a 

with  drops  of  mercury  as  cathode.     Heyrovsky  . .     986a 

Effects  produced  by  superimposing  alternating  currents 

upon  direct  currents  during .     Cooper  . .     291u 

of  metallic  salts  in  pyridine  ;    Measurement  of  current 

density  and  potential  difference  in .     Muller. .     674a 

Process  of .     (P)  Bailey  507a 

Rapid   without  rotating   electrodes.     Edgar  and 

Purdum 613A 

of  solutions.     (P)  Hooker,  and  Hooker  Electrochemical 

Co 67  4A* 

Electrolytes  for  electrolytic  condensers,  lightning  arresters, 
rectifiers,  etc.  : 

(P)   Coulson,   and   Westinghouse  Electric   and 

Mfg.  Co.  423A 

(P)  Slepian  and  others     . .  . .  . .  , .       2lA 

Electrolytic  apparatus : 

(P)  Allen 259a 

(P)  Eagle 902a 

(P)  Pechkranz 473a* 

(P)  Seward,  and  American  Magnesium    Corp. 

295a*,  299a 

(P)  Sherwood,  and  Hooker  Electrochemical  Co.     824a 

(P)  Tobler,  and  American  Bromine  Co.  ..     259a* 

apparatus  and  method  of  depolarising  it.  (P)  Nickum. .     824a 

apparatus  for  treating  liquids.     (P)  Smith         . .  . .     433a 

batteries  ;   Electrodes  for .     (P)  Stuart  Electrolytic 

Cells,  Inc.  108a 

caustic  soda  cells.     (P)  Statham,  and  Industrial  Chemical 

Co 380a* 

cells: 

(P)  Davis 768A 

(P)  Dow  Chemical  Co 259a* 

<P)  Green 222a 

(P)  Harris,  and  Carho-Oxygen  Co 638a* 

(P)  Harris  and  Rose         299a 

(P)  Jenkins  333a* 

(P)  Le  Sueur  902a 

(P)  Schuckert  und  Co 824a* 

Agitating  apparatus  for .     (P)  Mumford,  jun.     902a 

Diaphragms  for : 

(P)  Beckmann       ..  ..  ....  ..     109a 

(P)  Breuning         109a 

Diaphragms    for    horizontally    stratified   . 

(P)    Bayer   und   Co 222a 

cells  for  electrolysis  of  water.     (P)  Schuckert  und  Co., 

and    others       . .         . .         . .         . .         . .         . .     380a 

cells  for  precipitating  metallic  oxides  and  method  of 

operating  them.     (P)  Wikle  ..  ..     147a 

cells  for  production  of  alkali  chlorates.     (P)  Barker,  and 

United   Alkali    Co 99a 

cells  for  production  of  alkali  and  chlorine.     (P)  Allen 

and    others        . .  . .  . .  . .  . .  . .     380a 

cells  for  treatment  of  metals  and  ores.     (P)  Barth      . .     717a 
conductivity.     Armstrong  . .  . .  . .  . .     268X 

decomposition     of     alkali     salts     employing     mercury 
cathodes  ;     Operation   of   processes   and   cells  for 

.     (P)    Wilderman  812a 

decomposition  of  solutions,  etc.     (P)  Schuckert  und  Co.     333a 

deposits ;     Obtaining    metallic   easily   detachable 

from  the   cathode.     (P)   Soc.   d'EIectro-Chimie   et 
d'Electro-Metallurgie  . .  . .  . .  . .     821a 

dissociation ;    Relation  between  adsorption  and  . 

Rakusin  . .  . .  . .  . .  . .  . .     674a 

extraction  of  gases  from  liquids.     (P)  Vincent  . .  . .       64a 

gas    generators.     (P)    Boisen        . .  . .  . .  . .     108a 

process.    (P)   Sherwood,   and   Hooker  Electrochemical 

Co 824a 

reduction    and    oxidation.     (P)     Paulus,     and     Royal 

Baking  Powder   Co 631A 


cells 

cells 


cells; 


146 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Electrolytic — continued. 

tanks    with   diaphragm   cells ;     Arrangement   in   

(P)  Hagltind 768a* 

Electro-magnets ;    Insulating  metal   particles   for  cores  of 

.     (P)  Elmen,  and  Western  Electric  Co.      . .     507a 

Electrometric     titration     of     ferrocyanides.    Miiller     and 

La  liter  bach        . .  . .  . .  . .  . .  . .     840a 

titration  ;     Simple    apparatus   for  .    Garner   and 

Waters 337t 

titration;    Simple  method  of  in  aeidinietry  and 

alkalimetry.     Sharp  and  MaeDougall  . .  . .     568a 

titrations  with  lead  nitrate.     Kolthoff 840a 

titrations  with  mercuric  perchlorate.     Kolthoff  ..     730a 

titrations  with  silver  nitrate.     Kolthoff 640a 

Electron  discharge  apparatus.     (P)  Langniuir,  and  British 

Thomson-Houston     Co.  . .  . .  . .  . .     133a* 

Electro-osmotic    dehydration.     (P)    Elektro- Osmose    A.-G.     358a 
dehydration  plant  comprising  a  steam  engine,  dynamo, 
filter-press,  and  drying  plant ;   Process  of  operating 

a  complete  ,  utilising  the  waste  heat  of  the 

process.     (P)    Elektro-Osmose   A.-G 206a 

Electroplating.     (P)    Belke 766a 

carbon  articles.    (P)  Hamister  and  National  Carbon  Co.    181a 

electrodes  ;   Manufacture  of .     (P)  Marino  . .  . .     180a* 

metallic   bodies.     (P)   Groff  259a* 

process.     (P)  Park 673a 

Electrostatic  separation  of  finely  divided  discrete  material. 

(P)  Brown,  and  Electrostatic  Separation  Co.      . .     638a* 

Elect ro-titrat ion     apparatus  ;      Continuous-reading     . 

Goode     ..  ..  ..  ..  ..  ..  ..     272a 

Elements  ;  Artificial  disintegration  of  the .     Rutherford     120R 

Elemi  resin  ;    Amyrins  from  .     Zinke  and  others      . .     509a 

Ellagic  acid ;    Occurrence  of  in   Rubus   Idaetis,   and 

cause  of  clouding  of  raspberry  juice.     Kunz-Krause     115a 

Elsholtzic    acid ;      Constitution    of    .    Asahina    and 

Kuwada  ..  ..  ..  ..  ..  ..     835a 

Elutriation ;     Discussion    on    properties    of    powders    and 

grading  by  173R 

Grading  powders  by  .     Lowry  and  McHatton     ..     310a 

Elutriator   for  rapid   use.     Lowry      ..  ..  ..  ..     310a 

Emulsifying    agent    for    liquids    insoluble    in    water.     (P) 

Meister,  Lucius,  und  Briining  . .  . .  . .     742a 

agents  ;  Study  of  adsorption  in  solution  and  at,  interfaces 
of  sugars,   dextrin,   starch,   gum  arabic,   and   egg 

albumin,  and  mechanism  of  their  action  as  . 

Clark  and  Mann  . .  . .  . .  . .  . .     603a 

materials ;      Manufacture     of     oleaginous     .    (P) 

Schou     ..  ..  ..  ..  ..  ..  ..     994a 

Emulsin  : 

Helferich    . .  . .  . .  . .  . .  . .     228a 

Willstatter  and  Csanyi 228a 

Willstatter  and  Oppenheimer   . .  . .  . .     783a 

6-Emulsin  ;    Carboligase,  <r-emulsin,  and .     Rosenthaler     430a 

o-EmuIsin  ;    Carboligase,  fi-emulsin,  and .     Rosenthaler     430a 

Emulsions ;     Apparatus    for    treating    natural    petroleum 

.     (P)  Barnickel 850a 

Bituminous .     (P)  Reeve,  and  Barrett  Co.  . .       48a 

Chromatic .     Holmes  and  Cameron  . .  . .  . .     239a 

Dehydrating  .    (P)   Badische   Anilin-   und   Soda- 

Fabrik 743a 

Dehydrating  hydrocarbon .     (P)  Asiatic  Petroleum 

Co.,  and  Cameron      . .         . .         . .         . .         . .     131a 

Dehydrator  for  petroleum  : 

(P)  Harris 244a 

(P)  Harris,  and  Petroleum  Rectifying  Co.    . .     851a* 

Electrical  dehydration  of  petroleum  .     (P)  Harris, 

and    Petroleum    Rectifying    Co.       . .  . .  . .     210a 

Electrical  dehydrator  for  oil  .     (P)  Meredith,  and 

Petroleum    Rectifying    Co.    . .  . .  . .  . .     850a 

Electrical   process  for   dehydration   of  aqueous   . 

(P)    Elektro-Osmose   A.-G 300a 

Formation  of  water-in  oil  type  by  concentration 

of  the  oil  phase.    Sanyal  and  Joshi  . .         . .         . .     599a 

Manufacture  of  : 

(P)   Hutchings 846a 

(P)  Kirschbraun 536a 

(P)  Schou 994a 

for  painting  and  priming  or  like  purposes  ;   Preparation 

of .     (P)  Schou 301a 

Preparation  of  oil  by  means  of  colloidal    sili<  i«- 

acid  and  relationship  to  the  processes  of  tuberculosis. 
Kramer  . .  . .  . .  . .  , .  . .     825a 

Resolving  : 

(P)  Heller,  and  De  Laval  Separator  Co.      . .     400a 

(P)  Sharpies  Specialty  Co 580a 

Reversal  of  type  in  by  electrolytes.     Bhatnagar       22a 

Rotary  cooling  apparatus  for  .     (P)  Bigum         . .     388A 

Separating  oils  from .     (P)  Trent,  and  Trent  Process 

Corp 579a 

Stability    and    inversion    of    oil-water    .     Parsons 

and    Wilson,    jun.       . .  . .  . .  . .  . .     181a 

in  technical  practice  ..  ..  ..  ..  ..     346R 

Use  of  nitrocellulose  in  preparation  of  .     Holmes 

and  Cameron     . .  . .  . .  . .  . .  . .     239a 

Emulsoids  ;    Production  of  .     (P)  Werner         . .  . .     240a 

Enamel-burning  racks ;     Relative   merits   of   heat-resisting 

alloys  for  .     Poste         983a 

calculations ;     Modification    of   the    empirical  formula 

in  .     Hansen       . .         . .         . .         . .         . .     634a 


Enamel — continual. 

(.'rating  carbon  or  articles  containing  it  with .     (P) 

Meurer    . .  . .  . .  . .  . .  . .  . .     757A 

for  coating  surfaces  of  steam-engines  liable  to  corrosion. 

(P)   Willmer 502a 

coatings ;     Producing   and   applying   to   metallic 

surfaces.     (P)  Smith,  and  Stanley  Insulating  Co.     756a 

Electric  smelting  of  glass  .     Geisinger      . .  . .     465a 

reactions ;     Microscopical    study    of    ground    coat   and 

cover  coat .     Geisinger  . .  . .  . .  . .     633A 

Removing   from    enamelled    metal    articles.     (P) 

Patch 548a 

Enamelling  of  cast  iron ;    Effect  of  sources  of  pig  iron  on 

.     Manson  983a 

furnace ;    New  type  of  gas-fired  vitreous  .     Clark     710a 

metallic  objects."  (P)  Meurer      . .         . .         . .         .  -     295a 

processes : 

(P)  De  Dietrich  et  Cie.  860a 

(P)    Meurer  254a 

Enamels  ;   Factory  control  of  fish  scaling  of .     Grainer     253a 

Fish-scaling  of  ground  coat  .     Sweely      . .  . .     814a 

free  from  lead  and  boron  ;    Preparing  frits  for  . 

(P)   Harkort 103a 

and    like    substances ;     Coating    heat-resisting    articles 

by  spraying  with  .    (P)  Meurer         . .         . .     502a 

Production  of  white  for  copper.     Danielson  and 

Reinecker  102a 

Rotation  of  composition  to  thermal  shock  in  steel . 

Sweely    . .  . .  . .  . .  . .  . .  . .     465a 

Wet-process  for  cast  iron.     Danielson  and  Rein- 
ecker        898A 

Engineer  ;    Co-operation  of  the  chemist  and  the in  the 

control  of  plants  and  processes.     Gill         . .  . .         5r 

Engines ;     Apparatus  connected   with   internal   combustion 

or  oil for  converting  crude  oil  into  fuel.     (P)  Key    702a 

Diesel  ;      Characteristics    of    petroleum    oils    used    on 

.     Moore 319a 

internal-combustion  ;    Arrangement  for   purifying  and 

rendering    odourless   the    exhaust    gases    of    . 

(P)  Wachtel  and  Schmidding  ..  ..  ..     453a 

internal-combustion ;     Cleansing    and    deodorising    the 

waste  gases  from .     (P)  Schmidding  . .  . .     211a* 

internal- combust  ion  :    Fuel  for  : 

(P)  A.-G.  fur  Anilin  Fabr 580a 

(P)  Field 974a 

(P)   Ricardo  70lA 

(P)  Whitaker,  and  U.S.  Industrial  Alcohol  Co. 

624a,  701a 
internal-combustion ;     Means    of    cooling    suction    or 

producer  gas  prior  to  its  admission  to  .     (P) 

Bamber  and  Parker 455a* 

internal-combustion  ;    Production  of  protective  gas  by 

means  of .     (P)  Muchka 453a,  455a* 

internal  combustion  ;    Purifying   and  rendering  odour- 
less the  exhaust  gases  of  and  the  like.     (P) 

Wachtel  and  Schmidding      ..  ..  ..  ..      131a 

internal- combust  ion  ;     Toxicity   index   of   gases  from 

.     Kohn  Abrest 389a 

internal-combustion  ;    Use  of  methane  in  steel  cylinders 

as  fuel  and  starting  gas  for .     Brown  . .  . .     888a 

internal-combustion ;     Utilisation   of   exhaust   gases   of 

.     (P)  Scherhag 889a 

internal-combustion  ;    Vegetable  oils  as  fuel  for . .     102a 

Production  of  vapour,  especially  for  use  in  .     (P) 

Caldwell  :  . .     454a 

Enzyme  action   in   light   of   modern  theories  of  catalysis. 

Armstrong  110t,  124b 

Enzymes  ;  Action  of  hydrolysing .    Van  Laer  . .         . .       28a 

Adsorption  of  .     Jacoby  and   Shimizu      ..       340a,  340a 

Blood    .     Occurrence    of   maltase   in    mammalian 

blood.     Compton         ..  ..  ..  ..  ..     227a 

Effect  of  vitamins  on  .     Sammartino      :  . .     227a 

of  malt ;    Proteolytic  .     Lundin 830a 

Protein .     Ehrenberg  . .  . .  . .  . .  . .     430a 

Proteolytic  determination  of .     Pincussen  . .  . .     964a 

as  synthetic  agents.     Armstrong  ..  ..  ..  ..     113t 

Ergot.     Stoll         914a 

of  diss  ;    Chemical  composition  of  .     Tanret      . .     345a 

of  oats  ;    Chemical  composition  of  ■.     Tanret      . .     345a 

substitutes ;      Secale     cornutum     and     so-called     . 

Tschirch  607a 

Erucic  acid  and  its  anhydride.     Holde  and  Wilke   260a,  424a,  598a 

Derivatives  of  .    Toyama     . .         . .         . .         . .     988a 

Erythrocytes ;     Use    of    ultramicroscope    for    examination 

of   action    of    poisons    on    cells    of   .     Traube 

and   Klein         782a 

Eserine  salicylate  ;    Preparation  and  preservation  of  colour- 
less solutions  of .     Debucquet  . .  . .  . .     481A 

Esparto  cellulose;    Composition  of  .    Hirst   ..         ..     392r 

cellulose  in  Spain    . .  . .  . .  . .  . .  . .     402r 

grass  and  the  like ;    Fractional  digestion  of  ■  in 

production  of  paper  pulp.     Aitken  . .  . .  . .       52a 

Essences;  Argentine  market  for ..  ..  ..  ..     164R 

Esterases  ;  Influence  of  substances  obtained  from  yeast  cells 
and  organs  on  time  course  of  fission  of  substrates 

by  .     Abderhalden  and  Wertheimer  . .  . .     605a 

Esters  ;  Apparatus  for  manufacture  of .    (P)  Backhaus, 

and  U.S.  Industrial  Alcohol  Co 157A 

of    carbohydrates ;     Process    of    colloiding    .     (P) 

Stockelbach,  and  Commonwealth  Chemical  Corp.    . .       10a 


SUBJECT  INDEX. 


147 


(P)    Zollinger- 


PAGE 

Esters — continued. 

Converting    organic    acids    into    ■ 

Jenny     . .  . .  . .  . .  . .  . .  . .     786a 

Determination  of in  imitation  flavouring  extracts. 

Beyer 391a 

of  dihydroxydiethyl    sulphide;    Manufacture  of  . 

(P)  Meister,  Lucius,  und  Briining      ..  ..  ..     309a 

of  fatty  acids  as  shortening  agents.     (P)  Ellis      ..  ..     388A 

Manufacture  of : 

(P)  Backhaus,  and  U.S.  Industrial  Alcohol  Co. 

119a,  119a*,  786a 
(P)  Rodebush,  and  U.S.  Industrial  Alcohol  Co.  878a 
(P)  Sterfens,  and  U.S.  Industrial  Alcohol  Co.     648a 

Manufacture  of  fatty  acid  alkyl .     (P)  Byk-Gulden- 

werke  Chem.  Fabr 380A 

Manufacture  of and  of  materials  containing  them 

from  olefines.     (P)  Hunt         997a* 

Manufacture   of   mono-    and    di-0-hydroxyethylamino- 

benzoic .     (P)  Altwegg  and  others         . .  . .     567a* 

Preparation  of  arylsulphonic  acid  of  halogenated 

aliphatic  alcohols.     (P)  Von  Kereszty  and  Wolf     . .     728a 
Preparation  of  enolic  alkali  metal  compounds  of  simple 

fatty  acid .    (P)  Scheibler  521a 

Yeasts  which  form .     Weber  . .  . .  . .  . .     430A 

Esthonia ;    Chemical   composition   of   kukkersite,    the  oil- 
bearing  mineral  of .     Kogeriuan  . .  . .     799a 

Kukkersite,  the  oil-shale  of .    Craig..         ..         ..     799a 

Etching  ;    Electrical  .     (P)  Weeks,  and  Weeks  Photo- 
Engraving  Co.  . .  . .  . .  . .  . .     824a 

Ethane  ;   Manufacture  of from  acetylene  : 

(P)  Caro  and  Frank         34a 

(P)  Chem.  Fabr.  Griesheim-Elektron    . .         . .     484a 

Ethenyl-p-diallyloxvdiphenylamidine  ;    Preparation  of . 

(P)  Soc.  Chem.  Ind.  in  Basle 520a 

Ether-alcohol  mixtures  ;  Manufacture  of for  use  as  motor 

fuel.     (P)  Lichtenthaeler         974a 

Autoxidation  of .     Clover       . .  . .  . .  . .     519a 

Formation  of  addition  products  of  cresols  and : 

Berl  and  Schwebel  662a 

Von  Rechenberg  and  Von  Rechenberg. .  . .     6tS2A 

Manufacture  of  alcohol  and  from  the  ethylene  of 

coke-oven  gas.     Thau  and  Bertelsmann       . .  . .       90a 

Recovery   of   used  for  extraction   in   laboratory 

practice.     Pichler        . .         . .         . .         . .         . .     730a 

Specific  gravities  and  refractive  indices  at  15°  C.  of  mix- 
tures of  water,  alcohol,  and .    Sanfourche  and 

Boutin 610a 

Ethereal  sulphates  ;   Occurrence  of in  carrageen  {Chon- 

drus  crispus).     Haas    . .  . .  . .  . .  . .     230a 

Ethers  of  aliphatic  alcohols  of  high  molecular  weight  ;  Manu- 
facture of  water-soluble  derivatives  of"  aryl  . 

(P)  Elektrochem.  Werke  Ges.,  and  others     . .         . .     426a 

of  aromatic  nitro-alcohols  ;    Preparation  of  .     (P) 

Schmidt  and  Baj en       ..  ..  ..     523a 

of  carbohydrates,  their  conversion  products  and  deriva- 
tives ;  Manufacture  of .     (P)  Lilienfeld  ..10a,  53a 

of  carbohydrates,  their  conversion  products  and  deriva- 
tives ;  Manufacture  of  compositions  containing 

(P)  Lilienfeld 95A 

of  carbohydrates  ;  Production  of .     (P)  Young      ..     854a 

of   homologues   of   hydroxybenzyl   alcohols   containing 
methyl  groups  attached  to  the  nucleus  ;  Preparation 

of .     (P)  Melamid 728a 

of  p-hydroxyphenylurea  ;     Manufacture  of    ■ .    (P) 

Riedel  A.-G 79a 

Preparation  of  symmetrical  aralkyl .    (P)  Baver  und 

Co 347A 

2-Ethoxy-6.9-diaminoacridine  hydrochloride,  a  new  antisep- 
tic.    Morgenroth  and  others  . .  . .  . .  . .     193a 

4-Ethoxyphenylmalonamic  acid  salt  of  quinine.     (P)  Akt.- 

Ges.  fur  Anilin-Fabr 959A 

Ethyl  acetate  ;   Action  of  alumina,  titania,  and  thoria  upon 

.     Adkins  and  Krause     . .  . .  . .  . .     308a 

Recovery  of  alcohol  and  dry  sodium  acetate  from . 

(P)  Consortium  fur  Elektrochem.  Ind.  ..  ..       33a 

Ethylamine  ;    Decomposition  of  ■  in  the  vapour  stage. 

Upson  and  Sands  ..  ..  ..  ..  ..     957a 

Ethylation  of  benzene  and  naphthalene.     Milligan  and  Reid . .     245a 

Ethylcellulose ;      Depolymerisation     of     .     Hess     and 

Writtelsbach 94a 

Ethyl  chloride  as  refrigerating  agent ;   Advantages  of . 

Jenkin    ..  .,  ..  ..  ..  ..  ..     474r 

Ethyl  chlorosulphonate  ;   Manufacture  of .     (P)  Traube     309a 

Ethylene  ;  Absorption  of by  sulphuric  acid.     Production 

of  ethyl  alcohol,  diethyl  sulphate,  and  liquid  hydro- 
carbons.    Damiens      . .  . .  . .  . .  . .     957a 

Action  of  oxygen  on .     Blair  and  Wheeler    . .  . .      303t 

Apparatus  for  manufacture  of : 

(P)  Backhaus,  and  U.S.  Industrial  Alcohol  Co.     157a 
(P)  Whitaker  and  others. .  ..  ..  ..     157a 

derivatives  ;    Manufacture  of  from  coal  gas.     (P) 

Bayer  und  Co.  . .  . .  . .  . .  . .     391a 

Formation  of  butadiene  from .     Zanetti  and  others     836a 

Hydrogenation  of in  contact  with  nickel.     Rideal . .     269a 

Interaction  of  nitrogen  and under  the  influence  of 

the  silent  electric  discharge.     Miyamoto       . .  . .     380a 

Manufacture  of : 

(P)  Ross  and  Evans         . .         . .         . .         . .     959a 

(P)  Whitaker  and  others 648a 


Ethylene — continued. 

Manufacture  of from  acetylene.    (P)  Chem.  Fabr. 

Griesheim-Elektron     . .  . .  . .  . .  . .     484a 

Manufacture  of  alcohol  from . .  . .  . .  . .     190r 

Manufacture  of  alcohol  from .     (P)  Karo      . .  . .     788a 

Manufacture  of  alcohol  from  gas  containing  .     (P) 

Basore 33a,  879a* 

Preparation  of  formaldehyde  from .     (P)  Willstatter     566a 

Separating and  other  compounds  from  gaseous  mix- 
tures.    (P)  Curme,  jun.,  and  Union  Carbide  Co.       . .     686A 

Ethylenedithioglycol    fm-0-chloroethyl    ether.     Rosen    and 

Reid 345A 

Ethyleneglycol ;    Manufacture  of  nitric  esters  of  .     (P) 

Chem.  Fabr.  Kalk,  and  Oehme  81a 


(P)  Traube     309a 


in    blackberry 
Franzen  and  Kessener. . 


Ethyl  fluorosulphonate  ;  Manufacture  of 

Ethylidenelactic    acid ;     Presence    of    - 
(Rubus fructie&sus)  leaves 

Eucalyptus  calophylla  ;   Marri  kino,  red  gum  from .    Salt 

Eucalyptus  globulus  wood  ;    Analysis  of .     Mahood  and 

Cable 
Eucalyptus  oils.     See  under  Oils,  Essential. 

ointment  ;  Examination  of .     Evers  and  Elsdon    . . 

Eudaline.     Ruzicka  and  others 


194a 
67A 


519a 

482a 


Eutectics  ;  Structure  of .    Brady 418R,  820a 

Evaporation  apparatus  : 

(P)  BarbetetFilsetCie.  

(P)  Carr,  and  Cardem  Process  Co. 

(P)  KJeinschmidt . . 

apparatus  ;  Controlling  the  level  of  liquids  in .     (P) 

Creighton 

apparatus  ;  Preventing  corrosion  in .     (P)  Kummler 

und  Matter 

apparatus  ;  Vacuum .     (P)  Ray  and  others 

Atomising    and    diffusing    liquids    prior   to    .     ( P) 

Krause  und  Co. 

of  brine.     (P)  Wirth-Frey 

General  problem  of .     Hinchley         ..  ..      24iiT, 

of  a  liquid  into  a  gas.     Lewis 

of  liquid  or  semi-liquid  substances.     (P)   Brindle  and 
others 

of  liquid  substances  ;    Device  for  atomising  and  . 

(P)  Miiller  

of  liquids : 

(P)  Bohrmann 

(P)  Graemiger 

(P)  Josse  and  Gensecke  . . 

(P)  Kummler  und  Matter 

(P)  Mabee 

(P)  Major 

(P)  Matter 

<P>  Morterud         

(P)  Wirth-Frey 

(P)  Zimmermann,  and  Stutzke  Co. 
of  liquids  ;  Apparatus  for : 

(P)  Kummler  und  Matter  736a 

(P)  Miiller,  and  Chemical  Foundation,  Inc.      . .     240a 

(P)  Thunholm 163a 

of  liquids;  Continuous .     (P)Sandberg        ..  ..     970a 

of  liquids  ;  Device  for .     (P)  Mabee  . .  ..      127a,  971a 


620a 
206a 
400a 


926a 
846A 

316a 

463a 
280R 
885A 

450A 

30a* 

574a 
44a 
698A* 
846A 
620A 
451A* 
31 7A 
531a* 
206a 
127a 


of  liquids  or  molten  substances  ;    Atomising  aud 

(P)  Keller         

of  liquids  and  semi-liquids  ;    Apparatus  for  .     (P) 

Miller,  and  Evaporating  and  Drying  Machinery  Co. 
of  liquids  with  subsequent  compression  of  the  vapour 

produced.     (P)  Kummler  u.  Matter 
of  liquids  without  employing  a  vacuum  ;  Apparatus  for 

.     (P)  Wurni         

of  liquors.     (P)  Gensecke 

of  moisture-containing  materials ;   Apparatus  for . 

(P)  Harris,  and  National  Evaporator  Corporation  . . 
pan  for  milk  etc.     (P)  Rogers 

plants  ;  Apparatus  for  measuring  or  indicating  the  den- 
sity of  liquids  in .     (P)  Porter  and  Spensley     . . 

processes ;     Heating   and    cooling   liquids    or   admixed 

solids  and  liquids  in .     (P)  Rigby 

Recovery  of  solid  matter  from  liquids  by  .     (P) 

Krause  und  Co. 
Separating  solid  constituents  from  liquids  by .     (P) 

Krause  und  Co. 
of  solutions.     (P>  Metallbank  u.  Metallurgische  Ges. 
of  solutions ;    Atomising  process  for  — — .    (PJ  Salge 

und  Co. 
of  solutions  by  means  of  compressed  waste  steam  ;  Means 

for   regulating    processes   for   .    (P)    Allgem. 

Elektrizitats-Ges. 
of  stored  liquids  ;  Stable  foam  for  preventing .     (P) 

Jennings,  and  Standard  Oil  Co. 
of  stored  volatile  liquids  ;  Preventing .     (P)  Howard 

and  others 
of  substances  containing  or  yielding  free  alkali  or  acid. 

(P)  Rudolf         

of  sulphite- cellulose  waste  liquors  and  similar  solutions  ; 

Apparatus  for .     (P)  Paschke 

Evaporator  incrustations  ;    Significance  of  presence  of  oxa- 
lates in in  sugar  factories.     Miiller 

systems.     (P)  Brown,  and  Griscom- Russell  Co.   . .      31a*, 
Evaporators ; 

(P)  Blair,   Campbell  and   McLean,   Ltd.,  and 
Ferguson 


73SA 
280a 


737a 
736a 


206a 
564a 


697a 


316a 
450a 


736  a 


697A 
491a 


736a 

498A 


909a 
206a 


k2 


148 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


TAGE 

Evaporators — continued. 

(P)  Creighton 736A 

(P)  Mellor,  and  Kestner  Evaporator  Co.          . .     697  a 
(P)  Miller,  and  Evaporating  and  Drying  Ma- 
chinery Co 450a 

(P)  PauUis,  and  Royal  Baking  Powder  Co.       . .     577a 
Apparatus  for  measuring  or  indicating  the  density  of 

liquids  in .     (P)  Porter  and  Spensley     ..  ..     317A* 

Apparatus  for  regulating  discharge  of  liquid  from . 

(P)  Price,  and  Griscom-Kussell  Co 279a 

heated  by  waste  hot  gases.     (P)  Hocking 796a 

and  the  like  ;  Preventing  formation  of  scale  in .    (P) 

Schnetzer  969a 

Separating  solid  particles  from  exit  gases  of .     (P) 

Krause  und  Co.  ..  ..  ..  ..     316a 

and  separators  ;  Centrifugal .     (P)  Mabce   . .  . .     620a 

Treatment  of  liquids  containing   calcium   sulphate  to 

present  formation  of  scale  in .    (P)  Bull,  and 

A./S.  De  Norske  Saltverker 44a* 

Vacuum .     (P)  Riitgerswerke  A.-G  ,  and  Senger     . .     400a 

Excise  tariffs.     See  under  Tariffs. 

Exhibition  ;  Brazilian  centenary . .  . .  ...  . .       64k 

British  Empire . .  . .  . .  . ,      511r,  542R 

Canadian  National . .  . .  . .  . .     184R 

Expenditure  ;   Curtailment  of  National . .  . .  . .     104R 

Expert  evidence  ;  Ethics  of .     Richardson  .,  ..     633R 

Explosion;  Cause  of  the  Oppau ..  ..  ..  ..     451R 

at  Oppau  ;  Inquiry  into . .  . .  . .  . .       10R 

Explosions  of  sugar  dust ;    Causes  and  prevention  of  . 

Beyersdorfer 830A 

Thermodvnainical    theory    of    ■ .     Henderson    and 

Hasse     .,  199a 

Explosive  blasting  powder.     (P)  Stankowitsch  . .  . .     441a 

compositions    for    fuses ;     Preparation    of    .    (P) 

Friederich  . .  . .  . .  . .  . .  . .     441A 

compositions  ;    Increasing  the  sensitiveness  and  power 

of  - — .     (P)  Dehn 839a 

compositions  ;  Manufacture  of : 

(P)  Benedix  839a 

(P)  Bryan,  and  Du  Pont  de  Nemours  and  Co.     649a 

(P)  Stine,  and  Du  Pont  de  Nemours  and  Co.   . .       37a 

(P)  "Werner,  and  Hoynesite  Explosives  Co.      . .     880a 

mixture.     (P)  Haynes,  and  Linde  Air  Products  Co.         ..     310a 

mixtures ;    Analysis  of  detonating  and  priming  . 

Taylor  and  Rinkenbach  . .  . .  . .  . .     624a 

mixtures  consisting  mainly  of  ammonium  nitrate  and 
charcoal ;    Filling  projectiles,  such  as  shells,  with 

.     (P)  Ver.  Chem.  Fabr.  in  Mannheim  . .  . .     789a 

powder  ;    Manufacture  of  propellent  .     (P)  "Wood- 
bridge,  jun.,  and  Du  Pont  de  Nemours  and  Co.         ..       37A 

powders ;     Velocity   of  combustion   of   colloidal   . 

Bourgoin  . .  . .  . .  . .  . .  . .     234a 

power  ;  Trauzl's  lead  block  method  for  determining . 

Lodati 441a 

primers  ;  Manufacture  of  initial .     (P)  Rathsburg  . .     880a 

primers  ;  Microscopy  of  small  arms .     Chamot       ..     879A 

priming  compositions  ;   Manufacture  of : 

(P)  Friederich 568a 

(P)  Rheinibh-Westfalische     Sprcngstoff     A.-G.     568a 
priming  compositions  for  percussion  and  friction  fuses, 
detonators,  cartridges,  and  the  like ;    Manufacture 

of .     (P)  Von  Herz  839a,  839a 

priming  compositions  for  small-arms  ammunition.     (P) 

Peck,  and  Peters  Cartridge  Co.  . .  . .  . .     524a 

priming  substances  ;   Manufacture  of .     (P)  Raths- 
burg         _  ..     121A 

Explosives  Act  in  Canada ;    Admhiist ration  of  the  ■ . 

Ogilvie 94R 

Explosives;  Action  of  Hertzian  waves  on .     Briotet      ..     349a 

Annual  report  of  His  Majesty's  inspectors  of for  1921     202r 

chlorate  ;  Toxicity  of  fumes  from .     Kast  and  Haid    961a 

Controlling  the  stabiliser  content  of  colloidal  cellulosic 

.     (P)  Rocker,  and  Du  Pont  de  Nemours  and  Co.     730a 

Converting  propellent  powders  into  detonating  . 

(P)  Hunter        484a 

Drying  of  propellent  in  tunnel  dryers.    Weissen- 

berger     . .  . .  . .  . .  . .  . .  . .       80a 

having  liquid  air  as  base.     (P)  Weber,  and  Soc.  Les 

Pel  its  Fils  de  De  "Wendel  et  Cie 918a 

Increasing  the  density  of  and  gelatinising  .     (P) 

Carbonit  A.-G.,  and  Koehlcr 441a 

industry  in  Canada 245k 

Manufacture  of : 

(P)  Davis 998a 

<P>  Gaffy 8lA 

(P)  Hawkins  and  Rex 81a,  484a 

(P)  Lundsgaard  and  Herbst       . .  . .  . .     690a 

(P)  Mardick,  and  Acheson  Graphite  Co.  ..     524a 

(P)  Ott  and  Faust  917a 

(P)  Rintoul  and  others 961a* 

(P)  Snelling,  and  Trojan  Powder  Co.     ..  ..       87,4 

(P)  Von  Herz        158a* 

(P)  Weber,  and  Soo.  les  PctitsFilsdcDe  Wendel 

et  Cie 81a,  234a 

<P>  Wohl 271a* 

Manufacture   of    ■  from    ammonium    nitrate    and 

carbonaceous  matter : 

(P)  Rhenania,  Ver.  Cheni.-Fabr.-A.-G.,  Zweig- 

niederlassmig  Mannheim         . .  . .  . .     998a 

(P)  Ver.  Chem.  Fabr.  in  Mannheim       . .      880a,  998a 

Manufacture  of  cohesive   cords  of  nitrate  .     (P) 

Welter X350A 


Explosives — continued. 

Manufacture  of  easily  cast  ammonium  nitrate with 

a  low  content  of  nitro-compounds.     (P)  Ver.  Kolu- 

Rottweiler  Pulverfabr.  199a 

Manufacture  of  easily  cast  ammonium  perchlorate . 

(P)  Chem.  Fabr.  von  Heyden  . .  . .  . .  . .     789A 

Manufacture  of  gelatinous proof  against  fire-damp. 

(P)  Nobel  und  Co.,  and  Naoum  839a 

Manufacture  of  high : 

(P)  Davis 568a 

(P)  Swint,  and  Du  Pont  de  Nemours  and  Co.     393a 
Manufacture  of  nitrostarch  .     (P)  Bronstein,  and 

Trojan  Powder  Co.       . .  . .  . .  . .  . .       8lA 

Manufacture  of  perchlorate .     (P)  Bunge     . .  . .     649a 

Manufacture    of    propellent    .     (P)    Du    Pont    de 

Nemours  and  Co.  . .  . .  . .  . .  . .     199a 

Method  of  filling  containers  with  high .     (P)  Madden 

and  others  . .         . .  . .  . .  . .  . .     649a 

Method  of  handling  high .     (P)  Schoficld  and  Hall  . .     199a 

Method  of  testing  the  degree  of  incorporation  of . 

Perman  . .  . .  . .  . .  . .  . .  . .     155t 

Poudre  B  ;    Temperatures  of  ignition  of  in  vacuo 

and  in  air.     Koehlcr  and  Marqueyrol  . .  . .     348a 

and  primers;  Manufacture  of .    (P)  Rathsburg     ..     441a 

and  propellants  ;   Manufacture  of from  ammonium 

nitrate  and  nitrates,  oxalates,  and  similar  salts  of 

ammonium  and  amines.     (P)  Ver.  Chem.  Fabr.  in 

Mannheim  789A 

Purification  of  potassium  chlorate  for  use  in  manufacture 

of .     (P)  Jurisch  and  Von  Schleinitz      . .  . .     253a 

Sensitiveness  of  very  sensitive .     Eggert      ..  ..     121a 

Velocity  of  decomposition  of  high  in  a  vacuum. 

Mercuric  fulminate.    Farmer..         ..         ..         ..     199a 

Export  credits       . .  . .  . ,  . .  . .  . .  . .     180R 

duties  in  African  colonies     . .         . .         . .         . .         . .     315R 

Expressing  liquid  from  fibrous  substances  ;    Rotary  appar- 
atus for .     (P)  Aktiebolaget  Karlstads  Mckau- 

iska  Verkstad    . .  . .  . .  . .  . .  . .     543a* 

liquids  from  materials.     (P)  Hinchley      ..  ..  ..       88a 

Extraction  agents  ;  Production  of .    (P)  Deutsche  Peer- 

less-Gcs.  382a 

apparatus;  Micro .     Laquer  . .  ..  ..  ..     351a 

apparatus  ;    Rotary  .     (P)  Bodman,  and  Garriguc 

and  Co.  . .  . .  . .  . .  . .  . .  . .     697a 

of  liquids  by  immiscible  liquids  ;    Apparatus  for  — — . 

Fayolle  and  Lormand  . .  . .  . .  . .  . .     839A 

by  means  of  solvent  vapours  ;  Simple  apparatus  for . 

Hartmann  . .  . .  . .  . .  . .  . .       8lA 

media  ;  Recovery  of  volatile in  laboratory  practice. 

Pichler 730a 

process  ;    Continuous .     (P)  Fellner  u.  Zieglcr,  and 

Konig     . .  . .  . .  . .  . .  . .  . .     754a 

of  small  quantities  of  liquids  in  a  Soxhlet  apparatus. 

Handorf 612a 

of  solids  ;  New  methods  for .     Charitschkov  . .     925a 

of  soluble  matter  from  powdered  or  crushed  material. 

(P)  Fraymouth  and  others      . .         . .         . .         . .     400a 

Extractive  matter  ;   Separating from  solutions  of  mix- 
tures of  solvents.     (P)  Bollmann 491a 

Extracts  of  drugs  ;  Production  of .     (P)  Bayer  und  Co.    688a 


Fabric  surfaces  that  have  been  treated  with  proteins ;   Pro- 
ducing water-  and  friction-resisting  prints  on . 

(P)  Exportingcnieure  f.  Papier-  u.  Zellstofftechnik  . .     705a 
Fabrics  ;    Apparatus  for  bleaching,   dyeing,  finishing,   and 
otherwise  treating .     (P)  Thornber,  and  Brad- 
ford Dyers' Assoc.,  Ltd.  ..  ..  ..       11 A* 

Apparatus  for  scouring,  dyeing,  and  similarly  treating 

with  liquids in  piece  form  in  continuous  process. 

(P)  Silbereisen 809a 

Apparatus  for  treating  textile  with  liquids.    (P) 

Clarenbach         . .  . .  . .  . .  . .  . .       96a* 

Apparatus  for  washing  and  treating .     (P)  Bartelt 

291A,  325a* 

for  balloons  and  dirigible  airships.     (P)  Johnston,  and 

North  British  Rubber  Co 248a* 

Colloidal  nature  and  influence  of  assistants  used  in  print- 
ing and  finishing  textile .     Planowsky  . .  ..     749a 

containing  animal  and  vegetable  fibres  ;    Waterproofing 

.     (P)  Bayer  und  Co 291a 

Continuous  process  of  waterproofing .     (P)  Mehler. .     248a 

Fireprooflng  textile .     (P)  Craig,  and  Whipp  Bros. 

and  Tod 11  A* 

Impregnation  of  textile .     (P)  Ubbelohde    ..  ..     854a 

Machines  for  bleaching,  dyeing,  finislung  and  otherwise 

treating .     (P)  Thornber  and  Henshilwood      . .     585A 

Manufacture  of  artificial  textile .     (P)  Brandenber- 

ger  936a 

Manufacture  of  indurated  materials  from  woven . 

(P)  General  Electric  Co 808a* 

Obtaining  transparent  effects  on  cotton  and  mixed . 

(P)  Forster 291a 

Preparations  for  cleaning  and  sterilising  textile  . 

(P)  Maclennan 855a 

Printing  textile  • — — .     (P)  Calico  Printers'  Assoc,  and 

Nelson 809a 

Production  of  colour  effects  on .     (P)  Calico  Printers' 

Assoc,  and  others         ..  ..  ..  ..  ..       55a 

Production  of  pattern  effects  on  vegetable  fibre .  (P) 

Vi  illows  and  others 55a,  369a* 


SUBJECT  INDEX. 


149 


TAGE 

Fabrics — continued. 

Production  of  patterned  textile .    (P)  Giesler,  and 

Heberlein  und  Co.         . .  . .  . .  . .  . .     748a* 

rubberised ;     Preparation   of  .     (P)    Britton,    and 

Griffiths  Bros,  and  Co.  S27a 

Sizing  and  impregnating  woven .   (P)  Lutz  . .      367a,  367a 

Testing  of after  various  treatments.    Alt    . .         . .       51a 

Treating  textile  and  other  to  remove  starches, 

gums,  and   other  impurities.     (P)   Takamine,   and 

Takamine,  jun.  . .  . .  . .  . .  . .     627a 

Treatment  of  textile ■  to  remove  grease,  wax,  and 

the  like  prior  to  bleaching,  scouring,  or  finishing. 

(P)  McKellar 461a 

Waterproofing .     (P)  Mitchell  52a 

Waterproofing  and  gas-prooflng  composition  for  . 

(P)  S6e,  and  Soc.  Anon.  Etabl.  Hutchinson  . .  . .     894a* 

Factice  ;  Manufacture  of .     (P)  Bayer  und  Co.    ..  ..     773a 

Factories  and  workshops  ;  Annual  report  on . .         . .     334r 

Fair:  British  Industries ■ 17r,  65Rt  138R 

Impressions  of  the  British  Industries .     Miall  . .       92r 

Faraday  Society 77R,  173R,  291R,  474r,  533r 

Fat  of  barley  and  malting  products.     Sedlmeyer         ..         ..       71a 

Beef  bone .     Eckart 768a 

Conditions  influencing  formation  of  by  the  yeast 

cell.     Maclean 604a 

in  confectionery  ;    Calculation  of .    Baumann  and 

Kuhlmann         . .  . .  . .  . .  . .  . .       74a 

-containing  granular  materials  ;   Rendering ■  impal- 
pable.    (P)  Eppenberger         ..          ..          ..  ..     834a 

Enzymic  synthesis  of .     Spiegel  ..  ..  ..     513a 

-liquor  for  leather  ;   Manufacture  of  ready-made  

from  Indian  oils.     Das  and  Das         . .  . .  . .     990a 

-liquoring  agents  ;   Manufacture  of from  hydroxy- 

fatty  acids  and  phenol.     (P)  RemuT  und  Co.  . .     774a 

resembling  butter  ;  Manufacture  of .    (P)  Oclwerkc 

Germania  . .  . .  . .  . .  . .  . .     945a 

-solvents  ;  Manufacture  of .     (P)  Bohme  A.-G.       . .       22a 

Fatigue  ;  Industrial in  chemical  works.    Armstrong    . .         2r 

Fats  ;  Ability  of  hardened to  hold  water  in  suspension. 

Brauer 769a 

Analysis  of  partially  hydrolysed .     Fahrion . .  , .     299a 

animal  :  Detection  of  vegetable  oils  in .     Muttelet . .       65a 

Apparatus  for  extraction  of  by  the  washing  or 

diffusion  process.     (P)  Schlotterhose  und  Co.  . .     261a 

Apparatus  for  refining .     (P)  Parodi 260a 

Bleaching with  fuller's  earth.     (P)  Bollmann    182a,  261a 

Catalysts  for  hydrolysis  of .     Sandelin         . .  . .     769a 

Crystallising .    (P)  Doering 770a 

Determination  of  acetyl  value  of .     Cook     ..  ..     299a 

Determination  of  iodine -bromine  value  of without 

using  potassium  iodide.    Winkler     . .         . .         . .     473a 

edible  ;   Manufacture  of : 

(P)  Clayton  and  Nodder 30a* 

(P)  Clayton  and  others   ..  ..  ..  ..     192a 

Electrical  process  for  dehydration  of .    (P)  Elektro- 

Osmose  A.-G.  300a 

Elect rometric    determination    of   acid    value    of    . 

Kremann   and  Schbpfer         . .  . .  . .  . .     675a 

Exports  of from  Germany  . .         . .         . .         . .     357R 

Expression  of  from  fatty  substances.     (P)  Fank- 

hauser    . .         . .         . .         . .         . .         . .         . .     508a 

Extraction  of from  raw  materials.     (P)  Bollmann     380a* 

German  trade  in  . .  . .  . .  . .  . .     339R 

Hydrogenation    of    .     Armstrong    . .  . .  . .     392R 

Hydrogeuation  of  liquid  .     (P)  American   Cotton 

Oil  Co.  260A 

Hydrogenation  of  unsaturated in  the  fluid  state. 

(P)  Schlink  und  Co.  109A 

Increasing  the  consistency  of  .     (P)  Frentrup  and 

Kiederich  889A 

Influence  of  air,  light,  and  metals  on  development  of 

rancidity  in  .     Emery  and  Henley     . .  . .     945A 

and  the  like  ;    Extraction  of  .     (P)  Ileavell,  and 

Kestner  Evaporator  and  Engineering  Co.  . .     945A 

Manufacture  of  edible  fatty  product  from  .     (P) 

Klein 509A 

Manufacture   of   nutritious    .     (P)    Scliicht   A.-G., 

and   Griin  . .  . .  . .  . .  . .  . .     945a 

Manufacture  of  sulpho-aromatic  substances  for  use  in 

*?*     decomposition  of .     (P)  Godal  . .  . .  . .     474a* 

Mechanism  of  catalytic  action  in  hydrolysis  of  . 

Briner  and  Trampler  . .  . .  . .  . .  . .     181a 

Naphthalenesulphonic  acids  as  agents  for  hydrolysing 

.     Trepka  719a 

Neutralisation  of  .     (P)  Bolton  and  others  . .     557a* 

Nutritive  value  of  edible  .     Oil-bearing  seeds  and 

crude    vegetable   oils    and   fata.     Drummond   and 

Zilva 125T 

Present  position  of  hardening  of  .     Normann    . .     469R 

Process  lor  retarding  occurrence  of  rancidity  in  . 

(P)  Gebr.  Schubert 676a 

and    products    containing   the   same  ;     Preparation   of 

aqueous  solutions  of .     (P)  Kolshorn  . .  . .       35a 

Purification  of  .     (P)  Goslings  . .  . .       769A,  945a 

Rapid  determination  of  acetyl  value  of .     Leys  . .     148a 

Rate  of  saponification  of by  aqueous  alkali  under 

various  conditions.     Norris  and  McBain   . .  . .     719A 

Refining  ,  especially  waste  fats.     (P)  Byk-Gulden- 

werke   Chem.   Fabr.    . .  . .  . .  . .  . .     424a 

Regenerating  fuller's  earth,  charcoal,  and  the  like  used 

for  purifying  fatty  oils  and  .     (P)  Bolton  and 

Lush . .  S25A 


Fat3 — continued. 

Relation  between  refractive  index  and  chemical  char- 
acteristics of  .     Pickering  and  Cowlishaw    . . 

Relations  between  carbohydrates  and  .     Muller  . . 

Relationship   between   constants   of   .     Lund 

Removing  free  acids  from  .     (P)  Gleitz 

Research  in  vegetable  ■  in  India 

Saponification   of  .     Langton 

from  seeds  of  Indian  forest  trees.     Rau  and  Simonsen 
Semi-micro  chemical  determination  of  water,  fat,  and 

sodium  chloride  in  edible  .     Luhrig  .. 

Separation  of  fatty  acids,  resins,  bitter  and  mucilaginous 

substances  from  .     (P)  Bollmann 

Solubility  of  in  liquid  sulphur  dioxide.     Zerner 

and  others 

Some  less  common .     Wolff 

Synthesis  of  .    Amberger  and  Bromig 

Synthesis  of by  means  of  enzymes  from  moulds  and 

yeast.     Haehn  

synthetic ;    Preparation  and  constitution  of  con- 
taining a  carbohydrate  chain.     Gilchrist 

Thin  layers  formed  by  mixtures  of .     Collet 

Treatment  of .     (P)  Plauson  and  Vielle 

Treatment  of  edible .     (P)  Douglas  and  Sons,  and 

Nicol 

Unsaponiflable  matter  of  .    Steuart 

Use  of  semi-microchemical  and  microchemical  methods 
in  analysis  of .     Luhrig  .. 


74T 
306A 
944a 
334A 
198R 
S25A 
902A 

872A 

509A 

581A 

21 A 

675A 


365R 
223A 
474A 

606A 
560R 

508A 


Fatty  acids.     See  under  Acids. 

matter  ;  Recovery  of from  raw  materials  of  organic 

origin.     (P)   Bergius 825a 

substances  ;    Rotary  cooling    apparatus  for  .    (P) 

'St.         Bigum 388A 

Feathers  ;    Dyeing  .      (P)   Akt.-Ges.  fur    Anilin-Fabr.     585A 

Increasing   the   strength   and    elasticity   of   .     (P) 

Korselt 410a,  541a 


Federal  Council  Fund  ;    List  of  contributors  to 

Federal  Council  for  Pure  and  Applied  Chemistry     . .       313R, 

Feeding  material  to  airtight  treating  chambers ;    System  of 

.     (P)   Fenton 

mixing,  and  proportioning  of  graded  substances,  includ- 
ing fuels  and  the  like  ;    Apparatus  for  .     (P) 

Smith      M  

Feeding-stuffs    for   animals ;    Manufacture    of .      (P) 

O'Loughlin 

Cost  of 

Determination     of     amino-acids     of     - 

and    others 

Drying  bulky  .     (P)  Riedinger 

Manufacture   of   from   straw   and   the   like. 

Beckmann 
See   also   Fodder 

Felspar;    Decolorising  impure  .     (P)  Stubbs  .. 

Extraction  of  alkali  from .     (P)  Plauson 

Melting  of  potash  .     Morey  and  Bowen 

Recovery    of    potassium    and    aluminium    compounds 

from  .     (P)  Brown 

Separation  of  quartz  and .     (P)  Knight  and  Shimmin 

in  the  United  States  in  1919  and  1920 


Hamilton 


(F) 


534R 
520R 

971A 

401A* 

479A 
542R 

75a 
76a 


590a 
938A 
587a 


■  with  bituminous  matter.    (P)  Kirsch- 


See   under   Oils,   Essential. 


Felt ;  Saturating 

braon 

Fennel  oil ;    Spanish 

Ferment  filter.     (P)  Kiutsl 

Fermentation;    Acceleration  of  yeast  by  extracts  of 

animal  organs.     Frankel  and  Hager 
accelerators  : 

Inouye        

Von   Euler  and   Karlsson 

Action  of  acids  on  yeast  .     Somogyi 

Action  of  extracts  of  plants  and  choline  and  aminoethyl 

alcohol  on .     Frankel  and  Scharf 

Action  of  ultra-violet  rays  on  .     Lindner 

Activators  of  .     Lindberg 

alcoholic  ;    Course  of  in  presence  of  calcium  car- 
bonate.    Kern   and    Zeckendorf 

alcoholic  ;  Course  of in  presence  of  urea.    Sandberg 

alcoholic ;     Manufacture   of   material    for    accelerating 

— —  from  pancreas  or  yeast.     (P)  Riedel 
alcoholic ;     Manufacture   of    material    for   accelerating 

from  yeast.     (P)  Riedel  A.-G. 

Alcoholic  by  means  of  yeast  cells  under  various 

conditions.     Abderhalden 28a,  28a 

alcoholic  ;   New  classes  of  stimulants  of .     Ncuberg 

and    others        . .  . .  . .  . .  . .  . .     153A 

alcoholic ;     Pyruvic   acid    a3    intermediate   product   in 

.     Von    Grab 189a 

alcoholic  ;   Stimulants  of .    Neubcrg  and  Sandberg 

227a,  265a 

Contrivance  for  automatic  registration  of .     Sieburg     778a 

Decomposition  of  d-galactose  according  to  second  mode  of 

:    Tomita 

Formation  of  acetaldehyde,  and  realisation  of  second 

form  of  with   various  fungi.     Neuberg  and 

Cohen 
of  glycerol  in  presence  of  sulphur.     Muller  and  Muller 
of  hexoses  and  related  compounds  by  pentose-fermenting 

bacetria.     Peterson    and   others 
Increasing    the    yield    of    fusel    oil    during    .     (P) 

Frankel  and  Fischl     ..         ..         M         ..         ».     »30a 


536a 


3S7a* 
265a 

724a 

778a 
113a 

265a 
951a 
952a 

189A 
340A 

514a 

430A 


153A 


1S9A 
642a 


778a 


150 


JOURNAL  OP   THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Fermentation — continued.  • 

Influence    of    animal    charcoal    and    other    adsorbents 

on   course  of  .    Formation  of  acetaldehyde. 

Abdcrhalden 28A 

of  t'-inositol.     Hewitt  and   Steabben Z27A 

lactic  acid  ;  Influence  of  lactic  acid  on .     Holwerda    430a 

lactic  ;    Action  of  acids  on  course  of  ■ .    Bachrach 

and   Cardot 6~9A 

Lactic  of  dextrose  by  peptone.    Schlatter         . .     911A 

Lactic  .    "  Remembrance "    in    bacteria.     Richet 

and  others        . .  . .  . .  . .  . .  .  -     341A 

of  mulberry  juice.    Bertolo         . .         . .         . .         . .     265a 

of  pentoses  by  moulds.     Peterson  and  others  . .  . .     992a 

Peptone  .    Baur  and   Herzfeld 911a 

Production  of  butyl  alcohol  and  acetone  by  : 

(P)  Horton,  and  Du  Pont  de  Nemours  and  Co.    832a 

(P)  Biccard,  Allenet,  et  Cie 341A 

Production  of  second  and  third  forms  of  with 

Succharomyces  Sakt,  Zygosaccharomyces  major,  and 

Z.  soUus/  Kumagawa  ..         ..         ..         ..     831a 

Protein  decomposition  in  yeast  during  .     Iwanolf     113A 

residues  ;    Utilising  nitrogenous  material  in  .     (P) 

Reichsaussehuss  fur  ptlanzl.  u.  tier.    Oele  und  Fette     953A 
of  various  carbohydrates  ;    Acetone  and  butyl  alcohol 

.     Robinson  . .  . .  . .  . .  . .     778A 

without  yeast.     Bau  . .         . .         . .         . .         . .     189a 

of  worts  ;    Preliminary under  conditions  of  natural 

and  absolute  pure  yeast  culture.     (P)  Grelner     . .     387a 

by  yeast ;    Pressure  resulting  from .     Kolkwitz  . .       28a 

Fermenting    liquids ;     Treatment    of    froth    of    .    (P) 

Vereln   der    Spiritus-Fabrikanten    in    Deutschland    386a 

Ferric  chloride  ;    Reduction  of  .    Pickles         . .         . .     292a 

Ferric  hydroxide  ;   Centrifugal  method  for  preparing  colloidal 

.    Bradfleld  500a 

Ferric  methvlarsinate  ;  Solution  of suitable  for  injection. 

Picon 117a 

Ferric  oxide  ;  Carrying  down  of  calcium  oxide  by  precipitates 

of  .     Charriou      . .         . .         . .         . .         . .       8lA 

Colour  of .     HedvaU 370a 

dissolved    in    glass  ;     Dissociation   of   .     Hostetter 

and  Roberts 100a 

Separation  of  alumina  and  from  magnesia  by  the 

nitrate   method.     Charriou 962A 

The  system,  water-sulphuric  acid  .    Appleby  and 

Wilkes 371a 

Ferric   salts  ;     Catalysis    of   hydrogen    peroxide   by    . 

Duclaux  981A 

salts  ;    Reduction  of  with  mercury.    McC'ay  and 

Anderson,  jun.  . . 140A 

Ferric  sulphates.    Applebey  and  Wilkes      . .         . .         . .     371a 

Ferro-alloys ;      Manufacture     of     low-carbon     .     (P) 

Petinot 821A 

Ferrochroinium  alloys  ;    Manufacture  of .    (P)  Ballan- 

tine         554a,  901a* 

Determination  of  chromium  in  by  electronietric 

titration.    Kelley  and  Wiley  . .         ..         ..         ..       60a 

Preparation  of  by  Uoldschmidt's  aluminothermic 

process.     Fiijibayashi . .  . .  . .  . .  . .     595a 

Ferro-concrete.     See  under  Concrete. 

Ferrocyanide  titration  of  some  metals  :    Influeuce  of  the 

alkalis  on .    Treadwell  and  Chervet      ..        ..     880a 

Ferrocyauides ;   Electrometric  titration  of .    Miiller  and 

Lauterbach        . .  . .  . .  . .  . .  .  •     840a 

Manufacture  of  .     (P)   Washburn,  and  American 

Cyanamid  Co.    . .  . .  . .  . .  . .  .  •       58A 

Ferromanganese  ;    Determination  of  manganese  in  by 

Knorre's  persulphate  method.  Nieolardot  and  others    376a 

Melting .    (P)  Hall  and  others  637a 

Ferromolvbdenum  ;    Manufacture  of .     (P)  Skelley  and 

others 820a 

Manufacture  of  carbon-free .     (P)  Turner     ..  ..     821a 

Ferronickel ;  Strength  of at  low  temperatures.  Cheven- 

ard         420a 

Ferrosilicon  :  Formation  of in  carbide  works.     Hackl  . .     707a 

Manufacture  of  shaped  pieces  of .    (P)  Maschinen- 

fabr.  Esslingen  . .  . .  . .  . .  •  •     .     •  •       ^A 

Operation  of  blast-furnaces  to  produce .    (P)  Lizou- 

noff  and  Rosanoff         . .         . .         . .         . .         . .     106a 

Toxic  properties  of  commercial  .    Kurnakow  and 

Urasow 940A 

Ferrotitanium  ;    Estimation  of  titanium  in  .    Losana 

and  Carozzi       . .         . .         . .         . .         ■  ■         ■  ■     940a 

Rapid  method  for  complete  analysis  of .     Grandjeau     713a 

Ferrotungsten  ;  Analysis  of .     Bonardi  and  Williams    . .     553a 

Manufacture  of  - — .     (P)  Skellev  and  others     . .  . .     820a 

Purification  of  tin-bearing .     (P)  Becket       ..  ..     863a 

Rapid  analysis  of .     Losana  and  Carozzi  . .     671a 

Ferro-uranium :    Manufacture   of  .    (P)    Mueller  and 

others 985a 

Ferrous  chloride  :  Treating  waste  or  other  liquors  containing 

.     (P)  Chambers  and  others        372a 

Ferrous  hydroxide  ;    Reducing  action  of and  its  applica- 
tion   in    determination    of    nitrites    and    nitrates. 
Miyamoto          ..         ..         ..         ..         ..         ..     811a 

Ferrous  metals.     See  under  Metals. 

Ferrous   sulphate;     Electrometric   titration   of   bichromate 

with .     Eppley  and  Vosburgh 1001a 


(P)  Herrly,  and  Union  Car- 


Ferrous  sulphate — continued. 

Method  of  oxidising 

bide  Co. 

Ferrozirconium  ;  Manufacture  of .     (P)  McKee  . 

Fertilisation  ;   Cultivation  of  soils  and  nitrogen 


939a 


Noyes 


and  others         384a 

Fertiliser  combine  ;  Proposed in  U.S.A.  . .         ..  ..  40R 

Crude  gas  liquor  as .     Mews    ..          ..          ..  ..  263a 

industry  in  France    . .         . .         . .         . .         . .  . .  406k 

industry;  Projected in  Tasmania     ..          ..  ..  264R 

industry  in  Sweden  . .         . .         . .         . .         . .  . .  178r 

industry  in  U.S.A.     Lipman          . .          . .          . .  . .  233k 

Manufacture  of  a  product  suitable  for  use  as .  (P) 

Pease 991a 

mixtures  ;  Cyanamide  in .    Landis  . .         . .  . .  385a 

situation  in  Germany          . .          . .          . .          . .  . .  353k 

Use  of  ammonium  bicarbonate  as . .          . .  . .  399R 

Use  of  ammonium  bicarbonate  as .     Gluud  . .  . .  722a 

Wool-scouring  waste  as .     Veitch      . .         . .  . .  427a 

works  at  Somerset  West.    Malherbe        . .         . .  . .  219k 

Fertilisers;  Committee  on  study  of in  France     ..         ..     175R 

Conditioning .     (P)  Butt         603a 

Consumption  of in  Italy         ..         ..         ..         ..     401 R 

Consumption  of in  Japan        . .         . .         . .         . .     264R 

containing  nitrites ;    Determination  of  total  nitrogen  in 

.    Mach  and  Sindlinger 908a 

Cost  of 542r 

Determination  of  phosphoric  oxide  in .     Vogcl        ..     127T 

Distillation  method  for  determination  of  borax  in . 

Cook 26a 

Dryer  for .    (P)  Hamler         512a* 

Effect  of  nitrogenous on  alkaloid  content  of  lupins. 

Vogel  and  Weber         i . .  i 

Formation  of  dicyanodiamide  in .     Breckenridge  ..     385a 

Increases  in  prices  of  nitrogenous in  Germany  138R,  225R 

Inoculated  legumes  as  nitrogenous  .     Brown  and 

Stallings 26a 

Manufacture  of : 

(P)  Badische  Anilin-  und  Soda-Fabrik  . .         . .       26a 

(P)  Balmer  304a 

(P)  Broadbridge  and  Edser         26a 

(P)  Cowlcs  304a 

(P)  D'Ercole         991A 

(P)  Eberhard       187a 

(P)  Edgar 428a 

(P)  Frv 70a 

(P)  Hoffman         870a 

(P)  Kroscberg 723a 

(P)  Lo  Monaco 603a 

(P)  Molassine  Co.,  and  De  Whalley       . .         . .     187a 

(I't  Paynoi  70a 

(P)  Sams 991a 

(P)  Smith 187a 

(P)  Snelling,  and  Trojan  Powder  Co 338a 

(P)  Stollberg         187A 

Manufacture  of  ammonium  nitrate .     (P)  Halvorsen, 

and  Norsk  Hydro-Elektrisk  Kvaelstof aktieselskab . .     264a* 

Manufacture  of  containing  phosphoric  acid  ami 

potash     il'i  Haege 385a.  592a* 

Manufacture     of     dustless,     non-corrosive    .    (P) 

Schrauth  775A 

Manufacture  of from  gas  liquor.     (P)  C.es.  f.  Land- 

wirtscnaftlichen  Bedarf.  and  Mandelbaum   ..         ..     151a 

Manufacture  of as  a  key  industry.     Hendrick         ..     537R 

Manufacture  of  mixed containing  variable  amounts 

of  nitrogen  and  fertilising  salts.     (P)  Soc.  d'Etudes 
Chim.  pour  l'lud.  ..         ..         ..         ..         ..     111a 

Manufacture  of  mixed containing  variable  amounts 

of    nitrogen    and    phosphate.    (P)    Soc.    d'Etudes 
Chim.  pour  l'lnd. 

Manufacture  of  mixed  nit ro- phosphate .    (P)  Soc. 

d'Etudes  Chim.  pour  l'lnd 

Manufacture  of  nitrogenous : 

(P)  Lo  Monaco 
(P)  Niedenzu 

(P)  Soc.  d'  Etudes  Chim.  pour  l'lnd 

Manufacture  of  phosphate containing  potassium  or 

sodium.     (P)  Kreiss  _ 

Manufacture  of  phosphatic : 

(P)  Akt.-Ges.  f.  Anilin-Fabr 

(P)  Coates 

(P)  Trauu's  Forschungslaboratorium    .. 

Manufacture  of  potash-containing .     (P)  Rossi 

Manufacture  of  stable  mixed .     (P)  Badische  Anilin 

u.  Soda  Fabrik 

Manufacture  of in  the  Ukraine  

phosphatic;  After-effects  of .    Breest 

Preventing  disintegration  of .     (P)  Schwarzeuauer . . 

Prices  of in  Germany 

Research  work  on in  U.S.A.    .. 

Treatment  of  calcium  cyanamidc  for  production  of . 

(P)  Bambach  und  Co.  

Treatment  of  nitrate .    (P)  Browning  and  Boonnan 

Treatment  of  undecomposed .     (P)  Lo  Monaco 

i      of .     (P)Frce         

Utilisation  of  silicate  ro.-ks  for  use  as .     (P)  Cliem. 

Werke  Ithcnania,  and  Messerschmitt 
S  0  also  Manure. 


111a 

111a 

B29A 
602A 

112a 

428A 

829A 

77.">A 
:;-:.* 
112a* 

512a 
455R 
70A 
775A 
575R 
21121! 

870a 
562A 
151a 

338a 

151a 


Fibre-board  and  similar  materials  : 
(P)  Pea  body     .. 


Manufacture  of 


SUBJECT  INDEX. 


151 


Fibre,  crude- ;  Gephart  method  for  determination  of  . 

Bopst  and  Bidwell 

vulcanised  ;  Imports  of 

vulcanised  ;  Manufacture  of .     (P)  Sutcliffe 

vulcanised  ;    Manufacture  of  from  nitrocellulose. 

(P)  Herstein 

vulcanised ;      Manufacture   of   graphitised   .     <  P) 

Acheson,  jun.  . .  . .  . .    855A*, 

vulcanised  :  Separation  of  chlorine  compounds  from . 

(P)  Elektro-Osmose  A.-G 

vulcanised  ;    "Waterproofing  .     (P)  Mcintosh,  and 

Diamond  State  Fibre  Co. 

Fibres,  animal  ;   Improving  the  spinning  and  felting  proper- 
ties of .     (P)Trostel         

animal;  Manufacture  of  textile  products  from .  (P) 

Technochemia  A.-G. 

animal  ;    Production  of  effect  threads  from  .     (P) 

Cassella  und  Co. 

animal  ;  Protecting  —  from  the  action  of  injurious  effect 
of  alkaline  liquids  : 

(P)  Akt.-Ges.  fur  Anilin-Fabr.  . .      584a, 

Edge 

Apparatus  for  washing  and  treating .     (P)  Barttlt 

291a, 

artificial  ;  Manufacture  of .     (P)  Schiilke 

artificial  ;    Manufacture  of  from  cellulose  ethers. 

(P)  Bayer  und  Co 

artificial ;  Manufacture  of  glass  nozzles  for  use  in  pro- 
duction of by  spinning.     (P)  Schwarzkopf 

artificial  :  Manufacture  of from  solutions  of  cellu- 
lose in  concentrated  salt  solutions.     (P)  Beck 

bast- ;  Retting .    (P)  Herzog  and  Krais 

Colour  absorption  from  dye   liquors  by  textile  . 

Auerbach 

Degumming  textile : 

(P)  Meister 
(P)  Sabner 

Dyeing,  bleaching,  and  analogous  treatment  of  textile 
.     (P)  Brandwood  and  others 

Impregnating  animal,  vegetable,  and  mineral .    (P) 

Boucherie 

Improving  typha  and  rush .    (P)  Elster 

Manufacture   of   textile   from   stems   of   plants, 

especially  nettles.    (P)  Elster 

Obtaining  cellulose  and  textile from  plants  contain- 
ing much  bast  and  little  wood,  such  as  llax,  straw, 
sisal,  and  jute.     (P)  Odrich     .. 

Obtaining  single from  bast-fibre  bundles,  in  a  con- 
dition suitable  for  spinning.     (P)  Gierisch  and  otlnrs 

Process  of  liberating .     (P)  Richter,  and  Brown  Co. 

Production  of  textile  from  stems  of  nettles  and 

other  plants.    (P)  Elster 

Production  of  textile  from  typha,  rushes,  and  the 

like.     (P)  Elster  

Recovery  of from  mixtures.     (P)  Herzog 

Rendering    animal    and    vegetable    active.    (P) 

Korselt,  and  Chemical  Foundation,  Inc. 

Simultaneous    manufacture    of    paper    half-stuff    and 

textile    from  reeds  and  the  like.     (P)  Von 

Ordody,   and   Schottik   und    Co. 

vegetable;'  Disintegrating  for  use  in  the  textile 

and  paper  industries/  (P)  Moriondi,  and  Soc.  Anon. 
Brevets    Pcufaillit 

vegetable ;     Extraction    of    cellulose    from    .     (P) 

Cataldi  and  Pomilio   .. 

vegetable  ;  Process  for  making  "  effect  threads  from 
.     (P)  Cassella  und  Co. 

vegetable ;    Treatment    of    .    (P)    Schwartz,   and 

Gillet  et  Fils 

vegetable  ;  Treatment  of to  obtain  wool-like  effects. 

(P)  Schwartz,  and  Gillet  et  Fils 

"Weighting   .     (P)    Wohlgemuth 

Fibrin  ;    Swelling  of  by  acids.    Somogyi 

Fibroin,  silk- ;    Composition  and  structure  of .    Abder- 

halden 

Fibrous  compositions  ;    Treatment  of  saturated  .    (P) 

Kirschbraun 
materials  or  artificial  filamentary  materials  ;  Apparatus 

for  treating with  liquids.    (P)  Linnemann  .. 

materials  ;   Boiling .    (P)  Escher.  Wyss  a.  Co.     . . 

materials  ;   Manufacture  of  composite with  the  aid 

of  condensation  products.    (P)  Weber,  and  Metro- 
poIitan-Vickers   Electrical   Co. 

materials  ;     Manufacture   of   waterproof : 

(P)  Burningham  and  others     . . 
(P)  Richter  and  others 

material ;   Production  of from  plants.    (P)  Nessel- 

Anbau-Ges. 

materials ;     Treatment   of  .     (P)   "Wardenburg    . . 

pulp    materia]  ;     Manufacture    of    .    (P)    Bache- 

Wiig  and  Bache-Wiig 

stems  or  straws  ;   Treatment  of .     (P)  Mahy 

Ficiis  fulva  latex  ;   Stearic  acid  in .     TJltee 

Fiji ;    Analyses  of  native  sugar  canes  of  .     Steel 

Filaments  for  electric  lamps  ;  Drawn  wire .    (P)  General 

Electric  Co.,  and  Goucher 
of    silica,    alumina,    and    other    refractory    materials ; 

Manufacture  of  .     (P)  De  Rolboul 

Thermionically  active  .     (P)  Wilson,  and  Western 

Electric  Co 


478a 
267k 
747a 

894a 

S94a* 

936A 

747a 

705a* 
705a* 
249a 


705a 
497a 


325a* 
52a 


mCa 
102a 


807a 
665A 


666a 


11  A* 

5 -4  A 


52a 

SI  ISA 


460A* 
807A 


498A 


4'1-A 
808A 


498A 

324a* 
747A 
214a 
55a* 

llA* 

2.-9* 


536A 


936A 
541a 


978A 

10A 
10a 

498A 
199a 

541  a 
138A 
948A 
386A 

211A 

142A 

581A 


Filling  material  for  absorption  and  reaction  towers : 

(P)  Prym 797a* 

(P)  Prym  und  Co 165a 

material  for  columns  etc.  for  treating  gases  with  liquids. 

(P)  Petzel  620A 

material  for  cooling  towers,  reaction  towers,  or  the  like. 

II')  Wienges 451a 

material ;   Pyramidal for  apparatus  for  purification 

of  liquids,  vapours,  and  gases.     (P)  Gaillet         . .     128a* 
material  for  rectifying  stills,  etc.     (P)  Brcgeat  .  .  ..         1A 

Films  formed  on  solid  surfaces  under  dynamic  conditions ; 

Thickness  of  liquid  .     Goucher  and  Ward     ..     925a 

Manufacture  of  : 

(P)  British  Cellulose  and  Chemical  Mfg.  Co., 

and  others        459a,  542a 

(P)  Loffler 665a 

Filter  beds;    Continuous  washing  of  .     (P)  Jung     ..     658a 

masses  for  analytical  or  industrial  processes  Ei  i  separating 
copper,  cadmium,  zinc,  or  the  like  from  solutions. 

(P)   Wohlgemuth         353a 

-paper.    See  under  Paper, 
-press ; 

(P)    Burger  316a 

(P)   Hurrell  449a 

(P)  Lucas 450a 

(P)  Traun's  Forschungslaboratorium  Ges.     . .     619a 

-press  ;    Combination  dryer  and (P)  Jfaugle     . .     449a 

-press  ;    Continuous  .    (P)  Plauson  s  Forschungs- 

institut 128a,  281a 

-press    and    hydraulic    press  ;      Combined    .     (P) 

Stevenson,  and  Hydraulic  Press  Mfg.  Co.  . .     205a 

-press  ;    Plauson  ultra  and  the  processes  involved 

in  the  defecation,  carbonatation,  and  filtration  of 
sugar  juice.     Block 

-press  sack  fabrics  ;    Repairing  .    (P)  Austin,  and 

Ohio  Brass  Co. 

-presses ;     Removing    solid    residues    from    .    (P) 

Jung 

-presses  ;    Standardisation  of  . 

Filtering  apparatus : 

(P)  Center,  and  United  Filters  Corp. 

(P)  Keene  . . 

(P)  Kunz 

11')  Tanner,  and  Nelson  and  Sons 

apparatus  ;    Rotating  valve  for  .     (P)  Keene 

apparatus;    Vacuum .     (P)  Keene  .. 

apparatus  for  water.    (P)  Paterson 
apparatus   for   water   and   the   like ;     Regulating   dis- 
charge of  .     (P)  Paterson 

mat  for  cleaning  gases.     (P)  Kling  and  Weidlein 
process.     (P)  Collins,  and  Du  Pont  de  Nemours  and  Co. 
purposes ;     Production    of    cloudy    or    opaque    colloid 


membranes  for  - 


(P)  De  Haen  . 


Filters : 


(P)    Anderson 

(P)    Capro  

(P)  Fleetwood 

(P)    Hurrell  

(P)   Keithline 

(P)    Kessler 

(P)  Sweetland 

(P)    Winkel  

Air  .     (P)   Deutsche   Luftfllter-Bauges 

for  boiler-feed  water.     (P)  Crawford  and  Kelly 
Centrifugal  : 

(P)  Mauss  . . 

(P)  Parker  and  others 316a 

containing    base-exchanging    material ;     Operation    of 

.     (P)  Permutit  A.-G 

drum-;    Agitator  for  .     (P)  Pettis  .. 

drum-  ;  Operation  of  .     (P)  Polysius 

Drum  suction  .     (P)   Steen 

Ferment  .     (P)   Kiutsi 

Filter-bag  cleaning  device  for  air  .     (P)  Beth 

Filtering   surfaces   for   continuously    operated    suction 

drum  .     (P)   Plausons  Forschungsinstitut    . . 

for  industrial  dusts 

Manufacture  of  .     (P)  Zsigmondy  and  Bachmann 

membrane-  ;  Application  of to  volumetric  analysis. 

.lander 

membrane-  ;    Treatment   of  .     Jander 

Method    of   applying    material    to   suction   .    (P) 

Meguin  A.-G.,  and  Possekel  .. 

Preparation  of  molecular  .     (P)  Alefeld 

for  purifying  air  or  gases.     ^P)  Beth 
Rotary  : 

(P)  Johnson  and  Hurrell         

(P)  Vallez 

Rotary  disc  .     (P)  Jung 

Sand   .     (P)    Raimbert  

sand- ;    Cleansing  .     (P)  Brown 

Sand  for  gases.     (P)  Fiechter         

sand-  :    Operation  of .     (P)  Bramwell 

or  strainers  and  sifting  surfaces.     (P)  Hurrell 
Vacuum : 

(P)  Mauss 315a, 

(P)  Mauss.  and  Continuous  Centrifugals,  Ltd. 

for  water.     (P)  Capro         

for  wines,  sugar  liquors,  and  the  like.     (P)  Tottereau  . . 

Filtration;   Determination  of  velocity  of  .     Steiner  .. 

of    colloidal    matter    from    liquid    mixtures ;     Vacuum 
.     (P)    Mauss 


226a 

697a 

846a 
210R 

205A 

846a* 
128A 
43a 
490a 
400A 
995A 

481a* 

1a 
449A 

206a 

164a 
846a* 
400A 
449a 
887a 
316a 
971A 
401 IA 
43A 
516A 

165A* 
358A 

116a 

316a 

737a 

128a 

387a* 

698a* 

89a 
569R 
622a* 

442a 
568a 

450a 
737a 
2a* 

315a 

619a 

399a 

317a* 

241  IA 

239a 

607a 

846a 

358a 
.-.  7  7  v  * 
116a 
576A 
998a 

576A 


152 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Filtration — continued. 

of  turbid  water  or  liquids.     (P)  Pennell 
of  vegetable  juices.    Andr6 

Fine  chemical ;   Suggested  definition  of  a 

chemical? ;    British 

Finely   divided   substances  ;     Apparatus   for  regulating  the 

feed  of  for  mixing  and  other  purposes.     (P) 

Whitehead 
substances  ;    Apparatus  for  treating  .    (P)  Poore 

Finland  ;    Copper  mines  of  Eastern  

Trade  notes  from  

Fire-extinguishers ;     Anti-freezing    charge    for    .      (P) 

Gremei  and  others 
-extinguishers ;  Carbon  tetrachloride  and  methyl  bromide 

in  .    Henning 

-extinguishers  ;  Danger  from  carbon  tetrachloride . 

Levy 

-extinguishing  compositions.  (P)  Louder,  and  Boyce  and 

Veeder 
-extinguishing    liquid.     (P)    Corson 
-extinguishing    liquid    and    method    of    using    it.     (P) 

Hamilton 
-extinguishing   materials ;     Manufacture   of   detergents 

and  .    (P)  Plauson's  Forschungsinst. 

-extinguishing  process.     (P)  Eichengrun 

-resisting  asphalt  or  like  hydrocarbonaceous  material. 

(P)      Young,      and      llobertson      Co.      . .        48a, 
-resisting  paints  and  varnishes.     Gardner 

Firebricks  ;    Determination  of  compressive  strength  of 

at  high  temperatures.     Sieurin  and  others 

Resistance  teats  on  under  loads  at  high  tempera- 
tures.    Sieurin  and  others 

Standardisation  of  after- contraction  test  of .     Jones 

Fireclay  gas  retorts  with  iron  reinforcement.    (P)  Francke  . . 

Fireclays  ;  Behaviour  of on  heating.    Houlds worth  and 

Cobb 

Chances  taking  place  in  low-temperature  burning  of 
Stourbridge .     Moore 

Firedamp  ;  Apparatus  for  detecting .     (P)  Siemens  und 

Halske 


Fireproof   building    material  ;     Manufacture   of 
Mitchell  and  Widmer  .. 


(P) 


Fireproofing   artificial   textile   filaments   of   organic  origin ; 

Waterproofing  and .     (P)  Dreaper 

combustible  material.     (P)  Eichengrun 
kapok  and  other  fibres.     (P)  Vails 

solutions  ;  Effect  of on  cotton.    Durst 

textile  fabrics  and  other  porous  articles.     (P)  Craig,  and 

Whipp  Bros,  and  Tod 
and  waterproofing  treatment  of  materials.     (P)  Arent   . . 

Fischer,  Emil ;  Recollections  of .    Pope 

Fish,  canned  ;  Bacteriology  of .    Savage  and  others     . . 

Chemical  examination  of  preserved .     Hinard 

Cooling  and  freezing .     (P)  Pique 

Drying .     (P)  Noseworthy 

frozen  in  chilled  brine  ;    Penetration  of  salt  in  . 

Almy  and  Field 

and  the  like  ;  Apparatus  for  cooling  and  freezing ; 

(P)  Hardy  and  Pique 

(P)  Plqu6,  and  Imperial  Trust  for  Encourage- 
ment of  Scientific  and  Industrial  Research  . . 
-livers  ;  Preservation  of  the  residues  from  steaming , 

(P)  SchlotterhoseuudCo 

oils.     See  under  Oils,  Fatty. 

Preservation  of frozen  in  dulled  brine.    Almy  and 

Field 

Preserving .     (P)  Cholet         30a, 

Purifying  edible  shell .     (P)  Mastcrman 

refuse  and  the  like  ;  Manufacture  of  a  plastic  mass  from 

.    (P)  Plauson's  Forschungsinst. 

Regenerating no  longer  in  a  fresh  condition.    (P) 

Leffer 
scales  ;  Value  of as  a  means  of  identification  of  fish 

used  in  manufactured  products.     Essery     . .         98R. 
Significance  of  vitamin  A  in  nutrition  of .     Coward 

and  Drummond 
Treating for  curing  and  like  purposes.     (P)  Inter- 
national Meat  Smoking  Corp. 
Flame;    Limits  for  propagation  of in  mixtures  of  air 

and  one  vapour  at  the  ordinary  temperature  and 

pressure.     White         ..        •.. 
Flash-point ;    Determination  of  molecular  weight  of  sub- 
stances in  alcoholic  solution  from  elevation  of  the 

.     Wright 

-point  of  oils  ;  Apparatus  for  determining .  (P)K!ee 

-point  temperatures ;    Physico-chemical  significance  of 

.     Ormandy  and  Craven . .         ..         ..       30r 

Flavanone  ;  Reduction  of .     Freudenberg  and  Orthner . . 

Flavouring  extracts;    Determination  of  esters  in  imitation 

.    Beyer 

extracts;  Manufacture  of .     (P)  Albach 

Flax  fibre;  Manufacture  of  high-grade  paper  pulp  from  — 

(P)  Rindfusz  and  others 
Industry  in  St.  Helena 

Method  for  distinguishing from  hemp.     Nodder 

Pectin  substances  of .     Correus 

Retting .     (P)  Ochmann         


874A 
092a 

4SR 
101R 


35R 
516R 

358A 
218R 

170R 

887a 
127A 


946a 
747A 


899A* 
903a 


416a 
647a 

209a 


447R 

446R 

353A 

296a 

289a 
747a 
665a 
539a 

11a* 
712a 
495R 
573R 
387A 
913a* 

30A 

29A 
644a* 
644a* 

300A 

342a 

565A* 
192a 

722a 

154a 

387a 

993a 

564A 

699a 


1001  a 
920a 

402a 
601a 

391a 
192a 

894a 
247B 

853A 

366a 
10a 


Flax — continued. 

-retting  effluents  ;   Disposal   and   purification  of  . 

Gauge 177T,  194R 

stems  ;  Treatment  of  — — .     (P)Mahy 138A 

Flint ;     Products   of   calcination  of   chalcedony   and  . 

Washburn  and  Navias  ..  ..  ..  ..     813a 

Floor  coverings  ;   Compositions  for  use  as and  for  like 

purposes.     (P)  Frood 335a 

coverings  ;  Manufacture  of .    (P)  Kirschbraun     . .     867a 

Flooring  and  like  compositions  ;  Manufacture  of  plastic . 

(P)  Imperial  Trust  for  Encouragement  of  Scientific 

and  Industrial  Research,  and  Schryver        . .         . .     905a 

Floridin  ;  Limits  of  adsorptive  capacity  of .     Rakusin  . .     578A 

Flotation  agent  for  ore  concentration  ;  Manufacture  and  use 

of .     (P)  Luckenbach  Processes,  Inc.     ..  ..     179a 

agents  ;  Manufacture  of .     (P)  Hirsch  and  Hirsch  . .     298a 

of  minerals  ;  Agent  for .    (P)  Patterson  and  Wool- 

fenden 422a 

process.     (P)  Luckenbach,  and  Luckenbach  Processes, 

Inc 765A 

process;  Differential .     (P)  Stevens..  ..  ..     864a 

process  for  dressing  mineral  mixtures.     (P)  Maschinen- 

bau-Anstalt  Humboldt  766a 

separator  ;  Differential .     (P)  Peck  . .  . .  . .     716a 

Flour  ;  Bleaching  and  maturing .     (P)  Baker     . .  . .     267a* 

Catalase  of -.     Merl  and  Daimer  ..  114a 

Decomposition  of  hydrogen  peroxide  as  a  means  of  deter- 
mining degree  of  extraction  of .    Marotta  and 

Kaminka  832A 

Detection  and  estimation  of  adulteration  in .  Vogt . .       73a 

Determination  of  acidity  of .     Arpin  and  Pecaud   . .     832a 

aud  grits  from  cereals  ;    Sterilising  and  improving  the 

baking  quality  of .     (P)  Dienst 565a* 

and  the  like  ;    Apparatus  for  separating  iron  and  other 

magnetically  permeable  metals  from .     (P)  King     726a* 

Loss  of  carbon  dioxide  from  dough  as  index  of  strength  of 

.     Bailey  and  Weigley 387a 

Maturing  and  bleaching .     (P)  Baker,  and  Wallace 

and  Tiernan  Co.  229a 

Milling .     (P)  Woolcott  834a 

-milling  process  ;    Investigation  of  the  influence  of  the 

.     Berczeller         . .  . .  . .  . .  . .     479a 

self-raising ;    Determination  of  carbon  dioxide  in . 

Jacobs    . .  . .  . .  . .  . .  . .  . .     779a 

Sterilising  and  improving  the  baking  qualities  of  . 

(P)  Dienst         30A 

wheat- ;  Ageing  and  improving  baking  qualities  of . 

(P)  Hutchinson 644a* 

wheat- ;  Chemistry  of  strength  of .     Woodman     . .     993a 

wheat- ;  Grades  of .  Buffer  action  of  water  extracts. 

Bailey  and  Peterson     . .  . .  ....  . .       29a 

wheat-;    Method  of  blending  .     (P)   Barrel,  and 

Campbell  Baking  Co 873a 

Flours  ;  Determining  and  identifying in  bakery  products 

and  foods  by  examining  the  crude  fibre.     Fornet   . .     953a 

Physico-chemical   studies    of   strong   and    weak   . 

IniMhitional  properties  of  the  glutens.     Sharp  and 
Gortner 341a 

Flow  of  gas  to  a  testing  instrument  or  the  like ;   Apparatus 

for  controlling  or  regulating  the  .     (P)  South 

Metropolitan  Gas  Co.,  and  Chandler  . .  ..  ..     353a 

of  liquids  through  commercial  pipe  lines.     Wilson  and 

others     . .  . .  . .  . .  . .  . .  . .     357A 

Fluids  ;    Apparatus  for  abstracting  heat  from  .     (P) 

McCrary 97lA 

Apparatus  for  measuring,  mixing,  or  separating  . 

(P)  Liese  847a* 

Fluorescein.     See  under  Phthalein  dyestuffs. 

Fluorescent  powers  of  cellulose,  sugars,  and  other  substances  ; 

Determination  of .     Lewis         . .  . .        99r,  306a 

Fluorides  ;  Detection  and  estimation  of .     Smitt  . .     810a 

Fluorine;  Detection  of .     Fetkenheuer   ..  ..  ..     690a 

Fluorspar;    Production  and  consumption  of ,1913-1919       SIR 

Foam  for  preventing  evaporation  of  stored  liquids  ;     Stable 

(P)  Jennings,  and  Standard  Oil  Co.      ..  ..     697a 

Fodder  ;    Decomposition  of  fibrous  vegetable  material,  es- 

Lally  wood,  for  production  of .   (P)  Waentig    515a 

Manufacture  of from  straw.     (P)  Paechtner  . .     515a 

Production    of   from    non-sugars    of    beet   juice. 

Vytopil 226a 

See  also  Feeding-stuffs. 

Food  for  animals  ;    Manufacture  of .     (P)  Phillips,  and 

American  Cotton  Oil  Co 954a* 

compound.     (P)  Clarke       ..  ..  ..  ..  ..       75a 

Cooking  and  sterilisation  of in  scaled  containers. 

(P)  Fooks  30A* 

factors  ;  Accessory .     See  Vitamins. 

ingredients  ;   Treatment  of  nut  kernels  to  produce . 

(P)  Scott  and  Scott 515a 

Food  Investigation  Board  ;  Report  of for  1921  . .  . .     485r 

Food  ;   Manufacture  of  ice  and  its  use  for  preserving . 

i  I'j  Glbbs  873a 

Medicine  and  hygienic .     (P)  Richard  . .  . .     567a 

products  ;  Bleaching .     (P)  Hoehstadtcr     . .  . .     432a 

products  from  brewers'  yeast.     (P)  Miller,  and  Evapor- 
ating and  Drying  Machinery  Co 913a 


SUBJECT  INDEX. 


153 


Food — continued. 

products  :  Manufacture  of : 

(P)  Barwell,  and  Blatchford  Calf  Meal  Co.      . .     343a 
(P)  Ganiage,  and  Gorton-Pew  Fisheries  Co.     ..     343a 

(P)  Heath  and  Washburn  266a 

(P)  Phillips,  and  American  Cotton  Oil  Co.        . .     343a 
(P)  Schenk,  and  Stein-Hall  Manufacturing  Co.     388A 

products  ;   Manufacture  of from  citrus  fruits.     (P) 

Wadsworth,  and  Taylor's 229A 

products  ;    Manufacture  of from  meats  and  veget- 
able substances.     (P)  Spear  and  Spear         . .  . .     564a 

substances  ;   Reducing  semi-fluid to  dry  powdered 

form.     (P)  MacLachlan  564A 

substances  ;  Treating for  curing  and  like  purposes. 

(P)  International  Meat  Smoking  Corp.         ..         ..     564a 

Foods,  canned  ;  Heat-treating .     (P)  Fooks        . .  . .     432a* 

Dehydratorsfor .     (P)  Rea 6U6a 

Determining  hydrogen  sulphide  evolved  by  when 

cooked  at  various  temperatures.     Kohnian . .  . .     780A 

Examination  of for  presence  of  sulphites.     Chapman     015a 

and  like  products  ;    Electrical  treatment  of  .     (P) 

Smith 30a 

Manufacture  of  malted .     (P)  Wahl 3S8a 

Method  of  preserving .     (P)  Petersen  . .  . .     644a 

for  pigs  and  poultry  ;    Classification  and   valuation   of 

meat .     DeWhalley         211R 

Foodstuffs  ;    Biological  correlation  of  protein  and  carbohy- 
drate   in  nutrition.     Berczeller  . .  . .  . .     479a 

Biological  evaluation  of .     Berczeller  . .  . .     479a 

Determination  of  alkalinity  of  ash  of .     Pfyl  . .     643a 

Determination  of  chlorides  in .     Bornand    ..  ..     681 A 

Determination  of  moisture  in .     Stutterheim  . .     191a 

Determination  of  phytin  content  of .  Arbenz  . .     681a 

Micro-analytical    processes    in    examination    of    . 

Wohack 115a 

Preservation  of  green .     (P)  Aurlch   ..  ..  ..     954a 

Relation  between  calorific  values  of  obtained  by 

combustion    and    by    calculation,    and    nutrition. 
Konig  and  Schneider wirth      . .  . .  . .  1  15a 

Formaldehyde  ;    Action  of  on  cellulose.     Samec  and 

Ferjancic  . .         . .         . .         . .         . .         . .       94a 

Action  of  ozone  on  hydrocarbons  with  special  reference 

to  production  of .     Wheeler  and  Blair  . .  . .     331T 

"Alcoholic  fermentation"   of  .     Miiller    ..  ..     612a 

"Alcoholic  fermentation"  of by  osmium.     Miiller     118a 

Combination  of  gelatin  and  .     Brotman  . .  . .       25a 

Detection  of  .     Heermann   . .         . .         . .         . .     290a 

Detection  of  with  phenols.     Pfyl  and  others     . .       78a 

Determination  of  .     Blair  and  Wheeler   . .  . .     560R 

Determination  of  in  impure  solution.     Ktihl      . .     785a 

Disinfecting  action  of  aqueous  solutions  of .     Gegen- 

bauer 307a 

Effect  of on  adsorption  of  tannin  by  hide.     Gem- 
gross  and  ltoser  . .  . .  . .  . .  . .     302a 

Effect  of on  fastness  of  dyed  fabrics.     Ristenpart 

and    W'ielaud S95a 

Influence  of  on  adsorption  of  acids  and  alkalis 

by  pelt.     Gerngross     . .  . .  . .  .  .  . .     149a 

Internal  or  catalytic  dehydr oxidation  of  .    Miiller    118a 

Lamp  for  producing .    (P)  Berger  . .         . .         . .     565a 

Manufacture  of  : 

(P)  Bailey  and  others 729a* 

(P)  Traun's  Forschungslaboratorium  Ges.    437a,  438a 

Manufacture  of  from  ethylene.     (P)   Willstattcr     566a 

Manufacture    of    compounds    of    silicic    acid,    tannin, 

albumin,  and  .     (P)  Burkhardt  . .  . .     119a 

Manufacture  of  glycol  and .     (P)  Plauson's  Forsch- 
ungslaboratorium       . .         . .         . .         . .         . .     392a 

Oxidation  of  hydrocarbons,  with  special  reference  to 

production  of  .     Blair  and  Wheeler  . .  . .     303t 

Oxidation  of  methane  to .     (P)  Thermal  Industrial 

and  Chemical  (T.I.C.)  Research  Co.,  and  Morgan     315a 

or    its  polymers  ;    Preparation  of  from  mixtures 

of  carbon  monoxide  and  hydrogen.     (P)  Lush   . .     566a 

Relation  between  bacteria  and  spores  and .     Hailer     229a 

-resins ;     Recent  research  on  .     Drummond       . .     522R 

solutions  ;    Bactericidal  action  of  .     Hailer  . .     229a 

solutions  ;     Manufacture   of   solid    water-soluble   ■ . 

(P)    Cohn  439a 

stabilisers.     Blair  and  Wheeler    . .  . .  . .  . .     309T 

-tanned    leather ;     Chroming   of   .     Griliches       . .     869a 

Tanning  with .     Hey  . .  . .  . .  . .  . .     476a 

Formaldehyde-hydrosulphite  ;     New    preparation    of    . 

Malvezin  and  others  . .         . .         _.         . .         . .       55a 
Formates ;     Influence   of   the   cation    in    denitrification  in 

presence    of    .     Groenewege     . .  . .  . .     950a 

Manufacture    of    alkali    .     (P)    Oldbury    Electro- 
Chemical   Co.    . .          . .  . .  . .  . .  . .     173a 

Solubilities  of  alkali  acetates  and in  water.    Sidg- 

wick  and  Gentle  ..  ..  ..  ..  ..     S57a 

Formic  acid  ;    Catalytic  decomposition  of  .     Miiller  . .     836a 

Catalytic  decomposition  of on  surfaces  of  platinum 

and  silver.     Tingcy  and  Hinshelwood         . .  . .     785a 

Detection  of in  wine.     Fresenius  and  Grunhut  . .     190a 

Formation  of  during  decomposition  of  dextrose 

in  alkaline  solutions.     Waterman  and  Van  Tussen- 

broek 339a 

Influence  of  temperature  on  two  alternative  modes  of 

decomposition  of  .     Hinshelwood  and  others     268a 

Micro -analytical    determination   of   .     Wohack    ..     Hda 

Foundry  sand  ;    Treating  or  renovating .     (P)  Poulson 

and    Rourke     ..  .,  ..  ..  ..  ..     179a 


Fractionating  columns  ;    Efficiency  and  capacity  of  . 

Peters,    jun. 
in  a  current  of  air  or  under  reduced  pressure  ;  Receiver 

for  .     Wheeler  and  Blah- 
liquid  mixtures  ;    Method  of  .     Mariller 

volatile,  especially  easily  volatile  liquid  mixtures.     (P) 
"  Metan  "  Spolka  z  ograu.  odp. 
Fractional  distillation.     See  under  Distillation. 

France  ;   Additions  to  the  pharmacopoeia  in 

Chemical  trade  of  

Committee  on  study  of  fertilisers  in ■ 

Fertiliser  industry  in 

Glass  industry  in  Eastern  

Increased  patent  fees  in  ■ 

Industrial  notes  33r,  60r,  80R,  99r,  129r,  156R,  175R, 

22UR,   244R,   293R,   312R,   331R,   398R,   420R,   450R, 

481R,    509R,   535R, 

Lorraine  salt  industry  ;    Collapse  of  the 

Franklinite  ;    Discovery  of  in  New  Zealand 

Frary  metal,  an  alloy  for  bearings 

Freezing  animal  substances  ;    Chilling  and .    (P)  Shaw 

fish  and  the  like ;    Cooling  and  .     (P)  Piqu6 

of  water  in  automobile  radiators ;    Glucose  as  a  pre- 
ventive of  .    La  Wall  ... 

Friction  compositions  ;    Manufacture  of  .    (P)  Acht- 

meyer 

facings  ;    Manufacture  of  : 

(P)  Kirschbraun  .. 

(P)  Raybestos  Co 

Friedel-Crafts*  reaction ;    Migration  of  alkyl  groups  in  the 

benzene  nucleus  in  the .     Copisarow 

Froth  of  formenting  or  boiling  liquids  ;    Treatment  of . 

(P)  Verein  der  Spiritus-Fabrikanten  in  Deutschland 
Fructose.    See  Lsevulose. 

Fructuse  diphosphate  ;    Enzymic  synthesis  of  .     Von 

Euler  and  Nordlund  ►. 

Fruit ;  Apparatus  for  drying .     (P)  Benjamin 

Changes  which  occur  in  pectic  constituents  of  stored 

.     Carr6 

Dehydratorsfor .     (P)Rca  .. 

Drying  .     (P)  Noseworthy 

juices  ;    Clarifying  .     (P)  Gusmer 

juices,  conserves,  or  other  products  ;    Manufacture  of 

from  fruits,   vegetables,   and  the  like.    (P) 

Plauson 
juices ;    Formula  for   calculation   of  starch  syrup   in 

.     Rinck 

juices  and  jellies  ;   Manufacture  of .     (P)  Bielmann 

and  Bielmann 
juices  ;    Treatment  of  — — .     (P)  Merrell,  and  MerreJI- 
Soule     Co. 

Preservation  of  : 

(P)    Faitelowitz,    and    Chemical    Foundation, 
Inc. 

(P)    Imperial    Trust    for    Encouragement    of 
Scientific  and  Industrial  Research,  and  Kidd 

Fruits  ;    Analyses  of  Australian  .     Steel 

"  Fruta  de  conejo  "  nuts  as  a  source  of  oil  . . 
Fuchsine.    See     under    Triphenyl  methane    dyestuffs. 
Fucose  ;    Structure  of  — — .     Clark 

Fuel ;    Alcohol  : 

(P)  Blake 

(P)  Hawes 

Apparatus  for   distilling  .     (P)   Magri 

Apparatus    for    drying    and    carbonising    .    (P) 

Holzhausen 

Apparatus  for  feeding  and  drying .    <P)  Wood  . . 

Apparatus  for  production  of .     (P)  Bates 

Atomisers  for  burning  liquid alone  or  in  conjunction 

with  solid  fuel  and  colloidal  mixtures.     (P)  Morgan 
and  Clavey 
briquettes  in  1920 

briquettes  ;    Manufacture  of  .     (P)   Strafford 

Calculation  of  the  calorific  power  of  a  commercial  

in  terms  of  its  content  of  water  and  mineral  matter. 
Fohlen 

Carbonising    in    vertical    retorts.     (P)    Woodall, 

Duckham  and  Jones  (1920),  Ltd.,  and  Duckham  . . 

Combustion  of   .     (P)    Stephens   Engineering    Co. 

Combustion    of    bituminous    ,    with    recovery    of 

by-products.     (P)    Strache 

Composition    of    distillation    gases    from    solid    . 

Dolch  and   Gerstendorfer 

Continuous   pre-dryiug   of  .       (P)  Nordstrom  and 

Morck 

Determination  of  volatile  matter  in  .     Wedgwood 

and  Hodsman   . .  . .  . .  . .  . .       372T, 

Determination  of  water  in  .     Marinot 

Domestic    carbonised    of    high    combustibility. 

Sutcliffe  and  Evans 
-distillation  and  steam-power  apparatus  ;    Plant  com- 
prising   .     (P)  Merz  and  McLellan,  and  others 

in  dust  or  powdered  form  ;    Furnaces  for  .     (P) 

Oertel 

economy  ;   Report  of  British  Association  Committee  on 


PAGE 

619a 

59T 

3a 

698a 

199R 
184R 
175R 
406R 
175R 
80R   ' 

567R 
33R 
398R 
8R 
644A* 
913A* 

205A 
542A 

867a 
248a 

7a 

386a 


190A 
480a 

993A 

606A 

30a 

267a 


953A 

191a 

30a 

75a 

76a 

115A 

386A 
570R 

992A 

975a 

801A 

48a 

801A 

931A* 

452a 


Extracting  and  distilling  bituminous 

chinenfabr.    Augsburg-Niirnberg  ] 

Gaseous  .    (P)  Rose  and  others 


(P)  Mas- 


286a* 

244r 

890a* 


798A 

848A 
702a* 

208A 

847A 

659A 

505R 
165A 

202T 

279a 

848a 

404R 

286a 
203a 


154 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Fuel — continw'l 

having  a  high  content  of  moisture  ;   Distillation  of . 

(P)  A.-G.  fur  Brennstoffvergasuug 244a 

for  internal  combustion  engines  : 

(P)  A.-G.   filr  Anilin-Fabr 580a 

(P)  Field 974a 

(P)   Rieardo  701A 

(P)  Whitaker,  and  U.S.  Industrial  Alcohol  Co. 

624a,  701a 

liquid  ;    Burners  for  : 

(P)  Bliss 975a* 

(P)  Chapman  and  Goodfellow 930A 

(P)    Hall   and   Flood 890a* 

(P)   Wattson         931a* 

(P)  Metcalfe,  and  Skinner  Engine  Co.  . .     130a 

liquid  ;    Combustion  of .    (P)  Becker        . .      362a,  362a 

liquid  ;    Manufacture  of : 

(P)  Backhaus,  and  U.S.  Industrial  Alcohol  Co.     624a 

(P)  Bates 537a* 

(P)  Hayes,   and   U.S.  Industrial   Alcohol    Co.     850A 
P)  Schreiber,  and  U.S.  Industrial  Alcohol  Co. 

209A,  211a* 

(P)  Steele  and  Clifton 209a 

(P)  Tunlson,  and  U.S.  Industrial  Alcohol  Co.     701a 
(P)  Whitaker,  and  U.S.  Industrial  Alcohol  Co.     209A 

liquid  ;   International  congress  on ..  ..       263R,  433R 

liquid  :  Manufacture  of from  oils  containing  creosote 

(P)   Maschincnfabr.   Augsburg-Nurnberg    . .  . .     702a 

liquid  ;     Manufacture    of    ,  resembling  petroleum, 

by  distillation  of  calcium  salts  of  soya-bean  oil 
fatty   acids.     Sato       . .  . .  . .  . .  . .     360a 

liquid  ;    Preheating  for  furnaces  of  the  Burdon 

type  fired  with  liquid  fuel.     (P)  Burdon  and  others     702A* 
liquid  ;    Preparation  of  industrial  absolute  alcohol,  and 

its  application  to   preparation  of  .    Mariller 

and  Van  Ruymbeke 952a 

liquid  ;   Raising  the  sp.  gr.  and  flash  point  of .     (P) 

Bates 537a* 

low-grade  ;    Improving  by  the  Madruck  process. 

Caro 45a 

low-grade  ;  Manufacture  of  high-grade,  non-hygroscopic 

fuel  from .     (P)  Scherk 46a 

Low-temperature   distillation  of  .     (P)   Merz   and 

McLellan,  and  others  . .  . .  . .  . .  . .       48A 

Machines  for  pulverising .    (P)  Blyth        ..         ..     243a 

Manufacture  of  : 

(P)  Bowen  659a 

(P)  Bowen,  and  Laminated  Coal,  Ltd.  . .         6a* 

(P)  Franklin  and  l'cttingall 973a 

(P)  Greenstreet 493a,  973a 

(P)  Kratochw  ill 623a 

(P>  Mai  Mr  282a 

Manufacture  of  a  capable  of  use  as  substitute  for 

gas  coal.     (P)  Jacobs  . .  . .  . .  . .  . .     579a 

Manufacture  of from  carbonaceous  solids  such  as 

coal,  peat,  and    the    like    and  sewage  and  trade 
waste  activated  sludge.     (P)  Sinnatt  and  Lockett  . .     282a 

Manufacture  of  composite'  mobile .    (P)  Bates        . .     405a* 

Manufacture  of  solid .     (P)  Tommasi  and  others     ..     245A* 

.Manufacture  of  solid  and  distillation  of  tar.     (P) 

Stratford  and  Pick        361A 

Manufacture  of  solidified  liquid  .     (P)  Mork  and 

others 493a 

Means  for  combustion  of  solid  and  liquid  .     (P) 

Lewis      . .         . .         . .         . .         . .         . .         . .       46a 

Method  of  fireproof  storing  of  mobile .     (P)  Bates  . .         6a* 

Motor .    See  under  Motor. 

oil.     See  under  Oils. 

powdered  ;  Supplying to  furnaces.     (P)  Soc.  Anon. 

La  Combust  ion  Rat  ionelle,  and  Powdered  Fuel  Plant 

Co 455A* 

problems  ;  Discussion  on  domestic . .  . .  . .     530R 

production  in  Germany       . .  . .  . .  . .  . .     373R 

products  ;  Manufacture  of .     (P)  Greenstreet         . .     890a* 

pulverised  ;  Burning : 

(P)  Bucll 624a* 

(P)  Worthington  and  Walker 848a 

pulverised  ;  Burning in  furnaces.     (P)  Caracristi  . .     493a 

pulverised  ;  Combustion  of .     (P)  Blyth      . .  . .     740a 

pulverised  ;   Means  for  using in  furnaces  of  steam 

generators.    (P)  Robinson      . .         . .         . .         . .     451A* 

pulverised  ;  Producer  gas  from .     Sinnatt  and  Slater     166A 

pulverised  ;    Stoking  apparatus  for  furnaces  for  . 

(P)  Simon,  Ltd.,  and  Waldcr 702A* 

pulverulent  ;  Means  for  supplying  a  mixture  of and 

air  to  furnaces  and  the  like.     (P)  Allgcm.  Elektrizi- 

tiits-Ges.  454a 

Fuel  Research  Board  ;   Report  of for  years  1920,  1921. 

Second  section  :  low-temperature  carbonisation     . .     270R 
Fuel  residues  from  furnaces  ;   UtUisiug  the  heat  contained  in 

.     (P)  Deutsche  Evaporator  A.-G 740a 

residues;    Plant  for  separating  coke  from  .     (P) 

Weber,  and  Weber  und  Co.     ..         ..         ..         ..     851a* 

smokeless;    Low-temperature   versus  high-temperature 

carbonisation  for  production  of .     Sutcliltc  and 

Evans 192a 

smokeless  ;  Manufacture  of .    (P)  Ulingworth   889a,  973a 

smokeless  ;    Manufacture  of from  lignite,  peat,  and 

similar  materials.     (P)Pape   ..  ..  ..  ..      320A 

Storing  composite  mobile .    (P)  Bates         ..         ..     452a 

supplied  to  furnaces  or  the  like;  Drying .     (PtWnod    742a* 

Systematic  examination  of with  particular  regard  to 

direct  determination  of  volatile  matter.    Fritsche..     128a 


Fuel — continued. 

Treatment  of for  briquetting.    (P)  Komarek,  and 

Malroimson  Engineering  and  Machine  Corp.  ..     848a 

Treatment  «f  solid for  transportation.    (P)  Bates  . .     405A 

Utilisation  of  wet-powdered .    (P)  Maclaren  . .     243a 

Fuels,  hydrocarbon- ;    Determination  of  vapour  pressure  of 

and  estimation  of  dissolved  air.    Tizard  and 

Marshall 402a 

Hypothesis  of  origin  of  natural .     Calcagni  . .         ..     318a 

Influence  of  structure  on  the  combustibility  and  other 

properties  of  solid .     Sutcliffe  and  Evans     147R,  196T 

Fuller's  earth.    See  tinder  Earth. 

Fulling  ;  Improving  and  shortening  the  process  of .   (P) 

Diamalt  A.-G 747a 

Fumaric  acid  ;    Synthesis  of  indigo  from  aniline  and  . 

Bailey  and  Potter        246a 

Fumes  ;  Industrial  treatment  of .     Gibbs  ..        125R,  189T 

Fungi ;  Analyses  of  Australian .     Steel 386A 

Chemical  relations  between  higher and  their  sub- 
stratum.    Hasenbhrl  and  Zellner      . .         . .         . .  602a 

Growth  of in  soil.     Waksman           . .         . .         . .  949a 

Microscopical  method  for  demonstrating  in  soil. 

Conn 950A 

Fungicidal  compositions  ;  Disinfecting,  insecticidal  and . 

(P)  Bayer  und  Co 389A 

properties  of  certain  spray  fluids.     Horton  and  Salmon . .  995A 

sprays  ;  Copper .    Villedieu  and  Villedieu  . .         . .  267a 

Fungicides.    (P)  Bayer  und  Co.            ..         ..         ..      516a.  835a 

Aryl  ethers  of  phenols  and  cresols  as .    (P)  Bayer 

und  Co.               "82a 

Determination  of  arsenic  in .     Graham         ..          ..  31a 

and  insecticides.     (P)  Bayer  und  Co 193a 

for  treating  seed  corn.     (P)  Meister,  Lucius,  u.  Briining. .  775a 
Funnels  for  laboratory  and  other  purposes.     (P)  Worcester 

Royal  Porcelain  Co.,  and  White         353A 

Fur  ;  Carrotmg .    (P)  Soc.  du  Feutre 808A* 

Dyeing .     (P)  Akt.-Ges.  fur  Anilin-Fabr 585A 

Improving .     (P)Trostel         10A 

and  the  like;  Protection  of from  moths.     (P)  Bayer 

und  Co.  289A,  541A 

Protecting  against  moth.     (P)  Chem.  Fabr.  Gries- 

heim-Elektron  ..         ..         ..         -.         ■•         ■•  747a 

Protecting   from   moth   and   other   insects.     (P) 

Norden  und  Co.  . .         . .         . .         . .         . .  854a 

Furane  dyestutfs.     Renshaw  and  Naylor         . .         . .         . .  365a 

Furfural  ;    Colorimetric  determination  of  small  quantities  of 

.    Fleury  and  Poirot       . .         . .         . .         . .  685a 

Commercial  production  of and  its  use  as  substitute 

for  formaldehyde  568R 

Distillation  of  aqueous  solutions  of .     Bergstrom    ..  784a 

Manufacture  of by  action  of  superheated  water  on 

aqueous  maize  cob  extract.      La  Forge         . .  . .       78A 

Manilla, 'turc  of  soaps  containing .     (P)  Aschkenasi  867A 

Properties  and  uses  of  commercial  ■ .    Miner  and 

others 784a,  784a 

-water;  The  system .     Mains  ..  ..  ..  481 A 

Furnace  apparatus  particularly  adapted  for  calorising  metals. 

( I')  Calorizing  Corp.  of  America         ..  ..  ..  863a 

fronts.     (P)Rcid 207A* 

recuperator.    (P)  Volkomner         127a 

Furnaces : 

(P)  Bibb 357A 

(P)  Cannon  887A* 

(P)  Foster  357a 

(P)  Harvey  451a* 

( I')  Morrison,  and  Dow  Chemical  Co.  ..     357a 

(P)  Sears  and  Twigg        575a 

(P)  Seymour         6A* 

Blast .    (P)Winkelman  146a 

blast-  ;  Bases  of  modern  working  of .     Reese         . .     712A 

blast-  ;   Blast  of .     (P)  Gottschalk  and  others         .  .     378A 

blast- ;   Contribution  to  theory  of  gas  producers  and  its 

application  to  working  of .     Korevaar  . .         ..     098a 

blast-  ;    Distribution  of  pulverised  coal  in  operation  of 
— .     (P)  Wagstatf,  and  American  Smelting  and 

Refining  Co 379a 

blast-  ;    Improving  the  operation  of .     (P)  Reins- 

hagen  und  Co.  . .  ■ .  . .  . .  ■ .     764a 

blast- ;     Little    known    difficulties    occurring    through 

"  sulphur-misery  "  in  operating .     Killing       . .     593A 

blast- ;    Number  of  in  operation  in  the  United 

Kingdom,  France,  and  Germany        . .  . .  . .     542R 

blast-;  Operation  of .     (P)  Diepschlag         ..  ..     596A 

blast- ;   Operation  of to  produce  ferrosilicon.    (P) 

Lizounoff  and  RosanorT  . .  . .  . .  . .     106A 

blast-  ;    Operation  of  smelting  and  reducing  furnaces, 

particularly .     (P)  Koppers        ..  ..    108a*.  ."54a 

blast-;   Possibility  of  using  oxygen  in .     Wagner    .  .      329a 

blast-  ;    Process  for  conveying  the  mouth-dust  and  other 

hue  ores  in  operation  of .    (P)  Diepschlag        ..     596a 

blast-;   Processes  in .     Von  Jiiptner.  .  ..  ..      593A 

blast-  ;    Recovery  of  potash  as  a  by-product  from . 

Ross  and  Merz 413A 

tl.it    ,     Krio\civ  of  potassium  salts  from  fumes  from 

.    (P)  Gaylcy 471a 

l.l.i  i    ;    I;, igulatlng  How  oi  waste  gases  in  operation  of 

.     (P)  Diepschlag  472a* 

blast-  ;   Sealing  cracks  in  the  linings  of and  the  like. 

(P)  Kennau 715A 


SUBJECT  INDEX. 


155 


Furnaces — continued. 

blast- ;  Use  of  carbonised  fuel  of  high  combustibility  in 

.     Sutcliffe  and  Evans 203T 

blast- ;  Venting  of  lead .     (P)  Labarthe       . .  . .       20a 

for  brick  and  tile  kilns.    (P)  Straight 374a 

for  burning  various  kinds  of  fuel.     (P)  Petersen  . .  . .     622a* 

calcining  ;  Air  or  gas  heater  for .     (P)  Roschmann . .     1  64a 

Calcining  — —  with  indirect  heating.     (P)  Roschmann 

164a,  531A 

Carbonising .     (P)  Bonnard    ..  ..  ..  ..     661a 

for  ceramic  and  refractory  products.     (P)  Bigot.  .  . .     217a* 

Combination  double-muffle  preheating  and  beat-treating 

.     (P)  Gaskill        179a 

Combustion  of  fuel  in with  recovery  of  by-products. 

<P)  Wilton         454a 

Combustion  process  and  apparatus  for  use  in .     (P) 

Soc.  Franc,  de  Materiel  Agricole  et  Industrie!  . .     454a 

Continuous  for  heat  treatment  of    billets  etc.  of 

irregular    shape.     (P)    Atkinson,    and    Stein    and 

Atkinson,  Ltd.  333a* 

for  continuous  production  of  gas  and  coke.     (P)  Riepe  . .     535a 

Continuous  re-heating  or  annealing  .     (P)  Mann- 

staedt  und  Co.,  and  Bansen     ..         ..         ..         ..     505a 

Crucible : 

(P)  Gaskill  505a 

(P)  Selas  Turner  Co.,  and  Turner  . .         . .     179a 

crucible-  ;   Gas-  or  oil-heated .     (P)  Stockport  Fur- 
naces, Ltd.,  and  others.  .          ..  ..  ..  ..     637a 

Crucible for  melting  metals.     (P)  Penny      ..  ..     505a 

Cupola .     (P)  Taylor 258a 

cupola-  ;  Blast  of .     (P)  Gottschalk  and  others       . .     378a 

cupola- ;  Improving  the  operation  of .     (P)  Reins- 

hagen  und  Co.  . .  . .  . .  . .  . .     764a 

Cupola  or  melting  or  heating .     (P)  Wood  and  Wood       20a* 

cupola- ;  Operation  of .     (P)  Koppers         . .    108a*,  715a 

Discharging   apparatus  for  such   as   lime   kilns, 

cement  kilns,  and  the  like.     (P)  Candlot      . .  . .     861a* 

Electric : 

(P)  Automatic  Telephone  Manufacturing  Co., 

and  Roseby        473a 

(P)  Bennett,  and  Scovill  Manufacturing  Co.    . .     222a* 

(P)  Castle 638a 

(P)  Clawson  866a 

(P)  Colby,    and    Westinghouse    Electric    and 

Manufacturing  Co.        . .  . .  . .  . .     423a 

(P)  Curtis,  and  Universal  Optical  Corp.  . .     987a 

(P)  De  Nolly,  and  Soc.  M6tallurgique  du  Frayol     507a* 

(P)  Eimer  259a* 

(P)  Hadaway,  jun 380a 

(P)  HanrT,  and  Pittsburgh  Engineering  Works     902a 
(P)  Hurstkotte,  and  General  Electric  Co.         ..     822a 

(P)  Imbery  333a 

(P)  Jones 473a 

(P)  Leander,    and    Ludlum    Electric    Furnace 

Corp 638a 

(P)  Moltke-Hansen  823a 

(P)  Mueller  and  others 985a 

(P)  Norske  Aktieselskab  for  Elektrokem.  Ind.     597a 

(P)  Rennerfelt 472a,  902a 

(P)  Speirs,  and  Morgan  Crucible  Co.      . .  . .     556a* 

(P)  Sperr,  jun.,  and  others         . .  . .  . .     556a 

(P)  Weidenthal,  and  Westinghouse  Electric  and 

Manufacturing  Co.        . .  . .  . .  . .     556a* 

(P)  Westerberg 473a 

Electric   for   alloying   metals.     (P)    Lohrey,    and 

Magna   Metal   Corp.    . .  . .  . .  . .  . .       20a 

Electric and  apparatus  for  direct  heating  to  high 

temperatures     by     resistance     with     simultaneous 
application  of  mechanical  pressure.     Sauerwald  . .     823a 

electric  arc  ;   Apparatus  for  treatment  of  gases  in . 

<P>    Real  768A 

Electric  arc for  oxidation  of  atmospheric  nitrogen. 

(P)  Avera  813A 

Electric  arc  for  roasting,  burning,  and  sintering 

minerals  and  the  like.     (P)  Hagenbuch     . .  . .     109a 

electric  blast-  ;    Nature  of  reactions  in .     Seigle  .  .     296a 

electric  blast- ;    Reducing  ores  in .     (P)  Fornander     901a 

electric  ;    Crucible  for .     (P)  Carpenter,  and  West- 
inghouse Electric  and  Mfg.   Co.      . .  . .  . .     333a 

Electric  crucible  for  melting  aluminium.     Lobley     862a 

electric  and  crucible  ;   Refractory  linings  for .     (P) 

Ferolite,  Ltd.,  and  Clapp     ..  ..  ..  ..     711a 

electric  ;    Heater  for  .     (P)   Collins,  and  General 

Electric  Co 987a 

for  electric  heating.     (P)  Pehrson  . .  . .  . .     823a 

electric  ;    Induction  : 

(P)  Brown  and  others     . .  . .  . .  . .     147a 

(P)    Hiorth.    and    A./S.    Hiorth/s    Elektriske 

Induktionsovn  . .  . .  . .  . .     333a* 

(P)  Ronn 902a* 

electric  induction  ;  Preparation  of  linings  for .     (P) 

Unger,  and  General  Electric  Co.    . .  . .  . .     902a 

Electric  induction  smelting  : 

(P)  Heraeus  and  others  . .  . .  . .  . .     179a 

(P)    Hiorth  259a 

Electric  induction  for  smelting  and  refining  steel, 

etc.     (P)  Frick 673A 

electric  ;    Manufacture  of  synthetic  cast  iron  in  . 

Morrison  . .  . .  . .  . .  . .  . .     254a 

electric  ;     Melting   cast  iron  in   Booth   rotating   . 

Williams  and  Terry 466a 

Electric    and    method    of    operating    them.     (P) 

Rennerfelt  823a 


Furnaces — continued. 

electric  ;     Method   of  preserving   linings   of  .     (P) 

Sicard,  and  United  States  Ferro  Alloys  Corp.     . .     507a 

Electric  muffle .     (P)  A.-G.  Brown,  Boveri,  &  Co.     637a* 

Electric    for    obtaining    high    temperatures.     (P) 

Automatic  Telephone  Mfg.  Co..  and  Roseby         . .       20a 
electric;    Preventing   burning-out   of  .     (P)   Wild 

and  Barfield 180a 

Electric    for    producing    calcium    hydride.     (P) 

Kiesewalter       ..  ..  ..  ..  ..  ..216a 

Electric  for  production  of  calcium  carbide.     (P) 

Reid 823A 

Electric   radiation  for   glass   manufacture.     Sau- 

vageon 374a 

Electric for  reducing  ores,     (p)  Bradley  ..  ..     822a 

electric  ;   Regulators  for .     (p)  General  Electric  Co.     507a* 

electric ;    Rotating  for  melting  zinc  powder.     (P) 

Cornelius  . .         . .         . .         . .         . .         . .       20a* 

Electric  with  suction  device  for  gases.    (P)  Hel- 

fenstein  . .  . .  .  .  . .  . .  . .  . .     944a 

electric  ;     Three-phase    crucible   .     (P)    Carpenter, 

and  Westinghouse  Electric  and  Mfg.  Co.  . .     507a 

electric  ;    mting  and  other  mechanical  arrangements 

for  three-phase  .     (P)  Mauri   . .  . .  . .       21a 

Electric  for  treating  ores.     (P)  Counas   ..  ..     901a 

Electric  ;  Tungsten for  experiments  on  dissociation 

and    ionisation.     Compton    . .  . .  . .  . .     986a 

Electrically  heated  muffle .     (P)  Brown,  Boveri  u. 

Co 109a 

Firing  of — — .     (P)  Kello-rg  and  others 127a 

for   fixation   of   nitrogen.     (P)    Hidden,   and   Nitrogen 

Products  Co , 415a* 

for  fuel  in  dust  or  powdered  form.     (P)  Oertel  . .  . .     848A 

Gas-fired  metallurgical  .     (P)  South  Metropolitan 

Gas  Co.,  and  Chandler  . .  . .  . .  . .     596a 

Gas-fired  shaft .     (P)  Meiser  and  Meiser  ..  ..     531a 

Gas-heated  crucible  .     (P)  Teisen   ..  ..  ..     764a 

gas-heated  ;    Means  for  actuating  gas  and  air  valves  of 

.     (P)  South  Metropolitan  Gas  Co.,  and  others     698a* 

Gas-producing  .     (P)   Witzeck         453a 

Glass  and  other  .     (P)  Stafford 711a 

for  hardening  or  tempering  steel  tools  or  for  heating  or 

annealing  metals,  glass,  pottery,  or  the  like.     (P) 

August 943a* 

Hearth  smelting  or  heating  .     (P)  Mannstaedt  und 

Co.,  and  Bansen  ..  ..  ..  ..  ..     764a 

Heat-treating  for  earthenware.     (P)  Kirk  . .     548a 

for  heat  treatment,  of  metal  bars,  etc.,  by  the  salt-bath 

process.     (P)  Fuller  and  others      . .  . .  . .       20a* 

for  heating  metal  to  be  forged  or  steel  to  be  hardened. 

(P)  Innocent 823A* 

Heating  method  applicable  to  steam  boiler  and  other 

similar  .     (P)  Magnee  and  Demeure  . .  . .     575a 

Heating  with  removable  hearths.     (P)  Delacourt, 

and  Ansaldo  &  Co 89A* 

High-pressure .     (P)  Siemens  u.  Halske     . .  . .     317a 

Industrial  gas  and  industrial  .     Smith      ..  ..       45a 

and  the  like  ;   Discharging  or  charging  devices  for . 

(P)  Marshall 927a* 

or  the  like  ;    Raising  and  maintaining  the  temperature 

in  .     (P)  Robinson  796a 

Mechanical  roasting  and  calcining .     (P)  Rheimsch- 

Nassauische  Bergwerks-  u.  Hiitten-  A.-G.  . .     107a 

Mechanical  roasting for  pyrites  etc. : 

(P)  Erzrost  Ges.,  and  Walmrath         . .  . .     822a 

(P)   Manuf.   de  Prod.   Chirn.   du  Nord  Etabl. 

Kuhlmann         . .  . .  . .  . .  942a 

Mechanically  operated  stirring  devices  for  sulphate . 

(P)   Moritz         858a 

Melting .     (P)  Grindle,  and  Grindle  Fuel  Equipment 

Co 637a 

Melting for  metals  : 

(P)    Benjamin 107a 

(P)  Oehm 822a 

Metallurgical  : 

(P)    Hibbard         637a* 

(P)  Roller 863a 

for  metallurgical  and  analogous  purposes.     (P)  Wellman 

Smith  Owen  Engineering  Corp.,  and  Kemp         ..     637a 

metallurgical;  Regenerator  chamber  for .     (P)  Gray     298a 

Method  of  burning  fuel  in .     (P)  Nield  and  Melland     535a 

Muffle  : 

(P)   August  451a*,  451a* 

(P)  Marx 44A 

muffle-  ;    Roasting  or  calcining  the  products  of  reaction 

of  solid  and  liquid  materials  in .     (P)  Zieren  . .     128a 

Oil-fired    .     (P)    Krause        531a* 

Open-hearth  : 

(P)  Danforth,  jun 764a 

(P)  Danforth,  and  Miami  Metals  Co.  ..     715a 

open-hearth ;     Device    in    connexion    with    .     (P) 

Arthur 596a 

Ore-treating  .     (P)  Grimes 863a 

for  producing  chemical  changes.     (P)  Woodall,  Duckhani 

and.  Jones  (1920),  Ltd.,  and  Duckham        . .  . .     357a 

for  producing  sodium  silicate  and  the  like.     (P)  Stanton     753a 
for  production  of  gas  and  coke.     (P)  Gewerkschaft  ver. 

Constantin   der   Grosse  . .  . .  . .  47a,  91a* 

for  production  of  mineral  distillates  of  definite  com- 
position, e.g.,  zinc  white  and  lead  sulphate  pigments. 

(P)  Mayers,  and  J'.ritnn^,  Ltd 223A 

for    production    of   refractory    or    abrasive    products ; 

Charging  apparatus  for  .     (P)  Gowen-Lecesne     177A* 

Puddling  .     (P)   Hibbard 900a 


156 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Furnaces — continued. 

Babble  stones   for  mechanical   roasting  and   calcining 

.       (P)  Itheinisch-Nassauische  Bergwerks-  und 

Hiitten-A.-G.,  and  others 887A* 

Recuperative  and  regenerative  .     (P)   Smallwood     164a 

for  reduction  of  ores : 

(P)   Eriksson         107a 

(P)    Wiberg  108a* 

Regenerative : 

(P)    Mathy  207a* 

(P)  Union  Trust  Co 796a 

Reheating   .     (P)    Soc.    Anon,    des     Appareils    de 

Manutention  et  Fours  Stein,  and  Stein  and  Atkinson, 

Ltd 638a* 

Retort .     (P)  Blanchard  and  Keneflc         . .  . .     625a 

Reverberatory  for  melting  metals.     (P)   Sklenar     221a 

Ring for  distillation  of  fuels,  especially  peat.     (P) 

Wessels   und   Wilhelmi  456a 

Ring-shaped  plate ,  e.g.,  for  low-temperature  coking. 

(P)    Honigmann  . .  . .  . .  . .  .  -     456a 

roasting ;    Mechanical   .     (P)   Siemens       . .  . .       63a 

Rotary  .     (P)  Dufficld  and  Longbottom   . .  . .     400a 

Rotary  roasting  for  zinc  ores  and  the  like.     (P) 

Sehlesische    A.-G.    fiir    Bergbau    und    Zinkhiitten- 

betrieb 221a 

Sealing  device  for  travelling  grate .    (P)  Zellstoff* 

fabr.  Waldhof,  and  Schneider  847a* 

Shaft  for  burning  cement  clinker  and  the  like. 

(P)  Koppers 417a 

Shaft  for   calcining   materials.     (P)   Peretti  und 

Funck 164a 

Shaft  for  continuous  distillation  of  solid  fuels  by 

means  of  a  current  of  distillation  gases.     (P)  Car- 

bozit   A.-G 92A 

Shaft for  drying,  calcining,  and  oxidising  granular 

and  powdered  materials.     (P)  Steinschneider      . .     400a 

shaft-  ;   Feeding  fine  materials  to .     (P)  Diepschlag     596a 

Shaft and  the  like.     (P)  Chaudiere 764a 

shaft- ;    Operation  of  .     (P)  Diepschlag   . .  . .     596a 

shaft- ;   Revolving  grate  for .     (P)  Goehtz  . .     975a* 

Shelf  roasting .     (P)  Strzoda 422a 

Smelting   .     (P)    Charles 943a 

for  supplying  hot  gases  to  dryers  and  the  like.     (P) 

Haag  and  Riemer      . .         . .         . .         . .         . .     451a 

for  treating  ores.     (P)  Bowmann,  and  Grasselli  Chemical 

Co 63a 

used  in  manufacture  of  producer  gas  and  the  like.     (P) 

Brooke  and   Whitworth         9lA 

Utilising  the  heat  contained  in  the  fuel  residues  from 

."     (P)    Deutsche   Evaporator  A.-G 740a 

Vertical  smelting  .     (P)  Fiechtl 673A 

Water-cooled   valves    for    controlling    delivery    of   hot 

gases  from  .    (P)  Dyffryn  Works,  Ltd.,  and 

others 401a* 

See  also  Kilns  and  Ovens. 
Furnacing  operations,  e.g.,  manufacture  of  salt-cake  ;  Appar- 
atus for  conducting  .     (P)  Skinner     . .  . .     294a 

Fuse-lighter ;    Torch .     (P)  Aurand,  and  Atlas  Powder 

Co 880a 

Fused  salt  media  ;    Reactions  ia .     Hicks  and  Craig  . .     668a 

Fusel  oil  ;  Increasing  the  yield  of during  fermentation. 

(P)  FrankeJ  and  Fischl  430a 

Production  of  in  Czechoslovakia   . .  . .  . .     537R 

from  sweet-potato  brandy.     Yosliitomo  and  others  . .     832a 
Fuses  for  blasting  with  liquefied  gas  ;   Production  of . 

(P)  Kowastch 880a* 

for  blasting  with  liquid  air  or  oxygen.     (P)  Sprengluft 

Ges 80a 

Fusions  ;   Manufacture  of  a  blanketing  medium  for  chemical 

.     (P)  Dow,  and  Dow  Chemical  Co.  . .     358a 


Galactosan.     Pictet  and  Vernet  . .  . .     642a 

Ga lactose-yielding  gum  from  exudation   fiom  quince  tree. 

Von    Lippmann  . .  ....     956a 

d-Galactose ;    Decomposition  of  —       according  to  second 

mode  of  fermentation.     Tomiu  ..         ..     153a 

Galena ;    Behaviour  of  zinc  blende  and   fcarytes  in  blast- 
roasting  of .     Dorschel  . .  . .  . .     255A 

Galeus  galeits  ;    Fatty  oil  from  liver  of .     Chapman  . .     508a 

Gall  ointment ;    Examination  of  .     Evers  and  Elsdon     519a 

Gallaldehyde  and  its  derivatives.    Bosenmund  and  Pfannkuch     915a 

Gallic  acid  ;    Colorimetric  estimation  of .     Mitchell     . .     475R 

Position  of  under  the  Safeguarding  of  Industries 

Act  449R 

Gallotannin.     Nierenstein  . .  . .  . .  . .  . .       29t 

Colorimetric  estimation  of  .     Mitchell      . .  . .     475R 

See  also  Tannin. 

Galvanised  iron  and  steel  sheets;    Determination  of  spelter 

coating   on   .     Strickland  551a 

metal;    Production  of  coloured  coatings  on .     (P) 

Kirchhoff  717a 

Galvanising  machine;   Electro .     (P)  Meaker  Galvaniz- 
ing Co.               638a* 

Gambier ;    Tannin  analysis,  with  special  reference  to  . 

Pollak 773A 

Gambier ;   Trade  of In  1920  and  1921 515R 


Garbage  ;    Apparatus  for  reducing  and  distilling .     (P) 

Goodman 
Deodorising  gases  from  treatment  of  .     (P)  Mac- 

lachlan 
Garcinia    Cambogia  ;    Fat   from  seeds  of  .     Rau   and 

Simonsen 
Gardenia  florida  ;   Colouring  matter  of  fruit  of .     Mune- 

sada 


PAGE 
607A 
344A 
902A 
976A 


Gas  for  airships 180R 

Gas-analvsing  apparatus  : 

(P)  Rodhe  and  Egnell 

(P)  Svenska  Aktiebolaget  Mono 
analysing  apparatus ;    Registering  devices  for  for 

recording  two  or  more  series  of  analyses  on  a  single 

chart.     (P)  Svenska  Aktiebolaget  Mono 
analysis  ;    Absorption  meter,  an  apparatus  for  . 

Moser 

analysis  ;    Apparatus  for  .     Moser  and   Brukl    . . 

analysis ;     Apparatus    for    exact   .     Schaller    and 

Berndt    

analysis  apparatus  ;  Improved  form  of .    Blair  and 

Wheeler 

analysis ;     Apparatus   for  technical   .     Lowe 

analysis ;    Apparatus  for  without  stopcocks  and 

valves.     (P)    Matzerath 
analysis;     Explosion    pipette    for    .     (P)    Allgem. 

Vergasungsges. 
nalysis  ;    Formation    of    nitrogen  oxides  in  slow  com- 
bustion and  explosion  methods  in .    Jones  and 

Parker 
analysis ;     Oxygen    absorption    and    concentration    of 

pyrogallol  solutions  for .     Hoffmann 

analysis  ;     Portable    apparatus    for  by   the   dry 

method.     Strache  and   KUng 
analysis  and  recording  apparatus.     (P)  Dale 
Apparatus  for  controlling  or  regulating  flow  of 

to   a  testing  instrument  or  the  like.     (P)   South 

Metropolitan  Gas  Co.,  and  Chandler 
Apparatus  for  evaporating  paraffin  or  other  liquids  and 

mixing  the  vapours  with  coal  .     (P)   Crippa 

and  Milbourne 
Apparatus  for  indicating  the  presence  of  impurities  in 

a  .     (P)  Siemens  u.  Halske 

Apparatus   for   maintaining   at  a   constant   heat 

value.     (P)  Smith,  and  Gas  Research  Co. 

Apparatus  for  purifying  .     (P)  Graefe 

blast-furnace ;    Determination  of  carbon  monoxide  in 

.     Kaleta 

blast-furnace  ;    Preheating  in  dry  gas-purifying 

plants.     (P)  Dinglersche  Mascliinenfabr.  A.-G.    6a* 
blast-furnace  ;    Purification  of  and  of  like  gases. 

(P)    Halbergerhiitte    Ges. 
blowpipe  burners  for  use  in  laboratories.     (P)  Becker  . . 
burners.     Carpenter 
burners ;     Design    of    atmospheric    .     Berry    and 

others 

calorimeter  ;    Recording  and  integrating  .     Boys 

533a,  (P)  569a 


650a* 
964a 


614a* 


525a 

327a 


964A 


187T 
11T 


353A 
444A 


159A 
613A 


963A 
791A 


353A 


455A 

414A 

535A 
621a 

.4  52  A 

,  S01A 

244A 

731A* 

537a 

286a 


calorimeters.     (P)   Cutler-Hammer  Mfg.   Co 731a 

Carbon  monoxide  in  coal  . .  . .  . .  . .       82R 

Chamber  ovens  for  manufacture  of  coke  and .     (P) 

Koppers  . .  . .  . .  . .  . .  . .     535A 

cleaner;  Dry .     (P)  McGee  and  Vreeland  . .         ..         4a 

Cleaning  and  enri'hing .    (P)  Tulloch  and  Smith  . .     579a 

coke-oven  ;  Distribution  of  tar  recovery  from  by-product 

.     Washburn  and  Muns  . .  . .  . .  . .     658A 

coke-oven ;     Manufacture   of   alcohol   and   ether  from 

the  ethylene  of  .     Thau  and  Bertelsmann  . .       90A 

coke-pven  ;    Recovery  of  benzol  from  .    (P)  Ges. 

fiir    Lindes    Eisuiaschinen    A.-G.     ..  ..  ..       44A 

coke-oven ;     Recovery    of    benzol    hydrocarbons   from 

.    (P)    Hartmann  405a* 

coke-oven ;     Separating   constituents   from   .     (P) 

Still         167a 

Coke-oven  for  town's  use.     Nicholson     . .  . .     451a 

coke-oven  ;  Treatment  of .     (P)  Bronn      . .  46a,  92a* 

Continuous    manufacture   of  in   vertical   retorts 

or  chambers.     (P)  Gumz 283A 

Controller  for  quality  of .     Grebel 699a 

coolers,  cleansers,  or  condensers.     (P)  Wells   . .  . .     131a 

cooling    and    purifying    apparatus.    (P)    Stokes    and 

Waldie 403a 

cylinders;    Report  of  research  committee  on  ..       37r 

from   destructive  distillation  of  a  mixture  of  water- 
gas  tar  and  coal.     Brown     ..  ..  ..  ..241a 

Detecting  presence  of  one in  another.     (P)  Roberts     650a 

Determination  of  benzol  in  coal .     Thau  . .  . .     972a 

Deternnnation  of  sulphur  in  illuminating   .     Ter 

Meulen 235a 

Device  for  collecting  from  one  or  more  retorts. 

(P)  Carpenter 361a 

Electrical  apparatus  for  generating  .     (P)  Rosncr     3S0A 

engines  ;     Gas    requirements    of,    and    composition    of 

exhaust  gases  from,  large .     Raucrt  . .  . .     888a 

enrichment ;    Catalytic  products  for  coal  .     Mallet     739a 

Extraction  of  mineral  oil  and  hydrocarbon  .     (P) 

Schneiders,   and   A.-G.    "Eos" 536a 

Formation  of  iron  carbonyl  from  coal  used  for 

lighting  railway  carriages.     Bunte  and  Terres    ..     241a 
Furnaces  for  continuous  production  of  coke  and  

(P)    Riepe         535a 

Furnaces  for  production  of  coke  and .     (P)  Gewerk- 

schaft  ver.  Constantin  der  Grosse  . .  . .  47A,  91a* 


SUBJECT  INDEX. 


157 


PAGE 

Gas — continued. 

furnaces  ;   Retorts  for .    (P)  Horn S4SA 

Generation    and    burning    of    combustible    ■ .    (P) 

Biddison  974a 

generators  ;  Electric .    (P)  Rosner 902a 

generators ;    Electrolytic  .    (P)  Boisen     . .         . .     IOSa 

generators  and  retorts.     (P)  Umpleby  and  Powers    . .     801a 
Gum-   and   resin-forming   constituents   in   carburettcd 

.     Brown  699a 

High-percentage  hydrogen  peroxide  for  determination 

of  total  sulphur  in .    Klemmer  . .         ..         ..     166a 

-holder   for    providing   a   continuous   current   of   gas. 

Schleipen  .  ~        . .  . .  . .  . .  . .     525a 

-impervious  material ;  Manufacture  of from  animal 

membranes.     (P)  General   Electric  Co.      . .  . .     774a 

Industrial  and  industrial  furnaces.     Smith         ..       4.r>A 

Inquiry  into  method  of  charging  for  town . .  . .     541R 

lighters  ;  Analyses  of  the  catalyst  in  German  automatic 

.     Williams  76r 

liquefiable  ;     Filling   high-pressure   vessels   with  . 

(P)    Heylandt  451a* 

Liquid  purification  of  coal  .     Sperr         . .         . .     359a 

liquor ;     Manufacture    of    fertiliser    from    .     (P) 

Ges.  fur  Landwirtschaft lichen  Bedarf,  and  Mandel- 

baum  . .  . .  . .  . .  . .  . .     151a 

liquor  ;    Manuring  with  crude  .    Mews  . .     263a 

-mating  apparatus  :    Vertical-retort  .     (P)  Scarle, 

and  U.  G.  I.  Contracting  Co.  740a 

mating ;    Use  of  heavy  oil  in  .     (P)  Evans  and 

others  535a 

mantles.     See  under  Incandescence. 

Manufacture  of : 

(P)   Bates  455a* 

(P)  Hall  and  Papst  361a 

(P)  Helps  :.79a 

(P)  McDonald 322a*.  661a* 

Manufacture   of   calcium  carbide  and   .     (P)    Reid     938a 

Manufacture  of  coal  .     (P)  Hersting  and  Hamlink     623a 

Manufacture  of  combustible and  carbonising  coal. 

(P)  Doherty 742a* 

Manufacture  of  ethvlene   derivatives  from  coal  . 

(P)  Bayer  und  Co 391a 

Manufacture  of of  high  calorific  value,  similar  to 

water-gas,    with    recovery    of    tar.     (P)    Dellwik- 

Fleischer  Wassergas  Ges.         . .         . .         . .         . .     660a 

Manufacture  of in  horizontal  retorts  with  steaming. 

(P)  Brooke  and   Whitworth  453a 

Manufacture  of  illuminating .     (P)  Birtholz  . .         4a 

Manufacture    of    illuminating    and    by-products. 

(P)  Moeller  and  De  Fonblanque         . .  . .  . .     167A 

Manufacture  of  illuminating  from  peat    etc.     (P) 

GyHenrara  361A 

Manufacture  of  and  reduction  of  ores.     (P)  Reid 

and  Hogan         . .  . .  . .  . .  . .  . .       63a 

masts  ;    Manufacture  of  absorbent  charcoal  for  . 

(P)  Chem.  Werke  Carbon         742a,  742a 

Means  for  cooling  suction  or  producer  prior  to 

its     admission     to     internal-combustion     engines. 

(P)  Bamber  and  Parker  ..  ..  ..  ..     4;>5a* 

meters  ;  life  of . .  . .  . .  . .  . .     533a 

natural;    Chemical  products  from  -.     Elworthy  ..     261r 

natural  ;  Composition  of  Japanese .     Ohno  . .     799a 

natural  ;  Design  and  operation  of  a  low-pressure  absorp- 
tion  plant   for   recovery   of    gasoline   from   . 

Dykema  and  Chenoweth         . .         . .         . .         . .     799a 

natural;     Extraction  of  gasoline  from  .     Burrell 

524R, 549R 

Natural in  Italy  ..  ..  ..  ..  ..       10R 

natural  :     Manufacture    of    organic    acids    from    . 

(P)  Strache         210a 

natural  ;    Manufacture  of  soot-carbon,  retort-graphite, 

and  other  carbon  products  from  .     (P)  Szar- 

vassy  and  others  . .    _     . .  . .  . .  . .         6a* 

natural  ;     Treatment    of    — — .     (P)    Thompson,    and 

Carbide  and  Carbon  Chemicals  Corp.           . .          . .     849a 
oil- ;    Hydrocarbon  condensed  from  compressed  . 

Burnell  and  Dawe         2S1a 

oil- ;    Manufacture  of  .     (P)  Davton,  and  General 

Oil   Gas   Corp.  535a 

Ovens   for    producing    coke   and    .     (P)    Eoppers    ,167a 

pipes  ;  Deposits  in  steel .     Scott       . .  . .  . .       45a 

Poison 160R 

poison- ;    Research  work  on  . .  . .  . .     336R 

power  plant ;    Some  observations  on  a  producer  . 

Denny  and  Knibbs 207a 

Preheating  air  and,  if  necessary,  gas  in  chamber  ovens 

for  manufacture  of  cote  and .     (P)  Wolff         . .     701a 

producer- ;      Apparatus    for    separate     production    of 

distillation  gases  and .     (P)  Mars         . .  . .     403a 

producer ;     Continuous    decomposition    of    steam    by 

passage  through  strongly  heated  fuel  in  a  . 

(P)  Lengersdorff  131A 

producer- ;    Corrosion  of  a  cooling  system  for  . 

Jactson  . .  . .  . .  . .  . .  . .     129a 

producer- ;   Critical  consideration  of  generation  of . 

Gwosdz  . .  . .  . .  . .  . .  . .       2a 

producer- ;    Determination  of  degree  of  decomposition 

of  water  vapour  in  manufacture  of  .     Lant    452a 

producer- ;    Equilibrium  in  formation  of  at  high 

pressures.     Jellinek    and    Diethelm             . .          . .     972a 
producer- ;     Estimation  of  moisture  content  of  . 

Maase 972a 

producer- ;    Furnaces   used   in   manufacture   of  . 

(P)   Brooke  and   Whitworth  .,         M         ..       9lA 


PAGE 
Gas — continued. 

producer-  ;    Increasing  the  yield  of  tar  and  the  like  in 

purifying    hot    .    (P)    Mannstaedt    und    Co., 

and  Bansen        . .  . .  . .  . .  . .  . .     931a 

producer- ;    Manufacture  of .     (P)  Murray  . .     849a 

producer-:     Manufacture   of  from   wet   material 

by     drying,     distillation,     and     combustion.     (P) 
Deutsche   Gold-   und   SUber-Scheideanstalt  . .     403a 

producer ;    Marconnet  ash-fusion  ■  for  gasification 

of  coke  breeze.     Riviere  . .  . .  .  -  . .     739a 

producer  plants ;    Suction  with  special  reference 

to  vehicle  driving.    (P)  Thornycroft  and  Co.,  and 

Thornycroft 974a 

producer    and    process.    (P)    Braxton    and    Spellmau    700a 

Producer from  pulverised  fuel.     Sinnatt  and  Slater     168a 

producer- ;    Recovery  of  iron  used  in  purification  of 

from   sulphur   by   means   of   highly   heated 

iron  or  iron  oxide.    (P)  Koppers  . .         . .         . .     403a 

producers : 

(P)  Blass,  and  Chemical  Foundation.  Inc.        . .     453a 
(P)  Chapman,  and  Chapman  Engineering  Co.     403a 

(P)    Climie  740a,  B89a 

(P)  Dolensky         M     405a* 

(P)  Fornas  „     624a* 

(P)  Galusha 849a 

(P)  Gamer  321a 

(P)  George,  and  Morgan  Construction  Co.         M     244a 
(P)    Georges -Marien-Bergwerks-  und    Hiitten- 

Verein  _  M     361a 

(P)  Hernu  361a 

(P)  Hughes  and  Mitchell  403a 

(P)  Johnston  aud  Johnston         ..         ..         ..     403a 

(P)  Koppers  494a 

(P)  Marlow  974a 

(P)    Mawson  ..  167A 

(P)  Moore  537a* 

(P)  Nelson  2S6a* 

(P)  Siemens  283a 

(P)  Steinmann 131a 

(P)  Thuman  6a* 

(P)   TuIIoch   and    Smith  361a 

(P)   Turner  974a 

(P)    Wells  4a,  47a 

producers ;    Apparatus  for  cooling,  cleaning,  or  scrub- 
bing gases  in  connexion  with  .      (P)  Davies    701a 

producers;     Apparatus   for    protecting    oil    .     (P) 

Dayton,  and  General  Oil  Gas  Corp.  ..  ..     131a 

producers  ;  Attachment  for .     (P)  Gaiusha  . .     321a 

producers    for    automobiles ;      Grates    of    .     (P) 

(P)  Parker  and  Bamber  . .  . .  . .  . .     455a* 

producers    and     carbonising    apparatus.     (P)     Parker    361a 

producers  ;    Coking  chamber  for  : 

(P)    Bismarckhutte  623a 

(P)  Jaworsti  660a 

producers ;     Combined    grate    and    water    evaporator 

for .     (P)  Bamber  and  Parter  . .  405a* 

producers ;    Contribution    to  theory  of  and  its 

application    to    blast-furnace    practice.     Korevaar     698a 

producers  ;    Convertible  heating  stoves  and  .     (P) 

Holden  and  others        . .  . .  . .  . .  . .     579a 

producers  ;    Distributing  fuel  in  .     (P)  Smith,  and 

Gas  Research  Co.         . .  . .  . .  . .  . .       47a 

producers ;     Feeding   and    distributing   fuel    in    . 

(P)  Dictson 322a* 

producers ;   Feeding  fine  materials  to  .    (P)  Diep- 

schlag 596a 

producers  ;  Fuel  rakes  of .     (P)  Climie         . .  . .     S51a* 

producers  for  gasification  of  caking  coals  with  recovery 

of  low-temperature  tar.     (P)  Pintsch  A.-G.         . .     131a 
producers  for  generating   low-grade  gas.     (P)   Pierson 

and  Pierson       . .  . .  . .  . .  . .  . .     494a 

producers;   Grates  for .     (P)  Roller  ..  ..     537a* 

producers  of  large  capacity  with  extensive  base  area 
and  attached   distillation  units.     (P)  Lengersdorff 

und  Co.  47a 

producers    and    the    like.     (P)    Rambush         . .  . .     209a 

producers  or  the   lite  :    Charging  device  for  : 

(P)  Hardic,  and  Maclaurin  Carbonisation,  Ltd.     405a* 
(P)  Merz  and  McLellau,  and  others  . .  . .     890a* 

producers  and  the  like ;    Refractory  linings  for  . 

(P)  Ferolite,  Ltd.,  and  Clapp         711a 

producers  and   the   lite ;    Revolving  grate  for  . 

(P)  Goehtz         975a* 

producers    with    means   for   separately   removing    dis- 
tillation   and     producer     gases.     (P)     Nass         . .     700a 

producers ;    Method    of   agitating   fuel   in   .    (P) 

Smith,  and  Gas  Research  Co 536a 

producers  ;    Method  of  preventing  wall  action  in . 

(P)    Smith,    and    Gas    Research    Co 536a 

producers  for   moist  fuel.     (P)   A.-G.   fur  Brennstoff- 

vergasung  . .  . .  . .  . .  . .  . .     167a 

producers  and  other  furnaces  ;    Rotary  grates  for . 

(P)  Trefois         624a* 

producers  with  pre  drying  of  fuel.    (P)  A.-G.  fiir  Brenn- 

stoffvergasung  . .  . .  . .  . .  . .     494a 

producers ;     Preventing   accumulation   of   sticky   con- 
densed   products    of   upon    the   fuel-feeding 

mechanism.     (P)  Hoffman  and  others  . .  . .     453a 

producers ;     Processes    in    .     Von    Juptner         . .     593a 

producers ;     Recovery    of    ammonia    from   .     (P) 

Pintsch  .  .*         494a 

producers  and  retorts : 

(P)     Healy  S49A 

(P)    Lewis  851a* 


158 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Gas — continued. 

producers ;    Steam  regulation  and  moisture  regulation 

and  control  for .     (P)  Smith,  and  Gas  Research 

Co 47A 

producers ;    Stirrer  and   fuel-feeding  device  for  . 

(P)  Dowson  and  Mason  Gas  Plant  Co.,  and  Wilson     623a 
producers ;     Temperatures   in   during   operation. 

Koschmieder      ..  ..  ..  .-  ..  --     166a 

producers ;    Treatment   of   gas  from  .    (P)   Soc. 

Franco-Beige  de  Fours  a  Coke  284a 

producers  ;    Vertical  gas  retorts  and .     (P)  Henne- 

butte 46a 

prodii'-crs     with     means     for     utilising     waste     heat. 

(P)  Koppers 283a 

producers  with  shaft  of  rectangular  cross-section.    (P) 

Akt.-Ges.    fur    Brennstoffvergasung  . .  . .     283A 

producers    with    suspended    circular    coking    chamber. 

(P)    Steinmann  . .  . .  . .  . .  . .     167a 

•producing   apparatus : 

(P)  Brocker  -  ..     322a* 

(P)    Elliott  889A 

-producing  apparatus  ;    Retorts  for .    (P)  Sworski 

and    Ratajezak  . .  . .  . .  . .  . .     535a 

-producing  furnaces.     (P)   Witzeck         . .  . .  . .     453a 

-producing  plant.     (P)  Lowe         . .  . .  .  -  . .     455a* 

Production  of   by-products  in  manufacture  of   mixed 

by  alternate  action  of  oxygen  and  steam  on 

fuel.     (P)  Sommer  and  Simmersbach         . .  . .       47a 

Production  of  combustible  and  desulphurisation 

of  ores.     (P)  Batchelor  146a 

Production  of of  high  calorific  value  by  treatment 

of   distillation   gases   under   pressure  with   active 

carbon.     Fischer  and  others  . .  . .  . .     451a 

Production  of  protective .     (P)  Muchka        . .       453a,  455a* 

purification : 

(P)  Cox  and  others  849a 

(P)  Klarding  131a 

(P)  Stevens  660a 

(P)  Smith,  and  Gas  Research  Co 889a 

Purification  of  coal .     (P)  Adam 454a 

Purification   of   illuminating   .     (P)    Soc.    du    Gaz 

de    Paris  494a 

purification  masses  ;  Extraction  of   sulphur  from 

(P)  Badische  Anilin-  und  Soda-Fabrik         . .          . .     167a 
purification ;      Valuation    of    iron    oxides    for    ■ . 

Gemmell  739a 

purifiers  ;    Dry  — — .     (P)  Halbergerhutte  Ges.           . .     209a 
purifiers ;   Insulator    for    electrodes  of    electrical . 

(P)  Metallbank   u.    Metal lurgische    Ges 576a 

purifiers ;    Mechanism  for  holding  down  covers  of . 

(P)  Dempster,  Ltd.,  and  Broadhead          ..  ..     975a* 

purifiers,  scrubbers,  and  the  like  ;    Grids  for .     (P) 

Sadler 537a* 

-purifying    compositions ;      Production    of    .     (P) 

Mase,  and  Mine  Safety  Appliances  Co.     . .  . .     344a 

-purifying    material  ;     Composition    for    coating    wood 

and   metals  from  spent   .     (P)   Watson,   and 

San  Diego  Consolidated  Gas  and  Electric  Co.         . .     224a 
-purifying    material ;     Obtaining    pure    sulphur    from 

.      (P)   Hoffmann  740a 

-purifying    material ;     Preparation    and    revivification 

of  exhausted  to  recover  free  sulphur.    (P) 

Loewe     . .  . .  . .  . .  . .  . .  . .     244a 

-purifying  material  ;    Recovery  of  sulphur  from  

k       by    means    of    tetralin.     Kattwinkel         . .  . .     928a 

-purifying  material  ;    Recovery  of  sulphur  from  spent 

.     (P)  Badische  Anilin-  und  Soda-  Fabr.         . .     859a 

-purifying  plant ;    Arrangement  of  discharge  electrodes 

in  electrical .     (P)  Siemens-Schuckertwerke  Ges.     206a 

-purifying   plants ;    Preheating  blast-furnace   and   like 

gases  in  dry .     (PJ  Dinglersche  Maschinenfabr. 

A.-G 6a* 

Purifying,    and    stripping    illuminants    from    ■    by 

means  of  charcoal.     (P)  Soddy         624a* 

reactions ;     Carrying    out    electrochemical    .     (P) 

Spiel 299a* 

reactions ;    Production   of   compounds    by   .    (P) 

i       Jacobs,  and  Du  Pont  de  Nemours  and  Co.         . .     415a 

Recovery  of  benzol  from  illuminating by  means  of 

*--      active    carbon.     Engelhardt  . .         . .         . .     659a 

Recovery   of  valuable   products  from   coal  .     (P) 

Badische  Anilin  u.  Soda  Fabrik         454a 

retort  mouthpieces : 

(P)    Burton  702a* 

(P)   Burton   and   Jackson         624a* 

retort    settings ;      Regenerative    .     (P)     Koppers     283a 

retorts ; 

(P)    Low    Temperature    Carbonisation,    Ltd., 

and     Davidson  623a 

(P)    Wood  700a 

retorts  ;   Apparatus  for  charging  and  discharging . 

(P)      Aldridge 975a* 

retorts ;     Apparatus    for    discharging    .     (P)    Soc. 

"  Entreprises    et    Materiel  "  . .         . .         . .     537a* 

retorts  ;    Fireclay  with  iron  reinforcement.     (P) 

Francke  209a 

retorts  or  the   like  ;     Charging   device  for  .     (P) 

Hardie,  and  Maclaurin  Carbonisation,  Ltd.  . .     405a* 

retorts  ;   Thin  metal  ascension  pipes  for  .     Caputi    699a 

retorts;    Vertical  .    (P)  Collin         623a 

retorts  ;    Vertical  with  regenerative  heating.     (P) 

Dessauer  Vertikal-Ofen  Ges.  209a 

retorts  ;   Vertical and  gas  producers.    (P)    Henne- 

butte 46a 


Gas — continued, 
scrubbers : 

(P)    Berlin-Anhaltische    Maschinenbau    A.-G. 
(P)    Laird  and    Doherty 

Separation  of  hydrogen  sulphide  from  coal  .     (P) 

Terwelp 
Storing    under    pressure.     (P)    Svenska    Aktie- 

bulatlrt  <;H--AcriiimiLitur 

Testing  coal  to  be  used  for  manufacture  of  .    (P) 

Thermal    Industrial    and    Chemical    (T.I.C.)    Re- 
search Co.,  and  Morgan 

Therm  system  of  charging  for  .     Pope 

warfare 

Wash  oils  for  removing  benzol  and  naphthalene  from 
.     Pannertz 

washers.     (P)     Florin 

water- ;      Automatically-unslagging    shaft-construction 
for  generators  for  manufacture  of .     (P)  Koster 

water- ;     Coal    and    coke    mixtures    as    generator   fuel 
for  production  of .     Odell 

water-  ;    Manufacture  of  : 

(P)  Doherty  

(P)  Willcmse         

water- ;    Manufacture  of  carburetted .    (P)  Kaeni- 

merling  and  others 

water- ;    Manufacture  of  carburetted  or  of  blue  . 

(P)  Murray 

water- ;    Manufacture  of  free  from  sulphur.    (P) 

Palmer 

water-  ;    Plant  for  manufacture  of  blue  in  con- 
junction with  coal  gas.     Lowe 

water- ;    Plant  for  production  of  enriched  -.     (P) 

Maclaurin 

water- ;    Production  of  methane  from  ■.     Tropsch 

and  Schellenberg 

water- ;    Thermal  efficiency  of  a  plant  for  manufacture 
of  carburetted  including  a  waste-heat  boiler 

works  chemistry  ;    Some  solved  and  unsolved  problems 
in .     Evans 

Gaseous  fuel.     (P)   Rose   and   others  

fuel ;   Combustion  of in  furnaces.    (P)  Soc.  Anon. 

d'Exploit.     Brevets     Cousin 
materials ;    Treating  by  injection  into  a  stream 

of  air  or  other  gases.     (P)   Metallbank  u.  Metal- 

lurgische   Ges. 
mixture ;     Apparatus    for    determining    concentration 

of  one  component  of  a .    (P)  Siemens  u.  Halske 

mixture  ;    Continuous  production  of  a from  water- 
gas  and  the  volatile  matter  from  coal.     (P)  Strache 
mixtures  ;  Apparatus  for  the  continuous  testing  of . 

(P)  Union  Apparatebau-Ges. 
mixtures ;     Apparatus    for    separation    of    .     (P) 

Hayncs,  and  Linde  Air  Products  Co. 
mixtures  ;    Centrifugal  means  for  separation  of  . 

(P)  Mazza 
mixtures ;     Combustion    of    complex    .     Paymau 

and  Wheeler 
mixtures  ;    Preparation  of  purified  .     (P)  Clancy, 

and  Nitrogen  Corp. 
mixtures ;      Recovering     constituents     of     .     (P) 

Wucherer 
mixtures  ;    Recovery  of  valuable  constituents  present 

in  very  small  proportions  in  .    (P)  Ges.  fur 

Lindes  Eismaschinen  A.-G. 

mixtures  ;    Separation  of  the  constituents  of  : 

(P)  L'Air  Liquide  

(P)  Claude,  and  L'Air  Liquide 

(P)  Mazza  

(P)  Mewes  and  Mewes 
mixtures ;     Separation    of   by    liquefaction.     (P) 

Hayncs,  and  Linde  Air  Products  Co. 

mixtures  ;    Treatment  of  .     (P)  Ward  and  others 

molecules ;     Energy    of   .     Partington 

Gases    absorbed    by    charcoals    and    carbonised    lignites ; 

Thermal  evolution  of .     McLean 

Absorption  and  purification  of .     (P)  Adler 

adsorbed  by  solids  ;    Recovery  of  .     (P)  Morgan, 

and    Thermal    Industrial    and    Chemical    (T.I.C.) 

Research    Co. 
Apparatus  for  bringing  about  and  controlling  reactions 

between  .     (P)  Conover  

Apparatus  for  cleaning  : 

(P)    Edens  

(P)  McKee  

Apparatus  for  deposition  and  collection  of  suspended 

matter  in  .     (P)    Lewis  

Apparatus  for  detecting  presence  of  impurities  in . 

(P)  Siemens  und  Halske  A.-G. 
Apparatus  for   drying  after  purification   in  wet 

filters.     (P)    Herring,   and    Grice   and    Sons,   Ltd. 
Apparatus  for  effecting  intimate  mixing  of  liquids  and 

.    (P)    Soc.   Franco-Beige   de   Fours   a   Coke 

Apparatus   for   electrical    precipitation    of    dust   from 

.     (P)Thein  

Apparatus    for    electrical    precipitation    of    suspended 

particles  from .     (P)    Witte,  and  International 

Precipitation  Co. 
Apparatus    for    electrical    purification    of    .    (P) 

Lilienfeld,  and  Metallbank  u.  Mctallurgische  Ges. 

Apparatus  for  electrical  treatment  of .     (P)  Bradley 

Apparatus  for  extracting  dust   and   fume  from  . 

(P)  Milliken 


930a 
575a 

244a 

361A 

4a 

411R 

9B 

241A 

740A 

92a* 

492A 

361A 
91 A 

974A 

849A 

209A 

699a 

660a 

166a 

532a 

58k 
208A 

579A 

450A 
444A 
740A 
235A 
886A 
280A 
359A 
753A 
622a* 

44a 

859a 
860a* 
163a 
755a 

846a 
969A 

77a 


357A 

926A 


128A* 

317a* 

846A 
47A 

127A 

353A 

401A* 

87A 

1A 

239a 

64a 

88a 


SUBJECT  INDEX. 


159 


Gase? — continued. 

Apparatus   for   indicating   and   recording   the   calorific 

value   of   combustible   .     (P)    Cutler-Hammer 

Mfg.  Co.  485A 

Apparatus    for    mixing    solid    materials    and    treating 

them  with .    \V)  Reinhard         736a 

Apparatus    for    purifying    by    passage    through 

narrow    slits.     (P)    Biihring  316a 

Apparatus  for  purifying  and  treating .     (P)  Hernu 

us4a,  405A* 
Apparatus  for  removing from  liquids.     (P)  Fother- 

gill  43A,  451a* 

Apparatus  for  removing  suspended  matter  from  . 

(P)  Fisher,  and  Doherty  Research  Co 622a 

Apparatus    for   separating    .     (P)    Von    Reckling- 
hausen, and  Air  Reduction  Co.  ..  ..  -.     163a 

Apparatus  for  testing  .     (P)  Hase  . .  . .     353a 

Apparatus  for  treating   mixtures  of   with  silent 

electric    discharges.     (P)    Szarvasy  . .  . .     299a 

Apparatus  for  treatment  of in  electric  arc  furnaces. 

(P)  Real  768a 

Centrifugal  machines  for  purifying,  cooling,  and  mixing 

.    (P)  Theisen 1a 

from    chemical    processes ;     Method    of    disposing    of 

waste by  burning.     (P)  ZellstotF-fabr.  Waldhof     808a 

Cleansing      and      humidifying     apparatus      for    . 

(P)  Welford 797a* 

Collecting    suspended    material    from    furnace    . 

(P)   Schmidt,  and  International   Precipitation  Co.     399A 
combustible  ;   Determination  of containing  carbon. 

(P)  Victoria  Falls  and  Transvaal   Power  Co.,  and 

Andrews  . .  . .  . .  . .  . .  . .     527a 

Combustion    of    proportioned    quantities    of    fluid  for 

the   purpose  of  measuring  the   calorific  value   of 

.    (P)  Cutler-Hammer  Mfg.  Co.  . .         . .     692a 

compressed ;     Apparatus    for    removing    water,    dust, 

etc.,  from .     (P)  Loss,  and  Grove  A.-G.         . .     971A* 

Cooling  and  liquefying  .    (P)  Heylandt  Ges.  fur 

Apparatebau,  and  Von  Unruh  . .  . .  . .     576a 

Deodorising  offensive .     (P)  Henderson  and  Haggard     344a 

Deodorising    from    treatment    of    waste    organic 

matter.     (P)  Maclachlan         . .  . .  . .  . .     344a 

Desulphurising  .    (P)   Badische  Anilin  und   Soda 

Fabrik  167a,  890a* 

Detection    and    measurement    of    .     (P)    Daynes, 

and  Cambridge  and  Paul  Instrument  Co.      . .  . .     353A 

Determination  of  calorific  value  of  : 

(P)  Lanphier  791a,  964a* 

(P)    "  Union  "   Apparatebauges.          . .         . .     274a* 
Determination    of    hydrocarbons    in    technical    . 

Wollers  798a 

Determination  of in  metals.     Simons  . .  . .     714a 

Determination  of  suspended  impurities  in .     Scott     613A 

Determination  of  suspended  matter  in by  collection 

on   filter   paper.     Katz   and   Smith  . .  . .     791a 

Disintegrator  for   use   in   wet    process   for  separating 

dust    from    .     (P)    Wurmbach  . .  . .     491a 

dissolved   in   liquids ;    Porous   charges  for   containers 

for  storage  of  explosive  .     (P)   Klebert,  and 

Pintsch   A.-G.  580a* 

distillation  ;    Apparatus  for  evolving  in  vertical 

retorts.    (P)    Pieters  362a* 

distillation ;     Apparatus    for    separate    production    of 

producer-gas   and  .     (P)   Mars  . .  . .     403a 

distillation ;     Composition    of    from    solid    fuels. 

Dolch  and  Gerstendorfer         . .  . .  . .  . .     847a 

distillation ;     Recovering    products    from    .     (P) 

Roberts  801a 

distillation  ;      Recovery    of    by-products    from    . 

(P)  Lomax,  and  American  Coke  and  Chemical  Co.     284a 

Dry  method  of  purifying .     (P)  Grosse         . .  . .     359a* 

dust-laden  ;    Separators  for .    (P)  Morris  . .       88a 

dusty  ;     Industrial    treatment    of    .     Gibbs     125R,  189t 

Electric    high-velocity    classifier   for    grading    particles 

removed  from  .    (P)  Hedberg,  and  Research 

Corp 49lA 

Electrical   apparatus  for  cleaning .    (P)Metallbank 

u.  Metal lurgische  Ges.  . .  . .  . ,  . .     797A 

Electrical  method  of  separating  dust  from  .     (P) 

Lilienfeld,  and  Metallbank  u.  Metallurgische  Ges.         1a 
Electrical  precipitating  plant  for  separating  dry  material 

from  wet  .     (P)  Siemens-Schuckertwerke  Ges.     239a 

Electrical  precipitation  of  dust  from .     (P)  Siemens- 
Schuckertwerke   Ges.               . .          . .  . .  . .     576a 

Electrical    precipitation   of   solid    or   liquid    suspended 

matter  from .    (P)  Metallbank  u.  Metallurgische 

Ges 697a 

Electrical  precipitation  of  suspended  particles  from : 

(P)  Anderson,  and  International  Precipitation 

Co 316a 

(P)  Moller  697a,  737a 

(P)  Rhodes,  and  International  Precipitation  Co.    399a 

Electrical   purification   of  : 

(P)   Besta  316a 

(P)  Siemens-Schuckertwerke  Ges 399a 

Electrical  purification  of  employing  precipitating 

electrodes  of  the  plate  form.     (P)  Metallbank  u. 

MetallurgischeGes.        . .  . .  . .  . .  . .     737A 

Electrical    purification    of ■   for   removal    of   very 

fine     dust     particles.     (P)     "  Elga,"     Elektrische 

GasreinigungsGes 399a 

Electrical  separation  of  suspended  solid  or  liquid  matter 

from     .     (P)     Metallbank     u.     Metallurgische 

Ges.A,-G 491a 


Gases — continued. 

Electrical    treatment    of    .     (P)    Hoofnagle,    and 

Electro  Chemical  Products  Co.  .  .  . .  . .     858A 

Electrification  and  precipitation  of  suspended  particles 

from     .     (P)     Metallbank     u.     Metallurgische 

Ges.  A.-G 206a 

Electrolytic  extraction  of from  liquids.  (P)  Vincent       64a 

Examination    of    naturally    occurring    .     Henrich 

and  Prell  938a,  938a 

Extracting,     liquefying,     and     separating     liquefiable 

constituents  of .     (P)  Schill  and  others         ..     450A 

exhaust ;    Utilisation  of  from  internal-combustion 

engines.     (P)  Scherhag  . .  . .  . .  . .     889a 

Filtering  mat  for  cleaning .     (P)  Kling  and  Weidlein         1a 

Filters  for  purifying .     (P)  Beth         2a* 

flue- ;    Automatic   carbon   dioxide   indicator  for . 

MacMuilin         650a 

flue- ;    General  graphical  evaluation  of  analyses  of . 

Kauko  623a 

fuel- ;  Purification  of .     (P)  Jacobsou,  and  Koppers 

Co 975a* 

furnace- ;      Utilising     waste .     (P)     Witte,     and 

International  Precipitation  Co.  . .  . .  . .     280a 

Ignition    of   by   a   heated   surface.     Mixtures   of 

methane  and  air.     Mason  and  Wheeler         . .  . .     972a 

Ignition  of by  sudden  compression.     Tizard  and  Pye     622a 

inert ;   Production  of free  from  oxygen  and  hydro- 
gen.    (P)   Patent-Treuhand   Ges.  f.   elektr.   Gliih- 

lampen  755a 

from  internal  combustion  engines  and  the  like  ;  Arrange- 
ment for  purifying  and  rendering   odourless  the 

exhaust .     (P)  Wachtel  and  Schmidding         . .     453a 

Laboratory  apparatus  for  washing .     Ernesta         . .     998a 

liquefiable  ;     Filling   high-pressure   vessels   with   . 

(P)  Heylandt  Ges.  f.  Apparatebau             . .  . .     205A 
liquefiable  ;    Transport  of  industrial  supplies  of  large 
volumes  of .    (P)  Heylandt  Ges.  fur  Apparate- 
bau                  89A, 165a* 

liquefied  ;   Devices  for  withdrawal  of from  storage 

cylinders.     (P)  L'Air  Liquide  . .  . .  . .     657a 

liquefied ;     Vessels    for    conveying    and    storing    . 

(P)  Rohn  317A* 

low-grade  ;    Improving  the  quality  of  .     Wussow     359a 

Means  for  cooling .     (P)  Jordan,  and  L'Air  Liquide     735a 

,M<  ;ms  for  separating  solid  matter  in  suspension  from . 

(P)  Stein,  and  Powdered  Fuel  Plant  Co.  . .       88a 

Measuring  the  density  of .     (P)  Kbnig  ..  ..     692a* 

Method  of  absorbing .     (P)  Nauerz  . .  . .         1a 

poison-  ;  Use  of for  exterminating  pests  ..     311R 

Preheating  blast-furnace  and  like in  dry  gas-purify- 
ing plants.     (P)  Dinglersche  Maschinenfabr.  A.-G.     801a 

Preparation  of  pure by  application  of  the  principle 

of  the  hydraulic  compressor.     Heirich  ..  ..     735a 

Preparation  of  reducing for  metallurgical  purposes. 

(P)A./S.  Norsk  Staal  555A 

under  pressure  ;    Apparatus  for  production  of  ■  by 

electrolysis.     (P)Vesme  ..  ..  ..  ..       64a 

Preventing  burning-out  of  pressure-reducing  valves  of 

cylinders  for  high-pressure .     (P)  Chem.  Fabr. 

Griesheim-Elektron  . .  . .  . .  . ,     163a 

Production  of .     (P)  Hechenbleikner,  and  Southern 

Electro-Chemical  Co.  . .  . .  . .  . .     321a 

Promoting  chemical  reactions  between .     (P)  Ruben     902a 

Purifying .     (P)  Badische  Anilin  und  Soda  Fabrik  . .     546a 

Purifying  and  drying  .     (P)  Clancy,  and  Nitrogen 

Corp.  127a 

Rates  of  absorption  and  heat-transfer  between  liquids 

and .     Whitman  and  Keats  ..  ..     315a 

Removing  moisture  from,  and  heating .     (P)  Josse 

and  Gensecke  . .  . .  . .  . .  . .     206a 

Removing  solids  suspended  in .    (P)  Roberts         . .     127a 

Sand  filter  for .     (P)  Fiechter  239a 

Separating  constituents  from  coke-oven  and  like  . 

(P)  Still  ..  167a 

Separating  or  isolating  organic .     (P)  Bayer  und  Co.     281a* 

Separating   mixed  by   centrifugal  diffusion.     (P) 

Heinrich  . .  . .  . .  . .  . .  . .     859a 

Separation   of   dust   and   other   mechanical    impurities 

from  .     (P)   Heenan   and   Froude,   Ltd.,   and 

Walker 399a 

Separation  of  solid  particles  from  by  centrifugal 

action.     (P)  Martin  ..  ..  ..  ..       88A 

Separation  of  suspended  material  from .     (P)  Wol- 

cott,  and  International  Precipitation  Co.  . .     491a 

smelter- ;    Method  of  discharging into  the  atmos- 
phere.    (P)  Howard,  and  American  Smelting  and 

Refining  Co.  673a 

Solubility  of in  liquids.     Neuhausen  ..  ..     668a 

The  system  ammonia-water  as  a  basis  for  theory  of 

solution    of    in    liquids.    Neuhausen    and 

Patrick  249a 

Temperatures  of  combustion  of .     Bronn  . .     577a 

Treating by  injection  into  a  stream  of  air  or  other 

gas.     (P)  Metallbank  u.  Metallurgische  Ges.  . .     317a 

Treating  vapours  and  formed  by  heating  organic 

materials.     (P)  Webster         . .  . .  . .  . .     676a 

Treatment  of .     (P)  Ward  and  others  . .  . .     969a 

Treatment  of in  the  electric  flame  arc.     (P)  Real   . .     768a 

Treatment  of by  irradiation  for  use  in  the  brewing 

industry.     (P)  Ludwig  113a 

Washing  by  means  of  liquid  condensed  from  the 

same.    (P)  Pantenburg  . .         . .         . .         . .     451a 

Gasification  of  bituminous  fuels  ;  Apparatus  for  carbonisation 

and .     (P)  A.-G.  fur  Brennstotf  vergasung         . .     403a 


160 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 
Gasification— continued. 

of  carbonaceous  fuel ;    Apparatus  for  complete  . 

(P)  Simpson 493a 

of  carbonaceous  materials.     (P)  Foster     . .  , .  . .     974a 

of  coal  or  other  carbonaceous  material.    (P)  Duckham  . .     802a* 

of  fuel ;  Possibilities  of  electrical .     Helfeustein     . .     208a 

of  organic  matter  or  minerals  containing  organic  matter  ; 

Continuous .     (P)  RippI  437a* 

of  solid  carbonaceous  matter  ;    Protective  progressive 

distillation  and .     (P)  Lewis  . .      362a,  362a 

of  solid  fuels  ;    Increasing  the  yield  and  quality  of  the 

tar  by  .    (P)  AUgem.  Elektrizitats-Ges.,  and 

Miinzinger  . .  . .  . .  . .  . .  . .     700a 

Gasoline-air  mixtures ;    Condensation  temperatures  of . 

Wilson  and  Barnard  . .  . .  . .  . .         2a 

consumption  by  motor  cars.     Brown         . .  . .  . .     510r 

Cracking  mineral  oils  for  production  of .     (P)  Van 

Steenbergh  321a 

Design  and  operation  of  a  low-pressure  absorption  plant 

for  recovery  of  from  natural  gas.    Dykeina 

and  Chenoweth  799a 

Extraction  of from  natural  gas.     Burrell     ..      524R,  549r 

Iodine  value  of  cracked .     Faragher  and  others       . .       90a 

or  the  like ;    Apparatus  for  manufacture  of .     (P) 

Dreffein  404a 

and  the  like ;    Manufacture  of  .    (P)  Clancy,  and 

Nitrogen  Corp.  . .  . .  . .  . .  . .     702a 

and  the  like  ;    Recovering  and  re-condensing .     (P) 

Burrell  and  others  ..         ..         ..         ...     494a 

Manufacture  of : 

(P)  Alexander,  and  Gulf  Refining  Co.  ..     321 A 

(P)  McAfee,  and  Gulf  Refining  Co 209a 

Production  of  — —  by  cracking  heavier  oils.     Dean  and 

Jacobs  . .  . .  . .  . .  . .  . .     634a 

Recovery  of from  casing-head  gu3.     (P)  McGinnis, 

and  Pilsbry-Becker  Engineering  and  Supply  Co.     . .     580A 

substitute  ;  Manufacture  of .     (P)  Ellis  . .         5a 

Unusual  type  of  casing-head .     Coates  and  Tims     . .     320a 

See  also  Petrol  and  Petroleum  Spirit. 

Gelatin  ;   Action  of  some  mixtures  of  salts  on  swollen . 

Scala 150A 

Bleaching .     (P)  Hochstadter  432a 

Combination  of  formaldehyde  and .     Brotman       . .       25a 

Dissolution  of .     Fairbrother  and  Swan  ..  721a 

Drying  and  swelling  of .     Sheppard  and  Elliott       . .  303a 

Evaluation  of .     Bogue  101R,  828a 

Extraction  of .     (P)  Collard  . .  . .      869a,  908a* 

gels  ;  Structure  of .     Boguc  . .  . .  . .  660a 

gels  ;  Thermal  expansion  of .     Taffel  . .  . .  990a 

-hydrochloric  acid   equilibrium  ;    The  .     Wintgen 

audVogel  150A 

Influence  of  electrolytes  on  solution  and  precipitation  of 

.     Loeb  and  Loeb  . .  . .  . .  . .       69a 

Iso-electric  condition  of .     Bawling  and  Clark         . .  663R 

jellies  ;    Elasticity  of  purified as  a  function  of  the 

hydrogen  ion  concentration.     Sheppard  and  others  908a 
jelly  ;    Effect  of  change  of  acidity  on  rate  of  diffusion  of 

tan  liquor  into .     Wilson  and  Kern        . .  . .  262a 

and  the  like  ;    Apparatus  for  extraction  of  .     (P) 

TunneU  641a 

printing  plates  ;  Production  of .     (P)  Renck  . .  611a 

Processes  in  tanning  of .     Moeller      . .  . .  . .  303a 

Properties  of  dialysed .     Lloyd  . .  . .  . .  907a 

as    protective   colloid.     Colloidal   silver.    Gutbier   and 

others 519a 

Recovery  of from  bones.     (P)  Bergmann     . .  . .  225a 

Relation  between  hydrolysis  of,  and  adsorption  by . 

Moeller  560a 

Significance  of  isoelectric  point  for  preparation  of  ash- 
free  .     Loeb  262a 

or  similar  materials  ;   Producing  uniform  colorations  of 

exact  shade  required  on .     (PJ  Bornhauser      ..  561a 

Sol-gel  equilibrium  in .     Bogue         . .  . .  . .  560a 

sols;  Viscosity  of .     Bogue    ..  ..  ..  ..  111a 

solutions  ;    Gel-strength  and  viscosity  of  .     Oake3 

and  Davis  .  .  . .  . .  . .  . .  . .  721a 

solutions  ;   Physical  characteristics  of .    Davis  and 

Oakes  337a 

Swelling  of in  aqueous  solutions  of  organic  acids. 

Kuhn  111a 

Swelling  and  gelation  of .     Bogue      ..  ..  ..  262a 

swelling  ;   Lyotrope-adsorption  theory  of .   Bennett  641a 

Titration  curve  of .     Lloyd  and  Mayes         . .  . .  224a 

Use  of  antiseptics  in  manufacture  of .    Fowler  and 

others  426a 

Value  of  in  relation  to  nitrogen  requirements  of 

man.     Robison..  ..  ..  ..  ..  ..  342a 

Gels  of  inorganic  salts  ;    General  method  for  obtaining 

and  its  relation  to  theories  of  the  colloidal  state. 

Cnaritschkov 938a 

Structure  of  elastic .     Bogue 560a 

Geological  Survey  ;  Expenditure  of 224r 

Geology ;    Some  local  (Bristol)  aspects  of  industrial  . 

Reynolds  74R 

Geraniol ;  Determination  of  total in  citronella  oil : 

De  Jong  and  Reclairc  ..  ..  ..     958a 

Salamon  958a 

German  patents  ;  Demand  for  return  of  sequestrated in 

U.S.A ..     311R 

periodical ;  New 352r 


from 


(P)    Ver. 


Ge  rman — co}dinued. 

scientific     publications  ;      Exemption     of 

reparation  duty 
scientific  publications  ;  Prices  of 

German-silver ;     Autogenous    welding    of    

Deutsche  Nickel-Werke 
Properties  of .    Voigt 

Germanit.     Pufahl 

Germanium  ;    Extraction  of  from  germauium-bearing 

zinc  oxide,  and  its  non-occurrence  in  samarskite. 

Dennis  and  Papish 

New  mineral  containing .     Pufald 

Separation  of  arsenic  and .     Miiller 

Germany  ;  Agreement  among  glass  manufacturers  in . . 

British  and  French  imports  from 

Capital  increases  in  the  chemical  industry  in 

Care  of  health  in  Bayer  Co.'s  works  at  Leverkusen 

Cellulose  and  paper  industry  in ■ 

Chemical  industry  in ■ 

Chemical  trade  in 320R, 

Coal  and  lignite  in  Great  Britain  and 

Coal  research  in . .  . .  

Company  news 

Consumption  of  lime  in  chemical  industry  in 

Deliveries  of  "  reparation  "  chemicals  from 

Denatured  spirit  for  medicinal  use  in 

Developments  at  Bayer  und  Co.'s  works 

Discovery  of  iron  ore  in ■ 

DyesturTs  from for  U.S.A. 

Efficiency  of  labour  in  factories  in 

Exports  of  chemicals  from to  U.S.A. 

Exports  of  red  lead,   zinc  dust,  and  bronze  powders 

from 

Export  of  soap,  oils,  and  fats  from 

Fertiliser  situation  in 

Foreign  capital  in  the  tanning  industry  in 

Formation  of  a  society  for  colloid  chemistry  in 

Fuel  production  in 

Imports  from 

Imports  of  salt  from 

Increase  in  prices  of  nitrogenous  fertilisers  in 138R, 

Industrial  situation  in 

Labour  recruiting  in  the  heavy  chemical  industry  in 

, 1913-1921  

Manufacture  of  acetic  acid  and  industrial  alcohol  in 

Metallurgical  research  in . .  . .  . .      372r, 

Mineral  production  of ,  1913-20 

Nitrogen  products  industry  in 

Porcelain  industry  in  

Position  of  nitrogen  fixation  industry  in .     Harker 

Potash  industry  in ■      . .       178r,  314r,  451R,  536r, 

Potash  prices  in 

Prices  of  ammonium  sulphate  in 

Prices  of  fertilisers  in  

Prize  for  method  for  gasification  of  raw  lignite  in  

Proposed  increases  of  capital  in  the  dye  industry  in 

10R, 

Reparation   dyestuffs    from   ■  . .  . .       135R, 

Sales  of  coal  to 

Soap  trade  in  

"  Social  secretary  "  in  chemical  works  in  

Standardisation  of  non-ferrous  metals  in  

Sugar  industry  iu ■ 

Synthetic  alcohol  in  

Technical  utilisation  of  lignites  in  

Trade  in  chemicals  between  Switzerland  and 

Trade  of in  colours,  oils,  and  fat 

Unemployment  in 

Wage-groups  and   piece-work  in  the  heavy  chemical 

industry  in 

Wages  in  the  chemical  industry  in  

Working  hours  in  the  chemical  industry  in  in 

1913   and    1921  

Germicide ;    Manufacture  of  quinine-silver  phosphate  . 

(P)  Crowe  

Gilbert  and  Ellice  Islands  ;   Trade  of in  1919-20 

Gilding  glazed  clay  vessels.    Buduikoff 

Glass  ;    Abrasives  and  polishing  powders  for .     French 

Annealing (Pj  Hilger,  Ltd.,  and  Twyman 

-annealing   furnaces  ;     Electric  .     (P)    Colby,   and 

Westinghouse  Electric  and  Mfg.  Co. 

-annealing   lehrs ;     Operation   of  .     Frazier 

Annealing  and  mechanical  properties  of  .     Tallin 

Apparatus  for  drawing  sheet  .     (P)  Libbey-Owens 

Sheet    Glass    Co. 

Apparatus  for  feeding  molten  : 

(P)    Miller  

<P)   O'Neill  

Apparatus    for    forming    articles   of   .     (P)    Miller 

Apparatus   for   forming   window   by   the    lifting 

process.     (P)  Clark 
Apparatus   for   gathering from   a   molten   mass. 

(P)  Pilkington  Bros,  and  others 
articles  ;    Metallic  moulds  for  forming  — — .     (P)  Frink 
articles  ;    Moulding  machines  for  manufacturing  . 

<P)  Miller  

batches    containing   soda-ash    and   saltcake ;     Relative 

.nlvantage  and   disadvantage  of  limestone,   burnt 

lime,    and    slaked    lime    as    constituents    of   . 

Hodkin   and   Turner 
blowing.     (P)  Lorcntz 


135R 
111R 


258a 
256a 


97a 
353R 
273A 
421R 
104R 
372R 
178R 
373R 
451R 
428R 
161R 
373R 
298  K 
373R 

35R 
511R 

10R 
42 1R 
421 R 
373R 
107R 

358R 

357R 
353R 
138R 

372R 
373R 
82R 
104R 
225R 
536R 

10R 
511R 
536R 
421 R 
400R 
452R 
390R 
569R 
225R 

40R 
575R 
483R 

460R 
51 1R 
31 5R 
206R 
159R 
294R 
35R 
35R 
452R 
298R 
339R 
248R 

178R 

314k 
26R 

79A 

65R 

755A 

173R 

89SA 

102a 
217a 
141A 

898  a* 

939a* 
648a* 
375a* 

634a* 

375a* 
711a 

329  a* 


99R 
9S4A 


SUBJECT  INDEX. 


161 


Glass — continued. 

bottle  factory  in  Argentine  ;    New  . .  . .     102R 

bottle  making  industry  in  Holland         ..         ..         ..       17R 

bottles ;    Imports  of  224R 

Coating  carbon   and  articles   containing   it   with  

(P)  Meurer         757a 

composition.     <P)    Bellamy    and    others  . .  . .     502a 

-covered  rolls.     (P)  Matsuo  ..  ..  ..  ..     177a 

Critical    examination    of    methods    commonly    used    in 

determining  durability  of   .     Turner    . .       57R,  464a 

Crucible  furnace  for  melting  .     (P)  Mathy  . .      103a* 

Delivery  of  molten .     (P)  Moorshead  . .  . .     374a 

Determination  of  viscosity  of  molten  .     (P)  Frmk       83a 

Dissociation  of  ferric  oxide  dissolved  in  and  its 

relation   to   colour  of   iron-bearing  glasses.    Hos- 
tetter  and  Roberts        . .  . .  . .  . .  . .     100a 

Drawing  sheet .     (P)  Libbey  Owens  Sheet  Glass  Co. 

712a*,  815a*,  S60a* 

Effect  of  absorbed  gas  on  conductivity  of .     Bush 

and  Connell 708a 

Effect  of   magnesia  on   durability  of  .    Muirhead 

and  Turner        57a 

Effect  of  magnesia  on  resistance  of  to  corroding 

agents.     Dimbleby  and  others  . .  . .  . .     464a 

Effect  of   manganese   in   melted   under   reduced 

pressure.     Bunting      . .  . .  . .  . .  . .     813a 

Examination  and  extension  of  Zulkowski's  theory  of 
relation    between    composition    and    durability    of 

.     Baillie  57R,  464a 

Feeding  molten  : 

(P)    Howard    Automatic    Glass    Feeder    Co., 
and  Howard      ..         ..         ..         ..         ..     177a* 

(P)  Miller  329a* 

furnace ;     Columnar    structure    in    sandstone    blocks 

from    a   .     Currie  . .  . .  . .  . .     241R 

furnaces  : 

(P)  Atkinson,    and  Stein  and  Atkinson,   Ltd.     711a 

(P)  McLaughlin  and  Norton        983a 

(P)  Moorshead 177a 

(P)  Stafford  711a 

furnaces;    Electro-fining .     (P)  Clark         ..  ..     711 A 

furnaces ;    Feed  troughs  for  .     (P)   Clark  . .     939a 

Gathering    of    .     (P)    Blanc  634a 

-house  pot  furnaces.     (P)   Travers         . .  . .  . .     374a. 

industry  in  Belgium  . .  . .  . .  . .  . .     353R 

industry ;     The    British    ,    its    development    and 

outlook.     Turner  196r 

industry  in  Czechoslovakia.     Turner        . .  . .  . .     632k 

industry  in  Eastern  France         . .  . .  . .  . .     175R 

industry ;     Review    of    the    preliminary    specifications 

for  refractory  materials  used   in  the  .     Rees     127R 

-making    machines    for    producing    pressed    cups    etc. 

(P)     Hailwood  984a* 

making ;    Manufacture  of  alkali  silicates  for  in 

blast  furnaces.     (P)  Peacock  and  Waggoner         . .     755A 

Manufacture  of  : 

(P)  Compton,    and    Westinghouse    Lamp   Co.    634a 

(P)  D'Adrian         898a 

(P)  Enequist  177a 

(P)  Ges.  f.  Tuff-  und  Ton-Technik  . .  . .     711a 

(P)  Good,  and  Hazel  Atlas  Glass  Co.  ..     634a 

(P)  Myers,  and  Myers  Co 416a 

(P)  Sullivan    and    others  295a 

(P)  Taylor,  and  Corning  Glass  Works      374a,  465a 

(P)  Taylor  and  others 374a 

manufacture  ;  Bridge  walls  for  tank  furnaces,  especially 

for  use  in  .     (P)  Corning  Glass  Works         . .     S98A* 

Manufacture  of  in  an  electric  radiation  furnace. 

Sauvageon         . .  . .  . .  . .  . .  . .     374a 

Manufacture  of  non-shatterable .     (P)  Marckworth     634a 

manufacture  ;    Press  moulding  machines  for .    (P) 

Hailwood 
Manufacture  of  raw  plate 

botte  et  Cie. 
Manufacture  of  sheet  — 

Manufacture  of  spun  

Manufacture  of  white 

manufacturers  ;    Agreement  among 
Materials    or    receptacles    for    handlin 


592a* 

(P)  Bicheroux,  Lam- 
634a* 

-.     (P)  Crowley  and  others     634a 
.     (P)  Von  Pazsiczky         . .     375a* 
in  a  tank  furnace.     Adams     241R 
-  in   Germany     421R 
molten    . 

(P)  Naaml.  Vehnoots.  Philips'  Gloeilampenfabr.     . ,     860a 

Mathematical  note  on  annealing  of  .     Williamson     176a 

Measurement    of    surface    of    powdered    .     Wolff     328a 

-melting   furnace ;     Gas-fired    recuperative   .    (P) 

Johansson  . .  . .  . .  . .  . .  . .     141a 

-melting  furnaces  ;   Tank .     (P)  Frink        . .  . .     102a 

Modern  developments  in  making  of  stained  and  painted 

.     Powell  475R 

Moulding  and  annealing  .     (P)  Clark         . .  . .     177a 

Muffle  flattening  oven  and  leer  for  .     (P)  Milner 

and  others         . .  . .  . .  . .  . .  . .     755a 

nozzles  for  use  in  production  of  artificial  silk  and  other 

fibres    by   spinning ;     Manufacture    of   .     (P) 

Schwarzkopf      . .         . .         . .         . .         . .         . .     102a 

Obtaining  viscoxis  charges  of   from  a  viscous  mass 

thereof.     (P)  Tucker  and  others         142a* 

opal- ;  Composition  for  .      (P)  Duval  d'Adrian     . .     548a 

optical ;     Manufacture    of    .     Peddle         . .  . .       30R ' 

optical;    Manufacture  of  ■  almost  free  from  striae 

(P)    Desenberg  814a 

optical ;    Measurement  of  small  variations  of  refractive 

index  throughout  melting  of .     Dalladay  and 

Twyman  ..         ..         ..         ..         ..         ..     175a 

painting ;    Processes  and  methods  of  mediaeval  . 

Knowles  ..         _  ,,  ...  ,.  ..     475R 


Glass — continued. 

plate  -;   Annealing  lehr  for .     (P)  Milner  and  others 

plate- ;   Manufacture  of .     (P)  McKelvey  and  Ryan 

pots  ;  Bond  clay  mixtures  for .     Fuller 

Production  of  charges  of  molton .     (P)  Lott 

Production  of  colourless in  tank  furnaces.     Turner 

and  Cousen 

Production  of  copper  coatings  on  .     (P)  Volmer 

Removing  striae  from   melted  .     (P)   Scholes  and 

others 

Glass  Research  Association 

Glass  ;   Solubility  and  decomposition  in .     Morey 

spectacles  ;  Protective for  ultraviolet  rays.    Inagaki 

Stirring    molten    in    continuous    tank    furnaces. 

(P)  Brown,  and  Libbey-Owens  Sheet  Glass  Co. 
Suggested   method   for  determining  absolute   viscosity 

of  molten  .     Masson  and  others 

tank  furnace.     (P)  Hurley 

tubes,  rods,  or  like  bodies  ;    Continuous  manufacture 

of .     (P)  N.  V.  Philips'  Gloeilampenfabr. 

Use    of    selenium    in    production    of    colourless    . 

Cousen  and  Turner 
ware  ;  Action  of  various  analytical  reagents  on  chemical 

.     Turner  and  Wilson 

ware ;  Apparatus  for  controlling   annealing  of  and 

annealing  without  pyrometers.     Twyman 
ware ;      Autoclave    test    for    grading    chemical    . 

Baillie  and   Wilson 

ware  ;  Imports  of 

ware  :    Melting  together  parts   of  by   means   of 

soluble  fluxes.     (P)  Velio        

ware  ;  Position  of  scientific under  the  Safeguarding 

of  Industries  Act 
ware;  Manufacture  of .     (P)  Titanium  Pigment  Co. 

Glasses  ;     Comparison  of  durability  of  lime  and  magnesia 

.     Dimbleby  and  others 

Diffusion  of  hydrogen  and  helium  through  .     Wil- 
liams and  Ferguson 

Disintegration  of  soda-lime  in  water.     Williams 

for  flame  safety-lamps 

Some  properties  of  lime-magnesia and  their  appli- 
cations : 

Dimbleby  and  others 
English  and  Turner 


TAGE 

756a- 
15a* 
101a 
9S4a* 

127R 

378  a 


465a 
374A 

417A 

175A 

898a 

592a* 
708A 
465A 
464a 

45T 

295R 

756A 

289R 
329A* 

464a 

983a 
709A 
570R 


175A 
175A 


Glassy     material ; 
Freuler 


Manufacture    of 


(P)    Tschudi- 


374A 


Glaze  for  building  materials  ;   Production  of   a   cold . 

(P)   Friedrich         ..  143a* 

calculations ;     Modification    of   the    empirical    formula 

iu .     Hansen         . .  . .  . .  . .  . .     634a 

compositions  ;     Degree   to    which   different   take 

vapour  lustres/    Watkins        . .  . .  . .  . .     217A 

-fit ;  Control  of by  means  of  tensile  test  specimens. 

Riddle  and  Laird         710A 

Glazes  ;     Earthenware    bodies    and    .     Sortwell           .  177A 

Field   of   porcelain   maturing   between   cones   17 

and  20.     Twells,  jun.               633a 

free  from  lead  and  boron  ;    Preparing  frits  for  . 

(P)  Harkort 103a 

Hardness  of    .     Blumenthal,  jun.               . ,          . .  102a 

and    like   substances ;     Coating   heat-resisting   articles 

by  spraying  with  .     (P)  Meurer         . .          . .  502a 

Manufacture  of .      (P)  Ges.  f.  Tuff-  und  Ton-Technik  711a 

on  metallic  objects  ;    Production  of  .     (P)  Meurer  295a 

"  Spit-out "   in   .     Adsorption   and   dissolution   of 

gases  by  silicates.     Moore  and  Mellor         . .          . .  710A 

Spit-out  of  on  passing  through  an  enamel  kiln. 

Miles 416a 

Zirconium    fluoride    opaque   .     Kraze        . .          . .  592a 

Glazing  process.     (P)  Meurer               . .          . .          . .          . .  254a 

Gliadin,  wheat- ;   Rate  of  hydrolysis  of .    Vickery     . .  872a 

Glucina ;    Extraction  of  from  beryl.    Britton           . .  349T 

Glucinum  ;    Electrolytic   manufacture  of  compact   metallic 

.     (P)   Stock  and   Goldschmidt            ..          ..  822a 

Separation   of   aluminium   and  .     Britton            . .  273A 

Glucinum  compounds  ;    Manufacture  of .     (P)  Burgess  546A 

a-Glucoheptitol ;    Synthesis  of  .    Pictet  and  Barbier  32a 

Gluconic    acid ;     New    method    of    preparing    .    Ling 

and  Nan j  i          . .         . .         . .         . .         .  -         . .  28T 

Z-Glucosan  ;   Polymerisation  of .     Pictet  and  Ross     . .  428A 

Relationship    of    to   d-glucose   and    to    cellulose. 

Irvine  and  Oldham 27a 

Glucose  ;    Commercial  as  a  preventive  of  freezing  of 

water  in  automobile  radiators.     La  Wall            . .  205a 
Determination  of  pn  value  as  substitute  for  candy  test 

in  examination  of  commercial  .     Sjostrom   . .  950a 

industry  in  Canada  in  1918           80r 

industry  in  Canada  in  1920         245r 

from  maize  starch  ;   Researches  on .     Parow         . .  777a 

Manufacture    of    .     (P)    Allen,    and    Penick    and 

Ford,  Ltd 679a 

Production    of    dextrin    and    from    wood.    (P) 

Terrisse  and  Levy        910A 

rf-Glucose.    See  Dextrose. 

Glucose-ammonia ;     Crystalline    ■    and    isoglucosamine 

Ling    and    Nanji         . .          . .          . .          . .          -  •  871A 

Preparation  of .     Ling  and  Nanji 152t 


162 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Will- 


of    indican.     Macbeth 


Glucose  anilide.     See  Aniline  glucoside. 
a-GIucosidase  ;    Non-identity  of  maltase  arid 
stutter    and    Steibelt 

Glucosides  ;  New .     De  Fazi 

Studies    of   .     Constitution 

and  Pryde 

Glue  ;  Action  of  alum  on  animal .     Gutbier  and  others 

casein-;  Water-resistant .     (P)  Leim- Industrie  Ges. 

Deodorising    products    from    hydrolysis    of    proteins, 

especially     these     yielding     .     (P)  Plauson's 

Forschungsinstitut 

Evaluation  of  .     Bogue         . .  . .  . .       101R, 

Extraction  of  .     (P)  Niessen 

Extraction  of  from  raw  materials  by  means  of 

steam  and  water.     (P)  Niessen 


Apparatus  for  extraction  of 


(P) 


casein 
Separating 
Products 

"Wheat  . 

Glyceria  rawi<j<  ra  ; 


and  the  like 
Tunnell 

Manufacture  of .     (P)  Plauson 

Manufacture  of from  bones,  fish,  or  leather  refuse, 

etc.     (P)  Plausons  Forschungsinstitut 

Manufacture  of  from  glue  material.     (P)  Rohm 

Manufacture  of  liquid .     (P)  Herzinger 

manufacture  in  Madras 

Manufacture  of from  waste  liquors  from  cellulose 

manufacture.     (P)    Kaufmann 

Manufacture  of  wood .     (P)  Sichel  and  Stern 

Recovery  of  from   bones.     (P)  Bergmann 

solutions  prepared  from  bones  ;    Separating  albuminous 

matter  from  .     (P)  Plauson's  Forschungsinst. 

Use   of   antiseptics   in    manufacture   of   .     Fowler 

and  others 

vegetable  ;     Manufacture   of   .     (P)    Bloede 

Glutamine  ;   Constitution  of .     Thierfelder 

Gluten   casein   of  buckwheat.     Kiesel 

from  starch.     (P)  Eriudle,  and  Corn 
Refining    Co. 
Gerum   and   Metzer 

Wax  coating  the  stems  of .     Smith 

Glycerides  ;  Action  of  the  brush  discharge  on .     Eichwald 

Constitution  of from  point  of  view  of  co-ordination 

theory.     Griin 

Conversion  of  with  several  double  linkages  into 

oleic    acid-like    fatty    acids    or    their    soaps.     (P) 
Stiepel,  and  Persapol  Ges. 
Relation  between  refractive  index  and  chemical  char- 
acteristics of .     Pickering  and  Cowlishaw 

Removing  free  acids  from .     (P)  Gleitz         ..       334a, 

Synthesis  of .     Amberger  and  Bromig 

Thin  layers  formed  by  mixtures  of .     Collet 

Glycerin  ;   Composition  of  the  residue  on  distillation  of  crude 

Lewis 

Rayner 
Continuous    distillation    of    from    weak    liquors 

obtained    in    fermentation    processes.     <P)    Barbet 
Determination    of    trimethyleneglycol    in    crude    . 

Cocks  and  Salway 

Historical  development  of  distillation  of  .     Gray 

in  Japan  and  China 

Manufacture    of    products    insoluble    in    water    from 

albumins  and .     (P)Diesser 

pitch  ;  Manufacture  of  a  binding  agent  for  inks,  printing 

colours  and  the  like  from  solutions  of  .     (P) 

Chem.  Fabr.  Plagwitz  Zerbst,  and  Von  Bosse 
Precipitation   of   impurities   in   crude   with   lead 

hydroxide.     Fricke 

Production  of by  fermentation  : 

(P)  Cocking  and  Lilly 

(P)     Koch  

Production  of from  sugar.     (P)  Ver.  Chem.  Werke 

A.-G 

Recovering    from    fermentation     products.     (P) 

Steffens,   and    U.S.    Industrial    Alcohol    Co. 
Specific    gravity    of    at    20°/20°  C.    Cocks    and 

Salway 
substitutes ;     Manufacture    of    metal    salt    compounds 

of  pyridine-betaine  as  .     (P)  Cassella  und  Co. 

See  also  Glycerol. 
Glycerol ;    Boiling  points  and  specific  gravities  of  aqueous 

solutions  of .     Lewis 

Determination   of  in   presence  of  sugars.     Hoyt 

and   Pemberton 
Fermentation  of  in  presence  of  sulphur.     Miiller 

and  Miiller         

Hydrolysing  triglycerides  into  fatty  acids  and  . 

(P)  Tern  

Synthesis  of .    Pictet  and  Barbier 

See  also  Glycerin. 

Glycogen.    Karrer  

Change  in  under  the  influence  of  light.     Bayer 

and    inulin.    Pringsheim    and    Lassmann 
Glycol  ;    Manufacture  of  .     (P)   Rodebush,   and    U.S. 

Industrial    Alcohol    Co. 
Manufacture  of  formaldehyde  and .     (P)  Plauson's 

Fors  chun  gslaborator  iu  m 
Glycollic    acid  ;      Manufacture    of    condensation    products 

from    naphthalene    and    .     (P)    Elektrochem. 

Werke  Ges.,  and  others         

Glyoxylic  acid  :    Analytical  characterisation  and  differentia- 
tion of  acetaldehyde,  aldol,  and ,    Fricke 


190a 
608a 

743a 
601a 

225a 


186a 
828A 
602a 

384a 

641a 
041a* 

186a 

225a» 

225a 

332R 

641a 
384a 
225A 

775a 

426a 

25A 

156a 

306a 

777a 
872a 
372T 
824a 

334A 


826a* 

74T 
599A* 
675a 
223a 


97T 
224T 


17T 

281R 
40R 

949a 


510a 

148a 

779a* 
73a 

514a 

725A 

1ST 

158a 

99T 

260a 

642a 

945a 
32a 


231A 
513a 


157a 

392a 


676a 
268a 


Glyoxylic  acid — continued. 

Electrolytic    preparation    of    from    oxalic    acid. 

(P)  Bayer  und  Co 440a 

Glyoxalinedicarboxylic  acid  for  recognition  and  separation 

of  organic  bases.     Pauly  and  Ludwig         . .  . .     784a 

Gold;     Assay   of   carat   .    Paulin         ..         ..         ..     179a 

bullion  ;  Assay  of .     Westwood         . .  . .  . .     255a 

Colorimetric  determination  of  small  quantities  of  

as   colloidal   gold.     Muller   and    Foix         . .  . .     731a 

Detection  of in  minerals  by  means  of  the  blowpipe. 

Braly 443a 

Electrolytic  extraction  of from  ores.     (P)  Allingham     146a 

Electrolytic    separation    of    silver,    copper,    and    

from  alloys.     (P)  Waeser        . .  . .  . .  . .     717a 

extraction  ;    Recovery  of  zinc  from  waste  waters  from 

8r 

metallurgy  of  the  Witwatersrand  (Transvaal).    Cullen 

124R, 31 6t 

mines ;    Life  of  Rand  4S:.!r 

ore ;    Metallurgy  of  a  refractory  .     Wartenweiler     376a 

ores ;     Metallurgy    of    carbonaceous    .     Dorfman     196R 

ores  of  the  Murchison  Range ;    Application  of  flotation 

to    antimonial   .     Adam  . .  . .  . .     817a 

ores  ;   Treatment  of .     (P)  Dorfman,  and  Mclntyre 

Porcupine    Mines,    Ltd.         . .  . .  . .  . .     379a 

ores ;     Treatment    of    antimonial   .     (P)    Blei-   u. 

Silberhiitte    Braubach  764a 

precipitation    by    zinc    dust    in    conjunction    with   de- 
aeration  of  solution.     Newton  and  Fewster         . .     713a 

Recovery  of .     (P)  Knipe        ..  ..  ..  ..     764a 

Recovery  of  pure  by  clilorination.     (P)     Benne- 

jeant       . .  . .  . .  . .  . .  . .  . .     764a 

Recovery    of   from    pyritic   ores.     (P)     Lemmon 

and  others         298a 

refinery  on  the  Witwatersrand        . .  . .  . .  . .     157r 

-silver    bullion ;      Dusting    and    volatilisation    losses 

during    melting    of    cyanide    precipitate    and    air 

refining  of .     Clevenger  and  others        ..  144a 

solidified     from    the  melt ;     Recrystallisation  of    pure, 

mechanically    unworked    .     Fraenkel  . .     900a 

Gold   compounds  of  Methylene  Blue   group ;    Preparation 

of  .     (P)   Bayer  und   Co 522a 

compounds  of  sulphinides  ;    Preparation  of  .     (P) 

Bayer  und   Co.  . .  . .  . .  . .  . .     522a 

Gold  Coast  Colony  ;    Trade  of  in   1920         . .  . .     459R 

Goose-fat  ;    Glycerides  of  .     Bomer  and  Merten         . .     423a 

Goran    bark ;     Optimum    temperature    and    state    of    sub- 
division for  maximum  extraction  of  tannin  from 

.     Pilgrim  828a 

Government   chemicals ;     Disposal    of   surplus   . .     541R 

laboratory  ;      Report    of    Government    Chemist    upon 

work  of for  year  ending  Mar.  31,  1922         . .     423R 

orders  and  notices     15r,  39r,  85r,  107r,  134r,  183r, 

202R,  227R,  268R,  339R,  358R,  429R,  487R,  514R 
Grading  apparatus  ;     Pulverising,    mixing,   and  .     (P) 

Clark  and  others         . .  . .  . .  . .  . .     845a 

apparatus  ;     Separating   and   .     (P)    Falley         . .     289a 

by   elutriation  ;     Discussion  on   properties  of  powders 

and 173R 

fragmentary      materials      by      electric      conductivity ; 

Apparatus  for .     (P)  Schweitzer  . .  . .     847a* 

materials    of   different    specific    gravities    or    volumes. 

(P)  Croquet        971a* 

particles  removed   from  gases  ;     Electric  high-velocity 

classifier   for   .     (P)    Hedberg,    and    Research 

Corp 491A 

powdered  materials  ;  Apparatus  for .    (P)  Hardinge      44a* 

powdered    materials   aud    treating   them   with   air   or 

other  gases  or  vapours.     (P)  Reynolds  and  others     575a 
powders  by  elutriation.     Lowtv  and  McHatton       173R,  310a 

pulverulent    material.     (P)    Ondra         3 59 A* 

and    separating   solid   substances.     (P)    Trottier         . .       44a* 
Grain  ;    Differences  effected  in  protein  content  of  by 

applications  of  nitrogen  made  at  different  growiim 

periods  of  the  plant.     Gericke         . .  . .  . .     950a 

and  the  like  ;    Apparatus  for  separating  iron  and  other 

magnetically    permeable    metals    from    .     (P) 

King 726a* 

Utilising  the  component  substances  of for  maximum 

production  of  material  useful  as  food  or  in  industry. 

Sorel 642a 

Gramophone    amplifiers,    diaphragms,    and    sound    plates  ; 

Prepared  skin  for .     (P)  Barstow         . .  . .     990a 

Granulated    compounds ;     Production   of   finely   .     (P) 

Welter  205a 

Grape    extract ;     Manufacture   of   .     (P)   Monti         . .     154a 

seed  oil.     See  under  Oils,  Fatty, 
sugar.    See   Glucose. 
Grapefruit     (Citrm    decumana) ;      Physiological    study    of 

ripening    and    storage    of    .     Hawkins         . .       29a 

Graphite  in  1920  and  1921         246R 

Deflocculating    .     (P)    Acheson        . .  . .  . .     240a* 

Electrical  conductivity  of  compressed  .     Ryschke- 

witsch  . .  .  .  . .  . .  . .  . .     597a 

Flotation    process    for    purifying    ■ .     (P)    Elektro- 

Osmose  A.-G.  864a 

in  Kenya  Colony     ..  ..  ..  ..  ..  ..     266r 

Manufacture  of  — — .     (P)  Baily  632a 

Manufacture  of  metals  or  alloys  containing  .    (P) 

Wichmann        108a*.  258a 


SUBJECT  INDEX. 


163 


PAGE 

Graphite — continued. 

Manufacture    of    shaped    pieces    of    pure    .     (P) 

Trutzer  . .  . .  . .  . .  . .  . .     757a 

Xatural  and  artificial  .     Arndt  and  Korner         ..     718a 

and  other  pencil  pigments.    Mitchell     . .         . .         . .     826a 

Production  of   mixtures  containing  metals  and  . 

(P)  Ising  and  Borofski  506a 

Purification  of  : 

(P)  Graphitwerk  Kropfmiihl  A.-G 939a 

(P)  Langheinrich  983a 

retort- ;   Manufacture  of from  natural  gas.     (P) 

Szarvassy  and  others  ..  ..  ..  ..         6a* 

Graphitised  material  ;    Manufacture  of .     (P)  Sullivan, 

and  Stackpole  Carbon  Co.    . .         . .         . .         . .     380a 

GiasselU  Medal  ;    Presentation  of  to  W.  H.  Fulweiler     499e 

Grease  wood ;    Toxic  constituent  of  .     Couch   ..         ..     955a 

Greece ;    Report  on  industrial  and   economic  situation  in 

.     Rawlins  425H 

Greensand  composts  ;    Pot  culture  tests  on  availability  of 

potassium  in  .     Smith   . .  . .  . .  . .       26a 

Reducing  to  powder  sludge  from  treatment  of  . 

(P)  Charlton,  and  American  Potash  Corp.  . .       14a 

Grignard  reagents  ;   Formation  of and  function  of  the 

catalyst  therein.     Hepworth  ..         ..         ..       10t 

reagents ;     Recent   applications   of   in   synthetic 

organic  compounds.     Hepworth       . .  . .  . .         7T 

Grillo  oleum  plant ;    Occurrence  and  effect  of  fluctuating 

combustion  in  sulphur  burners  of  the .    Miles 

and  Sarginson  . .  . .  . .  . .  . .  . .     1S3T 

Grinding  apparatus.     (P)  Davidsen     ..  ..  ..  ..     127a 

apparatus  :    Mixing  and  .     (P)  Maddox     . .  . .     399a 

circuit ;    Closed  .     (P)  Allen  281a 

of  fat-containing  granular  materials  ;    Fine  ■.    (P) 

Eppenberger      . .  . .  . .  . .  . .  . .     834a. 

Fine  -.     (P)  Plaisted,  and  Williams  Patent  Crusher 

and  Pulverizer  Co.      . .  . .  . .  . .  . .     576a 

and  like  mills  : 

(P)  Etabl.  Candlot  1a 

(P)  Mclntyre        620a 

mills  : 

(P)  Anthony  and  Rosenfeld 127a 

(P)  Griffith  and  Griffith  207a* 

(P)  McCrae  127a 

(P)  Sedberry        971a 

<P)  Spensley  8S6a 

(P)  Trent,  and  Trent  Process  Corp 207a* 

(Pi  Vernon  399a 

mills  ;   Ball .    (P)  Grey,  and  National  Finance  Co.    358a 

mills  ;    Conical  .     (P)  Coppens         . .  . .  . .     399a 

mills  ;     Crushing    and    — — ■.     (P)    Wriedt,    and    Milo 

Machinery  Co.  Proprietary,  Ltd.     ..  ..  ..     971a 

mills  and  like  apparatus.     (P)  Bartmann  . .  . .       89a* 

mills  ;    Means  for  exerting  elastic  pressure  on  rollers  in 

.     (P)  Leubli        698a* 

mills  ;    Method  of  grinding,  and  attachment  for  . 

(P)  Winslow 657a 

mills  and  other  machines  ;    Bearings  for  vertical  shafts 

of  pan ■.     (P)  Fawcett,  Ltd..  and  others         . .     622a* 

paints,  enamels,  inks,  and  similar  substances  ;    Mills  for 

.     (P)  Smith         475a* 

refining,  and  mixing  machines.     (P)  Mclntyre  ..     796a 

Ground-nuts  ;   Compression  of in  bulk  for  preservation 

and  transportation.     (P)  MacIIwaine  . .  . .     946a* 

Guaiacol ;    Dimercurated  derivatives  of .     Mameli     . .     876a 

Guanidine  ;    Determination  of  .     Dodd  . .  . .     145T 

Mechanism  of  formation  of  in  fused  mixtures  of 

dicyanodiamide  and  ammonium  salts.     Blair  and 
Braham  . .  . .  . .  . .  . .  . .     956a 

Preparation  of .     (P)  Davis  . .  . .  . .     521a 

Guanidine  nitrate ;    Preparation  of .     Davis    ..  ..     118a 

Guanidoethyl  alcohol ;    Synthesis  of  from  cyanamide. 

Fromm  and  Honold  . .  . .     391a 

Guatemala  ;    Report  on  economic  and  financial  conditions 

in  .     Rogers         . .  . .  . .  . .  . .     250a 

Gum  arabic  ;   Study  of  adsorption  in  solution  and  at  inter- 
faces of  and  mechanism  of  its  action  as  an 

emulsifying  agent.     Clark  and  Maun  . .  . .     603a 

arabic  trade  of  the  Sudan  . .  . .  . .  . .     206a 

Red  from  Eucalyptus  calopkyUa.     Salt     . .  . .       67a 

Gums  ;    Production  of  in  Red  Sea  district     . .  . .     295a 

Treating   gases  and  vapours  formed  by  heating  . 

(P)  Webster 676a 

Treating  and  recovering  for  re-use  winch  have 

hardened.    (P)  Littleton        66a 

Guncotton  ;    Apparatus  for  determining  stability  of  . 

Berkhout  310a 

Determination  of  coefficient  of  gelatinsation  of : 

Ab  der  Halden 349a 

Desmaroux  . .  . .  . .  . .  . .     348a 

Gelatinisation  of  .     Marqueyrol  and  Florentin     . .     349a 

Temperatures  of  ignition  of  —  in  vacuo  and  in  air. 

Koehler  and  Marqueyrol        . .  . .  . .  . .     348a 

Treatment  of  .     (P)  Wardenburg 199a 

Gunpowder  ;   Impurities  in  synthetic  potassium  nitrate  used 

in  manufacture  of  .     Junk        . .  . .  . .     158a 

Incorporation  of  .     Perman  . .  . .  . .     155T 

Use  of  petards  of  in  sporting  cartridges  charged 

with  smokeless  powder.     Baga/oli  and  De  Florentiy     998A 


PAGE 

Gutta-percha;     Conversion   of   natural  or  artificial  rubber 

into  material  resembling  .     (P)  Siemens  und 

Halske ^     949A 

Vulcanisation  of  .    (P)  Peachey  and  Skipsey      ..     111a 

Gynocardia  oil.     See  under  Oils,  Fatty. 

Gypsum  ;    Effect  of on  soil  reaction.     Erdman         . .     186a 

industry.     Brittain  and  Elliott 533r 

rock  and  the  like  ;    Calcining  .     (p)  Birdsey,  and 

United  States  Gypsum  Co.  415a 

Simple     process     for     obtaining     crvstallised     . 

Bourgeois  250a 

Sulphuric  acid  from  .     Dominik 749a 

in  U.S.A.  in  1920  198a 

H 

H-acid.     See  1.8-Aminonaphthot-3.6-disulphonic  acid. 

Hfematin  ;   Mordanting  wool  for  dyeing  with .    Craven    368a 

Eecovery    of    peptones    and    from    blood.    (P) 

Butterfleld         198a 

Hemoglobin ;     Colorimetric    determination    of    with 

especial  reference  to  production  of  stable  standards. 

Terrill 79OA 

Manufacture  of  plastic  masses  from .    (P)  Plauson    304a 

Hair  ;     Carroting : 

(P)  Pichard  Freres  541a,  584a* 

(P)  Soc.  du  Feutre  808a* 

Dyeing .    (P)  Akt.-Ges.  f.  Anilinfabr.        ..     543A,  585a 

dyes  ;   Manufacture  of .     (P)  Volz 365a 

Improving  .    (P)  Trostel ioa 

Improving  the  textile  qualities  of  human  and  animal 

(P)  Krais  and  Biltz 808a 

Increasing    the    strength    and    elasticity    of  .  (P) 

Korselt  410a,  541a 

Preparatory   treatment   of  for  felting.    (P)   Soc. 

du  Feutre  808A 

Haiti ;   Logwood  industry  in  , .         . .         . .         . .     483R 

Report   on   economic    and    commercial    conditions    in 

Republic  of  .     Watt 182k 

Halides ;    Use  of  mercuric  nitrate  instead  of  silver  nitrate 

in  determination  of .    Kolthoff  and  Bak        . .     158a 

Halogen-anthraquinone  derivatives  ;    Manufacture  of  -. 

(P)  Atack  and  Robertson 134a,   169a* 

Halogenated    benzene   derivatives ;     Manufacture    of    con- 
densation products  of  aromatic  hydroxy  compounds 

and  .    (P)  Kalle  und  Co 510a 

Halogen-compounds  ;    Manufacture  of  .     (P)  Snelling    631a 

Halogen-hydrocarbons  ;      Manufacture  of .    (P)  Back- 

haus,  and  U.S.  Industrial  Alcohol  Co.         . .         . .     157a 
Halogen-indigoes  and  their  homologues  ;    Manufacture  of 

.    (P)  Soc.  Chim.  Usines  du  Rhone  ..         ..     458A* 

Halogen-isatins.     Grandmougin  . .         . .         . .         . .     246a 

Halogen-substitution  products  of  monohydric  phenols  ;  Pre- 
paration of  di-  and  poly-  .    (P)  Akt.-Ges.  fiir 

Anilin-Fabr.      . .         . .         . .         . .         . .         . .     687a 

Halogens  ;  Action  or on  hide.     Moeller  . .         . .     426a 

Velocity  of  action  of  on  metals.    Tammann  and 

Koster    . .         . .         . .         . .         . .         . .         . .     941a 

Hardening  of  metals  ;     Slip  interference  theory  of  . 

Jeffries  and  Archer 


219a 


Hardness  of  solid  substances  and  its  relationship  to  chemical 
constitution.     Reis  and  Zimmermann 


Harrop  tunnel  kiln. 
Hats  :    Stiffening  — 


880A 
Cramer    . .         . .         . .         . .         . .     710a 

-.    (P)  Pollak 459a 


Hay,  lucerne-  ;    Xitrogen  compounds  in .     Miller 

Hazel-nut  oil.     See  under  Oils,  Fatty. 

Healing  products  ;       Manufacture  of  nutritive  and  . 

(P)  Haaf  und  Co 

Health  ;   Care  of in  Bayer  Co.'s  works  at  Leverkusen . . 

of  workers  in  chemical  factories 

Heat  accumulators  ;    Brick-work  for .    (P)  Strack     . . 

exchange  between  liquids  and  gases  ;     Apparatus  for 

effecting    .     (P)     Aktiebolaget     Ljungstroms 

Angturbin 
exchange  between  two  fluids  ;   Means  for  effecting  — — . 

(P)  Power  Specialty  Co. 
exchange  between  two  immiscible  fluids  of  different 

densities  ;    Effecting .    (P)  Ibiug 

exchangers  : 

(P)  Allgem.  Elektrizitats-A.-G.,  and  Miinzinger 

(P)  Harter  

(P)  Jeffreys  and  Co.,  and  others 
(P)  Merz  and  McLellan,  and  others 

(P)  Pease  

(P)  Prat 

(P)  St.  Clair,  jun.,  and  Nitrogen  Corp. 
(P)  Soc.  Anon.  Appareils  de  Manutention  et 
Fours  Stein,  and  Stein  and  Atkinson,  Ltd. 
(P)  Thompson,  and  Koppers  Co. 

exchangers  ;    Experiments  with .    Bichowsky     . . 

exchangers    for    heating    liquids    and    like    purposes. 

(P)  Kay  

exchangers  and  the  like.    (P)  Mather 

exchangers  ;    Tubular .    (P)  Brown 

-exchanging  bodies  ;  Production  of .  (P)  Jorgensen 

-insulating  bricks.     (P)  Mock 

-insulating  material.    (P)  Smith  and  others 

-insulating  materials  ;    Tests  on .    Griffiths 


l2 


228A 


198a* 
178R 
569R 
128A* 

795a 

489a 

315a 

531a* 
92a* 

797a* 

577a* 

971a 

315A 

658a 

622a* 

358A 

279a 

2a* 
738a* 
317A* 
797a* 
984a 
16A 
925a 


164 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Heat — continued. 

-insulating  and  resisting  material.     (P)  Holmberg,  and 

Herron  Co.        . .  . .  . .  . .  . .  217a 

Method  of  producing  .     (P)  Bowen  . .  . .     454a 

Production   of   and    its   application   for  heating 

liquids    and    other    purposes.     (P)    La   Cour   and 

Schou     . .  . .  . .  . .  . ,  . .  # ,     495a* 

transfer.     McAdams  and  Frost    . .  . .  . .  . ,     279a 

transfer   between   gases   and   liquids  ;     Rate   of  . 

Whitman  and  Keats  ..  ..  ..  ,.     315a 

-transferring  systems.     (P)  Sugden  and  Hall  . .     576a 

Heaters ;    Heat-insulation  and  .     (P)   Hadaway,   jun.     845a 

for  water    and    other    liquids    heated    by    waste    hot 

gases.     (P)  Hocking 796a 

Heating  apparatus.     (P)  Barrs  735A 

apparatus  ;   Toxicity  index  of  gases  from .     Kohn 

Abrest 389A 

and  boiling  liquids  ;    Means  for .     (P)  Briggs  and 

Buxton  657a 

device ;    Fluid  .     (p)  Forseille         358a 

and  drying  apparatus.     (P)  Keith  and  others  . .     358a 

fluids  ;    Apparatus  for  .     (P)  Auld  and  Sons,  and 

Rose 163a 

at  high  temperatures  ;   Method  of .     (P)  Field,  and 

Chemical  Machinery  Corp.      . .  . .  . .  . .     164a 

to  high  temperatures  by  resistance  with  simultaneous 
application  of  mechanical  pressure  ;    Apparatus  for 

direct .     Sauerwald         823a 

liquids.     (P)  Aktiebolaget  Vaporackumulator     . .  . .     315a 

liquids  ;  Apparatus  for .     (P)  Lebeau  . .  . .     886a 

liquids   or   molten   substances;     Atomising   and   . 

(P)  Keller  738a 

materials  at  successively  different  temperatures  ;  Method 

and  apparatus  for  .     (p)  Thermal  Industrial 

and  Chemical  (T.I.C.)  Research  Co.,  and  others       . .     205a 
substances  to  produce  chemical  changes.     (P)  Thermal 
Industrial    and    Chemical    (T.I.C.)    Research    Co., 

and  Morgan 315a 

system ;     High-temperature   .     (P)   Harrison,   and 

Carrier  Engineering  Corp.       . .  . .  . .  . .     281a 

Hederagenin.     Van  der  Haar     . .  . .  . .  . .  . .     117a 

a-Hederin  and  its  hederagenin.     Van  der  Haar         . .  . .     117a 

Heliotropin  ;    Preparation  of  from  isosafrol  by  means 

of  ozone.     Nagai  835a 

Helium ;    Diffusion  of  through  silica  glass  and  other 

glasses.     Williams  and  Ferguson 983a 

Hemiterpenes  ;   Preparation  of .     (P)  Leibbrandt         . .     270a 

Hemp ;     Differentiation    between    pseudo-hemp    (Crotolaria 

juncea)  and in  fabrics,  ropes,  etc.     Pontio     . .     458a 

and  the  like  ;    Treatment  of .     (P)  Kawabe         . .     138a 

Method  for  distinguishing  flax  from .     Nodder       ..     853a 

Retting .     (p)  Ochmann         10a 

stems ;     Treatment   of   .     (P)   Mahy         . .  . .     138a 

Eeritiera  minor  bark  ;   Optimum  temperature  for  extraction 

of  tannin  from .     Dhavale  and  Das       . .  . .     907a 

Hertzian  waves  ;  Action  of on  powders  and  explosives. 

Briotet  349a 

Heteropolyselenites.     Rosenheim   and    Krause         ..  ..       13a 

Hevea    brasffiensis.     See    under    Rubber. 

Hexadecanesulphonic  acid  and  other  sulphonates.    Norris    988a 

Hexamethylenetetramine  ;     Catalytic     synthesis    of    . 

Rombaut  and  Nieuwland 835a 

Chlorine  derivatives  of .     (P)  Buratti         . .  . .     520a 

Manufacture  of  ■ : 

(P)  Plauson  309a 

(P)    Traun's    Forschungslaboratorium  . .     437a 

Preparation  of  addition  products  of  with  mono- 
halogen  fatty  acid  esters.     (P)  Riedel         . .  . .     520a 

Preparation  of  derivatives  of  : 

(P)  Chem.  Fabr.  Schering         437a 

(P)  Riedel  520a 

Hexose  phosphate  ;   Enzymic  synthesis  of .    Von  Euler 

and  Nordlund  190a 

Hide ;    Action  of  halogens  on  .     Moeller         . .  . .     426a 

Bacteriology    of    fresh    steer    .     McLaughlin    and 

Rockwell  640a 

bellies  ;   Water-soluble  matter  in  vegetable-tanned . 

Chater    and    Woodroffe         . .  . .  . .  . .       23a 

Biology  and  chemistry  of  .     Mineral  constituents. 

Moeller  336a 

curing  ;   Science  of .     McLaughlin  and  Theis         . .     773a 

curing ;     Practice    of    heavy    .    McLaughlin    and 

Theis 773A 

powder  ;  Relation  between  hydrolysis  of,  and  adsorption 

by  ■ .     Moeller 336a 

powder ;    Swelling  of .     Porter         303a 

substance ;    Action  of  lactic  and  butyric  acids  on . 

Moeller  . .  . .  . .  . .  . ,  . .     426a 

substance ;      Influence    of    sodium    chloride,     sodium 
sulphate,  and  sucrose  on  combination  of  chromic 

ion  with  .     Thomas  and  Foster         . .  . .     185a 

substance ;     Time   and   concentration   factors   in   com- 
bination of  tannin  with .     Thomas  and  Kelly     383a 

Hides;  Apparatus  for  treating .    (P)  Walker     ..         ..       25a* 

Bating  : 

(P)  Boehringer  Sohn 721a 

Wilson  and  Daub  68a 

Deliming  .    (P)  Savage         511a 

Dcpilation  of  .     (p)  Richter  . .  . .      3U4a,  641a 


fags 
Hides — continued, 

Depilation,    neutralisation,    and    bating    of    .     (P) 

Rohm 225a 

Experiments    on    soaking    ■ .     Levine         . .  . .     827a 

Factors  influencing  plumping  of  ■ in  tan  liquors. 

Atkin *75a 

Mixture  for  depilating .     (P)  Ulke     ..  ..  ..     677a 

Tanning  and  impregnating  .     (P)  Elektro- Osmose 

A.-G 69a 

Unhairing  : 

(P)  Carmichael  and  Ockleston  ..  ..     225a 

(P)  Pichard  Freres  56()a 

(P)  Rautenstrauch  69a 

Versatility  of  a  plumping  method  for .     Reed         . .     827a 

See  also  Pelts  and  Skins. 

Hippuric   acid   as  nutrient   material   for   plants.     Bokorny     950a 
Histamine ;     Production    of   from    histidine   by   the 

action  of  micro-organisms.     Hanke  and  Koessler    268a 
Histidine ;    Production  of  histamine  and  other  iminazolea 

from by  the  action  of  micro-organisms.     Hanke 

and  Koessler      . .  . .  . .  . .  , .         . .     263a 

Holland.     See  Netherlands. 

Home  Grown  Sugar,  Ltd 134R 

Hominy  ;    Lye ,  its  discoloration  and  a  new  process  for 

its   manufacture.     Kohman  . .         . .         . .     781a 

Honey,  artificial ;    Determination  of  dry  matter  in  by 

means  of  the  refractometer.     Auerbach  and  Borres     603a 
artificial  ;    Determination  of  sucrose  and  starch-syrup 

in    .    Behre         429a 

artificial;  Manufacture  of .     (P)  Dinger      ..  ..     113a 

Detection  of   invert  sugar  in   .     Sherwood         ..     477a 

Detection  of  technical  invert  sugar  in  ■ .     Litterscheid     112a 

Formation  and  ripening  of  .     Sarin         . .  . .     112a 

Influence  of  organic  acids  on  formation  and  ripening 

of  .     Sarin  ..  ..  ..  ..  ..     112a 

Hop  bitters  ;   Nomenclature  and  analysis  of .     Kolbach     911a 

Hops ;    Extraction  of  in  the  brewing  of  beer  or  like 

liquor.     (P)  Briscoe     ..  ..  ..  ..  ..       29A 

Researches  on  .     Amos         . ,  . .  . .  . .     293R 

Hormone  of  the  pancreas  ;    Insulin,  the  . .         . .     537b 

Horn-like    material ;     Manufacture    of    .     (P)    Ges.    f. 

Technik  722a 

Hsiung-Ch'uang.     See  Cnidium  officinale. 

Hull  Chemical  and  Engineering  Society         . .  . .  . .     221b 

Humic  acids  ;  Influence  of on  assimilation  of  phosphoric 

acid    by    plants.     Mack         . .  . .  . .  . .     186a 

Humidity  equilibria  of  various  common  substances.    Wilson 

and  Fuwa  . .  . .  . .  . .  . .  . .     925A 

Humus ;   Determination  of by  oxidation  with  chromic 

acid.     Gehring  ..  ..  ..  ..  ..     641a 

material  ;    Autoxidation  of  natural  and  effect  of 

alkali  thereon.     Schrader       . .  . .  . .  . .     491a 

Hungary  ;    Manganese  deposit  in  — - —         . .  . .  . .     423R 

Report  on  commercial  and  industrial  situation  of . 

Humphreys       . .  . .  . .  . .  . .  . .     335a 

Hurter  and  Driffield  Memorial  Lecture ;    The  third  . 

Svedberg  ..  ..  ..     217r 

Hurter  Memorial  Lecture.     Some  achievements  of  chemical 

industry  during  the  war  in  this  country  and  in 

France.     Macnab         . .  . .  . .  . .      353t,  505R 

Hydra-oxy-cellulose  ;   Manufacture  of ,  a  xanthogenated 

compound  therefrom,  and  a  solid  compact  material 

obtained  by  coagulation  of  the  latter.     (P)  Budde    806a 
Hydrargyrum   oxycyanatum ;     Explosions    caused   by   . 

Merck 346a 

Hydraulic  compressor ;    Application  of  principle  of  to 

preparation   of   pure   gases.     Heirich         . .  . .     735a 

press  and  filter-press  ;    Combined .     (P)  Stevenson, 

and  Hydraulic  Press  Mfg.  Co.         . .  . .  . .     205a 

separators  for  minerals  and  other  solids.    (P)  Wedded        2a* 
Hydrazine;  Volumetric  determination  of .    Kurtenacker 

and  Wagner      . .  . .  . .  . .  . .  . .     308a 

Hydrazines  ;    Preparation  of  aromatic  .     Davies         . .     435a 

Hydrazobenzene  and  its  homologues  ;    Preparation  of . 

(P)  Mahler         212a 

Hydrazone    dyestuffs :     Isatin    Yellow    series ;     Colouring 

matters  of  the .     Martinet         . .  . .  . .     1C9A 

Hydrides  ;   Preparation  of  gaseous  metallic  - from  alloys 

and    solutions.     Paneth    and    others         . .  . .     293a 

Preparation    of    gaseous    metallic   by    the   spark 

discharge.     Paneth  and  others         . .  . .  . .     293a 

Hydro-anthraquinone    derivatives ;     Preparation    of    . 

(P)  Tetralin  Ges 497a 

Hydrobromic  acid  ;    Manufacture  of  .     (P)  Jones,  and 

Dow  Chemical  Co.       . .  . .  . .  . .  . .       57a 

Hydrocarbon    cement;     Aromatic    ■ .     (P)    Barrie    and 

Chadwick  . .  . .  . .  . .  . .  . .     375a 

compounds  ;    Treating  or  converting  .     (PJ  Knox 

and  Warren       . .  . .  . .  . .  . .  . .     850a 

constituents   of   carbonaceous   material ;     Recovery   of 

volatile .     (P)  Bussey  and  Darby         . .  . .     931a* 

fuels  ;    Determination  of  vapour  pressure  of  and 

estimation  o    dissolved  air.     Tizard  and  Marshall     402a 
liquids,  fluids,  and  oils  ;   Conversion  of into  lower- 
boiling  products,     (r)  Adams,  and  Texas  Co.         . .     975a 


SUBJECT  INDEX. 


165 


PAGE 

Hydrocarbon — c&rdinued. 

material  ;      Manufacture     of     unsaturated     .     (P) 

Wells  and   Hunt         580a 

mixtures ;     Treating   gaseous  .     (P)    Curme,   jun., 

and    Union    Carbide    Co 6S6A 

products ;      Manufacture    of     vulcanisable    .     (P) 

Culrner  906A 

Hydrocarbons  ;    Action  of  ozone  on  with  special  refer- 
ence   to    production    of    formaldehyde.     Wheeler 

and  Blair  331T 

aliphatic ;    Oxidation  of  with  nitrogen  peroxide. 

Granacher  and  Schaufelberger         . .  . .  . .     452a 

Apparatus  for  cracking  : 

(P)   Seigle  849a 

(P)   Stone  132a 

Apparatus  for  distilling  heavy  .     (P)  Aims         . .     210a 

Apparatus     for    making    tetrahalogenated    .     (P) 

Rodebush,  and  U.S.  Industrial  Alcohol  Co.         . .     157a 

Apparatus  for  refining .     (P)  Snelling         . .  . .     132a 

aromatic ;      Catalysts     for    reaction     between     carbon 

monoxide,    hydrogen    chloride,    and    .      Kor- 

czynski  and  Mrozinski. .  . .  . .  . .  . .     196a 

aromatic ;     Determination    of    in    mineral    oils. 

Waterman  and  Perquin         . .  . .  . .  . .     281A 

aromatic  ;    Manufacture  of  high-boiling  oils  from  . 

(P)     LUienfeld  50a 

aromatic  ;    Oxidation  of .     (P)  Atack         . .  . .     662a 

aromatic ;     Production    of    .     (P)    Ramage,    and 

Bostaph      Engineering      Corp.         . .  . .  . .     933a 

aromatic :      The    systems    alcohol- water-    from 

-30°  C.  to  30°  C.     Ormandy  and  Craven  ..  ..     134a 

Catalytic   oxidation   of   to   carbonyl   compounds 

or  acids.     (P)  Wohl 457a 

condensed  from  compressed  oil-gas.     Burnell  and  Dawe     281A 
Conversion   of  into  lower-boiling   products.     (P) 

Berry      . .  M  889a 

Cracking  : 

(P)  Coast,  jun.,  and  Process  Co 91a 

(P)  Lasher,  and  Kansas  City  Gasoline  Co.    454a,  536a 

(P)  Niece  850a 

(P)  Puening  6a* 

and  their  derivatives ;    Production  of  by  heating 

coal  or  hydrocarbons  with  hydrogen.     (P)  Loftier     850a 

Determination  of in  technical  gases.     Wollers       . .     798a 

Detonation  characteristics  of  blends  of  aromatic  and 

paraffin .     Midgley,  jun.,  and  Boyd     . .  . .     578a 

Extraction  of  saturated  from  hydrocarbon  mix- 

tutes     or     carbonaceous     material.     (P)     Traun's 

Forschungslaboratorium  Ges.  ..  ..  ..     403a 

Formation    of    hydrocyanic    acid    from    nitrogen    and 

in  the  electric  arc.     Koenig  and  Hubbuch     . .     585A 

Hydrogenating    unsaturated    .     (P)    Chem.    Fabr. 

Griesheim-Elektron      . .  . .  . .  . .  . .     484a 

Iodine  values  of  unsaturated .     Faragher  and  others       90a 

and  the  like  ;  Decomposing under  high  temperatures 

and  pressures.     (P)  Loftier     . .  . .  . .  . .     801a 

Manufacture  of  aldehydes  and  other  oxidation  products 

of  .     (P)   Bibb,  and   Bibb,  sen 959A 

Manufacture    of    cliloro-derivatives    from    unsaturated 

.     (P)    Maze         786a 

Manufacture   of   fatty   acids,    aldehydes,    and    ketones 

from   mineral  oil  .     (P)  Harries         . .  . .       35A 

Manufacture    of     halogenated     .     (P)     Baekhaus, 

and  U.S.  Industrial  Alcohol  Co.         . .  . .  . .     157a 

Manufacture  of  liquid from  fish  oils.     (P)  Kobayashi     701a 

Manufacture    of    organic    acids    and    their    salts    from 

.     (P)  Bayer  und  Co 270a 

Manufacture  of  saturated  of  low   boiling   point 

from   heavy    hydrocarbon   oils.     (P)    Ramage  and 

Beall 132a 

Manufacture  of  unsaturated .     (P)  Ross  and  Evans     959a 

Oiliness  or  lubricating  properties  of  various  series  of  — — . 

Seyer 360a 

Oxidation   of  to  carbonyl  compounds  or  acid3. 

(P)  Wohl  407a 

Oxidation  of with  special  reference  to  production 

of  formaldehyde.     Blair  and  WTieeler         . .          . .     303t 
paraffin  ;    Analysis  of  mixtures  of  hydrogen  with . 

King 533a 

paraffin ;      Catalytic    oxidation     of    saturated     . 

Salway  and  Williams  . .  . .  . .  . .     719a 

paraffin ;     Separation  of  hydrogen  from   gaseous 

by  means  of  palladious  chloride.     Muller  and  Foix     731a 

Preparation  of  fatty  acids  from  .     (P)  Mathesius     728a 

Presenting in  the  form  of  a  thin  film  of  large  surface 

area  to  the  action  of  an  oxidising  agent.     (P)  Gevers- 

Orban 211a* 

Production   of  diethyl   sulphate  and  saturated   liquid 

from  ethylene.     Damiens         . .  . .  . .     957a 

Production  of  light .     (P)  Burke  and  Burke        . .     74lA 

Production  of  lighter from  heavier  hydrocarbons. 

(P)  Woegerer  and  others 889a 

Production  of  low-boiling  .     (P)   Alexander,   and 

Gulf  Refining  Co 209a,  404a 

Production  of of  low  boiling  point.     (P)  Black     . .     741a 

Purification  of .     (P)  Bransky,  and  Standard  Oil  Co.         5a 

Purification    of    waste    liquids    containing    .     (P) 

Wagner  803a 

Ttecent  applications  of  action  of  Grignard  reagents  on 

.     Hepworth         . .  . .  . .  , .  . .         7T 

Helming  : 

(P)  Demant  539a 

(P)  Wells  and  Wells 975A 

Heflning  liquid  .     (P)  Dunstan        741a 


PAGE 

Hydrocarbons — continv>'<l ' . 

Relation  between  molecular  properties  and  capacity  for 

fixing  iodine  of  certain  .     Woog         . .  . .       90a 

Separating  from  aluminium  chloride.     (P)  Owen, 

and  Hoover  Co 890a 

Separating    solid    and    liquid    from    each   other. 

(P)  Deutsche  Erdol  A.-G 91A 

Separating  and  topping  from  a  water  mixture. 

(P)  Brown         5S0a 

Solubility  of  in  liquid  sulphur  dioxide.     Zerner 

and  others         581a 

Sublimation  of  .     (P)  Murphy  and  others  . .     322a 

Treatment  of  : 

(P)  Canadian- American   Finance  and  Trading 

Co 209a 

(P)  Miinder,   and   Chemical   Foundation,   Inc.     931a 

Treatment  of  to  produce  those  of  lower  boiling 

point.     (P)  Black        931a 

Treatment  of  residues  resulting  from  treatment  of ■ 

with     aluminium     cliloride.      (P)     Burgess,     and 
Standard  Oil  Co 132a 

Volatilising     and    decomposing    .     (P)   Canadian- 
American  Finance  and  Trading  Co.  . .  . .     244a 

Hydrocellulose.     Heuser  and  Von  Neuenstein  . .  . .     977a 

Characterisation  of  by  dry  heat  and  comparative 

action   of   heat   on   cellulose,   hydrocellulose,   and 

oxycellulose.     Justin-Mueller  . .  . .  . .         9a 

Hydrochloric  acid  ;    Combined  absorption  tower  aud  cooler 

for  .     (P)   Deutsche  Ton-  u.   Stein zeugwerke 

A.-G.,  and  Plinke        736a 

Electrolytic  manufacture  of  .     (P)  Blasweiler      . .     752a 

Manufacture    of    .     (P)    Townsend,    and    Hooker 

Electrochemical  Co.     . .  . .  . .  . .  . .     501a 

Manufacture  of  alkali  sulphate  and  .     (P)  Gold- 

schmidt  A.-G.  57a 

Manufacture  of  carbon  monoxide  and .     (P)  Paulus. 

and  Royal  Baking  Powder  Co.        . .  . .  . .     631a 

Manufacture    of    and    extraction    of    potassium 

compounds.    (P)  Glaeser,  and  Potash  Extraction 

Corp 669a 

Manufacture      of      highly      concentrated      .      (P) 

Fredericksson,  and  Kalbfleisch  Corp.  . .  . .       57a 

Manufacture  of  from  hydrogen  and  chlorine  with 

the  aid  of  contact  substances  without  explosion. 

Neumann  . .  . .  . .  . .  . .  .  .       55a 

Manufacture  of   magnesia  and  from   magnesium 

chloride.     (P)  Chem.  Fabr.  Buckau  . .  . .       58a 

Manufacture  of  methyl  chloride  and .     (P)  Snelling     631a 

Manufacture    of    potassium    sulphate    and    .     (P) 

Comment,    and    Fabr.    Prod.    Chim.    Thann    et 

Mulhouse  ..  546a* 

Manufacture  of  sulphuric  acid  and  .    (P)  Stolle  . .     752a 

Vessel  for  absorption  of .     Tyler      ..  ..  ..     706a 

See  also  Hydrogen  chloride. 
Hydrocoumarins    and    their   derivatives ;     Manufacture    of 

.     (P)  Tetralin  Ges 837a 

Hydrocupreine   O-alkyl  derivatives  ;     Preparation  of  . 

(P)  Zimmer  und  Co.  439a,  484a* 

Hydrocyanic  acid  ;   Absorption  of by  foodstuffs  during 

fumigation.     Jansen  and  others       . .  . .  . .     873a 

Detection  of  .    Jansen  and  others  . .         . .     873a 

Extraction  of  from  gases.     (P)  Mueller  . .     415a 

Formation  of from  nitrogen  and  hydrocarbons  in 

the  electric  arc.     Koenig  and  Hubbuch     . .  . .     585a 

Generating  for  fumigating.     (P)  Deutsche  Gold- 

und  Silber-Scheideanstalt,  and  Liebknecht  . .     565a 

Increasing  the  stability  of  .     (P)  Deutsche  Gold- 

und  Silber-Scheideanstalt       . .  . .  .  -  - .     754a 

Manufacture  of  : 

(P)  Air  Reduction  Co.  . .  . .    463a*,  708a* 

(P)  Deutsche  Gold-  und  Silber-Scheide-Anstalt, 

and  Liebknecht  . .  . .  . .  . .     589a 

Preparation  of  large  quantities  of in  the  laboratory. 

Fritzmann  . .  . .  . .  . .  . .  . .     979a 

Sensitiveness  of  tests  for  .     Sundberg        . .  . .     352a 

Synthesis  of  by  oxidation  of  alcohols,   phenols, 

and  amines  in  ammoniacal  silver  solution.     Fosse 

and  Hieulle 156a 

Synthesis  of by  oxidation  of  ammonia  and  carbo- 
hydrates, glycerol,  or  formaldehyde.     Fosse         . .       77a 
Transportation  of .     (P)  Metzger,  and  Air  Reduction 

Co 294a 

See  also  Hydrogen  cyanide. 
Hydro- derivatives    of    2-phenylquinoline-4-carboxylio    acid 

and  its  homologues  ;  Preparation  of and  their 

salts.     (P)  Zuckmayer  . .  . .  . .  . .       36a 

Hydro-electric  plant ;     Utilisation  of  surplus   power  from 

for  preparation  of  peat  or  similar  fuel.     (P) 

Testrup,  and  Techno- Chemical  Laboratories,  Ltd.     889a 

Hydrofluoric  acid  ;    Apparatus  of  transparent  bakelite  for 

measuring  .     Curtman    . .  . .  . .  . .     629a 

Hydrogen  ;  Active  modification  of produced  by  «-rays. 

Newman  . .  . .  . .  . .  . .  .  -     252a 

Analysis   of    mixtures   of   paraffin   hydrocarbons   with 

.     King      ..  ..  ..  ..  ..  ••     533a 

Apparatus  for  liquefying  .     (P)  LUienfeld  . .     175a 

Catalytic  formation  of  water  vapour  from  oxygen  and 

in    presence    of    copper    and    copper    oxide. 

Pease  and  Taylor        . .  . .  . .  . .  . .     751A 

Catalytic  process  for  production  of  from  water- 
gas.  (P)  Stevens,  and  Chemical  Fuel  Co.  of 
America             *-.          ..          ..          ..  ..  ..     577A 


166 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


H  vdrogen — continued. 
'    desorbed    from    platinum   and    palladium ;     Properties 

of  .     Anderson     . .  . .  . .  . .  -  •     589a 

Determination   of  active   in   organic   compounds 

by  the  Grignard  reagent.     Hcpworth         . .  . .         8T 

Determination  of and  its  separation  from  gaseous 

paraffins  by  means  of  palladious  chloride.     Muller 

and  Foix  . .  . .  . .  . .  •  •  •  ■     731A 

Determination  of  small  quantities  of  .     Wollers  . .     677a 

Determination  of  traces  of  oxygen  in   .     Larson 

and  White         252a 

Diffusion  of through  silica  glass  and  other  glasses.' 

Williams  and  Ferguson  . .  . .  . .  . .     983a 

Drying  by  compression  and  cooling.     (P)  Berlin- 

Anhaltische  Maschinenbau  A.-G.     ..  ..  ..     859a 

Electrode  for  production  of  a  mixture  of  oxygen  and 

.     Giinther-Schulze  472a 

electrode  vessel ;    Modification  of  Clark to  permit 

of  accurate  temperature  control.     Cullen  _. .     649a 

Electrolytic  generation  of  oxygen  and with  special 

reference  to  utilisation  of  otf-peak  power.     Allan     423a 

Electrolytic  preparation  of  oxygen  and .     (P)  Baur     181a 

Fractional   combustion    of    methane   and   mixed 

with  air.     Rischbieth  . .  . .  . .  . .     798a 

Generation    of    alone    or    mixed    with    nitrogen. 

(P)  Clancy,  and  Nitrogen  Corp.       . .  . .  . .     753a 

generator  for  use  in  making  hydrogen  ion  determina- 
tions.    Cathcart  442a 

Increasing  the  yield  of  in   coal   gas.     (P)  West 

and  Jaques 702a* 

Industrial  .     Teed 168R 

ion  concentration  in  the  brewery  : 

Windisch  and  Kolbach  227a 

Windisch  and  others       . .  . .  . .  . .     951a 

ion  concentration  in  the  brewery.  Colorimetric  method 
of  Michaelis  for  determination  of  pH,and  its  applica- 
tion.    Windisch  and  others  . .  . .  . .       72a 

ion  concentration  ;    Colorimetric  determination  of  

without  the  use  of  buffer  solutions.     Kolthoff     . .     235a 
ion  concentration  ;    Indicator  method  without  buffers 

for  determining  .     Michaelis  and  Kriiger      . .     121a 

ion  concentration  of  plant  cells.     Atkins  . .  . .     225a 

ion  concentration  of  a  solution  ;  Apparatus  for  measuring 

the  .     Kling  and  others  ..  ..  ..     153a 

ion  determinations  ;    Buffer  solutions  for  colorimetric 

comparison  in  .     Mcllvaine      ..  ..  ..       81a 

ions  in  biochemical  processes.     Hopkins  . .  . .     123R 

ions ;     Comparison    of    colorimetric    and    electrometric 

determination  of  concentration  of in  solutions 

containing   carbon  dioxide.     Cullen   and   Hastings     649a 

Liquefaction  of  : 

(P)  Hiibers  373a 

McLennan  371A 

(P)  Clancy,  and  Nitrogen  Corp 813a* 

(P)  Claude,  and  L'Air  Liquide  . .  . .     755a* 

(P)  Palmer  175a 

Manufacture  of  alone  or   mixed   with  nitrogen. 

(P)  Harger,  and  Woodcroft  Mgf.  Co 295a 

Manufacture  of  ammonia  and  .     (P)  Clancy,  and 

Nitrogen  Corp.  . .  . .  . .  . .  . .     631a 

Manufacture   of   carbon    black,    lampblack,    and   . 

(P)  Masson  and  Gerard  . .  . .  . .  . .     558a 

Manufacture  of  carbon  dioxide  and  .     (P)  North     100a 

Manufacture  of  a  gaseous  mixture  of  methane  and . 

(P)  Colson         802a* 

Manufacture  of  mixtures  of  nitrogen  and  .    (P) 

Szarvasy  . .  . .  . .  . .  . .  . .     546a 

Manufacture    of    nitrogen    and    for    ammonia 

synthesis.     West  393R 

Manufacture   of   by    partial   liquefaction   of    gas 

mixtures  containing  it.     (P)   L'Air  Liquide     463a,  670a 

Manufacture  of  purified  mixtures  of  nitrogen  and . 

(P)  Clancy,  and  Nitrogen  Corp.       . .  . .  753a 

Manufacture    of    sodium    bicarbonate    and    .     (P) 

Nagelvoort,  and  Nitrogen  Corp 253a*,  328a* 

Manufacture  of  from    water-gas     and    coke-oven 

gas.     Claude . .  . .  . .       475a 

-methane  gas  ;    Manufacture  of  .     (P)  Murray     . .     849a 

in    organic   substances ;     Microchemical   determination 

of .     Wrede  274a 

-oxygen  catalysis  ;    Mode  of  action  of  platinum  in 

and  application  of  titanium  sulphate  for  control  of 
the  course  of  the  change.     Hofmann         . .  . .     500A 

-oxygen  catalysis  by  platinum  metals,  and  contact 
potentials  in  presence  of  aqueous  solutions. 
Hofmann  . .  . .  . .  . .  . .  . .     252a 

Preferential  combustion  of  carbon   monoxide  in . 

Lamb  and  others         . .  . .  . .  . .  . .     414a 

Production  of in  coal  carbonisation.  (P)  Cumber- 
land Coal  Power  and  Chemicals,  Ltd.,  and  others     579a 

Purifying  : 

(P)  Badische  Anilin  und  Soda  Fabrik  ..     546a 

(P)  Schwarzkopf,  and  Kurtz  und  Schwarzkopf     982a 

Reduction  of  oxides  by  .     Berger  . .  . .     500a 

Retort  furnace  for  generation  of  from  iron  and 

steam.     (P)  Ndding     ..  ..  ..  ..  ..       14A 

Spontaneous  ignition  of issuing  from  jets.     Nusselt     371a 

Spontaneous    incandescence    of  'substances    in    atomic 

.     Wood 897a 

Volumetric  estimation  of  carbon  and  in  organic 

compounds.     Lindner  ..  ..  ..  ..     691a 

Hydrogen   chloride ;     Solubility  of  in   water  and   in 

methyl  and  ethyl  alcohols.     Neuhausen    ..  ..     668a 

See  also  Hydrochloric  acid. 


-  from  acetylene     . . 

—  by    ferric    salts. 


PAGE 

191R 


Hydrogen  cyanide  ;  Manufacture  of  - 

See  also  Hydrocyanic  acid. 
Hydrogen    peroxide ;     Catalysis    of 

Duclaux  ".  . .  . .     981a 

Catalysis  of by  finely-divided  platinum.     Influence 

of  inhibitants.     Maxted  ..  ..  ..  ..     857a 

Colorimetric  determination  of  ■ .     Isaacs     ..  ..     751a 

Detection  of by  means  of  pernitric  acid.     Trifonow     932a 

Effect  of  in  decomposition  of  plant  and  animal 

material     in     Kjeldahl     method     of     determining 
nitrogen.     Kleemann  . .  . .  . .  . .     274 

Manufacture  of  : 

(P)  Deutsche  Gold-  u.  Silber-Scheideenstalt  . .     754a 

(P)  Pat6k  939a 

(P)  Schumacher  58a 

Manufacture  and  preservation  of  .     Poetsehke    . .     292a 

Manufacture  of  solutions  containing .     (P)  Deutsche 

Gold-  und  Silber-Scheideanstalt,  and  Liebknecht  . .     897a* 

Hydrogen  persulphides  ;  Preparation  and  properties  of . 

Walton  and  Parsons     . .  . .  . .  . .  . .     251a 

Hydrogen  selenide ;    Preparation  of from  metal  selen- 

ides.     Moser  and  Doctor         . .  . .  . .  . .       13a 

Viscosity  and  molecular  dimensions  of .     Smith     . .     533R 

Hydrogen  sulphide  ;    Contact  furnace  for  producing  sulphur 

from or  from  gases  containing  it.     (P)  Rhenania 

Verein  Chem.  Fabr.,  and  Projahn      . .  . .  . .     633a 

Evaporating  solutions  of  alkali  sulphides  prepared  by 
passing  gases  containing  through  alkali  car- 
bonate solutions.     (P)  Raupp  and  Gasser  . .     373a 
evolved  by  foods  cooked  at  various  temperatures ;    De- 
termining   .     Kohman     . .          . .          . .  . .     780a 

Hindrance  of  precipitations  with by  neutral  chlor- 
ides.    Dede  and  Bonin            . .  . .  . .  . .     919a 

Manufacture  of .     (P)  Buchner  327a 

Manufacture  of from  calcium  sulphate.     (P)  Buch- 
ner          . .          . .  . .  . .  . .  . .      1 74A 

Manufacture  of  soda  and  from  sodium  sulphate 

and  coal.     Michler      . .  . .  . .  . .  . .     586a 

Manufacture  of from  sulphurous  gases.     (P)  Brown- 
ing                 253a* 

Recovery  of  sulphur  from and  from  gases  containing 

it.     (P)  Naef 58a 

Recovery  of  sulphur  from  gases  containing  .     (P) 

Frischer  502a 

Removing from  gases  : 

(P)  Badische  Anilin-  und  Soda-Fabrik.  .     167a,  373a 
(P)  Ges.  fur  Kohlentechnik        . .       502a,  546a,  708a 

Separation  of from  coal  gas.     (P)  Terwelp  . .  . .     244a 

Velocity  of  action  of  on  metals.     Tammann  and 

Koster  941a 

Hydrogen   telluride ;     Preparation    of   from    metallic 

tellurides.     Moser  and  Ertl  . .  . .  . .       13a 

Hydrogenated     compounds ;      Dracorubin     test     of     . 

Schrauth  and  Von  Keussler    . .  . .  . .  . .         3a 

Hydrogenation  of  carbon  compounds :    Catalysts  for  . 

(P)  Badische  Anilin  u.  Soda  Fabr 689a 

of  carbon  compounds  at  high  pressure  and  temperature. 

(P)  Bergius,  and  Chemical  Foundation,  Inc.  . .     438a 

Catalytic under  pressure  in  presence  of  nickel  salts. 

Von  Braun  and  Kirschbaum  . .  . .  . .  . .     581a 

Degree  of  unsaturation  of  mineral  oils  in  by  the 

Bergius  process.     Waterman  and  Perquin  . .         3a 

Electrochemical  process  of .     (P)  Plauson  . ,     638a 

of  ethylene  in  contact  with  nickel.     Rideal         . .  . .     269a 

of  fats.     Armstrong  ..  ..  ..  ..  ..     392R 

of  fats  and  fattv  oils  ;    Regenerating  catalysts  used  in 

.     (P)  Bolton  and  Lush  825a 

of  fats;  Practice  and  theory  in  the .     Armstrong  ..     415R 

Influence  of  oxygen  on  catalyst  in  catalytic .     Nor- 

mann      . .  . .  . .  . .  . .  . .  . .     675A 

of  liquids  iu  the  presence  of  nickel  ;  Influence  of  pressure 

on  the  rate  of .     Armstrong  and  Hilditch         ..       32a 

Manufacture  of  catalysts  for : 

(P)  Arldt  770a 

(P)  Ellis  770a 

(P)  Teichner         770a 

Mechanism  of  catalytic .     Skita         ..  ..  ..     195a 

of  oils  and  liquid  fats.     (P)  American  Cotton  Oil  Co.     . .     260a 
of  oils  ;  Action  of  copper  in  promoting  activity  of  nickel 

catalyst  in .     Armstrong  and  Hilditrii  . .     903a 

of  oils  in  presence  of  oxygen.     Normann  . .  . .     399r 

of  oils  ;  Promoters  of .     Ueno  . .  . .  . .     824a 

at  ordinary  pressures  ;  Apparatus  for .     Klimont  . .     300a 

of  organic  compounds  ;    Catalysts  for  use  in .     (P) 

Paal  and  Amberger      ..  ..  ..  ..  ..     522a 

of  phenol  ;    Action  of  sodium  carbonate  in  promoting 

.     Catalytic  action  at  solid  surfaces.  Armstrong 

and  Hilditch 891a 

process  and  apparatus.     (P)  Allbright      . .  . .  . .     223a 

Process  for  effecting with  non-pyrophoric  catalysts. 

(P)  Sulzberger 770a 

Technical  aspects  of .     Bolton  . .  . .  . .     384R 

of  unsaturated  compounds  in  the  fluid  state.  (P)  Schlink 

und  Co.  109a 

of    unsaturated    organic    compounds ;     Production    of 

catalysts  for .     (P)  Muller  Speisefettfabr.         . .     676a 

Hydrohalogen  acid  ;  Manufacture  of  sulphuric  acid  and . 

(P)  Snelling 858a 

Hydronaphthalenes  and  their  transformations.      Schroeter 

and  others         133a,  133a,  133a 

«  ~      263T 


Hydrone  and  water.     Armstrong 


SUBJECT  INDEX. 


167 


PAGE 

Hydro-2-phenyIquinoIine-4-carboxylic    acid  ;      Manufacture 

of  derivatives  of .     (P)  Chem.  Werke  Grenzach     688a 

Hydro-2-phenylquinoline-4-carboxylic  acids  and  their  salts ; 

Preparation  of  substitution  products  of .     (P) 

Zuckmayer        . .  . .  . .  . .  . .  . .     439a 

Hydroquinone.     See  Quinol. 

Hvdrosulphites ;    Determination  of  .     Brotherton  and 

Co 352R 

Electrolytic  preparation  of .     (P)  A.-G.  fur  Anilin- 

Fabr 100a 

Manufacture  of .    (P)  Bayer  und  Co.  . .         . .     752a 

Use  of in  estimation  of  dyestuffs.     Sifferlen  . .     457a 

Hydrosulphurous  acid  ;  Economical  generator  of .  Mal- 

vezin  and  others  . .  . .  . .  . .  . .       55a 

Volumetric  estimation  of .     Be  Bacho  ..  ..     250a 

Hydroxides  ;  Manufacture  of  alkali from  alkali  sulphates. 

(P)  Kaiser  669a 

of  trivalent  and  quadrivalent  elements ;    Manufacture 

of .     (P)  Ges.  f.  Verwertung  Chem.  Prod.         . .     174a 

Hydroxyaldehydes  and  their  derivatives  ;    Manufacture  of 

aromatic  .     (P)  Soc.  Chim.  Usines  du  Rh6ne 

197A,  566a,  567A* 

2-Hydroxyanthraquinone  ;  Products  of  the  reduction . 

Perkin  and  YYhattain 246a 

Hvdroxyanthraquinones  ;  Manufacture  of .     (P)  Davies, 

and  Scottish  Dyes,  Ltd 212a 

Preparation  of from  nitroanthraquinones.   Schwenk       94a. 

and  their  sulphonic  acids  ;    Manufacture  of  .     (P) 

Segaller  and  others       . .  . .  . .  . .  . .     408A 

m-Hydroxybenzaldehyde ;       Manufacture      of      .     (P) 

Slimm,  and  Xational  Aniline  and  Chemical  Co.        . .     581a 

2-Hydroxybenzanthrone  ;    Derivatives  of  .     Bradshaw 

and  Perkin         497a 

Hydroxycarhoxylic  acids  :   Manufacture  of  resinous  conden- 
sation products  from  aromatic  .     (P)  Meister, 

Lucius,  und  Briining  . .  . .  . .  . .     301a 

acids  ;    Preparation  of  arylides  of  aromatic  .     (P) 

Chem.  Fabr.  Griesheim-Elektron       . .  . .  . .     523a 

Hydroxy-compounds  ;  Manufacture  of  condensation  products 
of  halogenuted    benzene   derivatives  and  aromatic 

.     <P)  Kalle  und  Co 510a 

Hydroxydimethylbenzylamine.     Madinaveitia  ..  ..       77a 

Hydroxy lamine  ;     Preparation    of   free   .     Lecher   and 

Hofmann  ..  ..  ..  ..     391a 

Volumetric  determination  of  .     Kurtenacker  and 

Wagner  308a 

Hydroxy lamines  ;  Salts  of  aromatic .     (P)  Sulzberger  . .     878a 

1-Hydroxylaminoanthraquinone  and  some  of  its  derivatives. 

Beisler  and  Jones         . .  . .  . .  . .  . .     934a 

2.3-Hydroxynaphthoic  acid  arylides  ;     Manilla* -hire  of  sul- 
phonic acids  of  .     (P)   Meister,   Lucius,   und 

Briining  853a 

p-Hydroxyphenylacetic  acid  :    Separation  and  estimation  of 

.     Hanke  and  Koessler  . .  . .  . .     268a 

p-Hydroxyphenylethylaniine    as    the    active    principle    of 

Semina  cardui.     UUmann       . .  . .  . .  . .     434a 

Microchemical     colorimetric     determination     of    . 

Hanke  and  Koessler     . .  . .  . .  . .  . .     268a 

Separation  and  estimation  of .     Hanke  and  Koessler     268a 

/j-Hydroxyphenyllactic  acid  :    Separation  and  estimation  of 

.     Hanke  and  Koessler  . .  . .  . .     268a 

p-Hydroxyphenylpropionic  acid  ;  Separation  and  estimation 

of .     Hanke  and  Koessler  . .  . .  . .     268a 

;)-Hvdroxvphenvlurea  ;   Manufacture  of  ethers  of .     (P) 

RiedelA.-G 79a 

Sweetening  power  of  derivatives  of .     Speckan       .  .     434a 

S-Hydroxyquinoline  ;  Magnesium  compound  of .  Morner     691a 

Hydroxystearic  acid  :    A  and  some  of  its  derivatives. 

Kadcliffe  and  Gibson  467r 

Hygiene  ;    Gift  of  Rockefeller  Foundation  for  provision  and 

equipment  of  a  school  of .  . .  . .  . .     224R 

Hyoscyamine  and  its  sulphate  :  preparation  and  racenii- 

sation.     Goris  and  Costy         . .         . .         . .         . .     783a 

Hyoscyamus  fluid  extract ;  Assay  of .     Bliss,  jun.         ..     684a 

Hypnotic  of  the  barbituric  acid  series  ;    Butylethylmalonyl- 

urea,  a  new .     Carnot  and  Tiffeneau     . .  . .     685a 

Hypnotics  derived  from  barbituric  acid  ;    Reaction  of . 

Fabre 876a 

Hypochlorite  bleaching  solutions  ;    Determination  of  avail- 
able chlorine  in .     Royer  . .  . .  . .     544a 

bleaching     solutions ;      Preparation     of     .        (P) 

MacMahon,  and  Mathieson  Alkali  Works     . .  . .     753a 

solution  ;    Effect  of   Dakin's  on  certain  organic 

substances.     Engfeldt  . .  . .  . .  . .     682a 

solutions  ;    Determination  of  available  chlorine  in . 

Dienert  and  Wandenbulcke     . .  . .  . .  . .     979a 

solutions  ;    Electrolytic  apparatus  for  preparing  . 

(P)  Rogers  and  Masterman 252a,  333a* 

solutions  ;    Electrolytic  production  of .     (P)  Slater      14a 

solutions;  Manufacture  of .     (P)  Wallace  and  others     174a 

Hypochlorites  ;  Manufacture  of .     (P)  Wilderman         . .     812a 

Manufacture  of  alkali .     (P)  Voyce   . .  . .  . .     415a 

Hypochlorous  acid  and   chlorine  and   comparison  of  their 

bleaching  action.     Taylor       . .  . .  . .        57R,  368a 

Determination  of  chlorine  and  — —  in  concentrated  salt 

solutions.     Taylor  and  Gammal         . .  . .  . .     586a 


PAGE 

Hypochlorous  acid— continued. 

Ionisation  constant  of  .     Evidence  for  amphoteric 

ionisation.     Noyes  and  Wilson          749a 

Hyposulphites.     See  Hydrosulphites. 

Hyssop    (Agastache    pallidifiora)  ;      Essential    oil    of    giant 

,    Couch 520a 

i 

Ice;  Apparatus  for  manufacturing .     (P)  Clough          ..  622a* 

Crystal  structure  of .     Bragg             . .          . .          . .  76R 

Manufacture  of .     (P)  Ellis 480a 

Manufacture  of  and  its  use  for  preserving  food. 

(P)  Gibbs          873a 

Ice-colours.     See  under  Azo  dyestuffs. 

Ichthyol  oil,  its  preparations  and  the  like  ;    Manufacture  of 

.     (P)  Plauson 786A 

oil  ;  Production  of  water-glass  and from  bituminous 

kieselguhr.     (P)  Illig                495a 

Sulphonated  derivatives  of .     Pepin  and  Reaubourg  877a 

Ignitors.     See  Fuses. 

Illipe   fat  ;     Unsaponifiable    matter   (a   highly   unsaturated 

hydrocarbon    and    alcohols)    in    commercial   . 

Kobayashi          987a 

Iminazoles  ;  Production  of from  histidine  by  the  action 

of  micro-organisms.     Hanke  and  Koessler              M  268A 
Immersing  subdivided  solids  or  liquids  in  liquids,  particularly 
in    molten    metal.     (P)    Thermal    Industrial    and 

Chemical  (T.I.C.)  Research  Co.,  and  Morgan            . .  239a 
Imperial  Mineral  Resources  Bureau  ;    Third  annual  report 

of  the  Governors  of  the .              ..          ..          ..  317R 

Imports  of  chemicals       ..         ..         ..         ..         ..         ..  247a 

Impregnating  agents  ;    Production  of : 

(P)  Deutsche  Peerless-Ges 382a 

(P)  Rowland,  and  Federal  Products  Co.           . .  382a 

animal,  vegetable  ,and  mineral  fibres.     (P)  Boucherie   . .  52a 

compositions  ;    Manufacture  of  : 

(P)  Aanerud  and  others              23a* 

(P)  Oakes.  and  National  Biscuit  Co 382a 

Incandescence  bodies  ;    Production  of  from  tungsten. 

(P)  Bergmaun-Elektrizitats- Werke  A.-G 85lA 

electric  lamps.     See  under  Electric. 

filaments  ;    Determination  of  thermal  conductivity  of 

.     Von  Laue  and  Gordon            . .          . .          . .  802A 

gas-mantle  industry             . .          . .          . .          . .          . .  425r 

gas  mantles  ;  Apparatus  for  determining  tensile  strength 

of .     Robin            . .          . .          . .          . .          . .  507R 

gas  mantles  and  other  articles  or  materials  ;   Apparatus 

for  testing  tensile  strength  of .     (P)  Robin      . .  322a 

gas  mantles  ;  Position  of ■  under  the  Safeguarding  of 

Industries  Act               239r 

mantle  bodies  ;  Manufacture  of  strong  impregnated . 

(P)  Sussmann  and  Sussmann              . .          . .          . .  661a 

mantle  support  ;  Cause  of  "  splitting  "  of  a  pottery . 

Craven                329T 

mantles  ;   Manufacture  of .     (P)  Aktiebolaget  Keros  931a 

Iint-ndiary  compositions.     (P)  Benedix            ..          ..          ..  839A 

Inchi  grass  ;  Essential  oil  of .     Moudgill  and  Iyer          . .  785a 

Incineration  by  Kjeldahl's  method  ;   Apparatus  for on 

the  micro-scale.     Winkler      . .          . .          . .          . .  841a 

Indene  ;    Catalytic  hydrogenation  of .  Von  Braun  and 

Kirschbaum       . .          . .          . .          . .          . .          . .  581A 

Production  of from  tar  or  benzene  fractions.    (P) 

Ges.  f.  Teerverwertung,  and  Weissgerber      . .          . .  407a 

India.     Bismuth  in  Tenasserim             . .          . .          . .          . .  61r 

First  forecast  of  indigo  crop  of for  1922-3     . .          . .  483r 

First  forecast  of  the  sesamum  crop  in . .          . .  422R 

Forecast  of  sesamum  crop  in . .          . .          . .  220R 

Forecast  of  winter  oil  seed  crops  in  British 176R,  313R 

Forecasts  of  crops  in  ..          ..         60r,  131r,  508r 

Glue  manufacture  in  Madras      . .          . .          . .          . .  332R 

Import  trade  of  British . .         . .          . .          . .  164R 

Indigo  research  in . .          . .          . .          . .          . .  79k 

Indigo  situation  in .     Armstrong  . .          . .          . .  155k 

Industrial  notes 101R,  351R 

Industrial  notes  from  the  Bombay  Presidency           ..  61r 

Industrial  notes  from  the  United  Provinces  . .          . .  60r 

Metallurgical  industry  in . .          . .          . .          . .  9R 

Nux-vomica  industry  in  Madras           . .          . .          . .  569R 

OH  and  tallow  in  the  United  Provinces             . .          . .  351r 

Opium  trade  in . .          . .          . .          . .          . .  82r 

Otto  of  rose  from .     Gadre  and  Mukerji  . .          . .  192r 

Paper-making  industry  in . .          . .          . .          . .  79r 

Proposed  sugar  factory  in  South  Bihar            . .          . .  197R 
Report  on  conditions  and  prospects  of  British  trade  in 

14R 

Report  on  myrobalans  trade  in . .          . .          . .  539R 

Research  in  vegetable  oils  and  fats      . .          . .          . .  19SR 

Rubber  plantation  industry  in  — —    . .          . .          . .  399R 

Suggested  manufacture  of  santonin  in . .          . .  9R 

Sulphuric  acid  factory  in  Bombay       . .          . .          . .  351R 

Tata  oil  nulls  in  508R 

Vegetable  tannins  from  .     Atkin  and  Hassan  . .  24a 

Indian  foodstuffs  ;    Vitamin  content  of .     Ghose       . .  343a 

Indian  Institute  of  Science,  Bangalore       . .          . .          . .  157R 

Indican  ;   Constitution  of .     Macbeth  and  Pryde       ..  743A 


168 


JOURNAL   OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Xylenol   blue 


for  1922-3  . . 

(P)  Bouvier,  and 
indigenous    . 


concen- 
— ■     (P) 


Indicator   for   'acidity    of    media ;    Phenol-red 
Masai  ilk 
for  chemical  and   biochemical   work 

as  .     Cohen 

Use  of  a  universal .     Carr  . . 

Indicators  ;    Radioactive  — — .     Paneth     . 

Salt  error  of  coloured  .     Kolthoff 

Use  of  mixed .     Cohen 

Indigo  crop  in  India  ;   First  forecast  of  — — 

crop  in  India  ;    Forecast  of  

dyestuffs  ;    Manufacture  of  . 

Soc.  Chim.  Usines  du  Rhone 
dye-vat ;      Biochemistry    of    the 

Fowler  and  Srinivasiah 
fermentation    vat ;      Manufacture   of   stable 
trated  preparations  suitable  for  the  — 
Meister,  Lucius,  und  Briining 
and  its  homologues  ;    Manufacture  of  halogen  deriva- 
tives of .     (P)  Soc.  Chim.  Usines  du  Rhone 

Manufacture    of    brominated    .     (P)    Strosacker 

and  others 
market  in  China 
Nature   of   changes   occurring   during    extraction    of 

from  the  Java  plant  (Indigo/era  arrecta). 

Davis 
Reduction  with  cadmium  in  volumetric  determination 

of .     Treadwell  and  others     .. 

research  in  India 

situation  in  India.     Armstrong 

Synthesis   of  from   fumaric   acid   and    aniline. 

Bailey  and  Potter 

Indigo  white  ;  Acylated  and  alkylated  derivatives  of . 

Grandmougin 
Indigoid  dyestuffs: 

6.6'-Di-a-hydroxyisopropylindigo;  Preparation  of— 

from  p-cymene.     Phillips     . . 
2.3.2'.3'-Naphthindigo.     Fierz  and  Tobler 

peri -Naphth indigo  ;  Attempts  to  prepare .     Fierz 

and  Sallmann 
of  the  phenanthrene  and  indene  scries.     Friedlander 

and  others 
Thioindigo  ;   Reduction  with  cadmium  in  volumetric 

determination  of .     Treadwell  and  others  . . 

Indigotins  ;    Halogenated  .     Grandmougin     .. 

Indo-China  ;    Manufacture  of  soda  in  French 

Indophenols  ;    Preparation  of  .     Schoutissen 

Indurated  materials  ;    Manufacture  of  from  woven 

fabrics.     (P)  General  Electric  Co. 
Industry  ;    Legislative  and  departmental  interference  with 

and  the  common  weal.     Armstrong 

Inflammable  liquids  ;  Apparatus  for  storing  and  delivering 

.     (P)  Mauclere 

liquids;    Storage  of  highly  .     (P)  Muchka 

and  other  liquids  ;   Safety  storage  and  distribution  of 

.     (P)  Mauclere 

Infusorial  earth.     See  under  Earth. 

Inks  ;    Chemistry  of .     Mitchell 

Invisible .     (P)  Morse,  and  Invisible  Process  Co. 

and  like  compositions : 

(P)  De  Waele 

(P)  Plauson 

Manufacture  of  .     (P)  Plauson's  Forschungsinst. 

Manufacture  of  stamping .     (P)  Schiffmann      66A 

Inorganic  substances  :     Treatment   of   .     (P)   Alsop, 

and  Packers  Meat  Smoking  Corp. 

i-lnositol ;  Fermentation  of  .     Hewitt  and  Steabben 

Insecticidal  and  antiseptic  soap  or  compound.     (P)  Mac 
pherson  and  Heys 
compositions ;      Disinfecting,    fungicidal    and 
(P)  Bayer  und  Co.    . . 

mixture  ;    Studies  on  lime-sulphur  .     Harukawa 

powder  ;    Pyrethrum .     Costa 

Insecticides  ;    Aryl  ethers  of  phenols  and  cresols  as 

(P)  Bayer  und  Co 

Determination  of  arsenic  in .     Graham  . . 

especially  for  protecting  wool,  fur,  etc.,  against  moth 

(P)  Chem.  Fabr.  Griesheim-Elektron 
and  fungicides.     (P)  Bayer  und  Co. 

Manufacture  of : 

(P)  Bayer  und  Co 

(P)  Dow,  and  Dow  Chemical  Co.    .. 

(P)  Moore  

Manufacture  of  arsenate .     (P)  Swenarton 

Production  of  poisonous  gases  for  use  as  

Van  Meter 
inspissating.     See  Evaporating. 

Instinct  ;    Role  of in  nutrition.     Berczeller  . . 

Institute  of  Chemistry  ..        7SR,    98R,    127r, 

Present  position  and  future  prospects  of  the  — 
of  the  profession.     Pilcher 
Institute  of  Metals      . .  . .  . .  . .         S6r,  125r, 

Corrosion    Research    Committee;     Sixth    report    to' 

.     Bengough  and  Stuart 

Institute  of  Paint  and  Varnish  Technologists  ;    Proposed 

400R, 

Institute  of  Physics 
Institution  of  Automobile  Engineers 

Institution  of  Chemical  Engineers    59r,  99r,  174r,  194r, 

370R, 


516A, 
565A, 


(P) 


476R, 
-  and 


PAGE 

272a 

351a 
52oa 
881A 
158A 
918A 
483R 
GOR 

366A* 

410A 

979A 

458a* 

892a 
459R 


919A 

79R 

155R 

246A 

287a 

743a 
625a 

625a 

582a 

91 9  A 

50A 

246R 

50a 

808A* 

559R 

44A* 
240a* 


93r 
677a 

771a 
989a* 
S26A 
640A* 

192  a 
227a 

914a 

389a 
834a 
834a 

782a 
31a 

747a 
193a 

835A 

644a 
481A 
565a 


76a 

479a 
533R 

476R 
417H 

820a 

44SR 

242R 

96R 

418R 


PAGE 

Institution  of  Civil  Engineers         ..         ..         .,  ..     155R 

Institution  of  Electrical  Engineers  ..  ..  ..  ..     218R 

Institution  of  Gas  Engineers  . .  . .  . .  . .  . .     263R 

Gas    Investigation    Committee  ;     Seventh    report    of 

Research  Sub-committee  of . .  . .  . .     532a 

Refractory  Materials  Research  Committee  ;    Reports 

of  ..  ..  ..  ..  ..       547A,    547a 

Report  of  joint  committee  of  Society  of  British  Gas 

Industries  and on  life  of  gas  meters  . .  . .     533a 

Institution  of  Mechanical   Engineers  ;    Joint  meeting  of 

and  the  Society  of  Chemical  Industry         . .  5r 

Institution  of  Petroleum  .Technologists     30R,  78r,  127r, 

217R,  44SR 
Institution  of  Rubber  Industry       ..  ..         77R,  3G9R,  506R 

Instruments  ;  Scientific ,  their  construction  and  appli- 
cation.    Allen  ..  ..  ..  ..  ..      370R 

Insulating  cement  or  mortar.     (P)  Elsenbast  and  Jordan     635a 
coatings  on  non-ferrous  metals  ;    Production  of  elec- 
trically   .     (P)  Krupp  A.-G.  . .  . .      59Ga 

compounds  ;    Arc  action  on  some  liquid  .     Rod- 
man   . .          . .          . .          . .          . .          . .  . .      865a 

electrical  conductors  ;    Method  of .     (P)  General 

Electric  Co.  . .  . .  . .  . .  . .      506a 

material  against  los3  or  gain  of  heat.     (P)  Arquint    . .     886a 
material ;    Ceramic  — —  : 

(P)  Champion  and  others        ..         ..         ..     103a* 

(P)  Jeffery,  and  Jeffery-Dewitt  Co.  . .     329a 

material  for  luting  electrical  conductors  and  cables. 

(P)  Felten  und  Guilleaume  Carlswerk  A.-G.       . .     944a 

material  ;    Manufacture  of  .     (P)  Van  der  Nolle     181a 

material  ;   Manufacture  of  brine-proof  and  waterproof 

.     (P)  Elliott 259a 

material  ;     Manufacture  of  building  and  .     (P) 

Eklund  and  Lofveberg        . .  . .  . .  . .     899a* 

material  ;  Manufacture  of  moulded .     (P)  Kemp- 
ton,   and   Westinghouse    Electric    and    Mfg.  Co.     987a 
material  ;    Treatment  of  peat  for  manufacture  of  an 

.     <P)  Graeffe 866a* 

materials  ;    Effect  of  heat  on  electric  strength  of  some 

.     Flight  222a 

materials  ;  Manufacture  of  resistant .     (P)  Lahey     674a 

materials  ;   Tests  on .     Griffiths    . .  . .  . .     925a 

metal  particles.     (P)  Elmen,  and  Western  Electric  Co.     507a 

oils  ;    Determination  of  moisture  in  .     Rodman     180a 

oils;    Dielectric  (breakdown)  value  of  .     Friese     147a 

varnishes  ;    Changes  in  electrical  conductivity  of 

during  drying.     Weber       . .  . .  . .  . .     867a 

Insulation;    Heat and  heater.      (P)  Hadaway,  jun.      845a 

Insuline,  the  hormone  of  the  pancreas  . .  . .  . .      537R 

treatment  for  diabetes   ..  ..  ..  ..  ..     571R 

Interferometer;    Use  of  the  Zeiss  (Rayleigh-Lowe)  water 

■ for    analysis    of    non-aqueous    solutions. 

Cohen  and  Bruins    ..  ..  ..  ..  ..        37a 

Interferometric  quantitative  analysis.     Becka       . .  . .     790a 

Intermediates.     See  under  Dyestuff. 

Intermetallic    compounds ;     Question    of    the    existence    of 

in  the  gaseous  state.     Eucken  and  Neumann     819a 

International  Conference  of  Pure  and  Applied  Chemistry  ; 

Third 129R,  32SR 

International  scientific  congress  in  Utrecht      . .  . .  . .     400R. 

I  mil  in  : 

Irvine  and   others  . .  . .  . .       364R,  603a 

Karrer   and   others         ..  ..  ..  ..     18Sa 

Pringsheim  and  Aronowsky       ..  ..  ..     513a 

and  glycogen.     Pringsheim  and  Lassmann         ..  ..     513a 

Identification  of by  a  mycological  method.    Castel- 

lani    and    Taylor         . .  . .  . .  . .  . .     992a 

Preparation  of with  special  reference  to  artichoke 

tubers  as  source.     WUlaman  339a 

Purifying    juices    containing    .     (P)    Daniel,    and 

Chemical  Foundation,  Inc.     . .  . .  . .  . ,       71a* 

Inventors  in  Government  employ  ;   Reward  of .     Terrell     259r 

Invertase : 

Willfltatter  and  Racke 3S6a 

Willstiittcr  and  others     . .  . .  . .  . .     952a 

Action  of  foreign  enzymes  on  yeast  .     Von  Eulcr 

and     Myrback  . .  , .  . .  . .  . .     724a 

Action  of  quinine  and  narcotics  on  .     Bona  and 

others     . .  . .  . .  . .  . .  . .  . .     782a 

action  ;     Uniformity  in   .     Nelson   and   Hitchcock     227a 

Activity  of  absorbed .     Nelson  and  Hitchcock       . .       72a 

activity  of  yeast;    Effect  of  certain  stimulating  sub- 
stances on .     Miller  . .  . .  . .  . .       72a 

Effect  of  heating  antisenrlmtic  vitamin  in  presence  of 

.     Smith  and  Medes         ..  .,  ..  ..       74a 

Extraction  of  adsorbed  from  the  adsorption  pro- 
dun-.     Wfllatatter  and  Kuhn  159a 

Inactivation  of by  iodine.     Von  Euler  and  Lander- 

grcn         911A 

Inactivation  of by  small  quantities  of  silver  salts. 

Von  Euler  and  Myrback       . .         . .         . .         . .     778a 

Law   of   action   of  :     velocity  of   hydrolysis  and 

reaction  of  the  medium.     Colin  and  Chaudun         . .     152a 
of  Mxtcor  racenwsus.     Kostytschew  and  Eliasberg        ..     265a 

preparations;    Analytical   investigation  of  .     Von 

Euler   and    Josephson  . .  . .  . .  . .     778a 

preparations  ;     Phosphorus    content    of    purified   . 

Von  Euler  and  Svanberg        . .  . .  . .  . .     952a 


SUBJECT  INDEX. 


169 


Invertase — continued, 

Regeneration    of    inactivated    by   dialysis.    Von 

Euler  and  Svanberg 

SUver  compound  of  .     Yon  Euler  and  Joseplison 

Specific  nature  of  .    Willstatter  and  Kuhn 

and  yeast  gum.     Salkowski 

Iodates ;   Detection  of in  potassium  iodide.     Lachartre 

Iodides ;    Action  of  nitrous  acid  on  in  presence  of 

oxygen.     Lombard 

Analysis   of   alkali  .     Winkler         

Determination  of alone  or  in  presence  of  chlorides 

and    bromides    by    electrometric    titration    with 

silver  nitrate.     Kolthoff 
Determination    of    small    quantities    of    bromides    and 

chlorides   in   .     Kolthoff 

Volumetric    estimation    of    .     Lang 

Iodimetry ;     Potassium   bichromate   as   standard    in    

Vosburgh 
Iodine ;     Action   of  upon   celluloses,   silk,   and   wool. 

Hucbner  and  Sinha 
Comparative    values    of   different    specimens    of    

for    use    in    chemical    measurements.     Foulk    and 

Morris 
Compounds  of  with  constituents  of  starch.     Von 

Euler  and  Myrback 

electrode ;      Application     of    in     potentiometric 

titrations.     Kolthoff 

Kinetic  study  of  alkaline  solutions  of .     Lit-vin 

-malt  preparations ;    Manufacture  of  .     (P)   Gene 

und    Co. 

ointment ;    Examination  of  .     Evers  and  Elsdon 

pastilles  containing  a  high  percentage  of  iodine ;    Pre- 
paration of .     (P)  Reichert 

Reaction  between  sulphurous  acid  and .     Macaulay 

Recovery  of .     (P)  Von  Faber 

solutions  ;    Use  of  oxalic  acid   in  standardising  . 

Rosenthaler 
Tablet  for  producing .     (P)  Davis,  and  Brewer  and 

Co 

value    of    aliphatic    and    aromatic    unsaturated    com- 
pounds ;      Determination     of     .     Holde     and 

others 
Iodine    compounds ;     Manufacture    of    organic    .     (P) 

Benko 
Iodoform    ointment ;     Examination    of    .     Evers    and 

Elsdon  

Iodo metric    method    based    on    formation    and    estimation 

of  cyanogen  iodide.     Lang     . . 
p-Iodothymol ;     Mercurated   derivatives   of   .     Mameli 

Ion  concentration   measurements  ;    Application  of  to 

control  of  industrial  processes.     Keeler 

Ionamines,  a  new  class  of  dyestuffs 

a  new  class  of  dyestuffs  for  acetate  silk.     Green  and 
Saunders 

Ionisation  ;  Intramolecular .     Lowry 

Ionium  content  of  radium  residues.     Rona 

Ipecacuanha ;    Determination  of  alkaloids  of  .     Bliss, 

jun. 

Irish   moss  ;     Colloid -chemical   investigation   of  extract  of 

.     Gutbier  and  Huber 

Iron  ;    Acid-resisting  .    (P)  Schcnck,  and  Duriron  Co. 

and  its  alloys  ;    Carburising .     (P)  Bertschy 

and  its  alloys  ;    Cementation  of  : 

(P)  Cammell,  Laird,  and  Co.,  and  others 
(P)  Fisher  and  Chambers 

and  its  alloys  ;    Electro-deposition  of  metals  upon . 

(P)  Fletcher,    and    Fletcher    Electro    Salvage    Co. 

and  its  alloys  ;    Heat  treatment  of  .     (P)  Mordey 

alloys  ;    Manufacture  of  : 

(P)  Clamecy,  and  Sturtevant  Co. 
(P)  Skelley  and  others 
(P)  Smith,  and  Cleveland  Brass  Mfg.  Co. 
-aluminium  alloys.     (P)  General  Electric  Co. 

Analysis  of  tin  alloys  containing  .     Meyer 

Apparatus  for  determination  of  carbon   in  .     (P) 

Malmberg  and  Holstrom 

bars ;     Pre-Roman   .     Myers 

Basset  process  for  direct  production  of  .     Wiist 

Baumann  sulphur  test,  and  behaviour  of  phosphorus 

in  : 

Heyn  

Oberhoffer  and  Knipping 

-bearing  materials  ;   Sintering .     Lloyd 

Blue  brittleness  of .     Korber 

Blue-brittleness    and    ageing    of    . 

Dreyer 
boiler  plates  ;   Strength  and  elasticity  of  ■ 
temperatures.     French 

-boron-carbon  ;    The  ternary  system  .     Vogel  and 

Tammann 

-carbon-oxygen  ;    Equilibria  in  the  system : 

Eastman 

Reinders  and  Van  Groningen 

-carbon     system ;      Constitutional     diagram    of    . 

Honda 

cast- ;    Annealing  malleable  .     (P)  Holcroft 

cast- ;    Briquetting  turnings  of  .     (P)   Houmbller 

cast- ;   Carburisation  in  manufacture  of  synthetic . 

"Williams  and  Sims 
Cast- and  its  chemical  composition.     Smalley 


Korber    and 
—  at  elevated 


153A 

911A 
189A 
153A 
706A 

2  50  A 
856a 


12A 

920a 

1000a 
93T 

311a 

429a 

352a 

326a 

567A 
519a 

439a 
394a 
755a 

649a 

859A 

557a 
33a 

519a 

920A 
876A 

790A 
200R 

532R 
533R 
250a 

684a 

157a 
62a 

298A 

821a 
62a 

555a* 
379a* 

821a 
821a 
763a 
505a 
256a 

763a 

133T 

59A 


60A 

60a 

899a 

16A 

466A 

635a 

939A 

503A 
59a 

418a 
673a 
221a 

549a 

758  a 


Iron — continued. 

cast- ;    Composition  for  treatment  of  .     (P)  Coles, 

and    Niles-Bement-Pond   Co. 

cast- ;    Desulphurisation   of   molten   .     Scharlibbe 

cast- ;   Determination  of  carbon  in  by  the  Corleis 

apparatus.     Batta  and  Thyssen 
cast- ;        Determination    of    critical     temperature    for 

annealing  grey  .     Schuz 

cast- ;  Determination  of  phosphorus  in  .     Graziani 

and  Losana 418a, 

cast- ;    Determination    of    titanium    in    .     Losana 

and  Carozzi 
cast- ;   Effect  of  sources  of  pig-iron  on  enamelling  of 

.     Manson 

cast- ;   Electrical   welding  of  .     (P)    La    Soudure 

Autogene  Francaise 
cast- ;  Growth  of  grey  during  repeated  heatings 

and  coolings.     Kikuta 
cast- ;  Improvement  of  by  addition  of  new  ele- 
ments.    Guertler 
cast- ;  Influence  of  cross-sectional  urea  of  test-piece  on 

results  obtained  for  tensile  and  bending  strength 

of .     Oberhoffer  and  Poensgen 

cast- ;  Influence  of  temperature  on  mechanical  properties 

of .     Graziani 

cast- ;  Manufacture  of  synthetic .    Dornhecker    . . 

cast- ;    Manufacture  of  synthetic  in  the  electric 

furnace.     Morrison 
cast- ;    Mechanical  and  elastic  properties  of  and 

use  of  the  ball  hardness  test.     Portevin 
cast- ;    Melting  in   the   Booth   rotating   electric 

furnace.     Williams  and  Terry 

cast-;  Modification  of by  heat  treatment.    Durand 

cast- ;    Occurrence  of  ferr it e -graphite  eutectic  in  certain 

kinds  of .    Schuz 

cast- ;     Production   of    malleable   .     Phillips    and 

Davenport 
cast- ;     Purifying   and   eliminating  objectionable 

gases  and  oxides.     (P)  Billings,  and  Billings  Iron 

and  Steel  Co. 

cast- ;    Soft  annealing  of  grey .     Piwowarsky 

cast- ;   Thermal  treatment  of .     Durand 

castings  ;  Controlling  the  condition  of ,  e.g.,  render- 
ing them  malleable.     (P)  Sowers 

castings  ;   "  Hard  " .     Prache 

-cerium  alloy  ;    Electrodeposition  of  an .     Schiotz 

-cerium  sparking  alloys  ;  Production  of  a  surface  capable 

of  being  soldered  on .     (P)  Deimel 

Chemically-resistant 

chips  ;    Briquetting  for  use  in   cupola  furnaces. 

(P)  Houmoller 
-chromium  allovs  of  low  carbon  content ;   Production  of 

.     (P)  Gillott         

-chromium-carbon  ;   The  system .     Daeves 

Coating with  lead,  with  or  without  other  metals. 

<P)  Leadizing  Co. 
Composition  for  use  in  case-hardening,  hardening,  and 

tempering  of .    (P)  Dickins 

Corrosion  of .     Hadfleld 

Corrosion  of by  soil.     Shipley  . .  . .      261R, 

Covering    with    a    rust-resisting    coating.    (P) 

Sehmidding 

Crystal  structure  of .     Westgren  and  Phragmen  . . 

deposits  ;  Production  of  electrolytic .     (PJ  Schlatter 

Desulphurising .     (P)  Koppers  ..  ..      470a, 

Determination  of  aluminium  and in  natural  phos- 
phates.    Nydegger  and  Schaus 

Determination  of  carbon  in .     Travers 

Determination  of  copper  and  in  presence  of  one 

another.     Thornton,  jun. 

Determination  of  gases  in  : 

Oberhoffer  and  Piwowarsky 

Vita  

Determination  of in  nickel  ores.     Lathe 

Determination  of  nitrogen  in  and  absorption  of 

nitrogen    by    iron    In    smelting    processes.      Wiist 

and  Duhr 

Determination  of  sulphur  in : 

Marinot 
Ter  Meulen 
Detinning .     (P)  Thermal  Industrial  and  Chemical 

(T.I.C.)  Research  Co.,  and  Morgan 
Diffusion  of  carbon  in   metals,  and  mixed  crystals  of 

.     Tammann  and  Schonert 

Direct  manufacture  of .     (P)  Basset 

dynamo-  ;    Manufacture  of .     (P)  Deutsch-Luxem- 

burgische     Bergwerks-     und     Hutten-A.-G.,     and 

Schneider 
Effect  of  heat  treatment  on  hardness  and  microstructure 

of  electrolytically  deposited  — — .     Pilling 
Effect  ofoxjdising  gases  at  low  pressures  on  heated . 

Carpenter  and  Elam 

Effect  of  temperature  on   the  properties  of .      Lea 

Efficiency  of  open  and  closed  filters  for  removal  of 

from  water.     Kissknlt 

electrolytic  ;  Bath  for  production  of .     (P)  Schlotter 

Electrolytic  deposition  of .     (P)  General  Electric  Co. 

Electrolytic  deposition  of for  building  up  worn  or 

undersized  parts.     Kellogg 
electrolytic ;    Manufacture   of   .     (P)    Eustis   and 

others  . .  . .  . .  . .  . .      422a, 

electrolytic  ;    Preparation  and  mechanical  properties  of 

vacuum-fused    alloys    of  with    carbon    and 

manganese..      Neville  and  Cain 


19a 
296a 

376a 

861A 
503A 
940A 
983A 

820a 

712  a 

10a 

712a 

375a 

103a 

254a 

103A 

466  a 
899a 

758A 

329a 


554a 
861a 
296a 

554a 

217A 
ISA 

147A 

569R 


942a 
16a 

636a 

863a 
761a 
311T 

764a 
758a 
900A 
763a 

706a 
376a 

526a 

466a 
330a 
273T 


407A 


178  a 
218a 


62a 


549a 
763a 


422a 

861A 

419A 
595a 

343A 

764a 
505a 

330a 

985A 


899a 


170 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY 


(P)  Moxham  . . 
in   fuming 


(P) 


I  ron — cont  imted. 

Extraction  of  pure from  its  ores. 

Failure  of  cast-iron   and  high-silicon 
sulphuric  acid.     Bauigan 

Gases  in .    Maurer 

group  metals  ;    Casting  alloys  of  silicon  with 

"Walter  

Heat-resisting .     (P)  Schenck,  and  Duriron  Co.     . . 

-hydrogen-oxygen  ;      Equilibria    in    the    system  . 

Eastman 
Idiomorphic  and  hypidiomorphic  structures  in  electro- 
deposited  copper,  zinc,  and .    Hughes 

Improving . .     (P)  Pacz         

industry  in  Poland  in  1922 

industry  of  Sweden  in  1921  

Influence    of    different    alloying    elements,    including 

carbon,   on   physical   properties  of  .     Maurer 

and  Schmidt 
Influence  of  molecular  concentration  on  immersion  tests 

on  corrosion  of .    Strickland 

Iodometric  determination  of .     Kolthoff 

Iodometric  determination  of  copper  and  .     Wober 

or  iron  alloys  ;    Manufacture  of  unstainable  .     (P) 

Aitchison 

Manganese  economy  in  manufacture  of by  the  basic 

converter  and  open-hearth  processes.     Eichel 

Manufacture  of : 

(P)  Basset  

(P)  Bradley  

(P)  Bouse  

Manufacture  of  a  colloidal  solution  of  having  a 

neutral  or  feebly  alkaline  reaction.     (P)  Timpe     . . 

Manufacture  of  compositions  for  case-hardening  . 

(P)  Goskar  and  Hitch  

Manufacture  of  in  Martin  furnaces  from  material 

rich  in  phosphorus  and  sulphur.     (P)  Woltron 

Manufacture    of   refined    directly    from   oxidised 

titanic  iron.     (P)  Loke 

Manufacture  of from  scrap  in  acid-hearth  furnaces. 

(P)Brandl         

-molybdenum     alloys ;      Manufacture     of     .     (P) 

Ampere-Ges.,  and  others 
-nickel  alloy  for  use  in  making  melting  pots  and  other 

articles  to  be  subjected  to  heat.,     (P)  Hall 
-nickel-chromium  alloys.     (P)   Girin,  and   Soc.   Anon, 
de  Commentry,  Fourchambault,  et  Decazeville 

Nitrogenisation  of by  sodium  nitrate.     Benson    . . 

Operation  of  cupola  furnaces  for  smelting  .     (P) 

Koppers 

ore  ;   Discovery  of in  Germany 

ores  containing  phosphates  ;    Treatment  of  .     (P) 

Eberhard 

and   its   ores ;    Desulphurising  .     (P)   Estabrooke 

and  others 
ores  ;    Extraction  of  nickel  and  aluminium  from  Cuban 

.     Hayward 

ores  ;    Reducing  .     (P)  Trent,  and  Trent  Process 

Corp.  

and   its   ores ;     Removal   of  sulphur   from   .     (P) 

Baumann 

ores  ;   Sintering  of .     Endell 

ores  ;    Sintering after  moistening  with  water.     (P) 

Metallbank  u.  Metallurgische  Ges. 

ores  ;    Smelting  low-grade  calcareous .     (P)  Harzer 

Werke  zu  Rubeland  und  Zorge  

ores  ;   Treatment  of  finely  divided .     (P)  Naito     . . 

ores  ;    Treatment  of  for  recovery  of  chromium. 

(P)  Eustis  and  Perin 

oxide  ore  ;    Briquetting .     (P)  Mathesius  .. 

as   photochemical    catalyst.     Decomposition   of   potas- 
sium ferrocyanide  in  daylight.     Baudisch  and  Bass 

Pickling .     (P)  Hinckley         

Pickling in  acid  baths.     <P)  Vogel 

pig- ;    Comparison  of  shaft  and  open-top  electric  fur- 
naces   in    manufacture    of    from    iron    ore. 

Gosrow 

pig- ;  Manufacture  of in  New  Zealand 

pig- ;    Smelting  ferruginous  and  carbonaceous  materials 

for  production  of .     (P)  Trails 

pig- ;    Steel  additions  to  and   "  reversed  chilled 

iron."     Piwowarsky 

pipe  fittings  ;   Standard  dimensions  of 

Precipitation   of    aluminium    by   thiosulphate   and    its 

separation  from .     Hahn  and  others 

Preparation  of for  lead  and  tin  coating.     (P)  Maddy 

Preventing  rusting  or  oxidation  of .     (P)  Brunskill 

Process   of   making  capable   of   being  hardened. 

(P)  Walter         

production  in  1921 

Production  of  cast-iron  or  raw  from  clippings. 

(P)  Linnmann 

Production   of  glossy  coatings  of  zinc  on   .    (P) 

Classen 

Production,  imports,  and  exports  of in  1921 

Production  of  laminae  of  electrolytic  .     (P)  Dant- 

sizen,  and  General  Electric  Co. 
Production    of    rust-    and    heat-resisting    coatings    of 

aluminium-bronze  on .     (P)  Bacr  und  Co.     .. 

Production  of  rust-resisting  coatings  of  aluminium  on 

.     (P)  Baer  und  Co 

Protective  coating  for .     (P)  Edison 

Puddling and  furnace  therefor.     (P)  Hibbard 

Rapid   iodometric   estimation   of   copper   and   in 

mixtures  of  their  salts.     Wark  


PAGE 
715A 

411A 
16a 

19A 
62a 

503a 

421a 

19a 

454R 

133R 


593A 

37A 

545A 

985a 

178a 

597a* 

673a 

822a* 

632A 

672A 

19a 

422a* 

470a 

597a* 

179A 

638a* 
760A 

715A 
421R 

187A 

764a 

219a 

715A 

764A 

549a 


298a 
985a 

146a 
147a* 

917  a 

985a 
505a 


549a 
251R 


59A 
333R 

962a 

470  a 
715a 

715a 
457r 

469a 

900a 
352R 

506a* 

258a 

19a 
332a 

900a 

394a 


Iron — continued. 

Rate  of  solution  of  in  dilute  sulphuric  acid  both 

when  stationary  and  under  rotation.     Friend  and 
Dennett 

Recovery  of  used  in  purification  of  producer-gas 

from  sulphur  by  means  of  highly  heated  iron  or  iron 
oxide.     (P)  Koppers 

Recrystallisation    of    technical    .     Oberhoffer    and 

Jungbluth 

Removing  carbon  from .     (P)  Schiitz 

"  Reversed  chilled  " .     Piwowarsky 

"  Reversed    chilled "    and    related    phenomena. 

Heike 

Rusting  of .     Armstrong 

Rust-proofing .     (P)  Andrews 

Separation  of  aluminium  and by  means  of  o-phene- 

tidine.     Chalupny  and  Breisch 

Separation  of  manganese  and .     Cams 

Sulphur  in  metallurgy  of .     Blanchi 

-titanium-vanadium  minerals  ;  Treatment  of .    (P) 

Kjellberg 

-tungsten-carbon  ;  The  system .     Daeves 

wire  ;   Sohition  for  use  in  drawing .     (P)  Vogel 

wire  ;   Solution  for  use  in  drawing ,  also  for  pickling. 

(P)  Vogel  

work  ;   Preserving against  corrosion.     (P)  Howse  . . 

works  ;    Proposed at  Bloemfontein 

World's  production  of  electric 

wrought ;   Direct  smelting  of from  ore  by  Basset's 

process.     M6scicka 

wrought-  ;      Manufacture    of    .     (P)    Aston,    and 

Byers  Co 19A, 

wrought-  ;   Pickling in  acid  liquors.     (P)  Vogel  . . 

and  zirconium;     Alloying  .     (P)  McKee  .. 

0-Iron-martensite-ferrous  oxide-gas  ;    The  equilibrium . 

Reinders  and  Van  Groningen 
and  theories  of  hardening.     Maurer 

Iron  alum  ;   Colour  of .     Bonnell  and  Perman 

Iron-carbonyl  ;    Formation  of  from  coal  gas  used  for 

lighting  railway  carriages.     Bunte  and  Terres 

Iron  compound  of  yeast ;   Preparation  of .     (P)  Stephen 

compounds    of    phosphoric    esters   of   higher    aliphatic 
polyhydroxy  compounds  ;    Preparation  of  complex 

.     (P)  Bayer  und  Co. 

Iron  oxide  ;   Manufacture  of  red .     (P)  Tyrer     . .      183a, 

Production    of    finest    hydrated    magnetic    .    (P) 

Spude 

Separation  of  from  calcium  oxide  by  the  nitrate 

method.     Charriou 
sludge  ;   Recovering  iron  oxide  and  other  products  from 

spent .     (P)  Bacon 

Iron  oxides  ;   Free  energies  of .     Eastman 

oxides  for  gas  purification  ;  Valuation  of .  Gemmell 

oxides ;     Treatment    of    ores    and    sludges    containing 

manganese  and .   (P)  Jold 

Iron  and  Steel  Institute  . .  . .  . .  . .      215R, 

Isatin-a-arylides  ;    Preparation  of  compounds  of  with 

sulphur  dioxide.     (P)  Stephan 
Isatin  Yellow.     See  under  Hydrazone  dyestuffs. 

Isatins  ;   Halogenated .     Grandmougin 

Isoamyl  alcohol ;    Electrolytic  oxidation  of .     Koizumi 

Isobrazilein  ;     Synthesis  of  and  of  related   anhydro- 

pyranol  salts.     Crabtree  and  Robinson 
Isochondodendrine.     Faltis  and  Neumann 
Isocyanines.     See  under  Quinoline  dyestuffs. 

Isoeugenol  ;     Electrolytic    oxidation    of    .     Lowy    and 

Moore 

Isoferulic  acid  ;   Syntheses  of .     Mauthner 

Isoglucosamine ;     Crystalline    glucose-ammonia    and    . 

Ling  and  Nanji 

Isohfematein  ;    Synthesis  of  .     Crabtree  and  Robinson 

Isoprene  ;   Addition  of  hydrogen  halide  to ,     Staudinger 

and  others 
Isoprene  dibromide.     Staudinger  and  others 
Isopropyl    acetate  ;    Action  of  alumina,  titania,  and  thoria 

on .     Adkins  and  Krause 

Isopropyl  alcohol  ;    Oxidation  of  with  potassium  per- 
manganate.    Evans  and  Sefton 

CC-Isopropvlallylbarbituric    acid  :      Manufacture    of   . 

<P)  Hoffmann- La  Roche  &  Co.  

Isoquinoline  and  the  Isoquiniline  Reds.     Harris  and  Pope  . . 
Isoquinoline  Reds.     See  under  Quinoline  dyestuffs. 

Isosafrol  ;    Preparation  of  heliotropin  from  by  means 

of  ozone.     Nagai 

Isostrychnine  ;    Preparation  of .     Leuchs  and  Nitschke 

Isotopes.     Aston 

of  lead  ;    Chemical  method  of  separating  .     Dillon 

and  others 

Italy  :   Amalgamation  of  tartaric  acid  manufacturers  in 

Artificial  silk  in 31  4r 

Beet  sugar  industry  in 

Commission  for  perfumery  industry  in 

Consumption  of  fertilisers  in  

Electrochemical  developments  in 

Market  for  paint  and  varnish  in  

Natural  gas  in 

Olive  oil  industry  in 


861a 

469a 

59a 

255a 

501 R 
597a* 

612a 

82a 
816a 

638a* 
17a 

863a 

863a 
554a 
351R 
538R 

816A 

470a 
258a 
107A 

59a 
143a 
96a 

241A 

439a 


34A 
771A 

689a 

351a 

813a 

503A 
739a 

673a 

416R 

805A 

246a 
836a 

582a 
390a 


876  a 
727a 


871A 
582a 


877A 
877A 


308A 
956a 


686A 

581a 


835a 
954a 
473R 

790A 

401 R 
57  lR 

4II1R 

295R 
401R 
49SR 
460R 
10R 
538R 


SUBJECT  INDEX. 


171 


Italy — continued. 

Output  of  minerals  and  metals  in in  1921  . .     374R 

Permanent  commission  for  the  chemical  industry  in 9r 

Report  on  commercial,  industrial,  and  economic  situa- 
tion in .     Henderson       . .          . .          . .  . .     223R 

Sulphur  trade  in . .          . .          . .          . .  , .     576r 

Tartar  industry  in .     Molinari           . .          . .  . .     159R 

Ivory  Coast.     See  under  West  Africa. 


Jam  :   Detection  of  apple  juice  in .     Muttelet               . .  726a 

Formula  for  calculation  of  starch  syrup  in .     Rinck  191A 

Manufacture  of .     (P)  Monti             30a 

Jamaica ;   Agricultural  industries  in . .          . .  133R 

Japan  ;   Acetic  acid  industry  in . .          . .          . .  220r 

Artificial-silk  industry  in . .          . .          . .  453r 

Camphor  trade  in . .          . .          . .          . .          . .  164R 

Consumption  of  fertilisers  in . .          . .          . .  264R 

Exports  of  camphor,  menthol,  and  peppermint  oil  from 

515R 

Glycerin  in . .         . .         . .         . .         . .  40r 

Imports  of  paraffin  wax  and  stearin  into . .          . .  515R 

New  chemical  companies  in . .          . .          . .  86r 

Peppermint  oil  in . .          . .          . .          . .          . .  422R 

Rejection  of  proposed  dye  embargo  in . .  422R 

Report  on  commercial,  industrial,  and  financial  situation 

in .     Crowe           539r 

Tinplate  industry  in . .          . .          . .          . .  264R 

Trade  conditions  in . .          . .          . .          . .  17R 

Japanese  lac  and  lacquer.     See  under  Lac  and  Lacquer. 

Java  ;   Coca  production  in . .          . .          . .          . .  402R 

sugar  crop  in  1922                . .          . .          . .          . .          . .  402r 

Jellies  ;   Manufacture  of .     (P)  Monti 30a* 

Jelly   making ;     Relation   of   pectin    and   acidity   in   . 

Singh                  726A 

Jewel  hearing  ;    Synthetic .     (P)  MeDougal  and  others  711a 

Journal  of  Industrial  and   Engineering  Chemistry  ;    News 

edition  of ..          ..          ..          ..          ..  567R 

Journal  of  Physical  Chemistry  ;   Future  of  . .      399R,  509R 

"  Journal  of  Scientific  Instruments  "                . .          . .          . .  221R 

Journal  of  the  Society  ;   Future  of  the . .          . .  532R 

Jute  half-stuff  and  beaten  pulp  ;    Changes  during  storage  of 

.    Skark               664a 

leaf  ;     Capsularin,   a  glucoside   from  .     Saha  and 

Choudhury        607a 


K 

Kaolin  ;    Action  of  vanadium  on  the  refractoriness,  colour, 

and  tendency  to  form  scum  on  pure  .    Kal- 

launer  and  Hruda 

Decolorising  impure .    (P)  Stubbs 

Decomposition  of  by  organisms.     Vernadsky     . . 

deposits  in  Rumania 

Drying .     (P)  Gaudin  and  Clarke 

industry  in  S.W. England 

Loss  on  burning  and  porosity  of  product.     Bigot 

Manufacture  of .     (P)  Froelieh 

for  paper-making ;    Suggested  standards  for  moisture 

and  grit  in  and  method  of  estimating  grit. 

Strachan 

Refining .     (P)  Plauson  

Treatment  of .     (P)  Rigby  

Kaolinite  ;   X-radiogram  of .     Bragg  and  Mellor 

Kapok  ;    Rendering  incombustible.     (P)  Vails 

Kastle-Meyer  reagent,  a  very  senitive  reagent  for  copper. 

Thomas  and  Carpentier 
Katanol  ;    Comparison  of  tannin,  Tamo!,  and  as  mor- 
dants for  basic  dyestutfs.     Wagner 
Kawa-kawa  resin.     Murayama  and  Mayeda 

Kelpchar  ;  Applicability  of as  a  bleaching  and  purifying 

agent.     Turrentine  and  Turner 

Kenva  Colony  ;   Graphite  in 

Trade  of in  1920-21  

Kerament  slabs  (glazed  concrete) ;   Comparison  of with 

ceramic  tiles.     Tostmann 
Keratin.    Heiduschka  and  Komm 

Kerosene-air  mixtures  ;    Condensation  temperatures  of . 

"Wilson  and  Barnard 

Production    of    from    higher-boiling    petroleum. 

(P)  Chamberlain,  and  Standard  Oil  Co. 

a-Ketohydronaphthalenes ;       Preparation      of     .    (P) 

Schroeter,  and  Tetralin  Ges. 

Ketones  ;    Characterisation  of  by  means  of  Nessler's 

reagent.    Bougault  and  Gros 

Decomposition  of  aliphatic .     Mailhe  . . 

Determination  of  by   means  of  hydroxylamine. 

Bennett  and  Donovan 

Manufacture  of  .    (P)  Badische  Anilin  und  Soda 

Fabrik  

Manufacture  of from  mineral  oil  hydrocarbons  and 

tar  oils.     (P)  Harries 
and  phenols  ;    Preparation  of  condensation  products  of 

a/3-unsaturated  .     (P)  Chem.  Fabr.   Weiler-ter 

Meer 


814A 
590A 
869A 
571R 
177a 
34R 
465A 
756a 


323A 
815a 
756a 
447R 
665a 

37a 

705a 

268A 

264A 
266R 
575R 

592A 
773A 

2a 

48A 

703a 

646a 
915A 

391A 

198A 

35a 

959a 


Ketones — contijiurd. 

of  the  quinoline  series  ;    Manufacture  of  cyclic  . 

(P)  Meister,  Lucius,  und  Briining 

o-Ketotetrahydronaphthalene ;     Preparation    of   .    (P) 

Schroeter 

Kieselguhr ;    Production  of  water-glass  and  oil  containing 
sulphur  from  bituminous .    (P)  Illig 


135A 


Kiln,  tunnel ;   The  Harrop  - 


Cramer 


495A 
710A 

Kilns  : 

(P)  Deutsche  Evaporator  A.-G.  ..  ..  490A 

(P)  Lemmon,  and  Louisville  Cement  Co.         . .  127a 

(P)  Riffle  and  Hartman  374A 

Adaptability  of  gas-fired  compartment for  burning 

clay  products.     Richardson  . .         . .         . .  465A 

Annealing .     (P)  Wallis  576a 

Annular  saggar .     (P)  Meiser  and  Meiser     . .         . .  756a 

Brick : 

(P)  Bover  59a 

(P)  Webster  374a 

for  burning  bricks,  tiles,  terra  cotta  and  the  like  ;  Con- 
struction of  — — .  (P)  Jones  and  Jones  . .  . .  860A 
for  burning  ceramic  and  refractory  products.  (P)  Loy  142a 
for  burning  ceramic  wares.  (P)  De  Steigner  . .  . .  634a 
for  burning  limestone.  (P)  Tinfos  Jernverk  A./S.  . .  178A 
for  burning  refractory  silica  bricks,  etc.,  particularly 

those  with  a  lime  bond.    (P)  Koppers         . .      548a,  898a 

for  ceramic  and  refractory  products.     (P)  Bigot  . .  217A* 

for  clay  ware  ;   Appliance  for  regular  firing  of  top-fired 

continuous  and  chamber .    (P)  Procter  . .  592a 

Continuous  chamber for  burning  ceramic  ware,  lime, 

dolomite,  etc.     (P)  Koppers  . .  . .  . .  711a 

Continuous  down-draught  chamber  .     (P)  Weyers  712a 

Cylindrical  dryers  and .     (P)  McCrae  ..  ..       44a 

Down-draught  for  baking  materials.     (P)  Justice 

and  Willigman  254a 

for  drying  and  burning  ceramic  products  and  the  like. 

(P)  Sturm  254a 

for  firing  pottery  and  other  ware.    (P)  Bailey    . .       16a,  814a 

Furnace  for  brick  and  tile .     (P)  Straight  „  374a 

Gas-fired  continuous .    (P)  Morton  and  Morton    . .       59a 

Gas-fired  pottery : 

(P)  Duckham        670A* 

(P)  Woodall,  Duckham,  and  Jones  (1920),  Ltd., 

and  Duckham  . .         . .         .  -         - .  328A 

Gas-fired  tunnel  for  baking  ceramic  articles,  etc. 

(P)  Dahl  756A 

Heat  insulation  for  rotary .     (P)  Faber  and  Briscoe  816A 

with    heating    chambers   and    cooling   chambers.    (P) 

Gelpke,  and  Deutsche  Evaporator  A.-G 738a* 

for  lime  and  the  like.     (P)  Meade  503a 

Method  of  heating  periodic by  producer  gas.     (P) 

Meiser  and  Meiser        . .         . .         . .         . .         . .  756a 

Multiple for  porcelain.     (P)  Seiffert  Nachf.         . .  254a 

New  forms  of .     Duckham  . .  . .  . .  446R 

Oval  shaft for  lime  burning.     (P)  Muller  . .  417A 

Ring  chamber ■  for  burning  ceramic  material,  lime, 

dolomite,  etc.     (P)  Koppers  814a 

Ring with  smoking  device.     (P)  Grimm     . .         . .  103a 

Rotary : 

(P)  Carstens,  and  American  Metal  Co.  . .  490a 

(P)  Vermaes,  and  Syndicaat  Electro-Staal      . .       89a* 

Rotary  cement : 

(P)  Fasting,  and  Smidth  &  Co.  . .         . .  217a 

(P)  Newberry       503a 

Rotary for  cement  and  the  like.     (P)  Winqvist    . .  466a* 

Shaft for  burning  cement,  etc.    (P)  Krupp  A.-G. 

Grusonwerk       . .  . .  . .  . .  .  •  •  •     329a 

Systems  of .    (P)  Weeks        217a 

Tunnel : 

(P)  Benjamin        465a 

(P)  Booth  177a 

(P)  Duckham  and  Kent  712a* 

(P)  Kyle  756a 

(P)  Ogden  and  Owens  548a 

(P)  Vernon  254a 

(P)  Woodall,  Duckham  and  Jones  (1920),  Ltd., 

and  others  ..  ..  -.  ..     417A 

tunnel- ;     Burning  ceramic    materials  in    .    (P) 

Allgem.  Elektrizitats-Ges 374a 

Tunnel for  firing  pottery,  tiles,  and  the  like.     (P) 

I'.ailev  .-     V56A 

Tunnel for  heating  air.    (P)  Wilputte,  and  Ameri- 
can Dressier  Tunnel  Kilns,  Inc 845a 

Tunnel  for    pottery,  lime  burning,    and  the  like. 

(P)  Koppers ,.-■     2=4A 

Vertical  gas-fired for  burning  limestone  or  the  like. 

(P)  Priest  816a 

See  also  Furnaces  and  Ovens. 

Kipp  apparatus  ;   Micro .     Schoeller        

Kjeldahl  method  ;    Apparatus  for  incineration  by  the 

on  the  micro-scale.     Winkler 
method ;    Application   of   to   mononitrophenols, 

mononitrobenzoic    acids,    and    mononitrocinnamic 

acids.    Margosches  and  Vogel  

method    of    determining    nitrogen :     Accelerator    for 

destruction  of  organic  matter  in .     Sborowsky 

and  Sborowsky 
method  for  determining  nitrogen ;    Use  of  perchloric 

acid  as  an  aid  to  digestion  in  .    Mears  and 

Hussey 


81A 


518a 


841a 


82a 


172 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Kola  extract ;    Preparation  of  a  — 
seeds ;     Alkaloid    content    of 
Weber 


(P)  Stephan 
— .    Rosenthaler  and 


PAGE 

523a 


Koppers  by-product  [coke-oven  plant ;    Operation  of 
Wallin  


Kukkersite  ;    Chemical  composition  of  the  Esthonian7oiI- 

bearing  mineral .     Kogerman  . .     ~    . .     799a 

the  oil-shale  of  Esthonla.     Craig  . .  . .      217B,  799a 


Laboratories  ;    Furnishing  and  equipment  of  chemical 6lR 

Laboratory  car  ;   U.S.  Bureau  of  Mines . .  . .     131R 

Labour  ;   Efficiency  of in  German  factories        . .  . .     373R 

Lac;    Investigation  of  various,  naturally-occurring  species 

of which  are  closely  allied  to  Japanese  lac. 

Majima  . .  . .  . .  . .  , .  . .     182a 

Japanese  ;   Main  constituent  of .     Majima  182a,  182a 

See  also  Shellac. 

Lacquer  ;  Drying  Japanese .     (P)  Shibata  and  Nishizawa     868a 

Lacquers ;    Detection  of  lead,  manganese,  and  cobalt  in  oil 

.     Vollmann  381a 

and  the  like  ;    Manufacture  of  a  base  for  .    (P) 

Chem.  Fabr.  Worms  382a 

Manufacture  of ; 

(P)  Schilsky  510a 

(P)  Traun's  Forschungslaboratorium  . .     381a 

Manufacture  of  flexible from  cellulose  esters.    (P) 

Medicus  . .  . .  . .  . .  . .  . .     510a 

Manufacture  of  flexible  ■ from  nitrocellulose.    (P) 

Bing  and  Hildesheimer  . .  . .  . .  . .     510a 

Lactase  content  of   lactose-fermenting  yeasts.     Willstatter 

and  Oppenheimer         . .  . .  . .  . .  . .     153a 

Lactic  acid  ;   Action  of on  hide  substance.     Moeller  . .     426a 

compounds  ;    Preparation  of  solid .     (P)  Keinfurth     440a 

Destruction  of by  yeast 

Fiirth  and  Lieben  952a 

Lieben        642a 

Determination  of  small  amounts  of .     Clausen       . .     609a 

Manufacture  of  from  rotten  potatoes.     (P)  Byk- 

Guldenwerke  Chem.  Fabr.  . .  . .  . .     952a 

Occurrence  of in  raspberry  leaves.     Franzen  and 

Stern  . .  . .  . .  . .  . .  . .     783A 

Lactic  ferment  culture  for  milk  ;  Production  of .     (P) 

Petersen  and  Coster  . .  . .  . .  . .     154a 

ferment ;    Growth  in  tolerance  of  the  to  poisons. 

Richet  and  others        228a 

fermentation.    See  under  Fermentation. 
Lactose  ;   Action  of  hydrogen  peroxide  on  pure  solutions  of 

.     Schonebaum  . .  . .  . .  . .     776a 

Action  of  ozone  on  solutions  of .     Schonebaum     . .     562a 

Extraction  of from  whey.     (P)  Thomson  . .     834a 

-fermenting  yeasts  ;    Lactase  content  and  fermenting 

power  of .     Willstatter  and  Oppenheimer       . .     153a 

Manufacture  of  pure from  whey  and  whey  products. 

(P)  Bleyer  71a 

Purification  of .     (P)  Trutzer  777a 

Lactose  **  R  "  ;    Position  of under  the  Safeguarding 

of  Industries  Act  119R 

Laevoglucosan .    See  /-Glucosan. 

Lievulinic  aldehyde  from  oxidised  rubber.     Whitby  . .     475a 

Laevulose  ;    Action  of  ammonia  on  .     Ling  and  Nanji 

151T,  172R 

Action  of  hydrogen  peroxide  on  pure  solutions  of . 

Schonebaum  . .  . .  . .  . .  . .     776a 

Action  of  ozone  on  pure  solutions  of .     Schonebaum     152a 

Identification  of in  presence  of  aldoses.     KoJthoff     188a 

Preparation  of .     Harding      . .  . .  . .  . .     776a 

Purification  of  juices  containing .     (P)  Daniel,  and 

Chemical  Foundation,  Inc.     . .  . .  . .  . .       71a* 

Relative  sweetness  of  sucrose,  dextrose,  invert  sugar, 

and .     Deerr         871a 

in  straw  ;    Determination  of .     Collins        . .  . .       56T 

Lakes;   Alizarin-iron .     Bull  and  Adams  ..  ..     246a 

colour- ;   Manufacture  of : 

(P)  Acheson,  and  Acheson  Corp.  . .  . .     906a 

(P)  Krais  and  Wislicenus  948a 

colour- ;     Manufacture   of   green   .     (P)    Badische 

Anilin  und  Soda  Fabrik  600a 

colour- ;    Manufacture  of  a  green  dyestuff  suitable  for 

production    of   .    (P)    Badische    Anilin-    und 

Soda-Fabr 458A 

colour- ;     Manufacture   of insoluble   in  oils.     (P) 

Fucha 183a 

colour-;  Production  of fast  to  light.    (P)  Badische 

Anilin-  und  Soda-Fabr.  249a 

Lambic.     See  under  Beer. 

Lamp  bulbs  ;   tfelting  together  glass  parts  of by  means 

of  soluble  Muxes.     (P)  Velio  756a 

wicks;  Treatment  of .     (P)  Feeney  ..  ..     931a 

Lampblack  ;    Manufacture  of  .     (P)  Lewis,  and  Good- 
year Tire  and  Rubber  Co 55SA 

Manufacture  of  hydrogen  and  .     (P)  Hasson  and 

Gerard  . .  . .  . .  . .  . .  . .     555a 

Process  for  transferrins  heat  for  preventing  deposition 

of  oil  and  water  in  chambers  for  collecting  . 

(Pi  Meiser  und  Melser  948a 

Refining  crude .     (P)  Herting  509a 

in  rubber  mixings.     Marckwald  and  Frank        ..  ..     906a 


page 

Lamps;  Electric .     Sea  under  Electric 

Safety for  coal  mines  201R,  224R 

safety- ;   Glasses  for  flame . .  . .  . .     570R 

Lanoline-like  materials  ;   Manufacture  of from  mineral, 

animal,  or  vegetable  oils.    (P)  Plauson's  Forschunas- 

inst.  300a,  826a 

Lantana    Cc.mare ;     Essential    oil   of    .     Moud^ill    and 

Vridhachalam  610a 

Larch  ;  Alcohol  from  western .     Sherrard  . .  . .     952a 

Lard  ;    Examination  of for  adulteration.     Bomer        . .     431a 

Larix  occidenlalis  ;  Alcohol  from .     Sherrard  . .     952a 

Laudanine ;   Synthesis  of .     Spath  and  Lang  . .     390a 

Laudanum  poisoning ;     Detection  of   colouring   matter   of 

saffron  in  investigations  relating  to .     Guerbet    875a 

Lavender  oil.     See  under  Oils,  Essential. 

Leaching  minerals  ;   Apparatus  for : 

<P)  Bouillon  258a 

(P)  Soc.  Gen.  d'Evaporation  Proc.  Prache  et 

Bouillon         £81** 

ores  and  the  like.    (P)  Hornsey  . .         . .         . .       63a 

Lead ;  Action  on in  concentration  of  sulphuric  acid.  Frisak    412a 

Action  of  natural  waters  on .     Thresh         ..  ..     242R 

alloys.     (P)  Thoumyre  Fils  865a* 

alloys  for  bearing  metals.     (P)  Mathesius  . .  . .     470a 

alloys    containing    light    metals    and    cadmium.     (P) 

Stockmeyer  and  Hanemann  . .  . .  . .     717a 

Alloys  of  with  tellurium  and  with  tellurium  and 

antimony.     Dreifuss  . .  . .  . .  . .     505a 

amalgam  ;   Determination  of  lead  in .     Mellon     . .     9S4a 

Anodic  behaviour  of .     Gladstone  . .  . .     956a 

-antimony  alloys ;    Manufacture  of  hard  acid-resisting 

.     (P)  Thoumyre  Fils 707a 

-bearing  mattes  and  the  like  ;   Treatment  of .     (P) 

Elmore,  and  Chemical  and  Metallurgical  Corp.     . .     597a 

blast-furnace ;     Use    of    powdered    coal    in    the   . 

Hamilton  900a 

blast  furnace  and  venting  thereof.     (P)  Labarthe  . .       20a 

Brittleness  developed  in  pure by  stress  and  cor- 
rosion.    Rawdon  and  others  . .  . .  . .     145a 

Chemical  method  of  separating  isotopes  of .     Dillon 

and  others         790a 

Coating  iron  or  steel  with ,  with  or  without  other 

metals.     (P)  Leadizing  Co.  636a 

coating ;    Preparation  of  iron  or  steel  for  .    (P) 

Maddy  470a 

-coating  process.    (P)  Shoemaker,    and    Leadizing  Co.    221a 

Corrosion  of by  soil.     Shipley  . .  . .      261r,  314t 

Detection  of in  varnishes  and  oil  lacquers.    Voll- 
mann . .  . .  . .  . .  . .  . .     331a 

Determination  of in  metallic  lead  by  the  perman- 
ganate method.     Odajima  . .  . .  . .     595a 

Determination  of  minute  amounts  of  ■  in  water. 

Avery  and  others         . .  . .  . .  . .  . .     154a 

dross  obtained  from  refining  lead  ;    Analysis  of  . 

Staid 463a 

Electro  volumetric   method  for  determination  of  . 

Maclnnes  and  Townsend        . .  . .  . .  . .     443a 

Electrolytic  extraction  of  from  ores.     (P)  Ailing- 
ham        140a 

Electrolytic  production  of  adherent  deposits  of  . 

(P)  Schlatter  7WA 

Extraction  of  zinc  and .     (P)  Waring  and  Battelle     So4a 

Hindrance  of  precipitation  of  with  hydrogen  sul- 
phide by  neutral  chlorides.     Dede  and  Bonio        . .     919a 

Influence  of  the  alkalis  on  the  titration  of  with 

ferrocyanide.     Treadwell  and  Chervet         . .  . .     880a 

Losses  of  during  melting  of  low-grade  material. 

Offerhaus  106a 

Manufacture  of  metallic from  lead  sulphate.     (P) 

Elmore,  and  Chemical  and  Metallurgical  Corp.       . .     985a 

Manufacture     of     zinc     and    from     ores.     (P) 

Cornelius  . .  . .  . .  . .  . .  . .       62a 

matte  ;    Separating  foreign  substances  from .     (P) 

Sperry  ..  ..  ..  ..  ..  ..     107a 

mines  ;   Employment  in  zinc  and . .  . .     104R 

ores ;    Behaviour  of  zinc  blende  and  barytes  in  blast- 
roasting  of .     Dorschel  . .  . .  . .     255a 

ores ;     Reduction   of  .     (P)   Hamilton,   and   U.S. 

Smelting,  Refining,  and  Mining  Co.  . .  . .     221a 

poisoning  at  Broken  Hill.  N.S.W.  481k 

Production,  imports,  and  exports  of in  1921  . .     2'J4r 

Recovery  of  silver  and from  ores  and  metallurgical 

products.     (P)  Hey  936a 

Recovery  of  silver  and  from  sulphide  ores  and 

metallurgical    products.     (P)    Avery,    and    Amal- 
gamated Zinc  (De  Bavay's),  Ltd.                  . .          . .     147a* 
Reductions  with  in  volumetric   analysis.     Tread- 
well  and  others  919a 

Refining .    (P)  Harris  555a* 

Removing  from  zinc  oxide  and  other  materials 

iimtainiiiL' it.     (P)  Fape  ..  ..  ..  ..      765a 

Separation  and  determination  of  copper,  antimony,  tin, 

and .     Kling  and  Lassieur  ..  ..  ..       17a 

sheathing  of  electric  cables  ;   Failure  of .     Archbutt     106a 

smelting  in  New  South  Wales        . .  . .  . .  . .     264R 

Solubility  of  bismuth  and  cadmium  in in  the  solid 

state.     Di  Capua  . .  . .  . .  . .  . .     595a 

Storks  of 336R 

-strontium    alloys ;     Constitutional    diagram    of    . 

Piwowarsky       . .  . .  . .  . .  . .  . .     7 1  4a 


SUBJECT  INDEX. 


173 


Lead — continued. 

Structure  of  electro-deposited  from  a  perchlorate 

bath.     Hughes  421a 

sulphide  ores  ;   Technical  working  of  raw  materials  con- 
taining lead,  such  as  complex by  conversion  of 

the     lead     into     tetrachloride.     Nathansohn     and 
Leyser  820a 

-thallium  alloys  ;    Constitution  of .     Guillet         . .     106a 

tree ;   Disglomeration  and  formation  of  the  autogenous 

.     Thiel  ISA 

Volume  changes  in  binary  alloys  of  tin,  bismuth,  and 

.     Gilbert  553A 

Volumetric  determination  of .     Jellinek  and  Ens..   1000a 

-zinc    fume ;     Treatment    of    .     (P)    Waring    and 

Battelle  868A 

-zinc  ores  ;   Treatment  of  complex .     (P)  Ganelin. .       20a* 

-zinc  sulphide  ores  ;    Treatment  of .     (P)  Christen- 

sen  . .         . .         . .         . .         . .         . .         . .     472a 

-zinc  sulphide  ores  ;    Treatment  of  argentiferous  . 

(P)  Elmore,  and  Chemical  and  Metallurgical  Corp.     821a 

Lead  acetate,  basic  ;    Preparation  of .     Langecker       . .     172a 

Lead  acetate;   Solubility    of    by   the   floating  equili- 
brium method.  Dundon  and  Henderson      . .  . .     545A 

Lead  arsenate  ;    Electrolytic  preparation  of  .     Tartar 

and  Grant  . .  . .  . .  . .  . .  . .      413A 

Influence  of  salts  present  in  soil  solution  on  solubility 

of .     Stewart        950a 

insecticides  ;    Manufacture  of  .     (P)  "Wilson,  and 

Pittsburgh  Plate  Glass  Co 954a 

Manufacture  of : 

(P)  Allen,  and  Lucas  and  Co.  ..  ..     753a 

(P)  Kirby  and  others       . .  . .  . .  . .       58a 

Physical  properties  of  commercial .    Robinson     . .     433a 

Lead    chromate    pigments ;     Manufacture    of    .    (P) 

Hetherington  and  Allsebrook  . .         . .         . .     676a 

Lead  dioxide  ;  Anodic  behaviour  of .     Gladstone         . .     986a 

Electromotive  behaviour  of .     Glasstone  . .     751a 

Volumetric  estimation  of in  red  lead.    Bonis       . .     557a 

Lead  monoxide  ;   Hydrated .     Glasstone  . .  . .     172a 

Isomerism  of .     Appleby  and  Reid  . .  . .     980a 

Lead  nitrate  ;   Electrometric  titrations  with .     Kolthoff    840a 

Lead  oxide  ;    Apparatus  for  production  of by  oxidising 

molten  lead.     (P)  Kubler 632a 

Lead  oxides  ;    Effect  of  grinding  upon  apparent  density  of 

.     Brown  and  others       . .  . .  . .  . .     588a 

oxides  ;   Manufacture  of .     (P)  Shiraadzu  . .     372a 

oxides  ;  Physical  chemistry  of .     Glasstone 

172a.  751a,  986a 

oxides  ;    Physical   chemistry  of  .     Red  lead   and 

lead  sesquioxide.     Glasstone  . .  . .  . .     751a 

Lead  peroxide;    Direct  iodometric  determination  of  . 

Glasstone  . .  . .  . .  . .  . .  . .       98a 

Lead  salt  test-papers  ;    Preparation  of for  use  in  titra- 
tion of  zinc  with  sodium  sulphide.     Olivier  . .     442a 

salts  ;   Action  of on  plants.     Bonnet         . .  . .     226a 

salts,    basic ;     Constitution    of    .    Weinland    and 

Stroh  897a 

Lead  sulphate  pigments ;    Furnace  and  apparatus  for  pro- 
duction  of  .     (P)  Mayers,  and   Britons,  Ltd.     223a 

water  paste ;    Conversion  of  into  oil  paste.     (P) 

Whyte  600a 

Leather  analysis,  and  apparatus  for  extraction  of  water- 
soluble  matter  from  leather.     Hough  . .  . .     907a 

analysis  ;  Report  on .     Chambard  . .  . .     990a 

artificial ;   Manufacture  of .     (P)  Claessen  . .     990a 

artificial  ;    Non-cracking  coating  composition  for  manu- 
facture  of   .    (P)   Booge,   and   Du   Pont   de 

Nemours  and  Co.  . .  . .  . .  . .  . .     476a 

Artificial as  substitute  for  sweat  leathers,  i.e.,  hat 

linings,  etc.,  and  its  testing.     Froboese        . .  . .       68a 

Cementing  leather  containing  rubber,  rubber-containing 

surfaces,  or together  or  to  one  another.     (P) 

Peachey  302a 

chamois- ;    Manufacture  of  a  substitute  for .    (P) 

Thompson  ..  ..  ..  ..  ..  ..     111a 

chemistry ;     Researches    on    proteins    connected    with 

.     Moeller  560a 

chrome- ;    Action  of  soap  on  .     Immendorfer  and 

Pfiihler  303a 

chrome- ;     Application    of    Procter- Searle    method    to 

determination  of  acidity  of .     Atkin  . .     303a 

chrome- ;    Decomposition  of  sodium  peroxide  solutions 

used  in  analysis  of by  means  of  iron.     Innes     150a 

chrome- ;  Determination  of  alkali  salts  in .    Wood- 

roffe  and  Green  ..  ..  ..  ..  ..     641a 

chrome- ;    Extraction  of  oils  and   fats  in  analysis  of 

.     Woodroffe         303a 

chrome- ;  Neutralising .     (P)  Rohm  . .      722a,  774a 

Determination  of  acid  in .     Rogers  . .  . .     476a 

Determination  of  free  sulphuric  acid  in .    Van  der 

Hoeven  . .  . .  . .  . .  . .  . .       68a 

Determination  of  water-soluble  matter  in .     Schultz     476a 

Determination   of   water-soluble   matter   in    vegetable- 
tanned  .     Chater  and  Woodroffe  . .  . .     828a 

Examination  of by  Rontgen  rays.     Moeller  . .     185a 

filled    with    sul phi te- cellulose    extract ;     Durability    of 

sole .     Bowker  . .  . .  . .  . .     773a 

formaldehyde-tanned  ;   Chroming  of .     Griliches  . .     869a 

glace  ;  Dyeing with  coal-tar  dyestuffs.     (P)  Cassella 

und  Co.  . .  ..  . .  , .  . .  . .     249a 


Leather — continued. 

grease  ;    Manufacture  of  ■  from  mineral,  animal,  or 

vegetable  oils.     (P)  Plauson's  Forschungsinst.    300a, 
from  hide  bellies  ;    Water-soluble  matter  in  vegetable- 
tanned  .     Chater  and  Woodroffe 

hydrolysis  ;    Progress  of  iu  Fahrion's  boiling  test. 

Moeller 

Impregnation  and  currying  of .     (P)  Burger 

industry  in  Soviet  Russia 

Influence   of   atmospheric   humidity   on   strength    and 

stretch  of .     Veitch  and  oth<T* 

iron-tanned  ;     Behaviour  of   towards  hot  water. 

Moeller 

iron-tanned  ;   Manufacture  of .     (P)  Rohm  69a, 

Manufacture    of    fat-liquoring    agents    for    — —    from 

hvdroxy-fatty  acids  and  phenol.     (P)  Renner  und 

Co 

Manufacture   of  ready-made  fat-liquor  for  from 

Indian  oils.     Das  and  Das 
Means  for  greasing  ■ .     (P)   Rohm,  and  Chemical 

Foundation,  Inc. 
Microscope  as  applied  in  manufacture  of .     Croad 

and  Enna 

mineral-tanned  ;   Neutralisation  of .     (P)  Rohm  . . 

Preparation  of  an  agent  for  dyeing  .     (P)  Burton 

and  Glover 

Reactions  in  fat-liquoring .     Moeller 

Rendering gas-tight.     (P)  Geiger  and  Brauer 

Researches  on .     Jablonski 

Sampling  of  for  chemical  analysis.     Bowker  and 

Wallace 
tanned  with  synthetic  tannins  ;    Action  of  hot  water 

on .     Moeller 

Treating  and  finishing .     (P)  Reubig 

Treatment  of  hides,  skins,  and  the  like  for  production 

of .     (P)  Carmichael  and  Ockleston 

Treatment  of with  rubber.     (P)  McLennan        560a, 

Use  of  perchloric  acid  for  Kjeldahl  digestions  In  deter- 
mination of  nitrogen  in  .     Parker  and  Terrell 

Leathers  ;    Resistance  of  different to  action  of  acids. 

Moeller 
Leavens :     their    action    and    measurement.     Davis    and 

Maveety 
Leaves  ;    Relation  between  manganese  content  and  propor- 
tion of  ash  in  old  and  young  .     Jadiu  and 

Astruc 

Lecithin  ;  Brewing  beer  containing .     (P)  Schmitz 

egg- ;    Unsaturated  fatty  acids  of  .     Levene  and 

Rolf        

emulsion  ;   Use  of for  treatment  of  acute  benzene 

poisoning 
Recovery  of from  organs  of  cold-blooded  animals. 

(P)  Grossfeld  

Unsaturated   fatty  acids   of   liver  — — .     Levene  and 

Simms 
Leers.    See  Lehrs. 

Leeward  Islands  ;  Trade  of in  1920-21 

Legal  intelligence : 
Arsenic  in  cocoa 

Basic  slag  ;    Phosphoric  acid  content  of  unground 

Calcium  carbide  ;  Alleged  breach  of  contract  for  supply 

of 

Explosives  ;  Contract  for  supply  of 

Fertiliser  factory  ;  Nuisance  caused  by  smell  from  a 

Hydrogen  peroxide  ;   Railway  transport  of 36R, 

Incandescence  gas-mantles  ;   Complaint  to  include 

in  schedule  of  dutiable  articles  under  Part  I.  of 

Safeguarding  of  Industries  Act  . .  . .        12R, 

Potassium  permanganate  ;    Alleged  breach  of  contract 

for  supply  of 

TNT  ;  Breach  of  contract  for  supply  of 

Trade  Marks  ;   Alleged  infringement  of  — — ■ 

Trade  Marks  ;  French  syndical 

Legislative  and  departmental  interference  with  industry  and 

the  common  weal.    Armstrong 
Legume  bacteria  ;    Movement  of  in  soil.     Frazier  and 

Fred 

Legumes ;      Inoculated     as     nitrogenous     fertilisers. 

Brown  and  Stallings 
Lehrs  ;    Annealing  for  plate  glass.     (P)   Milner  and 

others 

Muffle  flattening  ovens  and .     (P)  Milner  and  others 

Operation  of .     Frazier 

Lemon  juice  ;    Growth-promoting  vitamin  of  .     Leich- 

teutritt  and  Zeilaskowski        . .  . .  . .      913a, 

oil.     See  under  Oils,  Essential. 

seeds  ;  Fatty  oil  of .     Bennett 

Lenzites  scepuzria,  Fries  ;    Toxicity  of  Western  yellow  pine 

crude  oil  to .    Schmitz 

Leprosy  ;    Manufacture   of   drugs  for  treatment  of  . 

Perkins 
Leptospermum  fiavescemt,  var.  grandifiorum  ;   Essential  oil  of 

.     Peniold 

Leptospermum  odoratum  ;   Essential  oil  of .     Penfold    . . 

Leucite ;     Production   of   potassium   and   aluminium   com- 
pounds from  Italian .     Pomilio 

Separation  of  aluminium  and  potassium  chlorides  from 

mixed   solutions  obtained   in   treatment   of   . 

(P)  Blanc  


826a 
23a 

185a 

722a* 
133R 

907a 

426a 
151A* 

774A 
990a 

427a* 

68a 
774A 

774A 
185A 

774A 
773a 

476A 

303a 
774A 

304a 
775a* 

68a 
560a 
342a 


908a 
725A 

479A 

353R 

916A 

345A 

357R 

566R 
514R 

268R 
296R 
402R 
250R 

179R 

268R 

179R 

163R 

62R 

559R 

869A 

26A 

756A 
755a 
217a 

913a 

639a 

635A 

996A 

78A 
78A 

370A 
812a 


174 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Loucite — continued. 

Separation   of    constituents   of    .     (P)    Blanc   and 

Jourdan  293a 

Leucltic  rocks ;    Treatment  of  to  render  potassium 

compounds  available.     (P>  Blanc  and  Jourdan     . .     562a 
Leuco  Alizarin  Bordeaux.     See  under  Anthracene  dyestuffs. 

Leucoindigos  ;  Acylated  and  alkylated .     Grandmougin     287a 

Leucoain  ;    Isoelectric  point  of .     Luers  and  Landauer    681 A 

Light-diffusing  medium  ;  Manufacture  of .     (P)  Eberlin 

and  others         . .  . .  . .  . .  . .  . .     649a 

Light  rays  ;  Treating .     (P)  Bengough 524A 

Lighting  apparatus  ;    Toxicity  index  of  gases  from  . 

Kohn  Abrest  389a 

in  factories  and  workshops ;    Report  of  Home  Office 

committee  on . .         . .         . .         . .     355r 

Lignin  ;    Autoxidation  of  and  effect  of  alkali  thereon. 

Schrader  491a 

Composition  of as  it  occurs  in  wood.     Klason       . .     247a 

of  fir  wood  ;   Constitution  of .     Klason       . .  . .     627a 

and  ligninsul phonic  acid.     Konig  . .  . .  . .         9a 

-like  resins  and  tannins  of  spruce  needles.     Von  Euler. .     171a 

Oxidation    of    methyl    ether    of    .     Heuser    and 

Samuelsen         . .  . .  . .  . .  . .  . .     665a 

pine- ;  Constitution  of .    Klason      . .         . .         . .     247a 

Reduction  of with  hydriodic  acid  and  phosphorus. 

Willstatter  and  others  893a 

straw- ;   Derivatives  of .     Paschke  . .  . .     247A 

from  winter  rye  straw  ;    Physico-chemical  characterisa- 
tion of .     Beckmann  and  others  . .  . .     137a 

Ligninsulphonic  acid  and  lignin.     Konig         . .  . .  . .         9a 

Lignite  ash ;    Manufacture  of  hydraulic  cement  from  . 

(P)  Elektrowerke  A.-G.,  and  Luftschitz       . .  . .     103a 

Benzene  from .     Fischer  and  Schrader        . .  . .     932a 

Brown  coals  and  and   their  importance  to  the 

Empire.     Bone  ..  ..  ..  ..  ..     126R 

Carbonisation  of  Western .     French  ..  ..       16t 

Coal  and in  Great  Britain  and  Germany  . .     161r 

coke  ;   Ignition  temperature  of .     Plenz      . .  . .     658a 

Comparative  tests  on  carbonisation  of on  a  tech- 
nical and  laboratory  scale.     Bunte  and  Schwarzkopf     492a 

Constituents  of .     Ciusa  and  Croce  . .  . .     318a 

Dehydrating  by  treatment  with  solvents  miscible 

with  water.     (P)  Kriiger         243a 

deposits  in  South  Australia  . .  . .  . .  . .     175R 

dryers ;    Apparatus  for  separation  of  dust  from  gases 

escaping  from .     (P)  Bauer        ..  ..  ..     453a 

Drying  of .     (P)  Steinmann  ..  ..  ..     360a 

Extraction   of   unsaturated    hydrocarbons   from . 

(P)  Traun's  Forschungslaboratorium  Ges.  . .     403a 

Formation  of  phenols  from  the  bituminous  portion  of 

.    Graefe  ..         ..         ..         ..         ..     211a 

Gasification  of .     Dubois  and  Muller  . .  . .     888a 

Improvement  of  inferior .     (P)  Jacobs        . .  . .     578a 

Increased  oxygen  absorption  of  when  moistened 

with  alkali  hydroxide.     Von  Walther  and  Bielen- 

berg        318a 

and  the  like  ;   Drying .     (P)  Jacobs  . .  . .     739a 

Manufacture  of  coal  yielding  a  low  percentage  of  ash 

from  .     (P)  Chem.  Fabr.  Griesheim-EIektron     403a 

Manufacture  of  high-grade,  non-hygroscopic  fuel  from 

.     (P)  Scherk        46a 

Manufacture  of  producer-gas  from  wet by  drying, 

distillation,  and  combustion.     (P)  Deutsche  Gold- 

und  Silber-Scheideanstalt       . .  . .  . .  . .     403a 

Manufacture  of  a  smokeless  fuel  from .     (P)  Pape     320a 

Obtaining  products  from  .     (P)  Reid,  and  Inter- 
national Nitrogen  Co.  . .  , .  . .  . .     167a 
and    other    carbonaceous    substances ;     Conversion    of 

into  artificial  coal.     (P)  Ford  and  Thompson     740a 

Prize  for  method  of  gasification  of  raw in  Germany     483r 

Production  of  gas  and  tar  from .     Hilliger  and 

Wurni  . .  . .  . .  . .  . .  51  1r 

Production  of  low-temperature  tar  and  semi-coke  by 

distillation  of .     (P)  Deutsche  Erdol-A.-G.     . .     890a 

Production  of  montan  wax  from .    (P)  Riebeck'sche 

Montanwerke  A.-G.  . .  . .  . .  . .     660a 

Spontaneous  combustion  of .     Erdmann  . .     887a 

tar.     See  under  Tar. 

Technical  utilisation  of  German . .  . .  . .     452R 

Thermal  evolution  of  gases  absorbed  by  carbonised . 

McLean  357a 

Lignocerlc  acid  and  its  derivatives.     Brigl  and  Fuchs  . .     424a 

Lignosulphonic    acid    methyl    ether ;     Oxidation    of   . 

Heuser  and  Samuelsen  ..  ..  ..  ..     665a 

Lime  ;  Attack  of  clay  substance  by .     Selch     . .  . .     295a 

burning;  Oval  shaft-kiln  for .     (P)  Muller  ..     417a 

Burning in  a  shaft  kiln.     (P)  Meiser  and  Meiser  . .     296a 

Consumption   of  in   German   chemical   industry, 

1919-21  373R 

Determination  of in  the  lyes  of  the  sulphite -cellu- 
lose industry.     Deutsch  . .  . .  . .  . .     409a 

Fundamental  physical  and  chemical  properties  of  com- 
mercial     .     Available    lime    content.     Holmes 

and  Fink  . .  . .  . .  . .  . .  . .     750a 

Improving  the  quality  of  mason's  hydrated  .     (P) 

Welch  329a 

Influence  of on  yield  from  seeds  during  germina- 
tion period.     Maquenne  and  Cerighelli         . .  . .     477a 

kilns.     (P)  Meade  503a 

kilns  and  the  like  ;    Discharge  apparatus  for .     (P) 

Dumont  ..  ..  M  _ 178a* 


L  ime — continued. 

kilns   and   the    like  ;     Furnace -drawing   apparatus   for 

.     (P)  Candlot  86U* 

Manufacture  of  adherent  for  paints.     (P)  Mielcke     510a 

Ring  chamber  kiln  for  burning .     (P)  Koppers     . .     814a 

sludge  ;     Complete   removal   of   soap  from   .     (P) 

Krebitz  770a,  946a* 

-sulphur    compositions ;     Manufacture    of    dry    soluble 

.     (P)  French  683a 

-sulphur  compound  stabilised  with  an  aromatic  com- 
pound.    (P)  Hopkins  683a 

-sulphur     insecticidal     mixture  ;      Studies     on     . 

Harukawa  834a 

In  U.S.A.  in  1919  175R 

in  T.S.A.  in  1920  349R 

Utilisation  of  bituminous  clay  and .     (P)  Trails     . .     103a 

See  also  Calcium  oxide. 

Lime-green  ;   Prices  of . .  . .  . .  . .  . .     336r 

Lime-nitrogen.     Sec  Calcium  cyanamide,  crude. 

Limestone ;    Kiln  for  burning  .     (P)  Tinfos  Jernverk 

A./S 178a 

Vertical  gas-fired  kilns  for  burning .     (P)  Priest    . .     816a 

Linen  ;  Bleaching  defects  in due  to  metallic  impurities. 

Kind  410a 

Linolic  acid  ;    Four  tetrahydroxystearic  acids  derived  from 

and  their  significance  with  regard  to  linolic 

acid  of  common  oils.     Nicolet  and  Cox        . .  . .     259a 

Linseed  oil.     See  under  Oils,  Fatty. 

Lipase  ;   Influence  of  various  antiseptics  on  activity  of . 

Palmer  . .  . .  . .  . .  . .  . .     675a 

Preparation  and  properties  of  castor  bean .     Haley 

and  Lyman        . .  . .  . .  . .  . .  . .     223a 

Liquefying  gases  ;    Industrial  methods  of .     Murray    . .     475R 

Liquids  ;    Apparatus  for  delivering  measured  quantities  by 

volume  of .     (P)  Moritz  969a 

Apparatus  for  effecting  intimate  mixing  of  gases  and 

.     (P)  Soc.  Franco-Beige  de  Fours  a  Coke      . .       87a 

Apparatus  for  extraction  of by  immiscible  liquids. 

Fayolle  and  Lormand  . .  . .  . .  . .     839a 

Apparatus  for  removing  gases  from .     (P)  Fother- 

gill  43a,  451a* 

Apparatus  for  separating  solids  from .     (P)  Puryear      89a 

Apparatus  for  treating  .     (P)  Tanner,  and  Nelson 

and  Sons  240a 

Device   for   introducing   solid    matter   at   foot   of   tall 

columns  of  without  causing  loss  of  liquid. 

(P)  Fahrni         658a 

Electrical  purification  of .     (P)  Mitchell  and  Pfeffer    944a 

Electrification  and  precipitation  of  suspended  particles 

from .    (P)  Metallbank  u.  MetaUurgiache  Ges. 

A.-G.  206a 

Flow  of  through  commercial  pipe  lines.     Wilson 

and  others  . .  . .  . .  . .  . .  . .     357a 

Heat  treatment  of .     (P)  Mauss        . .  . .  . .     163a 

Heating  and  de-aerating .     (P)  Morison  . .     726a 

Means  for  heating  and  boiling  .     (P)  Briggs  and 

Buxton  . .  . .  . .  . .  . .  . .     657a 

Non-corroding  and   non-freezing  .     (P)   Pedersen, 

and  Miller  Reese  Hutchison,  Inc.  . .  . .     531a* 

Rates  of  absorption  and  beat  transfer  between  gases 

and .     Whitman  and  Keats       ..  ..  ..     315a 

Recovery  of from  solutions  or  semi-solutions.     (P) 

Fest  450a 

Removing  oxygen  from .     (P)  Union  Thermique. .     834a 

Removing from  the  surface  of  molten  metal.     (P) 

Thermal  Industrial  and  Chemical  (T.I.C.)  Research 

Co.,  and  Morgan  622a 

Separating  air  and  gases  from  .    (P)  Hulsmeyer 

954a,  954a* 

Treating by  injection  into  a  stream  of  air  or  other 

gas.     (P)  Metallbank  und  Metallurgische  Ges.    317a,  450a 

Treatment  of .     (P)  Sinclair  . .  . .  . .       75a 

Treatment  of by  irradiation  for  use  in  the  brewing 

industry.     (P)  Ludwig  113a 

under   gaseous   pressure ;     Devices   for   withdrawal   of 

.     (P)  L'Air  Liquide        657a 

Liquorice  extract ;    Detection  of  extract  of  Atraetylis  gum- 

mi/era  in .     GiurTre  . .  . .  . .  . .     995a 

Litharge;     Manufacture   of   from    molten   lead.     (P) 

Kubler  813a 

Recovery  of from  sugar  residues,  e.g.  those  result- 
ing from  polarisation  of  sugar  products.  (P) 
Ramage,  and  Sugar  Research  Synd.  . .  . .     992a 

Lithium  acetylsalicylate ;  Manufacture  of  .     (P)  How- 
ards and  Sons,  Ltd.,  and  Blagden  . .  . .       33A 

Lithium  formate ;    Manufacture  of  and  of  alcohols, 

ketones,  etc.,  therefrom.     (P)  Badische  Anilin  und 

Soda  Fabrik  198a 

Lithium  salts ;    Extracting  potassium  salts  and  from 

ores.     (P)  Bailey  and  Sedgwick         . .  . .  . .     897a 

Lithographic  ink.     (P)  Holmes  and_Cameron  . .  . .     335a 

Lithol  Fast  Yellow  GG  (B.A.S.F.) ;    Constitution  of  . 

Rowe  and  Levin  . .         . .         . .         . .         . .     744a 

Lithopone ;      Apparatus    for    manufacture    of    .     (P) 

Mitchell  381a 

Manufacture  of : 

(P)  Breyer  and  others  381a 

(P)  Kuzell  65a 

(P)  Mitchell  „ 149a* 


SUBJECT  INDEX. 


175 


PAGE 

Li  thopone — contin  ued. 

(P)  Singmaster  and  others  . .  . .      381a,  474a 

Steinau 65a 

Present  knowledge  on .     Maass  and  Kempf  . .     946a 

Lithospermum    Erythrorhizon ;     Colouring    matter   of   . 

Majima  and  Kuroda  . .  . .  . .  •  •     744a 

Lithuania  ;  Imports  of  chemicals  into . .         . .     339K 

Liver  oils.     See  under  Oils,  Fatty. 

Lixiviation  ;  Method  and  apparatus  for .     (P)  Adler    . .     926a 

of  salts  ;   Continuous  process  for .     (P)  Fellner  und 

Ziegler,  and  Konig       . .  . .  . .  . .  .  ■     632a 

a-Lobeline;  Preparation  of .    (P)  Boehringer  Sohn       ..     483a 

Locomotives  ;    Effect  of  superheated  steam  on  non-ferrous 

metals  used,  in .     Fowler  . .  . .  . .     819a 

Loganberry   juice ;     Composition   and    properties   of   . 

Dawson  261R 

Logwood  dyeing.     (P)  Felder,  and  Taylor  White  Extracting 

Co.  ...  ..  . 368a 

industry  in  Haiti 483R 

Lorraine.     See  under  France. 

Low  temperatures  ;  Attainment  of  very .     Onnes         . .     474R 

temperatures  ;  Measurement  of .     Darling  . .     961a 

temperatures  ;    Practical  applications  of .     Murray     475R 

Lubanyl    benzoate ;     Decomposition    of    .     Zinke   and 

others 509a 

Lubricants  and  bearings  ;    Apparatus  for  testing .     (P) 

Oelwerke  Stern- Sonneborn  A.-G 444a» 

for  cylinders  of  steam  engines  and  the  like.     <P)  Langer     321a 

Manufacture  of  of  high  viscosity  or  consistency. 

(P)  Last  and  Bohme 660a 

Manufacture  of from  mineral  oils.     (P)  Dubois  und 

Kauf  mann         . .  . .  . .  . .  . .  . .     245A 

Manufacture  of  oily  pastes  or  emulsions  for  use  as 

from  mineral  and  other  oils.     (P)  Plausou    ..  ..     889A 

for  yarns  and  weaving  machines.     (P)  Minton     . .  . .     498a 

Lubricating  compound.     (P)  Crawford  . .  . .  . .       22a 

and  cylinder  oils  ;   Preparation  of .     (P)  Thiele  and 

Cordes 285a 

oil  emulsions.     (P)  Langer  . .  . .  . .  . .     455a 

oil  films  in  high-speed  bearings  ;    Thickness  and  resis- 
tance of  — — .     Stoney  and  others     . .  . .  . .     242A 

oils  ;  Bearing  friction  and  friction  experiments  with . 

Duffing  929a 

oils  ;  Manufacture  of : 

(P)  Harper  494a 

(P)  Tern 5a 

(P)  Traun's  Forschungslaboratorium  Ges.        . .     404a 

(P)  Weyl  und  Co.  5a 

oils  ;  Manufacture  of of  high  viscosity  from  coal  tar 

oils.     (P)  Chem.  Fabr.  "Worms  . .  . .     539a,  803a 

oils  ;   Manufacture  of  highly  viscous from  mineral, 

animal,  and  vegetable  oils.     (P)  Plauson's  Forsch- 

ungsinst.  300a,  826a 

oils  ;   Manufacture  of from  lignite-tar  oil.    Jacob- 

sohn 134A 

oils ;    Manufacture  of  of  low  setting  point.    (P) 

Galizische  Naphtha  A.-G..  and  Burstin         . .  . .     660a 

oils  ;  Manufacture  of  a  substitute  for : 

(P)  Schilsky  382a,  510a 

(P)  Schultz  539A 

oils ;    Manufacture  of  viscous  from  producer-gas 

and  low-temperature  tar.     (P)  Allgem.  Ges.  f.  Chem. 

Ind 48a 

oils  ;   Obtaining  highly  viscous from  peat  tar.     (P) 

Erdmann  ..  ..  ..  ..  ..  ..     285a 

oils  ;    Obtaining  paraffin  and  highly  viscous  from 

lignite  tar  and  shale  tar.     (P)  Erdmann       . .  . .     285a 

oils  ;  Petroleum,  with  special  reference  to .  McKen- 

zie  . .  . .  . .  . .  . .  . .  . .       75R 

properties  of  various  series  of  hydrocarbons.    Seyer      . .     360a 

Lubrication  ;    Boundary .     The  paraffin  series.     Hardy 

and  Doubleday  242a 

Mechanism  of .     Methods  of  measuring  property  of 

oiliness.     Wilson  and  Barnard  . .  . .  . .     929a 

Present  position  of  theory  of .     Giimbel      ..  ..     243a 

Temperature  coefficient  of  boundary .    Hardy  and 

Doubleday         739a 

Lubricators  ;  Mechanical .     Smith  . .  . .  . .     279a 

Lucerne  hay  ;  Xitrogen  compounds  in .     Miller  . .     228a 

plant ;   Water-soluble  constituents  of  the .   Osborne 

and  others         873a 

Proteins  of .     Osborne  and  others     . .         . .         . .       74a. 

Luminescence    phenomena ;     Lnorganic    .     Tiede    and 

Kichter  172a 

Lupeol ;  Identity  of  xanthosterol  with .    Ultee  . .     955a 

Lupin  seeds  ;    Determination  of  efficiency  of  process  for  re- 
moving bitter  substances  from  .    Beckmann 

and  Lehmann    . .  . .  . .  . .  . .  . .     606a 

seeds  ;  Removal  of  bitter  substances  from .  Beck- 
mann     . .          . .          . .          . .          . .          ...         ..       75a 

Lupins  ;   Effect  of  nitrogenous  fertilisers  on  alkaloid  content 

of .    Vogel  and  Weber 477a 

Preparation  of  products  containing  albumin  and  free 

from   bitter   constituents   from   .     (P)   Hilde- 

brandt  ..  ..  ..  ..  ..  ..      516a 

Removal  of  bitter  substances  from .     (P)Bergell    ..     516a 

Removing  and  obtaining  alkaloids,   bitter  substances, 

and  the  like  from .     (P)  Elektro-Osmose  A.-G.     432a 

and  their  utilisation.     Brahm         M         _         ..  ..     191a 


Luxembourg  ;  Report  on  economic  and  commercial  con- 
ditions in  Grand  Duchy  of .     Sullivan 

Lye  hominy.     See  under  Hominy. 

Lye  solution  ;  Regulating  and  controlling  the  strength  of 
.     (P)  Dunkley,  and  Dunkley  Co. 

Lymph  preparations  ;    Production  of  stable .     (P)  Cas- 

sella  und  Co. 

Lysalbinic  acid  :  Alkali  salts  of  oxidised as  stable  pro- 
tective colloids  for  mercury  compounds.  (P)  Wolve- 
kamp 

M 

Macadam  ;   Production  of  bituminous for  paving  roads 

and  like  surfaces.    (P)  Strassenbau  A.-G.  Luzern   . . 

Madagascar ;    Exports  of  minerals  and  metals  from in 

1921         

Madras.    See  under  India. 

Maftira  fat.     Wolff  

Mafureira  oleifera  seeds  ;  Fat  from .     Wolff 

Magnesia  cements.     See  under  Cement. 

Manufacture  of .     (P)  Bassett 

Manufacture  of  from  dolomite.    (P)   Clerc  and 

Nihoul 
Manufacture  of  hydrochloric  acid  and  from  mag- 
nesium chloride.     (P)  Chem.  Fabr.  Buckau 

Separation  of  ferric  oxide  and  alumina  from by  the 

nitrate  method.     Charriou     . . 

Magnesite  and  the  like  ;  Calcining .    (P)  Koppers 

production  in  Austria 

Treatment   of   for    manufacture   of   oxychloride 

cements.    (P)  Pike 

Magnesium  and  its  alloys  ;  Colouring .    (P)  Chem.  Fabr. 

Griesheim-Elektron     . .         

and  its  alloys  ;    Purification  of .    (P)  Chem.  Fabr. 

Griesheim-Elektron 

-aluminium  alloys.     Ohtani 
-cadmium  alloys.     Guillet 

Colorimetric  determination  of  small  amounts  of : 

Briggs 

Hammett  and  Adams 

Detection  of .    Momer 

Detection  of in  presence  of  manganese  and  phos 

phoric  acid. 

(P) 


846a 


916a 


Purgotti 
Electrolytic   apparatus    for    production    of 
Seward 

Electrolytic  recovery  of  from  salt  works  residues. 

Boynton  and  others 

foil ;    Manufacture  of  .     (P)  Boehm 

Recovering  aluminium  or  or  their  alloys  from 

scrap.    (P)   Chem.   Fabr.   Griesheim-Elektron     . . 

Some  recent  applications  of  in  synthetic  organic 

chemistry.     Hepworth 

Volumetric  estimation  of in  presence  of  potassium 

salts.    Viirtheim 

Magnesium    acetylsalicylate :    Manufacture    of    .     (P) 

Howards  and  Sons,  Ltd.,  and  Blagden 

Magnesium  antimonide  ;    Manufacture  of  .    (P)  Riedel 

A.-G 

Magnesium  carbonate ;    Manufacture  of  .    (P)  Chem. 

Fabr.  Griesheim-Elektron 

Magnesium  chloride  lyes  ;    Treatment  of  .    (P)  Esch 

Manufacture   of  .    (P)    Goldschmidt 

Magnesium     compound     of     8-hydroxyquinoline.    Morner 

compounds ;     Reduction    of   .    (P)    Waldo 

Magnesium  cyanide.    Fichter  and  Suter 

Magnesium    hypobromite ;     Manufacture    of    basic    . 

(P)  Merck 

Magnesium  hypochlorite,  basic  ;    Manufacture  of  : 

(P)    Kereszty   and   Wolf 

(P)  Merck  373a 

Magnesium  nitrate ;   The  system  water-magnesium  sulphate 

at  25°  C.    Jackman  and  Browne 

The  system  water -sodium  nitrate at  25°  C.    Jack- 
man  and  Browne 

Magnesium  nitride  ;   Manufacture  of .    (P)  Kaiser    216a 

Magnesium  oxychloride  cements  ;    Paint  for  use  in  appli- 
cation of to  metallic  surfaces.    (P)  Davies  and 

Miles 

material  for  wall  covering,  putty,  or  the  like  ;    Manu- 
facture of  .    (P)   Wolf,  and   Elektro-Osmose 

A.-G 

Magnesium  perchlorate ;   Preparation  and  properties  of 

and  its  use  as  a  drying  agent.     YVUlard  and  Smith 

Magnesium    salts ;      Harmful    mechanical    effect  of    

on  soils.  Von  Nostitz 

Magnesium    sulphate ;     Octahydrate    of    .    Takegami 

Reduction  of  by  carbon  monoxide,  carbon,  and 

hydrogen   sulphide.    Zawadzki   and   others 
The  system  water-magnesium  nitrate  —  at  25°  C. 
Jackman    and    Browne 
Magnesium  sulphide  ;    Preparation  of  pure and  its  phos- 
phorescence.   Tiede  and  Richter 

Magnetic  alloy  sheets  ;    Manufacture  of  .    (P)  Valley 

Holding  Corp.  

material ;    Removal  of from  admixture  with  non- 
magnetic material.    (P)  Krupp  A.-G.  Grusonwerk 


15a 
199E 

21a 

21a 

216a 
982a 

58a 

962a 
716a 
36R 

593a 
767a 

472a 

377a 
553A 

619a 
612a 
691A 

37a 

19a 

378a 
901a 

715A 

7T 

1000a 

33a 

100a 

812a 
754a 
669a 
691a 
717a* 
462a 

373A 

58a* 
,  415A 

412a 

412a 
,216a 


905a 

549a» 

979a 

186a 
937a 

749a 

412a 

172a 

636a 

298a 


176 


JOURNAL  OF  THE' SOCIETY  OF  CHEMICAL  INDUSTRY. 


Magnetic — continued. 

metals;     Apparatus    for   separating from    flour, 

grain,  and  the  like.     (P)  King         726a* 

ore  separators.     (P)  Ullrich,  and  Chemical  Foundation     180a 

sand  ;     Treatment  of  .     (P)   Naito  . .  . .     9S5a 

separating   process   and   apparatus.    (P)   Bethke   and 

Stearns  . .  . .  .  -  .  ■  ■  •  • •     471a 

separation  of  sulphide  ores.     (P)  Thorn  and  others       . .       63a 
separators : 

(P)  Bradley  766a 

(P)    Hall  506a 

(P)  Thompson  and  Davies         506a 

(P)  Woodworth  and  others         . .  . .  . .     673a 

separators     for    removing    solids     from     liquids.     (P) 

Chapman  622a* 

.Magnets;     Chromium-steel   for  permanent  .     Gumlich     143a 

Maize ;    Characteristic  proteins  in    high-    and    low-protein 

.     Sho waiter  and  C'arr     . .  . .  . .  . .     832a 

cob   extract ;    Manufacture  of   furfural   by   action   of 

superheated   water  on    aqueous   .     La  Forge      78a 

Enzymic   conversion    and    degradation   of   nitrogenous 

constituents  of .    Application  to  manufacture 

of  yeast.     Nottin         265A 

flour ;    Biochemical  reaction  of  stale  .    Vintilesco 

and    Haimann  . .         . .         . .         . .         . .     872a 

Industrial  value  of  .    Burtt-Davy  ..         ..     131R 

oil.     See  under  Oils,  Fatty, 
starch.    See  under  Starch. 

Starch  syrup  and  sugar  from  .     Behre  and  others       71A 

Malakograph,  an  apparatus  for  determining  softening  point 

of  paraffins,  waxes,  etc.  . .  . .  . .  . .     443a 

Malaya  ;    Medicinal  plants  in  the  .    Foxworthy         . .     400R 

Monazite  in      .  . .  . .  . .  . .  . .     4S4R 

Sugar  cultivation  in  British  . .  . .  . .       34R 

Maleic  acid ;    Detection  of in  admixture  with  fumaric 

and  malic  acids.     Weiss  and  Downs         . .  . .     519a 

Purification  of .     (P)  Bailey  and  others       . .  . .     6S7a 

Purification  of  by  reducing  agents.     (P)  Bailey, 

and   Barrett   Co 119a 

Malic  acid  ;    Formation  of  .     Weiss  and  Downs         . .     519a 

Presence  of  in  rnountain-ashJberries.    Von  Lipp- 

mann      . .  . .  . .  . ,  . .  . .  . .     956a 

Malt    analysis ;     Standard    methods    of    .     Report    of 

Institute  of  Brewing  Committee       . .  . .  . .     911a 

Determination  of  diastatic  power  of  .     Windisch 

and  others         ..  ..  ..         ..  ..  ..     951a 

-iodine     preparations ;      Manufacture     of     .    (P) 

Gehe  und  Co.     . .  . .  . .  . .  . .  . .     567a 

preparation   for   brewing   purposes ;     Production   of   a 

.     (P)  Vydra         779a 

and  its  preparations  (liquid,  syrupy,  and  dry  extracts) ; 

Diastatic  action  of .     Lecoq       ..  ..  ..     152a 

produced  by  the  process  involving  resting  periods  in 

presence   of    carbon    dioxide.     Luers         . .         . .     189a 

Proteolytic  enzymes  of .     Lundin    . .  . .  . .     830a 

Speckled .     Mason  and  Brown         . .  . .         . .     830a 

Maltase;     Action   of   arsenic    compounds   on   .     Bona 

and  others         . .  . .  . .  . .  . .  . .     782A 

Extraction  of  adsorbed from  the  adsorption  products. 

Willstatter  and   Kuhn  189a 

Fermenting  activity  of  yeasts  poor  in .  Willstatter 

and  Steibelt 189A 

Xon-identity   of   d-glucosidase   and   .     Willstatter 

and  Steibelt 190a 

Occurrence  of in  mammalian  blood.     Olsson         . .     --7x 

Malted  food  ;  Manufacture  of .     (P)  Wahl         . .  . .     388A 

milk.     See  under  Milk. 

Malting  products;    Fat  of  .     Sedlmeyer  ..  ..       71a 

Maltose;    Action  of  hvdrogen  peroxide  on  pure  solutions 

of  .     Schonebaum  776a 

Action  of  ozone  on  pure  solutions  of .     Schonebaum     776a 

Mamarr6n  nuts  as  a  source  of  oil     . .         ..         ..         ..     570R 

Manchester  College  of  Technology         ..         ..         ..         ..     483R 

Manchuria ;    Notes  on  a  coal  from  Fushun, .     Himus     333T 

Trade  of in  dyes  and  paints  . .         . .         . .     516r 

Manganese  alloys  as  catalysts  in  oxidation  of  ammonia. 

Piggot 96a 

-bronze ;     Occurrence    of    blue    constituent    in    high- 
strength  .     Dix,  jun.        . .  . .  . .  . .     552a 

Colorimetric   determination   of   in   steels,   alloys, 

and  ores.     Heslinga     . .  . .  . .  . .  . .     635a 

content  and  proportion  of  ash  in  old  and  young  leaves ; 

Relation  between  ■ .     Jadin  and  Astruc. .  . .     908A 

deposit  in   Hungary  . .  . .  . .  . .  . .     423R 

1  ><-tcction  of by  the  benzidine  reaction.     Ditz        . .     235a 

Detection  of  by  oxidation  to  permanganate  in 

alkaline    solution.     Heslinga  . .  . .  . .     613a 

Detection  of in  varnishes  and  oil  lacquers.     Voll- 

mann      . .  . .  . .  . .  . .  . .  . .     381a 

Determination  of  : 

Minovici  and  Eollo         . .  . .  . .  . .     919a 

Winkler 612a 

Determination  of in  ferro manganese  and  spieceleisen 

by     Knorre'a     persulphate     method.    Nicolardot 

and  others         . .  . .  . .  . .  . .  . .     376a 

Determination     of     ■ ■     by     permanganate.     Sarkar 

and  Dhar  443a 

Determination  of as  sulphate.     Huber        . .  . .     351a 

Determination  of with  the  aid  of  membrane  filters. 

Jander  442a 


page 
Manganese — continued. 

economy  in  manufacture  of  iron  and  steel  by  the  basic 

converter  and  open-hearth  processes.     Eichel         . .     178a 

in  plants  ;   R61e  of .    McHargue 67Sa 

Preparation  of  by  Goldschmidt's  aluminothermic 

process.     Fujibayashi  ..  ..  ..  ..     595a 

Separation  of  iron  and .     Cams         . .  . .         . .       82a 

-steel.     See  under   Steel. 

Manganese  Bronze ;    Method  for  dyeing  : 

Bloch  214a 

Sunder  (Kallab) 214a 

Manganese   dioxide ;     Adsorption    of   iron    by    precipitates 

of .     Geloso  613a 

Manufacture  of  nitric  acid  and  .     (P)  Reed  and 

Berryhill  463a 

Properties  of .     De  Hemptinne  ..  ..  ..     750a 

Manganese  oxides  ;   Treatment  of  ores  or  sludges  containing 

iron  and .     (P)  Johl         673a 

Manganese  violet ;  Manufacture  of .     (P)  Bayer  und  Co.     149a 

Manganites  ;    Preparation  and  properties  of  .     Sarkar 

and  Dhar  443a 

Mannitol ;     Manufacture   of   .    Fernaroli        . .         . .     429a 

Mannose ;    Occurrence  of  in  fruit  of  Sympkoricarpus 

racemosus.     Von    Lippmann  ..  ..  ..     117a 

Preparation  of  .    Clark         . .         . .         . .         . .     339a 

Manometers ;    Comparison  of  gravity  and  glass  compression 

.     Cardoso  350a 

Comparison    of    gravity   and    nitrogen    .     Cardoso 

and  Levi  350a 

Manure ;     Extracting   fertiliser   elements   from   .    (P) 

Gardan  678a 

Manufacture  of  artificial  liquid .     (P)  Cyliax     829a,  829a 

Plant  for  production  of  by  aerobic  fermentation 

of  refuse.     (P)  Soc.  Anon.  Brevetti  Beccari         . .     603a 

works;  Report  on  chemical by  the  Alkali  Inspector     317r 

See  also  Fertilisers. 
Manurial  experiments  ;    Questions  concerning  the  technique 

of    research    .    Kleberger        . .         . .         . .     226a 

Manuring  ;  Influence  of on  nitrogen  and  ash  constituents 

of     cultivated     plants.     Maschhaupt         . .  . .       26a 

Marble  and  the  like  ;    Calcining  .     (P)  Koppers         . .     716a 

Marconnet  ash-fusion  gas  producer  for  gasification  of  coke 

breeze.     Riviere  . .  . .  . .  . .  . .     739a 

Margarine  ;    Consolidating  and  blending .     (P)  Maypole 

Margarine  Works,  and  Michelsen       . .  . .  . .     834a* 

Determination  of   benzoic  acid  in  .     Kopke  and 

Bodlander  644a 

industry  ;   The  Dutch 62r 

Manufacture  of  .     (P)  Clayton  and  others         . .     192a 

Manufacture  of  a  brown  colouring  matter  for .     (P) 

Mohr 497a 

Water  content  of  : 

Brauer 833a 

Gronover  and  Bolm         . .  . .  . .  . .     913a 

Marine  animal  oils.     See  under  Oils,  Fatty. 

Marmalade  ;   Manufacture  of .     (P)  Monti         . .  . .       30a* 

Manufacture  of  juice  and  jellies  or  conserves  and  

from    fruits    or   like    vegetable    constituents.     (P) 
Bielmann  and  Bielmann         . .  . .  . .  . .       30A 

Marri   kino.     Salt  67a 

Martensite.     See  under  Steel. 
Massecuite.     See  under  Sugar. 

Match    compositions.    (P)    Pohl         789a 

compositions  ;    Treatment  of .     (P)  Fairburn,  and 

Diamond  Match  Co.  271A 

Matches ;     Purification   of   potassium    chlorate  for   use   in 

manufacture     of     .     (P)     Jurisch     and     Von 

Schleinitz  253a 

Matte  ;  Apparatus  for  treatment  of .    (P)  Hickey         . .     471a 

Mauritius  ;    Sugar  crop  of  . .  . .  . .  . .     354R 

Measured  quantities  by  volume  of  liquids  ;    Apparatus  for 

delivering  .     (P)  Moritz  969a 

Measuring  fluids  ;    Apparatus  for  .     (P)  Liese  . .     847a* 

Measuring  Instruments  Bill      . .  . .  . .  . .  . .     316R 

Meat,  canned  ;    Bacteriology  of  .     Savage  and  others     573R 

Chilling  and  freezing  .     (P)  Shaw  . .  . .     644a* 

Detection  of  commencement  of  putrefaction  of  . 

Tillmans  and  others  ..  ..  ..  ..     114a 

extract ;    Manufacture  of  dry  .     (P)  Chalas         . .     432a* 

foods  for  pigs  and  poultry  ;    Classification  and  valua- 
tion of  .     De  Whalley  211R 

Manufacture   of   cured   or   pickled  .    (P)    Wilson 

and  Co.  ..  ..  ..  ..  ..  ..     432a 

minced ;     Determination    of    added    water    In    . 

Grossfeld  . .  . .  . .  . .  . .  . .       74A 

Pickling  of in  brines  containing  potassium  nitrate' 

and  sodium  nitrite : 

Auerbach  and  Riess        606a 

pollak         606a,  912a 

powder  ;    Manufacture  of .     (P)  Remus  and  others     267a* 

[>p  jiurations,  especially  meat  with  a  high  content  of 

moisture  ;    Composition  of  .     Feder  . .     478a 

preservative ;    Manufacture  of  .     (P)  Heller         . .     154a 

PnsLTving  : 

(P)  Cholet  30A,  565A* 

(P)  Schnabel         267a 

Preserving  and  storing  .    (P)  Dunsford    . .         . .     192a 


SUBJECT  INDEX. 


177 


PAGE 

Meat — continued. 

product ;      Powdered     .     (P)     MacLacldan,     and 

Standard  Food  Products  Co.  . .  . .  . .       75a 

Treating for  curing  and  like  purposes.     (P)  Inter- 
national Meat  Smoking  Corp.  . .  . .  . .     564a 

Treatment    of    .     (P)    Alsop,    and    Packers    Meat 

Smoking  Corp.  ..  ..  ..  ..  ..     192a 

Meconic  acid ;    Determination  of  in  opium.     Annett 

and  Bose  242R,  835a 

Medical  Research  Council ;    Report  of  for  1920-1921      83R 

Medicine  ;    Hygienic  food  and  .     (P)  Richard  . .     567a 

Medicinal  solutions;    Production  of  oily .     (P)  Byk- 

Guldenwerke  Chem.  Fabr 688a 

Meerschaum,  artificial;    Manufacture  of .     (P)  Dcussing 

815a*,  939a* 

Meeting ;     Proceedings   of   the   forty-first   annual    In 

Glasgow  209T,  253T,  276R,  301R 

Megasse.    See  Sugar-cane  refuse. 

Melampyritol  ;    Presence  of  in  the  foliated  stems  of 

Melampyrum  arvense.     Bridel  and  llraecke  . .     517 

Melampyrum  arvense  ;  Presence  of  melampyritol  and  aucubin 

in  the  foliated  stems  of .     Bridel  and  Braecke     517a 

seeds  ;  Presence  of  aucubin  and  sucrose  in .     Bridel 

and  Braecke      . .  . .  . .  . .  . .  . .     727a 

Melanin  ;     Formation    of    from    organic    substances. 

Adler  and  Wieehowski  . .  . .  . .  . .     956a 

Meldola    medal    of    Institute   of    Chemistry  ;     Presentation 

of  98R 

Melilites  ;    Some  natural  and  synthetic  .     Buddington     141a 

Mellitiu  acid;    Occurrence  of  a  black  powder  yielding  

in  hollow  of  a  felled  oak.     Von  Lippmann  ..     117a 

and  its  production  from  carbon  by  oxidation  : 

Philippi      . .  . .  . .  . .  . .  . .     727a 

Philippi  and  Rie  . .  . .  . .  . .     727 A 

Philippi  and  Thelen        . .  . .  . .  . .     727a 

Philippi  and  others         . .  . .  . .  . .     727a 

Melting  point;    Relation  of to  boiling  point.     Lorenz 

and  Herz  . .         . .         . .         . .         . .         . .     885a 

pots.     (P)  McClain  and  Meier B86A 

pots  and  other  articles  to  be  subjected  to  heat ;    Iron- 
nickel  alloys  for  use  in  making  .     (P)  Hall..     179a 

Membrane  filters.     See  wider  Filters. 

Membranes ;      Preparation     of     flexible     collodion     . 

Looney  . .  . .  . .  . .  . .  . .     271a 

Memorial   to    Lt.-Col.    Harrison   and   other   fellows   of   the 

Chemical  Society  ;    Unveiling  of  the  war  . .     491R 

Mentha  aquatica ;    Essential  oil  of  .     Kremers  . .     647a 

Menthol;    Exports  of  from  Japan        ..  ..  ..     51  5r 

Manufacture  of from  eucalyptus  oils.     Smith  and 

Penfold  78a 

Menthone ;     Manufacture    of    from    eucalyptus    oils. 

Smith  and  Penfold      . .  . .  . .  . .  , .       78a 

Mercaptans  ;     Formation   of   from   alcohol.     Gilflllan     566a 

Mercaptothiazoles     as     vulcanisation     accelerators.     Bruni 

and  Roman i      . .  . .  . .  . .  . .  . .     601a 

Mercerisat ion  of  cotton.     (P)  Nelson  . .  . .  . .     291a 

and  spinning  ;    Inter-relation  of  .     Lowe  . .       54a 

of  yarns  in  hank  form  ;    Machine  for .     (P)  Copley     585a 

Mercerised  fabrics  ;    Fixing  and  washing  out  in  the 

piece.     (P)  Grunert  and  Schreiner  . .  . .       96a* 

Merchandise  marks  . .  . .  . .  . .  . .  . .       82r 

Merchandise  Marks  Bill  ..  ..  ..  ..      225R,  541R 

Mercuration  in  the  aromatic  series  : 

Mameli 876a,  876a 

Mameli  and  Mameli-Mannessier  . .  . .     875a 

Mercuric  chloride  ;    Action  of on  yeast.     Joachimoglu     679a 

Manufacture  of  .     (P)  Schantz        . .  . .  . .       58a* 

Mercuric  derivatives  ;    Indirect   method  of  preparation  of 

,  and  a  method  of  linking  carbon  to  carbon. 

Kharasch  ..         ..         ..         ..         ..         ..     117a 

Mercuric   methylarsinate ;     Preparation   of   and   of   a 

solution  of  this  salt  suitable  for  injection.     Picon       32a 

Mercuric  nitrate  ;    Use  of  instead  of  silver  nitrate  in 

determination  of  halides.     Kolthorf  and  Bak       . .     158a 
Mercuric  oxide  ;     Catalytic  influence  of  foreign  oxides  on 

decomposition  of  .     Kendall  and  Fucha        . .       98a 

Manufacture  of   .     (P)  Brusa,  and    Borelli    &    Co.       14a* 

Mercuric  oxycyanide  ;    Explosions  caused  by  .     Merck     346a 

Mercuric  perchlorate ;    Electrometric  titrations  with  . 

Kolthorf  730A 

Mercuridicarboxylic    acids    and    their    saponification    pro- 
ducts ;     Preparation   of   complex   esters   of   . 

(P)  Schoeller  and  Schrauth  34a 

Mercuri-nitro     compounds ;      Organic    .     Raiziss     and 

Proskouriakotf  390a 

Mercurous  salts  ;    Separation  of  silver  from .     Kolthoff     121a 

Mercury  drops  as  cathode  in  electrolysis.     Heyrovsky      . .     986a 

Electrolytic   oxidation   of   ■  in    sodium    carbonate 

solution.     (P)  Consortium  f.  Elektrochem.  Ind.  . .     754a 

Extraction  of  from  ores.     (P)  Codding    . .  . .     146a 

ointments ;    Examination  of  .     Evers  and  Elsdon     520a 

ore  in  China  . .         . .         . .         . .         . .         . .     484r 

Production  of  in   Russia  in   1921  . .         . .     246r 

Rapid  determination  of ■  in  its  ores.    Heinzelmaun      61a 


Mercury — continued. 

Reduction    of    ferric    salts    with    .     McCay    and 

Anderson,  jun. 
Regenerating  from   spent   catalysts.     (P)   Chem. 

Fabr.  Worms  A.-G. 
vapour  ejector  air  pumps.     (P)  A.-G.  Brown,  Boveri 

&  Co 

vapour  lamps.     See  under  Electric  lamps, 
vapour  pumps  for  high  vacua.    (P)  A.-G.  Brown,  Boveri 
&  Co.  

Mercury    chlorides ;      Oxidising    and    reducing    actions    of 
sulphur  dioxide  on  .     Stewart  and   Wardlaw 

Mercury  compounds  ;     Alkali  salts  of  oxidised  protalbinic 
and  lysalbinic  acids   as  stable  protective  colloids 

for .     <P)  "Wolvekamp 

compounds  ;    Extending  catalytic  activity  of  in 

oxidation  of  acetylene.     (P)  Griinstein  and  Berge 

Mercury  fulminate.     Rathsburg 

Pyrofulmin,     a     decomposition     product     of     . 

Langhans 

Velocity    of    decomposition    of    in    a    vacuum. 

Farmer 

Mercury   oxycyanide ;    Explosibility   of   .      Kast   and 

Haid 

Mercury-phenol ;     Acetates   and   hydroxides   of   and 

their  derivatives.     Mameli     . . 


.     Rhapsodies   culled 

Chemical    change    and 


PAGE 

140a 
232a 

698a* 

lA 

750a 

916a 

917a* 

121a 

234A 
199A 

789a 

518A 

253T 
434a 

417A 

505A 
62a 
221a 


Messel  memorial  lecture  ;  First  - 
from  the  thionic  epos, 
catalysis.     Armstrong 

Metacholesterol  and  its  by-products.     Lifschutz 

Metal  articles;    Coating  .     (P)  Gebr.  Jacob    .. 

articles  ;    Composite .     (P)  Steenstrup,  and  British 

Thomson -Houston  Co. 
articles ;    Depositing  a  metallic  coating  on  .     (P) 

Haines  and  others 
bearing- ;    Alloy  of  high  lead  content  for  .     (P) 

Goldschmidt  A.-G. 

bearing- ;    Frary  metal,  a  new  . .  . .  . .         8b 

bodies  ;    Manufacture    of   compound  .     (P)    Ortiz, 

and  General  Electric  Co 332a 

-coated  plates  or  sheets  ;   Machinery  for  manufacture  of 

tin,  terne,  and  other  like  .     (P)  James         . .     180a* 

crystals ;     Modification    of    powder    method    of   deter- 
mining structure  of  .     Owen  and  Preston     . .     562R 

hollow  ware  ;    Imports  of  . .  . .  . .     295R 

hydrosols  ;    Medicinal  use  of  protected  and  sig- 
nificance of  their  after-effects.     Voigt        . .  . .     483a 
objects  ;    Coating  with  a  layer  of  another  metal. 

(P)  Stalhane  and  Kring         767a* 

parts  ;    Repair  of  worn  by  electrodeposition.     (P) 

Ostwald  108A 

scrap ;      Melting    .     (P)     Clark,     and     Bridgeport 

Brass  Co 20a 

sheets  ;    Cover  carrying  a  depending  tube  for  use  of 

pyrometers     in     pots     for     annealing     .     (P) 

Lysaght,  and  Lysaght,  Ltd.  . .  . .  . .     147a* 

-spraying  process  ;    New  applications  of  Schoop's  399R 

surfaces  ;    Adsorption  of  salts  at .     Von  Euler  and 

Zimmerlund 938  a 

tools   and   the  like;     Manufacture  of  very  hard,   but 

ductile,  adapted  to  resist  mechanical  strrs>.  s. 

(P)  Lohmann 673a 

White  .     (P)  Hansen  943a 

white- ;    Rapid  analysis  of  .     Bertiaux     . .  . .     297a 

white- ;     Rapid    electro-analysis    of    .     Kling   and 

Lassieur  . .  . .  . .  . .  . .  . .     551a 

wire  ;    Fibrous  structure  in  hard  drawn  .     Ettisch 

and  others         . .  . .  . .  . .  . .  145a 


(P) 


F.li'ktrizitatswerk 

403a,  607a,  659a,  890a* 

798A 

with  an  acid-resisting  sub- 

767a 


Metaldehyde ;     Burner    for 
Lonza 
as  a  fuel.    Danneel 
Metallic  articles  ;    Coating  — 

stance.     (P)  Roth 

bodies  formed  from  powdery  materials  by  pressure  or 
sintering    and    not    previously    subjected    to    cold 

work  ;    Grain  growth  in  .     Sauerwald 

bodies  ;    Substance   between  the  crystallites  of  . 

Tammann 

constituents  ;    Recovery  of  from  a  mixture.     (P) 

Bishop  and  Mullen      . .  . .  . .  . .  . .     422a 

powders ;     Manufacture    of    .     (P)    Gillespie    and 

Buckley 

substances  ;    Constitution  of  .     Kraus 

surfaces  ;   Colouring .     (P)  Rondelli  and  others 

Metallising  porcelain,  pottery,   china,  and  like  electrically 
non-conductive  substances.     (P)  Marino 

Metalloids ;     Distillation   of   volatile   from  ores.     (P) 

Troeller  

Metallurgical  apparatus  : 

(P)  Donaldson 

(P)  Lund  

chemist ;     The    .     Streatfeild    Memorial    Lecture. 

Desch 

process.    (P)  Bradley         

products  ;       Preparatory      treatment      of      .     (P) 

Jackson  and  Co.  . .  . .  . .  . .      107a,  596a 

Metals  ;  Acceleration  of  solution  of in  acids  by  reducible 

compounds.    Prins      . . 554a 

M 


900a 
469a 


637a 
554a 
506a* 

103a 

765a 

986a 
597A 

478R 
673A 


173 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Metals — continued. 

Accurate   method    of   determining   hardness   of   , 

with  particular  reference  to  those  of  a  high  degree 

of  hardness.     Smith  and  Sandland  . .  . .     762a 

Action  of  nitric  acid  on ,  and  an  example  of  a  periodic 

reaction.    Ranerji  and  Dhar  . .         . .         . .     900a 

Analysis  by   positive  rays  of  the  gases  given  off  by 

deflagrated  .     Thomson  630A 

Annealing  .     (P)  Hilger,  Ltd.,  and  Twyman       . .     898a 

Annealing    and    other    heat    treatment    of   .     (P) 

Barron  and  Barron     . .  . .  . .  . .  . .     863a 

Apparatus  for  atomising  fusible  .     (P)  Hcrkenrath     717a* 

Apparatus  for  coating  with  metals.     (P)  General 

Electric  Co 379A 

Apparatus  for  deposition  of on  large  surfaces  by 

cathodic  projection.     Lambert  and  Andant         . .     636a 
Apparatus  for  determining  the  linear  shrinkage  and  for 

bottom-pouring  of  cast .     Johnson  and  Jones     817a 

Apparatus   for   electrodeposition  of  — — -.     (P)  Turton     298A 

Apparatus  for  refining .     (P)  Harris  . .  . .     821a 

Apparatus  for  thermal  analysis  of .     Chevenard     . .     220a 

Apparatus  for  utilising  heat  contained  in  after 

tempering   and    annealing.     (P)    De    Lavaud   and 

others 63a* 

bearing- ;  Alloys  for .     (P)  Goldschmidt     ..  ..     942a 

bearing- ;  Arsenical .     Roast  and  Pascoe    . .  . .     297a 

bearing- ;  Lead  alloys  for .     (P)  Mathesius  . .     470a 

bearing- ;  Manufacture  of and  the  like,  containing 

embedded  material  which  does  not  form  an  alloy 

with  the  metal.    (P)  Ising  and  Borofski      . .         . .     943a 

Behaviour  of  certain as  catalysts.     Sandonnini      . .     707a 

Behaviour  of  two towards  one  another  when  dis- 
solved in  mercury.     Tammann  and  Jander  . .     941a 

Beilby's  theory  of  amorphous  state  of .  Benedicks  . .     762a 

Brinell  machine  for  determining  hardness  of with 

attachment  for  use  with  small  specimens.    Camp- 
bell   762a 

Briquetting  turnings  and  scrap  of .     (P)  Walter     ..     766a 

Casting : 

(P)  Baer  und  Co.  . .  378a 

(P)  Hurst  221a 

Cathodic  deposits  of  pairs  of from  mixed  solutions 

of  two  simple  metallic  salts.     Creutzfeldt     . .  . .     332a 

Cleaner  for  and  method  of  cleaning .     (P)  Gravel!       822a 

Cleaning .     (P)  Gravell  63a 

Coating  with  metals  of  lower  fusing  point.     (P) 

Grinlinton  901a* 

Colloidal .     See  under  Colloidal. 

Composition  for  and  method  of  preventing  from 

rusting.     (P)  Gravell  822a 

containing  boron  ;  Manufacture  of .     (P)  Walter  . .       63a 

containing  graphite  ;   Manufacture  of .     (P)  Wich- 

mann 108a*,  258a 

Crystal  structure  of  solid  solutions  of .     Bain         . .     298a 

Determination  of  gases  in .     Simons  ..  ..     714a 

Development  of  surface  colours  on by  heating  in 

gases  and  vapours.     Tammann         . .  . .  . .     378a 

Diffusion  of  carbon  in and  mixed  crystals  of  iron. 

Tammann  and  Schonert         . .  . .  . .  . .     549a 

Diffusion  of  solid .     Sirovich  and  Cartoceti  . .        17A,  595a 

Dissolving  and  recovering .     (P)  Bardt         ..  . .     767a* 

Effect  of  impurities  on  rccrystallisation  and  gTain  growth 

in .     Smithe!l3 126r,  257a 

Effect    of   temperature,    pressure,    and     structure     on 

mechanical  properties  of .     Jeffries  and  Archer     941a 

Effect  of  temperature  on  the  properties  of .     Lea    . .     595a 

Electrolytic  apparatus  for  production  of  light .    (P) 

Seward  . .  . .  . .  . .  . .  . .       19a 

Electrolytic  cell  for  treatment  of .     (P)  Barth         . .     717a 

Electrolytic  deposition  of .     (P)  General  Electric  Co.     505a 

Electrolytic  extraction  of from  ores.     (P)  Allingham     146a 

Electrolytic  separation  of .     (P)  Langer       ..  ..     471a 

Extraction  of .     (P)  Browning  259a* 

Extraction  of from  their  compounds.     (F)  Freed- 

man  atid  Greetham 596a,  986a* 

Extraction  of from  ores : 

(P)  McKirahan  and  Fuller         766a 

(P)  Moxham         715a 

Failure  of  through  the  action  of  internal  stress 

irregularities.     Greenwood     . .  . .  . .  . .     105a 

Fatigue  of 568R 

ferrous  ;    Carburising  ■ .     (P)  Bonsor  and  Steenburg     673a 

ferrous  ;  Corrosion  of .     Hadfleld     . .  . .  . .     155R 

ferrous  ;  Improving .     (P)  Pacz        . .  . .  . .       19a 

Furnace  particularly  adapted  for  calorising  .     (P) 

Calorizing  Corp.  of  America    . .  . .  . .  . .     863a 

Furnaces  for  melting : 

(P)  Benjamin 107a 

(P)  Oehm  822a 

Grain-size  and  diffusion  in .     Andrew  and  Higgins     819a 

Heating  easily  fusible .     (P)  Kemp  and  Van  Horn  . .     221a 

of  hieh  melting  point ;    Removing  carbon  from  . 

(P)  Lohmanu 332a 

nydiogen*ion    concentrations    of    natural    waters    and 
some  etching  reagents  and  their  relation  to  action 

on .     Atkins  533R 

Influence   of  protective   colloids  on   corrosion   of  

Friend  and  Vallance     ..        '..  ..  ..  ..     378a 

Manufacture  of  electrodes  for  cutting .     (P)  Boorne     866a 

Manufacture  of from  their  sulphides.     (P)  Naef     . .     146a 

Means  for  testing  physical  properties  (elasticity  or  hard- 

oess)  of .     (P)  Pile  841a* 

Mechanical  properties  of as  affected  by  grain  size. 

Jeffries  and  Archer 941a 


PAGE 
Metals  —continued. 

Mechanism  of  failure  of from  internal  stress.    Hat- 
field          105A 

Metal lographie  investigations  on  cathodic  deposition  of 

on  aluminium  and  chromium.     Kyropoulos   ..       61a 

molten  ;  Removing  liquid  from  the  surface  of .   (P) 

Thermal  Industrial  and  Chemical  (T.I.C.)  Research 

Co.,  and  Morgan  . .  . .  . .  . .  . .     622a 

noble  ;    Recovery  of  from  electrolytic  slimes  and 

the  like.     (P)  Chikashige  and  Uno 472a* 

non-ferrous  ;  Cementation  of .    Sirovich  and  Carto- 

ceti         17a,  595a 

non-ferrous  ;   Effect  of  superheated  steam  on used 

in  locomotives.     Fowler         ..  ..  ..      417R,  819a 

non-ferrous ;    Gas  absorption  and  oxidation  of  . 

Woyski  and  Boeck        . .  . .  . .  . .  . .     553a 

non-ferrous ;      Production     of     electrically     insulating 

coatings  on .     (P)  Krupp  A.-G.  ..  ..     596a 

non-ferrous ;  Standardisation  of in  Germany         . .     294R 

Obtaining  electrolytic  deposits  of easily  detachable 

from  the  cathode.     (P)   Soc.   d'Electro-Chimie  et 

d'EIeetro-Metallurgie  821a 

Passivity  and  over-potential  of .     Evans     . .  . .       78r 

Phenomena  of  hardening  of and  their  generalisation. 

Guillet  297a 

Pickling  — —  : 

(P)  Hinckley         985a 

(P)  Vogel  986a* 

precious  ;    Cyanide  process  for  recovery  of  .     (P) 

Hahn 62a 

precious  ;    Cyanide  process  for  treating  ores  of  . 

(P)  Forbes         90U 

precious ;     Cyaniding   materials   containing  .     (P) 

Haun  and  Silver  . .  . .  . .  . .  . .       63a 

precious  ;    Recovery  of  from  ashes  and  residues. 

(P)  Drais  472A 

precious  ;  Recovery  of from  photograpluc  and  other 

trade-waste  solutions.     Gardner        . .  . .  . .     285R 

precious  ;   Recovery  of  pure  - — —  by  chlorination.    (P) 

Bennejeant       . .         . .         . .         . .         . .         . .     764a 

precious  ;   Treatment  of  ores  containing  volatile  metals 

and ,     (P)  Blei-  u.  Silberhutte  Braubach         . .     764a 

precious  ;   Welding  or  soldering  of to  other  metals. 

(P)  Maurer 765a 

Precipitation  or  segregation  in  liquid .     Kroll         . .     636a 

Preparation  of  finely  divided .     (P)  McGall  . .       20a 

Preparation  of by  Goldschmidt's  atuminothcrmic 

process.     Fujibayashi  ..  ..  ..  ..     595a 

Production  of in  1921  457R 

Production  of  glossy  metallic  coatings  on  .    (P) 

Classen  900a 

Production    of    mixtures    containing    ■ and    other 

materials,     especially     graphite.     (P)     Ising     and 

Borofski  " 506a 

Properties  of  cold-worked .     Jeffries  and  Archer     . .     984a 

rare  :  Manufacture  of .     (P)  Marden,  and  Westing- 
house  Lamp  Co.            . .  . .  . .  . .  . .     942a 

Recovering  or  dissolving  ■ — ■ — .     (P)   Bardt,  and   Soc. 

Hidro-Metalurgica        . .  . .  . .  . .  . .     716a 

Recovery  of from  alloys.     (P)  Kroll  . .  . .     822a 

Recovering  light from  scrap  : 

(P)  Chem.  Fabr.  Griesheim-EIektron    . .  . .     715A 

(P)  Hess 146a 

Recovery  of from  their  ores.     (P)  Leaver  and  Van 

Barneveld  379a 

Recovery  of from  silicates.     (P)  McClenahan         ..     766a 

Recovery  of  from  slag.     (P)  Welch,  and  Inter- 
national Precipitation  Co.       ..  ..  ..  ..     597A 

Recrystallisation  of produced  by  annealing.    Gau- 

bert        18A 

Reducing  ■ .     (P)  Bridge  471a 

Refining : 

(P)  General  Electric  Co.  763a 

(P)  Shimer  146a 

Relation   between  maximum  velocity  of  electro-depo- 
sition of  and  hydration  of  the  metallic  ions. 

Gunther-Schulze  469a 

Removing  carbon  from .     (P)  Sehiitz  ..  ..     469a 

Reverberatory  furnace  for  melting .     (P)  Sklenar  ..     221a 

Separating by  electrolysis.    (P)Hyhinette  ..       19a 

Separation  and  purification  of by  treatment  with 

gases.     (P)  Schertel  and  Arnold         901a 

Separation  and  recovery  of from  alloys.     (P)  Metatl- 

bank  u.  Metal lurgische  Ges.     . .  . .  . .  . .       62a 

Separation  of from  their  solutions  : 

(P)  Bardt  673a 

(P)  Bardt,  and  Soc.  Hidro-Metalurgica  . .     674a* 

Slip  interference  theory  of  hardening  of .    Jeffries 

and  Archer         219a 

Systems  in  which crystallise.     Haushton  and  Ford     291R 

Tearing  tests  on .     Heathcote  and  Whinfrey  . .     763a 

Theory  of  behaviour  of during  cold  drawing.   Heyn       18a 

Theory  of  hardening  of .     Honda      . .  . .  . .       18a 

Treatment  of : 

(P)  Goldschmidt  A.-G..  and  Schertel    ..  ..     864A 

(P)  Palmer  and  Palmer  986a 

Variation  of  mechanical  properties  of at  low  tem- 
peratures.    Guillet  and  Cournot        . .  . .  . .     220a 

Velocity  of  action  of  oxygen,  hydrogen  sulphide,  and  the 

luiouenson .   'Tammann  and  Koster    ..  ..      941a 

volatile  ;  Distillation  of from  ores.     (P)  Troeller    . .     765a 

volatile;   Recovering from  ores  etc.     (P)  Koppers     716a 

volatile;  Smelting  ores  of  readily .  (P)  Von  Zelewski     147a 

Wliite .    Mundey  and  others  . .         . .         ~     819a 


SUBJECT  INDEX. 


179 


PAGE 

Metals — continued. 

white  ;  Analysis  of .     Kling  and  Lassieur    . .  . .       17A 

X-ray  examination  of  inner  structure  of  strained . 

Ono        818a 

Methane  ;    Action  of  ozone  on  .    Wheeler  and  Blair    331t 

and  air  ;    Ignition  of  mixtures  of  by  a  heated 

surface.     Mason  and  Wheeler  . .  . .  . .     972a 

Chlorination  of  .     (P)  Holzverkohlungsind.  A.-G., 

and  Roka  916A 

Concentration     of     in     mine-damp.     Berl     and 

Schmidt  . .  . .  . .  .  -  . .  . .     972a 

Determination  of  small  quantities  of : 

Murmann  . .  . .  . .  . .  . .     650a 

Wollers 577a 

Fractional   combustion   of  hydrogen  and   mixed 

\\  ith  air.     Risehbieth  798a 

Manufacture  of .     (P)  Meister,  Lucius,  und  Briining       33a 

Oxidation    of    to    formaldehyde.     (P)    Thermal 

Industrial    and    Chemical    (T.I.C.)    Research    Co., 

and  Morgan      . .  . .  . .  . .  . .  . .     315a 

Production  of  a  gaseous  mixture  of  hydrogen  and : 

(P)  Colson  802a* 

(P)  Murray  819a 

Production    of    from    water-ga3.      Tropsch    and 

Schellenberg 166a 

Recovery  of  .     (P)  Jacobs  453a 

Removal  of  from  gases  for  filling  incandescence 

electric  lamps.     Fonda  and  Van  Aernem  . .     537a 

Use  of  in  steel  cylinders  as  fuel  and  starting  gas 

for  internal-combustion  engines.     Brown  . .     888a 

Methoxyl  groups  ;    Apparatus  for  determination  of  . 

Cumming  20T 

Methyl  acetate  ;    Mode  of  pyrogenic  decomposition  of 

at  high  temperatures.    Peytral       ..         ..         ..     196a 

Methyl  alcohol ;    Detection  of  .     Pfyl  and  others      . .       78A 

Detection  of  in  alcoholic  drinks.     Pool   . .  . .     871a 

Manufacture  of  .     (P)  Traun's  Forschungslabora- 

torium  <>s 438A 

Replacement  of  morphine  in  testing  for in  spirits. 

Pfyl  and  others  . .  . .  . .  . .  . .       73a 

jS-Methvlanthraquinone  ;    Derivatives  of   .      Eder  and 

Widmer  194a 

Methylarsinates  of  quinine  and  iron  ;    Solutions  of  

suitable  for  injection.     Picon  . .  . .  . .     117a 

Methyl  bromide  ;    Carbon  tetrachloride  and in  fire 

extinguishers.     Henning         . .  . .  . .  . .     218R 

Methvl   chloride  ;     Manufacture  of   hvdrochloric   acid   and 

.     (P)  Snelling 631a 

N-Methvl-3-dichloro-oxindole ;     Preparation    of   .    (P) 

Stolid 93a 

l-Methyl-A:*-dihydrobeuzene  ;  Manufacture  of  .      (P) 

Bayer  und  Co.  . .  . .  . .  . .  . .       35a 

Methyl    a-elaeostearate ;     Transformation     of      ■    into 

methyl  0-eIaeostearate.     Morrell       . .  . .  . .     328T 

Methylene  Blue.     See  under  Thiazine  dyestuffs. 

Methylenecitric  acid  ;    Preparation  of  .     Gastaldi       . .     G46a 

Methyl  formate  ;    Manufacture  of  .     (P)   Willkie,  and 

U.S.  Industrial  Alcohol  Co.  232a 

-y-Methylfructoside.    Menzies  . .         . .         . .         . .     992a 

a-Mi'thylglucosidase ;     Action    of    arsenic    compounds     on 

- .     Rona  and  others  . .  . .  . .  . .     7S2a 

Methylguanidine ;     Preparation    of     from    dicyano- 

diamide.     Werner  and  Bell  . .  . .  . .     876A 

MethvI-j3-naphthvlamine-6-sidphonic     acid.     Morgan      and 

Rooke  * IT 

Mothylretene ;     Conversion    of    abietic    acid    into    . 

Ruzicka  and  Meyer    . .  . .  . .  . .  . .     646a 

Methyl-sulphites  of  secondary  aromatic  aliphatic  amines ; 

Manufacture   of   .     (P)   Meister,   Lucius,   und 

Briining  786a,  878a* 

Methyl  Violet.    See  under  Tripheny  I  methane  dyestuffs. 

Metric  system;    Adoption  of  in  Russia  ..  ..       36R 

Mexico  ;    Mineral  production  of  in  1921  . .  . .     374R 

Mica  deposits  in  Austria  . .  . .  . .  . .  . .     455R 

and  the   like ;    Adaptation,   construction,  and  recon- 
struction   of    for    industrial    and    domestic 

purposes.     (P)  Crossley  . .  . .  . .  . .     102a 

Production  and  consumption  of ,  1913-1919       . .     200r 

sheets ;     Manufacture    of   refractory   from   mica 

waste.     (P)  Kertesz 756a 

in  U.S.A.  in  1920  453R 

Micanite   and  the  like ;    Recovery  of  varnish  and  other 

ingredients   from    waste   .     (P)    De    Whalley, 

and  Micanite  and  Insulators  Co.     . .         . .         . .     301a 

Mice  ;    Means  for  destruction  of  .     (P)   Bavaria  Ges. 

Fabrikations-  und  Export -Geschaft  . .  . .     193a 

Micro-analysis.     See  under  Analysis. 
Microbes ;    Action   of   secondary   radiation   of   X-rays   on 

.     Cluzet  and  others       ..  ..  ..  ..     914a 

Microchemical  tests  with  caesium  chloride.     Ducloux         . .       81a 
Micro- extraction  apparatus.     Laquer  . .  . .  . .     351a 

Micro-incineration.     Schoeller  . .  . .  . .  . .     691a 

Micro-Kipp  apparatus,  etc.     Schoeller  . .  . .  . .       81a 

Micro-Kjeldahl  method  of  determining  nitrogen.     Ling  and 

Price 149T 


Micro-organisms  in  industry.     Davies 

in  Uquids  ;    Destruction  of  .     (P)  Schreier 

Vitamin  content  of  in  relation  to  composition  of 

culture  medium.     Eijkman  and  others 
Mierosublimation  of  plant  products.     Viehoever 

Middlings  ;    Detection  of  adulteration  of  .     Bisbce 

Detection  of  ground  bran  in  .     Reed 

Milk  ;    Amino-acids  of  .     Pichon-A'endeuil 

analyses  ;  Application  of  theory  of  probability  to  inter 

pretation  of  .     Lythgoe 

analysis  by  senii-mierochemical  methods.     Luhrig 
Apparatus  for  collecting  ammonia  in  determination  of 

albumin  in  .     Meniere  and  De  Saint-Rat 

artificial  ;    Manufacture  of  preparations  of  .     (P) 

Habbema 

Casein  from  cow's .     Bleyer  and  SeidI 

Combined  action  of  orange  juice  and  raw  cow's 

as  antiscorbutic  substances.     Wright 
Composition  of  cow*s  in  the  Sudan.    Joseph  and 

Martin 

condensed  ;    Ageing  of  .     Viale  and  Rabbeno 

condensed  ;    Manufacture  of  : 

(P)  Roche  and  others 
(P)  Wallis  and  Martin 
curd  ;    Determination  of  proteins  of  whey  and  — 

mixtures.     Luning  aud  Herzig 

Milk  and  Dairies  (Amendment)  Bill 

Milk  ;  Decomposition  of  citric  acid  of  cow's  - 


-  by  bacteria, 


(P)    International    Dry-Milk    Co. 
MacLachlan,     and     Standard 


.  Nakayasu 
Rice   "and 

-^    (P) 


Manufacture    of 


Taylor 


Fonzes 


Kickinger 
Dehydrated    - 

and  Dick 
Desiccating    .     (P) 

Food  Products  Co 

Detection  of  soya-bean  protein  in  cow's  — 
Determination     of     peroxidase     in     

Hanzawa 
Device     for    atomising    and     evaporatin; 

Muller 

Diaetatic   power   of  raw   cow's  towards   various 

starches.     Weizmiiller 

Dissolving  dried  or  concentrated  .    (P)  Plauson 

dried ;     Determination   of   moisture   content   of  — 

Holm 

Effect  on  percentage  composition  of of  variations 

in  daily  volume  and  variations  in  nature  of  the 

diet.     Taylor  and  Husband 
from    Egyptian    goats ;     Fat    obtained    from 

Azadian 

Evaporating  pan  for  .     (P)  Rogers 

fat ;    Manufacture  of  — —  : 

(P)  Baker  and  Johnston 
(P)  Stevenson  and  Johnston 
food    preparations    containing    iron ; 

.     (P)  Stohr 

foods  ;    Analysis  of  .     Crichton 

goat's  ;    Non-protein  nitrogen  in  . 

goat's  ;  Simplified  molecular  constant  of 

Diacon 
Influence  of  diet  of  cow  upon  the  quality  of  vitamins 

A  and  B  in  the .     Kennedy  and  others     . . 

aud  the  like  ;  Condensing .     (P)  Merrell,  and  Merrell- 

Soule  Co. 
and  like  liquids  ;    Internally-heated  or  cooled  rollers,  es> 

pecially  for  drying,  heating,  or  cooling  .    (P) 

O'Connell  and  Kerr 

malted  ;  Determination  of  fat  in .     Keister. . 

Pasteurisation  of 

Pasteurising  .     (P)  Jensen,  and  Jensen  Creamery 

Machinery  Co. 
Physical  and  chemical  changes  of during  pasteurisa- 
tion.    Weinlig 
powder  ;   Desiccator  for .     (P)  Rew,  and  California 

Central  Creameries 

powder  ;  Manufarture  of : 

(P)  Heath  and  Washburn 
(P)  Roche  and  others 

preparations  ;    Manufacture  of  malted .     (P)  Felix 

Presence  of  amino-acids  in  cow's .     Hijikata 

Preservation  of .    (P)  Araoldi 

Preservation  of  by  small  quantities  of  hydrogen 

peroxide.     Muller         . .  . .  . .  . .      228Aj 

Production  of  dried  products  from .     (P)  Plummer 

and  Gray  

Production   of    lactic   ferment    culture   for   .     (P) 

Petersen  and  Coster 
products ;     Manufacture    of    .     (P)    Kinzer,    and 

Carnation  Milk  Products  Co.  

products  ;  Manufacture  of  condensed .     (P)  Mellott, 

and  By-Products  Revocery  Co 

Relation  of  fat  to  total  solids  not  fat  in .     Reiss     . . 

samples    for    analysis ;     Preservative    for    .     (P) 

Grindrod,  and  Carnation  Milk  Products  Co.  M 

sour  ;   Analysis  of .     Kling  and  Lassieur 

as   a   source  of   water-soluble  vitamin.     Osborne   and 

Mendel 

Soya  bean .    Remy 

Sterilising .    (P)  Nielsen 

synthetic  ;   Manufacture  of from  soya  beans.    (P) 

Domaschintzky 

Treatment  of .     (P)  Sinclair  

Value  of  urea  for  increasing  yield  of  from  cows. 

Voitz  and  others 

M 


341A 

874A 

154a 

994A 

682a 
515a 

266a 
387A 

605a 
681a 
834A* 

432a 
75a 

779a 


180 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY 


Milk — continued. 

Variations  in  bacteria  counts  from  as  affected  by 

media  and  incubation  temperature.  Supplee  and 
others  ..  ..  ..  ..  ..  ..     431a 

vinegar.     See   under  Vinegar. 

Volumetric    determination    of    added    water    in    . 

Kopatschek        . .  . .  . .  . .  . .  . .     431a 

Volumetric  determination  of  phosphates  in  and 

application  to  judging  of  milk.     Miiller       . .  . .     680a 

Millboard   and   similar   substances ;     Manufacture   of    

using  tanyard  refuse.    (P)  Masterm&n         ..         ..     665a 

Mlmusops  Elengi  seeds ;    Fatty  oil  from  .     Rau  and 

Simonsen  . .  . .  . .  . .  . .  . .     902a 

Mine  damp ;    Concentration  of  methane  in .     Berl  and 

Schmidt  ..  ..  ..  ..  ..  ..      972a 

water  ;    Nature  and  determination  of  acidity  of  acid 

coal  .     Selvig  and  Ratlitf         ..  .,  ..     359a 

Mineral  oils.     See  under  Oils,  Hydrocarbon. 

rubber.     North         . .  . .  . .  . .  . .  . .     224a 

waters.    See  under  Waters. 

Mineralogy;     Economic    .    Howe  ..         ..         ..       21  r 

Minerals ;    Heavy  liquids  for  separation  of  .     Clerici     596a 

stained  by  colouring  matters;    Bleaching  earthy  . 

(P)  Stubbs        590a 

Mines,  coal- ;  Safety  lamps  for .     ..  ..  ..      201r.  224k 

coal-;  Stone  dusting  of .     Sinnatt  and  others         ..     887a 

and  quarries ;    General  report  on ,  with  statistics, 

for    1920.     Part  III.     Output         105r 

Mining  experimental  station       ..  ..  ..  ..  ..     247R 

Mining  Industry  Act,  1920        134R 

Ministry  of  Health  ;   Extracts  from  annual  report  of for 

1921-22  376R 

Mirbune  oil.     See  Nitrobenzene. 

Mirrors:  Preparation  of  silver .     (P)  General  Electric  Co.     332a 

Mixed  acid.     See  under  Acid. 

Mixing  and  agitating  apparatus.     (P)  Kennedy  . .  . .     128a* 

apparatus : 

(P)     Grev  317a* 

(P)  Pfisterer  207a* 

(P)  Veitch  and  others 88a 

apparatus ;     Grinding   and   .     (P)    Maddox         . .     399a 

a  chemically  reacting  charge  ;  Apparatus  for  containing 

and .     (P)  Mahler  206a 

and  disintegrating  machines.     (P)  Gardner         . .      657a,  736a 

fluids;    Apparatus  for  .     (P)   Liese  ..  ..     S47a* 

of    fluids;     Means    for    effecting    intimate   .    (P) 

Bregeat  . .         . .         . .         . .         . .         . .         1a 

gases  or  vapours.     (P)  Helps         . .  . .  . .  . .     451a* 

and  grading  apparatus ;  Pulverising,  .     (P)  Clark 

and  others         . .  . .  . .  . .  . .  . .     845a 

granular    substances.     (P)    Krause         . .  . .  . .     240a* 

and  kneading ;    Method  and  apparatus  for .     (P) 

Lohmann  . .  . .  . .  . .  . .     240a* 

kneadiii'-',  Btirring,  and  beating  machines  ;  Apparatus  for 

actuating .     (P)  Zehnder  i>22a* 

and  like  machines.     (P)  Mclntyre         . .  . .  . .     620a 

liquid  with  powdered  materials;  Apparatus  for  con- 
tinuously   .     (P)   Edwards         279a 

liquids  of  different  temperatures  to  produce  a  mixture  of 

definite   temperature ;     Apparatus   for  .     (P) 

Levy 89a,  359a* 

liquids  with  dry  material.     (P)  Peterson  and  Sharp       . .     45lA 
machines.     (P)  Adams  and  others  . .  . .  . .     620a 

machines ;     Means    for    preventing    entry    of    material 

into  bearings  of  .     (P)  Brown  . .  . .     317a* 

and  other  purposes;  Apparatus  for  regulating  feed 
of  finely-divided  substances  for  .  (P)  White- 
head             927a* 

and  proportioning  of  graded  substances,  including  fuels 

and  the  like ;    Apparatus  for  feeding,  .     (P) 

Smith 501  a* 

refining,  and  grinding  machines.     (P)  Mclntyre         . .     796a 
solid    materials    with    liquids.     (P)    Cunningham,    and 

National  Aniline  and  Chemical  Co.  . .  . .     736a 

solid  materials  and  treating  them  with  gases  ;  Apparatus 

for .     (P)  Reinhard         736A 

Moisture  ;  Apparatus  for  determining .     (P)  Greenwood     486a 

Determination  of in  foodstuffs.     Stutterheim       . .     191a 

-  :  Determination  of  raffinose  in  beet .     Schecker     188a 

Exhaustibility  of  Java  cane  in  connexion    with 

its   composition.     Kalshoven  . .  . .  . .     776a 

Extraction  of  sugar  from  beet  by  a  modification 

of  the  baryta  process.     Manoury     . .  . .  . .     829a 

for  feeding  purposes.     De  Whalley         ..  ..  ..     169R 

Manufacture  of  barvta  for  treatment  of .     Deguide 

and  Baud         * 428a 

mother-syrups ;      Relationship    between    concentration 

and   purity   of   beet  .     Schecker         . .  . .       27a 

Nature  and  composition  of  cane .     Helderman       .  .       70A 

Preservation  of in  storage.     (P)  Owen,  and  Penick 

and  Ford,  Ltd.  604a 

Recovery  of  materials  from .    (P)  Olivarius         . .     188a 

Mole-  itiar  forces;  Soap  films  and .     Dewar        ..  ..       29R 

weight  :    Micro-method  for  determination  of  in  a 

melting-point   apparatus.     Rast 393a 

weight  of  substances  in  alcoholic  solution ;  Deter- 
mination of  from  elevation  of  the  flash- 
point.    Wright  1001a 


Moler  and  the  like;    Manufacture  of  a  material  from  

suitable    for    production    of    light    concrete.     (P) 
Dalhoff  and  Lunn 

Molten  metal ;    Immersing  solids  or  liquids  in  .     (P) 

Thermal  Industrial  and  Chemical  (T.I.C.)  Research 
Co.,  and  Morgan 

Manufacture    of    .     (P) 


PAGE 

178  a 

239A 

180a 
331a 

671A 

864A 
63a 

507A* 

146a 

108  A 
919A 
159  a 
504a 

548A 
99a 


Molybdenum    or    its    alloy>  , 
Becket  and  others 
-aluminium  alloys.     Reimann 

1>>  termination  of  small  amounts  of  in  tungsten 

Hall        

Electrolytic   treatment   of   materials   containing   . 

(P)  Pearson  and  others 
Extraction  of from  ores.     (P)  Hamilton,  and  Hamil- 
ton.  Beauchamp,   Woodworth.   Inc. 

Manufacture  of  or  of  its  alloys  with  iron.     (P) 

Ampere  Ges..  and  others 

ores  ;    Treatment  of  .     (P)  Kissock 

Recovering  from  molybdenite.     (P)  Sargent  and 

Weitzenkorn 
Reduction  with   lead   in  volumetric   determination   of 

.     Treadwell  and  others 

Separation  of  tungsten  and by  means  of  selenium 

oxychloride.     Merrill 

Use  of* for  improving  the  properties  of  aluminium 

alloys.     Reimann 

Molybdenum  carbide  ;   Manufacture  of  pieces  of of  any 

desired  size.     (P)  Lohmann- Metal  I  Ges.        ..     502a*, 

Molybdenum  oxide;    Manufacture  of  .     (P)  Robertson 

"Reduction  of .     (P)  Pearson  and  others      ..  ..     637a 

Molybdenum  trioxide  ;   Manufacture  of .     (P)  Weitzen- 
korn         99a 

Monazite ;     Attack    and    analvsis    of    .     Wenger    and 

Christin  707a 

in  the  Malay  Peninsula        . .  . .  . .  . .  . .     4S4R- 

sand  ;    Determination  of  thorium  in by  an  emana- 
tion method.     Helniick           . .          . .  . .  . .       96a 

Monel-metal ;     Thermal    expansion    of   .     Souder    and 

Hidnert  762a 

wires ;     Electrical    properties    of    .     Hunter    and 

others     ..  ..  ..  ..  ..  ..  ..     552a 

Monilia  tnacedoniensis ;    Use  of  the  mould  for  identi- 
fying iuulin  .     Castellani  and  Taylor  . .     992a 

Monoamino-acids ;     Detection   and   estimation   of  in 

proteins.    Engeland  . .         . .         . .         . .     515a 

Monoaminoacridine  ;    Manufacture  of  .    (P)  Akt.-Ges. 

fur  Anilin  fabr.  . .  . .  . .  . .  . .     458a 

Monoarylarsines  ;    Manufacture  of  dichlorides  of .       (P) 

Poulenc  Freres,  and  Oechslin  ..  ..  ..     232a 

Monobromocamphor  ;    Determination  of .     Eaton       . .     269a 

Monochlorotoluenes.     Wahl  and  others  . .  . .  . .     363a 

Monochlorourea ;     Preparation  of    cbiorhydrms   by    action 

of on  ethylenic  hydrocarbons.     Detoeuf         . .     196a 

Mononitrobenzoic  acids  ;    Application  of  Kjeldahl    method 

to .     Margosches  and  Vogel        ..         ..  518a 

Mononitrocinnamic  acids  ;    Application  of  Kjeldahl  method 

to .     Margosches  and  Vogel       . .  . .  . .     518a 

Mononitrophenols  ;  Application  of  Kjeldahl  method  to . 

Margosches  and  Vogel  . .  . .  . .  . .     518a 

Montan  wax  ;   Acids  of .     Tropsch  and  Kreutzer      20Sa,  659a 

Chlorination  of .     (P)  Deschauer       . .  . .  916a 

Colouring  constituents  of .     Marcusson  and  Smelkus    659a 

Extraction  of from  bituminous  coal.     (P)  Traun's 

Forschungslaboratorium    Ges.  . .  . .  . .     404a 

Manufacture  of  fatty  acids  from : 

(P)  Fischer  and  Tropsch  261a 

(P)  Mathesius 945a 

Production    of    from    lignite.    (P)    Riebeck>>  h-- 

Muntanwerke  A.-G 48a,  660a 

Production    of    solid    colloids    from    crude    .     (P) 

Last  and  Bohme         660a,  660a 

Mordant  dyestuffs.     See  under  Dyestuffs. 

Mordanting   with   alumina.     Bancroft  ..  ..  ..     666a 

wool  for  dyeing  with  Hsematin.     Craven         . .  . .     368a 

wool   with  "potash   alum.     Paddon         ..  ..  ..     978a 

wool  ;    Use  of  alumina  as  substitute  for  tin  in  . 

Grosheintz         290  a 

Mordants  for  basic  dvestuffs  ;    Manufacture  of  .     (P) 

Bayer   und   Co.  139a 

Chrome .     Bancroft 978a 

Morphine.    Speyer  and  Becker  ..         ..         ..         ..516a 

content  of  powdered  opium  ;    Loss  in  on  storage. 

Annett  and  Singh        . .  . .  . .  . .  ••74a 

Detection  and  determination  of in  animal  excreta 

and  organs.     Wachtel  ..  ..  ..  ..     116a 

Determination  of  .     Nicholls  . .  . .  . .     476R 

Determination  of  codeine,  narcotine,  and in  Indian 

opium.     Rakshit         . .  . .  . .  . .  . .       77a 

Determination  of in  opium.     Abraham  and  others    433a 

Kxportation  of . .  . .  . .  . .  . .     295R 

Manufacture  of  allyl  ether  of .     (P)  Von  Kere--zty 

and   Wolf  158a 

Manufacture  and  exports  of  ..  ..  ..     337R 

Regulation  of  manufacture  of ..  ..  ..     134R 

Mortar  and  the  like;    Production  of  waterproof .     (P) 

Winkler  503a 


SUBJECT   INDEX. 


181 


Mortar — continued. 

and  the  like  ;  Rendering suitable  for  use  in  stopping 

incursions  of  water  or  for  waterproofing  or  hydraulic 
or  like  purposes.     (P)  Winkler 

Process  for  making  impervious  and  increasing  its 

adhering  power  and  speed  of  setting.     (P)  Winkler 

Production  of  waterproof .     (P)  Badder  and  others 

Mortars,  cement- ;  Resistance  of to  abrasion.     Nitzsche 

Moth,  clothes-;    Researches  on  the .     Titschack 

Moths  ;  Protecting  wool,  fur,  and  other  materials  from . 

(P)  Bayer  und  Co 1 38A,  289a 

Motion   pictures.     See   Cinematograph. 

Motor  cars  ;    Gasoline  consumption  by .     Brown 

fuel;   Alcohol  as    

fuel  ;    Alcohol  as  : 

Barthe 

Howe 

fuel    containing   alcohol ;     Manufacture   of  .     fP) 

Stevens,  and  Chemical  Fuel  Co.  of  America 
fuel  from  maize  in  South  Africa 

fuel  ;  Manufacture  of : 

(P)  Alexander,  and  Gulf  Refining  Co. 
(P)  Chem.  Fabr.  Worms 

(P>  Ellis,  and  New  Jersey  Testing  Laboratories 
(P)  Ramage,   and   Chemical   Research   Syndi- 
cate, Ltd. 

(P)  Rohrs 48a, 

(P)  Schreiber,  and  U.S.  Industrial  Alcohol  Co. 
(P)  Stevens,  and  Chemical  Fuel  Co.  of  America 
fuel  ;   Manufacture  of for  aeroplanes.     (P)  Schrei- 
ber. and  U.S.  Industrial  Alcohol  Co.  . .        6a*, 

fuel  ;    Manufacture  of  alcohol  in  the  Philippine 

Islands.     Cole 
fuel  ;    Manufacture  of  alcohol-ether  mixtures  for  use  as 
— — .     (P)  LichteiitharltT 

fuel;  Manufacture  of  composite .     (P)  Foster 

fuels  and  their  mixtures  with  air  ;   Total   sensible  heats 

of .     Wilson  and  Barnard 

fuels ;     Physical    properties   of   ■ .      Ormandy   and 

Craven 

fuels  ;  Rapid  evaluation  of . 

fuels  ;  Report  on 

oils  ;   Manufacture  of : 

(P)  Boileau,  and  Pittsburgh  Oil  Refining  Corp. 

(P)  Tern  

spirit.     <P)  Burnelland  Dawe 

spirit  ;    Method  of  fractionating  liquid  mixtures  and  its 

application  to  preparation  of  a .     Mariller 

spirit  ;    Production  of  from  higher-boiling  petro- 
leum.    (P)  Chamberlain,  and  Standard  Oil  Co. 
spirit ;  Production  of  — —  from  low-temperature  tar  from 
coal  or  lignite,  and  conversion  of  the  phenols  or 
creosote  into  benzol.     Fischer 

transport ;  Report  on  fuel  for 

Motors  ;  Adjustment  of  carburettors  of by  gas  analysis. 

Fieldner  and  .Tones 

Fuel-efficiency  in  liigh- compression . 

Moulded  articles  :    Manufacture  of  an  aggregate  for  making 
.     (P)  American  Aggregate  Co. 

Moulding  sands  for  iron  foundries  ;  Factors  influencing  grain 
and  bond  in . .         .     Holmes 

Moulds;  Brewing  beer  by  means  of .     (P)  Dubourg 

Synthesis  of  fats  by  means  of  enzymes  from .  Haelin 

Moulds  of  peat  and  plaster.     (P)  Kampshoff   . . 

Mucie  acid  ;   Methylation  of .     Karrer  and  Peyer 

Position  of  under  the  Safeguarding  of  Industries 

Act  

Production  of from  wood.     (P)  Acree 

Mucor   Tacemosiis ;     Invertase   of  .     Kostytschew   and 

Eliasberg 

Muffle  furnaces.     See  under  Furnaces. 

Mulberry  juice  ;  Fermentation  of .     Bertolo 

Muscarine  ;  Isolation  of the  potent  principle  of  Amanita 

7nuscaria.     King 
Muscle  ;   Effect  of  cold  storage  on  carnosine  content  of . 

Clifford 

Organic  bases  of 


417a 

466a 
16  a* 
375a 

892A 

,541a 

510R 
354R 

371R 
79R 

537A* 
422R 

321A 

321A 
404a 

321A 

741 A 

48a 

494A 

802A* 

973a 

974a 
5a 

3a 

96R 
421 R 
223R 


Muscles 


Materials  extracted  from 
the  flesh  of  swine.    Smorodincev 


Museum  ;  Chemistry  in  the .     Lucas 

Mushrooms  ;    Spice  powder  from .    Sabalitschka  and 

Riesenberg 

Mustard  ;    Determination  of  allyl  isothiocyanate  in  . 

Luce  and  Doucet 

Mustard-gas  ;   Protection  against .     Desgrez  and  others 

Mustard-oil,  Allyl .    See  Allyl  isothiocyanate. 

Mutton;  Autolysis  of .    Fearon  and  Foster 

Myoporum  platvcarpum  ;     Composition   of   exudation  from 
.     Steel 

Myrica  Gale  ;  Essential  oil  of .     Schoop 

Myrintka  bicuhyba  s.  officinalis  seeds  ;   Fat  from .    Wolff 

Myrobalans  ;  Report  of  Indian  Trade  Inquiry  on 

Report  on  trade  in  Indian 


3a 

48a 

46A 
13R 

622a 
79R 

15A 

763a 

2SA 
260A 

329a 

645a 

147R 
916a 

265a 

265A 
875A 
606a 

953a 

23R 

343a 

515a 
100R 

993a 

386a 

610a 

21a 

51  2r 
539R 


N 

PAGE 

Naal  oil.     See  under  Oils,  Essential. 

Naphtha  and  the  like  ;    Recovering  and  re-condensing . 

(P)  Burrell  and  others  494a 

solvent-  ;    Cracking  .     (P)  Dodge,  and  Barrett  Co.     322a 

solvent-;    Production  of  sodium  phenoxide  in  washing 

.     Gluud  and  Schneider  169a 

Naphthaflavindulines,   dyestuffs  derived  from   phenanthra- 

quinone.     Dutt  . .  . .  . .  . .  . .     852a 

Naphthalene;  Ethylationof .     Milliganand  Reid         ..     245a 

-formaldehyde  condensation  products ;    Preparation  of 

and  their  suitability  for  the  varnish  industry. 

Folchi 720a 

Heat  of  combustion  of  .     Swietoslawski  and  Star- 

czewska  790a 

Manufacture  of   condensation  products  from   glycollic 

acid  and .     (P)  Elektroehem.  Werke  Ges.,  and 

others 676a 

Nitration  of in  a  basic  or  neutral  medium.  Battegav 

and  Brandt S91a 

Purification  of : 

(P)  Andrews  and  others  ..  ..  ..     539a 

(P)  Goidd.  and  Barrett  Co 662a,  891  a* 

Role  of  mercuric  nitrate  in  catalysed  nitration  of . 

Davis 690a 

Vapour  pressure  of between  its  melting  and  boiling 

points.     Nelson  and  Sensemau  134a 

Wash   oils  for  removing   benzol  and  from  gas. 

Pannertz  ..  ..  ..  .,  ..  ..     241a 

Naphthalenecarboxylic  acids  ;  Reduction  of .     Weil  and 

Ostermeier         . .  . .  . .  . .  . .  . .       93a 

Naphthalene-2.7-disuIphonic  acid  ;    Identifying  H-acid  and 

its  intermediates  obtained  from .     Lynch         . .     933a 

a^-Naphthalene-iminazole-6-sulphonic    acid.      Morgan    and 

Rooke 2t 

Naphthalenes  ;    Hvdrogenated  and  their  derivatives. 

Schroeter  and  others  . .  . .       133a,  133a,  133a 

Naphthalenesul phonic  acids  as  agents  for  hvdrolvsing  fats. 

Trepka  719a 

Solubilities  of  some  aruino-salts  of .     Wales  . .     407a 

Naphtha'  sulphonic  acids  produced  in  the  refinim:  of  mineral 

oils  with  acids  ;   Extraction  of .     (P)  Oelwerke 

Stern-Sonneborn  A.-G.  . .  . .  . .  . .     850a 

Naphthasultonesulphonic   acid   chlorides ;     Manufacture   of 

.     (P)  Kalle  und  Co 134a 

Naphthenic  acids ;    Isolation  of  pure  from  waste  lyes 

of   neutral   petroleum   distillate   refining.     Tanaka 

and  Nagai  ..  ..  ..  ..  ..  ..     973a 

and  their  salts  from  petroleum  refining  ;   Purification  of 

.     (P)  Thieme 6a 

Technical    purification    of    crude    .     Burstin    and 

Spanier  . .  . .  . .  . .  . .  . .  . .       46a 

2.3.21.3I-Naphthindigo.     Fierz  and  Tobler 625a 

^(•ri-Naphthindigo  ;    Attempts  to  prepare  .     Fierz  and 

Sallmann  . .  . .  . .  . .  . .  625a 

Naphthoic  acid  sulphonimides  ;  Isomeric ,  a  contribution 

to  the  theory  of  dulcigenic  groups.     Kaufmann  and 
Zobel 608a 

£-Naphthol ;   Detection  of  in  foods,  spices,  and  bever- 
ages.    Kinugasa  and  Tatsuuo  . .  . .  . .     387a 

Naphtholcar  boxy  lie  acids  ;    Reduction  of  .     Weil  and 

Ostermeier         . .  . .  :  . .  . .  93a 

1.4-Naphtholsulphonic    acid  :     Manufacture    of    .    (P) 

British  Dyestuffs  Corp.,  and  others  ..  ..     933a 

1.8-NapthosuItam  and  its  N-methyl  derivative  as  azo  com- 
ponents.    Konig  and  Kbhler  . .  . .  . .     663a 

1.8-Naphthosultam-4-sulphonic  acid  and  certain  of  its  deriva- 
tives.    Konig  and  Keil  . .  . .  . .  . .     663a 

Naphthotliiam  Blue.     Reissert  364a 

1.2-Naphtho-/>-tolyltriazoIe-azo-/3-uaphtho!.      Morgan     and 

Chazan  . .         . .         . .         . .         . .         . .         It 

Naphthylamine  salts  of  naphthalenesulphonic  acids  ;    Solu- 
bilities of .     Wales  ..  ..  ..  ..     407a 

a -Naphthylamine  ;  Electrolytic  oxidation  of .     Ono     . .     804a 

/3-Naphthylamine  ;  Analysis  of .     Lee  and  Jones  ..     932a 

Preparation  of  from  naphthalene-0-sulphonic  acid 

without     isolation    of     intermediate      jS-naphthol. 
Campbell  364a 

Naphthylamines  ;  Manufacture  of  resinous  condensation  pro- 
ducts from .     (P)  Meister,  Lucius,  und  Bruning     382a 

Naphthylglycines  ;    Behaviour  of  azo  dyestuffs  from  . 

Fierz  and  Sallmann      . .  . .  . .  . .  . .     625a 

/3-Naphthyl  methyl  nitrosamine-6  -sulphonic      acid.      Morgan 

and  Rooke         2t 

Narcotics  ;   Action  of  quinine  and on  invertase.     Rona 

and  others         . .  . .  . .  . .  . .  . .     782a 

Narcotine  ;    Determination  of  morphine,  codeine,  and 

in  Indian  opium.     Rakshit     . .  . .  . .  . .       77A 

Estimation  of  papaverine  and in  opium.     Annett 

and  Bose  . .  . .  . .  . .  . .  . .     475R 

Natal.     See  under  South  Africa. 

Natalite  ;  Manufacture  of in  South  Africa  ..  ..       79R 

National  expenditure  ;  Curtailment  of . .  . .     104r 

Nauli  gum,  a  new  oleo-resin         . .  . .  . .  . .  . .     374a 

Neat's  foot  oil.     See  under  Oils,  Fatty. 


182 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Nematodes;    Preventing  damage  to  plants  by  .    (P) 

uberg --         ..  "23a 

Neosalvarsan  ;  Estimation  of  sulphate  in .     Elvove      ..  608A 

Toxicity  of .     Hart  and  Payne          518a 

Xepeta  japoniea  ;    Essential  oil  of  .    Murayama  and 

Itagaki  118a 

Nephelectrometer ;  The .     Kugelmass 730a 

Nephelometer ;  Theory  of  the .     Wells  ..  ..     310a 

with  a  constant  standard.     Weinberg      ..  ..  ..     235a 

Nessler's  reagent ;  Application  of to  characterisation  of 

ketones  and  determination  of  aldehydes.    Bougault 

and  Gros  . .  . .  . .  . .  . .     646a 

Netherlands;  Bottle-making  industry  in ..  ..       17k 

Margarine  industry  in . .  . .  . .  . .       62R 

Report  on  economic,  financial,  and  industrial  conditions 

of  the .     Laming  297R 

Salt  deposit  in 314R 

Sugar-beet-crop  of . .  . .  . .  . .  . .     133R 

Superphosphate  factory  in . .  . .  . .       35r 

Netherlands  East  Indies  ;  Petroleum  out  put  in ..     159R 

Report  on  the  economic  situation  in  the .     Bluett  . .     458r 

Nettles  ;    Manufacture  of  textile  fibres  from  stems  of . 

(P)  Eister  541a 

Newfoundland  ;    Report  on  trade  and  industrial  resources 

of .     Edwards 250r 

New  Hebrides  ;  Sulphur  in  the . .  . .  . .  . .     102r 

New  South  Wales.     See  under  Australia. 

New  Zealand  ;  Discovery  of  franklinite  in . .         . .     398R 

Manufacture  of  pig  iron  in ..         ..         ..         ..     351R 

Trade  of in  1921  575R 

Nichrome  ;  Autogenous  weldine  of .     (P)  Ver.  Deutsche 

Nickel- Werke  258a 

Nickel  alloy  for  forging  steel  ;    Manufacture  of  .     (P) 

Burrows  . .  . .  . .  . .  . .  . .     763a 

alloys.     (P)  Jones,  and  Sylvette,  Ltd 942a 

and  its  alloys  ;  Electrolyte  for  use  in  deposition  of . 

(P)  Marino         145a 

alloys  winch  maintain  their  rigidity  over  a  wide  range  of 

temperature.     Chevenard       . .  . .  . .  . .     863a 

Analysis  of  technical .     Breisch  and  Chalupny       . .     504a 

Analytical  problems  in  metallurgy  of .     Lathe       . .     270T 

catalysts  ;    Action  of  copper  in  promoting  activity  of 

in  hydrogenation  of  oils.     Armstrong  and  Hil- 

ditch 903a 

-chromium   alloys  ;     Expansion   of  over  a   wide 

range  of  temperature.     Chevenard  ..  ..     144a 

-chromium  steel.     See  under  Steel. 

-cobalt  ores ;    Treatment  of  arsenical  .     (P)  Wes- 

cofefc,  aud  Kalnius,  Comstock,  and  Wescott  . .     258a 

Concentrated  hydrochloric  acid  as  metallographic  etch- 
ing reagent  for .     Rawdon  and  Lorentz  . .       17a 

-copper  matte  ;  Treatment  of : 

(P)  Haglund  379a,  555a* 

(P)  Hybinette 864a* 

-copper   ores   of   the    Rustenburg    district,    S.    Africa. 

Ortlepp  899a 

depositing  solutions  ;   Acidity  of Thompson       . .     469a 

deposition;    Application  of  contract omoter  to  study  of 

.     Vuilleumier  . .  . .  . .     862a 

Detection   and    determination   of   small    quantities   of 

in  silicate  rocks.     Hackl  . .  . .  . .     443a 

Determination  of  small  quantities  of  zinc  in  technical 

■ .     Breisch  and  Chalupny  . .  . .  . .     256a 

Determination  of in  steel: 

Rubricius  ..  ..  ..  ..  ..     144a 

Simion  . .  . .  . .  . .  . .     504a 

Effect   of  impurities  in  nickel   salts  used  for  electro- 
deposition  of .     Thompson  and  Thomas  . .     S62a 

Electrometric  determination  of with  silver  nitrate. 

Miillcr  and  Lauterbach  962a 

Extraction  of  aluminium  and  from   Cuban  iron 

ores.     Haywaxd  . .         . .         . .         . .         . .     219a 

Gravimetric  determination  of  as  nickel  dioxide. 

Vaubel  962a 

Influence  of  superposed  alternating  current  on  deposi- 
tion and  solution  potential  of .     Kolilschlitter 

and  Schddl        . .  . .  . .  . .  . .  . .     636a 

-iron  alloy  for  use  in  making  melting  pots  and  other 

articles  to  be  subjected  to  heat.     (P)  Hall  ..     179a 

Manufacture  of  agglomerates  of  pure from  crude 

nickel  oxide.     (P)  Soc.  Anon.  "  Le  Nickel"  ..     765a 

Manufacture  of  from  nickel-car bonvl.     (P)  Fierz 

and  Pryor  943a 

Manufacture    of    pure    ■ .    (P)    Soc.    Anon.    '"  Le 

Nickel  "  943a 

Manufacture  of  pure from  impure  nickel  sulphate. 

(P)  Giinther  864a 

or  nickel-rich  alloys  ;    Manufacture  of  from  low- 
grade  nickel-iron  alloys.     (P)  Stern  ..  ..     765a 

ores;  Treatment  of .     (P)Burnv.  ..  ..     765a 

-plating  ;  Treatment  of  aluminium  before .     Tassilly     984a 

Presence  of  in  arable  soil.     Bertrand  and  Mok- 

ragnatz  641a 

Presence  of  cobalt  and  in  plants.     Bertrand  and 

Mokragnatz 873a 

and  rich  nickel  alloys  ;    Autoccnous  welding  of . 

(P)  Ver.  Deutsche  Nickel-Werke  ..        ..     258a 

-silvers ;     Mechanical    properties   of   .     Thompson 

and  Whitehead  256a 


Kohlschiitter 


Nickel — continued. 

Structure     of     electro-deposited     - 
and  Schodl 

Thermal  expansion  of .    Souder  and  Hidnert 

Use  of  granulated  for  electric  heating.     Donv- 

H6nault  

wires ;     Electrical    properties    of    .     Hunter    and 

others 

Nickel  hydroxide  ;  Preparation  of  colloidal  solutions  of 

and  some  other  compounds  of  nickel.    Tower  aud 
Cooke 

Nicotine  ;    Determination  of  in  tobacco  and  tobacco 

smoke.    Popp  and  Contzen 
Nicotinic   acid    alkyl    esters ;     Manufacture   of    quatenary 

ammonium  salts  of .     (P)  Wolffenstein 

dialkylamides ;     Manufacture    of    .     (P)    Soc.    of 

Chem.  Ind.  in  Basle  . .  . .  . .      68Sa, 

Ninhydrin.     See  Triketohydrindene. 

Niobium ;    Reduction  with  cadmium  for  volumetric  deter- 
mination of .     Treadwell  and  others 

Nipa-sugar.    See  under  Sugar. 

Nirvanol.     See  4-PhenyI-4-ethylhydantoin. 

Nitral ;  Biological  action  of and  its  bearing  on  hygiene 

of  nutrition.     Bart 

Nitranilinarsinic     acid.    See     5-Nitro-2-aminophenylarsinic 

acid. 

Nitrate  deposit  in  Chile  ;   Reported  new 

explosives.     See  under  Explosives. 

industry  in  Chile. 

nitrogen  in  urine  etc.  ;    Detection  and    determination 

of .     Nolte  

trade  of  Chile 
See  also  Sodium  nitrate. 
Nitrates  ;    Colorimetric  determination  of  in  coloured 

water  extracts  of  soils.     Emerson 
Determination  of ■  by  means  of  reducing  action  of 

ferrous  hydroxide.     Miyamoto 
Determination  of  nitrite  nitrogen  in  presence  of  . 

Mach  and  Sindlinger 

Electrochemical  production  of .     (P)  Plauson 

Nitrometer  method   for  determination  of  nitrogen  in 

.     Webb  and  Taylor 

Treatment  of  ,  especially  those  used  for  fertiliser 

purposes.     (P)  Browning  and  Boorman 

Nitration;  Apparatus  for .     (P)  Juer 

of  aromatic  substances ;    R6Ie  of  mercuric  nitrate  in 

catalysed .     Davis 

of  hydrocarbons  in  a  basic  or  neutral  medium.     Battegay 

and  Brandt 
processes  ;    Purification  of  emulsified  reaction  mixtures 

obtained  in .     (P)  Bayer  und  Co. 

products  of  unsaturated  gaseous  hydrocarbons  ;   Separa- 
tion of  from  mixed  acids.     (P)  Chem.  Fabr. 

Kalk,  and  Oehme 
Purifying  spent  acid  from .     (P)  Sprengstoff  A.-G. 

Carbonit 


-at  12 


Saxton 


Nitre-cake  ;  Recrystallisation  of 
See  also  Sodium  bisulphate. 
Nitric  acid  absorption  towers.     Hall  and  others 

Action  of on  metals,  and  an  example  of  a  periodic 

reaction.     Banerji  and  Dhar 

Air  bleaching  of .     Whitman  and  Evans 

Apparatus  for  purification  of  .     (P)   Tozier,  and 

East  man  Kodak  Co. 
Concentrating  aqueous  sulphuric  acid  solutions  derived 

from  concentration  of .     (P)Frischer   .. 

Converting  nitrous  gases  into  concentrated  .     (P) 

Norsk  Hydro-Elektrisk  Kvaelstofaktieselskab 
Determination  of in  drinking  water  by  Mayrhofer's 

m<  thod.     Reuss 
Distillation  of  aqueous  and  of  its  mixtures  with 

sulphuric  acid.     Berl  and  Samtleben 
Economic  production  of  oxidation  reactions  in  factories 

where is  synthesised.     Matignon 

Electrolytic  concentration  of  aqueous  solutions  of . 

Creighton 

Fixing  synthetic .     (P)  Buchner        

fumes  ;    Recovery  of  waste  from  manufacture  of 

nitrocellulose  etc.     (P)  De  Sveshnikoff 
Heat  developed  on  mixing  water,  sulphuric  acid,  and 

.     McDavid 

Minufacture  of : 

(P)  Guye,  and  Gros  et  Bouchardy 
(P)  Reid,  and  International  Nitrogen  Co. 
Manufacture  of  concentrated  .     (P)  Norsk  Hydro- 

Elektrisk  Kvaelstofaktieselskab  ..  . .  .. 

Manufacture  of  highly  concentrated .     (P)  Frfscher 

Manufacture  of  manganese  dioxide  and .     (P)  Reed 

and  Berryhill 
Manufacture  of  pure .    (P)  Rhenania  Verein  Chem. 

Fabr 

Manufacture  of at  the  U.S.  Government  explosives 

plant  C,  Nitro.  W.  Virginia.     Chase 
Nitrometer  method  for  determination  of  nitrogen  in . 

Webb  and  Taylor         

Organic  impurities  in  commercial  and  their  effect 

in  manufacture  of  nitroglycerin.     Crawford 
Recovering  nitrous  vapours  in  the  form  of  aqueous . 

(P)  Guye,  and  L' Azote  Francais 


636A 

762a 

768A 
552A 

980a 
995a 
158a 
877A 

919a 

725a 

102r 

460R 

650a 
226R 


908a 
638a 


562A 

918a 

690a 
891a 
310a 

441a 

350a 
412a 


fMOA 

895a 

85SA 
13A 
502a* 
4S0a 
461A 
585A 

172A 

SUA 

271A 

246T 

253a* 
141a 

545A 

9Sa 

463a 
327a 
666a 
362T 
321T 
982A 


SUBJECT  INDEX. 


183 


Carpenter  and 
291a, 

by  means  of  gaseous  explo- 


Nitric  acid — continued. 

solutions  ;    Concentrating  dilute 

Babor 
Technical  synthesis  of 

sions.     Hausser 
Valentinex  system  for  manufacture  of  — 
Vapour  pressures  of  aqueous  solutions  of 

and  Taylor        

Nitric  esters  :  Action  of  the  Grignard  reagent  on 

worth 
esters  ;    Determination  of  nitrogen  in  

and  others 
esters  of  ethvleneglveol  and  its  homologues  ;    Manufac- 
ture of .     (P)  Chem.  Fabr.  Kalk.  and  Oehme    . . 

esters  ;   Recovery  of  mixed  acid  in  manufacture  of . 

(P)  Hamburger 
Nitric  oxide  ;    Comparison  of  methods  for  determination  of 

.     Klemenc  and  Bunzl 

Oxidation  of and  its  catalysis.     Burdick 

Peroxidation  of .     Briner  and  oth.rs 

Reaction  between  boron  nitride  and  metallic  oxides  with 

production  of .     Sborgi  and  Nasini 

Nitrides  of  aluminium,   magnesium,   calcium,  boron,  etc.  ; 

Manufacture  of .     (P)  Kaiser 

Manufacture    of    .     (P)    Chem.    Fabr.    Griesheim- 

Elektron 
of  metals  ;   Rate  of  formation  of  some  .     Tam- 

mann 

Nitrites  ;  Detection  of .     Falciola  

Detection  of by  means  of  pernitric  acid.    Trifonow 

Determination  of by  means  of  reducing  action  of 

ferrous  hydroxide.     Miyamoto 
Determination  of  in  "presence  of  nitrates  and  of 

total    nitrogen    in    fertilisers    containing    nitrites. 

Mach  and  Sindlinger 

Iodometric  determination  of .     Lombard     .. 

Nitro-alcohols  ;   Preparation  of  ethers  of  aromatic .   (P) 

Schmidt  and  Bajen 

Nitroamines  ;  Preparation  of  aromatic .     (P)  Haas,  and 

Soc.  Chim.  de  la  Grande  Paroisse 
Nitroamino-base  for  manufacture  of  azo  dyestuffs.    Koechlin 
5-Nitro-2-aminophenylarsinic    acid  ;     Preparation    of   . 

Nijk        

p-Nitroaniline  ;  Determination  of .     Callan  and  Hender- 
son 
Manufacture    of    from    p-nitioacetanilide.    (P) 

Easai,  and  Mitsui  Mining  Co. 
Nitrobenzene  ;  Action  of  sodium  sulphite  on .  Seyewetz 

and  Vignat 

Detection  of in  benzaldehyde  : 

Hasse 

Reclaire      ..  

p-Nitrobenzene-6-azo-5-amino-1.2-naphtlio-;)-toIyltriazole. 

Morgan  and  Chazan 

Nitrocellulose;  Apparatus  for  making .     (P)  Kendall    .. 

Automatic   and    continuous   production   of   .     (P) 

Von  Vajdafy 
Behaviour  of on  heating  with  water  under  pressure. 

Logothetis  and  Gregoropoulos 
and  cellulose  ether :    Composition  containing and 

solvent  for  use  therein.     (P)  Carroll,  and  Eastman 

Kodak  Co 

Changes  undergone  by .     Angeli 

composition  for  films.     (P)  Sulzer,  and  Eastman  Kodak 

Co 

compositions  ;  Apparatus  for  treating with  solvent 

vapours.     (P)  Underwood  and  others 
compositions ;     Manufacture    of    coloured    .     (P) 

Malone,  and  Eastman  Kodak  Co. 
compositions ;     Manufacture    of    compound    sheets    of 

waterproof  .     (P)  Claessen 

Dehydrating  and  reducing  the  fire  risk  of  .     (P) 

Seel,  and  Eastman  Kodak  Co. 

Dissolving  .     (P)  Koln-Rottweil  A.-G 

as  emulsifying  agent.     Holmes  and  Cameron 
Increasing    the    softness    and    elasticity    of    artificial 

fabrics  containing  .     (P)  Chem.  Fabr.  Weiler- 

ter  Meer 
Manufacture  of  compound  sheet  material  from  . 

(P)  Claessen 
Manufacture  of  flexible  lacquers  from  .     (P)  Bing 

and  Hildesheimer 
Manufacture  of  parchment  paper  and  vulcanised  fibre 

from  .     <P)  Herstein 

Manufacture  of  plastic  masses  from  .     (P)  Koln- 

Rottweil  A.-G.  

Manufacture  of for  pyroxylin  plastics.     Du  Pont 

Manufacture  of for  R.  D.  B.  cordite.     Macnab     . . 

powder  grains  ;    Coating  for  .     (P)  Davis 

powders  ;    Use  of  quartz  mercury  vapour  lamp  in  study 

of  stability  of  .     Briotet 

Recovery  of  waste  nitric  acid  fumes  from  manufacture 

of .     (P)  De  Sveshnikoff  

Removal  of  free  acid  from  with  special  reference 

to  use  of  saline  leaches.     Sheppard 
solution  ;    Spinning  .     (P)  Fabr.  de  Soie  Artif.  de 

Tubize 

solutions;     Manufacture    of   .     (P)    Chem.    Fabr. 

Weiler-ter  Meer 

Stabilising  .     (P)  Elektro-Osmose  A.-G 

Treatment  of .     (P)  Bacon  and  others 


253R 
11a 

96a 

9T 

349a 

SlA' 
SlA 

896a 
291a 
544A 

629a 

210A 

753A 

942a 
856A 
932A 

811A 

908A 
250a 

523a 

838a* 
136A 

783A 

163T 

94a* 

169A 

308A 
957a 

IT 

393a 
485a 
611A 

894A 

789A 

854  a 

459A 

53A 

627a 

53A 

730a 
239a 

704A 

542a 

610a 

894a 

665a 
137a 

356T 
998A 

349A 

271A 

120A 

289a 

138A 

350A 

53A 


Nitrocliloro-compounds  ;    Determination  of  the  nitro  group 

in  aromatic  mono-  and   substituted  .     Callan 

and  Henderson  ..  ..  ..  ..  ..     159t 

Nitro  compounds  :   Action  of  the  Grignard  reagent  on . 

Hepworth  . .  . .  . .  , ,  . .  . .         qt 

compounds  of  aromatic  hydrocarbons  ;    Preparation  of 

.     (P)  Wolf  407A 

compounds  ;     Catalytic    reduction    of    aromatic    . 

Brand  and  Steiner 363a 

compounds  ;    Detection  of  .     Prins  . .  . .     957a 

compounds  ;  Organic containing  mercury.     Raiziss 

and  Proskouriakoff 3904 

compounds  ;    Recovery  of    mixed  acid  in  manufacture 

of  .     (P)  Hamburger 8lA 

compounds  ;    Reduction  of  by  stannous  chloride. 

Goldschmidt  and  others         . .  . .  . .  . .     322a 

compounds  of  tetrahydro naphthalene  and  its  deriva- 
tives ;     Preparation   of  .     (P)    Schroeter   and 

Schrauth  . .  . .  . .  , ,  . ,  . .     169a* 

compounds  of  tetrahydronaphthalene  and  its  deriva- 
tives ;    Preparation  of  reduction  products  of . 

(P)  Schroeter  and  Schrauth  169a* 

derivatives  of  quinol.     Kehrmann   and   others  ..         7a 

derivatives  of    tetrahydronaphthalene.     Schroeter  and 

others 133A 

Nitro -dyestuffs  ;   Cobaltammine  salts  of  .     Researches 

on    residual    affinity    and    co-ordination.     Morgan 

and  King  853a 

Nitrogen  ;    Absorption  of  by  calcium  and  its  alloys. 

Rutf  and  Hartmann  . .         . .         . .         . .     371a 

Accelerator  for  destruction  of  organic  matter  in  Kjeldahl 

method  for  detennination  of .     Sborowsky  and 

Sborowsky         . .  . .  . .  . .  . .  . .     841A 

Accuracy    of    Dumas'    method    of   determining    . 

Mohr 83a,  274a 

and  acetylene  ;   Explosion  of  mixtures  of .     Garner 

_  and  Matsuno 90a,  S57a 

Action  of on  mixtures  of  barium  oxide  and  carbon 

at  high  temperatures.     Askenasy  and  Crude       . .     462a 
Active    modification    of    produced    by    a-rays. 

Newman  . .  . .  . .  . .  . .  . .     252a 

Apparatus    for    collecting    ammonia    in    determination 

of  .     Meillere  and  De  Saint-Rat         . .  . .     200a 

Apparatus  for  fixation  of  .     (P)  Darlington,  and 

YVestinghouse  Electric  and  Mfg.  Co.  ..  ..       99a 

assimilation  by  plants  ;    Activity  of    roots  in  process 

of  .     De  Dominicis  and  Gangitano     . .  . .     477A 

Bucher  process  for  fixation  of as  sodium  cyanide. 

Thompson  140a 

Cathodic  reduction  of  elementary  .     Fichter  and 

Suter 293A 

Compressibility  of  at  16°  C.     Cardoso  and  Levi     350a 

Determination  of  in  nitric  esters.     Kesseler  and 

others 349a 

Determination  of  in  steel.     Hunim  and  Fay     . .     218A 

Determination   of   total   in   fertilisers   containing 

nitrites.     Mach  and  Sindlinger         . .  . .  . .     90SA 

Effect,  of  hydrogen  peroxide  in  decomposition  of  plant 

and  animal  material  in  Kjeldahl  method  of  deter- 
mining   .     Kleemann       . .  . .  . .  . .     274a 

Electric  arc  furnace  for  oxidation  of  atmospheric . 

(P)  Avera  813A 

Electrical    oxidation    of    .     (P)    Hoofnagle,    and 

Electro  Chemical  Products  Co.        . .  . .  . .     S58A 

fixation  ;    Agglomerating  pulverous  material  for  . 

(P)  Thorssell  and  Troell        589A 

fixation  ;    Aspects  of  relationship  between  water  power 

and  .     Maxted 394R 

Fixation  of  atmospheric  : 

(P)  Hidden,  and  Nitrogen  Products  Co.        ..     463a* 
(P)  Jacobs,  and  Du  Pont  de  Nemours  and  Co.     415a 
(P)  McElroy,  and  Fcrro  Chemicals,  Inc.       . .     294a 

(P)  Miles  294a 

-fixation   company  in   Norway ;    Working  of  a  

in  1921  86r 

fixation  by  the  cyanide  process.     Bartell  . .  . .     667a 

fixation  ;    Hausser  process  of .     Goodwin  . .     394R 

-fixation  plant  in  Canada  ;    Proposed  . .  . .     420R 

fixation  ;    Post-war  progress  in  .     Harker  . .     387r 

-fixation  works  in  Austria  ;    Proposed  . .  . .     266r 

-fixing  bacillus  ;    New  .     Trutfaut  and  Bezssonoff    908a 

Furnaces  for  fixation  of .     (P)  Hidden,  and  Nitrogen 

Products  Co 415a* 

Interaction  of  ethylene  and  under  the  influence 

of  the  silent  electric  discharge.    Miyamoto  . .     380a 

Manufacture    of    hvdrogen    and    for    ammonia 

synthesis.     West  393R 

Manufacture  of  mixtures  of  carbon  dioxide  aud : 

(P)  Muchka  328a*,  328a* 

(P)  Scheib  and  Koch 982a 

Manufacture  of  mixtures  of  hydrogen  and  : 

(P)  Clancy,  and  Nitrogen  Corp.  ..  ..     753a 

(P)  Harger,  and  Woodcroft  Mfg.  Co.  . .     295a 

(P)  Szarvasy         54Ga 

Manufacture  of  pure  .     (P)  Thorssell  and  Lunden     175a 

Manufacture   of    purified    mixtures   of   hydrogen    and 

.     (P)  Clancy,  and  Nitrogen  Corp.      . .  . .     753A 

Manufacture  of  free  from  oxygen  and  hydrogen. 

(P)  Patent-Treuhand    Ges.    f.  elektr.   Gluhlampen     755a 
Micro -Kjeldahl    method    of    determining    .     Ling 

and  Price  149T,  172R. 

Micro-method  for  determination  of .     Acel  ..     159A 


184 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Nitrogen — continued. 

In  nitrates   and  nitric  acid  ;     Nitrometer   method   for 

determination  of  .     Webb  and  Taylor  . .     362T 

Plant  for  production  of  liquid  air  and  of  oxygen  and 

.     Blau 173a 

products  industry  in  Germany.     Matlgnon       ..  ..     400R 

Reversibility  of  reaction   between   sodium   carbonate, 

carbon,  and  .     Ingold  and  Wilson      . .  . .     979a 

Separating  mixtures  of  oxygen  and  .     (P)  Mewes 

and  Mewes        ..         ..         ..         ..         ..         ..     755a 

Separating  oxygen  and  from  air  by  centrifugal 

diffusion.     (P)  Heinrich         859a 

Use  of  perchloric  acid  as  an  aid  to  digestion  in  the 

Kjeldahl    method    for    determining    .     Mears 

and  Hussey       . .  . .  . .  , .  . .  . .       82a 

Vse  of  perchloric  acid  for  Kjeldahl  digestions  in  deter- 
mination of  in  leather.     Parker  and  Terrell       68a 

Nitrogen  compounds  ;   Availability  of  organic in  soils. 

Robinson  and  others  . .  . .  . .  . ,       26a 

compounds  ;    Manufacture  of  : 

(P)  Chem.  Fabr.  Griesheim-Elektron  . .     327a 

(P)  Thorssell  and  LundSn         294a 

■compounds ;     Manufacture    of   with   the    aid    of 

gaseous    catalysts.    (P)    iteid,    and    International 
Nitrogen  Co.     . .         . .         . .         . .         . .         . .     859a 

compounds ;     Manufacture    of    from    metals    or 

metallic    oxides    or    carbonates    and    carbon    and 
nitrogen.     (P)  Chem.  Fabr.  Griesheim-Elektron    ..     753a 

compounds  ;    Photosynthesis  of from  nitrates  and 

carbon  dioxide.    Paly  and  others  . .      197R,  609a 

Nitrogen  dioxide  and  trioxide  ;  Manufacture  of  concentrated 

from  admixtures  with  dry  gases.     (P)   Soc. 

Anon.  L'Azote  Francais         . .  . .  . .  . .       99a 

Nitrogen  oxides  ;    Catalyst  for  and  process  for  production 

of    .     <P)    Scott,    and    Atmospheric    Nitrogen 

Corp 58a* 

oxides ;     Determination    of    in    gas    mixtures. 

Burdick  412a 

oxides  ;    Determination  of  small  quantities  of  in 

air.     Allison  and  others         . .  . .  . .  . .     230a 

oxides  ;    Formation  of  in  slow  combustion  and 

explosion    methods    in    gas    analysis.    Jones    and 

Parker  . .  . .  . .  . .  . .  . .     159a 

oxides  ;    Manufacture  of by  catalytic  oxidation  of 

ammonia.     (P)  Badische  Anilin  u.  Soda  Fabr.     .  .     755a* 
oxides  and  other  compounds  ;    Action  of  the  Grignard 

reagent  on  .     Hcpworth  8t 

oxides  ;    Reactions  between  gaseous  and  alkaline 

solutions.     Sanfourche  . .  . .  . .  . .     855a 

oxides  ;    Recovery  of  .     (P)  Meister,  Lucius,  und 

Priming  669a 

oxides  ;     Recovery   of   from    mixtures   with   air. 

Briner  and  others        . ,  . .  . .  . .  . .     544a 

oxides  ;     Recovery   of   from   nitrous   gases.     (P) 

Ges.  fur  Lindes  Eismaschinen  A.-G.  ..  ..       44a 

oxides  ;   Removing  solid from  refrigeration  devices. 

(P>    Norsk   Hydro-EIektrisk   Kvaelstofaktieselskab     416a* 
Nitrogen   pentoxide ;     Thermal   decomposition   of   in 

solution.     Lueck  . .  . .  . .  . .  . .     412a 

Nitrogen   peroxide;    Analysis  of  liquid  .     Sanfourche     412a 

Nitrogen  trioxide  and  dioxide  ;   Manufacture  £>:  concentrated 

from  admixtures  with  dry  gases.     <P)  Soc. 

Anon.  l'Azote  Francais  . .  . .  . .  , .       99a 

Nitrogenous  fertilisers.     See  under  Fertilisers. 

organic   matter ;     Obtaining   extracts   and   carbon   for 

hardening  steel  and  iron  from  .     (P)  Lindner    851a 

Nitroglycerin  ;     Organic    impurities    in    commercial    nitric 

acid    and    their   effect   in    manufacture   of   . 

Crawford  . .  . .  . .  . .  . .  . .     32IT 

Quantitative    separation    of   nitro-compound    mixtures 

from  .     Dickson  and  Easterbrook       . .        58R,  310a 

Nitro-group  ;    Estimation  of in  aromatic  organic  com- 
pounds.    Callan  and  Henderson       ..  ..        75R,  1B7T 

Nitroguanidine  ;    Action  of  sulphuric  acid  on  .     Davis     518a 

Nitro-hydrocarbons  ;  Determination      of      nitro-group      in 

aromatic  .     Callan  and  Henderson      . .  . .     159T 

Nitrolim.     See  Calcium  cyanamide. 

a-Nitronaphthalene  ;    Analysis  of with  various  titanous 

solutions.     Callan  and  Henderson  . .  . .     159T 

0-\itro-1.2-naphtho-p-tolyltriazole.     Morgan  and  Chazan    . .  It 

y-Nitrophenol  ;       Determination      of     .     Callan      and 

Henderson         . .  . .  . .  . .  . .  . .     163t 

Nitrophenols  ;    Mercury  nitrate  as  reagent  for  preparation 

of  .     (P)  Davis  52U 

Toxicity  of  various  towards  Merigmaton/stis  nigra. 

Plantefol  155A 

;>-Nitrophenylhydrazine  ;    Preparation  of  .     Davies    ..     435a 

/3-Nitropropenyl     compounds;      Preparation   of  .     (P) 

Schmidt  and  Wagner  523a 

3-NitroquinoIine  and  its  derivatives  ;    Preparation  of . 

(P)  Badische  Anilin  und  Soda  Fabrik       ..         ..     522a 
Nitroso-amines  ;    Action  of  the  Grignard  reagent  on  . 

lb  I 'worth  ..         ..         ..         ..         ..         ..         9t 

Nitrosobenzene  ;    Action  of  the  Grignard  reagent  on  . 

Hepworth  . ,  . .  . .  . .  . .  . .         9t 

N-Nitroso-derivativr^  of  secondary  amines  ;    Preparation  of 

.     (P)  Schmidt  and  Fischer      ..  ..  ..     198a 

l-NitrosonK-thyl-0-naphthylamine-6-sulphonic  acid.   Morgan 

and  Rooke        2T 


of 


(P) 


Nitro-oxyalkylarylamines ;       Manufacture 

British  Dyestutfs  Corp.,  and  others  .. 
Nitrostarch  explosives.  See  under  Explosives. 
Nitrotoluene  ;  ^Binary  systems  of  7/1-nitrotolucne  with  another 

.     Bell  and  MeEwen        

m-Nitrotoluene  ;  Nitration  of .     Brady 

Nitrous  acid  ;  Action  of on  iodides  in  presence  of  oxygen. 

Lombard 

Decomposition  of .     Klemencand  Pollak     .. 

Titration  of alone  and  in  presence  of  arsenious  acid. 

Klemenc  and  Pollak 
Nitrous  anhydride.  Foerster 
Nitrous  esters ;    Action  of  the  Grignard  reagent  on  . 

Hepworth 

Nitrous  fumes  ;  Absorption  of .     Hall  and  others 

gases  ;    Absorption  of  by  means  of  water.     (P) 

Pauling 
gases;    Manufacture  of  concentrated  .     (P)  Nor>k 

Hydro-EIektrisk  Kvaclstolaktiesrlskab 
ions  ;    Reaction  between  thiosulphuric  ions  and  . 

Falciola' 
Nitrous  oxide ;    Biological    action    of    moist   and    its 

bearing  on  hygiene  of  nutrition.     Bart 
Nitrous  vapours  ;   Recovering in  the  form  of  aqueous 

nitric  acid.     (P)  Guye,  and  L'Azote  Francais 
Nobel's  Explosives  Co.,  Ltd. ;    Visit  to  the  Ardeer  factory 

Non-ferrous  metals.     See  under  Metals. 

Norit  decolorising  carbon  ;    Cost  of  revivification  of  . 

Tillery  

decolorising    carbon  ;     Technical    application    of   . 

Dunstone,  jun. 

Norway  ;  Manufacture  of  chlorate  in ■ 

Price  of  cement  imported  from 

Report  on  economic  and  industrial  conditions  in  . 

Pans 

Working  of  a  nitrogen-fixation  company  in during 

1921        

Novocaine  ;  Examination  of .     Hanson 

Homologues  of .     Fourneau  and  Puyal 

Noxious  vapours  ;    Report  of  committee  on  abatement  of 

.     Cohen 

Nucleic  acid  ;     Preparation  and   analysis  of  animal  . 

Levene 

Yeast .     Steudel  and  Peiser    ..  ..  ..      153A, 

Nut  kernels  ;  Treatment  of to  produce  food  ingredients. 

(P)  Scott  and  Scott 

Nutrition;  Role  of  protein  specificity  in .  Berczeller     .. 

Role  of  taste  (instinct)  in .     Berczeller 

Nutritive  products  ;   Manufacture  of  healing  and .     (P) 

Haaf  und  Co. 

Nuts;  Nutritive  properties  of .     Cajori 

Nux-vomica  industry  in  Madras 


PAGE 

97  7  a 


-  used  in  construction  of  beer  casks. 


-  used  in  construction  of 
Collins  and 


Oak  wood;  American- 

Groom 
Oaks  ;   Chemical  examination  of 
beer  casks.     Schryver 
Oat  straw  ;    Sugars  and  albuminoids  of  - 

Thomas  

Obituary : 

Baskerville,  C 

Bottomley,  J.  F 

Crum  Brown,  A. 

Gowland,  W.  

Inule,  H 

K.-llncr,  W.  

McWHHaiu,  A 

Moore,  B. 

Powell,  H.  J.  

Smith,  A 

Solvay,  E. 
Takamine,  J. 

Waller,  A.  D.  

Octobromoindigotin.     Grandmougin    . . 
s-Octohydroanthracene ;    Preparation  of  - 

eter,  and  Tetralin  Ges. 
s-Octohydrophenanthrene ;       Preparation 
Schroeter,  and  Tetralin  Ges. 

Odour  and  chemical  constitution  ;   Relation  between in 

the  H-butyl  series.     Morgan  and  Hickinbottom 

Relationship  of to  molecular  structure.  Dclange    . . 

<  lil-bearing  materials,  such  as  nuts,  seeds,  and  copra  ;  Preser- 
vation and  preparation  for  transportation  of 

by  compression  in  bulk.     (P)  Macllwaine 

-bearing  solids  ;    Treatment  of  .     (PJ  Fenton        5a, 

-cake-meal  ;  Apparatus  for  controlling  the  operations  of 

presses  for  .     (P)   Weston/and   Olympia   Oil 

and  Cake  Co.,  Ltd 

and  coal ;    Destructive  distillation  of  mixtures  of . 

Davis  and  others 
Oil  and  Colour  Chemists*  Association    .. 


of 


(P)  Schro- 
.     (P) 


56SA 
393A 

250A 
412A 

963a 
249a 

9T 

291T 

216a 

502a* 
413a 
725a 
982a 
301 R 

910a 

910a 
402R 
315R 

222R 

86R 
345a 
518a 

1R 

875a 
565a 

515a 

479a 
479a 

198a* 

154a 

569R 


831a 

831a 

993a 

230R 

88R 

4S9R 

274R 

42R 

432R 

208b 

142r 

546R 

432R 

231R 

464R 

186R 

8a 

663a 

663a 

32a 

728A 


867A* 
537A* 


334a* 

92a 
77R 


SUBJECT  INDEX. 


185 


PACtfl 

Oil  colours  irascible  with  water.    (P)  Guntei  . .         . .     772a 

Crude.     .     See  under  Oils.  Hydrocarbon. 

emulsions  :  Dehydrating .     (P)  Badische  Anilin-  und 

Soda-Fabrik      ..         743a 

films  in  high-speed  bearings  :    Thickness  and  resistance 

of .    Stoney  and  others  ..         ..         ..     242A 

Forming  and  wrapping  oil-bearing  material  prior  to  ex- 
pression of .     (P)  Murray  Co.      ..  ..     826A* 

fuel-  ;   Possible  economic  development  of  home  supplies 

of .     Brame  '      ' 

fuel- ;  Supplies  of 295R 

-gas.     See  under  Gas. 

heater  for  topping  stills.    (P)  Bell,  and  Power  Specialty 

Co 537a» 

mills  ;  Tata in  India 508R 

-nuts  from  South  America  ;  New . .  .  -  . .     570R 

pastes  ;     Conversion   of   water   pastes   into   .     (P) 

Fletcher  and  Parker 301a* 

presses  ;   Cage  forming  and  cage  loading  mechanism  for 

.     (P)  Henry;  and  Murray  Co 599a* 

presses  and  the  like  : 

(P)  French  826a* 

(P)  Utrechtsche  Machinef abr 599a 

presses  or  like  txpr.---.iii':  apparatus  of  the  worm  screw 

type.     (P)  Schueler 639a* 

purifier;    Centrifugal  .     (P)  Leitch,  and  De  Laval 

Separator  Co.    ..  ..  ..  ..  ..  ..     491a 

sands  and  shale  ;    Retort  furnace  for  production  of  oil 

and  gas  from .    (P)  Buckingham  ..         ..     741a 

-seed  crops  in  British  India:  Forecast  of  winter ..     313R 

-seed  industry  in  United  States  ;  Research  in  the . .         8B 

-seeds;  Certain  tropical .     Bolton  and  Hewer       ..     768a 

-seeds  ;  Forecast  of  crops  of in  India  . .        60r,  508r 

-seeds  ;  Forecast  of  crops  of  winter in  India  . .     176R 

seepages ;     Significance   of   interpretation   of   chemical 

analyses  of .     Hackford  ..        7SR,  401a 

Separation  of  adherent from  rock.     Fyleman         .  .        14T 

Separators  for  separation  of from  water.     (P)  Bate- 
man        489a 

stills.     (P)  Isom  and  others  ..  ..  ..  ..     975A 

stills  ;    Damper  control  for  .     (P)   Primrose,  and 

Power  Specialty  Co.     . .  . .  . .  . .  . .     742a* 

technology  at  Birmingham  University      . .  . .  . .     422s 

Vacuum  distillation  plant  for  recoverv  of  .     (P) 

WUke  u.  Co.,  and  Kulka  . .        " 89a 

vapours  :  Filtration  of .     (P)  Wells  and  Wells         ..     975a 

vapours;  Treatment  of .     (P)  Ward  and  others     ..     969a 

OUiness  of  various  series  of  hydrocarbons.     Sever      . .  . .     360a 

Oils  ;  Apparatus  for  cracking : 

(P)  Edwards,  and  Tide  Water  Oil  Co 321a 

(P)  Penniman 889a 

(P)  Seigle  849a 

Apparatus  for  tracking  and  distilling .     (P)  Fenton         5a 

Apparatus    for    dehydrating   .     (P)    Giebner,    and 

Electric  Dehydrating  Co.         ..  ..  ..  ..     405a 

Apparatus  for  determining  flash  point  of .     (P)  Klee     920a 

Apparatus  for  distilling .     (P)  Power  Specialty  Co.     284a 

Apparatus    for    extraction    of    from    oil-bearing 

materials.     (P)  Schlotterhose  und  Co.  . .  . .     945a 

Apparatus  for  extracting from  rape  seed  and  the 

like.     (P)  Schneider 473a 

Apparatus  for  extraction  of  by  the  washing  or 

diffusion  process.     (P)  Schlotterhose  und  Co.  . .     261a 

Apparatus  for  refining .     (P)  Parodi  ..  ..     260a 

Apparatus  for  topping .     (P)  Gallsworthy    ..  ..     850a 

Bleaching with  fuller's  earth.     (P)  Bolunann     182a,  261a 

Catalysts  for  hvdrogenating  .    (P)  Winuner,  and 

Hydrogenated  Oil  Co.  474a* 

Change   in   viscosity    of   with   the    temperature. 

H)  rschel  *. 929a 

Colour  measurement  of .     Parsons  and  Wilson        . .     402A 

<    >iiTinuous  distillation  of .     (P)  Blumner    ..      407a,  496a 

Continuous  extraction  of  .     (P)   Wilbuschewitsch    109a 

Conversion  and  transformation  of  .    (P)  Adams, 

and  Texas  Co 850a 

for  cores  for  foundry  purposes;    Manufacture  of  

from  tar  oils.     (P)  Melamid    . .  . .  . .  . .     457a 

Cracking : 

(P)  Brownlee  and  De  Ganahl 131a 

<P)  Dubbs,  and  Universal  Oil  Products  Co.     . .     404A 

(P)  George  624a 

(P)  Hoxie  536a 

(P)  Stone  850a 

Cracking under  pressure.    (P)  Ellis,  and  Standard 

Oil  CO 494a 

Crystallising .     (P)  Doe  ring  ..  ..  ..     770a 

Dehydrating  heavy  .    (P)"  Harris,  and  Petroleum 

Rectifying  Co.  494a 

Desulphurising .     (P)  Walkey  and  Bargate  . .     931a 

Determination  of  absolute  viscosity  of .     Fulweiler 

and  Jordan        . .  . .  . .  . .  . .  92Sa 

Determination  of  iodine-bromine  value  of without 

using  potassium  iodide.     Winkler     . .  . .  . .     473a 

Determination  of  moisture  in  insulating .     Rodman     180a 

Determination  of  volatility  of .     Matthis     . .  . .     699a 

Distillation  of ; 

(P)  Fenton  741a 

(P)  Wilson  538a 

Distillation  of from  rocks.    (P)  Pool  . .         . .     580a 

Drying .     See  under  Oils,  Fatty. 

Edible .     See  under  Oils,  Fatty. 

Electrical  process  for  dehvdration  of .    (P)  Elektro- 

Osmose  A.-G.     . .      * 300a 


Oils — continue'/. 

Emulsifying with  water.     (Pi  Loewenthal 

Examination  of  water-soluble  boring  and  cooling : 

Braun 

Kaleta 

Exports  of  — —  from  Germany 

Expression  of  from  oily  substances.     (P)  Fank- 

hauser 

Extraction  of from  raw  materials.     (P)  Bollmami 

Extraction  of by  volatile  solvents.     (P)  Mellwaine 

and     Holdcroft 

i..  r man  trade  in  

Hydrogenation  of  .     (P)  American  Cotton  Oil  Co. 

Increasing    the    consistency    of    .    (P)    Frentrup 

and    Kiederich 
Increasing  the  decolorising  power  of  silicates  for . 

(P)  Gebr.  Wildhageu  und  Falk         

Influence   of   air,    light,    and    metals   on   development 

of  rancidity  in  .     Emery  and   Henley 

insulating;  Dielectric  (breakdown)  value  of .  Friese 

aud  the  like  ;    Apparatus  for  extraction  of : 

(P)    Engel  

(P)    Wilhelm 

and  the  like ;    Extraction  of  .     (P)  Reavell,  and 

Kestner  Evaporator  and    Engineering   Co. 
Low-temperature  distillation  of  mixtures  of  non-coking 

coal  and  asphaltic .     Davis  and  Coleman 

Manufacture  of  compositions  of .     (P)  Plauson 

Manufacture  of  edible  fattv  product  from  fixed  . 

(P)  Klein  . .  . .  

Manufacture  of  htgh-boiling from  aromatic  hydro- 
carbons.    (P)   Lilienfeld 
Manufacture  of  highly  viscous  lubricating  oils,  leather 

grease,    artificial    vaseline,    lanolin-like    materials, 

and  the  like  from  mineral,  vegetable,  and  animal 

.     (P)    Plauson's    F  o  rs  chunks  ins  t.        . .       300a 

Manufacture  of  metallic  non-pyrophoric  catalysts   for 

hvdrogenating    .     (P)    Muller    Speisefettfabr. 

Manufacture  of  pastes  or  emulsions  for  use  as  lubricants 

from  mineral  and  other  .     (P)  Plauson 

Manufacture  of  screw-cutting  -  ■  --.     (P)  Claftiu 

Manufacture  of  sulphurised  .     (P)  Bayer  und  Co. 

Manufacture  of  water-soluble   .     (P)    Loewenthal 

Material  for  decolorising and  method  of  producing 

it.     (P)  Prutzman,  and  General   Petroleum   Corp. 

Means  for  desulphurising .     (P)  Xesfleld 

Means  for  facilitating  separation  of  liquor  from  . 

(P)    Glover   and   others 

Neutralisation  of  .    (P)  Bolton  and  others 

Oxidation    of    .     Lloyd 

Process  for  retarding  occurrence  of  rauciditv  in  . 

(P)  Gebr.  Schubert 

Promoters  of  hydrogenation  of .     Ueno 

Purification  of  .     (P)  Goslings 

Purifying  and  vaporising .     (P)  Wirtz 

Rapid  determination  of  acetyl  value  of .     Leys 

Rate  of  saponification  of by  aqueous  alkali  under 

various  conditions.     Xorris  and  McBain 

Refining .     (P)  Reynolds        

Relation  between  refractive  index  and  chemical  char- 
acteristics of .     Pickering  and  Cowlishaw 

Removing    suspended    matter    from    liquid    and 

from    solvents    containing    oils    in    solution.     (P) 

Hey         

Saponification    of    .     Langton 

from  seeds  of  Indian  forest  trees.     Rau  and  Simonsen 
Separating from  emulsions.     (P)  Trent,  and  Trent 

Process     Corp. 
Separation  of  fatty  acids,  resins,  bitter  and  mucilaginous 

substances  from .     (P)  Bollmann 

suitable    for    impregnating    films    and    keeping    them 

soft ;    Manufacture  of  .     (P)  Petri  und  Stark 

Transmission     and     motor    .     (P)     Boileau,     and 

Pittsburgh  Oil  Refining  Corp 

Treating  and   recovering  for  re-use  which  have 

hardened      (P)  Littleton 

Treatment  of .     (P)  Plauson  and  Vielle 

Treatment  of  sludge  from  refining  of .     (P)  Salathe, 

and   Western   Gas    Construction   Co 

Oils,  Essential  : 

Abies  Pindrow  leaf  oil.  Simonsen 
Agastaehe  pailidiflora  oil.  Couch 
Andropogon  iwarancusa  oil  ;   Constitution  of  the  terpene 

present   in    .    Simonsen 

Blitmea  Malcomii  oil.     Simonsen  and  Rau 

Cade  oil ;  Role  played  by  various  elements  of  Juniperus 

oxycedrus  wood  in  formation  of .     Huerre 

Chenopodium  oil.     Henry  and  Paget 

Omumomum  gland 'u.l ij erum  oil.     Massera 

Citronella    oil  ;     Determination    of    total    geraniol    in 

De    Jong    and    Reclaire  . .         . .      836a, 

Salamon 

Congealing  temperatures  of  .     Jones 

Determination    of    phenols    in    .     Simmons 

Doryphora    sassafras    leaf    oil.     Penfold 

Eucalyptus  oil;     Examination  of  aldehydes  occurring 

in .     Penfold 

Eucalyptus   oils ;    Manufacture   of  thymol,   meuthoue, 

and  menthol  from .     Smith  and  Penfold 

Extraction  of .     (P)  Usher  and  Metcalfe 

Inchi    grass    (Cymbopogon    cwsius)    oil.     MoudgUl    and 

Iyer         ^ 


PAGE 
110A 

gg8A 

-MM, 

357R 

508a 
380a* 

334a* 
339R 

260A 

889a 

676a 

945a 
147a 

474a* 
557a 

945A 

168  a 

SJTa 

509a 

50a 


769a 


826a 

474a 

889a 

91a 

773a 

110A 

5a 
701A 

93a 
557a* 

505R 

676a 

824a 
945a 
132a* 
148A 

719  a 
599a 

74T 

334a 
825a 

902a 

579a 

509a 
640a 

702a 

66a 
474a 


64fiA 
520A 


520a 

346a 

33a 

836a 


958a 
953a 

4  4  Up. 

32a 
647A 

269A 

78a 
309a 


186 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Oil?.  Essential — continued. 

Lantana  Camera  oil.    Moudgill  and  Yiidhachalam 
Lavender  oil  distilled  by  open  fire  and  by  steam.     Chiris 

Lemon  oil ;   Adulteration  of with  terpenes.    Ajon 

Zeptospermum  flavescens,  var.  grandiflorum  oil.     Penfold 
Zeptospermum  odoratum  oil.     Penfold 

Maritime  pine  oil ;   Constituents  of .    Dupont 

Mentha    aquatiea    oil.     Kremers 

Myrica     Gale    oil.    Schools         

Naal    oil.    Joseph    and    Whitfeild 

Nepda  japonica  oil.     Murayama   and  Itagaki 

Origanum  vulgare  oil ;    Italian  .     Angelescu 

Peppermint  oil ;    Biogenesis  of  .    Kremers 

Peppermint  oil  in  China  and  Japan 

Peppermint  oil ;  Exports  of from  Japan 

Peppermint    oil ;     Occurrence    of    puiegone    in 

Kremers 
Peppermint    oils ;     Differentiation    of    Japanese 

American  .    Eaton 

Pine  oil.     Sandqvist 

Pine  oil  disinfectants.    (P)  Babb 

Pine  oil ;    Toxicity  of  crude  Western  yellow  — 

Zenziles    Saepiaria,    Fries.     Schmitz 

Production   of  in   Seychelles 

Sandalwood  oil ;  Abnormal  solubility  in  alcohol  of  West 

Australian  .     Soraerville 

Sandalwood  oil ;    Properties  and  preparation  of  Dutch 

.     Rojdestwensky 

Solubility  of  West  Australian 


and 


to 


Leone     and 


144T 


East   Indies 

Sandalwood  oil ; 
Marr 

Santal    oil ;     Distillation     method    for    estimation    of 
santalol  in   .     Harrison 

Satureja     montana     oil ;      Italian 
Angelescu 

Seid  {Oyperut  mtundus)  oil.    Joseph  and  Whitfeild 

Spanish  fennel  oil.    Sage  and   Goodale 

Sudan .    Joseph  and  Whitfeild 

Therapeutic  action  of  .     Gatti  and  Cayola 

Thymus  striatus  oil ;  Italian .     Leone  and  Angelescu 

Thymus  vulgaris  oil ;  Italian .     Leone  and  Angelescu 

i,  Fatty  : 

Alligator  oil.     Kobayashi 

Animal  oils ;    Deodorising  blown  or  polymerised  . 

(P)  Booge,  and  Du  Pont  de  Nemours  and  Co. 

Animal  oils  ;    Process  for  thickening  .    (P)  Baur 

and  Baur 

Animal  oils  ;  Refining  of in  British  Columbia 

Arachis  oil ;    Catalytic  decomposition  of  .     Mailne 

Arachis   oil ;     Chemical    constitution    of   .    Heid- 

uschka  and  Felser 

Calopkyllnm  Wigldianum  seed  oil.     Rau  and  Simonsen 

ChloroTifloii  -  Swietenia   seed    oil.     Rau    and    Simonsen 

Chrysalis  oil ;    Artificial  petroleum  from  .     Kob- 
ayashi 

Cnicu's    Benedictus    oil.     Ferenez  

Coconut  oil ;    Artificial  petroleum   from  .    Kob- 
ayashi 

Coconut  oil ; 

Coconut  oil  ; 

Coconut     oil ; 


Detection  of  in  butter.    Muttelet 

Extraction  of  .     (P)  Gaudart 

Manufacture    of    neutral    .    (P) 

Cookson  and  Smith 
Coconut  oil ;    Oleic  acid  content  of  free  fatty  acids 

from  soap  stock  obtained  on  refining .     Wittka 

Cod-liver  oil ;     Chemistry   of   vitamin    A   fraction   of 

.     Drummond  and  Coward 

Cod  liver  oil ;    Preparation  of  and  effect  of  the 

processes  on  the  vitamin  value  of  the  oil.    Drum- 
mond and  Zilva 
Cod  liver  oil :    Preparation  of  solid  derivatives  from 

fatty  acids  of  .     (P)  Chem.  Werke  Grenzach 

Cod-liver  oil ;    Therapeutic  action  of  some  derivatives 

of .     Berghausen  and  Steinkoenig 

Cod-liver  oil ;  Vitamin  of .     Lax 

Cod-liver  oil  in  winter  feeding  of  milch  cows.    Drum- 
mond and  others 
Crocodile    oil.     Kobayashi 

Drying  of  .    Slansky 

Drying  oils  ;     Manufacture  of  a  substitute  for  . 

(P)  Schilsky 382a 

Drying     °iis ;      Manufacture   of   substitute   for   ■ 

from  liguite  and  producer-gas  tar.     (P)  Bube 
Drying  oils  ;   Mechanism  of  oxidation  of .    Action 

of  driers.     Coffey 
Drying  oils  produced  by  chlorination  and  dechlorination 

from  petroleum  and  other  products.     Gardner  and 

Bielouss 
Drying  or  semi-drying  oils  ;    Heat  treatment  of  . 

(P)  Clark  and  Co.,  and  Tervet         

Edible    oils ;     Nutritive    value    of    .     Oil-bearing 

seeds  and  crude  vegetable  oils  and  fats.    Drum- 
mond' and  Zilva 
Fish  oil  and  the  like  :    Apparatus  for  treating with 

ozone.    (P)    Stanley,    and    Title    Guarantee    and 

Trust  Co 

Fish  oils  ;   Artificial  petroleum  from .    Kobayashi 

and  Yamaguchi 
Fish  oils ;    Manufacture  of  liquid  hydrocarbons  from 

.    (P)    Kobayashi 

Fish  oils  ;    Origin  of  vitamin  A  in  .  Drummond 

and  others 
Fish  and  other  oils  ;  Treating .     (P)  Title  Guarantee 

and    Trust   Co.  

Garcinia  Cambogia  seed  oil.     Rau  and  Simonsen 
Grape    seed    oil.    Rabak  


PAGE 

610a 
118a 
958a 
78a 
78a 
915a 
647a 
610a 
144T 
118a 
346a 
269a 
422R 
51 5R 

647a 

685a 

867a 

31A 

635A 
34S 

647A 

836a 

957a 

346a 

269a 
172T 
197A 
1721 
483A 
346a 
269a 

598A 


424a 

7R 

598A 

674A 
902a 
902a 

242a 
334A 

242a 
191A 
903a« 

300a 

824a 

561R 

280T 

35A 

32a 
230a 

561R 
598a 
904a 

510A 

245A 
182a 

639a 
261 A 

125T 

769a 

242a 

701a 

913a 

825A 

902a 

21a 


Oils,  Fatty — continued. 

Grape  seed  oil ;  Solid  fatty  acids  of .    Andre 

Gynocardia  oil ;  Colour  reaction  and  spectroscopic 
detection  of  .     Lifschiitz 

Hazel-nut  oil.     Pritzker  and   Jungkunz 

Head  oils  of  the  sea  animals  of  the  family  Delphinida-. 
Nakatogowa  and   Kobayashi 

Indian  oils ;  Manufacture  of  ready-made  fat-liquor 
for  leather  from .    Das  and  Das 

Lemon  seed  oil.    Bennett 

Linseed  oil :    Effect  of  variation  in  analytical  constants 

of  soya  bean  oil  and on  determination  of  linseed 

oil  in  mixtures  of  the  two  oils  by  means  of  the  iodine 
and  hexabromide  values  of  the  fatty  acids.  Tschudy 

Linseed  oil ;    Substitutes  for  boiled as  protective 

compositions,  with  special  reference  to  their  rust- 
inhibiting  properties.     Maass  and  Junk 

Linseed  oil  substitutes  ;    Preparation  of  : 

(P)  Melamid         

(P)  Stern  

Linseed  oil ;   Vanadium  compounds  as  driers  for : 

Gardner 

Rhodes  and  Chen 

Liver  oils  ;  Origin  of  vitamin  A  in  fish .     Drummond 

and  others 

Liver  oils  ;   Shark,  ray,  and  chimteras .     Tsujimoto 

Liver  oils  ;    Sulphuric  acid  reaction  for  : 

Richmond  and  England 

Drummond  and  Watson  . .         . .      107R, 

Liver  oils  ;    Sulphuric  acid  test  for  fish  .     Evers 

and  Foster 

Maize  oil ;    Chemical  composition  of .     Baughmau 

and  Jamieson 

Maize  oil ;   Comparison  of obtained  by  expression 

and  by  extraction  with  benzol.     Sievers 

Maize  oil ;  Preparation  of  an  edible  oil  from  crude 
.    Sievers  and  Shrader 

Marine  animal  oils  ;  Determination  of  highly  unsaturated 
fatty  acids  in  .     Goldschmidt  and  Weiss     . . 

Marine  animal  oils;    Preparation  of  solid  derivatives 

from    fatty    acids    of    .     (P)    Chem.    Werke 

Grenzach 

Mechanism  of  alkali  refining  of .     TJeno    . . 

Mimusops  Elengi  seed  oil.     Rau  and  Simonsen 

Neat's  foot  oil.     Eckart  

Olive  oil  ;    Extraction  of  .     Mastbaum 

Olive  oil  industry  in  Italy  and  Tunis 

Olive  oils  and  the  Villavecchia  reaction.    Prax 

Oxidation  of .    Lloyd 

Palm  oil  ;  Obtaining  a  crystalline  distillate  from  fatty 
acids  of .    (P)  Lamberts  and  Frieke 

Palm  oil ;    Refining  for  edible  purposes.     Lauro 

and  Dickhart 

Perilla  oil.     Bauer 

Polymerisation  of  .    Marcusson 

Problems     connected     with    saponification    of    . 

Langton 

Rape  oil ;  Composition  of  fatty  acids  of .    Toyama 

Rape  oil ;    Fatty  acids  of .     Raymond 

Ray-fish  liver  oil ;  Higher  alcohols  in  unsaponifiable 
matter  from  .    Tsujimoto  and  Toyama 

Prickly  dog-fish  liver  oil.     Lexow  

Satflower  oil.     Howard  and  Remington 

Shorea  robusta  seed  oil.     Rau  and  Simonsen 

Shark  iiver  oil ;  Higher  alcohols  in  unsaponifiable 
matter  from  .     Tsujimoto  and  Toyama 

Shark  oil ;    Catalytic  decomposition  of  .    Mailhe 

Soya  bean  oil ;  Artificial  petroleum  from .  Koba- 
yashi 

Soya*  bean  oil ;    Composition  of .    Smith 

Soya  bean  oil  ;  Effect  of  variation  in  analytical  con- 
stants of  linseed  oii  and  on  determination  of 

linseed  oil  in  mixtures  of  the  two  oils  by  means  of 
the  iodine  and  hexabromide  values  of  the  fatty- 
acids.     Tschudy 

Soya  bean  oil ;    Extraction  of .     Satow 

Soya  bean  oil ;  Preparation  of  a  liquid  fuel  resembling 
petroleum  by  distillation  of  calcium  salts  of  fatty 
acids  from  .     Sato 

Soya  bean  oil ;    Uranium  nitrate  test  for  .     Ufa 

Hope  liver  oil.    Chapman 

Treating  gases  and  vapours  formed  by  heating  . 

(P)  Webster 

Tung  oil.     Bauer  aud  Herberts 

Tung  oil ;   Determination  of  acid  value  of .    Steele 

and  Sward 

Tung  oil ;    Japanese  .    Gardner  and  Reilly 

Turkey-red  oils  ;    Valuation  and  examination  of  . 

HerbiL-  

Vegetable  oil  industry  in  Brazil.     Carvalho     .. 

Y.  getable  oils  ;    Decolorisation  of  .    Van  Tussen- 

broek 

Vegetable    oils;     Deodorising    blown    or    polymerised 

.    (P)    Booge,    and"  Du    Pout    de    Nemours 

and  Co.  

Vegetable    oils ;     Detection   of   in   animal    fats. 

.Muttelet  

Vegetable  oils ;    Determination  of  acid  value  of  . 

Steele  and  Sward 

Vegetable  oils  as  fuel  for  internal-combustion  engines 

\  >  L'ctable  oils;    Non-inflammable  mixtures  of  organic 
solvents    for    extraction    of    ■ 
Mclntyre  


Sievers    and 


PAGE 

639a 


109a 
65a 


990a 
639a 


728a 
224A 

947a 

334a 

913a 
598a 

902A 
718a 

561r 

222a 

507a 

473a 

473a 


35a 
556A 
902  A 
768a 
674A 
538R 
556A 
505R 

223A 

423A 
719a 
866A 

559R 
988a 
508a 

222A 
300a 
109a 
902a 

222a 
334A 

242A 
76SA 


21A 
64A 


300A 
222A 
508A 

676a 

638A 

260a 
904a 

22a 
374R 

557A 


599a* 
65a 


260a 
102R 


333A 


SUBJECT  INDEX. 


187 


TAGE 
Oils,  Fatty — continued. 

Vegetable  oils  ;   Process  for  thickening .     (P)  Baur 

and  Banr  424a 

Vegetable  oils  ;  Progress  in  extraction  of .  Bell  wood  213R 

Vegetable  oils  ;    Refining  of  in  British  Columbia         7r 

Vegetable  oils;    Research  in  in  India      ..  ..  19SR 

Vulcanised  oil  product.     (P)  Snelling     . .  . .  . .  867a 

Oils,  Hydrocarbon : 

Apparatus  for  cracking .     (P)  Nelson        . .  . .     362a* 

Burning  .     (P)  Chapman  and  Goodfeilow  ..     930a 

Catalytic  decomposition  of  and  revivification  of 

the  catalyst.     (P)  Owen,  and  The  Hoover  Co.     . .     801A 
Catalytic  process  for  cracking  .     (P)  Stevens,  and 

Chemical  Fuel  of  America     . .  . .  . .  577a 

Conversion  of  into  lower-boiling   products.     (P) 

Adams,  and  Texas  Co.  975a 

Cracking .     (P)  Maniey,  and  Texas  Co.  . .     850a 

Crude    oil ;     Apparatus    connected    with    an    internal 

combustion  or  oil  engine  for  converting into 

fuel.     (P)  Kev  702a 

Crude  oil ;   Fractional  distillation  of .     (P)  Mather     701A 

Crude  oil ;    Stills  for .    (P)  Mather  . .         . .     284a 

Crude  oils  of  Borneo.    Kewley  2a 

Decomposing  heavy into  lighter  oils.    (P)  George      91a 

Distillation  of  ■ : 

(P)  Armstrong 285a 

(P)  Asiatic  Petroleum  Co.,  and  Cameron      . .     131a 
(P)  Trent,  and  Trent  Process  Corp.  . .     701a 

Distillation  of  under  pressure.     (P)  Chamberlain, 

and  Standard  Oil  Co.  . .         . .         . .         . .         5a 

Increasing  the  consistency  of .     (P)  Freutrup  and 

Kiederich  889a 

Mineral  oil  compositions.     (P)  Blakeman          . .          . .     906a 
Mineral   oil  and   its  distillates  ;     Purification   of 

with  acetone  or  its  homologies.     (P)  Rebs         . .     321a 
Mineral  oil  hydrocarbons:    Manufacture  of  fatty  acids, 

aldehydes,  and  ketones  from- .     (P)  Harries     ..       35a 

Mineral  oils  ;    Apparatus  for  determining  resistance  to 

cold  of  .     Glaser  129a 

Mineral  oils  ;    Apparatus  for  distilling  : 

(P)  Dean  48a 

(P)  Ryan  47a 

Mineral  oils ;    Apparatus  for  treating .     (P)  Stone     132a 

Mineral  oils  ;    Capillary  properties  of .     Holde     ..     208a 

Mineral  oils ;    Degree  of  unsaturation  of  in  the 

Bergius    hydrogenation    process.     Waterman    aud 

Perquin      '        . .  . .  . .  . .  . .  .  -         3a 

Mineral  oils  ;    Derivatives  of .     (P)  Maitland,  and 

Sun  Co.  741a 

Mineral  oils ;    Desulphurising  .     (P)  Clancy,  and 

Nitrogen  Corp.  . .  . .  . .  . .  . .     701A 

Mineral  oils ;    Determination  of  aromatic  hydrocarbons 

in  .     Waterman  and  Perquin  . .     281A 

Mineral  oils ;    Distillation  of  .     (P)   Granger  and 

others     . .  . .  . .  . .  . .  . .  . .         4a 

Mineral  oils  and  their  distillation  products  ;  Manufacture 

of  organic  acids  from .    (P)  Strache  . .     210a 

Mineral  oils ;    Effect  of  paraffin  wax  on  properties  of 

.     Bjerregaard 320a 

Mineral  oils  ;    Extraction  of  hydrocarbon  gas  and . 

(P)  Schneiders,  and  A.-G.  "Eos"  ..  ..     536a 

Mineral    oils;     Extraction    of   naphthasulphonic   acids 

produced  in  refining  of with  acids.     (P)  Oel- 

werke  Stern- Sonneborn  A.-G.  . .  . .  . .     850A 

Mineral   oils   and   the   like ;     Obtaining   sulphur   com- 
pounds from  .     (P)  Clancy,  and  Nitrogen  Corp.     701a 

Mineral  oils  and  the  like  ;  Refining .    (P)  Plauson's 

Forschungsinst.  . .  . .  . .  . .  . .     802a 

Mineral  oils  ;    Pressure  distillation  of  heavy .     (P) 

Clark,  and  Standard  Oil  Co.  210a 

Mineral    oils ;     Production    of    lubricants    from    . 

(P)  Dubois  und  Kaufmaun  . .  . .  . .     245a 

Mineral  oils;    Refining  .     (P)  Ehlers         ..      362a,  802a* 

Mineral  oils  ;    Removing  inorganic  salts  from  sulphonic 

acids  from .     (P)  Wolff,  and  Chemical  Founda- 
tion, Inc 802a 

Mineral  oils;    Stills  for  continuous  distillation  of . 

(P)  Yeadon 703a 

Mineral  oils  ;    Treating  sludge  acids  from  refining  of 

.    (P)  Hechcnbleikner  and  others       . .         . .     702a 

Mineral     oils ;      Treatment     of     asphaltic     .     (P) 

Prutzman  and  others  . .  . .  . .  .  -       48a 

Process  for  lowering  viscosity  of  .    (P)  Brownlee 

and  De  Ganahl  404a 

Production  of  saturated  hydrocarbons  of  low  boiling 

point  from  heavy .    (P)  Ramage  and  Beall     . .     132a 

Purification  of  : 

(P)  Alexander,  and  Gulf  Refining  Co.  . .     132a 

(P)  Deutsche  Erdol-A.-G 802a 

Refining  .     (P)  Schick,  and  Deutsche  Erdol-A.-G.     931a 

Treatment  of  : 

(P)  Dav 494A,  624a 

(P)  Enselke  5a 

(P)  Maitland,  and  Sun  Co 741a 

(P)  Persch  580a 

(P)  Ramage,  and  Bostaph  Engineering  Corp.     285a 

Oily  composition  ;    Manufacture  of  viscous and  treat- 
ment of  waxes  for  use  therein.    (P)  Plauson       . .     946a* 

medicinal    solutions;     Production    of   .     (P)    Byk 

Guldenwerke  Chem.  Fabr 688a 

Ointment  base  ;    Manufacture  of  a  durable,  infusible,  soft, 

neutral  .     (P)  Brauchli  347a 


page 

Ointments  ;    Examination  of  B.P. .     Evers  and  Elsdon     519a 

Preparation  of .     (P)  Erdol-  und  Kohlc-Verwertung 

A  -G  ,  and  Zernik 523a 

Oleaginous   emulsifying   materials  ;     Manufacture   of  . 

(P)  Schou  994a 

Olefines  ;    Manufacture  of  esters  and  materials  containing 

them  from  .     (P)  Hunt  997a* 

Oxidising .     (P)  Ellis  and  Hunt 567a 

Oleic  acid  ;    Catalytic  decomposition  of  .     Mailhe      . .     334a 

Isolation  of  pure  .     Lapworth  and  Pearson       . .     485R 

Relation    of   elaidic   acid   and   to   their   halogen 

addition  products.     Nicolet  . .  . .  . .     109a 

Oleo-resin.    See  under  Resin. 

Oleum  ;    Failure  of  cast-iron  and  high-silicon  iron  in  . 

Banigan  . .  . .  . .  . .  . .  . .     411a 

plant  ;    The  Eynoch .     Parkes        . .  . .  . .     100T 

plant ;   Occurrence  and  effect  of  fluctuating  combustion 

in  the  sulphur  burners  of  the  Grillo  .     Miles 

and  Sarginson  . .  . .  . .  . .  . .     1S3T 

Oligodynamic  effect  of  silver.     Doerr  and  Berger  . .  . .     916a 

Olive  oil.     See  under  Oils,  Fatty. 

Onions  or  the  like  ;    Preparation  of  dried  products  from 

.     (P)  Mann 516a 

Ontario.     See  under  Canada. 

Opium  ;   Determination  of  meconic  acid  in .     Annett 

and  Bose 242r,  835a 

Determination  of  morphine,  codeine,  and  narcotine  in 

Indian .     Rakshit        . .  . .  . .  . .        77A 

Determination  of  narcotine  and  papaverine  in  . 

Annett  and  Bose     . .  . .  . .  . .  . .     475R 

Loss    in    morphine    content    of    powdered    on 

storage.     Annett  and  Singh  . .  . .  . .     874a 

Preparation  of  tincture  of  ,  estimation  of  mor- 
phine ;    loss  of  morphine  in  opium  powder  by 
keeping.     Abraham  and  others     . .  . .  . .     433a 

trade  in  India       . .  . .  . .  . .  . .  . .       82r 

Oppau  explosion;    Cause  of  the ..         ..  ..     451R 

explosion  ;   Inquiry  into  the . .  . .  . .        10R 

Optical  sensiiisation.     Winther        ..  ..      392a,  392a,  392a 

Optical  Society  30E 

Orange  juice  ;    Combined  action  of  raw  cow's  milk  and 

as  antiscorbutic  substances.     Wright         . .     228A 

juice  ;      Solubility    of    antiscorbutic    vitamin    from 

desiccated .     Hart  and  others  . .  . .      606A 

Oranges  ;   Changes  in on  keeping.     Andre1     . .  . .        74A 

Ore  concentration  tables.     (P)  Du  Pont  de  Nemours  and 

Co 985A 

crushers.     (P)  Mitchell 847a* 

Ores  ;  Apparatus  for  classifying according  to  density. 

(P)  Jalabert  299a*,  333a* 

Apparatus   for   grinding,   classifying,   and   decanting 

.     (P)  Broadlev  555a* 

Chloridising  .     (P)  Low,  and  Niagara  Alkali  Co.     901a 

and  concentrates  ;   Valuation  of .     Stuckcy       . .      257a 

Concentration  of : 

(P)  Dosenbach  471a 

(P)  Ellis  765A 

(P)  Robbins 63a 

(P)  Wilkinson,     and     Minerals     Separation 

North  American  Corp.         . .  . .  . .        63a* 

Concentration  of  by  flotation  : 

(P)  Dosenbach  and  others     ..  ..  ..     107a 

(P)  Elektro-Osmose  A.-G 864a,  864a 

(P)  Luckenbach,  and  Luckenbach  Processes, 

Inc 506a 

(P)  Moffat         107a 

(P)  Sheridan  and  Griswold,  jun 822a 

(P)  Vivian         942a 

Concentration  of  lead  and  iron  sulphide  ores  by  flo- 
tation.    (P)  Sheridan  and  Griswold         . .  . .      716A 

Concentration  of  pulverulent  .     (P)  Ondra,  and 

Concentrators,  Ltd.  ..  ..  ..  ..716a 

Concentration  and  separation  of  diamagnetic  minerals 

in .     (p)  Hall 506A 

containing  copper  silicate  ;    Treatment  of  .     (P) 

Sulman  and  others   ..  ..  ..  ..  .-     863a 

Desulphurisation   of   and    production   of    com- 
bustible gas.     (P)  Batchelor  ..  ..  ..     146a 

Electric  furnace  for  treating .     (P)  Counas         . .     901a 

Electrolytic  cell  for  treatment  of .     (P)  Barth  . .      717a 

Flotation  process  for  treating by  means  of  electro- 
lytic   gas    bubbles.     (P)    Maschinenbau-Anstalt 

Humboldt 472a 

Flotation  separation  of .     (P)  Palmer  and  others     108a* 

Flotation  treatment  of .     (P)  Smith        . .         . .     942a 

Leaching .     (P)  Hornsey    . .  . .  . .  . .        63a 

and  the  like  ;    Chlorinating in  mechanical  roast- 
ing furnaces.     (P)  Metallbank  u.  Metallurgische 

Gcs 555A 

and  the  like  ;    Treatment  of : 

(P)  Havward  and  others         422A 

(P)  Vivian         258a 

or  the  like  ;   Smelting .     (P)  Diehl  . .  . .     901a* 

Magnetic   separation    of   sulphide   .     (P)    Thorn 

and  others     . .  . .  . .  . .  . .  - .       63a 

Manufacture  of  agglomerates  of  fine and  the  like 

to  be  sintered  in  shaft  furnaces.     (P)  Giesecke  . .     472a* 
Manufacture  and  use  of  flotation  agent  for  concen- 
tration of =     (P)  Luckenbach  Processes.  Inc.     179a 


188 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Ores — continued. 

Preparatory  treatment  of .     (P)  Jackson  and  Co. 

107A,  596a 

Production  of  metallic  salts  from .     (P)  Liebn  . .      754A 

Purification  of  oxide .     (P)  Dyson  and  Aitchison     505A 

Reducing  in  electric  blast  furnaces.     (P)  For- 

nander  901a 

Seduction  of  : 

(P)  Bradley 298a 

(P)  Cobb  Electro  Reduction  Corp 379a 

(P)  King  76GA 

(P)  Stansfield 180a 

(P)  Wiberg 108a* 

Reduction  of and  manufacture  of  gas.     (P)  Reid 

and  Hogan    . .  . .  . .  . .  . .  . .        63a 

Reduction  of  oxide .     (P)  Eriksson         ..  ..      107a 

Roasting .     (P)  Siemens     ..  ..  ..  ..        20A 

Separating   finely -divided   minerals   from   their  

by  froth  flotation.     (P)  Hynes 107a 

Simultaneous   preheating   or  roasting   and  reduction 

of .     (P)  Fleischer        471A 

Sintering after    moistening    with    water.     (P) 

Metallbank  u.  Metallurgische  Ges 20A 

Smelting  : 

(P)  Charles        943a 

(P)  Sacio  637a 

Sulphatising-  or  dead-roasting  of  sulphide .     (P) 

Buddeus         298A 

Treating by  volatilisation.     (P)  Layng  . .  . .     822a 

Treatment  of : 

(P)  Codding 146A 

(1')  Moffat  20A* 

(P)  Soc.  Metalurgica  Chilena  "  Cuprum"  ..     864a* 

Treatment  of  complex  sulphide .     (P)  Perkins  .  .        62a 

Treatment   of   minerals   and   .     (P)   Trent,   and 

Trent  Process  Corp.  . .  . .  . .  . .     470a 

Treatment  of  previous  to  blast  sintering.     (P) 

Metallbank  u.  Metallurgische  Ges.  ..  ..      767a 

Treatment    of   slimy   sulphide   preparatory   to 

roasting.     (P)  Metallbank  u.  Metallurgische  Ges.     822A 

Treatment  of  sulphide .     (P)  Reed  . .  . .     506a 

Treatment    of    sulphide    and    oxidised    .     (P) 

Hamilton 422a 

Organic    compounds ;     Biochemical    and    electrochemical 

oxidation  of  .     Fichter  . .  . .  . .        20A 

compounds  ;    Catalysts  for  use  in  reducing  or  hydro- 

genating ."   (P)  Paal  and  Amberger  . .  ..      522A 

compounds  ;    Catalytic  action  of  salts  of  metals  on 

reactions  of .     Korczynski     ..  ..  ..     196a. 

compounds ;      Electrochemical     oxidation     of    . 

Miiller  597A 

gases   and   vapours;     Separating   or   isolating . 

(P)  Bayer  und  Co.  281A* 

substances  ;    Auto-oxidation  of  .     Anti-oxygens. 

Moureu  and  Dufraisse         . .  . .  . .  . .      195A 

substances  ;     Manufacture  of   compositions  of  . 

(P)  Plauson 837a 

substances  ;    Method  of  effecting  reactions  upon 

at  temperatures  of  red  heat  or  above.     (P)  Fischer     212A 
substances  ;       Purification     of     volatile     .     (P) 

Andrews  and  others  . .  . .  . .  539a 

substances ;     Treatment    of    .     (P)    Alsop,    and 

Packers  Meat  Smoking  Corp.         ..  ..  ..     192A 

Organisms;   Destruction  of .     (P)  Crowther  . .  ..     433A 

Organo-sulphur    compounds  ;     Action    of    the    Grignard 

reagent  on  .     Hepworth         . .  . .  . .  9T 

Organs;     Decomposition    and    extraction    of    .     (P) 

Tetralin  Ges.  688A 

Origanum  vulgare  ;    Essential  oils  of  from  different 

parts  of  Italy.     Angelescu  . .  . .  . .  . .     346A 

Orthophosphoric  acid.     See  under  Phosphoric  acid. 

Osazones  of  sugars  ;    Formation  of  .     Van  Laer  and 

Lonibaers       ..  ..  ..  ..  ..  ..        71a 

Oscillograph  ;    Cathode-ray .     Wood  . .  . .  . .     563r 

Osmiridium  concentrate  ;    Manipulation  of .     Cooper     377a 

Notes  on .     Thurlow  . .  . .  . .  . .      672a 

Osmium  alloys.     (P)  Heraeus  ..  ..  ..  ..      505A 

Detection  of  traces  of .     Hirsch    ..  ..  ..      443a 

Recovery  of  from   microscopical   preparations. 

Bosse  and  Von  Wartenberg  . .         . .  . .     790a 

Osmosis  ;     Relation   of  anomalous   to   swelling   of 

colloidal  material.     Bartell  and  Sims       . .  . .      303a 

Otto  of  rose  ;  Indian .     Gadre  and  Mukerji    ..  ..      192b 

Vnion  of  Bulgarian  producers  of . .  . .         . .     42'.u: 

Ovalbumin;    Optical  rotatory  power  of .     Young    ..     154a 

Ovens  ;    Chamber for  manufacture  of  gas  and  coke. 

(P>  Koppers  535a 

Chamber  — —  with  regenerative  heating.     (P)  Dcs- 

sauer  Vertikal-Ofen-Ges 209a 

Gas-heated     .     (P)     Stettiner     Chamotte-Fabr. 

A.-G.  535A 

for  semi-coking  of  fuels.     (P)  Lentz     ..  ..  ..     801a 

See  also  Furnaces  and  Kilns. 

Oxalates  ;   Manufacture  of : 

iii  Pauius,  and  Royal   Baking  Powder  Co.     631a 
(P)  Wallace,  and  Oldbury  Electro-Chemical 

Co 173a 

Manufacture  of  alkali  ■ ■.     (P)   Oldbury   Electro- 
Chemical  Co.             . .  . .  . .  . .  . .      174a 


Oxalic  acid  ;   Detection  of .     Midler 

Detection  and  determination  of  and  its  use  in 

standardising  iodine  and  silver  solutions.     Rosen- 
thaler 
Formation  and  accumulation  of  in  cultures  of 

CUromvces    on    salts    of    organic    acids.      But- 

kewitsch 
Formation  of  ammonia  and in  cultures  of  Asper- 

pillus  niger  on  peptone.     Butkewitsch     .. 
Formation    of    citric    acid    and    on  Citromijces 

cultures  on  sugar,  and  estimation  of  these  acids. 

Butkewitacb 
Hydrated   as   oxidimetric   standard.     Hill   and 

Smith  

Manufacture  of  : 

(P)  Badische  Anilin  und  Soda  Fabr. 

(P)  Wallace,    and  Oldburv     Electro-Chemical 

Co 

Manufacture  of  from  sugar  or  molasses  by  m<;ni> 

of  synthetic  nitric  acid.     Matignon 
Oxidation  of by  permanganate  in  absence   of 

other  acids.     Witt 

Position  of under  Safeguarding  of  Industries  Act    . . 

Preparation  of from  leached  tan  bark.     (P)  Wipfler 

Refining (P)  Kelen,  and  U.S.  Industrial  Alcohol  Co. 

turbidity  in  beer  and  related  problems.     Geys     .. 

Oxazine  dyestuffs  ;  Manufacture  of  hydroxyalkyl  derivatives 
of .     (P)  British  Dyestuffs  Corp.,  and  others    . . 

Oxidation  catalysis.     Karczag 

Directed .     Armstrong 

of  finely-subdivided  material.     (P)  Best 

by  means  of  mixtures  of  sulphuric  and  chromic  acids  ; 

Function  of  chromic  oxide  in .     Simon 

by  means  of  sulphuric  acid  and  chromates.     Simon 

of  organic  compounds  ;  Biochemical  and  electrochemical 

.    Fichter 

of  organic  compounds  ;  Electrochemical .  MUller  . . 

Oxide,  spent ;   Extraction  of  sidphur  from .     (P)  Given, 

and  Stevens- Aylsworth  Co. 
spent ;   Manufacture  of  sulphurous  acid  from .    (P) 

Kircheisen 

Oxides  ;  Colloidal .     See  under  Colloidal. 

Decomposing  or  dissolving  refractory  .     (P)  Bayer 

und  Co. 
Electrolytic  cells  for  precipitating  metallic  .     (P) 

Wikle  

Hydrous .    Stannic  oxide.    Weiser 

Isomerism  of  metallic .     Lead  monoxide.  Applebey 

and  Reid 
Method  of  producing  high  temperatures  for  reducing 

refractory .     (P)  Pacz 

Obtaining  volatilisable .     (P)  Robertson      ..        99a, 

Purification  of  ores  and  residues  containing .     (P) 

Dyson  and  Aitchison 

Reduction  of by  hydrogen.     Berger 

Reduction  of  metallic .     (P)  Bourcoud 

Reduction  of  metallic by  aluminium  in  the  furnace. 

(P)  Felder-Clement 

stable  at  red  heat ;    Examination  of  metallic  by 

X-ray  spectrum.     Hedvall 
of  trivalent  and  quadrivalent  elements  ;  Manufacture  of 

.     (P)  Ges.  f.  Verwertung  Chem.  Prod. 

Oxyalkylated   thiosulphonic   acids  ;    Manufacture  of   . 

(P)  British  Dyestuffs  Corp.,  and  others 
Oxyoelralose.     Heuser  and  Stockigt     .. 

Comparative  action  of  heat  on  cellulose,  hydrocellulose, 

and  .     Justin-Mueller 


Oxychloride  stucco  and  flooring 
Shaw  and  Bole 


New  developments  in  - 


Oxygen  ;  Catalytic  formation  of  water  vapour  from  hydrogen 

and  in  presence  of  copper  and  copper  oxide. 

Pease  and  Taylor 

Detection  of in  organic  compounds.     Piccard 

Determination  of  minute  amounts  of and  its  appli- 
cation to  respiratory  air.     Sheaff 
Determination    of   in    organic    compounds.     Ter 

Meulen 
Determination  of  traces  of  in  hydrogen.     Larson 

and  White 
Electrode  for  production  of  a  mixture  of  hydrogen  and 

.     Gunther-Sehulze 

Electrolytic  generation  of  hydrogen  and with  special 

reference  to  utilisation  of  off-peak  power.     Allau    . . 
Electrolytic   preparation   of   hydrogen   and   .     (P) 

Baur 
gas  ;   Generation  of for  respirators  etc.      (P)  Levy 

and  Davis 
-hydrogen  catalysis  ;  Mode  of  action  of  platinum  in 

and  application  of  titanium  sulphate  for  control  of 

the  course  of  the  change.     Hofmann 
-hydrogen  catalysis  by   platinum  metals,  and   contact 

potentials  in  presence  of  aqueous  electrolytes.    Hof- 
mann 
liquid  ;    Fuses  for  blasting  with  .     (P)  Sprengluft 

Ges 

Plant  for  production  of  liquid  air  and  of  nitrogen  and 

.     Blau 

Possibility  of  using in  the  blast-furnace.     Wagner 

Production  of  aqueous  solutions  containing  .     (P) 

Aquazone  Laboratories,  Inc. 
Removing from  liquids.    (P)  Union  Thermique     . . 


PAGE 
909A 


514a 

514A 

831 A 

351A 

837A 

173a 

585a 

609A 
554a 
728a 
33a 
190a 


156a 
265T 
2a* 

1001a 
614a 

20a 
597a 

216a 

216a 


147a 
979a 


715  a 
755a* 

505a 
500a 
379a* 

985a 

251A 
174  a 

977a 
583A 

9A 
634a 

751a 
311a 

613A 

790A 
252a 
472a. 
423A 

181a 
230a 

500a 

252a 

80a 

173a 
329a 

859a 
834A 


SUBJECT  INDEX. 


189 


PAGE 

Oxygen — continued. 

Separating  mixtures  of  nitrogen  and .     (P)  Mewes 

and  Mewes         . .  . .  . .  . .  . .  . .     755A 

Separating  nitrogen  and  from  air  by  centrifugal 

diffusion.     (P)  Heinrich  859a 

Transport  of  industrial  supplies  of  large  volumes  of 

in  liquid  form.     (P)  Heylandt  (its.  fiir  Apparutcbau       89a 

Velocity  of  action  of  on  metals.     Tammann  and 

Jander    . .  . .  . .  . .  . .  . .  . .     941a 

Oxyhemoglobin  ;    Preparation  of  crystalline  .     Heidel- 

berger 784a 

Oxyhydrogen  gas  ;    Combination  in in  presence  of  col- 
loidal palladium  solution.     Sandonnini  and  Quaglia     707a 

gas  ;  Ignition  point  of .     Mitscherlkh  . .  . .     327a 

Oxynitrilase.  See  5-Emulsion. 
Oxynitrileae.  See  o-Emulsion. 
Oxysalt  composition.     (P)  Catlett         . .  . .  . .  . .     670a 

Ozone.     Riesenfeld  and  Schwab  668a 

Action  of on  pure  solutions  of  dextrose,  Uevulose, 

and  sucrose.     Sehonebaum     . .         . .         . .         . .     152a 

Apparatus  for  producing : 

(P)  EUIa 507a 

SpiessundEy       ..  ..  ..  ..  ..     299a 

formation  by  optical  sensitisation.     Winther      . .         . .     392a 

generator : 

(P)  Fitzpatrick 181A 

(P)  Goedicke        148a* 

(P)  Hart  man         944a* 

(P)  Hart  man,    and    Electric    Water    Sterilizer 

and  Ozone  Co.  . .  . .  . .  . .     718a 

Production  of  of  any  desired  concentration.     (P) 

Siemens  und  Halske  A.-G 216a 

Ozone  compounds  ;    Preparation  of .     (P)  Moisant,  and 

General  Research  Laboratories  . .  . .  . .     232a 

Ozonides  from  petroleum.     Koetschau  . .  . .  . .     848a 

Ozoniser.     <P)  Haas e,  and  Ozone  Pure  Airifier  Co 147a 

New  form  of .    Nemecek        986a 


Paint   coating    for    protecting    steel    against    cementation. 

Galibourg  and  Ballay  . .  . .  . .  . .  . .  419a 

compositions  : 

(P)  Blakeman 906a 

(P)  Lamb,  and  American  Cotton  Oil  Co.  . .  771a 

films  ;     Speed  of  evaporation  of  thinners   from  . 

Gardner  and  others  ..  ..  ..  ..  904a 

gauge  ;  Use  of  Pfund .     Gardner  and  Holdt  . .  903a 

market  in  Algeria      . .  . .  . .  . .  . .  . ,  40r 

oil  ;  Manufacture  of : 

(P)  Levenhagen  and  Evans        ..         ..         ..  261a 

(P)  St.  John  and  Cassidy  301a 

oils ;     Manufacture    of    a    substitute    for    .     (P) 

Schilsky  382a 

vehicle.     (P)  Collings  826a 

vehicles  and  compositions.     (P)  Blakeman         . .  . .  720a 

vehicles  and  the  like  ;  Manufacture  of .     (P)  Gardner  22a 

Painting  ;  Preparations  of  emulsions  for .     (P)  Schou  . .  301a 

Paints  ;   Accelerated  weathering  of on  wood  and  metal 

surfaces.     Nelson         . .  . .  . .  . .  . .  600a 

acid-resisting;    Manufacture  of  .     <P)  Wiekenden, 

and  Industrial  Chemical  Co.    . .  .  .  . .  . .  66a 

Composition  for  removing ,     <P)  Ellis,  and  Chade- 

loid  Chemical  Co.  ..  ..  ..  ..  ..  261a 

Exposure  tests  on .     Gardner  . .  . .  946a 

Fire-resisting .     Gardner         . .  . .  . .  . .  903a 

Investigation  of  aqueous  lime .     Fink  ..  ..  557a 

Italian  market  for ..  ..  ..  ..  ..  4G0R 

and   like  compositions  ;    Manufacture  of   water-colour 

.     (P)  Plauson 989a* 

luminous  ;  Recovery  of  radium  from .     Francis     . .  94t 

Manchurian  trade  in . .  . .  . .  . .  516r 

Manufacture  of : 

(P)  A.-G.  fur  Anilin-Fahr 300a 

(P)  Hathaway  and  Locke  382a 

(P)  Holzapfel 677a 

(P)  Trails  475a 

(P)  Ward  639a 

(P)  Willkie,  and  U.S.  Industrial  Alcohol  Co.    . .  301a 

Manufacture  of  a  binder  for  coloured  carbolineum . 

(P)  Plonnis  und  Co.      ..  ..  ..  ..  ..  510a 

Manufacture  of  coal-tar .     (P)  White  . .         . .  23a 

Manufacture  of  oil from  water  pastes  : 

(P)  Cookson  and  Co.,  and  Clarke  ..  ..  148a 

(P)  Fletcher  and  Parker  301a* 

Manufacture  of  rapidly  drying  tar .     (P)  Hbchtl 

and  others  . .  . .  . .  . .  .  .  . .  66a 

Manufacture  of for  ships'  bottoms.     (P)  Arie  .  .  510a 

Manufacture  of  waterproof  - — -.     (P)  Blass  and  Abbott  110a 

Manufacture  of  water-resistant .     (P)  Plonnis  und 

Co 510a 

Physical  properties  of .     Walker  and  Thompson     . .  599a 

Physical  testing  of .     Gardner  903a 

for  preventing  heated  metal  surfaces  from  rusting.     (P) 

Gravell  . .  . .  . .  . .  . .  . .  822a 

Reflection  factors  of  industrial .     Gardner  . .  903a 

Relation  of  yield  value  and  mobility  of to  their  so- 
called  consistency.     Booge  and  others         . .  . .  599a 

Removal  of .     (p)  Tiddy,  and  Rainey-Wood  Coke  Co.  559a 

Storage  conditions  in  white  and  tinted with  refer- 
ence to  soap  formation.     Gardner     . .  . .  904a 


page 
Paints — continued. 

for  use  in  application  of  magnesium  oxychloride  cement 

to  metallic  surfaces.     (P)  Davies  and  Miles  . .     905 A 

Palestine  ;  Prospects  of  an  alcohol  industry  in . .     484R 

Palladium  solution  ;    Combination   in  oxyhydrogen   gas  in 

presence  of  colloidal .     Sandonnini  and  Quaglia     707a 

Palm  kernels  ;  Differential  duty  on ..         .,         ..     161r 

kernels  ;  Export  duty  on  Nigerian . .         . .     336r 

oil.     See  under  Oils,  Fatty. 

oil-;  African in  Ceylon  ..         ..         ..         ..     177r 

Palmatine  ;    Conversion  of  berberine  into .     Spath  and 

Lang 117A 

Palmitic  acid  ;    Separation  of  stearic  acid  and .     Andre     639a 

Panama  ;    Report  on  commercial  and  economic  situation  in 

.     Graham  136r 

Pancreas;  Insulin,  the  hormone  of  the .  ..  ..     537R 

Production  of  material  for  accelerating  alcoholic  fermen- 
tation from .     (P)  Riedel  514a 

Pancreatin  ;  Manufacture  and  stabilisation  of  activated . 

(P)  Neun,  and  Carnrick  Co.     ..  ..  ..  ..     198a 

Paniculatine,  the  alkaloid  of  Aconilum  paniculatum.  Brunnei    914a 

Pans;  Standardisation  of  jacketed ..  ..  ..       52r 

Papain  ;   Digestive  properties  of  Philippine  — — .     Brill  and 

Brown     . .  . .  . .  . .  . .  . .  . .     645A 

Papaverine;     Estimation  of  narcotine  and  in  opium. 

Annett  and  Bose  . .  . .  . .  . .  . .     475R 

Paper;    Apparatus  for  testing  sizing  of  by  the  ink 

method,     (p)  Denoel  249a* 

Application  of  direct  dyestuffs  in  colouring .    Holmes     935A 

Beater  sizing  of .     (P)  Wheelwright  ..  ..     894a* 

Bleaching  .     (P)  Baker,  and  Wallace  and  Tiernan  Co.    461a 

Bleaching  "  stuff  "  or  fibres  in  manufacture  of .   (P) 

Salmon  . .  542a 

Chemical    and     mechanical    disintegration    of    raw 

materials    used    in    manufacture    of .     (P) 

Herdey  808a 

Coated  .     (P)  Rafsky  367a 

Determination  of  mechanical  wood  pulp  in  printing 

.     Krull  and  Mandelkow         . .  . .  . .     806a 

Disintegrating  vegetable  fibres  for  use  in  manu- 
facture of  .     (P)  Moriondi,  and  Soc.  Anon. 

Brevets      Peufaillit  324a* 

Drying  : 

(P)  Marx  665a 

(P)    White,    and    International    Paper    Co.     324a* 

Drying  or  otherwise  treating .     (P)  Miuton       . .      460a 

Engine-sizing    composition    for   .     (P)    De    Cew, 

and  Process  Engineers,  Inc.  ..  ..  ..      138a 

Feeding  pulp   to  the  forming  wire  in   machines  for 

manufacture  of .    (P)  International  Paper  Co.     543a* 

filler.     (P)   Hoskins  748a 

filter- ;    Effect  of  presence  of on  pcrmanganate- 

oxalate  titrations.     Simpson         ..  ..  ..     158a 

filter-  ;     Penetrability   of    .     Griffin    and    Parish     350a 

half-stuff  ;    Simultaneous  production  of   textile  fibres 

and   from  reeds   and    the   like.     (P)   Von 

Ordody,  and  Schottik  und  Co.        . .  . .  . .      498a 

Impregnation  of  .     (P)  Ubbelohde  ..  ..     854a 

industry  in   Germany      . .  . .  . .  . .  . .      373R 

and    like    materials ;      Impregnation    of    .     (P) 

Exportiugenieure  fiir    Papier   u.  Zellstotftechnik     460a 
Paper-Makers'  Association  of  Great  Britain  and  Ireland     156R 

Paper-making  in  Australia  ;    Experiments  in  . .        79r 

-making  industry  in  India  ..  ..  ..  ..        79R 

-making  and  like   purposes  ;     Beating,   comminuting, 

or   pulping    machinery    for   .     (P)    Arledter     249a* 

-making  machines  :  : 

(P)  Baglcy  and  Sewall  Co 628a*,  705a* 

(P)Voith  628a* 

-making  machines  ;    Apparatus  for  reclaiming  paper 

pulp  and  the  like  from   waste  waters  in . 

(P)  Partington  324a* 

-making    machines  ;     Controlling   the   water   content 

of    pulp    on    the     wires    of    Fou rd rin ier . 

(P)   Bagley   and   Sewall    Co 410a* 

-making    machines  ;     Fourdrinier    .     (P)    Milne     543a* 

-making  machines  and  the  like  ;   Couch  rolls  for . 

(P)  Marx        54a* 

-making    machines  ;     Reclaiming    paper    pulp    from 

waste   waters   of   .     (P)    Partington  . .       54a 

-making  ;       Manufacture     of     aluminium     sulphate 

for .     (P)  Muller  812a 

-making;    Queensland  timbers  for  ..  ..      157R 

-making  ;    Rubber  latex  in  .     Kaye       11r,  369R,  806a 

-making    stock  ;     Manufacture    of    .     (P)    Allen 

and  others 324a* 

-making ;  Suggested  standards  for  moisture  and 
grit  in  china  clay  for and  method  of  estimat- 
ing   grit.     Strachan  ..  ..  ..  ..     323A 

Manufacture  of  : 

(P)  Peabody 460a 

(P)   Ross,  and   Sturtevant  Co.  ..  ..     460a* 

(P)  Tiburzi        324a 

Manufacture  of  aluminium  compounds  for  sizing . 

(P)  Muth 546a 

manufacture  ;   Chemical  engineering  of .      Fraser     531r 

Manufacture  of  hard-sized .   (P)  Holzverkohlungs- 

Ind.A.-G 95A 

Manufacture   of at    high    speeds.     (P)    Bagley 

and  Sewall  Co 584a 


190 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Paper — continued. 

Manufacture  of  metallised  for  electric  cables. 

(P)    Hochstadter         894a 

Manufacture  of  waterproof  .     (P)   KJrschbraun     213A 

newsprint ;    Utilisation  of  jack  pine  in  manufacture  of 

.     Neilson  247a 

parchment-  ;  Manufacture  of from  nitrocellulose. 

(P)    Herstein  894a 

Photographic  .     See  under   Photographic. 

Piezo-micrometer  and  its  application  to  testing  . 

Strachan         936a 

problems    and   some    solutions.     Tingle  ..  ..     122R 

Process  for  loading in  the  Hollander.     (P)  Joost     S06a 

Production  of  battick  effects  on  .     (P)  Meister, 

Lucius,   und   Bruning  ..  ..  ..  ..        11a 

products  ;   Manufacture  of .     (P)  Acheson  . .     628a 

pulp  ;    Developments  in  use  of  bleaching  agents  for 

.     Inman       . .  36ST 

pulp  ;     Digestion    of    Typha    domingensis    for    . 

Heuser  and  Haugerod  ..  ..  ..  ..     2S8a 

pulp  ;    Estimation  of  the  degree  of  beating  of  . 

Skark  9a 

pulp  ;     Fractional    digestion    of    esparto    grass    and 

the  like  in   production   of  .     Aitken  . .        52a 

and  pulp  industry  in  Canada        ..     80r,  176r,  245r, 

312R,  350R,  510R,  534R 
pulp  ;     Instrument    for    measuring    the    degree    of 

beating  of .     Skark      . .  . .  . .  . .      583a 

pulp   and    the  like ;     Apparatus   for   pressing  liquid 

from  .     (P)  Aktiebolaget  Karlstads  Mekan- 

iska  Verkstads         666a* 

pulp  ;    Manufacture  of : 

(P)  Bache-Wiig  and  Baohe-Wiig        ..  ..      541a 

(P)  Bernot  and  Fournier  . .  . .  . .     542a 

pulp  ;    Manufacture  of  from  fibrous  vegetable 

materials.     (P)    Raitt  53a 

pulp  ;     Manufacture   of    high-grade    from    flax 

fibre.     (P)  Rindfusz  and  others 894a 

pulp;  Manufacture  of from  wood.     (P)  Fish,  jun, 

and  Wood  Products  and  By-Products  Corp.        . .     459a 
pulp  ;    Mechanical  process  for  manufacture  of  . 

(P)  Steinhilber         543a* 

pulp  ;    Production  of  mechanical  .     (P)  Courrier     249a* 

pulp  ;    Production  of  power  alcohol  and  from 

sugar-cane  refuse.     Fowler  and  Bannerjee  . .     227a 

pulp  refining  engines.     (P)  Milne  . .  . .  . .      324a* 

pulp    strainers,  paper-  and  rag-dusters,  and  similar 

machines.     (P)     "Watford     Engineering     Works, 

Ltd.,  and  Paramor  . .         . .  . .  . .     705a* 

pulp ;     Use   of   sodium    silicate   in    sizing   of   . 

Blasweiler      . .  . .  . .  . .  . .  . .       95a 

Recovering  used .     (P)  Marr  . .  . .  . .       10A 

Recovery  of  paper  fibres  or  pulp  from  printed  . 

(P)  Kumagae  and  Chiba 855a,  978A* 

Removal  of  printer's  ink   from  : 

(P)   Allen    and    others  248a 

(P)  Eyrich  and  Schreiber        . .  . .  . .     894a 

(P)   Eyrich  and  others  628a 

(P)  Jespersen,  and  Lincoln  Trust  Co.  . .      748a 

Rendering     greaseproof.     (P)     Wright,     and 

Seabright     Co 543a 

Rosin    sizing    of    .     Siebcr  . .  . .  . .     746a 

Sizing   : 

(P)  Bayer  und  Co 291a 

(P)   Feculose    Co.    of   America  ..  ..     248a 

(P)    Ubbelohde  704a 

Sizing   with     animal     glue    or    proteins.      (P) 

Badische  Anilin  u.  Soda  Fabr.        . .  . .  . .     705a 

Sizing  and  impregnating  .     (P)  Lutz     . .       367a,  367a 

Sizing in  the  hollander.     (P)  Muth  . .  . .     665a 

Stiffening .     (P)  Pollak 459a 

stock  ;    Hollanders  or  similar  machinery  for  cleaning 

.     (P)  Southworth 584a* 

stock  ;     Treating    waxed to    remove   the   wax 

and  reduce  the  paper  to  pulp.     (P)  Dunwell        ..     367A 
surfaces    that    have    been    treated    with    proteins ; 

Producing    water-    and    friction-resisting    prints 

on    .     (P)    Export ingenieure    f.    Papier-    u. 

Zellstofftechnik         705a 

tubes  ;     Manufacture   of   waterproof  : 

(P)   Burningham   and   others  ..  ..        10a 

(P)  Richter  and  others  . .  . .  . .        10a 

Waterproofing  efficiency   of  di-  and   tri-valent  salts 

of  the  higher  fatty  acids  and  their  adsorption 

by  the  fibres  of  .     Bhatnagar  . .  . .      324a 

yarn  and  fabrics  ;    Waterproof  impregnation  of . 

(P)  Bohme  A.-G.  213a 

Papua  ;  Copper  mining  in . .  . .  . .  . .     331R 

Petroleum    exploration    in    . .         . .  9R,  101R 

Resources  of  ..  ..  ..  ..  ..      197R 

Paraffin  ;    Apparatus   for   evaporating and   mixing 

the    vapour    with    coal    gas.     (P)    Cripps    and 
Milbourne      . .  . .  . .  . .  . .  . .     455a 

Continuous  production  of  .     (P)  Scheffer  ..     802a 

Direct  production  of  from  bituminous  earths. 

(P)  Scheffer  and   Herzberg  C61a 

hydrocarbons.     See  under   Hydrocarbons. 

Obtaining  highly   viscous  lubricating  oils   and  

from  lignite  tar  and  shale  tar.     (P)  Erdmanu       ..     285A 

wax  ;    Apparatus  for  sweating  : 

(P)  Dickens  and  others  890a 

(P)   Housholder  286a 


page 
Paraffin — continued, 

wax  ;    Centrifugal  separation  of  — ■ — ■  from  oil.     (P) 

Sharpies  Specialty   Co.        ..  ..  ..  ..     244a 

wax;    Colour  of  .     Bomberg         ..  ..  ..     319a 

wax  ;   Composition  of .     Francis  and  others     360a,  800a 

wax  ;    Effect  of on  properties  of  mineral  oils. 

Bjerregaard  . .  . .  . .  . .  . .      320a 

wax  :    Effect  of  on  viscosity  of  petroleum  oils. 

Dean  and  Cooke        . .  . .  . .  . .  . .      534a 

wax  ;     Examination    of    .     Pyhala  . .  . .     800a 

wax;  Imports  of into  Japan  ..  ..  ..     515R 

wax  ;    Influence  of  elements  of   the  oxygen   group 

on .     Siebeneck  282a 

wax  and  the  like  ;  Oxidising and  obtaining  soaps. 

(P)  Traun's  Forschungslaboratorium       . .         . .     425a 
wax  ;  Manufacture  of from  producer-gas  and  low- 
temperature  tar.     (P)  Allgem.  Ges.  f.  Chem.  Ind.       48a 

wax  ;    Oxidation  of  .     Siebeneck  . .         . .     888a 

wax  ;    Production  of from  lignite  tar,  producer- 
gas   tar,   etc.     (P)   Helvey  933a 

wax  ;    Recovery  of  ,  especially  from  lignite  tar 

or  shale  tar.     (P)  Erdmann  . .  . .  . .     404a 

wax  ;    Recovery  of  from  petroleum  or  tar-oils. 

(P)  Deutsche  Erdol-A.-G.  455a 

wax  ;  Separation  of from  oil  by  filtration  and  use 

of   volatile   solvents.     (P)    Seidenschnur  . .     245a 

Paraffins-alcohol-water  ;    The  systems ■  from  +30°  to 

—30°  C.     Ormandy    and    Craven  . .  . .     402a 

Apparatus  for  determining  softening  point  of  ■     443a 

in    petroleum ;     Solid    .     Rakusin  . .  . .      129a 

Probability  of  reaction   between   sulphur  and   solid 

in  oil-bearing  strata.     Rakusin  . .  . .      492a 

Paraguay  ;    Report  on  economic  and  financial  conditions 

"in .     Paris  136R 

Paraldehyde  ;    Amount  of  in  spirit  from  sulphite- 
cellulose  waste  liquors.     Heuser  and  others      . .      190a 

Commercial  process  for  manufacture  of  .     Vogt 

and  Nieuwland  ..  ..  ..  ..  .-     113a 

Parasites  ;    Decomposition  and  extraction  of  .     (P) 

Tetralin   Ges.  688a 

Parasiticides.     (P)  Mengel 193a 

Parchment  paper.     See  under   Paper. 

Pareira  root ;    Alkaloids  of  .     Faltis  and  Neumann     390A 

Paris   green  ;     Iodometric   determination   of   copper   and 

arsenic  in   .     Kolthotf   and   Cremer  . .        76a 

Parliamentary   news      ..     82r,   103R,   134R,   160R,   180n, 

201R,   224R,  247R,   267R,  295R,  315R,  336R,   541R,  571R 
Passivity  and  over-potential.     Evans         . .         . .         . .       78R 

Pasteur  celebrations     . .  . .  . .  . .  . .  . .      570r 

centenary  ..  ..         ..  ..         ..      111R,  175R 

commemoration  fund       . .  - .  . .  -  -  -  ■     370R 

What    chemical    industry   owes   to    .     Fernbach     519R 

Pasteurising  liquids.     (P)  Jensen,   and  Jensen   Creamery 

Machinery  Co 30a 

liquids  ;  Apparatus  for .     (P)  Miilertz       . .  . .       31a* 

Patent  Conference  ;   Report  on  British  Enpire ..      375r 

fees  in  Austria 266K 

fees  in  France  ;    Increased  . .         . .         . .       80r 

fees  in  U.S.A 175B 

law  in  Australia  ;   Alterations  in  the . .  . .     130R 

law;  Proposed  change  in in  U.S.A.         ..  ..     265R 

laws ;     Chemists    and    the    .     Ballantyne         . .     121R 

lists  . .      38A,    83a,    122a,    159a,    201a,    235a, 

274a,  311a,  353a,  395a,  444a,  486a,  527a,  569a, 
614a,  651a,  692a,  731a,  791a,  841a,  8S1A,  920a, 

964a,  1002a 

Patents  ;     Delay   in   dealing   with  applications  for  .     315R 

designs,     and     trade     marks  ;      Thirty-ninth     report 

"of  Comptroller-General  of 296R 

PitulllnUi  cupmia  tannin.     Nierenstein        ..  ..  ..      1s4a 

Paving  bricks  ;   Dutch  clinker . .  . .         . .  . .     421  u 

compositions  ;    Manufacture  of  for  hard  tennis 

courts,  skating  rinks,  paths,  and  the  like.     (P) 

Thompson  and  Bird  S61A 

roads  and  like  surfaces;     Production  of  bituminous 

macadam    for     .     (P)     Strassenbau     A.-G. 

Luzern  . .         - .         . .         . .         . .         . .       15a 

Pea-nuts  ;    Compression  of  in  bulk  for  preservation 

and  transportation.     (P)  Macllwaine      . .  . .     946a* 

Pearl,    uiother-of- ;     Attempts   ;it   synthetic   manufacture 

of    by    production    of    chemical    tracery. 

C16ment  and  Riviere  499a,  567r 

Pearlite.     See  under  Steel. 

Peat  ;    Apparatus  for  carbonisation  of .     (P)  Hird    . .     802a 

Apparatus    for    dewatering    and    compressing    . 

(P)  Clewlow  929a 

Apparatus  for  distillation  of and  recovery  of  the 

products.     (P)  Robus  132a 

Art  bfclal  drying  of  .     Keppeler    ..  ..  ..     S47a 

briquettes   impregnated    with   shale    oil ;     Suggested 

use  of 266R 

Briquetting  or  drying  .     (P)  Ges.  fur  Druckent- 

wasserung  (Madruck)  . .  . .  . .  . .     243a 

Carbonisation  of .     (P)  Beilby      . .  . .  . .     456a 

Dehydrating  raw .     (P)  Glinka 800a 

Dehydrating by  treatment  with  solvents  miscible 

with  water.     (P)  Kruger 243a 

Dehydration,    drving,    and    carbonisation    of    . 

(P)  Kaudlcr 130a 


SUBJECT  INDEX. 


191 


Peat — continued. 

Dewatering .     (P)  Nederlandsche  Vcenverwerking 

Mantschappij  . .  . .  . .  . .  . .      848A 

Dewatering  of  by  pressure.      Hinehley        365T,  506r 

Disintegrating,   dehydrating,   and   otherwise  treating 

for  fuel  or  distillation  purposes.     (P)  Clew- 
low      700a 

Dispersoid-chemical  changes  in  on  dewatering 

by  the  ten  Bosch  steaming  process.     Ostwald  and 

Wolski  318a,  319A 

Dry  distillation  and  coking  of  raw  .     (P)  Pohl 

und  von  Dewitz       . .  . .  . .  . .  . .     802a 

Drying : 

(P)  Rigby  571A,  800a 

(P)  Steinmann 360a 

(P)  Von  Haken  130a,  700a 

Expressing  liquid  from  wet .     (P)  Hinehley       . .       88a 

Generation  of  mechanical  energy  from  without 

previous  air  drying.     (P)  Meea  . .  4a,  282a 

Improvement  of  .     (P)  Jacobs     . .  . .  . .     578a 

Improving  ,  for  use  as  fuel,   by  the   Madruck 

process.     Caro  . .  . .  . .  . .  . .       45A 

and  the  like  ;    Dry  distillation  and  coking  of  . 

(P)  Pohl  und  von  Dewitz  . .         6a,  581a*,  621a* 

and  the  like  ;   Drying .     (P)  Jacobs  ..  ..     739a 

and   the  like;     Drying  and   compressing  raw   . 

(P)  Pohl  und  von  Dewitz 802a* 

or  the  like;    Manufacture  of  solid  fuel,  liquid  distil- 
lates and  vapour  from  wet .     (P)  Nuss     ..     403a 

and  the  like  ;   Recovery  of  ammonia  from .     (P) 

Brat  501a 

and  like  substances  ;    Distilling  and  gasifying  

and  production  of  cement.     (P)  Seigle  ..  ..     538a 

and    the   like ;     Treatment    of    .     (P)    Thermal 

Industrial  and  Chemical  (T.I.C.)   Research  Co., 

and  Morgan  . .  . .  . .  . .  . .  . .      700A 

and  the  like  ;    Treatment  of  raw  in  a  closed 

pressure   vessel    with  simultaneous   compression. 

(P)  Pohl  und  von  Dewitz -130a 

Manufacture  of  coal  yielding  a  low  percentage  of  ash 

from .     (P)  Chem.-Fabr.  Griesheim-Elektron     403a 

Manufacture    of    high-grade,     non-hygroscopic    fuel 

from .     (P)  Scherk 46a 

Manufacture    of    illuminating    gas    from    .     (P) 

Gyllenram      . .  . .  . .  . .  . .  . .     361a 

Manufacture  of  pulp  for  paper,  cardboard,  artificial 

leather,  and  the  like  from .     (P)  Burliu       . .     628a* 

Manufacture  of  smokeless  fuel  from .     (P)  Pape     320a 

moss  ;    Treatment  of  for  use  in  purification  of 

sewage  effluent,  waste  liquors  from  factories,  etc. 

(P)  Von  Springborn  389a 

Nature  of  water-holding  power  of .     Ostwald  . .     318a 

and  other  carbonaceous  substances  ;    Conversion  of 

into  artificial  coal.     (P)  Ford  and  Thompson     740a 

Plant  for  continuous  decomposition  and  dehydration 

of .     (P)  Laaser  and  Birk       . .  . .  . .      659a 

Plant  for  recovering  nitrogen  in  form  of  ammonia 

from  .     (P)  Brat  414a 

and  piaster  ;    Moulds  of .     (P)  Kampshoff  . .     329a 

Preparation   of   for   gasification   in    producers. 

(P)  "SVentzel  und  Co.  130a 

Preparation  of  a  raw  material  from  for  making 

a  building  material.     (P)  Dyekerhoff       ..          ..     816a 
Process  for  increasing  the  carbon  content  of  . 

(P)  Muller 360a 

Recovery  of  "  bath  oil  "  in  production  of  oils  from 

(P)  Hochofenwerk  Lubeck  A.-G.               . .          . .      741a 
Recovery  of  nitrogen  in  form  of  ammonia  from . 

(P)  Brat        371A,  462a 

Removal  of  water  from below  100°  C.     Ostwald 

and  Wolf       . .  .  *         972a 

Report  on by  the  commission  of  inquiry  into  the 

resources  and  industries  of  Ireland  . .  . .     356r 

Ring  furnace  for  distillation  of  .     (P)   Wessels 

und  Wilhelmi  . .  ..  ..  ..  ..     456a 

or  similar  fuel ;    Utilisation  of  surplus    power   from 

hydro-electric    plant    for    preparation    of    

(P)  Testrup,  and  Techno-Chemical  Laboratories, 

Ltd 889a 

and  similar  material ;    Pressing .     (P)  Maus      . .     6o9a 

tar.     See  under  Tar. 

Travelling   apparatus    for    extracting    and    kneading 

.     (P)  Bobst  et  Fils 322a* 

Treatment  of : 

(P)  Blair  48a* 

(P)  Moeller  and  De  Fonblanque        . .  . .     452a 

(P)  Rigby  800a 

Treatment  of  for  manufacture  of  an  insulating 

material.     (P)  Graeffe         866a* 

Treatment  of  to  obtain  a  dry  product  of  high 

calorific  value.     (P)  Von  Springborn        . .  . .     360a 

in  U.S.A.  in  1920  176R 

Pecan  nut  as  a  source  of  adequate  protein.     Cajori  . .     154a 

Pectic  constituents  of  stored  fruit ;    Changes  which  occur 

in .     Carr6         993a 

substances;    Manufacture  of — — .     (P)  Huber         ..     388a 
substances  of  plants.     Chemistry  of  the  cell  wall  of 

plants.     Clayson  and  others  . .  . .  . .        75a 

Pectin-containing   material ;     Manufacture   of   .     (P) 

Beylik  and  Schwartzlose    . .  . .  . .      781a,  954a* 

Determination  of as  calcium  pectate  and  appli- 
cation of   method  to   determination   of   soluble 

pectin  in  apples.     Carre  and  Haynes      ..         ..     342a 


Pectin — continued. 

Relation  of  acidity  and in  jelly  making.     Singh 

substances  of  flax.     Correns 

Pelargonium ;     Colouring    matter    of    the    scarlet    . 

Currey 

Pellotine;   Constitution  of .     Spiith    .. 

Pelt ;   Hydrolytic  action  of  neutral  salts  on .    Moeller 

Influence  of  formaldehyde  on  adsorption  of  acids  and 

alkalis  by .     Gerngross 

See  also  Hides  and  Skins. 

Pencil  drawings  on  paper  ;    Fixing  and  blackening  . 

(P)  Griinert  — 

pigments.     See  under  Pigments. 
Pencils ;     Method   of   facilitating  the   cleavage   of   wood, 

particularly  for  manufacture  of  lead  .     (P) 

Beutel  and  Suchy 
Pentosans.     Heuser  and  others 
Pentose-destroying   bacteria ;     Characteristics    of   certain 

especially  as  concerns  their  action  on  ara- 

binose  and  xylose.     Fred  and  others 

Pentoses ;    Fermentation  of  by  moulds.     Peterson 

and  others 
Pepper  ;   Chavicine  from  pepper-resin,  the  primarily  active 

constituent  of  black .     Ott  and  others 

substances ;    Natural   and   artificial .     Relation 

between  chemical  constitution  and  peppery  taste. 
Ott  and  Zimmermann 
Peppermint  oil.     See  under  Oils,  Essential. 

Pepsin  ;    Action  of  on  diastase.     Biedermann 

Determination  of .     Glassner 

Experiments  on  purification  of  .     Hammersten 

Relative   sensitiveness    to    alkali    of    from   the 

stomachs  of  the  calf  and  the  pig.     Hammersten 

Peptic  digestion  ;    R61e  of  acids  in  .     Ostwald  and 

Kuhn 

Peptides ;    Alkalinetric   estimation  of .     Willstatter 

and  Waldschmidt-Leitz 
Peptone  fermentation.     Baur  and  Herzfcld 

Lactic    acid    fermentation    of    dextrose    by    . 

Schlatter 

Peptones  ;    Recovery  of  hsematin  and  from  blood. 

(P)  Butterfield         

Perborates ;      Electrolytic     manufacture     of     .     (P) 

Deutsche  Gold-  u.  Silber-Scheide-Austalt 

Manufacture  of : 

(P)  Aschkensasi 

(P)    Langhard,   and   Frederiksstad   Elektro- 
kem.  Fabr. 

Manufacture   of   alkali .     (P)    Liebknecht,    and 

Roessler  and  Hasslacher  Chemical  Co. 

Fercarbonates  ;     Electrolytic   manufacture   of   .     (P) 

Deutsche  Gold-  u.  Silber-Scheide-Anstalfc 
Perchlorate  explosives.     See  under  Explosives. 

Perchlorates ;     Determination    of   by    Rothmund's 

method.     Konig 

Manufacture    and    utilisation    of    fusible    .     (P) 

Sprengstoff  A.-G.  Carbonit 

Preparation  of  by  heating  chlorates.     Mathers 

and  Aldred 
Reduction  with  cadmium  for  volumetric  determina- 
tion of .     Treadwell  and  others 

Perchloric  acid  and  its  salts ;    Chemical  kinetics  of . 

Bredig  and  Michel  . . 

Perchloroethylene  ;    Saturation  character  of  .     Mar- 

gosches  and  Baru 

Perfumery  ;   Argentine  market  for 

Exports  of  

industry  ;    Effect  of  spirit  duty  on 

industry  in  Italy  ;   Commission  for 

Perfumes ;  Advantages  of  extraction  process  for  prepar- 
ation of  .     Gattefoss6 

Perilla  oil      See  under  Oils,  Fatty. 

Periodicals  ;    Proposed  catalogue  of  scientific  

Perkin  Medal  ;   Award  of ■  to  M.  C.  Whitaker 

Medal  ;    Presentation  of to  W.  M.  Burton 

Permanganate-oxalate  titrations  ;    Effect  of  presence  of 

filter  paper  on .     Simpson 

Permutite  ;    Dependence  of  equilibrium  of  bases  in  

on      concentration      of     surrounding     solution. 
Gunthcr-Schulze 
Determination  of  complex  formation  in  solutions  of 

copper  salts  by  means  of .     Giinther-Schulze 

Pernitric  acid  as  an  analytical  reagent.  Detection  of 
aniline,  benzene,  hydrogen  peroxide,  and  nitrites. 
Trif  onow 

Properties  and  structure  of .     Trifonow 

Peroxidase ;    Determination  of  in  milk.     Rice  and 

Hanzawa 
Personalia    11r.  31R,  8lR,  103R,  128R,  160R,  174r,  200r, 
222R,  247R,  291R,  311R,  330R,  354R,  375R,  397R, 
423R,  455R,   480R,  512R, 
Persulphates  ;    Catalytic  action  of  copper  in  oxidation  of 

ammonia  by .     Scagliarini  and  Torelli 

Peru  ;    Exports  of  vanadium  ore  from 

Report    on    finance,    industry,    and   trade    of    . 

Manners 


726a 
366a 

365  a 

77a 

184a 

149  a 
948a 


914a 


305  a 
306a 
784a 

784  a 
431a 

122a 

911a 

911a 

198a 

502a 

416a* 

253a* 

374a* 

502a 

292a 

484a 

856a 

919a 

326a 

157A 
164b 

295r 
224R 
295R 

231a 

9ft 

509R 

48ft 

158A 

587A 
587A 


932A 
936a 


341A 


563R 


12a 
159r 


192 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


(P) 


Perylene  ;    Manufacture  of .     (P)  Zinke      ■    . . 

Petrol-alcohol  ;    Limit  of  inflammability  of  the  vapours  of 

the  system and  of  a  ternary  system  with  a 

basis  of  alcohol  and  petrol.     Boussu 
See  also  Gasoline  and  Petroleum  spirit. 

Petroleum  acids  ;  Isolation  of and  of  pure  naphthenic 

acids  from  waste  lyes  of  neutral  distillate  refining 
Tanaka  and  Nagai 

Apparatus  for  treating .     (P)  Clark 

Artificial from  fish  oils.     Kobayashi  and  Yama- 

guchi 

Artificial from  soya  bean,  coconut,  and  chrysalis 

oils  and  stearine.     Kobayashi 
in  Canada 

Condenser    for    vacuum    distillation    of    - 
Steinschneider 

Cracking .     Smolensk!  and  others 

"  cracking  "  process  ;  Origin  of  the .     Burton 

from  Czechoslovakia  ;  Analyses  of .     Schulz 

Desulphurising .     (P)  Walkey  and  Bargate 

developments  in  Canada     . .  . .    7r,  265k,  350r,  454r. 

and  its  distillates;    Treatment  of  .    (P)  Dunstan 

and  Thole  

Distillation  of .    (P)  Burch 

Distillation  of under  pressure.     (P)  Chamberlain, 

and  Standard  Oil  Co. 

Distilling under  high  pressure.     (P)  Stockford,  and 

Standard  Oi!  Co.  of  New  York 

Drying  oils  produced  from  by  chlorination  and 

dechlorination.     Gardner  and  Bielouss 

emulsions ;    Apparatus  for  treating  natural  .     <P) 

l'.arnickel  J . 

emulsions  ;   Dehydrators  for : 

(P)  Eddy  and  others 

(P)  Harris 

(P)  Harris,  and  Petroleum  Rectifying  Co.  851a*, 
(P)  Meredith,  and  Petroleum  Rectifying  Co.    .. 

emulsions  ;  Electrical  dehydrators  for .     (P)  Harris, 

and  Petroleum  Rectifying  Co. 

Evaporation  loss  of in  the  Mid-Continent  (U.S.A.) 

field.     Wiggins 
exploration  in  Papua  ..  ..  ..  ..  9R, 

Exports  of from  U.S.A.  in  1921         

Fractional  distillation  of .     (P)  Perkins,  and  Rosan- 

off  Process  Co.   . . 

hydrocarbons  ;   Purification  of .     (P)  Bransky,  and 

Standard  Oil  Co. 

Imports  of 

industry  in  Trinidad 

-like  products  ;  Manufacture  of  .     (P)  Eeibbrandt 

mixtures.;  Colour  of .     Romberg 

Nitrogen    compounds    of    ,    particularly    of    Baku 

petroleum.     Pyhiila 
oil  seepages  ;    Significance  of  interpretation  of  chemical 

analyses  of .     Hackford  ..  ..        78R, 

oil  sludges  ;   Separation  of .    (P)  Diggs,  and  Stan- 
dard Oil  Co. 
oil  wells  in  Great  Britain 

oils  ;   Clarifying  and  improving  the  colour  of .     (P) 

Chappell  and  others     . . 

;   Continuous  production  of  low  boiling-point  hydro- 
carbons from .     (P)  Hanua,  and  standard  oil 

Co.  of  California  . .  . .  . .  . .      285a, 

;   Converting .     (P)  McAfee,  and  Gulf  Refining 

Co 

Cracking .     (P)  Cross,  and  Gasoline  Products 

Co 

Desulphurising  .      (P)    Cobb,   and   Standard 

Oil  Co 

Determination  of  absolute  viscosity  of .    Ful- 

weiler  and  Jordan 

Determination  of  sulphur  in .     Ter  Meulen    . . 

Distillation  and  cracking  of .     (P)  Gartlan  and 

Gooderham 

Effect  of  paraffin  wax  on  viscosity  of .     Dean 

and  Cooke 

Iodine  values  of .     Kawai 

Pressure  distillation  of .     (P)  Clark,  and  Stan- 
dard Oil  Co 

Production  of  cracked  .     (P)  Universal  Oil 

Products  Co. 

Purification  of .     (P)  Hood,  and  Oil  Refining 

Improvement  Co. 

Refining .     (P)  Clark,  and  Standard  Oil  Co.    .. 

Refining  viscous .     (V)  Hanna,  and  Standard 

Oil  Co.  of  California 

Still  for  fractionally  distilling .     (P)  Shell  Co. 

Sulphur  compounds  and  oxidation  of .  Waters 

Treatment  of .     (P)  Gartlan 

Use  of  products  of  catalytic  decomposition  of 

for  enriching  coal  gas.     Mallet 

oils  used  in  Diesel  engines;    Characteristics  of  . 

Moore 174R, 

output  in  Dutch  East  Indies 
output  of  world  in  1921 

Ozonides  from .     Koctschau 

Phosphorus  in  Californian 

Preparation  of  a  liquid  fuel  resembling by  distilla- 
tion of  calcium  salts  of  soya-bean  oil  fatty  arid-. 
Sato 
production    in    Great    Britain,    Trinidad,    Egypt,    and 
Mexico                . .          . . 


PAGE 

119a 


973  a 
580a 


242  a 
176R 

539a 
402a 
50R 
281A 
931a 
510R 

975A 
5A 

5A 

741a 

639a 

850a 

890a 
244a 
890a 
890a 

210a 

699A 
101 R 
205R 


5A 
571 R 
402R 
661 A 
319a 


oils  ; 


oils  ; 
oils  ; 


oils  ; 

oils  ; 
oils  ; 

oils  ; 

oils  ; 
oils  ; 

oils; 

oils  ; 

oils  ; 
oils  ; 

oils  . 
oils  ; 
oils  ; 
oils  ; 


799a 

401a 

537A 
134R 

209a 

58ua 

702a* 

889a 

404a 

928a 
235a 


534a 
535A 


494a 
849a 


211a* 
405a 


209a 
624  a 
U2S  \ 
890A* 

739  a 

319a 

159R 
246R 
848A 
244B 


360A 
541  u 


PAGE 


Petroleum — continued. 

Production  of  motor-spirit  and  kerosene  from  higher- 
boiling  .     (P)  Chamberlain,  and  Standard  Oil 

Co 

products  ;  Iodine  and  bromine  values  of .     Johansen 

products  ;   Preparation  of  clay  for  and  recovery  of  clay 

used  in  bleaching .     (P)  Stratford 

products  ;  Production  of  saturated from  unsaturated 

compounds.     (P)  Canadian  American  Finance  and 
Trading  Co. 

and  its  products  ;   Refractometric  examination  of . 

Utz  

products  ;  Some  new .     James 

products  ;   Temperature-pressure  curves  of .    Cooke 

Purification  of  sulphonic  acids  from .     (P)  Oclwerke 

Stern-Sonneborn 

reduction  ;    Process  of  .     (P)  Clark,  and  Standard 

Oil  Co.  

Refining : 

(P)  Sharpies  

(P)  Wells  and  Wells         

refining  apparatus  ;  Continuous .     (P)  Jouett 

refining  industry  in  Canada  in  1918 

refining  ;  Reclaiming  sludge  acid  in .     (P)  Simonson 

and  Mantius 
refining  ;  Recovery  of  by-products  of .     (P)  Robin- 
son, and  Standard  Oil  Co. 
refining  ;    Recovery  of  sulphuric  acid  from  waste  acid 

from .     Coster  van  Voorhout 

residues  ;    Thermal  decomposition  of  at  reduced 

pressures.     Reilly  and  Blair 

Solid  paraffins  in .     Rakusin 

spirit ;  Detection  of  benzene  in .     Schwarz 

spirit.     See  also  Gasoline  and  Petrol. 

Surface  tension  of .     Francis  and  Bennett    .. 

technology  at  Birmingham  University 

tests;  Standardisation  of .     Dunstan 

Treatment  of ; 

(P)  BrvantandRat.liff  

(P)  Persch  

in  the  United  Kingdom  in  1921 

vapour  ;    Apparatus  for  treating  .     (P)  Hoge,  and 

Izash  Oil  and  Refining  Co. 

well  in  Scotland  ;  D'Arcy .     Hackford 

with  special  reference  to  lubricating  oil.     McKenzie 
See  also  Oils.  Hydrocarbon. 
Petrols  for  road  vehicles  and  aircraft.     Effect  of  fuel  compo- 
sition upon  engine  performance.     Thornycroft 

Pfund  paint  gauge  ;  Use  of .     Gardner  and  Holdt 

Pharmaceutical  chemicals  ;  Production  of in  Russia 

products.     (P)  Bayer  und  Co 786a, 

Phaseolu.s  angularis  beans;    Proteins  of  .     Jones  and 

others     . . 

Phaseolus  lutuitm  beans  ;  Proteins  of .     Jones  and  others 

Phenacetin  ;  Colour  reactions  of .     Ekkert 

Plit'iianthranaphthazines,  dyestuffs  derived  from  phenanthra- 
quinone.     Sircar  and  Dutt 

Pheuantliraquinonc  ;    Dyestuffs  derived  from  

Dutt  

Sircar  and  Dutt    . . 

Phenanthrene  ;  Determination  of .     Williams 

Solubility  of in  various  organic  solvents.     Henstock 

Vapour  pressure  of between  its  melting  and  boiling 

points.     Nelson  and  Senseman 
Phenazine    derivatives ;     Relationships    between    chemical 
constitution  and  antiseptic  action  of .    Brown- 
ing and  others 

p-PhenetoIurea  ;    Changes  in  sweetness  of  caused  by 

chemical     modification     of     individual     radicles. 
Speckan 

Derivatives  of .     Herrmann 

Microchemkal  reactions  of .     Deniges  and  Tourrou. 

Phenol  ;    Action  of  sodium  carbonate  in  promoting  hydro- 

genation  of .     Catalytic  action  at  solid  surfaces. 

Armstrong  and  Hilditch 

Action  of on  yeast.     Joachimoglu 

-aldehyde    condensation    products  ;     Comparative    ex- 
amination of as  substitutes  for  shellac.   Fonro- 

bert 
-aldehyde  condensation  products  ;   Manufacture  of — 
(P)  Bakelite-Ges.,  and  Hesscn 
(P)  Felten  und  Guilleaume  Carlswcrk  A.-G. 
(P)  Kendall,  and  Cundensite  Co.  of  America  558a,  558a 
(P)  Lorival  Manufacturing  Co.,  and  Drummond     826a 
-aldehyde  condensation  products  ;    Manufacture  of  de- 
rivatives of .     (P)  Bucherer        

-aldehyde    condensation    products ;      Manufacture    of 

resinous .     (P)  Koch 

-aldehyde  condensation  products  soluble  in  benzene  and 

oil;    Manufacture  of  resinous  .     (P)  Bakelite 

Ges. 

-aldehyde  resins  ;  Manufacture  of .     (P)  Heinemann 

alkyl  ethers  and  formaldehyde  ;  Manufacture  of  resinous 

condensation  products  of  .     (P)  Akt.-Ges.  eii 

Amlin-Fabr. 
-cresol  mixtures  ;  Non-formation  of  compounds  in  - 

Kendall  and  Beaver 

Determination  of in  mixtures  of  tar  acids.     Hoffert 

1  >i  t  ermination  of in  trade  liquors 

-formaldehyde  condensation  products  ;    Manufacture  of 
— ■ — .    (P)  Achtmeyer 


48a 
402a 


286A 


168a 

2A 

208A 
800A 

76a 

405a* 

536a 
975  A 
494A 


5A 
931A 

282A 

302T 
129  a 
493a 

623a 

422R 
448K 

132  a 
580a 
457R 

536A 

245R 

75R 


847a 
903A 
510R 
837A 

342A 

873a 
77A 

852a 

852a 

852a 

49a 

975  a 

134A 


480A 


434A 
915A 

78A 


S91A 

679a 


558a 


::i  \ 

948a  . 


197A 


23A 
826A 


fur 


948a 

93a 
334T 

682A 

868a 


SUBJECT  INDEX. 


193 


Phenol — continued. 

-formaldehyde  condensation  products  ;   Manufacture  of 

composite  materials  formed  with .    (P)  Weber, 

and  Metropolitan-Vickers  Co. 
-formaldehyde  condensation  products  :    Manufacture  of 

derivatives  of  resinous .     (P)  Bucherer 

-formaldehyde  condensation  products  ;    Manufacture  of 

insoluble .     (P)  Satow 

-formaldehyde  condensation  products  ;    Preparation  of 

soluble  alkali  salts  of .     (P)  Bucherer    .. 

Formation  of during  putrefaction.     Maclaurin 

Manufacture    of    .     (P)    Thermal    Industrial    and 

Chemical  (T.I.C.)  Research  Co.,  and  Morgan 

Manufacture  of  pure from  coal-tar  oils.    (P)  Ghis- 

lain 

Purification  of  waste  liquors  contaminated  with  . 

(P)  Brown,  and  Koppers  Co. 

Recovery  of in  washing  solvent  naphtha.     Gluud 

and  Schneider 

-water ;    Freezing-point  diagram  of  the  system  . 

Rhodes  and  Markley 
Phenolcar  boxy  lie  acids  or  their  derivatives  ;  Manufacture  of 
condensation  products  of  aldehydes  and  — — .     (P) 
Meister,  Lucius,  und  Briining 

Phenolic  condensation  products ;    Manufacture  of : 

(P)  Achtmeyer     .. 
(P)  Kulas  and  Pauling 

(P)    Nobel  und  Co.  

(P)  Redman  and  others 
(P)  Redmanol  Chemical  Products  Co. 
Phenol-red  as  indicator  for  acidity  of  media.     Massink 

Phenols  ;  Action  of  nitrous  acid  on .     Schoutissen 

Aryl  ethers  of for  use  as  insecticides  and  fungicides. 

(P)  Bayer  und  Co 

Conversion  of ■  into  benzol.    Fischer 

Conversion   of  into   benzol   in  an   experimental 

installation.     Fischer  and  others 

Determination  of in  essential  oils.     Simmons 

Effect  of  temperature  and  the    methyl   group   on   the 

speed  of  sulphonation   of  .     Campbell 

Experimental  plant  for  producing  benzene  from  . 

Fischer  and  others 

Extraction  of by  means  of  sodium  sulphide  solution. 

Fischer  and  others 

Formation  of  from    the    bituminous  portion  of 

lignite.     Graefe 

and  the  like  ;   Manufacture  of  ■ .    (PJ  Pocius 

of    low-temperature    tar.     Weindel 

from    low- temperature    tar ;     Utilisation    of   ■   for 

wood    preservation.     Peters 

Manufacture  of .     (P)  Bradshaw 

Manufacture   of   resinous   substances   from    -.     (P) 

Fischer 
methylated  in  the  nucleus  ;    Manufacture  of    resinous 

products  from  .     (P)  Chem.  Fabr.  Weiler-ter 

Meer 

Microchemical     colorimetric     determination     of    . 

Hanke    and    Koessler 
Preparation  of  condensation  products  of  ajS-unsaturated 

ketones   and   .    (P)    Chem.   Fabr.    Weiler-ter 

Meer 
Preparation  of  di-  and  poly-halogen  substitution  pro- 
ducts  of   monohydric   .      (P)    Akt.-Ges.    fur 

Anilin-Fabr. 

Production  of  palp,  non-darkening  from  lignite 

tar  or  its   distillates.     (P)   Pfautsch 

Sensitive  test  for .     Moir 

Separation  and  estimation  of .     Hanke  and  Koessler 

Separation  of  solid from  tar  oils.    (P)  Otto 

Phenylacetylene  ;  Preparation  of .     Hessler 

Phenylarsinic    acids ;     Comparative    study     of     ring-sub- 
stituted phenylphosphinic  acids  and  .    Nijk 

N-Phenyl-3-dichloro-oxjndole ;     Preparation    of   .    (P) 

Stolid 

4- Phenyl- 4-ethylhydantoin  ;   Synthesis  of .    Read 

Phenylglycine     compounds ;      Manufacture    of    .     (P) 

British   Dyestuffs   Corp.,   and   others 

derivatives ;     Manufacture    of    .    (P)    Cone,    and 

Dow  Chemical  Co. 
Phenylhydroxylamine  ;     Preparation   of  organic  salts,  e.g., 

the  oxalate,  of .    (P)  Sulzberger 

Phenylphosphinic    acids ;     Comparative    study     of    ring- 
substituted    phenylarsinic    acids    and   .    Nijk 

2-PhenyIquinoIine-4-carboxylic    acid    and    its    homologues ; 

Preparation    of    hydro- derivatives    of    and 

their   salt3.     (P)    Zuckmayer 

Manufacture    of    derivatives    of    hydrogenated    . 

(P)   Chem.   Werke  Grenzach 

Preparation  of  aralkyl  esters  of  .    (P)  Soc.  Chem. 

Ind.    in    Basle 
2-Phenylquinoline-4-carboxylic  acids  and  their  salts  ;    Pre- 
paration of  substitution  products  of  hydrogenated 

.    (P)  Zuckmayer 

Phenylthiohydantoic  acid;    Separation  of  cobalt  by  means 

of   — .     Willard   and   Hall  

Separation    of    copper    by    means    of    .     Willard 

and  Hall  

Philippine  Islands  ;  Sugar  industry  in  the 

Phosgene.    Set  Carbonyl  chloride. 


978A 

110A 

676A 

728A 
644A 

357A 

703A 
726a 
169  a 
134A 

948a 

868A 
425a 
772  a 
149a* 
224a* 
272A 
50a 

782a 
46A 

931A 
32A 

496A 

891A 

134A 

211A 
852A 
852a 

671 A 
50A 

22A 

772A 

268A 


687A 

93A 

287a 
268a 
287A 
308A 

783A 

93A 
783A 

170A 

581A 

878A 

783A 

36A 

688A 
523A* 

439A 
999A 

999A 
350R 


See   Superphosphate. 

(P)  Shoeld,  and  Armour 


Fhosphate ;  Acid  

"  Rhenania  "  — 

-rock ;      Calcining    - 
Fertilizer    Works 

-rock ;     Composting    -    -    with    sulphur    in    slightly 
alkaline  calcareous  soils.     Rudolfs 
Phosphates  of  aluminium,  iron,  and  calcium;    Comparative 
agricultural  value  of  insoluble  mineral .     Marais 

Chemistry  of  oxidation  of  sulphur  by  micro-organisms 
to  sulphuric  acid  and  transformation  of  insoluble 
to  soluble  forms.     Waksman  and  Joffe 

Citric-solubility  of  mineral  .     Tocher 

Determination   of   calcium   in   natural   .     Meurlce 

Determination  of  iron  and  aluminium  In  natural . 

Nydegger    and    Schaus 

Dissolved   in   ponds.     Breest 

Exports  of  from  Nauru  and  Ocean  Islands 

Function  of on  oxidation  of  dextrose  by  hydrogen 

peroxide.     Harden  and  Henley 

Industrial  uses  of 

Manufacture  of  soluble .     (P)  Williams 

in  milk  ;  Volumetric  determination  of and  appli- 
cation  to   judging   of   milk.    Miiller 

Oxidation  of  pyrites  by  sulphur-oxidising  soil  organisms 

and  their  use  for  making  available  mineral  . 

Rudolfs  

Production  and  consumption  of ,  1913 — 1919 

Regularity   of   assimilation    of   by   plants.     Von 

Wrangell  

rock- ;  Fertilising  value  of  basic  slag  and .  Robert- 
son 

R61e  of in  enzymic  degradation  of  carbobydrati 

Von  Euler  and  Myrbiick 

Submarine  on  the  Agulhas   Bank 

suitable  for  manurial   purposes  ;    Treatment  of  . 

(P)    Eisenwerkges.    Maximitianshutte 

Treatment  of .     (P)  Soper 

Valuation  of  insoluble  by  means  of  a  modified 

citric  acid  test.     Robertson  and  Dickinson 

Volumetric  determination  of  in  solution.     Bury 

Phosphatic  fertilisers.     See  under  Fertilisers. 

Phosphine ;    Gravimetric  estimation  of 
Brukl 


PAGE 

452R 
373A 
870A 
561A 


263a 
512  a 
667a 

706a 

70a 

481R 

339a 
199r 
752a 

680a. 


949X 

10K 


561A 
4S4R 


724A 
8R 


909a 
26A 


531R 

352T 


Moser  and 


327A 

172A 


Phosphorescent  magnesium  sulphides.    Tiede  and  Richter 

substances  ;   Possibility  of  using in  calico  printing. 

Schimansky 
zinc  sulphide.     Guntz 

Phosphoric  acid  ;  Argentometric  titration  of .     Kolthoff 

Determination  of .     Clark  and  Keeler 

Determination    of    composition    of    commercial    . 

Ross  and  others 
Industrial  uses  of  — — ■ 

Influence  of  humic  acids  on  assimilation  of  by 

plants.     Mack 

Iodometric      micro- estimation      of      .      Svanberg 

and  others 

Manufacture  of : 

(P)  Guernsey  and  Yee 

(P)     Hirschel,     and     Amsterdamsche     Super- 
fosfaatfabriek    . . 

(P)   Kelly  

Manufacture   of  in  the  electric   furnace   by  the 

condensation  and  electrical  precipitation  method. 
Swann 

Methyl  red  in  assay  of .     Moerk  and  Hughes 

Separation  of  in  qualitative  analysis ; 

Balarew 
Tarugi 
in   soils   and    water.    After-effects   of   phosphatic  fer- 
tilisers, and  dissolved  phosphate  in  ponds.     Breest 

Specific   gravity    table    for    ortho   at    25°/25e  C. 

Knowlton   and    Monnce 

Titration  of  boric  acid  in  presence  of  .     Kolthoff 

Use  of  benzidine  in  detection  of  .    Feigl 

Volumetric  determination  of .    Moerk 

Phosphoric   esters   of   higher   aliphatic    polyhydroxy    com- 
pounds ;    Preparation  of  complex  iron  compounds 

of  .     (P)   Bayer  und  Co. 

esters ;      Manufacture     of     liquid     .     (P)     Chem. 

Fabr.   Griesheim-Elektron 647a,  729a' 

Phosphoric  oxide.    See  Phosphorus  pentoxide. 

Phosphor-metals ;     Manufacture   of   .    (P)    Nicholson, 

and    Westinghouse    Electric   and   Mfg.    Co.         . .     766a 

Phosphorus.     Marckwald  and  Helmholz         938a 

Colorimetric   determination    of    ■ .     Losana  . .     442a 

Colorimetric   determination   of   in   minerals   and 

coke    ash.    Misson     . .         . .         . .         . .         . .     731a 

content  of  phosphatic  materials ;    Recovery  of  . 

(P)  Carothers,  and  Federal  Phosphorus  Co.         . .     373a 

Determination   of   in    cast   iron.    Graziani   and 

Losana  418a,  503a 

Iodometric  micro-estimation  of  ■  in  organic  com- 
pounds.    Svanberg  and  others         . .      ... 

Rapid    colorimetric    determination    of    inorganic    

in  small  amounts  of  serum.     Tisdall 

Separation  of  a  mixture  of  arsenic  and  red  .     (P) 

Siegel,  and  Michael  und  Co. 

Phosphorus  carbide  ;  Preparation  of .    De  Mahler 

Phosphorus     oxychloride ;      Manufacture     of -.    (P) 

Bartleson,  and  Du  Pont  de  Nemours  and  Co.        . ,     708a 


749a 

500a 

272a 

82a 

544a 
199R 

186a 

963a 

668a 

14A* 

589a 


585a 

937a 

485a 
881 A 

70A 

140a 
963a 
963A 
937a 


34A 


963a 

311a 

813a 
57A 


N 


194 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Phosphorus    pent  oxide    in    fertilisers;      Determination    of 

.     Vogel 127T 

Purification  of  .    Finch  and   Pcto  ..  ..  414a 

treated  with  ozone;    Use  of  as  a  drying  agent. 

Manley  393a 

Phot  ocat  a  lysis*     Baly  and  others  . .  . .  . .  . .  609a 

Photochemical  apparatus.     (P)  Snellmg         . .  . .  . .     520a 

catalyst;     Iron  as  .     Decomposition  of  potassium 

ferrocyanide  in  daylight.    Baudisch  and  Bass         . .     917a 

equivalent'  law  ;    The  Einstein  .     Weigert  . .     309a 

Photochemistry  of  silver  compounds.     Weigert  and  Scholler     120a 
Photochlorides  and  colloidal  silver  ;  Colour  of .     Schaurn 

and   Marx  788a 

Photocollographie    printing ;     Preparation    of    plates    for 

.     (P)  De"Sperati  484a 

Photoelectric    action  ;      Composition    for    coating    metals 

for  the  purpose  of .     (P)  Falk  and  Wood         . .     690a 

cells.     (P)  Case         423A* 

Photogenic  action  of  ultraradiations.     Xodon         ..  ..     440a 

Photographic  bath.     (P)  Elliott,  and  Eastman  Kodak  Co.     393a 
"  blue-print "  paper  ;  Manufacture  of .     (P)  Renker 

und    Co.  80a 

brown-tone  printing-out  emulsions.     (P)  Bayer  und  Co.     7J'.>\ 
coating  composition  and  process.    (P)    Wood  ..     879a 

desensitisers  . .  . .  . .  . .  . .  . .     313r 

desensitisers.     Crowther     . .  . .  . .  . .  . .     567a 

desensitising  of  silver  bromide  and  the  Safranine  process. 

Development  in  bright  light.     Liippo-Cramcr       . .     233a 
developer  ;    Ageing  and  decay  of  potassium  sulphite- 

quinol .     Pinnow  . .  . .  . .  . .     879a 

developer ;     Phenylhydroxylamine    oxalate  for  use  as 

a  .     (P)  Sulzberger         878a 

developers;     Comparison    of    stabilisers   recommended 

for  diaminophenol .     Lobel       . .         . .         . .       36a 

developers ;    Conditions  affecting  apparent  activity  of 

some  organic  -.     Ermen  ..         ..         ..     270a 

developers  ;    Manufacture  of  : 

(P)  Dieterle  998a 

(P)  Hauff  und  Co 567a* 

developers  ;    Methods  of  testing .     Crabtree         . .     348a 

developers ;  Preservation  of  diaminophenol .     Bunel      36a 

developing-out  paper ;    Production  of  platinum  tones 

on .     (P)  Barkhausen      . .  . .  . .  . .     441a 

developing  paper ;    Manufacture  of  .     (P)   Mente     690a 

development  ;     Grain    structure    versus    light    quanta 

in  the  theory  of .     Clark  689a 

development ;   Restraint  of by  borax  and  similar 

salts.    Bullock  79a 

development ;  Theory  of  acceleration  of by  iodine. 

Luppo-Cramer  . .  . .  . .  . .     348a 

development ;      Threshold     value     ("  Schwellenwert  ") 

and    physical    .     Luppo-Cramer         . .  . .       79a 

dry  plates  or  films  ;    Treatment  of  .     (P)  Bagley     567a 

dry  plates  ;   Uniform  development  of .     Bloch     . .       36a 

dry  plates  ;  Verification  of  the  photochemical  equivalent 

law  with .     Eggert  and  Noddack         . .  . .     232a 

emulsion ;     Reducibility    of    individual    halide    grains 

in   a   .     Svedberg  . .  .'.  . .  . .     34Sa 

emulsions ;    Action   of   soluble    iodides   and   cyanides 

on     .     Sheppard  233a 

emulsions ;    Darkening    of    silver    bromide    grains    on 

exposure    to    light    as    further    evidence    of   their 

heterogeneity  in .     Brooksbank  . .  . .       36a 

emulsions ;      Distribution    of    sensitiveness    and    size 

of  grain  in .     Wightman  and  others      . .  . .     960a 

emulsions  ;    Effect  of  colloids  on  silver  bromide  . 

Schwarz  and  Stock       . .  . .  . .  . .  .  -     879a 

emulsions ;     Grain    analysis    of   .     Sheppard    and 

Trivelli  348a 

emulsions  ;    Intensifying  the  action  of  X-ravs  on . 

(P)   Schleussner  _    . .     838a 

emulsions ;      Mutual    infection     of    contiguous    silver 

halide  grains  in  .     Trivelli  and  others         . .     788a 

emulsions ;     Relation   between   sensitiveness   and   size 

of  gTain  in  : 

Sheppard    and    Trivelli  . .  . .         . .       79a 

Svedberg  348a 

emulsions  ;   Sensitometry  of and  survey  of  charac- 

teristics  of  plates  and  films  of  American  manufac- 
ture.    Davis  and  Walters,  jun.         . .         . .         . .     960a 

emulsions  ;    Size-frequency  distribution  of  particles  of 

silver  halide  in and  its  relation  to  sensitouii  trie 

characteristics.     Method      of      determining      size- 

frequeucy  distribution.     Wightman  and  Sheppard     119a 

emulsions  ;  Theory  of  characteristic  curve  of .   Toy     788A 

estimation  of  concentration  of  a  colouring  matter.    Hess     408a 
exposure  ;    Quantum  theory  of  .     Silberstein  and 

Trivelli  960a 

films  ;  Collodion  coating  mixture  and .    (P)  Rhein- 

berg        37A* 

films  ;    Composition   for  base  of  antistatic  .     (P) 

Seel,  and  Eastman  Kodak  Go.  ..         ..         ..     917a 

films  ;  Manufacture  of : 

(P)  Brandenberger  484A 

(P)  Sulzer,  and  Eastman  Kodak  Co.     ..  ..     998A 

(P)  Wolff  567A 

films  ;   Manufacture  of  antistatic : 

(P)  McDaniel,  and  Eastman  Kodak  Co.  ..     917a 

(P)  Sulzer,  and  Eastman  Kodak  Co.     . .      567a,  997a 

films;    Manufacture  of  base  for  antistatic  .     (P) 

484A 


.     (P)  Branden- 

(P)  Hochstetter  and 
(P) 


Seel,  and  Eastman  Kodak  Co. 


Photographic— rtm/ i '  >■ 

films  ;    Manufacture  of  cellulosic 

berger,  and  Soc.  la  Cellophane 
films  and  paper  ;  Sensitising . 

Ohmer 
films  permeable  to  water ;    Manufacture  of 

Soc.  la  Cellophane 
films ;    Reducing  the  inflammability  of  celluloid  . 

(P)  Grimpe 

films  with  a  carrier  permeable  to  water.    (P)  Branden- 
berger    . .  . .  . .  . .  . .  . .      524A. 

fixing  baths  ;  Regeneration  of .    (P)  Orywall 

image;  Conductivity  of  the  latent .    Rabinovich  .. 

images;  Production  of  bleached  and  coloured .  (P) 

Kelley,  and  Prizma,  Inc. 

images  ;  Treating  and  dyeing .     (P)  Kelley 

material  for  production  of  positives.    (P)  Schreiber 
materials ;     High -temperature    development    of    . 

(P)  Agnew  and  others 
negatives  \    Production  of  from  opaque  originals. 

(P)  Ullmann 

paper;  Coating  webs  of .     (P)  Davies 

paper ;  Drying  apparatus  for  use  in  manufacture  of . 

(P)  Davies 

papers  ;  Gloss  characteristics  of .     Jones  and  Fillius 

papers;  Manufacture  of .     (P)  Davies 

paper;      Manufacture     of     ferroprussiate     .     (P) 

Bertsch 
papers  and  other  fabrics  ;  Machines  for  sensitising . 

(P)  Hall  

pictures;  Production  of  coloured .    (P)  Traube     .. 

pictures ;     Toning    silver    with    selenium.     (P) 

Mimosa  A.-G. 
plates  ;    Application  of  capillary  attraction,  diffusion, 

and  displacement  to  washing .     Lumiere 

plates  ;  Colour- sensitising  of by  bathing.    Walters, 

jun.,  and  Davis 
plates  for  the  extreme  ultra-violet.     Duclaux  and  Jeantet 
plates  for  indirect  tricolour  photography  ;  Manufacture 

of .    (P)  Lage 

plates  ;   Preparation  of : 

(P)  Schreiber        

(P)  Wiebking 

I  flat  es  ;  Removal  of  the  film  from .    Limmer 

plates  ;  Sensitiveness  and  stability  of .     Stenger    . . 

plates  ;  Study  of  "  threshold  value  "  of by  counting 

the  grains.     Noddack  and  others 
preparations ;     Increasing    the    sensitiveness    of   . 

Monpillard 
printing  processes  and  materials.     (P)  Schwartz      -7i>a. 
print-out  images  ;     Colour  change  of  on   fixing. 

Formstecher 
print-out  images  ;  Toning  process  for .     (P)  Graphi- 

kus-Ges. 
process  for  producing  printing  plates.     (P)  Albert 

products;  Washing  of .     Hickman  and  Spencer     .. 

properties  of  some  isomeric  isocyanines.     Hamer 
reduction    with    ammonium    persulphate ;     Action    of 

soluble  chlorides  and  bromides  on .     Sheppard 

reduction  with  potassium  persulphate.     Higson 

reflection-copies  ;  Production  of .     (P)  Kogel 

reliefs  ;   Manufacture  of .     (P)  Akt.-Ges.  f.  Anilin- 

fabr 

sensitiser,  2-p-dlmethylaminostyrylpyridine  methiodidc  ; 

New .     Mills  and  Pope 

sensitiser  for  green.     Mills  and  Pope 

sensitisers  for  the  deep  red.     Mees  and  Gutekunst 

sensitisers.     Storr 

silver  halide  emulsions  ;    Decreasing  the  sensitiveness 

of .     (P)  Bayer  und  Co. 

solutions ;     Recovery    of    precious    metals   from . 

Gardner 

toning  ;  Colloid  silver with  tin  salts.     Formstecher 

toning  ;  Sepia with  colloidal  sulphur.     Bawling   . . 

toning  with  tin  salts.     Druce. 

transfer  films  ;   Manufacture  of .     : 

(P)  Bayer  und  Co.  ..  ..       729a,  917a, 

(P)  Mimosa  A.-G.  

transparencies  on  glass,  transfer  images,  etc.    (P)  Bayer 
und  Co. 

Photographs  ;    Films  for  episcopic  projection  of .     (P) 

Akt.-Ges.  fur  Anilin-Fabr 

Production  of  coloured .    (P)  Von  Ditmar 

Production  of in  natural  colours.     (P)  Warner 

Production  of  opaque  in  natural  colours.     (P) 

Obergassner       . .  . .  . .  . .  .... 

Photography  ;   Colloid  chemistry  and .    Liippo-Cramer 

7'.' A. 

Colloid  chemistry  and  .     Acceleration  of  develop- 
ment, and  fogging  by  dyestuffs.     Liippo-Cramer    . . 

Colour 

Colour : 

(P)  Deeks,  and  American  Raylo  Corp. 
(P)  Procoudine-Gorsky 

(P)  Shepherd,  and  Colour  Photography.  Ltd. 
colour-  ;  Manufacture  of  multicolour  screens  for  natural 

■ .     (P)  Faulstich  

colour-  ;  Negative  material  for .     (P)  Wolff 

colour- ;     Obtaining    colloids    free    from    bubbles    for 

preparation  of  screens  for .     (P)  Obergassner  .. 

I  ijt.-nsifying  screen  for  use  in  X-ray .     (P)Luboshey 

[nterpretatibn  of  light  sensitiveness  in .    Svedberg 

217K, 


PAGE 

234A 
234A 
309A 
961A 

524A 

729A 
689A 

393A 

690A* 

729A 


611 A 
392A 

524A 
392A 
392a 

7S9A 

611A 

120  A 

37A 

524a 

648A 
233A 

729A 

729A 

730A 
648A 
440A 

960A 

484A 
441A* 

960A 

838A 
879A 
440A 
120A 

611A 
234A 
120A 

80A 

524A 

293R 
689A 
477R 

310a 

2S5R 
80A 
SOA 

648A 

99SA 
729A 


«.H  7a 
690A 
271A 

64SA 

348A 

233A 

34R 

879A 
484A 
270A 

198  A 
917A* 

730A 
689A 

610A 


SUBJECT  INDEX. 


195 


Photography — contin 

Multicolour  screens  for : 

(P)  Christensen 729A 

(P)  Kitsee  788A 

Preparation   of   multicoloured   screen-plates  for  . 

(P)  May  729A 

Revision  of  Scott  Archer  and  Hardwick's  wet- collodion 

formula  for .     Wilkinson  . .  . .  . .     120A 

Sensitive  film  supports  for  X-ray .    (P)  Luboshey    838a 

Photometer  scales;  Preparation  of .    (P)  Bornhauser  ..     561a 

Photometers.    (P)  Lewis  201a 

Photosensitiveness  of  silver  halide  crystals  which  are  geo- 
metrically identical.    Toy      ..         ..         ..         ...       36a 

Photosynthesis  ;  Discussion  on . .  . .  . .  . .     413R 

of  nitrogen  compounds  from  nitrates  and  carbon  com- 
pounds.    Baly  and  others 197R,  609A 

of  plant  products.     Heilbron         . .  . .  . .  . .       89B 

Phthalein  dyestuffs  : 

Camphoreins.    Studies  in  optically-active  dyes.    Singh 

and  others         704A 

Camphoric  anhydride  ;    Dyestuffs  derived  from  . 

Sircar  and  Dutt  703a 

Fluorescein  ;  Formation  and  properties  of .  Fischer 

and  Bollmann  . .  . .  . .  . .  . .     703A 

Xylenol  Blue  and  its  use  as  indicator  in  chemical  and 

biochemical  work.     Cohen  . .  . .  . .     351A 

Phthalie  anhydride  frano  naphthalene  and  air  . .         . .     IOIr 

Preparation  of .    Conoverand  Gibbs  ..         ..     363a 

Phthalimide  ;    Manufacture  of  .    (P)  British  Dyestuffs 

Corp.,  and  others  663A 

Phylloxera;  Means  for  destruction  of .    (P)Horst         —     344  a 

Physical  operations  ;    Apparatus  for  use  in  connexion  with 

.     (PJ  Stuart  and  others  531A 

Physical  Society  76R,  96R,  507R,  562r 

Physico-chemical  methods  ;   Use  of in  brewery  labora- 
tories.    Dietrich           ..          ..  ..  ..  ..     911A 

Physiological  properties  ;  Chemical  and .     Dale  ...     262r 

P!i\  tin  content  of  foodstuffs  ;  Determination  of .    Arbenz    6S1A 

Phytosterol ;   Precipitation  of by  digitonin.    Muttelet      65a 

Phytosterols  of  ragweed  pollen.     Hcyl  . .  . .  ~.     955a 

Phytosynthesis  of  plant  products.     Heilbron  . .         «       89r 

Picric  acid  as  antiseptic.    Boldue         ..         ~         ..         -.       llR 

Hygroscopicity  of .     Marsh    ..  ..  ..  .-.     441a 

Manufacture  of from  dinitrophenol  and  elimination 

of  lead  sulphate  therefrom.     (P)  Holliday  and  others     442A* 

Manufacture  of during  the  war.     Macnab   . .      354t,  358t 

Manufacture  of  a  propellant  or  explosive  from  -. 

(P)  Ludwig 350A 

Manufacture  of  from  sulphonic  acids  of  phenol. 

King 120A 

Removal  of from  effiuents  of  picric  acid  works,  etc. 

(P)  Klemenz 271  A,  393A 

Picrocrocin.     Winterstein  and  Teleczky  . .  . .  . .     481A 

Picrorocellin,   a   diketopiperaziue   derivative  from   Roccella 

fuciformis ;     Constitution    of    .    Forster    and 

Saville  517a 

Picryl  azide  ;  Manufacture  of for  use  as  detonating  and 

priming  substance.     (P)  Rathsburg  . .  . .     121A 

Piezometry  ;    Researches  on  absolute  .    Cardoso  and 

Levi        350A 

Piezo-micrometer  and  its  application  to  testing  paper,  etc. 

Strachan  ..     936a 

Pigment    Chlorine    GG.    (M.L.B.) ;     Constitution   of   — — . 

Rowe  and  Levin  ..  ..  ..  ..  ..     744a 

Pigment    colours ;     Manufacture    of    .     (P)    Badische 

Aniliu  und  Soda  Fabrik  600a 

composition  for  paint.     (P)  Blakeman     . .  . .  . .     720a 

oil  compositions  ;    Manufacture  of  .     (P)  Acheson, 

and  Acheson  Corp.        . .  . .  . .  . .  . .     906a 

pastes  ;  Manufacture  of  oil from  water  pastes.   (P) 

Cookson  and  Co.,  and  Clarke  ►.  ..  ..     148a 

Pigmenting  and  like  compositions.     (P)  De  Waele      . .         . .     771a 
Pigments  and  compositions  containing  them.     (P)  Lamb,  and 

American  Cotton  Oil  Co 771a 

Determination  of  tinting  strength  of  white by  the 

Pfund  colorimeter.     Calbeck  and  Olander  . .         . .     600a 

Fineness  and  bulk  of .     Gardner  and  others  . .     946a 

Furnace  and  apparatus  for  production  of  zinc  white  and 

lead  sulphate .     (P)  Mayers,  and  Britons,  Ltd.     223a 

Graphites  and  other  pencil .    Mitchell         . .         . .     826a 

or  the  like  ;  Filler,  loading,  base,  compounding  material 

for ..     (pj  RaXsky 474a 

Manufacture  of : 

(P)  Baker  720A* 

(P)  Fireman,  and  Magnetic  Pigment  Co.  639a, 

771a,  947A 

Manufacture  of  antimony  sulphide of  good  covering 

power  and  heat-resistant  properties.    (P)  Becker  . .     224A 

Manufacture  of  cadmium .     (P)  Marston     . .  . .       65A 

Manufacture    of    composite    titanic    oxide    .     (P) 

Barton,  and  Titanium  Pigment  Co.   . .  . .  . .     335A 

Manufacture  of  lead  chromate .     (P)  Hetherington 

and  AUsebrook  . .  . .  . .  . .  . .     676a 

Manufacture  of  red  iron  oxide .     (P)  Tyrer  . .  . .     183a 

Manufacture   of   titanium   .     (P)    Buckman     22a, 

149a.  868a 


Pigments — contin'":/. 

Manufacture  of  from  titanium  compounds  con- 
taminated with  sulphuric  acid.  (P)  Carteret  and 
Devaux 

Manufacture  of  titanium  oxide : 

(P)  Buckman       

(P)  Washburn,  and  Titan  Co.  A/S 

Manufacture  of  white .     (P)  Barbe 

(P)  Rafsky         

Manufacture  of  yellow  cadmium -.     (P)  Bayer  und 

Co 

Manufacture  of  zinc  oxide  .     <P)  Pearson 

New  white  .     Klein 

Paint .     (P)  Baker 

Production  and  use  of  titanium  oxide .     Heaton 

Reflection  factors  of  industrial .     Gardner 

Tinctorial  properties  of  some  anthocyans  and  related 

plant  .     Everest  and  Hall 

Pig's  flesh;    Organic  bases  of  .     Smorodincev 

a-Pimaric  acid  ;    Preparation  of  of    m.p.    212°   C. 

Knecht  and  Hibbert 
Pinabietic  acid  ;    Nitrosochloride,  nitrosite.  and    nitrosate 

of  .     Aschan 

Pinacyanols.     See  under  Quinoline  dyestuffs. 

Pine,  Aleppo  ;    Composition  of  turpentine  oil  from . 

Dupont 

Analysis  of  wood  of  western  white .     Mahood 

and  Cable 

Constituents  of  essential  oil  of  maritime .   Dupont 

jack-  ;   Utilisation  of in  manufacture  of  newsprint 

paper.     Neilson 

lignin  ;    Constitution  of   -.     Klason 

needles ;     Variety    of    wax    from    — — .     Kaufmann 

and  Friedebach 
oil.     See  under  Oils,  Essential. 
-tar.     See  under  Tar. 

trees  ;  Naval  stores  from  dead -.     Sherwood 

Pinene  hydrochloride  ;    Borneol  obtained  from  magnesium 

compound  of .     Vavon  and  Berton 

Pines ;     Investigations    on    Swedish    spruces    and    . 

Wahlberg 

Pinus  monticola  ;   Analysis  of  wood  of .     Mahood  and 

Cable  

Pinus  sylvestris  ;   Constituents  of  the  pollen  grains  of . 

Kiesel 
Piperitone : 

Read  and  Smith 
Read  and  others 
Position  of  double  linkage  in  — — .     Peufold  . . 
^-Piperitone ;     Interaction    of    d/-piperitone    and    semi- 

carbazide,  and  isolation  of  pure .     Read  and 

Smith 

Oximes  of .     Read  and  others 

Pipettes  ;   Note3  on .     Stott 

Pitch  ;   Apparatus  for  determining  softening  point  of 

Apparatus  for  producing  high-boiling  oil  and  coke 

from .     (P)  Gebr.  Siemens  und  Co. 

brewers'  ;    Manufacture  of  pitchy  materials  suitable 

for .     (P)  Rebs  

Carbonisation  of  — — .     (P)  Kubierschky 

coke  ;    Determination  of  volatile  combustible  matter 

in .     Lloyd  and  Yeager 

Determination  of  viscosity  of .     {P)  Frink 

and  the  like  ;  Hardening  — — .  (P)  Plausons  Forsch- 
ungsinst. 

from  low-temperature  coal-tar  ;   Composition  of . 

Marcusson  and  Picard 
Treatment  of  — — .     (P)  Commin 
Pituitary  gland  ;   Tethelin,  the  alleged  growth-controlling 
substance    of    the    anterior    lobe    of    the    — — . 
Drummond  and  Cannan 
Plant  acidity  ;   Effects  of  lime,  leaching,  form  of  phosphate 

and  nitrogen  salt  on  soil  and  and  relation 

of  these  to  the  feeding  power  of  the  plant.   Bauer 
and  Haas 

cells  ;    Hydrogen  ion  concentration  of  .     Atkins 

growth  ;    Effect  of  reaction  of  nutritive  solution  on 

germination  and  first  stages  of  .     Hixon   . . 

growth  in  water  cultures  ;  Aluminium  salts  and  acids 
at  various  hydrogen-ion  concentrations  in  relation 

to .     Conner  and  Sears 

products  ;    Micros  ubli  mat  ion  of .     Viehoever     . . 

products ;     Photosynthesis    and    phytosynthesis    of 

.     Heilbron 

Plants  ;    Activity  of  roots  in  process  of  nitrogen  assimi- 
lation by .     De  Dominicis  and  Gangitano  . . 

Behaviour   of   certain   organic   compounds   in . 

Ciamician  and  Galizzi 
Chemical  constituents  of  green  — — .  Acids  present 
in  the  cherry  (Primus  avium).  Franzen  and 
Helwert 
Chemical  constituents  of  green  — — .  Presence  of 
ethylidenelactic  acid  in  blackberry  (Rubits  fnicti- 
cosus)  leaves.     Franzen  and  Keyssner 

Chemistry  of  the  cell  wall  of .     Pectic  substances 

of  plants.     Clayson  and  others 

Incrusting  substances  of .     Schmidt  and  Duysen 

Influence  of  kind  of  soil  and  manuring  on  nitrogen 

and  ash  constituents  of  cultivated .     Masch- 

haupt 

N 


771A 

381 A 
335A* 
23a* 

510A* 

261a 

335A 

209R 

425  a* 

216R 

903a 

136a 
953a 

867a 
947  a 

223a 

934a 
915a 

247A 
247A 

598a 

101R 
785A 
805A 
934A 

520A 

435A 

436a 
836A 


876A 
436A 
200A 
443A 

28  ;\ 

110a 
802a 

319a 

83A 


803a 
933a* 


677a 
225a 

90SA 

263a 
684  a 

89R 

477A 

338a 

875a 

194A 

75a 
94  a 

26a 


19o 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Plants — continued. 

Liberation  of  organic  matter  by  roots  of  growing . 

Lyon  and  Wilson     . .         . .  . .         . ,  427a 

Nitrogenous    metabolism   of   higher   .     Chibnall 

602.1,  993a,  993a 
Preventing  damage  to  — — ,  especially  by  nematodes. 

(P)  Stoltzenberg 723a 

Transformation  of  chromogens  of  some  by  oxi- 
dation into  a  red  pigment.     Jonesco        . .         . .         8a 

Plaster  casts  and  moulds  ;    Method  of  separating  . 

(P)  Gerngross             . .          . .          . .          . .          . .  59a 

Dispersoid  chemistry  of .     Neugebauer  ..          ..  671a 

and  peat ;   Moulds  of .     (P)  Kampshoff  . .          . .  329a 

Setting  and  velocity  of  solution  of  — — -.     Budnikow 

and  Syrkln    . .          . .          . .         . .         . .         . .  757a 

Plastio    bodies    resembling    vulcanised    rubber ;     Manu- 
facture of .     (P)  Balke  and  Levsieffer        . .     383a 

composition    from    slag.     (P)     Pierce,    and     Scoria 

Products  Co.  178a 

compositions  ;   Manufacture  of : 

(P)  Erwin.  and  International  Bituconcrete  Co.     296a 
(P)  Formby,  and  Formby  Petrinite  Corp.  . .      329a 

compositions  ;    Production  of  from  acid  tars  or 

the  like.     (P)  Plauson's  Forschungsinst.  . .     868a 

mass  ;    Manufacture  of from  flstwefuse  and  the 

like.     (P)  Plauson's  Forschungsinst 722a 

mass  ;    Production  of  a  and  its  use,  especially 

as  a  tyre-filler.     (P)  Gollert  773a 

masses.     (P)  Ges.  fur  Verwertung  Chem.  Produkte  . .     542a 

masses  ;   Manufacture  of : 

(P)  Feldmann 22a 

(P)  Traun's  Forschungslaboratorium  . .     3S1a 

masses ;  Manufacture  of  from  blood,  haemo- 
globin, or  like  protein  substances.     (P)  Plauson     304a 

masses  ;     Manufacture    of    celluloid-like    .     (P) 

Chem.  Fabr.  vorm.  Weiler-ter  Meer         . .  . .     410A 

masses  :    Manufacture  of  dispersoids,  colloid  powder, 

and  .     (P)  Plauson  and  Rotman       . .         . .     94SA* 

material  for  flooring  and  other  purposes  ;  Manufac- 
ture of .  (P)  Imperial  Trust  for  Encourage- 
ment of  Scientific  and  Industrial  Research,  and 
Schry  ver        . .  . .  . .  . .  . .  . .     905a 

material  :    Manufacture  of : 

(P)  Cawood 417a 

(P)  Loftier         665A 

(P)  Petersen  and  Clark  509a 

products.     (P)  Snelling 868a 

products  ;    Manufacture  of  from  glycerin  and 

albumin.     (P)  Diesscr         ..  . .  ..  ..     949a 

Plasticity  :    Mechanism  of  from  the  colloid  stand- 
point.    Bole              . .  . .  . .  . .  . .     709a 

Platinising  asbestos  mats  ;   Method  of .     Parkes       . .      106T 

Platinum  and  allied  metals  ;  Production  and  uses  of  — — , 

1913—1919 351R 

alloy.     (P)  Fry,  and  Wilson  Co.  25SA 

anodes    for    electrolysis.     (P)    Deutsche    Gold-    und 

Silber-Scheide-Anstalt,  and  Liebknecht  . .  . .      507a 

black  ;    Catalysis  by .     Yavon  and  Husson         . ,      685a 

Catalysis  of  hydrogen  peroxide  by  finely  divided . 

Influence  of  ihhibitants.     Masted  . .  . .     S57A 

Electrolytic   separation   of   from   other   metals 

contained  in  platiniferons  metals.     (P)  Slatineau     470a 

film  electrodes  ;  Preparation  and  applications  of . 

Eilert  . .  . .         . .         . .         . .  . .     718a 

industry  in  Russia  in  1922         . .         . .         . .         . .     455K 

metals  in  Northern  Ontario        . .         . .         . .         . .     312r 

metals  ;    Oxygen-hydrogen  catalysis  by  and  the 

contact  potentials  in  presence  of  aqueous  solu- 
tions.    Hofmanu      . .  . .  . .  . .  . .     252a 

Mode  of  action  of in  oxygen-hydrogen  catalysis. 

and  application  of  titanium  sulphate  for  control 

of  the  course  of  the  change.     Hofmann  . .         . .     500a 

Recovery  of  pure  by  chlorinatiou.     (P)  Benne- 

jeant  . .  . .  . .         . .         . .  . .     764a 

Recovery  of from  used  contact  mass.     Kiblcr  . .      58SA 

and  similar  metals  ;    Extraction  of  from  sands 

and  ores.     (P)  Thayer        . .         . .         . .         . .     901a 

substitute  for  chemical  apparatus,  etc.  :  Manu- 
facture   of    .     (P)    Fahrenwald,    and    Rho- 

tanium  Co.    . .  . .  . .  . .  . .     471A 

thermometers  and  resistance  coils  ;    Construction  of 

.     Roebuck       . .  . .  . .  . .         . .     998a 

Platinum  oxides  ;    Use  of  for  catalytic  reduction  of 

organic  compounds.     Voorhees  and  Adams       . .     566a 
Pneumatic  separation  of  fine  material.     (P)  Roth  ..     927a  • 

l'oison-ga9.     See  under  Gas. 

Poisoning  ;   Rare  case  of  tellurium .     Adolphi  . .     682a 

l'oisonous  gases  ;   Production  of .     (P)  Van  Meter    . .       76a 

substances  ;  Removing from  animal  membranes. 

(P)  Braun 516a 

Poisons  ;  Distinctive  colours  for 336e 

Sensitiveness  of  cells  to  as  a  function  of  their 

colloid-chemical  condition.     Handovsky  . .     517a 

Poland.     Industrial  notes 221R 

Iron  industry  in in  1922    . .  . .         . .         . .     454R 

Report    on    industrial,    commercial,    and    economic 

situation  of  .     Kimens  ..         ..         ..     404R 

Polish  and  the  like  ;  Mineral  product  for  use  as .      (P) 

Sandison        860a 


page 

Polishes  and  the  like  ;    Manufacture  of  .     (P)  A.-G. 

fur  Anilin-Fabr 300a 

Polyamyloses.     Pringsheim  and  Dernikos  . .         . .         . .  513a 

Methyl  and  acetyl  derivatives  of  .     Pringsheim 

and  Persch    ..          ..          ..          ..          ..          ..  512a 

Methylation  of .     Pringsheim  and  Persch          ..  112a 

Polyborates  in  aqueous  solution.     Rosenheim  and  Leyser  56a 

Polychloro-derivatives  of  benzene  ;    Preparation  of  . 

Silberrad        586a 

Polyglycerol  resin.     (P)  Weisberg  and  others        . .         . .  676a 
Polypeptidases  ;     Influence  of  substances  obtained  from 
yeast  cells  and  organs  on  time  course  of  fission 

of     substances     by .     Abderhalden     and 

Wertheimer               605a 

Polysaccharides  : 

Karrer 27a 

Karrer  and  Burklin     . .         . .          . .          . .  304a 

Karrer  and  Fioroni     . .         . .         . .         . .  910a 

Karrer  and  Smirnoff    . .         . .         . .         . .  305a 

Karrer  and  others        . .          . .         . .         . .  183a 

Constitution  of . : 

Irvine  and  Hirst           . .          . .          . .          . .  745a 

Irvine  and  Oldham      . .          . .         . .         . .  27a 

Irvine  and  others         . .         . .         . .         . .  603a 

Komatau  and  Kashima          . .         . .          . .  777a 

Zwikker             152a,  305a 

Polyterpene.     See  Pine  oil. 

Polythionates.     Riesenfeld  and  Fold            . .          . .          . .  55a 

Analysis  of .     Kurtenacker  and  Fritsch  . .          . .  499a 

Polythionic  acids.     Riesenfeld  and  Feld    . .          ._         . .  55a 

Porcelain  ;  Annealing .    (P)  Hiiger,  Ltd.,  and  Twyman  89SA 

Bervl  as  a  constituent  in  high-tension  insulator  . 

Twells,  jun 465A 

bodies  ;    Cement  for  joining  — — .     (P)  Porzellanfabr. 

Kahla 15A 

bodies ;    Use  of  special  oxides  in  .    Geller  and 

Woods 101a 

Burning    in    tunnel    kilns.    (P)    Allgem.    Elek- 

trizitats-Gcs 374a 

Control    of    biscuit    losses    in    manufacture    of    . 

Sproat                81 4A 

glazes  :   Field  of maturing  between  cones  17  and 

20.     Twells,  jun 633a 

industry  in  Germany         . .         . .         . .         . .         . .  452R 

and     like     electrically     non-conductive     substances ; 

Metallising  articles  made  of .     (P)  Marino     . .  103A 

and  the  like ;    Firing  .    (P)  Siemens-Schuckert- 

werke  Ges.        . .         . .         . .         . .         . .         . .  757a 

Low-fire  .    Binns  and  Burdick       . .         . .         . .  217a 

Manufacture  of : 

(P)  General  Electric  Co.           814A 

(P)  Riddle            417a 

Multiple  oven  for .     (P)  Seiffcrt  Nachf 254A 

Talc  as  flux  for  high-tension  insulator  .     Twells, 

jun 897a 

for  technical  electrical  purposes.    Boudouard             . .  101a 

Tensile  strength  of .     Riddle  and  Laird     . .         . .  633a 

Testing  of  .     Rieke  and  Gary         591a 

Translucency  of .    Steger     . .         . .         . .         . .  592a 

Porosity   of   ceramic   bodies ;    Determination   of  by 

absorption  methods.     Washburn  and  Bunting     . .  217a 

of  ceramic  products ;   Determination  of by  means 

of  gas  expansion.     Washburn  and  Bunting         . .  253a 

of  ceramic  products  ;    Determination  of .    Petrol- 
eum products  as  absorption  liquid.     Washburn  and 

Bunting             . .         . .         . .         . .         . .         . .  176a 

of  ceramic  products  ;    Determination  of  .     Water 

as  an  absorption  liquid.     Washburn  and  Footitt  176a 

Portugal ;    Pine-tar,  resin,  and  turpentine  in  . .  402R 

Portuguese  East  Africa  ;    Industrial  developments  in  266R 

Positive  rays  ;  Analysis  by of  the  heavier  constituents 

of  the  atmosphere,  of  the  gases  in  a  vessel  in  which 
radium  chloride  had  been  stored  for  13  years,  and 

of  gases  given  off  by  deflagrated  metals.    Thomson  630A 

Potash  in  Alsace            . .         . .         . .         . .         . .         . .  377R 

alum.    See  under  Alum 

brines  ;    Evaporation  of .     Palmer            . .         . .  499A 

Caustic  .    See  Potassium  hydroxide. 

Elimination   of   borates   from    American   .    Ross 

and  Hazen        . .                    . .                    . .         . .  706A 

Extraction  of  bromine  and  in  Tunisia     . .         . .  481R 

from  greensand        . .         . .         . .         . .         . .         . .  131R 

industry  in  Germany         . .       178R,  314R,  451R,  536R,  569a 
from  kelp.     Applicability  of  kelpchar  as  a  bleaching 

and  purifying  agent.    Turrentine  and  Turner     . .  264A 

Manufacture  of  alumina  and  .    (P)  Bassert        . .  372a 

Mineral  in  Western  Texas               32R 

monopoly  ;    Proposed  Franco- German  . .         . .  398R 

plant  at  Searles  Lake        265R 

prices  in  Germany              . .          . .          . .          . .          . .  225R 

production  in  Far  East 294R 

Recovery  of as  a  by-product  in  the  blast-furnace 

industry.     Ross  and  Merz                . .         . .         . .  413a 

Recovery  of from  cement  mixtures.    (P)  Jackson  466a 

shales  of  Illinois.    Austin  and  Parr       . .         . .  140a 

in  soils ;     Significance   of   displaceable  in   plant 

nutrition.     Von  Nostitz         . .          . .          . .          . .  678A 

in  U.S.A.  in  1920              8R 

Water-hyacinth  ash  as  a  source  of . .         . .  401a 


SUBJECT  INDEX. 


197 


PAGE 

Potassic  rocks ;    Separation  of  constituents  of  .    (P) 

Blanc  and  Jourdan 293A 

Potassium  or  its  alloys  with  sodium ;   Preparation  of  bright 

metallic  — — .     Bomemann  . .  . .  . .     469a 

-bearing  silicates  ;   Treatment  of .     (P)  Levitt     . .       58a 

Determination  of by  the  perchlorate  and  cobaltini- 

trite  methods.     Morris  . .  . .  . .  . .     476R 

Determination  of  ■  in  presence  of  sodium,   mag- 
nesium, sulphates,  and  phosphates.     Watson       . .     649A 

Determination  of  small  amounts  of by  the  Lindo- 

Gladding  method.     Hazen     . .  . .  . .  . .     691A 

Use  of  double  thiosulphate  of  bismuth  and  sodium  in 

estimation  of  .    Cuisinier         ..         ..         ..     981 A 

Use  of  silica  crucibles  for  determination  of  in 

soils.    Jones  and  Reeder      . .         . .         . .         . .       25a 

Volumetric  determination  of  .    Macheleidt  ..     200a 

Potassium  acid  pyrophosphate  ;    Manufacture  of  for 

use  in  baking  powder.    (P)  Utz  . .         . .         . .     100a 

Potassium-aluminium  nitrates ;    Preparation  of  .    (P) 

La  Porte,  and  Sharp  and  Dohme  . .  . .     483A 

Potassium   bicarbonate ;     Electrolytic   production   of   

from    potassium    chloride    solutions.     (P)    diem. 

Fabr.  Griesheim-Elektron 753a 

Potassium  bichromate  as  standard  in  iodimetry.    Vosburgh  1000a 

Potassium  binoxalate  ;    Use  of  for  standardisation  of 

alkali  solutions.     Osaka  and  Ando  . .         . .     839A 

Potassium   bromate ;     Use  of  in   volumetric  organic 

analysis.     Callan  and  Henderson     . .  . .        75R,  161T 

Potassium    carbonate ;     Expansion   and    shrinkage   during 

caking  of  .    Lowry  and  Walker         . .         . .     291R 

Manufacture  of .     (P)  Harlow,  and  Dow  Chemical 

Co 100A 

Preparation  of  a  non-hygroscopic  mixture  of  sodium 

carbonate  and  .     (P)  Welter  . .  . .     753A 

Potassium  chlorate  ;    Purification  of for  use  in  manu- 
facture of  explosives  and  matches.    (P)  Jurisch 
and  Von  Schleinitz     . .         . .         . .         . .         . .     253a 

Potassium    chloride ;     Continuous    extraction    process    for 

separating  ■  from  crude  potassium  salts.     (P) 

Fellner  u.  Ziegler,  and  Konig  . .         . .         . .     754a 

Manufacture  of  — — .     (P)  Shoeld,  and  Armour  Fer- 
tilizer Works    ..  ..  ..  ..  ..  ..     174A 

Obtaining  from  flue  dust  of  cement  kilns.     (P) 

Moon,  and  International  Precipitation  Co.  . .     141A 

Recovery  of  from  brine.     (P)  Silsbee       . .  . .     982a 

Separation  of  aluminium  chloride  and  in  mixed 

solutions   obtained   in   treatment   of   leucite.     (P) 

Blanc -     812A 

Potassium  compounds ;  Extraction  of  and  manu- 
facture of  hydrochloric  acid.  (P)  Glaeser,  and 
Potash  Extraction  Corp.        . .          . .  . .  . .     669a 

compounds  ;    Extraction  of  from  silicates.     (P) 

Glaeser  294A 

compounds  in  greensand  composts  ;    Pot  culture  tests 

on  availability  of  .     Smith       . .  . .  . .       26A 

compounds ;      Production    of    aluminium    compounds 

and from  Italian  leucite.     Pomilio     . .  . .     370a 

compounds ;      Recovery    of    from    brines.     (P) 

Dolbear  and  others     . .  . .  . .  . .  . .     373A 

compounds ;    Recovery  of  from  distillery  slop. 

(P)  Whitaker,  and  U.S.  Industrial  Alcohol  Co.      . .     216a 

compounds ;     Recovery    of    from    felspar.     (P) 

Brown  141a 

Potassium  ferricyanide  ;    Decomposition  of  by  heat 

Cuttica  326a 

as  reagent  in  iodimetry.    Kolthoff         . .         . .         . .     272a 

Potassium  ferrocyanide  ;  Decomposition  of in  daylight. 

Iron    as    photochemical    catalyst.    Baudisch    and 

Bass       917a 

Potentiometric  titrations  with  .     Kolthoff  . .     612a 

Potentiometric  titrations  of  and   by  means  of  . 

Kolthoff  485a 

Solubility  of in  water.    Ice  curve  and  cryohydxic 

point.     Fabris  . .  . .  . .  . .  . .     250a 

Titration  of by  means  of  potassium  permanganate. 

Kolthoff  485A 

Potassium  hydroxide  ;   Application  of  Scheele's  reaction  to 

preparation  of .     Dominik        . .  . .  . .     750a 

Manufacture  of  .     (P)  Deguide        . .  . .      216a,  708a* 

solution  ;    Preparation   of  volumetric   alcoholic  . 

McCallum  37a 

Potassium  iodide  ;    Adulteration  of  with  potassium 

bromide.     Grossmann  . .  . .  . .  . .     706A 

Detection  of  iodates  in  .     Lachartre  . .  . .     706a 

Potassium  nitrate  ;    Impurities  in  synthetic  used  in 

manufacture  of  gunpowder.     Junk  . .  . .     158A 

Manufacture  of  .     (P)  Meadows  and  others         . .     982A 

Manufacture   of   ammonium   sulphate   and   .     (P) 

Chem.  Werke  Lothringcn,  and  Pfirrmann  . .     753a 

Manufacture  of  sodium  nitrite  and from  mixtures 

of  sodium  nitrate  and  nitrite.     (P)  Nydegger     ..     174a 
Potassium    oxalate ;     Oxidation    of    potassium    acetate    to 

.     Evans  and  Hines       . .  . .  . .  . .     685A 

Potassium  perchlorate ;   Formation  of from  potassium 

chlorate.     Lenher  and  others  . .  . .  . .     250a 

Rapid  analysis  of  .     Lenher  and  Tosterud  . .     326A 

Potassium  permanganate;   Properties  ot .    Fester  and 

Brude M  ..  ..     857A 


Potassium  permanganate — continued. 

Solubility  of  in  solutions  of  potassium  sulphate 

and  sodium  sulphate.     Trimble 

Thermal  decomposition  of  .    Moles  and  Crespi  . . 

Potassium    persulphate    as    photographic   reducer.     Higson 

Potassium   salts  ;     Continuous   process   of  lixiviating  . 

(P)  Fellner  und  Ziegler,  and  Konig 

salts  ;    Dissolving  crude  .     (P)  Sauerbrey 

salts  ;    Extracting  lithium  salts  and  from  ores. 

(P)  Bailey  and  Sedgwick 

salts  ;    Extraction  of ■  from  bitterns.     (P)  Harlow, 

and  Dow  Chemical  Co. 

salts  ;    Manufacture  of  of  varying  grain  size  by 

cooling  hot  liquors  in  vacuo.     (P)  Maschinenbau 

A.-G.  Balcke 

salts  ;    Obtaining  from  natural  potassium  com- 
pounds     (P)  Jackson 

salts ;    Recovery   of  from    blast-furnace   fumes. 

(P)  Gayley        

salts  ;    Recovery  of in  cement  manufacture.    (P) 

Rhodes  and  others 

salts;     Recovery    of    from    saline    deposits    and 

brines.    (P)    Stevenson,    and    General    Bond   and 
Share  Co. 

salts ;    Recovery  of  from   slate.    (P)   Hayward 

and  others 
salts  ;   Volumetric  estimation  of  magnesium  in  presence 

of  .    Viirtheim 

Potassium  sulphate  ;   Manufacture  of  hydrochloric  acid  and 

.     (P)  Comment,  and  Fabr.  Prod.  Chim.  Thaun 

et  Mulhouse 

The  system  water-aluminium  sulphate  ■  at  25°  C. 

Britton 

Potato  flour ;    Determination  of  moisture  in  .    Vogel- 

enzang 

plants  ;    Absorption  of  copper  from  the  soil  by  . 

Cook 
scab ;     Influence    of    soil    reaction    upon    growth    of 

actinomycetes  causing  .     Waksman 

Potatoes  ;    Conditions   of   activity   of   reductase   of   — — . 
Smorodincev 

or  the  like  ;    Preparation  of  dried  products  from . 

(P)  Mann  

Manufacture  of  soil  mixture  for  forced  growing  of . 

(P)  Husson 

Production  of  lactic  acid  from  rotten  .     (P)  Byk- 

Guldenwerke  Chem.  Fabr. 

Starch  syrup  and  sugar  from .     Behre  and  others 

Pottery  body ;    Cause  of  "  splitting  "  of  a  .     Craven 

Imports  and  exports  of  . .  . .  ... 

Kilns  for  firing  .     (P)  Bailey  . .         15a,  756A,  814a 

kilns  ;    Gas-fired  .     (P)   Woodall,   Duckham,   and 

Jones  (1920),  Ltd.,  and  Duckham 

and  like  articles  ;    Casting  .    (P.)  Allen 

and      like     electrically      non-conductive     substances ; 

Metallising  articles  made  of  .     (P)  Marino   . . 

ware  ;   Control  of  biscuit  losses  in  manufacture  of . 

Sproat 
Poudre  B.    See  under  Explosives. 

Powdered   material;    Treating   by   injection   into   a 

stream   of  air   or  other   gas.     (P)    Metallbank   u. 

Metallurgische  Ges 317a,  450a 

Powders  ;   Action  of  Hertzian  waves  on .    Briotet     . .     349a 

Discussion    on    properties    of    and    grading    by 

elutriation 

Grading  of .     Lowry  and  McHatton 

Method  of  testing  the  degree  of  incorporation  of . 

Perman 
smokeless ;     Apparatus    for    determining    stability    of 

.    Berknout 

smokeless ;    Conversion   of  and   of   waste   from 

their  manufacture,  into    celluloid  etc.     (P)  West- 
falisch-Anhaltische  Sprengstoff  A.-G. 
smokeless  ;    Recovery  of  solvents  from  raw  material 

for  .    (P)  Westfalisch-Anhaltisehe  Sprengstoff 

A.-G 

smokeless  ;    Testing  for  acidity.     Angeli 

smokeless;    Treatment  of .     (P)   Phillips 

smokeless  ;   Use  of  petards  of  black  powder  In  sporting 

cartridges  charged  with .     Bagajoli  and  De 

Florentiy 
Power  apparatus  ;    Plant  comprising  fuel-distillation  and 

steam  .     (P)  Merz  and  McLellan,  and  others 

plant ;    Observations  on  a  producer-gas .     Denny 

and  Knibbs 

production ;     Large-scale    by   low-temperature 

distillation  of  solid  fuel.     (P)  Merz  and  McLellan, 
and  others 
production  from  water.     (P)  Stromeyer 
water- ;    Aspects  of    relationship    between    nitrogen 

fixation  and  .     Maxted 

water-  ;   Development  of 

water-  ;    Final  report  of  committee  on  resources  of 


326A 
326a 
234A 

632A 
2-J4A 

897A 

670A 


502A 
546A 


471A 
375A 


463A 
501A 


1000  A 


5  46  A* 

589A 

563a 

26a 

870A 

952A 

516a 

562A 

952A 

71A 

329T 

201R 


328A 

15A* 


103A 
81 4  A 


173R 
173R 


155T 
31 0A 


199  A 


730A 
739A 
393A 


9  93  A 


279A 
207A 


2  79  A 
401a 


394R 
135R 


Water in  North  Queensland 

Water of  the  world 

Practice  and  theory  in  an  industrial  problem.     Armstrong 

Precipitates ;      Amorphous    and    crystalline    sols. 

Haber 

Carrying  down  of  soluble  salts  by  .     Dutoit  and 

Grobet     


63R 
351R 
158E 
415R 

588a 
613A 


198 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


from    solutions.     (P) 
(P)  General  Chemical 


(P)  Wallis, 


(P)  De 


Precipitates — continued. 

Separation    of    insoluble 
Buchner 
Precipitation  ;   Apparatus  for  ■ 
Co. 

Electrical .     See  under  Electrical. 

Preheaters  and  the  like.     (P)  Mather 

Preservative  agents  ;    Employment  of  

and  Atmosterol,  Ltd. 

Preserving  with  colloidal  aluminium  hydroxide. 
Haen  and  Buchner  . . 
fruit,  vegetables,  and  other  plant  tissues  and  organic 
material.     (P)  Imperial  Trust  for  Encouragement 
of  Scientific  and  Industrial  Research,  and   Kidd 
organic  matter.     (P)  Cholet      . .  . .  . .        30a, 

quality  of  cane  and  beet  sugars  ;    Comparative  sweet- 
ness and  .     Ogilvie 

vegetable  materials  : 

(P)  Aurich         

(P)  Schweizer 229a, 

vegetables,  fruit,  and  the  like.     (P)  Faitelowitz,  and 

Chemical  Foundation,  Inc. 
wood   and   other   vegetable   materials;     Composition 

for .  (PI  X.  V.  Xctherland  Colonial  Trading 

Co. 
wood,     pasteboard,     masonry,    leather,    sheet    iron, 

fabric,  etc.  ;    Coating  composition  for .     (P) 

"  Freeses  Patent  "  Eisenschutz  und   Schrauben- 
wdltnbekleidung  fiir  Schiffe  Ges. 
President's  address.     Ruttan 

Pressures  ;    Apparatus  for  measuring  high  fluid .     (P) 

Corap.  des  Forges  et  d'Acieries  de  la  Marine  et 
d'Homecourt 
Prickly  dog-fish  liver  oil.     See  under  Oils,  Fatty. 
Primers.     See  under  Explosive. 

Primulines  ;     Azo   dyestuffs   from   and   their   affinity  for 
cotton.     Levi 

Printers'  ink  ;    Production  of  from  sulphite-cellulose 

waste  lye.     (P)  Smidt  and  Jaeger 

rollers  ;  Manufacture  of .     (P)  Kutner,  and  Rapid 

Roller  Co 

Printing  ;     Chlorate-pmssiate  discharge   modified  to  pre- 
vent attack  of  the  rollers,  doctors,  and  fabric  in 

.     Sunder 

coloured  reserves  under  Aniline  Black  (Prud'homme 
style)  by  means  of  tungsten  lakes.     Sunder 

colours  ;   Double-tone .     (P)  Chem.  Fabr.  Worms 

Discharging  basic  dyestuffs  with  Hydrosulphite  N.  F. 

and  Leucotrope  in  .     Pokorny 

Double-tone  colour .     (P)  Chem.  Fabr.  Worms  .. 

fabrics ;      Rotary     offset     machines     for .     (P) 

Johnston 
ink.     (P)  Holmes  and  Cameron 

ink  ;    Manufacture  of  binders  for  pigments  for  . 

(P)  Buck  and  Moore 

inks  ;   Manufacture  of  black .     (P)  Riitgerswerke 

A.-G.,  and  Teichmann 

Manufacture  of  vat  dyestuff  preparations  for  . 

(P)Bennert 

Multicolour .     (P)  Kunert  and  others 

pigments  on  textiles  using  cellulose  acetate  as  fixing 
agent.     (P)  Bayer  und  Co. 

plates  ;     Photographic    process    for    producing   . 

(P)  Albert 

plates  ;    Production  of  gelatin  .     (P)  Renck 

Possibility    of    using    phosphorescent    substances    in 

calico .     Schimansky 

Preparation  of  especially  resistant  reserves  In  . 

(P)  Cassella  und  Co.  

process.     (P)  Dietz 

Quantitative  relations  in  fixation  of  Alizarin  Red  in 

calico  .     Haller  and  Kurzweil 

of  textile  fabrics.     (P)  Calico  Printers'  Assoc.,  Ltd., 
and  Nelson    ..  ..  ..  ..  ..      411  A, 

textile    fabrics  ;     Colloidal    nature    and    influence   of 

assistants  used  in .     Planowsky 

two   patterns  simultaneously   on   cotton   and   woven 

fabrics.     (P)  Hindle  

yarns  ;   Mechanism  for .     (P)  Alvord 

Prints  ;    Producing  water-  and  friction-resisting  on 

paper  or  fabric  surfaces  which  have  been  treated 
with  proteins.  (P)  Exportingenieure  f.  Papier- 
u.  Zellstofftechnik    .. 

Prize  for  chemists  ;    Annual in  U.S.A. 

Problems  in  chemical  industry  ;    Some  .     Armstrong 

Procaine.     See  Novocaine. 

Production  ;   Statistics  of  wages  and 

Proofing  materials.     (P)  Peachey     .. 
Propellants.     See  under  Explosives. 
Propyl  alcohol  as  disinfectant 

Propylene  ;     Action   of  selenium   rnonochloride   on   . 

Boord  and  Cope 
Preparation  of  pure  — — .     Trautz  and  Winkler 

Protalbinic  acid  ;    Alkali  salts  of  oxidised  as  stable 

protective     colloids    for     mercury     compounds. 
(P)  Wolvekamp 
Protamines.     Gross 


PAGE 

859a 

970a 

738a* 

156a 

874a 


115a 
565A* 


343R 


954a 
432a* 


76a 


66a 

211T 


364A 

989A 

66a 

139a 

461A 
382a 

290a 
749A 

719a* 
335A 

639a 

559a 

809A 
855A* 

325a 

879A 
611a 


201a 
809a 

189a 

809A 
740  A 

55a* 

24'JA* 


705A 
399r 
500R 

134R 
383A 


785a 


916a 
564a 


Protein  of  Bence-Jones  ;     Nitrogen-distribution   in  . 

Luscher 
content  of  grain  ;    Differences   effected  in  by 

applications  of  nitrogen  made  at  different  growing 

periods  of  the  plant.     Gericke 

derivatives  ;    Basic  .     Felix 

enzymes.     Ehrenberg 

ions  ;    Mobility  of .     Pauli 

precipitauts.     Hiller  and  Van  Slyke 

sols ;     Influence  of  hydrogen    ion   concentration   on 

adsorption  of  dyestuffs  by  .     Bethe 

specificity  ;    Rfile  of in  nutrition.     Berczeller  . . 

substances;     Manufacture    of    vegetable    .     (P) 

Satow 

systems  ;    Sol-gel  equilibrium  in  .     Bogue 

Yeast .     Kiesel 

Proteinogenous  amines.     Hanke  and   Koessler    263a,  26Sa, 
Proteins  of  adsuki  bean,  Phaseolus  angidaris.     Jones  and 

others 

Coagulation  of by  sunlight.     Young 

Colloid  chemistry  of  .     Fodor 

Colorimetric  determination   of  tryptophan   in    . 

Luscher 
Colorimetric  determination  of  tyrosine,  tryptophane, 

and  cystine  in .     Folin  and  Looney 

of  curd  and  whey ;    Determination  of  in  mix- 
tures.    Liining  and  Herzig 
Decomposition  of  in  yeast  during  fermentation. 

Iwanoff 
Deodorising  products  from  hydrolysis  of  .     (P) 

Plmisons  Forschungsinstitut 
and  their  derivatives  ;  Combined  fractionation  method 

for  separating .     Rakusin 

and    derivatives  ;     Recognition    of    by    colour 

reactions.     Rakusin 
Detection    and    estimation    of    monoamino-acids    in 

.     Engeland 

Determination  of  ammonia  nitrogen  in  and  in 

their  products  of  hydrolysis.     Froidevaux 
Determination   of  tyrosine  content  of  .     Fiirth 

and  Fleischmann 
extracted  by  0'2%  sodium  hydroxide  solution  from 

cottonseed    meal,    soya    beans,    and    coconuts  ; 

Nitrogen  distribution  of  .     Friedemanu 

Extraction  of  from  whey.     (P)  Thomson     192a, 

Heat  coagulation  of .     Lepeschkin 

Influence  of  fermentation  products  on  decomposition 

of  in  yeast.     Iwanoff 

Kinetics  of  coagulation  of by  heat.     Liiers  and 

Landauer 
of   the   lima    bean    {Phaseolus   lunatus).     Jones    and 


others 
Manufacture 

Plauson 
Natural 


of     plastic     masses     from 


(P) 


Behaviour  of  chlorine  dioxide  towards 
organic  substances.     Schmidt  and  Brannsdorf  . . 

Obtaining from  leguminous  seeds.     <P)  Pohl     . . 

Preparation   of   alcoholic   solutions   of   animal   . 

(P)  Thomson  

Proteolysis  in  materials  containing .     Chabot    . . 

Researches  on connected  with  leather  chemistry. 

Moeller 
Separation  of  amino-acids  from  products  of  hydrolysis 

of .     Buston  and  Schryver 

Solubility  of  calcium  sulphate  in  products  of  hydro- 
lysis of .     Haussler 

Sulphur    in    .     Effect   of    acid    hydrolysis    upon 

cystine.     Hoffman  and  Gortner 
Proteolysis  in  materials  containing  proteins.     Chabot     . . 

Proteolytic  enzymes  ;    Determination  of  .     Pincussen 

Protocatechuic     aldehyde ;      Preparation     of    .     (P) 

Hamburger    . . 

Prunue    avium  ;     Acids    present    iu    .     Franzen    and 

Helwcrt 
Pseudo-extraction,  and  new  method  of  extracting  solids. 
Charitschkov 

Ptyalin  ;    Thermostability  of  .     Ernstrom 

Publications  received  ;    Lists  of ■    20r,  42r,  66r,  SSr, 

110R,  142R,  166R,  186R,  20SR,  230R,  252r,  274R, 
300R,  322R,  342R,  360R,  380R,  40SR,  432R,  464R,' 
490R,   518R,   546R, 
Pug-mills    for    clay    mixtures.     (P)    Fawcett,    Ltd.,    and 
others 

Pulegone  ;    Occurrence  of  in  cohobated  peppermint 

oil.     Kremers 
Pulp  beating  engines.     (P)  Mahlet  .. 

Bleaching .     (P)  Trostel 

Bleaching with  chlorine.     De  Perdiguier 

boilers;    Method  of  filling  with  heated  sulphite 

lye.     (P)  Zellstoff-fabr.  Waldhof,  and  Cleram  .. 

-drying  machines  and  the  like  ;    Couch  rolls  for . 

<P)  Marx        

mills  ;    Absorption  of  malodorous  gases  in  sulphate 

.     Schwalbe 

mills  ;    Apparatus  for  evaporation  and  dry  distillation 

of  waste  liquors  from  .     (P)   Aktiebolaget 

Cellulosa 
sulphate-  ;    Removal  of  odour  from  mills  for  manu- 
facture of .     SegerlYH 

sulphite-  ;      Determination    of    chlorine-consumption 
value  of '.-    Sieber 


PAGE 

993a 

950a 
192  a 
430A 
306a 
881A 

286a 
479  a 

834A* 
560A 
305a. 
268a 

342a 
266A 

515a 

993a 
526a 
114a 
113A 
186A 
780a 

OLA 
515A 
526a 
306a 

".12a 
B84A 
993A 

113A 

780a 

873a 

304a 

608A 
388a 

229  a 
780A 

560A 

75A 

192A 

306a 
780a 

964a 

35A 
875  a 

925  a 

4 'J  9  a 


57SR 

548A* 

647a 

324a* 
324a 

288a 

855a 
54A* 

747a 

936a* 

138a 
540a 


SUBJECT  INDEX. 


199 


Pulp — continued. 

sulphite- ;  Recovery  of  sulphur  dioxide  and  heat 
from  waste  gases  from  digesters  for  manufacture 

of 

(P)  Zellstoff-fabr.  Waldhof 855a 

(P)  Zellstoff-fabr.  Waldhof  and  others    855a,  855a* 

sulphite- ;     Variables   in    cooking    of   .    Larrabee     52A 

thickener.    (P)  Slade,  and  Dorr  Co.         „         . .         . .     206a 
Pulverising  apparatus  : 

(P)  Emmott  and  Mercer  164A 

(P)  McCrae  127a 

(P)  Pomeroy         927a.  972a* 

(P)  Sherban         796A 

(P)   Soc.   Anon.   Combustion  Rationelle,  and 

Powdered  Fuel  Plant  Co B76A 

(P)  Soc.  Anon.  Ateliers  Reunis  . .         . .     576a 

(P)   Williams,  and  Williams'   Patent  Crusher 

and  Pulveriser  Co 621 A 

apparatus  ;  Drv .    (P)  Pomeroy 796a 

apparatus  ;    Rotary .    (P)  Fulcher  . .         . .     845a 

coal  and  other  substances ;    Apparatus  for  .    (P) 

Powdered  Fuel  Plant  Co.,  Ltd.,  and  Soc.  Anon. 

La  Combustion  Rationelle      ..         ..         ..         ..     128A* 

fuel ;  Machines  for .    (P)  Blyth       243a 

and     like     mills.    (P)      Etabl.      Candlot  . .         1A 

mixing,  and  grading  apparatus.    (P)  Clark  and  others    845a 
ores  and  the  like.    (P)   Johnston         ..         ..         ..       t'v 

Pumps  for  raising  liquids  which  easily  evaporate  at  low 
temperature  and  are  under  vacuum,   e.g.,   liquid 

air,  carbon  dioxide  ;  Piston .     (P)  Zack         . .       43A 

Purification  of  substances  bv  distillation  with  a  solvent. 

(P)  Bailey  and  others 687a 

Purine  bases  from  yeast.    Meisenheimer        153a 

scries  :    Preparation  of  carboxylic  acids  of  the  . 

(P)  Merck  and  others  689A 

Purpura   aperta ;    Dyestuff  from  .    Friedlander 

Purpura  lapillus  ;   Dyestuff  from .    Friedlander        ..     582A 

Putrefaction  ;  Formation  of  phenol  during .     Maclaurin    644A 

Pycnometry.    Saar         ~         «         . .         ~         . .         .  •     612a 
Pyrazoleanthrone  Yellow.    See  under  Anthracene  dyestuffs. 
Pyrethrum  insecticide  powder.     Costa  . .  . .  . .     834A 

Pyridine  ;  Dehydration  of .    (P)  Huff,  and  Koppers  Co 

derivatives;  Relationships  between  chemical  constitu- 
tion and  antiseptic  action  of .    Browning  and 

others 480A 

and  homologues ;    Preparation  of in  a  state  of 

purity.     Heap  and  others 49a 

Recoverv*  of  in  ammonium  sulphate  saturators. 

Gluud   and   Schneider  208a 

Recovery  of  from  ammonium  sulphate  solutions. 

(P)   Sperr,  jun.,   and  others  . .  . .     457a 

Recovery  of  from  crude  benzol  from    coke-oven 

works.    Gluud  and  Schneider  739a 

Sensitive  reaction  for .     Spacu         880a 

Test  for .    Lehner S52a 

Pyridine-betaine :    Manufacture  of  metal  salt  compounds 

of as  glycerin  substitutes.    (P)  Cassella  uud  Co.     158A 

Pyridine-3-carboxylic  acid.    See  Nicotinic  acid. 
Pyrimidines  from  alkylmalonic  esters  and  aromatic  amidines. 

Dox   and    Yoder        307a 

Syntheses  of  .    Cberbuliez  and  Stavritch  ..     481a 

Pyrites  ;  Action  of  acetylene  on .     Steinkopf  and  Herold     703a 

burnt ;    Recovery  of  zinc  and  copper  from  the  leach 

liquors   of   .     Reisenegger         219a 

cinder  and  the  like;    Removing  zinc  from  .    (P) 

Neuhaus  . .  . .  . .  . .  •  ■  ■  ■     555A 

Determination  of  sulphur  in : 

Chaudron  and  Juge-Boirard      . .         . .         . .     249A 

Gadais       12a 

Manufacture  of  sulphurous  acid  fiom .    (P)  Kirch- 

eisen       . .  . .  . .  . .  • .  •  •  ■  ■     216a 

Mechanical    furnaces   for  roasting   .     (P)    Manuf. 

de  Prod.  Chim.  du  Nord  Etabl.  Kuhlruann         . .     942A 
Oxidation  of  iron by  sulphur-oxidising  soil  organ- 
isms, and  their  ~use  for  making  mineral  phosphates 

available.    Rudolfs 949a 

Production  and  consumption  of  iron  ,  1913 — 1919    177R 

Spanish  trade  in . .         . .         . .         . .         . .     226R 

Sulphatising-  or  dead-joasting  of  .    (P)  Buddeus    298a 

Pyritic  concentrates  containing  tin  ;    Treatment  of  . 

Gudgeon  . .         . .         . .         . .         . •         - •     468a 

Pyrofulmin,  a  decomposition  product  of  mercury  fulminate. 

Langhans  . .         . .         . .         . .         .  •         •  •     234a 

PyrogaHol;  Colorimetric  estimation  of .     Mitchell      ..     475r. 

solutions   for   gas  analysis ;     Oxygen   absorption   and 

concentration   of  .    Hoffmann  . .         . .     613a 

Pyromellitic  acid  and  its  production  from  carbon  by  oxida- 
tion : 

Philippi 727a 

Philippi   and   Rie  727a 

Philippi  and  Thelen        727a 

Philippi  and  others  727a 

Synthesis  of  from  commercial  xylene.    Philippi 

and  others        . .         . .         . .         . .         . .  727a 

Pyrometers  ;  Optical for  measuring  high  temperatures. 

(P)  Lockhoven  964a 

of  thermo-couple  type :  Counteracting  effects  of  tem- 
perature variations  at  cold  junctions  of  electrical 
.     (P)  Hamilton  and  Co.,  and  others  ..     122a* 


Pyromucic  acid  ;    Bactericidal  action  of  — — -.    Kaufmann 

Pyrophosphates  ;    Manufacture  of  acid  of  the  alkali 

and  alkaline-earth  metals.     (P)  TJtz 

Volumetric  determination  of .     Moerk 

Pyrophosphoric  acid  ;    Structure  of  .    Balareff 

Pyrosulphates  ;   Manufacture  of .    (P)  British  Cellulose 

and  Chemical  Mfg.  Co.,  and  Bader 
'Pyrotechnic  compositions; 

(P)  Fulton  

(P)  Scheele  

Pyroxylin  compositions  ;  Manufacture  of  — — ■.    (P)  Lindsay, 
and  Celluloid  Co. 

plastics ;    Manufacture  of  nitrocellulose  for  .    Du 

Pont 

solvent.    (P)  Mitchell,  and  Athol  Mfg.  Co.         . .  10a 

Pyrrole  and  similar  compounds  ;    Action  of  the  Grignard 

reagent  on  .    Hepworth 

Pyruvic  acid  ;    Degradation  of  ■  by  bacteria.     Cambier 

and  Aubel 
as  intermediate  product  in  alcoholic  fission  of  sugar. 
Von  Grab 
Pyrylium  salts  of  the  anthocyanidin  type ;    Synthesis  of 
.    Pratt   and    Robinson 


Q 

Quartz ;    Coating  carbon  and  articles  containing  it   with 

.    (P)  Meurer 

Elasticity  and  symmetry  of at  high  temperatures. 

Perrier  and  De  Mandrot 

Fusion   of  .    (P)  Jlelberger  

Heat  of  crystallisation  of .     Ray 

Production    of    gas-tight    seals    between    metals    and 

.    (P)  Silica  Syndicate,  and  Reynolds 

Separation    of    felspar    and    .    (P)    Knight    and 

Shimmin 

Quartzites  ;    Comparison  of  Amer'can  and  German  as 

raw  materials  for  the  silica  brick  industry.     Endell 
Quebec.     See  under  Canada. 

Quebrachitol :    Presence   of  in  Hevea  rubber   latex 

under  different  circumstances.    Spoon 
Queensland.    See  under  Australia. 

Quinaketones ;     Synthesis   of   vinyl-free  .    Rabe   and 

others 
Quinatoxins  ;  Synthesis  of  vinyl-free .    Rabe  and  others 

Quinine  ;  Action  of  narcotics  and  — —  on  mvertase.  Rona 
and  others         .... 

Action   of  on   yeast.     Joachimoglu 

alkaloids  and  their  salts  ;    Titration  of  .     Schoorl 

Extraction  of  strychnine  and  from  solutions  of 

varying  hydrogen  ion  concentration,  and  separation 
of  strychnine  rrom  quinine.    Evers  . .      329R. 

esters  ;    Manufacture  of .    (P)  Schering 

methylarsinate ;     Solution    of    suitable    for    in- 
jection.    Picon 
salt  of  4-ethoxyphenylmalonamic  acid.      (P)  Akt.-Ges. 
firr   Anilin-Fabr. 

salts ;     Quinotoxine   in   .    Ganassini 

salts ;    Rapid   estimation  of  in  tablets.    Liver- 
sedge  and  Andrews 

-silver  phosphate    germicide ;     Manufacture    of    . 

(P)  Crowe         

Quinizarin  ;    Action   of  bromine  on  .     Dimrotli   and 

others 

Quinocyanins.    See  under  Quinoline  dyestuffs. 

Quinoidine  ;   Acceleration  of  vulcanisation  by .    Eaton 

and  Bishop 

Quinol ;    Manufacture  of  : 

(P)  Chem.  Fabr.  Schering         

(P)  Von  Bramer,  and  Eastman  Kodak  Co. 

Nitro-derivatives  of .     Kehrmann  and  others 

Quinoline  derivatives ;  Relationships  between  chemical 
constitution  and  antiseptic  action  of .  Brown- 
ing   and    others 

Red   dyestuff  from   .    Giua  

series  :    Manufacture   of  amino-alcohols   of  the  . 

(P)  Soc.  of  Chem.  Ind.  in  Basle         

series  :    Manufacture   of  cyclic  ketones   of  the  . 

(P)  Meister,  Lucius,  und  Briining 

Quinoline  dyestuffs : 

Carbocyanines ;     Comparison    of    three  isomeric  . 

Braunholtz         

Cvanine  dyes  of  the  benzothiazole  series.    Mills 
Cyanine  dyestuffs.    Virtual  tautomerism  of  the  thio- 

cyanines.     Mills  and  Braunholtz 

Isocyanines  ;  Brominated .    Moudgill 

Isocyanines ;      Optical    and    photographic    properties 

of  some  isomeric .    Hamer 

Isoquinoline  Reds.    Harris  and  Pope 

Pinacyanols  ;    Constitution  of  the ,  a  contribution 

to   the    chemistry   of   the   quinocyanines.    Konig 
Thioisocvanines.   cvanine   dyes  containing  a   quinoline 

and    a    benzothiazole    nucleus.     Braunholtz    and 

Mills        

ay-Quinolines ;    Preparation  of  .    Palkin    and    Harris 


r.u;E 
193A 

100A 
937A 
12a 

37iA 

81A 

690A 


137A 
3a 

9T 

605A 
189A 
804a 


7. -.7  A 

939A 
295A 
755A 

327A 
176a 


267A 
267A 

782 1 
679A 
434A 


683A 
119A 


959A 

4S4.V 

683A 

79A 
51a 

374T 

232A 

648a 

7a 


4S0A 
497A 


95SA 
135A 


198a 
365a 


804a 


120.1 
581a 


997A 
743A 


200 


JOURNAL  OF^THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Quinones  ;   Action  of  the  Grignard  reagent  on .    Hep 

worth 
and  allied  compounds ;    Bactericidal  action  of  — 

Bforgan  and  Cooper 
Quinotoxine  in  quinine  salts.     Ganassini 


PAGE 

9t 

76a 
434A 


Rectifying  columns.    (P)  Barbet 
columns  for  binary  mixtures  ; 
.     Lewis 


Efficiency  and  design  of 


PAGE 

797A* 


Rabbits'  fruit  nuts'as  a  source  of  oil 

Rabbles    for    low- temperature    coal    distillation    purposes 
or  other  purposes  where  a  like  movement  of  t lie 
material  is  required.     (P)  Barrs 
Radioactive    indicators.     Paneth 

mineral ;    Soddite,  a  new  .    Schoep 

substances;     Adsorption    of    .    Ebler    and    Van 

Rhyn 

Radioactivity  of  the  oxides  of  uranium.     Staehliug 

Radiographic   screens  ;    Manufacture   of   fluorescent  . 

(P)  General  Electric  Co 

Radiography ;    Influence   of  temperature   on  sensitiveness 

of  emulsions  in .     Zimmern 

Radium-content  of  camotlte  ores  and   other  products  of 

low  activity  ;   Determination  of .     Hess 

Direct  determination   of  small   quantities  of  by 

the  penetrating  rays.     Szilard 

Extraction  of  vanadium,  uranium  and ■  from  ores. 

(P)   Bleecker,   and   Tungsten   Products   Co. 

Influence  of  on  germination  of  seeds.     Stoklasa 

Is a  medicament  ?     . . 

monopoly  in  Czechoslovakia 

Production  of ■ 

production  in  Turkestan 

Recovery  of from  luminous  paint.     Francis 

residues  ;  Ionium  content  of .     Rona 

solutions  ;  Durability  of .    Becker 

Radium  chloride  ;  Analysis  by  positive  rays   of    the  gases 

in   a   vessel    in    which  had  been  stored  for 

thirteen  years.    Thomson 

Raffinase  ;  Specific  nature  of .    Willstatter  and  Kuhn  . . 

Raffinose  ;  Determination  of in  beet  molasses.  Scheckcr 

Preparation  of .     Clark 

Ragweed  pollen  ;  Phytosterols  of .     Heyl 

Railway  classification  for  merchandise,  excluding  dangerous 

goods,  by  goods  train  ;  Revision  of  general . . 

rates  134R, 

Ramie  and  the  like  ;  Treatment  of .     (P)  Kawabe 

Ramsay  Memorial ;  Unveiling  of  the .     Travers 

Rancidity  in  oils  and  fats  ;  Influence  of  air.  light,  and  metals 

on  development  of .     Emery  and  Henley 

Rand  gold  mines  ;  Life  of .  

metallurgical  practice : 

Allen  

Cullen         

Rape  oil.     See  under  Oils,  Fatty. 

seed  ;     Apparatus  for  extracting   oil   from   .     (P) 

Schneider 
Raspberry  juice  ;  Occurrence  of  ellagic  acid  in  Rubus  Idaeus, 

and  cause  of  clouding  of .    Kunz-Krause 

leaves  ;  Occurrence  of  lactic  and  succinic  acids  in . 

Franzen  and  Stern 

Rat  poisons  ;  Analysis  and  use  of  red  squill  in .    Clare- 

mont 
Rating  of  Machinery  Bill 

Rats  ;    Means  for  destruction  of  .    (P)  Bavaria  Ges. 

Fabrikations-  und  Export- Geschiift 
Ray-fish  liver  oil.     See  under  Oils,  Fatty. 
Reaction  and  mixing  apparatus.     (P)  Mahler 

Reactions ;    Apparatus   for   effecting   chemical  .    (P) 

Paulus,  and  Royal  Baking  Powder  Co. 

Apparatus  for  effecting  chemical  by  means  of 

amalgams.     (P)  Paulus,  and  Royal  Baking  Powder 

Co 

Automatic  electrical  control  of : 

(P)  Bascom,  and  Dorr  Co. 

(P)  Edelman         

Carrying  out  chemical by  catalysis.     (P)  Koetschet, 

and  Soc.  Chim.  Usines  du  Rhone 
in  fused  salt  media.  Hicks  and  Craig 
at  high  temperatures  and   pressures  ;    Apparatus   for 

carrying  out .     (P)  Stuart  and  others 

Method   of  carrying  on  vigorous  chemical  .     (P) 

Gewerkschaft    des    Steinkohlenbergwerks    "  Loth- 
ringen "  ..  ..  ..  ..  ..      401A, 

upon  organic  substances  at  temperatures  of  red  heat  or 

above  ;  Method  of  effecting (P)  Fischer 

Process  for  effecting  chemical : 

(P)  Metallbank  u.  MetaUurgische  Ges. 

(P)  Snelling  

Process  for  effecting  chemical in  the  interior  of  air 

compressors.     (P)  Brutzkus 

Producing  chemical  by  the  action  of  heat.     (P) 

Thermal  Industrial  and  Chemical  (T.I.C.)  Resean  b 
to,  and  Morgan 

Promoting  chemical between  gases.    (P)  Ruben    . . 

Receiver  for  fractionation  in  a  current  of  gas  or  under  reduced 

pressure.     Wheeler  and  Blair  

Rectification;  Distillation  and .    Gay 


455A 
881 A 
264r 

12A 

97A 

271A 

233A 
462A 
613A 

63A 

428A 
4S3R 
177a 

266R 

04T 

250a 

938A 


630A 
189A 
1S8A 
264a 
955a 

73r 
315R 

138A 
465R 

945A 

483R 

243R 
243R 


473A 
115A 

783A 

230A 
201R 

193  A 

206A 

631A 

631A 

43A 
43A 

89a* 
668A 

531 A 

738  A 

212A 

450a 
57A 


357A 
902A 


59T 
43A 


columns  ;  Plates  for  - 


(P)  Barbet  et  Fils  et  Cie. 


573A 
43A 


Recuperators.    (P)  Soc.  Anon.  Appareils  de  Manutention  et 
Fours  Stein,  and  Stein  and  Atkinson,  Ltd. 
for  furnaces  : 

(P)  Mannstaedt  und  Co.,  and  Bansen 
(P)  Volkommen 
for  glass  furnaces  and  the  like.    (P)  McLaughlin  and 
Norton  

Red  lead  ;  Exports  of from  Germany 

Physical  chemistry  of .     Glasstone  . .     _ 

Volumetric  estimation  of  lead  dioxide  in .     Bonis  . . 


Red  squill ;  Analysis  and  use  of  - 
mont 


in  rat  poisons.    Clare- 


Reductase  of  potatoes  ;    Conditions   of  activity  of  . 

Smorodincev 
Reduction  of  metallic  oxides.     (P)  Bourcoud 
of  metals  etc.     (P)  Bridge 

of  organic  compounds  ;   Electrochemical  study  of  rever- 
sible-  .     (P)  Conant  and  others    .. 

of  organic  compounds  ;    Use  of  oxides  of  platinum  for 

catalytic  reduction  of .     Voorhees  and  Adams 

of  refractory  oxides  ;  Method  of  producing  high  tempera- 
tures for .    (P)  Pacz         

Reductions  with  cadmium  in  volumetric  analysis.     Treadwell 

and  others  919a, 

with  lead  in  volumetric  analysis.     Treadwell  and  others 

Process  for  carrying  out  acid  or  alkaline  .     (P) 

Mitscherling,  and  Atlas  Powder  Co. 

Reflecting    surfaces ;     Preparation    of    -.    (P)    General 

Electric  Co 

Refractive  index  ;  Measurement  of  small  variations  of 

throughout  meltings  of  optical  glass.     Dalladay  and 
Twyman 
index  of  oils  and  fats  (glyceridcs)  ;    Relation  between 

chemical  characteristics  and  .     Pickering  and 

Cowlishaw 

indices  of  liquids  ;  Simple  instrument  for  measuring . 

Fouracre 
Refractometers  i 

(P)  Taylor  

(P)  Zeiss 


439A 
127A 


35SR 
751A 

557A 

230A 

052A 

379A* 
471a 

539A 

566A 

715A 

919A 
919A 

971A 
332A 

175A 

74T 

690a 

444a» 
352A 


Becka 

by  the  oxy hydrogen 


Refractometric  quantitative  analysis. 

Refractories ;    Examination  of  

blowpipe.     Curtis         ..  ..  ..  ..  ..     417k 

Testing  of .     Rees        95R 

Thermal  conductivity  of  at  high  temperatures. 

Green 263r 

Refractory  articles ;  Highly .     (P)  Buckman  and  others     417a 

articles  ;  Manufacture  of .     (P)  Rebuffat     . .  . .     465A 

articles;    Manufacture  of  shaped  .     (P)  Rossman, 

and  American  Zinc,  Lead,  and  Smelting  Co.  . .     711a 

brick  ;   Effect  of  weather  upon  btrength  of .     Howe 

and  others         . .         . .         . .         ...         . .         . .     253a 

bricks;  Basic .     (P)  Newberry  ..  ..  ..     103a 

bricks;  Kilns  for  burning .    (P)Koppers    ..         ..     548A 

Development  of  a  new .     Greaves- \Yalker  ..  ..        1ST 

materials  ;    Determination  of  softening  temperature  of 

under  load.     Steger        . .  . .  . .  . .     591a 

materials  ;  Expansion  of  some at  high  temperatures. 

BogiMi  58A 

materials  ;  Fusing  and  casting and  obtaining  cast- 
ings therefrom.    (P)  De  Roiboul      ..         ..  177a 
materials  ;    Investigation  of  .     The  after-contrac- 
tion test.     Jones          ..          ..          ..          ..          ..       14a 

materials;  Manufacture  of : 

(P)  Buffalo  Refractory  Corp 328A 

(P)  Collins  375a 

(P)  French,  and  International  Harvester  Co.     548a 

(P)  Frohman         939A* 

(P)  Hall  548A 

materials;     Manufacture    of    filaments    of    .     (P) 

De  Ro-boul 142A 

materials  ;  Stoves  for  drying  .    (P)  Gardner  and 

others 328A 

materials  ;   Thermal  conductivity  of ■  at  high  tem- 
peratures.    Green        . .          . .          . .  . .  . .     547A 

materials  used  in  the  glass  Industry;    Review  of  the 

preliminary  specifications  for .     Rees  ..         ..     127R 

minerals  or  oxides  ;    Decomposing  or  dissolving . 

(P)  Bayer  und  Co 754a 

prod  ucts ;     Resistance   tests   on   under   load   at 

different  temperatures.     Bodin         . .  . .  . .     176a 

Refrigerants.     (P)  Crawford  and  Seaman         ..  ..  ..     165 A* 

Refrigerating  agent ;  Advantages  of  ethyl  chloride  as . 

Jenkin 474k 

and  ice-making  apparatus.     (P)  Mott 6 llx* 

machines  : 

(P)  Candor  12SA 

(P)  Deremer         795a 

(P)  Lundgaard 449A 

(P)  Stewart  S4(>A 

machines  ;   Boiler  applicable  for  use  as  absorber  in  ab- 
sorption   .     (P)  Pfleiderer  . .  . .  . .     165a 

machines ;    Concentration  of  brine  or  the  like  used  as 

circulating    medium    in    .     (P)    Heenan    and 

Fronde,  and  Walker     . .  . .  . .  . .  . .     657a 


SUBJECT  INDEX. 


201 


Refrigerating — cont  in  ued. 

machines  employing  compression  supplementary  to  high 

condenser  pressures  ;  Test  of  carbon  dioxide . 

Plank 489A 

machines  ;  Regeneration  of  the  heat  at  high  temperature 
produced  during  the  adiabatic  compression  oper- 
ations employed  in  compression .    (P)  Alten- 

kirch       . .  . .  . .  . .  . .  . .  . .       44a 

systems  ;  Method  of  using  sulphur  dioxide  in .   (P) 

Robison,  and  Utility  Compressor  Co.  . .         . .     240a 

Potential  developments  in .     Ormandy  and  Craven       49r 

process  : 

(P)  Crawford  and  Seaman  . .  . .  . .         1A 

(P)  Stewart  S4GA 

Refuse  destructor  furnaces.    (P)  Atkinson,  and  Stein  and 

Atkinson,  Ltd.  835a* 

Plant  for  aerobic  fermentation  of for  production  of 

manure.     (P)  Soc.  Anon.  Brevetti  Beccari  . .     603a 

Regenerator  chamber  for  metallurgical  furnaces.    (P)  Gray    298a 

Regenerators  for  heating  air  or  gas  for  combustion.    (P) 

Schulz 797A* 

Register  ;  Trade  information . .         . .         . .         . .     571R 

Remedies;  Search  for  specific .     Dale      ..         ..         ..     218E 

Rennet;  Chemical  action  of .     Inichoff  ..  ..     833a 

Reparation  duties 104K,  295R 

Report  on  alkali  etc.  works  ;  Fifty-eighth  annual . .     316r 

on  bacteriology  of  canned  meat  and  fish.    Savage  and 

others     . .  . .  . .  . .  . .  . .  . .     573r 

of  British  Association  committee  for  investigation  of  fuel 

economy,  utilisation  of  coal,  and  smoke  prevention . .     404r 

of  British  Empire  Patent  Conference         375R 

of   Chief    Inspector    of    Factories    and    Workshops ; 

Annual 334R 

on  commerce  and  industry  of  Switzerland  in  1921  . .     573r 

on  commercial  and  economic  situation  in  republics  of 

Panama  and  Costa  Rica.     Graham  and  Cox  . .     136r 

on  commercial  and  financial  situation  in  Bulgaria.  Rodd     335R 
on  commercial,  industrial,  and  economic  situation  in 

Italy.     Henderson 223R 

on  commercial,  industrial,   and   financial  situation   in 

Japan.     Crowe..  ..  ..  ..  ..  ..     539R 

on  commercial  and  industrial  situation  of  Hungary. 

Humphreys       . .         . .         . .         . .         . .         . .     335r 

of  committee  of  Privy  Council  for  scientific  and  industrial 

research  . .         . .         . .         . .         . .     424r 

of  committee  on  smoke  and  noxious  vapours  abatement. 

i lR 

of  Comptroller-general  of  patents,  designs,  and  trade 

marks,1921 ;  Thirty-ninth . .  . .         . .     296R 

on  conditions  and  prospects  of  British  trade  in  India. 

Ainscough  . .  . .  . .  . .  . .  . .       14R 

to  Corrosion  Research  Committee  of  Institute  of  Metals  ; 

Sixth .     Bengough  and  Stuart  ..     S20a 

of  the  Dominion  Chemist  (Canada)  for  year  ending 

March  31, 1921 ;  Interim .    Shutt         . .         . .       38a 

on  economic  and  commercial  conditions  in  Dominican 

Republic  and  Republic  of  Haiti.     Ledger  and  Watt     182r 
on  economic  and  commercial  conditions  in  Grand  Duchy 

of  Luxembourg.     Sullivan      . .  . .  . .  . .     202r 

on  economic  and  commercial  conditions  of  Venezuela. 

Beaumont  . .  . .  . .  . .  . .  . .       14r 

on  economic,  commercial,  and  industrial  situation  of 

Sweden.     Kershaw      . .  ..  ..  ..     296r 

on    economic    and    commercial    situation    of    Austria. 

Phillpott3  51  3r 

on  economic  conditions  in  Rumania.     Adams     . .  . .     335r 

on  economic  conditions  in  South  Africa.    Wickham      . .     572R 
on  economic  and  financial  conditions  in  Brazil.    Ham- 

bloch  83R 

on  economic  and  financial  conditions  in  Guatemala. 

Rogers  250R 

on  economic  and  financial  conditions  in  Paraguay. 

Paris  136R 

on  economic,  financial,  and  industrial  conditions  of 

the  Netherlands.     Laming  ..  ..  ..     297R 

on  economic  and  financial  situation  of  Egypt.     Mulock    486R 
on    economic    and    financial    situation    in    Uruguay. 

Buxton  182R 

on  economic  and  industrial  conditions  in  Serb-Croat- 
Slovene  Kingdom.     Harvey  . .  . .  . .     513R 

on  the  economic  situation  of  Belgium.     Duke  . .     31SR 

on  economic  situation  of  Denmark      Turner  . .  . .     405R 

on  the  economic  situation  in  the  Netherlands  East 

Indies.     Bluett         458R 

on  efficiency  of  low-temperature   coke  in   domestic 

appliances.     Fishenden       . .  . .  . .  . .       13R 

of   Engineering   Committee   of    Empire  Motor  Fuels 

Committee;    Interim  ..  ..  ..     223R 

on  finance,  industry,  and  trade  of  Colombia.     Rhys- 
Jenkins  . .  . .  . .  . .  . .  . .     162r 

on  finance,  industry,  and  trade  of  Peru.     Manners    . .     162R 
on  financial   and  economic  conditions   of  Argentine 

Republic.     Chaikley  106R 

of  Food  Investigation  Board  for  1921  . .  . .  . .     485r 

on  fuel  for  motor  transport        . .  . .  . .  . .       13R 

of  the  Fuel   Research  Board  for  years  1920,   1921. 

Second  section :    low-temperature   carbonisation     270R 
of  the  Governors  of  the  Imperial  Mineral  Resources 

Bureau  ;   Third  annual . .  . .  . .     317R 

of  Government  Chemist  upon  work  of  Government 

laboratory  for  year  ending  Mar.  31,  1922  ..     423R 


PAGE 

Report — continued. 

of  His  Majesty's  inspectors  of  explosives  for  1921 ; 

Annual ..  ..  ..  ..  ..      202R 

of  the  Home  Office  committee  on  lighting  in  factories 

and  workshops  . .  . .  . .  . .  . .     355R 

on  industrial,  commercial,  and  economic  situation  of 

Poland.     Kimens     . .  . .  . .  . .  . .     405R 

on  industrial   and   economic  conditions  in   Norway. 

Paus 222R 

on  industrial  and  economic  situation  in  Chile.     Scott     270R 
on  the  industrial  and  economic  situation  in  Czecho- 
slovakia.    Lockhart  . .  . .  . .  . .     459r 

on    industrial    and    economic    situation    in    Greece. 

Rawlins  . .  . .  . .  . .  . .  . .     425R 

on  industries  and  commerce  of  Spain.     Charles         ..     203R 
of  Institute  of  Brewing  Committee  on  malt  analysis  . .     911a 
of  joint  committee  of  Institution  of  Gas  Engineers 
and  Society  of  British  Gas  Industries  on  life  of 
gas  meters     . .         . .         . .         . .  . .  . .     533a 

on  leather  analysis  by  committee  of  Society  of  Leather 

Trades  Chemists       . .  . .  . .  . .  . .     990a 

of  Medical  Research  Council  for  1920-1921   ..  ..       83R 

on  mines  and  quarries  ;    General ,  with  statistics, 

for  1920.     Part  III.  Output  105R 

of  Ministry  of  Health  for  1921-22  ;     Extracts  from 

annual  . .  . .  . .  . .  . .     376R 

on  peat  by  the  commission  of  inquiry  into  the  re- 
sources and  industries  of  Ireland  . .  . .  . .     356R 

on  relation  of  nitrogenous  matter  in  barley  to  brewing 

value.     Hulton         38r 

of  research  committee  on  gas  cylinders  . .  . .       37R 

of    Research    Sub-committee    of    Gas    Investigation 
Committee    of    Institution    of    Gas    Engineers ; 

Seventh 532a 

on   Sale  of  Food   and    Drugs   Acts.     Extracts   from 
annual  report  of  Ministry  of  Health  for  1920-1921, 
and  abstract  of  reports  of  public  analysts  for  1920       63r 
on  Tanganyika  Territory  for  1921         . .  . .  . .     485r 

on  trade  in  Indian  myrobalans  . .  . .  . .  . .      539R 

on  trade  and  industrial  resources  of  Newfoundland. 

Edwards         250R 

on  trade,  industry,  and  finance  of  Syria.     Satow      . .     356R 
of  Water-Power  Resources  Committee  ;  Final . .        63R 

Reports  of  Indian  Trade  Inquiry  on  cinchona  bark  and 

myrobalans    . .  . .  . .  . .  . .  . .     512R 

on  lac,  turpentine,  and  resin     . .  . .  . .  . .     203R 

of  Public  Analysts  under  Sale  of  Food  and  Drugs  Acts  ; 

Abstract  of 376R 

of    Refractory    Materials    Research    Committee    of 

Institution  of  Gas  Engineers        ..  ..      547a,  547a 

of  Secretary  of  Mines  and  of  H.M.   Chief  Inspector 

of  Mines  for  year  ending  Dec.  31,  1921     . .  . .     457R 

Research  ;  Apparatus  for  chemical .     (P)  Brutzkus  . .  87a 

in  the  brewing  industry  . .          . .          . .          . .          . .  293R 

in  the  oil  seed  industry  in  the  United  States  . .          . .  8r 

Organisation  of . .          . .          . .          . .          . .  361r 

Report  of  committee  of  Privy  Council  for  scientific 

and  industrial . .          _.          . .          . .          . .  424 R 

work  on  non-ferrous  metals        _.          . .          . .          . .  102r 

Reserves.     See  under  Printing. 

Resin  acids   of  the  conifers.     Nitrosochloride,   nitrosite, 

and  nitrosate  of  pinabietic  acid  and  abietic  acid. 

Constitution  of  abietic  acid  and  abietene    Aschan     947a 
colloids ;     Preparation    of    neutral    solid    .     (P) 

Chem.  Werkstatten  945a 

composition;  Synthetic .   (P)  Novotny  and  others       66a 

coumarone- ;    Manufacture  of : 

Hirano 826a 

(P)  Rabinovitz,  and  Ellis-Foster  Co.            . .     510a 
coumarone- ;      Manufacture    of    pale,    elastic    . 

Schneider 223a 

coumarone-  ;      Rendering ■    capable    of    emulsi- 

fication.     (P)  Riitgerswerke  A.-G.  . .  . .      323a 

-forming  capacity  of  chemical  compounds  ;    Relation 

between    constitution    and    .     Hcrzog    and 

Kreidl  771a,  988a 

Liquid .     Sandqvist  . .  . .  . .  . .     867a 

oils  ;  Manufacture  of  products  resembling  .     (P) 

Sichel  and  Stern 510a 

ointment ;    Examination  of .     Evers  and  Elsdon     520a 

oleo- ;   Nauli  gum,  a  new . .  ...  ..  ..     374r 

in  Portugal  402R 

products  ;       Manufacture     of     artificial     — — .     (P) 

Dreyfus  600a 

soap  ;    Emulsiflcation  of  in  water.     (P)  Kanim, 

and  American  Writing  Paper  Co    . .  . .  . .     475a 

Sulphate .     Sandqvist         ..  ..  ~.  ..     867a 

See  also  Rosin. 
Resinous  condensation  products  of  aldehydes  and  phenols  ; 

Manufacture  of .     (P)  Koch 7- 2a 

condensation   products   from   aromatic    hydroxycar- 

boxylic     acids ;      Manufacture     of     .     (P) 

Meister,  Lucius,  und  Bruning         . .  . .  . .     301a 

condensation    products    of    cresols    and    xylenols ; 

Manufacture  of  .     (P)   Chem.   Werke  Grcn- 

zach 948A 

condensation  products  of  formaldehyde  and  phenols  ; 

Manufacture      of      derivatives      of      .     (P) 

Bucherer        . .  . .  . .  . .  .  •     110a 

condpnsation  products  of  formaldehyde  and  urea  or 

its  derivatives.     (P)  John  183a* 


202 


JOURNAL   OF   THE    SOCIETY   OF   CHEMICAL   INDUSTRY. 


of 


of   

Lucius, 


from 


from 
und 


Resinous — cont  in  ued. 

condensation  products  ;     Manufacture   of .     (P) 

Traun's  Forschungslaboratoriuni 
condensation  products  ;    Manufacture 
hydrocarbons.     (P)  Bayer  und  Co 
condensation  products  :     Manufacture 
naphthylamines.     (P)      Meister, 
Enining 

condensation  products  ;    Manufacture  of  from 

phenolic    acids    and    aldehydes.     (P)     Meister, 
Lucius,  und  Brtining 
condensation  products  from  naphthalene  and  glycollic 

acid  ;    Manufacture  of  .     (P)   Elektrochem. 

Werke  Ges.,  and  others 
condensation    products    of   phenol   alkyl    ethers   and 

formaldehyde  ;    Manufacture  of .     (P)  Akt.- 

Ges.  fur  Anilin-Fabr. 
condensation  products  from  phenols  and    aldehydes  ; 

Manufacture  of  ■ .     (P)   Bakelite  Ges. 

condensation  products  of  phenols ;    Manufacture   of 

.     (P)  Nobel  und  Co. 

masses;     Manufacture   of .     (P)    Wenjacit   Ges. 

naphthalene-formaldehyde    condensation      products ; 

Preparation  of and  their  suitability  for  the 

varnish  industry.     Folchi 
phenol-formaldehyde  condensation  products  ;    Manu- 
facture of  .     (P)  Kulas  and  Pauling 

products  from  phenols  methylated  in  the  nucleus  ; 

Manufacture  of  .     (P)  Chem.  Fabr.  Weiler- 

ter  Meer 

substances  ;    Manufacture  of  .     (P)  Melaniid     . . 

substances  ;   Manufacture  of from  phenols.     (P) 

Fischer 

substances;    Recovery  of  from  waste  sulphurie 

acid  from  refining  tar  oils.     (P)  Deutsch-Luxem- 
burgische  Bergwerks-  und  Hutten-A.  G. 

Resins  :  Apparatus  for  determining  softening  point  of 

Constituents  of .     Zinke  and  others 

Esteriflcation  of  fossil and  production  of  neutral 

varnishes  therefrom.     Gardner  and  Holdt 

Extraction  of  from  wood  with  turpentine  oil. 

(P)  Luck        

formaldehyde- ;     Recent   research   on   .     Drum- 

mond 

I.ignin-like of  spruce  needles.     Von  Euler 

and  the  like  ;  Hardening .     (P)  Plauson's  Fors^li- 

ungsinst. 

and    the    like ;     Recovery    of    from    cellulosic 

materials.    (P)     Zellstotf-fabr.      Waldhof,     and 
Hottenroth 

Machines  for  crushing .     (P)  Lees  and  Shore     . . 

Manufacture  of  : 

(P)  Miller,  and  Barrett  Co 

(P)  Miller  and  others  .. 

(P)  Plauson  and  Vielle 

(P)  Rhodes  and  others 

(P)  Soc.  of  Chem.  Tnd.  in  Basle 

Manufacture  of  artificial  : 

(P)  Badische  Anilin-u.  Soda-Fabr. 
(P)  Pummerer 

Manufacture  of  azo  dyestuffs  from  coniferous . 

(P)  Arnot 

Manufacture    of    high-grade    from    turpentine 

and  crude  resins.     (P)  Plauson's  Forschuiu-iu-t. 

Manufacture  of  phenol-aldehyde (P)  Heinemann 

Manufacture  of  white  insoluble  artificial  .     (P) 

Plausons  Forschungsinst. 

Method  of  modifying (P)  Miles 

Oxidation  of .     (P)  Miles,  and  Ross  Chemical  Co. 

Polyglycerol (P)  Weisberg  and  others 

Kemoval  of from  wood  prior  to  manufacture  of 

cellulose.     Wenzl 

soluble  in  benzol  ;    Manufacture  of  from  crude 

benzol.     (P)      Deutsch-Luxemburgische       Berg- 
werks- u.  Hutten-A. -G.,  and  Hilpert 

Solvents  for  resins,  especially  artificial  : 

(P)  Badische  Anilin-  und  Soda-Fabrik 

(P)  Schrauth 425a, 

Spanish  export  trade  in 

synthetic  ;    Manufacture  of .     (P)  Anderson  and 

Maclaurin 

synthetic ;     New    method    for    production   of   . 

Herzog  and  Kreidl  ..         ..  ..      771a, 

Treating  gases  and  vapours  formed  by  heating . 

(P)  Webster 

Treating  and  recovering  for  re-use  which  have 

hardened.     (P)  Littleton    .. 

varnish-;    Changes  in on  heating.      Rhodes  and 

Johnson 

Rcsorcinol ;    Application  of  in   qualitative  inorganic 

analysis,     Lavoye 

Manufacture    of    .     (P)    McCormack 

ators;    Apparatus   for  use  with  for  dn 

small   quantities  of  carbon  monoxide.     (P)   Levy 
and  Davis 

Cartridge  for  charging using  a  replaceable  mass 

of    peroxides.    (P)    Ges.    t.    Verwertung    chem. 
Produkte 
for  lircmen.    Levy 

Generation   of   oxygen   gas   for  .    (P)   Levy   and 

Davis 

Production    of    gas-purifying    compositions    for    . 

(P)  Mase,  and  >i  i  Lppliancea  Co. 


3SU 
6  40  A 

38  2  A 

639  A 

676a 

94SA 

23A 

772A 
720a 

720a 

47;.  V 

772a 
261a 

22a 

335a* 
443a 

509A 

947a 

149  A 

522R 
17U 


720A 
451a* 

23a* 
23a* 

676A 

42.".  V* 
905A 

23A 

905A 


261 A 
S26A 

720A 
149A 
335a 
676a 

935a 


3S2A 
677A 

340R 

772A 
983a 
676a 

C6a 
380A 

■    ■ 


■ 
170K 


2  m 

344a 


PAGE 


Retort  furnace  for  production  of  oil  and  gas  from  oil  shales 
and    sands.     (P)    Buckingham 

The   "  fusion "    patent   rotary   .    Goodwin         M 

Retorts.     (P)  Johns  and  others 

Apparatus    for    charging    and    discharging    .     (P) 

Scott-Moncrietf 

Carbonising  .    (P)    Bonnard 

Carbonising  furnace .     (P)  Smith,  and  International 

Coal  Products  Corp 320a,  322a 

Coal-distillation    .    (P)    Roberts,    and    American 

<  uke  and  Chemical  Co. 
for  distillation  of  bituminous  materials.     (P)  Deutsche 

Petroleum   A.-G.,    and   others 
for   distillation   of   carbonaceous   materials ;    Charging 

means  for .    (P)  West  and  others 

for  distillation  of  carbonaceous  materials ;  Heating 
of  vertical  .  (P)  Wild,  and  West's  Gas  Im- 
provement Co. 
for  distillation  of  coal  and  other  carbonaceous  substances. 
(P)  Low  Temperature  Carbonisation,  Ltd.,  and 
others 
for   distillation   of  oil-shales   or  other   like   materials. 

(P)   Black  

for  distilling  shale  etc.     (P)  Webster         

Furnace  : 

(P)   Smith,  and   International   Coal   Products 

Corp 

(P)  Smith  and  others 

Furnace  for  carbonisation  of  coal : 

(P)   Eddison  and  others 

(P)   Smith,  and   International   Coal   Products 

Corp 

(P)  Smith  and  others 

Furnace   for    coal    distillation.     (P)    Smith    and 

others 

Furnace and  discharge  mechanism  therefor.     (P) 

Smith,  and  International  Coal  Products  Corp. 
for  gas  furnaces.    (P)  Horn 

Gas-heated  .     (P)  Stettiner  Chamotte-Fabr.  A.-G. 

for  gas-producing  apparatus.     (P)  Sworskiand  Rata 


for 


74U 
580A 
92A 

658a* 
«61a 


283a 


852a* 
322a* 


803A* 


851A 


537a 
742a 


455a* 
493A 

453a 

453a 
453a 

453a 

320A 
848a 
5.15  a 
535a 


and  like  apparatus  ;    Charging  means  for 

Merz  anil  McLellan,  and  others 
and   the   like ;     Discharging   or   charging   devices 

.     (P)  Marshall 

Rotary  for  distillation  of  bituminous  substances. 

(P)  Deutsche  Petroleum   A.-G..  and  others 

Rotary  for  treatment  of  carbonaceous  or  other 

material.    (P)   Marshall 

Vertical  for  carbonising  coal.    (P)   Gardner,  and 

I  shell-Porter   Co 

Vertical  for  destructive  distillation.     (P)  Burnet 

Vertical  for  distillation  of  coal,  shale,  etc.    (P) 

\Vulf  and  Herbers 
Retting  bast  fibres.    (P)  Herzog  and  Krais 

fibrous  material.    (P)  Aktiebolaget  Cellulosa    . . 
llax  and  hemp.     (P)  Ochmann 
Review  section  of  the  Journal ;    Correspondence  concerning 

discontinuance  of  the 

Rhenania  phosphate 

Rhinanthin ;    Identification   of  as   impure   aucubin. 

Bridel  and  Braecke 

Rice  ;  Bacteria  associated  with .     Fowler  and  Sen 

Impossibility  of  estimating  vitamin  content  of by 

the  yeast  method.     Fleming 
for  manufacturing  soy.    (P)  Oniki 

Parboiling,   gelatinising,   and  simularly  treating  . 

(P)  Simon,  Ltd.,  and  others 

polishings  ;  Preparation  of  extract  of for  treatment 

of  beriberi.     Wells       ..         ..         ..         ..         ..       77a 

soils.    See  under  Soils. 

Ricin  ;  Limits  of  the  agglutination  test  for .     Waites  94k,  113t 

Ricinine  ;  Constitution  of .     Spath  and  Tseheluitz       . .     390a 

Rincker  process  of  complete  gasification  of  coal  and  car- 
buration  of  the  gas.     Gregory 

Road  surfaces  ;  Production  of .    (P)  Miller 

Roasting  and  cooling  organic  substances.     (P)  Tribes,  and 

Soc.  Anon.   "  Proc.   Torrida  "         

materials  containing  oxygen  or  carbon  dioxide.    (P) 

li>  lieustein 
plant.     (P)    Nielsen 

the  products  of  reaction  of  solid  and  liquid  materials 
in  a  muffle  furnace.    (P)  Zieren 
Rocee-lta  fueiformis ;    Constitution   of    picrorocellin,    a    di- 

ketopiperazine  derivative  from .    Forster  and 

Saville 

Rockefeller  Foundation ;     Provision  and   equipment  of  a 

school  of  hygiene  by  meaus  of  gift  of 

Rocks  ;  Obtaining  in  a  soluble  state  some  of  the  constituents 

of  complex .     (P)  Jourdan 

Rodents;     Means   for   destruction   of   .    (P)    Bavaria 

Ges.  Fabrikations-  u.  Export-Geshiift 
Etontgen  rays.     See  X-rays. 

Rolls  ;  Glass-covered .    (P)  Matsuo 

Roofing  materials.     (P)  Durato  Asbestos  Flooring  Co.,  and 
Nemeth 

Roses;  Colouring  matter  of  red .     Currey 

Rosin  from  dead  pine  trees.     Sherwood 

Extracting  crude  spirits  and from  yellow  and  green 

pine  stumps.     (P)  Jordon 


800a* 

927a* 

456A 

930a 

245A* 
538A 

456a 

665a 

498A 

10A 

564R 
452R 

955A 
431a 

74A 
228a 

515A 


738A 
503a 


154a* 


622a 
1  ,6J 


128  i 


517a 
224b 

546a* 
193a 

177A 

816a 
246a 
101R 


SUBJECT  INDEX. 


203 


PAGE 


Benson    and 


(P) 


Rosin — cotUin  ued. 

extraction ;     New    solvents    for 

Bennett 
Manufacture  of  a  compound  for  hardening 

Scheel     .. 
material  for  sizing.    (P)  De  Cew,  and  Process  Engineers, 
Inc. 

Report  on 

sizing.     Siebcr 

soap  :    Preparation  of  dilute  solutions  of  .    (P) 

De  Cew  and  Marx 
See  also  Resin. 
Royal  Institution 
Royal  Photographic  Society 
Royal  Society 

Royal  Society  of  Arts 

Rubber  ;    Accelerating  vulcanisation  of 
and   FisS    Rubber  Co. 
Action  of  concentrated  sulphuric  acid  on  natural  and 

artificial  .     Kirchhof 

A  geing  of  plantation .    Stevens 

articles  ;   Manufacture  of by  moulding  rubber  gel. 

(P)  Jones 

articles  ;    Vulcanising  : 

(P)  Avres,  and  Goodrich  Co. 

(P)   Goodrich  Co.  

Cementing  leather,  leather  containing  or  rubber- 
containing  surfaces   together   or~  to   one   another. 
(P)  Peachey 
coagulated    with    acid    extracted    from    coconut    shell 
and  husk.     Stevens 

Coefficient  of  vulcanisation  of .    Martin  and  Elliott 

Colour   of  smoked   sheet  .     Stevens 

compounded  with  light  magnesium  carbonate  ;  Physical 

properties     of    .     Greider 

compounded  with  litharge  and  sulphur  ;    Comparative 

tests  with .    Stevens 

compounds  ;      Accelerator    in    vulcanising    .     (P) 

Lorentz,  and  Vanderbilt  Co. 

compounds  ;    Compounding  of  : 

(P)  Hartong,  and  Goodyear  Tire  and  Rubber  Co. 
(P)  North,  and  Goodyear  Tire  and  Rubber  Co. 

(P)  O'Brien  

compounds ;    Manufacture   of  halogenated  .     (P) 

Bedford  and  others      . . 
compounds ;     Method    of    working    quick-vulcanising 

.     (P)    Gibbons,   and   American   Rubber   Co. 

( Consumption  of 

Conversion   of   natural    or   artificial   into   other 

varieties   of  rubber  or   into   material   resembling 
gutta-percha.     (P)  Siemens  u.  Halske 

Determination   of   acetone-soluble   substance    in  . 

Lagerqvist 

Determination  of  sulphur  in  .     Ter  Meulen 

Determination   of  sulphur  in  vulcanised  . 

and  Watson 

Determination   of   as   tetrabromide.    Utz 

Determination  of  true  free  sulphur  and  true  coefficient 

of  vulcanisation  in  vulcanised  .     Kelly 

Difference  in  properties  of  from  different  trees. 

De  Vries  827a 

Dryness  of  plantation .     Stevens     . .         . .  66a,  66a 

Effect  of  acetone-soluble  constituents  of  on  the 

vulcanising  properties.     Stevens 

Effect  of  acids  in  retarding  rate  of  cure  of .    Stevens 

Effect  of  mould  on  quality  of  smoked  sheet .   Stevens 

Effect  of  proportion  of  coagulant  on  rate  of  vulcan- 
isation of .     Stevens 

Elongation  at  constant  load  as  a  measure  of  state  of 

cure  of and  relationship  to  "  slope."     Stevens 

Energy  absorbing  capacity  of  vulcanised .    Gurney 

and  Tavener 
factories  ;    Determination  of  volatile  substances  in  air 

of .     Fritzmaiin  and  Macjulevitsch 

goods  ;  Accelerated  ageing  tests  on .     Evans 

goods  ;     Preparation   of  rubberised   fabric   and   . 

(P)  Britton,  and  Griffiths  Bros,  and  Co 827A 

goods  ;    Wet  moidding  of  .     Peachey         . .  . .     200R 

Hot  vulcanisation  of .     (P)  Wheatley,  and  Victoria 

Rubber  Co 640A 

hydrocarbon  ;    Discussion  of  the  tetrabromide  method 

for  estimating .    Fisher  and  others      ..         ..     110a 


330a 

826A 

978a 
203R 
746a 


335a* 

29r,  97R,  218R 

217R 

58R, 216R 
58R,  126R,  155R,  216R 
— .    (P)  Baylor, 

"59a 


335a 
66A 


906a* 


302a* 
102a 


302a 

66A 

225T 
110A 

425A 

989a 
426a 

23a» 

67a* 
67A* 

475a 

827A 

333R 


949A 

. .'     1 83  v 

. .      235A 

Dyer 

251T.  332T 

383a 


301a 


326T 

67A 

721a 

335a 

C7A 

183A 

989a 
601A 


Improvement  and  regeneration  of .     (P  )Hug 

industry  ;  Colonial 

industry ;   Constructive  industrial  hvgiene  in  the  . 

Klein 

industry  ;  Recent  developments  of  the  plantation . 

Stevens 

La?vulinic  aldehyde  from  oxidised .     Whitby 

latex  ;  Apparatus  for  treatment  of .     (P)  Wickham, 

and   Roa,   Ltd. 
latex  ;    Application  of  hydrogen  sulphide  and  sulphur 

dioxide  direct  to .    Stevens 

latex  ;    Coagulation  of  with  "  toddy."    Stevens 

latex  ;  Experiments  on with  Boehringer's  coagulal  - 

ing  powder  (aluminium  lactate).    Spoon 
latex  ;    Function  of  calcium  chloride  in  coagulation  of 

Hevea  brasUiensis .     Vernet 

and  latex  ;   Influence  of  soil  upkeep  on .     De  Vries 

and  latex  from  individual  trees  ;    Properties  of  . 

De  Vries 
latex  in  paper-making.    Kaye      . .         . .         11R,  369R. 
latex  ;  Partial  coagulation  of .     Stevens 


21a 
135R 


506R 
475A 


383a 


772a 
475A 


827A 


948A 
827A 


806A 
475A 


Rubber — continued, 

latex  ;   Preparation  of  preservative  substances  for . 

(P)  Davidson 

latex  ;  Presence  of  quebrachitol  and  sugar  in  Hevea 

under  different  circumstances.     Spoon 

latex  ;  Preservation  of .    Stevens 

latex  ;  Products  obtained  from .     (P)  Hopkinson  . . 

latex  ;  Properties  of  dried .    Stevens 

latex  ;  Rolling  freshly  coagulated .    (P)  Soc.  Anon. 

Comp.  des  Caoutchoucs  de  Padang    . . 

latex  ;  Stearic  acid  in  Fiats  fulea .     Ultee 

latex  ;  Treatment  of : 

(P)  Bradley  and  others 
(P)  Hopkinson     . . 

(P)  Hopkinson,  and  General  Rubber  Co. 
and  latex  from  young  trees.     De  Vries 
and  like  materials  ;  Machines  for  mixing  or  masticating 

.     (P)  Bowen  and  others  . .  . .    262A*, 

-like  substances  ;  Manufacture  of : 

(P)  Plauson  

(P)  Traun's  Forschungslaboratorium   . .    336a*, 
and    like    substances ;     Vulcanisation    of    .    (P) 

Porritt,  and  North  British  Rubber  Co 

Manufacture  of .    (P)  Feldenheimer  and  others 

manufacture  in  Canada  in  1920 

Manufacture  of   plastic   bodies  resembling   vulcanised 

.    (P)  Balke  and  Leysieffer        

Manufacture  of  sponge .    (P)  Ostberg  and  others    .. 

manufacture;  Use  of  sodium  bisulphite  in .  Stevens 

material;  Manufacture  of .  •  (P)  Ostberg  and  Kenny 

material ;  Production  of  cellular .    (P)  Fulton 

inirrosectioning.     Green 

Mineral .    North 

mixing.     (P)  Speedy  and  Crouch 

mixings;  Lampblack  in .     Marckwald  and  Frank  . . 

mixtures  and  accelerators.     Rosenbaum 

Mould  on  sheet .    Treatment  of  mouldy  sheets  and 

its  effect  on  vulcanising  properties.    Stevens 

Natural  and  artificial  ageing  of  vulcanised .    Bruni 

Permanent  set  of .  "King  and  Cogswell 

plantation  industry  in  India 

Prevention  of  mould  on .     Stevens 

products,  e.g.,  gaskets,  packings,  etc. ;   Manufacture  of 

.     (P)  Benjamin 

Proofing  materials  with .    (P)  Peachey 

Production  of  liquid  agents  for  addition  to  .     (P) 

Deutsche  Peerless-Ges. 

Properties  of  raw .    Asano     . .         . .         M 

Reclaiming : 

(P)  Navone 

(P)  Traun's  Forschungslaboratorium 
Relation    between    coefficient    of    vulcanisation    and 

mechanical  properties  of  vulcanised .     De  Vries 

Rubber  Research  Association  ;  Opening  of  laboratories  of 

Rubber    and    similar    materials ;     Vulcanisation    of    . 

(P)  Twiss,  and  Dunlop  Rubber  Co. 
and  similar  substances  ;   Machines  for  washing,  nulling, 

macerating,  and  cleaning .    (P)  Berry  and  Co., 

and  Bradford 
Sodium  silicofluoride  as   mould   preventive  for  . 

Stevens  510A, 

Solubility  of  gases  in  and  in  rubber  stock,  and 

effect  of  solubility  on  penetrability.     Venable  and 

Fuwa 

Solubility  of  sulphur  in .     Venable  and  Greene 

State  of in  iis  solutions.    Bary 

stress-strain  curve  ;   Effects  of  acceleration  of  vulcanisa- 
tion on  the .     Schidrowitz  and  Bean 

substitute  :    Manufacture  of  .    <P)  Hazeltine  and 

others 
substitute  ;    Preparation  of  coloured .     (P)  Dubois 

und  Kaufmann 

Tearability  of .     Evans  . .  

Tests  on  plantation  ■  with  zinc  oxide  and  litharge 

mixings.     Stevens 

Tests  for  variability  of .     Stevens 

Thermal  effect  of  vapours  on .     Houghton 

Treating  fibrous  material  with .    (P)  Hopkinson    . . 

Treatment  of .     (P)Beatty 

Treatment  of  leather  with  .     (P)  McLennan    560A, 

Treatment  of  manufactured .     (P)  Martin 

Treatment  of  raw .     (P)  Davidson 

Under-cured  smoked  sheet .     Bishop 

Uniformity  in  rate  of  cure  of  crepe  from  "  slab  " : 

advantages  and   disadvantages  of  latter  form  of 

manufacture.    Stevens 
Volume   increase   of   compounded   under   strain. 

Green 

Vulcanisation  of : 

(P)  Cadwell.  and  Naugatuck  Chemical  Co. 

(P)  Lambert         

(P)  Mackintosh,  and  Kelly-Springfield  Tire  Co. 
(P)  Ostromislensky,  and  New  York  Belting  and 
Packing  Co. 
Vulcanisation  of and  manufacture  of  a  vulcanisation 

accelerator.     (P)  Goodyear  Tire  and  Rubber  Co.     .. 
vulcanisation.    Relation  between  chemical  and  physical 

state  of  cure  of  rubber  vulcanised  in  presence  of 

certain  organic  accelerators.    Shepard  and  Krall    . . 
Vulcanisation  of in  solution.     Boiry 

Rubus  fructicosus  leaves  ;    Presence  of  ethylidenelactic  acid 
in .    Franzen  and  Keyssner 


425A 

827A 
868a 
677A 
261A 

302A* 
948A 

827A 
721a 

s27a* 
827A 

426A* 

475A* 
383A 

559a* 

111A 

198R 

383A 

677A* 
510a 

67A 
869A 

23A 
224A 

67A 
906A 

77R 

66A 
475A 
110A 

399B 

335A 

335A 
383A 

382A 
301A 

772A 
383a 

23A 
333R 

426A 


559A* 
721A 


183A 
3*  2  A 
559A 


827A 
989A 

601A 
67A 
507R 
383A 
559A 
775A* 
383A 
510A 
183A 


67A 

110A 

559A 
772A 
111A 

989A 

149A 


949A 
640A 


204 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


PAGE 

Rubus  Idaeus  ;  Occurrence  of  ellagic  acid  in  — r-,  and  cause 

of  clouding  of  raspberry  juice.    Kunz-Krause        ..  115a 

Occurrence  of  lactic  and  succinic  acids  in  leaves  of . 

Franzen  and  Stern        ^.          ..          ..          ..          ^.  783a 

Rum  ;  German .    Mezger  and  Jesser       . .         . .         . .  73a 

Testing  by  odour  developed  on  treatment  with 

sulphuric  acid.     Schaffer        . .          . .          . .          . .  912A 

Rumania  ;  Beet  sugar  industry  in . .          . .          . .  402R 

Kaolin  deposits  in ..          ..          ..          ..          ..  571R 

Manufacture  of  calcium  cyanamide  in . .          . .  178R 

Report  on  economic  conditions  in .     Adams           ...  335r 

Rush  fibres ;  Improving .     (P)Elster       ..          ..          ..  808A 

Rushes  ;  Manufacture  of  paper  pulp  from .    Heuser  and 

Haugerod           2S8A 

as  material  for  board  making.     Uhlemann          . .         . .  665a 

Russia  ;  Adoption  of  metric  system  in . .          , .          . .  36R 

Coal-tar  dye  industry  in in  1920-21              . .          . .  179r 

Leather  industry  in  Soviet . .          . .          . .          . .  133r 

Metalliferous  mining  in in  1922         ..          ..          ..  510R 

Mineral  production  in . .         . .         . .         . .  455R 

Organisation  of  the  mining  industry  in . .          . .  484R 

Platinum  industry  in in  1922             ..          ..          ..  455R 

Production  of  mercury  in in  1921       ..          ..          ..  246R 

Production  of  pharmaceutical  chemicals  in . .  51  Or 

Trade  of  Soviet in  1921           226R 

Russian  men  of  science  ;  Appeal  on  behalf  of ..          ..  396R 

Rust-inhibiting  properties  of  substitutes  for  boiled  linseed  oil. 

Maass  and  Junk            639A 

-preventing     coatings ;      Manufacture    of     .    (P) 

Schilsky             ..          ..          ..          ..          ..          ..  510A 

-preventing  compositions.     (P)  Porter      ..          ..          ..  9S5A 

-preventing  oils ;    Manufacture  of  substitute  for  . 

(P)  Schilsky 382a 

-proofing  iron  and  steel.     (P)  Andrews     ..          ..          ...  597a* 

-resisting  steel ;  Manufacture  of -.     (P)  Gravel!       . .  822a 

Rusting  ;  Composition  for  and  method  of  preventing  metals 

from .    (P)GraveU         822a 

of  iron.    Armstrong            ..         ..         ..         ..         ...  501r 

of  iron  or  steel ;  Preventing .     (P)  Brunskill          . .  715A 

Paint  for  and  method  of  preventing  heated  metal  sur- 
faces from .     (P)  Gravell             M          ..          . .  822a 

See  also  under  Iron  and  Steel. 

s 

Saccharic  acid  ;  Methylation  of ,    Karrer  and  Peyer     . .  645A 

Saccharimeter ;   Preparation  of  chemically  pure  sucrose  for 

re-testing  the  100°-point  of  the .    Eraisy         ..  151A 

Saccharin  ;   Jilectrochemical  oxidation  of  o-toluenesulphon- 

amideto .    Fichter  and  Lowe    ..         ..         ..  195a 

Manufacture  of : 

(P)  Lowe               686A 

(P)  Soc.  Chim.  Usines  du  Rhone            . .          . .  483A 

Suggested  method  for  quantitative  separation  of  

from     p-sulphaminobenzoic     acid.     Herzog      and 

Kreidl 195A 

Saccharomyces  cereviswe  ;  Action  of  ultra-violet  rays  on . 

De  Fazi  and  De  Fazi                992A 

Saccharomyces    Marxianus    and    top -fermentation    yeasts. 

Von  Euler  and  Josephson        . .          . .          . .          „  513A 

Saccharomyces  Odessa,  n.  sp.     Schnegg  and  Oehlkers              . .  724A 
Saccharomyces  Sake" ;   Production  of  second  and  third  forms 

of  fermentation  with .     Kumagawa      ..          . .  831A 

Saccharophosphatase  ;   Occurrence  and  action  of in  the 

organism  of  the  plant.     Nemec  and  Duchon            ..  113a 
Safeguarding  of  Industries  Act              ..         ..         ..     104r,  180R 

Discussion  on ■  . .  . .  . .  24r,  71R,  120R 

Position  of  chemists  in  connexion  with  the .  Jordan  566R 

and  prices  of  British  chemicals       ..          ..          ..          ..  164r 

Working  of 44R,  82r,  115R,  135b,  147r,  148r, 

161R,   202R,   225R,   237R,   24SR,   267R,  287R,   296R, 

309R,  316R,  337R,  449R,  542R,  553R,  572R 

Working  of .    Firth     . .          . .         U          «          ...  59R 

Safflower  oil.    See  under  Oils,  Fatty. 

Saffron ;    Constituents  of  .     Winterstein  and  Tcleczky  481A 

Detection  of  colouring  matter  of in  investigations 

relating  to  laudanum  poisoning.     Guerbet         ^.  875a 
Safranines.     See  under  Azine  dyestuffs. 

Sagger  furnace  ;  Annular .     (P)  Meiser  and  Meiser  ..  756a 

St.  Helena  ;  Flax  industry  in . .         . .         . .         . .  247r 

St.  Vincent ;  Trade  of in  1920 40R 

Sal-ammoniac.     See  Ammonium  chloride. 

Sale  of  Food  and   Drugs  Act ;    Abstract  of  reports  of 

public  analysts  under . .          . .         . .  376r 

Salicylaldehyde  ;   Manufacture  of .     (P)  Loomis,  and 

Semet-Solvay  Co.     _         . .         . .         . .         . .  837a 

Salt  deposit  in  Holland           . .          . .          . .          . .          . .  314R  . 

deposits  in  Czechoslovakia         . .          . .          . .          . .  8lR 

Experiment  with  rock .     Its  effect  on  asparagus  ; 

use  for  elimination  of  weeds  and  cleaning  of  road- 
sides ;    after-effects.     Rudolfs 187A 

T  inports  of  German . .          . .          . .          . .  104r 

industry  of  Lorraine  ;   Collapse  of  the  —    . .         . .  33r 

■in-try  of  South  Africa             32u 

solutions ;     Boiling    point    of    under    varying 

pressures.     Baker  and  Waite         . .          . .          . .  87A 

See  also  Sodium  chloride. 


PAGE 
Salt-cake  ;     Apparatus    for     conducting    furnacing    oper- 
ations, e.g.,  in  manufacture  of .     (P)  Skinner     294a 

See  also  Sodium  sulphate. 
Saltpetre.    See  Potassium  nitrate. 

Salts  ;   Adsorption  of on  metal  surfaces.     Von  Euler 

and  Zimmerlund      . .  . .  . .  . .  . .     93SA 

Apparatus  for  crystallising  from  hot  solutions. 

(P)  Maschincnbau  A.-G.  Balcke 294a 

Apparatus  for  washing .     (P)  Hornung  ..  ..     846A 

basic  ;  Manufacture  of of  trivalent  and  quadriva- 
lent elements.    (P)   Ges.  f.   Verwertung   Chem. 

Prod.  174A 

Liuilibrium  of  double  decomposition  between  soluble 

and  some  of  its  applications.     Rengade    . .     629A 

Formula  for  solubility  of  highly  dissociated  — —  in 

water.     Trcadwell 13A 

General  method  for  obtaining  gels  of  inorganic  

and  its  relation  to  theories  of  the  colloidal  state. 

Charitschkov  938a 

Production  of  metallic from  ores,  slags,  residues, 

etc.     (P)  Leibu         754A 

Recovery  of from  hot  solutions.     (P)  Maschinen- 

bau  A.-G.  Balcke 708A 

Recovery  of from  solutions.     (P)  Tulloch         ..     463a 

Salvarsan  and  related  compounds  ;  Relation  between  mode 

of  synthesis  and  toxicity  of  -.     Christiansen     117A 

solution  ;    Stability  of  .     Masuccl  . .  . .     51SA 

Sulphur  content  of and  its  relation  to  mode  of 

synthesis  and  toxicity.     Christiansen    390a,  390a,  956a 

Sampling  horn  ;    Kellogg's  .     Kellogg  . .  . .     611a 

Samuela    carnerosana  ;     Examination    of    fruit    of    -. 

Black  and  Kelly 645A 

Sand-lime  brick  in  U.S.A.  in  1920 158R 

Sandalwood  oil.     See  under  Oils,  Essential. 

Sands  for  iron  founding  ;    Factors  influencing  grain  and 

bond  in ■.     Holmes      . .         . .         . .         . .     763A 

Sandstone  blocks;    Columnar  structure  in  .     Currie     241r 

Preparation  of  banded .     Bhatnagar  and  Mathur     588A 

Ulmite,  a  constituent  of  black .     Steel    . .         . .     263a 

Santal  oil.     See  under  Oils,  Essential. 

Santalol ;    Distillation  method  for  estimation  of  in 

santal  oil.     Harrison  ..         ..         ..         ..     346a 

Santonin  ;    Occurrence  of  .     Greenish  and   Pearson 

329R,   634A 

Preparation    of   from    Artemisia   species.     (P) 

Soteria  Ges.  . .         . .  . .  . .  . .     521a 

Suggested  manufacture  of in  India  ..         ..         9r 

Saponaceous   compositions ;     Manufacture   of   .     (P) 

Chadbourne     . .        . .  . .  . .  . .  . .     334A 

Saponification  ;    Ammoniacal and  industrial  manu- 
facture of  ammonia.     Garelli        . .         . .  . .     260A 

of  fatty  oils;  Problems  connected  with Langton     559r 

of  oils  and  fats.     Langton         -.  ..  ..       77R,  825A 

Sapouiu-like  substances  ;    Action  of  on  yeast  cells. 

Boas   . .  . .  . .  . .  . .  . .     679A 

-like   substances  ;     Physiological    and    foaming    pro- 
perties of  after  treatment  with  alkali  or 

with  bromine.     Sieburg  and  Bachmann  ..     267A 

Saponins.     Van  der  Haar 117a,  117a,  390a 

Differentiation  and  determination  of in  lemonade 

etc.     Kofler  564a 

Galacturonoid and  their  magnesium  and  calcium 

salts.     Saponins  from  leaves  of  Aralia  montana. 

Van  der  Haar  . .  . .  . .  . .  ...     955A 

Toxic  action  and  surface  activity  of .     Kofler    ..     434A 

Sarciuae ;    Classification   of   on  the   basis   of  their 

cultural  and  morphological  behaviour  on  various 
nutrient  media.     Boersch  ..         ..         ..         .-       28a* 

Sarcobatus    vermiculatus ;      Toxic    constituent    of    . 

Couch  . .  . .  . .  . .  . .  . .     955A 

Sativic  acid.     Reinger  . .  . .  . .  . .  . .     50SA 

Sutureja  montana  ;   Essential  of  Italian  — — .     Leone  and 

Angelescu      -.  . .  . .  . .  . .  . .     269A 

Sauerkraut ;     Influence    of    certain    factors   on    chemical 

,  composition  of .     Brunkow  and  others       ..     lloA 

Sausage  meat ;    Determination  of  added  water  in  . 

Grossfeld 74A 

Sausages  ;    Determination  of  added  water  in  meat  . 

Holzmann  and  Deiningcr  . .  . .  . .  . .     872a 

Scale  ;    Sliding  for  use  in  titrating  strong  solutions 

against  weaker  standards.     Clark  . .  . .     560r 

Scale  ;   Treating  of  liquids  containing  calcium  sulphate  to 

prevent  formation  of  during  evaporation. 

(P)  Bull,  and  A./S.  De  Norske  Saltverker  ..       44a* 

Scammony  resin  ;  Solubility  of in  ether.     Deane  and 

Edmonton     ..  ..  ..  ..  ..  ..     684  a 

Scandium  ;     Extraction    and    purification    of   from 

thorveitite      from      Madagascar.     Urbain     and 

Crbain  500A 

Scheele's  green  ;    Composition  of .     Bornemann       . .     946a 

Scheelite  ;    Treatment  of  .     La  vers     . .  . .  . .     145a 

Schiff's  solution  ;  Modified for  detection  of  aldehydes. 

Wertheim 790a 

Sehweinfurth's     green ;      Iodometric     determination     of 

copper    and    arsenic    in    .    Kolthoff    and 

Cremer  -.  ..  ..  ~  ..  ..       76a 


SUBJECT  INDEX. 


205 


PAGE 

Science  ;    Influence  of on  human  life.     Tankard     . .     221r 

ScUta  marUima  ;    Extraction  of  a  therapeutic  drug  from 

.     (P)  Rose  and  Rosenthaler  . .     878A 

Scopolamine  ;    Constitution  of .     Hess  and  Wahl     . .     683A 

Scopoline ;     Constitution   and    Hofmann   degradation   of 

.     Hess  and  Wahl 6S3A 

Scotland  ;    D'Arcy  oil  well  in .     Hackford     . .  . .     245R 

Scouring  :    Machines  for .     (P)  Leek  and  Sons,  and 

Leek  368a 

and    washing    wool    and    other    fibrous    materials ; 

Lifting  gear  of  machines  for .     (P)  Whitaker 

and  Whitaker  461A* 

Scrubbers.     (P)  Laird  and  Doherty  ..         ..         ..     575a 

Sealing  compositions.     (P)  Strauss  . .  . .         . .     720A 

Seals ;    Production  of  gas-tight  between  metals  and 

vitreous  materials.    (P)  Silica  Syndicate,   Ltd., 

and  Reynolds  ..         ..         ..         ..         ..     S51A 

Seaweed  ;  Manufacture  of  alcohol  from .     (P)  Walkey 

and  Bargate  . .  . .  . .  . .  . .        29a 

Seaweeds  ;    Arsenic  content  of  some  .     Jones         . .     684A 

Secaie  cornuiun  and  so-called  ergot  substitutes.     Tschirch     607A 

Sections  of  the  Society  ;   News  from  : 

American  4Sr,  172b,  193r,  499r 

Birmingham  . .  . .     49R,  95R,  172R,  193R,  474R.  530r 

Bristol  and  South  Wales  . .  5R,  74r,  145R,  445R,  473R 

Canada 261R 

Canadian  Pacific  122R,  192R,  213R 

Edinburgh  and  East  of  Scotland       . .  6r.  2Sr,  96r, 

147b,  472r,  529R 
Glasgow  6R,  28R,  49R.  75R,  95r,  123k,  147R.  472R,  504R 

Liverpool    ..  28r,  125R,  172r,  473r,  505R,  530r,  559r 

London       ..  27R.  124R,  147r,  194R,  241b,  500r,  531r 

Manchester  27R,  75R,  146R,  193R,  213R,  415R,  473R,  531R 

Montreal     ..  6B,  94r,  171R,  213R,  240R,  472r,  558r 

Newcastle  . .  . .  . .  . .  49R,  123r,   145R 

Nottingham  . .      49R,  123b,  147r.  214R,  471r,  529R,  559b 

Ottawa  ..  122B,  146R,  17lR,  240r,  262b,   530R 

Shawinigan  Tails  262r 

South  Wales         240R,  446R,  504R,  55SR 

Yorkshire  ..  ..  27Rt  94r,  124R,  214r,  505r 

Sedimentation    analvsis ;     Technical    .     Von    Hahn 

and  Von  Hahn         839a 

process.     (P)  Nordell  and  Kenney       . .  . .         . .       89A 

See  also  Settling. 

Seed  corn  ;    Fungicide  for  treating  .     (P)   Meister, 

Lucius,  u.  Briining  . .         ..         ..         ..  ..7,5a 

Seeds  ;   Catalase  of .     De  Vilmorin  and  Cazaubon  . .     602a 

Determination  of  germinative  capacity  of other 

than  by  germination.     Lesage     . .  . .  . .     304a 

Determination  of  vitality  of  by  a  biochemical 

method.     Nemec  and  Duchon       . .  . .  . .      264a 

Effect  of  reaction  of  nutritive  solution  on  germination 

of .     Hixon 90SA 

Influence  of  lime  on  yield  from  during  germi- 
nation period.     Maquenne  and  Cerighelii  . .     477a 
Influence  of  selenium  and  radium  on  germination  of 

.     Stoklasa 428a 

Treatment  of .     (P)  Beer 829a 

Seepages ;     Significance    of    interpretation    of    chemical 

analyses  of  .     Hackford        . .         . .        78r,  401a 

Seid  oil.     See  under  Oils,  Essential. 

Selenides  :    Manufacture  of  colloidal  as  a  remedy 

for  malignant  tumor.     (P)  Lilienfeld        . .  . .     786a 

Selenious  acid  ;    Determination  of .     Rosenheim  and 

Krause  . .  . .  . .  . .  . .  . .       13A 

Selenium  ;    Action  of  on  metabolism  of  plants  in 

presence  of  the  radioactivity  of  the  air  and  soil. 
Stoklasa  and  others  . .  . .  . .  775a 

Cathodic  deposition  of from  its  oxyacids  and  its 

analytical  determination.     Muiler  ..  ..     351a 

Constitution  of .     Pelabon  . .  . .  . .        98a 

Determination  of .     Losana  . .  . .  . .   1000a 

Influence  of  freezing  on  colloidal .     Gutbier  and 

Emslander     . .  . .  . .  . .  . .  . .     270a 

Influence  of on  germination  of  seeds.     Stoklasa     428a 

Pharmacology  of  tellurium  and  .     Joachimoglu 

and  Hirose 231a,  231a 

Recovery  of from  electrolytic  slimes  and  the  like. 

(P)  Chikashige  and  Uno 472a* 

Use  of in  production  of  colourless  glass.    Cousen 

and  Turner  . .  . .  . .  . .  . .     708A 

Selenium  compounds  ;    Action  of on  plants.     Turina     512A 

compounds ;      Preparation    of    aromatic    .     (P) 

Meister,  Lucius,  und  Briining         . .  . .  . .     6S7a 

Selenium    dioxide ;     Hydrates    of    .     Manchot    and 

Ortner  251A 

Preparation  of .     Meyer    . .         . .         . .         . .     668a 

Selenium  monochloride  ;    Action  of upon  propylene, 

butylene,  and  amylene.     Boord  and  Cope         . .     308A 
Selenium  oxybromide.     Lenher        . .  _  . .  ...     752A 

Selenium  oxychloride.     Lenher         . .  . .  . .  . .     751A 

Separation  of  columbium  and  tantalum  by  means  of 

.     Merrill  158A 

Separation  of  molvbdenum  and  tungsten  by  means 

of  .     Merrill 159A 

Use  of in  manufacture  and  treatment  of  chemical 

substances.     (P)  Lenher 85Sa 


Selenium-red  ;    Nature  of  colouring  properties  of 
Granger 


PAGE 
177A 


Selenium  tetrachloride  ;    Interaction  of  acetylpropionyl- 

methane  and  .     Morgan  and  Reeves 

Semi-coke.    See  wider  Coke. 

Semina  cardui  ;    p-Hydroxyphenylethylamine  as  the  active 
principle     of    .     Ullmann 

Separating  apparatus  ;    Classifying  and  .    (P)  Falley 

constituents    of    gaseous   mixtures.    (P)    Mazza 

fine  material ;    Apparatus  for  .    (P)  Mower  aud 

Ogilvie 

fine  material ;    Pneumatic  method  of  .     (P)  Roth 

finer  constituents  of  sedimentary  rocks.     Boswell 
fragmentary  materials  by  electric  conductivity  ;  Appar- 
atus for .     (P)  Schweitzer 

gaseous  mixtures  ;    Centrifugal   means  for  .    (P) 

Mazza 
and  grading  solid  substances.    (P)  Trottier 
liquids    of    different    density  ;     Separators    for    . 

(P)  Bateman 489a 

liquids  and  solids : 

(P)  Avrutik  

(P)  Terrisse  and  L6vy 
minerals  and  other  substances  by  means  of  differences 

in  their  frictional  resistance.     (P)  Nettleton 
miscible  liquids   by   distillation.     Dufton 
mixed    mineral    particles    of  different  specific  gravity. 

(P)  Peck 

powdered    materials   and   treating   them   with   air   or 

other  gases  or  vapours.    (P)  Reynolds  and  others 
pulverulent  material.     (P)  Ondra 
solid  particles  from  air  ;  Centrifugal  apparatus  for . 

(P)  Robinson  and  Son,  and  Robinson 
solids  of  different  specific  gravities  ;    Means  for  . 

(P)  Fletcher 

solids  from  liquids  ;   Apparatus  for .    (P)  Puryear 

of  substances  ;  Centrifugal  — — -.     (P)  Sharpies  Specialty 

Co 

substances  which  solidify  on  cooling  from  oily  substances 

by    filtration   and   use    of   volatile   solvents.    (P) 

Seidenschnur 

Separators  ;    Centrifugal  : 

(P)  Barnes  and  Morgan 
(P)   Gornoau  and  others 

(P)  Hall 

(P)  Hall,  and  De  Laval  Separator  Co. 
(P)  Holmgren 

(P)  Sturgeon         

centrifugal ;     Apparatus    for    cleaning    the    bowls    of 

.    (P)    Aktiebolaget   Separator 

centrifugal ;     Stabilising    arrangement    for    .     (P) 

Ohno 

Centrifugal    for    two    liquids.     (P)    Paul,    jun., 

and  others 

Cyclone  .     (P)  Bobbitt  

Dryers  and .     (P)  Wood 

and  evaporators  ;    Centrifugal  .     (P)  Mabee 

•   Gravitational   .     (P)    Slade,   and    Dorr   Co. 

Hvdraulic   for   minerals   and    other    solids. 

Weddell  

Hydraulic,    pneumatic,  or   hydro-pneumatic   

granular    materials.     (P)  Lupascu 

Sera  ;    Action  of  metals  on  .     Hess  and  Reitter 

and  the  like  ;  Sterilising .     (P)  Bayer  und  Co. 

Serb -Croat-Slovene    Kingdom  ;     Report    on   economic    and 

industrial  conditions  in .     Harvey 

Serum    preparations ;      Production    of    stable    .     (P) 

Cassella  und  Co. 
for  treating  diseases  of  the  thyroid  gland  ;   Preparation 

of  a .     (P)  Dreising    " 

Sesamum  crop  ;    First  forecast  of  in  India 

crop  in   India  ;    Forecast   of  

Sesqui-mustard     gas.       See      Ethylenedithioglycol      bis-p- 

chloroethyl   ether. 
Sesquiterpene  series  ;  Two  aromatic  fundamental  compounds 

of  the  .     Ruzicka   and   others 

Settling   tank.     (P)    Allen         

and  thickening  device.     (P)  Allen 
See  also  Sedimentation. 
Sewage  ;    Amount  and  rhythm  of  disappearance  of  organic 

matter  during  purification  of  by  activated 

sludge  process.     Courmont  and  others 

Application  of  the  process  of  purification  of  by 

activated  sludge  to  the  separative  system.     Cavel 
disposal.     (P)   Gavett 

disposal  plant  ;   Activated  sludge .     Townsend     . . 

effluents  ;   Treatment  of  peat  moss  for  use  in  purifying 

.     (P)    Von    Springborn 

or    the    like ;     Automatically    regulating    addition    of 

a  treating  agent  to .     (P)  Simsohn 

and  the  like  ;  Treatment  of .     (P)  Daw 

and  other  foul  waters  :    Aerating  and  circulating . 

(P)  Bolton  and  Mills 

Purification  of  .     (P)  Hartley  and  Hartley 

purification  process  ;    Activated  sludge  .     Wilson 

and  others 
Purification  of by  treatment  in  centrifugal  separa- 
tors.    (P)  Green 
purifier.    (P)     Ball  344a, 


(P) 

for 


434A 
239a 
163  a 

490a 

927a* 

173R 

847A* 

280a 

44A* 

622a* 

317a* 

531a 

207a* 
121a 

716a 

575a 
359a* 


69Sa* 
S9a 


245a 

575A 

971a 

927a* 

358a 

491a 

239a 

885a 

44a* 

316a 

44a* 
491a 
620a 
206A 


240A* 

194a 

688A 

51 3R 

7SSA 

959a 
422b 

220R 


482a 

240a 
2S1a 


229A 

644  a 
344a 


565a 


389A 

344A 


389A 


874a 
481a 


206 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL    INDUSTRY. 


for  large   quantities 


PAGE 

-continued. 

Rhythm  of  disappearance  of  ammonia  during  puri- 
fication of  by  the  activated  sludge  process. 

Courrnont  and  others  ..         ..         ..         ..     116a 

sludge ;      Dehydrating     activated     .    (P)     Peck, 

and  Dorr  Co.     ..         ..         ..         ..         ..         ..     874a 

sludge ;    Experiments  with  activated  .    Richards 

and  Sawyer       . .         . .         . .         . .         . .  27R,  62t 

sludge  ;    Treatment  of  : 

(P)  Imhoff  and  Blunk 

(P)  Thermal  Industrial  and  Chemical  (T.I.C.) 
Research  Co.,  and  Morgan 

sludge :     Withdrawing   from   septic   tanks.    (P) 

Iinhoff  and  Blunk        

Sterilising .    (P)  Baker,  and  Wallace  and  Tiernan 

Co 

and  trade  waste  sludge  ;  Manufacture  of  fuel  from  coal, 

peat,  and  the  like  and  activated .    (P)  Sinnatt 

and  Lockett 
treatment : 

(P)     Borst 

(P)  Morgan,  and  Dorr  Co 

(P)     Trent  

Treatment   of  in   underdrained   settling   basins. 

(P)  Inihoff         

Use  of  dyes  in  purifying 

water;    Apparatus  for  treatment  of  .    (P)  Lamy 

lies;   Essential-oil  industry  in 

Trade  of in  1920         

Shaking  machine ;    Laboratory 
of  fluid.    Franzen 

Shale  ;  Apparatus  for  carbonisation  of .    (P)  Hird 

Apparatus  for  distilling  .    (P)  Aims 

Apparatus  for  studying  thermal  decomposition  of  oil 

.     McKee  and  Lyder 

Apparatus  for  treating  oil .    (P)  Heimbucher 

Carbonisation  of  .     (P)  Beilby 

Chemical    composition    of    kukkersite,    the    Esthonian 

oil    .     Kogerman 

Deposits  of  oil in  Canada 

Distillation  of : 

(P)  Canadian  American  Finance  and  Trading  Co. 

(P)  Danckwardt  

(P)  Hedges  

(P)  Johns  

(P)  Johns,  and  Industrial  Process  Engineering 

Co 

(P)  Prinz  zu  Lowenstein,  and  others 
'The    "  fusion  '*    patent   rotary   retort   for   distillation 

of   oils  from  .    Goodwin 

industry  ;    Oil  in  1921         

Isolation  of  organic  substance  of  Esthonian  oil  . 

Narbutt 

Kukkersite,  the  Esthonian  oil .     Craig         ..      21 7i 

and  like  materials;    Apparatus  for  recovering  volatile 

constituents  of  .    JP)  Bronder  and  Costigan 

and  the  like  ;    Obtaining  oils,  pitch,  etc.,  from  . 

(P)  Wells  and  Wells 

oil  industry  in  Australia 

Method  for  working  oil .    (P)  Hoover  and  Brown 

oil  industry  ;    Scottish  

oil  ;  Means  for  desulphurising .     (P)  Nesfield 

oil  production  in  Australia;    Bounty  on  

oil ;    Refining .     (P)  Wells  and  Wells 

oil  residue  ;  Relation  of to  other  bitumens.  Botkin 

oil ;     Suggested   use    of   peat   briquettes   impregnated 

with 

Potash of  Illinois.     Austin  and  Parr 

Production    of    ammonium    chloride   from    .    (P) 

Christenson  and  others  ..         ..         ..      536A,  537A 

Recent    processes    for    treatment    of    oil    .     Von 

Groelinc 

Recovery  of  hydrocarbons  from  oil .  (P)  Thompson 

Retort  furnace  and  condensing  apparatus  for  pro- 
duction of  oil  and  gas  from  oil .  (P)  Bucking- 
ham 

Retorts  for  distillation  of  oil  : 

(P)    Black  

(P)  Webster  

Saturated    and    unsaturated    oils   from   .     Botkin 

tar.     See  under  Tar. 

Treating    bituminous   .     (P)    Ginet 

Treatment  of  oil ; 

(P)  Dolbear  

(P)  Fenton  

(P)  Plauson's  Forschungsiust. 

Vertical  retort  for  distillation  of  

Herbers 
Shark  liver  oil.    See  under  Oils,  Fatty. 
oil.     See  under  Oils.  Fatty, 
-skins  and  the  like  ;    Treatment  of  — 
and   Ocean  Bond  Co. 
Shea    fat.     Wolff  


76a* 
700a 


954a 
481a 


282A 

3lA 
995a* 
481a* 

834a 

2II1K 

720a 

31R 

320R 

8S0A 
802a 

210A 

45A 
024a 
456a 

799a 
61R 

6A 

975a 

702a 

92a 

803a* 

890a 

580a 

457R 

452A 
,  799a 

404A 

975a 
31R 
624A* 
571R 
701A 
569R 
975A 
281A 

266R 
1  KJA 


(P)   Wulf  and 


534A 
850a 


741a 

537A 

742a 
241a 

580a* 

47a 
5A 

284a 

456a 


(P)  Rogers, 

25a, 470a 
.  .        21A 


Sheep-dip  ;    Oxidation  of  polysulphide  during  use  of  . 

Merrill  307a 

Shellac;  Aleuritic  acid  from .     Harries  and  Nagel         ..  474a 

Comparative  examination  of  phenol-aldehyde  condensa- 
tion products  as  substitutes  for  -.    Fonrobert  558a 

Report  on  203R 

resin  ;    Separating  impurities  from  sticklac  to  obtain 

pure .     (P)  Fravmouth  and  others        ..  ..  300A 

Solubilityof in  alkalis  or  alkaline  salts.     Wolff      ..  771a 


Sherardising  apparatus.    (P)  General  Electric  Co 

Experiments  on .     McCulloch 

Shorea  robusta  ;  Fat  from  seeds  of .     Rau  and  Simousen 

Shortening  agents  ;    Manufacture  of  pulverulent .    (P) 

Dunham,  and  Dry  Oil  Products,  Ltd 
Shorts.     See  Middlings. 
u-Siaresiuolic  acid  ;    Decomposition   of  .      Zinke  and 

others 

Siberia  ;  Soda  lake  in 

Siccatives  ;  Vanadium  compounds  as for  linseed  oil  I 

Gardner 
Rhodes  and  Chen 

Sierra  Leone  ;  Trade  of in  1920     .. 

Silage ;     Determination   of   acids   in   .    Zielstorff   and 

Benirschke 
Determination  of  volatile  fatty  acids  in .     Wiegner 

and  Magasanik 
Silica  brick  ;  Comparison  of  American  and  German  quartzites 

as  raw  materials  for  manufacture  of .     Endell 

brick  ;  Grading  of .     Robinson  and  Rees 

brick  ;  Influence  of  grind  and  burn  on  the  characteristics 

of  — — .    Howe  and  Kerr 
brick  ;    Kilns  for  burning  refractory  ,  particularly 

those  with  a  lime  bond.    (PJ  Koppers         ..      548A, 

brick  ;   Manufacture  of : 

<P)  Koppers 

(P)  Rebuffat,  and  Pomilio  Bros.  Corp. 

brick;  Testing  of .     Endell    .. 

brick  ;    Variation  in  heat  treatment  of  a  in  the 

crown  of  a  tunnel  kiln.     Klein  and  Ramsdell 
crucibles  ;    Use  of  for  determination  of  potassium 

in  soils.    Jones  and  Reeder 

Determination  of in  filtered  sea-water.     Weils 

Determination  of in  nickel  ores.    Lathe 

Determination  of  small  quantities  of  in  thorium 

nitrate.    Hodgson 
Fusing  and  casting  and  obtaining  castings  there- 
from  .    (P)DeRoiboul  

gel ;  Adsorption  of  ammonia  by .    Davidheiser  and 

Patrick  

gels  impregnated  with  metallic  oxides  ;   Preparation  of 

.     (P)  Patrick 

glass  ;   Diffusion  of  hydrogen  and  helium  through . 

Williams  and  Ferguson 
Influence  of  heat  on  microscopical  properties  of in 

its  different  mineral  forms.     Robson 
Interaction  of  sodium  chloride  and  .  Clews  and 

Thompson         . .         . .         . .         . .         . .         v 

Manufacture  of  dense,  acid-resisting  articles  from  . 

(P)  Biihring 

Manufacture  of  filaments  of .    (P)  De  Roiboul 

Reversible  thermal  expansion  of  .     Houldsworth 

and  Cobb 
Silicate  rocks  ;  Detection  and  determination  of  small  quanti- 
ties of  nickel  and  cobalt  in .     Hackl 

rocks  ;  Utilisation  of especially  for  use  as  fertilisers. 

(P)  Chem.  Werke  Rhenania,  and  Messerschmitt 
Silicates  ;    Adsorption  and  dissolution  of  gases  by  . 

"  Spit-out  "  in  glazes.    Moore  and  Mellor    .. 
Extraction  of  potassium  compounds  from  .    (P) 

Glaeser 
for  glass-making  ;    Manufacture  of  alkali  in  blast 

furnaces.    (P)  Peacock  and  Waggoner 
Increasing  the  decolorising  power  of for  fatty  and 

mineral  oils,  etc.    (P)  Gebr.  Wildhagen  und  Falk   . . 

Manufacture  oi  alkali .     (P)  Deguide  . .      216a, 

Manufacture   of   dry   alkali   .  ~(P)   Dunham,   and 

Casein  Manufacturing  Co. 

Treatment  of .    (P)  Levitt 

Treatment  of  potassium-bearing .    (P)  Levitt 

Silicic  acid  ;  Centrifugal  method  for  preparing  colloidal . 

Bradfleld  

Manufacture  of  amorphous  free  from  alkali.    (P) 

Michael  und  Co. 
Manufacture  of  compounds  of  tannin,  albumin,  and, 

or  formaldehyde,  tannin,  albumin,  and  .     (P) 

Burkhardt 
Preparation  of  artificial  mineral  waters  and  beverages 

containing .     (P)  Laves 

Preparation  of  oil  emulsions  by  means  of  colloidal 

and  relationship  to  the  processes  of  tuberculosis. 

Kramer 
Preparation  of  solutions  or  solid  mixtures  containing 

basic  aluminium  acetate  or  other  aluminium  salts 

and .    (P)  Laves 

sols  ;  Preparation  of by  means  of  Hildebrand  cells. 

Kroger 
Silicious  substances  ;  Drying  and  calcining .     (P)  Spence 

and  others 
Silicon  ;   Casting  alloys  of with  metals  of  the  iron  and 

chromium  groups.    (P)  Walter 
and  the  like ;    Electrothermic  recovery  of  .    (P) 

Neumann 
-manganese-chrome  steel.    .St'c  under  Steel. 
Modification  of soluble  in  hydrofluoric  acid.    Mau- 

chot 

Modifications  of .     Manehot  and  Funk 

Modifications   of   .    Silicon   from   copper   siUcide. 

Manehot  and  Funk 
Solubility  of  in  hydrofluoric  acid.    Manehot  and 

Funk 


PAGE 
379a 

2'.e;i 

902A 
954A* 


509A 
246R 


947A 
334A 
13SR 

953A 
606A 

176A 

446R 

416A 

898A 

502a 
634A* 

416a 


25a 
980A 
272T 

284T 

177A 

250A 

812a 

985A 

897a 

700A 

756A 
142A 

709A 

443A 

151A 

710A 

294A 

755  a 

670A 
540A* 

:::_'! 

374A* 

5Sa 

500A 

327A 

119A 
565A 

825A 

687A 
140a 
174A 
IDA 
71 7  A 


2.:>ia 


900a 
251a 


SUBJECT  INDEX. 


207 


(P) 


Siliconcarbide  electrical  resistance  material  for  use  immersed 
in  oiL    (P)  Conradty 

Silicon-nitrogen  compounds  ;  Manufacture  of  .  (P)  Von 

Bichowsky 

Silk  ;  Action  of  iodine  upon .    Huebner  and  Sinha 

Artificial .    Steven 

artificial ;  Behaviour  of in  dyeing.    Biltz 

artificial;  Belgian  trade  in 

artificial ;     Composition   for   treatment   of   - 

Snyder 

artificial;  Dyeing  of  cellulose  acetate .    Brigga 

artificial ;  Ionamlnes,  a  new  class  of  dyestufls  for  cellu- 
lose acetate .     Green  and  Saunders 

Artificial in  Italy        314R, 

artificial ;  Manufacture  of : 

(P)  Dreaper 

(P)  Dreyfus  

(P)  Lance  and  Shrager  

artificial ;    Manufacture  of  ■  from  cellulose  ethers. 

(P)  Bayer  und  Co 

artificial ;    Manufacture  of  compounds  or  mixtures  of 

starch  and  starchy  matter,  and  sulphuric  acid  for  use 

in  manufacture  of  viscose  .    (P)  Courtaulds, 

Ltd.,  and  others 
artificial ;    Manufacture  of  fine  filaments  of  .    (P) 

Ver.  Glanzstoff-Fabr. 
artificial ;   Manufacture  of  glass  nozzles  for  use  in  pro- 
duction of .    (P)  Schwarzkopf 

artificial ;  Manufacture  of in  Japan 

artificial ;   Manufacture  of of  standardised  dyeing 

speed.    (P)  Mork  and  others 
artificial ;   Manufacture  of  threads  or  filaments  of . 

(P)  Dreaper 
artificial ;  Manufacture  of  threads  of and  the  like. 

i,P)  Teehnochemia  A.-G 

artificial ;    Manufacture  of  viscose  .     (P)  Bronnert 

llA*,  52A,  24SA,  24SA*,  5?4A«,  628a', 
artificial ;    Production  of  lustrous  threads  of .    (P) 

Huttinger,  and  Acme  Artificial  Silk  Co. 

artificial ;   Progress  in  manufacture  of .    Bronnert 

artificial;  Swiss  exports  of in  1021 

artificial ;  Transformations  of  cellulose  complexes  during 

manufacture  of .    Vieweg 

Black  dyeing  of .    (P)  Gebr.  Schmid 

Degutnming^raw in  presence  of  vat-dyed  silk.    (P) 

Soc.  Chem.  Ind.  in  Basle 

fibres  ;  Degumming .    (P)  Waksman 

-fibroin  ;  Composition  and  structure  of .    Abderhal- 

den 

and  other  fibres  ;  Weighting .    (P)  "Wohlgemuth   . . 

Production  of  pattern  effects  on .    (P)  Willows  and 

others     . .  . .  . .  . .  . .  . .        55A, 

Weighting which  is  to  be  dyed  black.    (P)  Schmid 

SillimaDite  refractory ;    Development  of  a  .     Greaves- 
Walker              


Silumin,  a  new  light  alloy.     Czochralski 


Silver ;    Action  of  carragheen  as  protective  colloid   with 

colloidal .    Gutbier  and  others 

alcosols  ;   Preparation  of .    (P)  Soc.  Chim.  TJsines 

du  Rh6ne  43SA, 

alloys.    (P)  Isabellenhuette  Ges. 

amalgam,  Hg3Ag3 ;  Preparation  of from  a  solution 

of  silver  nitrate  in  pyridine.    Muller  and  Hdnig 
-bearing   ores  or  residues  ;    Treatment   of   .    (P) 

Middleton  and  Lalor 
colloidal ;   Colour  of  photochlorides  and .    Schaum 

and  Marx 
Colloidal with  gelatin  as  protective  colloid.  Gutbier 

and  others 

Density  of  molten .    Hoffmann  and  Stahl 

Detection  of in  minerals  by  means  of  the  blowpipe. 

Braby 
Electrolytic  extraction  of from  ores.    (P)  Ailing- 
ham 
Electrolytic  separation  of  copper,  gold,  and  from 

alloys.     (P)  Waeser 
-gold  bullion  ;   Dusting  and  volatilisation   losses   during 

melting  of  cyanide  precipitate  and  air  refining  of 

.     Clevenger  and  others 

ion  ;  Determination  of in  presence  of  colloidal  silver. 

Gutbier  and  others 

mirrors  ;  Preparation  of .     (P)  General  Electric  Co. 

Oligodynamic  effect  of .     Doerr  and  Berger 

ores  ;  Treatment  of .     (P)  Dorfman,  and  Mclntyre 

Porcupine  Mines,  Ltd. 

-plated  work  ;    Cause  of  red  stains  on  ■ •.     Jefferson 

418E, 
Potential  of in  solutions  of  silver  nitrate  in  pyridine. 

Muller  and  Duschek 

Production,  imports,  and  exports  of in  1921 

Recovery  of  lead  and from  ores  and  metallurgical 

products.    (P)  Hey 
Recovery  of  lead  and  from  sulpiride  ores  and 

metallurgical  products.    (P)  Avery,  and  Amalga- 
mated Zinc  (De  Bavay's),  Ltd. 
Separation    of   from    argentiferous    slimes    from 

electrolytic  refining  of  copper.     Fernandez  Ladreda 
Separation  of from  mercurous  salts.    Kolthoff 

Silver-albumose  ;  Estimation  of  silver  in : 

Herzog       M 
Maue 


PAGE 

Silver  bromide  ;  Action  of  light  on .    Hartung   . .       75k,  440a 

emulsions  ;    Effect  of  colloids  on  .    Schwarz  and 

Stock 879A 

Silver  compound  of  invertase.    Von  Eulerand  Josephson     ..     911A 

compounds  ;    Photochemistry  of  .     Weigert  and 

SchoUer  120a 

compounds  ;    Preparation  of  complex  organic  ■ 

(P)  Hoffmann-La  Roche  und  Co.  . .  . .     878a 

halide    crystals    which   are   geometrically   identical ; 

Photosensitiveness  of  .     Toy  . .         . .       36a 

halides  ;    Manufacture  of  colloidal  solutions  of  . 

(P)  Riedel  A.-G 392a 

halides ;     Preparation   of   solid    colloidal    .     (P) 

Riedel  72:>a,  754a 

Silver   nitrate ;     Decomposition   potential   and    electrode 

potentials    of    in    pyridine.     Muller    and 

Duschek         674a 

Electrometric  titrations  with  .     Kolthotf  . .     649a 

solutions  ;    Use  of  oxalic  acid  in  standardising  . 

Rosenthaler  649a 

Silver   oxide ;     Catalytic   influence  of  foreign  oxides  on 

decomposition  of  .     Kendall  aud  Fucns    . .       98a 

silver    phosphate-quinine    germicide ;      Manufacture    of 

.     (P)  Crowe 79a 

Silver    salts    of    a-amino-acids ;      Complex     .      (P) 

Guggenheim,  and  Holfmann-La  Roche  Chemical 

Works  524a* 

Silver-thioglycollic  acid  ;    Manufacture  of  sodium  salt  of 

.     (P)  Chem.  Fabr.  Flora 347a 

Sintering  iron-bearing  materials.     Lloyd    . .         . .         . .     S99a 

iron  ores.     Endell  ..  ..         ..  -•         ••     549A 

pans  and  the  like  ;   Grates  for  .     (P)  Greenawalt     471a 

Siphon  apparatus.  (P)  Hickman,  and  Imperial  Trust  for 
Encouragement  of  Scientific  and  Industrial 
Research        . .  . .  . .  •  •  •  •  •  •  lA 

Size;  Preparation  of  painter's .     (P)  Sichel  and  Stern     868a 

Sizing  or  impregnating  materials.     (P)  Lutz        . .      367a,  367a 

Rosin  material  for  .     (P)  De  Cew,  and  Process 

Engineers,  Inc.         . .  . .         . .  ■  •         •  •     978a 

Skating  rinks ;    Manufacture  of  paving  compositions  for 

.    (P)  Thompson  and  Bird    ^.  . .  . .     861a 

Skins  ;    Bating .     (P)  Boehringer  Sohn  . .  . .     721a 

Deputation  of  .     (P)  Richter         . .  . .      304A,  641a 

Depilation,  neutralisation,  and  bating  of  .     (P) 

Rohm  225A 

Dyeing  .     (P)   Akt.-Ges.  f.   Anilinfabr.         o43A,  585a 

Mixture  for  depilating  .     (P)  Like  . .         . .     677a 

Prepared   for  diaphragms,   sound   plates,   and 

amplifiers  of  gramophones.     (P)  Barstow  ..     990a 

See  also  Hides  and  Pelt. 

Slag,  basic  ;  Fertilising  value  of  rock  phosphate  and . 

Robertson 4S4R 

basic  ;  Some  compounds  in  the  system  CaO-P.Os  and 

their  relation  to .     Dieckmann  and  Houdre- 

mont  . .  . .  . .  • •  - •  • •     304a 

blast-furnace  ;   Cement  from . .         . .  •  •     511R 

blast-furnace ;    Hvdraulic  setting  properties  of  basic 

.     Krebs  295a 

blast-furnace ;   Conversion  of  acid into  basic  slag 

and  cement  by  re-melting.     Griin  and  Biehl     . .     315a 
containing    titanium    dioxide;     Fusibility    of    open- 

luarth .     Comstock     . .  . .  . .         . .     178a 

Device  for  dry  granulation  of  .     (P)  Riedel,  and 

Chemical  Foundation         . .  . .  . .         -  -     17Sa 

Granulating and  separating  moisture  therefrom. 

(P)  Steen 555A 

Method  of  casting  .     (P)  Hurst,  aud  Slag  Rock 

Machine  Co.  •  •     1*2A 

Obtaining  porous  in  as  drv  a  state  as  possible. 

(P)  Schol 103a* 

Plastic    composition    from    .     (P)    Pierce,    and 

Scoria  Products  Co.  178A 

Production  of  granular .     (P)  Schumacher        . .     503a 

Production  of  highly  porous  .     (P)  Schol         ..     939a* 

Production  of  metallic  salts  from .     (P)  Leibu  . .     7o4a 

Recovery    of    metals    from    .     (P)    Welch,    and 

International  Precipitation  Co.     ..  ..  ..     59 /A 

in  steel ;   Estimation  of .     Wust  aud  Kirpach  . .     5o0a 

Utilisation  of  basic  phosphate  .     (P)  Naegell  ..     76/a 

Slags ;     Accessory    elements    of    dephosphorising    . 

Demolon        . .  . .         •  -         -  •  ■  ■  ■  ■     594a 

Extraction  of  metallic  compounds  from  blast-furnace 

and  similar  .     (P)  Collier 379a 

Recovery  of  sulphur  from  calcium  silicate  ,  e.g., 

blast-furnace  slag.     (P)  Metallbank  u.  Metallur- 

gische  Ges.  A.-G H°A 

Slate  ;    Treatment  of  for  recovery  of  potassium  and 

aluminium  salts.     (P)  Hayward  aud  others       ..     SOIa 

Slimes  ;    Dehydrating  and  recovering  values  from  . 

(P)  Parmeter  4d0a 

Smelter  gases.     See  under  Gases. 

products;  Valuation  of .     Stuckcy         ..         ..     -o.a 

Smelting   and   electrolysing   process.     (P)    Rodrian,    and 

Rodrian  Electro-Metallurgical  Co.  . .         . .     (66a 

Smoke  abatement.     Armstrong        501R 

Smoke  Abatement  Bill  316R>  337r 

Smoke  abatement ;    Coal  -■     H3R 

abatement ;    Report  of  committee  on  .     Cohen         1R 


USA 

463A 

93T 
504R 
461 A 
401R 

704A 
54A 

532R 
571R 

627A 
627A 
11A» 

S07A 


604A 
807A 

102a 

453R 

62SA 
52A 
52A 

749A» 

747A 

540A 
272R 

541A 

895A 

325A 
978A 

539A 
289A 

369A* 
499A 


35R,  219A 


729A« 
298A 

504A 

180A 

788A 

519A 

713a 

443a 

146a 
717a 

144a 

308a 
332a 
916a 

379a 

817A 

674A 
333R 

986a 


862A 
121A 


S35A 

835A 


208 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


PAGE 

Smoke — continued. 

Coal  and  — .     Cobb 132R 

prevention  ;      Report    of    British    Association    com- 
mittee on  . .  . .  . .  . .  . .     404r 

Production  of  coloured  .     (P)  V.  M.  L.  Experi- 
mental, Ltd.,  and  Lucas     ..  ..  ..  ..     838a 

Smokeless  powder.     See  under  Powder. 

Smokes;  Dilute  .     Whytlaw-Gray  and  Speakman    ..     393R 

Soap  ;    Apparatus  for  moulding  .     (P)  Phillips,  and 

American  Cotton  Oil  Co.  . .         . .         . .     903a* 

compositions  ;   Manufacture  of .     (P)  Acheson  . .     639a 

containing  water  or  their  fatty  acids  ;    Treatment  of 

— .     (P)  Henkel  und  Co.  65a 

Determination  of  glycerol  in  transparent .     Hoyt 

and  Peraberton         260a 

Determination  of  unsaponifled  fat  in .     Hagen  . .     769a 

Effect  of  an  electrolyte  on  solutions  of  pure  . 

McBain  and  Burnett  . .  . .  . .  . .     719a 

Electrolytic  production  of  .     (P)  Sandreczki     . .     770a 

Exports  of  from  Germany  ..  ..  ..     357r 

films  and  molecular  forces.     Dewar     . .  . .  . .       29R 

Manufacture  of  : 

(P)  Godfrey,  and  Fairbank  Co 474a 

<P)  Pech  425a 

Manufacture  of from  aldehyde-fatty  acids.     (P) 

Byrnes  182a 

Manufacture    of    antiseptic    and    insecticidal    ■ . 

(P)  Macpherson  and  Heys  . .  . .  . .     914a 

Manufacture  of  containing  furfural.     (P)  Asch- 

kenasi  867a 

Manufacture  of  odourless from  marine  animal  oils. 

(P)  Fischer 720A 

Obtaining from  paraffin  wax  and  the  like.     (P) 

Traun's  Forschungslaboratoriura  . .  . .  . .     425a 

powder  ;    Manufacture  of  .     (P)  imhausen       , .     182a* 

powder  ;   Self-heating  of .     Wegner  . .  . .     424a 

Removal    of    from    lime    sludge.     (P)    Krebitz 

770A,  867a*,  946a* 
Simplification  of  Goldschmidt's  titration    method  for 

determining  total  fat  in  .     Jakes     . .  . .     825a 

solution  ;    Effect  of  high  concentration  of  salt  upon 

viscosity  of .     King     . .  . .  . .  . .     147T 

solutions  ;    Constitution  of  : 

Flecker  and  Taylor 599a 

McBain  and  others      . .  . .  . .  . .     424a 

Norris 988a 

solutions  ;    Detergent  power  of .     Mees  . .  . .     260a 

solutions  ;     Effect  of  electrolytes  on  constitution  of 

as    deduced    from    electromotive    force. 

Salmon  „  ..  ,.     424a 

solutions1;    Study  of .     McBain 393R 

solutions ;     Surface    tension    of    for    different 

concentrations.      Narayan  and    Subrahnianyam     334a 

Spontaneous  heating  of .     Welter  . .  . .     508a 

-stock  ;   Separation  of  neutral  oil  from . .  . .     348R 

trade  in  Germany  . .  . .  . .  . .  . .     206r 

Soapstone  in  Ontario  . .  . .  . .  . .  . .  . .     399R 

in  U.S.A.  in  1920  482R 

Soapy     waste     waters;      Decomposition     of     .     (P) 

Bouillon         344a* 

Societe  de  Chimie  Industrielle         129R,  398R 

Society  of  British  Gas  Industries  ;    Report  of  joint  com- 
mittee of  Institution  of  Gas  Engineers  and  

on  life  of  gas  meters  . .  .  ♦  . .  . .     533a 

Society  of   Chemical   Industry  ;     Joint   meeting  of  

with  the  Institution  of  Mechanical  Engineers  . .  5r 

Representatives  of on  outside  bodies     . .  . .  5r 

Society  of  Dyers  and  Colourists    57R,  99r,  128R,  196R,  476R,  532r 
Society  of  Glass  Technology    57R,  99r,  127r,  19Gr,  241r, 

290R,  475R,  532R 
Society'of  Leather  Trades  Chemists  . .  . .  . .     448R 

committee  on  leather  analysis  ;   Report  of . .     990a 

Society  of  Public  Analysts     58R,  98R,  156r,  197R,  242r, 

475R,  560R 

Soda  ;    Caustic  .     See  Sodium  hydroxide. 

lake  in  Siberia      ..  ..  ..  ..  ..  ..     246r 

Manufacture  of in  French  Indo-China    . .  . .     246R 

Manufacture  of  saponaceous  .     (P)  Welter       ..      L82A 

Method  of  conducting  the  ammonia  process  for  manu- 
facture of .     (P)  Arnold  and  others  . .  . .     669a 

Recovery  of  ammonia  in  the  manufacture  of  

by  the  ammonia  process.     (P)  Mathieson  Alkali 

Works  328a* 

Recovery  of  from  feed  water  of  locomotives. 

(P)  Lentz 267A 

Working   up   residuary   ammonium    chloride   liquors 

from  the  manufacture  of  by  the  ammonia 

process.    (P)  Lichtenhahn,  and  Elektrizitatswerk 
Lonza  ..         ..         ..         «         .-         ..       57a 

See  also  Sodium  carbonate. 
Soddite,  a  new  radioactive  mineral.     Schoep         . .         . .     264r 

Sodium  alloys  ;    Manufacture  of  .     (P)  Schuen    and 

others  378a 

or  its  alloys  with  potassium  ;    Preparation  of  bright 

metallic  .     Bornemann  . .  . .  . .     469a 

Determination   of   small   quantities   of   in   alu- 
minium and  alumina.     Geith        ..  ..  ..      714a 

Manufacture  of by  electrolysis  of  molten  sodium 

hydroxide.     (P)  Baur        . .         . .         . .         . .     472a 


Sodium  acetate  ;    Recovery  of  alcohol  and  dry from 

ethyl  acetate.     (P)  Consortium  fur  Elektrochem. 

Ind 33a 

1    Sodium  acid  pyrophosphate  ;   Manufacture  of for  use 

in  baking  powder.     (P)  Utz  100a 

Sodium  aluminates.     Goudriaan      . .  . .  . .  . .     215a 

Sodium-aluminium  fluoride  ;    Preparation  of  almost 

free  from  silica.     (P)  Humann  und  Teisler  . .     327a 

Sodium  antimonate  ;    Use  of in  analysis.     Tomula  . .       12a 

Sodium  arsenate  ;   Effect  of on  plant  growth.  Stewart 

and  Smith     ..  ..     950A 

Sodium  behenate  solutions  ;   Constitution  of .  Flecker 

and  Taylor 599a 

Sodium  bicarbonate  ;    Manufacture  of  .     (P)  Arnold 

and  others     . .  . .  . .  . .  . .  . .     859a* 

Manufacture  of  ammonium  chloride  and  -.     (P) 

L'Air  Liquide  . .  . .  . .  . .  . .     589A 

Manufacture  of  hydrogen  and  .     (P)  Nagelvoorc, 

and  Nitrogen  Corp.  253a*,  328a* 

Preparation  of  .     Toporescn         . .  . .      325a,  6G7a 

Sodium-bismuth  thlosulphate  ;  Double  — — ,  its  prepar- 
ation and  use  in  estimation  of  potassium.  Cui- 
sinier  ..  .-.  ..  ..  ..  ..     98lA 

Sodium  bisulphate;  'Atomising  fused  masses  of .     (P) 

Zieren  632a 

Separation  of  in  the  solid  state  from  solution. 

(P)  Spinnstoff-fabr.  Zehlendorf,  and  Leuchs       . .     754a 
See  also  Nitre-cake. 

Sodium  bisulphite;    Determination  of .     Kiihl         ..     544a 

Sodium-calcium  sulphate,   basic  ;     Manufacture  of   . 

(P)  Enderli 174a 

Sodium  carbonate  ;    Causticising  in  the  presence  of 

silicate.     McKee  and  Chilton        . .         . .         . .     750a 

Electrolytic  manufacture  of  .     (P)  Chem.  Fabr. 

Griesheim-EIektron  632a 

and  fluxes  containing  it ;     Manufacture  of  by 

the  ammonia-soda  process.     (P)  Wachter  ..     175a 

and  the  like  ;    Purification  of .     (P)  Merrill         . .     632a 

Manufacture    of     by    the    ammonia    process. 

Le  Chatelier  325a 

Manufacture    of    ammonium    chloride  and from 

crude  calcium  cyanamide.     (PJ  Elektrizitatswerk 
Lonza,  and  Danneel  . .  . .  .-  . .     216a 

Manufacture  of  caustic  soda,  sulphur,  and ■.     (P) 

Rhenania  Ver.  Chem.  Fabr.,  and  Projahn         . .      752a 

Manufacture   of   hydrogen   sulphide   and   ■  from 

sodium  sulphate  and  coal.     Michler        . .  . .     536a 
Preparation  of  a  non-hygroscopic  mixture  of  potas- 
sium carbonate  and .     (P)  Welter  . .          . .      753a 

Recovery  of  from  alkaline  deposits  and    brines. 

(P)    Stevenson,    and    General  Bond  and  Share.  Co.     463A 
Reversibility    of   reaction    between    nitrogen,    carbon, 

and  .     Ingold  and  Wilson         . .  . .  . .     979a 

Separation  of  from  solutions  containing  caustic 

soda.     (P)  Courtauids,  Ltd.,  and  Jones        . .  . .     63lA 

The    ternary    system     water-sodium     sulphate-    . 

Dawkins  . .  . .  . .  . .  . .  . .     499a 

Treating  alkali  salts  and  brines  for  recovery  of  . 

(P)  Runey  and  others  . .  327a 

Sodium  carbonate-sulphate  ;    Recovery  of  from  saline 

waters.     (P)  Burnhani  ..  ..  ..  ..     502a 

Sodium    chaulmoograte ;     Preparation    of    .     Gardner     685a 

Sodium  chloride ;    Interaction  of  silica  and  .    Clews 

and    Thompson  . .  . .  . .  . .  . .     706a 

Melting  and  freezing  point  of  .     Ferguson  . .     979a 

The  quaternary  system,  ammonium,  sulphate,  ammon- 
ium chloride,  sodium  sulphate,  water,  and  . 

Rivett  369a 

solutions ;     Aeration    of    quiescent    columns    of   . 

Adeney  and  others      . .         .-         . .         . .         . .     781a 

See  also  Salt. 
Sodium    compounds ;     Manufacture    of   and    of    by- 
products.    (P)     Naef              215a 

compounds  in  U.S.A   in  1920        206r 

Sodium  cyanide ;    Bucher  process  for  fixation  of  nitrogen 

as    .     Thompson  . .         . .         . .         . .     140a 

Manufacture  of  — — .     (P)  Deutsche  Gold-  und  Silber- 

Scheide-Anstalt  501a 

Reversibility    of   reaction    between    nitrogen,    carbon, 

and   sodium   carbonate   for   preparation   of   , 

Ingold  and  Wilson        979a 

Sodium  ferrocyanide  ;  Manufacture  of .     (P)  Delaroziere     545a 

Sodium   formate ;     Transformation    of   into   sodium 

oxalate.     Matignon  and  Marchal     ..  ..  ..     811a 

Sodium  glycocholate  ;    Hemolytic  action  of .     Ponder     231a 

Sodium  gynocardate  ;   Preparation  of .     Gardner        . .     685a 

Sodium  hydrosulphite.     Heyl  and  Greer        . .  . .  . .     214a 

Sodium  hydroxide  in  Brazil 320r 

Electrolytic  cell  for  manufacture  of .     (P)  Statham, 

and  Industrial  Chemical  Co.  . .  . .  . .     380a* 

Manufacture  of  : 

(P)  Courtauids,  Ltd.,  and  Jones         ..         ..     669a 

(P)  Deguide  216a,  708a* 

Manufacture  of  pure .     (P)  Badische  Anilin  und  Soda 

Fabrik  295a 

Manufacture  of  sodium  carbonate,  sulphur,  and  . 

(P)  Rhenania  Ver.  Chem.  Fabr.,  and  Projahn         . .     752a 
Properties  of  fused  .    Wallace  and  Fleck  ..       12a 


SUBJECT  INDEX. 


209 


Sodium  hydroxide — continued. 

Solid  ■ as  absorbent  for  carbon  dioxide.     Kelley 

and  Evers 

solutions  free  from  carbon  dioxide  ;  Preparation  of : 

Cornog 

Kolthoff  

Sodium     hypochlorite     antiseptic     solution ;      Preparation 

and  stability  of  .     Schou 

solutions  ;  Red  coloration  of .    Mario 

Sodium  hyposulphite  "R";    Position  of  under  the 

Safeguarding  of  Industries  Act 
Sodium  laurate  ;   Phase  rule  equilibria  in  mixtures  of  water, 

sodium  chloride,  and  .    McBain  and  Burnett 

Sodium   nitrate  ;    Equilibrium  in  mixtures  of  ammonium 

nitrate  and .     Early  and   Lowry 

Position  and  prospects  of  Chilean  

The  system  water-magnesium  nitrate,  at  25°  C. 

Jackman  and  Browne 

Treatment    of    caliche    for    extraction    of    .    (P) 

Broadbridge  and  others 

Sodium    nitrite ;      Manufacture    of    .    (P)     Thermal 

Industrial    and    Chemical    (T.I.C.)    Research    Co., 
and  Morgan 

Manufacture    of    potassium    nitrate    and    from 

mixtures    of    sodium    nitrate    and    nitrite.    (P) 
Kydegger 

Sodium  nonoate  solutions  ;  Constitution  of  .    Flecker 

and  Taylor        

Sodium  oxalate      Transformation  of  sodium  formate  into 

.    Matignon  and  Marchal 

Sodium   palmitate  solutions  ;    Constitution   of  ,   and 

effect  of  excess  of  palmitic  acid  or  sodium  hydroxide. 
McBain  and  others 

Sodium   pentaborate  ;    Manufacture   of   ■ from   boron 

ores.    (P)  Harding  and  Jones 

Manufacture    of    direct    from    boron    ores.    (P) 

Kelly   and   Jones        

Sodium  perborate  ;    Electrolytic  preparation  of  : 

Aisgaard 

Arndt  and  Hantge 

Production  of  finely  granulated .     (P)  Welter 

Sodium  peroxide  solutions  used  in  chrome  leather  analysts ; 

Decomposition  of  ■  by  means  of  iron.     Innes 

Sodium  phenoxide  ;   Production  of  ■ in  washing  solvent 

naphtha.     Gluud  and  Schneider 

Sodium  phosphate  ;    Methyl  red  in  assay  of  .     Moerk 

and  Hughes 

Position  of  ■ under  the  Safeguarding  of  Industries 

Act  

Volumetric  determination  of .     Moerk 

Sodium  salt  of  a  hydrocarbon  monosulphonic  acid  ;  Method 

of  obtaining  a .    (P)  Cole 

Sodium  sesquicarbonate  ;  Manufacture  of .    (P)  Hirsch- 

kind,  and  California  Alkali  Co. 
Sodium  silicate  as  an  adhesive.     Furness 

and  the  like  ;  Furnace  for  producing .     (P)  Stanton 

Manufacture  of  flaky  .     (P)  Lihme,  and  Grasselli 

Chemical     Co. 

solutions  ;    Electrolysis  of  .     Spencer  and  Proud 

Use  of  ■ ■  in  sizing  paper  pulp.     Blasweiler 

Sodium   silver-thioglycollate ;     Manufacture   of   ■ 

Chem.  Fabr.  Flora 
Sodium   sulphate ;     Continuous   production   of   ■ 
Soc.  Anon.  Prod.  Chim.  Etabl.  Malctra 
Manufacture    of    hydrochloric    acid    and 

Goldschmidt  A.-G 

Preparation   of from   ammonium   sulphate   and 

sodium    chloride.     Dominik 
The  quaternary  system,  ammonium  chloride,  ammonium 

sulphate,  sodium  chloride,  water,  and .     Rivett 

Rapid    estimation    of   in    commercial    salt-cake. 

Matsui    and    Kimura 

The    ternary    system    water-sodium    carbonate-    . 

Dawkins 
See  also  Salt-cake. 

Sodium   sulphide ;     Analysis   of   commercial   .    Atkin 

Atomising  fused  masses  of .    (P)  Zieren 

Manufacture  of  chromic  oxide  and  from  sodium 

chromate.    (P)    Head 

Manufacture    of    from    sodium    sulphate.    (P) 

Anderson,  and  International  Fuel  Conservation  Co. 

Sodium  thiosulphate  ;  Manufacture  of .    (P)  Hargreaves 

and  Dunniugham 
Softening  point  of  paraffins,  waxes,  etc. ;    Apparatus  for 

determination  of  

Soil  acidity  ;    Determination  of .     Van  der  Spek 

acidity  and  its  effect  on  germinating  plants.    Lemmer- 

mann    and    Fresenius 
acidity  ;    Effects  of    lime,  leaching,  form  of  phosphate 

and  nitrogen  salt  on  plant  and  and  relation 

of  these  to  the  feeding  power  of  the  plant.     Bauer 
and  Haas 

acidity ;     Factors    in    development    of    .     Konig 

and  others        ..         ..         .. 

clay ;    Abnormalities  of  .    Comber 

colloids  ;    Influence   of  — —  on  availability  of  salts. 
Gordon    and    Starkey  ._         M         ^ 


(P) 
(P) 
(*> 


272A 
393a 

76a 
413A 

309R 

719A 

587A 
17R 

412A 

669A 

357a 

174A 
599a 
811A 

424a 

293a 

646a 

326a 
587a 
205A 

150  a 

169a 

937a 

553r 
937a 


14a 
381R 
753A 

174A 

668a 
95a 

347A 

812A 

57A 

370a 

369a 

369a 

499a 

629a 
632a 

633a* 

57A 

99A 

443A 
991A 

384a 

677A 

384A 
77T 

870A 


Soil — continued. 

Influence  of  kind  of on  nitrogen  and  ash  constituents 

of   cultivated   plants.     Blaschhaupt 
micro-organisms ;      Oxidation    of    sulphur    by    • 

Lipman  and  others 
mixture  for  forced  growing  of  potatoes  ;    Manufacture 

of  .     (P)  Husson  

moisture;   Classification  of .     Parker 

solution.     Greaves  and  Hirst 

solution  obtained  by  Lipman  pressure  method  ;  Ferrous 

sulphate  treatment  of  soil  as  influencing  the 

Lipman 

toxicity,  acidity,  and  basicity  ;    Measuring  .     Carr 

types  ;    Plant  indicators  of .     Kelley 

Soils  ;    Absorption  of  copper  from  by  potato  plants. 

Cook 

Absorption  of  water  by  colloids  of  .     Robinson 

acid  ;    Influence  of  calcium  carbonate,  oxide,  and  sul- 
phate on  soluble  soil  nutrients  of .     Robinson 

and  Bullis 

Action  of  neutral  salts  on  .     Van  der  Spek 

alkali ;    Reclamation   of   infertile   by    means   of 

gypsum   and   other  treatments.     Hibbard 
alkaline  ;  Corrosion  of  cast  iron  and  lead  pipes  in . 

Shipley  261R, 

Availability  of  organic  nitrogen  compounds  in  . 

Robinson  and  others  . .         . .         .  -         -  • 

Change  of  reaction  of  by  manuring.     Osugi  and 

Soyama 
Chemistry  of  oxidation  of  sulphur  in to  sulphuric 

acid   by   micro-organisms   and   transformation   of 

insoluble  phosphates  into  soluble  forms.     Waksroan 

and  Joffe 
Classification  of  on  basis  of  mechanical  analysis. 

Whittles  

Colorimetric    determination    of    nitrates    in    coloured 

water   extracts   of  .     Emerson 

Comparison  of  calcium  content  of  virgin  and  cultivated 

- .     Shedd  

Composition  for,  and  method  of  inoculating .    (P) 

Guy        

Cultivation  of and  nitrogen  fertilisation.    Noyes 

and  others 

Determination  of  colloidal  clay  in  .     Sokol 

Determination  of  humus  in  by  oxidation  with 

chromic  acid.     Gehring 
Effect  of  drying  on  water-soluble  constituents. 

Gustafson 

Effect  of  gypsum  on  reaction  of .    Erdman 

Effect    of    limes    containing    magnesium    and    calcium 

on  chemical  composition  of  and  upon  plant 

behaviour.    Mather 
Effect  of  tree  products  on  ammoniflcation  and  nitri- 
fication in .     Gibbs  and  Werkman 

Electrical   method   of   determining   moisture   in  . 

Deighton  . .         . .         . .         . .         .... 

Evaporation    from    under    natural    conditions. 

Helbig  and    Rossler 
Evaporation  of  water  from .    Influence  of  soil  type 

and  manurial  treatment.     Keen 
Factors  affecting  the  hydrogen  ion  concentration  of 

and  its  relation  to  plant  distribution.     Atkins 

Factors    influencing    determination    of    sulphates    in 

.    Hirst  and  Greaves 

Field   moisture   capacity  and   wilting   point   of   . 

Powers 

Flocculation  of .    Comber 

Growth  of  fungi  in .     Waksman 

Harmful  mechanical  effect  of  magnesium  salts  on . 

Von  Nostitz 
Influence  of  growing  plants  upon  oxidation  processes 

in .    Keller 

Influence  of  moisture  and  soluble  salts  on  bacterial 

activities  of .     Greaves  and  Carter 

Influence  of  reaction  of  upon  growth  of  actin- 

omycetes  causing   potato  scab.     Waksman 
Influence   of  salts   on   azoiflcation  in   .    Greaves 

and  others        . .         . .         . .         .... 

Mechanical  analysis  of  humus  .     Robinson 

Mechanical  analysis  of  and  of  ether  dispersions. 

Robinson 
Microbiological  analysis  of  as  an  index  of  soil 

fertility.     Mathematical  interpretation  of  numbers 

of  micro-organisms  in  the  soil.     Waksman 
Microbiology  of  and  possible  existence  therein  of 

invisible  germs.     Rossi 
Micro-organisms  concerned  in  oxidation  of  sulphur  in 

.    Media  used  for  isolation  of  sulphur  bacteria. 

Waksman 
Microscopical  method  for  demonstrating  fungi  and  acti- 

nomycetes  in .    Conn 

Movement  of  legume  bacteria  in  ■ .     Frazicr  and 

Fred 
Nature  of  aluminium  salts  in and  their  influence  on 

ammoniflcation  and  nitrification.     Denison 
Nitrification  and  denitriflcation  in  tropical .  Gerret- 

sen 
Occurrence  of  sulphate  reduction  in  the  deeper  layers  of 

.    Van  Wolzogen  Kiihr 

Occurrence  of  sulphides  in  Minnesota  peat .    Rost 

Oxidation  of  iron  pyrites  by  sulphur-oxidising  organisms 

in and  their  use  for  making  mineral  phosphates 

available.     Rudolfs 
Partial  sterilisation  of .    Riviere  and  Piehard 


26A 

187A 

562a 
263a 
304A 


263A 
25A 


20A 
991 A 


677A 
991A 

337a 

31  IT 

26A 
829i 

263a 

511a 

25A 

561A 

385A 

384A 
829A 

641A 

427A 
186A 

561A 
611A 
991A 

477a 

69A 

225A 

511A 

949a 

69a 

949a 

186A 

427A 

511A 

870A 

678A 
990A 


869A 
25A 

561A 

950A 

869A 

337A 

186A 

908a 
949A 


949A 
225A 


210 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 
Soils — continual. 

Phosphoric  acid  in  .     After-effects  of  phosphatic 

fertilisers,    and    dissolved    phosphate    in    ponds. 

Breest 70a 

Practical  significance  of  organic  carbon-nitrogen  ratio 

in .     Read  186a 

Presence  of  cobalt  and  nickel  in  arable .     Bertrand 

and  Mokragnatz  . .  . .  . .  . .  . .     641A 

Recent    methods    for    examination    of    .    Koenig 

and  others         . .  . .  . .  . .  . .  . .       25A 

Relation   between   clay   content   and   certain   physical 

properties  of  .     Keen  and  Raczkowski         . .       70a 

Relation  between  chlorine  index  and  nitrogen  content 

of  .     Veil  186A 

Relation    of   hydrogen-ion    concentration    in    to 

their   lime   requirement.     Johnson  . .  . .     263a 

Removal  of  mineral  plant  food  from  ■ by  drainage 

waters.     McHargue  and  Peter  . .         . .         . .     561a 

rice-;    Possible    correlation    between   fertility    of   

and  their  titration  curves.     Arrhenius        ..  ..     870A 

Significance  of  displaceable   potash   in  in  plant 

nutrition.     Von  Nostitz         678a 

Soluble  salt  content  of  field .     Millar  . .  . .     677a 

Sterilisation  of for  tomatoes.     Parker  and  others     338a 

Sulphur   oxidation   in    "  black-alkali  "   .     Rudolfs    427a 

Sulphur-oxidising  power  of .     Deruolon       . .  . .       70a 

Tentative    outline    of    plate    method    for    determining 

number   of    micro-organisms    in   .     Waksman 

and  Fred  869a 

Tyndalliueter  reading  of  dispersoids   in  .     Scales 

and  Marsh         263a 

Use  of  conventional  carbon  factor  in  estimating  organic 

matter  in .     Read  and  Ridgell  . .  . .     263a 

Use  of  silica  crucibles  for  determination  of  potassium 

in  .    Jones  and  Reeder  . .         . .         . .       25a 

Variation  of  nitrate  nitrogen  and  pn  values  of  

from  nitrogen  availability  plots.     Blair  and  Prince     870a 
Solder  for  aluminium  and  other  metals  and  alloys.    (P) 

Orrniston  258a 

Soldering  aluminium.     (P)  Lowe         . .  . .  . .  . .     379a 

aluminium  and  its  alloys.     (P)  Passalacqua        . .  . .     221a 

composition.     (P)  Traliot  ..  ..  .-  ..     555A 

flux.     (P)  Reinhold,  and  Foster-Reinhold  Laboratories     379a 
of  precious  and  other  metals.     (P)  Maurer         . .  . .     765A 

solution.     (P)  Gravell         822a 

sticks  ;    Composition  for  coating  iron .     (P)  Jones, 

and  Alloy  Welding  Processes,  Ltd.  . .  . .     866a 

Solid  matter  ;    Device  for  introducing  at  the  foot  of 

a   tall   column  of  liquid   without  causing  loss  of 

liquid.     (P)  Fahrni 658a 

matter ;    Recovery   of  from  solutions  or  semi- 
solutions.     (P)  Fest 450a 

substances  produced  by  chemical  reactions  ;   Modifying 

the    physical    characteristics   of   .    (P)   Gold- 

schmidt  A.-G.  87A 

Sols  ;   Crystalline and  amorphous  precipitates.     Haber     588A 

Solubility  of  certain  salts  in  aqueous  alcohol  and  water ; 

Formulae  for  .     Treadwell         13A 

and  decomposition  in  complex  systems.     Morey         . .     465a 
of  one  liquid  in  another  ;  Application  of  optical  method 

of    determining    .     Cheneveau  . .  . .     395A 

of  slightly  miscible  liquids  ;  Optical  method  for  determin- 
ation of  reciprocal  .     Cheneveau         . .  . .     352a 

Soluble  oils ;    Examination  of  .     Kaleta         . .  . .     800a 

Solutions  ;  Boiling  point  of  salt under  varying  pressures. 

Baker  and  Waite        87a 

Electrochemistry  of  non-aqueous  : 

Midler         674a 

Midler  and  Duschek        . .  . .  . .  . .     674A 

or  semi-solutions  ;    Recovering  solid  or  liquid  matter 

from   .     (P)   Fest  450a 

Temperature   of    vapour    arising    from    boding    saline 

.     Harker  56A 

Solvay  ;    Italian  forerunner  of .     Ravizza         . .  . .     539R 

Solvent  naphtha.     See  under  Naphtha. 

Solvents ;     Adsorption    apparatus    for    recovery    of    ■ . 

(P)  Etter,  and  General  Electric  Co 846a 

Evaporation   of  .     Wolff   and    Dorn         . .  . .     947a 

for  fats  ;  Manufacture  of .     (P)  Bohme  A.-G.       ..       22a 

Non-inflammable  mixtures  of  organic for  extraction 

of  vegetable  oils.     Sievers  and  Mclntyre  . .     333A 

Recovery   of   from   raw   material   for   smokeless 

powder  etc.      (P)  Westfalisch-Anhaltische  Spreng- 

stoff  A.-G 730A 

Recovery  of from  solutions  or  mixtures  containing 

them.     (P)    Bollmann  491a 

volatile ;     Adjustable    water-sealed    valve    for    use    in 

recovery  of .     Butler  and  others         . .  . .     107T 

volatile  ;  Apparatus  for  drying  materials  and  recovering 

.     (P)  Lewis  and  Green  927a* 

volatile  :    Explosion-proof  process  for  recovery  of . 

Dodge 239A 

volatile  ;    Use  of  cresols  in  recovery  of  .     Bex! 

and   Schwebel  399a 

Solvolysis  in  fused  salt  media.     Hicks  and  Craig       . .  . .     668A 

Soot-carbon;    Manufacture  of  from  natural  gas.     (P) 

Szarvassy     and     others           . .        . .        • .         •  ■        Ca* 
Sorel  cement.    See  under  Cement. 
Sorghum  syrup;    Manufacture  of .    (P)  Hiuton         ..     189a 


PAGE 

South  Africa  ;   Chemicals  etc.  used  by  mines  in . .  459R 

Fertiliser  works  at  Somerset  West.     Malherbe           ..  219R 

Gold  refinery  on  the  Witwatersraud         . .          . .          . .  157r 

Industrial   progress  in  . .          . .          . .          . .  lOOit 

Manufacture  of  alcohol  from  the  prickly  pear  in  536R 

Manufacture  of  natalite  in  . .          . .          . .  79r 

Motor  fuel  from  maize  in .       . .          . .          . .          . .  422R 

New   corundum   industry   in   North-eastern   Transvaal  244R 

Output  of  minerals  and  metals  in in  1921         ..  199r 

Proposed  iron  works  at  Bloemfontein       ..          ..          ..  351R 

Report  on  economic  conditions  in .     Wickham      . .  572R 

Reported  mineral  discoveries  in . ,          . .          . .  8R 

Salt  industry  of  . .          . .          . .          . .          . .  32r 

Submarine  phosphates  on  the  Agulhas  Bank      ..          ..  8r 

Sugar    production    in    Natal         264R 

Vanadinite  in  the  Transvaal.     Fergusson  and  Wagner  32r 

Whaling  industry  in  Natal,  1921           399R 

South  Australia.    See  under  Australia. 

Soxhlet  apparatus  ;  Extraction  of  small  quantities  of  liquids 

in   a    .     Handorf             612A 

Soy  ;  Rice  for  manufacturing .     (P)  Oniki         . .          . .  228a 

Soya-bean  meal.     Berczeller     . .          . .          . .          . .          . .  479a 

-bean   milk.     Remy            681a 

-bean  oil.     See  under  Oils,  Fatty. 

-bean    protein ;     Detection    of    in    cow's    milk. 

Nakayasu            . .           . .           . .           . .          . .           . .  114A 

beans  ;     Effect  of  different  reactions  on  growth  and 

nodule  formation   of  .     Bryan            . .          . .  511a 

beans  ;   Extraction  of  oil  and  proteins  from .    Satow  64a 

beans  ;    Manufacture  of  synthetic  milk  from .     (P) 

Domaschintzky             . .          . .          . .          . .          . .  432A 

beans  ;     Nitrogen    distribution    of    proteins    extracted 

by   0'2%   sodium  hydroxide  solution   from  . 

Friedemann       . .          . .          . .          . .          . .          . .  342A 

beans  ;     Preparing    odourless    and    colourless    oil    and 

flour  from .     (P)  Yamamoto  and  Mizusawa  509A,  954a* 

Spain  ;   Esparto  cellulose  in ■         402R 

Export  trade  of  in  turpentine  and  resin           . .  340R 

Metal  industry  of 133R 

Pyrites  trade  in 226a 

Report  on  industries  and  commerce  of  .    Charles  203R 

Spanish  fennel  oil.     See  under  Oils,  Essential. 

Spark  arrestors.     (P)  Morris 88A 

Sparking   alloys.     See  under   Alloys. 

Specific  gravity  of  small  amounts  of  liquid  ;    Apparatus  for 

rapid  determination  of  .     Wiedbrauch         . .  918A 

gravity  of  solutions  ;    Means  for  regulating  .     (P) 

Logan      . .          . .          M          165A* 

heats  of  air,  steam,  and  carbon  dioxide: 

Glazebrook            315A 

Womersley             . .          . .          . .          . .          . .  16SA 

heats  of  gases  for  calculations  concerned  with  technical 

heating.     Neumann     . .          . .          . .          . .          . .  586A 

Spectrographs  analysis  in  metallurgy  ;    Use  of  .     De 

Gramont             296A 

Spectrophotometer ;     Modified   form    of   double   slit   . 

Narayan             . .          . .          . ,          . .          . .          . .  350A 

Spectrophotometers.     (P)  Lewis          ..          ..          ..          ..  201a 

Spectroscopy ;    New  method  of  absorption  .    Gerlach 

and  Koch          310a 

Spelter     Australian . .          . .          . .          . .          . .  224R 

Stocks  of 336R 

Spiegeleisen  ;     Determination    of    manganese    in    by 

Knorre's     persulphate     method.     Nicolardot     and, 

others 376a 

Spinning   nozzles   for  artificial   threads.     (P)   Schulke  and 

others 367a 

nozzles  ;    Manufacture  of  from  ceramic  materials. 

(P)  Neumann  and  Kampf 983A 

viscous  fluids  in  flowing  feeding  liquids.     (P)  Elsaesser, 

and  Chemical  Foundation,  Inc.         . .          . .          . .  410a* 

Spirit;  Denatured for  medicinal  use       ..          ..          ..  51lR 

duty  ;  Effect  of on  perfumery  industry      . .          . .  224R 

Production  of  odourless  .     Sircar  and  Deb         . .  332R 

See  also  Alcohol. 

Spirits ;    Home-distilled  267R 

and  similar  products  ;    Maturing  and  improving  . 

(P)  Jarraud  and  Roussel        . .          . .          . .          . .  28A 

Spitzbergen  ;  Production  of  coal  in ■         . .          . .          . .  159R 

Spruce  needles  ;    Lignin-like  resins  and  tannins   of  . 

Von  Euler         ..          ..          ..          ..          ..          ..  171A 

pulp  ;    Aeetolysis  of .     Wise  and  Russell           . .  366a 

Spruces  ;  Investigations  on  Swedish  pines  and .     Wahl- 

berg        805A 

Squills  ;    Extraction  of  a  therapeutic  drug  from .     (P) 

Rose    and    Rosenthaler         . .          . .          . .          . .  878A 

Stagonometer.     Traube              790A 

Staining  of  printed  fabrics  ;    Some  causes  of  .    Side- 

botham             57r 

Stalagmometer.    Traube           790A 

Standardisation  of  jacketed  pans         . .          . .          . .          . .  52R 

Stannic  oxide  ;   Hydrous .     Wciser         . .          . ,          . .  979a 

Stannous  hydroxides  ;    Preparation  and  reactions  of . 

Bury  and  Partington           . .          . .          . .          . .  980a 

Stannous  oxide  ;  Preparation  and  reactions  of .     Bury 

and  Partington         980A 


SUBJECT  INDEX. 


211 


PAGE 

Staphylolysin.     Walbum        480A 

Starch. 

Pringsheim  and  Dernikos       ..  ..  ..     513a 

Pringsheim  and  Persch  . .  . .  . .     512a 

Chemistry  of .     Pringsheim  and  Persch  . .  ..     112a 

Combination  of with  iodine  : 

Von  Euler  and  Bergman       ..  ..  ..      777a 

Von  Euler  and  Landergren    . .  . .  . .     777a 

Compounds  of  iodine  with  constituents  of .    Von 

Euler  and  Myrback  . .  . .  . .  . .      429a 

-conversion  products  ;    Manufacture  of  for  use 

in  improving  dough.  (P)  Bright,  and  Stein- 
Hall  Mfg.  Co.  388A 

Dakamballi .     Goodson      . .  . .  . .  . .     512a 

Determination    of    technically    recoverable    in 

starch-pulp.     Parow  . .  . .  . .  . .     512a 

Determination    of    unsaccharifled    in    brewers' 

grains.     Weiss  . .  . .  . .  . .  . .     725a 

and,  its  estimation  in  barley  and  in  wheat.     Ling     . .     530u 

grains.     Reychler  . .  . .  . .  . .  . .     1S8a 

granule  ;    Relationships    of   a-    and    ^-poly-substance 

of  the .     Pringsheim  and  Goldstein  . .  . .      513a 

hydrolysis  by  Bac.  macerans  ;   Course  of  .     Von 

Euler  and  Svanberg  . .  . .  . .  . .     429a 

-indicator  solution.     Painter     ..  ..  ..  ..      393a 

industry  in  Canada  in  1918        ..  ..  ..  ..        80B 

industry  in  Canada  in  1920        . .  . .  . .  . .     245K 

Influence  of  amino-acids  upon  hydrolysis  of  by 

purified  pancreatic  amylase.  Sherman  and 
Caldwell  152a 

Influence  of  certain  amino-acids  upon  enzymic  hydro- 
lysis of .     Sherman  and  Walker       . .  ..      152a 

maize-  ;  Manufacture  of and  of  products  there- 
from.    (P)  Lenders,  and  Penick  and  Ford,  Ltd.     513a* 

Manufacture  of  compounds  or  mixtures  of  or 

starchy  matter  with  sulphuric  acid  for  use  in 
manufacture  of  viscose  silk,  etc.  (P)  Courtauld.-, 
Ltd.,  and  others       ..  ..  ..  ..  ..      604A 

Manufacture  of  ethers  of  : 

(P)  Lilienfeld 53A 

(P)  Young         854a 

Manufacture  of from  wheaten  flour.  (P)  Camp- 
bell       777A 

Manufacture  of  which  forms  a  paste  with  cold 

water.     (P)  Snpf 724a 

Measuring  liquefaction  of .     Olsson         . .  . .     339a 

Modifying  or  converting .     (P)  Perkins  Glue  Co.       71a* 

New  depolymerisation  product  of  .     Pictet  and 

Jahn  ..  ..  ..  ..  . .  ..     871a 

paste  ;    Manufacture  of .     (P)  Kantorowicz        . .     429a 

potato- ;    Manufacture  of  adhesives  from .     (P) 

Kantorowicz  ..  ..  ..  ..  ..      562a 

Preventing   formation   of    lumps    when   which 

swells  in  cold  water  is  dissolved.  (P)  Kantoro- 
wicz   . .  . .  . .  . .  . .  . .  . .        27a 

products  ;  Manufacture  of  soluble .     (P)  Lenders 

and  others     . .  . .  . .  . .  . .  . .     604a 

Separating  gluten  from .     (P)  Brindle,  and  Corn 

Products   Refining  Co.        . .  . .  . .  . .     777a 

Studies  on .     Irvine  and  Macdonald         . .  . .      363k 

Study  of  adsorption  in  solution  and  at  interfaces  of 
and  mechanism  of  its  action  as  an  emulsify- 
ing agent.     Clark  and  Mann         . .  . .  . .      603a 

syrup  ;     Determination  of    in  artificial  honey. 

Behre  ..  ..  ..  ..  ..  ..      429a 

syrup  in  fruit  juices,  jam,  etc. ;  Formula  for  calcu- 
lation of  .     Rinck        ..  ..  ..  ..     191a 

syrup  from  potatoes  and  maize.     Behre  and  others  . .        71a 

syrup  ;    Researches  on  maize .     Parow  . .  . .      777a 

Temperature  coefficients  in  degradation  of by 

malt  diastase  and  ptvalin.     Ernstrom     . .  . ,     429a 

wheat- ;    Characteristics  of .     Wallis      . .         . .     680a 

Starches  ;    Comparison  of  various  maize  product  as 

shown  by  Bingham- Greene  plastometer.     Porst 

and  Moskowitz         . .  . .  . .  . .  . .     265a 

Digestibility  of  raw  rice,  arrowroot,  carina,  cassava, 

taro,   tree-fern,  and  potato  .     Langworthy 

and  Deuel,  jun.        ..  ..  ..  ..  ..     606a 

Steam  ;    Apparatus  for  removing  water,  dust,  etc.,  from 

.     (P)  Loss,  and  Grove  A.-G.  ..  ..     971a* 

Continuous  decomposition  of by  passage  through 

strongly  heated  fuel  in  a  producer.     (P)  Lengers- 

dorff 131A 

exhaust-  ;  Purifying  and  condensing and  purify- 
ing the  condensate.     (P)  Schull    . .  . .  . .      738a* 

Generation  of  by  electricity.     Kaelin  . .        94r,  412r 

Generation    and    superheating    of    .     (P)    Lam- 

plough  795a 

-jacketed  pans  ;   Standardisation  of . .  . .       52b 

Means  for  treating to  reduce  or  prevent  corrosion 

of  apparatus  or  plant  in  which  it  is  used.  (P) 
Bailey,  and  Metropolitan  Vicker3  Electrical  Co.     358a 

oven  ;     Modified    for    lecture    experiments    on 

steaming  of  cotton  fabrics.     Perkin         . .  . .     628a 

-pipe  coverings  ;    Determination  of  efficiency  of * 

at  high  temperatures.     Jakeman  .,  ..      697a 

power.     See  under  Power. 

Specific  heat  of  : 

Glazebrook        ».  . .  . .  . .  . .     315a 

Womersley         . .  . .  ».  . .  . .     163a 

turbine  ;    High-pressure . .  . .  . .  . .      483r 

Use  of  heated for  heating  melting  pans  and  stills. 

Voss 87a 


_  PAGE 

Stearic  acid  in  latex  from  Ficus  fulva.     TJItee       ..  ..  948a 

Separation  of  palmitic  acid  and .     Andre  ..  639a 

Stearine  ;    Artificial  petroleum  from .     Kobayashi  ..  242a 

Imports  of into  Japan       . .  . .  . .  . .  515R 

Steel  and  its  alloys  ;   Carburising .     (P)  Bertschy    . .     298a 

alloys  ;     Determination  of   cobalt   in  .     Willard 

and  Hall 999A 

alloys  containing  chromium,  nickel,  and  silicon.     (P) 

Poldihiitte  Tiegelguss-stahlfabrik  . .  . .     470a 

and  its  alloys  ;    Heat  treatment  of .     (P)  Mordey     379a* 

alloys  ;    Manufacture  of : 

(P)  Clamecy,  and  Sturtevant  Co.      ..  ..     821a 

(P)  Hamilton  and  Evans       . .  . .  . .     220a 

(P)  Johnson      . .  . .  . .  . .  . .      637a 

(P)  McConnell,    and    Interstate    Iron    and 

Steel  Co 637a 

(P)  Sargent  and  Weitzenkorn  ..  ..     106a 

alloys;  Non-corrosive- .     (P)  Belleville   ..  ..     763a 

analysis  ;    Solid  sodium  hydroxide  as  absorbent  for 

carbon  dioxide  in .     Kelley  and  Evers       . .        60a 

Apparatus  for  determination  of  carbon  in  .     (P) 

Malmberg  and  Holstrom     . .  . .  . .  . .     763a 

Arrangement  of  the  iron  atoms  in  austenitic  . 

Wever  . .  . .  . .  . .  . ,  . .      550a 

Black  fractures  in  carbon  tool .     Green  . .  . .      713a 

boiler  plate  after  cold  work  at  blue  heat.     French  . .      712a 
boiler  plate  ;    Effect  of  rate  of   loading  on  tensile 

properties  of  .     French  . .  . .  . .     759a 

castings;    Manufacture  of  .     (P)  Hanemann     ..      422a 

Cementation  of  .     (P)  Cammell,  Laird,  and  Co., 

and  others     . .  . .  . .  . .  . .  . .     821a 

chromium- ;    Characteristic    curves    of    .     Jung- 

bluth  817a 

chromium- ;    Heat  treatment  of  .     Maurer  and 

Hohage  . .  . .  . .  . .  . .  . .     504a 

Chromium -nickel  for  manufacture  of  artificial 

internal    members    of    the    human    body.     (P) 

Hauptmeyer  ..  ..  ..  ..  ..      637a 

Chromium for  permanent  magnets.     Gumlich  . .     143a 

Coating with  lead,  with  or  without  other  metals. 

(P)  Leadizing  Co 636a 

Colorimetric    determination   of    manganese   in   — — , 

Heslinga         ..  ..  ..  ..  ..  ..      635a 

Colorimetric    determination    of    vanadium    in    . 

Kropf  . .  . .  . .  . .  . .  . .     594a 

Composition   for   use   in    case-hardening,    hardening, 

and  tempering  of .     (P)  Dickins        . .  . .     863a 

converter  ;    Temperature  of  molten  metal  charged  to 

the  .     Cornu-Thenard  . .  . .  . .      218a 

Co-precipitation    of    vanadic    acid    with    ammonium 

phosphomolybdate    in    analysis    of    .     Cain 

and  Hostetter  . .  . .  . .  . .  . .     272a 

Corrosion  of .     Hadfleld     . .  . .  . .  . .     761a 

Covering    with    a    rust-resisting    coating.     (P) 

Schmidding  . .  . .  . .  . .  . .      764a 

Crystal  structure  of  .     Westgren  and  Phragmen     758a 

Decarburisation   of   carbon   ■ by   hydrogen   and 

related  phenomena.     Austin          ..  ..  419a 

Delayed   crystallisation  in   carbon  ■ :    formation 

of  pearlite,  troostite,  and  martensite.     Hallimond     418a 

Desulphurising  : 

(P)  Estabrooke  and  Jackson  . .  . .     764a 

(P)  Koppers 470a,  763a 

Determination  of  alkali  carbonates  and  hydroxide  in 

presence  of  phenolphthalein,  e.g.,  in  determina- 
tion of  carbon  in .     Bonnier  . .  . .  . .   1000a 

Determination  of  carbon  in .     Travers  . .  . .      376a 

Determination  of  carbon  in by  the  Corlels  appar- 
atus.    Batta  and  Thyssen  ..  ..  ..     376a 

Determination   of   chromium   in   .     Losana   and 

Carozzi  . .  . .  . .  . .  . .  . .      594a 

Determination    of    chromium    and    nickel    in    . 

Simion  . .  . .  . .  . .  . .  . .     504a 

Determination  of  cobalt  in .     Eder  . .  . .     467a 

Determination  of  gases  in .     Vita  . .  . .     330a 

Determination  of  nickel  in .     Rubricius  . .  . .     144a 

Determination  of  nitrogen  in .     Hurum  and  Fay     218a 

Determination  of  nitrogen  in  and  absorption  of 

nitrogen  by  steel  in  smelting  processes.     Wiist 

and  Duhr       . .  . .  . .  . .  . .  . .      467a 

Determination  of  slag  in .     Wiist  and  Kirpach  . .     550a 

Determination  of  sulphur  in  : 

Marinot  ..  ..  ..  ..  ..     178a 

Ter  Meulen        218a 

Determination    of  titanium  in    .     Losana    and 

Carozzi  . .  . .  . .  . .  . .  . .     940a 

Determination  of  vanadium  in  .     Misson  ..     420a 

Diminution  of  lag  at  Arl  in through  deformation. 

Whiteley        758a 

Direct  manufacture  of .     (P)  Basset        . .  . .      763a 

Dissociation  spectra  of  special .     De  Gramont  . .     296a 

Effect  of  longitudinal  stress  on  electrical  resistance  of 

carbon .     Fukuta         . .  . .  . .  . .      759a 

Effect  of  quality  of  ■ ■  on  case-carburising  results. 

McQuaid  and  Ehn    . .  . .  . .  . .  . .     330a 

Effect  of  sulphur  on  rivet .     Thum  . .  . .     550a 

Effect  of  temperature  on  the  properties  of .     Lea     595a 

Effect  of  time  in  reheating  quenched  medium  carbon 

below   the   critical   range.     Hayward    and 

others  . .  . .  . .  . .         . .  . .     330a 

Electric  induction  furnaces  for  smelting  and  refining 

.     (P)  Frick 673a 

o2 


212 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Steel — continued. 
Endurance  of  - 
juu. 


-  under  repeated  stresses.     McAdam, 


especially   alloy   steel  ;     Process  for  hardening  

(P)    Deutsch-Luxemburglsche    Bergwerks-    und 

llurten-A.-G.,  and  Schulz  .. 
Experiments  on  repeated  impact  tests  on  mild  — 

Guillet  

Flow  of at  a  low  red  heat.     Dickenson  . . 

Formation  of  globular  pearlite  in .     Whiteley 

furnace  practice  ;     British  Siemens  .     Clements 

Graphitisation  in  a  carbon  tool  .     Rawdon  and 

Epstein 

Gases  in .     Maurer 

Hardening  of .     PouchoIIe 

Heat   of  transformation   of  austenite   to   martensite 

and  of  martensite  to  pearlite  in  .     Yaniada 

Heat  treatment  of .     (P)  Kubasta 

high-speed  ;    Hardness  of .     D'Arcanibal 

Manufacture  of  .     Weitzenkorn     .. 

Manufacture    and    treatment    of    . 


high-speed  ; 

high-speed  ; 

Ogilvie 

high-speed  ; 


Shrinkage  and  expansion  of  —       due  to 

heat  treatment.     Grossmann 
Honda's    conception    of    the    Al    transformation    and 

quenching  of  .     Chikashige 

Industry  of  Sweden  in  1921  

Influence    of    difference    in    height    of,    and    distance 

between,    the   producer    and   the    furnace    in    the 

manufacture  of  by  the  Martin  open-hearth 

process.     Matirer  and  Schrodter 
Influence    of    dissolved    oxides    on    carbonising    and 

hardening  qualities  of  .     Ehn 

Influence    of    molecular    concentration    on    immersion 

tests  on  corrosion  of  .     Strickland 

Influence  of  velocity  of  cooling  on  the  position  of  the 

critical  points  and  structure  of  -.     Schneider 

ingots  ;    Casting  of  : 

(P)  Coates  

(P)  Perry,  and  Valley  Mould  and  Iron  Corp. 
(P)  Valley  Mould  and  Iron  Corp. 

Inner  structure  of  the  pearlite  grain  in .     Belaiew 

Intercrystalline  cracking  of  mild in  salt  solutions. 

Jones 

Intercrystalline  fracture  in  .     Hanson 

and  the  like  ;    Annealing  and  hardening  high  and  low 

carbon  ■ .    (P)  Parr  and  others 

Magnetic  researches  on  nitrogenised  .     Eido 

Magnetic  study  of  heat-treated  carbon .     Campbell 

and  Johnson 
Manganese  economy  in  manufacture  of  by  the 

basic  .converter  and  open-hearth  processes.     Eichel 
manganese- ;    Heat  treatment   of  .     (P)   Nichols, 

and  American  Manganese  Steel  Co. 
manganese- ;     Recovery    of    .     (P)    Nichols,    and 

American  Manganese  Steel  Co. 

Manufacture  of  : 

(P)  Basset  

(P)  Beneker  and  others 

(P)  Bradley  

(P)  Hadfleld  

(P)  Hamilton  and  Evans 

(P)  Rouse  

Manufacture  of  basic  .     (P)  Usines  M^tallurgiques 

de  la  Basse-Loire         . .  . .  . .  . .      714A, 

Manufacture  of in  blast  furnaces  fired  with  liquid 

fuel.     (P)     Von  Thai  

Manufacture  of  compositions  for  case-hardening  . 

(P)  Goskar  and  Hitch  

Manufacture  of in  Martin  furnaces  from  material 

rich  in  phosphorus  and  sulphur.     (P)  Woltron    . . 
Manufacture    of    nickel    alloy    for   forging   .    (P) 

Burrows 
Manufacture   of   open-hearth    .     (P)    Ryding   and 

Allen 

Manufacture  of  refined direct  from  oxidised  titanic 

iron.     (P)  Loke 

Manufacture  of  rust-resisting .     (P)  Gravell 

Manufacture  of  — —  from  scrap  in  acid-hearth  furnaces. 

(P)  Brandl        

Martensite-0- iron-ferrous  oxide-gas  equilibrium  in    . 

Reinders  and  Van  Groningen 
Mechanism  of  failure  of  ■ upon  and  after  hardening. 

Green 

Micros truct lire  of  cast .     Portevin 

Mushet .     D'Arcambal 

nickel-  ;  Characteristic  curves  of  .     Jungbluth 

nickel-chromium- ;  Change  in  volume  of  air-hardening 

during  heat  treatment.     Aitchison  and  Wood- 
vine 
nickel-chromium-  ;      Heat     treatment     of     .     (P) 

Strauss 

nickel-  ;    Thermal  conductivity  of  .     Jakob 

Nitrogenisation   of  by   sodium   nitrate.     Benson 

ordnance-  ;     Effect    of    sulphur    and    oxides    in   . 

Priestley 
Penetration  of  hardening  effect  due  to  quenching  in 

.     ('harpy  and  Grenet 

Pickling  in  acid  baths.     (P)  Vogel  ..      258a, 

plant  in  Brazil ;    New  electric  ■ 

plates  containing  zirconium  and  other  elements  ;   Manu- 
facture   and    properties    of    .     Burgess    and 

Woodward 
Plating  metal  objects  with  .     (PJ  Hanemann 


60A 


19A 

104a 
759a 
419a 
550A 

899a 

16a 

255A 

419A 
332a 
104a 
331A 

760a 

861A 

940A 
133R 


550A 

419A 

593A 

940A 

180A* 
902a* 
865A* 
419A 

104A 
104A 

715A 

551A 

759A 
178  A 
821a 

767A* 

597A* 

900a 

673A 

332A* 

220A 

822  a* 

821a 

221A 

672A 

19A 

763A 

715A 

422A* 
822A 

470A 

59A 

104A 

418A 

60A 

817A 


221A 
735A 

760A 

330A 

467A 
505A 
102R 


760A 
469A 


Steel — continued. 

Preparation    of   for   lead    and   tin    coating.     (P) 

Maddy  470a 

Preventing  rusting  or  oxidation  of .     (P)  Brunskill     715a 

process  ;    Talbot  in  comparison  with  other  open- 
hearth  refining  processes.     Puppe  . .  . .     143a 
Protection   against   cementation   of  by   a   direct 

application    of    a    paint    coating.     Galibourg    and 

Ballay 419a 

Protective  coating  for  ■ .     (P)  Edison         ..  ..     332a 

Rapid  determination   of  elongation  and  resistance  to 

shock  of by  bending  of  a  notched  bar.     Janniu     759A 

Resistance  of    to    tension    or    bending   between 

ordinary  temperatures  and  visible  redness.     Seigle     330a 

Rust-proofing  .     (P)  Andrews         597a* 

Scaling  of  heated .     Dickenson         759a 

sheets ;     Coating   with   tin.    (P)    Peacock,    and 

Wheeling  Steel  and  Iron  Co 19a 

silicon-  ;    Ingot  defects  in  open-hearth  and  their 

prevention.     Pacher  . .  . .  . .  . .     375A 

silicon -manganese -chrome-  ;    Manufacture  of  : 

(P)  Avesta  Jernverks  Aktiebolag         . .  . .     332a 

(P)  Gustafson  and  others         . .         . .         . .     715a 

silicon-  ;   Refining .     (P)  General  Electric  Co.       . .     763a 

Selective  case- car burising  of .     Wood  and  McMullan     550a 

or   steel    allovs  ;     Manufacture    of    unstainable    ■ . 

(P)  Aitchison 985A 

Stepped    Al    transformation    in    carbon    during 

rapid    cooling.     Honda    and    Kikuta         . .  . .     418a 

Thermal    expansion    of    stainless    .     Souder    and 

Hidnert  762a 

tool- ;   Failure  of through  the  action  of  internal 

stress  irregularities.     Greenwood       . .  . .  . .     105A 

Transformation  of  cementite  in at  210°  C.     Tam- 

mann      . .  . .  . .  . .  . .  . .  . .     593A 

tungsten-  ;    Manufacture  of  .     Weitzenkorn         . .     331A 

wire ;    Solution   for  use  in  drawing  .     (P)  Vogel    863A 

wire  ;  Solution  for  use  in  drawing ,  also  for  pickling. 

(P)   Vogel  863A 

work;    Preserving  against  corrosion.     (P)  Howse     554a 

works  materials  ;    Determination  of  vanadium  in . 

Briefs 594A 

World's  production  of  electric . .  . .  . .     538r 

X-ray  data  on  martensite  formed  spontaneously  from 

austenite  in .     Bain        . .  . .  . .  . .     330a 

5-ray  studies  on  crystal  structure  of .     Westgren 

and  Phragmen  . .  . .  . .  . .  . .     418A 

Steels  ;    Acid  open-hearth  process  for  manufacture  of  gun- 

and  fine .     Barba  and  Howe     . .  . .  . .  143a 

Annealing  hypoeutectoid .     Kjerrman        . .  . .  467a 

Chromium and  their  recent  applications.     Guillet  760a 

chromium-  ;    Resistance  to  corrosion  of  various  types 

of  .    Rawdon  and    Krynitsky  . .         . .  713a 

chromium- ;  Spontaneous  passivity  of .     Tammann  376a 

Heat  treatment  of  special  • .     Maurer  and  Hohage  504a 

High-temperature  tests  on  special  .     Edert         . .  593a 

Influence  of  velocity  of  solidification  on  double-carbide 

■ .     Oberhoffer        81 7  A 

Limits  of  solubility  of  carbon  in  ternary  : 

The    system    chromium-iron- carbon.     Daeves  16a 

The     system     tungsten-iron-carbon.     Daeves  17a 
nickel- chromium- ;  Rapid  determination  of  chromium 

in  .     Hlld  671A 

Structure  of from  the  standpoint  of  colloid  chem- 
istry.    Lantsberry       . .  . .  . .  . .  . .  409r 

Utilisation  of  thermo-electric  force  of  contact  to  identify 

Bome  .     Galibourg  218a 

Stellar  chemistry.     Dingle         283r 

Stellite  ;    Thermal  expansion  of .     Souder  and  Hidnert  762a 

Sterigmatocystis    nigra ;     Toxicity    of   various    nitrophenols 

towards .     Plantefol        ..  ..  ..  ..  155A 

Sterilising  air.     (P)  Wolff  835a* 

articles.     (P)  Freudenberger  . .  . .  . .  . .  433a 

and  cleaning  textile  fabrics  and  other  materials  ;    Pre- 
parations for  .     (P)  Maclennan  ..  ..  855a 

and  filling  of  receptacles  with  substances  such  as  milk 

or  alimentary  liquids.     (P)  Nielsen  . .  834A* 

food  or  other  substances  ;    Cooking  and in  sealed 

containers.    (P)    Fooks         30a* 

liquids  ;  Apparatus  for .    (P)  Miilertz         . .         . .  31a* 

process.    (PJ  Crowther       ..         ..         ..         ..         ..  433a 

Stills: 

(P)   Bologa  927A* 

(P)    Jewell  797A* 

(P)    Oliver  574a 

(P)  Power  Specialty  Co 284a 

Apparatus    for    effecting    circulation    and    maintaining 

clean  surfaces  in  .     (P)  Smith  . .  . .  165A 

for   continuous   distillation   of   coal   tar,    mineral   oils 

and  the  like.     (P)  Yeadon 703a 

for  crude  oil.     (P)  Mather  284a 

Oil .     (P)  Isom  and  others     . .  . .  . .  . .  975a 

Setting  for and  similar  purposes.     (P)  Mather      ..  969a 

Tar- distillation  and  like .     (P)  Benn  and  others    . .  211A 

Stone  ;  Coating  natural  and  artificial .     (P)  Schneider  635A 

Manufacture  of  weather-proof  .     (P)  Riedel         . .  758A 

in  U.S.A.  in  1919 312k 

Stoves  ;  Convertible  gas  producers  and  heating  .    (P) 

Holden  and  others       . .  . .  . .  . .  . .  579a 

or  the  like  ;    Raising  and  maintaining  the  temperature 

in  .     (P)  Robinson         796a 


SUBJECT  INDEX. 


213 


PAGE 

Strainer  apparatus  with  magnetic  strainer  for  removing  solids 

from  liquids.     (P)  Chapman  ..         ..         ..     240a* 

Straw  ;    Determination  of  Uevulose  in  .     Collins         . .       56T 

Digestion  of  by  the  Steffen  process.    Blasweiler    740a 

Lignin  ;     Derivatives  of  .     Paschke  . .         . .     247a 

Machine  for  briquetting .    (P)  Cowan         . .         . .     130A 

Manufacture  of  feeding-stuffs  from  : 

(P)  Beckmann 781a 

(P)  Paechtner 515A 

Manufacture    of    fodder    by    decomposition    of    finely 

divided  .     (P)  Veredelungsges.  fiir  Nahrungs- 

u.    Futtcrmittel  432A 

oat-  ;    Sugars  and  albuminoids  of  .     Collins  and 

Thomas  093A 

Preparation  of  salts  of  organic  acids  from  waste  liquors 

from    digestion    of    .     (P)     Badische    Anilin 

und    Soda-Fabr 


Treatment    and    disposal    of 
The  metallurgical  chemist. 


Strawboard    mill    effluents ; 

Hommon 

Streatfeild  Memorial  Lecture. 
Desch 

Strontium-lead    alloys  ;     Constitutional    diagram    of    . 

Piwowarsky 

Sensitiveness  of  qualitative  reactions  for  .     Lutz 

Strontium  compounds  in  U.S.A.  in  1920 

Strontium  hydroxide  ;  Solubility  of in  sucrose  solutions. 

Sidersky 
Strontium  silicates.    Eskola 

Strophanthus  extracts  ;    Stability  of  .     Pomeroy  and 

Heyl 

Strychnine  ;    Determination  of  in  tablets  or  liquids. 

Bliss,  jun. 

Extraction  of  quinine  and from  solutions  of  varying 

hydrogen    ion   concentration,    and    separation    of 
strychnine  and  quinine.     Evers 
Strychnine  acid  methylarsiuate.     Bouillot 
Strychnos  alkaloids.     Leuchs 

alkaloids.  Preparation  of  isostrychnine.  Leuchs  and 
Nitschke 

Beede  ;    Alkaloid  content  of  .     Rosenthaler  and 

Weber 

Stucco  ;  New  developments  in  oxyehloridc  .     Shaw 

and  Bole 
Sublimation  ;    Apparatus  for  collecting  solid  and  viscous 

products  obtained  by .     (P)  Bayer  und  Co. 

of  hydrocarbons.     (P)  Murphy  and  others 
Subsidies  for  industry 

Succinic  acid  ;    Occurrence  of  in  raspberry  leaves. 

Franzen  and  Stern 

Presence  of in  mountain-ash  berries.     Von  Lipp- 

niann 
Sucrose  ;    Action  of  hydrogen  peroxide  on  pure  solutions 

of  .     Schonebaum 

Action  of  ozone  on  pure  solutions  of  .  Schone- 
baum 

Analysis  of  products  containing  by  the  neutral 

double  polarisation  method.     Hinton 

Colour  reaction  for .     Kryz 

Content  of in  roots  of  reeds.     Von  Lippmann    .. 

Correction  for  volume  of  lead  precipitate  when  using 
basic  lead  nitrate  as  clarifying  agent  in  deter- 
mination of .     Sijlmans 

Determination  of in  artificial  honey.     Behre    . . 

Estimation  of in  presence  of  other  sugars  by 

means  of  alkaline-earth  hydroxides.  Behre  anil 
During 

Heat    of    combustion    of    .     Swietoslawski    and 

Starczewska 

Influence  of  dextrose  on  dialysis  of  through  a 

parchment  membrane.  Possibility  of  separating 
the  two  sugars  by  dialysis.  Congdou  and 
ingersoll 

Inversion  of in  alkaline  copper  solutions  : 

Canals 
Maquenne 

Monosnlphate  of  .     Neuberg 

in  nectar  from  the  foxglove.     Von  Lippmann 

Preparation  of  chemically  pure .     Kraisy 

Presence  of  in  seeds  of   Mtlampyrum  arvense. 

Bride]  and  Braecke 
Relative  sweetness  of  dextrose,  lscvulose,  invert  sugar 

and  .     Deerr 

Spectral  study  of  triboluminescence  of  .     Long- 

chambon 

Test  for in  presence  of  dextrose.     Congdon  and 

Stewart 
See  aim  Sugar. 

Sudan  ;   Chemistry  in  the 

Composition  of  cow's  milk  in  the  .     Joseph  and 

Martin 
essential  oils.     Joseph  and  Whitfeild  . .      144T, 

Gum  arabic  trade  of  the 

Sugar   after    products  ;     Difficult    boiling    of   beet   . 

Zscheye 

Beet in  Victoria 

-cane  crop  of  India  ;    Forecast  of 

-cane  ;    Deterioration  of  after  cutting.     Elliott 

-cane  juice  ;  Determination  of  Brix  degree  of  raw 
- — -.     Helderman 


11A 

781A 

478b 

714a 
200A 
176R 

264A 
980A 

645A 

683A 

683a 
194A 
807A 

954A 

77A 

634a 

128A 
322a 
180K 

783A 

956A 

776A 

152A 

70A 
188A 
117A 


871A 

429A 


871A 
790A 


226A 

«03A 
830A 
152  a 
956A 
151A 

727A 

871A 

603A 

152A 

354R 

242R 
172T 
200R 

151A 

508R 
508R 
187A 

642A 


spent  washes  from 


Sugar — continued. 

-cane  juice  ;    Influence  of  amino-acids  of in  in- 
hibiting inversion.     Van  Ligten 

-cane   juice ;     Influence    of    non-sugars    of in 

inhibiting  inversion.     Lourens 
-cane  molasses  ;    Influence  of  colloids  on  viscosity  of 

Java  .     Helderman  and  Kbainovsky 

-cane  refuse  ;    Production  of  power  alcohol  and  paper 

pulp  from ■.     Fowler  and  Baniurjce 

cane- ;    World's  production  of 

canes  ;    Analyses  of  Fijian  native .     Steel 

carbonatation  scums  ;    Determination  of  sucrose  lost 

in  beet  .     Claassen 

carbonatation  scums  ;    Utilisation  of  beet for 

production  of  decolorising  carbon.     Vytopil    27a, 

centfriugals  ;    Washing  .     (P)  Steps,  and  Sugar 

Machinery  Co. 

in  confectionery  ;    Calculation  of  added .     Bau- 

mann  and  Kuhlmanu 

Content  of  insoluble  matter  in  direct  consumption . 

Ogilvie 

Converting  wood  into .     (P)  Acree 

crop  of  Java  in  1922 
crop  of  Mauritius 

crop  in  Queensland  ;   Cane  

Crystallisation  of .     Heriot 

cultivation  in  British  Malaya 

Detection  of  unfermented  in  s; 

saccharified  wood.     Pringsheim 

derivative  ;  New  type  of  nitrogenous .     Pryde  . . 

Deterioration  of  Mauritius  white during  storage. 

Tempany  and  De  Charmoy 

Determination  of by  titration  of  the  precipitated 

cuprous  oxide  with  alkali.     Hanak 

Diffusion  apparatus  for  extraction  of  from  the 

beet.     (P)  Kak         

dust    explosions  ;     Causes    and    prevention   of   . 

Beyersdorfer 
duties 

Excise  tax  on  home-grown 

Exports  of from  the  British  West  Indies  in  1921 

Extraction  of  from  beet  molasses  by  a  modifi- 
cation of  the  baryta  process.     Manoury 
factory    evaporator    incrustations  ;     Significance    of 

presence  of  oxalates  in .     Miiller 

factory  at  Kelham  ;    Beet  

factory  in  South  Bihar  ;   Proposed 

factory    waste    waters ;     Biological    purification    of 

.     (P)  Stentzel  

Home-grown 161R,  180R, 

-house    evaporator   syrups  ;     Precipitate    formed    in 

after  clarification.     Brewster  and   Baines, 

jun. 

hydrolysis  ;    Investigation  of  the  velocity  of  . 

Clark  

Imports  of 

Imports  and  output  of  beet  

industry  ;    Beet  at  Kelham,  Notts. 

industry  in  Germany 

industry  in  Italy  ;   Beet 

industry  in  the  Philippines 

industry  in  Roumania  ;    Beet 

invert- ;   Detection  of in  honey.     Sherwood    .. 

invert-  ;      Relative    sweetness    of    .     Sale    and 

Skinner 
invert- ;     Relative    sweetness    of    sucrose,    dextrose, 

la>vulose,  and  .     Deerr 

juice;    Decolorising  .     (P)  Straatman     .. 

juice  ;    Distillation  of  ammonia  from  limed  and  car- 
bonated beet  and  its  influence  on  the  com- 
position of  the  juice.     Kohn 
juice  ;    Manufacture  of  an  edible  product  from  beet 

.     (P)  Kestner  

juice  ;  New  method  of  purifying  cane .     Kreulen 

juice  ;     Plauson    ultra-fllter-press   and   the   processes 
involved  in  the  defecation,   carbonatation,   and 

filtration  of .     Block 

juice ;     Purification    of    .     (P)    Hunyady    and 

Malbaski       . .  . .  .  •  ■  ■  •  ■ 

juice  ;    Purifying by  filtration  and  decantation. 

(P)  Ticmann  

juice  ;    Quantity  of  non-sugars  precipitated  in  defe- 
cation, sulphitation,  and  carbonatation  methods 

of  clarifying  : 

Leistra 
Young 
juice  ;    Separation  previous  to  carbonatation  of  the 

precipitate   produced    by    liming   of   beet   . 

Stanek  and  Vondrak 

Simultaneous  saturation  applied  to  beet  

treated   with   magnesium   bicarbonate.     Andrlik 
and  Kohn 

Treatment  of  .     (P)  Mauss 

Use  of  lime  containing  magnesia  for  carbona- 
tation of  b»et .     Andrlik  and  Kohn 

liquors  ;  Filters  for .     (P)  Tottereau 

liquors  :    Filtration  of  .     (P)  Simpson  and  Lyle 

Loss  of  sucrose  in  the  refinery  in  the  working  of  raw 

beet  .     Duschky  and  Galabutsky 

Manufacture  of from  beetroots.     (P)  Plauson  . . 

Manufacture    of    direct    from    the    juice.     (P) 

Delafond 


76a 


226a 

227a 
133R 
386a 

603a 


74a 

642a 
910a 
402R 
354R 
481R 
95R 
34R 

679A 
365R 


777A 

. .'  830a 

201R,  267R 

82R 

266R 


829a 

909A 
104K 
197R 

27A 
422R 


950A 

112a 
■Jtsu 
571R 
149R 
35R 
401 R 
350R 
402R 
477A 

776A 

871A 
478A 


juice  ; 


juice  ; 
juice  ; 


562a 


562a* 
991A 


226A 
188a 


871a* 


428a 
428a 


562a 
777a 

385a 
576a 
113a* 

642a 
953A 

478A* 


214 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Sugar — continued.  m        ,   ,. 

manufacture ;     Sand   in    carbonatation    press   scums 

from  beet and  its  influence  on  their  filtration, 

and  washing.     Stanek 
manufacture  ;   System  of  pan  boiling  in by  using 

an    auxiliary    storage    tank.     (P)    Jacobs    and 

Jacobs 
Manufacture  of  white at   Oxnard   beet  sugar 

factory,  California.     Vasseux 
Manufacture    of    without    the    production    of 

molasses.     (P)  Holland 

massecuite  ;   Manufacture  of  refined .     (P)  Hinze 

nipa-  ;     Recent     improvements    in    manufacture    of 

.     Wells  and  Perkins 

from  potatoes  and  maize.     Behre  and  others 

Production  of  beet in  Czechoslovakia       . .      177R, 

Production  and  consumption  of in  U.S.A.  in  1921 

production  in  Europe  ;    Beet 

Production  of  fermentable  from  cellulosic  sub- 
stances.    (P)  Classen,  and  Chemical  Foundation, 

Inc. 
Production  of  fermentable from  wood  and  other 

cellulosic  material.     (P)  Classen  . .  . .      680A, 

production  in  Natal 

products  ;    Experiments   on   ■    with   various   de- 
colorising carbons.     Saillard 
products  ;     Factor  to  be  used  for  conversion  of  snl- 

phated  ash  of  to  carbonated  ash.     Miko- 

lasek 
purity  determinations.     Home 
Recovery    of    ammonia   from    evaporator   condensed 

water   in    manufacture    of    beet   .     Andrlik 

and  Skola 
Recovery   of   from  press  and   diffusion   waters 

and  saturation  scum.     Kessener  and  Sbhngen  . . 
refinery   liquors ;     Mineral   constituents   retained   by 

"  carboraflfln  "  decolorising  carbon  during  treat- 
ment of  .     Skola 

refining  ;    Essential  qualities  of  an  efficient  decoloris- 
ing carbon  for  .     Dunstone,  jun.     .. 

refining  ;     Manufacture    of    decolorising    carbon    for 

.     (P)  Mumford,  and  Darco  Corp. 

refining  ;    Technical  application  of  Norit  decolorising 

carbon  in .     Dunstone,  jun. 

refining  ;   Use  of  "  carboraffin  "  decolorising  carbon 

in .     Dedek 

Refining    without    producing    molasses.     (P) 

Holland  

residues  ;    Recovering  litharge  from  e.g.,  from 

residues    from    polarisation    of    sugar    products. 

(P)  Ramage,  and  Sugar  Research  Synd. 
solutions  ;     Apparatus    for    crystallisation    of    . 

(P)  Venditti  

solutions;    Decolorising  .     (P)  Straatman 

solutions  ;     Purification    of    by    filtration    and 

decantation.     (P)  Tiemann 
syrups  and  molasses  ;    Purification  of by  simul- 
taneous liming  and  carbonating.     Urban 
syrups,    molasses,    and    liquors ;     Use    of    dolomitic 

lime  for   carbonatation   of   beet   .     Andrlik 

and  Kohn 
Systematic    sulphuring    of    juices    obtained    during 

manufacture  of .     (P)  Von  Wierusz-Kowalski 

and  Chemical  Foundation 
Use  of  hot   water  for   washing   from   bagasse. 

Bird 

World's  production  of  . .  . .      221R, 

See  also  Sucrose. 

Sugars,   anhydro-  ;    Alkali  hydroxide  compounds  of  . 

Karrer  and  others 
anhydro-  ;     Constitution    and    configuration    of    . 

Karrer  and   Smirnoff 

Chemistry   of   the   .     Kiliani  . .  . .       188A, 

Comparative  sweetness  and  preserving  quality  of  cane 

and  beet .     Ogilvie 

Determination  of  fluorescent  powers  of  the .  Lewis 

Formation  of  osazones  of .     Van  Laer  and  Lombaers 

lodometric     determination    of    .     Auerbach    and 

Bodliinder 
Moisture  absorptive  power  of  various under  varying 

conditions     of     atmospheric     humidity.     Browne 
reducing  ;    Action  of  ammonia  and  amino-compounds 

on .     Ling  and  Nanji 

reducing  ;    Determination  of  .    Bonwetsch 

reducing  ;    Determination  of  in  tannin  extracts 

of  analytical  strength.     Longbottom 
reducing ;     Effect    of    different    agents    for    removing 

excess    of    lead    from    solutions    of   clarified 

with  basic  lead  acetate.     EngHs  and  Tsang 

reducing;     Iodometric   determination   of  .     Kunz 

Study    of    adsorption    in    solutions    and    at    interfaces 

of and  mechanism  of  their  action  as  emulsifying 

agents.     Clark  and  Mann 


871a 
909a 

386A 

777A 

512a 
71a 
31 5R 
350R 
334R 


832A* 


725A 
264R 


909A 


264a 
950A 


386A 
38GA 

151A 

909A 
152a 
910A 

187A 
723A 

992a 

305A 
429A 

911A 

419A 


187A 
484R 


188A 

188A 
910A 

343R 

366A 

71a 

991 A 

723A 

151T 
4  77  A 

302A 


385A 

477A 


Sulphanilic  acid ;  Determination  of  .  Callan  and 

Henderson 

Sulphate  furnaces;    Mechanically  operated  stirring  devices 

for   .     (P)   Moritz  

ion  ;    Determination  of as  barium  sulphate.    Chat- 

terjee 

Sulphates  of  alkaline  earths,  magnesium,  and  iron  ;    Manu- 
facture of  sulphur  dioxide  from .     (P)  Verein 

Chem.  Fabr.  in  Mannheim 


603A 

162T 

858A 
442.V 


PAGE 
Sulphates — continued. 

Continuous  production  of .     (P)  Soc.  Anon.  Prod. 

(him.    Etabl.    Maletra  812A 

Decomposition  of and  recovery  of  sulphur  oxides. 

(P)  Metallbank  u.  MetaUurgische  Ges.        ..  ..     253A 

ethereal ;   Occurrence  of  in   carrageen  (Ciiondrus 

crispm).     Haaa  ..  ..  ..  ..  ..     230A 

Manufacture  of  by  the  Hargreavcs  process.     (P) 

Siemens  ..  ..  .'.  ..  ..  ..     632a 

Manufacture  of  sulphur  oxides  from  : 

(P)  Badische  Anilin-  und  Soda-Fabrik         . .     174A 
(P)   Metallbank  u.   Metallurgische  Ges.         . .       14A 
Reduction  of  in  the  deeper  layers  of  the  earth. 

Van  Wolzogen  Ruhr  ..  ..  ..  ..     908 A 

in  soil ;    Factors   influencing   determination   of  . 

Hirst  and  Greaves       . .  . .  . .  . .  . .     511A 

Volumetric  determination  of  .     Jellinek  and  Ens  1000A 

Volumetric  determination  of in  water.     Kuhhnaun 

and     Grossfeld  682A 

Sulphide  dyestuffs.     See   Sulphur   dyestuffs. 

Sulphides  :    Determination  of by  oxidation  with  ferric 

sulphate.     Budinkow      and      Krause         . .  . .     706A 

Evaporating  solutions  of  alkali prepared  by  passing 

gases     containing     hydrogen     sulphide     through 
alkali  carbonate  solutions.     (P)  Raupp  and  Gasser     373A 

or  the  like  ;   Recovery  of  metallic from  a  condition 

of  emulsion  without  filtration  or  evaporation.     (P) 
Hunt 631A 

Sulphinides ;     Preparation    of    gold    compounds    of    . 

(P)  Bayer  und  Co 522A 

Sulphite  liquor  (acid   calcium   bisulphite  solution) ;     Com- 
position of .     Schwarz  and  Mullcr-Clcmm       . .         9A 

liquor;    Preparation  of  .     (P)  Davies  and  Strong     747a 

liquors ;    Analytical   methods   for  .     Sieber         . .     893a 

liquors.     See  also  Calcium  bisulphite  solution. 

Sulphite-cellulose    waste    lyes ;     Amount    of    acetaldehyde 

and    paraldehyde   in   alcohol   from   .     Heuser 

and  others         . .  . .  . .  . .  . .  . .     190A 

waste    lyes  ;     Apparatus    for    evaporating    .     (P) 

Paschke  498a 

waste  lyes  ;    Combustion  of .     Wirth         ..  ..     171a 

waste  lyes  ;    Continuous  process  for  decomposing . 

(P)  Morch  543A 

waste  lyes  ;  Decomposition  of .     (P)  A./S.  Sulfitkul       11a 

waste  lyes  ;  Manufacture  of  active  decolorising  charcoal 

from  .     (P)  Adler  702A 

waste  lyes  ;  Manufacture  of  a  binder  for  briquettes  from 

tar-distillation  residues  and  .     (P)  Mohrdieck         3a 

waste  lyes  ;  Manufacture  of  a  mastic  or  binding  sub- 
stance from .     (P)  Pollacsek 368A 

waste  lyes ;    Manufacture  of  sulphur  dioxide  gas  from 

.     (P)  Eisenwerk-Ges.  Maximilianshiitte,    and 

Leuchs  410a 

waste  lyes  ;  Manufacture  of  tanning  materials  from . 

(P)  Deutsch-Koloniale  Gerb-  und  Farbstoff-   Ges. 

225A,  3S4A 

waste  lyes  ;  Manufacture  of  an  unfired  building  material 

from  clay  and  .     (P)  Plonnis  und  Co.         . .     103A 

waste    lyes ;     Manufacture    of    waterproofing    material 

from  .     (P)   Hurt  52a 

waste   lyes  ;     Production   of   printers'   ink  from  . 

(P)  Smidt  and  Jaeger  9S9A 

waste  lyes  ;  Recovering  the  solids  of .  (P)  Dicker- 
son            llA 

waste  lyes  ;  Treatment  of .     (P)  Gossel       . .  . .     665a 

waste  lyes  ;    Treatment  of before  conversion  into 

sizing  compositions,  adhesives,  feeding  stuffs,  etc. 

(P)  Zellstoff-fabr.  Waldhof,  and  Clemm         ..  ..     213A 

waste  lyes  ;   Utilisation  of .     (P)  Stein         . .         64a,  138A 

waste    lyes ;     Utilisation    of    in    preparation    of 

electrodes    for    accumulators.     Konig        . .  . .         9a 

waste  lyes  ;     Utilisation  of  free  sulphurous  acid   and 

that  combined   with  lignin  present  in  .     (P) 

Murbe 290a,  543A 

Sulphites  ;     Examination   of  foods   for   presence   of  . 

Chapman  . .  . .  . .  . .  . .  . .     515A 

free  from  sulphate  for  standard  sulphur  dioxide  solutions. 

Shenefleld  and  others  . .  . .  . .  . .       37a 

Oxidation  of in  concentrated  solutions.     Milbauer 

and  Pazourek  . .  . .  706A 

Sulphonamides ;     Preparation    of    rnonosubstituted . 

(P)  Bayer  und  Co 521A 

Sulphonated  derivatives  of  naturally  occurring  sulphurised 

hydrocarbons    (ichthyol).     Pepin    and    Reaubourg    877A 
Sulphonation  of  carbon  compounds.     (P)  Grob  and  others     663a 
of   phenols ;     Effect   of  temperature   and   the   methyl 

group  on  the  speed  of .     Campbell        . .  . .     496a 

Sulphonic  acid  :    Method  of  obtaining  a  sodium  salt  of  a 

hydrocarbon    mono    .     (P)    Cole         . .  . .         8A 

acids ;      Manufacture     of    alkylamides     of      aromatic 

.     (P)    Bader  and    Nightingale  ..  ..     997a* 

acids  from  mineral  oils  ;  Removing  inorganic  salts  from 

- — — .     (P)  Wolff,  and  Chemical  Foundation,  Inc.     802a 

acids    from    petroleum ;      Purification    of    .     (P) 

Oelwerke    Stern-Sonneborn    A.-G ..     676a 

o-Sulphonic    acids    of    aromatic    amines ;     Manufacture    of 

.     (P)  British  Dyestuffs  Corp.,  and  others     ..     287a 

Sulphoxylic    acid ;     Volumetric    estimation    of    .     De 

Bacho 250a 


SUBJECT  INDEX. 


215 


from    hydrogen 
(P)    Rhenania 


Lathe 


Sulphur  ;    Behaviour  of  amorphous  carbon  on  heating  with 
.     Wibaut  . .         _.         ~.         . .        13A, 

burners.    (P)  Hinzke 

burners  ;   Oxidising  device  for .    (P)  Hinzke 

Chemistry   of   oxidation   of  by    micro-organisms 

to  sulphuric  acid  and  transformation  of  insoluble 
phosphates  into  soluble  forms.  Waksman  and 
Joffe 

in  coal ;  Behaviour  of in  dry  distillation.    Foerster 

and  Geisler 

in  coal ;    Determination  of  .     Lant  and  Lant-Ekl 

colloidal ;  Physico-chemical  investigation  of .  Rossi 

Composting    rock    phosphate    with    in    slightly 

alkaline    calcareous    soils.     Rudolfs 

Concentration  of  ores  containing  elemental  .     (P) 

Simpson,  and  Minerals  Separation,  Ltd. 

Contact   furnace   for   producing   

sulphide    or    gases    containing    it, 
Verein  Chem.  Fabr.,  and  Projahn 

deposit  in  Texas 

Determination  of in  iron  and  steel : 

Marinot 
Ter  Meulen 

Determination  of  in  nickel  ores. 

Determination    of    in    organic    compounds    and 

technical  products.     Ter  Meulen 

Determination  of  in  pyrites  : 

Chaudron  and  Juge-Boirard 

Gadais 

Distillation  of .    (P)  Davis  and  others 

Extraction  of  : 

(I'l  Kenton  

(P)  Sedgwick        

Extraction  of from  gas-purification  masses  : 

(P)  Badische  Anilin-  und   Soda-Fabrik 

(P)  Hoffmann 

Extraction    of    from    spent    oxide.    (P)    Given, 

and   Stevens-Aylsworth   Co. 

in  illuminating  gas ;  High-percentage  hydrogen  per- 
oxide for  determination  of  total  .     Klemmer 

Kiln   and   tower  plant  for  combustion  of  .     (P) 

nansen 

and  the  like  ;    Recovery  of  from  a  condition  of 

emulsion  without  nitration  or  evaporation.  (P) 
Hunt 

Manufacture  of .     (P)  Perry  and  others 

Manufacture    of    from    calcium    sulphate.     (P) 

Badische  Anilin-   und   Soda-Fabrik 

Manufacture   of   exceedingly   fine   powdered   in- 

porated  with  charred  sugar.     (P)  Mochalle 

Manufacture    of    finely    divided    .     (P)    Badische 

Anilin-  und  Soda-Fabrik         37:5a, 

Manufacture  of  sodium   carbonate,   caustic  soda,   and 

.     (P)     Rhenania     Ver.     Chem.     Fabr.,     and 

Projahn  

Manufacture  of from  sulphur  dioxide.     (P)  Howard, 

and  American  Smelting  and  Refining  Co. 

Micro-organisms    concerned    in    oxidation    of   in 

soils!  Media  used  for  isolation  of  sulphur  bacteria. 
Waksman 

in  the  New  Hebrides 

Obtaining in  a  finely  powdered  form.    (P)  Meyer 

ointment ;    Examination  of  .     Evers  and   Elsdon 

oxidation  in  "  black-alkali  "  soils.     Rudolfs 

Oxidation  of  by  soil  micro-organisms.     Lipniau 

and  others 

Oxidation  of in  sulphur-floats-soil  mixtures.    Joffe 

-oxidising  bacteria  ;  Culture  of  ■  and  their  appli- 
cation.   (P)    Lipman 

-oxidising  bacteria  ;  Isolation  of  from  sulphur- 
floats-soil   composts.    Joffe 

-oxidising  power  of  soils.    Demolon 

Probability  of  reaction  between  solid  paraffins  and 
in  oil-bearing  strata.     Rakusin 

Production  and  consumption  of ,  1913-1919 

Purification  of  .     (P)   White  

Rapid    determination    of    .     Losana         . .      614A 

Recovery   of   from   calcium   silicate   slags,   e.g., 

blast-furnace  6lag.  (P)  Metallbank  u.  Metal- 
lurgische  Ges.  A.-G. 

Recovery  of  free  from  exhausted   gas-purifying 

material.    (P)  Loewe 

Recovery  of  from  gases.     (P)  Hinselmann 

Recovery    of    from    gases    containing    hydrogen 

sulphide.     (P)  Frischer 

Recovery  of from  hydrogen  sulphide  and  ammon- 
ium sulphide  and  gases  containing  the  same. 
(P)   Naef  

Recovery  of  from  material  containing  it,  especi- 
ally from  spent  gas-purifying  material.  (P) 
Badische  Anilin-  u.  Soda-Fabr. 

Recovery  of  from  spent  gas-purifying   material 

by  means  of  tetralin.     Kattwinkel 

Separation   of   from   suspensions.    (P)    Badische 

Anilin-  u.   Soda-Fabr. 
Simultaneous    production    of    calcium    bisulphite    lye 

and  -.     (P)  Rhenania  Verein  Chem.  Fabr. 

Solubility  of in  certain  organic  liquids.     Dclaplace 

trade   in   Italy 

Treating  and  handling  .    (P)   Hill 


281a 
680a 
327a 


263a 

401a 

89a 

414A 

870A 

415A 


633A 
79K 

178A 
21SA 
273T 

235A 

210A 
12A 
58A 

327A 
253A 

167A 

740A 

216A 
166A 
327A 


631A 
295A 

100A 

878A 

860A* 

752A 

502A* 


561A 
102R 
755A 
620A 
427A 

187A 
338A 


427A 
70A 

492A 

177K 

14A 

691A 


244A 
502A 

502A 

58A 

859A 

928A 

100A 

632A 

707A 

576R 

14A 


Sulphur  compounds ;    Action   of  on  plants.     Turina     512A 

compounds    of    coal,    their    behaviour    on    distillation, 

and  sulphur  compounds  of  coke.     Wibaut         ..     888a 


Sulphur — cant  Intwd. 

compounds ;    Obtaining  from   mineral   oils   and 

the  like.    (P)  Clancy,  and  Nitrogen  Corp.         M 
Sulphur  dioxide  ;    Absorption  of by  cattle  cakes  and 

meals.     Peacock 
Enriching    metallurgical    gases    containing    .     (P) 

Howard,  and  American  Smelting  and  Refining  Co. 
gas ;     Manufacture    of    ■ from    sulphite-cellulose 

waste     liquor.     (P)     Eisenwerk-Ges.     Maximilian- 

sluitte,  and  Leuchs 

liquid;    New  system  of  making  .     Paoli  .. 

liquid  ;    Position  of  under  the  Safeguarding  of 

industries  Act 
liquid  ;    Solubility  of  hydrocarbons  and  fats  in  . 

Zerner  and  others 

Manufacture  of  : 

(P)  Grayson 

(P)  Rhenania  Verein  Chem.  Fabr. 
Manufacture  of from  calcium  or  barium  sulphide. 

(P)  Metallbank  und  Metallurgische  Ges. 
Manufacture    of    from    calcium    sulphide.    (P) 

Metallbank  u.  Metallurgische  Ges.  A.-G. 
Manufacture  of  from  sulphates  of  alkaline  earths, 

magnesium,   and   iron.    (P)   Verein   Chem.   Fabr. 

Mannheim 
Method   of  using  in   refrigerating   systems.     (P) 

Robinson,  and  Utility  Compressor  Co. 

molecule  ;    Structure  of  the .     Rankine  and  Smith 

Oxidising  action  of on  copper  chlorides.     Wardlaw 

and  Pinkard 
Oxidising  and  reducing  actions  of  ■ on   mercury 

chlorides.     Stewart  and  Wardlaw 

Purification  of  ■ .     (P)  Bullard  

Recovery  of from  waste  metallurgical  gases.     (P) 

Howard,  and  American  Smelting  and  Refining  Co. 
Solubility  of in  suspensions  of  calcium  and  mag- 
nesium hvdroxides.     Smith  and  Parkhurst 
Solubility  of  in  water  and  in  methyl  and  ethyl 

alcohols.     Neuhausen 
solutions  ;    Sulphites  free  from  sulphate  for  standard 

.     Shenefield  and  others  

Specific  heat  of  .     Neumann  

Treating  liquors  with  .    (P)  Allen,  and  General 

Chemical  Co. 
and   water  ;     Equilibrium   in  reaction   between   . 

Bichowsky 
See  also  Sulphurous  acid. 
Sulphur     dyestuffs ;      Attempts     to     prepare     red     . 

Watson  and  Dutt 

Manufacture  of .    (P)  Cassella  und  Co 

Manufacture   of  brown  .    (P)   Soc.   Chim.   de   la 

Grande  Paroisse 
Sulphur  monochloride  ;   Reaction  between  aniline  and . 

Coffey 

Sulphur    oxides ;     Decomposition    of   sulphates,    especially 

calcium    sulphate,    and    recovery    of    .    (P) 

Metallbank  und  Metallurgische  Ges. 
oxides ;  Manufacture  of from  calcium  sulphate.  (P) 

Badische  Anilin-  u.  Soda-Fabrik 
oxides;  Manufacture  of from  natural  sulphates.  (P) 

Badische  Anilin-  und  Soda-Fabrik 
oxides  ;   Manufacture  of from  sulphates,  especially 

calcium   sulphates.     (P)   Metallbank   u.    Metallur- 
gische Ges. 
oxides  ;    Purification  and  concentration  of  gases  con- 
taining   .     (P)  Coolbaugh  

Sulphur  tetroxide  ;    Existence  of  .    Meyer  and  others 

Sulphur  trioxide-chromium  trioxide-water  ;  The  system . 

Gilbert  and  others 

Physical  properties  of  .    Berthoud 

See  also  Sulphuric  anhydride. 
Sulphuretted  hydrogen.     See  Hydrogen  sulphide. 

Sulphuric  acid.     Armstrong 

Action  on  lead  in  concentration  of  ■ .     Frisak 

chambers  ;    Construction  of .    (P)  Dior 

chambers  or  towers ;    Improving  the  working  of . 

(p)  Gaillard 

concentration ;      Thermal     considerations     in     . 

Zeisberg 

Determination  of  as  barium  sulphate.     Evidence 

of  existence  of  a  complex  barium-sulphuric  acid. 
Balarew 

Determination  of as  barium  sulphate  in  presence 

of  aluminium.     Moser  and  Kohn 

Distillation   of  .    (P)    Chem.   Fabr.    Weissenstein 

Ges 501A; 

Distillation  of  mixtures  of  nitric  acid  and .     Bert 

and  Samtleben 

Drying  fluids  and  solids,  and  preparing  dilute  . 

(P)  Maass 

factory  in  Bombay  ;    New  

Fuming  .    See  Oleum. 

from  gypsum.     Dominik 

Heat  developed  on  mixing  water,  nitric  acid,  and  . 

McDavid 

Intensive  manufacture  of by  the  chamber  process. 

Le  Breton 

Manufacture  of : 

(P)  Chase  and  others 

(P)  Gaillard  

(P)  Hclbronner  and  Tipereaut 

(P)  Hurt  and  Hurt         


PAGE 

701A 
560k 
501a 


410A 
896A 


148R 
581a 


141A* 

858A 


294A 
415A 


240A 
507R 

172A 

750A 
415A 

501 A 

896A 

668A 

37A 
586a 

670A 

251A 

S52A 
136A 

892A 
49A 

253a 

98A 
174A 


14A 

415A 
896A 

857A 
628a 


266T 
41 2A 
755A* 


628A 

963A 

91 8A 

546A* 

461A 

531A* 
351R 

749A 

246T 

291A 

215A 
546A* 
668A 
462A 


216 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Sulphuric  acid — continued. 

Manufacture  of : 

(P)  Kaiteubach  98a 

(P)  MacDowell,  and  Armour  Fertilizer  Works     141a 
(P)  MacDowell  aud  others        ..  ..  ..     631a 

(P)  Mirat  and  Pipereaut  ..  ..  ..     707a 

i  P)  Reed 100a* 

<P)  Schmiedel  and  Klencke 982A 

Manufacture  of  hydrochloric  acid  and .     (P)  Stolle     752A 

Manufacture    of    hydrohalogcn    acid    and    .     (P) 

Snelling  858a 

manufacture  ;    Recovery  of  nitrogen  oxides  in  . 

(P)  Fairlie         630a 

Manufacture  of without  chambers  or  towers.     (P) 

Schmiedel  and  others  ..  ..  ..  ..       58a* 

Modern  methods  of  concentrating  Gilchrist     . .     585A 

monohydrate ;     Purification    of   .     (P)    Rhenania, 

Vex.  Chem.  Fabr.  A.-G 414A 

Nitre  losses  in  manufacture  of in  tower  systems. 

Micewicz  . .  . .  . .  . .  . .  . .     810a 

Packed  cell  process  for  manufacture  of .     Larison     461a 

process  ;    Physico-chemical  study  of  the  lead  chamber 

— — .     Forrer  809a 

processes ;   Introduction   of  nitre  into  as  mixed 

acid.     Larison  . .  . .  . .  . .  . ,     369A 

Producing  the  effect  of  the  Glover  tower  in  the  manu- 
facture of without  the  use  of  Glover  towers. 

(P)  Schmiedel  858a 

Rei  'very  of  resinous  substances  from  waste from 

refining    tar     oils.     (P)     Dcntsch-Luxemburgische 

Bergwerks-  und  Hutten-A.-G.  335a* 

Recovery  of from  waste  acid  of  petroleum  refineries. 

Coster  van  Voorhout  .  .  . .  . .  . .     282a 

solutions  derived  from  concentration  of  nitric  acid  and 

denitration    processes ;      Concentration    of    . 

(P)  Frischer 13A 

tanks ;    Leaks  in caused  by  wood  borers.     Cresse     139A 

Treatment  of  waste from  refining  tar  oils  to  recover 

resinous    products.     (P)     Hilpert,    and     Deutsch- 
Luxemburgische  Bergwerks  und  Hiitten  A.-G.     . .     803a 

works  ;      Report  on by  the  Alkali  Inspector       . .     317R 

Sulphuric  anhydride  ;    Apparatus  for  manufacture  of  

by  the  contact  process.     (P)  Manuf.  Prod.  Chim. 

du  Nord  Etabl.  Kuhlmann  ..  ..  ..     414a 

Manufacture  of .     (P)  Chase  and  others     ..  ..     215A 

See  also  Sulphur  trioxide. 

Sulphurous  acid  ;    Autoreduction  of  .     Bennett  . .     856a 

Determination  of .     Coppetti  ..  ..  ..       82a 

Determination   of   in   the   lyes   of   the   sulphite- 
cellulose  industry.     Deutsch  . .  . .  . .     409a 

Manufacture  of from  calcium  sulphide.     (P)  Metall- 

banku.  Metallurgische  Ges.  ..  ..  ..     373a 

Manufacture  of  liquid" from  dilute  sulphurous  acid 

gas.     (P)  Pascal,  and  Manuf.  de  Prod.  Chim.  du 

Nord,  Etabl.  Kuhlmann        ...  ..  „  ..       14a* 

Manufacture  of  from  materials  containing  small 

quantities   of  sulphur,   e.g.,   pyrites,   spent   oxide, 

etc.     (PJ  Kirscheisen  216a 

Manufacture  of  from  sulphates.     (P)  Trautz      ..     752a 

Reaction  between  iodine  and  .     Macaulay  . .     394a 

See  also  Sulphur  dioxide. 

Sulphury]  chloride  ;    Action  of on  organic  substances. 

Action     on     simple     monosubstituted     benzenes. 

Durrans  195a 

as  chlorinating  agent.     Influence  of  catalysts.     Silberrad       93a 

Researches  on  .     Silberrad  . .  . .  . .     586a 

Sundri  bark  ;   Optimum  temperature  for  extraction  of  tannin 

from  .     Dhavale  and  Das         907A 

Superphosphate  ;    Analysis  of  .     Tibaldi  . .  . .     678a 

Apparatus  for  manufacture  of : 

(P)  Sturtevaiit,  and  Sturtevant  Mill  Co.     187a,  829a 

(P)  Williams  26A* 

factory  in  Holland  . .  . .  . .  . .  . .       35r 

Manufacture  of  : 

(P)  Doyle,  and  Sturtevant  Mill  Co.  ..     151a 

(P)  Tuttl.-.   ami   Agricultural   Chemical   Corp.       70A 

masses;    Ageing  and  disintegratiie.:  .     (P)  Bruhn, 

and  Krupp  A.-G 909A* 

Prices  of  135R 

Utilisation    of   alunite   ore   in    manufacture   of    . 

(P)  Matheson  ..  ..  ..  ..     428a* 

Supersaturation  ;     Quantitative    analysis    by    measurement 

of  degree  of .     Hoppler'  962a 

Surface  of  adsorbent  powders  ;   Estimation  of .     Paneth     485a 

tension  ;    Determination  of  from  the  maximum 

pressure  in  bubbles.     Sugden  525a 

tension   of   liquids   of   very   different    fluidity  ;     Visco- 

stala^mometer  for  estimating  .     Traube        .  .     121a 

tension  ;   Significance  of =  for  dairy  practice.     Balm     514a 

Swaziland  ;    Trade  of in  1920-21  1S4r 

Sweden;    Fertiliser  industry  in  17Sr 

Foreign  chemical  trade  of in  1920  and  1921 

Iron  and  steel  industry  of  in  1921  . .  . .     133R 

Mineral  production  in  in  1!>20       ..  ..       36R 

Report  on  economic,  commercial,  and  industrial  situa- 
tion of .    Kershaw         296r 

Sweet  potatoes  ;    Fusel  oil  from  brandy  from .     Yoehi- 

tomo  and  others  832A 

as  a  source  of  alcohol 8r 

Sweetening  agents  :    Measurement  of  sweetness  of  artificial 

.     Pauli 228a 


PAGE 

Sweetening — continued. 

agents  ;    Synthetic  -.     Beyer             . .          . .          . .  565a 

power  of  derivatives  of  p-hydroxyphenylurea.     Speckan  434a 

Switzerland  ;    Aluminium  industry  in  . .          . .  374r 

Chemical    industry   of    "and    the    movements   for 

protection  in  Allied  countries.    Fierz         . .          . .  113R 

Chemical  trade  of  ..          ..          ..          ..          ..  616R 

Dyestuffs  industry  of  in  1921        133R 

Exports  of  artificial  silk  from  in  1921     . .          . .  272r 

Report  on  commerce  and  industry  of in  1921      . .  573r 

Trade  in  chemicals  between  Germany  and  . .  29SR 

Syphilis ;     Purification    of    material    for    serodiagnosis    of 

.    (P)  Von  Wassermann           ..         ..         ..  917a 

SyTia  ;    Asphalt  from  .     Kunig-Hietzing            . .          . .  3a 

Report  on  trade,  industry,  aud  finance  of .      Satow  356R 

Syrups  ;    Preservation  of  in  storage.     (P)  Owen,  and 

Penick  and  Ford,  Ltd.           ..          ..          ..          ..  604A 


Tablets ;     Manufacture    of   compressed    from    aspirin 

and     similar     compounds.     (P)     Cockerton,     and 
Genatosan,  Ltd. 

Talc  ;    Deposit  of  in  Austria 

as  flux  for  high-tension  insulator  porcelain.     Twells,  jun. 

Occurrence,  production,  and  utilisation  of ,  1913- 

1919 

in  U.S.A.  in  1920  

Tallow  in  the  United  Provinces,  India 

Tamol ;     Comparison    of    tannin,    Katanol,    and    as 

mordants  for  basic  dyestuffs.     Wagner 

Tan  bark  :    Preparation  of  oxalic  acid  from  leached  . 

(P)  Wipfler 

wood  waste  ;    Spent  .     Harvey 

Tanganyika  Territory  ;    Report  on  for  1921 

Tanks;     Rapid   and   accurate   method   for   calibration   of 

storage  .     M'David 

Tannase : 

Freudenberg  and  Vollbrecht  ..  ..        67a, 

Rhind  and  Smith 
from  Aspergillus  Luchuensis.     Nierenstein 

Tannery  lime  liquors  ;    Chemistry  of .     Atkin 

liquors  ;    Prevention  of  fermentation  in .    Levine 

waste  liquors  containing  sulphides  ;    Purification  of 

.     (P)  Adler  und  Oppenheimer 

Tannic  acid  compounds  of  digitalis  glucosides  ;    Prepara- 
tion of .     (P)  Knoll  und  Co. 

Tannin  analysis : 

Kubelka  and  Berka 
Kubelka  and  Kohler    .. 
Schneider,  jun. 

analysis  ;      Official     method     of     .     Reed     and 

Blackadder    . .  . .  . .  . .  . .      150a, 

analvsis  ;    Solution  of  the  non-tannin  enigma  in . 

Reed  

analysis  ;    The  Wilson-Kern  method  of  : 

Schultz  24a, 

Wilson  and  Kern 
analysis,  with  special  reference  to  gambier.     Pollak 

Chinese  .     Freudenberg  and  Scilasi 

Comparison  of  Tamol,  Katanol,  and as  mordants 

for  basic  dyestuffs.     Wagner 
content  of  Pacific  Coast  conifers.     Clark  and  Andrews 
content  of  solutions  ;    Influence  of  degree  of  acidity 

on .     Thompson  and  others 

Effect  of  formaldehyde  on  adsorption  of by  hide. 

Gerngross  and  Roser 

Effect  of  hard  water  on .     Reed  .. 

Extraction  of  from  tanstuffs.     (P)  Fraymouth 

and  others 
extracts    of   analytical   strength  ;     Determination   of 

reducing  sugars  in  — — .     Longbottom 
of    the    German   oak.     Freudenberg   and    Vollbrecht 

24a, 

Manufacture  of  compounds  of  albumin,  silicic  acid, 

and,  or  formaldehyde,  albumin,  silicic  acid,  and 

.     (P)  Burkhardt  

Occurrence  of  a  crystalline in  Acer  ginnala  leaves. 

Perkin  and  Uyeda 

Optimum  temperature  for  extraction  of  from 

sundri    {Heritiera    minor)    bark.     Dhavale    and 

Das 

Optimum  temperature  and  state  of  subdivision  for 

maximum  extraction  of from  goran  (Ceriops 

Roxburgh  iana)   bark.     Pilgrim 

Paullinia  cupana  .     Nierenstein  .. 

Preparation  of  compounds  of  yeast  and  .     (P) 

Bayer  und  Co. 

solutions  ;  Colour  measurement  of .     Blackadder 

test;    Qualitative .     Atkinson  and  Hazleton     .. 

Time  and  concentration  actors  in  combination  of 

with  hide  substance.     Thomas  and  Kelly 
See  also  Gallotannin  and  Tannic  acid. 
Tanning  agent  for  chrome  tannage  or  dyeing  of  leather  ; 

Manufacture  of  a  .     (P)  Burton  and  Glover 

agents  ;   Manufacture  of : 

(P)  Badische  Anilin  und  Soda  Fabrik       225a, 

(P)  Chem.  Fabr.  Worms  A.-G 

(P)  Croad,  and  McArthur  and  Co. 


33A 
538R 

897A 

61R 
482R 
351R 

705a 

728A 
150A 
485R 

295T 

1S4A 
336a 

907a 
559a 
336a 

949a 

35A 

773a 

641a 

336A 

224a 

641a 

24  a 

773a 

906a 

705a 
67a 


302a 
150A 

476A 

302A 

906A 

119A 

184A 

907A 


828a 

lNlA 

916a 
476a 
907A 

383A 


427a* 

224a 

774a 


SUBJECT  INDEX. 


217 


,  and  others 


130a,   185A, 
. .       150A, 


Tanning— co/i/!»"  &. 

agents  ;   Manufacture  of : 

(P)  Croad  and  others  . . 

(P)  Elektrochem.  Werke  G 

(P)  Melamid      .. 

(P)  Renner  und  Co.     69a,  69a, 

(P)  Renner  and  Moeller 

(P)  Zink  

Manufacture    and    application   of   .     (P)    Chem. 

Fabr.  Worms  A.-G.  

Manufacture  of  Bulphonated  .     (P)  Elektrochem. 

WYrke  Ges.,  and  others 
by  aldehydes  ;    Influence  of  Cannizzaro  reaction  on 

.     Moeller 

with    aluminium    salts.     (P)    Rohm,    and    Chemical 

Foundation 
animal  hides.     (P)  Chcm.  Fabr.  Worms  A.-G. 
arrangement  for  hides  and  skins.     (P)  Beretta 

bark  from  Western  Australia  ;   New 

Chrome  ■.     Determination  of  basicity  of  chrome 

tanning     liquors     by      electrical      conductivity 

method.     Atkin  and  Burton 
Chrome     .     Equilibria     between     tetrachrome- 

collagen  and  chrome  liquors.     Formation  of  octa- 

chrome-collagen.     Thomas  and  Kelly 
Clirorne .     Influence  of  neutral  salts  on  progress  of 

tannage.     Burton  and  Glover 
chrome-  ;    Influence  of  sodium  chloride,  sodium  sul- 
phate, and  sucrose  on .     Thomas  and  Foster 

chrome-  ;    Manufacture  of  an  agent  for  .      (P) 

Glover  and  Martin 

chrome-  ;    Modern  problems  in .     Burton 

chrome- ;    One-bath with  chrome  alum.     Cham- 
bard  and  Meunier 
chrome- ;    Possible  theory  of  •.      Thompson  and 

Atkin 

chrome- ;   Process  of .     (P)  Hirsch 

Chrome .     Properties  of  common  chrome  tanning 

liquors.     Burton  and  others 
Chrome .     Relation  between  properties  of  chrome 

liquors  and  the  leather  they  produce.     Burton  . . 
composition.     (P)  Cock  and  Williams 
extracts  ;  Colloid  content  of  vegetable .  Attempts 

to  correlate  astringency  with  potential  difference 

of  particles  against  the  aqueous  phase.     Thomas 

and  Foster 
extracts;    Detection  and  determination  of  sulphite- 
cellulose  in  by  means  of  cinchonine.     De 

Hesselle 
extracts ;      Differentiation     of     .     Koruer    and 

Bosshard 
extracts  ;    Recovery  of  acetic  acid  during  evaporation 

of  — — .     Vie 

of  gelatin  ;    Processes  in  .     Moeller 

hides  : 

(P)  Chem.  Fabr,  Weiler-ter  Meer 
(P)  Chem.  Fabr.  Worms 

(P)  Zink  

hides  and  skins  : 

(P)  Ek-ktro-Osmose  A.-G 

(P)  Hell  

(P)  Margotton  

(P)  Merry,  and  Pyrotan  Leather  Corp.    477a, 

industry;    Anthrax  in  the 

industry  in  Canada  in  191S 

industry  in  Germany  ;   Foreign  capital  in  the . . 

leathers  and  skins.     (P)  Morin,  and  Gentry,  Hough, 

et  Cie.  

liquors,  chrome-  ;    Determination  of  basicity  figures 

of .     Burton  and  others 

liquors  ;     Colour  of  as  a  function   of    hydrogen 

ion  concentration.     Wilson  and  Kern 
liquors  ;    Effect  of  change  of  acidity  on  rate  of  diffu- 
sion of into  gelatin  jelly.     Wilson  and  Kern 

liquors ;    Factors  influencing   plumping  of  hides  in 

.     Atkin 

liquors  ;    Measurement  of  plumping  value  of  . 

Reed  and  Blackadder 
liquors  ;    Selective  removal  of  organic  matter  from 

waste .     (P)  Peck,  and  Dorr  Co. 

materials  ;    Determination  of  active  constituents  of 

synthetic    by    the    hide    powder    method. 

Kohn  and  others 
materials    and    extracts ;      Qualitative    analysis    of 

different  and  detection  of  adulterants   in 

mixtures.     Jamet     .. 

materials  ;    Manufacture  of  : 

(P)  Chem.  Fabr.  Worms       . .  . .      263a, 

(P)  Melamid 

(P)  Sorger         . .  . .  ..-'.. 

(P)  Tullis.  and  Fulcra  Tan  Co 

materials  ;      Manufacture    of    and    process    of 

tanning  therewith.     (P)  Chem.  Fabr.  u.  Asphalt- 

werke 
materials  ;      Manufacture    of    from    sulphite- 
cellulose    waste    liquor.     (P)    Deutsch-Koloniale 

Gerb-  und  Farbstotf-Ges.              . .  . .      225a, 

materials  ;   Manufacture  and  use  of .     (P)  Chem. 

Fabr.  Worms 

materials;  Preparation  of  fresh for  analysis.  Reed 

materials  ;    Relative  adsorption  from  liquors  prepared 

from  different .     Bennett  and  Holmes 

Means  for  supplying  liquor  to  the  pits  in  the  process 

of .     (P)  Marris,  and  Walker  and  Sons,  Ltd. 


774A 
426a 
560a 
185a 
185a 
426A 

151A 

774a 

337a 

641a* 

225a 
774A 
157R 

150A 

640a 

149a 

185A 

641a 
640a 


560a 
22f..V* 


511A 
151a* 


24A 

773A 

24a 
303A 

641a 
774a 
384a 

69a 

602a 
S28a 
829A 

419R 

33R 

138K 

225A* 

302a 

68a 

262  a 

475a 

302a 

775a 

336a 

989a 

303a 
261a 
477A 
869a 


384A 

476a 

24a 

224A 
225A* 


PAGE 
Tanning — cont  in  ued. 

oil- ;  Means  for .    (P)  Rohm,  and  Chemical  Foun- 
dation, Inc.  . .  . .  , .  . .  . .     427a* 

oils  ;    Manufacture  of from  hydroxy-fatty  acids 

and  phenol.     (P)  Renner  undCo.  ..  ..      774a 

process : 

(P)  Badische  Anilin  und  Soda  Fabrik         . .     225a 
(P)  Carmichael  and  Ockleston  . .      304a,  602a 

(P)  Dufour  and  Dufour         809a* 

(P)  Ockleston  and  Carmichael  . .  . .     427a* 

(P)  Romer  and  others  ..         ..         ..     476a 

(P)  Wayland 869a 

process  ;    Effect  of  acid  containing  arsenic  on  reduc- 
tion   bath    of    two-bath    chrome    .     Schor* 

lemmer  . .  . .  . .  . .  . .  . .       24A 

process  in  presence  of  alkali.     Moeller  . .  . .     185a 

properties    of    synthetic    tans,     vegetable    tanning 
materials,    and    their    mixtures  ;      Comparative 

observations  on .     Kohn  and  others  . .     828a 

Proteolytic  constants  in  vegetable .     Moeller    . .     184a 

(P)  Renner  und  Co 722A 

(P>  Ringbauer  721a 

solution  ;    Factor  relating  density  of  a  to  its 

concentration.     Bennett  and  Holmes      . .  . .  336a 

with  formaldehyde.     Hey  ..  ..  ..  ..  476a 

Tannins  ;   Catechu .     Nieren? tein        . .          . .          . .  184a 

Crystalline  synthetic  — — .     Karrer  and  Salomon     ..  184a 

Differentiation  of  .     Korner  and  Bosshard         ..  773a 

Hormone  theory  of  formation  of .     Moeller       . .  559a 

Influence  of  preliminary  tanning  with  formaldehyde 

of  hide  powder  for  analysis  of  vegetable  . 

Gerngross  and  Roser           . .          . .          . .          . .  426a 

Lignin-Iike of  spruce  needles.     Von  Euler        ..  171a 

and  similar  substances  : 

Freudenberg  and  Scilasi         . .          . .          . .  906a 

Freudenberg  and  Vollbrecht  . .          . .          . .  906a 

Freudenberg  and  others         ..          ..          ..  601a 

Some  Indian  vegetable .     Atkin  and  Hassan     . .  24a 

Synthesis  of  .     Hepworth      . .          . .          . .          . .  472a 

Synthetic  .     Thuau  and  Hough 907a 

synthetic ;     Action   of   hot   water   on   leather   tanned 

with  .     Moeller                303a 

synthetic  ;    Properties  of  the  sulphonic  group  in  . 

Moeller               559a 

Synthetic  and  their  uses  in  leather  manufacture. 

Knowles             150a 

Tantalocolumbates ;     Use   of   tartaric   acid   in    analysis   of 

natural  .     Schoellcr  and  Powell  ..  ..     121a 

Tantalum  ;    Commercial  production  of  . .  . .     535R 

Separation  of  columbium  and by  means  of  selenium 

oxychloride.     Merrill  ..  ..  ..  ..     158a 

Separation    of    zirconium    from    .     Schoeller    and 

Powell  121a 

Tanyard   refuse ;     Manufacture   of   millboard    and   similar 

substances,  using .     (P)  Masterman     . .  . .     665a 

Tar,  acid-  ;    Production  of  plastic  compositions  from  . 

(P)  Plauson's  Forschungsinst.  . .  . .  . .     868a 

acids  and  bases  in  road  drainage  and   mud  ;    Deter- 
mination of  .     Fox  and  Gauge  . .      173T,  194r 

acids  ;    Determination  of  phenol  in  mixtures  of  . 

Hoffert  334T 

acids  ;    Obtaining .    ( P)  Runge,  and  International 

Coal  Products  Corp.  322a 

acids.     See  also  Phenols. 

Apparatus  for  distillation  of .     (P)  Ab-der-Halden     457a 

of  Cedrus  atlantica  ;    Preparation  in  Morocco  of  : 

some  chemical  and  physical  characters.     Massy     . .     168A 

coke-oven  ;   Conversion  of  phenols  of into  benzene 

in  an  experimental  installation.     Fischer  and  others     931A 

Composition  of  peat  and  shale  .     Marcusson  and 

Picard  496A 

Condenser  for  vacuum  distUlatiou  of  .    (P)  Stein- 

schneider  . .  . .  . .  . .     539a 

Continuous  distillation  of  .     (P)  Blumner         407a,  496a 

Continuous  distillation  of  with  steam,  for  smaU 

daily  outputs.     Ab-der-Halden         . .  . .  . .     286a 

Dehydration  of  in  the  laboratory.     Huff  . .     169a 

Determination  of  viscosity  of .     (P)  Frink  . .       83a 

Distillation  of  : 

(P)  Blumner         . .  ~  663a* 

Chambers  49r,  1 78T 

(P)  Glossop  and  others  . .         . .         . .     743a 

(P)  Schaer  457a 

(P)  Thermal  Industrial  and  Chemical  { T.I.C.) 

Research  Co.,  and  others       ..  ..  ..     803a 

Walmsley  279R,  296T 

(P)  Weiss,  and  Barrett  Co 539a* 

(P)  Wilson  538a 

Distillation   of   and    manufacture   of   solid    fuel. 

(P)  Strafford  and  Pick  361A 

emulsions  ;    Dehydrating  .     (P)  Badische  Anilin- 

und  Soda-Fabrik  743A 

emulsions;     Water-gas  .     Odell        363A 

in  gases  ;   Determination  of by  collection  on  filter 

paper.     Katz  and  Smith        ..  ..  ..  ..     79lA 

Immersing  in  molten  metal  for  distillation.    (P) 

Thermal  Industrial  and  Chemical  (T.I.C.)  Research 

Co.,  and  Morgan         239A 

Increasing  the  yield  of  in  purifying  hot  producer 

gas.    (P)  Mannstaedt  und  Co.,  and  Bansen       ..     930a 


218 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Tar — continued. 

Increasing  the  yield  and  quality  of by  carbonisa- 
tion and  gasification  of  solid  fuels.     (P)  Allgem. 

Elektrizitats-Ges.,  and  Munzinger  . .  . .     700A 

lignite-;    Distillation  of  under  a  high  vacuum. 

Graefe  495a 

lignite- ;    High    vacuum    distillation    plant    for    . 

Neumann  . .  . .  . .  . .  . .  . .         7a 

Lignite  producer : 

Fischer 245a 

Ruhemann  . .  . .  . .  . .         7a 

lignite  producer- ;  Distillation  of .     (P)  Klever      7a-,  50a 

lignite    producer-gas  ;     Asphalt  ic   substances    in    . 

Mzourek  133  a 

from      lignite,      producer-gas,     etc.  ;      Production     of 

paraffin  wax  from  .     (P)  Helvey        . .  . .     933a 

lignite-  ;     Production   of   pale,   non-darkening   phenols 

from  .     (P)  Pfautsch 93A 

lignite- ;     Recovery  of  paraffin   wax   from   .     (P) 

Erdmann  ..  ..  ..  ..  ,.  ..     404a 

from  lignite  or  shale  ;    Obtaining  paraffin  and  higlily 

viscous  lubricating  oils  from  .     (P)  Erdmann     283a 

and  the  like  ;   Apparatus  for  dehydration  of .     (P) 

Mandutz  and  Wohlleben        . .  . .  . .  . .     287a 

and  the  like  ;    Treatment  of  coal  .     (P)  Anderson         8a* 

low-temperature ;     Absence    of    naphthalene    and    the 

presence  of  its  derivatives  in  .     Fischer  and 

others     ..  ..  ..  ..  ..  ..  ..     211a 

low- temperature ;      Characteristics    of    .     Morgan 

and  Soule  . .  . .  . .  . .  . .  . .     495a 

low-temperature   coal- ;     Composition  of  and   of 

pitch  therefrom.     Marcusson  and  Picard  ..     803a 

low- temperature  ;    Conversion  of  phenols  of  into 

benzene  in  an  experimental  installation.     Fischer 

and  others         . .  . .  . .  . .  . .  . .     931a 

low-temperature ;    Economy    of    production    of    . 

Dolch 133a 

low-temperature ;      Gas    producer    for    gasification    of 

caking  coals,  with  recoverv  of  .     (P)  Pintseh 

A.-G 131A 

low-temperature ;    Manufacture  of  viscous  lubricating 

oil  and  paraffin   from  .     (P)  Allgem.   Ges.  f. 

Chem.  Ind 48A 

low-temperature;     Phenols  of  .     Weindel  ..     852a 

low-temperature  ;     Production    of    motor    spirit    from 

and  conversion  of  the  phenols  or  creosote 

into  benzol.     Fischer  . .  . .  . .  . .       46a 

low-temperature  ;    Production  of  semi-coke  and  

bv  distilling  bituminous  material,  such  as  coal  or 

lignite.     (P)  Deutsche  Erdol-A.-G.               . .  . .     890a 

low-temperature  ;    Utilisation  of  phenols  from for 

wood  preservation.     Peters  ..  ..  ..     671a 

Manufacture  of  .     (P)  Falk  169a 

Manufacture  of  drying  oils  from  lignite  or  producer- 
gas  .     Bube  ..  ..  ..  ..  ..      245A 

Means  for  facilitating  separation  of  liquor  from  . 

(P)  Glover  and  others  93a 

oil  ;     Production  of  lubricating  oil  from  lignite  . 

Jaeobsohn  . .  . .  . .  . .  . .  . .     134a 

oils ;      Manufacture    of    fatty    acids,    aldehydes,    and 

ketones  from  .     (P)  Harries  . .  . .       35a 

oils  ;    Manufacture  of  lubricating  oils  of  high  viscosity 

from  .     (P)  Chem.  Fabr.  Worms        . .      539a,  803a 

oils  ;   Manufacture  of  oils  for  cores  for  foundry  purposes 

from  .     (P)  Melamid      . .  . .  . .  . .     4.~>7a 

oils  ;    Separation  of  solid  phenols  from .     (P)  Otto    287a 

oils  ;    Treatment  of  waste  sulphuric  acid  from  refining 

to  recover  resinous  products.     (P)  Hilpert.  and 

Deutsch-Luxemburgische    Bergwerks    und    Hutten 

A.-G S03a 

paint  ;    Manufacture  of  coal  .     (P)  White  . .       23a 

paint ;     Manufacture   of   a   rapidly   drying  .     (P) 

Hochtl  and  others       . .  . .  . .  . .  . .       66a 

peat- ;    Obtaining  highly  viscous  lubricating  oils  from 

-.     (P)  Erdmann  . .  . .  . .  . .     285a 

Pine  in  Portugal        . .  . .  . .  . .  . .     402R 

Plant  for  continuous  distillation  of  .    (P)  Schaer     703a 

Poisonous  effects  of  road  on  fish  life       . .  . .     248r 

producer-gas  :      Manufacture    of    organic    acids    from 

.     (P)  Strache 210a 

producer-gas  ;    Manufacture  of  viscous   lubricating  oil 

and  paraffin  from .     (P)  Allgem.  Ges.  f.  Chem. 

Ind 48A 

products  industry  in  U.S.A.  ;    Census  of  the  coal- 419R 

recovery  from  by-product  coke-oven  gas  ;    Distribution 

of .     Washburn  and  Muns        . .  . .  658a 

Refining  coal  and  the  like.     (P)  Wells  and  Wells     975a 

road-;   Preparation  of in  gas-works.     Wikuer     ..     4.'>7\ 

-sands  of  Alberta  ;    Exploitation  of  . .  . .     100R 

-sands  ;    Separation  of  oil  from  Alberta .     Fyteman       14T 

Separating  water  from  coal .     (P)  Bismarckhuttc     662a 

Separation    of    constituents    containing    oxygen,    e.g., 

creosote     etc.    from    .      (P)    Allgem.    Ges.    i. 

Chem.  Ind.        . .  50a 

Separation  of  oils  and  pitch  from .     (P)  Lessing     . .     212a* 

shale- ;     Recovery    of    paraffin    wax    from    .     (P) 

Erdmann  . .  . .  . .  . .  . .  . .     404a 

stills.    (P)  Benn  and  others         211a 

stills  ;  Corrosion  of due  to  saline  substances  in  the 

«Tiu'inal  coal.     Bo«bm  359a 

Stills  for  continuous  distillation  of  .     (P)  Yeadon     703a 

Stoppage    of   condenser    in    distillation    of    coal    . 

Spalteholz         538a 

Toxicity  of  certain  constituents  of  coal  .     Kirby     218R 


Tar — continued. 

Treatment  of .     (P)  Plauson  and  Vielle  . .     474a 

Treatment  of  lignite-  and  shale  .     (P)   Erdmann     457a 

water-gas ;     Gas    from    destructive    distillation    of    a 

mixture  of  coal  and  .     Brown  ..         .,     241a 

works  ;    Report  on  by  the  Alkali  Inspector       . .     317R 

Tariffs  (customs  and  excise) :  alterations,  decisions,  etc. 
16R,  39R,  64R,  84R,  106R,  137R,  163R,  183R,  204R. 
226R,   249R,   271R,   297R,   319R,   338R,   355R,  376R, 

403R,  426R,  456R,  486R,  515R,  54lR,  574r 

Tartar,  cream  of ;    Position  of under  the  Safeguarding 

of  Industries  Act         ..  ..  ..  ..  ..     115R 

industry  in  Italy.     Molinari  . .  . .  . .  . .     159R 

Tartaric   acid   manufacturers;     Amalgamation   of   ■   in 

Italy 401R 

Neutralisation  of by  potash  in  presence  of  alkaline- 
earth  chlorides.     Simon  and  Zivy  . .  . .     956a 

Position  of under  the  Safeguarding  of  Industries 

Act  H5R 

Preparation  of .     (P)  Mach  and  Lederle   . .  . .     521a 

Presence  of in  mountain-ash  berries.     Von  Lipp- 

mann      . .  . .  . .  . .  . .  . .  . .     956a 

Tasmania  ;    Calcium  carbide  manufacture  in . .     292R 

Projected  fertiliser  industry  in  ..  ..  ..     264R 

Taste  ;    R61e  of  in  nutrition.     Berczeller         . .  . .     479A 

Taxtne,   an   alkaloid  from   the   yew  tree   (Tazus   baccata). 

Winterstein  and  Iatrides       . .  . .  . .  . .     230a 

s  baccata  ;  Taxine,  an  alkaloid  from .    Winterstein 

and  Iatrides      . .  . .  . .  . .  . .  . .     230a 

Teaching  of  chemistry;    Discussion  on  ..         ..       28R 

Telluric  acid  ;    Preparation  of  .     Meyer  and  Molden- 

hauer      . .         . .         . .         . .         . .         . .         . .       56a 

Telhirides  ;    Manufacture  of  colloidal  as  a  remedy  for 

malignant  tumor.    (P)  Lilienfcld     ..  ..  ..     7S6A 

Tellurium  ;    Alloys  of  with  lead  and  with  lead  and 

antimony.     Dreifuss  . .  . .  . .  . .     595a 

Cathodic  deposition  of  from  its  oxyacids  and  its 

analytical  determination.     Miiller  . .  . .     351A 

Hydrometallurgy  of  .     Hulot  ..  ..  ..       61a 

Pharmacology    of    selenium    and    .      Joachimoglu 

and  Hirose        231a,  23lA 

poisoning  ;    Rare  case  of  .     Adolphi  . .  . .     682a 

Tellurium  compound  ;    Addition  of to  gasoline  for  use 

in  high- compression  motors.     Midgeley  and  Boyd       79r 

compounds  ;    Action  of on  plants,     f  urina         . .     512a 

Tellurium    tetrachloride ;     Interaction    of    acetylpropionyl- 

methane  and  .     Morgan  and  Reeves  *. .     531R 

Temperature-measuring  device.  (P)  Jensen,  and  Westing- 
house  Electric  and  Mfg.  Co.  395a 

Temperatures ;      Rapid     calculation     of     maximum     

developed  in  chemical  reactions,  e.g.,  combustion. 
Brown  . .  . .  . .  . .  . .  . .     795A 

Tempering ;     Apparatus    for    annealing    and    .    (P) 

Lavaud  and  others      ..  ..  ..  ..  ..     637A 

Tenasserim.     Sec  under  India. 

Tennis  courts :    Manufacture  of  compositions  for  hard . 

(P)  Thompson  and  Bird        861A 

Terpene  compounds  ;    Higher  : 

Ruzicka  and  Meyer        . .  . .  . .      482a,  646a 

Ruzicka  and  Seidel         . .  . .  . .  . .     483a 

Ruzicka  and  others         . .  . .  . .  . .     482a 

hydrocarbons ;     Preparation   of   polycyclic   .    (P) 

Chem.  Fabr.  Schering  837a 

Terpencs ;     Action    of    the    Grignard    reagent    on    . 

Hepworth  . .  . .  . .  . .  . .  . .         9t 

Preparation    of    .    (P)    Leibbrandt  ..  ..     270a 

Terpin  ;  Identification  of in  a  complex  mixture.  Deniges     727a 

Melting   point   of  .     Clavera  ..  ..  ..     877a 

Terpin  hydrate  ;    Manufacture  of  .     (P)  Marchand     . .     392a* 

Melting   point  of  .     Clavera  ..  ..  ..     877a 

Occurrence  of in  nature.     Guild      . .  . .  . .     269a 

Terpineol  ;    Preparation  of .     (P)  Marchand      . .       231a,  309a* 

Terracotta  body  ;  Effect  of  fluxes  on  absorption  and  trans- 
verse  strength   of  a  .     Hill     ..  ..  ..     983a 

casting ;     Possibilities    of    .     Geller  , .  . .     102a 

Fire-cracking  of  .     Hill         633a 

Humidity  system  of  drying  .     Ortman  and  Davis     102a 

Kilns  for  burning  .     (P)  Jones  and  Jones  . .     860a 

Shivering  of .     Carruthers      ..  ..  ..  ..      710a 

Viscosity  of  Indiana  clay  slip  with  added  electrolytes 

in  regard  to  casting  of  .     Davis         . .  . .     89SA 

Tethelin,   the    alleged    growth-controlling  substance  of  the 
anterior  lobe  of  the  pituitary  gland.      Drummond 
and  Cannan       . .  . .  . .  . .  , .  . .     345a 

Tetraglucosan.     Pringsheim  and  Schmalz       . .  . .  . .     950a 

Tetrahalogen-hydrocarbons  ;     Apparatus   for  making  . 

(P)   Rodebush,    and    U.S.    Industrial   Alcohol    Co.     K*7a 
Tctrahydronaphthalene  and  its  derivatives  ;    Preparation  of 

nit ro- compounds      of     ■ .     (P)     Scliroeter    and 

Schrauth  169a* 

and  its  derivatives  ;    Preparation  of  reduction  products 

of   nitro-compounds   of  .     (P)    Scliroetcr  and 

Schrauth  169a* 

Nitro  and  amino   derivatives  of  .     Schroetcr  and 

others 133a 

Phvsieo-chemical    investigation    of    .       Herz     and 

Schuftan  538a 


SUBJECT  INDEX. 


219 


PAGE 

133a 

169  a* 

878a 
133a 

804A 

438A 
211A 

364A 


259A 
950A 


538A 
32R 


289A 

55A* 

854a 

213a* 
855a* 

541a 


Tetrahydronaphthalenesul  phonic  acids  and  their  derivatives. 
Schroeter   and    others 

ar-Tetrahydro-£-naphthoI  ;      Manufacture     of     .     (P) 

Schroeter  and  Schrauth 
ar-Tetrahydro-/3-naphthoIcarboxylic  acid  and  its  esters  and 

acyl     derivatives ;      Preparation     of     .    (P) 

Tetralin  Ges 

Tetrahydronaphthols     and     their     derivatives.     Schroeter 

and  others 
ar-Tetrahydro-a-naphthylamine  ;       Electrolytic      oxidation 

of  — — .     Ono  

2-ar-Tetrahydronaphthylquinoline-4-carboxylic  acids  ;     Pre- 
paration of  .    (P)  Chem.  Fabr.  Schering,  and 

others     . . 
ar-Tctrahydronaphthvlthioacetic     acids ;      Preparation     of 

.     (P)  Tetralin  Ges 

1.2.4.5-Tetrahydroxybenzene      and      related      substances  ; 

Colouring  matters  from .     Mukerji 

Tetrahydroxystearic  acids  derived  from  Hnolic  acid  ;    Four 

and  their  significance  with  regard  to  linolic 

acid  of  common  oils.     Kicolet  and  Cox 
TV'tr:il;evogIucosan.     Pringsheim   and   Schmalz 

Tetralin  ;     Physico-chemical    investigation   of   .     Herz 

and    Schuftan 
Texas.    See  under  United  States. 

Textile  fabrics  and  fibres.     See  under  Fabrics  and  Fibres, 
filaments  of  organic  origin  ;   Manufacture  and  treatment 

of  to  render  them  fireproof  and  waterproof. 

(P)  Dreaper 

goods  and  other  articles  ;    Machines  for  treating  

with    liquids.     (P)    Morgan 

goods  ;    Production  of  mixed  fibre  .    (P)  Teclino- 

chemia  A.-G. 

materials  ;  Apparatus  for  drying .    (P)  Hudson  and 

Lyles 

materials  ;    Degumming  .     (P)  Jenny  and  others 

materials;    Drying  .     (P)   Krantz  ..       459a 

piece  goods  ;   Apparatus  for  treating with  liquids. 

(P)  Morgan 11a* 

Textiles  ;     Developments    in   use    of   bleaching   agents    for 

.     Inman  36ST 

Production  of  white  or  coloured  effects  in  .     (P) 

Bayer   und   Co.  . .  . .  . .  . .  . .       95a 

Thallium-arsenic  alloys.     Mansuri        . .  . .  . .       418B,  819a 

-lead  alloys  ;   Constitution  of .     Guillet      . .         . .     106a 

Thallium  compounds  ;    Analytical  studies  on  .     Berry     394A 

Theobromine;  Apparatus  for  extraction^ with  boiling 

chloroform.     Schaap  . .  . ."        . .  . .  . .     781a 

content  of  cacao  beans  and  cocoa.     Wadsworth        98r,  388a 

Preparation  of  dialkylaminoethyl  derivatives  of  

(P)   Altwegg,   and   Soc.    Chim.    Usines   du   RhOne     484a* 
Theory  and  practice  in  an  industrial  problem.     Armstrong     415R  ] 

Therapeutic  progress  ;    The  chemist's  part  in  .    Pope     36SR 

Therm  system  of  charging  for  gas.    Pope       411R 

Thermal    analysis   of    metals   etc. ;    Apparatus   for   . 

Chevenard  . .  . .  . .  . .  . .  . .     220a 

conductivity  of  liquids,  insulators,  and  metals  ;  Measure- 
ment of  the .     Jakob       . .  . .  . .  . .     735A 

conductivity  at  temperatures  of  incandescence  ;   Deter- 
mination of  .    Von  Laue  and  Gordon         . .     802a 

Thermionically-active   filaments.      (P)  Wilson,  and  Western 

Electric     Co.  581a 

Thermit  mixture.     (P)  Merrefield 943a 

Use  of as  source  of  heat  in  burning  ceramic  ware. 

(P)    Luckhard  328a 

Thermochemical   standard   adopted   by   International   Con- 
ference on  Pure  and  Applied  Chemistry       . .  . .     328R 
Thermo-couples  ;   Life  tests  of  platinum  :   platinum-rhodium 

.     Fairchild   and    Schmitt         199a 

Thermostat  ;   Electric  heating  and  controlling  apparatus  for 

a  small  .     Bawling         250T 

Thermometers  ;    Construction  of  platinum  resistance  . 

Roebuck  .• 998a 

Thermometric  lag,   with  special  reference  to   cold-storage 

practice.     Griffiths  and  Awbery       . .  . .       474R,  961a 
Thiazine  dyestuffs  ;    Manufacture  of  hydroxyalkyl  deriva- 
tives of  .     (P)   British   Dyestuffs   Corp.,   and 

others 626a 

Methylene  Blue  ;    Action  of  salts  on  bleaching  of 

by  various  species  of  yeast.     Kumagawa  ..     153a 

Methylene    Blue  ;     Adsorption    of   by    activated 

sugar    charcoal.     Bartell    and    Miller         . .          . .     891a 
Methylene    Blue    group ;     Preparation    of    gold    com- 
pounds of .     (p)  Bayer  und  Co 522a 

Methylene  Blue  ;     Reduction  with  cadmium  in  volu- 
metric   determination    of    .     Treadwell    and 

others 919a 

Toluidine    Blue ;     Metachromism    of    ■ .      Schwarz 

and  Herrmann  . .  . .  . .  . .  . .     744a 

Thiazole    derivatives    of    the    anthraquinone   series ;     New 

mode    of    formation    of    .     Kopctsehni    and 

Wiesler  664a 

664a 


Thiazoles.     Bogert  and  Meyer 
Thiocarbanilide  ;      Determination     of 


Henderson 


Callan     and 


Thiocyanates  ;     Detection    of    chlorides    and    bromides    in 

presence  of .     Spacu       . .         . .         . .         . .     88lA 

Sensitive  reaction  for .     Spacu        . .         . .         . .     880A 

Thiocyanines.     See  under  Quinoline  dyestuffs. 
Thioindigo.     See  wider  Indigoid  dyestuffs. 
Thioisocyanines.     See  under  Quinoline  dyestuffs. 

Thionaphthene ;     Production    of   from    coal-tar.     (P) 

Ges.   f .   Teerverwertung         . .  . .  . .  . .     663a. 

Thionaphthenecarboxylic     acids  ;      Preparation     of     . 

(P)  Ges.  fiir  Teerverwertung,  and  others  . .         8a 

Thionaphthenesulphonic    acid  ;      Preparation  of  .     (P) 

Ges.   f.   Teerverwertung,   and   Weissgerber  . .     803a 

(S-Thionaphthisatin;      Manufacture     of    .        (P)     Soc. 

of  Chem.  Ind.  in   Basle        977a 

Thionic  epos  ;    Bhapsodies   culled   from  the  .    Arm- 
strong      253T 

Thiophene  series  ;  Manufacture  of  sulphur  preparations  of 

the  from  tar  oils  of  bituminous  rock  rich  in 

sulphur.     (P)  Scheibler         323a*,  364a 

series  ;    Studies  in  the  .     Action  of  acetylene  on 

pyrites.     Steinkopf  and  Herold         703a 

Thiosulphate  solutions  ;  Ageing  of  volumetric .     Hahn 

and  others         962a 

Thiosulphuric   ions ;     Reaction   between   nitrous  ions   and 

.     Falciola  413a 

Thioureas  ;    Manufacture   of  .     (P)    Kelly   and   others     197A 

Thoria  ;    Action  of upon  ethyl  and  isopropyl  acetates. 

Adkins  and  Krause      . .  . .  . .  . ,  . .     308a 

See  also  Thorium  oxide. 

Thorium  ;     Determination    of   in    monazite   sand   by 

an  emanation  method.     Helmick      ..  ..  ..       96a 

Treatment  of  materials  containing  .     (P)  Sirbcrt 

and  Korten       . .  . .  . .  . .  . .  . .     767a 

Thorium-X  ;     Oxidising   properties   of   .     Lemay    and 

Jaloustre  . .         . .         . .         . .         . .         . .     141a 

Thorium  compounds  ;    Recovery  of  .     (P)  Ryan,  and 

Lindsay  Light  Co.       . .         . .         . .         . .         . .     294a 

Thorium   nitrate ;     Determination    of    small    quantities    of 

silica  in  .     Hodgson       . .         . .         . .         . .     284T 

Thorium   oxide;    Reduction  of  by  metallic  tungsten. 

Research  Staff    of  General   Electric  Co.,   London 

(SmitheUs)         980a 

See  also  Thoria. 

Threads,   artificial  ;     Manufacture  of : 

(Pt  Borzvkowski  11a* 

(P)  British  Cellulose  and  Chemical  Mfg.  Co., 

and  others         459a,  542a 

P)  Dreaper  543a* 

(P)  Loffler  665a 

artificial  ;     Production  of  ,   particularly   multiple- 
filament    threads,    from    cellulose    solutions.     (P) 

Schulke  748a* 

artificial ;   Rotary  pumps   for  apparatus   for  spinninc. 
(P)    British    Cellulose    and    Chemical    Mfg.    Co., 

and  Mallock 584a* 

artificial ;     Spinning    nozzles    for    .    (P)    Schulke 

and  others         . .  . .  . .  . .  . .  . .     367a 

effect ;    Production  of  from  animal  fibres.     (P) 

Cassella  und  Co 249A 

effect ;    Production  of of  cotton  or  other  vegetable 

material.     (P)  Cassella  und  Co 249a 

Manufacture  of  brilliant  cellulose .     (P)  Joliot        . .     367a 

Treating  textile  and  other  yarns  or  to  remove 

starches ;       giims,     and     other     impurities.    (P) 
Takamine,  and  Takamine,  jun.         . .  . .  . .     627a 

Thymine  ;   Detection  of .     Baudisch  and  Johnson       . .     194A 

Detection  of  in  the  presence  of  sugar.    Deuel 

and   Baudisch  684a 

Thvmol  ;    Manufacture  of  .     (P)  Badische  Anilin-  und 

Soda-Fabrik 438a,  879a* 

Manufacture  of from  ajowan.     Lakhani  and  others     435A 

Manufacture    of    from    eucalyptus    oils.     Smith 

and  Penfold 78a 

Manufacture  of  synthetic .     (P)  Phillips      . .  . .     997a 

Thymol-mercuriacetates     and     their     derivatives.     Mameli 

and  Mameli-Mannessier  . .  . .  . .  . .     875A 

Thymus    striata*  ;     Essential    oil    of    Italian    .     Leone 

and  Angelescu  . .  . .  . .  . .  . .     346a 

Thymus   vulgaris  ;     Essential    oil   of   Italian   .     Leone 

and  Angelescu  269a 

Thyroid  gland  ;   Preparation  of  a  serum  for  treating  diseases 

of  the .    (P)  Dreising 959a 

New  constituent  of  the .     Sammartino        . .  . .     955a 

Tikitiki   extract  ;     Preparation   of   for   treatment   of 

beri-beri.     Wells  77a 

Tiles  ;  Manufacture  of .     (P)  Durato  Asbestos  Flooring 

Co.,  and  Nemeth         816a 

Waterproofing    .     (P)    Pokorny    and    Eddingston    983a 

Timber  ;    Dry  kiln  for  .    (P)  Kent,  and  Cooley  and 

Marvin  Co 142a 

Drying  apparatus  for .     (P)  Natural  Air  Dryers,  Inc.     861  A* 

Treatment  of with  a  gaseous  fluid.     (P)  Hensman     329a 

Tin  alloys  containing  iron  ;    Analysis  of  : 

Meyer         256a 

Wclwart 762A 


220 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


—  with  hydrogen 
Dede  and  Bonin 
by  the  Alkali  In- 


(P)  Victoria  Iron 


Tin — continued. 

coating ;    Preparation  of  iron  or  steel  for  .    (P) 

Maddy  . ,         . .         M 

Coating   steel    sheets    with    .    (P)    Peacock,    and 

Wheeling  Steel  and  Iron  Co.  . .         . .         . . 

-copper ;    Density  determinations  in  the  system  - — — 

at  high  temperatures.    Bornemann  and  Sauerwald 

Corrosion    patterns   on   cold- worked   .     Rawdon 

and  others 
deposits  ;    Production  of  dense,  nrmly-adhering . 

(P)  Schlotter  

deposits ;      Production     of     electrolytic     ■ .     (P) 

Langbein-Pfanhauser-Werke 

Detection  of .     Heller 

Electrodeposition  of  ■ .     Lottermoser  and  Brehm 

Electrolyte  for  electro-deposition  of .     (P)  Schulte 

Electrolytic  deposition  of  free  from  pores.     (P) 

Schlotter 
Electrolytic  production  of  adherent  deposits  of . 

(P)  Schlotter  M 

Electrolytic  refining  of  : 

(P)  Aikens        

(P)  Mathers,    and   American   Smelting   and 
Refining  Co. 
Extraction  of  from  tin-plate  chips.     (P)  Clerc 

and  Nihoul 
Hindrance   of   precipitation   of   — 

sulphide  by  neutral  chlorides, 
-plate  flux  works  ;  Report  on 

spector 
-plate  industry  in  Japan 
-plate  scrap  ;    Treatment  of . 

Rolling  Co.  Proprietary,  Ltd. 
-plates  ;     Machinery   for   manufacture   of .     (P) 

James 
Precipitation   of  from  alkaline  solutions.     (P) 

Brogelmann 
Primary    and    secondary    recrystallisation    of    . 

Masing 

Production,  imports,  and  exports  of in  1921 

Purification  of  .     (P)  Collins 

Rapid  estimation  of in  bearing  metals  and  like 

alloys.     Nagel 

Recovery  of .     (P)  Collins.. 

Recovery  of from  concentrates.     (P)  Alexander, 

and  American  Smelting  and  Refining  Co. 
Recovery  of  from  lead  ashes  etc.      (P)  Rhein- 

isch-Nassauische    Bergwerks-    u.    Hutten-A.-G., 

and  others 
Recovery   of  from   mixtures   of   metallic   con- 
stituents.    (P)  Bishop  and  Mullen 

Recrystallisation  of  cold-worked  .     Masing 

Reduction  with  lead  in  volumetric  determination  of 

■.     Tread  well  and  others 

Separation  of  arsenic,  antimony,  and .     Harm  . . 

Separation  and  determination  of  copper,  lead,  anti- 
mony and .     Kliug  and  Lassieur 

Titration  of  with  ferric  chloride.     Smith 

Treatment    of    .     (P)    American    Smelting    and 

Refining  Co. 
Treatment  of  pyritic   concentrates  containing  . 

Gudgeon 
Volume  changes  in  binary  alloys  of  lead,  bismuth, 

and  .     Gilbert   ' 

Volumetric  determination  of in  red  brass.     Muck 

Tiu  chloride  ;   Treatment  of  residues  containing .     (P) 

Metallbank  und  Metallurgische  Ges.(  and  Schopper 

Tin  hydride  ;    Preparation  of  gaseous  .     Paneth  and 

others 


Researches    on    the 


Tineola    biselUella     (clothes-moth)  ; 
.     Titschack 

Tinned  metal  ;    Production  of  coloured  coatings  on . 

(P)  Kirchholf  

Tinning   articles    by   electroplating   and    heat   treatment. 
(P)  Marek 

Tissues ;     Decomposition    and    extraction    of   .    (P) 

Tetralin  Ges.  

Titania  ;  Action  of upon  ethyl  and  isopropyl  acetates. 

Adkins  and  Krause 
See  also  Titanium  dioxide  and  oxide. 
Titanium    alloys.     (P)    Clemcut,    and    Cleveland    Brass 

Mfg.  Co .... 

Estimation  of in  ferrous  products.     Losana  and 

Carozzi 
ores    containing    iron  ;      Treatment    of    .    (P) 

Carteret  and  Devaux 
Reduction  with  cadmium  in  volumetric  determination 

of .     Treadwell  and  others 

Treatment  of  materials  containing .     (P)  Siebert 

and  Korten 
Titanium   dioxide  :     Determination   of  in   bauxite. 

Winch  and  Chandratreya 
Effect    of    on    fusibility    of    open-hearth    slag. 

Comstock 
Manufacture  of  from  bauxite.     (P)   Dutt  and 

Dutt 

Manufacture  of   crystalline  .     (P)   Carteret  and 

Devaux 


Titanium  nitrogen  compounds  ; 
(P)  Guignard 


Decomposition  of 


PAGE 

470a 

19a 

421A 

219A 

767a* 

472a 
443A 
106  A 
673a 

766a 

766A 

864A 

20A 

422A 

919A 

317R 
264R 

985A 

180a* 

327A 

672A 
333R 

422A* 

714a 
422a* 

766A 

472A 

422A 
256A 

919A 
962A 

17A 

351A 

717A* 

468A 

553a 

761a 

754A 
293A 
892A 
717A 
19A 
688A 
308a 

943A 
940A 
821A 
919A 
767A 
413A 
178A 
631A 
812A 
372A 


Titanium — continued. 

nitrogen  compounds  ;  Manufacture  of .     (P)  Von 

Bichowsky  and  Harthan     . .  . .  . .  . .     294A 

Titanium  oxide  pigments  ;    Manufacture  of .: 

(P)  Barton,  and  Titanium  Pigment  Co.      ..     335a 
(P)  Buckman    ..  ..  ..  ..  ..     381a 

(P)  Washburn,  and  Titan  Co.  A./S.  ..     335A* 

Production  of  — —  and  its  use  as  a  paint  material. 

Heaton  . .  ..  ..  ..  -M  ..      21GR 

Titanium  pigments  ;    Manufacture  of : 

(P)  Buckman 22A,  149A,  868A 

(P)  Carteret  and  Devaux       ..         ..         ..     771a 

Titrations  in  ethyl  alcohol  as  solvent.     Bishop  and  others     273A 
of  strong  solutions  against  weaker  standards  ;   Sliding 

scale  for  use  in .     Clark  , .  . .  . .      560R 

T.N.T.     See  Trinitrotoluene. 

Toads  ;   Poisonous  substance  of .     Wieland  and  Alles     607a 

Tobacco  ;   Determination  of  nicotine  in and  in  tobacco 

smoke.     Popp  and  Contzen  . .  . .  . .     995a 

-leaf;   Treatment  of .     (P)  Villacorta       ..  ..     119a 

Nicotine  content  of  S.  African .     Jurltz  . .  . .     422R 

smoke  ;    Carbon  monoxide  in .     Armstrong       ..     S13E 

Togoland  ;    Bauxite  and  chromite  in .     Robertson  . .      159R 

Toluene  ;    Distillation  of  a  mixture  of  benzene,  nt-xylene, 

and  .     Gay        . .  . .  . .  . .  . .      538a 

Manufacture  of  chlorinated  products  of  and  of 

triphenylmethane      dyestuffs       therefrom.      (P) 
Cassella  und  Co.       . .  . .  . .  . .  . .     805a* 

Manufacture    of     pharmaceutical    compounds    from 

.     (P)  Bayer  und  Co.  837A 

Production  of  benzene  and  from  cresol.     (P) 

Fischer  212A 

Products  of  nitration  of .     Gibson  and  others  ..     271a 

Thermal  conductivity  of .     Jakob  . .  . .      735A 

p-Toluene-l-azo-5-nitro-/3-naphthylamine.       Morgan    and 

Chazan  ..  ..  ..         ..         ..         ..         It 

o-Toluenesulphonamide  ;      Electrochemical    oxidation    of 

to  saccharin.     Fichter  and  Lei  we    . .  . .      195a 

Oxidation  of  .     Pamfilow  ..  ..  ..     783a 

Toluenesulphonamides ;     The   system,    o-   and   p-   ■ . 

Dobrjauski 996A 

^-Toluene-p-suplonyl-2-methyl-1.2   -   naphthylenediamine 
and  its  6-sulphonic  acid  and  their  azo  and  diazo 
derivatives.     Morgan  and  Gilmour  ..  ..  4T 

Toluidine  Blue.     See  under  Thiazine  dyestuffs. 
Toluidines  ;    Determination  of .     Callan  and  Hender- 
son     ..          ..          ..  ..  ..  ..  ..      162T 

2-2?-Tolylbenzothiazole     and    some    related    compounds. 

Bogert  and  Meyer    . .  . .         . .  . .         . .     664A 

Tomatoes  or  the  like  ;    Preparation  of  dried  products  from 

.     (P)  Mann 516A 

Tope  liver  ;  Fatty  oil  of .     Chapman  . .  . .  . .      508A 

Toronto    water  ;     Statistical    record    of    ,    1912-21. 

Howard  994A 

Toxicity  index  of  gases  from  lighting  and  heating  appar- 
atus   and    internal    combustion    engines.     Kohn 

Abrcst  3S9A 

Toxins  ;    Chemical  nature  of .     Salkowski     . .  . .     955A 

Production  of  bacterial  .     Walbum         . .  . .      4S0a 

Trade  Facilities  Act,  1921 1S0R 

Guarantees  under  the  ..  ..  ..  ..      541r 

Trade  information  register     . .  . .  . .  . .  . .     57lR 

Openings  for  British  16r,  39r,  64r,  85r,  107k, 

137R,  163R,  183R,  204R,  226R,  249R,  271R,  297B, 
319r,  33SR,  355R,  376R,  403R,  426R,  456R,  487R, 

515R,  540R,  574B 

of  United  Kingdom,  Jan.-Mar.,  1922 225R 

Transformer  oils  ;    Determination  of  sludge  value  of . 

Schwarz  and  Marcusson     . .  . .  . .  . .     535A 

oils;     Purifying   and    dehydrating .     (P)    Hap- 
good,  and  De  Laval  Separator  Co.  . .  . .     741a 

oils  ;     Temperature    coefficient    of    thermal    conduc- 
tivity of .     Jakob        ..  ..  ..  ..     735A 

Transport  of  loose  materials  by  means  of  gaseous  media  ; 

Regulating .     (P)  Brown,  Boveri  &  Co.       ..      797A* 

Transvaal.     See  under  South  Africa. 

Treasurer's  report        ..         ..  ..  ..  ..  ..     211T 

Trehalose  ;   Occurrence  of in  material  similar  to  ergot 

from  wild  oats.     Von  Lippmann  . .  . .  . .     956a 

Triacetin  ;    Preparation  of .     (P)  Bayer  und  Co.       ..     347a 

1  rhirvlmethane    dyestuffs  ;     Manufacture    of .     (P) 

British  Dyestuffs  Corp.,  and  others         ..  ..     853A 

Manufacture  of  basic  containing  a  thiazole  ring 

and  possessing  affinity  for  unmordanted  vegetable 
fibres.     (P)  British  Dyestuffs  Corp.,  and  others  . .      934a 

Manufacture   of  mordant-dyeing  .     (P)   Durand 

&  Huguenin  S.  A,  892A 

Tribromo-terf-butyl   alcohol   benzoyl   ester.     Aldrich  and 

Blanner  783a 

Tribromoxylenol ;     Action  of  on  tubercle  bacillus. 

Duboc  ..  ..  ..  ..  ..  ..      726a 

Trirhil'm  emctica.     See  Mafureira  oleifera 

Trichlorhydrin  ;    Manufacture  of .     (P)  Saunders  and 

others  484a 


SUBJECT  INDEX. 


221 


Drummond 
Marqueyrol 


Trichloroethylene ;      Manufacture     of    .     (P)     Mac- 

millan,  and  Niagara  Alkali  Co. 

Manufacture  of from  acetylene 

Manufacture    of    stable .     (P)    Consortium    fur 

Elektrochem.  Tnd. 

Saturation  character  of  .     Margosches  and  Baru 

Trichloroetliyl   ester   of   earbamic   acid  ;     Preparation   of 

.     (P)  Bayer  und  to. 

Triglycerides  ;     Hydrolysing   into   fatty   acids   and 

glycerin.     (P)  Tern 

Trihalogen-fer'-butyl     alcohols ;      Derivatives     of     . 

Aldrich  and  Blanner 
Trihexosan,   a  new   dcpolymcrisation   product   of  starch. 

Pictet  and  Jahn 
Triketohydrindene  reaction  for  colorimetric  determination 

of  amino-acid  nitrogen.     Riffart  .. 
Trimethylene  isomerism.     Velocity  of  ring  fission  in  gases. 
"Trautz  and  Winkler 

Preparation  of  pure  .    Trautz  and  Winkler 

Trimethyleneglycol ;      Determination    of    in    crude 

glycerin.     Cocks  and  Salway 

Preparation  of  .    Cocks  and  Salway 

Trimethyleneglycol  dinitrate.     Blechta 

2.3.6-Trimethylglucose.    Irvine  and  Hirst 

Trinidad  ;    Petroleum  industry  in  

1.3.5-Trinitrobenzcne  ;    Manufacture  of 
1.2.4. 6-Trinitrophenetol ;    Preparation  of 
and  Scohy 

Trinitrotoluene;    Manufacture  of  during  the  war: 

Lowry 
Macnab 

Trinitroxylene  ;    Manufacture  of  .    Macnab 

Triphenylmethane  dyestuffs : 

Crystal  Violet  ;    Manufacture  of  .     (P)  Trumbull 

and  others 
Fuchsine  ;    Effect  of  light  on  fibres  dyed  with  Chrys- 

aniline  and  .     Paddon 

Manufacture   of   from    chlorinated   products    of 

toluene.    (P)  Cassella  und  Co. 

Manufacture  of which  can  be  after-chromed.    (P) 

Cassella  und  Co. 

Methyl  Violet  ;    Preparation  of .    Creighton 

So-called    peroxidation    products    of    leuco-dcrivativcs 

of  .     Kehrmann  and  others 

Triphenylpararosaniline  hydrochloride  -    Formation  of  

from       diphenylamine       and       chloral-ammonia. 
Horiuchi 

Triphenylpararosaniline  hydrochloride  ;    Formation  of 

from  diphenylamine  and  chloral-ammonia.  Horiuchi 
Troostite.     See  under  Steel. 

Tropic  esters  of  alkylamines  ;    Relationship  between  con- 
stitution and  pharmacological  action  in  the  case 

of  benzoic  and  .     Von  Braun  and  others     . . 

Tropinonedicarboxylic   acid   esters ;     Preparation   of  . 

(P)  Merck  and  others 
Tropinonemonocarboxylic  acid  esters 
(P)  Merck 

(P)  Merck  and  Wolfes 
(P)  Merck  and  others     . . 
(P)  Willstatter  and  others 
(P)  Wolfes  and  Maeder  . .         . .    567a*, 

Tropinonemonocarboxylic  acids  ;   Preparation  of .    (P) 

Merck  and  others 
Trypafiavin.     See  3.6-Diamino-N-methylacridiuium  chloride. 

Trypsin  ;   Action  of  on  diastase.     Biedermann 

Determination  of  .     Kai 

-hydrochloric  acid  preparations  ;     Production  of  stable 

.    (P)  Akt.-Ges.  f .  Anilin-Fabr. 

Influence  of  reaction  on  action  of  .     Ringer 

Tryptophan  ;  Colorimetric  determination  of in  proteins. 

Liischer 
Colorimetric   determination   of   tyrosine,    cystine,   and 

in  proteins.     Folin  and  Looney 

content  of  some  foods,  and  tryptophan  requirement  of 
man.    Furth  and  Lieben 
Tube-mills  : 

(P)  Ferencz 

(P)  Newhouse,    and   Allis-Chalmers   Mfg.    Co. 

Tubercle    bacillus  ;     Action    of    tribromoxylenol    on    . 

Duboc 
Tuberculosis  ;    Preparation  of  oil  emulsions  by   means  of 
colloidal  silicic  acid  and  relationship  to  the  pro- 
cesses of  .    Kramer 

Tumor  ;    Manufacture  of  colloidal  selenides  or  tellurMes  as 

a  remedy  for  malignant .    (P)  Lilienfeld 

Tung  oil.     See  under  Oils,  Fatty. 

Tungsten  alloys  ;    Analysis  of  high-percentage  .     See 

alloys  for  contact  bodies  and  ignition  points.     (P)  Laise 

alloys  ;    Manufacture  of  bodies  of  .     (P)   General 

"  Electric  Co. 

Attempts  to  decompose  at    high   temperatures 

Wendt  and  Irion 
-cobalt  alloys.    Kreitz 

Determination  of  aluminium   in  .     Froboese  and 

Froboese  . .         „         _         


Preparation  of  - 
. .      270a, 


70a, 


33a 
190R 

439A 
157A 

959A 

945A 

783A 

871A 

841A 

727A 
785A 

17T 
18T 
441A 
723A 
402R 
338T 

349a 

3k 
354T 
360T 

137A 

411A 

8C5A* 

212a 
323a 

287A 

804A 
804a 


608a 

787a 

270a* 

436a 

436a 

567a* 

648a* 

787a 

305A 
614a 

787a 
192a 

993a 
526a 
192a 

845A 
89A 

726a 


825A 
786a 


984a 
555A 


673a 


900a 
378a 


331a 


Tungsten — cotrf  i  h  tied. 

Determination  of  small  amounts  of  molybdenum  in 

.     Hall 

Disintegration  of  : 

Wendt        

Wendt  and  Iron 
Effect    of    impurities    on    recrystallisation    in    . 

Smithells  12GR, 

electric  furnace  for  experiments   on  dissociation  and 

ionisation.     Compton 
Electrolytic   treatment   of   materials   containing  . 

(P)  Pearson  and  others 

-iron-carbon  ;    The  system  .     Daeves 

Manufacture  of  for  lamp  filaments.    (P)  General 

Electric  Co.,  Ltd.,  and  Smithells     .. 
ores  and  products  ;  Treatment  of  scheelite,  and  analysis 

of  low-grade  .    Lavers 

ores ;     Treatment    of    Colorado    .    Bonardi    and 

Williams 
ores ;     Treatment    of    tin-bearing    .     (P)    Becket, 

and  Electro  Metallurgical  Co. 

powder  ;    Analysis  of  .     Bonardi  and  Williams  . . 

powder ;     Determination    of    colloidal    part    of    . 

Lottermoser 
Production   of   incandescence   bodies  from  .    (P) 

Bergmann-Elektrizitats-Werke  A.-G. 
Reduction  of  thorium  oxide  bv  metallic .     Research 

Staff  of  General  Electric  Co.,  London  (Smithells) 
Reduction   of   tungstic   oxide   to    metallic   .    (P) 

Bleecker,  and  Tungsten  Products  Co 

Removal  of  carbon  from  .     (P)  Lohmann 

Separation    of   molybdenum    and    by    means   of 

selenium  oxychloride.     Merrill 
-steel.     See  under  Steel, 
wire    filaments ;     Drawn   .    ( P)    General    Electric 

Co.,  and  Goucher 
wires ;      Manufacture    of    drawn    .    (P)    Patent 

Treuhand-Ges.  f.  Elektr.  Gliihlampen 

Tungsten  carbide  ;    Manufacture  of  pieces  of  of  any 

desired  size.    (P)  Lohmann-Metall.  Ges.    . .    502a*, 

Manufacture  of  without  free  carbon  for  use  as 

tools  or  implements.     (P)  Fclder-Clement 

Tungsten  hydroxide  sols  :    Preparation  of  by  means 

of  Hildebrand  cells.     Kroger  

Tungsten   oxide  ;    Reduction   of  .    (P)   Pearson   and 

others 
oxides  ;    Purification  of  ores  and  residues  containing 

.    ( P)  Dyson  and  Aitchison 

Tungsten  trioxide  ;    Recovery  of  from  tungsten  ores 

and  the  like.    (P)  Lubowsky,  and  Metal  and  Ther- 
mit Corp. 
Tungstic  acid  compounds  ;    Preparation"of  non-phosphor- 
escent, highly  fluorescent  for  X-ray  photo- 
graphy.    (P)  Tiede 

Tungstic  oxide  ;    Manufacture  of  .    (P)  Bleecker,  and 

Tungsten  Products  Co. 

Tunis  ;    Exports  of  minerals  from  

Extraction  of  bromine  and  potash  in  

Olive  oil  industry  in  

Turbidity  standard.     Bechhold  and  Hebler 

Turbine    blading  ;      Means     for   reducing     or     preventing 

corrosion  of  .     (P)    Bailey,  and  Metropolitan 

Vickers  Electrical  Co. 

oils  ;    Determination  of  sludge  value  of .     Schwarz 

and  Marcusson 

Turkestan  ;    Radium  production  in  

Turkey-red  oils.    See  under  Oils,  Fatty. 

Turpentine,  Bordeaux-  ;  Constituents  of .     Dupont     . . 

from  dead  pine  trees.     Sherwood 

Extracting  rosin  and  crude  spirits  of from  yellow 

and  green  pine  stumps.     (P)  Jordon 

Manufacture    of    high-grade    resin    from    .    (P) 

Plauson's  Forschungsinst 

oil  from  Aleppo  pine  ;    Composition  of  .     Dupont 

oil  obtained,  e.g.,  in  manufacture  of  sulphate-cellulose  ; 

Improving  the  odour  of  .    (P)  Arldt 

in  Portugal 

Report  on  

Rdle    of    various    constituents    of    in    industrial 

syntheses.     Dupont 

Spanish  export  trade  in  

Twitchell's  reagent ;    Constitution  of  .    Sandelin 

Typha  fibres;    Improving  .    (P)  Elster 

Typha   domingensis  ;     Digestion   of   for   paper   pulp. 

Heuser  and  Haugerod 
Tyramine.    See  p-Hydroxyphenylethylamine. 

Tyre-filling     compositions  ;      Manufacture     of     .    ( P) 

Hayward,  and  Adanac,  Ltd. 

-filling  plastic  masses  ;    Production  and  use  of  . 

( P)  Gcdlert        

Tyrosine  ;    Colorimetric  estimation  of  tryptophane,  cystine, 

and  in  proteins.     Folin  and  Looney 

content  of  proteins  ;    Determination  of  .    Furth 

and  Fleischmann 

Microchemical    colorimetric    determination    of    . 

Hanke  and  Koessler 

Separation    and    estimation    of    .     Hanke    and 

Koessler  . . 


292R 
131R 

257A 

986a 

864a 
17A 

891 A 

145A 

553a 

901 A 
553A 

145A 

851A 

980A 

822a 
332a 


211A 
764A 

548A 
863A 
140A 
637A 
332A 


729a 

58a 
294R 
481R 
538R 
839A 


358A 

535A 
266R 


915A 
101R 


261A 
223A 

948a 
402R 
203R 

916A 
340R 
769A 
808a 

288a 


302a 
773a 
526a 
306a 
268A 
268A 


222 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


U 

PAGE 

Ucuhuba  fat.     Wolff 2U 

X'gauda  Protectorate  ;    Annual  report  on  trade  of . .  406r 

Ukraine;    Fertiliser  industry  in  the ..          ..          ..  455R 

"Ulinite,  a  constituent  of  black  sandstone.     Steel  . .          . .  2G3a 

Ultra-fllter-press  ;  Plauson and  the  processes  involved 

in  the  defecation,  carbonatation,  and  filtration  of 

sugar  juice.     Block             . .         . .         . .          . .  226a 

I  ltramicroscope ;    Use  of  for  examination  of  action 

of  poisons  on  cells  of  bacteria,  erythrocytes,  and 

yeast.     Traube  and  Klein  . .          . .          . .          . .  7S2A 

Ultramarine  ;    Manufacture  of  .     (P)  Guillochin  and 

Guimet           66a* 

Ultraradiations  ;    Photogenic  action  of  .     Nodon     . .  440A 

Ultra-violet  absorption  ;    Measurement  of  .    Wintrier 

and  others      . .          . .          . .          . .          . .          . .  879a 

rays  ;     Action  of  on   gels.     Holmes,  jun.,  and 

Patrick           3*23  A 

rays ;     Action    of   on  Saecharomyces   cerevisiae- 

De  Fazi  and  Be  Fazi          992a 

rays  ;    Influence  of  on  fermentation  and  yeast. 

Lindner          . .          . .          . .          . .          . .          . .  951a 

rays  ;   Protective  spectacles  for .     Inagaki         . .  374a 

rays;   Use  of in  analysis.     Kitching        ..         ..  525a 

"United  Kingdom  ;   Chemical  trade  in ..          ..          ..  64b 

Foreign  trade  of in  1921    ..          ..          ..          ..  40R 

■  Output  of  minerals  in . .          . .          . .          . .  457R 

United  States  :  Abrasive  materials  in in  1919  and  1920  80R 

Annual  prize  of  25,000  dollars  for  chemists  in . .  399R 

Barytes  and  barium  products  in in  1920  . .          . .  131R 

Bureau  of  Mines  laboratory  car             ..          ..          ..  131R 

Cadmium  in in  1921           419R 

'amphor  industry  in  ..          ..          ..          ..  453R 

Carbon  black  produced  from  natural  gas  in  in 

1920 60R 

Cement  in  in  1919  and  1920         245R 

Census  of  the  dye  and  coal-tar  products  industry  in 

the 419R 

Chemical  exports  from . .          . .          . .          . .  377r 

Chemical  Warfare  Service          . .          . .          . .          . .  157R 

Chemists  in  public  life  in  . .          . .          . .          . .  509R 

Chromite  in in  1920            219r 

Coal  exports  to . .          . .          . .          . .          . .  336r 

Demand  for  return  of  sequestrated  German  patents  in 

311R 

Dye  embargo  in  . .          . .          . .          . .          . .  332R 

Earnings  of  chemical  companies  in in  1920       ..  4sl!u 

Exports  of  German  chemicals  to ■  . .          . .          . .  107R 

Exports  of  petroleum  from  in  1921         . .          . .  205R 

Felspar  in in  1919  and  in  1921 32R 

Fertiliser  industry  in .     Lipman  . .          . .          . .  233R 

Foreign  trade  of in  1921 138R 

Formation   of    Chemical    Equipment    Association    in 

265R 

Formation  of  Technical  Photographic  and  Micro- 
scopical Society  in . .          . .          . .          . .  265R 

Fuller's  earth  in in  1920 15SR 

Government  assistance  to  chemical  industry  in  371R 

Gypsum  in in  1920             198R 

Imports  of  dyes  tuffs  into in  1921          ..          ..  205b 

Investments  in  chemica  education  in 1920-21  . .  482k 

Lime  in in  1919 175B 

Lime  in  — —  in  1920 349R 

Mica  in in  1920 453R 

Mineral  potash  in  Western  Texas         . .          . .          . .  32R 

Jsew  customs  tariff  in  . .          . .          . .          . .  419R 

New  duties  on  chemicals  in . .          . .          . .  265R 

New  sulphur  deposit  in  ..          ..          ..          .-  79r 

Organisation  of  Chinese  chemists  in . .          . .  265R 

Patent  fees  in  ..          ..          ..          ..          ..  175B 

Peat  in in  1920 176r 

Position  of  Allied  Dye  and  Chemical  Corporation  . .  265R 

Potash  in in  1920 8r 

Potash  plant  at  Scarles  Lake    . .          . .          . .          . .  265R 

Production  and  consumption  of  sugar  in in  1921  350R 

Production  of  acids  in in  1921     . .                       . .  568R 

Proposed  change  In  patent  law  in  ■ . .          . .  265R 

Proposed  fertiliser  combine  in  . .          . .          . .  40R 

Research  work  on  fertilisers  in . .          . .          . .  292R 

Sand-lime  brick  in in  1920           158R 

Sodium  compounds  in  ■ in  1920   . .          . .          . .  206R 

Stone  in in  1919 312r 

Strontium  compounds  in in  1920             . .          . .  176R 

Talc  and  soapstone  in in  1920 482R 

Zinc  production  in in  1921           . .          . .          . .  332R 

Uranium  alloys  with  nickel,  iron,  and  aluminium.     Heller  819a 

Determination  of in  presence  of  phosphoric  acid. 

Schoep  and  Steinkuhler     . .          . .          . .          . .  569a 

Electromctric  titration  of  with  potassium  per- 
manganate and   potassium   bichromate.     Ewing 

and  Eldridge            691a 

Extraction  of  vanadium,  radium,  and from  ores. 

(P)  Bleecker,  and  Tungsten  Products  Co.           ..  63a 

Glacial  acetic  acid  method  for  determining  in 

carnotite.     Scott 762a 

Qualitative  test  for  .     Buetl         ..          ..          ..  595a 

Reduction  with  cadmium  in  volumetric  determina- 
tion of  .     Treadwell  and  others       ..          ..  919a 

Removal  of  carbon  from .     (P)  Lohmann            . .  332a 


from 

Stickstorf- 

-^     (P) 
.     (P)  Soc. 


Uranium  oxides.     Lebeau 

oxides  ;    Radioactivity  of  the .     Staehling 

oxides  ;     Relationship   between   the   different 

Jolibois  and  Bossuet 
Urea  :     Catalysts   for  use  in   manufacture  of  — 

calcium   cyanamide.     (P)    A.-G.   fur 

diinger 
Conversion   of    calcium   cyanamide   into 

Nydcgger  and  others 
Conversion  of  cyanamide  salts  into  

d' Etudes  Chim.  pour  l'lnd. 
Course  of  alcoholic  fermentation  in  presence  of . 

Sandberg 
Decomposition  of  by  sodium    hypobromite    in 

alkaline    solution,    and    its    estimation    by    the 

hypobromite  method.     Werner 
or  its  derivatives  ;    Manufacture  of  resinous  conden- 
sation products  of  formaldehyde  and  .     (P) 

Johns 

Detection  of .     Pincussen 

Direct  synthesis  of from  carbon  dioxide  aud 

ammonia.     Bailey 

Gasometric  determination  of .     Stehle 

Hypobromite  reaction  on  .     Menaul 

Industrial  conversion  of  ammonia  into, .     Matignon 

and   Frejacques 
Manufacture    of    .     (P)     Badische    Anilin    und 

Soda  Fabrik  647a 

Manufacture    of    from    ammonia    and    carbon 

dioxide.     (P)  Krase 

Manufacture  of  from  calcium  cyanamide : 

(P)  Meister,  Lucius,  und  Bruning 
(P)  Nydegger  and  Schellenberg 

Manufacture  of from  cyanamide.     (P)  Lie 

Manufacture  of ■  from  cyanamides.     (P)  Lie,  and 

A./S.  North- Western  Cyanamide  Co. 
melts  from  carbonic  acid  compounds  of  ammonia  ; 

Treatment   of   .     (P)    Badische   Anilin   und 

Soda  Fabrik 
as  nutrient  material  for  plants.     Bokorny 
Synthesis  of from  ammonia  and  carbon  dioxide. 

Krase  and  Gaddy 
Transformation    of   ammonia   into   .     Matignon 

and  Frejacques 
Transformation  of  ammonium  carbamate  into  

Matignon  and  Frejacques 
Value  of for  increasing  yield  of  milk  from  cows. 

Voltz  and  others 
Action    of    cholesterol    on   .     Jacoby    and 


Urease ; 

Shimizu 

Urethanes  of  anthraquinone.     Battegay  and  Bernhardt  . . 
Urginca   maritima  ;     Extraction    of    a    therapeutic    drug 

from .     (P)  Rose  and  Rosenthaler  .. 

Urginea  scilla.     See  Red  squill. 

Urine  ;    Detection  and  determination  of  nitrate  nitrogen 

in .     Nolte 

Methods  to  prevent  nitrogen  losses  during  storage  of 

.     Josh! 

Uruguay  ;    Report  on  economic  and  financial  situation  in 

.     Buxton 

Urushiol  ;    Position  of  the  double  bonds  in  the  side-chain 

of,  and  demonstration  of    non-homogeneity  of 

.     Majima 

Ustilago    hordei ;     Chemico-therapeutics    of    .     Binz 

aud  Bausch 


PAGB 

215a 
97a 

215A 


440A 

157A 

79a 

340a 

996a 


183a» 
964a 

685A 

345a 
345A 


878a 

878A 

521a 

524a* 

610a« 


523a 

950a 

610A 
231A 
519a» 
779A 

340A 

805a 

878a 

650a 
723A 

182R 

182a 

478A 


Vaccines  and  the  like  ;    Sterilising  .    (P)  Bayer  und 

Co 6S8A 

Manufacture  of  specific  .    (P)   Elektro-Osmose 

A.-G.  119A 

Preparation  of  detoxicated  .     (P)  Thomson     ..     34Sa* 

Vacua  ;    Mercury  vapour  pumps. for  high .     (P)  A.-G. 

Brown,  Boveri  &  Co.         . .  . .  . .  . .  lA 

Production  of  high .     (P)  Tesla 449a 

Production    of    by    means    of    charcoal.     (P) 

Verein  Chem.  Fabr.  in  Mannheim  . .  . .     737a 

Vacuum-insulated     vessels.     (P)     Chem.     Werke     vorni. 

Auerges 102a 

tubes  ;   Fastening  electrodes  in .     (P)  Elektrische 

Gluhlampenfabr.  "  Watt "  A.-G.  . .  . .  6a 

tubes :    Manufacture  of  thermionic  cathodes  for  . 

i  P)  Western  Electric  Co 538A 

Valve ;    Adjustable  water-sealed  for  use  in  recovery 

of  volatile  solvents.     Butler  and  others        . .  . .     107T 
Valves  of  cylinders  for  high-pressure  gases  ;  Preventing  burn- 
ing-out   of    pressure -reducing    .     (P)     Chem. 

Fabr.  Gricsheim-Elektron 163a 

Means  for  actuating  gas   and  air  of  gas-heated 

furnaces.     (P)   South   Metropolitan   Gas    Co.,   and 

others 698A* 

Water-cooled for  controlling  delivery  of  hot  gases 

from    furnaces    and    other   sources.     (P)    Dyffryn 

Works,  Ltd.,  and  others         401a* 

Vanadic  acid  ;    Co- precipitation  of  ■ with  ammonium 

phosphomolvbdate  in  analysis  of  steels.     Cain  and 
Sostetter  272a 

solutions;    Reduction  of  with  mercury.     McCay 

aud  Anderson,  jun 500A 


SUBJECT  INDEX. 


223 


PAGE 

Yanadinite  in  the  Transvaal.    Fergusson  and  Wagner         . .       ;j2r 

Vanadium ;     Analytical    chemistry    of    with    special 

reference  to  steel  works  materials.     Briefs  . .     594a 

Colorimetric   determination    of   in    steel.     Kropf     594a 

Determination  of in  steel.    Missou  . .         . .         . .     120a 

Extraction  of  uranium,  radium,  and  from  ores. 

(P)  Bleecker,  and  Tungsten  Products  Go.  ..       63a 

ore ;    Exports  of  from  Peru  159r 

ores  ;  Treatment  of .     (P)  Gildemeister      . .  . .     471a 

Production  and  uses  of . .         . .         . .         . .     454R 

Recovery  of  : 

(P)  Carpenter,  and  Colorado  Vanadium  Corp.  20A 
(P)  Stokes,  and  United  States  Processes,  Inc.  822a. 
(P)  Thews,  and  Colorado  Vanadium  Corp.       . .     901a 

Recovery  of from  basic  phosphate  slags.  (P)  Naegell     767a 

Reduction  with  cadmium  in  volumetric  determination 

of .     Treadwell  and  others         919a 

solutions ;      Removing     phosphorus    from    .     (P) 

Erickson,  and  Union  Carbide  and  Carbon  Research 
Laboratories      . .  . .  . .  . .  . .  . .     632a 

Vanadium  compounds  as  driers  for  linseed  oil : 

Gardner 947a 

Rhodes  and  Chen  334a 

compounds  in  medicine        . .  . .  . .  . .  . .     373R 

compounds  ;    Occurrence  of in  ceramic  materials 

and  their  action  on  the  refractoriness,  colour,  and 
tendency  to  form  scum  on  pure  kaolins  and  a  typical 
brick  clay.     Kallauner  and  Hruda  ..  ..     814a 

Vanilla  bean  crops  ;  Forecasts  of ..         ..         ..     177r 

Vanilla-sugar ;     Refractometric    determination    of    vanillin 

in  .     Hasse  306a 

Vanillin  ;    Detection  and  determination  of  in  brandy. 

Von  Fellenberg  643a 

Manufacture  of .     (P)  Soc.  Chim.  Usines  du  Rhone 

197a, 566a 

Micro-analytical  determination  of  .     Wohack     . .     115a 

Refractonietric  determination  of  in  vanilla -sugar. 

Hasse 306a 

Synthetic  manufacture  of . .  . .  . .  . .       69r 

Vanillin  glyceride.     Dodge         . .  . .  , .  . .  . .     566a 

Vaporisation  ;   Determination  of  heats  of from  vapour 

pressure  data.     Lewis  and  Weber  . .  . .     573a 

Molal  entropy  of as  a  means  of  determining  heats 

of   vaporisation.     Lewis   and    Weber         . .  . .     573a 

Vapour  arising  from  boiling  saline  solutions  ;    Temperature 

of .    Harker        56a 

pressure  of  ternary  mixtures.     Porter      ..  ..  ..       78R 

Production  of  especially  for  use  in  engines.     (P) 

Caldwell  454a 

Vapours  ;    Absorption  and  purification  of .     (P)  Adler     926a 

Apparatus  for  extracting  from  gaseous  mixtures. 

(P)  Bun-ell         127a 

Apparatus  for  purifying .    (P)  Graefe         . .  . .     621a 

Apparatus    for    purifying    by    passage    through 

narrow  slits.     (P)*Buhrins 316a 

Calculation   of   adsorption   of  ■   at   different   tem- 
peratures.    Berenyi     . .          . .  . .  . .  . .     489a 

Dry  method  of  purifying .     (P)  Grosse  . .  . .     359a* 

Method  of  dissipating  heat  in   process  for  extracting 

from    gaseous    mixtures.     (P)    Burrell    and 

others 490a 

Removing    moisture    from,    and    heating    .    (P) 

Josse  and  Gensecke      . .  . .  . .  . .  . .     206a 

Separating  or  isolating  organic  .     (P)  Bayer  und 

C« 281A» 

Treating   gases  and  formed   by  heating  organic 

materials.     (P)  Webster         676a 

of  volatile  substances  ;    Determination  of in  air  of 

rubber  factories  etc.      Fritzmann  and  Macjulevitsch    9S9a 

Volatilising,    distilling,    or   separating    absorbed   . 

(P)  Voress  and  others  . .         . .         . .         . .     622a 

Varnish  ;    Changes  in  electrical  conductivity  of  insulating 

during  drying.     Weber  867a 

Changes  occurring  during  storage  of .     Wolff        . .     148a 

colours  miscible  with  water.     (P)  Giinter         . .  . .     772a 

Detection    of    lead,    manganese,   and    cobalt   in . 

Vollmann  . .         . .         . .         . .         . .         . .     381a 

films  ;    Speed  of  evaporation  of  thinners   from  . 

Gardner  and  others      . .  . .  . .  . .  . .     904a 

films  ;   Testing  hardness  of .     Wolff  . .  . .     558a 

Fire-resisting .    Gardner       903a 

Italian  market  for . .  . .  . .  . .  . ,     460R 

-like  coating  and  impregnating  material  ;    Manufacture 

of   ■ .     (P)    Deutsche    Conservierungsges.        . .     425a 

and  the  like :    Manufacture  of  a  base  for  .    (P) 

Chern.    Fabr.    Worms  382a 

Manufacture  of  : 

(P)  Acheson,  and  Acheson  Corp 906a 

(P)  A.-G.  fur  Anilin-Fabr 300a 

(P)  Cabot,  and  Cabot,  Inc 425a 

(P)  Schilsky         510a 

(P)  Traun's  Forschungslaboratorium  . .     381a 

(P)  Willkie,  and   U.S.  Industrial  Alcohol  Co.     301a 
(P)  Young,  and  Robertson  Co.  . .         . .     989a 

Manufacture  of  acid-resisting .     (P)  Wickenden,  and 

Industrial  Chemical  Co.  . .  . .  . .  . .       66a 

Manufacture    of    fireproof    .     (P)    Saunders    and 

others 66a 

market  in  Algeria 40r 

Mtil-urement    of    consistency    of   .     Gardner   and 

Holdt 905a 


page 


— .     (P)    Schwarcman,    and 

Gardner 
-  from  estcrified  fossil  resins. 


301a 
903a 


Varnish — continued. 

oils  ;     Manufacture    of 

Kellogg  and  Sons 
Physical  testing  of  — 
Production  of  neutral  - 
Gardner  and  Holdt 

Recovery  of and  of  other  ingredients  from  waste 

micanite    and    the    like.    (P)    De    Whalley,    and 
Mieanite  and  Insulators  Co. 

Removal    of    .     (P)    Tiddy,    and    Rainey-Wood 

Coke    Co. 

remover.     <P)  Ellis,  and  Chadeloid  Chemical  Co. 

solvents  ;   Evaporation  of .     Wclff  and  Dorn 

Standard    apparatus    for    determining    consistency    of 

by  the  air-bubble  test.     Gardner  and  Holdt     905a 

substitute  ;    Manufacture  of  .     (P)  Schilsky         . .     382a 

used  in  aeroplane  construction.     (P)  Groves  and  Holz- 
apfel 

Vaseline,   artificial ;     Manufacture   of  from    mineral, 

vegetable,£and  animal  oils.     (P)  Plauson's  Forsch- 
ungsinst. 

Examination  of .     Pyhalit 

Manufacture  of  artificial   from   mineral,   animal, 

or   vegetable   oils.    (P)   Plauson's  Forschungsinst. 
Vat    preparations ;     Manufacture    of    stable,    dry,    readily 

soluble .     (P)  Meistex,  Lucius,  u.  Briining 

Vegetable  fibres.     See  under  Fibres. 

juices  ;    Filtration   of  .     Andre 

materials  ;   Conservation  of .    (P)  Schweizer 

oils.     See  under  Oils,  Fatty. 

Vegetables  ;  Apparatus  for  drying .     (P)  Benjamin 

Dehydrators   for  .     (P)   Rea  

Preservation   of  : 

(P)  Faitelowitz,  and  Chemical  Foundation,  Inc. 

(P)    Imperial    Trust    for    Encouragement    of 

Scientific  and  Industrial  Research,  and  Kidd 

Treating in  preparation  for  canning.     (P)  Willison, 

and  Theruiokept  Products  Corp. 
Venezuela  ;  Report  on  economic  and  commercial  conditions  of 

.     Beaumont 

Veronal ;    Reaction   of   .    Fabre  

Victoria.     See  under  Australia. 

Vine  louse  ;  Means  for  exterminating .     (P)  Horst 

Vinegar  ;  Detection  of  mineral  acids  in by  measurement 

of  hydrogen  ion  concentration.     Kling  and  others 

milk- ;  Manufacture  of .     (P)  Felicien,  and  Huberty 

et  Cie.  

Polarisation  of  .     Balcom  and   Yanvosky 

and  similar  products  ;    Maturing  and  improving  . 

(P)  Jarraud  and  Roussel 

Vinyl  chloride ;    Photopolyraerisation  of ,  and  problem 

of  caoutchouc.     Plotnikow     ..  ..  ..  ..     261A 

Vinyl  compounds  and  polymerisation  products ;  Manu- 
facture of  .  (P)  Traun's  Forschungslabora- 
torium Ges. 

halides  ;    Manufacture  of  : 

(P)  Plansou  

(P)  Traun's  Forschungslaboratorium  Ges. 
Vinylsulphuric    acid    and    homologues  ;      Manufacture    of 

.     (P)   Traun's   Forschungslaboratorium 

Viscose  ;    Manufacture  of  .     (P)  Dreyfus 

Manufacture  of  artificial  goods  from  .     (P)   Luit 

Manufacture  of  artificial  threads,  films,  and  the  like 

from .     (P)  Jentgen 

Manufacture  of   coloured   threads,   filament  strips,   or 

films  of  .     (P)  Courtaulds,  Ltd.,  and  Wilson 

Manufacture  of  durable  masses  from .     (P)  Gassnian 

Manufacture    of    lustrous    threads    from    crude    . 

(P)  Bronnert,  and  Chemical  Foundation,  Inc. 

Manufacture  of  threads,  filaments,  strips,  or  films  of : 

(P)    Courtaulds,    Ltd.,    and    Callimachi 
(P)  Courtaulds,  Ltd.,  and  Hegan 

Manufacture  and  treatment  of .     (P)  Plauson 

Precipitating     cellulose     from     .     (P)     Deutsche 

Zellstoff-Textilwerke  

Precipitation  of .     (P)  Steimmig 

Preliminary    treatment    of    cellulose    for    manufacture 

of .    (P)  Technochemia  A.-G. 

process ;   Behaviour  of  incrustants  of  cellulose  fibres  in 

the .     Schwalbe  and  Becker 

Recovery  of  carbon  bisulphide  in  working  up  of  

into  artificial  fibres,  films,  etc.     (P)  Kampf 
Removal    of    sulphur    compounds    from    coagulating 
baths  and  waste  gases  produced  in   manufacture 

of .     (P)  Schulke  

solutions  ;    Manufacture  of  .     (P)   Dreaper      459a,  543a* 

solutions  ;     Manufacture  of  spun    material  resembling 

wool,  cotton,  or  chappe  from  .    (P)  Minck, 

and  Chemical  Foundation,  Inc. 

solutions  ;   Preparation  of suitable  for  manufacture 

of  threads.     (P)  Linkmeyer 
solutions  for  production  of  films,  threads,  and  filaments  ; 

Preparation   and   preservation  of  .     (P)  Mit- 

scherling,  and  Atlas  Powder  Co. 
threads  ;    Machine  for  spinning,  washing,  and  drving 

.     (P)  Denis  

Treatment  of  artificial  goods  from .     (V)  Luit 

Viscosimeter;      Drainage    error    in    the     Bingham     . 

Herschel 964a,  1001a 

New  form  of  hydrogen  capillary .     Nakano         . .     366a 


947 


301a 

559a 
261A 
947a 


66a* 


S26a 
800a 


300a 
749a* 


692a 
229a 


430a 
606a 


76a 
115a 


644a 


14R 

876a 


193a 


153a 


341a* 
341a 


28a 


436a 


729a* 
437a 


748  a 
290a 

628a* 


627a 
367a 

410a* 

627a 
G27a 
806a 

95a 
54a* 

854a 

367A 

459a 


542a 


807a 
807a 


459a 


24^\» 
248a 


224 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 
235A 
659a 


Viscoslmeters.    (P)  Moody        . .         . .         . .     -    . . 

fur  fuel  oil.     Herschcl         

Viscosity  of  highly  viscous   materials;    Determination   of 

.     (P)  Frink  83a 

of  liquids  of  very  different  fluidity  ;  Viscostalagmo meter 

for  estimation  of .     Traube        ..  ..  ..     121a 

of   molten   glass ;     Suggested    method  for  determining 

absolute  .     Masson    and   others  . .  1 7'j\ 

of  oils  ;    Change  in with  temperature.     Herschel     929a 

of    petroleum    and    other    oils  ;     Determination    of 

absolute .     Fulweiler  and  Jordan     . .  . .     928a 

Viscostalagmometer  for  estimation  of  surface  tension  and 
viscosity  of  liquids  of  very  different  fluidity. 
Traube  121a 

Vitali's  reaction;  Relation  between  constitution  of  alka- 
loids and .     Hardy      . .  782A 

Vitamin  ;    Anti-beri-beri  .     See  Vitamin  B. 

Anti-neuritic  .     See  Vitamin  B. 

Anti-scorbutic  .     See  Vitamin  C. 

content  of  Indian  foodstuffs.     Ghose  . .  . .  . .     343a 

content  of  micro-organisms  in  relation  to  composition 

of  culture  medium.     Eijkmau  and  others  . .     305a 

content  of  rice;    Impossibility  of  estimating by 

the  yeast  method.     Fleming         ..  ..  ..       74A 

Existence  of  a  which  promotes  calcium  depo- 
sition.    McCollum  and  others       . .  . .  . .     873a 

requirements  of  certain  yeasts  and  bacteria.     Funk 

and  Dubin     . .  . .  . .  . .  . .  . .       72a 

Vitamin  A  from  carrots.     Von  Euler  . .  . .  . .     953a 

of  cod-liver  oil.     Lax     . .         . .  . .         . .         . .     230a 

Conditions  of  activity  of .     Von  Euler  ..  ..     953a 

deficiency  ;    Behaviour  of  blood-platelets  in and 

after  exposure  to   radium   emanation.     Cramer 

and  others     . .  . .  . .  . .  . .  . .     216r 

Determination  of  fat-soluble  .     Zilva  and  Miura       74a 

Distribution  of  fat-soluble in  marine  animals  and 

plants.     Hjort  216R,  564a 

fraction  of  cod-liver  oil ;    Chemistry  of .    Drum- 

mond  and  Coward    . .  . .  . .  . .  . .     561R 

Occurrence  of  fat-soluble with  yellow  plant  pig- 
ments.    Steenbock  and  Sell  . .  . .  . .     343a 

Origin  of in  fish  oils  and  fish  liver  oils.     Drum- 

mond  and  others      ..  ..  ..  ..  ..     913a 

Relation  of  fat -soluble to  rickets  and  growth  in 

pigs.     Golding  and  others  . .  . .  . .  . .     606a 

Relation  of  photosynthesis  to  production  of  in 

plants.     Wilson        . .  . .  . .  . .  . .     479a 

Significance  of in  nutrition  of  fish.     Coward  and 

Drummond    . .  . .  . .  . .  . .  . .     993a 

Synthesis    of   by    a    marine  diatom  (Nitzschia 

closterium)    growing    in    pure    culture.     Jameson 

and  others     . .  . .  . .  . .  . .  . .     913a 

value  of  cod-liver  oil ;    Influence  of  the  processes  of 

manufacture  on  .     Drummond  and  Zilva  . .     280T 

Vitamin  B  ;    Bacteria  as  a  source  of  water-soluble  . 

Damon  . .  . .  . .  . .  . .  . .       74a 

and  co-enzymes.     Von  Euler  and  Myrbiick  . .  . .     190a 

Experiments  on   isolation   of  the   antineuritic  . 

Seidell  191a,  833a 

Glacial  acetic  acid  as  solvent  for  antineuritic  water- 
soluble  .     Levine  and  others  . .  . .     781a 

Growth-promoting  ■ of  lemon  juice.     Leuchten- 

tritt  and  Zielaskowski        ..  ..  ..      913a>  913a 

Physiological  researches  on  and  water-soluble 

biocatalysts.     Blohm  and  others  . .  . .  , .     953a 

Preparation  and  properties  of .     Tsukiye  . .     833a 

Presence  of  antineuritic  water-soluble in  chloro- 
phyll-free plants.     Orton  and  others       . .  . .     780A 
Thermostability  of  the  co-enzyme  and  its  separation 

from from  yeast.     Tholin      . .         . .         . .     190a 

Water-soluble and  bios  in  yeast  growth  : 

Eddy  and  others  . .         . .         . .         . .     340a 

Fulmer  and  Nelson      . .  . .  . .  . .     340a 

Vitamin  C  ;   Determination  of .     Sherman  and  others     266a 

Effect  of  heating  antiscorbutic  in  presence  of 

invertase.     Smith  and  Medes         . .  . .  . ,        74a 

Effect  of  temperature  and  concentration  of  hydrogen 

ions  upon  rate  of  destruction  of  .     La  Mer 

and  others     . .  . .  . .  . .  . .  . .     266a 

Solubility  of  antiscorbutic from  desiccated  orange 

juice.     Hart  and  others      ..  ..  ..  ..     606a 

Vitamins  : 

Frankel  563a 

Gralka  and  Aron  . .  . .  . .  . .     266a 

Acceleration   of   yeast   fermentation    by   extracts   of 

animal  organs.     Frankel  and  Hager         ..  ..     265a 

Adsorption  of .     Frankel  and  Scharf       . .  . .     265a 

Chemistry  of .     Frankel  and  Scharf         . .  . .     265a 

Conditions  of  inactivation  of .     Zilva     ..  ..     343a 

Discussion  on . .  . .  . .  . .  . ,     396r 

Effect  of on  enzymes.     Sammartlno       . .  . .     227a 

Existence  of ..  ..  ..  ..  ..     132r 

Fermentation  accelerating  influence  of  extracts  from 
plants  and  action  of  choline  and  aminoothyl 
alcohol  on  fermentation.     Frankel  and  Scharf  . .     265a 

Milk  as  source  of  water-soluble  .     Osborne  and 

Mendel  ..  ..  ..  ..  . .  ..     605a 

from  standpoint  of  physical  chemistry.  La  Mer  ..  191a 
from  standpoint  of  structural  chemistry.  Williams  191a 
Testing  foodstuffs  for .     Drummond  and  Watson     563a 


Vitamins  A  and  B  ;    Influence  of  diet  of  cow  upon  the 

quantity   of   in   the   milk.     Kennedy   and 

others  . .         . .         . .         . .         . .         . .     306a 

Vitreous   material ;    Manufacture  of  objects  from  . 

(P)    Amphlett,    and    Hume    Pipe   and    Concrete 
Construction  Co.      . .  . .  . .  . .      295a,  328a 

materials ;     Production    of    gas-tight    seals    between 

metals    and    .     (P)    Silica    Syndicate,    and 

Reynolds        . .  . .  . .  . .  . .  . .     851a 

Volatile  substances  ;    Extraction  of .     (P)  Usher  and 

Metcalfe         309  a 

substances  ;    Use  of  cresols  in  recovery  of from 

gases  not  readily  absorbed,  e.g.,  air.     Berl  and 

Schwebel        . .  . .  399a 

Volatility  of  oils;   Determination  of .     Matthis        ..     699a 

Voltmeter  ;    Electrostatic .     Research  staff  of  General 

Electric  Co.  (London)         ..         ..         ..         ..       96a 

Vulcanisable  compositions.     (P)  Frost,  and  Frost  and  Co.     949a 

hydrocarbon   products ;     Manufacture   of   ■.     (P) 

Culnier  ..  ..  ..  ..  . .  ..     906a 

Vulcanisation  ;    Acceleration  of  by   cinchona  alka- 
loids.    Eaton  and  Bishop  . .  . .  . .  . .     374T 

accelerator.      (P)  Weiss,  and  Dovan  Chemical  Corp.     383a 

accelerator;   Manufacture  of  an .     (P)  Esch       ..      183a 

accelerators ;      Mercaptothiazoles     as     .     Bruni 

and  Romani  . .  . .  . .  . .  . .     601a 

Cold  .     Peachey 301a 

Comparative  effect  of  dimethylamine  dimethyldithio-' 
carbamate    and     diethylamine    diethyldithiocar- 

bamate  in  accelerating  .     Schidrowitz  and 

others  601a 

Dithiocarbamate    accelerators   of   -.     Twiss    and 

others  8lT 

of   materials   related   to   rubber.     (P)    Peachey   and 

Skipsey  ..         ..         ..         ..         ..         ..     111a 

process.     (P)  Levinstein  . .  . .  . .  . .     262a 

process  ;   Acceleration  of  the ■.     Twiss  and  others       49R 

Reaction  of  accelerators  during  .     Carbo-sulph- 

hydryl   accelerators   and   action   of   zinc  oxide. 
Bedford  and  Sebnll  110a 

Reactions   of  accelerators  during   .     Mechanism 

of    action    of    zinc    compounds.     Bedford    and 
Sebrell  

Studies  in  .     Effects  of  acceleration  on  rubber 

stress-strain  curve.     Schidrowitz  and  Bean 

Suggested    retarding    effect    of    dimethylamine 

methyldithiocarbamate  on  .     Bean 

Vulcanised    compositions  ;      Manufacture    of    . 

Phillips,  and  Barrett  Co. 

products  ;     Improving   the   properties  of  . 

Bayer  und  Co. 

Vulcanite-like     materials;      Manufacture    of    ■. 

Plauson's  Forschungsinstitut 

Method  for  making  chemical  apparatus  resistant  to 
alkalis,  acids,  and  chlorine  by  manufacturing  it 

from   or  sheathing   it   with   .     (P)   Allgem. 

Elektrizitats-Ges.      ..  ..  ..  ..  ..     111a 

w 

Wages  ;   Statistics  of  production  and . .  . .  . .     134R 

War  chemicals  ;    Peace-time  uses  of . .  . .  . .     419r 

memorial  to  Lt.-Col.   Harrison  and  other  fellows  of 

the  Chemical  Society  ;    Unveiling  of  the . .     491R 

Warfare  ;    Chemical and  the  Washington  Conference. 

Thorpe  . .  . .  43r 

Washery  waste.     See  under  Coal. 

Washing   insoluble   powders ;     Apparatus   for  .     (P) 

Prutzman,  and  General  Petroleum  Corp.  ..      737a 

material    which   has    been   separated   by   centrifugal 

action  ;    Apparatus  for  .     (P)  Chem.  Fabr. 

Griesheim-Elektron  . .  . .  . .  . .     971a 

materials  of  different  specific  gravities  or  volumes. 

(PJ  Croquet  971a* 

salts  ;  Apparatus  for .     (P)  Hornung       . .  . .     846a 

Waste  heat ;    Boiler  system  for  cement  plants  utilising 

.     (P)  Bell         280a 

heat  boilers  ;    Cleaning  system  for .     (P)  Bell  . .     280a 

heat  ;    Utilisation  of .     (P)  Metallbank  u.  Metal- 

lurgische  Ges.,  and  Gensecke         . .  . .  . .     620a 

liquids  containing  hydrocarbons  ;  Purification  of . 

(P)  Wagner  803a 

liquors  from  digestion  of  wood,  straw,  etc.  ;    Prepar- 
ation of  salts  of  organic  acids  from  .     (P) 

Badische  Anilin-  und  Soda-Fabr.  ..  ..        11a 

liquors  from  factories  ;  Treatment  of  peat  moss  for  use 

in  purifying .     (P)  Von  Springborn  . .  . .     388A 

liquors  from  pulp  mills  and  similar  liquors  ;    Appar- 
atus   for    evaporation    and    dry    distillation    of 

.     (P)  Aktiebolaget  Cellulosa 

liquors  ;    Treatment  of .     (P)  Trent 

matter  ;     Continuous   treatment   of  . 

Lachlan 
organic  substances  ;    Treatment   of  . 

Iaeblan 
pulp  liquors  ;     Recovering  the  solids   of 

Dickerson 

Water  ;   Action  of  natural on  lead.     Thresh  . . 

Aeration    of    quiescent    columns    of    distilled 

Adeney  and  others  . . 


262a 

d'i- 

324T 
26U 

(P> 

(P) 

426a 

224a 

(P) 

111A 

SUBJECT  INDEX. 


225 


Water — continued. 

analysis;     Active    carbonic    acid    and    hydrogen-ion 

concentration  in .     Kolthoff  . .  . .      480a 

analysis  ;      Bacteria    fermenting    lactose    and    their 

significance  in  .     Levine         . .  . .  . .     6S2a 

Apparatus  for  distilling .     (P)  Kells         . .  . .     344a 

Apparatus    for    production    of    distilled    .     (P) 

Bleicken         344a* 

Apparatus  for  purifying .     (P)  Reed        . .  . .        31a 

boiler-feed ;  Filters  for~ .     (P)  Crawford  and  Kelly     516a 

boiler-feed ;      Heating    and    de-aerating    .     (P) 

Morison  193a.  726a 

boiler-feed  ;     Heating   and   decanting   apparatus  for 

purifying  .     (P)  Kestner        ..  ..  ..     683 A 

boiler-feed  ;     Separating   air   and   gases   from   . 

(P)  Hulsmeyer  954a,  954a* 

Chlorination  of prior  to  filtration.     Howard    ..     994a 

from    coal    mines  ;      Nature    and    determination    of 

acidity  of  acid .     Selvig  and  Ratliff  . .  . .     359a 

De-activation  of  to  prevent  corrosion  of  iron. 

Speller  389a 

De-aerating   and   de-oxidising   boiler-feed   and   other 

.     (P)  Morison  193a 

Determination  of  alkalinity  of  .     Xoll     ..  ..     995a 

Determination  of  with  the  apparatus  of  Mei- 

huizen  ..         ..         ..         ..         ..         ..     569a 

Determination  of  free  and  combined  carbon  dioxide 

in—.     Shaw         193a 

Determination     of     hydrogen-ion     concentration     of 

drinking-,  river-,  and  sea-  with  indicators 

but  without  buffer  solutions.     Michaelis  ..      116a 

Determination  of  minute  amounts  of  lead  in  . 

Ay-  ry  and  others     ,.  ,.  ..  ..  ..      154a 

Determination  of  the  quantity  of  softening  agent  to  be 

added  to .     (P)  Rice 344a 

distilled  :    Regulating  and  controlling  apparatus  for 

production  of .     (P)  Bleicken  . .  . .     230a* 

drinking-  :    Determination  of  nitric  acid  in  — —  by 

Mayrhofer's  method.     Reuss         ..  ..  ..     480a 

Efficiency  of  open  and  closed  filters  for  removal  of  iron 

from  .     Kisskalt  . .  . .  . ,  . .     343a 

Electrodes  used  in  electrolytic  apparatus  for  decom- 
position of .     (P)  Smith         824a 

Electrolytic  cell  for  electrolysis  of .     (P)  Schuck- 

ert  and  Co.,  and  others       . .  . .  . .  . .     380a 

evaporator   and    feed-water   heating   system  ;     Com- 
bined    for  use  on  ships.     (P)  Brown,  and 

Griscom-Russell  Co.  3lA* 

feed- ;     Apparatus   for   removing   air  from  .     (P) 

Fcthergill  43a 

feed-;    Heating  and  decanting  apparatus  for  purifying 

for  steam   generators.     (P)   Kestner  . .     481a 

it  ed-  ;    Recover}'  of  soda  from  locomotive  .     (P) 

Xentz 267a 

filter    effluents ;     Residual    aluminium    compounds    in 

.     Wolffian    and    Hannan         . .  . .  . .       30a 

Filters  for  : 

(P)  Capro  U6a 

(P)  Paterson         995a 

Filtration  of  turbid .     (P)  Pennell    ..  ...         ..     874A 

Free   carbon  dioxide   in  and   hydrogen-ion   con- 
centration   in    water    analysis.     Tillmans  . .     116a 

in  fuels  :   Determination  of .     Marinot        . .  . .     165a 

Gas. 

Hydrogen  ion  concentration   of  natural  and   its 

relation  to  action  on  metals.     Atkins         ..  ..     533E 

Hydrone    and    .     Armstrong  . .  . .  . .     263T 

or  the  like ;    Automatically  regulating  addition  of  a 

treating  agent  to .     (P)  Simsohn  . .  . .     565a* 

and  the  like;  Treatment  of .     (P)  Daw       ..  ..     565A 

Modern  practice  for  removal  of  taste  and  odour  from 

.     Howard  994a 

Phosphoric  acid  in  soils  and .    Dissolved  phosphate 

in  ponds.     Breest        . ,  . .  . .  . .  . .       70a 

power.     See  under  Power. 

Power  production  from  .     (P)  Stromeyer  . .     401a 

Precision  in  determination  of  hardness  of  ,  and 

preparation    of    aqueous    standard   soap   solution. 
Justin-Mueller  ..  ..  ..  ..  ..     644a 

Preparation  for  neutralisation  of  the  acids  and  pre- 
cipitation   of   the   salts    contained    in   .    (P) 

Lorenzo  . .  . .  . .  . .  . .  . .        7tV\ 

Purification  of by  activated  silt.    Fowler  and  Deo    432a 

purification  ;    Investigation  by  means  of  the  hydrogen 

electrode  of  the  chemical  reactions  involved  in . 

Greenfield  and  Buswell  . .  . .  . .  . .     682a 

purification  ;    Manufacture  of  chlorine  gas  for  . 

(P)  Blanchard  995a 

purifiers.     (P)  Gail  and  Adam        . .  . .  . .  . .     565a 

I^irifying  and  clarifying .     (P)  Puiggari  and  Venezia       31a 

Purifying   and   decolorising  .     (P)    .Newman,   and 

Scaife   and    Sons   Co.  . .  . .  . .  . .     565a 

Removal  of  dissolved  oxygen  from .     (P)  Kestner     389A 

Removing  air  and  gases  from .     (P)  Ehrhart,  and 

Elliott  Co 155a 

Residual  alum  in  filtered  .     Buswell  and  Edwards     480a 

sea- ;    Determination  of  silica  in  filtered  .     Wells     980a 

sea- ;   Variations  in  chemical  composition  of  and 

evaluation   of  the  saline  content.     Bertrand   and 

others     _ 462a 

softening : 

Armstrong  . .  . .  . .  . .  . .     502R 

(P)  Hepburn         193a,  782a* 

(P)  Junger  und  Gebgardt  116a 


by  means  of  base-exchanging  material 

(P)  Rei-^.rr  mil  Co 

-.     (P)  Baker,  and  Wallace  and  Tiernan 


Water — cont  in  ued. 

Softening  

and  lime. 

Sterilising  

Co 

stills.     (P)  Moore 

supplies  ;    Chlorine  treatment  of  .     Vollmar 

of  Toronto:  Statistical  record  of ,1912-21.  Howard 

treated  with  hydrochloric  acid  according  to  the  Balcke 
process  and  added  to  water  circulating  in  counter- 
current    cooling    apparatus  ;     Preventing    increase 

of  hardness   due   to   residual   carbonate   in   . 

(P)  Tilgner         

Treatment    and    filtration    of   .     (P)    Yoder,    and 

Cochrane  Corp. 

Treatment  of  for  softening,  sterilising,  and  like 

purposes.     (P)  Magrath 

used  in  laundries  ;  Electrolytic  apparatus  for  purifying 
.     (P)  Smith         

vapour ;    Catalytic  formation  of  ■  from  hydrogen 

and  oxygen  in  presence  of  copper  and  copper  oxide. 
Pease  and  Taylor 

Volumetric  determination  of  sulphates  in .     Kuhl- 

mann  and  Grossfeld 

Water-glass.    See  Alkali  silicates. 


7S2A 

481a 
481a* 
913a 
994A 


Water-hyacinth  ash  as  a  source  of  potash 

Manufacture 


of 


— .     (P) 


Waterproof     compositions  ; 

Kirschbraun 

fibrous  materials.  e.g.,  paper  tun'-  ;  Manufacture  of : 

(P)  Burningham  and  others 
(P)  Riehter  and  others    . . 

material;    Manufacture  of .     (P)  Claessen 

material;    Manufacture  and   insulating   of  brine-proof 

and  .    (P)  Elliott  

Waterproofing  artificial  textile  filaments  of  organic  origin; 

Fireproofing  and  .     (P)  Dreaper 

ci-llulosic  material.     (P)  Beck 

efficiency  of  di-   and   tri-valent   salts   of   higher   fatty 

acids  and  their  adsorption  by  the  fibres  of  paper. 

Bhatnagar 

fabrics.     (P)  Mitchell  

fabrics    containing   animal   and    vegetable   fibres.     (P) 

Bayer  und  Co. 

fabrics  ;  Continuous  process  of .     (P)  Mehler 

and  fireproofing  treatment  of  materials.     (P)  Arent 

and     gas-proofing    composition.     (P)     See,     and     Soc. 

Anon.  Etabl.  Hutchinson 
material ;    Manufacture  of  from  sulphite-cellulose 

waste  lye.     (P)  Hurt 
materials  ;    Manufacture  of  plastic  .     (P)   Brown 

and  others 

process;  Dyeing  and .     (P)Tate 

tile  and  the  like.     (P)  Pokorny  and  Eddingston 
Waters ;     Hydrogen    ion    concentration    in    natural    . 

Wolman  and  Hannan 
mineral- ;    Determination  of  bromide  in .     Meloche 

and  Willard 

mineral-  ;  Preparation  of .     (P)  Evers 

mineral- ;     Preparat  ion    of    art  itieiai    containing 

silicic  acid.     (P)  Laves 

waste  ;    Decomposition  of  soapy  .     (P)   Bouillon 

Wattle  ;    Occurrence  of  calcium  oxalate  in  the  Gidgee . 

Steel        

Wax  coating  the  stems  of  Australian  "  cane  grass  "  (Glyceria 

ramhgera).     Smith 
colloids ;      Preparation    of     neutral    solid    .     (P) 

Chem.  Werkstatten 

Fossil of  Monte  Falo.     Ciusa  and  Vois 

from  pine  needles.     Kaufmann  and  Friedebach 
-sweating  apparatus.     (P)   Housholder 
Waxes  ;    Apparatus  for  determining  softening  point  of  — ■ — 
and  the  like  ;    Extraction  of  .     (P)  Reavell,  and 

Kestner  Evaporator  and   Engineering  Co. 
synthetic  ;    Manufacture  of  .     (P)  Schicht  A.-G., 

and    Griin 
Treatment  of  for  use  in  manufacture  of  viscous 

oily  compositions.     (P)  Plauson 

Weed-killer  ;    Ammonium  sulphate  as  

Weighting;    Machines  for  tin  .    (P)   Leek  and  Sons, 

and   Leek 

Weights  ;  Protection  of  brass  .     Manley 

Weinschenkite,   a  new   mineral   containing  rare   earths   as 

main  component.     Henrich  and  Hiller         . .      483k; 
Welding  ;    Autogenous  cutting  and  .    (P)   Rheinisch- 

Westfalische  Kupferwerke 
of  cast  iron  ;    Electrical .     (P)  La  Soudoure  Auto- 
gene  Francaise 
Electrical    arc    .     (P)    Churchward,    and    Wilson 

Welder  and  Metals  Co. 
Electrode    for    metallic    arc    .     (P)    Churchward, 

and  Wilson  Welder  and  Metal-  * 
Manufacture  of  electrodes  for  metal  cutting  and  arc 

.     (P)  Boorne 

of   nickel   and    nickel-rich   alloys  ;     Autogenous   . 

(P)  Ver.  Deutsche  Nickel- Werke 
of  precious  and  other  metals.     (P)  Maurer 
rods  or  electrodes  ;    Composition  for  coating  iron  . 

(P)  Jones,  and  Alloy  Welding  Processes,  Ltd. 
West  Africa.    Mineral  resources  of  the  Ivory  Coast 


31A 
156A 

6S3A* 
433A 

751A 
632A 

401R 
536A 

10A 

10A 

459A 


289a 

936a 


324  a 
52A 

291a 
24>a 
712A 

894A* 

52A 

906a 

461a* 

933a 


413A 

306a 

565a 
344a* 

32a 

372T 

945a 
320a 
598a 
286a 
443a 

945a 

719a 

946a* 
160E 

368a 
961a 

,938a 

716a 

820a 

716a 

146a 

866a 

258a 
765a 

866a 
130R 
P 


22G 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


PAGE 

Western  Australia.     See  wider  Australia. 

West  Indies ;    Exports  of  sugar  from  British  in  1921     266r 

Whaling  industry  in  Natal,  1921  3S9R 

Wheat ;  Determination  of  starch  in  ■ .     Ling       . .  . .     530R 

Differences    effected    in    protein    content    of   by 

applications  of  nitrogen  made  at  different  growing 

periods  of  the  plant.     Gericke  . .  . .  . .     950a 

gliadin  ;    Kate  of  hydrolysis  of .    Vickery  . .     872a 

gluten.     Gerum  and  Metzer         ..  ..  ..  ..     S72A 

starch.     See  under  Starch. 

Treatment  of for  manufacture  of  bread.     (P)  Negro     306a 

Whey;    Determination   of  proteins   of   curd   and  in 

mixtures.     Liming  and  Herzig         . .  . .  . .     114a 

Extraction  of  proteins  from .     (P)  Thomson         . .     192a 

Extraction    of   proteins   and   lactose   from   .     (P) 

it       Thomson  . .  . .  . .  . .  . .  . .     834a 

Manufacture  of  pure  lactose  from .     (P)   Bleyer      71a 

Manufacture  of  stable  powdered  whey  from  dried . 

(P)  Metallbank  u.  Metallurgische"  Ges 192a 

White  lead  ;    Graphic  analysis  of  sublimed  .     Paxton     609a 

industry  in  Australia  ..  ..  ..  ..     398R 

Manufacture,  of  ■ .     (P)  National  Lead  Co.  . .     905a 

White  metals.     See  under  Metals. 
Whiteware.     See  under   Ceramic 

Whitewashes;     Investigation    of   .     Fink         ..  .,     557a 

Wine  ;   Composition  of from  flooded  vineyards.     Seml- 

chon  and  Dutauziet     . .  . .  . .  . .  . .     386a 

containing  sulphurous  acid  ;   Action  of on  metals. 

Grclot 992a 

containing  sulphurous  acid  ;   Determination   of   volatile 

acidity  of  .     Marcille     ..  ..  ..  ..     911a 

Detection  of  addition  of  a  neutralising  agent  to  sour 

: .     Ferre 604A 

Detection  of  citric  acid  iu  musts  and  .     Von  der 

Heidc  and  Straube       . .  . .  . .  . .  . .     912a 

Detection  of  formic  acid  in .     Fresenius  and  Grunhut     190a 

Determination  of  free  and  combined  volatile  acids  in 

.    Malvezin  . .  . .  , .  . .  . .     992a 

Determination    of   sulphur   dioxide    in   .    Martini 

and  Nourisson  . .  . .  . .  . .  . ,     386a 

Determination    of    the    various    acids    in    .     Von 

Felknberg  ..  ..  ..  ..  ..  ..514  a 

Filters   for  .     (P)   Tottereau  576a 

of  lees  and  lees  of  wine  ;    Composition  of .     Semi- 

chon 430a 

and  similar  products  ;    Maturing  and  improving  . 

(P)  Jarraud  and  Roussel        . .  . .  . .  . .       28A 

yeast    preparations ;     Manufacture    of    durable    . 

(P)  Sauer  190a 

Winkelblech's   phenomenon.     Charitschkov  . .  . .     925a 

Wire;    Apparatus   for   coating  with  varnish  or  the 

like.     (T)    British    Cellulose    and    Chemical    Mfg. 

Co.,  and  Dickie  475a* 

Apparatus  for  measuring  density  of  fine .     Research 

staff  of  General  Electric  Co.  (London)         . .  , .       9GR 

Coating  metal  with  metals  by  heating  in  metallic 

dusts.     (P)  Kulm         108a 

Fibrous  structure  in  hard  drawn  metal  .     Ettisch 

and  others         . .  . .  . .  . .  . .  . .     145a 

and  the  like  ;    Coating  .     (P)  Soc.  Chim.  Usines 

du  Rhone  986a* 

"  Wissenschaft  und  Industrie,"  a  new  German  periodical     352R 

Wood;  Artificial  maturing  or  seasoning  of .     (P)  Lyon     712a 

Artificial   seasoning   of   by   the  ozone   process. 

Rule  547r 

Cellulose  value  of  pulp  .     Walilberg         . .  , .     805a 

-cellulose.     See  under  Cellulose. 

as  a  chemical  engineering  material.     Robinson  . .     619a 

chips  and  the  like;    Vertical  retort  for   carbonisation 

of .     (p)  Ges.  zur  Verwertung  von  Stubbcn- 

holz     . .  . .  . .  . .  . .  . .  . .     406a 

Composition  for  preserving  .     (P)  N.V.  Nether- 
land  Colonial  Trading  Co.  . .  . .  . .     103a 

Converting into  mucic  acid  and  other  products. 

(P)  Acree 916a 

Converting into  sugar  and  other  products.     (P) 

Acree  ..  ..  ..  ..  ..  ..     910a 

decay.     Toxicity   of  Western   yellow   pine  crude   oil 

to  Lenrites  stepiaria,  Fries.     Schmitz      . .  . .     635a 

Dcomposing    for    production    of    fodder.     (P) 

Waentig         ..  . .         ..         . .  ..         ..     515a 

Destructive  distillation  yields  from  British  Columbia 

fir  and  alder  .     Hardy  ..  ..  ..     362a 

Detection  of  unfermented  sugar  in  spent  v.ash.-s  from 

saccharified  .     Pringsheim     . .  . .  . .     679a 

Dissolution  of  .     (P)    Riitgerswerke  A.-G.,   and 

Ti-iebmann     ..  ..  ..  ..  ..  ..     851a 

distillation.     (P)    Thermal    Industrial    and    Chemical 

(T. I.C.)  Research  Co.,  and  Morgan  ..  ..     315a 

distillation   gases;     Recovery   of   wood   spirit,   pyro- 

lmneous  acid,  and  tar  from  .     (P)  Mayweg       48a 

distillation    process  ;     Application    of   electrical    pre- 
cipitation to  ■ .     Hawley  and  Pier     . .  . .     495a 

Drying  .     (P)  Fujino  417a 

Effect  of  adding  various  chemicals  to previous  to 

distillation.     Hawley  . .  . .  . .  . .     286a 

of    Eucalyptus    globulus    and    western    white     pine  ; 

Analysis  of  .     Mahood  and  Cable     . .  . .     934a 

Fireprooflng   and   waterproofing   treatment   of  . 

(P)  Arent 712a 


page 
Woo  d — cont  in  ited. 

impregnating  tanks  or  retorts  ;    Evacuation  of  . 

(P)  Dunstan  and  Davis        . .  . .  . .  . .       16a* 

Impregnation  of .     (P)  Soc.  de  Recherches  et  de 

Perfectionnements  Ind.       . .  . .  . .      816a,  899a 

Impregnation  of  with  mercuric  chloride.     No- 

wotny  860a 

Importance   of  the   degree   of   disintegration   in   the 

digestion  of  — — .     Waentig  . .  . .  . .     745a 

and  the  like  ;    Distillation  of .     (P)  Poore  . .  7a* 

and  the  like  ;    Obtaining  oils,  pitch,  etc.,  from  . 

(P)  Wells  and  Wells  975a 

and    the   like  ;     Protective   treatment   of   .     (P)' 

Arent,  and  Arent  Laboratories,  Inc.         . .  . .     548a 

Means  for  drying .     (P)  Vanlaetham        . .  . .       15a 

Method  of  facilitating  the  cleavage  of  particu- 
larly for  lead   pencil   manufacture.     (P)   Beutel 

and  Suchy     . .  . .         . .         . .         . .         . .     677a 

Preparation    of   salts    of   organic    acids    from    waste 

liquors    from   digestion   of   .      (P)    Badische 

Anilin-  und  Soda-Fabr.  ..  ..  ..       11a 

Preservation  of : 

(P)  De  Vecchia  296a* 

(P)  Laube  466a 

(P)  Ostpreussische     I  mpraguierwerke    Ges. 

296a,  549a 

(P)  Wirth  375a 

preservation ;      Utilisation     of     phenols     from    low- 
temperature  tar  for  .     Peters  ..  ..     671a 

preservatives ;      Practical     experience     with     . 

Nowotny        . .  . .  . .  . .  . .  . .     465a 

-preserving     agent.      (P)     Grubenholzimpragnierung 

Ges 757a 

Process   of   waterproofing   .     (P)    Twombly   and 

others  ..  ..  ..  ..  ..  ..       15a 

Production    of    fermentable    sugar    from    .     (P) 

Classen  680a,  725a 

Production  of  glucose  and  dextrin  from  .     (P) 

Terrisse  and  Levy   . .  . .  . .  . .  . .     910a 

products  ;    Obtaining by  destructive  distillation. 

(P)  Berthelon  742a 

pulp  ;    Alkaline  and  acid  bleaching  of .    Hotten- 

roth 408a 

pulp  ;    Chemistry  of  sulphite  process  for  production 

of .     Miller  and  Swanson        . .  . .  . .     583a 

pulp  ;    Determination  of  "  bromine  figure  "  or  "  cho- 
rine  factor "   of   and    utilisation   of  these 

quantities  in  bleaching.     Tingle  ..  ..  ..     137a 

pulp  ;    Determination  of  chlorine  consumption  value 

of .     Sieber 409a 

pulp  ;    Determination  of  mechanical  in  printing 

paper.     Krul!  and  Mandelkow       ..  ..  ..     806a 

pulp  industry  in  Alberta  ;    Proposed ■       . .  . .       80u 

pulp;   Manufacture  of .     (P)  Enge  ..  ..     704a 

pulp ;     Reddening   of   sulphite   and   its    cure. 

Heuser  and  Samuelsen        . .  . .  . .  . .     893a 

pulp  ;   Testing  degree  of  digestion  of .     Roschier     746a 

pulp  ;    Use  of  clean  water  as  preservative  for  storing 

mechanical  .     Blair  and  Parke-Cameron   . .     247A 

pulp  ;    Use  of  rotten  and  stained  wood  in  manufacture 

of  sulphite .     Suterrnoister     . .  . .  . .     584a 

Reaction  for .     Adler         346a 

Removal  of  resin  from  prior  to  manufacture  of 

cellulose.     Weuzl      . .  . .  . .  . .  . .     935a 

Seasoning .     (P)  Crail         503a 

and  similar  materials  ;    Obtaining  chemical  products 

from  .     (P)  Chcm.  Fabr.  Xalk,  and  Oehme     802a 

Transforming  and   colouring  .     (P)   Weiss,   and 

Burgess  Laboratories  . .  . .  . .  . .      329a* 

Treatment  of : 

(P)  Ammon 757a 

(P)  Studebaker  Corp.  939a 

Wooden   poles   and   the   like  ;     Impregnating   with 

fluorides  and   copper,   zinc,   and   mercury   salts. 

(P)  Marten 861A 

Woods  ;     Calorific    value   of   American    .     Parr    and 

Davidson 928a 

Wool ;    Action  of  iodine  upon  .     Huebner  and  Sinha       93T 

Action  of  ozone  on   and  on   chlorinated  wool. 

Trotman  and  Langsdale     . .  . .  . .  . .     529R 

of  the  Blackface  lamb  ;    Micrological  study  of  . 

Crew  and  BIyth        626a 

Chlorination  of  .     Trotman  ..  ..      214r,  219t 

Dyeing  with  chrome  mordant  dyestuffs.     Gan- 

swindt  ..  ..  ..  ..  ..  ..411a 

Dyeing  deaminated  .     Paddon     ..  ..  ..     411a 

Improving- .     (P)  Trostel 10A 

Improving  and  shortening  the  process  of  fulling . 

(P)  Diamalt  A.-G 747a 

Increasing  the  strength  and  elasticity  of  .     (P) 

Korselt  410a,  541a 

Manufacture  of  monoazo  dyestuffs  for  dyeing  . 

( I*)  Meister,  Lucius,  und  Briining  . .  . .  . .         8A* 

Mordanting for  dyeing  with  Haematin.     Craven     368a 

Mordanting with  potash  alum.     Paddon  . .     978a 

and  other  materials  ;    Protecting  from  moths. 

(P)  Bayer  und  Co 289a,  541a 

piece  goods  ;    Obtaining  special  effects  in  dyeing . 

Miinz  and  Hayun     ..  ..  ..  ..  ..     895a 

Production  of  azo  dyestuffs  on  .     Brandt  . .     136a 

Protecting  from  moths  : 

(P)  Bayer  und  Co 138a 

(P)  Chem.  Fabr.  Griesheim-Elcktron  ..     747a 


SUBJECT  INDEX. 


227 


Wool — continued. 

Protecting  from  moth  and  other  insects.     (P) 

Norden  und  Co.        . .  . .  . .  . .  . .     854a 

Scorning .     (P)  Smith         248a 

scouring  wastes  for  fertiliser  purposes.     Veitch         . .     427a 

Sorption  of  neutral  soap  by  and  its  bearing  on 

scouring  and  milling  processes      . .  . .  . .     626a 

Standard  method  for  estimation  of  soap  in . .     626a 

Use  of  alumina  as  substitute  for  tin  in  mordanting 

.     Grosheintz 290A 

Wool-fat ;    Obtaining  alcohols  and  acids  from  .     (P) 

Lifschtitz 223a 

Production    of    wax-like    alcohols    from    .     (P) 

Schrauth        676a 

Treatment  of .     (P)  Conyers  and  others  ..  ..      508a 

Wooldridge  brewing  process  ;    Notes  on  the  .     Wool- 

dridge  340a 

Worts.     See  under  Beer. 


Xanthosterol.     Dieterle  . .  . .  . .  . .  . .     517a 

Identity  of with  lupeol.     Ultce    . .  . .  . .     955a 

Xeroform.     See  Bismuth  tribromophenoxide. 

X-ray  crystal  analysis  ;    Relation  between  molecular  and 

crystal  symmetry  as  shown  by .     Shearer  . .     562R 

examination   of  inner  structure  of  strained   metals. 

Ono 818A 

photography ;    Intensifying  screen  for  use  in  . 

(P)  Luboshey  639a 

photography ;     Preparation    of    non-phosphorescent, 
highly  fluorescent  compounds  of  tungstic  acid  for 

.     (P)  Tiede      ..  ..  _.  ..  ..     729a 

photography  ;    Sensitive  film  supports  for .     (P) 

Luboshey       . .  . .  . .  . .  . .  . .     838a 

photography ;    Sensitive  plates  and   films  for  . 

(P)  Luboshey  611a 

plates  ;   Preparation  of .     (P)  Kranseder  und  Co., 

and  Luppo-Crarner  . .  . .  . .  . .     690a 

spectrum  of  metallic  oxides  stable  at  red  heat.     Hed- 

vall 251a 

studies  on  crystal  structure  of  steel.     Westgren  and 

PhragmGn      . .  . .  . .  . .  . .  . .     418a 

tubes  ;   Fastening  electrodes  in .     (P)  Elektrische 

Gliihlampenfabr.  "  Watt "  A.-G.  ..  ..  6a 

X-rays  ;  Action  of  secondary  radiation  of on  microbes. 

Cluzet  and  others     ..  ..  ..  ..  ..     914a 

Examination  of  leather  by .     Moeller     . .  . .     185a 

Intensifying    the    action    of    on    photographic 

emulsions.     (P)  Schleussner  ..  ..  ..     838a 

Treatment  of .     (P)  Bengough      . .  . .  . .     524a 

Xylan.     Salkowski       . .  . .  . .  . .  . .  . .     339A 

and  its  acetyl  derivatives.     Komatsu  and  Kashima  . .     777a 

Methyl  ethers  of .     Heuser  and  Buppel  . .  . .     679a 

Xylene  ;    Pharmaceutical  product  from  .     (P)  Bayer 

und  Co.  . .  . .  . .  . .  . .     786a 

Synthesis  of  pyromellitic  acid  from  commercial  . 

Philippi  and  others      . .  . .  . .  . .  . .     727A 

See  also  Xylol. 
m-Xylene ;    Distillation  of  a  mixture  of  benzene,  toluene, 

and  .     Gay  538a 

Reaction  of  carbonyl  chloride  with  in  presence 

of  aluminium  chloride.     Wilson  and  Fuller         . .     743a 
Xylenol  Blue.     See  under  Phthalein  dyestuffs. 
Xylenols  ;    Manufacture  of  resinous  condensation  products 

of .     (P)  Chem.  Werke  Grenzach         . .  . .     94Sa 

Xylidine  ;     Preparation  of  diaminodi-p-xylylmethane  from 

commercial .     (P)  Meister,  Lucius,  u.  Briining     960a 

as-m-Xylidine-5-sulphonic  acid  ;    Manufacture  of .     (P) 

British  Dyestuffs  Corp.,  and  others  . .  . .     287a 

Xylol  ;  Pyrogenic  decomposition  of .     Bradley  and  Parr    932A 

See  also  Xylene. 

Xylolith  ;   Improvements  in  manufacture   of  ■ .    Haas    178a 

Xylose  ;    Action  of  certain  pentose-destroying  bacteria  on 

.     Fred  and  others         . .  . .  . .  . .       72A 

Methylation  of .     Carruthers  and  Hirst       . .  . .     991a 


Yarn  ;   Apparatus  for  treating  hanks  of with  a  liquid 

contained  in  a  trough.     (P)  Hablutzel         . .  llA* 

Apparatus  for  treating  textile  with  liquids.     (P) 

Clarenbach        . .  . .  . .  . .  . .  . .       96A* 

Apparatus  for  treatment  of  with  dyes  or  other 

liquids.     (P)  La  Fayette        978a 

Apparatus  for  washing  and  treating .     (P)  Bartelt 

291A,  325A* 

Elastic  properties  of .     Matthew       . .  . .  . .     212a 

Lubricants  for  .     (P)  Minter  . .  . .  . .     498a 

Machines  for  scouring,  bleaching,  dyeing,  shrinking,  or 

otherwise  treating .     (P)  Bowden  and  Bowden     139a* 

Yarns  ;    Stress-strain  curves  of  various  .     New         . .     212A 

Yeast ;    Action  of  mercuric  chloride,  phenol,  and  quinine 

on .     Joachimoglu  . .  .  .  . .  . .     679A 

Action  of  salts  on   bleaching  of  Methylene   Blue  by 

various  species  of .     Kumagawa         . .  . .     153A 

Action  of  ultra-violet  rays  on .     Lindner      . .  . .     951a 

Apparatus  for  drying  .     (PJ  Klein  . .  . .     779a 


PAGE 
Yeast — coni  inued. 

autolysis  ;     Changes    undergone    by   nitrogenous    sub- 
stances in  final  phases  of .     Iwanoff      ..  ..     113a 

Behaviour   of  amino-acid3  towards   oxygenated -. 

Lieben 952A 

Capacity  of  to  decompose  acid  amides.     Dieter    563a 

cell ;    Conditions  influencing  formation  of  fat  by  the 

.     Maclean  . .  . ,  . .  . .  . .     604a 

cell ;    Oxygen  requirements  of  the .     Slator         . .     H1r 

cells  ;  Action  of  saponin-like  substances  on -.     Boas     679a 

cells  ;    Alcoholic  fermentation  by  means  of  — — ■  under 

various    conditions.     Abderhalden  . .  28A,  23A 

cells  ;  Destruction  of  lactic  acid  by •.     Lieben        . ,     642a 

cells  ;   Functions  of  the .     Zymase  and  carboxylase 

action.     Abderhalden  aud  Foior      . .  . .  . .       23a 

cells  ;  Influence  of  substances  obtained  from on  time 

course  of  fission  of  substrates  by  polypeptidases, 

carbohydrases,    and    esterases.    Abderhalden    and 

Wertheimer       . .  . .  . .  . .  . .  . .     605a 

cells  ;   Shape  of  well-drained  and  pressed .     Moritz       72a 

Composition  for  increasing  growth  of when  mixed 

with  dough.    (P)  Geere  and  Geere  . .         . .     913a* 

Destruction  of  lactic  acid  by  ~.     Furth  and  Leben     952a 

Development  and  nutrition  of .     Tait  and  Fleteher    724a 

Device  for  collection  of  and  separation  of  beer 

therefrom.     (P)  Norman         . .  . .  . .  . .     478A* 

Dismutation  of  various  aldehydes  by .     Kumagawa     189A 

Dried .    Von  Euler  and  'Myrbaek 478a 

Drying .     (P)  Klein 643a,  643a*,  725a 

Drying  pressed  — — .     (P)  Klein  605A 

Effect  of  certain  stimulating  substances  on  invertase 

activity  of -.     Miller        . .  . .  . .  . .       72a 

Enzymic   conversion   and   degradation   of   nitrogenous 

constituents  of  maize,  and  its  application  to  manu- 
facture of .     Nottin        . .  . .  . .  . .     265A 

Fat-coloration  in  as  a  criterion  of  age,  quality, 

and    degeneration.     Bernfeld  . .  . .  . .     77SA 

fermentation.     See   under  Fermentation. 

Fermentation  without .     Bau  . .  . .  . .     189A 

Flocculation  of  .     Ltiers  and  Geys  . .  . .     604A 

food  ;      Manufacture     of    .     (P)     Gallagher,    and 

National  Retarder  Co.  . .  . .  . .  . .     913A 

Food   products  from   brewers*  .     (P)   Miller,   and 

Evaporating  and  Drying  Machinery  Co.       . .  . .     913A 

Formation  of  zymase  in  .     Hayduck  and  Haehn     562a 

Growing  of .     (P)  Stagner,  and  National  Retarder 

Co 779A 

growth  ;   Organic  nitrogen  as  a  possible  factor  in  stimu- 
lation of .     Fleming        . .  . .  . .  . ,       74A 

-growth  stimulant ;  Action  of -.     Wright      ..  ..     340a 

growth  ;    Water-soluble  B  vitamin  and  bio3  in : 

Eddy  and   others        . .  . .  . .  . .  . .     340a 

Fulmer  and  Nelson     . .  . .  . .  . .  . .     340a 

gum  and   invertase.     Salkowski  . .  . .  . .     153a 

Improving    the    odour,    taste,    and    digestibility     of 

raw : 

(P)  Plauson  430A* 

(P)  Traun's  Forschungslab orator ium  Ges.        . .     432a* 
Influence  of  fermentation  products  on  decomposition 

of  proteins  in  .     Iwanoff         . .  . .  . .     113A 

Influence  of  hydrogen-ion  concentration  on  development 

of .    Van  Laer     . .         . .         . .         . .         . .     951a 

Influence    of    mineral    spring    water    on    carbohydrate 

interchange  in  .     Mayer  . .  . .  . .     830A 

invertase ;    Action  of  foreign  enzymes  on  .    Von 

Euler  and  Myrbaek      . .  . .  . .  . .  . .     724a 

-iron  compound ;    Preparation  of  .     (P)   Stephen    439a 

Longevity  of  certain  species  of .     Ling  and  Nanji       27a 

Manufacture  of  : 

(P)  Gilmour  563a 

(P)  Jensen  114a 

(P)  Nilsson  and  others  190a 

(P)  Verein  der  Spiritus-Fabrikanten  in  Deutsch- 

land         m     341a* 

Manufacture  of  dried  .     (P)  Hixson  . .  . .     643a 

Manufacture   of   material   from   for   accelerating 

alcoholic    fermentation.     (P)    Riedel    A.-G.      430A,  514a 
Manufacture      of      pressed    from      beet      j  uice. 

(P)  Sailer  832a 

Manufacture  and  treatment  of  .     (P)  Verein  der 

Spiritusfabr.  in  Deiitsi-hland  ..  ..  ..      305A* 

Nitrogen  nutrition  of  .     Swoboda  . .  . .  . .     604A 

Nitrogenous  constituents  of  .     Purine  bases  and 

diamino-acids.     Meisenheimer  . .  . .  . .     153a 

nucleic    acid.     Steudel   and    Peiser         . .  . .       153a,  565a 

Preparation  of  compounds  of  tannin  and  .     (P) 

Bayer  und  Co.  . .  . .  . .  . .  . .     916a 

preparations  ;     Manufacture    of    durable    wine    . 

(P)  Saner  190A 

Pressure  resulting  from  fermentation  by .     Kolkwitz       28A 

protein.     Kiesel  . .         . .         . .         . .         . .     305a 

Protein  decomposition  in during  fermentation. 

Iwanoff  113a 

Rate  of  formation  and  yield  of  in  wort.     Clark     340A 

Regulation  of  nutrient  liquid  for  manufacture  of  pressed 

on  a  chemical  basis.     Wendel  . .  . .     605a 

Role    of   acid    in    carbohydrate    metabolism    of   . 

Elias  and  Weiss  . .  . .  . .  . .  . .     305a 

Spice  extract  and  pill  basis  from  .     Sabalitschka 

and  Riesenberg  . .  . .  . .  . .  . .     343a 

Synthesis  of  fats  by  means   of  enzymes  from  . 

Haehn 260A 

Thermostability  of  the  co-enzyme  and  its  separation 

from  vitamin  B  from  -.     Tholin         . .  . .     190a 

p2 


228 


JOURNAL  OF  THE  SOCIETY  OF  CHEMICAL  INDUSTRY. 


Yeast — continued. 

Treating  and  preparing  .     (P)  Corby 

types  isolated  from  butter ;  Action  of  on  con- 
stituents  of   milk.     Saudelin 

Use  of  ultramicroscope  for  examination  of  action  of 
poisons   on  cells  of .     Traube  and  Klein 

Utilising  component  substances  of  grain  for  maximum 
production  of  alcohol  and .     Sorel 

Vitamin  content  of  in  relation  to  composition  of 

culture  medium.     Eijkman  and  others 

Zymase  formation  in .     Hay  duck  and  Haehn 

feasts ;     Ester-forming    .     Weber 

Lactase  content  and  fermenting  power  of  lactose- 
fermenting    .     Willstatter    and    Oppenheimer 

of  Iambic.     Kufferath  and  Van  Laer 

poor  in  maltase  ;  Fermenting  activity  of  .  "Will- 
statter and  Steibelt 

Top-fermentation  and  Saccharomyces  Marxianus. 

Von  Euler  and  Josephson 

Vitamin    requirements    of    certain    .     Funk    and 

Dubin 

See  also  under  Saccharomyces. 

Yew  tree  ;   Tax  inc.  an  alkaloid  from  the .     Winterstein 

and  latridea 


Yohimbine ;     Determination    of    - 
Sehomer 

Yugoslavia  ;   Mineral  resources  of 


in    yohimbe*    bark. 


FAGE 

605a 

872a 

782a 

642a 

305a 
430a 

430A 

153A 

2SA 

189A 
513A 

72A 

230A 

875A 
15SR 


Zanzibar  ;  Trade  of  - 
Zeanin  ;    Use  of 


in  1921         . .  . .  . .  . .     575R 

in  the  production  of  beer.     Windisch       72A 


Zinc  alloys  : 

(P)  Goldschmidt  and  others       63SA* 

(P)  Zufall  50(3a 

and  its  alloys  with  copper  and  aluminium  ;    Density 

determinations    on    at    high    temperatures. 

Bornemann    and    Sauerwald  . .         . .         . .     553A 

-aluminium  alloys.     Hemmi  . .  . .  . .  . .     552a 

-aluminium    alloys ;     Constitution    of    .     Hanson 

and  Gayler        . .  126k,  256A 

-aluminium     alloys ;      Removal     of    aluminium    from 

.     (P)  Bornemann  and  Schmidt         . .  . .     108a 

-aluminium  alloys  ;  Thermal  expansion  of .  Schulze       17A 

Apparatus    for    electrolytic    production    of    .     (P) 

Langguth         . .  717A 

-base  alloys  ;  Constitution  of  binary .     Peirce        . .     297a 

blende ;    Apparatus  for  roasting  .     (P)   Reinhard     736a 

blende  ;    Behaviour  of  in  blast-roasting  of  lead 

ores.     Dorschel  . .  . .  . .  . .  . .     255A 

blende    containing    baryt.es ;     Manufacture    of    barium 

compounds  from  .     (P)  Von   Zelewski         . .     141a 

blende  :    Oxidation  of  by  bacteria.     Helbronner 

and  Rudolfs 500A 

blende  ;    Sulphatising-  or  dead-roasting  of •.     (P) 

Buddeus  298A 

concentrates;   Australian ..       224r,  336r,  571r 

concentrates;   Government  dealings  in ..         ..     103r 

-copper  alloys  ;    Cold-rolling  and  annealing  of  . 

Korber  and  Wieland  . .  . .  . .  . .     551A 

-copper    alloys  ;      Electrolytic    separation    of    . 

Weise     *        672a 

-copper  alloys  ;   Refining .     (P)  Leiser    . .  . .     180a 

-copper  alloys  ;    Shrinkage  and  hardness  of  cast . 

Johnson  and  Jones  ..  ..  ..      41SR,  817a 

Corrosion    patterns   on   cold-worked   .     Rawdon 

and  others     ..  ..  ..  ..  ..  ..      219a 

Determination  of  small  quantities  of in  technical 

nickel.     Breisch  and  Chalupny     . .  . .  . .     256a 

Determination    of   as    sulphate.     Gutbier    and 

Staib  351a 

Developments  in  electrothermic  production  of . 

Bains,  jun.     . .  . .  . .  . .  . .  . .     467a 

Distillation  of from  ores.     (P)  Troeller    . .  . .      765a 

dust;     Apparatus    for    gasometric    determination    of 

zinc  in  .     Beyne  . .  . .  . .  . .        60a 

dust ;    Exports  of from  Germany  . .  . .     35SR 

Manufacture  of : 

(P)  Kato  765a 

(P)  Seiffert        147a* 

Manufacture  of having  a  high  content  of 

metallic  zinc. : 

(P)     Rheinisch-Nassauische     Bergwerks-    u. 

Hutten-A.-G.,  and  Spieker  .  .      180a,  472a* 

(P)     Rheinisch-Nassauische     Bergwerks-    u. 

Hutten-A.-G.,  and  others 130a 

dust ;    Treatment  of  .     (P)   Lannon,  jun.,   and 

American  Smelting  and  Refining  Co.        . .  . .      422a 

Effect  of  impurities  on  electrolytic  .     Scholl     . .     331a 

Effect  of  single  impurities  on   electro-deposition   of 

from  sulphate  solutions.     Ellsworth  . .     862a 

Electrolytic  extraction  of : 

(P)  Allingham  146a 

Cambi 504a 

Electrolytic    treatment    of    ores    containing    copper, 

cadmium,  and .     (P)  Avery  and  others       . .     767a* 

Electroplated  and  diffusion  of  electro-deposits 

into  zinc.     Traub     . .  . .  . .  . .  . .     862a 

Extraction  of  lead  and .     (P)  Waring  and  Battelle     864a 


dust  ; 


dust ; 


Z  in  c — contx  n  ued. 

Extraction     of     from     lead-slags,     zinc-retort 

residues,  poor  zinc  ores,  or  the  like.  (P)  Rhein- 
isch-Nassauische Bergwerks-  und  Hutten-A.-G., 
and  Spieker    . .  . .  . .  . .  . .  . .     555a 

Extraction   of  from   materials   containing  lead 

and  zinc.     (P)  Waring  and  Battelle         . .  . .     901A 

Extraction  of from  zinc  ashes  or  ziuc  oxide  con- 
tain ing  chlorides.  ( P)  Oberschlesische  Zinkhutten 
A.-G.               . .  . .  . .  . .  . .  . .     555a 

Filter    masses    for   separating    from   solutions. 

(P)   Wohlgemuth 353A 

furnace.     (P)  Donaldson  . .  . .  . .  . .     986a 

furnaces  ;    Condenser  for  .     (P)  Wettengel,  and 

American  Zinc,  Lead,  and  Smelting  Co.  . .     822a 

Hydrogen  overvoltage  and  current  density  in  electro- 

deposition  of  .     Tainton        ..         ..  ..     421a 

Idiomorphic  and  hypidiomorphic  structures  in  electro- 

deposited  copper,  iron,  and .     Hughes        ..      421A 

Influence  of  the  alkalis  on  the  titration  of with 

ferrocyanide.     Tread  well  and  Chervet     . .  . .     880a 

-lead   fume;     Treatment   of  .     (P)   Waring  and 

Battelle  868a 

-lead  ores  ;   Treatment  of  complex .     (P)  Ganelin       20a* 

-lead  sulphide  ores  ;  Treatment  of .     (P)  Christen- 

sen       . .  . .  ..  ..  ..  ..  ..      472a 

-lead  sulphide  ores  ;    Treatment  of  argentiferous 

(P)  Elmore,  and  Chemical  and  Metallurgical 
Corp.  ..  . .         ..  ..         ..  ..     821a 

and  the  like;    Electrothermic  recovery  of .     (P) 

Neumann       ..  ..         ..         ..         ..         ..     717a 

Manufacture  of : 

(P)  Cornelius     . .  . .  . .  . .  . .        62  a 

(P)  Lee  and  others      . .  . .  . .  . .        62a 

Manufacture    of    lead    and    from    ores.     (P) 

Cornelius        . .  . .  . .  . .  . .  . .       62a 

Manufacture    of    pure from    crude    ziuc.     (P) 

Metallbank  u.  Metallurgische  Ges.  A.-G.  . .     716A 

mines  ;    Employment  in  lead  and ..  ..     104R 

ore  briquettes.     (P)  Jones         . .  . .  . .  . .     597a 

ores  and  products  ;   Treatment  of .     (P)  Christen- 

sen       . .  . .  . .  . .  , .  . .  472A 

ores  ;    Rotary  furnaces  for  roasting .     (P)  Schle- 

sische  A.-G.  fur  Bergbau  und  Zinkhuttenbetrieb     221a 

ores  ;    Smelting .     (P)  Von  Zelewski         . .  . .     147a 

plating  solutions  ;    "  Throwing  power  "  and  current 

efficiency  of .     Horsch  and  Fuwa     . .  . .     421a 

Potentiometric    titration    of    with    potassium 

ferrocyanide.     Kolthoff       . .  . .  . .  . .      612a 

powder  ;    Rotating  electric  furnace  for  melting  . 

(P)  Moffat 20a* 

Preparation  of  metallurgical  products  containing 

for  the  blast-furnace  or  converter.  (P)  Rheinisch- 
Nassauische     Bergswerks-    u.    Hutten-A.G.,     and 

Spieker  221a 

Preparation  of  test-papers  containing  lead  salts,  and 

titration  of  with  sodium  sulphide.     Olivier     442a 

production  in  1921  ..  ..  ..  ..  ..     221R 

production  in  Belgium  in  1921  . .  . .  . .  . .     266R 

Production  of  glossy  coatings  of  on  iron.     (P) 

Classen  900a 

Production,  imports,  and  exports  of in  1921     ..     294R 

production  in  U.S.  in  1921  . .  . .  . .  . .      332R 

Recovery  of from  complex  ores.     (P)  Ellsworth     864a 

Recovery  of  copper  and  from  the  leach  liquors 

of  burnt  pyrites.     Reisenegger     . .  . .  . .     219a 

Recovery   of   by   electrolysis.     (P)   Avery   and 

others  .,  ..  ..  ..  ..  ..     147a* 

Recovering from  ores  etc.     (P)  Koppers  . .      716a 

Recovery  of  from  waste  waters  from  gold  ex- 
traction          . .  . .  . .  . .  . .  . .         8R 

reduction  furnace  with  interchangeable  muffles.     (P) 

Von  Zelewski  . .  . .  . .  . .  . .     422a 

Removing from  burnt  pyrites  and  the  like.     (P) 

Neuhaus         . .  . .  . .  . .  . .  . .     555a 

retorts  ;    Manufacture  of  .     (P)   Rossman,  and 

American  Zinc,  Lead,  and  Smelting  Co.  ..  ..     711a 

Separation   of   from  ores.     (P)    Schwarz,    and 

Metals  Extraction  Corp.     . .  . .  . .  . .     470a 

Separation  of from  other  metals  by  ammonium 

phosphate.     Luff 394a 

smelting;    Blue  powder  in  .     Ingalls     ..  ..      377A 

smelting  furnace  ;   Vertical  retort .     (P)  Jones  . .      765a 

solutions  ;     Production   of  pure  .     (P)    Kardos, 

and  Metal  and  Thermit  Corp.         . .  . .  . .      379A 

solutions  ;      Purification    of .     (P)    Field,    and 

Metals  Extraction  Corp.     ..  ..  ..  ..     823a* 

sulphide  ores  ;    Desulphurisation  of  .     (P)  Rigg, 

and  Mining  and  Metallurgical  Processes  Proprie- 
tary, Ltd 108a* 

sulphide  ores  or  the  like  ;    Roasting  complex  . 

(P)  Harbord  638a* 

sulphide  ores  ;    Roasting .     (P)  Von  Zelewski    ..      146A 

Titration  of .     Monasch 121a 

Volumetric  and  gravimetric  determination  of in 

ores  etc.     Urbason  ..         ..         ..         ..     213a 

See  also  Spelter. 

Zinc  oxide  ceramic  bodies  ;    Properties  of  ■•     Libman  710a 

Manufacture  of  : 

(P)  Coursen,  and  New  Jersey  Zinc  Co.        ..  416a* 

(P)  Shipmaster,  and    New   Jersey  Zinc   Co.  546a* 

(P)  Thomson 753a 

as  optical  sensitiser.     Whither  ..  ..  ..  392a 


SUBJECT  INDEX. 


229 


PAGE 

Zinc  oxide — continued. 

pigments  ;   Manufacture  of .     (P)  Pearson         . .     335a 

Recovery  of  from  zinciferous  materials,  espe- 
cially slags.     (P)  Timm 323A* 

Removing  lead  from .     (P)  Pape  . .  . .  . .     765a 

Treatment    of    by-product    .     (P)    Booge,    and 

Du  Pont  de  Nemours  and  Co.        . .  . .         . .     753a 

Zinc  sulphate  solutions  ;    Electrical  conductivity  of  

in  presence  of  sulphuric  acid.     Tartar  and  Keyea     145a 

solutions ;     Purification   of  from   arsenic.     (P) 

Kuzell  and  Marston  ..  ..  ..  ..     S13a 

Zinc  sulphide  ;    Phosphorescent .     Guntz       . .         . .     500a 

pigment ;    Manufacture  of : 

(P)  C'lerc  and  Nihoul    ..  ..  ..  ..      509a 

(P)  Fabr.  Prod.  Chim.  Thann  et  Mulhouse     474a 
Zinc  white  ;    Furnace  and  apparatus  for  production  of 

.     (P)  Mayers,  and  Britons,  Ltd.     . .  . .     223a 

Zircon  earth  ;   Binding  and  compacting  bodies  made  from 

.     (P)  North  Kommandit-Ges 328a 

Zirconia  ;   New  possibilities  for  utilisation  of .    Kirch- 

ner 221K 

See  also  Zirconium  oxide. 

Zirconium  alloy  ;    Manufacture  of .     (P)  Becket,  and 

Electro  Metallurgical  Co.     . .  . .  . .  . .     766a 

and  iron  ;   Alloying .     (P)  McKee  . .         . .     107a 

Manufacture  of : 

(P)  Marden,   and   Westinghouse    Lamp    Co.     942a 
(P)  North  and  Loosli  ..  ..  ..  ..     2"'vi* 

ores  ;    Treatment  of .     (P)  Eutchius,  and  Car- 
borundum Co.          ..  ..         ..  ..         ..     S22a 


in  production  of  opaque 


Zirconium — continued. 

Separation  of  from  tantalum  and  from  colnm- 

bium.     Schoeller  and  Powell 
and  similar  metals  ;    Treatment  of  materials  contain- 
ing   .     (P)  Siebert  and  Korten 

Zirconium     compounds  ;      Manufacture     of     ■ .     (P) 

Burgess 
Zirconium  fluoride  :    L'se  of 

glazes.     Kraze 
Zirconium  oxide  ;    Binding  and  compacting  bodies  made 

from  .     (P)  North  Kornrnaudit-Ges. 

Manufacture  of  articles  of  fused  .     (F)  D'Adrian, 

and  Duval  d' Adrian  Chemical  Co. 
Zoomaric  acid.     Schmidt-Nielsen     . . 
Zygosaccl  •  major  :     Production    of    second    and 

third  forms  of  fermentation  with  .     Kuma- 

'-awa 

-  Production    of    second    and 

third  forms  of  fermentation  with  .     Kuma- 

gawa 
Zymase  and  carboxylase  actions  of  yeast  cells,     Abder- 
haldcn  and  Fodor 

Formation  of  in  yeast.     Havduck  and  Hachri 

430a, 

Zymogens  ;    Adsorption   of   .     Jacoby   and   Shimizu 

340a, 

Artificial  : 

Jacoby 

Jacoby  and  Shimizu  . .         . .      340a  . 


TAGE 

121a 
767a 
546a 

592a 
328a 

898a 
300a 

S31A 

831A 

28a 

562a 

340a 

340a 
3404 


230 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


List  of  New  Books  and  other  Publications  Received. 

(Note. — Where  a  review  of  the  book  is  published,  the  number  of  the  page  is 
marked  by  an  asterisk.) 


Adhesives  Research  Committee  ;    First  report  of  the  

322R,  379R* 

Aether  ;  Definition  of  the .     Loring         490R 

Alcohol ;     Power    :     its    production    and    utilisation. 

Monier- Williams  . .         . .         . .         . .    206R*,  208R 

AUotropy :      Theory     of     .     Smits.     (Translated     by 

Thomas.)  490R 

Analitica  applicata ;    Trattato   di   chimica  .     Vol.  II. 

Villavecchia 322R 

Analyse ;     Leitfaden   der   quantitaven  .     Hahn         . .     230R 

Analysis ;     Systematic    qualitative    chemical    .     Sears     342r 

Anorganische  Chemie.     Ephraim         . .  . .  . .      274R,  407R* 

Atomic  form,  with  special  reference  to  the  configuration  of 

the  carbon  atom.     Price         . .  . .  . .  . .     464R 

L'Azote  :   la  fixation  de  1'azote  atmosphexique  et  son  avenir 

industriel.     Hackspill  300R,  321R* 

Basic  slags  and  rock  phosphates.     Robertson         . .      186r,  320r* 
Bleaching  powder  and  its  action  in  bleaching.     Taylor        . .     578R 
Bleaching  and  related  processes  as  applied  to  textile  fibres 

and  other  materials.     Matthews        . .  . .         20R,  108R* 

Boiler-plant  testing.     Brownlie  . .  . .  . .  - .     230R 

British   Association  for  the   Advancement  of   Science:     a 

retrospect.  1831-1921.     Howarth 272R* 

Bulletin  of  the  Imperial  Institute  :   Vol.  XIX.  No.  3         . .       42r 
Bulletins  of  Indian  Industries  and  Labour : 

No.   17.     The  Genoa   Labour   Conference         . .  . .       20R 

No.   18.     Proceedings  of  the  third   conference   of  the 

Departments  of  Industries     . .  . .  . .  . .       20R 

No.  19.     Notes  on  zinc  and  lead.     Brown         . .  . .     322R 

No.  20.     Notes  on  asbestos.     Brown        322R 

No.  24.     Paper     and     paper-pulp    production    in    the 

Madras  Presidency.     Marsden  . .  . .  . .     322R 

No.  25.     Gilt  wire  and  tinsel  industry.     Mehta  . .     322r 

No.  2t.     Proceedings  of  the  fourth  conference  of  Depart- 
ments of  Industries      . .  . .  . .  . .  . .     490R 

No.   28.     Notes  on  sulphuric  acid,  sulphur,  and  iron 

pyrites.     Fox 490R 

Calculations  of  quantitative  chemical  analysis.     Hamilton 

and  Simpson     . .  . .  . .  . .  . .  .  -     360R 

Calculus ;  Applied .     Bisacre        207R* 

Canada.     Interim    report    of    the    Dominion    Chemist    for 

year  ended  Mar,  31,  1921        20R 

Canada.     Publications  of  the  Dominion  Bureau  of  Statistics    518R 
Canada.     Publications  of  the  Mines  Branch   . .     42r,  88R, 

142R, 186R,  322R,  464R 

Canada.     Year-book,  1920         88R 

Canadian  Mining  Institute  Transactions,  1920           . .          . .     230R 
Canadian  National  Railways  ;    Minerals  and  mining  indus- 
tries on  the 490R 

Catalysis ;     First   report   of   committee    on    contact   . 

Bancroft  408R 

Catalysis  with  special  reference  to  newer  theories  of  chemical 

action 300R 

Catalytic  action.     Falk  322R,  340R* 

Cellulose ;     Researches    on    ,    1910-1921.     Cross    and 

Doree 464r,  516R* 

Chemical  engineering  catalog     . .  . .  .  -  . .  . .     464r 

Chemical   engineering ;     Handbook   of  .     Liddell  (ed.)     518R 

Chemical  engineering  library : 

Chemical   engineering   design ;     General   prin- 
ciples of .     Griffiths        . .  . .       432R,  576r* 

Chemical  plant  construction  ;  Materials  of : 

non-metals.     Griffiths  . .  . .       432R,  576R* 

Flow  of  liquids  in  pipes.  Swindin  . .  432R,  57GR* 
Pumping  in  chemical  works.  Swindin  432r,  576r* 
Weighing  and  measuring  of  chemical  substances. 

Malan  and  Robinson  . .  . .      432r,  576R* 

Chemical  engineering ;    Text  book  of  .     Hart  . .     230R 

Chemical  reactions  and  their  equations.     Hackh        . .  . .     490R 

Chemical  warfare.     Fries  and  West 229R* 

Chemie  ;   Lehrbuch  der .     Vol.  I.     Trautz         . .  . .     166R 

Chemische  Industrie  ;  Auskunftsbuch  fur  die .     Bluchcr      65R* 

Chemistry  for  beginners  and  schools.     Kingzett        . .  . .     342R 

Chemistry ;  Inorganic .    Holmyard       464R 

Chemists'  year  book.    Atack  and  Whinyates         . .         . .       20r* 

Chimie   inorganique  ;     Cours  de   .     Swarts       . .  . .     432R 

Chimie  organique  ;  Cours  de .     Swarts    . .  . .  . .     432R 

Coal  and  its  bv-products ;    Analysis  of  .     Illingworth 

and  Griffiths      . .  . .         «  42r« 


paok 
Coal,  coke,  and  by-products,  1913-1919  : 

Part  II 252R 

Part  III 464R 

Coal  and  its  utilisation ;    Lectures  on  .     Chamberlain 

and  others         . .  . .  . .  . .  . .  . .     490r 

Coke-oven  industry  ;    Critical  survey  of  questions  affecting 

the  .     Still.     (Translated   by    Coke   and    Gas 

Ovens,  Ltd.) 464R,  544r» 

Colloid  chemistry  and  its  general  and  industrial  applications  ; 

Fourth  report  on 408r,  4G1r» 

Colloid  chemistry  ;    Laboratory  manual  of  .     Holmes 

342R,  489R* 

ColloTdes;    Les  .     Duclaux  300R,  431R* 

Colloids  ;  Introduction  to  the  physics  and  chemistry  of . 

Hatschek  20R,  139R* 

Colour  index.     Part  I.     Rowe  432R,  517R* 

Colouring  matters  ;  Synthetic .     DyestufTs  derived  from 

pyridine,  quinoline,  acridine,  and  xanthene.   Hewitt     518R 

Combustion  ;   Chemistry  of .     Friend      . .  . .  . .     166R 

Concrete  ;    Wear  tests  on .     Abrams        . .  . .  . .     342R 

Cooking  appliances  ;    Tests  on  ranges  and  .    Barker    274r 

Corrosion  of  iron.     Friend         252r,  300r* 

Cuivre  ;    Les  progTes  de  la  metallurgie  du .     Conduche 

300R,  4S7R* 
Dictionary  of  applied  chemistry.    Thorpe  : 

Vol.  III.     Explosives  to  K  186R,  251R* 

Vol.    IV.     L  to  Oxydisilin  578R 

Dictionnaire  Anglais-Francais-Allemand  de  mots  et  locutions 

interessant  la  physique  et   la  chimie.     Cornubert 

166R,  342R» 

Directory  of  the  chemical  industries  ;    Kelly's  ,  1921     IIOr* 

Disinfection  and  sterilisation  ;    Chemical  .     Rideal  and 

Rideal 66r* 

Distillation  ;    Elements  of  fractional .     Robinson         . .     110R 

Distillation  principles  and  processes.  Young  and  others  66r,  380r* 
Documents  and  their  scientific  examination.  Mitchell  360R,  429R* 
Dyes  classified  by  intermediates.     Shreve  and  others      252r,  S41r* 

Dyes  ;  Manufacture  of .     Cain      . .  . .  . .      464R,  517r» 

Electric  furnace  ;    The  .     Pring  . .  . .  . .     109R 

Electrically  conducting  systems  ;  Properties  of .     Kraus 

342R,  518R# 

Electricity.     Starling 186r,  545r* 

Elektrochemie  ;  Grundziige  der  angewandten .      Vol.   I. 

Elektrochemie  der  Losungen.     Grube        . .      342r,  463r* 

Equivalence  ;   Definition  of .     Loring      . .  . .  . .     490R 

Erze  ;    Die  schwimmaufbereitung  der .     Vageler         . .     207R* 

Explosives  supply  ;    Technical  records  of ,  1915-1918  : 

No.  4.     Theory  and  practice  of  acid  mixing         ..  ..       8Gr* 

No.  5.     Manufacture  of  sulphuric  acid  by  the  contact 

process  110R,  37SR* 

No.  6.     Synthetic  phenol  and  picric  acid  . .  . .       88R 

No.    7.     Manufacture   of   nitric   acid    from    nitre   and 

sulphuric  acid  342r,  429R* 

No.  8.     Solvent  recovery  . .  . .  . .  . .     166R 

No.  9.     Heat  transmission  . .  . .  . .  . .     490R 

Farbenchemie ;      Grundlegeude     Operationen     der      ■ . 

Fierz-David 40SR,  517R* 

Fette,  Oele,  Wachse,  und  Harze  ;    Die  Losungsmittel  der 

.     Wolff 300R,  430R* 

Filtration.     Wollaston  342R 

Flavouring  materials  :   natural  and  synthetic.     Clarke        . .     546r 
Food  Investigation  Board  ;   Report  of  the for  the  year 

1921 464R 

Forensic  chemistry.     Lucas       ..  ..  ..  ..  ..       41R* 

Foundry   practice ;    Comparison   of   British  and   American 

with  special  reference  to  the  use  of  refractory 

sands.     Boswell  ..  .,  ..  ..  ..      464R 

Fuel,  gas,  water,  and  lubricants  ;    Analysis  of  .     Parr    208R 

Fuel  Research  Board  ;    Report  of  the  for  the  years 

1920  and  1921.     Second  section  :    low-temperature 

carbouisation    . .  . .  . .  . .  . .  . .     300R 

Fuels;    American .     Bacon  and  Hamor  ..       408r,  54  4r* 

Ganzzeughollanders ;      Die    rationelle    Theorie    des    . 

Smith.     (Translated  by  Heuser.) 142r 

Gas  chemists'  handbook  166r,  299r* 

Gas  cylinders  research  committee  ;   First  report  of  the 20R 

Gasmengen  ;    Messung  grosser .     Litinsky         . .       110R,  273R* 

Gasoline  and  other  motor  fuels.     Ellis  and  Meigs       . .  ..     185R* 


LIST  OF  NEW  BOOKS  RECEIVED. 


231 


Gasworks  chemistry  ; 
Gasworks'  practice  ; 
Gasworks  recorders. 
Gelatin  and  glue ; 
Bogue  . . 
Gelatine  ;    Leim  und 


Inorganic  chemistry. 
Inorganic  chemistry. 
Inorganic  chemistry ; 


PAGF. 

Modern  .     Wcynian       . .  . .     618a 

Modern  .    Meade  . .         . .     463a* 

Levy 546r 

Chemistry    and    technology    of    . 

408R,  576R* 

Thiele 490R 

Gerbstoffe  ;    Isolierung.   Nachweis,  und   Abbanstudien  auf 

dem  Gebiete  der .     Sieburg 42R 

Gerbstoffe;     Nachweis,    Isolierung,    Abbau-    und    Aufbau- 

studien  auf  dem  Gebiete  der  .     Freudenberg      42r 

Gesammelte  Abhandlungen.    Vol.  I.     Kehrmann : 

Pt.  I.     Untersuchungen  ueber  komplexe  anorganische 

Sauren  518R 

Pt.  II.     Untersuchungen  ueber  sterischc  Hinderung     . .     518R 
Grading  by  elutriation  ;    Some  properties  of  powders  with 

special  reference  to  .      . .  .  .  . .  . .     342r 

History  of  chemistry  ;   Concise .    Hilditch      . .         . .     110a 

Hydrocarbons  and  their  derivatives  ;  Chemistry  of  the  non- 

benzenoid  .    Brooks 230R,  407a* 

Impact-testing  of  materials  ;   Symposium  on  .  . .     322a 

India.     Petroleum  in  the  Punjab  and  North- West  Frontier 

Province.     Pascoe       . .         . .         . .         - .         . .       66R 

India.    Vegetable- oil  industry  in  the  Bombay  Presidency. 

Yuill 186R 

Denham  322R 

Lowry  300a,  359a* 

Laboratory  exercises  in .     Norris 

and  Mark  342r 

Inorganic  chemistry  for  university  students  ;    Text-book  of 

.    Partington 19r* 

I  uorganic     and     theoretical     chemistry  ;      Comprehensive 

treatise  on :  Mellor 

Vol.  1 88a, 

Vol.  II 

Iron  ;    Electro-deposition  of .     Hughes 

Iron  ore.  Summary  of  information  as  to  the  present  and 
prospective  iron-ore  deposits  of  the  world  : 

Parts  I  to  V 322R, 

Part  VI         

Parts  VII  and  Yin  

Isotopes.    Aston  . .         . .         . .         . .         . .      110a, 

Isotopes  ;    Definition  of  .     Loring 

Journal  of  Indian  Industries  and  Labour.     Vol.  I.     Part  4 
Journal  of  the  Institute  of  Metals.     Vol.  XXVII.     No.  1, 

1922 

Kautschuk  und  Flechtenstoffe.     Fonrobert  and  others 

Kolloidchemie,  1914-1922.     Liesegang  

Kolloidchemie     des     Lebens     (Biologische      Diffusionen) ; 

Beitrage  zu  einer .     Liesegaug  . .      230a, 

Eolloide  Losungen.     Leimdorfer  . .  . .  . .      166R, 

Kolloider   Losungen  anorganischer  Stoffe  ;    Die  Methoden 

zur  Herstellung  .     Svedberg     . .  . .      360a, 

Laboratory  apparatus ;    Standard   specifications   for  

adopted  by  the  Manufacturing  Chemists'  Associa- 
tion of  the  United  States.  Part  I.  Graduates 
and  thermometers 

Lac,  turpentine,  and  rosin  ;    Reports  on  . 

Lead  poisoning ;    Laws  and  regulations  relating  to  . 

Stone 

Leather  manufacture  ;    Principles  of  .     Procter      142r, 

Matieres  colorantes  artificielles :  leur  fabrication  et  leur 
emploi.     Vassart 

Meat  and  fish  ;    Bacteriology  of  canned .    Savage  and 

others. 

Fourneau 
65R* 
Mellon    Institute    of    Industrial    Research,    University    of 

Pittsburgh  ;     Ninth   annual   report    of    the   . 

Weidlein 

Mercury  ;    Organic  compounds  of  .     Whitmore 

Metallography.     Desch  . .  . .  . .  . .      252R, 

Metallography  and  macrography  ;  Introduction  to  the  study 

of   .     Guillet   and    Portevin.     (Translated  by 

Taverner)  88R, 

Metals  ;   Failure  of under  internal  and  prolonged  stress 

Microscope  ;   The  .     Beck 

Microscopy  ;    Elementary  chemical  .    Chamot 

Mining  laws  of  the  British  Empire  and  of  foreign  countries. 
Vol.  III.  Part  I.  General  principles  applicable 
to  South  Africa  :   Transvaal 

Motor  transport ;   Fuel  for . 

National  Physical  Laboratory.     Collected  researches 

Nitrogen  ;   Industrial  .     Kempton 

Nitrogen  industry.     Partington  and  Parker 

Non-ferrous    alloys ;     Analysis    of    .    Ibbotson    and 

Aitchison 
Non-ferrous    metallurgical    analysis ;     Tested    methods    of 

.    Pile  and  Johnston 

Mitzakis 


Medicaments  organiques  ;   Preparation  des  - 


227R* 
407R* 
208R 


378a* 
490R 
360R 
139R* 
490R 
20R 

322R 

109R* 
360R 

360R* 
431R* 


490R 
166R 

166R 
321R* 

20R 

464R 

,  88R 

518R 

19R* 

358R* 

166R* 
88R 
20R 
87R* 

360R 

20R 

360R 

252R 
490R 


Oil  encyclopsedia. 

Oil  palms  ;    Investigations  on 


Rutgers 


230R 

408R 
88R 
464R 


PAGE 

Oils,  fats,  and  waxes  ;    Chemical  technology  and  analysis 

of    .    Vol.    II.     Lewkowitsch.    (Revised    by 

Warburton) 208R,  46lR* 

Oils  ;    Volatile  .     Gildemeister  and  Hoffman.    (Trans- 
lated by  Kremers)      . .         . .         . .         . .         . .     464r 

Olien  leverende  Planten  van  Nederlandsch  Oost-Indie  ;    De 

aetherische en  de  Bereiding  van  Haar  Olien. 

De  Jong  518R 

Organic    analysis,    qualitative    and    quantitative.     Barnett 

and  Thome 165R* 

Organic     chemistry.     Vol.      II.     Carbocyclic     compounds. 

Richter.     (Translated  by  Fournier  d'Albe)  66R,  207a* 

Organic  chemistry ;    Course  of  practical  .     Price  and 

Twiss 20R,  165a* 

Organic      chemistry ;      Text-book      of      .     Bernthsen. 

(Revised  by  Sudborough) 230R,  341a* 

Organic  chemistry  ;    Theories  of  .     Henrich.     (Trans- 
lated by  Johnson  and  Hahn)  . .  . .      432R,  543r* 

Organic  syntheses.    Vol.  I.    Adams  . .         . .         . .     165R* 

oi-LMni -riir  rhf'init'.     Wiss<'iis<h;ii tlirli.^  Forschungsberichte. 

III.     Pummerer  165R* 

Organischen    Chemie ;     Die    Methoden  der   .     (Weyl'a 

Methoden.)     Vol.  I.     Houbeu  and  others  42R,  141R* 

Organo-magnesiura    compounds    in    synthetic    chemistry : 

Bibliography  of  the  Grignard   reaction,  1900-1921. 

West  and  Gilman 380r 

Oxidations  and  reductions  in  the  animal  body.     Dakin     . .     546a 
Paints,    varnishes,    and    colours ;     Physical    and    chemical 

examination  of  .     Gardner        . .  . .      464r,  577r* 

Papermakers'  Association   of   Great   Britain   and   Ireland ; 

Proceedings  of  the  Technical  Section  of  the . 

Vol.  III.,  Pt.  1  490R 

Paper-making  and  allied  subjects  ;  Bibliography  of  periodical 

publications  on ■  during  1921  . .         . .     230R 

Papier.     Dalen 86R 

Papier-Fabrikant.     Vol.  XX.     No.  23A         300R 

Papierindustrie ;    Die  Verwendung  von  Warme    und   Kraft 

in  der .     Grewin  . .  . .  . .  . .     142R 

Patent  agents  ;    Register  of  — ■ — ■.       . .  . .  . .  . .     142R 

Patents  and  chemical  research.     Potts  . .  . .  . .     140R* 

Perfumery  Record  year-book  and  diary  for  1922  . .       20R 

Petroleum  and  allied  industries.     Kewley     . .  . .  . .      360R 

Petroleum  industry  ;    a  brief  survey  of  the  technology  of 

petroleum  208r,  273a* 

Petroleum  products  ;    Memorandum  and  draft  regulations 

in  connexion  with  the  bulk  storage  of  .       . .       464a 

Pharmacopoeia  of  the  United  States  ;    Digest  of  comments 

on  the  and  on  the  National  Formulary  for 

1918.    Dumez  166r 

Photographic  emulsions  ;  Sensitoraetry  of and  a  survey 

of  the  characteristics  of  plates  and  films  of  American 

manufacture.     Davis  and  Walters,  jun.     . .          . .     490a 
Photographic  emulsions  ;   The  silver  bromide  grain  of . 

Trivelli  and  Sheppard  . .  . .  . .  . .       4lR* 

Physical  and  chemical  constants  and   some  mathematical 

functions.     Kaye  and  Laby  . .  . .  . .       66a* 

Physico-chemical  themes  ;  Some .     Stewart      . .  . .     230a 

Plant  biology ;    Practical  .     Dixon         230R 

Plant  products  ;    Introduction  to  the  chemistry  of  . 

Vol.  II.     Metabolic  processes.     Haas  and  Hill      . .     432R 

Platinum ;    Production  of  for  1920.     Kunz  . .     142a 

Potash.    Johnstone        110a,  408a* 

Powdered  coal ;  Preparation,  transportation,  and  combustion 

of  .     Blizard  185a* 

Precious    stones ;     Internationa]    economic    importance    of 

in  times  of  war  and  revolution.     Kunz       ..     142a 

Precious  stones  ;    Production  of for  1920.     Kunz        . .    142R 

Proteins  ;    Colloid  chemistry  of  the  .     Part  I.     Pauli. 

(Translated  by  Thorne)  110r 

Pulverised  coal  systems  in  America.     Harvey         . .      110R,  185R* 

Quantentheorie  ;    Fortschritte  der .     Lande"     . .  . .     230R 

Quicksilver,  1913-1919 342a 

Radioactive  substances ;    Introduction  to  the  chemistry  of 

.     Russell  230R,  360a* 

Relativity  ;    Definition  of  .     Loring 490a 

Report  of  Secretary  of  Mines  ;  First  annual and  annual 

report  of  H.M.  Chief  Inspector  of  Mines  for   year 

ending  Dec.  31,  1921 464R 

Research    in   industry :     the    basis    of    economic   progress. 

Fleming  and  Pearce   ..  ..  ..  ..  ..     142R 

Rubber  ;    Analysis  of .     Tuttle  518R 

Sewage  treatment ;    Sewerage  and .    Babbitt         208a,  299a* 

Smithsonian  report  for  1920  ;   Reprints  from  the , .     578R 

Smoke  abatement  and  fuel  technology  in  England  ;   Recent 

progress  in .    McKay    ..         ..         ..         ..     518a 

Soaps  and  proteins  :    their  colloid  chemistry  in  theory  and 

practice.    Fischer,  McLaughlin,  and  Hooker         42r,  139r* 

Solids  ;  Aggregation  and  flow  of .     Beilby         . .         . .       20a* 

Solvents  ;   Recovery  of  volatile .     Robinson      . .  . .     578a 

Spectra  ;  Origin  of .    Foote  and  Mohler  . .         . .    432a 


232 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


Steels ; 
Sugar ; 


Sugar ; 
Suisse ; 

Sulphur 

Swedish 
Tables 

Tanning 
Tannins 


United 


PAGE 

Engineering .    Aitchison  358R* 

Cane  :    a  text-book  of  the  agriculture  of  the 

sugar  cane,  tbe  manufacture  of  cane  sugar,  and  the 
analysis  of  sugar-house  products.     Deerr  . .  . .     86R* 

Manufacture  of  cane .    Jones  and  Scard  . .       42R 

Rapport  sur  le  commerce  et  l'industrie  de  la  

en  1921  «0K 

in  iron  and  steel;    Determination  of  ,  with  a 

bibliography,  1797-1921.     Pulsiier 252r 

year-book,  1921  . .  . .  HOE 

nnnuellea  de  constants  et  donnees  numeriques  de 
chimie,  de  physique,  et  de  technologic     Vol.  l\  .    546R 

: ;  Practical .    Rogers 274R,  48SE* 

:  Svnthetic  :  their  synthesis,  industrial  pro- 
duction, and  application.  Grasser.  (Translated 
by  Enna)           141E* 

States  Bureau  of  Mines  publications  ..     88E, 

142R,  1S6E,  252R,  322R,  342R,  330R  ,490R,  546R 


PAGE 

U.S.  Bureau  of  Standards  publications         ..    110R,  142r, 

-hi,  54BR,  573R 

United    States   Forest   Products    laboratory.    A   technical 

record,  1910-1920         136a 

United  States  Geological  Survey  publications         . .     88R, 

142R,  166R,  186R,  252R,  322R,  464R 

Vanadium,  1913-1919 403R 

Vanille,  Vanilline,  Vanille-Extracten.    Utermark  . .     518R 

Vitamins.     Sherman  and  Smith  142E,  25lR* 

Vitamins  and  the  choice  of  food,  plimmer  and  Plimmer  ..  230a 
Warenkunde.  Vol.  IT.  Organische  Waren.  Hassack  . .  518R 
Wassergl&S  :    Die  Venvendung  von  zum  Leimen  von 

Papicrstoff.    Blasweiler         142r. 

Werkstoffe  :    HandwOrterbuch  der  technischen  Waren  und 

ihrer  Bestandteile.     Krais  and  others  . .      300R,  400R* 

Zirconium  and  its  compounds.    Venable      ..         ..      16Gi:,  _:     ' 


LIST  OF  ENGLISH  PATENTS  ABSTRACTED. 


233 


List  of  Patents  Abstracted. 


ENGLISH  PATENTS. 


No.  of 

No.  Of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

142,477 

1.1 

151,016 

183a 

155,776 

73  5  A 

156,698 

707a 

158.512 

774a 

160,76  , 

566A 

161,716 

221a 

143.250 

19A 

151,596 

79  \ 

155,773 

459A 

156,709 

628A 

15S.513 

5.80.1 

160.776 

9101 

161.719 

501a 

143,525 

20A 

151,597 

111A 

155,781 

270A 

156,710 

493A 

158,531 

96.A 

160,777 

916  1 

161.730 

712a 

144.663 

37.1 

151,598 

11  1  1 

155,782 

22a 

156,713 

416a 

158,558 

438A 

160,311 

669A 

161,757 

436a 

145,026 

15a 

151,611 

133A 

155. so;, 

107A 

156,, 722 

473a 

158,562 

22  1  1 

160,821 

,821.1 

165.050 

52a 

145,032 

939.1 

151,644 

379a 

155.SU 

175A 

156.723 

165a 

153,565 

505A 

100,840 

91,1 

165,051 

177a 

145.652 

168A 

151,925 

91A 

155,824 

474a 

156. 725 

6.36  V 

158,569 

620a 

161,156 

516  1 

165,052 

142a 

145,689 

27A 

151,981 

332a 

155,834 

619a 

156,749 

176,1 

158,827 

4721 

161,159 

2;  1  1 

165,06.8 

481a 

146.159 

149a 

151,984 

173A 

155,8  15 

333A 

156,754 

6A 

158,844 

508a 

161,161 

,,371 

165,071 

824a 

146.166 

150a 

151,988 

43a 

15.V-.16 

357a 

156,76,5 

551 A 

158,849 

371a 

161,165 

669.A 

165,081 

742a 

146,107 

185A 

152.002 

198a 

155  B47 

341a 

156,776 

2  ISA 

158,858 

279.1 

161,192 

711.1 

165,082 

821a 

146,180 

150A 

152,029 

470a 

156,079 

225a 

156,777 

684a 

158,863 

253a 

161,195 

590A 

16,5.033 

664a 

146,181 

150A 

152,289 

422a 

156, 095 

665a 

I.  ,6.  796 

347a 

158,875 

457A 

161,526 

367A 

165,085 

837a 

146.  Is2 

185a 

152,335 

80a 

156,096 

542a 

156.797 

416a 

15s,ss2 

596A 

161,537 

901A 

165,406 

581a 

146,351 

L87A 

152.617 

6a 

156.103 

347a 

156.798 

31  7a 

158,887 

555a 

161,539 

520  1 

lii;,  108 

905a 

146.365 

28a 

152,641 

69a 

156,116 

436a 

156.799 

102a 

153,890 

473A 

161,553 

112a 

165,438 

483a 

146,839 

46a 

152,644 

43a 

156.117 

436a 

156,. sod 

502a 

158,891 

464a 

161,560 

470A 

165,439 

855a 

146,871 

8a 

152.650 

168a 

156.118 

383a 

157.126 

541a 

158,906 

523a 

161.56.4 

855A 

16,5.145 

802a 

146,908 

103a 

152,652 

93a 

156.119 

336a 

157.149 

481a 

159,131 

813a 

161,581 

858A 

165,446 

483a 

147,001 

50a 

152,667 

107a 

156.120 

437a 

157.212 

324a 

159,142 

453a 

161,91.8 

700A 

165,451 

926a 

147.051 

92a 

152,668 

208a 

156.121 

483A 

157,219 

91A 

159,143 

47oa 

161,924 

33a 

165.721 

625a 

147,11s 

7SA 

152.671 

317a 

156.122 

436A 

157.220 

289A 

159,156 

98A 

161,929 

537a 

165.722 

936a 

147,119 

78A 

152,687 

28A 

156.12.1 

403a 

157.223 

328a 

159,159 

329A 

161,957 

163a 

165,724 

852a 

147,189 

163A 

152,960 

212a 

L56.124 

385A 

157,221 

422a 

159,164 

558.A 

161,971 

764a 

165,728 

959a 

147,1711 

99A 

153,006 

151A 

156,133 

259a 

157,225 

469a 

159  166 

267A 

161,976 

726  1 

165,735 

3a 

147,495 

13a 

153,007 

252A 

156.135 

173a 

157,226 

347A 

159,173 

452a 

161.977 

127A 

165,737 

91a 

147,565 

180a 

153,254 

215A 

156,136 

437a 

157,239 

322a 

159,175 

455a 

162  249 

964A 

165,738 

91a 

147,649 

113A 

153,265 

50a 

156,137 

381A 

157,261 

449a 

159,191 

259a 

162.250 

795a 

165,739 

91a 

147,736 

4A 

153,290 

371A 

156,138 

404A 

157,280 

116A 

159,193 

462a 

162,266 

309A 

165,740 

91a 

147,737 

167A 

153,293 

66a 

156,139 

391a 

157,281 

668a 

159,194 

501a 

162,268 

803A 

165,744 

623a 

147,739 

166.A 

153,308 

205A 

156,140 

404a 

157,286 

361a 

159,196 

811a 

162,269 

454A 

165,745 

579a 

147,745 

109a 

153,574 

157A 

156,141 

425A 

157,287 

405a 

159,215 

774a 

162,276 

454A 

165,759 

14a 

147,797 

69a 

153,579 

260a 

156.142 

381A 

157.295 

469a 

159,217 

575a 

162,285 

823A 

165,767 

416a 

147. 861 

77a 

153,591 

537A 

156.146 

437A 

157,302 

166a 

159,461 

771A 

162,618 

763A 

165,770 

119a 

147,904 

52a 

153,605 

231A 

156,147 

437A 

157,318 

702A 

159,464 

624a 

162,624 

637A 

165,771 

119a 

147.906 

36a 

153,877 

197A 

156,148 

438A 

157,351 

432a 

159,469 

295A 

162,627 

291A 

1 65,779 

4S3a 

147,907 

36a 

153,913 

455a 

156,149 

381A 

157,352 

432a 

159,475 

763A 

162,645 

138a 

165,784 

757a 

148,111 

474a 

153,916 

328a 

156,150 

3s3.1 

157,378 

102a 

159,479 

466A 

162,646, 

974a 

165,785 

860a 

148,117 

22A 

153,917 

436a 

156.151 

381A 

157,379 

378a 

159,481 

603a 

162,654 

15a 

165,788 

702a 

148,126 

151a 

153,918 

270a 

156.152 

437A 

157,401 

599a 

159,492 

470A 

162,657 

602a 

165,790 

524a 

148,132 

133A 

153,919 

270a 

156,153 

432a 

157.416 

459a 

159,494 

475A 

163,011 

662a 

165,802 

lA 

148,139 

110a 

154,152 

375a 

156.168 

361a 

157.125 

459a 

159,497 

243a 

163,012 

623a 

166,117 

559a 

148,202 

197A 

154,153 

303a 

156.170 

415a 

157,705 

422a 

159.508 

812A 

163,013 

735a 

166, 124 

848a 

14S.336 

55A 

154,157 

383a 

156,173 

432a 

157,715 

335A 

159,509 

457a 

163,014 

764.1 

166,129 

926a 

143,366 

197a 

154.162 

263a 

156,183 

472a 

157.745 

414a 

159,815 

620a 

163,016 

10A 

166,521 

1a 

14-, 373 

190a 

154  190 

245a 

156,187 

232a 

157.746 

371a 

159,817 

537a 

163,017 

10A 

166,525 

926a 

148,407 

20.1 

154,193 

567a 

156,190 

483a 

157.747 

502a 

159,823 

590a 

163,030 

707a 

166,527 

777a 

148,408 

169a 

154,558 

4a 

156,215 

407a 

157,749 

518  a 

159.837 

287A 

163.032 

240.1 

166,, 530 

892a 

148,419 

211 A 

154,562 

111a 

156,213 

573  a 

157,750 

502A 

159,833 

777A 

163.039 

239A 

166,533 

983a 

14-- 5 

108a 

154,563 

lllA 

156.244 

407a 

157,753 

315a 

159,843 

299a 

163,263 

555a 

166,541 

982a 

148,537 

199a 

154,579 

308A 

156,245 

457  a 

157,769 

673a 

159,853 

111a 

163,267 

177a 

166,542 

163  a 

1  18  160 

187a 

154,605 

405.A 

156,250 

300a 

157.774 

4  70a 

159,854 

112a 

163,270 

575a 

166,544 

801a 

148,567 

168a 

154,610 

1A 

156,254 

602a 

157,780 

332a 

159,857 

470a 

163,271 

50a 

16,6,,  55  8 

711A 

148,750 

185a 

154,895 

285  V 

156,259 

424a 

157.785 

470A 

159,858 

378A 

163,276 

179a 

166,875 

389a 

148,764 

235A 

154,907 

309A 

156,478 

415a 

157,789 

954A 

159,865 

465a 

.   ■  " 

560a 

166,887 

602a 

148,773 

92A 

154,938 

322a 

156,479 

463a 

157.790 

954a 

159,866 

347A 

163.297 

541a 

166,888 

942a 

148,785 

169a 

155  209 

452a 

156,481 

460A 

157,793 

405a 

159,877 

267A 

163,304 

752  a 

166,896 

869a 

148,820 

4A 

155.211 

367A 

156,512 

324a 

157,794 

578a 

159,878 

669a 

103,311 

729  a 

166,989 

5A 

148,829 

28A 

155.246 

422a 

156,513 

367a 

157,795 

579a 

|  159.8S0 

537A 

163,312 

7  ISA 

167,132 

344a 

148,847 

43a 

155,259 

323a 

156,514 

367A 

157,808 

457A 

159,886 

681A 

163,323 

631a 

167,133 

116a 

1 18,878 

165a 

155,268 

375a 

156,517 

455a 

157, S26 

207  A 

159  --7 

62a 

103.  1  10 

501a 

167,138 

503a 

148,897 

22 1  a 

155, 281 

341a 

J  56,536 

378A 

157,827 

455  a 

159,895 

859a 

163,336 

120A 

16,7,1  -^ 

324a 

148,923 

169a 

155,282 

305a 

:  156,538 

407A 

157,828 

455a 

160,137 

690a 

163,679 

261A 

167,142 

683a 

148,943 

46A 

155,283 

305a 

156,540 

407A 

157,836 

511A 

160,143 

597a 

163,6-  , 

501a 

167,143 

748a 

149.000 

96a 

155  284 

341a 

156,543 

281A 

157,-10 

460A 

160,148 

23A 

163,693 

714.1 

167,144 

576A 

149.23:! 

165a 

155,285 

341a 

'    156,548 

469A 

157,849 

205A 

160,149 

87A 

163,706 

812a 

167,151 

344a 

149,234 

317a 

155.286 

305a 

i  156,552 

470A 

157.853 

440A 

160,151 

284a 

163,719 

739a 

167,154 

87.1 

149,296 

11A 

155,287 

305a 

156,561 

19A 

157,859 

405A 

160,152 

102.1 

163.973 

254a 

167,155 

889A 

149,31s 

10a 

155,288 

341a 

1  .,6.',,  7 

274A 

157,860 

509a 

160,161 

530A 

16  1.97  i 

631a 

167,157 

7S5A 

149,319 

95a 

155.289 

341A 

156,591 

425  a 

157  362 

478A 

160,172 

589a 

!  163,980 

729a 

167,164 

717A 

149,320 

53a 

155.290 

386a 

156,592 

163a 

157.364 

774a 

160  180 

620a 

|  163,995 

9  19  1 

167,171 

855A 

149,347 

91a 

155,291 

341a 

156,593 

598a 

157. SS4 

379a 

16,0,426 

637a 

164,002 

878a 

167  185 

131a 

149,623 

182a 

155,292 

341a 

j  156,594 

285a 

157,887 

317A 

160.427 

715.1 

164,019 

472a 

167.162 

769a 

149,662 

13a 

155,293 

341a 

156,6)3.1 

SOA 

157,907 

368A 

160,433 

50a 

16,4.  102 

138.1 

167,463 

769a 

149,915 

87a 

155,299 

258a 

156,.64  1 

108A 

157,908 

360A 

160,435 

69a 

164,303 

321A 

167,464 

942a 

149.958 

6a 

155,302 

371a 

156,644 

108a 

157,929 

722a 

160,442 

j  90a 

164.306 

33a 

167,469 

674a 

l 66979 

22a 

155,546 

364a 

156,645 

602a 

157,966 

359a 

160,454 

415a 

164,310 

494a 

167,504 

726a 

149,982 

23a 

155,572 

147a 

156. 6  46, 

384a 

157.975 

677a 

160,455 

555a 

164,319 

-. 

16,7.7:31 

535a 

150,319 

119a 

155,577 

347a 

156.647 

384a 

157.976 

453a 

160.466 

577a 

164,326 

197a 

167,738 

579a 

150,744 

99a 

155,579 

21a 

156,. 6,67 

19SA 

157.97,8 

721a 

160.467 

851a 

16,1,329 

725a 

167,739 

88A 

150.961 

181A 

155,592 

633a 

156,670 

774  a 

157,982 

542a 

160.747 

173a 

•     164,357 

610a 

167,741 

764A 

150,962 

57A 

155.595 

22a 

156,691 

611A 

157,984 

422a 

160.748 

211a 

164,358 

5a 

167,748 

808A 

150,968 

114A 

155.753 

15A 

156,693 

404a 

158,227 

15a 

160.754 

405a 

164,711 

389a 

167,769 

858A 

150,996 

3A 

155,755 

388A 

156,694 

457a 

158,250 

299a 

160.759 

502a 

164,712 

389a 

167.781 

877A 

151.1100 

136a 

155,775 

391 A 

156.695 

285A 

158,510 

457A 

169,760 

555A 

164,715 

197a 

168  022 

211A 

234 


JOURNAL   OF   THE    SOCIETY   OF   CHEMICAL    INDUSTRY. 


No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

168,023 

378A 

171.566 

5a 

172.777 

116a 

174,059 

795a 

175,401 

259a 

176,729 

3321 

178,347 

4711 

168,025 

379a 

171,607 

62a 

172,783 

93a 

174.0S4 

673a 

175,406 

261a 

176,737 

328a 

178,373 

4541 

168,035 

917A 

171,608 

15a 

172,788 

115a 

174,099 

182a 

175  428 

271A 

176,747 

855A 

178,475 

452a 

168,045 

816A 

171,637 

30A 

172,838 

88a 

174,101 

212a 

175  456 

259a 

176,770 

812A 

178,488 

478a 

168,048 

899A 

171,652 

lA 

172,856 

103A 

174,106 

168a 

175,478 

239a 

176,816 

389A 

178,498 

454a 

168,050 

180a 

171,661 

53A 

172,858 

99a 

174,112 

177A 

175,485 

289a 

176,819 

379A 

178,504 

455a 

168,070 

950a 

171,670 

931a 

172,862 

88A 

174,114 

213a 

175,486 

289a 

176,822 

3611 

178,510 

454a 

lew  :;ii4 

541a 

171,691 

628a 

172,864 

93a 

174.124 

164a 

175,501 

295a 

176,833 

365a 

178,537 

456A 

168,324 

755a 

171,692 

374a 

172,923 

945A 

174,125 

173a 

175,516 

298a 

176,834 

357a 

178,558 

454a 

168,575 

367A 

171,718 

54a 

172,924 

894a 

174,126 

174a 

175,517 

294A 

176,836 

357A 

178,560 

449a 

168,576 

484a 

171.719 

62A 

172,926 

765a 

174,136 

212a 

175,561 

267A 

176,847 

404  a 

178,570 

684a 

168,578 

611a 

171,722 

62a 

172,937 

662a 

174,143 

167a 

175,586 

603a 

176,857 

357A 

178,587 

596a 

168.592 

596a 

171,720 

52a 

172,958 

982a 

174,147 

192a 

175,605 

670A 

176,864 

357a 

178,636 

449a 

168,598 

890a 

171,729 

69A 

172  993 

156a 

174,165 

167a 

175,622 

725A 

176,869 

368a 

178,722 

596a 

168,843 

103A 

171,739 

83a 

173,004 

197a 

174.240 

164A 

175,623 

605a 

176,891 

361A 

178,729 

4541 

168,847 

417A 

171,743 

64a 

173,006 

170a 

174,245 

167a 

175,666 

284A 

176,903 

358A 

178,734 

4551 

168,866 

855a 

171,750 

62a 

173,028 

99a 

174,254 

201A 

175,670 

283A 

176,905 

333a 

178,779 

456a 

168,868 

403a 

171,751 

174A 

173,1160 

100a 

174,258 

221a 

175,672 

299A 

176,918 

379a 

'78  8,11 

823a 

169.144 

298a 

171,757 

43A 

173.063 

198a 

174,271 

220A 

175,674 

282a 

176,924 

372a 

178,871 

454a 

169,145 

496a 

171.774 

83A 

173,072 

130a 

174,306 

183a 

175,680 

305a 

176,925 

408a 

178,889 

455a 

169,185 

997a 

171.776 

52a 

173,097 

19SA 

174,317 

627a 

175.695 

306a 

176,957 

389a 

!  178,896 

474a 

169,301 

372a 

171,803 

67A 

17:!  999 

132a 

174,327 

463a 

175,744 

279A 

176,973 

379a 

178,942 

484a 

169,428 

580a 

171,805 

47a 

173,166 

170a 

174,389 

209a 

175,746 

289a 

176,977 

371A 

178,946 

543a 

169,451 

978a 

171,806 

55A 

173,167 

96a 

174,418 

230a 

175,761 

291A 

176,980 

374A 

178,952 

454a 

169,676 

460a 

171,863 

47A 

173,208 

931a 

174,433 

229A 

175,764 

301A 

176,995 

335a 

178,953 

481A 

169,687 

892a 

171,884 

47A 

173.230 

997a 

174,443 

221a 

175,778 

283a 

177,027 

389a 

178,962 

542a 

]  69  688 

647a 

171-91 

llA 

173.234 

969a 

174,498 

209a 

175,795 

293a  ■ 

177,056 

391a 

178,973 

473a 

169,695 

936a 

171,909 

48A 

173,236 

942a 

174,527 

229a 

175,800 

279a 

177,067 

358a 

178,981 

484a 

169,703 

942a 

171,918 

47a 

17::, 212 

131a 

174,529 

222a 

175,840 

28I1A 

177.073 

392a 

178,994 

456a 

If.li.Tf.'.i 

102a 

171,921 

64A 

173,251 

147a 

174,554 

232a 

175,888 

283A 

177,085 

374a 

179,012 

478a 

169,789 

102a 

171,928 

16a 

173,254 

170a 

174,555 

223a 

175,902 

2S2A 

177,103 

373a 

179,031 

484a 

169,948 

536A 

171,956 

676A 

173,255 

193a 

174,581 

546a 

175,958 

657A 

177,123 

381a 

179,043 

449a 

169,950 

715a 

171,962 

472a 

173,259 

199A 

174,588 

627a 

176,002 

357a 

177,180 

380a 

179,060 

485a 

169,952 

802a 

171,981 

978a 

173,265 

199a 

174,589 

399a 

176,003 

357a 

177,189 

438a 

179,096 

463a 

170,152 

167a 

172,004 

939a 

173,268 

145A 

174,653 

215a 

176,025 

294a 

177,204 

362a 

179,108 

456a 

170,260 

466a 

172,006 

858a 

173.276 

187a 

174,656 

224a 

176,034 

289a 

177,211 

368A 

179,124 

449a 

179,26.1 

701a 

172,011 

969a 

173,285 

192a 

174,657 

243a 

176,035 

304a 

177,234 

358A 

179,129 

899a 

170,273 

325a 

172,027 

372a 

173,297 

142a 

174,660 

248a 

176,038 

347a 

177,235 

358A 

179,201 

505A 

170,274 

531A 

172,030 

197A 

173,301 

193a 

174,676 

211a 

176,053 

282a 

177,230 

361a 

179,203 

457a 

170,287 

103A 

172,035 

65A 

173,313 

139a 

174,679 

205a 

176.95.-i 

295a 

177,239 

362a 

179,206 

515a 

170,329 

391a 

172,038 

52a 

173,322 

177a 

174,685 

248a 

176,064 

298A 

177,262 

383a 

179.298 

542a 

170,351 

23a 

172,046 

62a 

173,337 

146a 

174,690 

205a 

176  1173 

302a 

177,283 

438a 

179,209 

489a 

170,474 

26a 

172,048 

69a 

173,350 

148a 

174,700 

225a 

176  099 

284a 

177,307 

460a 

179,216 

502a 

170,515 

167a 

172,056 

51a 

173,405 

172a 

174,702 

232a 

176,100 

284a 

177,310 

372A 

179,234 

542a 

170,545 

484a 

172,057 

51A 

173,418 

163A 

174,712 

209a 

176,101 

284A 

177,323 

357A 

179,235 

493a 

170,563 

634a 

172,062 

59a 

173,486 

820a 

174,714 

211a 

176,102 

284A 

177,362 

391a 

179,241 

508A 

170,572 

975a 

172,06,5 

46a 

173,502 

982a 

174,784 

212a 

176,104 

309a 

177,417 

392A 

179,247 

461a 

170,575 

399a 

172,967 

43a 

173,506 

361a 

174,852 

254a 

176,113 

283A 

177,444 

372a 

179,250 

524a 

170,601 

576a 

172,074 

58A 

17::. 597 

786a 

174,863 

221a 

176,117 

301a 

177.495 

721a 

179;258 

576a 

170,705 

22a 

172,087 

57a 

173,515 

865A 

174,877 

211a 

176,144 

295a 

177,526 

809a 

179.261 

505a 

170,817 

459a 

172,099 

59a 

173,534 

193a 

174.878 

215a 

176  149 

279a 

177,553 

417A 

179,272 

503a 

170,835 

239a 

172,101 

62a 

173,536 

138a 

174,881 

221a 

170,186 

280A 

177,556 

362a 

179.287 

489a 

170,840 

545A 

172,145 

71a 

17:;.., in 

170a 

174.891 

205A 

176,235 

323A 

177,559 

362a 

179,306 

505a 

170,848 

597a 

172.155 

62a 

173,545 

149a 

174,899 

855a 

176,279 

353a 

177,561 

417a 

179,344 

498a 

170,852 

359a 

172,177 

51A 

173,546 

149a 

174,905 

969a 

176,284 

341a 

177,566 

383a 

179,355 

516a 

170,861 

985a 

172,193 

55a 

173,555 

374a 

174,913 

686a 

176,29  1 

280a 

177,588 

362a 

179,384 

5431 

170,867 

169a 

172,199 

46A 

173,567 

149a 

174,947 

895a 

176,305 

834a 

177,589 

404a 

179,409 

541a 

170,911 

33a 

172,205 

58a 

173,591 

138a 

174,960 

248a 

176,306 

809a 

177,590 

36U 

179,460 

506a 

171,069 

29a 

172,238 

55a 

173,598 

138a 

174,961 

248a 

176.321 

708a 

177.698 

379A 

179,463 

505A 

171,075 

701a 

172,250 

65A 

173,603 

179a 

174,965 

244a 

176.340 

779A 

177,710 

358A 

179,480 

503a 

171,078 

705a 

172,21.9 

244A 

173,605 

146a 

174,974 

239a 

176,344 

752a 

177,726 

372a 

179,493 

489A 

171,079 

974a 

172.270 

209a 

173,624 

132a 

175,003 

270a 

176,395 

315a 

177,736 

374a 

179,494 

490a 

171,096 

823a 

172,272 

429a 

173,644 

131a 

175,004 

243a 

176,400 

328a 

177,744 

441a 

179,500 

524a 

171.118 

848A 

172,337 

99a 

173,662 

132a 

175,006 

252a 

176,405 

335a 

177,746 

372a 

179,567 

493a 

171,125 

llA 

172,342 

80A 

173,668 

131a 

175,019 

287a 

176,419 

328a 

177,752 

362a 

179,586 

509a 

171,132 

6a 

172,351 

63A 

173,687 

179a 

175,021 

260A 

176,420 

324a 

177,819 

-IIIUS 

179,610 

539a 

171,136 

225a 

172,356 

107A 

1  73,692 

148A 

175,023 

300a 

176.428 

332a 

177,820 

400A 

179,622 

510a 

171,144 

15a 

172,358 

88A 

173.697 

192a 

175,034 

248a 

176,429 

324a 

177,839 

415a 

179,630 

493a 

171,149 

14a 

172,359 

48A 

173,7119 

163a 

175,050 

254a 

176,430 

329a 

177,845 

403a 

179,636 

507a 

171,152 

6a 

172.391) 

107a 

173,723 

163a 

175,077 

309a 

176,436 

328a 

177,855 

403a 

179,638 

505a 

171,155 

26a 

172,392 

9?A 

173,724 

163a 

175,091 

243a 

176,437 

328a 

177,868 

459a 

179,639 

489a 

171,157 

30a 

172,393 

88A 

173,733 

729a 

175,121 

244a 

176,438 

315a 

177,926 

411a 

179,643 

493a 

171.17M 

33a 

172,398 

67A 

173.786 

997a 

175,170 

240a 

176,442 

322A 

177,927 

432a 

179,644 

536a 

171,179 

lA 

172,401 

92a 

173,788 

225a 

175,171 

254a 

176,446 

317a  1 

177,974 

432a 

179,645 

636a 

171,203 

4a 

172.11  1 

107a 

173,789 

164a 

175,201 

252a 

176,456 

332A  j 

177,985 

429a 

179,662 

493a 

171,207 

20a 

172,413 

91a 

173,791 

182a 

175.207 

258a 

176.457 

433a 

177,988 

432a 

179,674 

490a 

171,213 

6a 

172,446 

154a 

173,794 

177a 

. 

258a 

176,463 

329a  ; 

178,046 

414a 

179,675 

505a 

171,246 

38a 

172,491 

116a 

173,796 

232a 

175,232 

248a 

176.476 

322a 

178,059 

887a 

179,696 

527a 

L71.281 

33a 

172,513 

88a 

173,799 

174A 

175,238 

997a 

176,494 

344a 

178,073 

9541 

179,705 

564a 

171,282 

4a 

172,522 

115a 

17:;,  -ci., 

169a 

175,273 

620a 

176,495 

399a 

178,126 

702a 

179,716 

494a 

171,292 

8a 

172,546 

91a 

173,811 

179a 

175,301 

243a 

176,499 

315A 

178,138 

476A 

179,723 

501a 

171,291 

15a 

172,548 

107A 

173,812 

180a 

175,312 

243a 

176,508 

343A 

178,139 

476a 

179,745 

19,  U 

171,360 

990a 

172,588 

66a 

173,818 

173a 

175  314 

304a 

176,509 

343a 

178,152 

459A 

179.753 

566a 

171,361 

995A 

172,610 

860a 

173,830 

1791 

175.317 

2701 

176,524 

353a 

17.-,  157 

456a 

179,765 

562A 

171,391 

786a 

172,620 

596A 

173,831 

192a 

175,319 

245a 

176,533 

320a 

178,179 

408A 

178,764 

490a 

171,418 

31a 

172.621 

352a 

173,847 

192a 

175,329 

304a 

176,535 

325A 

178,183 

474a 

179,776 

509a 

171,422 

30a 

172,622 

352a 

173,853 

225a 

175,330 

248A 

176,540 

334a 

17.-,  21 11 

479a 

179,811 

554a 

171,432 

52a 

172,667 

110a 

17::  -.-1 

225A 

175,333 

258A 

170,549 

328A 

178,206 

461a 

179,832 

524A 

171,464 

4a 

172,673 

115a 

173,907 

168a  ! 

175,344 

291a 

176,574 

353a 

178,208 

453A 

179.867 

490A 

171,479 

29a 

172.679 

108a 

173,965 

178A 

175,348 

293a 

176,  ..7.'. 

332a 

178,2119 

542a 

179,888 

900A 

171,482 

53a 

172,681 

108a 

173  966 

163a 

175,352 

244a 

176,577 

334a 

178,213 

471a 

179,896 

565A 

171,488 

4a 

172,682 

170A 

173,971 

171a 

175,362 

304a 

176,588 

335a 

178,263 

463a 

179,934 

991a 

171,490 

62a 

172,685 

99a 

173,999 

164a 

175,365 

259a 

176,598 

328a 

178,277 

399A 

179,964 

537a 

171,495 

14a 

172,693 

108a 

174,013 

164a 

175,373 

271A 

176,610 

332a 

178,283 

400a 

179,965 

575a 

171,502 

19a 

172.711 

111A 

174,027 

478a 

175,383 

302a 

176,614 

460a 

178,300 

423a 

179,969 

660a 

171,507 

1a 

172,72:1 

103A 

174,039 

535a 

175.384 

298a 

176.619 

315A 

178,301 

423A 

179,982 

545a 

171,650 

16A 

172,739 

130A 

174,040 

708a 

175.389 

302a 

176,658 

333a 

178,320 

417a 

179,991 

539a 

171,503 

7  a 

172.751 

1111 

171  052 

545a 

17".  390 

252a 

176.713 

3161 

178,337 

425A 

179,992 

554a 

LIST  OF   ENGLISH  PATENTS  ABSTRACTED. 


235 


No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

Patent. 

Page. 

Pateut. 

Page. 

Pateut. 

Page. 

Pateut. 

Page. 

Pateut. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

180,016 

566A 

181,293 

605A 

182,497 

676a 

183,394 

764A 

184,534 

837a 

185,578 

860a 

186,462 

886a 

180,018 

564a 

181,304 

582A 

182,503 

659a 

183,399 

796a 

184,578 

827a 

185,580 

866a 

186,492 

886a 

180.021 

555A 

181,309 

834A 

182,504 

712a 

183,408 

731a 

184,607 

801a 

185,607 

846a 

186,497 

891a 

180,023 

574a 

181,397 

607a 

182,  :.27 

672a 

183,409 

731a 

184,609 

796a 

185,612 

853A 

186,515 

933A 

180,024 

546a 

181,399 

597a 

182,528 

795A 

183,428 

853a 

184,610 

806A 

185,618 

846a 

186,517 

934a 

180,027 

562a 

181,401 

636a 

182,539 

673a 

183,497 

747a 

184,624 

803a 

185,624 

850a 

180.5  18 

927a 

l.-o.ot:! 

563a 

181,403 

679a 

182.542 

661A 

183,504 

700A 

184,625 

877A 

185,632 

850a 

186,635 

934a 

180,080 

569a 

181,404 

579A 

182,545 

735A 

183,507 

717A 

184,627 

837a 

185,638 

846A 

186,639 

887a 

180,081 

538a 

181,406 

574A 

182,573 

692A 

183,512 

702a 

184,628 

821a 

185,659 

859a 

186,642 

945A 

180,090 

538a 

181,413 

.".SO  v 

18  2,.-.:.-, 

666A 

183.513 

771a 

184,639 

821a 

185,664 

860a 

186,690 

929a 

180,110 

546A 

181,450 

579A 

182,578 

659A 

183,527 

701A 

184,649 

823a 

185,681 

797a 

186,693 

927a 

180,118 

565A 

181,452 

637A 

182,582 

659A 

183,534 

726a 

184,653 

796A 

185,684 

851A 

1  so, 700 

949a 

180,120 

556A 

181,460 

611a 

182,601 

661A 

183,535 

756a 

184,658 

824a 

185,685 

849a 

186,738 

931A 

180,157 

537A 

181,486 

589A 

182.0110 

069A 

183,566 

700a 

184,671 

807a 

185,707 

871A 

186,756 

953a 

180,161 

538A 

181,502 

634a 

1-2.012 

681A 

183,572 

711a 

184,716 

814a 

185,778 

851a 

186,760 

942a 

180,175 

546A 

181,509 

599A 

182,648 

660A 

183,577 

701a 

184,742 

834a 

185,779 

889a 

186,840 

939a 

180,180 

562a 

181,512 

607a 

182,661 

669A 

183,582 

711a 

184,825 

854a 

185,780 

849A 

186,849 

969a 

180,272 

565A 

181,552 

585A 

182,693 

676a 

183,590 

772a 

l.si,x:;:i 

829a 

185,782 

889a 

186,855 

939A 

1 80,27.1 

536a 

181,560 

575A 

182,696 

686a 

183,600 

702A 

184,837 

834a 

185,797 

866a 

ISO,,  850 

977A 

180,347 

538A 

181,571 

579A 

182,697 

660a 

1S3.629 

772A 

184,839 

863a 

185,798 

874a 

180,801 

899a 

180,353 

560A 

181,575 

600a 

182,699 

673a 

183,671 

812  A 

184,840 

821a 

185,808 

864a 

186,871 

897a 

180.384 

596a 

181,584 

600A 

182.702 

660A 

183,682 

703A 

184,843 

820a 

185,809 

867a 

186,878 

977a 

180,394 

531a 

181,630 

598A 

182,730 

657a 

183,683 

718a 

184,844 

821a 

185,811 

848A 

186,943 

988a 

180,395 

596a 

181,665 

579A 

182,758 

978a 

183,708 

756a 

1-1,-00 

832a 

185  -13 

866a 

186,945 

969a 

180,396 

596a 

181,686 

885A 

182,820 

801  V 

183,768 

697a 

181,-77 

700,i 

185,814 

920a 

1-0,050 

946a 

1SM.3H7 

596a 

181,750 

025A 

182,823 

774A 

1  vI.SOS 

705A 

184,880 

815a 

185,816 

867a 

180,055 

975a 

180,401 

535a 

181,758 

627a 

182,824 

774a 

183,882 

748a 

184,887 

801a 

185,823 

885a 

186,960 

946a 

180,420 

565a 

181,775 

631A 

182,825 

715a 

is:;.  885 

705  \ 

184,910 

816a 

185,828 

855a 

186,968 

939a 

180,433 

539a 

181,781 

o:;o,a 

182,827 

701a 

183,897 

786a 

184,912 

821a 

185,838 

861a 

186,982 

942a 

180,447 

580A 

181,787 

620A 

182,-28 

701a 

183,908 

748A 

184,920 

821a 

185,842 

864a 

187,007 

927  a 

180,479 

555a 

181,701 

624A 

182,829 

777a 

183,914 

816A 

184,938 

812a 

185,859 

864a 

187,012 

961a 

180,496 

565A 

181,802 

640a 

182,830 

666a 

183,922 

772a 

184,948 

821a 

185,873 

880,  A 

187,016 

982a 

180,497 

564A 

181,811 

635a 

182,832 

680a 

183,943 

781A 

184,955 

828a 

1-5,87- 

886a 

187,018 

939a 

180,546 

546a 

181,831 

637a 

182,843 

662a 

183,972 

775a 

184,957 

821a 

1S5,SS(I 

853A 

187,022 

974a 

180,586 

565A 

1.X1.N3.-, 

647a 

182. St  1 

666a 

184,012 

774a 

184,961 

826a 

185,887 

849a 

187,035 

982a 

180,005 

568A 

isi,s:;7 

637a 

182,850 

657a 

184,025 

791A 

184,966 

858a 

185,910 

867A 

187,049 

990a 

180,611 

538A 

181,848 

638A 

182,855 

777a 

184,036 

779a 

184,984 

826a 

185,913 

958a 

187,051 

974a 

180,739 

585A 

181,849 

638a 

182,859 

669A 

184,040 

742A 

1-1.001 

802a 

185,952 

851a 

187,052 

974a 

180,758 

602a 

181,863 

637A 

182,865 

674a 

184,057 

816a 

185,007 

809a 

185,986 

873a 

187,076 

974a 

180,806 

606a 

1S1.S6.-I 

641a 

182,868 

663a 

184,060 

740a 

185,012 

863a 

186,020 

877a 

187,080 

983a 

180,837 

593a 

181,875 

637a 

182,869 

676a 

184,081 

781a 

185,035 

845a 

186,078 

914A 

187,089 

943a 

180,890 

576A 

181,877 

620a 

182,884 

665a 

1-1.  ooo 

814a 

185,037 

845a 

ISO.. 085 

889a 

187,090 

970a 

180,905 

585A 

181,879 

619a 

182,886 

676a 

184,129 

779a 

185.134 

796a 

186,086 

895A 

187,111 

943a 

180,935 

576A 

181,884 

631a 

182,927 

669a 

184,132 

771a 

185,135 

938a 

186,107 

905A 

187,129 

960a 

180,944 

576a 

181,894 

623a 

182,948 

715a 

184,197 

748a 

185,136 

823a 

186.114 

905a 

187,251 

991a 

180,963 

573a 

181,900 

627a 

1-2.0-2 

657a 

184,203 

781a 

185,137 

805a 

186,118 

865A 

187,259 

995a 

180,968 

596a 

181,901 

627A 

182,986 

6S6a 

184,206 

752a 

185,140 

849a 

186,137 

888A 

187,260 

970A 

181,023 

619a 

181,902 

627  a 

182,988 

715a 

184,211 

740a 

185,174 

825a 

186,139 

910A 

187,263 

973a 

181,034 

580a 

181,920 

620a 

183,039 

657a 

184,215 

763a 

185,179 

812a 

186,143 

888a 

187,277 

974a 

181,035 

574a 

181.974 

620a 

183,044 

oo  :a 

184,242 

743a 

185,216 

800a 

186,156 

905a  1 

187,282 

974a 

181,044 

607a 

181,984 

631a 

183,078 

666a 

184,244 

753A 

185,217 

796a 

186,157 

905A  | 

187,296 

985a 

181,058 

589a 

182.006 

621a 

l-::,o.-o 

669a 

184,248 

770a 

185,238 

854a 

186,160 

898A  1 

187,298 

994a 

181,062 

579a 

182,011 

634a 

183,097 

665a 

184,250 

740a 

185,242 

863a 

186,161 

912a  , 

187,299 

994a 

181,067 

602a 

182,031 

626a 

183,133 

927a 

184,252 

764a 

185,247 

825a 

186,199 

938A 

187,310 

985a 

181,076 

605a 

182,053 

623a 

183,150 

729a 

184,271 

756a 

185,277 

863a 

186,202 

879a 

187,313 

985a 

181,077 

606a 

182,069 

643a 

183,160 

701A 

184,279 

791a 

185,313 

863a 

186,218 

886a 

187,320 

982a 

181,082 

575A 

ls2.102 

801a 

183,177 

772a 

184,281 

741a 

185,320 

822a 

186,223 

909a 

187,326 

974a 

181,087 

611a 

182,1  40 

044a 

183,180 

700a 

184,284 

743A 

185,327 

816A 

186,231 

905A 

187,328 

973a 

181,090 

592a 

182,149 

800a 

183,186 

719a 

184,291 

742a 

185,339 

838a 

186,253 

901A 

187,335 

975a 

181,100 

927a 

182,157 

800  a 

183,188 

765a 

184,292 

786a 

185,374 

812a 

180,262 

889a 

187,336 

973a 

181,102 

579a 

182,166 

627a 

183,189 

729a 

184,323 

740a 

185,433 

854a 

186,270 

916a 

187,351 

973a 

181,123 

576a 

182,167 

648a 

183,195 

735a 

184,360 

774a 

185,435 

815a 

186,363 

894a 

187,353 

971a 

181,126 

580a 

182,201 

621a 

183,217 

763a 

184,381 

779a 

185,436 

845a 

186,370 

926A 

187,375 

985A 

181,132 

590A 

182,213 

635a 

183,219 

711A 

184,402 

767a 

185,439 

849a 

186,372 

894A 

187,394 

978a 

181,140 

584a 

182.240 

641a 

183,243 

708a 

184,433 

736a 

185,444 

874A 

186,375 

930A 

1.87,12:; 

991A 

181,153 

590a 

182,247 

624a 

183,247 

70,1a 

184,454 

859a 

185,451 

797a 

186,381 

942a 

187,429 

971a 

181,197 

604a 

182,262 

623a 

183,249 

705a 

184,495 

838a 

185,460 

845a 

186,384 

930a 

187,537 

989a 

181,198 

604a 

182,289 

641a 

is:',,  261 

705  V 

184,501 

864a  1 

185,461 

848a 

186,409 

894a 

187,558 

944a 

181,239 

597a 

182,302 

022a 

183,270 

705a 

184.507 

801a 

185,462 

845a 

186,446 

930a 

187,732 

989a 

181,247 

686a 

182,331 

647A 

183.323 

771a 

184,519 

838a 

185,477 

869a 

186,457 

943a 

187,805 

978a 

181,255 

589a 

182,399 

715A 

183,348 

708A 

184,525 

802a 

185,555 

880a 

186,458 

943a 

187,810 

985a 

181,284 

576a 

182,411 

631A 

183,351 

744a 

184.527 

812a 

185,564 

863a 

186,459 

900a 

188,173 

972a 

181,290 

576a 

182,496 

689a 

183,373 

711a 

184,533 

806a 

1 

1 

236 


JOURNAL   OF   THE   SOCIETY   OF    CHEMICAL   INDUSTRY 


UNITED  STATES  PATENTS. 

(Note. — The  letter  "  R  "  indicates  that  a  reissue  of  the  patent  is  referred  to.) 


No  of 

No  of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

Patent. 

Page.  | 

Patent. 

Page. 

Patent.    ■ 

Page. 

Patent, 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

1,291,656r 

767A 

1,393,839 

373A 

1,397,493 

10A 

1.3,119,1116 

63A 

1    llll.  115  1 

89A 

1,402,464 

146A 

1,1111.199 

216A 

1,302,224R 

650A 

1,393,840 

373a 

1,397,497 

57A 

1,399,144 

79A 

1  ,401.1155 

107A 

1,402,467 

127A 

1,404.219 

208A 

1,304,425K 

556a 

1,394,270 

936a 

1,397,51  I 

62a 

1.399,181 

43a 

1, lnl. Inn 

155A 

1.402.468 

137V 

1,404.220 

208A 

1,317,784b 

301a 

1,394,470 

943a 

1,397,528 

66A 

1,399,200 

43a 

1,401,101 

155A 

1,402,638 

151  V 

1,404  221 

208A 

1,321,62811 

512A 

1,394,471 

943a 

1,397,551) 

75A 

1,399,216 

58a 

1,401,106 

119A 

1    403,611 

147A 

1,401.232 

208A 

1,332,849K 

405A 

1,394,472  ! 

943a 

1,397,553 

47A 

1,399  217 

58A 

1,401.113 

132A 

1,402,693 

158A 

1,404,223 

208A 

1,352,211k 

328A 

1,394,473 

943A 

1,397,664 

47a 

1.399  337 

48A 

1,401,116 

155  A 

1,402. 71! 

142A 

1,404,224 

208A 

1,357,760k 

324A 

1,394,474 

943a 

1,397, 

47A 

1,399,238 

79A 

1,401.117 

S9A 

1,402,716 

128A 

1,404,225 

208A 

1,358,174b 

6A 

1  394,978 

373A 

1,397,556 

4  7A 

1,399.215 

58A 

1,401,125 

134A 

1,402.721 

131A 

1,404,226 

208A 

1,366,225r 

329A 

1.395  085 

374A 

1,397,571 

6A 

1,399,246 

63A 

1,401,136 

100A 

1,402,732 

147A 

1,404,227 

208A 

1.367,321k 

322A 

1,395,773 

25A 

1.397. 572 

6a 

1,399,266 

76A 

1.401.137 

1III1A 

1,402,733 

132A 

1,404,228 

208A 

1,370,067 

37A 

1,395,775 

37A 

1,397,609 

57a 

1,399,267 

48A 

1.401.196 

89A 

1,402,740 

146a 

1,404,229 

208A 

1,370,090 

20A 

1,395.827 

19A 

1,397.1113 

57A 

1,399,275 

46A 

1.401.199 

113A 

1.1112.711 

146A 

1,404.230 

208A 

1,370,106 

22A 

1.39.-..X33 

1A 

1.  1117  629 

70A 

1,399,294 

43A 

1,401.212 

89A 

1.4(12,742 

146A 

1.4(14.231 

208A 

1,370,218 

20A 

1,396,003 

8A 

1,397.047 

62A 

1,399,357 

53A 

1,401.222 

108a 

1,402,770 

130A 

1,404,232 

208A 

1,370,263 

31 A 

1.390.IIO6 

73a 

1,397  I',I13 

75A 

1,399  35  1 

75A 

1,401,240 

127A 

1.402.773 

127A 

1,404,233 

208A 

1,370,507 

1:ia 

1.391;  11117 

73A 

1,397,664 

75A 

1.399,133 

44a 

1.401.265 

107A 

1.4(12.814 

131a 

1,404,234 

208A 

1,370,853 

10A 

1  ,.396.11118 

73A 

1.397,084 

62A 

1,399,441 

44a 

1,401,286 

107A 

1,402.831 

141a 

1,404,235 

208A 

1,371,741 

374.4 

1,  396.  111 111 

73A 

1,397,703 

63a 

1,399,458 

63a 

1,401.207 

107A 

1,402,832 

147A 

1,404,236 

208A 

1,371.951 

lm 

1.390. 

73A 

1,397,723 

75A 

1.399,171 

76a 

1,401,278 

154A 

1.402,941 

141A 

1,404,237 

208A 

1,372,616 

388A 

1,396,018 

14A 

1.397,735 

930A 

1,399,472 

81 A 

1,401,291 

89A 

1,402,957 

149A 

1.4(14.293 

211A 

1,373,224 

372A 

1,396,021 

10A 

1,397,791 

2A 

1,399,473 

6~A 

1,401,3,48 

149A 

1,402.971 

199A 

1,404.294 

211A 

1,373,394 

3.SCIA 

1,396,023 

23A 

1,397,792 

2a 

1,399,500 

65a 

1,401,351 

154A 

1.1112. -'73 

174a 

1,404,374 

209A 

1,374,112 

367A 

1,396,024 

1A 

1,397,826 

81 A 

1.399.5(13 

44A 

1.401.433 

188A 

1,402.986 

147A 

1,404,375 

209A 

1,374,161 

382a 

1,396,028 

11A 

1,397,858 

llA 

1,399,506 

65A 

1.401.435 

108A 

1,403,025 

147A 

1,404,381 

217A 

1,374,233 

379A 

1,396,032 

20A 

1,397,860 

55A 

1.3,1. 3. ;,36 

58A 

1,401,456 

107A 

1,403,035 

146A 

1,404,387 

222A 

1,374,237 

380A 

1,396,051 

19A 

1,397,875 

llA 

1,399,533 

188A 

1,401,481 

127a 

1,403,060 

141A 

1,404,389 

209A 

1,374,642 

422a 

1,396,058 

14A 

1,397,915 

53A 

1,399,535 

79A 

1,401,497 

91A 

1,403.  1161 

141A 

1,404,412 

217A 

1,375,513 

423a 

1,390,000 

10A 

1,397,984 

47A 

1,399,611 

44A 

1,401,510 

93A 

1,4(13,, 0115 

1  1;  \ 

1,404,427 

217a 

1,375,949 

438A 

1,396.149 

26A 

1, 3117,986 

53A 

1,399,544 

71A 

1,401,525 

138A 

1,403,145 

132A 

1,4(14,135 

211A 

1,376,153 

481A 

1,396,173 

5A 

1,398.003 

30A 

1,399,554 

63A 

1,401,527 

151A 

1,403,183 

174A 

1,404,438 

217A 

1,376,207 

415A 

1,396,174 

5A 

1  398. ; 

62A 

1,399.5111 

76A 

1,401,631 

135A 

1,403,189 

175A 

1,404,467 

214A 

1.376,353 

460A 

1 .:;  l  •  1  -.  _:i_*  r 

10A 

1,398,014 

59A 

1,399,587 

54A 

1,401,648 

112a 

1,403.194 

132A 

1,404,490 

205A 

1,377,022 

449A 

L.39(!.2:i2 

73A 

1,398,051 

63A 

1,399,604 

79A 

1,401,649 

112a 

1,403,198 

132A 

1,404,501 

224A 

1,377,081 

483a 

1,396,249 

5A 

1,398,065 

64A 

1,399,638 

44a 

1.401.674 

102a 

1.403.211 

154A 

1,404,535 

248A 

1,377,152 

475A 

1,396,276 

19A 

1    39S.(IM0 

75A 

1  399  860 

70A  ' 

1.401.678 

99A 

1,403.223 

154A 

1.404.519 

229A 

1.377.1*'.! 

471A 

1,396,315 

25A 

1    198,081 

75A 

1,399,692 

44A 

1,401,693 

119A 

1.403,224 

157A 

1,404,614 

205A 

1,378,343 

523A 

1,396,320 

8A 

1,398,084 

66A 

1,399,722 

49A 

1,401.700 

191A 

1,403,225 

157A 

1,404,615 

221A 

1,380,853R 

259A 

1,396,358 

1A 

1,398,098 

81A 

1,3119,7811 

67A 

1,401,709 

157A 

1,403,230 

146A 

1,404,626 

207A 

1,381,564 

509A 

1,396,368 

73A 

1,398,113 

70A 

1,399,792 

48A 

1,401,716 

127A 

1,403,235 

146A 

1,404,633 

225A 

1,382,124 

511a 

1 . : :  ■.  •  1 ; . : :  7  1 

20A 

1,398,135 

57A 

1,399,807 

58A 

1,401,733 

108A 

1,403.237 

146A 

1,404,687 

234A 

1,382,252 

520A 

l,:;'.i<l.:;s'.i 

2A 

1,398.146 

66A 

1,399.829 

76A 

1,401,735 

127a 

1,403,279 

132A 

1,404,701 

207A 

1,382,287 

4S4A 

1,396,397 

31A 

1,398,201 

48a 

1,399.845 

44A 

1,401,737 

149a 

1.1113  3-3 

146a 

1.4114,708 

223A 

1,382,889 

490A 

l.:!'.iii.:ni9 

5a 

1.398,224 

57A 

1,399.953 

81 A 

1,401.738 

149a 

1,403.294 

130A 

1,404.709 

223A 

1,382.890 

494A 

1,396,483 

8a 

1,398,239 

53A 

1   399  954 

81A 

1.401,741 

100A 

1,403,311 

128A 

1.4114,714 

221A 

1,383,703 

507a 

1,396.485 

14A 

1,398.267 

58a 

1,899  983 

89A 

1,401.743 

107A 

1,403,313 

179A 

1,404.725 

209A 

1,384,089 

509A 

1,396,493 

37A 

1,398,285 

43A 

1,3.99  995 

64a 

1,4(11.760 

91A 

1,403,319 

92A 

1,404,734 

222A 

1,384,637 

520A 

1,396,514 

2A 

1,398.339 

30A 

1,11111.1116 

55A 

1   101,853 

115A 

1,403,349 

146A 

1,404,737 

234A 

1,384,842K 

788A 

1,396,520 

31A 

1,398,350 

26A 

1,400,041 

103a 

1,401,893 

127A 

1,403,369 

164a 

1,404,869 

208A 

1,384.946 

5a 

1,396,546 

16A 

1,398,357 

11A 

1.41.10. 1187 

103A 

1,401,901 

139A 

1,403,391 

127A 

1,404,907 

221A 

1,384,978 

5a 

l,3!Mi,.-,.-,7 

14a 

1,398,394 

63A 

1,41111,107 

79A 

1,401,924 

108A 

1,403,405 

192a 

1,404,9118 

221A 

1,385,081 

858a 

1,396,592 

37A 

1,398,438 

66A 

1,41111,16(1 

76A 

1,401,925 

106A 

1,403,412 

189A 

1.404.922 

229A 

1,385,511 

5a 

l.3iui.i;:i2 

30A 

1,398,453 

68A 

1  161 

76A 

1,401,926 

106A 

1,403.417 

142a 

1,404,957 

225A 

1,385,515 

33a 

1,396.674 

23A 

1.398.464 

75A 

1.41111,164 

52A 

1,401,927 

108a 

1,403,437 

147A 

1.404,971 

34  4A 

1,385,515R 

879A 

1,396,675 

14A 

1,398.468 

58A 

1,400,167 

58A 

1.401.932 

99A 

1.403.440 

142A 

1,40  1.972 

344A 

1,385,608 

495A 

1,390,677 

20a 

1,398,507 

63a 

1. 41111.176 

115A 

1,401,937 

119A 

1.403.457 

132A 

1,404,974 

327A 

1,386,380 

80s  v 

1,396.699 

25a 

1.398,525 

11a 

1,400,191 

229A 

1,401,953 

149A 

1,403.458 

132A 

1,405.022 

206a 

1,386,445 

870a 

1.590,71s 

2  a 

1.39S..-.45 

49A 

1.411(1  193 

21  6a 

1.402,007 

152A 

1,403,462 

147a 

1,405.038 

214a 

1,388,112 

s:.s  i 

1,396,740 

20a 

1,398,572 

63a 

1,400,195 

232a 

1,402,015 

146A 

1,403,463 

146a 

1,4115.1151 

209a 

1,388,501 

S.SIIA 

1,396,767 

4A 

1  .'198,587 

48A 

1,400,196 

213A 

1,403,040 

139A 

1,403,471 

164  a 

1,405.055 

232A 

1,388,502 

880a 

1,396,773 

OA 

1,398.596 

57A 

1,4(1(1,2(15 

79A 

1,402,062 

141A 

1.403.473 

192a 

1,405,085 

206a 

1,388,573 

877a  1 

1,396,792 

llA 

1,398.598 

47A 

1.4(111  231 

67A 

1,402.088 

147A 

1,403,477 

180A 

1,405,115 

216a 

L,:i88,Hii:i 

859a 

1,396,837 

23A 

1   398. 6,119 

6a 

1,4(111.347 

89A 

1,402,102 

187A 

1.403.516 

180A 

1,405.117 

210a 

1,389,192 

845a 

1,396,841 

14A 

1.398.658 

64a 

1,400,308 

107A 

1.4113,112 

132A 

1,403,55(1 

174A 

1,405,118 

210A 

1,389,250 

855a 

1,396.878 

10A 

1.398.723 

63a 

1,400,374 

228a 

1,402,173 

141a 

1.403.558 

1S0A 

1,405,119 

210a 

1.389,408 

845a 

1,396,899 

15A 

1,398,734 

47a 

1,400,380 

55A 

1,402.195 

137a 

1,403,576 

1S0A 

1,405,120 

210A 

1,390,260 

878a 

1,396,913 

36A 

1,398,735 

75a 

1.41111,3-1 

55A 

1,4112,201 

139A 

1    103. 63,3 

167A 

1.405,121 

210a 

1,390,378 

917a 

1.  il.C.'ll  1 

23A 

1. 398. 751 

6a 

1,400,389 

44A 

1,4112.213! 

192A 

1,403  733 

163A 

1,405,122 

210A 

1,390,435 

898a 

1,396,924 

22A 

1   398,7611 

15a 

1,400,390 

44A 

1,402,204 

192A 

1,403,734 

177A 

1,405,123 

210a 

1,390,614 

898A 

1,396,980 

11 A 

1,398,791 

14A 

1,4(10.419 

48A 

1,402,210 

138A 

1,403,752 

177a 

1,405,124 

210A 

1. 3911, die, 

902a 

1,396,992 

20A 

1,398  Sill 

llA 

1.411(1,43.1) 

66A 

1,4(12.23,8 

127A 

1,403,759 

181A 

1,405,125 

210A 

1,391,154 

916a 

1,396,1 

5A 

1.398,816 

70A 

1,400,431 

66A 

1,402,243 

130A 

1,403,778 

205A 

1,405,126 

210  A 

1,391,557 

912a 

1,397,008 

20A 

1,298.856 

43A 

1,4011.527 

107a 

1,402,256 

149A 

1,403,779 

234A 

1,405,127 

210A 

1,391,561 

913A 

1,397,029 

6A 

1,398,860 

75A 

1,400,542 

100A 

1.403,272 

130A 

1.403.794 

198A 

1,405,128 

210A 

1,391,562 

913a 

1  397  076 

14a 

1    398.882 

128A 

1,400,555 

94A 

1,402,277 

156A 

1,403.804 

164a 

1,4(15,129 

210A 

1,391,664 

43SA 

1,397,078 

14a 

1,398,911 

53a 

1.1 118 

111A 

1.402. 283 

151 A 

1,403,820 

187a 

1,405,130 

210a 

1,392,127 

899A 

1  397,099 

14a 

1  398,917 

62A 

1.41 10. 632 

89A 

1.402. 285 

147a 

1.403.822 

1-1  V 

1.405,167 

221a 

l    192  >24 

5  1  A 

1,397.113 

5A 

1.398,918 

62a 

1.460.675 

139A 

1.I03. 303 

127a 

1,403.888 

170A 

1.105,183 

216A 

1    192,564 

31a 

1,397,121 

2A 

1,3.98, 93.1 

81A 

1,400,759 

103A 

1,402,306 

127a 

1,403,892 

198A 

1.4H5.32S 

232a 

1,392,656 

954a 

1    .'1,  1    : 

33a 

1,398,939 

53A 

1,4011.795 

88  A 

1.402,317 

157a 

1   103,903 

181A 

1.4(15.234 

212a 

1,392,849 

948A 

1,397,134 

33A 

1,398.947 

6A 

1,400,800 

91 A 

1,402,318 

157a 

1.403.920 

198A 

1,405.244 

206a 

1,392,851 

961A 

1,397,173 

10A 

1,398,9  18 

48A 

1,400,849 

119A 

1.402.325 

127a 

1,403.960 

174A 

1,405,261 

232A 

1,392,852 

959a 

1,397,181 

7A 

1.3118,9  19 

53a 

1.4(10.850 

119A 

1.402.329 

157a 

1,403,980 

165A 

1.405.286 

210A 

1,392,886 

959a 

1,397,197 

23a 

1  ,338.91111 

58A 

1,400.851 

119A 

1.402336 

157a 

1,403  993 

174A 

1,405.299 

214A 

1,392,925 

947A 

1,397,222 

21 IA 

1,398.989 

63A 

1,400,852 

119a 

1.402.337 

157a 

1,404.(154 

192A 

1,405,320 

206a 

1,392,926 

947a 

1  397,239 

14A 

1,398,990 

63A 

1,400.885 

92A 

1,402,338 

157a 

1,404,055 

169A 

1,405.388 

216a 

1,392,927 

947a 

1,397,264 

4  A 

1.398.991 

48a 

1   41111.893 

107a 

1.403.340 

127a 

1,404,056 

169A 

1.405.106 

205A 

1,393,282 

266a 

1,397,287 

15A 

1,398,998 

50a 

1  ,400  913 

141A 

1.1H2  35II 

137A 

1,404,074 

180A 

1,405.448 

248A 

1,393,474 

954a 

1,397  S97 

151A 

1,399,111)7 

76a 

1,  Hill  959 

89A 

1,402,354 

1  54  A 

1.4111.137 

198A 

1,405,449 

248A 

1,393,660 

954a 

1,397,404 

19A 

1,399.1114 

51a 

1.1110.963 

106A 

1.402,363 

142a 

1.404.142 

178A 

1,405,483 

206A 

1,393,739 

943A 

1,397,414 

14A 

1  399,0211 

62a 

1,  100, 9811 

89A 

1.402,412 

143A 

1.404,156 

180A 

1,405,487 

213A 

1.393,832 

382A 

1,397,445 

30A 

1,399,1126 

66a 

1.401,034 

110A 

1,402,413 

130A 

1.404,157 

165a 

1,405.490 

248a 

1.393,833 

382A 

1.397,452 

31A 

1,399,037 

44A 

1,401.035 

108A 

1,402,455 

182A 

1.404,162 

178A 

1,405,491 

248a 

LIST  OF  UNITED  STATES  PATENTS  ABSTRACTED. 


237 


No.  of 

No.  of 

So.  of 

No  of 

No.  of 

No.  of 

No.  of 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

1,405,  - 

235A 

1,408,154 

281A 

1.410.017 

316A 

1,411.961 

404A 

1,413,964 

425A 

1,415,440 

403a 

1.417.243 

562A 

1,405.560 

248A 

1,408,155 

281A 

1  41"  "  ;: 

338A  | 

1  111,968 

393a 

a         ' 

399a  i 

1.415.461 

450A 

1,417  261 

506a 

1,405 

254A 

1,4118,109 

304A 

1,410,061 

327a 

1  (12,024 

368a 

1,414.008 

417A 

1,415,466 

473A 

1.417.292 

506A 

1,405.613 

206A 

1,408,200 

286A 

1.41"  063 

317a 

1,412, "27 

335a 

1.414,015 

474A 

1.415.468 

4  7  7.  A 

1.417.203 

506A 

1,405.669 

215A 

1,408,242 

285A 

1,410,069 

324  a 

1.412.038 

366a 

1,414,029 

411A 

1,415  16  ' 

I80A 

1.417.277 

524A 

1,405,687 

21 2A 

1,408,293 

310A 

1.41(1.  "-7 

329A 

1,412,077 

554a 

1.414.030 

411a 

1.415.513 

161  \ 

1,417,303 

.'.(I7A 

1,405  702 

222a 

1.4"-. 290 

247A 

1,410,121 

317a 

1,412,118 

403a 

1.414.031 

411a 

1,415,516 

471A 

1,417,348 

555a 

1,405,703 

222A 

1,408.297 

28.-A 

1,410,146 

317a 

1.412.174 

422a 

1.114.044 

427a 

1,415,526 

472a 

1,417,368 

521A 

1,405,704 

210A 

1  108  12 

270A 

1,410,152 

317a 

1.412.203 

415a 

1,414,045 

476A 

1,415  7.40 

186A 

1.417  309 

521A 

1,405  :  12 

212a 

It'-  25 

301A 

1,410.175 

321a 

1.412.215 

422a 

1.414.(17,9 

4  17.  A 

1,415,572 

466a 

1.417.412 

567A 

1,405,733 

206A 

1,408.350 

248A 

1,410,207 

347a 

1.412.219 

400a 

1,414,070 

410A 

1.415. 023 

449A 

1.417.413 

506a 

1,405,7  14 

216A 

1.4(18.303 

288A 

1,410,211 

335a 

1.412.233 

404a 

1.414. 1(76 

41"! 

1.415.007 

47.1a 

1,417,428 

555a 

1,405,741 

225A 

1,408,364 

253A 

1,410,221 

316A 

1,412,248 

399a  , 

1,414,079 

405A 

1.415.071 

477a 

1.417.407 

513a 

1,405,756 

206A 

1,408,401 

254A 

1.41(1.22:', 

347A 

1,412,280 

422K 

1,414,096 

479A 

1,415,683 

473a 

1.417.477 

491A 

1,405,780 

206A 

1,408.405 

28SA 

1,410  249 

344A 

1,412  2801 

638A 

1,414,109 

15  IA 

1,415,700 

484a 

1,417,478 

505a 

1,405,781 

205A 

1.408.423 

290A 

1,410,264 

316V 

1.412.319 

441a 

1,414,132 

449A 

1,415,704 

458A 

1.417.7.-5 

531A 

1,405  :- : 

207A 

1,408,456 

280A 

1,410,304 

333A 

1.412.390 

399  \ 

1  114.139 

4  2  7.  A 

1.415.733 

59  7A 

1,417,618 

531A 

1.4" 

211A 

1,408,457 

2-0\ 

1.410.344 

325A 

1.412.47,2 

415a 

1.414.17,9 

453A 

1,415,780 

4  7. 4  A 

1.417.635 

535a 

1,40 

209A 

1.408,458 

2S1A 

1,410,345 

343a 

1,412.402 

432A 

1.414.164 

408a 

1,415,781 

454A 

1.417,636 

536A 

1.405,809 

209A 

1,408.462 

309A 

1,410,346 

343a 

1,412,484 

379a 

1,414.170 

171a 

1,415  783 

450A 

1,417,637 

536A 

1,40 

209A 

1  in-  165 

286A 

1.410.35S 

344a 

1.412.7.11 

423A 

1.414,177 

432A 

1,415,796 

472a 

1,417.638 

554A 

1,405,940 

344a 

1  1"-  167 

295A 

111".  11 

332a 

1.112.7.12 

423v 

1.414.194 

433A 

1  115,797 

472a 

1,417,702 

546A 

1,406,058 

232a 

1,408,483 

280A 

1,410,461 

332a 

1.412.513 

423A 

1.414.197 

399A 

1.415,843 

543A 

1,417,708 

543A 

1,406,109 

207a 

1,408,544 

301 A 

1.410.492 

343a 

1,412,514 

423a 

1,414,223 

405A 

1,415,846 

455a 

1.417.771 

610A 

1,406,121 

234A 

1,408,618 

294A 

1,410,494 

34SA 

1412  723 

432a 

1,414,254 

417a 

1.415.849 

475a 

1,417.791 

567A 

1,406,174 

259A 

1,403.625 

294A 

1,410,535 

4  ISA 

l  412  S3! 

iooa 

1.4  14,27,7 

422a 

475a 

1.417.-25 

543a 

1.406,17.3 

261A 

1,408  640 

283A 

1,410,548 

317A 

1.412.7.4(1 

362a 

1,414,258 

422a 

1.415. -7.1 

451a 

1,417,831 

546A 

1.406. 170 

271A 

1,408,655 

28  i 

1,410,550 

373A 

1.412.7,49 

374a 

422a 

1,415,860 

50,  A 

1.417.-37, 

536a 

1.406,177 

239A 

1,408,656 

286A 

1,410,561 

358A 

1.412.7.7.7 

400a 

1,414,809 

441a 

1,415,876 

494a 

1,417,837 

536A 

1,406,197 

262A 

1,408,661 

294A 

1.410,566 

3S0A 

1,412.593 

400a 

1.414.312 

477a 

1,415,881 

491a 

1.117  -  18 

536a 

1,406,224 

248A 

1,408.678 

302a 

1,410,584 

373A 

1,412,7.94 

400a 

1  414  33  1 

484a 

1,415,889 

7,2  4  A 

1,417,839 

536a 

1,406,322 

248A 

1.408,686 

298a 

1,410,642 

372A 

1,412,621 

422a 

1.414.335 

4  3-  V 

1.415.897 

506A 

1,417,840 

536a 

1,406,323 

240A 

1,408,698 

28  i 

1,410,665 

363a 

1,412,629 

862a 

1,414.353 

471A 

506A 

1,417,841 

536a 

1,41  1 

240a 

1,408,736 

284A 

1.410.673 

494A 

1.412.707 

408A 

1,414,359 

451.A 

1,415,970 

466A 

1,417  869 

544A 

1,401 

271a 

1,408,754 

294a 

1,410,681 

333A 

1  412.727. 

399A 

1,414.362 

47  IA 

502a 

1,417,887 

546a 

1,401   - 

266A 

1,408,757 

294A 

383a 

1,412,738 

400a 

1,414.401 

456a 

1.413. 9-9 

507A 

1.41  7.  -"3 

564a 

1,406,421 

25 1A 

1  108, 7"" 

296A 

1.410.735 

358a 

1.412.77.7. 

459a 

1.414.423 

471a 

1.415. 93" 

490A 

1,417,896 

555a 

1,400,4."-:. 

264A 

1.408.803 

343a 

1,410,739 

367A 

1.412.702 

459A 

1.414,441 

457a 

1.416.042 

4  5  7.  A 

1.417.919 

546a 

1,406,479 

328A 

1,408,804 

334A 

1.410.749 

332A 

1,412  7.91 

459a 

1,414.451 

596a 

1.416,1(53 

515A 

1,417  943 

564a 

1,406,513 

267A 

309A 

1,410,783 

360A 

1.412.764 

473a 

1.414.407. 

450a 

1,416  ""2 

510a 

1.417.97.2 

546a 

l,4(io  525 

258A 

1,408,827 

307a 

1.410.784 

360A 

1.412.77" 

470a 

1,414,482 

4  7  7.  A 

503a 

1.417.97.7. 

559a 

1,406,554 

207a 

1,408  960 

295A 

1,410,797 

494A 

1.412318 

«7a 

1,414,491 

597a 

1  116,089 

491a 

1.417  97" 

559a 

1,406 

240A 

280A 

1.410.809 

341a 

1  412,82  : 

470a 

1.414.7.20 

450A 

1,416,121 

7,21a 

1,418.010 

531a 

1,406,595 

258A 

1,408,97  : 

280A 

1.410,814 

393A 

1.412.910 

417a 

1,414,562 

450a 

1.416.122 

524A 

1,418.013 

565a 

1,406,596 

258A 

1,408,974 

309a 

1,410,822 

334A 

1.412.921 

403A 

1,414.614 

47.1a 

1.416.123 

524A 

1,418,030 

556a 

1,406,597 

25SA 

1.408,987 

294  V 

1,410.836 

317A 

1.412.937 

438A 

1,414,695 

494A 

1.410.128 

515A 

1.41-9  81 

555a 

1,406,624 

253A 

1,409,017 

332A 

1,410,851 

35SA 

1.412.949 

427A 

1,414,715 

465A 

1,410.147 

506a 

1,418.097 

536a 

1,406  '  17 

244A 

1,409,083 

2S8A 

1.410  882 

344A 

1.412  97.4 

454A 

1,414.759 

494a 

1,410.197, 

507a 

1,418,098 

536a 

1,406,654 

262a 

1,409.037 

296A 

1.41(1.92" 

388A 

1,412,968 

476A 

1.414.702 

501a 

1,416,205 

496a 

1.418,135 

543A 

1,406 

253A 

1,409,083 

29GA 

1.41". 9. 91 

379A 

1.412.980 

423A 

1,414,793 

474a 

1,416,206 

490a 

1,418.136 

543a 

1,406,745 

246A 

1,409,098 

309a 

1,410,973 

3--A 

1,413,00  . 

404A 

1,414,836 

474A 

1.410.349 

4  7  4A 

1,418,148 

555a 

1.1>" 

240a 

1.409.124 

327A 

1.411.033 

395A 

1.413.000 

433A 

1.111  -  .7 

474A 

1.410.202 

506A 

1,418,158 

537A 

1,406,905 

253A 

1,409,126 

333A 

1,411,072 

379a 

1.413.013 

428A 

1,414,852 

484A 

1,416,269 

503A 

1.418.100 

559A 

1,406,977 

271a 

1,409,139 

294a 

1,411,087 

372a 

1,413,018 

417A 

1,414,973 

449a 

1.416.2.-4 

474A 

1,418,172 

559a 

1,406,997 

240A 

1,409,184 

325A 

1,411,088 

385A 

1.413.026 

40SA 

1,415,007 

481A 

1,416,318 

478A 

1.418.197 

531A 

1,407. "17 

245a 

1,409  -71 

325A 

1.411,133 

374.A 

1.413,045 

415A 

1  115  "1" 

4S0A 

1,416.322 

493A 

1,418,233 

565A 

1,407,018 

245A 

1,409,275 

335A 

1.411.134 

374a 

1,413,048 

428A 

1,415,011 

407  V 

1,416,406 

47.1A 

1,418,271 

559a 

1.407.045 

258A 

1,409,276 

335a 

1,411.150 

450a 

1.413. "92 

479A 

1,415,023 

542A 

1.416,436 

507a 

1.418.272 

7.37  a 

1,407,101 

245a 

1,409,277 

335A 

1,411,154 

3S0A 

1,413,116 

471A 

1,415,028 

471A 

1,416,493 

493a 

1,418,303 

555a 

1,407,137 

240A 

1.409.281 

316a 

1.411,192 

388A 

1,413,135 

400A 

1,415,040 

4  7. 9  A 

1.416,512 

451A 

1,418.311 

604A 

1,407,197 

248A 

1,409,295 

321A 

1,411.199 

317A 

1,413,146 

406A 

1,415,056 

457A 

1,416,546 

455A 

1,418,353 

541a 

1,407.311 

239A 

1,409,318 

328A 

1.411,203 

388A 

1,413,151 

438A 

1,417., 057 

457a 

1,416,584 

507A 

1,418,356 

562a 

1,407,313 

259A 

1,409,338 

327A 

1,411,204 

388A 

1,413,153 

481A 

1,415,058 

450A 

1.410.(9  10 

520A 

1  418.368 

567a 

1,407,323 

253A 

1,409,404 

321 A 

1,411,215 

348A 

1,413,154 

461A 

1,415.059 

484a 

1,416,621 

437A 

1,418.372 

548a 

1,407,324 

259A 

1,409,435 

343A 

1.411,221 

322A 

1.413,168 

42SA 

1,415.061 

453a 

1.416.632 

451a 

1,418,375 

536a 

1,407,339 

321a 

1,409.440 

321a 

1,411,231 

383a 

1.413.172 

426A 

1,415,094 

597a 

1,416.634 

506a 

1,418,385 

558a 

1,407.310 

321a 

1,409,472 

337a 

1,411,237 

494a 

1,413.198 

438A 

1,415,127 

474a 

1,416,646 

543a 

1.41-3-0 

531a 

1,407.372 

2"-  * 

1,409,508 

316a 

1.411.247, 

323a 

1.413,260 

405A 

1,415,100 

449A 

1.416.657 

503.A 

1,418,405 

567a 

1,407,380 

240A 

1.409.542 

317A 

1,411,255 

404A 

1,413.285 

453a 

1,415,183 

597A 

1,416  692 

506A 

1.418.413 

542a 

1,407,387 

249A 

1,409,570 

336A 

1.411.313 

358A 

1.413.327 

404A 

1,415,186 

590A 

1. 410.726 

548A 

1,418,414 

7,81.  IA 

1,4H7  120 

258A 

1.409,588 

322A 

1,411,326 

379A 

1.413.343 

470A 

1,415.201 

455A 

1.416.727 

54SA 

1.418.446 

548a 

1,407.441 

294A 

1,409,590 

322a 

1.411  371 

382A 

1.413.457 

449A 

1,415,202 

455A 

1.416.738 

507a 

1,418,448 

567a 

1,407,469 

261A 

1,409,597 

322A 

1.411.421 

3  7. 8  A 

1.413.488 

427A 

1  415,203 

463a 

1,416,761 

507a 

1.41.-. 437 

604a 

1,407,499 

240A 

1,409.598 

320A 

1.411.47.(1 

357A 

1.413,494 

407A 

1,415.204 

463a 

1,416,769 

491a 

1,418.503 

557a 

1,407.525 

258A 

1,409,599 

320A 

1,411,507 

379a 

1.413.513 

470A 

1,415.205 

463a 

1,416,772 

501A 

1.41. -.7,23 

555a 

1,407,530 

253A 

l,4M9.6ii7 

316A 

1.411.7,18 

375a 

1,413.532 

484A 

1,415.206 

463a 

1.416,787 

507A 

1.41-.7.27 

546a 

1,407,531 

245A 

1,409,648 

335a 

1,411,529 

363a 

1,413,555 

422A 

1.415.232 

494A 

1.416.859 

521A 

1.418.528 

546a 

1,407,583 

244A 

1,409,653 

325A 

1,411,530 

3S0A 

1,413.557 

426a 

1.415.233 

471A 

1,416,865 

548A 

1,418.607 

542a 

1.407,619 

321 A 

1,409,669 

333a 

1,411,534 

374A 

1,413,558 

425a 

1.415.238 

453a 

1.416.890 

536A 

1,418,609 

548A 

1,407.655 

290A 

1  (09,682 

361A 

1,411,537 

3S0A 

1.413.565 

425A 

1,415.255 

450a 

1,416,891 

536A 

1.418,610 

548A 

1,407,696 

290A 

1,409,709 

361a 

1,411,582 

358a 

1,413.644 

450A 

1.415.377 

480A 

1.416.922 

491A 

1.418.618 

603a 

1,407,700 

2-2v 

1,409,727 

379a 

1,411,598 

369A 

1,413.716 

459A 

1,415.280 

463A 

1.416.924 

506A 

1,418,621 

580A 

1,407,701 

280A 

1,409,740 

358a 

1,411,618 

388A 

1.413.720 

41 6A 

1  117.  308 

463a 

1.416.929 

507A 

1,418,648 

548A 

1,407.717 

280A 

1,409,763 

316a 

1.411.047. 

381A 

1,413.754 

415A 

1,415,323 

462A 

1.416.955 

509A 

1,418,669 

548A 

1,407.74" 

298A 

1  409.7S2 

333a 

1,411,646 

3-lA 

1,413.762 

41 5A 

1.415,324 

466A 

1.416.960 

490A 

1,418.691 

569a 

1,407,770 

285A 

1,409.784 

327a 

1.411.047 

381A 

1,413,763 

415A 

1.415,325 

480A 

1.417,007 

507a 

1,418,713 

536a 

1,407.930 

300A 

1,409,796 

348a 

1,411,648 

381A 

1,413,766 

416a 

1,415.340 

484A 

1.417.033 

510a 

1,418.718 

558a 

1,407,951 

298A 

1,409,799 

324a 

1,411,669 

393A 

1,413,785 

417a 

1.415.346 

501A 

1.417.046 

507a 

1.418.735 

576a 

1,407,952 

301A 

1.499.--7, 

324a 

1.411.674 

393A 

1,413,799 

405a 

1.415.351 

491A 

1.417.064 

491A 

1.418.745 

535a 

1,407,996 

245A 

1.409.893 

322A 

1,411,683 

392A 

1,413.801 

453a 

1,415,352 

491A 

1.117  066 

501A 

1  11.-  771 

559a 

1,408,035 

290A 

1,409,897 

322A 

1.411,687 

393A 

1,413.802 

453a 

1.415.353 

402A 

1.417.067 

501a 

1.418.772 

559a 

1,408,056 

271A 

1,409,901 

316a 

1.411,696 

385A 

1.413.813 

426A 

1.417.. 303 

475A 

1.417,068 

.."71 

1.11.-7.-1 

537a 

1,408,064 

304A 

1.409.915 

316a 

1,411,708 

367A 

1,413,838 

453a 

1,415,387 

450A 

1.417.075 

495A 

1.418.782 

535a 

1,408,086 

298A 

1,409.939 

329a 

1,411,782 

358A 

1.413.864 

438a 

1,415.391 

51 0A 

1.417,083 

564A 

1,418,811 

558a 

1,408,095 

290A 

1,409.941 

321a 

1,411,786 

3S3A 

1,413.877 

399a 

1,415,395 

463A 

1.417.113 

493a 

1,418,824 

559a 

1.408,105 

2S4A 

1,409.953 

329A 

1,411,839 

381A 

1,413,880 

470A 

1,415,418 

453a 

1.417.139 

502A 

1,418,825 

559a 

1,408.141 

299A 

1,409,955 

327A 

1.411.842 

375A 

1,413,899 

405A 

1.415.424 

451A 

1.417.167 

524a 

1.41--4- 

565a 

1,408,142 

259A 

1,409,967 

315A 

1,411,859 

392A 

1,413,914 

442A 

1,415,433 

474a 

1,417.206 

499A 

1,418.876 

580A 

1,408,145 

295A 

1,410,012 

335A 

1,411,871 

374A 

1,413,924 

449A 

1,415,443 

462A 

1.417,232 

565A 

1,418,878 

577A 

238 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


No.  of 

No.  Of 

No.  of 

No.  of 

No.  of 

No.  of 

No.  of 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent 

Page. 

Patent. 

Page. 

Patent. 

Page. 

1,418,882 

567A 

1,420,646 

620A 

1,422,627 

641 A 

1,424,248 

772A 

1,426,141 

766a 

1,428,057 

821A 

1,429,777 

863A 

1,418,885 

531A 

1,420.647 

020A 

1,422,628 

644A 

1,424,254 

697A 

1,426,144 

740a 

1 

428,061 

822A 

1,429,841 

868A 

1,418,893 

539A 

1,420,648 

620A 

1,422,634 

624A 

1,424,306 

748A 

1,426,149 

741A 

1 

128.0.-4 

822A 

1,429,851 

869A 

1,418,896 

549A 

1,420,649 

620A 

1,422,684 

673A 

1,424,332 

697A 

1,426,159 

742a 

1 

428,085 

822A 

1.429  858 

846A 

1,413,900 

567a 

1,420,650 

620A 

1,422,699 

Of,.- A 

1,424 

697A 

1,426,189 

744A 

1 

428,086 

822A 

1,429,903 

886a 

1,418,904 

567a 

1.420.679 

621a 

1,422,701 

638A 

1,424,411 

748A 

1,426,190 

744A 

1 

(28,087 

822a 

1,429,909 

902a 

1,418,945 

563a 

1,420,687 

638a 

1,422,703 

633A 

1,424,41  1 

771A 

1,426,245 

866A 

1 

428,088 

822A 

1,429.919 

889A 

1,418,970 

580A 

1,420,707 

637a 

1,422,706 

661a 

1,424,462 

730A 

1,426,261 

755A 

1 

428,120 

826A 

1,429,912 

S97A 

1,418,976 

559A 

1,420, 70S 

637A 

1.422,710 

673A 

1,424  487 

,—oa 

1,426,287 

738A 

1 

428,159 

S50A 

1.429,913 

846A 

1,418,984 

556A 

1,420,739 

644A 

1,422,711 

677A 

1,424,488 

730A 

1,426,298 

855A 

1 

428,170 

864A 

1,429,925 

861a 

1,419,008 

546A 

1.420,740 

644A 

1.422,720 

674A 

1,424.560 

712A 

1,426,299 

855A 

1 

428,178 

850A 

1,429,932 

916A 

1,419,027 

568a 

1,420,754 

623a 

1,422,733 

673A 

1,424,565 

698A 

1,426,309 

755a 

1 

428,197 

802A 

1,429,953 

878a 

1,419,032 

548a 

1,420,802 

622* 

1,422,734 

673a 

1,424,574 

702a 

1,426,310 

756a 

1 

428,204 

850A 

1.429,959 

901a 

1,419,057 

562A 

1,420,832 

024  I 

1,422,838 

fiM'iA 

1,424,612 

763a 

1,426,313 

788a 

1 

42S.217 

832A 

1,429,976 

8S6a 

1,419,091 

567A 

1,420,900 

648A 

1,422,848 

669A 

1,424.620 

747A 

1,420,341 

766a 

1 

428,246 

807A 

1.429.9.-7 

S51A 

1,419,092 

567A 

1  120,944 

022a 

1,422,852 

657A 

1,424,635 

771A 

1,426,346 

742A 

1 

428,272 

826A 

1,429,992 

S89A 

1,419,109 

557a 

1.420,958 

625a 

1,422,856 

658A 

1,424,668 

772A 

1,426,348 

786a 

1 

12-. 273 

820  \ 

1,430,017 

867A 

1,419,135 

607a 

1,420,978 

644A 

1,422,866 

664A 

1,424,710 

763A 

1,426,349 

753a 

I 

428,311 

850A 

1,430,020 

854A 

1,419,157 

610A 

1,420,980 

638A 

1,422,86  i 

689A 

1,424.711 

765A 

1,426,380 

743A 

1 

428,312 

850A 

1,430,034 

S67A 

1,419,186 

581A 

1,420.985 

639a 

1,422,878 

670A 

1,424,729 

771A 

1.426,430 

786a 

1 

(28,338 

850A 

1,430,035 

858A 

1,419,285 

577A 

1,420,986 

622a 

1  122,884 

677a 

1,424,749 

702a 

1,426,449 

787a 

1 

428,339 

850A 

1,430,036 

868a 

1,419,286 

577A 

1,421,125 

639A 

1,422,889 

663A 

1,424,782 

763a 

1,426,457 

779A 

1 

428,421 

802A 

1,430,045 

894a 

1,419,378 

580A 

1,421,191 

632A 

1,422,945 

670A 

1,424,825 

765a 

1,426,461 

860A 

1 

428,458 

S50A 

1  430  059 

879A 

1,419,463 

632A 

1,421,192 

635A 

1,422,977 

683A 

l,424,-.-:i 

747A 

1,426, 462 

755A 

1 

428,521 

813A 

1,430,060 

879A 

1,419,497 

584A 

1  421,195 

628a 

1,423,031 

715A 

1.424.924 

815A 

1,426,507 

766A 

1 

428,526 

827A 

1,430,001 

879A 

1,419,500 

583A 

1,421,210 

634A 

1,423.041 

704A 

1,424,969 

736A 

1. 126,51 7 

770A 

1 

428,534 

821A 

1,420,109 

890a 

1,419,501 

583a 

1,421  211 

634A 

1.423,1142 

725A 

1,424,992 

736A 

1,426.522 

749A 

1 

428,557 

S40A 

1.430,115 

S94A 

1,419,502 

583A 

1,421,217 

63SA 

1,423,048 

701A 

1,424,998 

741A 

1,426,555 

770A 

1 

428,604 

830a 

1,430,140 

901a 

1,419,530 

581a 

1  421.218 

637A 

1,423,049 

701A 

1,425,005 

736a 

1,426,559 

781A 

1 

428,616 

822a 

1,430.163 

855a 

1,419,610 

580a 

1  421.228 

624A 

1,423,050 

701a 

1,425,019 

735a 

1,425,596 

775A 

1 

428,618 

803A 

1,430,182 

874A 

1,419,625 

599A 

1,421,232 

0.1HA 

1,423,058 

70U 

1,425,020 

698a 

1,426,602 

755A 

1 

428,621 

851a 

1.430,184 

852a 

1,419,655 

600A 

1,421,288 

628A 

1,423,069 

716A 

1,425,033 

781A 

1,426, 023 

766A 

1 

428,622 

851a 

1,430,200 

871a 

1,419,664 

575A 

1,421,289 

628A 

1,423,070 

674A 

1,425,048 

755A 

1,426.629 

770A 

1 

428,633 

870A 

1,430,234 

887a 

1,419,695 

581A 

1,421,290 

62SA 

1,423,071 

674A 

1,425.065 

779A 

1,420,638 

782A 

1 

12-. 638 

797a 

1.430.245 

.-90A 

1,419,707 

574A 

1,421,341 

622A 

1,423,101 

,-7-A 

1,425,074 

741A 

1,426. 655 

756a 

1 

42S.641 

850a 

1,430,246 

890A 

1,419,712 

574A 

1,421,3S6 

635A 

1,423,132 

683A 

1,425  111 

717A 

1,420,078 

767a 

1 

428,646 

813A 

1,430,269 

901a 

1,419,714 

584A 

1,421,503 

632A 

1,423,134 

661A 

1,425,130 

729A 

1,426,083 

767a 

1 

428,668 

,-38A 

1.439, 27li 

864a 

1,419,720 

581A 

1,421,585 

716A 

1,423,136 

657a 

1.425.136 

741A 

1,420,703 

767A 

1 

428,687 

845A 

1,430,271 

86SA 

1,419,746 

580A 

1.421,604 

648A 

1,423,188 

657A 

1,425,163 

718A 

1,426,723 

740a 

1 

428,820 

834A 

1,430,272 

880A 

1,419,754 

584A 

1,421,605 

648A 

1,423.193 

720A 

1  125.173 

748A 

1.426,746 

764A 

1 

428,839 

797A 

1,430,294 

890a 

1,419,760 

599A 

1,421,613 

627A 

1,423,231 

670A 

1,425,185 

765A 

1,426,752 

753A 

1 

128,879 

802a 

1,430,295 

890A 

1,419,764 

63  7A 

1,421,620 

641A 

1,423.233 

690A 

1,425,186 

765A 

1,426,813 

741A 

1 

428. --5 

850A 

1,430,296 

890A 

1,419,801 

597A 

1,421,625 

639A 

1.423.2 16 

677A 

1,425,187 

765A 

1,426,890 

766A 

1 

428,908 

823A 

1,430,300 

S51A 

1,419,824 

574a 

1,421  640 

648A 

1  423.264 

690A 

1,425,235 

766A 

1,426,891 

766a 

1 

428,909 

823A 

1,430,301 

890A 

1.419.S62 

5S0A 

1,421,658 

622A 

1,423.298 

657A 

1,425,327 

765a 

1,426,952 

755a 

1 

428,910 

823A 

1,430,302 

890A 

1,419,867 

575A 

1,421,686 

638A 

1,423,332 

715A 

1,425,330 

766a 

1,426,953 

749A 

1 

428,913 

802A 

1,430,304 

916A 

1,419,894 

574a 

1,421,688 

631A 

1,423,338 

716A 

1,425,364 

705a 

1,426,995 

7.-8  1 

1 

428,920 

829A 

1,430,324 

8  78  A 

1,419,908 

579A 

1,421,720 

650A 

1,423,389 

720A 

1,425,386 

766A 

1,427,037 

770A 

1 

429,921 

S29A 

1,430,347 

879A 

1,419,910 

624A 

1.421,723 

641A 

1,423,390 

720A 

1,425,392 

729A 

1,427,045 

742A 

1 

428,922 

829A 

1,430,3S6 

84SA 

1,419,951 

628A 

1,421,728 

640A 

1,423,391 

720A 

1,425,393 

729A 

1,427,049 

753A 

1 

428,946 

813A 

1,430,403 

874A 

1,419,952 

639A 

1,421,733 

631A 

1,423,392 

720A 

1.425  436 

720A 

1,427,078 

740A 

1 

428,950 

846a 

1,430,445 

863A 

1,419,969 

648A 

1  421.750 

644A 

1,423,408 

670A 

1,425,437 

720A 

1,427,121 

821A 

1 

429,965 

797a 

1,430,449 

859A 

1,419,971 

638A 

1,421.776 

637A 

1,423,494 

838A 

1,425,497 

778A 

1,427,125 

807a 

1 

428,984 

805A 

1,430,452 

851a 

1,419,986 

622A 

1,421,856 

621 A 

1,423,500 

889A 

1,425,500 

786A 

1.427,159 

797A 

1 

429,001 

813A 

1,430,453 

S51A 

1,420,006 

624A 

1,421,869 

648A 

1,423,501 

886A 

1,425,520 

748A 

1,427,171 

824A 

1 

429,013 

813A 

1,430,454 

901A 

1,420,007 

624A 

1.421,888 

634A 

1,423,510 

669A 

1,425,530 

775a 

J, 427,182 

837A 

1 

429,114 

S26A 

1.430,477 

869a 

1,420,037 

638A 

1,421,924 

649A 

1,423  512 

702A 

1,425,551 

753A 

1,427,187 

822A 

1 

429,128 

855A 

1,430,479 

869A 

1,420,041 

623A 

1,421,974 

634A 

1,423,525 

827A 

1,425,565 

753A 

1,427,215 

838A 

1 

429,129 

846A 

1.430,484 

879a 

1,420,127 

715A 

1,421,978 

632a 

1,423,526 

827A 

1,425,572 

766A 

1,427,221 

829A 

1 

429,131 

823A 

1,430,523 

855a 

1,420,128 

715A 

1,421,984 

716a 

1,423,527 

803A 

1,425,573 

768A 

1,427,234 

796a 

1 

429.149 

851A 

1,430,538 

906A 

1,420,129 

715A 

1,422,004 

632a 

1,423,583 

777A 

1, 425. 076 

737a 

1,427,235 

822A 

1 

429,153 

807A 

1,430,551 

939a 

1,420,130 

715A 

1 .422,007 

624a 

1,423,605 

683A 

1,425,577 

753A 

1,427,236 

824A 

1 

429,169 

807A 

1,430,585 

933a 

1,420,138 

716A 

1,422,008 

624A 

1.423  6.VS 

718A 

1,425,578 

813a 

1,427,283 

827A 

1 

429,174 

854A 

1,430,588 

930a 

1,420,139 

71 6A 

1,422,019 

637a 

1,423,686 

673A 

1,425,579 

753a 

1,427,322 

796A 

1 

429,175 

849a 

1,430,621 

909A 

1,420,163 

624A 

1,422,026 

638A 

1,423,695 

658A 

1,425  580 

748a 

1,427.370 

796a 

1 

429,177 

858A 

1.430,633 

889A 

1,420,165 

624A 

1,422,036 

634A 

1.423.696 

660A 

1,425,581 

936A 

1,427,386 

803A 

1 

429,179 

854A 

1,430.635 

901a 

1,420,198 

625A 

1,422,038 

624A 

1,423,704 

835A 

1,425,612 

756a 

1,427,400 

837A 

1 

429,188 

807A 

1,430,667 

943A 

1,420,201 

631A 

1,422,093 

624A 

1,423  709 

702A 

1,425,625 

786a 

1,427,426 

803A 

1 

429,214 

822A 

1,430,696 

889A 

1,420,202 

631A 

1,422,096 

638A 

1,423,710 

701A 

1,425,637 

737a 

1,427,430 

797A 

1 

429,222 

846A 

1,430,724 

898A 

1,420,203 

631A 

1,422  102 

644A 

1,423,711 

701A 

1,425,645 

741A 

1,427,431 

805A 

1 

429,242 

846A 

1,430,725 

S98A 

1,420,209 

631A 

1,422,135 

670A 

1,423,712 

701A 

1,425,654 

747A 

1,427,432 

805A 

1 

429,252 

851A 

1,430,726 

902A 

1,420,210 

6S1A 

1,422,182 

686A 

1,423,716 

702A 

1,425,661 

765a 

1,427,436 

822A 

1 

429,265 

868A 

1,430,745 

88  7A 

1,420,211 

631A 

1,422,183 

686A 

1,423,719 

697A 

1,425,667 

766a 

1,427,441 

811A 

1 

429,267 

868A 

1,430,767 

S90A 

1,420,212 

631A 

1.422,184 

686A 

1,423.720 

697A 

1,425,669 

786A 

1,427,444 

812A 

1 

429,272 

863A 

1,430,785 

995A 

1,423,213 

631A 

1,422,202 

657a 

1,423.721 

697A 

1,425,679 

766a 

1.427.446 

797A 

1 

429,276 

859A 

1,430,864 

901A 

1,420,250 

644A 

1.422,204 

624A 

1,423,728 

659A 

1,425,688 

769A 

1,427,554 

797A 

1 

429,300 

866A 

1,430,877 

897A 

1,420,284 

634A 

1,422,206 

(U'.i  n 

1,423,766 

702A 

1,425,7111 

766A 

1,427,559 

797a 

1 

429,330 

864A 

1,430,878 

901A 

1,420,296 

621 A 

1,422,216 

711A 

1,423,767 

702a 

1,425,712 

741A 

1,427,595 

832A 

1 

429,333 

845A 

1,430,881 

906a 

1,420,303 

628A 

1,422,242 

665A 

1,423,799 

6S6A 

1,425.747 

775a 

1,427,626 

801A 

1 

429,346 

-1-A 

1,430,882 

906A 

1,420,312 

637A 

1,422,269 

624A 

1,423,810 

682A 

1,425, 752 

768a 

1,427,645 

834A 

1 

429,378 

901A 

1,430,899 

S92A 

1,420,328 

637A 

1,422,327 

670A 

1,423,821 

720A 

1,425,803 

769A 

1,427,682 

808A 

1 

429,427 

894A 

1,430,900 

887A 

1,420,354 

621A 

1,422,328 

679A 

1. 423.M:, 

673A 

1,425,838 

779a 

1,427,690 

808A 

1 

429,441 

S66A 

1.439.929 

S90A 

1,420,364 

649a 

1,422,335 

668A 

1,423,847 

715A 

1,425,878 

747A 

1.427.765 

822A 

1 

429.4S3 

878A 

1,430,948 

901A 

1,420,379 

637A 

1,422,337 

670A 

1,423,914 

716a 

1,425,8-2 

741A 

1,427,814 

823A 

1 

429,488 

846a 

1,430,971 

901A 

1,420,399 

648A 

1,422,412 

628A 

1,423,922 

716A 

1,425.883 

741A 

1,427,816 

822  A 

1 

429.4.-9 

866a 

1,430,977 

890A 

1,420,477 

630A 

1,422,421 

736A 

1.423,928 

657A 

1,425,884 

741A 

1,427,826 

813A 

1 

429.503 

866A 

1,430,978 

890A 

1,420,512 

632A 

1.422,434 

67SA 

1,423,978 

658a 

1,425,885 

741a 

1,427,863 

805A 

1 

429.504 

S73A 

1.430,987 

902A 

1,420,557 

643a 

1,422,494 

648A 

1,423,980 

687A 

1,425,896 

742a 

1,427,870 

803A 

1 

429,514 

852A 

1.439.991 

899A 

1,420,558 

643A 

1,422,506 

686A 

1,423,985 

671a 

1,425,917 

753A 

1,427,876 

824A 

1 

429,522 

860A 

1,431,014 

902A 

1,420,561 

638a 

1.422,530 

673A 

1,424,006 

670a 

1.425.918 

753a 

1.427.877 

824A 

1 

429.526 

S74A 

1,431,022 

902A 

1,420,613 

622A 

1,422,553 

661A 

1,424,062 

690a 

1,426,011 

781A 

1,427,885 

832A 

1 

429,542 

86.-A 

1,431,047 

902a 

1,420,625 

632A 

1,422.560 

670A 

1,424,077 

700a 

1,426,012 

740A 

1,427,886 

832A 

1 

429,544 

864A 

1,431,079 

906a 

1,420,630 

643A 

1,422,564 

663A 

1,424,088 

690A 

1,426,030 

736a 

1,427,887 

832A 

1 

429,578 

849A 

1,431,080 

906A 

1,420,637 

649A 

1,422,568 

670A 

1.424,120 

711A 

1,426,036 

786A 

1,427,888 

832A 

1 

429.622 

S89A 

1,431.081 

906a 

1,420,641 

620A 

1,422,570 

644A 

1,424,137 

676a 

1,426,054 

764a 

1,427,919 

822A 

1 

429,623 

.--'.•V 

1,431,113 

943a 

1,420,642 

620A 

1,422  571 

670A 

1,424,138 

687a 

1,426,1101', 

779a 

1,428,011 

839A 

1 

429,650 

S78A 

1,431,130 

901a 

1,420,643 

620A 

1,422,575 

673A 

1,424,173 

697a 

1,426,071 

768a 

1,428,041 

822A 

1 

429,714 

878a 

1,431,136 

895A 

1,420,644 

620A 

1,422,583 

686A 

1.424,193 

708A 

1,426.081 

741A 

1,428,049 

824A 

1 

429,721 

N90A 

1,431,145 

927A 

1,420,645 

620A 

1.422,620 

657A 

1.424.212 

730A 

1,426.099 

737a 

1,428,050 

824A 

1 

429,775 

855A 

1,431.146 

927a 

LIST  OF  GERMAN  PATENTS  ABSTRACTED. 


239 


No.  of 

No.  of 

No.  Of 

No.  of 

No.  of 

No.  of 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

Patent. 

Page. 

1,431.156 

913A 

1.431,549 

890a 

1.431,894 

917A 

1,432,275 

931A 

1,432.511 

989A 

1,432,938 

987A 

1,433,226 

985A 

1,431,161 

91SA 

1.431.559 

901A 

1,431,900 

ill  7a 

1,432,276 

931A 

1,432  542 

993A 

1,432,939 

987A 

1,433,266 

971A 

1,431,217 

90SA 

1,431,574 

902a 

1.431,905 

394a 

1  132,298 

997A 

1,432,543 

985A 

1,432  946 

943  A 

1,433,276 

979A 

1,431  225 

890A 

1,431,602 

902A 

1,431,906 

894A 

1.432.312 

978A 

1,432,544 

985A 

1,433,004 

982A 

1,433,290 

9-2A 

1,431,237 

943A 

1,431,606 

892A 

1,431,937 

954A 

1,432.318 

936a 

1,432.607 

9-0  A 

992A 

1,433,403 

985A 

1,431,245 

944a 

1,431,621 

900A 

1.431,938 

954A 

1,432,319 

936A 

1,432,629 

939A 

1  13  1,039 

974A 

1,433,404 

985A 

1,431,246 

931A 

1.431,655 

892a 

1,431,961 

987A 

1.432,321 

998A 

1  1  12,698 

971A 

1,433,040 

970a 

1,433,408 

9S6A 

1,431,251 

927A 

1.431,650 

892A 

1,431,962 

987A 

1,432,322 

'.'■i-.v 

1,432,699 

994A 

1  i  13  042 

971A 

1,433,448 

987A 

1,431,252 

927a 

1,431,671 

916A 

1,431  982 

988A 

1.432,364 

97>A 

1,432,705 

971A 

1,433,050 

975a 

1.433.519 

975A 

1,431,259 

931A 

,  1,431,686 

902a 

1,432,046 

971A 

1,432,365 

978A 

1  132,706 

983a 

1,433,051 

975A 

1,433,541 

986A 

1,431,301 

917A 

1,431.711 

91SA 

1,132,067 

975A 

1,432,366 

997A 

1,432.742 

933A 

1,433,052 

975A 

1,433,579 

986A 

1,431.328 

913A 

1,431,713 

901 A 

1,432.101 

975a 

1,432,367 

997A 

1.432,761 

997A 

1,433,059 

98]  i 

1.433,608 

971A 

1.431,394 

891A 

1.431,725 

943A 

1,432,120 

983A 

1, 432.36s 

99SA 

1,432,775 

971A 

1,433,088 

9841 

1,433.619 

975A 

1,431,395 

901A 

1,431,772 

931A 

1.432,134 

971A 

1,432,373 

978A 

1.432,796 

9S2A 

1,433,093 

9-9.1 

1,433,666 

997A 

1,431,424 

902A 

1.431,789 

927A 

1,432,170 

971A 

1,432,374 

978A 

1,432,842 

986A 

1,433,124 

978A 

1,433,925 

997A 

1,431,448 

913A 

1,431,825 

902A 

1,432,178 

973A 

1.432,442 

9S7A 

1  432  858 

986A 

1,433,136 

987A 

1,434,011 

985A 

1,431,455 

906A 

1,431,845 

894A 

1,432,242 

971A 

1,432.472 

964A 

1,432,859 

9S6A 

1,433,141 

971A 

1,434,246 

986A 

1,431,519 

903A 

1,431,863 

916A 

1,432.248 

969A 

1,432,508 

944A 

1,432  92  ; 

943A 

1,433,168 

954A 

1,434,297 

994A 

1.431.525 

913A 

901A 

1,432,270 

969A 

1,432.509 

931A 

1,432,937 

98  7  A 

1,433.180 

986A 

GERMAN   PATENTS. 


289,016 

OJJA 

308,427 

S07A 

340,664 

47a 

342,040 

27A 

343,466 

110a 

344,705 

206A 

346,063 

244A 

289,017 

839A 

309,132 

1A 

340,708 

44A 

342,048 

36A 

343,596 

137a 

344,707 

432a 

346,066 

440a 

298,845 

669A 

309,210 

568A 

340,746 

37A 

342,094 

89A 

343,614 

146a 

344,708 

439a 

346,068 

221A 

299,031 

863a 

309,234 

541A 

340,784 

50A 

342.098 

111A 

343,675 

116a 

344,709 

2S3a 

346,084 

353A 

299,032 

863A 

310,021 

742A 

340,864 

44A 

342,121 

498A 

343,705 

109a 

344,840 

328a 

346,118 

400A 

299,131 

858A 

310,022 

742A 

340,918 

141A 

342,128 

320A 

343,706 

109a 

344,841 

254a 

346.119 

216A 

299,791 

766a 

310.043 

764A 

340,986 

103A 

342.149 

110A 

343,707 

108a 

344,855 

283a 

346,121 

215a 

299,794 

766a 

310,130 

789A 

340,989 

23a 

342.205 

128A 

343,715 

183a 

344,873 

245a 

346,122 

216A 

300,020 

-3JA 

310,134 

295A 

340,991 

407A 

342.207 

100A 

343,734 

141a 

344,877 

210a 

346,142 

221a 

300,022 

870A 

310,141 

98a 

341,063 

441a 

342,208 

100A 

343,735 

146a 

344,878 

426a 

346,174 

317a 

300,095 

814A 

310,191 

403a 

341,112 

93A 

342,209 

100A 

343,737 

147a 

344,900 

212a 

346,197 

384a 

300,643 

151A 

310,622 

742a 

341,113 

119A 

342,212 

119A 

343,771 

178a 

344,914 

375a 

346,201 

230a 

300.685 

382a 

310,701 

850a 

341,114 

119A 

342,255 

95A 

343,790 

128A 

344,955 

290a 

346,219 

267A 

300,711 

859A 

310,756 

704a 

341,161 

111A 

342.308 

115A 

343,792 

414a 

345,048 

181A 

346,224 

880a 

301,278 

521A 

310,772 

407a 

341,162 

321a 

342,337 

130A 

343.814 

403a 

345,049 

174A 

346,228 

296a 

301,332 

859A 

310,792 

353a 

341,179 

130a 

342,340 

89A 

343,815 

131a 

345,050 

174A 

346,237 

495a 

301,363 

174A 

312,301 

289A 

341,180 

76A 

342,365 

111A 

343,826 

147a 

345,052 

175A 

346,244 

216a 

301,673 

253A 

312,393 

807a 

341,183 

116A 

342,366 

10SA 

343,848 

422a 

345,062 

439a 

346,i45 

309a 

301,686 

726a 

313,129 

829A 

341,188 

S9A 

342,403 

103A 

343,863 

193A 

345,131 

244a 

346,250 

247a 

301,709 

350a 

315,323 

19A 

341,189 

109A 

342,405 

103a 

343,864 

193a 

345,132 

222a 

346,291 

243a 

301,722 

222A 

316,099 

854A 

341,229 

88A 

342.412 

99A 

343,865 

193a 

345,141 

610A 

346,294 

317A 

301,727 

716A 

322,609 

809A 

341,231 

93a 

342,414 

100A 

343,866 

193a 

345,145 

439a 

346,308 

261a 

301,797 

350A 

326,385 

737A 

341,262 

166A 

342.415 

89A 

343,929 

310a 

345,160 

224a 

346,309 

245a 

302,406 

726A 

327,912 

807A 

341.270 

95A 

342,489 

10SA 

343,930 

347a 

345,192 

498a 

346,310 

244A 

302.407 

726a 

330,677 

63A 

341,271 

35A 

342,524 

109A 

343,938 

165a 

345,233 

206a 

346,311 

244A 

302,571 

814a 

334,546 

998A 

341,289 

19A 

342,594 

103A 

343,943 

403A 

345,251 

206a 

346,322 

353a 

302,672 

100a 

334,547 

789A 

341,295 

5A 

342,608 

113a 

343,944 

470a 

345,253 

206a 

346,362 

261a 

303,055 

809A 

334,755 

47A 

341,330 

59A 

342,621 

109A 

343,953 

149a 

345,256 

546a 

346,383 

520A 

303,203 

365A 

335,406 

30A 

341,351 

494a 

342,622 

99a 

344,010 

205a 

345,257 

463a 

346,384 

510A 

303,254 

430A 

337  672 

-07A 

341,457 

44a 

342,623 

99A 

344,017 

199a 

345,258 

175a 

346,402 

223a 

303,263 

814A 

837,731 

128A 

341.453 

106A 

342,641 

95A 

344,027 

438a 

345.264 

222a 

346,433 

223a 

303,264 

814A 

337,845 

48a 

341,460 

19A 

342,733 

170A 

344,028 

439a 

345,285 

230a 

346,437 

216a 

303,272 

930A 

338,146 

4A 

341,607 

35A 

342.792 

206A 

344,029 

439a 

345,315 

546A 

346,459 

284a 

303,324 

704A 

338,734 

73A 

341,638 

131A 

342,795 

400A 

344,030 

439A 

345,360 

316a 

346,461 

439a 

303,332 

850A 

338,735 

34A 

341,654 

6A 

342,796 

lOOA 

344,031 

270a 

345,361 

521a 

346,462 

520A 

303,350 

350A 

338  736 

34A 

341,659 

19A 

342  797 

100A 

344,033 

426a 

345,377 

221a 

346,520 

270a 

303,372 

705A 

338,737 

34A 

341,686 

DA 

342,896 

96a 

344,034 

301a 

345,401 

498a 

346,521 

440a 

303,924 

773A 

338,846 

496A 

341,690 

54A 

342,898 

309a 

344,049 

148a 

345,490 

494a 

346,530 

258a 

303  953 

382a 

339,035 

33A 

341,691 

128a 

342,912 

109a 

344,061 

183a 

345,551 

386a 

346,565 

417A 

303,980 

199A 

339,091 

33a 

341,692 

50a 

342,971 

187a 

,  344,129 

164a 

345,563 

216a 

346,578 

306a 

303,993 

814A 

339,101 

79A 

341,693 

23a 

343,048 

167A 

344,139 

165a 

345,601 

225A 

346,643 

344a 

304,302 

100A 

339,310 

11A 

341,719 

131a 

343,054 

158A 

344,140 

439A 

345,602 

439A 

346,672 

248a 

304,303 

174A 

339,350 

34A 

341,720 

81a 

343,055 

158a 

344,156 

149A 

345,625 

406a 

346,673 

497a 

305,006 

704A 

339,493 

34A 

341.735 

80A 

343,056 

134a 

344,159 

209A 

345,668 

216a 

346,682 

353a 

305,007 

704A 

339,494 

34A 

341,742 

66A 

343,057 

134a 

344,204 

329a 

345,669 

216a 

346,694 

249a 

305,008 

704A 

339,495 

639a 

341,751 

44A 

343,065 

246A 

344,220 

209A 

345,684 

225a 

346,698 

521a 

305,009 

704A 

339,561 

34a 

341,763 

48A 

343,079 

379A 

344,223 

174a 

345,695 

430A 

346,700 

270a 

305,010 

704a 

339,562 

35A 

341,787 

71a 

343,138 

190a 

344,233 

186a 

345,704 

296a 

346,761 

253a 

305,025 

100a 

339,563 

35A 

341,795 

63A 

343,140 

138a 

344,241 

307a 

345,734 

567a 

346,771 

259a 

305,026 

382A 

339,583 

375a 

341,801 

131a 

343,146 

98a 

344,266 

289a 

345,756 

232a 

346,808 

216A 

305,152 

14A 

339,606 

11a 

341,831 

25A 

343,147 

134a 

344,298 

164a 

345,757 

232A 

346,809 

521a 

305,156 

900A 

339,613 

35a 

341,833 

52A 

343,143 

158a 

344,325 

721A 

345.773 

224a 

346,810 

521a 

305,197 

773a 

339,728 

1A 

341.836 

89A 

343,149 

134a 

344,363 

164a 

345,774 

213A 

346,825 

510a 

305,522 

137A 

339,743 

46A 

341,837 

8A 

343,160 

149a 

344,366 

417a 

345,775 

225A 

346,828 

665a 

305,552 

100A 

339,919 

676A 

341,847 

120a 

343,161 

425a 

344,384 

437A 

345,804 

317A 

346,829 

542a 

305,612 

753A 

339,945 

35a 

341,857 

HA 

343,162 

138a 

344,425 

180A 

345,805 

317A 

346,832 

665a 

305,613 

753A 

340,211 

59a 

341,871 

6A 

343,173 

498A 

344.426 

180a 

345,806 

316a 

346,851 

310a 

306,237 

775A 

340,314 

7a 

341.872 

48A 

343.1S2 

410a 

344,450 

192a 

345,807 

316a 

310.S09 

400a 

306,308 

814A 

340,377 

20A 

341.8S6 

81A 

343,246 

130a 

344,485 

188a 

345,815 

264A  ! 

346,873 

491a 

306,356 

SOU 

340,378 

63a 

341,887 

8lA 

343,247 

130a 

344,499 

165a 

345,816 

224A 

346,883 

214a 

306,370 

789A 

340,409 

167A 

341,891 

2A 

343,249 

198a 

344,501 

439a 

345,817 

403A 

346,884 

456a 

306,412 

811A 

340,412 

10A 

341,925 

31 A 

343,256 

498A 

344,503 

147A 

345.S26 

221A 

346,888 

439a 

307,043 

253A 

340,449 

16A 

341,961 

121A 

343,280 

108a 

344,529 

365a 

345,855 

245A 

346,889 

521a 

307,044 

SUA 

340,450 

16A 

341,967 

5SA 

343,319 

128A 

344,596 

289a 

345,867 

407a 

346,898 

510a 

307,053 

363A 

340,534 

59a 

341,969 

35A 

343,320 

501a 

344,597 

289A 

345,868 

439a 

346,910 

444a 

307,071 

1A 

340,553 

92a 

341,971 

103A 

343,321 

514a 

344,598 

289A 

345,869 

245A 

346,917 

267a 

307,077 

730A 

340,580 

66A 

341,972 

3A 

343,322 

135a 

344,615 

392a 

345,949 

502a 

346,941 

283a 

307,079 

48  4A 

340,554 

8SA 

341.973 

2-2A 

343,324 

135a 

344,632 

186a 

345,959 

283A 

346,944 

502a 

307,098 

704A 

340.583 

20A 

342,001 

5SA 

343,340 

498a 

344,633 

182a 

345,967 

301a 

346,945 

298a 

307,165 

365A 

340,625 

47A 

342.018 

281 A 

343,391 

100a 

344,645 

180a. 

345,981 

471a 

346,946 

521a 

307,169 

757A 

340,634 

6A  j 

342,019 

13A 

343,460 

128a 

344,692 

164a 

346,061 

213a 

346,947 

521a 

307,671 

930A 

340,636 

14A 

342,020 

49A 

343,461 

88a 

344,698 

283A 

346,062 

216A 

346.948 

522a 

240 


JOURNAL   OF   THE    SOCIETY    OF    CHEMICAL   INDUSTRY. 


No.  of 
Patent. 

Page. 

No.  of 
Patent. 

Page. 

No.  of 
Patent. 

Page. 

No.  of 
Patent. 

Page. 

No.  of 
Patent. 

Page. 

No.  of 
Patent. 

Page. 

No.  of 

Patent. 

Page. 

346,949 
346,973 
347,011 

522A 
258A 

271  i 

348,120 
348,136 
348,141 

441a 
350A 
374a 

349,881 
349.905 
349,908 

705a 
425a 
C60A 

351,015 
351.022 
351  051 

721A 
506A 
515a 

352,727 
352.735 
352,773 

660a 
717A 
680a 

354,389 
354,400 
354,432 

730a 
787a 
730a 

356,378 
356,380 
356,411 

838a 

858a 
979a 
768a 
752a 
944a 

347.014 

291a 

348,149 

287a 

349.915 

688A 

351,082 

698a 

352,781 

736a 

354,450 

754a 

356,413 
356,414 
356,424 

347,022 
347,073 

316a 
697a 

348,161 

348.166 

333a    349,926 
510A    349.951 

510A 
711a 

351,084 
351.085 

737a 
688a 

352  782 
352,783 

723a 
673a 

3.54,409 
354,481 

764a 
787a 

347^1^4 

31 10  A 

34s. 1SS 

432a    349,952 

712a 

351,103 

542a 

352.81111 

708a 

354,527 

7  61 A 

556. 155 

944a 
944a 
930a 

867a 
864a 

347,107 

258A 

348,197 

658A  l  349,970 

422a 

351,104 

720A 

352,845 

666a 

354,539 

86,8  i 

356,426 

347,120 

789A 

348,272 

451A    349,984 

687A 

351,130 

512A 

352.849 

736a 

354.544 

808a 

356,434 

347,129 

249a 

348,274 

327A    350,005 

690a 

351,137 

728A 

352  86,11 

742a 

354.575 

753a 

356,437 

347,130 

249a 

348,287 

364A    350,043 

728A 

351,195 

531a 

352.901 

737a 

354,593 

727a 

356,503 

347,131 

325A 

348,288 

327A    350,047 

453a 

351,196 

531A 

352,902 

660A 

354.623 

797a 

356,507 

754a 

347,138 

316a 

348,297 

382A  i|  350,050 

728a 

351,201 

539A 

352.1105 

730A 

354,630 

859a 

556,. 551 

864a 

347,139 

522  a 

348,333 

450A  1  350,051 

523a 

351,206 

998A 

352,917 

802a 

354,658 

829a 

356,532 

86  1  \ 

890a 

347,152 

261A 

348,342 

362a  1   350,064 

472a 

351,216 

531A 

352  919 

661a 

354,693 

767a 

356,591 

347,153 

347,190 

261a 
522a 

348,358 

348,377 

429A  '   350,097 
491A    350,100 

392a 
516a 

351.228 
351,243 

510A 

561  v 

3,52.961 
352,978 

808A 
753a 

354,696 
354.697 

787a 
772a 

356.614 
356,742 

770a 
855a 

347.197 
347,198 
347,201 

249A 
249a 
384a 

348.37.1 
348,379 
348,380 

399a    350,111 
439A  '  350.122 
687A  !   350.143 

470a 
688a 
756a 

351.251 
351,279 
351,281 

506A 
538a 
502a 

352,979 
352,980 

352,983, 

754a 
689a 

619A 

354,698 
354,773 
354,783 

787a 
768a 
737a 

356,809 
356,815 

356.826 

813a 
864a 
890a 
848a 

347,229 

254  a 

348,382 

523a 

350,151 

472a 

351,300 

723A 

353. Ill  4 

775A 

354.714 

753a 

556.823 

347,232 

287a 

348  3S4 

715A 

350,155 

410a 

351,314 

531A 

353,033 

700A 

354.822 

781a 

356,833 

874a 
861a 

87-V 

347,234 

388a 

348,408 

373a 

350,183 

401a 

351,322 

690A 

353,048 

676a 

354,860 

757  a 

356,902 

347.240 

472a 

348,409 

373a 

350,220 

700a 

351,328 

632a 

353,058 

701a 

354,865 

802a 

55169  15 

347,276 

325a 

348,410 

373A  1 

350.247 

565A 

351,349 

720A 

353,075 

729a 

354,941 

757a 

356,922 

853a 
917a 
917a 

347,277 

291a 

348,411 

687a 

350,248 

556A 

351,351 

122  a 

353,1176 

722a 

354,944 

779a 

357,010 

347,302 

258a 

348,412 

567A 

350,259 

697a 

351.352 

716A 

353.105 

704  v 

354,948 

756a 

357,011 

347,359 

325a 

348,413 

677a 

350  260 

456a 

351,370 

724a 

353.130 

774A 

354,950 

787a 

357,033 

s59  \ 

347,361 

360a 

341,472 

659A 

3511.263 

470a 

351.376 

723a 

353.131 

771a 

354,978 

767a 

357,043 

878  \ 

936a 

347,370 

294a 

348,482 

450A 

351.1.267 

453a 

351,384 

632a 

353,135 

737A 

355,020 

777a 

5357. 657 

347,371 

294a 

348,483 

333A 

350.271 

502a 

351,408 

717a 

353.194 

777A 

355,023 

808  i 

3357.116,5 

854a 

347,373 

267a 

348,484 

347a 

350.-272 

502a 

351,410 

717a 

353,195 

728a 

355,038 

829a 

357,081 

916a 

347,374 

253a 

341.542 

384a 

350.275 

516a 

351.411 

717A 

355,2611 

S39a 

355,104 

747a 

357,087 

979a 

347,375 

522a 

348,596 

472a 

350,298 

453a 

351,464 

688a 

553,266 

741a 

355,107 

747a 

357,090 

-1,6.  \ 

347. 576 

522a 

348,628 

367a 

350,299 

676a 

351,533 

632a 

555,222 

826a 

355,109 

787a 

557.698 

936a 

347,377 

523a 

348,629 

367a 

350,321 

458A 

351,566 

676A 

353.233 

704a 

555.117 

826a 

357,140 

916a 

347.394 

261a 

348,654 

660a 

350.322 

458a 

351.581 

632a 

553.251 

704a 

355.150 

878a 

357,226 

851a 

347.399 

523a 

348,661 

690A 

350,325 

502a 

351.677 

758a 

353,286 

661a 

355,121 

788a 

357,236 

934a 

347,455 

449a 

348,668 

414a 

350,363 

758A 

351.611 

680a 

353,370 

754a 

355,173 

772a 

357,244 

917a 

347,460 

523a 

348,669 

317a 

350,376 

687a 

351,688 

6,77a 

353,371 

723a 

355,180 

829a  , 

557.2911 

866a 

347,479 

300a 

348,670 

327a 

350,394 

472a 

351,731 

687a 

353,380 

720a 

355.206 

782a 

5,57.565 

933a 

347,482 

523a 

348,694 

389a 

350,429 

484A 

351,732 

687a 

353,, 423, 

738a 

355,231 

911a 

357,378 

945a 

347,483 

299A 

348,755 

388A 

350,442 

455a 

351,739 

717a 

353,432 

753A 

355.299 

752a 

357,409 

954a 

347,496 

295a 

348,765 

456A  I 

350,443 

660a 

351,750 

717A 

353,444 

774a 

355,300 

754a 

357.447 

943a 

347,537 

300a 

348,768 

327A 

350,470 

516a 

351,763 

729a 

353,493 

775a 

355,301 

754  a 

357,448 

901a 

347,598 

•358a 

348,769 

327a 

350,471 

855a 

351,790 

757a 

353,551 

740a 

355,302 

754a 

357,484 

961a 

347,599 

316a 

348,779 

338A 

350,480 

485A 

351,817 

702a 

353,553 

736A 

355,303 

754a 

357,594 

846a 

347,600 

451a 

348.8311 

44IA 

350,483 

535A 

351,904 

729a 

353,568 

868a 

355,335 

851a 

357,663 

878a 

347,601 

859a 

348,853 

432a  1 

350,485 

475A 

351,905 

729a 

5,53  ,,76 

705a 

355,372 

758a 

357,665 

944a 

347,605 

440a 

348,906 

687A 

350,503 

473A 

351,947 

737a 

353,571 

720a 

5,55.5.74 

738a 

357,680 

979a 

347,600 

415a 

349  111  11 

687A 

350,509 

535A 

351,981 

717A 

353,597 

716a 

355,386 

801a 

357,693 

945  a 

347.1,117 

523A 

349,011 

3.HIA 

350,521 

716A 

352.002 

632a 

353,617 

758A 

355,387 

752a 

357,695 

945a 

347,609 

523a 

349,067 

673a 

350,563 

649a 

352,003 

728A 

353,618 

758A 

355,388 

703a 

357,720 

998a 

347,615 

299a 

349,084 

658a 

350,568 

494a 

352,010 

661  n 

353,623 

715a 

355,389 

772a 

357,751 

959a 

347,624 

403a 

349.1188 

640a 

350,571 

456a 

352.028 

673a 

353,636 

754  a 

355,408 

708a 

357,752 

917a 

347,631 

549a 

349,101 

424a 

350,572 

456A 

352.043 

814A 

353,649 

740A 

355,415 

788a 

357,753 

959a 

347,632 

549a 

349,179 

410A 

350,575 

415A 

352,115 

632a 

555,662 

807a 

355,467 

757a 

357,755 

959  a 

347,658 

543A 

349,182 

450a 

350,576 

415A 

352,126 

632a 

555.6,-2 

747A 

355,483 

846a 

357.756 

948a 

347,672 

548a 

349,183 

697a 

350,577 

401 A 

352.129 

688A 

555,756 

766a 

355,484 

757a 

557.757 

948a 

347.673 

548a 

349,258 

387A 

3,5(1  591 

546A 

352.138 

641a 

353.734 

725A 

355,485 

767a 

557.751 

948a 

347.674 

548a 

349,276 

363a 

3511,591 

472a 

352,175 

758a 

353.742 

752a 

355,491 

853a 

357,763 

939a 

347,675 

548A 

349.280 

168  A 

350,621 

728a 

352,178 

633A 

353,743 

755a 

355,492 

770a 

357,767 

977a 

347,676 

328A 

349,2.83 

433A 

350,622 

660a 

352,189 

802a 

353,744 

754  a 

355.596 

832a 

357,768 

931a 

347,694 

294A 

349,299 

444A 

350,628 

670a 

352,191 

807a 

353,780 

802a 

355.602 

846a 

557  -7  I 

954a 

347,695 

286A 

349,330 

401a 

350,634 

825A 

352,192 

807a 

353.797 

765a 

355,649 

813a 

357,877 

945a 

347,707 

510A 

349,343 

400a 

350,638 

808A 

352,224 

756A 

353,832 

808a 

355,650 

837a 

557,9611 

939a 

347.723 

541A 

349,347 

415A 

350,640 

514A 

352.2  11 

622a 

355,857 

757a 

355,738 

754a 

357,956 

945a 

347,746 

422a 

349,349 

441a 

350,645 

555a 

352,285 

722A 

353.866 

869  1 

355,829 

835a 

357,957 

945a 

347,805 

286A 

349,363 

641A 

350,647 

555A 

352.289 

812A 

353,867 

767a 

355,836 

752a 

357,972 

936a 

347,813 

360A 

349,425 

378A 

350,649 

555A 

352,296 

738A 

353.912 

756a 

555,845 

845a 

357,975 

964a 

347,816 

295a 

349,435 

37  3A 

350.658 

729a 

352,343 

736a 

353,913 

756a 

355.855 

742a 

358,047 

948a 

347,817 

410a 

349,436 

415A 

350,659 

729a 

352,354 

664a 

353,932 

803A 

355,865 

SIHIA 

358,048 

948a 

347,818 

523a 

349,437 

703A 

350,678 

701a 

352,364 

688A 

353,933 

837A 

355,866 

754A 

358,050 

948a 

347,828 

300A 

349,438 

450A 

350,698 

509a 

352,365 

6,89  1 

353,947 

808A 

3,55,867 

740a 

358,105 

949a 

347,849 

541a 

349,442 

451A 

350,702 

555a 

352,431 

676A 

354,069 

758a 

355,879 

775a 

358,106 

954a 

347,886 

329a 

349,538 

380A 

350,703 

505A 

352,439 

689a 

354.078 

754A 

355,883 

756a 

358,110 

952a 

347,891 

431a 

349,593 

424A 

350,704 

506a 

352,471 

717a 

354,081 

749A 

355,885 

822a 

358,118 

953a 

347,895 

403a 

349,595 

665A 

350.737 

663a 

352,506 

660a 

354  1196 

765A 

355.886 

764a 

358,125 

959a 

347,897 

347A 

349,600 

373a 

350,770 

502a 

852,521 

720A 

354,153 

801a 

355,887 

765a 

358,148 

959a 

347,902 

382A 

349,685 

700A 

350,771 

505a 

352,534 

722a 

354,165 

774A 

355,906 

765a 

358,149 

958a 

347.91  If, 

333A 

349,699 

382A 

350,801 

539a 

352,575 

708A 

354,172 

773A 

355,979 

754a 

358,195 

948a 

347.018 

360A 

349,724 

441A 

350,802 

497a 

352,576 

728a 

354,202 

743a 

355,991 

829a 

358,285 

998a 

347,956 

417A 

349,737 

737A 

3511,8113 

541A 

352,594 

722a 

354,213 

802a 

356,037 

S98A 

358,397 

960a 

347,966 

450A 

349,739 

373A 

350,808 

728a 

352,624 

665a 

354.217 

755A 

356.039 

764a 

358,398 

9  66  A 

347.972 

327A 

349.741 

640A 

350,874 

565a 

352,652 

661A 

354.219 

765a 

356,047 

755  a 

358,399 

948a 

347,976 

298A 

349,793 

373A 

350,913 

735a 

352,656 

728a 

554,254 

770a 

356.103 

754a 

358,400 

94SA 

348,004 

298a 

349,794 

687A 

350,918 

756a 

352,657 

736A 

354.247 

787A 

356.132 

757a 

358,401 

948a 

348,058 

393a 

349,806 

i;n  v 

350.922 

566a 

352,684 

766A 

354  281 

767a 

356,165 

827a 

358,402 

945a 

34S.063 

3 12  A 

319,1117 

688A 

350,925 

556a 

352,685 

717A 

354,294 

729a 

356,168 

874A 

358,409 

943a 

348.064 

386a 

349.813 

677A 

350,956 

516a 

352,693 

808a 

354.295 

729A 

356.175 

788A 

358,514 

931a 

348,069 

6S7a 

349,842 

51 5A 

350,973 

510a 

352.714 

669A 

354,315 

782a 

356.176 

;«i 

358,520 

939a 

348,070 

522a 

349,844 

737A 

350,986 

502a 

852.719 

663a 

354.5.28 

754a 

356.225 

767a 

358,540 

949a 

348,087 

382A 

349.849 

756A 

351,002 

562a 

352.7211 

71  '3  a 

354,344 

949a 

356.287 

752a 

358.572 

946a 

348,088 

3s2A 

349,870 

51 6A 

851,003 

510a 

352.721 

663a 

354.360 

774a 

356,293 

754a 

358,584 

948a 

348,089 

321a 

349,871 

516A 

351,004 

539A 

352,726 

803a 

354,388 

789a 

356,334 

81  6a 

358,592 
3C8,611 

930a 
939a 

JOURNALS  ABSTRACTED— ABBREVIATIONS— ADDRESSES  OF  PUBLISHERS— PRICES.      241 


List  of  Journals  Abstracted,  with  Abbreviations  Used, 
and  Addresses  of  Publishers  and  Prices. 


JOTJBNAL. 


Abbreviation. 


Address  of  Publisher  and  Price.* 


Agricultural  Bulletin  of  the 
Federated  Malay  States 

Agricultural  Journal  of  India 

Agricultural  Research  Insti- 
tute, Pusa,  Reports  and 
Bulletins 

Allgemeine  Zeitschrift  fur 
Bierbrauerei  und  Malz- 
fabrikation 

American  Journal  of  Phar- 
macy. 

American  Journal  of  Science 

Anales  de  la  Asociacion  Qui- 
mica  Argentina 

Anales  de  la  Sooiedad  Espa- 
nola  de  Fisica  y  Quimica 

Analyst 

Annalen  der  Chemie 
Annales  de  Chemie 

Annales  de  Chimie  Analytique 
Annales  dos  Falsifications . . 
Annales         de         l'lnstituto 

Pasteur 
Annales  de  la  Science  Agron- 

omique    Francaise    et    Et- 

rangere 
Annali     della     R.     Stazione 

Chimico  Agraria  Sperimen- 

tale  di  Roma 
Apotheker-Zeitung 
Archiv   der   Pharmazio 


Agrio.  J.   India 
Rep.  (Bull.)  Agric.  Res. 
Inst.,  Pusa. 

Allgem.     Z.     Biorbrau. 


Amer.   J.   Pharm. 

Amer.  J.  Sci. 

Anal.  Asoc.  Quim.  Ar- 
gentina 

Anal.  Soc.  Espan.  Fis. 
Quim. 

Analyst 

Annalen 
Ann.  Chim. 

Ann.  Chim.  Analyt.   . . 

Ann.  Falsif 

Ann.  Inst.  Pasteur 

Ann.  Sci.  Agron. 

Ann.  R.  Staz.  Chim. 
Agrar.  Sperim.  Roma 

Apoth-Zeit. 
Arch.  Pharm. 


Archives  des  Sciences  Phys- 
iques et  Naturelles 
Archivio     di     Farmacologia 

Sperimentale     e      Soienze 

Affini. 
Atti  della  Reale  Accademia 

Nazionale  dei  Lincei,  Roma 
Australasian  Pharmaceutical 

Notes  and  News 
Berichte       der       Deutschen' 

Chemischen  Gesellschaft 
Berichte       der       Deutschen 

Pharmazeutisohen     Gesell- 
schaft. 
Berichte  des  Ohara  Instituts     Ber.  Ohara  Inst,  landw. 

fur  landwirtschaftliche 

Forschungen 
Biedermann's  Zentralblatt  fur 

Agrikulturchemie 
Biochemical    Journal 
Biochemische  Zeitschrift 
Blast-Furnace       and      Steel 

Plant  

Board  of  Trade  Journal     . . 
Bolletino      Chimico  -  Farma- 

oeutioo 
Brennstoff-Chemie 
Brewers'  Journal 


Arch.  Sci.  Phys.  Nat., 
Arch.  Farm.  Sperim. . 


Atti  R.  Accad.   Lincei, 

Roma 
Austr.     Pharm.     Notes 

and  News 
Ber , 

Ber.  deuts.  Pharm.  Ges. 


Forsch. 
Biedermann's  Zentr. 


Biochem.  J. 
Biochem.    Zeits. 
Blast  -  Furnace 

Steel  Plant 
Bd.  of  Trade  J. 
Boll.  Chim.  Farm. 


Brennstoff-Chem. 
Brewers'  J. 


British    Journal 
graphy 


of    Photo-      Brit.  J.  Phot. 


and 


Title  altered  to  Malayan  Agricultural  Journal. 

W.  Thaoker  and  Co.,  2,  Creed  Lane,  London.     3s. 
Supt.   Govt.    Printing,   Calcutta.     Price  varies. 


Michaelcrstrasse  25,  Vienna  XVIII/1. 


145,  North  Tenth  Street,  Philadelphia,  Pa.,  U.S.A.     50  cents. 

New  Haven,  Conn.,  U.S.A.     50  cents. 
1790,  Lavalle,  Buenos  Aires.     GO  o. 

D.  M.  T.  Gil,  Corredera  Baja  de  San  Pablo,  num.  59,  Madrid 

15  pesetas  per  annum. 
Simpkin,  Marshall,  Hamilton,  Kent  and  Co.,  Ltd.,  2,  4,  6,  8, 

Orange  Street,  London,  W.C.  2.     3s. 
Verlag  Chemie,  Leipzig,  Germany. 
Masson  et  Cia.,  120,  Boulevard  St.  Germain,     Paris,  VTe. 

40  fr.  per  annum. 
M.  Crinon,  20,  Boulevard  Richard-Lenoir,  Paris,  lie.     2    fr. 
M.  Filaudeau,  42  bis,  Ruo  de  Bourgogne,  Paris,  VI  Ie.     4  fr. 
Masson  et  Cie.,  120,  Boulevard  St.  Germain,  Paris,  6e.     4  fr. 

Librairie  Berger-Levrault.  5,  rue  des   Beaux-Arts,  Paris,  6e. 
15  fr.  25. 

R.  Stazione  Chimico-Agraria  Sperimentale  di  Roma,  Rome. 


Levetzowstrasse  16b,  Berlin,  N.W.  87. 

Selbstverlag     des     Deutschen     Apotheker-Vereins,      Berlin, 

Germany. 
Rue  de  Vieux-Collcge,  4,  Geneva,  Switzerland.     6  fr. 

Via  Depretis,  92,  Rome.     Lire  2. 


Tipografia  della  R.  Accademia  Nazionale  dei  Lincei,  Rome. 

Lire  108  por  annum. 
Elliott  Bros.,  Ltd.,   O'Connell  St.,  Sydney,  N.S.W.     3d. 

Verlag  Chemie,  Leipzig,  Germany. 

Verlag  von  Gebr.  Borntrager,  Berlin,  W.  35,  Schbneberger 
Ufer  12a,  Germany. 

Verlag  der  Ohara  Schonokai,  Kuraschiki  Provinz  Okayama. 
Price  varies. 

O.  Leiner,  Konigstrasse  26b,  Leipzig,  Germany. 

Cambridge  University  Press,  Fetter  Lane,  London,  E.C.  20s. 
Verlag  von  J.  Springer,  Berlin,  W.  9,  Linkstrasse  23-24. 
Thaw  Building,  108,  Smithfield  St.,  Pittsburgh,  U.S.A.     25 

cents. 
H.M.  Stationery  Office,  Kingsway,  London,  W.C.  2.     6d. 
Via  Cappuccio,  19,  Milan,  Italy.     L.  1.80. 

Verlag  W.  Girardet,  Essen.     5s.  per  quarter. 

L.    M.    Reed,    Eastcheap    Buildings,    Eastcheap,    London, 

E.C.  3.    3s. 
24,  Wellington  Street,  London,  W.C.  2.     4d. 


•  The  price  for  single  copies  is  given  where  these  are  sold  separately.    In  other  cases  it  Is  only  possible  to  buy  the  Journals  in  question 
iu  complete  volumes.    For  moat  of  the  German  and  Austrian  JouroaU  special  prices  are  charged  to  foreign  purchasers. 


242 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL  INDUSTRY. 


JOTTKNAL. 


Abbreviation. 


Buletinul  Societatei  de 
Chimie  din  Romania 

Bulletin  de  l'Academie  Royale 
de  Belgique,  Classe  des 
Sciences 

Bulletin  de  1' Association 
des  Chimistes  de  Sucrerie 
et  de  Distillerie 

Bulletin  of  Agricultural 
Intelligence  and  Plant 
Diseases 

Bulletin  of  the  Bureau  of 
Bio-Technology 

Bulletin  de  la  Federation  des 
Industries  Chimiques  de 
Belgique 

Bulletin  of  the  Forest  Experi- 
ment Station,  Meguro, 
Tokyo 

Bulletin  of  the  Institution  of 
Mining  and  Metallurgy    . . 

Bulletin  of  the  Kentucky 
Agricultural  Experiment 
Station 

Bulletin  of  the  Rubber 
Growers'  Association  (In- 
corporated) 

Bulletin  of  the  School  of 
Mines  and  Metallurgy,  Uni- 
versity of  Missouri 

Bulletin  de  la  Socieie  de 
Chimie  Biologique 

Bulletin  de  la  Societe  Chi- 
mique  de  Belgique 

Bulletin  de  la  Societe  Chim- 
ique  de  France 

Bulletin  de  la  Soci6t6  Fran- 
caise  de  Photographie 

Bulletin  de  la  Societe  Indus- 
trielle  du  Nord  de  la  France 

Bulletin  de  la  Societe  In- 
dustrielle  de  Mulhouso 

Bulletin  de  la  Societe  d'En- 
couragement  pour  l'ln- 
dustrie  Nationale 

Canadian  Chemistry  and  Me- 
tallurgy 

Le  Caoutchouc  et  la  Gutta- 
percha 

Cellulose-Chemie 

Centralblatt  f  iir  Bakteriologie, 
Parasitenkunde,  und  Infek- 
tionskrankheiten 

Chamber  of  Commerce  Journal 

Chemical  Age 

Chemical  and  Metallurgical 
Engineering 

Chemical  News 

Chemical  Trade  Journal 

Chemie  ko  Listy  pro  vedu  a 
pr  umysl 

Chemiker-Zeitung 

Chemisch  Weekblad 

Chemische   Industrio    . . 

Chemische  Umschau  auf  dem 
Gebiete  der  Fotte,  Oele, 
Wachse,  und  Harze 

Chemisches  Zentralblatt 

Chemist  and  Druggist 

Chimie  et  Industrie 

Collegium 

Communications  of  the  Ne- 
therlands Government  In- 
stitute for  advising  the 
Rubber  Trade  and  Rubber 
Industry 


Bul._  Soo.  Chim.  Ro- 
mania 

Bull.  Acad.  Roy.  Belg., 
CI.  Sci. 


Address  of  Publisher  and  Price. 


Boulevard  Carol,  32,  Bucarest. 

M.  Lambertm,  Rue  Coudenberg,  58-62,  Brussels. 


Bull.  Assoc. Chim.  Sucr.      150,   Boulevard  Magenta,  Paris,   lOe,  France.     4  fr. 


Bull.  Agric.  Intell.     .. 

Bull.  Bureau  Bio-Technol 

Bull.   Fed.   Ind.   Chim. 
Belg. 

Bull.  Forest  Exp.  Stat., 
Meguro 

Proc.    Inst.    Min.    and 

Met. 
Bull.   Kentucky   Agrio. 

Exp.  Stat. 

Bull.   Rubber  Growers' 
Assoc. 

Bull.  School  Mines  and 
Met.,  Univ.  Missouri 

Bull.  Soo.   Chim.   Biol. 

Bull.  Soc.  Chim.  Belg. 

Bull.  Soc.  Chim. 

Bull.  Soc.  Fran?.  Phot. 

Bull.  Soc.  Ind.  Nord.. 

Bull.    Soc.    Ind.    Mul- 
house 
Bull.  Soc.  d'Encour.  . . 

Canad.  Chem.  Met. 

Caoutchouo    et    Gutta- 
percha 
Oellulose-Chem. 
Centr.  Bakt. 


Ch.   of   Comm.   J. 

Chem.  Age 

Chem.   and   Met.    Eng. 

Chem.  News 
Chem.   Trade  J. 
Chem.  Listy 

Chem.-Zeit. 
Chem.  Weekblad 
Chem.  Ind. 
Chem.  Unschau 


Chem.  Zentr. 

Chem.  and  Drug. 

Chim.  et  Ind. 

Collegium 

Comm.  Netherlands 

Govt.  Inst,  for  ad- 
vising Rubber  Trade 


International  Institute  of  Agriculture,  Rome.     5  fr. 

Murphy  &  Son,  Ltd.,  Sheen  Lane,  Mortlake,  London,  S.W.  14. 
65,  Rue  du  Canal,  Brussels.     45  f  r.  per  annum. 

Bureau  of  Forestry,  Dept.  of  Agriculture  and  Commerco, 
Tokyo. 

Cleveland  House,  225,  City  Road,  London,  E.C.  1. 

University  of  Kentucky,  Lexington,  Ky.,  U.S.A. 

2-4,  Idol  Lane,  Eastcheap,  London,  E.C.  3. 

Director  of  Mining  Experiment  Station,  Rolla,  Mo.,  U.S.A. 


Dunod,  47  &  49,  Quai  des  Grands- Augustins,  Paris  (Vie). 

3fr. 
M.  J.  Wauters,  Palais  du  Midi  (Galerie  du  Travail  7),  Brussels. 

Masson  et  Cie.,  120,  Boulevard  Saint-Germain,  Paris,  6c.  70  fr. 

per  annum. 
51,  Rue  de  Clichy,  Paris,  9e.     2  fr. 

Rue  de  l'Hopital  Militaire  116,  Lille,  Franoe. 

Berger-Levrault  et  Cie.,  5,  Rue  des  Beaux-Arts,  Paris.     60  fr. 

per  annum. 
Secretariat,  Rue  de  Rennes  44,  Paris,  6e.,  France.     36  fr.  per 

annum. 

Westman   Press,    Ltd.,    57,    Queen   Street   West,    Toronto. 

40  cents. 
A.  D.  Cillard  fils,  49,  Rue  des  Vinaigriers,  Paris,  X.     36  fr.  per 

annum. 
Supplement  to  Papierfabrikant. 
Verlag  von  G.  Fischer,  Jena,  Germany. 


Oxford  Court,  Cannon  Street,  London,  E.C.     6d. 

Benn  Bros.,  Ltd.,  8,  Bouverie  Street,  London,  E.C.  4.     6d. 

McGraw-Hill  Co.,  10th  Avenue  at  36th  Street,  Now  York. 
25  cents. 

97,  Shoe  Lane,  London,  E.C.  4.     6d. 

Davis  Bros.,  Danes  Inn  House,  265,  Strand,  London,  W.C.  6d., 

A.  Malire  na  Krai,  Palackeho  far.  8.  20  Vinohraech,  Czecho- 
slovakia. 

Dr.  W.  Roth,  Cothen,  Anhalt,  Germany. 

D.  B.  Centen,  O.Z.  Voorburgwal  115,  Amsterdam.     0.25  fr. 

Now  incorporated  with  Zeitschrift  fiir  angcwandto  Chemie. 

Verlag  der  Wissenschafttlichen  Verlagsges.,  Stuttgart. 


Verlag  Chemie  Ges.,  Berlin,  Germany. 

42,  Cannon  Street,  London,  E.C.    *9d. 

49,  Rue  des  Mathurins,  Paris.     10  fr. 

K.  Schorlemmer,  Haltingen,  Baden,  Germany.     30s.  per  ann. 


JOURNALS   ABSTRACTED— ABBREVIATIONS— ADDRESSES    OF   PUBLISHERS— PRICES.     243 


Journal. 


Comptes-Rendus      hobdoma- 

daires  de3  Seances  de  l'Aca- 

demie  des  Soienoes 
Comptes-Rendus      des     Tra- 

vaux        du        Laboratoire 

Carlsborg 
Deutsche  Zuckei'industrie   . . 
Elektroohomische    Zoitsohrift 


Abbreviation. 


Engineering 


Farben-Zeitung 

Fermentforschung 
Feuerungstechnik 
Fuel   Research    Board   Tech- 
nical Papers 
Fuel  in  Science  and  Practice 

Gas  Journal 

Gas-  und  Wassorfack 

Gas  World 

Gazzetta  Chimica  Italiana.. 

Gerber 

Gesamraelte  Abhandlungon 
zur  Konntnis  der  Kohlo 

Gioraale  di  Chiinica  Indus- 
trials ed  Applicata 

Glass  Industry 

Gliickauf 

Gummi-Zeifcung 

Helvetica  Chimica  Acta 

Imperial  Institute  Bulletin.. 

Iudia-Rubber  Journal 

International  Sugar  Journal 

Journal  of  Agricultural  Re- 
search 

Journal  of  Agricultural 
Science 

Journal  of  the  American 
Ceramio  Society 

Journal  of  the  American 
Chemical  Society 

Journal  of  the  American  In- 
stitute of  Metals 

Journal  of  the  American 
Leather  Chemists'  Associa- 
tion 

Journal  of  the  Association  of 
Official  Agricultural  Chem- 
ists 

Journal  of  Biological  Chemis- 
try 

Journal  of  the  Chemical 
Society  of  London,  Trans- 
actions 

Journal  of  the  Chemical, 
Metallurgical,  and  Mining 
Society  of  South  Africa 

Journal  de  Cliimie  Physique 


Journal    of    the    College    of 
Agriculture,    Tokyo    Im- 
perial   University,   Japan 

Journal  of  the  College  of 
Engineering,  University  of 
Tokyo 

Journal  of  the  College  of 
Science,  Imperial  Univer- 
sity of  Tokyo 

Journal  of  the  Franklin  In- 
stitute 

Journal  of  General  Physiology 


Comptes  rend. 


Comptos-rend.        Trav. 
Lab.  Carlsberg 

Deuts.   Zuckerind. 
Elektrochom.  Zoits.    .. 

Engineering 

Farben-Zeit. 

Fcrmentforseh. 

Feuorungstechn. 

Fuel     Res.     Bd.    Tech. 

Paper 
Fuel 


Gas  J.   . . 

Gas-  u.  Wasserfach     . . 

Gas  World 

Gazz.   Chim.   Ital. 

Gerber.. 

Ges.  Abhandl.  Kenntn. 

Kohle 
Giorn.  Chim.  Ind.  Appl. 

Glass  Ind 

Gliickauf 
Gurnmi-£e!t. 

Helv.   Chim.   Acta 
Bull.  Imp.  Inst. 
India-Rubber  J. 
Int.  Sugar  J.   . . 
J.  Agric.  Res. 

J.  Agric.  Sci. 

J.    Amer.    Ceram.    Soc. 

J.    Amer.    Chem.    Soc. 

J.   Amer.   Inst.   Metals 

J.  Amer.  Leather  Chem. 
Assoc 

J.    Assoc.    Off.    Agric. 
Chem. 

J.  Biol.  Chem. 

Chem.  Soc.  Trans. 


J.  Chem.  Met.  Soc,  S 
Africa 

J.  Chim.  Phys. 


J.  Coll.   Agric,   Tokyo 

J.  Coll.    Eng.,    Tokyo 

J.  Coll.  Science,  Tokyo 

J.  Franklin  Inst. 

J.  Gen.  Physiol. 


Address  of  Publisher  and  Price. 


Imprimerie  Gauthier-Villars,  Quai  des  Grands-Augustins,  55, 
Paris.     140  fr.  per  annum. 

H.  Hagorup,  Copenhagen.     Price  varies. 


Dessauerstrasse,  18,  Berlin,  S.W.I  1. 

Brandonburgisohe    Buchdruckerei    u.    Verlagsanstalt    Ges., 

Miihlenstrasse,  9,  Berlin-Schbneberg,  Germany. 
C.  R.  Johnson,  35  and  36,  Bedford  Street,  Strand,  London, 

W.C.  2.     Is.  2  id. 
Krausenstrasse  35-36,  Berlin,  S.W.  19. 
Vcrlag  von  S.  Hirzel,  Leipzig,  Germany. 
0,  Spamer,  Eeinrichstrasse,  9,  Leipzig-R.,  Germany. 
H.M.  Stationery  Office,  Kingsway,  Loudon,  W.C.  2.      Price 

varies. 
Colliery  Guardian  Co.,  Ltd.,  30-31,  Ftrrnival  Street,  London, 

E.C.  4.     Is. 
W.  King,  11,  Bolt  Court,  Fleet  Street,  London,  E.C.4.     Is. 
R.  Oldenbourg,  Gliickstrasse,  8,  Munich.     16s.  per  annum. 
8,  Bouverie  Street,  E.C.  4.      8d. 
La  Direzione  della  "  Gazzetta  Chimica,"  Via  Tre  Novembre. 

154,  Rome.     Lire  15. 
Clarystrasso,  4,  Teplitz-Schonau. 
Gebr.    Borntraeger,   Schoneberger   Ufer,    12a,    Berlin,    W.35. 

Via  S.  Paolo,  10,  Milan,  Italy.     L.  7.50. 

50,  Church  Street,  New  York.     20  cents. 

Vcrlag  Gliickauf,  Essen.     M.   17.50  per  quarter. 

Gesebaf  tsstelle  der  "  Gummi-Zeitung,"  Krausenstrasse  35/36, 

Berlin,  S.W.  19,  Germany. 
Georg  &  Co.,  10,  Freiestrasse,  Basel.     10  fr. 
John  Murray,  Albemarle  Street,  London,  W.     3s.  6d. 
Maclaren  and  Sons,  37  and  38,  Shoe  Lane,  London,  E.C.     4d. 
2,  St.  Dunstan's  Hill,  London,  E.C.     Is.  9d. 
U.S.  Department  of  Agriculture,  Washington,  D.C.,  U.S.A. 

Price  varies. 
University  Press,  Cambridge.     10s. 

211,  Church  Street,  Easton,  Pa.,  U.S.A.     75  cents. 

C.  L.  Parsons,   1709,    G.   Street,  N.W.  Washington,    D.C  , 

U.S.A.     75  cents. 
Incorporated  in  Mining  and  Metallurgy. 

American  Leather  Chemists'  Assoc,  Easton,  Pa.,  U.S.A. 
$12  per  annum. 

Box  290,  Pennsylvania  Avenue  Station,  Washington,  D.C, 
U.S.A.     27s.  per  volume. 

Rockefeller  Inst,  for  Medical  Research,  Mount  Royal  and 
Guilford  Avenues,  Baltimore,  Md.,  U.S.A.     85.25  per  vol. 

Gurney  and  Jackson,  33,  Paternoster  Row,  London,  E.C. 
7s.  6d. 

Scientific  and  Technical  Club,  100,  Fox  Street,  Johannes- 
burg.    3s.  6d. 

Gauthier-Villars,  55,  Quai  des  Grands-Augustins,  Paris.  35  fr. 
per  annum ;  the  price  of  a  single  copy  varies  according  to 
the  size. 

Director  of  the  College  of  Agriculture.Tokyo  Imperial  Univer- 
sity, Japan.     Price  varies. 

The  University,  Tokyo. 


Director  of  tho  College  of  Science,  Tokyo  Imperial  University, 
Japan.     Price  varies. 

The   Actuary,   The   Franklin    Institute,    Philadelphia,    Pa. 

U  S.A.     60  cents. 
Rockefeller  Institute  for  Medical  Research,  Mount  Royal  ami 

Guilford  Avenues,  Baltimore,  Md.,  U.S.A.     $1. 

Q2 


244 


JOURNAL  OF  THE   SOCIETY   OF  CHEMICAL   INDUSTRY 


JOUBNAL. 


Journal  of  the  Indian  Insti- 
tute of  Science 
Journal    of    Industrial     and 

Engineering  Chemistry 
Journal   of   the   Institute   of 

Brewing 
Journal  of  the  Institution  of 

Electrical  Engineers 
Journal  of  the  Institution  of 

Mechanical  Engineers 
Journal  of  the  Institution  of 

Petroleum  Technologists 
Journal    fur    Landwirtschaft 
Journal    of    the    Ministry    of 

Agriculture 
Journal  of  the  Optical  Society 

of  America 
Journal  of  Physical  Chemistry 
Journal  de  Pharmaoie  et  de 

Chimie 
Journal        fur        praktische 

Chemie 
Journal  and  Proceedings  of  the 

Royal  Sooiety  of  New  South 

Wales 
Journal  of  the  Royal  Society 

of  Arts 
Journal    of    the    Society    of 

Dyers    and    Colourists 
Journal    of    the    Society    of 

Glass  Technology 
Journal    of    the    Society    of 

Leather  Trades'  Chemists 
Journal  of  the  South  African 

Association    of    Analytical 

Chemists 
Journal    of    the    Textile    In- 
stitute 
Journal   of   the   Washington 

Academy    of    Sciences 

Koramische  Rundschau 
Kogyo-Kwagaku-Zas  shi 
(Journal   of   Chemical   In- 
dustry. Japan) 
Kolloidchemische  Beihefte  . . 

Kolloid-Zeitschrift 

Landwirtsohaftliohen  Versuchs 

Stationen,  Die 
Malayan  Agricultural  Journal 

Mededeelingen  van  het  Cen- 
tral  Rubberstation 

Mededeelingen  uit  het  Genees- 
kundig  Liboratorium  te 
Weltevreden 

Memoires  et  Compte  Rendu 
des  Travaux  de  la  Societe 
des  Ingenieurs  Civils  de 
France 

Memoirs  of  the  College  of 
Science  and  Engineering, 
Kyoto  Imperial  University 

Memoirs  of  the  Department 
of  Agriculture  in  India 

Memorial  des  Poudres 

Metall  und  Eiz 

Milch  wirtschaftliches        Zen- 

tralblatt 
Mining  and  Metallurgy 
Mittheilungen  des  Institutes 
fur    Kohlenvergasung    und 
Nebenproduktengewinnung. 


Abbreviation. 


J.  Indian  Inst.  Sci. 
J.  Ind.  Eng.  Chem. 
J.  Inst.  Brewing 
J.  Inst.  Elect.  Eng. 
J.  Inst.  Mech.  Eng. 


Address  of  Publisher  and  Price. 


J.       Inst. 

Tech. 
J.  Landwirts 
J.  Min.  Agric. 


Petroleum 


J.  Opt.  Soc.  Amer.    . . 

J.    Phys.    Chem. 
J.  Pharm.  Chim. 

J.  prakt.  Chem. 

J.  ProcRoy.  Soo.  N.S.W. 

J.  Soc.  Arts     .. 

J.  Sen,.  Dyers  and  Col. 

J.  Soc.  Glass  Techno]. 

J.  Soo.  Leather  Trades' 

Chem. 
J.  S.  Afr.  Assoc.  Anal. 

Chem. 

J.  Text.  Inst 

J.   Wash.  Acad.  Sci... 


Keram.  Runds. 
Kogyo  -  Kwagakn-Zas- 

shi   (J.    Chem.     Ind. 

Japan) 
Kolloidchem.  Beihefte  . 

Kolloid-Zeits 

Landw.  Vers. -Stat. 

Malay  Agric.  J. 

Mcdedeel.  Centr.  Rub- 
berstat. 

Med.  Genees.  Lab.  Wel- 
tevreden 

Mem.  Cotnpt.  rend.  Soc. 
Ing.  Civils  de  France 

Mem.  Coll.  Sci.  and 
Eng.  Kyoto 

Mem.       Dept.       Agric. 

India 
Mem.  Poudres 
Metall  u.    Erz 

Milchw.        Zentr. 

Min.  and  Met. 
Mitt.    Inst.    Kohlenver- 
gasung 


Indian  Institute  of  Science,  Bangalore.     Price  varies. 

C.  L.  Parsons,  1709,  G.  Street,   N.W.,  Washington,  D.C., 

U.S.A.     75  cents. 
Harrison  and  Sons,  44,  St.  Martin's  Lane,  London,  W.C.  2.    4s. 

Savoy  Place,  Victoria  Embankment,  London,  W.C.  2.   10s.  6d. 

Storey's  Gate,  Westminster,  S.W. 

The  Institution,     6,    John     Street,     Adelphi,       Strand, 

W.C.  2.     7s.  6d. 
P.  Parey,  Hedemannstrasse  10  u.  11,  Berlin,  S.W.  11. 
Ministry  of  Agriculture  and  Fisheries,  10,  Whitehall  Place, 

London,  S.W.  1.     6d. 
J.  B.  Lippincott  Co.,  Philadelphia. 

W.  D.  Bancroft,  Ithaca,  N.Y.,  U.S.A.     §8  per  annum. 
0.  Doin  et  fils,  Place  de  1'Odeon,  8,  Paris.     1.75  fr. 

J.    A.     Barth,     Dorrienstr.     16,     Leipzig,     Germany.     14s. 

per  vol. 
5,  Elizabeth  Street,  Sydney,  N.S.W.     21s.  per  vol. 

G.  Bell  and  Sons,  York  House,  Portugal  Street,  London, 

W.C.  2.     Is. 
Pearl  Assurance  Buildings,  Market  Street.Bradf ord.Yorks.  5s. 

Dr.  W.  E.  S.  Turner,  The  University,  Sheffield.     10s.  Sd. 

W.  R.  Atkin,  M.Sc,  The  University,  Leeds.     2s.  Cd. 

Box  5254,  Johannesburg.     2s.  6d. 

J.  D.  Athey,  16,  St.  Mary's  Parsonage,  Manchester.    3s. 

R.  L.  Faris,  Coast  and  Geodetic  Survey,  Washington,  D.C., 
U.S.A.  25  cents ;  50  cents  for  July,  Aug.  and  Sept. 
numbers. 

Dreyestrasse,  4,  Berlin,  N.W.  21. 

Kogyo-Kwagaku-Kwai,  Iidamachi,  Kojimachi-ku,  Ttkyo. 
5  yen.  (10s.  3d.)  per  unnum. 

T.    Steinkopff,    Residenzstrasse     12B.,    Dresden-Blasewitz, 

Germany. 
T.    Steinkopff,    Residenzstrasse    12B.,    Dresden-Blasewitz, 

Germany. 
P.  Parey,  Hedemannstr.  10  &  11,  Berlin,  S.W.  11. 

Dept.  of  Agriculture,  Kuala  Lumpur,  Federated  Malay 
States.     50  cents. 

Javasche  Boekhandel  &  Drukkerij,  Weltevreden,  Java. 

19,  Rue  Blanche,  Paris.     60  fr.  per  annum. 


Maruzen  Co.,  Ltd.,  Tokyo,  Japan.     Price  varies. 


W.  Thaoker  and  Co.,  2,  Creed  Lane,  London.     Price  varies. 

Gauthier-Villars  et  Cie.,55,Quaides  Grands-Augustins,  Paris. 
W.   Knapp,   Miihlweg  19,  Halle  on  Salle,  Germany.     5s.  3d. 

per  quarter. 
M.  and  H.  Schaper,  Hanover. 

29,  West  39th  Street,  New  York,  U.S.A.      SI. 
Karl  Schweighofergasse,  10,  Vienna  VII.     4.50  kr. 


JOURNALS  ABSTRACTED— ABBREVIATIONS— ADDRESSES  OF  PUBLISHERS— PRICES.      245 


JOUBNAL. 


Abbreviation. 


Addbess  of  Publisher  and  Pbiob. 


Mittkeilungen        aus        dem 

Materialpriifungsamt        zu 

Berlin-Dahlem 
Monatshefte  fiir  Chemio  und 

verwandte   Teile    anderer 

Wissensohaften 
Moniteur  Scientifiquo 

Monthly  Bulletin  of  the 
Canadian  Mining  Institute 

New  Zealand  Journal  of 
Science  and  Technology 

Oeaterreicbisohe  Chemiker- 
Zeitung 

Oil,  Paint,  and  Drug  Re- 
porter 

Paint  Manufacturers'  Associa- 
tion of  the  United  States, 
Circulars 

Paper 

Papier-Fabrikant 

Perfumery  and  Essential  Oil 
Record 

Petroloum 

Petroleum  Age 

Pharmaceutical   Journal 
Pharmaceutisch  Woekblad  . . 

Pharmazeulische  Zeitung    . . 

Pharmazeutische  Zentralhallo 

Philippine  Journal  of  Science 

Philosophical  Magazine  and 
Journal  of  Science 

Photographic    Journal 

Proceedings  of  the  American 
Society  of  Civil  Engineers 

Proceedings  of  American 
Society  for  Testing  Ma- 
terials 

Proceedings  of  American 
Wood  Preservers'  Associa- 
tion 

Proceedings  of  the  Austra- 
lasian Institute  of  Mining 
and  Metallurgy 

Proceedings  of  British  Foun- 
drymen's  Association 

Proceedings  of  the  Engineers 
Society  of  Western  Penn- 
sylvania 

Proceedings  of  the  Faraday 
Society 

Proceedings  of  the  Institution 
of  Civil  Engineers 

Proceedings  of  Koninklrjko 
Akademie  van  Weten- 
schappen  te  Amsterdam 

Proceedings  of  the  Royal 
Society 

Proceedings  of  the  South 
Wales  Institute  of  Engineers 

Proceedings  and  Transactions 
of  Nova  Scotian  Institute 
of  Science 

Pulp  and  Paper  Magazine.. 

Recueil   des  Travaux   Chini- 

iques  des  Pays-Bas 
Revue  Generate  des  Mati£res 

Colorantes 
Revue   de   Metallurgie 
Roczniki  Chemji 


Mitt.  Materialpriif. 
Monatsh.  Chem. 

Monit.  Scient. 

Bull.  Canad.  Min.  Inst. 
N.Z.J.  Sci.  and  Tecbnol 
Oesterr.  Chem.-Zeit.   .. 

Oil,    Paint,    and    Drug 

Rep. 
Paint    Manuf.     Assoc, 

U.S.A.,  Circ. 

Paper 

Papierfabr. 

Pcrf.  Ess.  Oil  Rec.     . . 

Petroleum 
Petroleum  Age 


Pharm.  J. 
Pharm.    Wceklad 

Pharm.  -Zeit. 
Pharm.   Zontralh. 
Philppine  J.   Sci. 
Phil.  Mag 

Phot.    J 

Proc.  Anier.  Soc.  Civ. 
Eng. 

Proe.  Amer.  Soc.  Test- 
ing Materials 

Proc.  Amcr.  Wood  Pre- 
servers Assoc. 

Proo.  Austral.  Inst. 
Min.  Mot. 

Proc.     Brit.     Foundry  - 

men's  Assoc. 
Proe.  Eng.  Soc.  W.  Pa. 


Proc.  Faraday  Soc.     . . 

Proo.  Inst.  Civ.  Eng. . . 

Proc.  K.  Akad.  Weten- 
soh.   Amsterdam. 

Roy.   Soc.    Proc. 

Proc.  S.  Wales  Inst.  Eng. 

Proc.  and  Trans.  Nova 
Scotian  Inst.  Sci. 

Pulp  and  Paper  Mag. . . 

Rec.  Trav.  Chim. 

Rev.   Gen.  Mat.   Col. 

Rev.   Met 

Rocz.  Chem. 


Julius  Springer,  Linkstrasse  23-24,  Berlin,  W.  9,  Germany. 
24s.  per  annum. 

Holder-Pichler-Tempsky  A.-G.,  Wion,  Austria. 


Dr.  G.  Quesneville,  12,  rue  de  Buci,  Faubourg  St.  Germain, 

Paris.     2  fr.  50. 
3-504,  Drummond  Building,  Montreal. 

The  Director,  Dominion  Museum,  Wellington,  N.Z.     2s. 

Pestalozzigasse  6,  Vienna  1 

100,  William  Street,  New  York  City,  U.S.A.     15  cents. 

Dr.  H.  A.  Gardner,  Institute  of  Industrial  Research,  19th 
and  B.  Streets,  N.W.,  Washington,  U.S.A. 

36,  West  44th  Street,  New  York.     $5  per  annum. 
Otto  Eisner,  Oranienstr.  140-142,  Berlin,  S.  42. 
6,  Serle  Street,  London,  W.C.     Is.  6d. 

Verlag  fiir  Fachtliteratur,  Courbiestrasse,  3,  Berlin,  W.  G2. 

£3  per  volume. 
Graffis-Sutton  Publishing  Co.,  28,  East  Jackson  Boulevard, 

Chicago,  U.S.A.     25  cents. 
Newspaper  Buildings,  Portugal  Street,  London,  W.C.2.     Is. 
D.  B.  Centen,  O.Z.  Voorburgwal  115,  Amsterdam.    15.50  fr.  per 

annum. 
Linkstrasse  23-24,  Berlin,  W.  9. 

T.    Steinkopff,    Residenzstrasso,     12B,     Bresden-Blasewit*. 
Bureau  of  Science,  Manila,  Philippine  Islands.     50  cents. 
Taylor  and  Francis,  Red  Lion  Court,  Fleet  Street,  London, 

E.C.     5s. 
;' Harrison  &  Sons,  44-47,  St.  Martin's  Lane,  W.C.  2.    2s.  6d. 
[33,  West  39th  Street,  New  York  City,  U.S.A.    $8  per  annum. 

McGraw  Hill  Book  Co.,  239  W.  39th  Streot,  New  York.     $6 
per  annum. 

F.  J.  Angier,  Mt.   Royal  Station,   Baltimore,  Md.,   U.S.A. 
$2.50  per  annum. 

48,  Queen  Street,  Melbourne,  Victoria,  Australia. 


165,  Strand,  W.C. 

William  Penn  Hotel,  Pittsburgh,  Pa.,  U.S.A.     50  cents. 

The  Secretary,  10,  Essex  St.,  Strand,  W.C.2. 
The  Secretary,  Great  George  Street,  London,  S.W. 
Koninklijke  Akademie  van  Wetonschappen,  Amsterdam. 


Harrison  and  Sons,  45,  St.  Martin's  Lane,  London,  W.C.  2. 

Price  varies. 
Park  Place,  Cardiff.     10s. 

Halifax,  Nova  Scotia.     50  oents. 


Industrial  and  Educational  Publishing  Co.,  Ltd.,  Garden  City 

Press,  St.  Anne  de  Bellevue,  Canada.     15  cents. 
A.  W.  Sijthoff,  Leiden,  Holland.     16  fl.  per  volume. 

Rue  de  Rennes,  123,  Paris,  Vie,  France.     5  fr. 

5,  Cite  Pigalle,  Paris,  IXe.     12  fr. 

Dr.  J.  Zawidzki,  Politechnika,  Roszykowa,  75,  Warsaw. 


246 


JOURNAL  OF  THE   SOCIETY   OF  CHEMICAL  INDUSTRY. 


Journal. 


Schweizerische  Chemiker 

Zeitung 
Science    Reports   of   Tohoku 

Imperial  University 
Scientific  American 
Scientific  Proceedings  of  the 

Royal    Dublin    Society 
Sitzungsberichte   der   Konig- 

lichon    Preussisehen    Aka- 

demie   der   Wissenschaften 
Soil  Science 


South     African     Journal     of 

Industries 
Sprechsaal 
Stahl  und  Eisen 
Technology    Reports    of    the 

Tohoku  Imperial  University 
Toxtilberichto    iiber   Wissen- 

sohaft,  Industrie,  und  Han- 
del 
Transactions  of  the  American 

Electrochemical  Society 
Transactions  of  tho  American 

Foundrymen's    Association 
Transactions  of  the  American 

Institute  of  Chemical  En- 
gineers 
Transactions  of  the  Ceramic 

Society 
Transactions  of  the  Institute 

of  Metals 
Transactions  of  the  Iron  and 

Steel  Institute 
Transactions    of    the    North 

of    England     Institute     of 

Mining      and     Mechanical 

Engineers 
Transactions    of    the    Royal 

Society  of  Canada 
United     States     Bureau     of 

Mines,  Bulletins  and  Tech- 
nical Papers 
United     States     Bureau     of 

Standards,     Bulletins    and 

Technological   Papers 
United  States  Commerce  Re- 
ports 
United  States  Department  of 

Agriculture  Bulletins 
West  Indian  Bulletin 
Wissenschaftliche     Veroffent- 

lichungen  aus  dem  Seimens 

Konzern 
Wochenschrift    fiir    Brauerei 
Zeitschrift     fiir     analytische 

Chemie 
Zeitschrift 

Chemie 
Zeitschrift    fur   anorganische 

und  allgemeine  Chemio     . . 
Zeitschrift    dos    Vereins    der 

deutschen      Zucker-lndus- 

trie 
Zeitschrift  fiir    das    gesamte 

Brauwesen 
Zeitschrift    fiir    das   gesamte 

Schioss-    und    Sprongstoff- 

wesen 
Zeitschrift  dor  Deutschen  Oel- 

und  Fett-Industrie 
Zeitschrift  fiir  Elektrochemio 

und  angewandte  pkysikal- 

ische  Chemie 


Abbreviation. 


fiir    angewandte 


Schweiz.  Chem.  Zeit 

Sci.     Reports,    Tohoku 

Imp.  Univ. 
Scient.  Amer. 
Scient.       Proc.       Roy. 

Dublin  Soc. 
Sitzungsber.      Kgl. 

Preuss.  Akad.   Wiss. 

Soil    Sci 


S.    African   J.    Ind.    . . 

Sprechsaal 
Stahl  u.   Eisen 
Technol.    Rep.    Tohoku 

Imp.  Univ. 
Textilber 


Trans.  Amer.    Elect     - 

chem.  Soc. 
Trans.  Amer.  Foundry  - 

men's  Assoc. 
Tr.  Amer.  Inst.  Chem. 

Eng. 

Trans.  Ceram.  Soc. 
Trans.  Inst.  Metals 

Trans.    Iron   and   Steel 

Inst. 
Tr.  N.  Eng.  Inst.  Min. 

and  Mech.  Eng. 

Trans.        Roy.        Soc. 

Canada 
U.S.   Bureau  of  Mines, 

Bull.  &  Tech.  Papers 

U.S.  Bureau  of  Stan- 
dards, Bull.  and 
Technol.  Papers 

U.S.  Comm.  Ropt. 

Bull.  U.S.  Dopt.  Agric. 

West    Ind.    Bull. 
Wiss.     Veroffentl.     Sic 
mens  Konzern 

Woch.  Brau.     „ 
Z.  anal.  Chem.  — 

Z.    angew.    Chem. 

Z.  anorg.   Chem. 

Z.  Ver.  dout.  Zuckerind. 

Z.    ges.    Brauw. 

Z.     ges.     Schiess-     u. 
Sprengstoffw. 

Z.  Deuts.  Oel-  u.  Fett- 

Ind. 
Z.  Elektrockem. 


Address  of  Publisher  and  Price. 


Raseher    &   Co.,   Rathausquai    20,    Ziirioh    1,  Switzerland. 

1.50  fr. 
The  Maruzen  Co.,  Ltd.,  Tokyo,  Japan.     Price  varios. 

233,  Broadway,  New  York  City,  U.S.A.     10  cents. 
Leinster  Houso,  Dublin.     Price  varies. 

Verlag  der  Koniglichen  Akadomie  der  Wissenschaften,  Borlin. 


Williams  &  Wilkins  Co.,  2419-2421,  Greenmount  Avenue, 
Baltimore,  U.S.A. ;  Cambridge  University  Press,  Fetter 
Lane,  London,  E.C.     $5.50  per  volume. 

Government  Printer,  Box  373,  Pretoria.     6d. 

Verlag    von    Miiller    und    Schmidt,    Coburg,    Germany. 
Verlag  Stahleisen,  Dusseldorf  74,  Cormany. 
Maruzen  Co.,  Ltd.,  Tokyo,  Japan. 

Melliands  Textilber.,  Mannheim,  D6,  3. 


Columbia  University,  New  York  City,  U.S.A.     S3  per  vol. 

R.  Moldenke,  Watchung,  N.J.,  U.S.A. 

D.  Van  Nostrand  Co.,  New  York,  and  F.  and  N.  Spon,  Ltd., 
London. 

Stoke-on-Trent,  Staffordshire.     45s.  per  volume. 

Institute  of  Metals,  36,  Victoria  Street,  Westminster,  London, 

S.W.  1. 
28,  Victoria  Street,  London,  S.W. 

Newcastle- on  -Tyne. 


J.  Hope  &  Son,  Ottawa  ;  B.  Quaritch,  London.  Price  5 )  cents. 
Bureau  of  Mines,  Washington,  D.C.,  U.S.A.     Price  varies. 


Superintendent   of    Documents,   Waanington,   D.C.,    U.S.A. 
Price  varies. 

Superintendent   of   Documents,    Washington,   D.C.,  U.S.A. 

$5  per  annum. 
Department  of  Agriculture,  Washington,  D.C.,  Q.S.A.     Price, 

varies. 
Imperial  Dept.  of  Agriculture,  Barbados,  W.l.     6d. 
J.  Springer,  Linkstrasso,  23-34,  Berlin,  W.  9. 


P.  Parey,  Hedemannstrasse   10,   Borlin,  S.W.  11,  Germany. 
J.  F.  Bergmann,  Trogerstrasse,  56,  Miinchen,  Germany. 

Verlag  Chemie  Ges.,  Niirnberger  Strasse,  48,  Leipzig,  Germany. 

Verlag  von  L.  Voss,  Leipzig,  Germany.     2  Is.  per  volume. 

Vereins-Direktorium,  Kleiststrasse  32,  Berlin,  W.  62,  Germany. 
M.  100  (gold)  per  annum. 

Verlag  F.  Carl,  Niirnberg,  Germany. 

J.   F.   Lehmann,   Paul  Heysostrasse  26,   Miinchen,   S.W.  2, 
Germany.     £1  ICs.  per  annum. 

J.   Springer,   Linkstrasse,   23-34,   Berlin,    W.   9. 

Verlag  Chemie  Ges.,  Leipzig,  Germany. 


JOURNALS  ABSTRACTED— ABBREVIATIONS— ADDRESSES  OF  PUBLISHERS— PRICES.      247 


Journal. 


Abbreviation. 


Address  of  Publisher  and  Price. 


Zeitschrift  fiir  Instrumenten- 

kunde. 
Zeitschrift  fiir  Metallkunde  . . 

Zeitschrift      firr      offentliche 

Chemie 
Zeitschrift  fiir  Pflanzenernahr- 

ung  und  Diingung 
Zeitschrift  fiir  Physik. 
Zeitschrift  fiir   physikalische 

Chemie 
Zeitschrift  fiir  physiologische 

Chemie 
Zeitschrift  fiir  Spiritusindus- 

trie 
Zeitschrift  fiir  Untersuchung 

der  Nahrungs-  und  Genuss- 

mittel 
Zeitschrift   fiir   wissensohaft- 

liche  Photographie,  Photo- 

physik,  und  Photochemie 
Zeitschrift    fiir    Zuckerindus- 

trie  der  Czechoslovakischen 

R«publik 
Zellstoff  und  Papier  . . 


Z.  Instrumentenk. 

Z.  Metallk. 

Z.  offentl.  Chem. 

Z.  Pflanzen.  Diing. 

Z.  Physik. 

Z.  physik.    Chem. 

Z.  physiol.  Chem. 

Z.  Spiritusind. 


Z.        Unters.        Nahr. 
Genussm. 

Z.    wiss.  Phot. 


Z.    Zuckerind.    Czecho- 
Slov. 

Zellstoff  u.  Papier 


J.   Springer,   Linkstrasse   23-24,   Berlin,   W.   9. 

Verlag  des  Vereines  Deuts.  Ingenieure,  Sommerstrasse,  4a, 
Berlin,  N.W.  7,  Germany. 

A.  Kell's  Buchhandlung,  Marktstrasse  15,  Plauen  i.  V..  Ger- 
many. 

Verlag  Chemie,  Leipzig,  German}'.     2s. 

F.  Vieweg  und  Sohn,  Braunschweig,  Germany.     Price  varies. 
Akademische    Verlagsges.,    Leipzig,    Germany. 

W.  de  Gruyter  &  Co.,  Berlin,  TV.  10,  Germany. 

P.   Parey,  Hedemannstrasse    10,    Berlin,  S.W.  11,  Germany. 

Julius  Springer,  Linkstrasse  23-24,  Berlin,  W.  9,  Germany. 

J.  A.  Barth,  Dorrienstr.,  16,  Loipzig. 


Die    Administration,  Havlickovo  Nam,    Nr.    32,    Prag    II., 
Czechoslovakia.     Kc.  5. 

Verlag  C.  Hofmann,  Berlin,  W.  11.     10s.  per  annum. 


248 


JOURNAL   OF   THE   SOCIETY   OF   CHEMICAL   INDUSTRY. 


List  of  Errata. 


No.  of  Journal. 


Tagc. 


Column. 


Lme  from 
top. 


Line  from 
bottom. 


1921— 
No.  20— Oct.  31 


1922— 
No.     1— Jan  16 


No.    2— Jan.  31 


No 
No! 


No 


No 
No 


3— Feb.  15 
4— Feb.  28 


5— Mar.  15 

6— Ma".  31 
7 — Apr.  15 


No.     8— Apr.  29 

No.    9 — May  15 

No!' 10— May  31 

No.  11 — June  15 
No.  13 — July  15 


No.  14— July  31 
No.  16— Aug.  31 
No.  18— Sept.  30 


No.  19— Oct.  16 


No.  20— o.  t  31 

No.  21— Nov.  15 


No.  22— Nov.  30 
No'.' 23— Dec.  15 

No!' 24— Dec.  30 


li 
14A 
25R 
32R 
36R 
1ST 

49A 

61A 

93a 

107A 

67R 

57T 

133A 

134A 

149a 

153A 

163a 

175A 

216a 

239a 

244a 

248a 

123T 


123T 

294a 
332a 
351a 
166T 
375A 
391a 
238R 

242R 

421A 
494a 
497a 


497a 

497A 

505a 
521a 
553a 
647a 
322T 

717A 
741a 
753a 
755a 
764A 
765a 
766A 
767a 
774a 
775a 
841a 
845A 
845a 
864a 
866a 
887a 
902a 
519R 
948a 
949a 
'<:7^ 
996a 
998a 


36 

15 
18 

6 

13 

top  line 
18 

17 


2 

3 

21 

28 


27-2S 


7 
35 


28 
4-5 


4 

10-11 
35-36 


32 
19 


20 
15 
24 

27 
24 
15 


26 

S 


18  and  19 


27 
26 


bottom  line 


For  "Indian  Dept.  of  Industries,  Bull.  No.  5  : 
Dcpt.  of  Industries,  Bull.  No.  4." 


read  "  Bombay 


9 


17 
29 


For 
For 
For 
For 
For 
For 
For 


28 

For 

13 

For 

— 

For 

— 

For 

— 

For 



For 

30 

For 

22 

For 

— 

For 

— • 

For 

— 

For 

— 

For 

9 

For 

— 

For 

— 

For 

12 

For 

13 

For 

— 

For 

15 

For 

— 

For 

34 

For 

— 

For 

11 

For 

36 

For 

28 

For 

— 

For 

21 

For 

For 

}'.<r 
l\,r 
Fur 
F»r 
For 

F«r 


177,652  "  read  "  171,652." 

S.  A.  Blume"  read  "  G.  A.  Blume." 

chemical  process  "  read  "  processes  as  outlined  above." 

5155  tons"  read  "by  5155  tons  to  86,096  tons." 

would  be  very  corrosive  "  read  "  was  not  corrosive." 

82-80 "read  "89-80." 

42-03"  read  "4903." 
For  " Anline"  read  "Aniline." 
For  "cuprou  "  read  "cuprous." 
For  "  G.P.  "  read  "  U.S.P." 
For  "  R.  M.  McKee  "  read  "  R.  H.  McKcc." 
For  "surmised"  read  "summarised." 
For  "  0-99  "  read  "  007." 
For  "  75  mm.  "     read  "  750  mm." 
For  "  403°  C.  "  read  "  40-8°  C." 

Luck"  read  "  Luck." 

291  "  read  "  201." 

"Wormersly  "  read  "  Womersley." 

155,811"  read  "  155,814." 

346,112"  read  "  346,122." 

"White"  read  "  Witte." 

1,373,743  "  read  "1,373,773." 
The  line  should  read  :   "  [Cellulose  ethers  ;]  Manufacture  of   films, 

celluloid-" 
The  lines  should  read :    "  will  be  less  ;    on  the  other  hand,  the 
mean  temperature  of  the  hot  zone  will  be  greater,  and  hence  " 

The  minus  sign  before  Ioger-  should  be  omitted. 

For  "  1,409,319  "  read  "  1,409,139." 
For  "  with  "  read  "  without." 
For  "1909"  read  "1910." 

For  "microscopically"  read  "  niacroscopieally." 
For  "1,411,812"  read  "1,411,842." 
For  "  G.P."  read  "  E.P." 

The  lines  should  read  :    "  supply  of  '  turpentine  *  camphor  ceased 

during  the  war  the  price  of  natural  camphor  increased  sixfold." 

For  "in  artificial  than  in  natural  daylight"  read  "in  artificial 

daylight  than  in  ordinary  artificial  light." 
For  "  Metal  1  u.  Erz  "  read  "  Z.  Metallk." 
For  "  D.  Day"  read  "  D.  T.  Day." 

For  "  2-Hydroxybenzanthrone  or  the  corresponding  3-hydroxy 
derivative  "  read  "  2-Hydroxyanthraqninone  or  3-hydroxy- 
anthranol." 
After   "  hydroxybenzanthronecar  boxy  lie    acid"    insert    "(yield 

about  26%  of  the  weight  of  hydroxy  a  nthraquinone)." 
The  sentence  "  Small  amounts    .    .    .   simultaneously  produced  " 
should  came  after  the  word  "  heating  "  on  line  31  from  bottom. 
"  aid  "  read  "  and." 
"  \Y.  Scheibler  "  read  "  H.  Scheibler." 
"  Broeck  "  read  "  Boeck." 
"  169,658  "  read  "  169,6S8." 
"  that  of  ...  a  very "  read 
the  results  were  not." 
"  Motkenlin  "  read  "  Molkentin." 
"1,425,135"  read  "1,425,136." 
"  G.  E.  Williams"  read  "  C.  E.  Williams." 
"  O.  V.  Faber  "  read  "  O.  von  Faber." 
"  Rheinshagen  "  read  "  Rcinshagen." 
"  Cauzler  "  read  "  Canzler." 
"  S.  Mayer"  read  "  S.  M.  Meyer." 
"  Nagell  "  read  "  Naegell." 
"  158,521 "  read  "  158,512." 
"  Dow  "  read  "  Dorr." 
Insert  name  of  patentee  :   "  Photometric  Products  Corp.' 
"  B.  Greenwood"  read  "i;.  iir.jeiiwood." 
Ramsey"  read  "Ramsay." 
Battella"  read  "  Battelle." 
1,428,489"  read  "1,429,489." 
Kleithiine  "  read  "  Keithli:.    " 
Hauff  "  read  "  Hanff." 
Louis  A.  Fernbarh  "  read  "A.  Fernbach." 
fuvla  "  read  "  fulva." 
Rudolf  "  read  "  Rudolfs." 
Kopetschin  "  read  "  Kopetschni." 
Bates"  read  "Bales." 
Davies  "  read  "  Davis." 


'  purity  by  distillation  but 


*-H& 


MOW 

-<©    . 

»«*- 

e>w  • 

s°s 

•-1?) 

Isa  IS 

Sp    flI 


jus* 


11 


OOr--»r~rt'Oif 


00 --M 

Ot*-w 


ooooooaoooao©*©  ■  ■© 
ooossooedciovo  •  ■  © 
2a22SSS9S9S2£   '  -° 


-  b2  --■  ; 


oooo 

©■*«© 

« 

«© 

ooiQrt 

o  o-*o 

a 

CIO 

O  ©  O  M 

oo 

a*4Uk*4 

» 

o© 

wo     c  c 
oo  ci      ci  ^ 


o©©o© 
i-.  ©  o  ©  o 


oo 

£ 

oo- 

mo 

5 

■*© 

—  o 

n 

mo 

w  o 

aft  i 


§s 


g-0 

3|  jj 


as 
fa 


II 
si 

c  A-    I 


1  h*?"-^  B    -CO  rt 


ooti 


"1" 


Sjs 


h-5  ^ 


flags 

51333 

oooooo 

-J-OOOO 

t^oooo 
t-  o  o  oo 


sag 


sppsflg 
5  a  3  a 


°£ 


iS    - 

as§ 


31* 
to 


"II 

oo 
oo 


^riOOH       MOOCOO 

^hooi-     wor: 


oo 


as 


^00       lO« 


:Sg 


-_  .&1S  a  a  a  •  • 

=1  3        "9  « 

o   - 


oo  oot-o 
OS)  ©  ©  a  o 
£2     ©  —  w  o 


1-aigl 

Illfl 
■  sis 


-Is* 


all* 


1| 

ll:.aa 


;slfla  I  33 


3S"8 

s'°  3 

«W3BS 


SJSS 

3a 


oo 
oo 


«3 

—  a 

31 
3S 


SI 

3a 


§8 


5a 


g3 


5- 


39 


^s 


8«    a 

1la3 
=  11  s 

l  =  g° 
«^3   8"     . 

^•35  5    * 

II.  i  e 

s.«  s  s 

j      * 

=   -3 


Vol.  XLI.,  No.  I.] 


TRANSACTIONS 


[Jan.  16,  1922. 


Birmingham   Section. 


Meeting  held  at  Birmingham  University  on  Thurs- 
day, November  3,  1921. 


DK.    H.    W.    BROWN'SDON   IN   THE   CHAIK. 


/\4l>< 


CHa 


NO, 


NH, 


II. 


HO-C10H6N:N 


IV. 


5-AMINO-1.2-NAPHTHO-p-TOLYLTRIAZOLE. 

nY   GILBERT  T.    MORGAN  AND   SYDNEY   CHAZAN. 

The  following  research  was  undertaken  with  the    j 
object  of  obtaining  a  series  of  substituted  a-naph- 
thylamines    capable    of    reacting    as    middle    com- 
ponents in  the  production  of  polyazo  dyes. 

5-Nitro-/3-naphthylamine,  the  main  product  of  the 
dehydration  of  /3-naphthylarnine  nitrate  by  sul- 
phuric acid,  was  converted  into  p-toluene-l-azo-5- 
nitro-/8-naphthylamine  and  this  orthoazo-compound 
oxidised  to  the  corresponding  5-nitro-1.2-naphtho- 
p-tolyltriazole  (1). 


On  reduction  the  nitrotriazole  yielded  5-amino-1.2- 
naphtho-p-tolyltriazole  (II),  which  proved,  how- 
ever, to  be  a  somewhat  unreactive  amine  when  em- 
ployed as  a  coupling  agent  with  diazo-derivatives. 
The  triazole  ring  attached  to  the  naphthalene 
nucleus  in  positions  1  and  2  has  an  inhibiting  effect 
on  the  production  of  para-(5.8)-aminoazo  deriva- 
tives. The  azo-compound  obtained  from  p-nitro- 
benzenediazonium  chloride,  but  not  that  from  other 
less  active  diazonium  salts,  has  the  properties  of  an 
orthoazo-derivative  and  is  not  readily  diazotisable 
to  furnish  disazo  dyes.  These  properties  exclude  the 
use  of  the  5-amino-1.2-naphthoaryltriazoles  as 
middle  or  end  components  of  azo  colours.  On  the 
other  hand  these  aminotriazoles  yield  stable,  spar- 
ingly soluble  diazo-derivatives  which  couple  readily 
to  form  azo-compounds  with  the  phenols  and  the 
more  reactive  aromatic  bases. 

5-Nitrc-j8-naphthylamine  was  prepared  by  adding 
200  g.  of  /3-naphthylamine  nitrate  to  1200  g.  of  con- 
centrated sulphuric  acid,  keeping  the  temperature 
below  -5°  C.  The  acid  was  then  diluted  with 
8  volumes  of  water,  the  solution  heated  to  boiling 
and  filtered  from  a  brownish-red  insoluble  product 
(15%);  the  sulphates  of  5-  and  8-nitro-/3-naphthyl- 
amines  crystallised  from  the  cooled  mother  liquor 
(75%).  The  less  soluble  sulphate  of  the  5-nitro-baso 
was  obtained  by  fractional  crystallisation  and  the 
base  finally  purified  (m.p.  140° — 142°  C. ;  acetyl  de- 
rivative m.p.  186°)  by  repeated  crystallisation  from 
alcohol  (Friedlander  and  Szymanski,  Ber.,  1892,  25, 
2076). 

'p-Toluene-l-azo-5-nitro-p-naphthylnmine        (III). 


CHa 


The  diazo-solution  from  11'4  g.  of  p-toluidine  was 
added  slowly  to  20  g.  of  5-nitro-/3-naphthylamine 
dissolved  in  alcohol.  The  azo-compound  separated 
from  dilute  alcohol  as  a  red  precipitate  and,  after 
repeated  crystallisation  from  hot  glacial  acetic  acid, 
was  obtained  in  red  nodular  crystals  sintering  at 
190°  and  melting  at  197°— 199°  C.  :  found  N  =  18-8%. 
C17H1402N,  requires  N  =  18"3%. 


5-Nitro-l.2-naphtho-p-tolyltriazole  (I)  was  ob- 
tained in  yellow  flaky  crystals  on  adding  slowly  15  g. 
of  chromium  trioxide  dissolved  in  20  c.c.  of  water 
to  15  g.  of  the  preceding  azo-compound  dissolved  in 
500  g.  of  hot  glacial  acetic  acid.  Considerable  heat 
w;as  generated  during  the  oxidation  and  the  separa- 
tion of  the  triazole  was  completed  by  diluting  the 
solution  with  water.  The  recrystallised  product 
melted  at  207°— 208°  C. ;  the  yield  was  80%  :  found 
N  =  186%.     C^H.AN.  requires  18"4%. 

5-Ami>iv-1.2-naphtho-p-tohiltriazole  (II)  was  ob- 
tained in  the  form  of  hydrochloride  by  reducing  the 
nitrotriazole  (5  g.)  in  300  g.  of  glacial  acetic  acid 
with  10  g.  of  stannous  chloride  in  50  c.c.  of  strong 
hydrochloric  acid  and  100  c.c.  of  water.  The  hydro- 
chloride, which  separated  completely  on  cooling, 
softened  at  240°  and  melted  at  263°— 267°  C.  with 
decomposition:  found  N  =  18-39%.  C^H^N^HCl 
requires  1836%.  The  free  base  liberated  with  alco- 
holic ammonia  and  precipitated  from  the  alcohol  by 
water  melted  at  178°— 180°  C. ;  it  showed  a  marked 
tendency  to  undergo  aerial  oxidation.  It  was 
sparingly  soluble  in  alcohol  and  the  solution  had  a 
green  fluorescence:  found  N  =  2016%.  C„HWN4 
requires  N  =  2004%.  The  acetyl  derivative  of  this 
aminotriazole  crystallised  from  glacial  acetic  acid  in 
light  brown  needles  melting  at  305°— 307°  C. 

1.2-Naphtho-p-tolyltriazole-azo-fl-naphthol  (TV). 
The  hydrochloride  of  the  aminotriazole  ground  into 
a  thin  cream  with  water  and  cooled  to  0°  C.  gave  a 
yellow  insoluble  diazo-compound  on  the  addition  of 
sodium  nitrite.  This  diazo-derivative  was  added  to 
alkaline  /J-naphthol  when  the  red  azo-compound  was 
precipitated  (m.p.  indefinite— 250°— 260°  C). 

p-Nitrobenzene-6-azo-5-amino-1.2-naphtho-p-tolyl- 
triazole, 


NO. 


/- 


X-N:N-l 


y 


vv 

NBL 


The  diazo-solution  from  p-nitroaniline  when  added 
to  an  alcoholic  solution  of  the  aminotriazole  hydro- 
chloride (1  mol.)  yielded  a  sparingly  soluble 
brownish-red  azo-compound  melting  at  195° — 197°  C. 
with  decomposition.  When  oxidised  with  chromium 
trioxide  in  hot  glacial  acetic  acid  the  azo-compound 
gave  a  brown  bistriazole  derivative,  very  sparingly 
soluble  in  the  ordinary  organic  media  ;  this  product 
softened  at  210°  and  melted  with  decomposition  at 
220°— 240°  C. 

The  authors  desire  to  express  their  thanks  to  the 
British  Dyestuffs  Corporation,  Ltd.  (Manchester), 
for  facilities  afforded  in  carrying  out  this  research. 

Chemical  Department, 

University  of  Birmingham, 
Edgbaston. 


METHYL-/J-NAPHTHYLAMINE-6- 
SULPHONIC  ACID. 

BY  GILBERT  T.   MORGAN  AND  HORACE   SAMUEL  ROOKE. 

The  sulphonic  acids  of  the  alkylated  naphthyl- 
amines  present  certain  features  of  interest  in  con- 
nexion with  the  production  of  azo-dyes  and  the 
present  communication  deals  with  methyl-/?- 
naphthylamine-6-sulphonic  acid  (Methyl-Bronner 
acid),  an  intermediate  referred  to  in  patent  litera- 
ture as  arising  from  an  application  of  the  Bucherer 
reaction  to  Schiiffer  salt  (G.P.  121,683;  E.P.  18,725 
of  1900). 

The  starting  materials  in  this  research  were 
commercial  specimens  of  Schaffer  salt  and  methyl- 
amine  hydrochloride  supplied  by  the  British  Dye- 
stuffs  Corporation.  The  former  salt  was  recrystal- 
lised from  water  before  employment  in  the  following 


2  t  MORGAN  AND  ROOKE.— METH¥L-^-NAPHTHYLAMINE-6-SULPHONIC  ACID.      [Jan.  16, 1922. 


process.  A  rotating  autoclave  (Trans.  Chem.  Soc., 
1920,  117,  780)  was  charged  with  150  g.  of  Schaffer 
salt,  75  g.  of  methylamine  hydrochloride,  250  c.c. 
of  5N  caustic  soda,  and  70  c.c.  of  water.  This 
mixture  was  heated  for  6— 7  hours  at  180°— 200°  C, 
the  maximum  pressure  attained  being  about  250  lb. 
per  sq.  inch.  The  autoclave  then  contained  a  thick 
pasty  mass  of  yellowish-white  foliated  crystals 
having  a  silvery  lustre.  This  product,  which  became 
green  on  exposure  to  air,  was  purified  by  dissolving 
in  1200  c.c.  of  boiling  water,  a  small  amount  of 
green,  sparingly  soluble  impurity  being  removed. 
This  by-product  (a.bout  2%)  is  probably  a  diroaphth- 
acridine  derivative  formed  by  condensation  of  two 
molecules  of  the  main  product.  The  yield  of 
recrystallised  sodium  methyl-/?-naphthylamine-6- 
sulphonate  was  72 — 74%,  obtained  as  the  average 
result  of  repeated  preparations.  The  free  sulphonic 
acid,  precipitated  by  mineral  acid  from  aqueous 
solutions  of  its  sodium  salt,  was  more  soluble  than 
Bronner  acid.  When  pure  the  product  was  colour- 
less, although  it  was  often  tinted  with  yellow  owing 
to  traces  of  impurities.  On  heating  it  changes 
perceptibly  at  280°  and  melts  sharply  at  292°  0. 

Methyl-fS-naphthylam ine-6-sul phonic  acid,  (For- 
mula I),  CH3.NH.C10Hc.SO3H,H2O,  was  sparingly 
soluble,  one  part  dissolving  in  about  220  parts  of 
boiling  water.  Found  N  =  5'76,  S  =  12'36,  H20  = 
6-67%.  CnHu03NS,rL0  requires  N  =  5-49,  S  =  1255, 
H2O  =  7-06%. 

Sodium  methyl-  fl  -n-aphthylamine-6-sulphonate, 
CH3.NH.C,,,H0.Sd3Na,3H,O,  when  crystallised  re- 
peatedly from  water  separated  in  colourless  plates; 
it  dissolved  in  about  37  parts  of  cold  water  but  was 
much  more  soluble  on  boiling.  Found  Na  =  7'60, 
H„0  =  17-29%.  C,,H10OsNSNa,3H„O  requires  Na  = 
7-35,  H20  =  17-25%.  After  drying  at  110°  Na  = 
8-66%.     O11H10O3NSNa  requires  Na  =  8'88%. 

The  potassium  salt,  CH3.NH.C,0H0.SO.,E,3H2O, 
crystallised  from  water  in  needles,  its  solubility 
being  similar  to  that  of  the  sodium  compound. 
Found  H„0  =  16-45,  K=14'47%.  C,,H,0O3NSK,3H2O 
requires  H„0  =  16-41,  K  =  14'18%  for  the  dried  salt. 
The  free  acid  and  its  soluble  salts  exhibited  a  blue 
fluorescence  in  dilute  aqueous  solutions 

The  following  derivatives  were  produced  from 
sodium  methyl-/3-naphthylamine-6-sulphonate  by 
double  decomposition  with  metallic  salts. 

The  calcium  salt,  (CH3.NH.CI0H0.SO3)2Ca,6H3O, 
separated  in  pale  yellow,  prismatic  needles  soluble 
in  55  parts  of  cold  water  :  found  H,O  =  17-05;  calcu- 
lated H„0  =  17-42%.  The  anhydrous  salt  gave 
Ca  736;  calculated  Ca  =  7-83%. 

The  barium  salt,  BaA2,10H.O,  pale  yellow 
prismatic  needles,  was  soluble  in  190  parts  of  cold 
water:  found  H2O  =  2300;  calculated  H20  2280%. 
Anhydrous  salt  gave  Ba  =  2224;  calculated  Ba= 
22-55%. 

The  zinc  salt,  ZnA2,6H20,  crystallising  in  pale 
vellow  prisms  and  was  soluble  in  285  parts  of  cold 
'water:  found  H,0  =  1635;  calculated  16-73%. 
Anhydrous  salt  gave  Zn  =  ir76,  calculated  Zn  = 
12-15%. 

The  magnesium  salt,  MgA2,6H20,  crystallising  in 
pale  yellow  plates  and  leaflets,  was  soluble  in  280 
parts'of  cold  water:  found  H20  =  17'41,  calculated 
17-87%.  Anhydrous  salt  gave  Mg  =  4-82,  calculated 
Mg=4-80%. 

The  copper,  silver,  and  lead  salts,  yellowish-white, 
sparingly  soluble  substances,  are  arranged  in 
diminishing  order  of  solubility.  On  warming  an 
aqueous  suspension  of  the  silver  salt  it  decomposed 
with  separation  of  metallic  silver. 

The  calcium  and  barium  salts  of  methyl-/J-naph- 
ihylamine-6-sulphonic  acid  were  much  more  soluble 
in  water  than  the  corresponding  salts  of  Bronner 


acid.      The    sodium    salts    of    the 
approximately  the  same  solubility. 


two    acids    had 

N:N</_ 


\/\i> 


HSO,^ 


Nnh-ch. 


,NHCH3 

i.  ii. 

The  following  azo  dyes  were  prepared  by  coupling 
various  diazo-derivatives  with  methyl-/3-naphthyl- 
amine-6-sulphonic  acid:  — 


Diazo-derivative 
from 

Aniline 

p-Nitroaniline 
Picraraic  acid 


Colour  of  azo 

dye  on  textile 

fibre. 

Brownish-orange  (woo!) 
Dark  red  (wool) 
Dark  red  (wool) 
Dark  grey  (chromed) 
Dark  reddish-blue  (cop- 
per lake) 

Blui8h-red  (cotton) 
Pink  (cotton) 


Coloration  with 
concentrated 
sulphuric  acid. 

Crimson 
Dark  crimson 

Crimson 


Diaminostilbenedi- 

sulphonic  acid  . .     Bluish-red  (cotton)  Bluish-violet 

Tolidine     . .         . .     Pink  (cotton)  Deep  blue 

The  diaminostilbene  azo  dye  was  much  bluer  in 
shade  than  the  corresponding  colour  obtained  by- 
coupling  with  Bronner  acid. 

Benzeneazomethyl  -p-naphthi/la mine -6 -sulphonic 
acid.  (Formula  II),  produced  in  dilute  acetic  acid 
solution,  was  converted  into  its  bright  red  sodium 
salt  and  the  latter  crystallised  from  water.  The 
free  acid  was  obtained  as  a  reddish-violet  precipi- 
tate: found  N  =  1190%.  C17H1503N3S  requires 
N  =  12-31%. 

fi  -Naphthylmethylnitrosamine  -6-  sulphonic  acid 
(Formula  III). 


NO 


HSO, 


HSOs 


NO 

j^NH-CH, 

rv. 


Mothyl-|3-naphthylaniine-6-sulphonic  acid,  sus- 
pended in  water,  yielded  its  very  soluble  nitros- 
amine  when  treated*  with  nitrous  acid,  the  product 
separating  from  aqueous  solution  in  yellow  needles  : 
found  N=9-47.  S  =  12-29%.  CH^O.N.S  requires 
N  =  10-53,  S  =  12-03%.  The  nitrosamine,  which  gave 
a  well-defined  Liebermann  reaction,  was  decom- 
posed on  repeated  crystallisation. 

1-N it rosomethyl-fi-naphthykimine-6-sul phonic  acid 
(Formula  IV).  Three  grams  of  the  nitrosamine- 
sulphonic  acid  was  left  for  two  days  in  contact  with 
10  c.c.  of  absolute  alcohol  and  20  c.c.  of  alcoholic 
hydrochloric  acid  (Fischer  and  Hepp,  Ber.,  1887, 
20,  1247,  2471).  The  product  dissolved  in  water  to 
a  deep  brown  solution  and  separated  slowly  in 
orange  crystals  which  no  longer  gave  Liebermann's 
reaction:  found  N  =  9'98%.  C11H10O4N.,S  requires 
N  =  10-53%. 

a/i-Naplithalene-im.inazole-6-sidphonic  acid  (For- 
mula V). 


HSO 


N 

OCT* 

v. 


NH.-SO 


,\A/XcocH* 

VI. 

The  hydrochloric  acid  solution  of  the  nitrosomethyl- 
/?-naphthylamine-6-sulphonic  acid  was  evaporated 
to  dryness.  The  residue  crystallised  from  water  in 
pale  yellow  needles  almost  insoluble  in  cold  water  : 
found  N  =  ll-45%.  C11Hs03N3S  requires  N  =  ll;29%. 
The  iminazolesulphonic  acid  was  more  conveniently 
prepared  by  a  recent  modification  due  to  Fischer, 
Dietrich,  and  Weiss  (J.  prakt.  Chem.,  1920,  ii., 
100,  171).  One  gram  of  the  nitroso  compound  (IV) 
was  warmed  on  the  water  bath  with  20  c.c.  of  acetic 
acid  and  5   g.   of   zinc  chloride,    and   the  solution 


Vol.  XIX,  No.  1.] 


MORGAN   AND   GILMOUR.— AZO-   AND  DIS  AZO-DYES. 


3  T 


finally  boiled  for  15  minutes.  Water  was  added, 
and  the  diluted  solution  warmed  and  filtered; 
yellow  needles  separated  on  cooling  (yield  60%). 

Acetyliaethyl-(S-naphthylamine-&-sulphonic  chlor- 
ide, CH3.C0.N(CH3).C„,H£.S02C1.  Sodium  methyl- 
/3-naphthylamine-6-sulphonate  was  warmed  with 
acetic  anhydride  and  fused  sodium  acetate.  The 
acetyl  derivative  was  very  soluble  in  water,  and 
accordingly  the  crude  material  was  triturated  with 
phosphorus  pentachloride  and  the  product  after 
washing  with  water  was  extracted  with  benzene. 
After  repeated  crystallisation  the  chloride  separated 
in  prismatic  needles  melting  at  142° — 143°  C. ; 
found  N  =  5-00%,  S  =  10-79%.  C13H1203NSC1  re- 
quires N  =  4-71%,  S  =  10-76%. 

The  ethyl  ester,  CH3.C0.N(CH3).C„,H8.S02.0C2H5, 
prepared  on  dissolving  the  chloride  in  alcohol, 
crystallised  in  colourless  needles  melting  at  125° — 
126°  C. 

The  sulphonamide  (Formula  VI),  obtained  by 
warming  the  chloride  with  concentrated  ammonia, 
crystallised  from  water  in  white  prismatic  needles 
melting  at  184°— 185°  C. ;  found  N  =  10"42%. 
C13Hw02N2S  requires  N  =  10'07%. 

Benzoylmethyl-/S-naphthylamine-6-sulphonic  acid, 
C6Hs.CO.N(CH3).C1<pHc.S03H,  prepared  from 
nietnyl-/3-naphthylamine-6-sulphonic  acid  either  by 
the  Schotten-Baumann  reaction  or  by  triturating 
the  anhydrous  sodium  salt  of  the  acid  with  fused 
sodium  acetate  and  benzoyl  chloride,  was  identified 
as  the  sulphonic  chloride, 

C6H5.CO.N(CH3).C10H6.SO2Cl, 
which  crystallised  from  light  petroleum  in  colourless 
rhomboidal  prisms  melting  at  115° — 116°  C. ;  found 
N  =  3'45  % .  C18H„03NSC1  requires  N  =  3"89 % .  The 
sulphonamide  was  fairly  soluble  in  alcohol  but 
dissolved  more  sparingly  in  water  and  separated  in 
brownish-white  plates  melting  at  225° — 226°  C. ; 
found  N=8"37%.     C18HI603N2S  requires  N  =  8"24%. 

Methylation  of  sodium  mcthyl-^-naphthylamine-Q- 
sulphonate.  On  treating  the  sodium  salt  with 
methyl  sulphate  in  alkaline  solution  a  substance  was 
obtained  which  after  repeated  crystallisation  from 
water  proved  to  be  a  quaternary  ammonium  salt, 
NaSO3.C10H6.N(CH3)3.CH3SO„4H2O;  found  H,0  = 
1616,  Na  in  tetrahydrate=4"44,  Na  in  anhydrous 
salt  =  5'41%  ;  required  by  theory  H20  =  15'29,  Na  in 
tetrahydrate=4"88  and  in  anhydrous  salt  =  5'76%. 
This  quaternary  methyl  sulphate  was  then  heated 
for  five  hours  with  strong  aqueous  potassium 
hydroxide.  The  crystalline  product  was  potassium 
dimethvl-/?-naphthvlamine-6-sulphonate 
S03K.C,„HC.N(CH3)2,3H,0 ; 
found  H,0  =  15-82,  K  in  trihvdrate=ll-51%  ;  re- 
required  by  theory  H,0  =  15;45,  K  =  ll'37%.  (Com- 
pare the  methvlation  of  sodium  /?-naphthylamine-8- 
sulphonate,  C~  Smith,  Chem.  Soc.  Trans.,  1906,  89, 
1507.) 

Chemical  Department. 

University  of  Birmingham, 
Edgbaston. 


THE  EMPLOYMENT  OF  A  NEW  GROUP  OF 
NAPHTHALENE  INTERMEDIATES  IN 
THE  PRODUCTION  OF  AZO-  AND  DIS- 
AZO-DYES. 

BY    GILBERT   T.    MORGAN   AND   HUGH   GH.MOUB. 

In  1911  one  of  the  authors  (G.T.M.)  described  a 
new  group  of  naphthalene  intermediates  repre- 
sented by  the  general  formulae  I  and  II  where  R  is 
an  aryl  radicle  such  as  phenyl,  tolyl,  or  naphthyl 
and  Alk.  is  an  alkyl  group  such  as  methyl  or  ethyl. 

-NH*  yS02R  „    J^*   ,S02R 


\/\ 


/Nvik. 


HSO 


\Alk. 


At  that  time  these  products  were  prepared  by  the 
following  processes  exemplified  in  the  case  of  /3- 
naphthyiamine :  — 

/3-C,0H,.NH,->-C1<,H,.NH.S0,R  > 
NO2.C,0H6N(alk).SO2R-+NH2.C10H6.N(alk).SO2R. 

The  /3-naphthylamine-6-,  -7-,  and  -8-sulphonic  acids 
were  subj  acted  to  a  similar  series  of  operations 
(Read  Holliday,  Turner,  and  Morgan,  E.P.  17,465 
of  1911 ;  Morgan  and  Micklethwait,  Chem.  Soc. 
Trans.,  1912,  101,  150). 

Recently,  however,  the  production  of  the  methyl 
compounds  of  the  series  has  been  facilitated  con- 
siderably owing  to  the  circumstance  that  methyl- 
amine  hydrochloride  is  at  present  available  on  a 
commercial  scale. 

/3-Naphthol  or  one  of  its  sulphonic  acids  (6,  7,  or 
8)  now  becomes  the  starting  point.  By  heat- 
ing with  aqueous  methylamine  under  pressure 
/3-naphthol  or  its  sulphonic  acid  is  converted  re- 
spectively into  methvl-/?-naphthvlamine  (Morgan 
and  Evans,  Chem.  Soc.  Trans.,  1919,  115,  1144)  or 
a  methyl-/3-naphthylaminesulphonic  acid,  and 
either  of  these  products  is  readily  convertible  into 
its  arylsulphonyl  derivative,  which,  when  succes- 
sively nitrated  and  reduced,  yields  the  substituted 
diamine  I.  or  its  sulphonic  acid  II. 

In  the  following  experiments  two  typical  mem- 
bers of  this  large  series  of  intermediates  have  been 
employed,  namely,  2-toluene-p-sulphoiiyl-2-methyl- 
1.2-na'phthylenediamine  (III.)  and  2-toluene-p-sul- 
phonyl-2-methyl  -  1.2  -  naphthylenediamine  -  6  -sul- 
phonic acid  (IV.), 

NH*     .S02-C,H, 

N\ 

CH»  HSOa\ 

in.  rv. 

the  latter  being  produced  by  the  action  of  the  com- 
mercially available  toluene-p-sulphonic-  chloride  on 
methyl-j8-naphthylamine-6-sulphonic  acid  (Methyl 
Bronner  acid,  compare  preceding  paper).  The 
first  experiments  on  the  production  of  azo  dye.s 
were  made  with  the  unsulphonated  base  (III.). 
This  substituted  naphthylenediamine  can  be  used 
as  primary,  middle,  and  end  component  in  the 
formation  of  complex  azo  colours.  When  diazotised 
in  glacial  acetic-  acid  containing  hydrochloric  acid  a 
soluble  diazonium  chloride  (V.)  is  formed  giving 
yellow  solutions,  and  isolated  in  the  form  of  its 
aurichloride  and  pierate ;  it  yields  with  sodium 
azide  a  well-defined  triazo-derivative,  and  under- 
goes a  characteristic  change  on  boiling  with  water  : 

N2-  iCl 


/SO.-CjH, 


CH. 


/V/\N 


/ 


S02C7H, 


/ 


|       |      |     \CH3     ->C,H,S02C1  + 


\/\ 


) 


Kk) 


N2 
i 
NCH, 


VI. 


when  toluene-p-sulphonyl  chloride  is  eliminated 
and  naphthylene-l-diazo-2-methylimine  (VI.)  is 
produced  quantitatively.  A  similar  condensation 
to  the  diazoiminesulphonie  acid  (XI.)  occurs  with 
the  sulphonated  diazo-compounds. 

When  employed  as  a  coupling  agent  with 
diazonium  compounds,  2-toluene-p-sulphonyl-2- 
methyl-1.2-naphthylenediamine  gives  rise  to  azo 
dyes  dyeing  in  bright  orange,  scarlet,  and  crimson 
shades  differing  entirely  in  this  respect  from  the 
dull  shades  obtained  with  o-naphthylamine ;  the 
substituted  side  chain  -N(CH3).S02.C7H,  in  the 
^-position  is  evidently  the  cause  of  the  striking  in- 
crease in  the  brilliancy  of  the  dyes  of  this  series 
(VII.  and  IX.)  over  the  colours  produced  with 
a-naphthylamine  or  Cleve's  a  id.  The  unsul- 
phonated substituted  diamine  presents,  however, 
one  serious  technical  difficulty  in  the  fact  that, 
being  very  sparingly  soluble  in  water  or  aqueous 
mineral  acids,  it  is  diazotised  with  extreme  slow- 


4  T 


MORGAN   AND   GILMOUR.— AZO-    AND  DIS-AZO-DYES. 


[Jan.  10, 1922. 


ness  in  aqueous  media.  To  accelerate  this  process 
glacial  acetic  acid  is  necessary.  This  sparing  solu- 
bility in  water  is  also  a  drawback  to  the  use  of  the 
base  as  a  middle  component. 

These  defects  are  entirely  obviated  by  the  use  of 
the  sulpbonated  bases  such  as  2-toIuene-p-sulphonyl- 
2-methyl-1.2-naphthyIenediamine-6-sulphonic  acid 
(IV.).  This  compound  is  diazotised  just  as  readily 
as  the  ordinary  aminosulphonic  acids  already  in  use 
in  the  dye  industry.  Moreover,  it  can  be  employed 
as  a  middle  component  in  dilute  acid  or  aqueous 
solutions,  when  it  couples  quite  readily  to  form 
soluble  aminoazo  dyes  (XII.),  which  are  again 
diazotisable  leading  to  complex  disazo  dyes  (XIV.) 
giving  deep  bluish-black  shades. 

The  azo  dyes  of  this  series  and  their  alkali  salts 
are  well-defined,  crystallisable  substances  readily 
obtained  in  a  state  of  purity,  so  that  the  constitu- 
tions allotted  to  these  products  have  been  confirmed 
by  analysis. 

Experimental. 

2-Toluene-p-sulphonyl-2-methyl-\.2-napMhylene- 
diamine  and  its  azo-  and  diazo-derivatives. 

Toluene-p-sulphonylmethyl-/?-naphthylamine,  for- 
merly obtained  by  the  methylation  of  toluene-p- 
sulphonyl-/2-naphthvlamine  (Morgan  iand  Mickle- 
thwait,  Chem.  Soc. "Trans.,  1912,  101,  150),  was  pre- 
pared more  directly  by  mixing  intimately  79  g.  of 
niethyl-/?-naphthylamine,  108  g.  of  toluene-p-sul- 
phonyl  chloride,  and  100  g.  of  fused  sodium  acetate 
in  a  warm  mortar.  The  liquid  mixture  gradually 
hardened  to  a  stiff  paste  which  was  extracted  with 
600  c.c.  of  10%  aqueous  sodium  carbonate,  the  re- 
sidue being  crystallised  from  alcohol,  when  colour- 
less plates  were  obtained  melting  at  71° — 73°  C. 
(Chem.  Soc.  Trans.,  1919,  115,  1144). 

Toluene-p-sulphonylmethyl-/?-naphthylamine  (87 
g.)  was  shaken  for  two  hours  with  28  g.  of  nitric 
acid  (sp.  gr.  =  l"4)  and  350  c.c.  of  glacial  acetic  acid, 
and  after  cooling  in  ice  57  g.  of  nitro-compound 
separated  and  a  further  34  g.  was  obtained  on 
diluting  the  filtrate  with  ice  water.  After  crystal- 
lisation from  alcohol  the  product  melted  at  148°  C. 

Toluene-p-sulphonylmethyl-1  -nitro-/3-naphthyl  - 
amine  (55  g.)  was  dissolved  in  530  c.c.  of  alcohol  and 
53  c.c.  of  water  containing  10  g.  of  ammonium 
chloride,  72  g.  of  zinc  dust  was  added  gradually,  the 
mixture  being  heated  under  a  reflux  condenser  for 
two  hours.  The  solution  filtered  hot  yielded 
2-toluone-p-sulphonvl-2-methvl  -  1.2-naphthylenedi- 
amine  (m.p.  154°  C.,*  yield  97%). 

Diazotisation  of  2-toluene-p-snlphon>jl-2-melhyl- 
1 .2-naphthylenediamine  (III.). 

The  diamine  (2  g.)  was  dissolved  in  glacial  acetic 
acid  containing  1'8  c.c.  of  concentrated  hydro- 
chloric acid  and  63  c.c.  of  2V/1  sodium  nitrite  added 
to  the  cooled  solution,  which  was  them  diluted  with 
125  c.c.  of  water.  This  solution  of  the  soluble 
diazonium  chloride  had  an  intense  yellow  colour. 

The  following  azo  dyes  were  produced  with  the 
foregoing  diazonium  chloride  as  first  component:  — 
Coupling  compound.  Dyed  effect.  Reactions. 

Gamma-acid  . .         . .     Dark  prune     . .         . .  Moderately  fast  to 

scouring. 

Bronner  acid . .  ..  Brownish-orange  ..  Sensitive  to  alkali. 
Ethylbenzylaniline-m- 

sulphonic  acid       . .     Brownish-orange       . .  Not  fast  to  alkali. 

Chromotrope  acid     . .     Bluish-crimson,  cherry  Moderately  fast  to 

to  purple  black  on  soap.     Fast     to 

chroming.  scouring    agents. 

Acetyl  H  acid           . .     Bluish-red       . .         . .  Not  fast  to  alkali. 

2-Toluene-p-sulphonyl-2-methylaminonaphthalene- 
l-diazonium  aunchloride, 

C7H,.SO2.N(CHa).C10H6N2Aua„ 

separated  quantitatively  in  minute  yellow  prismatic 

*  2-Toluenc-j)-sulphonyl-2-methyl-8-naphthylarnine  was  formerly 
stated  to  melt  at  140°  (M.  and  M.,  ibid.  p.  151).  It  is  now  found 
to  soften  at  138°  and  to  melt  finally  at  154"  0. 


crystals  on  adding  sodium  aurichloride  to  the  diazo- 
solution ;  it  was  sparingly  soluble  in  alcohol  and  de- 
composed slowly  on  warming  to  60°  C.  Found 
N  =  6-65,  S=5-4,  01  =  21-19,  Au  =  27"33%;  C18H,602 
N^SCl.Au  requires  N  =  6-2,  S  =  4"7,  Cl  =  20-9;  Au  = 
29-1%. 

The  diazonium  picrate, 

C,H,.SO2.N(CH3).C10HB.N2.O.C6H=(NO2):l, 

obtained  as  a  yellow  precipitate  on  adding  aqueous 
picric  acid  to  the  diazo-solution,  was  sparingly  solu- 
ble in  water,  dissolving  more  readily  in  glacial  acetic- 
acid  and  separating  therefrom  in  bright  yellow- 
needles  melting  with  decomposition  at  121° — 122°  C. 
Found  N  =  14-93%.  C21H1B09N6S  requires  N  = 
14-84%. 

2-  Toluene  -  p  -  sulphoni/l  -2-meth  iilomino-l-triazo- 
naphthalene,  CHj.SO^N^H,).^,!!^,.  On  add- 
ing aqueous  sodium  azide  to  the  dilute  solution  of 
the  diazonium  chloride,  the  triazo  derivative 
separated  forthwith  as  a  yellow  precipitate  crystal- 
lising from  alcohol  in  clusters  of  yellow  needles  melt- 
ing with  decomposition  at  154°  C.  Found  N  =  16"05, 
8  =  9-54%.     C18H10O2N<S  requires  N  =  15-9,  S  =  9"l%. 

Naphthylene-l-diazo-2-methylimine, 
/** 1 

XNCH3...2 

In  an  attempt  to  convert  the  diazonium  chloride 
into  the  corresponding  a-naphthol  derivative  by 
boiling  with  acidified  water,  a  distinct  odour  of 
toluene-p-sulphonyl  chloride  was  noticed  and 
yellowish  white  clusters  of  acicular  crystals 
separated,  which,  after  crystallisation  from  hot 
water,  melted  at  169°  C.  Small  tabular  crystals 
were  noticed  in  the  product  which,  however,  dis- 
appeared after  repeated  crystallisation.  Analysis 
showed  that  the  compound  contained  no  sulphur  and 
N  =  23-14%.     CnH9N3   requires   N  =  22"95%. 

2-Tolue.ne-p-sulphonyl-2-methyl-1.2-nophtliylene- 
diamine  as  a  middle  component  in  disazo  dyes. 

(1)  4-8ulphobenzene-4-azo-2-toluene-p-sulphonyl-2- 
methyl-\.2-naphthylene.diamine  (VII.). 


NH. 


N(CH3)-SO„C,H, 

N:N-/'    N30SH      S03 
VII 


N(CH3)-SOX,H, 


VIII. 


The  sustituted  diamine  (2*7  g.)  was  dissolved  in 
15  c.c.  of  glacial  acetic  acid  and  stirred  in  the  cold 
with  an  aqueous  suspension  of  benzene-1-diazonium- 
4-sulphonate  until  coupling  was  complete.  The 
dark  purple  azo-compound  (VII.)  which  separated 
quantitatively  was  washed  and  dried :  found 
N  =  10'21,  S  =  13-65%.  C21H22OsN4S,  requires  N  = 
10-97,  S  =  12-6%.  This  azo-intermediate  developed 
bluish-violet  and  purple  colorations  with  concen- 
trated sulphuric  and  hydrochloric  acids  respectively  ; 
its  reddish-orange  sodium  salt  is  sparingly  soluble. 
When  applied  to  wool  in  acid  bath  it  gave  a  bright 
reddish-orange  shade  fast  to  scouring,  but  becom- 
ing purple  with  strong  acid.  The  internal 
diazonium  sulphonate  (VIII.)  prepared  by  adding 
aqueous  sodium  nitrite  to  a  solution  of  the  azo- 
intermediate  in  glacial  acetic  acid,  separated  as 
a  reddish-brown  crvstalline  precipitate.  Found 
N  =  13-21,  S  =  12-49.  "C24H1906N4Sa  requires  N  =  13"4, 
S  =  12-30%. 


The    following    dyed    effects    were    obtained    by 
coupling   this    J 
mediates  : 


diazo-derivative   with   various   inter- 


Vol.  XIX,  No.  1.] 


MORGAN   AND   GILMOUR.— AZO-    AND  DIS-AZO  DYES. 


5  T 


Dlsazo  dye.  Colour  on  textiles.  Properties. 

With  Schaffer  acid         . .     Deep  prune     . .  . .     Fast  tc  soap. 

With  H  acid  (alkaline)  . .     Dark  greenish-black  . .     Fast    to    soap, 

not     affected 
by  chroming. 
With  J  acid         . .         . .     Prune— wool  . .         . .     Not  fast  to  boil- 
ing water. 
Mauve — cotton  . .     Slight    affinity. 

(2)    6' '.8'-Disulphonaphthalene-2'(4)-azo-2-toluene- 
sulphonyl-2-methyl-\.2-naphthylenediamine  (IX.), 

NH,  N, 


N(CHs)S02C,H, 


N(CHs)-S02C,H7 


1 

N 

N 

/- 

\ 

"> 

/ 

\ 

\ 

/ 

SO,H 

X. 

so,- 


The  substituted  diamine  (2'4  g.)  was  dissolved  in 
60  c.c.  of  glacial  acetic  acid  and  treated  in  the  cold 
with  the  diazonium  sulphonate  from  3'2  g.  of 
j3-naphthylamine-6.8-disulphonic  acid.  An  intense 
violet  azo  dye  separated  which  was  collected  after 
two  hours  and  dissolved  in  aqueous  sodium  car- 
bonate, the  colour  changing  to  scarlet.  The  sodium 
salt  of  the  azo  dye  was  salted  out,  crystallised  from 
water,  and  again  salted  out.  The  free  azo-sulphonic 
acid  (formula  IX.)  was  precipitated  with  hydro- 
chloric acid  and  dried  at  120°  C.  for  three  hours : 
found  N  =  7-82,  S  =  14'03%.  C,8H2.08N4SS,2H20  re- 
quires N  =  8-28,  S  =  I4'2%. 

The  diazonium  sulphonate  (X.)  prepared  from 
the  foregoing  aminoazo  dye  in  glacial  acetic  acid 
separated  on  the  addition  of  water  as  a  micro- 
crystalline  brown  precipitate,  which  after  drying  in 
z.  vacuum  over  sulphuric  acid  for  three  days  gave 
the  following  analytical  results: — N  =  9'7,  S  = 
13-48%.  C28H2108N5S3,2H20  requires  N  =  10-19, 
S  =  13-97%. 

(3.)  3'.&-Dmtlphonaphthalene-2'(i)-azo-2-toluene- 
sulphonyl-2-methyl-1.2-naphthylenediamine, 

(HSO3)2.O,0H5.N2.C10H5(NH2).N(CH3).SO2.C7H„ 
2H20, 

was  prepared  from  2-toluenesulphonyl-2-methyl-1.2- 
naphthylenediamine  and  the  diazo-derivative  of 
/3-naphthylamine-3.6-disulphonic  acid  precisely  as  in 
the  case  of  the  preceding  isomeric  dye.  The  puri- 
fied aminoazo-disulphonic  acid  dried  for  3  hours 
at  120°  C.  gave  the  following  analytical  data:  — 
N  =  8-03,  S  =  13-51%.  C28H240BNaS3,2H20  requires 
N=8-28,  8  =  14-2%. 

The  internal  diazonium  sulphonate 

HSO3.C10H5.N2.C10Hs.N(CH,).SO2.C!H7,2H2O 

SO,       — N, 

was  a  dark  brown,  macrocrystalline  precipitate  pro- 
duced by  diazotising  the  foregoing  aminoazo-disul- 
phonic acid  in  glacial  acetic  acid  with  subsequent 
addition  of  water.  After  drying  in  a  vacuum  over 
sulphuric  acid  itgave  the  following  data  : — N  =  9"l, 
S  =  13-22%.  C2,H2108N883,2H20  requires  N  =  Krl9, 
S  =  13-97%. 

When  dyed  on  wool  the  preceding  azo  dyes  from 
(3-naphthylaminedisulphonic  acids  6  and  R  gave 
bright  scarlet  shades.  The  two  internal  diazonium 
sulphonates  of  these  azo  dyes  when  coupled  with 
various  dye  components  gave  the  following  re- 
sults :  — 


Coupling  substance.  Disazo  dye  from  : 

Amino  G  acid.  Amino  R  acid 

S-Xaphthol        . .         . .         Purple       . .         . .        Purple. 

Schaffer  acid     . .         . .         Purple       . .         . .  „ 

H  acid    . .  . .  . .         Blue  . .  . .  ,, 

J  acid     . .         . .         . .         Purple       . .         . .  ,, 

(4.)  2-Toluene-p-sulphonyl-2-methyl-l.2-naphthyl- 
enediamine-6-sulphonic  acid  (IV.)  and  its  azo-  and 
diazo-derivatives. 

Sodium  methyl-/?-naphthylamine-6-sulphonate  was 
prepared  by  heating  in  the  rotating  autoclave  for 
7  hours  at  200°  C.  246  g.  of  commercial  Schaffer 
salt  (B.D.C.),  90  g.  of  sodium  hydroxide,  and 
400  c.c.  of  water.  The  product  was  dissolved  in  the 
minimum  quantity  of  boiling  water  and  the  sodium 
salt  crystallised  from  the  filtrate  on  cooling  (yield 
about  72%).  The  yellowish-green  residue,  amount- 
ing to  2%,  was  probably  a  naphthacridine  deriva- 
tive. 

2-Toluene-p-sidplionyl-2-methyl-($-naphthylam,ine- 
6-sulphonic  acid.  The  foregoing  dried  sodium  salt 
(130  g.)  and  82  g.  of  anhydrous  sodium  acetate  were 
intimately  mixed,  120  g.  of  toluene-p-sulphonyl 
chloride  was  added  slowly,  and  100  c.c.  of  toluene 
was  introduced,  the  mixture  being  heated  for  one 
hour  on  the  water-bath,  the  toluene  then  distilled 
away,  and  the  residue  dissolved  in  the  minimum 
quantity  of  water  at  90°  C.  On  cooling  the  filtrate 
deposited  100  g.  of  the  toluenesulphonyl  derivative, 
which  crystallised  from  water  in  colourless  needles 
darkening  at  205°  and  melting  with  decomposition 
at  269°  C. 

2-Toluene-p-sulphonyl-2-methyl-l-nitro  -  (S  -  naph- 
thylamine-6-sulphonic  acid.  The  preceding  com- 
pound (25  g.)  was  heated  to  60°  for  one  hour  with 
35  c.c.  of  nitric  acid  (sp.  gr.  l-48)  in  250  c.c.  of 
glacial  acetic  acid.  The  colour  changed  from 
yellow  to  reddish-brown  and  37  g.  of  sodium  car- 
bonate and  450  c.c.  of  water  were  added,  when 
pale  yellow  plates  with  pointed  ends  slowly 
separated  (yield  about  80%). 

Sodium  2-toluene-p-sulphonyl-2-methyl-\.2-naph- 
thylenediamine-6-sulfthonate.  Sixty  grams  of  the 
preceding  nitro-compound  was  dissolved  in  350  c.c. 
of  alcohol  and  35  c.c.  of  water  containing  8  g.  of 
ammonium  chloride.  Ninety  grams  of  zinc  dust 
was  slowly  added,  the  solution  being  heated  under 
a  reflux  condenser  for  two  hours.  The  mixture  was 
filtered  hot,  the  residue  washed  with  spirit,  and 
sodium  carbonate  added  until  no  further  precipita- 
tion occurred  in  the  hot  solution,  which  after  filtra- 
tion yielded  colourless  acicular  crystals  (yield  about 
80%).  A  sample  crystallised  repeatedly  from  50% 
alcohol  and  dried  in  vacuo  over  sulphuric  acid 
gave  N  =  6-18,  S  =  13-99,  Na  =  4-37,  H2O  =  7"0%. 
C18H„05N,S„Na,2H20  requires  N  =  6-03,  8  =  13-80, 
Na  =  4-9,  H20  =  7-7%. 

One  gram  of  the  sodium  diaminesulphonate  was 
dissolved  in  200  c.c.  of  hot  water,  the  solution  cooled 
and  treated  successively  with  sodium  nitrite  and 
hydrochloric  acid,  when  a  yellow  solution  of  the 
diazotised  product  was  obtained. 

Repeating  this  experiment  with  2'32  g.  of 
diaminesulphonate  in  50  c.c.  of  water,  using  hydro- 
chloric acid  in  moderate  excess,  a  viscid  yellow  mass 
separated  and  granulated  after  two  days  in  the 
ice-chest.  The  material  (1  g.)  dried  at  the  ordinary 
temperature  over  sulphuric  acid,  was  a  light 
yellow  powder  becoming  orange  on  exposure  to 
light;  it  decomposed  indefinitely  at  about  140°  O. 
and  coupled  readily  with  alkaline  /3-naphthol.   ' 

Analyses  showed  that  the  diazotised  product  was 
a  mixture  of  internal  diazonium  sulphonate 

N2.C1„Hs.(S03).N(CH1).S02.C7H7 

and  diazonium  chloride 

C1N2.C,,,H5(S03H).N(CHJ).S02.C,H7. 


6t 


MORGAN  AND   GILMOUR.— AZO-   AND  DIS-AZO-DYES. 


[.Tan.  16, 1922. 


Naphthylene-1-  diazo  -2-methylimine-6-sul  phonic 
acid, 


HSO 


XI. 

A  solution  of  the  foregoing  diazotised  product  was 
boiled  for  one  hour  with  dilute  sulphuric  acid;  the 
odour  of  toluene-p-sulphonyl  chloride  was  distin- 
guished and  the  solution  on  cooling  deposited  colour- 
less plates,  sparingly  soluble  in  cold  water,  but  dis- 
solving readily  on  boiling:  found  N  =  16"6,  8  = 
12-42%.     C„H'9OaN3S  requires  N  =  16-0,  S  =  12'17%. 

Naphthylene-l-diazo-2-methylimine-6-sulphonic 
acid  crystallised  readily  from  hot  water  and  dis- 
solved in  aqueous  alkalis,  being  reprecipitated  by 
acids;  it  was  insoluble  in  organic  media  and  did  not 
couple  with  diazonium  salts. 

2-Tohtene  -  p  -  sulphori}il-2-methyl-1.2-naphthylenr- 
diamine-6-sulphonic  acid  as  a  first  component  of 
azo  dyes. 

1.  With  fi-naphthol. 

6-Sulpho-2-toluene  -p-  sulphonyl  -  2-methylamino- 
naphthalene-1-azo-P-naphthol  (XII), 


OH 


HSO 


N(CHs)-SOa-C,H, 


XII. 


A  solution  (250  c.c.)  of  the  soluble  diazo-com- 
pound  of  the  substituted  diaminesulphonic  acid 
(232  g.)  was  added  to  alkaline  0-naphthol  (0"72  g.). 
After  stirring  for  15  minutes  the  azo  dye  had 
separated,  a  few  grams  of  salt  was  added,  and  the 
liquid  heated  to  80°  to  granulate  the  precipitate. 
A  quantitative  yield  of  azo  colour  was  obtained. 
The  dark  red  dye  was  sparingly  soluble  in  water 
and  dissolved  on  boiling  to  an  orange  solution. 
2%  on  wool  gave  a  full,  bright  scarlet  shade 
moderately  fast  to  scouring.  With  strong  mineral 
acids  volet  colorations  were  developed.  The  purified 
dve  when  dried  at  120°  gave  N  =  7'35,  7'29,  8=11-4%  . 
C\8H,,06N3S2  requires  N  =  748,  S=1T4%. 

2.  With  J  acid. 

The  substituted  1.2-naphthylenediamine-6-sul- 
phonic  acid  (2'32  g.)  was  diazotised  in  aqueous  solu- 
tion and  the  diazo-mixture  was  added  to  J  acid 
(1*15  g.)  in  aqueous  sodium  carbonate.  Coupling 
took  place  readily,  and  after  heating  to  80°  C.  the 
dye  was  salted  out  from  the  filtered  solution.  The 
yield  was  quantitative  and  the  dark  red  dye  became 
purple  on  adding  hydrochloric  acid.  On  wool  the 
dye  gave  dark  brownish-red  shades  moderately  fast 
to  alkalis;  it  had  no  affinity  for  cotton. 

3.  With  acetyl  J  acid. 

The  dye  was  produced  as  in  the  preceding  ex- 
periment. Coupling  was  readily  effected  and  the 
dye  was  easily  salted  out  in  quantitative  yield.  On 
wool  this  azo  dye  gave  intense  crimson-red  shades 
fast  to  milling. 

4.  With  chro  mot  rope  acid. 

Coupling  was  effected  as  in  the  preceding  experi- 
ments but  the  dye  was  very  soluble  and  6alted  out 
with  difficulty.  This  dye  gave  bluish-red  shades  on 
wool  rendered  dark  purple  by  after-chroming. 


2-Toluene-p-sulphonyl-2-methyl-\.2-naphthylene- 
diamine-6-sulphonic  acid  as  middle  component. 
Sodium  3'-sulphobenzene-4-azo-2-toluenesulphonyl- 
2-methyl-1.2-naphthylenediamine-6-sulphonate, 


NH 


NaSoJ 


N(CH3)-S02-C,H, 


xni. 


The  diazo-eompound  from  metanilic  acid  (0'91  g.) 
was  added  slowly  to  an  aqueous  solution  of  2-toluene- 
p  -  sulphonyl  -  2  -  methyl  -  1.2  -  naphthylenediamine 
(2-32  g.).  The  free  acid  was  somewhat  colloidal  and 
difficult  to  filter,  although  rendered  more  granular 
by  precipitation  with  mineral  acid  from  hot  solu- 
tions, when  it  separated  in  minute  purple  crystals. 
When  dried  at  120°  C,  analysis  showed  that  to- 
gether with  a  trace  of  sodium  (0-19%)  it  contained 
about  ten  times  this  amount  of  chlorine  (1'23%) 
presumably  in  the  form  of  hydrogen  chloride,  pro- 
bably combined  with  the  amino-group.  This  power  of 
combination  with  acid  would  account  for  the  colour 
changes  produced  on  treating  the  orange  sodium 
salt  with  varying  concentrations  of  mineral  acid. 
The  purified  salt  (formula  XIII.)  after  drying  for 
3  hours  at  120°  gave  the  following  data:  N  =  8'14, 
8=14-15,  Na  =  6-69,  H„0  =  4-98%.  O^H^O.N^.Na,, 
2H,0  requires  N  =  8-35,  S  =  1432,  Na  =  6-86, 
H20=537%. 

Five  c.c.  of  N  / 1  sodium  nitrite  solution  was  added 
.slowly  to  2-95  g.  of  the  foregoing  monazo  dye  sus- 
pended in  250  c.c.  of  water  containing  4  c.c.  of  hydro- 
chloric acid  (sp.  gr.  1T6).  The  deep  purple  colour 
gradually  changed  to  orange,  and  after  stirring  for 
1J  hours  the  azo-compound  had  dissolved  to  a  dee)) 
orange  solution  which  was  then  added  to  1'7  g.  of 
acetyl  H  acid  dissolved  in  150  c.c.  of  water  and 
5  g.  of  sodium  carbonate.  An  intense  blue  colora- 
tion developed  forthwith,  and  after  30  minutes  the 
solution  was  heated  to  80°  C,  and  the  dye_salted  out 
from  the  hot  filtered  solution.  This  disazo  dye 
(XIV)  gave  deep  blue  shades  on  wool. 


\_/  iVJN  \ 
S03Na 


N(CH3)-SO„C,H, 
/  OH    /NHCOCH3 

\_N.N_/\/\ 
— /    s63Na!v/!.N/lsO,Na 


SOaNa 

XIV. 

The  metanilic  acid-azo  dye  can  be  again  diazo- 
tised and  coupled  with  other  end  components  in 
the  place  of  the  acetyl  H  acid  used  in  the  preceding 
condensation. 

Amino-G  acid  has  also  been  employed  as  the  fir6t 
component  by  diazotising  and  coupling  its  diazo- 
derivative  with  2-toluene-p-sulphoii.vl-2-niethyl-l.2- 
naphthylencdiamine-6-sulphonic  acid.  The  result- 
ing azo  dye  gave  orange  shades  on  wool  moderately 
fast  to  scouring. 

This  aniinoazo  dye  can  be  again  diazotised  and 
coupled  with  acetyl  H  acid  and  other  end  com- 
ponents giving  varying  shades  of  dark  blue. 

The  authors'  thanks  are  due  to  the  British  Dye- 
stuffs  Corporation,  Ltd.  (Manchester)  for  affording, 
facilities  for  carrying  out  these  investigations. 

Chemical  Department, 

University  of  Birmingham, 

Edgbaston. 


Vol.  XIX,  No.  l.]       HEPWORTH.— MAGNESIUM    IN    SYNTHETIC    ORGANIC    CHEMISTRY.  7t 


Discussion. 
Professor  Morgan,  in  replying  to  questions,  said 
that  potassium  hydrogen  sulphate  and  the  corre- 
sponding sodium  salt  had  been  used  as  sulphonat- 
ing  agents,  chiefly  in  conjunction,  however,  with 
strong  sulphuric  acid.  In  his  earlier  experiments 
methyl  sulphate  had  been  used  in  preference  to 
methyl  iodide  because  it  was  cheaper.  With  reason- 
able care  the  ill-effects  of  the  poisonous  nature  oi 
this  alkyl  sulphate  could  be  avoided.  In  the  later 
experiments  the  methyl  group  had  been  introduced 
by  means  of  methylamine  hydrochloride.  Blues 
were  the  more  difficult  to  produce;  they  were  usually 
disazo  compounds.  The  researches  on  azo-dves  had 
centred  largely  around  naphthalene  and  benzene 
derivatives,  though  anthraquinone  diazonium  salts 
might  in  the  future  lead  to  useful  dyes  containing 
anthracene  groups,  but  they  would  be  expensive 
owing  to  the  cost  of  anthracene.  In  their  experi- 
ments they  had  only  used  alkyl  substituents,  and 
he  thought  that  the  introduction  of  aryl  groups 
would  be  difficult.  All  the  intermediates  had  been 
analysed  and  purified;  the  resulting  dyes,  when  not 
too  soluble,  had  also  been  analysed.  The  import- 
ance of  purity  could  not  be  exaggerated ;  it  was  a 
fundamental  part  of  the  problem  of  the  manufac- 
ture of  coal-tar  intermediates.  Severe  washing  tests 
had  proved  some  of  the  colours  to  be  fast,  and  others 
less  60. 


Glasgow  Section. 


Meeting  held  on  Xovernber  29,  1921. 


ME.   W.  B.   MOODIE  IN  THE  CHAIR. 


SOME    RECENT     APPLICATIONS     OF     MAG- 
NESIUM  IN   SYNTHETIC   ORGANIC 
CHEMISTRY. 

BY    HARRY    HEPWORTH,    D.SC    (LON'D.),    F.I.C. 

The  discovery  of  the  magnesium  alkyl  and  aryl 
halides  by  Grignard  in  1900  (Comptes  rend.,  1900, 
130,  1322)  provided  the  organic  chemist  with  a 
reagent  which  far  surpasses  the  zinc  alkyls  in  ease 
of  manipulation  and  extent  of  application.  The 
immense  value  of  these  reagents  was  at  once 
realised  by  organic  chemists  and  hundreds  of 
applications  of  them  have  been  made  since  1901. 

From  time  to  time,  resumes  dealing  with  the 
applications  of  the  Grignard  reagents  have  ap- 
peared, amongst  which  may  be  mentioned :  — 
American  Chemical  Journal,  1905,  33.  McKenzie, 
British  Association  Report,  1907.  Schmidt,  "Die 
organischen  Magnesium  Verbindungen  und  ihre 
Amvendung  zu  Synthesen,"  2nd  Edition,  1908. 
Wren,  "  Organometallic  compounds  of  zinc  and 
magnesium,."  1913.  Grignard,  "  Le  Magnesium 
in  Chimie  Organique  *'  (Bull.  Soc.  Chim.,  1913). 

In  the  present  paper  a  resume  is  given  of  some  of 
the  recent  applications  of  the  Grignard  reagents. 
Some  overlapping  is  unavoidable  and,  for  want  of 
space,  many  investigations  have  had  to  be  omitted, 
but  it  is  hoped  that  this  paper  will  show  some  of 
the  directions  in  which  these  valuable  reagents 
have  been,  and  are  being,  applied  in  synthetic 
organic  chemistry. 

Hydrocarbons. 

Tissier  and  Grignard  (Comptes  rend.,  1901,  132, 
831)  found  that  ethylene  was  the  sole  product  of  the 
action  of  magnesium  on  ethvlene  dibromide,  while 
Zelinsky  and  Gutt  (Ber.,  1907,  40,  3049)  found  that 
ay-dibromopropane  and  magnesium  yielded  a  mix- 


^CH, 


ture  of  trimethylene  and  propylene  with  only 
minute  quantities  of  the  magnesium  compound  of 
hexa  methylene  dibromide  BrMg(OH2)6MgBr. 

Yon  Braun  and  Sobecke  (Ber.,  1911,  44,  1918) 
made  an  interesting  study  of  the  action  of  mag- 
nesium on  1.4-dibromobutane,  1.5-dibromopentane, 
and  1.7-dibromoheptane.  Inspection  of  these 
formula?  show  that  a  variety  of  products  might  be 
expected,  and  it  was  shown  that  in  these  reactions 
only  half  the  theoretical  amount  of  the  normal 
compound  MgX(CH2)nMgX  was  formed.  No 
evelic  or  unsaturated  nydrocarbons  or  compounds  of 
the  type  MgX(CH2)nBr  were  produced,  and  the  rest 
yields  a  mixture  of  magnesium  compounds  of  the 
type  MgXCCH.nlxMgX.  More  recently  (Ber.,  1919, 
52,  1713)  von  Braun  has  shown  that  tribromo- 
derivatives  of  the  type  CH2Br.CHBr(CH2)nCH2Br 
react  with  magnesium  to  give  unsaturated  Grignard 
compounds  of  the  type  CH2:CH(CH„)n  CH2MgBr. 

Griittner  and  his  co-workers  have  extended  these 
researches  to  the  preparation  of  cycloparaffins  con- 
taining an  element,  other  than  carbon,  as  a  portion 
of  the  ring.  Thus  Hilpert  and  Griittner  (Ber., 
1914,  47,  177)  allowed  the  magnesium  compound  of 
1.5-dibromopentane  to  react  with  mercuric  bromide 
and  obtained  pentamethylene  1.5-dimercuric  di- 
bromide, from  which  the  corresponding  iodide, 
nitrate,  and  hydroxide  were  easily  prepared,  whilst 
hydrogen  sulphide  and  acetylene  presumably  gave 
ring  compounds  of  the  type — 

,— (CKJ,—.  — (CHj),- 

CH,<  >CH,     and     CH2< 

\  Hg.  S.Hg.  /  XHg  C ;  CHg/ 

Griittner  (ibid.,  1651)  described  the  corresponding 
mercury  derivatives  of  cyclohexune,  while  the 
corresponding  phosphorus,  arsenic,  antimony,  bis- 
muth, silicon,  lead,  and  tellurium  compounds  were 
investigated  later  (Ber.,  1915,  48,  1473;  1916,  49, 
2666;  1917,  50,  1549).  Bygden  (Ber.,  1915,  48,  1236) 
prepared  a  silicon  compound,  pentamethylene-1.5- 
silico-dichloride,  from  magnesium,  1.5-dibromo- 
pentane, and  silicon  tetrachloride. 

Votocek  and  Kohler  (Ber.,  1914,  47,  1219)  investi- 
gated the  action  of  the  Grignard  reagent  on  poly- 
halogen  derivatives  and  found  that  the  presence  of 
more  negative  elements  in  the  nucleus  gradually 
diminishes  and  finally  suppresses  the  ability  of  the 
less  negative  halogen  atoms  to  enter  into  reaction. 
A  similar  studv  of  open-chain  compounds  has  been 
undertaken  by'  Swarts  (Bull.  Soc.  Chim.,  1919,  25, 
145),  who  obtained  difluoro-ethylene  by  the  action 
of  magnesium  phenyl  bromide  on  a/3-dibromo-/3- 
difluoro-ethane.  Many  other  reactions  with  sub- 
stances containing  fluorine,  chlorine,  bromine,  and 
iodine  were  also  studied. 

Acetylene  hydrocarbons. 

The  preliminary  investigation  of  the  action  of 
acetylene  on  magnesium  alkyl  and  aryl  halides 
carried  out  by  Iocitsch  (J.  Russ.  Phys.-Chem.  Soc, 
1904,  30,  3545)  has  led  to  an  interesting  variety  of 
results.  This  investigation  led  Iocitsch  to  abandon 
Nef' s  formula  for  the  mono-  and  dihalogen  deriva- 
tives of  acetvlene  CHX:C<  and  CXX<  in  favour 
of  the  older  formula  CH  CX  and  CXCX. 

A  large  number  of  acetylene  glycols  were  prepared 
by  Iocitsch,  while  Lespieau,  Dupont,  Oddo,  \Yohl, 
and  others  have  applied  compounds  of  the  type 
XMgCiC'MgX  to  a  large  variety  of  syntheses. 
An  excellent  resume  of  the  work  done  on 
A>-acetvlene-glvcols  is  given  by  Dupont  (Ann. 
Chim.  Phvs..  1913,  VIII.,  30).  Dupont  has  also 
studied  the  action  of  trioxymethylene,  chloromethyl 
ether,  acetaldehyde,  acetone,  and  other  aldehydes 
and  ketones  on  "magnesium  acetylene  derivatives. 
Thus  ketones  yield  compounds  of  the  type  HO.CR2C; 
C.CR2OH  and  stereoisomer^  possibilities  of  these 
compounds  have  been  investigated  by  Dupont. 


8t 


HEPVVORTH.— MAGNESIUM    IN    SYNTHETIC    ORGANIC    CHEMISTRY.         [Jan.  16, 1922. 


Oddo  (Gazzetta,  1908,  38,  I.,  625)  obtained  la  small 
amount  of  propionic  acid,  CH  C.COOH  by  the 
action  of  carbon  dioxide  on  magnesium  acetylene 
bromide,  while  Wohl  (Ber.,  1912,  45,  322)  obtained 
acetylene  dialdehyde  acetal  from  magnesium  acetyl- 
ene bromide  and  orthoformic  ester. 

Estimation  of  active  hydrogen  in  organic 
compounds. 
Zerewitinoff  (Ber.,  1908,  41,  2233)  showed  that  the 
mercaptans,  imino,  and  amino  compounds,  like  the 
alcohols,  react  quantitatively  with  magnesium 
methyl  iodide  to  give  an  equivalent  of  methane. 
This  was  extended  in  1910  (Ber.,  43,  3590)  to  alka- 
loids containing  active  hydrogen  atoms  and  inci- 
dentally, it  was  found  that  pseudo-acids  derived 
from  nitromethane  etc.  behave  as  though  they  con- 
tain one  -OH  group.  Somewhat  later  (Ber.,  1912, 
45,  2384)  Zerewitinoff  6how;ed  that  substances  con- 
taining two  amino  groups  yield  two  equivalents  of 
methane  at  ordinary  temperatures  and  three  equiva- 
lents on  warming.  This  reaction  has  been  applied 
to  the  estimation  of  moisture  in  coal  etc.  (Z.  anal. 
Chem.,  1911,  50,  680). 

Sudborough  employed  magnesium  methyl  iodide 
in  amyl  ether  for  the  estimation  of  -OH  groups 
in  1904  (Chem.  Soc.  Trans.,  85,  933),  while  Hibbert 
(ibid.,  1912,  101,  324)  studied  the  action  of  com- 
pounds containing  -OH,  -NH„,  and  >NH  groups, 
and  later  (ibid.,  p.  344)  used  this  method  for  the 
separation  of  primary  and  secondary  from  tertiary 
amines.  More  recently,  this  method  has  been 
studied  by  Moreau  and  Mignonac  (Comptes  rend., 
1914,  15S,  1624)  and  Ciusa  (Gazzetta,  1920,  50,  II.. 
53). 

The  application  of  these  methods  to  tautomeric 
substances  has  yielded  interesting  results.  Grig- 
nard  (Comptes  rend.,  1902,  134,  849)  has  shown  that 
ethyl  acetoacetate  reacts  in  the  enolic  form,  and  the 
author  (Chem.  Soc.  Trans.,  1919,  105,  1205)  has 
made  a  similar  observation  with  ethyl  malonate, 
whilst  McKenzie  (Chem.  Soc.  Trans.,  1906,  89,  380) 
has  shown  that  menthyl  acetoacetate  reacts  in  the 
enolic  form. 

Sudborough  (J.  Indian  Inst.  Science,  1919,  2,  187) 
has  studied  the  enolisation  of  a  series  of  aldehydes 
and  ketones,  which  seem  to  show  a  maximum 
enolisation  of  about  11%,  while  benzoyl-  and  acetyl- 
acetone  are  enolised  to  the  extent  of  90%. 

Metallic  and  non-metallic  allcyl  and  aryl  compounds. 

Pfeiffer  and  Sehnurrmann  (Ber.,  1904,  37,  319, 
1125,  4617,  etc.)  have  described  a  method  for  the 
preparation  of  alkyl  and  aryl  metallic  compounds 
by  the  interaction  of  metallic  halides  and  the  Grig- 
nard  reagent  either  at  the  ordinary  temperature  or 
at  100°.  Tin  tetra-ethyl,  for  example,  is  prepared 
from  tin  tetrabromide  and  magnesium  ethyl 
bromide  :  — 

SnBr4  +  4MgCsII;iBr  =  Sn(C2Hs)4+4MgBr2. 

The  method  has  been  extensively  applied  for  the 
preparation  of  derivatives  of  other  elements. 

Cyclopentamethyl-stannines  in  which  the  ring 
contains  5  carbon  atoms  and  1  tin  atom  have  been 
obtained  by  Griittner  (Ber.,  1917,  50,  1549), 
while  Krause  (Ber.,  1919,  52,  2150;  1920,  53,  173) 
has  prepared  mixed  alkvlaryl  derivatives  of  tin  and 
lead  by  the  action  of  magnesium  alkyl  haloids  on 
PbPhjBr  and  SnPh3Cl.  More  recently,  tin  diaryls 
have  been  obtained  by  Krause  and  Becker  (Ber., 
1920,  53,  173).  These  compounds  exhibit  an  intense 
colour  and  undergo  a  peculiar  transformation  into 
hexa^aryldistannanes. 

Kipping  and  smith  (Chem.  Soc.  Trans.,  1912,  101, 
2553;  1913,  103,  2034)  prepared  certain  tin  aryl 
compounds  in  an  endeavour  to  obtain  optically 
active  tin  compounds  analogous  to  those  of  silicon. 


The  alkyl  derivatives  of  gold  have  been  investi- 
gated by  Pope  and  Gibson  (Chem.  Soc.  Trans.,  1907. 
91,  2061). 

Lead  tetraphenyl  was  prepared  from  lead  chloride 
and  magnesium  phenyl  bromide  by  Hofmann  and 
Wolfl  (Ber.,  1907,  40,  2425),  whilst' Griittner  (Ber., 
1916,  49,  1125,  1415)  has  prepared  lead  tetra-alkyls. 

More_  recently  Krause  and  Schmitz  (Ber.,  1919, 
52,  2165)  have  prepared  lead  triaryls  which  appear 
to  be  analogous  to  triphenylmethyl ;  the  phenyl, 
p-tolyl,  and  p-xylyl  compounds  were  obtained.  In 
a  later  paper  (ibid.,  2150)  a  large  number  of  mixed 
lead  and  tin  aryls  and  arylalkyls  have  been 
described. 

The  action  of  Grignard  reagents  on  chromium 
trichloride  has  been  studied  by  Turner  (Chem.  Soc. 
Trans.,  1914,  105,  1057;  1919,  116,  559)  who  has 
shown  that  chromous  chloride  is  produced,  the 
Grignard  reagent  thus  functioning  as  a  reducing 
agent :  — 

2CrCl3  +  2MgC.H5Br  = 

2CrCl3+2ClMgBr  +  C,H5.CcH5. 

Similar  results  were  obtained  with  copper  chloride 
and  copper  sulphate.  Hein  (Ber.,  1919,  52,  195) 
claims  to  have  prepared  pentaphenylchromic 
bromide  by  the  action  of  magnesium  phenyl  bromide 
on  chromic  chloride  or  chromyl  chloride. 

Kipping  has  made  a  special  study  of  silicon  com- 
pounds and  with  the  aid  of  the  Grignard  reaction 
has  prepared  racemic  silicon  compounds  which  were 
subsequently  resolved  (Chem.  Soc.  Trans.,  1907,  91, 
209,  717).  This  work  has  been  considerably  extended 
to  embrace  tertiary  silicols  (ibid.,  1911,  99,  138), 
silico-hvdrocarbons  (ibid.,  1910,  97,  142),  and  deriva- 
tives of  silicane  diols  {ibid.,  1912,  101,  2108).  More 
recently  in  collaboration  with  Meads  (ibid  1914, 
105,  1089;  1915,  107,  459)  the  so-called  "  siliconic 
acids,"  which  appear  to  be  much  more  complex 
than  their  presumed  carbon  analogues,  have  been 
prepared.  Silicon  hydrocarbons  with  nuclei  con- 
taining halogens  have  been  prepared  by  Griittner 
and  Cauer  (Ber.,  1918,  51,  1283). 

In  a  series  of  communications  starting  in  1915, 
Lederer  (Ber.,  1915,  48,  2049  etc. ;  Ber.,  1920,  53, 
2342)  has  obtained  a  large  number  of  diaryl  tel- 
lurides,  but  their  nature  and  properties  cannot  be 
conveniently  summarised  here. 

Trialkyl-phosphines,  -arsines,  and  -stibines  were 
prepared  from  the  corresponding  trichlorides  by 
Hibbert  (Ber.,  1907,  39,  160),  while  the  correspond- 
ing arylarsines  have  recentlv  been  studied  by 
Matsiuniva  (Mem.  Coll.  Sci.  Kvoto,  1920,  4,  217; 
J.  Tokyo  Chem.  Soc,  1920,  41,  868)  who  has  ob- 
tained triphenyl-  and  tri-a-naphthyl-arsines.  An 
excellent  method  for  the  preparation  of  tertiary 
phosphine  oxides  has  been  described  by  Pickard  and 
Kenyon  (Chem.  Soc.  Trans.,  1906,  89,  272)  who  ob- 
tained them  from  phosphorus  oxychloride. 

Challenger  (Chem.  Soc.  Trans.,  1914,  105.  2210) 
has  prepared  tertiary  aromatic  bismuthines  by  the 
action  of  Grignard  compounds  on  triphenylbismu- 
thane  dibromide,  and  further  work  is  being  carried 
out  by  this  author. 

Action  of  the  Grignard  reagent  on  some  nitrogen 
compounds:  Oxides  of  nitrogen. 

Some  preliminary  experiments  carried  out  by  the 
author  seem  to  indicate  that  Grignard  reagents 
have  no  action  on  nitrous  oxide.  By  the  action  of 
magnesium  phenyl  bromide  on  nitric  oxide  Sand 
(Ann.,  1903,  329,  190)  obtained  nitrosophenyl- 
hydroxylamine.  Since  carbon  dioxide  and  sulphur 
dioxide  form  oarboxylic  and  sulphinic  acids  respec- 
tively with  a  Grignard  reagent,'  Wieland  (Ber., 
1903,  36,  2315)  tried  the  action  of  nitrogen  peroxide 
in  the  expectation  of  obtaining  acids  of  the  type 
R.NOOH.  Instead  of  this  type,  however,  ho  ob- 
tained, in  the  aliphatic  series  y8/3-dialkylhydroxyl- 
amines,   R,.NOH,  the  nitrogen  peroxide  undergo- 


Vol.  XIX,  No.  l.]      HEPWORTH.— MAGNESIUM    IN    SYNTHETIC    ORGANIC    CHEMISTRY. 


9t 


ing  reduction.  Oddo  has  shown  (Gazzetta,  1909,  39, 
I.,  659)  that  nitrosobenzene  may  be  obtained  in  56% 
yield  from  nitrosyl  chloride  and  magnesium  phenyl 
bromide. 

Aliphatic  diazo  compounds. 

Forster  and  Cardwell  (Chem.  Soc.  Trans.,  1913, 
103,  861)  investigated  the  action  of  magnesium 
methyl  iodide  and  magnesium  phenyl  bromide  on 
diazocamphor  and  diazodeoxybenzoin,  and  the  re- 
sults obtained  seem  to  favour  the  Thiele  formula 
(CH2:N  ;N)  rather  than  the  cycloid  formula.  Zerner 
(Monatsh.,  1913,  34,  1609)  by  the  action  of  mag- 
nesium methyl  iodide  on  ethyl  diazoacetate  obtained 
a  solid  and  an  oily  product.  The  solid  product  is 
probably  the  methylhydrazone  of  ethyl  glyoxalate 
and  the  oil  appears  to  be  the  methylhydrazone  of 
hydroxyisobutyraldehyde.  Zerner  criticises  the 
Angeli-Thiele  formula  and  proposes  instead  the 
type  R:N-N,  making  the  active  nitrogen  atom 
univalent. 

On  nitro  compounds,  nitrous  and  nitric  esters. 

Moureu  (Comptes  rend.,  1901,  132,  837)  obtained 
/3/3-diethylhydroxylamine  by  the  action  of  mag- 
nesium ethvl  iodide  on  amyl  nitrite  and  on  nitro- 
ethane.  Oddo  (Atti  R.  Accad.  Lincei,  1904,  (V.), 
13,  ii.,  220)  obtained  ethylaniline  from  MgEtl  and 
nitrobenzene.  Bewad  (Ber.,  1907,  40,  3065)  studied 
the  action  of  magnesium  or  zinc  alkyl  iodides  on  the 
esters  of  nitrous  acid  and  on  nitroparaffins ;  in  all 
cases  /3/3-dialkylhydroxylamines  were  obtained. 

The  author  studied  the  action  of  magnesium  alkyl 
halides  on  aromatic  nitro  compounds  (Chem.  Soc. 
Trans.,  1920,  117,  1004)  and  obtained  alkylanilines 
and  azo  compounds.  The  reaction  with  magnesium 
phenyl  bromide  is  much  more  complex.  Further  ex- 
periments (unpublished)  seem  to  show  that  the  zinc 
alkvl  iodides  behave  similarly.  In  a  further  paper 
(ibid.,  1921,  119,  251)  the  action  of  Grignard  re- 
agents on  nitric  esters  has  been  studied  and  it  has 
been  shown  that  magnesium  alkyl  halides  react  with 
ethyl  nitrate,  glycol  dinitrate,  and  nitroglycerin, 
with  the  production  of  /3/3-dialkylhydroxylamines, 
the  Grignard  reagent  thus  functioning  as  a  reducing 
agent. 

07!  nitrosobenzene  and  nitroso-amines. 

Diphenvlhydroxvlamine  has  been  obtained  by 
Wieland  (Ber.,  1912.  45,  494;  1914,  47,  2112;  1920, 
52,  216)  from  nitrosobenzene  and  magnesium  phenyl 
bromide.  This  compound  has  formed  the  starting 
point  of  a  number  of  interesting  researches  carried 
out  by  Wieland. 

The  action  of  Grignard  reagents  on  nitrosamines 
has  also  been  studied  by  Wieland  (Ber.,  1911,  44, 
S98) ;  magnesium  ethyl  iodide  and  nitrosodiethyl- 
amine  gave  acetaldehyde-diethylhydrazone  while 
nitrosodiphenylamine  gave  acetaldehyde-diphenyl- 
hydrazone. 

On  pyrrole  and  similar  compounds. 
Oddo  (Ber.,  1910,  43,  1012)  prepared  magnesium 
pyrryl  iodide  and  found  that   it   reacts  with  aryl 
chlorides  with  the  formation  of  ketones  of  the  type 

CH— NH— C(COR) 
CH 'CH 

Somewhat  later  (Gazzetta,  1911,  41,  221)  the  same 
author  found  that  aryl  chlorides  react  with  mag- 
nesium indolyl  chloride  to  give  3-acylindoles 


,  C^-COR 
CH4<         >CH 


XNH 


r 


which  are  accompanied  by  traces  of  1.3-diketones 
/  C^-COR 

C^Hjx  yCH 

\n/.cor 


Action  of  Grignard  reagents  on  quinones. 

In  1908,  Clarke  showed  that  magnesium  ethyl 
bromide  reacts  with  anthraquinone  to  give  9.10-di- 
hydioxy-9.10-diethyldihydroanthracene.  Somewhat 
later  (J.  Amer.  Chem.  Soc,  1911,  33,  1966)  he 
showed  that  when  an  excess  of  anthraquinone  was 
employed,  ethyloxanthranol  was  formed. 

Bamberger  and  Blangey  (Ann.,  1911,  384,  272) 
studied  the  action  of  magnesium  methyl  iodide  on 
i  i  tain  quinones.  With  p-xyloquinone  the  reaction 
was  found  to  yield  a  variety  of  products  from  which 
p-xyloquinol,  V'-cumoquinol,  ^-cuminol,  and  prehn- 
itol  were  isolated. 

Terpenes  and  camphors. 

The  brilliant  syntheses  of  terpin,  terpineol,  and 
dipentene  by  Perkin  (Chem.  Soc.  Trans.,  1904,  85, 
654)  have  been  followed  by  a  long  series  of  com- 
munications by  Perkin  and  his  collaborators  during 
which  a  number  of  menthenols  and  menthadienes 
have  been  obtained.  The  original  literature  should 
be  consulted  on  this  work.  Further  hydrocarbons 
allied  to  the  terpenes  have  been  svnthesised  by 
Haworth  and  Fife  (ibid.,  1914,   105,  1659).     Bredt 

I    (J.    prakt.   Chem.,   1918,    ii.,   98,   96)   has   obtained 

I  methylborneol  and  methylfenchol  by  the  action  of 
magnesium  methyl  iodide  on  camphor  and  fenchone 

I  respectively,  while  Semmler  (Ber.,  1917,  50,  1823) 
has  investigated  some  sesquiterpenes.  Komppa 
and  Hintikka  (Ber.,  1913,  46,  645)  have  shown  that 
fenchyl  chloride  reacts  with  magnesium  in  the 
course  of  a  week,  and  when  carbon  dioxide  is 
passed  into  it  a  complicated  mixture  containing 
hydrofenchenecarboxylic  acid  and  hydrodifenchene- 

j   carboxylic  acid  is  formed. 

Organo-sulphur  and  allied  compounds. 

Comparatively  few  experiments  have  been  carried 
i    out  on  the  action  of  Grignard  reagents  on  organo- 
sulphur  compounds.    Wuyts  and  Cosyns  (Bull.  Soc. 
Chim.,  1903,  (iii.),  29,  89)  studied  the  action  of  sul- 
phur,  selenium,   and   tellurium  on   Grignard  com- 
pounds, whilst  Taboury  (ibid.,   1903,   (iii.),  29,  761 
!   etc.)  obtained  mercaptans  and  sulphides  in  a  similar 
manner.    Somewhat  later,  Wuyts  (ibid.,  1909,  (iv.), 
j    5,  405)  showed  that  disulphides  were  also  produced 
in  these  reactions. 

The  action  of  sulphur  dioxide  on  Grignard  eom- 
I  pounds  has  been  investigated  by  Rosenheim  and 
I    Singer  (Ber.,  1904,  37,  2152)  and  by  Oddo  (Gazzetta, 

1911,  41,  II.,  11),  whilst  Strecker  (Ber.,  1900,  43, 
!  1131)  has  studied  the  action  of  sulphur  chloride, 
!    thionvl  chloride,  and  the  esters  of  sulphurous  acid. 

Oddo'(Atti  R,  Accad.  Lincei,  1905,  (V.),  14,  i.,  169) 
obtained  phenylsulphinic  acid,  chlorobenzene,  and 
diphenyl  by  the  action  of  magnesium  phenyl  brom- 
ide on  sulphonyl  chloride. 

Houben  and  Kesselkaul  (Ber.,  1902,  45,  3596) 
studied  the  action  of  carbon  bisulphide,  whilst 
AViegert  (Ber.,  1903,  36,  1007)  investigated  the 
action  of  carbonyl  sulphide.  Sachs  (Ber.,  1903,  36, 
585)  studied  the  action  of  isothiocyanates,  whilst 
Adams  and  his  collaborators  (J.  Amer.  Chem.  Soc., 
1920,  42,  2369)  have  studied  the  action  of  thiocyan- 
ates.      Ferns   and    Lapworth    (Chem.    Soc.    Trans., 

1912,  101,  285)  found  that  the  reaction  between 
Grignard  compounds  and  sulphonic  esters  may 
follow  one  or  more  of  the  three  following  courses :  — 

(1)  R.S02.OC2H6+MgXBr  =  R.S02.OMgBr-i-aH6X, 

(2)  „  „  =R.S02X+Mg(OC,H6)Br 

"or  C2H„+MgOH.Br. 

(3)  R.S02.O.CnHm+1  +  MgXBr=R,S02.OMgBr+HX+ 

CnHm. 

The  author  in  collaboration  with  H.  W.  Clapham 
(Chem.  Soc.  Trans.,  1921,  119,  1188)  has  investi- 
gated the  action  of  Grignard  reagents  on  benzene- 
sulphonyl  chloride  and  ethyl  chlorosulphonate.  In 
each  case  the  principal  products  of  reaction  were 


10t 


HEPWORTH.— MAGNESIUM    IN    SYNTHETIC    ORGANIC    CHEMISTRY.      [Jan.  16.  1922. 


sulphoxides,  not  sulphones  as  might  be  expected. 
Indeed  the  yield  of  sulphoxides  is  so  satisfactory 
that  the  authors  venture  to  recommend  this  method 
for  the  preparation  of  disphenylsulphoxide.  Thio- 
carbonates,  thiobenzoates,  and  thioacetates  were 
also  produced  from  Mg(SC2H5)X  (cf.  Zerewitinoff , 
Ber.,  1908,  41,  2233),  and  found  to  react  in  the 
usual  manner  with  Grignard  reagents,  with  the 
production  of  tertiary  alcohols  containing  no 
sulphur  : 

Mg(SC2H5)X+ClCOR   (C1C02R)->C2HSS.C0.R 

(C2H6S.COaR) 

,0  yOMgX 

R.C<  +2MgR1X=R.C/R1+Mg(SC,H6)X. 


SSC2H= 


\R* 


The  sulphones  are  remarkably  stable  towards 
Grignard  reagents,  thus  phenylbenzylsulphone, 
C6HsSO,CH„C6H5,  bears  no  analogy  to  desoxy- 
tenzoin,  C«Hs.CO.CH2.C6H5. 

More  recently  Wedekind  and  Schenk  (Ber.,  1921, 
54,  1604)  have  studied  the  interaction  of  Grignard 
reagents  and  a  number  of  arylsulphonic  chlorides. 
Benzenesulphonic  chloride  gave  mainly  diphenyl- 
sulphoxide.  With  other  sulphonic  chlorides,  sul- 
phones and  sulphides  were  also  produced,  and  the 
exact  course  of  the  reaction  is  obviously  influenced 
by  the  specific  nature  of  the  components. 

Asymmetric  synthesis. 

Ketonic  esters  obviously  present  two  points  of 
attack  to  the  Grignard  reagent,  but,  by  careful 
regulation  of  the  relative  quantities  of  ester  and 
reagent,  it  is  possible  to  limit  the  reaction  almost 
completely  to  the  carbonyl  group.  In  this  way 
Grignard  (Comptes  rend.,  1902,  135,  627)  has  pre- 
pared a  series  of  hydroxy  esters  : 

R 


K.) 


C(OH) 


-  COOC,H6 


The  reaction,  of  course,  cannot  be  applied  to 
ketonic  esters  which  possess  the  ability  to  pass  into 
an  enolic  form. 

This  reaction  has  been  extensively  employed  in 
asymmetric  synthesis  by  McKenzie  and  his  co- 
workers (Cheni.  Soc.  Trans.,  1906,  89,  365,  688; 
1909,  95,  544,  etc.),  the  action  of  organomagnesium 
halides  on  the  menthyl,  bornyl,  and  amyl  esters  of 
o,  /?,  7-ketomc  acids  having  been  studied — e.g., 
C,H5  CO.  COOH  (inactive)  1 

C6H5  CO.  COOMenthyl  (active)  (MgMe  X  ) 

Me  i         Me 

C„H5  C.  COO  C10H9  (active)->PhC.  COOH(active) 
OH  OH 

McKenzie  and  Wren,  and  Wren  (Chem.  Soc. 
Trans.,  1908,  93,  310;  1909,  95,  1583)  have  obtained 
r-,  1-,  and  d-benzoin,  C6H5CHOH.CO.C6H5,  by  the 
action  of  magnesium  phenyl  bromide  on  r-,  1-,  and 
d-mandelamide  respectively,  while  a  series  of  optic- 
ally active  glycols  have  been  obtained  by  the  action 
of  MgPhBr  on  ^-benzoin  or  methyl  7-mandelate 
(ibid.,  1910,  97,  473;  1913,  103,  112).  More  recently 
McKenzie,  Drew,  and  Martin  (ibid.,  1915,  107,  26) 
have  converted  (-phenylchloroacetie  acid  into 
<?-diphenylsuccinic  acid  by  the  action  of  magnesium 
phenyl  bromide.  In  this  reaction  rf.o/3-dihydroxy- 
o/3/8-triphenylethane,  /3-diphenylsuccinic  and  di- 
phenylacetic  acids  were  also  obtained. 

Different  methods  of  applying  the  Grignard  reagent. 

In  applying  Grignard  reagents  it  is  customary 
to  prepare  an  ethereal  solution  of  magnesium  alkyl 
or  aryl  halide  separately,  and  then  allow  it  to  react 
with  the  substance  under  investigation.  Davies  and 
Kipping  (Chem.  Soc.  Trans.,  1911,  99,  296)  have 
shown  that  in  many  cases  it  is  not  necessary  first 
to  prepare  a  solution  of  the  Grignard  compound, 
but  that  the  alkyl  halide  and  substance  to  be  acted 
upon  may  be  slowly  added  to  well-stirred  ether  to 


which  magnesium  is  added  from  time  to  time.  This 
method  is  rather  more  economical  in  ether  and  alkyl 
halide  and  has  been  extensively  employed  by 
Kipping  in  his  organo-silicon  work.  The  method 
failed  in  the  case  of  acetone  (loc.  cit.),  and  the 
author  has  observed  a  similar  failure  with  certain 
nitric  esters  (Chem.  Soc.  Trans.,  1921,  119,  251). 

Pickard  and  Kenyon  (ibid.,  1911,  99,  45;  1912, 
101,  620)  prepared  a  large  number  of  secondary 
alcohols  during  their  investigations  on  the  depend- 
ence of  rotatory  power  on  chemical  constitution. 
In  many  cases,  the  yield  of  secondary  alcohol  was 
not  very  satisfactory,  and  they  therefore  tried  the 
method  of  Davies  and  Kipping,  but  a  considerable 
portion  of  the  aldehyde  was  reduced  to  primary 
alcohol,  which  it  was  almost  impossible  to  separate 
from  the  secondary  alcohol  required. 

The  author  has  shown  that  selective  action  of  the 
Grignard  reagent  may  frequently  occur  when  the 
latter  is  employed  in  this  manner.  Thus,  by  the 
action  of  magnesium  and  alkvl  halides  on  diethyl 
oxalate  (ibid.,  1919,  115,  1203)  a  satisfactory  yield 
of  a-hydroxyisobutyric  acid  may  be  obtained. 

The  use  of  "  activated  "  magnesium  (Baeyer. 
Ber..  1905,  38,  2759)  does  not  appear  to  have 
received  much  application. 

The  formation  of  Grignard  reagents. 

In  carrying  out  synthesis  with  the  aid  of  the 
Grignard  reagent,  it  is  customary  to  employ  ethyl 
ether  as  the  solvent  medium  in  which  the  required 
magnesium  alkyl  or  aryl  halide  is  prepared,  but  the 
use  of  ether  is  bv  no  means  essential. 

Spencer  and  Stokes  (Chem.  Soc.  Trans.,  1908. 
93,  68)  found  that  when  iodobenzene,  p-iodotoluene, 
etc.  were  heated  at  their  boiling  point  with  mag- 
nesium, products  of  the  type  RMgX  were  produced. 
Spencer  and  Crewdson  (ibid.,  1908,  93,  1822)  showed 
that  the  lower  alkyl  halides,  up  to  butyl,  only  react 
with  magnesium  when  heated  to  270°  C.  in  a  sealed 
tube.  The  reaction  is  regarded  as  taking  place 
along  the  lines,  RX  +  Mg=RMgX;  2RX+Mg  = 
KR  +  MgX„.  but  unsaturated  hydrocarbons  are 
always  also  formed  (Kahan,  ibid.,  1908,  93,  133; 
Spencer,  Ber.,  1908,  41,  2302). 

In  1904  Tschelinzeff  (Ber.,  1904,  37.  4534)  sug- 
gested that  the  ether  might  be  replaced  by  tertiary 
amines,  but  in  the  hands  of  other  investigators  the 
method  has  not  led  to  satisfactory  results. 

In  the  course  of  their  investigations  on  oxonium 
compounds,  Pickard  and  Kenyon  (Chem.  Soc. 
Trans.,  1906.  89,  262)  found  that  tribenzylphosphine 
oxide  may  replace  ether  in  the  formation  of 
magnesium-alkyl  halides,  and  succeeded  in  obtain- 
ing a  compound  2(CrH;)3PO,CH3MgI  in  the 
crystallino  condition. 

The  author  (ibiil..  1921,  119,  1249)  has  found  that 
the  alkyl  sulphides,  selenides,  and  tellurides 
accelerate  the  formation  of  magnesium  methyl 
iodide,  but  not  to  such  an  extent  as  ether.  Sulph- 
oxides are  also  catalysts  and  appear  to  form 
amorphous  compounds  of  the  general  formula 
2R,SO,MgCH3I.  A  series  of  open-chain  sulphides 
and  ethers,  and  heterocyclic  sulphur,  oxygen,  and 
sulphur  and  oxygen  compounds  were  prepared  and 
their  catalysing  action  of  the  formation  of  mag- 
nesium alkyl  halides  studied. 

The  function  of  the   catalyst   in   the  formation  of 
Grignai  <l  compounds. 

Whether  the  presence  of  a  catalyst  is  absolutely 
necessary  or  no,  there  is  no  doubt  but  that  the 
presence  of  ether  does  enormously  accelerate  the 
formation  of  magnesium  alkyl  and  aryl  halides,  and 
it  is  by  far  the  most  suitable  catalyst  which  ha* 
been  devised. 

From  the  original  analyses  by  Blaise  (Compter 
rend.,  1901,  132.  S39)  it  was  concluded  that  these 
otherates  were  best  represented  by  the  formula 
RMgX.(C,H.),0.     In   view  of  the   fact   that  Grig- 


Vol.  XIX,  No.  1.] 


LOWE.— APPARATUS  FOR  TECHNICAL  GAS  ANALYSIS. 


11t 


nard  showed  in  his  dissertation  (L'Univ.  de  Lyon, 
1901)  that  the  whole  of  the  ether  could  not  be  re- 
moved from  the  compound  MgCH3I,(C.,Hs),0  by 
heating  for  several  days  in  a  vacuum.  Baever  and 
Villiger  (Ber.,  1902,  35,  1201)  regarded  this  com- 
pound as  a  true  oxonium  compound 


C2H5. 
C2H 


■MgOH, 


>o/ 


C2H 


/   \ 


■Mgl 
CH, 


(Comptes  rend.,  1903,  136,  1260)  also  admits  of  the 
existence  of  isomerides  since  the  two  additional 
valencies  of  the  oxygen  atom  have  not  the  same 
value  as  the  original  two. 

The  exact  nature  of  these  etherates  is  somewhat 
difficult  to  characterise  since,  as  a  rule,  they  are 
uncrystallisable  substances.  Zerewitinoff  (Ber., 
190S.  41,  2244)  has,  however,  succeeded  in  preparing 
a  crystalline  compound, 

°sH»*\0/1 

C6H,/   NtfgCH, 

by  the  interaction  of  methyl  iodide  and  magnesium 
in  the  presence  of  amyl  ether. 

Tschelinzeff  (Ber.,  1908,  41,  646)  claimed  to  have 
isolated  "aminates"  of  the  general  typeRjN.MgRX 
and  "  amine  etherates  "  of  the  type 
R3N,MgRX,(C:H5JA 

but  the  use  of  tertiary  amines  instead  of  ethers  does 
not  appear  to  have  met  with  much  success. 

In  1904,  Tschelinzeff  (Ber.,  1904,  37,  4534)  came 
to  the  conclusion  that  the  ether  plays  the  part  of  a 
catalyst,  forming  an  additive  compound  with  the 
alkyl  halide,  which  subsequently  reacts  with  mag- 
nesium to  form  magnesium  alkyl  halide  with  re- 
generation of  the  original  ether.  If  this  is  actually 
the  case,  it  should  be  possible  to  find  an  ether  the 
oxonium  compound  of  which  can  dissociate  in  two 
directions  with  the  production  of  two  different 
organo-magnesium  compounds. 

R1I+K>°-*R>0<F  -  R>0+BI, 

Stadinikoff  claims  to  have  found  such  cases,  but 
the  original  literature  should  be  consulted,  as  his 
researches  cannot  be  satisfactorily  summarised 
(Ber.,  1911,  44,  1157,  and  various  papers  in  Journal 
of  the  Russian  Physical-Chemical  Society,  1911 
onwards). 

Grignard  has  shown  (Bull.  Soc.  Cliim.,  1907,  (iv.), 
1,  256)  that  the  catalytic  action  of  the  tertiary 
bases  cannot  be  due  to  the  primary  formation  of 
compounds  of  the  type  RR^.R^NX  since  these 
compounds  do  not  react  with  magnesium,  and  he 
further  suggests  that  the  two  additional  valencies 
of  nitrogen  in  pentavalent  nitrogen  have  not  the 
same  value  as  the  original  three. 

Some  interesting  views  on  the  mechanism  of  the 
Grignard   reagent   were   expressed   by    von    Braun 


More  recently  Jolibois  (Comptes  rend.,  1913,  156, 
712)  has  studied  the  formation  of  magnesium 
methyl  iodide  in  dry  ether,  and  has  found  that 
practically  no  secondary  reactions  occur  under  any 
conditions.  The  ether  of  constitution  is  given  up  at 
130°  C.  in  vacuo,  and  at  240°  methane  is  evolved. 
At  600°  no  more  gas  is  evolved,  and  the  yellow- 
residue  from  which  only  a  definite  portion  of  the 
iodine,  as  magnesium  iodide,  can  be  extracted  by 
dry  ether,  leaves  a  compound  jMg3C,MgI3,  which  is 
violently  decomposed  with  water. 

Baeyer  and  Yilliger's  formula  obviously  admits 
of  isomerism,  and  Tschelinzeff  (Comptes  rend.,  1907, 
144,  SS)  claimed  to  have  obtained  evidence  of  such 
isomerism.  Grignard,  however,  has  stated  (Bull. 
Soc.  Chim.,  1907,  (iv.),  1,  256)  that  his  formula 


(Ber.,  1919,  52,  1725).  This  author  found  that  the 
reaction  product  of  magnesium  and  N./J-bromo- 
ethyl-N-methylaniline,  C6HsN(CH,)CH2CH:Br,  re- 
acted normally  with  aldehydes  to  give  secondary 
alcohols,  but  with  ketones  gave  an  additive  com- 
pound which  on  hydrolysis  gave  methylethylaniline 
and  the  original  ketone.  It  is  suggested  that  in 
both  cases  the  intermediate  product  is — 

R        _      -MgBr 

(R.)  H>C-0;  <CH 

c6u6 

but  that  only  in  the  ca6e  of  the  aldehydes  do  these 
subsidiary  valencies  become  principal  valencies. 

If  the  catalytic  activity  of  ether  in  promoting  the 
formation  of  magnesium  methyl  iodide  be  assumed 
to  be  due  to  formation  of  oxonium  salts  of  the 
type— 

Q;H5,        /CH, 

c2h/  \i 

then  a  mixture  of  magnesium  methyl  and  ethyl 
iodides  should  result.  Meisenheimer  and  Casper 
(Ber.,  1921,  54,  1655)  have  suggested  that  the  diffi- 
culty may  be  overcome  by  considering  that  the 
action  between  ether  or  base  and  alkyl  halide  pro- 
ceeds only  to  the  subsidiary  valency  stage — 

(C2H6)20  -     -  CH3I  AIU3N  -     -  C„H6I. 

In  the  same  paper  it  is  suggested  that  the  etherates 
may  be  regarded  as  complex  compounds  of  mag- 
nesium in  which  the  central  atom  has  the  co-ordina- 
tion number  4,  e.g. — 

(C2H6)20,  ,Alk 

>Mg< 

(C.Hs^O^        \Hal. 

When  brought  into  reaction  with,  say,  acetone,  the 
latter  by  virtue  of  its  greater  reaction  energy  dis- 
places a  molecule  of  ether  yielding  the  substance — 


(CH3)„CO., 


>Mg 


Alk 
Hal. 


(C2H6)0'" 

Rearrangement  of  the  bonds  then  takes  place  and 
the  -CO  group  becomes  linked  by  a  principal 
valency,  whilst  the  alkyl  group  which  has  become 
detached  attaches  itself  to  the  chief  bond  of  tie 
carbonyl  carbon  atom  which  has  become  free,  and 
the  vacant  co-ordination  position  of  the  magnesium 
atom  is  taken  by  a  molecule  of  ether — ■ 


(CH,)2C.Alk.O 


\ 


,-0(C2H6)2 


(C2H6)20/        \Hal. 


Communication. 


A  NEW  APPARATUS  FOR  TECHNICAL  GAS 
ANALYSIS  AND  FOR  THE  RAPID  DE- 
TERMINATION OF  AMMONIA  IN  WASTE 
LIQUOR. 

Br  H.    SI.   LOWE,    M.SC. 

In  the  apparatus  here  described,  an  ordinary  ga.s 
burette,  A,  filled  with  dilute  sulphuric  acid 
and  fitted  with  a  levelling  bottle,  B,  is  perma- 
nently connected  by  pressure  tubing  to  a  single 
pipette  or  absorption  vessel  filled  with  mercury. 
which  is  made  to  serve  for  all  the  absorptions  and 
the  explosion  in  turn.  The  burette  is  water 
jacketed  (not  shown  in  the  figure). 

The  pipette,  of  about  200  c.c.  capacity,  has  at  the 
top  a  three-way  stopcock,  C,  one  limb  of  which  is 
connected  to  the  burette;  the  other,  open  to  the 
atmosphere,  serves  for  introducing  or  expelling  gas 


12  T 


LOWE— APPARATUS  FOR  TECHNICAL  GAS  ANALYSIS. 


(Jan.  16, 1922. 


or  reagents.  Platinum  wires,  D,  are  fused  into  the 
bulb  near  thp  top  and  serve  for  passing  an  electric 
spark.  At  the  bottom  of  the  pipette  is  a  plain  stop- 
cock,   E   (which   remains   open  except   for  the   ex- 


plosion), and  a  length  of  pressure  tubing  connected 
to  a  pear-shaped  mercury  reservoir.  This  is  capable 
of  being  held  in  either  of  two  positions,  marked 
1  and  2.  The  whole  is  fixed  to  a  specially  made 
wooden  stand  or  else  to  a  heavy  iron  retort  stand 
with  broad  base  by  means  of  clamps  and  rings.  The 
burette  is  calibrated  in  cubic  centimetres  divided 
into  fifths,  and  holds  100  c.c.  from  the  point  on  the 
pipette  side  of  the  stopcock,  C,  which  is  marked  p. 
When  the  gas  is  measured,  the  capillary  between 
this  point  and  the  burette  is  always  filled  with  gas. 

In  use,  the  mercury  reservoir  is  placed  in  position 
1  to  draw  in  the  gas  from  the  sample  tube,  or  from 
the  measuring  burette,  or  to  draw  in  reagent,  of 
which  about  10  c.c.  is  placed  in  a  small  dish  sucli 
as  a  crucible.  '  When  the  reservoir  is  placed  in 
position  2  the  gas  may  be  passed  to  the  burette,  or 
expelled,  or  the  used  reagent  may  be  expelled. 
The  levelling  bottle,  B,  need  not  be  touched  except 
when  taking  the  reading  in  the  burette,  when  it  is 
brought  into  such  a  position  that  the  dilute  acid 
is  at  the  same  level  in  the  bottle  and  the  burette. 


The  absorptions  are  easily  conducted  by  means  of 
the  usual  reagents,  by  shaking  the  apparatus, 
which,  when  mounted,  has  quite  sufficient  flexibility 
to  permit  of  this.  The  stock  solution  of  pyrogallol 
need  not  be  made  alkaline  but  can  be  introduced 
into  the  pipette  which  already  contains  caustic  soda 
from  the  previous  absorption.  The  neutral  solution 
of  pyrogallol  is  comparatively  stable  in  air. 

The  explosion  is  conducted  under  a  reduced 
pressure  by  lowering  the  mercury  reservoir  as  far 
as  possible  and  then  closing  the  stopcock,  E,  before 
replacing  the  reservoir  on  its  stand  at  1  or  2. 

The  apparatus  is  thus  much  easier  to  manipulate 
than  the  Hempel  apparatus  or  the  Bunte  burette, 
and  has  the  advantage  of  having  no  temporary  con- 
nexions to  be  made  to  it  throughout  the  whole 
analysis.  It  has  also  a  theoretical  advantage 
over  the  former  apparatus  in  using  for  each  absorp- 
tion a  small  quantity  of  fresh  reagent.  This 
minimises  the  absorption  of  gases  other  than  those 
intended.  It  has  a  much  greater  accuracy  than  the 
Orsat  apparatus,  and  the  absorptions  (especially 
that  of  carbon  monoxide)  are  more  easily  conducted. 
The  author  prefers  to  absorb  carbon  monoxide  with 
two  lots  of  ammoniacal  cuprous  chloride,  afterwards 
washing  the  gas  with  dilute  sulphuric  acid. 

A  slight  modification  may  be  made  if  the  appa- 
ratus is  intended  to  be  generally  used  for  only  one 
absorption,  such  as  carbon  dioxide  in  flue  gases. 
A  second  three-way  stopcock  is  fused  on  to  the 
burette,  A,  as  shown  in  the  small  diagram  at  F. 
This  enables  the  burette  to  be  directly  filled  with 
gas  without  passing  through  the  reagent  pipette. 
A  certain  amount  of  potash  may  thus  be  kept  in 
this  pipette  and  used  several  times  without  being 
emptied  or  washed  out. 

A  further  interesting  use  of  this  apparatus  in 
coke-oven  laboratories  is  for  the  analysis  of  waste 
ammonia  liquors  by  decomposition  with  6odium 
hypobromite.  It  is  generally  acknowledged  that 
the  hypobromite  method  yields  somewhat  erroneous 
results  on  a  strong  liquor,  but  with  a  waste  liquor 
high  accuracy  is  not  generally  required.  Unfortu- 
nately the  azotometer  of  Wagner,  with  its  double 
decomposition  bottle,  includes  a  certain  amount  of 
air,  and  a  slight  change  in  temperature  of  this 
alters  its  volume  to  such  an  extent  as  entirely  to 
vitiate  the  results  obtained  with  a  weak  liquor  such 
as  a  waste  liquor.  With  the  apparatus  described, 
20  c.c.  of  waste  liquor,  which  may  be  hot  from  the 
still  (provided  it  is  not  hot  enough  to  crack  the 
glass),  is  introduced,  the  dish  rinsed  with  a  little 
water  and  the  hypobromite  solution  then  added. 
After  shaking  for  a  minute  the  gas  generated  may 
be  passed  into  the  measuring  burette,  and  is  already 
sufficiently  cool  to  indicate  approximately  the 
amount  of  ammonia  in  the  liquor.  The  amount  of 
gas  is  usually  so  small  as  to  render  correction  for 
temperature  and  pressure  unnecessary.  The  whole 
operation,  instead  of  requiring  a  distillation,  thus 
occupies  about  5  minutes. 

The  apparatus  is  made  by  Charles  Gray,  49, 
Grange  Road,  Leigh-on-Sea. 

The  author's  thanks  are  due  to  Messrs.  Bell 
Brothers,    Ltd.,    for    permission    to    publish    these 

dntii'N. 


Vol.  XLI.,  No.  2.] 


TRANSACTIONS 


Jan.  31,  1922. 


American  Section. 


Meeting  held  at  Chemists'  Club  on  October  21,  1921. 


THE  DEVELOPMENT  OF  A  NEW 
REFRACTORY. 

BY  A.   F.   GBEAVES-WALKEK. 

A  considerable  amount  of  research  work  has  been 
done  during  the  past  seventeen  years  in  an  effort 
to  produce  a  refractory  that  would  have  a  fusion 
point  considerably  above  that  of  those  made  of  the 
best  grade  of  flint  fireclay.  The  result  of  this  work 
has  been  the  recent  development  of  at  least  one  new 
refractory  of  this  type — sillimanite,  a  stable  silicate 
of  alumina  having  the  formula  Al„Oj,SiO,. 

About  twenty  years  ago  a  serious  need  began  to 
be  felt  for  a  refractory  that  would  not  only  with- 
stand extremely  high  temperatures,  but  would  carry 
heavy  loads  practically  up  to  its  fusion  point,  would 
resist  the  deteriorating  effect  of  the  blast  from  oil 
burners,  and  would  withstand  rapid  and  extreme 
fluctuations  in  temperature.  It  was  about  this  time 
that  the  author  began  work  on  the  problem. 

The  raw  materials  or  minerals  which  would  with- 
stand high  temperatures  were  well  known  and 
limited  in  number,  and  knowing  the  various  con- 
ditions to  be  met,  it  did  not  take  long  to  decide  that 
the  ores  of  aluminium  offered  the  only  promise. 
The  three  best  known  are  bauxite,  AI,0„2H2O, 
diaspore,  A1203,H20,  and  gibbsite,  Al2Os,3H20.* 
The  deposits  of  these  ores  are  large  and  widely  dis- 
tributed over  the  earth's  surface,  but  are  now  prac- 
tically all  in  the  hands  of  the  large  aluminium  and 
chemical  companies. 

Cornu  and  Redlicht  and  Wohlint  maintain  that 
there  are  but  two  hydrates  of  alumina,  the  mono- 
and  tri-hydrates,  and  that  bauxite  is  simply  a 
mixture  of  the  two.  An  examination  of  many  of 
the  so-called  bauxite  deposits  of  the  country  leads 
the  author  to  agree  with  their  contention.  This, 
however,  is  not  a  factor  in  the  use  of  this  ore  as  a 
refractory. 

The  first  experiments  carried  out  by  the  author 
in  1904  were  made  on  a  diaspore,  but  it  was  found 
that  at  that  time  this  mineral  was  not  obtainable  in 
sufficiently  large  quantities  or  of  sufficient  purity, 
the  ore  used  containing  only  from  50 — 60%  of  A1,0, 
and  averaging  35%  of  Si02.  It  was  then  decided 
to  confine  the  work  to  bauxite,  which  was  obtain- 
able in  unlimited  quantities  and  of  any  quality  de- 
sired. The  great  drawback,  however,  was  its  high 
combined  water  content  and  consequent  high 
shrinkage  that  did  not  cease  until  very  high  tem- 
peratures were  reached.  Much  of  the  earlier  work 
was  done  in  an  attempt  to  eliminate  this  shrinkage, 
and  most  of  the  efforts  to  use  bauxite  were  aban- 
doned in  the  end  because  of  the  apparent  inability 
to  do  so  without  making  its  cost  prohibitive  for 
anything  but  special  purposes. 

It  was  found  that  most  ores  must  be  calcined  to 
at  least  1500°  C.  before  being  made  into  brick  if 
they  were  to  be  at  all  safe  and,  furthermore,  that  it 
was  much  safer  to  carry  the  calcination  tempera- 
ture to  1650°  C.  The  greater  part  of  the  refrac- 
tories produced  betwen  1905  and  1918  were  made 
from  ores  that  had  been  calcined  at  temperatures 
below  1500°  C,  with  the  result  that  the  experi- 
mental installations  often  failed. 

Another  problem  which  presented  itself  was  the 
bonding  of  the  calcined  ore.  The  fact  that  the 
material  was  extremely  refractory  prevented  it  from 

•  See  Dana,  "  A  system  of  mineralogy,"  1911. 
t  Z.  Chem.  Ind.  Kolloide,  1908,  4,  90. 
X  Sprechsaal,  1913,  48,  719. 


bonding  itself,  and  the  addition  of  fluxes  as  binders 
lowered  the  fusion  point.  Several  satisfactory  bond- 
ing agents  were  eventually  found,  however. 

At  the  time  this  work  was  being  carried  on 
very  little  was  known  about  sillimanite,  the  main 
effort  being  directed  towards  obtaining  an  alu- 
minium oxide  content  as  near  100%  as  possible.  It 
was  soon  found  in  practice,  however,  that  pure  or 
nearly  pure  alumina  had  many  unsatisfactory 
qualities,  certain  combinations  of  A1,03  and  SiO, 
being  found  superior  from  both  a  physical  and  a 
chemical  standpoint. 

The  early  applications  of  bauxite  refractories 
were  principally  confined  to  lining  the  hot  zone  of 
rotary  cement  kilns  and  the  hearth  and  side  walls 
of  lead-refining  furnaces.  Experimental  installa- 
tions also  indicated  that  they  would  have  a  wide 
range  of  uses  in  other  industries. 

However,  the  failure  to  control  shrinkage  to- 
gether with  the  high  cost  served  to  keep  this  refrac- 
tory from  becoming  popular. 

With  the  advent  of  the  war  several  individuals 
and  later  the  Bureau  of  Standards  began  intensive 
research  work  on  refractories  and  porcelain  for 
sparking  plugs.  This  work  led  to  the  development 
of  sillimanite  and  resulted  in  a  wider  knowledge  of 
this  silicate  of  aluminium.  Rankin  and  Wright* 
constructed  the  melting  point  diagram  for  the 
binary  system  SiO, — A1203,  and  Bleininger  and 
others  spent  much  time  in  determining  the 
characteristics  of  sillimanite.  They  found  that, 
being  a  stable  compound,  it  remained  rigid  and 
could  be  used  up  to  within  a  few  degrees  of  its  melt- 
ing point,  also  that  it  had  constant  volume  at 
high  temperatures,  had  a  low  co-efficient  of  expan- 
sion that  made  its  resistance  to  spalling  high,  and 
that  it  was  neutral  in  its  reaction.  Furthermore, 
it  was  found  that  when  sillimanite  refractories  were 
burned  to  a  sufficiently  high  temperature  they  were 
impervious  to  slags  and  metals. 

It  will  be  recognised  that  these  characteristics  are 
those  of  an  ideal  refractory.  With  the  results  of 
this  and  previous  work  and  the  knowledge  gained 
through  practical  application  of  alumina  refrac- 
tories during  previous  years,  it  became  possible  to 
produce  a  product  that  had  none  of  the  faults  here- 
tofore encountered.  It  was  necessary,  however,  to 
continue  research  work  on  raw  materials  from 
various  localities  and  to  solve  the  various  problems 
of  manufacturing,  such  as  preparation  of  raw 
material,  methods  of  forming  ware,  and  methods  of 
setting  and  burning.  This  work  was  undertaken 
by  the  American  Refractories  Company  in  conjunc- 
tion with  the  Mellon  Institute  and  has  progressed 
to  a  point  where  quantity  production  has  already 
commenced. 

Laboratory  tests  on  two  sets  of  9-in.  brick  made 
by  different  processes  gave  the  following  results  :  — 
Series  I. — Expansion  after  heating  5  hours  at 
1400°  C. :  average  0'04%  (3  samples).  Compres- 
sion in  load  test  of  25  lb.  per  sq.  in.  at  1400°  C. 
(standard  test  for  silica  brick)  3T8%.  Behaviour 
in  dipping  test  before  reheating:  broke  after  3,  4, 
and  3  dips;  test  after  reheating  to  1500°  C.  for 
5  hours :  broke  after  1,  1,  and  2  dips. 

Series  II. — Behaviour  in  dipping  test  before  re- 
heating:  average  loss  (o)  43%  after  2 J  immersions; 
(6)  35%  after  3  immersions;  (c)  38%  after  4|  im- 
mersions. Behaviour  in  dipping  test  after  reheat- 
ing to  1400°  C.  for  5  hours:  average  loss  (a)  40% 
after  2  immersions;  (6)  38%  after  31  immersions; 
(c)  40%  after  4J  immersions.  Contraction  after  re- 
heating to  1400°  C.  for  5  hours:  (a)  0^12%;  (6) 
0'06°/  •  (c)  0"24%.  Shearing  temperature  under 
25  lb.  pressure:  (a)  1460°  C. ;  (6)  1480°  C.  Com- 
pression in  load  test  of  25  lb.  per  sq.  in.  at  1350°  C. : 


•"The  ternary  system  CaO-AI.O„-Si<V" 
39,  1-79. 


Amer.  J.  Set,  1915, 


14  T     FYLEMAN.— SEPARATION  OF  ADHERENT  OIL  OR  BITUMEN  FROM  ROCK.      [Jan.  81,  1922. 


(a)  compressed  4-8%  after  1J  hours;  (b)  sheared 
1350°  C.  after  30  minutes;  (c)  compressed  091% 
after  30  minutes;  (d)  compressed  0'70%  after  1J 
hours.  The  fusion  point  of  the  brick  tested  was 
2000°  €.,  and  the  analysis  Si02  6'32%,  ALO,  86-10%, 
Fe.O,  1-17%, ,  CaO  0-60%,  MgO  0'17%,  alkalis  1-10%, 
titania  4'53 .'.' .  Pure  sillimanite  has  the  composi- 
tion Si02  37%,  A1203  63%:  its  fusion  point  is 
1816°  C. 

It  will  be  noted  that  the  test  bricks  were  much 
higher  in  alumina  and  lower  in  silica  than  silliman- 
ite, but  on  the  other  hand  they  contained  a  total  of 
7"57%  of  fluxing  impurities.  Of  these  the  ferric 
oxide  is  the  least  active.  The  above  figures  repre- 
sent the  approximate  total  impurities  in  the  best 
raw  materials  available.  However,  it  is  the  inten- 
tion to  bring  the  composition  as  near  to  that  of 
sillimanite  as  possible,  except  that  the  alumina  con- 
tent will  be  increased  to  overcome  the  fluxes 
present.  For  special  purposes  the  alumina  may  be 
increased  to  90%  ;  in  fact,  by  following  the  melting 
point  diagram  a  product  can  be  made  which  will 
fuse  at  any  point  between  1816°  (the  fusion  point 
of  sillimanite)  and  2025°  C. 

A  recent  report  from  a  smelting  company  indi- 
cates that  the  brick  referred  to  in  Series  I.  had 
withstood  a  comparative  test  of  the  same  duration 
as  carborundum  or  "  carbofrax  "  brick;  in  this  test 
one-half  the  furnace  was  lined  with  each  type  of 
brick. 


London   Section. 


Meeting  held  at  Burlington  House  on  December  5, 
1921. 


MR.    E.    V.   EVANS   IN  THE  CHAIR. 


THE  SEPARATION  OF  ADHERENT  OIL  OR 
BITUMEN  FROM  ROCK. 

BY  ERNEST  FYTLEMAN,   B.SC,  PH.D.,  F.I.C. 

In  various  parts  of  the  globe  there  exist  large 
aggregates  of  more  or  less  finely  divided  mineral 
matter  saturated  with  bitumen,  in  the  wider  sense 
of  the  word,  that  is  either  with  liquid  mineral  oil 
or  with  semi-solid  bitumen  or  asphalt.  Some  of 
these  aggregates  are  natural  geological  formations, 
the  others  are  by-products  of  the  oil  industry.  Of 
the  natural  occurrences  of  this  character  the  tar 
sands  of  Alberta  are  by  far  the  most  important  at 
present  known  in  magnitude  and  in  potential  value, 
as  they  represent  a  larger  supply  of  mineral  oil 
than  the  rest  of  the  world's  known  oil  resources, 
with  the  possible  exception  of  the  larger  oil  shale 
deposits,  always  provided  that  the  product  could  be 
extracted  and  marketed  at  a  competitive  price. 

The  Alberta  deposits  are  situated  in  the  district 
adjacent  to  the  Athabasca  river  and  its  tributaries, 
more  especially  in  the  neighbourhood  of  Fort 
McMurray  and  Fort  McKay.  They  are  largely 
covered  by  Muskeg  and  pine  forest  and  by  a  vari- 
able overburden,  but  there  are  very  large  exposed 
faces  on  the  banks  of  the  Athabasca  river  and  its 
tributaries  which  all  form  deeply  cut  valleys.  The 
deposits  vary  in  thickness  up  to  200  feet  and  also 
vary  in  quality,  the  percentage  of  bitumen  in  the 
richer  sands  varying  from  about  10%  to  about  20%. 
The  principal  authorities  on  these  deposits  are  Mr. 
S.  C.  Ells,  who  has  written  a  Report  on  them  dated 
1914  (Report  No.  281  of  the  Canadian  Department 
of  Mines)  and  Mr.  Bosworth,  Chief  Geologist  to  the 
Imperial  Oil  Co. 


According  to  Bosworth  (Petroleum  Times, 
Nov.  29,  1919,  p.  537)  the  area  over  which  these 
sands  are  spread  is  between  10,000  and  20,000  square 
miles  or  more,  and  they  contain  15%  of  bitumen  and 
yield  on  heating  15  to  25  Imperial  gallons  of  oil  per 
ton.  The  oil  is  of  low  grade  but  on  distillation 
yields  5%  of  gasoline.  It  must  be  noted,  however, 
that  a  large  proportion  of  this  huge  area  is  over- 
laid by  heavy  overburden. 

The  railway  is  now  within  ten  miles  or  less  of 
Fort  McMurray,  and  it  is  quite  evident  from  Ells' 
report  that  extremely  large  quantities  of  tar  sand 
of  high  quality  could  easily  and  cheaply  be  obtained 
by  quarrying  along  the  extensive  faces  where  the 
overburden  is  slight.  The  overburden  couTd  be  re- 
moved from  these  deposits  by  hydraulic  sluicing  or 
by  other  means  and  the  deposits  themselves  could 
then  be  removed  by  blasting  with  black  powder,  a 
method  which  has  been  used  in  Oklahoma  for  de- 
posits of  very  similar  composition  and  consistency. 

Formerly  tar  sands  rights  were  leased  by  the 
Canadian  Government.  Practically  all  leases  have 
now  been  withdrawn,  but  the  Government  is 
stated  to  be  anxious  to  assist  holders  of  a  satisfac- 
tory extraction  process  by  granting  leases. 

Composition  and  properties  of  constituents. 

According  to  Ells,  typical  rich  sands  contain 
about  18'5%  of  bitumen.  The  mineral  matter  con- 
sists of  almost  pure  quartz  sand  containing  95'5% 
of  silica.  The  extracted  bitumen  has  the  following 
properties  and  composition  (Ells): — Sp.  gr.,  1'018; 
fixed  carbon,  7"23%  ;  sulphur,  4'85%  ;  bitumen 
soluble  in  76°  naphtha,  82'8%  ;  soluble  in  88° 
naphtha,  78"2%  ;  carbenes,  trace;  unsaturated  com- 
pounds in  88°  naphtha  solution,  60'4%  ;  volatile  at 
160°  C.  (5  hours),  1T2%  ;  at  205°,  14'2%  ;  at  250°  (4 
hours),  18'8%.  Distillation  tests:  Oil  distilled, 
69'0%  ;  residual  coke,  23'7%  ;  loss,  gas,  etc.,  7'3%. 
The  distilled  oil  gave  the  following  results  on  dis- 
tillation (Ells):  — 

Paraffin 
Temp.  %  Sp.  gr.  scale.       Unsaturated. 

0"-110°        ..  2-5        ..        0-85        ..  —  ..  — 

110°-275°        ..         730        ..        0-88        ..      0-29%  ..         30% 

300°-330°       ..         17-5        ..        0-91        ..      009%  ..         40-9% 

330°-360°       ..  if-5       ..        0-96       ..         —  ..  — 

The  penetration  of  the  extracted  bitumen  is  much 
too  high  for  sheet  asphalt  work  but  can  be  modified 
by  heat  treatment  when  separated.  Ells  found  that 
by  heating  a  sample  of  extracted  bitumen  for  four 
hours  at  250°  C.  it  gave  the  penetration  of  52,  yield- 
ing about  20%  by  weight  of  oil. 

Similar  but  smaller  deposits  of  tar  sand  are  found 
in  various  parts  of  the  United  States  where  they  are 
known  as  oil  sands — in  California,  Oklahoma,  Utah, 
Kentucky,  Missouri,  and  Texas,  also  in  Spain  and 
other  countries.  The  well-known  Trinidad  deposits 
are  of  but  little  interest  in  the  present  connexion 
as  the  associated  mineral  matter  is  in  too  fine  a 
state  of  division  to  be  removed  by  the  treatment 
which  is  about  to  be  described,  and  is  moreover  a 
valuable  constituent  which  it  is  not  desirable  to 
separate. 

In  the  case  of  the  other  deposits  mentioned  above, 
usually  carrying  from  10  to  20%  of  bitumen,  and  in 
which  the  mineral  matter  is  usually  present  in  the 
form  of  fairly  fine  sand,  but  not  of  impalpable 
powder,  the  removal  of  the  bitumen  is  necessary  if 
it  is  to  be  turned  to  commercial  use.  For  road-pav- 
ing purposes  it  is  necessary  that  the  admixed 
mineral  matter  should  consist  of  a  carefully  graded 
mixture  of  particles  of  very  varying  size,  in  order 
to  ensure  close  packing,  whereas  the  sand  in  typical 
natural  deposits  is  of  relatively  uniform  size  and 
usually  quite  free  from  larger  particles.  In  a 
typical  Alberta  deposit  the  bulk  of  it  is  often  re- 
tained between  40-mesh  and  80-mesh  sieves.  Con- 
siderations of  freight  also  prevent  the  utilisation  of 
a  10  or  20%  product  throughout  large  areas  where 


Vol.  XLI.,  No.  2.]     FYLEMAN.— SEPARATION  OF  ADHERENT  OIL  OR  BITUMEN  FROM  ROCK.       15  t 


the  purified  material  may  find  an  ample  outlet. 
Moreover  the  natural  product  requires  heat  treat- 
ment for  most  purposes,  and  this  is  obviously 
better  carried  out  on  the  pure  material.  For  such 
purposes  as  the  preparation  of  tarred  felt,  tarred 
paper  and  so  forth,  absence  of  mineral  matter  is  of 
course  essential. 

The  quantities  of  asphaltic  material  consumed  in 
the  United  States  rose  from  1,225,447  short  tons  in 
1915  to  2,023,665  tons  in  1920. 

The  present  outlet  for  bitumen  per  annum  in 
Alberta,  Saskatchewan,  and  Manitoba  appears  to 
be  approximately: — For  asphaltic  cements,  19,000 
tons  (local  value  about  §40  per  ton) ;  to  replace  coal 
tar  pitch  as  a  briquetting  agent  for  fuels,  57,000 
t   us  (about  §20  per  ton) :  total,  76,000  tons. 

The  imports  of  solid  asphalt  into  Canada  for  the 
twelve  months  ended  March,  1921,  were  30,050  short 
tons  valued  at  $625,116,  practically  all  from  the 
United  States. 

Imports  of  asphalt  into  the  United  Kingdom 
were:— 1913,  148,071  tons  (value  £399,295);  1919, 
54,832  tons  (£528,075);  1920,  113,420  tons 
(£1,134,999). 

Attention  may  now  be  turned  to  what  may  be  con- 
sidered as  industrial  by-products  of  somewhat 
similar  character.  A  considerable  proportion  of  the 
world's  oil  supply  comes  to  the  surface  in  associa- 
tion with  a  large  proportion  of  sand.  This  is  more 
especially  the  case  in  California,  in  Mexico,  and  in 
Russia.  In  such  cases  the  sand  is  allowed  to  settle 
in  reservoirs  and  the  oil  then  drawn  off,  with  the 
result  that  large  dumps  are  formed  carrying  high 
percentages  of  mineral  oil.  Further,  large  tracts 
of  land  are  saturated  with  oil  from  the  overflow  of 
gushers.  Thus,  according  to  data  collected  bv  the 
U.S.  Bureau  of  Mines,  of  10,000,000  barrels  which 
flowed  from  the  Lake  View  gusher,  4,000,000  barrels 
overflowed  the  roughly  constructed  reservoir  and 
saturated  an  area  beyond.  Some  600  acres  was 
covered  with  a  6ticky  asphalt  crust,  underneath 
which  is  2 — 6  feet  of  sand  saturated  with  oil.  Ac- 
cording to  the  same  authority  2,359,000  barrels  of 
oil  could  be  obtained  from  the  great  mounds  of  sand 
about  the  producing  wells  in  California,  of  the  value 
of  §3,500,000;  10—15%  of  the  total  oil  production  of 
the  state  is  lost,  representing  15,000,000  barrels  of 
oil  annually.  The  average  content  of  the  residual 
sands  is  more  than  half  a  barrel  of  oil  per  ton.  In 
other  countries  where  oil  is  less  abundant  than  in 
North  America  boring  for  oil  is  now  occasionally 
supplemented  by  mining  and  draining.  This 
method  appears  first  to  have  been  developed  at  I 
Pechelbronn  in  Alsace  by  M.  Paul  de  Chambrier  (J. 
Inst.  Petrol.  Tech.,  1921,  7,  177).  According  to  de 
Chambrier:  1  ton  of  oil-bearing  sand  at  Pechelbronn  '. 
yields: — By  borings,  20  kg.  (or  16"7%);  by  draining 
from  shafts  and  galleries,  52  kg.  (43'3%);  leaving 
oil  still  adhering  to  the  sand,  48  kg.  (40'0%).  De 
Chambrier  states  that  this  final  40%  of  oil  may  be 
obtained  by  extraction  and  washing  of  the  sand, 
but  that  this  process  has  not  yet  been  perfected.  ] 
It  will  be  realised  that  by  the  process  which  I  have  | 
devised  and  am  about  to  describe  this  40%  of 
residual  oil  could  readily  and  cheaply  be  recovered 
by  cold  washing  of  the  sand  with  a  dilute  aqueous  j 
solution. 

De  Chambrier's  system  of  oil  mining  is  being 
imitated  in  Roumania  by  the  Danubia  Oil  Company 
and  in  Germany  at  Wietze,  Hanover. 

The  problem  of  separating  oil  or  bitumen  from 
inorganic  rock  is  then  one  of  considerable  technical  I 
interest.  Until  recently  three  methods  appear  to 
have  been  tried  for  this  purpose.  These  are:  (1) 
Extraction  by  organic  solvents;  (2)  distillation,  j 
either  by  retorting  or  more  recently  in  situ  by  in- 
sertion of  heaters  into  the  bore-hole,  and  (3)  wash- 
ing with  hot  or  cold  water.  The  first  is  very  expen- 
sive. Retorting  is  also  costly,  on  account  of  the 
large  amount  of  heat  required ;   it  involves  heavy 


loss  through  destructive  decomposition  and  results 
in  liquid  products  instead  of  the  more  valuable 
bitumen  where  this  is  present  in  the  original 
material.  Washing  with  hot  or  cold  water  is  in- 
effective because  the  interfacial  tension  between 
mineral  matter  and  oil  is  in  general  lower 
than  that  between  mineral  matter  and  water,  60 
that  any  rearrangement  of  the  phases  involves  the 
supply  of  a  large  amount  of  energy  in  order  to  over- 
come the  surface  attraction  between  the  inorganic 
particles  and  the  thin  layer  of  organic  matter  with 
which  they  are  coated.  All  these  above-mentioned 
methods  have  been  tried  on  some  considerable  scale, 
but  none  of  them  appears  to  have  met  with  recog- 
nised success. 

It  is  evident  that  a  satisfactory  solution  of  the 
problem  must  provide  for  two  conditions,  firstly 
that  the  bituminous  coating  of  the  mineral  particles 
shall  be  sufficiently  fluid  to  flow  freely,  and  secondly 
the  provision  of  an  economic  and  technically  con- 
venient method  of  overcoming  the  molecular  ad- 
hesion between  the  two  phases.  The  relations  gov- 
erning phase  distribution  between  the  solid  and  two 
liquids,  all  mutually  insoluble,  have  been  well 
handled  by  Reinders  '(Kolloid-Zeits.,  1913,  235). 

Let  us  consider  a  rock,  B,  coated  with  an  oil,  0, 
and  let  us  now  add  to  the  system  an  aqueous  solu- 
tion,    A.      Let    the    interfacial    surface    tensions 

De°Ko°RA  aQd  °oa  respectively.  Then  a  rearrange- 
ment of  the  phases  will  occur  when  the  total  energy 
of  the  system  is  thereby  reduced  and  not  otherwise, 
that  is  when  the  sum  of  the  surface  energies  of  the 
new  interphase  surfaces  is  less  than  the  surface 
energy  of  the  old  interphase  surface  which  is  elimi- 
nated. Therefore  when  o~  >  cr  i  o-  rearrange- 
bo         ba  ~    OA 

ment  will  occur,  the  oil  will  be  sheared  off,  so  to  say, 
from  the  rock  surface,  which  will  be  wetted  by  the 
aqueous  solution  and  freed  from  all  contact  with  the 
oil.  It  would  therefore  be  expected  that  the  mineral 
particles  would  be  absolutely  clean. 

From  the  above  statement  it  is  clear  that  an 
aqueous  solution  is  required  of  low  surface  tension, 
something  which  froths  readily,  such  as  a  solution 
of  an  alkali  soap,  of  the  alkali  salt  of  a  weak  organic 
acid,  or  of  saponin.  Any  of  these  solutions  actually 
effects  the  desired  result ;  in  the  case  of  a  liquid 
mineral  oil  the  change  takes  place  in  the  cold; 
where  a  semi-solid  bitumen  is  present  it  is  necessary 
to  render  it  sufficiently  fluid  either  by  warming  or 
by  adding  a  small  quantity  of  a  solvent  such  as 
petroleum  oil.  Very  small  concentrations  of  the 
water-soluble  reagent  are  required,  one  part  per 
thousand  of  water  usually  being  ample.  The 
physical  rearrangement  is  very  rapid,  and  only  re- 
quires sufficient  mechanical  agitation  to  ensure  that 
all  the  particles  come  into  contact  with  the  aqueous 
solution.  As  most  bitumens  and  many  crude  petro- 
leums contain  small  amounts  of  compounds  of 
weakly  acid  character,  it  is  frequently  sufficient  to 
add  to  the  water  a  very  small  amount  of  alkali  such 
as  soda  ash  (Ernest  Fyleman,  Eng.  Pat.  163,519/ 
1920;  Canadian  Pat.  203,676/1920).  Thus  the  most 
convenient  method  of  treating  Alberta  tar  sand  is 
to  warm  it  to  80°  C.  or  over,  with  a  solution  of  one 
part  per  thousand  of  sodium  carbonate  in  water, 
with  gentle  stirring.  Segregation  rapidly  occurs 
into  white  particles  of  sand  and  small  aggregates  of 
bitumen,  which  ball  together  into  larger  masses  on 
stirring  and  cooling  slightly.  The  aqueous  liquid 
can  be  used  indefinitely  to  repeat  the  process  with 
fresh  quantities  of  tar  sand,  and  the  sand  particles, 
which  are  very  fine,  can  be  flushed  away  through  a 
coarse  sieve,  or  separated  by  any  of  the  usual 
hydraulic  separating  devices,  leaving  practically 
pure  bitumen  together  with  about  10%  of  water, 
which  it  loses  on  heating.  The  same  effect  is  pro- 
duced on  warming  with  a  dilute  solution  of  soap  or 
of  saponin.     If  a  mixture  of  crude  mineral  oil  and 


16t 


FRENCH.— CARBONISATION  OF  WESTERN  LIGNITE. 


[Jan.  31,  1922. 


sand  be  stirred  with  dilute  6oap  solution  the  oil  is 
liberated  and  can  then  be' separated ;  in  practice, 
this  process  could  be  arranged  to  be  continuous. 

Cost  of  treatment. 

The  following  scheme  for  the  commercial  exploita- 
tion of  Alberta  tar  sand  and  estimate  of  cost  of 
treatment  must  be  considered  as  quite  approximate 
and  is  given  with  all  reserve  pending  a  more  ex- 
tended study  of  the  problem. 

The  figures  are  based  on  an  output  of  bitumen  of 
1000  metric  tons  per  day  of  24  hours,  and  a  working 
year  of  200  days  only,  on  account  of  the  severe 
winter  conditions.  Assuming  an  average  bitumen 
content  of  14%,  7000  tons  of  tar  sand  will  be  re- 
quired per  day.  This  will  be  treated  with  0'1% 
alkali  solution  in  large  iron  tanks,  heated  by  direct 
oil  firing  and  agitated  by  mechanical  means  or  by 
compressed  air.  Sufficient  of  the  solution  is  re- 
quired to  maintain  the  solid  material  in  the  free- 
flowing  pulp  condition.  At  any  one  moment,  there 
would  be  in  these  tanks  some  50  tons  of  the  alkali 
solution  and  100  tons  of  tar  sand,  300  tons  of  which 
would  be  treated  per  hour.  From  these  tanks 
the  contents  would  run  by  gravitation  into 
settling  tanks  such  as  are  used  in  the  Rand  mining 
industry,  from  which  clean  sand  and  segregated 
bitumen  would  be  jointly  removed  together  with 
some  10%  of  their  weight  of  aqueous  liquid,  which 
is  assumed  to  run  to  waste,  the  remaining  90% 
being  returned  to  the  treatment  tanks.  The  mixed 
solids  would  pass  to  a  granulator  in  which  they 
would  be  subjected  to  suitable  mechanical  treatment 
whilst  simultaneously  exposed  to  a  regulated  stream 
of  cold  water  in  order  to  segregate  the  bitumen  into 
larger  masses,  and  would  then  be  flushed  through  a 
trommel  in  order  to  separate  the  sand.  The 
separated  bitumen  would  then  be  dried  over  a  direct 
fire,  heat-treated  if  necessary,  and  probably  run 
directly  into  tank  cars  in  the  molten  condition. 

Vomer  requirements  should  not  exceed  150  con- 
tinuous horse  power,  which  could  easily  be  supplied 
by  some  5  tons  of  bitumen  per  day. 

Heat  requirements.  It  is  necessary  to  heat  per 
day  7000  tons  of  raw  material  of  specific  heat  about 
0'25  through  a  range  of  some  80°  C.  Allowance 
must  also  be  made  for  the  heat  carried  away  with 
some  700  tons  of  alkali  solution  per  day,  which  has 
to  be  replaced  by  heated  Liquid.  Thus  heat  require- 
ments per  day  in  large  Calories  are: — Heating  tar 
sand,  140,000^000;  heat  lost  in  solution,  63,000,000; 
drying  1000  tons  of  bitumen,  driving  off  100  tons  of 
water,  100,000,000 ;  sundry  heat  losses  and  other  re- 
quirements, 97,000,000  :    total,  400,000,000  Cals. 

If  bitumen  is  used  for  this  purpose,  assuming  a 
calorific  value  of  8000  (it  is  actually  considerably 
higher)  and  assuming  a  40%  heat  efficiency  only, 
125  tons  is  required  per  day. 

Alkali.  Assuming  as  above  that  700  tons  of  0T% 
alkali  solution  is  rejected  per  day,  the  requirements 
of  soda  ash  are  14  cwt. 

Labour  and  supervision  are  assumed  to  be  $200 
per  day,  and  for  capital  cost,  $200,000  should  be 
ample. 

Thus  we  have  a  nett  production  of  1000  less  130, 
that  is,  870  tons  of  bitumen. 

The  production  costs  per  day  are  as  follows :  — 
Alkali  (07  ton  at  $40),  $28;  labour  and  supervision, 
$200;  amortisation  and  depreciation  at  10%  on 
$200,000  (assuming  200  working  days),  $100 ;  total 
production  cost  for  870  tons,  $328,  or  $0'38  per 
metric  ton  ($0'35  per  short  ton). 

Even  should  the  above  figures  prove  to  be  con- 
siderably wide  of  the  mark,  it  will  not  materially 
affect  the  essential  fact  that  the  cost  of  actual  treat- 
ment will  be  much  under  a  dollar  per  ton,  and  there- 
fore quite  unimportant  relatively  to  the  cost  of 
quarrying  the  raw  material,  bringing  it  to  the 
works,  and  disposing  of  the  tailings. 


I  am  indebted  to  the  Bureau  of  Mines,  Ottawa, 
to  the  Canadian  Authorities  in  London,  to  the  Im- 
perial Institute,  the  Imperial  Mineral  Resources 
Bureau,  and  various  private  friends  for  valuable 
samples  and  information. 


Montreal  Section. 


Meeting  held  on  November  18,   1921. 


MR.    H.    W.    MATHESON   IN   THE    CHAIR. 

CARBONISATION   OF   WESTERN   LIGNITE. 

BY   R.    DE   L.    FRENCH,    B.SC. 

The  aims  in  the  carbonisation  of  lignite  are  two : 
first,  to  produce  a  fuel  of  higher  calorific  value  than 
the  raw  material,  and  one  which  may  be  stored 
without  deterioration ;  and,  second,  to  recover  the 
marketable  by-products,  if  any. 

Early  work  in  the  United  States  by  Babcock,  of 
the  University  of  North  Dakota,  has  been  covered 
by  the  publications  of  the  U.S.  Bureau  of  Mines.1 
In  Canada,  the  work  of  Darling  for  the  Government 
of  the  Province  of  Saskatchewan  is  described  in  a 
special  report  issued  by  that  Province.2  In  1917, 
Stansfield  and  Gilmore,  working  under  the  auspices 
of  the  Mines  Branch  of  the  Department  of  Mines 
of  Canada,3  started  6ome  laboratory  investigations. 
Their  work  was  continued  by  them  after  their 
transfer  to  the  Lignite  Utilisation  Board  of  Canada 
in  October,  1918. 

Small  quantities  of  raw  lignite  were  carbonised 
in  a  cast  iron  retort  heated  electrically,  and  the 
resulting  gas  was  subjected  to  fractional  condensa- 
tion, as  this  was  found  to  be  the  only  practicable 
way  to  free  it  entirely  from  the  tar  vapours  and 
moisture  in  such  a  state  that  the  tar  might  subse- 
quently be  recovered  from  the  condensate. 

The  results  of  this  work  did  not  encourage  the 
Board  in  thinking  that  they  might  be  adapted  to 
commercial  production,  hence  it  was  terminated 
and  some  experiments  on  rapid  carbonisation  at 
high  temperatures  were  initiated.  These  were  very 
encouraging,  as  it  was  found  that  rapid  carbonisa- 
tion at  comparatively  high  temperatures  could  be 
made  to  produce  the  same  product  as  slow  carboni- 
sation at  temperatures  in  the  vicinity  of  1100°  F. 
(c  590°  C),  at  which  the  best  char  is  produced. 

In  1919  a  6emi-commercial  carboniser  was  built 
and  operated  for  many  months.  From  data  col- 
lected in  this  way,  six  full-sized  carbonisers  have 
been  designed  and  built  at  the  commercial  plant  of 
the  Board  at  Bienfait,  Sask.,  and  are  now  being 
tuned  up  for  operation. 

Briefly,  these  consist  of  surfaces  of.  carborundum 
tile,  strongly  heated  by  flues  underneath,  down 
which  the  dried  and  pulverised  lignite  is  allowed  to 
flow,  its  flow  being  controlled  by  suitable  baffles. 
While  not  as  yet  in  actual  operation,  owing  to  the 
detection  and  correction  of  minor  defects  common 
to  a  new  plant,  there  is  no  reason  to  anticipate  that 
they  will  not  ultimately  function  properly. 

The  average  yields  from  one  ton  (2000  lb.)  of  raw 
lignite  as  mined  are  about  as  follows:  — 

Yield.  B.Th.U.  per  lb. 

Raw  lignite  (35%  moisture)    2000  lb.  6660 

Char  9001b.  11,900 

Gas 3800  culi.  ft.         380  (per  cub.  ft.) 

Tnr  ..  ..  ..  5}  gals.         17,250 

Ammonium  sulphate         . .       12i  lb.  — 

1  E.  J.  Babcock,  "  Economic  Methods  of  Utilising  Western  Lig- 
nites," Bull.  89.  U.S.  Bureau  of  Mines,  Washington,  1916. 

2  F.  M.  Darling,  "  Carbonizing  and  Briquetting  of  Lignite,"  Hwy. 
Conimrs.,  Regina,  Sask.,   1915. 

'  E.  Stansfield  and  R.  E.  Gilmore,  "  Carbonisation  of  Lignite," 
Part  II.,  Trans.  Roy.  Soc.  Can.,  1918,  Series  III.,  12, 121;  J.,  1919, 
49U. 


Vol.  XIX,  No.  2.]    COCKS  AND  SAIAVAY.— TRIMETHYLENEGLYCOL  IN  CRUDE  GLYCERIN. 


17  T 


It  will  be  noted  that  the  quantity  of  by-products 
is  small.  The  char  is  to  be  briquetted  for  sale,  and 
will  be  the  only  commercial  product  of  the  Board's 
plant.  The  gas  is  required  for  providing  the  heat 
of  carbonisation.  Practically  no  work  has  been 
done  on  the  tar,  though  enough  is  known  as  to  its 
composition  to  warrant  the  statement  that  it  is  not 
likely  to  be  of  much  value  except  as  a  fuel.  For  the 
present  it  is  to  be  burned.  There  is  no  market  for 
ammonium  sulphate  in  Western  Canada,  and  for 
that  reason  the  ammoniacal  liquors  are  being 
allowed  to  go  to  waste  for  the  present. 


Newcastle  Section. 


Meeting  held  at  Armstrong  College,  Newcastle,  on 
December  14,  1921. 


DK.    J.    H.   PATEHSON   IN   THE   CHAIR. 


THE     AGGLUTINATING     VALUE     OF     SOME 
DURHAM  COALS. 

BY  A.   WEIGHELL,  A.I.C.,  A. M.I. ME. 

In  deciding  on  the  suitability  of  a  coal  for  coke- 
oven  or  gas-producer  purposes,  one  of  the  most 
important  properties  to  be  considered  is  the 
agglutinating  value,  and  it  was  thought  that  it 
might  be  of  interest  to  place  on  record  the  results 
obtained  on  coal  from  the  western  margin  of  the 
Durham  Coalfield. 

Samples  representing  each  seam  worked  were 
taken  from  the  cleaning  belts  at  eight  of  the 
collieries  owned  by  the  Consett  Iron  Co.,  Ltd.,  and 
the  author  has  to  tlfank  the  General  Manager  of 
thi6  company  for  permission  to  publish  the  figures 
obtained.  In  some  cases  separate  samples  of  lump 
(over  1  in.)  and  small  were  taken  for  comparison. 

For  the  purpose  of  the  tests,  the  coal  samples  were 
crushed  to  pass  a  60-mesh  sieve,  and  as  the  particle 
size  has  an  important  bearing  on  the  results,  it  was 
thought  desirable  to  obtain  some  idea  as  to  the  rela- 
tive proportions  of  the  crushed  sample  retained  by 
sieves  of  various  mesh.  Two  samples  of  coal  crushed 
to  pass  a  60-mesh  sieve  gave  the  following 
fractions :  — 

A.  B. 


Passed 


The  inert  material  used  consisted  of  electrode 
carbon  as  proposed  by  Sinnatt  and  Grounds  (J., 
1920,  83  t),  increasing  weights  of  the  same  grade  of 
electrode  carbon  being  used.  The  latter  was  graded 
to  pass  a  100-mesh  and  to  be  retained  by  a  120-mesh 
sieve,  as  this  size  gives  the  greatest  differentiation 
between  coals  of  similar  agglutinating  value. 

One  gram  of  the  dry  crushed  coal  was  mixed  with 
such  proportion  (found  by  repeated  trials)  of  elec- 
trode carbon  as  would  just  suffice  completely  to 
destroy  the  caking  property  of  the  mixture.  Five 
grams  of  the  mixture  was  transferred  to  a  platinum 
crucible  and  the  crucible  and  contents  heated  in  a 
crucible  furnace  over  a  Bunsen  burner  for  seven 
minutes.  On  cooling,  the  button  of  coke  was  placed 
on  the  bench  and  a  100-g.  weight  laid  on  it ;  when 
the  button  fell  to  powder  under  the  weight,  the 
proportion  of  inert  material  to  1  g.  of  coal  was  taken 
to  be  the  agglutinating  value  of  the  coal.  The 
following  is  a  summary  of  the  results  obtained  :  — 


Retained  b> 

80-mesh    . 

.      25-04% 

20-18% 

80 

90      „ 

.      10-64% 

10-91% 

90 

100      „ 

— 

1-15% 

100 

120      „ 

.     11-10% 

11-43% 

120 

150       „ 

.        1-21% 

1-48% 

150 

200       „ 

.      10-21% 

11-32% 

200-mesh 

.     41-80% 

43-53% 

Coal  from  Brockwell  seam  :  Pit  Al,  agglutinating 
value,  170;  A2,  150;  B  (lump),  1P5;  B  (small), 
HO;  D,  14-5;  F  (lump),  1P5;  F  (small),  10"5 ;  G 
(lump),  11-5;  G  (small),  8'0;  H,  120.  Three- 
quarter  seam  :  Pit  Al  (lump),  18-0  ;  Al  (small),  19"5 ; 
A2  (lump),  180;  A2  (small),  19-0;  A3,  18'5;  A4, 
19-5;  B  (lump),  17'5;  B  (small),  15-0;  D,  18-0;  G 
(lump),  21-0;  G  (small),  195 ;  H,  10'5.  Busty  seam  : 
Pit  B,  135;  C,  135;  F  (lump),  160;  F  (small),  19'0 ; 
H,  60.  Five-quarter  (Bottom  Busty)  6eam :  Pit 
Al  (lump),  15-5;  Al  (small),  11-5;  A2  (lump),  17'0; 
A2  (small),  15-0;  A3  (lump),  10'5 ;  A3  (small),  14"5; 
A4,  11-5 ;  D,  12-5.  Stone  coal  (Top  Busty)  seam : 
Pit  Al,  145;  A2,  15'0;  A3,  15"0;  A4,  100;  D,  165. 
Tilley  seam  :  Pit  H,  15'5.  Townelev  seam :  Pit  D, 
12-5;  H,  13-5.  Thick  seam:  Pit  E,  15"5.  Main 
seam:  Pit  E,  140.  Little  seam:  Pit  E,  150. 
Hutton  seam:  Pit  C,  15'0;  E,  13'5;  F  (lump),  15'0 ; 
F  (small),  140.  Ruler  seam  :  Pit  D,  18'5.  Shield 
Row  seam:  Pit  Ca,  46;  C  b,  16'5. 


Communications. 


A  METHOD  FOR  THE  DETERMINATION  OF 

TRIMETHYLENEGLYCOL  IN  CRUDE 

GLYCERIN. 

BY  L.  V.  COCKS,  A. I.C.,  AND  A.  H.  SALWAY,  D.SC,  PH.D. 

Crude  glycerin  frequently  contains  small  quan- 
tities of  trimethyleneglycol,  the  presence  of  which 
may  escape  detection  by  the  usual  methods  for  crude 
glycerin  analysis.  A  reliable  method  of  deter- 
mining trimethyleneglycol  in  crude  glycerin  is 
therefore  needed  and  would  be  of  considerable 
value  as  a  supplementary  test  in  the  evaluation  of 
crude  glycerin.* 

A  short  time  ago  the  authors  described  a  method 
of  estimating  trimethyleneglycol  in  crude  glycerin 
(J.,  1918,  123  T,  158  t),  which  consisted  in  the  dis- 
tillation of  the  crude  glycerin  and  the  determination 
of  the  specific  gravity  and  apparent  glycerol  con- 
tent (acetin  process)  of  the  distillate.  From  these 
figures  the  trimethyleneglycol  content  was  calcu- 
lated by  means  of  equations  deduced  from  the 
known  specific  gravity  and  acetyl  values  of  tri- 
methyleneglycol and  glycerol. 

The  equations  given   were  :  — 

Acetyl  value  (calc.  as  glycerol)  =  x+Cf81y  ...       (I.) 

100 ,„ 

Specific  gravity  =100_0.2082x_ 0-05031/        -      (1    ' 

in  which  x  is  the  real  glycerol  content  and  y  the 
amount  of  trimethyleneglycol  present.  The  use  of 
these  equations  for  the  calculation  of  the  tri- 
methyleneglycol content  of  a  distilled  glycerin  only 
gives  approximate  results,  since  it  is  assumed  in 
equation  (II.)  that  no  contraction  of  volume  occurs 
on  mixing  glycerin,  trimethyleneglycol,  and  water. 
In  order,  therefore,  to  render  the  method  more 
accurate  and  to  establish  it  on  a  sounder  basis,  it 
was  desirable  to  determine  systematically  the 
specific  gravitv  of  a  series  of  mixtures  containing 
known  proportions  of  glycerol,  trimethyleneglycol, 
and  water,  and  from  the  figures  so  obtained  to  con- 
struct tables  by  which  the  trimethyleneglycol  con- 
tent of  any  glycerin  distillate,  of  known  specific 
gravity  and  apparent  glycerol  content,  could  be 
deduced. 


*  The  Committee  for  the  revision  of  the  International 
Standard  Methods  of  glycerin  analysis  are  considering  a 
proposal  to  introduce  a  standard  method  of  determining 
trimethyleneglycol  in  crude  glycerin.  The  work  here 
recorded  was  undertaken  partly  in  connexion  with  this 
proposal. 


18t        COCKS  AND  SAL  WAY.— TRIMETHYLENEGLYCOL  IN  CRUDE  GLYCERIN.        Jan.  31,  1922. 


For  this  purpose  a  quantity  pf  pure  glycerol  and 
pure  trimethyleneglycol  was  required.  The  glycerin 
used  in  the  experiments  consisted  of  a  sample  of 
purified  and  standardised  glycerol  (90%  strength) 
as  supplied  by  "  The  Expert  Committee  on  Crude 
Glycerin  Analysis."  The  trimethyleneglycol  was 
specially  prepared  as  described  below:  — 

Preparation  of  trimethyleneglycol. 
The  raw  material  used  for  the  preparation  of  the 
trimethyleneglycol  consisted  of  a  so-called  "  catch 
box  "  liquor  obtained  in  the  commercial  concen- 
tration of  a  distilled  glycerin,  known  to  contain 
trimethyleneglycol.  This  liquor  contained  about 
40%  of  its  weight  of  trimethyleneglycol  and  was 
found  to  be  very  suitable  for  the  preparation  of 
the  substance  in  bulk.  The  liquor  was  first  frac- 
tionated under  reduced  pressure  and  the  tri- 
methyleneglycol fraction  then  further  fractionated 
at  the  ordinary  pressure,  employing  a  small  frac- 
tionating column.  A  large  fraction  boiling  at 
210°— 211°  C.  (uncorr.)  was  obtained.  For  the  final 
purification  500  c.c.  of  the  liquid  was  redistilled 
under  slightly  reduced  pressure,  care  being  taken 
to  keep  the  distillate  free  from  atmospheric  mois- 
ture. The  first  100  c.c.  was  rejected  and  only  the 
middle  fraction  (150  c.c.)  collected.  This  boiled 
at  171°  (174  mm.)  and  had  a  sp.  gr.  (at  20°/20°) 
of  1*0552.  The  fractionation  was  repeated  on  three 
separate  occasions  in  order  to  obtain  further  con- 
firmation of  this  result.  The  specimens  of  tri- 
methyleneglycol were  then  analysed  with  results  as 
follows :  — 

No.l.  Sp.gr.  20720°  1-0553.   Acetyl  value  calc.   80-3%  =  99-5%  t.m.g 
as  glycerol. 

No.2.  „„       „  10552.      „        , S0-2%  =  99-4%  t.m.g. 

No.3 „  10547 80-2%  =  99-4%  t.m.g. 

These  products  in  each  case  gave  a  slightly  low 
acetyl  value  for  pure  trimethyleneglycol,  this  being 
undoubtedly  due  to  the  difficultyl  of  obtaining  a 
product  perfectly  free  from  moisture.  By  inter- 
polation we  calculate  that  the  specific  gravity  of 
100%  trimethvleneglycol  is:  (1)  1*0556,  (2)  1*0555, 
(3)  1*0550 •  average  1*0554. 

The  boiling  point  and  specific  gravity  of  tri- 
methyleneglycol is  variously  recorded  in  the  litera- 
ture as  follows  (sp.  grs.  have  been  calculated  to 
20°/20°):  — 

Sp.  gr.:  Noves  and  Watkin1,  1*0550;  Freund3, 
10518;  Rojahn5,  1*0553;  Cocks  and  Salway,  1*0554. 

B.p.:  Noyes  and  Watkin1,  214°— 217° ;  Henry3, 
210°;  Beboul4,  216°— 217°;  Rojahn5,  210°;  Cocks 
and  Salway,  210°— 211°  C. 

Relation  between  specific  gravity  and  apparent  gly- 
cerol content  {acetin  process)  of  mixtures  of 

trimethyleneglycol,  glycerin,  and  water. 
In  order  to  obtain  a  suitable  series  of  mixtures 
for  the  specific  gravity  determinations  without 
making  too  great  a  demand  on  the  supply  of 
standard  glycerin,  the  following  method  of  com- 
pounding was  adopted: — Six  solutions  of  tri- 
methyleneglycol in  standard  glycerin  were  made  con- 
taining 2%,  5%,  10%,  15%,  20%,  and  25%  respec- 
tively of  trimethyleneglycol.  A  further  series  of 
6*  solutions  of  trimethvleneglycol  in  water  was  made, 
also  containing  2  % ,  5  %  ,  10  % ,  15  % ,  20  % ,  and  25  %  of 
trimethyleneglycol.  The  2%  aqueous  solution  of 
trimethyleneglycol  was  then  added  in  successive 
amounts  to  the  2%  solution  in  standard  glycerin, 
and  the  specific  gravity  determined  after  each 
addition.  In  this  way  a  series  of  mixtures  all  con- 
taining 2%  of  trimethyleneglycol,  but  varying 
amounts  of  glycerin  and  water,  was  obtained.  Simi- 
lar operations  with  the  remaining  solutions  gave  a 

■J.  Amor.  Chcm.  Soc.,  1895,  17,  890. 

'Monatsh.,  1881,  2,  638. 

"Bull.  Acad.  Boy.  Belgique,  1897,  (3),  33,  110. 

'Ann.    Chiin.,    1878,   (5),    14,   491. 

lZ.  anal.  Chem.,  1920,  58,   433. 


series  of  mixtures,  each  series  containing  varying 
glycerol  and  water,  but  a  constant  trimethylene- 
glycol content. 

The  specific  gravity  of  the  mixtures  was  carefully 
determined  at  20°/  20°  C,  using  a  sensitive 
standardised  thermometer  and  a  10-c.c.  specific 
gravity  bottle  for  the  purpose.  The  apparent 
glycerol  content  of  each  mixture  (acetin  value  cal- 
culated as  glycerol)  can  be  calculated  from  the  known 
composition  of  the  mixture;  in  the  tables  given 
below  the  specific  gravities  and  apparent  glycerol 
contents   (acetin   value)   have  been   recorded.     The 


Acetin 

Biff :  per 

Trimethylenegl> 

col.        value. 

Sp.  gr..  20720° 

1%  acetin. 

2% 

82-80 

1-2338 

81-76 

1-2126 

000264 

63-24 

1-1622 

0-00272 

4203 

11232 

0-00274 

1-60 

1-0014 

000255 

5% 

89-51 

1-2279 

81-69 

1-2077 

000258 

63-78 

11594 

000270 

49-71 

11209 

000275 

4-00 

10031 

0-00258 

10% 

8903 

1-2174 

81-59 

1-1988 

000250 

04-55 

1-1538 

000264 

51-32 

1-1182 

0-00269 

802 

10008 

0-00257 

15% 

88-53 

1-2079 

81-49 

11905 

000247 

6600 

11502 

0-00200 

54-51 

1-1199 

0-00264 

11-89 

1-0105 

0-00257 

20% 

8804 

11982 

81-44 

1-1822 

0-00242 

66-42 

1-1438 

0-00256 

55-42 

1-1157 

000255 

1604 

1-0146 

000257 

25% 

87-50 

1-1886 

81-42 

1-1738 

000241 

6711 

1-1381 

000249 

56-54 

.     •  1-1115 

000251 

20-05 

1-0184 

000255 

Specific  gravi 

ies  at  20°/ 20° 

100 


Vol.  xix,  No.  2.]       COCKS  AND  SALWAY— TRIMETHYLENEGLYCOL  IN  CRUDE  GLYCERIN.         19 t 


differences  in  the  sp.  gr.  per  change  of  1  %   in  the 
acetin  value  are  also  recorded. 

The  figures  for  the  acetin  value  and  specific 
gravity  have  been  plotted  on  a  series  of  cUFves 
(see  fig.),  each  curve  representing  a  definite  per- 
centage of  trimethyleneglycol.  On  the  scale  here 
given,  the  points  all  fall  on  a  straight  line, 
although  a  close  examination  of  the  above  figures 
and  the  differences  of  specific  gravity  per  1  %  acetin 
between  the  points  examined  shows  that  this  is  not 
strictly  true.  All  the  curves  up  to  15%  trimethylene- 
glycol have  a  point  of  inflexion  ;  above  15%  this  dis- 
appears and  the  curves  then  show  a  slight  convexity 
towards  the  pure  glycerin  curve. 

In  order  to  interpolate  figures  over  the  range 
from  50%  to  100%  acetin,  straight  lines  have  been 
drawn  between  each  successive  point  determined  in 
the  above  experiments  and  the  figures  thus  obtained 
tabulated  below:  — 

Trimethyleneglycol. 


Acetin 

0% 

2% 

5% 

10% 

15% 

20% 

100%  . 

1-2644 

— 

— . 

— . 

— 

— 

— 

99%  . 

1-2618 

1-2577 

1-2523 

— . 

— 

— 

— 

98%.. 

1-2591 

1-2551 

1-2497 

1-2398 

— 

— 

— 

97%  . 

1-2565 

1-2525 

1-2472 

1-2373 

1-2287 

— 

— 

96%  . 

1-2538 

1-2499 

1-2446 

1-2348 

1-221',;; 

1-2175 

— 

95%  . 

1-2511 

1-2473 

1  2420 

1-2323 

1-22:;- 

1-2151 

1-2064 

90%  . 

1-2378 

1-2343 

1-2291 

1-2198 

1-2115 

1-2030 

11944 

85%  . 

1-2248 

1-2211 

1-2161 

1-2073 

1-1992 

1-1909 

1-1824 

80%  . 

1-2108 

1-2078 

1-2032 

1-1948 

1-1868 

1-1788 

1-1704 

11972 

11943 

1-1898 

1-1818 

1-1737 

11659 

11579 

70%  . 

11836 

1-1806 

1-1703 

1-1685 

1-1606 

1-1531 

11454 

65%  . 

1-1699 

11670 

11627 

11550 

1-1478 

1-1402 

1-1329 

60%  . 

11563 

11533 

1-1490 

1-1412 

11346 

1-1275 

1-1204 

55%  . . 

11425 

1-1396 

11353 

11275 

11215 

11147 

1-1078 

50%  . . 

11288 

1-1259 

1-1216 

11137 

1-1084 

11019 

10952 

It  is  of  interest  to  observe  that  the  reduction  in 
specific  gravity  with  increasing  trimethyleneglycol 
content  is  fairly  regular.  Thus,  for  instance,  if  we 
examine  the  figures  at  a  constant  acetin  value,  say 
75%,  we  find  that  the  change  in  specific  gravity  for 
each  additional  5%  trimethyleneglycol  is  0'0074, 
O'OOSO,  0-0081,  0-0078,  and  0-0080  respectively.  This 
is  a  point  of  some  importance  as  it  leads  to  a  simple 
method  of  calculating  the  trimethyleneglycol  con- 
tent of  any  mixture.  All  that  is  necessary  is  to 
take  the  difference  between  the  specific  gravity  of 
the  mixture  under  examination  and  the  specific 
gravity  of  glycerin  at  a  dilution  represented  by  the 
acetin  figure  of  the  mixture,  and  then  divide  by  a 
given  factor.  The  factor  increases  with  the  acetin 
figure  as  follows: — Acetin  50%,  factor  000134  per 
1%  trimethyleneglycol;  55%,  0-00138;  60%,  000143; 
65%,  0-00148;  70%,  0'00152;  75%,  0-00157;  80%, 
0-00162;  85%,  0-00168;  90%,  0-00174;  95%,  0-00179. 

The  specific  gravity  of  glycerin  at  20°/20°. 

For  this  method  of  determining  trimethylene- 
glycol in  mixtures,  an  accurate  table  of  specific 
gravities  of  aqueous  glycerin  at  20°/20°  is  required. 
Several  well-known  tables  at  this  temperature  have 
been  published,  notably  those  of  Gerlach  and  Nicol, 
but  some  differences  exist  between  them.  Gerlach's 
table  at  15°/ 15°  is  generally  considered  correct,  but 
the  accuracy  of  his  table  at  20°/20°  is  open  to  ques- 
tion. Thus  if  we  take  the  standard  90%  glycerin 
used  in  these  experiments,  its  gravity  at  15'5°  is 
found  to  be  L2395,  which  is  in  substantial  agree- 
ment with  Gerlach's  table  at  this  temperature.  At 
20°/20°,  however,  Gerlach  gives  the  specific  gravity 
as  12360  for  90%  glycerin,  which  appears  to  be  in- 
correct. Presumably  Gerlach  has  used  the  coefficient 
of  expansion  of  glycerin,  determined  by  himself,* 
to  convert  the  tables  from  one  temperature  to 
another,  but  it  is  difficult  to  understand  how  he 
arrived  at  the  above  result.  According  to  Gerlach, 
the   expansion   of   90%    glycerin   is    as   follows:  — 

•«/.  Fresenlus,  Z.  anorg.  Chem.,  1885,  24,  112. 
'J.  Ind.  Eng.  Chem.,  1921,  13,  945. 


10,000  volumes  of  0°  becomes  10,045  at  10°  and 
10,095  at  20°  C.  At  15'5°  we  may  take  the  volume 
as  10,070.  The  expansion  of  water  on  the  other 
hand  is :  10,000  volumes  at  4°  becomes  10,0092  at 
15-5°  and  10,017-4  at  20°  C. 

Using  these  figures  to  transpose  the  gravity  from 
15-5°/15-5°  to  20°/20°  we  get  the  following :  — 


1  c.c.  90%  glycerin  at  15-5°  weighs  1-2S9S    g.,  and 
100092 


at  20° 


1-2395       10070 
100092     10095 


1-2353  g. 


1  c.c.  of  water  at  20°  weighs  0-9982  g.,  hence  the  sp.  gr.  of 
glycerin  at  20°/20°  =  1-2375  g. 

It  is  thus  evident  that  a  specific  gravity  of  T2395  at 
15'5°  becomes  12375  at  20°/ 20°  instead  of  the 
12360  given  in  Gerlach's  tables. 

An  actual  determination  of  the  specific  gravity  of 
the  standard  glycerin (90%) at  20°/20°  (uncorrected) 
gave  12378. 

In  view  of  the  uncertainty  of  Gerlach's  figures 
at  20°/20°,*  we  have  determined  the  gravity  of  the 
standard  glycerin  at  several  dilutions  and  have  used 
the  results  to  construct  the  table  of  gravities  for 
solutions  of  pure  glycerin  (0%  trimethyleneglycol) 
given  previously. 

These  figures  are  higher  than  those  of  Gerlach  for 
20°/20°,  but  are  more  nearly  in  agreement  with 
Nicol's  table. 

Procedure  recommended  for  the  estimation  of  tri- 
methyleneglycol in  crude  glycerin. 

A  known  weight  (100  g.)  of  the  crude  glycerin  is 
introduced  into  a  600-c.c.  distillation  flask,  which  is 
fitted  with  a  cork  and  capillary  inlet  tube.  To  the 
distilling  flask  is  fitted  an  air  condenser  about 
2  ft.  6  in.  or  3  ft.  long,  and  a  receiver  to  collect 
the  distillate.  The  apparatus  is  then  evacuated 
(15 — 30  mm.)  and  the  distillation  commenced.  For 
heating  the  glycerin,  an  oil  bath  at  230° — 240°  may 
be  used,  but  occasionally  trouble  arises  due  to  froth- 
ing. We  have  found  it  preferable  to  use  a  carefully 
manipulated  smoky  flame,  by  which  means  the  froth- 
ing can  be  kept  under  better  control.  The  heating 
should  be  so  regulated  that  the  distillation  proceeds 
at  about  1  drop  per  second  and  the  distillation  con- 
tinued until  approximately  30%  of  the  weight  of 
the  original  crude  glycerin  has  collected  in  the  re- 
ceiver. In  the  early  stages  of  the  distillation,  the 
material  loses  its  water,  some  of  which  escapes  con- 
densation. This  is  an  advantage,  as  it  obviates  the 
necessity  for  concentrating  the  distillate  before 
analysis. 

If  any  priming  has  occurred  during  the  distilla- 
tion, the  distillate  must  be  redistilled  before  analy- 
sis. For  analysis  the  specific  gravity  and  acetin 
value  of  the  distillate  are  determined  and  the  tri- 
methyleneglycol may  then  be  read  off  from  large- 
scale  curves  constructed  for  the  purpose,  or  may  be 
calculated  as  recorded  previously  from  the  differ- 
ence between  the  expected  specific  gravity  and 
the  gravity  found. 

Degree  of  accuracy  of  the  method. 

In  order  to  test  the  accuracy  of  the  method  some 
determinations  were  carried  out  with  glycerin  con- 
taining known  quantities  of  added  trimethylene- 
glycol. For  the  first  test  an  artificial  crude  glycerin 
(80%  strength)  containing  water,  salt,  and  tri- 
methyleneglycol was  compounded.  This  was  then 
distilled  by  the  method  described  and  the  distillate 
analysed.  The  figures  were: — 100  g.  of  crude 
glycerin  containing  2'98%  of  added  trimethylene- 
glycol gave  26  g.  of  distillate  with  sp.  gr.  L1613  and 
acetin  figure  678.  The  expected  sp.  gr.  for  pure 
glycerin  at  67'8%  strength  is  T1776  (see  tables). 
The  difference  0-0163,  divided  by  the  factor  (0-00150) 


•  Since  this  was  written  attention  has  been  drawn  by  Bosart  KT) 
to  the  discrepancies  in  Gerlach's  tables  at  20°  C. 


20  T 


CUMMING.— APPARATUS  FOR  ESTIMATION  OF  METHOXYL. 


(Jan.  31.  1922. 


corresponding  to  67'8%  acetin  value,  gives  the  tri- 
methyleneglycol  content  of  the  distillate.  That  is, 
0-0163/0-00150  =  ir0%.  Calculating  on  the  original 
crude  glycerin,  this  is  equivalent  to  2'86%. 

In  a  second  experiment  in  which  42  g.  of  distillate 
was  collected,  the  trimethyleneglycol  content  calcu- 
lated  on    the  original   glycerin    was   found   to    be 

3-07%. 

In  another  series  of  determinations  trimethylene- 
glycol was  added  in  known  amounts  to  two  com- 
mercial samples  of  crude  glycerin  and  the  mixture 
analysed.  In  this  case  the  original  samples  con- 
tained a  small  proportion  of  trimethyleneglycol, 
0'76%  andO'55%  respectively,  as  shown  by  "  blank  " 
determinations.     The  results  were:  — 


Trimethvleneglycol. 

Amount  added. 

Total. 

Pound 

0/ 

/o 

°L 

% 

No.  1  Crude 

Nil. 

— 

0-76 

219 

2-95 

2-77 

8-79 

9-55 

9-31 

No.  2  Crude 

Nil. 

— 

0-55 

219 

2-74 

2-74 

„          „ 

8-79 

9-34 

912 

It  is  clear  that  the  method  gives  a  close  approxi- 
mation to  the  real  trimethyleneglycol  content,  and 
it  is  concluded  from  these  results  and  our  general 
experience  *  of  the  method  as  applied  to  the  analy- 
sis of  crude  glycerin  that  the  figures  obtained  are 
within  0'2  of  the  actual  percentage  of  trimethylene- 
glycol present. 

Research  Laboratory, 
Lever  Bros., 

Port  Sunlight. 


APPARATUS  FOR  THE  DETERMINATION  OF 
METHOXYL  GROUPS. 

BY    WILLIAM    M.    CUMMING. 

A  convenient  apparatus  for  the  determination  of 
methoxyl  groups  by  the  Zeisel  method  is  that  used 
by  Robertson  for  the  estimation  of  halogens.  This 
consists  of  a  long-necked  round-bottomed  flask 
attached  by  a  ground  glass  joint  to  a  bulbed  U-tube. 
The  methyl  iodide  generated  by  the  interaction  of 
hydriodic  acid  and  the  methoxyl  group  is  absorbed 
in  alcoholic  silver  nitrate. 

The  same  apparatus,  however,  gave  very  poor 
results  when  used  for  this  determination  by  the 
method  of  Hewitt  and  Jones  (Chem.  Soc.  Trans., 
1919,  115,  193),  in  which  the  methyl  iodide  is 
absorbed  in  pyridine.  The  results  were  always  low 
and  in  some  cases  did  not  come  within  4%  of  the 
theoretical  value.  It  was  found  that  the  quantity 
of  pyridine  in  the  U-tube  had  little  or  no  influence 
on  the  results  obtained,  and  also  that  by  slow  and 
continued  bubbling  the  results  were  somewhat  im- 
proved. It  was  therefore  assumed  that  the  bad 
results  were  due  to  incomplete  absorption  of  the 
methyl  iodide  by  the  pyridine. 

The  apparatus  shown  in  the  accompanying  figure 
was  designed  to  overcome  this  difficulty  and  has 
given  very  good  results. 

The  flask  is  of  250  c.c.  capacity,  and  its  neck,  from 
bulb  to  the  ground  glass  joint,  10  in.  long.  The  de- 
livery tube,  to  which  is  fixed  a  side  tube,  is  attached 
to  the  flask  by  means  of  a  ground  glass  joint. 
A  thermometer  is  fixed  as  shown,  with  its  bulb 
opposite  the  delivery  exit.  To  the  delivery  tube  is 
attached,  also  by  a  ground  glass  joint,  an  absorber 
which  contains   about   10 — 15   c.c.    of    pyridine    in 


place  of  about  100  c.c.  used  in  the  Robertson  appa- 
ratus. The  apparatus  is  easily  filled,  emptied,  and 
washed. 


When  the  apparatus  is  in  use,  the  bulb  of  the 
flask  containing  the  hydriodic  acid  and  the  sub- 
stance is  heated  in  a  glycerin  bath  at  130°  C.  The 
methyl  iodide  is  carried  over  into  the  absorber  by  a 
slow  current  of  dry  carbon  dioxide,  passing  in  at 
the  side  tube.  The  temperatures  on  the  ther- 
mometer should  not  be  higher  than  35° — 40°  C.  for 
methoxyl  and  40°  C.  for  ethoxyl  compounds.  At 
these  temperatures  no  hydriodic  acid  is  distilled 
over.  As  a  further  precaution,  the  neck  of  the  flask 
is  slanted  away  from  the  source  of  heat. 

The  absorption  is  complete  in  about  one  hour. 
The  pyridine  and  its  methiodide  are  then  washed 
out  with  water,  the  solution  acidified  with  nitric 
acid,  a  known  volume  of  silver  nitrate  added,  and 
the  excess  of  the  latter  estimated  by  thiocyanate, 
using  ferric  alum  as  indicator.  In  the  determina- 
tion 0'3  g.  of  the  substance  is  used,  and  20  c.c.  of 
hydriodic  acid  (sp.  gr.  VI)  previously  redistilled 
over  red  phosphorus. 

Royal  Technical  College, 
Glasgow. 


*  This  method  has  been  in  use  for  several  years  in  the  analytical 
laboratories  of  Messrs.  Lever  Bros.,  and  has  proved  very  serviceable 
as  a  means  of  checking  the  production  of  trimethyleneglycol  in  crude 
glycerin. 


THE  DETERMINATION  OF  AVAILABLE 
SULPHUR  IN  GOLDEN  SULPHIDE  OF 
ANTIMONY. 

BY  D.  F.   TWISS. 

In  the  communication  on  this  subject  by  Luff 
and  Porritt  (J.,  1921,  40,  275  t),  it  is  shown  that 
the  customary  method  for  determining  the  propor- 
tion of  free  sulphur  in  golden  sulphide  of  antimony 
intended  for  use  as  a  compounding  ingredient  for 
rubber,  can  give  rise  to  misleading  results;  not  only 
may  antimony  pentasulphide  liberate  part  of  its 
combined  sulphur  under  the  ordinary  conditions  of 
vulcanisation,  but  also  free  sulphur  may  be  present 
in  the  insoluble  S/i  form,  and  this,  as  I  have  shown 
earlier,  is  capable  of  effecting  satisfactory  vulcani- 
sation. (In  addition  to  the  reference  quoted  in  the 
above  communication,  see  also  "Annual  Reports  of 
Progress  of  Applied  Chemistry,"  1919,  4,  p.  327, 
and  D.  F.  Twiss  and  F.  Thomas,  J.,  1921,  48  T.) 

I  had  indeed  already  drawn  attention  to  the 
above  defect  in  the  customary  procedure  for  the 
analysis  of  golden  sulphide  of  antimony  in  a  note  to 
the  '"  Indiarubber  Journal"  (1920,  60,  1014);  by  a 
coincidence  I  there  suggested  the  use  of  the  same 
term,  viz.,  "  available  sulphur,"  as  adopted  by  the 
authors  of  the  above  paper  (p.  276  t),  to  distinguish 
between  "free  sulphur"  as  estimated  in  the  cus- 
tomary manner  and  the  sulphur  capable  of  partici- 
pating in  the  vulcanisation  of  rubber. 


Vol.  XL!.,  No.  3.] 


TRANSACTIONS 


[Feb.   15.  1922. 


Manchester    Section. 


Meeting  held  at   the  Textile  Institute  on 
November  4,  1921. 


MR.    JOHN'   ALLAN  IN   THE   CHAIR. 

ELECTS  [CAL    PRECIPITATION. 

nv  dr.  n.  J.  btjsh. 


.1   communication  from   the  Chemical  Engineering 

(!  roup. 

In  1S24,  Hohlfeld,  of  Leipzig,  suggested  the 
removal  of  suspended  particles  from  gas  by  means  of 
electrical  discharges.  He  found  that  if  a  wire  hung 
in  a  bottle  filled  with  smoke  were  electrified,  the 
smoke  cleared  rapidly,  and  a  deposit  formed  on  the 
sides  and  bottom  of  the  bottle.  His  suggestion 
seems  to  have  been  forgotten  until  about  25  years 
later,  when  C.  P.  Guitard  of  London  again  called 
this  phenomenon  to  public  attention,  but  nothing 
further  seems  to  have  resulted.  In  1884-C  Sir 
Oliver  Lodge  again  brought  up  the  subject  in  a 
series  i.t  articles,  his  researches  and  discoveries 
being  made  independently  of  the  earlier  investiga- 
tions. The  object  he  had  in  view  was  to  use  elec- 
trical discharges  as  a  means  for  dissipating  fog  and 
smoke.  In  1885,  Sir  Oliver  Lodge,  in  conjunction 
with  A.  O.  Walker  and  W.  M.  Hutchings,  carried 
out  a  series  of  experiments  on  lead  fumes  at  the 
Deo  Bank  Lead  Works  in  Wales,  but  the  means  of 
generating  electricity  at  their  command  were  not 
sufficient  to  develop  the  system  into  a  technical 
success,  and  the  work  was  abandoned.  The  work 
led  to  the  first  patents  being  taken  out  in  England 
and  other  countries  in  1884  to  1886.  During  the 
same  period,  and  quite  independently,  Dr.  Karl 
Moeller  of  Brackwede,  Germany,  experimented  with 
the  electrical  precipitation  of  dust  and  fume,  and 
obtained  a  patent  in  Germany  in  1884.  No  com- 
mercial application,  however,  was  made  of  this 
method. 

During  the  following  20  years,  beyond  an  occa- 
sional article  calling  attention  to  the  possibilities  of 
electrical  precipitation,  and  a  few  patents  on  details 
and  modifications  issued,  very  little  was  done  and 
no  permanent  commercial  installation  resulted. 

In  1906,  Dr.  F.  G.  Cottrell,  present  Director  of 
the  United  States  Bureau  of  Mines,  who  was  then 
Professor  of  Physical  Chemistry  in  the  University  of 
California,  had  occasion  to  repeat  the  early  experi- 
ments of  Lodge,  while  studying  the  removal  of  acid 
mists  in  the  contact  sulphuric  acid  process.  He 
became  convinced  of  the  possibilities  of  commercial 
application  of  electrical  precipitation ;  and  tests 
made  at  the  Hercules  Works  of  the  Du  Pont  de 
Nemours  Company  at  Pinole,  California,  in  1906, 
demonstrated  this  conclusively.  The  first  com- 
mercial installation  of  any  size  was  made  at  the 
plant  of  the  Selby  Smelting  and  Lead  Company,  on 
San  Francisco  Bay,  for  the  collection  of  sulphuric 
acid  fumes  arising  from  parting  kettles. 

The  Western  Precipitation  Company  and  the 
International  Precipitation  Company  of  California 
were  organised  in  1907  for  the  purpose  of  adminis- 
tering the  patent  rights  of  the  Cottrell  processes  in 
domestic  and  foreign  fields  respectively. 

In  1912,  certain  precipitation  rights  in  the  United 
States,  not  controlled  by  the  Western  Precipitation 
Company,  were  offered  to  the  Smithsonian  Institu- 
tion, which,  however,  under  its  charter,  could  not 
conduct  the  business  activities  the  offer  entailed, 
and  a  separate  organisation  was  incorporated  for 


this  purpose.  This  organisation,  the  Research 
Corporation,  with  headquarters  in  New  York  City, 
is  now  actively  engaged  in  this  work. 

In  England  electrical  precipitation  has  been 
prosecuted  independently  by  Sir  Oliver  Lodge  and 
by  his  sons  under  the  name  of  "  The  Lodge  Fume 
Company." 

To  render  air  a  conductor  of  electricity,  the 
negative  ions  must  be  ejected  from  its  molecules;  it 
therefore  requires  to  be  subjeeted  to  ionisation, 
which  can  be  brought  about  by  various  agents,  such 
as  radium,  ultra-violet  rays  of  a  certain  wave 
length,  Kontgen  and  Becquerel  rays,  high  tempera- 
tures, chemical  reaction,  and,  finally,  electrical  dis- 
charge. The  rays  that  effect  ionisation  lie  in  the 
extreme  ultra-violet  section  of  the  spectrum,  and 
the  line  of  demarcation  between  the  ionising  and 
non-ionising  portion  is  sharply  defined,  red  rays, 
however  powerful,  not  having  the  slightest  influence 
on  the  conductivity  of  air. 

Though,  generally  speaking,  air  may  be  considered 
an  excellent  insulator,  measurements  with  delicate 
instruments  have  revealed  that  it  will  always  convey 
a  small  amount  of  electricity,  and  the  origin  of  this 
so-called  residual  conductivity  has  occasioned  much 
speculation  and  research.  Tests  were  carried  out  in 
ordinary  rooms,  in  places  many  feet  below  the  sur- 
face of  a  lake,  and  even  in  mid-Atlantic  to  eliminate 
as  far  as  possible  all  disturbing  influences,  but, 
though  much  reduced  in  the  last  case,  residual 
conductivity  still  remained.  Prof.  MeLellan  of 
Toronto  went  so  far  as  to  test  a  sample  of  air  en- 
closed in  a  box  made  of  ice,  and  this  sample  cer- 
tainly showed  the  lowest  conductivity  of  any.  Prob- 
ably this  small  amount  of  conductivity  always 
present  in  air  is  due  to  the  small  traces  of  radium 
which  can  be  detected  in  almost  all  rocks. 

Electrical  precipitation  on  an  immense  scale 
occurs  in  nature,  brought  about  by  the  electrical 
phenomena  taking  place  in  the  atmosphere  acting 
on  the  particles  of  dust  and  moisture  suspended 
therein;  it  is  only  during  the  last  7  or  8  years 
that  reliable  measurements  have  been  taken  of  the 
amount  of  electricity  passing  with  a  flash  of  light- 
ning and  of  the  length  of  the  disruptive  discharge. 

C.  K.  I.  Wilson  made  a  series  of  very  valuable 
observations  at  Cambridge  with  the  use  of  delicate 
instruments  installed  at  two  places  a  considerable 
distance  apart.  The  charged  thunder  cloud  pro- 
duces at  places  in  its  neighbourhood  certain  elec- 
trical effects  which  are  measureable,  and  the  magni- 
tude of  which  varies  with  the  distance  of  the  cloud 
and  the  quality  of  the  discharge  taking  place  to 
earth.  It  was  found  that  the  average  flash  of  light- 
ning had  a  length  of  10  km.  and  that  the  amount 
of  electricity  was  equal  to  30  coulombs.  At  the 
observation  point  the  potential  gradient  was 
2000  volts  per  metre,  and  it  is  safe  to  assume  that 
in  the  direct  line  of  actual  discharge  it  was  higher 
still.  Taking  the  lower  value,  however,  it  follows 
that  the  actual  difference  of  potential  before  the 
disruptive  discharge  occurred  was  no  less  than  20 
million  volts,  and  calculating  on  30  coulombs,  the 
energy  liberated  is  equivalent  to  that  of  dropping  a 
load  of  600  tons  through  a  distance  of  100  metres. 
It  is,  furthermore,  possible  to  calculate  the  expanse 
of  the  cloud  required  to  accumulate  the  above 
charge,  and  this  is  found  to  be  an  area  of  one  square 
kilometre.  It  is  surprising,  in  view  of  the  enormous 
amount  of  force  involved,  that  the  damage  done  is 
comparatively  so  small.  Fortunately  it  is  not 
necessary  to  face  such  extremes  in  industrial  elec- 
trical precipitation.  The  formation  of  these  large 
quantities  of  electricity  has  been  explained  by  the 
action  of  rain  drops.  It  had  been  known  for  some 
time  that  peculiar  electrical  conditions  existed  at 
the  foot  of  waterfalls  when  Lenard  took  up  his  re- 
searches on  the  electrification  produced  by  splashing 


22  t 


BUSH.— ELECTRICAL   PRECIPITATION. 


[Feb.  15,  1922. 


water.  He  found  that  when  water  drops  strike  on  j 
a  surface  and  break  up,  the  water  is  positively  elec- 
trifled  and  the  air  negatively.  Further,  the  impuri- 
ties in  the  water  may  considerably  affect  the 
phenomenon,  some  more  than  others.  For  instance, 
Lenard  found  he  could  greatly  modify  the  elec-  ! 
trification  by  adding  traces  of  methyl  violet — traces  j 
so  minute  that  they  could  not  be  detected  by  the  eye. 
The  peculiar  effect  of  electrification  on  water 
spray  can  be  demonstrated  by  the  following  experi- 
ments. If  a  jet  of  water  is  allowed  to  pass  upwards 
through  a  central  orifice  of  a  metal  dish,  the  spray 
may  be  so  fine  that  practically  no  sound  is  produced 
by  the  falling  particles  striking  the  dish.  If  now 
an  electrified  ebonite  rod  is  held  up  to  the  spray, 
the  fine  particles  will  form  larger  drops  and  produce 
a  very  distinct  patter  as  they  fall  into  the  dish. 
Again,  if  the  shadow  of  a  jet  of  steam  is  projected 
onto  a  screen,  and  the  orifice  from  which  the  steam 
is  issuing  approached  by  a  wire  connected  with 
an  induction  coil,  the  shadow  of  the  steam  becomes 
much  darker,  showing  that  the  particles  have 
become  larger. 

Rain  drops  rarely  exceed  5J  mm.  in  diameter,  and 
if  they  grow  by  condensation  they  very  quickly 
break  up  into  smaller  droplets,  with  the  resultant 
phenomena  of  electrification.  Now  before  a  thunder- 
storm there  can  always  be  observed  an  upward 
current  of  air  laden  with  moisture.  As  it  cools  the 
moisture  separates  into  drops  which  grow  larger  and 
larger  until  the  upward  current  of  air  will  no  longer 
support  their  weight.  As  they  drop  they  break  up 
into  smaller  particles  and  6pray.  The  larger  par- 
ticles are  positively  electrified  and  the  fine  spray  is 
electrified  negatively  by  contact  with  the  air.  This 
fine  spray  is  carried  upward  by  the  air  current,  and 
thus  the  two  charges  become  separated  and  a  rain 
cloud  is  formed  with  positively  charged  drops  at  the 
bottom  and  the  negatively  charged  fine  spray  at 
the  top.  If  the  charge  is  sufficiently  high;  a  spark 
will  pass  within  the  cloud,  and  the  electric  field  is 
destroyed;  but  imagine  a  horizontal  wind  carrying 
away  the  light  spray,  and  thus  separating  the  two 
components ;  there  will  be  one  cloud  with  an  entirely 
negative,  and  one  with  a  positive  charge,  and  pro- 
vided the  potential  is  sufficiently  high  a  disruptive 
discharge  will  take  place  from  either  to  earth.  It 
is  actually  the  fact  that  heavy  rain  shows  positive 
and  fine  rain  negative  electricity.  The  above  is  only 
one  of  a  number  of  possible  explanations  that  have 
been  put  forward  for  the  electrical  phenomena 
occurring  during  a  thunderstorm.  It  will  be  readily 
seen  that  any  solid  or  liquid  particles  straying  into 
the  powerful  field  established  between  a  cloud  and 
earth  will  undergo  electrical  precipitation  in  a 
manner  similar  to  that  practised  industrially. 

On  the  whole  the  passage  of  electricity  thiough 
air  is  like  that  through  electrolytes,  though  there 
are  some  fundamental  differences.  The  wider  the  air 
gap  separating  two  points  of  different  potential,  the 
greater  the  quantity  of  electricity  passing,  also  the 
current  does  not  increase  in  direct  proportion  with 
the  voltage.  This  holds  good  within  certain  limits. 
When  the  two  poles  of  a  direct  current  source  of 
supply  are  connected  across  an  air  gap  the  relation 
between  current  and  potential  will  not  follow  Ohm's 
law;  after  a  certain  voltage  has  been  reached  no 
increase  in  current  can  be  effected  by  raising  the 
voltage.    A  point  of  saturation  has  been  reached. 

To  explain  the  above  the  ions  present  in  the  air 
gap  must  be  regarded  as  the  carriers  of  the  electric 
current.  The  number  of  these  present  at  any  time 
limits  the  conductive  capacity  of  the  air  gap,  with 
the  result  that  unless  their  number  is  increased  by 
other  means,  no  increase  of  current  beyond  a  point 
corresponding  to  their  carrying  capacity  can  be 
brought  about  by  raising  the  voltage.  This  holds 
good  only  up  to  a  certain  voltage  varying  with  the 
size  of  the  air  gap,  above  which  the  potential  dif- 


ference will  set  up  ionisation  of  the  gas,  and  the 
current  having  now  more  ions  to  transport  it  will 
again  increase  as  the  voltage  rises.  The  gas  at  this 
stage  will  become  as  good  a  conductor  of  electricity 
as  a  first-class  electrolyte,  e.g.,  dilute  sulphuric  acid, 
and  this  condition  of  high  conductivity  is  a  per- 
fectly stable  one,  and  no-wise  comparable  with  a 
discharge  from  a  Leyden  jar.  In  electrical  precipi- 
tation of  liquids  and  solids  from  gases  as  developed 
technically,  a  strong  electrical  field  is  established  by 
connoting  one  set  of  electrodes  to  a  source  of  high- 
tension  potential,  and  the  other  set  to  earth,  the 
air  gap  between  the  two  sets  of  electrodes  forming 
a  link  in  the  circuit.  The  electrodes  are  shaped  to 
meet  the  particular  requirements,  and  may  either 
be  earthed  plates  opposed  by  charged  wires  between 
which  the  gas  to  be  cleaned  is  led,  or  they  may  be 
earthed  pipes  with  charged  wires  suspended  in  them, 
the  gas  travelling  through  the  pipes  and  depositing 
the  particles  on  the  inside  of  the  pipes.  When 
a  solid  or  liquid  particle  carried  along  by  the  gas 
current  comes  within  a  high-tension  electric  field  it 
is  subjected  to  a  number  of  diverse  influences.  It 
may  suffer  polarisation  of  its  electrical  charges, 
tending  to  drive  it  towards  the  charged  electrode. 
Secondly,  it  will  be  subjected  to  a  bombardment 
of  ions  produced  in  the  gas  by  the  corona  discharge 
of  the  wire  electrode.  This  will  impart  to  the 
particle  a  charge  impelling  it  towards  the  earthed 
electrode.  Thirdly,  it  will  be  carried  away  from  the 
discharge  electrode  by  the  electric  wind,  which  is 
a  secondary  effect  of  the  high  potential  impressed 
upon  the  discharge  member.  The  finer  this 
member,  and  the  more  projecting  points  it  has,  the 
greater  will  be  the  influence  of  this  wind.  The  fact 
that  with  positively  and  negatively  charged  par- 
ticles in  the  gas,  all  except  a  small  percentage  are 
deposited  on  one  electrode  only,  the  earthed  one,  is 
explained  by  the  following  considerations.  The 
positively  charged  particle  striving  towards  the 
negative  electrode  meets  a  concentrated  stream  of 
negative  ions  and  negatively  charged  particles 
striving  in  the  opposite  direction, the  probable  effect 
of  which  will  be  that  its  charge  is  reversed  by  con- 
tact with  them,  and  the  particle  joins  the  current  of 
negative  ions  and  particles  tending  towards  the 
earthed  electrode.  In  this  movement  away  from  the 
discharge  electrode  the  particle  is  further  aided  by 
the  electric  wind  referred  to  above.  Some  positive 
particles  will  nevertheless  succeed  in  avoiding  the 
stream  of  particles  and  ions  opposing  them,  and 
thus  reach  the  negative  electrode. 

It  will  thus  be  seen  that  the  passage  of  electric 
current  through  the  gas  separating  the  electrodes  is 
influenced  by  the  degree  of  ionisation  of  the  gases. 
It  has  been  found  that  gases  derived  from  certain 
metallurgical  operations  are  so  highly  ionised  as  to 
offer  considerable  difficulties  to  successful  electrical 
precipitation.  The  air  gap,  so  to  speak,  is  short- 
circuited,  and  the  potential  difference  that  can  be 
maintained  without  disruptive  discharge  does  not 
suffice  for  establishing  the  required  electrical  field. 
Means  have  been  suggested  for  de-ionising  the  gas 
by  attaching  the  ions  to  slow-moving  carriers,  or  by 
bringing  about  a  recombination  of  the  negative  and 
positive  ions  in  various  ways.  On  the  other  hand, 
electrical  precipitation  cannot  be  carried  on  suc- 
cessfully without  the  help  of  the  stream  of  ions  sent 
out  by  the  discharge  electrode,  and  the  shape  and 
dimensions  of  the  latter  have  a  very  material  effect 
on  the  ionisation,  and  must  be  carefully  adapted  to 
suit  the  conditions  encountered.  What  may  answer 
for  one  gas  and  for  one  temperature  may  be  useless 
for  others.  Another  condition  for  successful  pre- 
cipitation is  that  the  earthed  electrode  and  its  de- 
posit shall  be  maintained  at  zero  potential.  If  this 
is  not  done  peculiar  electrical  disturbances  take 
place.  Such  conditions  have  been  artificially  repro- 
duced in  the  laboratory,  and  the  resulting  phe- 
|    nomena  photographed. 


Vol.  XII.,  Xo.  3.] 


BUSH.— ELECTRICAL   PRECIPITATION. 


23t 


The  effect  of  dust  deposits  on  the  electrodes  was  ( 
not  clearly  recognised  in  the  early  days  of  electrical 
precipitation,  and  some  of  the  results  were  very 
puzzling.  At  night  a  faint  glow  could  be  sometimes 
observed  on  the  earthed  electrode,  and  the  dust  par- 
ticles, after  being  repelled  from  the  charged 
member,  would  travel  along  the  earthed  electrode 
at  a  certain  distance  from  it,  instead  of  depositing 
thereon. 

Corresponding  conditions  were  reproduced  in  the 
laboratory,  and  a  study  made  of  the  effect  of  a 
number  of  dielectrics  on  the  voltage  that  was  neces- 
sary to  produce  a  disruptive  discharge  between  the 
charged  and  the  earthed  electrode  when  the  latter 
was  covered  with  a  layer  of  such  substances. 

Fig.  1  shows  the  appearance  of  a  normal  flash- 
over  from  a  thin  wire  or  a  point  to  a  plate.  Fig.  2 
shows  the  effect  of  sliding  a  sheet  of  mica  over  an 
earthed  metallic  plate  opposed  by  a  charged  point. 
As  the  mica  comes  within  the  electric  field  between 
the  two,  the  hitherto  silent  discharge  is  replaced  by 
a  number  of  disruptive  discharges  from  the  charged 
point  to  the  edge  of  the  mica.  A  number  of  other 
dielectrics  were  tried,  such  as  sulphur,  glass  wool, 
and  filter  paper,  and  in  each  case  it  was  found  im- 


Imo.  1. 


FiO.  2. 


Fig.  3. 


Fig.  4. 


possible  to  maintain  the  same  voltage  as  with  the 
metallic  plate  alone.  After  exposure  such  dielectrics 
are  found  to  have  accumulated  an  appreciable 
charge.  This  is  especially  noticeable  with  the  mica 
plates,  which  gave  sparks  2  cm.  long  from  one  point 
to  another.  Fig.  3  shows  the  kind  of  discharge  ob- 
tained from  a  point  or  wire  to  an  earthed  plate 
covered  with  one  of  the  dielectrics  mentioned 
above.  Fig.  4  shows  another  curious  effect,  the 
effect  of  placing  a  piece  of  perforated  paper  over  the 


earthed  electrode.  It  is  again  impossible  to  main- 
tain the  same  voltage  without  arcing,  and  the 
photograph  shows  a  luminous  cone  round  the  edges 
of  the  perforation  pointing  to  back  ionisation.  The 
glow  is  a  much  better  conductor  of  electricity  than 
other  portions  of  the  gas,  and  this  decreases  the 
distance  of  the  air  gap,  and  therefore  the  operating 
voltage  which  can  be  maintained  consistent  with 
smooth  working  conditions. 

I  have  touched  only  on  the  fringe  of  the  phe- 
nomena which  have  to  be  studied  in  applying  high- 
tension  current  to  the  removal  of  particles  from 
gases.  Much  is  still  open  to  discussion,  but  great, 
strides  have  been  made  since  Sir  Oliver  Lodge'6  and 
Dr.  Cottrell's  first  tentative  attempts,  and  opera- 
tions of  electrical  precipitation  are  becoming  less 
empirical  as  the  results  of  independent  investigators 
are  sifted  and  correlated,  and  the  conditions  gov- 
erning the  precipitation  of  liquid  or  solid  particles 
held  in  suspension  in  gaseous  fluids  are  more  defin- 
itely established. 

The  large  installation  erected  for  the  Ministry  of 
Munitions  at  Queen's  Ferry  in  connexion  with  the 
Gaillard  sulphuric  acid  concentrating  towers  is  illus- 
trated in  Fig.  5;  the  towers  were  causing  consider- 
able annoyance  and  damage  owing  to  quantities  of 
sulphuric  acid  emitted  by  the  stacks.  Fig.  6  is  a 
plan  and  sectional  elevation  of  one  compartment 
snowing  the  electrodes  and  the  manner  of  carrying 
the  high-tension  bus-bar  supports.  The  plant 
proved  to  be  a  profitable  investment. 

A  similar  installation  to  this,  embodying  a  num- 
ber of  improvements,  was  completed  and  ready  for 
starting  up  at  another  Government  factory  when 
the  armistice  was  signed. 

The  exit  gases  from  the  Admiralty's  installation 
of  Kessler  concentrators  at  Holton  Heath  consti- 
tuted not  so  much  a  nuisance  as  a  danger  to  the 
stores  of  finished  explosives  in  the  sheds,  and  it  was 
decided,  therefore,  in  1918,  to  instal  a  number  of 
Cottrell  units  to  eliminate  the  possibility  of  any 
such  contamination. 

Alternate  scrubbers  were  converted  into  electrical 
precipitators,  leaving  always  one  scrubber  for  two 
Kesslers.  The  gases  from  two  furnaces  were  drawn 
through  one  scrubber  and  blown  into  a  twin  set  of 
precipitating  boxes.  The  results  achieved  were 
very  satisfactory,  the  capacity  provided  proved 
ample,  and  the  escape  of  white  acid  fumes  from  the 
individual  stacks  was  no  longer  seen.  In  fact  the 
air  issuing  from  the  stacks  could  be  breathed  for  3 
short  while  without  great  discomfort.  The  losses 
never  having  approached  the  magnitude  of  those  at 
Queen's  Ferry,  the  monetary  return  on  the  plant 
was  correspondingly  reduced.  This  plant  is  fully 
described  in  "  Engineering,"  of  January  28,  1921. 

The  installations  so  far  mentioned  are  of  the  plate 
and  rod  type.  Fig.  7  shows  diagrammatically 
a  small  pipe  and  wire  design  erected  at  a  metallur- 
gical works  for  the  recovery  of  very  finely  divided, 
precious  metal  dust.  The  refining  process  adopted 
at  this  plant  depended  for  its  success  on  a  fume  re- 
covery plant,  the  conditions  attached  to  which  could 
only  be  met  by  electrical  precipitation.  Not  only 
was  the  fume  evolved  highly  corrosive  when  wet, 
but  the  constituents  of  the  fume  when  moist  decom- 
posed in  contact  with  metal  work  and  rapidly  cor- 
roded it.  This  was  entirely  overcome  by  treating 
the  gases  hot  in  the  electrical  field.  Steelwork  was 
used  throughout,  and  no  detriment  has  been  noticed 
so  far.  The  recovery  has  proved  practically  com- 
plete. 

In  this  plant  a  motor-generator  is  used  to  con- 
vert the  direct  current  works  supply  into  single- 
phase  alternating  current,  and  to  operate  the 
svnchronous  switch,  whereas  at  Queen's  Ferry  and 
Holton  Heath  the  works  alternating  current  supply 
is  fed  directly  to  synchronous  motors  driving  the 
switch.  The  system  to  be  adopted  depends  upon 
local  conditions  to  some  extent,  as  well  a6  on  con- 


24  T 


BUSH.— ELECTRICAL   PRECIPITATION. 


[Feb.  15,  1922. 


siderations  of  cost.  If  a  steady  and  ample  supply 
of  alternating  current  is  available,  synchronous 
motors  can  be  used  with  advantage;  if  the  supply 
is  fluctuating  or  only  direct  current  is  avail- 
able, motor  generators  are  called  for.  Special  pre- 
cautions must  be  taken  to  protect  these  machines 
from  the  oscillations  that  may  be  set  up  in  the 
circuit,  and  which  may  reach  considerable  magni- 
tudes.    The  arrangement  of  the  bottom  dust-collect- 


and  introducing  the  high-tension  current  into  the 
box. 

A  very  different  field  of  application,  and  one  that 
is  likely  to  become  an  increasingly  important  one, 
is  the  use  of  the  electrostatic  method  for  removing 
solid  particles  from  blast-furnace  gases.  The  aver- 
age dust  content  is  about  5  grams  per  cub.  metre, 
rising  in  some  cases  to  15  g.  per  cub.  m.  and  even 
more.     The  first  large-scale  installation  operated  in 


fl^Sl 


*~*  ^ww-vff    Ct~£CT soars. 


£rs9G.r 


Fig.  5. 


rij,A  ««i*  G"t  t*+&3 


■*5*M£  §L-/roor 


<Sotf     £  •  s*"T 


Fid.  6. 


ing  chamber  and  slides  in  this  plant  permits  obser- 
vation of  the  discharge  electrodes  at  work.  The 
corona  effect  along  the  length  of  the  whole  wire 
shows  up  very  clearly,  and  it  is  soon  possible  to  tell 
by  its  appearance  whether  the  proper  electrical  con- 
ditions are  being  maintained  in  the  pipes. 

At  the  same  works  a  precipitator  has  also  been 
installed  for  recovering  sulphuric  acid  fumes  escap- 
ing from  parting  kettles.  It  is  essentially  a  copy  of 
the  Holton  Heath  design  with  a  number  of  modifica- 
tions that  have  been  found  of  advantage,  especially 
in  the  mode  of  suspending  the  discharge  electrodes 


this  country  was  designed  by  the  Lodge  Fume  Co., 
Ltd.,  of  Birmingham,  for  the  Skinningrove  Iron 
Co.,  Ltd.  It  is  of  the  plate  type,  and  consists  of 
16  compartments  built  in  ferro-concrete,  each  with 
its  own  inlet  and  outlet  valve.  Ferro-concrete  was 
adopted  owing  to  the  scarcity  of  steel  plates. 
The  depositing  electrode  plates  18  in.  wide  by  10  in. 
long,  are  opposed  by  peculiarly  shaped  discharge 
members,  there  being  14,000  discharge  points  to 
each  compartment.  The  dust  adhering  to  the  elec- 
trodes is  removed  by  suitable  rapping  devices 
jarring  both  the  plates  and  the  discharge  members. 


Vol.  XIX,  No.  3.] 


BUSH.— ELECTRICAL   PRECIPITATION. 


25  t 


Blast-furnace  dust  appears  to  be  particularly  in- 
clined to  cling,  especially  if  the  temperature  of  the 
gas  is  allowed  to  fall  below  a  point  where  moisture 
can    condense    on    the    deposit.      The    generating 


system  for  supplying  high-tension  current  to  this 
installation  is  of  a  special  kind,  developed  by  the 
Lodge  Fume  Co.,  and  differs  materially  from  the 
system  followed  in  so-called  Cottrell  plants.  A  static 
transformer  of  the  induction  coil  type  is  used  in 
connexion  with  mechanical  and  valve  rectifiers.  It 
would  seem  that,  while  suitable  for  smaller  installa- 
tions, it  has  certain  characteristics  which  make  it 
less  desirable  for  large  units.  The  Skinningrove 
installation  was  decided  upon  in  war  time,  with  a 
view  chiefly  to  secure  potash,  nothing  beyond  a 
rough  cleaning  of  the  gases  being  aimed  at.  About 
90  %  of  the  dust  is  actually  removed,  and  the  rough 
cleaned  gas  is  burnt  under  boilers  and  in  stoves, 
a  portion  of  it  going  through  a  wet  washer  to 
render  it  sufficiently  clean  for  use  in  gas  engines.* 
The  North  Lonsdale  Iron  Co.  have  a  plant  of  the 
same  design  working  on  two  blast  furnaces  on  the 
West  Coast.  The  dust  is  slightly  more  gritty  and 
contains  less  potash  than  that  of  Skinningrove. 
The  efficiency  is  higher,  and  the  difference  in  the 
workingof  the  boilers  since  they  have  been  fired  with 

*  The  installation  is  described  in  a  paper  read  at  the  1920 
meeting  of  the  Iron  and  Steel  Institute  in  Cardiff^  and  a 
supplementary  paper  by  the  members  of  the  Skinningrove 
staff  was  submitted  at  a  meeting  of  the  Cleveland  Institute 
of  Engineers,  held  at  Middlesbrough  on  Feb.  7,  1921. 


clean  gas  is  very  pronounced.  A  considerable  saving 
of  coal  resulted,  as  the  clean  gas  made  it  possible  to 
keep  up  steam  without  the  use  of  additional  coal. 
At  the  Workington  branch  of  the  United  Steel  Co. 
an  electrical  precipitator  of  the  pipe  and  wire  type 
is  installed.  It  consists  of  six  units  of  64  pipes,  each. 
9  in.  in  diameter,  and  is  intended  to  take  the  gases 
from  three  blast  furnaces  producing  haematite  iron. 
A  number  of  novel  features  are  embodied  in  this 
plant,  one  of  which  is  a  mechanical  gear,  operated 
by  a  motor  and  countershaft,  for  hammering  the 
pipes  and  simultaneously  agitating  the  discharge 
wires  so  as  to  remove  therefrom  the  deposited  dust. 
Each  compartment  is  self-contained,  with  inlet  and 
outlet  valves,  rapping  gear,  high-tension  leading-in 
insulator,  etc.,  and  is  fed  by  a  separate  25  kv.-a. 
generating  unit  consisting  of  motor  generator, 
control  panel,  transformer,  and  potential  rectifier. 
The  whole  is  roofed  over  and  means  are  provided 
for  enclosing  the  sides  should  it  be  found  desirable. 
The  plant  is  completed  and,  but  for  the  blast- 
furnaces being  closed  down,  would  now  be  in  opera- 
tion. The  corona  glow  on  the  many  wires  as  seen 
after  dark  is  a  wonderful  sight.  Incidentally,  the 
odour  of  ozone  escaping  at  the  top  of  the  pipes  is 
overpowering. 

The  application  of  electrostatic  precipitation 
to  the  cleaning  of  roaster  gases  from  mechanical 
pyrites  furnaces  is  a  field  that  has  been  somewhat 
neglected  both  in  America  and  in  this  country. 
In  the  United  States  isolated  installations  were 
put  in  as  far  back  as  1916,  but  it  was  not  until 
the  co-operation  of  one  of  the  largest  acid  producers 
was  secured  that  results  were  obtained  justifying  the 
faith  of  the  adherents  of  electrical  precipitation. 
For  some  time  past  a  precipitator  has  been  in 
operation  cleaning  the  gases  from  mechanical 
furnaces  burning  roughly  70  tons  of  pyrites  per 
24  hrs.,  with  an  average  efficiency  of  over  98%. 
About  6  tons  of  dust  is  recovered  per  week,  a  large 
part  of  which  would  ordinarily  have  gone  forward 
to  block  the  washing  towers,  coolers,  filters,  etc. 
The  temperature  of  the  gases  is  over  500°  C. ;  the 
power  consumption  of  the  cleaning  plant  is  only 
3  kw.  The  results  of  this  installation  were  so  con- 
vincing that  the  battery  of  Howard  dust  catchers 
— which  are  of  the  horizontal  plate  type — was  re- 
placed by  electrical  precipitators. 

A  similar  installation  to  the  above  would  now  be 
working  in  this  country  if  the  trade  depression  had 
not  made  it  imperative  to  suspend  all  plant  con- 
struction work  at  the  establishment  in  question. 
The  materials  are,  however,  all  on  the  site,  and  it 
is  hoped  to  start  the  erection  shortly. 

While  the  efforts  of  those  engaged  in  electrical 
precipitation  here  and  in  the  United  States  were 
directed  during  the  war  mainly  to  the  recovery  of 
valuable  metal-bearing  dust  from  smelting  works, 
the  Germans  concentrated  on  the  pyrites  gas 
problem  as  soon  as  war  broke  out,  and  it  must  be 
confessed  their  labours  were  eminently  successful. 
The  dust-laden  pyrites  gases  were  found  to  be 
particularly  well  conditioned  for  treatment  in  the 
electrical  field,  and  present  none  of  the  difficulties 
that  had  to  be  dealt  with  in  the  case  of  blast-furnace 
gases.  No  trouble  was  encountered  in  removing  the 
deposited  dust  from  the  electrodes,  and  after  one  or 
two  setbacks  the  insulation  question  was  solved  in 
a  very  satisfactory  way.  The  design  is  of  the  plate 
and  wire  type,  free  from  unnecessary  complications, 
and  as  inexpensive  as  can  reasonably  be  expected. 
The  general  arrangement  of  such  an  installation, 
with  the  generating  set,  control  gear,  and  precipi- 
tator, is  shown  in  Fig.  8.  To  guard  against  dust 
passing  through  and  giving  rise  to  stoppages  in 
case  of  current  failure,  a  system  of  automatic 
control  and  alarm  gear  was  used,  whereby  if 
disturbance  occurred  in  any  one  precipitating  com- 
partment an  automatic  cut-out  would  interrupt  the 
current  supply,  close  a  valve  on  the  gas  inlet,  switch 


26t 


BUSH. — ELECTRICAL   PRECIPITATION. 


(Feb.  15,  1922. 


on  a  red  pilot  light,  and  sound  an  admonishing 
hooter.  These  precautions  were  found  in  practice 
to  be  exaggerated,  as  the  operation  proceeded 
uniformly  and  smoothly  with  practically  no  inter- 
ruption except  that  required  for  removing  the 
accumulated  dust.     This  entails  switching  off  the 


there  is  no  cleaning  out  of  flues,  no  blocking  of 
Glover  and  Gay-Lussac  towers,  no  silting  up  of 
coolers,  tanks,  and  pumping  machinery,  and  no 
handling  of  accumulated  sludge  with  its  attendant 
expense  of  labour  and  loss  of  acid — in  fact  the 
operation  of  the  whole  plant  is  rendered  more  con- 


Fig.  8. 


high-tension  current  and  changing  over  to  another 
compartment.  Accordingly  these  controls  were  subse- 
quently simplified,  and  instead  of  always  having  one 
compartment  idle  ready  for  use,  twin  compartments 
are  used,  of  such  a  capacity  that  one  can  handle  all 
the  gas  at  a  reduced  efficiency  during  the  short  time 
that  the  other  is  off  for  cleaning.  More  than  20 
plants  were  installed  during  the  war  for  cleaning 
the  roaster  gases  for  oleum  works,  among  them 
being  those  of  Nobel,  Griesheim,  Leverkusen, 
Walter  Feld,  TJetikon,  and  Von  Heyden. 


■ 


-J 


iv  '•    ■    < 


Fig.  9. 

Since  the  war  results  are  to  hand  of  electrical  pre- 
cipitators working  on  mechanical  roasters  of  lead 
chamber  plants,  and  they  show  that  there  also 
appreciable  economies  can  be  effected  thereby. 
In  addition  to  the  advantage  of  being  able  to 
produco  acid  of  "  brimstono  quality  "  from  pyrites, 


tinuous  and  therefore  efficient.  In  one  instance  a 
saving  of  labour  of  228  hours  a  month,  and  in  78% 
acid  of  7  tons  a  month  was  recorded.  A  high  dust 
content  of  the  roaster  gases  is  generally  considered 
to  mean  a  high  nitre  consumption,  and  this  has 
been  fully  substantiated  by  the  electrical  precipi- 
tators. In  the  case  of  one  chamber  plant  the 
adoption  of  electrical  precipitation  produced  a 
reduction  in  the  nitre  consumption  of  no  less  than 
30%,  and  at  a  new  type  of  tower  plant  it  was  only 
after  this  had  been  installed  that  both  the  output 
and  the  nitre  consumption  were  as  stipulated. 

Electrical  precipitators  are  now  sold  in  Germany 
as  a  standard  part  of  a  mechanical  furnace  installa- 
tion. There  are  a  number  of  other  installations  in 
Germany,  mostly  of  the  pipe  and  wire  type,  working 
on  lead  smelter  fumes,  tin  furnace  fumes,  alumina 
calcining  furnace  gases,  and  waste  gases  from 
evaporators  of  sulphate  liquors  from  cellulose  works. 
An  interesting  departure  is  a  recently  started  plant 
for  treating  the  gases  from  coal  briquetting 
furnaces,  and  at  the  large  Leuna  works  belonging 
to  the  dyestuff  group  a  plant  is,  I  believe,  now 
removing  the  obnoxious  dust  from  the  stack  gases 
of  the  boiler  installation. 

In  Japan  the  electrostatic  recovery  process, 
though  first  introduced  only  in  1916,  has  made 
rapid  progress,  there  being  more  than  eight  instal- 
lations at  work  with  an  aggregate  of  over  2000 
pipes.  The  Ashio  copper  smelter  of  the  Furukaw  a 
Mining  Co.  has  640  precipitating  pipes,  in  which 
from  6  to  10  tons  of  dust  is  recovered  per  24  hrs., 
containing  over  1%  of  copper  and  30%  of  arsenic, 
which  otherwise  would  escape  into  the  atmosphere. 
The  fumes  are  derived  from  McDougall  roasters, 
blast-furnaces,  and  copper  converters. 

The  erection  of  the  Naoshima  smelter,  belonging 
to  the  Mitsubishi  Mining  Co.,  was  licensed  by  the 
Government  only  on  condition  that  the  fumes  from 
the  roasters  and  converters  were  treated  electro- 
statically before  passing  out  to  atmosphere;  1$  tons 
of  dust  is  collected  per  24  hrs.,  containing  over  2% 
of  copper,  22%  of  lead,  13%  of  arsenic,  and  traces 
of  silver  and  gold.  Fig.  9  shows  a  section  through 
the  precipitator  at  the  copper  smelter  Ikuno, 
belonging  to  the  same  company. 

The  conditions  in  the  smelting  industry  in 
America  are,  generally  speaking,  widely  different 
from  ours,  both  as  regards  capacity  of  plant  and 
smelting  practice.  For  instance,  at  the  rectifier 
house  for  the  Murray  Smelter  at  Garfield  there  are 


Vol.  XI.I.,  No.  3.] 


BUSH.— ELECTRICAL   PRECIPITATION. 


27t 


nine  25-kv.-a.  motor  generator  sets  installed,  each 
driving  its  mechanical  potential  rectifier  and 
supplying  current  to  the  primary  of  a  high-tension 
transformer.  The  United  Verde  copper  smelter  has 
3600  precipitation  pipes  to  clean  the  gases  from  its 
roasters,  blast-furnaces,  and  converters,  current 
being  supplied  from  12 — 25  kv.-a.  motor  generators. 

At  another  plant  comprising  seven  rotary  cement 
kilns  there  are  five  sections  of  120  pipes  each,  in 
which  daily  25  tons  of  dust  can  be  recovered. 

The  Research  Corporation  of  New  York  have 
invaded  quite  new  fields  by  some  of  their  later 
installations  which  were  erected,  not  for  the  purpose 
of  reducing  dust  losses  on  smelting  operations,  but 
solely  for  cleaning  air.  For  several  years  during 
the  war  the  air  from  workrooms  at  an  American 
small-arms  factory,  where  carding,  buffing,  and 
grinding  wheels  were  operating,  was  cleaned  by 
electrical  precipitation.  A  volume  of  50,000  cub.  ft. 
of  air  at  70°  F.  was  treated,  and  several  cartloads 
of  dust  per  week  were  removed  from  it.  Incident- 
ally, researches  made  during  the  war  have  shown 
that  after  passing  air  through  an  electrical  precipi- 
tator, it  is  not  only  free  from  dust  particles,  but 
sterilised  as  well.  This  is  due  to  the  removal  of  the 
solid  particles  which  carry  bacteria  and  to  the  toxic 
effect  of  the  ozone  and  oxides  of  nitrogen  produced 
by  the  corona  discharge. 

At  the  Stace  Mining  Co.,  electrical  precipitation 
was  resorted  to  after  cyclones,  bag  filters,  and 
scrubbers  had  been  tried  without  success.  The 
problem  was  to  remove  the  fine  slate  dust  arising 
from  the  crushing  plant  where  slate  rock  was 
passed  through  rollers  for  the  preparation  of  slate 
dust  for  roofing  material.  Over  100,000  cub.  ft. 
of  air  is  cleaned  per  minute,  and  several  tons  of 
material  are  recovered  per  week. 

An  interesting  installation  is  now  under  construc- 
tion for  cleaning  the  air  from  a  works  where  large 
numbers  of  piston  rings  for  gas  engines  are  cut  and 
ground.  The  precipitator  will  replace  a  bag  filter, 
which  was  found  unsuitable  owing  to  the  cloth 
cutting,  the  difficulty  of  keeping  the  bags  clean,  and 
the  excessive  power  consumption  required.  A  flue 
type  of  precipitator  will  be  installed,  having  a  cross- 
section  of  14x10 ft.,  and  a  capacity  of  25,000  cub.  ft. 
of  air  per  minute.  In  another  case  the  air  from 
tumbling  barrels  in  an  iron  foundry,  carrying  sand 
and  iron  dust  in  suspension,  is  to  be  cleaned  electric- 
ally, a  cyclone  installation  having  proved  incapable 
of  retaining  the  fine  dust.  On  the  plains  outside 
the  mining  town  of  Pachuea  in  Mexico  there  are 
many  thousands  of  tons  of  tailings  which  have  been 
carried  down  by  the  river  from  the  numerous 
milling  and  concentrating  plants  operating  in  that 
town.  Several  attempts  have  been  made  in  years 
gone  by  to  recover  the  metallic  values  from  these 
accumulated  residues,  without  achieving  much 
success  until  chloridising  volatilisation  coupled  with 
recovery  of  the  products  by  electrical  precipitation 
was  suggested.  A  unit  of  3x64  pipes  is  in 
operation  there  in  connexion  with  a  rotary  furnace 
resembling  a  cement  kiln,  with  a  capacity  for  treat- 
ing 100  tons  of  residues  per  24  hrs.  The  pipes  are 
of  wood,  rendered  suitably  conductive,  and  the 
discharge  wires  are  lead-covered.  The  material 
recovered  contains  gold,  silver,  mercury,  and  lead. 

At  Mexico  City  an  installation  is  doing  good 
work  at  a  silver  refinery  on  the  gases  from  refining 
and  cupelling  furnaces  and  desilverising  kettles. 
Mapimi,  Durango  has  a  good-sized  plant  recovering 
over  10  tons  a  day  from  the  waste  gases  of 
Huntington-Heberlein  sintering  pots,  Godfrey 
roasters,  and  blast-furnaces.  The  dust  has  a 
high  arsenic  content,  besides  containing  lead  and 
antimony. 

South  America  too  has  a  number  of  installations. 
At  the  Aramayo  Francke  Mines  of  Bolivia,  a  plant 
has  been  installed  in  connexion  with  converters  and 
roasting   furnaces,   the   recovered   dust  containing 


chiefly  bismuth.  Installations  of  considerable  mag- 
nitude are  also  being  put  up  by  the  Braden  Copper 
Co.  of  Chile,  and  the  Cerro  de  Pasco  smelter;  the 
latter  recovered  during  one  month  no  less  than 
30  tons  per  day,  according  to  information  given  by 
the  International  Precipitation  Co. 

References. 

The  following  are  some  of  the  more  important 
references  to  the  subject  of  electrical  precipitation  : 

M.  Hohlfeld,  "  Arch  f.  d.  ges.  Naturlehre,"  K.  W.  Kastner,  Vol.  2, 
200-207   (18—24). 

C.  F.  Guitard,  Mechanics  Magazine,  1850,  53,  246. 

O.  Lodge,  J.  Soc.  Chem.  Ind.,  1886,  6,  572. 

F.  G.  Cottrell,  J.  Ind.  Eng.  Chem.,  1911,  3,  542  ;  Trans.  Amer. 
Inst.  Mln.  Eng.,  1912,  43,  512  ;   Met.  and  Chem.  Eng.,  1912, 10,  172. 

L.  Bradley,  8th  Int.  Cong.  Appl.  Chem.,  1912,  26,  471  ;  Trans. 
Amer.  Electrochem.  Soc,  1912,  22;  Met.  and  Chem.  Eng.,  1912, 
10,  629,  686  ;  J.  Ind.  Eng.  Chem.,  1912,  4,  1908  ;  Proc.  Eng.  Soc. 
W.   l'enna.,  1913,  29,  111. 

w.  w.  Strong,  J.  Ind.  Eng.  Chem.,  1913,  5,  858. 

Anon.,  Eng.  and  Min.  J.,  1914,  97,  1107. 

F.  G.  Cottrell,  Smithsonian  Inst.  Rept.  for  1913,  p.  653. 

Editorial,  Min.  and  Sci  Press,  1914,  109,  626. 

A.  F.  Nesbit,  Proc.  Amer.  Inst.  Elect.  Eng.,  1915,  34,  507. 

L.  Bradley,  Proc.  Amer.  Inst.  Elect.  Eng.,  1915,  34,  523. 

W.  A.  Schmidt,  Trans.  Canad.  Min.  Inst.,  1915,  18,  110  ;  Trans. 
Amer.  Inst.  Chem.  Eng.,  1915,  8,  35. 

F.  G.  Cottrell,  Trans.  Amer.  Electrochem.  Soc,  1915  ;  Eng.  and 
Mln.  J.,  1916,  101,  385. 

W.  A.  Schmidt,  Amer.  Inst.  Mln.  Eng.,  Sept.  21,  1916. 

W.  H.  Ross,  J.  N.  Carothers,  and  A.  R.  Merz,  J.  Ind.  Eng.  Chem., 
1917,  9,  26 ;   Met.  and  Chem.  Eng.,  1916,  16,  380. 

L.  Bradley,  Met.  and  Chem.  Eng.,  1917,  16,  336. 

L.  Bradley,  H.  D.  Egbert,  and  W.  W.  Strong,  Trans.  Amer.  Inst. 
Mln.  Eng.,  1917,  58,  303  ;   Met.  and  Chem.  Eng.,  1917,  18,  283. 

J.  J.  Porter,  Cement  World,  Sept.,  1917,  p.  28. 

W.  H.  Boss,  A.  R.  Merz,  and  C.  R.  Wagner,  Bull.  572,  U.S.  Dept. 
Agric,  Bureau  of  Soils,  1917. 

M.  Guillaumaud,  La  Science  et  la  Vie,  July,  1918,  p.  37. 

K.  K.  Keniusho,  "  Report  on  investigations  of  electrical  precipita- 
tion," Sept.  21,  1918 

H.  J.  Bush,  J.  Soc.  Chem.  Ind.,  1918,  37,  389  k. 

A.  Hutchinson  and  E.  Bury,  J.  Iron  and  Steel  Inst.,  1920,  62,  65. 

M.  Shibusawa  and  Y.  Niwa,  J.  Amer.  Inst.  Elect.  Eng.,  Oct., 
1920.  p.  890. 

H.  J.  Bush,  Chem.  Age  (London),  Jan.  29,  1921,  p.  116. 

Hesson.  Landolt,  and  Hemrod,  Eng.  and  Min.  J.,  1921,  112,  4'46. 

Landolt  and  Pier,  Paper  read  before  American  Society  of  Heating 
and  Ventilating  Engineers,  Jan.  8,  1920. 

W.  H.  Gellert,  J.  Philadelphia  Eng.  Club,  Dec.  1919,  p.  449. 

Discussion. 

Mr.  J.  A.  Reavell  asked  as  to  the  possible 
application  of  the  process  to  such  instances  as  the 
recovery  of  powder  in  a  dried  milk  factory.  In 
such  cases  a  certain  amount  of  ozone  would  probably 
be  generated  which  would  possibly  contaminate  the 
milk  and  give  it  a  distinct  flavour.  Also,  was 
there  any  chance  of  an  explosion  occurring? 

Mr.  Weil  asked  whether  there  was  any  possi- 
bility of  selectively  precipitating  particles  according 
to  size  and  what  was  the  upper  limit  of  the  amount 
of  dust  in  the  gases  treated.  In  the  American 
process  for  making  zinc  oxide  a  very  large  amount 
of  dust  was  blown  over  with  the  furnace  gases. 
This  dust  usually  contained  particles  much  heavier 
and  larger  than  the  best  qualities  of  oxide,  and 
these  were  usually  precipitated  in  a  preliminary 
chamber  before  the  pigment  oxide  was  removed. 

Mr.  Drummond  Paton  said  that  in  the  case  of 
the  German  plants  the  entire  structure  was 
insulated  from  the  earth.  In  all  static  conditions 
the  supply  of  current  must  be  from  the  earth.  He 
thought  if  the  deposit  that  arose  on  different  poles 
was  analysed  a  selective  action  would  be  observed. 
Air  was  practically  stable,  and  he  believed  the 
stability  of  any  material  was  simply  a  function  of 
the  coulomb-static  capacity  of  its  individual 
elements.  The  same  applied  to  metals  either  in 
the  vapour,  liquid,  or  solid  state,  and  the  segrega- 
tion of  unstable  alloys  under  rise  and  fall  of 
temperature  was  simply  the  reciprocal  of  the  in- 
ternal Chatelier  effect  which  must  take  place  in  a 
composite  metal  or  material.  Eutectic  and  stable 
alloys,  if  considered  in  relation  to  the  positive- 
negative  capacity  of  their  elements,  taking  calcium 
as  one  end  of  the  series  and  fluorine  as  the  other 


23  T 


LING  AND  NANJL— A  NEW  METHOD  OF  PREPARING  GLUCONIC  ACID.     [Feb.  15, 1922. 


(see  G.  Fore,  "  Electrolytic  Separation  of  Metals," 
1890),  could  be  better  understood  than  by.supposed 
chemical  affinities,  and  he  had  suggested  this  means 
to  the  Admiralty  as  a  basis  of  denning  stable 
alloys,  i.e.,  the  blending  of  materials  in  relation 
to  the  static  capacity,  and  by  blending  in  functions 
of  that  capacity  a  stable  result  would  result. 
Therefore,  air,  if  an  analysis  were  made  on  a  basis 
of  static  capacity,  would  be  practically  a  static 
material  or  balanced  charge. 

Mr.  Drayton  asked  if  the  specific  inductive 
capacity  or  conductivity  of  the  chief  constituents 
of  a  dust  had  any  effect  on  the  ease  with  which  it 
could  be  precipitated.  If  the  polarity  of  the  elec- 
trode was  correct  the  pipes  to  earth  were  positive 
and  the  wires  were  negative.  When  the  polarity 
was  negative  the  wire  looked  like  a  luminous  string 
of  beads.  When  the  polarity  was  wrong  the  wire 
was  surrounded  by  a  thick  violet  glow. 

Dr.  Craig  mentioned  the  successful  application 
of  the  process  to  the  fumes  from  the  Selby  Smelt- 
ing Works. 

Sir.  Holcatb  said  that  he  had  to  deal  with  gases 
from  a  blast  furnace  which  contained  10 — 15  g.  of 
dust  per  cubic  metre,  and  which  also  were  emitted 
at  400°— 600°  C.  The  cleaning  of  these  gases 
presented  a  very  difficult  problem.  The  dry  clean- 
ing, or  bag  filtration,  process  did  not  seem  to  be 
applicable  to  his  particular  case.  Two  installations 
of  the  Cottrell  process  had  been  erected  in  America 
for  dealing  with  gases  such  as  he  had  to  deal  with, 
and  these  appeared  to  be  very  successful.  At  the 
plants  he  had  visited  in  America,  where  the  Cottrell 
process  had  been  adopted,  there  had  been  a 
good  deal  of  difficulty  at  first  through  the 
insulators  having  given  way  and  the  tubes  having 
warped  owing  to  the  high  temperature  of  the 
gases,  but  these  difficulties  had  been  overcome.  In 
America  tubes  of  about  6  in.  diameter  were  recom- 
mended instead  of  9  in.  By  that  means  it  was 
claimed  to  clean  the  gases  with  a  voltage  of  only 
about  50;000  instead  of  70,000.  The  cost  of  an 
installation  of  one  unit  to  deal  with  one  million 
cubic  feet  per  hour  in  1920  had  been  estimated  to 
be,  roughly,  $100,000.  The  electrical  precipitation 
process  appeared  to  be  preferred  to  the  steel  wool 
nitration  processes.  He  believed  that  in  the  Cot- 
trell process  as  worked  in  America  the  gases  were 
passed  upwards  through  the  tubes  and  not  down- 
wards. 

Dr.  Bush,  in  reply,  said  that  one  of  the  greatest 
difficulties  they  had  had  to  contend  with  was  that 
it  had  been  found  up  to  date  practically  impossible 
to  standardise  plant.  Every  new  plant  had  to  be 
specially  adapted  to  existing  circumstances.  In 
some  cases  99%  efficiency  was  required,  whilst  in 
others  60 — 70%  was  sufficient.  All  such  factors 
obviously  affected  the  cost  of  a  plant.  It  was  en- 
tirely a  question  of  the  air  volume  treated  per  foot 
run  of  electrode.  There  was  an  installation  at  work 
in  the  United  States  for  drying  lemon  juice  and 
orange  juice  and  also  skimmed  milk.  He  believed 
that  no  deleterious  effect  had  been  noticed  with 
regard  to  the  taste.  The  danger  of  explosion  had 
been  tested  at  San  Francisco  in  the  case  of  sugar 
dust  produced  from  a  dryer,  and  the  difficulty  had 
been  got  over  in  a  simple  manner  which  prevented 
explosion.  The  proportion  of  dust  which  it  was 
possible  to  remove  from  the  gases  depended  on  the 
efficiency  of  the  plant.  The  concentration  of  zinc 
oxide  given  off  by  evaporation  processes  was  apt 
to  be  rather  high.  Although  there  was  no  difficulty 
from  the  precipitation  point  of  view,  especially  with 
the  plate  type  of  precipitator,  which  had  a  large  : 
depositing  surface,  if  a  pipe  type  was  used  the 
deposit  grew  so  rapidly  that  the  pipes  had  to  be 
cleaned  out  at  very  frequent  intervals.  The  posi- 
tive electrodes  and  the  entire  steel  structure  were  | 
earthed,  and  therefore  at  zero  potential.  He  pre- 
sumed the  gases  referred  to  by  Mr.  Holgate  were    \ 


ferro-manganese  gases.  There  was  no  reason  why 
such  gases  should  not  be  treated  successfully. 
although  it  could  not  be  done  at  a  temperature  at 
which  the  steelwork  would  suffer,  but  there  was 
no  objection  to  cooling  the  gases  and  precipitating 
in  the  usual  way.  He  did  not  think  the  Kling- 
Weidlein  steel  mattress  filter  would  be  a  very 
serious  competitor  to  electrical  precipitation.  It 
started  up  very  well,  but  the  superimposed  layers 
of  steel  wool  very  soon  got  choked  up,  and  then 
the  filtering  action  stopped  and  they  had  to  be 
cleaned.  Special  shaking  apparatus  had  had  to  be 
introduced,  but  on  the  whole  it  had  not  proved 
very  successful.  The  actual  precipitation  efficiency 
was  not  affected  by  the  size  of  the  pipe.  It  was, 
of  course,  an  advantage  to  use  a  smaller  pipe 
because  of  not  having  to  deal  with  such  a  high 
potential.  In  a  12-inch  pipe  the  actual  effective 
voltage,  measured  by  the  spark-gap  meter,  was  in 
the  neighbourhood  of  50,000.  In  this  country  they 
would  probably  standardise  on  9-inch  tubes.  The 
smaller  the  tube  the  smaller  was  the  depositing 
surface  and  the  less  the  deposit  would  be  allowed 
to  grow.  If  the  deposit  grew  beyond  a  certain 
point  there  was  an  arc  from  the  wire.  The  ques- 
tion of  up-draught  as  against  down-draught  was 
one  on  which  there  were  differing  opinions.  One 
advantage  in  up-draught  was  that  if  a  lot  of 
material  were  deposited  in  the  bottom  of  the 
hopper  there  was  no  danger  of  it  being  carried 
away  by  the  clean  gas  as  might  conceivably  occur 
with  down-draught.  On  the  other  hand,  a  great 
feature  was  a  good  distribution  of  the  gases  in  the 
pipes.  If  the  gases  travelled  downwards,  and  one 
pipe  tended  to  take  more  gas  than  its  due  share, 
it  would  get  hotter  than  the  rest  and  thus  act  as 
a  brake.  Installations  both  of  the  down-draught 
and  the  up-draught  type  were  being  put  down 
according  to  circumstances.  When  his  (the 
speaker's)  firm  had  introduced  the  business  into 
this  country  one  of  their  first  aims  was  to  make 
themselves  independent  of  foreign  machinery. 
Admittedly  the  Queen's  Ferry  plant  had  American 
machinery,  but  that  was  simply  a  question  of  saving 
time.  All  the  plants  that  were  now  being  put  up 
in  this  country  were  supplied  with  machinery  and 
material  made  entirely  in  this  country.  Excellent 
porcelain  insulators  were  also  made  in  this  country. 
There  were  quite  a  number  of  installations  in  this 
country.  Besides  the  Workington  and  the  Skinnin- 
grove  plant  there  were  the  North  Lonsdale  and 
the  Sheepbridge  plant,  and  another  one  at  the 
metallurgical  works  he  had  already  mentioned, 
while  there  was  a  plant  now  being  erected  at  a 
tin  smelters  of  10  units  of  48  pipes  each  which 
would  handle  something  like  80,000  cub.  ft.  a 
minute.  The  last-named  plant  would  be  made  of 
British  material  throughout. 


Birmingham   Section. 

Meeting  held  at  Birmingham  University  on  Thurs- 
day, December  15,  1921. 


MR.   F.   H.   ALCOCK   IN  THE  CHAIR. 


A  NEW  METHOD  OF  PREPARING  GLUCONIC 
ACID. 

BY    ARTHUR   R.    LING   AND   DINSHAW  RATTONJI   NANJI. 

It  has  recentlv  been  suggested  by  A.  Herzfeld 
and  G.  Lenart  (Z.  Ver.  Dents.  Zuckerind.,  1919, 
122)  that  gluconic  acid  might  be  utilised  on  a 
technical  scale  as  a  substitute  for  vegetable  acids 
if  a  cheap  method  of  preparing  it  could  be  devised. 


Vol.  XI.I.,  No.  3.1 


NIERENSTEIN — GALLOTANNIN. 


29  T 


The  authors,  just  mentioned,  propose  the  following 
method  :  One  part  of  dextrose  is  dissolved  in  5  parts 
of  water,  and  the  solution  is  shaken  in  a  closed 
vessel  with  one  part  of  bromine  until  the  reaction 
is  complete,  which  usually  requires  24  hours.  The 
excess  of  bromine  is  then  distilled  off,  under 
diminished  pressure,  from  a  water-bath  at  a  tem- 
perature of  50°  C.  Heating  is  continued  until  the 
liquid  commences  to  colour,  when  water  is  added 
to  the  extent  of  350  times  the  volume  of  the  liquid 
and  the  hydrobromic  acid  is  neutralised  with 
sodium  carbonate.  An  excess  of  calcium  carbonate 
is  then  added  gradually  at  a  temperature  of  90°. 
At  this  temperature  any  lactone  formed  during  the 
distillation  is  reconverted  into  acid.  After  two  or 
three  days  the  calcium  gluconate  separates  out  and 
is  recrystallised. 

From  the  economic  standpoint  two  objections 
may  be  raised  against  this  process.  One  is  the 
quantity  of  bromine  U6ed  (more  than  the  theoretical 
quantity),  and  the  other  is  the  time  required  for 
the  oxidation.  It  was  with  the  object  of  obviating 
these  disadvantages  that  the  experiments  described 
in  the  present  note  were  instituted. 

If  the  different  factors  affecting  the  velocity  of  the 
oxidation  of  dextrose  in  the  process  of  Herzfeld  and 
Lenart  be  considered;  it  will  be  found  that  as  the 
oxidation  proceeds,  the  concentration  of  the  bro- 
mine diminishes  and  pari  passu  the  velocity  of  the 
reaction.  Secondly,  that  in  the  course  of  the  re- 
action there  is  an  accumulation  of  hydrogen  brom- 
ide, and  this  exercises  a  retarding  influence  on  the 
velocity.  Thirdly,  that  the  reaction  proceeds  more 
rapidly  as  the  temperature  is  increased  up  to  a  cer- 
tain limit  which  is  about  50°  C.  Fourthly,  that  to 
attain  a  maximum  velocity,  other  things  being 
equal,  the  reaction  should  be  conducted  in  direct 
sunlight. 

In  the  process  we  have  devised  all  these  points 
have  been  taken  into  consideration  and  we  have 
been  able  to  reduce  the  quantity  of  bromine 
employed. 

Instead  of  bromine  a  quantity  of  calcium  bro- 
mide, corresponding  in  potential  bromine  content 
with  26%  of  the  bromine  used  by  Herzfeld  and 
Lenart,  is  employed.  The  bromine  is  liberated  by 
passing  a  slow,  well-regulated  current  of  chlorine 
(about  one  bubble  per  second)  through  a  20%  solu- 
tion of  dextrose,  containing  0025%  of  cobalt  nitrate 
as  catalyst.  The  reaction  is  conducted  at  a  tem- 
perature of  45° — 50°  C,  but  care  is  taken  that  this 
temperature  limit  is  not  exceeded,  otherwise  the 
hypobromous  acid  may  be  converted  into  bromate. 
As  the  reaction  proceeds  there  is  a  constant  accumu- 
lation of  halogen  acids,  and  to  avoid  their  retard- 
ing action,  calcium  carbonate  is  added  from  time 
to  time.  When  the  theoretical  quantity  of  calcium 
carbonate  is  used  and  the  reaction  is  carried  out  so 
that  no  secondary  changes  occur,  the  end  of  the  re- 
action is  thereby  regulated.  The  reaction  is 
complete  in  about  4  hours.  If  the  chlorine  be 
passed  through  more  rapidly  than  indicated  above, 
more  than  the  theoretical  quantity  of  calcium 
carbonate  will  be  required  to  neutralise  the  halogen 
acids  and  the  yield  of  gluconate  will  be  diminished. 
The  course  of  the  reaction  may  be  followed  with  the 
polarimeter. 

The  solution,  when  the  reaction  has  proceeded 
normally  to  the  final  point,  contains  calcium  glu- 
conate, calcium  chloride,  and  calcium  bromide. 
When  concentrated  appropriately,  the  solution  de- 
posits calcium  gluconate  after  a  few  days.  If  care 
be  taken  in  working  up  the  mother  liquors  the  yield 
of  calcium  gluconate  is  almost  theoretical,  say 
about  90%.  By  adding  strong  alcohol  to  the 
aqueous  solution  of  the  calcium  salt,  the  yield  may 
be  augmented.     Analysis  of  the  calcium  salt  dried 


at    100°    gave    Ca  =  9T5%,    9'21%;    calculated    for 
(OcHuO,)2Ca,  Ca  =  9-30%. 

The  use  of  calcium  bromide  and  chlorine  is  pre- 
ferable to  that  of  bromine  for  two  reasons, 
(1)  because  bromine  in  statu  nescendi  acts  more 
efficiently,  and  (2)  because  there  is  no  loss  of  bro- 
mine by  volatilisation  if  the  operation  be  carried 
out  under  the  conditions  we  have  described. 

Department  of  Biochemistry  and  Fermentation, 
University  of  Birmingham. 


Bristol  and  S.  Wales  Section. 


Mei  ting  held  at  Bristol  on  January  5,  1922. 


MR.    C.    J.    WATERFALL  IN  THE  CHAIR. 


GALLOTANNIN. 

BY   M.  NIERENSTEIN. 

Although  the  chemistry  of  gallotannin  has  at- 
tracted such  workers  as  Scheele,  Davy,  Liebig, 
Berzelius,  Schiff,  and  many  others,  the  results  so 
far  obtained  have  been  disappointing.  The  author 
has  devoted  nearly  twenty  years  to  the  chemistry  of 
gallotannin,  but  has  so  far  failed  to  elucidate  this 
problem,  and  the  same  must  be  said  regarding  the 
elaborate  researches  of  Emil  Fischer. 

It  is  not  intended  in  this  paper  to  give  a  full 
account  of  the  chemistry  of  gallotannin,  but  the 
following  "  milestones  "  of  its  history  give  a  good 
general  view  of  the  subject.  Gallotannin,  or  tannic 
acid,  as  it  is  generally  referred  to,  was  first  isolated 
by  W.  Lewis  in  1763;  this  was  followed  by  the  dis- 
covery of  gallic  acid  in  1768  by  Piepenbring. 
Scheele  later  (1787)  showed  that  gallotannin  was 
related  to  gallic  acid,  which  was  confirmed  by 
Liebig  (1843),  who  found  that  gallotannin  is  appar- 
ently quantitatively  hydrolysed  to  gallic  acid  on 
boiling  with  dilute  sulphuric  acid.  In  1871  Schiff 
obtained  on  heating  gallic  acid  with  arsenious  acid 
an  amorphous  substance  which  gave  all  the  tests 
for  gallotannin,  including  the  precipitation  with 
gelatin.  He  assigned  to  this  susbtance  the  consti- 
tution of  digallic  acid  and  thus  claimed  to  have 
synthesised  gallotannin.  Since  then  it  has  fre- 
quently been  assumed  that  gallotannin  is  identical 
with  digallic  acid. 

Schiff 's  digallic  acid  formula  for  gallotannin  be- 
came, however,  untenable  when  Flawitzki  dis- 
covered in  1895  that  gallotannin  is  an  optically 
active  substance.  His  observation  was  confirmed  in 
1898  by  Walden,  who  also  showed  that  gallotannin 
possesses  a  high  molecular  weight  (about  1500)  and 
has  no  electro-conductive  properties.  Schiff's  di- 
gallic acid  has,  however,  a  low  molecular  weight, 
has  no  asymmetric  carbon  atom,  and  possesses  a  free 
carboxyl  group. 

Such  was  the  position  when  the  author  commenced 
his  work  on  gallotannin  in  1901.  His  investigations 
on  this  subject  may  be  divided  for  clearness  sake 
into  four  main  phases:  — 

(1)  The  establishment  of  the  constitution  and  the 
synthesis  of  ellagic  acid  (formula  I)  in  1905  (ellagic 
acid  being  a  well-known  oxidation  product  of  gallo- 
tannin). 

(2)  The  isolation  of  crystalline  digallic  acid 
(formula  II)  from  gallotannin  in  1910. 


30 t  FINDLEY.— EFFECTS  OF  CHLORIDES  ON  PRODUCTS  OF  DISTILLATION  OF  COAL.    [Feb.  15, 1922. 


(3)  The  reduction  of  digallic  acid  to  leueo-digallic 
acid  (formula  III)  in  1912.  This  product'contained 
an  asymmetric  carbon  atom  and  was  resolved  into 
the  two  optically  active  forms. 

(4)  The  identification  of  d-leuoodigallic  acid 
amongst  the  disintegration  products  of  gallotannin 
in  1912. 


To  test  Fischer's  formula  a  series  of  experiments 
were  undertaken  by  the  author  which  were  subse- 
quently published  in  1921.  They  showed  a  number 
of  objections  to  the  pentadigalloylglucose  formula  of 
Fischer,  the  main  objection  being  that  whereas 
Fischer's  pentagalloylglueose  when  methylated  with 
diazomethane  yields  glucose  on  hydrolysis,  methylo- 


HO 


M-o. 


CO— o  ■ 


/\ 


OH 


CO 


OH 


JJb«  - 


HO 


CO— O 

'  OH 
HOOC^  'OH 


HO 


I   I 


CH  (OH)— O-x 

\OH 


OH 
OH 


HOO 


OH 


(!•) 


(ID 


(III.) 


Encouraged  by  these  results,  it  was  suggested  by 
the  author  in  1912  that  gallotannin  was  probably 
the  anhydride  of  polydigalloylleucodigallic  acid. 
Such  a  formula  would  have  accounted  for  the 
different  facts  known  at  the  time.  The  formula 
was,  however,  withdrawn  in  1914,  in  consequence  of 
the  discovery  made  by  Fischer  in  1912  that  glucose 
forms  an  essential  part  of  the  gallotannin  molecule. 


gallotannin  gives  under  identical  conditions  tetra- 
methylglucose,  which  shows  conclusively  that  in 
gallotannin  four  hydroxyl  groups  are  not  replaced 
by  digalloyl  radicles  as  assumed  by  Fischer. 

This  obviously  brings  us  to  a  modified  "  long- 
chain  "  formula  of  the  author,  viz.,  that  gallotannin 
is  probably  a  glucoside  of  the  following  polydi- 
galloylleucodigallic acid  anhydride : 


(HO)aC6H2.CO.[O.C6H2(OH)3.CO]s.O.C6H2(OH).CO.O.C6H2(OH)2.CH(OH).O.C6H2(OH)3 

O CO 


In  addition  to  showing  that  gallotannin  is  com- 
posed of  gallic  acid  and  glucose,  Fischer  synthesised 
during  the  years  1912  to  1918  a  number  galloyl- 
glucose  derivatives,  including  pentagalloyl-  and 
pentadigalloyl-glucose.  Some  of  these  substances 
resembled  gallotannin  to  such  an  extent  that 
Fischer  proposed  his,  now  well  known,  pentadi- 
galloylglucose formula  (formula  IV)  for  gallotannin. 


0 


/ 


It  =  Digalloyl  radicle. 


/CH.OR 

CH.OR 
.  CH.OR 
\CH 

CH.OR 

CH.OR 

(IV.) 

In  doing  so  Fischer  followed,  however,  in  Schiff's 
footsteps  in  attempting  the  synthesis  of  gallotannin 
before  its  constitution  had  been  established. 


or  of  its  free  acid. 

The  assumption  of  this  formula  is  in  good  agree- 
ment with  the  following  facts  : 

(1)  It  explains  the  high  molecular  weight,  the 
optical  activity  and  the  low  electrical  conductivity 
of  gallotannin. 

(2)  It  is  in  accord  with  the  observation  of  Stiasny 
(1911)  that  gallotannin  is  more  acidic  towards  diazo- 
acetic  ester  than  pyrogallol. 

(3)  It  accounts  for  the  mutarotation  of  gallo- 
tannin observed  by  the  author  (1912). 

(4)  It  explains  the  different  phases  observed  by 
the  author  (1921),  which  occur  in  the  formation  of 
ellagic  acid  from  gallotannin. 

(5)  It  is  in  accordance  with  the  formation  of  tetra- 
methylglucose  from  methylo-gallotannin. 

It  must  be  noted  that  none  of  the  last  four  men- 
tioned points  can  be  explained  on  the  basis  of  Emil 
Fischer's  formula. 

In  conclusion  the  author  wishes  to  express  his 
thanks  to  his  collaborators,  especially  to  Dr.  A. 
Geake  and  Mr.  C.  W.  Spiers. 


Liverpool  Section. 


Meeting   held  at  the  University  on  November  25, 
1921. 


DR.  G.  C.   CLAYTON  IN  THE  CHAIB. 


SOME    EFFECTS    OF    CHLORIDES    ON    THE 
PRODUCTS  OF  DISTILLATION  OF  COAL. 

BY  A.  E.  FINDLEY. 

In  a  recent  paper  (J.,  1921,  7  t)  I  endeavoured 
to  show  that  chlorides  would  carry  a  small  propor- 
tion of  the  iron  in  the  mineral  constituents  of  the 
coal  away  from  the  coal  into  the  fireclay  of  the  coke- 
oven  linings. 

In  the  course  of  these  experiments  a  considerable 
deposit  of  ammonium  chloride  was  observed  in  the 
cool  portions  of  the  tubes  in  which  the  experiments 
were  conducted. 

This  led  to  the  following  investigations  on  the 
nature  of  the  ammonia  compounds  produced  by  dis- 
tilling coal  at  various  temperatures  with  and  with- 
out the  addition  of  chlorides. 


Preliminary. — The  coal  was  washed  as  free  as 
possible  from  chlorides  and  soluble  salts  by  repeated 
boiling  with  distilled  water.  200  g.  of  finely  crushed 
coal  was  boiled  with  500  c.c.  of  distilled  water  for 
9  hours,  then  filtered  and  the  filtrate  evaporated  to 
dryness;  the  amount  of  salts  dissolved  was  06120  g. 
The  residue  on  boiling  with  successive  portions  of 
400  c.c.  of  water  gave  0T200  g.,  0"055  g.,  and 
0-007  g. :  total  =07940  g.,  =0'397%.  Of  this 
roughly  0'276%  was  sodium  chloride  and  0T2% 
sodium  sulphate.  Had  the  coal  been  extracted  with 
10%  nitric  acid  it  would  have  been  possible  to  have 
dissolved  more  than  twice  as  much  chlorides  from 
the  coal.  This  was  not  done  on  the  bulk  sample  in 
order  to  avoid  the  oxidising  action  of  the  acid. 

Experimental. — 15  g.  of  coal  was  taken  for  each 
distillation.  In  some  cases  this  was  mixed  with  1  g. 
of  sodium  chloride,  1  g.  of  calcium  chloride,  or  1  g. 
of  magnesium  chloride  before  distillation.  The  coal 
was  plugged  by  means  of  ignited  asbestos  in  the 
sealed  end  of  a  hard  glass  tube  60  cm.  long,  11  mm. 
internal  diameter,  and  13  mm.  external  diameter. 
After  the  asbestos  plug  was  placed  a  10  cm.  length 
of  broken  fireclay  and  another  asbestos  plug.  Part 
of  the  tube  was  left  blank  and  a  cotton  wool  scrubber 
17  cm.  long  was  placed  near  the  open  end  of  the  tube 
in  such  a  way  that  it  would  retain  tar  oils  and  fixed 


Vol.  XLI.,  No.  3.]   FLNDLEY.— EFFECTS  OF  CHLORIDES  ON  PRODUCTS  OF  DISTILLATION  OF  COAL.  31  t 


ammonium  salts  whilst  all  other  products  passed  out 
of  the  tuhe.  This  was  effected  by  heating  the  cotton 
wool  portion  of  the  tube  by  means  of  a  steam  bath. 

The  coal  itself  was  distilled  in  an  electric  tube 
furnace,  the  temperature  of  which  was  regulated  by 
means  of  a  Pt-PtRh  thermocouple  which  had  been 
carefully  standardised  before  use.  In  order  to  en- 
sure gradual  evolution  of  gas  the  tube  was  moved 
slowly  and  axially  into  the  electric  furnace.  The 
time  for  each  distillation  was  kept  as  nearly  con- 
stant as  possible  (2  hours).  The  gases  leaving  the 
distillation  tube  passed  through  two  Mohr's  potash 
bulbs  containing  dilute  sulphuric  acid  to  absorb  the 
free  ammonia,  and  then  to  a  pump  producing  about 
3  in.  suction  of  water. 

The  fixed  ammonium  salts  remaining  in  the  cotton 
wool  were  washed  out  and  determined  by  distillation 
with  caustic  soda  into  AT/10  acid.  The  free  am- 
monia absorbed  from  the  gas  was  determined  in  like 
manner. 

Iron  was  tested  for  in  the  washings  from  the 
cotton  wool,  and  when  found  was  determined  colori- 
metrically  by  means  of  potassium  thiocyanate. 

The  following  results  were  obtained  :  — 

Proximate  analysis  of  original  coal:  H.O  20%; 
ash  14'5%  ;  volatiles  256%  ;  fixed  carbon  57'9%  ; 
N„  1-3  %  ;'  S  2-28  % .  Analysis  of  ash  of  coal :  —  SiO„ 
57"7%;  ALO,  20'8%  ;  FeA  12\56%  ;  CaO  3'99%  ; 
MgOO'83%. 

Distillation  results. 


c.c.  of 

c.c.  of 

Iron  in 

2V/10 

Nno 

Total 

cotton 

Temperature 

Addition. 

acid  used  acid  used 

acid. 

wool. 

for  free 

for  fixed 

NH, 

NH, 

650°C. 

.       Nil 

..  14-5 

.     3-8    .. 

18-3  . 

nil. 

.     NaCI 

..  11-4    . 

.     70    .. 

18-4    . 

nil. 

.     CaCU 

..     4-5 

.     8-2    .. 

12-7    . 

nil. 

750°C. 

Nil. 

..  22-9 

.     5-2    . 

28-1    . 

. . 

n 

.     NaCI 

..  13-2   . 

.   15-7     . 

28-9     . 

.    distinct 
traces. 

.     CaCl2 

..     6-9 

.  20-9    . 

27-8    . 

nil. 

.    MgClj 

..     6-2 

.  210    .. 

27-2    . 

00000375 

850°C. 

Nil 

..  21-2 

.     6-8    . 

280    . 

. 

.     NaCI 

..     8-0    . 

.   16-2    .. 

24-2    . 

0000059 

i» 

.     CaClj 

..     3  4 

.  20-7    . 

241    . 



The  fact  that  iron  is  carried  at  least  40  cm.  along 
the  tube  at  temperatures  above  750°  C.  is  very  strik- 
ing. The  addition  of  chlorides  certainly  leads  to 
the  formation  of  ammonium  chloride  in  some  way  or 
another  even  at  low  temperatures  such  as  650°  C. 
At  750°  C.  the  maximum  yield  of  ammonia  appears 
to  be  obtained.  At  850°  C.  the  addition  of  chlorides 
seems  to  reduce  the  total  ammonia  recoverable  but 
still  gives  very  good  yields  of  ammonium  chloride 
which  could  be  recovered  as  such  without  the  use  of 
acid.  Calcium  chloride  seems  to  be  the  most  efficient 
chloride  to  use.  During  some  tests  on  coal  washing 
the  following  results  were  obtained,  using  chloro- 
form as  the  medium  for  separating  the  dirt  from  the 
ooa  I . 


Unwashed  coal. 

Washed  coal 

0/ 

/o 

7-2 

91 

Ash 

•     ..             2G-5 

2-7 

Volatile  matter 

23-33 

32-33 

Fixed  carbon 

42-97 

55-87 

Sulphur 

0-66 

0-918 

The  chloroform  was  removed  by  evaporation,  but 
no  doubt  a  little  remained  in  the  coal,  as  pyridine 
does.  On  distillation  at  850°  C.  the  unwashed 
coal  gave  27  lb.  of  ammonium  sulphate  per  ton  as 
free  ammonia  and  3J  lb.  as  fixed  ammonia,  whilst 
the  washed  coal  gave  5  lb.  of  sulphate  as  free  and 
32£  lb.  as  fixed  ammonia.  The  high  yields  of  am- 
monium chloride  obtained  after  removal  of  dirt  from 
the  coal  appeared  difficult  to  explain,  and  it  is  only 
since  undertaking  this  work  that  a  probable  ex- 
planation has  been  forthcoming. 

Where   iron   retorts   are  used   for   distillation   it 
would  be  advantageous  to  try  the  addition  of  a  little 


chloride  (equivalent  to  the  nitrogen  in  the  coal)  and 
recover  the  ammonia  as  ammonium  chloride. 

The  fate  of  the  metallic  radicle  of  the  chloride  is 
not  quite  clear.  It  certainly  does  not  form  carbon- 
ate or  bicarbonate.  It  may  enter  into  the  composi- 
tion of  the  mineral  constituents  of  the  coal  (cf. 
J.  W.  Cobb,  J.,  1910,  608,  who  has  shown  that  the 
interaction  between  sodium  carbonate,  silica  and 
alumina  takes  place  at  temperatures  well  below  the 
fusion  points  of  the  compounds  concerned). 

Only  a  very  exhaustive  investigation  involving 
the  complete  analysis  of  many  ashes  would  be  likely 
to  solve  this  question. 

It  is  claimed  at  Cheltenham  that  the  sulphur  in 
the  gas  is  reduced  by  liming  the  coal,  so  it  is  possible 
that  sulphides  are  formed.  Sulphides  have  been 
found  in  the  extract  obtained  by  washing  the  coke 
with  caustic  soda.  The  production  of  ammonia 
from  coal  is  still  open  to  further  investigation.  The 
fact  that  ammonia  is  a  direct  product  of  thermal 
decomposition  of  coal  is  beyond  question,  but  how 
far  secondary  reactions  govern  its  formation  has  not 
yet  been  worked  out. 

The  nitrogen  in  coal  may  be  removed  as  ammonia 
in  three  ways :  (1)  by  ordinary  thermal  decomposi- 
tion, (2)  by  passing  hydrogen  through  hot  coke 
(Tervet),  (3)  by  passing  steam  through  hot  coke. 
Mond  in  his  presidential  address  to  this  society  in 
1889  stated  that  it  had  been  customary  in  his  labora- 
tory to  estimate  nitrogen  in  coke  "  by  burning  it 
in  a  current  of  steam  "  which  converted  it  into 
ammonia. 

How  far  these  three  processes  overlap  during  the 
distillation  of  coal  is  unknown,  but  Monkhouse  and 
Cobb  give  some  interesting  figures  (see  J.,  1921, 
760  a).  V.  B.  Lewes,  in  his  book  on  the  "  Carbonisa- 
tion of  Coal"  (1912,  pp.  255-261)  quoting  Burgess 
and  Wheeler  (J.  Chem.  Soc,  1910,  97,  1917  et  seq., 
and  1911,  99,  649  et  seq.),  implies  that  the  Tervet 
reaction  takes  no  part  in  the  production  of  am- 
monia below  600°  C.,  and  that  all  ammonia  below 
this  temperature  is  produced  by  thermal  decompo- 
sition of  the  coal,  whilst  at  higher  temperatures  it 
must  be  produced  by  the  Tervet  reaction . 

He  quotes  the  following  figures  obtained  by 
Burgess  and  Wheeler  distilling  Altoft's  Silkstone 
coal  from  15°  to  350°  C.  ammonia  in  gas  =  5"6%  ; 
400°  C.  NH,  =  2'25%  ;  450°  C,  V2%  ;  500°  C,  1T%  ; 
550°  C,  1-45%  ;  600°  C,  0"50%  ;  650°  C.,  nil.  Thus 
it  would  appear  that  the  ammonia  yielded  by  the 
coal  in  the  several  stages  of  the  distillation  steadily 
decreased  with  increase  in  temperature  but  the  yield 
of  ammonia  actually  increases  steadily ;  if  the  gross 
amounts  are  worked  out  we  get: — 15° — 350°  C, 
NH,  =  0T96  c.c;  400°  C,  0'405  c.c;  450°  C, 
0564  c.c;  500°  C,  0"654  c.c;  550°  C,  1T75  c.c; 
600°  C,  0-49  c.c  ;  650°.,  nil.  Consequently  the  per- 
centage figures  are  misleading. 

Since  Burgess  and  Wheeler  find  hydrogen  in  the 
gases  from  coal  from  0°  to  350°  C,  it  is  chemically 
possible  for  the  Tervet  reaction  to  take  place  to 
some  extent  during  the  whole  period  of  carbonisa- 
tion, but  that  the  production  of  ammonia  by 
thermal  decomposition  ceases  at  600°  C.  is  by  no 
means  proved  by  the  experiments  quoted  by  Lewes. 
He  himself  contends  that  the  Tervet  reaction  has 
very  little  chance  under  the  conditions  of  Burgess 
and  Wheeler's  experiments,  yet  they  frequently  get 
the  ammonia  in  the  gas  increasing  from  600°  to  700°, 
700°  to  800°,  and  800°  to  900°  C.  It  is  not  impos- 
sible that  in  Altoft's  Silkstone  coal  there  may  be 
present  chlorides  etc  which,  decomposing  at  550° — 
650°  C,  form  ammonium  chloride,  for  in  my  experi- 
ments, chlorides  fix  some  of  the  ammonia  when  the 
coal  is  distilled  at  650°.  This,  in  a  fractional  dis- 
tillation, might  cause  an  apparent  cessation  of  am- 
monia in  this  range  of  temperature,  as  all  the  am- 
monia produced  might  be  fixed  and  none  appear  in 
the  gas.  In  support  of  the  contention  that  am- 
monia may  be  produced  by  thermal  decomposition 


32  t 


LANE.— ANALYSIS    OF   CRUDE    CHINESE    CAMPHOR. 


[Feb.  15,  1922. 


■richt  through  the  carbonisation  period,'  Cobb  and 
Hollings  (J.  Chem.  Soc.,  1915,  107,  1110)  show  that 
thermal  decomposition  of  a  bituminous  coal  takes 
place  mainly  between  350°  and  750°  C.  It  was  at 
750°  C.  that  the  maximum  yield  of  ammonia  was 
obtained  in  the  experiments  just  described,  conse- 
quently it  is  reasonable  to  suppose  that  ammonia 
is  being  produced  by  this  thermal  decomposition, 
whether  assisted  or  not  by  the  Tervet  reaction. 

Burgess  and  Wheeler  did  not  set  out  to  determine 
a  balance  sheet  for  nitrogen,  hut  were  mainly  in- 
terested in  the  permanent  gases  evolved.  In  spite 
of  this,  adding  up  the  ammonia  for  the  fractions 
quoted,  3'473  c.c.  of  ammonia  is  obtained  from  2  g. 
of  coal  at  600°  C.  This  corresponds  to  11'6  c.c.  of 
.Y/10  acid  for  the  free  ammonia  from  15  g.  of  coal, 
or  11J  lb.  of  sulphate  per  ton,  a  figure  quite  com- 
parable with  that  obtained  in  practice.  Also  the 
figures  obtained  by  the  author  approximate  closely 
to  those  obtained  on  the  large  scale,  so  that  Lewes' 
conclusion  from  Burgess  and  Wheeler's  figures  that 
results  on  the  small  scale  do  not  indicate  what 
happens  on  the  large  scale  seems  hardly  justified. 
More  experiments  on  fractional  distillation  of  coal 
under  vacuum  in  silica  tubes  on  the  lines  of  Burgess 
and  Wheeler's  would  bo  a  great  advantage  in  solv- 
ing this  question. 

I  am  indebted  to  A.  E.  Fletcher,  one  of  my 
students,  for  assistance  in  the  experimental  work 
connected  with  this  paper. 

Liverpool  Technical  School. 


Communications. 


THE  ANALYSIS   OF   CRUDE   CHINESE   CAM- 
PHOR,   WITH    A    NOTE    ON    SAMPLING. 

BY  K.   W.   LANE,  B.A. 

A  large  portion  of  the  trade  in  Chinese  camphor 
passes  through  the  port  of  Hong  Kong,  and  the 
major  part  of  the  consignments  is  sampled  and 
analysed  by  the  Government  Laboratory.  It  has 
been  thought  that  a  few  notes  may  be  acceptable  to 
those  who  are  occasionally  called  upon  to  deal 
with  it. 

Sampling. 

The  crude  material,  packed  in  tinned  iron  con- 
tainers, may  hold  anything  up  to  10%  of  camphor 
oil  and  water.  This  liquid  phase  settles  to  the 
bottom  during  long  standing  in  the  container,  as  a 
semi-solid  mass,  and  the  method  of  sampling  must 
allow  for  this.  The  sampling  is  done  with  a  hollow 
pointed  tube  attached  to  a  handle,  with  which  a 
complete  section  is  taken  by  plunging  the  instru- 
ment through  a  hole  in  the  bottom  of  the  container 
immediately  after  turning  the  tin  on  its  side.  The 
material  is  stiff  enough  to  stand  up  for  a  sufficient 
time  to  permit  of  this.  The  sample  is  withdrawn 
and  placed  in  a  stoppered  bottle  with  about  three 
more  similar  samples  from  other  parts  of  the  case. 
Five  per  cent,  of  all  the  cases  are  sampled  and  the 
resulting  material  mixed  before  analysis. 

Analysis. 

Dirt  ami  non-volatiles.  2  g.  is  volatilised  in  a 
weighed  glass  dish  a  considerable  distance  above 
very  low  rose  burner,  and  the  residue  is  weighed. 

Water.  5  or  10  g.  is  centrifuged  in  a  tube  with 
graduated  capillary,  with  water-saturated  benzene 
or  petrol.  A  filter  of  cotton-wool  on  a  gauze  cone 
retains  dirt.     The  whole  is  stirred  at  intervals  with 


a  suitably  bent  glass  rod  to  detach  water  globules 
from  the  walls.  (See  Lane  and  Lubatti,  J.,  1920, 
50  t.) 

Oil.  (a)  100  g.  is  pressed  between  lint,  and  the 
residue  weighed.  From  the  loss  and  water  content 
of  the  pressed  sample  the  percentage  of  oil  is  calcu- 
lated. (See  E.  R.  Dovev,  "  Analvst,"  1920,  45, 
220.) 

(b)  The  oil  may  be  calculated  from  the  melting 
point  in  a  capillary  tube,  using  a  bath  of  olive  oil 
(Allen,  IV,  p.  197,  new  ed.). 

(f)  The  iodine  value  of  the  oil  (Wijs)  being  about 
130,  while  that  of  sublimed  camphor  is  1"4,  the 
iodine  value  of  the  sample  gives  a  figure  for  the  oil 
content.  This  method,  I  believe,  has  not  been 
suggested   before,    and   would   he   of   value   in   test 

Chlorides  (for  artificial  camphor).  The  sample  is 
ignited  in  a  hard  glass  test-tube  with  quicklime, 
extracted  with  water,  filtered,  the  filtrate  acidified 
with  nitric  acid,  and  silver  nitrate  added. 

Acidity  (for  stearic  acid).  The  alcoholic  solution 
i^  tested  with  litmus. 


Typical  analyses 

of  eanvplwr  samples. 

Tfo. 

Dirt. 

Water. 

Oil(a). 

Oil  (4). 

Camphor 

Rota- 
tion. 

Sp.gr. 
(ale.). 

1 

014 

nil 

SO 

969 

7  90 

08134 

2 

010 

6  4 

— 

10 

925 

7  57 

0-8134 

3 

011 

52 

— 

4-0 

90-7 

7-42 

0-8134 

4 

0  12 

7  4 

— 

4-0 

88-5 

7-45 

08146 

5 

0-40 

2-6 

— 

4-0 

930 

7-56 

0-8146 

6 

010 

9-0 

— 

1-0 

89-9 

670 

0-8146 

7 

011 

70 

— 

100 

82-9 

7-10 

0-8140 

8 

0-30 

6-8 

40 

60 

87-S 

7-48 

0-8146 

9 

013 

80 

3-2 

20 

89-3 

7-53 

08146 

10 

0-22 

5-7 

20 

30 

91-6 

7-88 

0-8146 

11 

015 

7-0 

2-8 

30 

900 

7-S5 

08140 

12 

012 

4-5 

— 

Trace 

95-4 

7-98 

08140 

13 

013 

31 

40 

4-0 

92-3 

7-72 

0-8146 

14 

012 

0-6 

— 

10 

98-3 

810 

0  M  If. 

15 

0-20 

2-8 

1-7 

2-0 

952 

7-55 

■0-8334 

16 

008 

0-5 

— 

15 

97-9 

7-92 

0S334 

17 

001 

nil 

nil 

99-9 

8-23 

'  0-8290 

Notes. — The  camphor  figure  is  found  by  difference.  Wlien  more 
than  one  oil  figure  is  available  the  average  is  used.  The  rotations 
are  observed  in  a  solution  of  10  g.  in  alcohol,  the  density  of  which 
is  given  in  the  next  column.  It  will  be  seen  at  once  that  the  figures, 
even  for  the  same  alcohol,  do  not  enable  the  camphor  content  to 
be  deduced. 

A  determination  of  the  oil  by  method  (<■)  above, 
gave  in  the  case  of  No.  13  a  figure  of  4'7:  ,  which 
is  in  good  agreement  with  that  from  the  melting 
point  and  pressure  methods. 

It  is  concluded  that  all  these  methods  for  the 
determination  of  the  oil  give  reliable  figures,  that 
(c)  would  be  useful  in  umpire  work,  and  that  the 
live  tests  above  are  enough  for  any  ordinary  con- 
signment. 

The  deduction  of  the  camphor  content  by  the 
method  of  Crane  and  Joyce  (J.,  1907,  386)  has  been 
found  to  be  unreliable  in  the  presence  of  much  oil. 

Government  Laboratory, 
Hong  Kong,  China. 


A   METHOD  FOR   THE  DETERMINATION  OF 

TRIMETHYLENEGLYCOL  IN  CRUDE 

GLYCERIN. 

BY  L.   V.   COCKS  AND  A.   H.   SALWAY. 

(J.,  Jan.  31.  1922,  17— 20t.) 

Errata. 

In  the  Table  on  page  13  T,  under  "  Acetin  value," 
line  1,  for  "  82-80"  read  "89-80";  line  4,  for 
'•  42-03  "  read  "  49-03." 


Vol.  XLI..  No.  4.) 


TRANSACTIONS 


[Feb.  28,  1922. 


Liverpool  Section. 


Meeting   held  at   the  University  on  December  16, 
1921. 


DR.   G.   C.   CLAYTON  IX  THE  CHATS. 


THE    VAPOUR.   PRESSURES    OF    DILUTE 
ALCOHOL  SOLUTIONS. 

BY  R.  THOMAS,   M.SC,   A. I.e. 

During  the  course  of  an  investigation  on  solvent 
recovery  carried  out  by  the  author  in  1918,  it  be- 
came necessary  to  ascertain  the  vapour  pressures  of 
dilute  alcohol  solutions,  and  in  particular  the 
partial  pressure  of  alcohol  in  the  vapour.  Com- 
paratively few  determinations  aro  recorded  in  the 
literature,  and  those  are  at  higher  temperatures 
than  the  ordinary. 

Vrevsky*  gives  values  obtained  by  the  dynamical 
method  for  alcohol  solutions  of  various  strengths  at 
40°  C.  and  above,  while  Doroszewsky  and  Polanskyt 
determined  the  boiling  points  of  alcohol  solutions 
at  pressures  from  700  mm.  to  800  mm. 

Foote  and  ScholesI  record  the  vapour  pressures  of 
alcohol  solutions  of  10%  and  upwards  at  25°  C.  The 
method  adopted  by  these  investigators  was  to  carry 
the  vapours  from  the  alcohol  solutions  at  25°  by 
means  of  a  stream  of  pure  dry  air  into  a  combustion 
furnace,  the  products  of  combustion  and  the 
original  water  of  the  vapour  being  collected  and 
weighed  in  suitahle  apparatus,  and  the  original 
constituents  of  the  vapours  determined  by  calcula- 
tion from  the  analytical  data. 

The  author  has  found  that  calcium  carbide*  com- 
pletely removes  water  vapour  from  a  current  of  air 
while  it  does  not  affect  alcohol  vapour,  and  a 
method  of  determining  the  vapour  pressures  of 
dilute  alcohol  solutions  based  upon  this  observation 
is  described  in  this  paper.  It  has  the  advantage 
of  being  simple  in  operation,  and  gives  results  of  an 
appreciably  high  degree  of  accuracy.  The  use  of 
calcium  carbide  to  remove  the  last  traces  of  water 
from  alcohol  is  well  known, t  but  it  does  not  seem 
to  have  been  recognised  that  it  removes  water 
vapour  from  air  as  completely  as  does  calcium 
chloride,  and  can  yield  quantitative  results  as  long 
as  the  velocity  of  the  air  current  is  not  too  high. 

According  to  Masson  and  McEwan,!  ignited 
alumina  absorbs  moisture  from  a  mixture  of 
vapours  containing  alcohol,  ether,  and  water 
vapour,  without  retaining  notable  quantities  of 
alcohol  and  ether.  In  trying  the  use  of  this 
material  for  estimating  alcohol  and  water  vapour 
in  air — not  containing  ether — the  author  found  that 
it  absorbed  alcohol  quite  as  readily  as  it  absorbed 
water,  and  was  therefore  inapplicable  for  the 
purpose,  namely,  the  retention  of  water  vapour 
apart  from  alcohol.  It  is  possible,  of  course,  that 
the  presence  of  ether  vapour  in  the  air  may  account 
for  the  difference  between  this  result  and  that  men- 
tioned by  Masson  and  McEwan,  as  the  ether  might 
have  some  affinity  for  alcohol  in  the  vapour  state, 
and  the  latter  thus  escape  absorption. 

The  removal  of  water  vapour  from  air  by  calcium 
carbide. 
Eight  litres  of  dry  air  was  passed  at  the  rate  of 
4  litres  per  hour  through  a  bubbler  containing  water 

•  J.  Soc.  Phys.  Chim.  St. -Pet.,  42,  [1],  1. 
tZ.  phvsik.  I 'hem..  73,  193. 

j  J.  Anier.  Chem.  Soc,  1911,  33.  1323. 

•  This  should  be  as  pure  as  possible  and  free  from  calcium  oxide, 
t  Mever  and  Jaeobsen,  "  Handbuch  der  Organischen  Cheinie." 
t  J.,  1921,  31T. 


at  19°  C,  then  over  freshly  broken  lumps  (about 
the  size  of  peas)  of  calcium  carbide  in  a  U-tube,  and 
finally  through  a  U-tube  containing  calcium 
chloride.  The  water  in  the  bubbler  had  decreased 
in  weight  by  0143  g.,  while  the  calcium  chloride 
tube  remained  constant  in  weight. 

In  another  experiment  a  sulphuric  acid  bubbler 
was  substituted  for  the  calcium  chloride  tube; 
(ll4">  g.  water  was  again  carried  over  by  the  air 
(8  litres),  but  the  acid  remained  constant  in  weight. 

These  result*  demonstrate  quite  clearly  that  water 
vapour  can  be  quantitatively  removed  from  air  by 
means  of  calcium  carbide.  Another  interesting  fact 
is  that  there  is  no  absorption  by  ordinarv  concen- 
trated sulphuric  acid  (98  )  of  the  acetylene  pro- 
duced by  the  action  of  the  carbide  on  water, 
although,  of  course,  it  is  readily  absorbed  by  the 
fuming  acid  and  by  weaker  acid  in  the  presence 
of  mercury  salts. 

That  alcohol  is  not  affected  by  calcium  carbide 
is  seen  from  the  following  experiments:  — 

Four  litres  of  dry  air  was  passed  through  absolute 
alcohol  in  a  bubbler  at  20°  C,  then  over  calcium 
carbide  in  a  U-tube,  and  finally  through  a  bubbler 
containing  sulphuric  acid.  The  alcohol  bubbler  lost 
0"  172(1  g.  m  weight,  while  the  sulphuric  acid  gained 
d'4630  g.  In  another  experiment  during  the  passage 
of  4'8  litres  of  air,  the  alcohol  lost  0-5768  g.,  while 
the  sulphuric  acid  gained  0"5794  g. 

In  a  third  experiment  ignited  alumina  was  used 
as  au  absorbent  for  the  alcohol,  which  is  completely 
removed  by  this  substance.  Four  litres  of  dry  air 
was  passed  through  a  bubbler  containing  absolute 
alcohol,  over  calcium  carbide,  then  through  a  tube 
containing  ignited  alumina,  and  finally  through  a 
bubbler  containing  sulphuric  acid.  The  alcohol 
bubbler  lost  0450  g.  in  weight,  while  the  alumina 
increased  0"445  g.,  the  sulphuric  acid  remaining 
constant.  Clearly,  therefore,  there  is  no  trace  of 
alcohol  absorbed  by  the  calcium  carbide. 

Description  of  experimental  method. 

The  method  of  finding  the  vapour  pressure  of 
dilute  alcohol  solutions  based  on  the  above  observa- 
tions was  to  pass  a  known  volume  of  air  freed  from 
carbon  dioxide  by  soda-lime,  and  dried  by  passage 
over  sulphuric  acid,  through  a  bubbler  containing 
the  alcohol  solution,  then  over  calcium  carbide  in 
a  U-tube,  and  finally  through  an  absorption  bull] 
containing  93  sulphuric  acid,  or  alternatively 
through  a  U-tube  containing  ignited  alumina.  For 
temperatures  above  the  ordinary,  the  connexion 
between  the  bubbler  containing  the  alcohol  solution 
and  the  tube  containing  calcium  carbido  should  be 
maintained  at  a  temperature  slightly  above  that  of 
tho  experiment,  to  prevent  condensation.  This  may 
conveniently  be  done  by  passing  an  electric  current 
through  a  wire  wound  round  the  connecting  tube. 
The  rate  at  which  the  current  of  air  was  passed 
through  was  4  to  5  litres  per  hour,  previous  trials 
having  shown  that  with  the  particular  bulbs  em- 
ployed, equilibrium  was  established  between  the 
vapour  and  liquid  for  velocities  up  to  6  litres  per 
hour.  The  increase  in  weight  of  the  sulphuric  acid 
or  alumina,  as  the  case  may  be,  gives  the  amount 
of  alcohol  carried  over,  while  the  amount  of  water 
is  obtained  by  deducting  this  from  the  loss  of  weight 
of  the  bubbler  containing  the  alcohol  solution.  The 
volumes  corresponding  to  these  weights  are  calcu- 
lated, and  after  correcting  the  volume  of  air  to 
normal  conditions,  tho  vapour  pressure  is  calculated 
in  millimetres  of  mercury,  in  the  usual  way.  Fresh 
calcium  carbide  should  be  used  in  each  determina- 
tion, so  as  to  avoid  the  formation  of  any  appreciable 
amount  of  calcium  hydroxide  which  would  absorb 
the  alcohol.  That  this  does  not  occur  with  the  use 
of  fresh  carbide  is  seen  from  the  good  agreement 
obtaining  between   the  values  of  the  partial  pres- 

A 


34  T 


THOMAS.—  RECOVERY  OF  ALCOHOL  VAPOUR  FROM  AIR. 


[Feb.  28,  1922. 


-tins  of  alcohol  and  water  at  2o°  C,  as  determined 
by  this  method,  and  the  values  obtained  by  Foote 
and  Scholes  by  an  entirely  different  method.  For 
alcohol  solution  at  25°  these  authors  found 
i  total  pressure  of  30" 77  mm.,  the  partial  pressures 
.it  water  and  alcohol  being  22'63  mm.  and  8'14  mm. 
r<  spectively.  By  the  method  outlined  in  this  paper 
the  author  found  for  a  10  i  alcohol  solution 
3032  mm.  total  pressure,  of  which  the  water  and 
alcohol  accounted  for  22-0  mm.  and  8'32  mm. 
respectively. 

It  is  necessary,  of  course,  in  these  experiments, 
to  employ  a  sufficient  amount  of  the  alcohol  solution 
under  investigation,  so  that  the  composition  is  not 
altered  appreciably  by  the  amount  of  alcohol  and 
ivater  withdrawn  by  the  current  of  air. 

The  following  table  shows  the  results  obtained  at 
various  temperatures:  — 


Wt.  of 

Wt.  of 

Cone. 

Vol.  of 

water 

alcohol 

of 

of  air 

vapour 

vapour 

Partial 

Partial 

alcohol. 

Temp. 

(litres 

in  1  1. 

in  1  1. 

pressure 

pressure 

un- 

(uncorr.) 

(uncorr.) 

of 

of 

Of 

co  rr.). 

of  air. 

of  air. 

water 

alcohol 

£• 

8- 

in  mm. 

in  mm. 

10 

15° 

0-4 

00130 

0-0106 

12-8 

413 

10 

20° 

5-0 

0-0181 

0-0160 

17-8 

6-25 

10 

24° 

40 

00221 

0-0204 

21-9 

7-93 

10 

26° 

60 

0-0224 

ii  0227 

99.9 

8-72 

D 

20° 

6-3 

00179 

0-0075 

17-7 

310 

.» 

25° 

60 

00224 

ii  mini 

22;2 

4-24 

5 

26° 

5-7 

00226 

0  0125 

224 

4-84 

In  the  graphical  representation  of  these  results. 
Fig.  1  shows  the  influence  of  concentration  on  the 
partial  pressure  of  alcohol,  while  the  influence  of 
temperature  is  seen  in  Fig.  2.  Curves  (a)  and  (b) 
denote  the  alcohol  pressures  at  various  temperatures 
in  5  and  10%  solutions  respectively,  while  curve 
(i  i  indicates  the  partial  pressures  of  water  in  these 
solutions. 

The  partial  pressures  indicated  in  the  last  two 
columns  are  calculated  in  the  usual  way  by  finding 
the  volumes  corresponding  to  the  weights  in  columns 
4  and  5,  dividing  by  the  corrected  volume  of  air 
plus  the  volume  of  the  vapours,  and  multiplying 
by  760. 


5S 

V 

c  20 

z 

= 
z 

Z  15 

o 

o 

_- 

H 
o 

.■■' 

.1 10 

c 
o 

J 

r 

f 

-    5 

/■ 

i 

4  8  12 

Partial  pressure  of  alcohol  (mm.). 

X     Foote  and  Scholes'  data. 

Fig.   1. 


i 
i 

9 

? 

"5 

f 

/ 

'~  20 
15 

<«;/ 

1 

"j 

{.<&/ 

6  10  15  20  25 

Pressure  (mm.) 

Fig.  2. 

pressure  of  the  alcohol  is  approximately  propor- 
tional to  its  concentration  in  solution,  a  result 
which  is.  of  course,  generally  true  for  dilute  solu- 
tions. Thus  at  20°  C.  the  partial  pressure  of  alcohol 
from  a  5%  solution  is  3"10  mm.,  while  for  a  10% 
solution  it  is  625  mm.  Again  at  25°  O.  the  corres- 
ponding figures  are  4'24  mm.  and  8'32  mm. 

If  the  ratio  of  the  concentration  of  alcohol  in  the 
gaseous  phase  to  its  concentration  in  the  liquid 
phase  be  denoted  by  k,  then  from  the  foregoing 
table  the  values  of  this  constant  at  different  tem- 
peratures are  as  follows  :  — 


k 
Temperat  ure               5% 
(°  C.)                solution. 

k 

10% 

solution. 

Mean. 

.15 
20 

24 
25 
26 

0000150 

0-000218 
0000250 

0000106 
0000160 
0  000204 

0-000227 

0-000106 
0000155 
0000204 
0-000218 
0000238 

Tho  figures  in  the  last  column  show  that  up  to  a 
concentration  of  10%   alcohol  at  least,   the  partial 


The  numerical  value  of  k  is  independent  of  the 
units  employed  provided  the  concentration  in  the 
two  phases  is  expressed  in  the  same  units,  i.e.,  both 
in  grams  per  c.c.  or  in  lb.  per  cub.  ft.  etc. 

Summary. 

(1)  A  rapid  method  of  determining  the  partial 
pressures  of  alcohol  and  water  in  an  aqueous  solu- 
tion of  the  former,  or  alternatively  a  method  of 
analysing  air  containing  a  mixture  of  alcohol  and 
water-vapour  is  described. 

(2)  It  is  shown  that  for  solutions  containing  5 
and   10%    of   alcohol,    the   partial   pressure   of   the 
alcohol  is  approximately  proportional  to  its  concen- 
tration in  solution. 

(3)  From  the  data  obtained,  a  table  has  been 
constructed  showing  the  ratio  of  the  concentration 
of  alcohol  in  the  gaseous  phase  to  its  concentration 
in  the  liquid  phase  for  the  temperature  range 
15°— 26°  C. 


THE  RECOVERY  OF  ALCOHOL  VAPOUR 
FROM  AIR. 

BY  B.   THOMAS,   M.SC,   A.I.C 

The  question  of  the  recovery  of  volatile  solvents, 
such  as  alcohol,  acetone,  and  ether,  employed  in 
manufacturing  operations  attained  great  promin- 
ence during  the  war.  The  subject  is  also  of  con- 
siderable importance  in  several  peace  industries, 
such    as    the    manufacture    of    photographic    films. 


Vol.  XL1,  Xo.  4.] 


THOMAS.— RECOVERY  OF  ALCOHOL  VAPOUR  FROM  AIR, 


35  t 


transparent  soap,  etc.  Except  in  a  few  special 
cases  in  which  the  solvent  is  recovered  by  refrigera- 
tion, the  method  generally  adopted  is  to  scrub  the 
air  laden  with  the  solvent  vapour,  in  suitable 
towers,  by  means  of  a  liquid  which  dissolves  the 
original  solvent.  In  the  case  of  alcohol  and  acetone, 
water  is  generally  employed — acetone  is  also  re- 
covered by  means  of  sodium  bisulphite — whilst  ether 
has  been  successfully  recovered  from  cordite  by 
moans  of  m-cresol,*  according  to  the  Bregeat 
process.  The  present  communication  deals  with 
the  recovery  of  alcohol  employed  in  the  manufacture 
of  transparent  soap. 

Theoretical. 

The  following  theoretical  deduction  of  the  rela- 
tion between  the  amount  of  alcohol  vapour  in  the 
air,  and  the  amount  absorbed  by  aspirating  a  known 
volume  of  the  alcohol-laden  air  through  a  given 
weight  of  water  is  based  on  the  fact — experiment- 
ally establishedt — that  the  partial  pressure  of 
alcohol  vapour  from  dilute  solutions  is  proportional 
to  the  concentration  in  solution.  In  other  words, 
the  ratio  of  the  concentration  of  alcohol  in  the 
vapour  phase  to  its  concentration  in  the  liquid 
phase  is  constant  at  constant  temperature  (k). 
This  relation  holds  good  with  an  appreciable  degree 
of  accuracy  for  concentrations  up  to  10%  at  least. 

Let  the  concentration   of  alcohol  vapour  in  the 

air  passing  into  the  absorbent  be  a  Cparts  per  unit 

volume),  and  consider  the  state  of  affairs  when  a 

volume,     r.    of    air    has    passed    through    and    the 

amount    of    alcohol    in    solution    has    reached    the 

value    x.      A    small   volume   Sv    of    air — containing 

i    alcohol — passing  through   the   absorbent  at 

ilii^   point,   will  give  up  an  amount  8a:  of  alcohol 

solution,   while  a&v—  oj;  escapes  absorption. 

If  the  weight  of  solvent  be  I  then  by  the  principle 

already   mentioned  we  have:  — 

a^v-Sx  x 


Sv 
Sx 
Sv 


I 


t-  =  In 


dx 


>(-*) 


(i) 
(ii) 


-    '    I 


dx 


-Sv 


and  in  the  limit.  - 
x 
.x 


dv 


fix  _k    fv 

J      _  al  l  J  dv 


(iii) 


(iv) 


(Note, — The  limits  of  integration  are  as  above, 
-iiue  at  the  start  we  have  pure  water,  and  when  a 
volume  v  of  air  has  passed  through  we  have  an 
amount  .<•  of  alcohol  in  solution.) 

Integrating  equation   (iii.)   we  have  the   expres- 

:  — 

al 

k~x  k 

loSe  ^T   =  -  T  • 

k 

From    this    expression    the    amount    of    alcohol 

absorbed  (x)  is  obtained  for  various  relative  values 

«ii    r  and  I,  the  volume  of  air  and  weight  of  water 

used  in  the  scrubbers  respectively.     /.-  is  obtainable 

from   vapour   pressure   determinations    and    varies 

with  the  temperature.      (In  the   above  deduction, 

if  very  great  accuracy  is  required,  the  expression  on 

the  right-hand  sideof  equation  (i.)  should  be  written 

x 
k    x    ,    i         For    dilute    solutions    of    the    order 

encountered  in  practice,   however,   it   is  sufficiently 
accurate  to  neglect  x  in  the  denominator.) 

•  Masson  and  McEwan,  J.,  1921,  32  t.    Also  Chen),  and  Met.  En<r , 
1921,   24.  916. 
t  See  foregoing  paper,  J.,  1922,  33  T. 


Permaii*  in  his  experiments  on  the  rate  of  escape 
.a  ammonia  from  aqueous  solutions,  when  a  current 
of  air  is  bubbled  through,  shows  that  the  amount 
of  ammonia,  q,  present  in  the  solution  when  a 
volume.  V,  of  air  has  been  drawn  through  is  repre- 
sented by  an  equation  of  the  form  log  q  =  a  +  IA~, 
a  and  Ii  being  constants. 

W.  J.  Jonest  deduces  the  expression  log  a -log  6 

V 

=    s— -  for  the  relation   between   the   coefficient  of 

solubility  (S)  of  volatile  solutes  and  the  amount  of 
solute  which  is  carried  away  by  an  inert  gas  when 
known  volumes  are  bubbled  through  solutions  of 
known  strength  and  volume.  Equation  (iv.)  has 
been  deduced  by  a  modification  of  the  method  em- 
ployed by  Jones  Qoc.  fit.)  adapted  to  the  fact  that 
wo  aro  dealing  with  the  reverse  problem.  There  is 
au  obvious  similarity  of  form  between  the  two 
expressions. 

The  efficiency  of  absorption,  i.e.,  the  percentage 
of  the  alcohol  in  the  air  removed  by  the  scrubbing 
liquid,  is  for  a  fixed  volume  of  air  and  for  a  fixed 
quantity  of  liquid  independent  of  the  concentration 
in  air.  This  follows  from  the  constancy  of  the  ratio 
of  the  amount  of  alcohol  in  the  gaseous  and  liquid 
phases,  and  can  easily  be  shown  to  be  in  algebraic 
accord  with  equation  (iv.). 

In  all  recovery  processes,  of  course,  an  attempt 
is  made  to  obtain  as  high  a  concentration  of  vapour 
in  the  air  as  possible — due  allowance  being  mad.' 
tor  the  possibility  of  formation  of  an  explosive 
mixture — so  as  to  reduce  the  volume  of  air  (V) 
necessary  for  drying  a  certain  bulk  of  the  material 
to  the  permissible  minimum.  The  scrubbing 
efficiency  is  obviously  higher  the  lower  the  value 
oi   V. 

In  practice  very  often  more  than  one  scrubber 
is  employed,  and  it  therefore  becomes  necessary 
to  consider  how  much  of  the  alcohol  which  escapes 
absorption  in  the  first  tower  is  retained  in  the 
second. 

'I'lii  amount  of  alcohol  escaping  from  the  first 
tnwei-  in  a  small  volume  Sv  of  air  is  aSv  —  Sx  (anti  I- 
Let  the  amount  of  alcohol  in  the  second  tower 
,it  the  time  under  consideration  be  y  (the  amount 
in  the  first  tower  at  the  same  time  being  x),  then 
the  amount  of  alcohol  escaping  from  this  tower  is 
aSv—Sx—Sy  in  every  Sv  of  air.  Then  by  the 
principle  already  utilised  for  the  first  deduction  :  — 


(v) 


nr)c 

-  dx 

J- 

y 

dr 

i 

4" 

Sy 
Sv 

I- " 

! 

since 

aSv-  Sx 
Sv 

.  Sy 
'Sv 


(x-y)- 


(vi) 


but 


Sx 
Sv 


j-lx—  r  )  from  equation  (ii) 


k  al 

-  .  i  j-     K  )  where  K.  =  ^ 


dy 

■'■  dx 


■i-  -  y 

K  -x 


then  y  =  x 

£-' 

dx 
x-K  ~ 


and 


p  say 

px  -  pK 

dp 
P  +  \lx- 


(vii) 


K 


dp 
dx 


■dp 


fA-f 


p 

dp. 


(viii) 


*  J.  Cheru.  Soc.,  1S9.~>.  67,  SOS,  983  ;  1898,  7S,  571. 
t  J.  C'hem.  Soc,  1911,  98.  392  et  seq. 


a2 


30  t 


THOMAS.— RECOVERY  OF  ALCOHOL  VAPOUR  FROM  AIR, 


[Feb.  23, 1922. 


since  at  the  start  practically  nothing  will  pass  into 
tlif    second    tower,    and    therefore    at    this    point 

p(  =  ~,    )=0  Integration  of  equation  (viii)  gives: 


K 
-K 


'llx  frora  <vii) 


loge  =~P 

■  dy  =  loge  (K  -  x)  dx  -  loge  Kdx. 


Jdj=J       Ioge(K-i')rf(K-x)y  h 


loge  K  dx. 


-.  (K-a;)[loge(K-x)-  IJ-f-zloge  K-Kloge  (K  -  1) 
ami  smoe  K  =  , 

(al      \  al  ,        al    al,       ( al     \ 

Equation  (ix.)  gives  y  (the  amount  of  alcohol  in 
the  second  scrubber)  in  terms  of  a; -the  amount  in 
the  first  tower  which  is  obtained  from  equation  (iv.). 

Experimental. 

In  order  to  test  the  correctness  of  the  theoretical 
deductions  given  above,  for  the  relation  between  the 
vapour  content  of  the  air  and  the  amount  absorbed 
by  a  given  volume  of  water  etc.,  a  known  volume 
of  dried  air  was  aspirated  through  absolute  alcohol 
and  then  through  a  known  volume  of  water.  The 
aspiration  was  carried  out  through  bubblers  under 
conditions  as  nearly  as  possible  approximating  those 
of  equilibrium.  The  first  contained  sulphuric  acid 
to  dry  the  air  current,  the  second  contained  the 
alcohol,  while  the  last  contained  water  kept  at  a 
constant  temperature.  The  loss  in  weight  of  the 
second  bubbler  gives  the  weight  of  alcohol  carried 
over,  while  the  weight  and  specific  gravity  of  dilute 
alcohol  in  the  last  at  the  end  of  the  experiment 
gives  the  amount  of  alcohol  absorbed.  The  results 
were  as  follows  :  — 


a. 

b. 

e-t 

Temp,  of  water  in  last  bubler  . . 

22'  C. 

22<  (' 

15°  C. 

A  olume  of  airt   . . 

14-71. 

13-31. 

70  1. 

M  t.  of  alcohol  carried  over 

2-58  g. 

2379  g. 

1-4237  g. 

Wt.  of  water   in    last    bubbler 

at  start 

30-26  g. 

2412  g. 

32-809  g. 

wt.  ot  Alcohol  solution   in  last 

bubbler  at  end 

38-36g. 

2607  g. 

34-3988  g. 

Sp.   gr.   of  alcohol  solution   in 

last  bubbler  at  end    . . 

0-9894 

0-9S64 

0-9936 

Strength  of  alcohol  solution     . . 

>'-", 

8-2% 

3-5% 

\\  t.  of  alcohol  absorbed 

2:173  g. 

2-138  g. 

1-2040  g. 

'  ,  absorbed 

92-3% 

900°,, 

84  5% 

Theoretical  efficiency*  .. 

950% 

S3-0"„ 

t  In  this  case  70  litres  of  nitrogen  was  bubbled  at  the  rate  of 
6  litres  per  hour  first  through  a  10  ",,  alcohol  solution  at  2b'  C.  and 
then  through  water,  maintained  at  15°  C.  The  change  in  weight 
and  sp.  gr.  of  the  solution  gives  the  amount  of  alcohol  carried  over. 


(the  mean  weight  of  liquid  in  the  last  bubbler),  ];, 
which  is  the  ratio  of  the  concentration  of  alcohol 
in  the  air  to  its  concentration  in  solution,  is  at 
22°  C.  equal  to  OOOOIS.*  v  is  14,700  c.c.  Substi- 
tuting in  the  above  expression  we  find  cr  =  2'4b'  g.. 
so  that  theoretically  95"0%  of  the  alcohol  should 
have  been  recovered  in  the  last  bubbler. 

There  is  thus  fair  agreement  between  the  amount 
of  alcohol  actually  recovered  by  experiment  and  the 
amount  calculated  theoretically,  the  former  being 
in  each  case  about  3  lower  than  the  latter,  on 
account  of  the  difficulty  of  establishing  real 
equilibrium  between  the  gas  current  and  the 
dissolved  alcohol. 

The  following  table  gives  the  calculated  effici- 
encies, using  one  scrubber  under  various  conditions. 


n. 

r. 

I. 

Cone,  of 

Tons  of 

alcohol 

Vol.  of 

water 

k. 

Alcohol 

Cone. 

m  air  in 

air  drawn 

run 

at 

re- 

of 

Effi- 

lb. per 

through  in 

down 

15°  C, 

covered 

alcohol. 

ciency. 

1000 

cub.  ft. 

the 

(lb.). 

cub.  ft, 

scrubber. 

% 

0 

1 

2,400,000 

10 

0  000100 

1476 

6-2 

Gl-5 

f> 

1.211(1, 

10 

0000106 

1860 

7-8 

7s 

3 

800,000 

10 

.1  III  11(1116 

2025 

8-3 

85 

The  calculated  efficiency  when  alcohol  of  6"2 
strength  is  recovered  from  air  containing  1  lb.  of 
alcohol  per  1000  cub.  ft.  is  thus  61'5;c .  In  an  actual 
largo  scale  run  55'3  ,  efficiency  was  obtained  in 
recovering  alcohol  at  60  \  strength  from  air  con- 
taining 12  lb.  of  alcohol  per  1000  cub.  ft.,  the 
ratio,  v/l,  being  the  same  in  the  two  cases.  The 
agreement  between  the  calculated  and  observed 
figures  is,  under  the  circumstances,  quite  good. 

Using  two  scrubbers  as  successive  effects,  the 
efficiencies  calculated  from  equations  (iv.)  and  (ix.) 
are  as  follows: — The  letters  a,  r,  I.  and  /.'  have  the 
same  significance  as  in  the  previous  table,  i.e., 

o=volumo  of  alcohol  in  the  air  in  lb.  per  1000 
cub.  ft. 

r  =  volume  of  air  drawn  through  (cub.  ft.). 

1  =  weight  of  water  run  down  the  scrubbers.  " 

fr=  constant  as  already  defined  =0-000106  at  15°  C. 

It  may  perhaps  be  desirable  to  point  out  that  if 
a  is  reckoned  as  lb.  per  1000  cub.  ft.  then  /  should 
lie  reckoned  in  lb.  and  v  in  multiples  of  1000  cub. 
It.,  in  performing  the  calculation. 

Masson  and  McEwan  (J.,  1921.  34  t)  have  applied 
an  arithmetical  method  of  successive  approximation 
to  solvent  recovery  problems.  The  equations  de- 
duced by  the  present  author  are  of  general  applica- 
tion and  enable  the  efficiency  of  recovery  to  be 
easily  calculated  for  different  values  of  the  variables. 
That  the  two  methods  of  attack  lead  to  almost 
identical  results  can  readily  be  seen  bv  substituting 


a. 

V. 

'. 

k. 

Alcohol  recovered 
in  lb. 

Total. 

Couc  of 
alcohol 
solut'on. 

Efficiencv 
of 

1-t 
scrubber. 

2nd 
scrubber. 

absorption. 

1 

O 

3 

2.400.000 

1.2(10.000 

800,000 

10 
10 
10 

0000106 
0000106 
0000106 

992 
1476 
1718 

709 
651 
542 

1701 
■1  ( : : 
2260 

7-1  % 
8-7% 

i)-l", 

71% 
88 'x 
92% 

*  The  theoretical  efficiency  of  absorption  is 
obtained  for  this  case  (one  scrubber)  from  equation 
(iv.),  i.e., 

al 

k~x  k 

al    ~  ~  I  K 
k 
"   the  concentration   of   alcohol  vapour  in  the  air 
is  in  the  firs)   case  0"000175  g.  per  ex.,  i=37'2  g. 


loge 


in  equation  (iv.)  the  results  given  in  Table  II.  of 
Masson  and  McEwan's  paper. 

In  conclusion,  the  author  desires  to  express  his 
indebtedness  to  Messrs.  Lever  Bros.,  Ltd.,  for  per- 
mission to  publish  these  results. 

Research  Department. 
Lever  Bros..  Ltd., 
Port  Sunlight. 

•  J„  1922.  34  T. 


Vol.  XII,  Xo.  4.] 


1MISON  AND  RCSSELL.— THE  OXIDATION  OF  AMMOXI  \. 


37  t 


Meeting  held  at  the  University  on  January  20,  1922. 


Hit.    <S.    C.    CLAYTON   IX  THE   CHAIR. 


THE    OXIDATION    OF    AMMONIA. 

BY    C.    S.    1MISON,    B.A.,    AND    W.    RUSSELL,    B.SC. 

Kuhlmann  in  1839  noted  that  when  a  mixture  of 
air  and  ammonia  gas  is  passed  over  heated  platinum 
sponge,  oxidation  occurs  to  red  fumes  of  nitrogen 
oxides.  The  first  technical  application  of  this  was 
suggested  in  a  patent  of  1871,  hut  its  practical 
development  really  began  with  Ostwald's  experi- 
ments about  20  years  agu.  Applying  the  results  of 
physical  chemistry  to  the  work  of  his  predecessors, 
he  saw  that  for  the  process  to  give  a  good  yield  of 
nitrogen  oxides,  the  formation  of  which  may  be 
regarded  as  an  unstable  intermediate  phase  of  the 
reaction,  it  is  necessary  to  remove  them  as  rapidly 
as  possible  from  the  sphere  of  action,  the  time  of 
contact  being  kept  so  small  that  further  decompo- 
sition is  prevented.  These  required  conditions 
Ostwald  obtained  by  passing  the  gases  through 
thin  layers  of  platinum  at  a  very  high  speed.  He 
further  showed  that  compact  platinum  is  preferable 
as  a  catalyst  to  spongy  platinum  or  platinum-black, 
having  less  tendency  to  bring  about  the  second  re- 
action which  produces  free  nitrogen.  Ostwald  also 
investigated  the  proportion  of  ammonia  to  air  for 
giving  the  best  yield,  suggested  preheating  the 
gases,  and  undoubtedly  laid  the  foundations  of  the 
process  as  carried  out  to-day.  It  is  interesting  to 
note  that  while  patents  were  granted  in  this  (E.P. 
698  of  1902  etc.)  and  other  countries,  the  main 
patent  was  refused  in  Germany  on  account  of  the 
previous  work  of  Kuhlmann  and  his  successors. 

The  oxidation  of  ammonia  to  nitrogen  oxides  may 
be  represented  by  the  equation 

4XH3+502  =  4NO+6H,0     (1) 

That  the  oxide  of  nitrogen  first  formed  is  nitric 
oxido  is  shown  by  the  fact  that  the  gases  are  quite 
colourless  as  they  leave  the  converter,  moreover 
nitrogen  peroxide  is  completely  decomposed  into 
nitric  oxide  and  oxygen  at  619°  C.  Above  1200°  C. 
nitric  oxide  is  itself  decomposed,  but  this  is  not  so 
important  here  as  in  the  arc  process  for  nitrogen 
fixation. 

With  a  deficiency  of  air  or  oxygen  the  reaction 

4NH3+302  =  2Na+6H:.0     (2) 
readily  takes  place.     The  reaction 

4NH3+6NO  =  5N2+6H20     (3) 

may  also  be  of  importance  under  certain  conditions. 

For  the  reaction  shown  in  equation  (1)  about 
6  volumes  of  air  are  required  theoretically  for  each 
volume  of  ammonia  present  in  the  gas  mixture,  but 
in  practice  it  is  found  that  such  an  amount  in- 
variably leads  to  loss  of  ammonia  by  decomposition 
into  free  nitrogen  and  water  as  in  equation  (2). 
Practically  the  ratio  of  ammonia  to  air  should  never 
rise  above  1:7,  and  actually  about  1:9  gives  the 
best  results — any  lower  ratio  than  this  is  unde- 
sirable on  account  of  cooling  effects. 

Oxidation  begins  appreciably  with  platinum  as 
catalyst  at  dull  red  heat  and  proceeds  fairly 
rapidly  at  about  650°  C.  Higher  temperatures  are 
produced  by  the  oxidation  the  higher  the  ratio  of 
ammonia  to  air,  partly  no  doubt  owing  to  less  dilu- 
tion, but  chiefly  through  the  heat  of  the  reaction 
expressed  by  equation  (2)  being  materially  greater 
than  that  of  (1). 

The  combustion  of  a  10%  ammonia  air  mixture 
according  to  equation  (1)  will  theoretically  yield  a 
temperature  of  below  700°  C.  Assuming,  however, 
that  the  catalyst  works  best  above  750°  C,  and  re- 
membering the  inevitable  radiation  losses,  it  is 
obvious  that  the  process  cannot  operate  at  this  or  a 


higher  temperature  without  additional  heat.  On 
the  other  hand,  the  combustion  of  a  10%  mixture 
according  to  equation  (2)  should  yield  theoretically 
a  temperature  of  over  900°  C,  which  is  higher  than 
that  actually  required ;  thus  it  is  only  possible  to 
operate  the  converter  efficiently  without  extraneous 
heat  by  wasting  a  proportion  of  the  ammonia  in 
burning  it  uselessly  to  nitrogen. 

This  addition  of  extraneous  heat  either  by  heat- 
interchange  or  by  electrical  heating  is  probably 
chiefly  of  value  in  speeding  up  the  rate  of  reaction. 
The  ultimate  equilibrium  obtained  in  reaction  (1) 
is  that  of  practically  complete  oxidation,  at  all 
temperatures  up  to  the  point  of  decomposition  of 
nitric  acid,  but  an  increase  of  working  temperature 
makes  it  possible  to  oxidise  a  given  quantity  of 
ammonia  in  a  much  shorter  time  of  contact  with  the 
catalyst;  and  the  less  the  time  of  contact  with  the 
catalyst  the  less  the  likelihood  of  decomposing  the 
desired  intermediate  compounds. 

On  this  account  Ostwald  introduced  his  type  of 
heat-exchange  apparatus  described  below,  but  as 
ammonia-air  mixtures  readily  decompose  when 
heated  in  contact  with  most  metals  development  on 
these  lines  was  slow.  Multiple  gauzes  and  electri- 
cally heated  gauzes  are  the  results  of  other  efforts 
in  the  same  direction.  It  seems  absurd,  however, 
when  dealing  with  a  highly  exothermic  reaction 
such  as  the  oxidation  of  ammonia,  that  all  the  heat 
evolved  should  be  wasted  and  external  heat  sup- 
plied in  the  form  of  electrical  energy. 

The  Ostwald  pattern  of  converter  consisted  of  a 
vertical  tube  of  nickel  placed  within  a  tube  of 
enamelled  iron  into  which  the  air-ammonia  mixture 
is  admitted  at  the  bottom.  The  catalyst  was  a  roll 
of  platinum  foil  about  2  cm.  wide  coiled  up  in  the 
mouth  of  the  nickel  tube  down  which  the  hot  gases 
descend  after  conversion  and  preheat  the  incoming 
air-ammonia  mixture  outside.  AVe  understand  that 
it  was  difficult  to  regulate  the  temperature  with 
this  apparatus  and  that  the  output  per  unit  was 
small. 

The  converter  was  modified  by  Frank  and  Caro 
to  a  form  consisting  of  a  water-cooled  aluminium 
box  with  baffles  for  distributing  the  incoming  gas, 
surmounted  by  a  conical  aluminium  hood  with  a 
mica-covered  window,  more  or  less  on  the  lines 
afterwards  standardised  by  the  Munitions  Inven- 
tions Department  in  this  country.  The  catalyst 
consists  of  a  single  layer  of  platinum  gauze 
0-065  mm.,  00026  inch  diam.  and  80  mesh  to  the 
inch,  fitted  with  silver  leads  for  electrical  heating 
and  fixed  in  aluminium  frames  between  the  base 
and  the  hood.  This  type  of  plant  was  extensively 
used  on  German  sulphuric  acid  plants  during  the 
war.  A  further  modification  was  made  in  1910  by 
Kaiser,  who  introduced  a  multiple  catalyst  consist- 
ing of  four  gauzes  placed  very  close  together. 

Apparently  very  little  was  done  on  a  commercial 
scale  in  Germany  either  with  the  Ostwald  plant  or 
the  Frank-Caro  modification  before  the  war,  but 
when  the  accumulated  stores  of  Chile  nitrate  were 
exhausted  the  oxidation  of  ammonia  became  of 
supreme  importance. 

In  this  country  the  Ostwald  patents  were  taken 
over  by  the  Nitrogen  Products  and  Carbide  Com- 
pany, and  we  understand  that  the  process  was 
worked  for  a  time  during  the  war  at  Dagenham; 
an  ammonia-oxidation  process  was  used  experi- 
mentally prior  to  the  war  by  Mr.  W.  G.  Adam  of 
the  Gas,  Light  and  Coke  Company  to  provide  the 
necessary  nitrogen  oxides  for  sulphuric  acid  plant. 
With  these  trifling  exceptions  the  whole  of  our  re- 
quirements for  nitric  acid  in  the  early  period  of  the 
war  were  met  by  Chile  saltpetre,  supplies  of  which 
were  ensured  by  our  command  of  the  sea.  During 
1916,  however,  the  effects  of  the  submarine  block- 
ade became  so  serious  that  efforts  were  made  to  re- 
duce  our  imports   in   every   direction,   and   as   one 


' 


IMISOX  AND  RUSSELL.— THE  OXIDATION  OF  AMMONIA. 


[Feb.  28, 1922. 


quence  the  Nitrogen  Products  Committee  was 

nU'il  to  look  into  the  whole  question  of  the 
fixation  of  nitrogen  in  this  country  and  to  advise 
on  the  be.-t  processes  to  bo  recommended  for  adop- 
tion here.  It  was  at  once  seen  that  with  the  con- 
siderable  supplies  of  ammonia  already  available 
from  gas  works  and  coke  ovens,  the  ammonia-oxi- 
dai  ion  process  was  well  adapted  quickly  to  secure  a 
considerable  output  of  nitric  acid  or  nitrates. 

Th.'  simplest  application  was  obviously  in  con- 
nexion with  the  chamber  process  for  sulphuric  acid 
manufacture,  which  in  this  country  alone  normally 
consumes  about  15.000  tons  of  Chile  saltpetre  per 
annum  and  in  which  the  nitrogen  oxides  can  be 
utilised  directly  in  the  gaseous  form  without  any 
condensation  plant  with  its  added  problems.  Con- 
siderable information  as  to  the  application  of  oxi- 
dised  ammonia  for  this  same  purpose  in  Germany 
had  already  been  published  in  a  paper  by  G. 
Schuphaus  '(Metall  und  Erz,  1916,  13,  21)  giving 
fairly  full  details  of  the  Frank-Caro  plant  with  elec- 
trically heated  gauze. 

As  apart  from  this  paper  comparatively  little 
technical  information  was  available,  the  process  was 
very  fully  investigated  by  Dr.  J.  R.  Partington  and 
others  of  the  staff  of  the  Munitions  Inventions  De- 
partment, and  by  the  middle  of  the  year  1917  the 
results  were  communicated  to  certain  manufac- 
turers with  a  view  to  their  commercial  develop- 
ment. 

The  United  Alkali  Company  decided  to  erect  their 
first  experimental  unit  to  work  in  connexion  with 
a  chamber  plant  at  the  Pilkington-Sullivan  Works, 
Widnes,  having  a  capacity  of  about  250  tons  O.V. 
123°  Tw.,  per  week.  The  converter  was  made  of 
aluminium  and  consisted  of  a  square  base  with  two 
inlets  and  a  tapering  hood  connected  with  an  alu- 
minium bend  which  dipped  downwards  so  as  to 
prevent  any  condensation  from  the  gases  in  the 
pipes  leaving  the  converter  from  dripping  back  on 
to  the  gauze.  The  catalyst  plant  consisted  of  a 
motor  alternator  set  coupled  through  a  transformer 
to  a  single  platinum  gauze  having  an  exposed  area 
of  6  in.xl  in.  made  of  platinum  wire  0'065  mm. 
thick,  SO  mesh  to  the  inch,  fixed  between  two  silver 
leads  and  carefully  insulated  in  an  aluminium 
frame,  together  with  a  similar  gauze  unheated, 
which  was  separated  from  the  heated  gauze  by  mica 
strips  and  silica  rods.  The  air  and  ammonia  were 
admitted  through  pipes  connected  with  the  two 
inlets  into  the  converter  base  and  then  passed 
through  two  perforated  aluminium  plates  to  ensure 
thorough  mixing  before  entering  the  gauze.  The 
air  was  drawn  off  the  ordinary  compressed  air  sup- 
ply of  the  works  and  passed  through  a  lime  scrubber 
in  order  to  remove  carbon  dioxide ;  it  then  passed 
through  a  metering  disc  followed  by  a  small  glass- 
wool  filter  to  remove  any  dust  particles.  There  was 
a  safety  lute  connected  with  the  air  main  to  main- 
tain a  constant  head.  The  ammonia  used  was 
drawn  from  cylinders  of  compressed  anhydrous  am- 
monia so  arranged  that  they  could  be  suspended 
from  a  balance  to  determine  the  exact  weight  con- 
sumed, and  fitted  with  jackets  through  which  water 
or  steam  co'ild  be  passed.  The  ammonia  gas 
evolved  also  passed  through  a  metering  disc  and  a 
glass-wool  filter  on  its  way  to  the  converter.  The 
gases  leaving  the  converter  passed  through  a 
gallery  of  silica  S-pipes  and  then  through  a  luted 
earthenware  vessel  from  which  they  entered  the 
!  lading  chamber  of  the  vitriol  plant.  It  is  neces- 
sary to  have  such  a  back-pressure  vessel  on  the  de- 
livery main  to  prevent  the  possibility  of  the  gases 
from  the  vitriol  chambers  passing  back  to  the  gauze 
during  any  stoppage  of  the  plant.  The  use  of  an- 
hydrous ammonia  in  cylinders  was  of  course  hope- 
lessly  uncommercial,  but  it  gave  valuable  experi- 
al  data  with  pure  materials  and  with  an  ab- 
solute weighed  check  on  the  quantity  consumed. 


The  practicability  of  the  process  as  a  means  of 
working  our  chamber  plant  being  evident,  an  en- 
deavour was  at  once  made  to  simplify  it  as  much  as 
possible.  Ammonia  liquor  was  already  in  use  both  in 
Germany  and  in  this  country,  and  in  certain  cases 
ammonia  gas  also,  which  maybe  generated  from  am- 
monium sulphate  or  direct  from  gas  liquor  and  stored 
after  purification  in  a  gas  holder,  being  drawn  to 
the  converter  as  required.  Where  ammonia  liquor 
was  used  direct,  a  bubbling  still  of  the  ordinary  type 
with  a  number  (usually  four)  of  hooded  compart- 
ments was  employed,  the  bottom  compartment 
being  heated  by  direct  low-pressure  steam  or  by 
closed  steam  coils  to  drive  off  all  the  ammonia.  The 
air  was  admitted  partly  into  the  base  where  the 
steam  heating  takes  place,  and  partly  in  the  second 
compartment.  The  top  compartment  was  kept  cool 
by  the  circulation  of  water  in  lead  coils  and  the 
regulation  of  its  temperature,  which  should  not  ex- 
ceed 25°  C,  is  an  important  point.  Such  type  of 
apparatus  naturally  introduces  a  considerable  pres- 
sure and  makes  it  impossible  to  use  a  low-pressure 
fan  for  the  air  supply.  Instead  of  this  a  still  of  an 
extremely  simple  type  suggested  by  Mr.  R.  H. 
Davidson  of  Fleetwood  was  adopted.  It  consists 
merely  of  three  9-ft.  lengths  of  6-in.  cast  iron  pipes 
supported  on  a  slightly  enlarged  base  18  in.  diam. 
by  about  3  ft.  6  in.  high.  A  perforated  plate  is 
interposed  between  the  lowest  pipe  and  the  base 
and  acts  as  a  table  to  carry  the  packing.  There  is 
an  inlet  pipe  for  the  air  immediately  below  the 
table,  and  also  a  liquor  run-off  pipe  near  the  bottom 
which  is  carried  upwards  to  such  a  height  that  the 
base  is  always  kept  three-fourths  full.  The  liquor 
is  heated  either  by  a  closed  steam  coil  or  preferably 
by  a  live  steam  pipe  dipping  to  the  bottom.  The 
tower  is  packed  from  the  table  up  to  the  level  of  the 
gas  outlet  at  the  top  with  hard  coke,  roughly 
broken  to  about  1-in.  cubes.  The  ammonia  liquor 
feed  is  admitted  just  below  the  flange  of  the  second 
section,  i.e.,  roughly  one-third  of  the  way  down  the 
tower,  and  from  this  point  downwards  the  whole 
tower  is  carefully  lagged  with  boiler  covering  to 
conserve  heat.  The  tower  is  fitted  with  thermo- 
meters top  and  bottom  and  is  also  coupled  to  the 
ammonia  feed  and  stock  cisterns  for  which  it  acts  as 
a  vent. 

While  such  a  tower  may  seem  unnecessarily  high, 
this  is  really  no  disadvantage  when  erected  in  con- 
junction with  chamber  plant  where  the  ammonia 
feed  cistern  can  be  placed  on  top  of  the  chambers, 
and  on  account  of  its  height  it  is  extremely  efficient, 
the  normal  figure  for  ammonia  recovery  being  over 
99'9  and  the  composition  of  the  gaseous  mixture 
very  uniform.  Moreover,  the  upper  third  of  the 
tower  acts  both  as  a  cooler  and  scrubber,  prevent- 
ing any  excessive  amount  of  moisture  being  carried 
over  with  the  gas. 

An  old  Lancashire  boiler  shell  with  the  tubes  re- 
moved served  as  the  ammonia  liquor  store  tank.  In 
any  case  storage  capacity  must  be  provided  for  con- 
siderably more  than  one  tank  wagon  (say  8  tons) 
of  liquor  so  as  to  avoid  any  running  short  of  stock 
or,  on  the  other  hand,  delay  in  emptying  the  wagons 
on  arrival.  The  ammonia  liquor  store  tank  is 
vented  by  the  pipe  which  is  provided  for  an  over- 
flow for  the  small  feed  cistern  to  the  still.  It  is 
also  fitted  with  two  or  three  sections  of  a  still-head 
luted  with  water  to  prevent  any  loss  of  ammonia 
during  the  emptying  of  the  tank  wagons — this  con- 
nexion being  at  all  other  times  closed  by  a  valve. 
The  pump  for  conveying  the  liquor  from  the  stock 
tank  to  the  small  feed  cistern,  which  is  usually 
filled  once  in  24  hours,  is  provided  with  cast  iron 
working  parts. 

The  quality  of  ammonia  used  throughout  has 
been  commercially  pure  25 '_  liquor  from  coke-ovens 
or  gas  work-,  free  from  sulphides  (nitroprusside 
test);  once  by  mistake  an  odd  tank  wagon  of  com- 


VoL  XII.,  Ho  I M ISON  AND  RUSSELL.— THE  OXIDATION  OF  AMMONIA.  39  T 


mercia]  liquor  containing  sulphur  compounds  equal 
to  0'034%  (NH,)2S  was  used  without  any  apparent 
harm  resulting.  It  is  indeed  doubtful  if  sulphur 
compounds  are  objectionable  in  minute  quantities, 
and  the  same  is  true  of  pyridine.  Naphthalene  has 
also  been  mentioned  as  objectionable  owing  to  its 
effect  on  the  oxygen  concentration  of  the  air-am- 
monia mixture,  1%  of  naphthalene  by  volume  re- 
quiring roughly  the  same  volume  of  oxygen  for  its 
oxidation  as  10%  of  ammonia. 


General  lay-out  of  riant. 
Fig.  1. 

A  considerable  amount  of  work  has  been  done, 
particularly  in  America,  on  the  possible  harmful- 
ness  of  certain  constituents  of  cyanamide  ammonia. 
It  has  been  stated  that  acetylene  is  harmful,  but 
this  was  afterwards  disproved  (see  G.  A.  Perlev, 
J.  Ind.  Eng.  Chem.,  1920,  12,  120).  Suspicion  was 
then  diverted  to  phosphine.  but  the  harmfulness  of 
this  again  is  denied  by  AY.  S.  Landis  (American 
Electrochemical  Society's  Meeting,  April  3,  1919). 
who,  how-ever,  makes  the  curious  statement  that  a 
platinum  catalyst  seems  to  activate  itself  to  each 
particular  type  of  gas  to  which  it  is  subjected  and 
that  a  catalyser  which  has  been  activated  ou  crude 
autoclave  gas  will  not  work  efficiently  on  purified 
autoclave  gas,  or  on  coke-oven  ammonia — the 
period  of  adjustment  from  one  form  of  activation 
to  another  being  from  ten  days  to  two  weeks. 
Landis  states  further  that  there  are  structural  dif- 
ferences in  the  form  taken  by  the  platinum  when 
activated  with  different  varieties  of  ammonia  gas. 
Be  this  as  it  may,  it  is  plain  that  in  general  there 
is  much  room  for  further  work  to  be  done  on  the 
question  of  catalyst  poisons.  We  ourselves  believe 
that  there  is  more  risk  of  danger  to  the  platinum 
from  traces  of  iron  rust  or  dust  than  from  any  im- 
purities normally  to  be  expected  in  the  ammonia. 

In  our  earliest  plant  the  air-ammonia  mixture 
leaving  the  tower  was  bubbled  through  caustic  soda 
solution  so  as  to  ensure  complete  elimination  of  sul- 
phur compounds,  but  this  was  afterwards  cut  out 


as  unnecessary.  The  gases  then  pass  through  a 
glass-wool  filter  constructed  of  lead  to  remove  any 
particles  of  grit  etc.  which  may  be  swept  along  in 
the  gas  current.  In  cold  weather  to  prevent  con- 
densation this  filter  may  be  kept  warm  with  a  steam 
coil,  and  any  drainage  collecting  in  it  runs  back 
to  the  tower.  From  this  point  to  the  converter 
itself  the  gases  are  carried  through  pipes  of  lead 
only. 

The  accurate  regulation  of  ammonia  and  air  sup- 
ply so  ;1>  to  give  a  constant  gas  mixture  of  the 
correct  proportions  is  the  chief  requirement  of  the 
whole  process.  Our  aim  throughout  in  adapting 
this  process  to  sulphuric  acid  manufacture  was  to 
make  it  as  simple  as  possible.  Since  where  nitre 
is  potted  by  the  burner  men  in  the  old  method  no 
additional  charge  is  incurred  for  labour,  and,  on 
the  other  hand,  we  pay  no  less  to  the  burner  men 
when  they  are  relieved  of  this  work,  there  was  no 
chance  for  the  commercial  success  of  a  process  on 
such  a  small  scale  as  this  unless  it  also  could  be 
supervised  by  men  already  engaged  on  the  chamber 
plant.  We  therefore  aimed  at  making  the  regula- 
tion, while  scientifically  accurate,  just  as  simple 
as  that  of  the  runs  of  nitrous  or  chamber  vitriol  on 
the  Glover  or  Gay-Lussac  towers,  and  this  was 
effected  in  the  following  manner. 

The  ammonia  liquor  on  its  way  from  the  feed 
cistern  to  its  point  of  inlet  into  the  still  passes 
through  a  small  vertical  glass  vessel  which  is 
coupled  again  at  the  lower  end  into  the  feed  pipe 
through  a  piece  of  soft  rubber  tube,  the  top  of  the 
vessel  being  also  vented  into  the  delivery  pipe  to 
allow  the  escape  of  any  displaced  air  or  vapour. 
On  the  side  of  this  glass  vessel  is  a  mark,  so  that 
by  pinching  the  rubber  outlet  tube  it  is  extremely 
simple  to  determine  the  number  of  seconds  required 
to  fill  the  tube  to  this  mark  according  to  the  speed 
at  which  the  plant  is  working.  Alongside  this  sight 
feed  is  a  differential  manometer  coupled  to  the  two 
sides  of  the  metering  disc  in  the  air  supply  main. 
Working  with  any  fixed  strength,  say  25  %,  of  am- 
monia liquor  it  is  very  easy  to  calculate  the  volume 
of  air  required,  and  the  metering  disc  reading 
corresponding  to  this  volume,  which  is  necessary 
to  give  a  gas  of  a  composition  of  9  to  1  or  any  other 
ratio  that  may  be  desired  for  any  given  rate  of  am- 
monia feed.  We  therefore  draw  up  a  table  show- 
ing what  should  be  the  differential  reading  to  corre- 
spond with  the  ammonia  feed  which  takes  a  given 
number  of  seconds  to  fill  this  sight  vessel  up  to  the 
fixed  mark.  Thus  the  tower  man  comes  on  his 
round  several  times  per  shift,  makes  a  determina- 
tion of  the  rate  of  the  ammonia  feed  by  pinching 
the  tube  and  taking  the  number  of  seconds  required 
to  fill  up  to  the  mark,  either  with  his  watch  or  pre- 
ferably with  a  half-seconds  pendulum  hanging 
alongside,  glances  at  the  air  manometer  to  see  if 
the  reading  is  correct  for  the  observed  rate  of  am- 
moni.t  feed  according  to  the  table  in  front  of  him. 
makes  the  necessary  adjustment  on  the  air,  if  any 
may  be  required,  by  the  air-regulating  valve  which 
is  also  alongside,  and  goes  on  his  way  again — the 
whole  operation  not  taking  a  minute.  If  owing 
to  the  condition  of  the  chambers  either  more  or  less 
oxides  of  nitrogen  are  required,  the  ammonia  feed 
is  increased  or  checked  accordingly,  and  the  air 
adjusted  to  the  new  corresponding  manometer  read- 
inu;.  This  is  really  so  simple  that  although  the 
tower  men  get  no  extra  money  for  looking  after  the 
plant,  they  find  the  improvement  through  steadi- 
ness and  regularity  in  supply  of  nitrogen  oxide3  so 
far  counterbalances  the  trivial  amount  of  extra 
work  that  we  actually  had  a  case  a  few  months  ago 
in  one  of  our  works  where,  one  chamber  set  not 
being  fitted  at  the  time  with  ammonia  oxidation 
plant,  the  tower  men  themselves  approached  the 
manager  to  ask  if  such  plant  could  not  be  installed. 


40  T 


IMISON  AND  RUSSELL.— THE  OXIDATION  OF  AMMONIA. 


[Feb.  28,  1922. 


For  the  catalyst  it  was  decided  to  adopt  the  four- 
Fold  gauze,  without  electrical  heating, 'of  the  stan- 
dard (i  in.  x  4   in.   cross-section,    each   gauze   being 

,1,  ii  ii!'  platinum  wire  O'OG-5  mm.  thick,  80  mesh 
to  the  inch,  and  then  the  four  pieces  stitched  to- 
gether with  platinum  wire  also..  These  gauzes  are 
admirably  woven  by  Messrs.  Locker  of  Warring- 
ton. The  weight  of  platinum  in  such  a  fourfold 
gauze  is  about  35  grams,  say,  l'l  oz.  troy.  The 
gauze  is  carefully  cleaned  before  fixing  in  the  con- 
verter by  boiling  in  hydrochloric  acid  and  washing 
with  distilled  water,  avoiding  any  contact  with  the 
hands  afterwards. 

In  starting  off  the  apparatus  a  little  steam  is 
turned  on  the  tower  and  the  ammonia  feed  started. 
The  air  is  then  turned  on  and  the  gas  mixture  ad- 
justed to  about  a  1  to  7  ratio — it  being  advisable 
to  have  the  ammonia  rather  richer  than  normal 
when  starting  off.  During  this  adjustment  the 
arc  passed  through  a  by-pass  into  the  atmo- 
sphere. The  gauze  is  then  warmed  either  by  start- 
ing Ihe  current,  when  electrical  heating  is  used,  or 
by  introducing  a  flame  through  the  small  hole  pro- 
vided for  the  purpose  in  the  base  of  the  converter. 
For  this  an  ordinary  plumber's  jet  connected  with  a 
hydrogen  cylinder  or  to  a  coal-gas  main,  serves  ad- 
mirably. With  a  new  gauze  the  operation  of  start- 
ing is  sometimes  a  little  tedious,  but  with  one  which 
has  been  previously  used  the  lighting  up  is  only  a 
matter  of  seconds. 

This  difference  in  behaviour  is  accompanied  by  a 
remarkable  change  in  the  appearance  of  trie  plati- 
num. While  a  new  gauze,  even  under  the  micro- 
scope, has  a  smooth,  shining  appearance,  one  that 
has  been  active  for  some  time  is  completely 
(hanged.  Its  colour  is  now  a  dull  grey  and  under 
the  microscope  the  whole  surface  is  pitted  and 
sprouted  in  an  extraordinary  manner  (see  Figs.  2 
and  3). 


When  once  the  reaction  has  started  the  gauze 
«ill  maintain  its  temperature  indefinitely,  and  for 
working  into  vitriol  chambers  the  remainder  of  the 
plant  consists  simply  of  a  cooler  of  three  or  four 
silica  S-pipes  supported  on  iron  brackets  with  as- 
bestoa  pads.  Air  cooling  is  all  that  is  required,  as 
any  unnecessary  condensation  is  to  be  avoided.  The 
cooling  pipes  are  followed  by  an  earthenware  jar 
containing  sufficient  liquor  just  to  lute  the  inlet 
gas  main.  The  lute-jar  is  preferably  fitted  with  a 
glass  hood  so  that  the  colour  of  the  nitrogen  oxides 
can  be  kept  under  observation,  and  the  gases  travel 


on  through  earthenware  pipes  to  whatever  point 
may  be  desired  on  the  chamber  plant.  Any  drips 
from  the  lute-jar  are  carried  through  earthenware 
pipes  into  the  conduit  conveying  nitrous  vitriol,  or 
strong  vitriol  to  the  Gay-Lussac  feed  cisterns,  one 
or  two  tiles  being  laid  in  the  conduit  just  under- 
neath the  pipe.  It  is  preferable  to  introduce  them 
here  rather  than  in  the  cisterns  themselves,  as  the 
two  acids  thus  get  thoroughly  mixed  and  all  damage 
to  the  lead  lining  of  the  cisterns  is  avoided. 


Gauze  after  7  weeks'  working. 
Fig.  3. 

The  gases  may  be  introduced  into  the  chamber 
plant  at  several  points;  we  prefer  to  introduce 
them  into  the  inlet  tunnel  from  the  Glover  tower 
or  into  the  leading  chambers — the  gases  being 
carried  through  an  earthenware  pipe  passing  at 
least  18  inches  inside  the  chamber  and  dipping 
slightly  downwards  so  that  no  drips  can  run  down 
the  side  sheets.  Where  a  plant  consists  of  several 
sets  of  chambers,  it  may  happen  that  the  leading 
chambers  are  scattered  while  the  Gay-Lussac  towers 
are  collected  together,  and  here  we  introduce  the 
oxides  of  nitrogen  into  the  base  of  the  leading  Gay- 
Lussac  tower.  This  method  works  just  as  well  as 
the  other  as  regards  nitre  consumption,  but  has  the 
drawback  that  on  starting  up  a  plant,  or  when  by 
some  accident  the  chambers  have  lost  all  their  nitre, 
it  is  impossible  to  rectify  the  trouble  except  by 
potting  nitre  in  the  old  way  or  running  nitric  acid 
down  the  Glover  towers. 

The  gases  are  preferably  tested  before  and  after 
the  converter  at  regular  intervals  by  members  of 
the  laboratory  staff  so  as  to  keep  a  check  on  the 
working  of  the  plant.  The  determination  of  the 
ammonia-air  ratio  in  the  inlet  gas  is  comparatively 
simple,  but  a  very  high  degree  of  accuracy  is  re- 
quired, as  any  error  will  be  greatly  magnified  when 
calculating  the  percentage  conversion  obtained. 
The  difficulty  lies  in  the  analysis  of  the  gases  leav- 
ing the  converter.  As  stated  above,  the  first  pro- 
duct of  oxidation  is  NO,  but  as  there  16  commonly 
an  excess  of  oxygen  present  a  portion  at  least  of 
the  nitrogen  oxides  will  be  rapidly  converted  into 
N203  or  N204.  Also  under  certain  abnormal  con- 
ditions unchanged  ammonia  may  be  present,  of 
course  as  nitrate  or  nitrite,  and  there  will  always 
be  water  vapour  and  nitrogen.  Various  methods 
of  analysis  have  been  described  by  Fox  and  by 
Taylor  (J.  Ind.  Eng.  Chem.,  1917,  9,  737,  1106),  by 
Gaillard  (ibid.,  1919,  11.  745),  and  by  the  chemists 
of    the    Munitions    Inventions    Department.      We 


Vol.  XLI.,  Xo.  4.] 


1M1SON  AND  RUSSELL.— THE  OXIDATION  OF  AMMONIA. 


4lT 


have    adopted    a    modified    method    introduced    by 
H.  E.  Potts  and  W.  Russell,  which  is  carried  out  as 

follows : — ■ 

Air-ammonia  ratio  test. 

About  half  a  litre  of  neutral  water  is  placed  in  a 
Drechsel  bottle,  together  with  5  c.c.  of  jV/1  sul- 
phuric acid  and  a  few  drops  of  methyl  orange.  The 
dip  tube  is  dried  internally  and  connected  with  an 
aspirator  and  tested  to  see  that  the  joints  are  tight. 
The  contents  are  then  brought  to  atmospheric  pres- 
sure  and  a  sample  of  the  inlet  gases  is  aspirated 
until  the  acid  is  exactly  neutralised,  the  regulating 
clip  being  on  the  run-off  tube  from  the  aspirator. 
The  Drechsel  bottle  is  inclined  towards  the  end  of 
the  test  so  as  to  bring  the  air  in  the  aspirator  to 
atmospheric  pressure.  The  water  drawn  is  run  into 
a  measuring  jar  and  the  temperature  of  the  water 
taken  within  the  aspirator  itself.  The  volume  of 
air  is  corrected  to  N.T.P.  allowing  for  temperature 
and  vapour  tension  of  water.  Barometric  pressure 
may  he  neglected  as  it  affects  the  conversion  test  to 
the  same  extent. 

The  ratio  of  air: ammonia =corrected  volunie-=- 
(c.c.  -Y/l  sulphuric  acid x 2241). 

Instead  of  a  Drechsel  bottle  we  now  use  a  small 
v,  sse)  made  of  glass  tubing  essentially  on  the  prin- 
ciple of  an  air-lift  as  will  be  seen  from  the  right- 
hand  sketch  in  Fig.  4. 

The  apparatus  is  made  of  tube  of  \  in.  internal 
diameter  while  the  gas  inlet  is  drawn  out  to  a  capil- 
lary with  an  upward  turn  at  A.  The  cork  C  is  with- 
drawn and  5  c.c.  of  2V/1  sulphuric  acid  introduced, 
the  point  of  the  pipette  dipping  as  far  as  B  and  not 
touching  the  wall  of  the  tube  between  C  and  B. 
The  level  of  the  acid  should  be  slightly  below  B. 


Fig.  4. 

Two  or  three  drops  of  methyl  red  are  introduced 
through  C,  the  stopper  replaced,  and  the  apparatus 
connected  with  an  aspirator.  The  bubbles  rising 
at  A  cause  a  circulating  motion  in  the  liquid  and 
being  very  small  there  is  intimate  contact  between 
the  gas  and  the  acid.  The  change  of  colour  is  so 
rapid  that  the  colour  of  liquid  between  A  and  B 
may  be  yellow  and  that  between  B.  D  and  A  red, 
and  5  c.c.  more  water  drawn  will  complete  the 
change.  The  advantages  of  this  apparatus  are:  — 
(1)  Intimate  contact  of  gas  and  liquid.     (2)  Rapid 


circulation  without  shaking.  (3)  Small  volume  of 
liquid  required  witli  no  addition  of  neutralised 
water. 

Con  version  test. 

The  apparatus  is  shown  on  the  left-hand  of 
Fig.  4.  The  Winchester  bottle  is  filled  completely 
with  carefully  neutralised  water  and  a  large  sample 
of  the  gases  leaving  the  converter  drawn  in,  the 
connexion  being  made  through  a  hot  dry  sampling 
tube  which  is  inserted  for  the  purpose  through  a 
hole  normally  closed  with  an  iron  plug.  The  point 
of  sampling  should  be  as  near  the  converter  as 
possible  so  as  to  avoid  any  risk  of  condensation. 
During  the  aspiration  of  the  sample  into  the  bottle 
the  last  1500  c.c.  of  water  is  collected  as  this  may 
contain  a  little  acid  dissolved  in  it.  The  sampling 
tube  is  w'ashed  into  this  water  also. 

The  taps  on  the  bottle  are  then  closed  and  the 
short  tube  is  disconnected  from  the  sampling  pipe, 
care  being  taken  that  no  condensed  acid  is  lost. 
100  c.c.  of  a  neutral  solution  of  hydrogen  peroxide 
is  then  drawn  through  the  inlet  pipe,  which  is 
easily  effected  by  reason  of  the  contraction  in 
volume  of  the  gases.  The  bottle  is  shaken  gently 
and  reduced  to  atmospheric  pressure,  with  shaking 
at  intervals,  using  carefully  neutralised  water  for 
the  purpose.  The  contents  of  the  bottle  are  then 
transferred  to  a  measure  and  the  volume  taken, 
which  by  subtraction  from  the  original  volume  of 
the  bottle  gives  the  volume  of  the  residual  gases, 
correcting  for  temperature  and  vapour  tension  as 
before.  The  contents  of  the  measure  are  washed 
into  a  basin  and  almost  neutralised  in  the  cold  with 
caustic  soda,  using  methyl  red  as  indicator,  then 
brought  to  the  boil  and  the  neutralisation  finished 
in  the  hot  solution.  An  aliquot  portion  of  the 
water,  which  is  collected  as  noted  above,  is  mixed 
with  a  little  neutral  hydrogen  peroxide,  boiled,  and 
titrated  with  caustic  soda  and  the  acidity  found 
added  to  that  of  the  contents  of  the  bottle. 

If  the  ratio  test  shows  less  than  8i  volumes  of 
air  to  1  of  ammonia  it  is  advisable  to  add  oxygen 
by  connecting  the  bottle  while  full  of  water  with  an 
oxygen  cylinder,  and  measuring  the  water  dis- 
placed, taking  care  that  the  level  of  the  water  in 
the  measuring  vessel  is  the  same  as  that  in  the 
Winchester,  the  inlet  tube  being  below  the  surface. 
Under  these  conditions  obviously  the  volume  of 
water  displaced  is  the  same  as  that  of  the  oxygen 
added — 200  c.c.  is  ample.  The  method  of  calcula- 
tion will  be  clear  from  the  following  example:  — 

Calculation  of  results. 
Example.— Capacity  of  Winchester  bottle  3000 
c.c. ;  oxvgen  added  200  c.c. ;  water  in  bottle  at 
equilibrium  400  c.c.  at  20°  C.  Volume  of  residual 
gases  at  20°  C.  =3000- (400  +  200)  =  2400  c.c.  at  20°  = 
2400x0-911  =  2186  c.c.  at  N.T.P.  Water  acidity, 
say  1900  c.c.   collected,   500  c.c.   taken,   requiring 

l'0xl900 
1-0  c.c.  -V/o.     Hence  total  acidity  =  -^-     g^j  ^0-76 

c.c.  AT/1  caustic  soda.  Winchester  acidity  =  say  12'00. 
Total  acidity  =  12"76  c.c.  iV/1  caustic  soda.  Acidity 
calc.  as  NH3  =  12-76x22-41  =  285'9  c.c.  NH3.  Con- 
traction  =  285'9x20/13  (see  M.I.D.  Report  on  the 
Oxidation  of  Ammonia,  1919,  p.  9)=439"8  c.c.  (say 
440  c.c).  Therefore  volume  of  gas  containing  this 
ammonia  before  passing  into  the  converter  =  2186+ 
440  =  2626  c.c.  at  N.T.P.  Ratio  =  say  7"9:1  NH3. 
Hence  volume  NH3  to  converter  =  2629H-7-9  =  3324 
c.c.   NH3.     Conversion  =  285-9xl00-h332-4  =  86-0%. 

As  noted  above,  our  first  converter  was  of  alu- 
minium with  electrically  heated  gauze— the  elec- 
trical heating  was  very  soon  replaced  by  the  un- 
heated  four-fold  gauze  owing  to  the  frequent 
troubles  experienced  in  its  use,  the  additional  plant 
and  skilled  supervision  required,  and  the  unneces- 
sary expense  of  electricity  where  so  much  surplus 


4Jt 


EJDBON  AXD  RUSSELL.— THE  OXIDATION  OF  AM.MOXIA. 


[Feb.  28,  1922. 


was  already  available.  We  also  found  alu- 
minium a  very  unsuitable  material  for  the  construc- 
tion of  the  converters  themselves.  Its  melting 
point  is  650°  C.  which,  as  already  stated,  is  a  Uw 
working  temperature  for  the  gauze,  and  it  is  only 
the  external  cooling  which  prevents  the  aluminium 
melting  at  once.  With  a  little  accidental  increase 
in  the  proportion  of  ammonia  either  through  vari- 
ation in  ammonia  feed  or  steam  supply  to  the  still, 
or  through  checking  of  the  air,  so  high  a  gauze 
temperature-  results  that  the  hood  and  frames 
are  liable  to  melt  on  to  the  platinum.  Since 
under  works  conditions  with  rough  and  ready 
supervision  these  things  are  sure  to  happen  sooner 
or  later,  experience  soon  showed  us  the  necessity  ol 
adopting  some  other  material,  while  the  introduc- 
tion of  heat  interchangers  referred  to  below  ex- 
cluded aluminium  absolutely.  For  the  hood  cast 
iron  proved  quite  satisfactory,  apart  from  the  risk 
of  rust  particles  dropping  on  the  gauze.  We  also 
tried  a  converter  made  entirely  of  cast  nickel,  but 
this  gave  trouble  through  the  action  of  the  moist 
ammonia  on  the  lower  portion  below  the  gauze  lead- 
ing to  deposition  of  black  nickel  oxide  on  the  gauze 
itself.  We  then  tried  enamelled  iron;  this  proved 
highly  successful  and  was  adopted  as  the  standard 
material  in  all  our  works. 

With  a  plant  of  the  -above  type  with  no  preheat- 
ing, conversions  by  analysis  of  86 — S9;;  were  ob- 
tained, though  it  is  important  to  note  that  when 
we  came  to  make  liquid  nitric  acid  on  a  separate 
plant  we  could  never  get  weighed  yields  after  allow- 
ing for  condensation  losses  quite  as  high  as  gas 
analyses  would  indicate,  so  that  we  put  forward 
these  results  for  comparison  only.  The  capacity  of 
a  unit  with  a  6  in.  x  4  in.  gauze  under  these  condi- 
tions was  also  limited  to  about  the  equivalent  of 
35  ewt.  of  sodium  nitrate  per  week — or,  say,  25  lb. 
per  square  inch  of  platinum  per  day,  any  attempt  to 
increase  the  speed  of  the  gas  beyond  this  limit  lead- 
ing to  a  reduction  in  the  gauze  temperature  and  a 
falling  off  in  efficiency  with  the  appearance  of  am- 
monium nitrate  and  nitrite  in  the  condensate.  It 
is  important  to  note  that  when  working  at  a  normal 
speed  there  is  very  rarely  any  trace  of  ammonia  in 
the  exit  gases,  although  the  conversion  may  be  only 
85% — clearly  showing  that  the  incomplete  yield  is 
due  to  formation  of  nitrogen  itself  as  in  equation 

(2)-    . 

Being  dissatisfied  with  these  results  we  began  to 

experiment  on  pre-heating  the  gas  mixture  with 
the  object  of  increasing  the  percentage  conversion 
and  also  the  capacity  per  unit  of  catalyst  employed. 
A  few  experiments  convinced  us  of  the  impossibility 
of  employing  most  common  metals  for  the  construc- 
tion of  heat  interchangers  owing  to  the  decomposi- 
tion of  mixtures  of  air  and  ammonia  by  their  sur- 
faces when  hot.  For  example  a  series  of  experi- 
ments in  which  a  10%  ammonia-air  mixture  was 
passed  through  a  silica  tube  containing  turnings 
or  small  pieces  of  various  materials  at  350°  C.  gave 
the  following  results:  — 


Metal  used. 

Wrought  iron 
Nickel 
Aluminium 
Silver.. 

Silica 


%  ammonia 

decomposed. 

81-47 

35-25 

10-8 

3-85 

less  than    1-0 


It  was  noted  incidentally  that  iron  becomes  verj 
much  more  active  as  it  gradually  becomes  oxidised 
so  that  the  decomposition  is  increasingly  marked  as 
time  goes  on.  The  conditions  of  these  experiments 
as  to  exposed  surface  etc.  are,  of  course,  much  more 
severe  than  those  of  actual  practice,  but  serve  to 
show  the  urgent  necessity  of  avoiding  contact 
een  the  gas  mixture  and  hot  metal  surfaces. 

One  method  of  overcoming  this  trouble,  which  has 
bei  D  adopted  in  Germany,  is  to  pre-heat  the  air.  the 
two  gases  being  mixed  only  at  the  point  of  inlet  to 


the  converter,  but  such  a  method  is  obviously  inap- 
plicable where  the  gas  mixture  is  produced  from 
ammonia-liquor  in  the  stills  described  above. 
Therefore,  our  units  being  too  small  to  allow  of  the 
introduction  of  linings  or  coverings  to  protect  the 
iron  tubes  (another  German  method  which  must 
lead  to  great  reduction  in  efficiency  of  heat-ex- 
change), we  experimented  with  enamelled  iron  cast- 
ings with  excellent  results. 

The  standard  interchanger  we  now  adopt  for  a 
chamber  set  has  an  internal  diameter  of  12  inches 
across  the  tube  plates,  with  seven  tubes  each  2j  in. 
mean  diameter  and  2  feet  long.  The  tubes  and 
tube  plates  are  oast  in  one  piece  and  the  tubes  taper 
slightly  towards  one  end  for  convenience  in 
enamelling.    The  total  heating  surface  is  10T  sq.  ft. 

The  hot  gases  from  the  platinum  pass  through 
the  tubes,  while  the  incoming  mixture  of  air  and 
ammonia  travels  round  them.  The  tubes  are 
enamelled  internally  as  well  as  externally  to  remove 
any  danger  of  rust  which  might  damage  the 
catalyst.  The  interchanger  was  at  first  attached 
vertically  above  the  gauze  by  means  of  a  small 
special  casting,  which,  together  with  the  base  and 
the  short  arm  carrying  the  hot  gas  mixture  to  it, 
are  all  enamelled  internally.  Later  the  whole  unit 
was  placed  in  a  horizontal  position  instead  of 
vertically,  the  gauze  now  becoming  vertical  instead 
of  horizontal,  thus  making  the  unit  more  con- 
venient to  instal  and  further  obviating  any  risk  of 
foreign  matter  falling  on  the  platinum.  There  is 
also  the  advantage  that,  using  a  large  gauze,  held 
horizontally,  there  is  an  appreciable  amount  of 
sagging  if  no  support  is  given.  In  the  vertical 
position  this  difficulty  does  not  appear.  Fig.  5  will 
make  the  whole  arrangement  clear. 


Pt- Gauze 


Fig.  5. 

We  found  at  a  later  date  that  the  comparatively 
expensive  enamelled  iron  interchanger  could  be  re- 
placed by  one  protected  by  painting  the  tubes  and 
interior  of  the  casing  while  hot  with  Sellar's 
cement  (a  mixture  of  sodium  silicate  solution  and 
barium  sulphate) :  provided  the  painting  is  care- 
fully done  this  mixture  is  just  as  satisfactory  as 
the" enamel.  Moreover,  by  this  method  of  cover- 
ing we  could  make  larger  sized  interchangers.  with 
steel  tubes,  without  any  trouble  through  considera- 
tions of  enamelling  difficulties.  By  the  introduction 
of  the  heat  interchanger  the  temperature  of  the 
inlet  gas  is  raised  to  about  300c  C.  The  capacity 
of  a  unit  with  6  in.  x  4  in.  gauze  is  increased  to  at 
least  the  equivalent  of  50  ewt.  of  sodium  nitrate 
per  week,  and  the  efficiency  of  conversion  shown  by 
the  gas  test  is  also  increased  to  about  93;  . 

The  oxidation  apparatus  as  above  described 
proved  so  satisfactory  that  it  was  rapidly  intro- 
duced on  our  various  chamber  plants;  this  was  not 
only  an  advantage  in  reducing  the  requirements  of 
imported  material,  but  a  distinct  saving  in  itself, 
particularly  as  the  price  of  ammonia,  under  Gov- 
ernment control,  was  very  low  as  compared  with 
nitre  at  the  close  of  the  war  and  during  the  succeed- 
ing period.  It  may  be  of  interest  to  record  the 
fact  that  for  many  months  during  the  year  1918  we 


Vol.  XIX,  Xo.  4.] 


IMISON  AND  RUsseLL.— THE  OXIDATION'  OF  AMMONIA. 


43  T 


had  one  large  vitriol  plant  manufacturing  its  acid 
exclusively  from  home-produced  raw  material?,  the 
pyrites  from  the  Cae  Goeh  Mine,  Trefriw.  and  the 
ammonia  liquor  from  Yorkshire. 

One  important  point  remaining  to  be  settled 
was  the  lo^s  of  platinum  and  the  life  of  the  gauze. 
We  have  had  a  gauze  in  continuous  use  for  18 
months  working  at  a  rate  equivalent  to  40 — 50  cwt. 
of  sodium  nitrate  per  week  before  failure  occurred 
through  splitting  at  the  point  where  it  was  held 
in  the  frames;  another  worked  continuously  for  16 
months  before  being  accidentally  damaged  by  a 
fitter,  and  others  have  worked  a  year  or  longer 
and  are  still  apparently  capable  of  good  service. 
We  have  several  considerably  older  than  the  above. 
but  these  have  not  worked  continuously  owing  to 
the  unsettled  trade  conditions  of  the  last  year  or 
two. 

The  loss  of  platinum  varies  from  0'002  to 
0"004  oz.  troy  per  ton  of  100%  nitric  acid  produced. 
In  addition  to  this  allowance  must  be  made  for  the 
depreciation  in  value  of  the  remainder  of  the 
platinum  in  the  gauze,  when  it  is  worn  out,  owing 
to  the  difference  in  value  between  platinum  scrap 
and  new  gauze. 

With  new  platinum  at  £22  10s.  per  oz.  troy  and 
scrap  at  £19  10s.,  a  fair  allowance  per  ton  of 
equivalent  sodium  nitrate  for  chamber  working  is 
9d.  for  platinum  loss  and  9d.  for  depreciation  in 
value,  or  a  total  of  Is.  6d.  per  ton. 

The  capital  cost  of  an  installation  is  about  £500, 
made  up  as  follows: — Ammoniacal  liquor  stock 
tank  with  foundation,  £100;  pump,  motor,  etc., 
£100;  ammonia  still  and  feed  tank,  £125;  lead 
filter  and  piping,  £20;  converter  with  interchanger, 
£60;  platinum  gauze,  £25;  house  for  converter  and 
gauges,   £50:   piping,   etc.,   £20. 

In  comparing  the  economic  value  of  ammonia 
and  nitre  for  chamber  plant  it  must  be  remembered 
that  in  potting,  in  addition  to  the  cost  of  sulphuric 
acid  for  decomposing  the  nitre,  some  labour  is  re- 
quired for  wheeling  in  the  nitre  and  removing  the 
nitre  cake,  apart  from  the  potting  itself,  which  is 
generally  done  by  the  burner  men  without  extra 
pay.  Against  these  charges  there  may  be  a  some- 
what problematical  credit  for  nitre  cake.  Repairs 
are  too  trifling  to  be  worth  consideration  and 
capital  charges  are  ignored,  as  it  is  assumed  that 
the  potting  ovens  are  already  installed. 

Charging  sulphuric  acid  123°  Tw.  at  £2  10s.  per 
ton  and  crediting  nitre  cake  at  10s.  per  ton,  we 
thus  have  the  following  cost  for  potting  by  the  old 
method  :  — Per  ton  95  %  NaNO., :  Sulphuric  acid 
123°  Tw.  1-57  tons  at  50s.,  £3  18s.  6d.;  labour  for 
weighing  and  wheeling  nitre  and  removing  nitre 
cake  (say).  10s.:  £4  8s.  6d.;  credit  1"34  tons  nitre 
cake  at  10s.,  13s.  6d. ;  net  cost  of  potting  =  £3  15s. 
Against  this  we  have  when  using  ammonia — all 
figures  being  calculated  per  ton  of  equivalent 
NaN03  95%  : — Steam  and  air,  3s.;  repairs,  wages, 
and  material,  3s.;  platinum,  Is.  6d.:  interest  and 
depreciation  at  20%  on  a  capital  outlav  of  £500. 
16s.  :   total  £1  3s.  6d. 

We  take  the  weight  of  nitre  which  would  be  used 
t  theoretically  corresponding  to  the  ammonia 
consumed.  It  has  been  found  as  the  result  of  wide 
experience  that,  although  a  certain  proportion  of 
the  ammonia  is  admittedly  lost  through  incomplete 
conversion,  the  saving  in  consumption  of  nitrogen 
oxides  by  their  uniform  addition  to  the  chambers  at 
least  neutralises  this.  We  can  say  quite  definitely 
that  in  no  case  has  our  nitre  consumption,  calcu- 
lated theoretically  from  the  total  ammonia  used, 
gone  up  as  the  result  of  substituting  the  use  of 
ammonia  for  nitre  potting.  In  fact,  we  believe 
we  can  claim  a  saving  under  this  head,  but  with 
the  fluctuating  conditions  of  chamber  plant  opera- 
tion during  the  last  few  years  it  is  rather  difficult 


Equivalent 

value 

of 

nitrati1    of 

soda. 

£      s 

d. 

16     S 

6 

15     9 

6 

14  10 

6 

13  11 

6 

12  12 

6 

11  13 

6 

in   14 

6 

9  15 

6 

8  16 

(. 

7  17 

G 

6  18 

i> 

5  19 

6 

5     0 

6 

to  give  figures  over  a  steady  period  sufficiently  long 
for  them  to  be  really  reliable. 

On  this  basis  and  with  the  above  figures  for  cost 
of  working  we  get  the  following  table  for  the 
equivalent  values  of  nitrate  of  soda  corresponding 
to  the  various  unit  prices  of  ammonia. 

Price  per  unit 

of 

ammonia. 

s.    d. 

20    ii        

W    u       

15  II  

17  0  

16  0  

15  0  

14  0  

13  O  

12  0  

11  li  

10  0  

9     ti        

8     0        

Taking  the  present  (December,  1921)  cost  of  pure 
ammonia  liquor  as  lis.  6d.  per  unit,  delivered,  it 
will  be  seen  that  the  price  of  nitre  would  have  to 
bo  about  £8  6s.  per  ton  to  compete.  Comparing 
this  with  to-day's  price  of  nitre,  say.  £14  10s.  per 
ton,  the  saving  is  obvious.  During  the  latter  part 
of  the  war  the  difference  was  even  more  marked. 
the  price  of  ammonia  being  kept  down  under  con- 
trol to  about  14s.  per  unit  delivered,  while  nitrate 
of  soda  cost  over  £22  per  ton. 

If.  on  the  other  hand,  comparison  be  made  be- 
tween the  pre-war  prices  of  the  two  materials  we 
have  the  following  data.  The  average  price  of 
nitrate  of  soda  for  the  five  years  1910-1914  was 
approximately  10s.  3Jd.  per  cwt.  delivered.  We 
were  not  buying  pure  ammonia  liquor  at  that  time, 
but  for  crude  concentrated  liquor  the  average  price 
for  the  same  five  years  was  9s.  5Jd.  per  unit.  We 
are  advised  that  a  fair  price  for  puro  ammonia 
would  then  have  been  Is.  6d.  per  unit  over  and 
above  the  price  of  concentrated,  making  the  five 
years'  price  for  the  purpose  of  comparison  10s.  Hid., 
or.  say.  lis.  per  unit.  Since  this  value  corresponds 
from  our  table  to  £7  17s.  6d.  per  ton  of  nitrate  of 
soda  there  is  again  a  very  substantial  saving  in 
comparison  with  the  actual  cost  of  the  latter. 

The  United  Alkali  Company  has  now  installed 
ammonia  oxidation  units  to  every  one  of  its  vitriol 
plants  in  Widnes,  as  well  as  to  plants  in  Newcastle 
and  Bristol,  and  we  feel  confident  that  this  is  at 
least  one  process  introduced  during  the  war  which 
has  come  to  stay. 

Early  in  the  year  191S  we  installed  an  experi- 
mental unit  at  Pilkington  Works,  Widnes,  for  the 
production  of  liquid  nitric  acid,  and  some  of  the 
results  obtained  may  be  of  interest.  The  plant  con- 
sisted of  a  converter  with  6  in.  x  4  in.  gauze, 
identical  with  those  used  for  the  chamber  sets. 
coupled  up  to  some  towers  belonging  to  a  nitric  acid 
unit  which  was  idle  at  the  time.  The  absorption 
plant  was  made  up  of  three  earthenware  towers 
3  ft.  diam.  x  16  ft.  6  in.  high,  packed  with 
rings  and  balls,  followed  by  two  smaller  towers 
2  ft.  X  11  ft.  high  packed  in  the  same  manner. 
Water  or  weak  acid  was  circulated  round  the 
first  three  towers  by  means  of  air-lifts,  while  a 
solution  of  soda-ash  or  caustic  liquor  was  pumped 
round  the  last  pair  of  towers.  Additional  secondary 
air  beyond  that  supplied  by  the  air  lifts  could  be 
introduced  into  the  first  tower  if  required.  The 
gases  were  cooled  before  entering  the  first  tower  by 
passing  through  la  gallery  of  silica  S-pipes.  The 
total  condensing  space  in  the  unit  was  417  cub.  ft., 
but  shortly  after  starting  an  additional  empty 
tower  was  added  at  the  front  of  the  series  in  order 
to  give  more  time  for  oxidation,  and  this  increased 
the  total  tower  6pace  to  533  cub.  ft. 

Without  a  heat-interohanger  this  plant  pro- 
duced the  equivalent  of  about  1  ton  of  100%  nitric 


44  T 


IMISOX  AND  RUSSELL.— THE  OXIDATION  OF  AMMONIA. 


[Feb.  28,  1922. 


acid  per  week,  the  acid  being  actually  obtained  at 
60°— 68°  Tw.,  say  50%  HNOa,  with  an  over-all  yield 
of  78—79%  ;  of  the  total  yield  some  5 — 6%  was  in 
the  form  of  sodium  nitrate  from  the  final  scrubbing 
towers. 

Alter  the  introduction  of  a  heat-interehanger 
identical  with  those  used  for  the  chamber  units 
the  output  of  the  plant  increased  to  the  equivalent 
of  about  1J  tons  of  100%  nitric  acid  per  week  with 
a  weighed  yield  of  over  84%.  The  acid  was  re- 
covered at  about  the  same  strength  as  before. 

Excepting  for  the  production  of  ammonium 
nitrate,  for  which  there  was  no  demand  after  the 
armistice,  there  is  no  outlet  for  nitric  acid  of  such 
strengths  as  are  obtainable  by  direct  absorption  of 
nitrogen  oxides  in  water.  The  reactions  which 
take  place  during  absorption  are  represented  by  the 
following  equations :  — 

2NO,+H,0  =  HN03+HN02    (1) 

3HN02=HN03-f2NO  +  H20    (2) 

these  two  equations  being  equivalent  to 

3N02  +  H20  =  2HN03-fNO  (3) 
but  there  is  also  in  the  presence  of  water  some 
formation  of  N203 :  NO+NO,  =  N„0„  which  is  ab- 
sorbed as  nitrous  acid  :  N2Oa  +  H2d  =  2HN02.  N203 
also  dissolves  to  some  extent  as  such  in  nitric  acid, 
but  in  acid  of  over  50%  reacts  with  it: 

2HNOa  +  N203  =  2N02+H20. 

This  reaction  becomes  more  important  with  increas- 
ing strength,  being  one  of  the  factors  limiting  the 
strength  of  nitric  acid  obtainable  to  68%. 

Owing  to  the  slow  rate  of  oxidation  of  nitric  oxide 
to  peroxide  and  the  high  velocity  of  the  gases 
through  a  catalyser,  it  is  possible  by  rapid  cooling 
to  separate  most  of  the  steam  formed  in  the  oxida- 
tion of  ammonia  without  taking  out  more  than  a 
trifling  percentage  of  the  nitric  acid  with  it.  Theo- 
retically, by  using  this  condensed  water  for  absorb- 
ing purposes  an  acid  of  78%  should  result,  but 
actually  absorption  ceases  at  about  68%.  This  limit 
is  due  to  volatilisation  of  nitric  acid  vapour  by  the 
gas  current,. to  the  reaction  with  the  trioxide  noted 
above,  and  to  formation  of  hydrates  of  nitric  acid 
which  reduce  the  active  mass  of  water  available  for 
the  reaotion.  Actually,  as  stated  above,  -we  recover 
our  acid  50 — 55%,  though  we  have  worked  as  high 
as  58%.  The  finished  acid  is  practically  free  from 
nitrous  acid. 

It  is  necessary,  therefore,  to  concentrate  this 
weak  acid,  and  we  experimented  with  three  pro- 
cesses for  this  purpose. 

(1)  Direct  concentration  of  the  weak  nitric  acid 
for  which,  on  a  large  scale  plant,  some  heat  is  avail- 
able in  the  gases  leaving  the  catalyser,  over  and 
above  that  required  to  preheat  the  incoming  gases 
to  the  required  temperature. 

Ifj  however,  a  weak  nitric  acid  is  distilled  concen- 
tration takes  place  up  to  70%  HN03  (84°  Tw.)  only, 
after  which  acid  of  this  strength  boils  over  un- 
changed; thus  the  range  over  which  concentration 
can  be  carried  is  comparatively  small,  and,  more- 
over,  below  70%  strength  much  nitric  acid  is  carried 
along  with  the  aqueous  vapour,  which  has  to  be 
worked  over  again  with  consequent  loss  at  each 
stage.  If,  however,  a  steam-jacketed  fractionating 
column  is  fixed  to  the  concentrating  apparatus  the 
acid  can  be  concentrated  from  58°  up  to  79°  Tw., 
with  nothing  passing  over  but  water,  and  up  to 
84°  Tw.,  with  a  distillate  of  not  more  than  5°  Tw 
equal  to  about  3%  of  the  total  nitric  acid  treated. 
For  really  large-scale  operations  this  will  certainly 
be  worth  following  up. 

(2)  The  production  of  ammonium  nitrate  from 
the  weak  nitric  acid,  afterwards  decomposing  this 
with  concentrated  sulphuric  acid,  so  forming  am- 
monium sulphato  and  high-strength  nitric  acid. 
It  is  clear  that  in  normal  times  the  great  bulk  of 


the  synthetic  ammonia  that  will  be  produced  will 
have  to  be  marketed  in  the  form  of  sulphate,  so  that 
this  process  seemed  a  promising  one.  Unfortu- 
nately we  found  that  in  order  to  get  a  good  yield 
of  nitric  acid  it  is  necessary  to  use  a  100%  excess 
of  sulphuric  acid  over  that  theoretically  required, 
i.e.,  the  exact  amount  to  leave  a  residue  of  ammo- 
nium bisulphate.  It  is  also  necessary  to  work 
under  a  fairly  high  vacuum,  the  loss  under  normal 
pressure  even  with  100%  excess  H2S04  representing 
4 — 5%  of  the  total  nitric  acid  present,  whereas  in 
vacuo  the  yield  averages  well  over  99%  of  theory 
and  the  nitric  acid  distilling  over  averages  above 
99°  Tw.  (90—95%). 

Difficulties  arise  through  the  residue  in  the  retort 
undergoing  a  remarkable  change  at  the  end  of  the 
reaction  into  a  solid  mass  of  bisulphate,  which  is  an 
awkward  material  to  handle  and  difficult  to 
neutralise  with  further  ammonia  in  order  to 
convert  it  into  a  marketable  article.  Working  on 
these  lines,  for  every  100  tons  of  100%  ammonia 
used  we  should  get  only  about  85  tons  of  nitric  acid 
as  against  over  300  tons  if  the  whole  were  oxidised 
and  then  concentrated — the  balance  of  course  going 
to  ammonium  sulphate. 

Nevertheless  under  certain  conditions  this  process 
may  be  well  worth  following  up.  A  patent  (E.P. 
130,038;  J.,  1919,  680a)  was  taken  out  elsewhere 
quite  independently  for  this  process,  so  that  others 
had  been  working  on  the  same  lines  as  ourselves. 

(3)  The  final  process  we  adopted  for  the  concen- 
tration of  the  weak  acid  was  that  of  heating  with 
sulphuric  acid  in  an  ordinary  denitrating  tower. 
For  our  original  small  plant  we  erected  a  tower  of 
Narki-metal  pipes  9  in.  in  diameter  x  22  ft.  high, 
the  pipes  being  surrounded  with  an  outer  casing  of 
lead  with  the  interspace  filled  with  Sellar's  cement. 
The  tower  is  packed  with  balls  and  fitted  with  feed 
pipes  for  weak  nitric  and  concentrated  sulphuric 
acids.  At  the  bottom  of  the  tower  is  an  inlet  pipe 
for  steam  which  is  drawn  off  the  ordinary  works 
mains  and  superheated  in  a  small  stove.  A  con- 
nexion is  made  at  the  inlet  with  the  superheater 
whereby  air  can  be  introduced  instead  of,  or  in 
addition  to,  the  steam.  We  found  that  steam  can 
be  replaced  by  hot  air  to  a  considerable  extent  with 
a  corresponding  saving  in  dilution  of  the  sulphuric 
acid  leaving  the  tower.  Moreover,  some  air  is 
necessary  when  the  sulphuric  acid  used  has  been 
fed  previously  down  the  wash  towers.  The  hot 
dilute  vitriol  running  from  the  tower  is  concen- 
trated in  a  Kessler  for  re-use.  A  tower  of  the  above 
size  will  readily  produce  2  tons  of  high  strength 
nitric  acid  per  day. 

The  gases  leaving  the  tower  pass  through  some 
water-cooled  silica  S-pipes  and  then  into  two  stone- 
ware nitric  acid  jars  followed  by  two  small  towers, 
down  the  second  of  which  weak  nitric  acid  from  the 
ammonia  oxidation  plant  is  fed  before  passing  down 
the  denitrating  tower. 

At  a  somewhat  later  date  when  we  began  to  use 
concentrated  sulphuric  acid  for  the  final  wash  on 
the  ammonia  oxidation  unit,  we  carried  the  exit 
from  this  last  tower  into  the  inlet  to  the  first  tower 
on  the  ammonia  oxidation  side. 

We  first  started  to  use  concentrated  sulphuric 
acid  as  a  final  wash  in  place  of  an  alkaline  solution 
early  in  the  year  1920,  and  although  statements 
have  been  published  as  to  its  not  being  so  satisfac- 
tory as  an  alkaline  solution,  we  have  found  our 
yields  quite  as  good  as  before.  It  has  the  very  great 
advantage  that  the  whole  of  the  output  is  produced 
as  actual  nitric  acid  instead  of  5 — 10%  as  a  solu- 
tion of  sodium  nitrate  which  has  to  be  evaporated 
and  worked  up  as  in  the  older  process  of  nitric  acid 
manufacture.  By  using  concentrated  sulphuric 
acid,  in  which  the  solubility  of  nitrogen  oxides  is 
high,  wo  have  a  run-off  acid  which  can  be  fed  direct 
on  the  denitrating  tower,  and  the  whole  of  its  con- 


Vol. XIX, No. 4.]     BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.       45  T 


tents  are  recovered  either  as  nitric  acid  on  that 
plant  Itself,  or  else  in  the  towers  of  the  ammonia 
oxidation  unit  along  with  the  oxides  coming  from 
the  catalyser. 

The  strength  of  nitric  acid  produced  depends  on 
the  proportion  of  sulphuric  acid  used.  With 
25 — 3  tons  of  concentrated  sulphuric  acid  (93%)  to 
1  ton  of  weak  nitric  acid  (50— .55'  I  the  whole  of 
the  nitric  acid  can  be  obtained  as  88—90%  HN03. 
the  denitrated  sulphuric  acid  leaving  the  tower  at 
about  120c  Tw..  varying,  of  course,  according  to 
the  excess  of  sulphuric  acid  used. 

In  erecting  new  plant  it  will  no  doubt  be  advanta- 
geous to  arrange  the  Jay-out  so  that  this  hot  waste 
acid  shall  run  straight  into  the  Kessler,  or  that 
the  hot  reeoncentrated  acid  from  the  Kessler  shall 
run  direct  into  the  denitrating  towers. 

The  main  item  in  the  cost  of  producing  high- 
strength  nitric  acid — apart  from  the  cost  of  steam 
and  air  and  superheating  them — is  for  the  recon- 
eentration  of  the  sulphuric  acid,  which  from 
120°  Tw.  to  168°  Tw.,  should  be  less  than  £1  per 
ton  at  the  latter  strength. 

The  attractions  of  this  process  against  the  older 
processes  for  the  manufacture  of  nitric  acid,  while 
not  so  substantial  as  in  the  case  of  the  supply  jf 
nitrogen  oxides  to  chamber  plant  in  which  no  con- 
densation or  concentration  is  required,  are  still 
considerable  from  the  operating  point  of  view. 
With  the  exception  of  the  labour  required  for  the 
Kessler.  the  whole  process  resolves  itself  into  the 
supervision  of  a  few  liquor  runs  and  air  and  steam 
valves  with  no  handling  of  solid  material  whatever. 

The  labour  charges  will  so  obviously  vary  with 
the  scale  on  which  the  plant  is  worked  that  it  is 
impossible  to  give  figures  here  which  iare  of  any 
value.  In  the  published  reports  on  the  oxidation 
plant  at  Hbchst,  for  example,  it  is  stated  that  the 
oxidation  unit  consisting  of  252  catalysers  each 
with  20  in.  diameter  gauze,  is  supervised  by  one 
man  per  shift  only. 

Dp  to  the  present  the  biggest  catalyser  unit  we 
have  in  operation  is  one  with  a  12  in.  x  12  in. 
gauze  having  a  capacity  of  about  12  tons  of  100 % 
nitric  acid  per  week,  but  development  beyond  this 
point  is  only  held  up  by  the  abnormal  trade  con- 
ditions of  the  last  year  or  so,  and  by  the  impossi- 
bility of  using  or  selling  nitric  acid  in  any  quantity 
under  such  conditions. 

The  chief  drawback  to  large  units  is  the  very 
great  amount  of  absorbing  space  which  is  required 
for  the  oxidation  of  the  nitrogen  oxides  and  the 
condensation  of  the  weak  nitric  acid.  For  ex- 
ample, it  will  be  noted  above  that  in  our  first  small 
plant  we  had  about  304  cub.  ft.  of  tower  space  per 
ton  of  100  :  nitric  acid  per  week,  which,  however,  we 
thought  excessive  and  have  reduced  somewhat  in 
our  larger  plant.  From  the  published  descriptions, 
the  German  plant  at  Hbchst  has  no  less  than  32 
absorbing  towers  each  21  ft.  diam.x41  ft.  high,  or 
•a  total  tower  space  of  about  454,400  cub.  ft.  for 
apparently  78,000  tons  of  100  J,  nitric  acid  per 
annum,  which,  if  these  figures  are  correct,  corre- 
sponds to  303  cub.  ft.  per  ton  of  nitric  acid  per 
week,  a  figure  remarkably  close  to  our  own.  Large 
though  these  figures  may  seem,  they  are  small  in 
comparison  with  the  enormous  tower  space  required 
lor  the  condensation  of  the  far  more  dilute  gases 
from  the  arc  process.  It  has  been  suggested 
(though  we  have  no  first-hand  experience  of  this) 
that  the  tower  space  can  be  materially  decreased 
by  the  use  of  oxygen  in  place  of  secondary  air  for 
the  conversion  of  the  nitric  oxide  into  nitric  acid. 
Cheap  supplies  of  oxygen  might  readily  be  obtained 
where  oxidation  plant  was  associated  with  a  Haber 
plant  for  the  synthesis  of  ammonia  itself,  in  which 
oxygen  is  obtained  as  a  by-product  from  the  lique- 
faction of  air. 


In  using  the  oxidation  process  for  chamber  plants 
the  only  loss  is  from  incomplete  conversion  of  am- 
monia in  the  catalyser,  whereas  in  making  6trong 
nitric  acid  we  have  in  addition  the  losses  in  the 
absorption  of  the  nitrogen  oxides  in  the  form  of 
dilute  acid  and  in  the  concentration  of  this. 

As  stated  above,  our  weighed  yield  to  the  weak 
nitric  acid  stage  is  about  84%,  and  the  loss  in  con- 
centration may  be  taken  at  about  3'j,  though  now 
that  we  use  concentrated  sulphuric  acid  as  the  final 
wash  and  pass  the  exit  gases  from  the  denitrating 
plant  into  the  weak  acid  set  we  can  no  longer  give 
the  yields  in  the  different  stages  separately:  the 
overall  yield  to  strong  nitric  acid  averages  a  little 
over  80     . 

As  far  as  our  small-scale  experience  goes,  there 
is  little  difference  in  cost  between  this  and  the  old 
retort  processes  for  making  strong  nitric  acid  with 
nitre  and  ammonia  at  present  prices,  but  if  the 
published  estimates  for  the  cost  of  synthetic  am- 
monia are  realised  in  this  country  the  balance  will 
turn  strongly  in  favour  of  the  oxidation  process. 
Moreover,  quite  apart  from  economic  considerations, 
the  Haber  and  the  ammonia  oxidation  processes  in 
conjunction  would  render  this  country  quite  inde- 
pendent of  supplies  of  nitre  from  overseas  in  the 
event  of  another  war. 

In  conclusion  we  wish  to  thank  the  directors  of 
The  United  Alkali  Company  for  their  permission 
to  publish  the  results  contained  in  this  paper. 


London    Section. 


Meeting  hchl  ai  Burlington  House  on  December  5, 
1921. 


MR.    E.    V.   EVANS   IX   THE   CHAIB. 


AX    AUTOCLAVE   TEST    FOR   THE   GRADING 
OF   CHEMICAL  GLASSWARE. 

BY   W.    L.    BAILLIE  AND   F.    E.    WILSON. 

It  is  now  generally  agreed  that,  whatever  the 
special  purpose  for  which  it  is  intended,  glassware 
will  fail  to  give  satisfaction  unless  it  displays  a  high 
degree  of  durability.  Appreciation  of  the  import- 
ance of  resistance  to  weathering  has  led  to  marked 
improvements  in  optical  glasses1  and  has  resulted 
in  modern  "  resistant  "  chemical  ware.=  It  is 
not,  however,  universally  recognised3  and  a  con- 
siderable proportion  of  commercial  glassware  is  still 
undesirably  and  unnecessarily  reactive.  Laboratory 
tests  for  stability  have  accordingly  been  devised  in 
considerable  variety.'  The  nature  of  such  tests 
is  generally  governed  by  two  considerations,  viz.. 
the  type  of  glass  in  question  and  the  conditions  to 
which  it  is  likely  to  be  exposed  in  use,  while  the 
severity  of  the  tests  is  controlled,  in  the  main,  by 
the  order  of  the  resistance  which  may  reasonably 
be  expected. 

While  the  nature  of  special  corroding  agents 
varies  with  the  type  of  glass  and  the  manner  of 
usage,  water  (liquid,  vaporous,  or  gaseous)  is  one 
of  the  commonest  and  most  powerful  causes  of 
deterioration  of  glass  surfaces.  W'ater  tests  have 
accordingly  been  employed  frequently  to  determine 
the  durability  of  glassware.  It  should  be  noted 
that  the  term  "  durability  "  is  by  no  means  simple ; 
it  may  be  regarded  as  the  mean  degree  of  resistance 
of  a  glass  towards  corroding  agents.  Chemical 
ware,  for  example,  is  exposed  to  attack  by  acids, 
alkalis,  and  salts  as  well  as  by  water,  and  the  extent 
of   attack  by  these  various  reagents  will,   in  most 


46  t      BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.        [Feb.  28,  1922. 


show  considerable  variation  throughout  any 
of  glasses.5  Relative  orders  of  merit  may 
lie  changed  on  altering  the  temperature  or 
duration  of  test.  No  single  test  has  been  devised 
which  indicates  finally  the  general  durability  of 
glasses  but,  if  a  number  of  tests  cannot  be  con- 
ducted,  it  has  been  found,  on  the  whole,  that  water 
tests  are  the  most  reliable.  The  results  are  not 
absolute  but,  since  most  glasses  are  more  or  less 
continually  subject  to  attack  by  water  or  its  vapour, 
such  tests  will,  in  nearly  all  eases,  carry  consider- 
able weight.  Water  tests  are  indicated  in  the  oase 
of  glass  which  has  to  be  stored  for  any  length  of 
time.  It  has  been  shown'  that  many,  if  not  all, 
of  the  cases  of  clouding  upon  heating  such  glasses 
are  attributable  to  the  absorption  of  water  during 
storage. 

Water  tests  may  conveniently  be  regarded  as  of 
the  four  main  types  shown  below.  While  all  these 
tests  have  probably  been  proposed  for  every  type 
of  glass,  it  is  believed  that  they  are  most  usefully 
employed  as  under:  — 

Table  I. 


Reagent. 


Temperature 


Types  of  glass. 


Liquid  water  \ 
Water  vapour  / 

Liquid   water"! 
Water  vapour  / 


Less  durable  ("  softer  ")  apparatus 
ware ;      commoner     commercial 
glasses  ;   optical  glassi  ;. 
at  or  above  '  /  Gauge  glasses  ;  resistance,  chemical 
100°  C.        \     and  pharmaceutical  ware. 


at  or  below 
100°  C. 


The  present  paper  describes  experiments  conducted 
to  enable  conditions  for  a  pressure-steam  test  to  be 
specified  for  glasses  of  high  durability  and  of  such  a 
degree  of  hardness  that  they  might  readily  be 
worked  in  the  lamp.  In  use.  they  were  liable  to 
attack  by  moisture  and  might  be  stored  for  pro- 
longed periods.  In  addition  to  the  experimental 
i  ^uks,  upon  which  have  been  based  the  conditions 
of  test  now  employed,  certain  theoretical  considera- 
tions are  presented  which  are  of  interest  from  the 
point  of  view  of  exact  specification  of  the  manner 
of  heating/ 

Considerable  variation  is  found  in  the  conditions 
which  have  been  recommended  for  determining  the 
resistance  of  glasses  to  attack  by  superheated  water, 
superheated  steam,  or  a  combination  of  both.  It 
was  decided  on  general  grounds  to  investigate 
initially  the  action  of  pressure  steam,  but  it  is 
hoped  later  to  study  also  the  action  of  superheated 
water.  While  three  hours  has  often  been  adopted 
as  the  duration  of  test  by  various  workers,  other 
periods  have  been  employed  and  great  differences 
occur  in  the  pressure  and  temperature.  In  view  of 
the  Pact  that  the  extent  of  attack  of  glasses  by 
water,  and  aqueous  solutions  generally,  increases 
markedly  with  temperature7  it  appeared  desir- 
able to  consider  both  factors  experimentally. 

Practical  considerations  indicate  that  an  auto- 
clave test  for  the  expeditious  examination  of  glass- 
ware  should  have  the  following  characters:  — 

(a)  Manipulation  should  be  simple; 

(b)  The  test  should  admit  of  practical  completion 
within  the  working  day: 

(c)  The  apparatus  should  be  simple,  robust,  and 
readily  available; 

<>h  The  pressure  employed  should  not  demand  an 
unusually  powerful  autoclave; 

(e)  The  conditions  of  test  should  be  such  that 
poor  and  mediocre  glasses  will  be  indicated  with 
certainty  but  not  so  severe  as  to  cause  more 
resistant  ula^ses  to  break  down. 

Elpl  1  !  Hi'  n  tul . 

Autoclave    and    water. — The    autoclave    employed 

av   isures    internally    1(1   in.    in   depth   and   6   in.    in 

diameter.      It    is   not    suitable   for   large  specimens 

laboratory    hollow    ware)    but    for    small    test 


pieces  it  is  extremely  satisfactory.  It  admits  of 
comparatively  rapid  heating  and  cooling  and  is,  in 
addition,  economical  as  regards  consumption  of  dis- 
tilled water. 

Much  variety  is  found  in  the  interior  fittings  of 
autoclaves  employed  in  glass  testing.  Cauwood, 
English,  and  Turner8  have  employed  a  sheet  of 
platinum  foil  as  the  table  on  which  their  specimens 
(flasks)  stood,  covering  also  with  loosely-fitting  lids 
of  platinum.  The  Glass  Research  Committee  of  the 
Institute  of  Chemistry'  recommends  a  silver 
plate  as  table,  surrounding  the  specimens  with  a 
cylinder  of  silver  foil  and  covering  with  a  plate  of 
the  same  metal;  alternatively,  vitreous  silica  is 
recommended  for  the  plate,  and  copper  for  the 
remainder.  Since  it  appears  that  silica  and  copper 
are  sufficient,  the  tests  described  below  were  done 
in  silica  beakers  covered  with  copper  caps  suitably 
perforated  to  allow  free  circulation  of  steam  while 
avoiding  the  entrance  of  condensed  water.  To 
minimise  the  action  of  the  latter  (necessarily  form- 
ing during  cooling)  rests  of  copper  gauze  were 
employed  within  the  silica  beakers  which  effectively 
raised  the  specimens  above  the  water  level.  The 
beakers  stood  upon  a  perforated  brass  plate  resting 
on  a  brass  tripod. 

The  gauge  employed  is  graduated  in  lb.  per 
square  inch  and  can  be  read  with  ease  to  0'5  lb.  An 
endeavour  to  calibrate  it  against  a  standardised 
thermometer  placed  in  the  tube  in  the  head  of  the 
autoclave  led  to  unsatisfactory  results,  the  tempera- 
ture rising  for  a  considerable  period  after  the  pres- 
sure had  l>eeome  steady.  The  pressure-temperature 
relations  so  obtained  fluctuated  from  test  to  test. 
The  thermometer  tube  was  found  to  be  quite  short 
and  the  erratic  results  were  due  to  conduction  of 
heat  through  the  metal  of  the  autoclave,  direct 
heating  by  steam  alone  not  being  obtained.  It 
therefore  appears  preferable  to  specify  the  pressure 
and  not  the  temperature  for  autoclave  tests,  unless 
it  is  known  that  the  autoclave  employed  is  not  liable 
to  the  error  in  question. 

Calibration  by  means  of  a  maximum  thermometer 
within  the  autoclave  was  considered  inadvisable 
although,  if  available,  it  would  be  an  expeditious 
method  of  checking  individual  gauge  readings.  The 
gauge  was  finally  calibrated  by  means  of  an  adjust- 
able column  of  mercury,  the  necessary  precautions 
being  employed  to  avoid  temperature  changes  and 
leakages.  Above  IS  atm.  the  gauge  readings  were 
found  to  be  substantially  correct,  the  small  correc- 
tions required  being  comparable  with  the  experi- 
mental error  in  reading. 

The  most  vulnerable  point  of  an  autoclave,  in  our 
experience,  is  the  lead  washer  upon  which  the  head 
rests  and  is  finally  screwed  down  to  make  an  air- 
tight seal  with  the  body.  Spares  are  readily  cut 
from  ^  in.  sheet  lead  and  can  be  shaped,  in  about 
an  hour,  to  give  perfectly  sound  joints.  It  is  pre- 
ferable to  have  the  lead  gripping  on  the  rim  of  the 
body  and  not  adhering  to  the  depression  around 
the  head.  Leaks  are  most  readily  avoided,  and  the 
lead  is  conserved,  if  the  final  screwing  down  is  done 
when  the  temperature  of  the  metal  is  100°  C.  or 
thereabout. 

Cauwood,  English,  and  Turner8  employed  con- 
ductivity water  in  many  of  their  tests  and  there  can 
be  little  doubt  that  this  is  the  ideal  procedure.  In 
other  tests  they  employed  "  ordinary  distilled 
water."  Unfortunately  they  give  no  data  to  show 
whether  this  change  of  water  has  any  ponderable 
effect  on  the  results.  The  Glass  Research  Com- 
mittee of  the  Institute  of  Chemistry'  recom- 
mends ordinary  distilled  water  free  from  ammonia 
and  checked  for  residues.  Such  water  is  employed 
in  this  laboratory,  the  distillation  being  conducted 
daily  in  a  room  specially  reserved  for  autoclave 
tests  and  free  from  acid  or  alkaline  vapours.  No 
weighable  residues  have  ever  been  found. 


Vol.  XLI.,  Xo.  4.]     BAILLIE  AXD  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.     47  t 


Determination  of  liberated  alkalinity. — Phenol- 
phthalein  has  been  frequently  employed  as  indicator 
in  determination  of  the  alkali  liberated  in  autoclave 
tests.  Iodeosin  (tetraiodofluorescein)  also  is 
commonly  used  for  this  purpose  and,  indeed,  must 
be  employed  if  colorimetric  methods  are  to  be 
adopted.'".  "  It  is  to  be  expected  that  these 
indicators  will  not  yield  identical  results  since 
glasses  which  are  without  effect  on  phenolphthalein 
immediately  give  an  alkaline  reaction  with  iodeosin. 
Calculations  based  on  the  constants  of  the  indi- 
cators showed,  however,  that  differences  between 
"  iodeosin  "  values  (mg.  of  iodeosin  required  to 
combine  with  the  alkalinity  liberated  from  1  sq.  dm. 
of  glass  surface)  directly  determined  and  those 
calculated  from  alkalinities  determined  by  means 
of  phenolphthalein  as  indicator  will  be  small  and, 

u<rally,  comparable  with  the  experimental  error. 
If.  on  the  other  hand,  alkalinities  be  expressed  in 
terms  of  Na.O  the  variations  will  be  negligible  for 
all  practical  purposes.  Published  results  obtained 
by  means  of  phenolphthalein  may  therefore  be 
employed  for  purposes  of  comparison  so  long  as  the 
necessary  precautions  are  known  to  have  been  taken 
in  its  use. 

The  Glass  Research  Committee  of  the  Institute  of 
Chemistry"  has  recommended  the  use  of  methyl 
orange  for  this  purpose.  While  insensitive  to 
carbon  dioxide,  this  indicator  presents  such  prac- 
tical disadvantages  that  it  has  not  been  further 
considered  in  this  connexion. 

Iodeosin  was  prepared  from  the  pure  sodium  com- 
pound, the  free  acid  being  obtained  as  a  fine  scarlet 
powder.  No  description  of  the  method  of  using 
this  indicator  being  available,-  experiments  were 
made  to  ascertain  this.  It  was  eventually 
found  that  the  following  conditions  are  essential :  — 
(o)  There  must  be  sufficient  ether  to  extract  the 
iodeosin  from  aqueous  suspension  when  liberated 
from  alkali-iodeosin  compounds  by  means  of  acid; 
(6)  thorough  and  prolonged  shaking  is  neoessarj 
after  each  addition  of  alkali ;  (c)  solutions  must  not 
be  warm,  or  evaporation  of  ether  will  vitiate  the 
results. 

The  following  are  the  reactions  of  the  aqueous 
solution  and  the  colours  of  the  layers:  — 

Reaction  of 
aqueous  solution.     Aqueous  layer.     Ethereal  layer. 

Acid  Colourless.  Orange. 

Alkaline.  Rose  pink.  Practically 

colourless. 

Experiments  show  that  carbonates  may  be  quanti- 
tatively titrated  with  N/500  sulphuric  acid,  using 
iodeosin  as  indicator.  Carbonatation,  partial  or 
complete,  of  alkaline  deposits  upon  glasses  is  thus 
no  obstacle  to  straightforward  alkalimetry,  and 
manipulation  is  considerably  simplified  thereby. 
Iodeosin  has  therefore  been  adopted  for  this  work 
in  preference  to  phenolphthalein,  the  method 
employed  being  as  under :  — 20  c.c.  of  an  ethereal 
solution  of  iodeosin  (5  mg.  per  litre)  is  added  to  the 
solution  to  be  titrated,  a  250-c.c.  6ilica  flask  being 
employed.  The  whole  is  shaken  vigorously,  when 
the  intensity  of  the  pink  colour  of  the  aqueous  layer 
indicates  broadly  the  degree  of  alkalinity  of  the 
solution.  N /500  sulphuric  acid  is  added  in  amounts 
of  about  0'5  c.c,  followed  by  vigorous  shaking  each 
time,  till  the  colour  of  the  aqueous  layer  is  dis- 
charged. The  excess  is  then  titrated  back  with 
N/500  alkali,  the  volume  of  acid  required  being 
corrected  for  any  "blank."  Duplicate  titrations 
agree  to  within  0'20  c.c.  in  practice  but  the  opera- 
tion requires  the  greatest  care  throughout. 

Preparation  of  samples. — The  Glass  Research 
Committee  of  the  Institute  of  Chemistry3  has 
recommended  the  following  procedure  for  the  pre- 
paration and  cleansing  of  hollow  ware:  — 

"  Heat  distilled  water  just  to  boiling  in  flask  or 


beaker,  rinse  vessel  and  pour  out.  Rinse  with  a 
little  5%  acetic  acid  with  the  addition  of  some 
pieces  of  filter  paper,  and  then  clean  thoroughlv 
with  hot  distilled  water." 

Cauwood,  English,  and  Turner8  rinse  hollow  ware 
several  times  with  distilled  water,  then  fill  with  dis- 
tilled water  and  stand  overnight.  The  vessels  are 
emptied,  rinsed  twice  with  100  c.c.  of  N /10  acetic 
acid,  then  four  or  five  times  with  distilled  water, 
and  are  finally  dried  after  one  rinsing  with  absolute 
alcohol.  Drying  is  effected  in  a  steam  oven  and  the 
vessels  are  cooled  by  having  cold  air  blown  through 
them.  It  must  be  conceded  that  the  former  method 
will  yield  clean  surfaces  but  it  appears  drastic  and 
likely  to  "season"  the  glass.  This  undesirable 
feature  is  largely  avoided  in  the  latter  method. 

The  process  adopted  in  this  laboratory  is  based 
on  the  method  of  cleaning  polished  samples  of 
optical  glass  prior  to  the  dimming  test.13  The 
samples  are  first  placed  in  cold  5%  acetic  acid,  after 
which  they  are  washed  with  cold  water,  and  finally 
with  alcohol  and  ether,  in  the  order  named.  They 
are  then  heated  for  about  15  minutes  in  an  oven  at 
50°  C,  whence  they  are  transferred  to  a  desiccator 
prior  to  weighing.  Absence  of  surface  grease  is 
ascertained  visually  after  the  water  treatment  and 
little  difficulty  has  been  experienced  on  this 
account.  Since  only  cold  reagents  are  employed 
and  the  cleaning  process  is  not  protracted,  this 
method  appears  preferable  to  the  first  of  the  above 
mentioned  and  at  least  equal  to  the  second. 

In  the  case  of  samples  in  the  form  of  tube  or  rod, 
our  first  practice  was  just  to  round  off  the  ends  in 
the  flame  so  as  to  have  a  fire-polished  surface 
throughout  and  avoid  testing  fractures  of  variable 
age.  Many  of  the  specimens  employed  in  the  tests 
now  reported  were  prepared  in  this  manner.  For 
reasons  discussed  below,  this  method  has  been 
abandoned.  Specimens  are  now  cut  immediately 
on  receipt  and  left,  shielded  from  dust  and  fumes, 
till  the  analysis  is  completed,  when  they  are  sub- 
1  to  the  autoclave  test. 

Prior  to  cleaning,  the  dimensions  of  the  samples 
are  recorded  and  thereafter  the  glasses  are  manipu- 
lated in  platinum-tipped  tongs,  to  avoid  contami- 
nation of  the  surfaces. 

Alkalinity  at  various  pressures. — Short-period 
tests  appeared  to  possess,  on  the  whole,  such 
marked  practical  advantages  that  a  period  of  one 
hour  was  selected  for  an  initial  series  of  tests  at  2. 
4,  6,  and  8  atmospheres.  In  all  the  tests  now 
described,  the  charge  of  water  was  1  litre,  this 
volume  having  ample  margin  in  the  event  of  the 
normal  leak  at  the  valve  being  exceeded.  The 
results  are  given  below.  The  glasses  examined  were 
all  of  current  British  manufacture. 

Table  II. 
Alkalinity  evolved  in  1  hour  at  various  pressures. 


Alkalinity : 

mg.  Na.O  per  sq.  dm.  liberated  on 

R«f.  no. 

testing  at : 

Of  glass. 

2  atm. 

4  atm. 

6  atm. 

8  atm. 

2U4 

003 

011 

012 

030 

205 

002 

004 

003 

003 

206 

0-23 

0-78 

1  06 

2-72 

207 

0  22 

0-45 

0-79 

(I  i.'.i  |„) 

224 

003 

003 

007 

010  (n) 

225 

005 

0-26 

0-28 

0-40  (a) 

(a)  These  tests  were  incomplete,  the  autoclave  being  heated  to  8 
atmospheres  and  thereafter  cooled,  since  a  slight  crack  in  the  rim  of 
the  body  was  thought  to  have  developed.  This  was  later  found  not 
to  be  the  case,  but,  owing  to  the  necessity  for  conserving  material, 
the  tests  were  not  repeated.  The  figures  are  nevertheless  valuable 
as  indicative,  of  the  considerable  etfect  produced  during  the  pre- 
liminary heating.  * 

The  relative  merits  of  the  four  tests  may  be 
judged    from    the    following    table,    in    which    the 


48 x  BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.     [Feb.  28, 1922 


glasses     are     arranged     in     order     of     increasing 
alkalinity. 

Table  III. 


Relative 

order. 

2  atm. 

4  atm. 

6  atm. 

8  atm. 

1 

r 

205 

{ 

205 

205 

205 

1 

224 

224 

224 

224 

3 

1 

204 

204 

204 

2114 

4 

225 

225 

225 

225 

5 

{ 

207 

207 

207 

207 

0 

206 

206 

206 

206 

It  will  be  seen  that  the  2-atm.  test  is  the  least  dis- 
criminating since  it  indicates  only  three  grades. 
Further,  it  places  204,  a  glass  of  the  soft-soda  type, 
with  205  and  224,  which  other  tests  show  to  p 
considerably  greater  resistance.  This  anomaly  is 
partially  corrected  in  the  4-atm.  test  but  by  it  205 
and  224  are  still  graded  as  of  practically  identical 
durability  whereas  further  tests  have  proved  the 
latter  to  be  somewhat  inferior.  The  tests  at  6  and 
8  atm.,  on  the  other  hand,  do  not  cause  any  of 
these  glasses  to  be  grouped  together.  All  the  tests 
agree  as  to  the  relative  durability  of  the  specimens. 

Alkalinities  at  6  atmospheres. — Since  these 
glasses  vary  widely  in  resistance,  it  appears  un- 
likely that  glasses  of  much  higher  or  much  lower 
durability  are  to  be  expected  in  laboratory  hollow 
ware.  It  is  therefore  concluded  that,  not  only  is  a 
pressure  of  more  than  4  atm.  necessary,  but  that 
such  a  pressure  will  probably  also  be  sufficient 
thoroughly  to  test  durability.  In  investigation  of 
the  effect  of  duration  of  test  upon  alkalinity,  a 
pressure  of  6  atm.  has  accordingly  been  selected. 
The  results  obtained  are  shown  below  :  — 

Table  IV. 
Alkalinity  evolved  at  6  aim.  in  various  times. 


Kef.  no. 

Alkalinity :  mg.  Na.O  per  sq.  dm.  liberated  on 
testing  for : 

of  glass. 

1  hour. 

2  hours.                 6  hours. 

204 
205 
206 
207 
224 
225 

012 
003 
106 
0-79 

0  07 
0-28 

017 
004 
1-30 
200 
008 
0-55 

0-34 
004 
5-56 

404 
007 
0-95 

The  relative  order  by  these  tests  is  as  follows  :  — 
Table  V. 


Relative  order. 

1  hour. 

2  hours. 

4  hours. 

1 

205 

205 

205 

2 

224 

224 

224 

3 

204 

204 

204 

4 

225 

22.', 

225 

5 

207 

206 

207 

6 

206 

207 

206 

The  order  is  the  same  by  all  the  6-atm.  tests,  except 
that  2nT  and  206  appear  transposed  by  the  2-hour 
test.  The  difference,  though  small,  is  larger  than 
the  experimental  error.  It  is  thought,  since  the 
results  for  the  glasses  lie  on  smooth  curves,  that 
the  difference  represents,  for  the  conditions  in 
question,  a  real  difference  in  reactivity. 

Clouding. — It  was  found  that  certain  glasses 
became  cloudy  on  testing  and  this  cloudiness  was 
considerably  enhanced  on  drying  (after  washing,  to 
remove  liberated  alkalinity  for  titration).  The 
glasses   were    accordingly   compared   simultaneously 


after  drying,  the  degree  of  clouding  being  estimated 
visually.  The  method  of  grading  adopted  is  a 
modification  of  that  employed  in  the  dimming  test,13 
viz.: — Unaffected,  or  only  slightly  affected,  grade 
A;  appreciably  affected,  grade  B;  severely  affected, 
grade  C.  In  intermediate  cases  the  sign  +  or  - 
is  added,  indicating  that  the  degree  of  clouding  is 
rather  greater,  or  less,  than  the  mental  standard 
for  the  class.  There  are  thus  seven  grades  in  all. 
the  best  being  graded  A  and  the  worst,  C.  The 
results  are  tabulated  below:  — 

Table  VI. 
i  louding  after  1-hour  tests  at  various  pressures. 


Grading. 

as  regards  clouding,  after 

1  hour  at 

Ref.  no. 

of  glass. 

2  atm. 

4  atm.              6  atm. 

8  atm. 

204 

A 

A 

A 

B- 

205 

A 

A 

A 

A 

206 

A  + 

B 

C- 

C 

207 

A 

B-(a) 

A  + 

A  <b) 

224 

A 

A 

A 

A  (6) 

225 

A 

A 

A 

A  (6) 

(a)  This  portion  showed  a  long  cloudy  streak,  not  observed  on 
other  portions  of  the  sample. 
(6)  See  note  to  Table  II. 

Table  VII. 
Clouding  after  tests  at  6  atmospheres. 


Grading,  as 

regards  clouding,  after  test  for 

Ref.  no. 

of  glass. 

1  hour. 

2  hours,                 4  hours. 

204 

A 

A 

A 

205 

A 

A 

A 

206 

c- 

{     8: 

{    : 

207 

A  + 

c- 

c 

224 

A 

A 

A 

225 

A 

{     i: 

/          B- 

L         B+(a) 

(a)  Two  rortions  tested  together  but  somewhat  differently  affected. 

It  will  be  seen  that,  the  more  severe  the  condi- 
tions, the  more  pronounced  is  the  resulting  cloud- 
ing. The  results  are,  with  trifling  exceptions,  quite 
regular  (cf.  footnotes  (a)  of  Tables  VI.  and  VII. V 
Liability  to  clouding  is  best  indicated  by  the  longer 
tests  at  6  atm.  In  this  respect  there  is  little  to 
choose  between  the  2-  and  4-hour  tests  but  the 
longer  discriminates  slightly  better.  The  order  of 
merit  as  regards  alkalinity  and  clouding  is  practi- 
cally identical  (cf.  foregoing  tables).  Table  II.. 
owing  to  incompleteness,  cannot  be  fully  compared 
but  it  contains  no  results  at  variance  with  this 
conclusion. 

It  was  found  that  most  of  the  glasses  clouded  in 
zones  and  that  all  the  heavily  attacked  glasses 
behaved  in  this  manner.  At  each  end  of  the  test 
piece  was  a  belt,  about  0'5  in.  wide,  of  clouded  glass, 
separated  by  a  nearly  clear  zone,  about  0'25  in. 
wide,  from  the  main,  central  clouded  area.  This 
effect  can  be  connected  only  with  the  preliminary 
"  rounding  off  "  prior  to  test  (to  eliminate  frac- 
tured faces)  and  may  not  be  unconnected  with  the 
observation  on  temporary  clouding  during  this 
operation  made  below.  These  results  appeared  to 
demonstrate  that  the  "rounding  off"  process  is 
not  advisable,  and  the  procedure  has  now  been 
amended,  as  already  described. 

Change  in  weight. — The  alteration  in  weight  of 
each  specimen  after  test  was  determined  after  dry- 
ing for  1  hour  at  50°  C.  and  also  after  heating  the 
dried  glass  for  one  hour  in  a  muffle  at  300° — 350°  C. 
The  results  are  given  in  Table  VIII. 


Vol.  xli  ,  No.  4]    BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.      49  t 


Table  VIII. 
Drying  at  50°  C;  various  pressure  tests. 


Change  in  weight  (mg.  per  sq.  dm.)  after  test  at 

Ref.  no. 

of  glass. 

2  atm. 

4  atm. 

6atni. 

8  atm. 

204 
205 
206 
207 
224 
225 

+  0'13 
+  006 
+  004 
-0-43 
-001 
-001 

Nil 

Nil 
-  015 
+  004 
+  005 
-004 

-0-12 

-009 

-  0-20 

Nil 

Nil 

-010 

-0-59 
-0-35 
+  0-94 
-019 
-  0-52 
-019 

In  the  above  table,  and  the  three  following,  the  sign 
-  indicates  loss  in  weight  and  the  sign  +  indicates 
gain. 

Table  IX. 

Drying  at  50°  C;  various  time  tests. 


Change  in  weight  (mg.  per  sq.  din.)  after  test  for 

Ref.  no. 

of  glass. 

1  hour. 

2  hours. 

4  hours. 

204 

-012 

-0-39 

-013 

205 

-0  09 

-0-53 

+  017 

206 

-0-20 

-0-47 

-1-92 

207 

Nil 

-0-87 

-1-68 

224 

Nil 

-0-67 

-0-29 

225 

-010 

Nil 

-012 

Table  X. 
Drying  at  300° — 350°  C;  various  pressure  tests. 


Change  in  weight  (mg.  per  sq.  dm.)  after  test  at 

Ref.  no. 

of  glass. 

2  atm. 

4  at  in. 

6  atm. 

8  atm. 

204 
205 
206 
207 
224 
225 

-0-34 
-003 
-0-15 
-0-78 
-0-27 

-006 
+  0-04 
-0-67 
-0-31 
-005 
-004 

-0-24 
-009 
-  1-22 
-108 
-0-42 
-0-69 

-0-71 
-0-44 
-3-39 
-1-22 
-0-93 
-0-67 

Table  XI. 
Drying  at  300°— 350°  C;  various  time  tests. 


Ref.  no. 

Change  in  weight  (mg.  per  sq.  dm.)  after  test 
for 

of  glass. 

1  hour. 

2  hours. 

4  hours. 

204 

-0-24 

-0-69 

-   0-92 

205 

-009 

-0-61 

Nil 

206 

-1-22 

-203 

- 10-39 

207 

-108 

-2-44 

-    7-18 

•T.>4 

-0-42 

-0-57 

-   0-58 

225 

-0-69 

-0-79 

-    1-47 

It  has  been  demonstrated  by  Schott,"  Rarus,15 
and  others  that  glasses  can  absorb  considerable 
amounts  of  water,  especially  at  high  temperature 
and  pressure,  and  may  not  offer  visual  evidence  of 
hydration.  The  water  so  absorbed  cannot  always, 
according  to  Schott,"  be  completely  removed  by 
desiccation  over  sulphuric  acid  for  short  periods. 
Evidence  has  been  given  that  the  alkaline  oxides 
are  the  controlling  factor  and  that  the  presence  of 
potash  in  any  quantity  augments  the  effect.  Com- 
parison of  the  foregoing  results  with  the  composi- 
tions of  the  glasses  (Table  XVII.,  below)  shows  that 
Schott's  conclusions  are  fully  confirmed.  Since  un- 
due ease  of  hydration  is  an  undesirable  feature  in 
any  glass  it  follows  that  glasses  liable  to  attack  by 
warm  water  or  steam  should  contain  little  or  no 
potash  and  that  the  minimum  proportion  of  alkali 
oxides  should  be  employed. 

The  differences  between  the  changes  in  weight 
in  Tables  IX.  and  XI.  indicate  that  the  absorbed 


water  may  be  regarded  as  of  two  distinct  types, 
viz.  :  — (a)  loosely  associated  water,  akin  to  hygro- 
scopic moisture,  and  (6)  loosely  combined  water, 
perhaps  resembling  that  of  easily  dehydrated 
hydrates  or  of  "  hydrated  "  silica. 

It  is  possible  that  a  third  type  may  also  be 
present  in  small  amount,  i.e.,  strongly  combined 
water,  resembling  that  given  off  by  certain  minerals 
only  in  the  neighbourhood  of  their  melting  points. 
The  results  as  a  whole  suggest  that,  in  the  case  of 
the  more  durable  glasses,  the  longer  tests  at  6  atm. 
may  promote  some  degree  of  chemical  attachment 
of  the  absorbed  water  while  the  1-hour  tests  at 
8  atm.  do  not  appear  to  have  produced  this  effect. 

The  following  table  summarises  the  data  for 
losses  in  weight  on  drying  at  300° — 350°  C. :  — 


Table  XII. 

Pressure 

Descending  order  of  merit. 

Time 

(hours). 

(atm.). 

1 

3 

4 

5 

6 

1 

4 

205 

225 

224 

204 

207 

206 

1 

8 

205 

225 

204 

224 

207 

206 

1 

6 

205 

204 

224 

225     1     207 

206 

o 

6 

224 

205 

204 

225      |     206 

207 

4 

6 

205 

224 

204 

225 

207 

206 

Assigning  one  point  for  each  ordinal  number  and 
adding  the  points  for  each  glass,  the  over-all  order 
is  found  to  be 

205,  224,  204,  225,  207,  206. 
This  is  the  order  indicated  by  the  alkalinity  and 
clouding  tests.  Thus,  while  there  are  occasional 
fluctuations  in  the  relative  positions  of  these 
glasses  through  the  series,  the  general  order  of 
durability  is  the  same  whichever  criterion  be 
adopted. 

Residues  on  evaporation. — The  washings  from  the 
glasses  after  test  for  4  hours  at  6  atm.  were  made 
up  to  250  cc.  in  a  graduated  silica  flask,  and 
150  cc.  was  evaporated  to  dryness  in  a  platinum 
dish,  dried  at  120°  C,  and  weighed.  The  residue 
was  re-weighed  after  heating  for  3  minutes  to 
600°— 630°  C.  (under  650°  C.)  in  a  muffle.  The  con- 
tents of  the  dish  were  then  sulphated  with  1  cc  of 
N /I  sulphuric  acid  and,  after  removal  of  the  excess 
acid,  again  heated  for  3  minutes  at  600° — 630°  C. 
The  muffle  temperatures  were  pyrometrically  con- 
trolled throughout. 

Table  XIII. 


Ref.  no.  of  glass. 

204 

205 

206 

207 

224 

225 

Sulphated  residue  (mg. 
per  sq.  dm.) 

0-43 

0-87 

(.a) 

0-46 

1-93 

0-60 

0-49 

(«)  Heated  for  30  minutes  at  500°  C.  only. 

The  weights  of  the  residues  at  600°— 630°  C.  prior 
to  sulphation  have  not  been  included  since  they 
were  practically  identical  with  the  above.  Where 
they  differ,  they  were  a  trifle  greater.  If  residues 
are  to  be  determined,  the  weight  of  the  sulphated 
material  appears  preferable  since  not  only  are  the 
bases  then  combined  in  unalterable  condition  and 
immune  from  attack  by  carbon  dioxide,  but  the 
evaporation  of  the  sulphuric  acid  doubtless  facili- 
tates dehydration  of  the  silica  and  so  gives  a  much 
less  indefinite  weight.  Losses  in  weight  do  not 
appear  to  be  of  much  value  as  criteria  of  the 
durability  of  glasses.  Other  data,  obtained  in  con- 
siderably less  severe  tests  on  glasses  of  lower 
durability,  confirm  this  conclusion.  Our  practice 
now  is  to  determine  residues  only  when  there  is 
reason  to  expect  high  alkalinity  or  when  the  degree 
of  clouding  is  considerable.  This  has  the  practical 
advantage  of  lilierating  all  the  washings  for  titra- 
tion of  alkalinity  when  the  latter  is  low. 

B 


50  T  BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.     [Feb.  23, 1922. 


Belation  between  dimming  and  autoclave  tests. — 
The  six  glasses  in  question  were  subjected  to  the 
dimming  test  for  30  hours,  at  80°  C,  in  the  manner 
described  by  Elsden,  Roberts,  and  Jones."  The 
results  are  tabulated  below.  Duplicate  portions, 
similarly  cleaned,  were  tested  simultaneously  and, 
after  removal  from  the  apparatus,  were  employed 
in  alkalinity  determinations  by  the  iodeosin  colori- 
metric  method.16  All  these  portions  were  irregular 
in  shape  and  the  areas  were  determined  by  making 
on  folded  paper  an  inked  impression  of  each  of  the 
faces  of  the  specimen,  thereafter  cutting  out  the 
inked  areas  and  weighing  the  inkless  duplicates, 
it  is  estimated  that  the  fractured  faces  amounted 
to  about  15%  of  the  total  area  in  each  case.  Since 
the  test  pieces  had  lain  for  some  weeks  prior  to 
testing,  the  results  are  regarded  as  substantially 
indicative  of  the  alkalinity  of  the  fire-polished 
surfaces. 


Table  XV. 


Alkalinity 

Relative  order. 

Area 
tested 

after  dimming 
test  (mg. 

Grade 
(Table 

of 

glass. 

(sq.  cm.). 

Xa.O  per 
sq.  dm.). 

14). 

Dimming      Other 
test.          tests. 

1 

205 

9-75 

001 

1  + 

2 

1 

224 

7-48 

006 

1 

1 

o 

204 

7-74 

0-35 

9  _ 

3 

3 

225 

7-33 

102 

2 

4 

4 

206 

8-08 

111 

2  + 

5 

6 

207 

7-18 

118 

o  — 

6 

D 

test  are  much  more  severe  than  in  the  former.  In 
addition,  pressure  effects  may  cause  the  chemical 
reactions  occurring  during  autoclave  tests  to  be 
much  less  simple  than  those  which  proceed  during 
tests  at  atmospheric  pressure. 


Table  XIV. 


Appearance  before  test. 

Appearance  after  test. 

Weight  of 

Time  for 
disap- 
pearance 

sped 

men. 

No. 

Grade. 

Unaided  eye. 

Microscope  5  in. 

Microscope  =  in. 

Before 

.After 

objective. 

objective. 

Of  "dew." 

test. 

test. 

204 

Clear ;  interme- 

Some "  crystal  " 

Uniform     distribution     of 

Kings  and  clusters  of  drops 

25 

1-5C&6 

1-50C6 

9 

diate  between 

marks        and 

small    drops.        General 

distributed    closely    and 

205  and  207. 

others  of  less 
definite  char- 
acter. 

slight  corrosion.    On  dry- 
ing, general  patchy  film- 
ing but  attack  not  very 
severe. 

evenly  over  surface.    At- 
tack general  and  appre- 
ciable. 

205 

Not  very  bright. 

Generally      like 

S  ight  dewing  and  spotty 

Numerous  nucleated  areas. 

o 

1-0891 

10892 

:  + 

Many  lines 

204  but  mark- 

corrosion.      On    drying, 

mainly  near  "  drawing  " 

seconds. 

(*•  drawing  "). 

ings  more  nu- 
merous     and 
heavier. 

very   slight   attack    per- 
ceptible but  effect  much 
less  than  in  204. 

lines.       A    few    isolated 
drops.     Markings  as  he- 
fore. 

206 

Mainly  clear.   A 

Dulled  areas  ap- 

Fairly severe  and   uijeven 

Many      heavitv      corroded 

150 

1*23£2 

1SC54 

2  + 

few          small 

peared    as    if 

corrosion.  Before  removal 

areas  ;      numerous     tiny 

seconds. 

areas     rather 

slightly     cor- 

from apparatus,  appeared 

drops.     Did  not  appear 

duller. 

roded.      Rest 
clear. 

better  than  204.     Effect 
intensified  on  drying. 

any  drier  on  standing  3 
davs  in  dust-free  air. 

207 

Clear  and  bright; 

Lines  of  "  crvs- 

Heavily   filmed    locally   on 

Severelv  attacked.   Numer- 

120 

1-1045 

1.  047 

:— 

"  drawing  " 

tal  "  marks  at 

drving.  Appeared  heavily 

ous  "  crvstal  *'  marks  and 

lines. 

45°  to  "draw- 
ing "      lines: 
otherwise 
good. 
Some  "crystal " 

dewed  on  removal  from 
tube. 

many  drops  in  lines  and 
nucleated  areas. 

224 

Like  207. 

Practically  unaffected.    No 

No  drop  formation.      The 

No  dew. 

0-5S46 

0-5F47 

i 

marks     and 

"  film  "  on  drying. 

only    perceptible    effect 

specks.     Bet- 

was a  slight  development 

ter  than  204. 

225 

Brilliant   glass  ; 

"\  ery  clear.  Only 

Slight     general     corrosion. 

210 

O'CSSl 

0*C533 

2 

best  surface  of 

one  small  area 

1  niform   distribution   of 

drops  over  whole  suriace. 

seconds. 

series.      \  cry 

with     a     few 

small  drops.  Surf  are  dull 

Did  not  dry  on  standing 

few  lines. 

"  crystal  " 
marks. 

and  irregularly  corroded 
on  drying.   Rather  better 
than  206. 

Several  "  crystal  "  marks 
developed.  "Considerable 
attack. 

The  time  required  for  the  disappearance,  in  air, 
of  any  "  dew  "  on  the  specimens  when  they  are 
removed  from  the  apparatus  is  a  useful  general 
indication  of  durability.  It  will  be  seen  that  224 
and  205  are  clearly  differentiated  from  204,  the  next 
best,  and  that  this,  in  turn,  is  markedly  superior 
to  the  remaining  glasses.  These  observations  are 
in  agreement  with  the  conclusions  already  drawn. 
All  the  specimens  but  204  showed  slight  increases 
in  weight  after  test,  but  those  are  so  little  removed 
from  the  experimental  error  of  weighing  that  they 
may  be  disregarded. 

In  the  following  table  are  shown  the  details  of 
the  alkalinity  determinations  following  this  test, 
together  with  the  order  of  the  glasses  by  the 
dimming  test  and  the  tests  already  described. 

The  differences  in  order  are  comparable  with  the 
experimental  error  in  dimming  test  gradings.  This 
confirms  the  statement  of  Elsden,  Roberts,  and 
Jones"  that  there  is  close  correlation  between  the 
results  of  this  test  and  alkalinity  determinations. 
It  is  difficult,  however,  to  trace  any  relation  between 
tlio  amounts  of  alkalinity  liberated  in  the  dimming 
test  and  the  various  autoclave  tests.  This  is 
ascribed  to  the  taut  that  the  conditions  in  the  latter 


General  relations  between  clouding,  alkalinity, 
and  loss  in  iceight. — The  results  tabulated  earlier 
indicate  an  intimate  relation  between  alkalinity, 
loss  in  weight,  and  clouding  after  autoclave  tests. 
It  is  inadvisable  to  attempt  to  generalise  from  the 
narrow  range  of  data  at  present  available,  but  it 
is  hoped  to  extend  the  observations  later.  The 
following  interim  conclusions  appear  of  interest. 

The  alkalinities  were  plotted,  as  ordinates. 
against  the  grades,  as  abscissa?,  for  the  glasses  tested 
at  6  atm. ;  the  "  unit  "  of  grade  was,  of  course, 
arbitrary,  the  various  grades  being  equally  spaced 
along  the  axis.  A  straight  line  could  be  drawn 
through  the  origin,  above  which  lay  the  alkalinities 
for  the  various  grades.  This  result  indicates  the 
possibility  of  establishing  a  numerical  relation 
between  these  values,  similar  to  that  already  known 
to  exist  between  dimming  test  grades  and  iodeosin 
values.  Additional  data  will  be  examined  from  this 
point  of  view. 

Graphical  treatment  of  the  alkalinities,  as 
ordinates,  against  duration  of  test,  as  abscissa?, 
showed  that  the  slope  of  the  line  for  each  glass  gives 
a  clear  visual  impression  of  durability,  slope  varying 
inverselv  with  resistance  nnd  directlv  »r  the  dp<rrert 


Vol.  xu„  Xo.  4]     BAILLIE  AND  WILSON*.—  AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.      51  t 


of  corrosion.  In  this  case,  therefore,  there  is  a 
particular  relation  between  the  results,  in  addition 
to  the  general  relation  already  mentioned.  The 
data  of  Table  XI.,  treated  graphically,  show  essen- 
tially the  same  features.  It  may  be  noted  that  the 
glasses  graded  O  (206  and  207)  after  the  4-hour 
tests  at  6  atm.  were  very  heavily  corroded.  They 
were  rough  to  the  touch  and  tended  to  flake  and 
peel  on  drying.  None  of  the  other  glasses  showed 
any  degree  of  effect  at  all  approaching  this. 

The  general  conclusions  already  drawn  are  closely 
confirmed  by  the  results  of  the  2  and  4-hour  tests 
at  6  atm.  There  is  practically  exact  correspondence 
between  the  figures  for  alkalinity  and  change  in 
weight  and  the  clouding  grades.  While  conclusions 
must  be  drawn  with  reserve,  it  appears  that  such 
a  result  can  obtain  only  because  all  the  factors  are 
closely  connected  under  the  conditions  of  test. 
Thus,  if  the  alkalinity  be  ascribed  to  hydrolytic 
decomposition  of  the  glass  substance,  the  proportion 
of  water  reacting  in  this  sense  would  appear  to  be 
governed  by  the  necessity  for  some  equilibrium 
between  this  amount  and  that  water  which  is 
absorbed  otherwise  by  the  glass.  The  proportion 
of  the  "  absorbed  "  water  entering  into  chemical 
combination,  however  loosely,  with  the  glass  sub- 
stance, and  the  amount  which  is  merely  physically 
held  would  again  appear  to  be  in  equilibrium. 
While  these  conclusions  are  offered  only  tentatively, 
it  appears  difficult  to  account  for  the  various  regu- 
larities in  question  except  by  some  such  hypothesis. 

The  abnormal  alkalinity  associated  with  badly 
corroded  glasses  (cf.  206  and  207,  Tables  IV.  and  VII.) 
has  been  repeatedly  confirmed,  and  the  following 
results,  recently  obtained  on  commercial  bottles  of 
rather  reactive  glass,  demonstrate  that  simple 
washing  is  insufficient  to  remove  the  alkali  from  the 
•corroded  surface  with  any  degree  of  completeness. 
The  alkalinity  figures  in  question,  therefore,  do  not 
represent  the  total  alkali  liberated,  but  rather  the 


(a)  Factor  of  acid,  0-0429.Y. 

The  gradual  evolution  of  alkali  on  boiling  was  due 
to  the  slow  solution  or  hydrolysis  of  small  spicules 
of  corroded  glass  removed  in  the  washing  and  diges- 
tion. The  latter  treatment  did  not  wholly  remove 
the  alkalinity,  but  the  glasses  were  accidentally 
exposed  to  acid  vapours  at  this  6tage  and  could  not 
be  further  employed.  The  alkalinity  before  boiling, 
however,  is  still  very  high  and  appears  to  be  due 
to  some  cause  such  as  the  following.  It  may  safely 
be  assumed  that  the  rate  of  penetration  of  the^water 
into  the  glass  varies  exponentially  with  the  distance 
from  the  surface.  Hence  the  surface  layer  will 
become  "  saturated  "  considerably  in  advance  of 
the  adjacent  layer.  This  produces  a  considerable 
active  mass  of  water  at  the  surface.  Hydrolysis  of 
the  glass  will  then  proceed  to  such  a  degree  that 


immediately-extracta 
T 

ble  alkali. 
ABLE  XVI. 

Bottle 

A, 

Bottle 

B. 

Washings       from       bottle. 

titrated  cold 

11-90  c.c. 

acid  (a)  . 

.      8-10  c.c. 

acid 

Titrated  washings  : 

After  15  mins.  boiling     . . 

2-85 

„ 

.      1-66 

„ 

„     30  mins.       „ 

110 

,, 

0-70 

„ 

„     45  mins.       „ 

0-85 

,, 

ii  im 

,, 

„     60  mins 

0-67 

0-18 

M 

„     75  mins.       „ 

0-50 

005 

„     90  mins.       „ 

0-35 

.» 

Nil. 

„ 

„  105  mins 

Ml 

,, 

Nil 

„  120  mins.       „ 

Nil 

.. 

Nil 

,, 

Total  vol.  of  acid  required 

for  washings 

18-22 

„ 

11-28 

, 

Vol.  of  acid  required  after 

digesting    washed    bottle 

24  hours  at  room  temp. . . 

26-40 

,, 

9-65 

, 

Alkalinity  of  washings 

7-78  mg 

Na.O   . 

4-87  mg. 

SasO    ! 

persq.  dm. 

per  sq.  dm. 

Alkalinity       of       digestion 

liquid        

11-27  mg. 

Na,0  .. 

417  mg. 

Na,0 

Total  alkalinity      .. 

1905 

,, 

9-04 

„ 

Area  of  walls  of  bottle    . . 

312  sq. 

dm. 

3-08  sq. 

dm. 

the  vitreous  state  of  the  superficial  layers  of  glass 
is  entirely  destroyed.  The  water-soluble  portions  of 
the  hydrolysis  products  drain  away  and  an  insoluble 
layer  of  porous  character  is  left.  Another  laver  of 
glass  is  thus  laid  open  to  attack,  and  so  alka'linitv 
can  be  greatly  augmented,  with  marked  increase 
in  clouding  and  even  tactual  roughness. 

Method  finaliy  adopted.— It  appears  desirable 
that  any  test  adopted  to  govern  supplies  of  resistant 
chemical  ware,  including  tubing  (for  lampworking) 
of  the  more  durable  varieties,  should  define  the 
permissible  amount  of  alkalinity  and  degree  of 
clouding,  but  that,  in  general,  losses  in  weight  and 
residues  on  evaporation  may  be  omitted.  It  is 
|  regarded  as  important  that  the  autoclave  test 
|  should  admit  of  close  correlation  of  the  alkalinitv 
and  clouding.  This  condition  is  most  nearly  satisfied 
I  by  the  tests  at  6  atm.  for  2  and  4  hours  respectively. 
Further,  these  tests  have  the  merit  of  liberating 
considerable  amounts  of  alkali,  and  so  experimental 
;  error  is  minimised.  In  view  of  the  results  described 
above,  the  mean  period  of  3  hours  has  been  adopted 
by  us.  It  is  preferable,  however,  to  define  the 
pressure  as  90  lb.  per  sq.  in.  The  additional 
pressure  is  slight  (about  2  lb.  per  sq.  in.),  and  the 
pressure  is  at  once  convenient  as  regards  gauge 
readings  and  quite  precise  (varying  values  for  the 
"  atmosphere  "  are  possible).  Further,  working 
tolerances  may  be  adopted  if  desired  (±ilb.  per 
sq.  in.  is  suggested)  without  introducing  an  extra 
pressure  unit.  Such  conditions  are  regarded  as 
sufficiently  rigorous  to  afford  a  searching  test  of  the 
quality  of  supplies. 

The  following  is  a  brief  summary  of  the  method 
employed  by  us  :  —The  specimens  are  measured  and 
cleaned  as  described  above,  the  area  tested  being, 
if  possible,  of  the  order  of  3 — 1  sq.  dm.    The  samples 
are  placed  on  copper  gauze  in  a  silica  beaker,  which 
is   covered   with   a   suitably   perforated   cap.      The 
beaker  stands  on  a  perforated  brass  plate  resting 
upon  a  brass  tripod  of  such  a  height  that  the  plate 
is  just  above  the  water  level.    One  litre  of  ammonia- 
free  distilled  water  is  employed.     The  head  of  the 
autoclave  is  screwed  down  and,  when  the  tempera- 
ture of  the  metal  is  about   100°  C,   the  head   is 
firmly  screwed ;  this  procedure  avoids  undue  wear 
of   the   lead  washer  and   facilitates   opening  later. 
The  pressure  is  maintained  at  90  lb.  per  sq.  in.  for 
3   hours.    50   minutes'    preliminary   heating   being 
required  for  attainment  of  this  pressure.     At  the 
conclusion  of  heating,  steam  is  at  once  blown  off. 
The  specimens  are  removed  when  the  temperature 
has  fallen  to  30°  C,  and  are  cooled  to  room  tem- 
perature in  a  dust-free  place  under  a  bell-jar.    Thev 
are  then  thoroughly  washed  with  cold,   ammonia- 
free,   distilled  water,  the  washings  being  collected 
in  the  silica   beaker  employed,   and   thence  trans- 
ferred to  a  250-c.c.  silica  flask.     If  it  is  proposed  to 
determine  the  residue  on  evaporation  the  liquid  is 
made  up  to  the  mark  and  an  aliquot  part  removed, 
the  titration  being  done  in  the  flask.     Titrations 
are  conducted  with  2V/500  solutions,  in  presence  of 
ethereal  iodeosin  as  indicator. 

The  following  classification  and  limiting  values 
are  suggested :  — 

(a)  Glass  of  "  resistance  "  quality;  alkalinitv  not 
to  exceed  0'3  mg.  (as  Na20)  per  sq.  dm.  and  cloud- 
ing not  to  be  more  severe  than  A  +  . 

(b)  More  durable  glasses;  alkalinity  between  0-3 
and  0-8  mg.  (as  Na,0)  per  sq.  dm.  "and  clouding 
not  more  severe  than  B. 

(c)  Less  durable,  "softer"  glasses;  alkalinitv 
between  08  and  2-0  mg.  (as  Na,0)  per  sq.  dm.  and 
clouding  not  more  than  B-K 

(</)  Soft  glasses  unsuitable  for  laboratory  use: 
alkalinity  exceeding  2-0  mg.  (as  Na,0)  per  sq.  dm. 
and  extensively  clouded  (B—  or  over). 

In  cases  of  doubt  the  safest  course  is  to  relegate 
the  glass  to  the  group  of  lower  durability.  When, 
however,  unsatisfactorv  material  must  be  employed 

b'2 


5  2  T 


:  BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.     [Feb.  28, 1922. 


decisions  should  be  based  upon  the  relative  demerits 
of  high  alkalinity  or  severe  clouding.  In  the  case 
of  the  most  resistant  qualities,  evidence  has  been 
obtained  in  other  directions  that  occasional  samples 
of  certain  glasses  show  an  appreciable  amount  of 
clouding  which,  however,  is  without  effect  on 
ordinary    analytical   work,    and   may,   therefore,   be 

disregarded. 

Durability  and  composition. — The  compositions  of 

the  glasses  tested  are  tabulated  below.     Correction 
been  made  lor  small  amounts  of  copper  derived 

from  the  sieves  employed  in  preparing  the  samples 

for  analysis. 

Table  XVII. 


ditions  as  constant  as  possible,  but  some  variation 
doubtless  occurred  and  was  not  wholly  avoidable. 
The  results  are  tabulated  below:  — 


201. 

205. 

200. 

207. 

224. 

225. 

SiO, 

66-  H 

62-21 

67-09 

62-85 

67-51 

67-61 

Sb,0,      .. 

U-13 

013 

017 

0-16 

0-16 

0-17 

Al,Oa      .. 
Fe,0,      .. 

}  806 

9-82 

014 

|   5-06 
\  0-48 

}  10-31 

6-74 

Mn,0,    . . 

005 

006 

009 

0-06 

0-27 

0-30 

li.O, 

3-25 

10-51 

Nil. 

5-61 

6-38 

Nil. 

CaO 

5-97 

5-55 

5-89 

6-87 

0-43 

5-99 

MgO 

trace 

0-51 

trace 

Nil. 

trace 

trace 

ZdO 

0-22 

1-81 

0-18 

0  44 

0-11 

0-34 

K,0 

3-90 

311 

8-36 

0-14 

0-64 

4-40 

>"a,0 

1217 

6-33 

12-34 

12-40 

13-98 

14-47 

Total 

99-89 

100-04 

100-26 

100-07 

99-79 

100  02 

(a)  Where    no   separate   estimation   of   Fe,0,   is   returned,    the 
amount  was  less  than  0-2%. 

Travers"  and  Turner"  have  concluded  that  the 
ideal  proportions  for  the  composition  of  lamp- 
working  glasses  lie  between  SiO,  67 — 69%  ;  A1203 
3—4  _;  CaO  6—8%;  K,0  7—6%";  Na,0  13—12%; 
CaO  and  alkalis  varying  complementarily.  Since, 
as  is  shown  below,  all  these  six  glasses  are  well 
adapted  for  lampworking,  it  is  of  interest  to  com- 
pare the  data  of  Table  XVII.  with  the  mean  com- 
position given.  It  will  be  seen  that  none  of  the 
glasses  complies  in  all  respects,  and  in  most  cases 
the  discrepancies  are  considerable  and  affect  several 
constituents.  It  is  noteworthy  that  Travers  and 
Turner  do  not  include  B,03,  and  that  the  glasses 
which  contained  none  of  this  oxide  were  not  of  the 
highest  durability.  The  best  glasses  depart  consider- 
ably from  the  so-called  ideal  proportions.  It,  there- 
fore, seems  that  the  validity  of  Travers'  and 
Turner's  figures  is  open  to  question.  As  regards 
lampworking  properties  alone,  such  a  glass  would 
doubtless  prove  eminently  satisfactory.  But  it 
appears  that,  if  any  degree  of  durability  is 
demanded  in  addition,  a  considerable  departure 
from  these  proportions  will  be  inevitable. 

It  is  interesting  to  note  that  tho  order  of  the 
molecular  content  of  alumina  in  these  glasses  agrees 
very  closely  with  the  order  of  durability  by  alkali- 
metric  or  clouding  tests.  This  close  agreement  may, 
of  course,  be  fortuitous,  although  certain  observa- 
tions below  show  a  suggestive  parallelism  between 
"  hardness  "  in  tho  flame  and  A1,03  content.  In 
view  of  the  importance  of  good  keeping  qualities 
(i.e.,  that  glasses  should  not  readily  become  super- 
ficially hydrated),  especially  in  the  case  of  lamp- 
working  glass,  the  conclusion  is  indicated  that 
alumina  is  a  desirable  constituent  of  laboratory  ware 
and  the  harder  grades  of  tubing.  This  is  in  agree- 
ment with  many  other  observations.  '■  "•  "■ 

Lampworking  properties  and  durability. — A12-in. 
length  of  each  glass  was  employed  in  lampworking 
tests,  the  tubes  being  heated  till  they  closed  at  one 
i  nd,  when  bulbs  were  blown  of  about  twice  the 
diameter  of  the  tube.  After  each  heating  the  glass 
was  allowed  to  cool,  when  it  was  examined  for  signs 
of  devitrification.  The  cooled  glass  was  then  re- 
heated till  the  bulb  collapsed,  when  a  fresh  bulb 
was  blown.  This  treatment  was  repeated  20  times 
in  all.     An  endeavour  was  made  to  keep  the  con- 


Table  XVI II. 


Remarks  on  lampworking  properties. 


softened  gradually.     Xot  so  easy  to- 
No  coloration  in  the  flame.     A  fairly 


Pulled  out  well ; 
work  as  205. 
hard  glass. 

Appreciably  softer  than  224  and  softened  more  suddenly, 
being  comparatively  rigid  before  the  working  temper- 
ature was  reached.  Became  strongly  yellow  on 
heating,  but  regained  normal  appearance  on  cooling. 
A  medium  hard  glass. 

Rather  softer  than  205  and  about  equal  to  206,  though 
not  so  prone  to  collapse  in  the  flame.  Became  faintly 
yellow  on  heating,  but  recovered  normal  colour  on 
cooling. 

Practically  identical  with  204,  but  perceptibly  softer. 
A  fairly  soft  glass. 

A  soft  glass,  working  readily  in  the  flame.  Collapsed 
readily  when  hot.    Coloured  like  204. 

Collapsed  very  readily  on  heating.  The  softest  glass  of 
the  series.    Distinct  yellow  coloration  in  the  flame. 


All  the  glasses  could  be  readily  joined  to  lengths  of 
the  same  tubing  and  the  joins  showed  no  sign  of 
cracking  on  cooling.  The  joins  so  made  pulled  out 
well,  and  even  the  hardest  glass  was  easily  manipu- 
lated. No  signs  of  darkening  were  observed,  and 
permanent  devitrification  did  not  occur.  Slight- 
indications  were  occasionally  observed  of  a  tran- 
sitory dimness  near,  but  never  at,  the  ends  of  tubes 
being  "  rounded  off  "  in  the  flame.  Whatever  the 
cause,  this  faint  opacity  vanished  speedily  on  heat- 
ing without  special  precautions.  It  cannot,  of 
course,  be  said  that  these  glasses  might  not 
devitrify  under  other  lampworking  conditions,  but 
the  tendency  would  probably  be  slight.  It  may 
therefore  be  concluded  that  all  the  glasses  possess 
excellent  lampworking  properties. 

"Hardness  "  and  composition. — It  is  not  simple 
to  arrange  glasses  in  order  of  "  hardness  "  since,  so- 
far,  this  complex  property  has  to  be  judged  by  the 
impressions  of  the  lampworker  and  cannot  be 
defined  in  absolute  terms.  The  arrangement,  how- 
ever, closely  resembles  that  from  the  durability 
tests  and  is  as  under :  — 


T 

\BLE 

XIX. 

rdi 
oil 

ess  " 
ity 

..     224 
..     205 

205 

224 

204 
204 

225 

225 

206 
207 

207 
206 

Order  of  diminishing  "  hardness  ' 
Order  of  diminishing  durability 

Since  those  ingredients  (notably  alkalis)  which 
confer  "  softness  "  are  also  those  which  are  detri- 
mental to  a  high  degree  of  durability  a  certain 
measure  of  concordance  between  the  results  is  not 
unexpected.  It  is  interesting  to  note  that  the  con- 
tent of  Al,03  +  Fe203  agrees  exactly  with  the  order 
by  hardness.  So  far  as  we  are  aware,  such  a  rela- 
tion has  not  hitherto  been  recorded.  It  appears  not 
to  be  wholly  adventitious,  in  view  of  the  consider- 
able variations  in  the  nature  and  amount  of  the 
remaining  major  constituents  of  these  glasses, 
thus : — 


Major 

constituents. 

SiO, 

B.O,       . 
CaO 
K,0 

_\.;  ii 


Table  XX. 

%  by  weight. 
Min.         Max. 


62-2 
Nil 
0-4 
0-6 
G-3 


67-6 

10-5 

6-9 

8-4 

14-5 


,   bv 

molecules 

Mm. 

Max. 

66-4 

71-2 

Nil 

9-7 

0-5 

7-8 

0-4 

5-7 

6-6 

14-8 

It  was  thought  that  there  might  be  a  relation 
between  the  "  flint  equivalents  "  proposed  by 
Staley21  as  an  approximate  measure  of  the  fusibility 
of  enamels  and  glazes,  and  the  "  hardness  "  of  these 
glasses.  The  somewhat  complicated  calculation 
given  by  Staley  (loc.  cit.)  leads  to  the  factors  9'8  per 


Vol. XII., No. 4.]    BAILLIE  ANT5  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.      53  T 


1%  SiO,  by  weight  and  161  per  1%  Al2Os  by 
weight.  Employing  these  factors,  the  following 
results  were  obtained:  — 

Table  XXI. 

•Order  by  diminishing  "  hardness  "..    224    205    204    225    206    207 
■Order  by  diminishing  "  flint  equiva- 
lents " 224    204    225    205    206    207 

There  is  some  approach  to  agreement  among  these 
results,  hut  it  is  certainly  incorrect  to  regard  205 
as  a  "  softer  "  glass  than  204,  as  the  "  flint  equiva- 
lents "  would  suggest.  This  calculation,  alone, 
•cannot  be  regarded  as  sufficient,  since  the  basic 
oxides  and  Ba03  influence  "  hardness  "  to  a  marked 
and  probably  varying  degree.  Any  method  of  cal- 
culating a  measure  of  "  hardness  "  from  composi- 
tion must  evidently  include  the  effect  of  the  fluxing 
oxides  as  well  as  that  of  the  refractory  constituents. 
The  proportion  of  alumina  in  these  glasses  is 
perhaps  the  most  striking  feature  of  the  analyses 
and  indicates  that  the  old  prejudice  against  this 
oxide  has  been  effectively  overcome.  The  presence 
of  alumina  has  been  repeatedly  shown  to  facilitate 
the  founding  and  annealing  of  glasses23  and  to 
retard,  if  it  does  not  generally  prevent,  devitrifica- 
tion.:J  The  observations  recorded  above  are  con- 
firmatory, and  demonstrate  the  important  role  of 
■this  oxide  in  laboratory  glassware. 

>  ification  of  duration  of  test. — The  course  of 
the  hydrolytic  decomposition  of  glasses  is  not  yet 
fully  known.  It  is  reasonable  to  assume,  however, 
that  the  equations  representing  reactions  of  the 
first  or  second  order  may  afford  some  insight  into 
the  function  of  time  and  temperature  in  autoclave 
tests.  Consideration  of  the  effect  of  increasing  the 
duration  of  test,  at  constant  temperature,  when 
arbitrarily  chosen  degrees  of  hydrolysis  are  effected, 
led  to  the  following  conclusions  :  — (a)  adherence  to 
exact  time  is  important;  (6)  the  best  glasses  are 
relatively  the  most  affected  by  faulty  time-control; 

(c)  short,  severe  tests  give  sharpest  discrimination; 

(d)  the  absolute  magnitude  of  alkalinity  figures  is 
of  importance  only  when  conditions  are  accurately 
specified. 

The  first  conclusion  is  discussed  more  fully  below. 
In  the  case  of  the  second  it  may  be  noted  that 
although,  if  the  time  of  test  be  doubled,  poor  glasses 
are  relatively  less  affected,  the  absolute  increase  in 
alkalinity  is  still  much  greater  than  in  the  case  of 
good  (cf.  Tables  TV.  and  XVI.).  The  third  conclu- 
sion is  in  conformity  with  the  experimental  results 
except  in  those  cases  when  extreme  clouding  was 
encountered.  Since,  however,  clouding  represents 
a  virtual  breakdown  of  the  glass,  whereby  evolu- 
tion of  alkalinity  is  greatly  accelerated,  it  will  be 
seen  that  this  points  to  the  necessity,  already 
urged,  of  avoiding  unduly  severe  conditions  of  test. 
The  fourth  conclusion  clearly  affects  the  applica- 
bility of  available  data.  The  frequent  omission  of 
the  particulars  in  question  indicates  that  the  im- 
portance of  this  point  is  not  always  appreciated. 

Duration  of  test  is  customarily  regarded  as  the 
period  of  heating  at  the  selected  temperature  or 
pressure.  It  will  be  clear,  however,  that  during 
the  preliminary  heating-up  the  velocity  of  hydro- 
lysis increases  with  considerable  rapidity  (see 
"below)  and  that,  if  this  period  be  unduly  prolonged, 
the  effect  may  be  considerable.  It  will  depend  on 
the  rate  of  heating  of  the  autoclave  and  the 
temperature  coefficient  for  the  velocity  constant  for 
the  reaction.  In  cooling  down  after  the  test,  the 
conditions  are  essentially  different.  Since  the  glass 
is  already  superficially  hydrolysed  and  the  tempera- 
ture is  rapidly  falling,  no  great  increase  in 
alkalinity  is  to  be  anticipated.  It  is  concluded  that 
hy  "duration  of  test  "  should  be  meant  not  simply 
the  period  of  heating  at  the  selected  temperature, 
hut  rather  the  total  time  from  commencement  of 
heating  to  conclusion   of  cooling,   the  duration   of 


each  phase  being  exactly  specified.  (The  last  period 
is  conveniently  controlled  by  gradually  releasing 
the  pressure  at  the  conclusion  of  heating.)  By  this 
procedure  the  inevitable  differences  between  indi- 
vidual autoclaves  will  be  much  reduced,  and  it  is 
believed  that  differences  should  not  then  exceed 
5%  or  so  for  homogeneous  glasses. 

An  endeavour  has  been  made  to  arrive  at  a 
general  expression  for  the  amount  of  alkalinity 
which  will  be  liberated  from  various  types  of  glass 
during  the  preliminary  heating.  The  method  em- 
ployed was  to  derive  an  expression  relating  the 
duration  of  heating  of  the  autoclave  employed  with 
the  velocity  of  hydration  of  glasses  of  high,  medium, 
and  low  durability.  This  involved  a  study  of  the 
rate  of  heating  of  the  autoclave  and  of  the  tempera- 
ture coefficient  of  the  velocity  constant  of  the  hydro- 
lytic reactions  in  question. 

Bate  of  heating  of  autoclave. — The  rate  of  heat- 
ing of  the  autoclave  was  determined  during  an 
ordinary  test.  The  temperatures  recorded  below 
were  derived  from  the  corrected  gauge  readings  by 
graphical  interpolation  from  tables.  It  was  found 
that  the  results  could  be  represented,  within  the 
probable  error  of  experiment,  by  the  following 
equation 

log10(26S"5  -  T34720)  =  2-31806  -  0-0118S* (1) 

where  <?  =  temperature  (°C.)  and  r  =  duration  of 
heating  (minutes).  In  the  calculated  temperatures, 
shown  below,  the  mean  algebraical  error  is  +0'2°  C. 
and  the  arithmetical  error  is  0'9°  C. 

Table  XXII. 
Hate  of  heating  of  autoclave. 


Temperature.  °C. 

Time 

Error 

(mins.). 

(obs. — calc.). 

Observed. 

Calc.  by  eq.(l). 

170 

103-7 

102-3 

1-4 

18-0 

1061 

1050 

1-1 

190 

109-3 

107-5 

1-8 

200 

112-2 

109-9 

2-3 

210 

114-9 

112-4 

2-5 

240 

119-6 

119-2 

d-4 

260 

124-3 

123-3 

0-S 

129-0 

1300 

-10 

30-5 

1  :l  - 

132  3 

-0-5 

32-5 

135-5 

135-S 

-0-3 

350 

1  18  3 

140-0 

-0-2 

33-5 

143-9 

145-4 

-  1-:. 

410 

1495 

1490 

0-5 

450 

153-4 

154-2 

-0-8 

48-5 

157-9 

158-3 

-0-4 

520 

162-6 

1621 

-0-5 

560 

164-4 

164-9 

-0-5 

60-0 

168  - 

169-4 

-1-2 

640 

171-0 

172-5 

-1-5 

Effect  of  temperature  on  velocity  of  hydration. 
Direct  determination  of  the  temperature  co- 
efficient of  the  velocity  constant  of  the  hydration 
reaction  (a)  proved  impracticable  but  by  means  of 
an  aproximate  treatment  of  certain  results  pub- 
lished by  Mylius  and  Foerster21  and  Foerster,5  it 
was  found  that,  in  the  case  of  highly  durable  glasses 
the  velocity  constant  doubles  every  9° — 10°  C. ;  for 
glasses  of  more  usual  degrees  of  durability,  every 
6'5° — S°  C. ;  while  for  highly  reactive  glasses  the 
constant  may  double  in  so  short  an  interval  as  5°  C. 
These  results  are  of  the  order  generally  to  be 
expected.  The  rapidity  with  which  the  constant 
increases  with  temperature  in  the  case  of  the  less 
durable  varieties  of  glass  is  noteworthy.  There 
appears  good  reason  to  believe  that  the  temperature 
coefficient  of  the  velocity  constant  for  the  hydration 

(a).  It  appears  probable  that  several  reactions  may  proceed 
concurrently.  If,  however,  the  nett  effect  be  regarded  as  the 
resultant  of  these,  thi*  nett  effect  may.  as  a  first  approximation, 
be  considered  as  that  of  a  single  reaction. 


54  T 


BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR;CHEMICAL  GLASSWARE.       [Feb.  2S,  1922 


reaction  is  a  valuable  criterion  of  the  durability  of 
a  glass. 

These  results  demonstrate  that,  in  such  tests  as 
that  now  in  question,  high  temperatures  mil  favour 
sharp  discrimination  between  glasses.  Foerster's 
results5  illustrate  this  well.  He  found,  at  20°  C., 
a  thirty-fold  variation  in  the  alkalinities  of  the 
glasses  he  examined.  At  80°  C,  on  the  other  hand, 
The  range  of  alkalinities  was  no  less  than  8  times 
as  great. 

Duration  of  heating  and  alkalinity  evolved— In 
considering  the  relation  between  the  alkalinity 
liberated  from  glass  surfaces  during  the  preliminary 
heating  of  the  autoclave  and  that  developed  during 
the  fixed  period  at  the  selected  temperature,  a 
graphical  method  was  found  advantageous.  The 
values  for  the  velocity  constants  at  the  various 
temperatures  in  question,  in  terms  of  the  value  at 
room  temperature  as  unity,  were  plotted  as 
ordinates;  duration  of  heating  was  plotted  as 
abscissa;.  The  area  below  the  curve  gives  a  measure 
of  the  total  effect  produced. 

The  equation  to  the  curve  relating  velocity  con- 
stant with  time  of  heating  was  derived,  for  the 
particular  autoclave  employed,  as  shown  below. 

Let  K„  be  the  velocity  constant  at  #„,  and  let  K, 
be  the  value  at  0,.     Then,  as  a  first  approximation, 


K,=K„.2 


■  (2) 


where  T  is  the  temperature  interval  through  which 
the  system  must  be  heated  for  K0  to  double  itself. 
Taking  logarithms,  solving  for  0,,  substituting  this 
value  for  0  in  equation  (1)  and  simplifying,  we  then 
obtain,  when  0,,  =  15o  C,  the  general  equation, 
log  (1-0-018024T  log  K,/K0)+0-07690 

=  -0'01188t (3) 

This  is  the  equation  to  a  family  of  curves.  The 
member  representing  any  particular  class  depends 
on  the  value  of  T  for  that  glass,  i.e.,  on  its  dura- 
bility. The  unit  of  velocity  constant  being  taken 
as  K„  (ef.  above),  the  ratio  K,  /K,  will  be  repre- 
sented by  a  number  for  each  value  of  t,  T  already 
being  fixed. 

To  test  the  validity  of  the  proposed  graphical 
method  a  curve  was  constructed  for  a  very  durable 
glass  (T  =  10),  plotting  the  times  of  heating  given  in 
Table  XXII.  against  the  reaction  velocities  (from 
equation  (2)  )  for  the  corresponding  temperatures. 
The  points  lay  on  a  smooth  curve  of  the  required 
form,  whose  slope  became  very  great  for  the  higher 
values  of  t.  K,  /K0  was  evaluated  at  three  points  on 
the  curve,  and  the  corresponding  values  of  (  com- 
pared with  those  calculated  by  means  of  equation 
(3).    The  results  are  shown  below. 

Table  XXIII. 


K  evaluated  from  curve.* 


720. 


(   corresponding  to  value  oi 

K  from  curve      . .  . .      20   mins.     I  40   mins 

1  calculated  from  eq.  (3)  . .      19-98  „  38-86  „ 


49760. 


64   mins. 
6205  „ 


•  In  terms  of  reaction  velocity  at  15°  as  unity. 

In  view  of  the  limitations  of  equation  (1)  and  the 
necessary  condensation  of  ordinate  scale,  it  is  sub- 
mitted that  these  figures  establish  the  validity  of 
the  proposed  method.  The  differences  between 
calculated  and  observed  times,  about  3",  are  of 
the  same  order  as  probable  differences  in  the 
duration  of  the  preliminary  heating  in  individual 
tests. 

K,  /K,  was  now  evaluated  from  the  curve  at 
4-minute  intervals,  commencing  at  20  minutes,  and 
the  areas  below  the  curve  were  computed  at  each 
interval.  The  results  are  tabulated  below.  In  the 
last  column  of  the  table  are  given  the  quotients  of 
these  areas  by  the  product  of  the  ordinates  for  the- 


greatest  time  in  question,  corrected  for  the  scale 
employed. 

Table  XXIV. 


Area  of 

Area  of 

Time 

K 

curve  from 

Product 

1     curve  -5- 

(mins.). 

(by  graph). 

origin  to  l 

01 

producfc  ox 

(in.  sq  mm.) 

ordinates. 

1    ordinates. 

20 

720 

228 

900 

0-25 

24 

1400 

487 

2100 

0-23 

28 

2560 

978 

4480 

0-22 

32 

4000 

17U1 

8000 

0-22 

36 

5880 

3014 

13230 

0-23 

40 

8760 

4831 

219011 

0-22 

44 

12240 

7441 

33660 

0-22 

48 

17520 

11094 

52560 

0-21 

52 

24960 

16332 

81120 

0-20 

56 

32960 

23554 

115360 

0-20 

60 

41200 

32826 

154500 

0-21 

64 

49760 

44142 

198680 

0-22 

The  figures  in  the  last  column  denote  the  degree 
of  effect  produced  on  the  glass  surface  during  the 
preliminary  period  of  heating  in  terms  of  the  effect 
which  would  have  been  produced  in  the  same  time 
had  the  heating  been  conducted  throughout  at  the 
temperature  attained  at  the  end  of  the  period. 
Under  the  conditions  adopted  by  us,  the  autoclave 
requires  about  50 — 55  minutes  to  attain  test  tem- 
perature. It  will,  therefore,  be  6een  that,  in  the 
case  of  the  most  durable  glasses,  the  amount  of 
alkalinity  evolved  in  this  period  will  be  practically 
one-fifth  of  that  which  would  have  been  liberated 
had  the  glasses  been  introduced  into  an  autoclave 
already  at  test  temperature  (163°  C.)  and  heated 
there  for  this  period. 

The  values  in  the  last  column  of  the  above  table 
have  been  confirmed  for  three  points,  as  below  :  — 

Equation  (3)  is  of  the  form  a+log  (1-6  log  k)=-ct  .  .  (4) 

i.e.,  l-10-a-rt=61og  I (5) 

converting  to  natural  logarithms  and  differentiating, 

cj^IO-0-^^6^ (6) 

where  p  =  2-3026. 

Rearranging   (6)   and    combining  with   (5),   after  con- 
verting in  the  latter  to  natural  logarithms  also, 
bdk 

{<> 


kdt- 


cp*  \\-b   log  k  } 


J kilt  gives  the  area  of  the  curve  on  insertion  of  the 
appropriate  limits.  The  right-hand  side  of  equation 
(7)  may  be  integrated  by  dividing  out  and  integrating 
the  infinite  series  so  obtained,  the  form  chosen  being 
governed  by  the  fact  that  6  log  kip  is  less  than  unity. 

The  terms  up  to,  and  including  that  in  6s  j  ps  were 
evaluated.  The  residue  after  the  term  in  b5  /ps  was 
approximately  computed  from  the  ratios  of  the  pre- 
vious terms.  The  values  for  the  residues  so  obtained 
are  thought  to  be  correct  to  within  0"002.  In  this 
manner  the  following  table  was  derived:  — 

Table  XXV. 


Ratio  at 

By  measurement, 
from  curve. 

By  calcu- 
lation. 

(  =  20  mins.           . .         . .  1              0-25 
(  =  40  mins.           ..         ..                 0-22 
(  =  64  "lini u  22 

0-26 
0-21 
0-20 

In  view  of  the  necessary  condensation  of  ordinate 
scale  the  agreement  is  satisfactory. 

Since  the  curve  for  any  particular  glass  is  defined 
by  the  value  of  T  (cf.  ante)  it  appears  that  different 
degrees  of  durability  would  lead  to  different  values- 


Vol.  XIX,  No.  4.]    BAILLIE  AND  WILSON.— AUTOCLAVE  TEST  FOR  CHEMICAL  GLASSWARE.     55  T 


for  the  ratio  now  in  question  and  so  to  different 
proportional  effects  during  the  preliminary  heating. 
It  will  be  clear  that,  in  general,  the  f-K  curve  will 
be  steeper  as  the  durability  of  the  glass  increases 
and  so  the  ratio  will  diminish  with  durability;  for, 
in  the  limit,  the  curve  would  become  a  line  parallel 
to  the  K-axis  (ordinate)  and  the  ratio  would  become 
zero.  The  values  found  for  glasses  of  gradually 
diminishing  (but  still  reasonably  high)  durability 
were  as  shown  below. 


Table  XXVI. 

Ratio  at 

T  =  10. 

T  =  9. 

T  =  8. 

T=  7. 

t  =  20  mina. 
t  =  40  mins. 
(  =  64  mins. 

0-26 
0-21 
0-20 

0-24 
017 
0-15 

0-22 
015 
0-12 

0-21 
0-13 
0-10 

By  the  time  test  temperature  is  attained,  therefore, 
the  effect  will  vary  from  about  one-fifth  to  one- 
tenth  of  that  which  would  have  been  produced  had 
the  heating  been  conducted  at  test  temperature  for 
the  whole  period.  The  order  of  these  results  is  in 
accordance  with  certain  results  in  Table  XXV. 
above.  It  should  be  noted  that,  although  the  effect 
of  the  preliminary  heating  of  a  good  glass  is  greater 
in  proportion  to  the  total  effect  during  the  test  than 
in  the  case  of  glasses  of  lower  durability,  the  abso- 
lute amount  of  alkalinity  liberated  in  the  latter 
case  is  greatly  in  excess  of  that  in  the  former. 

It  is  not  possible,  in  light  of  these  results,  to  say 
that  any  particular  proportion  of  the  alkalinity 
evolved  during  an  autoclave  test  is  ascribable  to  the 
preliminary  heating,  unless  the  quantity  T  bo 
known  for  the  glass  in  question.  The  order  of  the 
figures  in  Table  XXVI.  establishes  fully,  however, 
that  careful  control  of,  and  uniformity  in,  this 
period  of  heating  is  essential  if  comparable  and 
reproducible  results  are  to  be  obtained. 

Summary. 

1.  An  autoclave  test  for  the  durability  of  chemical 
glassware  has  been  described  which  conforms  with 
the  practical  requirements  specified. 

2.  Close  correlation  exists  between  all  the  criteria 
of  durability  studied. 

3.  In  judging  the  durability  of  glasses  by  this  test 
the  degree  of  clouding  produced  and  the  amount  of 
alkalinity  liberated  per  unit  area  of  glass  tested  are 
the  most  reliable  data;  suitable  limits  for  various 
grades  of  glass  are  suggested.  The  alteration  in 
w.ight  of  the  specimen  and  the  amount  of  residue 
on  evaporation  are  less  informative. 

4.  The  use  of  iodeosin  as  indicator  in  titrations 
with  N 1500  solutions  is  described. 

.5.  The  autoclave  and  dimming  tests  have  been 
compared. 

6.  British-made  glasses  of  high  chemical  resist- 
ance) arc  available  which  possess  excellent  lamp- 
working  properties. 

7.  There  is  close  correspondence  between  the 
durability,  "  hardness,"  and  alumina  content  of 
the  glasses  examined. 

8.  The  importance  of  precise  specification  of 
manner  of  heating  and  cooling  is  indicated  and  cer- 
tain theoretical  considerationss  are  discussed. 

9.  The  construction  and  application  of  r-K  curves 
for  particular  glasses  is  described. 

Acknowledgment. 

We  desire  to  thank  Mr.   G.  H.   Perry,   O.B.E., 

Director  of  Chemical  Inspection,  for  the  interest  he 
has  taken  in  this  work,   and  are  indebted  to  the 


Director  of  Artillery,  War  Office,  for  permission  to 
publish  analytical  and  other  results  obtained  in  the 
work  of  the  Directorate  of  Chemical  Inspection. 

Glass  Laboratory, 

Directorate  of  Chemical  Inspection, 
Iloyal  Arsenal, 
Woolwich, 

London,  S.E.  18. 


Discussion. 

Prof.  J.  W.  Hinchley  asked  the  author  the 
cause  of  the  zone  formed  by  rounding  off  in  the 
flame,  and  what  conclusion  he  drew  from  it.  Did 
it  mean  that  at  that  point  the  glass  was  more  resis- 
tant, since  it  did  not  cloud;  was  the  zone  due 
to  a  sort  of  heat  treatment  or  was  there  a  chemical 
change  due  to  the  method  by  which  it  was  pro- 
duced ?  If  the  zone  were  more  resistant  and  showed 
less  alkalinity,  this  seemed  to  indicate  a  method 
of  producing  resistant  glass  which  was  worth  follow- 
ing up. 

Mr.  Julian  L.  Baker  said  there  was  much  in  this 
paper  which  would  be  of  interest  to  bio-chemists, 
more  particularly  the  varying  alkalinity  set  free 
at  certain  temperatures  and  pressures.  Some  bac- 
teriological media  were  sterilised  under  pressure  in 
glass  vessels  and  it  was  obvious  that  if  these  became 
alkaline  abnormalities  would  arise. 

Mr.  E.  A.  Coad-Pryor  asked  the  author  what  he 
meant  by  hardness,  and  how  he  measured  it,  also 
exactly  what  he  claimed  for  the  autoclave  test.  In 
making  any  chemical  glass  it  was  necessary  to 
compromise.  A  gla6s  resistant  to  acid  or  resistant 
to  alkali  could  easily  be  made,  and  he  would  like 
the  author's  idea  of  what  he  claimed  for  the  auto- 
clave test  as  a  test  of  durability.  If  the  results  of 
tests  in  acid  or  alkaline  conditions  were  placed  6ide 
by  side,  he  did  not  think  they  wouM  be  found  to 
agree,  say,  with  the  test  with  water  which  the 
author  had  given. 

Mr.  Baillle,  in  reply,  said  that  the  zonal  cloud- 
ing, mentioned  by  Prof.  Hinchley,  raised  questions 
which  he  had  not  yet  been  able  to  answer.  It  seemed 
to  be  connected  with  rounding-off  in  the  flame  (since 
abandoned)  to  eliminate  fractured  faces.  Why 
alternate  clear  and  clouded  zones  were  produced, 
however,  he  did  not  know.    It  was  usually  said  that 


>  Hovestadt,  "  Jena  Glass  "  (1902),  p.  19. 

I  Reinitzer,  Z.  angew.  Chem.,  1894,  18;  Hovestadt,  loc.  c\t., 
quotes  fullv,  p.  369. 

>  Peddle,  J.  Soc.  Glass  Tech.,  1920,  4,  44-4o. 

*  C).  the  valuable  bibliography  compiled  by  Turner,  J.  Soc.  Glass 

'°  Foerster,  'z.  anal.  Chem.,  1894,  33,  381.  Walker,  J.  Amer. 
Chem  Soc  ,  1905,  37,  865.  Nicolardot,  Comptes  rend.,  1916, 163, 355. 
Cauwood,  English,  and  Turner,  J.  Soc.  Glass  Tech.,  1917,  1,  153. 

•  Travers,  J.,  1918,  235  T.  Germann,  J.  Amer.  Chem.  Soc.,  1921, 
43  11. 

'  Way,  Cauwood,  and  Turner,  J.  Soc.  Glass  Tech.,  1917,  1,  144  ; 
see  also  Cauwood  and  Turner,  ibid.,  191S,  2,  260.  .„„.,„ 

»  Cauwood   English,  and  Turner,  J.  Soc.  Glass  Tech.,  1917,  1,  175. 

'  J.  and  Proc.  Inst,  of  Chem.,  1920,  iii.,  202 ;  reprinted  J., 
1915    424. 

10  Mylius,  Z.  Instrumentenk.,  1888,  8,  267. 

"  Mvlius  and  Foerster,  Ber.,  1891,  24,  1482, 

II  Since  this  paper  was  prepared  a  description  of  the  method  of 
emplovin"  this  indicator  has  beeu  found  in  "  Laboratonumsbuch 
fiir  die  Glasindustrie "  (Springer)  which  is  substantially  in  agree- 
ment with  our  own.  The  use  of  a  stoppered  flask  is  suggested  and 
appears  desirable.  ,        __    .     .„„,.   „    r^ 

"  Elsden.  Roberts,  and  Jones.  J.  Sen    Gl;i        l'ech..  1919.  3.  a2. 

"  Sehott,  Z.  Instrumentenk.,  1889,  9,  86. 

"  Bancs,  Amer.  J.  Sci.,  1899,  7,  1. 

>•  Mylius,  Z.  Instrumentenk.,  1889,  9,  50. 

"  Travers,  J.  Soc.  Glass  Tech.,  1919,  3,  258. 

>»  Turner,  J.  Soc.  Glass  Tech.,  1919,  3,  254  (quoted  m  foregoing). 

'•  Selch,  Spreehsaal,  1905.  45,  408. 

!°  Sehott,  Verhandl.  des.  Ver.  zur  Beford.  d.  Gewerbefl.,  189o. 

81  Staley,   U.S.   Bureau  of  Standards    Technical  Paper  No.  142 

"-*  Frink  Trans.  Amer.  Ceram.  Soc.,  1909,  Tl,  99. 

"  Appert,  Comptes  rend  .,1890, 122,  672 

"  Mylius  and  Foerster,  Z.  Instrumentenk.,  1891,  11,  311. 


56  T 


COLLINS — DETERMINATION  OF  L^EVULOSE  (FRUCTOSE)  IN  STRAW.        (Feb.  28, 1922. 


when  glass  was  in  compression  it  was  more  resistant 
to  chemical  attack,  and  that  when  it  was  in  tension 
it  was  less  resistant.  One  would  expect  to  find 
tension  outside  and  compression,  inside,  hut  his 
results  showed  that  if  a  state  of  compression 
existed  at  all  it  existed  at  the  same  place,  both 
inside  and  outside  the  tube,  a  conclusion  which 
seemed  contradictory.  He  could  not  offer  any 
explanation  of  the  effect  and  had  found  no  one,  so 
far,  who  could  throw  light  on  it.  He  could  not  say 
whether  it  varied  with  different  flames.  The  glass 
was  undoubtedly  better  in  the  clear  zones,  but 
why,  he  was  not  able  to  suggest.  "Hardness" 
was  exceedingly  difficult  to  define.  It  expressed 
the  lamp-working  properties  of  the  glass — whether 
it  collapsed  rapidly,  the  temperature  required,  its 
working  range,  and  so  on.  One  could  not  yet 
express  "hardness"  in  dimensions  or  units.  His 
estimate  of  "  hardness "  was  based  largely  upon 
the  necessary  manipulation  of  the  blow-pipe  flame. 
If  it  were  necessary  to  use  a  hotter  flame  and  the 
glass  proved  more  resistant  than  usual,  he  would 
call  it  hard;  if  the  glass  worked  easily  with  less 
than  the  usual  heating  he  would  call  it  soft. 
Different  workers,  however,  would  give  different 
opinions  on  given  glasses.  Durability,  again,  was 
not  capable  of  precise  definition.  The  durability  of 
glass  was  a  relative  term.  The  point  he  had 
endeavoured  to  emphasise  was  that  from  the  ordin- 
ary point  of  view,  what  was  wanted  was  resistance 
to  water.  Chemists  generally  employed  aqueous 
solutions,  frequently  at  boiling  point.  Glass  was 
in  addition  exposed  in  the  laboratory  and  the  store- 
room to  atmospheric  moisture,  and  water  was  one 
of  the  most  active  corroding  agents.  The  autoclave 
test  subjected  glasses  in  an  intensive  way  to  the 
action  of  water,  and  had  been  found  satisfactory. 
One  could  apply  other  tests  but,  as  he  had  already 
said,  durability  was  a  relative  term.  If  it  was 
desired  to  investigate  the  resistance  of  glasses  to 
acids  or  alkalis,  one  would  subject  them  to  such 
reagents.  It  was  undoubtedly  true  that  different 
tests  might  yield  different  results.  For  instance, 
the  order  of  resistance  in  a  series  of  glasses  might 
lie  expected  to  vary  as  acid,  alkali,  or  water  was 
employed.  Boiling  water  might  not  give  results 
exactly  parallel  to  the  autoclave  test,  and  ammonia 
and  caustic  soda  could  conceivably  yield  discordant 
results.  He  was  interested  in  glass  which  would 
withstand  the  attack  of  atmospheric  moisture  and 
remain  free  from  any  tendency  to  devitrify  on 
working  after  being  stored  for  even  considerable 
periods.  He  considered  that  an  autoclave  test  was 
the  most  expeditious  way  of  obtaining  evidence  of 
the  suitability  of  glasses  for  the  purpose  in  view. 
In  this  only  slightly  limited  sense  of  the  term,  there- 
fore, this  test  undoubtedly  enabled  one  to  arrive 
at  a  reasonably  accurate  measure  of  the  durability 
of  glasses. 


Newcastle   Section. 


Meeting  held  at  Armstrong  College,  Newcastle,  on 
December  14,  1921. 


DR.  J.  H.  PATERSON  IN  THE  CHAIR. 

THE  DETERMINATION  OF  L/EVULOSE 
(FRUCTOSE)  IN  STRAW. 

BT  S.   H.  COLLINS. 

In  the  course  of  some  investigations  on  oat  straw 
it  became  necessary  to  determine  the  amount  of 
lpevulose   present.     Unfortunately   the    information 


on  the  determination  of  lsevulose  in  the  text-books 
is  very  superficial.  The  dark  colouring  matters 
which  accompany  crude  forms  of  sugar  give  con- 
siderable trouble  and  are  the  cause  of  much 
inaccuracy  in  the  final  results.  The  colouring 
matters  bear  a  high  ratio  to  the  sugar,  in  the  case 
of  oat  straw.  Owing  to  the  bulky  nature  of  straw 
any  efforts  to  obtain  strong  solutions  meet  with 
great  difficulty.  Attempts  at  evaporation  resulted 
in  failure,  even  evaporation  under  reduced  pressure, 
with  a  slight  current  of  carbon  dioxide,  proving  too 
destructive  to  lievulose  to  permit  of  any  practical 
utility.  Continuous  extraction  proved  practicable 
and  accurate  but  the  colouring  matters  were  also 
concentrated,  and  it  was  found  in  practice  that  a 
solution  obtained  from  1  part  of  straw  in  10  parts 
of  liquid  in  a  250  mm.  tube  gave  a  solution  as  dark 
as  could  be  used  even  with  a  quartz  wedge  sacchari- 
meter  and  a  special  gas-filled  100  c.p.  electric  light. 
No  further  increase  in  accuracy  could  be  obtained 
in  practice  either  by  using  continuous  extraction 
methods  of  concentration  or  by  illumination  of 
higher  power.  In  the  end  it  was  found  that  a 
200  mm.  tube  was  long  enough  and  permitted  more 
uniform  heating.  It  remained  therefore  to  work 
with  solutions  which  always  contained  less  than  1% 
of  leevulose  and  in  which  it  was  desirable  that  the 
error  should  be  less  than  0'05%  of  lsevulose. 

By  means  of  simple  arrangements  of  currents 
of  cold  or  hot  water  flowing  through  a  jacketed 
polarimeter  tube,  temperatures  constant  to  a 
fraction  of  a  degree  could  be  obtained  with  a  low 
temperature  at  about  10°  C.  and  a  high  temperature 
at  about  70°  C. — a  difference  quite  sufficient  for  the 
purpose.  Taking  ten  readings,  average  results  were 
obtained  which  reduced  chance  errors  to  unimport- 
ance, but  a  serious  constant  error  was  found  to  be 
due  to  the  apparent  deflection  of  the  zero  of  the 
instrument  by  alteration  of  temperature.  Unfortu- 
nately the  error  was  not  constant  but  fluctuated. 
The  chief  cause  of  the  displacement  of  zero  by  hot 
readings  was  found  to  be  due  to  the  end  glasses  of 
the  polarimeter  tube.  Many  glasses  were  tried  and 
found  faulty,  although  a  fair  correction  could  be 
made.  The  difficulty  was  finally  overcome  by 
annealing  the  glasses  for  three  hours  at  300°  C, 
whereby  the  error  was  removed.  Increasing  the 
strength  of  the  solution  only  increased  the  colour 
and  uncertainty  of  the  reading.  A  further  point  of 
great  importance  is  the  sensitiveness  of  lsevulose  to 
the  slightest  traces  of  alkalinity  when  the  tempera- 
ture is  raised.  Faint  acidity  is  not  of  so  much 
consequence.  If  the  liquor  examined  gave  the 
faintest  blue  tinge  to  litmus  the  solution  turned 
black  on  heating.  Temperatures  over  70°  C.  some- 
times caused  a  darkening  even  with  carefully 
neutralised  solutions.  As  a  rule  the  temperatures 
employed  were  near  67°  C. 

Sucrose  purified  by  dissolving  in  water  and 
precipitating  by  alcohol  was  hydrolysed  by  hydro- 
chloric acid,  neutralised,  and  examined  polari- 
metrically,  giving  the  results  shown  in  Table  I. 


Table 

I. 

cevulose,  grams  per  100  c.c. 

Take  a 

Found 

0-527 
0-700 
0-700 

0-514 
0-711 
0-709 

With  straw  containing  5 — 7%  of  lpevulose  the 
strength  of  solution  would  be  similar,  so  that  the 
error  of  estimating  lsevulose  in  straw  is  about  0'loj 
with  ordinary  end  glasses.  With  carefully  annealed 
end  glasses,  which  need  no  correction,  the  error  is 
reduced  to  about  one  half  of  that  amount. 

Some  new  glasses  gave  correction  figures  of 
+  170  j  hievulose  in  straw,  whilst  some  old  ones  gave 
-0'7o       hevulose  correction  figures.     Carefully  an- 


Vol.  XXI.  No.  4.]     SAYCE  AND  CRAWFORD.— CARBON  DIOXIDE  IN  MINERAL  CARBONATES.        57  T 


nealed  glass  gave  -0"04%  correction  only,  which 
is  about  the  error  due  to  experimental  chance. 
From  the  fact  that  no  reference  has  been  made  to 
this  source  of  error  in  such  well-known  papers  as 
that  of  Patterson  (Chem.  Soc.  Trans.,  1901,  170),  it 
seems  highly  probable  that  in  pre-war  days  annealed 
end  glasses  were  supplied  by  makers.  The  errors  in 
polarimetric  reading  due  to  badly  annealed  cover 
glasses  require  careful  consideration. 

The  results  of  the  investigations  have  shown  that 
with  straws  containing  much  sugar  three-fourths  of 
the  total  sugar  is  tevulose.  but  when  the  total  sugar 
is  low  in  amount,  kevulose  is  absent. 

Where,  as  in  these  cases,  the  amounts  of  sugars 
other  than  kevulose  are  small,  the  error  due  to  tem- 
perature coefficient  of  the  polarimetric  deflection 
due  to  the  other  sugars,  becomes  very  small. 

The  grouped  results  of  the  investigations  are 
shown  in  Table  II. 


Table  II. 

Average  analyses  of  oat  st 

•a  »• — 

1920. 

N'land 

C'land   Southern 

Great.  Britain. 

Durham 

&  West-     Couu- 
m'land.       ties. 

Mean 

Max. 

Min. 

o 

Of                      Of 

/<*               /o 

0/ 

At 

/o 

Water 

.  Calculated  to  an  average 

12-00%  basis. 

Oil 

.    1-63 

.    1-32   ..    1-45   .. 

1-39 

. .    2-76 

.    0-49 

+Protems 

.    2-76 

.    4-53    ..    282    . 

3-27 

. .    619 

.     1  77 

•Carbohydrates 

41-63 

.  42-78  . .  42-26   . . 

41-15 

.  .  46-40 

.  36-13 

Fibre     . . 

.  35-39 

.  34-37   ..  30-11    .. 

36-35 

..  41-61 

.  3104 

Ash 

6-59 

.    4-98          5-36    . 

5-84 

..    8-29 

.    304 

Containing  : — 

tAmides 

.    0-21 

.    0-32  ..    0-27   . 

0-29 

..    1-82 

.    0-05 

tTrue  proteins 

.     2  59 

.    3-95    . .    2-56    .  . 

300 

..    5-31 

.    0-67 

•Lcevulose 

.    203 

.    1-74    ..    1-37    .. 

1-3 

.  .    5-40 

.  none 

•Sucrose 

.    100 

.    0-86   ..    0-34    .. 

0-56 

..     3-25 

.  none 

•Dextrose,  A-c. 

.    137 

.    1-98   ..    0-95    .. 

109 

..    3-70 

.  none 

•Total  sugars 

.    4-40 

.    4-57    ..    2-68   .. 

2-96 

.  .    8-63 

.    0-33 

No.  of  samples 

.      18 

.      14      ..      21      . 

"'- 

7° 

.    72 

The  high  percentage  of  proteins  is  apparently  due 
to  the  presence  of  much  available  nitrogen  in  soil 
and  manure,  whilst  the  high  percentage  of  sugar 
appears  to  be  due  to  the  dry  condition  of  the  straw 
from  as  early  after  cutting  as  possible  to  the  time 
of  use.  Damp  conditions  cause  loss  of  sugar.  Wf. 
Collins  and  Spiller,  J.,  1920,  66  T.) 


ESTIMATION     OF    CARBON    DIOXIDE    IN 
MINERAL     CARBONATES. 

BY   L.   A.    SAYCE  AND   A.   CRAWFORD. 

The  following  work  was  undertaken  for  the  pur- 
pose of  comparing  the  suitability  and  consistency 
of  certain  methods  of  determining  carbon  dioxide 
in  mineral  carbonates.  The  determinations  were 
carried  out :  — 

1.  By  ignition  in  a  "  Teclu  "  furnace  until  the 
substance  showed  no  further  loss  in  weight. 

2.  In  Sell  rotter's  apparatus  using  (a)  sulphuric 
and  (b)  hydrochloric  acid. 

3.  In  a  modification  of  Schrotter's  apparatus, 
suggested  for  use  in  school  laboratories  by  Dr.  H.  E. 
Armstrong,  and  the  accuracy  of  which  it  was  desired 
to  test. 

A  conical  flask  of  about  200  c.c.  capacity  was 
provided  with  a  cork  through  which  passed  two 
tubes,  one  terminating  below  the  surface  of  dilute 
hydrochloric  acid  in  the  flask,  the  other  being  a  TJ- 
tube  filled  with  calcium  chloride. 

A  weighed  sample  of  the  substance  under 
examination,  wrapped  in  a  weighed  filter-paper, 
was  introduced  into  the  apparatus,  the  cork  was 
immediately  inserted,  and  the  flask  agitated.  At 
the  end  of  the  reaction  the  acid  was  gently  boiled 
and  the  residual  carbon  dioxide  sucked  out  of  the 
flask.  The  flask  and  its  contents  were  then  re- 
weighed. 


4.  In  F.  C.  Garrett's  apparatus.  This  consists  of 
a  stout  test-tube,  to  the  top  of  which  is  attached  a 
Y-tube,  one  branch  of  which  bears  a  tap-funnel, 
containing  dilute  acid,  and  the  other  a  combined 
condenser  and  drying-tube.  At  the  end  of  the 
latter  are  attached  potash  bulbs  or  soda-lime  tubes, 
to  which  an  aspirator  can  be  applied.  A  weighed 
sample  of  the  carbonate  is  introduced  into  the  test- 
tube,  and  decomposed  by  the  gradual  addition  of  the 
acid.  After  complete  decomposition  has  occurred 
the  liquid  is  gently  boiled  to  expel  dissolved  carbon 
dioxide  and  the  apparatus  freed  from  the  gas  by 
the  aspirator. 

5.  In  Collins'  "Calcimeter"  (vide  J.,  1906,  518). 
Calcite  is  obtainable  in  an  extremely  pure  state, 

and  as  clear  Iceland  spar  was  used  it  was  assumed 
that  carbon  dioxide  was  present  to  the  theoretical 
percentage  of  43'96.  The  time  required  for  the 
complete  expulsion  of  carbon  dioxide  by  ignition 
varied  from  1  to  5  hours  according  to  the  efficiency 
of  the  furnace  used.  In  six  determinations  the 
average  error  was  0'03%. 

Using  Schrotter's  apparatus,  with  sulphuric  acid 
for  decomposition,  an  average  error  of  over  2% 
resulted  owing  to  the  protective  action  of  calcium 
sulphate.  With  hydrochloric  acid  there  was  an 
average  error  of  0T8%. 

Considering  the  simple  nature  of  the  modified 
Schrotter's  apparatus  and  the  risk  of  loss  of  hydro- 
chloric acid  the  accuracy  was  good.  In  four  deter- 
minations an  average  of  44"09%  of  carbon  dioxide 
was  obtained. 

Garrett's  apparatus,  however,  proved  unsatis- 
factory with  calcite.  The  average  error  in  12  deter- 
minations was  -0'6%  and  the  results  were  most 
inconsistent.  The  use  of  soda-lime  for  absorption 
in  place  of  potash  led  to  a  slight  improvement.  The 
time  required  to  complete  a  determination  by  this 
method  was  about  1J  hours. 

Collins'  calcimeter  was  designed  for  the  purpose 
of  estimating  carbon  dioxide  in  soils  and  is  not  so 
effective  for  dealing  with  pure  carbonates.  Thus 
the  burette  is  almost  filled  by  the  gas  evolved  from 
0'2  g.  of  calcite  and  an  error  in  weighing  of  0"5  mg. 
would  lead  to  an  error  of  01  %  in  the  figure  for 
carbon  dioxide.  Nevertheless  the  average  of  four 
determinations  was  44"03% — a  deviation  from  the 
theoretical  percentage  of  only  0'99%.  One  great 
advantage  of  this  method  is  that  a  complete  estima- 
tion, including  the  weighings,  can  be  completed  in 
about  20  minutes. 

Witherite  could  not  be  decomposed  in  the  avail- 
able furnaces.  Schrotter's  apparatus  and  its  modifi- 
cation yielded  consistent  results  with  hydrochloric 
acid,  only  a  slight  excess  of  acid  being  used  for  de- 
composition to  avoid  loss  through  volatilisation.  The 
highest  and  lowest  results  differed  by  0"07%  in  four 
estimations.  Garrett's  apparatus,  using  soda-lime 
for  absorption,  gave  more  consistent  results  than 
with  calcite.  The  highest  and  lowest  figures  of  four 
determinations  differed  by  0'09%  and  averaged  0T% 
lower  than  with  Schrotter's  apparatus;  Collins' 
calcimeter  gave  results  0T%  lower  still. 

Dolomite. — The  results  of  five  determinations  by 
ignition  covered  a  range  of  0'6%,  mainly  due  to  the 
low  gas  pressure  available.  As  before,  sulphuric 
acid  in  Schrotter's  apparatus  proved  useless.  In 
Collins'  calcimeter  cold  dilute  hydrochloric  acid 
acted  too  slowly  to  be  of  any  use,  whilst  if  heat  were 
applied  the  corrections  for  dissolved  gas  were  nulli- 
fied. The  addition  of  025  c.c.  of  hydrofluoric  acid, 
however,  promoted  the  reaction  considerably,  but 
the  results  by  this  method  covered  a  range  of  1% 
and  gave  a  slightly  lower  average  result  than  the 
ignition  method. 

Cerussite  and  chalybite  gave  inconclusive  results. 
When  cerussite  was  ignited  there  was  great  danger 
of  reduction  to  metallic  lead  and  the  oxide  formed, 


58T     FINDLAY  AND  ROSEBOURNE.— DECOMPOSITION  OF  AMMONIUM  NITRATE     [Feb.  23, 1922. 


being  readily  fusible,  tended  to  screen  this  reduced 
lead  from  oxidation.  It  is,  therefore,  suggested 
that  the  ignition  be  performed  in  a  bone-ash  cupel 
to  absorb  the  oxide  as  it  is  formed,  an  oxidising 
atmosphere  being  maintained  over  the  cupel. 
Chalybite,  too,  presented  difficulties  when  the 
ignition  method  was  applied  to  it,  the  ferrous  oxide 
formed  being  oxidised  to  an  unknown  extent. 

Conclusions. 

The  ignition  method  gives  consistent  results  where 
it  can  be  applied  without  complications  and  where 
the  decomposition  temperature  is  low  enough.  The 
method  of  Schrbtter  is  unsuitable  in  determining 
the  carbonates  of  metals  having  comparatively 
insoluble  sulphates;  with  hydrochloric  acid  there  is 
danger  of  loss  of  the  acid  by  volatilisation.  The 
modified  Schrbtter's  apparatus  is  inexpensive  and 
is  capable  of  fair  accuracy. 

Judging  by  its  performance  with  witherite, 
Garrett's  apparatus  offers  great  possibilities,  and 
further  investigations  would  no  doubt  indicate  the 
sources  of  error  which  accounted  for  its  incon- 
sistency in  estimating  calcite. 

Collins'  calcimeter,  by  reason  of  its  compact  form 
and  ease  of  operation,  and  the  short  time  needed  in 
making  a  determination,  seems  particularly  well 
adapted  for  dealing  with  readily  soluble  carbonates 
when  an  accuracy  of  0"!  or  0'2  %  is  sufficient. 


Communications. 


NOTE  ON  THE  DECOMPOSITION  AND 
STABILISATION  OF  AMMONIUM  NITRATE 
IN  PRESENCE  OF  OXIDISABLE  MATERIAL. 

BT   ALEXANDER   FINDLAY   AND    CYRIL   ROSEBOURNE. 

Although  many  experiments  have  been  carried 
out  in  connexion  with  the  decomposition  of  molten 
ammonium  nitrate  in  presence  of  metals,  whereby 
reduction  products  of  various  kinds  have  been 
obtained,  the  decomposition  of  ammonium  nitrate 
in  presence  of  organic  oxidisable  material,  e.g., 
woodmeal,  at  temperatures  much  below  the  normal 
decomposition  temperature  of  the  salt,  does  not 
seem  to  have  been  studied.  A  knowledge  of  this 
decomposition,  however,  and  of  possible  means  of 
retarding  it  is  of  importance  owing  to  the  extensive 
use  of  ammonium  nitrate  in  blasting  explosives. 
Preliminary  experiments  carried  out  by  T.  J.  R. 
Alexander,  of  the  Research  Department,  Nobel 
Industries,  Ltd.,  had  shown  that  ammonium  nitrate 
itself  can  be  heated  for  100  days  at  100°  C.  without 
appreciable  decomposition,  but  that  in  the  presence 
of  woodmeal  decomposition  soon  occurs  and  gas  is 
evolved  consisting  of  carbon  dioxide  and  nitrogen. 
Small  quantities  of  carbon  monoxide  are  also  some- 
times present.  We  have  sought  to  investigate  this 
reaction  further,  and  although  circumstances  have 
prevented  us  from  carrying  our  experiments  to  a 
conclusion,  it  seems  desirable,  in  view  of  the 
technical  importance  of  the  subject,  to  put  on 
record  the  main  results  which  we  have  obtained, 
more  especially  as  it  has  been  found  that  a  mixture 
of  ammonium  nitrate  and  organic  oxidisable 
material  can  be  effectively  stabilised  by  the  addition 
of  relatively  small  amounts  of  carbamide  (urea). 

Experimental. 

A  quantity  of  the  mixture  the  stability  of  which 
was  to  be  investigated  was  placed  in  a  test-tube 
fitted  with  a  rubber  stopper  through  which  passed 


a  glass  delivery  tube  bent  downwards  and  opening 
under  the  surface  of  mercury.  The  downward- 
sloping  portion  of  the  tube  had  a  length  of  about 
90  cm.  and  for  32  cm.  of  its  length  had  a  capillary 
bore  (about  1  mm.).  The  volume  of  the  apparatus 
was  determined  volumenometrically.  The  test-tube 
containing  the  reaction  mixture  was,  after  exhaus- 
tion, placed  in  a  water  bath  at  100°  C,  and  the 
rate  of  evolution  of  the  gaseous  products  of  decom- 
position was  measured  by  the  fall  of  mercury  in 
the  delivery  tube  and,  later,  by  collecting  the  gas  in 
a  burette  inverted  over  the  end  of  the  delivery  tube. 
The  materials  used  were  dried  in  a  steam  oven  and 
then  finely  powdered  together. 

A.     Ammonium  nitrate  and  woodmeal. 

Reaction  mixture :  23'75  g.  of  commercial 
ammonium  nitrate,  1"25  g.  of  woodmeal. 

The  experiment  was  carried  out  in  duplicate  and 
results  as  concordant  as  could  be  expected  with  a 
heterogeneous  mixture  were  obtained.  The  curve 
for  the  rate  of  evolution  of  gas  was  of  the  general 
type  required  by  the  law  of  mass  action,  as  is  indi- 
cated by  the  figures  in  table  I. 

Table  I. 


Time  ia 

Gas  evolved 

Time  ia 

Gas  evolved 

days. 

in  c.c. 

davs. 

in  c.c. 

1 

1-5 

2'J 

28-6 

o 

3-2 

23 

30-5 

3 

5-5 

26 

32-5 

» 

9-7 

30 

34-9 

7 

12-6 

35 

38-1 

10 

17-8 

40 

410 

13 

22-0 

45 

44-2 

15 

24-3 

60 

471 

18 

26-5 

55 

500 

On  analysis,  no  carbon  monoxide,  oxygen,  or 
oxide  of  nitrogen  was  detected  in  the  evolved  gas, 
which  was  found  to  consist  of  carbon  dioxide  and 
nitrogen  in  the  proportions  (mean  of  two  experi- 
ments):  C02  33T,  N,  669%.  These  proportions 
correspond  approximately  with  those  required  by 
the  equation 

2xNHtN03 + C  X(H  aO)  y  = 2xNa +xCOa + (4x  +y)H.0 . 

The  water  which  condensed  in  the  delivery  tube 
was  neutral  to  methyl  orange,  thus  confirming  the 
absence  of  acid  oxides  of  nitrogen  from  the  gaseous 
products  of  decomposition. 

In  order  to  ascertain  whether  the  resinous  consti- 
tuent of  the  woodmeal  affected  the  decomposition, 
experiments  were  carried  out  with  woodmeal  which 
had  been  thoroughly  extracted  with  acetone,  and 
also  with  the  resinous  extract  itself.  It  was  found 
that  resin-free  woodmeal  behaved  similarly  to  the 
untreated  material,  but  the  mixture  of  ammonium 
nitrate  and  the  resinous  constituent  of  woodmeal 
gave  no  appreciable  evolution  of  gas,  even  after 
60  days.  It  appears,  therefore,  that  it  is  only  the 
cellulosic  constituent  of  woodmeal  which  is  oxidised 
by  the  ammonium  nitrate  at  100°  C. 

The  substitution  of  pure  ammonium  nitrate  for 
the  commercial  salt,  produced  no  essential  differ- 
ence in  behaviour. 

B.    Ammonium  nitrate  and  starch. 

As  starch  also  finds  employment  in  the  manufac- 
ture of  certain  explosives,  it  appeared  to  be  of 
interest  to  study  the  oxidation  of  this  substance 
by  ammonium  nitrate.  When  a  mixture  of  ammon- 
ium nitrate  and  starch  is  heated  at  100°  C,  the 
rate  of  decomposition  as  measured  by  the  evolution 
of  gas  is  much  more  rapid  than  with  woodmeal,  and 
the  composition  of  the  evolved  gas  varies  as  the 
process  of  decomposition  proceeds.  The  rate  of 
decomposition     is     indicated     by     the    figures     in 


Vol.  XLI.,  Xo.  4.] 


WHEELER  AND  BLAIR.— RECEIVER  FOR  FRACTIONATION. 


59  T 


Table  II.    The  reaction  mixture  consisted  of  23'75  g. 
of  ammonium  nitrate  and  2  g.  of  soluble  starch. 


Table 

II. 

Time  in 

Gas  evolved 

Time  in 

Gas  evolved 

in  days. 

in  c.c. 

in  davi. 

in  c.c 

1 

46-5 

29 

291 

2 

761 

30 

34-2 

3 

920 

31 

40-6 

12* 

8-4 

32 

48-5 

13 

18-2 

40* 

4-9 

14 

28-9 

41 

9-8 

15 

38-5 

43 

13-2 

16 

471 

46 

16-4 

17 

53-3 

50 

200 

25* 

6-9 

55 

24-6 

26 

13-9 

60 

27-4 

27 

19-2 

05 

371 

28 

23-6 

•  .New  burettes  on  11th,  24th,  and  39th  days. 

The  gas  evolved  during  the  first  period  of  three 
days  was  found  to  have  the  composition :  COa  2704, 
N,  72-4,  CO  0-56%.  A  sample  of  gas  collected  16 
days  later  was  found  to  have  the  composition:  C02 
44/07,  N,  55'93%.  No  carbon  monoxide  was  present. 
At  the  end  of  66  days,  the  gas  evolved  appeared  to 
consist  of  nitrogen  only. 

Stabilisation  of  ammonium  nitrate  mixtures. — 
As  it  has  been  shown  that  ammonium  nitrate 
undergoes  decomposition  at  a  comparatively  low 
temperature  in  presence  of  organic  oxidisable 
material,  such  as  woodmeal  and  starch,  it  became 
a  matter  of  importance,  in  view  of  the  use  of  these 
materials  iu  the  manufacture  of  explosives,  to  dis- 
cover some  means  of  retarding  the  decomposition 
and  so  stabilising  the  mixtures.  In  seeking  for  a 
stabiliser  we  were  guided  by  the  hypothesis  (the 
correctness  of  which  is  perhaps  doubtful),  put  for- 
ward by  Alexander,  that  oxidation  of  the  woodmeal 
or  starch  is  brought  about  by  the  nitric  acid  formed 
by  the  hydrolysis  of  ammonium  nitrate,  and  that 
the  oxidation  is  accelerated  by  traces  of  nitrous 
acid,  as  in  the  oxidation  of  lignocellulose  by  nitric 
acid  (Cross  and  Bevan,  "  Cellulose,"  p.  146).  It 
was,  therefore,  to  be  expected  that  addition  of 
carbamide  would  retard  the  oxidation  by  destroy- 
ing the  nitrous  acid.  Experiment  showed  that,  as 
a  matter  of  fact,  carbamide  is  a  most  effective 
stabiliser  for  mixtures  of  ammonium  nitrate  and 
woodmeal  or  starch.  From  a  mixture  consisting  of 
23"75  g.  of  ammonium  nitrate,  T25  g.  of  woodmeal, 
and  025  g.  of  carbamide,  no  appreciable  evolution 
of  gas  took  place  in  a  period  of  35  days ;  and  even 
when  the  amount  of  carbamide  was  reduced  to 
0"4%,  the  total  volume  of  gas  evolved  in  43  days 
was  only  5  c.c.  The  mixture  of  ammonium  nitrate 
and  starch  was  also  found  to  be  stabilised  by  carba- 
mide. 

In  all  cases  when  carbamide  was  present,  the  smell 
of  ammonia  could  be  detected  on  opening  the 
reaction  tube  at  the  end  of  an  experiment. 

Diphcnylamine  and  phenyl  benzyl  ether  were  also 
investigated  as  stabilisers.  On  adding  4%  of 
diphenylamine  to  a  mixture  of  ammonium  nitrate 
and  stafch  and  heating  at  100°  C.  evolution  of  gas 
began  only  after  51  days.  The  gas  consisted  only 
of  nitrogen.  With  larger  quantities  of  diphenyl- 
amine, evolution  of  gas  (nitrogen)  commenced  after 
a  shorter  period.  The  main  action  in  this  case 
seems  therefore  to  be  one  between  diphenylamine 
and  ammonium  nitrate,  an  action  which  is  appar- 
ently accelerated  by  the  presence  of  starch. 

On  heating  at  100°  C.  a  mixture  of  ammonium 
nitrate  and  starch  to  which  phenyl  benzyl  ether  had 
been  added,  evolution  of  gas  began  after  about  a 
week.  The  gas  consisted  at  first  of  nitrogen,  but 
later  carbon  dioxide  in  small  quantity  made  its 
appearance.  A  yellow  oil  which  smelt  of  bitter 
almond  oil  and  which  was  also  formed  when  the 
ether  was  heated  with  ammonium  nitrate  alone, 
collected    in    the    delivery     tube.      Diphenylamine 


and  phenyl  benzyl  ether  are  therefore  not  suitable 
stabilisers  for  mixtures  of  ammonium  nitrate  and 
starch  nor,  it  may  be  presumed,  for  ammonium 
nitrate  and  woodmeal. 

In  connexion  with  the  suggestion  that  the 
reaction  between  ammonium  nitrate  and  woodmeal 
or  starch  depends  on  the  production  of  nitric  acid 
by  the  hydrolysis  of  the  salt,  it  may  be  stated  that 
when  carbamide  nitrate,  which  is  hydrolysed  to  a 
greater  extent  that  ammonium  nitrate,  is  heated 
with  woodmeal  or  starch,  decomposition  takes  place 
much  more  rapidly  than  with  ammonium  nitrate. 
This  decomposition  is  not  appreciably  retarded  by 
the  addition  of  carbamide.  Although  we  have 
carried  out  a  number  of  experiments  along  these 
lines,  the  investigation  has  not  yet  been  carried 
far  enough  to  allow  of  a  fruitful  discussion  of  the 
connexion  between  rate  of  oxidation  and  strength 
of  the  nitrate  base.  It  is  hoped,  however,  to  con- 
tinue the  investigation. 

Chemistry  Department, 
University  of  Aberdeen. 


A  RECEIVER  FOR  FRACTIONATION  IN  A 
CURRENT  OF  GAS  OR  UNDER  REDUCED 
PRESSURE. 

BY  T.    S.   WHEELEB,   B.SC.   A. B.C. SCI.,   AND  E.   W.  BLAIB, 
B.SC. 

The  receiver  at  present  in  use  for  the  fractiona- 
tion of  liquids  which  must  be  distilled  in  a  current 
of  gas  consists  of  a  large  vessel  containing  small  re- 
ceivers, mounted  on  a  pivot,  which  can  be  rotated  to 
collect  the  various  fractions.    The  apparatus  has  the 


Gas  Outlet 
f  cr  Vacuum 
Pump 


disadvantage  of  being  clumsy,  liable  to  leak  at  the 
gland,  and  of  not  supplying,  in  many  cases,  a  proper 
fractionation,  because  the  condensing  vapour  is  in 
contact  with  all  the  fractions.  Also  the  fractions 
can  only  be  sealed  for  storage  by  removing  them 


60  T 


WHEELER  AND  BLAIR.— RECEIVER  FOR  FRACTIONATION. 


[Feb.  28,  1922. 


from  the  receiver  and  thus  exposing  them  to  the  air. 

Having  occasion  to  distil  some  Very  readily  oxidis- 
ahle  liquids,  the  authors  were  led  to  design  the 
apparatus  here  described,  which  was  found  perfectly 
satisfactory  in  every  way  even  when  tested  by  dis- 
tilling zinc  methyl  in  fractions. 

The  condensing  liquid  is  first  collected  in  A,  the 
three-way  tap,  B,  being  turned  so  as  to  connect 
tubes,  6  and  c.  The  gas  current  meanwhile  passes 
from  A  into  C  where  it  displaces  air  and  prepares  C 
for  the  reception  of  the  fraction.  The  tubes,  d  and 
e,  are  shown  as  for  a  heavy  gas,  e.g.,  carbon  diox- 
ide ;  for  a  light  gas  the  relative  depths  to  which 
they  enter  the  flask  must  be  reversed. 

To  isolate  the  fraction,  B  is  turned  to  put  c  in 
communication  with  d.  The  liquid,  helped  by  the 
gas-current  passes  into  C,  B  is  turned  through  180°, 
and  the  tube  c  swept  out  by  gas  passing  from  6. 
Taps  D  and  E  are  closed  and  the  ground-glass  joint. 
F.  opened.  A  new  flask  is  put  on  at  the  joint,  and 
when  the  air  in  it  has  been  swept  out  the  next  frac- 


tion can  be  collected.  If  it  is  necessary  to  collect 
the  fractions  at  very  short  intervals  several  flasks 
can  be  swept  out  simultaneously  by  connecting  them 
in  series  to  E. 

As  shown  the  apparatus  is  adapted  for  the  col- 
lection of  very  readily  oxidisable  liquids.  In  many 
cases  it  will  not  be  necessary  to  have  taps  D  and  E; 
and  F  can  be  replaced  by  a  rubber  connexion. 

The  aparatus  can  also  be  used  for  fractionation  in 
vacuo.  The  vacuum  pump  is  connected  at  /,  and 
while  a  fraction  is  collecting  exhaustion  takes  place 
from  6  to  c.  The  fraction,  after  being  sucked  into 
C  by  turning  through  180°,  is  isolated  by  closing  B 
by  a  right  angle  turn,  closing  E  and  disconnecting 
at  /.  Air  or  other  gas  can  then  be  admitted  through 
E,  and  F  disconnected.  If  preferred  E  can  con- 
veniently be  a  three-way  tap.  Another  flask  is  then 
fitted  on,  and  when  exhausted  6  and  c  are  put  in 
communication.  To  save  time  several  flasks  can  be 
kept  exhausted  by  attaching  them  in  series  to  /  and 
the  pump. 


Vol.  XLI.,  No.  5.] 


TRANSACTIONS 


[Mar.   15,  1922. 


Birmingham    Section. 


Meeting  held  at  the  University,  Birmingham,  on 
Thursday,  January  26,  1922. 


DR.   H.    W.   BROWNSDON  IN  THE  CHAIR. 


AMINONAPHTHOTRIAZOLES  AS  COLOUR 
INTERMEDIATES. 

BY    GILBERT   T.    MORGAN   AND   HUGH   GILMOTTR. 

In  a  former  communication  it  was  shown  that 
5-amino-1.2-naphtho-p-tolyltriazole  could  be  used  as 
a  first  but  not  as  a  middle  or  end  component  of 
polyazo-dyes  (Morgan  and  Chazan,  J.,  1922,  1  t).  In 
the  present  communication  the  production  of  the 
isomeric  8-amino-1.2-naphtho-p-tolyltriazole  (III) 
is  described,  starting  from  purified  8-nitro-/J-naph- 
thylamine. 


N,-C,H, 
NO,  / 

|/X)NH3      ■ 
I. 


r>N^>CH, 


CO*' 


II. 


NH2/Iif\ 


00 


III. 

This  nitro-base  is  successively  converted  into 
p-toluene-l-azo-8-nitro-/3-naphthylamine  (I)  and  8- 
nitro-1.2-naphtho-p-tolyltriazole  (II)  which  readily 
yields  the  base  (III)  on  reduction. 

The  8-aminotriazole,  handled  in  the  form  of  its 
stable  hydrochloride,  is  more  reactive  than  the 
5-amino-isomeride  inasmuch  as  it  condenses  with 
p-nitrobenzenediazoniuni  chloride  to  an  aminoazo- 
derivative  which  can  again  be  diazotised  and 
coupled  with  /3-naphthol  or  its  sulphonic  acids. 
These  reactions  indicate  that  the  aminonaphthotri- 
azoles  derived  from  8-nitro-/3-naphthylamine  can 
function  as  middle  components  in  polyazo-dyes. 

Both  5-  and  8-nitro-/3-naphthylamines  when 
coupled  with  p-nitrobenzenediazonium  chloride  yield 
dinitroiiaphthophenyltriazoles  which  on  reduction 
yield  respectively  5-amino-1.2-naphtho-4'-amino- 
phenyltriazole    (IV)     and     8-amino-1.2-naphtho-4'- 


NH, 


NH, 


NH. 

00 


/  i  \- 


n/     x- 


^NH, 


IV. 


aminophenyltriazole  (V).  The  hydrochlorides  of 
these  isomeric  diamines  are  readily  diazotised  in 
aqueous  solutions  and  the  resulting  bisdiazonium 
salts  couple  readily  with  naphtholsulphonic  acids  to 
form  disazo-dyes. 

Experimental. 

A  mixture  (65  g.)  of  5-  and  8-nitro-/8-naphthyl- 
amines  obtained  by  Friedlander  and  Szymanski's 
method  (Ber.,  1892,  25,  2076)  when  dissolved  to 
saturation  in  boiling  benzene  yielded  21  g.  of  crude 
5-nitro-/?-naphthylamine,  which  was  obtained  pure 
(m.p.  143'5°  C.)  after  repeated  crystallisation  from 
alcohol.    The  residue  (35  g.),  recovered  by  evaporat- 


ing the  benzene  filtrate  and  the  first  alcoholic  fil- 
trate to  dryness,  was  acetylated  with  acetic  anhyd- 
ride, when  the  mixed  acetyl  derivatives  after 
repeated  crystallisation  from  alcohol  gave  15  g.  of 
the  less  soluble  acetyl-8-nitro-/}-naphthylamine  (m.p. 
195-5°).  By  hydrolysis  with  hot  dilute  sulphuric 
acid  (90  c.c.  H2SO4:270  c.c.  HaO)  this  acetyl  deriva- 
tive furnished  8-nitro-/3-naphthylamine  sulphate 
from  which  the  pure  base  (m.p.  1035°)  was  obtained 
after  crystallisation  from  alcohol. 

8-Amino-1.2-naphtho-p-tolyltriazole  (III). 

p-Toluene-l-azo-8-nitro-|8-naphthylamine  (I),  pre- 
pared as  a  red  crystalline  precipitate  in  alcoholio 
solution  from  toluene-p-diazonium  chloride  and 
8-nitro-/J-naphthylamine,  separated  from  benzene  in 
dark  red  prisms  melting  at  177°— 178°  C.  :N  = 
18-67%.  C17H,402N4  requires  N  =  1830%.  This  azo- 
derivative  dissolved  in  15  parts  of  hot  glacial  acetic 
acid  was  oxidised  with  its  own  weight  of  chromium 
trioxide,  the  product  being  precipitated  in  quanti- 
tative yield  on  dilution.  When  recrystallised  from 
glacial  acetic  acid,  8-nitro-1.2-naphtho-p-tolyltri- 
azole  (II)  separated  in  yellow  needles  melting  at 
187°  :  N  =  18-71%.  C„H1;102N4  requires  N  =  18-42%. 
When  reduced  in  hot  glacial  acetic  acid  solution 
with  stannous  chloride  and  hydrochloric  acid  the 
foregoing  nitro-compound  gave  a  crystalline  preci- 
pitate of  8-amino-1.2-naphtho-p-tolyltriazole  hydro- 
chloride which  on  recrystallisation  from  dilute  acetic 
acid  (5  acidll  water)  separated  in  minute  yellow 
needles  decomposing  at  220°  C.  :  found  N  =  175, 
Cl  =  ll-82%.  C17H15N4C1  requires  N  =  18-03,  Cl  = 
11-41%.  Although  dissolving  only  sparingly  in 
water,  this  hydrochloride  diazotised  to  a  moderately 
soluble  diazonium  chloride  giving  rise  to  a  bright 
red  azo-/3-naphthol.  The  free  aminotriazole  was 
very  oxidisable;  its  solutions  in  alcohol  or  benzene 
showed  an  intense  green  fluorescence.  When 
coupled  with  p-nitrobenzenediazonium  chloride  in 
glacial  acetic  acid  containing  sodium  acetate  the 
hydrochloride  gave  a  red  azo-derivative  which 
separated  from  pyridine  in  dark  purple  crystals 
with  a  green  reflex;  (sulphuric  acid  coloration, 
violet;  m.p.  247° — 248°).  This  azo-compound,  which 
was  only  sparingly  soluble  in  benzene  or  glacial 
acetic  acid,  was  diazotised  with  nitrite  and  hydro- 
chloric acid  in  the  latter  solvent  to  an  orange- 
coloured  diazo-derivative  coupling  with  /3-naphthol 
and  H  acid  to  violet  disazo  compounds. 

5- Amino-!. 2-naphthoA' '-aminophenyltriazole  (IV). 

p-Nitrobenzene-l-azo-5-nitro-/3-naphthylamine 
separated  as  a  bulky  red  precipitate  on  adding 
p-nitrobenzenediazonium  chloride  to  5-nitro-/J- 
naphthylamine  in  alcoholic  solution.  This  azo- 
compound  when  oxidised  with  chromium  trioxide  in 
glacial  acetic  acid  yielded  minute  yellow  needles  of 
5-nitro-1.2-naphtho-4'-nitro-p-tolyltnazole,  m.p. 
242°— 243°:  N  =  20'59%.  CI8H904N3  requires  N  = 
20-89%. 

5  -  Amino  -1.2-  naphtho  -  4'-  aminophenyltriazole 
hydrochloride  separated  as  a  yellow  crystalline 
precipitate  when  the  foregoing  dimtro-compound 
was  reduced  with  stannous  chloride  and  hydro- 
chloric acid»in  glacial  acetic  acid,  the  solution  being 
cooled  in  the  ice  chest.  Recrystallised  from  water, 
the  hydrochloride  formed  microscopic  yellow  spicules 
decomposing  at  300°.  Alcoholic  and  ethereal  solu- 
tions of  the  free  base  showed  an  intense  green 
fluorescence.  In  glacial  acetic  acid  the  base  coupled 
with  p-nitrobenzenediazonium  chloride  to  a  dark 
red  insoluble  azo-compound  (sulphuric  acid  colora- 
tion, purple). 

The  diaminotriazole  hydrochloride  was  readily 
diazotised  in  aqueous  solutions;  the  diazonium  salt 
coupled  to  give  the  following  azo-colours :  — 


62  t 


RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.     [Mar.  13,  1922. 


Azo-coloux. 

Sulphuric  acid 

►        coloration. 

Bed 

Violet. 

Red 

Purple. 

Purple 

Purple. 

Magenta 

Violet. 

Red 

Purple. 

Purple 

Blue. 

Bisdiazonium  salt 
coupled  with : 
0-Naphthol 
Schiiffer  acid 
H  acid 

Acetyl  J  acid 
R  acid 
Chromotrope  acid  . . 

8-Amino-1.2-naphtho-i'-aminophenyltriazole  (V). 

p-Nitrobenzene- 1  -  azo  -8  -  nitro  -/?  -  naphthylamine 
separated  as  a  dark  red  precipitate  on  adding 
p-nitrobenzenediazonium  chloride  to  an  alcoholic 
solution  of  8- nitro -/3- naphthylamine.  When 
oxidised  with  chromium  trioxide  in  the  manner 
previously  indicated  this  azo-compound  yielded 
8-nitro-1.2-naphtho-4'-nitrophenyltriazole  which 
separated  from  glacial  acetic  acid  in  yellow  needles, 
m.p.  270°— 271°C. :  N  =  2P13%.  CI6H,04N,  requires 
N  =  2089%.  Reduction  of  the  foregoing  dinitro- 
triazole  with  stannous  chloride  and  hydrochloric 
acid  in  glacial  acetic  acid  gave  8-amino-1.2-naphtho- 
4'-aminophenyltriazole  hydrochloride  in  yellow 
needles  readily  soluble  in  hot  water.  The  free  base 
was  oxidisable,  its  alcoholic  and  ethereal  solutions 
showing  a  green  fluorescence,  and  it  coupled  with 
p-nitrobenzenediazonium  chloride  to  a  dark  red 
azo-compound  (sulphuric  acid  coloration,  purple). 
This  hydrochloride  was  readily  diazotised  in 
aqueous  solution  and  coupled  to  give  the  following 
azo-colours :  — 


Intermediate. 

/3-NaphthoI 
Schaffer  acid 
H  acid 
Acetyl  J  acid 
R  acid 
Chromotrope  acid  . . 


Azo-colours. 

Red 

Crimson 

Purple 

Red 

Red 

Purrle 


Sulphuric  acid 
coloration. 
Purple. 
Crimson. 
Purple. 
Purple. 
Purple. 
Blue. 


The  authors'  thanks  are  due  to  the  British  Dye- 
stuffs  Corporation,  Ltd.  (Manchester)  for  affording 
facilities  for  carrying  out  this  investigation. 

Chemical  Department, 

University  of  Birmingham, 

Edgbaston. 


London    Section. 


Meeting  held  at  Burlmqton  House  on  January  16, 
1922. 


MR.   E.    V.   EVANS  IN  THE  CHAIR. 


FURTHER  EXPERIMENTS  WITH  ACTIVATED 

SLUDGE. 

BY   E.    HANNAFORD    RICHARDS    AND    G.    C.    SAWYER. 

(liuthamsted  Experimental  Station.) 

Preliminary  experiments  carried  out  at  Rotham- 
sted  on  the  fertilising  value  of  slate-bed  and 
activated-sewage  sludges  have  been  described 
recently.*  The  present  communication  deals  more 
particularly  with  attempts  to  answer  the  following 
questions :  — 

(1)  Does  the  activated  sludge  process  recover  more 
of  the  nitrogen  in  sewage  than  the  older  methods  of 
sewage  purification  ? 

(2)  Is  the  nitrogen  recovered  in  the  sludge  in  a 
form  available  as  plant  food? 

(3)  What  is  the  source  of  the  high  nitrogen  con- 
tent of  activated  sludge? 

The  inquiry  was  undertaken  at  the  request  of 
the  Ministry  of  Agriculture,  most  of  the  expense 
being  met  by  a  grant  from  the  Ministry's  funds. 

•  J.,  1920,  177T. 


In  order  to  test  the  fertilising  value  of  activated 
sludge  on  the  field  scale,  and  at  the  same  time 
obtain  information  on  the  points  mentioned  above, 
it  was  desirable  to  have  a  small  plant  working  under 
direct  control.  Fortunately  ample  space  and  power 
were  available  at  the  Harpenden  Sewage  Works. 
By  permission  of  the  Harpenden  U.D.C.,  part  of 
an  existing  tank  was  adapted  to  the  activated 
sludge  process  by  Messrs.  Jones  and  Attwood,  and 
this  was  run  concurrently  with  the  laboratory 
experiments  which  will  be  first  described. 

Laboratory  Experiments. 
Nitrogen  balance  experiments  with  activated  sludge. 

These  experiments  were  made  in  glass  cylinders 
of  about  450  c.c.  capacity.  Air  was  drawn  first 
through  an  acid  wash-bottle  to  remove  any 
ammonia,  then  through  an  unglazed  crucible  at  the 
bottom  of  the  cylinder  to  break  the  stream  into  very 
small  bubbles,  and  finally  exhausted  through  an- 
other acid  wash-bottle  so  that  any  ammonia  carried 
away  in  the  air  stream  might  be  recovered  and 
determined.  The  activated  sludge  used  had  been 
prepared  from  Harpenden  sewage  by  previous 
aeration  in  similar  apparatus.  It  was  brought  to 
a  high  degree  of  activity  before  the  experiment 
began. 

Two  experiments  were  run  in  parallel ;  one  with 
a  large  percentage  volume  (40)  and  one  with  a  small 
percentage  volume  (7)  of  sludge.  The  "  sewage  " 
in  this  case  consisted  of  a  solution  of  ammonium 
carbonate  in  tap  water  equivalent  to  very  strong 
sewage,  i.e.,  10  parts  of  nitrogen  per  100,000.  In 
the  first  week  of  the  experiment  three  fillings  were 
aerated  until  each  "  effluent  "  was  well  nitrified. 
Ammonia  and  nitrate  were  determined  in  all  the 
effluents  siphoned  off.  The  total  nitrogen  in  the 
sludge  was  determined  at  the  beginning  and  end 
of  the  experiment. 

The  balance  sheet  below  shows  that  in  both 
experiments  there  was  a  quantitative  recovery  of 
nitrogen  within  the  experimental  error  of  such 
operations — probably  at  least  5%.  There  was  no 
increase  in  total  nitrogen.  This  does  not  rule  out 
the  possibility  of  nitrogen  fixation,  but  if  the  latter 
occurred  it  must  have  been  exactly  counterbalanced 
by  a  loss  of  elementary  nitrogen.  In  both  cases  the 
sludge  gained  nitrogen;  with  the  larger  proportion 
of  sludge  this  gain  amounted  to  40%  of  the  nitrogen 
added  as  ammonium  carbonate;  with  the  smaller 
volume  28%  was  recovered. 

Nitrogen  balances. 


Apparatus  No.  1 
(40%  sludge). 

Apparatus  No.  2 
(7%  sludge). 

1st  week, 
g- 

1st  and 

2nd  weeks. 

g. 

1st  week, 
g- 

1st  and 
2nd  weeks. 

g-. 

N  added  as 

(NH.),CO, 
N  la  sludge  at  start 

0-1227 
0-4178 

0-2045 
0-4178 

00734 
0-0661 

0-1468 
0-0661 

Total      . . 

0-6405 

0-6223 

0-1395 

0-2129 

N  as  NHj  in  air  out 
N  as  NH,  in  effluent 
N  as  NO,  in  effluent 
N      removed      for 

analysis  . . 
N  In  sludge  at  end 

0-0029 
00121 
0-0505 

0-4675 

00042 
0-0252 
0-1712 

00117 
0-4214 

0-0111 
0-0278 
0-0112 

0-0848 

0-0173 
00463 
00040 

00115 
00478 

Total      . . 
N  gained  or  lost  . . 

0-5330 
-1-39% 

0-6337 
+1-80% 

01349 
-  3-30% 

0-1869 
- 12-2% 

The  same  sludge  was  used  in  both  cylinders  for 
another  week's  run  on  the  same  lines.  The  larger 
volume  of  6ludge  again  showed  a  quantitative 
recovery  of  total  nitrogen  but  a  much  smaller 
increase   in   the   nitrogen   found    in    sludge.      The 


Vol.XLI.,.\o.5.]     RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.         63  T 


smaller  volume,  however,  suffered  a  definite  loss  of 
total  nitrogen,  while  the  sludge  itself  lost  10%, 
compared  with  a  gain  of  28%  in  the  first  week's  run. 
Assuming  the  action  to  be  biological,  as  no  sewage 
was  used  iu  these  experiments,  the  food  supply  for 
the  organisms  concerned  must  be  drawn  from  the 
sludge.  In  No.  1  (larger  volume)  there  was  sufficient 
to  carry  through  a  fortnight's  run  without  loss  of 
nitrogen,  though  the  gain  of  nitrogen  by  the  sludge 
falls  off  in  the  second  week.  In  No.  2  (smaller 
volume)  the  food  supply  was  probably  exhausted  in 
the  first  week,  so  that  losses  of  nitrogen  were 
observed  both  in  the  sludge  and  on  the  total  balance. 
Two  similar  experiments  were  then  carried  out 
using  Harpenden  settled  6ewage  instead  of  an 
ammonium  carbonate  solution.  All  the  sewage  used 
was  analysed  for  ammoniacal  and  total  nitrogen. 
The  ammonia  carried  away  in  the  air  stream  proved 
to  be  a  negligible  amount,  as  in  the  previous  experi- 
ments. Ammonia,  nitrate,  and  total  nitrogen  were 
determined  in  the  effluents.  The  balance  sheets 
show  that  the  nitrogen  changes  were  rather 
different  in  the  two  experiments,  but  the  losses  of 
nitrogen  were  much  alike,  viz.,  15  and  19%  respec- 
tively. 

Experiments  with  sewage.     Ten  fillings  in  16  days. 


Xo.  1 
(18%  sludge). 

No.  2 
(13%  sludge). 

N  as  NH3  in  sewage 

N  as  organic  N  in  sewage 

0-2036 
0-0279 

0-2376 
00269 

Total  N  in  sewage 
N  in  sludge  at  start 

0-2315 
01086 

0-2645 
0-0991 

Total        

0-3-401 

0-3636 

N  as  KH  9  in  air  out 
N  as  NH,  in  effluents 
N  as  NO,  in  effluents 
N  as  organic  N  in  effluents 

00015 
00015 
01393 
00055 

0-0015 
00057 
01699 
00031 

Total  N  in  effluent  and  air 

0-1478 
01428 

0-1802 
0-1142 

Nlost 


14-6? 


19% 


In  No.  1  apparatus  41%  of  the  total  nitrogen  in 
the  original  sludge  and  sewage  appeared  as  nitrate 
in  the  effluents,  while  10%  was  gained  by  the  sludge 
at  the  end.  In  No.  2  apparatus  47%  of  the  total 
nitrogen  finished  as  nitrate,  but  only  4%  was  gained 
by  the  sludge.  It  is  possible  that  the  volume  of  air 
drawn  through  No.  2  was  rather  greater  than 
through  No.  1,  though  thev  were  frequently 
adjusted  so  as  to  receive  equal  volumes.  In  any 
case  nitrification  was  more  active  and  the  loss  of 
nitrogen  was  greater  in  No.  2  than  in  No.  1. 

An  attempt  was  made  to  strike  a  balance  for  dry 
matter  as  sludge  and  suspended  solids  in  sewage, 
but  the  quantities  of  material  available  were  too 
small  to  allow  of  accurate  estimations.  The  figures 
obtained,  however,  showed  an  increase  of  dry  matter 
as  sludge  in  No.  1  and  a  considerable  decrease  in 
No.  2,  which  agrees  with  the  view  that  biological 
action  was  more  vigorous  in  the  latter.  Much  better 
experimental  data  for  discussing  the  question  of 
sludge  and  suspended  solids  are  given  under  the 
heading  "  Experiments  at  Harpenden  Sewage 
Works." 

Partial  sterilisation  of  activated  sludge. 
Protozoa  constitute  a  large  proportion  of  the 
population  of  activated  sludge,  but  the  fauna  is 
quite  different  from  that  of  soil.  For  this  reason 
it  was  decided  to  treat  one  of  the  cylinders  used 
for  the  nitrogen  balance  experiments  with  a  volatile 
antiseptic  and  to  observe  the  effects  on  the  working 
of  the  process  in  comparison  with  an  untreated 
control.  A  preliminary  experiment  with  toluene 
showed  that  a  very  short  period  of  blowing  toluened 
air  through  the  sludge  and  sewage  was  sufficient 


to  kill  all  active  protozoa.  By  the  kindness  of 
Mr.  D.  W.  Cutler  counts  of  the  total  bacteria  and 
of  three  groups  of  protozoa — amoebae,  flagellates, 
and  ciliates — were  made  by  the  methods  in  use  in 
tho  Protozoological  Laboratory  at  Rothamsted.* 
After  bubbling  the  air  for  30  minutes  through  a 
toluene  wash-flask,  all  active  protozoa  and  a  portion 
of  the  bacteria  were  killed.  Normal  air  was  then 
blown  for  20  hours  through  both  cylinders,  when 
the  sludge  and  effluents  were  examined.  Clarifica- 
tion was  not  so  good  in  the  partially  sterilised 
cylinder  as  in  the  control;  the  ammonia  was  un- 
changed, and  there  was  no  trace  of  nitrite  or 
nitrate.  The  toluened  sludge  showed  one  or  two 
small  flagellates  and  few  bacteria.  The  control 
sludge  contained  normal  flora  and  fauna  and  the 
ammonia  was  completely  nitrified. 

Some  of  the  control  effluent  was  then  filtered 
through  three  thicknesses  of  filter  paper  to  remove 
most  of  the  protozoa  (Kopeloff,  Lint,  and  Cole- 
man2). After  the  filtrate  had  been  examined  and 
found  freo  from  all  larger  forms,  5  c.c.  was  added 
to  tho  toluened  cylinder.  Air  was  then  blown  for 
20  hours  through  both  cylinders.  After  settling 
the  toluened  effluent  was  if  anything  rather  better 
clarified  than  the  control,  but  both  were  free  from 
colloids.  The  inoculation  with  nitrified  effluent  had 
an  immediato  effect  in  the  toluened  cylinder.  It 
now  contained  25  parts  of  nitric  hydrogen  and  a 
trace  of  ammonia,  compared  with  20  and  none  in 
the  control.  As  the  latter  had  now  been  aerated 
more  or  less  continuously  for  three  days,  some 
nitrogen  had  probably  been  lost.  Although  this 
effect  of  an  increased  nitrate  content  after  inocula- 
tion of  partially  sterilised  sludge  has  been  noticed 
several  times  in  subsequent  experiments,  it  is  not 
put  forward  as  evidence  that  nitrification  is 
accelerated  by  the  reduction  of  protozoa.  It  is, 
however,  possible  that  the  complex  biological 
actions  leading  to  loss  of  elementary  nitrogen  are 
inhibited  to  some  extent,  with  the  result  that 
nitrification  of  the  original  ammonia  is  more  nearly 
quantitative  than  in  an  unsterilised  control. 

Experiment  2. — In  this  experiment  counts  of 
protozoa  and  bacteria  were  made  in  both  treated 
and  control  mixtures  of  sludge  and  sewage  and  in 
the  sludge  and  effluents  separately.  The  sludge 
used  was  not  in  a  very  active  state,  and  contained 
none  of  the  larger  protozoa  (ciliates  etc.).  Twenty 
per  cent,  of  sludge  was  placed  in  each  cylinder, 
which  was  filled  with  a  strong  sewage  to  a  total 
volume  of  500  c.c.  Toluened  air  was  blown  for 
20  minutes.  A  sample  of  mixed  sludge  and  sewage 
then  showed  less  than  100,000  protozoa  of  all  types 
compared  with  1,000,000  per  c.c.  in  the  control. 
After  20  hours'  aeration  there  were  no  protozoa  and 
2025  million  bacteria  per  c.c.  in  the  toluened 
cylinder,  compared  with  850,000  protozoa  and  11*5 
million  bacteria  in  the  control.  Both  cylinders  were 
then  inoculated  with  filtered  effluent  as  before  and 
aerated  for  another  46  hours,  when  chemical  and 
biological  examinations  were  made. 


No.  1. 

No.  2. 

Toluened. 

Control. 

Parts  V"  100,000— 

N  as  NH 

1-20 

none 

N  as  NOs        

2-50 

3-50 

4  hours'  oxvgen  absorbed 

108 

0-70 

Protozoa  (all  types)  per  c.c. 

verv  few. 

850,000 

Bacteria  in  effluent  (4) 

23,400,000 

15,000,000 

Bacteria  in  sludge  (1) 

15,750,000 

10,600,000 

Total  bacteria  in  mixed  sludge  and 

effluent 

21,900,000 

14,100.000 

•  Bacterial  count?  were  made  by  diluting  the  sewage  to  1-250,000. 
1  c.c.  of  this  fluid  was  inoculated  on  to  three  agar  plates,  which  were 
incubated  for  5  days,  at  the  end  of  which  the  colonies  were  counted. 
A  svnthetic  agar  was  used  in  preference  to  gelatin,  as  experiment 
had' demonstrated  that  the  former  medium  gives  more  uniform  and 
accurate  results  than  the  latter.  Protozoa  counts  were  made  by  a 
hsemocy  to  meter  apparatus. 

A 


G4t 


RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.     [Mar.  15, 1922. 


In  this  case  neither  nitrification  nor  carbon 
fermentation,  as  measured  by  the  "  oxygen  ab- 
sorbed "  test,  are  so  good  in  the  toluened  cylinder 
as  in  the  control.  This  is  no  doubt  because  the 
original  sludge  of  low  activity  improved  greatly  with 
prolonged  aeration.  A  considerable  amount  of 
nitrogen  was  either  lost  or  locked  up  in  the  sludge, 
as  the  original  sewage  contained  6' 75  parts  of 
nitrogen  as  ammonia. 

When  examined  after  20  and  66  hours  the  relation 
between  the  numbers  of  protozoa  and  bacteria  is 
clearly  demonstrated. 


Experiment  4. — In  the  three  previous  experi- 
ments the  toluened  sludge  was  inoculated  with 
nitrified  effluent  filtered  through  many  thicknesses 
of  paper.  This  is  at  best  an  imperfect  method  of 
separating  protozoa  from  bacteria  and  some  smaller 
forms  were  certainly  added  involuntarily,  but,  as 
the  counts  show,  they  were  not  sufficient  to  upset 
the  demonstration  of  the  correlation  between  the 
two  groups. 

This  time  the  sewage  was  treated  separately  with 
toluene  and  then  aerated  vigorously  to  remove  any 
excess.     The  partially  sterilised  sewage  was  added 


Experiment  2. 


Time  of  aeration. 


Paris  per  100,000  : 

Nitrogen  as  ammonia  . . 

N  as  nitrate 

4  hrs.'  oxygen  absorbed 
Millions  p?r  c.c  : 

Total  protozoa 

Total  bacteria 


At  start. 


20  hours. 


GG  hours. 


Con. 


6-75 
6-18 

1-00 


Tol. 


Tol. 


6-75 


0-10 


3-6 


0-85 
11-50 


40 


none 
20-25 


Con. 


Tol. 


Con. 


10 
2-5 


3-3 

1-0 


none 
3-50 
0-70 

0-85 

14-10 


1-20 
2-50 
108 

010 

21-90 


Experiment  3. — A  very  highly  activated  sludge 
containing  many  large  ciliates  was  used  for  this 
experiment.  The  air  supply  was  filtered  through 
tubes  plugged  with  cotton  wool,  otherwise  the  first 
stage  was  carried  out  exactly  as  in  No.  2.  The 
table  shows  the  results  obtained.  They  confirm  the 
previous  experiment.     After  toluene  treatment  the 


to  the  sludge  in  both  cylinders  and  toluened  air 
passed  through  No.  1  for  15  minutes.  No  inocula- 
tion was  made.  Aeration  was  continued  for 
96  hours  with  frequent  intermediate  tests  for 
nitrate.  As  expected,  nitrification  was  much  slower 
in  No.  1  cylinder  than  where  an  inoculant  was 
added.     After  96   hours'    aeration   there   was  only 


Experiment  3.     Inoculated. 
Time  of  aeration. 


At  start. 

5  hours. 

22  hours. 

47  hours. 

70  hours. 

Con. 

Tol. 

Con. 

Tol.             Con. 

Tol. 

Con. 

Tol. 

Con. 

Tol. 

Paris  per  100.000  : 

Jf  as  ammonia 

N  as  nitrate 

4  hours'  oxygen  absorbed    . . 

Dissolved  oxygen  taken  up  in 
5  days 
lliliions  per  c.c. : 

Total  active  protozoa 

Total  bacteria 

9-75 
000 
8-78 

1-25 

11-70 

9-75 

none 
8-57 

600 
0-32 

100 
12-10 

6-46 
0-36 

very  few 
7-50 

1-95 
4-35 
2-53 

0-65 

13-75 

3-49 
200 
2-72 

0-25 

1700 

012 

100 
12-50 

006 

0-85 
9-25 

trace 
4-15 
1-40 

0-19 

1-25 
3-98 

trace 
5-71 
1-40 

0-21 

0-98 
4-50 

bacterial  numbers  rise  from  7-5  to  17'0  millions  per 
c.c,  while  the  control  remains  steady.  After  22 
hours'  aeration  the  carbon  fermentation  was  equally 
incomplete  in  both  cylinders,  as  shown  by  the 
oxygen  absorbed  test,  but  nitrification  was  much 
delayed  in  the  toluened  sample.  At  47  hours  both 
cylinders  gave  figures  practically  alike,  and  after 
70  hours  the  carbon  fermentation  was  complete  in 
both.  Rather  more  nitrate  was  again  found  in  the 
sterilised  cylinder  (compare  preliminary  experi- 
ment). 


125  parts  of  nitric  nitrogen  in  No.  1,  compared 
with  40  parts  in  No.  2,  which  reached  its  maximum 
of  500  parts  after  25  hours,  when  No.  1  contained 
only  0"65  part. 

The  chief  point  worth  noting  about  this  experi- 
ment is  that  in  the  absence  of  protozoal  infection 
from  inoculant  the  number  of  bacteria  in  the 
toluened  sludge  rose  to  24,750,000  per  c.c,  the 
highest  count  noted  of  the  24  made  altogether. 

Another  filling  of  toluened  sewage  was  given  to 
each  cylinder   and  No.    1    inoculated   with   paper- 


Experiment  4.     Not  inoculated. 

Time  of  aeration. 


At  start.                                  24  hours. 

73  hours. 

96  hours. 

Cou. 

Tol. 

Con. 

Tol.                 Con.                 Tol. 

Con. 

Tol. 

Parts  per  100.000  : 

N  as  ammonia  . . 

N  as  nitrate 
Miliums  per  c.c.  : 

T>T:,1  active  protozoa  .. 

Total  bacteria 

6-75 

0-RO 
10-75 

C-75 

none 
10-9S 

4  44 

0-80 

4-44 

0-75 
15.38 

0-75 

less  than  0-10 
24-75 

005 
400 

3-48 
1-25 

Vol.  XIX,  No. 


RICHARDS   AND  SAWYER.— EXPERIMENTS  WITH   ACTIVATED   SLUDGE.         65  T 


filtered  effluent  from  No.  2.  Apparently  the  pro- 
longed toluene  treatment  had  so  reduced  the 
activity  of  tho  sludge  in  No.  1  that  even  inoculation 
could  only  produce  TO  part  of  nitric  nitrogen  after 
24  hours'  aeration,  compared  with  50  in  the  control. 

Since  these  experiments  were  finished,  Cambier|J 
has  described  the  effect  of  chloroform  on  acti- 
vated sludge.  He  finds  that  nitrification  is  in- 
hibited at  a  concentration  of  1  in  9000,  but  does  not 
believe  that  chloroform  is  able  to  do  this  by  anti- 
septic action.  From  further  experiments  with 
chloroform  the  conclusion  is  drawn  that  nitrifica- 
tion in  activated  sludge  is  not  biological,  but  is 
favoured  by  ferrous  sulphide  acting  as  a  catalyst. 
The  evidence  for  this  given  in  tho  short  note  is  not 
very  convincing. 

These  experiments  can  only  be  regarded  as  an 
attempt  to  find  out  if  the  protozoa,  forming  as  they 
do  so  large  a  proportion  by  bulk  of  the  population 
in  activated  sludge,  are  essential  to  the  proper 
working  of  the  process  as  a  means  for  purifying 
sewage.  In  so  far  as  the  protozoa  keep  down  the 
bacterial  numbers  they  might  be  regarded  as  detri- 
mental, but  the  present  experiments  show  that  the 
increase  m  bacteria  following  antiseptic  treatment 
produced  no  improvement  in  the  purification.  On 
the  contrary,  both  carbon  and  nitrogen  fermenta- 
tions were  seriously  retarded.  It  is,  of  course, 
realised  that  any  treatment  which  is  drastic  enough 
to  kill  off  even  the  active  protozoa,  leaving  cysts 
untouched,  is  certain  to  suppress  the  nitrifying 
organisms  as  well  as  many  other  less  resistant 
species.  Assuming  that  the  rise  in  numbers  is  con- 
fined to  one  or  two  types  forming  intermediate  links 
in  the  whole  process,  then  however  much  they  in- 
creased there  could  be  no  effect  on  the  final  pro- 
ducts, since  the  lowest  link  in  the  chain  sets  the 
pace  of  the  whole. 

On  the  other  hand,  if  suppression  of  the  protozoa 
did  speed  up  the  purification,  the  value  of  the  sludge 
might  well  be  seriously  depreciated  as  a  fertiliser. 
Should  the  views  put  forward  later  in  this  paper 
prove  correct,  the  nitrogen  content  of  activated 
sludge  minus  protozoa  would  be  reduced  by  some 
2  or  3     . 

If  the  partial  sterilisation  of  activated  sludge 
offered  any  economic  advantage,  the  practical  appli- 
cation would  be  extremely  cheap  and  simple.  By 
merely  by-passing  part  of  the  air  through  a  car- 
buretter the  protozoa  could  bo  kept  down  with  the 
greatest  ease. 

Source  of  high  nitrogen  content  of  activated  sludge. 

The  six  nitrogen  balance  experiments  described 
above,  together  with  certain  observations  made 
while  working  the  experimental  tank  at  Harpenden 
Sewage  Works,  suggest  a  mechanism  of  nitrogen 
increase  in  activated  sludge  which  fits  well  with 
what  is  known  of  nitrogen  changes  from  the  stand- 
point of  agricultural  science. 

Activated  sludge,  freshly  made,  and  brought  to  a 
high  degree  of  activity  by  aerating  until  the 
ammonia  in  the  sewage  has  practically  disappeared, 
may  be  considered  as  consisting  of  finely  divided 
organic  matter  with  a  small  proportion  of  grit  sup- 
porting a  very  dense  population.  From  the  nature 
of  its  preparation,  involving  the  condensation  of  the 
sewage  colloids,  it  must  present  a  very  large  adsorb- 
ing surface.  The  organic  matter  includes  a  propor- 
tion of  carbohydrate.  This  probably  plays  an  im- 
portant part  in  the  process  of  nitrogen  accumula- 
tion. For  our  present  purpose  the  population  of 
the  sludge  may  be  reduced  to  three  classes  of  or- 
ganisms :  (1)  ammonia-fixing  organisms,  (2)  nitrify- 
ing and  denitrifying  bacteria,  and  (3)  protozoa. 

The  ammonia  fixing  organisms  are  a  large  group 
including  both  fungi  and  algre,  but  not  much  is 
known  about  them  individually.  (Gerlach  and 
Vogel3;    Bierema*;    Waksman5 ;    Brenner*).       They 


are  strongly  aerobic,  and  their  food  supply  consists 
chiefly  of  carbohydrates.  A  typical  instance  of 
their  action  occurs  in  the  manure  heap,  where 
under  aerobic  conditions  the  ammonia  from  urine  is 
locked  up  in  a  relatively  insoluble  form  by  the 
utilisation  of  the  more  digestible  portion  of  the 
straw.  Trne  cellulose  is  not  concerned  in  this 
reaction. 

It  is  unnecessary  to  say  more  about  the  nitrifying 
and  denitrifying  bacteria  than  that  both  types  are 
present  in  quantity  in  activated  sludge.  The 
method  of  working,  as  regards  the  volume  or  dura- 
tion of  air  supply,  will  control  the  dominance  of  one 
type  over  the  other.  At  Harpenden  Sewage  Works 
the  normal  period  of  aeration  was  8  hours,  leaving 
16  hours  of  stagnation  in  the  24.  These  conditions 
of  alternate  nitrification  and  denitrification  en- 
courage the  elimination  of  nitrogen  as  gas  and 
probably  explain  the  heavy  losses  observed  in  the 
balances  set  out  on  p.  67  T  (Russell  and  Richards'; 
Muntz  and  Laine8). 

With  regard  to  protozoa,  the  very  earliest 
workers  with  activated  sludge  called  attention  to 
the  great  number  of  these  higher  organisms 
that  were  always  present  (Fowler,  Ardern,  and 
Lockett9).  The  high  bacterial  count  has  also  been 
frequently  noted,  hut  the  correlation  of  the  two  in 
the  light  of  the  partial  sterilisation  hypothesis  has 
not  yet  been  quantitatively  investigated  (Muller10). 
Actual  counts  made  in  the  Protozoologies!  Labora- 
tory show  that  there  is  a  perfect  correlation  between 
the  total  numbers  of  bacteria  and  the  total  active 
protozoa,  the  former  falling  as  the  latter  rise  with 
remarkable  regularity. 

It  has  been  suggested  that  the  "  non-bacterial 
population  "  together  with  the  flocculated  colloids 
account  for  the  high  nitrogen  content  of  activated 
sludge  (Ardern").  Our  experiments  indicate  that 
protozoa,  in  the  numbers  which  are  actually  found 
in  Harpenden  activated  sludge,  may  quite  easily 
contain  at  least  half  the  extra  nitrogen  beyond  that 
found  in  simple  sedimented  sewage  solids. 

Having  got  so  far  we  can  now  trace  the  fate  of 
nitrogen  entering  the  tank  as  ammonia  in  raw 
sewage.  Under  the  action  of  the  air  the  activated 
sludge  is  distributed  throughout  the  volume  of 
liquid  in  the  tank  and  a  very  large  adsorbing 
surface  is  presented  to  the  sewage.  A  small  amount 
of  ammonia  is  immediately  adsorbed  by  the  sludge 
(Oambier12).  Some  of  this  ammonia  is  "fixed"  by 
the  first  group  of  organisms  described  above  and 
some  is  nitrified,  passing  back  into  solution  and 
appearing  as  nitrate  in  the  effluent.  A  further 
amount  of  ammonia  is  adsorbed  from  the  sewage  in 
accordance  with  the  altered  concentration ;  part  of 
this  is  fixed  and  part  nitrified  as  before.  In  this 
way  nitrogen  is  accumulated  by  the  sludge  in  the 
form  of  the  bodies  of  ammonia-assimilating  bacteria 
or  the  by-products  of  their  activity.  It  is  not 
necessary" that  nitrification  should  occur.  In  fact, 
from  the  point  of  view  of  nitrogen  recovery,  it  may 
be  better  that  the  oxidation  of  the  sewage  should 
not  be  carried  beyond  the  carbon  stage,  but  so  many 
factors  seem  to  influence  the  loss  of  nitrogen  that 
it  is  impossible  to  generalise  on  this  point. 

The  development  of  protozoa  proceeds  simul- 
taneously with  the  other  biological  changes.  If 
aeration' is  very  good,  large  ciliates  predominate; 
under  less  aerobic  treatment  flagellates  are  mostly 
found.  By  devouring  the  ammonia-assimilating 
bacteria  the  protozoa  transfer  a  considerable  part 
of  the  nitrogen  gained  from  the  sewage  into  the 
protein  of  their  own  cell  structure.  The  older  the 
sludge  the  greater  the  amount  of  nitrogen  held  in 
the  form  of  active,  encysted  or  dead  protozoa.  In 
old  sludge  where  the  accumulation  of  animal  debris 
has  reached  a  certain  limit,  digestion  of  6ludge  is 
very  vigorous  (Period  3,  Tank  experiments).  There 
is  a  loss  of  elemeatary  nitrogen  and,  if  aeration  is 

a2 


66  t 


RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.     (Mar.  15, 1922. 


prolonged,  production  of  nitrate  in  excess  of  the 
ammonia  in  the  original  sewage  (Cambier).  The 
limit  would  seem  to  lie  somewhere  in  the  neighbour- 
hood of  one  million  protozoa  of  all  types  per  c.c.  of 
wet  sludge.  This  corresponds  to  a  nitrogen  content 
of  6  to  7%  on  dry  matter  of  normal  domestic 
sewage.  Activated  sludge  does  not  appear  to  ex- 
ceed this  concentration  of  nitrogen  under  whatever 
conditions  it  is  produced.  It  seems  reasonable  to 
suppose  that  when  the  total  population  of  the 
sludge  has  reached  a  figure  such  that  the  nitrogen 
1 1 t  of  their  cells  amounts  to  about  3%  of  the  dry 
matter  in  the  whole  sludge,  the  toxic  by-products 
of  biological  action  inhibit  further  development. 

Nitrogen  content  of  protozoa  in  activated  sludge. 


Counts   made  on 

sample   of  mixed   sludge   and 
Nov.  24th,  1919. 

sewage   No.   G4, 

Per  c.c. 

Mean  diameter 
of  side  of  cube. 

Volume 
in  cubic  /x. 

Flagellates  (active 
I  and  cysts) 
Ciliates     . . 
Anicebie 

1,082,500 
25,000 
25,000 

10  > 
50  p. 
20  /x 

1,082,500,000 

3,125,000,000 

200,000,000 

4,407,500,000 

Total  volume  of  proto;oa=0-004107  i.e. 

1  c.c.  of  mixed  sludge  and  sewage  contained  0'01064 
gram  dry  matter;  nitrogen  in  1  c.c.  =  0"000663  g.  If 
the  bodies  of  protozoa  are  assumed  to  be  10%  dry 
protein,  then  1  c.c.  of  sludge  =  0'0004407  g.  protein. 
At  16%  N  this  contains  0-0000705  g.  N  (1).  If  the 
protozoa  contained  50%  of  dry  protein,  1  c.c.  of 
sludge  contained  0'002203  g.  protein  or  0^000352  g. 
N  (2).  Taking  the  nitrogen  in  activated  sludge  at 
(5  c  on  dry  matter  and  assuming  that  3%  represents 
content  of  raw  sludge  (unactivated),  then  (1) 
accounts  for  21  %  of  the  additional  nitrogen  and 
(2)  for  more  than  100%  of  it. 

In  order  to  find  the  actual  nitrogen  content  of  a 
crude  mass  culture  of  protozoa,  500  c.c.  of  hay  in- 
fusion was  inoculated  with  activated  sludge  and 
incubated  in  a  cylinder,  without  aeration,  for  10 
days  at  22°  C.  A  thick  6cum,  consisting  almost 
entirely  of  protozoa  and  bacteria,  formed  on  the 
surface  of  the  medium.  Mr.  Cutler  noted  that  the 
organisms  present  were  all  typical  of  normal  acti- 
vated sludge.  Two  small  filter  papers  had  been  dried 
and  tared.  Nearly  the  whole  of  the  scum  was 
transferred  to  one  of  these  and  dried  at  100°  C. 
The  weight  of  the  dry  scum  was  0'0801  g.  The  total 
nitrogen  in  this,  deducting  the  nitrogen  in  a  con- 
trol estimation  done  on  the  second  filter  paper, 
amounted  to  0'006407  g.,  or  8'0%  calculated  on  the 
dry  matter  of  scum.  This  figure  is  very  close  to 
the  7-5%  of  nitrogen  found  in  the  richest  sample 
of  activated  sewage  sludge  we  have  examined.  The 
nitrogen  in  the  scum  is  contributed  by  protozoa, 
bacteria,  and  other  organisms  together  with  the 
mucilage  holding  them  together.  The  species  are 
highly  aerobic,  so  that  the  competition  for  oxygen 
results  in  a  density  of  population  on  the  surface 
of  the  medium  comparable  with  that  found  in  the 
activated  sludge. 

By  determining  the  rate  of  loss  of  water  from  a 
purified  mass  culture  of  protozoa,  it  is  hoped  to 
measure  the  water  content  at  the  moment  when  all 
free  water  has  evaporated  and  only  the  intracellular 
moisture  remains.  In  this  way  the  calculation  given 
above  may  be  checked.  Time  has  not  yet  allowed 
this  to  be  done. 

At  first  sight  it  seems  strange  that  the  nitrogen 
content  of  activated  sludge  should  only  vary  within 
such  narrow  limits,  however  greatly  the  conditions 
of  its  production  may  be  altered.  Changes  in  the 
strength  of  tlie  sewage,  volume  of  air,  proportion 


of  sludge  to  sewage  treated,  and  length  of  time  the 
sludge  has  remained  in  tank,  produce  no  appreci- 
able difference  in  the  nitrogen  content  of  the 
sludge.  If  we  assume  that  the  nitrogen  is  fixed 
biologically  from  the  ammonia  in  sewage  at  the 
expense  of  the  more  digestible  carbohydrate  in  the 
solid  matter,  this  fact  is  not  so  surprising.  A  cer- 
tain minimum  period  of  agitation  and  aeration  is 
necessary  to  fix  the  ammonia — any  further  aeration 
only  oxidises  carbon  and  nitrifies  more  of  the 
ammonia.  The  proportion  of  carbohydrate  to 
ammonia  is  fairly  constant  for  domestic  sewage 
and  is  not  affected  by  the  varying  dilution  that 
constitutes  "  strength."  In  old  sludges  the  dis- 
integration of  dead  organisms,  otherwise  digestion 
of  sludge,  leads  to  a  loss  of  nitrogen  which  counter- 
balances the  recovery  from  the  sewage  under 
treatment. 

In  discussing  the  method  by  which  nitrogen  is 
accumulated  in  activated  sludge,  the  references 
cited  show  that  the  suggestions  of  several  bio- 
chemical workers,  supported  in  some  cases  by  ex- 
perimental evidence,  have  been  incorporated  in  the 
outline  given  above.  The  experimental  work  done 
at  Rothamsted  in  the  past  18  months  serves  to 
link  up  these  scattered  observations  and  may  direct 
the  attention  of  those  interested  in  the  practical 
question  of  sewage  purification  to  some  new  aspects 
of  the  problem. 

Summary  of  laboratory  experiments. 

1.  If  activated  sludge  is  aerated  for  a  short 
period  in  an  ammoniacal  solution  the  recovery  of 
nitrogen  is  quantitative.  The  nitrogen  not  found 
as  ammonia  or  nitrate  in  the  effluent  is  recovered 
in  the  sludge. 

2.  If  aeration  is  continued  loss  of  nitrogen  occurs. 
The  loss  is  roughly  inversely  proportional  to  the 
volume  of  sludge  present. 

3.  The  same  effects  are  observed  with  sewage. 
The  ammonia  falls  while  the  sludge  gains  nitrogen 
with  a  loss  of  nitrogen  on  the  whole  balance  after 
16  days'  operation. 

4.  There  is  considerable  evidence  that  the  extra 
nitrogen  in  activated  sludge,  over  and  above  that 
found  in  the  old  type  sludges,  is  derived  from  the 
ammonia  of  sewage.  There  is  no  evidence  of  fixa- 
tion of  atmospheric  nitrogen. 

5.  The  numbers  of  protozoa  in  well-activated 
sludge  approximate  to  1,000,000  per  gram  of  wet 
sludge.  The  cell  content  of  these  organisms  alone 
may  account  for  a  large  proportion  of  the  extra 
nitrogen. 

6.  There  is  complete  correlation  between  the 
numbers  of  active  protozoa  and  bacteria  in  acti- 
vated sludge  under  varied  conditions  of  working. 

7.  The  increase  in  bacterial  numbers  following 
suppression  of  the  protozoa  produces  no  improve- 
ment in  purification  of  sewage.  There  is,  however, 
a  change  in  bacterial  flora,  nitrifying  organisms 
being  suppressed  by  the  partial  sterilisation. 
When  nitrifying  organisms  were  reintroduced  a 
greater  quantity  of  nitrate  was  found  in  the 
partially  sterilised  than  in  the  untreated  sewage. 
Our  experiments  do  not  enable  us  to  decide  whether 
this  results  from  a  large  production  or  a  decreased 
destruction  of  nitrate. 

EXPEBIMENTS   AT  HaRPENDEN   SEWAGE  WORKS. 

Production   of   sludge   at    experimental   plant. 

As  facilities  were  available  at  Harpenden  Sewage 
Works  the  production  of  activated  sludge  for  field 
trials  was  carried  out  at  these  works  with  the  plant 
described  below. 

An  existing  tank  was  subdivided  by  mean6  of  a 
longitudinal  baffle  wall  into  two  chambers  about 
40  ft.  long,  5  ft.  wide,  and  3|  ft.  average  depth, 
with  a  measured  content  of  8822  gallons.    A  square 


v,,i  \ix,.\'o.:,.|     RICHARDS  AND   SAWYER.— EXPERIMENTS   WITH  ACTIVATED  SLUDGE.         67  T 


chamber  was  provided  at  the  inlet  end  across  one  of 
the  channels,  and  was  connected  with  the  channels 
by  orifices  at  the  bottom.  A  rectangular  opening 
was  left  in  the  baffle  wall  away  from  the  inlet  end. 
In  this  form  of  tank,  when  full,  the  sludge  was 
equally  distributed  throughout  the  sewage.  The 
3-inch  air  diffusers  were  arranged  in  two  rows,  one 
on  either  side  of  the  baffle  wall ;  the  air  supply  was 
capable  of  regulation  between  10  and  65  cub.  ft. 
per  minute. 

The  objects  of  the  activated  sludge  plant  at  tho 
Harpenden  Sewage  Works  were: — (1)  To  ascertain 
the  percentage  of  nitrogen  recovered  from  the 
sewage  in  a  form  available  as  manure  and  compare 
it  with  the  amount  recovered  by  the  older  methods 
of  sewage  disposal ;  (2)  to  see  how  variation  in  con- 
ditions influenced  the  amount  of  sludge  recovered 
and  its  value  as  a  fertiliser;  (3)  to  produce  sufficient 
activated  sludge  to  enable  field  trials  of  its  manurial 
value  to  be  carried  out  on  the  Rothamsted  Farm. 
The  6ludge  could  be  produced  under  known  condi- 
tions, e.g.,  strength  of  sewage,  volume  of  air  blown, 
and  time  of  treatment. 

Having  built  up  about  10%  (by  volume)  of  acti- 
vated sludge  in  the  tank,  it  was  intended  to  work 
with  two  fillings  per  day  and  sufficient  air  to  pro- 
duce a  high-grade  effluent.  It  was  soon  found,  how- 
ever, that  with  the  air  supply  limited  to  8  hours  out 
of  the  24,  it  was  impossible  to  produce  a  first-class 
effluent  from  the  strong  Harpenden  sewage  even 
with  one  filling  per  day  and  the  maximum  air  avail- 
able. The  programme  of  work  had  consequently  to 
be  altered  considerably,  but  two  lots  of  sludge  were 
actually  *ent  to  the  farm ;  the  first  was  produced 
from  a  strong  sewage  (average  strength*  120  per 
100,000),  while  the  effluents  were  indifferent  to  bad  ; 
the  second  from  a  medium  sewage  (64  per  100,000) 
yielding  good  to  fair  effluents,  all  of  them  passing 
the  Royal  Commission's  tests  (3  parts  of  suspended 
matter  and  2'0  parte  of  dissolved  oxygen  absorbed 
in  5  days). 

The  results  of  four  selected  periods  of  working 
are  described  below.  For  each  period  a  balance  has 
been  struck  for  suspended  solids  and  for  total  nitro- 
gen. For  greater  accuracy  each  period  should  have 
been  repeated  at  least  once,  but  the  funds  available 
would  not  allow  of  this. 

In  drawing  any  conclusions  as  to  the  practic- 
ability of  the  method  from  these  experiments  it  is 
essential  to  remember  that  they  were  made  in  a 


As  a  general  rule  average  samples  of  the  sewage 
and  effluent  were  taken  from  every  alternate  filling 
of  the  experimental  tank.  These  average  samples 
consisted  of  a  mixture  of  equal  quantities  of  eight 
sub-samples  drawn  respectively  when  one-eighth  of 
the  volume  had  entered  or  left  the  tank  as  shown  by 
a  scale  on  the  tank  wall. 

In  sampling  sludge  tho  tank  was  filled  to  its 
working  level,  the  full  air  supply  (60  cub.  ft.  per 
minute)  turned  on,  and  eight  samples  of  the  mixed 
sludge  and  sewage  taken  from  points  equally  dis- 
tributed over  the  volume  of  the  tank.  Teste  made 
with  samples  drawn  at  different  levels  on  one 
section  of  the  tank  showed  that  the  mixture  of 
sludge  and  sewage  was  very  uniform  with  25%  of 
6ludge  in  the  tank.  Samples  taken  in  this  way  and 
analysed  by  two  independent  workers  differed  by 
only  1"2%  of  the  amount  of  sludge  found  in  the 
tank. 

The  methods  of  analysis  used  for  these  experi- 
ments are  those  followed  by  the  Sewage  Com- 
mission. For  the  determination  of  nitrates, 
however,  the  zinc-copper  couple  was  replaced  by 
Devarda's  alloy  with  considerable  saving  of  time 
over  the  original  method. 

Balances  for  suspended   solids  and   total   nitrogen 
in  four  periods  of   working. 

Period  1.  Building  up  sludge.  June  25 — July 
12,  1919.  No  nitrification.  8  hrs.'  blowing  to 
each  filling.  3T5  cub.  ft.  of  air  per  gallon  of 
sewage. 

Period  2.  Activating  the  sludge  by  continuous 
blowing.  July  13— Aug.  29  and  Oct.  15—30.  350— 
12  hrs.'  blowing  to  each  filling. 

Period  3.  Treating  two  fillings  of  sewage  per 
day.  Nov.  11—28,  1919.  4—5  hrs.'  blowing  to 
each  filling.     29  cub.  ft.  of  air  per  gall,  sewage. 

Period  4.  Treating  one  filling  of  sewage  per  day. 
Feb.  25—  Mar.  29,  1920.  8  hrs.'  blowing  to  each 
filling.    6'03  cub.  ft.  air  per  gall,  sewage. 

In  Period  1  the  sludge  had  not  become  activated, 
i.e.,  it  did  not  produce  a  well  clarified  effluent;  no 
nitrification  of  ammonia  occurred  and  the  non- 
bacterial population  of  the  sludge  was  low.  None 
of  the  effluents  would  pass  the  standard  tests  of  the 
Royal  Commission  on  Sewage  Disposal.  The  loss  of 
dry  matter  as  sludge  is  practically  negligible,  but 
over  a  quarter  of  the  nitrogen  left  by  the  sewage 
has  disappeared. 


Summary  of  tank  experiments. 


Period  1. 


Period  2. 


Volume  of  sewage  treated 

Wt.  of  dry  suspended  solids  abstracted  from 

sewage  in  tank 
Wt.  of  dry  sludge  in  tank 
Increase  of  dry  sludge  in  tank 
Loss  of  sludge  (by  difference)  . . 
"Wt.  of  X  left  in  tank  by  sewage 
Wt.  of  X  found  in  sludge 
Loss  of  N    . . 
N  in  dry  sludge  at  end 


119,562  galls. 

494  lb. 

482  lb. 

32  lb.  (6-3%) 

34-40  lb. 

25-22  lb. 

9-24  lb.  (20-8%) 

5-64% 


132,096  galls. 

440  lb. 

170  lb. 

270  lb.  (61-4%) 

61-28  lb. 

13-75  lb. 

47-52  lb.  (77-6%) 

6-17% 


152,401  galls. 

470  lb. 

176  lb. 

294  lb.  (62-5%) 

30-33  lb. 

13-87  lb. 

16-40  lb.  (54-3%) 

0-32% 


173,376  galls. 

349  lb. 

366  lb. 

nil 

39-35  lb. 

27-52  lb. 

1-83  lb.  (30-1% 

6-80% 


small  "  fill  and  draw"  plant  where  the  air  supply 
was  limited  by  the  labour  available  to  8  hours  only 
out  of  the  24,  except  as  especially  noted  in  Periods  2 
and  4.  The  evidence  is  strong  that  a  continuous 
and  adequate  air  supply  is  essential  if  the  maximum 
quantity  of  the  sludge  of  the  best  quality  is  to  be 
recovered.  The  effluents  also  will  naturally  show  a 
higher  degree  of  purification  under  these  conditions. 


•  By  "strength"  is  meant  the  weiaht  of  oxygen  required 
completely  to  oxidise  100,000  parts.  McGowan  6th  Report.  Koyal 
Com.  Sewage  Disposal,  App.  IV.  pp.1 — 9  (1910). 


During  Period  2  the  sludge  became  thoroughly 
activated.  It  settled  quickly,  leaving  a  well- 
clarified  effluent  which  was  fit  to  be  discharged  into 
any  stream.  Practically  the  whole  of  the  soluble 
nitrogen  was  in  the  form  of  nitrates,  in  contrast 
with  the  effluents  of  Period  1  where  the  soluble 
nitrogen  was  present  entirely  as  ammonia.  In 
either  case  this  nitrogen  is  usually  lost  so  far  as 
agriculture  is  concerned,  whether  it  is  in  the  form 
of  ammonia  or  nitrate.  To  produce  activated 
sludge  in  this  way  involves  the  loss  of  large  amounts 
of  nitrogen  as  gas  in  addition  to  the  loss  of  ammonia 


68  T         RICHARDS  AND  SAWYER-EXPERIMENTS  WITH  ACTIVATED  SLUDGE.      [Mar.  15.  1922. 


and  nitrate  in  the  effluent.  The  lose  in  Period  2 
amounted  to  78%  of  the  nitrogen  abstracted  from 
the  sewage  in  passing  through  the  tank.  In  this 
respect  the  process  reproduces  the  reactions  that 
occur  in  percolating  niters  and,  on  a  smaller  scale, 
in  a  loosely  made  manure  heap. 

During  this  period  the  tank  was  left  for  a  long 
time  without  any  air  passing  through  the  diffusers, 
though  the  sludge  was  turned  over  each  day  by 
hand.  The  stoppage  in  the  air  supply  was  caused 
by  a  breakdown  of  the  motor  driving  the  blower. 
Contrary  to  expectation,  the  sludge  did  not  lose  its 
activity  to  any  extent,  and  gave  a  well-nitrated 
effluent  without  continuous  (night)  blowing  when 
air  was  again  available.  This  easy  recovery  of  "  ac- 
tivity "  after  six  weeks'  stagnation  is  a  point  of 
some  practical  importance.  It  was  necessary  to 
include  this  period  of  stagnation  in  the  balance- 
sheet  for  this  section  of  the  experiment,  because 
without  an  air  supply  no  satisfactory  sample  of  the 
mixed  sewage  and  sludge  could  be  taken. 

There  was  a  very  considerable  digestion  or  com- 
bustion of  sludge  in  this  period.  No  less  than  61% 
of  the  solids  deposited  in  the  tank  by  the  sewage 
disappeared.  This  loss  falls  not  only  on  the  solids 
added  during  this  period,  but  on  the  sludge  accumu- 
lated in  Period  1.  Excepting  small  samples  for 
analysis,  no  sludge  was  removed  from  the  tank  until 
the  conclusion  of  Period  3. 

Notwithstanding  the  heavy  loss  of  nitrogen  as  gas 
during  the  intensive  aerobic  treatment  necessary  to 
produce  "  activation,"  the  net  result  of  Periods  1 
and  2  taken  together  is  that  15-2%  of  the  total 
nitrogen  in  tho  quarter  million  gallons  of  sewage 
passed  through  the  tank  was  recovered  in  the  form 
of  sludge  containing  6T7%  of  nitrogen  calculated 
on  dry  matter.  This  compares  very  favourably  with 
the  older  methods  of  tank  treatment  investigated  by 
the  Royal  Commission  on  Sewage  Disposal.  The 
Commission  found  that  chemical  precipitation  re- 
covered about  10%  of  the  nitrogen  in  sewage,  and 
septic  tank  treatment  only  4  to  5%.  Moreover  the 
15%  recovered  in  activated  sludge  is  in  a  far  more 
available  state  than  tho  nitrogen  of  the  old  type 
sewage  sludges  (see  page  70  t). 

Messrs.  Jones  and  Attwood  suggested  that  the 
tank  should  treat  two  fillings  of  sewage  per  day, 
after  the  sludge  had  been  well  activated,  without 
working  tho  engine  and  air  compressor  at  night. 
Period  3  was  run  on  these  lines,  but  the  effluents 
were  very  unsatisfactory  throughout.  Not  one  of 
those  analysed  passed  the  standard  test  for  dissolved 
oxygen  absorption,  and  most  of  them  putrefied  on 
incubation.  The  volume  of  air  supplied  was  in- 
sufficient to  keep  the  increased  amount  of  sludge 
now  in  the  tank  (about  40%  of  the  capacity)  in  a 
state  of  activation  and  at  tho  same  time  supply 
enough  oxygen  properly  to  purify  the  sewage.  Dur- 
ing the  night  the  sludge  lying  stagnant  in  the  tank 
was  completely  de-aerated  and  unable  to  purify  the 
next  filling  of  sewage  admitted  in  the  morning. 

Athough  the  effluents  were  bad,  the  percentage  of 
nitrogen  in  the  dried  sludge  was  slightly  higher 
than  at  the  end  of  Period  2.  The  weight  of  dry 
sludge  produced  at  the  end  of  the  period  covered  by 
these  three  experiments — Juno  25  to  Nov.  30,  1919 — 
amounted  to  0'71  ton  per  million  gallons  of  sewage 
treated.  The  "  strength  "  of  the  sewage  at  Har- 
penden  is  about  20%  above  the  average  or  standard 
sewage  of  the  Royal  Commission  on  Sewage 
Disposal. 

About  one  quarter  of  the  sludge  in  the  tank  was 
pumped  out  into  a  lagoon  dug  in  the  chalk  close  by 
and  rain  was  kept  off  by  a  rick  cloth.  In  spite  of 
very  unfavourable  weather  the  sludge  dried  to  a 
nearly  spadeable  condition  in  four  weeks.  1556  lb. 
of  wet  sludge  (171  lb.  dry  matter)  was  removed  to 
the  farm  on  February  3  and  applied  to  plots  for 
grass  and  barley. 


Even  when  the  sludge  is  protected  from  rain, 
lagoon  drying  leads  to  a  considerable  loss  of 
nitrogen.  In  four  weeks  Harpenden  activated 
sludge  lost  over  1  %  of  nitrogen ;  although  the 
sludge  as  pumped  from  the  tank  contained  6'1%  of 
nitrogen  on  the  dry  matter,  the  same  material 
carted  to  the  farm  held  only  4'9%.  The  average 
nitrogen  content  of  air-dried  or  filter-pressed  sludge 
from  the  old  methods  of  tank  treatment  is  only 
about  1  % ,  but  7  out  of  10  samples  of  wet  6ludge 
from  different  towns  recently  examined  at  Rotham- 
sted  for  the  National  Salvage  Council  averaged 
2'7%  nitrogen.  The  need  of  an  efficient  means  of 
drying  activated  sludge  requires  no  emphasis,  but 
it  is  worth  noting  what  serious  loss  the  present 
crude  methods  entail. 

Before  Period  4  was  begun  the  bulk  of  the  sludge 
was  pumped  out  into  the  lagoon.  About  600  lb.  of 
dry  matter  was  thus  removed  leaving  375  lb.,  or 
13%  by  volume  of  wet  sludge,  to  carry  on  the  treat- 
ment of  sewage.  As  the  sludge  at  the  end  of 
Period  3  was  in  a  very  poor  state  of  activation,  it 
was  decided  to  revive  it  by  giving  a  continuous 
supply  of  air  until  each  filling  of  sewage  was  com- 
pletely 'ammonia-free.  This  required  66  hours' 
aeration  at  first ;  the  time  gradually  decreased  to 
14  hours  when  the  night  blowing  was  stopped. 
After  this  the  sewage  was  aerated  for  8  hours  each 
week  day  and  4  hours  on  Sunday.  In  order  to 
control  the  changes  in  nitrogen  content  of  sludge 
more  completely,  this  period  of  working  was  sub- 
divided into  three  sections.  At  the  end  of  each  of 
these  the  sludge  in  the  tank  was  sampled  and 
measured.  This  period  gave  good  experimental 
data  and  the  results  may  be  taken  with  some  con- 
fidence as  reliable  for  the  particular  method  of 
working  adopted. 

The  quality  of  the  effluents  produced  was  satis- 
factory throughout.  None  of  the  samples  failed  to 
pass  the  standard  tests  for  suspended  solids  and 
dissolved  oxygen  absorption  (Royal  Commission  on 
Sewage  Disposal).  The  average  figures  for  the 
period  were  1*15  and  0'79  respectively,  compared 
with  3'0  and  2'0  allowed  by  the  standard  tests. 

The  more  important  points  brought  out  by 
Period  4  are  :  (1)  the  recovery  of  the  suspended 
matter  of  sewage  in  the  form  of  sludge  is  practically 
quantitative  as  in  Period  1 ;  (2)  the  loss  of  nitrogen 
from  the  tank  is  low,  again  as  in  Period  1 — 30'1C 
compared  with  26'8%.  These  results  are  in  marked 
contrast  with  the  corresponding  figures  for  Periods  2 
and  3,  when  61  and  63%  of  the  solid  matter  and  7S 
and  51%  of  the  nitrogen  was  lost. 

This  question  of  loss  of  sludge,  by  digestion  pre- 
sumably, together  with  a  considerable  proportion 
of  nitrogen,  is  of  first  importance  from  the  agricul- 
tural point  of  view.  It  is  also  of  interest,  but  for 
entirely  opposite  reasons,  to  those  local  authorities 
who  have  great  difficulty  in  disposing  of  their 
sludge  and  would  like  to  see  this  material  reduced 
to  a  minimum.  The  period  of  working  the  experi- 
mental tank  at  Harpenden,  9 i  months  in  all,  is  far 
too  short  to  enable  any  very  definite  conclusions  to 
be  drawn  on  this  point,  but  the  following  considera- 
tions may  bo  helpful.  Before  Period  4  began  the 
sludge  was  reduced  to  13%  of  the  tank  capacity, 
and  at  the  end  it  had  increased  to  26%,  so  that 
half  the  sludge  found  at  the  end  was  added  in  5 
weeks.  These  conditions  gave  (1)  a  smaller  volume 
of  sludge  and  (2)  a  much  shorter  average  period  of 
retention  in  tank,  compared  with  Period  3.  There 
the  final  volume  of  sludge  was  51%,  and  some  of  it 
had  been  in  the  tank  for  5  months.  Further  the 
volume  of  air  supplied  per  gallon  of  sewage  was 
twice  as  great  in  Period  4  as  in  Period  3,  and  this 
was  delivered  to  a  sewage  of  only  half  the  strength 
of  the  sewage  used  in  the  latter  experiment.  The 
more  aerobic  conditions  thus  intentionally  induced 
resulted    in   a    greatly   improved   effluent    and    are 


Vol.XLI.,No.5]     RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.         69 T 


probably  responsible  for  the  good  recovery  of  sludge 
and  the  small  loss  of  nitrogen. 

It  may  be  objected  that  in  Period  2  the  conditions 
were  also  strongly  aerobic  and  the  volumes  of 
6ludge  at  the  beginning  and  end  of  the  experiment 
were  very  similar  to  those  existing  in  Period  4,  yet 
the  losses  of  sludge  and  of  nitrogen  were  as  high  as 
in  Period  3.  This  is  perfectly  true,  but  Period  2 
is  exceptional  in  two  other  respects.  This  was  the 
time  when  the  sewage  solids  accumulated  in 
Period  1  were  activated  by  prolonged  and  con- 
tinuous blowing.  Almost  exactly  one  half  of  the 
average  oxidised  nitrogen  was  in  the  form  of 
nitrite,  a  sufficiently  striking  index  to  the  unstable 
conditions  existing  at  this  time  and  a  reason  for  the 
heavy  loss  of  nitrogen.  Also  the  breakdown  of  the 
motor  occurred  in  this  period. 

Summary  of  nitrogen  balance  in  tank  experiments. 
Per  100  parts  by  weight  of  nitrogen  in  sewage. 


Period. 


1. 

2, 

3. 

4. 

Nitrogen  in  sewage 
Nitrogen  in  effluent 
N  abstracted  from  sewage  in 

tank  (difference)  . . 
Nftrogea  found  in  sludge.. 
Nitrogen  lost 

100-0 
732 

268 

19-7 

71 

1000 
52  0 

480 
10-8 
37-2 

100-0 
74-3 

25-7 
11-8 
13-9 

1000 
60-9 

391 
27-3 
11-8 

the  amount  removed  from  the  sewage  during  treat- 
ment. This  does  not,  of  course,  prove  that  no 
fixation   of   atmospheric    nitrogen   occurs,    but   the 

a unt  fixed   must  be  less   than   that   lost   as  the 

results  of  the  partial  aerobic-  fermentation  of  the 
sewage. 

Besides  the  samples  of  activated  sludge  produced 
in  the  experimental  tank  at  Harpenden  Sewage 
Works  and  sent  to  the  Rothamsted  farm  for  plot 
trials,  certain  other  samples  of  sludge  which  seemed 
likely  to  afford  useful  comparisons  witn  them  have 
been  examined  in  the  laboratory.  These  other 
simples  were:  (1)  Harpenden  sewage  solids.  This 
sample  was  collected  by  allowing  crude  sewage  to 
settle  for  two  hours.  It  represents  the  raw  material 
of  activated  sludge.  (2)  Harpenden  slate  bed 
sludge.  (3)  St.  Albans  activated  sludge.  (4)  Well- 
ington activated  sludge. 

Determinations  of  total  nitrogen,  available 
nitrogen  (nitrification  tests),  organic  matter, 
phosphate,  and  potash  were  made  on  most  of  the 
above  samples. 

In  comparing  the  above  six  samples  of  sewage 
sludge  it  is  necessary  to  make  some  allowance  for 
the  method  by  which  they  were  prepared  lor 
analysis.  The  first  and  the  last  samples,  viz. 
Harpenden  sewage  solids  and  Withington  activated 
sludge,  were  dried  entirely  by  artificial  heat.  The 
other  four  samples  are  of  more  practical  significance 
as  they  were  all  lagoon-dried  to  a  spadeable  con- 
dition and  finished  in  the  laboratory.     The  loss  of 


A  verage  figures  of  analysis  for  sewages  and  effluents. 


Period  1. 

Period  2. 

Period  3. 

Period  4. 

Parts  per  100,000. 

Sewage. 

Effluent. 

Sewage. 

Effluent. 

Sewage. 

Effluent. 

Sewage. 

Effluent. 

Ammoniaeal  nitrogen 

713 

6-68 

6-55 

0-96 

509 

4-92 

4-31 

2-39 

Organic                  ,, 

3-60 

1-17 

312 

0-67 

2-65 

0-79 

1-50 

0-21 

Nitrous                  ,, 

— 

— 

— 

L-68 

— 

000 

— 

008 

Nitric 

— 

— 

— 

1-72 

— 

0-04 

— 

0-86 

Total 

10-73 

7-85 

9-67 

.villi 

7-74 

5-75 

5-81 

3-54 

4  hours'  oxygen  absorbed 

12-43 

3-97 

11-82 

2-79 

12-09 

1-96 

5-86 

0-95 

Dissolved  oxygen  taken  up 

in  5  days 

— 

— 

— 

- — . 

— 

5.45 

— 

0-79 

Incubation  (5  days) 

— 

— 

— 

A11  + 

— 

3  ?  5- 

— 

3  ■>  9  + 

Suspended  solids  {™n'.voK 

34-63 

3-08 

27-3 

2-3 

27-4 

2-98 

10-3 

0-95 

44-78 

1015 

3-45 

0-37 

36-1 

8-8 

2-8 

0-5 

33-9 

6-5 

304 

0-06 

21-3 

50 

115 

0-20 

Number  of  samples 

7 

7 

9 

9 

8 

8 

12 

12 

Calculated  strength 

129 

42 

120 

20 

113 

32 

64 

11 

Air  supplied  :    cub.  ft.  per 

gall,  of  sewage 

3  15 

— 

— 

— 

2-90 

— 

6  03 

— 

Vol.  of  sludge  at  start   . . 

Nil. 

— 

10-3% 

— 

35-5% 

— 

12-9% 

— 

Vol.  of  sludge  at  end     . . 

10-3% 

— 

32-4% 

— . 

50-6% 

— 

26-0% 

— 

Strong 

Small  amt. 

Strong 

Mostly  well 

Alternate 

Fair          at 

Medium 

Good  to  fair. 

sewage. 

of        flue 

sewage. 

clarified. 

strong  and 

first,  then 

sewage. 

Very    little 

solids,  but 

Earthy 

moderate 

rapidlv 

solid.  Clean 

very    tur- 

smell. 

sewages. 

becoming 

smell. 

bid.    Sew- 

Two    fill- 

worse. 

age  smell. 

ings      per 

day. 

Poor  clar- 
ification. 

Analyses  of  sludge  samples. 


Per  cent,  on  dry  sample. 


Harpenden  sewage  solids 
Harpenden  slate  bed  sludge    . . 
Harpenden  activated      ,,  (1) 

Harpenden         ,,  ,,  (2) 

St.  Albans  „  „ 

Withington        „  „ 


Total 
nitrogen. 


Available 
nitrogen.* 


Organic 
matter. 


Phosphoric  acid 
(P2Os).t 


Potash 
(K„0).t 


3-94 
2-63 
4-93 
5-94 

4-20 
7-09 


0-59 
0-68 
1-92 
2-20 

4-68 


73-32 
46-80 
6205 
73-30 
53-72 
82-72 


2-10 
0-34 
2-86 
3-00 
2-84 
3-82 


0-26 
008 
0-28 
0-43 
0-20 
0-38 


*  As  determined  by  nitrification  tests  after  100  days  in  soil, 
f    ,,  ,,  molybdate  and  magnesia  method. 

J    ,,  ,,  pcrchlorate  method. 


In  all  our  experiments,  both  at  the  sewage  works 
and  in  the  laboratory,  there  is  no  evidence  of  any 
fixation  of  atmospheric  nitrogen.  The  amount  of 
nitrogen  recovered  in  the  sludge  is  always  less  than 


nitrogen  bv  lagoon  drving  has  been  already  noticed. 
Thus  the  Harpenden  activated  sludge  sample  No.  1 
contained  6'10%  of  nitrogen  on  dry  matter  at  the 
time  it  was  pumped  from  the  tank  to  the  lagoon, 


70  T 


RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.     [Mar.  15, 1922. 


and  the  St.  Albans  sludge  gave  over  7%  nitrogen  in 
samples  taken  direct  from  the  6ludge  tank.  This 
last  sample  was  exposed  to  the  weather  for  three 
or  four  months  before  it  was  in  a  condition  to  be 
moved. 

The  most  interesting  points  brought  out  in  the 
above  table  are:  — 

(1)  The  great  increase  in  availability  of  the 
nitrogen  by  activation  under  the  continuously 
aerobic  conditions  in  operation  at  Withington. 
66%  of  the  total  nitrogen  is  nitrified  in  100  days 
compared  with  only  15%  in  the  case  of  Harpenden 
sewage  solids.  If  the  latter  had  been  lagoon-dried 
in  the  usual  way  probably  not  more  than  5%  of  its 
nitrogen  would  have  been  available.  Under  the 
less  aerobic  conditions  at  Harpenden  only  40%  of 
the  nitrogen  in  the  activated  sludge  is  nitrifiable. 

(2)  The  phosphoric  acid  in  the  samples  of  acti- 
vated sludge  is  much  higher  than  that  found  in 
the  old  type  sewage  sludges  tested  by  the  Royal 
Commission.  These  contained  from  0'66  to  I'll  % 
P205  compared  with  2"8 — 3'8%  in  activated  sludge. 
The  same  applies,  but  in  a  smaller  degree,  to  the 
potash.  The  amounts  of  phosphate  and  potash 
have  not  much  manurial  significance,  but  their 
relation  to  the  high  nitrogen  content  of  activated 
sludge  is  suggestive  of  a  common  biological  origin. 

Summary  of  results  of  tank   experiments. 

1.  Activated  sludge  produced  at  Harpenden  from 
a  domestic  sewage  of  rather  above  average  strength 
with  a  small  proportion  of  detritus  contains  from 
5"5  to  6'8%  of  nitrogen  calculated  on  the  dried 
sludge. 

2.  Very  great  variations  in  the  method  of  work- 
ing, e.g.,  in  the  volume  of  air,  strength  of  sewage, 
amount  of  sludge  in  tank  and  time  of  retention, 
produce  no  appreciable  change  in  the  nitrogen  con- 
tent of  the  sludge. 

3.  Observations  made  in  working  the  experi- 
mental tank  confirm  the  laboratory  experiments 
designed  to  find  the  source  of  the  extra  nitrogen 
content  of  activated  sludge  compared  with  ordinary 
sewage  sludges.  They  afford  no  evidence  of  fixa- 
tion of  atmospheric  nitrogen,  but  suggest  that  in 
addition  to  colloidal  nitrogen,  ammonia  is  re- 
moved from  the  sewage  by  physical  or  biological 
means,  or  both. 

4.  Under  strongly  aerobic  conditions  and  with  a 
small  proportion  of  sludge  in  the  tank  (less  than 
25%),  the  recovery  of  sludge  is  practically  quantita- 
tive (colloids  neglected),  i.e.,  its  weight  is  practi- 
cally the  .same  as  the  weight  of  the  suspended 
solids  in  the  sewage.  If  aeration  is  moderate  to 
poor,  and  if  the  volume  of  sludge  is  allowed  to 
accumulate  up  to  50%  or  more,  over  half  the  dry 
matter  in  the  suspended  solids  of  the  sewage  dis- 
appears. 

5.  Variation  of  conditions  (as  in  4  above)  influ- 
ences the  nitrogen  changes  in  a  similar  way,  but 
there  is  always  a  loss  of  nitrogen — under  favourable 
conditions  20%,  under  unfavourable  80%  of  the 
nitrogen  left  in  the  tank  is  not  recovered. 

6.  The  proportion  of  total  nitrogen  in  the  Har- 
penden sewage  recovered  in  normal  working  by  the 
activated  sludge  process  is  greater  than  in  the 
older  methods  of  sewage  purification,  viz.,  15% 
compared  with  10%  by  precipitation  and  4%  by 
septic  tanks.  With  sewage  of  half  the  average 
strength  and  supplying  twice  the  normal  volume  of 
air  per  gallon  of  sewage,  the  recovery  of  nitrogen 
was  as  high  as  27%  of  the  total  nitrogen  in  the 
sewage. 

Field  trials  with  activated  sludge. 

Two  separate  lots  of  sludge  were  made  at  Har- 
penden Sewage  Works  and  sent  to  the  Rothamsted 


Farm.  The  first  was  applied  to  plots  for  grass  and 
barley,  the  second  for  potatoes.  Analyses  of  these 
sludges  have  been  given  above.  No  attempt  was 
made  to  dry  the  sludges  beyond  about  90  %  moisture 
content.  They  were  applied  to  the  soil  in  a  pasty 
condition  which  made  uniform  distribution  rather 
difficult. 

The  results  from  all  the  plots  are  given  in  the 
table.  Generally  speaking,  activated  sludge  gave 
good  yields  in  comparison  with  sulphate  of  ammonia 
and  farmyard  manure  applied  to  give  equal  weights 
of  nitrogen  to  the  plots.  It  must  be  remembered 
that  rather  less  than  half  the  nitrogen  in  the  acti- 
vated sludge  is  available  in  100  days,  while  practi- 
cally the  whole  of  that  in  the  sulphate  of  ammonia 
can  be  nitrified  in  that  time. 

There  is  one  important  difference  between  the 
results  of  these  field  trials  and  those  obtained  in  the 
preliminary  pot-culture  experiments.  The  dried 
sludge  gave  very  uniform  results  in  pots,  but  the 
wet  sludge  gave  much  greater  differences  between 
the  yields  of  individual  plots  than  is  usual  in  this 
class  of  work.  This  effect  is  noticeable  with  all 
three  crops,  but  no  satisfactory  explanation  can  be 
given  to  account  for  the  bad  agreements  between 
duplicate  plots. 

These  field  trials  show  that  activated  sludge  has  a 
high  manurial  value  in  marked  contrast  with  the 
old  type  sewage  sludges  tested  on  the  Rothamsted 
farm  in  past  years. 


ACTIVATED   SLUDGE   PLOTS,   1920. 
Hay. 

Plot.  Manures  per  acre. 

1  North    Wet  sludge,  61-7  cwt.  =  37-4  lb.  N  . . 

2  Control 

3  South     Wet  sludge,  61-7  cwt.  =  37-4  lb.  N  . . 

4  North     Sulphate  of  ammonia,  1-5  cwt.  =  33-6  lb.  N . . 

5  Control 

6  South     Sulphate  of  ammonia,  1-5  cwt.  =  33-6  lb.  N. . 

Potatoes. 


Yield 
per  acre, 
cwt. 
29-3 
22-0 
22-6 
35-4 
22-2 
310 


"I  Wet  sludge,  13-3  tons  =    208  lb.  N  ;    super, 
6  cwt 

Nitrate  of  ammonia,  1  cwt. 
|  Farmyard    manure,    15    tons  =  203    lb.    N  ; 
super.,  6  cwt. 
Nitrate  of  ammonia,  1  cwt. 

I  Controls.   Super.,  6  cwt. ;  nitrate  of  ammonia, 
f    1  cwt 


Barley. 

Grain, 
bushels. 
.  "1  f3G-2 

.   MVet  sludge,  2'7  tons  =  32-5  lb.  N  J.  26-3 
-  J  I  46-3 

.  \  Sulphate  of  ammonia,  1'45  cwt.  =    f  45-1 
./     325  lb.  N  \3S-8 


f  370      . . 

..  ■{  36-5     .. 

I  39-3     . . 


tons. 

11-8 
8-8 

10-8 
9-6 

r  7-8 

)  8-3 
\  8-9 
(    7-9 


Straw 
cwt. 
20-4 
21-1 
28-7 

25-1 

29-1 

21-8 
231 

24-7 


1  Brenchley  and  Richards,  J.,  1920,  39,  177  T. 

1  Kopeloff,  Lint  and  Coleman,  J.  AgTic.  Res.,  1015-16,  5,  137. 

*  Gerlach  and  Vogel,  Centr.  Bakt.,  1901,  7,  609. 

*  Bierema,  Centr.  Bakt.,  1909,  23,  672. 
'  Waksman,  Soil  Set,  1918,  6,  148. 

•  Brenner,  Centr.  Bakt.,  1914,  40,  558. 

'  Russell  and  Richards,  J.  Agric.  Set,  1917,  8,  540. 
9  Muntz  and  Laine,  Ann.  Instit.  Agron.,  1911,  10,  1. 

•  Fowler,  Ardern  and  Lockett,  J.,  1914,  33. 
'»  Muller,  Arch.  Hyg.,  75,  321. 

"  Ardern,  J.,  1920,  60  T. 

"  Cambier,  Comptes  rend.,  1920,  170,  681. 

"  Cambier,  Comptes  rend.,  1920,  170,  1417. 


Discussion. 

Mr.  F.  R.  O'Shaughnesst  said  that  the  elucida- 
tion by  the  authors  of  the  source  of  nitrogen  as 
being  largely  due  to  the  bodies  of  protozoa, 
these  organisms  apparently  absorbing  ammoniacal 
nitrogen,  was  very  interesting.     When  Arden  and 


Vol.  XIX,  Xu.  3)     RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE. 


71t 


Lookett  had  first  observed  this  large  percentage  of 
organic  nitrogen  it  seemed  that  the  first  obvious 
and  principal  source  of  the  increase  was  the  clotted 
out  organic  material,  because  the  percentage  at 
that  time,  between  5  and  6%,  approximated  to  that 
present  in  crude  fsecal  matter.  He  himself  had 
made  observations  in  the  laboratory  with  regard  to 
the  very  considerable  and  rapid  loss  of  organic 
nitrogen  which  occurred  when  sludge  was  con- 
served or  stored.  The  fact  that  the  authors  had 
been  compelled  to  prepare  their  sludge  for  the  land 
by  lagooning  it,  and  therefore  lost  much  of  the 
very  thing  they  were  attempting  to  recover,  was 
notable.  The  organic  nitrogen  had  been  reduced 
from  6}  or  7%  to  4'9%  through  storing,  and  that 
was  rather  disappointing  from  the  point  of  view  of 
the  practical  agriculturist.  His  own  experiments 
during  the  past  three  or  four  months  on  the  altera- 
tion which  takes  place  in  activated  sludge  and  the 
difference  in  its  behaviour  under  varying  condi- 
tions, suggested  that  activated  sludge  needed  some 
sort  of  definition,  because  a  very  different  behaviour 
was  obtained  from  sludge  of  various  grades  due  to 
the  different  methods  of  purification  and  to  the 
character  of  the  sewage  in  the  first  place.  It  would 
be  of  great  interest  if  experiments  such  as  those 
described  in  the  paper  could  be  carried  on  with 
sludge  produced  by  agitation  as  against  air  blowing. 
The  authors  had  only  dealt  with  sludge  prepared 
by  aeration  as  suggested  by  Messrs.  Jones  and 
Attwood.  He  had  found  that  the  elimination  of  the 
ammoniacal  nitrogen  by  agitation  instead  of  aera- 
tion, under  corresponding  conditions,  starting  with 
activated  sludges  of  approximately  the  same  com- 
positions and  condition,  was  much  more  marked. 
Then  with  regard  to  the  characteristics  of  the 
effluent,  starting  with  a  period  of  blowing  of,  say, 
18  hours  and  gradually  reduced  down  to  6.  5,  and  4 
hours  and  so  on,  a  very  gradual  change  in  the  sludge 
occurred  under  these  conditions.  At  the  present 
time,  even  at  the  exceedingly  low  temperature  of 
7°  C.  or  less,  and  working  on  a  4-hour  period  that 
he  (the  speaker)  had  been  employing,  it  was  found 
that  although  the  ammoniacal  nitrogen  was  appar- 
ently unaltered  in  quantity,  still  much  oxidation 
of  organic  carbon  occurred.  The  ammonia  might 
undergo  some  change,  such  as  that  which  the 
a*thors  had  suggested,  i.e.,  there  might  be  some 
fixing  of  the  ammonia  and  the  release  of  the 
nitrogen  again  in  the  form  of  ammonia,  but 
the  ammoniacal  content  was  almost  unaltered,  , 
under  these  conditions,  whereas  the  oxidation  of  the 
material  was  evident  from  the  oxygen  absorbed  , 
figure.  That  might  be  very  substantial  indeed,  and 
a  fairly  bright  effluent  could  be  obtained  with  an  j 
oxygen  absorbed  figure  of  two  parts  per  100,000, 
starting  with  6'7  parts  of  ammonia  and  finishing  up 
with  6T  or  6'2  parts.  The  results  of  the  experiments 
described  in  the  paper  appeared  rather  to  strengthen  , 
the  case  than  otherwise  against  the  probable  eco-  j 
nomical  use  of  activated  sludge  for  the  recovery  of 
nitrogen  on  the  practical  scale  for  agricultural 
operations.  From  the  point  of  view  of  those  who  had 
to  deal  with  the  practical  problem  of  purifying  ( 
sewage,  the  results  were  rather  disappointing.  The 
problem  which  the  sewage  works  manager  had  to 
keep  before  him  was  that  of  sewage  purification  and 
disposal. 

The  paper  did  not  allude  to  the  question  of  com- 
parative cost  or  even  whether  there  was  any  possible 
chance  of  the  thing  proving  an  economic  or  financial    i 
possibility.     He  was  struck  by  the  very  large  quan- 
tity of   air,   viz.,   6   cubic  ft.,   used   per   gallon   of 
sewage  in  the  last  experiments.     Under  the  condi- 
tions he  himself  had  referred  to,  the  amount  of  air   I 
used  was  about  1  cub.  ft.  per  gallon  of  sewage  at  a    | 
temperature  of  about  8°  C.    But  even  using  6uch  an 
exceedingly  low  quantity  as  that,   the  cost  was   a 


serious  consideration.  The  question  of  cost  of  the 
activated  sludge  process  was  a  very  much  debated 
one;  and  it  remained  still  to  be  elucidated,  despite 
all  the  work  that  had  been  done  on  the  subject. 
During  the  past  year  the  process  had  been  applied 
on  a  working  scale  to  Birmingham  sewage  liquor, 
both  by  the  method  of  air  blowing  and  by  mechanical 
agitation.  The  usual  practice  was  to  activate  the 
whole  of  the  sewage  (exclusive  of  grit  etc.),  but  the 
inevitable  result  was  to  increase  the  bulk  of  the 
sludge  to  be  dealt  with  three  or  four  times ;  and 
activated  sludge  was  notoriously  difficult  to  handle 
as  compared  with  non-activated  sludge.  They  in 
Birmingham  were  very  much  alive  to  the  great 
advantages  attaching  to  the  activated  sludge  process 
as  a  method  of  purifying  impure  liquids  such  as 
sewage,  and  they  had  directed  their  efforts  towards 
availing  themselves  of  the  advantages  whilst  elimin- 
ating the,  at  present,  insuperable  difficulty  of  deal- 
ing with  the  activated  sludge  on  the  large  working 
scale.  As  the  result  of  the  work  which  had  been 
done,  they  were  now  practically  convinced  that  it 
was  possible  to  purify  an  indefinite  quantity  of 
eewage  liquor  which  had  been  deprived  of  the  bulk 
of  its  suspended  matter  by  ordinary  sedimentation 
(this  sewage  liquor  containing  not  more  than  from 
5 — 10  parts  per  100,000  of  visible  suspended  solids) 
with  a  limited  quantity  of  activated  sludge.  Under 
these  conditions  the  nitrogen  content  and  the  pro- 
portion of  organic  matter  in  this  limited  bulk  of 
sludge  varied  somewhat  depending  on  the  period  of 
time  given  to  treatment  of  each  charge  of  sewage. 
The  variations  were  being  studied  carefully,  but 
were  much  less  than  might  have  been  anticipated, 
and  the  explanation  put  forward  in  the  paper  prac- 
tically cleared  up  an  otherwise  inexplicable  aspect 
of  the  question.  By  this  procedure  the  cost  of  the 
sludge  treatment  was  not  increased  and  the  problem 
of  de-watering  an  immense  mass  of  activated  sludge 
had  not  to  bo  faced  at  all. 

Mr.  J.  H.  Johnston  thought  that  one  of  the  most 
interesting  points  in  the  paper  was  the  investiga- 
tion into  the  source  of  the  increased  nitrogen  in 
activated  sludge  as  one  of  its  most  characteristic 
properties.  It  appeared  from  tho  paper  that  the 
increase  in  nitrogen  was  present  in  the  form  of 
ammonia  removed  from  the  sewage  treated.  The 
ammonia  appeared  to  be  fixed  either  in  fungi  and 
alga?  or  in  some  physico-chemical  form.  That  was 
an  interesting  and  important  point,  because  when 
the  increased  nitrogen  was  first  noticed  it  was 
thought  to  be  due  to  the  action  of  the  nitrogen-fix- 
ing organisms  of  the  sludge.  The  authors  did  not 
say  whether  they  had  tested  for  the  presence  of  these 
nitrogen-fixing  organisms.  Since  the  nitrogen  was 
in  ammoniacal  form  in  the  sludge,  he  presumed  the 
authors  had  made  their  analyses  on  the  wet  sludge, 
but  he  did  not  gather  from  the  paper  that  the 
amount  of  water  was  given.  He  presumed  the 
analysis  was  on  the  solids  plus  the  water  which 
always  went  with  them.  Activated  sludge  had  a 
greater  manurial  value  than  ordinary  sewage 
sludge,  and  he  presumed  that  might  be  put  down  to 
the  ammonia  fixed  by  the  process,  i.e.,  the  addi- 
tional efficiency  of  activated  sludge  might  be  put 
down  to  the  nitrogen  being  fixed  in  the  form  of 
ammoniacal  nitrogen  to  a  great  extent,  rather  than 
in  the  form  of  organic  nitrogen.  He  would  like  to 
know  if  that  was  a  proper  deduction  to  make  from 
the  paper. 

Dr.  G.  McGowan  said  that  the  point  that  in- 
terested him  most  in  the  paper  was  tho  fact  that  the 
increased  nitrogen  in  activated  sludge  seemed  all  to 
come  from  the  ammonia.  That  was  enormously  im- 
portant with  regard  to  the  utilisation  of  nitrogen 
from  sewage,  because,  roughly  speaking,  the  am- 
moniacal nitrogen  in  sewage  constituted  five-sixths 
of    tho    whole.     If    it    were    possiblo    to    save    the 


72  t         RICHARDS  AND  SAWYER.— EXPERIMENTS  WITH  ACTIVATED  SLUDGE.     (Mar.  15,  192-2. 


ammoniacal  nitrogen  of  sewage  through  the  acti- 
vated sludge  process,  then  it  should  be  done.  It 
was  a  question  of  putting  the  cost  of  air  (i.e.,  coal) 
used  against  the  nitrogen  saved.  He  would  like  to 
know  what  results  Mr.  Haworth  had  got  at  Sheffield 
with  regard  to  the  amount  of  nitrogen  recovered  by 
the  mixing  process  instead  of  blowing.  He  noticed 
in  the  Manchester  Rivers  Committee's  current 
report  on  the  Withington  and  Davyhulme  works, 
that  there  was  a  very  considerable  loss  of  nitrogen 
in  the  process  at  both  places.  He  referred  to  the 
discrepancy  between  the  results  of  the  field  experi- 
ments, which  was  possibly  due  to  the  plots  being 
small. 

Mr.  O'Shaughnessy  said  that  the  amount  of 
nitrogen  in  the  activated  sludge  when  using  the 
agitating  method  was  much  the  same  as  when 
blowing. 

Dr.  Gilbert  Fowler  wrote  that  there  was  little 
real  disagreement  between  the  authors'  conclusions 
and  his  own  as  regards  the  important  question  of 
nitrogen  fixation.  The  authors  admitted  that 
where  a  large  production  of  nitrite  took  place  the 
conditions  were  unstable,  and  were  favourable  to 
large  losses  of  nitrogen.  Where  continuous  and 
adequate  air  supply  obtained;  their  results  showed 
in  one  case  a  slight  gain  of  nitrogen,  viz.,  T8%,  as 
compared  with  4%  gain  in  experiments  conducted 
under  his  (Dr.  Fowler's)  direction,  by  Strangdhar 
and  Nyak  (J.  Indian  Inst.  Sci.,  3,  261).  In  other 
order  to  afford  energy  for  the  nitrogen-fixing 
tion  excess  of  carbohydrate  had  been  present  in 
order  to  afford  energy  for  the  nitrogen-fixing 
organisms.  It  was  impossible  to  say  that  the 
fixation  took  place  in  the  Rothamsted  experiments 
because,  as  the  authors  themselves  admitted,  what 
was  measured  was  only  the  net  result  of  the  various 
reactions  taking  place.  It  was  of  great  importance 
to  have  established  that  some  of  the  soluble 
ammoniacal  nitrogen  was  converted  into  insoluble 
nitrogen  in  the  activated  sludge  process.  The 
authors'  experiments  might  be  accepted  as  showing 
that  under  normal  working  conditions  there  was 
little  if  any  net  gain  of  nitrogen  in  the  activated 
sludge  process,  but  that  the  loss  might  be  minimised 
by  careful  attention  to  conditions  of  operation. 
The  experiments  quoted  in  the  paper  mentioned 
above  (Joe.  cit.)  seemed  conclusive  in  showing  that 
nitrogen-fixing  organisms  were  present  in  activated 
sludge.  Their  development  in  numbers  and 
activity,  the  production  in  fact  of  a  "  nitrogen- 
fixing  activated  sludge,"  was  a  problem  by  itself, 
quite  separate  from  the  use  of  activated  sludge  in 
the  purification  of  sewage.  The  authors  seemed  to  | 
confirm  this  in  suggesting  that  from  the  point  of 
view  of  nitrogen  recovery  it  might  be  better  that 
the  oxidation  of  the  sewage  should  not  be  carried 
beyond  the  carbon  stage.  The  authors'  experi- 
ments on  the  role  of  protozoa  in  the  process  of 
sewage  purification  by  means  of  activated  sludge 
were  most  interesting,  and  the  subject  was  worthy 
of  much  further  study.  If  their  suggestion  was 
correct  that  a  large  proportion  of  the  nitrogen  in 
activated  sludge  was  contained  in  the  bodies  of 
protozoa,  it  would  have  to  be  borne  in  mind  in  con- 
sidering the  technique  of  drying  of  the  sludge,  and 
the  availability  of  the  nitrogen  for  agriculture. 
He  (Dr.  Fowler)  had  always  thought  of  the 
activated  sludge  process  as  essentially  bacterial;  the 
ideal  being  to  produce  a  mass  of  active  bacteria  of 
the  particular  type  desired,  which  would  then 
function  under  the  best  possible  conditions.  The 
efficiency  of  the  process  would  not  then  depend  on 
the  speed  of  the  slowest  worker  as  the  authors  indi- 
cated was  now  the  case.  He  (Dr.  Fowler)  had  done 
some  preliminary  work  of  this  kind  with  emulsions 
of  acetic  bacteria  and  had  obtained  some  success  in 
the  production  of  acetic  acid  from  alcohol.     A  con- 


tinuous process  of  alcoholic  fermentation  with  large 
masses  of  yeast  suggested  itself,  and  so  on,  but  the 
necessary  research  work  involved  was  obviously- 
very  considerable. 

Dr.  H.  T.  Calvert,  who  read  the  paper  in  the 
absence  of  the  authors,  said  that  the  activated 
sludge  process  could  be  varied  in  many  ways.  Its 
applicability  to  individual  sewages  was  a  matter 
of  testing  these,  and  the  activated  sludges  which 
were  produced  from  them  were,  in  a  sense,  com- 
plementary, in  the  same  way  that  enzymes  occurred 
in  environments  which  suited  their  activities. 
Probably  each  individual  sewage  had  its  proper 
sludge,  so  that  there  would  be  variations  in  the 
sludge  according  to  the  varying  composition  of  the 
sewage.  In  dealing  with  a  process  like  this,  the 
particular  problem  which  had  to  be  dealt  with  must 
be  borne  in  mind.  In  one  case,  it  might  be  that 
a  very  highly  purified  sewage  effluent  was  required. 
In  another  case,  a  less  pure  effluent  would  do  for 
the  conditions  of  discharge,  such  as  into  the 
Thames  or  a  large  body  of  water.  Further  experi- 
ments would  show  how  the  methods  of  operation 
of  this  process  could  be  adapted  to  varying  condi- 
tions. The  paper  showed  how,  with  varying  periods 
of  aeration,  different  results  were  obtained.  Ho 
did  not  think  temperature  was  the  deciding  factor. 
It  was  known  that  ordinary  bacterial  processes  of 
sewage  purification  were  not  affected  to  a  very 
large  extent  by  variations  of  temperature  such  as 
occurred  in  this  country.  They  were  affected  in 
the  colder  climates  in  the  same  way  as  our  own 
life  processes  were  affected.  He  was  not  aware  of 
any  experiments  which  had  actually  been  done  to 
test  the  presence  of  nitrogen-fixing  organisms,  but 
he  had  often  thought  it  would  be  very  interesting 
to  add  cultures  of  nitrogen-fixing  organisms  to  the 
activated  sludge  and  see  what  results  were  obtained 
under  these  conditions.  He  believed  that  the  possi- 
bility that  the  nitrogen,  as  stated  in  the  paper, 
was  assimilated  from  an  ammoniacal  condition,  was 
one  of  the  reasons  why  it  was  more  valuable  for 
plant  food,  although  after  assimilation  into  the 
bodies  of  the  organisms  it  was  no  longer  in  the 
ammoniacal  condition.  It  was  probably  then  in  a 
transition  stage,  and  in  that  transition  stage  its 
availability  as  plant  food  was  greater  than  after 
complete  assimilation. 

In  reply  to  points  raised  in  the  discussion,  Mr. 
Richards  wrote: — "The  Rothamsted  experiments 
with  activated  sludge  were  intended  in  the  first 
instance  to  supply  information  on  the  fundamental 
questions  set  out  in  the  paper.  Had  further  funds 
been  available,  the  more  practical  side  of  the 
problem  would  have  been  followed  up.  The  Director, 
Dr.  E.  J.  Russell,  endeavoured  to  secure  the  co- 
operation of  the  Ministry  of  Health  in  this  direc- 
tion. Although  in  sympathy  with  the  object,  the 
Ministry  was  unable  to  give  any  financial  assistance. 
There  is  very  little  ammoniacal  nitrogen  in  wet 
activated  sludge  and  practically  none  in  the  dried 
material.  The  authors  believe  that  the  high  avail- 
ability of  the  nitrogen  is  due  to  amino-acids  built 
up  from  the  ammonia  of  the  sewage  by  biological 
action  and  reacting  in  the  same  way  as  the  protein 
in  dried  blood.  This  hypothesis  is  in  agreement 
with  the  view  taken  by  Dr.  Calvert.  Nitrogen- 
fixing  organisms  are  usually  present  in  sewage  but 
they  will  not  function  so  long  as  ammonia  remains. 
As  this  is  always  in  excess  of  carbohydrate  in  normal 
sewage,  no  fixation  of  nitrogen  occurs.  If  fresh 
sewage  solids  are  aerated  in  absence  of  ammonia,  or 
if  carbohydrate  is  added  to  sewage  in  excess  of  the 
ammonia  requirement,  notable  increases  of  nitrogen 
are  observed.  It  is  unlikely  that  the  discrepancies 
in  the  field  trials  were  due  to  the  size  of  the  plots. 
There  were  as  large  as,  or  larger  than,  usual  and 
the  control  plots  gave  reasonably  uniform  yields." 


Vol.  XIX,  Xo.  5.]       TROTMAN  AND    PENTECOST— NOTES  ON   COTTON   BLEACHING. 


73  t 


Nottingham    Section. 


Meeting  held  at  Nottingham  on  January  25,  1922. 


MR.  J.  H.  DCXFOliU  IN  THE  CHAllt. 


NOTES    ON    RECENT    ADVANCES    IN 
COTTON    BLEACHING. 

BY   S.    It.    TROTMAN   AND    S.    J.    PENTECOST. 

The  chief  problem  in  cotton  bleaching  is  to 
produce  goods  which  will  not  "  yellow  "  on  storing. 
It  is  a  matter  of  common  experience  that  goods 
which  are,  apparently,  perfectly  bleached  will  some- 
times lose  colour  or  become  yellow  or  even  brownish 
in  tint  after  prolonged  storing,  particularly  in  a 
warm  damp  atmosphere.  With  lace  this  trouble 
occurs  somewhat  frequently  with  deliveries  to 
South  America  land  similar  distant  markets.  The 
tendency  to  yellowing  may  be  tested  for  by  steam- 
ing in  an  experimental  keir  or  autoclave.  This 
yellowing  is  met  with  in  both  dressed  and  undressed 
cotton.  It  may  be  either  local  or  diffuse  in  incidence. 
Certain  causes  are  fairly  well  known  and  may 
be  excluded  from  the  present  discussion.  These 
include :  — (1)  unremoved  mineral  oil  introduced 
during  spinning  or  manufacture  which  has  worked 
up  gradually  to  the  surface;  (2)  hydro-  or  oxy- 
cellulose ;  (3)  gradual  caramelisation  of  dextrins 
and  thin  starches,  particularly  in  the  presence  of 
traces  of  acid ;  (4)  decomposition  of  the  dressing  by 
chromogenic  bacteria  or  their  growth  on  improperly 
cleansed  undressed  cotton ;  (5)  calcium  and  mag- 
nesium soaps  ;  (6)  iron  discolorations.  These  causes 
are  all  avoidable,  but  there  are  many  obscure  cases 
of  discoloration  where  none  of  them  are  present. 

It  is  now  generally  agreed  that  these  obscure 
cases  of  yellowing  are  due  to  some  constituent  of 
the  cotton  fibre  incompletely  removed  by  the  scour- 
ing and  bleaching  processes,  working  its  way  up 
gradually  to  the  surface  of  the  goods. 

The  colouring  matters  of  cotton  are  chiefly  (a) 
nitrogenous  compounds  insoluble  in  alkaline  lyes 
and  (b)  substances  associated  with  the  cotton  waxes. 
At  one  time  it  was  thought  that  discolorations  were 
largely  connected  with  the  incomplete  removal  of 
protein  nitrogen.  It  now  seems  certain  that  this 
cannot  be  the  case,  since  Higgins  and  others  have 
shown  that  the  proteins  are  removed  with  compara- 
tive ease  and  that  in  the  case  of  cotton,  at  any 
rate,  danger  from  their  incomplete  removal  has  been 
much  overestimated.  Pectoses,  pectins,  or  pectates 
are  for  similar  reasons  unlikely  sources  of  discolor- 
ations, while  experiments  made  by  the  authors  have 
proved  that  practically  all  the  mineral  matter  is 
removed  by  the  soda  boil  and  but  very  little  after- 
wards. Nevertheless,  however  thoroughly  the  boil- 
ing and  bleaching  are  carried  out,  there  remains  a 
small  residue  of  nitrogen  and  mineral  matter.  We 
are  left  with  the  oils  and  waxes.  These  are  compli- 
cated, consisting  of  neutral  fat,  waxes,  traces  of 
unsaponifiable  oil,  free  fatty  acids,  and  calcium  or 
magnesium  soap.  With  regard  to  the  last,  Higgins 
has  shown  comparatively  recently  that,  even  after 
extracting  cotton  with  benzene,  a  further  quantity 
of  oil,  amounting  to  10%  of  the  whole,  can  be 
extracted  after  treatment  with  acid,  thus  proving 
the  presence  of  natural  and  hitherto  unsuspected 
soaps. 

The  waxes  are  highly  coloured  and  not  easy  to 
saponify.  In  many  cases  of  yellowing,  sticky  waxy 
colouring  matter  can  be  extracted  by  means  of 
benzene  or  a  similar  solvent,  the  operation  being 
accompanied  by  an  improvement  in  colour.  One  is 
forced  to  the  conclusion  that  in  most  cases  the  cause 
of  the  trouble  is  in  an  incomplete  lye  boil,  though 


this  is  the  last  thing  a  bleacher  will  admit.  In  fact, 
as  we  have  stated  before,  the  subsequent  life  history 
of  cotton  is  made  in  the  lye  boil,  and  faults  com- 
mitted here  cannot  easily  be  rectified.  Modern 
work  is  thus  directed  towards  the  removal  of  the 
cotton  waxes,  by  improving  or  doing  away  with  the 
lye  boil  which  is  admittedly  a  poor  process. 

Preliminary  soaks  are  not  much  used,  except 
perhaps  in  the  case  of  dressed  goods  which  are 
treated  with  diastase  to  remove  starch.  Soaking  in 
either  water  or  dilute  acid  is  very  advantageous, 
particularly  when  hydrochloric  acid  is  used.  Not 
only  is  mineral  matter  removed  but  much  colouring 
matter  also.  The  authors  have  shown  that  mineral 
matters  have  an  inhibiting  effect  upon  the  solution 
of  fats  and  proteins  in  the  lye  boil.  The  effect  of 
soaks  in  removing  mineral  matter  is  illustrated 
by  the  following  figures  representative  of  many 
experiments :  — 


Ash  in  original  yarn 
Ash  after  soaking  in  water 
Ash  after  soaking  in  warm  hydro- 
chloric acid  (1°  Tw.)     .. 


Xo.  1. 


117 
0-26 


0-94 
0-27 


The  ash  of  many  varieties  of  cotton  is  over  2%. 
In  such  cases  the  value  of  an  acid  soak  would  be 
greater.  Practically  the  whole  of  the  residual 
matter  is  removed  by  a  well-conducted  lye  boil.  In 
the  above  cases  the  percentage  of  ash  was  reduced 
to  0'006  by  boiling  with  2%  sodium  hydroxide  solu- 
tion under  pressure  and  washing  with  water.  No 
further  reduction  was  produced  by  bleaching.  In 
fact,  in  commercial  bleaching  there  is,  as  a  rule,  an 
increase  in  the  mineral  matter  during  the  bleaching 
process. 

Ono  point  is  clear :  if  an  ash-free  cotton  is 
required,  the  proper  course  is  to  remove  the  mineral 
matter  at  the  outset  and  not  to  try  to  remove  it 
from  the  finished  goods  as  is  generally  done.  The 
same  remarks  apply  equally  to'  ramie,  which 
is  much  used  for  incandescence  gas  mantles. 
Higgins'  work  on  the  soaps  of  cotton  supplies 
another  important  reason  for  an  acid  soak.  The 
fatty  acids  produced  assist  in  the  emulsification  of 
the  unsaponifiable  waxes  in  the  lye  boil.  Insoluble 
pectins  and  pectates  are  rendered  more  amenable 
to  the  lye  boiling  by  the  acid,  while  proteins  are  also 
more  readily  soluble  in  alkaline  solution  after  treat- 
ment with  acid.  Somewhat  similar,  though  less 
marked,  results  are  produced  by  such  enzymes  as 
diastase.  Degreasing  with  organic  solvents  removes 
waxes  and  oils  much  more  completely  than  is 
possible  by  any  lye  boil — in  fact,  it  removes  them 
entirely  with  the  exception  of  the  natural  soaps. 
This  is  not  only  an  improvement,  per  se,  but  renders 
the  fabric  more  permeable  to  the  later  liquors.  It 
has  been  shown  by  Cross  and  Fort  that  during 
beetling  residual  cotton  waxes  may  assist  in  the 
mechanical  transformation  of  cellulose  into  a  friable 
brittle  mass.  Knecht  observed  that  the  waxes  had 
an  important  connexion  with  tensile  strength.  It 
is  an  indisputable  fact  that  cotton  from  which  the 
wax  has  been  removed  by  an  organic  solvent  shows 
far  less  liability  to  yellow  than  that  which  has  been 
boiled. 

The  use  of  organic  solvents  for  goods  to  be  beetled 
has  been  protected  by  a  patent  which  has  been  ex- 
tended also  to  include  general  purposes.  AVhen  a 
solvent  with  a  high  boiling  point  is  used,  i.e.,  above 
100°  C,  there  is  no  need  for  the  goods  to  be  dried, 
since  the  contained  moisture  is  carried  over  during 
the  process  of  extraction.  Degreasing  has  been 
used,  quite  successfully,  in  the  case  of  wool  for  a 
long  time,  and  it  has  obvious  advantages  for  cotton, 
especially  if  preceded  by  an  acid  soak.  If  the  waxes 
are  a  cause  of  yellowing,  this  should  now  be  curable. 
With  an  efficient  plant  the  expense  is  not  great, 
the  loss  of  solvent  beinc;  not  above  0'5%.     More- 


74  t        PICKERING  AND  COWLISHAW.— CHEMICAL  CHARACTERISTICS  OF  OILS.       [Mar.  15, 1922. 


over,  caustic  soda  is  saved.  This  is  used  in  the  keir 
to  saponify  or  emulsify  fats  and  waxes.  Proteins 
and  pectins  are  soluble  in  mild  alkalis.  Hence 
degreased  cotton  does  not  need  to  he  boiled  under 
pressure  with  sodium  hydroxide.  This  may  now  be 
replaced  by  boiling  at  ordinary  or  slightly  elevated 
temperatures  with  a  much  milder  alkali  such  as 
soda  ash.  This  is  not  only  cheaper,  but  avoids  such 
dangers  as  shrinkage,  mercerisation,  or  the  forma- 
tion of  hydro-  or  oxycellulose.  The  lye  boil,  in  any 
form,  may  be  dispensed  with  altogether,  according 
to  recent  patents,  if  the  goods,  after  degreasing, 
are  treated  with  a  suitable  enzyme  or  bacterium. 
Pancreatin  and  such  organisms  as  B.  amylolyticus, 
B.  fimi,  B.  bibxdus,  B.  carotovorus,  and  B.  subtilis 
are  all  capable  of  rendering  starch  and  proteins 
soluble.  We  have  confirmed  this  in  the  case  of 
pancreatin,  and  since  it  is  used  in  faintly  alkaline 
solution  at  a  moderate  temperature  it  undoubtedly 
removes  some  of  the  pectins.  It  is  claimed  that  it 
removes  them  completely,  but  this  is  very  doubtful. 
In  our  opinion  it  does  not  convert  the  pectoses  into 
soluble  pectins.  The  use  of  pancreatin  before  the 
lye  boil  has  been  patented,  while  another  patent 
claims  that  no  lye  boil  is  necessary.  This  is  surely 
an  exaggerated  claim  since  it  ignores  entirely  the 
waxy  colouring  matters  and  insoluble  pectoses. 
The  use  of  pancreatin  followed  by  a  soda  ash  boil 
has  also  been  patented,  but  this  again  would  not 
completely  remove  the  waxes. 

The  following  is  suggested  as  a  logical  and 
chemically  sound  way  of  replacing  the  ordinary  lye 
boil: — (1)  warm  sour;  (2)  degrease  with  benzene; 
(3)  soda  ash  boil  at  ordinary  pressure.  Such  a 
method  would  certainly  save  some  of  the  repetitions, 
with  the  object  of  removing  the  impurities  by  suc- 
cessive layers,  which  are  so  common  now.  A  treat- 
ment with  pancreatin  between  (2)  and  (3)  would 
still  further  improve  the  process,  though  at  some 
expense. 

Passing  on  to  the  bleaching,  we  find  that  many 
experiments  have  been  recorded  of  late  with  the 
object  of  proving  the  superiority  of  sodium  hypo- 
chlorite over  ordinary  bleaching  powder  solutions. 
Expense  is  generally  a  fatal  objection,  but  mixtures 
of  the  two  are  cheaper  and  proportionately  more 
efficient  than  bleaching  powder  alone.  Such  a 
mixture  is  easily  prepared  by  the  partial  precipita- 
tion of  bleaching  powder  solution  with  sodium 
carbonate. 

There  is  little  doubt  that  sodium  hypochlorite 
penetrates  goods  better  than  calcium  hypochlorite, 
and  it  seems  certain  that  it  has  greater  bleaching 
action  on  the  residual  waxes  left  after  an  ordinary 
lye  boil.  Its  action  is  more  easily  controlled  and 
the  danger  of  producing  oxycellulose  is  less. 

But  perhaps  the  most  important  recent  develop- 
ment is  in  the  direction  of  the  use  of  warm  bleaches. 
The  authors  have  always  been  in  favour  of  this 
method.  It  is  referred  to  in  Trotman  and  Thorp's 
"  Principles  of  the  Bleaching  and  Finishing  of 
Cotton,"  and  experiments  in  hand  were  interrupted 
by  the  war.  The  chief  advocate,  at  present,  is 
Freiberger,  who  contends  that  with  strengths  up  to 
1  gram  per  litre  of  chlorine,  bleach  liquors  ma3'  be 
heated  to  40°  C.  with  perfect  safety.  We  are 
able  to  confirm  this  statement  from  practical  experi- 
ence. The  advantages  are: — (1)  Weaker  solutions 
at  higher  temperatures  bleach  more  quickly  and 
more  efficiently  than  strong  solutions  at  low  tem- 
peratures. The  time  is  reduced  enormously.  At  a 
strength  of  1  g.  per  litre  a  fabric  which  in  the 
ordinary  way  would  take  one  or  two  hours  can  be 
bleached  in  from  10  to  15  minutes  at  40°  C.  (2) 
There  is  less  danger  of  producing  oxycellulose.  The 
authors  have  bleached  cotton  yarns  and  pieces  in 
this  way  and  find  an  extremely  low  copper  value, 
less  than  0'5%.  The  copper  value  of  cold  bleaches 
is  very  rarely  below  1%.     (3)  A  better  and  more 


permanent  white  is  produced  owing  to  the  fact  that 
residual  waxy  matters  are  more  readily  attacked 
at  a  higher  temperature.  (4)  Less  harshness  is  pro- 
duced in  the  finished  goods,  since  at  40°  C.  the 
calcium  carbonate,  if  bleaching  powder  is  used,  is 
thrown  down  as  a  fine  precipitate  and  does  not  form 
a  crust  or  scale  as  it  does  with  strong  solutions. 
Warm  bleaches  are,  however,  seen  at  their  best  with 
solutions  of  sodium  hypochlorite. 

An  interesting  process  for  employing  chlorine  has 
also  been  described.  Hitherto  chlorine  has  not  been 
used  much  owing  to  the  danger  of  producing  oxy- 
cellulose. This  difficulty  can  be  overcome,  appar- 
ently, by  passing  the  gas  into  water  containing 
chalk  in  suspension  and  bleaching  with  the  resulting 
solution  of  hypochlorous  acid. 


Yorkshire   Section. 


Meeting  held  at  Queen's  Hotel,  Leeds,  on 
November  21,  1921. 


DR.  L.  L.  LLOYD  IN  THE  CHAIR. 


THE  RELATION  BETWEEN  THE  REFRAC- 
TIVE INDEX  AND  THE  CHEMICAL 
CHARACTERISTICS  OF  OILS  AND  FATS 
(GLYCERIDES). 

BY  MESSRS.   G.   F.  PICKERING  AND  G.  E.   COWLISHAW. 

It  is  generally  known  that  the  refractive  index 
of  oils  is  influenced  in  certain  directions  by  differ- 
ences in  the  constitution  of  the  oils;  for  example, 
of  two  oils  of  the  same  kind,  that  with  the  higher 
iodine  value  would  have  the  higher  refractive  index 
and  so  on. 

An  attempt  to  formulate  any  co-relation  between 
the  constants  and  variables  by  reference  to  a  stan- 
dard work  such  as  that  of  Lewkowitsch  would  lead 
to  complete  failure,  as  there  is  little  uniformity 
in  the  results  displayed,  the  number  of  doubtful 
figures  in  this  case  being  countless.  One  can,  there- 
fore, understand  his  statement  (Vol.  I.,  5th  ed., 
p.  33S)  that  "  no  definite  relation  exists  " — refer- 
ring to  iodine  value  and  refractive  index. 

The  following  numbers,  the  means  of  hundreds 
of  estimations  on  separate  samples,  have  been 
studied  with  a  view  to  obtain  some  empirical 
law,  the  oils  in  every  case  being  of  known  purity  and 
freshness. 


Oil. 

Refractive  indices 
at  40°C. 

Iodine  value 

1-4728 

1780 

Soya  bean  oil   . . 

1-1673 

1350 

Cottonseed  oil  (refined) 

1-4643 

105-0 

Groundnut  oil  . . 

1-4612 

85-2 

Palm-kernel  oil 

1-4503 

18-2 

10-0 

On  plotting  these  values  and  obtaining  the 
equation,  it  was  found  that,  with  the  exception  of 
the  two  last-named  oils,  a  simple  relation  between 
the  constants  could  be  expressed  thus  :  — 
nD"  =  1-4515+00001171(1.  V.). 
In  the  case  of  the  first  four  oils,  the  influence  of 
molecular  weight  (and  therefore  glycerol  content), 
free  fatty  acidity,  oxidised  and  hydroxylated 
acids,  is  not  felt,  as  these  are  all  either  absent  or 
common  to  these  oils.  These  properties  are,  how- 
ever, tho  chief  causes  of  divergence  from  the  simple 
equation  in  the  case  of  many  of  the  oils  met  with  in 
commerce.  The  effect  of  all  these  factors  has  been, 
or  will  be,  studied  separately.  The  results  which 
have  been  already  obtained  are  given  below. 


Vol. XIX, No. 6J     PICKERING  AND  COWLISHAW.— CHEMICAL  CHARACTERISTICS  OF  OILS.       75  t 


Influence  of  free  fatty  acidity. — The  fatty  acids 
were  prepared  from  a  number  of  vegetable  oils  by 
the  following  modified  method.  The  oil  was  saponi- 
fied with  -V/l  alcoholic  potash  prepared  with  care- 
fully purified  alcohol.  After  saponification  the 
alcohol  was  completely  boiled  off,  and  the  soap 
washed  into  a  separating  funnel  with  water.  After 
cooling,  the  soap  solution  was  acidified  with  hydro- 
chloric acid  and  a  concentrated  solution  of  common 
salt  added.  After  separation  with  purified  ethyl 
ether  the  extract  was  washed  several  times  with 
strong  brine  and  filtered  through  three  thicknesses 
of  fat-free  filter  paper  into  a  flask.  After  evapora- 
tion of  the  ether  the  fatty  acids  were  dried  at  a 
low  temperature  under  vacuum.  By  this  means 
the  loss  of  soluble  volatile  acids  was  largely  miti- 
gated. Colouring  matter  from  the  alcoholid  potash 
was  also  avoided. 

The  refractive  indices  of  these  fatty  acids  were 
determined,  and  are  shown  together  with  those  of 
tho  oils  from  which  they  were  obtained  :  — 

llcfractive  indices  at  40°C. 


Oil. 

Fatty  acids. 

Oil. 

Differences 

Groundnut 

..      1-4512 

1-4012 

..      0-0100 

Cottonseed 

..      1-4540 

1-4643 

.  .      0-11007 

Palm-kernel 

..      1-4379 

1-4503 

. .      0-0124 

.  .      1-4632 

1-4728 

. .      0-0090 

..      1-4034 

1-4708 

. .      0-0074 

Soya  bean 

..      1-4577 

1-4073 

. .      0-0090 

Theso  figures  indicate  that  the  differences  shown 
in  the  last  column  are  greater  in  the  case  of  oils 
of  low,  than  in  those  of  high  refractive  index. 
W.  B.  Smith  (J.,  1912,  139)  has  evolved  a  formula 
whereby  the  refractive  index  of  the  fatty  acids  is 
calculated  from  that  of  the  oil  by  means  of  a  simple 
factor  This  is  inconsistent  with  the  authors' 
experience.  It  is  found  that  the  additive  nature 
of  the  refractive  index  still  holds  good  in  tho  case 
of  the  hydrolysis  of  a  glyceride  oil,  and  that  by 
taking  advantage  of  this  fact  it  is  possible  to  obtain 
an  equation  whereby  the  refractive  index  of  the 
fatty  acids  is  obtained  as  a  function  of  the  refrac- 
tive index  of  the  original  neutral  oil  and  of  the 
molecular  weight  of  the  mixed  fatty  acids. 

The  complete  derivation  of  the  equation  is  as 
under: — Taking  refractive  indices  at  20°  C,  as 
follows  :  "Water  1-3315,  glycerol  1-4729,  oil  n„  fatty 
acids  n„,  and  molecular  weight  M. 

Considering  the  general  equation, 

(R.CO.O)3.C3Hs+3Hs0=3(R.C0.0H)  +  C3H6(0H)3, 

we  get  gram-molecules:  oil  3(M-1)+41,  water  54, 
fatty  acids  3M,  glycerol  92. 

Multiplying  each  by  its  refractive  index  and 
equating  we  get 

n,  {3(M  -1)  +  41 }  +54(1-3315)  =3Mn„  +  92(T4729) 

whence 

n,  -n2  =  (63-606  -38n,)-=-3M, 

and  since  the  difference  between  the  refractive 
index  of  the  oil  and  that  of  its  fatty  acids  is  nearly 
independent  of  temperature,  wo  may  write 

na=n-,  -  (63-606  -  38»,)  -3M. 

Calculated  and  observed  values  are  shown 
together  for  comparison  :  — 

Refractive  indices  at  40°C.  of 
Oil.  fatty  acids. 

Observed.  Calculated. 

Groundnut 1-4512  . .  1-4516 

Cottonseed 1-4546  ..  1-4540 

Palm-kernel 1-4379  . .  1-4375 

Linseed  1-4632  ..  1-4637 

Castor 1-4034  ..  1-4622 

Soya  bean 1-4577         . .         1-4579 

It  is  thus  seen  that  the  difference  between  the 
refractive  index  of  an  oil  and  that  of  its  fatty  acids 


varies  between  0'0074  and  0-0124,  but  in  tho  caso  of 
oils  with  a  saponification  value  of  about  190,  i.e., 
the  bulk  of  oils  usually  met  with,  the  value  may  be 
taken  as  0-0096.  In  order,  then,  to  correct  the 
observed  rcfractivo  index  for  acidity,  the  term 
(A.V./S.V.)xO-0096  should  be  added. 

If  tho  percentage  of  free  fatty  acids  be  high,  and 
it  is  desired  to  determine  tho  actual  amount 
present,  recourse  may  be  had  to  the  following 
method  of  calculation  :  — 

Method    of    calculating    the    true    free    fatty    acid 
content  of  an  oil  or  fat  {glyceride).  ' 

Calculation  of  true  freo  fatty  acid  content:  Let 
S  bo  tho  total  saponifiablo  matter,  A  the  acid  value, 
B  the  saponification  value,  and  M  the  molecular 
weight  of  the  fatty  acids. 

Considering  tho  equation  : 

(R.CO.O)3.C,H5+3H;!0  =  3(R.CO.OH)  +  C3H5(OH)3. 

Equivalent  parts  are 

3(M-1)+41-*3M    or    M+m-t-M. 

Tho  molecular  equivalent  of  tho  glyceride  is  caual 
to  M  +  12-7. 

Hence  56100 /B  =  M  +  12-7  or  M  =  56100/B-12"7. 
Next  taking  an  oil  containing  free  fatty  acids,  the 
number  12'7  must  be  reduced  in  proportion  to  the 
neutral  oil  content. 

A  sufficiently  close  approximation  to  the  free  acid 
content  is  given  by  the  expression  A/3B. 

So  to  calculate  the  molecular  weight  in  the  case 
of  a  fat  containing  nothing  but  glyceride  and  free 
acid,  one  could  use 

M  =  56100/B- 12-7(1- A /B). 

To  correct  for  unsaponifiable  matter  and  other 
impurities,  it  is  necessary  to  multiply  throughout 
by  0-01S:  — 

M=  {56100/B-12-7(1-A/B)}   xO'OlS. 

Tho  true  free  fatty  acid  content  is  then  given 
simply  by  :  — 

F.F.A.=0-01S{A/B-0-000277(B-A)} 

Influence  of  molecular  weight. — The  influence  of 
varying  molecular  weight  is  shown  in  the  caso  of 
the  coconut  group  of  fats,  and  also  in  the  case  of 
palm  oil  and  rapeseed  oil.  Those  oils,  the  fatty 
acids  of  which  are  of  lower  molecular  weight  than 
the  normal  (282),  show  a  lower  refractive  index 
than  that  calculated  from  the  iodine  value.  It  has 
been  found  that  a  difference  of  50  in  the  saponifica- 
tion value  causes  an  elevation  or  depression  in  the 
refractive  index  of  0'0033,  and  it  is  proposed,  there- 
fore, to  supply  a  correction  factor,  thus  :  — 

+  (S.V.- 190)  x  0-000066. 

Influence  of  oxidised  acids. — There  is  at  present 
so  little  known  about  the  composition  of  oxidised 
acids  that  it  is  not  possible  to  point  out  exactly 
how  far  the  refractive  index  is  affected  by  any 
given  proportion.  It  can  only  be  said  that  a  small 
amount  causes  this  figure  to  be  increased  beyond 
what  one  would  anticipate.  Again,  since  this 
equation  is  not  intended  at  present  to  apply  to 
products  of  such  a  nature  as  to  contain  appreciable 
quantities  of  these  substances,  this  factor  may  be 
disregarded  for  the  time  being. 

Influence  of  unsaponifiable  matter. — In  most  oils 
the  proportion  of  unsaponifiable  matter  is  not  large 


70  t  PICKERING  AND  COVVLISHAW.—  CHEMICAL  CHARACTERISTICS  OF  OILS.     [Mar.  13, 1922. 


Observed. 

Calculated. 

Differences 

1-4728 

.      1-4726 

.      00002 

1-4073 

.      1-4676 

.      0-0003 

1-4643 

.      1-4641 

.      0-0002 

1-4012 

.      1-4614 

.      0-0002 

1-4644 

. .      1-4643 

.      0-0001 

1-4497 

. .      1-4497 

.      0-0000 

1-4480 

. .      1-4484 

.      0-0002 

enough  to  make  any  material  difference  in  the 
refractive  index.  In  products  containing  naturally 
large  amounts  of  these  substances,  it  would  only  be 
possible  to  point  out  a  relation  between  the  con- 
stants of  the  fatty  acids. 

Influence  of  hydroxylated  acids. — The  number  of 
oils  usually  met  with  containing  large  amounts  of 
these  acids  is  very  small,  and  castor  oil  may  be  said 
to  form  a  class  by  itself.  The  abnormally  high 
refractive  index  of  this  oil  would  appear  to  be  due 
to  the  presence  of  a  preponderating  amount  of  ricin- 
oleic  acid.  It  is  obvious  that  a  correction  can 
hardly  be  applied  on  such  meagre  data. 

The  complete  equation. — Taking  into  considera- 
tion all  the  factors  treated  above,  the  complete 
equation  may  be  written  out  in  full,  thus  :  — 

w„ =1-4643  -0-000066(8  .V.)- 

0'0096(A.V.  /S.V.)  +  0-0001171(I.V.). 

To  illustrate  the  accuracy  of  the  equation  a  com- 
parison of  observed  and  calculated  figures  is  shown  : 

Oil. 
Linseed 
Soya  bean 
Cottonseed 
Groundnut 
Rape6eed 
Palm  nut 
Coionut 

It  must  be  clearly  understood  that  what  has 
preceded  applies  only  to  oils  freshly  prepared  from 
good  material,  and,"  with  the  exceptions  of  the 
corrections  for  acidity  and  saponification  value,  does 
not  hold  for  many  of  the  oil  samples  met  with  in 
trade. 

We  may  point  out  what  use  may  be  made  of  the 
formula  in  general  analysis.  If  the  curve  to  the 
equation  be  drawn,  and  the  refractive  index  of  any 
sample,  after  correction  for  acidity  and  saponifica- 
tion value,  lies  above  the  curve  for  the  iodine  value 
found  (and  this  will  be  found  to  be  the  case  with 
all  recovered  products,  and  many  crude  oils  on  the 
market),  it  is  certain  that  the  sample  in  question 
is  not  fresh,  or  has  been  prepared  from  damaged 
goods. 

Unless  we  confine  the  comparison  to  samples  of 
the  same  kind,  it  is  not  possible  to  state  which  of 
two  samples  is  the  fresher.  These  discrepancies  are 
due  to  the  fact  that  the  refractive  index  is  one  of 
the  first  figures  to  change  on  keeping,  rising  with 
ace  in  all  cases.  Two  opposite  changes  are  taking 
place,  i.e.,  the  refractive  index  is  lowered  by 
acidity,  and  raised  by  oxidation  and  polymerisation. 
Since  the  fall  with  increasing  acidity  is  smaller  than 
the  rise  caused  by  oxidation  and  polymerisation, 
the  net  effect  is  that  the  refractive  index  rises  on 
keeping. 

To  distinguish  between  change  due  to  polymerisa- 
tion and  change  due  to  oxidation  is  a  difficult 
matter,  because  it  is  only  possible  to  obtain  an 
estimate  of  the  change  due  to  oxidation  by  examina- 
tion of  the  fatty  acids,  and  the  necessary  saponifica- 
tion with  alcoholic  potash  usually  destroys  the 
effects  of  polymerisation.  Having  obtained  the 
fatty  acids  their  refractive  indices  can  be  found; 
from  these  acids,  after  removal  of  the  oxidised  acids 
by  means  of  their  insolubility  in  petroleum  ether 
of  sp.  gr.  0-64,  the  refractive  index  of  the  remaining 
petrol-soluble  acids,  which  may  bo  called  the  normal 
acids  of  the  sample,  may  be  obtained.  On  following 
this  procedure  it  is  found  that  in  every  case  the 
refractive  index  of  the  normal  acids  from  a  sample 
is  lower  than  the  refractive  index  of  the  total  fatty 
acids  of  the  same  oil.  As  most  oxidised  acids  have 
a  melting  point  above  100°  C,  no  refractive  indices 
of  these  substances  have  been  determined  up  to 
the  present. 


If  natural  oxidation  took  place  by  stages,  it 
would  not  be  very  difficult  to  follow,  but,  as  in  these 
oxidation  products,  peroxides,  aldehydes  (or  semi- 
aldehydes),  hydroxy-acids  of  more  than  one  type, 
lactones,  and  also  volatile  acids  are  present,  it  is 
quite  evident  that  several  stages  of  oxidation  aro 
all  taking  place  together.  Organic  peroxides 
liberate  iodine  from  potassium  iodide  solution,  and 
R.  S.  Morrell  has  found  in  the  oxidation  products 
from  oils  with  high  iodine  value,  insoluble  in 
acetone,  a  considerable  iodine  value  in  this  waj 
This  may  be  termed  the  "  peroxide  iodine  value." 
Were  this  the  only  change  taking  place,  the 
ordinary  iodine  value,  plus  the  peroxide  value, 
would  give  the  original  iodine  value  possessed  by 
the  sample  in  its  fresh  state ;  but,  as  mentioned 
before,  this  is  only  one  of  the  changes  taking  place. 
The  experimental  difficulties  met  with  in  attempting 
to  apply  tho  peroxide  iodine  value  to  samples  which 
undoubtedly  do  contain  peroxides,  though  not  in 
sufficient  amount  to  give  a  fraction  of  the  oil 
insoluble  in  acetone,  are  considerable,  and  up  to 
the  present  we  have  not  been  able  to  place  the 
reaction  on  a  quantitative  footing. 

The  presence  of  aldehydes  or  semi-aldehydes  is 
shown  by  tho  formation  of  hydrazones,  first  shown 
by  H.  Ingle  (J.,  1913,  639),  formation  of  a  mirror 
with  ammoniacal  silver  nitrate,  and  formation  of 
mercurous  chloride  when  the  oxidised  acids  are 
boiled  with  mercuric  chloride  solution.  The 
different  types  of  hydroxy-acids  may  be  best  distin- 
guished by  means  of  the  acetyl  groups  taken  up 
from  acetic  anhydride.  Among  the  oxidised  acids 
which  occur  naturally,  and  those  formed  by  oxida- 
tion with  permanganate,  the  acetic  anhydride  taken 
up  varies  from  nil  to  an  amount  equal  to  that 
required  by  hexahydroxystearic  acid.  The  majority 
of  tho  naturally  oxidised  acids  take  up  one  acetyl 
group  only.  It  is  possible  for  peroxides  from  linolic 
acid  to  break  up  with  formation  of  hydroxy-keto 
acids  containing  only  one  hydroxyl  group:  — 


CH-0 

I        I 
CH-0 


CH  (OH) 
CO 

I 


It  is  noteworthy  that  the  majority  of  these  oxidised 
acids  appear  to  belong  to  this  class.  The  oxidised 
acids  insoluble  in  ethyl  ether  usually  take  up  two 
or  more  acetyl  groups. 

Experiments  on  oxidation  with  permanganate 
have  been  carried  out  on  the  fatty  acids  of  oils 
varying  in  iodine  value  from  85  to  180.  The  oxida- 
tion was  carried  out  with  increasing  amounts  of 
permanganate  up  to  the  point  of  rupture  of  the 
molecule.  The  results  of  about  30  experiments 
showed  that,  when  taking  fatty  acids  from  oils, 
the  refractive  index  of  the  total  fatty  acids  rises 
steadily,  and  that  of  the  normal  fatty  acids  falls 
steadily.  With  the  acids  from  the  distillation 
products  of  fatty  acids,  the  refractive  index  of  the 
total  fatty  acids  rises  steadily,  and  that  of  the 
normal  fatty  acids  first  rises  and  then  falls  steadily. 

These  results  are  rather  difficult  to  understand, 
as  tho  molecular  weight  of  the  normal  acids  rises 
considerably  in  all  cases  before  the  fall,  which 
indicates  the  rupture  of  the  molecule,  takes  place. 
It  is  also  remarkable  that  the  figure  to  which  all 
these  molecular  weights  rise  (322 — 325)  differs  by 
only  three  units,  and  yet  the  iodine  values  of  the 
fatty  acids  taken  varied  by  95  units.  This  applies 
to  both  fatty  acids  from  glycerides,  as  well  as  to 
distillation  products.  When  fatty  acids  are  dis- 
tilled, the  refractive  index  is  unchanged  or  lowered. 
However  varied   the   refractive   indices   and   other 


Vol.  XIX,  No.  5.] 


COMBER— THE   CHARACTERISATION   OF   CLAY. 


77  T 


constants  of  the  material  distilled,  if  the  distillation 
is  carried  out  in  the  same  way,  the  distillates,  and 
also  the  oleines  from  them,  give  figures  which  lie 
remarkably  close  together.  This  fall  in  refractive 
index  and  iodine  value  has  been  attributed  to  the 
wandering  of  the  double  bonds,  but  it  appears  to 
us  that,  however  double  bonds  may  wander,  they 
must  still  remain  double.  Owing  to  the  fact  that, 
as  shown  by  Ingle  (J.,  1902,  May  15,  and  1904, 
April  30),  double  bonds  in  some  positions  do  not 
readily  take  up  iodine,  we  approached  this  question 
from  the  side  of  the  insoluble  bromides,  as,  up  to 
the  present  we  have  not  seen  or  heard  of  any  cases 
where  this  reaction  appears  to  fail.  We  would 
suggest  that  the  heating  up  in  the  still  causes 
polymerisation ;  we  have  plenty  of  evidence  that 
this  polymerisation  does  take  place  under  these  con- 
ditions," and  the  distillation  of  these  polymerised 
acids  is  bound  to  give  a  distillate  giving  lower 
refractive  index  and  iodine  value.  The  examination 
of  the  insoluble  bromides  separated  first  from  the 
fatty  acids  distilled,  and  then  from  the  oleine 
obtained  from  the  distillate  shows  that  distillation, 
like  hot-blowing,  has  destroyed  all  the  double  bonds 
above  two,  and,  further,  of  the  amount  of  acids 
present  with  two  double  bonds,  the  amount  distilling 
over  is  usually  under  one-third  of  the  amount 
originally  present. 

The  refractive  index  of  these  oleines  is  lowered 
by  the  presence  of  6olid  acids,  so  that  the  lower  the 
cold  test  of  an  oleine,  from  the  same  raw  material, 
the  higher  the  refractive  index. 

Work  is  still  proceeding  on  these  various  points 
which  are  still  unsettled. 

Discussion. 

Mr.  F.  W.  Richardson  asked  on  what  grounds 
the  authors  stated  that  their  method  of  preparing 
the  fatty  acids  obviated  any  loss  of  volatile  acids, 
as  ho  rather  thought  that  some  loss  would  occur 
even  when  drying  was  done  in  vacuo. 

Mr.  Pickering  replied  that  the  yields  of  fatty 
acids  obtained  from  the  oils  agreed  with  the 
quantity  as  calculated  from  the  saponification  values 
of  the  original  oil,  proving  that  no  such  loss  had 
occurred.  He  also  pointed  out  that  the  present 
work  only  related  to  freshly  prepared  pure  seed  oils, 
and  was  of  chief  value  to  seed  crushers  who  could 
test  their  products  and  calculate  the  iodine  value 
from  the  refractive  index  in  a  very  short  time. 
Commercial  samples  gave  values  higher  than  those 
calculated  owing  to  oxidation  and  polymerisation. 

Dr.  H.  Ingle  suggested  that  a  number  of  oils 
did  not  consist  entirely  of  straight-chain  compounds 
but  that  side-chains  were  present,  and  that  this 
would  influence  the  iodine  value. 

The  Chairman,  referring  to  the  question  of  the 
possible  wandering  of  the  double  bond,  said  that 
tli is  matter  was  not  yet  settled,  but  he  hoped  shortly 
to  decide  the  question  by  some  work  on  oleic  acid 
which  was  now  in  progress.  He  was  of  the  opinion 
that  both  oxidation  and  polymerisation  caused 
similar  results,  and  that  a  number  of  phenomena 
ascribed  to  oxidation  were  often  due  to  polymerisa- 
tion. He  did  not  agree  with  the  authors  that  the 
iodine  value  only  was  a  measure  of  the  oxidation. 
In  the  process  of  oxidation  he  had  observed  that  the 
free  fatty  acids  were  oxidised  first,  and  this  had  an 
important  bearing  on  the  use  of  oils  in  the  treat- 
ment of  wool  and  the  production  of  stickiness  so 
detrimental  to  wool-chambers.  The  free  fatty  acids 
also  affected  the  heating  effect,  by  the  Mac-key 
tester,  more  than  the  iodine  value  would  show. 
Especially  in  the  case  of  oils  having  high  iodine 
values,  he  was  inclined  to  agree  with  Dr.  Ingle  that 
the  structural  arrangement  of  the  molecule  included 
side-chains. 


Meeting  held  at  the  Queen's  Hotel,  Leeds    on 
January  16,  1922. 


MR.    S.   H.   DAVIES  IN  THE  CHAIR. 


THE    CHARACTERISATION    OF    CLAY. 

BY   NORMAN    M.    COMBER,    B.SC.(l.OND.),    A.B.C.8.,    A.I.C. 

While  there  is  a  general  and  non-technical  recog- 
nition of  what  is  meant  by  "clay,"  there  is  no 
satisfactory  scientific  definition  of  it.  Taking  for 
granted  the  obvious  fact  that  clay  is  a  silicious 
rock,  the  two  chief  characteristics  which  call  for 
explanation  and  definition  are:  — 

1.  Plasticity,  the  power  to  be  deformed  without 
cracking,  and  to  retain  the  new  shape  when  the 
deforming  force  has  been  removed. 

2.  Binding  power,  which  is  manifested  in  two 
ways:  first,  in  the  power  of  the  clay  particles  to 
remain  united  after  drying  and  firing,  and  second, 
in  the  power  of  clay  to  ba  incorporated  with  non- 
plastic  material. 

There  are  a  number  of  technical  definitions  of 
clay,  all  of  which  are  unsatisfactorv  except  for  local 
and  special  purposes.  Text-books  of  chemistry 
commonly  define  clay  on  the  basis  of  composition 
citing  some  such  formula  as  Al203,2Si02,2H20  to 
represent  a  pure  or  ideal  clay.  Such  definition, 
however,  leads  to  the  anomaly  that  the  "purest" 
form  of  clay — the  china  clays  most  nearly  conform- 
ing to  the  formula— are  less  clay-like  than  "im- 
pure "  clays.  A  common  basis  of  definition  or 
description  of  clay  is  the  size  of  the  particles.  The 
failure  to  define  clay  by  the  maximum  diameter  of 
its  particles  is  sufficiently  obvious  from  the  fact  that 
the  maximum  diameters  selected  by  different  authori- 
ties vary  enormously.  In  English  soil  chemistry 
clay  is  the  term  applied  to  all  mineral  particles 
having  a  mean  diameter  of  not  more  than  2/i : 
American  soil  chemists  take  5/i  as  the  maximum 
diameter  of  clay  particles,  and  ceramic  chemists 
seem  to  admit  much  larger  particles  into  the  clay 
category. 

In  this  paper  two  suggestions  are  put  forward- 
one  concerning  the  essential  difference  between  clay 
and  all  other  systems  of  silicious  mineral  matter 
(silt  and  sand),  and  another  concerning  those 
differences  between  one  clay  and  another  which  are 
commonly  expressed  in  the  terms  "  fat "  and 
"  lean." 

The  abnormalities  of  soil  clay. 
The  mineral  particles  which  form  the  structural 
basis  of  most  soils  are  conventionally  graded 
according  to  their  size  into  a  number  of  "frac- 
tions." In  this  country  the  following  convention  is 
adopted: — Stones,  above  3  mm.  diam.;  fine  gravel, 
3 — 1  mm. ;  coarse  sand,  1 — 0"2  mm. ;  fine  sand,  0'2— - 
0'04  mm. ;  coarse  silt,  0-04—0-01  mm. ;  fine  silt 
O'Ol— 0-002  mm. ;  clay,  below  0'002  mm. 

A  number  of  independent  soil  investigations  have 
shown  that  there  are  certain  abnormalities  about 
the  soil  when  it  is  considered  as  a  system  of 
moistened  particles.  Following  are  some  of  the 
chief  ways  in  which  the  soil  system  behaves  differ- 
ently from  simple  systems  of  moistened  particles 
and  fails  to  comply  with  the  theoretical  require- 
ments of  such  systems. 

The  abnormal  permeability  of  soils. — The  permea- 
bility (P)  of  a  system  of  particles  to  a  fluid  varies 
inversely  as  the  viscosity  (i)  of  the  fluid.  For  all 
fluids  Pxi)  is  constant  for  any  given  system.  For  a 
number  of  different  systems  of  particles,  the 
permeability  to   air  (P  )  and  the  permeabilitv  to 


78  T 


COMBER— THE   CHARACTERISATION    OF   CLAY. 


[Mai.  15,  1922. 


water  (Pxv)  were  determined  by  Green  and  Ampt* 
and  it  was  found  that  the  theoretical  requirement 

JVM  _.  i 


obtained  for  systems  of  quartz  6and,  glass  beads, 
etc.  but  that  the  quotient  was  much  higher  than 
unity  for  soils.  Also,  the  discrepancy  between  the 
theoretical  and  the  actual  value  of  the  quotient 
Pa>/u  /  P«»l»  was  greater  the  greater  the  amount  of 
clay ;  with  some  clay  soils  the  value  was  as  high 
as  14.  It  is  inconceivable  that  the  permeability  of 
soils  to  air  is  abnormally  high,  and  the  inevitable 
conclusion  is  that  the  permeability  of  soils  to  water 
is  abnormally  low,  and  that  it  is  more  so  the  greater 
the  clay  content  of  the  soil.  This  low  permeability 
of  clay  to  water  is  attributed  by  Green  and  Ampt 
to  the  imbibition  of  water  by  the  colloidal  surface 
of  the  particles  and  a  consequent  restriction  of  the 
passages  between  the  particles. 

The  abnormal  rate  of  evaporation  of  water  from 
soils. — When  water  evaporates  from  moistened  glass 
beads,  sand,  silt,  china  clay,  etc.  the  rate  of 
evaporation  diminishes  linearly  with  the  amount  of 
water.  It  has  been  shown  by  Keen,t  however,  that 
when  water  evaporates  from  soils  the  rate  of  evapo- 
ration diminishes  more  rapidly  than  this.  The  rate 
of  evaporation  depends  firstly  on  the  amount  of 
clay  present  and  secondly  on  the  amount  of  organic 
matter.  After  ignition  to  destroy  the  organic 
matter  and  the  colloidal  portion  of  the  clay,  the  rate 
of  evaporation  is  similar  to  that  from  moist  sand. 
The  conclusion  is  that  the  clay  particles  have  a 
hydrophilous,  water-imbibing  surface. 

The  abnormal  depression  of  the  freezing  point  of 
the  soil  solution. — The  freezing  point  of  a  dilute 
solution  is  measurably  below  0°  C.  In  accordance 
with  the  well-known  law,  if  50%  of  the  water  is 
allowed  to  evaporate  and  the  solution  thus  allowed 
to  become  twice  as  concentrated,  the  depression  of 
the  freezing  point  will  become  approximately  twice 
as  great  as  in  the  original  solution.  It  has  been 
shown  by  BouyoucosI  that  when  water  evaporates 
from  soil  the  'increment  in  the  depression  of  the 
freezing  point  is  much  greater  than  the  value 
calculated.  The  discrepancy  between  the  value 
found  and  the  value  calculated  is  greater,  the 
greater  the  percentage  of  clay  in  the  soil.  In  some 
clay  soils  it  was  found  that  when  50%  of  the  water 
had  evaporated  the  freezing  point  depression 
became  not  twice  as  great  but  about  fifteen  times 
as  great.  The  conclusion  drawn  from  a  large 
amount  of  consistent  data  is  that  only  some  part 
of  the  soil  water,  the  "free"  water,  is  concerned 
in  holding  substances  in  solution  while  the  "  un- 
free  "  water  is  held  more  intimately  by  the  surface 
of  the  particles.  When,  therefore,  the  total  water 
is  reduced  by  50%  the  "  free  "  water— the  water  of 
solution— is  reduced  to  a  much  greater  extent. 
There  is  no  indication  of  a  sharp  line  of  division 
between  the  "  free  "  and  the  "  unfree"  water,  the 
one  merges  insensibly  into  the  other;  but  the 
existence  of  the  "  unfree  "  water,  consistently  with 
the  independent  and  quite  different  observations  of 
Green  and  Ampt,  and  of  Keen,  indicates  a  hydro- 
philous or  emulsoid  surface  to  the  clay  particles. 

The  abnormal  flocculation  of  soils.  The  addition 
of  lime  to  certain  soils  is  a  common  agricultural 
practice.  The  action  of  lime  on  soils  is  manifold, 
but  one  important  effect  is  the  improvement  of  the 
texture  of  heavy  clay  soils,  due  to  the  flocculation 


•  Green  and  Ampt.,  J.  Aglic.  Sci.,  1911,  t. 
t  Keen   J.  Agric.  Sci.,  19l4,  6,  450  ;   1921,4,432. 
t  Michigan  Agile.  Coll.  Expt.  Sta.  Tech.  Bulls.  No.  24  (1915), 
No.  31  (1910). 


of  the  clay  particles  whereby  they  aggregate 
together  forming  what  is  in  practical  effect  a  lesser 
number  of  larger  particles.  There  is  consequently 
a  lightening  of  the  soil,  a  reduction  in  plough- 
draught,  and  an  improvement  in  drainage,  in 
aeration,  and  in  soil  temperature. 

Clay  particles  suspended  in  water  carry  an 
electro-negative  charge.  Now  it  is  generally  true 
that  electro-negative  suspensions  and  suspensoids 
are  flocculated  by  acids  and  neutral  salts  but  are 
deflocculated  by  alkalis.  A  great  deal  of  theoretical 
discussion  has  arisen  around  these  facts,  but 
without  any  consideration  of  the  theory  of  the 
action  of  the  hydroxyl  ion,  it  is  only  necessary  for 
the  present  purpose  to  note  the  fact  that  alkalinity 
normally  opposes  and  retards  the  flocculation  of 
electro-negative  suspensions. 

In  view  of  that  fact  the  agricultural  use  of  lime 
for  flocculating  clay  is  clearly  remarkable.  An 
alkali  is  apparently  used  to  accomplish  the  very 
process  which  alkalis  reverse.  The  explanation 
which  has  been  commonly  accepted  until  recently 
is  that  the  calcium  hydroxide  formed  after  the 
addition  of  lime  to  the  soil  is  converted  by  the 
carbon  dioxide  present  into  bicarbonate  and  that 
the  bicarbonate  is  the  real  flocculant.  It  has  now 
been  shown,  however,  by  the  author*  that  when 
similar  suspensions  of  soil  clay  are  treated  with 
equivalent  amounts  of  calcium  hydroxide  and 
calcium  bicarbonate,  the  hydroxide  produces  a  much 
better  and  quicker  flocculation  of  the  clay.  When 
calcium  hydroxide  is  compared  in  the  same  way 
with  neutral  calcium  salts,  it  is  again  the  hydroxide 
which  is  notably  the  better  flocculant.  The  action 
of  the  various  calcium  compounds  on  silt  suspen- 
sions is  quite  normal :  the  neutral  salts  flocculate 
better  than  the  hydroxide.  The  abnormal  floccula- 
tion by  calcium  hydroxide  is,  therefore,  a  character- 
istic of  clay. 

The  theory  advanced  by  the  author  to  account  for 
the  flocculation  of  clay  by  lime  is  that  the  surface 
of  the  clay  particles  is  composed  of  emulsoid  matter 
which  reacts  with  calcium  compounds,  only  in  an 
alkaline  medium,  to  form  a  voluminous  precipitate 
which  entrains  the  particles.  Such  substances  as 
hydrated  silica,  humus,  tannin,  etc.  give  no  pre- 
cipitate in  a  neutral  medium  with  neutral  calcium 
salts,  but  they  give  a  voluminous  precipitate  with 
calcium  hydroxide  or  with  calcium  salts  in  an 
alkaline  medium.  The  flocculation  of  clay  by  lime 
is  regarded  as  the  formation  of  such  a  voluminous 
precipitate  by  the  interaction  of  the  calcium 
hydroxide  and  the  emulsoid  material  of  the  surface 
of  the  particles.  The  generalisation  that  alkalis 
retard  the  flocculation  of  electro-negative  colloids 
really  applies  only  to  suspensoids,  and  the  fact  that 
alkalinity  expedites  the  flocculation  of  clay  by 
calcium  salts  points  to  the  predominance  of 
emulsoid  properties  in  clay. 

The  characterisation  of  clay. 

The  abnormal  permeability  of  soils,  the  abnormal 
rate  of  evaporation  from  soils,  and  the  abnormal 
depression  of  the  freezing  point  of  the  eoil  solution 
all  consistently  indicate  that  the  soil  particles  have 
a  hydrophilous  or  emulsoid  surface.  These  abnorm- 
alities are  more  pronounced  where  the  percentage 
of  clay  is  greater,  and  it  thus  appears  that  the 
colloidal  surface  has  something  to  do  with  the 
characterisation  of  clay.  But  the  mere  presence 
of  a  colloidal  surface  is  not  alone  sufficient  to 
characterise  clay.  There  can  be  no  doubt  that  all 
the  soil  particles  have  such  a  surface;  but  in  clay 
the  effect  of  that  surface  becomes  very  great.  The 
constitutional   characteristic   of   clay  which   distin- 

•Comber,  J.  Agric.  Sci.,  1920, 10  ;  1921,  11,  450.  Trans.  Faraday 
Soc,  Vol.  17  (1922). 


Vol.  XIX,  Xo.  5.] 


COMBER— THE   CHARACTERISATION   OF   CLAY. 


guishes  it  from  other  systems  of  silicious  mineral 
particles  is  that  in  day  the  properties  of  the 
emulsoid  surface  outweigh  those  of  the  suspensoid 
"  core  "  whereas  in  silt  etc.  the  properties  of  the 
core  of  the  particles  are  not  dominated  by  the 
relatively  smaller  amount  of  emulsoid  surface.* 

The  relative  actions  of  calcium  hydroxide  and  of 
neutral  calcium  salts  are  particularly  instructive  in 
tins  connexion  and  seem  to  provide  a  practical  test 
for  clay.  If  the  particles  of  a  silicious  mineral 
system  are  coated  with  some  emulsoid  material,  such 
as  hydrated  silica,  the  action  of  lime  on  the  particles 
will  be  the  net  result  of  two  opposite  effects,  namely, 
a  deflocculating  action  on  the  core  of  the  particles 
and  a  precipitating  action  on  the  emulsoid 
surface.  Clay,  in  which  the  emulsoid  surface  pre- 
dominates, can  thus  be  identified  by  the  fact  that 
calcium  hydroxide  will  flocculate  it  better  than 
neutral  calcium  salts;  or  more  conveniently  in 
practice  by  the  fact  that  a  neutral  calcium  salt  will 
flocculate  it  better  if  the  suspension  is  first  made 
alkaline  with  a  drop  of  ammonia  solution. 

This  view  may  be  put  in  another  way.  There  is 
really  no  characterisation  of  clay  apart  from  the 
relation  of  clay  to  water.  When  a  clay  particle  is 
surrounded  by  water,  there  is  at  the  centre  of  the 
particle  water  which  is  chemically  combined,  and 
furthest  from  the  centre  there  is  normal  free  water. 
Between  the  completely  free  and  the  completely 
combined  water  there  seems  to  be  a  gradual  trans- 
ition in  which  the  water  becomes  more  and  more 
firmly  held  as  it  is  nearer  the  centre.  In  silt  the 
combined  water  passes  comparatively  abruptly  into 
the  free  water;  in  clay  there  is  a  preponderant 
amount  of  the  transitional  material  and  a  notable 
gradation  from  the  combined  to  the  free  water. 

This  view  of  the  transition  in  the  "  state  "  of  the 
water  is  supported  experimentally.  Bouyoucost  has 
shown  that  only  a  small  amount  of  the  water  of 
soils  freezes  at  or  near  0°  C.  As  the  soil  is  cooled 
to  lower  temperatures  more  and  more  of  the  water 
freezes,  but  even  at  -78°  C.  it  does  not  all  freeze. 

The  colloidal  theory  of  the  constitution  and 
plasticity  of  clay  has  been  emphasised  by  a  number 
of  workers,  particularly  by  Rohland.  The  foregoing 
observations  are  offered  in  support  of  that  theory, 
in  an  endeavour  to  give  more  precision  to  one  aspect 
of  it  and  to  suggest  a  practical  test  for  dis- 
criminating between  clay  and  silt. 

The  fatness  of  clays. 

If  the  ratio  of  emulsoid  surface  to  suspended  core 
determines  wholly  or  partially'  the  distinction 
between  clay  and  silt,  it  seems  clear  that  variations 
in  that  ratio  will  similarly  determine  differences  of 
quality  between  various  clays.  Clays  do  vary  in 
quality:  there  are  "  lean  "  clays  of  low  plasticity 
and  "  fat  "  clays  of  high  plasticity  and  usually  also 
of  high  binding  power. 

The  suggestion  is  here  submitted  that  the  funda- 
mental and  general  difference  between  the  fat  and 
the  lean  clays  is  the  higher  proportion  of  emulsoid 
surface  to  suspensoid  core  in  the  fat  clays.  This 
view  is  in  essential  agreement  with  that  of  Rohland, 
who  considers  that  plasticity  is  determined  by  the 
ratio  of  coagulable  to  non-coagulable  matter  in  the 
clay.  Rohland  obtains  a  relative  measure  of  this 
ratio  by  estimating  the  amount  of  water  required 
to  bring  the  clay  to  an  optimum  working  condition. 
He  argues  that  the  fat  clays,  containing  more  col- 
loidal matter,  imbibe  more  water  in  arriving  at 
their  maximum  plasticity. 


•  See  Comber.  J.  Agric.   Sci.,  1921,  11,  450. 

tBouyoucos,  Michigan  Agile.  Coll.  Espt.  Sta.  Tech.  Bull.  So.  36 
(1917). 


Now  if  the  fatness  and  leanness  of  clays  are  to  be 
respectively  ascribed  to  the  larger  and  smaller  pro- 
portions of  hydrophilous  surface,  and  if  calcium 
hydroxide  unites  with  the  material  of  that  surface 
to  form  a  voluminous  precipitate,  then  the  fatter 
the  clay  the  greater  will  be  the  volume  of  the 
coagulum  with  calcium  hydroxide.  It  must  be 
remembered,  however,  that  even  when  a  clay  is 
shaken  up  with  water  to  form  a  suspension  the 
particles  still  remain  very  largely  aggregated  and 
the  addition  of  calcium  hydroxide  to  the  suspension 
will  not  involve  a  reaction  with  the  maximum  sur- 
face. But  if  an  alkali,  such  as  ammonia  solution, 
is  added  to  the  suspension  first  and  a  calcium  salt 
is  added  subsequently,  the  reaction  will  involve 
the  maximum  surface  of  the  particles  because  the 
alkali  will  peptise  the  clay  in  addition  to  providing 
the'  necessary  alkalinity  for  calcium  salts  to  react 
with  the  colloidal  matter. 

A  preliminary  test  of  the  connexion  between  the 
fatness  of  the  clay  and  the  volume  of  the  coagulum 
formed  with  calcium  compounds  in  an  alkaline 
medium  was  made  with  four  clays*  in  the  following 
way :  Two  0'5-g.  portions  of  the  clay  under  examina- 
tion were  weighed  into  two  test  tubes  of  the  same 
calibre ;  10  c.c.  of  distilled  water  was  added  to  each 
tube  and  the  tubes  were  inverted  several  times.  To 
one  of  the  tubes  2  drops  of  a  standard  solution  of 
ammonium  hydroxide  was  added  by  means  of  a 
dropping  pipette.  The  contents  of  the  tubes  were 
again  mixed  by  several  inversions.  Five  minutes 
after  adding  the  ammonium  hydroxide  to  one  of  the 
tubes,  1  c.c.  of  JV/10  calcium  nitrate  was  added  to 
each  tube,  the  contents  of  each  tube  were  mixed  and 
allowed  to  stand.  Flocculation,  as  previously 
explained,  was  more  rapid  in  the  alkaline  suspen- 
sion. Sedimentation  was  allowed  to  proceed  to 
completion  in  both  tubes,  and  the  volume  of  the 
coagulum  from  the  alkaline  suspension  was  then 
compared  with  that  from  the  neutral  suspension. 
With  a  Farnley  fireclay  and  with  a  bauxitic  clay 
from  Ayrshire,  both  of  which  were  lean,  there  was 
no  notable  difference  in  the  volumes.  With  a 
Dorset  ball  clay,  which  was  fat,  the  alkaline 
coagulum  was  about  50%  greater  than  the  neutral 
coagulum.  With  a  Halifax  clay  purified  by  electro- 
osmosis  and  which  was  very  fat  the  alkaline  coagu- 
lum was  150 — 200%  greater  than  the  neutral 
coagulum. 

A  study  of  the  action  of  lime  on  clay  seems, 
therefore,  to  afford  further  evidence  of  the  colloidal 
constitution  of  clay  and  of  the  relation  of  that 
constitution  to  the  fatness  of  clay. 

Discussion. 

The  Chairman  asked  if  the  subject  had  been 
studied  by  microscopical  observations  and  whether 
in  elutriated  material  from  the  soil  the  smallest 
particles  were  entirely  clay. 

Mr.  W.  Godden  drew  attention  to  the  value  of 
the  author's  results  in  affording  an  adequate  ex- 
planation of  the  effect  of  lime  on  clay  and  silt  soils. 

Mr.  Reddie  said  that  clay  that  been  flocculated 
with  lime  was  found  to  be  a  good  precipitant  for 
the  colloidal  material  of  sewage,  but  after  being 
used  once,  or  at  most  twice,  the  flocculation  was 
reversed.  The  sewage  referred  to  (Bradford)  was 
just  alkaline  to  litmu6. 

Mr.  Searle  said  that  the  last  speaker's  results 
agreed  with  his  own  experience  that  the  flocculation 
and    deflocculation    of    clay    were    very    delicately 


•  These  clays,  and  information  about  them,  were  kindly  provided 
lor  this  purpose  bv  Prof.  J.  W.  Cobb,  and  Mr.  H.  S.  Houldsworth, 
of  the  Coal,  Gas  and  Fuel  Industries  Department  in  the  University 
of  Leeds. 


80  T 


COMBER— THE   CHARACTERISATION    OF   CLAY. 


[Mar.  15,  1922. 


balanced  reactions,  and  instanced  the  fact  that  some 
clays  were  rendered  quite  liquid  by  the  defloceula- 
tion  caused  by  a  minute  trace  of  alkali. 

Mr.  W.  McD.  Maokey  said  that  in  the  treatment 
of  trade  effluents  he  had  generally  found  it  much 
easier  to  precipitate  the  colloidal  matter  if  the 
liquors  were  acid.  The  volume  of  sludge  produced 
was  generally  much  decreased  by  using  first  formed 
sludge  to  flocculate  fresh  effluent.  He  asked  if 
any  work  had  been  done  on  the  hygroscopic  pro- 
perties of  dried  clays. 

The  Chairman  pointed  out  that  the  shrinkage  of 
a  soil  when  dried  had  been  used  as  a  rough  but 
practical  method  of  measuring  the  clay  content ; 
the  greater  the  shrinkage  the  greater  the  pro- 
portion of  clay. 

The  Author,  in  reply,  said  that  he  had  not  yet 
treated  the  subject  microscopically,  but  hoped  to 
do  so.  The  term  "  clay  "  was  not  entirely  satis- 
factory, but  in  practice  it  had  been  found  that 
the  smallest  particles  of  soil,  i.e.  those  less  than 
2/i  in  diameter  were  generally  clay  and  had  the 
plastic  properties  commonly  associated  with  that 
name.  Particles  of  the  next  larger  size  were  recog- 
nised by  soil  chemists  as  "silt,"  which  was  com- 
monly classed  by  farmers  also  as  clay.  He  con- 
sidered that  the  true  clay  soils  were  those  which 


were  amenable  to  lime  treatment.  There  was  a 
large  class  of  so-called  clay  soils  which  could  not 
be  flocculated  by  lime  treatment.  These  had  been 
shown  by  Hall  and  Russell  to  be  silt  6oils.  The 
silt  particles  were  surrounded  by  a  relatively  thin 
omulsoid  covering,  and  so  could  not  be  flocculated 
by  lime  in  the  same  way  as  the  clay.  Some  success 
had  already  been  obtained  in  the  treatment  of  these 
silt  soils  by  adding  colloidal  matter  to  increase  the 
emulsoid  coating  and  then  treating  with  lime. 
With  reference  to  the  reversal  of  flocculation,  he  was 
not  surprised  by  Mr.  Reddie's  experience,  and  ho 
suggested  the  use  of  alum  as  a  possible  preventive. 
He  pointed  out  that  clay  soils  which  had  been 
flocculated  by  liming  required  very  careful  treat- 
ment and  cultivation  otherwise  deflocculation 
occurred.  The  hygroscopicity  of  clays  had  been 
studied  very  carefully  by  Hilgard  and  by  Mitscher- 
lich,  and  from  the  relative  absorption  of  different 
liquids  the  method  had  been  used  to  measure  the 
size  of  the  soil  aggregate  particles  or  crumbs. 


Erratum. 

In  the  paper  on  "  Estimation  of  Carbon  Dioxide 
in  Mineral  Carbonates,"  by  L.  A.  Sayce  and  A. 
Crawford  (J.,  Feb.  28,  1922,  57  t),  in  column  2, 
line  31  from  bottom,  for  "  099%  "  read  "  (r07%." 


Vol.  XLI..  No.  6.] 


TRANSACTIONS 


[Mar.  31,  1922. 


Birmingham  Section. 


Meeiiihj  held  at  the  University  en  Thursday, 
January  26,  1922. 


DR.    H.     W.    BROWNSDON    IN    THE    CHAIR. 


THE     DITHIOCARBAMATE     ACCELERATORS 
OF   VULCANISATION. 

BY   D.    F.    TWISS,    S.    A.    BRAZIER,    AND    P.    THOMAS. 

As  is  well  known,  the  need  for  organic  vulcanisa- 
tion catalysts  was  first  keenly  experienced  in  con- 
nexion with  synthetic  rubber,  which  is  notably 
sluggish  in  vulcanisation.  Doubtless  there  had 
been  early  independent  application  of  such  "  accel- 
erators "  to  natural  rubber  (see,  e.g.,  D.  Spence, 
Indiarubber  World,  1918,  57,  881;  also  J.,  1917, 
118),  but  the  earliest  public  description  of  this 
class  of  catalyst  emanated  from  sources  interested 
in  the  production  of  synthetic  rubber.  During  the 
years  1915 — 1918  the  production  of  synthetic 
rubber  in  Germany  received  an  extraordinary 
stimulus,  and  two  organic  compounds  in  particular 
appear  to  have  been  applied  to  expedite  its  vulcan- 
isation. These  were  the  additive  compound  of 
aldehyde  and  ammonia,  or  "aldehyde-ammonia," 
and  the  additive  compound  of  piperidine  and 
carbon  bisulphide,  or  piperidine  piperidyldithio- 
carbamate,  which  were  termed  "  Vulcacite  A  "  and 
"  Vulcacite  P  "  respectively  (Indiarubber  J.,  1919, 
58,  305).  These  two  substances  are  of  especial  in- 
terest as  representing  a.  marked  contrast  in 
character  and  exhibiting  a  striking  difference  in 
their  behaviour  towards  rubber  in  vulcanisation. 

Aldehyde-ammonia,  the  use  of  which  was  first 
described  in  the  patent  literature  of  1914  (E.P. 
12,661),  accelerates  strongly  the  chemical  reaction 
between  rubber  and  sulphur  and  does  not  need  the 
additional  presence  of  other  substances  for  the  full 
development  of  its  power.  On  the  other  hand, 
piperidine  piperidyldithiocarbamate,  the  use  of 
which  and  of  analogous  compounds  derived  from 
other  aliphatic  bases  first  finds  mention  in  1912 
(G.P.  266,619;  E.P.  11,615  of  1913),  although  .a 
fairly  strong  accelerator  in  a  plain  mixture  of 
rubber  and  sulphur,  becomes  much  more  powerful 
in  the  presence  of  zinc  oxide  (see  G.  S.  Whitbv, 
"  Plantation  Rubber,"  1920,  p.  199;  G.  S. 
"Whitbv  and  O.  J.  Walker,  J.  Ind.  Eng.  Chem., 
1921,  13,  816;  G.  S.  Whitby  and  A.  H.  Smith, 
paper  read  before  September  meeting  of  American 
Chem.  Soc,  1921;  D.  F.  Twiss,  J.,  1921,  242  t). 

Our  own  experiments  with  piperidine  piperidyl- 
dithiocarbamate, CSH„N.CS.S.NH,CSH,0,  early 
showed  the  marked  difference  between  the  effect 
in  the  absence  and  presence  of  zinc  oxide  and,  in 
the  latter  case,  the  need  for  great  care  to  prevent 
vulcanisation  during  the  mixing  operation.  Ex- 
periments made  using  the  accelerator  in  the  form 
of  a  stock  mixing  with  rubber  of  which  a  propor- 
tionate weight  was  taken  for  including  in  the  final 
experimental  mixing,  proved  little  helpful,  and  it 
was  found  more  convenient  and  satisfactory  to  in- 
troduce the  catalyst  after  the  incorporation  of  the 
sulphur  and  zinc  oxide,  the  mixture  being  kept  as 
cool  as  possible. 

As  in  the  earlier  investigation  with  aldehvde- 
ammonia  (D.  F.  Twiss  and  S.  A.  Brazier,  J.,  1920, 
125  t),  experiments  were  made  at  various  tempera- 
tures and  with  different  proportions  of  the  catalyst. 
In  Table  1  are  given  figures  showing  the  effect  of 
1%  of  piperidine  piperidyldithiocarbamate  at  138° 


O.  on  a  90:10  mixture  of  rubber  and  sulphur.  The 
results  agree  with  those  obtained  with  aldehyde- 
ammonia  in  indicating  the  approximate  con- 
currence of  maximum  tensilo  strength  and  an  ex- 
tensibility of  650%  at  a  load  of  0'5  kg.  per  sq.  mm., 
although  the  agreement  is  not  quite  as  good  as  with 
aldehyde-ammonia.  For  the  attainment  of  the 
latter  condition,  the  time  necessary,  calculated  from 
the  curve  obtained  on  plotting  the  results,  is 
roughly  30  minutes.     The  corresponding  period  of 

Table  1. 

Temperature  138°  C.  (  —  35  1b.  steam  pressure  per  sq.  in.). 
1%  piperidine  piperidyldithiocarbamate. 

Period  of                  Tensile  strength  Extensibility 

vulcanisation.            (kg.  per  sq.  mm.).    (0-5  kg.  per  sq.  mm.), 

mins.  % 

15  . .                  0-90  . .  95S 

20  ..                  1-80  788 

30  .  .  626 

40  ..                   1-93  ..  694 

50  ..                  1-64  ..  551 

60  .  .                   0-44  .  .  — 

vulcanisation  for  the  blank  rubber-sulphur  mixing 
being  about  230  mins.  the  acceleration  factor  (Twiss 
and  Brazier,  loc.  cit.)  for  1  %  of  this  catalyst  is 
roughly  230/30  or  7"7 ;  this  is  comparable  with  the 
value  of  7  calculated  by  Whitby  and  Walker  (loc. 
cit.)  from  the  time  for  the  development  of  maximum 
tensile  strength.  It  may  be  remarked  that  these 
workers  used  dumb-bell-shaped  test  pieces,  whereas 
our  tests  were  made  with  rings. 

Another  experiment  was  made  at  128°  C.  with 
0'25%  of  the  accelerator  also  without  zinc  oxide  (see 
Table  2).  At  this  temperature  with  the  blank  mix- 
ture the  time  necessary  for  the  reduction  of  extensi- 
bility to  a  value  of  650%  would  be  approximately 
530  minutes,  which  the  accelerator  reduces  to 
approximately  200  minutes.  For  0'25%  of  this 
substance,  therefore,  the  acceleration  factor  is  2'6; 
this  value  is  in  good  accord  with  that  found  for 
1  %  ;  the  value  of  the  acceleration  factor  expected 
for  0'25%  by  calculation  from  the  value  for  1% 
would  be  l  +  (7'7-l)/4  or  approximately  2"7. 

It  is  worthy  of  note  that  the  position  of  maximum 
tensile  strength  corresponds  with  a  vulcanisation 
coefficient  between  4  and  5 ;  this  relationship  is 
therefore  very  little  abnormal,  and  the  curve  for  the 
progress  of  combination  of  sulphur  is  practically 
rectilinear,  as  is  also  the  case  for  simple  mixtures  of 
rubber  and  sulphur. 

Table  2. 

Temp.  128°  C.  (=  22-3  lb.  per  sq.  in). 
i%  piperidine  piperidyldithiocarbamate. 

Period  of         Tensile  strength    Extensibility         Vulcanisation 
vulcanisation.  (0-5  kg.  persq.  mm.),   coefficient, 

min.  (kg.  per  sq.  mm.)  % 

50  . .           0-64            . .           636  . .  — 

70  ..           0-75           ..           840  ..  2-08 

110  ..            102             ..            751  ..  2-62 

150  . .            1-31            . .           706  . .  3-62 

180  ..            1-58            ..           676  ..  4-07 

210  ..            1-60            ..           636  — 

When  zinc  oxide  is  included  in  the  mixture 
striking  divergence  is  observed  from  the  results 
with  aldehyde-ammonia.  The  chief  differences  are 
(1)  an  altered  outline  of  the  curve  representing  the 
change  in  extensibility  with  progressive  vulcanisa- 
tion, (2)  an  earlier  occurrence  of  maximum  tensile 
strength  relative  to  the  coefficient  of  vulcanisation, 
(3)  a  greater  value  for  the  maximum  tensile 
strength,  (4)  a  curvilinear  course  for  the  rate  of 
combination  of  sulphur  with  rubber. 

The  curve  representing  the  alteration  in  extensi- 
bility (elongation  at  0"5  kg.  per  sq.  mm.)  is  almost 
rectilinear  for  simple  mixtures  of  rubber  and 
sulphur  without  or  with  aldehyde-ammonia,  but 
with  piperidine  piperidyldithiocarbamate  (and  its 
analogues)  and  zinc  oxide  the  extensibility  soon 
commences  to  decrease  less  rapidly;  with  low  pro- 


82  T 


TWISS   AND   OTHERS.— ACCELERATORS    OF   VULCANISATION. 


[Mar.  31,  1922. 


portions  of  zinc  oxide  it  may  actually  attain  a  mini- 
mum and  then  increase  again.  This  abrupt  change 
in  direction  renders  the  curve  less  readily  applic- 
able to  the  calculation  of  comparative  acceleration 
factors,  and  reference  has  to  be  made  to  the  curves 
for  tensile  strength  and  combined  sulphur.  Even 
here,  however,  the  abnormality  of  the  relationship 
between  the  vulcanisation  coefficient  and  the  posi- 
tion of  maximum  tensile  strength  causes  a  further 
complication,  and  each  method  of  calculation  gives 
a  distinct  result;  any  value  for  the  acceleration 
factor  under  these  circumstances  needs  to  be  ear- 
marked with  the  basis  of  calculation. 

The  presence  of  zinc  oxide  in  mixings  containing 
piperidine  piperidyldithiocarbamate  has  a  remark- 
able influence  on  the  rate  of  vulcanisation,  thus 
presenting  a  marked  contrast  to  the  relatively  small 
effect  of  zinc  oxide  on  aldehyde-ammonia  (Twiss. 
loc.  cit.).  A  contrast— albeit  less  marked — is  also 
observable  between  the  effect  of  these  two  ac- 
celerators in  that  the  conjoint  effect  of  zinc  oxide 
and  the  dithiocarbamate  accelerator  induces  abnor- 
mally high  tensile  strength  in  the  vulcanised  rubber. 

Figure  1  reproduces  the  results  of  several  series  of 
experiments  at  128°  C.  (equivalent  to  22'3  lb.  steam 
pressure). 

The  results  of  a  similar  series  of  experiments  at 
118°  0.  are  given  in  Table  3,  together  with  the 
figures  obtained  in  a  test  at  108°  C.  (these  tempera- 
tures are  equivalent  respectively  to  steam  pressures 
■ol  12'4  and  46  lb.  per  sq.  in.). 

Table  3. 

J%  Piperidine  piperidyldithiocarbamate  plus  1%  zinc  oxide. 
Temp.  118°  C' (  =  12-4  lb.  steam  pressure  per  sq.  in.) 

Period  of         Tensile  strength      Extensibility        Coefficient  of 
vulcanisation,    (kg.  per  sq.  mm.)  (0-5  kg.  persq.  mm.)         vul- 
min.  %  canisation. 


10 

100 

20 

1-63 

40 

1-48 

60 

1-72 

100 

— 

120 

1-53 

150  . 

113 

Piperidine  pipcridyld 

10 

2-14 

20 

210 

40 

1-97 

60 

1-28 

80 

119 

120 

0-50 

150 

0-39 

588 
612 
491 
487 
494 
516 
674 


Temp.  118°  C. 


587 
604 
425 
394 
357 
352 


20 


2-3 

2-6 


3-3 


1-6 
2-5 


3-7 

4-7 


Effect  of  "  overcuring  "  already  marked  at  a  coefficient  below  4. 

1%  Piperidine  piperidyldithiocarbamate  plus  20%  zinc  oxide. 
Temp.  118°  C. 


10 
20 
30 
40 
60 
80 


1-42 
2-23 
1-39 
0-41 
0.24 
0-22 


608 
453 

420 


10 
1-7 


2-9 
41 


J%  Piperidine  piperidyldithiocarbamate  plus  20%  zinc  oxide. 
Temp.  108°  C.  (=4-6  lb.  steam  pressure  per  sq.  In.). 


20 
30 
40 

60 

80 

100 


1-73 
219 
212 
1-69 
1-68 
0-51 


516 
454 
415 
382 
350 


These  figures  indicate  that  for  a  mixture  contain- 
ing sufficient  zinc  oxide  a  fall  of  10°  in  the  tempera- 
ture necessitates  a  period  of  vulcanisation  2 — 2i 
times  as  long;  thi6  value  is  comparable  with  that 
found  for  the  "  temperature  coefficient  "  of  vulcani- 
sation of  simple  mixtures  of  rubber  and  sulphur, 
and  also  of  such  mixtures  containing  simple 
accelerators  in  the  form  of  aldehyde-ammonia  (Twiss 
and  Brazier,  loc.  cit.)  or  of  piperidine  piperidyl- 
dithiocarbamate without  zinc  oxide  (G.  S.  Whitby, 
"  Plantation  Rubber,"  p.  323). 


The  curves  and  figures  reveal  clearly  that  the  in- 
fluence of  zinc  oxide  in  intensifying  the  action  of 
the  accelerators  is  a  cumulative  one  increasing 
markedly  with  the  proportion  of  this  ingredient.  It 
is  remarkable  that  the  elongation  at  0'5  kg.  per 
sq.  mm.  at  the  maximum  tensile  strength  in  all 
those  mixings  containing  zinc  oxide,  approximates 
to  500%.  This  value  is  distinctly  lower  than  the 
corresponding  value  at  the  "optimum  cure"  of 
plain  mixings  or  mixings  containing  aldehyde- 
ammonia;  for  these  the  figure  is  approximately 
650%. 


SO  X>0  ISO  200 

Mnufes. 

O  flutter  90   SulptturtO  piptndrne  pipendy/ditAioco'teittate  0-25 

O      *       SO         "        10  r"K  cxide  I  ftper/dHTe  piffrM//tfif»>xarte'»otr02S 

A      "       90         "         W     "       "     5         '  "  0  2S 

Fig.  1. 

The  acceleration  factor  for  these  mixings  contain- 
ing zinc  oxide  and  accelerator  can  only  be  computed 
approximately  by  comparing  the  times  required  for 
the  development  of  the  maximum  tensile  strength 
with  the  corresponding  period  at  the  same  tem- 
perature for  the  plain  rubber  sulphur  mixing.  It 
is  seen  that  the  acceleration  factor  at  118°  C.  for 
the  0'25%  of  the  accelerator  in  the  presence  of  20% 
of  zinc  oxide  exceeds  100.  Bearing  in  mind  the 
tendency  to  somewhat  lower  proportional  efficiency 
of  such  accelerators  at  higher  concentrations,  this 
figure  is  comparable  with  that  of  300  obtained  by 
Whitby  and  Smith  (loc.  cit.)  for  1%  of  the  ac- 
celerator and  10%  of  zinc  oxide. 

At  first  sight  it  may  appear  that  the  above  figures 
are  affected  by  the  presence  of  the  zinc  oxide  which 
by  itself  influences  somewhat  the  physical  charac- 
teristics, especially  the  extensibility  of  the  rubber- 
sulphur  mixture.  The  disturbance  from  this 
cause,  however,  is  but  slight;  in  Table  4  are  given 
figures  showing  the  effect  of  progressive  vulcanisa- 
tion on  corresponding  mixtures  of  rubber,  sulphur, 
and  zinc  oxide  without  any  added  accelerator ;  the 
temperature  used  is  of  necessity  higher,  but  the 
results  demonstrate  clearly  the  relatively  minor 
effect  of  the  zinc  oxide  alone  on  the  physical  charac- 
teristics of  the  rubber. 

Comment  must  be  made  on  the  striking  course  of 
the  extensibility  curve  obtained  on  plotting  the  re- 
sults for  the  effect  with  J%  of  the  accelerator  in  the 
presence  of  only  1  %  of  zinc  oxide.  With  progres- 
sive vulcanisation,  whilst  there  yet  remains  a  large 
proportion  of  sulphur  uncombined,  the  rapid  reduc- 
tion in  the  extensibility  soon  ceases,  and  a  period  of 
gradually  increasing  extensibility  sets  in.  This 
latter  effect  is  not  due  to  overheating,  as  indeed  is 


VoITxli,  No.  6]         TWISS   AND   OTHERS.— ACCELERATORS   OF  VULCANISATION. 


83  T 


evident  from  the  low  temperatures  in  question ;  it 
evidently  arises  from  the  formation  of  some  sub- 
stanco  which  induces  a  "  depolymerisation  "*  effect 
on  the  rubber.  It  is  remarkable  that  in  almost  all 
cases  where  this  phenomenon  is  observed  the  values 
of  the  tensile  strength  ehow  a  much  less  definite 
maximum.  The  formation  of  depolymerising  agent 
is  distinct,  although  not  so  marked  as  with  some 
other  accelerators  such  as  hexamethylenetetramine 
or  perhaps  even  thiocarbanilide  under  similar  con- 
ditions. As  the  latter  accelerator  is  regarded  by  some 
workers  as  belonging  to  the  dithiocarbamate  class  of 
accelerator  (Bedford  and  Scott,  J.  Ind.  Eng.  Chem., 
1920,  12,  31),  there  is  shown  in  Figure  2  the  result 
of  similar  vulcanisation  experiments  with  3%  of 
thiocarbanilide  and  1%  of  zinc  oxide;  the  behaviour 
is  similar  to  that  observed  with  thiocarbo-p- 
toluidide,  as  described  in  our  earlier  communication 
on  the  discontinuity  of  vulcanisation  in  the  presence 
of  organic  accelerators,  but  the  present  result  is 
possibly  of  still  more  interest  on  account  of  the 
extensive  application  of  thiocarbanilide. 

Table  4. 
Effect  of  zinc  oxide  at  148°  C.  (=   51  lb.  steam  pressure). 


Rubber  90 
Sulphur  10,-] 
Zinc  oxide  1 


J 


Period  of 

Tensile 

Extensibility 

vulcanisation 

strength 

(05  kg. 
(persq.  mm.). 

min. 

kg.  persq.  mm.) 

30 

0-72 

940 

45 

0-90 

845 

60 

1-32 

776 

80 

1-71 

662 

90 

1-53 

620 

105 

0-83 

545 

30 

103 

875 

45 

1-05 

778 

60 

1-30 

721 

80 

1-37 

693 

90 

1-58 

652 

105 

1-74 

597 

Rubber  90 

Sulphur  10,- 
Zinc  oxide  5  I 


It  will  be  noticed  that  the  actual  effectiveness  of 
the  thiocarbanilide  as  a  catalyst  is  much  less  than 


O     Rubbtr  90,  Sutp*>urtot  T/j/octrbao.-t'Se  J 

□  "        9Q  "       IO,Zinc  Crrfe  I,  Thi'ocarbani'/it/e  J 

A        •     94       ■■     w,    ■■      ■■    S,  •  J. 

Fig.  2. 


•  The  term  "  depolymerisation "  for  lack  of  a  better  is  used 
throughout  this  paper  for  a  change  in  the  rubber  characterised 
by  an  increase  in  the  extensibility,  and  simultaneously  although  to  a 
less  extent,  by  a  decrease  in  the  tensile  strength.  Instead  of  becoming 
harder,  as  would  be  expected  from  ordinary  progressive  vulcanisa- 
tion, the  rnbber.becomes  softer. 


that  of  the  piperidine  piperidyldithiocarbamate, 
particularly  when  allowance  is  made  for  the  differ- 
ence between  the  proportions  used,  and  between  the 
temperatures  of  vulcanisation.  For  the  same  reason 
the  extent  of  the  subsequent  "depolymerisation" 
effect  relative  to  the  concentration  in  the  case  of 
the  last-named  accelerator,  may  be  in  reality  not 
much  inferior  to  that  with  thiocarbanilide. 

As  was  stated  on  an  earlier  occasion,  the  strik- 
ingly abnormal  course  of  the  effect  of  vulcanisation 
in  the  presence  of  certain  organic  accelerators  and  a 
6mall  proportion  of  zinc  oxide,  is  indicative  of  a 
preliminary  activation  of  part  of  the  sulphur  and  a 
subsequent  "depolymerisation"  effect  on  the 
rubber.  The  latter  is  probably  caused  by  a  decom- 
position product  of  the  accelerator.  The 
phenomenon,  however,  appears  to  be  definitely  un- 
favourable to  the  recently  expressed  opinion  of  M. 
Le  Blanc  and  M.  Kroger  (Z.  Elektrochem.,  1921, 
27,  335),  whose  interpretation  of  their  experimental 
results  includes  an  assumption  that  organic  accelera- 
tors exert  their  action  by  influencing  the  rubber 
and  not  the  sulphur. 

In  the  original  description  of  the  carbon  bisul- 
phide derivatives  of  the  aliphatic  amines  as 
accelerators  of  vulcanisation  the  only  advantage 
claimed  was  the  conversion  of  the  volatile  liquid 
bases  into  solid  substances  which  could  be  more 
easily  handled  and  applied;  the  mixtures  quoted  in 
illustration  of  the  patent  claims  were  free  from 
zinc  oxide  or  other  basic  oxides.  It  is  a  matter  of 
some  difficulty  to  decide  at  what  date  the  remark- 
able influence  of  zinc  oxide  on  their  activity  was 
discovered.  Hutin  in  1917  (Monit.  Scient.,  1917, 
61,  193),  in  describing  the  additive  compound  of 
dimethylamine  and  carbon  bisulphide  as  a  powerful 
accelerator  of  vulcanisation,  makes  no  mention  of 
the  effect  of  zinc  oxide  and  the  low  degree  of 
acceleration  which  he  states  (3:8)  renders  it  evident 
that  he  was  referring  to  mixtures  free  from  zinc 
oxide.  Ostromyslenski,  in  a  patent  for  which  appli- 
cation was  made  in  1916  (J.  Buss.  Phys.  Chem.  Soc, 
1915,  47,  1885;  E. P.  108,453  of  1916),  actually 
includes  lead  oxide  or  zinc  oxide  in  mixings  con- 
taining piperidine  piperidyldithiocarbamate,  but  he 
states  that  this  accelerator  could  be  replaced  by 
aliphatic  amines  such  as  isoamylamine  or  hexa- 
methylenetetramine; these  substances  are  not  influ- 
enced by  zinc  oxide  to  the  same  extent  as  the  dithio- 
carbamates.  Although,  therefore,  he  can  hardly 
have  been  unaware  of  the  effect  of  zinc  oxide,  06tro- 
myslenski's  statement  is  indefinite  on  the  point. 
Knowledge  of  the  effectiveness  of  the  combination 
of  zinc  oxide  and  amine  alkyldithiocarbamates 
gradually  spread,  however,  and  to-day  the  best 
known  examples  of  this  type  of  accelerator  are  the 
carbon  bisulphide  derivatives  of  piperidine  and  of 
dimethylamine.  Like  the  piperidine  derivative  the 
latter  additive  compound  is  a  powerful  catalyst, 
but  as  we  found  diethylamine  more  easily  accessible 
(see  T.  S.  Price,  S.  A.  Brazier,  and  A.  S.  Wood, 
J.,  1916,  147),  our  experiments  were  continued 
mainly  with  the  additive  compound  of  this  base, 
viz.,  diethylamine  diethyldithiocarbamate.  As  will 
be  seen  later  from  the  relative  activity  of  the  corre- 
sponding disulphide  compounds,  it  is  probable  that 
there  is  very  little  difference  between  the  activity 
of  the  dimethylamine  and  diethylamine  derivatives. 
Indeed  our  experiments  with  dimethylamine  dime- 
thyldithiocarbamate,  whether  alone  or  together 
with  zinc  oxide,  indicated  it  definitely  to  be  of  com- 
parable activity  with  its  ethyl  homologue. 

Diethylamine  diethyldithiocarbamate, 

N(C2HS)2.CS.S.NIL(C2H3)2, 

like  its  piperidine  analogue,  is  much  less  powerful 
in  its  effect  in  the  absence  of  zinc  oxide.  The  results 
reproduced  in  Table  5  refer  to  the  behaviour  of  a 

a2 


84  T 


TWISS   AND   OTHERS.— ACCELERATORS    OF   VULCANISATION. 


[Mar.  31,  1922. 


mixture  of  rubber  90,  sulphur  10,  and  diethylamine 
diethyldithiocarbamate  at  128°  C. 

Table  5. 
1%  Diethylamine  diethyldithiocarbamate  at  128°  C. 
Period  of  Tensile  Extensibility        Vulcanisation 

vulcanisation.  strength       (0-5  kg.  per  sq.  mm.)    coefficient, 

min.  (kg.  per  sq.  mm.)  % 

40  ..  0-74  ..  897  ..  3-3 

60  ..  107  ..  743  ..  3-5 

80  ..  1-32  ..  695  ..  4-7 

110  ..  1-85  ..  640  ..  6-0 

120  ..  1-70  ..  618  ..  — 

140  ..  1-27  ..  575  ..  — 

The  maximum  tensile  strength  is  attained  at  a 
vulcanisation  coefficient  of  approximately  5,  thus 
indicating  very  little  divergence  from  the  normal 
value  in  the  absence  of  zinc  oxide ;  the  extensibility 
at  the  maximum  tensile  strength  is  also  fairly 
normal,  having  a  value  approximately  640.  Similar 
experiments,  using  0"25  of  the  same  accelerator  in 
a  90:10  rubber-sulphur  mixing  without  zinc  oxide, 
were  made  at  128°  and  138°  C. ;  the  results  will  be 
found   amongst  others   in   Fig.   4. 

A  series  of  experiments  at  108°  C.  with  0'25  %  of 
the  accelerator,  together  with  1,  5,  and  20%  of  zinc 
oxide,  gave  the  results  embodied  in  Fig.  3. 


It  is  of  interest,  however,  that  in  a  mixing  con- 
taining rubber,  sulphur,  calcined  magnesia, 
litharge,  and  heavy  magnesium  carbonate  with 
0"25%  of  the  accelerator  and  no  zinc  oxide  at  138°, 


n     PfDbt'  90,  Sulphw'O,  ?,r,ccr-Jct,   Z>*et'i/f*iin'riar>;tim-J,fr/}r/j.rh,rrjr63io*?eO?£ 
&         -       90,  to,     •       .-     4  ■  OPS 

V  90,  to,  po.  ■•  ■•  :■  OPS. 

Fig.  3. 

It  will  be  seen  that  in  rate  of  cure  these  mixings 
are  comparable  with  the  corresponding  ones  con- 
taining piperidine  piperidyldithioearbamate,  the 
extensibility  after  60  mins.  with  20%  of  zinc  oxide 
being  respectively  350%  and  373%  at  0'5  kg.  per 
sq.  mm.  The  tensile  strengths  are  also  high,  and 
the  elongations  are  low,  relative  to  the  plain  rubber- 
sulphur  mixing. 

Examination  was  made  of  the  possibility  of  other 
very  finely  divided  substances  than  zinc  oxide 
affecting  the  acoelerative  power  of  the  diethylamine 
compound.  The  experiments  were  completed  a  con- 
siderable time  before  the  publication  of  the  work  of 
P.  Schidrowitz  and  J.  R.  Burnand  (J.,  1921,  268  t), 
and  with  a  different  aim.  We  omitted  the  use  of 
zinc  oxide  and  introduced  a  refined  clay  to  find 
whether  the  latter  could  exert  an  effect  similar  to 
that  of  zinc  oxide.  By  a  coincidence  the  clay 
resembled  that  of  Schidrowitz  and  Burnand  in  being 
a  "  colloidal  clay,"  although  prepared  in  a  some- 
what different  manner.  As  shown  by  the  results  in 
Fig.  4,  the  clay  proved  to  be  relatively  inert. 


ioo  ifimrts    'U>  soo 

O      Pubtcr 9QSv/pt>ut  tO,4,tr/>yl*rT>,nt   JWlift  et.'A«X<rrto/n*te  OPSIWC 

.        ...  -  -   •2U»V 

«i  f,*...v    el*/  I.  o .-'V'"""   **'t>Jrt*ti/'»a*'4e*'ArcCPS&ee'C 


'     9°. 


•  to. 


Fig.  4. 


there  was  observed  a  "  depolynierisation "  effect 
similar  to  that  found  with  the  simpler  mixings  with 
0'25%  accelerator  and  1%  of  zinc  oxide,  as  shown 
in  the  preceding.  The  actual  results  for  the  tensile 
strength  and  elongation  for  this  zinc  oxide-free 
mixing  are  given  in  Table  6. 

The  phenomenon  again  appeared  to  be  conditional 
on  the  presence  of  the  organic  accelerator. 


Period  of 

vulcanisation. 

min. 

50 

70 

90 

110 

130 

150 


Table  6. 

Tensile  strength 
(kg.  per  sq.  mm.) 

1-18 
1-10 
1-02 
0-99 
0-82 
0-85 


Extensibility    " 
(0-5  kg.  per  sq.  mm.) 

ot 

to 
255 
262 
285 
310 
353 
375 


Tests  were  also  made  using  smaller  proportions 
of  sulphur,  viz.,  6%  and  3%  respectively.  These 
results  (Fig.  5)  not  only  show  the  "  abnormal  " 
characteristics  of  the  dithiocarbamate  curves,  but 
also  indicate  the  effect  of  the  smaller  sulphur  con- 
tent in  reducing  the  rate  of  vulcanisation  and  in 
increasing  the  extensibility  relative  to  the  co- 
efficient of  vulcanisation  and  the  tensile  strength. 

Comparison  of  the  above  results  with  those  for  the 
analogous  piperidine  derivative  demonstrates  that 
the  two  accelerators  are  very  little  different  in  their 
effectiveness  in  expediting  vulcanisation. 

In  the  literature  on  the  subject  the  references  to 
the  use  of  organic  bases  and  their  simpler  deriva- 
tives for  vulcanisation  generally  lay  no  restriction 
on  the  selection  of  the  base  except  that  the  base 
should  not  be  too  weak ;  occasionally  primary  and 
secondary  amines  have  been  specified  and  tertiary 
amines  said  to  be  inactive.  Evidence  as  to  the 
erroneous  character  of  the  latter  exception  is  forth- 
coming from  the  accelerative  activity  of  quinine, 
the  basic  character  of  which  is  due  to  two  nitrogen 
atoms  both  of  which  are  tertiary.  On  the  other 
hand,  although  the  free  primary  and  secondary 
amines  are  alike  active  catalysts  of  vulcanisation, 
the  alkyldithiocarbamates  of  which  definite  records 
are  available  almost  without  exception  have  been 
derived  from  secondary  amines.  It  appeared 
desirable  therefore  to  examine  the  behaviour  of  the 


Vol.  XII,  No.  6.] 


TWISS   AND   OTHERS.— ACCELERATORS   OF   VULCANISATION. 


85  T 


additive    compound    of   carbon   bisulphide    with    a 
primary  amine. 

In     extension    of    the    work    on     diethylamine 
<ln  t  hvldithiocarbamate     it     was     consequently     a 


O  #*«*' 9-t,S<jiphvr  6,?toccjvde  /,<fiefAyiem,*e  t*e/*],/di>A>oca'&*we035 
V      -     94,       •     <>,       •         S,  ■■  t  02S\ 

03S- 
Q      »    9f,        •    4,       '         /, 
A     .    «;      .   4      •       4  "  *** 

Fig.  5. 

natural  step  to  the  corresponding  ethylamine 
derivative,  i.e.,  ethylamine  ethyldithiocarbamate, 
NHaf^.CS.S.NHaCH,.  Table  7  reproduces  the 
results  with  this  substance. 

Table  7. 

1%  Ethylamine  ethyldithiocarbamate.    Temp.  138°  C. 


Period  of 


Tensile 


vulcanisation.  strength 


Alone 


With 
5%  ZnO 


min. 
60 
90 
120 
160 
20 
40 
60 
80 


strengtn 
(kg.  persq.  mm.) 


0-65 
100 
100 
1-74 
0-74 
110 
1-22 
1-34 


C 

138°  C. 

* 

Extensibility 

<1 

(0-5  k.g  per 

<* 

sq.  mm.) 

* 

g 

90S 

802 

| 

737 

642 

848 

697 

643 

U20 

It  is  surprising  that  the  ethylamine  ethyldithio- 
carbamate which,  because  of  its  lower  molecular 
weight,  might  have  been  expected  to  exceed  the 
diethylamine  analogue  in  activity,  proves  in  fact 
to  be  much  weaker. 

The  periods  necessary  for  comparable  vulcanisa- 
tion (650%  elongation)  at  133°  C.  in  the  absence  of 
zinc  oxide  are  160  for  the  ethylamine  derivative 
and  140  fi>r  the  analogous  diethylamine  compound; 
with  the  additional  presence  of  5%  zinc  oxide  at 
128°  C,  comparable  periods  for  the  same  extensi- 
bility are  60  mins.  and  10  mins.  respectively. 
There  appears  indeed  to  be  a  marked  and  possibly 
fundamental  difference  between  the  two  classes  of 
compounds  represented  by  these  substances.  The 
effect  of  zinc  oxide  on  the  carbon  bisulphide 
derivative  of  the  primary  amine  is  much  feebler 
than  that  on  the  derivative  of  the  secondary 
amine;  also,  whereas  the  combination  of  the  latter 
with  zinc  oxide  results  in  high  values  for  the  tensile 
strength,  the  former  alone  actually  gives  better 
tensile  strength  results  than  when  it  is  applied 
together  with  zinc  oxide.  It  had  appeared  possible 
that  on  account  of  the  readiness  with  which   the 


alkyldithiocarbamates  derived  from  primary 
amines  undergo  conversion  into  "  mustard  oils  " 
of  unpleasant  odour,  they  might  for  this  reason  be 
less  acceptable  as  vulcanisation  catalysts.  The 
experiment  shows  that  the  dialkylamine  deriva- 
tives are  likely  to  prove  preferable  on  more  weighty 
grounds;  they  are  clearly  much  more  effective. 

The  peculiar  activity  of  the  dialkylaminedialkyl- 
dithiocarbamates  in  accelerating  vulcanisation 
naturally  led  to  other  compounds  derived  from 
this  class  being  submitted  to  trial  for  the  same 
purpose.  The  use  of  thiouram  disulphides  obtain- 
able from  the  alkyldithiocarbamates,  e.g.,  tetra- 
methylthiouram  disulphide, 

N(CH3)3.CS.S.SCS.N(CH3)2 
from   a  bimolecular   proportion   of   dimethylamine 
dime  thy  Idithiocarbaniate, 

N(CH3)2.CS.S.NH2(CH3)2, 
by  gentle  oxidation,  has  been  mentioned  by  various 
workers  (G.  Bruni  and  E.  Romani,  Indiarubber  J., 
1921,  62,  63;  Maximoff,  Caoutchouc  et  Gutta- 
percha, 1921,  18,  10;944,  10,986),  but  detailed  state- 
ments of  the  experimental  results  have  been  lack- 
ing. From  certain  practical  points  of  view  these 
disulphides  possess  distinct  advantages.  They  are 
much  less  soluble  in  water  than  the  corresponding 
amine  alkyldithiocarbamates;  the  latter  can  easily 
be  prepared  in  aqueous  solution  and  by  converting 
the  soluble  salt  into  the  disulphide  an  insoluble 
powder  is  obtained  which  is  readily  removable. 
They  are  also  less  volatile  and  not  deliquescent  and 
so  are  more  easily  stored  and  handled.  They  are 
non-saline  and  probably  much  more  easily  soluble 
in  rubber  thereby  aiding  uniformity  of  distribu- 
tion. 

As  will  be  seen  from  Fig.  6,  the  presence  of  zinc 
oxide  is  again  essential  to  the  development  of  the 
full  power  of  the  tetramethylthiouram  disulphide. 


40  SOMmfes    ISO  160 

G    Rvbavr  SO,  Su/fifiur/O.  Terra*rcr/y/rti,cvTarvJ<Jt*tpl»dc  OPS. 

□         "       SO,       »      lO.ZirK'Onde   I,  Tgfn,mtfhyi/hteura^d'Sui/>l'tde  025. 

A      «     so,     -    w,      -        s,  ■■       oss. 

Fig.  6. 

Without  the  zinc  oxide  the  disulphide,  possibly 
because  of  its  greater  stability,  is  almost  inactive, 
the  period  at  138°  C.  for  reduction  of  the  extensi- 
bility to  650%  being  barely  affected  by  J%  of 
disulphide ;  the  necessary  period  is  approximately 
250  minutes  (by  extrapolation)   which  corresponds 


86  t 


TWISS  AND  OTHERS.— ACCELERATORS  OF  VULCANISATION. 


[Mar.  31,  1922. 


with  that  for  ordinary  vulcanisation  without  an 
accelerator  (270  minutes). 

With  the  addition  of  1%  or  5%  of  zinc  oxide, 
however,  the  time  of  vulcanisation  to  maximum 
tensile  strength  is  reduced  to  between  80  and  100 
minutes  at  108°  C,  which  is  comparable  with  that 
for  diethylamine  diethyldithiocarbamate  and  its 
pipcridine  analogue.  The  maximum  tensile 
strength  also  possesses  the  high  value  characteristic 
of  the  dithiocarbamate  accelerators,  the  figure 
exceeding  2  kg.  per  sq.  mm. 

A  claim  has  been  made  that  such  thiouram 
disulphides  are  capable  of  effecting  vulcanisation 
without  the  addition  of  free  sulphur.  For  this 
purpose  it  is  necessary  to  use  a  relatively  large 
proportion,  e.g.,  5%,  of  the  disulphides  conveniently 
with  zinc  oxide.  The  following  results  (Table  8) 
were  obtained  with  a  mixture  of  rubber  100,  tetra- 
methylthiouram  disulphide  5,  and  zinc  oxide  5,  as 
recommended  by  E.  Romani  (Giorn.  Chim.  Ind. 
Appl.,  1921,  3,  197,  see  J.,  1921,  520  a). 

Table  8. 

Vulcanisation  of  rubber  with  5%  of  tetramethylthiouram  disulphide 
and  5%  oi  zinc  oxide. 
Period  of  vulcanisation.  Tensile  strength       Extensibility 

(kg.  per  sq.  mm.)       (0-5  kg.  per 
sq.  mm.) 
% 
580 


15  min.  at  148°  C. 
15  min.  at  138°  C. 


1-12 
106 


095 


In  vulcanisation  experiments  at  108°  C,  with 
025%  of  the  homologous  tetra-ethylthiouram 
disulphide  as  catalytic  agent, 

N(aH5)2CS.S.S.CS.N(CaH5)a, 

together  with  zinc  oxide  and  sulphur,  similar 
acceleration  was  observed  together  with  develop- 
ment of  high  tensile  strength.  The  results  indeed 
were  a  little  superior  to  those  with  the  tetramethyl 
compound,  but  this  difference  may  be  due,  at  least 
in  part,  to  the  lower  melting  point  and  conse- 
quently easier  diffusibility  of  the  tetra-ethyl  COm- 


fa  SO  Mirvtes     tPO  t60  ?00 

O  dumber  SO.  S*p*v'/0,   Tetrae*h/!'fxcvT0m<Asulf>f*<'e  OPS 
D         •        90,  fO.  Z./K  ends  /,  Temitrti/VfiiiumnJisulpttKlc  02S 

h-90.-IO.--S  ■  ■  02s 

Fig.  7. 

pound  throughout  the  rubber  mass.  The  progress 
of  vulcanisation  is  represented  in  Fig.  7.  It  will 
be  seen  that  tetra-ethylthiouram  disulphide  with- 


out zinc  oxide  appears  to  be  distinctly  more  active 
than  its  tetramethyl  analogue.  The  difference  in 
this  case  is  probably  too  marked  to  be  ascribed 
merely  to  the  lower  melting  point  of  the  former. 

It  is  notable  that  the  relative  lack  of  accelerating 
power  in  the  additive  compounds  of  carbon 
bisulphide  with  primary  amines,  as  instanced  by 
ethylamine  ethyldithiocarbamate,  is  found  to 
extend  to  the  corresponding  thiouram  disulphides. 
An  experiment  with  dimethylthiouram  disulphide 
NHCHa.CS.S.S.CS.NHCH3  (Fig.  8)  reveals  this 
substance  to  have  distinctly  less  influence  than  the 
tetramethyl  compound  particularly  when  the  com- 
parison is  made  between  mixtures  of  rubber  and 
sulphur  containing  the  respective  disulphides  and 
zinc  oxide.  This  result  again  is  contrary  to  what 
would  be  expected  merely  from  a  consideration  of 
the  respective  molecular  weights,  and  indicates  a 
fundamental  difference  between  the  behaviour  of 
the  primary  and  secondary  amine  derivatives. 

Since  our  experiments  were  made  we  have  found 
that  this  confirms  a  statement  bv  E.  Romani  (Atti 
R.  Accad.  Lincei,  1921  V.,  30,  283)  that  thiouram 
disulphides  derived  from  primary  amines  are 
deficient  in  activity. 


so 


ISO 


100 

G  Putber90,Sulphurl0.dirtett>^lfbiouram  disu/pnidt:  OSS 

Q       .       90.  lO.rirK  oitSe  l.dmetfi/lrhicfram  atsulptitdi  OPS 

&       .       SO.        .     10.    -         ■      S,  •■  ••  OlS 

Fig.  8. 

Emphasis  has  been  laid  by  some  workers  on  the 
view  that  the  alkyldithiocarbamate  accelerators 
need  first  to  react  with  zinc  oxide  and  that  the 
actual  catalyst  is  the  zinc  salt  of  the  alkyldithio- 
carbamic  acid  in  question  (Bruni  and  Romani,  loc. 
cit.;  Maximoff,  foe.  cit.).  This  view  has  been 
supported  by  reactions  in  benzene  as  a  medium 
(Bedford  and  Sebrell,  J.  Ind.  Eng.  Chem  1921,  13, 
1034),  but  such  evidence  must  be  regarded  with  the 
greatest  circumspection.  The  nature  of  the  medium 
can  and  does  greatly  influence  the  actual  course  of 
reactions  within  it;  this  indeed  is  demonstrated  by 
the  fact  that  the  Peachey  process  of  vulcanisation 
is  favoured  by  the  fact  that  hydrogen  sulphide  and 
sulphur  dioxide  react  much  more  rapidly  in  the 
presence  of  rubber  than  in  benzene  alone.  Similarly 
the  fact  that  aldehyde-ammonia  reacts  readily  with 
sulphur  in  boiling  alcohol  with  formation  of 
ammonium  sulphide  provides  by  no  means  the 
claimed  proof  that  this  is  the  reaction  responsible 
for  the  accelerated  vulcanisation  in  the  presence  of 
this  catalyst.  If  indeed  it  were  so,  no  aldehyde- 
ammonia  should  be  present  in  the  rubber  after  the 
mixing  operation,  but  that  it  is  so  present  is  evident 
from  the  odour  of  the  mixed  rubber ;  the  vulcanised 


Vol.  XIX,  No.  6.] 


TWISS  AND  OTHERS.— ACCELERATORS  OF  VULCANISATION. 


87  T 


rubber  also  possesses  a  characteristic  odour  which 
is  not  that  of  ammonium  sulphide.  It  is  well 
known  that  reactions  are  greatly  influenced  by  the 
chemical  nature  of  the  solvent  involved,  and  it  is 
hardly  to  be  expected  that  a  mobile  hydroxylic 
solvent  such  as  ethyl  alcohol  would  behave  similarly 
to  a  colloidal  and  highly  unsaturated  hydrocarbon 
solvent  such  as  caoutchouc.  Similarly  the  evidence 
that  zinc  oxide  and  an  amine  alkyldithiocarbamate 
react  in  benzene  with  formation  of  the  correspond- 
ing zinc  alkyldithiocarbamate  by  no  means  con- 
stitutes a  convincing  proof  that  this  zinc  salt  is 
also  the  active  catalyst  when  an  amine  alkyldithio- 
carbamate or  thiouram  disulphide  is  applied  to 
expedite  vulcanisation. 

Although  these  zinc  salts  have  been  described  as 
being  much  more  powerful  catalysts  than  the  corre- 
sponding amine  salts  or  thiouram  disulphides(Bruni 
and  Romani,  loc.  tit.),  our  vulcanisation  experi- 
ments yielded  the  surprising  result  that  in  them- 
selves these  zinc  salts  are  practically  valueless  as 
accelerators,  being  almost  inactive  except  in  the 
presence  of  zinc  oxide.  They  appear  to  be  as  little 
the  actual  catalysts  as  the  original  alkylamine  alkyl- 
dithiocarbamates  or  thiouram  disulphides.  In  all 
probability  therefore  some  decomposition  product 
common  to  all  three  classes  of  substance,  and  formed 
only  in  the  presence  of  free  zinc  oxide,  is  in  reality 
responsible. 

For  the  purpose  of  our  experiment  zinc  diethyl- 
dithiocarbamate  was  prepared  by  the  reaction  of 
zinc  sulphate  and  diethylamine  diethyldithio- 
carbamate  in  aqueous  solution.  The  alternative 
method  described  by  Maximoff  (Joe.  cit.)  of 
heating  zinc  oxide  and  sulphur  with  the  dry  diethyl- 
amine  salt  was  found  to  be  unsatisfactory  in 
its  results.  The  identity  of  the  zinc  salt  was  con- 
firmed bv  its  zinc  content  (Zn  18"0%  ;  calculated  for 
[N(CjHs)3.CS.S]2Zn,18-0%)  and  its  general  chemical 
reactions.  The  results  reproduced  in  Fig.  9  serve 
to  show  clearly  the  absence  of  any  exceptional  power 
in  the  zinc  salt  relative  to  its  parent  amine  6alt. 


O   Butter  SO,  Sulphur  lO,  2mc  die/hyldirh>ceirTt*iT,0/€    C25 

□  *      90,  lO,ZiicO*iflel>Z">cJ>t:rf;ftjth,^jTrj'Vure02£ 

&       •    en       •     '<>,     -       -    4     -  •  o& 

Fig.  9. 

In  this  connexion  it  is  desirable  to  add  that  the 
activity  of  zinc  ethyLxanthate,   (C2H5.0.CS.S)3Zn, 


which  has  been  described  as  an  accelerator  by 
various  workers  (the  original  observation  being 
attributed  to  Ostromyslenski  in  1917)  is  strangely 
dependent  on  the  presence  of  zinc  oxide.  Alone  it 
is  almost  inactive  as  a  persistent  accelerator 
although  it  exercises  a  distinctly  favourable  influ- 
ence on  the  early  development  of  the  initial 
characteristics  of  vulcanisation.  The  additional 
presence  of  zinc  oxide  apparently  greatly  increases 
its  effectiveness,  but  even  under  these  conditions  the 
power  of  the  xanthate  to  convert  ordinary  sulphur 
into  an  active  form  appears  to  be  strictly  limited. 
The  results  suggest  indeed  that  zinc  xanthate 
presents  an  extreme  case  of  the  phenomena  observ- 
able in  the  rapid  decrease  in  the  effectiveness  of 
many  dithiocarbamate  or  so-called  carbosulph- 
hydryl  accelerators  in  the  presence  of  small  propor- 
tions of  zinc  oxide.  The  general  character  of  the 
results  on  vulcanisation  is  indicated  in  Fig.  10. 
The  absence  of  nitrogen  forms  an  exceptional 
feature  of  this  accelerator. 


1  foo 


-  O  Rvtee'  SO,  Sulfhu 
□  90, 

A       '      SO. 


40  60  SO  IOO 

T/^e  cf  cure  —  MyuScM 


to,  Zi/k  e/ywtof  / 

to,  Z-r>c  c*'0e  I,  Zi'ec  ethylMartrha/ef 

ia     •     •    s.  i 

Fig.  10. 


It  is  realised  that  there  is  still  much  room  for 
extension  of  such  an  investigation  as  this  to  mix- 
tures containing  a  higher  proportion  and  a  greater 
variety  of  technical  compounding  ingredients,  but 
for  preliminary  work  it  appears  desirable  that  the 
selected  conditions  should  be  as  simple  and  as  free 
from  complications  as  possible.  It  need  hardly  be 
stated  also  that  an  intensive  examination  of  the 
physical  character  of  the  vulcanised  products  may 
in  some  directions,  be  of  the  highest  importance. 
The  capacity  of  the  vulcanised  products  to  recover 
from  repeated  application  of  stress,  or  to  maintain 
their  character  over  long  periods  of  storage,  can 
be  included  among  the  several  important  factors  of 
which  no  record  is  made  in  the  above. 

In  its  present  form  the  investigation  contributes 
to  the  knowledge  of  the  vulcanisation  process  par- 
ticularly in  its  susceptibility  to  the  influence  of 
auxiliary  agents.  The  work  with  the  class  of 
accelerator  under  consideration  indicates  some  dis- 
tinct differences  relative  to  earlier  results  with 
other  types  of  accelerator ;  in  part  also  it  serves  to 
check  and  sometimes  to  confirm  statements  of  other 
workers  who  have  omitted  publication  of  actual 
experimental  results. 


88  t 


GROUNDS.— THE  CONSTITUTION  OF  ANTHRACITE. 


[Mar.  31,  1922. 


In  review  of  the  results  included  in  this  paper 
the  following  typical  characteristics  of  these  dithio- 
carbamate  accelerators  may  be  given. 

(1)  The  production  of  vulcanised  products  of  un- 
usually high  tensile  strength.  '  In  one  case  a  vul- 
canised sample  withstood  without  breaking  the 
highest  load  (100  kg.)  possible  with  the  testing 
machine,  the  corresponding  stretch  being  750%. 
This  stress  was  equivalent  to  a  breaking  load  ex- 
ceeding 3'4  kg.  per  sq.  mm.,  calculated  on  the 
original  dimensions  of  the  test  piece,  or  more  than 
18  tons  per  sq.  in.  on  the  cross-section  of  the 
stretched  rubber. 

(2)  The  production  of  unusually  great  resistance 
to  extension  relative  to  the  extent  of  the  chemical 
change  and  the  alteration  in  tensile  strength. 

(3)  The  development  of  maximum  tensile  strength 
at  an  unusually  low  coefficient  of  vulcanisation  of 
the  rubber. 

(4)  The  necessity  of  the  concomitant  presence  of 
zinc  oxide  for  full  exercise  of  accelerative  power 
even  with  the  zinc  dialkyldithiocarbamates.  These 
salts  consequently  cannot  represent  the  actual 
catalysts  which  must  be  sought  in  some  type  of 
decomposition  product  common  to  the  zinc  salts,  the 
amine  alkyldithiocarbamates,  and  the  corresponding 
thiouram  disulphides. 

(5)  The  tendency  of  the  curve  showing  the  altera- 
tion in  extensibility  (at  0'5  kg.  per  sq.  mm.)  to 
attain  an  early  minimum  if  only  a  small  proportion 
of  zinc  oxide  is  used.  Under  such  conditions  the 
peak  in  the  tensile  strength  curve  is  lacking  in 
sharpness.  The  effect  is  probably  connected  with 
the  initial  formation  of  a  limited  quantity  of  highly 
active  sulphur,  the  supply  of  which  becomes  rapidly 
exhausted. 

(6)  The  fact  that  alkyldithiocarbamates  and 
thiouram  disulphides  derived  from  primary  amines 
are  much  less  powerful  than  the  corresponding 
derivatives  of  secondary  amines. 

Discussion. 

Dr.  H.  W.  Brownsdon  inquired  whether  mag- 
nesium' oxide  was  capable  of  effectively  replacing 
zinc  oxide  in  conjunction  with  organic  accelerators, 
and  also  asked  if  the  high  tensile  strength  values 
were  accounted  for  by  a  rapid  application  of  the 
load. 

Mr.  S.  A.  Brazier  referred  to  the  bearing  of  such 
investigations  of  accelerators  on  the  problem  of  the 
nature  of  vulcanisation  itself  as  well  as  on  the  im- 
provement of  technical  practice.  The  greater  popu- 
larity of  organic  accelerators  in  America  than  in 
this  country  probably  was  largely  explained  by  the 
fact  that  supplies  of  mineral  accelerators  of  the 
highest  quality  were  more  readily  available  here. 

Mr.  P.  Thomas  remarked  on  the  great  value  of 
the  oil  bath  for  experimental  vulcanisation.  With 
reference  to  zinc  ethylxanthate  he  added  that 
further  experiments  indicated  that  a  high  vulcan- 
isation temperature  was  not  favourable  to  this 
accelerator.  At  first  sight  it  had  appeared  possible 
that  zinc  ethylxanthate  was  capable  of  vulcanising 
rubber  in  the  absence  of  free  sulphur,  but  trial  had 
shown  this  view  to  be  incorrect. 

Mr.  C.  W.  H.  Howson  observed  that  in  experi- 
ments at  the  ordinary  temperature  using  solutions 
of  rubber  and  sulphur  in  benzene  with  the  addition 
of  various  dithiocarbamate  accelerators,  the  rate  of 
vulcanisation  being  judged  from  the  time  necessary 
for  gelation,  he  had  similarly  found  the  presence  of 
zinc  oxide  essential.  In  such  experiments  the  pro- 
portion of  accelerator,  e.g.,  piperidine  piperidyldi- 
thiocarbamate,  to  rubber  could  be  usefully  increased 
to  16%  and  higher.  He  had  also  found  that  in  the 
presence  of  zinc  oxide  and  carbon  bisulphide,  p- 
toluidine  was  more  effective  than  aniline  and  this 
than  o-toluidine.  From  his  results  he  was  of  the 
opinion  that  there  was  no  strict  parallelism  between 
the    effectiveness    of   such    organic    accelerators   in  , 


vulcanisation  in  solution  and  in  the  ordinary  hot 
process  of  vulcanisation. 

Dr.  E.  B.  Maxted  said  that  in  catalytic  reactions 
the  activity  of  a  promoter  was  found  to  be  greater 
the  higher  its  atomic  weight,  and  raised  the  ques- 
tion of  the  relative  effectiveness  of  the  oxides  of 
other  metals  than  zinc  but  in  the  same  group  of  the 
Periodic  Table. 

Mr.  F.  H.  Alcock  inquired  as  to  the  fate  of  the 
organic  accelerator  and  the  chemical  function  of  the 
zinc  oxide  during  vulcanisation. 

Mr.  G.  King  commented  on  the  expensive 
character  of  some  of  the  organic  accelerators,  and 
remarked  that  zinc  ethylxanthate  should  be  avail- 
able economically  from  a  by-product  in  the  manu- 
facture of  certain  organic  solvents. 

Mr.  H.  J.  Alcock  drew  attention  to  the  difficulty 
of  detecting  the  presence  of  dithiocarbamate 
accelerators  of  which  such  a  small  proportion  as 
0'25%  can  be  used  effectively.  In  the  case  of  zinc 
ethylxanthate  the  absence  of  nitrogen,  which  ele- 
ment is  characteristic  of  practically  all  other 
organic  accelerators,  renders  detection  in  a 
technical  compounded  rubber  still  more  difficult.  He 
suggested  that  a  method  might  be  devised  for  this 
based  on  treatment  with  dilute  mineral  acid  and 
detecting  any  liberated  carbon  bisulphide  by  a 
benzene  solution  of  pkenylhydrazine. 

Dr.  Twiss,  in  reply,  said  that  although  zinc  oxide 
was  a  basic  substance,  it  did  not  by  itself  possess 
any  accelerative  effect ;  this  was  evident  from  the 
curves  exhibited.  The  function  of  the  zinc  oxide 
was  to  enter  into  chemical  action  with  the  organic 
accelerator  and  thereby  to  give  rise  to  some  particu- 
larly active  substance.  The  possibility  that  oxides 
of  other  metals  of  higher  atomic  weight  in  the  same 
periodic  group  might  possess  still  greater  effective- 
ness deserved  further  investigation.  During  vulcan- 
isation the  major  portion  of  an  organic  accelerator 
underwent  decomposition.  In  testing  the  samples 
the  load  was  always  applied  steadily,  and  high 
values  observed  for  the  tensile  strength  were  not 
due  to  the  rapidity  With  which  the  rubber  was 
stressed ;  in  the  case  of  the  vulcanised  rubber  which 
showed  exceptionally  high  tensile  strength,  the  ring- 
shaped  test  piece  in  question  sustained  the  full  load 
of  which  the  testing-machine  was  capable  for  a 
period  of  ten  minutes  before  it  was  finally  removed. 
It  was  of  interest  to  know  that  an  alkali  ethylxanth- 
ate, occurring  as  an  industrial  waste  product,  might 
be  available  for  the  cheap  production  of  zinc 
ethylxanthate.  The  application  of  accelerators  to 
technical  mixings  had  not  been  considered  in  this 
paper. 


Bristol  and  S.  Wales  Section. 


Meeting  held  at  Swansea  on  January  6,  1922. 


PROP.   J.   E.    COATES   IN  THE   CHAIR. 


A   CONTRIBUTION  TO   THE   STUDY  OF   THE 
CONSTITUTION  OF  ANTHRACITE. 

BY  ARTHUR   GROUNDS,   B.SC.TECH.,   A.I.O., 
ASSOC.M.I.MIN.E. 

The  work  forming  the  subject  matter  of  this 
paper  was  undertaken  as  the  result  of  a  statement 
made  by  R.  Lessing,  when  replying  to  the  discussion 
on  a  paper  which  he  read  before  the  Midland  Insti- 
tute of  Mining,  Civil  and  Mechanical  Engineers.1 
Following  an  enquiry  as  to  the  mode  of  formation  of 

1  Trails.  Inst.  Min.  Eng.,  1921,  60,  288-309. 


.1.1  .  Xo.  «.] 


GROUNDS.— THE  CONSTITUTION  OF  ANTHRACITE. 


89  t 


anthracite,  he  said  (loc  cit.  p.  307)  "  I  very  much 
doubt  that  ash  has  been  removed  in  tho  formation 
of  anthracite.  It  would  require,  first  of  all,  an 
examination  of  the  ash  of  anthracite,  and  so  far 
as  I  know  that  has  not  been  done." 

The  author  therefore  decided  to  examine  the 
inorganic  constituents  of  anthracite  on  the  lines 
[aid  down  by  Lessing,  and  for  this  purpose  he 
carried  out  a  preliminary  investigation  of  the 
physical  and  chemical  properties  of  the  coal  itself. 

It  was  observed  that  practically  all  anthracite 
seams  contained  some  fusain,  although  this  consti- 
tuent was  not  generally  present  to  tho  same  extent 
as  in  bituminous  seams.  There  were  also  visible 
bright  bands  of  a  glossy  constituent,  identical  in 
appearance  with  the  vitrain  of  Stopes  and  Wheeler, 
and  apparently  another  constituent,  which  may  be 
either  a  separate  substance,  somewhat  similar  to 
the  clarain  occurring  in  bituminous  coal,  or  a  mix- 
ture of  very  finely  stratified  layers  of  the  vitrain- 
like  substance  alternating  with  still  another  consti- 
tuent of  the  nature  of  durain. 

This  glossy  constituent  shows,  under  the  micro- 
scope, only  a  very  deep  brown  section,  much 
darker  than  a  similar  section  through  a  vitrain 
band,  and  it  is  so  dense  in  structure  that  it  is 
apparently  impossible  to  grind  it  down  to  trans- 
lucency  without  fracturing  the  piece.  Small 
patches,  of  the  size  of  a  pin-head,  showed  a  rather 
fighter  brown  colour  with  what  looked  like  micro- 
.  but  these  areas  were  so  small  and  so  dark 
in  colour  that  no  conclusions  could  be  drawn  with 
certainty  as  to  any  definite  structure  being  recog- 
nisable. The  glossy  constituent  breaks  with  a  con- 
choidal  fracture,  very  similar  in  appearance  to  tho 
fracture  of  a  glossy  pitch,  but  whereas  vitrain 
breaks  more  or  less  regularly  into  cubes,  this  sub- 
stance breaks  into  sharp  splinters  and  fragments  of 
pyramidal  shape.  It  exists  in  horizontal  bands, 
parallel  to  the  bedding  plane,  varying  in  thickness 
from  O'o  to  even  40  mm.,  in  well-defined  layers.  It 
is  very  much  harder  than  vitrain  and  is  much  more 
difficult  to  crush.  On  account  of  its  similarity  in 
appearance  to  vitrain,  it  was  decided  to  give  it  the 
name  of  ^-vitrain  for  the  purposes  of  this  paper. 

The  fusain  occurring  in  the  coals  studied  was 
similar  in  appearance  to  that  which  is  generally 
found  in  bituminous  coals,  but  was  usually  more 
dense  in  structure.  It  could  be  rubbed  down  to  a 
fine  powder  easily  with  the  fingers  and  could  thus 
ily  separated  from  the  ^-vitrain,  which  resists 
the  maximum  pressure  of  the  fingers.  In  most 
cases,  it  was  possible  to  obtain  a  cake  of  fusain,  of 
about  5  in.  in  thickness,  so  that  no  difficulty  was 
experienced  in  such  cases  in  obtaining  the  fusain 
in  a  pure  state.  In  one  case,  however,  viz.,  with 
Aberpergwm  anthracite  from  Glyn  Neath,  the 
fusain  only  occurred  in  thin  layers  of  about  2  mm. 
thickness,  and  these  layers  had  to  be  scraped  off 
with  a  soft  spatula,  and  the  fusain  removed  by 
gentle  pressure  with  the  fingers  alone.  It  has 
previously  been  found  that  in  such  cases,  if  the 
material  be  fractionally  sieved  after  crushing,  the 
material  remaining  on  the  302  sieve  appears  to  be 
almost  entirely  pure  coal,  whilst  the  material  pass- 
ing through  the  902  sieve  is  practically  pure  fusain.2 
This  method  was  therefore  resorted  to  in  this  par- 
ticular case.  In  one  case,  the  fusain  contained  a 
number  of  hard,  finger-shaped  pieces,  about  1J  in. 
long  and  tapering  to  a  very  sharp  point.  The 
point  always  occurred  at  the  line  of  contact  of  the 
fusain  and  the  ^-vitrain  associated  with  these  par- 
ticular "fingers,"  which  contained  12T7%  of  vola- 
tile organic  matter  and  5'43%  of  ash.  Both  these 
figures  are  considerably  higher  than  the  correspond- 
ing  figures   for   the   normal   fusain   and   i/'-vitrain 

*  Bull.  No.  5,  Lanes.  &  Cheshire  Coal  .Research  Assoc.,  by  F.  S. 
Sinnatt,  H.  Stern,  and  F.  Bayley. 


occurring  in  the  seam.  The  first  coal  examined  was 
Aberpergwm  anthracite  from  Glyn  Neath.  As 
mentioned  above,  the  fusain  from  this  seam  had  to 
be  obtained  by  fractional  sieving.  The  portion 
passing  through  the  1003  sieve  was  taken  as 
being  pure  fusain,  whilst  the  portion  remaining  on 
the  302  sieve  consisted  almost  entirely  of  a  rather 
dull  material,  similar  to  the  durain  occurring  in 
bituminous  seams,  but  not  so  dense  in  texture. 

Tho  analysis  of  tho  various  fractions  is  given 
hereunder :  — 

Dwr  30s  C0a         Under 

to  to  100a 

30J  60"  100"       mesh. 

O'  O'  0/  O/ 

Per  cent,  by  freight  of  total      ..  35-58  ..  14-42  ..  5-28  ..  44-71 

Volatile  organic  matter  on  dry 

coal         18-99  ..  12-70  ..  11-91    ..  7-37 

Ash  on  dry  coal 18-20  ..  11-57  ..  10-88   ..  3-53 

Volatile  organic  matter  on  ash- 
free  dry  coal     23-22  ..  14-30  ..  13-36   ..  7-64 

It  is  interesting  to  note  the  high  content  of  ash 
and  volatile  organic  matter  of  the  material  left  on 
t  lie  ;i02  sieve.  It  was  at  first  thought  that  the  figure 
was  faulty,  duo  either  to  some  bituminous  coal 
having  been  left  in  the  meshes  of  the  sieve,  or  to 
faulty  analysis,  but  repetition  of  the  test  with  a 
freshly  sieved  sample,  using  a  clean  sieve,  gave 
identical  results.  This  figure  is  also  of  great  inter- 
est since  the  author  has  frequently  noted  that 
samples  of  "  Billy  "  duff,  i.e.  the  finer  grades  of 
duff  produced  in  the  breaking,  sizing,  washing,  and 
handling  of  anthracite,  are  considerably  higher  in 
volatile  organic  matter  and  ash  than  the  large  coal 
from  the  same  seam.  This  peculiarity  has  also  been 
found  to  occur  in  bituminous  seams,  as  is  evidenced 
by  the  work  of  Sinnatt,  Stern,  and  Bayley  on  the 
coals  of  the  Lancashire  coalfield.5  In  order  to  ascer- 
fcain  the  composition  of  a  characteristic  piece  of 
fusain,  these  workers  examined  a  special  specimen 
measuring  4x2xJ  in.  thick,  found  in  the  Ravine 
Mine. 

This  was  dried  and  fractionally  sieved  in  the 
manner  described  and  gave  four  fractions,  the  vola- 
tile matter  content  of  which  ranged  between  11'03% 
(under  902  mesh)  and  2270%  (over  302  mesh),  whilst 
the  ash  content  varied  from  6-70%  (under  902  mesh) 
to  17"50%  (over  302  mesh).  Since  the  fraction 
remaining  on  a  302  sieve  yielded  a  coherent  coke  on 
carbonisation,  this  probably  consisted  of  vitrain 
and  clarain  which  had  formed  intrusions  in  the  slab 
of  fusain.  The  fraction  302— 602,  however,  yielded 
an  incoherent  coke  and  gave  a  volatile  matter  con- 
lent  of  15'34%  and  an  ash  content  of  10%  so  that 
this  fraction  is  comparable  with  those  obtained  by 
the  author,  the  composition  of  which  is  given  in 
the  above  table.  In  the  course  of  some  work  which 
Sinnatt  and  tho  author  carried  out  about  2  years 
ago,  it  was  observed  that  the  addition  of  inert 
matter  to  a  coal  led  to  the  evolution  of  a  greater 
-amount  of  volatile  matter  per  unit  weight  of  coal 
than  was  evolved  when  the  inert  matter  was  absent.' 
It  is  quite  possible  that  the  high  ash  content  of  this 
material  over  302  mesh  may  be  partially  responsible 
also  for  the  evolution  of  such  a  large  amount  of 
volatile  matter,  considering  that  the  coal  is  an 
anthracitic  one.  The  action  of  the  ash  may  be 
catalytic,  and  Lessing  has  drawn  attention  to  the 
possible  catalytic  action  of  the  ash  of  coal  in  car- 
bonisation in  his  William  Young  Memorial  Lecture.5 
On  the  other  hand,  the  evolution  of  a  greater 
amount  of  volatile  matter  than  usual  with  sub- 
stances of  high  ash-content  may  be  explained  if  the 
ash  consists  largely  of  carbonates  of  iron,  calcium, 
and  magnesium,  such  as  the  ankerites,  or  sideritic 
dolomites   described   by   Sinnatt,   Bayley,    and   the 


3    TjQf*    cit 

'  Bull.  No.  3,  Lanes.  &  Cheshire  Coal  Research  Assoc,  by  F.  8. 
Sinnatt  and  A.  Grounds, 

5  J.  Gas  Lighting,  1914,  77,  570. 


90  t 


GROUNDS.— THE  CONSTITUTION  OF  ANTHRACITE. 


[Mar.  31,  1922. 


author  (J-,  1921,  1 — 1  t).  When  these  substances 
are  heated  to  a  sufficiently  high  temperature,  they 
evolve  carbon  dioxide,  which  is  calculated  as  vola- 
tile organic  matter;  in  addition,  this  carbon 
dioxide  may  react  with  some  of  the  residual  fixed 
carbon  to  form  carbon  monoxide,  thus  further 
adding  to  the  volatile  matter  figure.  It  is  also 
probable  that  these  inorganic  constituents  in  many 
cases  occlude  air,  which  leads  to  further  production 
of  carbon  monoxide  from  the  fixed  carbon  in  the 
confined  space  of  the  vessel  in  which  the  carbonisa- 
tion is  carried  out.  In  any  case,  it  has  been 
observed  that,  unlike  other  constituents  of  either 
bituminous  or  anthracite  coal,  fusain  varies  very 
considerably  in  composition,  both  as  regards  its  ash 
content  and  its  content  of  volatile  organic  matter. 
The  latter  may  lie  anywhere  between  5%  and  30% 
and  the  ash  is  subject  to  variation  between  2  %  and 
20%.  It  seems  also  very  probable  that  there  are 
two  distinct  varieties  of  fusain  which  can  exist  in 
admixture  in  the  same  seam,  one  variety  being  hard 
and  compact,  remaining  on  the  30*  sieve  on  frac- 
tional sieving,  and  having  high  ash  and  volatile 
organic  matter  contents,  whilst  the  other  variety, 
which  is  soft  and  pulverulent,  being  easily  broken 
down  by  finger  pressure,  contains  from  7%  to  20% 
of  volatile  organic  matter  and  a  variable  ash  con- 
tent. The  latter  type  is  that  which  passes  tKrough 
the  902  sieve  on  fractional  sieving.  J.  J.  Stevenson 
describes  a  specimen  of  fusain,  occurring  in  coals 
underlying  the  Homewood  sandstone,  which  con- 
tained" 48T%   of  volatile  matter.6 

The  method  adopted  for  the  examination  of  the 
fusain  and  the  ^-vitrain  included  proximate  and 
ultimate  analyses,  and  the  ash  was  analysed  by  the 
method  advocated  by  Lessing,  i.e.,  separation  of  the 
ash  into  water-soluble,  hydrochloric  acid-soluble, 
and  hydrochloric  acid-insoluble  constituents,  each 
of  these  constituents  being  then  analysed  along  the 


Aberpergwm  fusain 
Aberpergwm  «/<-vitrain 
Pontyberem  fusain 
Pontyberem    i/*-vitraIn 
Brynhenllys  fusain 
BrynhenUys  <|/-vitrain 
Pwllbach      fusain 
Pwllbach   ^-vitrain 
Gellyceidrim    fusain 
Gurnos  fusain 
Gurnos  i/(-vitrain 


in  the  case  of  Gurnos  fusain,  the  volatile  matter  is 
again  higher  than  that  of  the  associated  ^-vitrain. 
In  this  coal,  the  ash  is  again  higher  than  the  aver- 
age for  the  fusain  examined.  In  all  the  other  coals, 
where  the  ash  of  the  fusain  is  in  the  region  of  2%  — 
3%,  the  volatile  matter  content  of  the  fusain  is 
lower  than  that  of  the  associated  ^-vitrain. 

Another  peculiarity  of  the  fusain  will  be  noted, 
in  that  the  moisture  content  is  nearly  always  about 
6 — 10%,  whilst  that  of  the  ^-vitrain  is  generally 
about  0'5 — 2'5%.  This  is  due  to  the  difference  in 
texture  of  the  two  substances,  for  whilst  fusain  is 
exceedingly  porous,  i/<-vitrain  is  very  dense  and  com- 
pact. The  moisture  content  of  the  latter  therefore 
does  not  easily  undergo  alteration,  whilst  that  of 
fusain  depends  largely  on  whether  it  has  been 
recently  subjected  to  rain  or  to  submersion  in 
underground  water,  and  it  will  also  change  easily 
with  the  varying  humidity  of  the  atmosphere.  It 
may  here  be  observed  that  this  porosity  of  fusain 
may  also  lead  to  false  conclusions  as  to  the  normal 
moisture  content  of  fusain.  Sinnatt,  Stern,  and 
Bayley,  for  example,  state  (Joe-  cit.)  that  the  layers 
of  fusain  generally  contain  less  moisture  than  the 
associated  coal.  The  samples  which  they  examined 
had  been  sent  to  the  laboratory  several  days  after 
being  removed  from  the  seam  and  had  also  been 
left  exposed  to  the  warm,  dry  atmosphere  of  the 
room  for  a  considerable  time  before  the  moisture 
content  was  determined.  It  is  quite  possible,  and 
even  probable,  that  the  samples  lost  as  much  as 
6 — 8%  of  moisture  in  this  way.  These  workers, 
however,  also  observed  that  the  fusain  loses  mois- 
ture more  rapidly  than  the  associated  coal. 

This  porosity  of  fusain  also  has  a  bearing  on  the 
constitution  of  the  ash  of  fusain,  since  dilute  saline 
solutions,  percolating  through  the  beds  and  seams, 
would  deposit  their  solid  matter,  on  concentration 
by  heat,  in  the  most  porous  constituent,  viz.,  the 


V.O.M. 

Ash 

On    dry 

coal. 

Moisture. 

C 

H 

N 

S 

O 

Ash. 

% 

% 

°/~ 

0/ 

/o 

0/ 

/o 

o/ 
/o 

% 

0/ 

11-15 

7-37      . 

.       3-53      . 

.     89-80     . 

.     3-61 

. .     0-71 

..     1-35     . 

.     0-97 

.     3-56 

2-23 

.     11-42      . 

1-50      . 

.     92-50     . 

.     4-10 

. .     0-70 

. .     0-20      . 

.      1-02 

.      1-48 

10-80 

.        5-42      . 

.       2-59     . 

.      9203      . 

.     3-40 

. .     0-72 

. .     0-30      . 

.     0-91 

.     2-64 

0-83 

6.40      . 

.        015      . 

.      9413      . 

.      3-60 

. .     0-80 

..     0-15      . 

.      1-20 

.     012 

1000      . 

.      13-71      . 

14-99     . 

.     78-20     . 

.     4-00 

. .     0-66 

..     1-04      . 

.     1-07 

.   15-0 

1-03 

7-76      . 

1-23      . 

.     92-97     . 

.     3-81 

..     0-72 

..     0-10      . 

.     1-24 

.      116 

10-20 

.        5-18      . 

216      . 

.     90-88     . 

.     3-33 

. .     0-76 

. .     0-85      . 

.     202 

.     216 

1-50 

.       7-89     . 

1-62      . 

.     90-90      . 

.     3-75 

. .     0-88 

.  .     0-84      . 

.     1-99 

.     1-64 

8-00 

.        5-93      . 

.       4-78     . 

.      88-52      . 

.     3-51 

. .     0-41 

..     074      . 

.     200 

.     4-82 

6-50 

.       804     . 

5-18     . 

.     87-14      . 

.     4-00 

. .     0-36 

1-38      . 

.     2-00 

.      5-12 

1-44 

.       7-53     . 

.       1-79     . 

.     91-94     . 

.     3-92 

. .     0-5". 

0-62      . 

.     118 

.     1-82 

usual  lines.  The  ash  analyses  were  all  carried  out 
on  quantities  of  1  g.  of  the  substance.  The  proxi- 
mate analysis  of  the  coal  substance  was  carried  out 
according  to  the  method  recommended  by  the 
American  Coal  Committee  (J.  Amer.  Chem.  Soc, 
1899,  21,  1119).  The  results  of  the  analysis  of  the 
various  specimens  of  fusain  and  i/<-vitrain  are  given 
above. 

In  the  study  of  fusain  occurring  in  bituminous 
seams,  it  has  always  been  found  that  the  volatile 
matter  content  of  the  fusain  was  lower  than  that  of 
the  associated  coal,  but  in  the  case  of  anthracitio 
seams,  the  volatile  matter  content  of  the  fusain  is 
sometimes  higher  and  sometimes  lower  than  that  of 
the  adjacent  coal  in  the  seam.  This  will  be  seen 
from  the  figures  in  the  above  table.  In  the  case 
of  Brynhenllys  anthracite,  the  volatile  matter  of 
the  fusain  is  13'71%  as  compared  with  7"76%  for  the 
i/'-vitrain,  i.e.,  the  volatile  matter  content  of  the 
fusain  is  almost  twice  as  great  as  that  of  the 
^-vitrain.  It  is  at  least  a  strange  coincidence  that 
this  should  be  the  case  in  a  seam  in  which  the  fusain 
contains  the  highest  percentage  of  ash  of  any  of  the 
seams  examined,  viz.,  15%.     It  is  also  strange  that 

•  Proc.  Amer.  Philosophical  Soc,  1911, 1-116. 


fusain.  The  tables  on  p.  91  T  show  the  difference  in 
composition  in  the  ashes  of  fusain  and  ij-vitrain. 

It  was  unfortunately  impossible,  owing  to  pres- 
sure of  other  work,  to  carry  out  an  examination  of 
Gellyceidrim  i/-vitrain. 

From  the  figures  given,  it  will  be  seen  that  not 
only  does  the  actual  quantity  of  ash  present  in 
any  one  constituent  of  anthracite  vary,  but  that 
the  ash  itself  varies  considerably  in  composition, 
even  when  derived  from  the  same  constituent  of 
the  same  seam.  The  amount  of  water-soluble 
constituent  in  the  ash  of  fusain,  for  example,  is 
found  to  vary  from  1025%  in  the  fusain  from 
Pontyberem  coal  to  50"25%  in  that  from  Gurnos. 
Again,  the  portion  soluble  in  hydrochloric  acid 
varies  from  79'87%  in  the  fusain  from  Brynhenllys 
to  29"88%  in  that  from  Pwllbach.  It  is  therefore 
evident  that  care  must  be  exercised  in  making 
generalisations  until  a  large  number  of  coals  have 
been  examined. 

These  ashes  were  produced  by  ignition  of  the 
coal  in  a  muffle  furnace  at  a  temperature  of  900° 
to  1050°  C.  It  was  originally  intended  to  follow 
Lessing's  method,  and  to  incinerate  at  a  low  tem- 
perature so  as  to  preserve  any  carbonates  without 
loss  of  carbon  dioxide,  but  this  process  was  found 


Vol.  XLL,  No.  6.] 


GROUNDS.— THE  CONSTITUTION  OF  ANTHRACITE. 


91  T 


Analyses  of  ashes  of  jusain  and  pseudo-vitrain  from  various  anthracites. 
Aberpergwm  anthracite  from  Glyn  Neath. 


.4- VITRAIN. 

FUSAIN. 

Water 

HC1 

HC1 

Total.               Water 

HOI 

HC1 

Total. 

soluble. 

soluble. 

insoluble. 

soluble. 

soluble. 

insoluble. 

Silica 

. .     Nil. 

. .       0-35% 

. .     41-28% 

..      41-63%                   Nil.       .. 

0-51%     .. 

13-09%     .. 

13-60% 

Alumina 

..     Nil. 

3-42% 

. .     3905% 

..     42-47%                  Nil.       .. 

7"4%      .. 

20-70%     . . 

27-74% 

Ferric  oxide 

..     Nil. 

.        6-14% 

. .       4-37% 

..      10-51%                0-10%      .. 

12-03%      .  . 

0-40%     . . 

12-53% 

108% 

.         !.'■'"., 

.  .        134% 

..        4-04%                8.02%      .. 

9.06%      .  . 

0-20%      . . 

17-28% 

Magnesia 

. .     Nil. 

1    10    , 

Nil. 

..        1-30%                0-20%      .. 

103%      . . 

101%     . . 

2-24% 

Sodium  and  potassium  oxides  . .     Nil. 

.       0-30% 

— 

..       0-30%                0-32%      .. 

2-01%      .. 

2-33% 

Sulphur  trioxide  . . 

. .     0-02% 

.       0-47% 

. .       0-66% 

..        1-75%              10-00%      .. 

14-09%      . . 

0-31%     V. 

24-40% 

Carbon  dioxide 

. .      Nil. 

Nil 

Nil. 

Nil.                     — 

— 

— 

Nil. 

Total 

. .     1-70% 

.      13-60% 

. .     86-70% 

..     102-00              18-64%     .. 

45-77%      .. 

35-71%    ;. 

100-12 

Total    by  direct  weighing 

. .      1-82% 

.     13-58% 

. .     84-60% 

..     100-00              18-60%     .. 

45-84%     . . 

3556%     . . 

100-00 

Analyses  of 

ashes  of  f 

usotn  and 

ifi-vitrain  from  various  anthracites 

Fontyberem 

Brynhcnllys                      Pwllbach 

Qellyceldrim 

Gurnos 

anthracite 

anthracite                       anthracite 

anthracite 

anthracite 

from  Ammanford 

^r- Vitrain 

Fusain 

a,-Vitrain 

Fusain        ^-Vitrain        Fusain 

Fusain 

^-Vitrain 

Fusain 

SiO,           

. .     34-87     . 

82-21     .. 

32-42     . . 

5-36     ..     23-97     ..     28-53 

26-82      . 

.       37-78     . 

6-60 

Al.O,          

. .     34-99     . 

31-94      .. 

34-63      . . 

9-54     ..     3705     ..     31-87 

24-64      . 

.       88-37     . 

5-94 

Fe.O,          

. .     14-08      . 

11-84      .  . 

20-74     . . 

30-97      ..      26-11      ..      11-56 

6-58      . 

8-41     . 

4-62 

CaO            

7-32      . 

14-u:i     . . 

8-76     .. 

38-30     ..       650     ..     15-39 

22-06      . 

8-74      . 

.       63-16 

MgO           

. .        1-80      . 

l-'.H 

2-17      .. 

1-32      ..        312      ..        3-02 

101      . 

408 

3-89 

Na.O  and  K.O 

1-86      . 

088      .  . 

0-88     . . 

3-92      .  .        1-25      .  .        1-20 

0-60      . 

Nil.       . 

1-00 

SO,            

2-22 

0-35     . . 

0-43     .. 

8-78      ..        1-81      ..        7-42 

13-37      . 

407      . 

.       15-74 

CO,            

. .       Nil.      . 

Nil.      . . 

Nil. 

2-02      ..       Nil.       ..       Nil. 

6-47 

Nil.       . 

Nil. 

Total           

. .     9908     . . 

99-79      .  . 

10013      .. 

100-21      ..     99-81      ..     98-99 

..      101-55 

.     101-45 

.       99-85 

Water-soluble 

. .       2-97     . . 

10-25      .  . 

2-93      . . 

12-95      ..        2-49      ..      10-98 

1507 

5-92 

.       60-25 

Hydrochloric  acid-soluble 

..     26  61     .. 

81-85      . . 

2514     .. 

7987     ..     29  88      ..     3215 

43  50      . 

1569     . 

.       4135 

to  be  too  slow  for  the  time  available.  Any  car- 
bonates present  in  the  coals  have  thus  been 
converted  into  oxides  with  the  exception  of  Gelly- 
ceidrim  and  Brynhenllys  fusains,  in  which  case  the 
coals  were  ignited  slowly.  The  general  colour  of 
the  ash  of  fusain  is  a.  greyish  buff,  whilst  that  of 
^■-vitrain  varies  from  a  pure  pinkish  buff  to  a 
brownish  pink.  It  was  noted  that  in  the  case  of 
fusain,  the  ash  could  be  picked  up  as  a  thin 
coherent  film,  similar  to  a  spider's  web,  by  a  loop 
of  platinum  wire.  The  ash  of  ^-vitrain  was  always 
granular  or  powdery  and  homogeneous  in  colour. 
There  would  seem  to  be  no  direct  connexion 
between  the  actual  percentage  of  ash  present  in 
the  fusain  and  the  amount  of  that  ash  that  is 
soluble  in  water.  But  since  the  fusain  is  porous 
in  structure,  any  water  percolating  through  the 
fusain  layers  would  deposit  finely-divided  suspended 
matter,  such  as  finely-levigated  clay,  in  the  fusain, 
which  would  act  as  a  natural  filter,  in  addition  to 
which  salts  would  be  deposited  in  the  fusain  from 
saline  solutions  as  already  indicated.  It  will  be 
seen  that  practically  all  the  fusain  ashes  contain 
a  large  proportion  of  lime  and  sulphur  trioxide, 
espei  ially  that  from  Gurnos,  which  contained 
6316%  of  lime,  3622%  of  which  was  soluble  in 
water.  The  lime  may  have  been  present  in  the 
original  fusain  as  calcium  carbonate,  produced 
probably  by  deposition  from  a  solution  of  calcium 
carbonate  in  water  containing  dissolved  carbon 
dioxide,  in  a  similar  way  to  the  mode  of  produc- 
tion of  the  ankerites,  or  sideritic  dolomites,  which 
occur  in  most  bituminous  seams,  and  to  a  less 
extent  in  aiithracitic  seams,  as  white  plates,  vary- 
ing in  thickness  from  the  finest  film  to  £  in.  In 
several  cases,  a  white  incrustation  was  visible 
round  the  edge  of  the  fusain  layer,  which  could 
be  detached,  and  which  proved  to  be  mainly 
calcium  sulphate,  with  traces  of  magnesium  salts. 
It  is  noteworthy  that  the  ankerites  mentioned 
previously  seem  to  be  present  in  coals  to  an  extent 
which  is  proportionate,  to  a  certain  degree,  to  the 
volatile  matter  content  of  the  coal.  They  occur 
profusely  in  the  Lancashire,  Yorkshire,  and  North 
Wales  coals,  which  contain  27 — 38%  volatile  organic 
matter,  but  are  rarer  in  the  South  Wales  bituminous 
coals,  containing  20 — 30%  volatile  organic  matter. 
and  arc  rarer  still  in  the  steam  coals,  "  dry  " 
6team  coals,  and  anthracites. 


Although  the  ^-vitrain  is  so  similar  in  appear- 
ance to  the  ordinary  vitrain  from  bituminous  coal, 
and  although  the  ash  in  both  vitrain  and  i^-vitrain 
is  of  the  same  order  of  magnitude,  i.e.,  about 
0T — 1"5%,  the  ash  of  i^-vitrain  is  entirely  different 
in  composition  from  that  of  vitrain.  Whereas  the 
ash  of  vitrain,  as  examined  by  Lessing,'  contained 
69%  of  water-soluble  constituent,  20'5%  of  hydro- 
chloric acid-soluble  constituent,  and  10'5%  of 
matter  insoluble  in  hydrochloric  acid,  the  ash  of 
i/i-vitrain,  taking  the  mean  of  five  analyses,  contains 
322%  of  water-soluble  matter,  2202%  of  hydro- 
chloric acid-soluble  matter,  and  74'76%  of  matter 
insoluble  in  hydrochloric  acid.  For  the  purposes 
of  comparison,  the  following  table  shows  the 
average  composition  of  the  ashes  of  vitrain  and 
^-vitrain. 


Vitrain. 

ii  Vitrain 

% 

% 

Silica 

6-08 

34-14 

Alumina 

15-49 

37-50 

Ferric  oxide 

3-09 

15-97 

Lime 

15-22 

7-07 

Magnesia 

1-87 

2-47 

Sodium  and  potassium  oxides  . . 

17-87 

0-86 

Sulphur  trioxide 

30-89 

206 

Carbon  dioxide     . . 

6-69 

— 

MnO„  TiO„  etc 

0-37 

— 

It  will  be  seen  that  not  only  does  the  percentage 
of  the  various  constituents  differ  enormously  in 
the  ashes  of  these  two  substances,  but  that  the 
proportion  of  one  constituent  to  another  is  different 
in  the  two  cases.  For  example,  the  silica  and 
alumina  are  very  much  higher  in  the  i/<-vitrain  than 
in  the  vitrain,  whilst  the  ratio  SiO^A^O,  is  0"911 
in  the  case  of  ^-vitrain  and  only  0'393  in  the  case 
of  vitrain.  Again,  the  alkali  content  of  vitrain  ash 
is  remarkably  high  and  is  approximately  twenty 
times  as  great  as  the  alkali  content  of  the  ash  of 
i/>-vitrain.  The  calcium  sulphate  content  of  vitrain 
ash  is  also  very  much  higher  than  that  of  the  ash 
of  i/<-vitrain,  and  it  would  be  interesting  to  know 
whether  this  could  have  been  brought  about  by 
infiltration  of  water,  carrying  calcium  sulphate  in 
solution,  into  the  actual  organic  matter  from  which 
the  vitrain  has  been  formed.     In  some  ways,  the 

'  Chem.  Soc.  Trans.,  1920, 117,  256-265. 


92  t 


GROUNDS.— THE  CONSTITUTION  OF  ANTHRACITE. 


[Mnr.  81,  1922. 


ash  of  vi-vitrain  is  very  similar  to  the  ash  of 
durain,  in  that  the  water-soluble  matter  is  about 
the  same  for  both  substances,  viz.,  2-6%,  and  con- 
sists of  calcium  sulphate.  The  high  silica  and 
alumina  contents  are  also  similar  to  the  corre- 
sponding figures  for  durain,  and  the  bulk  of  the 
silica  and  alumina  is  insoluble  in  hydrochloric  acid 
as  in  durain.  The  ratio  of  Al203:Si02,  however, 
for  ^-vitrain  is  nearer  to  the  corresponding  ratio 
for  fusain  than  to  that  for  any  other  constituent. 
The  ratio  is  0'98  for  the  fusain  of  Lessing,  1'17  for 
the  fusain  examined  by  the  author,  1T0  for 
v-vitrain,  1'76  for  clarain,  0"84  for  durain,  and  2'55 
for  vitrain.  This  value  for  the  fusains  from 
"  Better  Bed  "  and  "  Haigh  Moor  "  (Thorpe)  is 
given  as  0'S7  and  0"80  respectively.  This  ratio  for 
kaolin  is  0'85,  and  it  would  appear  probable  that 
the  ash  of  durain  has  been  largely  produced  from 
earthy  debris  of  the  nature  of  clay  which  has  been 
carried  down  with  the  original  organic  matter  or 
in  which  the  vegetable  material  has  been  partially 
bedded.  Fusain  does  not  show  such  close  agree- 
ment, whilst  clarain  and  vitrain  show  an  even  wider 
difference. 

Conclusions. 

Three  constituents  can  be  recognised  in  anthra- 
citic  coals,  viz.,  (1)  fusain,  (2)  a  glossy  constituent 
similar  in  appearance  to  the  vitrain  of  bituminous 
coals,  and  (3)  a  constituent  very  similar  in  appear- 
ance to  the  clarain  of  bituminous  seams. 

The  glossy  constituent  has  been  given  the  name 
of  i/'-vitrain,  on  account  of  its  similarity  in  appear- 
ance to  vitrain,  and  it  forms  the  major  portion  of 
all  anthracite  seams.  Fusain  occurs  to  the  extent  of 
about  1%  or  less,  whilst  the  clarain-like  constituent 
occurs  to  the  extent  of  only  5 — 10%  at  the  most  in 
the  seams  examined. 

Fusain  occurs  in  two  distinct  varieties,  one  being 
soft  and  pulverulent,  and  containing,  generally, 
about  5 — 20%  of  volatile  organic  matter  and  a 
varying  quantity  of  ash,  whilst  the  other  variety  is 
hard  and  compact,  and  contains  a  higher  per- 
centage of  ash  and  volatile  organic  matter  than  the 
soft  variety. 

Whilst,  in  bituminous  seams,  the  fusain  usually 
contains  less  volatile  organic  matter  than  the 
associated  coal,  in  anthracitic  seams  the  fusain  is 
sometimes  higher  and  sometimes  lower  in  volatile 
organic  matter  content  than  the  associated  coal. 
In  one  case,  the  dense  variety  of  fusain  contained 
23"22%  of  volatile  organic  matter  as  compared  with 
11'60%  for  the  adjacent  coal,  both  figures  being 
calculated  on  a  moisture-  and  ash-free  basis. 

The  ash  of  fusain  varies  widely,  both  in  amount 
and  in  composition,  but  is  generally  much  higher 
than  the  ash  of  ^-vitrain,  which  usually  varies  in 
amount  between  0T%  and  1'5%. 

In  all  the  seams  examined  the  ^-vitrain  gives  an 
almost  constant  Al,0,:Si02  ratio  of  1T0:1. 

The  water-soluble  constituent  of  the  ash  of 
C-vitrain  amounts  to  1"7 — 6'9%  of  the  total,  whilst 
that  of  the  ash  of  fusain  varies  widely  between  9'8 
and  49'5%.  This  is  no  doubt  due  to  the  porous 
nature  of  the  fusain  which  allows  of  the  percolation 
of  saline  solutions  through  this  constituent,  which 
solutions  deposit  their  solid  matter  in  the  fusain 
on  being  subjected  to  concentration  by  heat. 

This  work  was  unfortunately  interrupted  by 
circumstances  over  which  the  author  had  no  control, 
but  the  results  are  presented  in  the  hope  that  they 
may  stimulate  further  investigations  into  the  compo- 
sition of  the  various  constituents  of  anthracite. 

In  conclusion,  the  author  wishes  to  tender  his 
•sincere  thanks  to  his  assistant,  Mr.  C.  F.  De  la 
Mare,  for  much  valuable  assistance  in  the  analysis 
and  preparation  of  the  various  specimens,  and  for 
his  help  in  the  compilation  of  these  data.  He  would 
also  take  this  opportunity  of  thanking  Mr.  Hugh 
P.  Yowles,  M.I.Mech.E.,   General  Manager  of  the 


Sun  Fuel  Company,  Ltd.,  for  permission  to  publish 
these  results  and  for  his  encouragement  to  carry 
out  this  research. 

Discussion. 
Mr.  H.  J.  Bailey  thought  that  in  the  study  of 
coals  from  the  point  of  view  of  origin,  no  con- 
clusions ought  to  be  based  upon  analyses  of  the 
ashes  of  coals,  because  it  was  impossible  to  dis- 
criminate between  the  ash  due  to  the  true  coal  and 
that  due  to  infiltration  from  the  surrounding 
matrix.  He  asked  whether  the  low  volatile  matter 
found  in  fusain  was  due  to  part  of  it  being  given 
off  in  the  mine  as  methane. 

Mr.  C.  A.  Seyler  inquired  whether  the  author 
had  been  able  to  find  any  evidence  of  the  micro- 
scopic structure  of  anthracite.  He  noticed  that  the 
volatile  matter  content  of  fusain  had  been  found  by 
the  author  in  some  cases  to  be  higher  than  in  the 
normal  anthracite ;  this  was  very  unusual  and  he 
thought  that  part  of  this  volatile  matter  of  the 
fusain  might  be  due  to  the  evolution  of  carbon 
dioxide,  produced  by  the  heating  of  carbonates  in 
the  fusain.  The  observation  that  the  volatile  matter 
was  increased  by  mixing  the  coal  with  an  inert 
material  was,  he  thought,  due  to  the  fact  that  less 
coal  w-as  used  for  the  test,  the  greater  the  pro- 
portion of  inert  matter  used,  and  therefore  some  of 
the  coal  was  lost  by  combustion.  Experiments 
should  be  carried  out  in  an  inert  atmosphere  to 
investigate  this  point.  With  regard  to  the  ash 
analyses,  he  failed  to  see  the  object  of  Lessing's 
separation  into  water-soluble,  hydrochloric-acid 
soluble,  and  insoluble  ash.  The  ratio  of  Al203:Si02 
appeared  important,  as  a  figure  about  0'85  would 
suggest  clay  or  kaolin  in  the  ash,  which  might  be 
derived  from  the  surrounding  matrix.  Nevertheless, 
with  coal  containing  0T2%  of  ash,  as  in  the  case 
of  Pontyberem  anthracite,  this  would  seem  to  be 
largely  due  to  the  original  inorganic  constituents  of 
the  coal  substance,  as  there  was  not  much  margin 
left  for  adventitious  material. 

Mr.  H.  G.  Wells  suggested  that  flotation  by  oil 
should  be  tried  with  the  object  of  separating  the 
various  constituents  of  anthracite. 

Mr.  F.  J.  Bloomer  inquired  whether  the  author 
had  tried  to  effect  a  separation  of  the  sulphur  con- 
stituents of  the  coal  into  pyritic  sulphur,  organic 
sulphur,  sulphate  sulphur,  and  so  on. 

Mr.  A.  J.  Sheltox  asked  whether  the  fraction 
remaining  on  the  302  sieve  was  coal  or  another 
variety  of  fusain. 

Mr.  F.  J.  Green  inquired  why  it  was  that  labora- 
tory determinations  of  the  fusibility  of  ash  often 
disagreed  with  the  actual  results  obtained  on 
industrial  plants,  e.g.,  boiler  plants. 

Mr.  Grounds,  in  reply  to  Mr.  Bailey,  said  that 
the  specimens  had  been  specially  picked  with  a  view 
to  obtaining  the  cleanest  representatives  of  any 
particular  seam.  All  the  specimens  of  ^-vitrain,  in 
particular,  were  bright  and  glossy  and  showed  no 
trace  of  inorganic  partings  or  veins  of  mineral 
matter  such  as  were  often  observed  in  bituminous 
seams.  The  coal  containiug  0'12%  of  ash  was 
evidence  of  this  careful  selection.  At  the  same 
time  he  agreed  that  conclusions  should  not  be  based 
on  any  one  lot  of  coal,  or  set  of  analyses.  What  was 
wanted  was  as  much  information  as  possible  about 
the  various  constituents,  especially  where  these  had 
been  derived  from  different  localities.  The  organic 
constituents  differed  just  as  widely  as  the  ash,  and 
no  two  specimens  of  vitrain,  clarain,  etc.  6eemed  to 
have  exactly  the  same  constants  or  properties.  He 
thought  that  the  low  volatile  matter  in  fusain  was 
not  due  to  the  removal  of  methane,  but  to  the 
character  of  the  fusain.  The  methane  which  Mr. 
Bailey  had  observed  issuing  in  proximity  to  fusain 
bands  probably  issued  there  because  the  fusain  was 
the  most  porous  constituent,  and  therefore  provided 
the  easiest  channel  for  the  escape  of  both  gases  and 


Vol.  XLI.,  No.  6]         HUEBNER  AND  S1NHA.— ACTION  OF  IODINE  UPON  CELLULOSES. 


93  T 


liquids.       It    was    unfortunate    that    the    thinnest 
section  of  anthracite  that  it  had  been  found  possible 
to  cut  showed  only  a  dense  black  structure,  the  only 
recognisable  areas  being  two  small   circular   areas 
about  2  mm.  in  diameter  which  showed  a  structure 
very   similar   to  that  of  durain,   being  filled  with 
microspores.     He  had  not  had  time  to  examine  the 
ash   of   fusain   closely    under   the   microscope,    but 
under   a   low-power   lens  it  showed   a   fine  cellular 
structure.      The    experiments   carried    out    on    the 
evolution  of  volatile  matter  with  the  addition  of 
inert  matter  by  Sinnatt  and  the  author  had  been 
carried    out    under    the    exact   conditions    for   the 
determination  of  volatile  matter,  and  it  was  recog- 
nised that  some  combustion  may  have  taken  place  in 
the  crucible,  owing  to  the  very  small  amount  of  coal 
present  when  the  inert  matter  predominated.    How- 
ever, there  might  still  be  some  justification  for  the 
conclusion,  considering  the  high  volatile  matter  of 
the  material  left  on  the  302  sieve  in  the  case  of  the 
Aberpergwm  anthracite.     The  high  volatile  matter 
could  not  all  be  accounted  for  in  this  case,  even 
assuming  all  the  ash  to  be  calcium  carbonate.     He 
agreed  that  the  separation  with  hydrochloric  acid 
seemed  rather  aimless,  but  he  had  carried  out  these 
experiments  on  the  lines  laid  down  by  Lessing  for 
the  sake  of  uniformity.     The  separation  with  water 
was  useful  in  that  it  showed  what  proportion  of  the 
ash   could   have  been   derived   from   infiltration   of 
saline    solutions.     Flotation    by   oil   had    not   been 
tried.     He  had  not  had  the  time  necessary  for  the 
separation  of  the  sulphur  into   its  various   forms. 
The  fraction  remaining  on  the  30:  sieve  was,  in  the 
authors  opinion,  a  second  variety  of  fusain,  much 
harder  than  the  fusain  passing  through   the   100: 
mesh.     In   the  determination   of   the   fusibility   of 
ashes  in  the  laboratory,  the  iron  present  in  the  ash 
was  nearly  always  in  the  ferric   state,   and  ferric 
compounds  (or  silicates)  fused  at  a  higher  tempera- 
ture    than     ferrous    compounds.       In     the    boiler 
furnace,  the  fireman  often  pushed  the  slice-bar  into 
the  fire  and  lifted  the  ash  from  the  firebars,  raising 
it    into   the   combustion    zone,    which    was   also    a 
reducing  zone.     This  produced  a   reduction  of  the 
iron  in  the  ash  to  the  ferrous  state,  with  the  forma- 
tion of  an  easily  fusible  slag.     With  regard  to  the 
carbon    dioxide    evolved    from    the    carbonates    on 
heating,   a  second  error  was  easily  introduced,   as 
this  carbon  dioxide  reacted  with  the  carbon  of  the 
residual    coke    in    the    crucible    to    form    carbon 
monoxide    which    was    erroneously    estimated    as 
volatile  matter. 

Mr.  F.  S.  Sinnatt  (Manchester)  wrote  as  follows  : 
In  the  analyses  of  the  specimen  of  fusain  quoted 
in  the  early  part  of  the  paper  it  is  shown  that  when 
the  material  is  separated  by  sieving,  the  coarser 
portion  contains  a  percentage  of  volatile  matter 
considerably  higher  than  the  finer  material.  This 
observation  would  indicate  that  the  specimen  of 
fusain  examined  closely  resembles  the  non-pul- 
verulent variety  occuring  in  many  bituminous 
coals.  The  following  values  show  the  volatile 
organic  matter  in  non-pulverulent  fusain  from  a 
bituminous  coal  for  different  degrees  of  fineness:  — 
On  a  1/30  mesh  sieve,  227%  ;  1/30  to  1/60  mesh, 
15-3%;  1/60  to  1/90  mesh,  11-4%;  through  1/90 
mesh,  ll'O  :.  The  amount  of  volatile  matter  in 
the  coal  in  which  this  specimen  occurred  was  about 
34%,  whilst  the  anthracite  probably  only  contains 
7%,  and  the  question  arises  as  to  whether  the 
values  found  by  Mr.  Grounds  may  not  raise  an 
interesting  point  as  to  whether  the  degradation 
which  the  fusain  has  undergone  in  both  anthracite 
and  bituminous  coal  may  not  be  of  the  same  order. 
Accepting  the  figures  as  typical  it  might  be  sug- 
gested that  fusain  may  either  have  been  formed 
from  the  same  type  of  organic  matter  or  under  a 
similar  set  of  conditions  and  that  in  neither  the 
anthracite  nor  the  bituminous  coal  has  it  under- 
gone any  considerable  modification.     In  his  paper 


on  the  micro-petrologv  of  coal  (Trans.  Inst.  Min. 
Eng.,  1916—1917,  137)  Dr.  Hickling  makes  the 
interesting  statement  that  fusain  presents  us  with 
the  one  clear  case  in  which  the  present  substance 
would  appear  to  be  the  result  of  direct  alteration 
of  the  original  plant  tissues  without  the  addition 
of  extraneous  material,  and  the  values  given  by 
Mr.  Grounds  appear  to  be  a  confirmation  of  this. 
The  fact  that  the  fusain  from  anthracite  is  similar 
in  composition  and  properties  to  that  from 
bituminous  coal  would  indicate  that  dusts  formed 
from  anthracite  might  behave  in  a  similar  manner 
to  those  described  by  the  writer  in  "  A  Contribution 
to  the  Study  of  Fusain  "  (Trans.  Inst.  Min.  Ens., 
1921,  72,  167—171,  172— 17:  I). 


Manchester     Section. 


Meeting  held  at  Textile  Institute  on  March  3,  1922. 

DR.    E.    ARDERX    IX    THE    CHAIR. 


THE  ACTION  OF  IODINE  UPON  CELLU- 
LOSES, SLLK  AND  WOOL. 

(Preliminary  note.) 

J.    HUEBNER,    M.SCTECH.,    F.I.C.,    AND 
J.  X.   SIXHA,  B.SC.(CAL.). 

In  a  recent  communication  (J.  Soc.  Dyers  and 
Col.,  1921,  37,  129)  one  of  the  authors  pointed  out 
that  highly  purified  cotton  and  celluloses  obtained 
from  different  kinds  of  wood,  esparto,  and  other 
raw  materials,  showed  very  marked  differences  in 
their  behaviour  towards  certain  dyestuffs. 

The  authors  have  continued  this  investigation 
and  they  have  also  studied  the  behaviour  of  these 
celluloses  towards  dilute  solutions  of  iodine  and 
potassium  iodide  in  water. 

It  was  found  that  cellulose  obtained  from  poplar 
wood  behaved  distinctly  differently  from  the  other 
celluloses  in  that  the  iodine  solution  was  very  soon 
completely  decolorised;  at  the  same  time  it  was 
noticed  that  a  very  pronounced  odour  of  iodoform 
had  developed.  All  the  other  celluloses  behaved 
similiarly,  but  the  intensity  of  the  odour  varied  and 
it  was  in  every  case  less  pronounced  than  in  that  of 
the  poplar  cellulose. 

On  steam-distilling  poplar  cellulose  pulp,  to 
which  iodine  and  caustic  soda  had  been  added,  pure 
iodoform  was  readily  obtained.  It  was,  however, 
found  that  the  reaction  is  by  no  means  completed 
after  one  distillation,  because  on  adding  more 
iodine  and  caustic  soda  to  the  pulp  a  further 
quantity  of  iodoform  could  be  separated  and  the 
pulp  gave  small  but  appreciable  yields  of  iodoform, 
even  after  twenty  successive  treatments. 

Similar  results,  but  with  varying  yields  of  iodo- 
form, have  been  obtained  by  treating  other  cellu- 
loses, natural  silk,  some  of  the  artificial  silks,  wool, 
rubber,  and  other  substances. 

The  results  obtained  so  far  seem  to  indicate  that 
the  amount  of  iodoform  produced  has  some  definite 
relation  to  the  solubility  of  the  different  celluloses 
in  caustic  soda. 

The  authors  have  also  succeeded  in  obtaining 
bromoform  from  cellulose  and  they  hope  that  it  may 
not  be  impossible  to  find  the  conditions  under  which 
chloroform  is  produced. 

The  authors  are  directing  their  attention  at 
present  to  the  determination  of  the  yields  of  iodo- 
form from  different  celluloses,  as  well  as  to  their 
behaviour    towards    certain    dyestuffs,    and    hope 


94  T 


FRANCIS.— RECOVERY  OF  RADIUM  FROM  LUMINOUS  PAINT. 


[Mar.  31,  1922. 


Bhortly  to  lay  the  results  of  this  further  work  before 
the  Society. 
College  of  Technology, 
Victoria  University, 
Manchester. 

THE  EFFECT  OF  WATER  AND  OF  CERTAIN 
•ORGANIC    SALTS    UPON    CELLULOSES. 

(Preliminary  note.) 

3.   HUEBNER,   M.SC.TECH.,  F.I.C.,  AND  F.  KAYE,  A.E.C.S. 

The  authors  have  found  that  highly  purified 
cotton  or  other  cellulose  when  exposed  to  the  action 
of  water  at  a  temperature  of  about  35°  C,  for  a  con- 
siderable time,  yields  soluble  compounds,  which  are 
aldehydic  in  character.  Thus  distilled  water  in 
which  cotton  had  been  soaked  under  these  condi- 
tions for  24  hours  gave  quite  readily  a  silver  mirror 
with  silver  nitrate  and  the  characteristic  aldehyde 
reaction  with  Rosaniline,  decolorised  by  means  of 
sulphurous  acid.  Further,  if  celluloses  are  sub- 
jected to  steam  distillation  the  distillate  contains 
aldehydic  substance. 

It  was  also  noticed  that,  if  cotton  is  placed  over 
distilled  water,  in  a  closed  vessel,  for  several  days, 
under  suitable  conditions,  the  water,  without  hav- 
ing come  into  contact  with  the  cotton,  exhibits  the 
character  of  a  weak  solution  of  an  aldehyde. 

On  soaking  cotton  in  an  aqueous  solution  of 
sodium  acetate,  and  keeping  it  in  an  incubator  at 
35°  0.,  for  a  few  days,  the  amount  of  aldehyde  pro- 
duced is  so  considerable  that  it  can  be  readily 
separated  by  distillation. 

If  cotton,  or  other  cellulose,  or  starch  is  allowed 
to  remain  in  contact  with  distilled  water,  to  which 
sodium  acetate  and  resorcinol  have  been  added,  in 
an  incubator  at  35°  C,  for  several  days,  the  solu- 
tion becomes  fluorescent  and  aldehydic  substances 
can  be  readily  separated  by  distillation.  A  greyish- 
brown  precipitate  is  formed  on  the  addition  of  a 
solution  of  lead  acetate  to  the  remaining  solution 
after  the  distillation  has  been  completed.  The 
colour  of  the  solution  when  made  alkaline  by  the 
addition  of  either  caustic  soda  or  caustic  potash, 
darkens  considerably  on  exposure  to  the  air. 

It  has  also  been  found  when  cotton  or  other  cellu- 
lose is  steeped  in  water  that  the  temperature  in- 
creases and  that  simultaneously  a  contraction  in  the 
total  volume  takes  place. 

The  authors  hope  shortly  to  place  a  further  and 
more  complete  communication  before  the  Society. 

College  of  Technology, 
Victoria  University, 
Manchester. 


Communication. 


THE  RECOVERY  OF  RADIUM  FROM 
LUMINOUS  PAINT. 

BY  A.   Q.   FRANCIS,   B.SC,  F.I.O. 

A  considerable  quantity  of  radium  has  been  used 
in  the  manufacture  of  luminous  paint  for  dials  and 
indicators  of  all  kinds,  and  it  is  a  matter  of  im- 
portance to  recover  it  from  such  material  as  old 
radioactive  paint.  The  problem  of  the  recovery  of 
radium  from  decayed  luminous  paint  differs  from 
that  of  the  extraction  from  carnotite  or  pitchblende, 
since  the  paint  contains  much  organic  matter,  and 
the  radium  present  is  partly  soluble  and  partly 
insoluble  in  acids.  The  nature  of  the  inorganic  im- 
purities is  also  different.  It  seems  desirable,  there- 
fore,  to  place  on   record  the  method   found   con- 


venient   for    the    recovery    of    radium    from    such 
material. 

Becovery  of  the  radium  as  (JRaISa)SOi. 
The  paint,  dislodged  by  appropriate  mechanical 
means  from  the  various  articles,  contained  in  addi- 
tion to  the  luminous  paint  itself  (consisting  of  zinc 
sulphide  with  0'05— 0'4  mg.  of  radium  bromide  per 
gram)  much  adventitious  material  such  as  varnish, 
wax,  enamel,  pigments,  mica,  asbestos,  broken 
glass,  and  small  pieces  of  metal. 

After  having  been  weighed,  the  material  was  first 
roasted,  and  the  residue  weighed  and  thoroughly 
mixed.  At  this  stage  pieces  of  metal  such  as  brass 
nails  and  screws  were  removed  and  allowance  made 
for  their  weight. 

For  every  50  g.  of  roasted  paint  in  the  batch 
exactly  1  g.  was  sealed  off  in  a  thin  glass  tube 
and  set  aside  for  a  month,  when  its  radium  content 
was  determined  by  the  y-ray  method. 

Batches  of  200 — 300  g.  of  the  roasted  material  were 
boiled  for  2  hours  in  a  casserole  with  200 — 300  c.c. 
of  concentrated  sulphuric  acid  diluted  with 3  volumes 
of  water.  Water  was  then  added  until  the  liquid 
contained  less  than  20%  of  sulphuric  acid  by  weight 
and  the  batches  were  set  aside  for  18  hours.  The 
liquid  was  filtered  and  the  residue  digested  with 
dilute  hydrochloric  and  hydrofluoric  acids  in  a 
platinum  basin  for  some  time,  then  evaporated  with 
sulphuric  acid  until  fumes  appeared,  and  the  cool 
6emi-solid  mass  poured  into  water.  After  boiling 
for  i  hr.  the  solution  was  set  aside  for  18  hours  and 
filtered.  The  sulphates  were  then  digested  at  steam 
heat  with  successive  quantities  of  500  c.c.  and 
250  c.c.  of  30%  ammonium  acetate  solution  to  dis- 
solve lead  sulphate,  and  the  residue  was  washed 
with  water,  dried,  and  ignited  gently  in  porcelain 
to  remove  the  rest  of  the  6ulphur  and  carbon. 

At  this  stage  the  sulphates  usually  weighed  from 
5  to  10  g.  They  were  finely  ground  in  an  agate 
mortar,  again  digested  with  hydrochloric  and  hydro- 
fluoric acids,  evaporated  with  sulphuric  acid  to  the 
fuming  point,  diluted,  and  filtered  through  paper 
after  18  hours.  Digestion  of  the  residue  with  10% 
caustic  soda  followed,  after  which  small  pieces  of 
metal  (copper)  were  removed  by  boiling  with  nitric 
acid.  It  was  usually  necessary  to  dissolve  traces  of 
silver  salts  with  dilute  ammonia  before  the  next 
process  of  boiling  the  residue  with  dilute  hydro- 
chloric acid  until  constancy  in  weight  of  the  dried 
and  gently  ignited  material  was  obtained. 

Every  filtrate  was  treated  with  one  gram  of 
barium  chloride  followed  by  dilute  sulphuric  acid 
for  the  purpose  of  precipitating  traces  of  dissolved 
radium  sulphate. 

Conversion  of  the  radium  barium  sulphates  to 
chlorides. 

The  ignited  radium  barium  sulphate  residue 
obtained  as  described  above  was  fused  with  5  or  6 
times  its  weight  of  sodium  carbonate  and  the  melt 
leached  with  dilute  sodium  carbonate  solution.  The 
carbonates  were  filtered  off,  washed  with  water,  dis- 
solved in  dilute  hydrochloric  acid,  the  solution 
evaporated  to  dryness,  and  the  residual  chlorides 
dried  at  160°  C.  and  sealed  in  a  thin  glass  tube. 
At  the  end  of  a  month  the  radium  content  of  the 
tube  was  determined  by  the  y-ray  method,  when  it 
was  found  to  average  1%  in  the  case  of  these  rich 
or  first  chlorides. 

The  sulphates  precipitated  from  the  various 
filtrates  were  similarly  converted  into  chlorides, 
which  were  sealed  in  tubes  and  labelled  successively 
"  chlorides  2,"  "  3,"  and  so  forth.  Determinations 
of  the  radium  content  of  these  tubes  showed  that 
they  contained  as  a  rule  less  than  O'l  mg.  Ra. 

As  an  example  of  the  working  of  the  process  one 
set  of  results  may  be  quoted.  The  luminous  paint 
weighed  238  g.  and  this  after  roasting  was  reduced 
to  194  g.     Four  tubas  of  exactly  1  g.   each  were 


Vol.  XLI.,  No.  6.] 


FRANCIS.— RECOVERY  OF  RADIUM  FROM  LUMINOUS  PAINT. 


95  t 


sealed  off  and  set  aside  for  radium  assay ;  these 
contained  on  the  average  0'183  mg.  Ra,  which 
would  give  a  value  of  3477  mg.  Ra  in  the  remain- 
ing batch  of  190  g.  After  the  stage  of  digestion 
with  ammonium  acetate  the  ignited  residue  weighed 
5  g.,  and  the  final  radium  barium  sulphate  1"15  g. 
On  conversion  to  chloride  this  weight  was  reduced  to 
L02  g.,  and  these  chlorides  contained  33"52  mg.  Ra. 
From  the  various  mother  liquors  were  obtained  :  — 
Chlorides  2  containing  007  mg.  Ra ;  chlorides  3, 
097  mg.;  chlorides  4,  0T7  mg.,  making  a  total  of 
34*73  mg.  Ra  recovered  from  the  batch. 

Chlorides  3  contained  a  noticeable  amount  of 
radium  because  they  were  evaporated  to  dryness 
in  a  dish  previously  used  for  evaporating  down  the 
rich  chlorides. 

Concentration  of  the  recovered  radium. 

Chloride  fractionation. — The  less  active  chlorides 
were  first  subjected  to  fractional  crystallisation 
from  2.Y  hydrochloric  acid.  For  this  strength  of 
acid  the  concentration  factor  of  radium  is  very 
nearly  l'o  (Scholl,  J.  Amer.  Chem.  Soc,  1920, 
889;  "  U.S.  Bur.  Mines,  Bull.  104).  In  other 
words,  it  the  concentration  of  radium  in  the 
original  material  is  1%,  then  the  crystals  formed 
therefrom  in  a  2N  solution  of  hydrochloric  acid 
will  have  a  radium  concentration  of  1'5%,  87%  of 
the  total  radium  having  been  concentrated  in  58% 
of  the  total  material.  The  fractionation  was 
carried  on  until,  on  calculating  by  the  aid  of  this 
factor,  it  was  seen  that  the  "  head  fraction  "  had 
reached  a  concentration  of  radium  of  about  1%. 
For  example,  7  tubes  containing  222  nig.  Ra  in 
24  g.  of  anhydrous  chlorides  yield  a  "head" 
weighing  4'77  g.  and  containing  practically  the 
whole  of  the  radium.  The  "  tails  "  weighed  19'2  g. 
and  contained  only  0'2  mg.  Ra. 

At  this  stage  the  whole  of  the  recovered  radium 
is  in  a  state  of  purity  of  about  1%  radium  chloride. 
Before  the  fractionation  of  the  material  in  the 
form  of  bromides  was  continued  the  last  traces  of 
lead  were  removed  by  passing  hydrogen  sulphide 
into  the  ammoniacal  solution.  The  small  black 
precipitate  of  lead  and  iron  sulphides  was  filtered 
off,  the  filtrate  treated  with  an  excess  of  ammonium 
carbonate,   and  set  aside  for  18  hours. 

Meanwhile  traces  of  radium  were  recovered  from 
the  sulphide  precipitate  by  dissolving  it  in  nitric 
acid,  and  precipitating  the  lead  and  radium  as 
sulphates.  After  the  lead  6ulphate  had  been  boiled 
out  by  hydrochloric  acid,  the  residue  was  converted 
to  carbonate  by  fusing  it  with  sodium  carbonate; 
it  was  then  added  to  the  main  bulk. 

The  carbonates  were  filtered,  washed  first  with 
dilute  ammonium  carbonate  and  finally  with  water, 
dissolved  in  a  slight  excess  of  dilute  hydrobromic 
acid  and  the  solution  evaporated  to  dryness.  When 
dry  the  bromides  weighed  49'2  g.  and  their  radium 
content  was  254"  1  mg.  Ra — a  concentration  of 
RaBr,  of  0-9%. 

Bromide  fractionation. — Methods  for  the  separa- 
tion of  radium  from  barium  have  been  proposed 
depending  on  the  fractional  crystallisation  of 
various  salts  and  also  on  the  fractional  absorption 
of  radium  by  colloidal  precipitates.  The  only 
methods,  however,  which  have  found  technical 
application  are  the  methods  of  fractional  crystallisa- 
tion, originally  proposed  by  Madame  Curie  (chloride 
fractionation),  by  Giesel  (bromide  fractionation), 
and  by  McCay  (hydroxide  fractionation).  Strong 
(J  Amer.  Chem.  Soc,  1921,  43,  440)  has  shown  that 
bromide  fractionation  is  more  efficient  than  the 
hydroxide  method,  and  Scholl  (loc.  cit.)  has  shown 
that  for  concentrations  of  HBr  ranging  from  JV/3 
to  Nil  the  concentration  factor  of  radium  varies 
but  slightly  and  is  very  nearly  2-5.  The  bromide 
method  is  therefore  more  efficient  than  the  chloride, 
and  forms  at  the  present  time  the  best  method  of 


separation  of  the  two  elements.  Experience  con- 
firms Scholl's  statement  that  radium  is  much  easier 
to  separate  from  barium  than  was  formerly  sup- 
posed. Scholl  also  found  some  evidence  of  the 
tormation  in  slightly  acid  solution  of  a  final  product 
having  the  composition  2  BaBr3,RaBr2,6H20,  and 
states  that  higher  concentrations  of  radium  can 
be  obtained  by  raising  the  concentration  of  acid, 
a  procedure  which  has  the  advantage  of  increasing 
slightly  the  bulks  of  solutions  when  they  are 
becoming  very  small. 

The  following  procedure  depending  on  these 
considerations  was  adopted.  The  bromides  were 
heated  with  sufficient  water  to  form  a  saturated 
solution,  hydrobromic  acid  of  sp.  gr.  T45  was  added 
until  the  acidity  of  the  solution  was  iV/3,  and 
heating  was  continued  until  permanent  crystals 
formed  on  the  surface  of  the  liquid  on  gentle 
blowing.  The  dish  was  set  aside  for  18  hours  in 
the  case  of  all  "  head  fractions  "  so  as  to  obtain 
the  maximum  deposition  of  radium.  In  the  mean- 
time the  less  rich  fractions  were  recrystallised 
until  on  calculation  with  the  factor  2'5  a"  fraction 
was  obtained  of  approximately  the  same  radium 
content  as  the  "  head  "  which  had  been  set  aside. 
The  two  portions  were  then  united  and  crystallised 
and  the  whole  process  repeated.  At  the  last  the 
concentration  of  acid  was  increased  to  about  2N, 
when  it  was  noted  that  crystallisation  seemed  to  lag, 
but  once  it  had  started  the  salts  were  precipitated 
very  rapidly.  The  final  crystals  were  washed  once 
with  1  c.c.  of  ice-cold  hydrobromic  acid  of  sp.  gr. 
T45,  dried  at  160°  C,  and  sealed  in  a  tube  with 
a  piece  of  fine  platinum  wire  passing  through  the 
wall.  The  usual  precautions  to  avoid  loss  of 
radium  were  taken  and  all  water  and  acid  used  was 
distilled  from  and  stored  in  appropriate  vessels. 

As  has  been  stated,  the  original  concentration  of 
radium  bromide  in  the  mixed  bromides  was  0-9%. 
After  only  6ix  "  head  "  crystallisations  a  fraction 
was  obtained  weighing  0'3323  g.  when  dry  and  con- 
taining 1812  mg.  Ra — a  concentration  of  over 
90%  RaBr2;  that  is,  after  only  six  "head" 
crystallisations  over  70%  of  the  total  radium  was 
obtained  in  one  fraction  in  a  6tate  of  purity 
exceeding  90%. 

The  result  of  the  fractionation  may  be  sum- 
marised :  — 


Tube. 

Head  1 
„  2 
,.  3 
..       4 

Tails  3 
.,  2 
„      1 


Weight  in  g. 

mg.  Ra 

0-3323 

181-2 

0-1661 

55-5 

0-3054 

11-6 

0-3700 

50 

0-3626 

0-2 

1-95 

0-3 

45-7 

0-2 

254-0 


iRaBr2. 
91-4» 
67-4 

6-4 

2-3 

0-1 

0-02 


•  Percentage  RaBr2  calculated  from  the  molecular  weight  deter- 
mined by  conversion  into  AgBr. 

Chemical  assay  of  the  richest  tube  of  radium. 

All  the  determinations  of  the  radium  were  made 
by  the  y-ray  method  against  standard  tubes  of 
radium  which  had  been  compared  at  the  National 
Physical  Laboratory  with  the  British  standard.  As, 
however,  a  standard  tube  containing  12'45  mg.  Ra 
was  the  largest  in  our  possession  it  was  thought 
desirable  to  check  the  amount  of  radium,  and  con- 
sequently the  percentage  of  radium  bromide  found 
in  tube  "  Head  1  "  by  a  chemical  method.  A  deter- 
mination of  the  bromine  by  the  method  described 
by  Thorpe  (Proc.  Roy.  Soc,  1908,  A  80,  298).  The 
mixed  bromides  were  first  dissolved  in  dilute  hydro- 
bromic acid,  evaporated  to  dryness,  the  residue 
transferred  to  the  tared  reaction  bottle,  dried  at 
160°  C.  and  weighed.  Subsequently  the  procedure 
was  exactly  as  described  Thorpe.  The  result  showed 
that  the  amount  of  radium  in  the  tube  containing 
0-3323  g.  of  mixed  bromides  is  178  mg.,  as  compared 
with  181  mg.  by  the  y-ray  method. 

To   convert    the    radium,    now    in    the   form    of 


96  t 


FRANCIS.— RECOVERY  OF  RADIUM  FROM  LUMINOUS  PAINT. 


[Mar.  31.  L922. 


nitrate,  into  chloride,  sufficient  dilute  hydrobromic 
acid  was  added  to  the  solution  just  to  precipitate 
the  silver.  The  silver  bromide  was  filtered  off  and 
the  filtrate  repeatedly  evaporated  to  dryness,  con- 
centrated hvdrochloric  acid  being  added.  The 
chloride  dried  at  160°  C.  weighed  IT2522  g. 

As  much  as  possible  of  the  chlorides  was  trans- 
ferred to  a  glass  tube  and  sealed  in  the  usual  way, 
the  weight  of  anhydrous  chlorides  in  the  tube  being 
0"2487  g.  containing  by  calculation  174-5  mg.  Ra  on 
the  assumption  that  by  repeated  evaporation  with 
hydrochloric  acid  the  distribution  of  radium  in  tin- 
material  remained  constant  and  that  there  was  no 
partial  concentration  of  radium  in  any  part  of  the 
material. 

The  radium  content  of  this  tube  and  also  of  the 
tube  containing  55'5  mg.  Ra  in  a  state  of  57% 
purity  according  to  our  measurement  was  checked 
at  the  National  Physical  Laboratory,  and  the  values 


found    by    them    were    171'6    and    55'2    mg.    Ra 
respectively. 

Up  to  the  present  time  the  equivalent  of  260  mg. 
of  radium  (element)  has  been  recovered  by  this 
process,  the  loss  of  radium  during  recovery  being 
less  than  1%. 

Summary. 

1.  A  method  has  been  worked  out  for  the 
recovery  of  radium  from  decayed  luminous  paint. 

2.  Radium  in  a  high  state  of  purity  has  been 
obtained  more  easily  than  had  been  anticipated. 

In  conclusion,  the  author  wishes  to  thank  Sir 
Robert  Robertson  for  permission  to  publish  the 
work  described  in  this  paper,  and  also  Dr.  J.  J. 
Fox  for  his  advice  at  all  stages  of  the  work. 

Government  Laboratory, 
Clement's  Inn  Passage. 

London,  W.C.  2. 


Vol.  XLI..  No.  7.] 


TRANSACTIONS 


[April   15,  1922. 


Bristol  and  South  Wales 
Section. 


Meeting   held  at  Bristol  on  January  5,   1922. 


MB.    C.    J.    WATERFALL    IN    THE    CHAIR. 


THE    COMPOSITION    OF    THE    RESIDUE    ON 
DISTILLATION  OF  CRUDE  GLYCERIN. 

BY  E.   LEWIS. 

The  object  of  this  investigation  was  to  determine 
the  composition  of  the  residues  obtained  on  dis- 
tillation of  crude  glycerin,  and  from  a  study  of  the 
properties  of  the  constituents,  devise  a  means  of 
separating  the  unchanged  glycerin.  Detailed 
analyses  have  been  made  of  the  glycerin  residues, 
and  various  methods  applied  to  effect  the  separa- 
tion of  the  components.  Attempts  were  made  to 
depolymerise  the  polymerised  glycerin,  and  subse- 
quently extract  the  glycerin  from  the  residue. 

Origin  and  treatment   of  glycerin  residues. 

On  distillation  of  crude  glycerin,  a  solid  hygros- 
copic residue  remains,  which  contains  about  25%  of 
glycerin  and  polymerised  glycerin,  together  with 
about  70%  of  inorganic  matter,  consisting  chiefly 
of  sodium  chloride,  together  with  smaller  quanti- 
ties of  sodium  carbonate,  sulphate,  and  hydroxide. 

In  glycerin  factories  these  residues  are  dissolved 
in  water,  acidified,  treated  with  lime,  filtered, 
evaporated,  and  again  distilled.  It  is  seldom 
possible  to  recover  more  than  about  50%  of  the 
glycerin  contained  in  the  original  material,  on  the 
basis  of  the  I.S.M.  figures,  that  is,  the  figures 
obtained  after  deducting  the  acetylisable  impuri- 
ties, contained  in  the  organic  residue  at  160°  C, 
from  the  total  acetyl  value  of  the  original  material. 

Losses  during  the  operation  of  distilling  crude 
glycerin  are,  presumably,  due  to  polymerisation, 
consequent  on  local  heating,  polymerised  glycerin 
being  known  to  be  present  in  commercial  crude 
glycerin  to  the  extent  of  about  2%,  being  highest 
in  glycerin  produced  under  high  pressures  in  auto- 
claves. The  extent  to  which  these  substances  are 
present  is  a  fair  indication  of  the  quality  of  the 
crude  glycerin. 

Lewkowitsch  states  that  the  losses  incurred  during 
distillation  of  crude  glycerin  range  from  15  to  40%. 
Lach  in  "  Die  Gewinnung  und  Verarbeitung  des 
Glycerins  "  (Halle,  1907),  says  that  "  from  figures 
taken  from  a  large  number  of  factories  in  Germany 
the  average  yield  of  glycerin,  on  distillation  of 
glycerin  residues,  was  50%.  In  a  few  isolated  cases 
distillation  was  prolonged  and  a  yield  of  60%  was 
obtained,  but  it  was  found  that  the  residue  became 
so  viscous  that  it  failed  to  run  from  the  still  whilst 
hot,  and  solidified,  on  cooling,  to  a  hard  mass  which 
held  very  tenaciously  to  the  walls  of  the  still,  in- 
curring a  loss  of  time  for  its  removal."  Even  when 
hot  these  polymerised  products,  together  with  being 
concentrated  in  salts,  possess  a  viscosity  propor- 
tional to  their  degree  of  polymerisation. 

Details  of  the  m*ans  adopted  in  Germany  for  the 
treatment  af  glycerin  residues,  so  as  to  bring  them 
into  a  state  suitable  for  nitration  in  the  manufac- 
ture of  explosives,  have  not  been  divulged.  A  very 
efficient  separation  of  the  inorganic  salts  would 
have  to  he  effected  before  nitration  could  be  con- 
ducted. The  presence  of  any  chlorides  adds  serious 
difficulties  to  the  operation  of  nitration  and 
decreases  the  stability  of  the  explosive. 


It  is  probable  that  in  Germany  during  the  war 
glycerin  residues  were  treated  by  an  electro- 
osmotic  method,  diaphragms  aiding  separation 
and  acting  as  barriers  to  confine  glycerol. 

In  a  German  patent  granted  in  July,  1920,  the 
crude  mixture  is  placed  in  the  cathode  compart- 
ment of  a  cell  containing  an  electro-positive  mem- 
brane to  eliminate  acid  substances,  or  in  the  anode 
compartment  of  a  cell  fitted  with  an  electro-nega- 
tive membrane  to  separate  bases.  An  alternative 
method  proposed  is  that  of  separating  the  crude 
liquid  from  both  electrodes.  If  the  diaphragms  are 
made  of  electro-negative  materials,  such  as  parch- 
ment or  viscose,  all  basic  substances  will  tend  to  be 
attracted  in  the  direction  of  the  cathode.  If  they 
are  both  of  electro-positive  material,  such  as  animal 
membranes  or  leather,  all  the  acid  constituents  and 
inorganic  bases  are  eliminated.  Diaphragms  of 
mineral  matter  may  be  used  instead  of  organic 
materials,  in  which  case  heat  appreciably  promotes 
the  purifying  process. 

Various  devices  have  been  employed  to  prevent  or 
limit  the  formation  of  polymers  during  the  opera- 
tion of  distilling  crude  glycerin ;  amongst  these  are 
diminishing  the  solubility  of  the  salts  by  cooling 
or  saturating  the  crude  glycerin  with  a  gas, 
elimination  of  the  water  so  as  to  effect  a  precipita- 
tion of  the  salts,  neutralising  the  glycerin  prior  to 
distillation  and  conducting  the  operation  in  a  vessel 
furnished  with  a  means  for  extracting  the  salts  as 
they  accumulate. 

On  saturation  of  a  quantity  of  an  aqueous  solu- 
tion of  glycerin  residues  with  hydrochloric  acid  gas 
the  solubility  of  various  inorganic  salts  was  re- 
duced to  about  1%.  Vacuum  distillation  of  this 
treated  liquor  showed  no  abnormal  polymerisation. 

It  was  found  during  some  laboratory  experiments 
that  on  distilling  crude  glycerin  under  a  pressure 
of  30  mm.  and  then  a  further  quantity  under  a 
pressure  of  5  mm.,  polymerisation  was  lessened  by 
60%.  A  small  difference  in  pressure  appeared  to 
have  a  marked  influence  on  the  course  and  in- 
tensity of  the  polymerisation. 

Commericial  uses  of  glycerin  residues. 
During  war-time  glycerin  residues  found  applica- 
tion in  Germany,  and  to  a  limited  extent  in  this 
country,  for  the  manufacture  of  plastic  substances, 
filling  gas  meters,  finishing  textiles  and  felts,  as  an 
ingredient  for  cable  insulations,  sizing,  and  also 
in  the  manufacture  of  non-freezing  blasting  ex- 
plosives. None  of  these  usages  has  survived  war 
conditions.  In  the  production  of  non-freezing  ex- 
plosives the  residues  found  a  considerable  applica- 
tion in  Germany  during  the  war  period.  At 
present  it  is  more  economical  to  polymerise  pure 
glycerin  for  this  purpose  than  to  purify  and  isolate 
the  polymers  contained  in  glycerin  residues. 

Polymerised  glycerin. 

When  glycerol  is  heated  in  the  presence  of  various 
alkaline  salts — and  even  when  heated  alone  at  ordi- 
nary pressures — polymers  are  formed,  with  the 
elimination  of  water,  expressible  by  the  general 
equation  :  — 

xCaH^OH), = CajH^-^O^-y + yH20 
for  example,  if  one  molecule  of  water  be  extracted 
from  two  molecules  of  glycerin,  diglycerin 

C3Hs(0H)2'.0.C3H5(0H)2 
results. 

A  process  for  the  production  of  polymers  of 
glycerin  is  the  subject  of  E.P.  24,668,"  24.10.10 
(Nobel's  Explosives  Co.,  Ltd.,  Rintoul  and  Innes), 
according  to  which  glycerin  is  polymerised  by  heat- 
ing at  ordinary  pressure  at  a  temperature  of  about 
200°  O.,  with  or  without  the  addition  of  substances 
to  accelerate   the   polymerisation.        A  current   of 


98  t 


LEWIS.— RESIDUE  DISTILLATION  OF  CRUDE  GLYCERIN. 


[April   15,   1922. 


gas,  preferably  devoid  of  oxidising  tendency,  is 
blown  through  the  hot  glycerin  to  remove  the 
liberated  water. 

Various  other  methods  have  been  proposed,  the 
polymerisation  being  accomplished  by  the  aid  of 
catalytic  agents  such  as  iodine,  bromine,  and  the 
acetates  and  hydroxides  of  calcium  and  sodium. 
Diglycerin  may  be  prepared  in  a  tolerably  pure 
state  by  using  005%  of  iodine  as  a  catalyst.  An 
excessive  amount  of  iodine  results  in  rapid  poly- 
merisation, but  also  converts  about  10%  of  the 
glycerin  into  aldehydes. 

Analysis. 

A  detailed  analysis  was  made  of  a  sample  of 
glycerin  residues,  which  was  an  average  of  that 
produced  during  an  extended  period  at  these 
works;  the  results  obtained  were  as  follows:  — 
Glycerol  T.A.V.,  24-52%;  acetylisable  impurities, 
6-52%  ;  glycerol  I.S.M.,  18-00%  ;  total  residue  at 
160°  C,  78-84%  ;  inorganic  residue,  62'50%  ;  organic 
residue  at  160°  C.,  16'34%  ;  moisture,  035%  ;  sodium 
chloride,  56'25%  ;  sodium  carbonate,  1'73%  ;  sodium 
hydroxide,  0'12%  ;  sodium  sulphate,  3'42%  ;  sodium 
sulphide,  055%  ;  sodium  sulphite,  0'48%  ;  sodium 
thiosulphate,  030%;  calcium  carbonate,  0'25%  ; 
ferric  oxide,  1"14%  ;  aluminium  oxide,  0'29%  ; 
albuminoids,  1'28%  (calculated  from  organic  nitrogen 
content);  fatty  acids,  0'92%;  resinous  matter, 
2'S5%  ;  tarry  matter,  2'40%  ;  glyceric  acid,  di- 
hydroxyacetone, acrolein,  glyceraldehyde,  formic, 
oxalic,  butyric,  and  glycollic  acids  were  also  present. 

The  presence  of  dihydroxyacetone  and  glycer- 
aldehyde was  established  by  the  formation  of 
phenylglvcerosazone,  in  the  presence  of  excess  of 
phenylhydrazine  (Fischer,  Ber.,  1887,  20,  1988). 
Also  both  the  above  give  colour  reactions  with 
orcinol,  dihydroxyacetone  alone  giving  a  typical 
colour  reaction  with  phloroglucinol  and  with 
resorcinol  (Z.  angew.  Chem.,  1916,  29,  Ref.,  251). 
The  acrolein  was  isolated  by  aerating  a  neutralised 
solution  of  the  residues,  when  its  presence  was 
easily  shown  by  the  characteristic  odour  and 
lachrymatory  properties.  The  separation  of  the 
higher  and  lower  organic  acids  was  first  accom- 
plished, the  various  esters  prepared  and  equivalent 
values  determined.  The  details  of  the  methods 
adopted  in  these  separations  will  be  dealt  with  in 
a  later  contribution  to  this  Journal. 

From  a  consideration  of  the  total  hydroxyl 
content,  the  hydroxyl  content  of  the  organic 
residue  at  160°  C,  and  of  that  portion  which  is 
volatile  at  160°  C,  the  percentage  of  glycerol  and 
polymerised  glycerol  may  be  approximately  calcu- 
lated. The  figures  obtained  are  as  follows:  — 
Glycerol,  10'05%  ;  polyglycerols  (calculated  as 
diglycerol),  19'56%. 

The  analysis  now  appears  as: — Glycerol,  1005%  ; 
diglycerol,  1956%  ;  inorganic  salts,  65-5%  ;  fatty 
acids,  0'93%  ;  albuminoids,  1'28%  ;  resinous  matter, 
2-85%  ;  tarry  matter,  2"46%  ;  moisture,  0'35%. 

The  percentage  of  actual  glycerol  on  the  I.S.M. 
figure  is  hence  54'2%  ,  which  is  not  far  removed  from 
the  yield  actually  obtained  in  works  practice.  The 
results  obtained  in  laboratory  distillations  were 
46"8%  and  49"2%  respectively,  the  figures  of  which 
are  given  in  Table  1  below. 


Table  1. 


Wt.  of  original 

still  residues       100%  glycerol 
treated.  obtained. 

%■  8- 

250  ..  2105 

500  ...  44-20 


Yield  of  Yield  of 

glycerol  on  glycerol  on 

still  residues.       I.S.M.  figure. 


8-42 
8-85 


46-8 
49-2 


"  T.  A.  V."  is  used  throughout  as  an  abbrevia- 
tion for  the  total  acetyl  value  calculated  as  100% 
glycerin,  and  determined  as  per  the  International 
Standard  Methods  for  Analysis  of  Crude  Glycerin, 
1911;  "  I.  S.  M."  for  the  figures  obtained  when  the 
content   of   acetylisable   imparities   of   the   organic 


residue  determined  at  160°  C,  calculated  as 
glycerin,  is  deducted  from  the  total  acetyl  value. 

The  method  of  determining  the  total  acetyl  value 
is  based  on  the  quantitative  conversion  of  glycerol 
into  triacetin,  when  concentrated  glycerol  is  heated 
in  the  presence  of  acetic  anhydride.  The  product 
of  this  reaction  is  dissolved  in  water,  the  free  acid 
carefully  neutralised  with  alkali,  and  the  dissolved 
triacetin  determined  by  saponifying  with  a  known 
volume  of  standard  alkali  and  titrating  back  the 
excess  (Lewkowit6ch,  I.,  p.  287). 

From  the  above  figures,  the  actual  glycerol 
content  of  the  "  still  residues  "  is  about  50%  of  the 
I.S.M.  figure.  The  high  I.S.M.  figure  is  possibly 
accounted  for  by  the  presence  of  polyglycerols  which 
are  volatile  at  160°.  C.,  when  the  "  still  residues  " 
are  treated  as  in  the  International  Standard 
Methods  determination.  This  is  borne  out  by  the 
analysis,  since  the  organic  residue  is  16"34%,  and 
deducting  the  non-volatile  organic  substances,  viz., 
tar,  resin,  fatty  acids,  and  albuminoids,  gives 
19'56%,  giving  1067%  volatile  polymers.  It  should 
be  noted  that  this  figure,  viz.,  10p67%,  is  not 
directly  comparable  with  the  total  acetyl  value,  as 
the  latter  is  calculated  as  diglycerol  and  not  as 
glycerol. 

In  the  presence  of  volatile  polymers,  the  I.S.M. 
figure  will  be  higher  than  the  truth,  consequent  on 
the  volatile  polymers  not  remaining  at  160°  C, 
hence  giving  a  low  value  to  the  acetylisable  im- 
purities of  the  organic  residue.  An  alternative 
theoretical  explanation  is  the  presence  of  a  sub- 
stance volatile  at  160°  C.,  which  contains  a  higher 
percentage  of  hydroxyl  groups  than  glycerol.  An 
examination  of  various  literature  failed  to  show 
any  substance  which  is  volatile  at  160°  C.  and 
contains  a  higher  percentage  of  hydroxyl  groups 
than  glycerol. 

On  applying  Hehner's  acetin  method  to  deter- 
mine the  contents  of  a  mixture  of  pure  glycerin  and 
diglycerin,  it  was  found  that  the  diglycerol  was 
hydrolysed  to  glycerol  and  estimated  as  such. 

Separation  of  constituents. 

Any  separation  of  the  glycerin  and  polymerised 
glycerin  contained  in  glycerin  residues  was  found 
to  be  a  matter  of  considerable  difficulty.  Various 
attempts  have  been  made  to  recover  or  separate  the 
glycerin.    The  following  are  the  more  important:  — 

(1)  Fractional   extraction    by    means   of    solvents. 

(2)  Formation  of  the  sulphonate  of  the  unchanged 
glycerol,  C,H5(OH)2.O.S02H.  (3)  Dialysis. 
(4)  Depolymerisation  by  means  of  high  pressures  at 
various  temperatures. 

Some  of  these  methods  have  been  investigated  by 
the  writer  at  the  works  of  Messrs.  Christr.  Thomas 
and  Bros.,  Ltd.,  Bristol. 

Extraction  by  means  of  solvents  failed,  princi- 
pally due  to  the  necessity  of  distillation  under  a  low 
pressure.  The  glycero6ulphuric  acid  compound 
formed  on  treatment  with  sulphuric  acid  was  un- 
stable in  the  presence  of  an  excessive  amount  of 
sodium  chloride.  No  separation  could  be  effected 
by  steam  distillation  at  low  pressures,  further 
polymerisation  taking  place  consequent  on  the 
presence  of  the  various  alkaline  salts.  Synthetic 
mixtures  of  glycerin  and  diglycerin  were  easily 
separated  in  this  manner. 

During  attempts  at  depolymerisation  by  treat- 
ment in  an  autoclave  at  various  temperatures  and 
pressures,  the  best  results  obtained  were  when  50% 
of  the  polyglycerols  was  decomposed.  About  25% 
was  found  to  have  been  converted  into  glycerol, 
the  remainder  being  glyceric  acid,  glyceric  alde- 
hyde, and  a  hexose  sugar,  the  presence  of  the  latter 
being  possibly  due  to  an  aldehyde  polymerisation, 
as  according  to  Neuberg  (Biochem.  Zeits.,  1908, 
12,  337)  hexose  sugars  may  be  synthesised  by  the 
polymerisation  of  simple  aldehydes  such  as  glycollic, 


Vol.  XLI.,  No.  7.] 


LEWIS.— RESIDUE  DISTILLATION  OF  CRUDE  GLYCERIN. 


99  t 


formic,  and  glyceric  aldehydes,  in  the  presence  of 
alkaline  salts. 

While  dialysis  has  been  used  to  separate  salts 
from  glycerin,  it  was  found  that  by  continuing  the 
process  under  favourable  conditions  the  glycerin 
also  passes  through  the  membrane,  allowing  of  a 
partial  separation  of  the  polymers. 

Experiments  were  conducted,  using  a  modified 
dialysing  apparatus  consisting  of  a  shallow  cylinder 
of  glass,  closed  at  the  lower  end  by  a  diaphragm  of 
parchment  paper,  the  whole  being  suspended  over  a 
basin  of  boiling  water.  When  a  quantity  of  the 
glycerin  residues  was  dialysed  in  this  manner  it 
was  found  that  90%  of  the  glycerol  diffused  in  the 
course  of  two  hours  with  only  about  5%  of  the 
polymerised  glycerol.  In  connexion  with  this 
work  a  synthetic  mixture  was  prepared  of  10% 
glycerin,  20%  diglycerin,  and  40%  sodium  chloride 
in  water,  and  treated  as  before;  in  this  case  85% 
of  the  glycerol  passed  through  the  membrane 
together  with  10%  of  the  diglycerol.  Further 
simple  dialysis  of  these  solutions  gave  a  separation 
of  the  major  portion  of  the  salts,  with  loss  of  but 
little  glycerol.  Under  the  conditions  described  it 
was  found  that  sodium  chloride  had  approximately 
the  same  velocity  of  exosmosis  as  glycerol.  In  this 
connexion  Fleming  has  patented  the  use  of  a  gutta- 
percha membrane  which  he  claims  is  traversed  by 
salt  but  impermeable  to  glycerin.  The  author  has 
conducted  exhaustive  tests,  using  various  types  of 
gutta-percha  as  membrane.  In  no  ease  was  it  found 
that  any  percolation  had  taken  place,  even  after 
standing  for  several  days.  Although  dialysis  is  a 
valuable  means  of  examining  and  purifying  small 
quantities  of  glycerin,  it  has  not  yet  found  indus- 
trial application  under  the  present  conditions  of 
extracting  glycerin. 

Conclusions. 
No  simple  means  has  been  found  for  the  gaining 
of  the  glycerin  present  in  various  states  in  these 
products  which  could  be  adopted  commercially. 
Depolymerisation,  under  suitable  conditions  in  an 
autoclave,  offers  a  means  of  concentrating  the 
actual  glycerol  as  such.  A  separation  of  the  depoly- 
merised  glycerol  during  the  course  of  the  opera- 
tion would  conceivably  aid  the  course  of  the  re- 
action towards  the  production  of  glycerin.  By 
employing  means  to  diminish  the  solubility  of  the 
salts,  mechanical  difficulties  are  avoided,  and  the 
subsequent  distillation  is  materially   assisted. 

Note  on  Glycerol  and  Diglycerol. 

In  connexion  with  the  above  investigation  on 
glycerin  residues,  an  attempt  was  made  to  analyse 
the  polymerised  glycerin  by  examination  of  the  dis- 
tillate obtained  on  rapid  distillation  under  vacuum. 
Synthetic  mixtures  were  prepared  and  the  distil- 
lates examined.  No  success  was  attained  in 
these  experiments,  as  further  polymerisation  took 
place  during  distillation  of  the  glycerin  residues. 

The  following  data  are  of  interest  in  connexion 
with  the  substances  used  and  various  methods 
adopted  in  analysis:  — 

(1)  Preparation  of  pure  diglycerol. 

(2)  Boiling  point  of  aqueous  solutions  of  glycerol. 

(3)  Influence  of  temperature  on  the  specific 
gravity  of  solutions  of  glycerol  and  diglycerol  re- 
spectively, together  with  a  calculation  of  the  weight 
and  volume  of  glycerol  in  aqueous  solutions  of  vari- 
ous specific  gravities. 

Preparation  of  diglycerol. 

A  quantity  of  diglycerol  was  prepared  by  a 
method  based  on  U~S.  Patent  126,467  of  1912 
(Hibbert),  in  which  glycerin  containing  0'05%  of 
iodine  is  maintained  at  a  temperature  of  210°  C. 
for  two  hours  with  continual  agitation.  On  distilla- 
tion under  reduced  pressure,  an  85%  yield  was 
obtained  of  a  water-white,  viscous  and  very  hvgro- 
scopic    fluid,    boiling    freely    at    257°— 260°   C.    at 


30  mm.  pressure.  The  diglycerol  obtained  was 
soluble  in  water  and  insoluble  in  ether.  The 
specific  gravity  at  20°/20°  C.  was  13215.  It  con- 
tained C  4310%,  H  859%  (C,HwO,  requires 
C  43-35%,  H  8-50%).  The  boiling  point  of  this  pro- 
duct agrees  with  that  of  the  diglycerol  (bis- 
dioxypropyl  oxide)  obtained  by  Nef,  which  is  given 
as  261°— 262°  C.  at  27  mm.  (Annalen,  335,  239). 

Boiling  point  of  aqueous  solutions  of  glycerin. 

The  determination  of  the  boiling  point  was 
carried  out  according  to  the  method  of  Schleier- 
macher  (Ber.,  1891,  24,  944,  2251),  in  which  a  small 
quantity  of  liquid — limited  to  0'5  g. — is  heated  in 
the  sealed  arm  of  a  capillary  tube  extension  of  a 
U-tube  over  a  column  of  mercury.  This  method  is 
very  serviceable  for  determining  the  boiling  point  of 
a  liquid  at  any  desired  pressure  in  the  vicinity  of 
atmospheric  pressure,  the  boiling  point  readings 
being  made  direct. 

The  anhydrous  glycerin  was  prepared  by  pro- 
longed exposure  of  thin  layers  of  C.P.  glycerin  in 
a  vacuum  desiccator  over  phosphorus  pentoxide. 
The  various  concentrations  of  glycerin  solution 
were  prepared  from  the  anhydrous  material,  and 
the  boiling  point  determined  with  the  following 
results :  — 

Boiling  points  of  aqueous  solutions  of  glycerol 
at  760  mm.  pressure. 


jlycerc 

.1.     'C. 

%  glvcerin 

•c. 

%  glycerol. 

•c. 

100 

290  0 

90 

137-5 

40 

104-2 

99 

225-5 

85 

126-8 

35 

103-5 

98 

I960 

80 

121-5 

30 

1030 

97 

179-5 

75 

116-5 

25 

102-4 

96 

168-0 

70 

11S-5 

20 

1020 

95 

1600 

65 

1110 

15 

101-5 

94 

1560 

60 

108-8 

10 

1010 

93 

149-5 

55 

107-2 

5 

100-5 

92 

145-5 

50 

106-0 

91     ' 

1410 

45 

105-5 

Influence  of  temperature  on  the  specific  gravity  of 
solutions  of  glycerol  and  diglycerol. 

The  specific  gravities  were  determined  by  means 
of  a  50  c.c.  cylindrical  pyknometer,  with  a  ground-in 
thermometer,  a  capillary  tube  and  cap  being  fused 
on  to  the  side.  The  results  obtained  were  as 
follows  :  — 


/o 

Gly. 

15°A5° 

20720°  25725° 

30730° 

35735° 

40740° 

45745° 

50750° 

5 

1-0122 

| 
10117    1-0113 

10108 

10103 

1-0098 

1-0092 

10087 

10 

10245 

10237  |10233 

1-0227 

10221 

10215 

10209 

1  0203 

15 

10370 

1-0358   10354 

1-0350 

1-0346 

1-0340 

10334 

10328 

20 

10495 

1-0489    10481 

1-0474 

10467 

1-0460 

10453 

10446 

25 

1-0621 

10610    1-0605 

10600 

10593 

1-0580 

10579 

10572 

30 

1-0753 

10747    1-0737 

10729 

10721 

10713 

10705 

1-0697 

35 

1-0885 

10880  j  10869 

10861 

10853 

1-0845 

1-0837 

1-0829 

40 

11023 

1-1017    10905 

10896 

1-0887 

1-0878 

10969 

1-0960 

45 

11156 

11150    11142 

1-1134 

1-1125 

11116 

11106 

1-1095 

50 

1-1290 

11283    1-1274 

11263 

1-1253 

1-1240 

11229 

1-1220- 

Diglycerol—  20°/  20° 

c, 

13215;     3 

)°/30°      C, 

1-3183 ;  40° 

/40°  C,  1-3 

140. 

Percentages  of  glyc 

erol  in  aqueous  si 

ilutions* 

Sp.  gr.  at 

g.  Glyc. 

cc.  Glyc.        g.  Glyc. 

c.c.  Glyc. 

20720°  C. 

in  100  g. 

In  100  g 

in  100  c.c. 

in  100  cc. 

10117 

500 

4-94 

506 

409 

10237 

1000 

9-76 

10-24 

810 

1-0358 

1500 

14-48 

15-54 

12-30 

1-0489 

20-00 

19-06 

20-98 

16-60 

1-0610 

2500 

23-56 

26-53 

21-00 

10747 

30-00 

27-91 

32-24 

25-52 

1-0880 

3500 

32-17 

38-08 

3005 

1-1017 

40-00 

36-31 

4407 

34-89 

1-1150 

45-00 

40-36 

501 7 

39-72 

1-1283 

50-00 

44-31 

56-41 

44-56 

1-1418 

5500 

48-17 

62-80 

49-72 

1-1550 

6000 

51-95 

69-30 

54-86 

1-1691 

65-00 

55-59 

75-99 

6016 

1-1827 

70-00 

5918 

82-79 

65-54 

11964 

7500 

62-69 

89-73 

7104 

1-2091 

80-00 

66-16 

96-73 

78-58 

1-2237 

8500 

69-46 

10401 

82-35 

1-2368 

9000 

72-77 

111-31 

8813 

1-2506 

9500 

75-96 

118-81 

9406 

1- 

2631 

10000 

7917 

12 

S-31 

100( 

)0 

100  T 


PARKES.—  THE    KYNOCH    OLEUM    PLANT. 


[April   15,   1922. 


In  conclusion,  I  desire  to  express  my  'best  thanks 
to  the  Directors  of  Messrs.  Christopher  Thomas 
and  Bros.,  Ltd.,  and  particularly  to  Mr.  E.  Walls, 
the  Chairman  of  the  Company,  and  to  Mr.  J. 
Fraser,  Works  Director,  for  kind  permission  to 
publish  these  results. 

Messrs.  Christopher  Thomas  and  Bros.,  Ltd.. 
Broad  Plain  Soap  Works,  Bristol. 

Discussion. 

Dr.  Hepworth  said  that,  as  a  result  of  many  ex- 
periments at  Nobel's  Explosives  Company's  factory, 
only  about  94%  of  the  available  glycerin  had  been 
recovered,  and  in  the  distillation  of  large  quantities 
(20,000  tons  per  annum)  6%  loss  was  an  important 
item.  The  polymerisation  product  resembled  glue 
in  appearance,  and  the  sodium  salts  of  organic  acids 
accumulated  in  it.  Experiments  were  in  progress 
at  Messrs.  Nobels  on  the  formation  of  glycerin  from 
molasses,  but  up  to  the  present  it  was  found  that, 
although  an  almost  theoretical  fermentation  took 
place,  less  than  50%  of  the  glycerin  was  recoverable. 

Dr.  M.  Nibrenstein  said  that,  according  to  Mr. 
Lewis,  hexose  could  be  obtained  from  glycerin, 
although  Fischer  and  others  has  said  that  it  was 
impossible  to  obtain  a  6-carbon  sugar  from  a 
3-carbon  alcohol.  He  thought  the  question  might 
eventually  throw  6ome  light  on  carbon  dioxide 
assimilation. 

Mr.  Lewis,  in  reply,  said  that  be  had  not 
further  studied  the  formation  of  the  hexose  sugar, 
but  had  noted  it  as  a  casual  observation.  No  diffi- 
culty was  experienced  in  establishing  its  identity 
on  preparing  tne  phenylosazone.  In  this  connexion 
it  was  of  interest  to  note  that  Pulvacher  found 
a-acrose  as  a  degradation  product  on  exposure  of 
glycerin  to  ultra-violet  light  in  the  presence  of 
alkaline  hydrogen  peroxide. 


Communications. 


THE  KYNOCH  OLEUM  PLANT. 

BT  J.   W.   PABKES. 

The  plant  is  erected  in  units,  each  containing 
either  six  lump  pyrites  kilns  arranged  back  to 
back  in  groups  of  three,  or  a  mechanical  roasting 
furnace  for  pyrites  fines  and  two  lump  pyrites  kilns. 
To  reduce  the  capital  expenditure,  two  units  are 
erected  with  each  installation,  so  that  one  set  of 
coolers,  absorption  towers,  purifiers,  acid  reservoirs, 
pumps,  and  fans  will  deal  with  a  double  set  of  kilns. 

The  kilns  are  supplied  under  slight  pressure  with 
the  necessary  dried  air  for  burning  the  pyrites, 
and  the  sulphur  dioxide  produced  is  passed  through 
an  oxide  shaft  charged  with  pyrites  cinders  and 
maintained  at  about  680° — 700°  C.  by  the  heat  of 
the  gas.  By  this  means  35 — 40%  of  the  S02  is  con- 
verted to  SO,.  The  gas  iR  cooled  and  the  sulphuric 
anhydride  absorbed  by  strong  sulphuric  acid  in  a 
series  of  absorption  towers.  After  purification, 
the  remaining  gas  is  passed  over  heated  platinised 
asbestos  and  the  sulphuric  anhydride  so  produced 
is  cooled  and  absorbed  in  a  further  set  of  absorp- 
tion towers. 

From  the  general  arrangement  shown  in  Figs.  1 
and  2,  it  will  be  observed  that  the  plant  is  divided 
into  six  main  sections: — (1.)  Air-drying  system. 
(2.)  Burner  section  (kilns,  oxide  shafts,  and  fore- 
warmer).  (3.)  Coolers  and  towers  of  first  absorp- 
tion system.  (4.)  Purifying  section  (acid  catchers 
and  filters).  (5.)  Heat  exchanger,  superheater,  and 
platinum  shaft.  (6.)  Coolers  and  towers  of  second 
absorption  system.     Acid  circulation. 


Air-drying  system. 

This  consists  of  two  large  leaden  towers  in  series, 
lined  with  acid-proof  bricks  and  packed  with  coke, 
through  which  strong  sulphuric  acid  is  circulated 
by  means  of  a  fan  to  dry  the  air.  The  towers  are 
built  up  of  9-lb.  lead  sheet,  supported  firmly  by  a 
wooden  framework  and  lined  with  obsidianite 
bricks.  The  internal  dimensions  of  the  towers  are 
4  ft.  x  4  ft.  x  17  ft.  6  in.  and  23  ft.  6  in.  respec- 
tively, and  the  space  occupied  by  the  coke  packing 
is  approximately  488  cub.  ft.  The  air  is  delivered 
at  2  in.  water  pressure  from  a  12-in.  M.V.  Sturte- 
vant  fan  direct  coupled  to  a  3J-h.p.  motor,  running 
at  1200  r.p.m.  The  suction  side  of  the  fan  is  fitted 
with  a  movable  sliding  damper,  so  that  the  volume 
of  air  passing  into  the  plant  can  be  regulated  at 
will.  The  air  enters  the  base  of  the  first  tower 
through  an  18-in.  lead  pipe,  and  passes  up  through 
the  brick  grid,  supporting  the  coke  packing  3  ft. 
above  the  12-in.  lead  basin,  in  which  the  tower 
stands.  The  leaden  top  of  the  tower  is  fitted  with 
an  intermittent  acid  distributor,  so^  that  the  coke 
packing  is  flushed  with  sulphuric  acid  at  regular 
intervals,  and  an  18-in.  gas  outlet  pipe  connects  it 
with  the  base  of  the  second  tower,  which  is  similar 
in  design. 

From  a  supply  tank  fixed  overhead,  strong 
sulphuric  acid  (95%)  passes  down  the  second  tower, 
and  by  means  of  a  lj-in.  Kynoch  centrifugal  pump, 
direct  coupled  to  a  3-h.p.  motor,  running  at  1150 
r.p.m.,  is  elevated  to  a  distributing  box  on  top  of 
the  tower.  From  the  box  it  is  returned  to  the 
tower,  by  pipes  entering  half  way  down  the  tower 
sides,  and  in  this  way  a  rapid  circulation  is  main- 
tained in  the  lower  half.  Sufficient  acid  is  run 
forward  from  the  distributing  box  to  the  first  tower, 
so  that  the  strength  of  acid  in  the  second  tower 
never  falls  below  85  %  .  By  means  of  a  second  pump 
a  rapid  circulation  of  acid  is  maintained  in  the  first 
tower  until  the  strength  of  the  acid  falls  to  77%, 
when  it  is  returned  to  the  concentrating  plant. 

The  volume  of  air  passing  through  the  air-drying 
towers  varies  with  the  quantity  of  ore  burned,  but 
for  normal  working  is  approximately  12,000,000 
cub.  ft.  per  week.  The  average  humidity  of  the 
air  entering  the  towers  is  25  grains  of  water  per 
cub.  ft.  and  about  05  grain  on  leaving.  Approxi- 
mately eight  tons  of  95%  acid  is  used  per  week  on 
the  air-drying  system,  and  the  circulation  of  acid 
down  the  towers  is  arranged  in  such  a  manner  that 
the  strongest  acid  meets  the  partially  dried  air. 
It  is  advisable  to  send  the  diluted  acid  to  the  con- 
centrating plant,  otherwise  the  moisture  combines 
with  a  portion  of  the  sulphuric  anhydride  and  the 
output  of  the  plant  is  reduced  proportionately. 

The  dried  air  is  conveyed  through  a  cast-iron 
main  to  the  burner  section  and  introduced  into  the 
front  of  each  kiln  below  the  bars  by  means  of  two 
cast>iron  pipes  (4  in.  diameter)  fitted  with  flanged 
tee  pipes  for  cleaning  out. 

The  burners. 

The  whole  section  (except  the  superheater)  is 
encased  in  a  shell  of  |-in.  mild  steel  plate.  The 
shell  is  riveted  to  a  steel  framework,  which  serves 
as  a  bracing  for  the  brickwork,  and  as  a  support 
for  holding  the  casHron  door  frames.  The  casing 
is  caulked  and  the  cast-iron  frames  are  jointed  on 
to  the  steelwork  with  asbestos  cord.  All  door 
openings  on  the  cast-iron  frames  have  machined 
faces  and  the  doors  are  made  tight  with  asbestos 
joints  and  latches  fitted  with  screw  bolts. 

An  8-in.  cavity  is  left  for  insulation  wherever 
possible  between  the  brickwork  and  the  casing,  and 
filled  in  with  kieselguhr.  For  this  reason,  and  to 
facilitate  repairs,  the  steel  plates  covering  the  tops 
of  the  kilns  and  oxide  shafts  are  not  riveted  as 
elsewhere  in  the  casing,  but  are  bolted  down  and 
jointed  with  asbestos  rope. 


Vol.  XLI.,  No.  7.] 


PARKES.—  THE    KYNOCH    OLEUM    PLANT. 


101  T 


Fig.  1 

Plan. 


A 


B     B     S     B 


£sfr  cf  Fa:     Rfe 


Fig.  2. 
Section. 

1.  lump  burners.  2.  Oxide  shafts.  3.  Coolers.  4.  Absorption  towers.  5.  Exhauster.  0.  Acid  catchers.  7.  Filter 
tanks.  8.  Pre-heaters.  9.  Platinum  shaft.  10.  Superheaters.  11.  Acid  reservoirs.  12.  Acid  circulating  pumps. 
13.  Air-drying  towels.    14.  Fan.    15.  Acid.    16.  Outlet  pipe  to  atmosphere. 


The  furnaces  and  oxide  shafts  are  built  in 
ordinary  brickwork  and  lined  with  good  quality 
firebrick. 

The  lump  pyrites  kilns. — The  kilns  are  built  in 
two  groups  of  three,  arranged  back  to  back.  Each 
kiln  is  4  ft.  3£  in.  in  width  and  4  ft.  11  in.  from 
front  to  back.  The  wrought-iron  grate  bars  are 
7  ft.  lj  in.  long  by  If  in.  square,  and  are  rounded 
to  rest  and  turn  on  two  cast-iron  bearer  bars.  The 
kiln  front  is  a  cast-iron  plate  (5  ft.  6 J  in.  x 
3  ft.  3J  in.)  in  two  sections,  having  a  charging  door 


(71  in.  high  X  9|  in.  wide),  two  barring  doors 
(5|  in.  square),  and  a  fire-grate  door  (4  ft.  3  in.  x 
6  in.).  The  plate  is  cast  with  extension  pieces  at 
each  opening,  which  project  through  the  front  wall 
of  the  kiln  to  the  inner  face.  The  bottom  of  the 
charging  door  is  fixed  at  a  height  of  18§  in.  above 
the  grate  bars,  so  that  the  top  of  the  door  opening 
is  2  ft  4  in.  from  the  bars.  The  walls  of  the  kiln 
rise  vertically  to  this  height,  at  which  a  segmental 
arch,  having  a  rise  of  7  in.,  is  carried  from  back  to 
front.     The  ash-pit  below  the  bars  is  2  ft.  4  in.  deep, 


102  t 


PARKES.— THE    KYNOCH    OLEUM    PLANT. 


[April   16,   1922. 


and  attached  to  this  on  the  under  side  of  the  casing 
is  a  cast-iron  hopper  (3  ft.  4  in.  deep),  sealed  with 
a  tightfitting  door. 

The  side  walls  dividing  the  kilns  are  pierced  by 
an  opening  2  ft.  6  in.  wide  and  extending  from  the 
arch  downwards  to  a  depth  of  16i  in.  above  the 
firebars.  By  this  means  the  necessity  for  building 
a  separate  gas  flue  is  avoided,  as  the  top  portion  of 
each  kiln  serves  this  purpose. 

Each  kiln  is  charged  every  six  hours  with  2 — 2J 
cwt.  of  pyrites  lumps  from  2— 2J  in.  in  size. 

The  fires  are  kept  from  10  to  12  in.  in  depth,  and 
are  raked  every  three  hours,  but  never  barred  (ex- 
cept for  clinkers).  By  this  means  a  small  quantity 
(say,  10%  of  the  total  weight)  of  smalls  (3 — 2  in.) 
is  spread  over  the  top  of  the  lump  pyrites  and 
roasted  with  it.  The  "  smalls''  are  charged  to  the 
sides  and  back  of  the  kiln  (where  the  draught  is 
greater  than  in  the  centre),  and  then  raked  level. 
"When  distributed  through  the  ore  the  "  smalls  " 
tend  to  form  clinkers,  especially  with  hot  fires. 

The  fires  are  dropped  twice  in  24  hours,  but  it  is 
necessary  to  rake  them  every  three  hours,  so  that 
the  bed  of  ore  is  kept  perfectly  level  and  the  air  so 
evenly  distributed  that  no  clinkers  are  formed.  The 
burnt  pyrites  cinders  are  dropped  into  the  cast  iron 
hoppers  and  discharged  into  bogies  every  day. 

The  necessary  dried  gas  for  the  combustion  of  the 
pyrites  is  admitted  underneath  the  fire-bars,  and 
is  regulated  by  a  wing  damper  controlling  three 
fires.  The  composition  of  the  burner  gas  is  adjusted 
to  give  the  maximum  temperature  without  clinker- 
ing,  and  contains  usually  5'5 — 6%  of  sulphur 
dioxide  and  12 — 13%  of  oxygen.  With  clean 
shallow  fires  a  temperature  of  720°  C.  is  maintained 
in  the  kiln  without  difficulty. 

Mechanical  roaster  for  pyrites  smalls  and  two 
lump  pyrites  kilns. — This  furnace  is  built  up  of 
five  firebrick  hearths,  placed  horizontally  one  above 
another,  having  an  internal  diameter  of  10  ft.  2  in. 
and  a  total  hearth  area  of  385  sq.  ft.  A  cast  iron 
air-cooled  hollow  shaft  (19|  in.  diameter)  passing 
down  through  the  centre  of  the  shelf  is  pierced  at 
regular  intervals  by  ten  slotted  openings  into 
which  rabbling  arms  are  fitted.  Each  hearth  is 
furnished  with  two  cast-iron  hollow  air-cooled 
rabbling  arms.  One  arm  is  provided  with  inclined 
teeth  adapted  to  work  the  ore  alternately  inwards 
and  outwards  upon  successive  hearths,  and  the 
eecond  arm  serves  as  a  rake  to  turn  over  the  ore  in 
a  regular  manner.  In  this  way  the  ore  is  made  to 
traverse  the  five  shelves  in  turn,  passing  from  one 
to  another  by  means  of  suitable  openings.  Each 
shelf  is  provided  with  two  doors  (16  in.  wide  X 
10J  in.  high)  placed  diametrically  opposite,  fitted 
with  latches  and  screwbolts  and  jointed  with 
asbestos  packing.  The  weight  of  the  shaft  (3  tons) 
is  taken  upon  a  ball  bearing,  and  the  shaft  is  rotated 
from  the  bottom  at  the  rate  of  one  revolution  every 
2i  minutes  by  means  of  a  cast-iron  bevel  gear  anil 
pinion  driven  by  a  2-h.p.  motor. 

The  furnace  is  fed  automatically  by  means  of  a 
charging  hopper  and  ram,  the  stroke  of  which  is 
adjusted  to  give  the  required  amount  of  ore.  The 
cinders  are  discharged  from  the  bottom  shelf  into 
a.  cast-iron  hopper,  from  which  they  are  emptied 
into  bogies  every  day. 

The  furnace  burns  2 — 2|  tons  of  ore  per  24  hours. 
To  reduce  the  amount  of  dust  produced,  the  furnace 
is  fed  with  pea-sized  ore  (i — J  in.)  from  which  the 
fines  have  been  screened.  The  ore  commences  to 
burn  on  the  top  shelf,  but  attains  the  maximum 
heat  on  the  second  shelf,  and  then  gradually  cools 
down,  so  that  it  leaves  the  bottom  shelf  at  a  com- 
paratively low  temperature.  If  the  furnace  is 
allowed  to  become  too  hot  the  ore  fuses  and  forms 
a  hard  clinker  on  the  bed  of  the  hearth,  which, 
unless  removed,  shortens  the  life  of  the  arms. 


The  air  is  introduced  into  the  lowest  shelf  of  the 
furnace,  under  slight  pressure,  through  four  open- 
ings in  and  near  the  base  of  the  hollow  vertical 
shaft.  The  air  main  is  connected  with  the  top  of 
the  hollow  shaft  by  means  of  a  luted  collar,  sealed  in 
thick  cylinder  oil ;  the  air  passing  downwards  cools 
the  shaft  and  rabbling  arms  and  reduces  the  risk  of 
overheating  the  shaft  and  arms. 

The  gas  leaves  the  upper  shelf  of  the  furnace 
through  two  openings  (2  ft.  7i  in.  widex9in.  high), 
and  passes  over  two  lump  pyrites  kilns  built  back 
to  back  and  identical  in  design  with  those  described 
above. 

The  temperature  of  the  gas  leaving  the  furnace  is 
between  670°  and  680°  C.  when  the  plant  is  work- 
ing normally  with  a  gas  mixture  containing  5'5% 
S02  and  13%  oxygen.  This  temperature  is  too  low 
to  obtain  good  conversion  in  the  oxide  shaft,  and 
therefore  two  lump  pyrites  kilns  are  attached  to 
each  mechanical  furnace  to  raise  the  temperature 
of  the  gas. 

The  oxide  shaft. — Adjoining  the  lump  pyrites 
kilns  are  two  oxide  shafts  built  back  to  back.  Each 
is  a  brick  chamber  4  ft.  1J  in.  square  in  section,  and 
at  a  height  of  10  ft.  5  in.  from  the  bars  is  covered 
by  a  chequered  brick  arch,  which  separates  it  from 
the  fore-warmer  chamber.  The  wrought-iron  grate 
bars  are  5  ft.  1  in.  long  x  1|  in.  square,  and  are 
rounded  to  rest  and  turn  on  three  oast-iron  bearer 
bars.  The  level  of  the  oxide  shaft  is  10  in.  above 
that  of  the  kiln  bars,  and  the  brick  wall  dividing 
the  two  is  pierced  by  an  opening  21J  in.  high  x 
3  ft.  11J  in.  wide. 

The  ashpit  below  the  bars  is  3  ft.  2J  in.  deep,  and 
tapers  to  a  cast-iron  hopper  attached  to  the  under- 
side of  the  casing.  A  cast-iron  feed  hopper  (23f  in. 
high)  is  fitted  to  the  top  of  the  casing  and  extends 
down  the  fore-warmer  chamber  and  through  the 
chequered  arch  to  a  depth  of  7  ft.  6  in.  from  the 
casing. 

By  means  of  the  feed  hopper,  the  shaft  is  charged 
once  in  24  hours  with  burnt  pyrites  cinders,  freed 
from  dust  and  in  pieces  less  than  1  in.  in  size.  An 
equal  weight  of  burnt  ore  is  removed  from  the 
bottom  of  the  shaft  by  turning  the  grate  bars.  The 
quantity  of  burnt  ore  put  through  the  oxide  shafts 
is  determined  by  the  temperature  of  the  burner  gas 
and  by  the  amount  of  dust,  which  clogs  up  the 
spaces  between  the  lumps  and  chokes  the  passage 
of  the  gas.  A  mechanical  furnace,  even  when  burn- 
ing pea-sized  smalls,  gives  more  dust  than  lump 
pyrites  kilns,  and  therefore  on  this  unit  the  oxide 
shafts  are  shaken  more  vigorously.  The  larger  the 
quantity  of  burnt  ore  passing  through  the  shaft 
the  lower  the  temperature  and  the  less  risk  of 
chokes.  From  400  to  500  lb.  of  ore  is  a  normal 
figure  for  the  weight  put  through  per  24  hours. 

The  height  of  oxide  is  normally  between  8  and 
9  ft.,  and  is  measured  regularly  each  day  by  means 
of  a  measuring  rod  let  down  through  the  hopper. 
The  resistance  of  the  two  sides  of  the  oxide  shaft 
can  be  judged  by  opening  the  kiln  doors  on  each 
side  and  observing  the  blow-out. 

The  temperature  of  the  gas  entering  the  oxide 
shaft  varies  with  the  heat  of  the  kilns,  but  the  best 
results  are  obtained  when  the  temperature  is  be- 
tween 720°  and  730°  C,  which  gives  a  temperature 
of  700°— 720°  C.  in  the  middle  of  the  oxide  shaft. 
On  looking  down  through  the  hoppers  the  cinders 
appear  just  dull  red.  The  ore  is  put  into  the  shafts 
as  quickly  as  possible  after  it  has  been  discharged 
from  the  kilns,  and  i6  not  allowed  to  cool  down. 
Only  well  burnt  ore  is  used,  as  it  is  advantageous 
to  use  a  porous  ore,  which  offers  a  larger  contact 
surface  to  the  gases. 

The  maximum  heat  of  the  oxide  shaft  is  attained 
just  above  the  point  of  entrance  of  the  gas  from 
the  kilns,  and  the  conversion  of  the  gas  is  obtained 
probably  from  not  more  than  one-third  of  the  oxide. 


Vol.  XLI.,  No.  7.] 


PARKES.— THE    KYNOCH    OLEUM    PLANT. 


103  T 


Approximately  90%  of  the  arsenic  in  the  gas  is 
retained  by  the  oxide  when  the  latter  is  maintained 
at  a  temperature  of  700°  C,  which  is  the  optimum 
temperature  for  the  combination  of  iron  and 
arsenic. 

The  conversion  of  S03  into  SO,  by  the  oxide  shaft 
varies  between  35  and  40%. 

The  fore-warmer. — The  gas  leaving  the  oxide 
shafts  passes  through  the  chequered  brick  arch  into 
the  fore-warmer  chamber,  which  is  4  ft.  9  in.  high, 
6  ft.  3  in.  in  width,  and  10  ft.  2i  in.  in  breadth, 
divided  in  two  by  a  brick  partition  wall  3  ft.  5  in. 
high.  The  fore-warmer  consists  of  two  sets  of  six 
horizontal  pipes  10  in.  in  diameter,  12  ft.  6  in.  long, 
joined  together  by  double  bends.  The  gas  leaves 
the  oxide  shafts  at  a  temperature  of  500° — 550°  C, 
and,  after  passing  through  the  first  set  of  pipes, 
over  the  baffle  wall,  and  down  through  the  second 
set  of  pipes,  is  cooled  to  about  380°  C.  The  gas  is 
conveyed  from  the  fore-warmer  chamber  to  the 
coolers  through  a  14-in.  cast-iron  pipe  fitted  with 
tee  pipes  and  blank  flanges  to  facilitate  cleaning. 

Coolers. 

The  cooler  is  a  vertical  cylinder  of  |-in.  mild  steel 
plate,  3  ft.  7J-  in.  internal  diameter,  and  16  ft.  8  in. 
high  (internal).  It  is  fitted  with  four  3-ft.  diameter 
baffles  of  |-in.  mild  steel  plate,  spaced  3  ft.  1J  in. 
apart,  riveted  to  four  angles,  which  are  in  turn 
riveted  to  the  shell.  The  cooler  stands  on  a  cast- 
iron  base  15  in.  deep,  which  serves  to  catch  acid 
and  mud,  and  is  fitted  with  a  9-in.  cleaning  door 
and  a  4-in.  outlet  for  acid. 

Two  14-in.  cast-iron  mountings  are  riveted  to 
the  shell  with  centres  13  ft.  3  in.  apart,  the  lower 
one  being  3  ft.  above  the  bottom  of  the  cast-iron 
base.  The  cooler  has  a  dished  top  3  in.  deep,  with 
a  serrated  edge  to  distribute  the  water  evenly. 

The  hot  gas  from  the  fore-warmer  chamber  enters 
the  bottom  of  the  cooler,  and,  rising  upwards,  is 
mixed  thoroughly  by  the  action  of  the  baffle  plates. 
A  thin  film  of  water  runs  down  the  outside  of  the 
cooler,  and  in  this  way  the  temperature  of  the  gas 
is  reduced  from  350°  C.  to  80°  C.  A  small  reser- 
voir is  placed  close  to  each  cooler,  into  which  any 
condensed  acid  runs.  The  strength  of  this  acid  is 
an  excellent  guide  to  the  amount  of  moisture  drawn 
into  the  plant.  It  should  not  fall  below  98%,  and, 
with  good  working,  will  fume  slightly.  The  acid 
is  always  very  muddy,  on  account  of  the  iron  oxide 
present,  and  it  is  also  rich  in  arsenic,  so  that  it  is 
not  used  again  in  the  plant,  but,  after  settling,  is 
blown  to  the  nitric  acid  plants  for  use  with  weaker 
acid  in  decomposing  nitrate  of  soda.  The  coolers 
and  the  pipe  lines  leading  to  the  coolers  are  cleaned 
out  regularly  once  a  month,  as  they  are  liable  to 
become  choked  with  dust  carried  forward  from  the 
oxide  shafts.  If  moisture  is  being  drawn  into  the 
plant,  this  dust  is  wet  and  sticky,  and  the  life  of 
the  pipe  lines  and  coolers  will  be  reduced,  unless 
the  access  of  further  moisture  is  prevented. 

A  tvpical  analysis  of  the  mud  taken  from  a  cooler 
is:_  Fe2(SO<),  8P6%,  FeS04  7"4%,  H2SO,  2/7%, 
moisture  6T%,  insoluble  matter  1'9%,  arsenic  as 
AsaOs  03     . 

First  absorption  system. 

After  the  coolers,  the  gases  from  the  two  burner 
units  unite,  and  are  drawn  through  two  absorption 
towers  in  series.  Each  tower  is  a  cylindrical  shell 
of  i-in.  mild  steel  plate,  made  up  in  three  sections 
5  ft.  11  in.  in  diameter  and  8  ft.  high  riveted  to- 
gether. It  is  lined  with  special  curved  tiles  (2i  in. 
thick  x  G  in.  wide  x  11J  in.  long),  having  a  vertical 
and  horizontal  V  joint",  and  set  in  acid-resisting 
cement.  The  tower  packing  (30  tons  weight)  rests 
on  a  cast-iron  grid  3  ft.  from  the  base  of  the  tower. 
The  grid  is  made  in  two  halves,  and  is  supported 


on  a  cast-iron  tee,  resting  on  three  cast-iron  pillars 
across  the  diameter  of  the  tower,  and  on  four  angles 
riveted  to  the  shell.  A  14-in.  cast-iron  flanged  gas 
connexion  is  riveted    to    the    shell  at  a  height    of 

1  ft.  8  in.  from  the  base,  and  a  similar  mounting 
is  fitted  on  to  the  4-in.  mild  steel  cover  plate,  which 
is  fixed  on  to  the  top  of  the  tower  and  jointed  with 
asbestos  packing.  Two  2£-in.  cast-iron  mountings 
are  riveted  to  the  tower,  one  at  the  base  and  the 
other  on  the  cover  plate,  to  serve  as  connexions  for 
the  acid  mains.  At  a  depth  of  10  in.  below  the 
cover  there  is  a  cast-iron  acid  distributor,  resting 
on  three  steel  angles  riveted  to  the  sides  of  the 
tower. 

The  towers  are  packed  with  6-in.  lumps  of  quartz 
(99%  silica),  from  the  top  of  the  cast-iron  grid  to 
within  12  in.  of  the  acid  distributor.  The  last  12  in. 
is  filled  with  1 — 2-in.  lumps,  to  assist  in  the  effective 
distribution  of  the  acid.  By  means  of  an  acid 
pump,  50 — 60  tons  of  strong  sulphuric  acid  is  circu- 
lated every  day  through  each  tower  to  absorb  the 
35 — 40%  of  sulphuric  anhydride  converted  in  the 
oxide  shafts.  A  cast-iron  sight  box  is  bolted  to  the 
top  of  each  tower,  so  that  the  flow  of  acid  is 
observed  and  regulated.  The  strength  of  acid  flow- 
ing down  the  absorption  towers  is  manipulated  to 
suit  the  working  of  the  plant;  when  making  20% 
oleum,  the  strength  down  No.  1  tower  varies  be- 
tween 100  and  101  %  H3SO„  and  down  No.  2  tower 
between  97  and  98%  H2804.  The  gas  enters  No.  1 
tower  at  50° — 60°  C,  and  as  considerable  heat  is 
evolved  in  the  absorption  of  sulphuric  anhydride  by 
sulphuric  acid,  it  is  necessary  to  cool  the  acid  used 
for  absorbing  purposes  by  means  of  a  small  wrought- 
iron  coil  immersed  in  water. 

The  acid  runs  from  the  base  of  the  tower  through 
a  2J-in.  cast-iron  pipe  to  a  reservoir,  from  which  it 
is  elevated  to  the  top  of  the  tower  by  means  of  a 
centrifugal  acid  pump.  The  run-off  acid  pipes  are 
fitted  with  tee  pipes  and  blank  flanges  to  facilitate 
cleaning,  as  they  occasionally  become  choked  with 
iron  sulphate  mud. 

The  pyrites  dust  from  the  oxide  shafts  is  not 
trapped  completely  in  the  pipes  and  coolers,  and, 
after  the  plant  has  been  running  for  several  months, 
the  quartz  packing  of  the  first  absorption  tower  be- 
comes clogged  with  mud.  The  normal  resistance  of 
the  tower  to  the  passage,  of  the  gas  is  about  0"33  in., 
and  when  this  shows  a  gradual  rise  the  tower  is 
washed  down  with  water. 

The  gas  is  drawn  through  two  absorption  towers 
in  series,  by  means  of  a  fan,  which  is  placed  in  the 
centre  of  the  system,  so  that  the  sections  of  the 
plant  after  the  fan  are  under  pressure. 

Main  fan. 
The  fan  is  made  up  of  a  cast-iron  casing  bolted 
together  in  two  halves,   inside  which    a    cast-iron 
impeller  rotates  on  a  steel  shaft.     The  impeller  is 

2  ft.  li  in.  diameter  over  the  tips  of  the  blades, 
and  is  fitted  with  16  cast-iron  concave  blades  of 
special  shape,  7J  in.  wide.  The  shaft  is  connected 
by  a  flexible  coupling  with  a  6-h.p.  variable-speed 
motor,  running  at  a  maximum  speed  of  1650  r.p.m. 
The  fan  is  mounted  on  a  cast-iron  base  plate  and 
fitted  with  a  central  suction  on  one  side,  12  in. 
diameter,  and  a  lower  horizontal  discharge.  The 
impeller  is  replaced  at  intervals  on  account  of  the 
formation  of  scale,  but  after  cleaning  is  rebalanced 
and  used  again. 

The  fan  is  capable  of  drawing  12,000,000  cub.  ft. 
of  gas  per  week  with  a  suction  of  2  in.  before  the 
fan  and  a  pressure  of  4  in.  after  it. 

The  gas  leaving  the  second  absorption  tower  con- 
tains 6 — 8  grams  of  acid  mist  per  cubic  metre,  but 
the  high  speed  of  the  fan  and  the  centrifugal 
motion  imparted  to  the  gas  cause  the  bulk  of  the 
acid  mist  to  condense.      Approximately  two  tons 


104  T 


PARKES.— THE    KYNOCH    OLEUM    PLANT. 


[April   15,   1922. 


per  week  of  98%  acid  is  obtained  by  the  mechanical 
action  of  the  fan,  and  the  strength  of  the  acid  is  an 
excellent  guide  to  the  efficiency  of  the  absorption 
towers.  If  the  acid  begins  to  fume,  it  points  to  the 
presence  of  an  excess  of  sulphuric  anhydride  in  the 
gases  entering  the  fan.  The  acid  is  drained  from 
the  base  of  the  fan  casing  by  a  small  luted  pipe,  and 
runs  down  to  an  egg  and  is  blown  away  from  the 
plant. 

The  first  absorption  system  and  the  fan  are 
common  to  the  gas  from  two  burner  units.  After 
the  fan,  the  gas  divides  again  into  two  streams, 
which,  after  purification,  pass  through  the  platinum 
shaft  of  each  unit  in  parallel,  and  unite  again 
before  the  second  absorption  system. 

Purification. 

As  the  acid  mist  is  the  vehicle  by  which  arsenic 
is  carried  through  the  plant,  the  condensing  action 
of  the  fan  is  of  great  importance,  but  the  gas 
leaving  the  fan  still  contains  1 — 1/2  g.  of  mist  per 
cub.  m.,  so  that  it  is  necessary  to  purify  the  gas 
still  further,  by  means  of  acid  "  catchers  "  and 
"  filters,"  before  it  is  allowed  to  enter  the  platinum 
shaft. 

Acid  catchers. — Each  catcher  and  filter  is  a 
rectangular  tank  of  f-in.  mild  steel  plate  11  ft.  6  in. 
long  X  6  ft.  6  in.  wide  X  4  ft.  1  in.  in  height,  fitted 
with  a  grid  8  in.  from  the  bottom,  formed  with  mild 
steel  bars  1  in.  diameter,  spaced  2J  in.  apart,  and 
resting  on  cast-iron  bearers  across  the  tank.  An 
8-in.  cast-iron  mounting  is  riveted  to  the  top  of  the 
tank  at  one  end  and  an  8-in.  cast-iron  pipe  extends 
from  this  downwards  through  the  tank  and  grid  to 
within  3}  in.  from  the  bottom.  To  facilitate  pack- 
ing and  repacking,  the  tank  is  fitted  with  a  i-in. 
mild  steel  cover  plate  4  ft.  11  in.  x  3  ft.  9  in.,  bolted 
on  the  top  and  jointed  with  asbestos  rope.  A  cast- 
iron  mounting  is  riveted  to  the  base  of  the  tank, 
and  to  this  an  earthenware  TJ-pipe  is  attached. 

The  acid  catchers  are  packed  with  graded  pieces 
of  quartz  (99%  SiCh)  from  the  grid  to  within  6  in. 
of  the  top.  The  grid  is  covered  with  a  layer  of 
3 — 4-in.  lumps  of  quartz  to  form  a  bed  on  which  a 
4-in.  layer  is  placed,  graded  from  2J  in.  down  to  f  in. 
in  size.  The  main  bulk  of  the  filling  is  a  layer  18  in. 
in  height  placed  on  top  of  the  f-in.  size,  and  con- 
sisting of  quartz  graded  from  J  in.  to  tV  in.  in 
size.  Finally  a  3-in.  layer  of  very  fine  quartz,  /,-. 
to  5^  in.  in  size,  is  spread  over  the  main  filling. 
The  main  body  of  the  quartz  consists  of  13%  of 
pieces  retained  by  a  6-mesh  sieve;  32%  passing 
6-mesh  but  retained  by  8-mesh ;  33%  passing  8-mesh 
but  retained  by  10-mesh ;  and  22%  passing  10-mesh 
sieve,  and  the  fine  layer  on  top  of  11%  retained  bv 
a  12-mesh  sieve;  39%  12-mesh— 20-mesh ;  46% 
20-mesh — 30-mesh;  and  4%  passing  30-mesh  sieve. 

The  gas  is  divided  into  two  streams  and  forced 
in  parallel  through  four  of  the  catchers,  which  offer 
a  resistance  of  /t.  i*1-  to  the  passage  of  the  gas. 
The  gas  enters  the  tanks  through  the  8-in.  gas  main 
and  passes  upwards  through  the  superimposed 
layers  of  packing.  The  sharp  edges  of  the  fine 
pieces  of  quartz  cause  the  separation  of  the  acid 
mist,  and  act  as  a  mechanical  scrubber.  The  acid 
drains  to  the  base  of  the  tank  and  runs  away 
through  the  earthenware  lute  pipe,  which  is  con- 
nected by  a  trough  with  the  egg,  which  also  receives 
the  acid  from  the  main  fan.  The  strength  and 
quantity  of  the  drips  from  the  catchers  serve  as  an 
indication  of  the  amount  of  acid  mist  carried  for- 
ward from  the  fan.  A  normal  figure  for  the  amount 
of  mist  entering  the  catchers  is  1100 — 1200  mg.  per 
cub.  m.,  and  on  leaving  the  catchers  50 — 100  mg. 
The  strength  of  the  acid  condensed  in  the  catchers 
does  not  exceed  97 — 98%,  unless  there  is  an  excess 
of  sulphuric  anhydride  coming  forward  from  the 
absorption  towers. 


It  is  important  to  use  the  purest  quartz  in  filling 
the  catchers,  as  the  presence  of  metallic  impurities 
is  liable  to  cause  rapid  poisoning  of  the  platinum 
elements.  After  many  months'  use  the  catchers 
become  saturated  with  acid,  and  it  is  advisable  to 
empty  them  one  at  a  time.  The  quartz  is  washed 
free  from  any  foreign  matter  carried  over  from  the 
fan,  dried,  and  used  to  repack  the  catchers.  Tho 
catchers  are  packed  carefully,  so  that  each  offers 
the  same  resistance  to  the  passage  of  the  gas. 

Acid  filters. — To  purify  the  gas  further,  it  is 
forced  in  parallel  through  two  sets  of  three  filters, 
which  offer  a  resistance  of  J  in.  to  the  passage  of 
the  gas.  The  filters  are  identical  in  design  with 
the  catchers,  but  above  the  f-in.  layer  of  quartz 
they  are  packed  with  a  porous  granulated  basic 
blast-furnace  slag  rich  in  lime.  Each  filter  is 
packed  with  an  18-in.  layer  of  slag  graded  from 
J  in.  to  ts  in.,  and  finally  with  a  5-in.  layer  of 
slag  graded  to  pass  re-in.  mesh,  but  free  from 
dust.  The  main  body  of  the  filling  consists  of : 
2'4%  of  pieces  retained  by  a  6-mesh  sieve;  20%  6- 
mesh— 8-mesh;  25%  8-mesh— 12-mesh ;  41%  12- 
mesh — 20-mesh;  1L6%  passing  20-mesh  sieve.  A 
typical  analysis  of  the  slag  sand  is:  Fe203  5-6%, 
AL03  14-9%,  SiOa  29-2%,  CaO  47'3%,  MgO  0"9%, 
S  2-1%. 

The  gas  enters  the  tanks  through  the  8-in.  gas 
main  and  passes  upwards  through  the  super- 
imposed layers  of  slag  sand.  The  large  surface  of 
the  porous  slag  and  its  basic  character  make  it  a 
very  efficient  filter  for  the  removal  of  the  acid 
mist  carried  forward  from  the  catchers,  and  the  gas 
leaves  the  filter  containing  2 — 4  mg.  of  acid  mist 
per  cub.  m.  The  presence  of  a  small  quantity  of 
iron  sulphide  in  the  slag  is  advantageous,  as  it 
interacts  with  the  acid  mist  to  liberate  hydrogen 
sulphide  which  tends  to  precipitate  any  arsenic 
carried  forward  in  the  mist.  The  life  of  the  filters 
depends  on  the  amount  of  mist  carried  forward, 
but  after  six  to  eight  months  the  slag  sand  begins 
to  cake  together,  and  there  is  a  risk  of  the  gas  being 
short-circuited  through  the  filter.  If  the  amount 
of  mist  leaving  the  filters  begins  to  increase,  the 
filters  are  repacked  one  at  a  time. 

As  a  practical  guide  to  the  approximate  amount 
of  acid  mist  going  forward  to  the  platinum  shaft, 
the  gas  from  the  filters  is  passed  slowly  through  a 
calcium  chloride  tube  containing  a  plug  of  cotton 
wool.  If  no  blackening  of  the  cotton  wool  takes 
place  for  24  hours,  there  is  very  little  mist  escaping 
the  filters,  but  if  the  wool  shows  signs  of  blackening 
in  a  few  hours,  an  accurate  estimation  of  the  acid 
mist  is  then  carried  out.  A  definite  volume  of 
filtered  gas  is  passed  slowly  through  a  series  of 
weighed  calcium  chloride  U-tubes  carefully  packed 
with  pure  asbestos  fibre,  and  the  increase  of  weight 
recorded.  As  the  normal  amount  of  acid  mist  is 
only  2 — 4  mg.  per  cub.  m.,  it  is  necessary  to  pass  a 
large  volume  of  gas  (not  less  than  20  cub.  m.). 

The  gas  leaving  the  filters  is  now  freed  from  dust 
and  metallic  impurities,  and  contains  the  merest 
trace  of  acid  mist.  Before  it  is  introduced  into 
the  platinum  shaft,  however,  it  is  necessary  to  raise 
the  temperature  to  obtain  the  optimum  conditions 
for  conversion.  The  various  steps  by  which  this  is 
achieved  are  described  below. 

Heat  exchanger. 

The  heat  exchanger  is  a  cylinder  of  f-in.  mild 
steel  plate,  9  ft.  10  in.  long  inside  and  4  ft.  ljin. 
internal  diameter,  closed  at  each  end  by  a  J-in. 
plate  bolted  on  to  the  flange  of  the  casing  and 
jointed  with  asbestos  cord.  At  a  distance  of  9J  in. 
from  each  end  is  a  tube  plate  g  in.  thick,  flanged 
and  riveted  in  at  each  end,  bored  for  tubes  and 
fitted  with  104  lap-welded  steel  tubes,  each 
8  ft.  4|  in.  long  x  2|  in.  outside  diameter  x  0116  in. 


Vol.  XLI.,  Xo.  7.] 


PARKES.— THE    KYNOCH    OLEUM    PLANT. 


105  T 


thick.  The  tubes  are  swelled  at  one  end  and 
expanded  into  position  in  the  tube-plates  at  both 
ends.  The  outer  casing  is  pierced  by  two  12-in. 
gas  connexions,  spaced  6  ft.  7  in.  apart  on  opposite 
sides  of  the  casing,  and  at  the  centre  of  each  loose 
end-plate  a  12-in.  gas  connexion  is  welded. 

On  the  principle  of  "counter  currents"  advan- 
tage is  taken  of  the  heat  of  the  gas  leaving  the 
platinum  shaft  to  raise  the  temperature  of  the  cold 
gas  from  the  filters.  The  cold  gas  is  conveyed  by  a 
12-in.  cast-iron  gas  main  to  the  end-plate  of  the 
exchanger,  and  travels  through  a  nest  of  horizontal 
tubes,  which  have  a  surface  of  610  sq.  ft.,  and  are 
heated  by  the  hot  gas  from  the  platinum  shaft 
passing  round  them.  To  prevent  loss  of  heat  by 
radiation,  the  exchanger  is  encased  in  an  insu- 
lating jacket  of  asbestos.  In  this  way  the  tempera- 
ture of  the  gas  from  the  filters  is  raised  from  20° 
to  about  200°  C.  The  gas  is  conveyed  through  an 
insulated  pipe  to  the  forewarmer  (o/.  ante),  where 
it  is  raised  by  the  heat  of  the  gas  from  the  oxide 
shafts  to  a  temperature  of  300°  C.,  and  then  enters 
the  superheater. 

Superheater. 

The  superheater  chamber  is  a  brick  shaft  built 
adjacent  to  the  back  of  the  oxide  shafts,  3  ft.  8  in. 
wide  x  7  ft.  5J  in.  deep  x  12  ft.  3  in.  high,  and 
heated  by  means  of  a  coal  fire  on  a  grate  2  ft.  6  in. 
wide  x  2  ft.  deep.  The  superheater  consists  of 
two  groups  of  three  vertical  cast-iron  pipes  10  in. 
diameter  and  11  ft.  5  in.  long,  connected  together 
by  double  bends,  the  upper  joints  of  which  are 
outside  the  brick  arch.  The  lower  joints  are  pro- 
tected by  means  of  a  fire-bridge,  and  the  tee  pipe 
leading  from  the  superheater  into  the  platinum 
shaft  is  encased  in  brickwork. 

Approximately  three  tons  of  coal  is  burned  per 
week  on  each  superheater  fire,  and  the  hot  fire 
gases  travelling  round  the  superheater  pipes,  which 
have  a  heating  surface  of  approximately  40  sq.  ft., 
raise  the  temperature  of  the  gas  from  300°  C.  to 
the  temperature  required  for  optimum  working  of 
the  platinum  shaft.  A  thermo-couple  is  placed  in 
the  tee  pipe  leading  to  the  platinum  shaft,  and  an 
accurate  record  of  the  temperature  of  the  gas  is 
obtained  by  means  of  an  automatic  recorder. 

A  test  is  made  at  regular  intervals  of  the  per- 
centage of  sulphur  dioxide  in  the  flues  of  the  super- 
heater by  the  "  bellows  "  method  of  sampling.  The 
ceal  fire  is  withdrawn  half  an  hour  before  the  test 
is  made,  and  if  the  figure  exceeds  3  grains  per 
cub.  ft.  it  indicates  that  one  of  the  lower  joints 
of  the  superheater  pipe  is  leaking.  The  top  joints 
are  outside  the  brick  arch,  and  can  be  examined 
separately  by  the  removal  of  the  cover  plate. 

To  determine  which  joint  is  leaking  inside  the 
superheater  chamber,  and  to  repair  it,  it  is  neces- 
sary to  shut  down  the  plant  and  break  open  the 
wicket  wall  at  the  back  of  the  superheater  chamber. 
In  case  of  emergency,  where  it  is  necessary  to  avoid 
closing  the  unit,  the  gas  after  filtering  is  forwarded 
temporarily  through  the  platinum  shaft  of  the  other 
unit. 

Platinum  shaft. 

The  shaft  is  composed  of  five  cast-iron  sections, 
with  machined  joints,  and  bolted  together  with 
I  in.  pure  asbestos  jointing,  and  is  built  in  the 
middle  of  the  two  oxide  shafts.  The  lower  section 
is  49  in.  from  back  to  front  x  22i  in.  wide  X  49  in. 
high,  and  contains  an  oval  inlet  at  the  base  9  in.  x 
22£  in.  The  three  middle  sections,  each  11|  in. 
deep,  are  mounted  one  above  the  other,  and  form 
the  chambers  in  which  the  platinum  elements  are 
placed.  The  top  section  is  prism-shaped  and  has  a 
12  in.  gas  outlet  at  one  end.  The  sections  are  bolted 
to  a  heavy  cast-iron  face-plate  having  three  door 
mountings  cast  on.     The  door  openings  are  27J  in. 


X  111  in-.  and  the  doors  are  fitted  with  latches  and 
screw  bolts,  and  made  gas-tight  with  asbestos 
jointings.  The  platinum  elements  are  introduced 
through  the  door  openings  into  the  three  middle 
sections,  which  form  chambers  1  ft.  10£  in.  wide  X 
4  ft.  1J  in.  broad,  in  which  the  elements  are  heated 
by  the  gas.  A  platinum  element  is  composed  of 
two  cast-iron  frames  (4  ft.  4J  in.  long  x  2  ft.  1J  in. 
wide  with  a  machined  face  1J  in.  broad  x  2f  in. 
deep)  bolted  together,  and  containing  a  set  of  ten 
platinised  asbestos  nets  (54J  in.  x26  in.  woven  with 
J  in.  pure  asbestos  cord  in  a  mesh  with  J-in.  square 
spaces),  each  supported  on  an  iron  wire  gauze  mat 
of  |-in.  mesh  and  14  I.W.G.,  and  separated  from 
each  other  by  a  mild  steel  frame  plate  (4  ft.  4J  in. 
long  x  2  ft.  1J  in.  wide,  with  a  machined  face  11  in. 
broad  x  ■/%  in.  deep). 

The  gas  from  the  superheater  enters  the  lower 
section  of  the  shaft  through  the  conical  opening, 
and  is  forced  through  the  three  platinum  elements, 
each  containing  10  nets.  The  platinum  elements 
are  pushed  hard  against  the  back  of  the  shaft,  and 
as  the  machined  faces  make  gas-tight  joints,  there 
is  no  short-circuiting  of  the  gas,  which  is  made  to 
pass  through  each  of  the  elements  in  turn.  The  gas 
enters  the  shaft  at  a  temperature  of  450° — 460°  C, 
which  is  the  optimum  temperature  for  the  working 
of  the  platinum  catalyst. 

The  reaction  S02^S03  being  exothermic  the  gas 
is  heated  in  the  shaft,  and  leaves  at  a  temperature 
of  500°  C.  The  temperature  of  the  gas  entering  and 
leaving  the  platinum  shaft  is  checked  by  a  recording 
pyrometer. 

The  velocity  of  the  reaction  rises  with  increase  of 
temperature,  and  as  the  platinum  elements  become 
poisoned  slowly  by  impurities,  chiefly  arsenic, 
carried  forward  into  the  shaft,  the  temperature  of 
the  gas  in  the  superheater  is  increased  gradually. 

The  conversion  of  SO.  into  S03  in  the  shaft  is 
recorded  regularly,  and  as  soon  as  this  begins  to 
fall  and  the  temperature  of  the  superheater  has 
been  increased  by  degrees  to  a  maximum  of  500°  C. 
a  new  platinum  element  is  placed  in  the  shaft.  It 
is  an  advantage  to  place  the  new  element  in  the  top 
shelf,  by  removing  the  bottom  element  and  lowering 
the  other  two,  as,  in  this  way,  the  poorest  gas  meets 
the  richest  platinum  catalyst. 

From  the  law  of  mass  action,  it  follows  that  in 
the  oxidation  of  sulphur  dioxide  the  conversion  rises 
with  an  increase  in  the  oxygen  content  of  the  gas, 
and  this  is  borne  out  in  practice,  as  it  is  found  that 
if  the  S02  content  in  the  gases  going  to  the  platinum 
shaft  rises  above  3%,  there  is  a  fall  in  the  conver- 
sion. As  an  excess  of  air  through  the  kilns  and 
oxide  shafts  has  a  tendency  to  cool  them  and  so 
reduce  the  temperature,  and  therefore  the  conver- 
sion, the  necessary  air  for  diluting  the  gas  going 
to  the  platinum  shaft  is  obtained  by  means  of  a 
by-pass,  which  is  fixed  into  the  gas  main  from  the 
coolers  to  the  first  absorption  system.  In  this  way 
the  composition  of  the  gas  can  be  regulated  to 
obtain  the  best  results  in  the  platinum  shaft. 

Advantage  is  taken  of  the  heat  of  the  oxide  shafts 
to  avoid  separate  heating  for  the  platinum  shaft 
by  building  it  into  the  dividing  wall  between  the 
two  shafts,  so  that  it  is  completely  encased  in  brick- 
work, except  for  the  cast-iron  face-plate,  which  is 
exposed.  By  this  means  loss  of  heat  by  radiation  is 
minimised,  and  the  shaft  is  maintained  at  a  high 
temperature  by  the  heat  conducted  through  the 
brickwork  from  the  oxide  shafts.  The  platinum 
shaft  is  erected  with  great  care,  as,  in  case  of  a 
leak,  there  is  a  tendency  for  the  burner  gas  con- 
taining arsenic  and  other  impurities  to  diffuse  into 
the  shaft  owing  to  its  close  proximity  to  the  burners 
and  oxide  shafts.  When  working  normally  the  shaft 
is  under  a  pressure  of  1|  in.  w.g.,  but  if  it  is 
necessary  to  close  down  the  main  fan  for  any  reason 
(such  as  repairs  to  pumps),  it  is  essential  that  the 


106  T 


PARKES.— THE    KYNOCH    OLEUM   PLANT. 


[April   15,   1922. 


air  fan  be  closed  down  first,  as  this  gives  a  pressure 
in  the  oxide  shafts  sufficient  to  force  gas  into  the 
platinum  shaft.  After  the  plant  has  been  working 
for  some  years,  and  especially  if  it  has  been  shut 
down  for  several  months  and  then  re-started,  the 
asbestos  jointing  perishes  and  the  joints  open.  It 
is  often  possible  to  make  the  joints  good  again  with 
finely  powdered  obsidianite  and  silicate  of  soda, 
and  so  avoid  the  costly  rebuilding  of  the  shaft. 

Cooler  and  towers  of  second  absorption  system. 

The  gas  leaving  the  platinum  shaft  receives  a 
preliminary  cooling  by  imparting  its  heat  to  the 
cold  gas  in  the  beat  exchanger  (cf.  ante)  and  is 
cooled  from  500°  to  320°  C.  It  then  receives  a  final 
cooling  in  a  cooler  identical  in  design  with  that 
already  described.  The  gases  from  the  two  halves 
of  the  plant  unite  in  front  of  the  cooler,  which 
reduces  their  temperature  to  50°  C.  The  gas  is 
now  forced  through  the  second  absorption  system, 
which  consists  of  three  towers  in  series  identical  in 
design  with  those  described  above.  By  this  means  the 
sulphuric  anhydride  produced  in  the  platinum  shaft 
is  absorbed,  and  the  residual  gas  escapes  from  the 
top  of  the  last  tower  into  the  air.  If  the  absorption 
towers  are  working  normally,  the  exit  gas  is  free 
from  sulphuric  anhydride  and  contains  from  4 — 6 
grains  per  cub.  ft.  of  S02  unconverted  in  the  plant. 
The  presence  of  SO,  in  the  escape  is  detected  readily 
by  the  appearance  of  whitish  fumes  at  the  exit. 

By  means  of  a  large  aspirator,  a  sample  is  drawn 
continually  through  a  wash-bottle  containing 
500  c.c.  of  a  solution  of  sodium  hydroxide  of  known 
alkalinity  (1  c.c.  =  l  grain  SO,),  and  the  oxygen  is 
determined  in  the  residual  gas  by  means  of  an  Orsat 
apparatus. 

As  a  practical  guide  to  the  working  of  the  plant, 
it  is  of  great  advantage  to  make  a  series  of  "  spot  " 
tests  by  means  of  the  "  bellows  "  method. 

The  oxygen  in  the  exit  gas  varies  between  11  and 
12%,  and  the  acidity  between  4  and  6  grains, 
according  to  the  condition  of  the  plant. 

Acid-circulating    system. 

From  Fig.  2  it  will  be  observed  that  the  acid- 
circulating  system  is  arranged  at  the  foot  of  the 
five  absorption  towers,  and  consists  of. four  acid 
pumps,  four  reservoirs,  and  the  necessary  pipe  lines. 

The  casing  of  the  Kynoch  centrifugal  acid  pump 
is  vertically  divided  to  form  two  castings,  which 
are  bolted  together  and  jointed  with  asbestos  mill- 
board. The  outer  half  has  a  central  flange  for 
connexion  with  the  suction  pipe,  while  the  inner 
half  is  provided  with  a  stuffing  box  and  gland, 
through  which  the  spindle  passes.  A  cast-iron 
impeller  of  special  design  rotates  on  a  steel  shaft 
inside  the  casing.  The  glands  of  the  pumps  are 
packed  at  regular  intervals  with  J-in.  blue  asbestos 
cord,  which  has  been  soaked  thoroughly  in  ceresin 
wax.  The  pump  has  an  upper  vertioal  discharge  of 
1{  in.  bore. 

The  pumps  are  numbered  from  1  to  4,  and  are  fed 
from  a  reservoir  attached  to  each  pump.  The  reser- 
voir is  a  circular  tank  of  |-in.  mild  steel  plate,  6  ft. 
diameter  and  2  ft.  11  in.  high,  covered  by  a  }-in. 
mild  steel  plate.  The  cover  is  fitted  with  two  cast- 
iron  mountings,  one  for  the  lute  box  to  receive  the 
acid  from  the  absorption  towers,  and  the  second  to 
take  an  earthenware  plug  and  seating.  A  gauge 
glass  is  attached  to  the  reservoir  4^  in.  from  the 
bottom,  and  the  acid  leaves  the  reservoir  by  a  2i-in. 
bore  outlet  from  the  bottom.  A  valve  controls  the 
flow  of  acid  from  the  reservoir  to  the  pump. 

The  feed  acid  for  the  plant  (94—96%  H2S04)  runs 
from  the  base  of  a  mild  steel  tank  5  ft.  diameter  by 
5  ft.  high,  into  the  first  reservoir,  and  is  lifted  by 
No.  1  pump  above  the  level  of  the  top  of  the  absorp- 
tion towers,  and  distributed  through  a  small  cast- 
iron  box  to  the  last  tower  of  both  absorption  systems. 


The  acid  is  strengthened  by  the  absorption  of  a 
small  quantity  of  sulphuric  anhydride,  not  removed 
by  the  other  towers,  and  is  returned  to  No.  1  reser- 
voir through  2j-in.  cast-iron  pipes  attached  to  the 
base  of  the  absorption  towers.  The  strength  of  this 
reservoir  is  maintained  between  97  and  98% 
H2SOv  and  as  the  bulk  of  acid  increases,  a  small 
quantity  is  forwarded  continuously  to  the  second 
reservoir,  from  which  it  is  elevated  to  the  top  of  the 
first  tower  of  the  first  absorption  system.  The  acid 
is  strengthened  by  the  absorption  of  the  sulphuric 
anhydride  contained  in  the  gas  from  the  oxide 
shafts,  and  the  bulk  of  the  acid  returns  to  No.  2 
reservoir,  which  is  maintained  at  a  strength  of 
100 — 101%  HjSO,.  A  small  run  of  acid  is  forwarded 
to  No.  3  reservoir,  from  which  it  is  raised  by  No.  3 
pump  and  fed  into  the  top  of  the  second  tower  of 
the  second  absorption  system.  Most  of  the  acid 
returns  to  No.  3  reservoir,  which  is  maintained  at 
a  strength  of  102 — 103%  H2SO,,  but  a  small  amount 
runs  forward  to  No.  4  reservoir,  from  which  it  is 
pumped  by  No.  4  pump  to  the  first  tower  of  the 
second  absorption  system.  In  this  tower  the  acid 
removes  the  bulk  of  the  sulphuric  anhydride  made 
in  the  platinum  shaft  from  the  gas,  and  is 
strengthened  up  to  104—105%  H2S04.  Most  of  the 
acid  returns  to  No.  4  reservoir,  but  a  portion  runs 
forward  to  the  oleum  storage  tanks. 

The  strength  of  the  acid  in  the  reservoirs  and  of 
the  final  acid  run  off  from  the  plant  is  determined 
by  the  "  heat  rise  "  method,  which  was  developed  in 
Messrs.  Kynoch's  factory  in  Natal  (1911-12)  from  a 
paper  by  Howard  (J.,  1910,  p.  3). 

Output  of  plant. 

Two  units  of  six  kilns  will  burn  40  tons  per  week 
of  pyrites  (47'5%  total  S),  and  leave  approximately 
5%  (total  sulphur)  in  the  burnt  ore.  Assuming  a 
total  efficiency  of  85%  on  the  sulphur  weighed  into 
the  plant,  this  gives  40'375  tons  SO,  available  for 
the  production  of  oleum.  In  practice  there  is  always 
sufficient  moisture  in  the  plant  to  reduce  the 
strength  to  85%  SO,  and  15%  H2SO,  as  the  water 
combines  with  part  of  the  SO,.  Hence  40"375  tons 
SO,  will  combine  with  1-146  tons  H20  to  give  41521 
tons  of  85%  SO,,  which  is  absorbed  bv  607  tons  of 
945%  H2SO,  to  give  102-2  tons  of  20%  oleum.  If 
water  is  used  as  an  absorbing  agent,  the  output  is 
47-36  tons  of  20%  oleum. 

The  ore  burned  on  the  plant  is  crude  non-cupreous 
Pena  pyrites  containing  47 — 48%  of  sulphur,  and 
low  in  arsenic.  The  following  is  a  typical  analysis 
of  the  more  important  impurities  in  the  ore  which 
act  as  poisons  for  the  platinum  catalyst :  — As  0'07%  , 
Sb  0-05%,  F_0-10%,  Zn  1-60%. 

Crude  pyrites  is  preferable  to  the  washed  lumps, 
as  the  latter  contain  a  small  percentage  of  iron 
sulphate  which  gives  off  water  of  crystallisation 
on  burning,  and  so  reduces  slightly  the  output  of 
the  plant.  For  the  same  reason  the  ore  is  dried 
before  charging  on  the  kilns. 

Minute  traces  of  arsenic  are  capable  of  rendering 
the  platinum  elements  inactive.  Acid  mist,  which 
is  extremely  difficult  to  condense,  is  the  chief  means 
by  which  arsenic  is  carried  through  to  the  platinum 
contact  mass,  but  the  formation  of  traces  of  arsine 
by  the  action  of  sulphuric  acid  on  the  iron  pipes  is 
also  very  probable.  The  other  impurities  in  the 
gas  (iron,  antimony,  and  zinc)  have  not  the  same 
chemical  action  as  arsenic,  but  are  injurious  on 
accotint  of  the  mechanical  effect  of  covering  and 
blocking  the  platinum. 

Method   of  platinising  asbestos  mats. 

The  following  solutions  are  required  for  the 
purpose,  and  should  be  made  up  in  bulk: — Pure 
sodium  carbonate,  4  oz.  per  litre;  pure  sodium 
formate,  1  lb.  per  litre;  platinic  chloride,  10%  solu- 
tion.      Approximately  40  litres  of   pure  distilled 


Vol.  XLI.,  No.  7.]     BUTLER  AND  OTHERS.— AN  ADJUSTABLE  WATER-SEALED  VALVE.        107  t 


water  is  poured  into  an  enamelled  steam  bath,  and 
250  c.c.  of  sodium  carbonate  solution  and  250  c.c.  of 
sodium  formate  solution  are  added.  The  asbestos 
mat  is  well  brushed  and  shaken  to  remove  loose 
fibres,  and  is  then  doubled  in  two  and  immersed  in 
the  liquid,  which  has  been  heated  to  boiling  point. 
After  vigorous  boiling  has  been  maintained  tor  a 
few  minutes,  400  c.c.  of  the  platinum  chloride  solu- 
tion, previously  made  alkaline  with  sodium  car- 
bonate, is  poured  in  slowly.  The  mat  is  agitated 
in  the  bath  to  ensure  even  deposition  of  the  plati- 
num. As  soon  as  the  solution  clears  and  all  the 
platinum  has  been  deposited,  the  mat  is  turned 
inside  out,  and  a  further  200  c.c.  of  platinic 
chloride  solution  is  added.  The  solution  is  main- 
tained at  boiling  point  until  all  the  platinum  is 
deposited.  The  mat  is  then  removed,  washed  with 
water,  and  then  with  5%  sulphuric  acid  at 
35° — 40°  C,  followed  by  two  hot  water  washes,  after 
which  it  is  allowed  to  drain  and  dried  by  a  current 
of  hot  air. 

Ten  mats  are  mounted  together  in  the  form  of 
an  "  element  "  and  baked  in  the  top  shelf  of  the 
platinum  shaft  bos  for  a  period  of  six  hours. 
When  cool  enough  to  be  handled,  the  mats  are  dis- 
mantled and  placed  on  wooden  trays  and  soaked  in 
water  until  they  are  quite  pliable;  this  takes  from 
two  to  three  hours.  As  soon  as  the  mats  can  be 
handled  safely  they  are  treated  with  pure  25% 
hydrochloric  acid  at  60°— 70°  C.  for  12  hours, 
repeatedly  washed  in  hot  water  until  free  from  acid, 
and  dried  in  a  current  of  hot  air.  They  are  then 
ready  for  final  mounting  as  a  platinum  "  element  " 
for  use  in  the  platinum  shaft. 

It  is  essential  to  use  pure  distilled  water  for  the 
platinising  process,  as  the  slightest  trace  of  salts 
liable  to  give  a  precipitate  with  sodium  carbonate, 
adversely  affects  the  decomposition  and  adherence 
of  the  black  platinum  on  the  asbestos  fibre. 

The  life  of  the  platinum  elements  in  the  shaft 
depends  entirely  on  their  rate  of  poisoning  by 
impurities  such  as  arsenic,  but  under  good  con- 
ditions they  last  at  least  12  months.  As  soon  as 
the  mats  become  "  sluggish  "  they  are  taken  out  of 
the  shaft  and  treated  with  a  hot  pure  2%  hydro- 
chloric acid  solution,  as  described  above,  washed 
free  from  acid  and  dried.  In  this  way  the  arsenic 
in  the  mats  is  removed  and  the  platinum  becomes 
active  again.  This  treatment  is  renewed  several 
times,  but  there  is  a  small  loss  of  platinum  each 
time  in  handling  and  the  asbestos  fibre  finally  be- 
comes so  weak  and  ragged  that  the  mats  are  useless 
for  mounting.  The  platinum  still  remaining  in  the 
mats  is  recovered  by  suitable  means. 

The  mechanical  strength  of  the  fibre  is  an  im- 
portant factor  in  the  life  of  the  asbestos  mat,  which 
is  made  from  an  asbestos  containing  approximately 
43%  of  magnesium  oxide  (chrysotile  asbestos).  If 
the  mat  is  heated  in  the  platinum  shaft  after 
platinising  without  any  acid  treatment,  it  becomes, 
so*  brittle  that  it  is  almost  impossible  to  handle, 
owing  to  the  elimination  of  water  of  crystallisation 
from  magnesium  silicate,  and  also  to  the  formation 
of  magnesium  sulphate  in  the  shaft.  By  treatment 
with  weak  sulphuric  acid  before  baking,  magnesium 
sulphate  is  formed  and  is  washed  out  by  the  hot 
water  washes.  The  following  is  a  typical  analysis 
of  a  mat  after  treatment :  — Si02  610%,  Al2Os  and 
FeaO,  75%,  MgO  17-5%,  loss  between  100°  C.  and 
bright  red  heat  13'67%.  The  reduction  in  the 
magnesium  content  renders  the  mat  much  more 
pliable.  Attempts  to  treat  the  mat  before  platinis- 
ing were  abandoned  on  account  of  the  inferior  and 
non-adherent  nature  of  the  deposit  obtained.  Each 
acid  treatment  reduces  still  further  the  percentage 
of  magnesium,  until  finally  the  mat  becomes  very 
fragile.  The  analysis  of  a  mat  after  three  years' 
use  is  as  follows :  — Si02  78'75%,  A120S  and  Fe„03 


8-0%,  MgO  1'0%,  loss  between  100°  C.  and  bright 
red  heat  11"2%.  There  is  thus  a  direct  relationship 
between  the  life  of  an  asbestos  mat  and  its  chemical 
composition. 

The  author  is  indebted  to  Messrs.  Kynoch,  Ltd., 
Witton,  Birmingham,  and  particularly  to  Mr.  A.  T. 
Cocking,  late  Technical  Director,  for  permission  to 
publish  this  paper,  which  was  written  in  1918  and 
printed  for  private  circulation  in  the  "Kynoch 
Journal  of  Technical  Research  "  in  January,  1919. 

The  author  is  indebted  also  to  Mr.  E.  G.  Coleman 
for  checking  the  engineering  detail  of  the  paper. 


AN    ADJUSTABLE    WATER-SEALED    VALVE 

FOR    USE    IN    VOLATILE    SOLVENT 

RECOVERY. 

BY    GERALD     SNOWDEN    BUTLER,    HORACE    BARRATT 
DTJNNICLIFF,   AND  JAMES  COCKRAN  BALM. 

The  valve  to  be  described  was  designed  for  use 
in  the  recovery  of  acetone  used  in  cordite  manu- 
facture, and  experiments  to  test  its  efficiency  were 
carried  out  when  the  apparatus  was  connected  to 
the  acetone  recovery  plant  at  the  Cordite  Factory, 
Aruvankadu.  The  acetone-laden  air  is  drawn  by  a 
fan  through  the  pipes  leading  to  towers  in  which 
the  acetone  is  absorbed  by  a  suitable  solvent.  The 
nitroglycerin,  together  with  much  of  the  water 
vapour,  condenses  in  the  pipe  system  immediately 
outside  the  stove. 

In  order  to  obtain  optimum  conditions  for 
recovery  in  the  absorption  towers,  it  is  necessary 
to  regulate  the  concentration  of  acetone  in  the  air 
passing  from  the  stove.  This  is  done  by  adjusting 
the  rate  of  suction  by  means  of  valves  placed  on  the 
outlet  pipe  of  each  of  the  compartments  into  which 
the  stove  is  divided.  Valves  in  common  use  are 
unsafe  for  this  purpose  because  they  involve  moving 
metal  parts  which,  in  contact  with  the  condensed 
nitroglycerin,  may  give  rise  to  an  explosion. 

The  valve  to  be  described  was  designed  to 
eliminate  this  fault  and  further  to  collect  the 
valuable  solution  of  acetone  which  results  from  the 
condensation  of  water  vapour  in  the  recovery  pipe 
system.  It  avoids  the  use  of  any  moving  metal  part 
which  can  come  into  contact  with  any  part  of  the 
valve  which  might  contain  nitroglycerin.  Any 
nitroglycerin  which  condenses  in  the  valve  may  be 
drawn  oft'  safely  without  stopping  the  action  of  the 
valve.  The  rate  of  suction  is  controlled  by  an 
adjustable  water  surface  and  a  permanently  fixed 
metal  baffle.  Thus,  all  air  sucked  through  the 
valve  passes  over  a  layer  of  water.  Two  con- 
tingencies, either  of  which  will  upset  the  balance  of 
suction  in  the  system,  have  to  be  arranged  for:  — 
(1)  The  condensation  of  water  in  the  early  stages  of 
drying.  This  would  tend  to  close  the  valve.  (2)  The 
evaporation  of  water  in  the  later  stages  of  drying. 
This  would  open  the  valve. 

Provision  has  to  be  made  for  collecting  the 
aqueous  solution  of  acetone  containing  about  15 — 
16%  of  acetone,  which  condenses,  and  also  any  nitro- 
glycerin which  happens  to  condense  in  the  pipe  and 
get  to  the  valve.  Condensation  is  counterbalanced 
by  a  constant-level  overflow  arrangement  and 
evaporation  is  compensated  by  a  drip  water  feed 
controlled  by  the  same  overflow  arrangement.  The 
accompanying  diagram  shows  the  details  of  the 
apparatus.  It  will  be  observed  that  the  baffle  ex- 
tends to  the  mark  on  the  scale  corresponding  to 
zero,  but  that  the  control,  G,  which  adjusts  the 
width  of  the  space  between  the  water  level  and  the 
baffle  can  be  raised  above  that  point  by  the  screw, 
H,  J.  This  is  so  arranged  because  it  is  found  that 
the  air  suction  drags  air  past  the  baffle  even  when  it 
is  partly  immersed.  Hence,  in  order  completely  to 
close  the  valve,  the  control,  G,  must  be  raised  so 


108  T 


BUTLER  AND  OTHERS.— AN  ADJUSTABLE  WATER-SEALED  VALVE.     [April  15, 1922. 


that  the  baffle  is  immersed  to  a  degree  depending  on 
the  rate  of  suction  operated  by  the  fan  at  the  end 
of  the  solvent  recovery  plant.  Any  nitroglycerin  is 
run  off  by  means  of  a  rubber  pipe  attached  to  A. 
B  is  a  dummy  on  to  which  the  pipe  is  attached.  G 
is  made  of  zinc  and  the  gauge  glass  is  provided  to 
see  that  the  level  of  the  liquid  in  the  valvp  eorre- 
sponds  with  the  overflow  level  indicated  by  the 
pointer,  P,  on  the  scale,  Q.  The  control,  G,  is  con- 
nected with  the  main  part  of  the  valve  so  that  no 
nitroglycerin  can  enter  the  reservoir  provided  for 
the  water-acetone  condensate.  The  reservoir  is  con- 
nected with  G  by  a  rubber  tube  attached  to  L.    The 


evaporation.  The  results  of  the  experiments  were 
quite  satisfactory.  The  oil  does  not  take  up  the  nitro- 
glycerin. The  latter  sinks  to  the  bottom  of  the  valve 
as  it  did  when  the  water  was  alone.  The  condensed 
water  also  sinks  and  evaporation  is  practically  com- 
pletely stopped.  Finally  it  was  decided  that  the 
valve  should  be  controlled  by  water  covered  with  a 
layer  of  oil  about  a  quarter  of  an  inch  thick  and 
furnished  with  a  direct  water  6upply  in  the  position 
shown.  Several  variations  in  the  pattern  of  the 
valve  were  tried  and  finally  a  design  less  expensive 
than  the  one  illustrated  was  adopted.  It  was  felt 
that,  for  the  particular  purpose  for  which  the  valve 


tintn'ifi   rt'si 


-    — ( 


MDJUSriHO    SCHEH 


KL'BBLI   ruse 


SIDE    ELEVATION  - 


END  ELEVATION    ATM.N. 


reservoir  is  closed  and  the  air  expelled  by  the  entry 
of  the  condensate  which  passes  out  through  a  water- 
sealed   "  breather." 

Two  methods  of  making  good  the  loss  of  water  due 
to  evaporation  were  considered :  (1)  To  arrange  for 
a,  permanent  drip  water  supply  always  working  at 
a  rate  just  greater  than  the  maximum  rate  of 
evaporation.  (2)  To  prevent  the  evaporation  tak- 
ing place.  Finally  a  combination  of  both  methods 
was  adopted. 

Experiments  were  conducted  to  discover  if  a  layer 
of  oil  (transformer  oil  was  actually  used)  floated  on 
the    surface    of    the    water    layer    would    prevent 


was  designed,  it  would  be  sufficient  if  the  valve 
could  be  set  "  shut,"  or  J,  J,  or  J  or  "  full  "  open. 
In  this  case  the  expense  of  the  screw  control  could 
be  dispensed  with  and  five  small  slots  fastened  to 
the  wall  of  the  valve  at  the  levels  marked  (from  the 
bottom)  4,  3,  2,  1  and  the  upper  2  (for  "  shut  "). 
The  control  was  also  provided  with  a  hook  by  which 
it  was  hung  into  the  slot  desired. 

This  paper  is  published  with  the  permission  of  the 
Director-General  of  Ordnance  in  India. 


The  Cordite  Factory, 
Aruvankadu. 


Government  College, 
Lahore. 


Vol.  XLI..  No.  8.1 


TRANSACTIONS 


[Apul29,  1922. 


Newcastle  Section. 


Meeting  held  at  Armstrong  College  on  March  1, 
1922. 


DR.    J.    H.    PATER80N    IN    THE    CHAIR. 


THE  COMPOSITION  OF  GOLDEN   SULPHIDE 
OF     ANTIMONY     USED     IN     THE     RUBBER 
INDUSTRY. 

BY  A.   SHORT,  M.SC,  F.I.C.,  AND  F.   H.   SHARPE. 

The  analytical  study  of  golden  sulphide  of  anti- 
mony, generally  called  antimony  pentasulphide, 
and  the  question  of  the  composition  of  the  com- 
mercial product,  have  been  the  subject  of  much 
investigation.  It  is  fairly  generally  assumed  that 
it  is  substantially  composed  of  antimony  penta- 
sulphide. It  is  associated  in  most  cases  with  other 
materials,  such  as  co-precipitated  sulphur  and  also 
co-precipitated  calcium  sulphate.  It  has  also  been 
stated  that  the  solvents  which  are  generally  used 
in  determining  the  free  sulphur  content.,  e.g., 
carbon  bisulphide,  decompose  the  pentasulphide, 
leaving  more  or  less  antimony  trisulphide  in  the 
residue.  <Y  general  resume  on  golden  sulphide  has 
already  been  given  in  a  recent  paper  by  Luff  and 
Porritt1  in  which  this  question  is  fully  discussed. 
Otto2  as  far  back  as  1863  stated  that  the  pentasul- 
phide is  decomposed  on  extracting  it  with  carbon 
bisulphide  and  the  residue  corresponds  practically 
to  SbjSj.  The  full  significance  of  this  statement 
seems  to  have  been  overlooked,  for  modern  text 
books  rarely  mention  the  tetrasulphide.  Kirchhof, 
however,  concludes  from  his  work3  that  antimony 
pentasulphide  does  not  exist,  and  that  the  golden 
sulphide  (which  in  its  purest  form  yields  8%  of 
sulphur  to  carbon  bisulphide)  consists  mainly  of  the 
tetrasulphide,  Sb2Sa,  with  variable  quantities  of 
the  trisulphide  and  free  sulphur.  He  regards 
Sb,S,  as  antimony  thioantimonate,  Sb(SbS4). 

The  evidence  on  which  the  assumption  that  the 
substance  is  the  pentasulphide  is  based  seems  to 
us  to  be  somewhat  inconclusive  and  we  submit 
that  it  is  incorrect;  on  the  contrary,  we  agree 
with  Kirchhof  that  commercial  golden  sulphide  is 
not  antimony  pentasulphide  but  tetrasulphide  and 
that  this  is  a  stable  compound,  not  decomposed  by 
carbon  bisulphide.  Direct  evidence  that  golden 
sulphide  of  antimony  is  decomposed  by  these  sol- 
vents is  difficult  to  obtain,  as  also  is  direct  evidence 
to  the  contrary.  It  was  therefore  mainly  on  the 
interpretation  of  a  large  number  of  analyses  that 
we  arrived  at  our  conclusions,  and  we  were  in- 
terested in  finding  that  Kirchhof  had  obtained 
direct  evidence,  confirming  the  views  we  had 
formed. 

The  reaction  by  which  golden  sulphide  of  anti- 
mony is  prepared  by  decomposing  a  solution  of 
Schlippe's  salt  with  dilute  acid  is  generally 
looked  upon  as  being 

2Na,SbS1+6HCl  =  6NaCl+3H„S  +  Sb2Ss. 
It  is  well  known  that  the  product  prepared  as 
above  yields  a  considerable  amount  of  free  sulphur 
to  carbon  bisulphide,  hence  the  theory  that  this 
solvent  partially  decomposes  the  pentasulphide  with 
the  formation  of  free  sulphur  and  a  corresponding 
amount  of  trisulphide.  If  this  be  the  case  it  is 
curious  that  the  decomposition  is  only  partial  and 
that  the  residue  corresponds  to  tetrasulphide  and 
not  to  trisulphide,  as  is  generally  supposed. 

Extraction  with  carbon  bisulphide  is  almost 
universally  used  by  rubber  manufacturers  to  deter- 
mine  the    amount   of    free    sulphur    available   for 


vulcanising  (see  modification  suggested  by  Luff  and 
Porritt)  and  vulcanising  results  confirm  the  prac- 
tical utility  of  the  method.  As  these  authors  point 
out,  it  is  not  necessary  to  use  what  may  be  termed 
the  "  true  "  golden  sulphide,  as  prepared  from 
Schlippe's  salt.  Precipitated  trisulphide,  and 
also  oxysulphide,  can  be  used  in  the  vulcanising 
process  with  success ;  for  instance,  crimson  sul- 
phide, made  in  a  totally  different  manner,  is  either 
trisulphide  or  oxysulphide  or  a  mixture  of  these, 
and  the  yellow  trisulphide  is  often  used.  In  the 
case  of  these  substances  the  carbon  bisulphide 
method  will  obviously  give  the  correct  amount  of 
free  sulphur,  due  regard  being  paid  to  the  question 
of  "  insoluble  "  sulphur.1 

Van  Rossem  and  Dekker4  have  cast  doubts  on  the 
results  of  the  method  in  the  case  of  "true  "  golden 
sulphide.  From  results  obtained  by  an  indirect 
method  they  concluded  that  the  amount  of  free 
sulphur  is  generally  considerably  smaller  than  that 
obtained  by  extraction  with  carbon  bisulphide,  and 
the  difference  is  again  attributed  to  the  partial 
decomposition  of  the  pentasulphide  by  carbon 
bisulphide. 

During  the  last  few  years  the  authors  have  had 
the  opportunity  of  examining  for  commercial  pur- 
poses many  samples  of  golden  sulphide  of  antimony 
frorn  various  sources.  The  antimony  content  of  the 
dried  sample  was  carefully  determined  by  the 
bromate  method,5  the  free  sulphur  by  extraction 
in  a  Soxhlet  tube  with  pure  carbon  bisulphide,  and 
the  calcium  sulphate  was  separated  as  oxalate  and 
determined  volumetrically.  It  was  found  in  almost 
every  case  that  if  the  antimony  content  was  calcu- 
lated as  tetrasulphide,  Sb2S4,  the  sum  of  the  main 
constituents,  viz.,  antimony  sulphide  expressed  as 
tetrasulphide,  free  sulphur,  and  calcium  sulphate 
(CaSO,,2H20),  totalled  practically  100%.  Other 
impurities  such  as  free  acid  and  foreign  matter 
were  present  in  negligible  quantities.  The  only- 
exceptions  were  samples  which  were  obviously  com- 
posed of  trisulphide,  some  of  which  contained  prac- 
tically no  free  sulphur. 

The  following  examples  illustrate  this:  — 


Source. 


Sb 
% 


SbsS, 
calc 

from  Sb  | 
% 


Free  S 
% 


CaSO,, 

2H,0 

% 


Total 
% 


1.  English 

23-2 

35-57 

10-6 

47-6 

99-77 

2.  English 

23-0 

35-2 

15-2 

49-3 

99-7 

3.  English 

29-9 

45-8 

60 

480 

99-8 

4.  English 

35-7 

54-7 

2-3 

42-8 

99-8 

5.  French 

46-9 

71-9 

20-8 

7-0 

99-7 

6.  French 

32-6 

50-0 

20-2 

2'.Hi 

99-8 

7.  French 

21-6 

331 

18-1 

48-6 

99-8 

8.  U.S.A. 

33-6 

51-5 

150 

33-2 

99-7 

9.  Unknown 

58-6 

89-85 

50 

52 

10005 

10.  German  (?)    . . 

210 

32-2 

17-4 

602 

99-8 

11.  German  (?)    . . 

24-9 

38-2 

17-6 

44-0 

99-8 

12.  German  (?)    . . 

24-2 

37-1 

61-7 

10 

99-8 

These  results  have  been  checked  by  estimating 
sulphur  in  several  of  the  above  samples,  and  in 
each  case  the  sulphur  content  of  the  residue  after 
extraction  with  carbon  bisulphide,  less  the  amount 
of  sulphur  contained  in  the  calcium  sulphate,  cor- 
responds to  the  sulphur  required  to  express  the 
antimony  as  tetrasulphide. 

We  came  to  the  conclusion,  therefore,  that  in  the 
absence  of  real  evidence  that  a  comparatively  inert 
substance  such  as  carbon  bisulphide  brings  about 
decomposition  of  pentasulphide,  it  is  more  probable 
that,  as  stated  by  Kirchhof,3  the  decomposition  of 
Schlippe's  salt  with  dilute  acids  results  in  the  pro- 
duction of  a  mixture  of  antimony  tetrasulphide  and 
sulphur  according  to  the  following  equation:  — 
2Na.,SbS.,+6HCl  =  6NaCI  +  3H2S  +  Sb2S1  +  S. 

A 


HOT 


ARMSTRONG.— ENZYME  ACTION. 


[April  29,  1922. 


Antimony  tetrasulphide,  when  properly  prepared, 
appears  to  be  stable  at  the  temperature  of  vul- 
canisation and  only  decomposes,  with  blackening 
and  conversion  into  the  black  trisulphide  and  sul- 
phur, at  a  temperature  considerably  above  that  used 
in  the  vulcanising  process.  All  samples  of  "  true  " 
golden  sulphide  blacken  in  this  way  at  about  250° 
C.  with  complete  decomposition,  but  some  inferior 
samples  darken  at  a  lower  temperature  with  partial 
decomposition.  There  are  several  factors  which 
may  cause  the  latter.  Yellow  amorphous  trisul- 
phide on  heating  is  converted  into  the  black  crys- 
talline variety. 

Examination  of  the  analytical  figures  given  in 
Luff  and  Porritt's  paper  (loc.  cit.)  shows  that  only 
one  of  the  examples  given  by  them  corresponds  to 
"true"  golden  sulphide,  i.e.,  similar  to  that  pre- 
pared from  Schlippe's  salt.  This  sample  (No.  5) 
contains  57'64%  Sb,  and  has  a  total  sulphur  con- 
tent of  40-01%.  It  yields  9T4%  of  free  sulphur  on 
extraction  with  carbon  bisulphide.  The  difference, 
i.e.,  the  combined  sulphur,  is  30'86%,  and  as 
57-64%  Sb  would  require  30-74%  S  to  make  Sb2S, 
it  agrees  very  closely  with  the  above  theory.  The 
combined  sulphur  content  of  the  material  after 
heating  to  about  250°  C.  shows  that  complete 
decomposition  to  trisulphide  has  taken  place  at 
that  temperature. 

Again  if  Van  Rossem  and  Dekker's  figures  (loc. 
cit.)  are  recalculated,  on  the  assumption  that  tetra- 
sulphide is  present  and  not  pentasulphide,  a  new 
indirect  figure  is  obtained  for  free  sulphur,  which, 
in  every  case  except  one,  will  be  found  to  agree  very 
closely  with  the  direct  free  sulphur  determination 
by  carbon  bisulphide,  confirming  the  view  set  forth 
above.  The  following  table  shows  these  re-calcu- 
lated results,  together  with  the  free  sulphur  con- 
tents by  direct  extraction. 


Nottingham    Section. 


Sb,Ss 

Sul- 

Sul- 

Com- 

Sulphur 

calcd. 

phur 

phur 

bined 

Free 

ex- 

from 

Sb 

in 

left 

Total 

sul- 

sul- 

tracted 

H.S 

H8S 

after 

sul- 

phur 

phur 

by  CS, 

evolved 

evolved 

HC1 

phur 

Sb 

by 

(a)  hot 

calc. 

treat- 
ment 

calcd. 
as 

Sb2S4 

diff. 

(b)  cold 

% 

% 

% 

% 

% 

% 

/o 

% 

1     86-6 

49-6 

19-8 

15*4 

35-2 

26-4 

8-8 

14-1  (a) 
13-1  (b) 

2      59-6 

35-8 

14-3 

9-8 

241 

191 

5-0 

61  (a) 
4-8  (b) 

3      540 

32-4 

130 

148 

27-8 

17-3 

10-5 

10-5  (a) 
9-6  (b) 

5     38-3 

230 

9-2 

42-9 

52-1 

12-2 

39-9 

40-0  (a) 
39-6  (b) 
32-5  (a) 

6     28-8 

17-2 

6-9 

35-0 

41-9 

9-2 

32-7 

32-0  (b) 

*  Van  Rossem  and  Dekker's  figures. 

The  results  of  the  investigation  indicate  that, 
whilst  the  existence  of  antimony  pentasulphide  is 
not  precluded,"  commercial  golden  sulphide  of 
antimony  probably  contains  no  higher  sulphide 
than  tetrasulphide  and  that  there  is  strong 
evidence  of  the  existence  of  the  latter,  which  may 
be  looked  upon  either  as  the  antimony  salt  of  thio- 
antimonie  acid,  viz.,  Sb"'SbS.,,  or  as  the  compound 
Sb2S3,Sb,S5.  They  also  indicate  that  the  sulphur 
extractable  by  carbon  bisulphide  is  available  for 
vulcanisation. 

In  conclusion  the  authors  have  to  thank  Messrs. 
Cookson  and  Co.,  Ltd.,  in  whose  laboratories  the 
work  was  carried  out,  for  permission  to  publish 
these  results. 


•  J.,  1921,  275T. 

2  Otto,  Anorganische  Chemie,  III,  089. 

•  Z.  anore.  Chem.,  1920, 112,  67  ;  J.,  1920,  721a. 
«  Indlo-Rubber  J.,  Oct.  30th,  1920. 

6  Duncan,  Chemical  News,  1907,  49. 

•  Bosek,  J.,  1895,  613. 


Meeting  held  at  University  College  on  March  15, 
1922. 


JIB.  J.  H.  DUNFORD  IN  THE  CHAIR. 


ENZYME    ACTION    IN    THE    LIGHT    OF 
MODERN  THEORIES  OF  CATALYSIS. 

BY  B.   P.   ARMSTRONG,   D.SC,   PH.D.,   F.R.S. 

Great  strides  have  been  made  of  recent  years  in 
the  knowledge  of  the  phenomenon  of  catalysis  and 
of  catalysts,  which  now  rests  upon  a  firm  basis  both 
on  the  experimental  and  theoretical  side.  It  has 
been  extended  more  particularly  in  the  case  of 
catalytic  actions  taking  place  at  surfaces.  In  this 
connexion  the  older  theory,  in  which  it  is  assumed 
that  the  interaction  takes  place  rapidly  on  the  sur- 
face of  the  catalyst  and  that  the  velocity  of  action 
is  determined  by  the  rate  of  diffusion  of  one  of  the 
agents  through  an  adsorbed  layer  of  considerable 
thickness,  is  being  abandoned  in  favour  of  the 
supposition  that  interaction  takes  place  in  a  layer 
one,  or  at  the  most  two,  molecules  thick  at  the 
surface  of  the  catalyst :  such  layer,  in  fact,  being 
a  chemical  compound  of  a  special  but  not  neces- 
sarily  unique    character. 

It  is  generally  established  that  changes  accom- 
panying life  are  in  the  main  brought  about  by 
means  of  a  unique  class  of  catalysts  known  as 
enzymes,  chemical  action  in  the  cell  being  controlled 
by  an  elaborate  mechanism  which  is  able  to  initiate, 
accelerate,  retard,  or  stop  the  change  promoted  by 
the  enzyme.  The  complications  thus  introduced  and 
the  further  fact  that  enzymes  are  both  of  unknown 
chemical  composition,  and  relatively  unstable  and 
less  active  under  laboratory  conditions,  have  made 
their  study  a  difficult  one.  The  literature  on  the 
subject  is  so  large  as  to  be  confusing,  and  the  whole 
question  is  to  some  extent  shrouded  in  mystery  to 
the  uninitiated.  It  is  the  object  of  this  paper  to 
show  that  this  mystery  is  quite  unnecessary,  the  be- 
haviour of  enzymes  being  in  harmony  with  that  of 
other  catalysts';  further,  that  the  highly  specialised 
behaviour  of  enzymes  affords  additional  evidence  in 
favour  of  the  intermediate  compound  theory  of 
catalysis. 

Enzymes  may  be  divided  into  several  classes 
according  to  the  type  of  compounds  which  they 
affect ;  more  generally  they  may  be  divided  into 
those  which  bring  about  hydrolysis  in  aqueous  solu- 
tion, and  those  which  facilitate  other  actions  such 
as  oxidation.  The  following  remarks  apply  in  the 
main  to  the  hydrolytic  enzymes  in  order  to  keep 
the  paper  within  reasonable  compass :  the  other 
classes  of  enzymic  catalysts  will  receive  special  con- 
sideration elsewhere. 

It  is  not  altogether  easy  to  define  enzymes  so  as 
to  convey  any  clear  picture  of  their  nature  or 
activity ;  to  say  they  are  the  catalysts  produced  by 
living  organisms  merely  defines  their  origin. 
Catalysts  in  general  are  definite  chemical  indi- 
viduals, prepared  in  a  special  manner  so  a^  to 
enhance  their  activity,  whereas  we  are  still  a  long 
way  from  knowing  the  constitution  of  an  enzyme, 
even  the  most  active  products  obtained  in  practice 
being  contaminated  by  other  organic  and  mineral 
substances.  Enzymes  are  strikingly  capricious  in  re- 
gard to  the  factors  which  regulate  their  activity  ;  they 
are  active  only  within  a  very  limited  range  of  tem- 
perature, most  sensitive  to  acid  or  alkali,  and  easily 
poisoned  by  metallic  salts — all  conditions,  let  it  be 
noted,  which  apply  with  equal  truth  to  the  living 
animal  or  vegetable  cell.  Though  in  no  sense  alive, 
the  actions  they  induce  do  form  in  a  certain  sense  a 
stepping  stone'between  chemical  changes  in  life  and 


Vol.  XLI.,  No.  8.] 


ARMSTRONG.— ENZYME    ACTION. 


HIT 


in  the  test  tube.  An  outstanding  feature  of  most 
enzymes  is  that  they  are  essentially  selective  in 
their  action,  invariably  attacking  one  only  of  a  pair 
of  stereoisomerides :  there  is  undoubtedly  the 
closest  correlation  between  the  chemical  configura- 
tion of  the  substance  which  is  changed  and  the 
enzyme  which  facilitates  the  change. 

In  general  catalysts  become  more  and  more  active 
as  the  extent  of  surface  is  increased.  A  lump  of 
nickel,  for  example,  is  almost  inactive,  but  particles 
obtained  by  abrasion  become  more  active  as  their 
size  diminishes.  Metal  in  the  very  finely  divided 
particulate  or  colloid  state,  as  it  is  termed,  is  very 
active,  and  a  still  finer  state  of  division  and  greatest 
activity  is  obtained  by  precipitating  nickel  from  a 
dilute  solution  of  its  nitrate  on  the  surface  of  an 
inert  substance  such  as  kieselguhr  by  means  of 
caustic  soda  and  afterwards  reducing  the  oxide 
formed  at  a  suitable  low  temperature  to  metallic 
nickel.  We  have  elsewhere  quoted  facts  to  show 
that  there  is  the  closest  correlation  between  cata- 
lytic activity  and  bulk  gravity,  that  is  the  state 
of  division  or  in  reality  the  extent  of  surface  of 
the  metal. 

Now  enzymes  are  essentially  particulate  colloids 
in  an  even  finer  state  of  division  than  that  attained 
to  in  the  case  of  metals.  Not  only  are  they  active  in 
the  massive  form — that  is  as  washed  macerated 
tissue — but  they  are  infinitely  more  active  in  the 
dispersed  form.  The  common  way  to  prepare 
invertase,  for  example,  is  to  macerate  yeast,  which 
has  been  dried  at  room  temperature  to  rupture  the 
cell  walls,  with  water  and  filter  the  extract  through 
an  ordinary  filter  paper  so  as  to  retain  the  yeast 
cells:  the  filtrate  is  highly  active  in  hydrolysing 
cane  sugar.  These  pseudo-soluble  "colloid" 
enzymes  are  not  in  a  state  of  true  dissolution  but 
are  in  the  very  finest  state  of  division,  infinitely 
more  so  than  the  most  active  metal  catalyst  known. 
This  fact  to  some  extent  enables  us  to  understand 
the  phenomenal  activity  of  enzymes  as  hydrolytic 
agents  compared  with  other  chemical  agents  under 
like  conditions  of  temperature. 

The  outstanding  characteristic  of  enzymes  is  thus 
an  enormous  development  of  surface.  They  show 
the  phenomenon  of  adsorption,  concentrating  at 
their  surface  substances,  even  in  dilute  solution, 
which  lower  the  surface  tension  of  the  solvent 
(water).  As  the  result,  further,  of  adsorption  they 
carry  down  with  them  constituents  of  the  solutions 
from  which  they  are  precipitated,  often  in  sufficient 
quantity  to  enable  the  crude  enzyme  to  exhibit  the 
group  interactions  of  carbohydrates,  proteins,  and 
the  like.  As  the  enzymes  are  purified  with  increase 
of  activity,  these  qualities  generally  disappear,  but 
at  the  same  time  the  enzyme  becomes  more  unstable. 

Catalytic  activity  in  general  is,  of  course,  influ- 
enced by  other  factors  than  extent  of  surface, 
amongst  them  being  the  actual  arrangement  and 
structure  of  the  surface.  It  is  in  this  connexion 
that  the  presence  of  impurities  has  most  influence. 
Much  has  been  done  to  investigate  such  questions 
in  the  case  of  charcoal,  which  has  a  very  variable 
adsorptive  power  for  gases  according  to  its  pre- 
paration and  purity:  such  observations  are  in  many 
instances  similar  to  those  obtained  with  enzymes. 

An  immense  amount  of  work  has  been  done  to 
study  the  influence  of  a  large  selection  cf  added 
substances  and  varying  conditions  of  experiment  on 
enzyme  action  with  the  natural  consequence  that 
the  greatest  confusion  has  been  introduced  into  the 
subject.  The  definite  result  emerges  that  to  ensure 
maximum  activity  of  an  enzyme  preparation  every- 
thing possible  must  be  done  to  eliminate  factors 
which  would  tend  to  aggregate  the  particles  and  so 
reduce  the  surface.  Hydrolytic  enzymes  have  a 
temperature  of  maximum  activity  in  the  region  of 
37°  C.  and  give  best  results  in  solutions  which  are 
faintly    acid.      Clear   thinking    on    this    particular 


point  was  not  obtained  until  Sbrensen  introduced 
his  conception  of  hydrogen  ion  concentration  and 
showed  that  optimum  effects  were  obtained  in  a 
particular  solution. 

Enzymes  are  undoubtedly  amphoteric  substances 
and  contain  both  acid  and  alkaline  groupings  in 
their  molecules.  Moreover  colloid  adsorbents  in 
general  are  often  able  either  to  absorb  bases  more 
strongly  than  acids  or  the  reverse.  Hence  such  sub- 
stances as  phosphates,  asparagine  and  other  amino- 
acids,  and  even  neutral  salts,  which  are  grouped 
together  as  buffer  substances,  are  able  to  effect  the 
requisite  neutralisations  in  the  molecule  so  as  to 
satisfy  any  free  groups  and,  what  may  be  even  more 
important,  maintain  a  conducting  medium  for  the 
electrolytic  circuit  in  which  hydrolysis  is  effected. 

In  cases  of  hydrolysis  such  as  we  are  considering — 
for  instance,  the  breakdown  of  starch,  sugars, 
glucosides,  proteins,  or  fats  to  simpler  substances 
— the  change  is  actually  brought  about  by  active 
simple  molecules  of  water,  H20,  as  opposed  to  the 
inactive  complex  molecules,  (H20)  s.  The  catalyst 
acts  as  it  were  to  fix  the  substance  acted  on,  or 
hydiolyte,  in  the  proper  position,  but  before 
chemical  action  can  take  place  the  electrochemical 
circuit  has  to  be  completed  by  the  presence  of  a  con- 
ductor. It  is  probable,  therefore,  that  the  effect  of 
buffer  substances  in  promoting  activity  is  largely 
due  to  the  necessity  of  having  agents  in  the  right 
place  to  complete  the  circuit. 

There  is  certain  evidence  of  enzymes  being  in- 
active in  the  form  in  which  they  are  at  fir6t  obtained 
by  maceration  of  the  living  tissue  usually  with 
water — they  are  considered  to  be  in  the  form  of 
zymogen — and  a  special  treatment  either  involving 
the  action  of  acids  or  other  purely  chemical  agents, 
or  the  action  of  another  enzyme  is  needed  to  render 
them  active. 

The  term  co-enzyme  was  first  introduced  by 
Bertrand  in  connexion  with  the  accelerating  effect 
of  manganese  salts  on  the  oxidising  power  of  laccase 
and  of  calcium  salts  on  the  activity  of  pectase  on 
pectin.  The  phenomenon  in  both  cases  is  akin  to 
that  brought  about  by  the  so-called  promoters  in 
ordinary  catalytic  action.  In  the  case  of  lipase,  the 
fat-splitting  enzyme  of  the  liver,  bile  salts  both 
natural  and  synthetic  act  as  co-enzymes.  If  a  liver 
extract  is  dialysed  it  becomes  inactive,  but  the 
activity  is  restored  on  adding  the  dialysate  which 
is  likewise  inactive  by  itself.  It  is  believed  in  this 
case  that  a  larger  active  surface  of  the  colloid 
enzyme  is  ensured  as  aggregation  is  prevented  by 
the  lowering  of  surface  tension  produced  by  the  bile 
salts. 

Dialysis  of  many  other  enzyme  extracts  leads  to 
a  loss  of  activity  which  is  restored  by  the  addition 
of  certain  electrolytes,  e.g.,  common  salt.  In  such 
cases  as  the  above  the  term  co-enzyme  is  probably  an 
unnecessary  one,  as  the  additional  substances  only 
act  in  the  manner  already  emphasised  as  necessary 
to  ensure  active  enzyme  preparations. 

In  the  case  of  yeast  juice,  which  contains  an  alco- 
holic enzyme  zymase,  the  colloid  residue  on  a  gelatin 
filter  is  inactive,  but  becomes  active  when  mixed 
with  a  portion  of  the  filtrate  even  after  this  latter 
has  been  boiled.  The  filtrate  by  itself  is  inactive. 
In  other  words  fermentation  is  dependent  on  the 
presence  not  only  of  the  enzyme,  but  also  of  another 
substance  which  is  dialysable  and  thermostable. 
Since  phosphates  are  known  to  be  essential  to 
fermentation,  it  was  at  first  thought  that  the  co- 
enzyme was  a  soluble  phosphate,  but  the  experi- 
ments of  Harden  afford  proof  that  this  is  not  the 
case.  The  co-enzyme,  about  which  practically 
nothing  is  known,  is  capable  of  being  decomposed 
by  yeast  juice,  and  disappears  more  rapidly  in  the 
absence  of  glucoso  than  in  its  presence;  it  has  been 
suggested  that  it  acts  as  or  contains  an  anti- 
nrotease,    and  so   serves  to   protect   the   assumedly 

a2 


112T 


ARMSTRONG.— ENZYME  ACTION. 


[April  29,  1022. 


protein  enzyme  from  the  action  of  digestive 
enzymes.  In  fact,  the  precise  function  of  the  co- 
enzyme is  even  more  obscure  than  its  chemical 
nature.  It  must  be  remembered,  however,  that 
alcoholic  fermentation  is  a  complex  series  of  oxida- 
tion and  reduction  interactions.  When  oxidation 
is  effected  as  the  result  of  decomposing  a  water 
molecule  another  substance  must  be  on  hand  to 
accept  the  hydrogen.  The  reaction  is  not  akin  to 
hydrolysis,  but  occurs  in  a  coupled  system  in  which 
the  products  of  decomposition  of  the  water  molecule 
are  shared  between  the  constituents,  one  only  of 
which  behaves  as  an  enzyme.  It  is  perhaps  de- 
sirable to  draw  attention  to  the  state  of  confusion 
into  which  the  problem  of  fermentation  is  being 
plunged  by  the  tendency  to  invent  the  intervention 
of  a  new  enzyme  for  every  phase  of  the  series  of 
concurrent  oxidations  and  reductions  which  gradu- 
ally break  down  the  sugar  molecule.  Under  normal 
conditions  of  fermentation  the  products  are  simple, 
being  alcohol  and  carbon  dioxide,  but  when  by  one 
means  or  another  the  normal  course  is  arrested  or 
interfered  with,  as  by  the  addition  of  weak  alkali, 
other  products  such  as  glycerol,  aldehyde,  etc.  are 
formed.  There  is  no  evidence  that  so  many  specific 
enzymes  are  required  and  nothing  is  gained  by  their 
invention. 

Some  additional  light  on  the  state  of  affairs  at 
surfaces  has  been  afforded  by  the  study  of  the  pheno- 
mena of  surface  friction  and  boundary  lubrication. 
At  the  surface  of  any  solid  presumably  crystal  or 
colloid  there  are  forces  similar  to  those  which  act 
between  the  outer  layer  and  the  next  layer  of 
molecules,  and  keep  the  aggregate  in  being.  If 
we  regard  these  forces  as  essentially  chemical — 
valencies  of  some  sort — it  is  possible,  as  done  by 
Langmuir,  to  regard  adsorption  as  due  essentially 
to  the  saturation  of  these  valencies. 

When  a  substance  such  as  oleic  acid  is  allowed  to 
spread  over  water  the  primary  film  is  always  of  a 
single  layer  of  molecules.  When  the  concentration  of 
the  acid  is  increased  the  surface  tension  falls  until 
a  point  is  reached  at  which  any  further  addition 
of  acid  has  no  effect ;  this  occurs  when  the  mole- 
cules are  packed  together  as  closely  as  possible,  and 
it  is  presumed  that  the  further  addition  results  in 
some  of  the  molecules  mounting  on  top  of  the  layer. 
As  expressed  by  W.  B.  Hardy,  the  film  is  an  elastic 
structure  which  is  at  its  maximal  extension  when 
it  first  begins  to  affect  the  surface  tension,  and  at 
its     maximal     tangential     compression     when     the 
surface  is  saturated.     In  such  films  the  molecules 
are  thought  to  be  highly  oriented  with  respect  to 
the  surface ;  the  attraction  fields  of  solids  separated 
by  a  layer  of  lubricant  destroy  the  random  arrange- 
ment of  the  molecules  which  permits  of  fluidity  and 
substitutes  a  definite  arrangement  or  configuration. 
Langmuir  has  gone  further  than  most  physicists 
in   postulating   this   orientation ;    for   example,    he 
pictures  a  film  of  palmitic  acid  on  water  as  being 
composed  of  molecules  attracted  to  the  water  surface 
by  the  carboxyl  group,  only  the  carbon  chain  being 
disposed  at  right  angles  to  the  water  surface,  and  he 
limits  the  influence  of  the  attraction  field  of  the 
water  to  the  carboxyl  group.    As  Hardy  points  out, 
if  the  attraction  of  a  solid  for  the  lubricant  were 
limited  in  the  same  way  friction  would  depend  only 
on  the  nature  of  the  lubricant,  and  would  be  inde- 
pendent of  the  nature  of  the  solid,  which  is  not  the 
case.      Hardy  regards  the   orienting  effect  of   the 
surface    as   spreading   out   through    the    fluid,    the 
atoms  or  molecules  first  orientated  by  the  surface 
tending  in  turn  to  orientate  their  neighbours. 

The  question  whether  the  surface  layer  forms  a 
compound  with  the  absorbing  agent  is  of  particular 
interest.  Bancroft  considers  that  there  is  no  proof 
that  a  compound  of  the  type  at  present  recognised 
by  chemists  is  formed,  and  that  it  is,  therefore, 
safer  not  to  postulate  the  existence  of  compounds. 


We  find  this  view  common  amongst  our  chemical 
colleagues,  but  there  is  an  increasing  volume  of 
evidence  in  favour  of  the  existence  of  such 
compounds. 

With  the  modern  view  of  the  condition  of  affairs 
at  a  surface  prominently  in  our  minds,  it  is  of 
advantage  to  recapitulate  the  known  facts  as  to 
enzyme  action — most  of  them  now  upwards  of 
twenty  years  old. 

Dealing  in  the  first  place  with  the  carbohydrate 
or  sucroclastic  enzymes,  the  classic  researches  of 
Emil  Fischer  showed  that  the  stereoisomeric  a-  and 
/3-methylglucosides,  which  are  obtained  in  ad- 
mixture when  methyl  alcohol  acts  on  glucose  in 
presence  of  a  little  dry  hydrochloric  acid,  differ  only 
in  regard  to  the  position  of  the  groups  attached  to 
the  terminal  carbon  of  the  chain  of  6  carbons.  The 
glucosides  possess  a  butylene  oxide  ring  structure, 
and  are  well  characterised,  stable,  crystalline 
substances.  The  a-glucoside  is  readily  and  com- 
pletely hydrolysed  by  the  enzyme  maltase,  never  by 
emulsin,  whereas  the  /3-glucoside  is  readily  and  com- 
pletely hydrolysed  by  emulsin  and  not  attacked  in 
the  very  slightest  by  maltase. 

As  is  well  known,  there  are  16  possible  isomerides 
of  glucose  differing  in  the  relative  orientation  of 
the  hydrogen  and  hydroxyl  groups  on  the  4  asym- 
metric carbon  atoms,  and  from  most  of  these  the 
corresponding  a-  and  /6-methylglucosides  have  been 
prepared — the  term  glucoside  is  used  in  a  general 
sense  for  such  compounds  as  well  as  for  the  specific 
derivatives  of  dextroglucose.  In  no  case  are  they 
hydrolysed  by  maltase  or  emulsin.  Similar  gluco- 
sides have  been  prepared  from  the  pentose  sugars 
with  a  chain  of  only  5  carbon  atoms;  again  the 
enzymes  are  entirely  without  action  on  these. 

There  is  complete  and  convincing  proof  of  the 
closest  correlation  between  enzyme  and  substrate  as 
expressed  by  Emil  Fischer  in  his  well-known  simile 
of  lock  and  key.  It  would  seem  impossible  to  avoid 
the  assumption  of  some  intimate  combination — the 
formation  of  a  compound  between  enzyme  and  sugar 
derivative  in  which,  however,  the  carbon  chain  is 
not  at  right  angles  to  the  surface  of  the  enzyme 
molecule,  but  in  close  and  intimate  contact  with  it 
along  the  whole  length  of  the  chain,  for  in  no  other 
way  can  the  effect  of  altering  the  position  of  the 
groups  attached  to  any  one  of  the  carbon  atoms  be 
explained. 

The  study  of  the  rate  of  hydrolysis  by  enzymes 
gives  further  evidence  of  the  correctness  of  this 
view,  if  such  were  wanted.  When  care  is  taken  to 
obtain  really  active  enzyme  preparations  and 
eliminate  disturbing  factors,  the  amount  of  gluco- 
side changed  is  at  first  a  constant  for  successive 
equal  intervals  of  time,  but  towards  the  end  the 
rate  of  action  becomes  less.  In  other  words,  the 
rate  is  expressed  by  a  linear  curve  for  a  large  part 
of  the  action.  The  falling  off  in  the  rate  is  partly 
due  to  the  fact  that  the  enzyme  is  able  to  combine 
with  the  glucose  produced  during  the  hydrolysis, 
and  is  so  put  out  of  action.  The  rate  of  change 
may  be  lowered  by  adding  glucose  initially,  but  this 
effect  is  not  produced  by  any  other  added  isomeric 
sugar,  or  by  a  pentose  sugar,  apart  from  the  very 
small  effect  caused  by  the  increase  in  the  total 
concentration  of  the  solution,  and  the  consequent 
decreased  activity  of  the  water  molecules.  What- 
ever may  be  the  structure  of  the  enzyme  (it  may  or 
may  not  be  very  closely  identified  with  that  of  the 
sugar  in  such  cases),  there  can  be  little  doubt  that 
the  combination  of  enzyme  and  glucoside  is  effected 
through  the  agency  of  the  oxygen  atoms — that 
these  are,  as  it  were,  the  sticky  points  of  attach- 
ment. On  such  hypothesis  the  nearness  or  remote- 
ness of  the  hydroxyl  groups  becomes  all-important — 
hence  the  results  obtained  with  the  isomeric  sugars. 
Stress  is  laid  on  the  fact  that,  when  due  care  is 
taken  to  eliminate  disturbing  factors  and  measure 


Vol.  XLI.,  No.  8.] 


VVAITES.— LIMITS  OF  THE  AGGLUTINATION  TEST  FOR  RICIN. 


113t 


actually  the  amount  of  material  hydrolysed  and 
not  some  other  change  as,  for  example,  the  velocity 
of  disappearance  of  the  enzyme,  the  rate  of  change 
is  a  linear  function  of  the  time.  In  the  case  of 
metallic  catalysts  where  such  measurements  can  be 
made  with  great  accuracy  and  under  carefully 
regulated  conditions,  the  linear  relation  has  been 
shown  to  hold  throughout  the  greater  portion  of  the 
change.  The  parallelism  between  the  two  classes  of 
catalysts  is  complete  and  the  evidence  in  the  two 
cases  mutually  supports  the  assumption  of  the 
formation  of  a  chemical  compound  between  catalyst 
and  substrate  as  a  preliminary  to  change. 

Enzymes  as  synthetic  agents. 

Although  in  dilute  solutions  of  carbohydrates 
hydrolysis  by  enzymes  is  complete  or  nearly  so,  it 
becomes  more  difficult  to  effect  this  as  the  concen- 
tration increases  and  the  active  water  molecules  are 
competed  for  by  the  additional  sugar.  Croft  Hill 
made  the  fundamentally  important  discovery  that 
starting  from  a  concentrated  solution  of  glucose 
alone  with  the  enzyme  maltase  as  catalyst  it  was 
possible  to  effect  the  synthesis  of  a  disaccharide. 
Since  the  sugar  in  solution  is  a  mixture  of  the 
stereoisomers  a  and  /3  forms  in  equilibrium,  there 
is  a  possibility  of  the  disaccharides  derived  from 
both  these  being  synthesised  unless  the  enzyme 
specifically  controls  the  synthesis  in  one  6ense  only 
in  the  same  way  as  it  does  the  hydrolysis. 

Croft  Hill  at  first  thought  that  maltose,  a  deriva- 
tive of  a-glucose,  was  the  sole  product  •  other  equally 
important  workers  consider  the  product  to  be  iso- 
maltose,  a  derivative  of  /3-glucose;  it  is  more 
probable  that  both  sugars  are  formed  and  possibly 
other  isomeric  or  more  complex  products.  It  is 
accordingly  impossible  to  draw  any  deductions, 
especially  in  view  of  the  probable  fact  that  the 
enzymes  used  were  mixtures  of  several  enzymes,  but 
the  matter  is  more  simple  when  the  concentration 
of  the  solution  and  the  withdrawal  of  the  active 
water  molecules  is  effected  by  means  of  alcohols. 
This  leads  to  the  synthesis  of  glucosides  of  the 
alcohols.  Thus  in  10%  methyl  alcohol  solution  the 
enzyme  converts  glucose  into  methylglucoside.  In 
this  case  the  facts  are  quite  clear ;  maltase  deter- 
mines the  formation  of  a-methylglucoside  and  no  ji- 
methylglucoside  is  formed,  whereas  emulsin  causes 
the  formation  of  the  /3-methylglucoside  alone.  Thus 
the  selective  directive  action  of  enzymes  is  common 
to  both  their  synthetic  and  hydrolytic  functions — a 
fact  of  outstanding  importance  in  enabling  us  to 
understand  the  synthesis  in  vivo  of  one  only  of  a 
pair  of  stereoisomerides. 

Synthetic  activity  has  also  been  demonstrated  in 
the  case  of  the  fat^splitting  enzyme  lipase,  but 
here  no  complication  arises  in  connexion  with 
asymmetry. 


Yorkshire  Section. 


Meeting  held  at  Queen's  Hotel,  Leeds,  on 
February  20,  1922. 


MR.   S.  H.  DA  VIES  IN  THE  CHAIR. 


THE  LIMITS  OF  THE  AGGLUTINATION  TEST 
FOR  RICIN. 


BY  HAROLD  VVAITES. 


The  manufacture  of  large  quantities  of  castor  oil 
for  lubricating  purposes  during  the  war  provided 
large  amounts  of  extracted  castor  meal  residues, 
which,  it  was  thought,  might  be  used  as  a  feeding- 
stuff,  if  a  suitable  treatment  could  be  devised  for 
destroying   the   toxic   properties   of   the   meal,   the 


greater  part,  if  not  the  whole,  of  which  are  known 
to  be  lost  during  the  extraction  process. 

During  this  work  the  need  for  a  comparatively 
simple  test  for  ricin  became  apparent.  At  least 
three  methods  of  testing  were  available : —(a)  Sub- 
cutaneous injection  into  animals  (guinea  pigs, 
rabbits,  rats,  etc.).  (b)  The  precipitin  test,  (c)  The 
agglutination  test  (c/.  Lander  and  Geake,  Analyst, 
1914,  39,  292;  J.,  1914,  763).  It  was  thought 
advisable  to  examine  the  agglutination  test  and 
ascertain  if  it  could  be  applied  to  the  products 
under  consideration,  using  the  injection  method  for 
check  purposes.  It  was  also  necessary  to  determine 
the  limits  of  sensitiveness  under  these  conditions. 

Ricin  is  prepared  by  extracting  the  oil-free  castor 
seed  with  10%  sodium  chloride  solution,  dialysing 
the  extract  in  water  (which  precipitates  the 
globulin),  and  filtering  off  the  precipitate.  To  the 
filtrate,  which  contains  the  ricin,  is  added 
ammonium  sulphate,  and  the  precipitated  ricin  is 
purified  by  repeated  solution  in  water  and  pre- 
cipitation with  ammonium  sulphate,  finally  dia- 
lysing in  water  and  evaporating  at  50°  C.  in  vacuo. 
The  preparations  containing  ricin  are  soluble  in 
water  and  dilute  saline  solutions;  the  solutions 
slowly  coagulate  on  heating  to  60° — 70°  C. 

Apparently  the  purest  product  has  been  obtained 
by  Osborne,  Mendel,  and  Harris'  and  contained  70% 
of  albumin  and  30%  of  proteose.  A  dose  of  0'0005 
mg.  per  kg.  of  body  weight  was  found  to  be  fatal 
to  rabbits  and  0'0032  mg.  per  kg.  to  guinea  pigs 
when  injected  subcutaneously.  AVhen  taken  by  the 
mouth  it  appears  to  be  about  5000  times  less  toxic 
than  by  subcutaneous  injection. 

Solutions  of  ricin  have  the  power  of  agglutinating 
the  red  blood  corpuscles.  Agglutination  decreases 
and  finally  vanishes  with  the  coagulation  of  ricin 
solutions,  likewise  the  toxicity  wanes  and  ceases 
with  coagulation. 

In  many  respects  ricin  behaves  like  a  bacterial 
toxin,  and  along  with  abrin  and  crotin  is  now 
classed  as  a  toxalbumin. 

The  agglutination  test. 

The  author  has  compared  the  agglutinating  power 
of  extracts  of  experimental  batches  of  castor  meal 
with  a  "standard"  extract.  The  "standard" 
extract  was  prepared  from  castor  seed  which  had 
received  no  treatment  beyond  the  removal  of  most 
of  the  oil  by  pressure  at  ordinary  temperature. 
100  g.  of  the  castor  seed  meal  was  mixed  with  400  c.c. 
of  Ringer's  solution,  allowed  to  stand  for  24  hours, 
with  frequent  stirring,  and  filtered  through  three 
thicknesses  of  filter  paper  in  a  Buchner  funnel 
using  the  water  pump.  A  clear  extract  was  easily 
obtained.  The  extract  to  be  compared  was  treated 
in  the  same  manner  and  in  like  quantities. 
(Ringer's  solution  is  made  up  of  sodium  chloride 
9'00  g.,  potassium  chloride  0'25  g.,  sodium  bi- 
carbonate 015  g.,  calcium  chloride  0-20  g.,  distilled 
water  1000  c.c.)  The  blood  used  was  that  of  the 
guinea  pig  and  was  withdrawn  from  the  animal  and 
used  at  once.  It  is  necessary  to  use  fresh  blood  and 
it  is  therefore  advisable  to  leave  the  preparation  of 
this  solution  until  the  last.  The  amount  usually 
obtained  from  a  guinea  pig  is  about  8  c.c.  The  blood 
was  defibrinated  by  whipping  with  a  feather,  mixed 
with  twenty  times  its  volume  of  Ringer's  solution, 
and  filtered. 

Three  series  of  "standard"  extracts  were  pre- 
pared, viz.,  1  c.c.  of  "standard"  diluted  to  100, 
200,  and  500  c.c.  respectively  with  Ringer's  solution. 
1  c.c.  of  blood  solution  was  measured  from  a  burette 
into  each  test  tube,  five  tubes  for  each  series,  and 
to  each  tube  of  each  series  was  added  from  a  burette 
2'0  c.c,  1"5  c.c,  1"0  c.c,  and  Oo  c.c.  respectively, 
the  volume  being  made  up  to  30  c.c,  where  neces- 
sary, with  Ringer's  solution,  mixed,  and  allowed  to 
stand  30  minutes.  

'  Araer.  J.  Physiol.,  1905,  II,  259,  286. 


114T 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


[April  29,  1922. 


On  examination  the  tubes  showed  the  following 

results  :  — 

20  c.c.  1-6  c.c.  1  c.c.        0-5  c.c.    Blank. 

1st  series  (1-100)    Very  def.  Very  def.  Very  def.    Very  def     Nil 

2nd  series  (1-200)   Very  def.  Very  def.  Very  def.     Very  def.     Nil 

3rd  series  (1-500)       Def.  Def.  Indef.    Borderline      Nil 

Treated  castor  meal    Nil  Nil  Nil              Nil         Nil 

In  comparing  these  tests  it  was  considered  that 
the  20  c.c.  of  undiluted  extract  of  the  treated 
castor  meal  possessed  less  agglutinating  power  than 
the  Oo  c.c.  of  the  1—500  series— how  much  less  the 
test  does  not  show.  However,  the  agglutination  is 
not  more  than  1:2000  under  these  conditions. 

The  yield  of  ricin  obtained  by  Osborne  indicates 
0'5%  in  castor  seed;  from  this  our  ratio  1:2000  is 
equivalent  to  a  sensitiveness  1:800,000.  From  the 
figure  2'8%  which  Stillmark2  obtained  our  sensitive- 
ness would  be  1:148,000.  Robert3  (1900)  gives  the 
delicacy  of  this  test  as  1:600,000. 

The  character  of  agglutination. 

The  action  was  unmistakable  in  the  series  1 — 100 
and  1 — 200;  the  blood  corpuscles  formed  aggregates 
which  adhered  firmly  to  the  bottoms  of  the  tubes 
and  required  appreciable  force  to  detach  them, 
whereas  in  the  case  of  the  "  blanks,"  though 
corpuscles  settled  to  the  bottom  no  aggregates  were 
formed  and  the  slightest  movement  set  the  cor- 
puscles in  motion.  The  factor  of  time  was  clearly 
evident,  for  with  a  diminishing  quantity  of  extract 
there  was  an  increase  of  time  required  to  reach  the 
same  agglutination. 

From  the  above  results  it  appears  that  a  ratio  of 
1:2000  is  the  limit  to  be  expected  from  the  agglu- 
tination test.  For  the  determination  of  lower  toxi- 
cities it  was  necessary  to  employ  the  subcutaneous 
injection  method.  These  tests  were  very  kindly 
carried  out  by  Dr.  Douglas  Gow,  of  Cambridge. 

A  series  of  tests  was  made  with  extracts  from 
experimentally  treated  batches  of  castor  meal, 
obtained  in  a  similar  manner  to  those  employed  in 
the  agglutination  test,  and  injected  into  guinea 
pigs  with  the  following  results: — 1:2,  1:50,  1:400, 

1:600,  1:2000,  1:6000,  1:10,000,  1:18,000,  1:33,000, 

l:  more  than  40,000.  The  1:  more  than  40,000 
appeared  to  be  the  limit  obtainable  by  injection  into 
guinea  pigs.  From  the  data  obtained  under  the 
above  conditions  the  agglutination  test  gave  toxic 
ratios  down  to  1:2000  and  the  injection  with  guinea 
pigs  ratios  down  to  1:40,000. 

In  conclusion  I  have  to  thank  the  directors  of  The 
Hull  Oil  Manufacturing  Co.,  Ltd.,  for  permission 
to  publish  this  paper. 

Discussion. 

Mr.  B.  A.  Burrell  asked  if  the  cases  of  cattle 
poisoning  by  seed  cake  occasionally  reported  in  the 
agricultural  journals  could  be  traced  to  the  action 
of  ricin. 

The  Chairman  asked  if  the  poisonous  properties 
of  oil  cake  from  mowrah  seed  were  due  to  ricin  or  a 
similar  substance.  There  was  a  very  wide  field  for 
research  on  the  general  subject  of  the  unsaponifiable 
matters  contained  in  seeds  and  seed  oils. 

The  Author  stated  in  reply  that  it  was  possible 
for  the  raw  material  from  which  feeding  stuffs  were 
made  to  be  accidentally  contaminated  with  castor 
seed  during  transport.  He  was  under  the  impres- 
sion that  a  feeding  stuff  was  erroneously  considered 
unfit  for  consumption  if  small  quantities  of  castor 
husk  could  be  identified,  and  as  far  as  he  knew  the 
test  for  ricin  was  not  carried  out.  Castor  meal  had 
been  rendered  free  from  ricin  by  special  treatment 
and  such  meal  was  quite  harmless.  Experience  had 
shown  that  cattle  were  not  so  easily  poisoned  with 
castor  meal  as  one  would  expect  from  the  high 
toxicity  of  ricin.  The  poisonous  principle  of 
mowrah  seed  was  not  a  toxalbumin  like  ricin  but  a 
sapo-glucoside. 

:Art.  Pharm.  Inst.  Dorpat,  1889,  3,  59. 
'  Sitzungsbcr.  naturf.  Ges.  Ko3tock,  1900,  35  (5). 


Communications. 


THE  THERMAL  DISSOCIATION  OF  AMMONIA 

WITH  SPECIAL  REFERENCE  TO  COKE  OVEN 

CONDITIONS. 

BY    G.    B.    FOXWELL,    B.8C.    (LOND.),    A. INST. P. 

In  a  recent  paper  on  "  The  path  of  travel  of  the 
gases  in  the  coke  oven  "  (J.,  1921,  193  t)  the  author 
developed  a  theory  which  permits  some  insight  to 
be  gained  into  the  temperatures  to  which  the  gases 
are  actually  subjected  in  the  coke  oven.  It  was 
also  shown  that  it  is  exceedingly  doubtful  if  the 
usual  explanation  of  the  action  of  steam  in  the  coke 
oven  is  correct.  It  is  known  that  up  to  about  9% 
of  water  in  the  coal  charged  the  yield  of  ammonia 
is  progressively  increased,  but  about  this  point  a 
maximum  is  reached  and  the  yield  decreases  with 
increasing  water  content.  Water  is  known  to 
function  as  a  negative  catalyst  in  this  connexion, 
and  it  is  on  these  lines  that  the  above-mentioned 
phenomenon  is  usually  explained;  above  9%  of 
water  it  is  assumed  that  the  temperature  is  reduced 
so  much  that  the  Tervet  reaction  is  impeded.  It  has 
been  shown  (Joe.  cit.)  that  very  little,  if  any,  of  the 
added  water  is  vaporised  in  the  high-temperature 
portion  of  the  charge,  where  the  principal  decompo- 
sition of  ammonia  occurs ;  the  effect  is  to  decrease 
the  time  of  contact  between  ammonia  and  coke. 

In  the  light  of  these  and  other  conclusions  it 
seemed  advisable  to  undertake  a  thorough  inves- 
tigation into  the  thermal  decomposition  of 
ammonia,  the  more  so  as  very  little  work  appears 
to  have  been  done  on  the  subject  from  the  stand- 
point of  the  velocity  of  the  reaction.  The  equili- 
brium constant,  K,  has,  of  course,  been  thoroughly 
investigated  by  Haber  and  his  co-workers;  but  the 
equilibrium  point  is  never  reached  in  coking  prac- 
tice. Thus  Haber  (Z.  Elektrochem.,  1914,  20,  600) 
has  given  figures  for  the  equilibrium  percentage  of 
ammonia  in  contact  with  the  mixed  gases  N2+3H2 
at  1  atmosphere  pressure.  From  the  value  of  Kp 
derived  from  5»nH3/(?W  x  Ph»')  the  values  for  the 
equilibrium  percentage  of  ammonia  in  a  typical 
coke  oven  gas  have  been  calculated  (see  Table  I.). 
The  gas  in  question  carries  large  volumes  of  water 
as  it  leaves  the  oven  and,  for  the  sake  of  argument, 
may  be  assumed  to  contain  3%  of  nitrogen  and  30% 
of  hydrogen.  In  general  the  volume  of  ammonia 
in  coke  oven  gas  passing  up  the  ascension  pipes  is 
between  0"4%  and  2"0%. 


Table  I. 

%  NH,  in 

v  %  NH,  in  1 

t°  c. 

equilibrium 

KpXlO*. 

equilibrium 

with  N«+3Hj 

with  coke  oven 

(Haber). 

gas. 

300 

2-18 

671 

0-635 

400 

0-44 

135-3 

0-128 

500 

0129 

39-7 

0037 

600 

0049 

151 

0014 

700 

0-0223 

CSC 

00068 

800 

0-0117 

3-59 

0-0034 

900 

00069 

2-12 

0-0020 

1000 

0-0044 

1-35 

00013 

Previous  work. 

Probably  the  earliest  research  of  importance  in 
connexion  with  the  thermal  decomposition  of 
ammonia  was  carried  out  by  Ramsay  and  Young 
(vide  Lewes,  "  The  Carbonisation  of  Coal,"  p.  258), 
who  passed  ammonia  at  various  temperatures 
through  a  tube  of  porcelain  or  iron  containing 
broken  porcelain.  The  rate  of  decomposition  was 
found  to  be  influenced  by  the  nature  of  the  heated 
material,  the  time  of  exposure,  and  the  area  of  the 
heated  suface.     By  passing  a   slow  stream   of   gas 


Vol.  XLI.,  No.  8.] 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


115t 


through  the  tube,  it  was  found  that  the  gas  was 
all  decomposed  at  780°  C.  when  using  an  iron  tube 
packed  with  broken  porcelain.  The  greater  the 
initial  concentration  of  the  ammonia,  the  greater 
was  the  amount  decomposed,  a  fact  which  is  of 
course  in  harmony  with  the  law  of  mass  action. 
It  is  a  remarkable  fact  that  at  the  temperatures 
found  by  Ramsay  and  Young  to  produce  complete 
destruction  of  ammonia,  viz.,  800° — 900°  C,  the 
largest  yield  is  obtained  in  practice  in  the  coke 
oven  or  gas  retort. 

Woltereek  (Comptes  rend.,  1908,  147,  460;  J., 
1908,  979)  passed  a  current  of  ammonia  gas 
at  the  rate  of  1  litre  (at  15°  C.  and  760  mm.) 
in  15  minutes  through  a  Jena  glass  tube  heated 
in  an  air-bath.  It  was  found  that  pure  dry 
ammonia  does  not  dissociate  below  620°  C,  but  this 
temperature  is  considerably  lowered  by  traces  of 
organic  matter  or  water  vapour.  In  presence  of 
metallic  iron  ammonia  gas  begins  to  dissociate  at 
320°  C.  and  in  the  presence  of  iron  oxide  at  420°  C. 

Bodenstein  and  Kranedieck  ("  Nernst  Fest- 
schrift," 1912,  p.  99;  J.  Chem.  Soc,  1912,  102, 
1155)  measured  the  rate  of  decomposition  in  a 
quartz  vessel  at  780°  C.  and  880°  C.  by  noting  the 
progressive  increase  in  pressure,  allowance  being 
made  for  the  diffusion  of  hydrogen  through  the 
walls  of  the  vessel.  These  authors  concluded  that 
the  decomposition  of  ammonia  is  a  surface  re- 
action of  a  somewhat  complicated  character.  The 
values  obtained  for  the  unimolecular  velocity  co- 
efficient fell  very  considerably  during  the  progress 
of  the  change,  whilst  the  bimolecular  coefficient 
gradually  increased.  It  was  found  that  the  initial 
velocity  was  proportional  to  the  square  root  of  the 
ammonia  concentration.  The  concentration  of  the 
ammonia  was  found  to  play  a  more  important  part 
than  that  of  hydrogen  and  nitrogen,  the  rate  of 
decomposition  being  more  rapid  with  higher 
ammonia  concentrations.  The  velocity  of  decom- 
position is  probably  very  great  and  is  determined 
by  the  rate  at  which  the  ammonia  diffuses  into  the 
pores  of  the  quartz,  for  the  decomposition  takes 
place  on  the  solid  surface. 

Simmersbach  (Stahl  und  Eisen,  1914,  34,  1153— 
1159,  1209—1213)  has  stated  that  the  thermal 
decomposition  of  ammonia,  which  in  the  case  of 
the  pure  gas  starts  at  about  750°  C.  and  is  very 
rapid  at  800°  C,  is  not  appreciable  below  900°  C. 
in  the  conditions  of  dilution  obtaining  during  the 
distillation  of  coal. 

The  same  author  (Report  of  the  German  Coke 
Oven  Committee;  see  Gas  J.,  Aug  3,  1915,  246) 
made  a  brief  study  of  the  decomposition  of  pure 
ammonia  in  contact  with  coke.  The  question  was 
not  treated  from  the  standpoint  of  physical 
chemistry,  but  from  the  details  given,  it  is  pos- 
sible to  calculate  the  velocity  constant,  and  this 
has  been  added  in  the  last  column  of  Table  II.,  the 
first  three  columns  giving  Simmersbach's  results. 
For  reasons  which  will  be  given  later  the  reaction 
is  assumed  to  be  bimolecular.  Pure  dry  ammonia 
was  used  unless  otherwise  stated. 

Under  practical  conditions  of  carbonisation  very 
little  conversion  of  ammonia  into  cyanogen  occurs 
below  1000°  C. 

Heckel  (J.  Gas  Lighting,  May  6,  1913)  states 
that  a  sufficient  quantity  of  water,  moderate 
temperatures,  and  rapid  extraction  of  the  gas 
from  the  carbonising  chambers  are  conditions 
favouring  high  yields  of  ammonia,  since  "  ammonia 
is  formed  at  about  800°  C.  and  is  already  splitting 
up  at  100°  C.  higher."  He  found  that  iron  oxide 
diminished  the  amount  of  nitrogen  remaining  in 
the  coke,  and  an  attempt  to  increase  the  yield  of 
ammonia  by  coking  coal  mixed  with  blast  furnace 
dust  was  made.    The  ferruginous  dust  was  found  to 


work  catalytically  to  the  destruction  of  ammonia 
and  the  process  was  abandoned. 

Table  II. 


Quantity  of       Partial 
ammonia      pressure  of 
remaining      NH,  after 
intact,      ,  experiment, 
%  mm. 


700 

0-66 

7616 

467-6 

000124 

700 

1-68 

56-95 

302-7 

000118 

700 

3-44 

37-75 

170-9 

000126 

700 

3-75 

62-48 

345  3 

000042 

(wet  XH,  used) 

750 

105 

03-48 

353-4 

000144 

750 

1-70 

48-59 

243-9 

0-00164 

Sommer  (Stahl  und  Eisen,  1919,  39,  261,  294, 
349)  states  that  "  coal  gas  acts  in  the  same  way 
as  steam  in  coke  oven  practice — namely,  lowers  the 
concentration  of  the  ammonia  and  so"  prevents  its 
decomposition."  Very  small  concentrations  of 
water  vapour  affect  the  yield  oi  ammonia  similarly. 
The  formation  of  NH„OH  has  been  suggested  to 
account  for  this.  The  time  of  contact  between  the 
gases  and  the  walls  of  the  oven  is  given  as  8T0  sees. 
This  last  statement  must  be  considered  as  inaccurate 
in  view  of  the  present  author's  work  (loc.  cit.). 
Only  negligible  amounts  of  gas  come  in  contact 
with  the  oven  walls  and  the  duration  of  contact 
between  gas  and  coke  varies  with  the  rate  of  gas 
evolution  and  with  the  position  in  the  oven  at  which 
the  particle  of  gas  under  consideration  was  evolved. 

Lewes  ("  The  Carbonisation  of  Coal,"  p.  261) 
mentions  experiments  by  Anderson  and  Roberts 
showing  that  nitrogen  is  not  liberated  as  a  primary 
product  and  hence  what  is  found  in  the  gas  is 
probably  due  to  the  decomposition  of  ammonia.  It 
is  further  stated  that  hydrocyanic  acid  is  formed 
at  1000°  C.  and  upwards. 

It  is  clear  from  the  foregoing  summary  that  no 
extended  study  has  yet  been  made  of  the  thermal 
decomposition  of  ammonia,  more  especially  under 
conditions  directly  applicable  to  carbonising  prac- 
tice. It  is  the  aim  of  the  present  paper  to  inves- 
tigate the  decomposition  of  ammonia  in  presence  of 
coal  gas  and  to  apply  the  results  obtained  to  coke 
oven  practice. 

Experimental  Methods. 

In  the  first  series  of  experiments,  ammonia 
carried  in  a  stream  of  moist  coal  gas  was  passed 
over  heated  material.  A  Woulffe's  bottle  of  2  litres 
capacity  and  fitted  with  a  thermometer  and  pres- 
sure gauge  was  employed  as  a  gas-holder ;  water 
was  allowed  to  drop  into  this  from  a  Mariotte's 
bottle  placed  at  a  predetermined  height,  thus  en- 
suring a  constant  flow  of  gas  through  the  apparatus. 
The  other  outlet  from  the  Woulffe's  bottle  was 
attached  to  a  series  of  bulbs  containing  ammonia 
solution  of  known  concentration.  These  bulbs  were 
completely  immersed  in  water ;  the  water  bath 
contained  a  stirrer  and  a  thermostat  capable  of 
keeping  the  temperature  within   +0'05°  C. 

In  a  few  earlier  experiments  the  amount  of 
ammonia  passed  was  determined  by  weighing  the 
quantity  of  solution  put  in  the  bulb.  Gas  was  then 
passed  through  to  displace  air,  the  ammonia  carried 
off  in  the  gas  stream  during  this  operation  being 
collected  in  sulphuric  acid  and  estimated.  The 
weight  of  ammonia  in  the  bulbs  at  the  commence- 
ment of  the  experiment  was  thus  ascertained.  After 
the  experiment  the  ammonia  solution  was  washed 
out  into  a  graduated  flask  and  titrated.  It  was 
found  subsequently  that  when  using  two  Dufty 
bulbs  and  a  Mohr's  potash  bulb  to  contain  the 
ammonia  solution,  complete  saturation  was  not 
attained  unless  the  gas  stream  was  inconveniently 
slow,  hence  this  procedure  was  modified  and  the 
gas  was  passed  through  sufficient  solution  to  ensure 


116t 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


[April  29,  1922. 


saturation  with  ammonia;  the  partial  pressure  of 
ammonia  and  water  vapour  in  the  gas  was  deter- 
mined from  the  experiments  of  Perman  (J.  Chem. 
Soc,  1903;  83,  1169;  see  Figs.  12  and  13  in  Ministry 
of  Munitions  publication  "Physical  and  Chemical 
Data  of  Nitrogen  Fixation  "). 

The  gas  issuing  from  the  holder  passed  in  turn 
through  a  200  c.c.  bottle  containing  100  c.c.  of 
ammonia  solution  slightly  above  the  correct 
strength,  two  Dufty  bulbs,  one  Mohr's  bulb,  and 
finally  another  Dufty  bulb,  all  containing  ammonia 
solution  of  the  correct  concentration,  the  whole 
series  being  immersed  in  water  as  mentioned 
before.  Following  this  was  a  heated  silica  tube  in 
which  the  decomposition  took  place.  Attached  to 
the  end  of  this  tube  was  a  train  of  absorption  bulbs 
containing  standard  acid.  At  the  conclusion  of 
each  experiment  the  contents  of  these  bulbs  were 
washed  out  into  a  flask  and  titrated  to  determine 
the  quantity  of  ammonia  remaining  intact.  Great 
care  was  taken  to  keep  the  temperature  of  the  gas 
above  its  dew  point  throughout  the  apparatus. 
The  silica  tube  was  filled  with  coke  or  other 
material  under  examination  to  a  length  of  30  cm. 
This  portion  was  embedded  in  sand  and  placed  in 
a  gas-fired  furnace  specially  constructed  for  the 
purpose. 

By  carefully  regulating  the  pressure  of  gas  it 
was' found  possible  to  keep  the  temperature  suffi- 
ciently constant.  In  many  cases  the  temperature 
did  not  vary  more  than  +2°  C,  and  in  no  case  was 
the  variation  more  than  ±5°  C.  The  temperature 
was  measured  by  a  thermocouple  embedded  in  the 
sand  and  touching  the  silica  tube. 

The  ammonia  solution  was  changed  after  every 
5  or  6  experiments.  Before  commencing  with  a 
tresh  charge  sufficient  gas  was  passed  through  the 
apparatus  to  ensure  absence  of  air.  Complete 
absence  of  air  is  essential,  as  ammonia  is  very 
easily  oxidised  at  a  high  temperature.  Partly  in 
order  to  ensure  absence  of  oxygen  in  the  gas  used 
and  partlv  to  minimise  as  far  as  possible  the  volume 
changes  which  take  place  when  hydrocarbon  gases 
are  heated,  the  coal  gas  used  in  all  experiments 
was  drawn  into  the  holder  through  a  tube  main- 
tained at  about  900°  C. 

All  coke  or  fire-brick  used  for  filling  the  silica 
tube  was  of  such  a  size  as  to  pass  through  TV  in. 
mesh  and  to  be  retained  on  a  ^   in.  mesh. 

The  calculation  of  the  time  of  contact  presented 
certain  difficulties.     In  the  first  place  there  is  no 
direct  method  for  determining  what  space  in  the 
tube   is   available   for   gas    flow.      This   cannot   be 
deduced  from  the  total  space,  for  a  portion  of  this 
consists   of   pores   so  small   or  situated   in   such   a 
position  as  to  form  pockets  of  stagnant  gas.     The 
method  finally   adopted  wa6  to  fill  the   tube  com- 
pletely with  the   granular  material  to  be  used  in 
the  experiments;  after  weighing,  the  tube  was  then 
filled   with   a    liquid  of   low  surface  tension — e.g., 
ethyl    alcohol — and    the    volume    of    alcohol    deter- 
mined by   weighing.     This  volume   was  taken   as 
that  available  for  free  gas  flow.     As  an  example 
it  may  be  mentioned  that  in  one  case  the  inter- 
stices between  the  solid  granules  including  surface 
pores   (obtained  by  first   soaking   the   granules   in 
water  and  then  determining  the  additional  water 
required  to  fill  the  tube)  was  386  c.c.  per  30  cm. 
length  of  tube ;  the  pore  space  in  the  granules  was 
0-76   c.c,    making   462   c.c.    in    all.      The   volume 
available   for   gas    flow    as    determined   by    alcohol 
was  3'9o  c.c. 

Again.  in  consequence  of  the  reaction 
2NHJ  =  N2+3H:.,  there  is  a  progressive  increase  in 
the  volume  of  the  gases,  and  therefore  in  the  rate 
of  travel  from  point  to  point  along  the  heated 
tube.  To  calculate  the  time  of  contact  exactly  it 
would  be  necessary  to  know  the  reaction  constant; 
it  is.   however,  the  purpose  of  the  experiment   to 


determine  this  and  hence  an  approximation  must 
be  employed.  The  limits  between  which  the  values 
must  lie  may  be  determined  as  follows: — If  the 
amount  of  decomposition  was  a  linear  function  of 
the  time  of  contact  the  true  mean  volume  of  the 
gases  would  be  ^(initial  vol.  +  final  vol.),  i.e., 
(initial  vol.  +  J  vol.  of  ammonia  decomposed);  this 
assumption  gives  ■  the  longest  possible  time  of 
contact.  The  shortest  possible  time  is  given  by 
taking  the  final  volume,  i.e.,  by  assuming  the 
reaction  to  be  instantaneous.  It  was  found  that 
by  taking  the  mean,  i.e.,  (initial  vol.  +  f.  of 
ammonia  decomposed)  the  probable  error  is  loss 
than  0'5%,  which  is  sufficiently  accurate  for  the 
present  purpose.  Since  the  coal  gas  used  had  been 
previously  heated  to  900°  C.  it  was  assumed  that 
no  further  volume  changes  due  to  decomposition 
of  hydrocarbons  would  take  place,  though  this 
assumption  is  probably  not  quite  accurate.  It  is 
not  to  be  expected  in  view  of  these  considerations 
and  of  the  difficulty  of  keeping  a  high  furnace 
temperature  constant  that  the  values  obtained 
for  the  reaction  coefficient,  k,  will  be  quite 
constant.  A  number  of  experiments  were  per- 
formed in  each  series  and  the  mean  taken  after 
eliminating  any  widely  divergent  values. 

Experimental  Results. 
Order  of  the  reaction. 

The  first  experiments  were  directed  to  the  deter- 
mination of  the  order  of  the  reaction.  By  analogy 
with  phosphine  it  appeared  probable  that  this 
would  be  unimolecular,  but  Bodenstein  and  Krane- 
dieck's  results  show  that  the  reaction  using  pure 
ammonia  gas  in  a  quartz  vessel  is  very  nearly 
bimolecular,  the  deviation  from  this  being  due  to  a 
subsidiary  diffusion  effect.  These  authors 
employed  a  quartz  bulb ;  in  the  present  experi- 
ments the  ratio  of  surface  to  gas  volume  is 
enormouslv  increased,  and  it  was  thought  possible 
that  the  diffusion  effect  might  be  minimised,  if  not 
entirely  masked. 

The  method  employed  for  the  determination  of 
the  order  of  the  reaction  was  that  of  integration 
of  the  same  fractional  parts  of  the  reacting  sub- 
stances  (cf.  Mellor  "  Chemical  Statics  and 
Dynamics,"  p.  61).  If  n  is  the  order  of  the  reaction 
and  t,  and  f,  are  the  times  taken  for  the  concentre 
tion  of  the  ammonia  to  fall  to  the  same  fractional 
part  of  the  initial  concentration  when  this  latter 
is  a,  and  o,  respectively,  it  can  be  shown  that 
(X  1   la  whence  n  =  l+log  t,/i2-4-log  a./^. 

mm. 
260 


240 


220 


.2    200 
d 

|     180 
o    160 

§ 

5    140 
£ 

p. 

3  120 

c2  ioo 

80 


\ 

\ 

— \ 

\ 

\ 

\ 

N 

x 

*^-~ 

1  2  3 

Time  of  contact— seconds. 

Fio.  1. 


Vol.  XLI.,  No.  8.) 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


117t 


A  series  of  experiments  was  performed  using  a 
silica  tube  packed  with  coke  as  the  decomposing 
material  and  three  different  initial  concentrations 
of  ammonia,  viz.,  247'3  mm.,  165  mm.,  and 
134  mm.,  and  the  time  of  contact  was  plotted 
against  the  concentration  of  ammonia  in  the  issuing 
gases.  The  curves  obtained  are  shown  in  Fig.  1. 
The  value  of  n  was  calculated  from  these  curves 
(see  Table  III.).  The  temperature  of  the  coke  was 
755°  C.  in  every  case. 

Table  III. 


Initial 
concentration. 


Fraction 

of  initial    !        (,. 
cone.  sees. 

attained 


■2t:  2  mm.  ( 

0-9 

0-22 

0-32 

1-93 

\t 

0-8 

0-47 

0-72 

205 

165  mm.      . 

0-7 

0-80 

1-20 

2-00 

0-6 

124 

1-85 

1-99 

165  mm. 

0-9 

0-32 

0-40 

207 

ta 

0-8 

0-72 

0-S5 

1-80 

134  mm.     i 

0-7 

1-20 

1-50 

207 

0-6 

1-85 

2-52 

247 

( 

0-9 

0-22 

0-40 

1-97 

ta 

247-3  mm.   ! 

0-8 

0-47 

0-85 

1-96 

134  mm. 

0-7 

0-80 

1-50 

203 

0-6 

1-24 

2-52 

215 

It  is  clear  from  the  results  obtained  that  the 
reaction  may  for  all  practical  purposes  be  con- 
sidered as  bimolecular  in  this  case. 

Temperature  coefficient  of  the  reaction  and  value 
of  fc. 
Since  two  molecules  of  ammonia  interact  we  have 
the  case  in  which  equimolecular  proportions  of  the 
reacting  substances  are  present  and  therefore 
dx/df  =  fc  (a— x)2 


whence  k  =  —  ( — ) 

t    \ a-x     a  / 


For  the  purpose  of  these  experiments  gas  coke 
was  used  as  the  decomposing  material;  the  results 
obtained  are  given  in  Table  IV. 

Table  IV. 


Partial 

Temper- 

Time of 

pressure 

Cone,  of  ammonia. 

ature. 

contact, 
sees. 

of  water 
vapour. 

Initial. 

Final. 

mm. 

mm. 

mm. 

k. 

850°  C. 

106 

26-5 

175-6 

81-5 

000621 

1-30 

26-5 

175-6 

781 

0-00546 

1-584 

26-5 

175-6 

72-2 

0-00515 

206 

26-5 

175-6 

57-2 

0-00572 

2-20 

26-5 

175-6 

53-6 
Mean 

000590 
0-00569 

755°  C. 

1-07 

26-5 

159-2 

117-4 

0-00209 

1-40 

26-5 

144-5 

100-9 

0-00213 

1-75 

26-5 

148-7 

91-8 

000238 

2-52 

26-5 

1561 

84-9 

000213 

2-66 

26-5 

151-7 

81-9 

0-00210 

9  15 

48-0 

193-3 

41-6 
Mean 

0-00205 
0-00215 

6*5°C. 

1-72 

26-5 

157-4 

136-8 

0000556 

2-34 

26-5 

158-6 

131-8 

0000550 

4-40 

26-5 

170-8 

120-1 

0- 000562 

5-22 

26-5 

173-4 

113-9 
Mean 

0-000577 
000056. 

630°  C. 

2-39 

26-5 

175-6 

157-4 

0-00028 

303 

26-5 

175-6 

151-5 

000030 

3-86 

26-5 

175-6 

137-6 

0-00026 

4-60 

26-5 

175-6 

141-1 
Mean 

003030 
0-00028 

520°  C. 

3-7 

26-5 

175-6 

162-1 

000013 

5-15 

26-5 

175-6 

158-2 

0-00014 

5-72 

26-5 

175-6 

154-5 

0-00016 

802 

26-5 

179-9 

146-5 
Mean 

000016 
000015 

relationship  between  the  values  of  the  velocity  con- 
stants fcj  and  k2  at  absolute  temperature  T,   and 

T3  is  given  by  the  empirical  formula  k2  =  kie  ~iT-'  T"-' 
A  being  a  constant.  This  expression  has  been 
applied  to  the  present  experiments.  From  the 
experiments  at  850°  and  655°  C.  the  value  of  A 
is  found  to  be  13,300.  The  results  are  given  in 
Table  V. 

Table  V. 


From  the  form  of  the  well-known  van't  Hoff 
isochore  d.loge  K/dT  =  Q/RT-  Arrhenius  (Z. 
physik.    Chem.,    1889,   4,   226)   has   found   that   the 


Temperature. 

k  (found). 

k  (calc). 

850°  C. 

755 

655 

600 

520 

0-00673 
0-00215 
0- 00056 
0-00025 
0-00013 

000673 
0-00225 
0-00056 
0-00023 
0000049 

The  temperature  coefficient  (i.e.,  the  velocity  at 
r+ 10° /velocity  at  t°)  of  the  reaction  is  F136  taking 
fc8S,  and  A-6SS.  If  the  higher  of  the  two  values  of 
k  obtained  from  Simmersbach's  experiments  at 
750°  C.  be  taken  we  have  fc:stl  =  000164  and 
/.■;ol,  =0'00123,  whence  the  temperature  coefficient 
is  1'06.  The  reaction  is  thus  one,  the  velocity  of 
which  does  not  increase  rapidly  with  the  tempera- 
ture. It  will  be  seen  from  the  results  that  fcS!0  w.ts 
found  to  be  considerably  above  the  calculated  figure. 
No  explanation  of  this  was  forthcoming,  but  the 
result  was  confirmed   by   repeating  this  series. 

Decomposition  of  ammonia  in  tubes  not  filled  with 
porous  material. 

In  order  to  examine  this  point  three  silica  tubes 
of  radii  1"18  cm.,  0'462  cm.,  and  0-273  cm.  respec- 
tively were  employed.  These  were  coated  with  a 
thin  film  of  carbon  by  passing  a  gas  rich  in  hydro- 


Radius  of  tube, 
cm. 

Value  of  V  at 

which  turbulent  flow 

commences. 

cm.  per  sec. 

Greatest  value  of 
V  attained 

in  experiment?, 
cm.  per  sec. 

118 

0-462 

0-273 

1563 
3994 
6760 

1-45 
3-6 
14-5 

Table  VI. 


Partial 

Radius  of 

Time  of 

pressure 

Cone,  of  ammonia. 

tube. 

contact, 

of  water 

sees. 

vapour. 

Initial: 

Final. 

mm. 

mm. 

mm. 

k. 

118  cm. 

31-9 

26-5 

175-6 

159-2 

0-0000185 

(r,) 

32-4 

26-5 

175-6 

158-6 

0-0000188 

39-8 

26-5 

175-6 

156-3 

0-0000176 

56-5 

26-5 

175-6 

152-0 

0-0000156 

73-7 

26-0 

184-1 

152-3 

0-0000157 

95-8 

26-5 

175-6 

137-5 

0-0000165 

105-7 

26-5 

175-6 

136-7 
Mean 

0-0000153 
0-0000169 

0-462  cm. 

12-69 

26-5 

175-6 

154-9 

0-0000600 

<r.) 

1304 

26-5 

175-6 

1531 

0-0000643 

14-20 

26-5 

175-6 

152-3 

0-0000612 

160 

26-5 

175-6 

149-6 
Mean 

0-0000617 
0-0000618 

0-273  cm. 

2-66 

26-5 

175-6 

1610 

0000194 

</i) 

3-66 

26-5 

175-6 

158-1 

0-000172 

4-23 

26-5 

175-6 

154-7 

0-000182 

4-30 

20-5 

175-6 

154-3 
Mean 

0-000184 
0-000183 

carbons  through  each  of  the  highly  Heated  tubes. 
This  ensured  that  the  surface  of  each  should  be 
similar  in  physical  character.  All  measurements 
of  the  rate  of  decomposition  were  made  at  755°  C. 
Steady  flow  of  gas  in  a  tube  gives  place  to  tur- 
bulent motion  when  V  =  1000n//>r  where  V  =  velocity 
of  gas  in  cm.  per  sec,  i;  =  viscosity,  p  =  density  of 


118t 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA 


[April  29,  1922. 


the  gas  and  r  =  radius  of  the  tube.  From  the 
following  figures  it  will  be  seen  that  turbulent 
flow  never  occurred  in  these  experiments  (i;  for 
coal  gas  at  755°  C.=3-58xICr4 :  Foxwell,  loc. 
cit.). 

Details  of  these  experiments  are  given  in  Table  VI. 
If  the  rate  of  decomposition  depends  on  the  area 
of  surface  present,  k  oc  r ;  if  the  rate  depends  on  the 
surface  per  unit  volume  of  gas  space,  fcocl/r; 
neither  of  these  hypotheses  can  be  substantiated, 
but  it  is  apparent  that  k  may  °C  1/r1.  Let  it  be 
assumed  that  in  the  case  of  the  narrowest  tube 
k  oc  1/r1;  if  this  is  also  true  for  r,  and  r„  we  have 
Calculated.  Determined. 

;.-, 0-000183  (assumed)        0-000183 

/.- 0-0000610  . .  0-0000618 

yt," 0-0000099  . .  00000169 

In  view  of  the  fact  that  seven  concordant  results 
wore  obtained  for  klt  it  does  not  seem  likely  that 
any  experimental  error  occurred.  It  appears 
probable  that  in  narrow  tubes  fcoc  1/r2,  i.e.,  the 
rate  of  decompostion  in  a  circular  tube  varies  in- 
versely as  the  volume  per  unit  length  of  the  tube 
for  small  diameters.  For  larger  tubes  this  no 
longer  holds,  and  it  may  be  that  for  very  large 
tubes  fcocl/r;  time,  however,  did  not  permit 
further  work  upon  this  point. 

Influence  of  porosity  on  the  rate  of  decomposition 
of  ammonia  in  contact  with  solids. 

Cells  iu  coke  and  refractory  materials  are  in 
general  roughly  spherical  in  shape,  but  since  they 
are  interconnected  they  may  be  regarded  as  form- 
ing a  series  of  capillary  passages  throughout  the 
mass.  It  may  be  remarked  en  passant  that  the 
interconnexion  of  the  cells  is  evidenced  by  the 
methods  in  use  for  the  experimental  determination 
of  porosity. 

Let  a  mass  of  gas,  containing  a  given  proportion 
of  ammonia  under  a  gauge  pressure  p,  be  forced 
through  a  pore  of  length  I  and  radius  r,  the 
internal  viscosity  of  the  gas  mixture  being  ij. 

The  quantity  of  ammonia  Q,  decomposed  in  a 
given  time  varies  (1)  inversely  as  the  square  of  the 
radius  of  the  pore,  i.e.,  Qoc  1/r2;  (2)  directly  as 
the  amount  of  gas  passing  into  the  pore,  i.e., 
Qoc  p-r4/8?>j.  Hence  as  a  first  approximation, 
Qoc  p-r2/8/i(,  i.e.,  the  quantity  decomposed  in  a 
given  time  varies  directly  as  the  square  of  the  radius 
of  the  pore.  (The  foregoing  is  not  quite  accurate,  as 
Q  is  also  an  inverse  function  of  the  time  of  con- 
tact, since  as  this  increases  the  amount  decom- 
posed in  unit  time  becomes  less.  Provided  the 
time  of  contact  is  short,  however,  this  correction 
will  not  materially  affect  the  argument.)  It 
becomes  evident,  therefore,  that  in  considering  the 
influence  of  porosity  the  important  factor  is  not 
total  porosity  but  the  size  of  the  pores.  In  general, 
increase  in  porosity  of  coke  or  bricks  is  the  effect 
of  increasing  the  size  of  the  pores  rather  than 
their  total  number,  hence  porosity  may  become  a 
most  important  factor. 

The  conditions  dealt  with  here  are  particularly 
applicable  to  the  walls  of  the  coke  oven.  As  was 
shown  previously  (Foxwell,  loc.  cit.),  pressures  of 
the  order  of  200-^-400  mm.  w.g.  are  met  with  towards 
the  bottom  of  the  oien.  Gas  in  contact  with  the 
oien  walls  tends  to  be  forced  into  the  pores  in  the 
bricks,  and  decomposition  of  gaseous  substances 
takes  place.  Although  the  pores  in  the  interior  of 
brick  are  soon  filled  with  carbon,  the  surface  pores 
are  exposed  to  hot  air  every  time  the  oven  is  dis- 
charged and  for  a  short  distance  into  the  wall 
th.i  pores  will  retain  their  original  sizes  and 
characteristics. 

Influence  of  chemical  composition  of  fire-bricks  on 
the  rate  of  decomposition  of  ammonia. 

These  experiments  were  performed  in  an  exactly 
similar  manner  to  those  previously  recorded,   the 


silica  tube  being  filled  with  firebrick  grains  crushed 
to  jig  in. — j'fr  in.  mesh.  In  the  case  here  dealt  with 
the  initial  concentration  of  the  ammonia  was  deter- 
mined by  the  method  of  analysis  of  the  solution  as 
described  previously. 

Refractory  materials  used  in  the  construction  of 
coke  ovens  fall  under  three  heads  : — (1)  Silica  bricks 
containing  95  %  of  silica ;  (2)  silicious  bricks  con- 
taining 80 — 85%  of  silica;  (3)  clay  bricks  containing 
50 — 60%  of  silica.  The  last-mentioned  type  repre- 
sents older  practice  and  is  rapidly  falling  out  of 
use  on  account  of  the  liability  to  6alt  corrosion  and 
excessive  "after-contraction";  clay  bricks-  have 
not  therefore  been  considered  here. 

Silicious  bricks  are  generally  used  in  this  country, 
but  silica  bricks  are  coming  into  favour  and  are 
almost  exclusively  used  in  America. 

Four  bricks  have  been  examined,  the  analyses  of 
which  are  given  below:  — 


Silicious  bricks. 

Silica  brick 
high  in  iron. 

Silica  brick 
low  in  iron. 

Low  in 

Low  grade 

iron. 

high  in  iron. 

A. 

B. 

C. 

D. 

°/ 

% 

% 

% 

SiOs   .. 

94-69 

94-45 

83-29 

73-80 

AJ,0,.. 

1-29 

1-65 

14-17 

19-78 

Fe.O, 

1-31 

0-50 

0-52 

3-90 

TiO,  .. 

0-15 

0-13 

0-66 

0-66 

CaO    .. 

1-93 

2-74 

0-32 

0-45 

MgO  .. 

016 

012 

010 

0-07 

Ka.O 

0-28 

0-15 

0-12 

0-58 

K,0   .. 

0-25 

0-62 

0-64 

0-82 

100-06 

100-36 

99-82 

100-12 

Porosity — 

s    %  bv  vol.  . . 

28-0 

27-3 

27-5 

25 

%  by  wt.  . . 

15-8 

15-5 

15-9 

13-2 

The  measurements  of  the  velocity  of  decomposition 
of   ammonia  in  contact  with   the   above  bricks   at 
755°  C.  are  given  in  Table  VII. 
Table  VII. 


Initial 

Concentration  of 

Time  of 

cone,  of 

ammonia. 

Brick. 

contact, 

water 

I: 

sees. 

vapour, 
mm. 

Initial,        Final, 

mm.            mm. 

1 

Silica  brick 

1-86 

26-5 

151-7           133-7 

0-000477 

high  in  iron 

1-865 

26-5 

149-6 

133-6 

0-000432 

A. 

2-29 

26-5 

1490 

130-2 

O000423 

3-20 

26-5 

163-7 

126-7 
Mean 

0000402 
0000433 

Silica      brick 

9-33 

48-0 

155-4 

133-5 

0000113 

low  in  iron 

18-83 

48-0 

159-2 

122-1 

0-000101 

B. 

30-5 

n.d. 

186-1            121-2 
Mean 

0-000095 
0000103 

Silicious  brick 

1065 

26-5 

153-S             84-1 

0-00505 

low  in  iron 

2-04 

26-5 

1510              65-1 

II-IMMLS 

C. 

3-785 

26-5 

153-4              39-2 
Probable  value 

0-00502 
0-00502 

Silicious  brick 

0-79 

48-0 

1760 

63-9 

0-0126 

high  in  iron 

0-91 

26-5 

149-5 

571 

0-0121 

D. 

0-93 

26-8 

1490 

52-7 

00116 

1-13 

26-5 

1531 

58-6 

00093 

3-58 

480 

167-3 

19-3 

00128 

1214 

48-0 

107-1 

4-8 

0-0164 

Prob 

able  value 

00123 

It  will  be  recollected  that  k,5B  for  gas  coke  was 
found  to  be  0'00215.  The  first  point  noticeable 
with  regard  to  the  above  results  is  the  great  effect 
of  iron  oxide,  comparatively  small  increments  of 
which  considerably  increase  the  velocity  of  the 
reaction.  Hitherto  iron  has  been  avoided  in  coke 
oven  bricks  and  gas  retorts  because  of  the  formation 
of  ferrous  silicate  under  reducing  conditions,  as 
this  constituent  lowers  the  melting-point  of  the 
material;  an  additional  reason  for  the  avoidance 
of  iron  is  here  indicated.     In  the  second  place,  even 


Vol.  XIX,  No.  8.] 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


119t 


poor  quality  silica  bricks  have  considerably  less 
decomposing  effect  than  the  best  quality  of  silicious 
bricks,  indeed  the  velocity  constant  for  brick  B 
is  slightly  less  than  that  found  for  the  empty  tube. 
No  explanation  of  this  latter  observation  has  been 
found,  though  the  fact  may  be  a  special  case  of  the 
general  phenomenon  mentioned  in  the  concluding 
sentence  of  Appendix  III. 

In  the  case  of  the  silica  brick  the  velocity  constant 
decreased  slightly  with  the  time  of  contact.  While 
too  much  emphasis  must  not  be  placed  on  this 
observation  on  account  of  the  magnitude  of  the 
unavoidable  experimental  errors  referred  to  pre- 
viously, it  seems  possible  that  the  mechanism  of  the 
decomposition  of  ammonia  in  contact  with  a  silica 
brick  and  in  presence  of  coal  gas  and  water  vapour 
is  different  from  that  in  contact  with  other 
materials.     It  may  be  that  water  vapour  and  other 

Analyses  of  coke  ashes. 


Gas 

coke. 

No.  1. 

No.  2. 

No.  3. 

No.  4. 

No.  5. 

No.  6. 

No.  7. 

SiO,     . . 

3907 

47-53  i  35-80 

33-60 

54-43 

3400 

33-40 

1865 

A1,0,  .. 

33-63 

27-65     20-10 

19-60 

23-62 

14-50 

19-70 

11-00 

Fe.O,  .. 

10-20 

1300 

— 

9-20 

7-80 

— 

9-45 

5-31 

FeS      .. 

— 

— 

35-20 

— 

— 

10-30 

— 

— 

1 

— 

— 



— 

— 

32  30 

— 

— 

TiO,     . . 

1-25 

1-30 

119 

30-00 

104 

0-90 

1-25 

0-55 

CaO      .. 

4-24 

4-95 

6-20 

3-47 

2-70 

4-45 

32-50 

62-30 

MgO     . . 

0-96 

0-72 

0-51 

0-51 

0-45 

0-52 

0-52 

0-30 

Na.O    .. 

0-26 

0-26 

014 

0-18 

019 

018 

017 

0-09 

K,0     .. 

1-47 

109 

0-92 

0-77 

7-50 

2-95 

0-75 

0-45 

SO,      .. 

3-26 

3-83 

— ■ 

2-70 

2-20 

2-85 

1-82 

Table  VIII. 

Cone  of 

Cone,  of  ammonia. 

Coke 

Time  of 

water 

from 

contact. 

vapour, 

Initial, 

Final, 

*. 

mixture 

sees. 

mm. 

mm. 

mm. 

No.  1  . . 

0-918 

26-5 

154-7 

120-7 

000199 

1056 

26-5 

1480 

111-4 

0-00200 

1-74 

290 

1340 

89-2 

0-00216 

205 

290 

1340 

90-0 

0001 78 

311 

290 

1340 

76-4 

0-00181 

4-24 

290 

1340 

65-1 

Mean 

0-00186 
0-00193 

No.  2  . . 

0-945 

26-5 

1540 

108-6 

0-00287 

1-146 

26-5 

149-5 

108-9 

0-00218 

1-39 

26-0 

153-4 

98-9 

0-00258 

1-706 

26-5 

153-4 

92-9 

0-00248 

1-92 

26-5 

160-2 

891 

000259 

S-82 

20-5 

151-5 

73-1 
Mean 

0-00186 
000242 

No.  3  . . 

1045 

26-5 

147-4 

110-5 

000217 

1184 

26-5 

147-3 

110-S 
Mean 

0-00190 
0-00203 

No.  4  . . 

105 

26-5 

157-4 

119-9 

0-00188 

1-17 

26-5 

160-5 

116-7 

0-00200 

2-44 

26-5 

161-1 

96-8 
Mean 

000169 
0-00186 

No.  5  . . 

0-957 

290 

1340 

27-9 

0-0297 

1-30 

290 

1340 

21-7 

0-0297 

1-475 

29-0 

1340 

17-7 

0-0335 

2-26 

290 

134-0 

14-3 

0-0276 

2-515 

290 

1340 

13-4 
Mean 

0-0261 
00293 

No.  6  . . 

0-977 

290 

134-0 

77-6 

0-00558 

1-44 

290 

134-0 

64-8 

0-00553 

1-52 

290 

1340 

61-8 

0-00574 

208 

29-0 

1340 

51-6 

Mean 

0-00575 
0-00565 

No.  7  . . 

0  78 

290 

1340 

82-5 

000598 

108 

290 

1340 

720 

000596 

2-06 

290 

1340 

48-7 
Mean 

0-00030 
0-00608 

No.  S  . . 

1-14 

26-5 

150-2 

111-8 

000200 

1-20 

26-5 

150-1 

119-4 

000142 

1-33 

26-5 

162-3 

126-9 

000131 

3-86 

26-5 

154-0 

99-7 

0-00093 

Gas  coke  :  Mean  000215  (see  Table  IV. 


gases  condense  more  readily  to  form  surface  films 
on  a  surface  of  tridymite,  cristobalite,  and  calcium 
silicates,  than  on  a  surface  containing  large 
amounts  of  ignited  clay,  felspar,  and  no  calcium 
compounds.  It  has  not  as  yet  been  found  possible 
to  pursue  the  matter  further. 

Influence    of   the   composition    of   coke   ash   on    the 
velocity  constant. 

Bearing  in  mind  the  observations  just  mentioned, 
it  seemed  possible  that  the  chemical  composition  of 
coke  ash  would  have  some  influence  on  the  velocity 
constant.  A  series  of  experiments  was  performed  on 
a  Durham  coal  in  order  to  obtain  some  information 
on  this  point.  The  coal  in  question  contained 
8"10%  of  ash,  the  composition  of  which  is  given 
below.  500  g.  was  placed  as  a  compressed  charge 
in  a  small  fireclay  retort  which  was  then  luted 
up,  a  small  opening  being  left  for  the  escape  of 
the  volatile  products.  A  large  muffle  furnace  was 
heated  to  950°  C.  and  the  fireclay  retort  placed 
therein;  the  door  of  the  muffle  was  then  closed. 
Coke  prepared  in  this  way  had  a  hard  dense  struc- 
ture similar  to  that  of  coke  produced  in  the 
by-product  coke  oven. 

The  following  mixtures  were  coked: — (1)  Coal 
alone,  (2)  coal  with  5%  of  impure  pyrites  (FeS,) 
from  a  coal  seam,  (3)  coal  with  3%  of  rutile  (TiO,), 
(4)  coal  with  5%  of  orthoclase  felspar,  (5)  coal  with 
5%  of  ferric  oxide,  (6)  coal  with  3%  of  lime 
(ignited),  (7)  coal  with  10  of  lime,  (8)  coal  with 
1%  of  common  salt.  The  ashes  of  Nos.  1  to  7  were 
analysed.  Iron  pyrites  is  converted  into  ferrous 
sulphide  in  the  coke  oven,  but  on  burning  off  com 
bustible  matter  to  obtain  ash  for  analysis  ferric 
oxide  is  formed.  In  giving  the  analysis  of  Nos.  2 
and  5  an  attempt  has  been  made  to  give  the  actual 
composition  of  the  ferruginous  constituents  in  the 
coke,  which  alone  is  of  any  value. 

Results  of  measurements  of  velocity  of  decom- 
position of  ammonia  at  755°  C.  in  contact  with  the 
above  cokes  are  given   in   Table  VIII. 

In  considering  the  above  results  it  is  clear  that 
rutile  and  felspar  have  little  or  no  action  and  may 
therefore  be  neglected.  The  completely  different 
behaviour  of  iron  pyrites  and  ferric  oxide  is  most 
striking.  During  carbonisation  these  substances 
are  converted  into  ferrous  sulphide  and  metallic 
iron  respectively;  hence  ferrous  sulphide  slightly 
increases  the  rate  of  decomposition,  while  the 
addition  of  about  3|%  of  iron  to  the  coal  increases 
the  value  of  the  velocity  constant  fifteen-fold. 
Combining  these  results  with  those  obtained  for 
firebricks  (Table  VII.)  it  is  safe  to  conclude  that 
if  iron  is  present  in  the  coal  as  pyrites  it  will  have 
very  little  effect  on  the  yield  of  ammonia,  but  if 
present  in  any  other  form  high  iron  content  is  very 
deleterious.  This  is  also  illustrated  by  the  gas  coke 
examined.  Here  the  iron  content  of  the  ash  is 
considerably  above  that  of  the  Durham  coke,  but 
as  most  of  the  iron  is  present  as  ferrous  sulphide 
the  value  of  k  is  only  slightly  higher. 

The  results  obtained  for  lime  were  somewhat  un- 
expected. The  addition  of  lime  to  coal  is  a  well- 
known  practical  method  of  increasing  the  yield  of 
ammonia,  and  yet  3%  of  lime  multiplies  the 
velocity  of  decomposition  by  three.  The  further 
addition  of  lime  has  but  little  effect. 

It  becomes  of  interest  to  determine  the  reason 
for  the  increased  yields  of  ammonia  obtained  by 
the  liming  process.  Since  lime  does  not  protect 
ammonia  from  decomposition  it  must  act  catalytic- 
ally  by  liberating  nitrogen  as  ammonia  which 
would  otherwise  remain  in  the  coke.  The 
method  of  attack  was  to  compare  the  yields  of 
ammonia  from  limed  and  unlimed  coals  at  various 
temperatures  to  determine  if  the  action  took  place 
mainly  at  low  temperatures  when  the  velocity  of 
decomposition    would    be    low.      Tubes   containing 


120  T 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


[April  29,  1922. 


coal  and  coal  with  3%  of  lime  were  placed  side  by 
side  and  the  whole  tubes  heated  in  the  same 
furnace  as  quickly  as  possible  to  a  predetermined 
temperature ;  each  train  of  apparatus  was  con- 
nected to  the  same  aspirator  in  order  that  the 
suction  should  be  the  same  in  the  two  tubes.  This 
experiment  was  performed  at  several  temperatures 
between  500°  C.  and  850°  C,  but  in  no  case  was 
there  any  notable  additional  evolution  of  ammonia 
when  using  lime.  The  limed  coal  gave  more 
ammonia  than  the  unlimed  at  all  temperatures, 
but  no  sudden  increase  occurred  at  any  tempera- 
ture, hence  this  hypothesis  was  found  to  be  in- 
correct. The  action  is,  therefore,  a  catalytic  one 
which  takes  place  at  all  temperatures,  the  lime  act- 
ing on  the  decomposing  organic  substances  present 
in  coal.  The  increased  yields  obtained  in  practice 
are,  therefore,  the  algebraical  sum  of  two  opposing 
factors.  Where  the  time  of  contact  is  short,  as  in 
horizontal  gas  retorts,  the  liming  process  should 
be  more  successful  than  in  vertical  retorts  and 
coke  ovens  where  the  gases  remain  in  the  retort 
for  a  longer  time. 

Sodium  chloride  had  the  effect  of  decreasing  the 
value  of  k,  and  this  decrease  was  progressive  as  the 
time  of  contact  became  longer.  Further  experi- 
ments were  carried  out  to  ensure  the  truth  of  this 
observation.  The  coke  (No.  1)  was  impregnated 
with  sodium  chloride — 14'7%  was  added  in  all — and 
placed  in  the  silica  tube  as  before.  The  results 
were  as  follow  :  — 


Time  of 

contact, 

sees. 

Initial 
cone,  of 

water 

vapour, 

mm. 

Cone,  of  ammonia. 

Initial 
mm. 

Final, 
mm. 

l: 

0-79                29-0 
0-95                 29-0 
1-53                 290 
1-83                 29-0 
3-49                  29-0 

134 
134 
134 
134 
134 

114-2 
110-9 
101-7 
108-7 
950 

000166 
0-00165 
0-00155 
0-00095 
0-00085 

It  seemed  possible  that  the  explanation  of  these 
results  might  lie  in  the  production  of  hydrochloric 
acid.  Early  experiments  of  Deville  showed  that 
ammonia  in  presence  of  hydrochloric  acid  was  far 
more  stable  than  when  alone;  he  passed  ammonia 
and  ammonium  chloride  separately  through  two 
tubes  heated  side  by  side  in  a  furnace  and  found 
that  the  ammonia  was  completely  decomposed,  but 
the  ammonium  chloride  hardly  showed  any  decom- 
position unless  the  temperature  was  over  1000°  C. 
These  results  were  verified  by  Ludlam  (Trans. 
Faraday  Soc,  13,  43),  who  also  showed  that 
in  presence  of  iron  the  decomposition  of  ammonium 
chloride  was  complete  at  800°  C,  no  ammonia 
being  detectable  after  prolonged  heating.  The 
effect  of  less  prolonged  heating  was  not  tried. 
Further  experiments  showed  that  12%  of  the 
ammonia  present  initially  as  ammonium  chloride 
was  decomposed  on  heating  for  three  hours  to 
500°  C. 

As  a  first  step,  experiments  were  performed  to 
determine  to  what  extent  hydrochloric  acid  is 
formed  in  presence  of  sodium  chloride  and  steam, 
2NaCl+H10+COa=NaaOOs+2HCl. 

It  is  well  known  that  this  reaction  occurs. 
Thus  Spring  (Ber.,  1885,  18,  344)  showed  that 
both  sodium  and  potassium  chlorides  are 
decomposed  by  water  at  400°  C,  with  forma- 
tion of  caustic  alkalis.  Gay-Lussac  and  Theuard 
(cf.  "A  Text  Book  of  Inorganic  Chemistry." 
Newton  Friend,  p.  112)  showed  that  sodium  chloride 
is  not  decomposed  when  heated  with  silica,  alumina, 
etc.  unless  steam  is  present,  when  the  chloride  is 
liydrolysed  with  formation  of  the  oxide  of  the  metal, 
hydrogen  chloride  being  liberated. 


Coal  gas  containing  water  vappur  equivalent  to 
38  mm.  was  passed  over  coke  containing  salt  at 
755°  C.     The  following  results  were  obtained:  — 

Time  of  contact      ..    1-11   ..    1-33  ..    1-60   ..    2-69  ..    4-30  sees. 
Partial    pressure    of 

HC1  formed  . .    0-37  . .    0-49  . .    0-47   . .    0-43   . .    0-34  mm. 

The  results  suggest  that  as  the  time  of  contact 
increases  more  and  more  of  the  hydrogen  chloride 
formed  disappears;  it  appeared  probable  that  it 
had  reacted  with  the  constituents  of  the  coke  ash 
forming  H,S,  Fed,,  and  other  compounds.  In  all 
experiments  in  which  _  hydrogen  chloride  in  any 
form  was  employed,  hydrogen  sulphide  was  found 
in  the  acid  bulbs.  The  reaction  here  investigated 
is  the  source  of  much  of  the  hydrogen  chloride 
always  formed  in  carbonisation,  the  remainder 
coming  from  chlorine  organically  combined,  the 
greater  part  of  which  is  converted  into  hydrogen 
chloride. 

Influence  of  hydrochloric  acid  on  the  decomposition 
of  ammonia. 
The  importance  of  investigating  the  behaviour  of 
hydrochloric  acid  in  the  coke  oven  now  became 
evident.  In  the  first  method  adopted  a  glass  tube 
loosely  packed  with  ammonium  chloride  was  inserted 
into  the  silica  tube,  the  end  projecting  through  the 
rubber  connection.  The  portion  of  the  silica  tube 
containing  the  ammonium  chloride  tube  was  heated 
to  a  predetermined  temperature  which  lay  between 
160°  C.  and  280°  C.  The  mixture  of  coal  gas,  water 
vapour,  and  ammonia,  prepared  as  in  previous  ex- 
periments, was  passed  through  the  ammonium 
chloride  tube  and  thus  took  up  the  required  amount 
of  hydrochloric  acid.  The  whole  gas  mixture  was 
then  passed  over  coke  maintained  at  755°  C.  The 
quantity  of  ammonium  chloride  taken  up  was 
deduced  by  determining  hydrochloric  acid  in  the 
acid  bulbs,  the  assumption  being  made  that  all  the 
hydrochloric  acid  passed  would  be  found  therein. 
It  is  improbable  in  the  light  of  later  experiments 
that  this  assumption  is  quite  correct,  but  the  error 
would  not  seriously  vitiate  the  results  (see 
Table  IX). 

Table  IX. 


Initial  concentration. 

Final 

Time 

cone,  of 

of 

HCI, 

NH„ 

H,0, 

Ratio 

NH„ 

contact, 

*. 

mm. 

mm. 

mm. 

HCI/ 
NH, 

mm. 

sees. 

nil 

0-0 

0-00275 

0-21 

1340 

290 

000157 

490 

4-78 

000271 

1-02 

134-4 

290 

0-0076 

64-0 

308 

000266 

1-40 

134-6 

290 

0-0104 

65-3 

3-24 

000243 

1-93 

134-9 

29-0 

0-0143 

64-5 

3-64 

0-00223 

3-28 

135-4 

290 

00236 

591 

4-95 

000192 

5-28 

137-4 

290 

0-0391 

771 

3-27 

000174 

S-ll 

139-0 

29-0 

0  0583 

76-4 

4-32 

000136 

9-30 

139-9 

29-0 

0-0664 

96-2 

3-26 

0-00100 

15-89 

1441 

290 

0-110 

100-2 

2-19 

000139 

20-71 

146-9 

290 

0-141 

89-4 

2-58 

000170 

24-32 

149-5 

29-0 

0-162 

94-9 

214 

000180 

83-33 

187-7 

29-0 

0-442 

114-5 

3-49 

000097 

56-0 

560 

15-5 

1-0 

50-3 

4-36 

000047 

In  Fig.  3  the  value  of  k  is  plotted  against  the 
ratio  HC1/NH3  (continuous  line).  For  small  con- 
centrations of  hydrogen  chloride  the  velocity  de- 
creases sharply;  it  subsequently  rises  and  then  falls 
steadily  till  pure  ammonium  chloride  is  used.  This 
result  was  considered  so  extraordinary  that  it  was 
thought  advisable  to  repeat  these  experiments  using 
improved  methods.  The  general  arrangement  of 
the  ammonium  chloride  tube  and  silica  tube  is 
shown  in  Fig.  2,  the  object  of  the  new  arrangement 
being  to  prevent  any  possibility  of  ammonium 
chloride  diffusing  back  into  the  space  between  the 
ammonium  chloride  tube  and  the  silica  tube.  The 
amount  of  ammonium  chloride  passed  was  deter- 
mined by  weighing  the  tube  before  and  after  each 
experiment. 


Vol.  XLI .  No.  8.1 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


121  T 


A  series  of  experiments  to  determine  the  rate  of 
decomposition  of  pure  ammonium  chloride  in 
contact  with  coke  was  first  carried  out.  The  figures 
obtained  arc  given  in  Table  X. 


Table  X. 


Initial  concentration. 

Final 

cone. 

Time 

of 

contact, 

/.-. 

HCI,     |    NH„    '    H.O, 

HCI, 

NH„ 

mm.         mm.         mm. 

mm. 

mm. 

sees. 

26-6 

266 

8-5 

24-9 

25-9 

2-45 

0-00041 

24-4 

24-4 

12-0 

23-1 

23-9 

:>H 

0-00026 

34-2 

34-2 

6-7 

32-7 

33-1 

3-29 

0-00029 

29-5 

29-5 

8-1 

27-5 

28-7 

3-82 

III -Jl 

5-0 

BO 

11-8 

4-55 

4-87 

4-31 

IH  in 

0-00022 

n  i -S 

The  rate  of  decomposition  of  ammonia  when 
sufficient  hydrochloric  acid  is  present  to  form 
ammonium  chloride  is  thus  about  one-tenth  of  the 
rate   in    absence   of   hydrochloric   acid.      Tablo   XI 


/:  x  10* 
30 

25  . 

20 

15 

10 

6 


x  1st  series  of  expts. 

o  2nd  series  of  expts 


- 

\ 

r 

o 

V 

> 

,-' 

V 

o 

'"--- 

« 

* 

.'o 

*\ 

01     0-2 


0-3    0-4 
Ratic 


0-5    06      07 

Cone.  HCI 

"     Conc.NHj" 

Fig.  3. 


0-8     0-9 


gives  the. results  of  some  further  experiments  per- 
formed under  the  same  conditions  and  these  values 
are  plotted  in  Fig.  3  (dotted  line).  The  general 
effect  is  to  confirm  the  previous  results,  although, 
as  will  be  seen  from  the  graph,  the  figures  obtained 
were  irregular. 

Table  XL 


Initial  concentration. 

Final 

concentration. 

Time 
of 

HCI, 

IH„ 

H.O, 

Ratio 

1. 

mm. 

mm. 

mm. 

HCI/ 

HCI, 

NH„ 

contact, 

NH,. 

mm. 

mm. 

sees. 

13-5 

195-2 

16-5 

0-069 

12-4 

155-6 

2-25 

000058 

18-2 

196-8 

17-4 

0092 

15-6 

144-5 

2-36 

0-00078 

28-7 

193-8 

15-5 

0-148 

25-8 

151-9 

1-81 

0-00078 

17-8 

114-5 

7-3 

0155 

14-6 

89-9 

210 

0-00110 

20-4 

54-6 

190 

037 

151 

455 

2-90 

0-00126 

24-7 

550 

16-7 

0-45 

21-2 

47-2 

1-81 

0-00165 

30-3 

64-2 

19-2 

0-47 

24-8 

550 

1-84 

0-00141 

29-6 

40-4 

61 

0-73 

27-1 

37-4 

1-82 

0-00109 

These  results  are  somewhat  difficult  to  interpret, 
but  it  may  be  suggested  that  the  explanation  is 
somewhat  as  follows  :  — 

Hydrochloric  acid  influences  the  reaction  in  three 
ways : 

1.  The  surface  of  the  coke  is  partly  coated  with  a 
film  of  hydrogen  chloride;  the  acid  thus  functions 
as  a  negative  catalyst. 


2.  By  virtue  of  the  reactions  FeS  +  2HCl  = 
FeCl2  +  H2S;  FeCl2  +  H\,0  =  FeO+2HCl ;  FeO  +  H2  = 
ILO  +  Fe,  the  comparatively  innocuous  ferrous 
sulphide   is  converted   into   iron   oxide   and   finally 


NHfHfi+eAS 


—CKY  COAL  CAS 


metallic  iron,  which  have  the  effect  of  increasing  the 
velocity  of  decomposition. 

3.  Pure  ammonium  chloride  has  a  low  rate  of 
decomposition,  and  as  tin'  quantity  of  this  begins 
to  predominate  the  effective  quantity  of  ammonia 
available  for  decomposition  is  decreased  and  the 
rate  therefore  falls  off. 

For  low  values  of  the  ratio  HC1/NH3,  the  nega- 
tive catalysis  effect  predominates  as  shown  by  the 
sharp  fall  in  the  value  of  k  between  0  and  O'l 
(Fig.  3).  The  subsequent  rise  in  the  curve  may  be 
assumed  as  due  to  the  predominance  of  the  second 
effect  mentioned  above,  and  as  the  proportion  of 
ammonium  chloride  increases  the  third  factor 
becomes  of  paramount  importance  and  the  curve 
falls  again. 

Practical  Application  op  the  Foregoing  Results. 
It  may  be  well  at  this  stage  briefly  to  summarise 
the  experimental  results. 

1.  The  reaction  when  excess  of  solid  surface  is 
present  is  bimolecular. 

2.  When  passing  ammonia  diluted  with  coal  gas 
over  coke  the  velocity  of  decomposition  increases 
slowly  with  the  temperature,  the  temperature  co- 
efficient being  L136.  The  value  of  the  velocity  con- 
stant, k,  was  found  to  be  capable  of  expression  by 

a(-  -•-■) 
Arrhenius     formula     k2  =  k1e      ^Tl      T='     where  A  = 

13,300. 

3.  For  narrow  tubes  (say  below  0'S  cm.  radius) 
7;  oc  l/rJ  but  it  seems  probable  that  for  wide  tubes 
ice  1/r. 

4.  When  gases  containing  ammonia  are  passed 
through  porous  material  the  amount  of  decomposi- 
tion in  unit  time  varies  directly  as  the  square  of 
the  radius  of  the  pores;  hence  it  is  the  size  of  the 
pores  rather  than  the  total  porosity  that  is  of 
importance. 

5.  In  considering  the  action  of  the  acid  refrac- 
tories of  which  the  walls  of  the  coke  oven  arc 
built,  it  was  shown  that  silica  bricks  have  con- 
siderably less  decomposing  effect  than  silicious 
(80%  Si02)  bricks.  The  presence  of  iron  is  very 
deleterious. 

6.  The  composition  of  the  ash  of  the  coal  has  an 
important  bearing  on  the  rate  of  decomposition. 
Rutile  and  orthoclase  felspar  have  very  little,  if 
any,  action.  Iron  pyrites  is  converted  into  ferrous 
sulphide  during  carbonisation  and  this  increases 
the  velocity  to  some  extent.  Iron  oxide,  which 
is  converted  into  metallic  iron,  enormously  in- 
creases the  rate  of  decomposition  and  the  same 
remark  is  true,  though  to  a  less  extent,  of  lime. 
The  action  of  sodium  chloride  is  of  a  complicated 
nature. 

7.  For  the  purpose  of  further  investigation  the 
value  of  k  for  coke  will  be  taken  as  0"00200  at 
755°  C. 

It  has  been  pointed  out  in  the  author's  previous 
paper  (loc.  cit.)  that  the  time  taken  by  any 
particle  to  reach  the  free  space,  i.e.,  the  time  of 
contact  between  the  ammonia  and  the  coke  or 
walls,  depends  on  the  height  above  the  floor  at 
which  the  particle  was  liberated  and  the  time  that 


122  T 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


[April  29,  1922. 


has  elapsed   since  the  oven  was  charged.      It   was 
shown  that 

_  0-4<2w  ,         1 

~  (?w  -  v)  (273 +T)  /273  °g  "h 
when  i  is  the  time  of  contact  in  minutes,  T  the 
temperature  in  °C,  d  „  the  distance  between  the 
wall  and  layer  of  high  resistance,  I  the  height  of 
charge  (taken  as  213  cm.),  h  the  height  above  oven 
floor  at  which  particle  was  liberated,  qw  the  c.c.  of 
gas  generated  per  minute  in  the  hot  zone  in  each 
lamina  of  unit  cross-section  and  length  <2« ,  and 
v  the  volume  of  gas  in  each  lamina  passing  through 
the  high-resistance  layer  from  the  high-tempera- 
ture zone  per  min. 

Table  XII.  shows  the  effect  on  the  quantity  of 
ammonia  decomposed  of  the  water  content  of  the 
coal  as  charged,  of  the  position  at  which  the 
particle  of  gas  under  consideration  was  generated 
(h)  and  of  the  time  which  has  elapsed  since  the 
oven  was  charged.  It  has  been  shown  in  the 
author's  previous  paper  on  this  subject  (Loc.  cit.) 
that  practically  the  whole  of  the  steam  generated 
in  the  oven  from  added  water  passes  up  the  cool 
interior  of  the  oven,  the  effect  of  steam  being  to 
prevent  some  of  the  gases  from  the  high-tempera- 
ture zone  from  entering  the  low-temperature  zone. 
The  concentration  of  ammonia  in  the  gases  in  the 
high-temperature  zone  is  thus  not  affected  by  the 
added  water,  but  the  time  of  contact  is  diminished. 
In  calculating  this  table  it  is  assumed  that  1  ton 
of  dry  coal  yields  12.000  cub.  ft.  of  gases  and 
vapours  (when  calculated  to  0°  C.  at  760  mm.). 
A  mean  temperature  of  755°  C.  in  the  hot  zone 
is  assumed;  the  height  of  the  charge,  I,  =213  cm.; 
width  of  oven  48  cm. ;  and  the  value  of  the  velocity 
•constant  />--,5=0'00200.  It  has  been  further  shown 
(loc.  cit.)  by  measuring  the  temperatures  in  the 
interior  of  the  charge  that  with  9%  of  added 
water  all  is  evaporated  before  the  14th  hour  and 
that  with  12%  of  added  water  evaporation  is  com- 
pleted between  the  14th  and  20th  hours. 


coal  than  with  dry  coal,  other  conditions  being 
constant.  This  result  is,  of  course,  due  to  the  fact 
that  more  of  the  gases  have  to  pass  through  the 
high-temperature  zone  when  using  wet  coal. 

Considerably  more  decomposition  occurs  than  is 
generally  supposed  to  be  the  case.  As  mentioned 
previously.  Anderson  and  Roberts  have  obtained 
evidence  that  free  nitrogen  in  undiluted  coal  gas 
is  not  a  primary  product  but  results  from  the 
decomposition  of  ammonia.  Consider  as  an 
example  a  gas  containing  0'8%  of  free  nitrogen, 
this  being  an  average  figure ;  on  a  coal  yielding 
10,000  cub.  ft.  of  gas  per  ton  (at  0°  C.  and  760  mm.) 
this  corresponds  to  o'22  lb.  of  ammonia  decom- 
posed. If  the  coal  actually  yields  32  lb.  of  sulphate 
of  ammonia  per  ton,  the  figures  show  60"2  g.  of 
ammonia  decomposed  per  100  g.  actually  evolved. 

To  take  another  instance,  Lewes  ("  Carbonisation 
of  Coal,"  p.  251)  quotes  practical  working  figures 
by  McLeod,  in  which  the  nitrogen  as  ammonia  was 
17"1%  and  free  nitrogen  in  the  gas  19'5%  of  the 
total  nitrogen  initially  present  in  the  coal.  If 
Anderson  and  Roberts'  conclusions  are  accepted 
this  points  to  a  decomposition  of  53'3%  of  the 
ammonia  first  evolved.  It  will  be  seen  that  the 
figures  obtained  in  Table  XII.  for  the  total  amount 
decomposed  are  not  as  high  as  those  calculated  on 
the  above  hypothesis,  and  it  seems  probable  that 
there  are  other  sources  of  free  nitrogen  in  the 
gas. 

At  some  period  between  the  9th  and  14th  hours 
it  will  be  seen  that  the  amount  of  decomposition 
increases  considerably ;  as  the  hot  zone  becomes 
wider  and  wider,  the  cool  zone  becomes  narrower 
and  an  ever-increasing  proportion  of  the  gases 
have  to  pass  up  the  hot  zone.  It  seems  possible 
that  in  the  last  few  hours  of  the  carbonising 
period  very  little  ammonia  escapes  destruction,  a 
result  that  is  borne  out  by  practical  experience. 
Referring  again  to  some  of  the  actual  experi- 
ments performed,  when  the  ammonia  in  the  gas 
had  an  initial  concentration  of  247  mm.,  the  time 


Table  XII. 


Initial  concentration  of 

ammonia= 12 

mm.  in 

all  cases. 

Dry  coal. 

Coal  with  9%  of  water. 

Coal  with  12%  of  water. 

%  of  total 

gases 
passing  up 

Final 

Final 

Final 

hot  zone 

cone. 

g.  NH, 

cone. 

g-NH, 

cone. 

g-NH, 

Time 

excluding 

of  NH, 

decomp. 

of  NH, 

decomp. 

of  NH, 

decomp. 

elapsed 

steam  from 

in  hot 

per 

in  hot 

per 

in  hot 

per 

since          d*. 

Qw-p. 

added 

ft, 

(, 

zone, 

100  g. 

(. 

zone. 

100  g. 

/, 

zone. 

100  g. 

charging. 

water. 

cm. 

sees. 

mm. 

evolved. 

sees. 

mm. 

evolved. 

sees. 

mm. 

evolved. 

9  hrs.       1     3  cm. 

0-943  c.c. 

19-6% 

5 

75-9 

4-26 

12-6 

23-4           7-14 

21-4 

18-7 

8-29 

28-8 

(dry  coal) 

(dry  coal) 

2-52  c.c. 

52-5% 

50 

29-3 

7-05 

8-1 

11-0 

9-5 

110 

7-2 

10-2 

12-0 

(9%  H,0) 

(9%  H,0) 

100 

15-8 

8-7 

5-4 

5-7 

10-57 

3-70 

110 

66 

3-84  c.c. 

80-0% 

150 

71 

10-25 

2-9 

2-60 

11-27     '        3-3 

1-74 

11-5 

3-4 

(12%  H.O) 

(12%  HsO) 

14  hrs.       j  10  cm. 

3-5  c.c. 
(dry  coal, 

72-9% 
(drv  coal. 

5 

68-2 

4-56 

45-2 

50-3 

5-15 

50-4 

9%  H,0) 

9%  H,0) 

50 

26-4 

7-38 

28-1 

21-8 

7-89 

30-3 

4-24  c.c. 

88-3% 

100 

13-8 

903 

18-1 

As  for  dry  coal. 

11-4 

9-44 

18-9 

(12%  H,0) 

(12%  H,0) 

150 

6-4 

10-4 

9-7 

5-26 

10-67             9-8 

20  hrs. 

18-3  cm. 

4-66  c.c. 
(all  cones.) 

97-1% 
(all  cones.) 

5 

50 

100 
150 

93-8 

36-2 

18-9 
8-8 

3-58 

612 

8-26 
9-93 

68-1 

451 

30-2 
16-7 

As  for  dry  coal. 

As  f 

or  dry  coal. 

(See  Appendix  I.) 

An  examination  of  this  table  shows  that  although 
the  presence  of  steam  considerably  decreases  the 
drop  in  concentration  of  ammonia  in  the  gases 
passing  up  the  hot  zone,  yet  the  total  quantity  of 
ammonia  decomposed  is  somewhat  greater  with  wet 


taken  to  fall  to  one  tenth  of  this  value  was  only 
18'2  sees.  In  the  case  of  a  unimolecular  reaction 
this  time  is  independent  of  the  initial  concentra- 
tion ;  it  is  indeed  fortunate  for  the  coking 
industry  that  the  reaction  is  not  unimolecular,  for 


Vol.  XU...  .No.  8.1 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


123t 


in     this     case     very     little     ammonia     would     be 
recovered. 

Effect  of  increasing  the  height  of  the  oven. 

From  the  above  considerations  it  would  appear 
that  the  recent  tendency  to  increase  the  height  of 
the  oven  is  likely  to  affect  adversely  the  yield  of 
ammonia. 

In  order  to  make  a  comparison  it  is  necessary  to 
determine  the  concentration  of  the  ammonia  in  the 
gases  enteriug  the  free  space.  An  approximate 
solution  of  this,  sufficiently  correct  to  serve  as  a 
comparison,  may  be  obtained  by  finding  the  "  mean 
time  of  contact  "  as  follows. 

In  addition  to  the  nomenclature  given  previously, 
let  qc  be  the  number  of  c.c.  of  gas  evolved  per  min. 
for  each  lamina  of  1  sq.  cm.  cross-section  and  length 
de   (toe.  cit.). 

As  mentioned  before,  the  time  of  contact, 
0-idK  ,__    I 


t 


v)  (273 +T)  l'T:; 
04dw 


loge 


-is  constant 


(2w- 

For  any  given  case- 

and   =   y  (say). 

Let  the  total  height  I  cm.  be  divided  into  I  parts  each 
of  1  cm.     The  mean  time  of  contact 

I 


=-M.I"  l  Ioge  I  -  (loge  1  +loge  2  + 


V  loge}) 
•  •  -loge  OJ 


minutes. 


The  volume  of  gases  per  second  passing  up  the  hot 
zone  is  l(qw  -v)  and  the  final  concentration  of 
ammonia  in  these  at  the  moment  of  entering  the 
free  space  may  be  obtained  from  the  formula 
fc=l/*(l/0,-l/C,)   whence 

C2  =  C1/(C1A-i//!xloge?/;+  1). 
In  addition  l(qc  +v)  c.c.  of  gas  per  sec.  pass  up  the 
cool  interior,  and  it  may  be  assumed  without  serious 
error  that  no  appreciable  proportion  of  the  ammonia 
contained  therein  would  be  decomposed.  From 
these  considerations  the  following  figures  have  been 
calculated.     (Table  XIII). 

Table  XIII. 


Moisture 

Time 

Mean 

Initial 

Final 

g-NH, 

Height 

in  coal 

since 

time  of 

cone,  of 

cone,  of 

decom- 

of 

as 

charging 

contact 

am- 

am- 

posed 

charge. 

charged. 

oven, 

in  hot 

monia. 

monia. 

per 

/o 

hrs. 

zone, 
sees. 

mm. 

mm. 

100  g. 
evolved. 

213  cm. 

Dry  coal 

9 

16-9 

12 

11-3 

5-8 

14 

15-2 

12 

9-7 

19-2 

20 

20-8 

12 

8-1 

32-5 

9%  water 

9 

6-3 

12 

1115 

71 

14 

15-2 

12 

9-7 

19-2 

20 

20-8 

12 

8-1 

32-5 

12%  water 

9 

4-15 

12 

11-1 

7-5 

14 

12-4 

12 

9-55 

20-4 

20 

20-8 

12 

8-1 

32-5 

274  cm. 

Dry  coal 

9 

17-65 

12 

11-3 

5-8 

14 

15-9 

12 

9-6 

20-0 

20 

21-7 

12 

80 

33-3 

9%  water 

9 

6-6 

12 

111 

7-5 

14 

15-9 

12 

9-6 

20-0 

20 

21-7 

12 

8-0 

33-3 

12%  water 

9 

4-3 

12 

1105 

7-9 

14 

12-95 

12 

9-5 

20-8 

20 

21-7 

12 

80 

33-3 

It  will  be  seen  that  the  effect  of  increasing  the 
height  of  the  charge  is  very  small.  The  theoretical 
diminution  in  the  yield  of  ammonia  obtained  is  so 
slight  that  it  would  not  be  noticed  in  practice;  this 
is,  in  fact,  the  case. 

The  effect  of  moisture  in  the  coal  is  also  very 
slight.  This  deduction  does  not  in  any  way  run 
counter  to  the  theory  previously   advanced  of  the 


path  of  travel  of  the  gases,  but  must  rather  be  taken 
as  indicating  that  the  beneficent  action  of  steam 
is  confined  to  the  free  space.  On  the  other  hand 
it  must  not  be  overlooked  that  by  causing  more  of 
the  gases  to  travel  through  the  hot  zone,  greater 
opportunity  for  the  Tervet  reaction  is  given. 
.Moreover,  owing  to  the  greater  velocity  of  the  gases 
m  the  hot  zone,  the  decomposition  of  the  ammonia 
thus  formed  is  lessened.  The  work  of  Sommer 
(Stahl  u.  Eisen,  1918,  39,  1,  294;  see  J.,  1919,  350  a) 
points  to  considerable  possibility  of  loss  of  ammonia 
by  oxidation  in  the  coke  oven.  Coal  always  contains 
occluded  oxygen,  in  some  cases  in  very  considerable 
quantities,  and  this  is  liberated  when  the  coal  is 
distilled.  Sommer  found  that  of  the  gases  evolved 
during  the  distillation  of  coal,  ammonia  is  second 
only  to  hydrogen  sulphide  in  ease  of  oxidation.  The 
reaction,  however,  was  found  to  be  inhibited  by 
water  vapour,  and  it  may  be  that  the  chief  effect 
of  steam  is  to  prevent  the  oxidation  of  ammonia. 
If  the  author's  theory  of  the  path  of  travel  of 
the  gases  is  correct,  it  certainly  does  not  prevent 
the  thermal  dissociation. 

Effect  of  decreased  width  of  oven. 
If  the  width  of  the  oven  is  decreased,  the  value 
of  dw  will  fall  and  therefore  the  time  of  contact 
will  be  greater;  on  the  other  hand,  the  mean  tem- 
perature in  the  hot  zone  will  be  lessened,  and  hence 
the  rate  of  decomposition  increased.  Probably  the 
actual  yields  in  practice  will  be  but  little  affected. 

Effect  of  increased   temperature. 

With  a  flue  temperature  of  1050°  C.  the  mean 
temperature  of  the  charge  in  the  hot  zone  will  be 
about  750°  "C.,  this  being  the  case  studied  above. 
Now  let  the  temperature  be  so  raised  that  the  mean 
temperature  becomes  850°  C. ;  this  will  represent 
the  highest  temperature  at  which  ovens  are  worked 
in  this  country.  For  this  case  the  following  values 
may  be  taken,  dry  coal  only  being  considered:  — 
k  =  000673,  dv,  (9  hrs.)=6  cm.,  dw  (14  hrs.)  =  lT5 
cm.,  30  +  5w  =60  c.c.  per  min.,  gw  -v  (9  hrs.)  = 
243  c.c.  per  min.,  qw  -v  (14  hrs.)  =  4"7  c.c.  per  min. 

The  comparison  between  moderate  and  high  tem- 
peratures is  shown   in  Table  XIV.,  the   height  of 
the  charge  being  taken  as  213  cm.  in  each  case. 
Table  XIV. 


Mean 

temper- 

Time since 

Mean  time 

Initial 

Final 

g.  NHj 

ature  of 

oven  was 

of  contact 

cone,  of 

cone,  of 

decomp. 

hot  zone. 

charged. 

in  hot  zone, 

ammonia, 

ammonia, 

per  100  g. 

°C. 

hrs. 

sees. 

mm. 

mm. 

evolved. 

755 

9 

16-9 

120 

11-3 

5-8 

755 

14 

15-2 

120 

9-7 

19-2 

850 

9 

12-14 

120 

9-6 

20-0 

850 

14 

11-9 

12-0 

7-3 

39-2 

It  is  evident  that  if  the  same  amount  of  what 
may  be  termed  "primary  ammonia"  is  evolved 
from  the  coal  at  the  two  temperatures,  the  yields 
will  be  higher  when  using  the  lower  temperature. 
In  practice  it  is  necessary  to  strike  a  balance; 
too  low  temperatures  give  low  yields  because  the 
ammonia  is  not  formed ;  too  high  temperatures  are 
to  be  avoided  because  the  ammonia  is  decomposed. 

Effect  of  salt. 
The  results  quoted  previously  show  that  salt  fairly 
readily  forms  hydrochloric  acid  in  the  coke  ove», 
and  at  small  concentrations  this  acts  as  a  negative 
catalyst  and  protects  the  ammonia.  Although  this 
action  is  not  so  marked  when  the  ratio  HC1/NH3 
is  between,  say,  0T5  and  0'8,  it  is  still  marked. 
In  practice  the  ratio  HCl/NH,  generally  lies 
between  03  and  055  for  salty  coals,  and  for  coals 
low  in  salt  between  005  and  0T5.  In  the  coke  oven 
there  is  a  very  much  larger  total  surface  and  a 
smaller  hydrochloric  acid  concentration  than  in  the 


124  T 


FOXWELL.— THERMAL  DISSOCIATION  OF  AMMONIA. 


[April  29,  1922. 


present  experiments,  and  it  is  probable  that  the 
predominating  effect  of  hydrochloric  acid  will  be 
that  of  a  negative  catalyst. 

An  experience  which  may  possibly  have  some 
bearing  on  this  question  has  been  recorded  by 
Purves  (J.  Gas  Lighting,  Nov.  7,  1916,  p.  298). 
Two  types  of  the  same  unwashed  coal  were  car- 
bonised in  the  coke  ovens.  No  1  had  more  lime  in 
the  ash;  No.  2  was  a  little  nearer  an  intrusive 
magma  and  contained  2  to  3%  less  volatile  matter. 


NaCI. 

Ash 

/o 

% 

0-158 

6-2 

0-035 

4-5 

No.  1 
No.  2 

Purvis  ascribed  the  fact  ffiat  No.  1  gave  3 J  lb. 
per  ton  more  sulphate  of  ammonia  than  No.  2  to 
the  additional  lime  content,  but  might  it  not  equally 
probably  have  been  due  to  the  additional  salt? 

Decomposition  in  the  free  space. 

It  has  been  mentioned  previously  that  it  is 
probable  that  for  wide  spaces  the  velocity  constant 
varies  as  1/r. 

The  experiments  were  performed  in  a  circular 
tube,  and  hence  this  result  may  be  interpreted  as 
meaning  that  the  velocity  of  decomposition  varies 
directly  as  the  surface  per  unit  volume,  and  this 
conclusion   would  be   applicable  to  the  free  space. 

In  a  silica  tube  of  1T8  cm.  radius,  the  surface 
per  unit  volume,  S/i>  =  1'69;  in  the  free  space  of 
the  coke  oven  S/i>  is  of  the  order  of  0'5.  The  value 
of  k,  the  velocity  constant,  will  thus  be  very  small 
indeed.  It  has  been  calculated  by  the  present 
author  (Gas  World,  74,  Coking  sect.,  p.  35)  that 
the  time  spent  by  a  particle  in  travelling  from 
any  point,  X,,  in  the  free  space  to  a  point,  x2, 
nearer  the  ascension  pipe  is  given  by 


v  loge  r. 


seconds 


where  V  =  vol.  of  gas  generated  per  second,  a=cross- 
sectional  area  of  free  space,  l  =  length  of  oven, 
n  =  distance  of  ascension  pipe  from  the  coke  bench 
end. 

It  was  shown  from  this  that  taking  a  normal 
case,  very  little  gas  indeed  remained  in  the  free 
space  more  than  16  seconds.  Hence  there  is  little 
likelihood  of  serious  destruction  from  thermal  causes 
at  this  point.  This  conclusion  has  recently  received 
confirmation  from  Thau  (Brennstoff-Chem.,  1920, 
1,  52,  66),  whose  experiments  were  conducted  on  a 
working  scale.  It  must,  however,  be  pointed  out 
that  there  is  an  eddy  motion  in  the  free  space 
caused  by  uprush  of  gases  from  the  coal ;  there  is 
thus  some  tendency  for  the  gases  to  be  forced 
against  the  roof.  It  is  therefore  important  to  use 
bricks  low  in  iron  for  the  oven  roof  and  for  the 
upper  part  of  the  walls. 

Appendix  I. 

Calculation  of  Table   XII.      "  Grams  NH3  decom- 
posed per  100  g.  evolved." 

As  an  example  of  the  method  of  calculation  of 
this  column  consider  the  figure  for  dry  coal  after 
14  hours  at  5  cm.  above  the  oven  door.  In  order  to 
evolve  100  g.  of  ammonia  at  12  mm.  partial 
pressure,  8333  litres  of  gas  must  be  produced. 
Since  q  „  -t>  =  3'5  c.c.  per  sec.  and  the  total  gas 
evolution  q  K  +  go  =4'8  c.c.  per  sec.,  1"3  c.c.  per  sec. 
pass  into  the  cool  interior  and  the  ammonia  carried 
in  this  volume  is  not  subjected  to  decomposition ; 
this  is  (100xl'3/4-8)  =  27-l  g.  of  ammonia  per  100  g. 
evolved.  The  volume  of  gases  passing  up  the  hot 
zone  =  8333x3-5/4-8  =  6077  litres.  Ammonia  in 
this  by  weight  =  6077x456-^(760x1 -316)  =  27-7  g. 
Ammonia  decomposed  =  100-27"7-27'l  =  452  g.  per 
100  g.  evolved. 


Appendix  II. 
From  the  results  tabulated  in  Tables  X  and  XI 
it  is  evident  that  some  decomposition  of  hydro- 
chloric acid  occurs  when  this  gas,  accompanied  by 
ammonia  and  coal  gas  is  'passed  over  heated  coke. 
As  considerable  quantities  of  hydrogen  sulphide 
were  found  in  the  exit  gases — the  actual  amount 
was  not  determined — it  is  clear  that  there  had  been 
an  interaction  between  hydrochloric  acid  and  ferrous 
sulphide.  It  is  known  that  hydrochloric  acid  is 
very  stable  towards  heat,  being  practically  un- 
changed at  1500°  C,  hence  the  disappearance  of 
hydrochloric  acid  must  have  been  due  to  chemical 
action  other  than  dissociation.  A  sample  of  the 
coke  used  in  the  experiments  was  heated  to  750°  C. 
for  some  hours,  and  a  stream  of  hydrochloric  acid, 
ammonia,  and  coal  gas  passed  over  it.  Coal  gas 
alone  was  then  passed  for  a  short  time  to  drive  out 
any  hydrochloric  acid  contained  in  the  pores  of  the 
coke.  After  cooling  the  coke  wa6  washed  with  hot 
water,  but  no  chlorides  were  found  in  the  filtrate. 
The  solid  was  then  dried  and  chlorides  estimated 
by  ignition  with  lime  and  determination  of  hydro- 
chloric acid  in  the  resulting  mass  by  Volhard's 
method.  HC1  in  coke  before  experiment,  0'009%  ; 
after  experiment,  0'060%  ;  13'5  g.  of  coke  was  used 
and  hence  0007  g.  of  HC1  had  been  absorbed  by 
the  coke;  as  the  total  HC1  not  accounted  for 
was  about  0"3  g.  it  seems  probable  that  interaction 
had  occurred  between  hydrochloric  acid  and  the  g_as 
with  the  formation  of  compounds,  such  as  for 
instance  ethyl  chloride,  which  were  not  absorbed  by 
weak  ammonia  or  acid. 

Appendix  III. 
Some  experiments  were  also  performed  to  deter- 
mine the  effect  of  substances  other  than  coke  on  the 

value  of  A  in  the  expression  k^e^'O 

The  silicious  brick  previously  referred  to  contain- 
ing 74%  of  silica  and  3'9%  of  iron  oxide  was  used. 
The  previous  experiments  at  755°  C.  were  per- 
formed on  brick  packed  in  a  tube  of  0546  cm. 
diameter.  In  the  present  series  a  wider  tube 
0'924  cm.  diameter  was  used. 


Concentration  of  NH3. 

Temp. 

Time  of 

k. 

'C 

contact, 

Initial. 

Final. 

sees. 

mm. 

mm. 

775 

1  77 

175-6                  6-46 

0-084 

2  65 

175-6 

4-33 

0-085 

2-75 

175-6 

3-57 

0099 

5-58 

175-6 

2-00 
Mean 

0-088 
0-0S9 

612 

5-73 

175-6                 117-8 

0-000487 

7-0 

175-6                  109-2 

0-000495 

7-04 

175-6 

1190 

0-000384 

16-52 

175-6 

83-1 
Mean 

0-000395 
0-00044 

From  these  results  A  =  24,120.  It  would  appear, 
therefore,  that  a  catalyst  which  accelerates  the  rate 
of  decomposition  of  ammonia,  also  increases  the 
temperature  coefficient  of  the  reaction.  The  calcu- 
lated value  of  /;;s5  is  0'0563,  whereas  the  value 
actually  determined  in  the  previous  experiments 
was  00123.  It  is  a  curious  fact  that  although  both 
the  tubes  employed  were  of  fused  silica,  higher 
values  of  k  were  found  to  result  from  using  the 
wider  tube.  This  observation  does  not  apply  only 
to  the  above  experiments  as  the  phenomenon  was 
noticed  in  other  experiments  not  recorded  here. 
(See  also  remark  when  discussing  Table  VII). 

Appendix  IV. 

Method  of  calculation  of  results  of  decomposition 

experiments. 

Expt.    No.    300. — Volume    of   coal    gas   passed  = 

1379  c.c.  at  17°  C.  and  737  mm.  moist.  =1235  c.c.  at 


vol.  XLI.,  So.  8.]     DRUMMOND  AND  ZILVA.— NUTRITIVE  VALUE  OF  EDIBLE  OILS  AND  FATS.         125  t 


0°  C.  and  760  mm.  dry.  In  passing  through  1333% 
ammonia  solution  1  litre  takes  up  313  c.c.  of  NH, 
gas  and  40  c.c.  of  water  vapour  (at  N.T.P.)  when 
the  ammonia  solution  is  maintained  at  283°  C.  In 
titrating  the  end  bulbs  for  ammonia  not  decom- 
posed, 166-S5  c.c.  of  A7/14  acid  was  required,  ,'.XH, 
recovered =0-2011  g.  =  2649  c.c.  at  N.T.P. 

Hence  we  have  ammonia  passed,  3S6'5  c.c; 
ammonia  recovered,  264-9  c.c;  ammonia  decom- 
posed. 121'6  c.c 

Total  volume  of  coal  gas,  ammonia,  and  water 
vapour  entering  tube  (measured  at  0°  C.  and 
760  mm)  =  1570'5  c.c;  leaving  tube  =  1570'5  + 
12T6  =  1692T  c.c.  Initial  cone,  of  ammonia  (from 
graph)  =  17o-6  mm.  Final  =  2649x7-6/1692T  = 
119-0  mm. 

Time  of  contact: — Vol.  available  for  gas  flow  in 
heated  zone  of  tube  =  155  c.c.=i.  Duration  of 
expt.  42  mins.  =2520  secs.  =  d.  Vol.  of  gases  passing 
at  0°  C.  and  760  mm.  =1570-5+3  of  1216.  Vol.  of 
gases  passing  at  612°  C.  and  737  mm.  =  1661'7x 
385 / 273 X 760/ 737  =V.  Time  of  contact  =(/j-/V  = 
7  04  sees. 

0-000384 


175  6. 


STUDIES    OF    THE    NUTRITIVE    VALUE    OF 
THE  EDIBLE  OILS  AND  FATS. 

I.  The  Oil-bearing   Seeds   and   Crude   Vegetable 

Oils  and  Fats. 

by  j.  c.  drummond,  d.sc,  f.i.c.,  and  s.  s.  zilva, 

d.sc,  ph.d.,  f.i.c. 

(From    the    Biochemical    Laboratory,    Institute   of 

Physiology,    University   College,    London,    and  the 

Biochemical  Dept.,  Lister  Institute,  London.) 

Very  shortly  after  the  recognition  of  the  import- 
ance of  the  vitamins  in  nutrition  it  was  shown  that 
the  nutritive  value  of  edible  oils  and  fats  cannot  be 
estimated  completely  in  terms  of  calories,  but  that 
their  value  as  foodstuffs  may  be  greatly  influenced 
by  the  presence  or  absence  of  one  of  these  accessory 
food  factors,  namely  vitamin  A. 

The  earlier  investigations  tended  to  show  that 
the  fats  of  animal  origin  are  valuable  sources  of 
this  important  dietary  unit  whilst  those  of  vegetable 
origin  are  deficient  in  this  respect.  (For  a  complete 
review  of  earlier  literature  see  Report  on  Vitamins 
published  by  the  Medical  Research  Council.  Special 
Report  No.  38,  H.M.  Stationery  Office,  1919.) 

The  important  bearing  of  these  observations  on 
the  question  of  the  food  value  of  butter  substitutes 
was  pointed  out  bv  Halliburton  and  Drummond  (J. 
Physiol.,  1917,  51,  235),  who  confirmed  the  low 
vitamin  value  of  the  chief  edible  vegetable  oils,  and 
showed  that  butter  substitutes  prepared  on  an 
animal  fat  basis  are  nutritively  superior  to  those 
compounded  from  vegetable  sources. 

This  broad  difference  in  the  value  of  the  two 
main  classes  of  edible  oils  has  been  repeatedly  con- 
firmed in  recent  years,  and  certain  of  the  later 
researches  have  yielded  results  throwing  some  light 
on  the  underlying  causes. 

It  has  been  pointed  out  bv  Drummond  and 
Coward  (Biochem.  J.,  1920,  14,  668)  that  no  hard 
and  fast  line  can  be  drawn  between  the  animal 
and  vegetable  oils  and  fats  when  their  value  as  a 
source  of  vitamin  A  is  being  considered.  The  chief 
factor  controlling  the  amount  of  vitamin  A  in  an 
animal  fat  is  apparently  the  amount  of  that  sub- 
stance present  in  the  diet  which  the  animal  has  been 
consuming.  A  good  example  of  this  is  provided  by 
the  experiments  of  Drummond,  Golding,  Zilva,  and 
Coward  (Biochem.  J.,  1920,  14,  742),  which  provided 
a   satisfactory   solution    of  the  problem    why    one 


animal  fat    lard,  is  usually  deficient  in  the  factor 
"  A." 

The  experimental  results  recorded  in  this  paper 
represent  one  section  of  an  exhaustive  inquiry  into 
the  nutritive  value  of  the  chief  edible  oils  and  fats 
which  we  are  conducting  on  behalf  of  the  Medical 
Research  Council,  and  deal  with  our  attempts  to 
explain  the  lower  food  value  of  the  majority  of 
vegetable  oils. 

At  the  outset  of  our  inquiry  we  were  of  the 
opinion  that  the  investigation  would  be  particularly 
difficult,  owing  to  the  apparent  necessity  of  tracing 
the  fate  of  any  associated  vitamin  A  during  the 
many  processes  through  which  vegetable  oils  pass 
before  they  are  placed  on  the  market  as  edible  pro- 
ducts. It  must  be  remembered  that  in  practically 
all  the  previous  experiments  which  led  to  the  vege- 
table oils  being  considered  poor  sources  of  vitamins, 
refined  market  products  were  employed.  It  was 
therefore  obvious  that  in  order  to  gain  definite 
information  whether  vegetale  oils  can  be  prepared 
containing  appreciable  amounts  of  vitamin  A  the 
richness  of  the  raw  materials  in  this  factor  must 
first  be  studied. 

Accordingly  we  opened  our  investigation  by  an 
examination  of  the  chief  oil-bearing  seeds  used  at 
the  present  time  for  the  preparation  of  edible  oils 
and  fats.  We  were  prepared  to  find  that  they 
possessed  in  general  a  low  vitamin  A  content  from 
the  observations  of  McCollum  and  his  many  co- 
workers, who  showed  that  the  majority  of  the 
storage  organs  of  plants,  particularly  seeds,  contain 
comparatively  little  of  that  Bubstance  (McCollum, 
"  The  Newer  Knowledge  of  Nutrition,"  New  York, 
Macmillan,  1919),  and  also  from  certain  experiences 
of  our  own  with  fat-rich  nuts  (Drummond  and 
Coward.  Biochem.  J.,  1920,  14,  667). 

The  testing  of  the  oil-bearing  seeds  presented 
some  difficulties.  In  general  the  technique  followed 
was  that  described  bv  Drummond  and  Coward 
(Biochem.  J.,  1920,  14,  661),  the  supplements  of 
seeds  being  given  separately  from  and  before  the 
daily  ration  of  diet  deficient  in  vitamin  A.  In  cer- 
tain cases  in  which  the  animals  were  not  disposed  to 
consume  the  seeds  it  was  found  necessary  to  incor- 
porate the  material  with  the  basal  diet,  and  this 
procedure  was  also  necessary  when  a  high  daily  in- 
take of  the  seeds  was  required.  In  the  latter  case, 
where  a  considerable  proportion  of  the  daily  ration 
was  replaced  by  seeds,  it  was  necessary  to  take  into 
account  the  composition  of  the  seed  and  the  biolo- 
gical value  of  its  constituent  proteins  in  order  to 
guard  against  the  preparation  of  a  badly  balanced 
ration.  Supplies  of  the  seeds  were  obtained  from 
several  sources,  and  in  this  respect  we  wish  to  ex- 
press our  sincere  thanks  for  the  invaluable  assist- 
ance we  have  received  from  Mr.  J.  Hanley,  F.I.C, 
of  Messrs.  Bibbys,  Liverpool,  Mr.  Dujardin, 
Olympia  Mills,  Selby,  and  the  Director  of  the 
Imperial  Institute,  South  Kensington. 

Table  I.  gives  a  list  of  the  oil-bearing  seeds 
examined,  their  analysis,  and  their  influence  on 
growth  when  supplied  as  the  sole  source  of  vitamin 
A  in  the  diet  of  rats. 

Many  difficulties  6tand  in  the  way  of  a  satisfac- 
tory interpretation  of  the  results  of  feeding  animals 
on  complex  foodstuffs  such  as  these  seeds.  Certain 
of  these  seeds  are  not  used  directly  as  foodstuffs 
but  only  as  the  source  of  edible  oils,  and  some 
actually  contain  substances  injurious  to  the  animal 
organism;  such,  for  example,  as  the  members  of 
the  cottonseed  group,  which  may  prove  rapidly  fatal 
to  some  species,  including  the  rat.  In  other  cases 
it  was  found  unwise  to  grind  the  seeds  before 
administering  them  to  the  animals  in  order  to  pre- 
vent consequent  enzyme  action  producing  undesir- 
able changes. 

It  is,  therefore,  not  always  sound  to  conclude 
that  a  failure  to  resume  growth  on  adding  a  supple- 
ment of  seed  to  the  basal  diet  is  demonstrative  of 


126  t     DRUMJIOND  AND  ZILVA— NUTRITIVE   VALUE   OF  EDIBLE   OILS  AND   FATS.    [April  29, 1922. 


an  absence  of  the  vitamin,  unless  other  inhibitive 
factors  can  be  excluded.  When  the  seeds  were 
known  to  be  edible,  or  in  cases  in  which  the  animals 
consumed  the  seeds  with  avidity  over  considerable 
periods  without  apparent  ill  effects,  with  little  or  no 


temperature  and  pressure,  the  last  traces  being 
removed  by  passage  of  a  rapid  current  of  carbon 
dioxide  at  80°  C,  in  order  to  prevent  loss  of  vitamin 
by  oxidation.  The  prepared  oils  were  tested  by 
animal  feeding  experiments  in  the  usual  manner. 


Table  I. 


Origin. 

Analysis. 

Vitamin  testa. 

Oil-bearing  seed. 

Approxi- 
mate 

Effect  on 

Approximate 

Moisture. 

Fat. 

Protein. 

daily 

growth  and  health. 

value  as  sourco 

supplement 
in  g. 

of  vitamin  A. 

Linseed 

Plate  River  1      . . 

10-6 

22-7 

21-9  { 

o 

Practically  no  growth. 

4 

Slow  but  steady  growth. 

Fairly  good. 

Linseed 

)i        it     2 

70 

22-2 

19-4 

a 

Fairly  good  growth  and  health 

Palm  kernels 

West  Africa  1     . . 

9-8 

430 

131 

r 

2 
4 

No  growth  but  health  good. 
Slight  and  irregular  growth. 

Palm  kernels 

„      2      .. 

91 

470 

12-8  -j 

6 

Slow  but  steady  growth. 
Health  fairly  good. 

Small. 

Soya  beans 

Manchuria  1 

13-2 

8-5 

40-7    r 

No  growth,  health  good,  very 

Soya  beans 

Russia 

10-2 

6-8 

-     1 

2-6 

slight  growth  on  higher  in- 

Nil. 

Soya  beans 

Japan 

10-9 

5-7 

—      1 

take. 

Cottonseed 

Bombay  . . 

11-9 

101 

2-4 

No  growth.  Death  within  few 

days. 
Very  slight  growth,  death. 

Apparently  toxic 

Cottonseed 

Egypt 

11-9 

120 

_     } 

6 

Cottonseed 

Upper  Egypt 

8-5 

258 

—     \ 

Aracliis 

W.  Coast.. 

GO 

44-3 

31-2  I 

2-4 
4-6 

No  growth,  health  good. 
Slight  growth. 

Very  low. 

Rape 

Toria 

7-2 

39-3 

251 

2-4 

Very    slight    growth,    health 

Low. 

Fennel 

Mediterranean    . . 

12-2 

10-6 

22-2 

9 

good. 
No  growth,  seeds  apparently 
unpalatable. 

— 

Babassu 

4-4 

63-7 

=      { 

1-2 

No  growth  and  condition  poor. 

Very  low. 

4-6 

Slight  but  steady  growth. 

Kapok 

Ceylon 

11-7 

13-5 

2-4 

Death  after  few  days. 

Toxic. 

Cohune 

Brazil 

100 

69-4 

— 

2-4 

No  growth,  health  maintained. 

Nil. 

Djave 

Gold  Coast  1 

4-8 

64-6 

!  < 

larger  supplements  not  eaten. 

Djave 

W.  Coasts 

6-4 

56-8 

10-0 

No  growth,  decline  in  health. 

Nil. 

Citician 

W.  Coast. . 

7-6 

15-1 

9-7 

Seeds  not  eaten  well  after  first 



Rangoon  beans     . . 

Burma 

11-5 

4-3 

23-9 

4 

few  days,  no  growth. 
No  growth. 

Nil. 

Cacao 

— 

7-4 

38-8 

— 

2 

Not  eaten  much.   No  growth. 

— 

Candle  nuts 

Fiji 

4-9 

63-6 

— 

2-4 

Very  slight  growth. 

Low. 

Sesame 

Levant     . . 

— 

48-2 

— 

3 

Very    slight    growth,    health 

Low. 

Copra 

W.  Coast.. 



62-0 

_ 

3 

good. 
No  growth. 

Nil. 

Maize  (.yellow) 

U.S.A 

— 

— 

— 

3 

Slight  growth. 

Low. 

Maize  (white) 

S.  Africa 

~ 

3 

Practically  no  growth. 

Nil. 

resumption  of  growth,  it  was  assumed  with  reason 
that  the  continued  inhibition  was  due  to  a 
deficiency  of  vitamin  A.  Later  results  with  cer- 
tain of  the  crude  extracted  oils  appeared  to  justify 
this  assumption. 

It  will  be  seen  from  Table  I.  that  of  the  many 
seeds  tested  only  linseed  had  any  appreciable  value 
as  a  source  of  vitamin  A.  McCollum  (J.  Amer. 
Med.  Assoc,  1917,  68,  1379)  has  also  reported  that 
linseed  ranks  higher  than  the  majority  of  seeds  in 
its  content  of  vitamin  A,  but  is  not  as  valuable  in 
this  respect  as  millet.  He  examined  wheat,  corn, 
rice,  oats,  rye,  barley,  Kaffir  corn,  millet,  flaxseed, 
peas,  navy  beans,  anil  soya  (see  "  The  Newer  Know- 
ledge of  Nutrition,"  loc.  fit.). 

Our  results,  therefore,  tend  to  confirm  the  view 
that  the  plant  transfers  relatively  small  amounts 
of  the  unidentified  fat-soluble  vitamin  A  from  the 
leaves  where  it  is  synthesised  (Coward  and  Drum- 
mond,  Biochem.  J.,  1921,  15,  530)  to  the  reserve 
supplies  of  the  seed,  even  when  these  are  rich  in  fat. 

On  these  grounds  it  would  appear  improbable 
that  any  oils  or  fats  prepared  from  seeds  will  be 
found  to  possess  a  nutritive  value  approaching  that 
associated  with  most  animal  fats  such  as  butter  or 
the  fish  and  fish-liver  oils.  Nevertheless,  we  de- 
cided to  investigate  a  few  of  the  crude  oils  prepared 
from  the  seeds,  particularly  the  most  promising 
one,  linseed,  in  order  to  exclude  any  inbibitive 
effect  on  growth  which  might  have  been  due  to 
other  constituents  of  the  seeds.  The  oils  were 
mostly  prepared  in  the  laboratory  from  the  freshly 
crashed  seeds  by  cold  extraction  with  frequent 
changes  of  petroleum  spirit  (b.p.  40° — 60°  C).  The 
extracts   were   rendered   free    from   solvent    at   low 


Table  II. 


Crude  oils. 


Palm  kerne 

Soya 

Arachis 


Linseed 
r>jave 

Maize  (yellow) 
Rape 

Average  butter     . 
„         cod  liver 


oil 


0-2 
002 


Effect  on  growth. 

Very  slight  growth. 
Slow  growth. 
Very  slight  growth. 
Slow  growth. 
Slight  growth. 
Slow  growth. 
No  growth. 
Slight  growth. 
Ko  growth. 
Very  slight  growth. 
Slow  growth. 
Good  growth. 
Good  growth. 


The  majority  of  these  results  agreed  with  our 
expectations  in  that  the  small  amount  of  vitamin 
in  tne  seeds  would  presumably  be  carried  over  into 
the  extracted  oils.  They  also  confirmed  our 
previous  observation  that  certain  crude  commercial 
oils  may  contain  appreciable  although  low  concen- 
trations of  the  growth-promoting  factor.  Com- 
parable figures  for  average  samples  of  butter  and 
cod-liver  oil  are  also  given. 

The  results  obtained  with  the  extracted  linseed 
oil  were,  however,  surprising,  since  we  had  found 
a  diet  supplying  approximately  6  g.  daily  of  the 
seed  itself  to  be  adequate  for  sustained  although 
somewhat  subnormal  growth.  This  quantity 
corresponds  to  approximately  1'3  g.  of  oil,  whereas 
the  feeding  experiments  with  the  oil  extracted  from 
the  same  sample  of  seed  showed  a  very  decidedly 
slower  rate  of  growth  when  2  g.  daily  was  supplied. 

Destruction  of  the  associated  vitamin  during 
preparation  was  unlikely  by  reason  of  the  care  with 


Vol.  XLI.,  No.  8]    VOGEL.— DETERMINATION   OF   PHOSPHORIC   OXIDE   IN  FERTILISERS.       127  t 


which  oxidative  changes  were  guarded  against,  so 
that  it  would  at  first  eight  appear  that  the  whole 
of  the  vitamin  A  in  linseed  18  not  present  in 
a  free  condition  in  which  it  is  extractable  by  fat 
solvente.  The  low  vitamin  A  value  of  commercial 
refined  linseed  oil  has  been  reported  by  more  than 
one  observer,  but  this  oil  is  usually  prepared  by 
expression.  We  thought  it  of  interest,  therefore, 
to  compare  the  nutritive  value  of  two  samples  of 
linseed  oil  prepared  from  the  same  meal  by  the  two 
chief  processes,  expression  and  extraction.  Samples 
of  these  unrefined  oils  were  placed  at  our  disposal 
by  Mr.  Hanley  and  were  tested  in  the  usual 
manner,  but  were  both  found  to  be  equally  poor 
sources  of  the  vitamin,  only  slow  growth  being 
obtained  with  supplements  of  approximately  2  g. 
daily.  In  the  absence  of  more  information  from  a 
larger  number  of  experiments  on  quantitative  lines, 
for  which  we  have  not  yet  had  a  suitable  oppor- 
tunity, the  question  must  be  left  an  open  one. 

It  was  our  original  intention  to  study  the  influ- 
ence of  the  methods  of  neutralisation,  deodorisa- 
tion,  and  decolorisation  of  vegetable  oils  on  their 
content  of  vitamin  A,  but  our  demonstration  of  the 
low  value  of  the  crude  oils  rendered  such  an  inquiry 
of  great  difficulty  and  of  little  practical  value.  We 
are,  therefore,  proposing  to  postpone  our  investi- 
gation of  that  aspect  of  the  refining  of  oils  until  we 
deal  with  the  more  highly  potent  oils  of  other  types. 

Of  considerable  interest  in  a  discussion  of  the 
vitamin  A  value  of  vegetable  oils  is  the  case  of 
crude  palm  oil.  The  curiously  high  value  of  this 
oil  as  a  source  of  this  dietary  factor  was  observed 
some  time  ago  hy  Drummond  and  Coward 
(Biochem.  J.,  1920,  14,  671)  and  has  been  confirmed 
by  us  in  the  examination  of  several  specimens  from 
various  sources.  The  more  highly  pigmented 
samples  appear  to  show  the  higher  growth-pro- 
moting activity  in  the  feeding  teste,  but  we  are 
uncertain  whether  this  is  actually  the  case.  More 
than  one  sample  has  possessed  as  high  a  potency 
as  that  exhibited  by  average  samples  of  butter 
(i.e.,  daily  ration  of  0'2 — 0'4  g.  promotes  growth 
in  a  100-g.  rat.). 

The  difference  between  the  two  oils  derived  from 
the  fruit  of  the  African  oil  palm  (Elceis  guiiieensis) 
is  most  striking,  and  recalls  the  suggestion  ad- 
vanced by  Steenbock  (Science,  1919,  50,  352)  that 
the  vitamin  A  is  associated  with  pigments  of  the 
lipochrome  class.  As  is  well  known,  crude  palm  oil 
derived  from  the  fruit  pulp  of  the  African  oil  palm 
is  deeply  coloured  with  carrotene  and  xanthophyll, 
the  chief  members  of  this  group  of  natural  pig- 
ments, whereas  the  oil  derived  from  the  kernel  is 
almost  colourless. 

Whilst  this  theory  has  been  found  faulty  in 
its  general  application  (Palmer,  Palmer,  and 
Kempster,  J.  Biol.  Chem.,  1919,  39,  299,  313,  331; 
Drummond  and  Coward,  Biochem.  J.,  1920,  14,  668), 
it  is  nevertheless  true,  especially  of  many  vegetable 
products,  that  vitamin  A  is  frequently  found  in 
association  with  these  colouring  matters. 

The  main  object  of  these  experiments  was  to  seek 
a  cheap  source  of  vitamin  A  in  the  form  of  a 
vegetable  oil  suitable  for  margarine  manufacture. 
Our  results  show  that,  with  the  exception  of  palm 
oil,  none  of  the  oils  we  have  examined  would  be 
of  any  value  in  raising  the  nutritive  value  of 
vegetable  oil  butter  substitutes. 

If  it  were  possible  to  obtain  palm  oil  in  a 
palatable  form  suitable  for  inclusion  in  such  pro- 
ducts, it  would  not  be  difficult  to  raise  their  vitamin 
value,  but  the  difficulties  of  so  purifying  this  oil 
without  at  the  same  time  causing  loss  of  the  valu- 
able accessory  substance  appear  to  be  very  great. 
One  path  of  approaching  this  problem  seamed  to  us 
to  be  by  taking  advantage  of  the  fact  that  the 
whole  of  the  vitamin  A  associated  with  fats  may 
be  obtained  in  the  unsaponifiable  fraction   if  care 


is  taken  throughout  the  process  to  exclude  oxida- 
tion (Steenbock  and  Boutwell,  J.  Biol.  Chem.,  1920, 
42,  131;  Drummond  and  Coward,  Lancet,  1921,  11, 
698).  Accordingly  we  prepared  fractions  of  the  un- 
saponifiable matter  of  palm  oil  but  found  this 
product  to  possess  to  a  marked  extent  the  char- 
acteristic odour  and  taste  of  the  original  palm  oil, 
so  that  without  further  treatment  it  would  be  quite 
unsuitable  for  inclusion  in  any  appreciable  pro- 
portion in  vegetable  oils  for  margarine  manufac- 
ture. AVe  have  not  yet  had  the  opportunity  to 
study  whether  this  fraction  can  be  converted  into 
an  edible  product  by  processes  sufficiently  cheap  to 
make  the  enrichment  of  vegetable  oil  margarines 
practicable  by  this  means. 

In  conclusion,  we  wish  to  express  our  apprecia- 
tion of  the  valuable  assistance  of  Miss  K.  H. 
Coward,  M.Sc,  and  Miss  Low,  and  to  acknowledge 
the  financial  grant  from  the  Medical  Research 
Council  which  enabled  the  investigation  to  be  made. 
Conclusions. 

1.  In  order  to  investigate  the  low  value  of  the 
majority  of  vegetable  oils  as  sources  of  vitamin  A, 
an  exhaustive  study  of  these  oils  and  their  raw 
materials  was  planned. 

2.  The  present  communication  deals  mainly  with 
the  examination  of  the  chief  oil-bearing  seeds,  which 
were  found  to  be  generally  of  very  low  vitamin  A 
value,  with  the  one  exception  of  linseed. 

3.  An  examination  of  certain  crude  oils  prepared 
by  extraction  with  petroleum  spirit  showed  that  the 
majority  of  the  vitamin  in  the  seeds  passes  into  the 
oils,  producing  oils  of  very  low  potency  as  compared 
with  the  chief  animal  oils  and  fats.  In  the  case  of 
linseed  the  oil  does  not  appear  to  contain  the  whole 
of  the  vitamin  in  the  seed.  It  has  not  been  yet 
investigated  whether  this  is  due  to  incomplete 
extraction  or  to  loss  by  oxidative  changes. 

4.  Crude  palm  oil  may  contain  relatively  high 
concentrations  of  vitamin  A.  An  attempt  to  pre- 
pare from  this  oil  a  fraction  consisting  of  un- 
saponifiable constituents  suitable  for  raising  the 
vitamin  value  of  vegetable  oil  margarines  was 
unsuccessful,  since  the  product,  whilst  highly 
potent  from  a  vitamin  standpoint,  was  unpalatable. 


THE  DETERMINATION  OF  PHOSPHORIC 
OXIDE  IN  FERTILISERS. 

BY  J.   C.   VOGFX,   M.SC. 

Assistant  Chemist,   School  of  Agriculture, 
Potchefstroom. 

The  official  method  of  the  Department  of  Agri- 
culture of  the  Union  for  the  determination  of  phos- 
phoric oxide  is  long,  and,  unless  great  care  be  exer- 
cised in  the  manipulation,  error  is  very  likely  to 
creep  in.*  Several  alternative  methods  have  been 
proposed  and  adopted  with  success.  A  comparison 
of  some  of  these  with  the  official  method  is  given 
below. 

Three  phosphatic  fertilisers  were  each  analysed 
by: 

(1)  The  official  method. 

(2)  The  method  of  Woy,  in  which  the  phosphoric 
oxide  is  precipitated  as  ammonium  phospho- 
mo'lybdate,  gently  ignited  and  weighed  as  phos- 
phomolybdic  anhydride  containing  3'946%  P2Os 
("  Analytical  Chemistry,"  Treadwell  and  Hall, 
Vol.  2    p.  440). 

(3)  The  method  of  Kilgore,  in  which  the  phos- 
phoric oxide  is  precipitated  as  ammonium  phospho- 
molybdate,  dissolved   in   excess  of  standard  potas- 

*  Briefly  the  method  consists  in  shaking  5  g.  of  the  sample  with 
500  c.c.  of  water  containing  10  g.  of  citric  acid  for  i  hr.,  filtering, 
removing  50  c.c.  of  the  filtrate  and  separating  the  silica,  precipitating 
the  phosphoric  acid  by  means  of  ammonium  molybdate  solution  at 
70°  C.,  dissolving  the  precipitate  in  dilute  ammonia,  reprecipitating 
the  phosphate  by  means  of  magnesia  mixture,  filtering  off,  and 
treating  as  usual. 


128  t      VOGEL.— DETERMINATION   OF   PHOSPHORIC   OXIDE    IN   FERTILISERS.        [April  29, 1922. 


16-8      . 

1-1 
20-5      . 

.      16  5      . 

1-2      . 

.    20-7    . 

.      164 

1-3 

.      20-5 

9-6      . 

3-3      . 

15-2      . 

9-8      . 
3-2      . 
15*5 

9-5 
3-3 

.      15-7 

9-3      . 
26-6      . 

9-4      . 

.      270      . 

90 
.      26-5 

sium  hydroxide  solution,  and  the  excess  alkali 
determined  by  titration  with  acid,  the  molecular 
ratio  of  ammonium  phosphomolybdate  to  potassium 
hydroxide  being  taken  as  50:1  ("Principles  and 
Practice  of  Agricultural  Analysis,"  Wiley,  Vol.  2, 
p.  158). 

The  three  fertilisers  used  were  superphosphate, 
Egyptian  rock  phosphate  dust,  and  rock  phosphate 
dust  which  had  been  treated  with  acid  sodium 
sulphate. 

The  solutions  of  the  samples  were  made  as  pre- 
scribed in  the  official  method  of  analysis. 
Comparison  of  methods. 

Fertiliser.  (1)  (2)  (3) 

Superphosphate —  %  %  % 

Water-soluble  P.Os 

2%  citric  acid-sol.  P.Os 

Total  P,Os 

Phosphate  rock  treated  with  XaHSOt- 

Water-so!.  P.O,         

2%  citric  acid-sol.  P.05 

Total  P,Os 

Egyptian  rock  phosphate  dust — 

2%  citric  acid-sol.  P-05 

Total  P2Os 

A  further  comparison  of  two  volumetric  methods 
with  the  official  method  was  made  on  samples  of 
superphosphate  and  basic  slag. 

The  methods  of  analysis  employed  were: 

(4)  The  method  described  bv  Marchand  (S.  Afr. 
J.  Sci..  1918-19,  15,  357). 

(5)  A  modification  of  the  method  of  Kilgore  used 
by  the  author.  In  this  method  the  solution  of  the 
sample  is  made  as  in  the  official  method.  To  10  c.c. 
of  the  filtered  solution  7 — 10  g.  of  ammonium 
nitrate  and  i  c.c.  of  concentrated  nitric  acid  are 
added,  the.  solution  is  diluted  to  75 — 100  c.c.  with 
water,  heated  on  a  boiling  water  bath  to  a  steady 
temperature,  and  the  phosphoric  acid  precipitated 
by  slowly  adding  50  c.c  of  molybdic  acid  solution 
from  a  pipette,  the  contents  of  the  vessel  being 
meanwhile  rotated.  The  liquid  is  again  heated  on 
the  waterbath  until  the  precipitate  formed  has 
settled  and  then  allowed  to  cool  to  room  tempera- 
ture. The  precipitate  is  washed  three  times  by 
decantation  through  a  12'5-cm.  filter,  transferred  to 
the  filter-paper,  and  washed  four  times  with  cold 
water.  The  precipitate  and  filter  are  then  treated 
with  excess  of  V/10  caustic  soda  solution  and  the 
excess  alkali  titrated  with  V/10  hydrochloric  acid, 
using  -}  c.c  of  phenolphthalein  as  indicator.  1  c.c. 
of  Nl  10  caustic  soda   is  equivalent   to  000284  g. 

P2Os- 

The  temperature  of  precipitation  of  the 
ammonium  phosphomolybdate  varies  in  various 
methods  from  40°  to  90°  C.  In  the  above  method 
the  temperature  of  precipitation  is  controlled  by  the 
boiling  water  bath,  and  no  temperature  regulation 
or  reading  is  necessary.  Provided  the  precipitate 
be  removed  from  the  water  bath  as  soon  as  it  has 
settled,  i.e..  in  a  few  minutes,  no  molybdic  acid 
appears  to  be  precipitated,  and  the  precipitate  is 
constant  in  composition. 

The  molybdic  acid  solution  employed  is  prepared 
as  follows: — 136  g.  of  ammonium  molybdate  is  dis- 
solved in  450  c.c.  of  water  and  50  c.c.  of  ammonia 
(sp.  gr.  0'90).  The  cool  solution  obtained  is  poured 
slowly,  with  constant  stirring,  into  a  mixture  of 
489  c.c.  of  nitric  acid  (sp.  gr.  1'42)  and  1148  c.c. 
of  water.  The  solution  is  allowed  to  stand  for  48 
hours  and  filtered. 

The  2%  citric  acid-soluble  phosphoric  oxide  was 
determined  in  the  slag,  and  the  water-soluble  phos- 
phoric acid  in  the  superphosphate. 

The  analyses  were  made  in  duplicate. 

Comparison  of  methods  (1),  (4),  and  (5). 

Method  4.         Method  5.  Official 

Method. 


Basic  slag 

14-31 

14:::. 

14-38 

14--S 

14-33 

14-31 

Superphosphate 

1512 

14-99 

14-95 

15-08 

1503 

14-90 

All  four  methods  used  above  are  far  shorter  than 
the  official  method,  and  may  be  substituted  for  it,  as 
the  accuracy  obtained  is  sufficient  for  all  practical 
purposes. 

Marchand  has  shown  that  the  presence  of  silica 
and  iron  in  solution  does  not  affect  the  composition 
of  the  precipitate  of  ammonium  phosphomolybdate, 
and  their  removal  is  not  necessary  as  in  the  case 
of  the  official  method  (S.  Afr.  J.  Sci.,  1921,  17, 
259— 26S). 

The  volumetric  methods  (4)  and  (5)  are  also 
applicable  to  the  determination  of  small  amounts 
of  P2Os,  and  method  (5)  has  been  successfully  used 
in  the  analysis  of  soils  in  this  laboratory. 

A  rapid  method  of  determining  the  water-soluble 
phosphoric  oxide  in  superphosphates. 

During  the  course  of  some  experiments  suggested 
by  the  Research  Chemist  of  this  institution  on 
determining  the  lime  requirement  of  superphos- 
phate by  the  Veitch  lime  requirement  method  for 
soils,  the  author  found  that  a  solution  of  superphos- 
phate was  acid  to  phenolphthalein  to  a  much 
greater  extent  than  to  bromocresol  purple,  the  in- 
di  -a  tor  used  in  this  laboratory  for  lime  requirement 
work.  This  fact  suggested  that  the  amount  of 
water-soluble  phosphoric  acid  in  superphosphate 
might  be  determined  by  direct  titration  of  the  acid 
calcium  phosphate  in  solution  provided  a  suitable 
indicator  were  found. 

The  acidity  of  a  superphosphate  solution  is  due 
(1)  to  the  acid  calcium  phosphate  present,  and  (2)  to 
small  amounts  of  residual  sulphuric  acid  present  in 
the  mass  as  a  result  of  the  treatment  it  has  received. 

Two  indicators  are  necessary  for  the  titration  ot 
the  acid  salt,  one  of  which  will  be  affected  only  by 
the  free  sulphuric  acid  present,  and  the  other  which 
will  react  acid  as  long  as  any  acid  salt  is  present. 
The  first  must  be  a  stronger  acid  than  CaH„(P04); 
which  would  compete  successfully  with  the  hydrogen 
ions  of  the  CaH.iPOJ,  for  the  hydroxy  I  ions  of  the 
alkali.  The  second  must  be  a  very  weak  acid  which 
will  not  form  a  salt  until  all  the  CaH4(P04)2  has 
been  neutralised. 

Methyl  orange  was  the  most  suitable  indicator 
available  for  the  titration  of  the  free  sulphuric  acid, 
and  phenolphthalein  the  best  available  for  the  titra- 
tion of  the  CaH,(PO,)..  Other  indicators  which 
might  be  useful  are  dimethylaminoazobenzene. 
metanil  yellow,  and  tropseolin  00  for  titrating  the 
sulphuric  acid  and  thymolphthalein  and  tropseolin 
O  for  the  titration  of  the  acid  calcium  phosphate, 
but  these  were  not  obtainable  for  trial.  Methyl 
red,  litmus  bromocresol  purple,  and  rosolic  acid 
were  found  to  be  unsuitable. 

Method  of  analysis. 

The  method  of  analysis  finally  adopted  was  as 
follows  : 

Solutions. — The  superphosphate  solution  is  made 
according  to  the  official  method.  A  saturated  solu- 
tion of  lime  water  (approx.  004V)  is  used  for  the 
titration.  It  is  standardised  against  O'OoV  hydro- 
chloric acid,  using  phenolphthalein  as  indicator. 

Procedure. — To  10  c.c.  of  the  superphosphate 
solution  (or  such  an  amount  as  will  contain  approxi- 
mately 0'003  g.  P,0,)  excess  of  the  lime  solution 
(about  30  c.c.)  is  added  and  10  drops  of  phenol- 
phthalein solution.  The  excess  alkali  is  titrated  with 
ll'OoV  hydrochloric  acid  until  the  pink  colour  of  the 
solution  disappears.  50  c.c  of  the  superphosphate 
solution  is  then  titrated  with  the  lime  solution, 
using  methyl  orange  as  indicator,  the  endpoint 
being  taken  where  the  solution  turns  yellow.  The 
difference  between  the  volumes  of  lime  water  re- 
quired for  neutralising  the  same  volume  of  super- 
phosphate solution  is  the  equivalent  of  the  mono- 
calcium  phosphate  present.  Factor  1  c.c.  of 
iiillV  lime  solution  =  000142  g.  P.05. 

A  comparison  of  the  above  method  with  a  volu- 
metric  phosphomolybdate  method   (Method   5)  was 


Vol.  XIX,  No.  8.] 


MONRO.— THE   OCCLUSION   OF   GASES   IN   COAL. 


129  t 


Lime 

water 

Method  5. 

method 

P.O. 

P,0, 

% 

% 

.      14-8      . 

.      14-3 

16-7 

.      16-6 

14-9 

.      14-8 

1  "»-."> 

16-6 

.     in;; 

in  ii 

.      15-6      . 

.      15-8 

.      35-4 

8.V4 

.      350      . 

.      34-8 

.      14-9      . 

14-7 

.      35-4      . 

.      35-4 

.      150      . 

i;.r, 

.      14-9 

.      14  7 

9-8      . 

9-6 

0-4      . 

6-2 

6-3      . 

5-9 

made.  Various  samples  of  superphosphate  were 
analysed  as  well  as  some  fertiliser  mixtures  contain- 
ing superphosphate.  The  results  are  given  in  the 
following  table:  — 


Fertiliser. 


A.  Sup  rphosphate 

B.  

C.  „  

Ii.  .,  

E.  ..  

V.  High-grade  superphosphate 

<;.  Double  -ui>erphosphate 

H.         ..  „  .... 

I.  Superphosphate  +  potassium  chloride 

K.  .,  +  potassium  sulphate 

I..  ,,  4-  ammonium  sulphate 

M.  ,,  +  magnesium  sulphate  and 

potassium  chloride 

N.  Mixi  d  fertiliser 

O.  Superphospate     4-  crushed  hone     . . 
P.  „  -i-bone  meal 

In  most  cases  the  figures  obtained  by  direct 
titration  are  slightly  low,  but  the  result*?  agree  with 
the  actual  percentage  of  phosphoric  acid  found  by  an 
accurate  method  sufficiently  well  to  warrant  the  use 
of  this  method  where  great  accuracy  is  not  required. 
Mixed  fertilisers  containing  their  water-soluble 
phosphoric  oxide  as  superphosphate  may  also  in 
many  cases  he  analysed  by  this  method,  as  the  above 
figures  show.  The  method  might  be  used  in  the 
analysis  of  samples  of  a  superphosphate  fertiliser 
drawn  from  a  mixing  machine;  the  fact  that  the 
results  obtained  are  slightly  low  would  be  an  advan- 
tage, providing  for  the  necessary  margin  over  the 
guaranteed  analysis.  Its  adoption  in  such  a  case 
would  be  a  great  saving  of  time  and  expensive 
materials,  as  only  one  accurate  analysis  at  the  end 
of  the  mixing  would  then  be  necessary. 

The  substitution  of  NjlO  caustic  soda  for  lime 
water  was  tried  in  the  titration  of  two  samples. 
10  c.c.  of  the  solution  was  titrated  in  each  case,  the 
method  being  exactly  the  same  as  in  the  previous 
cases,  except  for  the  substitution  of  caustic  soda  for 
lime  water.  The  following  table  shows  the  results 
obtained  :  — 


A. 

B. 

C. 

c.c.  0-0394  AT 

c.c.   OH'.i.'.V 

c.c.  0-0394.V 

lime   solution 

caustic  soda 

caustic     soda 

required. 

solution 

(calculated 

required. 

from  I!). 

Of  phate 

23-8 

7-3 

i7-e 

Mixed  fertiliser 

13-6 

8-65 

10-4 

The  end-point  of  the  titration  with  caustic  soda 
is  slightly  clearer  than  with  lime  water,  especially 
when  excess  of  caustic  soda  is  added  and  the  excess 
titrated  with  N /10  hydrochloric  acid. 

In  both  titrations  a  white,  flocculent  precipitate 
was  formed  on  the  addition  of  the  alkali. 

Coal. 

Aroca 
Mossbank 

Taratu 

Whitecliffs 
Ft.  Elizabeth 
l't.  Elizabeth 
Blackball 

Blackball 
Puponga  . . 
Coal  Creek 

The  ratio  of  the  figures  in  columns  A  and  C  is 
approximately  4:3.  This  ratio  is  explained  by  the 
following  equations: — ■ 

CaH4(POJ).+2Ca(OH),  =  Caa(P01).  +  4H,0. 
2CaH1(PO,),+6NaOH  = 

Ca,H2(P04)2  +  2NaJP01  +  6H,0. 

In  tin'  first  case  the  lime  water  precipitates 
tricaleium  phosphate,  whereas  in  the  second  case 
dicalcium  phosphate  is  precipitated.  Working  on 
this  equation  the  results  obtained  by  the  titration 
using  sodium  hydroxide  are  comparable  with  those 
obtained  by  other  methods. 

The  results  obtained  by  the  analysis  of  the  same 


sample  by  three  methods  are  given  in  the  table 
below.  The  methods  used  are  (a)  the  volumetric 
phosphomolybdate  method  5,  (b)  the  direct  titration 
method  using  lime  water,  and  (c)  the  direct  titra- 
tion method  using  sodium  hydroxide. 

Sample. 
Superphosphate 
Mixed  fertiliser 

From  these  figures  it  will  be  seen  that  the  results 
from  the  titration  with  sodium  hydroxide  vary  from 
the  true  figures  no  more  than  do  the  results 
obtained  by  titrating  with  lime. 


<«). 

(d). 

(c). 

HI  7 

16-6 

16-4 

11  Ii 

ii ;. 

9  7 

THE  OCCLUSION  OF  GASES  IN  COAL. 

BY  A.   D.    MONRO. 

Introductory. 

The  occlusion  of  gases  in  coal  seems  to  be  so 
intimately  connected  with  the  composition  of  coal, 
that  further  investigation  was  thought  to  be  desir- 
able. Valuable  information  is  given  in  the  papers 
of  Von  Meyer,1  Thomas,2  Trobridge,'  Barker,* 
Porter,5  Bedson,"  Zitowitsch,7  McConnell."  As 
most  of  these  workers  investigated  steam,  anthra- 
citic,  and  bituminous  coals,  special  attention  has 
been  paid  by  the  present  author  to  the  poorer  class 
of  coals — the  lignites,  pitch  and  brown  coals  so 
abundant  in  New  Zealand. 

The  method  of  work  is  essentially  that  of  Tro- 
bridge.  The  analyses  made  fall  into  three 
classes :  — 

(1)  The  analyses  of  the  last  portion  of  air  pumped 
off  in  establishing  a  vacuum  over  the  coal. 
(2)  Analyses  of  the  gas  given  off  at  ordinary  tem- 
peratures   (15° — 3°   C.)   in   vacuo   on   standing   for 
several  days. 

(3)  Analyses  of  the  gas  given  off  on  heating  to 
100°  C.  Particular  attention  was  paid  to  Class  (2) 
analyses,  for  the  results  seemed  to  be  more  easily 
interpreted.  The  results  of  Class  CI)  analyses  are 
ambiguous,  as  will  be  shown  later  :  those  of  Class  (3) 
are  probably  dependent,  in  some  cases,  on  the 
initial  temperature  of  decomposition  of  the  coal 
matter. 

After  several  trials  a  suitable  apparatus  was  de- 
vised. It  consisted  essentially  of  a  coal  flask, 
mercury  pump,  and  analysing  apparatus  perma- 
nently connected  together.  A  reversible  tap  valved 
mercury  pump  was  used,  and  the  connexions  on 
that  part  of  the  apparatus  which  had  to  stand 
evacuated  were  made  by  ground  glass  joints  with 
mercury  seals. 

The  "  Last  portion  "  analyses  yielded  results 
which  are  tabulated  below:  — 


Description. 

o.% 

s,% 

O. 

Other  gases  % 

Rat  in  js- 

Hydrous  brown  altered  by  folding 

20-9 

79  1 

o-iy.r 

Nil. 

Pitch            

13-3 

84-4 

0-156 

CO,  2-7% 

Lignite 

20-9 

791 

0-264 

Nil. 

Hydrous  brown 

11-7 

8u  7 

0-135 

CO.  1-6% 

Sample  1.  Bitumin. 

21  7 

78-2 

0-277 

CO, 

0-1%  CH,  trace 

Sample  2.  Bitumin. 

22-7 

75-0 

0-30  1 

CO, 

0-5%  CH,  1-8% 

Lower  seam  anhyd.  brown 

17  7 

77-3 

0-229 

A 

cid  gases  5  0% 

1'pper  seam  anhyd.  brown 

12-5 

57-2 

0-219 

11, s 

2-3%  CO.  280% 

Pitch            

Ili-7 

83-0 

(1-200 

CO.   0-3% 

Resinous  lignite 

18-3 

81-7 

0-2J4 

Nil. 

The  analyses  quoted  above  were  obtained  by 
pulverising  the  coal,  introducing  it  into  the  flask, 
and  quickly  evacuating.  The  last  40  c.c.  of  gas 
coming  over  was  collected  and  analysed  as  above. 
It  will  be  seen  that  the  samples  may  he  divided  into 
three  classes :  — 

1  E.  von  Meyer,  J.  prakt.  Chem.,  1872,  5.  144  ;    1872,  6,  389. 
1  Thomas,  J.  Chem.  Soc,  1875,  28,  793 ;   1877,  32,  140. 
■  Trobridge.  J.,  1906,  1129. 

•  Barker,  Trans.  Amer   Inst.  Min.  Eng.,  40.  24-31. 
'  Porter,  U.S.  Bur.  Mines,  Bull.  82,  50  --'  teq. 

•  Bedson,  Trans.  Fed.  Soc.  Min.  Eng.,  1902. 
'  Zitowitsch,  J.  prakt.  Chem  ,  1872,  6    79. 

•  McConnell,  J.,  1894,  25. 


130  t 


MONRO.— THE   OCCLUSION   OF   GASES   IN   COAL. 


[April  29,  1922. 


(1)  Those  for  which  the  O/N  ratio  was  greater 
than  0"264:1  (the  air  ratio).  This  class  includes 
only  the  bituminous  samples  investigated.  Tro- 
bridge  (loc.  cit.)  obtained  similar  results  with 
bituminous  coals. 

(2)  Coals  for  which  the  O/N  ratio  was  0264:1 
(Avoca,  Taratu) :  these  coals  contained  little 
occluded  gas. 

(3)  Coals  for  which  the  O/N  ratio  was  small 
(Mossbank,  Whitecliffs,  Blackball  (both  seams), 
Puponga,  and  Coal  Creek).  These  coals  represent 
widely  different  types  of  pitch  and  brown  coals. 

Taking  into  consideration  Trobridge's  results  for 
bituminous  coals,  it  seems  that  there  is  an  essential 
difference  between  the  results  obtained  with  bitu- 
minous and  with  brown  coals.  Brown  coals  appear 
to  give  a  ratio  not  greater  than  0'264: 1:  bitu- 
minous coals  give  a  ratio  greater  than  0'264:l. 

The  variation  in  the  O/N  ratio  might  conceivably 
be  caused  in  two  ways.  Where  the  O/N  ratio  is 
small  it  might  be  caused  by  rapid  adsorption  of 
oxygen  on  breaking  up  the  coal,  or  by  rapid  evolu- 
tion of  nitrogen.  Similarly  where  the  O/N  ratio 
is  large  the  cause  might  be  rapid  evolution  of 
oxygen  or  rapid  adsorption  of  nitrogen.  But  in 
the  case  of  Pt.  Elizabeth  (see  below)  and  in  this  case 
alone  of  the  coals  examined  by  the  author,  the  sub- 
sequent evolution  of  oxygen  in  considerable  volumes 
has  been  proved  to  take  place.  Moreover,  whilst 
the  rapid  adsorption  of  oxygen  seems  possible,  the 
rapid  adsorption  of  nitrogen  seems  improbable. 
Again,  gases  obviously  evolved  were  found  in  the 
"  last  portion."  For  all  these  reasons  the  evolution 
hypothesis  seems  the  more  probable. 

The  gases  given  off  at  ordinary  temperatures  m 
vacuo  were  analysed  whenever  a  sufficient  volume 
had  collected.  The  yield  of  gas  per  day  was  also 
noted  until  the  gas  evolution  became  small.  The 
following  results  were  obtained:  — 

,4.1'oco  coal. — The  yield  of  gas  was  small  and  at 
first  very  small — 1  c.c.  per  day  from  300  g.  This 
continued  with  slight  diminution  for  some  twenty 
davs,  when  suddenlv  15'6  c.c.  was  evolved.  Analvsis 
showed  CO?  23%,  N2  97"7%.  The  experiment  was 
repeated  with  a  sample  of  coal  fresh  from  the  mine 
(18  hours).  The  rate  of  evolution  was  higher,  but 
no  sudden  evolution  of  gas  took  place. 

Mossbank  coal. — This  coal  was  remarkable  for  the 
spasmodic  character  of  the  rate  of  evolution.  The 
largest  of  these  bursts  yielded  166  c.c.  in  a  day, 
although  the  volume  of  the  largest  fragment  of  coal 
was  only  a  little  over  1  c.c,  suggesting  a  very  high 
internal  pressure  in  a  small  gas  pocket.  Five  such 
bursts  were  observed.  The  third  burst  took  place 
during  the  day  time  and  was  observed  closely.  The 
following  figures  show  the  rate  to  rise  to  a  distinct 
maximum  and  then  decline  (as  gas  was  evolved  con- 
tinuously complete  evacuation  was  impossible  and 
the  figures  given  below  are  approximate  only) :  — 


Time 

10.10  a.m. 

10.40 

11.10 

11.40 

12.10  p.m. 

12.40 

1.  0 

2.  0 

3.  0 
4.20 
4.40 
5.20 


Quantity 

Rate  of 

pumped  off 

evolution 

cc. 

cc  per  mm. 

SO 

.  (overnight  gas) 

4-2 

014 

a-/ 

0-19 

5-9 

0-20 

6-0 

0-20 

8-6 

0-29 

6-0 

0-30 

8-2 

0-14 

4-2 

0-07 

3-0 

0-06 

0-7 

0-03 

very  small  . 

0-00 

The  results  of  analyses  and  quantities  of  gas  per 
day  are  shown  in  the  following  table. 

Taratu  coal  (a  true  lignite  with  marked  woody 
structure. — Steady  evolution  of  a  small  quantity  of 
gas  took  place,  0"16  c.c.  per  day  per  100  g.  of  coal. 
Composition  (a)  CO,  84"9%  ;  N2  15-1%.  (6)  CO, 
87-8%;  N,  12-2%. 


Whitecliffs  coal  (hydrous  brown;  non-caking). — ■ 
Steadily  diminishing  evolution  of  gas:  C02  51"9%  ; 
02  1'6%  ;  N2  46"5%.  Rate  of  evolution  slow.  Initial 
rate  070  c.c.  per  day  per  100  g.  coal. 

Point  Elizabeth  coals  (two  seam  samples). — As 
this  coal  was  somewhat  similar  to  the  coals  used  by 
Trobridge  the  comparison  of  results  is  interesting. 

Sample  A. — Evolution  of  gas  continuously  dimin- 
ished with  time.  The  quantities  obtained  were 
much  greater  than  in  the  previous  samples.  Initial 
rate  5'4  c.c.  per  dav  per  100  g.  coal.  Analyses:  (1) 
N2  73-6%;  CH4  26-2%;  02  0"2%.  (2)  N2  40"3%  ; 
CH,  57-7%  ;  C02  0"1%.  (3)  Na  25"7%  ;  CH4  70'3%  ; 
C02  0-2%  ;  CO  0-1%.  The  nitrogen  rate  thus  fell 
more  quickly  than  the  methane  rate. 


Eesults  from  Mossbank  coal: 
2969  o.). 


(wt.  of  coal  used 


Total 

de- 

I>ays. 

juantit}' 

N. 

C02 

0, 

fines       CO 

CH. 

c.c. 

c.c. 

c.c. 

c.c. 

cc.       c.c. 

c.c. 

0—7 

11-55 

9-13 

1-50 

0-36 

0-15 

0-29 

012 

8th 

72  50 

67-49 

4-17 

0-84 

— 

— 

— 

9th 

2-011 

lOth.dllth. 

1-99 

12th. 

0-97 

13th. 

0-52  t 

17-42 

3-39 

019 

010 

— 

— 

14th.&15th. 

0-51 

16th.to21st. 

1-50 

22nd. 

14-12  ' 

23rd. 

403 

24th. 

0-42 

25th. 

0-42 

26th. 

0-46 

27th. 

0-37 

28th. 

0-46  > 

64-62 

302 

8-60 

— 

— 

— . 

29th. 

0-86 

30th. 

0-43 

31st. 

0-42 

32nd. 

0-23 

33rd. 

0-23. 

34th 

67-91  | 

35th. 

3-50  ,- 
166-23  1 

162-80 

— 

6-93 

— ■ 

— 

— 

36th. 

37th. 

21-45 

19-42 

0-12 

1-91 

— 

—     1     — 

38th. 

3-01 

39th. 

1-72 

40th. 

1-70 

Sample  B. — The  rate  of  evolution  was  greater 
than  in  the  previous  sample,  viz.,  160  c.c.  per  day 
per  100  g.  coal. 

The  following  table  6hows  volumes  pumped  off, 
amounts  of  each  gas,  and  time  in  hours  since  com- 
mencement :  — 


Vol. 

Time, 

pumi>ed 

CH, 

N. 

0, 

CO, 

CO. 

hrs. 

off. 

c.c. 

c.c. 

c.c. 

c.c. 

C.C 

16 

47-03 

16-75 

25-35 

4-70 

010 

0-13 

22 

9-45 

411 

4-12 

U-.s.s 

004 

IK',11 

40 

18-02 

9-52 

7-28 

101 

009 

0-12 

64 

16-52 

9-70 

6-39 

009 

0-14 

0-20 

88 

13-65 

9-43 

3-89 

0-03 

0-23 

0-07 

112 

10-96 

7-36 

3-18 

0-06 

0-23 

0-07 

160 

13-51 

9-85 

3-48 

000 

016 

0-02 

184 

8-35 

6-67 

1-58 

0-00 

004 

0-06 

208 

7-48 

5-78 

1-42 

000 

012 

0;0S 

232 

5-81 

4-61 

108 

0-00 

0-07 

0-05 

256 

5-37 

409 

1-00 

0-02 

017 

009 

328 

7-02 

5-99 

1-33 

000 

0-28 

002 

Blackball  eoaf.— This  is  an  anhydrous  (water 
3'5%)  brown  coal  with  good  calorific  value  but  high 
percentage  of  sulphur  (4-7%).  Methane  is  not 
known  in  the  mine  and  was  not  present  amongst 
the  gases  given  off  at  room  temperature. 

Four  analyses  from  each  seam  gave  the  following 
results:— Lower  seam:  N2  82'7,  756,  601,  699%. 
CO,  146,  200,  250,  24"6%.  H2S  2"7,  4'4,  149, 
65%.  Upper  seam:  N2  176,  9-0,  7"8,  7*5%.  CO, 
73-9,  860,  87-9,  92"0%.  H2S  S'3,  5-0,  43,  0-5%. 
O,0-2%. 


Vol.  XIX,  No.  8.] 


MONRO.— THE   OCCLUSION   OF   GASES   IN   COAL. 


131  T 


Puponga  coal. — The  sample  was  black,  friable, 
pitch  coal.  Rate  of  evolution  (initial)  5  c.c.  per 
100  g.  per  day.  Analyses:  CO,  457,  569,  560%. 
N,  543,  431,  44-0%. 

Coal  Creek  Flat  coal  (Central  Otago). — This 
brown  coal  contains  large  inclusions  of  resin  appa- 
rently little  altered.  A  sample  was  taken  of  the 
coal  matter,  resin  being  excluded.  Rate  of  evolu- 
tion, steadv,  1  c.c.  per  100  g.  per  day.  Analyses: 
CO,  74-7,  92-5,  926,  93'2%.  N,  253  7-5,  7"4,  6"8%. 
The  results  obtained  in  this  part  of  the  work  appear 
to  warrant  the  following  comments  :  — 

1.  Whilst,  on  the  whole,  the  rates  of  gas  evolu- 
tion appear  to  follow  some  simple  continuous  curve 
law,  conspicuous  exceptions  to  6uch  a  law  have  been 
found.  The  results  with  Mossbank  and,  to  a  lesser 
extent  Avoca,  coals  appear  to  be  entirely  different 
in  nature.  There  are,  in  fact,  two  types  of  gas 
evolution,  "  regular  "  and  "  spasmodic." 

2.  In  the  coals  giving  "  regular  "  results,  the 
rate  of  evolution  of  nitrogen  falls  more  rapidly  than 
the  rates  of  evolution  of  carbon  dioxide  or  methane. 

3.  The  results  from  Mossbank  coal  show  that  the 
"  spasmodic  "  nature  of  the  evolution  is  due  to  the 
variation  in  the  rate  of  evolution  of  nitrogen  and 
to  a  lesser  extent  of  oxygen.  The  amount  of  carbon 
dioxide  evolved  after  the  34th  day  is  very  small 
indeed.  From  the  9th  to  the  34th  day  the  amount 
of  carbon  dioxide  is  greater,  but  here  the  analyses 
were  made  of  gas  evolved  partly  in  the  "  regular  " 
way.  On  the  8th  day  the  gas  contained  some  6%  of 
carbon  dioxide.  The  great  variation  then  in  rate 
of  evolution  is  due  probably  to  nitrogen  and 
oxygen. 

4.  The  rate  of  evolution  of  oxygen  from  the 
"  regular  "  coals  has  been  less  thoroughly  observed. 
Oxygen  does  not  appear  to  be  occluded  by  many 
brown  coals.  In  the  case  of  Pt.  Elizabeth  coals  the 
rate  of  evolution  fell  off  rapidly. 

5.  The  characteristic  gases  occluded  by  brown 
and  pitch  coals  are  carbon  dioxide  and  nitrogen : 
bituminous  coals  also  occlude  methane. 

6.  The  volume  of  gas  occluded  by  hydrous  brown 
coals  appears  to  be  small. 

7.  In  no  case  has  methane  been  detected  amongst 
the  gases  given  off  by  hydrous  coals. 

The  gases  evolved  on  heating  to  100°  C. 

In  the  case  of  the  hydrous  coals  a  considerable 
quantity  of  water  distils  over  on  heating.  The 
analyses  in  this  series  were  obtained  by  allowing 
gas  and  water  to  remain  overnight  in  contact  in 
the  burette.  The  analysis  of  the  superposed  gas 
wa6  then  corrected  for  solubility  in  the  water. 


To  these  may  be  added  for  comparison  the  results 
of  Thomas  (Joe.  cit.)  averaged  per  class  of  coal. 


% 

Anthracite     . . 

..       8-7 

Steam 

..       9-8 

Bituminous   . . 

. .     18-0 

N, 

CH, 

0, 

%       . 

•        %       • 

O/ 

2-6      . 

.     88-7     . 

91      . 

.     80-5     . 

.     0-5 

9-8     . 

.      59-6      . 

.     2-6 

From  this  table  the  following  regularities  ap- 
pear :  — 

1.  Methane  has  only  been  found  in  the  gases 
given  off  at  100°  C.  from  anhydrous  coals.  In  this 
respect  it  is  noteworthy  that  "  Blackball  "  coal,  an 
anhydrous  coal  of  distinctly  brown  streak,  yielded 
methane  at  this  temperature. 


Coal. 

CO, 

N, 

CH, 

o, 

CO 

¥ 

% 

% 

0/ 

/o 

o 

JO 

% 

Avoca 

si  i  :.   . 

.    19-5   . 

Mossbank     . . 

.    90-7  . 

.      8-7   . 

.    — 

.*   0-6 

]  ] 

, 

Taratu 

.    94-3   . 

.      5-7  . 

— 





Whiteeliffs    . . 

.    97       . 

.      3      . 



. 





Coal  Creek  . . 

.    97-9    . 

1-9  . 



!    0-2 





Puponga 

.    80-4   . 

.    19-6    . 





Blackball  1. 

.    23-2   . 

.    35-9    . 

'.    31-3    .' 





."    91 

o. 

.    62-6   . 

7-7    . 

.    28-6    . 



!  ii  '. 

Pt.  Elizabeth  1. 

.    40-4    . 

.      9-2    . 

.    43-3   . 



.    0-6  . 



,,         ,.           2.  • 

.      7-7   . 

8-9   . 

.    83-4    . 

-   — 

.  trace . 

•   — 

2.  The  poorer  grades  of  coal  (e.g.,  Taratu,  Coal 
Creek,  Whitecliffs)  give  off  a  gas  containing  a  very 
high  percentage  of  carbon  dioxide. 

3.  The  pitch  coals  and  the  better  quality  brown 
coals  (Avoca)  give  off  a  gas  containing  a  lower 
percentage  of  carbon  dioxide. 

4.  The  poorer  grades  of  coal  give  less  gas. 

Beversibility  of  the  phenomena. 

On  studying  the  table  of  results  for  Point 
Elizabeth  coal  (Sample  B)  it  will  be  seen  that  on  the 
occasion  on  which  two  days  were  allowed  to  elapse 
before  evacuation  the  volume  of  gas  obtained  was 
not  twice  the  current  yield  per  day,  but  rather  less. 
This  suggested  that  there  was  a  tendency  towards 
a  state  of  equilibrium  of  the  system  "  gas  in  coal  " 
— "gas  exerting  pressure  on  the  coal."  If  then 
equilibrium  were  possible,  solution  of  appropriate 
gas  in  the  coal  matter  should  also  be  possible.  On 
referring  to  Thomas'  work  it  was  seen  that  he  had 
performed  an  experiment  on  gas  solution,  but 
although  5  c.c.  of  gas  was  unaccounted  for  in  his 
final  result,  he  concluded  that  the  phenomenon  was 
irreversible.  In  order  to  test  this  point  the  follow- 
ing experiments  were  devised. 

The  heating  to  100°  C.  of  the  Point  Elizabeth  B 
sample  was  continued  for  a  much  longer  period  of 
time  than  usual,  viz.,  10$  hours.  Over  100  c.c.  of 
gas  was  evolved  and  collected.  A  portion  of  this 
was  analysed:— CH,  83"4%,  CO,  7"7%  ;  N,  8'9%  ; 
CO  a  trace  (neglected  in  subsequent  measurements). 
The  remainder  of  the  gas,  9328  c.c.  at  N.T.P.,  was 
returned  to  the  coal  flask  and  the  pressure 
measured  (water  vapour  being  present  as  usual  in 
slight  excess  the  tension  of  aqueous  vapour  correc- 
tion was  definite). 

The  internal  pressure  was  observed  to  fall  con- 
siderably during  the  day,  the  rate  of  fall  decreas- 
ing after  a  few  hours.  The  next  day  the  pressure 
was  again  estimated  and  found  to  have  decreased 
from  157  mm.  to  91  mm.  of  mercury  (corrected 
figures).  A  small  portion  of  the  gas  was  then  drawn 
off  for  analysis,  and  the  consequent  fall  of  pressure 
noted.  The  analysis  showed:  CO,  0-0%;  CH, 
852%;  N,  14-8%.  From  these  data  the  following 
results  follow:  gases  introduced,  CO,  8' 18  c.c:  N, 
8-32;  CH,  7778  c.c;  total,  93'28  c.c.  Free  gas 
after  twenty-four  hours,  534  c.c. 

Introduced  (Jnabsorbed       Quantity 

„_  (24  hrs.)  absorbed. 

CO.  ••  ..  718         ..  00         ..  718 

i,u«  ■■  ••  7"~8  ••  45  4  ..  32-4 

*i  ....  8-32         ..  7-9         ..  0-4 

Adsorption  of  gas,  therefore,  certainly  took  place, 
particularly  adsorption  of  the  carbonaceous  gases. 
Only  7-00  c.c".  was  used  in  the  second  analysis  quoted 
above,  leaving  presumably  46-4  c.c  in  the  coal  flask. 
But  if  we  are  really  dealing  with  an  equilibrium 
this  equilibrium  (at  constant  volume)  will  have 
been  displaced  slightly  by  the  removal  of  7  c.c.  This 
was  found  to  be  the  case.  After  standing  over- 
night it  was  found  that  the  gas  exerted  a  pressure 
of  82  mm.  at  10'7°  C.  Hence  the  volume  should  bo 
486  c.c  at  N.T.P.  The  gas  was  quickly  pumped 
off  and  found  to  be  482  c.c.  by  direct  measure- 
ment. 

A  second  experiment  of  a  similar  nature  was  tried 
with  Coal  Creek  Flat  coal.  After  expelling  the  gas 
at  100°  C.  and  evacuating,  pure  carbon  dioxide  was 
generated  in  the  apparatus  and  its  absorption 
measured  by  pressure  and  by  volume.  Initial  pres- 
sure 255  mm.  of  mercury ;  final  pressure  244  mm. 
Initial  volume  256'5  c.c'  at  N.T.P. ;  final  volume 
2453  c.c. 

The  agreement  between  the  two  different  methods 
of  measuring  is  close. 

If  x  is  the  final  volume  calculated  from  the  pres- 
sure, then  x/256-5  =  249/255,  or  x=245-45.  The 
observed  value  of  x  was  245'3.  Hence  carbon 
dioxide  was  adsorbed. 


132  t 


MONRO.— THE   OCCLUSION   OF   GASES   IN   COAL. 


[April  20,  1922. 


Consideration  of  the  results  obtained. 
During  this  investigation  a  considerable  amount 
of  data  has  been  collected  which   may  be  used   to 
elucidate  the  true  nature  of  the  occlusion.  A  priori 
two  hypotheses  may  be  formulated  :  — 

(1)  Mechanical  holding  of  the  gases. 

(2)  Solution  of  the  gases  in  the  coal  matter. 
Now  of  these  two  hypotheses  only  the  second  can 

in  any  way  explain  the  reversible  nature  of  the 
phenomena.  An  hypothesis  which  will  adequately 
explain  the  "spasmodic"  evolution  seems  difficult 
to  formulate.  It  seems  probable  that  to  a  certain 
extent  the  gas  is  retained  in  both  ways ;  but  the 
data  seem  to  require  a  positive  hypothesis  in  the 
latter  case  only.  It  is  therefore  thought  that  the 
facts  warrant  the  following  hypothesis  :  — 

Gases  are  present  in  a  state  of  solid  solution  in 
coal,  the  solubility  of  carbon  dioxide  being  high, 
whilst  the  solubility  of  oxygen  and  nitrogen  is  low. 

Applying  this  hypothesis  to  the  experimental 
facts  it  can  be  said  :  — 

(1)  That  if  at  any  time  during  the  history  of  the 
coal  a  certain  amount  of  air  was  mechanically  re- 
tained by  the  coal,  the  first  process  would  be  the 
saturation  of  the  coal  matter  with  oxygen  and 
nitrogen  in  solution.  Then  would  follow  the  oxida- 
tion of  the  coal  so  saturated.  The  further  absorp- 
tion of  oxygen  would  necessarily  follow.  But  since 
the  coal  matter  is  dense  and  the  solubility  of  the 
gas  limited,  the  diffusion  processes  would  be  slow, 
and  even  after  long  periods  of  time  complete  satura- 
tion might  not  take  place.  The  gas  retained  would 
probably  contain  a  low  proportion  of  oxygen  owing 
to  its  greater  reactivity  with  the  coal  matter. 

The  author  cannot  explain  the  remarkable  6ize 
of  the  bursts  of  gas  and  their  intermittent 
character.  The  gas  must  exist  under  very  high 
pressure  in  the  coal.  The  hypothesis  outlined  above 
explains  to  a  certain  extent  the  composition  of  gas 
evolved ;  but  certainly  throws  very  little  light  on 
the  real  nature  of  the  "  burst  "  phenomena. 

(2)  If  the  hypothesis  outlined  above  be  admitted, 
there  will  exist  a  definite  state  of  equilibrium  of  the 
svstem— "gas  dissolved  in  coal" — "gas  exerting 
pressure  on  the  coal,"  which  the  gas  diffusion  pro- 
cess will  tend  to  reach.     This  equilibrium  will  be  a 


function  of  the  concentration  of  the  gases  and  also 
of  the  solubility  of  the  gases  in  coal.  The  rate  of 
attainment  of  equilibrium  will  depend  on  these 
factors,  and  also  on  the  diffusibility  of  the  gases.  Of 
these  three  factors  diffusibility  will  be  the  least 
evident,  for  if  we  take  the  extreme  cases  of  methane 
and  carbon  dioxide  and  write  the  diffusibility  of 
carbon  dioxide  as  four  units,  the  diffusibility  of 
methane  is  less  than  seven  units.  It  is  of  interest 
to  recall  Thomas'  statement  (J.  Chem.  Soc.,  1875, 
28,  812),  "  Why  the  heavier  gases  should  come  off 
first  in  a  partial  vacuum — an  observation  which  is 
entirely  in  contradiction  to  the  law  of  diffusion — 
I  am  unable  to  explain." 

Nitrogen  and  oxygen,  the  gases  with  the  lowest 
solubility,  will  tend  to  come  off  during  the  first  few 
evacuations  (as  they  do),  whilst  carbon  dioxide  and 
methane  will  come  off  more  slowly.  A  gradual  de- 
crease in  the  proportion  of  oxygen  and  nitrogen  to 
methane  and  carbon  dioxide  will  therefore  be  a  first 
consequence  of  the  hypothesis. 

3.  The  hypothesis  accounts  for  the  reversibility 
of  the  phenomena  by  solution  of  gases. 

4.  After  standing  for  some  little  time  the  evolu- 
tion of  nitrogen  and  oxygen  will  not  cease  if  the 
coal  is  permeated  with  these  gases,  for  the  gas  in 
the  surface  layers  will  be  exhausted  and  slow  diffu- 
sion from  the  interior  of  the  coal  will  manifest  itself 
in  the  continued  evolution  of  gas.  If  d„  and  db  be 
the  densities  of  two  gases  and  a  and  b  their  concen- 
trations in  solution,  the  relative  amounts  diffusing 
will  be  adb  and  bda. 

5.  If  the  hypothesis  be  accepted,  a  definite  equi- 
librium partition  coefficient  must  exist  between 
each  gas  held  by  the  coal  and  the  same  gas  in  the 
free  condition  above  the  coal.  The  experimental 
determination  of  this  partition  coefficient  is 
rendered  difficult  by  the  difficulty  of  determining 
accurately  the  concentration  of  gas  in  the  coal. 

In  conclusion  the  author  ha6  to  thank  Prof.  W.  P. 
Evans  for  his  valuable  advice  during  the  research 
and  the  various  mine  managers  who  contributed 
samples. 

Chemical  Laboratories, 
Canterbury  College, 

Christchurch,  New  Zealand. 


Vol.  XL!..  No.  9.] 


TRANSACTIONS 


[May    15,  1922. 


Bristol  and  South  Wales 
Section. 


Meeting  held  at  University  College,  Cardiff,  on 
March  3,  1922. 


PROP.    C.    M.    THOMPSON   IN   THE   CHAIR. 


NOTE   ON   PRE-ROMAN    IRON   BARS. 

BY  JOHN  MTEBS,  F.I.C. 

The  material  to  which  this  note  relates  is  con- 
sidered to  be  pre-Roman  iron  in  the  form  of 
currency-bars.  These  were  discovered  recently  upon 
the  site  of  a  prehistoric  village  on  Worthy  Down, 
near  Winchester,  by  Mr.  R.  W.  Hooley,  F.G.S., 
Hon.  Curator  to  the  AVinchester  Museum  (see 
"Hampshire  Chronicle,"  December  10,  1921;  The 
Antiquaries  Journal,  October,  1921,  Vol.  1,  No.  4), 
to  whom  I  am  indebted  for  the  material,  much  infor- 
mation regarding  theories  held  as  to  its  date  and 
use,  and  also  for  permission  to  deal  with  the  subject 
matter.  Altogether,  remains  of  13  iron  bars  were 
found  on  Worthy  Down,  of  which  7  were  perfect. 
These  latter  varied  from  32J — 31  -^  inches  in 
length,  and  their  average  weight  was  631'7  grams. 
They  were  found  1  ft.  6  in.  below  the  surface  in  soil, 
the  chalk  occurring  at  2  ft.  The  soil  is  never  water- 
logged and  all  rain-water  is  immediately  absorbed 
owing  to  the  chalk  subsoil. 

Mr.  R.  A.  Smith,  B.A.,  of  the  British  Museum, 
in  1905  gave  an  account  of  several  similar  finds  of 
iron  bars  in  various  localities  (Gloucester,  Dorset, 
Hampshire),  and  drew  attention  to  the  fact  that 
when  classified  according  to  weight,  they  approxi- 
mate fairly  closely  to  either  double  or  quadruple  a 
certain  standard  weight  of  4770  grains.  An  example 
of  this  standard  weight  in  bronze  was  found  near 
Neath,  and  presented  by  Dr.  Edwards  to  the  Cardiff 
Museum.  A  similar  weight  made  of  basalt  is  in  the 
Mayence  Museum  and  weighs  4767  grains  (309 
grams). 

The  Neath  bronze  is  considered  to  approximate  to 
half  an  Attic  commercial  mina  of  the  period  before 
160  B.C.  Mr.  Smith  considers  that  these  British 
iron  specimens  cannot  be  dated  earlier  than 
400  B.C.,  and  that  the  innovation  of  weight  and 
coinage  must  be  ascribed  to  the  Greek  or  Cartha- 
ginian colonists  of  the  Western  Mediterranean. 

In  Csesar's  5th  Book  of  Commentaries  occurs  a 
sentence  describing  the  monetary  system  of  the 
Britons  at  the  time  of  Caesar's  visits  to  Britain. 
As  a  result  of  his  examination  of  the  variants, 
Smith  believes  the  correct  treading  to  be:  — 
"  TJtuntur  aut  aere,  aut  nummo  aures,  aut  taleis 
ferreis  ad  certum  pondus  examinatis  pro  nummo." 

He  states  that  these  currency-bars  roughly 
resemble  swords,  and  consist  of  a  flat  and  slightly 
tapering  blade,  the  edges  of  which  are  blunt  and 
vertical,  and  the  faces  parallel.  A  rude  handle  is 
formed  by  turning  up  the  edges  so  as  to  meet  one 
another  at  a  point  about  2  in.  from  the  end.  The 
greatest  width  of  the  blade  is  H  in.,  average  length 
2  ft.  7i  in.,  whilst  the  narrower  end  is  square,  not 
pointed,  and  is  usually  J  in.  in  width. 

Mr.  Hooley  describes  his  find  as  follows  :— "  The 
currency-bars  are,  as  usual,  flat  with  squared  edges. 
The  extremity  of  the  broader  end  is  pinched  in,  so 
that  the  two  edges  in  some  cases  meet  in  the  median 
line,  forming  a  sort  of  hollow  handle.  They  taper 
in  the  other  direction  and  terminate  in  a  curved 
point.  Judging  by  their  weight,  size,  and  the  form 
of  their  handles,  they  belong  to  the  double  unit 
denomination.    In  weight  they  vary  from  553  grams 


to  723  grams.  This  lack  of  uniformity  may  to  some 
extent  be  due  to  different  degrees  of  waste  from 
rust,  moreover,  two  of  the  bars  have  matter 
cemented  to  them  by  iron  rust,  and  another  has  a 
very  small  flint  pebble  in  the  hollow  of  the  handle. 
The  average  weight  approximates  very  closely  to 
the  presumed  standard  weight  of  the  double  unit." 
The  following  is  an  analysis  of  the  Worthy  Down 
bars : —Combined  carbon  0-06%,  silicon  0-ll%, 
sulphur  0014%,  manganese  faint  trace  (and  in 
another  specimen  none),  nickel  faint  trace,  phos- 
phorus 0954%.  From  these  results  it  will  be  seen 
the  notable  differences  between  the  composition  of 
this  ancient  iron  and  a  normal  modern  iron  lie  in 
their  respective  contents  of  manganese  and  phos- 
phorus. A  modern  iron  has  an  average  manganese 
content  of  0'06%  and  phosphorus  0"22%.  These 
differences,  particularly  that  of  manganese,  mark 
the  characteristics  of  a  primitive  iron  directly  re- 
duced from  the  ore  in  a  pasty  state.  Microscopically 
the  material  examined  differs  from  a  good  modern 
iron  in  the  grains  being  comparatively  coarse,  and 
in  the  relatively  broad  bands  of  slag.  The  most 
peculiar  feature,  however,  in  the  structure  of  this 
iron  is  the  presence  of  elongated  aggregates  of  small 
foliations,  developed  by  prolonged  etching  with 
alcoholic  solutions  of  picric  a^id  (Fig.   1").     So  far 


Fio.  1 
Original  Iron.    (X100.) 

as  I  am  aware,  this  feature  has  not  been  previously 
encountered  in  precisely  this  fashion.  The  pheno- 
menon is  probably  due  to  irregular  distribution  of 
phosphorus  in  the  solid  solution  of  phosphorus  in 
iron,  and  the  cause,  in  part,  may  be  due  to  the 
movements  of  both  carbon  and  phosphorus  in  their 
respective  6olid  solutions.  Stead  (J.  Iron  and  Steel 
Inst.,  1918,  I.)  proved  by  means  of  cupric  reagents 
that  where  extraneous  carbon  was  introduced  into 
phosphoric  iron,  phosphorus  diffused  out  of  the 
parts  where  the  carbon  penetrated.  J.  H.  Whiteley 
(J.  Iron  and  Steel  Inst.,  1920)  proved  that  at  tem- 
peratures between  Acl  and  Ac3,  and  in  the  presence 
of  carbon,  part  of  the  phosphorus  contained  in  the 
V-iron  diffuses  into  the  adjacent  ferrite,  owing  to 
the  phosphorus  being  more  soluble  in  ferrite  than 
the  former.  The  minute  pea.Tlite  areas  in  this 
primitive  iron  when  treated  with  cupric  reagent 
clearly  show  this  phosphorus  diffusion,  and  prove 
that  the  metal  was  re-heated  for  some  time  between 
800°  and  900°  C,  followed  by  fairly  rapid  air- 
cooling.  In  the  same  research,  this  worker  estab- 
lished the  necessary  temperatures  to  eliminate 
irregular  distribution  of  phosphorus  (by  diffusion) 
with  a  proviso  that  faint  ghost  lines  remain  after 
diffusion  whose  presence  would  appear  to  be  due  to 
the  uneven  distribution  of  some  other  substance 
besides  phosphorus.  Probably  arising  out  of  this  last 


134  t 


FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES.  [SlaylS   I  122. 


observation,  more  recent  work  of  AYhiteley  (J.  Iron 
and  Steel  Just.,  1921,  277)  fully  demonstrates  that. 
whilst  minor  differences  in  phosphorus  can  be 
proved  by  application  of  cuprie  reagents,  unequal 
distributions  of  oxygen  are  not  similarly  detected. 
Yet  when  oxygen  is  present,  white  resist  lines  are 
formed  at  weld  junctures,  which  do  not  appear  when 
unoxidised  iron  is  welded   in   dry  hydrogen. 

Stead's  demonstration  of  the  migrations  of  phos- 
phorus and  carbon,  and  Whiteley's  work  suggested 
the  probability  that  the  primitive  iron  had  been 
partially  carburised,  and  subsequently  decarburised. 
and  that  the  foliations  were  the  resultant   legacy. 

Following  this  speculation,  the  iron  was_ subjected 
to  successive  annealings  at  temperatures  just  above 
S30°  C.  with  the  object  of  removing  differences  in 
phosphorus  by  diffusion.  After  the  first  re-heating 
it  was  obesrved  that  near  the  outer  edges  of  the 
specimen  the  foliations  had  disappeared,  whilst 
marking  the  area  of  homogeneously  diffused  solution 
was  a  line  very  similar  to  Whiteley's  "  resist  lines." 
This  is  shown   in   Fig.   2.     Subsequent   re-heatings 


Fit;.  2. 
Ite-heatcd — partial  diffusion.     (X75) 

produced  further  diffusion,  but  several  (4  or  5),  with 
a  total  time  of  not  less  than  4  hours,  were  required 
before  the  specimen  was  practically  freed  from 
foliations,  and  the  time  taken  to  bring  this  about 
points  strongly  towards  some  other  factor,  probably 
oxygen,  particularly  as  these  foliations  are  revealed 
by  picric  etching  rather  than  cuprie  etching  used 
to  identify  phosphorus  distribution. 


%$&*>' 


"  lakes  "  and  foliations,  a  structure  reminiscent  of 
tht>  well-known  "cored"  structure  in  certain 
copper-zinc  alloys.  This  is  shown  in  Fig.  3.  A 
further  decarburisation  was  followed  by  etching, 
and  there  were  found  marked  differences  in  the  rate 
of  attack  as  shown  by  the  relief  areas  in  Fig.  4, 
again  produced  by  picric  acid  etching. 


followed  by  partial  decarbuiisfttion.     (     75.) 

The  specimen,  containing  very  slight  remains  of 
foliations,  was  now  completely  carburised  at 
approximately  1000°  C.  the  carburised  metal  par- 
tially decarburised,  and  examined.  It  was  observed 
that    in    the    white    ferrite    areas    were    elongated 


Fie..  4. 
Further  decarburisation.     ( X  100.) 

It  thus  appears  most  likely  that  the  iron  was 
partially  carburised,  then  re-heated  in  the  ancient 
smith's  forge  in  the  presence  of  a  rich  oxide  slag, 
when  decarburisation  took  place.  The  foliations 
produced  by  etching  reflect  the  differing  rates  of 
diffusion  of  certainly  two  solid  solutions — carbon 
and  phosphorus — and  most  probably  a  third,  namely 
of  oxygen. 

In  conclusion,  I  have  to  acknowledge  the  valuable 
suggestions  and  help  given  by  Mr.  J.  H.  Whiteley. 
1  also  owe  thanks  to  my  Principal,  Mr.  Gr.  11. 
Thompson,  for  his  encouragement  and  permission 
to  investigate. 


Manchester   Section. 


Meeting  held  nt  College  of  Technology  on  Man  h  30, 

1922. 


MR.  JOHN  ALLAN  IN  THE  CHAIR. 


THE  RELATION  BETWEEN  CHEMICAL  CON- 
STITUTION AND  ANTISEPTIC  ACTION  IN 
THE  COAL  TAR  DYESTUFFS. 

BY    THOMAS    H.    FAIRBROTHER,    M.SC,    A. I.e..    AND 
ARNOLD    RENSHAW,    M.D.,    D.P.H. 

The  group  of  diseases  due  to  some  infective 
agent  is  probably  responsible  directly  or  indirectly 
for  nine-tenths'  of  the  human  suffering  and 
misery  resulting  from  diseased  conditions.  Thus 
the  greater  proportion  of  heart  and  lung  diseases 
are  bacterial  in  origin;  rheumatism  is  due  to 
a  toxin  derived  from  organisms  growing  maybe 
in  remote  organs;  peritonitis,  pleurisy,  menin- 
gitis present  a  definite  bacteriology.  It  is  on 
This  group  that  we  have  focussed  our  energies 
during  the  past  three  or  four  years.  The 
three  main  classes  of  the  group  are: — (1)  Bacterial 
infections.  (2)  Parasitic— including  protozoal— in- 
vasions. (3)Tiltrable  viruses.  With  the  exception 
of  the  mechanical  effects  resulting  from  the  larger 
parasitic  infections — such  as  the  worms  infecting 
man — these     three    classes    have    one     feature     in 


Vol.  XU,  .\o.  9.]         FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


135t 


common.  By  their  biological  activity  in  the  host — 
man — they  produce  poisons  or  toxins  which  are  alile 
to  cause  serious  damage  to  tissues  and  even  general 
death  of  organs.  The  nature  and  intensity  of  this 
intoxication  is  dependent  upon  the  character  of  the 
organisms  producing  it,  upon  their  number,  and 
upon  the  resistance  of  the  body  to  the  infection. 

Wo  have  known  the  tissues  of  a  paratyphoid 
patient  so  affected  by  the  growth  of  paratyphoid 
bacilli  during  an  attack  of  the  disease  that  anti- 
substances  were  detected  in  his  blood  in  a  dilution 
of  1  in  500,000.  Similarly  diphtheria  bacilli  when 
grown  in  broth  may  produce  a  toxin  so  virulent 
that  1/25  part  of  a  drop  or  1/500  c.c.  can  kill  a 
guinea  pig  weighing  500  grams;  that  is  to  say  a 
toxin  can  be  prepared  so  powerful  in  action  that  it 
can  cause  death  to  a  mass  of  living  tissue  250,000 
times  heavier  than  itself.  These  examples  could  be 
multiplied. 

One  of  the  greatest  advances  in  modern  medicine 
has  been  a  recognition  of  certain  specific  anti-bodies 
which  tin'  tissues  of  the  body  elaborate  in  order 
to  overcome  one  infective  agent  and  that  one 
only.  Any  foreign  protein  substance,  if  harmful, 
when  inoculated  into  man,  calls  up  the  production 
of  these  anti-bodies  in  self-defence.  Thus  so  specific 
is  the  demand  that  if  an  animal  is  inoculated  with 
sheep  blood  cells  substances  are  produced  which  will 
destroy  sheep's  blood  cells,  but  the  blood  cells  of  no 
other  animal.  Similarly  with  cholera,  anti-bodies  to 
the  organism  of  cholera  are  produced  by  infection 
with  the  cholera  germs,  and  the  blood  of  the  patient 
so  infected  produces  substances  which  will  destroy 
and  dissolve  the  cholera  germs,  but  no  other 
bacterium  such  as  typhoid. 

When  an  infection  occurred  three  possibilities 
arose:  (1)  The  organism  was  rapidly  killed  off  by 
the  chemical  antibodies  and  cells  in  the  blood. 
(2)  The  organism  killed  the  patient.  (3)  A  gradual 
barance  was  established  whereby  the  infection 
became  localised,  but  from  time  to  time  the  body 
became  flooded  with  toxins,  causing  chronic  ill- 
health. 

Tlnse  ideas  were  fresh  in  men's  minds  when 
Ehrlich  revolutionised  the  whole  aim  of  treatment 
of  disease  by  the  phrase  "  parasitotropic  but  not 
organotropic."  In  other  words,  he  had  discovered, 
so  he  said,  a  substance  which  was  highly  lethal  to 
an  infective  agent  without  harming  the  tissues 
which  that  infective  agent  was  destroying  by  its 
activity.  This  phrase,  considered  in  conjunction 
with  the.  knowledge  concerning  the  elaboration  of 
anti-bodies  in  the  human  tissues,  has  led  to  the  hope 
that  similar  if  coarser  attempts  can  be  made  in  the 
laboratory  to  lead  to  the  production  of  chemical 
substances  which  would  destroy  a  given  infective 
agent  without  causing  harm  to  the  tissues  of  the 
body. 

Tin  re  were  thus  two  main  methods  of  fighting  an 
infection  :  (1)  By  coaxing  the  body  itself  to  fight 
the  infection  by  means  of  rest,  warmth,  and 
medicinal  methods  assisting  this  object.  (2)  By 
injecting  into  the  blood  chemical  substances  having 
;i  chemical  affinity  for  the  infecting  agent  which 
could  kill  that  agent  quickly  and  cleanly  without 
harming  tin    tissues  and  organs  of  the  body. 

It  was  with  some  such  idea  in  mind  that  we  com- 
menced our  study  of  the  field  of  dyes.  We  wished 
to  ascertain  the  chemical  affinities  existing  between 
certain  bacteria  and  protozoa  and  certain  dyes,  and 
then  to  ascertain  how  that  chemical  affinity  could 
be  turned  to  use. 

In  this  work  a  vast  field  opened  before  us.  Since 
the  discovery  of  the  compound  microscope  infective 
disease  had  become  a  clearly  defined  field.  Infective 
agents  had  not  only  been  discovered  but  had  been 
proved  to  be  the  cause  of  the  disease.  There  are 
diseases  in  which  as  yet  no  known  organism  has 
been  found  which  satisfies  Koch's  postulates.    There 


are  also  a  number  of  diseases  in  which  it  has  been 
shown  experimentally  that  these  agents  are  too 
small  to  be  seen  by  the  microscope.  The  larger 
number  of  diseases,  though,  have  a  definite  accepted 
cause  which  is  visible  to  the  microscope,  and  about 
whose  life  history  most  of  the  facts  are  known.  The 
diseases  not  italicised  have  no  definite  specific  treat- 
ment available.  This  list  shows  the  diseases  of 
bacterial  origin,  where  again  those  not  italicised 
have  no  specific  agent  available  for  treatment.  In 
all  some  50  specific  infective  diseases  are  important. 
Of  these  the  causative  agent  is  not  yet  discovered  in 
12.  Of  the  remaining  38  a  partially  successful 
curative  agent  was  available  in  10.  There  were 
thus  28  diseases  in  which  the  causative  agent  was 
known  in  which  no  specific  treatment  was  available, 
and  to  these  must  be  added  the  12  infective  diseases 
of  unknown  origin  since  they  were  known  to  be 
infective,  making  a  total  of  40.  Truly  precise 
diagnosis  awaits  specific  treatment. 

fni asitic  Infections. 

(a)  Protozo\l. — Amoebic  dysentei^y.  filiate 
dysentery.  Kala  azar.  Malaria.  Oriental  sore.  Re- 
lapsing fever.    Sleeping  sickness.     Syphilis.    Yaws. 

(h)  Metazoal. —  Worms;  tapeworms,  filarial, 
flukes.     Insects,     ("  Itch  "  parasite.) 

Bacterial  and  Fcngal  Infections.  —  Actinomy- 
cosis. Anthrax.  Cholera.  Diphtheria.  Dysentery. 
Epid.  G.S.  Meningitis.  Erysipelas.  Glanders. 
Gonorrhoea.  Leprosy.  Malta  fever.  Paratyphoid 
fever.  Plague.  Pneumonia.  Puerperal  fever. 
"Rag  pickers"  disease.  Ringworm.  Septic  in- 
fections of  surfaces,  joints,  etc.  Tetanus.  Tuber- 
culosis.    Typhoid.     Whooping  cough. 

Unknown  Infective  Agents.  —  Chickenpox. 
Dengue.  Influenza.  German  measles.  Measles. 
Mumps.  Scarlet  fever.  Smallpox.  Rocky  Moun- 
tains fever.  Trench  fever.  Typhus  and  Mexican 
fever. 

FrLTRABLE  Viruses. — Acute  anterior  polio- 
myelitis. Foot  and  mouth  disease,  Phlebotomus 
fever.     (  p)  Babies.     Yellow  fever. 

Experimental   methods   used. 

The  solutions  of  the  dyes  to  be  tested  were  ob- 
tained as  follows: — One  gram  of  dyestuff  was  dis- 
solved in  100  c.c.  of  distilled  water  to  form  the  stock 
solution,  which  was  kept  in  glass  stoppered  bottles 
waxed  over.  The  solutions  were  made  up  in  small 
quantities  so  as  not  to  be  kept  over  a  long  period 
and  fresh  solutions  were  made  up  periodically.  The 
6tock  dye  solution,  1/100.  to  be  tested  was  then 
added  in  bulk  to  a  known  volume  of  broth  to  make 
solutions  of  1  in  500,  1000,  2000.  and  5000  of  the  dye 
in  sterile  broth  prepared  from  animal  tissues.  This 
dilution  of  dye  in  broth  was  then  added  in 
quantities  of  8  c.c.  to  sterile  plugged  tubes,  and 
these  were  finally  sterilised  at  30  lb.  pressure 
for  30  minutes;  in  a  few  cases  where  the  dye  is  de- 
composed by  heat,  special  precautions  had  to  he 
taken,  and  sterility  tests  made  prior  to  inoculation. 

These  dye-broth  tubes  were  inoculated  with 
a  large  loopful  of  a  recent  culture  in  broth  of  the 
organism  and  incubation  carried  out  at  37°  C.  for 
2  days,  after  which  subcultures  were  made  into 
broth  or.  in  the  case  of  the  coli-typhoid  groups,  on 
to  lactose- or  mannitol-fuchsin  peptone  water,  when 
a  further  incubation  of  48  hours  of  the  subcultures 
was  ana  in  made.. 

The  following  bacteria  were  used  to  test  the 
action  of  the  dyes:—  B.  phlozi,  B.  subtilis,  B. 
inthracis,  /•'.  diphtheria',  Streptococcus,  Staphylo- 
coccus, B.  coli,  V,.  dysenteria  (Shiga,  Flexner,  and 
Gaertner),  B.  typhosus,  B.  paratyphosus  .1.  B.  parar 
tuplmsiis  B.  T>.  lactis. 

The  results  are  shown  in  the  accompanying 
tables.  It  will  be  seen  that  certain  dyes  kill  off  the 
gram  negative  organisms  leaving  the  gram  positive, 


130  T 


FAIRBKOTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


[May  15,  1922. 


Resui/ts  with  Paramceoia. 

1/200. 

1/2000. 

1/20,000. 

DycstufT. 

Observation. 

Observation. 

Observation. 

Immediate. 

After  15  mins. 

Immediate. 

After  15  mins. 

Immediate. 

After  15  mins. 

Dead. 

Dead. 

Dead. 

Dead. 

Forms  affected. 
Flagellates 
dead. 

Moribund.  After 
30  mins.  chiefly 
dead. 

Crystal  violet 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Dead  or  mori- 
bund. 

Dianol  violet 

*  Active. 

No  dead  forms. 
Many  active. 

— 

— 

— 

— 

Nile  blue  BB 

Dead. 

Dead. 

Dead. 

Dead. 

Some  dead.  Fla- 
gellates dead. 

Some  dead,  some 
living.  All  dead 
after  24  hours. 

Active. 

Active  after  14 
hours. 

— 

— 

— 

- 

Formyl  violet 

Active. 

Active. 

_              1 

— 

— 

— 

Dead. 

Dead. 

Active. 

Dead. 

Active. 

Dead  or  mori- 
bund. All  dead 
after  24  hours. 

Methyl  violet  ZnClj 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Living.  Flagell- 
ates dead. 

Malachite  green  ZnClj 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Some  living. 
Dead    after    24 
hours. 

Methylene  blue 

Dead. 

Dead. 

Active. 

Active. 

— 

— 

Active. 

Active  after  14 
hours. 

— 

— 

— 

- 

Phenosafranine 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Active. 

Ethyl  violet 

Dead. 

Dead. 

Dead. 

Dead. 

Affected. 

Dead  or  mori- 
bund. .Stained. 

*-       • 

Dianol  last  claret 

Active. 

Chiefly  active. 

— 

— 

— 

Chlorantine  brown  . . 

Active. 

Active. 

— 

— 

— 

— 

Ehodamine  G 

Active. 

Active. 

— 

— 

— 

— 

Auramine  0 

Dead. 

Dead. 

Dead. 

Dead. 

Moribund. 

All  dead. 

Pyramine  orange 

Active. 

Active  (stained). 

— 

— 

— 

— 

Llssamine  yellow 

Active. 

Active. 

— 

— 

— 

— 

Congo  red 

Active. 

Active. 

— 





— 

Pink  BK       

Active. 

Active. 









Victoria  blue  B 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Active. 

Eosaphenine  10B 

Active. 

Active. 

— 

— 

— 

— 

Ehodamine  B 

Active. 

Active. 

— 

— 

_ 

— 

Trypan  blue 

Active. 

Active. 

— 

— 

— 

— 

Metanil  yellow 

Dead. 

Dead. 

Active. 

Dead. 

Active. 

Active. 

Azo  geranine 

i  Active. 

Active. 

— 

— 

— 

— 

Crystal  violet  citrate 

■  Active. 

Dead. 

Active. 

Dead. 

Living. 

Living. 

Meldola's  blue 

1  Dead. 

Dead. 

Dead. 

Dead. 

Living. 

Dead. 

Tannin  helio 

Dead. 

Dead. 

Dead. 

Dead. 

Living. 

Living. 

Indigo  carmine 

'  Living. 

Living. 

— 

— 

— 

— 

Turquoise  blue 

Dead. 

Dead. 

Active. 

Some  dead. 

— 

— 

Acridine  orange 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Active. 

Bismarck  brown 

Dead. 

Dead. 

Active. 

Active. 

— 

— 

Ehodamine  GG 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Active 

Malachite  green  oxalate 

1  Dead. 

Dead. 

Dead. 

Dead. 

Moribund. 

!  Dead. 

i  Dead. 

Dead. 

Active. 

Active. 

— 

i    - 

Methylene  green 

Dead. 

Dead. 

Active. 

Dead. 

;  Active. 

i  Active. 

Dead. 

Dead. 

Dead. 

Dead. 

Active. 

Active    after    2J 
hours. 

Neo-salvarsan 

Active. 

Active. 

Active. 

Active. 

— 

Vol.  XLI.,  No.  0.] 


FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


U7t 


as  in  Chrysoidine  1  in  1000.  Others  kill  off  the  gram 
positive  leaving  the  gram  negative,  as  in  Neutral 
Red — a  fact  which  helps  us  to  separate  some  of 
these  organisms  when  mixed  together  as  in  the 
examination  of  stools  for  typhoid. 

Following  the  bacteriological  observations  the 
behaviour  of  protozoa  was  examined.  For  this  pur- 
pose a  culture  of  paramcecia  was  used.  A  hanging 
drop  preparation  of  dye  and  paramcecia  was 
observed  suspended  over  a  brass  ring  fixed  to  a  slide 
by  vaseline,  and  consequently  the  behaviour  was 
examined  in  a  suspended  drop  without  any  external 
pressure  to  impede  the  movements  of  the  organisms, 
and  also  preventing  the  alteration  of  concentration 
of  the  dye  due  to  drying  up. 

Tho  process  of  elimination  of  dyestuffs  was  as 
follows: — All  dyes  were  put  up  in  a  1/100  solution 
in  fresh  tap  water.  A  certain  volume  of  the 
paramcecia  culture  was  drawn  up  to  a  mark  on  a 
capillary  pipette  and  an  equal  volume  of  1/100  dye 
solution  drawn  up,  an  air  bubble  separating  the  two 
liquids.  The  two  liquids  were  then  discharged  as  a 
drop  on  to  a  cover  slip  and  the  time  of  mixing 
noted.  This  gave  a  1/200  solution.  An  immediate 
examination  was  made  and  a  further  examination 
after  15  minutes.  If  after  15  minutes'  contact 
with  the  1/200  dye  solution  any  paramcecia  were 
still  alive,  the  dye  was  rejected.  If  after  15  minutes' 
contact  with  1/200  dye  solution  no  living  paramcecia 
were  detected,  that  dye  was  referred  for  further 
examination  at  greater  dilution.  The  next  dilution 
employed  was  1/1000  solution  of  dye  mixed  with 
equal  volume  of  paramcecia  as  before,  giving  a 
1/2000  solution.  This  was  subjected  to  the  same 
time  exposure  as  before  and  if  after  15  minutes  liv- 
ing forms  were  present  in  solution,  that  particular 


dye  was  rejected;  if  no  living  forms  were  detected 
after  15  minutes  the  dve  was  put  up  in  the  next 
dilution  of  1/20,000. 

The  observations  made  are  recorded  in  the  tables. 

An  analysis  of  the  results  shows  that  the  dyes 
which  showed  the  greatest  action  on  the  paramcecia 
were:— Nile  Blue  A,  Nile  Blue  2B,  Meldola's  Blue, 
Auramine  O,  Ethyl  Violet,  Malachite  Green 
oxalate,  Magenta  acetate.  In  these  cases  the 
forms  were  affected  at  once  at  a  dilution  of 
1/20,000,  and  some  dead  forms  noted.  Of  the6e 
Auramine  O,  Ethyl  Violet,  Malachite  Green  oxal- 
ate, and  Magenta  acetate  were  all  very  active  in 
the  case  of  bacteria,  but  the  oxazines  were  only 
active  amongst  the  gram  positive  organisms. 

In  this  work  on  paramcecia  we  have  eliminated 
the  whole  series  of  dye  classes  except  the  triphenyl- 
methanes  and  oxazine6.  The  triphenylmethane 
group  are  highly  bactericidal,  but  in  the  oxazine 
group  bactericidal  action  on  the  gram  negative 
(intestinal)  organisms  is  very  poor,  and  in  the  case 
of  Meldola's  Blue  scarcely  any  bactericidal  action  is 
present,  whereas  paramoecia  are  killed  off  by  it  in 
a  dilution  of  1  in  20,000  in  15  minutes  and  at  a 
much  higher  dilution  after  longer  contact. 

Thus  the  oxazine  group  shows  selective  action 
between  bacteria  and  protozoa  and  to  a  lesser  ex- 
tent amongst  bacteria  themselves,  killing  off  para- 
moecia in  high  dilution,  gram  positive  organisms  in 
lower  dilution,  and  in  dilutions  used  not  killing  off 
gram  negative  bacteria  at  all.  The  possibilities 
arising  out  of  this  differential  or  selective  action 
are  extremely  great  with  regard  to  soil  problems 
and  the  purification  of  sewage.  Thus  in  the  case 
of  sewage  purification  the  method   which  is   most 


Results  Obtained  with  Bacteria. 

Table  1. 

Dilutions  of  1/500. 

+  indicates  that  organism  lived,  0  that  it  was  inhibited. 


1 

» 

1 

s 

J 

.3^. 

3 

1 

3 

8 

1 

■S 

•2 
u 
8 

I 

"3  a 

«  a 

-=i 

ei 

*, 

M 

1 

Dyestuff. 

1 

1 

8 

1 

3 

Si 

5 

1 

u 

It 

Ct3 

P. 

si 

g 

^ 

«■ 

Ei 

a; 

pq 

=5 

e$~ 

eq" 

C! 

ci 

*~ 

Cj 

Acridine  orange 

0 

+ 

0 

0 

0 

0 

0 

0 

0 

+ 

0 

+ 

0 

0 

Azo  geranine 

+ 

+ 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

-r 

Blue  black 

+ 

+ 

+ 

+ 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

-r 

Be  azo  fast  helio 

0 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

+ 

Chrysophenine 

0 

+ 

0 

0 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

-r 

Congo  eorinth 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

+ 

Congo  orange 

4- 

4- 

0 

+ 

+ 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

"i~ 

Congo  red 

4- 

+ 

0 

4- 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

+■ 

Congo  rubine 

4- 

4- 

0 

4- 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 
0 

4- 
0 

+ 
0 

Crystal  violet 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Dianol  black 

0 

4- 

4- 

+ 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

+ 

Dianol  blue  . . 

+ 

-{- 

+ 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

-p 

Dianol  biown 

+ 

+ 

+ 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

+ 

Dianol  fast  yellow  . . 

0 

+ 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

4- 
4- 

4- 
4- 

+ 

+ 

Dianol  violet 

+ 

4- 

0 

+ 

+ 

4- 

+ 

+ 

+ 

+ 

+ 

Eosine 

0 

+ 

0 

0 

+ 

0 

+ 

+ 

+ 

+ 

-r 

4- 

4* 

4- 

Fast  blue  2B 

0 

4- 

+ 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

4- 

Formyl  violet 

4- 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

4- 
4- 

4- 
4- 
0 
+ 
4-4-4- 

4- 

+ 

+ 

Indigo  carmine 

+ 

+ 

4- 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

Methylene  blue 

0 

0 

0 

0 

0 

0 

0 

+ 

0 

+ 

+ 

4- 

4- 

4-4-4- 

Nile  blue  A   . . 
Pinks  A.  BK  &  R    . . 

0 

+++ 

0 

4-4-4- 

0 

4-4-4- 

0 

4-4-4- 

0 

+  +  + 

+ 
+  +  + 

+ 
+  +  + 

+ 
+++ 

+ 
+  +  + 

+ 

+  +  + 

4- 
4-4-4- 

Rhodamine  G 

0 

0 

0 

0 

0 

+ 

0 

0 

+ 

+ 

4- 

4- 

4- 

+ 

Rhodamine  6G 

0 

0 

0 

0 

0 

+ 

0 

0 

0 

4- 

4- 

4- 

4- 

+ 

Rhodamine  B 

0 

4- 

04- 

0 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

4- 

4- 

Rosaphenine  10B     . . 

4- 

+ 

4- 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 
0 

4- 
0 

4- 
0 

Safranine  X  . . 

0 

0 

0 

0 

0 

0 

+ 

0 

0 

+ 

4- 

Soluble  blue 

+ 

4- 

4- 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

4- 

4- 

+ 
0 

Sloaline 

4- 

+ 

4- 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 
0 

4- 
0 

Tannin  helio.. 

0 

0 

0 

0 

0 

+ 

0 

0 

0 

0 

0 

Tartrazine 

+ 

4- 

4- 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

■+■ 

Toluidine  blue 

0 

0 

0 

0 

0  + 

0  + 

+ 

+ 

0 

+ 

4- 

4- 

0 

-h 

Trypan  blue 

+ 

+ 

+ 

4- 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

4- 
4- 

4- 
+ 

4- 
4- 

+ 

Turquoise  blue 

4- 

4- 

+ 

4- 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

Vale  yellow 

+ 

+ 

4- 

0 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 
4- 

~T 

Acid  green  1 . . 

4- 

4- 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

4- 

4- 
+ 

Acid  green  2 . . 

+ 

4- 

4- 

0 

4- 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

Neutral  red  . . 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

4- 

4- 

138  t 


FAIRBROTHER   AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


[May  15,  1922. 


Table  2. 
Dilutions  of  1/1000. 


Dye -tuff  . 


Si 

«3 


-\ur,nimc  O  . . 

AuTamine  G  . . 

Azo  geranlne 

Blue  black     . . 

Benzo  fast  liclio 

Chrysoidine  . . 

Chrysophenihe 

Cblorantine  brown  . . 

Congo  corinth 

i  ongo  orange 

Congo  red 

Congo  rubine 

Chrysamine 

Crystal  yellow 

Crystal  violet 

Dlaminogen  blue  2B 

Dianol  black 

Dianol  blue  2B 

Dianol  brown  LF     . . 

Dianol  fast  claret     . . 

Dianol  fast  yellow   . . 

Dianol  violet 

Eosine 

Era  chrome  black    . . 

Fast  blue  211 

Forniyl  violet 

Flavine 

Indigo  carmine 

Indine  blue 

Induline 

Lissamine  yellow 

Meldota's  blue 

Metanil  vellow 

Methyl  violet  Z 

Methylene  blue 

Methj  I'-ne  violet 

Methylene  green 

Nile  blue  A  . . 

Kile  blue  2B.. 

Neutral  red  . . 

Nigrosine 

Night  blue     . . 

Phenosafranine 

Pink  A 

Pink  BK 

Pink  R 

Pyraniine  orange 

Ehodamine  G 

Khodainine  GO 

Ithodamine  11 

Bosaphcnino  10B     . . 

Saf  ranine  T  . . 

Soluble  blue 

Sloalinc  No.  2 

Tannin  helio. . 

Tartrazine 

Thionol  yellow 

Toluidine  blue 

Trypan  blue 

Tur  pioise  blue 

Vale  yellow  . . 

An  acid  green  1 

An  acid  green  2        ; . 

Malachite  green  hydro 
chloride 

Ma  lachite  green-ZnCk 

Malachite  green  oxa- 
late 

Malachite  green  ci- 
trate 

Crystal  violet  hydro- 
chloride 

Crystal  violet  arsenite 

Crystal  violet,  citrate. 

<  n  stal  violet  tartr- 
ate 

Crystal  violet  oxalate 

Methyl  violet  10B   . . 

Methyl  violet  B 

Methyl  violct-ZnCl2  . 

Erio  floxine  6B 


0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+  + 

+ 

+ 

+ 

+ 

+ 

+0 

+ 

_t_ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

00 

+ 

+ 

+ 

4- 

+ 

+  0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

_1_ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

00 

00 

00 

00 

+  + 

00 

+  0 

+ 

+ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+00 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+  0  + 

+ 

+ 

+ 

+ 

+ 

+0+ 

+ 

+ 

+ 

+ 

+ 

00 

0  + 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+  + 

+ 

0 

0 

+ 

+ 

000 

000 

000 

00 

+  +0 

+  +0 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

+ 

+ 

+ 

+ 

0 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

0 

0 

+ 

+0 

+ 

+ 

0 

+ 

+ 

0 

0 

0 

0 

0 

0 

0  + 

+ 

0+0 

0 

0 

+ 

00 

0 

0 

0 

0 

+ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

0 

0 

0 

+ 

0 

0 

0 

0 

0 

+ 

+  0 

00 

0 

0 

0 

0  + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

0 

0 

+ 

+00 

0 

+  0 

0  + 

0 

+ 

00 

0 

0 

0 

0 

+ 

+  + 

+ 

+ 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

00 

00 

00 

00 

0  + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

00 

0 

0 

0 

0  + 

0  + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

-{- 

+ 

-1_ 

+ 

+ 

_1_ 

+ 

+ 

00 

+ 

0 

6 

+  + 

+ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+ 

0 

0 

0 

0 

0 

(I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

0 

+ 
+ 

+ 

+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+  + 

0+ 
0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 

0 

+ 

+ 
+ 
+ 
+ 
+ 

0 

+ 

+ 
+ 
+ 

0  + 

+ 


+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+0 
0 

0 

0 

0 

+ 


+ 

0 
0 
0 

+ 


0 

0 

+ 
+ 

0 

+ 

+ 
+ 


+  + 
+  + 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 

+ 


+ 

0 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+  0 
0 


a. 


+ 
+ 

0 
0 
0 

+ 


0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+  + 

+  + 

+  + 

0  + 

0  + 

0  + 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

0 

0 

+  + 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

+ 

0 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

0 

0 

0 

0 

+ 

+ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

0 

+ 
+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+  + 

0+ 
0 

+ 
+ 
+ 
+ 


+ 

0 

+ 

+ 
+ 
+ 
+ 
+ 

0 
00 
0 

+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

0 

+ 
+ 


+ 

+ 
+ 

+  0 
0 

0 

0 

0 


+ 

+ 

0 

0 
0 

+ 


0 
0 

+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 
+ 
+  + 

0  + 
0 

+ 
+ 
+ 


+ 

0 

+ 
+ 

0 

+ 
+ 
+ 
+ 

0 

+ 

0 
0 
0 

+ 
+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 

0 

+ 
+ 

0 

+ 
+ 

0 

+ 
+ 

0 

+ 
+ 
+ 
+ 
+ 

0 

0 


economical,  least  noxious,  most  rapid,  and  which 
gives  highest  fixed  nitrogen  content  in  the  sediment 
is  the  activated  sludge  process.  This  process  appears 
to  be  checked  from  time  to  time  with  the  coincident 
growth  of  zooglocal  masses  and  paramoecia  which 
use   ;i^   food  the  bacteria  causing  the  purification. 


Treatment  of  the  tanks  by  this  group  of  dyes  should 
result  in  elimination  of  the  protozoa  without  dis- 
turbance to  the  bacteria.  This  property  is  possibly 
due  to  the  fact  that  the  oxazines  are  oxonium  salts 
containing  quadrivalent  oxygen  atoms  and  should 
therefore    show   considerable    reactivity.     This    re- 


Vol.  Xli,  No.  9.1      FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


139t 


Table  3. 
Dilutions  of  1/2000. 


ss 

Dyestu  (Is. 

1 

8 
-s 

a. 

<3 

s 

a. 

Si 

£ 

■52 

.3 

i 
1 

1 
1 

8 

B  = 
£   K 

as 

as 
IB 

•i 

k 

53 

e 

a 

ft. 

CO 

« 

05 

3q 

c; 

ft! 

=5 

c; 

a; 

«5W 

oq" 

oq 

p? 

<3~ 

b; 

Aura  mine  0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Aura  mine  G 

0 

0 

0 

0 

+ 

0 

+ 

0 

0 

0 

u 

+ 

0 

0 

Chrysoidine  . . 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0 

0 

+ 

+ 

+ 

0 

+ 

Chrysamine 

0 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Crystal  yellow 

+ 

+ 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Crystal  violet 

0 

0 

0 

0 

0 

0 

+ 

0 

0 

0 

0 

+ 

0 

0 

Era  chrome  black    . . 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Flavine 

0 

0 

0 

0 

+  0 

+0 

0 

0 

0 

0 

0 

0 

0 

0 

Meldola's  blue 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Methyl  violet-ZnCI... 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Methylene  blue 

0 

+ 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Nile  blue  A  . . 

0 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Nile  blue  2B.. 

0 

+ 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Neutral  red  . . 

0 

0 

0 

0 

u 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Night  blue    . . 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Phenosafranine 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Rhodamine  6G 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

.Safrnaine  T  . . 

+ 

+ 

J- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Tanuin  helio. . 

0 

0 

6 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Tolnidine  blue 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Malachite  green 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

■  + 

+ 

Induline 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Nigrosine 

+ 

-1_ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Magenta 

0 

6 

u 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Taule  4. 
Dilutions  of  1/5000. 


Auramine  O 

0 

0 

0 

0 

0 

0 

0 

+ 

0 

0 

0 

0 

0 

0 

Auramine  G 

0 

0 

0 

0 

+ 

+ 

+ 

+0  + 

0 

0 

0 

0 

0 

0 

Auramine  O-ZnCl.  . . 

0 

0 

0 

0 

c 

0 

+ 

0 

0 

0 

u 

0 

0 

0 

Chrvsamine  .. 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Era  chrome  black    . . 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Induline 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Nigrosine 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Night  blue 

-i. 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

-}- 

+ 

+ 

+ 

Methvl  Violet .ZnCl, 

0 

0 

0 

0 

0 

0 

+ 

+ 

0 

0 

0 

+ 

0 

0 

Crystal  violet.. 

0 

0 

0 

0 

0 

+ 

+ 

+ 

0 

+ 

+ 

0 

0 

action  is  exemplified  in  the  fat-staining  properties 
of  these  salts,  and  it  is  evident  that  fats  have  a 
definite  affinity  for  oxonium  salts.  This  may 
possibly  account  for  the  action  of  the  dyes  on 
protozoa,  although  this  suggestion  is  made  with 
reserve. 

In  the  case  of  protozoa  and  of  bacteria  we  have 
endeavoured  to  enhance  the  lethal  .action  by  using 
double  compounds  of  dye  with  metallic  salts.  We 
have  found  that  the  zinc  chloride  combination  is 
more  powerful  than  the  dye  acting  alone  or  than 
the  equivalent  amount  of  zinc  chloride  acting  alone. 
Mixtures  of  dyes  have  also  been  tried,  and  it  has 
been  found  that,  in  certain  cases,  antiseptic  activity 
is  enhanced  in  regard  to  paramoecia.  Mixtures 
have  been  obtained  which  still  act  in  a  dilution  of 
1  in  80,000  instantly  and  1  in  160,000  within  15 
minutes.  These  could  be  compared  with  neo- 
salvarsan  which  failed  to  kill  paramoecia  in  a 
dilution  of  1  in  200  acting  for  2  hours. 

Chemical  Aspects. 
The  tripheni/lmethane  group. 

Certain  members  of  this  group  have  shown  great 
activity  as  antiseptics,  and  there  is  promise  of  very 
successful  future  work  in  this  group. 

Crystal  Violet  in  the  form  of  the  chloride  :  — 


(CH8),N 
(CH3)2N 


\_/v 


"\_/ 


N(CH3),C1 


\     / 


at  a  dilution  of  1/1000  killed  off  all  the  fourteen 
organisms  under  the  conditions  described  earlier  in 


the  paper.  At  a  dilution  of  1/2000,  however,  it 
failed  to  kill  anthrax  and  B.  para  B.  This  seemed 
to  be  a  very  convenient  starting  point  from  which 
to  explore  the  possibility  of  the  group  either  by 
further  elaboration  of  the  molecule  or  by  simplifi- 
cation of  it.  The  first  variation  was  to  investigate 
the  effect  of  various  acid  radicles,  or  to  study  the 
behaviour  of  salts  other  than  the  chloride.  A  series 
of  organic  and  inorganic  salts  was  therefore  pre- 
pared from  the  base  of  Crystal  Violet,  including 
the  tartrate,  the  citrate,  the  oxalate,  and  the 
arsenite.  These  were  put  up  against  the  organisms 
with  Crystal  Violet  chloride  itself  as  a  control  and, 
within  the  limits  of  error,  very  little  difference  was 
noted.  The  citrate  was  about  the  least  effective. 
From  the  similarity  in  behaviour  of  the  various 
salts  of  Crystal  Violet  base  it  was  concluded  that 
the  antiseptic  property  is  a  function  of  the 
organic  complex':  — 


or  of  some  portion  of  that  complex,  and  that  it  is 
not  influenced  largely  by  varying  the  acid  salt 
formation. 

The  behaviour  of  double  salts  of  the  Crystal 
Violet  chloride  with  metallic  chlorides  was  next 
studied.  Two  were  prepared  and  purified,  viz.,  the 
double  salts  with  the  chlorides  of  zinc  and  lead 
respectively.  On  account  of  the  unsuitability  of 
the  latter  for  animal  work  it  was  decided  to  study 
only  the  zinc  chloride  salt.  This  proved  to  be  a 
more  powerful  antiseptic  than  Crystal  Violet  itself 


140  T 


FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES.        I  May  15,  1922. 


and  at  a  dilution  of  1/2000  killed  anthrax  and 
B.  para  B.  which  Crystal  Violet  failed  to  kill  at 
that  dilution.  At  the  higher  dilution  of  1/5000 
Methyl  Violet  zinc  chloride  killed  10  of  the  organ- 
isms including  anthrax  whereas  Crystal  Violet 
itself  killed  only  7  definitely. 

The  fact  that  the  double  salts  of  the  dyes  of  this 
group  with  metallic  chlorides  are  more  powerful 
than  the  simple  dye  salts  themselves  was  confirmed 
again  in  the  case  of  Malachite  Green  double  salt 
of  zinc  chloride  and  dye  chloride,  and  also  in  the 
case  of  the  double  salt  of  Auramine  O  and  zinc 
chloride.  In  order  to  prove  definitely  that  the 
effect  was  not  due  to  the  zinc  chloride  itself  the 
organisms  were  put  up  against  solutions  containing 
the  same  amount  of  zinc  chloride  alone  in  water 
and  they  all  lived. 

Thus  the  next  conclusion  with  regard  to  the  anti- 
septic action  of  the  dyes  of  this  group  is,  that  where 
a  dyestuff  of  this  group  exhibits  antiseptic  pro- 
perties in  its  simple  salt  form,  this  antiseptic  action 
is  augmented  by  employing  the  dye  in  the  form  of 
a  double  salt  with  a  metallic  salt  of  the  same  acid 
as  the  dyestuff. 

We  next  studied  the  effect  of  substitution  in  the 
amino  groups.  A  homologue  was  prepared  contain- 
ing six  ethyl  groups  in  place  of  the  six  methyl 
groups  in  Crystal  Violet.  The  substance  (Ethyl 
Violet)  behaved  in  a  very  similar  manner  to  Crystal 
Violet  chloride,  and  the  effect  of  this  substitution 
was  found  to  be  practically  negligible.  The  same 
result  wa6  obtained  in  the  case  of  Methyl  Violet  B, 
which  contains  only  five  methyl  groups  and  one  free 
hydrogen  atom — 

,C  =  <       >=N(CH3)2C1 


CHSNH^       y 

If,  however,  the  methyl  groups  of  two  of  the  amino 
groups  are  replaced  by  higher  alkyl  homologues 
6Uch  as  ethylbenzyl  groupB  the  antiseptic  properties 
are  lowered.  In  these  cases  sulphonation  is  neces- 
sary in  order  to  make  the  dyestuff  soluble.  Thus 
Formyl  Violet,  which  is  prepared  from  dimethyl- 
aniline  and  ethylbenzylanilinesulphonic  acid — 

C.H 
NaO,SC,H,CH, 


CHj-C.B^SO, 


\/ 

II 
N(CH3) 

is  far  lees  potent  than  Crystal  Violet  or  than  the 
ethyl  homologue.  This  leads  to  a  further  conclu- 
sion that  the  presence  of  heavy  side  chains  in  the 
amino  groups  together  with  the  presence  of  sul- 
phonic acids  is  not  favourable  to  antiseptic  action 
in  this  group. 

Our  next  step  in  the  examination  of  the  group 
was  to  study  the  effect  of  replacement  of  one  of  the 
aniline  groups  attached  to  the  aliphatic  carbon 
atom  by  other  groups. 

One  of  the  aniline  groups  was  replaced  by  a  sub- 
stituted naphthylamine  group  (phenyl-a-naphthyl- 
amine)  in  Victoria  Blue  B — 


(CH3)2N<^>-C  = 

'xA, 

/ 


=  N(CH,)SC1 


NHC.H,  n 

and    in   the   higher   ethyl    homologue   one   of    the 


aniline   groups    was    replaced    by    tolyl-o-naphthyl- 
amine  in  Night  Blue — 


(CTI4)N/ J>-C  =<^>=N(C3H,)2< 


o 


} 


CI 


NH-C.H.'CH, 

In  these  cases  very  much  reduced  antiseptic  pro- 
perties were  noted  in  the  case  of  bacteria.  Night 
Blue  only  killed  five  organisms  at  1/1000  and  none 
in  any  of  the  higher  dilutions.  Victoria  Blue  B 
killed  only  four  organisms  at  1/1000;  this  dye,  how- 
ever, showed  some  activity  against  living  protozoa. 
The  aniline  group  was  also  replaced  by  p-nitro- 
toluene  in  Turquoise  Blue  G — 


(ch3)2n/   y—  C 


-S03- 


=  N(CH3),C1 


which  showed  no  antiseptic  properties  at  all  even 
at  a  dilution  of  1/500  or  against  living  protozoa. 

A  further  variation  was  made  by  substituting  the 
aniline  group  by  sulphonic  acids  of  the  naphthalene 
series.  Two  greens  were  prepared  from  different 
naphthalenedisulphonic  acids.  These  showed  no 
antiseptic  properties  at  all,  and  paramoecia  were 
found  alive  in  the  solution  after  24  hrs.  The  same 
result  was  obtained  with  hydroxysulphonic  acids  of 
naphthalene. 

We  next  examined  the  Patent  Blues,  which  fall 
into  the  class  we  are  now  discussing,  for  instead  of 
one  of  the  three  aniline  groups  they  possess  a 
m-hydroxybenzene  group  which  contains  two 
sulphonic  acid  groups,  e.g.,  Patent  Blue  V — 

(CtH8)2NC,H4  =  C-C,H1N(C2H,)I 

A 

SOaNa 

These  again  show  no  activity  as  antiseptics.  These 
results  indicate  two  conclusions  :  — 

(a)  The  introduction  of  acid  groups  into  the  com- 
plex in  place  of  the  aniline  groups  reduces  the  anti- 
septic action  as  shown  by  the  Acid  Greens,  Tur- 
quoise Blue,  and  Patent  Blues. 

(b)  The  antiseptic  action  is  lowered  even 
with  basic  substituents,  if  they  are  heavier  and 
more  complex  as  the  substituted  naphthylamines,  as 
shown  by  Victoria  Blue  B  and  Night  Blue.  We 
were  unable  to  work  with  the  more  simple  naphthyl- 
amine derivative,  Victoria  Blue  R,  on  account  of 
its  low  solubility. 

Having  found  that  elaboration  of  the  molecule  of 
Crystal  Violet  by  side-chain  variations  and  substi- 
tution of  heavier  groups  on  to  the  aliphatic  carbon 
did  not  increase  the  antiseptic  properties  but 
rather  tended  to  reduce  them,  the  next  logical  6tep 
was  to  study  the  effect  of  a  simplified  molecule. 

Magenta  is  the  first  simplified  form  of  Crystal 
Violet  36  it  contains  all  the  essential  groups  and 
three  amino  groups,  none  of  which  was  substituted. 
This  was  employed  in  the  form  of  the  acetate — 


=  NH\COOCH, 


It   was   found   to   be   more   powerful   that   Crystal 
Violet  as  it  killed  all  the  organisms  at  a  dilution 


Vol.  XII,  So.  9.]       FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


141  T 


of  1/2000.  Simplifying  the  molecule  still  further 
by  the  removal  of  one  of  the  amino  groups  entirely, 
the  other  two  being  substituted  by  alkyl  groups,  we 
obtain  Malachite  Green  and  Brilliant  Green,  of  the 
type :  — 


(CH3)2N< 


Vc  =/~s= 


:N(CH,)SC1 


C.H. 


This  dye  was  more  powerful  than  Crystal  Violet. 
Various  salts  such  as  the  oxalate,  citrate,  and  zinc 
chloride  double  salt  were  prepared,  and  exactly 
analogous  results  to  those  obtained  with  Crystal 
Violet  derivatives  were  found. 

A  still  more  drastic  simplification  of  the  molecule 
involving  the  replacement  of  one  of  the  aniline 
nuclei  by  =NH  or  -NH,  brought  about  a.  con- 
siderable increase  in  antiseptic  properties,  and 
Auramine  O, 


(CH5)2N< 


i— c  = 


_/~\ 


\_/ 


NH, 


N(CH3)2C1 


was  extremely  active  both  in  the  case  of  the 
inhibition  of  bacteria  and  the  killing  of  protozoa. 
It  killed  twelve  organisms  (including  anthrax)  at  a 
dilution  of  1/5000  and  killed  paramcecia  at  a 
dilution  of  1/20,000  in  15  mins. 

It  was  found  that  a  rearrangement  of  the  mole- 
cule of  Auramine  O  involving  the  change  of  two  of 
the  methyl  groups  from  the  amino  groups  into  the 
nucleus,  as  is  obtained  in  Auramine  G, 


CH,HN 


iS 


/\_ 


CH,X/-C  = 
NH, 


\ 


NHCH.C1 
-CH, 


caused  a  slight  reduction  in  the  antiseptic  activity. 
This  observation  is  confirmed  in  the  Safranine 
group. 

An  attempt  was  made  to  carry  the  simplification 
of  the  molecule  still  further  by  using  tetramethyl- 
diaminodiphenylmethane 


(CH3)2N 


\_/~ 


-CH, 


>N(CH,), 


This  substance  was  prepared  and  purified  by  re- 
peated crystallisation  from  alcohol  and  dissolved  in 
exactly  two  equivalents  of  hydrochloric  acid  to  give 
the  dihydrochloride.  This  solution  was  put  up 
against  the  organisms.  Unfortunately  a  precipi- 
tation occurred  when  the  exactly  neutral  solution 
was  employed,  and  to  avoid  this  the  broth  had  to 
bo  made  more  strongly  acid,  so  that  although  all  the 
organisms  were  killed,  even  at  1/2000  dilution,  the 
result  is  not  very  trustworthy  owing  to  the  exces- 
sive acidity.  Further  work  is  in  progress  in  the 
endeavour  to  obtain  a  means  of  using  the  base 
without  the  extra  acid.  . 

To  summarise,  the  best  results  in  the  triphenyl- 
mothane  series  are  obtained  with  the  simpler  types 
of  the  class.  Change  of  one  of  the  phenyl  groups 
to  a  naphthalene  grouping  or  a  sulphonated  phenyl 
grouping  tends  to  reduce  the  antiseptic  properties. 
For  antiseptic  action  to  be  most  marked  it  is  essen- 
tial to  have  two  aminobenzeno  nuclei  linked  up  to 
an  aliphatic  carbon  atom  in  para  position  to  the 
amino  groups.  The  hydrogens  of  the  amino  groups 
may  bo  replaced  by  alkyl  groups  like  ethyl  or  methyl, 
but  increase  in  the  side-chain  does  not  increase  the 
antiseptic  action. 

A  further  phenyl  or  aniline  group  may  be  intro- 
duced on  to  the  aliphatic  carbon  (in  the  latter  case 
in  para  position  to  the  amino  group)  without  re- 
moving the  antiseptic  properties,  or  the  aliphatic 
carbon  may  be  attached  directly  to  an  amino  or 


imino  group  in  addition  to  the  two  phenyl  groups, 
but  if  hydroxysulphonic  acids  of  the  naphthalene 
series,  naphthylamines,  or  substituted  naphthyl- 
amines,  or  nitroalkyl-substituted  benzenes  are 
introduced  into  the  molecule,  the  antiseptic  action 
is  considerably  reduced. 

The  phthaleins. 

This  group  is  very  different  from  the  triphenyl- 
methane  group  as  represented  by  Crystal  Violet  or 
Malachite  Green  or  Auramine;  in  antiseptic  pro- 
perties its  members  resemble  more  those  members 
of  the  triphenylmethane  group  which  have  the  third 
group  replaced  by  the  complex  groups  discussed 
(Turquoise  Blue;  Night  Blue,  etc.).  There  are 
some  antiseptic  properties  exhibited,  but  in  no 
case  as  marked  as  with  Crystal  Violet. 

It  seems  probable  that  the  reduction  in  anti- 
septic action  in  the  group  as  a  whole  is  due  partly 
to  the  pyronine  ring  and  partly  to  the  nature  of 
the  third  group  attached  to  the  central  carbon 
atom,  which  group  contains  a  carboxylic  acid,  and 
all  our  results  indicate  that  acid  groups  of  any 
description   are  unfavourable  to  antiseptic  action. 

In  the  group  itself  there  is  an  interesting 
internal  variation  and  the  effect  of  substitution 
in  the  amino  groups  is  very  marked.  Rhodamine 
B,  in  which  all  the  hydrogens  of  the  amino  group 
are  replaced  by  alkyl  groups:  — 

C,H4COOH 
killed  only  one  organism,  B.  diphtheria,  at  a  dilu- 
tion of  1/1000. 

Rhodamine  G.,  which  contains  three  ethyl  groups 
and  one  free  hydrogen  in  the  amino  group 

C2HsHN-/\-0  -  /\  =  N(C2H6)2C1 

C4H4COOH 

killed  four  organisms,  B.  anthracis,  B.  diphtheria, 
Staphylococcus,  and  Streptococcus. 

Rhodamine  6  G.,  which  contains  only  two  ethyl 
groups, 


c^hn/^-o-/ 


=  NHC2HSC1 


C0H4COOC,H6 

killed  eight  organisms  in  a  1/1000  dilution.  As 
a  further  development  in  this  group  we  have 
obtained  the  unsubstituted  compound 


NH, 


0 


\ 


*0 


NH.C1 


C,H4COOH 

This  substance  is  only  slightly  soluble  even  in 
presence  of  sufficient  acid  to  give  the  dihydro- 
chloride and  shows  a  strong  fluorescence.  We  are 
at  present  examining  its  antiseptic  properties; 
from  the  behaviour  of  the  other  members  of  the 
series  it  would  be  expected  to  be  the  most  powerful 
antiseptic  of  the  group,  but  owing  to  the  carboxyl 
group  it  would  probably  be  less  powerful  than 
Crystal  Violet. 

In  this  group  the  chief  conclusion  so  far  is  that 
increase  in  the  alkyl  substituents  of  the  amino 
groups  tends  to  reduce  the  antiseptic  action. 

In  the  case  of  Eosin  the  amino  groups  have  been 
replaced  by  hydroxy  groups,  and  thus  instead  of 
definitely  basic  properties,  acidic  properties  are 
associated  with  the  molecule  and  antiseptic  pro- 
perties disappear  altogether.  Eosin  in  1/1000  dilu- 
tion failed  to  kill  off  any  of  the  fourteen  organisms. 


142t 


FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES.      [Mayl5,1922. 


The  general  group  conclusions  are  that  in  the 
strongly  basic  members  of  the  group  antiseptic 
properties  occur  to  a  marked  degree.  These  pro- 
perties are  reduced  by  lowering  the  basic  nature 
by  alkyl  substituents  in  the  amino  groups  and 
disappear  altogether  where  the  amino  groups  are 
replaced  by  hydroxyl  groups. 

The  azine  group. 

(a)  The  safranine  class. — In  this  class  so  far  we 
have  examined  only  a  few  members,  viz.,  Pheno- 
safranine,  Safranine  Tannin,  Tannin  Helio,  Methyl- 
ene Violet,  and  Nigrosine.  In  the  discussion 
Neutral  Red  will  be  brought  into  this  class,  though 
really  it  is  an  euhrodine.  It  is  proposed  to  extend 
the  investigation  of  this  group  as  soon  as  further 
derivatives  have  been  prepared  in  a  pure  state. 

The  results  so  far  obtained  indicate  that  the 
group  is  capable  of  very  considerable  antiseptic 
action,  and  it  must  be  concluded  that  the  azine 
group  is  very  favourable  to  antiseptic  action, 
though  to  get  the  maximum  effect  basic  substituents 
in  the  molecule  are  essential.  It  is  possible  to  give 
to  the  safranines  either  an  ortho-  or  a  para- 
quinonoid  structure,  and  probably  there  is  a 
tautomeric  balance  between  the  two  structures. 
For  the  purpose  of  this  work  the  general  view  of 
an  orthoquinonoid  structure  has  been  adopted ;  this 
involves  a  quinquevalent  nitrogen  atom,  and  thus 
the  dyes  are  regarded  as  azonium  compounds, 
Safranine  T  being  mesophenyldiaminoditolyl- 
azonium  chloride. 

As  in  the  other  groups  studied,  there  is  an 
internal  variation  of  properties,  the  most  active 
dye  being  Phenosafranine  and  the  least  active 
Induline  or  Nigrosine. 

Phenosafranine  is  the  simplest  in  constitution 
and  contains  two  unsubstituted  amino  groups 


H2N 


\  =  N- 

=  N- 

/\ 

CI      C„H 


\ 


This  dyestuff  in  a  dilution  of  1/1000  definitely 
killed  twelve  organisms,  and  the  other  two, 
B.  anthracis  and  B.  para  B,  were  on  the  border  line, 
sometimes  being  killed  and  sometimes  not  under 
the  conditions  used. 

Substitution  of  two  methyl  groups  in  one  of  the 
amino  groups,  as  in  Methylene  Violet, 


(CH3)2N 


\- 


CI 


C.H5 


NH. 


did  not  materially  affect  the  antiseptic  action  and 
it  killed  12  organisms.  It  was  not  so  strong  as 
Phenosafranine,  however,  as  it  was  definitely  nega- 
tive with  B.  anthracis  and  B.  para  B. 

Further  elaboration  of  the  molecule  by  the  intro- 
duction of  more  methyl  groups  into  the  aromatic 
nuclei  (not  further  substituents  in  amino  groups) 
in  Tannin  Helio 


(CH3)2N 


0 


CH, 

=N— 

CI  I        CH» 


\/NH, 


CH, 


CH3 

reduced  the  antiseptic  action,  an  observation  con- 
firmed by  the  case  of  Safranine  T 


/\=N_/\CH, 


CH/  VN-f 

NH, 

/\ 
CI      C,H4CH, 

where  only  9  organisms  were  definitely  killed.  In 
the  case  of  Safranine  T  the  interesting  fact  is 
noted  that  tlio  introduction  of  methyl  groups  into 
the  aromatic  nuclei  partially  neutralised  the  effect 
of  the  two  free  amino  groups.  The  only  differ- 
ence between  Phenosafranine  and  Safranine  T  is 
the  presence  in  the  latter  of  three  methyl  groups 
substituted  into  the  aromatic  nuclei.  The  differ- 
ence in  antiseptic  action  is  so  great  that  it  can 
only  be  concluded  that  alkyl  substitution  in  the 
aromatic  nuclei  tends  to  reduce  antiseptic  action. 
This  offers  a  striking  parallel  to  the  case  of 
Auramine  O  and  Auramine  G.  The  lower  anti- 
septic properties  of  Nigrosine  and  Induline,  which 
have  very  complex  molecules  and  have  all  the 
amino  groups  substituted  by  phenyl  groups,  confirm 
the  previous  observation  that  high  elaboration  of 
the  molecule  does  not  increase  the  antiseptic  pro- 
perties. The  best  antiseptic  properties  in  the  group 
are  associated  with  the  simplest  configuration 
embodying  the  azine  ring  with  amino  groups 
present  in  the  nuclei. 

Neutral  Red  was  not  very  active,  but  it  killed 
five  of  the  gram  positive  organisms  at  a  dilution 
of  1/2000.  It  is  more  active  than  Induline  or 
Nigrosine,  but  it  is  not  as  active  as  Phenosafranine. 

(b)  The  thinzine  class. — The  examination  of  this 
class  is  interesting  because  it  contains  one  of  the 
earliest  dyes  to  be  used  for  therapeutic  purposes — 
Methylene  Blue.  In  the  group  we  have  examined 
three  members,  Toluidine  Blue,  Methylene  Blue, 
Methylene  Green,  and  work  is  in  hand  for  prepar- 
ing other  members.  Of  these  examined  Toluidine 
Blue 


CI 

h,n/\— S  = 

CH3IX/1— N  = 


/\ 


N(CH3)2 


was  the  most  active,  and  killed  10  organisms. 
Methylene  Blue 

CI 

(CH3)2N  ,/\— S  =  /\N(CH3)2 

killed  eight  organisms,  and  it  was  found  from  the 
higher  dilutions  that  Methylene  Green  was  less 
powerful  than  Methylene  Blue.  This  agrees  with 
the  previous  observation  that  alkyl  substitution  in 
amino  groups  lowers  antiseptic  action. 
Methvleno  Green 


CI 


NO, 


(CH^N./^-S  =  /\n(CH,)2 

contains  a  nitro  group,  and  consequently  is  less 
basic  than  Methylene  Blue  and  thus  less  antiseptic. 

The  introduction  of  the  sulphur  atom  in  place 
of  one  of  the  nitrogen  atoms  of  the  azine  ring  seems 
to  lower  the  antiseptic  properties,  but  still  in  many 
ways  the  thiazines  are  comparable  with  the 
safranines. 

(c)  The  osazines. — The  dyes  of  this  group  show  in 
a  marked  degree  a  definite  selective  action  amongst 
bacteria.  They  all  attacked  the  gram  positive  or- 
ganisms, such  as  Timothy  Grass,  Staphylococcus, 
Streptococcus,  B.  diphtheria,  B.  subtilis,  and  B. 
anthracis. 

Thus  they  showed  their  activity  at  the  gram-posi- 
tive end  of  the  series  and  the  gram-negative  or 
intestinal  organisms  were  unaffected  by  the   dyes 


Vol.  XU„  No.  9.1 


FAIRBROTHER  AND  RENSHAW.— ANTISEPTIC  ACTION  OF  DYES. 


143t 


with      one      exception  —  Meldola's      Blue      killed 
II.  dyst  nteria  (Shiga)  at  1/11X10. 
Nile  Blue  A 


ISO, 


r/\- 


(CH3)2N,/  N-O^/NNH, 

\s 

was  the  most  powerful  of  the  group  (but  this  dif- 
ferentiation   is   made  more  from  the  results   with 
protozoa  than  bacteria,   in  which  latter  case  they 
all  appeared  identical). 
Nile  Blue  2B 

a 

[CfiJ&/\-0  =  A.NHC7H, 

\/_N=\/\ 

did   not   appear   to  be  as   powerful   as   the   simple 
Meldola's  Blue 


CI 


N(CH,)a 


Tin-  differential  action  of  these  dyes  is  interesting 
sm  e  they  are  fat  stains,  and  their  influence  as 
antiseptics  may  be  due  to  their  affinity  for  lipoids. 
which  may  be  present  in  the  cells  of  the  organisms. 
Their  importance  in  regard  to  protozoa  has  already 
been  emphasised,  and  this  powerful  action  on  pro- 
tozoa, coupled  with  the  absence  of  effect  on  intes- 
tinal organisms,  is  of  great  importance  in  such 
problems  as  require  the  partial  sterilisation  of  a 
mixture  of  protozoa  and  bacteria — say  for  sewage 
purification  or  agricultural  problems. 

The  acridine  class. 
We  have  not  made  a  thorough  study  of  this  class  ; 
the  subject  is  fully  dealt  with  in  the  recent  publica- 
tion by  Browning.  Cohen  and  Gulbranson. 

AVe  have  examined  Acriflavine,   Acridine  Yellow 
R.  and  Acridine  Orange. 
Acriflavine 

CI      CH3 

\/ 

,N\ 


H,N 


/\/r\/\ 


1 


XH, 


H 

is  the  moat  powerful  of  the  group,  and  also  one  of 
the  most  powerful  of  all  the  dyes  we  have  examined. 
In  its  action  on  protozoa,  however,  we  have  found 
it  to  be  le^  potent  than  the  oxazines  or  than  certain 
of  the  triphenylmethane  group. 

The   next   one    in  order   of   antiseptic   action   is 
Acridine  Yellow  R 


H,N 
CH, 


\. 


N 


YN-NHvHC". 


and  the  least  powerful  is  Acridine  Orange 
(CH^/V  I  \/\N(CBy,-Ha 

H 

Thus  the  three  members  of  this  group  conform  to 


the  general  rules  that  increase  in  alkyl  substitution 
lowers  the  antiseptic  properties,  and  that  the  best 
antiseptic  action  is  shown  by  the  simplest  members 
of  any  antiseptic  class. 

Tlie  azo  class. 

Numerous  representatives  of  this  large  group  of 
dyes  ivere  used,  and  as  a  rule  negative  results  were 
obtained. 

Simple  aminoazo  colours  like  Metanil  Yellow 


-NH( 


> 


or  Azo  Geranine,  which  contain  one  azo  group, 
showed  no  signs  of  antiseptic  action  even  at  a 
dilution  of  1/500. 

Chrysoidine,  _  C.H,N:NC,HJ(NH1)1HC!>  showed 
antiseptic  action  amongst  the  gram-negative 
organisms,  but  this  action  is  rather  weak  when  one 
bears  in  mind  its  strongly  basic  nature.  Chrysoi- 
dine is  one  of  the  few  azo  dyes  which  do  not  form 
typical  colloidal  solutions,  and  it  dialyses  quickly 
through  parchment.  Thus  it  may  be  more  able  to 
penetrate  the  cell  walls  than  the  others. 

The  hydroxyazo  compounds  also  gave  negative- 
results. 

The  primary  disazo  dyes  which  are  formed  by  the 
successive  action  of  two  diazo  salts  obtained  by  the 
diazotisation  of  a  monoamine  on  an  amine  or  a 
phenol,  such  as  Blue  Black 

OH  NH, 
I        I    ' 
C,H,N =N— A  A.— N  =N— C,H4NOj 

AAA 


NaO,S 


S03Na 


and  the  secondary  disazo  dyes,  which  are  made  by 
the  combination  of  diazotised  aminoazo  dyestuffs 
with  amines  and  phenols,  such  as  Diaminogen  Blue 
2B,  again  gave  negative  results.  Similarly  the  dyes 
from  tetrazo  salts,  such  as  Congo  Red  or  Congo 
Corinth,  or  Chrysophenine  and  the  substituted  ureas, 
like  Pink  B.K.,  failed  to  show  any  well-defined 
antiseptic  properties. 

The  results  obtained  in  the  azo  group  indicate 
that  in  concentrations  of  the  dyestuff  up  to  1/500 
the  organisms  are  seldom  affected.  The  azo  dyes 
have  fairly  heavy  molecules  formed  by  linking  big 
molecules  together  by  the  unstable  group  — N  =  N — 
and  it  seems  quite  likely  that  the  organisms  are 
enabled  to  break  up  the  molecules  at  this  double 
bond.  In  many  cases  decolorisation  of  the  dye- 
solution  was  noted  after  several  hours'  contact  with 
the  organisms. 

Two  cases  in  which  selective  antiseptic  action  was 
noted  in  the  azo  class  are  worthy  of  notice.  In  the- 
first  Era  Chrome  Black 


HO— < 


-N=N— C10H,-N: 


/S03Na 
=N— C10H6< 

xOH 


COOH 


showed  antiseptic  action  amongst  the  gram-positive, 
but  had  no  antiseptic  action  amongst  the  gram- 
negative  (intestinal)  organisms.  Owing  to  the 
general  absence  of  antiseptic  action  in  the  azo  class 
it  seems  obvious  that  the  cause  of  this  must  be 
sought  somewhere  else  than  in  the  azo  structure. 
It  is  probable  that  the  organism  has  attacked  the 
molecule  at  the  azo  groups  and  thus  would  liberate 
salicylic  acid  or  ^-aminosalicylic  acid,  which  would 
cause  the  antiseptic  action  manifested.  Confirma- 
tion of  this  was  sought  by  preparing  Chrysamine 
from  tetrazotised  benzidine  and  2  mols.  of  6alicylio 


H4t 


JOSEPH  AND  WHITFEILD.— SUDAN  ESSENTIAL  OILS. 


[May  15,  1922. 


acid,  and  again  selective  action  amongst  the  gram- 
positive  organisms  was  noted  even  at  a  dilution  of 
1/2000. 

Pyramine  Orange  (from  tetrazotised  benzidine- 
3.3'-di6ulphonie  acid  and  2  mols.  of  4-nitro-m- 
phenylenediamine)  also  showed  slight  action  on 
the  gram-positive  organisms,  but  again  considering 
that  there  are  four  free  amino  groups  present,  one 
would  have  expected  greater  antiseptic  action. 

General   conclusions. 

As  a  general  rule  dyes  which  show  any  marked 
antiseptic  action  against  bacteria  and  protozoa 
contain  one  or  more  amino  groups  in  the  molecule. 
The  presence  of  amino  groups  is  not  enough  to 
cause  antiseptic  action,  but  their  absence  is 
enough  to  prevent  any  decided  antiseptic  action. 
The  effect  of  amino  groups  in  the  molecule  can 
be  modified  and  even  completely  neutralised  by 
the  presence  of  certain  other  substituent  groups 
in  the  molecule  such  as  sulphonic,  carboxyl,  nitro, 
substituted  naphthalene,  or  naphthylamine  groups, 
or  by  further  alkyl  or  aryl  substitution  in  the 
amino  groups  themselves  or  alkyl  substitution  in 
the  benzene  nuclei. 

In  seeking  for  a  possible  explanation  of  anti- 
septic action  it  is  probable  that  other  factors  than 
mere  chemical  structure  will  have  to  be  studied, 
because  at  the  best  chemical  formulae  are  but 
rough  approximations  to  the  truth.  Two  observa- 
tions are  worthy  of  notice — in  every  case  where 
decided  antiseptic  action  is  manifested  tautomeric 
change  in  the  molecule  is  possible,  and  also  in 
every  case  of  active  antiseptic  action  the  dyestuff 
is  a  molecular  dispersoid,  whilst  those  dyes  forming 
colloidal  solutions  6how  very  little  tendency  to  anti- 
septic action. 

It  is  also  a  possibility  that  antiseptic  action  is 
dependent  on  the  formation  of  a  compound  between 
dye  base  and  the  cell  molecules  of  the  organism. 
It  must  be  remembered  that  the  dyes  showing  anti- 
septic action  are  basic  dyes,  and  there  is  a  parallel 
to  this  in  the  action  of  basio  dyes  on  animal  fibres 
like  silk.  Knecht  has  shown  that  when  silk  is 
placed  in  a  solution  of  Rosaniline  hydrochloride  the 
silk  replaces  the  hydrochloric  acid  and  the  acid  is 
set  free  and  is  found  in  the  exhausted  liquors  and 
the  silk  and  the  Rosaniline  base  form  a  compound. 
If  this  view  is  correct  the  compounds  of  dye  and 
organism  should  conform  to  the  chemical  laws  of 
constant  composition,  and  the  establishment  of  this 
would  be  a  difficult  practical  problem.  It  is 
possible  that  the  principle  of  the  law  of  mass  action 
could  be  applied  and  that  an  equilibrium  is  set  up. 
Thus  whilst  antiseptic  action  does  depend  to  a 
remarkable  degree  on  chemical  constitution,  and 
whilst  it  is  true  that  certain  fundamental  groups  of 
atoms  favour  antiseptic  action  and  others  prevent 
it  altogether,  it  is  not  possible  to  formulate  any 
general  ride  to  connect  antiseptic  action  with 
intensity  of  colour,  similar  to  Nietzki's  rule;  anti- 
septic action  does  not  vary  with  the  molecular 
weight,  and  there  is  no  simple  generalisation  like 
Armstrong's  quinonoid  theory  for  explaining 
antiseptic  action.  The  nearest  parallel  is  Witt's 
chromophore  generalisation,  which  could  be  applied 
by  saying  that  certain  groups  favoured  antiseptic 
action,  and  the  action  could  be  augmented  by  the 
addition  of  other  groups,  but  this  is  very  vague 
and  does  not  help  much. 

The  relationship  between  chemical  constitution 
and  non-antiseptic  action,  however,  is  more  clear, 
and  the  discussions  of  the  various  groups  have 
shown  how  antiseptic  substances  have  been  rendered 
non-antiseptic  by  the  replacement  of  certain  groups 
by  others.  These  findings  will  be  of  great  use  in  the 
more  intimate  exploration  of  those  fields  which 
have  shown  promise  so  far. 


We  wish  to  express  our  thanks  to  Professor  Dean, 
of  the  Pathological  Department,  University  of  Man- 
chester, for  supplying  certain  of  the  organisms  used, 
to  Dr.  Lapage,  for  protozoal  cultures  and  to  The 
British  Dyestuffs  Corporation,  Limited,  for  certain 
of  the  dyes  employed. 


Communications. 


SUDAN  ESSENTIAL  OILS. 

BY  A.  F.  JOSEPH,  D.SC,  F.I.O.,  AND  B.  W. 
WHITFEILD,   A. I.O. 

As  might  be  expected  in  a  country  the  size  of  the 
Sudan,  large  numbers  of  odoriferous  plants  are  met 
with  yielding  a  very  wide  range  of  essential  oils. 
Numerous  members  of  the  odoriferous  natural 
orders,  Gramince,  Labiate?.,  Umbelliferce,  Com- 
posite, Rutacece,  and  others  have  been  met  with 
in  different  parts  of  the  country,  and  the  following 
five  have  so  far  been  examined:  — 


Species. 

Order. 

name. 

Modern  name. 

Old  name. 

1 

Eihan 

Lablatce 

Ocimum  basilicum, 
Linn. 

— 

2 

Maharcb 

Oramin(e 

Cyrnbopogon  proxi- 
mus,  Stapf. 

A  ndropogon 
Iimrancusa,va.T. 
proximus,  Hack. 

3 

Doubtful 

Qraminm 

Cyrnbopogon    sen- 
narensis, Chiov. 

A  ndropogon 
Jwarancusa  var 
sennarensis, 
Hack. 

4 

Naal 

Gramince 

Cyrnbopogon     ner- 
vatus, Chiov. 

A  ndropogon 
Schoenanthus 
var.  nervatu8t 
Hack. 

5 

Seid 

Cyperacece 

Cyperus  rotundas, 

— 

Linn. 

Of  these,  Cyrnbopogon  sennarensis  oil  forms  the 
subject  of  a  paper  by  O.  D.  Roberts  on  the  results 
of  the  examination  of  samples  sent  to  the  Imperial 
Institute  (Chem.  Soc.  Trans.,  1915,  1465).  The 
oil  is  there  referred  to  as  "  Mahareb,"  but  it  is 
probable  that  this  title  should  be  reserved  for 
Cyrnbopogon  Schoenanthus,  Spreng,  the  Indian 
"Camel  grass,"  with  which  it  is  closely  allied; 
this  species  has  not  been  reported  in  the  Sudan. 

The  closely  related  Cyrnbopogon  proximus  (known 
as  Mahareb  in  the  Sudan)  has  also  been  examined 
at  the  Imperial  Institute  and  shown  to  contain  an 
oil  closelv  related  to  that  obtained  from  Cyrnbopogon 
sennarensis  (Bull.  Imp.  Inst.,  1910,  15;  1912,  31). 

The  local  basil  oil  from  specimens  of  "  Rihan  " 
has  not  yet  been  examined,  but  probably  does  not 
differ  from  the  ordinary  specimens. 

The  remaining  two  plants  have  not  up  to  the 
present  been  reported  on,  and  the  following  note 
gives  the  results  of  the  preliminary  examination 
recently  made  in  these  laboratories. 

Naal  oil. 

This  grass  is  stated  to  have  been  sent  to  Schimmel 
and  identified  as  Andropogon  Schoenanthus  var. 
nervatus  (now  Cyrnbopogon  nervatus,  Chiov.),  but 
its  properties  a6  described  in  their  report  for  April, 
1911  (page  19),  are  so  entirely  different  from  those 
of  the  three  specimens  examined  here,  that  it  is 
doubtful  whether  Schimmels  received  genuine 
"  Naal "  grass  at  all. 

Naal  grass  is  found  widely  distributed  in  the 
central  portions  of  the  Sudan,  being  abundant  in 
the  Blue  Nile,  Fung,  and  Kordofan  Provinces,  be- 
tween the  10th  and  15th  parellels  of  latitude. 


Vol.  XLI.,  No.  9.] 


DODD.— THE  DETERMINATION  OF  GUANIDINE. 


145  T 


It  is  a  densely  tufted  aromatic  grass,  from 
3  to  5  ft.  tall,  with  coarse  glabrous  leaves,  and 
moderately  compound  narrow  spatheate  panicles 
from  3  to' 6  in.  long.  The  racemes  of  spikelets  are 
paired  on  a  common  peduncle,  which  is  supported 
by  a  boat-shaped  bract.  The  equal  glumes  are 
membranous  and  the  lower  glume  (about  J  in.  long) 
of  the  fertile  spikelet  is  marked  with  conspicuous 
brown  oil  streaks  on  both  sides  of  the  groove.  The 
awn  is  from  i — J  in.  long,  and  is  fine  and  twisted 
below  the  middle  ;  it  is  distinctly  differentiated  into 
column  and  bristle. 

The  highest  yield  of  oil  is  obtained  when  the 
grass  is  in  full  flower,  the  best  time  for  collection 
being  the  autumn,  although  in  its  more  southern 
habitats  it  is  still  strongly  odoriferous  as  late  as 
February.  The  yield  obtained  by  distillation  with 
water  or  steam  varied  from  0'8  to  1'5%  of  the  weight 
of  the  dried  grass ;  only  the  inflorescence  was  used 
for  this  purpose,  trials  having  shown  that  the  stalks 
contained  only  a  very  small  proportion  of  oil. 

The  oil  was  light  yellow  in  colour,  and  did  not 
darken  noticeably  on  keeping  in  diffused  light  for 
2  years;  in  odour  it  closely  resembles  the  oil  of 
ginger  grass,  the  variety  of  Cymbopogon  Martini, 
known  in  India  as  "  Sofia  "  oil  (Parry,  "  Essential 
Oils,"  1918,  i.,  82),  which,  however,  is  much  darker 
in  colour. 

The  following  are  the  constants  obtained  from 
three  specimens  of  the  oil,  the  two  first  being  from 
Kordofan  grass  and  the  third  from  Wad  Medani 
on  the  Blue  Nile.  The  table  also  includes  the  figures 
given  by  Schimmel  (Ber.,  1911,  p.  1)  for  "  Andro- 
pogon  (Cymbopogon)  Schoenanthvs  var.  nervatus 
from  the  Sudan  "  an3  for  ginger  grass  oil  given 
by  Parry  (loc.  cit.)  :  — 


T*. 

Solu- 

Sp.gr. 

Refr. 

Optical 

Acid 

Ester 

after 

bility 

20°/20° 

index 

rota- 

value. 

value. 

aeetyl- 

in 

20°. 

tion. 

ation. 

alcohol. 

Naal  (1) 

0-954 

1-495 

—31° 

29-6 

1981 

(2) 

0-955 

1-492 

—35° 

3-6 

21-8 

189-2 

1-2  vols, 
of  70% 

(3) 

0-953 

1-495 

—50° 

44 

26-5 

189-4 

1-6  vols, 
of  70% 

A.  Schoen- 

0-9405 

1-4965 

+  26° 

4-6 

9-3 

991 

0-5  vol. 

anthus 

of  80% 

(Schim- 

mel) 

Limits  for 

0-937 

1-490 

—15° 

20 

80 

93 

1-8  to 

ginger 

to 

to 

to 

to 

to 

to 

2-2 

grass 

0-953 

1-493 

—38° 

6-2 

10-2 

101 

vols,  of 

oil 

70% 

As  stated  above,  the  sample  received  by 
Schimmel  is  clearly  quite  different  from  any  of  ours ; 
on  the  other  hand,  there  is  some  resemblance  in 
physical  properties  between  Naal  and  ginger  grass 
oils.  The  chemical  constants  of  these  two,  however, 
are  quite  different. 

Results  of  the  distillation  of  naal  oil. — "We 
have  found  the  oil  extraordinarily  difficult  to 
separate  into  sharply  defined  fractions.  Whether 
the  distillation  is  conducted  at  ordinary  pressures 
or  in  vacuo  at  10 — 15  mm.  of  mercury,  we  have 
always  experienced  great  difficulty  in  obtaining 
fractions  with  constant  boiling  point,  each  subse- 
quent distillation  causing  the  formation  of  a  high- 
boiling  viscous  mass  into  which,  apparently,  some 
constituent  of  the  original  oil  readily  passes  on 
heating. 

The  evidence  so  far  obtained  indicates  that  the 
oil  consists  mainly  of  two  constituents,  of  which 
the  lower  boiling  one  is  Z-limonene  and  the  higher 
one  perilla  alcohol,  an  important  constituent  of 
ginger  grass  oil.  This  substance  was  first  described 
as  "  dihydrocuminol  "  (Chem.-Zeit.,  1904,  28, 
1143),  but  was  subsequently  shown  (Ber.,  1911,  44, 


460)  to  be  identical  with  the  alcohol  obtained  by 
reducing  perilla  aldehyde,  the  characteristic  con- 
stituent of  the  oil  of  Perilla  Nankinensis  (Ber., 
1911,  44,  52). 

A  distillation  at  5  mm.  pressure  gave  36%  dis- 
tilling at  66°  C. ;  this  portion  was  crude  limonene. 
The  remaining  portion  on  fractionation  was  split  up 
into  a  number  of  small  fractions  the  properties  of 
which  showed  no  sharp  dividing  line,  the  one  boil- 
ing at  115°  (at  5  mm.)  having  the  physical  pro- 
perties of  perilla  alcohol. 

The  following  table  shows  the  properties  of 
limonene  and  perilla  alcohol  compared  with  those 
of  the  above  two  fractions  :  — 


B.p. 

Sp.gr. 

Eola- 

Refrac- 

% 

tion. 

tion. 

alcohol. 

Pure  limonene  . . 

176° (760) 

0-847 

-105° 

1-475 

nil 

Low  boiling  frac- 

tion 

175°-177° 

0-867 

-99-5° 

1-481 

7-7 

Perilla  alcohol  . . 

120°  (11  mm.) 

0-964 

-7° 

1-499 

ioo 

High  boiling  frac- 

tion 

115°  (5  mm.) 

0-963 

-15° 

1-496 

91-4 

Original  oil 

— 

0-954 

-50° 

1-495 

64-8 

As  stated  above,  the  difficulty  experienced  in 
isolating  individual  constituents  lies  in  the  con- 
tinual formation  during  distillation  of  a  high-boil- 
ing viscous  constituent  with  a  strong  unpleasant 
resinous  odour  (see  also  Simonsen,  J.,  1921,  127  t). 
Even  the  light  and  mobile  low  boiling  fractions 
leave  a  residue  of  this  substance  on  distillation,  and 
as  fractionation  proceeds  more  and  more  is  pro- 
duced, until  on  one  occasion  about  35°%  of  the 
original  oil  appeared  to  be  converted  into  it. 

The  properties  of  one  specimen  of  this  substance 
were  as  follows: — B.p.,  above  230°  at  760  mm.  or 
above  130°  at  15  mm.;  sp.  gr.,  T015;  refractive 
index,  1*510;  saponification  value,  47"4;  mol.  wt.  in 
benzene  solution,  380'0. 

Another  specimen  left  after  some  fractionations 
set  to  a  hard  mass  on  cooling  and  was  still  exceed- 
ingly viscous  at  100°  C. 

The  physical  properties,  and  high  molecular  weight 
of  this  substance  (nearly  twice  as  great  as  that  of 
a  sesquiterpene)  suggest  that  a  condensation  pro- 
duct may  have  been  formed.  Support  is  lent  to 
this  view  by  the  fact  that  during  a  distillation  at 
atmospheric  pressure,  water  is  continually  being 
formed  in  the  distilling  flask,  its  presence  being 
indicated  by  the  usual  crackling  and  bumping  as 
drops  fall  back  into  the  liquid.  This  does  not  take 
place  until  the  temperature  rises  to  about  200°  C, 
and  is  in  spite  of  the  fact  that  the  oil  was  always 
well  dried  over  anhydrous  sodium  sulphate  before 
distillation. 

Arrangements  are  being  made  to  obtain  a  further 
supply  of  oil  in  order  to  complete  this  preliminary 
examination. 

(The  remainder  of  this  communication,  dealing 
with  "  Seid  "  oil,  will  be  published  later.) 


THE  DETERMINATION  OF   GUANIDINE. 

BY   A.    H.    DODD,    B.A.,    A.I.C. 

The  analysis  of  guanidine  thiocyanate  and  car- 
bonate, when  these  are  made  according  to 
Volhard's  well-known  method,  presents  no  special 
difficulty  as  the  commonest  impurity  is  an 
ammonium  salt.  The  same  is  true  of  guaindine 
sulphate  made  bv  treating  dicyanodiamide  with 
sulphuric  acid  (G.'P.  237,380:  Lidholm,  Ber.,  1913, 
159;  Levene  and  Senior,  J.  Biol.  Chem.,  1916,  623). 
The  precipitation  of  the  picrate  serves  fairly  well 
(Emich,  Monatsh.,  1891,  23),  especially  when  modi- 
fied to  avoid  the  error  due  to  solubility.  This  was 
worked  out  by  Vozarik  for  pure  guanidine  nitrate 


146t 


DODD.— THE    DETERMINATION  OF  GUANIDINE. 


[May  15,  1922. 


(Z.  angew.  Chem.,  1902,  670;  cf.  J.,  1921,  109). 

The  analysis  becomes  more  difficult  when  guani- 
dine  salts  arc  made  by  treating  guanylurea  salts — 
or  dicyanodiamide  and  dilute  acids — in  an  auto- 
clave Starting  from  dicyanodiamide  and  dilute 
acids  the  reaction  takes  place  in  two  stages,  the 
first  being  the  formation  of  guanylurea. 

NH,.C(:NH).NH.CN  +  H„6+HNO,+ 

NH2.C(:NH).NH.C().NH,.,HXO,. 

In   the   second   the   guanylurea   salts   are   decom- 
posed thuti  (Remsen  and  Gartner,  Anier.  Chem.  J.. 
1901,  173;  G.P.  242,216):  — 
NHaC(:NH).NH.CO.NH2J-+ 

NHX(:NH).NH2  +  C02+NH3. 

It  was  essential  to  ascertain  exactly  those  condi- 
tions which  gave  the  maximum  yield  of  guanidine 
without  leaving  any  unchanged  guanylurea  or  caus- 
ing decomposition  of  the  guanidine,  and  this  deter- 
mination presented  some  difficulties. 

The  ordinary  picrate  method  will  not  serve  as 
guanylurea  salts  themselves  give  an  insoluble 
picrate  with  picric  acid  or  ammonium  picrate;  in 
fact,  Soil  and  Stiitzer  (Ber.,  1909,  4534)  have  pro- 
posed this  method  for  the  determination  of  guanyl- 
urea. For  that  reason  certain  results  obtained  with 
guanylurea  in  this  inquiry  have  been  included. 
Attempts  to  isolate  the  oxalates  and  nitrates  of  one 
of  these  bases  in  presence  of  the  other  proved  fruit- 
less, and  only  moderate  success  wad  achieved  by 
combining  a  nitrogen  and  NH,  determination. 

It  was  found,  however,  that  guanylurea  picrate  is 
much  more  soluble  in  sodium  hydroxide  solution 
than  the  guanidine  compound,  and  although  the 
latter  is  soluble  in  strong  soda  there  is  no  risk  of 
solution  of  the  guanidine  compound  in  practice.* 

The  following  shows  the  effect  of  sodium  hydr- 
oxide solutions  in  preventing  the  precipitation  of 
guanylurea  picrate.  When  0' 17255  g.  of  guanidine 
carbonate  was  precipitated  with  100  c.c.  of 
saturated  picric  acid  solution,  and  50  c.c.  of  wash 
water  used,  the  weights  of  picrate  found  in  two  ex- 
periments were  05330  and  05282  g.  (theory  re- 
quires 05522  g.).  A  mixture  of  017255  g.  of 
guanidine  carbonate  and  01579  g.  of  guanylurea 
sulphate  yielded  09179  and  0'9210  g.  using  200  c.c. 
of  picric  acid  solution  and  50  c.c.  of  wash  water 
(theory  0'9639  g.)  whilst  the  same  mixture  using 
200  c.c.  of  picric  acid  solution  and  5  c.c.  of  20% 
sodium  hydroxide  yielded  05223  and  05220  g. 
Ag.iin,  when  using  100  c.c.  of  0"8%  picric  acid  solu- 
tion as  precipitant,  02019  g.  of  guanidine  carbon- 
ate yielded  05969  g.  (theory  0-6460  g.),  whilst  when 
the  picric  acid  was  neutralised  with  sodium  hydr- 
oxide the  yield  was  0'6140  g.  ;  a  mixture  of  0'2019  g. 
of  guanidine  carbonate  and  02505  g.  of  guanylurea 
precipitated  with  the  picric  acid  solution  plus 
50  c.c.  of  N /l  sodium  hydroxide  gave  0'5895  g. 

It  is  also  evident  from  this  simple  comparison 
that  guanidine  picrate  is  much  less  soluble  in  a  solu- 
tion of  sodium  picrate  than  in  picric  acid.  Evi- 
dently no  solubility  correction  can  be  laid  down  as 
the  solubility  of  the  picrate  must  depend  on  the 
other  salts  in  solution. 

Vozarik  states  that  1280  parts  of  water  dissolves 
1  part  of  guanidine  picrate  at  the  room  tempera- 
ture, but  13,000  parts  of  0'8%  ammonium  picrate 
solution  is  necessary.  Enrich,  however,  states  that 
1  part  is  soluble  in  2630  at  9°  C.  and  v.  Cordier 
(Zentr.,  1906.  340)  states  that  the  two  stereo- 
isomeric  forms  have  different  solubilities,  giving  the 
solubility  of  the  plates  as  1  part  in  2700  at  0°  C. 
and  of  the  needles  1  part  in  1803  at  20°  C. 

Guanylurea  picrate  is  also  less  soluble  in  sodium 
picrate  than  in  picric  acid.  Thus  0'2264  g.  of 
guanylurea    sulphate  precipitated  with   100  c.c.   of 

*  Vo/.arik  state*  that  certain  Impurities  in  commercial  guanidine 
salts  arc  soluble  in  ammoniacal  solution  and  these  impurities  may 
amount  to  1-°,,.  He  cannot  be  referring  to  guanylurea  as  it  is 
not  soluble  in  the  ammouiacal  picrate  he  uses. 


saturated  picric  acid  yielded  04608  and  04600  g. 
(using  75  c.c.  of  wash  water);  the  same  weight  of 
substance  precipitated  with  100  c.c.  of  picric  acid 
neutralised  with  2V/1  sodium  hydroxide  (90  cc  of 
wash  water)  yielded  04664  and  04660  g. 

Further,  the  solubility  of  the  guanidine  pi.  rate 
would  be  expected  to  vary  according  to  the  salt  de- 
composed. Thus  when  the  carbonate  of  guanidine 
is  decomposed  by  hot  picric  acid  no  corresponding 
acid  is  left  in  solution  as  is  the  case  when  the 
nitrate,  for  example,  is  used.  However,  the  solu- 
tion is  generally  so  dilute  that  the  effect  is  not  con- 
siderable and  is  minimised  by  presence  of  excess  of 
picric  acid.  The  following  table  gives  some  results 
of  experiments  carried  out  at  different  times  on  the 
pure  salts.  Picric  acid  alone  is  used  as  recom- 
mended by  Emich. 

Guanidine  salt         Picric  acid        Wts.  Vol.  of       Theor,  wt. 

used.  soln.  used.      found,     wash  waters,    of  ppt. 

c.c.  g.  c.c.  g. 

Malonatc  0-198  g.        . .      100      .  .      0-3350      .  .      120      .  .      0-3493 

0-3326 
Xitrate  0-3731  g.        . .     150     . .     0-8350      . .     200     . .      0-SS07 

0-8339 
Carbonate  0-1028  g.   . .     100     . .     0-3156     . .     125     . .     0-3290 

0-3080 
Xitrate  0-2700  g.         ..      200  0-6005      ..      300      ..      0-6514 

0-6035 
0-5947 

These  results  are  not  strictly  comparable,  as  the 
picric  acid  (made  by  saturating  water  with  picric 
acid  at  room  temperature)  was  not  always  of  the 
same  strength. 

In  an  experiment  with  equivalent  solutions  of 
guanidine  carbonate  and  perchlorate  under  similar 
conditions  (100  c.c.  picric  acid.  20  c.c.  wash  water) 
0-1941  g.  of  the  carbonate  yielded  0-5912  and 
0'5906  g.,  whilst  03432  g.  of  the  perchlorate  gave 
05964  and  05926  g.  (theory  0'6212  g.  in  each  case). 

A  few  results  obtained  in  estimating  guanyl- 
urea are  appended.  These  serve  again  to  show 
that  it  is  not  practicable  to  apply  a  definite 
solubility  correction.  Soil  and  Stiitzer  recom- 
mended the  addition  of  002  g.  for  every  100  c.c.  of 
wash  water:  when  this  was  done  the  results  were 
too  high.  Guanylurea  perchlorate,  04093  g..  with 
100  c.c.  of  picric  acid  solution  yielded  06532  and 
0-6460  g.  using  80  and  110  c.c.  respectively  of  wash 
water  (theory  0'6688  g.).  Guanylurea  nitrate, 
0'5428  g.,  with  100  c.c.  of  picric  acid  yielded  11)755 
and  1'0760  g.,  using  25  c.c.  of  wash  water  (theory 
1-089  g.). 

Besides  these  two  factors,  the  excess  of  the  pre- 
cipitant used  and  its  concentration  will  exercise  an 
influence  on  the  precipitation,  but  these  have  not 
been  studied. 

It  is  evident  from  these  considerations  that  the 
conditions  for  carrying  out  the  precipitation  of 
guanidine  must  be  worked  out  by  each  analyst  for 
himself  according  to  the  salt  of  guanidine  used  and 
the  nature  of  the  precipitant  to  be  used. 

Doubtless  the  method  of  not  attempting  to  wash 
out  the  precipitant  but  adding  a  correction  for  the 
amount  presumably  held  by  the  asbestos  in  the 
Gooch  crucible  has  advantages.  When  these  ex- 
periments were  carried  out  in  1919  suitable  asbestos 
could  not  be  obtained,  and  alter  many  failures  filter 
paper  circles  were  substituted.  These  worked 
admirably. 

The  following  gives  the  results  of  a  series  of  tests 
which  were  carried  out  to  determine  the  best  con- 
ditions to  precipitate  guanidine  from  crude  mix- 
tures containing  guanylurea  salts.  The  precipitant 
selected  was  made  up  of  20  g.  of  picric  acid  in 
100  c.c.  of  X II  sodium  hydroxide  solution.  The 
guanidine  solution,  of  less  than  1  %  strength,  was 
added  to  the  precipitant  at  90°  C.  and  the  whole 
allowed  to  stand  for  at  least  6  hrs.  In  order  to 
transfer  all  the  picrate  into  the  Gooch  crucible 
some  of  the  filtrate  was  transferred  to  a  small  wash 


Vol.  XIX,  Xo.  9.] 


K IXC— THE  EFFECT  OF  SALT  UPON  SOAP  SOLUTION. 


I  17   i 


bottle  and  this  used  to  wash  out  the  beaker.  In 
each  experiment  02305  g.  of  guanidine  carbonate 
in  25  c.c.  was  used  (theoretical  weight  of  precipitate 
07372  g.). 


Vol.  of 

Precipitant  used. 

Wts.  found. 

washing 

water. 

g. 

C.C. 

50  c.c.  oi  sodium  picrate 

0-7585,  0-7567,  0-7800 

.      nil. 

Same 

0-7515,  0-7525,0-7493 

20 

Same 

0-7432,0-7440,0-7482 

:» 

Same 

0r7S72,  0-7379,0-7376 

50 

Same  dilated  with  20  c.c. 

water 

0-7365 

25 

0-719:! 

50 

ii  7117:; 

ta 

..  6986 

..      100 

0-6449 

. .     200 

.11  c.c.  of  sodium  picrate 

0-7495,  0-7505,  "7470 

. .       50 

250  c.c  of  0-5%  picric  at 

id     .. 

0-7012,  0-092U 

75 

Vol.  of 

Wts.  fouurf. 

water  for 

washing. 

g. 

c.c. 

O-S705 

25 

0-8653 

50 

0-8471 

75 

0-8710 

30 

0-8717 

30 

From  the  first  portion  of  the  table  the  influence 
of  increasing  quantities  of  wash  water  is  shown. 
It  is  noteworthy  that  over  50  c.c.  of  water  at  10°  C. 
was  necessary  to  remove  the  precipitant  retained, 
but  this  is  probably  explained  by  the  fact  that 
the  temperature  was  low  and  that  the  wash  water 
was  rapidly  sucked  through.  The  second  portion 
shows  the  effect  of  diluting  the  precipitating  agent 
with  water.  There  is  a  perceptible  increase  in  the 
solubility.  On  the  other  hand,  dilution  with  the 
precipitant  increases  the  weight  of  the  precipitate 
obtained.  It  will  be  observed  that  the  weight  of 
picrate  obtained  is  greater  than  the  theoretical ; 
this  is  because  the  wash  water  is  not  able  to  remove 
the  si  Hum  picrate  left  behind  in  the  picrate.  For 
comparison  the  figures  obtained  by  using  picric  acid 
as  a  precipitant  are  given.  Hence  it  appears 
empirically  that  50  c.c.  of  wash  water  under  the 
given  conditions  gives  a  weight  of  picrate  corre- 
sponding to  the  theoretical. 

The  experiment  was  repeated  using  similar  con- 
ditions, with  the  results  given  below  (0'2704  g. 
guanidine  carbonate  used :  theoretical  weight  of 
precipitate  0'8654  g.). 

Precipitant  used. 
50  c.c.  of  sodium  picrate  soln. 
Precipitated  in  the  cold 

Again,  it  will  lie  observed  that  50  c.c.  of  wash 
water  leaves  behind  enough  sodium  picrate  to  corn- 
In  n~.ite  for  the  loss  of  guanidine  picrate  by  solu- 
tion. Possibly  in  the  summer  and  using  less  pre- 
cipitating agent — a  large  excess  is  used  in  these 
determinations — other  conditions  would  have  to  be 
fixed.  It  will  be  noted  that  when  the  picrate  is  pre- 
cipitated in  the  cold  the  amount  of  precipitant  held 
back  is  greater  than  when  it  is  crystalline.  This 
voluminous  precipitate  must  be  avoided  in  practice. 

Data  are  appended  showing  results  obtained  with 
guanidine  carbonate  and  guanylurea  sulphate.  It 
will  be  seen  that  the  alkalinity  of  the  sodium 
picrate  was  not  sufficient  to  prevent  precipitation 
of  guanylurea.  A  further  excess  of  20  c.c.  of  jV/1 
sodium  hydroxide  entirely  kept  it  in  solution.  By 
way  of  comparison  the  weights  obtained  with  picric 
acid  alone  are  introduced.  In  each  case  40  c.c.  of 
wash  water  was  used.  Guanidine  carbonate  0"184  g. 
precipitated  with  50  c.c.  of  sodium  picrate  solution 
yielded  0-5831  and  0'5820  g.  (theory  0-5897). 
03746  g.  of  guanylurea  sulphate  with  the  same  pre- 
cipitant gave  a  precipitate  which  dissolved  com- 
pletely in  20  c.c.  of  AT/1  sodium  hydroxide.  A  mix- 
ture of  0184  g.  of  guanidine  carbonate  and 
0'3746  g.  of  guanylurea  sulphate  with  120  c.c.  of 
picric  acid  solution  and  20  c.c.  of  A7/l  sodium 
hydroxide  yielded  0--5752,  0'576()  g.  (theory  0'5897 
g.),  whilst  the  same  mixture  with  240  c.c.  of  picric 
acid  and  no  alkali  yielded  12229  g.  (theory  13224 
g.).  Guanylurea  sulphate  (0'3746  g.)  with  240  c.c. 
of  picric  acid  yielded  0-6538  g.  (theory  0-7337  g.). 


Thus  the  use  of  sodium  picrate  has  definite  ad- 
vantages in  determining  guanidine  salts  in  the 
presence  of  guanylurea  salts.  It  affords  a  quick  and 
fairly  accurate  method  in  guiding  the  manufacture 
of  guanidine. 

The  author  is  able  to  confirm  the  work  of  Eft-an 
and  Young  (.1.,  1921,  109  t)  and  Werner  and  Pell 
(Chem.  Soc.  Trans.,  1920,  1131)  that  two  molecular 
equivalents  ot  ammonium  salt  fused  with  one 
equivalent  of  dicyanodiamide  (not  equivalent  pro- 
portions, as  given  in  (i.P.  222,522)  give  a  good  yield 
of  the  corresponding  guanidine  salt  and  not  bi- 
guanide,  e.ij.,  93%  yields  of  guanidine  nitate  were 
obtained. 

Using  the  same  precipitant  it  was  easily  possible 
to  shoTi  that  the  method  of  preparing  guanidine 
salts  by  oxidising  dicyanodiamide  gives  bad  yields, 
e.g.,  as  in  Ulpiani's  patent  (G.P.  209,431). 

It  might  also  be  pointed  out  that  precipitation 
of  guanylurea  by  neutral  sodium  picrate  is  an  im- 
provement on  the  use  of  picric  acid.  This  reaction 
is  likely  to  be  of  importance  in  the  analysis  of 
fertilisers  made  from  calcium  eyanamide.  The 
determination  of  guanylurea  and  guanidine 
together  can  be  carried  out  by  first  precipitating 
with  neutral  sodium  picrate  aiid  subsequently  pre- 
cipitating with  alkaline  sodium  picrate. 

This  work  was  carried  out  in  the  laboratories  of 
the  Alby  United  Carbide  Factories  to  which  com- 
pany thanks  are  due  for  permission  to  publish  the 
paper. 


THE  EFFECT  OF  HIGH  CONCENTRATION  OF 
SALT  UPON  THE  VISCOSITY  OF  A  SOAP 
SOLUTION. 

BY    ANNIE    MIM.ICENT    KING. 

It  has  long  been  known  that  the  addition  of  very 
small  quantities  of  salts  or  alkali  distinctly  lowers 
the  viscosity  of  soap  solutions,  whereas  further 
addition  causes  an  enormous  increase  which  soon 
becomes  so  great  as  to  be  beyond  the  reach  of 
measurement  by  a  capillary  viscometer.  Never- 
theless, in  soap  boiling  the  contents  of  the  soap 
pan  are  maintained  within  manageable  limits  of 
viscosity  by  the  addition  of  still  larger  quantities 
of  salt.  No  measurements  have  been  published 
which  bear  upon  this  apparent  contradiction. 
Either  there  must  be  an  ultimate  decrease  in  the 
viscosity,  or  the  soap  boiler  must  be  operating  with 
a  heterogeneous  mixture  of  two  liquids,  one  of 
which  contains  but  little  soap  and  accounts  for  the 
apparent   net   fluidity. 

The  present  note  contains  a  few  measurements 
made  by  the  falling  ball  method  which  has  proved 
so  serviceable  in  the  investigation  of  highly  viscous 
nitrocellulose  solutions  (Gibson  and  MeCall,  Chem 
Soc.  Trans..  1920,  117,  KI—493).  Although  the 
results  demonstrate  that  the  viscosity  of  a  homo- 
geneous soap  solution  does  actually  pass  through  a 
very  decided  maximum  and  falls  to  a  fraction  of  this 
value  before  any  form  of  salting  out  occurs,  it  still 
remains  probable  that  from  beginning  to  end  of  the 
normal  soap  boiling  process  sufficient  electrolyte  is 
used  to  prevent  the  formation  of  a  single  homo- 
geneous liquid. 

Expei  imental. 

A  specially  pure  preparation  of  sodium  palmitate 
by  Kahlbaum  (containing  1*0085  equivalent  of 
sodium  to  l'OOO  of  palmitic  radicle)  was  made  up  to 
a  concentration  of  one-half  molecular  weight  to 
1  kg.  of  boiled-out  water.  To  a  portion  of  this 
stock  solution  previously  ignited  sodium  chloride 
(A.  R.)  was  added  to  make  the  half-weight  normal 
palmitate  also  0'88-weight  normal  sodium  chloride. 
This  is  the  maximum  concentration  of  sodium 
chloride  which  can  be  added  without  formation  of 
two  liquid  layers,  namely,  nigre  and  lye  (Langdon — 


148  t 


KING.— THE  EFFECT  OF  SALT  UPON  SOAP  SOLUTION. 


[May  15,  1922. 


not  yet  published;  cf.  4th  Colloid  Report,  British 
Association). 

After  measuring  the  viscosity  of  this  solution 
more  of  the  original  stock  was  added  so  as  to  dilute 
the  salt  whilst  keeping  the  weight  normality  of 
the  palmitate  constant.  In  this  way  a  series  of 
solutions  of  gradually  decreasing  salt  content  was 
measured ;  thereupon  successive  portions  of  sodium 
chloride  were  added  so  as  to  check  the  previous 
results  by  passing  through  the  same  range  of  con- 
centrations in  the  opposite  direction.  The  results 
show  complete  reproducibility  agreeing  within  the 
experimental  error.  All  the  measurements  were 
carried  out  at  8095°  C.  corr. 

The  tube  used  was  carefully  calibrated  by  the  use 
of  castor  oil  "  Kahlbaum,"  at  2410°  C.  corr.  (vis- 
cosity of  castor  oil  =  9'888).  The  density  of  the 
steel  balls  was  measured  with  a  Richards'  pyk- 
nometer,  the  density  of  the  viscous  liquids  in  the 
special  22-c.c.  pyknometer  described  by  E.  C.  V. 
Cornish  (Z.  physik  Chem.,  1911,  76,  [2]).  In 
measuring  the  viscosity  three  balls  were  used ;  the 
tube  was  then  emptied,  the  balls  cleaned  and  the 
experiment  repeated.  Care  was  taken  that  there 
were  no  air  bubbles  present  and  that  the  balls  were 
at  the  temperature  of  the  solution. 

The  results  were  calculated  according  to  the 
formula  jj  =  K(s-D)T,  where  K  is  the  tube  constant 

— ^7fr>  1  the  viscosity  of  soap  solution  at  80'85° 

(S-ff)I, 

C.  in  c.g.s.  units,  s  the  density  of  steel  ball  = 
7'806,  D  the  density  of  6oap  solution,  T  the 
time  of  fall  in  soap  solution,  ?j,  the  viscosity  of 
castor  oil  of  density  o-  =  0'96  at  24T0°  =  7111  c.g.s. 
units,  and  T,  is  the  time  of  fall  in  castor  oil  = 
4'0  sees. 

At  room  temperature  the  soap  solutions  appeared 
as  a  solid  white  silky  curd. 

The  experimental  results  are  recorded  in  Table  I. 
and  the  viscosities  are  also  plotted  in  the  accom- 
panying figure.  The  points  marked  with  a  circle 
are  those  obtained  in  the  first  or  dilution  series, 
those  marked  with  a  cross  indicate  where  the 
previous  concentrations  had  been  regained  by  the 


11 

9 
8 

°\. 

: 

6 
5 

\)      X 

\o 

3 

. 

o     N. 

2 

^"i" 

1 

.i 

04  2V         0  5  A1       0  6  2V         0'7  N       0  8  N        09  A* 
Normality  of  sodium  chloride. 
Viscosity  atS0-95°C.  of  0-5  Nw  solutions  of  pure  sodium 
palmitate  containing  various  amounts  of  sodium  chloride. 

addition  of  more  salt.  Three  quite  independent 
but  concordant  results  were  secured  for  the  vis- 
cosity of  solutions  which  are  0'5iV  with  regard  to 
both  soap  and  salt.  Three  separate  solutions  were 
prepared,  giving  10'5,  10'6,  and  101,  the  last  being 
obtained  by  Mr.  Heighington. 

It  will  he  seen  that  there  is  a  very  pronounced 
maximum  viscosity   in   the   solution  which   is  N 12 


with  respect  to  both  sodium  palmitate  and  chloride. 
McBain  and  Salmon  (Proc.  Roy.  Soc,  A  97,  44—65; 
J.  Amer.  Chem.  Soc,  1920,  42,  426-60;  cf.  McBain, 
Laing,  and  Taylor,  Chem.  Soc.  Trans.,  1922,  121, 
621)  have  shown  that  in  these  moderately  con- 
centrated   solutions   the   sodium   palmitate   in   the 

Table  I. 

Viscosity    and    density    of    O'50O2Vw    solutions    of 
sodium,  palmitate  containing  various  weight  norm- 
alities of  added  sodium  chloride,  at  80-95°  C. 


NaCl. 

0-8S0A' 
0-787A- 
0-732Ar 
0-615A- 
0-544A" 
0-527.ZV 
0-491A' 
0-446A* 
0-500  A' 
0-500A" 
0-500  A" 
0-880A- 


D80-95"    T  (seconds). 


0-9980 
0-9964 
0-9936 
0-9894 
0-9860 
0-9850 
0-9853 
0-9839 
0-9859 
0-9859 
0-9859 
0-9079 


110 
1-55 
2-90 
400 
4-20 
4-40 
3-90 
310 
600 
5-95 
5-68 
1-36 


1-95 

2-74 

5-13 

7-08 

7-44 

7-79 

6-91 

5-49 

10-C3 

10-54 

10-06 

2-40 


Vtwater  at  80°C. 

COO 

850 
1590 
2190 
2300 
2410 
2140 
1700 
3290 
3260 
3110 

740 


absence  of  6alt  is  a  colloidal  electrolyte,  that  is,  a 
neutral  colloid  partly  dissociated  into  sodium  ions 
and  the  corresponding  ionic  micelle.  Addition  of 
the  salt  rapidly  drives  back  even  this  dissociation 
so  that  the  soap  is  now  chiefly  present  as  neutral 
colloid.  This  neutral  colloid  is  known  to  be  heavily 
hydrated,  which  is  the  chief  factor  in  causing  the 
very  high  viscosity.  Further  addition  of  salt  can 
now  only  diminish  the  hydration  of  the  neutral 
colloid  in  the  6ame  way  that  still  higher  concen- 
trations have  been  shown  to  diminish  that  of  curd 
fibres  of  the  palmitate  (see  McBain  and  Taylor,  etc., 
Chem.  Soc.  Trans.,  1919,  115,  1300-8;  1921,  119, 
1369,  1374,  1669). 

It  is  evident  that  the  behaviour  here  described 
is  general  for  soap  solutions.  Table  II.  comprise* 
a  description  of  solutions  of  potassium  oleate  to 
which  increasing  amounts  of  potassium  chloride 
have  been  added  in  repetition  of  observations  bv 
M.  H.  Fischer  ("  Soaps  and  Proteins,"  1921). 
Fischer  uses  the  word  gel  indiscriminately  to 
include  white  opaque  curds,  masses  of  small 
crystals,  and  clear  jellies. 

The  point  to  which  attention  is  here  drawn  is  that 
whereas  addition  of  salt  causes  the  clear  liquid 
to  set  to  a  transparent  jelly,  further  addition 
re-liquefies  the  jelly  without  impairing  the  homo- 
geneity of  the  solution.  A  much  greater  amount  of 
salt  is  required  to  cause  formation  of  two  liquid 
layers  and  finally  formation  of  curd.  Almost  all  the 
solutions  on  standing  had  a  narrow  white  rim  at  the 
top.  Careful  study  will  be  required  to  establish  the 
position  of  stable  equilibrium  in  each  case. 

Table  II. 

0332V w  Potassium  oleate  containing  increasing 
amounts  of  potassium  chloride  at  room  tempera- 
ture 24  hrs.  after  thorough  mixing  and  heating. 


KCl 

oo 

0-13 
0-27 
0-40 
0-53 
0-67 
0-80 
0-93 
107 
1-20 
1-33  < 


Fischer's. 
Mobile  liquid. 
Mobile  liquid. 
Viscid. 
Stiff  gel. 
Stiffest  gel. 
Stiff  gel. 
Viscid. 

Less  viscid,  slightly  turbid. 
Mobile,  turbid. 
Mobile,  turbid. 
Mobile,  turbid,  beginning  de- 
hydration. 

In  conclusion,  my  thanks  are  due  for  grants  from 
the  Colston  Research  Society  of  the  University  of 
Bristol  and  the  Research  Fund  of  the  Chemical 
Society.  The  work  was  carried  out  at  the  suggestion 
of  Professor  McBain. 

The  University.  Bristol. 


Description. 

Clear  mobile  liquid 

Clear,  slightly  viscous 

Stiff  transparent  jelly- 
Clear  viscous  liquid 

Fairly  viscous 

Clear"  liquid 

Clear  liquid 

Two  liquid  layers 

Two  liquid  layers 

Two     liquid     layers  ; 
clear,    upper    full    of    sus- 
pended curd  particles 


lower 


Vol.  XLI..  No.  10] 


TRANSACTIONS 


[May   31,  1922. 


Birmingham  Section. 

Meeting   held  at  Birmingham  University  on 
Thursday,  March  30,  1922. 


DR.    H.    W.    BROWNSDON   IN   THE   CHAIR. 


A 


**  MICRO-KJELDAHL  "     METHOD     OF 
DETERMINING  NITROGEN. 

BT  ARTHUR  R.  LING  AND  WILLIAM  JOHN  PRICE. 


Introductory. 

In  conducting  experimental  investigations  in 
biochemistry  it  is  desirable  to  be  acquainted  with 
some  reliable  method  of  determining  nitrogen 
which  requires  the  minimal  quantity  of  material 
for  each  determination.  The  Kjeldahl  method  in 
its  most  approved  form  is  one  of  very  wide  applic- 
ability, and  moreover  it  is  known  to  which  classes 
of  compound  it  can  be  applied  (vide  B.  Dyer,  Chem. 
Soc.  Trans.,  1895,  67,  811).  The  fact,  however, 
that  nitrogen  in  some  states  of  combination  in 
which  it  exists  in  organic  compounds  cannot  be 
determined  by  the  Kjeldahl  method  is  one  which 
must  be  borne  in  mind.  In  this  connexion  it  may 
be  pointed  out  that  among  those  nitrogenous  sub- 
stances which  the  biochemist  has  to  handle  the 
great  majority  are  amino-  or  imino-compounds,  the 
nitrogen  content  of  which  can  be  determined 
accurately  by  the  Kjeldahl  method.  Our  object  was 
therefore  to  ascertain  if  a  modification  of  the  Kjel- 
dahl method  could  be  devised  requiring  quantities 
of  substance  for  each  determination  containing 
nitrogen  from  1"0  to  01  mg. 

So  far  as  we  aire  aware,  the  first  chemists  to 
devise  a  "  micro  "  Kjeldahl  method  were  O.  Folin 
and  C.  J.  Farmer  (J.  Biol.  Chem.,  1912,  11, 
493).  This  they  applied  to  the  determination  of 
nitrogen  in  urine,  taking  as  little  as  1  c.c.  for  each 
experiment.  L.  C.  Scott  and  R.  G.  Meyers  (J. 
Amer.  Chem.  Soc,  1917,  39,  1044)  suggest  replacing 
the  potassium  sulphate  employed  usually  in  the  pro- 
cess by  potassium  persulphate. 

In  a  series  of  papers  by  O.  Folin  and  W.  Denis 
on  the  determination  of  nitrogen  in  different  forms 
in  which  it  occurs  in  urine  and  in  blood  by  direct 
nesslerisation  (J.  Biol.  Chem.,  1916,  26,  473— 511), 
a  method  is  described  in  which  quantities  of  the 
substance  are  dealt  with  containing  0'7 — 1*5  mg.  of 
nitrogen.  The  substance  is  digested  with  1  c.c.  of 
a  mixture  of  phosphoric  and  sulphuric  acids  and  a 
trace  of  copper  sulphate  (*fe  c.c.  of  a  10%  solu- 
tion). The  acid  mixture  contains  83%  syrupy  phos- 
phoric acid  (5  vols.)  and  concentrated  sulphuric 
acid  (1  vol.),  but  the  proportion  of  phosphoric  acid 
may  be  reduced  to  half  that  of  the  sulphuric  acid. 
It  is  found  that  without  the  addition  of  copper 
sulphate  the  higher  the  proportion  of  phosphoric 
acid  the  shorter  the  digestion  period  necessary. 
When  the  digestion  is  made  even  in  hard  glass 
boiling  tubes  the  glass  is  strongly  attacked  and 
devitrified  with  the  production  of  silica.  The 
attack  on  the  glass  may  be  diminished  by  the  U6e 
of  a  mixture  of  phosphoric  acid  (1  vol.)  and  sul- 
phuric acid  (2  vols.),  in  which  case  when  a  trace 
of  copper  sulphate  is  employed  the  digestion  period 
is  about  25  minutes.  In  any  case,  it  is  necessary 
to  remove  the  silica  either  by  centrifuging  or  by 
filtration  through  cotton  wool  before  nesslerising. 
Folin  and  Denis  point  out  that  it  is  preferable  to 
use  silica  test  tubes,  which  are  scarcely  attacked  by 
the  above-mentioned  acid  mixture. 

Experimental. 

The  purpose  for  which  we  required  a  micro- 
Kjeldahl    method    was    for    the    determination    of 


nitrogen  in  substances  containing  but  a  trace  of 
protein  and  much  carbon,  e.g.,  starch  preparations 
and  other  carbohydrates.  In  order  to  come  within 
the  range  in  which  we  worked,  it  is  neceesary  to 
take  a  weight  of  carbohydrate  amounting  to 
0-3—0-5  g. 

Several  experiments  were  carried  out  using  a 
mixture  of  phosphoric  acid,  sulphuric  acid,  and 
copper  sulphate  as  directed  by  Folin  and  Denis 
(loc.  cit.).  This  procedure  had,  however,  ulti- 
mately to  be  abandoned  owing  to  the  difficulty  en- 
countered by  the  attack  on  the  glass  tubes.  We 
were  unable  to  obtain  any  glass  which  would  with- 
stand the  action  of  the  acid  mixture  even  when  the 
phosphoric  acid  was  reduced  to  the  lowest  limit. 

In  the  next  series  of  experiments  the  weighed 
portion  of  the  substance  was  heated  in  a  boiling 
tube  of  hard  glass  for  about  five  minutes  with  about 
8  c.c.  of  concentrated  sulphuric  acid  until  it 
charred.  The  liquid  was  then  cooled,  about  1  g.  of 
potassium  persulphato  was  added,  and  the  heating 
continued  until  the  liquid  was  colourless.  After 
cooling,  40%  sodium  hydroxide  solution  was  added 
carefully  till  the  liquid  was  faintly  alkaline,  and 
5  c.c.  of  the  Nessler  reagent  (v.  infra).  The  liquid 
was  then  made  up  to  250  c.c.  and  its  tint  compared 
with  that  of  a  standard  solution  of  ammonium  sul- 
phate containing  the  equivalent  of  1  mg.  of 
nitrogen  in  250  c.c. 

The  Kjeldahl  solution  prepared  in  the  manner 
just  described  was  invariably  cloudy  owing  to  the 
presence  of  electrolytes,  and  it  was  therefore  im- 
possible to  compare  its  tint  with  that  of  the  stan- 
dard solution.  In  order  to  obviate  this  difficulty  it 
is  necessary  to  distil  the  solution. 

The  use  of  persulphate  undoubtedly  expedites  the 
reaction,  which  by  its  use  can  be  reduced  to  about 
30  minutes.  Since,  however,  this  is  its  only  advan- 
tage, and  in  view  of  the  fact  that  unless  the  per- 
sulphate is  quite  dry  and  is  added  to  the  cool  sul- 
phuric acid  containing  the  charred  substance,  there 
is  a  tendency  to  oxidise  some  of  the  ammonia  (see 
H.  H.  Willard  and  W.  E.  Cake,  J.  Amer.  Chem. 
Soc.,  1920,  42,  2646),  we  decided  to  discontinue  its 
use. 

The  method  finally  adopted  was  as  follows: — An 
accurately  weighed  portion  of  the  substance  con- 
taining 1 — O'l  mg.  of  nitrogen  is  introduced  into  a 
hard  glass  boiling  tube  together  with  1  g.  of  dry 
potassium  sulphate  and  002  g.  of  anhydrous  copper 
sulphate,  8  c.c.  of  concentrated  sulphuric  acid  is 
then  added  and  two  drops  of  2'5%  platinum  tetra- 
chloride solution.  A  small  funnel  is  placed  in  the 
mouth  of  the  tube,  and  the  contents  are  boiled 
gently  until  the  liquid  is  colourless.  In  the  case  of 
carbohydrates  this  occupies  about  1  hour.  The 
liquid  is  then  allowed  to  cool,  about  15  c.c  of  dis- 
tilled water  added,  and  the  diluted  liquid  boiled  to 
expel  any  sulphur  dioxide.  Attempts  to  deal  with 
the  liquid  direct  were  unsuccessful,  and  we  found  it 
necessary  to  distil.  When  cold  the  liquid  in  intro- 
duced into  a  300-c.c.  distilling  flask  fitted  with  a 
tap  funnel  and  connected  with  a  Liebig's  condenser 
by  the  side  tube.  The  further  end  of  the  condenser 
is  fitted  with  an  adapter,  the  end  of  which  dips  into 
about  50  c.c.  of  water,  contained  in  a  graduated 
250-c.c.  flask.  A  few  pieces  of  freshly  ignited 
porous  porcelain,  free  from  nitrogen,  are  added  to 
the  flask  to  prevent  bumping,  and  a  small  strip  of 
litmus  paper.  Sodium  hydroxide  of  40%  strength  is 
added  through  the  tap  funnel  until  the  contents  of 
the  flask  are  alkaline.  Distillation  is  now  com- 
menced and  continued  until  all  the  ammonia  ha6 
passed  over.  It  is  necessary  to  distil  about  100  c.c. 
To  the  distillate  15  c.c  of  40%  sodium  hydroxide  is 
added,  and  then  5  c.c  of  the  Nessler  reagent,  the 
contents  of  the  flask  being  well  shaken  after  the 

A 


150t 


LING  AND  PRICE.— METHOD  OF  DETERMINING  NITROGEN. 


[May  31,  1922. 


addition  of  the  sodium  hydroxide  and  of  the  Nessler 
reagent.    The  liquid  is  then  made  up  to  250  c.c. 

A  stock  solution  of  ammonium  sulphate  is  pre- 
pared containing  4' 716  g.  of  that  salt  and  200  c.c.  of 
i\*/l  sulphuric  acid  (to  inhibit  the  growth  of  micro- 
organisms) in  one  litre.  This  solution  contains 
1  mg.  of  nitrogen  per  c.c.  One  c.c.  of  this  solution 
is  added  to  about  150  c.c.  of  water  in  a  250-c.c. 
graduated  flask.  To  this  is  added  1'5  c.c.  of  40  ; 
sodium  hydroxide  solution,  and  5  c.c.  of  the  Nessler 
reagent,  the  liquid  being  well  shaken  and  made  up 
to  250  c.c. 

Alter  allowing  5  minutes  in  order  that  the  colour 
may  develop,  10-c.c.  portions  of  each  of  the  two 
solutions — the  Kjeldahl  and  the  standard — are 
introduced  into  two  small  flat-bottomed  tubes  of 
colourless  glass.  The  dimensions  of  the  tube  may 
be  conveniently  9'3  cm.  in  length  and  15  cm.  in 
diameter.  The  tubes  are  placed  on  a  clean  sheet 
of  white  paper  and  the  tints  of  their  contents 
compared,  by  viewing  the  surfaces.  From  the 
darker  of  the  two  solutions  quantities  are  with- 
drawn by  means  of  a  pipette  graduated  in  O'Ol  c.c. 
until  the  tints  are  equal.  The  solution  from  which 
a  portion  has  been  withdrawn  is  then  again  made 
up  to  10  c.c.  with  distilled  water  and  the  com- 
parison again  made.  It  may  then  be  necessary  to 
make  a  further  adjustment,  but  the  final  com- 
parisons must  always  be  made  on  equal  depths  of 
the  two  liquids. 


0-9000 


0-3500 


0-8000 


0-7500 


0-7000 


compared  with  the  coloration  produced  with  a 
solution  containing  P0  mg.  of  nitrogen  in  250  c.c. 
taken  as  the  standard.  It  was  found  that  the 
solutions  of  lower  concentration  than  the  standard 
gave  higher  colorations  than  they  should  if  intensity 
of  colour  and  concentration  of  ammonia  were 
directly  proportional.  The  factors  by  which  the 
apparent  nitrogen  must  be  multiplied  in  order  to 
give  the  actual  nitrogen  present,  were  plotted  as 
ordinate*  against  the  apparent  nitrogen  as 
abscissae. 

The  nitrogen  as  found  will  be  the  "  apparent  " 
nitrogen,  and  this  must  be  corrected  by  the  factor 
shown  in  the  curve,  the  same  applying  to  the  blank 
experiment. 

The  Nessler  reagent  used  was  prepared  accord- 
ing to  the  instructions  of  Folin  and  Denis  Qoc.  cit.), 
namely,  a  stock  solution  is  made  by  dissolving  75  g. 
of  potassium  iodide  and  100  g.  of  mercuric  iodide 
in  water  and  diluting  to  one  litre.  The  actual 
Nessler  solution  is  prepared  by  taking  300  c.c.  of 
the  stock  iodide  solution,  200  c.c.  of  10  sodium 
hydroxide  solution,  and  500  c.c.  of  water. 

The  following  are  some  results  obtained  by  the 
method :  — 


0        01      0-2      0-3      0-4      0-5      0-6      0-7      OS     0-9      1- 
Apparent  nitrogen  (milligrams). 

In  order  that  this  method  may  yield  accurate 
results  it  was  necessary  to  establish  the  relation 
between  the  degree  of  coloration  by  the  Nessler 
reagent  and  the  concentration  of  nitrogen  as 
ammonia  in  a  given  solution.  To  this  end  solutions 
containing  from  0T  to  1  mg.  of  nitrogen  in  250  c.c. 
were  prepared,  and  the  coloration  produced  by  the 
Nessler  reagent  under  the  conditions  described  was 


Found. 

Theoretical. 

% 

% 

Asparagine 

.  .    18-23 

. .      18-67 

Quinine  sulphate,  (\0H..O..X.., 

H;SO„ 

7H.O             

. .      ..      511 

5-23 

Potassium  ferrocvanide,  KjFe 

(CN)„ 

3H.0             

..    19-91 

. .      19-58 

Glucose-ammonia 

. .      6-83 

0-83  (Ordinary 
Kjeldahl) 

Protein  in  wheat  starch 

..      0-47  \ 
0-48/ 

0-49 

Protein  in  good  wheat  starch 

..      014\ 
013/ 

Protein  in  good  potato  starch 

..      0-035  \ 
0032/ 

The  somewhat  wide  divergencies  from  the 
theoretical  percentages  of  nitrogen  in  the  case  of 
some  of  the  pure  substances  used,  are  due  to  the 
fact  that  the  determinations  were  made  on  direct 
weighings  of  not  more  than  10  mg.  With  sub- 
stances containing  mere  traces  of  nitrogen  the 
results  are  much  more  accurate,  as  a  larger  weight 
can  be  taken. 

Our  thanks  are  due  to  Messrs.  A.  Churchman 
and  L.  Warren  for  checking  some  of  our  results. 

University  of  Birmingham, 

Department  of  Brewing  and 

Biochemistry  of  Fermentation. 

Discussion. 

Professor  G.  T.  Morgan  referred  to  an  improved 
still  head  which  facilitated  considerably  the  carry- 
ing out  of  the  ordinary  Kjeldahl  determinations. 
The  essential  feature  was  a  small  disc  held  loosely 
in  the  bulb  of  the  still  head  which  oscillated  up  and 
down  during  the  distillation  thus  overcoming  to  a 
considerable  extent  the  difficulties  due  to  fuming  or 
frothing. 

Dr.  Parker  observed  that  the  Kjeldahl  method 
applied  to  coal  and  coke  gave  results  which  were  use- 
ful only  for  comparative  purposes.  Where  it  was 
necessary  to  make  a  chemical  balance  to  show  the  dis- 
tribution of  nitrogen  in  the  products  of  distillation 
of  coal,  the  method  was  unsatisfactory.  In  his  own 
experience,  in  such  circumstances,  nitrogen  balances 
constructed  from  the  results  of  Kjeldahl  determina- 
tions gave  more  nitrogen  in  the  products — gas, 
coke,  tar,  and  ammonia — than  in  the  original  coal, 
and  this  in  spite  of  the  fact  that  some  of  the 
nitrogen  must  have  been  converted  into  free  gaseous 
nitrogen.  More  satisfactory  results  were  obtained 
by  a  modification  of  Dumas'  method,  in  which 
decomposition  was  completed  by  means  of  oxygen 
obtained  by  heating  potassium  chlorate. 

Mr.  F.  R.  O'Sh.u'GHNXSSY  said  that  when  he  had 
used  paraffin  burners  of  the  Primus  type  in  making 


Vol  XII.,  No.  10.]     LING  AND  NAN.TI.— ACTION  OF  AMMONIA  ON  REDUCING   SUGARS. 


151t 


determinations  of  nitrogen  by  the  Kjeldahl  method 
the  time  required  was  shorter  than  when  Bunsen 
burners  were  used. 

Mr.  S.  R.  Carter  pointed  out  that  Pregl  had 
stated  that  he  was  able  to  make  estimations  with 
acids  and  alkalis  by  actual  titration.  Would  not 
the  difficulty  of  those  who  were  colour-blind  be 
overcome  to  a  large  extent  by  that  means? 

Professor  Ling,  in  reply,  welcomed  Professor 
Morgan's  interesting  remarks  on  an  improved  still 
head,  though  the  question  of  splashing  over  was  of 
much  less  moment  in  the  method  just  described  than 
in  the  case  of  the  ordinary  Kjeldahl  determination, 
since  the  measurement  of  ammonia  depended  on 
Nesslerising  and  not  on  titration.  It  seemed  to 
him  that,  as  the  quantities  used  were  so  small,  the 
Nessler  method  was  preferable  to  the  titration 
process. 


THE  ACTION  OF  AMMONIA  AND  OF  AMINO- 

COMPOUNDS    ON    REDUCING    SUGARS. 

I.  THE  ACTION  OF  AMMONIA  ON  DEXTROSE 

AND    L-EVULOSE. 

BY    ARTHUR    R.    LING    AND    DINSHAW   RATTONJI    NANJI. 

Introductory  ami  theoretical. 

This  investigation  was  originally  undertaken  to 
throw  some  light  on  the  mechanism  of  the  reactions 
which  occur  in  the  manufacture  of  so-called  caramel 
by  the  ammonia  process. 

When  ammonia  is  brought  in  contact  with 
dextrose  (fused  or  in  aqueous  solution),  either  in 
the  form  of  gas  or  aqueous  solution,  at  a  moderate 
temperature — say  35° — 40°  C. — combination  of  the 
ammonia  with  the  sugar  takes  place.  If  now  the 
liquid  be  heated  to  a  higher  temperature,  e.y., 
100°  C,  a  vigorous  exothermic  reaction  ensues, 
and  there  are  produced  dark-coloured  substances. 
Similar  reactions  occur  when  certain  amino-com- 
pounds  are  substituted  for  ammonia.  One  of  us 
has  in  fact  brought  forward  evidence  (J.  Inst. 
Brewing,  1908,  14,  514;  Int.  Cong.  Appl.  Chem., 
London,  1909)  that  the  production  of  colour  in  malt 
by  the  kilning  process  is  due  to  a  combination 
between  the  amino-acids  and  the  reducing  sugars 
produced  during  germination,  and  the  subsequent 
decomposition  of  these  compounds  when  the  malt  is 
raised  to  a  higher  temperature  on  the  kiln.  This 
explanation  of  the  production  of  colour  has  been 
studied  by  L.  C.  Maillard  (Comptes  rend..  1912. 
154,  66),  whilst  so  far  as  concerns  the  kilning  of 
malt  it  has  been  confirmed  bv  C.  J.  Lintner  (Z.  ges. 
Brauw.,  1912.  35.  545). 

Maillard's  studies  (loc.  cit.)  were  directed  to  the 
action  of  the  amino-acids  on  reducing  sugars.  He 
shows  that  in  the  above-mentioned  secondary  re- 
action in  which  dark-coloured  substances  are  formed, 
carbon  dioxide  is  evolved.  He  did  not  characterise 
the  substances  produced,  but  he  proposed  to  call 
them  "  melanoidines."  He  also  conducted  some 
experiments  in  which  reducing  sugars  were  heated 
with  the  mixed  products  resulting  from  the  hydro- 
lysis oi   proteins. 

A.  Pictet  and  Tsan  Quo  Chou  {ibid.,  1916,  162, 
127)  have  shown  that  pyridine  and  isoquinoline 
bases  are  formed  by  the  action  of  nascent  form- 
aldehyde on  the  products  of  the  hydrolysis  of 
caseinogen.  Maillard  (ibid.,  1916,  162,  757)  states 
that  he  can  confirm  these  observations. 

The  experiments  we  have  now  to  record  refer  to 
the  first  stage  of  the  reaction  between  dextrose  and 
laevulose  respectively,  and  ammonia  and  the  nature 
of  the  resulting  compounds. 

Dealing  in  the  first  place  with  dextrose,  we  have 
proved  that  when  an  excess  of  ammonia  acts  on 
this  sugar  at  a  temperature  of  about  35°  C,  an 
additive  compound  is  formed.  Evidence  will  be 
furnished     that    this    additive    compound    is    the 


analogue  of  aldehyde-ammonia,  namely  glucose- 
ammonia.  The  solution  was  tested  for  amino- 
eompounds  with  negative  results. 

It  has  been  shown  by  T.  M.  Lowry  (J.  Chera.  Soc, 
1904,  85,  1551)  that  a  solution  of  glucose  brought  to 
the  stable  specific  rotatory  power  of  [a]D  =  53°, 
contains  the  a-  and  /8-modifications  of  the  sugar  in 
equilibrium.  Also  that,  in  addition  to  these  modi- 
fications, there  is  present  a  certain  quantity  of 
glucose-aldehyde  hydrate.  The  presence  of  this 
aldehyde-hydrate  not  only  accounts  for  the  aldehydic 
properties  of  a  solution  of  glucose,  but  it  explains 
the  mutation  of  the  a-  and  /3-modifications,  thus:  — 

HOCH  +  H.O     CH-(OH),    -H.,0       H-C-OH 

/I  s        I  sc         /{ 

/  CH-OH    -H.O     CH-OH  +H,0    /    CH-OH 

O        I  "    O        | 

\  CH-OH  CH  OH  \    CH  OH 

\J  I  \| 

CH  CH-OH  CH 


CH-OH 

I 
CH,OH 

a— Glucose 


CH-OH 

I 
CHyOH 

Aldehyde  - 
hydrate 


I 
CH-OH 

I 
CH.-OH 

/S-Glucose 


The  presence  of  the  aldehyde  hydrate  also  decides 
the  course  of  the  reaction  between  dextrose  and 
ammonia  in  aqueous  solution.  The  ammonia,  it 
may  be  assumed,  combines  with  the  aldehydrol 
to  form  an  additive  compound  with  the  elimination 
of  one  molecule  of  water  thus :  — 

CH-(OH)2+NH3  ^  CH-OH-NH.-fH.O 


I 
CH-OH 

I 
CH-OH 

I 
CH-OH 

CH-OH 

I 
CH2OH 

Aldehyde- 
hydrate. 


CH 


OH 


CH-OH 

I 
CH-OH 

I 
CH-OH 

I 
CH.OH 

Glucose-a  mmonia . 


These  formula?  assume  that  no  isodynamic  changes 
occur  which,  as  will  be  seen  later,  is*  the  case. 

When  to  a  solution  of  dextrose,  containing  20  g. 
of  that  sugar  in  100  c.c,  concentrated  ammonia  is 
added  in  quantity  amounting  to  just  above  one 
molecular  proportion,  in  relation  to  the  dextrose, 
and  the  solution  is  heated  at  a  temperature  ranging 
from  35°  to  60°  C,  it  is  found,  as  might  be  antici- 
pated, that  the  specific  rotatory  power  is  that  of  the 
usual  mixture  of  a-  and  /3-glucose  in  equilibrium, 
namely  [o]D  =  53°.  When  the  heating  is  continued, 
however,  the  rotation  still  falls  the  more  rapidly  as 
the  temperature  approaches  the  higher  limit,  until 
ultimately  it  becomes  constant  at  about  [a]D  =  0°. 
If  the  action  of  ammonia  on  dextrose  be  carried 
out  at  room  temperature,  the  same  phenomena  are 
met  with,  but  the  change  proceeds  much  more 
slowly. 

As  the  reaction  proceeds  the  aldehyde  hydrate  is 
removed  from  the  solution  as  glucose-ammonia  and 
the  equilibrium  thus  disturbed  is  restored  by  the 
conversion  of  more  of  the  glucose  into  the  aldehyde 
hydrate.  Thus  in  the  presence  of  an  excess  of 
ammonia  the  reaction  proceeds  to  the  point  of 
complete  conversion  of  the  dextrose  into  glucose- 
ammonia. 

Our  experiments  show,  however,  that  this  re- 
action is  a  reversible  one  and  that  the  glucose- 
ammonia  in  solution  dissociates,  a  certain  equi- 
librium being  probably  established  at  any  one 
temperature  between  the  glucose-ammonia  and  the 

a2 


152t 


LING  AND  NANJL—  ACTION  OF  AMMONIA  ON  REDUCING  SUGARS.        [May  31,  1922. 


sugar  present;  the  6ugar  obtained,  however,  from 
the  glucose-ammonia  is  not  the  aldehydic  form. 

Glucose-ammonia  reacts  as  an  aldehyde  towards 
alkaline  solutions  of  some  of  the  heavy  metals;  thus 
a  mirror  of  metallic  copper  is  formed  in  the  cold 
when  a  solution  is  added  to  Fehling's  solution  or  to 
ammoniacal  silver  nitrate  solution.  It  does  not, 
however,  give  Schiff's  reaction. 

It  may  be  pointed  out  that  R.  Behrend  and  P. 
Roth  (Annalen,  1904,  331,  359)  and  R.  Behrend 
(ibid.,  1910,  377,  220)  have  6hown  that  when  dextrose 
is  dissolved  in  boiling  pyridine,  an  additive  com- 
pound of  glucose  and  pyridine  crystallises  out  on 
cooling.  This  gradually  loses  pyridine  on  exposure 
to  the  air. 

It  has  been  found  possible  to  free  the  syrup  from 
ammonia,  the  product  thus  obtained  being  a 
brownish  syrup  quite  free  from  nitrogen.  So  far 
we  have  not  succeeded  in  obtaining  crystals  from 
this  syrup.  This  product  has  all  the  reactions  of  a 
form  of  glucose.  It  is  fermentable  by  Saccharo- 
myces  cerevisice,  and  yields  phenylgluoosazone  when 
heated  with  phenylhydrazine  acetate.  Its  reducing 
power  towards  Fehling's  solution  is  higher  than  that 
of  ordinary  glucose,  whilst  its  specific  rotatory 
power  was  found  to  be  [a]D  =  4'4°.  As  this  specific 
rotation  is  the  same  whether  ammonia  be  present  or 
not,  it  would  seem  that  in  solutions  having  a 
concentration  of  as  much  as  20  g.  per  100  c.c. 
(the  concentration  at  which  we  worked),  the  glucose- 
ammonia  is  entirely  dissociated. 

This  is  not  without  parallel.  The  compounds  of 
glucose  with  sodium  chloride  are  also  completely 
dissociated  in  aqueous  solution  (Mategezek,  Z.  Ver. 
Riibenzucker-Ind.,  1875,  873). 

At  first  we  suspected  that  the  diminution  of  the 
specific  rotation  might  perhaps  be  explained  by  the 
ammonia  bringing  about  a  Walden  inversion  giving 
rise  to  i-glucose ;  but  the  fact  that  the  whole  of  the 
sugar  is  fermentable  by  Saccharomyces  cerevisice 
precludes  this  explanation  since  i-glucose  is  un- 
fermentable  by  this  yeast. 

We  then  found  that  the  solution  of  6ugar  possessed 
the  property  of  reducing  a  dilute  solution  of 
potassium  permanganate  at  the  ordinary  tempera- 
ture, a  characteristic  of  the  so-called  7-glucose,  the 
existence  of  which  has  been  foreshadowed  by  Emil 
Fischer  (Ber.,  1914,  54,  1980).  This  form  of  glucose 
has  been  isolated  in  the  form  of  its  methyl  glucoside 
by  J.  C.  Irvine,  A.  W.  Fyfe,  and  T.  P.  Hogg  (J. 
Chem.  Soc.,  1915,  108,  525)  and  it  was  they  who 
found  that  this  y-methyl  glucoside  has  the  property 
of  reducing  a  dilute  solution  of  potassium  per- 
manganate at  the  ordinary  temperature.  The  con- 
stitution assigned  to  this  modification  of  glucose  is 
usually  as  follows  :  — 


CHOH 


\CH 

I 
CH-OH 

I 
CHOH 

I 
CHOH 

CH,OH 

7-Glucose. 

It  exists  naturally  in  o  and  /?  forms. 

A  more  thorough  examination  of  the  sugar 
obtained  by  the  action  of  ammonia  on  dextrose 
showed  that  besides  aldose  it  also  contained  a 
ketose.  This  was  proved  in  the  first  place  by 
Seliwanoff's  reaction — the  production  of  a  red 
colour  with  resorcinol  and  concentrated  hydro- 
chloric acid. 

Making  use  of  the  observations  of  R.  Willstatter 
and  G.  Schudel  (Ber.,  1918,  51,  780),  Miss  H.  M. 


Judd  (Biochem.  J.,  1920,  14,  255),  and  J.  L.  Baker 
and  H.  F.  E.  Hulton  (ibid.,  754)  that  aldoses  may 
be  estimated  in  presence  of  ketoses  by  an  iodometric 
method,  we  estimated  the  aldose,  presumably 
y-glucose,  in  the  solution  of  our  product.  We  found 
that  equilibrium  is  conditioned  by  the  reaction  of 
the  solution. 

We  next  investigated  the  action  of  ammonia  on 
lsevulose.  It  was  found  that  ammonia  reacts  with 
lsevulose  solutions  much  more  vigorously  than  with 
dextrose  solutions  at  temperatures  above  those  of 
the  ordinary  room.  The  reaction  in  the  case  of 
lsevulose  is  accompanied  by  instantaneous  darken- 
ing and  decomposition.  When  treated  with  one 
molecular  proportion  of  aqueous  ammonia  at  the 
ordinary  temperature  in  a  closed  flask,  the  rotation 
was  found  to  diminish  rapidly  at  first,  but  more 
slowly  afterwards,  until  after  several  weeks  it- 
approached  zero.  Here  also  the  solution  was  found 
not  to  contain  amino-compounds.  The  bulk  of  the 
product  consisted,  as  in  the  case  of  that  obtained 
from  dextrose,  of  aldose  ammonia.  The  specific 
rotatory  power  of  the  product  was  [<*]„= -14"7° 
(c  =  2)  at  15-5°  C.  When  a  1%  solution  was  heated 
for  an  hour  at  60°  C.  in  5%  hydrochloric  acid  the 
specific  rotatory  power  increased  to  [<*]„= -26°, 
whilst  when  a  1%  solution  in  N  /10  sodium 
hydroxide  was  heated  for  an  hour  at  40°  the  rota- 
tion fell  to  zero.  The  product  obtained  from 
lsevulose  decolorised  permanganate  just  as  that 
from  dextrose.  It  was  also  found  to  contain  an 
aldose. 

It  is  evident  therefore  that  by  the  action  of 
ammonia  on  either  dextrose  or  lsevulose,  a  mixture 
in  equilibrium  of  aldoses  and  ketoses  is  obtained. 
That  the  same  equilibrium  is  not  given  in  the  two 
cases  is  not  surprising  seeing  that  the  number  of 
dynamical  isomerides  present  may  be  different. 

A  reciprocal  transformation  of  the  three  sugars, 
dextrose,  lsevulose,  and  mannose,  has  been  shown 
to  occur  by  Lobry  de  Bruyn  and  W.  A.  Van  Eken- 
stein  (Rec.  Trav.  Chim.,  1895,  14,  201;  15,  92,  189) 
when  these  sugars  are  treated  with  certain  bases. 
Here,  however,  the  change  was  smaller  than 
observed  by  us.  In  addition  to  this,  our  experi- 
ments show  that  by  the  action  of  ammonia  on 
dextrose  or  lsevulose  respectively,  no  mannose  is 
formed,  whereas  Lobry  de  Bruyn  and  Van  Eken- 
stein  invariably  obtained  a  small  quantity  of  that 
sugar,  which  is  readily  identified  by  the  insolubility 
of  its  phenylhydrazone.  The  explanation  of  this 
difference  is  receiving  our  attention. 

J.  U.  Nef  (Annalen,  1907,  357,  214;  1910,  376,  1; 
1914,  403,  204)  has  studied  the  action  of  dilute 
solutions  of  the  alkali  hydroxides  on  reducing 
sugars  and  he  finds  that  ultimately  an  equilibrated 
mixture  is  formed  containing  a  vast  number  of 
aldoses  and  ketoses.  According  to  Nef  d-arabonic 
acid  is  formed  when  an  alkaline  solution  of  dextrose 
is  oxidised  by  air.  The  presence  of  a  pentose 
derivative  could  not  be  detected  among  the 
products  obtained  by  passing  air  for  several  weeks 
through  a  solution  of  glucose-ammonia. 

Experimental. 
Preparation  of  glucose-ammonia. — The  dextrose 
used  for  this  purpose  was  purchased  as  pure.  It 
gave  the  correct  constant  specific  rotatory  power. 
A  solution  was  prepared  containing  20  g.  of  the 
dextrose  and  slightly  more  than  one  molecular 
proportion  in  grams  of  ammonia  as  compared  with 
the  dextrose  in  100  c.c.  The  mixture  contained  in 
a  round-bottomed  flask  was  heated  in  a  water  bath 
at  35°  C.  until  the  solution  was  at  its  minimum,  a 
point  which  was  reached  in  1J — 2  hours.  The  solu- 
tion was  then  concentrated  under  diminished 
pressure  by  heating  in  a  water  bath  at  a  tempera- 
ture not  exceeding  37° — 38°  C.  During  the  evapora- 
tion the  substance  continually  loses  ammonia.  A 
pale  amber-coloured  mass  is  obtained  in  this  way. 


Vol.  XU.,  No.  io.]     LING  AND  NANJL— ACTION  OF  AMMONIA  ON  REDUCING  SUGARS. 


153  t 


When  the  dextrose  and  ammonia  were  heated 
together  at  higher  temperatures,  e.g.,  62°,  71°,  and 
76°  C,  darker  coloured  products  were  obtained. 
These  were  found  by  the  Kjeldahl  method  to 
contain  8 — 20%  of  nitrogen,  the  product  prepared 
at  the  higher  temperature  containing  the  higher 
percentage  of  nitrogen  and  vice  versa.  The  pro- 
ducts obtained  in  this  way  are,  however,  not 
homogeneous,  and  they  contain  the  condensation 
derivatives  previously  referred  to  (c/.  Pictet  and 
Tsan  Quo  Chou,  loc.  cit.).  They  had  a  strong 
pyridine-like  odour.  With  these  derivatives  we 
hope  to  deal  in  a  subsequent  paper. 

When  the  reaction  between  ammonia  and  a  20% 
solution  of  dextrose  is  carried  out  at  a  temperature 
of  35°  C,  and  the  product  is  evaporated  under 
diminished  pressure  at  a  temperature  not  exceeding 
37° — 38°  C.  in  the  presence  of  a  constant  current  of 
ammonia  gas,  a  pale  amber-coloured,  friable  mass 
is  obtained.  It  is  extremely  hygroscopic  and  even 
in  the  solid  state  gives  off  ammonia.  Several 
analyses  of  this  product  were  made  by  the  Kjeldahl 
method  and  it  was  found  that  the  average  content 
of  nitrogen  (7'0%)  corresponded  with  that  (7"1%) 
required  for  an  additive  compound  of  the  sugar  and 
ammonia,  namely  glucose-ammonia,  CaH1206,NH,. 

Glucose-ammonia,  as  already  stated,  reduces 
Fehling's  solution  and  ammoniacal  silver  nitrate 
solution  at  the  ordinary  temperature,  metallic 
mirrors  being  produced.  Hence,  unlike  dextrose, 
it  behaves  as  an  aldehyde.  The  specific  rotatory 
power  (c  =  2)  is  [a]D  =  4-4°  at  15'50  C. 

Sugar  obtained  by  dissociation  of  glucose-am- 
monia.— It  has  already  been  stated  that  glucose- 
ammonia  is  continually  dissociating  and  that  the 
sugar  obtained  from  it  showed  certain  well-marked 
differences  in  its  physical  and  chemical  properties  in 
solution  from  those  of  a  solution  of  ordinary 
dextrose.  Thus  the  specific  rotatory  power  was 
much  lower,  the  solution  reduced  potassium  per- 
manganate in  the  cold,  and  the  Selinwanoff  test 
showed  the  presence  of  a  ketose.  To  prepare  the 
sugar  we  made  use  of  the  following  method.  Solu- 
tions of  dextrose  were  prepared  containing  20  g.  of 
the  sugar  in  100  c.c.  and  also  in  the  same  volume 
one,  two,  and  four  molecular  proportions  of 
ammonia.  These  were  kept  at  the  ordinary  tem- 
perature and  determinations  of  their  rotatory 
powers  taken  periodically.  The  following  are 
examples  of  such  experiments  :  — 


Time  In  dava. 

4  mols  NH, 

2  mols  NH8 

1  mol  NH, 

Freshly  pre- 

Readings In 

1  dm.  tube.   Div 

Ventzke. 

pared  sol. 

20-75 

20-75 

20-75 

o 

13-65 

— . 

— 

IS 

61 

— 

— ~ 

17 

— 

4-2 

54 

30 

52 

— 

— . 

36 

— 

30 

2-8 

50 

40 

3-2 

3-8 

60 

3-9 

2-9 

8-4 

It  will  be  noticed  that  although  with  the  higher 
concentration  of  ammonia  the  velocity  of  the  change 
is  more  rapid  at  first,  the  effect  of  one  molecular 
proportion  of  ammonia  is  to  bring  about  the 
minimum  constant  rotation  more  rapidly.  After 
the  constant  rotation  had  been  observed  (which  with 
one  molecular  proportion  of  ammonia  required  a 
period  of  about  60  days),  a  current  of  air  was  passed 
through  the  solution  for  several  weeks.  This  had 
the  effect  of  removing  most  of  the  ammonia  from 
the  solution.  After  this  the  solution  was  evaporated 
over  concentrated  sulphuric  acid  in  a  vacuum 
desiccator.  The  resulting  syrup  was  next  extracted 
successively  several  times  with  absolute  alcohol  and 
with  ether,  when  the  whole  of  the  ammonia  was  re- 
moved. The  product  so  obtained  is  a  syrup  having 
a.  sweet  taste.  We  have  not  succeeded  so  far  in 
inducing    crystallisation.       The    specific     rotatory 


power  is  [a]„  =  4-4°  (c  =  2).  The  reducing  power 
towards  Fehling's  solution  is  higher  than  that  of 
dextrose,  the  ratio  being  100:88. 

Sugar  obtained  by  the  action  of  ammonia  on 
Imvulose. — A  solution  containing  20  g.  of  lsevulose 
and  a  little  more  than  one  molecular  proportion  of 
ammonia  (expressed  on  the  sugar)  in  100  c.c.  was 
prepared  and  allowed  to  remain  at  the  ordinary 
temperature.  It  was  found  that  the  rotation  de- 
creased continually  until  a  certain  minimum  was 
reached  at  the  end  of  alwut  six  weeks. 

The  following  experiment  may  be  quoted  :  — 

Time  in  days.  Heading  in  1  dm .  tube. 

Div.  Ventzke. 
Freshly  prepared  sol.  . .  — 430 

10  -^26-9 

-14-4 


21 
31 

41 


—10-6 
—8-1 


The  product  of  the  action  of  ammonia  on  lsevulose 
was  treated  in  the  same  manner  as  that  from 
dextrose.  The  sugar  ultimately  isolated  was  a 
syrup  from  which  crystals  could  not  be  obtained. 
Its  specific  rotatorv  power  was  [a]D=-14'7°  (c  =  2) 
at  15-5°  C. 

It  should  here  be  pointed  out  that  the  sugar 
obtained  from  the  product  of  the  action  of  ammonia 
on  either  dextrose  or  lsevulose  contained,  as  will  be 
shown,  a  ketose  and  an  aldose,  but  the  latter  con- 
tained no  mannose. 

Action  of  potassium  permanganate  on  the  sugars. 
— It  has  already  been  observed  that  Irvine,  Fyfe, 
and  Hogg  (loc.  cit.)  have  shown  that  y-methyl 
glucoside  reduces  a  dilute  solution  of  potassium  per- 
manganate at  the  ordinary  temperature.  We  find 
that  the  sugar  isolated  from  the  product  of  the 
action  of  ammonia  on  both  dextrose  and  lsevulose 
exhibits  this  reducing  power  towards  potassium 
permanganate  and  that  the  time  required  to  reduce 
a  definite  volume  of  permanganate  depends  on 
whether  the  reaction  is  carried  out  in  neutral,  acid, 
or  alkaline  solutions. 

The  first  experiments  were  made  by  noting  the 
time  required  for  10  c.c.  of  a  M/18  (1%)  solution  of 
the  sugars  to  decolorise  20  c.c.  of  JV/lOO  potassium 
permanganate  at  the  ordinary  temperature  (about 
15-5°). 

The  results  obtained  with  the  products  from 
dextrose  and  lsevulose  are  as  follows :  — 

Product  from 
Dextrose.  Laevulose. 


In  neutral  solution 
In  N/10  sodium  hydroxide  sol. 
In  N/10  sulphuric  acid  sol. 
In  N/10  hydrochloric  acid  sol. 


Time  in 

minutes. 

300 

4-5 

35-0 

40  0 


Time  in 

minutes. 

20-0 

30 

250 

280 


When  a  1%  solution  of  either  sugar  in  2V/10 
6odium  hydroxide  was  heated  for  an  hour  at  40°  C, 
the  specific  rotatory  power  was  reduced  to  zero,  and, 
as  will  be  seen  later,  it  still  contained  a  ketose. 
When  a  1%  solution  of  dextrose  in  5%  hydrochloric 
acid  was  heated  at  60°  C.  for  an  hour,  the  specific 
rotatory  power  increased  to  Hp  =  15'6°,  at  which, 
after  further  heating,  it  remained  constant.  In 
this  case  the  presence  of  ketose  could  not  be 
detected.  When  a  1%  solution  of  laevulose  in  5% 
hydrochloric  acid  was  heated  at  60°  C  for  an  hour, 
the  specific  rotatory  power  increased  to  [a]D=-26° 
at  which  it  remained  constant.  Unlike  the  product 
obtained  from  dextrose,  it  showed  the  presence  of  a 
ketose.  Measurements  were  also  made  of  the 
velocity  of  the  reaction.  To  10  c.c.  of  1%  solutions 
of  the  sugars  were  added  ten  20-c.c.  portions  of 
N  /100  potassium  permanganate  from  a  burette  and 
the  times  required  for  complete decolorisation  noted, 
employing  the  solvents  neutral  water,  iV/10  HC1, 
2V/10  HsSO„   and  N /10  NaOH.     The  results   are 


154  t 


LING  AND  NANJL— ACTION  OF  AMMONIA  ON  REDUCING  SUGARS.     [May  31,  1922. 


80  1 


HCL 


Neutral   Sol 


Ma  OH 


2      4     6      8     10    12    14    16    18   20 
c.c.  of  JV100  KMnO,  decolorised. 

Fig.  1. 


%HCL 


%H2S°4 


Neutral    Sol 


N/|0Na  OH 


4      6      8     10     12    14    16     18    20 
c.c.  of  N  /100  KMnO,  decolorised. 

Fig.  2. 


shown  in  the  graphs  in  Fige.  1  and  2  for  dextrose 
and  lsevulose  respectively,  and  speak  for  themselves. 
Relative  quantities  of  aldose  and  ketose  in  the 
sugars  from  dextrose  and  lavulose  respectively. — 
The  presence  of  a  ketose  having  been  shown  in  the 
products  obtained  from  both  dextrose  and  Uevulose, 
determinations  were  made  by  the  iodometric  method 
in  these  products  (1)  in  neutral  solution,  (2)  in  N/4 
hydrochloric  acid  solution,  and  (3)  in  AT/4  sodium 
hydroxide   solution.     The   method   adopted   was   as 


;H    Ketose. 
|    Aldose. 


/o 
100 

88 

80 


Neutral. 


N  /4  HCI. 


N  /4  NaOH 


Graph  A. 

The  influence  of  N 14  HCI  and  N/  4  NaOH  on  the  equilibrium  existing 

between  aldose  and  ketose  in  the  product  obtained  from    glucose 

after  treatment  with  ammonia. 


Ketose. 


|    Aldosi 


/o 
100 

88 

80 

72 

64 

56 

48 

40 

£2 

24 

16 

8 

0 


Neutral.        N  /4  HCI. 


N  H  NaOH. 


Graph  li. 

The  influence  of  N 14  HCI  and  N/4  NaOH  on  the  equilibrium  existing 

between  ketose  and  aldose  on  the  product  obtained  from  lievulose 

after  treatment  with  ammonia. 

Fig.  3. 

follows  :  — To  10  c.c.  of  a  1  %  solution  of  the  6ugar 
A7/10  iodine  (20  c.c.)  was  added  and  subsequently 
JV/10  sodium  hydroxide  (30  c.c).  After  the  lapse 
of  15  minutes  the  solution  was  acidified  with  AT/1 
sulphuric  acid  and  the  excess  of  iodine  titrated  with 


Vol.  xu., No.  io]     PERMAN.— TESTING  THE    DEGREE  OF  INCORPORATION  OF  EXPLOSIVES.     155 t 


JV/10  sodium  thiosulphate.     The  following  are  the 
results  obtained:  — 

I.  Neutral  solution. — (a)  Dextrose  product. — Re- 
quired 96  c.c.  2V/10  iodine.  Aldose  87'2%.  (b) 
Lsevulose  product. — Required  61  c.c.  N /10  iodine. 
Aldose  55'4%. 

II.  Solution  in  N/i  hydrochloric  acid. — (a)  Dex- 
trose product.— Required  ll'O  c.c.  JV/10  iodine. 
Aldose  1000%.  (b)  Lsevulose  product. — Required 
8'8  c.c.  Nl  10  iodine.    Aldose  80"0%. 

III.  Solution  in  AT/4  sodium  hydroxide.  (a) 
Dextrose  product. — Required  81  c.c.  N /10  iodine. 
Aldose  736%.  (b)  Lsevulose  product. — Required 
7T  c.c.  y  1 10  iodine  solution.    Aldose  64'6%. 

These  results  are  shown  graphically  in  Fig.  3. 
Further  experiments  are  in  progress. 

Summary. 

(1)  Dextrose  unites  with  ammonia  at  a  tempera- 
ture of  35°  C.  to  form  an  additive  compound,  glu- 
cose-ammonia. This  compound  reduces  alkaline 
copper  and  silver  solutions  with  the  formation  of  a 
metallic  mirror.  It  exists  in  solution  in  a  state  of 
dissociation,  for  the  specific  rotatory  power  is  the 
same  as  that  of  the  sugar  freed  from  ammonia. 

(2)  An  aqueous  solution  of  the  sugar  obtained 
from  glucose-ammonia  in  the  form  of  a  syrup,  re- 
duces potassium  permanganate  at  the  ordinary  tem- 
perature. This  has  been  shown  to  be  a  property  of 
the  so-called  v-glucose  by  Irvine,  Fyfe,  and  Hogg 
(loc.  cit.). 

(3)  The  sugar  consists  of  a  mixture  of  aldose  and 
ketose  in  equilibrium,  the  equilibrium  being 
changed  according  to  the  reaction  of  the  solutions. 
In  a  solution  in  Nli  hydrochloric  acid  100%  of 
aldose  is  present. 

(4)  Lsevulose  when  treated  with  ammonia  is  parti- 
ally converted  into  aldose  and  this  unites  with 
ammonia.  Possibly  when  the  rotatory  power  has 
fallen  to  its  lowest  limit,  complete  conversion  into 
aldose  has  taken  place.  The  solution  behaves  in 
every  way  similar  to  the  product  from  dextrose. 

(5)  When  the  ammonia  is  removed  from  this  pro- 
duct a  mixture  of  aldoses  and  ketoses  in  equilibrium 
is  obtained. 

University  of  Birmingham. 

Department  of  the  Biochemistry 
of  Fermentation. 


London    Section. 


Meeting    held    at   Burlington    House    on 
April  12,  1920.* 


MR.    JULIAN    L.    BAKER    IN    THE    CHAIR. 

A  METHOD  OF  TESTING  THE  DEGREE  OF 
INCORPORATION  OF  EXPLOSIVES  AND 
OTHER    POWDERS. 

BY   E.    P.    PERMAN. 

The  incorporation  of  gunpowder. 

It  has  been  customary  for  many  years  to  describe 
under  the  name  "  incorporation  "  the  intimate 
blending  of  charcoal,  sulphur  and  potassium 
nitrate,  which  take6  place  during  the  manufacture 
of   gunpowder   by   prolonged   milling   under    heavy 

•  Manuscript  received  March  29, 1922: 


rollers  in  an  edge-runner  mill.  In  practice,  the 
milling  of  a  high-grade  gunpowder  is  continued  dur- 
ing a  period  of  something  like  8  hours,  during  which 
the  improvement  in  the  quality  of  the  powder  is 
seen  mainly  in  the  progressive  diminution  in  the 
residue  which  is  left  when  the  powder  is  flashed  on 
a.  glass  plate.  Precisely  what  is  involved  in  the  pro- 
cess of  incorporation  is  still  to  some  extent  a  matter 
of  speculation  ;  thus,  it  is  quite  possible  that  the 
process  may  involve,  in  addition  to  the  obvious 
operations  of  fine  grinding  and  fine  mixing,  some 
further  factor  such  as  the  production  of  glassy  or 
amorphous  material  by  the  heavy  work  which  is 
done  on  the  powder,  resulting  in  an  intimate  blend- 
ing, possibly  almost  molecular  in  character,  which 
could  not  be  produced  merely  by  shaking  together 
or  lightly  rubbing  together  the  components  in  a  fine 
state  of  subdivision. 

Ammonium  nitrate  explosives. 

The  problem  of  incorporation  is  also  met  with  in 
the  case  of  commercial  and  military  explosives  based 
on  ammonium  nitrate  instead  of  on  potassium 
nitrate.  In  commercial  practice,  ammonium  nitrate 
is  converted  into  an  explosive  by  mixing  it  either 
with  reducing  substances  such  as  charcoal,  wood 
meal,  or  aluminium,  or  with  an  aromatic  nitro- 
compound which  is  itself  explosive  but  contains  an 
excess  of  combustible  material.  Many  different 
formulae  have  been  used  in  making  up  these 
explosives,  but  amongst  the  most  effective  are  those 
which  contain  nothing  but  ammonium  nitrate  and 
trinitrotoluene.  The  ideal  proportions  for  mixing 
these  two  explosives  to  produce  complete  combus- 
tion are  given  by  the  equation 

21NH4N03+2CeH,(N02)3.CH3  = 

14CO.  +  47H30  +  24N1, 

from  which  the  proportion  calculated  is  78"7%: 
21'3%,  or  roughly  4  parts  of  ammonium  nitrate  to 
1  part  of  trinitrotoluene. 

These  explosives  can  be  mixed  by  a  great  variety 
of  methods.  The  use  of  edge-runner  mills  has  the 
advantage  that  all  the  essential  operations,  except 
perhaps  the  drying  of  the  ammonium  nitrate,  can 
be  carried  out  in  one  machine. 

The  degree  of  incorporation  that  is  required  in 
these  mixtures  is  much  lower  than  in  the  case  of 
gunpowder,  6ince  in  a  mixture  of  ammonium 
nitrate  with  trinitrotoluene  each  of  the  com- 
ponents is  itself  an  explosive,  and  intimate  mixing 
is  required  mainly  in  order  to  ensure  complete  com- 
bustion of  the  excess  of  carbon  in  the  nitro-com- 
pound  and  of  oxygen  in  the  nitrate;  indeed,  if  it 
were  not  for  this  fact,  the  comparatively  rough 
methods  of  mixing  which  are  commonly  employed 
could  only  give  rise  to  a  very  inferior  product. 
Satisfactory  incorporation  is,  however,  still  an  im- 
portant factor  in  speeding  up  the  detonation  and 
so  intensifying  the  sudden  blow  which  is  the 
essential  feature  of  the  action  of  high  explosives 
and  gives  to  them  their  shattering  power  or 
"  brisance." 

The  experiments  described  below  were  carried  out 
in  order  to  develop  a  laboratory  test  for  incorpora- 
tion whereby  the  working  of  the  mills  could  be 
tested  and  controlled  without  entering  upon  the 
difficult  and  controversial  questions  involved  in 
measuring  the  power  and  violence  of  an  explosive. 

Coarse  mixing. — When  ammonium  nitrate  and  an 
aromatic  nitro-compound  such  as  trinitrotoluene 
are  introduced  into  an  edge-runner  mill,  the  first 
effect  is  to  crush  down  the  lumps  and  roughly  to 
mix  the  two  components.  This  process  of  coarse 
mixing  can  be  followed  by  ordinary  analysis.  Thus, 
if  the  two  components  are  introduced  into  a  mill  on 
opposite  sides  of  the  pan,  and  samples  say  of  10  g. 
each  are  taken  at  short  intervals  from  different 
parts  of  the  pan,  it  will  be  found  that  regions  show- 


156t 


PERMAN.— TESTING  THE  DEGREE  OF  INCORPORATION  OF  EXPLOSIVES.     (May  31, 1922. 


ine  a  maximum  or  a  minimum  proportion  of  the 
two  components  can  be  detected  during  the  early 
stages  of  the  mixing.  This  maximum  and  minimum 
do  not  remain  stationary  hut  travel  round  the  pan 
about  once  per  minute  in  a  mill  working  at  10  or 
12  r.p.m.  As  milling  proceeds,  the  maximum  and 
minimum  become  less  and  less  conspicuous;  thus, 
in  a  mixture  made  up  to  contain  80%  ammonium 
nitrate,  20%  TNT,  the  proportions  at  the  end  of 
one  minute's  milling  may  range  from  25  to  15%  of 
TNT  whilst  after  milling  for  two  minutes  this 
range  may  be  reduced  to  21—19%.  At  the  end  of 
four  minutes  the  process  of  coarse  mixing  is  usually 
complete,  and  variations  in  composition  in  different 
parts  of  the  pan  can  no  longer  be  detected,  unless, 
as  a  result  of  a  defective  arrangement  of  the 
ploughs,  some  pocket  of  quiescent  material  has  been 
left  unmixed  during  this  part  of  the  milling. 

Fine  mixing. — At  this  stage  ordinary  analysis 
fails  to  detect  the  improvement  in  the  quality  of  the 
powder  which  results  from  further  milling,  although 
this  is  very  marked  even  in  the  case  of  mixtures 
such  as  those  referred  to  above  in  which  the  stan- 
dard of  incorporation  that  is  required  is  compara- 
tively low.  In  this  respect  the  naked  eye  has  some 
advantage  over  the  balance,  since  only  a  casual 
examination  is  required  to  reveal  the  presence  of 
coarse  grains  of  the  separate  components  in  the 
10-gram  samples  taken  for  analysis.  A  logical 
method  of  tracing  the  subsequent  incorporation  of 
the  rough  mixture  consists  in  reducing  the  weight 
of  the  sample  used  for  analysis  until  the  composi- 
tion of  the  sample  would  be  disturbed  very  seriously 
by  the  presence  of  a  single  grain  of  unmixed 
ammonium  nitrate  or  trinitrotoluene.  For  this 
further  test,  there  is  no  longer  any  need  to  select 
the  samples  from  any  particular  part  of  the  pan, 
and,  indeed,  it  is  sufficient  to  take  a  representative 
sample  from  the  centre  of  the  tread  and  from  that 
to  weigh  out  the  minute  samples  which  are  analysed 
in  order  to  judge  the  degree  of  incorporation. 

The  sensitiveness  of  this  method  will  depend  on 
the  extent  to  which  the  weight  of  the  minute 
samples  can  be  reduced  without  provoking  excessive 
errors  of  analysis.  In  the  case  of  explosives  con- 
taining ammonium  nitrate  it  has  been  found 
possible  to  reduce  the  weight  of  the  samples  to  1  mg. 
and  still  to  obtain  results  showing  an  average  error 
of  analysis  of  not  more  than  1  % . 

Method  of  carrying  out  the  test. 

The  sample  taken  from  the  mixing  machine  is 
bottled  carefully  to  prevent  access  or  loss  of  mois- 
ture. From  this  sample  about  1  mg.  is  taken  on 
the  point  of  a  knife  or  spatula,  transferred  to  a 
light  platinum  capsule,  and  weighed  on  an  assay 
balance  by  the  method  of  vibrations  to  O'Ol  mg. 
This  is  repeated  and  the  mean  value  taken  as 
correct.  The  capsule  should  be  counterpoised  in 
such  a  way  that  the  weight  of  the  sample  can  be 
read  directly  from  the  change  of  position  of  the 
rider  on  the  beam,  after  correcting  for  the  position 
of  equilibrium  of  the  pointer  on  the  scale. 

The  capsule  containing  the  milligram  sample  is 
placed  in  a  funnel  with  a  loose  plug  of  cotton-wool 
in  the  neck,  and  the  ammonium  nitrate  washed 
into  a  100-c.c.  flask  and  made  up  to  the  mark. 
Ammonia-free  water  must  be  used  throughout  these 
operations,  and  is  most  conveniently  made  by  add- 
ing a  few  drops  of  bromine  to  distilled  water,  and 
boiling  off  about  one-tenth  of  its  bulk.  The  cotton- 
wool is  used  to  prevent  solid  TNT  from  getting 
into  the  flask,  and  should  be  well  washed  with 
ammonia-free  water  before  introducing  the  capsule. 
The  method  of  washing  should  be  exactly  the  same 
for  all  samples  so  that  the  minute  quantity  of 
TNT  that  goes  into  solution  may  be  the  same  in 
each  case.     Owing  to  the  presence  of  this  trace  of 


TNT  in  the  solution,  the  colour  obtained  on 
Nesslerising  is  slightly  disturbed,  but  the  same 
error  is  produced  in  each  of  the  6  samples  and  the 
differences  from  the  mean  are  not  affected. 

Nesslerising  the  solution. — The  next  step  is  to 
Nesslerise  the  solution.  Instead  of  using  the 
ordinary  laboratory  method,  the  solutions  are 
examined  with  the  help  of  a  Duboscq  colorimeter. 
The  advantage  of  this  is  that  the  readings  can  be 
made  very  quickly,  and  moreover  the  accuracy  can 
be  increased  greatly  by  taking  the  mean  of  a  large 
number  of  readings.  20  c.c.  of  the  solution  (made 
as  described  above)  is  transferred  to  a  20-c.c. 
graduated  flask;  5  c.c.  of  a  standard  solution  of 
ammonium  chloride  containing  001  mg.  ammonia 
in  1  c.c.  is  run  into  another  20-c.c.  graduated  flask, 
and  made  up  to  the  mark  with  water;  2  c.c.  of 
Nessler  solution  is  added  to  each  20-c.c.  flask,  and 
the  solutions  are  shaken  and  poured  into  the  two 
cells  of  the  colorimeter,  a  small  portion  of  each 
solution  being  used  for  rinsing.  A  comparison  of 
the  relative  strengths  of  the  solutions  is  then  made 
by  setting  one  column  at  a  fixed  length  (say  3  cm.), 
and  adjusting  the  other  column  until  the  tints  are 
of  the  same  depth.  If  the  solutions  have  been  made 
properly,  they  remain  clear  during  the  readings, 
and  for  some  considerable  time  afterwards.  Two 
sets  of  10  readings  are  made,  and  the  mean  of  the 
20  readings  is  taken  as  the  correct  value.  The 
means  of  the  two  sets  of  readings  should  not  vary 
more  than  1%.  In  making  the  readings  it  is  best 
to  start  from  "  too  high  "  and  "  too  low  "  alter- 
nately and  adjust  until  there  is  no  apparent  differ- 
ence in  the  two  tubes ;  in  this  way  a  better  final 
result  will  be  obtained  than  if  the  starting  point 
be  taken  indiscriminately. 

Source  of  light. — It  was  not  practicable  to  obtain 
reliable  readings  by  daylight,  as  a  perfectly  uni- 
form and  steady  light  is  required.  Such  a  light  was 
found  in  the  Ediswan  "  Pointolite  "  lamp,  which  is 
a  small  arc  burning  between  tungsten  poles.  In 
order  to  obtain  a  more  diffuse  light,  the  lamp  is  sus- 
pended in  a  small  box,  the  side  facing  the  colori- 
meter being  covered  with  tissue  paper.  A  blue  glass 
placed  above  the  prisms  increases  the  sensitiveness 
of  the  colorimeter. 

Number  of  samples. — In  order  to  obtain  a  trust- 
worthy final  result  a  large  number  of  1-mg.  samples 
should  be  examined,  but  in  practice,  owing  to  the 
amount  of  labour  involved,  a  compromise  has  to  be 
made,  and  it  has  been  found  satisfactory  to  analyse 
six  samples  in  the  manner  described.  If  discrepan- 
cies occur  (which  happens  very  rarely),  they  can  be 
corrected  by  making  further  analyses.  The  mean  of 
the  six  results  for  the  percentage  of  ammonium 
nitrate  in  the  main  sample  is  then  taken,  and  the 
deviation  of  each  result  from  the  mean  is  calcu- 
lated; next  the  mean  of  the  deviations  is  taken, 
and  this  forms  the  final  result  for  the  original 
sample  from  which  the  six  1-mg.  samples  were 
taken.  The  mean  percentage  of  ammonium  nitrate 
does  not  usually  agree  with  the  percentage  found 
by  ordinary  analysis  and  may  differ  by  several  units 
from  this  value,  mainly  by  reason  of  the  colour 
developed  in  the  alkaline  solution  by  traces  of 
TNT.  Small  accidental  variations  may  occur  also 
in  the  ammonia  content  of  the  standard  solution 
on  keeping.  These  errors,  however,  will  affect  each 
of  a  series  of  analysis  to  the  same  extent,  and  will 
therefore  have  no  appreciable  influence  on  the  final 
value  of  the  mean  deviation. 

Test  of  accuracy  of  the  method. 

Before  beginning  work  on  ammonium  nitrate 
mixtures,  a  test  was  made  on  pure  ammonium 
nitrate  with  the  following  results:  — 


Vol.  XLI.,  No.  10.]       OALLAN  AND  HENDERSON.— ESTIMATION  OF  THE  NITRO  GROUP. 


157  T 


Table  I. 

Colorimeter 

Weight. 

reading. 

NH.NO, 

Deviations 

mg. 

cm. 

% 

1-12 

2-400 

101-7 

1-5 

1-22 

2-255 

100  0 

0-2 

1>1S 

2-458 

99-9 

0-3 

1-07 

2-583 

99-7 

0-5 

109 

2-527 

99-3 

0-9 

MS 

2-412 

100-5 

0-3 

Mean    100-2 


0-6 


This  gives  a  good  idea  of  the  accuracy  that  can 
be  obtained  by  careful  work.  In  the  absence  of 
TNT  the  correct  value  is  given  if  the  standard 
ammonium  chloride  solution  is  correct.  The  testing 
of  pure  ammonium  nitrate  forms  an  excellent 
method  of  determining  the  competence  of  an 
experimenter  to  undertake  the  application  of  the 
method  to  commercial  samples,  and  such  work 
should  on  no  account  be  undertaken  unless  satis- 
factory results  can  be  obtained  on  a  pure  ammon- 
ium salt. 

Applications  of  the  method. 

(a)  Influence  of  time  on  milling. — The  following 
table  shows  the  progressive  improvement  of  a  mix- 


Hii"      Ui        .UlllllVli 

parts   when   mi 

Ulll        11  1  1  1   .111"      UU       £l«»l  I/O         >  ii'l          i        -     i         w 

lied   together   in   a  first-class   edge- 

runner  mill. 

Table  II. 

Beading  of 

Deviation 

■Weight.             colorimeter. 

NH, 

from  mean 

mg. 

cm. 

% 

value. 

(1)  Time  of  milling 

1  min. 

1-36 

2-510 

. 

80-7 

8-2 

1-38 

3-461 

57-7 

14-8 

1-24 

2-948 

74-9 

2-4 

1-26 

2-914 

74-8 

2-3 

1-26 

3156 

690 

3-5 

1-22 

2-883 

780 

5-5 

Mean 

72-5 

6-1 

(2)  Time  of  m  Ming 

2  min. 

1-20 

3174 

71-9 

6-2 

1-30 

2-617 

80-8 

2-7 

1-14 

2-973 

810 

2-9 

1-225 

2-730 

821 

4-0 

1-18 

2-995 

77-7 

0-4 

116 

3158 

74-9 

3-2 

Mean 

78-1 

3-2 

(3)  Time  of  milling 

3  min. 

118 

3-22 

72-2 

4-7 

1-20 

3017 

75-7 

1-2 

118 

2-951 

78-9 

20 

113 

3082 

78-8 

1-9 

117 

3013 

781 

1-2 

1-30 

3-207 

• 

780 

11 

Mean 

76-9 

2-0 

(4)  Time  of  milling 

4  min. 

1-16 

3145 

75-4 

30 

1-22 

2-856 

. 

790 

0-6 

112 

3092 

79-3 

0-9 

116 

2-999 

79-2 

0-8 

1-27 

2-757 

78-1 

0-3 

1-24 

2-799 

79-2 

0-8 

Mean 

78-4 

1-1 

(6)  Time  of  milling 

5  min. 

1-14 

3070 

78-3 

0-9 

117 

3  000 

78-4 

10 

1-20 

2-989 

76-5 

0-9 

116 

3069 

77-3 

0-1 

116 

3062 

77-3 

01 

1-18 

3-029 

76-9 

0-5 

Mean    77-4  0-6 

The  rate  of  mixing  is  here  extraordinarily  quick, 
and  in  4  minutes  the  mixing  is  as  complete  as  can 
be  measured  with  any  certainty  by  this  test.  The 
mill  had  a  revolving  pan,  and  a  high  rate  of  revolu- 
tion, 23  r.p.m. 

(b)  Influence  of  weight  of  charge. — The  charge 
in  a  mill  of  different  type  was  increased  from 
120  lb.  to  150  lb.,  the  other  conditions  remaining 


unchanged.  The  incorporation  test  was  applied 
with  the  results  shown  under  (1)  and  (2)  of 
Table  III. 


Time  of 

milling. 

Charge 

120  lb. 

min. 

44 

10 

20 

30 


Table  III. 

(1) 

(2) 

Mean 

Time  of         Mean 

deviation. 

milling.       deviation. 

Speed 

Charge          Speed 

12  r.p.m. 

150  lb.        12  r.p.m. 

min. 

.       7-2 

15       . .       3-8 

20 

20                  2-6 

0-7 

30       ..        11 

0-4 

Time  of 
milling, 
charge 
120  lb. 
min. 
1 

2i 
5 
10 
15 


(3) 


Mean 
deviation. 
Speed 
16  r.p.m. 

61 
3-2 
2-0 
1-1 
0-6 


These  results  showed  that  when  the  charge  was 
increased  from  120  to  150  lb.,  30  minutes'  milling 
was  required  to  produce  the  same  degree  of  incor- 
poration as  was  reached  previously  in  about  15 
minutes,  in  other  words  an  increase  of  one  quarter 
in  the  weight  of  the  charge  would  make  it  necessary 
to  double  the  time  of  milling  in  order  to  secure 
equal  incorporation. 

(c)  Influence  of  speed  of  milling. — The  effect  of 
the  speed  of  the  rolls  on  the  rate  of  incorporation 
may  be  seen  by  comparing  with  (1)  where  the  speed 
was  12  r.p.m.,  with  the  data  for  a  speed  of  16  r.p.m. 
shown  under  (3)  in  Table  III.  It  is*  seen  that  the 
rate  of  mixing  is  approximately  doubled  by  increas- 
ing the  speed  of  the  mill  by  one-third. 

In  carrying  out  a  test  of  this  kind  it  is  always 
advisable  to  consider  the  results  of  a  series  of 
estimations  (as  here  given)  since  it  is  quite  possible 
for  a  single  determination  to  be  in  error,  whereas 
the  chances  that  a  whole  series  will  be  seriously  in 
error  are  very  small.  The  only  difficulty  that  has 
been  experienced  in  applying  the  test  is  to  decide 
on  the  best  procedure  when  a  sample  is  clearly  not 
uniform  to  the  naked  eye.  Such  a  sample  might  be 
condemned  at  once  as  bad,  but  it  often  happens  that 
the  greater  portion  is  thoroughly  well  mixed,  and 
only  a  small  portion  consists  of  flakes  or  small  lumps 
which  have  escaped  the  normal  milling.  The  pro- 
cedure recommended  in  such  a  case  is  to  sieve  the 
sample  through  a  somewhat  coarse  sieve  (say  30- 
mesh),  weigh  the  different  portions  and  calculate 
the  proportion  of  coarse  material.  The  incorpora- 
tion test  is  then  applied  to  the  fine  portion  only. 
Sometimes  the  sample  may  contain  lumps  of  well- 
mixed  material  balled  together ;  this  must  be  dis- 
tinguished from  the  previous  case  and  does  not 
necessitate  any  special  precautions. 

This  investigation  was  undertaken  at  the  instiga- 
tion of  Prof.  T.  M.  Lowry,  and  I  wish  to  thank  him 
for  the  facilities  afforded  me,  which  enabled  me  to 
bring  the  work  to  a  successful  conclusion. 

University  College, 
Cardiff. 


Manchester     Section. 


Meeting 


held     at     The     Textile     Institute     on 
February  3,  1922. 


DR.   E.    ARDERN   IN   THE  CHAIR. 


ESTIMATION    OF    THE    NITRO    GROUP    IN 
AROMATIC  ORGANIC  COMPOUNDS.    PART  II. 

BY     T.     CALLAN,     M.SC,     PH.D.,     AND     J.     A.     RUSSELL 
HENDERSON,   D.SC. 

In  a  recent  paper  (J.,  1920,  86 — 88  t)  in  conjunc- 
tion with  N.  Strafford,  we  communicated  the  results 
of  an  investigation  of  the  Knecht-Hibbert  method* 
for    the    determination    of    the    nitro     group     in 

•  "  New  Reduction  Methods  in  Volumetric  Analysis,"  1918  ed. 


158t 


CALLAN  AND  HENDERSON.— ESTIMATION  OF  THE  NITRO  GROUP.        [May  31,  1922. 


aromatic  organic  compounds.  We  showed  that 
whilst  for  very  many  nitro  compounds  this  method 
involving  the  use  of  titanous  chloride  gave  excellent 
results,  yet  for  certain  substances,  e.g.,  o-nitro- 
anisole,  a-mononitronaphthalene,  etc.,  the  method 
gave  very  low  results.  This  was  attributed  to  the 
titanous '  chloride  solution  acting  not  only  as  a 
reducing  agent  but  also  as  a  chlorinating  agent, 
simultaneously  liberating  hydrogen  by  substitution 
which  in  addition  also  acted  as  a  reducing  agent. 
Hence  the  amount  of  titanous  chloride  required  for 
the  reduction  was  less  than  was  theoretically  re- 
quired, or,  conversely  stated,  low  results  were 
obtained  for  the  nitro  compound  under  analysis. 
When  titanous  sulphate,  however,  was  used  in  place 
of  titanous  chloride  with  these  substances  under 
similar  conditions  correct  results  were  obtained. 

Since  the  date  of  the  publication  of  that  paper 
we  have  greatly  extended  our  experience  of  the 
comparative  merits  of  titanous  chloride  and 
titanous  sulphate  for  the  analysis  of  many  classes 
of  nitro  compounds. 

In  the  original  Knecht-Hibbert  method  the  solu- 
tion of  titanous  chloride  employed  was  standard- 
ised against  a  solution  of  oxidised  ferrous  ammon- 
ium sulphate ."  Whilst  this  is  a  satisfactory  method 
when  the  standardised  titanous  chloride  is  to  be 
used  for  an  inorganic  determination  such  as  that 
of  iron  or  chromium,  for  organic  nitro  compounds 
it  is  advisable  to  use  an  organic  nitro  compound  to 
eliminate  slight  differences  due  to  the  necessarily 
different  manipulative  procedures  in  the  analyses 
of  inorganic  and  organic  compounds.  The  authors 
have  used  therefore  for  some  years  past  carefully 
recrystallised  p-nitroaniline  as  ultimate  standard 
for  the  standardisation  of  titanous  solutions.  This 
substance  can  readily  be  obtained  in  a  high  degree 
of  purity  by  recrystallisation  of  the  commercial 
article  from  alcohol  or  water,  the  purity  being  con- 
trolled by  the  melting  point.  If  the  final  recrystal- 
lisation is  made  from  water  (not  alcohol)  p-nitro- 
aniline  can  readily  be  obtained  as  glittering 
needles,  m.p.  149° — 149\5°  C.  English  in  a  recent 
paper  (J.  Ind.  Eng.  Chem.,  1920,  12,  994)  which 
will  be  referred  to  again,  also  adopts  p-nitroaniline 
as  the  ultimate  standard  for  the  standardisation  of 
titanous  chloride  solution. 

We  have  found  that  p-nitroaniline  is  of  special 
importance  as  a  standard  in  the  analysis  of  inter- 
mediates used  in  the  manufacture  of  dyestuffs.  Not 
only  can  it  be  used  as  the  ultimate  standard  against 
which  to  refer  nitro,  nitroso,  azo  and  other  'reduc- 
ible groups,  but  it  can  also  be  used  as  the  standard 
to  which  a  number  of  other  volumetric  solutions 
such  as  sodium  nitrite,  potassium  bromate.  aniline 
hydrochloride,  etc.,  can  be  referred,  and  hence 
affords  also  an  ultimate  standard  for  the  determina- 
tion of  amines,  phenols,  etc.,  by  volumetric 
methods. 

The  standard  Knecht-Hibbert  procedure  for  the 
estimation  of  a  nitro  compound  is  to  dissolve  the 
substance  in  water,  dilute  caustic  soda,  hydro- 
chloric acid,  or  alcohol,  or  previously  to  sulphonate 
and  then  to  boil  for  about  ten  minutes  with  excess 
of  titanous  chloride  in  dilute  hydrochloric  acid 
solution  in  an  atmosphere  of  carbon  dioxide.  The 
estimation  is  carried  out  in  an  open-mouthed  flask. 
We  showed  that  whikt  such  precautions  were 
sufficient  to  prevent  atmospheric  oxidation  of 
titanous  chloride,  titanous  sulphate  solutions 
required  to  be  boiled  in  a  current  of  carbon  dioxide 
in  a  flask  provided  with  holed  stoppers.  English 
(loe.  cit.)  also  adopts  this  precaution  even  in  the 
case  of  titanous  chloride. 

In  the  course  of  many  estimations  on  various  types 
of  nitro  compounds  we  have  found  difficulty  in  a 
number  of  cases  in  obtaining  concordant  results 
even     when     using     titanous     sulphate.       Careful 


investigation  showed  that  this  was  due  to  the  fact 
that  many  nitro  compounds  were  decidedly  volatile 
in  steam  and  loss  therefore  occured  during  the  boil- 
ing necessary  for  reduction.  In  our  experiments 
therefore  where  volatility  in  steam  was  likely  to  be 
a  factor,  the  reduction  was  carried  out  in  a  flask 
fitted  with  a  short  ground-in  water  condenser  about 
9  inches  long,  a  stream  of  carbon  dioxide  being 
supplied  by  a  narrow  glass  tube  passing  down 
through  the  inner  tube  of  the  condenser  to  within 
a  few  centimetres  of  the  surface  of  the  liquid. 
Examples  of  the  effect  of  this  source  of  error  are 
given  later  in  the  tables.  With  the  stronger 
titanous  solutions  and  particularly  titanous  sul- 
phate solutions  this  source  of  error  is  not  so  pro- 
nounced as  with  more  dilute  solutions,  probably  due 
in  the  former  cases  to  the  more  rapid  conversion 
into  the   non-volatile   reduction  product. 

Knecht  and  Hibbert  use  a  standard  solution  of 
titanous  chloride  of  approximately  0"5%  whilst  we 
ourselves  prefer  in  working  with  titanous  sulphate 
to  use  a  5%  solution,  as  the  stronger  solution  per- 
mits the  use  of  a  larger  amount  of  the  substance 
under  examination.  Numerous  experiments  have 
shown  that  the  actual  concentration  of  the  titanous 
solution  is  of  little  importance  provided  a  sufficient 
excess  is  taken,  and  in  the  experiments  detailed  in 
the  following  tables  therefore,  an  approximately  1% 
solution  of  the  titanous  chloride  and  an  approxi- 
mately 5%  solution  of  titanous  sulphate  were 
employed,  correspondingly  larger  amounts  of  the 
nitro  compound  being  taken  in  the  latter  case. 

Although  the  actual  concentration  of  the  titan- 
ium salt  is  of  minor  importance,  the  amount  of 
hydrochloric  acid  present  when  using  titanous 
chloride  is  of  considerable  importance  as  this  is 
undoubtedly  an  important  factor  in  promoting 
chlorination.  Thus  a  sample  of  pure  p-nitroanisole 
(m.p.  53'5°  C.)  analysed  with  titanous  chloride 
using  a  minimum  amount  of  hydrochloric  acid 
tested  96% — 97%,  whilst  when  about  four  times 
this  minimum  quantity  was  employed  the  same 
sample  apparently  only  tested  about  83% — 86% 
using  all  precautions  to  avoid  possible  loss  by 
volatilisation.  Using  titanous  sulphate  the  sample 
tested  99'77%  and  99'84%.  p-Nitroanisole  in  this 
respect  resembles  o  -  nitroanisole  previously  re- 
ported,* in  being  readily  chlorinated.  Similarly 
o-nitronaphthalene  analysed  with  titanous  chloride 
with  a  reflux  condenser  using  minimum  and  excess 
amounts  of  hydrochloric  acid  gave  93'24%  and 
71*6%  respectively,  whilst  the  same  sample  with 
titanous  sulphate  gave  99'9%.  On  the  other  hand, 
we  were  in  error  in  attributing  to  chlorination  the 
low  result  previously  given*  for  nitrobenzene 
using  titanous  chloride.  Many  carefully  repeated 
experiments  show  that  the  chief  source  of  error  in 
the  case  of  nitrobenzene  is  volatility  of  the  sub- 
stance, and  where  precautions  are  taken  to  prevent 
thiB,  nitrobenzene  gives  theoretical  results  with 
titanous  chloride  even  in  presence  of  large  excess 
of  hydrochloric  acid.  In  most  cases  where  titanous 
chloride  and  titanous  sulphate  gave  closely  agree- 
ing results  indicating  no  tendency  to  chlorination. 
these  results  were  independent  of  the  amount  of 
hydrochloric  acid  present  in  the  titanous  chloride 
reduction  within  reasonable  limits,  but  where  the 
two  titanous  salts  showed  differences  these  differ- 
ences were  accentuated  when  excess  of  hydrochloric 
acid  was  used. 

As  indicated  in  our  former  paper,  chlorination  is 
more  likely  to  occur  in  alcoholic  than  in  aqueous 
solution  :  p-nitroaniline  affording  a  good  example 
of  this.  If  titanous  chloride  and  titanous  sulphate 
solutions  be  standardised  against  pure  p-nitro- 
aniline in   aqueous  hydrochloric   acid  solution   the 

•  This  J.,  loc.  cit. 


vol.  XUL, No.  10]      CALLAN  AND  HENDERSON.— ESTIMATION  OF  THE  NITRO  GROUP. 


159  T 


titre  of  the  titanous  chloride  solution  is  independ- 
ent of  the  amount  of  hydrochloric  acid  employed. 
If,  however,  the  same  titanous  solutions  are  then 
used  to  determine  the  strength  of  the  p-nitroaniline 
itself,  working  in  alcoholic  solution,  whilst  the 
Titanous  sulphate  again  gives  100  j  p-nitroaniline, 
titanous  chloride  gives  results  varying  from  95'6% 
to  99"  1;  depending  on  the  amount  of  hydrochloric 
acid  employed. 

On  the  other  hand,  if  in  carrying  out  a  deter- 
mination with  titanous  chloride  dilute  sulphuric 
acid  be  employed  instead  of  hydrochloric  acid, 
chlorination  is  practically  eliminated,  the  solution 
behaving  similarly  to  titanous  sulphate.  This  is 
well  exemplified  in  the  case  of  a-nitronaphthalene, 
a  substance  particularly  liable  to  chlorination. 


I 


Analysis    of    a-nitronaphthalene    with    various 
titanous  solutions. 


1%  TiCI,. 

l%TiO, 
+  H,SO,. 

4-3%  TiCI,. 

4-5%  TiCI, 
+  H.SO,. 

4-5% 
Ti^SO.),. 

%                      % 

81»/(0)            100-2 

99-8 

71-8\  ,fc,           1001 

730  /  (0)             99-5 

°o                         % 
93-9  (o)  1          99-8 
99-4 

76-1  (6) 

% 
99-9 
99-8 
99-9 

(a)  Using  minimum  amount  of  HCt. 
lb)  I'sing  large  excess  of  HO. 

English  (loc.  eit.)  also  used  sulphuric  acid  instead 
of  hydrochloric  acid  with  titanous  chloride,  as  he 
finds  it  to  contain  less  reducible  matter  and  also 
because  ferric  chloride  has  an  appreciable  oxidising 
action  upon  the  thiocyanate  indicator,  this  tend- 
ency being  exhibited  to  a  far  less  degree  by  ferric 
sulpbate.  English,  using  this  procedure,  finds  that 
a-nitronaphthalene  "  is  reduced  to  the  extent  of 
only  60 ::  to  70%."  As  a  result  of  many  experi- 
ments we  find  on  the  contrary  that  a-nitronaphtha- 
lene is  readily  and  completely  reduced  by  titanous 
chloride  in  presence  of  either  hydrochloric  or 
Rulphuric  acid,  apparently  low  results  in  the  former 
case  being  due  to  chlorination.  Such  low  results 
are  readily  avoided  by  using  either  titanous  sul- 
phate, or  titanous  chloride  containing  a  minimum 
of  hydrochloric  acid  together  with  sulphuric  acid 
as  the  table  indicates. 

a-Nitronaphthalene  is  distinctly  volatile  in  steam 
so  that  the  reduction  must  be  carried  out  under  a 
reflux  condenser,  otherwise  low  results  will  be 
obtained  with  either  titanous  compound  due  to  loss 
by  volatilisation. 

English  (toe.  eit.)  as  a  result  of  his  analyses  of 
various  classes  of  nitro  compounds  has  arrived  at 
certain  conclusions  which  appeared  to  us  to  be 
extremely  doubtful.  Thus  he  states  that  mono- 
nitrohydrocarbons  are  exceedingly  resistant  to- 
wards reduction  by  titanous  chloride,  but  the  intro- 
duction of  positive  and  negative  groups  into  the 
nitrohydroearbon  renders  it  susceptible  to  quanti- 
tative reduction,  except  in  the  case  of  the  nitro- 
chloro-eompounds.  In  the  latter  compounds  the 
presence  of  other  strongly  negative  groups,  as  for 
example  in  dinitrochlorobenzene  and  p-nitrochloro- 
benzene-o-sulphonic  acid,  invariably  resulted  in 
over-reduction. 

We  have  therefore  prepared  most  of  the  sub- 
stances the  analyses  of  which  he  gives,  and  in  addi- 
tion a  number  of  other  substances  belonging  to 
these  various  classes,  and  have  carefully  analysed 
them  using  (a)  titanous  chloride,  (6)  titanous 
sulphate,  and  in  many  cases  have  varied  the  condi- 
tions of  analysis  so  that  special  attention  could  be 
directed  towards  possible  errors  due  to  loss  by 
volatilisation  or  chlorination  of  the  substance  to  be 
analysed.  The  following  are  the  results  we  obtained 
for    a    number    of    mononitrohvdrocarbons    under 


various  conditions,  the  analysis  in  every  case  being 
carried  out  by  dissolving  a  weighed  amount  of  the 
substance  in  alcohol  and  then  adding  excess  of  the 
titanous  salt  and  the  requisite  acid,  under  the 
conditions  specified,  the  titration  being  completed 
in  the  usual  manner. 

Table  II. 

Mononitro  hydrocarbons. 


English. 


Nitrobenzene 
m.p.  5-2°  C. 

o-NltrotoIuene 
m.p.— 3  15"  C. 


m-Nltrotoluene 
m.p.  1602°  C. 


p-Nitrotoluene 
m.p.  51-8°  C. 


a-Nitronaph- 
thalene 


No  data 
quoted 

but 
stated 
not  to 

be  com- 
pletely 

reduced. 


60-70% 


Callan  and  Henderson. 


TiCI,. 


Ti,(SO,),. 


No 
reflux. 


■Ji  i. 
95-9 


1-7  (c) 
(a) 


801(a) 
7-7/ 
7-3\(6) 
4-9/ 


98 

97 

8 
84 

86-9 
781 


5  "1(a) 

6/ 

■4\(6) 
■2/ 


Reflux. 

No 
reflux. 

% 
09-4  (a) 
99-4  (b) 

0/ 

/o 
97-8 
98-2 
99-2 

97-8\(o) 
98-2/ 
91-6  \(!>) 
871/ 

97-5 

96-4 
94-3 
961 

99  6\(a) 
99-4/ 
99  1\(6) 
98-9/ 

990 
990 

99-7  \(a) 
99  6/ 
96-5  \(») 
96-8/ 

994 
99-6 

93-2  \(a) 
81-9/ 
716\(6) 
730/ 

Reflux. 

% 

99-9 
1000 
100-0 


100.0 
99-9 


1000 
99-9 


99-9 
99-8 

999 


(a)  Minimum  amount  of  HCI.         (t>)  Large  excess  ot  HO. 
(e)  Vigorous  boiling. 

The  results  show  clearly  that  when  precautions 
are  taken  to  avoid  both  volatilisation  and  chlorina- 
tion mononitrohydrocarbons  are  quantitatively- 
reduced  by  titanous  salts.  The  effect  of  orientation 
on  the  readiness  with  which  chlorination  takes  place 
is  also  seen,  p-nitrotoluene  showing  little  tendency 
to  chlorination  unless  a  considerable  excess  of 
hydrochloric  acid  is  used,  whilst  o-nitrotoluene  is 
much  more  liable  to  this  source  of  error. 

In  the  original  Knecht-Hibbert  method  pre- 
liminary sulphonation  of  the  nitrohydroearbon 
before  reduction  is  recommended.  This  procedure 
we  have  not  investigated  as  it  requires  very  much 
longer  time  to  complete  an  analysis  than  the  pro- 
cedure outlined  above.  Moreover  the  optimum 
conditions  of  sulphonation  must  first  be  determined 
for  each  particular  substance  to  avoid  destruction 
by  charring. 

According  to  English  (loc.  cit.)  nitrochloro-cqm- 
pounds  containing  only  negative  groups  in  addition 
to  the  nitro  group  cannot  be  quantitatively  reduced 
by  titanous  chloride.  The  following  are  the  results 
we  obtained  with  ortho-  and  pora-nitrochloro- 
henzene  chosen  by  English  as  typical  of  this  class. 

Table  III. 
Analysis  of  nitromonochloro-compounds. 


TiCI,. 


No  reflux.    Reflux. 


o-Nitrochlorobenzene1 . 
m.p.  32-5°  C. 

p-Nitrochlorobenzene' 
m.p.   83-0°-83-5°  C. 


ii:.  8 
95-8 
951  (a) 
94-6 
95-3 
88-2  (a) 


% 
97-5 
98-2 


Ti,(SO.).. 


No  reflux.    Reflux. 


/o 
97-9 
97-5 

99-0 
95-4 
960 


% 
99-4 
99-4 

99-7 
99-7 


'  English  :  m.p.  32-5°  C. ;  66-8-77-5%.    '  English  :  m.p.  830°  C. 
71-4-81-4%. 
(a)  Vigorous  boiling. 


160t 


CALLAN  AND  HENDERSON— ESTIMATION  OF  THE  NITRO  GROUP.         [May  31, 1922. 


Our  results  show  clearly  that  the  chief  source  of 
error  in  the  analysis  of  these  substances  is  their 
volatility  in  6team,  chlorination  also  having  some 
effect.  Where  both  these  errors  are  eliminated 
quantitative  results  are  readily  obtained. 

According  to  the  same  author  the  addition  of 
further  negative  groups  results  in  over  reduction. 
The  following  are  our  results  with  certain  members 
of  this  class. 

Table  IV. 
Analysis  of  substituted  nitrochloro-compounds. 


TiCl,. 

Ti,(SO,),. 

No  reflux. 

Reflux. 

No  reflux. 

Reflux. 

% 

0/ 

/o 

0/ 
/o 

Nitrodichlorobenzene 

990 

45-3 

99-3 

(C1:C1:N0,=1:4:2), 

99-3 

57-3 

99-4 

m.p.  55°-55-25°  C. 

99-5 

99-6 
100-1 

Dinitrochloro  benzene1 

99-6 

100-1 

100-2 

100-7 

(NO,:NO,:Cl=2:4:l), 

99-7 

100-2 

100-0 

100-5 

m.p.  50-5°-51°  C. 

100-2 

99-5 

99-7 

100-2 

100-0 

Sodium     p-nitrochloro- 

100-0 



100-0 

— 

benzenesulphonate1 

99-9 

100-0 

'  English  :    m.p.  49-5°  C. ;    101-5-105-3%. 
•  English :  100-4-100-6%. 

These  results  for  substituted  nitrochloro-com- 
pounds do  not  support  English's  contention.  They 
show  in  a  particularly  interesting  way  the  effects 


of  the  two  errors  of  volatilisation  and  chlorination. 
Nitrodichlorobenzene  is  so  extremely  volatile  that 
it  is  practically  impossible  to  obtain  any  satisfac- 
tory result  without  a  reflux  condenser.  On  the 
other  hand  dinitrochlorobenzene,  as  might  be  ex- 
pected from  its  largely  substituted  composition, 
shows  no  tendency  to  further  chlorination,  so  that 
titanous  chloride  gives  exactly  the  same  results  as 
titanous  sulphate. 

In  the  case  of  substances  such  as  nitrophenols  or 
nitrocarboxylic  acids,  the  analyses  may  be  con- 
ducted by  dissolving  the  substance  in  either  alcohol 
or  dilute  alkali  prior  to  the  addition  of  the  titanous 
compound  and  mineral  acid.  We  have  thought  it 
of  interest  to  carry  out  a  number  of  comparative 
experiments  with  these  two  variations,  particularly 
since,  as  already  shown  in  the  case  of  p-nitroaniline, 
we  have  found  chlorination  to  be  favoured  by  the 
presence  of  alcohol.  The  results,  which  include  the 
analyses  of  a  number  of  substances  not  previously 
recorded  as  having  been  determined  by  means  of 
titanous  salts,  are  given  below. 

The  results  indicate  that  in  these  classes  of 
substances  the  tendency  to  volatilisation  and  to 
chlorination  is  negligible  except  in  the  case  of 
o-nitrophenol.  These  substances  may  be  regarded 
as  typical  of  a  great  number  of  nitro-compounds 
and  may  be  termed  the  normal  type  of  nitro 
compound  as  far  as  reduction  with  titanous  salts  is 
concerned,  whilst  the  substances  dealt  with  above 
at  length  may  be  considered  of  the  abnormal  type. 

In  conclusion  we  beg  to  express  our  thanks  to 
the  British  Dyestuffs  Corporation  (Blackley)  Ltd., 
in  whose  Central  Analytical  Laboratory  the  work 
was   carried   out,   for   permission  to   publish   these 


Table  V. 

Nitrophenols  and  nitrocarboxylic  acids. 


NaOH  solutions. 

Alcohol  solutions. 

TiCl,. 

Ti,(SO(),. 

TiCl,. 

Ti,(SO.),. 

No  reflux. 

Reflux. 

No  reflux. 

No  reflux. 

No  reflux. 

m.p.  46-46-5°  C. 

0/ 
97-1 
96-2 
98-0 
97-8 

% 

99-9 

1001 

/o 

99-9 
100  0 
10X>'0 
1000 

99-7 
100-8 

0/ 

/o 
100-2 
1000 
1000 

o/ 
/o 

100-2 

99-9 

p-Nitrophenol            . .         . .         . .         . .         M 

m.p.  114-5°-115°  C. 

99-2 
98-7 
98-8 
98-5 

99-6 

100-3 

inn  n 
1001 

100-3 
100-1 

m.p.  33°-34°  C. 

1001 
100-3 

' 

1001 
1001 

100-0 

100-0 

99-9 

99-7 
100-2 

Dinitrophenol  (OH  :  NO, :  NO,=l :  2  :  4) 
m.p.  113-5°  C.) 

999 
99-9 

— 

99-9 
99-9 

1001 
100-1 

100-1 
99-8 

m.p.  107-5°  C. 

1000 

1000 

99  8 

1000 
100-0 
100-2 
100-2 

m.p.  147°-148°  C. 

99-8 

99-8 

1000 

— 

100-2 
100-2 

— 

— 

m.p.  138°-139°  C. 

100-0 
1001 

— 

99-8 
99-9 
99-9 

— 

— 

m.p.  237°-238°  C. 

991  \  (a) 
991  j* 
98-7  \(6) 
98-8/ 

1001 
1001 

Dinitrobenzoic  acid  (COOH  :  NO,  :  NO,=l :  3 :  5), 
m.p.  204°  C. 

1001                           — 
1000 

1000 
100  0 

— 

— 

m.p.  220*  C. 

99-7 
99-7 

— 

99-9 
999 

— 

— 

(a)  Minimum  amount  of  HCI. 


(6)  Large  excess  of  HCI. 


Vol.  XLI.,  No.  10.]        CALLAN  AND  HENDERSON.— USE  OP  POTASSIUM  BROMATE. 


161t 


results,  and  also  to  Messrs.  H.  Fitton,  F.  W. 
Mattinson,  and  G.  W  Onnrod  who  have  carried  out 
many  of  the  determinations  given  in  this  paper  and 
also  many  determinations  not  published  which  have 
served  to  confirm  the  published  figures. 

Discussion. 

Prof.  E.  Knecht  said  that  the  question  of  vola. 
tility  in  steam  naturally  had  had  to  be  considered 
in  these  titrations  wherever  any  loss  from  this 
cause  might  occur.  They  had  found  that  the  dif- 
ficulty might  in  many  cases  be  got  over  by  sul- 
phonating  the  nitro  compound.  He  did  not  think 
it  was  generally  known  how  volatile  stannous 
chloride  was  in  the  presence  of  a  large  excess  of 
strong  hydrochloric  acid.  H  such  a  solution  were 
boiled  a  great  deal  of  the  reducing  agent  might 
easily  be  lost.  He  had  experienced  considerable 
difficulty  in  titrating  trinitrocresol  and  trini- 
troxylenol.  Trinitrophenol'had  given  very  good  re- 
sults, but  by  the  same  procedure  trinitrocresol  and 
trinitroxylenol  had  at  first  yielded  only  90%. 
The  difficulty  was  overcome  by  using  a  very  large 
excess  of  the  reducing  agent,  by  which  means 
the  three  nitro  groups  were  completely  reduced. 
It  was  evident  from  the  results  obtained  that  the 
use  of  a  reflux  condenser  was  an  important  im- 
provement, particularly  where  it  was  not  possible 
for  obvious  reasons  to  employ  the  sulphonation  pro- 
cess. Had  the  production  of  chlorinated  amines 
been  pushed  so  far  as  to  get  the  maximum  yield 
of  the  halogen  derivatives? 

Mr.  L.  G.  Radcliffe  enquired  whether  the 
process  had  been  used  in  connexion  with  the 
examination  of  artificial  musks. 

Miss  Robinson  asked  what  steps  had  been  taken 
to  isolate  small  quantities  of  foreign  substances. 

Dr.  Forster  said  that  he  had  never  experienced 
any  difficulty  in  estimating  nitro  groups  by  the 
stannous  chloride  method.  Had  the  authors  suc- 
ceeded in  isolating  any  of  the  chlorine  compounds 
to  which  the  low  results  were  attributed? 

Dr.  Oallan,  in  reply,  said  that  although  it  was 
true  that  error  due  to  volatility  could  be  avoided, 
as  Professor  Knecht  suggested  by  previously  sul- 
phonating  the  nitro  compound,  this  was  not 
generally  to  be  recommended.  Sulphonation  often 
involved  several  hours  heating  with  oleum,  and  in 
certain  cases  e.g.,  oitrocresyl  methyl  ether,  gave 
rise  to  considerable  charring  and  decomposition.  In 
the  authors'  procedure  the  substance  when  insoluble 
in  dilute  acid  was  dissolved  in  a  small  amount 
of  alcohol  and  added  directly  to  the  titanous 
solution.  Titanous  chloride,  unlike  stannous 
chloride,  was  not  apparently  volatile  in  steam.  Had 
it  been  so,  then  more  than  the  theoretical  amount 
would  have  been  required,  or  calculating  from  the 
amount  of  reducing  agent  required  the  value  with- 
out condenser  would  have  been  higher  than  with 
condenser.  In  no  case  was  this  observed,  other 
conditions  being  the  same.  As  far  as  he  was  aware, 
mo  attempt  to  obtain  the  maximum  yield  of  halogen 
derivatives  by  this  method  had  been  published.  In 
reply  to  Miss  Robinson,  considerable  care  had  been 
taken  to  obtain  pure  substances,  and  the  measure 
of  success  attained  could  be  judged  by  the  melting 
points  recorded.  In  reply  to  Dr.  Forster,  Dr. 
Callan  stated  that  he  had  not  personally  isolated 
any  of  the  chloro-compounds,  but  he  had  had  the 
opportunity  of  examining  chloro  -  compounds 
obtained  by  other  workers  by  this  method. 


THE    USE    OF    POTASSIUM    BROMATE    IN 
VOLUMETRIC     ORGANIC     ANALYSIS. 

BY    T.     CALLAN,     M.SC,     PH.D.,     AND    J.     A.     RUSSELL 
HENDERSON,     D.SC. 

Koppeschaar  (Z.  anal.  Chem.,  1876,  15,  253)  was 
probably  the  first  to  introduce  the  use  of  potassium 


bromate  for  the  volumetric  analysis  of  an  organic 
compound,  having  applied  the  method  to  the  deter- 
mination of  phenol.  Since  that  time  many  papers 
have  appeared  dealing  with  the  use  of  potassium 
bromate.  In  particular  a  large  number  of  papers 
have  been  published  by  Vaubel,  chiefly  in  the  Zeit- 
schrift  fiir  prakt.  Chemie,  which  have  been  collected 
together  by  him  in  a  volume  entitled  "  Quantitative 
Bestimmung  organischer  Verbindungen,  Vol.  II." 

Although  the  method  is  applicable  to  aliphatic 
compounds,  in  the  present  paper  only  aromatic 
compounds  will  be  dealt  with. 

The  method  depends  largely  upon  the  fact  that 
whilst  the  direct  bromination  of  a  substance  by 
means  of  bromine  or  bromine  water  is  often  a  slow 
and  incomplete  reaction,  bromination  by  means  of 
nascent  bromine  liberated  by  the  interaction  of 
potassium  bromate  and  potassium  bromide  in  acid 
solution  in  presence  of  the  substance  in  very  many 
cases  gives  extremely  rapid  and  quantitative  bromi- 
nation. When,  therefore,  a  standard  solution  of 
potassium  bromato  is  run  into  a  solution  of 
the  substance  containing  hydrochloric  acid  and 
potassium  bromide,  no  free-  bromine  is  detectable 
until  complete  bromination  of  the  substance  has 
first  occurred. 

The  reaction  between  potassium  bromate,  potas- 
sium bromide,  and  hydrochloric  acid  takes  place 
according  to  the  following  equation,  which  may  be 
regarded  as  the  fundamental  equation  for  all  re- 
actions involving  the  use  of  potassium  bromate:  — 

5KBr+KBr03+6HCl  =  6KCl  +  6Br+3H20 
In  practice  the  potassium  bromide  and  hydrochloric 
acid  are  used  in  excess  and  are  added  to  the  solution 
of  the  substance  to  be  determined,  whilst  the 
potassium  bromate  is  in  the  form  of  the  volumetric 
solution  with  which  the  titration  is  carried  out. 
The  end-point  of  the  titration,  i.e.,  the  presence  of 
free  bromine,  is  obtained  by  spotting  on  to  starch- 
iodide  paper  as  external  indicator.  In  most  cases 
this  end-point  is  extremely  sharp.  Alternatively 
the  end-point  may  be  obtained  by  adding  a  known 
amount  of  potassium  bromate  solution  in  excess, 
then  potassium  iodide,  and  titrating  the  liberated 
iodine  by  thiosulphate.  In  general  this  method  has 
little  to  recommend  it.  For  most  purposes  an  2V/5 
solution  of  potassium  bromate  is  the  most  suitable. 

To  prepare  an  W/5  solution  of  potassium  bromate 
it  is  necessary  to  weigh  out  1/30  g.-mol.  of  potas- 
sium bromate  (=5-567  g.),  dissolve  in  water,  and 
make  up  to  1000  c.c.  For  works  purposes,  where 
a  considerable  number  of  bromate  titrations  are 
likely  to  be  made,  it  is  advisable  to  substitute  the 
cheaper  sodium  bromate.  A  solution  of  approxi- 
mately N 15  strength  is  then  made  up,  and  this  is 
standardised  by  pipetting  25  c.c,  diluting  to 
200  c.c.  with  water,  adding  3 — 5  g.  of  potassium  or 
sodium  bromide  (free  from  bromate),  3—5  g.  of 
potassium  iodide  (free  from  iodate),  and  5  c.c.  of 
concentrated  hydrochloric  acid  (free  from  free 
chlorine  and  iron),  and  titrating  the  liberated 
iodine  with  thiosulphate  in  the  usual  way,  thus 
obtaining  the  bromine  equivalent  of  the  volumetric 
solution. 

Titration  with  potassium  bromate  in  presence  of 
bromide  and  acid  is  particularly  suitable  for  the 
determination  of  amines  and  phenols  and  their 
derivatives  as  well  as  for  unsaturated  compounds 
such  as  cinnamic  acid.  In  the  former  case  the 
bromine  substitutes  hydrogen  whilst  in  the  latter 
case  it  enters  the  molecule  to  form  an  additive 
compound.  In  all  cases  which  will  be  subsequently 
described  the  amount  of  bromine  absorbed  by  a 
compound  is  understood  as  meaning  the  amount 
actually  entering  into  combination  with  the  com- 
pound In  all  cases  of  bromination  by  substitution 
an  equivalent  amount  of  bromine  is  in  addition  ured 
up  to  form  hydrogen  bromide. 


162t 


CALLAN  AND  HENDERSON.— USE  OF  POTASSIUM  BROMATE. 


[May  31,  1922. 


The  three  main  factors  governing  bromination  by 
means  of  nascent  bromine  are  found  to  be  in  the 
case  of  aromatic  compounds  (a)  orientation  of  the 
groups  forming  the  compound,  (b)  nature  of  these 
groups,  and  (c)  temperature  of  reaction.  In  the 
case  of  amines  and  phenols  Vaubel  showed  that 
bromine  enters  the  ring  in  the  ortho  or  para  posi- 
tion to  the  amino  or  hydroxy  group  but  never  in  the 
merer  position.  If  there  is  no  unoccupied  ortho  or 
para  position,  bromination  does  not  take  place 
except  when  this  position  is  occupied  by  a  carboxyl 
or  6ulphonic  group,  and  in  this  case  the  group  is 
split  off  and  substituted  by  bromine.  Thus  o-  and 
p-cresols  both  take  up  two  atoms  of  bromine,  whilst 
m-cresol  is  able  to  take  up  3  atoms ;  aniline  and 
sulphanilic  acid  both  take  up  3  atoms  of  bromine 
to  form  the  same  compound — tribromoaniline.  It 
will  be  shown  later  that  in  the  case  of  sulphanilic 
acid  this  reaction  is  dependent  entirely  on  tempera- 
ture and  that  it  is  possible  to  determine  exactly  the 
intermediate  stage  at  which  dibromosulphanilic  acid 
is  the  only  product.  m-Diamines,  e.g.,  m-phenyl- 
ene  diamine,  and  m-dihydroxy  compounds,  e.g., 
resorcinol,  and  m-aminophenols  take  up  bromine 
from  potassium  bromate  quantitatively,  whilst  with 
p-diamines  and  p-dihydroxy  compounds  the  method 
fails  owing  to  oxidation.  In  the  naphthalene  series 
the  method  is  of  considerable  value  in  the  case  of 
isomers ;  thus  for  example  R  salt  (2-naphthol-3.6- 
disulphonic  acid)  absorbs  bromine  quantitatively  at 
room  temperature  whilst  the  isomeric  G  salt  (2- 
naphthol-6.8-disulphonic  acid)  at  this  temperature 
does  not  absorb  bromine  at  all. 

The  temperature  of  the  titration  has  a  very  con- 
siderable influence  in  determining  not  only  the 
speed  of  the  reaction  but,  as  indicated  in  the  case 
of  sulphanilic  acid,  also  the  extent  of  bromination. 
The  optimum  temperature  requires  to  be  deter- 
mined for  each  particular  substance,  but  in  prac- 
tically all  cases  where  the  method  is  applicable 
one  or  other  of  three  ranges  of  temperature  will 
be  found  to  be  the  most  suitable.  These  are 
room  temperature  (15°— 20°  C),  30°— 40°  C,  and 
60° — 70°  C.  A  temperature  of  0° — 5°  is  most  suit- 
able in  just  a  few  instances.  Where  a  substance  not 
previously  analysed  by  the  method  is  to  be  investi- 
gated it  is  advisable  to  conduct  the  titrations  under 
each  temperature  condition. 

The  following  is  the  method  of  procedure  in  deal- 
ing with  typical  aromatic  substances: — (a)  Amino 
compounds. — Dissolve  a  suitable  amount,  usually 
02  to  0-5  g.,  in  200 — 250  c.c.  of  water  with  slight 
excess  of  hydrochloric  acid,  (b)  Phenols. — Dissolve 
in  a  similar  volume  of  water  with  slight  excess  of 
caustic  soda,  (c)  Sulphonic  and  earbovyUc  ar'nfx. 
Dissolve  in  a  similar  volume  of  water  and,  if 
necessary,  a  slight  excess  of  caustic  soda. 

Substances  which  are  not  soluble  in  water,  dilute 
acid,  or  dilute  alkali,  should  if  possible  be  dis- 
solved in  glaoial  acetic  acid,  the  titration  mixture 
being  preferably  diluted  somewhat  with  water 
towards  the  end  of  the  titration. 

To  the  solution  prepared  as  above  10  c.c.  of  a 
20%  solution  of  potassium  bromide  and  5 — 10  c.c. 
of  concentrated  hydrochloric  acid  are  added,  the 
mixture  brought  to  the  required  temperature,  and 
2V/5  potassium,  bromate  solution  run  in  slowly  until 
a  drop  withdrawn  on  a  glass  rod  gives  a  reaction 
on  starch  iodide  paper  persisting  for  2 — 4  minutes 
after  the  last  addition  of  bromate  solution. 

It  is  important  that  the  final  test  on  starch  iodide 
paper  should  not  be  made  immediately  after  the 
addition  of  the  bromate,  although  in  the  earlier 
part  of  the  titration  this  is  immaterial. 

Analysis  of  aniline  and  its  derivatives. 

For  aniline  itself  (Vaubel,  J.  prakt.  Chem.,  1893, 
48,  76)  the  bromate  method  is  by  far  the  best  avail- 
able, bromination  proceeding  rapidly  and  smoothly 


at  room  temperature  to  give  tribromoaniline ;  the 
end-point  is  particularly  sharp.  The  bromate  titra- 
tion of  aniline  is  greatly  to  be  preferred  to  titration 
by  means  of  standard  nitrite  solution,  where  the 
end-point  is  slow   and   indefinite. 

Toluidines.  u-  and  p-toluidines  take  up  2  atoms 
and  m-toluidine  3  atoms  of  bromine  at  room  tem- 
perature, the  end-point  being  sharp.  The  method 
can  be  applied  to  mixtures  of  aniline  and  toluidine 
(K.inhardt,  Chem.-Zeit.,  1893,  17,  413.  Winther, 
Chem.  Ind.,  1905,  28,  29). 

Dimethylaniline. — Vaubel  (J.  prakt.  Chem.  1893, 
48,  315)  states  that  this  substance  takes  up  one 
atom  of  bromine  rapidly  and  a  second  atom  more 
slowly.  This  substance  affords  a  particularly  in- 
teresting example  of  the  effect  of  temperature  on 
the  reaction.  Working  with  a  pure  sample  of 
dimethylaniline  (b.p.  194°  C.  at  7695  mm.)  we  found 
that  at  0° — 5°  C.  one  atom  of  bromine  is  taken  up 
per  molecule,  whilst  at  40° — 50°  C.  two  atoms,  and 
at  60° — 70°  C.  three  atoms  of  bromine  are  absorbed. 
These  three  stages  are  distinctly  defined  at  these 
temperatures,  provided  no  large  excess  of  hydro- 
chloric acid  is  employed  in  the  titration.  The 
following  are  typical  results  obtained  with  thi6  sub- 
stance, which  was  weighed  out  from  a  Lunge-Rev 
pipette,  dissolved  in  slight  excess  of  hydrochloric 
acid,  and  an  aliquot  part  of  the  solution  taken  for 
analysis.  In  each  case  0'2022  g.  of  substance,  5  c.c. 
of  acid,  200  c.c.  of  water,  and  10  c.c.  of  20  % 
potassium  bromide  solution  were  used. 

Table  I. 

Analysis  of  dimethylaniline. 


Temp. 

•c. 

A'/5 
bromate 
solution. 

Weight, 
found. 

C.H,N(CH,), 
o/ 

Atoms  Br 
absorbed 
per  mol. 

0—5 
40—50 
60—70 

c.c. 
16-8 
33-5 
50-2 

g. 
0-2033 
0-2026 
0-2024 

100-3 
100-2 
100-1 

1 
2 
3 

Sulphanilic  acid. — Various  observers  (Schmidt, 
Annalen,  120,  178;  Heinichen,  ibid.,  1889,  253,  267; 
Brenzingen,  Z.  anorg.  Chem.,  1896,  131)  have  shown 
that  this  compound  takes  up  two  or  three  atoms  of 
bromine  according  to  the  conditions  of  the  experi- 
ment. We  have  carefully  investigated  this  from  the 
analytical  point  of  view  and  find  that,  as  with 
dimethylaniline,  it  is  readily  possible  to  isolate  the 
stages  at  which  two  atoms  are  absorbed  with 
formation  of  dibromosulphanilic  acid  and  three 
atoms  with  elimination  of  the  sulphonic  group  and 
formation  of  tribromoaniline,  the  precipitation  of 
tribromoaniline  in  fact  acting  as  indicator  and 
showing  the  commencement  of  the  second  part  of 
the  reaction.     The  following  figures  (Table  II.)  are 

Table  II. 

Analysis  of  sulphanilic  acid. 


Weight 

Temp. 

.v  5 

Weight 

C.H.XH. 

Atoms 
Br 

absorbed 

taken. 

•c. 

KBrO,. 

found. 

SO,H. 

g. 

g- 

% 

per  mol. 

0-2515 

0 

(a)  29-05 

0-2515 

1000 

rt 

1  («)  35-45 

(b)  35-55 

1  (c)  5310 

ll-:;i)iis 

10005 

2 

0-3066 

15 

0-3076 

100-30* 

2 

0-3064 

99-9 

3 

0-3066 

30—40 

f  (a)  35-45 

0-3068 

10005 

o 

(6)  35-55 

0-3070 

100-30* 

2 

I  (c)  53-15 

0-3066 

100-00 

3 

( (a)  no  end 

I           pt. 

0-3066 

60—70 

(W    .. 

— 

— 

— 

((c)  53-2 

0-3070 

100-1 

° 

*  This  end  point  necessarily  gives  too  high  a  result  as  it  marks 
the  commencement  of  the  next  part  of  the  reaction. 


Vol.  XII..  No.  10]        CALLAN  AND  HENDERSON.— USE  OF  POTASSIUM  BROMATE. 


1G3t 


typical  of  many  such  results  obtained.  In  this  table 
(a)  denotes  the  end-point  when  just  sufficient  N[5 
bromate  has  been  added  to  produce  a  faint,  but 
distinct  reaction  on  starch  iodide  paper  which  at 
0°  C.  persists  for  about  2  minutes  and  at  30° — 40°  C. 
for  about  30  seconds  after  the  last  addition  of 
bromate  and  marks  the  end  of  the  first  part  of  the 
reaction.  This  intermediate  point  cannot  be  ob- 
tained at  60°— 70°  C.  No  turbidity  is  obtained 
at  this  stage,  (b)  denotes  when  the  first  turbidity 
is  obtained  denoting  formation  of  tribromoaniline. 
The  titration  may  now  be  completed  to  the  final 
end-point  (c),  when  3  atoms  of  bromine  per  mole- 
cule are  taken  up.  In  every  case  10  c.c.  of  acid, 
300  c.c.  of  water,  and  10  c.c.  of  20  %  bromide  solu- 
tion were  used. 

p-.\  it  rofin  Hi  ne  (cf.  Vaubel,  J.  prakt.  Chem., 
1894,  49,  544).— In  view  of  the  fact  that  this  sub- 
stance has  been  found  particularly  suitable  as  an 
ultimate  standard  in  the  analysis  of  organic  com- 
pounds by  various  volumetric  methods  (see  previous 
paper),  a  special  study  was  made  of  its  determina- 
tion by  means  of  potassium  bromate.  It  was  found 
that  at  a  temperature  of  60° — 70°  C.  p-nitroaniline 
titrated  quite  quantitatively,  the  end-point  being 
very  sharp,  provided  no  considerable  excess  of 
hydrochloric  acid  was  used.  At  lower  temperatures 
bromination  is  too  slow  to  give  quantitative 
results.  The  best  procedure  is  to  dissolve  3 — 4  g. 
accurately  weighed  in  about  30  c.c.  of  concentrated 
hydrochloric  acid  and  50  c.c.  of  water,  make  up 
to  500  c.c,  and  titrate  50  c.c.  with  Ar/5  bromate 
at  60° — 70°  C,  no  further  acid  being  employed. 
By  this  method  a  sample  of  pure  reervstallised 
p-nitroaniline  tested  99-95%,  1000%,  and  1000% 
in  three  successive  determinations. 

Diphenylamine. — Dreger  (Z.  ges.  Schiess-  u. 
Sprengstoffw.,  1909,  4,  123)  has  published  a  gravi- 
metric method  for  the  determination  of  this  sub- 
stance depending  on  the  precipitation  of  tetra- 
bromodiphenylamine  by  the  action  of  bromine  in 
alcoholic  solution  and  the  subsequent  weighing  of 
the  precipitated  tetrabromo-compound.  In  our 
hands  this  method  has  given  good  results,  but 
it  is  slow  and  unpleasant  owing  to  the  amount  of 
free  bromine  necessarily  used.  We  have  therefore 
investigated  the  application  of  the  bromate  volu- 
metric method  to  the  analysis  of  this  compound. 
Owing  to  its  sparing  solubility  diphenylamine  re- 
quires to  be  dissolved  in  glacial  acetic  acid  prior 
to  titration,  and  it  is  advisable  to  dilute  the 
solution  with  water  towards  the  end  of  the  titra- 
tion in  order  to  obtain  a  sharp  end-point.  Bromina- 
tion of  diphenylamine  under  such  conditions  takes 
place  in  two  distinct  stages.  At  0°  C  it  is  possible 
to  obtain  a  fugitive  but  definite  end-point  corre- 
sponding to  the  absorption  of  3  atoms  of  bromine 
per  molecule  of  diphenylamine,  whilst  titrating  at 
60° — 70°  C.  a  very  definite  end-point  corresponding 
to  the  absorption  of  4  atoms  is  obtained.  The 
following  table  gives  typical  results  obtained  under 
the  conditions  specified,  the  water  given  being 
added  in  each  case  towards  the  end  of  the 
titration. 


p-Nitrophenol. — A  pure  sample  of  this  compound 
(m.p.  115°)  titrated  with  N/5  potassium  bromate 
gave  quantitative  results,  2  atoms  of  bromine  being 
absorbed  per  molecule  of  p-nitrophenol  to  give 
dibromonitrophenol.  The  titration  is  largely  in- 
dependent of  temperature;  thus  at  15°  C.  30° — 
40°  C„  and  60°— 70°  C.  the  sample  tested  99'92%, 
99-92      and  100'03%   respectively. 

1.2.4-Dinitrophenol  was  found  to  behave  in  all 
respects  the  same  as  p-nitrophenol,  except  that 
only  one  atom  of  bromine  per  molecule  is  taken  up, 
a  pure  sample  (m.p.  113-5°  C.)  testing  99"99%, 
99-99  ,  and  100-08  ,  at  the  above  given  tempera- 
tures. Picric  acid,  on  the  other  hand,  does  not 
absorb  any  bromine  under  titration  conditions  even 
at  60°— 70°  C.  Known  mixtures  of  dinitrophenol 
and  picric  acid  were  therefore  prepared  and 
titrated  with  standard  bromate,  when  it  was  found 
that  the  bromate  titre  corresponded  in  every  case 
to  the  dinitrophenol  content,  thus  affording  a  rapid 
and  quantitative  method  of  determining  dinitro- 
phenol in  presence  of  picric  acid.  The  following 
table  gives  the  results  obtained,  the  temperature 
employed  being  60°— 70°  C. 

Table  IV. 

Analyses  of  mixtures  of  dinitrophenol  and 
picric   acid. 


D.N.P. 

Picric  acid 

Ar/5 

D.N.P. 

D.N.P. 

D.N.P. 

taken. 

taken. 

KBrO,. 

found. 

fouud. 

taken. 

g- 

s- 

c.c. 

g- 

% 

% 

0-1042 

50015 

5-8 

01067 

209 

2-04 

01994 

10026 

10-95 

0-2015 

16-76 

16-59 

n-.-.ssr. 

1-0005 

320 

ii  -:,ss.s 

3705 

3704 

0-4090 

0-4020 

22-25 

0-4094 

50-48 

50-43 

0-5554 

0-1460 

30-20 

0-5557 

79-22 

7918 

0-6254 

0-049G 

33-8 

0-6219 

9213 

92-65 

Thiocarbanilide  was  found  to  titrate  with  potas- 
sium bromate  quite  smoothly  in  glacial  acetic  acid 
solution  at  25° — 30°  C,  one  molecule  absorbing  4 
atoms  of  bromine.  A  sample  of  the  pure  material 
(m.p.  151°  C.)  titrated  by  this  method  tested  9987%, 
999%,  and  10002%.  This  substance  is  now  used 
commercially  in  quantity,  and  as  far  as  we  are 
aware  this  method  is  the  only  one  available  for 
its  direct  determination  by  a  rapid  volumetric 
method. 

In  all  the  cases  given  above,  the  bromine  enters 
the  molecule  by  substitution,  consequently  as  much 
bromine  is  used  to  form  hydrobromic  acid  as  to 
form  the  bromine  derivative.  Cinnamic  acid 
affords  an  example  of  bromine  absorption  without 
simultaneous  formation  of  hydrobromic  acid.  A 
pure  sample  of  this  substance  was  found  to  titrate 
smoothly  and  quantitatively  at  20°  C,  dibromo- 
cinnamic  acid  being  formed,  giving  996%,  99"7%, 
and  99'9%  in  three  successive  experiments.  With 
this  substance  the  temperature  of  20°  C.  should 
not  be  exceeded,  otherwise  a  high  result  is  obtained, 
probably  due  to  entry  of  bromine  by  substitution. 
This  method  of  determination  of  cinnamic  acid  is 
preferable  to  that   given  by  de  Jong  (Rec.   Trav. 


Table  III. 
Analysis  of  diphenylamine. 


Weight 

Glacial 

Cone. 

20% 

.V  5 

(CH,)...NH 

Strength 

Atoms 

taken. 

acetic  acid. 

Water. 

HCI. 

KBrsoln. 

Temp. 

KBrO,. 

found. 

found. 

Br  per  mol. 

g. 

c.c. 

c.c. 

c.c. 

c.c. 

•c. 

c.c. 

% 

01673 

25 

25 

1^ 

10 

0 

29-7 

0-1075 

10014 

^j 

0-4238 

50 

150 

10 

10 

30 

62  (approx.) 

— . 

80  (approx.) 

3  to  4 

0-2171 

25 

150 

5 

10 

60—70 

51-5 

0-2171 

1000 

4 

0-1900 

25 

150 

5 

10 

00—70 

45-0 

01897 

99-9 

4 

0-2155 

25 

150 

5 

10 

00—70 

51-3 

0-2103 

100-3 

4 

164t 


SINNATT  AND  SIMPKIN. — INORGANIC  CONSTITUENTS  OF  COAL.  [May  31,  1922. 


Meeting  held  at  The  Textile  Institute  on 
March  3,  1922. 


DR.    E.   ARDERN  IN  THE  CHAIR. 


Chim.,  1911,  30,  223)  in  which  excess  of  N/10 
bromine  water  is  added  to  the  substance  and  the 
excess  determined  by  addition  of  potassium  iodide 
and  thiosulphate. 

In  conclusion  we  desire  to  express  our  thanks  to 
the  British  Dyestuffs  Corporation  (Blaekley),  Ltd., 
in  whose  Central  Analytical  Laboratory  the  experi- 
ments were  carried  out,  for  permission  to  publish 
the  results  of  this  investigation,  and  to  Mr.  G.  W. 
Ormrod,  who  made  many  of  the  analyses  given  in 
the  text. 

Discussion. 
Dr.  Henderson,  in  reply  to  questions,  stated 
that,  in  the  case  of  salicylic  acid,  the  bromine  split 
off  the  carboxyl  group,  with  the  formation  and  pre- 
cipitation of  tribromophenol.  In  the  case  of 
aromatic  amino  compounds  the  bromine  entered  the 
ring  in  the  ortho  and /or  para  positions,  just  as  in 
the"  case  of  hydroxy  compounds.  Schaffer  acid 
brominated  at  the  room  temperature  taking  up 
one  atom  of  bromine  in  position  1,  while  Orocein 
acid  did  not  brominate  under  the  same  conditions. 
The  authors  had  not  experimented  with  Violet  acid. 
a-Naphthylamine,  according  to  Vaubel  (J.  prakt. 
Chem.,  1895,  52,  410)  could  not  be  estimated  bromo- 
metrically,  as  partial  oxidation  took  place.  With 
naphthylaminesulphonic  acids  the  method  could  be 
applied  in  certain  cases  depending  upon  the 
orientation  of  the  groups  :  in  some  cases  the  sul- 
phonic  acid  group  was  split  off.  m-Diamines  could 
be  estimated  by  the  bromine  method,  but  o-  and 
p-diamines  were  oxidised.  p-Aminodimethylani-  j 
line,  being  a  N-substituted  p-diamine,  was  oxidised 
by  bromine.  Vaubel  ("Quant.  Best.,"  Vol.  II., 
p.  179)  stated  that  /3-naphthol  could  be  estimated 
by  bromine  if  the  naphthol  were  dissolved  in  glacial 
acetic  acid,  monobromonaphthol  being  formed,  but 
as  the  method  did  not  appear  to  offer  any  advan- 
tage over  the  usual  diazometric  method  of  esti- 
mating this  substance  it  had  not  been  investigated. 


THE  INORGANIC  CONSTITUENTS  OF  COAL, 
WITH  ESPECIAL  REFERENCE  TO  LANCA- 
SHIRE SEAMS.  PART  II.— THE  IRON  IN 
COAL. 

BY      F.      8.      SINNATT,      M.B.E.,      M.SC.(tECH-),      F.I.O., 
M.I.MIN.E.,     AND     N.      SIMPKIN,     M. SO. (TECH.),      A.I.C. 

The  investigation  of  the  inorganic  constituents  of 
Lancashire  coals  is  being  continued  and  the  present 
paper  is  concerned  with  the  examination  of  the 
modes  of  occurrence  of  iron  in  certain  of  the  coal 
seams.  The  work  has  been  carried  out  under  the 
auspices  of  the  Lancashire  and  Cheshire  Coal  Re- 
search Association. 

In  a  paper  read  before  this  Section  (J.,  1921, 1  t) 
by  Bayley,  Grounds,  and  one  of  us,  it  was  shown 
that  the  plates  of  inorganic  material  (ankerites) 
found  in  coal  seams  were  derivatives  of  calcium 
carbonate  in  which  a  proportion  of  the  base  was 
replaced  by  iron  (ferrous),  magnesium,  and  man- 
ganese. It  is  known  that  the  ankerites  undergo 
oxidation  on  exposure  to  air  and  that  this  phenome- 
non is  a  factor  influencing  the  disintegration  of  the 
masses  of  coal  during  storage. 

It  was  suggested  in  the  above  paper  and  by 
various  speakers  in  the  discussion  that  the  ferrous 
iron  and  manganese  might  be  of  importance  as 
agents  leading  to  the  spontaneous  heating  of  coal, 
whether  in  the  goaf  or  during  storage.    The  present 


results,  it  is  thought,  may  have  a  bearing  upon  the 
behaviour  of  the  ash  found  when  the  coals  are 
burned  and  may  be  of  value  in  furthering  the 
discussion  upon  the  influence  of  the  oxidation  of 
the  iron  present  upon  the  incipient  heating  of  coal. 

The  work  has  largely  followed  the  lines  described 
by  Powell  (J.  Ind.  Eng.  Chem.,  1920,  13,  887) 
except  that  additions  can  now  be  made  to  the 
number  of  types  of  iron  that  he  differentiates. 
Powell  distinguishes  four  forms  of  iron  as  occurring 
in  the  coal  substance  and  submits  figures  for  the 
iron  occurring  as  water-soluble  iron,  iron  soluble  in 
hydrochloric  acid,  iron  occurring  as  pyrites,  and 
that  present  in  the  form  of  silicate.  In  the  portion 
soluble  in  hydrochloric  acid  he  made  no  attempt  to 
differentiate  between  the  iron  occurring  in  the 
form  of  ankerites  and  that  present  in  the  mass  of 
the  coal  in  other  combination.  The  amount  of  iron 
occurring  in  the  form  of  ankerites  in  certain 
specimens  of  coal  is  by  no  means  negligible,  and  it 
may  be  recalled  that  one  sample  examined  by  one 
of  us  in  which  4'2%  of  ash  was  present  was 
found  to  contain  approximately  1'7%  derived  from 
ankerites. 

The  subject  of  the  different  types  of  iron  pyrites 
is  at  present  being  exhaustively  investigated  micro- 
scopically by  Mr.  J.  Lomax,  of  Bolton,  who  has 
already  described  a  number  of  distinct  forms 
(Report  Spont.  Combust.  Committee). 

In  order  to  elaborate  the  arguments  of  one  phase 
of  the  present  investigation  it  is  necessary  to  give 
the  analytical  values  for  three  specimens  of  pyrites 
to  show  that  the  composition  of  these  is  variable  and 
that,  in  addition  to  iron  pyrites,  they  may  contain 
iron  in  the  form  of  carbonate. 

Table  I. 

i.  n.  in. 

Moisture           0-64  ..      1-21  ..  0-25 

Insoluble  matter         0-69  . .      0-21  . .  0-35 

Iron  (pyritic) 26-44  ..  37-03  ..  2-14 

Sulphur  (pyritic)         30-22  ..  44-96  ..  2-45 

Iron  (other  than  pj-rites,  as  FeO)    ..  12-56  ..       1-22  ..  4609 

Aluminium  oxide         2-31  . .       S-22  . .  4-42 

Calcium  oxide 7-01  ..      nil  ..  3-38 

Magnesium  oxide        3-60  . .       0-84  . .  4-57 

Sulphur  trioxide         1-29  . .       1-90  . .  nil 

Carbon  dioxide            10-23  ..       0-99  ..  32-62 

Carbon  (organic)         3-42  . .       6-04  . .  nil 

Hydrogen         0-33  ..      0-75  ..  nil 

The  above  analyses  prove  that  although  pure 
types  of  pyrites  may  occur  in  coal  (e.g.,  in  specimen 
II.  in  the  table),  other  materials  which  possess  the 
appearance  of  pyrites  may  be  present  and  contain 
a  relatively  small  percentage  of  actual  iron  disul- 
phide.  This  fact  may  have  a  bearing  upon  the 
behaviour  of  coals  during  combustion,  especially  in 
relation  to  the  fusibility  of  the  ash  and  the  per- 
centage of  sulphur  appearing  in  the  distillation 
products. 

Powell  shows  that  pyrites  undergoes  decompo- 
sition when  coal  is  being  carbonised,  with  the 
formation  of  ferrous  sulphide  at  or  below  600°  C. 
Somewhat  similar  influences  are  in  operation  during 
the  preliminary  stages  of  combustion  of  coal,  with 
the  difference,  of  course,  that  air  is  present,  and 
it  is  suggested  that  it  is  desirable  to  determine  the 
percentage  of  pyrites  in  coal  in  order  that  its 
behaviour  may  be  more  closely  understood.  It  has 
been  shown  by  H.  N.  Stokes  (Bull.  U.S.  Geological 
Survey,  1901,  186)  that  when  pyrites  is  treated  with 
a  ferric  salt  the  reactions  which  occur  may  be  repre- 
sented by  the  following  equations  :  — 

FeSs  +  2FeCl,+3FeCl2  +  2S . 

2S  +  12FeCl3-r8H20-+12FeClJ+2H2SO<+12HCl. 

The  amount  of  iron  which  passes  into  solution  when 
the  coal  is  treated  with  hydrochloric  acid  may 
include  the  iron  disulphide  which  has  reacted  with 
any  ferric  salt  present  in  the  coal. 

In  connexion  with  the  above  reaction  it  may  be 
stated  that  a  systematic  study  has  been  carried  out 


Vol.  xli  ,  So.  10.1        SINNATT  AND  SIMPKIN.— INORGANIC  CONSTITUENTS  OF  COAL. 


165  t 


by  us  upon  the  oxidation  of  the  coal  substance  with 
solutions  of  ferric  chloride  and  that  ferric  chloride 
is  rapidly  reduced  by  coal  to  ferrous  chloride.  It 
would,  therefore,  appear  that  when  dealing  with 
the  coal  substance  any  ferric  salts  can  only  exist 
upon  the  ankerites  or  outer  surface  of  the  coal  as 
incrustations  and  that  the  above-mentioned  reaction 
may  he  dismissed  as  being  of  little  importance  in 
the  present  study. 

Iron  extracted  by  treatment  with  water. 

Average  samples  of  a  number  of  coals  from  the 
Lancashire  coal  field  were  pulverised  and  7  grams 
placed  in  a  conical  flask  fitted  with  inlet  and 
outlet  tubes  which  could  be  connected  in  a  stream 
of  carbon  dioxide.  Separate  specimens  were  taken 
for  each  of  the  determinations  and  in  every  case  the 
result  of  the  positive  determination  was  checked  by 
igniting  a  portion  of  the  residual  coal  and  deter- 
mining the  iron  present  in  the  ash.  100  c.c.  of 
distilled  water  was  added  to  the  coal  and  the  liquid 
allowed  to  digest  for  one  hour  on  a  hot  plate.  Tho 
coal  was  then  separated  by  filtration  and  the  residuo 
washed  with  water.  The  combined  filtrate  and 
washings  were  oxidised  with  hydrogen  peroxide  in 
the  presence  of  ammonia  and  the  iron  present  in 
the  liquid  determined  by  means  of  titanous  chloride. 
The  results  are  shown  in  the  following  table  :  • — 


Table  II. 

%  iron  ex- 

% iron  ex. 
tracted 

%  ash 

%  iron  in 

tracted  by 

of  total 

Coal. 

in  coal. 

coal. 

water. 

iron. 

Rushv  Park 

421 

..       0-495 

nil 

nil 

Coal  A    . . 

4-58 

1-796 

04452 

24-79 

Arlev 

1-75 

0-612 

00132 

215 

Itavine   . . 

4-59 

1-379 

0-0683 

4-95 

Crombouke 

4-83 

. .       2-123       . 

00273 

1-29 

Coal  B    . . 

9-75 

. .       5-343 

00259 

0-48 

Trencherbone    . 

1-49 

. .       0-252 

0-0035 

110 

The  liquid  obtained  by  extracting  the  two  coals 
marked  A  and  B  with  water  was  distinctly  acidic 
in  character,  and  these  two  coals  are  included  to 
emphasise  the  fact  that  certain  special  coals  yield 
a  considerable  extract  when  treated  with  water. 
If  such  coals  are  exposed  to  rain  by  being  stored  in 
the  open,  the  liquid  that  drains  from  the  heaps  is 
acidic,  and  this  solution  on  exposure  to  the  air 
undergoes  oxidation  with  precipitation  of  ochre  or 
basic  ferric  sulphate.  The  fact  that  coals  do  yield 
acidio  extracts  is  also  of  practical  interest  in  con- 
nexion with  the  washing  of  coals,  especially  where 
the  washery  is  largely  made  up  of  iron  work.  Here 
the  influence  of  the  acidic  liquid  containing  iron  is 
very  pronounced  and  leads  to  considerable  wear  and 
tear  in  the  metal  work  of  the  plant. 

The  iron  extracted  by  water  is  of  some  interest 
in  connexion  with  the  water  in  mines.  This  water 
contains  the  iron  in  the  ferrous  condition,  and  in  a 
recent  heating  which  occurred  in  one  of  the  pits 
certain  large  crystals  were  found  in  one  of  the 
masses  of  coal  when  the  heated  zone  had  been  cooled 
which  on  examination  proved  to  have  the  compo- 
sition:  Fe  18-7%,  SO,  341%,  equivalent  to  93% 
of  ferrous  sulphate.  The  crystals  were  nearly  pure 
ferrous  sulphate  in  which  practically  no  ferric  salt 
was  present,  except  on  the  surface  where  slight 
oxidation  had  occurred.  A  second  deposit  which 
formed  an  incrustation  on  coal  which  had  been 
exposed  to  the  air  for  a  long  period  and  had  under- 
gone considerable  oxidation  had  the  composition  : 
Fe  15'6%,  S04  453%.  The  iron  was  present  solely 
in  the  ferric  condition,  and  there  was  an  excess  of 
acid  present  over  the  amount  required  to  form  pure 
ferric  sulphate.  In  this  case  the  material  had  not 
come  in  contact  with  the  coal  after  its  formation. 

Iron  extracted  by  treatment  with  hydrochloric  acid. 

Three  grams  of  the  specimens  of  coal  was  treated 

with   100  c.c.   of  hydrochloric   acid   (10%)   and  the 

liquid  digested  for  one  hour.     The  residual  coal  was 


separated  by  filtration  washed  with  water,  and  the 
total  iron,  which  was  found  to  be  present  wholly  in 
the  ferrous  condition,  was  determined  by  means  of 
titanous  chloride  after  oxidation  with  hydrogen 
peroxide.  The  values  were  confirmed  by  igniting 
a  specimen  of  the  residual  coal  and  determining  the 
iron  present  in  the  ash. 


Table  III. 

%  iron 
extracted 
by  HCI 

%  iron 
extracted 

%  ash 

%iron 

less  water- 

of  total 

Coal. 

in  coal. 

In  coal. 

sol,  iron. 

Rushv  Park 

.     4-21 

..      0-495 

0177 

.       35-76 

Coal  A   . . 

.     4  58 

..       1-796 

0  090 

501 

Arlev 

.     1-75 

0012 

0034 

5-55 

Itavine   . . 

.      4-59 

..        1-379 

0137 

9-93 

Crombouke 

.      4-83 

..        2-123        . 

.       0052       . 

2-45 

Coal  B   . . 

.     9-75 

. .       6-343       . 

.       0045 

fl-84 

Trencherbone   . 

.      1-49 

. .      0-252 

.       0022 

8-80 

From  the  above  table  it  is  clear  that  wide  di- 
vergencies may  be  expected  in  the  amount  of  iron 
which  is  dissolved  by  hydrochloric  acid;  e.g.,  with 
coal  A  containing  1'796%  of  iron  5'01%  is  extracted 
by  hydrochloric  acid,  whereas  in  the  case  of  Rushy 
Park  seam  containing  0"495%  of  iron  3576%  passed 
into  solution. 

The  manner  in  which  the  hydrochloric  acid-soluble 
iron  occurs  is  of  interest.  It  was  found  by  actual 
experiment  that  no  further  iron  could  be  extracted 
by  treating  the  coal  with  hydrochloric  acid  for  a 
longer  period  than  one  hour.  An  experiment  in 
which  the  coal  was  treated  for  five  hours  yielded 
the  6ame  extract  as  when  the  time  of  treatment 
lasted  only  one  hour.  It  appeared  of  interest  to 
determine  whether  treatment  with  hydrochloric 
acid  in  the  cold  would  extract  the  iron  as  effectively 
as  at  the  boiling  point,  and  the  following  results 
were  obtained  by  treating  4  g.  of  the  coal  with 
100  c.c.  of  hydrochloric  acid  for  various  periods. 


Number  of  hours. 

24 

96 

120 


Table  IV. 

Iron  extracted  by  hydrochloric  acid. 
Cold.  Boiling. 

00565g.         . .         007917g. 
0-0600g. 
00728g. 


It  is  obvious  that  iron  occurring  in  the  white 
partings  or  ankerites  will  readily  pass  into  solution 
on  treatment  with  acid,  but  in  view  of  the  fact  that 
many  specimens  of  pyrites  which  occur  in  coal 
contain  iron  in  the  form  of  ferrous  carbonate,  it  is 
clear  that  there  are  at  least  two  sources  from  which 
the  iron  soluble  in  hydrochloric  acid  may  be  derived. 

As  mentioned  in  the  paper  on  ankerites  by  Bayley, 
Grounds,  and  one  of  us,  attempts  have  been  made 
to  determine  the  percentage  of  ankerites  in  coal, 
but  without  success,  and  in  view  of  the  interest 
attached  to  the  presence  of  these  compounds  in  coal 
the  hydrochloric  acid  extracts  from  two  typical 
coals  were  analysed  with  the  following  results, 
calculated  on  the  weight  of  coal :  — 


Table  V. 


Inorganic  matter. 
SiO, 
Al,Os 
Fe.O, 
CaO 
MgO 
SO, 
CI  (water-sol.) 

From   the   above  values 
made   taking   into 


Coal  D. 
nil 
0  025 
0  032 
0069 
0014 
0-081 
0076 


Coal  C. 
nil 

0049 
0-082 
0-085 
0-028 
0041 
0053 

a  calculation  has  been 
account  only  the  bases  which 
occur  in  the' ankerites  in  the  particular  coals,  and 
the  following  table  contains  the  percentage  compo- 
sition of  the  bases  common  to  the  ankerites  and  the 
hydrochloric  acid  solution  :  — 


Table  VI. 

Constituent. 
FcO 
CaO 
MgO 

CoalC. 

HCI  soln.     Ankerites. 
39-58             30-21 
45-45              63-53 
14-97             10-27 

CoalD. 

HCI  soln.    Ankerites 

26-55             19-67 

6105             67-25 

12-39            2308 

B 

IGGt 


SINNATT  AND  SIMPKIN.— INORGANIC  CONSTITUENTS  OF  COAL.         [May  31, 1922. 


The  results  are  obviously  difficult  to  interpret 
except  in  a  broad  manner,  but  from  the  values  it 
may  be  gathered  that  both  specimens  of  coal  con- 
tained not  only  ankerites  but  iron  in  the  ferrous 
condition,  in  some  other  state  of  combination,  the 
only  legitimate  assumption  being  that  this  occurs 
in  "the  coal  as  ferrous  carbonate  associated  with 
pyrites. 

Iron  soluble  in  nitric  acid. 

The  next  part  of  the  examination  consisted  in  the 
determination  of  the  iron  disulphide  present  in  the 
samples  by  the  method  suggested  by  Powell,  and  the 
following  are  the  exact  detailsof  the  method  adopted 
by  us  : — 3  g.  of  pulverised  coal  was  treated  with 
150  c.c.  of  nitric  acid  (sp.  gr..lT2),  and  the  liquid 
was  allowed  to  stand  with  occasional  stirring  for 
five  days.  The  excess  of  coal  was  removed  by 
filtration  and  the  residue  washed  with  water.  The 
filtrate  and  washings  were  collected  and  evaporated 
to  dryness  in  the  water  bath.  The  residue  was 
dissolved  in  a  concentrated  solution  of  hydrochloric 
acid  and  evaporated  to  dryness  twice  to  eliminate 
nitric  acid.  The  residue  was  then  dissolved  in  con- 
centrated hydrochloric  acid,  allowed  to  simmer  for 
two  hours,  diluted  with  water,  and  the  iron  present 
estimated  by  titration  with  titanous  chloride.  The 
residual  coal  from  the  above  experiment  was  dried 
and  ignited,  and  the  ash  carefully  examined.  It 
was  found  that  the  ash  from  the  majority  of  the 
coals  possessed  a  faint  creamy  colour,  but  three  of 
the  coals  left  a  residue  which  was  entirely  free 
from  iron.  This  proved  conclusively  that  nitric 
acid  had  completely  extracted  the  whole  of  the  iron 
from  the  coal.  These  results  confirmed  those  of 
Powell.  The  following  table  shows  the  results 
obtained  by  treatment  with  nitric  acid:  — 


Table  IX. 


%  Distribution  of  iron. 

Water-sol.  HCl-sol.       Pyritic 
Coal               iron.  iron. 

Rushy  Park  nil  ..  35-78 
Coal  A  ..  21-79  ..  5  01 
Arley  . .       215     . .       5  55 

Ravine  ..  4  95  ..  9  93 
Crombouke  1-29     ..       2-45 

Coal  B       . .  0-48     . .       0-84 

Trencherbone      1-40     ..       8-80 


Table  VII. 

HNO 

-  sol. 

Silicate  iron 

% 

% 

less  HC1-  sol. 

(insol.  in 

total 

iron 

(pyriti 

ciron) 

HNO,)  and 

%  ash 

iron 

sol.  in 

and 

%  of 

%  of  total 

Coal 

in  coal 

in  coal 

HNO, 

total. 

iron. 

Rushy  Park 

.     4-21 

0-495 

0-452 

0-275 

55-6 

0-04      9-5 

Coal  A  .. 

.     4-58 

1-796 

1-763 

1-228 

68-4 

003      4-4 

Ariey     . . 

. .     1-75 

0  612 

0-555 

0-508 

830 

006       9-9 

Ravine  . . 

. .     4-59 

1  379 

1-357 

1152 

83-5 

0  02       2-8 

Crombouke 

. .     4-83 

2-123 

2-160 

2081 

981 

nil         nil 

Coal  B  . . 

. .     9-75 

5-343 

— ■ 

— 

— 

— ■         — ■ 

Trencherbone 

. .      1-49 

0-252 

0-253 

0-228 

90-5 

nil         nil 

It  will  be  gathered  from  the  results  given  in  this 
paper  that  the  iron  may  occur  in  at  least  five 
distinct  forms,  namely  in  the  ankerites,  in  iron 
oxide  or  carbonate,  soluble  iron  salts,  silicate,  and 
as  pyrites. 

The  decomposition  of  ankerites  by  heat. 
The  fact  that  coal  contains  iron  in  the  ferrous 
condition  in  ankerites  makes  it  necessary  to  examine 
the  temperature  of  decomposition  of  these  com- 
pounds. Ankerite  having  the  following  composi- 
tion was  used:— CaO  28'56%,  MgO  11-51%,  FeO 
9-81%,  MnO  0-82%,  C02  4T52%,  Si02  605%,  FeA 
060%,  pyrites  1"11%.  It  was  heated  in  the 
presence  of  air  in  a  silica  tube  (Lessing's  apparatus) 
at  a  series  of  constant  temperatures  and  the  loss 
in  weight  determined  by  direct  weighing.  It  is 
recognised  that  the  conditions  of  the  experiment 
do  not  simulate  the  results  obtained  during  the 
carbonisation,  but  the  values  are  of  interest  from 
the  standpoint  of  the  behaviour  of  the  compounds 
when  heated.     The  following  results  were  obtained  : 


Table  VIII. 

Time  of 

Percentage 

Temperature. 

heating. 

of  loss 

1 

in  weight. 

700°  C. 

1  hour 

1610 

700"  C. 

6  hours 

39-40 

800°  C. 

.    ..          U  hours 

42-58 

900°  C. 

...         1  hour 

42-64 

iron. 
55-55 
68  36 
83  00 
83  52 
98-05 

90-47 


Silicate 
iron. 
.  9-52 
.  4-35 
.  9-92 
,  2-78 
.     nil 

'.    nil 


Total. 
100-93 
102-51 
100  62 
101-18 
101-79 

100-67 


Summary. 

The  values  obtained  in  the  above  paper  show  that 
the  manner  in  which  iron  occurs  in  different  coals 
varies  over  wide  limits.  With  coals  generally  the 
amount  of  iron  that  passes  into  solution  when 
specimens  are  treated  with  water  is  small,  but  in 
the  case  of  isolated  coals  a  very  considerable  pro- 
portion may  pass  into  solution.  The  iron  extracted 
by  hydrochloric  acid  varies  much  more  widely  than 
that  extracted  by  water.  The  treatment  with  acid 
and  the  analysis  of  the  resulting  liquid  indicates 
that  the  hydrochloric  acid  soluble  iron  is  probably 
present  in  at  least  two  forms,  namely,  as  ankeritic 
iron  and  ferrous  carbonate,  both  of  which  may  be 
associated  with  the  pyrites. 

The  iron  present  in  the  form  of  pyrites  represents 
the  predominating  variety^  but  again  great  varia- 
tions can  be  expected  and  in  some  coals  practically 
the  whole  of  the  iron  may  be  present  in  this  form. 

Silicate  iron  is  completely  absent  in  certain  coals, 
whilst  in  others  it  may  rise  to  10%  of  the  total  iron, 
as  far  as  the  present  examination  ha6  proved. 

The  authors  wish  to  express  their  thanks  to  Miss 
H.  Greenleaves  for  help  during  the  preparation  of 
this  paper. 

Discussion. 

Mr.  A.  Grounds  asked  how  the  ankerite  speci- 
mens were  selected,  as  it  was  quite  possible  that  in 
such  specimens  part  of  the  ankerites  had  already 
been  replaced  by  pyrites,  and  hence  the  iron  esti- 
mated by  fusion  of  the  ignited  ankerite  with  fusion 
mixture  might  also  include  pyritic  iron.  Did 
fusain  or  anthracite  reduce  ferric  chloride  in  a 
similar  manner  to  ordinary  bituminous  coal?  Had 
the  author  determined  the  four  varieties  of  iron 
in  the  four  microscopically  recognisable  constituents 
of  any  particular  coal?  In  the  case  of  Portland 
cement  the  iron  was  present  as  a  silicate,  and  on 
treatment  with  hydrochloric  acid  this  iron  was 
extracted.  It  seemed  to  him  that  part  at  least 
of  the  silicate  iron  must  be  included  in  the  hydro- 
chloric acid-soluble  fraction,  since  it  was  probably 
soluble  in  hydrochloric  acid.  If  coal  reduced  ferric 
chloride,  how  could  ferric  compounds  exist  in  coal 
seams?  He  presumed  that  these  were  only  found 
on  the  face  and  never  in  the  interior  of  the  seam. 
What  concentration  of  acid  was  found  in  the 
washery  water?  This  would  seem  to  be  very  in- 
jurious to  the  iron  work  of  the  plant,  and  one 
would  expect  that  any  free  acid  formed  would  be 
neutralised  to  a  large  extent  by  the  ankerites 
present  which  consisted  of  carbonates. 

Mr.  H.  L.  Terry  said  he  did  not  think  the 
ankerite  iron  was  purely  an  oxidation  product  of 
pyrites.  It  seemed  more  like  a  vein  filling  from 
solution  from  below,  though  the  lime  might  have 
come  from  percolation  from  the  top.  The  lowest 
coal  worked  about  that  neighbourhood  was  in  the 
Third  Grit  of  the  Derbyshire  millstone  grit ;  he 
did  not  know  whether  ankerites  occurred  in  this 
coal.  Ankerites  were  not  universal,  since  he  had 
found  them  to  be  absent  from  the  American  gas 
coal  which  had  come  to  Manchester  last  summer. 
He  had  not  found  ferrous  sulphate  in  the  coal  he 
had  examined,  but  he  had  found  it  in  old  lead 
mine  adits  which  had  not  been  worked  for  fifty 
years  or  so.     Such  copperas  could  only  be  formed 


Vol.  xli..  No.  10.]         PRIDEAUX  AND  HEWIS.— ANODIC  CORROSION  OF  BISMUTH. 


167  T 


in  the  presence  of  air  and  moisture  under  certain 
conditions. 

Mr.  Dmmmond  Paton  said  there  was  no  need 
for  great  loss  of  coal  by  fire  to  occur  if  there  was 
correct  mining.  He  suggested  that  the  formation 
of  ankerite  was  due  to  the  fact  that  the  bed  had 
been  laid  down  on  the  edge  of  a  body  of  water, 
practically  on  a  formation  which  was  mainly  humic. 
Eventually,  on  the  top,  there  was  a  silt  deposit 
of  eroded  local  formation  which  filled  cracks  etc. 
and  sank  down.  These  silt  bodies  were  possibly 
the  origin  of  the  ankerite.  He  thought  that  the 
extent  of  iron  available  in  the  lower  bed  from 
which  the  coal  originated  and  also  the  geological 
detritus  washed  over  the  bed  would  possibly  give 
an  idea  of  the  true  value  of  the  iron.  In  laminate 
rock  oxygen  penetrated  possibly  40  or  50  yards 
right  up  into  the  strata,  and  produced  the  slip 
planes.  It  was  the  production  of  the  slip  plane 
in  the  gob  where  there  was  waste  coal  that  brought 
down  the  strata.  The  crushing  effect  and  the 
weight  of  material  on  the  gob  started  the  fire. 

Mr.  A.  L.  Booth  wrote  as  follows: — "  Some  iron 
will  possibly  be  present  in  the  coal  substance  as 
organically  combined  iron,  as  the  destruction  of  the 
organic  remains,  of  which  coals  are  composed,  is  by 
no  means  complete.  Organically  combined  iron 
occurs  in  all  green  plants.  Generally  speaking, 
there  is  a  much  larger  amount  of  iron  in  "  humic  " 
coals  than  in  "  spore  "  or  "  cannel  "  coals.  If  this 
iron  is  not  dissolved  out  in  hydrochloric  acid  it  will 
most  probably  be  oxidised  by  nitric  acid,  in  which 
case  it  will  be  estimated  as  pyritic  iron.  It  is 
difficult  to  prove  the  presence  of  organically  com- 
bined iron  in  coal.  Iron  is  present  in  the  sub- 
stances which  pyridine  extracts  from  coal;  this  iron 
may  be  organically  combined,  as  ferrous  carbonate 
and  ferrous  sulphate  are  insoluble  in  dry  pyridine. 
Against  this  idea  is  the  fact  that  pyridine  is  con- 
sidered to  cause  polymerisation  and  condensation 
in  the  coal  substance.  If  this  is  so,  the  water  from 
the  latter  may  take  up  some  of  the  water-soluble 
iron  and  so  account  for  the  presence  of  iron  in  the 
pyridine  extract.  A  determination  of  any  water 
present  in  the  pyridine  after  an  extraction  might 
clear  up  the  point." 

Mr.  Sinnatt,  in  reply,  said  that  Mr.  Grounds 
was  right  when  he  suggested  that  ankerite  might 
be  replaced  by  pyrites,  and  it  wa6  quite  possible  for 
pyrites  to  be  present  in  the  former  compounds 
without  its  presence  being  detected  by  ordinary 
examination.  In  collaboration  with  Mr.  Simpkin, 
work  had  been  carried  out  upon  the  reduction  of 
solutions  of  ferric  chloride  with  many  types  of  coal, 
and  it  was  a  fact  that  both  fusain  and  anthracite 
would  reduce  this  reagent.  It  was  considered  that 
ferric  chloride  might  prove  to  be  a  most  useful 
reagent  in  connexion  with  the  examination  of  coals 
as  it  appeared  to  indicate  the  power  coals  possessed 
of  undergoing  oxidation  under  standard  conditions. 
The  term  silicate  iron  used  in  the  paper  referred  to 
iron  which  was  not  extracted  by  nitric  acid.  It 
was  possible  that  a  small  proportion  of  the  silicate 
iron  was  extracted  by  hydrochloric  acid,  but  in 
view  of  the  fact  that  all  the  figures  in  the  paper 
were  comparative  the  object  had  been  gained  by 
showing  the  great  differences  exhibited  by  different 
coals.  He  believed  that  ferric  iron  occurred  only 
on  the  surfaces  of  coal,  ankerite,  or  pyrites,  and 
that  iron  found  in  contact  with  coal  or  in  the 
interior  of  masses  was  always  in  the  ferrous  con- 
dition unless  the  coal  substance  with  which  the  iron 
was  in  contact  had  been  oxidised  to  such  a  degree 
that  it  would  no  longer  reduce  the  iron  present, 
in  which  case  it  was  found  that  ferric  salts  were 
present  throughout  the  whole  mass  of  coal.  The 
water  from  washeries  was  frequently  slightly  acid 
due  to  the  hydrolysis  of  salts  of  iron  and  aluminium, 
despite  the  fact  that  a  considerable  proportion  of 


ankerites  might  be  present  in  the  washing  dirt  and 
in  the  coal.  The  generally  accepted  theory  of  the 
source  of  the  white  partings  in  coal,  that  these  were 
introduced  into  the  coal  by  the  infiltration  of 
liquids  containing  ankeritic  constituents  in  solu- 
tion, was  unsatisfactory  when  it  was  remembered 
that  the  roof  shales  and  the  floors  of  coal  seams 
were  generally  free  from  these  partings.  It 
appeared  to  him  that  the  deposition  of  the  white 
partings  must  have  occurred  when  the  coal  had 
become  perfectly  6olid,  or  otherwise  the  material 
could  not  occur  in  sharply  defined  vertical  plates 
of  considerable  area.  It  was  somewhat  difficult  to 
imagine  how  this  solution  of  the  salts  had 
percolated  through  many  miles  of  coal  seam  to 
deposit  such  compounds  as  the  ankerites.  He 
agreed  that  the  reason  for  the  excess  of  hydrochloric 
acid-soluble  iron  in  coal  above  that  present  in  the 
form  of  ankerites  was  due  to  the  fact  that  the 
pyrites  occurring  in  the  particular  coals  contained 
a  considerable  percentage  of  ferrous  carbonate.  Mr. 
Booth  had  raised  a  number  of  points  which  could 
only  be  decided  by  further  work.  His  suggestion 
that  a  certain  proportion  of  the  iron  in  coal  was 
present  in  the  form  of  organically  combined  iron 
was  of  great  interest  and  one  which  the  authors 
had  been  investigating. 


Nottingham  Section. 


Meeting  held  on  March  1,  1922. 


Mil.   J.   H.   DUNFORD  IN  THE  CHAIK. 


THE    ANODIC    CORROSION    OF    BISMUTH, 

WITH    SOME    NOTES    ON    BISMUTH 

COMPOUNDS. 

BY    E.    B.    R.    PRIDEAUX   AND    H.    W.    HEWIS. 

In  the  preparation  of  bismuth  salts  for  use  in 
medicine  and  surgery,  the  metal  is  usually  attacked 
first  by  nitric  acid — an  operation  which  is  difficult 
to  effect  without  the  loss  of  some  acid  as  reduction 
products.  It  was  suggested  to  one  of  us  by  Mr. 
F.  H.  Carr  that  a  more  economical  process  was  de- 
sirable. Of  possible  alternatives  an  electrolytic 
method  seemed  to  offer  advantages  since  the  anodic 
corrosion  of  this  metal  would  probably  proceed  with 
high  current  efficiency,  and  the  nitrate  might  be 
supplied  in  the  form  of  the  cheaper  sodium  nitrate. 
It  was  also  a  matter  of  some  scientific  interest  to 
determine  how  far  such  corrosion  takes  place  in 
accordance  with  Faraday's  laws  assuming  the 
tri valency  of  bismuth. 

The  conditions  of  preparation  of  other  compounds 
from  the  primary  products  have  also  been  studied, 
and  some  information  has  been  obtained  about  the 
substance  xeroform,  the  so-called  bismuth  tribrom- 
phenolate. 

Experimental. 

The  anodes  of  bismuth  were  cast  on  stout  copper 
wires,  the  cathode  was  generally  a  strip  of  nickel. 
In  order  to  facilitate  analysis  the  anolyte  was  in 
nearly  all  cases  contained  in  a  porous  pot  of  un- 
glazed  porcelain,  and  in  order  to  prevent  reduction 
of  the  nitrate  to  ammonia  the  catholyte  was  con- 
tained in  a  similar  pot.  The  cell  so  formed  was  con- 
nected in  series  with  a  copper  coulombmeter  and  an 
ammeter,  and  the  voltage  across  the  terminals  was 
measured  by  a  voltmeter  reading  in  tenths  of  a  volt. 

The  anolytes  were  made  from  recrystallised 
sodium     nitrate    of     the     concentrations    specified 


168T 


PRIDEAUX  AND  HEWIS.— ANODIC  CORROSION  OF  BISMUTH. 


[May  31,  1922. 


below,  the  middle  solutions  consisted  of  10% 
sodium  nitrate  solution  and  the  catholytes  were 
dilute  alkali. 

Qualitative  results. 

Some  experiments  were  carried  out  in  which 
sodium  nitrate  was  electrolysed  in  an  undivided 
cell,  with  cathodes  of  copper,  nickel  or  graphite ; 
ammonia  was  produced  in  all  cases  at  the  cathode. 
A  deposit  of  oxynitrate  was  formed  and  also  a  black 
cathodic  deposit  which  was  easily  separated  from 
the  oxynitrate  by  its  difference  in  density.  The 
black  deposit  may  have  been  a  suboxide,  but  its  com- 
position was  variable;  it  contained  between  78% 
and  85%  of  bismuth. 

In  order  to  test  whether  the  Luckow  principle, 
used  in  the  production  of  electrolytic  white  lead, 
was  applicable  to  bismuth,  an  anolyte  was  made 
containing  10  g.  of  6odium  nitrate  and  1  g.  of  sodium 
carbonate  to  100  ex.  of  water.  The  cell  was  made 
up  as  before  with  a  catholyte  of  dilute  sodium 
hydroxide.  Carbon  dioxide  was  evolved  at  the 
bismuth  anode  and  a  white  flocculent  material  was 
formed  on  the  surface  of  the  anolyte.  The  car- 
bonate was  decomposed  in  about  half  an  hour,  and 
a  crust  was  then  formed  on  the  surface  of  the 
anode  as  in  the  next  experiment.  It  seems  prob- 
able that  by  working  without  an  anode  diaphragm 
and  passing  carbon  dioxide  through  the  solution, 
bismuth  oxycarbonate  could  be  prepared  success- 
fully  in   this   manner. 

The  following  observations  refer  to  the  experi- 
ments tabulated  below  : 

Experiment  1. — The  anolyte  concentration  was: 
10  g.  of  sodium  nitrate  in  100  c.c.  of  water.  The 
anodic  current  density  was  12  amperes  per  sq.  dm. 
The  actual  current  was  1  ampere.  In  this  case  the 
resistance  soon  increased  and  a  crust  was  formed  on 
the  anode.  The  crust  was  of  a  dark  grey  colour, 
and  when  rubbed  with  a  spatula  had  a  polished 
metallic  appearance.  The  appearance,  combined 
with  the  high  percentage  of  bismuth,  seems  to 
point  to  the  presence  of  suboxide,  and  more  basic 
subnitrate  may  also  have  been  present.  The  solu- 
tion immediately  round  the  anode  must  have  been 
depleted  of  nitrate  ions,  although  not  to  such  an 
extent  as  to  give  a  coating  of  oxide,  with  its 
corresponding  high  anodic  polarisation  of  T86  volts. 

Experiments  2  and  3. — The  product  in  these  cases 
was  quite  white  and  came  down  partly  as  a  loose 
deposit,  partly  as  a  crust  on  the  anode. 

Experiment  4  was  designed  to  avoid  the  formation 
of  a  crust  by  increasing  the  concentration  of 
sodium  nitrate  in  the  anolyte  and  by  keeping  it 
shghtly  acid.  The  anolyte  was  made  from  200  g. 
of  sodium  nitrate  in  600  c.c.  of  water.  The  anode 
was  a  rod  J  in.  diameter  immersed  to  a  depth  of 
2J  in.,  the  surface  therefore  being  0'1136  sq.  dm. 
The  current  was  kept  fairly  constant  at  1'4  amperes, 
and  the  current  density  was  therefore  approxi- 
mately 12'3  amps,  per  sq.  dm.  The  oxynitrate 
formed  was  in  this  case  quite  loose  and  easy  to 
detach. 

Table  I. 

Results  of  electrolysis  with  an  anolyte  of  ca.  10% 
sodium  nitrate  solution. 


Coulombs  used 

Weight  of  bismuth  calculated 

from  current 
Ditto,  calculated  as  BijOj.. 
Bi.Oj  %  in  product 
Total  weight  of  product    . . 
Weight  of  BiaOa  in  product 
Loss  of  weight  of  anode    . . 

In  these  experiments  the  amount  of  bismuth  in 
the  solution  was  negligible,  the  whole  being 
deposited    as    oxynitrate.      This    was    filtered    off, 


Number  of 
1.              2. 

experiment. 
3.              4. 

—          5871 

5857 

6000 

—  4-216 

—  4-702 
85-2       79-7 

—  6-020 

—  4-798 

4-207 
4-691 
80-3 
5-8778 
4-720 
4-2341 

4-355 
4-857 
82-0 
6-4727 
5-308 
4-362  6 

washed,  and  dried  well  in  a  desiccator  over  concen- 
trated sulphuric  acid.  Samples  of  the  dried 
product  were  ignited  to  bismuth  oxide.  The  per- 
centages of  this  obtained  agree  with  those  of  the 
various  pharmacopoeias  which  usually  epecify 
between  76  and  82%  of  Bi,03.  The  oxynitrate 
is  a  white  substance  completely  soluble  in  nitric 
acid  and  crystallising  in  the  usual  forms.  Accord- 
ing to  Ruttan  (Z.  anorg.  Chem.,  1902,  30,  354), 
the  oxynitrate  first  precipitated  when  the  tri- 
nitrate is  treated  with  cold  water  is  BiON03,H„0 
or  Bi203:N205:H.,0  =  1:1:2.  This  crystaJlises  in 
small  plates  without  a  very  definite  crystalline 
form.  On  standing  in  contact  with  the  nitric  acid 
produced  by  hydrolysis  with  cold  water  (about  20 
parts),  this  salt  changes  into  well-shaped  crystals 
of  BiON03,jH20  or  1:1:1.  When  the  hydrolysis 
is  effected  by  hot  water  the  oxynitrates  10:9:7  and 
6:5:8  may  be  present.  The  compounds  1:1:1  and 
10:9:7  are  not  easy  to  distinguish  by  simple  micro- 
scopical examination.  We  have  noticed  several  of 
the  definite  crystal  forms  in  which  one  or  other 
of  these  oxynitrates  may  crystallise,  in  the  product 
obtained  by  hydrolysis  in  the  presence  of  saturated 
sodium  nitrate. 

According  to  Ruttan  (loc.  cit.)  the  pharma- 
copoeial  oxynitrate  never  consists  of  1:1:1  but  of 
10:9:7  and  perhaps  6:5:8.  On  prolonged  washing 
a  more  basic  compound  such  as  2:1:1  may  be  pro- 
duced. These  statements  are  confirmed  by  the 
analyses  of  J.  B.  P.  Harrison  (Analyst,  1910,  35, 
118).  He  finds  that  English,  French,  and  German 
samples    all    range    between    79'7    and    80'5%     of 

Bi.03- 

Compound     ..1:1:2       1:1:1        10:9:7       6:5:8 
Bi203  %  . .      76-5      . .      78-9      . .     80-85      . .     80-0 

He  considers  that  6:5:8*  (80T%  of  Bi203)  repre- 
sents the  best  the  average  composition  of  the  com- 
mercial substance.  Our  product  is  sometimes  high 
in  bismuth  (experiment  4),  and  a  determination  of 
nitrogen  by  reduction  to  ammonia  with  Devarda's 
alio;?  (Cu  50,  Al  45,  Zn  5%)  showed  that  it  was  also 
rather  high  in  N20s. 

If  it  is  desired  to  prepare  from  the  electrolytic 
oxynitrate  any  particular  form  to  suit  commercial 
requirements,  it  may  be  redissolved  in  nitric  acid 
(sp.  gr.  about  1"3)  and  then  reprecipitated  under 
any  special  conditions.  The  nitric  acid  in  the 
filtrate  may  be  concentrated  by  evaporation  and 
used  again  for  dissolving  oxynitrate.* 

Current  efficiency  and  electrical  energy  required. 

From  the  details  of  Experiments  3  and  4 
(Table  I.)  it  is  seen  that  the  current  efficiency 
as  calculated  from  the  anodic  loss  is  100%.  The 
fact  that  it  is  slightly  greater  in  No.  3  is  to  be 
attributed  to  the  necessity  of  scraping  the 
adherent  crust  from  the  anode.  At  the  current 
density  used,  12'5  amps,  per  sq.  dm.,  the  volts 
measured  at  equal  intervals  of  time  were  4'8,  4"6, 
4'5,  and  4'6.  Taking  the  average  over  the  whole 
time  as  4'6,  the  power  used  was  6006-4  x4'6  =  27,650 
joules  and  the  kilowatt-hours  per  kg.  of  bismuth 
dissolved  were  27,650-^3600x4-36  =  r76. 

The  electrolysis  of  more  concentrated  solutions. 

When  the  anolyte  was  a  saturated,  or  nearly 
saturated,  solution  containing  120  g.  of  sodium 
nitrate  in  150  c.c.  of  water,  no  deposit  appeared 
for  some  time.  It  then  came  down  as  a  loose  pre- 
cipitate and  not  as  a  crust,  the  solution  became 
acid,  and  the  electrical  resistance  diminished. 
The   anolyte   was   filtered,    the   precipitate   washed 

*  In  technical  apparatus  nitric  acid  can  be  concentrated  from 
63°  to  79°  Tw.  with  no  loss  of  acid,  and  up  to  84°  Tw.  (70%  HNO,) 
with  a  loss  of  3%  of  nitric  acid  as  distillate  of  5°  Tw. — Imisou  and 
Russell,  J.,  1922,  44T. 


vol.  su„  No.  10]        PRIDEAUX  AND  HEWIS.— ANODIC  CORROSION  OF  BISMUTH. 


169  t 


and  dried  and  analysed  separately  as  'before.  Or 
it  was  dissolved  in  nitric  acid  and  the  bismuth 
determined  in  an  aliquot  part  of  this  solution. 
An  aliquot  part  of  the  anolyte  was  diluted  and 
the  bismuth  oxide  precipitated  by  ammonium  car- 
bonate and  ignited  to  oxide. 

The  results  in  Table  II.  indicate  that  the  total 
amounts  of  bismuth  lost  from  the  anode  are  not 
quite  accounted  for  by  the  analyses.  Some  of  the 
dissolved  bismuth  remained  in  the  pores  of  the  pot 
and  some  was  found  as  a  flocculent  precipitate  in 
the  middle  liquid  if  the  experiment  lasted  for  more 
than  an  hour.  These  amounts  were  not  quanti- 
tatively determined. 

Table  II. 

Electrolysis  with   an   anolyte   of  nearly  saturated 
sodium  nitrate  solution. 


Number  of  experiment. 
1.  2.  3. 

6836  3759  5860 

10-5  130  10-6 


4-91 
5-008 
125 
0-1532 

2-70 
2-70 
150 
•0-07065 

4-209 

4-219 

140 

0-2263 

1-914 

1-06 

3-163 

2-692 

1-58 

_ 

Coulombs  used 

Current  density. . 

Weight  of  bismuth  calc.  from 
current 

Loss  of  weight  of  anode 

Volume  of  filtered  anolyte  (c.c.) 

Weight  of  bismuth  in  10  c.c. . . 

Total  weight  of  bismuth  in 
anolyte  

Total  weight  of  bismuth  pre- 
cipitated as  oxynitrate 

Total  weight  of  bismuth 
recovered        4-606  2-64  — 

•  25  c.c.  taken  for  analysis. 

Current  efficiency  and  electrical  energy  for  more 
concentrated  solutions. 

In  these  experiments  the  theoretical  bismuth 
corroded  agrees  well  with  the  loss  from  the  anode, 
and  the  current  efficiency  is  therefore  100%.  The 
current  efficiency  calculated  on  the  results  of 
analysis  is  slightly  lower  for  the  reasons  already 
mentioned. 

The  energy  required  will  be  undoubtedly  less  than 
in  the  first  series  on  account  of  the  use  of  solutions 
having  probably  a  higher  specific  conductivity  and 
the  non-formation  of  badly  conducting  crusts.  The 
anodic  current  densities  were  nearly  equal  to  those 
of  the  first  series.  The  fact  that  the  observed 
voltage  was  greater  in  the  second  series  is  explained 
by  the  much  greater  separation  of  anolyte  and 
catholyte  due  to  the  employment  of  a  different  form 
of  cell  for  the  connecting  or  middle  solution. 

In  experiment  (1)  6836  coulombs  at  8'3  volts  were 
used  to  dissolve  4'91  g.  of  bismuth,  eo  that 
3'2  kw.-h.  will  be  required  for  a  kilogram  of  bismuth 
converted  into  oxynitrate.  The  corresponding 
figures  in  experiment  (2)  are  3759  coulombs  at 
7  volts  and  2"7  g.  of  bismuth  or  27  kw.-h.  per  kg. 
In  the  more  dilute  sodium  nitrate  solutions  the 
bismuth  trinitrate  was  apparently  hydrolysed 
completely,  but  in  the  more  concentrated  solutions 
one  half  to  three  quarters  of  the  total  bismuth 
remained  in  solution.  This  effect  of  sodium  nitrate 
is  also  shown  by  the  fact  that  a  saturated  solution 
of  the  trinitrate  can  be  largely  diluted  with 
saturated  sodium  nitrate  without  precipitation. 
Not  only  does  the  sodium  nitrate  prevent  precipita- 
tion of  oxynitrate  in  the  early  stages  of  electrolysis 
(if  the  solution  is  not  stirred)  but  also  it  allows  a 
higher  ratio  of  Bi203  to  N2Os  than  those  ratios 
which  are  in  equilibrium  with  solid  oxynitrate  in 
absence  of  sodium  nitrate.  In  the  anolyte  of 
Experiment  3  the  total  nitric  acid  free  and  com- 
bined with  bismuth  was  determined  by  adding  a 
known  excess  of  standard  alkali,  precipitating  the 
bismuth  as  yellow  hydroxide  and  titrating  the 
excess  of  alkali.  In  100  g.  of  solution  there  were 
1-74  g.  of  N20,  and  P64  g.  of  Bi„03,  giving  a  ratio 
Bi203:N205    of    0-98.*      Corresponding    quantities 

•  The  bismuth  was  completely  converted  into  the  yellow  BiO(OH) 
and  the  effect  of  atmospheric  carbon  dioxide   was   eliminated. — 

See  Harrison,  loc.  cit.) 


of  Bi20?  and  N20,,  in  100  g.  of  solution,  which  are 
in  equilibrium  with  solid  oxynitrate  1:1:2  are 
stated  by  Ruttan  (loc.  cit.  p.  386)  as  Bi203:N2Os  = 
0-337:0-982  =  0343  and  3-54:4-68  =  0"755. 

In  the  anolyte  the  amount  of  free  nitric  acid 
present,  and  therefore  probably  also  the  amount  of 
bismuth  kept  in  solution,  would  be  greater  were  it 
not  for  the  loss  of  nitric  acid  due  to  migration  of 
hydrogen  ions.  Thus  in  Experiment  1  the  dissolved 
Bi,03  is  2-135  g.  and  the  N205  is  the  sum  of  that 
equivalent  to  the  bismuth  (trinitrate)  and  that  set 
free  by  the  deposition  of  1:1  oxynitrate.  In  this 
case  N2Os  so  calculated  is  2888  g.,  and  therefore 
Bi2O3:N,Os  =  0'74.  In  Experiment  2  Bi,03:Na05  = 
l-184:I-644  =  0-72.» 

These  ratios  were  never  attained  for  the  reason 
already  stated.  The  composition  of  the  solution  at 
any  time  depends  upon  the  amounts  of  bismuth 
dissolved  and  also  upon  the  transport  relations  of 
the  ions — Na',  N03',  H',  Bi"' — which  take  part  in 
the  conduction.  On  the  assumption  that  these  have 
the  same  relative  values  as  in  more  dilute  solutions, 
it  can  be  shown  that  for  every  mol.  of  Bi(N03)3 
produced  the  anolyte  will  lose  T2  mols.  of  NaN03. 
This  gives  the  reason  why  the  concentration  of 
NaN03  should  be  kept  high  in  order  to  avoid  de- 
pletion of  N03'  ions  in  the  immediate  neighbourhood 
of  the  anode  with  consequent  formation  of  crust. 
When  the  trinitrate  hydrolyses,  depositing  an  oxy- 
nitrate of  composition  1:1  with  formation  of  nitric 
acid  the  cathodic  current  will  be  largely  carried  by 
hydrogen  ions,  and  the  loss  of  nitric  acid,  propor- 
tionately to  the  amount  which  takes  part  in  the 
transport,  will  be  greater  than  that  of  sodium 
nitrate.  A  balance  will  be  reached  when  the  acid 
formed  by  hydrolysis  is  just  equal  to  that  lost  by 
migration  of  hydrogen  ion.  Also  as  the  concen- 
tration of  bismuth  rises,  appreciable  quantities  of 
bismuth  ion  leave  the  cell  to  bo  precipitated  as  oxy- 
nitrate in  the  middle  compartment,  which  on  the 
cathode  side  is  gaining  OH'  all  the  time  and 
becoming  alkaline.  So  that  on  the  whole  it  is 
unlikely  that  very  high  concentrations  of  dissolved 
bismuth  will  be  obtained  by  the  electrolysis  of 
nitrate  solutions 

The  precipitated  oxynitrate  can  be  redissolved 
in  nitric  acid,  etc.  exactly  as  described  in  the  case 
|  of  the  more  dilute  solutions.  The  solution' may  be 
diluted  and  heated  with  deposition  of  oxynitrate 
or  it  may  be  used  directly  for  the  preparation  of 
hydroxide  as  described  below. 

Preparation  of  bismuth  hydroxide. 

The  fullv  hydrated  white  form  of  approximate 
formula  Bi(OH)3  may  be  dried  at  ordinary  tempera- 
tures, and  only  loses  water  slowly  over  concentrated 
sulphuric  acid.  Water  is  rapidly  lost  at  100°,  and 
also  at  much  lower  temperatures  in  contact  with 
concentrated  alkali,  with  formation  of  the  yellow 
metahvdroxide  BiO.OH  (Moser,  Z.  anorg.  Chem., 
1919,  61,  379).  This  form  is  much  less  soluble  in 
organic  acids,  and  therefore  less  suitable  as  a  start- 
ing point  in  the  preparation  of  compounds  than 
the  orthohydroxide.  The  latter,  however,  is  not 
very  easily  obtained  in  a  pure  form.  It  has  been 
shown  by  Thibault  (J.  Pharm.  Chim.,  1900,  12, 
[12],  559;  1901,  14,  [1],  22)  that  the  precipitation 
of  acid  solutions  with  alkalis  gives  products  con- 
taminated with  basic  salts.  On  the  other  hand, 
hydrolysis  of  the  oxynitrate  with  alkalis  easily  pro- 
duces the  metahydroxide,  as  is  shown  by  the  follow- 
ing experiments. 

A  weighed  quantity  of  the  oxynitrate  was  heated 
with  excess  of  iV/2  sodium  hydroxide,  and  the 
excess  determined  volumetrically.  The  hydrolysis 
was    complete,    but    the    product    was    all    meta- 

•  These  quantities  are  calculated  on  the  total  amounts  of  the 
solutions,  the  densities  of  which  are  about  1-39. 


170T 


PKIDEAUX  AND  HEWIS.— ANODIC  CORROSION  OF  BISMUTH. 


[May  31,  1922. 


hydroxide.  The  oxynitrate  was  then  shaken  with 
alkali  of  various  concentrations,  and  it  was  found 
that  in  the  cold  alkali  stronger  than  2V/1  hydro- 
lysed  it  to  the  metahydroxide,  while  with  N/5 
and  N/10  alkali  the  hydrolysis  was  not  complete, 
the  N  /2  concentration  giving  a  hydrolysis  of  about 
70%.  This  hydroxide  is  white,  and  remains  for 
some  hours  unchanged  in  contact  with  the  alkali, 
but  if  not  thoroughly  washed  it  becomes  converted 
subsequently  into  the  yellow  form. 

Various  methods  have  been  proposed  for  the  pre- 
paration of  the  white  hydroxide.  Thus  Thibault 
(loc.  cit.)  mixes  20  g.  of  the  crystalline  trinitrate 
1:3:10  with  30  g.  of  glycerin  and  adds  slowly  100  g. 
of  water.  This  solution  is  added  slowly  to  excess  of 
potash.  When  all  the  hydrated  oxide  has  again 
ertered  into  solution  the  excess  of  alkali  is 
cautiously  neutralised  by  the  addition  of  dilute 
sulphuric  acid  until  the  liquid  is  only  faintly  alka- 
line or  at  the  most  neutral,  excess  of  acid  being 
carefully  avoided.  The  resulting  gelatinous  pre- 
cipitate is  washed  free  from  sulphate  by  deoant- 
ation.  From  the  product  thus  obtained  the  organic 
salts  of  bismuth  such  as  the  gallate,  salicylate,  and 
benzoate  perfectly  free  from  contamination  with 
salts  of  mineral  acids  may  be  prepared. 

According  to  Vanino  and  Hauser  (Z.  anorg. 
Chem.,  1910,  29,  210)  bismuth  oxynitrate  may  be 
dissolved  in  a  solution  of  mannitol,  and  since  this 
solution  contains  no  excess  of  acid  it  is  very  suitable 
for  the  preparation  of  bismuth  salts  by  double  de- 
composition. In  this  way  they  prepared  the  oxalate, 
citrate,  gallate,  salicylate  and  camphorate.  The 
obvious  objection  to  these  methods  for  the  prepara- 
tion of  bismuth  salts  on  a  large  scale  is  the  use  of 
the  expensive  polyhydric  alcohols — mannitol, 
sorbitol,  dulcitol,  etc.  Thibault's  method,  which 
introduces  the  use  of  glycerin,  is  open  to  a  similar 
objection. 

Causse  (Comptes  rend.,  1891,  112,  1220;  113, 
547)  prepares  organic  salts  such  as  the  salicylate 
by  double  decomposition  of  sodium  salicylate  and 
a  solution  made  by  dissolving  bismuth  subnitrate 
or  oxide  in  concentrated  hydrochloric  acid  and 
adding  a  large  excess  of  saturated  ammonium 
chloride.  Into  this  solution  is  run  the  solution  of 
sodium  salicylate  containing  alkali  and  a  large 
excess  of  saturated  ammonium  chloride  solution. 
In  place  of  the  ammonium  chloride  sodium  chloride 
may  be  used  throughout.  The  function  of  these 
salts  is  no  doubt  similar  to  that  of  the  sodium 
nitrate  in  our  experiments  (v.  supra). 

We  have  found  that  the  white  hydroxide  can  be 
prepared  from  the  anolyte  solutions  according  to 
the  following  simple  method.  A  certain  volume  of 
the  bismuth  solution  was  run  into  an  equal  volume 
of  N  /2  sodium  hydroxide  solution  diluted  about  5 
times.  The  white  flocculent  precipitate  was  washed 
by  decantation  until  the  washings  were  free  from 
nitrate,  and  the  washed  precipitate  also  was  then 
found  to  be  free  from  nitrate.  From  the  hydroxide, 
bismuth  salicylate  was  prepared  by  Thibault's 
method.  Bismuth  oxycarbonate  in  a  flocculent  form 
was  prepared  by  blowing  carbon  dioxide  through 
the  suspension  of  hydroxide  in  water.  The 
hydroxide  can  also  be  prepared  from  the  solution 
obtained  by  dissolving  the  trinitrate  in  saturated 
sodium   nitrate  slightly   acidified   with  nitric   acid. 

The  preparation  of  xeroform. 

The  preparation  of  xeroform,  or  bismuth  tri- 
bromophenolate,  is  outlined  as  follows  in  Barrow- 
cliff  and  Carr's  "  Organic  Medicinal  Chemicals," 
p.  173. 

"  Tribromophenol,  30  kilos.,  is  dissolved  in  water 
150  kilos.,  containing  4  kilos  of  caustic  soda  and 
12  kilos,  of  bismuth  nitrate  are  added  to  the 
solution  (D.R.P.  78,889).     The  reaction  product  is 


filtered,  washed  and  extracted  with  alcohol  to  re- 
move free  tribromophenol.  The  extracted  sub- 
stance is  stated  to  yield  after  drying  50%  of  Bi203 
on  ignition.  The  commercial  product,  however, 
yields  from  57  to  61%  of  Bi203.  This  corresponds 
to  the  formula  C6H2Br30.Bi(0H)a  +  *BiaO,  which 
requires  57'4%  of  Bi203. 

To  produce  this  compound  2Bi(N03)3  are  re- 
quired for  one  C6H2Br3OH,  whereas  according  to 
the  figures  given  above  rather  less  than  one 
Bi(N03)3  is  employed  (even  supposing  this  to  be 
calculated  as  anhydrous)  and  a  considerable  pro- 
portion of  the  tribromophenol  must  be  recovered. 
These  facts  suggest  that  different  proportions  of 
the  ingredients  could  be  advantageously  used. 
Bismuth  tribromophenate  is  a  yellow  powder  in- 
soluble in  water  and  alcohol.  It  should  yield  on 
ignition  5761%  of  Bi203.  It  is  a  non-irritating 
antiseptic." 

This  method  of  preparation  exhibits  some  rather 
peculiar  features.  The  bismuth  nitrate,  whether 
already  in  solution  or  added  in  the  solid  form,  will 
react  as  if  it  contained  a  large  excess  of  free  acid. 
This  is  added  to  an  alkaline  solution  of  tribromo- 
phenol with  the  result  that  some  bismuth  oxy- 
nitrate and  free  tribromophenol  must  be  precipi- 
tated along  with  any  bismuth  tribromophenate. 
Again,  in  the  presence  of  nitric  acid  tribromophenol 
gives  rise  to  two  nitro  derivatives,  nitrodibromo- 
phenol  and  dinitromonobromophenol,  bromine 
being  displaced.  Therefore  there  is  also  a  possi- 
bility of  the  presence  of  some  of  the  bismuth  salts 
of  these  nitro  compounds  whose  physiological 
properties  may  be  doubtful.'  One  of  us  has  detected 
these  substances  in  the  product  prepared  according 
to  the  above  directions  with  the  aid  of  their  alkali 
salts,  which  are  of  a  deep  yellow  colour. 

A  specimen  of  the  yellow  xeroform  prepared  by 
this  method  was  examined.  Previous  to  the  extrac- 
tion with  alcohol  it  was  well  washed  with  cold  water 
and  filtered  at  the  pump.  A  portion  dried  in  vacuo 
was  found  to  contain  an  appreciable  quantity  of 
bismuth  oxynitrate.  The  remainder  was  carefully 
extracted  several  times  with  cold  alcohol  to  remove 
free  tribromophenol  and  it  was  found  that  the 
extract  contained  some  of  the  nitrobromophenols 
besides  much  tribromophenol.  The  extracted 
product,  after  drying  in  vacuo,  gave  on  ignition  a 
residue  of  80'25%,  lemon  yellow  in  colour.  This  was 
found  to  contain  bromine,  probably  as  oxybromide, 
and  the  substance  does  not  therefore  yield  Bi203  on 
ignition,  as  stated  above.  In  view  of  these  facts  it 
seems  certain  that  commercial  xeroform,  although 
no  doubt  suited  for  the  purpose  intended,  does  not 
possess  the  properties  of  bismuth  tribromo- 
phenolate,  which  might,  however,  be  prepared  in 
a  different  manner.  For  this  purpose  we  con- 
sidered that  the  solution  of  bismuth  nitrate  in 
sodium  nitrate  might  be  a  suitable  starting  material 
since  it  contains  the  bismuth  in  a  less  hydrolysed 
state.  Following  the  approximate  proportions 
advocated  in  the  extract  quoted,  it  was  intended  to 
use  equivalent  quantities  of  bismuth  and  tribromo- 
phenol, but  it  was  found  that  the  quantity  of  the 
latter  was  insufficient. 

The  solution,  30  c.c,  containing  0'66  g.  of  the 
metal,  was  gradually  run  with  stirring  into  20  c.c. 
of  an  alkaline  solution  of  tribromophenol  (20  g.  in 
100  c.c.  N /2  NaOH)  which  had  been  somewhat 
diluted.  A  very  bulky  pink  precipitate  was  formed. 
This  was  washed  by  decantation  with  water  several 
times,  filtered  and  dried  in  vacuo  over  sulphuric 
acid,  the  yield  being  approximately  35  g.  From 
this  the  indicated  molecular  weight  of  the  com- 
pound was  about  1100,  and  the  tribromophenate 
most  nearly  approaching  this  has  the  formula 
Bi(C6H2Br30)3,  and  molecular  weight  1198.  The 
compound  so  obtained  is  a  pink  powder,  very  dense 
when    finely    ground.      On    extraction    with    cold 


Vol.  XII.,  No.  10]        TWISS.— COMPOSITION  OF  "  GOLDEN  ANTIMONY  SULPHIDE." 


171t 


alcohol  it  gave  a  solution  of  tribromophenol  and  a 
white  residue  of  bismuth  hydroxide  which  was 
readily  soluble  in  nitric  acid.  When  the  tribromo- 
phenute  was  treated  with  caustic  soda  the  pink 
colour  was  immediately  discharged,  and  on  warm- 
ing the  white  residue  changed  to  the  yellow  meta- 
hydroxide.  Strong  ammonia  decomposes  it  in  a 
similar  manner.  This  reaction  afforded  a  method 
of  estimating  the  bismuth.  A  -weighed  quantity  of 
tho  substance  was  treated  with  hot  caustic  soda  (or 
in  the  cold  with  ammonia  and  afterwards  boiled), 
filtered,  dried,  and  ignited  to  Bi203.  One  6uch 
analysis  gave  Bi202  17"1%,  corresponding  to  15'3% 
of  bismuth  in  the  pink  xeroform.  (C6H2Br30)3Bi 
requires  17'36%  of  Bi.  On  simple  ignition  the 
substance  melted  with  decomposition  at  86° — 88°  C 
giving  a  yellow  sublimate  and  a  carbonaceous 
residue  which  wholly  disappeared  on  further  heat- 
ing. The  yellow  sublimate  was  completely  soluble 
in  alcohol  and  the  filtered  solution  contained 
bismuth.  It  is  hoped  to  examine  this  substance 
further. 

In  a  second  preparation  an  alkaline  solution 
weaker  in  tribromophenol  (10  g.  in  100  c.c.  of 
2V/2  NaOH)  was  used,  and  it  was  noticed  that  until 
excess  of  alkali  had  been  disposed  of  in  precipi- 
tating the  bismuth  as  the  white  hydroxide,  no  pink 
xeroform  appeared.  It  has  been  found  that  dilute 
caustic  soda  saturated  with  tribromophenol  gives 
the  beet  yield  and  a  uniform  product. 

The  end-point  of  the  reaction  may  be  determined 
quite  easily.  A  drop  of  the  clear  liquid  is  removed 
to  a  watch  glass  and  a  drop  of  concentrated  nitric 
acid  added.  If  a  turbidity  is  produced,  excess  of 
tribromophenol  is  present,  and  this  may  be  con- 
firmed by  adding  caustic  soda,  when  a  yellow  colora- 
tion due  to  the  sodium  salt  of  the  nitrobromophenols 
is  produced. 

A  sample  of  pink  tribromophenate,  prepared 
subsequently  from  the  same  bismuth  solution  and 
another  solution  of  tribromophenol  (N /2  NaOH 
saturated  with  tribromophenol)  gave  on  analysis 
15'46%  of  bismuth.  Although  this  compound  has  a 
definite  bismuth  content,  it  does  not  appear  to 
correspond  exactly  to  any  of  the  simpler  compounds 
which  might  be  expected.  Thus  (C6H„Br30)2Bi 
requires  1736%  of  bismuth  (CsH2Br30)2BiOH  re- 
quires 23'5%.  It  is  possibly  a  hydrate,  but  the 
point  requires  further  investigation. 

In  conclusion  one  of  us  (H.  W.  H.)  wishes  to 
express  his  thanks  to  the  Department  of  Scientific 
and  Industrial  Research  for  a  grant  which  has 
enabled  this  research  to  be  carried  out. 


Communications. 


NOTE  ON  THE  COMPOSITION  OF  "GOLDEN 
ANTIMONY  SULPHIDE." 

BY    D.    F.    TWISS. 

In  view  of  the  renewal  of  interest  in  the  composi- 
tion of  "  antimony  pentasulphide,"  as  indicated  by 
recent  investigations  by  Short  and  Sharpe,  Luff  and 
Porritt,  Kirchhof,  and  van  Rossem  and  Dekker  (J., 
1922,  109  t;  1921,  275 t;  1920,  721  a;  1920,  791a 
respectively),  it  appears  to  be  desirable  to  draw 
attention  to  the  much  earlier  and  very  careful  work 
of  O.  Klenker  on  this  subject.  This  worker  gave 
particular  consideration  to  the  trustworthiness  of 
various  methods  for  the  analysis  of  "antimony 
pentasulphide,"  and  to  the  influence  of  the  con- 
ditions of  preparation  on  the  composition  of  the 
substance.  There  are  now  indications  that  his 
important  results  are  in  danger  of  being  overlooked 


with  a  consequent  likelihood  of  expenditure  of  un- 
necessary time  and  labour. 

Klenker,  in  two  papers  in  1899  (J.  prakt.  Chem., 
1899,  59,  150^194  and  353—433),  emphasised,  like 
recent  investigators,  the  frequently  contradictory 
character  of  the  results  of  previous  workers  (e.g., 
Bunsen,  Willm,  Thiele,  Bosek  and  Brauner)  as  to 
the  behaviour  of  so-called  antimony  pentasulphide 
towards  solvents  for  free  sulphur.  His  carefully 
directed  experiments  revealed  the  fact  that  the 
composition  of  so-called  "  antimony  pentasulphide," 
i.e.,  the  proportion  of  actual  pentasulphide  to  tri- 
sulphide with  free  sulphur,  was  dependent  to  a  great 
degree  on  the  conditions  under  which  the  substance 
was  brought  into  existence.  He  was  unable  by  any 
method  to  obtain  pure  pentasulphide,  his  richest 
products  containing  this  together  with  a  small  pro- 
portion of  trisulphide  and  the  corresponding  quan- 
tity of  removable  free  sulphur.  He  found  that 
the  highest  proportion  of  pentasulphide  was 
attained  in  the  product  of  the  action  of  excess  of 
hydrogen  sulphide  solution  on  a  cold  solution  of 
carefully  prepared  antimonic  acid  ;  this  product  con- 
tained up  to  38%  of  combined  sulphur,  the  propor- 
tion for  Sb2S3  being  400%.  Various  other  methods 
of  preparation  gave  products  with  a  proportion  of 
combined  sulphur  ranging  down  to  286%,  the  actual 
content  for  S'b2S3.  The  decomposition  of  cold  solu- 
tions of  thioantimonates  by  dilute  acids,  e.g.,  hydro- 
chloric, sulphuric,  or  even  carbonic  acid,  gave  a  pre- 
cipitate containing  33—34%  of  combined  sulphur. 
This  last  result  is  of  especial  interest  because  it  is 
in  agreement  with  recent  analytical  results,  e.g., 
of  Short  and  Sharpe,  with  commercial  "  golden 
antimony  sulphide  "  prepared  in  a  similar  manner 
from  a  thioantimonate  solution,  but  with  co-pre- 
cipitation of  calcium  sulphate  and  excess  of  sulphur. 
Klenker,  however,  did  not  regard  this  product  with 
33—34%  °f  combined  sulphur  as  antimony  tetra- 
sulphide,  but  favoured  the  view  that  it  represented 
a  mixture  of  pentasulphide  and  trisulphide. 

His  experiments,  directed  particularly  at  the 
point,  demonstrated  that  real  antimony  penta- 
sulphide was  not  decomposed  by  boiling  carbon  bi- 
sulphide, but  that  actual  although  slow  separation 
of  sulphur  did  begin  at  85°— 90°  C.  Even  boiling 
water  therefore  caused  a  gradual  liberation  of 
sulphur. 

The  chief  factors  influencing  the  composition  of 
a  precipitate  of  "  antimony  pentasulphide  "  by  any 
chemical  reaction  he  found  to  be  the  degree  of 
acidity  and  the  temperature.  A  more  or  less  alka- 
line solution  gave  a  product  containing  from  28-6% 
to  32%  of  combined  sulphur;  a  neutral  or  feebly  acid 
solution,  e.g.,  a  thioantimonate  treated  cautiously 
with  acid,  yielded  a  product  with  32 — 336%  of  com- 
bined sulphur.  With  increasing  acidity  the  propor- 
tion of  combined  sulphur  in  the  precipitate  also 
increased  until  with  125%  of  acid  a  maximum  of 
combined  sulphur  was  attained  of  a  value  of  a  little 
above  38%  ;  with  more  strongly  acidic  solutions  the 
proportion  of  combined  sulphur  decreased.  The 
products  consequently  represented  all  stages  of 
composition  between  Sb2S3  and  almost  pure  Sb2S5. 

Increase  of  temperature  was  decidedly  unfavour- 
able to  the  formation  of  pentasulphide  and  a 
method  of  preparation  yielding  at  the  ordinary 
temperature  a  product  rich  in  pentasulphide  gave 
only  trisulphide  and  sulphur  at  80°  C. 

These  results,  although  not  disproving  the  possi- 
bility of  the  existence  of  antimony  tetrasulphide, 
at  least  indicate  that  the  presence  of  antimony 
combined  with  approximately  34%  of  sulphur  in 
some  samples  of  commercial  "  golden  antimony 
sulphide  "  is  capable  of  an  alternative  explanation 
to  that  postulating  the  presence  of  tetrasulphide 
(Short  and  Sharpe,  loc,  cit.).  Indeed,  Klenker's 
observation  that  reactions,  which  in  the  cold  yield  a 
product  ranging  from  28'6  to  38%  of  combined  eul- 


172t 


JOSEPH  AND  WHITFEILD.— SUDAN  ESSENTIAL  OILS. 


[May  31,  192i 


phur  (i.e.  from  Sb,S,  almost  to  Sb2S5),  at  80°  C. 
give  only  trisulphide,  obviously  suggests  that  the 
products  of  intermediate  composition  are  merely 
mixtures  or  solid  solutions  of  these  two  compounds. 
Until  further  evidence  in  its  favour  is  forthcoming, 
therefore,  the  assumption  that  "commercial  sul- 
phide of  antimony  contains  no  higher  sulphide  than 
tetrasulphide  and  that  there  is  strong  evidence  of 
the  existence  of  the  latter  "  (Short  and  Sharpe,  loc. 
cit.)  is  premature  and  without  justification. 


SUDAN  ESSENTIAL  OILS. 

BY   A.    F.    JOSEPH,    D.SC,    F.I.C.,    AND    B.    W. 
WHITFEILD,  A. I.C. 

(Concluded  from  May  15th  issue,  p.  145  t.) 

"  Seid  "  oil. 
No  description  has  been  found  in  the  literature 
of  an  essential  oil  obtained  from  any  of  the 
Cyperaceoz,  although  Seid  or  Cyperus  rutundus. 
Linn.,  is  mentioned  by  Watt  ("  The  Commercial 
Products  of  India,"  1908,  p.  465)  as  being  highly 
aromatic  and  used  by  Indians  in  perfumery.  The 
specimens  examined  here  were  sent  from  the  Nuba 
Mountains  Province,  about  20  miles  to  the  east  of 
the  White  Nile  and  about  350  miles  south  of 
Khartoum.  The  plant  (a  sedge)  grows  freely 
throughout  the  Sudan,  and  in  many  cases  becomes 
a  pest  on  irrigated  lands.  The  oil  is  contained  in 
the  rhizomes,  which  form  about  every  4  in.  of  the 
roots.  Its  description  given  by  Broun  ("  Catalogue 
of  Flowering  Plants,"  Khartoum,  1906)  (is  as  fol- 
lows:— "Glabrous  herb  with  rounded  rhizome. 
Used  in  certain  dye  preparations  to  impart  per- 
fume to  the  fabric.  The  rhizomes  are  said  to  yield 
an  essential  oil  which  is  used  as  a  perfume.     The 


fresh  roots  are  astringent  and  diaphoretic.  They 
are  used  for  indigestion  of  children.  They  .are  also 
used  in  fever."  It  may  be  added  that  the  rhizomes 
are  very  hard  and  contain  a  considerable  propor- 
tion of  starch. 

A  specimen  of  the  dried  rhizomes  gave  0-5%  of 
an  aromatic  oil  in  which  the  odour  of  camphor  could 
be  detected. 

The  constants  of'  the  small  specimen  so  far 
obtained  are  as  follows: — Sp.  gr.  20°/20°,  0'9548; 
rotation,  -199°;  refractive  index  at  25°,  1"4967; 
acid  value,  l'O;  saponification  value,  6'6;  saponifica- 
tion value  after  acetylation,  105  (corresponding  to 
45%  of  alcohol);  solubility  in  80%  alcohol,  1  in  4; 
solubility  in  70%  alcohol,  nil. 

Examination  of  this  oil  will  be  continued  when 
a  further  supply  of  material  is  available. 

AVe  are  indebted  to  Mr.  R.  E.  Massey,  Sudan 
Government  Botanist,  for  the  botanical  informa- 
tion contained  in  this  paper. 

Welcome  Tropical  Research  Laboratories, 
Khartoum. 


Errata. 


In  the  paper  on  "  The  Thermal  Dissociation  of 
Ammonia  with  Special  Reference  to  Coke  Oven 
Conditions,"  by  G.  E.  Foxwell  (J.,  Apr.  29,  1922. 
114 — 125  t),  the  following  errata  should  be  noted : 
Page  123  T,  col.  2,  in  the  paragraph  headed 
"  Effect  of  decreased  xcidth  of  oven,"  the  3rd  and 
4th  lines  should  read  "will  be  less;  on  the  other 
hand,  the  mean  temperature  of  the  hot  zone  will  be 
greater,  and  hence."  Page  123  T,  col.  1,  in  the 
formula   following  line   18,   the   minus   sign  before 

"  logw   "  should  be  omitted. 


Vol.  XLI..  No.  11.1 


TRANSACTIONS 


[June  15,1922. 


London    Section. 


Meeting  held  at  Burlington  House  on  May  1,  1922. 


MR.   E.   V.  EVANS   IN  THE  CHAIB. 


THE  DETERMINATION  OF  TAR  ACIDS  AND 
TAR  BASES  IN  ROAD  DRAINAGE  AND  MUD. 

BY  J.  J.  FOX,  D.SC,  F.I.C.,  AND  A.  J.  H.  GAUGE,  F.I.C. 

In  view  of  the  growing  use  of  coal  tar  residues 
for  many  purposes,  such  as  spraying  of  roads,  the 
possibility  of  contamination  of  water  and  streams 
has  increased.  It  has  become  important  to  detect 
and  determine  small  proportions  of  coal  tar  products 
when  dissolved  in  water  or  other  solvents  and  to 
distinguish  the  pollution  arising  from  tar  from  that 
due  to  materials  such  as  vegetable  matter  frequently 
associated  with  the  tar. 

The  bulk  of  the  tar  used  for  road  surfacing  con- 
sists of  hydrocarbons  which  are  not  readily 
determined  when  associated  with  other  organic 
substances.  Small  quantities  are  not  easily  detected 
by  any  characteristic  reactions,  because  the  hydro- 
carbons do  not  give  rise  to  products  which  can  be 
accurately  weighed  or  otherwise  estimated  when 
very  small  quantities  of  tar  are  present. 

Two  classes  of  coal  tar  constituents,  however, 
form  products  which  can  either  be  determined 
colorimetrically  or  separated  and  weighed,  namely 
the  tar  acids  and  the  tar  bases. 

In  the  course  of  a  lengthy  series  of  experiments 
conducted  primarily  with  the  object  of  determining 
the  tar  acids  and  tar  bases  in  the  drainage  and  mud 
from  tarred  roads,  methods  have  been  devised 
whereby  these  two  constituents  of  coal  tar  can 
be  determined  with  a  fair  degree  of  accuracy  even 
when  present  in  minute  proportions,  and  a  means 
of  distinguishing  between  tar  acids  and  vegetable 
phenolic  substances  has  been  worked  out. 

Tar  acids. — A  note  on  the  determination  of  tar 
acids  in  drainage  from  tarred  roads  has  been  pub- 
lished by  us  (J.,  1920,  260  t).  The  method  described 
depends  upon  the  formation  of  the  azo  dyes  ob- 
tained when  sulphanilic  acid  is  diazotised  and 
poured  into  the  suspected  water  or  drainage  after 
it  has  been  rendered  alkaline.  We  have  nothing 
to  add  regarding  the  essential  details  given  in  that 
note,  but  the  statement  concerning  distillation  as  a 
means  of  separating  tar  acids  requires  modification 
in  the  light  of  the  results  obtained  in  the  further 
investigation  herein  described.  Experience  has 
also  led  to  improvement  as  regards  the  nature  of  the 
standard  solutions.  The  shade  of  dye  produced  is 
sometimes  orange  or  red  and  cannot  always  be 
satisfactorily  compared  with  standard  solutions  con- 
taining cresols  only.  Two  additional  standards 
have  been  found  to  give  results  more  satisfactory 
for  obtaining  a  comparison  of  the  colour,  namely, 
the  fraction  of  the  tar  acids  from  coal  tar  boiling 
from  205°  to  230°  C.  (mainly  xylenols),  and  /J-naph- 
thol.  Solutions  of  these  are  used  containing 
0"00005  g.  of  the  tar  acid  or  /3-naphthol  in  1  c.c. 
Comparison  of  the  shade  given  by  the  sample  under 
examination  is  made  with  standards  containing 
either  cresols,  tar  acids  (b.p.  205°— 230°  C.),  or 
/3-naphthol,  or  mixtures  of  these  three  solutions,  all 
the  standards  containing  the  same  weight  of  phenols 
per  c.c.  For  example,  when  the  solution  of  the  azo 
dye  on  being  diluted  retains  its  reddish  6hade, 
instead  of  becoming  yellow,  it  is  an  advantage  to 
use  /3-naphthol  as  an  additional  standard  substance 
for  comparison.  It  is  necessary  to  adhere  fairly 
closely  to  the  proportion  of  alkali  mentioned  in  our 


previous  paper  as  a  very  large  excess  of  alkali  tends 
to  reduce  the  tint  produced.  If  strongly  alkaline 
solutions  are  being  tested,  the  alkalinity  should  be 
reduced  by  the  addition  of  acid. 

Several  minutes  elapse  before  the  maximum  shade 
due  to  the  specific  reaction  is  reached.  If  the  test 
solutions  are  allowed  to  stand  for  some  hours  the 
colours  frequently  change  markedly  owing,  no 
doubt,  to  slow  decomposition  of  the  diazonium 
solution. 

With  this  method,  phenol  gives  a  pure  yellow 
colour,  the  mixed  cresols  an  orange,  the  tar  acids 
(b.p.  205°— 230°  C.)  a  deeper  orange,  and  /3-naphthol 
a  red  colour.  It  is  therefore  possible  for  the 
observer  to  obtain  information  as  to  the  nature  of 
the  tar  acids  present  in  drainage  from  the  colour  of 
the  resulting  dye  solution. 

It  must  be  pointed  out  that  the  appearance  of 
a  colour  on  the  addition  of  diazotised  sulphanilic 
acid  to  an  alkaline  liquid  does  not  necessarily 
indicate  the  presence  of  tar  acids  from  coal  tar. 
Some  vegetable  extracts  give  similar  colours,  and 
vegetable  matter  is  practically  always  present  in 
one  form  or  another  in  rivers  and  streams  and  in 
the  drainage  from  roads. 

Aqueous  extracts  of  various  vegetable  substances 
prepared  by  allowing  twelve  parts  of  London  tap 
water  and  one  part  of  vegetable  debris  to  stand 
for  24  hours,  were  found  to  contain  phenolic  sub- 
stances to  the  following  extent  when  determined 
by  the  colorimetric  method  using  xylenols  as 
standard  : — Bracken,  11 ;  pear-tree  leaves,  7  ;  straw, 
3;  sawdust,  2;  sphagnum  moss,  0"4;  turf,  0"15 ;  cal- 
culated in  parts  per  100,000  of  extract.  Weaker 
extracts  prepared  from  1  part  of  vegetable  debris 
and  1000  parts  of  tap  water  showed  proportions 
of  phenolic  substances  varying  from  002  to  0"07 
part  per  100,000.  Other  Vegetable  extracts  and 
material  such  as  peaty  waters,  flax-retting  waters, 
and  silts  from  pure  streams  have  also  been  found 
to  contain  small  proportions  of  phenolic  substances. 

The  shades  of  colour  produced  by  vegetable 
extracts  with  diazotised  sulphanilic  acid  are  similar 
to  those  given  by  coal  tar  phenols,  and  it  is  there- 
fore impossible  to  distinguish  between  the  two 
classes  of  phenols  by  the  application  of  the  test 
alone. 

It  is  only  to  be  expected  that  vegetable  extracts 
should  react  with  diazotised  sulphanilic  acid,  as 
they  usually  contain  tannins  which  are  composed 
of  phenolic  condensation  products  of  various  acids, 
and  possess  hydroxyl  groups  in  suitable  positions 
for  reacting  with  diazonium  solutions. 

This  similarity  is  also  observed  when  other 
reactions  for  phenols  are  applied.  Vegetable 
extracts  absorb  bromine,  and  when  sufficiently  con- 
centrated give  precipitates  with  bromine  water; 
they  give  various  colours  with  ferric  chloride  and 
also  a  blue  colour  with  Folin's  reagent  (phospho- 
tungstic-phosphomolybdic  acid).  _  A  strong  water 
extract  of  bracken  gives  a  precipitate  with  bromine 
water  and  a  greenish-black  colour  with  ferric 
chloride,  and  all  vegetable  extracts  shown  to  con- 
tain phenolic  substances  by  diazotised  sulphanilic 
acid  solution  also  gave  the  Folin  reaction. 

It  is  of  considerable  importance,  in  view  of  the 
universal  distribution  of  vegetable  matter,  to 
possess  some  means  of  separating  the  two  classes 
of  phenolic  substances,  and  for  this  purpose  two 
methods  were  investigated. 

The  first  method  depends  upon  distillation  of  the 
extract  or  drainage.  It  is  found  that  the  coal  tar 
phenols  are  largely  volatile  when  distilled  with 
steam,  whereas  the  vegetable  phenolic  compounds 
are  mainly  non-volatile  (Table  I). 

While  therefore  coal  tar  phenols  are  undoubtedly 
more  volatile   than   vegetable  phenolic  substances 


174  T 


FOX  AND  GAUGE.— TAR  ACIDS  AND  BASES  IN  ROAD  DRAINAGE.  [June  15,  1922. 


when  distilled  under  the  same  conditions,  it  is 
evident  that  it  would  be  inaccurate  to  rely  on  the 
method  of  distillation  alone  for  distinguishing 
between,  or  separating,  the  two  classes.  Some  of 
the  high-boiling  coal  tar  phenols  are  non-volatile 
and  some  of  the  vegetable  phenolic  substances  are 
distinctly  volatile.  R.  D.  Scott  (J.  Ind.  Eng. 
Chem.,  1921,  13,  422)  found  that  tannins  give  the 
Folin  test  for  phenols,  and  he  states  that  distilla- 
tion proved  an  effective  means  of  separation.  As 
the  result  of  our  experiments  we  have  concluded 
that  distillation  alone  does  not  enable  us  with  cer- 
tainty to  regard  the  volatile  phenolic  substances  as 
solely  due  to  coal  tar  and  the  non-volatile  solely  to 
vegetable  matter. 

Table  I. 
Volatility  of  Phenols. 


Parts  of  tar  acid  per 

100,000 

parts  of 

Percentage 

Description  of  aqueous  liquid. 

extract. 

volatile. 

Total. 

Volatile. 

SExtract  of  a  tar  for  road  tarring 

67 

00 

90 

^Extract  of  a  tar  containing  the 

Ihigher-boUing  tar  acids 

3 

1-8 

60 

Effluent  from  a  coke-oven  works 

42 

39 

93 

Extract  of  bracken  (1) 

10 

0-2 

o 

do.            do.      (2) 

4-4 

0-2 

5 

Extract  of  sawdust  (1) 

2-5 

0-06 

2 

do.            do.      (2) 

SO 

004 

1 

Extract  of  turf 

0-5 

006 

12 

Extract  of  straw 

007 

001 

14 

Extract  of  pear-tree  leaves 

7-0 

0-3 

4 

Peaty  water 

0-05 

nil 

nil 

The  second  method  depends  upon  extraction  of 
the  liquid  with  chloroform,  followed  by  extraction 
of  the  chloroform  solution  with  sodium  hydroxide. 
The  diazo-sulphanilic  acid  test  is  then  applied  to  an 
aliquot  part  of  the  sodium  hydroxide  solution.  We 
found  that  a  satisfactory  separation  of  the  two 
classes  of  phenolic  substances  could  be  effected  in 
this  manner,  as  the  vegetable  phenolic  compounds 
are  not  appreciably  soluble  in  chloroform,  whereas 
the  coal-tar  phenols  are  readily  soluble.  By  limit- 
ing the  volume  of  chloroform  used  for  the  extrac- 
tions to  the  minimum  for  convenient  working,  coal 
tar  phenols  alone  were  extracted. 

Briefly  the  details  for  estimating  tar  acids  due 
to  coal  tar  in  solution  in  water  and  in  mud  or  silt 
are  as  follows: — (1)  The  liquid  or  solid  is  extracted 
with  a  small  volume  of  chloroform;  (2)  the  resulting 
chloroform  solution  is  extracted  with  20%  sodium 
hydroxide  solution ;  (3)  the  diazo-sulphanilic  acid 
test  is  applied  to  an  aliquot  part  of  the  soda  ex- 
tract, adjusting  the  proportion  of  alkali  in  the 
standard  so  that  it  equals  approximately  the  pro- 
portion in  the  solution  under  examination.  It  is 
advisable  to  boil  muds,  silts,  or  other  solid  sub- 
stances with  chloroform  for  half  an  hour  under  a 
reflux  condenser  and  then  to  filter  under  pressure 
through  asbestos,  repeating  the  extraction  if 
necessary. 

When  the  insoluble  residue  from  muds  or  silts 
after  complete  extraction  of  the  tar  with  chloro- 
form is  boiled  for  half  an  hour  with  20%  sodium 
hydroxide  solution,  appreciable  quantities  of 
phenolic  substances  due  to  tannins  and  similar 
vegetable  matter  are  extracted.  In  this  way  it  is 
possible  to  obtain  information  as  to  the  probable 
origin  of  the  phenolic  substances  in  drainage,  river 
water,  or  mud,  when  no  other  source  such  as  tar  is 
known  to  be  present.  The  proportion  of  vegetable 
phenolic  compound  obtained  from  various  vegetable 
substances  (straw,  grasses,  and  vegetable  debris  in 
muds,  etc.)  by  boiling  with  20%  sodium  hydroxide 
i§  usually  l--2%    on   the  dry   weight  when  deter- 


mined by  the  sulphanilic  method  and  using  xylenols 
as  standards. 

The  concentration  of  the  solutions  dealt  with  in 
this  paper  may  appear  somewhat  small,  but  it  is 
of  the  order  actually  found  in  practice  in  drainage. 
The  method  was  especially  designed  to  deal  with 
these  minute  quantities,  although  it  can  be  used, 
subject  to  the  known  limitations  imposed  by  high 
dilution,  for  tars,  pitches,  and  similar  material. 

Tar  bases. — The  determination  of  tar  bases  in  the 
minute  proportions  in  which  they  are  likely  to  occur 
in  drainage  from   tarred  roads  or  tar-coated  sur- 
faces  is   a   rather   difficult   matter.      They   can   be 
fairly  readily  detected  by  one  or  other  of  the  follow- 
ing processes :   (1)  100  c.c.  or  more  of  the  water  or 
drainage    is    made    alkaline    and    extracted     with 
chloroform.    The  chloroform  solution  is  then  shaken 
with  sulphuric  acid  (sp.  gr.   1'27  at  15°  C),  thus 
concentrating    the    bases    in    a    few    c.c.    of    acid. 
Wagner's  reagent  (iodine   in   potassium   iodide)   is 
then   added.     An   opalescence  or  precipitate   indi- 
cates    the     presence     of     bases.        (2)     A     similar 
concentration     in     a     small    volume    of    sulphuric 
acid     (sp.     gr.     1'27     at     15°)     is     obtained     and 
the   solution   exposed   in    a   20-mm.    quartz  cell   to 
the  electric  spark  passing  between  metal  poles.     If 
tar   bases   are    present    a    pronounced    fluorescence 
(usually   blue  or   bluish-green)   is  obtained.        This 
method   of  detection   may,   after  some  experience, 
be  employed   to  obtain   an   idea  of  the  proportion 
of  tar  bases,   since  the  extent  of  the  fluorescence 
varies   with    the    proportion    of    tar  base    present. 
Solutions  containing  more  than  about  3  parts  of  tar 
base  per  100,000  give  a   fluorescence  entirely  con- 
centrated at  the  end  of  the  cell  nearest  the  spark. 
As  the  quantity  of  base  decreases  the  fluorescence 
becomes  more  diffused  through  the  cell  until,  when 
only  1  part  per  100,000  is  present,  the  fluorescence 
is  diffused  throughout  the  cell.     As  an  indication 
of  the  delicacy  of  this  method  of  detection  it  may  be 
stated  that  if  the  bases  in  100  c.c.  of  a  drainage 
containing  one  part  of  tar  base  in  a  million  parts 
of  water  be  concentrated  as  above  and  collected  in 
10  c.c.  of  sulphuric  acid(sp.  gr.  1*27  at  15°),  the  acid 
solution   shows    a    distinct    blue   fluorescence,    and 
much  smaller  proportions  of  base  may  be  detected 
if  larger  volumes  of  the  water  be  employed. 

Dilute  solutions  of  tar  bases  also  give  ultra- 
violet absorption  spectra,  which  can  be  photo- 
graphed and  the  absorption  compared  with  that 
given  by  known  weights  of  tar  bases. 

Various  methods  have  been  investigated  with 
a  view  to  obtain  accurate  quantitative  estima- 
tions of  tar  bases.  Amongst  these  have  been 
attempts  to  estimate  the  bases  by  ascertaining  the 
amount  of  iodine  in  the  precipitates  produced  by 
Wagner's  reagent  and  by  determining  the  basicity 
of  solutions  containing  small  quantities  of  tar 
bases.  These  methods,  however,  do  not  give  satis- 
factory results.  The  tar  bases  may  be  separated 
in  acid  solution  as  already  described  and  the  total 
nitrogen  determined  by  the  Kjeldahl  method,  but 
the  results  are  liable  to  serious  error  owing  to  the 
minute  quantities  dealt  with,  and  are  obviously 
empirical.  When  attempts  are  made  to  apply  the 
"  albuminoid  ammonia  "  method  of  ordinary  water 
analysis  volatile  bases  escape  attack  by  the  alkaline 
permanganate  to  a  large  extent. 

The  method  which  we  have  found  the  most  suc- 
cessful is  based  upon  the  evaporation  of  the  tar 
bases  with  excess  of  picric  acid,  and  is  a  modifica- 
tion of  that  used  by  Fliirscheim  for  the  estimation 
of  bases  (Chem.  Soc.  Trans.,  1910,  97,  95),  when 
large  quantities  of  bases  are  available.  Fliirscheim 
dried  the  picrates  at  100°  C,  but  picric  acid  has  a 
slight,  although  distinct,  volatility  at  100°  C.  In 
our  modification  of  the  method  the  mixture  of 
picric  acid  and  base  is  dried  at  70°  C.  The  process 
requires  careful  attention  and  manipulation,  as  the 


Vol.  XLI.,  No.  11.1        FOX  AND  GAUGE.— TAR  ACIDS  AND  BASES  IN  ROAD  DRAINAGE.  175  t 


weight  of  base  in  the  majority  of  tarred  road 
drainages — when  half  a  litre  of  water  is  used — 
amounts  to  a  few  milligrams  only. 

Method. — The  details  refer  primarily  to  road 
drainage,  but  the  method  can  be  used  satisfactorily 
for  tar,  pitch,  or  mud  with  suitable  modifications 
in  the  quantity  of  the  material  taken  for 
examination.  500  c.c.  of  the  sample  is  rendered 
slightly  alkaline  with  sodium  hydroxide  and  ex- 
tracted three  times  with  chloroform,  using  about 
100  c.c.  of  chloroform  altogether.  The  chloroform 
solution  is  extracted  three  times  with  sulphuric  acid 
(sp.  gr.  1'27  at  15°),  using  about  40  c.c.  of  acid 
altogether.  The  acid  is  then  washed  once  with  a 
little  chloroform,  diluted  to  about  150  c.c.  with 
water  and  made  slightly  alkaline  with  50%  sodium 
hydroxide,  the  mixture  being  kept  cool  by  immer- 
sion in  cold  water.  The  alkaline  solution  is  ex- 
tracted three  times  with  chloroform,  U6ing  about 
100  c.c  of  chloroform  altogether,  the  chloroform 
solution  being  run  into  a  separator  the  exit  tube 
of  which  should  be  dry.  The  chloroform  is  washed 
once  with  10  c.c.  of  water  (which  remains  as  an 
upper  layer)  and  carefully  transferred  to  a  tared 
vessel  containing  a  weighed  quantity  of  picric  acid 
which  has  been  previously  dried  for  2  or  3  hours 
at  70°  C.  None  of  the  wash  water  should  be 
allowed  to  enter  the  vessel.  The  10  c.c.  of  water 
in  the  separator  is  washed  twice  with  10  c.c.  of 
chloroform  and  this  chloroform  added  to  the  main 
solution.  Dry  picric  acid  dissolved  in  chloroform 
gives  an  almost  colourless  solution,  but  if  small 
quantities  of  tar  bases  are  present  the  liquid 
assumes  a  yellow  colour.  The  chloroform  solution 
is  slowly  evaporated  on  a  water  bath,  without 
•exposing  the  vessel  directly  to  the  steam,  and  when 
practically  all  the  chloroform  has  evaporated  the 
vessel  is  transferred  to  an  oven  at  70°  C.  Usually 
two  weighings,  one  after  an  hour  and  the  second 
after  a  further  half-hour,  are  sufficient  to  obtain 
constant  weight.  The  weight  of  picric  acid  to  be 
used  should  be  at  least  ten  times  the  anticipated 
weight  of  bases.  A  suitable  quantity  for  500  c.c. 
of  road  drainage  is  01  g. 

This  method  has  been  found  to  give  accurate 
results  with  small  quantities  of  quinoline,  iso- 
quinoline,  acridine,  and  various  fractions  of  tar 
bases  from  refined  and  dehydrated  tars,  either  when 
the  base  has  been  directly  dissolved  in  chloroform 
and  evaporated  with  picric  acid,  or  after  extracting 
a  small  quantity  of  base  dissolved  in  a  large  volume 
of  water  by  the  method  described  above.  The 
lower-boiling  bases,  such  as  pyridine,  are  not  wholly 
retained  by  the  picric  acid,  and  so  cannot  be 
accurately  determined  by  the  method,  although 
where  they  are  mixed  with  large  quantities  of  other 
bases,  as  is  usual,  the  deficiency  due  to  the  loss  of 
a  portion  of  the  lower  bases  is  very  slight.  In  such 
cases,  the  method  gives  a  very  fair  approximation 
to  the  total  weight  of  bases  present.  The  lower- 
boiling  bases  are  not  usually  present  to  any  extent 
in  refined  tars  used  on  roads,  so  that  this  difficulty 
is  of  no  practical  importance. 

Table  II. 
Determination  of  bases. 


Tar  base. 

Weight 

Weight 

taken. 

found. 

Quinoline — 

Dissolved  directly  in  chloroform     . . 

0-0076 

0-0074 

Dissolved  in  400  c.c.  water  and  ex- 

tracted 

0-0167 

00168 

Acridine — • 

Dissolved  directly  in  chloroform     .. 

0-0093 

0-0090 

Dissolved  in  200  c.c.  water  and  ex- 

0-0090 

0-0089 

Tar  bases,  b.p.  lS0°-300o  C. — 

Dissolved  directlv  in  chloroform 

0-0079 

0-0081 

Dissolved  in  400  c.c.  water  and  ex- 

0-0155 

00153 

It  was  pointed  out  in  the  section  dealing  with  the 
tar  acids  that  the  universal  distribution  of  phenolic 
substances  is  a  factor  which  must  be  taken  into 
account  when  applying  the  diazo-sulphanilic  acid  or 
other  teste  for  phenols,  and  that  the  further  pro- 
cesses of  distillation,  or  preferably  chloroform 
extraction,  are  necessary  to  obtain  a  tiecision  as  to 
whether  any  phenolic  substance  found  is  of  coal 
tar  or  vegetable  origin,  or  of  both.  We  have 
not  hitherto  discovered  any  substance  giving 
tar  base  tests  in  any  natural  drainage,  water, 
mud,  or  silt  derived  from  sources  known  to 
be  uncontaminated  by  coal  tar.  In  other  words, 
if  bases  are  found  giving  the  teste  described  above, 
we  are  of  opinion  that  they  can  fairly  safely  be 
attributed  to  pollution  by  the  products  of  the  dis- 
tillation of  coal  or  wood.  Many  other  substances, 
such  as  sheep  dips  containing  tar  bases,  might,  of 
course,  account  tor  tar  bases  found  in  drainage. 

Results  obtained  with  samples  of  effluents,  tars, 
and  pitches,  using  the  methods  described  above,  are 
shown  in  Table  III. 

Table  III. 
Acids  and  bases  in  effluents,  tars,  and  pitches. 


Tar  acids. 

Tar  bases. 

Parts 

Parts 

per 

/o 

per 

0/ 

100,000. 

100,000. 

Effluent      from      coke-oven 

worka 

40 



14 



Do.                 do. 

42 

— 

35 



Effluent  from  wood  tar  works 

3-5 

— 

0-8 



Tar  for  tar  macadam 

— 

3-6 



4-4 

Tar  for  roads* 

— 

2-7 



3-8 

Pitch- 

London  manufacture 

— . 

0-37 



3-2 

Scotch  manufacture 

— 

2-2 

— 

3-4 

•  Prepared  to  Road  Board  specifications. 

Tar  acids  and  bases  have  also  been  determined 
satisfactorily  in  a  number  of  black  varnishes,  anti- 
corrosive  preparations,  and  other  materials  con- 
taining coal  tar. 

Alteration  in  composition  of  aqueous  extracts  of 
tar  products.  It  is  important  that  samples  con- 
taining small  proportions  of  tar  products  in  aqueous 
solution  should  be  examined  shortly  after  collection, 
as  many  of  the  constituents  of  coal  tar  dissolved  in 
non-eterile  water  undergo  biological  change  fairly 
rapidly.  The  following  results  were  obtained  with 
a  water  extract  of  refined  coal  tar  diluted  with 
London  tap  water. 


Parts  per  100,000. 

At  once. 

2  days. 

4  days. 

7  days. 

"  Oxygen  consumed  ' 
hours  at  80°  F.     . . 

in   4 

217 
0-75 

1-59 
0-63 

0-60 
Traces. 

0-44 

Traces. 

In  another  experiment  the  "  oxygen  consumed  " 
and  tar  acids  diminished  even  more  rapidly, 
dropping  75%   in  two  days. 

This  change  in  composition  is  accompanied  by 
the  absorption  of  the  dissolved  oxygen  as  the  follow- 
ing results  given  by  a  dilute  tar  extract  6how  :  — 


Parts  per  100,000. 

At  once. 

5  days.  65°  F. 

Dissolved  oxygen  present 

"  Oxygen  consumed  "  iu  4   hours  at 

1-02 

0-54 
0-25 

0-67 

0-22 
Traces. 

a2 


176  T 


FOX  AND  GAUGE.— TAR  ACIDS  AND  BASES  IN  ROAD  DRAINAGE.       [June  15, 1922. 


A  detailed  investigation  of  specific  constituents 
present  in  coal  tar  showed  that  phenol,  the  three 
cresols,  and  higher-boiling  tar  acids,  quinoline, 
isoquinoline,  and  naphthalene  when  present  in 
small  concentrations  in  nan-sterile  London  tap 
water  disappeared  more  or  less  rapidly,  the  change 
being  accompanied  by  the  absorption  of  dissolved 
oxygen.  Acridine,  however,  did  not  undergo  any 
change. 

Table  IV.  gives  a  summary  of  the  results  of  some 
of  these  experiments  :  — 

Table  IV. 
Oxidation  of  tar  constituents. 


Parts  per  100,000. 

Substance 

Substance. 

Weight  of 

remaining 

oxygen 

substance. 

at  the  end 

absorbed  in 

g- 

of  5  days. 

5  days  at 
65°  F. 

Phenol     . 

0-4 

Nil 

0-5 

o-Cresol    . . 

0-4 

Nil 

0-5 

fn-Cresol  . . 

0-4 

Nil 

0-5 

p-Cresol  . . 

0-4 

Nil 

0  5 

Tar    acids,     b.p.     205°- 

230°  C. 

0-4 

Mostly 
oxidised. 

0-3 

Quinoline1 

0-76 

Nil 

0-9 

Isoquinoline 

10 

Partly 
oxidised. 

0-2 

AcridiDe  . . 

0-2 

No  change. 

Nil 

Naphthalene 

0-8 

Mostly 
oxidised. 

0-75 

The  experiments  with  phenol  and  quinoline  were 
repeated  in  sterilised  tap  water  containing  0"7 
part  of  dissolved  oxygen  per  100,000;  no  change 
occurred,  and  no  dissolved  oxygen  was  absorbed. 
Stronger  solutions  in  ordinary  non-sterile  London 
tap  water,  6uch  as  saturated  extracts  of  tar  con- 
taining 80  parts  of  tar  acid  per  100,000,  or  solutions 
of  50  parts  of  phenol  per  100,000,  do  not  undergo 
this  alteration  even  on  standing  several  months. 

The  fact  that  phenol  undergoes  oxidation  by  the 
action  of  certain  bacteria  has  already  been  stated 
by  Fowler,  Ardern,  and  Lockett  (Proc.  Roy.  Soc, 
1910,  B  83,  149—156;  J.,  1911,  30,  105—177),  but 
it  does  not  appear  to  have  been  definitely  established 
that  in  dilute  solution,  with  concentrations  of  about 
1  part  per  100,000,  not  only  phenol,  but  other  tar 
constituents  also  are  oxidised  in  ordinary  non- 
sterile  tap  water,  although  it  has  been  known 
generally  that  effluents  containing  tar  products 
have  a  large  capacity  for  de-aerating  well- 
oxygenated  waters. 

We  acknowledge  the  valuable  help  rendered  in 
this  investigation  by  Mr.  E.  H.  Nurse,  B.Sc, 
A. I.C.,  Mr.  P.  M.  Mooney,  B.Sc,  A.I.C.,  and  Miss 
G.   R.  Mann,   B.Sc,   A.I.C. 

We  desire  to  express  our  indebtedness  to  Sir 
Robert  Robertson,  F.R.S.,  for  permission  to  publish 
the  methods  and  results  in  this  paper. 

Government  Laboratory,  London. 

Discussion. 

The  Chairman  said  that  from  the  paper  he  was 
not  able  to  judge  the  degree  of  toxicity  of  the  tar 
constituents  named,  except  in  the  case  of  acridine, 
which  seemed  to  be  highly  toxic.  The  work,  from 
the  bacteriological  point  of  view,  was  very  interest- 
ing, but  these  experiments  had  been  carried  out 
in  the  laboratory  and  he  hoped  the  authors  would 
give  a  definite  idea  of  the  difficulties  that  might 
arise  from  the  use  of  tar  on  roads  adjacent  to 
streams. 

Dr.  B.  Dyer  said  he  had  been  engaged  some  time 
since  in  the  investigation  of  a  case  of  alleged  injury 
not  only  to  fish  but  also  to  vegetation  in  the  shape 
of  water-cress,  either  simultaneously  with,  or  imme- 
diately   after,    the   first   heavy    fall    of   rain   on   a 


tarred  road  that  had  recently  been  subjected  to  a 
series  of  severe  frosts.  The  drainage  had  passed 
by  a  short  cut  through  a  series  of  water-cress  beds 
and  into  a  river,  and  the  water-cress  had  died  in 
the  channel  of  these  washings,  and  at  the  same  time 
the  trout  in  the  river  had  turned  up.  He  was 
puzzled  to  know  what  were  the  constituents  in  the 
tar  which  were  so  strongly  toxic  to  fish — something 
beyond  the  tar  acids,  since  these  had  been 
mainly  removed.  In  one  experiment  15  g.  of  Road- 
Board  tar  containing  only  about  3%  of  phenols, 
ground  up  with  sand  and  clay  to  make  200  g.  of 
tarry  earth,  had  been  shaken  up  with  tap  water 
in  a  Winchester  quart  for  two  hours  and  allowed 
to  settle,  the  water  filtered  through  paper  and  the 
mud  allowed  to  drain.  The  bottle  was  re-filled  with 
water  and  the  residue  shaken  up  again,  the  mud 
being  again  filtered  off  and  drained.  This  process 
was  repeated  nearly  40  times.  The  tar  acids  were 
in  the  earlier  stages  easily  recognisable  by  the  tests 
described  by  Dr.  Fox,  but  they  soon  disappeared. 
At  the  34th  washing  the  water  was  still  toxic  to 
small  carp.  In  the  first  few  successive  half-gallon 
filtrates  the  fish  showed  early  signs  of  discomfort 
and  died  within  an  hour  or  two ;  and  up  to  the 
20th  extraction  fish  placed  in  the  water  died  within 
24  hours.  The  rapidity  of  the  toxic  action  in 
further  successive  dilutions  gradually  decreased, 
but  it  was  sufficient  to  cause  death  in  a  few  days 
even  in  the  34th  extraction.  It  was  clear  that  as 
far  as  fish  were  concerned,  there  was  something 
much  more  dangerous  than  tar  acids.  The  evanes- 
cence of  tar  acids  under  bacterial  action  was,  as 
Dr.  Fox  stated,  remarkable. 

Mr.  Julian  L.  Baker  said  that  in  the  neighbour- 
hood of  certain  industrial  centres,  particularly 
maltings,  the  liquor  which  was  used  for  steeping 
the  barley  became  extremely  foul ;  sometimes  such 
liquor  might  be  turned  into  a  river  or  stream,  with 
the  result  that  in  the  vicinity  the  fish  died.  The 
steeping  liquor  contained  a  large  amount  of  readily 
oxidisable  matter  which  absorbed  the  oxygen  from 
the  stream  and  the  fish  died  from  suffocation. 
Possibly  what  was  sometimes  attributed  to  tarred 
roads  might  be  due  to  other  causes  entirely.  Near 
most  trout  streams  there  were  gulleys  and  holes 
filled  with  stagnant  and  putrid  water,  the  legacy 
of  previous  floods.  A  heavy  rain  would  cause  such 
water  to  flow  into  the  river,  and  it  might  well  be 
that  such  inflow  was  the  cause  of  the  trouble.  It 
seemed  to  him  that  such  circumstances  should  be 
taken  into  account  when  alleged  contamination 
from  tarred  roads  was  being  inquired  into. 

Mr.  Arnold  Philip  said  that  he  had  always  hoped 
that  it  would  become  possible  to  test  tars  by 
biological  methods,  e.g.,  on  small  fish,  but  he  was 
afraid  that  this  hope  could  not  be  fulfilled.  From 
the  experiment  that  Dr.  Dyer  had  mentioned,  it 
seemed  hopeless  to  get  a  tar  of  which  the  aqueous 
extract  would  not  have  a  toxic  effect  on  fish. 

Mr.  Walter  F.  Reio  said  that  his  own  experience 
had  led  him  to  believe  that  the  aggregate  with 
which  the  tar  was  mixed  had  a  great  deal  to  do 
with  the  effluent.  In  the  district  where  he  resided, 
the  aggregate  sometimes  used  was  known  as 
Kentish  rag,  a  sandstone  cemented  together  by 
calcium  carbonate,  and  there  was  no  doubt  that 
the  calcium  carbonate  had  some  action  upon  the 
constituents  of  the  tar.  In  some  rough  biological 
experiments  on  fish  he  had  found  that  tho  action 
of  this  aggregate  on  the  effluent  was  beneficial.  He 
did  not  carry  the  subject  sufficiently  far  to  decide 
whether  the  tar  acids  became  more  soluble,  and 
being  more  soluble  were  less  toxic.  With  regard 
to  the  source  of  pollution  an  interesting  case  had 
once  come  under  his  notice,  in  which  a  chemical 
factory  had  been  sued  for  damage  by  the  owners 
of  a  salmon  river,  the  fish  having  been  found  dead 
in  large  numbers  along  the  side  of  the  river.     The 


Vol.  XU.,  No.  11.] 


GAUGE.— PURIFICATION    OF    FLAX    RETTING    EFFLUENTS. 


177  T 


effluent  from  the  chemical  factory  was  supposed 
to  be  the  cause,  but  he  could  not  find  any  effluent 
from  that  factory  that  was  sufficient  to  cause  any 
injury  of  that  kind,  the  dilution  being  so  great. 
He  had  found,  however,  that  there  was  a  timber 
creosoting  factory  a  quarter  of  a  mile  away,  and 
although  the  effluent  from  it  was  quite  clear  and 
the  bank  adjoining  the  factory  was  free  from  traces 
of  creosote,  there  was  a  film  on  the  water  lower 
down,  which  proved  to  be  creosote.  He  had  found 
that  the  creosote  factory  had  been  placed  on  the 
outcrop  of  a  layer  of  gravel,  through  which  the 
creosote  had  passed  and  eventually  come  out  into 
the  flow  of  the  river  half  a  mile  away.  To  collect  the 
film  he  had  drawn  a  silk  ribbon  steeped  in  molten 
beeswax  along  the  surface  of  the  water  until  he 
had  collected  a  considerable  quantity  of  the  iri- 
descent film.  He  had  been  able  clearly  to  prove 
that  this  pollution  had  actually  caused  the  death 
of  a  number  of  salmon  and  not  the  effluent  from 
the  chemical  factory. 

Dr.  Dyer  said  he  believed  that  a  tar  Macadam 
road  was  less  likely  to  cause  trouble  than  the 
merely  tar-painted  road.  The  road  he  had  spoken 
of  was  tar-painted. 

Mr.  Reid  said  that  when  they  had  used  a  clayey 
gravel  on  the  roads  in  his  neighbourhood  there  was 
no  injurious  effluent.  The  clay  seemed  to  absorb 
everything  that  was  injurious. 

Mr.  W.  Kirby  said  that  the  author  condemned 
acridine  as  being  the  most  toxic  ingredient  of  tar 
and  rather  condemned  coal  tar  as  a  material  for 
binding  slag  or  granite  or  whatever  was  used  on 
roads.  Acridine  occurred  in  very  minute  quantities 
in  the  anthracene  fraction  of  tar,  but,  apart  from 
that,  it  was  only  very  slightly  soluble  in  cold  water, 
so  that  the  amount  which  would  pass  into  solution 
would  be  exceedingly  minute,  and  when  it  was 
remembered  what  a  small  quantity  would  come  into 
a  stream,  the  dilution  then  would  be  very  large 
indeed.  Therefore  Dr.  Fox's  statement  must  be 
accepted  with  a  certain  amount  of  reserve. 

Dr.  Fox,  in  reply,  said  be  did  not  intend  in  any 
way  to  condemn  tar.  What  he  desired  to  point  out 
was  that  in  the  present  state  of  our  knowledge,  and 
having  regard  to  the  practical  difficulties  expe- 
rienced in  ensuring  adequate  dilution  in  the  event 
of  sudden  rainfall,  it  was  better  to  avoid  the  use  of 
tar  in  the  few  places  where  it  might  give  rise  to 
trouble.  The  solubility  of  acridine  in  water  could 
be  demonstrated  readily  by  shaking  pure  acridine 
with  about  2  litres  of  water,  when  a  fluorescent 
liquid  would  result.  The  amount  of  dissolved 
acridine  could  be  determined  accurately  by  the 
process  described.  The  quantity  was  more  than 
enough  to  kill  fish,  and,  in  fact,  as  little  as  2J  parts 
per  ten  million  of  water  might  be  fatal  to  trout.  If 
phenols  and  naphthalene  were  present  in  addition, 
to  the  extent  of  one  part  or  less  per  100,000,  the 
liquid  became  still  more  dangerous.  The  experi- 
ments had  actually  been  tried  on  the  field  scale  at 
a  site  in  Hampshire  and  were  not  6olely  laboratory 
tests.  The  results  of  the  field  experiments  were  in 
the  hands  of  the  Ministries  of  Transport  and  of 
Agriculture  and  Fisheries,  and  might  in  the  future 
be  made  public.  An  interim  report  on  the  subject 
had  been  issued  by  the  Ministries  on  March  14,  1922 
(Paper  No.  149.  Roads).  There  was  no  certainty 
that  fish  would  leave  a  polluted  area,  and  they  might 
remain  in  contact  with  an  effluent  or  drainage  long 
enough  to  be  overpowered  by  the  minute  quantities 
of  poisons  present  in  the  liquid.  He  did  not  know 
whether  it  was  commercially  feasible  at  present  to 
remove  tar  acids,  bases,  and  naphthalene  from  tar 
for  use  in  special  places,  or  whether  the  tar  could 
be  rendered  entirely  free  from  risk  by  some  modifica- 
tion in  the  method  of  application.  Kentish  rag  for 
tar  macadam,  mentioned  by  Mr.  Reid,  would  no 
doubt  be  effective  because  it  was  a  very  absorbent 
stone  and  would  hold  the  tar  well. 


DISPOSAL    AND    PURIFICATION     OF    FLAX 
RETTING    EFFLUENTS. 

BY    A.    J.    H.    GAUGE,    F.I.O. 

During  the  Government  ownership  of  flax  fac- 
tories in  England  the  question  of  the  disposal  of 
the  retting  effluents  to  avoid  pollution  of  rivers  was 
referred  to  the  Government  Laboratory  for  investi- 
gation. A  large  amount  of  work  was  done  at  the 
laboratory  and  at  one  of  the  flax  factories  in  en- 
deavouring to  ascertain  a  method  of  purifying  the 
contaminated  waters  satisfactorily. 

A  short  account  of  the  work  and  an  outline  of 
the  results  obtained  are  now  put  forward  in  the 
hope  that  they  may  prove  of  service  to  those 
interested  in  the  flax  industry. 

Composition  and  character  of  ret  water. — The 
waste  liquors  which  are  obtained  as  a  result  of  the 
retting  of  flax  are  dark  yellowish-green  liquids 
possessing  offensive  odours.  They  contain  large 
proportions  of  putrefactive  organic  matter  and  are 
acid  in  reaction  owing  to  the  presence  of  organic 
acids  and  dissolved  carbon  dioxide.  The  organic 
matter  is  largely  of  carbohydrate  origin,  but  in- 
cludes tannin  compounds  and  proteins.  In  their 
general  composition  ret  waters  bear  some  resem- 
blance to  the  waste  liquors  obtained  from  the  dis- 
tillery or  brewing  industries  or  from  the  steeping 
of  barley,  and  differ  from  raw  sewage  in  the  pro- 
portion of  suspended  matter  (which  is  small)  and  in 
their  lower  proportion  of  nitrogenous  matter.  The 
experiments  conducted  by  the  Royal  Commission 
on  Sewage  Disposal  on  distillery  wastes  (vide 
6th  Report)  have  afforded  much  information  in 
connexion  with  the  problem  of  purifying  ret  waters. 

The  actual  quantity  of  impurities  in  ret  waters 
obtained  from  different  retting  factories  varies 
appreciably,  while  ret  waters  even  from  the  same 
factory  contain  varying  proportions  of  soluble 
matter.  Table  I.  gives  some  analyses  of  ret  water 
from  different  factories,  and  Table  II.  shows  the 
variation  in  composition  of  ret  waters  from  the  same 
factory. 

Table  I. 
Analyses  of  ret  water  from  different  factories. 


Parts  per 

100.000. 

1. 

2. 

3. 

•4. 

Saline  ammonia 

0-09 

0-45 

2-5 

319 

Albuminoid  ammonia 

0-62 

219 

30 

3-48 

Oxygen  consumed  in  4  hours 

at80°F.    ..          .. 

12-5 

43-2 

60-9 

70-5 

Acidity  (calculated  as  carbon 

18 

51 

75 

102 

Dissolved  oxygen  absorbed 

in  5  days  at  65°  F. 

8 

69  ~ 

160 

•  The  volume  of  ret  water  of  composition  No.  4  obtained  per  ton 
of  flax  retted  is  about  2500  gallons. 

Table  II. 
Analyses  of  ret  water  from  the  same  factory. 


Parts  per  100,000. 

(a) 

(*)             (c) 

« 

Oxygen  consumed  in  4  hours 
at  80°  P 

Acidity  (calculated  as  carbon 
dioxide) 

70-5 
102 

596 

101 

56-3 

88 

38-9 

8-8 

When  raw  ret  waters  are  run  direct  into  a  stream 
the  organic  matter  undergoes  decomposition  and 
de-oxygenates  the  river  water,  and  unless  the 
dilution  is  sufficiently  large  the  stream  is  likely  to 


178  T 


CHAMBERS.— TAR    DISTILLATION. 


[June  15,  1922. 


become  offensive  and  unsuitable  for  fish  life.  There 
is  no  question  therefore  that  unpurified  ret  water 
should  not  be  run  direct  into  rivere  unless  the  river 
is  of  a  tidal  character  or  of  such  volume  that  the 
ret  water  is  enormously  diluted. 

Methods  of  purification. — These  can  be  broadly 
divided  into  two  classes,  viz.  (1)  chemical  precipita- 
tion, (2)  biological  treatment,  analogous  to  that 
used  in  the  purification  of  sewage  and  some  trade 
wastes. 

(1)  Chemical  precipitation.  The  addition  of 
chemicals,  such  as  lime  and  aluminium  sulphate, 
has  the  effect  of  neutralising  the  acidity  and  pre- 
cipitating some  of  the  organic  matter.  It  is  found 
that  under  the  most  favourable  conditions  about 
60%  of  the  organic  matter  is  precipitated.  Lime 
alone  is  usually  sufficient,  although  lime  and 
aluminium  sulphate,  or  lime  and  alumino-ferric, 
are  sometimes  rather  more  effective.  The  propor- 
tions of  chemical  precipitant  required  vary  with  the 
acidity  and  strength  of  the  ret  water.  For  a  ret 
water  possessing  a  composition  similar  to  that  given 
by  No.  4  in  Table  I.  either  0'45%  of  lime  (4*  lb. 
of  pure  lime  per  100  gallons  of  ret  water)  or  0'25% 
of  lime  and  0'2%  of  aluminium  sulphate  (2$  lb.  of 
lime,  2  lb.  of  aluminium  sulphate  per  100  gallons  of 
ret  water)  are  suitable  quantities  for  precipitating 
50 — 60%   of  the  organic  matter. 

As  was  pointed  out  above,  the  proportion  of  lime 
will  vary  with  the  strength  and  acidity  of  the  ret 
water.  With  a  little  experience  it  is  possible  to 
judge  approximately  when  sufficient  lime  has  been 
added.  Generally,  raw  ret  water  has  a  dark 
yellowish-green  colour.  When  only  sufficient  lime 
is  added  to  neutralise  the  acidity  the  liquid 
becomes  more  turbid  and  assumes  a  brownish  colour. 
When  it  is  necessary  to  add  a  larger  proportion  of 
lime  for  the  purpose  of  precipitating  about  50 — 60% 
of  the  organic  matter  a  large  sediment  forms  and 
the  supernatant  liquid  becomes  bright  yellow  or 
orange  in  colour.  Care  should  be  taken  that  ret 
water  containing  a  large  excess  of  lime  is  not  run 
direct  into  a  river  or  stream,  as  free  lime  has  a 
harmful  effect  on  fish  life.  The  precipitate  formed 
should  be  allowed  to  settle,  removed  by  sludge 
valves  or  by  filtration,  and  dug  into  land  or  dried 
and  burnt.  Although  chemical  precipitation 
removes  a  large  proportion  of  the  organic  impurity, 
the  clear  liquids  obtained  from  limed  ret  waters 
are  still  too  impure  to  be  discharged  into  any  but 
the  largest  rivers. 

(2)  Biological  treatment.  The  purification  by 
biological  treatment  depends  on  the  oxidation  of 
the  organic  matter  in  the  impure  liquid  by  means 
of  bacteria.  The  action  is  necessarily  somewhat 
slow  and  cannot  take  place  efficiently  if  the  process 
is  conducted  as  a  mere  filtration  for  suspended 
matter  in  which  the  liquid  may  be  continuously 
poured  on  to  the  filtering  medium  at  a  rapid  rate. 
The  bacterial  action  is  also  inhibited  by  acid,  and 
it  is  therefore  necessary  to  neutralise  the  acid  with 
lime  whether  the  impure  liquid  be  disposed  on  land 
or  filtered  through  artificial  filters. 

(a)  Filtration  through  sand.  Experiments  on  a 
practical  scale  at  a  flax  factory  have  shown  that  by 
nitration  through  fine  sand  ret  water  is  amenable 
to  biological  purification.  The  depth  of  sand  was 
3  feet,  and  the  ret  water,  after  neutralisation  with 
lime,  allowed  to  filter  at  the  rate  of  10  gallons  per 
cubic  yard  of  sand  per  day.*  It  is  advisable  to 
assist  the  maturing  of  the  filter  by  mixing  a  water 
extract  of  soil  containing  nitrifying  organisms  with 
the  first  portions  of  the  limed  ret  water.  The  sand 
filter  was  found  to  purify  satisfactorily  the  liquid 
obtained  by  precipitating  ret  water  with  lime,  or 
with  a   mixture  of  lime  and   aluminium  sulphate, 

•  Ret.  water  of  a  composition  similar  to  that  of  No.  3,  Table  I, 
was  used. 


and  also  ret  water  after  the  addition  of  sufficient 
lime  to  effect  neutralisation. 

The  filtrates  were  odourless  and  almost  colourless 
liquids.  They  contained  fair  proportions  of  nitrates, 
and  the  "  oxygen  consumed  "  figure  had  been 
reduced  90%  from  that  of  the  original  raw  ret  water. 
They  were  neutral  or  only  slightly  acid,  and  were 
of  such  a  strength  that  they  could  be  safely  dis- 
charged into  a  stream  the  volume  of  which  was 
large  enough  to  enable  the  effluent  to  be  diluted 
twenty  times  on  entering  the  stream. 

(b)  Filtration  through  percolating  filters  of 
clinker,  coke,  etc.  Waste  waters  from  the  steeping 
of  barley  have  been  found  by  the  Royal  Commission 
on  Sewage  Disposal  to  be  satisfactorily  purified, 
after  liming,  by  passing  through  filters  of  coarse 
clinker  10  to  12  feet  in  depth. 

With  ret  waters  we  have  had  the  opportunity  of 
experimenting  only  with  a  percolating  filter  of 
clinker  6  feet  deep  and  with  a  very  crude  arrange- 
ment for  applying  the  liquid  to  the  surface,  but 
the  results  obtained  were  sufficient  to  indicate  that 
a  filter  of  greater  depth  and  fitted  with  an  auto- 
matic sprinkler  would  be  quite  as  efficacious  for 
the  purification  of  limed  ret  water  as  for  limed 
steep  wastes  provided  the  filter  is  properly  matured. 

(c)  Disposal  on  land.  Ret  water  being  amenable 
to  biological  purification,  if  a  sufficient  area  of 
suitable  land  is  available  and  the  process  conducted 
under  proper  conditions,  there  is  every  reason  to 
suppose  that  limed  ret  water  can  be  discharged 
on  to  land  and  purified  satisfactorily. 

There  appears  to  be  no  reason  why  ret  water 
after  neutralisation  should  not  be  discharged  into 
the  local  sewerage  system  if  the  Local  Sanitary 
Authority  agrees  to  receive  it  and  the  drainage 
system  is  close  at  hand,  as,  apart  from  the  acidify, 
there  is  nothing  in  the  composition  of  ret  water 
that  would  be  likely  to  inhibit  or  retard  the 
ordinary  processes  of  sewage  purification. 

Conclusion. — It  is  possible  partially  to  purify  flax 
ret  waters  by  chemical  precipitation  with  lime  and 
aluminium  sulphate.  Biological  treatment  on  sand 
or  percolating  filters  of  clinker,  coke,  etc.,  will 
purify  them  to  an  extent  which  will  permit  of  their 
safe  discharge  into  streams.  Treatment  on  land  or 
discharge  into  the  sewers  after  neutralisation  of  the 
acidity  are  alternative  methods  of  disposal. 

I  desire  to  thank  Sir  Robert  Robertson  for  per- 
mission to  publish  the  results  of  this  investigation. 


Newcastle   Section. 


Meeting  held  on  January  25,  1922. 


DR.   J.    H.   PATERSON  IN  THE  CHAIR. 


TAR    DISTILLATION. * 


BY   E.    V.    CHAMBERS. 


The  process  of  tar  distillation  was  formerly  con- 
fined to  a  comparatively  small  number  of  works 
more  or  less  centrally  situated  in  the  large  indus- 
trial areas,  but  during  recent  years  an  impetus  has 
been  given  to  the  process  by  the  introduction  of  new 
types  of  plant  which  have  been  adopted  in  a  large 
number  of  cases  by  the  tar  producers  at  gas  works. 
This  decentralisation  of  the  tar  distillation  process 
is  due  to  three  factors,  namely,  (1)  the  demand  for 
prepared  tar  for  road  making;  (2)  the  demand,  dur- 
ing the  war,   for   refined   products   from  tar;   and 

•  Abridged. 


Vol.  XLI.,  No.  11.] 


CHAMBERS.— TAR    DISTILLATION. 


179  T 


(3)  the  development  of  new  types  of  distillation 
plant.  As  a  result  of  this  development  more  than 
half  the  tar  produced  in  the  country  is  distilled  at 
the  point  of  production. 

The  annual  production  of  tar  at  gas  works 
exceeds  one  million  tons.  The  following  are  average 
distillation  figures  (parts  %)  obtained  from  a 
number  of  such  tars  :  — 


Horizontal  Vertical 

retort.  retort. 

Sp.  gT 1195  ..  1110 

Viscosity,  Redwood  at  70°  F.  SO  c.c.  1690  s.  . .  713  8. 

Water           8-0  . .  2-30 

Oil  to  170°  C 6-5  ..  6-3 

Oil  170"  C.-230°  C.             . .          . .        9-5  . .  201 

Oil  230°  C.  to  | 'itch          ..         ..      18-2  ..  20-0 

Pitch            59-8  ..  52-3 


gas. 
1-080 


2-80 


120 
454 
36-2 


Water 

Oils  0°-230°  C. 

Oils  230°  C.  to  pitch 

Pitch 


100-0 


1000 


The  water  content  of  the  water-gas  tar  is  lower 
than  usual,  the  bulk  of  the  water  having  been 
removed  by  mechanical  means.  It  is  not  uncommon 
to  meet  with  water-gas  tar  containing  40%  of 
water. 

About  600,000  tons  of  tar  is  also  produced  annu- 
ally at  coke-oven  by-product  recovery  plants.  The 
following  is  an  average  distillation  result  of  several 
samples  :  — Water  3'0,  light  oil  25,  middle  oil  5"0, 
creosote  oil  16'0,  anthracene  oil  150,  free  carbon 
100,  pitch  48-5%. 

Considerable  quantities  of  Mond  producer  gas  tar 
are  made  in  Great  Britain.  As  a  general  rule  this 
type  of  tar  is  highly  viscous  at  ordinary  tempera- 
tures. It  contains  a  large  proportion  of  water, 
which  is  generally  present  in  the  emulsified  con- 
dition. The  following  is  a  typical  analysis:  — 
Water  168,  oils  to  170°  C.  3-9,  oils  170°— 230°  C. 
20,  oils  230°  C.  to  pitch  229,  pitch  54/4%.  Naph- 
thalene was  absent. 

The  tar  produced  by  the  low-temperature 
carbonisation  process  contains  less  of  the  aromatic 
hydrocarbons  and  more  of  the  aliphatic  series  than 
gas  or  coke-oven  tars.  The  following  are  distillation 
tests : — 


Low-temperature  tar 
from  cannel         from  bitu- 
coal.  minous  coal. 

2-3  ..  9-5 

32-8  . .  38-2 

390  . .  80 

261  ..  44-3 


Moderate  quantities  of  wood  tar  are  produced 
during  the  dry  distillation  of  wood,  and  also  at 
those  producer  plants  which  utilise  wood  for  the 
manufacture  of  gas.  Two  samples  of  wood  tar  from 
a  producer  using  wood  gave  the  following  figures  :  — 
Water,  528,  323;  oil  to  250°  C,  12"6,  15-8;  pitch, 
30-6,  5I'9%.  The  first  sample  lost  4%  as  volatile 
non-condensable  products.  Approximately  40,000 
tons  of  blast  furnace  tar  is  also  produced  annually. 
When  of  low  water  content  this  type  of  tar  is 
distilled  without  difficulty. 

The  separation  of  the  water  from  tar  in  order  to 
avoid  troubles  due  to  foaming  and  priming  in  sub- 
sequent distillation  can  only  be  partly  effected  by 
gravity  settling.  Centrifugal  separation  is  applied 
with  success  in  some  cases,  but  is  not  satisfactory 
when  the  tar  contains  much  free  carbon.  The 
method  most  generally  adopted  is  that  of  dehydra- 
tion by  heat  in  a  suitable  apparatus. 

The  following  is  a  description  of  a  new  type  of 
tar  distillation  plant  known  as  the  "  Cascade 
system,"  which  is  utilised  for  the  purpose  of  tar 
dehydration,  and  also  for  the  complete  distillation 
of  tar  to  pitch. 

The  still  in  this  type  of  tar  dehydration  plant  is 
shown  in  Fig.  1.  There  is  a  distinctive  feature 
embodied  in  this  plant  in  regard  to  the  separation 
of  water,  for  the  elimination  of  "  foaming."  In 
continuous  taT  dehydration  plants,  when  the  in- 
going crude  tar  is  used  for  condensing  purposes, 
there  is  a  tendency  for  the  water  in  the  tar  to 


accumulate,  forming  "  pockets  "  of  water  which 
occasionally  pass  forward  to  the  still.  As  the  tem- 
perature of  the  tar  in  the  still  is  seldom  below 
200°  C.  it  follows  that  when  the  water  comes  into 
contact  with  the  hot  tar,   "  foaming  "  will  occur. 

In  the  type  of  still  under  consideration  matters 
are  so  arranged  that  "  foaming  "  is  eliminated.  In 
the  first  place  crude  tar  is  not  used  for  condensing 
the  light  oils,  and  accumulations  of  water  are 
thereby  avoided,  and  in  the  second  place  the  water 
in  the  crude  tar  is  removed  before  it  enters  the 
body  of  hot  tar  in  the  still.  This  object  is  attained 
by  fixing  in  the  vapour  space  of  the  still  a  cascade 
or  staircase,  down  which  the  crude  tar  must  flow 
in  a  shallow  layer,  before  it  can  enter  the  tar  under- 
going distillation.  As  a  rule  there  are  seven  plates 
in  the  cascade,  and  a  plant  dealing  with  one  ton 
per  hour  of  tar  will  have  seven  plates,  each  two  feet 
square  and  giving  a  total  heating  surface  of 
28  sq.  ft.  The  depth  of  the  tar  on  the  cascade  does 
not  exceed  half  an  inch,  and  by  the  time  the  feed 
tar  enters  the  still  proper  the  whole  of  the  water 
has  been  distilled  away. 

This  type  of  still  may  be  heated  either  by  gas 
or  coke.  In  the  latter  case  no  special  kind  of 
furnace  is  required.  The  still  consists  of  a  circular 
tube,  with  one  end  welded  and  the  other  end  bolted 
on.  There  are  no  baffles  or  other  obstructions  in 
tho  bottom  of  the  still,  and  accumulations  of  free 
carbon  are  thereby  avoided. 

The  still  will  work  for  several  months  without 
stopping  for  cleaning,  and,  when  necessary,  clean- 
ing is  easily  carried  out  by  first  removing  the  end 
plate,  when  every  part  of  the  still  is  accessible. 

The  tar  dehydrating  plant  is  worked  in  the 
following  manner  : — The  crude  tar  enters  the  plant 
at  the  sight  feed  box,  and  passes  forward  to  the 
heat  interchanger,  which  is  arranged  not  only  to 
take  up  heat  from  the  hot  dehydrated  tar,  but  also 
from  the  waste  furnace  ga6es.  Leaving  the  heat 
interchanger,  the  tar  at  a  temperature  of  100°  C. 
enters  the  etill  and  is  delivered  on  to  the  top  plate 
of  the  cascade,  down  which  it  flows  until,  leaving 
the  last  plate,  it  enters  the  still  proper.  The  tar 
flows  forward  from  one  end  of  the  still  to  the  other, 
and  then  out  by  a  pipe  to  the  heat  interchanger. 
The  distilled  tar  flows  through  the  central  pipe  and 
gives  up  a  portion  of  its  heat  to  the  surrounding 
crude  tar,  which  again  is  externally  heated  by  the 
waste  flue  gases.  The  prepared  tar  is  finally 
delivered  into  a  receiving  tank. 

The  vapours  of  light  oil  and  water  pass  out  by 
the  still  head  to  a  water-cooled  condenser,  and  into 
a  separating  box,  which  automatically  separates 
the  water  from  the  light  oils.  In  email  plants  the 
light  oils  may  flow  directly  into  steel  drums  or 
casks,  but  for  larger  plants  storage  tanks  are 
necessary. 

When  dehydrating  tar  by  the  continuous  process, 
the  working  temperatures  necessary  to  provide  tar 
in  accordance  with  the  Road  Board  Specifications 
are: — For  tar  spraying  (No.  1),  230°  C. ;  for  tar 
macadam  (No.  2),  260°  C. ;  for  pitch  grouting 
(No.  3),  288°  C.  A  continuous  plant,  particularly 
of  the  cascade  type,  is  exceptionally  useful  in 
dealing  with  Mond  gas  tar  and  water-gas  tar.  It 
has  frequently  been  found  that  in  their  untreated 
state  there  was  no  market  for  such  products,  but 
after  dehydration  there  has  been  little  difficulty  in 
disposing  of  these  tars.  The  intermittent  process  of 
tar  distillation  which,  in  its  various  modifications, 
has  been  in  use  for  many  years,  gives  excellent 
results  when  operating  on  tar  of  good  quality  and 
under  careful  supervision.  The  continuous  process, 
however,  which  was  introduced  some  ten  years  ago, 
has  many  advantages  in  respect  of  saving  of  time, 
labour,  fuel,  and  depreciation,  and  has  come  into 
extended  use  in  this  country,  especially  for  tars 
containing  high  percentages  of  water. 


180  T 


CHAMBERS.— TAB    DISTILLATION. 


[Jane  15, 1922. 


The  process  of  tar  distillation  may  be  regarded 
as  an  extension  of  the  tar  dehydration  process. 
The  distillation  plant  is,  in  fact,  a  combination  of 
three  tar  dehydration  plant  units.  Fig.  2  illus- 
trates a  modern  type  of  continuous  tar  distillation 
plant,  which  is  of  more  simple  design  than  its 
predecessors,  and  which  possesses  several  distinctive 
features.  In  the  first  place  there  is  a  special 
method  of  dealing  with  the  water  contained  in  the 
tar;  secondly,  the  stills  are  of  a  circular  tube 
pattern,  containing  neither  heating  tubes  nor 
baffle  plates  inside.  With  a  view  to  working  on  a 
low  fuel  consumption,  arrangements  are  made  for 
taking  up  as  much  waste  heat  from  the  system  as 
is  practicable. 

The  plant  consists  of  three  circular  stills,  three 
rectangular  condensers,  and  one  heat  interchanger 
or  pitch  cooler. 


Pig.  1. 

The  plant  may  be  heated  either  by  gas  or  coke. 
It  produces  crude  naphtha,  light  oils,  creosote,  and 
anthracene  oil.  In  the  plant  illustrated  the  light 
oils  and  crude  naphtha  are  mixed  together. 

The  first  still  is  fitted  with  a  cascade,  of  the  same 
type  as  that  described  previously  in  connexion  with 
a  tar  dehydration  plant. 


case  of  Mond  or  water-gas  tar,  and  cases  of 
"  foaming  "  or  sudden  "  priming,"  together  with 
the  accompanying  lifting  of  the  safety  valves,  are 
not  experienced.  Distillation  plants  by  this  process 
are  at  work  upon  crude  tar  containing  more  than 
30%  of  water. 

Fig.  2  will  6erve  to  demonstrate  the  working  of 
the  distillation  plant.  Crude  tar  flows  from  the 
sight  feed  inlet  directly  into  the  heat  interchanger, 
which  is  designed  to  heat  the  ingoing  tar,  and  cool 
the  outgoing  pitch.  It  consists  of  an  outer  tube 
15  inches  in  diameter,  and  a  central  inner  tube 
6  inches  in  diameter,  and  is  so  fixed  in  the  waste 
heat  flue,  as  to  be  entirely  surrounded  by  the  hot 
flue  gases.  The  crude  tar  flows  forward  in  the 
space  between  the  two  tubes,  with  the  result 
that  it  absorbs  heat,  externally  from  the  flue 
gases,  and  centrally  from  the  outgoing  pitch. 
Leaving  the  heat  interchanger,  the  hot  tar  enters 
the  first  still,  flows  down  the  cascade,  and  along 
the  still.  The  depth  of  the  tar  is  generally  one- 
third  the  diameter  of  the  still.  The  tar  leaves  the 
first  still  at  its  front  end,  and  flows  through  a  pipe 
into  the  second  still,  being  discharged  at  the  back 
end  of  the  still,  where  it  again  flows  forward  to 
the  front  end,  passing  through  a  pipe  into  the  third 
still.  The  tar  passes  along  the  third  still  and  is 
collected  in  a  pipe,  which  conveys  the  resulting 
pitch  back  to  the  front  end,  and  out  to  the  heat 
interchanger,  after  which  it  flows  directly  into  the 
pitch  beds.  Stills  No.  1  and  2  are  heated  by  direct 
heat,  but  the  third  still  and  heat  interchanger  are 
heated  by  waste  gases  from  the  first  two  stills.  In 
either  case  of  gas  or  coke  firing  there  is  a  common 
firebox  or  combustion  chamber  for  Nos.  1  and  2 
stills. 

The  supply  of  heat  can,  however,  be  regulated  to 
either  still  by  movable  dampers  fixed  over  port- 
holes in  the  curtain  arch  under  the  stills.  The 
sliding  dampers  are  operated  from  the  front  end 
of  the  still  setting.  There  are  only  two  portholes, 
one  for  each  still.  When  gas  firing,  one  larger  or 
several  Bmall  gas  burners  can  be  fitted  into  the" 
oombustion  chamber. 

The  fractions  or  distillates  pass  through  tapering 
vapour  pipes  to  rectangular  condensers,  fitted  with 


Fig.  2. 


When  the  water  has  been  removed  from  crude 
tar,  the  subsequent  distillation  is  not  difficult  to 
carry  out ;  this  statement  applies  either  to  inter- 
mittent or  continuous  distillation. 

Fig.  1  illustrates  clearly  the  method  adopted  in 
this  plant  for  disposing  of  the  water  problem.  The 
advantage  of  the  cascade  is  very  pronounced  in  the 


S  bend  cast  iron  pipes.  Narrow  condensers  require 
less  water  than  circular  tanks  for  condensing  pur- 
poses. After  leaving  the  condensers,  the  oils  pass 
through  cast  iron  oil  traps  for  separating  foul 
gases,  and  the  latter  are  dealt  with  in  an  oxide 
purifier.  The  working  of  the  stills  is  controlled  by 
thermometers  at  the  front  end,  and  a  wide  variety 


Vol.  XLI.,  No.  li]         GREENWOOD    AND    COBB.— THE    STRUCTURE    OF    COKE. 


181 T 


of   fractions   may   be   obtained   by   regulating   trie 
sliding  dampers. 

A  perforated  steam  pipe  is  fixed  in  the  third  still 
for  the  steam  distillation  of  anthracene,  otherwise 
there  are  no  obstructions  in  any  of  the  stills. 
Arrangements  are  made  for  the  separation  of 
naphthalene  and  anthracene,  and  fractions  con- 
taining these  products  are  cooled  either  in  harf- 
round  open-top  pans,  or  in  rectangular  covered 
tanks.  The  latter  tanks  are  preferable  in  hot 
climates,  and  particularly  when  cooling  is  effected 
by  refrigeration. 

Owing  to  the  absence  of  any  obstructions  in  the 
stills  there  is  no  opportunity  for  free  carbon  to 
accumulate,  and  consequently  overheating  of  the 
plates  does  not  occur.  For  inspection  purposes  the 
front  end  plate  of  the  still  is  bolted  to  the  still, 
and  may  be  conveniently  removed  when  desired. 
The  back  end  plate  is  welded  to  the  still.  All 
connexions  from  one  still  to  another  are  fixed 
outside  at  the  front  end  of  the  stills.  They  are 
not  submitted  to  the  heat  of  the  flue  gases,  hence 
there  is  no  risk  of  carbonisation  or  blocking  in 
these  connexions. 

A  plant,  when  dealing  with  one  ton  of  crude  tar 
per  hour,  gives  the  following  results: — Pitch, 
1080  lb.  per  hour.  Distillates  :  No.  1  still,  crude 
naphtha,  20  galls,  per  hour;  No.  2  still,  light  oil 
and  creosote,  51  galls,  per  hour;  No.  3  still, 
anthracene  oil,  30  galls,  per  hour.  Working  tem- 
peratures :  No.  1  still,  210c  C. ;  No.  2  still,  260°  C. ; 
No.  3  still,  260°  O.  Steam  conwumed  in  No.  3  still 
(for  anthracene),  120  lb.  per  hour.  Water  used  for 
condensing  purposes,  90  galls,  per  hour.  Tempera- 
ture of  pitch  at  outlet,  150°  C.  Temperature  of 
ingoing  tar,  100°  G.  Fuel  consumption  per  ton  of 
tar  distilled,  110  lb. 

It  will  be  observed  that  the  working  temperatures 
are  extremely  low,  although  the  plant,  at  the  time 
the  figures  were  obtained,  was  producing  pitch 
having  a  softening  point  of  60°  O.  Such  low 
temperatures  are  a  great  advantage,  enabling  the 
maximum  yield  to  be  obtained  from  the  tar,  owing 
to  a  complete  absence  of  carbonisation.  The  low 
working  temperatures  are  due  to  the  fact  that  there 
is  no  local  overheating  in  this  type  of  still,  owing 
to  the  rapid  and  unrestricted  circulation  of  the  tar. 

In  this  system  distillation  takes  place  at  a  very 
low  pressure,  the  vapours  passing  through  one  con- 
denser coil  only,  of  comparatively  large  diameter. 
This  low  working  pressure  again  assists  in  main- 
taining a  low  temperature. 

Plants  have  been  installed  for  dealing  with  large 
quantities  of  Mond  producer  gas  tar,  each  unit 
dealing  with  20  tons  of  tar  per  24  hours.  Plants 
are  ako  at  work  on  ordinary  coal  gas  tar,  from 
horizontal  retorts  and  from  vertical  retorts,  units 
of  40  tons  per  working  day  having  been  installed. 


Yorkshire  Section. 


Meeting  held  at  Queen's  Hotel,  Leeds,  on 
February  20,  1922. 


MB.   S.  H.  DAVIBS  IN  THE  CHAIR. 


THE  STRUCTURE  OF  COKE. 

BT  H.    D.    GREENWOOD,    M.SC,   AND   J.    W.    C03B,    C.B.E., 
B.SC,   F.I.C. 

(Contributed  from  the  Department  of  Coal  Gas  and 
Fuel  Industries,  The  University,  Leeds.) 

Various    views    have   been    taken    from   time   to 
time  of  the  processes  involved  in  the  formation  and 


structure  of  coke.  These  have  been  mainly  con- 
cerned with  the  problem  of  the  initial  cell  forma- 
tion as  distinct  from  any  succeeding  structural 
changes.  A  brief  summary  will  not  be  out  of  place. 
Coke  is  generally  regarded  as  formed  by  the 
liquefying  action  of  easily  fusible  constituents  of 
the  coal  followed  by  decomposition,  the  formation  of 
cells  by  the  inflating  effect  of  escaping  gas,  and 
gradual  solidification.  Wedding  attributed  the 
formation  of  coke  to  the  decomposition  of  the 
richer  gaseous  hydrocarbons.  According  to  Lewes 
("Carbonisation  of  Coal")  the  heat  passing 
gradually  from  layer  to  layer  of  the  charge  drives 
before  it  the  heavy  tars;  these  are  alternately  de- 
posited and  redistilled  with  some  decomposition, 
which  becomes  responsible  for  the  formation  of  coke. 

S.  R.  Illingworth  (J.,  1920,  111  t,  133  t)  develops 
the  view  that  the  formation  of  coke  and  its  result- 
ing structure  are  dependent  upon  the  volume  and 
rate  of  evolution  of  gas  given  off  during  the  period 
in  which  the  material  is  in  a  plastic  condition. 

It  is  known  that  coking  coals  undergo  a  partial 
liquefaction  at  about  450°  C.  The  plasticity  may 
safely  be  attributed  to  the  melting  of  certain  con- 
stituents of  coal  and  their  impregnation  of  the 
mass.  The  gases  evolved  by  the  decomposition  of 
these  and  other  constituents  are  responsible  for  the 
formation  of  pores  or  cells  in  a  mass  which 
gradually  stiffens  to  rigidity  as  the  decomposition 
proceeds.  Further  evolution  of  gas  occurs  as  the 
temperature  rises,  which  modifies  the  cell  structure 
without  altering  its  fundamental  character, 
although  the  modifications  have  their  own  technical 
importance. 

In  the  following  paper  we  have  attempted  to 
trace  these  later  changes  in  the  coke  from  the 
newly  formed  cell  structure  to  the  final  formation 
of  high-temperature  coke. 

To  this  end  cokes  were  prepared  from  the  same 
coal  in  the  laboratory  at  three  different  tempera- 
tures, 550°  C,  850°  C.,  and  1100°  C.,  and  the  cokes 
were  examined.  These  may  be  taken  respectively 
to  represent  approximately  the  products  of  low- 
temperature  carbonisation  (550°  C.),  medium- 
temperature  carbonisation  as  in  horizontal  gas 
retorts  (850°  C),  and  high-temperature  carbonisa- 
tion as  in  coke-ovens  making  metallurgical  coke 
(1100°  C.).  A  parallel  examination  was  made  of  a 
commercial  sample  of  hard  by-product  coke  for 
comparison  with  the  1100°  C.  experimental  coke. 

Preparation  of  coke. 

The  same  coal  was  used  in  the  preparation  of 
these  cokes,  this  having  the  following  composition : 
Carbon  77"36%,  hydrogen  5'66%,  sulphur  165%, 
nitrogen  P34%,  oxygen  10"22%,  ash  3"77%. 
Volatile  matter  37'3%  (American  crucible  method, 
1899).  It  was  the  Nottinghamshire  (New  Huck- 
nall)  gas-coal  used  by  Hollings  and  Cobb  in  their 
study  of  thermal  phenomena  in  carbonisation 
(Trans.  Inst.  Gas  Eng.,  1914,  225—277).  The  coal 
was  coked  in  pieces  of  pea  size  in  a  large  fireclay 
crucible  holding  about  400  grams,  and  fitted  with 
a  lid  through  which  a  hole  was  bored  for  the  inser- 
tion of  a  thermocouple.  The  couple  was  protected 
by  a  silica  sheath,  and  the  junction  maintained 
about  one  inch  from  the  bottom  of  the  crucible. 
Before  coking  the  lid  was  cemented  to  the  crucible. 

Each  coal  was  raised  to  the  desired  temperature 
in  about  three  hours  and  maintained  at  that 
temperature  for  another  three  hours — 6ix  hours 
altogether.     Cooling  in  situ  followed. 

After  cooling,  the  coke  was  extracted  and 
ground  to  pass  between  J-inch  and  J-inch  mesh 
sieves,  thus  giving  fragments  of  an  average 
diameter  of  3  mm.,  the  coke  within  i  inch  of  the 
crucible  wall  being  discarded. 


182  T 


GREENWOOD    AND    COBB.— THE    STRUCTURE    OF    COKE. 


[June  15, 1922. 


The  by-product  coke  was  obtained  from  the 
quenching  bench  of  an  Otto  by-product  battery 
(Robin  Hood  Colliery,  Yorkshire). 

The  changes  in  weight,  specific  gravity,  volume, 
and  porosity  undergone  in  the  carbonisation 
process  were  then  determined. 

Determination    of    specific    gravity    and    porosity 
of  the  cokes. 

The  terms  "real"  and  ""apparent"  are 
generally  used  with  reference  to  the  specific 
gravity  of  the  material  composing  the  walls  of  the 
coke  cells,  and  of  this  material  together  with  the 
cells,  respectively.  We  shall  deal  with  three  different 
specific  gravities  for  any  one  sample  of  coke.  In 
place  of  "  real  specific  gravity,"  the  term  "  specific 
gravity  of  coke  material"  will  be  used;  in  place 
of  "  apparent  specific  gravity  "  the  term  "  specific 
gravity  of  material  and  all  cells,"  the  third  specific 
gravity  being  that  of  the  "  material  and  closed 
cells." 

Determination  of  the  specific  gravity  of  the  coke 
material. — The  coke  was  ground  to  pass  a  sieve  of 
60  meshes  to  the  inch,  and  about  1  g.  of  this  powder 
was  exhausted  under  water  in  a  specific  gravity 
bottle  heated  on  a  water  bath.  The  exhaustion  was 
continued  for  about  three  hours,  when  the  bottle 
was  disconnected  and  the  specific  gravity  deter- 
mined in  the  U6ual  manner.  On  filling  the  bottle 
in  the  ordinary  way  after  exhaustion,  flakes  of  coke 
floating  on  the  surface  are  lost,  thus  introducing  an 
appreciable  error.  To  avoid  this,  the  exhaustion 
was  carried  out  with  the  stopper  in  situ,  and  when 
complete  the  bottle  was  completely  exhausted  and 
the  rubber  connecting  tube  opened  under  water ;  in 
this  way  the  bottle  could  be  filled  without  loss  of 
material.  A  catch  bulb  was  usually  placed  above 
the  bottle  to  prevent  any  loss  by  spirting. 

The  same  method  was  used  to  determine  the 
specific  gravity  of  the  "  material  +  closed  cells," 
with  the  exception  that  fragments  of  coke  were  used 
in  place  of  the  powdered  material. 

The  values  so  obtained  were  somewhat  lower  than 
with  the  powdered  coke  owing  to  the  presence  of 
'•  closed  cells,"  into  which  the  water  could  not 
penetrate. 

Specific  gravity  of  material  +  all  cells. — This  de- 
termination was  carried  out  in  a  volumenometer 
(Anderson,  J.,  1896,  20)  which  consists  essentially 
of  a  wide  glass  tube  fitted  with  a  ground  glass 
stopper  terminating  in  a  glass  stopcock,  the  other 
end  being  connected  by  rubber  tubing  with  a 
burette.  The  tube  is  filled  with  water  and  a  known 
weight  of  coke  introduced,  the  coke  being  in 
fragments  of  the  largest  size  which  can  enter  the 
tube. 

From  the  volume  of  water  displaced,  measured 
on  the  burette,  the  specific  gravity  of  the  coke  frag- 
ments can  be  determined.  The  accuracy  of  the  de- 
termination is  dependent  primarily  upon  the  non- 
penetration  of  the  water  into  the  coke  cells,  and 
upon  any  small  volume  of  gas  expelled  from  pores  by 
the  water  being  the  same  before  and  after  expulsion. 
With  the  850°  C.  coke,  considerable  volumes  of  gas 
were  evolved  on  immersion  in  water,  but  by  taking 
readings  quickly,  or,  better,  by  replacing  the  water 
by  mercury,  consistent  results  were  obtained. 

From  the  specific  gravities  thus  determined,  it  is 
possible  to  calculate  the  porosity  of  the  coke. 

Let  specific  gravity  of  the  coke  material  =  A. 
#,         >i  „         „    „      „  „       +  all  cells  =  B. 

•  >        i,  „  ,,    i,       ,,  „       4-  closed  cells  =  C. 

Then  %  total  porosity  (by  volume)  =      100(1— B/A)    .. 

=  100B  (A— C) 
A.C. 


Table  I. 
Changes  in  porosity  and  specific  gravity  on  coking. 


closed  pores 


(1) 
(2) 


Sp.gr. 

Sp.gr. 

Temp,  of 

Sp.gr. 

of 

of 

% 

% 

% 

coking. 

of  coke 

material 

material 

open 

closed 

total 

•c. 

material. 

and  all 
pores. 

+  closed 
pores. 

pores. 

pores. 

porosity. 

Original  coal 

1-270 

1-270 

_ 

650°  C.       . . 

1-591 

0.879 

1-446 

39-2 

6-5 

44-7 

850"  C.       . . 

1-870 

0-888 

1-563 

43-17 

9-33 

52-5 

1100"  C.     .. 

1-870 

1014 

1-631 

37-85 

7-95 

45-8 

By-product 

(hard)    .. 

1-880 

1-012 

1-720 

40-6 

6-0 

45-6 

1. 

2. 

3. 

1-623      . 

.     1-666     . 

.     1-730 

1-832     . 

.      1-850      . 

.      1-880 

The  results  obtained  by  Anderson,  given  in  the 
paper  already  quoted,  are  similar  to  those  shown  in 
Table  I,  and  it  is  of  interest  to  note  the  difference 
which  he  obtained  when  using  fragments  of  coke 
as  compared  with  powdered  coke  for  exhaustion  in 
the  specific  gravity  bottle. 

Specific  gravity  of — ■ 

(fl)  Fragments  of  coke 
\b)  Powdered  coke 

These  differences,  although  not  strictly  com- 
parable with  ours,  are  of  the  same  order  of 
magnitude. 

It  will  be  seen  from  Table  I  that  the  "  coke 
material  "  had  attained  a  density  at  850°  C.  which 
was  not  exceeded  appreciably  by  either  the  1100°  C. 
or  by-product  "coke  material." 

From  these  results  we  have  calculated  the  changes 
in  volume  and  specific  gravity  which  the  coal  under- 
went on  coking,  and  which  have  a  bearing  on  the 
structure  of  the  resulting  coke.  Thus  the  figures 
in  Table  II  indicate  the  changes  in  volume  etc. 
undergone  by  100  g.  of  coal  on  heating  to  1100°  C. 
in  three  stages. 

Table  II. 
Changes  in  weight  and  volume  on  coking. 


By  subtracting  (2)  from  (1)  we  are  left  with  the 
percentage  of  "  open  pores."  The  results  thus 
obtained  are  collected  in  Table  I. 


Wt. 

g- 

Vol.  of 
coke 

(or  coal) 

+  all 

pores. 

c.c. 

Vol.  of 

coke 

(or  coal) 

material 

c.c. 

Total 
vol.  of 

pores. 

C.C. 

Change  in 

vol.  at  each 

stage  as  %  of 

original  coal 

volume. 

Original  coal 

100 

78-8 

78-8 

36-4/ 

inc.     . .     2-8 

Coked  at  550°  C... 

71 

810 

44-6 

„     „    850° C... 

64 

72-0 

34-2 

39-8 

dec.     ..  11-4 

„     „  1100°  c... 

63 

630 

33-7 

29-3 

dec     ..  11-4 

Total  change  from 

15°  to  1100°  C... 

-37 

-15-8 

-45-1 

+  29-3 

nettdec.  20-0 

When  a  coking  coal  is  heated  to  about  400°  C  it 
undergoes  a  partial  liquefaction,  due  doubtless  to 
the  presence  of  substances  melting  at  about  that 
temperature.  Further  heating  causes  the  decompo- 
sition of  these  and  other  substances,  the  mass 
becoming  decreasingly  plastic.  Bubbles  of  gas  force 
their  way  through  the  semi-plastic  material  and 
form  cells  or  pores  which  permanently  retain  their 
shape  when  the  mass  has  attained  a  certain  degree 
of  rigidity.  In  the  further  decomposition,  the 
plasticity  is  so  small  that  the  evolution  of  gas  causes 
no  such  change  in  the  material,  which  remains  as  a 
porous  mass — coke. 

The  formation  of  the  cells  is  accompanied  by  a 
swelling  of  the  mass.  It  is  probable  that  between 
450°  and  500°  C.  the  swelling  of  the  coal  is  con- 
siderably greater  than  would  appear  from  Table  II, 
the  semi-plastic  stage  having  been  passed,  and  the 
general  contraction  begun  below  550°  C. 

The  porous  material  formed  consists  of  sealed  and 
unsealed  pores  with  walls  of  semi-carbonised 
material. 


Vol.  XLI.,  No.  l  l.]     MILES  AND  SARGINSON.— COMBUSTION  IN  THE  GRILLO  OLEUM  PLANT.     183  T 


The  specific  gravity  of  the  cell  walls  is  greater 
than  that  of  the  original  coal,  but  the  specific 
gravity  of  the  mass  as  a  whole  is  less  than  that  of 
the  coal. 

There  is  some  gain  in  total  volumo  in  spite  of  the 
groat  loss  of  weight.  The  cell  structure  is  developed 
at  550°  C.j  but  further  heating  causes  considerable 
changes  in  the  coke  material,  with  accompanying 
changes  in  the  porosity  of  the  mass. 

Heating  to  850°  C.  results  in  a  further  evolution 
of  gas,  entailing  a  decrease  in  the  mass  and  volumo 
of  the  coke  material.  The  mass  as  a  whole  shrinks 
to  the  extent  of  114%  of  the  volume  of  the  original 
coal,  but  owing  to  the  los6  in  weight  and  increased 
density  of  the  coke  material,  the  porosity  increases 
by  7%,  giving  the  maximum  value  observed,  52'5%. 
The  effect  of  this  change  is  to  give  a  coke  with  larger 
cells  the  walls  of  which  are,  however,  composed  of 
denser  and  harder  material. 

The  effect  of  the  increase  in  density  of  the 
material  (from  T59  to  1"87)  appears  to  overbalance 
the  reduction  in  strength  arising  from  the  enlarge- 
ment of  the  cells,  since  this  coke  is  substantially 
stronger  than  the  550°  C.  coke. 

Between  850°  and  1100° C.  a  further  shrinkage  of 
11'4%  takes  place  in  the  mass  as  a  whole,  but  the 
process  is  otherwise  not  the  same  as  in  the  previous 
stage.  The  loss  of  weight  is  only  1%,  the  specific 
gravity  of  the  coke  material  is  unchanged,  but  the 
porosity  falls  again  to  45'8%. 

A  considerable  thickening  of  the  cell  walls  must 
have  taken  place,  and  is  probably  the  principal 
cause  of  the  accession  of  strength  in  this  stage, 
although  the  deposition  of  bright  carbon  on  the  cell- 
walls  resulting  from  the  decomposition  of  methane 
in  contact  with  them  is  also  likely  to  play  its  part. 
The  coke  at  1100°  C.  is,  therefore,  made  up  of 
smaller  cells  than  at  850°  C.  with  thicker  walls;  it 
is  a  stronger  material. 

The  values  for  the  various  specific  gravities  and 
porosities  of  the  by-product  coke  are  very  similar 
to  those  obtained  for  the  1100°  C.  laboratory  coke. 

Summarising,  we  can  divide  the  formation  of 
high-temperature  coke  into  three  stages  :  — 

1.  The  first  stage  up  to  550°  C.  is  constituted 
by  the  initial  cell  formation,  these  cells  having 
relatively  thick  walls  of  soft  material  of  low  specific 
gravity,  the  process  being  accompanied  by  a  swell- 
ing of  the  charge. 

2.  Between  550°  and  850°  C.  the  mass  as  a  whole 
shrinks  and  an  increase  in  specific  gravity  of  the 
coke  material  ensues,  the  resulting  coke  having 
thinner  but  stronger  walls  and  the  porosity 
reaching  a  maximum. 

3.  In  the  last  stage  the  predominant  factor  is  a 
further  large  contraction  of  the  mass  as  a  whole, 
the  coke  material  undergoing  no  appreciable  in- 
crease in  specific  gravity.  We  are  thus  left  with 
a.  strong  coke,  constituted  of  small  pores  with 
relatively  thick  walls.  At  no  stage  in  coking  to 
1100°  C.  does  the  material  approximate  to  the 
specific  gravity  of  graphite,   2'3. 

We  have  followed  the  process  in  a  fairly  typical 
gas  coal,  but  believe  that  its  essential  features 
would  be  reproduced  in  the  behaviour  of  coking 
coals  generally. 

It  may  be  mentioned  that  the  swelling  of  coal 
in  the  first  stages  of  carbonisation  is  well  known 
to  cause  difficulties  in  withdrawing  coke  made  at 
low  temperatures,  and  in  promoting  sticking  at  the 
top  of  the  charge  in  continuous  vertical  retorts  and 
gas  producers,  particularly  when  fitted  with  a  bell. 

Discussion. 

The  Chairman  inquired  if  any  microscopical 
examination  had  been  made  to  determine  the  size 
of  the  coke  cells.  He  had  noticed  that  the  silver- 
grey   lustre   of    coke   disappeared    on   exposure    to 


weather.     What  gases  were  evolved  from  the  850° 
coke? 

Mr.  W.  McD.  Mackey  said  that  in  experiments 
of  this  kind  it  would  be  well  to  keep  in  mind  that 
coals  deteriorated  in  coking  quality  the  longer  they 
were  kept  after  leaving  the  face,  some  coals  that 
were  of  weak  coking  quality  practically  becoming 
non-coking  after  long  exposure,  say,  three  weeks 
or  a  month,  in  the  state  of  slack  or  small  coal.  He 
asked  if  the  authors  intended  to  apply  any 
mechanical  test,  say,  such  as  was  known  as  the 
"  rattle  "  test,  to  determine  the  relative  hardness 
of  the  cokes  made.  He  believed  that  in  the  early 
days  of  by-product  coke  there  was  a  prejudice 
against  it  because  it  was  supposed  to  contain  closed 
pores  as  against  the  open  pores  of  beehive  coke. 
He  did  not  know,  however,  how  far  this  was 
justified. 

Mr.  H.  J.  Hodsman  drew  attention  to  the  specific 
gravity  of  the  coke  substance  (1'87).  Though 
higher  than  that  of  coal,  it  was  still  much  below 
that  of  graphite  (23)  and  diamond  (3"5).  In  the 
course  of  carbonisation  coal  acquired  a  considerable 
electrical  conductivity  which  might  naturally  be 
ascribed  to  the  formation  of  graphite.  The  probable 
mineral  constituents  of  coke  were,  however,  denser 
than  graphite  and  could  not  be  the  cause  of  the  low 
specific  gravity.  The  figure  seemed  to  indicate  that 
the  coke  substance  was  not  merely  impure  carbon 
but  probably  a  hydrocarbon  complex  of  very  high 
molecular  weight. 

Prof.  Cobb  replied  that  very  little  microscopical 
work  had  been  done  on  the  structure  of  coke  so 
far  as  he  knew,  and  that  it  had  yielded  little 
result,  although  there  were  possibilities  in  it.  The 
silver-grey  lustre  of  coke  was  attributed  to  the 
deposition  of  carbon  formed  by  the  decomposition 
of  methane  and  was  usually  permanent  in  hard 
metallurgical  coke.  The  gases  evolved  when  850° 
coke  was  put  into  water  were  presumably  similar  to 
those  extracted  by  evacuating  at  ordinary  tempera- 
ture, which  they  had  determined  to  be  for  the  most 
part  air.  They  hoped  to  say  more  in  another  paper 
about  the  gases  in  the  cokes  they  had  prepared. 
The  feeling  against  by-product  coke  was,  in  the 
early  days  of  by-product  ovens,  often  quite  justified, 
but  as  the  result  of  years  of  experience  the  by- 
product plants  had  greatly  improved  their  product, 
which  now  would  compare  favourably  with  beehive 
coke.  He  did  not  know  whether  closed  pores  were 
characteristic  of  the  early  by-product  coke  or  not. 


Communications. 


THE  OCCURRENCE  AND  EFFECT  OF  FLUC- 
TUATING COMBUSTION  IN  THE  SULPHUR 
BURNERS  OF  THE  GRILLO  OLEUM  PLANT. 

BY   F.    D.    MILES,    M.SC,    A.R.O.S.,    AND 
W.    SARGINSON,    B.SC. 

The  first  unit  of  the  Grillo  oleum  plants  erected 
during  the  war  by  the  Department  of  Explosives 
Supply  was  started  at  Queen's  Ferry  in  June  of 
1916,  and  it  was  then  noticed  that  the  gas  coming 
from  the  sulphur  burners  was  liable  to  vary  widely 
and  rapidly  in  composition.  Such  variations  were 
thought  to  be  due  to  the  lack  of  precision  and 
uniformity  which  might  be  expected  when  a  com- 
plex plant  was  worked  for  the  first  time,  particu- 
larly as  few  of  those  concerned  had  any  experience 
of  its  operation.  But  as  time  passed  and  working 
became  regular  the  fluctuations  were  still  found. 
Some  effect  from  them  was  to  be  looked  for,  for  the 
platinum   contact   mass  could   not   be  expected   to 


184  T       MILES  AND  SARGINSON.— COMBUSTION  IN  THE  GRILLO  OLEUM  PLANT.      [June  15,  1922. 


work  at  its  best  when  the  sulphur  content  of  the 
gas  supplied  to  it  was  not  constant,  and  the  value 
of  the  conversion  tests  was  very  doubtful  so  long 
as  the  extent  of  the  fluctuations  remained  unknown. 
An  attempt  was  therefore  made,  at  Gretna  in  1917 
and  1918,  to  investigate  these  fluctuations  and 
their  effects,  and  to  contribute  to  the  increased 
efficiency  which  the  shortage  of  raw  material  made 
so  necessary  on  all  plants. 


Fio.   1. 
Sulphur  burner. 

This  communication  gives  an  account  of  the  work 
done  and  its  results.  The  fluctuations  were  found 
to  be  of  a  periodic  character  and  to  depend  mainly 
on  the  times  and  order  of  charging  the  burners. 
Their  occurrence  seems  to  be  unavoidable  in  any 
series  of  burners  charged  intermittently  and  we 
believe  the  details  given  may  be  of  interest  in 
connexion  with  any  similar  plant,  no  matter  what 
is  being  burnt.  A  separate  investigation  carried 
out  by  the  chemists  in  charge  did,  in  fact,  show  that 
the  burner  gas  from  the  pyrites  burners  of  the 
Mannheim  plant  was  subject  to  similar  periodic 
variations.  The  effect  on  the  process  of  conversion 
will  also  be  traced  briefly. 


'VP777A 


Ezmv.tzTz^. 


>///////) 


Fig.  2. 
Diagram  of  flues. 

The  sulphur  burners. — Each  oleum  unit  had  a 
battery  of  twelve  burners  built  side  by  side  in  a 
block.  Fig.  1  is  a  vertical  section  and  will  indicate 
their  construction.  Sulphur  was  charged  into  the 
iron  pan,  P,  in  sheet  iron  scoops,  once  an  hour,  the 
sliding  door,  D,  being  opened  and  closed  as  quickly 
as  possible.    Air  was  drawn  through  a  small  adjust- 


able orifice  in  the  door  in  amount  just  sufficient  to 
cause,  by  its  combustion,  the  regular  boiling  of  the 
sulphur  (the  burners  were  of  course  worked  under 
suction).  Air  which  had  been  to  some  extent  pre- 
heated in  the  flue,  F,  was  supplied  by  the  port,  p„ 
always  fully  open,  and  additional  air  could  be 
admitted,  if  sublimation  was  feared,  by  the  ports, 
p2  and  p3,  in  front  of  the  block.  The  6ulphur 
vapour  and  air  were  thoroughly  mixed  by  passing 
through  the  firebrick  chequer-work.  Each  burner 
had  its  own  stack  of  chequer-work,  divided  from 
those  on  either  side  by  a  partition  wall,  but  the  flue, 
G,,  above  the  stacks,  was  common  to  them  all.  Be- 
tween the  flues,  G,  and  G2,  were  arranged  adjust- 
able slides,  S,,  S2,  etc.  in  order  that  the  suction 
should  be  equal  on  all  fires.  The  relation  of  these 
two  flues  was  found  to  be  an  important  feature  of 
the  burners  and  can  be  more  clearly  seen  from 
Fig.  2,  which  is  a  diagram  of  a  horizontal  section 
taken  along  A,  A2  A3  A4  of  Fig.  1.  The  suction 
along  the  main  flue,  G„,  will  increase  in  the  direc- 
tion of  the  arrow,  and  it  is  easy  to  see  that  to 
have  the  same  suction  on  each  fire  the  ports,  S„  S2, 
etc.,  must  be  less  and  less  open  as  we  pass  in  the 
direction  of  the  arrow.  The  slides  were  adjusted 
accordingly  and  the  adjustment  tested  by  applying 
a  delicate  manometer  to  the  air-vent  of  each  door 
in  succession.  In  these,  and  in  all  subsequent  tests 
check-measurements  were  made  to  ensure  that  no 
change  large  enough  to  affect  the  results  occurred 
in  the  general  rate  of  passage  of  gas  through 
the  plant.  With  sulphur  charges  of  65  lb. 
per  burner  the  suction  was  about  0T70  in.  of 
water,  and  did  not  vary  from  one  pan  to  another 
more  than  001  in.  unless  a  fire  was  at  its  period 
of  maximum  burning,  when  the  suction  at  the  door 
was  always  lessened. 

Method  of  testing. — Samples  for  analysis  were 
withdrawn,  generally  from  the  end  of  the  burner 
flue,  but  sometimes  at  other  points,  through  hard 
glass  tubes.  Iron  tubes  gave  quite  unreliable 
results.  The  most  rapid  and  convenient  method  is 
to  draw  the  sample  directly  into  the  bulb  of  an 
Orsat  apparatus.  Water  was  used  as  confining 
liquid  and  is  quite  satisfactory  for  the  purpose  if 
gas  of  about  the  same  composition  as  that  to  be 
tested  is  bubbled  through  it  first,  if  the  sample  is 
drawn  quickly  into  the  measuring  bulb,  and  a 
constant  short  interval  allowed  for  drainage  of  the 
water  before  a  reading  is  taken.  In  deciding  this 
question  samples  were  drawn  at  the  same  time  into 
two  Orsats,  one  containing  water,  the  other 
mercury.  A  few  of  the  results  are  given  below  :  — 
%S02.  Over  water  4-9,  5"2,  5'7,  5"7,  6"7,  7T,  8'9. 
,,  mercury  4"8,  5"1,  5-8,  5-7,  6"8,  7"0,  90. 
As  absorbing  liquid  20%  sodium  hydroxide  was 
used.  Its  action  is  nearly  instantaneous.  With 
practice  a  test  can  be  made  in  a  minute  and  a  half. 
Our  usual  procedure  was  to  make  tests  every  two 
minutes  for  an  hour — the  time  of  a  complete  cycle. 

After  altering  the  method  of  charging,  or  any 
other  condition,  it  was  found  necessary  to  continue 
under  the  altered  conditions  for  at  least  18  hours 
before  testing.  One  reason  was  that  such  changes 
generally  altered  the  temperature  of  the  pan,  on 
which  the  rate  of  burning  mainly  depended,  and 
at  least  this  time  was  required  for  the  pan  and  the 
surrounding  brickwork  to  come  to  a  steady  tem- 
perature. The  charge  was  uniformly  65  lb.  per 
burner. 

Discussion  of  results. — After  efforts  had  been 
made  to  secure  prompt  and  rapid  charging  and  to 
tune  up  operation  generally,  series  of  tests  were 
made  of  which  Graphs  I.  and  II.  are  representative. 
In  each  case  Curve  a  gives  the  composition  of  the 
gas  leaving  the  sulphur  burners,  and  Curve  b  that 
of  the  gas  entering  the  converters.  Two  burners 
were  being  charged  each  ten  minutes  and  the  order 


Vol.  XLI.,  No.  li]    MILES  AND  SARGINSON.— COMBUSTION  IN  THE  GRILLO  OLEUM  PLANT.    185 T 


of  charging  was: — Nos.  1  and  7;  2  and  8;  3  and  9; 
4  and  10;  5  and  11;  6  and  12.  Graphs  I. a  and  II. a 
show  considerable  fluctuations  in  SOa  percentage 
and  have  both  a  general  downward  tendency.  It 
is  impossible  to  keep  the  suction  on  each  burner 
absolutely  the  same.  There  is  inevitably  a  slight 
pressure  gradient  in  the  flue,  G„  and  the  fires 
tend  to  burn  out  more  quickly  the  nearer  they  are 
to  the  end  where  the  suction  is  greatest.  The  order 
of  charging — in  regular  succession  from  one  end 
to  the  other — naturally  allows  this  effect  full  play. 
It  may  be  mentioned  that  if  the  charging  were 
allowed  to  become  at  all  unpuncfual,  or  the  various 
dampers  and  slides  were  out  of  adjustment,  the 
fluctuations  were  liable  to  be  much  greater  than 
those  shown  in  the  graphs. 

Period  of  burning  one  hour. 


Fig.  3. 

To  eliminate  as  far  as  possible  the  "drift"  of 
the  S03  concentration  curve,  probably  due  to  a 
pressure  gradient  in  the  flue,  several  other  methods 
of  charging  were  tried  of  which  the  most  satisfac- 
tory was  the  following: — Fires  Nos.  1  and  12;  3 
and  10;  5  and  8;  6  and  7;  4  and  9;  2  and  11. 
The  fires  charged  together  are  in  symmetrical 
positions  in  regard  to  the  centre  and  the  effects 
of  the  pressure  gradient  should  he  minimised. 
Graphs  Ill.a  and  IV.  justify  this  assumption,  and  in 
fact  this  order  gave  the  best  results  possible  under 
ordinary  operating  conditions  and  was  generally 
adopted.  The  composition  of  the  gas  entering  the 
converter  did  not  vary  more  than  +  0'5%  and  for 
90%  of  the  time  was  much  more  constant.  With 
any  other  order  tested  before  this  one,  the  varia- 
tion was  much  greater. 

The  oscillations  of  all  the  curves  are  more  or  less 
periodic.  The  combustion  of  sulphur  in  a  hot  pan 
is  not  a  regular  process,  and  the  cause  of  the  oscil- 
lations became  clear  on  studying  individual  fires. 
Samples   were  withdrawn  from  the  chequer-work, 


and  although  the  results  were  complicated  by  the 
inflow  of  gas  from  neighbouring  fires  through  the 
leaky  partition  walls,  the  same  main  features 
appeared  in  each  case.  The  sulphur  was  melted 
and  well  alight  in  10  minutes  after  charging.  The 
S03  percentage  then  rose  rapidly  (to  9 — 12%)  and 
a  sharp  peak  appeared  in  the  graph  at  about  20 
minutes  after  charging.  The  percentage  then  fell 
rapidly  and  the  graph  showed  that  combustion  was 
practically  over  at  40  minutes  past,  although  the 
fire  appeared  to  the  eye  to  be  burning  almost  to 
the  time  for  the  next  charge.  This  conclusion  was 
confirmed  by  omitting  a  pair  of  charges  from  two 
fires  during  an  hour's  run.  The  crest  usually  pro- 
duced 15  to  20  minutes  after  charging  was  absent 
and  a  trough  present  instead.  (See  Graph  I.a„ 
obtained  when  a  pair  of  charges  was  omitted  at 
30  minutes  past  the  hour.) 

Each  of  the  graphs  may  therefore  be  considered 
as  the  resultant  of  six  single  graphs  added  to- 
gether, each  representing  a  pair  of  fires  burning 
effectively  for  only  about  25  minutes  of  the  hour. 
The  oscillations  are  occurrences  which  clearly  are 
to  be  expected  in  this  or  any  similar  plant. 

Period  of  burning  one  half-hour. 


Fig.  4. 

Of  the  many  other  attempts  made  to  decrease 
the  oscillations  or  to  cause  them  to  neutralise  each 
other,  a  few  may  be  described.  One  consisted  in 
charging  only  half  the  former  weight  of  sulphur 
into  each  burner,  four  fires  being  charged  at  a  time 
instead  of  two.  The  order  was  :  — At  0  and  30  mins. : 
1,  6,  7,  12;  at  10  and  40  mins.:  2,  5,  8,  11;  at  20 
and  50  mins.  :  3,  4,  9,  10.  The  period  of  burning  is 
now  only  half  of  what  it  was  before,  but,  as  can 
he  seen  from  Graph  V.a,  the  fluctuation  is  of  a  very 
regular  character,  if  not  more  marked  than  ever. 
By  omitting  charges  it  was  found,  as  in  the  case  of 
Graph  I. a,,  that  the  oscillations  reappeared  at  the 


186  T       MILES  AND  SARGINS ON.— COMBUSTION  IN  THE  GRILLO  OLEUM  PLANT.       [June  15, 1922. 


converters  15  to  17  minutes  later  (V.b).  Graph  VI. a 
shows  another  series  of  tests  made  under  the  same 
conditions,  except  for  one  difference.  It  was 
usual,  in  order  to  maintain  the  temperature  of  the 
gas  leaving  the  sulphur  burners,  to  draw  through 
them  only  the  amount  of  air  necessary  for  complete 
combustion,  and  to  admit  the  necessary  "second- 
ary "  air  at  a  point  further  on.  In  the  case  of 
Graph  VI.  the  "  secondary  "  air  was  reduced  prac- 
tically to  a  minimum.  The  result  is  evidently  to 
emphasise  the  fluctuations. 

There  remained  another  possibility.  The  very 
definite  crests  of  Graph  IV.  occurred  from  5  to  7 
minutes  after  the  fires  had  been  charged.  The 
period  of  the  oscillations  was  10  minutes.  If  two 
fires  were  charged  (with  half  charges  as  before) 
every  5  minutes  the  active  period  of  one  pair  of 
fires  should  coincide  with  the  slack  period  of  the 
pair  charged  5  minutes  before  or  after  and  the 
oscillations  should  neutralise  each  other.     This   is 

Fluctuations  in  conversion. 


Fia.  5. 

like  superposing  on  each  other  two  curves  of  the 
same  period  as  Graph  IV. a,  but  of  half  the  ampli- 
tude. Nos.  1  and  12  were  charged  at  0  and  30 
minutes,  Nos.  2  and  11  at  5  and  35  minutes,  and 
60  on.  Graph  VII.  shows  a  half-hourly  cycle,  occur- 
ring with  some  regularity,  and  has  a  very  interest- 
ing resemblance  to  a  damped  harmonic  oscillation. 
The  results  as  shown  by  the  converter-gas  curve  are 
fairly  good  but  the  method  required  great  precision 
in  operation  and  did  not  justify  the  additional 
labour  and  trouble. 

Another  curve  obtained  in  the  same  way,  but  with 
a  rather  different  order  of  charging;  is  shown  in 
Graph  VIII.    It  has  the  same  alternating  character. 


Two  fires  which  were  expected  to  produce  an  even 
line  on  the  graph,  are  doing  so  in  one  part  of  the 
half-hour  period,  but  are  reinforcing  each  other 
in  another  part.  The  explanation  most  probably 
is,  in  our  opinion,  that  the  large  volume  of  the 
main  flue,  and  the  appreciable  time  necessary  for 
the  gas  to  traverse  it,  cause  a  phase-difference  to 
appear  between  fires  which  are  widely  apart.  The 
investigation  was  not  carried  further.  An  evident 
periodic  action  in  such  a  plant  cannot,  we  think, 
fail  to  be  of  some  interest. 

Influence  of  the  fluctuations  on  conversion. — 
Each  unit  had  two  converters  working  in  parallel. 
Each  consisted  of  a  jacketed  cylindrical  steel  vessel 
6  ft.  6  in.  in  diameter  by  about  13  ft.  high.  The 
contact  mass  was  arranged  in  four  layers  16  in. 
thick,  each  containing  about  2300  lb.  of  Grillo  mass 
with  about  03%  of  platinum.  The  gas  entered 
tangentially  into  the  jacket  at  the  bottom,  tra- 
velled to  the  top  by  a  spiral  path  and  then  passed 
down  through  each  layer  in  succession,  being 
thrown  against  the  cooled  wall  after  passing 
through  each  layer,  by  means  of  a  cast  iron  baffle 
disc.  In  this  way  the  heat  generated  by  the 
reaction  was  partially  given  to  the  incoming  gas. 

Conversion  was  estimated  by  Reach  tests  made 
simultaneously  at  inlet  and  exit.  Each  test 
required  about  four  minutes  and  the  series  was  con- 
tinuous. We  had  previously  shown  that  if  certain 
precautions  are  taken  this  test  is  very  accurate  and 
reliable  for  the  purpose. 

Graphs  IX.  and  X.  are  representative  of  the 
observations.  Here,  as  before,  Curve  6  shows  the 
percentage  of  S02  in  the  entering  gas.  Curve  d 
gives  the  conversion.  When  Graph  IX.  was  obtained 
the  inlet  gas  was  more  concentrated  than  was  found 
best  for  good  conversion.  It  will  be  seen  that  each 
rise  in  concentration  is  followed  by  a  very  definite 
fall  in  conversion  and  vice  versa.  In  the  case  of 
Graph  X.  not  only  are  the  initial  fluctuations 
smaller  but  the  mean  sulphur  dioxide  percentage  is 
lower  also  and  is  consistent  with  normal  running  for 
this  type  of  converter.  The  result  is  that  the  conver- 
sion varies  much  less  than  before.  Many  other  tests 
confirmed  this  conclusion: — The  lower  the  sulphur 
dioxide  content  of  the  gas  supplied  the  less  does  a 
variation  of  this  content,  by  the  same  fraction, 
affect  the  result. 

Tests  were  also  made  on  the  gas  before  and  after 
it  passed  through  the  first  layer  and  some  results 
of  these  are  given  in  Graphs  XI.  and  XII.  The  effect 
is  the  same,  but  is  more  marked  than  before.  In 
the  first  case  the  conversion  (curve  d)  is  seen  to  fall 
from  40%  to  35%  in  15  minutes.  Curve  e  represents 
the  initial  percentage  converted  and  is  a  measure 
of  the  amount  of  conversion.  As  might  be  expected, 
this  curve  rises  and  falls  with  the  first  (b),  snowing 
that  the  layer  of  mass  attempts  to  deal  with  the 
extra  load  due  to  the  influx  of  richer  gas,  but  (as 
curve  d  shows)  is  not  quite  equal  to  the  task.  The 
same  remarks  apply,  in  a  lesser  degree,  to  the  con- 
verter as  a  whole,  and  the  problem  may  be  followed  a 
step  further.  When  the  entering  gas  becomes 
rapidly  richer,  conversion  by  the  first  layer  falls 
(by  5%  or  so  in  the  example  given),  and  the  remain- 
ing layers  have  to  deal  with  an  extra  load,  due  not 
only  to  the  increased  concentration  but  also  to  the 
fall  in  efficiency  of  the  first  layer.*  The  fall  in 
efficiency  of  the  converter  as  a  whole  is  less  import- 
ant, say  1%,  but  its  occurrence  shows  that  the  last 
three  layers,  although  possessing  considerable 
flexibility,  were  not  quite  equal  to  the  sudden  extra 
work  and  must  have  been  in  a  somewhat  sensitive 
state  of  thermal  balance. 


•  Investigation  by  the  chemists  in  charge  of  this  plant  at  Gretna 
showed  that  the  third  and  fourth  layers  dealt  with  most  of  this 
extra  load,  the  fourth  hardly  taking  any  of  it.  or  more  than  about 
8%  at  any  time. 


Vol.  XLI.,  No.  11.] 


BLAIR  AND  WHEELER.— GAS-ANALYSIS  APPARATUS. 


187T 


Owing  to  the  position  of  the  pyrometer  pockets 
— between  the  layers  and  not  in  the  contact  mass 
itself — the  actual  temperatures  of  the  gases  leaving 
the  contact  mass  could  not  be  obtained.  It  was 
found,  however,  in  practice,  that  to  secure  conver- 
sions of  96%  or  more  the  readings  of  the  four  pyro- 
meters should  not  differ  much  from: — No.  1  375°, 
2  450°,  3  470°,  4  460°  C.  Under  these  conditions 
the  first  layer  was  doing,  in  the  examples  shown, 
only  35%  of  the  work  and  sometimes,  with  more 
dilute  gas  and  conversions  of  97%  or  so,  only  25%. 
If,  however,  the  second  pyrometer  were  allowed  to 
show  500°  or  510°  C.  a  far  greater  conversion  (60% 
or  more)  could  be  obtained  in  the  first  layer, 
although  this  system  of  running  made  the  whole 
converter  so  hot  that  the  efficiency  did  not  usually 
exceed  92'5%.  Prom  the  equilibrium  measurements 
of  Bodenstein  the  maximum  conversion  of  a  5%  gas 
may  be  shown  to  be  98%  at  455°,  94%  at  512°,  92% 
at  529°  and  90%  at  543°  C.  If  therefore  the  first 
layer  could  have  been  run  at  a  higher  temperature 
without  disturbing  the  others  it  would  have  been 
possible  enormously  to  increase  the  catalytic 
activity  without  any  very  great  decrease  in  the 
attainable  conversion.  For  this  reason  alone,  the 
type  of  converter  considered  would  appear  to  be 
at  a  disadvantage  compared  with  types  in  which 
conversion  can  be  carried  out  independently  in  two 
or  possibly  more  sections.  The  rapidity  of  the 
catalysis  is  increased  enormously  with  increasing 
temperature  (by  about  35%  for  10°  C).  It  would 
seem  advantageous  to  utilise  one  part  of  the  cata- 
lytic mass  to  effect  the  highest  possible  amount  of 
conversion  and  to  complete  the  conversion  by  sub- 
sequently passing  the  gas  through  suitable  regen- 
erative cooling  devices  and  then  over  the  other  part 
of  the  mass,  maintained  at  a  temperature  between 
430°  and  460°  C.  The  two  required  conditions — high 
temperature  for  maximum  amount  of  conversion 
and  lower  temperature  for  most  complete  conver- 
sion— are  incompatible,  and  if  all  the  segments  of 
the  converter  are  thermally  dependent  on  one 
another,  as  in  the  present  case,  each  of  the  required 
conditions  is  to  some  extent  destructive  of  the 
other. 


AN    IMPROVED    FORM    OF 
GAS-ANALYSIS    APPARATUS. 

BY    E.    W    BLAIR,    B.SC,    D.I.O.,    A.I.O.,    AND 
T.   SHERLOCK  WHEELEB,  B.SC,  A. B.C. SO. I.,  A.I.O. 

The  apparatus  is  an  improved  form  of  the  usual 
Bone-Wheeler  gas  analysis  apparatus.  The  chief 
improvement — one  that  is  applicable  to  many  other 
types  of  gas  analysis  apparatus — lies  in  the  use  of 
compressed  air  and  a  vacuum  to  alter  the  mercury 
levels  in  the  apparatus.  This  saves  much  of  the 
labour  involved  in  raising  and  lowering  frequently 
some  2  or  3  lb.  of  mercury  through  about  twice  the 
barometric  height,  as  has  until  now  been  necessary. 
It  makes  the  apparatus  much  more  compact,  and 
enables  the  operator  to  remain  at  one  level,  saving 
much  of  the  fatiguing  ascending  and  descending  of 
steps  necessary  in  working  an  ordinary  apparatus. 
The  liability  to  breakage  of  the  catgut  supporting 
the  moving  vessel  of  mercury  also  disappears. 

The  following  is  a  description  of  the  apparatus. 
C  is  a  stout  glass  or  steel  bulb  containing  mercury. 
It  is  connected  by  a  two-way  tap,  A,  with  the  open 
air  or  a  water-pump,  which  gives  a  good  vacuum. 
The  connexion  with  the  vacuum  is  through  a  capil- 
lary tube  so  that  the  pressure  in  C  may  not  fall  too 
rapidly.  B  is  a  needle  valve  capable  of  very  fine 
adjustment  and  only  opening  slowly;  it  connects 
with  a  compressed  air  supply  at  about  2  atmos- 
pheres;   if   the   available    supply   is   at    a   greater 


pressure  a  reducing  valve  must  be  used  to  decrease 
it.  G  is  the  measuring  burette  and  F  the  mercury 
column  usual  in  the  Bone-Wheeler  apparatus. 
Instead  of  a,  the  connexion  with  C,  entering  F  and 
G  symmetrically  as  is  customary,  it  is  arranged  so 
that  F  is  directly  above  it.  This  enables  any  air 
bubbles  in  the  mercury  from  C  to  be  trapped  in  F 
and  ejected  through  b.  d  is  the  constant  volume 
mark  on  G.  C  is  arranged  so  that  when  there 
is  a  vacuum  in  it,  the  mercury  falls  in  G 
to  the  join  of  F  and  G.  In  the  usual  appa- 
ratus there  has  to  be  provision  made  for  lowering 
C  to  over  760  mm.  below  d,  so  that  some  500  mm. 
is  saved  in  this  apparatus,  enabling  G  and  F  to  be 
made  longer,  g  is  a  rubber  connexion  between  the 
glass  tube,  J,  and  the  steel  tube  leading  from  C. 

Z  is  a  tap  for  shutting  off  the  mercury  when 
reading  the  pressure  in  F.  To  allow  it  to  be  worked 
from  the  same  level  as  the  other  taps  a  steel  rod 
running  in  guides  is  used.  The  level  at  d  is 
observed  by  a  fixed  mirror,  m,  and  a  small  tele- 
scope, h ;  the  varying  levels  in  F  are  read  by  a 
counterpoised  mirror,  e,  moving  in  guides,  and  a 
fixed  telescope,  k.  J  is  a  two-way  tap  for  taking  in 
samples,  K  is  an  explosion  pipette  with  its  steel 
bulb,  L,  and  connexions  to  compressed  air  and 
vacuum  as  with  C.  Compressed  air  at  one  atmos- 
phere is  sufficient  in  this  case. 

S  is  -an  electrolytic  gas  generator.  It  is  filled 
with  strong  baryta  water;  a  bulb  is  used  to  prevent 
any  baryta  entering  K.  The  first  gas  evolved  is 
sucked  into  K  and  rejected  through  M  and  o.  The 
gas  can  be  prepared  while  the  earliest  portions  of 
the  gas  analysis  are  proceeding. 

N  is  a  tube  allowing  the  gas  from  G  to  pass  round 
and  up  into  M  and  through  the  absorbing  liquid  on 
top  of  the  mercury  in  M  in  a  stream  of  fine  bubbles, 
there  being  only  a  small  hole  at  p.  This  permits 
more  rapid  absorption  than  if  the  gas  is  admitted  as 
usual  through  n.  It  is  sucked  off  through  n  into  G 
and  repassed  through  p  as  required  and  finally 
taken  back  to  G  to  be  measured,  o  is  connected 
with  a  vacuum  pump  and  is  for  removing  reagents. 
The  various  absorbents  are  in  the  holders,  P,  P, 
connected  directly  to  s,  and  can  be  run  in  via  u  and 
p  as  required.  The  tube,  u,  p,  is  then  swept  out 
with  mercury  from  K  and  again  after  the  gas  is 
passed  into  M.  A  bottle  containing  dilute  sulphuric 
acid  is  of  course  among  those  connected  with  s. 

As  shown  by  the  dotted  lines,  a  small  reservoir 
can  be  fastened  at  x  in  order  that  a  portion  of  a 
gas  to  be  exploded  may  be  stored.  If  a  second 
explosion  should  then  be  necessary  the  complete 
re-treatment  of  a  fresh  sample  of  gas  is  avoided. 

The  method  of  working  the  apparatus  is  not 
different  from  the  usual  method,  the  gas  being 
passed  by  the  compressed  air  into  M  and  with- 
drawn by  opening  to  air  and  then  using  the 
vacuum.  The  translation  from  compressed  air  to 
vacuum  is  always  made  via  open  air ;  this  prevents 
any  sudden  changes  of  pressure  in  the  apparatus. 

The  apparatus  is  very  much  more  rapid  to  use 
than  an  ordinary  one  and  very  much  less  tiring. 
With  a  little  practice  the  control  over  the  mercury 
is  greater.  It  is  obvious  that  modifications  may  be 
made  in  the  apparatus  suggested.  Thus  compressed 
air  and  a  vacuum  pump  can  be  fitted  to  an 
ordinary  apparatus,  and  no  other  alterations  made. 
Compressed  air  need  not  be  used  for  the  explosion 
pipette  if  L  is  fixed  on  a  level  with  H,  but  the 
control  over  the  mercury  is  not  so  good.  Also  by 
having  C  more  than  760  mm.  below  d  a  vacuum  can 
be  dispensed  with,  but  the  arrangement  described 
is  better;  there  is  not  such  a  chance  of  great 
changes  in  pressure,  the  open  air  always  acting  as 
a  mean  between  the  vacuum  and  the  compressed  air. 
Aluminium    clamps    can    be    employed    instead    of 


188  t     SINNATT  AND  SIMPKIN.— INORGANIC  CONSTITUENTS  OF  COAL  (ERRATUM).     [June  15, 1922. 


rubber  tubing  to  join  the  various  tubes  in  the 
apparatus,  but  although  more  lasting  they  make 
the  apparatus  too  easily  broken  to  be  convenient  in 
heavy  routine  work. 

The  electrolytic  gas  generator   attached  to  the 
explosion  pipette  has  been  found  very  convenient. 


frame  as  shown ;  when  it  i6  resting  on  the  ground, 
the  taps  in  the  apparatus  are  at  a  convenient  height 
to  manipulate.  The  usual  washing  vessel,  Y,  can 
be  fitted  if  the  reagents  are  introduced  with  a 
pipette.  The  shelf,  W,  is  used  to  hold  an 
induction  coil. 


J2^      ffi        <ffi      l2l 


For  explosion  purposes  L  should  be  fixed  so  that  its 
middle  point  is  just  380  mm.  (half  barometer 
height)  below  the  mid-point  of  K.  Conditions  can 
then  always  be  arranged  so  that  explosions  are 
carried  out  at  about  half  an  atmosphere.  The 
whole  apparatus  is  mounted  in  a  suitable  wooden 


Erratum. 

In  the  discussion  on  the  paper  by  F.  S.  Sinnatt 
and  N.  Simpkin,  "  The  Inorganic  Constituents  of 
Coal"  (J.,  May  31,  1922),  on  page  166  T,  col.  2, 
line  32  from  bottom,  for  "  microscopically  "  read 
"  macroscopically." 


Vol.  XLI..  No.  12.] 


TRANSACTIONS 


[June  30,  1922. 


Liverpool  Section. 


Meeting  held  at  the  University  on  March  17,  1922. 


DR.    C.    C.    CLAYTON   IN   THE   CHAIU. 


THE  INDUSTRIAL  TREATMENT  OF   FUMES 
AND  DUSTY  GASES. 

BY    W.    E.    GIBBS,    D.SC. 

Smokes,  fumes,  and  dusty  gases  can  all  be 
regarded  as  disperse  systems  in  which  the  dispersed 
substance  is  solid  or  liquid,  the  dispersion  medium 
being  a  gas — either  the  atmosphere  {e.g.,  the  dusty 
at umsphere  of  mines  and  mills),  flue  gases  from 
furnaces  (e.g.,  metallurgical  fume  and  sulphuric 
acid  mist),  or  fuel  gases  (blast-furnace  gas  and 
producer  gas). 

Any  particle  suspended  in  a  gas  is  subject  to  two 
sets  of  forces.  It  is  pulled  downwards  by  gravity 
with  a  force 


F  = 


3  jrr3  (p  -  p')g, 


where  r  is  the  radius  of  the  particle,  p  its  density, 
P  the  density  of  the  gas,  and  g  the  acceleration 
due  to  gravity. 

This  movement  downwards  is  resisted  by  the 
viscous  friction  of  the  gas.  The  magnitude  of  this 
resisting  force  It  is  equal  to  6™p-v,  in  which  t;  is 
the  viscosity  of  the  gas  and  v  the  velocity  of  the 
particle.  This  resistance  is  due  to  the  pressure 
exerted  upon  the  particle  by  the  impact  of  the  gas 
molecules  upon  its  surface.  As  the  particle  moves 
through  the  gas  in  any  direction  the  force  of  this 
impact  is  greater  on  its  leading  surface  than  on  its 
trailing  surface  by  an  amount  which  is  proportional 
to  the  velocity  of  the  particle. 

In  general,  for  particles  larger  than  from 
10"2  to  10~3  cm.  (according  to  the  density  of  the 
particle)  F  is  greater  than  R  at  all  velocities,  and 
the  particle  settles  with  increasing  velocity.  For 
smaller  particles  the  resistance  of  the  gas  increases 
with  the  velocity  of  the  particle  until  R  becomes 
equal  to  F.  The  particle  then  continues  to  fall  at 
a  constant  velocity, 

p_2r»(p-pQg 

9  7J 

The  values  of  v  for  spherical  particles  of  unit 
density  falling  in  still  air  are  given  in  Table  I. 


Table  I. 

Diameter  d. 

Sat 

cm. 

cm. /sec. 

ll)-« 

30 

10"3 

0-3 

10-' 

0-003 

10-' 

0-00003 

Rate  of  settling  r. 


metres  /hr. 
1100 

11 

11  cm. 

1-1  mm. 


From  this  it  is  clear  that  effective  settling  from 
air  or  gases  in  motion  can  only  be  obtained  with 
particles  of  not  less  than  10~3  cm.  diameter. 

For  particles  that  are  large,  compared  with  the 
mean  free  path  (A)  of  the  gas  molecules  (in  air  at 
the  ordinary  temperature  and  pressure,  A  =  10~s 
cm.),  the  molecular  bombardment  to  which  the 
particle  is  subjected  by  the  gas  is  fairly  evenly 
distributed  over  the  surface  of  the  particle  and 
produces  an  approximately  uniform  pressure  over 
the  surface  of  the  particle.  For  particles  of 
diameter  smaller  than  A  the  impacts  of  the  gas 
molecules  are  irregularly  distributed  and  drive  the 
particle  hither  and  thither  through  the  gas  in 
ceaseless  Brownian  motion.  For  such  particles  the 
force  of  gravity  has  but  little  effect  compared  with 


that  of  the  individual  molecular  impacts.  Further, 
such  small  particles  when  moving  through  the  gas 
under  the  influence  of  an  external  force — e.g., 
gravity — tend  to  slip  between  the  gas  molecules. 
For  such  particles  therefore  the  value  of  R  is  con- 
siderably diminished,  and  they  move  at  velocities 
greater  than  those  given  by  Stokes'  law. 

It  is  convenient  to  distinguish  three  kinds  of 
disperse  systems  in  gases  according  to  the  size  of 
particle  (degree  of  dispersion):  — 

(a)  Busts,  in  which  the  particles  are  larger  than 
10~3  cm.  diameter.  Such  particles  settle  in  still  air 
with  increasing  velocity.     They  do  not  diffuse. 

(b)  Clowls,  the  particles  of  which  range  in 
diameter  from  10~3  to  10~3  cm.  Such  particles  settle 
in  still  air  at  a  constant  velocity,  depending  upon 
their  size,  according  to  Stokes'  law.  They  also  do 
not  diffuse. 

(c)  Smokes,  the  particles  of  which  range  from 
10s  to  10"'  cm.  diameter.  Such  particles  are  in 
active  Brownian  motion  and  diffuse  fairly  rapidly. 
They  do  not  settle  at  all  in  still  air. 

Various  degrees  of  dispersion  are  compared  in 
Table  II. 

Table  II. 

Substance.  Diameter  of  particles  (cm.). 
Milk  powder  (by  evaporation  of    ne 

spray)           1-4  X  10"1  to  0-7  X  10"' 

Fine  powder  (300-mesh),  e.g.,  cement  1  x  10~!  to  0-7  x  10"* 

Smelter  fume 1  x  10"*  to    1  x  10"s 

Atmospheric  fog  particles     . .         . .  1-4  x  10"*  to  3-5  x  10~3 
Cement  kiln  flue  dust            . .         . .  6  X  10"*  to  0-8  X  10-3 
Sulphuric   acid   mist   from   concen- 
trators1           11  X  10-"  to  1-6  x  10"' 

Ammonium  chloride  fume"   . .         . .  IX  10-'  to    1  x  10-5 

Oil  smoke1 1  X  10-'  to    5  x  10-8 

Eosiii  smoke' 1  X  10~«to    1  x  10"' 

Tobacco  smoke5         1-5  X  10-6  to    1  x  10-8 

These  disperse  systems  in  gases  are  formed  either 

(a)  By  condensation,  as  in  the  cooling  of  vapours 
of  metals  and  metallic  compounds  from  metallurgi- 
cal furnaces  and  the  condensation  of  tar  vapours 
from  producer  gas. 

(6)  By  chemical  action  between  vapours  and 
gaseous  constituents  of  the  fume  to  form  compounds 
that  are  not  volatile  at  the  fume  temperature,  e.g., 
zinc  oxide  fume  from  brass  foundries. 

(c)  By  mechanical  disintegration  and  dispersion 
of  solid  or  liquid  substances,  e.g.,  ore  dust  carried 
over  from  the  furnace,  the  dust  in  the  air  of  grind- 
ing mills  and  coal  mines. 

In  many  cases  substances  are  manufactured  in 
powder  form  by  being  dispersed  in  a  gas  and  subse- 
quently collected,  e.g.,  milk  powder,  carbon  black, 
zinc  dust. 

Liquid  or  solid  matter  dispersed  in  a  gas, 
whether  in  the  form  of  dust,  cloud,  or  smoke,  is 
generally  separated  from  the  gas  industrially  for 
one  or  more  of  the  following  reasons :  — 

(1)  It  may  be  obnoxious. 

(a)  Smelter  fumes  contain,  in  addition  to 
sulphur  dioxide,  considerable  quantities  of 
finely  divided  ore  particles,  and  also  smoke 
particles  produced  by  the  condensation  of  metal 
or  metal  compounds  volatilised  in  the  furnace. 
The  greater  proportion  of  this  dust  consists 
of  particles  of  diameter  greater  than  10~3  cm. 
In  localities  where  smelting  operations  are 
carried  out  on  a  large  scale,  e.g.,  in  certain 
parts  of  the  United  States,  fumes  from  these 
smelters  constitute  a  serious  public  nuisance. 
In  one  smelter  as  much  as  four  million  cubic 
feet  is  produced  per  minute.  Such  fume  has 
to  be  freed  from  its  suspended  matter  before 
it  is  discharged  into  the  open  air.  Generally 
speaking,  if  the  amount  of  suspended  matter 
in  the  fume  is  enough  to  be  obnoxious,  it  will 
pay  for  recovery. 

A 


190  t 


GIBBS.— INDUSTRIAL  TREATMENT  OF  FUMES  AND  DUSTY  GASES.        [June  30, 1922. 


(6)  Aeid  fumes.  When  weak  sulphuric  acid 
is  concentrated  by  contact  with  hot  gases  in 
Gaillard  towers  or  Kessler  concentrators  the 
gases  carry  away  a  considerable  quantity  of 
sulphuric  acid  in  the  form  of  fine  mist  vary- 
ing from  4  to  10  g.  of  real  S03  per  cubic  metre. 

(2)  It  may  be  valuable. 

(a)  Smelter  fumes,  particularly  those  from 
copper,  silver,  tin,  arsenic,  and  mercury 
furnaces,  contain  suspended  matter  worth 
many  times  more  than  the  cost  of  recovery. 

(b)  Blast  furnace  potash."  Blast  furnace  gas 
contains  from  5  to  6  g.  of  dust  per  cub.  m. 
This  dust  contains  from  2  to  30%  K20, 
depending  upon  the  composition  of  the  charge. 
By  suitable  choice  of  charge  materials  as  much 
as  50  lb.  of  potash  can  be  obtained  from  the 
gas  per  ton  of  iron  produced. 

(3)  It  may  be  an  undesirable  impurity. 

(a)  Producer  gas  or  blast-furnace  gas  when 
used  for  internal  combustion  engines  should 
contain  less  than  001  g.  of  dust  per  cub.  m.' 
If  more  dust  be  present,  and  therefore  prob- 
ably coarser  du6t,  the  gritty  particles  wear  out 
the  cylinders  of  the  engines.  Blast-furnace 
gas  for  stoves  and  boilers  should  not  contain 
more  than  1  g.  of  dust  per  cub.  m.,  otherwise 
the  flues  and  chequerwork  become  choked  and 
require  frequent  cleaning.  Also  the  walls  of 
the  flues  become  corroded  by  the  hot  alkaline 
dust. 

(6)  Sulphur  dioxide  from  pyrites  burners 
commonly  contains  up  to  5  g.  of  dust  per 
cub.  in.  This  dust  unless  removed  will  choke 
the  Glover  towers  and  scrubbers  in  the  chamber 
process,  or  in  the  contact  process  will  speedily 
choke  the  catalyst  and  render  it  useless. 

(4)  It  may  be  explosive. 

(a)  Mills.  In  many  mills  in  which  combus- 
tible substances  such  as  flour,  starch,  sugar, 
and  coal  are  ground  the  fine  particles  are 
caught  up  into  the  air  and  retained  in  suspen- 
sion. Unless  the  air  is  circulated  and  filtered 
continually  the  concentration  of  this  suspended 
dust  may  reach  the  explosive  limit.  A  sus- 
pension of  35  g.  of  flour  dust  per  cub.  m.  of 
air  is  explosive. 

(b)  Mines.  Coal  dust  is  explosive  when 
present  in  air  to  the  extent  of  30  g.  per  cub.  m. 

Dust  explosions8  are  never  spontaneous  but 
always  the  result  of  ignition.  A  cloud  con- 
taining 72  g.  of  sugar  dust  per  cub.  m.  of  air 
can  be  ignited  readily  by  an  electric  arc.  A 
concentration  of  180  g.  per  cub.  m.  is  neces- 
sary before  the  flame  of  an  oil  lamp  can 
ignite  it. 

Dust  explosions  can  be  inhibited  either  by 
(a)  diluting  the  explosive  dust  with  an  inert 
dust,  e.g.,  fine  shale  or  stone  dust  in  coal  mines; 
(6)  diluting  the  air  in  which  the  dust  is  sus- 
pended with  an  inert  gas,  e.g.,  flue  gas;  or 
humidifying  the  air  and  therefore  the  dust 
suspended  in  it. 

(5)  It  may  be  unhealthy  for  the  workers. 

(a)  In  many  grinding  mills  and  packing 
rooms  the  suspended  dust  when  inhaled  by  the 
workers  is  harmful  to  the  lungs,  as  in  the  case 
of  certain  silicious  dusts.  In  many  cases  it  is 
directly  poisonous. 

(b)  Many  metallurgical  fumes,  e.g.,  arsenious 
oxide  and  zinc  oxide,  are  injurious  to  health. 

(6)  The    manufacture    of   substances    in   powder 
form. 

(a)  When  liquids  such  as  milk,  egg  yolk, 
and  fruit  juices  are  sprayed  into  hot  gases  the 
particles  evaporate,  thus  producing  a  fine  dust 
of    the    evaporated    product.       In    this     way 


evaporation    is   carried  out   rapidly   and   at   a 
temperature  that  will  not  damage  the  material. 

(b)  Carbon  black  is  manufactured  by  the  com- 
bustion of  oil  vapour,  or  naturally  occurring 
hydrocarbon  gases  such  as  methane,  in  a 
limited  supply  of  air.  The  finely  divided 
carbon  particles  so  produced  are  allowed  to 
settle,  or  are  filtered  or  precipitated  from  the 
gaseous  products  of  combustion.' 

(c)  High-grade  zinc  dust  is  manufactured  by 
projecting  a  finely  divided  spray  of  molten  zinc 
into  an  inert  gas,  in  which  it  cools  and  is 
condensed  in  the  form  of  powder. 

(</)  When  the  metallic  constituents  of  certain 
low-grade  ores  are  roasted  with  salt,  the  metal 
is  volatilised  as  chloride,  and  subsequently 
condensed.10 

Methods  of  treatment . 

1.  Settling. — The  density  of  dust  and  fume 
particles  (varying  from  1  to  10)  is  much  higher 
than  that  of  the  gas  (0-001  to  0-003)  in  which  they 
are  suspended.  Given  the  opportunity,  therefore, 
such  particles  should  settle  from  the  gas  under  the 
action  of  gravity.  Even  in  still  air,  however,  only 
particles  greater  than  10"5  cm.  can  settle  at  all,  and 
of  these  only  those  that  are  coarser  than  10"s  cm. 
can  settle  at  all  rapidly. 

The  separation  of  gas  particles  by  settling  is 
facilitated  by  the  following  methods. 

(a)  By  retarding  the  rate  at  which  the  gas  is 
travelling — e.g.,  by  passing  it  through  settling 
chambers,  of  which  the  cross-sectional  area  is  many 
times  that  of  the  flue.  Such  settling  chambers  are 
used  for  smelter  fume,  and  it  is  found  that  the 
maximum  speed  at  which  the  fume  can  travel,  and 
at  the  same  time  permit  settling  of  the  suspended 
dust  particles,  is  6  ft.  per  second.  To  deal  with  a 
million  cub.  ft.  of  gas  per  minute,  therefore,  will 
involve  a  settling  chamber  of  3000  sq.  ft.  cross- 
sectional  area.  For  copper  blast-furnace  fume 
satisfactory  settling  at  300°  C.  is  only  obtained  at 
a  velocity  of  3%  ft.  per  second.1 '  It  is  found  that 
200-mesh  dust — i.e.,  0009  cm.  diameter — settles  in 
125  ft.,  if  the  velocity  is  not  greater  than  2J  ft. 
per  second.  These  settling  chambers  require  to  be 
designed  and  constructed  with  special  baffles  across 
the  floor  and  sides,  to  distribute  the  flow  of  the 
fume  through  them ;  otherwise,  the  fume  flows 
straight  through  the  centre  of  the  chamber  with 
practically  undiminished  velocity. 

Where  the  gases  are  very  hot  as  they  leave  the 
furnace,  the  velocity  can  be  greatly  diminished  by 
cooling  them.  The  volume,  and  hence  the  velocity, 
of  a  fume  can  be  reduced  to  about  one-fourth  of  its 
original  value  by  cooling  it  from  1000°  C.  to  100°  C. 
This  cooling  can  be  brought  about  either  by  passing 
the  gas  through  air-cooled  sheet  iron  flues  designed 
to  produce  the  maximum  amount  of  cooling  by 
radiation  and  convection,  or  by  spraying  water  into 
the  fume. 

(b)  By  shortening  the  vertical  path  that  lias  to  be 
traversed  by  the  particles. — In  the  Howard  dust 
chamber12  this  is  done  by  inserting  in  the  settling 
space  a  large  number  of  horizontal  shelves  spaced 
a  few  inches  apart,  one  below  the  other,  so  that  the 
gas  passes  between  them  "  in  parallel,"  the  dust 
being  deposited  upon  the  upper  surfaces  of  all  the 
shelves  simultaneously.  In  this  way  the  actual 
distance  through  which  each  dust  particle  has  to 
settle  is  reduced  from  many  feet  to  a  few  inches. 

(c)  By  centrifugal  action. — A  fume  can  be  sub- 
mitted to  centrifugal  force  either  by  causing  it  to 
enter  tangentially  a  fixed  cylindrical  vessel  (Fig.  1)" 
or  by  introducing  it  axially  into  a  rapidly  rotating 
cylindrical  vessel.1'  Assuming  that  the  density  of 
the  suspended  solid  or  liquid  particles  is  of  the 
order  of  one  hundred  times  the  density  of  the  gas 
molecules,  it  would  6eem  that  the  centrifugal  force 


Vol.  xu.,  No.  12.1     GIBBS.— INDUSTRIAL  TREATMENT  OF  FUMES  AND  DUSTY  GASES. 


191t 


method  should  offer  considerable  scope.  It  is  found, 
however,  that  such  methods,  although  useful  for 
coarse  dust  particles,  are  of  little  use  for  clouds  or 
smokes.     The    rotating   cylinder    is    more    efficient 


Fig.  1. 
Centrifugal  or  "  cyclone  "  dust  catcher. 

than   the   stationary  vessel,   but    is   much  too  ex- 
pensive for  dealing  with  large  volumes  of  gas. 

Another  method  in  which  centrifugal  force  is 
utilised  consists  in  submitting  the  gas  to  a  sudden 
change  of  direction  when  travelling  at  a  consider- 
able velocity.13  This  method  is  in  use  in  the  form 
of  zigzag  flues  and  in  many  types  of  downcomer, 
in  which  a  change  of  direction  is  imparted  to  the 
gas  current  by  means  of  baffles. 

(d)  By  loading  the  particles  with  water. — This  is 
done  by  cooling  the  gas  below  the  dew  point,  so  that 
the  water  vapour  present  in  the  gas  condenses  upon 
the  particles.  Cooling  can  be  effected  by  passing 
the  hot  gases  through  a  sheet  iron  flue  suspended 
above  the  ground  so  that  a  maximum  surface  is 
exposed  to  the  cooling  effect  of  the  air.  The  gas 
also  may  be  cooled  by  causing  it  to  expand  adia- 
batically  into  a  lnrge  settling  chamber,  where  the 
deposition  of  moisture  on  the  suspended  particles 
reinforces  the  increased  settling  efficiency  that 
results  from  the  diminished  velocity.  In  some  cases 
water  is  introduced  into  the  fume  in  a  finely 
atomised  condition  in  quantities  sufficient  to  cool 
the  gas  and  also  to  moisten  the  particles. 

(e)  By  contact  with  solid  surfaces. — When  smokes 
or  dusty  gases  are  driven  against  or  along  solid  or 
liquid  surfaces,  the  particles  tend  to  adhere  to  the 
surface  and  to  unite  with  one  another  to  form 
coarser  aggregates.  Freudenberg"  found  that  by 
suspending  jn  the  gas  a  large  number  of  sheet  iron 
plates  (jj  in.  thick  and  4 — 5  in.  apart)  parallel  to 
the  gas  current  (Fig.  2)  the  suspended  matter  was 
deposited  upon  them  to  a  thickness  of  about  1J  in., 
and  then  fell  away.  He  found  that  the  amount  of 
dust  deposited  was  proportional  to  the  surface  area 
of  the  plates.  Roesing"  obtained  similar  results, 
using  No.  10  gauge  wires  1  in.  apart. 

(f)  Bij  flocculation. — Spontaneous  flocculation, 
producing  coarser  fume,  only  occurs  to  any  marked 
extent  in  the  case  of  smokes,  and  is  due  to  the  con- 
tact of  the  particles  with  one  another  brought  about 
by  diffusion.  Flocculation  of  smokes  is  greatly 
facilitated  by  agitation."  With  coarser  suspensions 
frequent  contact  between  the  particles  can  only  be 


obtained  by  agitation,  by  compression,  or  by 
contact  with  solid  surfaces.  A  fog  is  stable  in  still 
air,  but  is  soon  flocculated  and  deposited  by  wind. 
The  flocculation  of  many  smokes  is  inhibited  by  the 
protective  action  of  films  of  adsorbed  gas  surround- 
ing the  smoke  particles.  This  is  particularly 
marked  in  such  smokes  as  the  blue  zinc  oxide  smoke 
from  a  brass  foundry,  stannous  chloride  smoke  from 
the  chlorination  of  tin  ores,  and  the  sulphur  tri- 
oxide  smoke  or  mist  from  catalyst  chambers.10  In 
some  cases  this  adsorbed  gas  film  can  be  displaced  by 
altering  the  composition  of  the  dispersion  medium. 

Why  does  a  suspended  particle  tend  to  settle  upon 
a  solid  surface  with  which  it  is  brought  into  con- 
tact? In  many  cases  it  is  probably  duo  to  the 
fact  that  the  layer  of  dusty  gas  in  close  contact 
with  the  surface  is  travelling  very  slowly,  and  the 
particles  are  arrested  and  held  by  the  roughness 
of  the  surface.  To  some  extent  also,  possibly, 
gravitational  forces,  acting  under  these  conditions, 
draw  the  particles  to  the  surface.  Where  the  local 
irregularities  of  the  surface  are  such  as  to  maintain 
local  eddy  currents  at  the  surface,  these  eddy 
currents  will  tend  to  deposit  dust  by  centrifugal 
action.  In  some  cases  electrically  charged  smoke 
particles  are  attracted  to  the  surface  by  reason  of 
the  electric  charge  induced  at  the  surface.  When 
a  smoke  is  viewed  through  an  ultramicroscope,  par- 
ticles in  the  neighbourhood  of  a  wire  are  seen  to 
change  their  direction  as  they  come  near  the  wire, 
and  fly  to  it.20  With  certain  surfaces  an  electro- 
static charge  can  be  produced  at  the  surface  by  the 
friction  of  the  gas  passing  over  it.    The  nature  and 


n 


u cm 

ftriuira 


■  ■■  ■ 


*vm 


Fig.  2. 
Dust  flue  with  Freudenberg  plates. 

intensity  of  this  charge  will  depend  upon  the  nature 
of  the  surface  and  the  gas.  An  interesting  form  of 
precipitation  is  that  obtained  when  a  warm,  dusty 
gas  or  smoke  comes  into  contact  with  a  relatively 
cold  surface.  If  tobacco  smoke  be  passed  through 
the  annular  space  between  two  concentric  tubes, 
of  which  the  inner  one  is  steam-heated  and  the 
outer  one  air-cooled,  it  is  found  that  very  quickly 
the  whole  of  the  suspended  matter  is  deposited  upon 
the  surface  of  the  cold  tube.21  This  principle  has 
been  made  use  of  to  some  extent  in  removing  dust 
from  smelter  fume.22  In  this  case  the  fume  is 
passed  over  a  number  of  water-cooled  tubes,  the 
dust  being  deposited  upon  the  outside  of  them  and 
scraped  off  from  time  to  time.  A  similar  action  is 
obtained  upon  the  outside  surfaces  of  the  cconomiser 
tubes  in  boiler  plants,  in  which  the  feed  water  on 
its  way  to  the  boiler  passes  through  the  inside  of 
the  tubes,  the  hot  waste  gases  from  the  furnace  on 
their  way  to  the  stack  passing  over  the  outside  of  the 
tubes.  The  whole  question  of  deposition  upon  sur- 
faces, as  the  result  of  impact  between  the  dusty 
gas  and  the  surface,  necessarily  depends  very  much 


192  T 


GIBBS.— INDUSTRIAL  TREATMENT  OF  FUMES  AND  DUSTY  GASES.        [June  30, 1922. 


upon  the  velocity  and  direction  of  the  gas  current 
and  the  form  of  the  surface.  In  the  Calder-Fox 
scrubber,23  largely  used  for  the  elimination  of  sul- 
phuric acid  mist  from  concentrator  gases  etc.,  the 
gas  containing  the  acid  mist  is  forced  along  a  hori- 
zontal flue  under  a  vertical  damper  at  a  velocity 
of  about  80  ft.  per  second,  and  then  meets  three 
perforated  plates  placed,  one  behind  the  other, 
perpendicularly  across  the  flue.  In  the  first  plate 
the  perforations  are  J  in.  in  diameter,  in  the 
second  plate  J  in.,  and  in  the  third  plate  *pg  in. 
The  gases  rise  up  from  beneath  the  inlet  damper 
and  pass  through  the  perforated  plates  at  a  velocity 
of  about  30  ft.  per  second.  The  Calder-Fox  scrubber 
reduces  an  acid  content  of  20  g.  of  real  S03  per 
cub.  m.  to  2  g.  per  cub.  m.,  with  an  efficiency  of 
from  85  to  90%.  In  this  scrubber  it  is  found  that 
the  efficiency  is  closely  connected  with  the  intro- 
duction of  the  gases  at  high  speed  below  the  inlet 
damper,  possibly  because  of  the  rotary  motion  im- 
parted to  the  gases  between  the  damper  and  the 
first  plate  of  the  scrubber,  so  that  the  gases  tend  to 
impinge  upon  the  plates  tangentially.  The  whole 
question  of  the  efficiency  of  such  a  scrubber  should 
be  investigated  systematically  in  relation  to  the 
lines  of  flow  followed  by  the  gas  as  it  passes  through 
the  scrubber. 

In  air-washing  plants,  in  which  the  air  is  first 
charged  with  a  fine  water  spray,  it  is  found  that 
the  spray  particles  can  best  be  eliminated  subse- 
quently by  passing  the  air  between  layers  of  parallel 
plates,  inclined  at  an  angle  of  45°  to  the  path  of  the 
air  curreut,  the  plates  in  each  layer  being  at  right- 
angles  to  those  in  the  adjacent  layers.  In  coke 
scrubbers,  as  used  for  the  elimination  of  sulphuric 
acid  mist,  the  depositing  action  depends  primarily 
upon  the  impact  of  the  particles  upon  the  surface 
of  the  coke. 

An  interesting  case  of  deposition  by  impact  is 
afforded  by  the  Schoop  metal  spray  process,  in 
which  finely  atomised  molten  metal  is  caused  to 
impinge  upon  the  surface  to  be  coated.  It  is  found 
that  lead  coatings  formed  in  this  way  when  treated 
with  cold,  distilled  water  are  "  peptised  "  to  form 
a  very  fine  colloidal  suspension  of  metallic  lead  in 
the  water.  Microscopical  examination  shows  that 
these  minute  lead  particles  are  in  nearly  every  case 
disc-shaped.  It  would  appear  that  the  particles 
of  the  lead  spray  are  surrounded  by  a  film  of 
adsorbed  gas,  so  that  the  coating  formed  in  this 
way  is  not  continuous,  but  consists  of  an  accumula- 
tion of  minute,  flat  plates  of  lead,  separated  from 
one  another  by  films  of  adsorbed  gas. 

2.  Filtration. — Considerable  attention  has  been 
directed,  particularly  in  Germany  and  the 
United  States  of  America,  to  the  dry  filtra- 
tion of  metallurgical  smoke.  Owing  to  the 
enormous  volume  of  smoke  to  be  handled, 
and  the  low  permeability  of  an  effective  filter- 
ing medium,  the  filtering  area  has  to  be  very 
great.  Large  fans  are  necessary  to  draw  or  drive 
the  gases  through  the  filters.  In  most  cases,  also, 
the  filtering  material  is  an  animal  or  vegetable 
fibre,  and  will  char  or  catch  fire  unless  the  gases 
are  cooled. 

Some  of  the  earliest  filters  were  simply  towers 
filled  with  dry  coke.  They  soon  became  choked  and 
were  troublesome  to  clean.  They  have  been  super- 
seded by  bag  filters."  The  bags  are  made  of  wool 
or  cotton,  and  sometimes  asbestos.  The  smoke  is 
drawn  through  the  walls  of  the  bag,  the  dust  being 
collected  on  the  surface  of  the  fabric.  To  remove 
the  dust,  the  bags  are  shaken  or  beaten 
periodicaljj',  or  treated  with  compressed  air.  The 
gases  must  be  cooled  below  90°  C.  for  cotton  and 
below  120°  C.  for  wool ;  otherwise  the  bags  will  be 
charred.  On  the  other  hand,  the  temperature  of 
the  gases  must  not  fall  below  the  dewpoint  of  the 


smoke  (50°  C),   or  the  acid  will  condense  on  the 
fabric  and  rot  it. 

Bag  filtering  is  really  a  special  form  of  separa- 
tion by  surface  contact.  The  filter  does  not 
behave  altogether  as  a  fine  sieve,  for  the  interstices 
of  the  fabric  are  much  larger  than  the  smoke 
particles.  The  particles  are  first  deposited  on  the 
fibres,  and  gradually  accumulate  until  the  bags 
become  choked.  Wool  is  found  to  be  about  50% 
more  efficient  than  cotton — possibly  on  account  of 
the  scaly  surface  of  its  fibres.  Also  it  is  much 
more  durable,  although  initially  it  is  considerably 
more  expensive.  Camel's  hair  has  been  used 
during  recent  years,  and  is  said  to  be  even  better 
than  wool.  From  3  to  4  sq.  ft.  of  filtering  area  is 
necessary  per  cub.  ft.  of  gas  per  minute — 
0.5  sq.  ft.,  if  the  bags  are  cleaned  mechanically." 


Fig.  3. 

Bag  filter,  with  automatic  cleaning  device. 
(Halberg-Beth  system.) 


Fig.  3  illustrates  the  Halberg-Beth  bag  filter 
fitted  with  a  mechanical  cleaning  device.  When 
the  filter  is  in  operation,  the  gases  are  drawn 
through  the  bags  in  the  direction  shown  by  the 
arrows,  so  that  the  pressure  in  the  bags  is  below 
that  of  the  atmosphere.  When  the  dust  has 
accumulated  to  a  sufficient  extent,  the  damper,  g, 
is  thrown  over  to  the  position  indicated  by  the 
dotted  line,  so  that  the  filter  is  cut  off  from  the 
fan  suction.  At  the  same  time,  on  account  of  the 
reduced  pressure  in  the  bags  and  container,  air  is 
drawn  into  the  container  and  through  the  walls  of 
the  bags.  In  this  way  the  bags  become  partially 
collapsed,  and  the  dust  is  dislodged,  and  falls 
into  the  hopper.  The  whole  operation  takes  but 
a  few  seconds. 

The  danger  of  rotting  the  fabric  with  acid 
fumes  is  sometimes  avoided  by  neutralising  the 
gases  with  lime  or  zinc  oxide  dust  before  being 
filtered.26  The  life  of  a  bag  will  depend  very  much 
upon  the  kind  of  dust  for  which  it  is  used ;  the 
sharp  dust  particles  from  grinding  and  buffing 
shops,  for  instance,  cut  the  bag  and  quickly  wear 
it  out. 

Bag  filters  are  generally  less  expensive  than  a 
washing  plant  to  construct  and  maintain.  They 
have  the  additional  advantage  that  they  collect  the 
material  in  a  dry  state.  Their  application  is 
limited,  however,  by  the  difficulty  of  obtaining  a 
sufficiently    resistant  fabric.     Also,  the    power  re- 


Vol.  XLI.,  So.  12]    GIBBS.—  INDUSTRIAL  TREATMENT  OF  FUMES  AND  DUSTY  GASES. 


193  t 


quired  to  draw  such  large  volumes  of  gases  through 
the  bags  is  very  large,  particularly  when  the  bags 
become  choked  with  dust.  Asbestos  bags  and 
screens  are  expensive,  and  become  brittle  when 
exposed  to  hot  acid  gases.  By  means  of  a  bag 
filtering  plant,27  the  dust  content  of  blast  furnace 
gas  at  50°  C.  can  be  reduced  to  from  O'Ol  to 
0001  g.  per  cub.  m.  Bags  last  from  six  to  twelve 
months,  and  the  power  expended  amounts  to 
1  h.p.  per  10,000  cub.  ft.  For  ordinary  bag  filters, 
without  mechanical  cleaning,  1  h.p.  is  consumed 
per  3000  cub.  ft.  of  fume. 

In  some  blast  furnaces  the  gases  are  filtered  by 
passing  them  through  filter  mattresses  consisting 
of  a  metal  framework  packed  with  metallic  wool.28 
The  gas  passes  in  succession  through  a  number  of 
such  filters,  the  texture  of  the  filters  becoming 
progressively  finer  the  more  remote  they  are  from 
the  gas  inlet.  By  this  means  the  dust  content  of 
blast-furnace  gas  can  be  reduced  to  0'5  g.  per 
cub.  m.  In  some  cases,  also,  it  has  been  proposed 
to  filter  dusty  gases  or  smokes  by  passing  them 
through  loose  granular  materials,  such  as  sand.29 
It  has  also  been  proposed  to  use  froths  and  foams 
in  a  similar  way. 

3.  Smoke  washing. — Many  methods  have  been 
devised  for  removing  the  particles  from  metallur- 
gical smoke  by  bringing  them  into  contact  with 
water.  The  smoke  is  either  driven  against  a  water 
surface,  bubbled  through  water  with  violent  agita- 
tion, drawn  or  driven  through  a  scrubbing  tower 
against  a  stream  of  water,  or  treated  with  fine 
water  sprays. 

It  is  difficult  to  clean  a  gas  efficiently  with  water. 
This  difficulty  is  reflected  in  the  enormous  number 
of  processes  that  have  been  devised  for  improving 
gas  washing. 

In  the  first  place,  it  is  difficult  to  make  certain 
that  every  particle  of  the  smoke  will  come  into 
contact  with  the  water.  Townsend30  has  shown 
that,  when  an  ionised  gas  is  bubbled  through  water, 


(b)  By  spraying  the  water  into  the  smoke.  This 
either  cools  the  gas  to  the  dew  point,  causing  con- 
densation of  water  upon  the  particles,  or  wets  the 
particles  by  contact.  The  spray  particles  and  dust 
are  finally  removed  by  eliminator  plates.  It  is  dif- 
ficult  in  the  time  and  space  generally  available  to 
obtain  complete  contact  between  the  water  and  all 
the  particles  of  the  smoke. 

(c)  By  passing  the  smoke  upwards  through  an 
absorption  tower  through  coke,  gravel,  slag  wool, 
coarse  sand,  asbestos,  etc.  against  a  descending 
stream  of  water.  Both  smoke  and  water  are  broken 
up.  In  this  arrangement  there  is  a  contest  between 
wetting  efficiency  and  power  consumption. 

If  tho  filter  is  coarse  enough  to  allow  the  gas  to 
pass  freely  the  dust  or  smoke  is  not  effectively 
wetted.  If  the  filter  is  fine  enough  to  bring  about 
intimate  contact  between  the  suspended  particles 
and  the  water,  the  openings  soon  become  clogged 
and  require  frequent  cleaning.  Even  when  com- 
plete contact  is  possible  it  does  not  necessarily 
follow  that  the  smoke  particles  will  be  wetted  by 
the  water.  Generally  speaking,  wetting  is  easier, 
the  lower  the  interfacial  tension  between  the 
particles  and  the  water.  Possibly,  in  some  cases, 
soap  solutions  would  be  more  effective  than  water. 

Some  smoke  particles  are  extremely  difficult  to 
wet."  The  blue  zinc  oxide  6moke  from  a  brass 
foundry,  which  is  generally  diluted  with  a  consider- 
able quantity  of  air,  will  pass  right  through  an 
absorption  towTer  packed  with  wet  coke  practically 
unaffected.  This  is  conceivably  due  to  the  presence 
round  each  particle  of  an  adsorbed  film  of  gas  (air). 

The  difficulty  of  wetting  smoke  particles  can  be 
overcomo  by  humidifying  the  hot  gases  with  water 
sprays  or  waste  steam  to  such  an  extent  that,  when 
they  are  subsequently  cooled  (for  example,  by  ex- 
panding into  a  large  settling  chamber,  or  by  passing 
through  a  surface  condenser),  the  excess  water 
vapour  will  condense  upon  the  particles  and  carry 
them  down  with  it.     In  many  cases  the  amount  of 


Fia.  4. 

Bian  gas  washer. 


and  then  through  a  drying  agent,  20  to  25%  of  its 
charge  is  lost,  representing  the  fraction  of  the  gas 
that  actually  comes  into  contact  with  the  water. 

The  efficiency  of  a  washer  is  improved  by  in- 
creasing the  intimacy  of  contact  between  the  smoke 
and  the  water.     This  can  he  done  : 

(a)  By  bubbling  the  smoke  through  the  water. 
Originally  the  gas  was  forced  through  the  water  by 
means  of  a  pump  or  Archimedean  screw.  This 
proved  to  be  inadequate^,  and  the  gas  was  finely 
subdivided  by  forcing  it  through  superimposed 
fine  wire  gauze.  This  was  still  inefficient,  and 
also  involved  a  disproportionately  high  power 
consumption. 


water  vapour  originally  present  in  the  gas  will  be 
sufficient  to  supersaturate  it  when  it  is  cooled  below 
50°  O. 

Sulphur  trioxide  mist  is  difficult  to  catch  with 
water  or  weak  acid,  but  can  be  caught  readily  with 
concentrated  sulphuric  acid.  The  mist  is  more 
stable  and  difficult  to  catch,  the  more  quickly  the 
gas  has  been  cooled.  It  is  probable  that  each  S03 
particle  is  protected  by  an  adsorbed  gas  film.  In 
a  mist  formed  by  quick  cooling,  the  particles  will 
be  smaller  and,  therefore,  the  gas  film  will  be 
relatively  thicker.  Apparently  this  gas  film  is 
readily  displaced  by  sulphuric  acid,  although  not 
by  water. 
J  b2 


194  T 


GIBBS.— INDUSTRIAL  TREATMENT  OF  FUMES  AND  DUSTY  GASES.      [June  30, 1922. 


In  addition  to  the  relatively  high  power  con- 
sumption required  for  thorough  washing  of  gas, 
the  process  is  often  costly  and  troublesome  in 
practice,  owing  to  the  acid  gases  in  the  fume. 
This  necessitates  the  use  of  expensive  acid-resist- 
ing plant. 

For  certain  processes,  in  which  the  volume  of 
gas  is  relatively  small,  washing  processes  are 
economically  practicable  and  are  well  established. 
They  are  used  successfully  with  coal  gas,  producer 
gas,  and  for  the  small  proportion  of  iron  blast 
furnace   gas   which  is  used  for   gas  engines. 

Such  gas  washers  are  of  three  types:  stationary 
washers,  consisting  essentially  of  absorption  towers, 
up  which  the  gas  passes  against  a  descending  stream 
of  water,  and  slow  moving  and  high  speed  rotary 
washers. 

Fig.  4  illustrates  the  construction  and  action  of 
a  slow  moving  rotary  washer,  the  Bian  gas 
washer.33  It  consists  essentially  of  a  stationary 
cylinder,  B,  10  ft.  in  diameter,  and  10 — 16  ft. 
long,  with  closed  ends  and  open  bottom,  standing 
in  a  trough  of  water.  A  horizontal  shaft,  D, 
carries  a  number  of  parallel  discs  of  f  in.  mesh  wire 
gauze.  These  are  rotated  at  10 — 12  r.p.m.,  and 
carry  a  film  of  water  in  their  meshes.  The  gas — 
e.g.,  blast  furnace  gas — enters  at  A  at  about 
200°  C,  and,  as  it  passes  through  the  first  screens, 
it  becomes  cooled  and  saturated  with  water  vapour. 
Cold  water  is  admitted  near  the  gas  outlet,  C,  so 
that  the  last  screens  of  the  washer  are  the  coldest. 
These  cool  the  humid  gas  still  further,  and  the 
water  vapour  condenses  upon  the  dust  particles, 
and  precipitates  them.  The  washer  absorbs  about 
1  h.p.  per  10,000  cub.  ft.  of  gas  per  hour,  and 
reduces  the  dust  content  of  blast  furnace  gas  from 
10  g.  per  cub.  m.  to  0"5  g. 


J 


Fia.  5. 

Thcis:n  ga3  washer 

Fig.  5  illustrates  a  high  speed  rotary  gas  washer, 
the  Theisen  washer."  It  consists  of  a  horizontal 
drum,  D,  revolving  at  300 — 450  r.p.m.,  inside  a 
fixed  conical  casing,  A.     Spiral  vanes  are  attached 


to  the  surface  of  the  drum,  so  that  the  gas  follows 
a  spiral  path  in  passing  through  the  washer.  The 
inner  surface  of  the  casing,  A,  is  lined  with  fine 
gauze,  through  which  water  admitted  by  the  ports, 
F,  bubbles  continually.  The  gas  travelling  from 
right  to  left  is  thus  brought  into  intimate  contact 
with  a  film  of  water  travelling  in  the  opposite 
direction.  A  Theisen  washer  absorbs  15  h.p.  per 
10,000  cub.  ft.  of  gas  per  hour,  and  reduces  the 
dust  content  to  0'4  g.  per  cub.  in. 

After  passing  through  Bian  or  Theisen  washers, 
the  dust  content  of  the  gas  can  be  further  reduced 
to  0'02  g.  per  cub.  m.  by  passing  it  through  a  dry 
filter  or  scrubber. 

Electrostatic  precipitation. — The  electrostatic 
precipitation  of  smoke  is  possible  with  either 
alternating  or  direct  current.  When  a  smoke  is 
subjected  to  a  high-voltage  alternating  current 
discharge,  the  smoke  particles  become  electrically 
charged.  Owing  to  the  rapidly  alternating  polarity 
of  the  particles,  they  agglomerate  to  form  large 
flakes.  If  the  gas  is  still,  or  moving  very  slowly, 
these  flakes  will  settle.  To  obtain  effective  precipi- 
tation with  alternating  current,  it  is  necessary  to 
have  the  electrodes  very  close,  the  gas  path  long, 
and  the  gas  velocity  low. 

In  practically  all  industrial  problems,  however, 
it  is  necessary  to  deal  with  very  large  volumes  of 
gas,  travelling  at  a  considerable  velocity  along 
flues.  In  these  circumstances  direct  current  is 
vastly  more  effective,  since  it  drives  the  suspended 
particles  to  the  surface  of  the  depositing  electrode. 
It  is  found  that,  when  a  highly  charged  wire  is 
fixed  opposite  to  a  flat  plate  at  some  distance  from 
it,  the  intervening  air  space  becomes  highly  charged 
with  electricity  of  the  same  sign  as  the  wire, 
whether  it  be  positive  or  negative.  The  intensity 
of  the  field  between  the  wire  and  the  plate  varies 
inversely  as  the  distance  from  the  wire.  Of  the 
gaseous  ions  or  charged  particles  originally  present 
in  the  air  space,  sonic  will  be  attracted  by  the  wire. 
As  they  approach  the  wire,  their  velocity  will  in- 
crease rapidly,  owing  to  the  increasing  strength  of 
the  field,  and,  if  the  voltage  be  high  enough,  their 
velocity  will  be  so  great  that  they  will  ionise  the 
intervening  gas  and  the  wire  itself  by  the  force 
of  their  collision  with  the  molecules  of  the  gas  and 
the  wire. 

In  general,  the  wire  is  negatively  charged,  so 
that  it  is  the  positively  charged  ions  originally 
present  in  the  gas  that  produce  this  ionisation  by 
collision.  The  negative  ions  so  formed  are  repelled 
from  the  wire,  and  travel  rapidly  towards  the 
plate.  Any  gas  molecules  or  smoke  particles 
present  in  this  intervening  space  become  charged 
by  these  ions,  and  are,  therefore,  driven  by  the 
electric  field  towards  the  plate.  To  a  certain 
extent,  also,  suspended  particles  are  driven 
mechanically  by  the  rush  of  ions  from  wire  to 
plate. 

The  essential  unit  of  the  Cottrell  precipitator 
consists  of  a  wire  passing  down  the  centre  of  a  long 
metal  pipe.  The  wire  is  charged  negatively,  the 
pipe  is  earthed,  and  the  gas  to  be  treated  passes 
through  the  pipe.  It  is  found  that,  when  the  wire 
i-  charged  negatively,  the  treater  can  sustain  a 
higher  potential  gradient  without  spark  discharges 
and  arcing  occurring,  so  that  the  capacity  of  the 
treater  is  proportionally  greater.  In  practice,  pipes 
up  to  36  in.  in  diameter  and  20  ft.  long  arein  use, 
although,  in  general,  pipes  of  6  or  9  in.  diameter 
are  used.  A  number  of  parallel  pipes  are  arranged 
vertically,  and  connected  together  by  headers,  the 
lower  header  opening  into  a  hopper  in  which  the 
dust  is  collected.  The  voltage  employed  varies 
from  20,000  to  100,000.  according  to  the  nature  and 
velocity  of  the  fume.  The  potential  gradient  across 
the  treater  pipe  varies  from  4000  to  5000  volts  per 


Vol.  XIX,  No.  12.]      GIBBS.— INDUSTRIAL  TREATMENT  OF  FUMES  AND  DUSTY  GASES. 


195  T 


cm.  The  velocity  of  the  gas  varies  from  3  to  10  ft. 
per  second,  and  averages  5 — 6  ft.  per  second.  It 
is  necessary  that  the  deposit  should  be  conductive ; 
otherwise  the  deposit  shields  the  plate  except  at 
a  few  points,  so  that,  instead  of  a  point  to  plate 
discharge,  a  point  to  point  discharge  is  obtained 
and  the  efficient  action  of  the  treater  is  destroyed. 

Where  the  dust  itself  is  non-conducting,  it  can 
be  made  conducting  by  mixing  a  conducting  dust 
with  the  smoke  or  dusty  gas  before  precipitation 
takes  place,  or,  better  still,  by  humidifying  the 
gas,  so  that  the  deposit  is  damp.  Some  fumes — 
for  instance,  certain  metallurgical  fumes — have  too 
high  a  conductivity  owing  to  their  high  degree  of 
ionisation,  so  that  it  is  practically  impossible  to 
maintain  a  high  potential  gradient  across  the 
treater.  Such  fumes  have  to  be  partially  dis- 
charged or  diluted  before  they  can  he  treated. 

Where  a  fume  contains  more  than  one  dispersed 
constituent,  differing  appreciably  from  one  another 
in  volatility,  it  is  possible  to  precipitate  these  con- 
stituents separately  by  taking  advantage  of  this 
difference.  Thus,  when  pyrites  burner  gases  are 
treated  hot,  the  more  refractory  dust  particles  are 
precipitated.  If  the  gases  are  then  cooled, 
arsenious  oxide,  which  up  fo  then  has  been  present 
as  vapour,  condenses  to  a  white  cloud,  which  can 
then  be  precipitated  separately.  Some  smoke  par- 
ticles— for  instance,  zinc  oxide  and  stannous 
chloride — appear  to  reflect  the  gaseous  ions,  and  are 
little  affected  by  the  electric  field  through  which 
they  pass.31  Such  fumes  have  to  be  humidified 
before  they  can  be  successfully  treated. 

The  behaviour  of  the  deposited  dust  differs  con- 
siderably for  different  substances.  The  deposit 
from  blast-furnace  gas,  for  instance,  clings  to  the 
electrodes,  and  is  discharged  only  by  vigorous 
tapping,  whereas  the  dust  collected  from  burner 
gases  drops  free  from  the  electrodes  of  its  own 
accord.  Liquids  dispersed  in  a  gas  are  successfully 
treated  by  this  process,  just  as  much  as  solids,  the 
process  being  used  extensively  for  the  precipitation 
of  sulphuric  acid  mist  from  concentrator  gases,  and 
for  the  removal  of  tar  fog  and  oils  from  the  vapours 
from  wood  distillation  and  from  producer  gas,  coke- 
oven  gas,  and  illuminating  gas.  The  process  is  also 
in  active  operation  for  cleaning  air  drawn  from 
buildings  and  rooms  in  which  grinding,  buffing, 
and  similar  operations  are  oarried  on.3* 

Three  types  of  installation  are  in  general  use : 
The  pipe  type,  in  which  an  axial  wire  forms  a  dis- 
charge electrode  in  an  earthed  pipe  which  forms  the 
collecting  electrode;  the  plate  type,  in  which  a  star 
section  rod  forms  the  discharge  electrode,  and 
parallel  earthed  plates  constitute  the  collecting 
electrode  (this  type,  constructed  of  iron  and  heavily 
coated  with  lead,  is  used  for  the  precipitation  of 
sulphuric  acid  mi  st) :  the  grid  type,  in  whieh  a  metal 
grid,  set  transversely  to  the  fume,  forms  the  dis- 
charge electrode,  the  dust  being  deposited  upon 
baffles  placed  parallel  to  the  discharge  electrodes 
and  alternately  with  them  along  the  flue. 

A  detailed  account  of  electrostatic  precipitation 
methods  and  plant,  with  bibliography;  has  recently 
been  given  by  H.  J.  Bush  (J.,  1922,  21—28  t). 

Until  the  introduction  of  electrostatic  precipita- 
tion, the  industrial  treatment  of  fumes  and  dusty 
gases  was  restricted  to  purely  empirical  methods. 
During  the  war  many  systematic  investigations 
were  made  into  the  characteristic  properties  and 
into  the  conditions  of  stability  of  the  various  dis- 
perse systems  in  gases  that  were  employed  in 
chemical  warfare.  It  is  suggested  that  the  know- 
ledge and  experience  obtained  then  might  usefully 
be  applied  to  the  study  of  those  industrial  smokes 
and  fumes,  the  successful  treatment  of  which  is  of 


such  industrial  importance  to-day.     Such  research, 
work  should  seek  to  determine:  — 

(a)  The  physical  properties  of  such  disperse 
systems,  the  concentration  of  the  disperse  phase,  the 
degree  of  dispersion,  the  motion  and  diffusion  of  the 
particles. 

(b)  The  factors  that  cause  and  destroy  the 
stability  of  the  system. 

(c)  The  methods  that  can  be  adopted  for  floccu- 
lating smokes  into  coarse  clouds  or  dusts. 

(d)  The  industrial  possibility  of  such  processes  as 
thermal  precipitation  and  directed  impact. 

Beferences. 

I  Delasalle.    Chimic  et  Industrie,  1920,  4,  293. 

•  Rothmund.    Monatsh.,  1918,  39,  571-601. 

•  J.  Amer.  Chem.  Soc,  1919,  41,  328. 

•  J.  Amer.  Chem.  Soc,  1919,  41,  575. 

8  de  Broglie.    Comptes  rend.,  1909,  148,  1315-8. 

'  Chance.    J.,  1918,  37,  222T. 

'  Hutchinson  &  Bury.    J.  Iron  Steel  Inst.,  1920,  52,  65. 

"  Chem.  and  Met.  Eng.,  1921,  24,  29  ;  J.,  1920,  40,  336R. 

'  Irvine.    J.,  18S9,  377  ;   1890,  1110. 

10  U.S.  Bur.  Mines,  Bull..  157,  1918;  Min.  Scl.  Press,  106,  484-5; 
Wheeler,  Engineering,  1913,  85,  606-7. 

u  Kiddie.  Trans.  Amer.  Inst.  Min.  Eng.,  1909,  40,  900  ;  Lee. 
Eng.  and  Min.  J.,  1910,  90,  504. 

a  U.S.P.  896,111,  1908. 

"  Iron  Age,  1907,  79,  1414 ;  Cass.  Mag.,  1905,  28,  442. 

14  Gertner.  Ueber  Entstaubungsanlagen  In  Braunkohlenbrikett- 
fabriken.  Z.  f.  Berg.  H.  Sal-wesen  i.  Pr.  St.,  1908,  56,  B,  257-346. 

liHering.  "  Die  Verdichtung  des  liiittenrauches  Cotta,"  Stuttgart, 
1888. 

"  Trans.  Amer.  Inst.  Min.  Eng.,  1883,  11,  379 ;  Eng.  and  Min.  X, 
1882,  34,  379. 

>'  U.S.P.  432,440  (1890) ;  Min.  Ind.,  1906,  15,  536  ;  1908,  17,  323. 

"  J.  Amer.  Chem.  Soc,  1919,  41,  304. 

"  Bancroft.  "  Applied  Colloid  Chemistry,"  pp.  21-2. 

••  X  Amer.  Chem.  Soc,  1919,  41,  312. 

II  Aitken.  Trans.  Hoy.  Soc.  Edin.,  1884,  32,  239 ;  Bancroft, 
X  Phys.  Chem.,  1920,  24,  421-36. 

"  Hofmann.    "  Gen.  Met.,"  837. 

!»  E.P.  126,320  (1919). 

"  Lindau.     Eng.  and  Min.  J.,  1917, 103,  291-4. 

*5  Eileis.  Trans.  Amer.  Inst.  Min.  Eng.,  1912,  44,  720.  Brooks 
and  Duncan.    Bull.  Amer.  Inst.  Min.  Eng.,  1917,  Nov.,  1933. 

"  Sprague.  Min.  Scl.,  1908,  57,  53.  Ebaugh,  J.  Ind.  Eng.  Chem., 
1910,  2,  372-3. 

,;  Iron  and  Coal  Trades  Review,  Dec  19, 1919. 

"  Kling  and  Weidlein.    U.S.P.  1,395,833  (1921) ;   J.,  1922,  41,  1a. 

»  Solvay.     E.P.  18,573  (1888).    Fiechter,  E.P.  163,039  (1921). 

»•  Engler  and  Wild.  Ber.,  1896,  29,  1929  ;  Proc  Camb.  Phil.  Soc, 
1897,  9,  244. 

31  Bancroft.  "  Applied  Colloid  Chemistry,"  1921,  21-22. 

"  Bian.  Iron  Age,  1905,  76,  669  ;  J.  Iron  and  Steel  Inst.,  1907, 
3,  210. 

"•  Theisen.   Stahlu.  Eisen, 1904, 24, 285,1012;  Iron  Age,  1909, 83. 7. 

"  Strong.    Trans.  Amer.  Electrochem.  Soc,  1917,  31,  415. 

as  Davidson.  Canadian  Advis.  Counc  for  Sci.  and  Ind.  Research  , 
Report  No.  3,  1918. 

"  Anderson.    Chem.  and  Met.  Eng.,  1922,  151-3. 

Very  full  accounts  of  the  different  processes  are 
given  in  Gertner's  Monograph  (90  pages),  and  in 
Hofmann's  "  General  Metallurgy  "  (pp.  831—877). 
The  diagrams  given  above  are  taken  from  these 
sources. 

Discussion. 

Mr.  C.  S.  Imison  said  that  his  firm  had  employed 
various  types  of  plant  in  dealing  with  pyrites 
burner  gases.  In  the  first  place  they  had  used  the 
slowing  down  process  in  large  baffle  chambers,  but 
these  were  responsible  for  a  considerable  loss  of 
heat.  Such  dust  chambers  had  been  replaced  by 
louvred  filters  containing  broken  brick  which  gave 
much  better  results.  They  had  not  vet  used  elec- 
trical precipitation  for  pyrites  gases  as  the  units 
seemed  to  be  too  large  for  the  work  required.  In 
the  case  of  spent  oxide  burners,  dust-depositmg 
flues  actually  built  into  the  furnaces  had  proved 
very  satisfactory.  He  was  interested  also  in  the 
removal    of    acid    spray    in    connexion    both    with 


y.ir.T 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30, 1922. 


vitriol  concentrating  and  contact  plant.  For  this 
coke  scrubbers  or  niters  were  largely  used  with  the 
object  of  making  the  particles  coalesce  by  reducing 
their  velocity  and  by  the  effect  produced  by  the 
vapours  impinging  on  the  exposed  surface  of  the 
finely  divided  coke.  It  was  found  that  water  had 
very  little  effect  in  the  removal  of  acid  mist,  but 
sulphuric  acid  was  more  effective,  and  by  intro- 
ducing a  spray  into  the  gas  in  the  fans  draughting 
the  concentrators  very  efficient  removal  was  ob- 
tained. It  had  been  suggested  that  acid  mists  may 
contain  another  oxide  of  sulphur,  possibly  S206, 
but  this  had  not  yet  received  confirmation.  There 
was  a  peculiar  point  in  connexion  with  the  Fox 
scrubber  which  he  did  not  understand,  namely, 
that  it  did  not  give  satisfactory  results  unless  there 
was  a  drop  in  the  pressure  of  the  gas  of  two  or 
three  inches  of  water  in  passing  through  the 
apparatus.  The  avoidance  of  loss  of  zinc  in  the 
fumes  from  the  calcination  of  blende  also  presented 
some  difficulty.  Up  to  now  their  knowledge  was 
largely  empirical,  bvit  he  favoured  attacking  all  such 
problems  from  the  purely  theoretical  standpoint 
also. 

Professor  C.  O.  Bannister  remarked  that  there 
was  not  only  the  problem  of  noxious  fumes  requiring 
consideration,  but  also  the  possibility  of  recovering 
material  of  considerable  value  from  dusty  gases. 
He  noticed  that  Dr.  Gibbs  did  not  say  anything 
about  the  use  of  long  flues,  and  yet  there  were 
many  cases  in  which  they  were  still  in  use.  In  one 
case  he  had  gone  into  the  question  of  the  advisability 
of  introducing  an  electrostatic  plant  in  place  of  long 
flues  already  existing,  but  the  project  had 
been  abandoned  in  view  of  the  high  efficiency  of 
the  long  flues  and  the  large  capital  expenditure 
which  would  have  been  necessary  for  the  electro- 
static plant.  He  had  had  experience  with  several 
email  plants  producing  dirty  gases,  in  which  it 
would  have  been  impossible  to  introduce  the  electro- 
static method  and  in  these  cases  he  had  found 
a  filter  bag  arrangement  most  convenient  and 
economical. 

Dr.  Gibbs,  in  replying,  pointed  out  that  every 
fume  problem  had  its  own  specific  and  distinct 
characteristics.  It  was  only  possible  to  work  out 
the  most  satisfactory  method,  as  a  result  of  a 
careful,  systematic  study  of  the  particular  disperse 
system  in  question.  Agitation  played  a  very  im- 
portant part  in  causing  flocculation  of  a  smoke  or 
cloud  by  bringing  the  particles  into  contact  with 
one  another,  either  in  the  gas,  or  at  the  surface 
of  the  stirrer  or  the  walls  of  the  containing  vessel. 
With  such  devices  as  the  Calder-Fox  scrubber,  in 
which  the  gas  passed  through  a  perforated  plate, 
being  eliminated  apparently  by  the  effect  of  im- 
pact upon  the  surface,  thus  causing  coalescence, 
there  was  no  doubt  that  the  action  and  therefore 
the  efficiency  of  the  process  would  bear  a  close  rela- 
tion to  the  direction  taken  by  the  gas  in  passing 
through  the  system.  Possibly  the  advantage  of  the 
damper  was  that  it  caused  the  gas  to  assume  a  some- 
what rotary  motion,  so  that  the  particles  would  tend 
to  approach  the  plates  tangentially  rather  than 
normally.  The  whole  matter  required  investigating 
in  its  relation  to  the  character  of  the  path  taken  by 
the  gases  through  the  system.  Professor  Bannister, 
in  referring  to  the  use  of  flues  had  shown  how  an 
empirical  method  of  long  standing  frequently 
worked  very  satisfactorily  for  a  given  fume. 
Generally  speaking,  provided  the  flues  were  long 
enough  and  had  a  sufficient  cross-sectional  area, 
they  proved  to  be  satisfactory  settling  chambers  for 
coarse  suspensions  (dusts),  and  also  for  suspensions 
which,  like  arsenious  oxide,  became  increasingly 
coarse  by  further  condensation  of  vapour  upon  the 
particles  as  the  gas  cooled  during  its  passage  along 
the  flue.  Enormous  flue  systems  were  a  common 
feature  of  the  big  smelters  of  America. 


London    Section. 


Meeting  held  at  Burlington  House  on  April  3,  1922. 


MR.   E.   V.   EVANS  IN  THE   CHAIR. 


THE   INFLUENCE   OF   STRUCTURE   ON  THE 

COMBUSTIBILITY  AND  OTHER  PROPERTIES 

OF  SOLID  FUELS. 

BY    E.    R.    SUTCLIFFE,    WH.EX.,    A.M.I.M.E.,    AND 
EDGAR    C.    EVANS,    B.SC,    F.I.C.,    M.I.M.E. 

The  influence  of  structure  on  the  combustibility 
of  fuels  is  a  subject  which  has  received  very  little 
attention.  The  most  systematic  work  on  the  sub- 
ject has  been  in  connexion  with  fuels  for  blast- 
furnace purposes,  chiefly  between  1884  and  1890, 
and  this  work  still  retains  a  considerable  interest. 
Thorner  made  a  most  interesting  investigation 
in  1885  on  the  structure  of  blast-furnace  fuels 
(Stahl  u.  Eisen,  1886,  6,  71).  His  memoir  was 
accompanied  by  some  very  instructive  photomicro- 
graphs of  sections  of  coke  and  charcoal.  He  found 
that  the  fuels  which  gave  the  best  results  in  the 
blast  furnace,  viz.,  Meiler  coke  and  charcoal,  were 
characterised  by  high  combustibility,  high  degree 
of  porosity,  and  comparatively  high  percentage  of 
volatile  matter,  and  that  they  contained  pores  the 
cell  walls  of  which  were  either  longitudinal  in 
direction  or  had  a  pronounced  tendency  in  that 
direction.  He  quotes  his  results  as  being  in  agree- 
ment with  those  of  Belani  and  Kutscher,  who 
from  practical  experience  had  come  to  the  con- 
clusion that  the  ideal  furnace  coke  should  be  "  as 
voluminous,  as  rich  in  pores,  and  as  similar  to 
charcoal  as  possible." 

Later  Belani  (Stahl  u.  Eisen,  1885,  5,  603)  sug- 
gested that  the  heating  value  of  a  fuel  per  unit  of 
time  depended  on  the  combustibility  of  the  fuel  and 
on  the  amount  of  surface  presented  to  the  draught. 
He  found  that  the  (surface  of  charcoal) :  (surface 
of  coke)  =  55:1  and  the  (combustibility  of  charcoal) : 
(combustibility  of  coke)  =  l'5:l,  from  which  he  cal- 
culated that  the  ratio  of  the  heating  power  of 
charcoal  per  unit  of  time  to  the  heating  power  of 
coke  per   unit  of  time  is  5'5xl"5  =  8'25:l. 

Very  little  work  has  been  done  in  England  on 
the  influence  of  structure  on  the  properties  of  fuels, 
probably  because  of  the  fact  that  the  use  of  char- 
coal in  metallurgical  operations  had  been  dis- 
continued in  England  long  before  blast-furnace 
technology  had  reached  the  level  of  an  exact 
science. 

Even  Bell,  in  his  monumental  work  on  the  blast 
furnace,  had  to  depend  for  his  knowledge  of  char- 
coal as  a  fuel,  almost  entirely  upon  evidence  sub- 
mitted from  abroad,  and  the  question  of  "com- 
bustibility "  as  apart  from  "  heating  value  "  plays 
therefore  very  little  part  in  his  calculations. 

Armstrong,  however,  in  his  paper  on  the 
"Mechanics  of  fire"  (J.,  1905,  473)  pointed 
out  in  a  foot-note  the  important  possibilities  of 
structure  in  connexion  with  the  gaseous  inter- 
changes which  constitute  the  process  of  combustion, 
whilst  Bone's  work  on  surface  combustion  empha- 
sised in  a  remarkable  way  the  importance  of 
structure  in  the  combustion  of  gases  on  an  incan- 
descent surface. 

At  present,  whilst  it  is  realised  that  structure 
does  play  a  part  and  an  important  part  in  the  com- 
bustion of  coal  and  other  solid  fuels,  the  complexity 
of  the  combustion  phenomena  in  the  case  of  non- 
carbonised  fuels  has  made  it  extremely  difficult  to 
determine  the  nature  and  extent  of  its  influence, 
whilst  in  the  case  of  carbonised  fuels — particularly 


Vol.  XLI., No.  12]      SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


197  t 


gas  coke  and  furnace  coke — tihe  phenomena  of  com- 
bustion are  also  complicated  by  the  refractory 
character  of  the  graphitic  skin  of  carbon  which  is 
formed  during  most  processes  of  high-temperature 
carbonisation. 

The  possibilities  of  structure  in  the  combustion 
of  solid  fuels  were  brought  home  to  the  authors  in 
a  rather  interesting  manner  in  connexion  with  a 
mine  fire  in  South  Wales.  The  fire  (had  been  burn- 
ing for  several  months,  and  to  prevent  it  spreading,  i 
the  fire  zone  had  been  totally  enclosed  by  brick 
stoppings,  whilst  further,  very  considerable  quan- 
titles  of  carbon  dioxide  had  been  injected  into  this 
screen  (vide  Proc.  Inst.  Min.  Eng.,  V.,  51,  209).  By 
this  means  it  had  been  found  possible  to  reduce  tho 
oxygen  percentage  to  1'6 — 30%,  but  even  this  6mall 
proportion  proved  sufficient  to  maintain  slow  com- 
bustion, and  it  was  ultimately  decided  to  quench 
out  the  fire.  For  this  purpose  one  of  the  brick 
stoppings  was  removed.  The  effect  of  increasing 
the  oxygen  percentage  on  tihe  burning  coal  was 
extremely  interesting.  When  first  viewed  through 
the  open  stopping  the  face  of  the  seam  was  black  ; 
the  slow  combustion  that  was  taking  place  was  not 
sufficient  to  raise  the  temperature  to  the  ignition 
point,  but  as  the  increased  percentage  of  oxygen 
began  to  exert  its  influence  active  combustion 
started.  It  did  not,  however,  commence  at  one 
point,  but  started  at  a  number  of  points  entirely 
isolated  and  independent  of  one  another,  making 
the  coal  seam  appear  like  a  number  of  stars.  Com- 
bustion did  not  spread  from  these,  but  the  stars 
simply  multiplied,  breaking  out  one  after  another 
independently  until  finally  the  whole  seam  was 
covered,  and  appeared  to  be  a  red  burning  mass. 

Even  at  that  time  the  phenomena  observed 
seemed  apparently  to  be  due  to  surface  combustion 
at  points  where  conditions  were  favourable.  The 
illustration  is  of  some  interest  in  view  of  recent 
work,  and  has  a  significant  bearing  on  some  of  the 
views  advanced  later. 

When  the  question  of  combustion  of  coal  is 
studied  in  detail,  the  problem  is  very  seriously  com- 
plicated by  the  heterogeneous  character  of  coal.  A 
number  of  observers  have  studied  tho  question  of 
the  ignition  temperature  of  coal.  Tables  of  ignition 
temperatures  are  frequently  published  which  show 
a  gradual  increase  on  passing  from  bituminous  coal 
to  anthracite,  but  these  tables  after  all  simply  give 
tho  temperature  at  which  the  gases  evolved  from 
the  coal  ignite,  and  these  temperatures  vary  not 
only  with  the  coal,  but  with  the  different  con- 
stituents of  coal  itself. 

The  constitution  of  coal  has  been  studied  by  a 
number  of  observers,  and  notably  by  Wheeler  and 
his  collaborators,  and  the  essential  difference 
between  various  coals  can  easily  be  realised  by  a 
study  of  photomicrographs  of  coal  sections.  But 
whilst  these  photographs  show  clearly  the  internal 
structure  of  coal,  whilst  they  show  the  hetero- 
geneous character  of  most  coals,  and  explain  the 
difference  in  ignition  temperatures  of  various  coals, 
they  do  not  of  themselves  explain  the  very  con- 
siderable differences  in  combustibility.  Some  coals 
are  said  to  be  "  bright  "  and  "  active  "  in  com- 
bustion, others  again  of  similar  content  of  volatile 
matter  are  said  by  stokers  to  be  "  dead  "  in  burn- 
ing. The  reason  for  this  is  not  entirely  due  to  com- 
position or  constitution ;  it  is  a  matter  in  which  the 
structure  of  the  carbonaceous  residue  left  after  the 
volatile  products  have  been  burnt  off  plays  an 
extremely  important  part. 

In  examining  the  question  it  is  advisable  at  the 
outset  to  simplify  the  investigation  by  studying  the 
behaviour  of  coals  which  neither  fuse  nor  decrepi- 
tate in  the  furnace.  Highly  fusible  resinous  coals 
which  cake  together  in  a  grate  or  in  a  boiler 
furnace  form  a  semi-caked  mass   which  has  to  be 


poked  and  stirred  frequently  to  allow  of  the  free 
passage  of  air  and  heated  gases  through  it. 

Other  coals  decrepitato  and  fall  to  pieces,  leaving 
a  dust  which  impedes  the  action  of  the  air  blast, 
and  to  avoid  complicating  the  field  of  study  it  is 
advisable  to  eliminate  both  these  classes,  and  to 
select  coals  which  burn  easily  and  steadily  without 
necessity  for  excessive  poking.  South  Wales  steam 
coals  offer  excellent  possibilities  in  this  direction, 
whilst  high-volatile  non-caking  coals  can  also  be 
studied  to  advantage. 

The  combustibility  of  a  fuel  of  this  type  may 
perhaps  be  defined  as  the  ease  with  which  it  com- 
bines with  oxygen.  This  involves  the  time  factor. 
The  rapidity  with  which  a  fuel  burns  may  be  taken 
as  a  criterion  of  its  combustibility.  It  is  not  a 
question  of  calorific  value.  Two  different  fuels 
may  have  the  same  calorific  value,  but  one  may 
burn  much  more  easily  and  much  more  quickly 
than  the  second,  and  the  consumption  per  square 
foot  of  grate  area  per  unit  of  time  may  be  con- 
siderably greater.  The  temperature  attained  by 
combustion  may  also  be  higher.  As  an  extreme 
example,  the  old  text-book  illustration  of  the  rust- 
ing of  iron  may  be  quoted.  The  heat  units  pro- 
duced might  be  the  same  as  if  it  burnt  in  oxygen, 
but  the  temperature  attained  is  very  different  in 
tho  two  cases.* 

A  method  that  has  been  used  in  determining  the 
combustibility  of  a  carbonised  fuel  is  to  note  the 
effect  of  air  and  of  carbon  dioxide  upon  the  fuel  at 
various  temperatures,  and  to  note  tho  loss  of  weight 
in  successive  periods  of  time  (Thorner,  loc.  cit.,  and 
Bell,  "Principles").  By  this  means  it  has  been 
found  that  the  porosity  of  a  fuel  plays  an  extremely 
important  part  in  determining  its  combustibility. 

In  studying  on  a  large  scale  the  factors  that  play 
a  part  in  determining  the  combustibility  of  a  fuel, 
the  first  step  is  to  obtain  a  homogeneous  product. 
At  the  outset  it  will  be  noticed  that  homogeneity 
itself,  apart  from  other  factors,  exerts  an  important 
influence. 

Homogeneity  of  size.— The  first  attempts  to  obtain 
a  homogeneous  fuel  commercially  have  been  in  the 
direction  of  sizing  the  coal.  Sizing  non-caking 
steam  coals,  anthracite  coals,  and  some  American 
high-volatile  coals  (e.g.,  Illinois  coals)  has  proved 
of  considerable  advantage  for  steam  raising  pur- 
poses. 

In  so  far  as  American  anthracite  is  concerned, 
sizing  has  been  absolutely  necessary  for  the  follow- 
ing reasons  (Cullon,  "Cours  d'Exploitation  des 
Mines  Teste,"  III.,  183).  (1)  Pennsylvanian  anthra- 
cite will  not  decrepitate  in  the  fire  to  burn  without 
sizing.  (2)  If  in  too  large  size  the  cold  mass  will 
be  in  too  great  proportion  to  the  incandescent  sur- 
face. (3)  The  sizes  should  be  the  same  so  that  all 
particles  should  bo  under  the  action  of  flame  at 
the  same  time.  (4)  Small  particles  should  not  be 
so  numerous  as  to  fill  up  the  spaces  between  the 
large  particles,  and  thus  impede  the  passage  of  the 
air  and  heated  gases. 

In  the  case  oif  non-caking  bituminous  coals,  the 
following  advantages  are  claimed  for  sizing  (Mal- 
colmson,  1st  Annual  Convention  Int.  Railway 
Fuel  Assoc,  1909).  (1)  Increase  of  fuel  and  boiler 
efficiency.  (2)  Less  loss  of  fuel  in  ash.  (3)  Less 
smoke.  (4)  Uniform  combustion  ensuring  greater 
capacity  of  furnace  (5)  Less  draught  needed. 
(6)  Longer  life  of  grate.  (7)  Furnace  under  better 
control.  Steam  can  be  raised  more  rapidly.  (8)  Less 
danger  of  spontaneous  combustion  of  stored  coal. 

The  claim  for  increased  furnace  efficiency  has  not 
been  confirmed  in  detailed  tests  made  by  the  U.S. 
Bureau  of  Mines,  but  the  other  advantages  are 
generally  acknowledged,  and  the  large  market  that 


•  This  illustration  is,  of  course,  not  strictly  correct,  as  the  oxides 
are  different. 


198  T 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30,  1922. 


exists  for  sized  coal  proves  that  it  has  many  impor- 
tant advantages  in  large-scale  work. 

Influence  of  dimensions  of  fuel  particles. — Ceteris 
paribus,  the  smaller  the  particles  of  coal,  the  greater 
the  combustibility.  This,  of  course,  arises  from  the 
fact  that  the  surface  area  increases  considerably  in 
proportion  to  the  bulk  as  the  diameter  decreases. 
This  principle  is  applied  in  using  anthracite  for 
raising  steam.  Anthracite  is  by  no  means  a  fuel 
of  high  combustibility,  and  is  extremely  difficult  to 
burn  in  an  ordinary  boiler  furnace  if  in  large  sizes. 
Yet  anthracite  peas  carefully  sized  make  an  ideal 
boiler  fuel  and  have  better  steam-raising  qualities 
than  even  high-class  Welsh  steam  coals. 

The  ultimate  possibilities  in  this  direction  are 
obtained  in  the  case  of  powdered  fuel.  The  ex- 
tremely high  degree  of  combustibility  of  coal  dust  in 
a  fine  state  of  subdivision  has  long  been  realised  in 
connexion  with  the  study  of  mine  explosions,  and 
the  same  principles  which  make  coal  dust  such  an 
explosive  agent,  are  now  made  use  of  commercially 
in  many  applications  of  powdered  fuel. 

Powdered  fuel,  however,  is  by  no  means  an  ideal 
material.  It  cannot  be  stored,  it  cannot  be  trans- 
ported per  se,  and  is  liable  to  spontaneous  com- 
bustion. For  this  reason  attempts  have  been  made, 
as  in  the  colloidal  fuel  process,  to  make  it  transport- 
able in  the  form  of  an  emulsion  of  oil  and  coal. 
There  is,  however,  a  method  of  retaining  to  some 
extent  the  highly  combustible  extremely  active  pro- 
perties of  powdered  fuel,  and  at  the  same  time  make 
it  easily  transportable,  and  that  is  to  briquette  it. 

Homogeneity  of  size  and  structure. — It  is  perhaps 
an  euphemism  to  regard  patent  fuel  briquettes,  as 
customarily  made,  as  consisting  of  powdered  coal. 

The  advantages  of  fine  grinding  prior  to  briquet- 
ting  have  long  been  known  to  the  briquetting  in- 
dustry. It  increases  the  combustibility  of  the 
briquettes,  and  improves  their  appearance,  but  on 
the  other  hand  finely  ground  coals  require  a  greater 
percentage  of  binder  than  coarsely  ground  material, 
and  as  a  rule,  if  made  by  the  ordinary  process  with 
pitch  as  a.  binder,  the  briquettes  are  rather  weaker. 
In  practice,  therefore,  a  compromise  is  effected,  and 
the  coal  is  only  ground  to  the  extent  that  would  be 
effected  by  an  ordinary  Carr's  disintegrator.  Even 
so,  briquettes  made  with  pitch  possess  many 
advantages  over  coal,  and  these  have  been  sum- 
marised as  follows  (vide  Malcolmson,  "  Commercial 
aspects  of  the  Coal  Briquetting  Industry,"  Trans 
8th.  Int.  Cong.  Appl.  Chem.,  Vol.  25).  (1) 
Briquettes  can  be  readily  transported  and  handled 
and  stored  for  an  indefinite  period  without  deteri- 
oration. (2)  Briquettes  when  burnt  in  locomotives 
under  standard  conditions  show  an  increased  boiler 
efficiency  over  coal  of  the  same  calorific  value 
amounting  to  15%  in  favour  of  the  briquettes. 
(3)  It  has  been  demonstrated  that  25%  more 
briquettes  than  coal  can  be  burnt  per  sq.  foot 
of  grate  area  per  hour. 

In  other  words,  briquettes  are  more  combustible 
than  raw  coal,  a  result  entirely  due  to  the  differ- 
ence  in   structure   between   briquettes   and   coal. 

The  principal  advantages  of  briquettes  can  ulti- 
mately be  attributed  to  their  homogeneity  both  in 
respect  to  structure  and  to  the  size  of  the  particles 
of  which  they  are  constituted. 

Briquettes  made  with  pitch  in  the  usual  way  are 
not  entirely  homogeneous.  The  coarsely  ground 
coal  of  which  they  are  made  is  not  uniform  in  size 
and  the  addition  of  pitch  introduces  a  further 
complication. 

A  stage  further  in  the  direction  of  homogeneity 
can,  however,  be  attained  by  making  briquettes 
without  the  addition  of  binding  material,  the 
briquettes  thus  consisting  of  uniformly  sized  par- 
ticles of  the  raw  coal  itself  cemented  together  by  the 
binding  material  in  the  coal  substance.  Briquettes 
of  this  type  can  be  obtained  by  finely  grinding  the 


coal  and  subjecting  it  under  suitable  conditions  to 
a  pressure  of  about  10  tons  per  square  inch.  For 
all  practical  purposes  briquettes  of  this  type  can 
be  regarded  as  solidified  coal  dust ;  they  are  con- 
siderably more  homogeneous  in  structure  and  con- 
stitution then  any  of  the  fuels  yet  dealt  with,  and 
a  study  of  their  properties  serves  to  illustrate  in 
many  ways  the  effect  of  structure  on  the  general 
properties  of  fuels. 

The  combustion  of  these  briquettes  in  a  domestic 
grate  proceeds  with  much  greater  regularity  and 
uniformity  than  that  of  raw  coal  and  presents  the 
following  special  features :  — (1)  After  the  volatile 
matter  has  been  burnt  away  the  briquettes  burn 
easily  and  steadily  in  a  similar  manner  to  charcoal. 

(2)  They  remain  ignited  until  practically  the  whole 
of  the  carbonaceous  matter  has  burnt  away,  leaving 
no  clinker  but  only  a  residue  of  finely  divided  ash. 

(3)  The  radiant  heat  emitted  from  a  fire  of  these 
briquettes  is  considerably  greater  than  that  from 
a  coal  fire. 

The  following  comparative  test  made  with  a  raw 
coal  of  volatile  matter  35%,  ash  5'6%,  and  briquettes 
from  the  same  coal  made  without  a  binder  may  serve 
to  illustrate  the  difference  between  the  combustion 
of  briquettes  and  raw  coal:  — 


Weight  taken 

Time  taken  in  burning 

Unburnt  cinders     . . 


House  coal. 
.     61b. 
.     6|  hrs. 
.  20J  oz. 


Briquettes. 
61b. 
Si  hrs. 
1  "oz. 


The  unburnt  cinders  from  the  briquettes  were 
found  in  the  extreme  corners  of  the  grate.  The 
material  in  the  centre  had  burnt  completely  away. 

The  proportion  of  unburnt  cinders  left  in  both 
cases  is  significant.  A  coal  fire  goes  out  because  the 
heat  generated  at  the  incandescent  surface  becomes 
too  low  to  raise  the  temperature  of  the  cold  mass 
to  the  point  of  ignition.  If,  however,  the  area  of 
the  incandescent  surface  is  increased,  or  alterna- 
tively, if  the  temperature  of  the  unburnt  mass 
becomes  raised  during  the  combustion  process,  com- 
bustion will  proceed. 

Despite  the  fact  therefore  that  the  period  of 
burning  of  the  briquettes  was  longer  than  that  of 
the  coal,  their  combustibility  was  considerably 
greater. 

The  fact  is  brought  out  by  a  series  of  comparative 
boiler  trials  made  at  the  Soxith  Wales  School  of 
Mines  on  raw  coal,  briquettes  made  from  the  same 
coal  with  pitch  as  a  binder,  and  briquettes  from  the 
same  coal  made  without  a  binder.  In  a  series  of 
preliminary  laboratory  tests  it  was  noticed  that 
briquettes  made  without  a  binder  when  burnt  in  a 
bomb  calorimeter  burnt  with  a  rapidity  far  greater 
than  that  of  either  raw  coal  or  of  briquettes  made 
with  pitch,  the  period  of  combustion  being  very 
often  30%  less  than  that  of  coal.  This  increased 
combustibility  is  shown  with  still  greater  clearness 
in  the  series  of  tests  summarised  in   Table   I. 

These  tests  are  imperfect  in  several  respects ; 
the  boiler  efficiency  was  low  (as  would  naturally  be 
expected  in  the  case  of  a  hand-fired  experimental 
boiler  installation)  and  in  many  respects  they  failed 
to  bring  out  to  the  best  advantage  the  superiority 
of  the  briquetted  fuels.  Still  the  following  points 
may  be  noted  :  — 

1.  The  heat  transmitted  per  square  foot  of  heat- 
ing surface  per  hour  was  4070,  4039,  and  4650 
B.Th.IT.  respectively. 

2.  The  weights  of  dried  fuel  burnt  per  square  foot 
of  grate  area  per  hour  were  1378,  15'05,  and  164  lb. 
respectively. 

3.  The  equivalent  evaporations  per  lb.  of  carbon 
value  from  and  at  212°  F.  were  7'31,  7'31,  and 
7'35  lb.  respectively. 

4.  A  constant  draught  of  0'6  in.  was  maintained 
in  each  case,  and  a  uniform  rate  of  feeding  the 
coal  was  adopted  in  each  case.  The  briquettes  made 
without  a  binder,  however,  burnt  away  so  quickly 


Low-temperature  coke. — From  No.  2  Rhondda  coal.     Natural  size. 
Fig.   1. 


•  -^Sife 

JM 

y^:£sS&? 

k.      v.        \ 

Sp*  ."$ 

E^'^^^kdJifc 

•A'  '*^&K. 

Hk  "■£"* 

>^fe% 

SgiSS: 

ll^lllilli5ii 

pf 

Low -temperature  coke. — From  No.  2  Rhondda  coal,  mixed  with  a 
proportion  of  coke  breeze.     Natural  size. 

Fig.   2. 


^r 


T 


Coalite.     Half  natural  size. 
Fig.  4. 


A 

'  * '*??' 

W^0^^^^-' 

feiife! 

I.-."'- 

*' ..  v'-  *?Hj 

flM^^> 

^I^^Sftk. 

******   *^  ***i»p^3*lssa 

llll 

**%■< 

South  Metropolitan  smokeless  fuel.     Natural  alze 
Fig.  5. 


Pure   coal  briquette — Carbonised — South  Wales    steam   coal.    (No 
addition  of  coke.)    Natural  size. 

Fig.  6. 


I.ow-teniperature  coke.-From  No.  2  Rhondda  coal,  mixed  with  a  P"™  coal  briquette^Ibh°°^dr<^?,^!'^eCOal  mLxed  W'th  ^ °'° 

proportion  of  preheated  coal.     Natural  size.  coKe  Dreeze.)    natural  size. 

Fig.  3.  Fl°-  "'■ 

Journal  of  the  Society  of  Chemical  Industry.      To  face   page  I  98  T,   /  922. 


Low-temperature     coke — Fuel     Research     Station.     Natural    size 
(Mixture  of  caking  and  non-caking  coals.) 

Fig.  8. 


Gas  coke.   X  5. 
FlO.   0. 


*»  ;■  *  «-■■*».  ?":  Ate ' 
w*%  W*'\:i  IT.    n  :^t->   j, 


Bulk  charcoal.     Across  the  grain,    x    10. 
Fig.  13. 


ft  XI    ^*.>* 


Vertical-retort  gas  coke.    X   7. 
Fig.  10. 


Pure  coal  briquette  coke.     Carbonised  at  600°  C.    Coke  made  from 
mixture  40%  coking  and  60%  non-coking  coal.    X   o. 

Fig.   14. 


Blast-furnace  coke.    X   6. 
Fig.   11. 


Active  carbon  for  vapour  absorption.    X    10. 
Fig.  15. 


Vol.  SLI.,  No.  12.] 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


199t 


that  with  the  thin  fires  maintained  it  was  found 
very  difficult  to  keep  the  grate  fully  eovered  at  the 
end  of  the  charging  period.  The  efficiency  there- 
fore was  reduced,  and  a  better  result  could  have 
been  obtained  either  by  reducing  the  draught  or 
by  working  the  boiler  at  a  higher  capacity. 

Table  I. 

Summary  of  comparative  tests  made  at  the  South 
Wales  School  of  Mines. 


Briquettes 

Pure 

Fuel. 

Raw  coal. 

made  with 

coal 

pitch. 

briquettes. 

0/ 

/o 

% 

/o 

Ultimate  analysis. 

80-3 

82-3 

821 

4-3 

4-0 

41 

Ash  ..             

4-2 

8-30 

7-71 

0-95 

0-98 

115 

Oxygen            . .          . .          \ 
Nitrogea          . .          . .         J 

4-2 

4-42 

4-91 

0-77 

1-6 

0-85 

Analysis  of  boiler  ash. 

Moisture 

2-37 

0-23 

0-85 

Ash 

51-80 

63-25 

34-25 

Carbonaceous  matter 

45-83 

36-52 

64-9 

Flue  gas  analysis. 

Carbon  dioxide 

5-0-1 

5-2 

5-9 

Carbon  monoxide 

nil 

nil 

nil 

Oxygen 

1500 

1500 

14-5 

Nitrogen         

79-90 

79-80 

79-6 

Heat  transferred  to  water  per  lb. 

of  dried  coal,  B.Th.U. 

7246 

65:0-4 

6997 

Lower  value. 

Calorific    value   of   dried   coal, 

B.Th.U. 

14,781 

14182 

13,937 

Heat  transmitted  per  sq.  ft.  of 

heating  surface  per  hour 

4070 

4039 

4650 

Weight  of  dried  fuel  fired  per  sq. 

ft.  of  grate  area  per  hour,  lb. 

13-78 

1505 

16-3 

Equivalent  evaporation  of  water 

from  and  at  212°  JF.  per  lb.  of 

dried  fuel,  lb. 

7-52 

6-85 

7-25 

Weight   of   feed    from    and    at 

212°  F.  per  sq.  ft.  of  heating 

surface  per  hour,  lb. 

4-225 

4-225 

4-S1 

Equivalent  evaporat  on  per  lb. 

of  carbon  value  of  fuel,  from 

and  at  212°  F.,  lb 

7-31 

7-31 

7-55 

The  results,  however,  are  sufficient  to  show  that 
the  combustibility  of  briquetted  fuel  increased  with 
the  degree  of  fineness  of  the  coal  and  with  the  homo- 
geneity of  the  product. 

The  combustibility  of  natural  fuels.     Summary. 

In  so  far  as  natural  fuels  are  concerned  the  con- 
clusions derived  from  the  preceding  notes  may  be 
summarised  as  follows:  — 

1.  Uniformity  of  size  allows  of  an  increased  quan- 
tity of  fuel  being  burnt  per  unit  of  time  per  sq.  ft. 
of  grate  area. 

2.  Briquettes  burn  at  a  faster  rate  than  coal 
under  equivalent  conditions. 

3.  Fine  grinding  of  coal  for  briquetting  purposes 
increases  the  combustibility  of  the  resulting 
product. 

4.  Briquettes  made  without  a  binder  are  more 
combustible  than  those  made  with  a  hinder. 

It  seems  evident  from  a  consideration  of  the  pro- 
perties of  briquetted  fuel  that  structure  plays  an 
important  part  in  determining  their  combustibility. 
The  secondary  reactions  resulting  from  the  presence 
of  volatile  matter  make  it  difficult,  however,  to  de- 
termine the  nature  and  extent  of  its  influence,  and 
definite  conclusions  on  the  subject  can  only  bo 
come  to  after  an  examination  of  fuels  which  do  not 
contain  any  volatile  matter,  i.e.,  carbonised  fuels. 

Factors  influencing  the  combustibility  of  carbonised 
fuels. 
A  very  brief  study  of  carbonised  fuels  is  sufficient 
to  show  that  the  factors  which  determine  their  com- 
bustibility   are    more    numerous    and    complex    in 


character  than  is  generally  realised.  The  character 
of  the  fuel  carbonised,  temperature  of  carbonisa- 
tion, the  rate  of  carbonisation,  and  even  the 
pressure  under  which  the  heating  is  effected,  all  play 
a  part  in  determining  the  character  and  the  com- 
bustibility of  the  resulting  carbonised  fuel.  The 
effect  of  these  various  influences  may  be  summarised 
as  follows. 

Influence  of  character  of  fuel  carbonised. — From 
the  point  of  view  of  coke  production,  fuels  can  be 
roughly  classified  as  fusible  and  non-fusible  fuels. 
Fusible  coals  yield  a  coke  which  retains  no  trace 
of  the  shape  and  structure  of  the  original  coal. 
Non-fusible  coals,  on  the  other  hand,  yield  a  coke 
which  approximates  in  shape  to  the  original  coal, 
and  retains  to  a  great  extent  its  structure.  (Char- 
coal can  be  quoted  as  an  extreme  example,  as  it  has 
the  cell  structure  of  the  wood  from  which  it  was 
produced.     See  Figs.  12  and  VS.) 

Generally  speaking,  non-fusible  fuels  give  a  more 
combustible  coke  than  do  fusible  fuels  when  car- 
bonised under  similar  conditions. 

Influence  of  conditions  of  carbonisation. — This, 
however,  is  only  a  rough  generalisation,  as  condi- 
tions of  carbonisation  play  an  extremely  important 
part  in  determining  the  character  of  the  fuel  pro- 
duced. Thus,  to  take  an  extreme  case — by  carbonis- 
ing wood  under  pressure  a  coke  (not  charcoal)  can 
be  obtained  which  retains  no  vestige  of  the  original 
structure  of  the  wood.  But  even  under  standard 
pressure,  variations  in  the  conditions  of  carbonisa- 
tion result  in  remarkable  differences  in  the 
character  and  combustibility  of  the  coke,  and  in  this 
direction  the  two  most  important  influences  apart 
from  the  type  of  fuel  used  are  the  temperature  and 
period  of  carbonisation. 

Effect  of  temperature  of  carbonisation. — At  first 
sight  temperature  might  seem  to  be  a  factor  of 
supreme  importance  in  so  far  as  the  character  and 
combustibility  of  a  coke  are  concerned.  Low- 
temperature  coke  is  much  more  free-burning  than 
high-temperature  coke,  and  it  is  generally  assumed 
that  the  combustibility  of  the  former  is  directly  due 
to  the  volatile  matter  left  in  it  by  the  use  of  a 
comparatively  low  carbonising  temperature. 

A  little  consideration  will  show,  however,  that 
temperature  is  really  not  so  important  as  it  is 
generally  considered  to  be.  Cokes  made  at  com- 
paratively high  temperatures  from  splint  or  other 
non-fusible  coals  are  comparatively  free-burning, 
whilst  the  authors,  by  carbonising  even  fusible  coals 
very  slowly  under  suitable  conditions,  have 
succeeded  in  obtaining  at  high  temperatures  a  fuel 
the  combustibility  of  which  is  equal  to  that  of  any 
fuel  they  ever  tested  (cf.  infra). 

In  the  authors'  opinion,  temperature  plays  only 
a  secondary  part.  The  combustibility  of  low-tem- 
perature coke  is  not  due  to  the  volatile  matter  but 
to  its  structure.  Many  dry  steam  coals  and  also 
anthracites  contain  a  volatile  content  of  the  same 
order  as  that  of  low-temperature  coke,  but  their 
combustibility  in  an  open  grate  is  very  much  lower. 
An  examination  of  low-temperature  coke  shows  that 
it  consists  of  a  sponge-like  mass  with  relatively  thick 
cell  walls.  In  the  process  of  combustion  the  volatile 
matter  in  these  walls  is  expelled.  No  fusion  occurs, 
however,  as  the  fusible  constituents  have  been 
eliminated  in  the  carbonising  process,  and  the 
expulsion  of  the  volatile  matter  leaves  a  wall 
permeated  with  minute  pores  which  enormously 
increase  the  surface  exposed  to  the  oxidising  gases 
and  thus  increase  the  combustibility. 

In  normal  high-temperature  carbonisation  of  a 
fusible  coal  the  resinous  constituents  in  the  coal 
melt  below  the  decomposing  point,  resulting  in  the 
formation  of  a  thick  viscid  mass.  As  the  tempera- 
ture increases  beyond  the  decomposition  point,  gas 
is  evolved  which  blows  the  semi-liquid  mass  into  a 
series  of  bubbles  which  run  into  one  another  and 


200  T 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30, 1922. 


the  ultimate  result  when  the  coke  is  "  set  "  is  the 
sponge  structure  referred  to.  A  considerable 
portion  of  volatile  matter  is  still  left  in  the  cell 
walls,  however,  and  during  the  subsequent  heating 
this  has  to  penetrate  to  a  great  extent  through  a 
red  hot  mass  of  coke,  and  in  its  passage  the  hydro- 
carbons become  decomposed,  resulting  in  the 
deposition  of  graphitic  carbon  in  the  minute  pores 
of  the  cell  walls.  Owing  to  the  filling  up  of  these 
pores  the  cell  walls  become  more  or  less  vitrified  and 
are  rendered  impermeable  to  gases.  The  highly 
refractory  incombustible  character  of  high-tempera- 
ture coke  is,  in  the  authors'  opinion,  due  to  a  great 
extent  not  to  the  low  percentage  of  volatile  matter, 
but  to  the  non-porous  character  of  the  cell  walls. 

Effect  of  period  of  carbonisation. — It  is  well 
known  that  the  more  rapidly  a  coal  is  carbonised 
at  high  temperatures,  the  more  pronounced  is  the 
silvery-grey  graphitic  film  referred  to,  while,  on 
the  other  hand,  if  the  coal  is  only  gradually 
heated  to  the  maximum  temperature  (as,  for 
example,  in  a  continuous  vertical  retort)  the  coke 
is  less  lustrous  in  appearance  and  more  readily 
combustible. 

If  coal  is  uniformly  heated,  as,  for  example,  in 
an  internally  heated  retort,  so  that  the  centre  of 
the  charge  is  at  the  same  temperature  as  the  por- 
tion nearest  the  walls,  the  secondary  products  of 
decomposition,  instead  of  passing  through  a  coked 
charge  of  continuously  increasing  temperature  as 
in  the  case  of  high-temperature  carbonisation,  pass 
through  zones  of  continually  falling  temperature 
and  the  secondary  decomposition  of  the  hydro- 
carbons on  the  minute  pores  of  the  coked  material 
is  therefore  considerably  reduced.  The  more  slowly 
the  charge  is  carbonised  the  slower  is  the  evolution 
of  the  volatile  matter  and  the  more  easily  can  it  get 
away  without  being  "  cracked  "  or  decomposed  in 
its  passage. 

The  ease  of  escape  of  the  volatile  matter  is  a 
factor  of  vital  importance  in  determining  the  com- 
bustibility of  the  coke.  Slow  carbonisation  assists 
this  in  two  ways: — (1)  As  above  by  expelling  the 
volatile  matter  so  slowly  that  it  can  get  away  as  it 
is  formed,  and  (2)  by  converting  a  part  of  the 
fusible  material  of  the  coal  substance  into  an  in- 
fusible material.  This,  of  course,  facilitates  con- 
siderably the  ready  escape  of  volatile  matter. 

The  following  experiment  illustrates  in  an  inter- 
esting manner  the  effect  of  a  prolonged  carbonising 
period.  A  finely  ground  coking  coal  was  briquetted 
without  a  binder,  and  the  briquettes  passed  through 
an  internally  heated  retort.  Heating  took  place 
so  slowly  that  a  period  of  72  hours  was  taken  in 
bringing  the  charge  to  its  maximum  temperature  of 
1000°  C.  The  briquettes  retained  their  shape  but 
contracted  during  the  process  until  the  coke  had  a 
sp.  gr.  of  1'2,  its  structure  consisting  of  a  large 
number  of  minute  cells  with  thin  walls.  The  com- 
bustibility of  this  fuel  was  of  the  same  order  as  that 
of  charcoal.  When  once  thoroughly  ignited  a  lump 
of  this  fuel  could  be  removed  from  the  fire,  and  if 
protected  from  draughts  would  continue  to  burn 
for  several  hours.  In  one  test  made  a  piece  of  a 
size  3  in.x2  in.  xl£  in.  made  red  hot  and  placed  on 
a  fireclay  slab  away  from  the  fire,  burnt  for  over 
6  hours  until  all  that  remained  was  a  small  piece 
lx£x£  in. 

Influence  of  preliminary  treatment  of  coal. — A 
very  prolonged  carbonising  period  is,  of  course,  not 
easy  to  reconcile  with  economic  requirements  on  a 
commercial  scale,  but  several  methods  are  available 
which  allow  of  the  ready  escape  of  the  volatile 
matter.  It  can  be  done  by  (1)  blending  coal  with 
coke  breeze  (Fig.  2),  (2)  blending  caking  with  non- 
caking  coals,  or  (3)  preheating  a  portion  of  the  coal 
to  eliminate  the  resinous  matter  and  mixing  the 
resulting  material  in  the  correct  proportions  with 
raw  coal. 


All  three  of  the  above  methods  have  been  used  by 
the  authors  in  their  works  for  several  years,  and 
similar  processes  have  been  worked  out  inde- 
pendently by  other  investigators,  more  especially  by 
the  Fuel  Research  Board,  bv  Roberts  (Trans.  Inst. 
Min.  Eng.,  62,  9),  and  by  lllingworth  (Proc.  S.W. 
Inst,  of  Engineers,  1921). 

Mr.  E.  V.  Evans  and  his  collaborators  of  the 
South  Metropolitan  Gas  Company  have  also  worked 
out  on  a  small  commercial  scale  a  process  on  similar 
lines.  In  this  process,  ground  coke  breeze  and  a 
cheap  coal  are  mixed  in  such  proportions  that  suffi- 
cient binding  material  is  subsequently  obtained 
from  the  coal.  The  mixture  is  afterwards  carbonised 
at  such  a  temperature  that  a  compact  mass  results 
from  the  shrinkage  that  occurs,  the  temperature 
usually  adopted  being  that  of  waste  furnace  gases — 
about  500°— 550°  C.  The  resulting  product  is  hard 
and  dense.  It  is  an  excellent  smokeless  fuel  and  is 
capable  of  withstanding  the  most  severe  conditions 
of  handling  and  transport. 

In  order  primarily  to  meet  the  economic  require- 
ments in  large-scale  production  of  smokeless  fuel, 
the  authors  have  developed  a  method  of  preliminary 
briquetting  of  coal  without  a  binder,  and  subsequent 
carbonisation  of  the  briquettes.  In  the  case  of 
most  British  coals  swelling  of  the  briquettes  during 
carbonisation  can  be  prevented  by  the  addition  of 
20  to  30%  of  previously  carbonised  material  to  the 
coal,  but  in  the  case  of  a  few  coals  containing  a 
high  proportion  of  resinous  material  it  has  some- 
times been  found  necessary  to  adopt  one  or  other 
of  the  alternative  methods  already  mentioned. 

The  volatile  products  escape  very  readily  from 
these  mixtures  and  the  preliminary  treatment  so 
facilitates  the  evolution  and  escape  of  the  volatile 
matter  that  a  hard,  dense,  smokeless  fuel  can  be 
obtained  practically  at  any  temperature  of  carbon- 
isation from  500°  C.  upwards.  Even  when  made  at 
the  usual  gas-retorting  or  coke-oven  temperatures 
the  coke  produced  can  be  ignited  fairly  readily  and 
burns  with  absolute  freedom  in  any  type  of  grate. 

Influence  of  structure. — A  study  of  these  carbon- 
ised briquettes  throws  a  considerable  light  on  the 
influence  of  structure  on  the  combustibility  of 
carbonised  fuels.  Research  on  this  matter  is  still 
proceeding,  and  up  to  the  present  time  it  has  not 
been  found  possible  to  make  definite  determinations 
of  the  relative  combustibility  of  the  various  types 
of  fuels  that  can  be  obtained  by  these  processes. 
Sufficient  has  been  done,  however,  to  enable  some  of 
the  principal  factors  involved  to  be  determined,  and 
these  can  be  briefly  outlined  as  follows:  — 

(1)  Influence  of  area  of  surface. — The  area  of 
surface  presented  to  the  oxidising  gases  is,  of  course, 
an  important  factor.  Combustion  can  only  be 
maintained  if  the  area  of  incandescent  surface 
exposed  to  the  air  is  sufficient  to  maintain  the 
temperature  of  a  sufficient  mass  of  the  fuel  above 
the  point  of  ignition.  The  area  of  surface  of  blast- 
furnace coke,  for  example,  is  much  greater  than 
that  of  a  lump  of  anthracite,  and  the  combustibility 
of  the  coke  is  therefore  greater. 

Generally  speaking,  the  greater  the  area  of 
surface  of  a  fuel  the  greater  the  combustibility. 
Charcoal,  with  its  highly  developed  cell  structure, 
is  a  fuel  possessing  a  very  considerable  area  of 
surface  per  unit  of  mass,  and  is  characterised  by  a 
high  degree  of  combustibility. 

Area  of  surface,  again,  is  closely  connected  with 
degree  of  porosity  and  with  the  character  and  dis- 
tribution of  the  pores. 

(2)  Porosity. — The  porosity  of  a  carbonised  fuel 
plays  a  vitally  important  part  in  connexion  with 
its  combustibility,  but  here  again  it  is  not  a 
question  so  much  of  the  actual  proportion  of  the 
pores  as  of  their  character.  Very  considerable 
differences  exist  between  the  degrees  of  combusti- 
bility of  fuels  of  equal  porosity,  and  on  investiga- 


Vol.  XLI.,  No.  12.]        SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


201  T 


tion  it  will  be  found  that  it  is  a  question  not  so 
much   of   the   total  air  space  in   a   fuel  as  of  the 

ways 


the 


m 


number   of  cells   it   contains,    and   of 
which  these  cells  are  interconnected. 

In  this  connexion  it  is  important  to  consider  the 
porosity  of  the  cell  walls.  This  factor  is  too  often 
overlooked,  and  the  factor  of  porosity  is  usually 
considered  solely  from  the  point  of  view  of  the  air 
spaces  surrounded  by  the  walls. 

In  discussing  the  combustibility  of  low-tempera- 
ture coke,  the  authors  have  already  touched  upon 
this  question.  Their  work  leads  them  to  the  con- 
clusion that  the  microscopic  pores  in  a  coke — say 
from  the  order  of  lxlO"3  cm.  diameter  downwards 
(<■/.  infra) — play  an  extremely  important  part  in 
determining  its  combustibility.  It  is  therefore  im- 
portant to  consider  the  character  of  the  cell  walls 
in  investigating  the  question  of  porosity  of  coke. 

(3)  Character  of  cell  structure,  (a)  Continuity 
of  cell  structure. — The  character  of  the  cell  struc- 
ture of  carbonised  fuels  was  investigated  by 
Thbrner.  He  determined  the  combustibility  of 
various  blast-furnace  fuels,  together  with  their 
porosity,  and  investigated  the  character  of  their 
cell  structure  by  the  microscopical  examination  of 
sections  of  the  fuels.  He  found  that  the  fuels  which 
gave  the  best  results  in  a  blast  furnace,  viz., 
charcoal  and  Meiler  coke,  were  characterised  by  a 
high  degree  of  combustibility,  and  consisted, 
further,  of  cells  niore  or  less  regularly  arranged, 
which  were  joined  to  one  another  longitudinally. 
Furnace  coke,  on  the  other  hand,  consisted  of 
separate  unconnected  cells,  or  groups  of  cells,  the 
cells  of  which  were  composed  of  a  dense  and 
vitreous  mass  which  did  not  allow  of  the  passage 
of  gas  through  it. 

Carrick  Anderson  (J.,  1S96,  20),  as  a  result  of 
his  investigations  into  the  porosity  of  coke,  con- 
firmed this  statement,  and  his  work  seemed  to  point 
to  the  existence  of  water-tight  vesicles  in  coke. 
Later,  Anderson  and  Roberts  (J.,  1899,  1102),  in 
discussing  the  removal  of  nitrogen  from  coke  by 
steaming,  again  emphasise  the  fact  that  coke  "  is  a 
mass  of  cells,  the  walls  of  which  are  thoroughly 
vitrified  and  gas-tight"  and  therefore  6teaming 
would  not  be  very  efficacious  in  reducing  the 
nitrogen  in  furnace  coke  as  "  except  in  so  far  as  it 
burns  away  the  carbon  of  the  coke,  it  scarcely  comes 
in  contact  with  the  nitrogenous  constituents  of  the 
latter,  protected  as  they  are  by  this  impervious 
coating." 

Licidentally,  Beilby  in  the  discussion  on  this 
paper  dniw6  attention  to  the  differences  in  the 
physical  structure  of  splint,  cannel,  and  coking 
coals,  and  to  the  difference  in  the  carbonised 
products  from  these  coals,  and  emphasises  the 
effects  of  the  varying  porosity  of  these  fuels  on  the 
distillation  products. 

Taking  a  general  view  of  this  work,  it  might 
perhaps  be  too  much  to  say  that  the  cell  structure 
of  blast-furnace  coke  is  discontinuous ;  after  all,  the 
gases  evolved  in  the  later  stages  of  distillation  must 
get  away,  but  there  is  reason  to  believe  that  the 
cells  are  connected  by  passages  of  small  diameter 
as  compared  with  the  diameters  of  the  cells. 

Further,  there  is  every  reason  to  believe  that  the 
walls  of  these  cells  have  been  rendered  vitreous  and 
gas-tight  by  carbon  deposition  as  already  stated. 

In  the  case  of  charcoal,  on  the  other  hand,  the 
cells  do  extend  longitudinally  through  the  mass, 
whilst  the  authors  have  reason  to  believe  that  the 
continuity  of  the  cell  structure  in  fuels  which  have 
been  briquetted  prior  to  carbonisation  is  much  more 
pronounced  than  in  the  case  of  blast-furnace  or 
other  coke  made  under  normal  conditions  of  high- 
temperature  carbonisation. 

This  view  is  based  upon  certain  properties  of 
these  fuels  which  are  not  customarily  characteristic 


of  high-temperature  coke,  and  which  may  be  sum- 
marised as  follows :  — 

(1)  The  nitrogen  left  in  the  coke  from  these 
briquettes  is  very  much  lower  than  is  the  case  with 
coke  made  in  the  usual  way.  The  following 
analyses,  which  are  typical  of  a  large  number  of 
determinations  that  have  been  made,  bring  this 
point  out  very  clearly:  — 


Mixture 

Coke  from 

Raw 

of  raw  coal 

Coke  from 

briquettes 

coal. 

and  coke 
breeze. 

raw  coal. 

made  from 
mixture. 

Volatile  matter    . . 

34-70 

28-68 

0-80 

0-90 

Ash 

oso 

8-85 

11-65 

9-90 

Sulphur 

1-64 

1-62 

1-47 

1C0 

Nitrogen 

1-38 

1-58 

1-44 

1-02 

Calorific  value 

15,500 

13,500 

11.050 

12,350 

It  will  be  noted  that  although  the  nitrogen  in  the 
mixture  of  coal  and  coke  briquetted  is  higher  than 
in  the  raw  coal,  yet  the  nitrogen  in  the  briquetted 
coke  is  only  T02%  as  compared  with  1'44%  in  the 
coke  from  raw  coal.  These  results  can  be  accounted 
for  in  one  or  two  ways,  depending  on  the  method  of 
formation  of  ammonia  in  the  process  of  coal 
carbonisation. 

The  generally  accepted  idea  of  the  formation  of 
ammonia  in  coal  distillation  is  that  it  is  a  primary 
product  formed  by  the  decomposition  of  the  nitro- 
genous matter  in  the  coal,  and  that  the  extremely 
low  percentage  conversion  is  due  to  the  decompo- 
sition of  this  gas  in  its  passage  through  the  hot 
coke.  There  is  also  another  possibility,  and  that  is 
that  it  is  a  secondary  product,  due  to  the  action  of 
nascent  hydrogen  on  the  solid  nitrogenous  material. 
Probably  both  reactions  take  place,  the  first  at  a 
low  temperature  and  the  second  at  a  high  tempera- 
ture, particularly  above  700°  C,  where  a  marked 
increase  in  the  quantities  of  hydrogen  and  of 
ammonia  takes  place. 

Whatever  the  main  method  of  ammonia  forma- 
tion, whether  it  is  a  primary  or  secondary  product, 
a  continuity  of  cell  structure  would  exert  a  favour- 
able influence  in  the  following  respects: — (1)  In 
the  former  case,  the  evolution  of  ammonia  would  be 
accelerated,  and  decomposition  retarded  by  the 
rapid  escape  of  the  volatile  products  from  the 
heated  material.  (2)  In  the  latter  case,  the  nascent 
hydrogen  would  come  into  intimate  contact  with 
the  nitrogenous  material  left  in  the  porous  6olid 
mass,  resulting  in  a  conversion  into  ammonia. 

As  the  result  of  a  detailed  series  of  experiments 
in  another  direction,  the  authors  are  of  opinion  that 
above  700°  C.  the  secondary  formation  is  the  pre- 
dominant reaction,  a  conclusion  which  is  to  some 
extent  confirmed  by  the  above  results. 

(2)  It  has  been  found  that  coke  made  by  the 
processes  described  above  can  be  given  marked 
powers  of  vapour  absorption.  Anti-gas  carbon 
can  be  made  by  a  modification  of  the  above  method 
which  is  capable  of  absorbing  10%  of  its  weight  of 
heavy  vapours. 

A  further  modification  can  be  made  which  has 
very  strongly  pronounced  decolorising  power,  and 
when  the  high  sp.  gr.  of  the  fuel  is  taken  into  con- 
sideration in  conjunction  with  the  above  properties 
(which  are  primarily  dependent  on  area  of  surface) 
there  seems  every  reason  to  believe  that  the  cell 
structure  of  this  material  possesses  a  greater  con- 
tinuity than  that  of  gas  or  furnace  coke. 

Effect  of  size  of  cells. — The  dimensions  of  the 
cells  plav  a  considerable  part  in  the  combustibility 
of  a  fuel.  Practically  speaking,  the  porosity  of  a 
solid  can  be  regarded  from  two  aspects,  viz.  : 
(1)  Cell  space  per  unit  volume,  and  (2)  cell  space 
per  unit  mass.  A  coke,  for  example,  may  be  ex- 
ceedingly   voluminous,    and    may   contain    a    large 


202  T 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30, 1922. 


number  of  cells  per  unit  of  mass,  but  owing  to  its 
low  apparent  specific  gravity  may  contain  only  a 
small  number  of  large  cells  per  unit  of  volume.  A 
coke  of  this  type  is  obtained  by  customary  processes 
of  low-temperature  carbonisation ;  an  extreme 
example  is  shown  in  Fig.  1,  in  which  a  highly 
swollen  coke  is  obtained  with  cells  of  large  dimen- 
sions surrounded  by  very  thin  walls.  The  surface 
presented  by  such  a  fuel  is  very  considerable,  and 
its  combustibility  might  be  high,  but  on  the  other 
hand  it  is  very  fragile  and  will  not  withstand  severe 
conditions  of  handling  and  transport,  and  of  course 
would  be  of  no  use  for  blast-furnace  conditions. 

The  most  desirable  fuel  would  be  a  fuel  as  dense 
as  possible,  but  containing  a  very  large  number  of 
cells  per  unit  of  mass.  Generally  speaking,  a  fuel 
of  apparent  sp.  gr.  1"2  with  a  porosity  of  50% 
would  be  more  serviceable  for  general  purposes 
than  a  fuel  of  app.  sp.  gr.  0'8  with  the  same  pro- 
portion of  cell  space.  In  the  former  case,  the  cells 
would  be  exceedingly  small,  but  the  surface  pre- 
sented to  the  oxidising  gases  would  be  so  great  that 
the  combustibility  would  be  even  greater  than  in 
tho  former  case. 

The  advantages  of  minute  cells  have  been  demon- 
strated in  the  following  ways:  — 

(1)  It  has  been  proved  by  an  extensive  series  of 
experiments  that  the  more  finely  ground  the  original 
coal  mixture,  the  denser  and  the  more  combustible 
is  the  final  product. 

The  influence  of  grinding  is  shown  by  some  tests 
made  with  mixtures  of  caking  and  non-caking  coals, 
submitted  by  the  Fuel  Research  Board.  These 
mixtures  are  so  adjusted  that  the  briquettes  made 
do  not  expand  on  carbonisation.  In  the  case  of  the 
raw  mixture  which  had  been  roughly  crushed  in  a 
disintegrator,  the  briquettes  made  without  a  binder 
and  subsequently  carbonised  presented  the  appear- 
ance of  being  covered  with  a  mass  of  fairly  large 
bubbles,  giving  a  more  or  less  irregular  appearance 
to  the  briquette.  As  the  mixture,  however,  became 
more  and  more  finely  ground  these  bubbles  became 
smaller  and  less  numerous  and  the  surface  became 
smoother  and  more  uniform  in  appearance.  At  the 
same  time  the  app.  sp.  gr.  of  the  carbonised  fuel 
uniformly  increased.  The  sizing  tests  of  the  above 
mixtures  are  given  below,  together  with  the 
apparent  specific  gravity  (no  sizing  test  was  made 
of  the  raw  material). 

Tadle  II. 


No.  2. 

No.  3. 

No.  4. 

No.  5. 

% 

% 

% 

0/ 

Remaining  on  20-mesh 

5-82 

1-74 

1-70 

2-38 

30     „ 

11-37 

1-62 

0-C8 

0-32 

UO     „ 

25-88 

19-22 

10-13 

3-02 

90     „ 

22-03 

3215 

35-22 

27-67 

120     „ 

7-32 

7-43 

7-84 

1017 

180     „ 

2-22 

2-51 

2-84 

4  14 

Through         180     „ 

25-36 

35-33 

41-53 

52-30 

Apparent  sp.  gr 

0-933 

1-031 

1034 

1-103 

It  is  evident  that  fineness  increased  the  uni- 
formity and  density  of  the  resulting  product, 
due  to  the  diminishing  size  of  the  cells,  and 
extensive  experiments  over  many  years  have 
proved  to  the  authors  that  at  the  same  time  the 
combustibility  of  the  fuel  increases. 

(2)  To  produce  activated  carbon  it  is  necessary  to 
grind  down  to  a  size  comparable  with  that  re- 
quired for  dust  firing.  The  cells  in  the  resulting 
fuel  become  extremely  minute,  as  is  shown  by 
Fig.  15.  This  fuel  is  easily  the  most  combustible 
pro-duct  produced  by  the  authors'  processes.  Inci- 
dentally it  has  recentlv  been  shown  bv  Harkins  and 
Ewing  (J.  Amer.  Chem.  Soc,  1921,  43,  1787—1802) 
that  pores  of  a  greater  diameter  than  T2xl0"3  cm. 


have  no  absorptive  action  on  vapours.  The  high 
absorptive  powers  of  this  carbon  can  only  be  satis- 
factorily accounted  for  by  the  assumption  that  it 
contains  a  large  proportion  of  very  minute  pores. 

(3)  The  surface  offered  by  a  material  of  this  type, 
permeated  by  minute  cells,  is  enormous,  and  would 
be  very  much  greater  than  that  of  a  coke  with  a 
comparatively  small  number  of  cells  enclosed  by 
thick  walls. 

When  heated  in  an  oxidising  atmosphere  the 
points  of  contact  presented  to  the  action  of  the 
oxygen  would  be  very  much  more  numerous  than  in 
the  case  of  furnace  coke,  and,  as  has  already  been 
shown,  this  material  continues  to  burn  under  con- 
ditions where  the  radiation  and  cooling  losses  are 
so  considerable  that  ordinary  furnace  or  gas  coke 
would  be  extinguished  in  a  few  seconds. 

Another  instance  of  the  combustibility  of  this 
coke  is  given  later  in  dealing  with  its  applications  36 
a  domestic  fuel,  whilst  a  still  further  example  is 
shown  by  its  behaviour  in  a  coke-fired  brass  melting 
furnace  at  the  works  of  Messrs.  Sutcliffe,  Speak- 
man  and  Co.,  Ltd.  This  furnace  in  normal  prac- 
tice is  charged  with  53  lb.  of  furnace  coke,  which 
generally  takes  1J  hours  to  burn  when  working  with 
a  draught  of  3  in.  w.g.  The  density  of  the  fuel 
charge  was  such  as  to  allow  of  83  lb.  being  charged 
and  this  was  burnt  out  with  a  draught  of  smaller 
gauge  pressure  in  about  20  minutes.  The  fuel  in 
this  particular  test  contained  2'25%  of  volatile 
matter  and  9P65%  of  ash. 

Combustibility  of  carbonised  fuels.     Summary. 

To  summarise  the  above  results:  — 

By  careful  attention  to  the  structure  of  a  fuel  it 
is  possible  to  produce  at  high  or  low  temperatures 
of  carbonisation  a  fuel  of  high  degree  of  combusti- 
bility, high  degree  of  hardness,  and  high  apparent 
sp.  gr. 

The  structure  of  this  fuel  has  the  following 
characteristics  :  — High  degree  of  porosity.  Con- 
siderable area  of  surface  per  unit  of  mass.  Pro- 
nounced cell  structure.  Pronounced  continuity  in 
distribution  of  cells.  Large  proportion  of  minute 
cells.     Pronounced  porosity  of  cell  walls. 

It  is  not  in  the  province  of  this  paper  to  discuss 
the  processes  that  have  been  worked  out  for  the 
manufacture  of  the  fuel  on  a  large  scale,  and  this 
aspect  is  being  dealt  with  elsewhere,  but  it  might 
be  of  interest  to  discuss  briefly  the  possibilities  it 
offers  in  modern  fuel  technology. 

Industrial  jiossibilities  of  carbonised  fuel  of  high 
combustibility. — A  brief  consideration  will  show 
that  a  fuel  of  this  type  offers  far-reaching  possibili- 
ties in  connexion  with  modern  industrial  work. 
Apart  entirely  from  the  special  applications  to 
which  it  would  be  peculiarly  suited,  instances  of 
which  will  readily  occur  to  students  of  fuel  tech- 
nology, it  offers  very  considerable  advantages  over 
raw  coal  in  all  the  principal  consuming  markets. 

Taking  the  three  main  fuel  consumers  of  coal  as 
the  domestic  grate,  the  boiler  furnace,  and  the  blast 
furnace,  the  principal  advantages  of  such  a  material 
can  be  summarised  as  follows: — ■ 

Domestic  fuel. 

The  resume  in  Table  III.  of  a  comparative  test 
of  foundry  coke,  gas  coke,  and  coke  made  from 
briquettes  will  serve  to  illustrate  the  properties  of 
this  material  in  so  far  as  domestic  purposes  are 
concerned. 

The  extremely  low  percentage  of  cinders  shows 
that  the  fuel,  despite  the  length  of  time  taken  to 
burn,  is,  like  the  carbonised  briquettes,  much  more 
combustible  than  is  either  gas  coke  or  foundry  coke. 

Carbonised  fuel  of  this  type  can  be  ignited  fairly 
readily  with  paper  and  wood  in  the  usual  way,  and 
burns  freely  in  any  type  of  domestic  grate. 


VoLXIi.No.12.]       SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


203  t 


Table  III. 


Ash         

Volatile  matter 

True  sp.  gr 

Apparent  sp.  gr. 
Volume  of  coke  substance 
Volume  of  cells  . .         . . 

Burning  test. 
Weight  of  coke  burned  . . 
Time  taken  in  burning . . 
Unbomt  cinders 


Foundry 
coke. 


Gas  coke. 


Coke  from 
briquettes. 


13-15% 
9-5% 
1-81% 
1-213% 

70-7 

25-3 

121b. 

4HlTS. 

3  lb.  4  oz. 


17-9% 
1-3% 

0-86% 

21-8 
45-2 

12  lb. 
4hrs. 

2  lb.  15  oz. 


11-5% 

4-4% 
1-79% 
0-8  to  1-1% 
211 
48-5 

12  1b. 

7  Hits. 
5  02. 


Use  of  fuel  in  steam  boiler  plant. 

No  large-scale  tests  of  fuel  of  this  type  have  yet 
been  made  in  boiler  furnaces.  Theoretical  considera- 
tions, however,  seem  to  indicate  extremely  import- 
ant possibilities  not  only  in  the  direction  of 
efficiency  in  boiler  practice,  but  in  the  radical 
simplification  of  boiler  design.  It  might  perhaps  be 
of  interest  to  outline  very  briefly  the  factors  in- 
volved in  this  conception. 

The  combustion  of  raw  coal  in  a  boiler  furnace  is 
a  three-stage  process  and  involves: — (1)  The  distil- 
lation of  the  volatile  products.  (2)  The  combustion 
of  the  volatile  products.  (3)  The  combustion  of  the 
solid  carbonaceous  residues  left  after  the  volatile 
products  have  been  expelled. 

The  distillation  and  combustion  of  the  volatile 
products  in  a  boiler  grate  introduce  factors  which 
are  seriously  detrimental  to  the  efficient  working  of 
a  boiler  plant.  These  factors  may  be  summarised 
as  follows: — (1)  The  interposition  of  distillation 
gases  between  the  incandescent  mass  of  fuel  in  the 
grate  and  the  boiler  cuts  off  a  considerable  pro- 
portion of  the  radiant  heat  transmitted.  (2)  These 
gases  and  the  products  resulting  from  their  combus- 
tion carry  a  considerable  quantity  of  sensible  heat. 
To  abstract  this  heat  and  to  impart  it  to  the  water 
in  the  boiler  has  necessitated  a  considerable  com- 
plication in  boiler  design  in  order  to  increase  the 
efficiency  to  the  fullest  possible  extent.  (3)  To 
obtain  the  maximum  efficiency  it  is  impossible  to 
work  the  boiler  beyond  a  certain  limited  capacity 
without  loss  of  efficiency  and  the  production  of 
black  smoke. 

The  complexity  of  modern  high-class  boiler  in- 
stallations with  their  mechanical  stokers,  econo- 
misers,  superheaters,  etc.  is  necessary  almost  solely 
because  of  the  difficulties  of  dealing  with  the 
distillation  products.  On  the  other  hand,  a  free- 
burning  carbonised  fuel  would  offer  very  consider- 
able advantages  for  boiler  furnaces  which  can  be 
summarised  as  follows: — (1)  No  loss  of  heat  in  the 
distillation  process.  (2)  An  extremely  high  radiant 
heat  production  in  the  furnace.  (3)  The  only  gases 
between  the  incandescent  mass  and  the  boiler  shell 
would  be  nitrogen,  carbon  monoxide,  carbon  di- 
oxide, and  some  oxygen.  These  are  highly  trans- 
parent to  radiant  energy.  (4)  The  specific  heat  of 
these  gases  is  lower  than  that  of  the  mixture  of 
distillation  gases,  products  of  combustion,  unburnt 
carbonaceous  matter,  etc.  that  exists  in  a  normal 
boiler  grate,  and  the  necessity  for  elaborate  econo- 
miser  and  superheater  plants  would  be  considerably 
reduced. 

Probably  the  most  important  of  these  factors  is 
radiation.  The  importance  of  radiation  is  not 
generally  realised.  Dalby  has  estimated  that  the 
upper  limiting  value  of  the  heat  which  may  be 
transmitted  by  radiation  per  sq.  ft.  of  heating 
surface  per  hour  is  equivalent  to  the  evaporation  of 
134  lb.  of  water  from  and  at  212°  F. 

The  average  evaporation  in  British  practice  can 
be  obtained  from  the  following  tables  abstracted 
from  figures  given  by  Brownlie  (Engineering, 
Dec.  10,  1920):  — 


Table  IV. 

Cylindrical  boiler 
(Lancashire  type). 

"Water-tube  boiler. 

Aver- 

Good 

Bad 

Aver- 

Good 

Bad 

plant 

(85%) 

plant 
(5%) 

plant 
(10%) 

plant 
(85%) 

plant 
(5%) 

plant 
(10%) 

Coal  burnt  per  sq. 

ft.    grate   area 

per  hour 

22-7 

27-9 

10-8 

20-9 

20-4 

20-8 

Water  evaporated 

persq.  ft.  grate 

area  per  hour  . 

151-3 

223-7 

111-3 

147-2 

160-9 

133-7 

\Yater  evaporated 

per  sq.ft.  heat- 

ing surface  per 

hour  (ealc.)  . . 

605 

6-95 

4-45 

4-2 

4-6 

40 

(The  heating  surface  varies  considerably,  but 
typical  figures  of  heating  surface  per  sq.  ft.  of 
grate  area  are  given  by  Kempe  as  25  sq.  ft.  for 
Lancashire  boilers  and  35  sq.  ft.  for  water-tube 
boilers,  and  the  figures  relative  to  the  evaporation 
per  sq.  ft.  of  heating  surface  are  based  upon 
these.) 

The  possibilities  thus  of  making  a  more  effective 
use  of  radiant  heat  are  very  considerable.  Bone 
in  his  work  on  surface  combustion  was  able  to  get 
an  evaporation  of  nearly  34  lb.  of  water  from  and 
at  212°  F.  per  sq.  ft.  of  heating  surface  in  a  small 
boiler  which  developed  an  efficiency  of  over  93%. 

There  is  perhaps  one  other  point  that  may  be 
noted.  By  careful  attention  to  the  structure,  a 
free-burning  fuel  can  be  obtained  with  such  a 
surface  area  and  such  porosity  that  a  very  large 
proportion  of'  the  carbon  monoxide  produced  will 
be  burnt  on  the  incandescent  surface,  increasing 
very  considerably  the  proportion  of  radiant  heat 
transmitted  by  direct  radiation. 

A  fuel  of  this  type  produced  at  a  cost  comparable 
with  that  of  coal  would  offer  very  considerable  pos- 
sibilities in  boiler  practice  and  would  directly 
result  in  the  following  improvements :  Consider- 
ably increased  capacity  of  existing  boiler  installa- 
tion. Increased  efficiency.  Simplification  of  boiler 
design.  Reduction  in  capital  cost  of  boiler  plant. 
Reduction  in  labour  charges. 

The  blast  furnace. 

The  third  largest  consumer  of  fuel  in  England  is 
the  blast  furnace.  In  normal  times  the  coke  con- 
sumption in  this  country  for  the  manufacture  of  pig 
iron  amounts  to  about  "12,500,000  tons  per  annum. 
The  average  consumption  of  coke  per  ton  of  iron  is 
for  the  whole  country  about  25  cwt.,  and  it  is  a 
remarkable  fact  this  figure  is  no  lower,  and  is 
probably  a  little  higher  than  it  was  forty  years  ago. 

"When  we  consider  the  enormous  progress  that 
has  taken  place  in  other  branches  of  industry 
during  this  period,  and  especially  when  we  realise 
the  amount  of  detailed  scientific  work  that  has  been 
performed  in  connexion  with  blast-furnace  practice, 
and  the  high  degree  of  scientific  control  that  has 
been  introduced,  it  seems  at  first  sight  difficult  to 
understand  why  this  industry  alone  should  have 
marked  time  for  so  long  a  period.  A  very  slight 
acquaintance  with  the  idiosyncracies  of  the  blast 
furnace,  however,  is  sufficient  to  bring  home  to  the 
most  ardent  economist  some  of  the  difficulties  in- 
volved in  a  saving  of  fuel.  Koppers  in  his  paper 
stated  that  "  the  blast  furnace  is  still  a  mystery, 
and  even  to-day  the  blast  furnace  manager  does 
not  manage  the  blast  furnace,  but  the  blast  fur- 
nace manages  the  manager."  All  that  that  un- 
fortunate being  wants  is  to  be  left  in  peace,  and 
not  be  bothered  with  any  thing  that  will  add  to 
the  complexities  he  has  to  face:  and  his  attitude 
can    be    readily    understood.      He    looks    after    his 


201  T 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30, 1922. 


plant  with  just  the  same  care  as  a  chemist  looks 
after  a  delicate  quantitative  analysis.  Every  ounce 
of  material  entering  and  leaving  the  furnace  is 
carefully  weighed  and  analysed;  every  unit  of  heat 
that  enters  or  leaves  is  accounted  for,  and  from 
the  data  supplied  hy  his  chemical  staff  the  blast 
furnace  manager  can  draw  up  a  chemical  and 
thermal  balance  sheet  of  a  character  which  is 
extremely  difficult  to  criticise. __ 

Further,  the  blast  furnace  manager  has  behind 
him  the  monumental  work  of  Sir  Lowthian  Bell, 
whose  classical  researches  on  the  chemical  pheno- 
mena of  iron  smelting  have  dominated  blast  fur- 
nace practice  for  the  past  fifty  years.  Bell's  work 
drove  home  with  absolute  and  complete  conclusive- 
ness that  in  a  blast  furnace  operating  with  coke 
as  -a  fuel  the  indirect  reduction  of  the  Cleveland 
ore  ceases  when  the  relative  proportions  of  CO  and 
CO.,  are  as  2:1. 

Chemically,  it  is  possible  completely  to  convert 
CO  to  C02  by  iron  oxide,  but  at  temperatures 
below  480°  C,  this  operation  proceeds  with  such 
extreme  slowness  that  in  a  blast  furnace  "  the 
action  would  be  delayed  until  the  mineral  reached 
a  level  in  the  blast  furnace  where  the  heat  would 
resolve  any  CO,  into  CO"   (J.,   1890,  709). 

This  ratio  CO:CO.  =  2;l  at  once  fixes  the  thermal 
efficiency  of  furnaces  working  Cleveland  ore  at  a 
minimum  of  60%  reckoned  on  the  available  energy 
of  the  coke  charged  into  it,  and  led  Bell  to  state 
that  it  was  "  useless  to  hope  to  smelt  a  ton  of 
grey  iron  from  Cleveland  stone  yielding  41%  of 
pig  iron  metal  with  anything  notablv  under 
20}  cwt.   of  coke." 

Assuming  the  ratio  CO:C02  =  2:l,  the  chemical 
reactions  in  a  blast  furnace  can  be  represented  by 
the  equation  : 

Fe=Os  +  9CO  =  2Fe + 6CO + 3C02 
which  corresponds  to  a  carbon  consumption  of 
19'3  cwt.  per  20  cwt.  of  pig  iron  produced,  a 
figure  which,  after  allowing  for  the  impurities 
customarily  present  in  furnace  coke,  agrees  with 
Bell's  figure  of  20£  cwt.  of  coke.  This  figure  meets 
with  both  the  chemical  and  thermal  requirements 
of  the  reaction. 

This  dictum,  supported  by  researches  of  unques- 
tionable accuracy  and  backed  by  nearly  fifty  years 
of  accumulated  experience,  at  once  faces  those  who 
venture  to  suggest  that  a  modern  blast  furnace  is 
not  an  industrial  machine  of  unquestioned  perfec- 
tion and  that  there  is  room  for  effecting  economies 
in  its  operation.  And  yat,  despire  Bell's  researches, 
despite  the  lessons  of  British  experience,  despite 
the  failures  that  have  attended  the  efforts  of  British 
fuel  reformers  in  the  past,  the  authors  are  still 
venturesome  enough  to  suggest  that  the  limit  of 
fuel  economy  in  British  blast  furnace  practice  has 
not  been  reached,  but  that  substantial  economies 
are  still  possible,  and  that  even  Cleveland  ore  will 
ultimately  be  smelted  with  as  low  a  consumption  as 
12  cwt.  of  coke  per  ton  of  pig  iron  produced. 

Fuel  consumption  in  blast  furnace  practice. — 
Before  proceeding  to  give  reasons  for  this  assertion 
it  might  be  of  interest  to  note  some  figures  of  fuel 
consumption  in  blast  furnace  practice  that  are 
available. 

(1)  British  practice. — Clements  (J.  Iron  and  Steel 
Inst.,  1920,  I.,  125)  gives  a  valuable  summary  of 
results  obtained  in  17  British  blast  furnaces.  These 
results  can  be  summarised  as  in  Table  V. 

N.B. — The  low  carbon  consumption  as  compared 
with  coke  is  due  to  the  fact  that  both  moisture  and 
ash  are  included  in  the  weight  of  coke  charged  into 
the  blast  furnace. 

The  differences  in  results  obtained  in  different 
districts  are  to  some  extent  accoiinted  for  by 
differences  in  the  ore,  but  it  will  be  noted  that 
several  instances  exist  which  show  a  carbon  con- 
sumption below  Bell's  theoretical  minimum. 


Table  V. 


District. 

Coke  consumption 

per  ton  of  pig  iron 

in  cwt. 

Carbon  consumption 

per  ton  of  pig  iron 

in  cwt. 

Fur- 
naces. 

Max. 

Min. 

Av. 

Max. 

Min, 

Av. 

Middlesbrough  . 

Midland 

S.  Wales 

230 

31-5 

22 

21-08 

25-05 

18 

22-3 
29 
20 

19-78 
24-88 
16-8 

1813 

1976 
15-77 

18-77 
23-37 
1619 

3 

11 

3 

Turner  ("  Metallurgy  of  Iron  and  Steel,"  3rd 
Edn.,  p.  205)  quotes  statements  of  S.  Staffordshire 
managers  that  by  working  with  soft  coke  in  admix- 
ture with  hard  coke  the  fuel  consumption  was  some- 
times reduced  to  16 — 17  cwt.  in  furnaces  of  only 
moderate  size. 

(2)  American  practice. — Rowland  (J.  Amer.  Inst. 
Min.  Eng.,  Mar.,  1916)  gives  detailed  particulars 
of  26  American  furnaces,  all  working  with  the  same 
kind  of  ore,  which  6howed  very  considerable 
differences  in  the  coke  consumption  per  ton  of  pig 
iron  produced,  the  maximum  being  as  high  as 
24  cwt.  of  coke  per  ton  and  the  lowest  15  cwt.  per 
ton,  the  carbon  consumption  being  20  and  12'6  cwt. 
respectively. 

It  is  therefore  not  entirely  a  question  of  the  ore 
used. 

(3)  Charcoal  furnaces. — Lastly,  charcoal  furnaces, 
which  are  generally  of  much  smaller  dimensions 
than  coke  furnaces,  show  figures  of  carbon  con- 
sumption which  are  startlingly  low  as  compared  with 
coke  furnaces.  Bell  in  fact  quotes  one  case  in  which 
the  carbon  consumption  was  as  low  as  10'58  cwt.  per 
ton  of  iron  produced. 

Combustibility  of  colce  as  a  factor  in  reducing  fuel 
consumption. 

The  gap  between  some  of  these  figures  and  the 
19'35  cwt.  which  represents  the  minimum  required 
to  satisfy  Bell's  ideal  is  so  considerable  that  the 
question  arises  whether  some  factor  exists  which 
was  not  taken  into  account  in  Bell's  calculations. 
Howland  definitely  Btates  that  the  only  method  of 
accounting  for  this  considerable  difference  obtained 
in  furnaces  working  the  eame  ore  is  by  assuming 
that  the  combustibility  of  the  coke  was  far  greater 
in  the  more  efficient  furnaces  than  in  the  less 
efficient  ones.  This  opinion  is  confirmed  by  the 
results  obtained  in  charcoal  furnaces.  Charcoal  as 
a  fuel  is  far  more  combustible  than  any  type  of  coke, 
and  it  is  significant  that  the  fuel  consumption  in 
charcoal  furnaces  is  lower  than  anything  which  has 
ever  been  obtained  in  coke  furnaces.  The  interest- 
ing South  Staffordshire  results  quoted  also  tend  in 
the  same  direction. 

Koppers  considered  this  factor  so  important  that 
he  went  so  far  as  to  advocate  the  use  of  coke 
carbonised  at  a  temperature  below  800°  C,  so  as  to 
secure  a  more  combustible  fuel.  (The  authors,  while 
they  agree  with  Koppers  as  to  the  necessity  for  a 
combustible  coke,  do  not  consider  the  method  sug- 
gested of  carbonising  below  800°  C.  to  be  a  satis- 
factory solution.)  Wust,  in  the  discussion  on 
Koppers'  paper,  states  that  "  a  porous  fuel,  or  an 
easj  burning  fuel,  yields  much  better  results  in 
the  blast  furnace  than  a  close-grained  fuel." 

Taking  all  these  results  and  opinions  into  con- 
sideration, it  seems  reasonable  to  believe  that  the 
combustibility  of  a  blast-furnace  fuel  is  of  far 
greater  importance  than  has  been  realised  in  the 
past. 

Bell's  view  on  the  combustibility  of  coke. — "  Com- 
bustibility," however,  plays  a  very  small  part  in 
Bell's  work.  He  does  go  into  the  question  in  con- 
nexion with  the  use  of  soft  coke,  and  quotes  some 
experiments  on  the  subject  made  at  the  works  under 


Vol.  XU.,  Ko.  12]        SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


205  T 


his  control,  as  the  result  of  which  he  conies  to  the 
conclusion  that  soft  coke  was  not  a  suitable  blast 
furnace  fuel,  partly  owing  to  its  friability  and 
partly  owing  to  the  readiness  with  which  it  was 
acted  on  by  carbon  dioxide  with  a  consequent  loss 
both  of  coke  and  of  heat. 

The  authors  can  quite  understand  the  dis- 
advantages resulting  from  the  use  of  a  friable  coke, 
but  they  cannot  agree  that  the  readiness  of  a  fuel 
to  combine  with  carbon  dioxide  is  such  a  serious 
disadvantage.  Charcoal  for  example  is  far  more 
readily  acted  upon  by  carbon  dioxide  than  is  coke, 
the  ratios  being  from  Bell's  experiments:  — 
Action  of  C02  on  charcoal  -f-  action  of  C03 
on  coke  =  13-n2'5.  But  the  results  obtained  with 
charcoal  furnaces  are  so  superior  to  those  with 
coko  furnaces  that  the  detrimental  effect  of  this 
reaction  cannot  bo  very  serious. 

Bell  himself  realised  this,  and  put  forward  the 
ingenious  suggestion  that  as  the  result  of  the 
heating  to  which  it  was  subjected  in  a  blast  furnace 
charcoal  acquired  an  immunity  to  the  action  of  the 
carbon  dioxide.  He  came  to  this  conclusion  as  the 
result  of  experiments  in  which,  after  strong  pre- 
liminary heating,  charcoal  lost  a  good  deal  of  its 
power  to  act  on  carbon  dioxide,  the  ratio  with  coke 
then  becoming: — Power  of  charcoal  after  strongly 
heating  to  combine  with  COaH- power  of  coke  after 
strongly  heating  to  combine  with  CO,  =  l'6^-l'U. 

These  results  were  supported  by  experiments 
afterwards  made  by  Ackerman  of  Stockholm,  and 
also  by  tests  made  by  Thbrner  and  quoted  in  the 
paper  previously  referred  to.  The  authors,  how- 
ever, while  they  cannot  question  the  accuracy  of 
those  experiments,  do  not  consider  that  their 
nature  was  such  as  to  justify  the  conclusion  come 
to  by  Bell  as  to  the  immunity  of  charcoal  in  the 
blast  furnace. 

Under  blast  furnace  conditions  charcoal  is  being 
gradually  heated  to  a  maximum  temperature  by 
superheated  gas.  This  method  was  made  use  of  in 
a  process  developed  by  the  authors  in  conjunction 
with  Dr.  Raper,  of  Leeds  University,  for  the  pro- 
duction of  activated  carbon  for  absorbing  poison 
gas.  This  process,  which  was  worked  on  a  com- 
paratively large  scale,  indicated  that  coke,  charcoal, 
anthracite,  cannel,  and  in  fact  most  fuels,  when 
heated  under  blast  furnace  conditions,  far  from 
acquiring  an  immunity  to  the  action  of  carbon 
dioxide  or  other  gases,  actually  had  their  activity 
considerably  increased,  and  further  that  the  activity 
of  charcoal  relatively  to  coke  is  increased  rather 
than  reduced.  They  are  therefore  unable  to  agree 
with  Bell  in  his  conclusion  with  reference  to  this 
matter. 

They  think  that  the  reaction  C+CO,  =  2CO  does 
proceed  in  the  charcoal  furnace  to  a  considerable 
extent  and  is,  of  course,  accompanied  by  the  absorp- 
tion of  heat,  but  it  absorbs  heat  from  the  portion  of 
the  furnace  where  it  is  least  required,  viz.,  the 
upper  portion,  and  results  in  the  cooling  of  the 
furnace  gases  to  a  temperature  considerably  lower 
than  is  the  case  with  a  coke  furnace.  The  sensible 
heat  carried  away  by  the  furnace  gases  is  thus  much 
reduced,  and  this  factor  counterbalances  to  a  con- 
siderable extent  the  loss  of  heat  resulting  from  the 
chemical  reaction.  To  this  extent  therefore  the 
reaction  is  advantageous,  whilst,  as  will  be  shown 
later,  the  reaction  acts  beneficially  in  other 
respects. 

Hell  on  charcoal  furnaces. — The  factor  of  "  com- 
bustibility "  is  not  then  enlarged  upon  by  Bell 
except  as  just  stated  in  a  very  indirect  way,  and 
the  authors  had  some  difficulty  in  finding  points 
of  contact  in  his  work  by  which  the  views  they  held 


on  blast-furnace  fuels  could  be  reconciled  with  his 
theories. 

The  nearest  approach  was  found  in  his  treatment 
of  the  charcoal  furnace.  A  study  of  his  writings 
on  this  subject  reveals  the  extraordinary  difficulty 
he  found  in  trying  to  reconcile  his  theories  with  the 
results  reported  to  him  by  most  eminent  authorities 
of  work  actually  performed  by  charcoal  furnaces. 

He  was  ultimately  compelled  to  admit  that  there 
was  "  ample  reason  .  .  .  for  believing  that  the 
circumstances  attending  the  combustion  of  charcoal 
differed  from  those  of  coke  "  ("  Principles,"  1894). 

In  view  of  the  importance  of  the  subject  the 
authors  have  collected  together  the  various  pub- 
lished statements  of  Bell  on  this  matter,  and 
summarise  his  opinions  on  the  charcoal  furnace  as 
follows :  — 

(1)  Charcoal  furnaces  of  quite  moderate  dimen- 
sions were  able  to  turn  out  extraordinary  quanti- 
ties of  iron  as  compared  with  coke  furnaces. 

(2)  In  many  cases  charcoal  furnaces  produced  pig 
iron  with  a  carbon  consumption  considerably  lower 
than  would  be  possible  with  coke  furnaces. 

(3)  In  such  cases  the  COa/CO  ratio  was  con- 
siderably greater  than  in  furnaces  using  coke. 

(4)  The  temperature  gradient  was  very  different 
in  the  case  of  a  charcoal  furnace  from  that  in  a  coke 
furnace. 

(5)  Considerable  quantities  of  carbon  dioxide  were 
found  in  all  parts  of  the  charcoal  furnace  from  a 
short  distance  above  the  hearth  upwards. 

It  is  clearly  evident  from  the  work  reported  by 
Bell  that  the  conditions  existing  in  a  charcoal 
furnace  differ  very  materially  from  those  in  a  coke 
furnace,  and  from  his  writings  and  from  those  of 
other  authorities  it  can  be  deduced  that  the  actual 
reactions  differ  very  materially. 

Chemical  relations  taking  place  in  a  charcoal 
furnace. — (1)  It  has  been  proved  that  in  a  coke 
furnace  the  reduction  of  the  ore  is  complete  within 
a  distance  of  one-fifth  of  the  height  of  the  furnace, 
by  the  evolution  of  heat  (Bell,  "  Principles," 
p.  76).  In  a  charcoal  furnace,  however,  reduction 
does  not  commence  until  a  temperature  of  about 
850°  C.  is  attained— generally  half  way  down  the 
furnace.  Reduction  is  not  complete  even  at  the 
boshes  (Percy,  "  Iron  and  Steel,"  p.  457).  The 
upper  portion  of  a  charcoal  furnace  is  a  region 
of  powerful  heat  absorption  and  not  of  heat 
evolution. 

(2)  Reduction  in  a  coke  furnace  results  in  the 
production  of  spongy  iron.  In  a  charcoal  furnace, 
the  experiments  of  Turner  show  that  it  proceeds 
with  the  primary  formation  of  ferrous  oxide  (Percy, 
p.  456),  which  is  subsequently  reduced  to  metallic 
iron  somewhere  in  the  vicinity  of  the  hearth.  Re- 
duction in  a  charcoal  furnace  takes  place  at  a 
relatively  high  temperature,  in  a  coke  furnace  at 
a  comparatively  low  temperature. 

(3)  Bell  has  shown  that  reduction  of  ferric  oxide 
by  carbon  monoxide  commences  at  200°  C,  while 
the  reduction  by  solid  carbon  does  not  commence 
until  a  temperature  of  400°  C.  is  reached  (Bell, 
"  Principles,"  p.  71).  It  is  therefore  evident  that 
in  normal  working  in  large  coke  furnaces  the  ore 
will  be  almost  completely  reduced  by  carbon 
monoxide  before  direct  reduction  by  carbon  begins. 
In  a  charcoal  furnace,  on  the  other  hand,  although 
the  proportion  of  carbon  dioxide  is  greater  than 
in  coke  furnaces,  yet  the  actual  quantity  is  less 
than  would  be  produced  if  carbon  monoxide  were 
the  sole  reducing  agent.  This  is  partly  due  to  the 
action  of  carbon  dioxide  on  carbon  as  already 
described    and   partly   to   the   direct   reduction  by 


206  T 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30, 1922. 


carbon  either  of  the  ferric  or  ferrous  oxide ;  prob- 
ably both  reactions  take  place,  the  first  in  the 
upper  portions  of  the  furnace,  the  second  in  the 
vicinity  of  the  tuyere  (c/.  Turner,  "  Iron  and 
Steel,"  p.  209). 

Course  of  reactions  in  a  furnace  using  a  highly 
combustible  fuel. — In  the  light  of  these  considera- 
tions it  is  now  possible  to  follow  to  some  extent  the 
reactions  that  would  take  place  in  a  blast  furnace 
using  a  highly  combustible  fuel.  These  may  be 
summarised  as  follows:  — 

(1)  The  extreme  combustibility  of  the  fuel  would 
result  in  the  consumption  of  much  more  fuel  per 
unit  of  time  taken  than  is  the  case  with  ordinary 
coke.  This  would  result  in  the  production  of  a 
zone  of  intense  thermal  and  chemical  activity  in 
the  region  of  the  tuyeres.  The  reduced  iron  above 
the  tuyeres  would  consequently  be  rapidly  melted, 
the  molten  iron  running  freely  through  the  inter- 
stices of  the  coke  into  the  hearth. 

(2)  The  rapid  removal  of  the  reduced  metal  from 
the  zone  of  reduction  would  result  in  a  rapid  lower- 
ing of  the  burden  in  the  furnace,  resulting  in  in- 
creased output,  a  reduction  in  temperature  in  the 
upper  portions  of  the  furnace,  and  a  reduction  in 
the  radiation  losses  per  ton  of  output. 

(3)  It  would  bring  about  similar  conditions  to 
those  existing  in  the  charcoal  furnace,  viz.,  high 
CO, /CO  ratio,  lowering  of  zone  of  reduction,  and 
direct  reduction  of  a  portion  of  the  ore  by  carbon 
in  the  vicinity  of  the  hot  zone. 

(4)  Diminution  of  the  zone  in  which  the  oxygen 
is  present,  resulting  in  a  smaller  loss  of  heat'  and 
of  metal. 

(5)  Marked  absorption  of  heat  in  the  upper  region 
of  the  furnace  by  the  action  of  carbon  dioxide  on 
carbon. 

The  authors  have  already  discussed  this  point  and 
have  shown  that  the  heat  loss  produced  by  this  re- 
action is  to  some  extent  counterbalanced  by  a 
reduction  in  the  loss  carried  away  as  sensible  heat 
by  the  furnace  gases.  In  all  probability,  however, 
the  reaction  has  more  far-reaching  consequences 
than  this.  It  is  well  known  that  very  considerable 
carbon  deposition  takes  place  in  the  upper  regions 
of  the  coke  furnace  from  the  dissociation  of  the 
carbon  monoxide  in  the  presence  of  iron.  This 
deposited  carbon  is  carried  down  on  the  iron  to  the 
fusion  zone,  and  the  result  is  that  the  ore,  which 
was  originally  in  the  form  of  lumps,  is  all  dis- 
integrated into  a  black  powder  before  the  coke 
burns  or  the  slag  melts.  This  breaking  up  of  the 
ore  in  itself  slows  down  the  action  of  the  furnace, 
necessitating  an  increased  blast  pressure  with  a 
consequent  increased  consumption  of  fuel.  Further, 
the  permeation  of  the  spongy  iron  with  carbon 
reduces  the  rapidity  with  which  the  iron  melts,  still 
further  reducing  the  rapiditv  with  which  the  burden 
falls. 

In  the  charcoal  furnace,  on  the  other  hand,  there 
is  no  reduction  of  the  ore  until  it  reaches  the  hot 
zone,  so  that  there  is  little  or  no  deposition  of 
carbon.  There  is  therefore  no  breaking  up  of  the 
ore  owing  to  carbon  deposition,  no  physical  inter- 
ference with  the  rapid  passage  of  the  material  in 
the  furnace,  and  no  reduction  in  the  rapidity  of 
fusion  of  the  metal. 

In  a  coke  furnace  of,  say,  80  feet  high,  the  whole 
of  the  reduction  is  completed  in  the  first  30  ft.,  and 
practically  no  further  change  takes  place  for  the 
next  40  ft.,  which  is  apparently  required  to  ensure 
as  great  a  cooling  action  as  possible.  In  the  char- 
coal furnace,  on  the  other  hand,  the  cooling  is  pro- 
duced chemically,  and  the  great  furnace  capacity 
required  by  coke  is  therefore  unnecessary.     With  a 


fuel  of  high  combustibility  and  high  activity  the 
reactions  would  probably  follow  those  of  a  charcoal 
furnace  and  the  total  heat  economies  can  be  sum- 
marised as  follows :  — 

Summary  of  heat-saving  possibilities. 

1.  Higher  production  of  carbon  dioxide  resulting 
in  increased  heat  per  lb.  of  fuel. 

2.  Saving  of  carbon  owing  to  direct  reduction  of 
ore. 

3.  Reduction  in  loss  by  sensible  heat  carried  away 
in  the  gases. 

4.  Reduced  radiation  losses. 

5.  Reduced  fuel  consumption,  resulting  in  less 
limestone,  less  slag,  and  less  thermal  losses. 

Lastly,  there  is  one  feature  that  is  of  importance ; 
that  is  the  possibility  of  a  fuel  of  this  type  to  reduce 
considerably  the  size  of  the  furnace  required. 
A  reduction  in  size  would  offer  very  considerable 
possibilities  of  saving  in  capital  cost  and  thus  go  far 
to  reduce  the  cost  of  production.  Alternatively,  in 
existing  plant  the  output  should  be  considerably 
increased  beyond  the  present  limits. 

Taking  everything  into  consideration,  the  authors 
see  no  reason  why  a  pure  ore  should  not  be  smelted 
with  a  carbon  consumption  of  only  10  cwt.  per  ton. 

A  carbon  consumption  as  low  as  10'5  cwt.  has 
already  been  reported,  and  with  a  fuel  of  activity 
of  the  order  of  that  of  charcoal  and  a  density 
approaching  that  of  anthracite  coal,  there  are 
possibilities  of  even  improving  on  this  figure.  It 
can  b9  readily  demonstrated  that  on  purely 
theoretical  considerations  the  chemical  and  thermal 
requirements  necessary  for  smelting  pure  ore  can 
be  satisfied  with  only  8'6  cwt.  of  carbon  per  ton, 
but  the  authors  do  not  propose  to  enter  into  this 
question  in  the  present  paper. 

Taking  everything  into  consideration,  however, 
they  do  not  think  their  suggestion  that  Cleveland 
ore  may  be  smelted  with  12  cwt.  of  coke  is  such  a 
dream  as  it  may  seem  at  first  sight. 

It  may  be  necessary  to  subject  the  ore  to  a  suit- 
able preliminary  treatment,  it  may  be  necessary  to 
reduce  the  ash  in  the  coke  to  a  figure  considerably 
below  that  of  existing  practice  (and  both  of  these 
proposals  are  now  receiving  very  serious  considera- 
tion), but  even  if  they  are  necessary,  the  economies 
involved  are  so  considerable  as  to  make  this  whole 
question  of  the  structure  of  fuels  a  matter  of 
immediate  and  vital  importance  to  the  iron  and 
steel  industry. 

The  authors  desire  to  acknowledge  the  assistance 
they  have  received  from  Mr.  J.  D.  Speakman,  B.A., 
of  Messrs.  Sutcliffe,  Speakman  and  Co.,  Ltd.,  who 
has  performed  some  of  the  tests  quoted,  and  to  Mr. 
C.  C.  Bevan,  Chief  Chemist  of  the  above  firm,  for 
the  bulk  oif  the  analytical  work  quoted,  and  lastly 
to  Sir  George  Beilby,  Director  of  the  Fuel  Research 
Board.  His  advice  and  assistance  in  the  prepara- 
tion of  this  paper  have  been  invaluable,  and  he  was 
good  enough  to  prepare  the  photographs  with  which 
it  is  illustrated. 

72,  Victoria  Street,  Westminster,  S.W.  1. 

Discussion. 

The  Chairman  referred  to  the  work  done  by  the 
South  Metropolitan  Gas  Co.  on  the  combustibility 
of  the  solid  fuels  referred  to  in  the  paper.  They  had 
found  that  a  highly  pulverised  fuel  burned 
extremely  well.  Their  work  upon  the  manufacture 
of  a  domestic  smokeless  fuel  necessitated  that  the 
materials  be  well  pulverised  to  ensure  adequate 
admixture.  Whilst  investigating  the  degree  of 
combustibility,    by   examining   microscopically   the 


Vol.  XLI.,  No.  12.]         SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


207  T 


ash  produced  by  the  combustion  of  this  pulverised 
fuel,  they  had  found  that  the  amount  of  combustible 
matter  left  in  the  material  was  not,  as  they  had  at 
first  thought,  a  function  of  the  nature  of  the  ash, 
but  depended  largely  upon  the  state  of  division  to 
which  the  material  had  first  been  ground. 

Sir  George  Beilby  said  that  when  the  authors 
had  brought  before  him  their  proposal  to  pulverise 
and  briquette  coal  as  a  preliminary  to  carbonisation 
he  had  been  at  once  struck  by  the  possibilities  they 
were  opening  up.  The  authors  had  said  that  it 
would  bo  possible  to  carbonise  these  briquettes  in 
any  kind  of  retort  or  oven  and  at  any  desired  tem- 
perature. To  those  who  had  spent  years  trying  to 
devise  a  cheap  and  efficient  method  for  the 
carbonisation  of  coal  at  600°  C.  it  would  be  an 
absolute  revelation  if  the  authors'  contention  was 
justified  by  further  experience.  It  brought  them 
much  more  definitely  within  sight  of  a  really 
popular  smokeless  fuel.  The  authors  had  referred 
to  the  question  of  the  ultimate  structure  of  coke. 
He  had  been  spending  a  good  deal  of  his  time  on 
the  subject  for  the  past  three  weeks,  and  the  whole 
subject  was  opening  up  in  such  an  extremely 
interesting  way  miscroscopieally  that  he  hoped  to 
follow  it  up.  He  ventured  to  think  that  a  perfectly 
new  field  was  being  opened  up  in  connexion  with 
the  blast  furnace  industry. 

Professor  H.  E.  Armstrong  said  he  had  had  the 
advantage  of  studying  the  new  fuel  of  the  South 
Metropolitan  Gas  Co.  on  his  own  hearth,  and  of 
realising  that  they  had,  to  some  extent,  taken  away 
the  stigma  from  gas  coke  by  mixing  it  with  a  more 
combustible  material,  thus  making  it  combustible 
itself  in  a  quite  striking  manner.  He  had  had  the 
question  of  the  variation  of  combustibility  before 
him  for  a  considerable  time.  We  had  yet  to  learn 
a  good  deal  as  to  the  relative  behaviours  of 
materials  made  at  different  temperatures,  apart 
from  the  mere  question  of  fineness  of  subdivision. 
What  he  was  most  interested  in  was  the  application 
of  the  new  fuel  to  the  blast  furnace.  Only  a  week 
previously,  at  the  Society  of  Arts,  he  was  threaten- 
ing the  dyestuff  makers  with  the  loss  of  coal  tar, 
not  only  that  provided  by  the  gas  companies — 
which  he  believed  they  would  not  provide  ten  years 
hence — but  metallurgical-coke  tar;  what  had  fallen 
from  the  authors  only  supported  him  in  that 
opinion.  We  had  seriously  to  look  forward  to  the 
time  when  we  should  no  longer  spoil  everything  by 
carbonising  to  the  extreme  temperatures  which  the 
gas  industry  and  the  blast  furnace  people  reached. 

Dr.  E.  W.  Smith  said  the  cell  structure  of  these 
fuels  must  bo  thoroughly  understood  before  the  gas 
industry  could  get  the  best  out  of  its  coal.  If  the 
future  of  the  gas  industry,  as  he  thought  it  would 
be,  was  to  be  in  complete  gasification,  cheap  oxygen 
would  be  necessary,  and  coals  would  have  to  be 
cleaned  to  contain  less  than,  say,  4%  of  ash.  The 
question  of  cell  structure  was  of  supreme  import- 
ance, because  efficient  producer  work  was  only 
possible  by  the  use  of  highly  combustible  fuels. 

Dr.  G.  Weyman  said,  that  so  far  as  he  could  see, 
there  was  no  definite  method  of  measuring  com- 
bustibility. He  did  not  know  whether  the  authors 
had  any  better  method  of  measuring  the  combusti-  ! 
bility  of  these  different  cokes  than  the  somewhat 
crude  method  of  putting  them  into  a  fire  and  watch-  ' 
ing  them  burn.  If  the  subject  was  to  be  developed 
to  a  very  much  greater  extent,  as  undoubtedly  it 
would  have  to  be,  some  more  scientific  method  would 
be  necessary. 

Mr.  W.  H.  Patchell  said  he  thought  that  photo- 
graphs of  sections  of  the  fuels  might  have  illustrated 
more  clearly  wdiat  was  meant  by  continuity  of  the 
cell  structure,  or  inter-connected  cells. 


Sir  George  Beilby  said  the  fuel  was  of  a 
spongy  structure,  in  which  there  had  been  inter- 
penetration  of  the  separate  cells;  one  could  blow 
right  through  it. 

Mr.  Patchell  said  that  if  coal  were  ground  very 
finely,  it  might  be  possible  to  get  uniformity 
without  washing.  He  had  known  a  good  South 
Wales  coking  coal  washed  with  a  view  to  making 
better  coke,  but  after  washing  it  would  not  coke. 
What  was  called  tho  "  mother  of  coal  "  had  been 
washed  out  of  it.  With  regard  to  boilers,  the 
authors  had  said  that  a  maximum  of  134  lb.  of 
water  per  square  foot  of  heating  surface  had  been 
evaporated.  Actually  a  higher  figure  -had  been 
reached.  Tho  other  figures  given  by  the  authors 
were  the  average  over  the  whole  of  the  Lancashire 
boiler.  What  was  done  immediately  over  the  fur- 
nace was  much  greater  than  that,  and  what  was 
done  at  the  back  end  of  the  boiler  was  much  less. 
There  was  difficulty  in  differentiating  between  the 
work  done  at  the  front  and  the  back.  In  some 
French  experiments,  a  locomotive  boiler  had  been 
divided  up,  and  the  proportion  of  the  work  done 
over  the  various  parts  measured ;  it  had  been  found 
that  the  work  was  all  done  adjacent  to  the  furnace 
— in  fact,  from  40  to  50%  of  the  whole  quantity  of 
water  had  been  evaporated  from  less  than  one- 
tenth  of  the   whole  heating  surface. 

Dr.  R.  Lessing  said  that  in  order  to  reduce  the 
ash  in  coal  to  the  minimum  it  was  necessary  to 
reduce  the  size  of  the  particles,  and  reducing  the 
size  in  order  to  get  enhanced  combustibility  pro- 
vided automatically  a  means  of  getting  down  to 
figures  even  smaller  than  the  4%  mentioned  by 
Dr.  Smith.  He  could  see  before  him  an  era  when 
it  would  be  possible  to  distribute  coal  or  possibly 
even  coke  containing  2%,  and  even  slightly  less, 
of  ash.  In  connexion  with  structure,  he  failed  to 
see  that  it  would  be  possible  for  any  coke,  produced 
by  whatever  means  they  might  choose,  not  to  have 
connected  cells.  As  he  viewed  the  cell  structure, 
cells  must  have  been  containers  of  gas  or  vapour 
at  one  period  of  carbonisation,  and  that  gas  must 
have  escaped  from  them  somehow,  so  that  each 
little  cell  must  have  been  blown  up ;  there  must  be 
inter-connexion.  He  would  rather  suggest  the 
difference  was  that  of  the  size  of  cell.  There  were 
in  gas  coke,  and  in  certain  forms  of  oven  coke, 
cells  of  very  large  size,  and  possibly  a  great 
number  of  smaller  ones.  It  appeared  that  by  the 
grinding  up  and  subsequent  briquetting  of  the  coal 
it  was  possible,  by  the  introduction  of  artificial 
channels,  to  avoid  the  large  cell  formation  and  give 
an  open  passage  to  enable  the  gas  to  escape  much 
more  readily  than  otherwise.  There  was  one  known 
fact  in  connexion  with  cell  structure,  and  that  was 
in  the  distinction  between  blast-furnace  coke  and 
foundry  coke.  It  was  well  known  that  foundry 
coke  must  be  a  coke  of  a  denser  structure,  but 
containing  small  cells  of  a  more  uniform  character, 
than  was  needed  in  the  blast-furnace  coke. 

Mr.  Sutcliffe,  in  reply,  said  that  Dr.  Smith  had 
brought  out  a  fact  of  considerable  importance,  viz., 
the  combustibility  of  fuel  of  this  kind  for  use  in  gas 
producers.  There  was  no  doubt  that  this  fuel  had 
great  activity  for  splitting  up  carbon  dioxide,  which 
was  a  particular  feature  necessary  in  gas-producer 
work.  Even  a  very  small  piece  of  this  fuel,  isolated 
and  removed  from  the  fire  and  burning  at  a  com- 
paratively low  temperature,  showed  the  character- 
istic colour  of  carbon  monoxide  burning.  The 
temperature  of  the  coke  was  not  more  than  600°  C. 
He  believed  that  the  combustibility  of  this  material 
at  this  low  temperature,  i.e.,  a  smouldering  tem- 
perature, was  due  to  a  great  extent  to  the  produc- 
tion of  carbon  monoxide  and  its  combustion  on  the 


203  t 


SUTCLIFFE  AND  EVANS.— COMBUSTIBILITY  OF  SOLID  FUELS. 


[June  30, 1922. 


very  considerable  surface  offered.  In  reply  to  Dr. 
V.Yyman,  so  far  as  the  authors  knew,  the  simplest 
means  suggested  for  measuring  combustibility  was 
to  pass  carbon  dioxide  over  the  fuel  at  certain 
temperatures,  and  test  the  conversion  to  mon- 
oxide. No  really  satisfactory  method  was  at  present 
available  for  measuring  combustibility.  The  authors 
had  referred  the  combustion  of  this  coke  to  the  way 
in  which  charcoal  burned  from  the  fact  that  char- 
coal was  recognised  as  easily  combustible.  Charcoal 
would  also  smoulder  slowly,  and  a  fuel  that  burnt 
similarly  to  charcoal  could  be  regarded  as  a  very 
combustible  one.  A  comparison  in  this  way  was 
really  the  only  measure  of  combustibility  they  had 
at  the  moment,  apart  from  actual  combustion  in  a 
grate  or  furnace  as  was  given  in  the  paper.  Com- 
bustion implied,  of  course,  the  6upply  of  the 
necessary  oxygen  which  rendered  the  problem  not 
easy  of  solution.  In  regard  to  the  cells  in  coke,  he 
and  Mr.  Evans  believed  that  when  the  coal  was 
heated  during  the  process  of  carbonisation  the  cells 
were  blown  up  like  bubbles,  and  the  whole  mass  ex- 
panded, leaving  interconnecting  passages.  If  the 
heating  of  the  mass  were  arrested  when  the  fusible 
point  was  just  passed  there  was  no  contraction,  and 
consequently  no  closing  up  of  the  pores.     On  the 


other  hand,  if  the  temperature  was  increased  as  in 
normal  high-temperature  carbonisation,  there  was 
a  contraction  and  closing  up  and  the  sealing  of  the 
pores.  He  believed  that  the  question  of  the  differ- 
ence in  regard  to  beehive  coke  and  the  ordinary 
blast-furnace  coke  was  simply  due  to  that  closing 
up  of  the  pores  after  carbonisation  had  been 
effected.  Beehive  coke  was  produced  more  slowly, 
and  was  cooled  more  slowly,  enabling  more  contrac- 
tion to  take  place.  For  some  foundry  purposes  a 
very  refractory  coke  was  best,  which  would  mean  a 
coke  the  pores  of  which  were  closed ;  hard  beehive 
coke  would  thus  be  more  refractory  than  the  other 
classes  of  coke.  The  authors  were  under  the  im- 
pression that  it  was  at  present  considered  that  the 
blast  furnace  called  for  a  coke  which  was  inactive  to 
carbon  dioxide,  which  meant  that  the  more  closely 
textured  coke  with  the  smaller  cells  would  be  less 
sensitive  to  the  action  of  carbon  dioxide,  and  in 
consequence  it  was  regarded  as  being  a  better  coke 
than  ordinary  coke.  The  authors'  opinion  was 
contrary  to  that.  They  believed  that  a  hard  coke 
which  was  readily  acted  on  by  carbon  dioxide,  so 
that  the  whole  of  the  gases  throughout  the  furnace 
were  saturated  with  carbon,  was  the  best  means 
of  securing  economy  in  the  blast  furnace. 


Vol.   XLI.,  No.  13.] 


TRANSACTIONS 


[July    15.   1922. 


PROCEEDINGS    OF    THE 


Forty-First  Annual  General  Meeting 


Qlasgotv,  July  \th  to  nth,  192: 


The  forty-first  annual  general  meeting  was  held 
at   the    Institute   of    Engineers    and    Shipbuilders, 
Glasgow,  on  July  4,  under  the  Presidency  of  Prof. 
R.  P.  Ruttan. 

The  Lord  Provost  of  Glasgow  (Mr.  Thomas 
Paxton),  in  extending  to  the  Society  a  very  cordial 
welcome  to  Glasgow,  congratulated  the  Society  on 
the  great  progress  it  had  made  since  it  had  last  met 
in  Glasgow  in  1910,  both  in  the  increase  in  its 
membership  and  in  the  contributions  it  had  made  to 
our  knowledge  of  the  scientific  and  practical  appli- 
cations of  chemistry.  It  was  recognised  that  the 
Glasgow  district  owed  much  to  its  chemical  in- 
dustries, and  in  the  interval  that  had  elapsed  since 
the  Society  had  last  come  to  Glasgow  the  City  had 
not  stood  still  in  its  efforts  to  show  its  appreciation 
of  the  furtherance  of  science  in  all  its  aspects.  The 
Corporation  of  Glasgow  was  largely  interested,  in 
a  corporate  capacity,  in  chemical  industry.  They 
had  established  highly  specialised  chemical  sections 
in  connexion  with  the  health,  the  gas,  and  the 
sewage  departments;  he  believed  Glasgow  had  some 
of  the  best  organised  gas  works  in  the  country. 
Alluding  to  the  manner  in  which  the  University  of 
Glasgow  appreciated  the  place  of  chemical  science 
dn  its  organisation,  he  referred  to  the  faet  that 
during  the  past  few  months  the  chemistry  depart- 
ment had  been  very  considerably  strengthened 
by  the  addition  of  new  chairs.  As  showing  the 
interest  the  University  took  in  the  work  of 
the  Society,  he  referred  to  the  presence  of 
Sir  Donald  Macalister,  the  Principal  of  Glasgow 
University,  at  that  meeting.  He  expressed  the 
hope  that  the  result  of  the  meeting  in  Glasgow 
would  be  to  increase  interest  in  the  objects  of  the 
Society.  He  concluded  by  again  extending  a  hearty 
welcome  to  the  Society  on  behalf  of  all  the  citizens 
of  Glasgow. 

The  President  expressed  the  sincere  thanks  of 
the  Society  for  the  welcome  to  Glasgow  that  had 
been  so  courteously  and  heartily  offered.  He  con- 
sidered it  his  good  fortune  that  during  his  term 
of  office  the  meeting  should  have  been  held  in  Glas- 
gow, for  he  knew  of  no  other  city  in  Great  Britain 
better  fitted  for  a  meeting  of  the  Society  of  Chemical 
Industry  than  Glasgow.  Xot  only  had  it  a  most 
interesting  and  historical  environment,  but  it  was  a 
city  known  throughout  the  Empire  as  a  great  seat 
of  chemical  industry,  one  of  the  great  centres  at 
any  rate  of  the  coal  and  the  iron  and  steel 
industries.  It  had  been  a  pioneer  in  the  establish- 
ment of  the  bichromate  industry,  sugar  refining, 
and  the  distillation  of  shale,  and,  above  all,  in  the 
manufacture  of  chemical  plant.  It  was  of  interest  to 
note  that  the  first  great  plant  for  the  distillation  of 
wood  which  had  been  sent  to  America  had  come 
from  Glasgow.  The  process  was  known  as  the 
Scotch  process,  and  it  had  only  been  slightly  modi- 
fied since  that  time  except  in  the  direction  of 
making  the  plant  very  much  larger  and  of  greater 
capacity.  The  Empire  associated  the  City  of  Glas- 
gow with  the  great  pioneers  of  chemistry  and  the 
industry  of  chemistry;  the  names  of  Joseph  Black, 
and  Tennant,  and  later  on  of  Kelvin  and  Ramsay, 
were  indissolubly  connected  with  the  City  of 
Glasgow.  The  influence  of  Kelvin  and  Ramsay  had 
extended  to  the  outermost  quarters  of  the  British 
Empire   and   beyond   that,    throughout   the   whole 


realm  of  civilisation  and  had  advanced  the  develop- 
ment of  science.  Therefore,  the  citizens  of  Glasgow- 
might  well  be  proud  of  their  city,  which  had  taken 
such  a  very  prominent  part  in  the  past  in  chemistry, 
and  to-day  was  playing  such  a  very  important  part 
in  chemical  industry.  He  again  thanked  the  Lord 
Provost  for  his  very  cordial  welcome. 

The  Lord  Provost  having  briefly  expressed  his 
thanks,  the  President  took  the  chair. 

Messrs.  D.  A.  McCallum  and  J.  McGregor  were 
appointed  scrutineers  for  the  ballot,  which  was 
declared  closed. 

The  minutes  of  the  fortieth  Annual  General 
Meeting,  held  in  Montreal,  were  taken  as  read. 

Report  of  Council. 

During  the  past  year  the  Council  has  held  12 
Ordinary  Meetings,  and  the  following  Committee 
Meetings  have  been  held  :  — Finance  4  ;  Publications 
25;  and  General  Purposes  8. 

The  number  of  members  on  the  Register  at 
July  4,  1922,  was  5270,  as  compared  with  5654 
last  year. 

Since  the  last  Annual  Meeting  260  members  have 
been  elected,  22  former  members  have  been  restored 
to  membership,  and  the  losses  have  been  665. 

The  Council  regrets  to  record  the  deaths  of  37 
members  (of  whom  10  were  original  members). — 
J.  R.  Applevard,  H.  J.  Barnes,  Dr.  Chas.  Basker- 
ville,  E.  J.  Bevan,  Dr.  J.  F.  Bottomley,  T.  Lvnton 
Briggs,  Wm.  C.  Carnell,  John  V.  Casey,  W.  B. 
Cogswell,  George  H.  Cov,  W.  S.  Curphey,  Fred 
P.  Dewey,  T.  W.  Dukes,  Charles  Estcourt,  F.  L. 
Gallup,  W.  B.  Giles,  Gustave  Gillman,  George 
Golding,  W.  Gowland,  E.  W.  T.  Jones,  W.  Arthur 
Kershaw,  Dr.  E.  J.  Lederle,  James  Lyle,  John  S. 
Macarthur,  Dr.  Andrew  McWilliam,  E.  Kennard 
Mitting,  Dr.  F.  W.  Passmore,  Arthur  F.  Price, 
A.  E.  Sadler,  Irwin  J.  Smith,  John  W.  Smith,  J. 
Spiller,  Frederick  C.  Weld,  R,  Lloyd  Whiteley, 
Frank  Wilson,  Louis  S.  Winsloe,  John  W.  R. 
Youll. 

Mr.  John  Spiller  was  an  Honorary  Life  Member 
of  the  Society. 

Sir  William  J.  Pope,  F.R.S.,  was  appointed 
Chairman  of  the  Council  during  Prof.  Ruttan's 
year  of  office  as  President. 

Professor  R.  F.  Ruttan  retires  from  the  office  of 
President  of  the  Society  at  the  close  of  the  Annual 
General  Meeting,  and  the  Council  has  nominated 
Dr.  E.  Frankland  Armstrong,  F.R.S.,  of  Warring- 
ton, as  his  successor  in  office. 

Mr.  E.  V.  Evans  and  Prof.  Henry  Louis  have 
been  re-elected  Hon.  Treasurer  and  Hon.  Foreign 
Secretary  respectively. 

Professor  Ruttan  has  been  nominated  a  Vice- 
President  and  to  the  other  vacancies  caused  by  the 
retirement  of  four  Vice-Presidents  Dr.  H.  Levin- 
stein, Prof.  G.  T.  Morgan,  F.R.S.,  and  Mr.  S.  J. 
Pentecost  have  been  nominated. 

The  Council  accepted  with  deep  regret  the  resig- 
nation, owing  to  illness,  of  Dr.  C.  A.  Keane  as  an 
Ordinary  Member  of  Council,  and  chairman  of  the 
Publications  Committee. 

Three  ordinary  members  retire  from  the  Council, 
and  to  fill  the  vacancies  thus  created,  and  that 
caused  by  the  resignation  of  Dr.  Keane,  six  nomina- 
tions have  been  received.  A  ballot  will  therefore 
be  taken. 


210t 


ANNUAL   MEETING. 


[July  15,  1922 


Mr.  W.  T.  H.  Williamson  has  been  appointed 
Hon.  Secretary  and  Treasurer  of  the  Edinburgh 
Section  in  place  of  Dr.  Lauder  resigned. 

The  following  Chairmen  of  Local  Sections  retire  : 
Mr.  S.  R.  Church  (American),  Dr.  H.  W.  Browns- 
don  (Birmingham),  Mr.  Noble  W.  Pirrie  (Canadian 
Pacific),  Mr.  J.  H.  Young  (Glasgow),  Mr.  H.  W. 
Matheson  (Montreal),  Dr.  J.  H.  Paterson  (New- 
castle), Mr.  J.  H.  Dunford  (Nottingham),  and  Mr. 
S.  H.  Davies  (Yorkshire).  The  following  have  been 
elected  to  succeed  them  respectively :  —Professor 
R.  H.  McKee,  Dr.  E.  B.  Maxted,  Professor  E.  H. 
Archibald,  Mr.  W.  E.  Moodie,  Dr.  A.  R.  M. 
MacLean,  Mr.  A.  Trobridge,  Mr.  S.  H.  Burford, 
and  Dr.  L.  L.  Lloyd. 

The  following  Honorary  Secretaries  of  Local 
Sections  retire :  — Mr.  P.  R.  O'Shaughnessy  (Birm- 
ingham), and  Mr.  W.  P.  Dickson  (Montreal).  The 
following  have  been  elected  to  succeed  them  respec- 
tively : — Mr.  George  King  and  Mr.  W.  B.  Woodland. 

The  Council  desires  to  express  its  cordial  thanks 
to  the  retiring  officers  for  their  services  to  the 
Society. 

The  Council  has  approved  proposals  from  the 
Edinburgh  and  Nottingham  Sections  to  admit 
"  Associates  "  to  meetings  of  the  Sections  at  a 
nominal  annual  subscription,  on  the  same  con- 
ditions as  were  laid  down  in  the  case  of  the  Glasgow 
Section  (see  Report  of  Council  1921). 

A  new  Section  of  the  Society  has  been  formed  for 
South  Wales  with  headquarters  at  Cardiff.  Meet- 
ings will  be  held  alternately  at  Swansea  and  Cardiff 
and  it  is  hoped  that  a  considerable  accession  of 
new  members  to  the  Society  will  result.  The  area 
covered  by  the  new  Section  has  hitherto  formed 
part  of  the  Bristol  and  South  Wales  Section,  which 
in  future  will  be  known  as  the  Bristol  Section. 

Reference  was  made  in  the  last  Report  of  Council 
to  a  tentative  proposal  which  had  been  submitted  to 
the  Council  for  the  formation  of  another  Subject 
Group.     This  matter  is  still  under  discussion. 

The  Annual  Meeting  of  the  Society  for  1921, 
which  was  held  in  Montreal,  was  followed  by  visits 
to  the  Sections  at  Shawinigan  Falls,  Ottawa, 
Toronto  and  New  York,  as  well  as  to  other  places 
of  interest  in  Canada  and  the  State  of  New  York. 
A  full  account  of  the  trip  and  the  various  functions 
will  be  found  in  the  Journal. 

The  experiment  which  was  made  in  October  of 
holding  a  Dinner  of  the  Society  in  London  was  most 
successful,  and  it  is  proposed  to  hold  a  similar 
function  in  London  each  year  that  the  Annual 
Meeting  takes  place  in  the  Provinces  or  in  one  of 
the  Overseas  Sections. 

With  regard  to  the  proposal  of  the  Chemical 
Society  that  papers  intended  for  its  Transactions 
might  be  read  at  provincial  Sections  of  the  Society 
of  Chemical  Industry,  and  that  Fellows  of  the 
Chemical  Society  resident  in  the  locality  be  invited 
to  such  meetings,  the  Committees  of  the  Sections 
have  now  expressed  their  cordial  approval  of  the 
scheme,  and  a  working  arrangement  has  been 
entered  into  between  the  two  Societies  for  the 
purpose  of  giving  effect  to  it. 

The  audited.  Balance  Sheet  and  Statement  of 
income  and  Expenditure  for  the  year  ending 
December  31,  1921,  which  have  already  appeared  in 
the  Journal  for  June  30,  will  be  kid  before  the 
Annual  General  Meeting. 

The  audited  accounts  of  the  Messel  Fund  have 
also  appeared  in  the  Journal  for  June  30  and  will 
be  laid  before  the  Annual  General  Meeting. 

The  whole  of  the  income  from  this  Fund  has  been 
invested— partly  in  5%  War  Loan  and  partly  in 
■  3i%  Conversion  Loan,  and  there  is  a  small  balance 
on  deposit  account  with  the  Society's  Bankers. 

Dr.  H.  E.  Armstrong,  F.R.S.,  is  to  deliver  the 
first  Messel  Memorial  Lecture  in  Glasgow  on  July  4 
on    the   occasion    of    the    Annual    Meeting   of    the 


Society,  and  the  first  award  of  the  Messel  Medal 
will  be  made  to  him  on  that  occasion. 

The  Council  decided  not  to  re-elect  the  large 
number  of  Committees  which  have  been  in  existence 
for  the  past  three  years,  but  has  continued  the 
Publications  Committee  and  the  General  Purposes 
Committee.  The  membership  of  these  Committees 
is  given  in  the  Journal,  1922,  page  5  R. 

Mr.  E.  V.  Evans  has  been  elected  chairman  of 
the  Publications  Committee,  until  the  end  of  the 
Annual  Meeting,  1922,  in  succession  to  Dr.  C.  A. 
Keane  resigned.  Dr.  W.  R.  Ormandy  resigned  his 
membership  of  the  Committee. 

The  Journal  for  1921  contained  1698  pages  of 
text  (Review  480,  Transactions  310,  Abstracts  908) 
compared  with  1636  pages  in  1920.  Advertise- 
ments:—1160  pages  in  1921,  1246  in  1920. 

Volume  VI.  of  the  Society's  Annual  Reports  of 
the  Progress  of  Applied  Chemistry  has  been 
published  this  year. 

The  Council  approved  the  establishment  of  a 
General  Council  to  look  after  the  interests  of  the 
Society  as  a  whole  in  Canada  and  to  deal  with 
questions  which  may  arise  with  regard  to  Federal 
and  Provincial  Legislation.  The  names  of  the 
members  of  this  Committee  are  given  in  the 
Journal,  1922,  page  94  R. 

A  second  joint  meeting  of  the  Society  and  of  the 
Institution  of  Mechanical  Engineers  was  held  on 
January  6,  1922,  when  a  paper  was  read  by  Mr. 
G.  M.  'Gill,  Chief  Engineer  of  the  South  Metro- 
politan Gas  Co.  (see  Journal,  1922,  p.  5  r). 

The  new  scheme  for  the  Latham  Research  Fellow- 
ship, proposed  by  Mr.  C.  F.  Cross,  F.R.S.,  and 
approved  by  the  Council,  is  now  in  operation.  Full 
particulars  will  be  found  in  the  Journal,  1921, 
page  384  r. 

The  Council  has  renewed  for  1922  its  donation 
towards  the  expenses  incurred  in  connexion  with 
the  extension  scheme  of  the  Chemical  Society's 
Library. 

In  response  to  the  application  which  the  Council 
made  to  the  Government  through  the  Conjoint 
Board  of  Scientific  Societies  for  financial  assistance 
in  defraying  the  cost  of  a  Collective  Index  to  the 
Journal'for  the  years  1906  to  1920  the  Chancellor 
of  the  Exchequer  regretted  that  in  view  of  the 
paramount  importance  of  reducing  public  expen- 
diture he  is  unable  to  contemplate  any  increase  of 
existing  grants.  The  Committee  of  the  Conjoint 
Board  considered  that  in  the  circumstances  it  would 
be  useless  to  press  the  matter  further,  and  the 
Council  concurred  in  this  view. 

A  list  of  the  Society's  representatives  on  outside 
bodies  is  given  in  the  Journal,  1922,  page  5  R. 
Owing  to  the  resignation  of  Dr.  C.  A.  Keane,  Mr. 
W.  J.  TJ.  Woolcock,  M.P.,  has  been  elected  to  the 
Federal  Council  for  Pure  and  Applied  Chemistry 
and  Mr.  Julian  L.  Baker  to  the  Conjoint  Board  of 
Scientific  Societies. 

Mr.  Julian  L.  Baker  and  Mr.  F.  H.  Carr  were 
appointed  representatives  upon  a  Standing  Com- 
mittee to  be  set  up  by  the  National  Physical 
Laboratory  to  deal  with  the  standardisation  of 
scientific  glassware  and  kindred  problems. 

The  President  of  the  Society  was  invited  to  join 
the  General  Committee  of  the  British  Empire 
Exhibition,  1924. 

Mr.  E.  V.  Evans  and  Mr.  R.  H.  Clayton  repre- 
sented the  Society  on  a  deputation  which  was 
received  by  Sir  Alfred  Mond,  Bart.,  Minister  of 
Health,  oii  March  20,  to  urge  the  Government  to 
take  immediate  steps  to  deal  with  the  subject  of 
Smoke  Abatement. 

The  Council  of  the  Association  of  Britisu 
Chemical  Manufacturers  has  expressed  its  willing- 
ness to  co-operate  with  the  Council  of  the  Society 
in  a  scheme  of  chemical  propaganda  in  connexion 
with  the  British  Empire  Exhibition,  1924. 


Vol.  XLI.,  No.  13.] 


ANNUAL   MEETING. 


211T 


Mb.  J.  H.  Young  moved  the  adoption  of  the 
report. 

Mr.  E.  Grant  Hooper,  in  seconding,  said  that  he 
was  sure  they  would  all  wish  to  welcome  their  Presi- 
dent from  Canada.  They  might  congratulate  them- 
selves that  the  report  of  the  Council  represent!  d. 
on  the  whole,  distinct  progress — not,  he  was  sorry  to 
say,  in  the  matter  of  members,  because  they  had  to 
lament  a  slight  diminution  in  the  number;  but  there 
had  been  an  increase  in  the  number  of  Sections,  and 
he  thought  they  might  reasonably  look  forward  to 
an  increase  in  the  membership  as  a  result.  The 
members  owed  a  great  debt  of  gratitude  to  the 
Council  for  the  work  it  had  done  during  the  past 
year,  and  of  which  the  report  so  eloquently  spoke. 

The  report  was  unanimously  adopted. 

Hox.  Treasurer's  Report. 

The  Hon.  Treasurer,  Mr.  E.  V.  Evans,  said  that 
he  was  pleased  to  be  able  to  report  that  the  balance- 
sheet  for  1921  showed  that  the  Society's  financial 
position  had  continued  to  improve,  and  it  might 
be  truly  claimed  that  there  was  an  excess  of  income 
over  expenditure  of  £3747  116.  In  addition  to  that 
the  Society's  stocks  had  appreciated  in  value ; 
whereas  the  depreciation  from  cost  price  reported 
last  year  had  been  36"5%,  this  had  been  reduced  to 
29"8%  in  December  last;  this  difference  represented 
an  increase  in  the  valuation  of  the  stocks  to  the 
extent  of  £1214  18s.  That  was  a  very  satisfactory 
state  of  affairs,  but  he  asked  the  members  not  to 
become  too  optimistic  from  this  general  survey. 
The  income  of  the  Society  was  not  a  stabilised  one, 
and  examination  of  the  balance  sheet  would  show 
the  important  contribution  made  last  year  by  the 
Advertising  Department  to  the  revenue  of  the 
Society.  In  fact,  whereas  the  expenses  of  the 
Society  (which  related  mainly  to  the  costs  of  pro- 
ducing the  Journal  and  to  Sectional  expenses) 
amounted  to  approximately  £5  7s.  per  member,  this 
figure  was  reduced  to  £2  16s.  as  the  result  of  the 
revenue  received  from  Advertisements.  These 
figures  illustrated  the  important  part  played  by  the 
Advertising  Department,  and  he  was  sorry  to  have 
to  report  that  owing  to  the  slump  in  trade,  which 
appeared  to  have  been  accentuated  in  the  case  of 
the  chemical  trade,  it  was  not  now  so  easy  to 
secure  advertisements  as  had  been  the  case  last 
year.  This  would  without  doubt  affect  adversely 
the  finances  of  the  current  year,  and  it  was  for 
that  reason  that  it  was  necessary  to  curb  undue 
optimism. 

Since  the  last  Annual  Meeting  the  Council  had 
given  considerable  attention  to  certain  ideas  and 
schemes  which  had  been  formulated  with  a  view 
of  extending  the  activities  of  the  Society  and  of 
increasing  its  usefulness  to  members.  Although 
expenditure  had  been  increased  in  certain  direc- 
tions, none  of  these  schemes  had  yet  been  put  into 
operation  owing  to  the  fact  that  the  Council  had 
strictly  adhered  to  its  decision  to  re-establish  the 
financial  position  of  the  Society  before  incurring 
further  responsibilities.  It  was  owing  to  the  con- 
tinuance of  the  trade  slump  that  the  Council  had 
to  continue  in  a  state  of  strict  economy,  its  main 
object  being  to  strive  to  attain  a  sound  financial 
backing  in  order  that  the  activities  of  the  Society 
might  be  extended  beyond  those  of  to-day. 

In  regard  to  the  Messel  Fund,  it  would  be  seen 
that  not  only  had  this  been  kept  intact  during  the 
first  year,  but  all  dividends  had  been  re-invested. 
The  initial  expenditure  involved  in  the  creation  of 
the  Messel  Medal  represented  the  first  outlay  under 
this  Fund,  and  he  felt  confident  that  the  members 
of  the  Society  would  be  in  full  accord  with  the  steps 
taken  by  the  Council  to  perpetuate  the  memory 
of  Dr.  Messel. 

In  conclusion  he  expressed  his  indebtedness  to  the 
Council  for   the  detailed  consideration   and  advice 


that  they  had  given  in  matters  relating  to  the 
finance  of  the  Society. 

Dr.  Stephen  Miall,  moving  the  adoption  of  the 
'  accounts,  said  the  satisfactory  position  that  had 
been  reported  was  in  no  small  measure  due  to  the 
great  care  and  trouble  and  immense  amount  of  time 
which  the  Hon.  Treasurer  had  devoted  to  the  well- 
being  of  the  Society.  He  had  watched  over  the 
expenditure  in  a  most  exemplary  manner. 

Mr.  F.  H.  Carr  seconded  the  motion  and 
supported  all  that  Dr.  Miall  had  said  with  regard  to 
the  work  of  the  Hon.  Treasurer.  Two  years  ago, 
the  duty  of  taking  on  the  treasurership  of  the 
Society  had  been  by  no  means  an  easy  task.  Mr. 
Evans,  however,  had  accepted  that  task  and  had 
carried  it  out  in  a  remarkably  successful  manner, 
and  his  work  had  been  a  really  great  achievement 
during  two  such  troublous  years  as  those  which  had 
just  passed. 

The  financial  statement  was  then  adopted. 

President's  Address. 

The  President  then  delivered  his  address,  as 
follows :  — 

By  selecting  a  Canadian  chemist  as  your  Presi- 
dent for  this  year,  you  have  conferred  upon  Canada 
the  highest  honour  in  your  gift.  On  behalf,  then, 
of  the  Canadian  Sections  of  the  Society  and  myself, 
I  wish  to  express  my  deep  appreciation  of  this 
recognition. 

The  year  1921  was  recognised  in  Canada  as 
a  most  inconvenient  one  for  the  British  chemists  to 
hold  an  annual  meeting  across  the  Atlantic,  as  it 
was  a  period  of  great  anxiety  to  all  interested  in 
chemical  industry.  Difficulties  in  connexion  with 
conditions  of  foreign  trade,  labour  and  transporta- 
tion were  calling  for  the  closest  attention,  and  new 
legislation  of  vital  interest  to  the  chemical  indus- 
tries was  pending  or  being  applied.  We  appreciated, 
therefore,  all  the  more  the  sacrifices  made  in  the 
interests  of  chemistry  by  those  who  did  us  the 
honour  of  accepting  our  invitation  to  hold  the 
Annual  Meeting  of  the  Society  in  Canada  in  that 
year. 

Members  of  the  Society  in  the  British  Isles,  not 
in  intimate  touch  with  conditions  in  America,  can 
scarcely  understand  how  far-reaching  was  the  influ- 
ence of  that  meeting  in  Montreal  and  the  congress 
of  chemists  in  New  York  to  which  it  gave  rise.  It 
has  not  only  greatly  strengthened  the  Society  itself, 
but  it  has  done  a  greater  service  by  stimulating 
public  interest  in  the  science  of  chemistry  and  its 
applications  throughout  Canada  and  the  United 
States.  The  Society  fully  realised  its  objective  by 
bringing  into  closer  relations  with  one  another  the 
far-flung  Sections  of  the  North  American  continent. 
At  this  meeting  was  organised  the  Canadian 
Executive  Committee,  composed  of  the  Chairman  of 
the  various  Canadian  Sections,  which  will  act  as  a 
medium  of  communication  with  the  parent  Society 
and  organise  annual  meetings  of  all  the  Sections  in 
the  Dominion.  The  first  of  these  "  all-Canada  " 
meetings  was  held  recently  in  Ottawa,  and  was 
attended  by  more  than  one  hundred  chemists.  It 
was  fe)t  that  some  such  nucleus,  around  which  to 
crystallise  and  develop,  was  necessary  for  Sections 
extending  over  a  distance  of  more  than  three  thou- 
sand miles. 

The  Annual  Meeting  of  the  Society  in  Montreal 
also  served  as  a  means  of  recognising  and  promoting 
the  interest  shown  by  the  Canadian  Sections  in  the 
parent  Society,  and,  by  bringing  the  officers  and 
members  of  the  Canadian  Sections  into  personal 
relations  with  the  executive  of  the  Society,  went 
far  towards  harmonising  and  unifying  the  aims  and 
ideals  of  the  new  and  scattered  Canadian  Sections 
with  those  of  the  older  ones  in  England  and  Scot- 
land. This  meeting  further  served  to  accentuate 
the   imperial   character    of   the   Society:    to   bring 

B 


212t 


ANNUAL    MEETING. 


[July  15,  1922. 


home  to  chemists  both  in  England  and  Canada  the 
fact  that  this  great  Society  has  for  its  object  the 
advancement  of  chemistry  and  its  application  to 
industries  beyond  the  confines  of.  the  British  Isles. 

It  is  to  be  hoped  that  as  a  result  of  this  overseas 
meeting  not  only,  with  the  revival  of  industry,  will 
the  number  of  Sections  in  Canada  be  increased  and 
each  Section  strengthened,  but  that  in  the  near 
future  Sections  will  be  established  wherever  centres 
of  industry  exist  throughout  the  whole  Empire. 

Incidentally,  the  voyage  to  Canada  of  the  repre- 
sentatives of  the  Society  played  an  important  part 
in  the  great  movement  in  progress  last  year 
for  consolidating  and  strengthening  the  various 
interests  of  the  British  Commonwealth.  During  the 
year  a  congress  of  Premiers  and  other  representa- 
tives of  the  Dominion  was  held  in  London ;  uni- 
versity and  public  school  teachers  from  almost  every 
part  of  the  Empire  met  in  Canada  during  July  ;  and 
at  the  same  time  a  congress  of  the  Universities  of 
the  Empire  was  held  in  the  several  great  universi- 
ties of  England  and  Scotland.  This  desire  for  unity 
and  co-operation  among  the  countries  in  the  British 
Empire  is  that  which  makes  it  a  real  and  substantial 
League  of  Nations. 

The  large  and  representative  Congress  of  Chemists 
held  in  New  York  was  the  direct  outcome  of  the  visit 
of  the  Society  to  Canada.  British  and  Canadian 
members  of  the  Society  were  the  guests  of  our 
American  Section,  who  arranged  for  a  meeting  of 
the  American  Chemical  Society  during  the  same 
week.  This  Congress,  following  the  Canadian  meet- 
ing, directed  public  attention  to  the  international 
character  of  the  Society.  No  scientific  meeting  in 
America  has  received  wider  publicity  or  created 
greater  interest  among  the  chemists,  in  the  in- 
dustries, and  among  the  people  at  large.  Our 
common  interest  in  chemical  science  and  the  oppor- 
tunities of  informal  meetings  between  ourselves  and 
the  chemists  of  the  United  States  undoubtedly 
served  to  add  another  bond  to  those  of  a  common 
national  origin  and  a  common  language  to  link 
England  more  closely  with  the  Anglo-Saxons  of  the 
American  continent. 

It  will  then  be  seen  that,  although  you  accepted 
our  invitation  to  cross  the  Atlantic  for  your  Annual 
Meeting  last  year  at  considerable  inconvenience  to 
yourselves,  the  Council  was  fully  justified  in  the 
course  it  took.  The  results,  in  enhancing  the 
prestige  of  the  Society,  in  consolidating  its  mem- 
bership, and  in  creating  a  new  interest  in  chemistry 
among  those  in  America  who  should  make  use  of  its 
applications,  will  prove  no  small  satisfaction  to  the 
executive  of  our  Society. 

I  have  ventured  to  select  as  the  chief  topic  of  my 
address  some  aspects  of  the  war-worn  subject  of 
scientific  and  industrial  research.  It  must  not  be 
forgotten  that  the  most  obvious  of  truths  are  those 
which  require  the  most  frequently  to  be  recalled. 
They  are  so  obvious  that  they  cease  to  attract 
attention.  It  is  to  be  hoped,  therefore,  that  the 
active  propaganda  carried  on  some  years  ago  to 
arouse  the  general  public  to  a  realisation  of  the 
national  importance  of  science  and  scientific  educa- 
tion will  not  be  allowed  to  fade  into  a  painless  death. 
I  propose  to  discuss  the  present  general  trend  of 
the  development  of  scientific  and  industrial  research, 
to  refer  to  international  organisation  of  science,  to 
trace  in  outline  the  post-war  efforts  of  the  overseas 
Dominions  to  apply  scientific  methods  to  their 
industrial  and  economic  problems,  and,  based  upon 
our  experiences  of  the  last  five  years,  to  draw  some 
tentative  conclusions  regarding  the  relation  of  the 
State  to  this  vital  problem. 

"We  are  living  in  the  age  of  a  second  renaissance, 
one  which  will  leave  an  impression  on  the  civilised 
world  as  indelible  as  that  left  by  the  great  revival 
of  literature  and  art  in  the  fifteenth  and  sixteenth 
centuries.  It  is  a  renaissance  in  which  the  atten- 
tion  of  the   civilised  world    is   concentrated    upon 


science,  its  outstanding  achievements  and  its  power 
to  enhance  our  intellectual  pleasure  and  our 
material  welfare. 

At  the  close  of  the  war  the  world  was  ringing 
with  appreciation  of  what  science  had  achieved  in 
the  great  struggle.  How  best  to  develop  this  great 
power  and  use  its  forces  in  times  of  peace  became 
an  international,  as  well  as  a  national,  problem  of 
the  first  magnitude.  So  profoundly  was  the  world 
impressed  by  the  efficiency  of  co-operation  and 
organisation  in  the  conduct  of  the  war,  that  extra- 
ordinary emphasis  was  laid  on  these  as  guiding 
principles  in  all  activities  of  national  life. 

The  general  recognition  of  the  value  of  co-opera- 
tion may  be  truthfully  described  as  the  best  positive 
product  of  the  great  war.  Its  impression  on  the 
organisation  of  science  has  been  a  permanent  one. 
It  has  also  penetrated  and  influenced  the  political, 
industrial,  and  scientific  activities  of  all  the  allied 
nations.  It  has  given  birth  to  what  has  been  called 
"  Internationalism,"  the  moving  spring  of  which 
is  the  idea  of  a  world-wide  community  of  the  human 
race  and  a  desire  for  its  realisation.  This  has  taken 
definite  form  in  the  League  of  Nations — an  effort  at 
world-wide  political  and  national  co-operation — a 
unification  of  the  whole  human  race  into  a  single 
organised  group  or  community.  This  high  ideal  of 
the  internationalist  may  he  difficult  of  realisation, 
as  it  comes  into  almost  fatal  collision  with  the 
principle  of  nationality,  of  patriotism,  everywhere 
active  and  powerful. 

Among  the  international  movements  resulting 
from  this  appreciation,  the  beginning  of  an 
attempt  to  organise  the  world  of  science  is  of  con- 
spicuous interest.  This  has  taken  the  form  of  an 
International  Research  Council  established  in  1919 
at  Brussels.  The  second  meeting  of  this  organisa- 
tion, which  embodies  the  concept  of  international 
co-operation  in  science,  has  been  called  for  the  end 
of  this  month  in  Brussels. 

This  International  Research  Council  is  composed 
of  delegates  nominated  by  the  representative  coun- 
cils and  scientific  national  academies  of  the  Allies 
and  of  the  neutral  nations.  It  has  definitely 
refused  to  admit  the  nationalities  which  formed  the 
central  Powers  during  the  war.  Affiliated  with  this 
Council  are  a  number  of  unions  representing  all 
branches  of  science,  among  which  the  International 
Union  of  Pure  and  Applied  Chemistry  is  one  of  the 
most  active,  influential,  and  thoroughly  organised. 
The  constitution  of  the  Council  is  drafted  so  care- 
fully that  there  is  no  clashing  of  interests  or  in- 
fringements on  the  rights  of  the  older  international 
societies  existing  before  the  war.  The  Council, 
with  Dr.  Schuster  of  London  as  its  Honorary  Secre- 
tary, has  been  launched  with  the  active  sympathy 
and  loyalty  of  nearly  all  the  national  scientific 
associations  among  the  allies  and  neutral  nations. 
It  is  obviously  the  beginning  of  a  human  enterprise 
much  vaster  than  is  indicated  by  its  present  form. 
It  has  been  carried  to  its  present  stage  of  develop- 
ment by  the  momentum  imparted  to  scientific  in- 
vestigation by  the  activities  of  the  war,  but  it  is  as 
yet  little  more  than  a  nucleus  around  which  may 
gather  the  scientific  organisations  of  the  neutral 
and  allied  countries  with  their  various  unions.  It 
has  great  possibilities  in  future  years. 

The  ultimate  goal  at  which  the  Council  seems  to 
aim  would  make  it  a  veritable  parliament  of 
science  composed  of  delegates  from  all  countries  and 
of  affiliated  unions.  It  would  become  the  express 
image  of  the  science  of  the  world.  At  its  triennial 
sessions  would  be  enacted  legislation  governing  the 
formation  of  new  unions  of  scientists,  as  well  as 
plana  for  the  inter-relation  and  development  of  in- 
ternational unions  already  in  existence.  The  unions 
in  turn,  meeting  at  more  frequent  intervals,  would 
be  made  up  of  representatives  of  organisations 
of  special  sciences  from  every  country  of  the  civil- 
ised world.     They  would  thus  serve  to  develop  and 


Vol.  XLI.,  No.  13.; 


ANNUAL    MEETING. 


213t 


integrate  for  international  purposes  investigations 
carried  out  in  different  parts  of  the  world,  as  well 
as  to  stimulate  research  and  provide  for  scientific 
discussion  and  publication.  Behind  these  Inter- 
national Unions  stand,  in  every  nation,  the 
National  Research  Councils,  National  Departments 
or  Advisory  Councils  of  Research,  whose  activities 
are  devoted  to  the  national  development  of  science 
and  its  applications.  These  National  Councils  in 
turn  have  as  subsidiary  organisations  the  various 
scientific  societies,  such  as  physical,  astronomical, 
and  chemical  societies,  the  scientific  departments  of 
the  universities,  of  the  government  and  research 
institutes.  A  world-wide  scientific  effort  would 
become  organised,  of  which  co-operation  would  be 
the  nervous  system  carrying  afferent  and  efferent 
impulses  in  all  directions  from  the  centre  to  the 
periphery. 

Such  a  world-wide  organisation  of  pure  science  is 
a  type  of  internationalism  strictly  democratic  and 
free  from  the  semblance  of  super-national  authority, 
which  is  one  of  the  sources  of  danger  in  the  League 
of  Nations.  It  is  a  type  of  community  interest 
which  seems  especially  adapted  to  world-wide  de- 
velopment, and  if  so  developed  should  bring  us 
nearer  to  the  unification  of  mankind  than  any  form 
of  internationalism  hitherto  suggested.  In  pure 
science,  communism  is  a  natural  law;  race,  religion, 
nationality  should  count  for  nothing.  The  under- 
lying principle  here  is  the  universalism  of  science 
and  the  catholicity  of  truth.  The  plan  merits 
hearty  recognition  among  the  nations,  it  is  full  of 
possibilities. 

The  successful  development  of  science  in  each 
nation  taking  part  in  this  international  movement 
lies  at  the  very  foundation  of  the  edifice  designed 
by  the  International  Research  Council.  As  ob- 
served by  Sir  Ronald  Ross,  it  should  be  regarded  as 
a  duty  by  every  country  to  participate  in  the  dis- 
<  u\  .  ries  of  the  laws  of  nature,  and  thus  to  enhance 
the  powers  of  man  and  widen  the  range  of  his  vision. 
This  is  a  national  duty  to  humanity  and  should  be 
adequately  supported  by  national  endowment. 
"  The  cultivation  of  pure  science  yields  results  which 
are  more  lasting  than  the  Pyramids,  of  world-wide 
necessity  and  which  increase  in  value  with  every 
generation  of  workers." 

While  we  should  regard  the  support  and  develop- 
ment of  fundamental  science  as  a  national  obliga- 
tion to  the  civilised  world,  it  is  also  of  supreme 
importance  to  the  individual  nation,  in  order  that 
its  findings  may  be  utilised  to  create  national 
wealth  through  the  development  of  its  natural 
resources  and  increasing  the  efficiency  of  its 
industries. 

When  the  war  was  giving  us  such  a  convincing 
demonstration  of  the  dependence  of  modern  nations 
upon  scientific  achievement,  the  nations  of  the 
Empire  were  looking  forward  to  post-war  reorgani- 
sation through  the  scientific  method  of  scientific 
organisation. 

The  prompt  establishment  by  Great  Britain  of  an 
Advisory  Council  for  industrial  and  scientific  re- 
search under  a  committee  of  the  Privy  Council  in 
1915,  and  its  subsequent  organisation  as  a  separate 
state  Department  of  Scientific  and  Industrial  Re- 
search,  furnished  a  model  of  organisation  which  the 
other  portions  of  the  Empire  quickly  utilised.  It 
was  not  only  an  early  recognition  of  the  fact  that 
the  development  of  national  resources  in  time  of 
war  is  dependent  upon  scientific  methods  and  re- 
search, but  it  also  indicated  the  path  to  be  followed 
in  organising  the  industries  of  the  nation  to  meet 
the  post-war  conditions. 

Of  the  many  useful  activities  of  this  Department, 
the  most  outstanding  ib  its  co-operation  with  the 
industries  of  the  country  in  the  foundation  and 
maintenance  of  approved  associations  for  research, 
for  which  the  Government  placed  one  million  pounds 


at  its  disposal.  These  associations,  now  twenty- 
nino  in  number,  have  encountered  criticism  and 
possibly  are  not  perfect  in  detail,  but  their  influence 
has  been  felt  throughout  the  English-speaking 
world.  The  general  acceptance  by  manufacturers 
I  of  this  principle  of  industrial  unions  indicates  that 
the  policy  of  industrial  secrecy,  which  has  so  greatly 
hampered  the  application  of  science  to  industry,  is 
now  almost  obsolete.  Manufacturers  of  Great 
Britain  by  their  action  demonstrated  their  belief  in 
the  statement  that  for  most  industries  "  the  closed 
door  shuts  out  more  than  it  shuts  in." 

This  pooling  of  tho  expenses  and  proceeds  of 
scientific  research  may  to  some  have  an  objectionable 
Teutonic  flavour,  but  its  effect  is  to  transform 
isolated  crafts  into  highly  developed  industries, 
eliminate  needless  duplication  of  effort,  and,  what 
is  of  the  highest  importance,  it  has  prevented  at 
the  present  critical  period  incalculable  loss  through 
arrested  development.  This  courageous  and  original 
method  of  organising  and  developing  research  has 
spread  to  Canada  and  the  United  States  and  has 
there  helped  to  eliminate  unnecessary  trade  secrecy 
and  promote  co-operation  in  technical  and  scientific 
investigation. 

The  plan  in  its  present  form  is  not  easily  adapted 
to  conditions  in  the  overseas  Dominions,  where  it 
will  take  time  and  a  great  controlling  motive  to 
bring  into  effective  co-operation  the  large  number  of 
scattered,  isolated,  and  sometimes  conflicting 
industries.  The  absence  of  available  laboratories 
and  the  consequent  necessity  of  constructing  labora- 
tory buildings  for  each  association  have  also  had  a 
strong  deterring  influence.  It  is,  however,  as 
generally  recognised  overseas  as  it  is  here,  that  co- 
operation and  organisation  are  the  most  efficient 
means  of  capitalising  science — of  making  it  com- 
mercially useful. 

This  general  conclusion  was  reached  as  each  of  the 
large  units  of  the  Empire  recognised  that  the 
creation  of  new  industries  and  increased  production 
were  required  to  restore  material  prosperity  and  to 
meet  its  enormous  national  debt.  It  is  interesting 
to  note,  however,  the  lines  along  which  the  overseas 
Dominions  have  been  working  to  develop  scientific 
method  and  research.  All  followed  the  lead  of 
England  in  1916  by  establishing  something 
analogous  to  a  scientific  advisory  body  for  the 
Government. 

In  Australia  an  Advisory  Council  of  Science  and 
Industry  was  called  into  existence  by  the  Prime 
Minister,  the  Right  Honourable  W.  H.  Hughes. 
This  was  considered  to  be  a  preliminary  step 
towards  the  centralisation  of  scientific  work  in  that 
country.  The  work  of  the  Advisory  Council  covers 
similar  ground  to  that  investigated  by  the  Advisory 
Councils  of  the  other  Dominions.  The  same  order 
of  procedure  is  to  be  found  in  each  of  the  Do- 
minions ;  first,  a  census  was  made  of  the  problems 
of  special  importance  to  the  Dominion ;  then  a 
census  of  the  industrial  activities  of  all  the  labora- 
tories for  scientific  research,  their  personnel  and  the 
character  of  the  work  in  progress.  The  result  of 
this  preliminary  work  was  to  disclose  a  great  short- 
age everywhere  in  the  supply  of  trained  investi- 
gators necessary  to  carry  on  the  researches. 

To  remedy  this  an  investigation  was  made  of  the 
training  afforded  by  the  universities  and  technical 
institutes,  with  a  view  to  increasing  the  future 
supply  of  scientific  investigators.  Students  were 
encouraged  to  enter  a  course  of  research  by  the 
establishment  of  Fellowships.  Those  who  had 
demonstrated  capacity  for  investigation  were 
granted  assistance  for  researches  in  contemplation 
or  partially  completed.  Not  only  were  these  re- 
searches encouraged  in  this  way,  but  the  attempt 
was  almost  invariably  to  bring  about  co-ordination 
of  researches  already  in  progress,  as  well  as  stimu- 
late the  initiation  of  new  ones.     This  stage  in  the 

b2 


214T 


ANNUAL   MEETING. 


[July  15,  1022. 


development  of  research  work  in  Australia  was  com- 
pleted by  the  end  of  1918,  and  we  find  India,  New 
Zealand,  South  Africa,  and  Canada  had  developed 
efficient  schemes  for  Fellowship  and  assisted  re- 
searches by  the  end  of  1918. 

Australia  met  with  the  same  experience  as  did 
the  other  Dominions  when  attempting  to  utilise 
existing  laboratories,  scattered  in  the  universities 
and  Government  departments,  for  the  purpose  of 
carrying  out  the  work  of  the  Institute.  The  ex- 
perience of  a  year  or  two  convinced  the  Council  that 
it  was  impracticable  for  its  research  work  to  be 
carried  out  efficiently  and  economically  solely  in 
existing  laboratories.  They  found  that  Govern- 
ment laboratories  were  manned  and  equipped  for 
work  of  a  routine  nature,  laboratories  in  works 
were  small  and  inefficiently  equipped  both  as  to  men 
and  facilities,  while  the  staffs  in  university  labora- 
tories were  too  fully  occupied  with  instructional  and 
executive  duties  to  give  the  prolonged  attention 
necessary  for  the  successful  and  speedy  solution  of 
industrial  and  scientific  problems.  None  of  these 
classes  of  laboratories  were  equipped  for  conducting 
large-scale  experiments  of  semi-commercial  magni- 
tude, hence,  in  Australia,  the  Council  submitted 
resolutions  to  the  effect  that  the  immediate  estab- 
lishment of  a  permanent  research  institute  was  a 
matter  of  urgency,  as  the  financial  and  executive 
powers  of  the  temporary  organisation  were  wholly 
inadequate  for  the  purposes  in  view.  This  Insti- 
tute was  planned  to  work  in  co-operation  between 
the  Commonwealth  and  the  six  State  Governments. 
Steps  have  also  been  taken  with  a  view  to  evolve  a 
suitable  6cheme  for  the  establishment  of  industrial 
research  associations  among  the  industries  them- 
selves, similar  to  those  in  existence  in  the  United 
Kingdom. 

The  establishment  of  a  Bureau  of  Information 
and  a  technical  and  scientific  library  in  connexion 
with  the  Institute  is  also  decided  upon.  This  met 
with  the  general  approval  of  the  Government. 

The  hopes  of  bringing  about  efficient  organisation 
and  co-operation  of  scientific  work  in  Australia  are 
centred  around  a  National  Institute  of  Science  and 
Industry. 

(Scientific  development  in  the  Union  of  South 
Africa  took  its  origin  in  a  Board  called  the 
Industries  Advisory  Board,  established  by  Act  of 
Parliament  also  in  the  year  1916.  This  Board,  con- 
sisting of  eleven  representatives  chiefly  of  commerce 
and  industry,  had  to  deal  with  statistics  of  pro- 
duction and  make  recommendations  regarding  scien- 
tific and  industrial  research,  factory  legislation, 
encouragement  of  industries,  development  and 
utilisation  of  natural  resources.  At  about  the  same 
time  the  various  scientific  societies  in  the  Union 
formed  a  committee  for  industrial  research  with 
an  executive  head,  and  a  committee,  styled 
the  Scientific  and  Technical  Committee  of  the 
Board,  was  then  appointed  by  the  Govern- 
ment. This  committee  had  to  deal  with  all 
scientific  or  technical  questions  and  with  research 
work  referred  to  it  by  the  Government  or  the 
Industries  Advisory  Board.  The  original  Board 
and  the  scientific  and  technical  committee  were 
later  amalgamated  under  the  title  of  "  The  Advisory 
Board  of  Industry  and  Science,"  which  has  strongly 
recommended  the  establishment  of  a  central  Re- 
search Institute  for  the  whole  Union  of  South 
Africa.  In  the  meantime  it  has  established  a  State 
Laboratory  in  connexion  with  University  College, 
Johannesburg,  for  the  study  and  development  of  a 
ceramic  industry  in  the  Transvaal.  "  In  taking  this 
step,"  its  report  states,  "  the  Board  desires  to  make 
it  clear  that  the  establishment  of  the  ceramic  labora- 
tory or  other  laboratories  of  a  similar  character  in 
connexion  with  existing  scientific  institutions,  while 
affording  a  ready  and  very  economic  means  of 
crosecutine   industrial    research,   must   not   be   re- 


garded as  in  any  degree  prejudicing  the  eventual 
establishment  of  a  central  Research  Institute." 

Unlike  the  other  Dominions,  action  was  taken  in 
New  Zealand  by  the  Government  through  the  influ- 
ence of  a  learned  society,  the  New  Zealand  Insti- 
tute. The  Institute,  like  the  British  Science  Guild 
in  England,  has  for  years  pleaded  with  the  New 
Zealand  Government  for  some  definite  policy  in  aid 
of  research. 

In  June,  1917,  the  Government  endeavoured  to 
find  a  scheme  for  providing  a  proper  system  of  scien- 
tific investigation  for  the  Dominion.  With  the 
assistance  of  the  New  Zealand  Institute,  a  com- 
mittee, representing  the  industries  and  the  scien- 
tific men  of  the  Government  and  University, 
submitted  a  carefully  studied  plan  of  organisation 
for  co-ordinating  scientific  and  industrial  research. 
This  scheme,  involving  a  cost  of  £20,000  per  annum 
for  five  years,  has  not  yet  been  submitted  to  Parlia- 
ment by  the  Cabinet,  and  it  seems  very  unlikely 
that  it  will  be  revived  even  in  a  modified  form. 

New  Zealand  is  essentially  an  agricultural 
country,  not  a  wealthy  one,  and  spends  half 
a  million  pounds  annually  on  national  defence, 
hence  the  Government  naturally  felt  that  the 
addition  of  £20,000  to  the  annual  sum  required  to 
meet  their  heavy  war  debt  was  not  justifiable.  It 
was  also  found  that  the  University  was  understaffed 
and  that  the  graduates  were  not  well  trained 
in  science.  Men  trained  for  scientific  research  could 
not  be  found  in  the  country.  There  is,  however,  a 
privately  endowed  institute  called  "  The  Cawthron 
Institute  for  Scientific  Research,"  which  at  present 
practically  confines  itself  to  agriculture  and  fruit 
growing. 

The  Indian  Industrial  Commission,  appointed  by 
the  Government  of  India  in  May,  1916,  which  sat 
from  1916  to  1918  under  the  chairmanship  of  Sir 
Thomas  Holland,  made  a  most  thorough  study  of 
the  industrial  conditions  in  the  whole  of  the  Indian 
Empire.  The  results  were  embodied  in  an  able 
report  issued  in  1918.  The  constructive  proposals 
made  by  the  Commission  were  (1)  that  Government 
must  play  an  active  part  in  the  industrial  develop- 
ment of  the  country  with  the  aim  of  making  India 
more  self-contained  in  respect  of  men  and  material, 
and  (2)  that  it  is  impossible  for  Government  to 
undertake  that  part  unless  provided  with  adequate 
administration  equipment  and  forearmed  with 
reliable  scientific  and  technical  advice. 

The  Government  had  resigned  itself  for  so 
many  years  to  the  tradition  of  "  laissez  faire  "  in 
industrial  matters,  that  when  in  recent  years  it 
attempted  to  play  a  more  active  part,  its  efforts 
were  rendered  futile  by  the  absence  of  scientific 
and  technical  advice  to  assist  it  in  estimating  the 
value  of  industrial  propositions  and  by  the  lack  of 
any  suitable  agency  to  carry  out  approved  pro- 
posals. To  remedy  the  first  of  these  defects  a  re- 
organisation of  the  existing  scientific  services  was 
advocated. 

In  February,  1921,  an  Imperial  Department  of 
Industries  was  constituted  on  a  permanent  basis, 
and  again  Sir  Thomas  Holland  was  placed  in 
charge. 

The  Imperial  Department  of  Industries  has 
undertaken  under  its  direct  control  three  im- 
portant projects,  viz.,  an  Imperial  School  of  Min- 
ing and  Geology;  a  Central  Chemical  Research 
Institute ;  and  an  Imperial  Tanning  Institute  and 
Demonstration  Leather  Factory.  Progress  in  the 
case  of  each  of  these  three  schemes  has  been  ham- 
pered, owing  partly  to  financial  stringency  and 
partly  to  political  unrest.  The  organisation  of  the 
All-Indian  Industrial  and  Chemical  Services  of 
further  complicated  by  the  recent  constitutional 
changes  in  the  Indian   Government. 

At  a  conference  of  the  Indian  departments 
held    last   year   much    opposition    to   an    All-India 


Vol.  XII.,  No.  13.] 


ANNUAL  MEETING. 


215t 


Chemical  Service  appeared  from  the  local  Govern- 
ments, through  distrust  of  departmentalism  and 
doubt  of  the  necessity  of  adding  another  specialised 
Indian  service  to  the  large  number  now  in  exist- 
ence. No  decision  was  reached  and  the  question 
was  postponed  for  a  year,  with  the  prospect  of  a 
compromise  satisfactory  to  the  provinces  and  with 
a  certain  amount  of  regard  to  efficiency  of  the 
service  in  India  as  a  whole. 

It  is  obvious  that  conditions  in  India  are  funda- 
mentally different  from  those  found  in  the  self- 
governing  Dominions,  such  as  Australia  and 
Canada.  The  development  of  scientific  and  indus- 
trial research  by  the  State  must  be  linked  up 
with  the  Indian  Civil  Service  and  be  largely 
bureaucratic.  Support  from  the  Indian  people 
seems  unlikely  until  the  intelligentsia  of  the 
native  races  with  their  great  wealth  lose  their 
prejudice  against  all  forms  of  business. 

In  Canada  our  original  organisation  was  modelled 
more  closely  on  that  of  Great  Britain  than  perhaps 
in  any  of  the  other  dominions.  A  sub-committee 
of  the  Privy  Council  was  constituted  in  June,  1916, 
and  later  an  Honorary  Advisory  Council  for  Scien- 
tific and  Industrial  Research,  This  Council  was 
composed  of  eleven  representatives  of  the  scien- 
tific, technical,  and  industrial  interests  of  Canada. 
An  administrative  chairman  was  selected  from 
among  its  members  who  gave  his  whole  time  to 
the  work  and  received  a  salary  of  £2000  per 
annum.  The  work  of  the  other  ten  members  was 
purely  honorary. 

It  is  noteworthy  that  at  this  critical  period  of 
our  history  every  Government  in  the  Empire  had 
at  its  command  the  disinterested  and  gratuitous 
services  of  men  whose  training  and  experience 
qualified  them  to  act  as  advisors  along  scientific, 
technical  and  industrial  lines. 

The  Council  made  a  careful  survey  of  the  re- 
searches carried  on  in  Canada;  it  successfully 
directed  attention  to  the  value  of  scientific  method 
and  research,  obtaining  the  support  of  public 
opinion  throughout  the  whole  dominion  ;  by  means 
of  a  system  of  fellowships,  it  encouraged  university 
graduates  of  special  ability  to  enter  the  field  of 
research.  This  year  the  Council  are  thus  helping 
over  fifty  of  our  most  brilliant  graduates  to  obtain 
training  in  research  methods  in  the  graduate 
schools  of  Canadian  and  English  universities.  The 
majority  of  these  graduates  are  chemists  or 
chemical  engineers. 

The  possibility  of  utilising  existing  laboratories 
in  the  Government  departments  and  universities 
received  careful  consideration,  but  it  was  found 
to  be  enormously  expensive,  without  the  prospect 
of  compensating  efficiency,  and  it  was  decided 
to  assist  the  Government  departments  by  advice  and 
by  recommendations  for  special  research  grants. 
Substantial  financial  assistance  was  given  to  re- 
searches both  academic  and  industrial,  on  the 
whole  with   very  satisfactory  results. 

It  was  recognised  that  a  permanent  and  really 
efficient  linking  up  of  science  with  its  application 
could  only  be  effected  by  some  central  organisation 
which  would  bring  about  an  intimate  co-operation 
between  those  who  could  set  the  industrial 
problems  and  those  whose  training  and  knowledge 
would  aid  in  their  solution.  A  similar  conclusion 
was  independently  reached  by  all  the  self-govern- 
ing dominions.  It  was  decided  in  1917  upon  the 
policy  of  establishing  a  Central  Research  Institute 
for  both  scientific  and  industrial  research.  As  the 
result  of  a  nation-wide  propaganda,  the  scheme  was 
submitted  to  the  Government,  supported  by  all  the 
Boards  of  Trade,  Canadian  Clubs  and  scientific 
organisations  from  the  Atlantic  to  the  Pacific.  The 
approval  voiced  by  the  Canadian  press  was  equally 
unanimous.  As  this  plan  embodies  the  experience 
of  many  countries  and  seems  to  be  designed  along 


the  lines  of  the  natural  evolution  of  the  problem, 
I  shall  refer  to  some  details  of  its  organisation  and 
possible  advantages. 

As  finally  developed  and  outlined  in  a  Bill  pre- 
sented before  last  year's  Parliament,  a  National 
Canadian  Research  Institute  was  practically  unani- 
mously approved  of  by  the  Cabinet  and  passed  the 
House  of  Commons  without  division,  but,  owing  to 
an  unexpected  attack  of  economy  on  the  part  of  the 
Senate,  the  Bill'  was  not  confirmed  but  was  post- 
poned until  next  session.  Notwithstanding  the  vote 
of  the  Senate,  the  Government  gave  a  special 
grant  of  £20,000. 

The  building  which  will  house  the  Institute  will 
be  erected  near  Ottawa,  the  capital  city  of  Canada, 
on  a  site  large  enough  to  give  ample  room  for 
expansion,  at  an  estimated  cost  of  over  £100,000. 
This  first  unit,  with  a  power  plant  attached,  is  so 
designed  as  to  permit  of  a  flexible  organisation  to 
enable  its  activities  to  be  adapted  to  the  varying 
requirements  of  a  rapidly  growing  country  like 
Canada.  It  will  be  the  Bureau  of  Standards  for 
Canada,  and  in  this  respect  its  work  will  be  similar 
to  that  of  the  Bureau  of  Standards  at  Washington 
or  that  of  the  National  Physical  Laboratory.  The 
unification  of  standards  will  be  carried  on  in 
association  with  the  Canadian  branch  of  the  Inter- 
national Committee  on  Engineering  Standards, 
now  doing  excellent  work  in  Canada.  Closely 
associated  with  its  function  as  a  Bureau  of 
Standards,  it  will  carry  on  fundamental  research  in 
chemistry,  physics,  and  related  fields,  investigations 
in  abstract  science  similar  to  those  carried  on  in  the 
scientific  laboratories  of  the  universities  and  by  the 
same  type  of  workers. 

The  activities  of  the  Institute  will  include 
investigations  in  biochemistry  and  bacteriology, 
both  fundamental  and  as  applied  to  such  industries 
as  the  fisheries,  the  canning,  cellulose,  and  packing 
industries,  as  well  as  investigations  undertaken  on 
recommendation  of  the  Research  Council  from 
time  to  time,  to  promote  the  utilisation  of  the 
natural  resources  and  valuable  waste  materials  of 
the  country. 

The  permanent  staff  will  consist  of  a  director  and 
eight  or  ten  highly  qualified  heads  of  departments, 
who  will  carry  on  independent  research  and  form  an 
advisory  body  for  industrial  specialists  who  may  be 
engaged  by  the  Research  Council  to  promote  the 
utilisation  of  the  natural  resources  and  neglected 
waste  products  of  the  country,  or  for  those  who  may 
be  employed  by  industries  to  improve  their  techni- 
cal processes  or  manufactured  products.  The  heads 
of  departments  will  be  chemists,  physicists,  engi- 
neers, and  other  scientists  who  have  already  shown 
high  capacity  for  investigation.  They  will  be 
allowed  trained  assistants  and  all  facilities  and 
freedom  to  carry  on  abstract  research,  each  along 
his  own  line.  The  importance  of  the  individual  in 
research  is  recognised.  The  director,  in  consulta- 
tion with  the  Research  Council  or  a  committee  of 
the  Council,  will  have  the  power  of  deciding  on  the 
technical  processes  and  methods  which  require  and 
would  justify  investigation,  and  the  conditions 
under  which  they  should  be  undertaken. 

We  are  establishing  in  Canada  a  number  of  asso- 
ciations for  research  in  the  industries,  similar  to 
those  in  England.  These  trade  guilds  for  research, 
as  we  call  them,  will  pay  their  own  specialists,  will 
be  housed  in  the  Institute,  which  will  provide  the 
laboratory  accommodation  and  facilities  available  in 
its  building  without  rental,  a  charge  being  made 
only  for  power  and  materials  at  cost  price.  Several 
of  these  guilds  for  research  are  now  being  organised. 
Under  conditions  to  be  determined  in  each  case, 
laboratories  will  be  placed  at  the  disposal  of  indi- 
vidual industrial  firms  for  study  of  improvements 
in  processes  and  products.  Regulations  regarding 
the  length  of  time  the  laboratories  may  be  occupied, 
the  right  to  secrecy  regarding  the  work,  etc.,  etc., 


216t 


ANNUAL  MEETING. 


[July  15,  1922. 


will  be  similar  to  those  enforced  in  the  Mellon 
Institute  of  Pittsburg,  which  has  so  effectively 
demonstrated  to  manufacturers  in  the  United  States 
the  value  of  industrial  research. 

The  Canadian  Research  Institute  will  parallel  the 
Mellon  Institute,  but  with  this  difference,  that 
instead  of  the  institute  being  maintained  by  private 
endowment  it  will  be  endowed  by  the  Government 
of  the  country.  It  is  also  a  form  .of  State  endow- 
ment similar  to  the  industrial  association  for 
research,  but  more  centralised,  permanent,  and 
better  adapted  to  the  requirements  of  the  Dominion 
of  Canada. 

The  Institute  will  not  be  under  a  department  of 
the  Government,  and  will,  therefore,  be  free  from 
political  influence  and  party  patronage.  The 
director  and  the  group  of  scientific  and  technical 
officers  are  appointed  by  the  Research  Council,  who 
will  prescribe  their  remuneration  and  tenure  of 
office,  subject  to  the  approval  of  the  Governor  in 
Council.  The  director  will  be  given  a  very  free  hand 
in  organising  and  directing  the  Institute,  and  will 
receive  a  salary  commensurate  with  his  responsi- 
bilities. The  responsibility  for  the  success  or  failure 
of  this  whole  venture  is,  therefore,  placed  upon  the 
shoulders  of  the  Research  Council  and  the  director 
in  charge. 

The  organisation  of  the  institute  is  based  upon 
the  following  general  principles :  First,  a  recogni- 
tion of  the  claims  of  abstract  science  for  permanent 
State  endowment  apart  from  universities;  secondly, 
the  development  equally  in  the  institute  of  funda- 
mental and  industrial  research,  thus  bringing  into 
constant  and  profitable  contact  men  interested  and 
skilled  in  academic  or  abstract  science  with  those 
engaged  in  its  application  to  industry;  thirdly,  the 
encouragement  of  special  workers  employed  by  the 
industries  to  solve  their  specific  problems  in  associa- 
tion with  a  permanent  staff  of  highly-trained 
investigators.  The  last  feature  involves  the  endow- 
ment by  the  State  of  an  organisation  similar  to  the 
Mellon  Institute.  It  is  applicable  particularly  to 
conditions  as  they  exist  in  Canada. 

What  are  the  advantages  of  such  a  plan  for 
developing  research  ?  The  idea  of  Government 
endowment  of  abstract  scientific  research  is  not  a 
new  on©  in  England.  Sir  David  Brewster,  seventy 
years  ago,  in  a  presidential  address  to  the  British 
Association,  advocated  the  establishment  of  a  State 
Bureau  of  Research.  The  Science  Commission  of 
1870  reported  that  one  of  the  most  efficient  methods 
by  which  the  Government  could  further  research  in 
this  country  was  by  the  establishment  of  public 
laboratories  for  the  pursuit  of  investigations  in 
connexion  with  the  varying  and  ever-multiplying 
departments  of  physics,  chemistry,  biology,  and 
other  branches  of  science.  The  view  then  taken,  and 
not  altogether  unknown  even  at  the  present  time, 
was  that  "  the  more  science  was  left  to  itself  the 
better  for  it."  Mr.  Gladstone,  indeed,  termed  the 
intervention  of  the  State  as  "  interference  "  with 
science,  calculated  to  discourage  individual 
exertion,  and  so  obstruct  discovery  and  progress. 

There  is  now  a  growing  conviction  throughout 
the  Empire  that  the  rapid  advancement  of  abstract 
scientific  knowledge,  and  the  efficient  applications  of 
science,  will  not  be  the  outcome  of  any  State  policy 
which  leaves  industrial  research  to  be  developed 
only  in  works  and  fundamental  research  only  in  the 
universities. 

The  Department  of  Scientific  and  Industrial 
Research  has  obtained  from  the  State  a  liberal 
support  of  its  plan  to  develop  industrial  research 
among  the  great  groups  of  industries.  The  value 
of  this  experiment  in  State  aid  to  research  has  been 
established,  but  will  this  plan  provide  for  the 
future?  AVill  the  associations,  after  the  Government 
bonuses  are  withdrawn,  continue  research  on  those 


problems  which  have  no  direct  and  immediate 
application  to  the  industries  but  which  are  of 
superlative  value  to  the  nation? 

Let  us  consider  a  little  more  closely  the  value  of 
research  in  works  and  in  universities  to  national 
progress.  Scientific  progress  in  industries  is  no  le6s 
an  expression  of  the  spirit  of  research  which  has 
permeated  the  Empire  than  the  scientific  activities 
of  the  Government  and  the  universities.  The 
advances  and  improvements  made  in  any  commer- 
cial organisation  add  to  the  volume  of  knowledge 
and  so,  indirectly,  to  the  wealth  of  the  nation. 
Further,  it  is  generally  recognised  on  both  sides  of 
the  Atlantic  that  the  permanent  success  of  an 
industry,  especially  a  chemical  industry,  depends 
upon  its  ability  to  command  a  sufficient  supply  of 
knowledge  especially  directed  towards  the  improve- 
ment of  its  methods  and  products. 

Laboratories  for  routine  testing  in  some  form  or 
other  are  equipped  in  all  industries,  exercising 
analytical  control  over  output  and  processes,  but 
the  class  of  works  research  laboratories,  which  have 
done  so  much  to  introduce  scientific  methods,  are 
those  designed  to  lessen  cost  of  production  by  im- 
proved processes  and  products.  The  success  which 
followed  their  installation  was  highly  appreciated 
because  of  the  immediate  returns  through  improved 
scientific  control  of  operations.  They  have  come  to 
be  recognised  as  permanent  departments  in  the 
industries  but  subject  to  control  on  purely  business 
lines.  A  few  quotations  from  a  recent  article  by 
F.  A.  Wardenburgh,  Assistant  Chief  Engineer  of 
the  Du  Pont  Company  of  America,  frankly  puts 
research  in  its  place  among  the  activities  of  an 
industry.  "  Industrial  research  must  justify  itself 
in  economies."  "Research  chemists  cannot  be  em- 
ployed if  results  do  not  6how  a  profit."  "  The  prime 
object  of  business  is  the  making  of  money  and,  if 
research  work  is  to  maintain  its  proper  place  in  busi- 
ness, it  must  be  conducted  so  that  it  will  more  than 
pay  its  way."  His  plan  of  directing  research  lays 
continual  stress  on  the  commercial  outcome.  At 
every  angle  the  question  is  asked:  "  Is  the  cost  of 
this  particular  step  justified  by  the  results  to  be 
obtained  from  it?"  The  author  admits  there  are 
many  problems  which  should  be  studied  but  which 
are  not  receiving  the  attention  they  deserve  be- 
cause they  do  not  offer  sufficient  probability  of 
making  a  satisfactory  monetary  return  to  justify 
the  company  proceeding  with  the  work.  Further, 
that  there  is  a  great  deal  of  research  work  of  high 
importance  to  the  industry,  but  it  is  not  done  be- 
cause it  is  seldom  that  any  one  company  can 
justify  conducting  a  scientific  research  with  the 
hope  that  the  result  can  be  profitably  applied  in 
some  indefinite  way.  This  is  a  clear  business  state- 
ment of  a  firm  spending  over  £40,000  per  annum  in 
their  various  works  laboratories.  It  cannot  be 
expected  that  any  firm  will  jeopardise  its  financial 
standing  for  the  attainment  of  an  academic  ideal. 

To  obtain  permanent  and  outstanding  results  it 
is  now  generally  conceded  that  investigations  must 
be  directed  chiefly  to  the  theories  underlying  the 
operations  of  the  industry ;  for  example,  it  was 
the  study  of  chemistry  in  high  vacua  which  in- 
directly led  to  the  production  of  the  tungsten 
nitrogen  lamp  by  the  General  Electric  Company  at 
Schenectady. 

As  Dr.  Mees  has  pointed  out,  the  vaiue  of  a 
research  laboratory,  working  on  pure  theory  and  on 
the  fundamental  sciences  associated  with  the  indus- 
try, is  esentially  cumulative.  The  results,  at  first 
nebulous  and  suggestive,  later  became  definite  and 
more  and  more  available.  The  time  factor  in  this 
type  of  research  is  a  most  serious  obstacle  in  the 
way  of  its  general  introduction  by  commercial 
organisations.  He  states,  as  the  result  of  his 
experience  in  the  organisation  of  industrial  re- 
search:   "Most  men  acquainted  with  fundamental 


Vol.   XXI.,   No.   13.] 


ANNUAL    MEETING. 


217t 


industrial  research  work  consider  that  five  years 
is  the  earliest  date  at  which  any  considerable 
results  can  be  expected  from  a  newly-established 
research  laboratory  and  that  the  development  of 
r.  ill\  new  material  in  considerable  quantities,  so 
that  it  will  have  an  effect  upon  the  industry  as  a 
whole,  cannot  be  looked  for  in  less  than  ten  years' 
consecutive  work." 

This  type  of  industrial  research  could  not  be 
seriously  considered  by  individuals  or  firms  from  a 
business  point  of  view.  The  industrialist  as  a  rule 
works  for  the  profits  of  to-day  and  not  for  the 
preservation  of  national  wealth  of  the  future. 

The  relation  of  the  scientific  departments  of  the 
universities  to  the  industries  of  the  country  is  a 
very  complex  and  much  discussed  problem.  It  is  a~ 
varied  in  its  aspects  as  are  the  types  of  universities 
and  the  varieties  of  industries. 

The  value  of  the  association  of  the  university 
men  engaged  in  abstract  science  with  those 
interested  in  its  application  was  so  obvious  during 
the  war  that,  to  develop  and  make  permanent  this 
relation  in  times  of  peace  became  the  first  problem 
before  the  national  scientific  organisations  of  the 
Empire.  The  attempts  to  obtain  satisfactory  co- 
operation between  industries  and  universities  since 
the  war  have  proven  a  very  qualified  success;  many 
schemes  have  been  suggested  and  tried  on  the 
American  continent  as  well  as  in  the  Empire,  and. 
except  in  isolated  cases,  the  universities  have  not  j 
proven  of  any  great  or  permanent  assistance  to  the 
manufacturer.  Successful  collaboration  occurs 
when  the  problem  is  one  quickly  solved  and  which 
can  be  handed  over  to  the  factory  in  a  completed 
form  ready  for  commercial  development.  Such  con- 
ditions are  rare.  Most  industrial  problems  require 
continuity  of  study  by  the  same  im  estimators  and 
along  the  same  line  of  research  extending  over  a 
long  period.  Such  conditions  in  university  labor- 
atories are  undesirable,  rarely  possible,  and  call 
for  special  apparatus,  often  of  a  kind  unsuitable  to 
a  university  building.  It  is  further  recognised  in 
factory  practice  that  the  inventor  of  a  process  or 
substance  should  himself  carry  it  through  the  semi- 
commercial  stage  and  be  able,  by  his  experience,  to 
meet  the  new  conditions  and  difficulties  of  large- 
scale  operations. 

The  larger  new  universities  and  institutes  of 
technology  recognise  the  importance  of  the 
technical  section  in  their  departments  of  science  to 
the  manufacturer.  The  staff  of  the  technical 
colleges  are  usually  men  of  research  ability,  who  at 
all  times  are  available  in  a  consulting  capacity  and 
are  able  to  attack  problems  of  manufacturers  which 
could  with  advantage  be  studied  on  a  laboratory 
scale,  thus  keeping  in  constant  and  intimate  touch 
with  the  industrial  interests  of  the  country. 

Many  of  the  universities  of  England.  Canada, 
and  the  United  States  are  situated  in  industrial 
centres,  in  very  intimate  relations  with  the 
industries  of  the  place,  and  naturally  identify 
themselves  with  the  needs  of  these  industries. 
They  find  on  the  spot  the  subjects  for  research 
and  also  frequently  an  opportunity  of  trying 
out  their  ideas  in  factory  practice.  Co-opera- 
tion between  the  factory  and  the  university 
in  this  way  is  highly  desirable  and  decidedly 
to  the  advantage  of  the  university.  The  univer- 
sities should  feel  that,  in  a  sense,  they  hold  their 
costly  laboratories  and  technical  equipment  in 
trust  for  the  community.  Every  successful  re- 
search in  industrial  economic  problems  is  an 
advance  in  knowledge  and  should  be  regarded  as  a 
part  o"f  the  realisation  of  the  ideals  of  a  university, 
viz.,  to  add  to  the  sum  total  of  human  knowledge. 
Yet  this  is  not  the  essential  function  of  the 
university. 


It  has  been  stated  that  utilitarian  motives,  aris- 
ing from  war  experience  and  accentuated  by  the 
requirements  of  the  present  period  of  reconstruc- 
tion, largely  dominate  the  scientific  life  of  the 
world  to-day.  Investigations  along  fundamental 
lines  suffered  during  the  war,  especially  in  the 
universities,  from  the  transference  of  attention  to 
more  urgent  needs  and  the  absence  of  a  junior  staff 
with  capacity  for  research.  Many  university  men 
with  high  ideals  fear  what  is  described  as  a  grow- 
ing tendency  to  exaggerate  the  utilitarian  motive 
in  university  investigation ;  as  Dr.  Schuster 
expresses  it:  "Beating  the  utilitarian  drum  too 
loudly." 

Research  in  the  abstract  sciences  and  the  study 
of  their  applications  are,  however,  not  incom- 
patible, and  they  can  often  be  carried  out  in  the 
same  university  with  advantage  to  both.  There  is, 
however,  especially  on  the  American  continent,  a 
danger  of  the  essential  university  function  being 
less  developed  than  the  subsidiary  function. 

The  universities  should  be  chiefly  the  training 
ground  for  research  men,  where  those  set  apart  as 
research  instructors  should  not  be  overburdened 
by  administrative  work,  and  where  ample  time, 
remuneration,  facilities,  and  assistants  are  avail- 
able for  graduate  schools  of  research  and  training 
in  the  more  abstract  fields  of  science. 

The. undergraduate,  let  us  say  in  chemistry,  is 
so  fully  occupied  during  his  regular  course  in 
acquiring  a  knowledge  of  the  essentials  of  his 
science  that  he  cannot  acquire  originality  in  meet- 
ing new  conditions  or  that  independence  of 
thought  and  intellectual  dexterity  which  comes 
from  the  experience  of  being  thrown  on  his  own 
resources.  University  researches  are  specially 
designed  for  training  these  advanced  students  and 
junior  members  of  the  staff  in  those  principles  and 
habits  of  work  which  underlie  all  research,  and 
these  are  not  usually  of  a  type  the  results  of  which 
can  be  directly  carried  into  the  industries. 

The  high  privilege  of  the  universities  is  the 
preservation  of  real  knowledge,  not  only  to  see  that 
such  knowledge,  once  acquired,  should  not  be  lost, 
but  also  to  extend  its  boundaries. 

Research  and  the  development  of  initiative  in 
scientific  investigation  among  its  graduate  students 
distinguish  the  university  from  the  mere  college. 
Capacity  for  research  is  the  valuable  product  the 
countries  of  the  Empire  expect  from  the  scientific 
departments  of  its  universities.  It  is  therefore 
essential  that  any  State  system  designed  to 
develop  the  industrial  research  of  the  country 
should  especially  consider  the  needs  of  the  univer- 
sities in  ordc  to  ensure  a  supply  of  men  capable 
of  taking  positions  of  higher  command  in  industrial 
research. 

Investigations  in  the  so-called  "pure"  sciences 
have  hitherto  been  largely  confined  to  the  univer- 
sities. They  claim,  however,  no  proprietary  rights 
to  the  domain  of  fundamental  research;  indeed, 
they  can  offer  little  inducement  to  a  research 
career. 

Scientific  work  in  universities  is  often  hampered 
by  tradition,  lack  of  financial  support  and  proper 
equipment.  A  more  stimulating  and  congenial 
environment  for  research  would  be  the  natural 
atmosphere  of  a  large  State-endowed  research 
institute.  The  stimulus  afforded  each  other  by  a 
group  of  scientific  investigators  in  daily  contact 
with  each  other  should  make  for  increased  efficiency 
and  establish  an  esprit  de  corps  which  would  be 
inspiring  to  themselves  and  bring  about  a  whole- 
some rivalry  with  the  laboratories  of  the  univer- 
sities. The'  positions  of  higher  command  in  an 
institute  would  be  prizes  worthy  of  the  best  efforts 
of  those  with  capacity  for  research.  It  would 
thus   offer    an    attractive  career   for   the    research 


218T 


ANNUAL    MEETING. 


[July  15,  1922. 


worker  and  be  a  powerful  stimulus  to  the  graduate 
schools  of  science  throughout  the  country.  It 
would  further  aid  British  science  by  encouraging 
research  along  the  border  lines  between  the 
sciences,  where  progress  in  recent  years  has  been 
so  remarkable,  and  would  be  particularly  well 
organised  to  attain  the  highest  results,  which  come 
from  co-operative  work  calling  for  the  resources  of 
different  sciences  to  solve  some  great  problem  of 
national  importance. 

The  associated  development  in  the  same  organ- 
isation of  abstract  and  applied  science  in  closest 
contact  with  each  other  is  the  most  recent  stage  in 
the  evolution  of  the  problem.  We  find  a  movement 
on  all  sides  towards  this  end.  A  few  of  the  more 
advanced  type  of  industrial  laboratories  in  England 
and  America  retain  men  gifted  with  vision  and 
scientific  imagination,  who  are  advancing  our 
knowledge,  for  instance,  of  such  an  academic 
problem  as  the  ultimate  constitution  of  matter. 
We  find  papers  on  the  constitution  of  the  atom 
and  on  molecular  structure  coming  from  the 
laboratories  of  the  General  Electric  Company,  and 
papers  on  higher  mathematics  and  mathematical 
physics  from  the  Eastman  Kodak  Company. 

The  laboratories  of  the  Bureau  of  Standards  at 
Washington  and  the  National  Physical  Laboratory 
have  for  many  years  given  numerous  contributions 
to  our  knowledge  of  physics  and  physical  chemistry 
of  the  highest  value. 

The  Bureau  of  Standards  at  Washington  is  not 
only  conducting,  on  an  increasing  scale,  funda- 
mental researches  in  almost  every  field  of  physics, 
engineering  physics,  and  chemistry,  but  is  now 
carrying  on  purely  industrial  research  on  a  very 
large  scale.  They  have  taken  over  extensive  build- 
ings erected  during  the  war  and  have  converted 
them  into  industrial  laboratories.  In  these  build- 
ings are  installed  plants  and  machinery  on  a  com- 
mercial or  semi-commercial  scale  to  study  improve- 
ments in  methods  of  production  and  quality  of  the 
output.  Only  industrial  problems  of  national 
importance  are  studied,  chiefly  to  obtain  value 
from  waste  raw  materials  and  neglected  by-pro- 
ducts. These  are  studied  in  close  association  with 
their  very  exact  work  on  standards  of  measure- 
ment, quality  and  performance. 

The  National  Physical  Laboratory  has  recently 
largely  extended  its  field  of  usefulness  to  the 
country.  In  addition  to  the  accurate  maintenance 
and  reproduction  of  all  the  primary  standards  of 
measurement  for  the  Empire  and  exact  researches 
in  physics,  it  has  now  been  called  upon  to  enter  the 
field  of  industrial  work.  It  not  only  co-operates 
in  researches  with  many  of  the  industrial  research 
associations,  but  it  is  responding  to  an  ever-in- 
creasing demand  for  investigations  on  the  part  of 
manufacturers  and  private  firms,  for  which  the 
laboratory  receives  payment  of  the  full  cost.  An 
extension  of  its  present  activities  in  the  industrial 
applications  of  science  would  in  the  near  future 
enable  it  to  take  over  with  advantage  many  of 
the  greater  and  more  basic  problems  which  cannot 
be  completely  solved  by  the  research  associations 
during  the  period  of  five  years  allotted  to  them. 

To  ensure  permanence  and  inspire  confidence 
among  men  of  science  a  national  Research  Institute 
should  be  administered  by  a  single  responsible 
body,  incorporated  if  possible  so  as  to  encourage 
private  benefaction  and  with  an  assured  endow- 
ment. 

The  difficulties  in  equipping  and  manning  any 
single  institute  capable  of  carrying  on  more  than  a 
fraction  of  the  researches  required  for  the  mani- 
fold industries  of  such  industrial  nations  as  the 
United  States  or  Great  Britain  are  almost  insuper- 
able. These  difficulties  are  largely  eliminated  if 
the  work  of  the  institute  be  confined  to  questions 


which  are  of  basic  importance  to  the  nation,  and 
not  directed  to  problems  individual  or  incidental 
in  their  character. 

Is  it  beyond  the  practical  to  hope  that  much  of 
the  future  scientific  and  industrial  research  in 
Great  Britain  may  be  carried  out  in  a  State 
institute  where  both  abstract  and  fundamental 
industrial  research  could  be  blended? 

The  industries  will  conduct  research  in  works 
because  they  have  found  it  to  be  a  good  business 
investment,  but  only  along  those  lines  of  investi- 
gation that  obviously  and  immediately  yield  a 
return  for  their  investment.  They  are  not  un- 
reasonable in  looking  to  the  State  to  conduct 
investigations  in  abstract  science  and  on  problems 
remote  from  their  own  particular  operations,  but 
basic  to  the  production  of  national  wealth. 

A  plan  of  co-operation  of  the  various  branches  of 
abstract  science  with  industrial  research  in  a 
Government  Institute  and  a  recognition  of  the 
purely  commercial  side  of  research  may  appear  to 
many  to  be  a  compromise  with  scientific  ideals.  It 
must  be  remembered,  however,  that  an  institute  of 
a  national  character,  if  it  is  to  be  permanent,  must 
have  popular  support,  and  to  obtain  and  hold  such 
support  a  certain  amount  of  its  work  must  be 
understood  and  appreciated  by  the  majority  of  the 
public.  Public  opinion  should  be  strongly  felt  by 
Parliament  to  ensure  favourable  legislation  and 
permanent  financial  support. 

The  extent  and  character  of  the  compromise  is  a 
difficult  question,  but  with  the  more  general  appre- 
ciation of  science  among  the  unintelligent,  as  well 
as  the  intelligent,  public,  the  development  of  funda- 
mental and  abstract  science  will  in  time  receive  an 
increased  measure  of  popular  support. 

"  The  more  enlightened  the  people,  the  more 
general  and  permanent  will  be  their  support  of 
science." 

While  centres  of  research  in  works  and  in 
universities  must  always  have  a  place,  and  play  an 
important  part  in  fostering  scientific  advancement 
and  in  adding  to  the  wealth  of  the  nation,  research 
in  abstract  science  and  its  material  applications 
seem  now  to  call  for  a  larger  measure  of  direct 
State  support  throughout  the  Empire. 

As  scientific  research,  like  education,  is  subject 
to  social  control,  it  should  become  one  of  the 
accepted  responsibilities  of  the  State  in  a  pro- 
gressive democratic  country.  The  financial  sup- 
port of  the  abstract  sciences  as  well  as  of  their 
material  application  should  be  as  certain,  perma- 
nent, and  free  from  party  politics  as  is  the  grant 
to  national  education,  for,  as  Sir  Ronald  Ross 
expresses  it,  "  Science  has  become  our  premier 
national  industry,  and  governs  every  other  in- 
dustry, as  the  work  of  the  architect  governs  that 
of  the  bricklayer." 

Dr.  E.  F.  Armstrong,  President-elect,  proposing 
a  vote  of  thanks  to  the  President  for  his  address, 
said  that  Dr.  Ruttan  had  given  them  much  food 
for  serious  thought,  and  he  asked  him,  on 
behalf  of  the  Society,  to  allow  the  address  to  be 
printed  in  the  Transactions.  They  had  all  often 
heard  of  the  neglect  of  science,  but  this  was  almost 
the  first  time  they  had  heard  something  about  the 
other  side  of  the  picture,  of  the  steps  that  were 
being  taken  throughout  the  Empire  and  in  the 
Mother  Country  to  promote  science.  It  would  be 
some  years  before  these  steps  materialised,  but  they 
must  be  all  to  the  good.  Dr.  Ruttan  had  given 
a  picture  of  what  was  being  done  throughout  the 
Empire  in  this  very  necessary  direction.  He  could 
not  help  feeling  that  there  was  going  to  be  a  good 
deal  of  bureaucratic  control  about  research  in  the 
future.  If  bureaucratic  control  was  the  best  way 
to  do  research  all  would  be  well,  but  he  wondered ! 
It  was,  however,  with  very  great  pleasure  that  he 


Vol.  XLI.,  No.  13.] 


TROTMAN.— THE  CHLORINATiON  OF  WOOL. 


219t 


proposed  a  hearty  vote  of  thanks  to  Dr.  Ruttan 
for  his  address. 

The  vote  of  thanks  was  carried  with  acclamation. 

On  the  motion  of  Mr.  R.  H.  Clayton,  seconded 
by  Mr.  McArthur,  Messrs.  Price,  Waterhouse,  and 
Co.  were  re-elected  auditors. 

The  President  expressed  the  high  appreciation 
and  sincere  thanks  of  the  Society  to  the  Council 
of  the  Institute  of  Engineers  and  Shipbuilders  for 
the  hospitality  afforded  in  allowing  the  use  of 
their  building  in  connexion  with  the  meetings. 
The  vote  of  thanks  was  carried  with  acclamation. 

Subsequently  the  President  announced  that  as 
the  result  of  the  ballot  Prof.  W.  R.  Hodgkinson, 
Dr.  Alfred  Holt,  Mr.  W.  A.  Williams,  and  Mr. 
J.  H.  Young  had  been  elected  Ordinary  Members 
of  Council. 


Nottingham  Section. 


Meeting  held  at  University  College  on  May  17,  1922. 


MR.   J.   H.   DUNFORD  IN  THE  CHA1B. 


THE  CHLORINATION  OF  WOOL. 

BY   S.   R.    TROTMAN. 

The  chlorination  of  wool  for  the  purpose  of 
making  it  unshrinkable  has  been  carried  out 
entirely  as  an  empirical  process,  with  little 
attempt  at  scientific  control  or  critical  examina- 
tion of  the  product.  It  is  hardly  surprising, 
therefore,  that  the  results  are  irregular  and  com- 
plaints not  infrequent.  These  complaints  are  com- 
monly that  (1)  the  material  is  not  unshrinkable, 
(2)  though  unshrinkable  it  wears  badly,  and  (3) 
much  weight  is  lost  during  the  process.  These 
faults  do  not  as  a  rule  occur  together,  though  (2) 
and  (3)  often  do.  In  trying  to  avoid  the  first  fault 
the  manufacturer  often  commits  the  remaining 
two.  He  is,  in  fact,  on  the  horns  of  a  dilemma. 
If  he  does  not  carry  the  process  far  enough  the 
goods  are  not  really  unshrinkable,  while  if  he  does 
make  them  unshrinkable  they  are  liable  to  lose  too 
much  weight  and  wear  badly. 

The  experiments  described  in  this  paper  were 
instituted  with  the  view  of  trying  to  solve  these 
difficulties.  Though  not  yet  complete,  sufficient 
progress  has  been  made  to  indicate  the  lines  upon 
which  the  problem  must  be  solved,  and,  incidentally, 
to  emphasize  the  importance  of  and  urgent  necessity 
for  carefully  planned  and  patient  research.  The 
subject  will  be  dealt  with  under  three  heads:  (1) 
The  properties  of  chlorinated  wool.  (2)  Analytical 
standards  for  a  satisfactory  product.  (3)  The  manu- 
facturing process   and  its  control. 

The  properties  of  chlorinated  wool. 

There  is  a  very  important  difference  between 
the  microscopic  appearance  of  ordinary  and 
chlorinated  wool.  In  the  former  the  free  edges 
of  the  epithelial  scales  can  always  be  seen  dis- 
tinctly. In  chlorinated  wool  these  are  no  longer 
visible;  the  scales  appear  to  adhere  to  the  cortex 
throughout.  This  is  seen  in  Figs.  1  and  2.  In  a 
well  chlorinated  sample  the  outline  of  the 
epithelial  scales  is  still  perfectly  plain.  Their 
surface  is  smooth  and  opaque  as  in  natural  wool. 
Incipient  damage  is  indicated  by  the  outline  of 
the  scales  becoming  difficult  to  observe  and  their 
surface  rough.  Sometimes  they  become  so  thin  that 
the  underlying  cortex  can  be  seen  (Fig.  3).  Actual 
damage  is  denoted  by  the  complete  disappearance 


of  the  epithelial  scales  exposing  the  cortex  of  the 
fibre.  This  gives  the  fibre  a  rough  surface  marked 
with  longitudinal  streaks  as  seen  in  Fig  4.  This 
damage  may  be  either  local  or  general.  In  can  be 
estimated  quantitatively  by  counting  the  per- 
centage  of    damaged    fibres    present.      Samples   of 


- 

!i  - 


i. 


3. 


4. 


Fia.  1. — Untreated  wool  fibre. 
Flo.  2. — First  stage  of  chlorination. 
Fio.  3. — Second  stage  showing  incipient  damage. 
Flo.  4. — Third  stage  showing   complete   destruction    of  epithelial 
scales. 

commercial  unshrinkable  fabrics  contain  from  5  to 
over  50%  of  damaged  fibres.  Complaints  of  bad 
wearing  properties  are  invariably  found  to  be 
associated  with  the  presence  of  large  numbers  of 
such  fibres. 

The  properties  of  chlorinated  wool  are  generally 
stated  to  be :  (1)  Decreased  tensile  strength  and 
elasticity.  (2)  Increased  affinity  for  dyes.  (3) 
More  readily  wetted  down  than  ordinary  wool. 
(4)  Has  a  scroop,  particularly  when  wet.  (5)  Has 
different  electrical  properties  to  ordinary  wool. 
Some  of  these  properties  I  have  proved  to  be  those 
of  over-chlorinated  or  damaged  wool.  Other  im- 
portant properties  must  be  added,  viz.,  altered 
solubility  in  water,  alkalis,  acids,  etc.,  and  an 
increased  affinity  for  water. 

Tensile  strength  and  elasticity.- — I  find  from  many 
experiments  that  there  is  no  loss  of  either  tensile 
strength  or  elasticity  during  careful  chlorination. 
Even  when  a  considerable  percentage  of  damaged 
fibres  is  present  the  loss  is  not  immediately 
apparent,  though  it  may  be  developed  gradually 
owing  to  causes  to  be  explained  later.  It  is  not 
until  over  50%  of  the  fibres  are  badly  damaged 
that  any  marked  diminution  of  either  tensile 
strength  or  elasticity  can  be  observed.  Thus,  for 
example,  the  breaking  strength  of  an  undamaged 
yarn  was  26  lb.  The  same  yarn  when  hardly  any 
epithelial  scales  were  left  had  a  breaking  strength 
of  2'4  lb.  Very  similar  results  were  obtained  in 
tests  for  elasticity.  In  a  typical  set  of  experiments 
the  following  results  were  obtained,  on  six-inch 
lengths  :  — 

Elasticity  of  original  untreated  yarn         . .         . .  1-50 

„        ,,  undamaged  chlorinated  yarn         . .  1-60 

„        ,,  slightly  damaged  chlorinated  yarn  . .  1*52 

„        ,,  damaged  chlorinated  yarn  . .         . .  1-375 

„        „  badly  damaged  chlorinated  yam    . .  1-295 

Another  set  of  experiments  with  the  same  yarn 
but  using  a  different  method  of  chlorination  gave  :  — 


Elasticity  of  undamaged  chlorinated  yarn 
„        „  damaged  ,,  „ 


1-620 
1-475 


Apparently,  therefore,  chlorination,  in  the 
absence  of  damage,  actually  increases  the  elas- 
ticity slightly,  and  considerable  destruction  of  the 
epithelium  is  required  sensibly  to  reduce  it.  The 
results  are  not  surprising.  The  strength  of  the 
wool  fibre  is  a  function  of  the  cortex.  The  epithelial 
scales  have  little  to  do  with  it.  Possibly  when  large 
numbers  of  them  are  destroyed  their  cumulative 
effect  becomes  apparent,  but  it  is  more  probable 
that  it  is  damage  to  the  cortical  cells  which  is  being 
measured.  It  is  obvious  that  tensile  strength 
cannot  be  used  as  a  test  to  check  the  process,  or 


220  T 


TROTMAN.— THE  CHLORINATION  OF  WOOL. 


[July  15,  1922. 


even  as  an  indication  of  serious  damage.  The 
weakness  which  is  sometimes  developed  in  wear  is, 
in  part,  due  to  the  gradual  wearing  away  by  fric- 
tion and  other  causes  of  the  exposed  cortex  of  the 
damaged  fibres. 

Increased  affinity  for  dyes. — This  is  generally 
described  as  though  it  were  a  valuable  property  of 
chlorinated  wool.  My  experiments  show  that  this 
is  quite  wrong.  If  the  process  of  chlorination  is 
carried  out  properly  the  increased  affinity  for  dyes 
is  extremely  slight,  in  fact  negligible.  It  only 
becomes  marked  as  the  epithelial  scales  begin  to 
be  attacked  and  destroyed.  In  fact,  one  may  say 
that  if  an  unshrinkable  fabric  has  a  marked  affinity 
for  dyes  it  is  a  bad  sign  and  indicates  extensive 
damage  and  bad  wearing  properties.  In  one  ex- 
periment four  samples  of  yarn  containing  0,  5,  20, 
and  50%  of  damaged  fibres  respectively  were  dyed 
in  the  same  bath.  It  was  found  that  the  depth 
of  colour  was  roughly  proportional  to  the  per- 
centage of  damage  and  that  the  affinity  for  dyes 
of  the  sample  free  from  damaged  fibres  was  but 
little  greater  than  that  of  natural  wool.  In  a  com- 
parative test  on  a  good  commercial  fabric  contain- 
ing 4%  of  damaged  fibres  and  a  sample  of  the  same 
make  but  containing  a  much  larger  percentage, 
the  same  difference  was  again  noticeable.  Good 
and  bad  samples  can  be  sorted  by  simply  dyeing 
them  under  exactly  the  same  conditions.  Further 
experiments  are  in  progress  upon  these  points. 

Wetting  power. — The  wetting  power  of  chlorin- 
ated wool  is  actually  not  much  greater  than  that 
of  ordinary  scoured  wool.  It  is,  like  the  increased 
affinity  for  dyes,  only  marked  when  the  fibre  is 
damaged.  In  fact,  the  wetting  power  varies 
directly  with  the  percentage  of  damaged  fibres.  In 
one  experiment,  fibres  of  (a)  untreated  wool, 
(6)  undamaged  chlorinated  wool,  (c)  chlorinated 
wool  containing  respectively  5,  20,  and  50%  of 
damaged  fibres,  were  suspended  with  their  lower 
ends  dipping  in  a  weak  solution  of  an  acid  dye. 
The  height  to  which  the  solution  rose  in  the  fibres 
was  in  the  order  of  the  percentage  of  damaged 
fibres,  and  there  was  very  little  difference  be- 
tween the  action  of  the  natural  and  undamaged 
chlorinated  wool.  If  a  piece  of  badly  damaged 
fabric  is  worked  in  water  it  wets  immediately  and 
becomes  soft  and  almost  slimy.  This,  however,  is 
not  noticed  in  an  undamaged  sample.  This  rapid 
softening  dou'btless  has  some  bearing  upon  the 
breaking  down  of  damaged  goods  in  wearing  and 
washing.  When  dried  again  the  fibre  appears  to 
regain  its  strength.  This  peculiarity  on  wetting  is 
very  similar  in  the  case  of  certain  varieties  of 
artificial  silk.  It  is  still  more  noticeable  if  dilute 
sodium  carbonate  or  sodium  hydroxide  is  used. 
Loss  of  tensile  strength  is  very  marked,  while  with 
undamaged  fibres  no  such  loss  is  observed.  This  is 
illustrated  by  the  following  example:  — 


Good 

Bad 

sample. 

sample 

2-59 

2-52 

Strength  of  dry  yarn 

Strength  after  soaking  in  N/10  sodium 

carbonate  2-58         ..         1-80 

Closely  connected  with  wetting  power  is  the 
property  of  attracting  and  retaining  atmospheric 
moisture.  The  standard  "  regain  "  depends  upon 
this  factor.  The  regain  for  wool  is  18J%.  For 
properly  chlorinated  wool  it  is  the  6ame.  For 
damaged  chlorinated  wool  it  is  higher  and  increases 
with  the  extent  of  the  damage.  A  regain  of  19  %  is 
quite  common,  and  in  one  case  it  has  reached 
21*5%.  Untreated  wool  regained  1607%  under  the 
same  conditions.  A  large  number  of  samples  of  wool 
and  chlorinated  wool  have  been  exposed  to  the  same 
atmospheric  conditions  till  equilibrium  was  estab- 
lished and  the  moisture  present  then  estimated.  It 
was  found  that  in  every  case  (1)  the  moisture  con- 
tent of  untreated  and  chlorinated  wool  (when  un- 


damaged) was  practically  the  same,  and  (2)  as  the 
fibre  became  damaged  the  water  content  increased 
gradually. 

An  interesting  experiment  was  carried  out  in 
which  a  commercial  garment — one  of  the  best  I  have 
examined,  containing  only  4%  of  damaged  fibre 
— was  cut  in  two  and  one  portion  treated  with 
chlorine  water  (3  g.  per  litre)  and  washed  as  usual. 
The  dry  weight  of  each  portion  was  then  found  in 
an  ordinary  conditioning  oven.  The  two  dry  pieces 
were  exposed,  side  by  side,  under  exactly  similar 
conditions,  to  the  action  of  the  air  and  re-weighed 
at  intervals  of  24  hours  and  the  regain  calculated. 
The  results  are  given  in  the  following  table:  — 

Good  sample.      Bad  sample. 

Regain.  Regain. 

After  1  day  9-76  . .  12-40 

„      2  days         16-84  . .  19-59 

„      3  days         16-16  . .  1804 

4  days         16-49  . .  19-07 

„       5  days  16-49  .  .  19-07 

„      6  days        16-80  . .  19-07 

The  atmosphere  became  dryer  on  the  third  day. 
This  is  reflected  in  the  regains.  Under  all  condi- 
tions tho  regain  of  the  bad  sample  is  nearly  3% 
higher  than  that  of  the  other.  This  point  has,  of 
course,  some  bearing  upon  the  weight  of  commercial 
unshrinkable  garments.  Another  set  of  experi- 
ments was  made  with  commercial  garments  from 
different  sources.  Tliey  were  again  dried  and  ex- 
posed to  air,  under  identical  conditions,  and 
weighed  every  24  hours.  Samples  1  and  4  were 
badly  damaged  during  chlorination.  Nos.  2  and  3 
were  of  fair  quality.  The  results  of  the  tests  are 
given  in  the  following  table:  — 


No.  1 

No.  4 

No.  2 

No.  3 

ain  1st  day 

11-11 

.        13-04 

9-54 

9-60 

„     2nd  day 

10-92 

13-52       . 

9-81 

9-89 

„     3rd  day 

13-81 

14-10 

10-88 

1101 

„     4th  day 

13-56 

14-49 

11-45 

11-31 

„     5th  day 

14-31 

1500 

11-98 

11-59 

„     6th  dav 

14-88 

15-46 

12-26 

11-98 

„     7th  day 

15-82 

15-94 

12-81 

.       13-28 

The  difference  between  the  good  and  damaged 
samples  is  again  very  marked.  It  seems  to  be  quite 
clear  that  the  capacity  for  absorbing  moisture  from 
the  atmosphere  is  a  function  of  the  damage. 

These  four  samples  were  next  wetted  out  with 
water,  wrung,  and  hung  out  to  dry  in  a  warm  room, 
the  rate  of  drying  being  determined  by  weighing 
the  garments  at  intervals.  The  following  results 
were  obtained :  — 

Percentage  of  water  in  sample. 
1.  2.  3.  4. 

After  24  houra    . .         . .     3714     . .     14-44     . .     14-10     . .     16-91 

„    36  hours    ..  ..     23-27     ..     11-72     ..     12-08     ..     1507 

„    48  hours    . .         . .     15-90     . .     11-72     . .     12-08     . .     1507 

It  will  be  noted  that  the  bad  samples  retain  more 
water  than  the  good  ones,  and  that  the  amount 
retained  is  in  accordance  with  the  regains  in  the 
former  experiments. 

Solubility  of  chlorinated  wool. — Natural  wool  and 
chlorinated  wool,  both  undamaged  and  damaged, 
have  been  treated  side  by  side  with  (a)  water, 
(6)  N J10  sodium  hydroxide,  (c)  N/10  sodium  car- 
bonate, (d)  dilute  acetic  acid  and  salt  solution  (i.e., 
artificial  perspiration).  The  dissolved  wool  sub- 
stance was  estimated  colorimetrically  by  the  biuret 
reaction,  and  also  directly  by  weighing  the  sample 
before  and  after  treatment.  The  results  of  these 
experiments  prove  that  (1)  well  prepared  chlorin- 
ated wool,  containing  no  damaged  fibres,  is  not 
more  soluble  than  ordinary  wool ;  (2)  damaged 
chlorinated  wool  is,  on  the  other  hand,  distinctly 
soluble,  and  the  solubility  increases  in  direct  pro- 
portion to  the  percentage  of  damaged  fibres  pre- 
sent. This  is,  no  doubt,  explained  by  the  fact  that 
the  cortical  scales  are  less  resistant  than  the  epithe- 
lial scales,  the  latter  when  present  protecting  the 
former  from  the  action  of  the  solvent.  The  follow- 
ing figures  illustrate  the  percentages  soluble  in 
N/10  alkali  of  good  and  bad  commercial  samples  :  — 
No.  1,  5%   damaged,  3'51%;  No.  2,  5%   damaged. 


Vol.  XLI.,  So.  13.] 


TROTJIAN.— THE  CHLORINATION  OF  WOOL. 


221  T 


4-08%;  No.  3,  25%  damaged,  9-00%;  No.  4,  50% 
damaged,  1450%.  Good  and  bad  samples  behave 
quite  differently  when  placed  in  .V/10  alkali.  The 
former  tend  to  swell  and  the  fibre  retains  its  firm- 
ness. Damaged  samples,  on  the  contrary,  wet  down 
almost  instantaneously  by  assuming  a  "fallen'' 
appearance  and  aquiring  a  soft,  slimy  feel,  and 
breaking  unless  carefully  handled.  The  colour  of 
both  fibre  and  solution  becomes  yellowish. 

This  solubility  and  "  falling  "  of  damaged  goods 
is.  in  my  opinion,  one  of  the  chief  causes  of  bad 
wearing.  Every  time  the  goods  are  washed  they 
are  soaked  in  dilute  solutions  of  alkali.  Gradually 
more  and  more  of  the  wool  substan  e  i*;  dissolvi  d 
until,  ultimately,  the  fibre  breaks  down.  The 
solubility  in  artificial  perspiration  is  of  considerable 
importance  as  a  factor  affecting  wearing  properties. 
It  i-  much  less  marked  than  the  solubility  in  alka- 
line solutions,  but  still  quite  distinct.  It  is  always 
greater  in  the  case  of  damaged  goods.  Untreated 
and  well-treated  wool  only  lose  traces  of  nitrogen 
even  when  soaked  in  dilute  acetic  acid  and  salt 
solution  for  long  periods.  Damaged  chlorinated 
wool,  on  the  contrary,  gives  a  biuret  reaction  in  a 
comparatively  short  time.  This  is  illustrated  by 
the  figures  obtained  from  two  garments  from  yarn 
from  the  same  source  and  of  the  same  grade. 


Average 

sample. 

6-29 


Damaged 

sample. 

16-52 


Percentage  soluble  in  -V  10  alkali  in 

3  hours 
Percentage   soluble    in   dilute    acetic 

acid  and  salt  in  12  hours         . .  0-90         . .  405 

The  acetic  acid  extract  gave  a  very  strong  biuret 
reaction  in  the  case  of  the  damaged  sample,  but 
practically  none  in  the  other. 

Action  of  ozonised  air  on  chlorinated  wool.  It 
Beemed  of  interest  to  test  the  comparative  action  of 
ozonised  air.  under  similar  conditions,  on  wool  and 
chlorinated  wool.  The  tensile  strength  and  elas- 
ticity of  a  natural  wool  and  the  same  wool  after 
different  degrees  of  chlorination  were  carefully 
tested.  The  samples  were  then  exposed  to  the 
action  of  ozonised  air  for  7  days,  after  which  the 
elasticity  and  tensile  strength  were  re-tested.  The 
results  of  these  tests  indicate  that  (1)  the  elasticity 
and  tensile  strength  of  natural  wool  are  unaffected 
by  exposure  to  ozonised  air;  (2)  the  elasticity  ot 
chlorinated  wool  is  also  unaffected:  (3)  the  tensile 
strength  of  chlorinated  wool  is  distinctly  less  after 
exposure  to  ozonised  air.  The  following  table 
illustrates  these  points:  — 

Tensile  strength  Tensile  strength 

before  exposure.  after  exposure. 

Natural  wool         . .          . .         3-29             . .  3-60 

3-40             ..  3-50 

3-45              ..  3-42 

Chlorinated  wool  . .          . .         3-70             . .  3-35 

, 3-47             ..  3-27 

3-93             ..  3-50 

3-37             ..  3-23 

„     . .          . .         3-53             . .  3-45 

The  loss  of  tensile  strength  would  probably  increase 
with  the  time  of  exposure  to  the  ozonised  air. 
Time  has  not  permitted  me  to  complete  the  tests 
nor  to  find  out  whether  the  result  varies  with  the 
degree  of  chlorination.  There  appears  to  be 
evidence  that  chlorinated  wool  does  not  withstand 
exposure  to  air  so  well  as  ordinary  wool.  This  fact 
may  have  something  to  do  with  inferior  wearing 
properties. 

I  have  noticed  also  that  when  epithelial  scales  are 
damaged  during  chlorination  the  damage  is  in- 
creased during  the  process  of  boarding.  Further 
experiments  are,  however,  being  carried  out  upon 
this  point. 

Treatment  with  formaldehyde  in  2  %  solution 
before  chlorination  causes  a  considerable  decrease 
in  the  solubility  of  even  damaged  goods,  as  well  as, 
as  will  be  noted  later,  a  diminution  in  the  loss  of 
weight. 


The  analysis  of  chlorinated  wool. 

Natural,  scoured  wool  contains  only  traces  of 
chlorine.  Chlorinated  wool,  if  properly  "  de- 
chlorinated  "  and  washed,  is  also  practically  free 
from  chlorine.  If  either  of  these  processes  is  faulty 
the  quantity  of  soluble  or  combined  chlorine  in- 
creases. Soluble  chlorine  indicates  incomplete 
washing,  while  combined  chlorine  denotes  over- 
chlorination  or  faulty  dechlorinating  Soluble 
chlorine  is  estimated  by  a  method  similar  to  that 
used  for  rag  flocks.  Combined  chlorine  is  deter- 
mined in  the  residue,  after  removing  soluble 
chlorine,  by  careful  incineration  with  sodium  car- 
bonate and  precipitating  the  chlorides  with  silver 
nitrate. 

The  following  are  examples  of  good  and  bad 
samples :  — 

G 1  Bad. 

Soluble  chlorine        . .         . .  trace  . .         0-033% 

Combined  chlorine   . .         . .         0-007%         . .         0-079% 

Solubility  in  A"/ 10  sodium  hydroxide,  6odium 
carbonate,  etc..  artificial  perspiration,  and  water 
are  also  tested,  the  dissolved  wool  substance  being 
estimated  by  the  biuret  reaction. 

Chemical  analysis  should  always  be  accompanied 
by  a  careful  microscopical  examination.  I  count  and 
examine  100  fibres  taken  from  different  portions  of 
the  sample.  Good  samples  should  fulfil  the  follow- 
ing conditions  : — (1)  Only  traces  of  chlorides  should 
be  present.  (2)  Should  not  contain  more  than  5% 
of  damaged  fibres.  (3)  Should  not  have  a  marked 
affinity  for  dyes.  (4)  After  soaking  in  cold  deci- 
normal  alkalis  the  solvent  should  only  give  faint 
reaction  for  wool  substance  with  the  biuret  test. 

Alternatively,  the  loss  of  weight  may  be  deter- 
mined directly.  The  following  illustrates  the 
method.  About  2  g.  of  the  material  is  dried  and 
weighed  in  a  weighing  bottle.  It  is  then  soaked  for 
3  hours  in  A7/ 10  sodium  hydroxide  solution.  At  the 
end  of  this  time  it  is  washed  with  hot  distilled  water 
several  times,  then  with  very  dilute  acetic  acid, 
followed  by  more  water.  It  is  then  dried  and 
weighed  again  in  the  weighing  bottle. 

The  manufacturing  process. 

Damage  of  chlorinated  wool  may  he  produced  in 
the  following  ways: — (1)  During  chlorination;  (2) 
during  finishing;  (3)  after  finishing  owing  to  in- 
complete removal  of  chlorine  and  the  breaking  down 
of  damaged  fibres. 

In  studying  the  "unshrinkable"  process  one  is 
struck,  at  once,  by  the  incompleteness  of  published 
information  and  often,  as  will  be  shown  later,  by  its 
inaccuracy.  The  following  examples,  taken  from 
standard  text  books,  are  typical  of  the  unscientific 
nature  of  the  process  itself  and  of  the  incomplete- 
ness of  published  information.  Yet  they  are  quite 
typical  of  the  methods  of  actual  manufacture. 

(1)  "  Treat  the  wool  in  a  bath  of  1J  lb.  hydro- 
chloric acid  in  10  gallons  of  water.  Squeeze  and 
wash  in  a  bath  of  bleaching  powder,  made  as  follows. 
For  100  lb.  of  wool  use  15  to  20  lb.  of  bleaching 
powder  to  330  gallons  for  hard  fibre  wool  and  20 
to  25  lb.  to  475  gallons  for  soft  fibre  wool.  The 
bleaching  powder  solution  should  be  0'6°  Tw.  to 
1°  Tw.  After  half-an-hour  add  3  oz.  of  hydrochloric 
acid  to  each  10  gallons  and  work  10  minutes  longer. 
Wash  and  treat  with  bisulphite." 

(2)  "Prepare  a  solution  of  160  lb.  of  bleaching 
powder  at  14°  Tw.  Add  100  lb.  of  soda  ash.  Let  the. 
precipitate  settle  and  decant.  For  each  pound  of 
fabric  use  from  i  to  1  pint  of  acid." 

(3)  "  Steep  for  20  minutes  in  hydrochloric  acid  of 
1-5°  Tw.,  then  for  10  minutes  in  bleaching  powder 
solution  of  3°  Tw.  Then  pass  into  hydrochloric  acid 
of  1-5°  Tw.  for  20  minutes." 

The  most  striking  point  about  these  published 
processes,  next  to  their  general  vagueness,  is  that 
in  no  case  is  the  strength  of  the  bleaching  powder 


222  t 


TROTMAN.— THE  CHLORINATION  OF  WOOL. 


[July  15,  1922. 


solution  stated  in  terms  of  available  chlorine.  With 
regard  to  this,  it  should  be  noted  that  for  such  low 
strengths  as  0"5° — 1"5°  Tw.  the  error  of  experiment 
is  greater  than  the  total  amount  of  chlorine  present. 
In  process  No.  1  the  effect  of  adding  hydrochloric 
acid  at  the  end  of  half  an  hour  would  probably  be 
to  cause  considerable  damage  to  the  goods. 

We  have  but  little  definite  knowledge  of  the 
chemistry  of  the  process.  Experiments  are  in 
progress,  the  results  of  which  will  be  published 
later.  When  chlorine  water  acts  upon  wool  the 
following  changes  may  be  observed.  (1)  Protein 
nitrogen  is  gradually  dissolved.  (2)  Sulphur  is 
dissolved  as  sulphuric  acid.  (3)  The  proportions  of 
sulphur  and  nitrogen  in  the  residual  wool  are 
changed.  All  these  changes  are  directly  propor- 
tional to  the  concentration  of  the  chlorine  water 
and  the  time  of  action.  The  dissolved  nitrogen 
gives  the  biuret  reaction.  This,  together  with  the 
fact  that  sulphuric  acid  is  present,  appears  to 
indicate  that  the  keratin  molecule  is  broken  down 
into  simpler  compounds,  probably  soluble  chlor- 
amines,  with  the  liberation  of  some  loosely-com- 
bined sulphur  atoms.  Over-treatment  of  wool  is 
accompanied  by  a  rapid  loss  of  sulphur.  Thus  a 
natural  untreated  yarn  contained  3' 74%  of  sulphur. 
Treatment  with  chlorine  water  (5  g.  per  litre) 
reduced  this  to  3'29  % .  At  the  same  time  the 
nitrogen  content  fell  from  16'01%  to  15'57%.  Very 
similar  results  were  given  by  fair  and  damaged 
commercial  garments. 


Fair  sample. 

Bad  sample 

Nitrogen  % 

15-21 

14-90 

Sulphur  % 

2-72 

2-51 

Bleaching  powder  solution  is  a  complex  mixture 
containing  lime,  calcium  hypochlorite,  calcium 
chloride,  and  hypochlorous  acid.  It  owes  its  action 
to  hypochlorous  acid  or  chlorine  separately  or 
conjointly  according  to  the  conditions  of  the  re- 
action. These  conditions  have  been  investigated  by 
Taylor,  Higgins,  and  others,  and  may  be  usefully 
recapitulated,  as  they  are  of  much  importance  in 
the  treatment  of  wool. 

(1)  When  bleaching  powder  is  treated  with  just 
enough  of  a  strong  acid  (hydrochloric  or  sulphuric 
acid)  to  neutralise  the  free  lime,  hypochlorous  acid 
is  liberated  by  hydrolysis  till  the  accumulation  of 
lime  inhibits  the  action.  If  more  hydrochloric  or 
sulphuric  acid  is  added,  the  calcium  hypochlorite 
is  decomposed  with  the  formation  of  more  hypo- 
chlorous acid.  This  is,  in  turn,  decomposed  by  the 
mineral  acid  giving  rise  to  chlorine.  With  limited 
amounts  of  acid  a  mixture  of  hypochlorous  acid  and 
free  chlorine  is  produced.  If  the  quantity  of  acid 
is  increased  the  proportion  of  chlorine  rises  till 
ultimately  only  chlorine  is  produced. 

It  will  be  seen  that  in  the  commercial  processes 
no  account  is  taken  of  these  facts.  It  is  entirely 
a  matter  of  chance  whether  hypochlorous 
acid  or  chlorine  is  used,  or  both.  It  depends  largely 
upon  the  quantity  of  acid  carried  into  the  bleaching 
powder  bath  by  the  soured  wool.  In  any  case,  it  is 
probable  that  the  first  effect  is  the  liberation  of 
chlorine,  owing  to  the  excess  of  acid  when  the 
chemick  first  enters  the  wool. 

(2)  Weaker  acids,  such  as  acetic  and  phosphoric 
acids,  act  similarly,  except  that  the  proportion  of 
hypochlorous  acid  does  not  usually  fall  below  50%. 

(3)  Boric  acid,  according  to  Higgins,  even  when 
present  in  excess,  gives  only  hypochlorous  acid  and 
no  chlorine.  Taylor,  it  should  be  noted,  does  not 
confirm  this  statement,  though  it  is  agreed  that  the 
proportion  of  hypochlorous  acid  is  high.  From 
experiments  made  in  connexion  with  this  paper, 
I  am  of  opinion  that  for  weak  solutions  of  bleaching 
powder,  such  as  would  be  used  in  the  chlorination 
of  wool,  Higgins'  view  is  correct,  but  that  when 
strong  solutions  and  an  excess  of  boric  acid  are  used 
free  chlorine  is  also  produced.     For  concentrations 


up  to  3  grams  of  available  chlorine  per  litre  a 
mixture  of  bleaching  powder  and  boric  acid  is  prac- 
tically hypochlorous  acid. 

(4)  Carbonic  acid,  in  the  cold,  gives  a  mixture  of 
hypochlorous  acid  and  chlorine,  like  a  mineral  acid. 
As  the  temperature  rises  the  proportion  of  hypo- 
chlorous acid  increases,  till  at  100°  C.  only  hypo- 
chlorous acid  is  formed. 

(5)  Chlorine  water  contains  small  quantities  of 
hypochlorous  acid,  but  if  a  little  hydrochloric  acid 
is  added  it  may  be  regarded  as  containing  only 
chlorine. 

By  taking  advantage  of  these  reactions  it  is 
possible  to  investigate  separately  the  action  on  wool 
of  chlorine  and  hypochlorous  acid.  I  may  say  that, 
from  the  study  of  many  samples  of  damaged  goods 
and  of  the  actual  processes  used,  I  had  formed  the 
opinion  that  in  all  cases  the  damage  was  caused  by 
chlorine  and  not  by  hypochlorous  acid.  My  experi- 
ments were  undertaken,  in  the  first  instance,  to 
confirm  or  disprove  this  view. 

In  all  cases  the  goods  were  carefully  dechlorinated 
and  washed.  After  drying,  they  were  examined 
with  the  microscope  and  the  percentage  of  damaged 
fibres  estimated.  In  most  cases  the  loss  in  weight 
was  also  determined.  This  is  also  a  measure  of 
the  efficiency  of  the  process. 

The  action  of  chlorine  is  shown  in  the  following 
table :  — 

Chlorine  water. 


Orms.  CI- per 

%  loss  in 

%  of  damaged 

*Jo.  of  exp. 

litre. 

weight. 

fibres. 

1. 

0-5 

5-2 

27 

o 

1-0 

8-0 

46 

3. 

3-0 

15-6 

100 

It  may  be  mentioned  that  bleaching  powder 
solution  of  1°  Tw.  contains  approximately  2'75  g. 
of  chlorine  per  litre.  The  destructive  effect  of 
chlorine  is  very  marked.  A  solution  of  hypo- 
chlorous acid  containing  excess  of  hydrochloric  acid 
gave  similar  results. 

The  next  table  shows  the  effect  of  bleaching 
powder  solution  to  which  was  added  the  quantity 
of  hydrochloric  acid  required  to  liberate  all  the 
available  chlorine. 


No.  of  exp. 
1. 
o 

3. 

4. 


Bleaching  powder. 

%  loss  in 
weight. 
13-8 


Grms.  CI  per 
litre. 
20 
30 
4-0 
50 


20-5 
23-5 
25-5 


%  of  damaged 
fibres. 

I  Scales  nearly 
all  gone. 


Exp.  2  was  repeated  using  only  one-quarter  of  the 
acid,  i.e.,  decreasing  the  ratio  of  chlorine  to  hypo- 
chlorous acid.  The  loss  in  weight  was  reduced  to 
10"6%.  A  blank  experiment  with  the  yarn  used, 
omitting  only  the  chemick,  gave  2"2%. 

The  next  series  of  experiments  was  designed  to 
test  the  effect  of  adding  gradually  increasing  quan- 
tities of  acid  to  a  definite  amount  of  bleaching 
powder  solution.  The  latter  had  a  strength  of  4  g. 
per  litre.  The  amount  of  acid  necessary  to  liberate 
all  its  available  chlorine  was  calculated.  The  same 
quantities  of  wool  and  bleach  liquor  were  taken  for 
each  experiment.  In  the  first  experiment  one- 
fourth  of  the  total  acid  was  used.  In  succeeding 
experiments  the  quantity  was  gradually  increased 
till  excess  was  reached.  The  wool  was  soured  in  the 
measured  quantity  of  acid  and  the  whole  of  the 
fraction  added  to  the  chemick. 

The  results  are  given  in  the  following  table:  — 

%  of  damaged  fibres. 

Very  little  damage. 


Damaged. 
Much  damaged. 


Here  again  the  effect  of  increasing  the  quantity  of 
chlorine  is  very  marked,  as  is  also  the  large  per- 


Fraction  of 

%  loss  in 

No.  of  exp. 

acid  u 

ed. 

weight. 

1. 

0-25 

8-6 

2.       .. 

0-40 

15-6 

3. 

0-50 

13-0 

4. 

0-75 

13-8 

5.       .. 

1-00 

15-5 

a. 

1-20 

17-0 

Vol.  XLI.,  No.  13.] 


TROTMAN.— THE  CHLORLNATION  OF  WOOL. 


223t 


centage  loss  in  weight  caused  by  excess.  Yet  this 
frequently  happens  in  coniniercial  processes  where 
no  control  of  the  acid  used  is  exercised.  Commercial 
liquors  nearly  always  contain  free  acid  after  use. 

The  next  series  of  experiments  was  carried  out 
by  an  ordinary  commercial  process,  except  that  the 
strength  of  the  bleach  liquor  was  carefully  con- 
trolled by  titration.  Varying  concentrations  in 
grams  per  litre  of  chlorine  were  used.  The  process 
used  was  : — (1)  Steep  in  hydrochloric  acid  at  1°  Tw. 
and  squeeze.  (2)  Steep  in  bleaching  powder  solution 
and  wash.  (3)  Steep  in  bisulphite  and  wash.  (4) 
Steep  in  soda  ash,  wash,  and  dry. 

In  every  case  the  amount  of  acid  carried  over  by 
the  wool  was  in  excess  of  that  required,  as  it 
frequently  is  in  practice,  thus  giving  a  large  propor- 
tion of  chlorine  to  hypochlorous  acid. 

The  results  of  these  experiments  were :  — ■ 


No. 


Grms.  CI. 

per 

%    loss 

of  exp. 

litre. 

weight 

1. 

0-3 

2-2G 

o 

0-4 

2-70 

3. 

0-5 

3-80 

4. 

0-6 

3-85 

5. 

0-7 

4-65 

6. 

1-0 

6-90 

7. 

2-0 

— 

o  of  damaged 

fibres. 
Less  than  5 


Over  10 
30 

Over  30 
60—60 


These  results  indicate  the  danger  of  using  un- 
known strengths  of  bleaching  powder  solution,  and 
that  the  chlorine  content  must  be  estimated  care- 
fully and  kept  below  0'6  g.  per  litre. 

A  set  of  experiments  with  another  make  of  yarn, 
on  the  same  lines,  gave  very  similar  results,  viz. :  — 


Grms.  CI  per 

%    loss    in 

%  damaged 

No.  of 

sip. 

litre. 

weight. 

fibres. 

1. 

0-3 

1-90 

.  Less  than  5 

2. 

0-4 

3-21 

S 

3. 

0-5 

3-30 

5 

4. 

0-6 

4-00 

10 

5. 

0-7 

5-04 

.  Over  10 

It  seemed  probable  that  previous  treatment  with 
formaldehyde  would  cause  a  decrease  in  the  loss 
of  weight.  This  proved  to  be  the  case,  though  little 
difference  in  the  number  of  damaged  fibres  was 
noted.  With  0'7  g.  of  chlorine  per  litre  the  loss 
in  weight  was  reduced  from  5"04%  to  2'60%.  I 
noticed  here  a  point  of  some  importance,  namely, 
that  different  types  of  wool  have  different  powers 
of  resistance  to  chlorine.  Thus  in  a  set  of  experi- 
ments with  a  fresh  variety  no  damage  was  observed 
till  1  g.  of  chlorine  per  litre  was  exceeded.  This 
was  particularly  noticeable  in  the  case  of  a  coarse, 
unbleached  woollen  yarn  where  no  damage  was 
recorded  below  3  g.  of  chlorine  per  litre.  I  noted, 
further,  that  when  a  yellow  colour  appears  on  the 
wool,  it  is  indicative  of  serious  damage.  I  have 
often  been  told  by  manufacturers  that  the  object 
of  the  bisulphite  or  sulphurous  acid  bath  is  partly 
to  remove  the  yellow  colour  produced  by  the 
chlorine.  This  should  be  quite  unnecessary.  The 
only  object  of  its  use  should  be  to  remove  chlorine 
left  in  the  wool. 

Boarding  goods  containing  traces  of  unremoved 
chlorine  caused,  as  would  be  expected,  a  great  in- 
crease in  the  number  of  damaged  fibres. 

Experiments  were  made  next  with  sodium  hypo- 
chlorite instead  of  bleaching  powder  solution. 
Rather  stronger  solutions  can  be  used  with  safety 
and  the  loss  in  weight  appears  to  be  somewhat  less. 

Sodium,  hypochlorite. 


Grms.  CI  per 

%    loss    in 

%  of  damaged  " 

No.  of  exp. 

litre. 

weight. 

fibres. 

1. 

1 

6-7 

=•'      10  * 

2. 

2 

10-4 

. .  More'than'10 

3. 

3 

10-5 

>i        i. 

Further  experiments  are  necessary  for  generalisa- 
tion. 

Hypochlorous  acid  was  prepared  by  passing 
chlorine  into  water  containing  calcium  carbonate 
in  suspension.  If,  as  the  foregoing  experiments 
seem  to  indicate,  damage  is  caused  by  chlorine,  less 


should  be  found  when  hypochlorous  acid  free  from 
chlorine  is  used.  That  this  is  so  is,  I  think,  un- 
doubtedly the  case.  It  is  shown  in  the  following 
tables  for  some  different  kinds  of  yarns. 

Hypochlorous  acid. 


Grms 

CI 

per 

%  of  damaged  fibres 

No.  of  exp. 

litre. 

1. 

10 

No  damage. 

o 

30 

I<ess  than  5. 

3. 

50 

30 

4. 

1-0 

No  damage. 

5. 

3-0 

.. 

Scale  intact  but  faint. 

As  already  noted,  hypochlorous  acid  may  more 
readily  be  obtained  by  treating  bleaching  powder 
solution  with  boric  acid.  I  give  some  results 
together  with  parallel  experiments  made  simul- 
taneously with  other  methods. 


No.  of 
l. 
la. 
2. 
2a. 


3a.      .. 
4. 

4a.      .. 
Finer  counts. 
1. 

la.       .. 
2. 

2a.      '.'. 
3. 

3a.      .. 
4. 
4a.      .. 


Grms  CI 
per  litre. 
0-5 
0-5 
1-0 
10 
30 
..  3-0 
5-0 
6-0 


0-5 
0-5 
1-0 
1-0 
3-0 
3-0 
5-0 
6-0 


Acid  used, 
hydrochloric 
Doric 

hydrochloric 
boric 

hydrochloric 
boric 

hydrochloric 
boric 

hydrochloric 

boric 

hydrochloric 

boric 

hydrochloric 

boric 

hydrochloric 

boric 


%  of  damaged  fibres, 
no  damage, 
no  damage. 
8 

no  damage. 
80 

scales  intact  but  faint, 
no  sca!e3  left. 
80 

no  damage, 
no  damage. 
10 
5 
20 
15 
50 
40 


It  is  clear  that  when  boric  acid  is  used  as  the 
sour  a  greater  concentration  of  chlorine  may  be 
used  without  causing  damage  than  when  hydro- 
chloric acid  is  employed.  Vice  versa,  less  damage 
is  produced  at  lower  concentrations.  Not  only  is 
the  danger  of  damaging  the  fibre  less,  but  the  loss 
in  weight  is  also  much  smaller.  This  is  seen  from 
tho  following  experiments  :  — ■ 

No.  of  exp.       Grms.  CI  per  litre.  %  loss  in>eight. 

1.  .  2  ..  2-6 

2.  ..  3  ..  4-8 

3.  ..  4  ..  5-7 

4.  ..  5  ..  7-5 

As  before,  damage  only  became  visible  at  a  con- 
centration of  3  g.  per  litre.  We  may  take  it  as  a 
general  rule  that  hypochlorous  acid  up  to  the 
strength  corresponding  to  2  g.  of  chlorine  per  litre 
will  cause  neither  damage  nor  undue  loss  in  weight. 
The  latter  is  still  further  decreased  by  previous 
treatment  of  the  wool  with  formaldehyde. 

Summary. 

(1)  Wool  is  more  easily  damaged  by  chlorine  than 
by  hypochlorous  acid.  Hence  bleaching  powder 
solution  should  be  used  under  conditions  that  mini- 
mise the  quantity  of  chlorine  present. 

(2)  Different  grades  of  wool  require  rather  dif- 
ferent treatment,  some  being  damaged  more  easily 
than  others. 

(3)  For  any  particular  type  of  wool  the  maximum 
strength  of  bleaching  powder  solution  permissible 
should  be  determined  by  experiments  and  never 
exceeded. 

(4)  For  this  purpose  the  Twaddell  hydrometer  is 
worse  than  useless.  It  should  be  replaced  by  a 
chemical  process. 

(5)  Using  bleaching  powder  solution  and  a 
mineral  acid,  it  is  rarely  safe  to  exceed  a  strength 
of  06  g.  of  available  chlorine  per  litre.  The  prac- 
tice of  soaking  in  acid  is  dangerous,  unless  the 
quantity  of  acid  is  controlled,  since  excess  of  acid 
carried  over  into  the  bleach  liquor  causes  evolution 
of  chlorine. 

(6)  Excess  of  either  hypochlorous  acid  or  chlorine 
causes  destruction  of  both  epithelial  scales  and  cor- 
tical cells,  large  loss  of  weight,  high  solubility,  and 
bad  wearing  properties. 


224  T 


RAYNER.— RESIDUE  ON  DISTILLATION  OF  CRUDE  GLYCERIN. 


[July  15,  1922. 


(7)  If  boric  acid,  or  other  weak  acid,  is  used  as 
the  sour,  excess  is  not  so  dangerous  and  less  damage 
results  since  hypochlorous  acid  is  chiefly  produced. 

(8)  Loss  in  weight  and  also  the  solubility  of  the 
product  can  be  reduced  by  means  of  formaldehyde. 

(9)  All  goods  should  be  required  to  conform  to  a 
standard  of  "  good  commercial  quality." 

(10)  Many  of  the  properties  usually  ascribed  to 
chlorinated  wool  are  those  of  over-chlorinated  wool. 

Many  of  the  experiments  in  connexion  with  this 
paper  were  carried  out  by  my  assistant,  Mr.  H.  W. 
Goodwin,  P.I.O. 


Communications. 


NOTES     ON    THE     COMPOSITION     OF     THE 

RESIDUE     ON     DISTILLATION     OF     CRUDE 

GLYCERIN. 

BY    ARCHIBALD    RAYNER,    B.SC,    1.1.0. 

In  a  paper  on  the  above  subject  (J.,  1922,  97  t) 
E.  Lewis  describes  an  investigation  which  partly 
duplicates  work  carried  out  by  the  writer  several 
years  ago,  with  the  same  objective  in  view,  and 
although  certain  conclusions  arrived  at  confirm  this 
earlier  work,  there  are  several  points  raised  which 
seem  to  need  confirmation  or  amplification. 

In  the  first  place,  it  is  stated  that  25%  of  the 
residues  consists  of  glycerol  and  polyglycerols,  and 
70%  of  inorganic  matter,  from  which  it  follows  that 
the  organic  soaps  etc.  can  only  amount  to  5%. 
This  statement  seems  to  need  some  explanation 
since,  as  only  negligible  quantities  of  organic  im- 
purities pass  away  with  the  distillate,  it  follows  that 
the  proportion  of  inorganic  to  organic  impurities 
in  the  residues  should  be  substantially  the  same  as 
that  in  the  crude  glycerin  before  distillation.  It 
is  well  known,  however,  that  the  organic  impurity 
in  soap  or  saponification  crudes  is  invariably  much 
more  than  one-fourteenth  of  the  inorganic  matter. 
Examination  of  the  more  detailed  analyses  given 
later  shows  similar  results  which  are  difficult  to 
reooncile. 

In  the  writer's  experience  examination  of 
various  still  residues  from  6oap  crudes  from  various 
sources  has  shown  that  the  organic  salts  usually 
amount  to  about  40%  of  the  inorganic  salts,  which 
is  about  what  would  be  expected,  since  it  is  about 
the  average  proportion  in  which  they  occur  in 
soap  crude  glycerin. 

Further,  the  statement  is  made  that  polymerised 
glycerin  is  present  in  commercial  crude  to  the 
extent  of  about  2%,  and  is  highest  in  glycerin  pro- 
duced in  autoclaves.  Unless  it  is  suggested  that 
polyglycerols  exist  combined  with  fatty  acids  in 
the  original  fats,  their  presence  in  crude  glycerins, 
and  other  than  such  glycerin  as  has  had  still 
residues  worked  back  into  it,  cannot  be  explained. 
Many  years'  experience  of  glycerin  produced 
largely  by  the  autoclave  process  quite  fails  to 
support  the  suggestion  that  such  glycerin  contains 
polyglycerol  at  all,  nor  from  theoretical  considera- 
tions, having  in  view  the  dilution  of  the  glycerin 
in  the  autoclave,  can  such  a  production  of  poly- 
glycerols be  considered   in  the  least  likely. 

As  regards  the  calculations  by  which  the  relative 
amounts  of  glycerol  and  diglycerol  in  the  residues 
are  estimated,  as  far  as  the  writer  is  aware,  there 
is  no  justification  for  assuming  that  the  acetylisable 
impurities  in  the  residues  are  wholly  due  to  poly- 
glycerols, since  this  would  necessitate  the  assump- 
tion that  the  acetyl  value  of  the  residues  of  crude 
glycerin  is  similarly  due  wholly  to  polyglycerols  in 
the    crude,    a    suggestion    which    appears    hardly 


possible  of  acceptance,  since  it  is  well  known  that 
various  hydroxy-acids  etc.  are  present,  which  give 
saponifiable  products  when  boiled  with  acetic 
anhydride.  Further,  the  writer  has  found  that 
the  only  distillable  polymerisation  products  which 
are  produced  from  glycerin  are  also  volatile  under 
the  conditions  of  the  I.S.M.  total  residue  test  if 
the  latter  is  carried  to  a  correct  finish.  In  any  case, 
however,  it  does  not  appear  that  the  chemistry 
of  the  polymerisation  products  of  glycerol  is  so 
simple  as  to  enable  the  composition  of  such  pro- 
ducts to  be  estimated  in  terms  of  glycerol  and 
diglycerol  from  their  hydroxyl  value. 

As  a  result  of  a  long  study  and  examination  of 
these  products,  the  writer  was  forced  to  the  con- 
clusion that  the  conversion  of  glycerol  to  volatile 
polymerisation  products  gives  rise  to  substances  of 
at  least  two  different  types,  the  one  class  appear- 
ing to  consist  of  products  obtained  by  intermolecular 
condensation  of  the  ordinary  diglycerol  type,  with 
the  molecules  linked  together  thus:  — 

HO  HO  r.  OH  OH 

I  I  /°\  I  I 

CH,  —    CH—  CH2     CH,  —  CH  —  CH2 
(diglycerol) 

and  the  other  of  the  glycide  type,  in  which  not  only 
is  there  intermolecular  condensation,  but  also  the 
original  glycerol  molecule  itself  has  undergone 
internal  condensation  giving  products  of  the  type  : 
O  O  OH      OH 


CH2 


-CH  —  CH2  CH2  — CH  — CH2 

(glycide  of  diglycerol) 


It  is  only  by  assuming  the  presence  of  these  two 
types  that  the  discrepant  results  of  different 
observers  of  the  properties  of  the  volatile  poly- 
merisation products  can  be  explained.  As  a  typical 
instance  of  these  variations  in  results  the  following 
figures  may  be  quoted.  In  a  certain  laboratory  by 
heating  glycerol  for  12  hours  at  270°— 280°  C.  and 
separating  that  proportion  of  the  distillate  boiling 
at  210° — 250°  C.  at  3  mm.,  a  product  was  obtained 
having  a  hydroxyl  value  34"0%  and  a  viscosity 
5  times  that  of  glycerol.  On  the  other  hand,  in 
this  laboratory  by  boiling  glycerin  alone  for  a  some- 
what longer  time  and  distilling  at  10  mm.,  a  large 
fraction  was  obtained,  boiling  at  260°— 265°  C.  at 
10  mm.,  and  having  a  hydroxyl  value  of  38'0%  and 
a  viscosity  13  times  that  of  glycerol.  The  differ- 
ences are  quite  outside  any  possible  analytical 
errors,  and  as  the  product  having  the  higher 
hydroxyl  value  has  actually  a  much  greater  viscosity, 
it  follows  that  there  must  be  present,  particularly 
in  the  case  of  the  first  distillate,  another  distinct 
class  of  compound,  probably  of  the  glycide  type, 
possessing  low  viscosity  and  low  hydroxyl  values. 
Of  this  class  of  compound  the  glycides  of  glycerol, 
diglycerol,  and  triglycerol  are  known,  the  last- 
named  being  said  to  be  produced  when  polyglycerols 
are  distilled. 

From  their  molecular  structure  it  follows  that  the 
hydroxyl  values  are  low,  whilst  they  are  known  to 
be  thin  liquids  having  boiling  points  considerably 
lower  than  the  parent  glycerols.  The  presence 
of  such  substances  in  distilled  glycerin  recovered 
from  residues,  on  a  large  scale  by  a  special  process 
worked  out  by  the  writer,  has  been  very  evident. 
A  sample  from  a  particular  batch  of  distillate  was 
redistilled  in  the  laboratory  at  10  mm.,  and  that 
portion  separated  which  boiled  at  174° — 176°  C.  at 
10  mm.  (b.p.  of  pure  glycerol  in  same  apparatus, 
175°— 176°  C.  at  10  mm.).  As  this  distillate 
appeared  to  contain  traces  of  bases,  it  was  further 
purified  by  treatment  with  phosphotungstic  acid, 
followed  by  another  redistillation,  collecting  only 
the  portion  boiling  within  1°.  The  resulting  pro- 
duct was  apparently  pure  glycerol,  containing  no 


vol.  XLL,  No.  13.1  MARTIN  AND  ELLIOTT.— THE  COEFICIENT  OF  VULCANISATION  OF  RUBBER.  225  T 


moisture,  and  giving  no  total  residue  by  the  I.S.M. 
method.  Its  glycerol  value,  however,  when  deter- 
mined by  the  I.S.M.  method,  standardising  the 
solutions  used  against  standard  glycerin,  gave 
96-3  glycerol,  and  it  had  sp.  gr.  12641  at  155°  C. 
only,  as  against  pure  glycerin  126531.  If  in  this 
case  it  were  assumed  that  the  product  was  a  mixture 
of  glycerol  and  diglycerol  the  proportions  would  be 
approximately  86%  glycerol  and  14%  diglycerol,  a 
composition  which,  in  view  of  the  boiling  point,  is 
impossible,  and  the  low  glycerol  value  can  only  bo 
explained  by  the  presence  of  smaller  amounts  of 
another  compound  of  similar  b.pt  to  glycerol,  but 
having  a  much  lower  hydroxyl  value,  or  possibly  no 
hydroxy!  value  at  all. 

Such  figures  are  characteristic  of  these  distillates 
and  other  products  derived  from  polyglycerols,  and 
it  is  on  this  account  that,  in  the  writer's  opinion, 
no  information  as  to  the  relative  amounts  of 
diglycerol  and  glycerol  can  be  obtained  from  the 
hydroxyl  value  of  the  mixed  products. 

If  such  information  is  required  it  is  best  obtained 
by  submitting  the  volatile  products  to  fractional 
distillation,  whilst  the  total  amount  of  volatile 
products  can  be  estimated  by  the  difference  after 
determining  the  moisture  content  and  total  residue 
by  the  I.S.M.   methods. 

It  should  be  mentioned  that  attempted  poly- 
merisation by  0'0o%  of  iodine,  as  described,  has 
quite  failed  to  give  anything  like  an  85%  yield,  very 
little  polymerisation  at  all  being  obtained  under  the 
conditions  described,  and  this  method  seems  to  suffer 
from  the  same  defects  as  other  methods  having  as 
their  object  the  preparation  of  pure  polyglycerols. 

I  am  indebted  to  Mr.  Charles  Radburn,  Chairman 
of  Price's  Patent  Candle  Co.,  Ltd.,  for  kind  per- 
mission to  publish  these  notes. 

The  Laboratory, 

Belmont  Works,  Battersea. 


THE  COEFFICIENT  OF  VULCANISATION  OF 
RUBBER. 

BY   G.   MARTIN,   B.SC,   A.I.C.,   AND   F.    L.    ELLIOTT,    A.I.C. 

It  has  been  shown  by  previous  investigators  that 
when  rubber-sulphur  mixings  are  vulcanised 
approximately  to  the  same  physical  properties, 
there  is  a  small  variation  in  the  percentage  of  sul- 
phur "  fixed  "  by  the  rubber.  This  variation  does 
not  generallv  amount  to  more  than  1%  of  sulphur 
(Eaton,  Agric.  Bull.  Fed.  Malav  States  No.  27, 
1918,  p.  134:  de  Vries,  India  Rubber  J.,  1917,  101— 
103).  Except  for  results  showing  that  "  quick- 
curing  "  rubbers  generally  have  a  high  coefficient 
of  vulcanisation  at  the  standard  cure,  while 
"slow-curing"  rubbers  have  a  low  coefficient,  no 
experimental  evidence  has  been  published  indicat- 
ing the  cause  of  these  differences  (Eaton,  Joe.  cit.  ; 
de  Vries,  J.  Ind.  Eng.  Chem.,  1921,  13,  1133). 

De  Vries  ("Estate  Rubber,"  1920,  p.  489)  sums 
up  the  position  by  stating :'  "  Though  the  coefficient 
for  a  fixed  cure  shows  small,  though  distinct  varia- 
tions, it  has  not  yet' been  possible  to  connect  these 
deviations  with  any  property  of  the  rubber  in 
such  a  manner  that,  for  instance,  a  coefficient 
higher  than  the  average  would  be  an  indication  of 
certain  mechanical  properties  or  of  a  certain 
special  composition  of  the  rubber." 

The  object  of  the  present  investigations  was  to 
determine  to  what  extent,  if  any,  the  percentage 
of  sulphur  combined  with  the  rubber  at  the 
standard  cure  adopted,  is  dependent  upon  the 
nature  and  the  amount  of  the  usual  accessory 
substances  present  in  raw  rubber. 

Twenty-four  samples  of  rubber  were  selected  for 
examination.  They  consisted  of  six  samples  of 
crepe  rubber  and  six  samples  of  sheet  rubber  pre- 
pared on  an  estate  in  Ceylon  from  the  latex  of  a 


group  of  trees  approximately  10  years  old,  and  also 
of  six  samples  of  sheet  rubber  and  six  samples  of 
crepe  rubber  prepared  on  the  same  estate  from 
another  group  of  trees  approximately  20  years  old. 
From  each  lot  of  latex  were  prepared  one  sample 
of  sheet  rubber   and   one  sample   of  crepe  rubber. 

Vulcanisation  coefficient  and  resin   content    of    Ceylon 
Rubbers. 

Series  I.    trees. 
Latex  lots. 


Fig.  1. 


1 

2-0 

2 

Series  II.  trees. 
Latex  lots. 

3                    4 

Sheet 

5 

6 

1-5 

1-0 

5-5^. 

1 

U 

6 

o 
o 

I 

30  „ 

Crepe 

.2 
3-o| 

2-5 

°               S3 

S 
> 

5-0 

Amount  of  resins  present  o — 
Vulcanisation  coefficient  ■:  — 

0 

X 

~"   4-5 

Fig.  2. 


An  interval  of  14  days  elapsed  between  the  collec- 
tion of  each  lot  of  latex  from  each  group  of  trees. 
It  has  been  found  convenient  to  number  the  latex 
lots  from  each  group  of  trees  from  1  to  6,  according 
to  their  order  of  collection.  The  samples  were 
washed,  dried,  analysed,  vulcanised,  and  tested 
in  the  usual  way  (Bull.  Imp.  Inst.,  1916,  14,  499). 

The  "free  sulphur"  was  determined  by 
extracting  2  g.  of  the  crumbed  sample  for  20  hours 
with  acetone  and  oxidising  the  dry  acetone  extract 
with  fuming  nitric  acid  and  potassium  chlorate. 
In  order  to  obtain  the  "  combined  sulphur,"  the 
"  fre«  sulphur"  was  subtracted  from  10%,  which 
was  the  amount  of  sulphur  used  in  all  these  mixes. 
The  accuracy  of  this  method  was  checked  by 
separate  determinations  of  "  free  "  and  of  "  com- 
bined "  sulphur.  The  combined  sulphur  was  thus 
determined  lor  two  cures  near  the  standard  cure, 


226  T  MARTIN  AND  ELLIOTT.— THE  COEFFICIENT  OF  VULCANISATION  OF  RUBBER.  [July  15,  1922, 


and  the  coefficient  of  vulcanisation  at  the  standard 
cure  calculated  from  each  result.  Until  nearly 
the  whole  of  the  sulphur  has  gone  into  combination 
with  the  rubber  the  rate  of  combination  of  rubber 
with  sulphur  is  constant,  so  that  as  long  as  the  two 
cures  are  close  to  the  standard  cure  this  calculation 
can  be  done  with  accuracy  (De  Vries,  "  Estate 
Rubber,"  1920,  p.  487;  Eaton,  loc.  cit.;  also  Delft 
Coram.,  6,  183).  It  will  be  seen  in  the  tabulated 
results  that  the  coefficients  of  vulcanisation 
calculated  from  two  separate  results  are  in  close 
agreement.  In  those  cases  where  only  one  cure  is 
given  the  results  were  checked  by  repeating  the 
determination. 

The  standard  cure  selected  was  that  which 
gave  a  stress-strain  curve  which  passed  through 
830%  elongation  under  a  load  of  1'36  kg.  per  sq. 
mm.  In  the  majority  of  cases  the  standard  cure 
was  calculated  from  the  position  of  the  stress-strain 
curve  at  a  cure  two  to  three  minutes  above  or  below 
the  standard  cure.  This  oould  be  done  with 
accuracy,  since  the  alteration  in  the  position  of  the 
stress-strain  curve  with  time  of  cure  was  deter- 
mined for  each  sample. 

The  results  obtained  in  the  examination  of  the 
rubbers  are  given  in  the  following  tables  :  — 

Series  I  trees — about  10  years  old. 
Section  1.     Sheet-rubber. 

Calculated    Average 
vulcanisa-  vulcanisa- 
Combined  Calculated       tion  tion 

SampleLatex  Cure,     sulphur      standard    coefficient  coefficient 
no.       lot.    mins.      found.  cure.  at  the  at  the 

%  mina.        standard     standard 

cure.  cure. 


496 

1 

/60 
\70 

4-64 
5-31 

497 

2 

/60 
\68 

4-62 
5-20 

493 

3 

j*55 
\60 

4-84 
5-14 

499 

4 

48 

4-85 

500 

5 

60 

4-43 

501 

6 

64 

4-64 

62 
65 


58 
52 


68 


5-32 
5-23 
5-57 
5-52 
5-66 
5-52 
5-84 
5-09 
5-48 


5-28 
6-55 


5-84 
5-09 
6-48 


The  average  vulcanisation  coefficient  at  the 
standard  cure  is  547  with  an  average  deviation  of 
+   0-19. 

Section  2.     Crepe-rubber. 

Calculated    Average 

vulcanisa-  vulcanisa- 

Combined  Calculated       tion  tion 

SampleLatex  Cure,     sulphur      standard    coefficient  coefficient 

no.       lot.    mins.      found.  cure.  at  the  at  the 

%  mins.        standard     standard 


508 

509 

510 

511 
512 
513 


/   95 

\100 

110 

rioo 

\106 

no 

95 

108 


4-64 
4-82 
4-98 
4-21 
4-59 
4-55 
4-44 
4-13 


95 
111 


110 
115 


114 


cure. 
5-16 
509 
5-58 
5-16 
5-30 
5-29 
514 
4-84 


cure. 

5-13 

5-58 

5-23 

5-29 
5-14 

4-84 


The  average  vulcanisation  coefficient  at  the 
standard  cure  is  5"20   ±   0T6. 

The  samples  of  crepe  rubber  in  section  2  were 
prepared  from  the  same  latex  as  corresponding 
samples  of  sheet  rubber  in  section  1. 

Series  II  trees — about  20  years  old. 
Section  3.     Sheet-rubber. 

Calculated    Average 
vulcanisa-  vulcanisa- 
Combined  Calculated       tion  tion 

SampleLatex  Cure,     sulphur      standard    coefficient  coefficient 
no.       lot.    mins.      found.  cure.  at  the  at  the 

%  mins.        standard     standard 

cure.  cure. 


502 

503 
504 

505 

506 
507 


70 

To 
67 
70 
64 
/64 
\68 
78 
75 


4-41 
4-71 
4-40 
4-59 
4-60 
4-83 
5-13 
4-86 
4-88 


77 


71 
66 


79 
75 


5 

5 

5' 

5 

5-27 

5-53 

5-53 

5-47 

5-42 


5-39 


5-53 

5-47 
5-42 


The     average     vulcanisation    coefficient     at    the 
standard  cure  is  538  +   010. 

Section  4.     Crepe-rubber. 


Calculated 

Average 

vulcanisa- 

vulcanisa- 

Combined 

Calculated 

tion 

SampleLatex  Cure. 

sulphur 

standard 

coefficient 

coefficient 

no. 

lot. 

nilns. 

found. 

cure. 

at  the 

at  the 

0/ 

/o 

mins. 

standard 
cure. 

standard 
cure. 

514 

1 

108 

4-49 

Ill 

5-13 

5-13 

515 

2 

126 

4-29 

131 

4-96 

4-96 

516 

3 

125 

4-40 

129 

5-04 

5-04 

517 

4 

120 

4-31 

126 

5-03 

5-03 

518 

5 

120 

4-07 

132 

4-98 

4-98 

519 

6 

125 

4-25 

128 

4-83 

4-83 

The  average  vulcanisation  coefficient  at  the 
standard  cure  is  5'00  +  0'07. 

The  samples  of  crepe  rubber  in  section  4  were 
prepared  from  the  same  latex  as  corresponding 
samples  of  sheet  rubber  in  section  3. 

The  average  vulcanisation  coefficients  are 
collected  below :  — 

Series  I.  trees  Series  II.  trees 

(about  10  years  old).         (about  20  years  old). 

Sheet       ..  ..  5-47  ±0-19  5-38±  0-10 

Crepe      . .         . .  6-20^  0-19  5-00-J-  0-07 

The  vulcanisation  coefficient  of  crepe  at  the 
standard  cure  is  distinctly  less  than  that  of  sheet. 
The  vulcanisation  coefficient  of  rubber  from  the 
older  trees  is  slightly  less  than  that  of  rubber  from 
the  younger  trees  and  the  results  are  distinctly 
more  uniform. 

It  is  an  interesting  and  possibly  significant  fact 
that  as  the  average  time  of  ji.:  cure  increases,  60 
the   average   vulcanisation   coefficient   decreases. 


Form. 

Sheet     . . 
Crepe     .. 

It  should  be  noticed  that  there  is  no  relation 
between  the  time  of  cure  and  the  vulcanisation  co- 
efficient of  individual  rubbers.  The  relation  is  only 
found  to  exist  when  average  results  of  a  series  of 
experiments  are  taken.  It  is  possible  therefore 
that  the  vulcanisation  coefficient  at  the  standard 
cure  is  dependent  upon  some  factor  indefinitely 
associated  with  the  accelerator  present  in  the  dry 
rubber. 

The  average  chemical  composition  of  the  rubbers 
is  shown  herewith:  — 


Series  I.  trees. 

Series  n.  trees. 

Time  of      Vulcanisation 
cure.           coefficient. 

Time  of      Vulcanisation 
cure.           coefficient. 

61                    5-47 

107                   5-20 

72                    5-38 
126                    5-00 

Series  I.  trees — about  10 
years  old. 


Pro- 
Resin,  tein. 


Sheet 
Cr6pe 


1-98 
2-86 


>-27 
!-25 


Ash. 

0-28 
0-28 


Caout- 
chouc. 

95-47 
94-01 


Series  II.  trees— about  20 
years  old. 

Pro-  Caout- 

tein.     Ash.    chouc. 


Resin. 

1-73 

2-65 


2-09 
2-11 


0-28 
0-25 


95-90 
94-99 


The  fact  that  sheet  and  crepe  rubbers  of 
Series  I.  trees  contain  more  resin  and  protein  than 
the  sheet  and  crepe  rubbers  of  Series  II.  trees, 
suggests  that  possibly  the  less  chemically  pure  is 
the  rubber,  the  higher  will  be  the  vulcanisation 
coefficient  at  the  standard  cure.  Evidence  in 
favour  of  this  can  be  quoted  from  the  results  of 
other  workers.  For  example,  rubber  prepared 
from  latex  which  has  been  evaporated  to  dryness 
and  rubber  prepared  from  the  first  clot  in  the 
partial  coagulation  of  latex,  both  contain  more  of 
the  accessory  substances  present  in  all  natural 
rubbers  than  does  rubber  prepared  in  the  usual 
way,  and  they  both  have  a  high  coefficient  of 
vulcanisation  at  the  standard  cure  (de  Vries,  J. 
Ind.  Eng.  Chem.,  1921,  13,  1134).  However,  the 
amount  of  the  accessory  substances  in  raw  rubber 
is  not  the  only  factor  which  may  affect  the  vulcani- 
sation coefficient.  The  nature  of  these  accessory 
substances,  which  varies  with  the  form  and  origin 
of  the   rubber,   possibly   plays  an   important   part. 


\o\.  XXX, No.  13.) 


MARTIN"  AND  ELLIOTT.— THE  VULCANISATION  OF  RUBBER. 


227t 


Thus  sheet  rubber  contains  more  caoutchouc  than 
does  crepe  rubber,  yet  it  has  generally  a  distinctly 
higher  vulcanisation  coefficient  at  the  standard 
cure.  It  will  be  shown  that  some  of  the  accessory 
substances  in  sheet  rubber  are  of  a  nature 
different  from  those  in  crepe  rubber,  and  have  a 
different   effect  on  the  vulcanisation   coefficient. 

Following  up  the  presumption  that  some  of  the 
accessory  substances  in  raw  rubber  increase  the 
amount  of  combined  sulphur  at  the  standard 
cure,  the  question  arises  as  to  which  are 
responsible.  De  Vries  (loc,  cit.)  reasoning  from 
the  effect  of  artificial  organic  accelerators  on  the 
vulcanisation  coefficient,  presumes  that  the  natural 


at  the  most  three  other  samples  which  give  excep- 
tional results  (and  this  is  to  be  expected  in  a 
natural  product)  so  that  the  evidence  in  favour  of 
a  direct  connexion  between  the  acetone-soluble 
constituents  and  the  variation  in  the  vulcanisation 
coefficient  is  very  strong. 

In  order  to  pursue  still  further  the  influence  of 
the  resin  on  the  vulcanisation  coefficient  at 
the  standard  cure,  samples  of  crepe,  sheet,  and 
slab  were  extracted  with  cold  acetone  and  these 
extracts  each  added  in  turn  to  the  unextracted 
i  repe  rubber  in  the  following  mix: — Crepe  rubber, 
8S ;  sulphur,  10;  acetone  extract,  2.  The  results 
are  shown  in  tho  following  table:  — 


Description. 


Crepe 

Crepe  +  crepe  resin 
,(  +  sheet  resin 
„     +  slab  resin 


Calculated 

Cure, 

Elongation 

Elongation 

Tensile 

Combined 

Estimated 

vulcanisation 

in  ins. 

0-0  kg. 

1-04  kg. 

strength. 

sulphur 

standard 

coefficient 

sq.  mm. 

sq.  mm. 

lb.  per  sq.  in. 

found. 

o 

cure, 

mins. 

at  standard 
cure. 

115 

785 

880 

1690 

3-24 

135 

4-2 

115 

796 

891 

1570 

3-45 

138 

40 

115 

745 

842 

1760 

4-45 

125 

5-4 

115 

579 

— 

705 

6-20 

88 

5-3 

accelerators  in  raw  rubber  are  chiefly  responsible 
for  variations  in  the  vulcanisation  coefficient,  and 
does  not  correlate  these  variations  with  any  of  tho 
other  impurities. 

With  a  view  to  finding  which  of  the  accessory 
substances  are  chiefly  responsible  for  variations 
in  the  vulcanisation  coefficient,  attempts  were  made 
to  correlate  the  vulcanisation  coefficient  of  each 
sample  of  rubber  with  the  amounts  present  of  ash, 
"  resin  "  (acetone-soluble  substances),  and  protein 
compounds,  and  also  with  the  time  of  vulcanisation. 
The  latter  was  taken  as  a  measure  of  the  amount 
of  natural  vulcanisation  accelerators  present. 

Only  in  the  case  of  the  "  resins  "  could  a  distinct 
relation  be  found  between  the  amount  of  this 
present  in  each  rubber  and  the  corresponding 
vulcanisation  coefficient.  Attention  has  already 
been  called  in  this  paper  to  the  relation  between 
the  average  time  of  vulcanisation  and  the  average 
vulcanisation  coefficient,  and  it  has  been  pointed 
out  that  this  relation  does  not  hold  for  individual 
rubbers.  In  the  case  of  the  resins,  however,  a 
reference  to  the  table  below  and  to  Figs.  1  and  2  will 
show  that,  with  one  or  two  exceptions,  there  is  a 
relation  between  the  amount  of  the  resin  of  indi- 
vidual rubbers  and  the  vulcanisation  coefficients  at 
the  standard  cure. 

Latex  lots. 
12  3  4  5  6 

Scries  I.  trees — ■ 

f  Resin,  %  2-21     1-95      1-72      2-33      1-92      1-77 

Sheet  •<  Vulcanisation 

I  coefficient  5-28     5-55      5-59      5-84      509      5-48 

f  Resin,  %  300      302      2-77      2-90      2-77      2-69 

Crepe  <  Vulcanisation     513     5-58     5-23     5-29      514      4-84 
l_  coefficient 
Series  LT.  trees — 

f  Resin,  %  1-83     1-67     1-66     1S4      1-72     1-67 

Sheet  s  Vulcanisation 

(coefficient  5-39     5-18     5-27      5-53      5-47      5-42 

f  Resin.  %  2-74      2-56     2-69     2-78     2-59      2-50 

Crepe  <  Vulcanisation 

'     (coefficient  5-13     4-96     5-04     5-03     4-98     4-83 

It  -will  be  noticed  that,  with  the  exception  of 
sheet  from  Series  I.  trees,  which  has  in  previous 
experiments  displayed  more  variations  than  sheet 
from  the  older  (Series  II.)  trees,  the  vulcanisation 
coefficient  at  the  standard  cure  generally  rises  and 
falls  as  the  resin  content  increases  and  decreases. 
The  sample  which  shows  the  biggest  discrepancy 
(Series  1  sheet  rubber  from  Latex  lot  3)  unfortu- 
nately arrived  in  a  wet  condition,  and  had  a 
washing  loss  of  1'7  % .  Previous  work  has  shown 
that  moisture  has  an  influence  on  the  amount  of 
resin  present  (Bull.  Imp.  Inst.,  1916,  14,  549;  1918, 
16,  435).  It  is  probable  that  the  chemical  identity 
of  the  resin  is  also  affected.  This  may  account  for 
the  sample  in  question  being  abnormal.     There  are 


In  columns  3  and  4  are  found  the  elongations 
under  the  loads  stated,  as  shown  by  the  stress- 
strain  curve.  Taking  for  these  4  cures  an  elonga- 
tion of  800%  under  a  load  of  104  kg.  per  sq.  mm. 
as  the  standard  cure,  in  the  8th  column  is  found 
the  estimated  time  of  cure  necessary  to  give  this 
stretch.  The  vulcanisation  times  of  the  samples  of 
crepe,  crepe  +  crepe  resin,  and  crepe  -f-  sheet 
resin  are  so  near  to  each  other  that  the  estimated 
standard  cure  should  be  relatively  accurate.  The 
sample  of  crepe  +  slab  resin  cures  very  much  more 
quickly  than  the  other  samples.  It  is  possible  that 
the  error  in  estimating  the  time  of  cure  in  this  case 
may  amount  to  a  little  more.  Even  when  these 
errors  are  allowed  for  the  results  in  the  last  column 
leave  no  room  for  doubt  that  the  added  crepe  resin 
increases  a  little  the  coefficient  of  vulcanisation  at 
the  standard  cure,  while  the  addition  of  sheet  and 
slab  resin  has  a  very  marked  effect  on  the  vulcanisa- 
tion coefficient.  It  is  also  of  interest  (column  6) 
that  the  addition  of  crepe  resin  increases  the  rate 
of  combination  of  rubber  with  sulphur  very  slightly 
— hardly  more  than  lies  within  the  limits  of  experi- 
mental error — while  the  sheet  resin  markedly 
increases  and  slab  resin  almost  doubles  the  rate  at 
which  rubber  and  sulphur  combine.  The  sheet 
rubber  resin  was  obtained  from  a  sample  requiring 
50  minutes  in  which  to  vulcanise.  This  is  much 
less  than  is  usually  required  by  sheet.  The  sample 
of  slab  took  66  minutes  to  vulcanise.  This  is  longer 
than  slab  usually  requires. 

Numerous  investigations  at  the  Imperial  Insti- 
tute have  shown  that  slab  rubber  and  also  rubbers 
which  have  been  machined,  and  then  kept  in  a  wet 
state,  usually  have  a  higher  amount  of  resin 
and  a  lower  amount  of  protein  than  has  sheet  or 
crepe;  moreover,  they  generally  vulcanise  quickly 
(Bull.  Imp.  Inst.,  1918,  16,  435).  It  is  evident 
from  the  above  experiments  that  the  resin 
constituents  of  slab  rubber  are  responsible  for  its 
quick  curing  properties.  This  is  confirmed  by  the 
fact  that  the  acetone-extracted  sample  of  slab 
required  90  minutes  to  vulcanise.  It  seems  prob- 
able that  part  of  the  protein  portion  of  raw  rubbe'r 
during  the  process  of  maturing  is  rendered  soluble 
in  acetone  and  this  acts  as  a  strong  accelerator. 

Spence  (J.  Ind.  Eng.  Chem.,  1918,  10,  116) 
states  that  Para  rubber  contains  an  "  active  prin- 
ciple," soluble  in  acetone,  nitrogenous,  and  feebly 
basic  in  character,  and  acting  essentially  as  a 
catalyst  of  vulcanisation.  On  the  other  hand, 
Stevens  found  that  on  one  occasion  the  removal  of 
resin  had  very  little  effect  on  the  rate  of  combina- 
tion of  rubber  and  sulphur  (Kolloid-Zeits.,  1915,  14, 


228  T 


MARTIN  AND  ELLIOTT.— THE  VULCANISATION  OF  RUBBER. 


[July  15,  1922. 


91)  while  on  another  occasion  the  rate  of  combina- 
tion was  decreased  by  25%  (J.,  1916,  874).  In 
Spence's  published  experiments  (Kolloid-Zeits., 
1912,  11,  28)  the  "  resins  "  were  riiore  completely  re- 
moved than  in  those  of  Stevens,  and  it  is  possible 
that  the  last  traces  of  "resin"  may  play  an  im- 
portant part  in  vulcanisation.  It  seems  probable, 
however,  that  the  "  resin  "  of  Para  rubber  pre- 
pared in  different  ways  and  from  different  groups 
of  trees  will  differ  in  quality  as  it  does  in  quantity, 
and  will  have  different  effects  on  vulcanisation. 

The  increase  in  the  vulcanisation  coefficient  at 
the  standard  cure  on  the  addition  of  2%  of  either 
slab  resin  or  sheet  resin  is  remarkable.  In  a  pre- 
liminary investigation  on  the  combination  of  crepe 
resin  with  sulphur  at  150°  C.  in  a  sealed  tube  in 
the  presence  of  air,  the  resin  was  found  to  combine 
with   U'5%    of  its   weight  of   sulphur   in   2  hours. 


Chemical  and  physical  methods  of  determining  time  of  vulcanisation. 

CREPE    RUBBERS 


140 


,0-  ..SERIES  n   TREES 


40  Latex  lots. 

12  3  4  5 

Time  of  vulcanisation  determined  from  the  amount  of  combined 

sulphur  x x  , 

Time  of  vulcanisation  determined  from  the  standard  stress-strain 

curve  o 0 

Fig.  3. 


About  half  of  this  was  insoluble  in  acetone.  A 
fuller  investigation  of  the  combination  of  different 
rubbers  with  sulphur  following  the  procedure 
advocated  by  Kelly  might  yield  important  results 
(J.  Ind.  Eng.  Chem.,  1922,  14,  196—197).  For 
the  present  it  should  be  borne  in  mind  that  the 
addition  of  2%  of  either  slab  or  sheet  resin  to  crepe 
rubber  increased  the  vulcanisation  coefficient  by 
approximately  1%  of  combined  sulphur.  If  tho 
whole  of  this  increase  were  due  to  a  combination 
of  resin  and  sulphur  to  form  an  acetone-insoluble 
compound,  it  would  involve  the  conversion  of  the 
whole  of  the  substances  soluble  in  acetone  into 
insoluble  substances,  and  even  then  would  give 
compounds  containing  on  a<n  average  as  much  as 
30%  of  sulphur.  The  increase  in  vulcanisation 
coefficient  is  so  large  that  the  combination  of 
sulphur  and  resin  to  form  an  insoluble  compound 
is  unlikely  to  be  the  sole  explanation. 

The  physical  characteristics  of  the  resins  previous 
to  vulcanisation  are  also  unlikely  to  provide  an  ex- 


planation of  this  increased  vulcanisation  coefficient, 
since  the  crepe  resin  was  the  softest  and  slab  resin 
the  hardest.  The  explanation  may  lie  partly  in 
the  combination  of  resin  with  sulphur  to  form 
an  insoluble  product,  partly  in  the  physical  pro- 
perties of  the  compounds  so  formed,  and  partly  in 
obscure   physical   and   chemical   relationships. 

The  influence  of  the  resin  constituents  of  rubber 
on  the  coefficient  of  vulcanisation  at  the  standard 
cure  rakes  the  query  as  to  whether  the  estimation  of 
the  correct  time  of  cure  by  the  determination  of 
combined  sulphur  gives  results  similar  to  those 
obtained  by  physical  methods.  The  average  vulcan- 
isation coefficient  for  the  whole  of  the  24  samples 
described  in  the  first  part  of  this  paper  is  5'26. 
Assuming  that  a  rubber  which  has  been  cured  to  a 
coefficient  of  5"25  is  correctly  cured  for  the  purpose 
of  these  experiments,  the  time  of  cure  of  each 
sample  can  be  calculated  and  the  results  compared 
with  those  obtained  by  physical  methods.  The 
details  are  shown  in  Fig.  3.  These  results  are 
in  agreement  with  those  of  other  workers  and 
indicate  that  the  chemical  method  of  determin- 
ing the  time  of  cure  does  not  give  results  materially 
different  from  the  physical  method  (Eaton,  loc. 
cit.;  de  Vries,  loc.  cit.).  Rubbers  from  the  same 
latx  and  prepared  in  the  same  way  differ  in  cure 
roughly  by  the  same  amount  whether  their  time  of 
cure  is  estimated  physically  or  chemically.  There  is 
not  the  same  agreement  between  th  physical  and 
chemical  methods  of  estimating  the  time  of  cure 
when  rubbers  of  different  form,  such  as  crepe  and 
sheet,  are  concerned.  These  two  types  of  rubber, 
however,  differ  in  time  of  cure  by  an  amount  so  large 
that  these  discrepancies  are  of  little  importance. 
We  may  definitely  conclude  that  the  relative  times 
of  cure  of  rubber-sulphur  (90:10)  mixes  are  approxi- 
mately the  same  whether  we  adopt  the  chemical  or 
physical  method  of  determining  the  time  of  cure. 


Conclusions. 

(1)  The  amount  of  combined  sulphur  at  the 
standard  cure  depends  upon  the  way  in  which  the 
rubber  is  prepared,  upon  the  trees  from  which  the 
latex  is  obtained,  and  also  to  a  less  extent  upon 
unexplained  variations  in  the  finished  rubber  from 
time  to  time.  In  the  samples  tested  the  maximum 
variation  did  not  reach  1%  of  combined  sulphur. 

(2)  For  a  series  of  rubbers,  as  the  average  time 
of  cure  increases  so  the  average  amount  of  combined 
sulphur  at  the  standard  cure  decreases. 

(3)  The  amount  of  combined  sulphur  at  the 
standard  cure  for  rubber  of  the  same  form,  and 
from  the  same  trees,  varies  approximately  as  the 
amount  of  resin  constituents  of  the  rubber  varies. 

(4)  The  resin  of  crepe  rubber  has  little  influence 
on  the  rate  of  combination  of  rubber  with  sulphur. 
The  resin  of  sheet  rubber  acts  as  a  mild  accelerator, 
while  the  resin  of  slab  rubber  contains  a  strong 
accelerator.  The  resins  of  slab  and  sheet  rubber 
increase  the  vulcanisation  coefficient  of  crepe  rubber 
at  the  standard  cure  more  than  does  the  resin  of 
crepe  rubber. 

(5)  "Whether  the  time  of  cure  of  the  rubber- 
sulphur  mix  (90:10)  is  estimated  by  chemical  or 
physical  means,  the  results  are  approximately  the 
same,  as  long  as  similar  forms  of  rubber  are  com- 
pared. The  differences  are  larger  when  dissimilar 
forms  such  as  sheet  and  crepe  are  compared. 

The  experiments  described  in  this  paper  have 
been  carried  out  at  the  Imperial  Institute  in  the 
course  of  investigations  conducted  in  connexion 
with  tho  Ceylon  Rubber  Research  Scheme. 


Imperial  Institute,  London,  S.W. 


Vol.  XLI..  No.  14.] 


TRANSACTIONS 


[July  31,  1922. 


Annual  Meeting. 

CHEMICAL    ENGINEERING  GROUP. 


The  papers  by  Messrs.  Parrish  and  Hinchley,  read 
before  the  sessions  of  the  Chemical  Engineering 
Group  at  Glasgow  on  July  6th,  are  printed  below  in 
abridged  form.  An  account  of  Mr.  Walmsley's 
paper  will  appear  later.  An  abstract  of  the  paper 
read  by  Mr.  T.  H.  Gray  will  be  found  in  the 
July  15th  issue,  p.  281  k.  The  full  papers  will 
appear  in  the  Proceedings  of  the  Group  in  due 
course. 

OBSERVATIONS     ON      THE     DESIGN      AND 

WORKING       OF       AMMONIACAL       LIQUOR 

STILLS. 

BY  P.    PABRISH,  A.I.C. 

[Abridged.] 

The  quantity  of  gas  liquor  produced  and  dis- 
tilled in  the  United  Kingdom  must  be  of  the  order 
of  1250  million  gallons  of  8  oz.  (1/73  per  cent.)  NH, 
per  annum.  This  quantity  chiefly  arises  in  the 
purification  of  crude  coal  gas  derived  from  the 
carbonisation  of  coal  at  gas  works  and  coke  ovens, 
from  blast-furnace  gases,  and  the  carbonisation 
of  shale  as  conducted  largely  at  the  shale  oil  works 
in  Scotland. 

The  following  analyses  give  an  indication  of  the 
average  composition  of  ammoniacal  liquors  arising 
at  various  works:  — 


Gas  works. 
%  w/v. 


Coke  oven. 
%  w/v. 


Blast 
furnace.  ]  works. 
%  w/v.  ,  %  w/v 


Blast    j    Shale 
furnace,     works. 

ft/      r—        ft/      ._ 


Volatile  ammonia. . 

1-4    to  2-5 

0G8  to  0-85 

0-4 

0-9 

Fixed  ammonia    . . 

0-1     to  0-4 

0-3    to  010 

001 

0-3 

Total  ammonia     . . 

1-5     to  2-9 

0-98  to  0-95 

0-41 

0-93 

(XH,)2S     .. 

0-8    to  0-9 

0-40 

— 

0-10 

(XH.I.CO, 

5-0     to  8-5 

1-90 

11 

2-90 

XH.CI 

0-5     to  1-0 

0-20 

0-006 

0-015 

NH,CN      .. 

0-07  to  0-3 

0-04 

"- ■* 

— 

Broadly  speaking,  the  arrangement  of  the  stills 
and  liming  chamber  can  be  divided  into  three  cate- 
gories, viz.,  (A)  free  still  superposed  on  liming 
chamber,  fixed  still  separate ;  (B)  free  still  super- 
posed on  liming  chamber  and  fixed  still;  (C)  free 
still  superposed  on  fixed  still,  liming  chamber 
separate. 

As  to  the  arrangement  which  the  plant  should 
take,  much  depends  on  the  provision  made  for 
cleaning  the  stills,  on  the  fixed  ammonia  content 
of  the  gas  liquor  to  be  distilled,  and  on  its  free- 
dom from  tarry  matter.  By  far  the  greater  num- 
ber of  stills  operating  in  the  United  Kingdom  are 
stills  built  up  of  double-flanged  sections,  each  of 
which,  generally  speaking,  constitutes  a  chamber. 
The  joints  between  the  corresponding  flanges  of 
the  chambers  are  made  with  boiled  linseed  oil  and 
Vulcan  cement,  or  with  red  and  white  lead  and 
lead  wire.  Obviously  these  sections  have  to  be 
provided  with  such  a  number  of  manholes,  and  of 
such  a  size,  as  will  afford  facilities  for  the  cleans- 
ing of  the  overflow  pipe  or  pipes  and  the  removal 
and/or  cleaning  of  the  hoods,  frogs,  crocodiles,  or 
whatever    steam-distributing    device     is   provided. 

In  this  form  of  still  the  joints  between  the  several 
sections  are  potential  sources  for  the  leakage  of 
ammonia,  and  as  it  is  unusual  to  insulate  the  covers 
of  the  manholes  with  non-conducting  material,  the 
loss  of  heat  by  radiation  is  not  inconsiderable. 
Complete  dismantling  may  become  necessary  owing 
to  accumulations  of  lime  sludge,  either  causing 
blockages  which  are  difficult,  if  not  impossible,  to 
remove  in  situ,  or  the  lime  may  form  laminations 


on  the  bottom  of  the  chambers  to  such  an  extent 
as  seriously  to  impair  the  thermal  efficiency  and 
capacity  of  the  plant. 

Another  arrangement  of  still  which  largely  over- 
comes the  disabilities  to  which  reference  has  been 
made  above  comprises  an  outside  shell  free  from  a 
multiplicity  of  flanges,  and  without  cleaning  man- 
holes. This  design  of  still,  for  which  Dr.  Carpenter 
was  responsible,  contemplates  the  withdrawal  of  the 
internal  elements,  which  comprise  a  hood,  tray, 
and  bubbler,  as  constituting  a  complete  chamber 
for  cleaning  purposes. 

These  hoods,  trays,  and  bubblers  are  provided 
with  machined  faces  so  that  there  is  no  possibility 
of  the  by-passing  of  steam  on  the  outer  part  of  the 
trays.  Suitable  lifting  tackle  is  provided  for 
facilitating  tho  removal  of  the  internal  elements, 
which,  in  turn,  are  all  provided  with  suitable  lifting 
lugs. 

It  has  been  found  in  practice  that,  provided  the 
accumulations  of  lime  sludge  at  the  foot  of  the 
liming  chamber  are  removed  every  fortnight,  and 
the  top  cover  of  the  fixed  still  is  lifted  monthly 
lor  the  cleaning  of  the  perforations  of  the  anti- 
priming  device,  the  still  will  operate  continuously 
tor  six  months  before  cleaning  is  necessary.  Dur- 
ing this  time  approximately  5,000,000  galls,  of 
gas  liquor  will  have  been  distilled,  still  cleaning 
representing  a  charge  of  about  2d.  per  ton  of  sul- 
phate made.  "With  the  shell  type  of  still,  involv- 
ing as  it  does  the  withdrawal  of  the  internal 
elements  for  cleaning  purposes,  it  would  be  ob- 
viously unwise  to  arrange  the  plant  according  to 
category  B.  (cf.  supra),  as  this  would  necessitate 
the  removal  of  the  liming  chamber  in  order  to 
afford  access  to  the  anti-priming  arrangement,  or 
first  tray,   of  the  fixed  still. 

Manifestly  with  gas  liquor  having  a  high  con- 
tent of  fixed  ammonia,  particularly  if  such  fixed 
ammonia  is  due  to  ammonium  sulphate,  the  diffi- 
culty of  keeping  the  distilling  sections  of  the  fixed 
still  free  from  sludge,  particularly  the  first  and 
second  fixed  sections,  is  great.  Special  considera- 
tion should  lie  given  to  the  design  of  the  liming 
chambers  or  the  elements  of  large  liming  chambers, 
which  admit  of  considerable  time  contact,  in  order 
to'  ensure  active  agitation.  Easy  means  of  a 
periodic  discharge  of  the  sludge  from  the  foot  of 
the  liming  chambers  should  also  be  provided.  Fail- 
ing this,  an  arrangement  of  plant  with  outside 
liming  section  specially  designed  as  represented  in 
category  C.  is  necessary. 

It  is  the  author's  view  that  mechanical  considera- 
tions, such  as  facilities  for  cleaning,  provision  for 
the  removal  of  bubbling  hoods  and  initial  capital 
cost,  have  been  the  factors  largely  governing  the 
design  and  arrangement  of  gas  liquor  stills  in  the 
past.  Had  designers  and  makers  of  gas  liquor 
stills  been  in  a  position  to  visualise  the  items  which 
contribute  to  the  cost  of  ammonium  sulphate  in 
so  far  as  the  still  itself  is  concerned,  it  is  not 
improbable  that  less  attention  would  have  been 
directed  to  this  somewhat  circumscribed  aspect 
of  design,  and  more  attention  given  to  the  possi- 
bilities of  designing  a  still  which  would  be  economic 
as  regards  steam  consumption.  In  saying  this, 
it  is  not  overlooked  that  the  ideals  of  the  chemist 
and  physicist  have  not  infrequently  to  be  com- 
promised in  order  to  ensure  mechanical  strength 
and  practicability  in  the  matter  of  production. 

The  data  given  below  relative  to  the  char- 
acteristics of  several  types  of  present-day  stills 
lead  to  the  conclusion  that  standardisation 
based  on  experimental  data  under  varying  condi- 
tions, and  with  due  regard  to  the  fundamental 
laws  governing  the  distillation  of  gas  liquor,  would 
lie  fully  warranted. 


230  T    PARRISH.— DESIGN    AND    WORKING    OF   AMMONIACAL    LIQUOR    STILLS.     [July  31,  1922. 


fcl 


J)    H 

Si 

«!             6      C         "         -s              J 

Welaht 

of  fully 

equipped 

still. 

J  *      a  i     i  "J       2 

Surface 
area  for 
descent 
of  liquor. 

sq.  in. 
278 

224 
59-5 

48 

180 

73-76 

Surface 
area  for 
ascent 
of  gaseB. 

sq.  in. 
71-0 

183 
248 

110 

171-7 

217-6 

Arrange- 
ment at 
top  of 
still  to 
avoid 
entraln- 
ment. 

Anti- 
priming 
device. 

Void. 
Void. 

Large 
void. 

Void. 
Void. 

Arrange- 
ment 
for 
cleaning. 

Still 
to  be 
dis- 
sembled. 

Large 
manholes. 
Manholes 

Hand- 
holes. 
Hand- 
holes. 

Six 
handholet 
0'  — 3' 
for  each 
chamber. 

Arrange- 
ment of 

overflow 
devloe. 

Annular 
space 
round 
hood. 
Two  semi- 
elliptical 
slots. 
Eight 
4*  pipes. 
One 
8"x3' 
opening. 
Two  semi- 
elliptical 
slots. 

Six  4" 

diameter 
pipes. 

Depth 

of 

chamber. 

-S       -J-                -H      o            .»           o                to 

Surface 

area 
occupied 
by  hoods, 
crocodiles 
or  other 

such 
devices. 

sq.  ft. 
12-48 

4-9 
110 

3-9 

5-37 

6-09 

lb.  of 
NH, 
per 

hour. 

250 

(2%  NH, 
liquor) 

182 

236 

(1-73%) 

70-2 

(1-73%) 

Capacity 
per 

hour 
(galls.). 

1250 

1050 
1300 

406 

Heating 
surface 
per  tray 

or 
element. 

sq.  ft. 
21-59 

9-08 
•11-7 

2915 

17-04 

12-64 

Liquor       Depth 
capacity          of 

of  trays      liquor 
(galls.).         seal. 

i  ~       S  „     s     rt       a 

57-25 

17-82 

43-44 

41-2 
21-2 

12-6 

Depth 
of 

liquor 
In  trays. 

a      m               eo      -i          g-i           m               .-« 

No.  of 

trays  in 

fixed 

still. 

m                    JO        GO              GO              GO                    GO 

No.  of 

trays  In 

free 

still. 

<£>               ©      o           e-i          ct               c-. 

Height 

of 
fixed 

Btlll. 

ft.  In. 

10  2 

9  11 

11  5 

7  01 

8  11 

7     61 

Diameter 

of 

fixed 

still. 

ft.  In. 
5  10 

4  0 
7     6 

5  6 
square. 

6  0 
4     6 

Height 

of 

free 

still. 

ft.  In. 
21  10 

16  2) 

18  8 

17  7 

19  8 

7     6{ 

Diameter 

of 

free 

still. 

ft.  In. 
5  10 

4  0 

7     0 

5  0 
5     0 

4     6 

Letter 
index. 

<          xs    a       m       ->■         J 

2  rf 


6-3 


M 


&2    O.  -is 

CO  co 


P5 


3Sf 


<8— 5  •-  a  y  • 

L  tc  d  "C  £  -5  H  e3 

©  "3  d  a>  o  c.  3^ 
Or  o  2  J-  a»  SJ  d 


p 

K 

w 

tO 

1 

CJ 

D 

00 

CI 

M 

00 

OO 

CJ 

m 

•6 

t: 

*d 

> 

> 

> 

ta 

» 

•^ 

J3 

■a 

a 

1 

ill 

•     ta 

a  -^  — 
o 

j$«« 

"■-8 

C3 

o 

at 

^ 

o 

(H 



CD® 

2s? 

*-* 

o 

o 

o 

«© 

o 

eo 

C5 

CI 

CJ 

• 

•a 

CO 

* 

a> 

■# 

CO 

C3 

■a 

M 

CI 

i*- 

CO 

L3 

■o 

^d 

o 

CO 

O 

°     I 

00 

»     i 

1 

„ 

«0 

<o 

in 

•a 

■C 

o 

O 

o 

a 

* 

CO 

•* 

to  aJ 

<0  «j 

,„1 

J 

■ 

O 

w 

bl 

Vol.  XU.   Ko.  14]     PARRISH.— DESIGN  AND  WORiaNG  OF  AMMONIAL'AL    LIQUOR  STILLS.      231 T 


Summarised  heat  balance  of  sulphate  of  ammonia  manufacture. 


Dr. 
(a)  Heat  entering  still — 

B.Th.U.'a 
..      259,100 

(6)  Saturator  balance 

II.     lit.  of  dilution 
III.       ,,     ,,  formation 

c)     Interchange  balance — ■ 

436,100 

..      241,000 

7,900 

65,800 

314,700 

.      258,300 

258,300 

The  above  figures  show  the  heat  expressed  in 
terms  of  B.Th.U.  entering  and/or  leaving  the 
various  parts  of  the  plant  constituting  a  complete 
sulphate  of  ammonia  unit. 

Not  infrequently  has  the  question  been  asked, 
What  are  the  conditions  governing  the  water 
balance  of  a  saturator? 

Owing  to  the  heat  of  formation  of  ammonium 
sulphate  by  the  combination  of  the  ammonia  with 
the  acid  of  the  saturator,  the  temperature  of  the 
bath  is  at  least  equal  to  the  temperature  of  a 
boiling  saturated  solution  of  ammonium  sulphate. 
A  further  increase  of  temperature  accrues  from  the 
free  sulphuric  acid  content  of  the  bath.  Indeed 
the  temperature  of  the  bath  will  be  at  least  15°  0. 
higher  than  the  temperature  of  the  stream  of  steam 
and  ammonia  leaving  the  still.  Hence  there  can 
be   little   possibility  of  the  condensation  of  water 


4-0     5-0     6-0 
%  NH, 
Fig.  1. 

Diagram  sliouring  liquor  and  ammonia  gas  concentrations 

at  two  rates  of  speed. 
37  galls,  per  hour  A~\  . 

„  i-with  identical  steam  consumption- 
9"3      ,,      >>      >>     t>  J 

in  the  saturator  unless  the  heat  of  formation  of 
ammonium  sulphate  is  counterbalanced  by  heat 
losses  via  conduction,  radiation,  and  the  circula- 
tion of  mother  liquor  outside  the  saturator. 

The  factors  governing  the  water  balance  of  a 
saturator  are  undoubtedly  the  strength  of  acid 
which  is  used  and  the  quantity  of  extraneous  water 
which  is  introduced  thereto. 

It  is  known  that  when  using  sulphuric  acid  of 
70%  H2SO„  content,  50  gallons  of  extraneous  water 
can  be  introduced  to  the  bath  without  creating 
redundant  mother  liquor. 

From  the  thermal  data  afforded  by  the  measure- 
ments under  review  a  simple  calculation  will  show 
that  55  gallons  of  water  was  being  evaporated  per 
ton  of  ammonium  sulphate  (of  25"74%  strength) 
being  made. 


Heat  leaving  still — 
I.     Via  gas  stream 
II.      „    elBueut    .. 
III.    Radiation  loss  (0-7%) 


i'r. 


Heat  entering  preheaters 

Loss  (radiation)  via  liquor  whilst  centrifuglng,  etc.  (17-8%) 


i.Th.U.'s. 
241,000 

192,000 

3,100 

430,100 

258,300 
56,400 


314,700 


Heat  recovered  "via  liquor 
,,     lost  via  water  (9-0%) 
„        „     „     gas  (0-1%) 

Radiation  losses  (21-0%) 


165,000 

21,760 

180 

71,360 

268,800 


So  far  it  will  be  seen  that  there  is  great  uncer- 
tainty as  to  the  form  which  the  elements  of  an 
ammoniacal  liquor  still  should  take  if  the  vital 
factor,  namely,  steam  consumption  within  the  still, 
is  to  be  economised.  Hitherto  hypotheses  have 
been  deduced  and  indeed  worked  upon,  but  it  is 
doubtful  whether  any  satisfactory  data  have  been 
arrived  at,  either  experimentally  or  otherwise,  to 
indicate  the  precise  form  which  the  elements  should 
assume,  and  the  conditions  under  which  the  stills 
should  be  operated  if  a  minimum  steam  consump- 
tion is  to  be  attained. 

Having  an  experimental  sulphate  of  ammonia 
plant  available,  experiments  were  conducted  under 
varying  conditions  with  a  view  of  arriving  at  cer- 
tain conclusions  in  the  above  connexion. 

Fig.  1  is  a  diagram  showing  the  liquor  and  gas 
concentrations  at  two  rates  of  feed  with  identical 
steam  consumption.  It  will  be  seen  from  this 
diagram  that  the  rate  of  flow  has  been  increased 
by  about  250%  at  the  sacrifice  of  023%  of  free 
ammonia  in  the  effluent.  It  is  not  inconceiv- 
able    that     an     identical     effluent     to     that     of 


12        3        4         6       6        7 

%  NH3  in  gas  stream. 

Fig.  2. 

Diagram  showing  ammonia   concentration  of  gas,    with 
varying  contents  of  ammonia. 

the  lower  rate  of  feed  would  have  been  obtained 
had  the  time  contact  been  increased  (say)  to  the 
extent  represented  by  two  additional  trays.  This 
experiment  would  appear  to  indicate  that  given 
a  definite  time  contact,  the  steam  consumption  can 
be  made  to  approach  the  theoretical  minimum  pos- 
sible dependent  upon  the  liquor  feed  concentra- 
tion. The  latter  condition  embodies  the  ideal  at 
which  designers  of  gas  liquor  stills  should  aim,  and 
incidentally  the  one  with  which  manufacturers 
should  be  conversant  when  contemplating  the  pur- 
chase of  gas  liquor  stills. 

A  measure  of  the  efficiency  of  the  steam  con- 
sumption of  a  gas  liquor  still  is  afforded  by  the 
concentration  of  the  ammonia  in  the  gas  stream. 
A  simple  method  of  determining  this  factor  under 
practical  working  conditions  is  to  condense  the 
stream  of  steam  and  ammonia  leading  to  the 
saturator,  and  to  make  a  determination  for 
ammonia,    carbonic    acid,   and   hydrogen    sulphide 


232  T      PARRISH.— DESIGN   AND   WORKING    OF    AMMONIACAL   LIQUOR    STILLS.    [July  Si,  1922. 


contents.  From  a  series  of  analyses  carried  out  in 
this  manner,  the  grapli  shown  in  Fig.  2  has  been 
prepared.  By  calculation  from  the  foregoing 
graph  the  curve  in  Fig.  3,  which  affords  an  indi- 
cation    of     the     steam     consumption     per     lb.     of 


100 
90 
80 

gro 

a 
Z  60 


e  so 

« 

s 

1   40 

S 

30 

20 

10 

0 


0-2  0-4  0-6  0-8  10  1-2  1-4  1-6  1-8  20  2-2  2-4  2-6  2-8  3-0 
%  NH3  In  crude  liquor. 

Fig.  3. 
Curve  showing  steam  consumption  per  pound  of  ammonia, 
with  varying  concentrations  of  ammonia  in  gas   liquor. 

ammouia  in  relation  to  the  ammonia  concentration 
in  the  crude  liquor,  has  been  constructed. 

Unfortunately  little  information  appears  to  be 
available  concerning  the  extent  to  which  the  con- 
centration of  ammonia  in  the  gas  stream  is  affected 
by  varying  concentrations  of  ammonia  in  the  gas 
liquor.  This  obviously  has  an  important  bearing 
when  fixing  the  price  of  gas  liquor  according  to 
its  ammonia  content,  and  particularly  so  when 
purchasing  concentrated  gas  liquor.  As  far  as  is 
known,  the  only  recent  work  published  on  this 
aspect  was  an  article  appearing  in  Chemical  and 
Metallurgical  Engineering  of  February  15th  last 
by  Emil  Piron,  in  which  some  of  the  fundamental 
laws  governing  the  distillation  of  mixtures  were 
discussed.  This  worker  has  shown  the  lines  along 
which  problems  of  this  character  can  be  studied, 
both  experimentally  and  mathematically.     Indeed 


3450789      10 
Concentration  in  gas,  %  NH3. 

Fig.  4. 


13 


Diagram  of  Emil  Piron's  values,  sliounng  the  variation  of 
"  K,"  with  a  variation  of  the  strength  of  liquor. 

the  article  is  of  such  merit  that  diagrams,  based 
on  the  experimental  data  furnished,  have  been 
embodied  in  this  contribution.  Fig.  4  is  a  graph 
which  shows  the  relationship  between  the  composi- 
tion of  the  liquor  being  distilled  and  that  of  the 
distillate  leaving  the  still.     The  particular  experi- 


ment comes  under  the  category  of  a  discontinuous 
distillation,  but  the  data  so  given  can  be  corre- 
lated to  the  performance  of  a  continuous  still. 
This  graph  in  conjunction  with  Fig.  5,  which  is 
compiled  from  data  by  the  same  author,  is  of  im- 
portance as  indicating  the  economic  limit  which 
should  be  looked  for  as  representing  the  point  at 


,0-9 

£o-8 

S'0-7 

§  00 
c 

Hi  0-5 
°0-4 
f  0-3 

I  0-2 


Steam  consumption  per  unit  of  ammonia  distilled  from 
liquors  of  varying  concentrations,  plotted  from  data  by 
Emil  Piron  (see  Chem.  and  Met.  Eng.,  Feb.  15,  1922). 


WW 


Fig.  6. 
Hill's  still. 

which  further  distillation  is  unprofitable.  It  also 
furnishes  some  idea  as  to  the  relative  value  of  gas 
liquor  of  different  concentrations  from  the  point 
of  view  of  the  distiller. 

It   has     been     suspected     by     workers     having 
technical    and   practical  experience  of   gas   liquor 


Vol.  XIX,  No.  n.]    PARRISH.— DESIGN  AND  WORKING  OF   AMMON1ACAL  LIQUOR  STILLS.     233  T 


stills  that  there  was  no  particular  merit  in  the 
elements  of  the  still  being  arranged  with  a  deep 
seal,  through  which  the  ascending  gases  and  steam 
were  compelled  to  bubble.  On  the  contrary,  it 
has  been  suggested  that  the  capacity  of  a  gas 
liquor  still  can  be  fully  maintained,  and  the  steam 
consumption  appreciably  reduced,  if  the  ascending 
gases  and  steam  emerged  on  the  liquor  line  in  the 
trays. 

Fig.  (J  slums  a  continuous  gas  liquor  still  which 
was  in  operation  in  London  in  1878,  the  design  of 
which  was  based  on  the  principle  of  a  compara- 
tively large  surface  area  with  a  thin  film  of  liquor, 
along  which  the  gases  and  steam  skirted  by  reason 
of  the  contiguity  of  the  respective  plates.  It  is 
known  that  a  still  15  ft.  high  by  7  ft.  x  5  ft.  in 
section,  having  38  plates,  was  capable  of  dealing 
with  the  free  ammonia  content  of  10,000  galls,  of 
gas  liquor  of  6 — 8  oz.  strength  per  day. 

It  is  clear  from  the  experience  afforded  by  the 
operation  of  the  above  still  that  heating  surface 
is  not  alone  the  governing  factor  which  should 
be  aimed  at  in  the  design  of  gas  liquor  stills 
Rather  must  attention  be  directed  to  ensuring  the 
greatest  intimacy  of  contact  along  with  maximum 
time  contact  and  heating  surface.  Attenuated 
bubbling  of  such  a  nature  that  maximum  deforma- 
tion and/or  reformation  of  the  bubbles  is  ensured, 
is  the  principal  factor  for  promoting  rapid 
equilibrium. 

Experiments  have  been  directed  to  the  elucida- 
tion of  the  above  view  by  varying  the  depth  of 
seal  for  a  given  still  design,  and  although  the 
author  is  reluctant  to  draw  premature  conclusions, 
evidences  are  not  wanting  which  support  the 
theory  advanced  above. 

It  has  to  be  remembered  that  the  utilisation  of 
exhaust  steam  is  not  confined  to  vacuum  distilla- 
tion plants  alone.  Many  gas  liquor  stills  operat- 
ing under  normal  pressure  conditions  are  worked 
to-day  with  exhaust  steam.  Moreover  a  con- 
sideration of  the  relative  vapour  pressure  of 
ammonia  and  water  in  typical  gas  liquors  at 
ranges  of  pressures  between  (say)  20  in.  of  mer- 
cury (absolute)  and  35  in.  (absolute)  leads 
one  to  the  conclusion  that  no  great  saving  in 
steam  consumption  is  likely  to  accrue,  whereas  an 
additional  expenditure  of  steam  will  be  required 
for  the  operation  of  the  vacuum  pump  and  the 
pump  installed  to  withdraw  the  effluent  liquor 
from  the  still. 

Other  considerations  also  operate  when  working 
a  vacuum  still.  Some  are  advantageous,  others 
have  the  contrary  effect.  The  volume  occupied  by 
the  steam  at  (say)  5'7  lb.  per  square  inch  (the 
absolute  pressure  at  which  the  vacuum  still  at 
Hamilton  is  reported  to  have  worked)  is  68 
cub.  ft.  per  lb.,  as  contrasted  with  24'75  cub.  ft. 
per  lb.  when  operating  under  normal  pressure  dis- 
tillation conditions.  Thus,  under  vacuum  condi- 
tions, the  velocity  of  the  steam  through  the  still 
is  appreciably  increased  and  hence  the  time  con- 
tact is  reduced  correspondingly  for  a  given  weight 
of  steam.  On  the  other  hand,  the  greater  volume 
of  steam  passing  over,  or  bubbling  through,  the 
liquor  on  the  several  trays  is  clearly  an  advantage. 
Manifestly  the  elements  constituting  the  chambers 
of  a  still  operated  under  vacuum  must  have  larger 
surface  area  provided  for  the  ascent  of  the  stream 
of  steam  and  ammonia. 

As  uncertainty  existed  as  to  the  intrinsic 
capacity  of  a  still  for  dealing  with  gas  liquor  of 
varying  concentrations,  experiments  were  made 
to  determine  this  aspect.  Gas  liquor  of  varying 
concentrations  was  fed  to  the  experimental  still 
under  such  conditions  that  the  effluent  liquor 
leaving  the  still  had  approximately  a  constant 
composition.  From  the  rates  of  flow  and  the  con- 
centration, Fig.  7  has  been  constructed.  In  brief, 
this  curve  represents  the  amount  of  ammonia  dis- 


tilled  in    unit    time   expressed   in   relation    to   the 
concentration  of  the   feed  liquor. 

Gas  liquor  storage  tanks. 

As  to  the  form  of  the  tanks  and  the  general 
arrangement  for  the  storage  of  gas  liquor,  prac- 
tice varies  considerably  throughout  the  country. 
The  shells  of  Lancashire  boilers  are  used  in  many 
cases  for  the  storage  of  gas  liquor,  and  it  is  known 
that  they  have  served  quite  well  for  this  purpose. 
Experience  suggests,  however,  that  sectional  plated 
cast-iron  tanks  are  preferable,  and  are  calculated 
to  have  a  much  longer  life  than  second-hand  si  eel 
boiler  shells. 

Preheaters  and  coolers. 
With  small  units  of  plant  it  is  usual  to  place 
the  preheater  inside  the  still  house,  where  it  is 
not  subjected  to  extremes  of  temperature  during 
operation.  With  larger  units  of  plant  the  pre- 
heaters are  almost  invariably  placed  outside  the 
ttill  house  building.  This  practice  may  be  re- 
garded as  unsound  from  the  point  of  view  of  heat 
conservation.  The  quantity  of  heat  leaving  the 
saturator,  however,  is  appreciably  greater  than 
that  required  to  raise  the  temperature  of  the 
feed    liquor     to     boiling     point.       Tndeed,     cooling 


1    2 


4    5    6     7    8    9     10     11 
Relative  capacity  of  still. 

Fig.  7. 


Diagram  of  the  capacity  of  experimental  still  in 
relation  to  strength  of  feed  liquor. 

water  has  to  be  profusely  used  to  reduce  the  waste 
gases  at  atmospheric  temperature. 

Devil  liquor  storage  tank. 

On  account  of  the  noxious  character  of  the 
devil  liquor,  it  is  important  that  certain  steps 
should  be  taken  to  ensure  its  collection  and  treat- 
ment. This  is  be6t  effected  in  a  sectional  plated 
cast  iron  tank  suitably  lagged  which  will  allow  of  5 
to  6  hours'  accumulation.  Opinions  vary  as  to 
the  best  method  of  treatment.  At  many  works  the 
devil  liquor  is  pumped  along  with  the  gas  liquor 
and  the  mixed  liquors  are  distilled.  The  only 
disadvantage  is  that  expense  is  entailed  in  the 
matter  of  steam,  and  many  of  the  impurities  of 
the  gas  liquor  which  are  arrested  with  the  devil 
liquor,  such  as  pyridine,  creosote  oil,  naphthalene, 
etc.,  are  again  returned  to  the  saturator.  Obviously 
for  the  production  of  white  salt  it  is  essential 
that  these  impurities  should  be  disposed  of  in 
another  way,  and  not  recirculated  to  the  saturator. 

Moreover,  it  must  be  remembered  that  the  dis- 
tillation of  devil  liquor  represents  approximately 
a  20%  reduction  of  the  oapacity  of  the  still,  which 
is  another  important  consideration. 

Constituent  parts  of  </«.<;  liquor  stills. 
Fig.  7  shows  how  the  elements  of  the  still  designed 
by  Dr.  Carpenter  (v.  supra)  are  assembled.       The 


23  i  t 


PARRISH.— DESIGN  AND  WORKING  OF  AMMONIACAL  LIQUOR  STILLS.       [July  SI,  1922 


bottom  tray  is  supported  on  a  circular  webbed 
flange  arranged  within  the  still.  Each  succeeding 
trav  is  in  turn  supported  by  the  one  underneath. 
The  first  bubbler  of  the  free  still,  placed  immediately 
above  the  liming  chamber,  is  supported  by  a  vertical 
9-in.  cast  iron  pipe  (which  by  a  bend  near  the  foot 
conducts  the  limed  liquor  to  an  outer  annulus) 
placed  centrally  in  the  liming  chamber  and  ter- 
minating with  a  suitable  base.  The  first  bubbler 
supports  the  hood  which  in  turn  supports  the 
bubbler.  Thus  the  whole  weight  of  the  bubblers 
and  hoods  is  transmitted  to  the  9-in.  pipe,  and 
the  complete  weight  of  the  trays  is  reflected  on 
the   webbed   flange. 

For   the   permanent  machined   joints  a  mixture 
of  red  and  white  lead  is  used.     For  the  faced  joints 


Fig.  7. 

of  the  superimposed  sections  graphite  paste  is 
used.  A  packing  of  yarn  is  also  employed  between 
the  trays  and  the  outside  shell  of  the  still  eo  as 
to  prevent  the  admission  of  any  rust  which  will  in- 
terfere with  the  removal  of  the  trays.  The  bubblers 
of  the  fixed  section  of  this  particular  still  are  open, 
with  serrated  edges  on  the  two  circumferential 
peripheries. 

The  merits  of  the  design  of  this  still  are  the 
size  of  the  liquor  overflows  and  the  large  area  of 
wetted  surface  which  the  elements  afford.  Further, 
it  is  evident  that  the  designer  has  appreciated 
two  other  important  factors,  viz.,  the  great  advan- 
tage of  a  high  velocity  of  the  vapours  where  they 
como  in  contact  with  the  liquid,  and  the  import- 
ance of  time  contact  as  between  the  vapour 
above  the  liquid  and  the  liquid  itself  as  aiding 
equilibrium. 


Fig.  8  shows  the  elements  of  a  still  which  was 
introduced  to  this  country  about  40  years  ago. 
Some  of  the  features  of  this  still,  particularly  the 
liming  section,  possess  definite  merit,  but  it  is 
believed  that  there  are  many  directions  in  which 


Fig.  8. 


Fig    9. 

ihe  still  can  be  improved,  |  articularly  in  the  mattei 
of  area  of  liquor  overflows,  time  contact  bel 
the  vapour  and  liquid,  and  velocity  of  the  vapours 
hrough   the   liquid. 

Fig.  9  represents  the  elements  of  a  still  of  more 
recent    design.      Regard   liar,  obviously    been   paid 


VoLXLI.,No.l4.]     PARRISH.— DESIGN  AND  WORKING  OF  AMMONIACAL  LIQUOR  STILLS.         235  t 


to  the  removal  of  the  hoods  for  cleaning  purposes, 
and  the  possibility  of  blocked  outlets  would  appear 
to  be  remote,  in  view  of  their  size.  The  compara- 
tively small  diameter  of  the  still  in  relation  to  the 
quantity  of  gas  liquor  with  which  it  deals  and 
the  arrangement  of  hoods  which  clearly  admit  of 
the  bubbles  from  one  being  thrown  in  contact  with 
those  created  by  the  adjacent  hood,  must  ensure 
considerable  deformation,  thus  increasing  the 
contact  of  liquid   and  vapour. 

Fig.  10  represents  a  very  simple  form  of  ele- 
ment. If  simplicity  were  the  predominant  factor 
m  the  efficiency  of  a  gas  liquor  still,  this  particu- 


Fig.  11  represents  the  elements  of  a  square 
still  which  by  reason  of  its  form  must  have  the 
in.  lit  of  cheapness  as  regards  cost  of  production. 
The  bubbling  hoods  are  also  readily  accessible 
either  for  inspection  or  withdrawal.  Whether 
the  liquid  will  follow  the  path  intended  for  it 
nppears  somewhat  open  to  doubt.  Whilst  the 
arrangement  of  four  hoods  is  a  considerable  ad- 
vantage,  it  is  feared  that  the  area  for  the  ascent 


iLE 


In r  design  would  certainly  merit  a  premier  place. 
The  hoods  in  both  the  free  and  fixed  stills  are 
rectangular  and  the  travel  of  the  liquid  is  left 
to  right  and  right  to  left  alternately.  The  over- 
flows are  tolerably  large  and  the  designer  has 
evidently  had  in  mind  the  importance  of  avoiding 
blockages  at  this  point.  The  hoods  are  capable 
of  ready  removal.  One  disadvantage  appears  to 
lie  that  the  arrangement  of  hood  lends  itself  to 
localised  bubbling.  Moreover  the  area  of  the 
serrations  is  equal  to,  if  not  in  excess  of,  the  area 
of  the  gas  slots,  which  area  is  too  large  for  en- 
suring such  a  vapour  velocity  as  to  give  anything 
approaching  optimum   bubbling. 


Fig.  11. 

of  the  gas  is  far  too  large  for  ensuring  satisfactory 
bubbling,  and  the  liquor  overflows  also  appear  to 
be  unnecessarily  restricted,  although  protruding 
as  they  do  beyond  the  castings,  they  are  without 
doubt  easy  of  access. 

Fig.  12  represents  the  constituent  parts  of  a 
still  of  recent  design.  This  still  has  a  very  large 
capacity.  The  designers  have  recognised  the  im- 
portance   of   large   overflows    and    the    advantage 

u2 


236  T      PARRISH.— DESIGN  AND  WORKING  OF  AMMONIACAL  LIQUOR  STILLS. 


[July  31,  1922. 


attending  the  depth  of  chamber  in  relation  to  the 
liquor  on  the  trays  as  increasing  the  factor  of 
time  contact.  Moreover  the  weight  of  the  still  in 
relation  to  the  capacity  is  certainly  a  chemical 
engineering  achievement.  The  latter  is  largely 
due  to  the  adoption  of  a  small  liming  chamber, 
and  of  course  introduces  a  subject  on  which  there 
would  be,  no  doubt,  considerable  divergence  of 
views.  It  is  believed  that  the  design,  by  reason 
of  the  large  area  afforded  by  the  serrations,  mili- 
tates against  such  a  vapour  velocity  as  is  calcu- 
lated to  ensure  satisfactory  bubbling. 

Fig.  13  represents  the  elements  of  a  still  possess- 
ing several  merits,  particularly  the  one  of  creating 
bubbling  over  a  large  surface  area,  and  ensuring 
impact   between    the    respective    bubbles  from  the 


Fig  12. 

several  hoods.  It  will  be  an  advantage  if  the 
makers  will  in  future  increase  the  diameter  of 
the  overflow  pipes,  as  it  is  not  inconceivable  that 
trouble  may  arise  from  this  cause. 

Fig.  14  represents  the  chief  constituent  parts 
of  a  still  which  was  designed  nearly  forty  years 
ago.  Whilst  the  designer  has  apparently  recog- 
nised the  importance  of  maximum  agitation  of 
the  liquid,  it  is  feared  that  the  area  of  the  serra- 
tions, which  are  largely  in  excess  of  the  area  of 
the  gas  outlet,    will  obviate  this  desideratum. 

Pig.  15  represents  the  elements  of  a  square  still, 
certain  advantages  of  which  have  already  been 
named.  Here  the  importance  of  vapour  velocity 
appears  to  have  been  recognised,  although  impact 
of  the  bubbles  appears  impossible.  The  liquor 
overflow  might  with   advantage  be  enlarged 


Fig.  1^ 


Fig.  14. 


Vol.  XII.,  No.  14.]       PARKISH.— DESIGN  AND  WORKING  OF  AMMONIACAL  LIQUOR  STILLS.     237  i 


Fig.  16  represents  the  details  of  a  still  which 
it  is  understood  is  used  to  a  considerable  extent 
in  connexion  with  ammoniacal  liquor  arising  from 
the   distillation  of  shale.     The   position   in   which 


Fig.  15. 


!T" 


IB 


Lf 


J 


3, 


Fig.  16. 

the  bubblers  he  is  varied  alternately  with  each 
chamber.  Thus  they  cross  at  right  angles.  Simi- 
larly the  overflows  are  arranged  alternately. 
This  design,  it  is  feared,  does  not  allow  of  a  suffi- 


Fig.  17. 


Fig.  18. 


238  T 


PABBISH.— DESIGN  AND  WORKING  OF  AMMONIACAL  LIQUOR  STILLS.      [July  31, 1922. 


ciently  rapid  vapour  velocity  to  ensure  satisfac- 
tory bubbling,  although  the  arrangement  of  the 
hoods  and  their  camparative  contiguity  will 
doubtless  assist  in  causing  conflict  between  the 
respective  bubbles. 

Fig.  17  is  similar  in  many  respects  to  the  ele- 
ments of  one  of  the  other  square  stills  to  which 
reference   has  already   been  made. 

Fig.  18  represents  the  sections  of  a  still  which 
has  obviously  been  designed  to  ensure  agitation 
over  a  large  area,  but  unfortunately  the  low 
velocity  of  the  gas  is   not  calculated   to   assist  to 


Unfortunately  lime  containing  96%  CaO  and 
free  from  ashes  is  very  difficult  to  obtain,  and 
no  doubt  this  has  been  one  of  the  deterring  factors 
to  the  adoption  of  such  a  method  as  the  one  indi- 
cated. It  is  found  in  practice  that  cream  of  lime 
cannot  be  pumped  satisfactorily,  and  that  if 
pumping  is  resorted  to  milk  of  lime  of  about  16° 
Twaddefl  at  70° — 75°  C.  has  to  be  used.  The  lime 
mixer  must  obviously  be  placed  in  such  a  position 
that  the  cream  of  lime  (say)  of  30°  Tiv.  can  be 
gravitated  direct  to  the  liming  chamber.  When 
regard  is  had  to  the  fact  that  lime  is  with  difficultv 


■  lbs.  milk  of  lime  coutaiaing  13-7  lbs  CaO. 
Thousand  B.T.U's. 


0-2 

0-4 

0-6 

0-8 

1-0 

1-2 

1-4 

1-6 

1-8 

2-0 

2-2 

2-4 

2.6 

2-8 

6 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

3-0      Lb.  CaO  per  gall. 
76  80        85 


Sp.  gr.  (°Tw.) 

4 

8 

12 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

38 

40 

Lb.  CaO  per  gall. 

0-244 

0-498 

0-752 

1-00 

113 

1-26 

1-38 

1-62 

1-64 

1-77 

1-90 

2-03 

2-16 

2-42 

2-65 

Galls,   required   to  give    13*7 

lb.  CaO 

561 

27-5 

18-2 

13-7 

12-1 

10-9 

9-9 

9-0 

8-4 

7-7 

7-2 

6-7 

6-3 

5-7 

5-4 

Lb.  required  to  [give  13-7  lb. 

CaO             

572 

286 

193 

148 

132 

120 

110 

101 

95 

88 

83 

78 

74 

67 

65 

A.  Heat  required  for  dissolu- 

tion, B.Th.U.  (1000's).. 

86-4 

43-2 

29-2 

22-4 

19-9 

18-4 

10-6 

15-3 

14-3 

13-3 

12-5 

11-8 

11-2 

10-1 

9-8 

B.  Heat  absorbed  in  distilla- 

tion, ditto 

60-9 

30-6 

20-5 

15-8 

14-1 

12-8 

11-7 

10-8 

10-1 

9-4 

8-8 

8-3 

7-9 

7-2. 

6-9 

Notes. — 1.  The  above  figures  are  calculated  for  the  distillation  of  100  galls. of  8-oz.  liquor  having  a  fixed  ammonia  content  of  U'346% 
w/v  (20%  of  the  total  ammonia). 

2.  An  excess  of  20%  above  theoretical  lime  quantity  is  allowed. 

3.  The  milk  of  lime  enters  the  still  at  110°  F.  and  has  therefore  to  be  raised  through  106-5°  to  216-5°  (the  temp,  of  distillation). 

4.  The  heat  required  for  the  dissolution  of  the  lime  is  taken  as  151  B.Th.U.  per  lb.  of  solution. 

Fig.   19. 
Diagram  having  reference  to  the  thermal  aspect  of  the  application  of  lime. 


this  end.  The  manholes  appear  to  afford  satis- 
factory access  to  the  overflow  pipes,  but  whether 
the  serrations  of  the  hoods  can  be  as  easily 
cleaned,  or  whether  they  can  be  readily  withdrawn, 
is  a  matter  of  doubt.  If  there  had  been  a  larger 
vapour  space  above  the  liquid  level  in  the  trays, 
this  would  have  ensured  a  greater  time  contact 
which  obviously  is  a  decided  advantage. 

"Liming  "  and  liming  chambers. 

The  most  economical  way  of  liming  the  gas  liquor, 
which  has  been  deprived  of  its  volatile  ammonia, 
is  to  introduce  powdered  lime  by  a  positive  method 
to  the  liming  chamber.  By  pursuing  this  method 
steam  and  water  are  economised,  and  in  addi- 
tion advantage  can  be  taken  of  the  heat  gener- 
ated by  the  formation  of  calcium  hydroxide.  The 
importance  of  this  aspect  is  made  evident  by  the 
graphs  and  data  furnished  in  Fig.  19. 


soluble  in  water  (only  a  0T7%  solution  at  15°  (J. 
being  possible)  the  importance  of  maintaining  the 
cream  of  lime  in  agitation  with  the  liquor  need  not 
be  unduly  emphasised. 

The  introduction  of  cream  or  milk  of  lime  to 
the  still  chills  the  liquor  at  the  foot  of  the  liming 
chamber  momentarily,  but  sufficient  steam,  usu- 
ally about  10%  of  the  total,  has  to  be  added  to 
ensure  the  necessary  agitation  and  to  maintain  the 
mixed  liquor  at  boiling  temperature. 

Coming  to  the  question  of  the  size  of  a  liming 
chamber,  it  would  appear  evident  that  if  agitation 
is  to  be  efficient,  there  must  be  a  limit  to  the  size 
of  the  liming  chamber  in  relation  to  a  given 
volume  of  limed-liquor  treated.  Undoubtedly  one 
of  the  faults  of  design  of  many  liming  chambers 
is  that  they  are  too  large  and  allow  calcium  salts 
to  settle  out,  instead  of  being  retained  in  a  state 
of    suspension.      This   is  a    matter    to    which    in- 


Vol.xi.l.No.  14]    PARRISH.— DESIGN  AND  WORKING  OF  AMMON1ACAL  LIQUOR  STILLS.       239t 


creasing 
devoted. 


attention       could     be     very    profitably 

Not  infrequently  has  the  question  been  asked, 
by  managers  in  charge  of  small  and  medium  sized 
sulphate  of  ammonia  plants,  whether  any  formulae 
were  known  relative  to  the  quantity  of  milk  of  lime 
required  per  unit  volume  of  gas  liquor  containing 
a  certain  percentage  of  fixed  ammonia  in  relation 
to  the  total  ammonia. 

Fig.  19  is  of  interest  in  this  connexion.  It  is 
clear  that  a  formula  of  the  kind  referred  to  can 


JUi  X-'«f_, 


Steam  Id  let 


Fig.  20. 

be  readily  calculated  from  analytical  data.  One 
such  formula  (based  on  the  milk  of  lime  required 
per  hundred  gallons  of  gas  liquor)  of  which  the 
writer  has  knowledge  is  expressed  thus:  — 

V    =   65  F   -=-   L, 
where  V    represents   the    volume   of    milk   of    lime 
in  gallons,   F   the  fixed   ammonia   content   of   the 
gas  liquor  in  ounce  strength,  and  L  the  strength 
of  lime   in  degrees  Twaddell. 


The   following  calculation  will  afford  an  indica- 
tion as  to  how  the  above  formula  has  been  arrived 
at,    and   incidentally  gives   an    idea   of  the  excess 
milk  of  lime  solution  which  it  contemplates:  — 
1  oz.  strength  =  0-3469  oz.  NI13. 
1°  Tw.   milk  of  lime  =  0-845%   CaO  at  70°  ('.  , 
or,  in  100  oz.  ditto  there  is  0'845  oz.  CaO 
in  1  gallon  ditto     ,,      „     T352  „ 
2  NH,    :    CaO  as  34   :   56 
0  3469X56 


34 


1  07.  fixed  ammonia  requires 

=  0-5712  oz.  CaO. 

The  factor  per  gallon  of  gas  liquor  on  the  above 
given  data  is  0-5712h-T352=0-42,  or  a  factor  per 
100  gallons  of  42. 

Presumably  the  formula  cited  contemplates 
about  a  50%  excess  of  milk  of  lime.  This  is  rather 
excessive  as  extended  experience  suggests  that  the 
whole  of  the  fixed  ammonia  can  be  eliminated,  given 
reasonable  control  with  a  surplus  of  milk  of  lime 
of  10—20%  of  the  theoretical. 

Coming  now  to  the  question  of  typical  liming 
chambers,  Fig.  20  shows  a  pipe  bringing  the  gas 
liquor  to  be  limed  to  the  foot  of  the  still,  at  which 
point  the  milk  of  lime  is  added.  The  steam  inlet 
pipe  is  provided  with  four  outlets  two  of  which 
are  placed  tangentially,  the  other  two  being  at 
right  angles  to  the  pipe.  The  baffle  plates  admit 
of  considerable  travel  for  ensuring  uniformity  of 
admixture. 


Fig.  21. 

Fig.  21  represents  another  form  of  liming 
chamber.  The  liquor  to  be  limed  is  brought  to 
the  foot  of  the  still  by  four  pipes  and  the  milk  of 
lime  is  admitted  at  the  foot  of  the  still,  a  suitable 
agitating  steam  pipe  with  radial  arms  being 
provided.  The  limed  liquor  ascends  the  liming 
chamber  and  is  filtered  through  a  perforated  plate 
prior  to  being  discharged  to  the  fixed  still. 
Whether  blockages  arise  on  the  perforated  plate 
is  not  known,  but  except  the  agitation  is  toler- 
ably effective,  it  is  feared  that  this  may  prove  a 
possible  source  of  difficulty,  particularly  so  as  the 
perforated  plate   is   not   too   readily  accessible. 

Fig.  22  shows  a  simple  form  of  liming  chamber 
which  intervenes  between  the  free  and  fixed  stills. 
The  liquor  to  be  limed  enters  almost  at  the  foot  of 
the  chamber,  at  which  point  the  milk  of  lime  is 


240  x      PARRISH.— DESIGN    AND    WORKING    OF    AMMONIACAL    LIQUOR    STILLS.     [July  31,  1922. 


Fig.  22. 

introduced.  Agitation  is  created  by  a  circular 
perforated  pipe,  the  limed  liquor  leaving  by  the 
overflow   pipe  shown   in  the   sectional  elevation. 

Fig.  23  represents  another  typical  liming 
chamber  having  many  features  in  common  with 
those  already  described.  It  will  be  seen  that  this 
arrangement  provides  for  the  limed  liquor  pass- 
ing to  a  chamber  at  the  foot  of  the  column  before 
being  led  to  the  fixed  still. 

It  is  important  that  the  gas  liquor  should  be 
thoroughly  decarbonated  before  entering  the 
liming  chamber,  otherwise  the  ammonium  carbon- 
ate will  react  with  the  milk  of  lime  forming 
calcium  carbonate,  which  becomes  hard  in  the 
still  and  renders  cleaning  much  more  frequent 
and  difficult. 

Where  the  liming  chambers  are  of  tolerable  size, 
provision  should  always  be  made  for  the  periodic 
emptying  of  the  liming  chamber  in  order  to  remove 
the  accumulations  of  lime  sludge  which  settle  out. 
Indeed,  it  has  been  found  advantageous  in  the 
operation  of  many  stills  to  run  off  part  of  the 
limed  liquor  from  the  liming  chamber  direct  to 
the  waste  liquor  main  once  or  twice  each  day. 


Manholes  should  also  be  provided  in  connexion 
with  all  liming  chambers  in  order  to  afford  access 
for  cleaning  purposes. 


Fig.  23. 

Seal  pots. 
To  prevent  the  escape  of  steam  etc.  from  the 
foot  of  the  fixed  still  or  fixed  segment,  it  is  neces- 
sary to  provide  some  suitable  seal  pot  or  equivalent 
arrangement  in  order  to  ensure  that  the  steam 
admitted  to  the  fixed  still  will  proceed  through 
the  several  chambers  and  not  by-pass  the  appar- 
atus. 

Constant  steam  supply. 

The  pressure  against  which  the  steam  has  to 
work  in  the  fixed  still,  where  usually  90%  of 
the  total  steam  is  admitted,  is  the  pressure  of 
the  combined  seals  in  the  several  trays,  plus  the 
seal  of  the  cracker  pipes  of  the  saturator,  and 
the  skin  friction  of  the  preheaters,  coolers  and 
pipe  lines.  This  pressure  will  obviously  vary 
with  different  stills,  but  usually  does  not  exceed 
3J  lb.  per  sq.  in. 

In  the  case  of  the  steam  admitted  to  the  liming 
chamber,  the  pressure  against  which  this  will 
have  to  work  will  be  of  the  order  of  5 — C  lb.  per 
sq.  in.  It  is  clear,  therefore,  that  some  form  of 
reducing  valve  must  be  used,  in  order  to  reduce 
the  pressure  at  which  the  steam  boilers  normally 
work  to  a  pressure  compatible  with  the  require- 
ments of  the   stills. 

Constant  feed  of  liquor. 
Many  arrangements  for  ensuring  a  constant  feed 
of    liquor   to   ammoniacal    liquor    stills    have  been 
devised.  Generally    speaking,    those    having    a 

float  or  suitable  steel  ball  valve  placed  inside  a 
small  tank  are  the  ones  in  operation  in  connexion 
with  small  and  moderate  sized  distillation  units. 
On  the  whole  this  type  of  constant  feed  arrange- 
ment has  been  found  fairly  satisfactory  in  oper- 
ation. Some  makers  provide  a  graduated  sight 
feed  arrangement,  consisting  of  a  globe  inside 
which  is  placed  a  pipe  having  a  series  of  vertical 


Vol   XIX,  No.  14.]    PARRISH.— DESIGN  AND  WORKING  OF  AMMONIACAL  LIQUOR  STILLS.     241  T 


stepped  holes,  graduated  to  represent  varying 
rates  of  flow. 

The  only  disadvantage  of  either  of  the  above 
arrangements  is  the  fact  that  the  pressure  against 
n  hich  the  liquor  is  discharged  is  a  slightly  vary- 
ing one,  dependent  on  the  depth  of  the  acid  seal 
in    the  saturator. 

An  arrangement  for  ensuring  satisfactory  and 
uniform  feed  in  connexion  with  large  units  of 
plant  provides  for  direct  pumping  of  the  liquor 
to  the  still,  the  rate  of  feed  being  governed  by 
a  cock  to  which  is  fitted  a  graduated  quadrant  and 
pointer.  As  a  means  of  governing  the  delivery 
of  liquor  from  the  pump  a  connection  is  made 
from  the  delivery  line  to  the  suction,  and  inserted 
in  this  line  is  a  spring-type  of  by-pass  valve. 
The  principle  of  this  by-pass  valve  is  that  the 
liquor  floats  the  mushroom  valve  against  the 
pressure  of  the  spring  which  can  be  adjusted. 

Constant  discharge. 

This  is  dependent  almost  wholly  on  the  main- 
tenance of  the  two  conditions  to  which  reference 
has  just  been  made.  It  has  been  found  in  prac- 
tice that  the  setting  of  the  outlet  cock  can  best 
be  adjusted  by  providing  it  with  a  graduated 
quadrant  and  pointer. 

Prior  to  the  admission  of  steam  to  the  still  for 
heating  purposes  it  is  important  that  all  the 
trays  should  be  sealed  as  well  as  the  steam  pipe 
or  jets  in  the  liming  chamber  and  the  fixed  still. 
The  heaters  and  coolers  should  also  be  filled  with 
gas  liquor  and  water  respectively  so  as  to  prevent 
possible  fracture  of  the  pipes  when  the  cold  liquor 
is  first  introduced.  Provision  should  be  made  for 
venting  the  air  from  the  still.  A  suitable  arrange- 
ment is  to  take  a  ljin.  wrought  iron  pipe  from 
the  cast  iron  pipe  leading  from  the  still  to  the 
saturator,  and  provide  this  with  a  cock,  allowing 
the  discharged  foul  air  to  be  emitted  to  the 
atmosphere. 

The  practice  of  venting  a  still  inside  the  still- 
house  is  a  dangerous  one  and  should  be  discoun- 
tenanced. 

The  gradual  admission  of  steam  to  the  still  is 
important,  particularly  with  the  types  of  distil- 
lation apparatus  which  consist  of  a  series  of 
double-flanged  pieces  which  are  heavy  in  charac- 
ter. Such  stills  must  be  cautiously  heated,  other- 
wise the  irregularities  of  expansion  will  cause 
fracture. 

With  a  new  still  of  tolerably  large  capacity 
at  least  twelve  hours  should  be  allowed  for  raising 
the  temperature  to  the  requisite  degree  for  the 
admission  of  the  gas  liquor. 

Thermometers  should  be  provided,  preferably 
tlxed  in  suitable  oil  pockets,  on  the  liquor  inlet 
to  the  preheaters  and  on  the  outlet  to  the  still. 
and  similarly  thermometers  should  be  fixed  on  tho 
waste  gas  inlet  to  the  coolers  and  on  the  outlet. 

It  is  also  desirable  to  arrange  a  centrally  situ- 
ated gauge  board  so  that  the  various  pressures  can 
be  observed  without  difficulty  by  the  operator  of  the 
plant. 

It  is  equally  important  that  each  of  the  stills 
in  the  case  of  category  A  type  of  plant,  and  the 
columns  in  the  case  of  categories  B  and  C  should 
be  provided  with  an  efficient  safety  valve,  one  form 
of  which  is  of  a  simple  spring  type  and  can  be  easily 
adjusted  and  set  to  relieve  at  any  predetermined 
pressure. 

The  heating  of  a  still  after  temporary  stoppage 
need  not  occupy  more  than  four  hours.  After 
the  top  portion  of  the  still  has  become  warm,  the 
cock  of  the  vent  pipe  can  be  closed  and  the  steam 
sent  forward  through  the  saturator,  the  cracker 
pipes  in  which  have  been  sealed  with  mother 
liquor.  It  is  important  that  the  devil  liquor 
outlet    cocks    should    be    opened    immediately   the 


heaters  become  warm  in  order  to  allow  of  the 
automatic  withdrawal  of  condensation  which 
must  arise,  due  to  the  cooling  influence  of  the 
gas  liquor  and  water  with  which  the  heaters  and 
coolers   are  filled. 

Prior  to  feeding  the  still  with  gas  liquor  it  is 
wise  to  pump,  or  gravitate,  milk  or  cream  of  lime 
to  the  still,  so  that  by  the  time  the  gas  liquor 
is  introduced,  there  is  a  complement  of  boiling 
milk  or  cream  of   lime  in  the   liming  chamber. 

The  raising  of  the  temperature  of  the  apparatus 
to  this  point  is  usually  done  with  steam  at  boiler 
pressure,  but  immediately  the  liquor  feed  is  com- 
menced the  reducing  valve  should  be  brought  into 
operation  by  removing  one  or  more  of  the  weights 
on  the  spindle.  The  next  step  is  to  direct  atten- 
tion to  the  passage  of  the  limed  liquor  to  the 
fixed  still,  the  connecting  pipe  to  which  is  usually 
provided  with  a  cock  so  that  samples  can  be  drawn 
from  time  to  time.  As  soon  as  the  limed  liquor 
enters  the  fixed  still  a  further  and  final  adjust- 
ment of  the  steam  reducing  valve  and  the  steam 
inlet  valves  to  the  stills  is  necessary. 

Temperatures  at  the  essential  parts  of  the 
plant  should  be  taken  at  regular  intervals  and 
should    be    recorded.  Equally    the    liquor   feed 

gauge  board  should  be  watched  very  carefully 
so  as  to  make  certain  that  a  uniform  feed  is  being 
obtained.  Records  of  the  liquor  fed  to  the  still 
should   be    made    half-hourly. 

It  is  usual  to  connect  a  cast  iron  pot  to  the  fixed 
still,  and  to  provide  such  pot  with  two  vertical 
pipes,  one  of  which  is  carried  almost  to  the  foot 
of  the  pot  and  which  is  provided  above  the  pot 
with  a  glass  tube  suitably  connected  to  give  an 
indication  of  the  working  level  of  the  still,  the 
other  pipe  being  attached  to  the  cover  of  the  pot 
in  order  to  serve  as  a  safety  valve. 

One  other  point  of  importance  as  affecting  the 
operation  of  gas  liquor  stills  has  reference  to  the 
necessity  for  a  uniform  feed  of  devil  liquor  along 
with  the  gas  liquor.  It  has  been  found  that  an 
indication  of  the  uniformity  of  conditions  is 
furnished  by  taking  a  continuous  temperature 
record  of  the  waste  liquor  leaving  the  still. 

A  continuous  sample  of  the  waste  liquor  leav- 
ing the  still  should  be  taken  and  a  definite 
standard  adhered  to  in  this  connexion.  Experi- 
ence suggests  that  0'015%  NH,  in  the  waste 
liquor  is  an  economic  strength,  as  working 
below  this  limit  simply  resolves  itself  into  the 
recovery  of  an  exiguous  amount  of  ammonia  at 
the  expense  of  labour  in  the  operation  of  the 
plant.  The  devil  liquor  should  be  tested  period- 
ically from  the  points  of  view  of  its  freedom  or 
otherwise  from  ammonia  and  its  volume.  The 
presence  of  ammonia  indicates  that  leakages  are 
occurring,  and  these  should  be  arrested  at  the  very 
outset.  An  unduly  large  volume  of  devil  liquor 
suggests  a  high  consumption  of  steam  in  the  dis- 
tillation of  the  liquor,  or  otherwise  the  leakage 
of  water  in  the  coolers. 

Early  indications  are  furnished  of  the  fouling 
of  the  stills  by  the  necessity  for  reducing  the 
volume  of  steam  being  introduced  thereto^  and 
it  will  be  found,  other  things  being  equal,  that 
the  effluent  liquor  gradually  increases  in  point 
of  ammonia  content.  If  tar  accidentally  becomes 
mixed  with  the  liquor,  in  order  to  prevent  this 
adversely  affecting  the  working  of  the  still,  the 
preheaters  and  pipe  lines  to  the  stil!  should  be 
discharged,  such  discharged  liquor  being  returned 
to  a  tank  for  separation  or  other  suitable  treat- 
ment. 

In  concluding  these  observations  the  author 
desires  to  summarise  his  views  as  to  the  direction 
in  which  progress  in  the  design  of  ammoniacal 
liquor  stills  is  likely  to  proceed  in  the  future. 


242  T 


HINCHLEY.— THE  GENERAL  PROBLEM  OF  EVAPORATION. 


[July  31, 1922. 


Designers  must  concentrate  their  attention  and 
energies  to  the  evolution  of  the  elements  of  a 
still  which  will  be  economical  as  regards  steam 
consumption.  Data  must  be  arrived  at  as  to  the 
relative  value  of  attenuated  bubbling,  as  com- 
pared with  time  contact  of  the  liquid  and  the 
vapours  as  a  factor  in  aiding  equilibrium. 
Obviously  distillation  cannot  proceed  until  the 
vapour  pressure  of  the  ammonia  in  solution  in 
the  trays  is  in  excess  of  the  vapour  pressure  oi 
the  ammonia   in   the  vapours. 

It  should  be  possible  to  design  such  a  form  of 
bubbling  device  as  will  not  only  assist  in  promoting 
optimum  bubbling,  with  maximum  impact  between 
the  respective  series  of  bubbles  so  formed,  but  that 
such  an  arrangement  need  not  necessarily  appre- 
ciably  reduce  the  factor  of  time  contact  of  the 
liquid  and  vapour.  Such  time  contact  can 
obviously  be  increased  by  allowing  a  tolerably  large 
vapour  space  above  the  liquid  in  the  trays. 

Optimum  bubbling  is  a  function  of  a  definite 
vapour  velocity,  which,  when  exceeded,  will  hold 
up  the  liquid  and  prevent  contact  between  the 
vapour  and  liquid — in  other  words,  will  defeat 
its  own  object.  This  definite  vapour  velocity  will 
differ  in  each  compartment  of  the  still,  by  reason 
of  the  varying  vapour  volumes,  and  instead  of  as 
at  present  the  serrations,  or  perforations,  of  the 
bubblers  being  uniform  in  size,  these  must  be 
modified  in  accordance  with  the  varying  volumes 
indicated. 

As  regards  the  utilisation  of  the  surplus  heat 
leaving  the  saturator,  it  is  evident  that  the 
present  arrangement  of  plant  as  generally  known 
must  be  improved  in  order  that  more  satisfactory 
conservation  of  the  heat  available  can  be  ensured. 
There  are  several  possibilities  in  this  direction 
which  must  occur  to  one  on  careful  consideration 
of  the  conditions  obtaining. 

Finally  the  author  wishes  to  express  his  thanks 
to  those  chemical  plant  manufacturers  and  gas 
engineers  who  have  kindly  placed  drawings  and 
photographs  of  their  stills  and  accessory  plant 
at  his  disposal,  without  which  the  paper  must 
obviously  have  been  less  comprehensive  in  its 
scope  and  data. 

He  also  wishes  to  express  his  thanks  to  Dr. 
Carpenter  and  Mr.  E.  V.  Evans,  F.I.C.  (the 
Chief  of  the  Chemical  Department),  for  their  per- 
mission to  publish  certain  experimental  and 
other  data  embodied  in  the  paper,  and  for  their 
helpful  guidance  at   all   times. 

His  thanks  are  likewise  due  to  Messrs.  O.  W. 
Weight,  F.  C.  Snelling,  and  C.  E.  Parr  for  their 
assistance  in  the  preparation  of  several  of  the 
drawings  and  diagrams,  and  for  their  helpful 
suggestions. 

THE  GENERAL  PROBLEM  OF 
EVAPORATION. 

BY    PROF.    J.    W.    HINCHLET,    A.R.S.M.,    F.I.C. 

[Abridged.] 

The  common  meaning  of  the  term  "Evaporation" 
is  the  vaporisation  of  a  liquid  at  some  temperature 
below  its  boiling  point,  but  in  the  technical  sense 
the  word  may  be  considered  to  be  synonymous  with 
vaporisation. 

The  subject  is  a  very  difficult  one  and  challenges 
the  chemical  engineer  at  every  turn.  It  may  be 
considered  under  two  heads  :  — 

(a)  Evaporation  below  the  boiling  point  of  the 
liquid  evaporated  and 

(6)  Evaporation  at  the  boiling  point. 

The  study  of  the  former  has  occupied  the  atten- 
tion of  meteorologists,  physiologists  and  physicists 
to  an  extraordinary  extent  for  many  years,  but 
unfortunatelv     the     work     has     rarely     had     any 


chemical   engineering    aspect,    and    its    utility    for 
this  purpose  is  generally  lost  sight  of. 

Dalton,  Apjohn,  Maxwell  and  Stephan  are  the 
most  celebrated  of  the  host  of  workers  who  have 
studied  this  subject.  Stephan  showed  that  the  rate 
of  evaporation  from  a  circular  flush  tank  of 
radius  a  is  given  by  the  expression:  — 

4  a  k  log  I^P° 
P-P, 
where 

k  is  the  coefficient  of  diffusion  of  the  vapour, 

P  is  the  total  barometric  pressure, 

p„  is  the  partial  pressure  in  mm.  of  Hg.  of  the 

vapour  of  the  air, 
p,   is  the  partial  pressure  of  water  vapour  at 
the   temperature   of   the   water   surface. 
If    p0    and    p,    are    small    in    respect   to    P    this 
formula  becomes — 


4ak 


(*?*) 


Such  a  formula  is  useless  to  the  chemical 
engineer,  since  it  is  almost  impossible  of  applica- 
tion. It  states  that  the  rate  of  evaporation  is 
proportional  to  the  linear  dimensions  of  the  tank. 

A  short  experience  with  figures  derived  from 
industrial  work  rapidly  proves  that  the  rate  of 
evaporation  may  be  taken  to  be  proportional  to 
the  area  of  the  surface  without  serious  error,  pro- 
vided that  other  factors  such  as  the  size,  the 
ventilation  and  other  points  with  respect  to  the 
factory  are  taken  into  consideration. 

The  urgent  necessity  some  years  ago  of  estimat- 
ing the  outputs  of  crystallising  plant  compelled 
the  author  to  determine  the  rate  of  evaporation 
from  water  surfaces  under  ordinary  factory  con- 
ditions. The  ordinary  statement  that  the  rate  of 
evaporation  in  still  air  was  proportional  to  the 
difference  between  the  vapour  pressure  of  the 
liquid  and  the  vapour  pressure  in  the  air  was  found 
to  be  untrue,  but  a  simple  and  reliable  formula,  at 
any  rate  for  chemical  engineering  purposes,  was 
found  and  adopted.  The  formula  may  be  subject 
to  criticism  on  account  of  its  dimensions,  but  its 
utility  justifies  its  existence.  Since  that  date 
hundreds  of  experiments  with  simple  apparatus 
have  been  carried  out  by  the  students  of  the 
Imperial  College  in  the  course  of  their  training,  and 
it  is  found  that  the  rate  of  evaporation  may  be 
expressed  by  a  simple  formula:  — 

Rate    of    evaporation    in 
kilograms  per  sq.  metre 
per   hour    from    water 
surfaces 
where 

Pa  =  vapour  pressure  of  the  liquid  in  mm.  Hg. 
Pe  =  vapour  pressure  of  the  water  vapour  in 
the  air  in  the  same  units. 
This  equation  has  been  drawn  in  the  form  of  a 
curve  (Fig.  1),  and  as  an  alinement  chart  by  Mi". 
Umanski  (a  former  student  of  the  Imperial  College). 
Knowing  the  temperature  of  the  water  and 
the  hygrometric  state  of  the  air,  the  formula 
enables  one  to  determine  at  any  instant  the  rate  of 
evaporation  from  tanks  of  water  in  still  air.  With 
salt  solutions  it  is  obvious  that  the  formula  should 
give  accurate  results  provided  that  the  reduction 
of  the  vapour  pressure  of  the  solution  through  the 
presence  of  the  salt  be  taken  into  account.  These 
experiments  have  been  made  both  with  water  and 
with  salt  solutions  and  compared  with  factory 
results.  In  general  the  agreement  is  good,  but  for 
estimating  purposes  the  formula  may  be  assumed 
to  be  10%   high. 

When  calculating  the  value  of  p  for  a  salt 
solution     using     Raoult's     law     (the     lowering     of 


/pe-prt\l-2 


Yol.xiJ.No.  14]  H1NCHLEY.— THE  GENERAL  PROBLEM  OF  EVAPORATION. 


243  T 


vapour  pressure  is  proportional  to. the  mol  perunit- 
age  of  the  dissolved  salt  present),  any  dissociation 
of  the  Ball  should  be  taken  into  account. 

Above  60°  C.  the  experimental  results  are  lowei 
than  those  indicated  by  the  formula  owing  to  the 
fact  that  pd  is  not  the  true  vapour  pressure  in  the 
air  in  immediate  contact  with  the  liquid.  On  the 
other  hand  the  margin  conditions  modify  the  effect 
as  between  large  vessels  and  small  vessels  to  a 
small  extent. 

It  may  be  remarked  that  since  from  a  theoretical 
point  of  view  the  rate  of  evaporation  in  a  still 
atmosphere  should  be  proportional  to  the  vapour 
pressure  difference,  some  explanation  of  the  index 
is  desirable.  The  explanation  seems  to  be  that 
absolutely  still  air  is  impossible  under  the  con- 
ditions, for  moist  air  is  lighter  than  dry  air,  so  that 
convection  must  be  a  normal  accompaniment  of 
evaporation.  Again,  when  there  is  a  difference  of 
temperature  between  the  liquid  and  the  atmosphere 
the  convection  effect  must  be  still  more  evident. 

Leonard  Hill,  in  approaching  the  subject  from 
a  physiological  standpoint,  obtained  a  slightly 
different  formula.  He  used  a  simple  and  ingenious 
480 


440 
400 

360 

320 

=  280 

B 

|  240 

"3 

i  200 

o 

a. 
160 

120 

80 

40 


/ 

/ 

/ 

/ 

/ 

/ 

<' 

/ 

/ 

i  i 

t 

/ 

/ 

f 

'; 

y 

t 

/ 

'» 

/ 

/ 

/ 

/ 

1 

1 

c 
100= 

90° 

80° 

70° 

60° 

50° 

40° 

30° 

20° 

10° 


0    2    4     6     8    10    12    14    16    18 
W  =  kg.  per  si.  m.  per  hour. 

Fig  1. 

instrument  called  a  "Kata-thermometer,"  simply 
an  alcohol  thermometer  with  a  large  bulb  which 
measures  its  own  rate  of  cooling.  By  covering  the 
bulb  with  a  "  muslin  glove,"  after  dipping  the 
whole  instrument  in  hot  water,  its  rate  of  loss  of 
heat  could  be  determined  in  any  air  conditions 
imposed.  He  referred  all  his  results  to  the 
temperature  of  the  human  body.  It  will  be 
obvious  that  the  area  ot  surface  of  a  "  muslin 
glove  "  could  not  be  a  very  accurate  figure  for  our 
purpose,  although  it  is  remarkably  valuable  and 
satisfactory  for  physiological  purposes.  He 
obtained   the   formula — 


E  =  0-085 


(  Pe  -  Pa  \ 


where  E  is  the  rate  of  evaporation  loss  in  heat 
units -millicalories  per  sq.  centimeter  per  second. 
It  will  be  noticed  that  the  index  is  i,  not  T2. 


proportion    to 
the  sq.   root   of 


the 
the 


the 


subject     mathe- 
proportional   to 

the 

the 


Tiic  work  of  Carrier  in  America  calls  for  special 
mention,  since  he  has  approached  the  subject  from 
a  chemical  engineering  point  of  view  and  has 
obtained  extremely  useful  results.  His  formula 
for  evaporation   in   still   air   is — 

i;        0-093  (e1-e) 

where  K  is  the  number  of  pounds  of  water 
evaporated  per  sq.  foot  of  surface  per  hour  and  e' 
and  e  are  the  vapour  pressures  of  the  liquid  and  in 
the  air  respectively  in  inches  of  mercury.  Con- 
verted into  metric  units  and  using  the  same 
notation  as  before  we  get — 

W  =  0-0178  (pe-Pa) 

It  will  be  noticed  that  0'0l78  is  nearly 

Effect  of  velocity. — The  effect  of  a  draught  on  the 

rate   of   evaporation    from   the   surfaces   of   liquids 

has  been  investigated  by  many  observers.     There  is 

a  difference  of  opinion  as   to   whether   the  rate  ot 

evaporation     is    increased    in 

velocity   or   in   proportion    to 

velocity  of  the  current  of  air. 
Jeffries    in    1918    discussed 

matically  and  found  that: 

(1)  The    rate   of    evaporation    is 
the  sq.  root  of  the  velocity. 

(2)  The  total   evaporation   from   surfaces  of    the 
same  shape  and  orientation  to  the  wind  are 
:|  powers  of  the  respective  areas. 

The  difficulties  of  ensuring  that  the  current  of 
air  is  parallel  to  the  surface,  that  its  velocity  is 
uniform  and  is  measured  accurately,  apart  from 
the  presence  of  disturbances  and  convection  effects, 
make  the  problem  extremely  difficult. 

Leonard  Hill's  experiment  first  led  him  to  a 
formula  involving  the  sq.  root  of  the  velocity,  but 
he  has  now  added  to  his  "  still  air"  formula  the 
factor  0T02V%  where  V  is  the  velocity  of  the  wind 
in  metres  per  second.  This  would  indicate  that  the 
rate  of  evaporation  is  doubled  in  a  wind  velocity  of 
0'55  metre  per  second. 

It  is  obvious  that  the  rate  of  evaporation  will  be 
greater  for  a  wind  impinging  on  a  surface  than  for 
a  wind  parallel  to  a  surface,  and  it  is  usually 
found  that  the  rate  is  nearly  doubled  when  the  wind 
strikes  the  surface  at  a  right  angle.  This  would 
explain  the  high  rate  given  by  Hill's  formula, 
-Hire  his  "Kata-thermometer"  exposes  a  large 
area  of  vertical  surface. 

(airier  states  that  the  rate  of  evaporation  is  3-i 
times  as  great  in  a  wind  of  4000  ft.  per  minute 
velocity  as  in  a  wind  of  1000  ft.  per  minute  velocity, 
and  the  formula  he  adopts  indicates  that  the 
increase  in  evaporation  is  proportional  to  the 
velocity.  Converted  into  metric  units  his  equation 
becomes — 

W    =    00178  (\   +-,7j7)  (Pe  -  Pi) 

It  will  be  seen  that  in  a  current  of  air  parallel 
to  the  surface  the  evaporation  is  increased  to  twice 
that  in  still  air  at  a  velocity  of  T17  metres  per 
second— almost  exactly  half  that  given  by  Hills 
formula.  The  effect  of  changes  m  barometric 
pressure  on  the  rate  of  evaporation  may  be  allowed 
for  by  modifying  the  formula  as  follows  : 

W  =  26-2  (Pe;Pa^ 

and  if  we  adopt  Carrier's  figure  for  the  effect  of 
velocity  on  evaporation  we  obtain  the  following 
formula  :  — 

W  =  26 


0" 


"O-'-^H'vy 


where,  as  before,  W  is  the  number  of  kilos  of  water 
evaporated  per  sq.  metre  of  surface  per  hour,  v  is 
the   velocity  of   air  in  metres   per   second,   pc   and 


244T 


HINOHLEY.— THE  GENERAL  PROBLEM  OF  EVAPORATION. 


[July  31,  1922. 


pa  are  the  vapour  pressures  of  the  liquid  and  in 
the  air  respectively  in  mm.  Hg.  P  is  the  baro- 
metric pressure  in  mm.  Hg. 

This  formula  can  be  approximate  only,  but  under 
ordinary  practical  conditions  where  the  tempera- 
ture of'  the  liquid  is  less  than  60°  C.  the  error 
should  not  be  more  than  10%. 

The  experimental  work  at  the  Imperial  College 
has  not  reached  the  stage  when  this  formula  can 
be  thoroughly  criticised. 

It  is  obvious  that  the  formula  must  fail  with 
high  velocities  of  air  current  because  saturation 
of  the  air  will  impose  a  limit — in  fact,  the  straight 
line  law  suggested  cannot  be  strictly  true. 

There  are  many  applications  of  the  fact  that  the 
rate  of  evaporation  from  a  vertical  surface  is 
practically  twice  that  for  a  horizontal  surface — the 
conditions  under  which  direct  impingement  of  the 
current  of  air  may  readily  take  place. 

In  drying  cakes  of  wet  material  the  rate  of  dry- 
ing is  increased  greatly  by  placing  them  on  edge. 
One  of  the  most  successful  air-drying  peat 
processes  depends  largely  on  that  fact. 

With  respect  to  the  evaporation  of  liquids  other 
than  water,  the  rate  of  evaporation  appears  to  be 
proportional  to  the  molecular  weight,  and  for 
liquids  which  are  not  associated  the  law  may  be 
stated — 

W  =  0-48  M  Op    )    '    (approximately) 

where 

M   is   the   molecular   weight   of   the   substance 

pe  is  the  vapour  pressure  of  the  liquid 

P  is  the  barometric  pressure. 

W  is  the  weight  of  liquid  evaporated  in  kg. 
per  sq.  metre  per  hour. 
Measurement  of  vapour  pressure. — The  accurate 
determination  of  the  vapour  pressure  in  the  air  is 
becoming  more  and  more  important  as  the  effect 
of  air-conditioning  on  the  output  of  factories  is 
becoming  appreciated.  The  determination  of  the 
dew  point  directly  is  often  in  error  through  the 
temperature  or  heat  gradient  in  the  instrument 
being  comparatively  great.  Fig.  2  shows  a  con- 
venient   dew    point    hygrometer    designed    by    the 


author.  The  thin  silver  chamber  is  charged  with 
ether  and  air  drawn  through  it  by  means  of  a  water 
pump  or  rubber  bulb.    The  cooling  produced  by  the 


evaporation  of  the  ether  lowers  the  temperature 
of  the  surface  until  dew  appears.  The  flow  of  the 
pump  is  then  reduced  until  the  dew  just  disappears. 
The  mean  of  the  temperatures  at  which  these 
phenomena  occur  is  taken  to  be  the  dew  point. 
Unfortunately,  even  if  the  experiment  is  performed 
very  slowly,  and  although  a  reading  of  less  than 
one-fifth  of  a  degree  can  be  obtained,  the  tempera- 
ture gradient  may  produce  an  error  of  twice  or 
three  times  that  amount.  This  fact  is  due  to  the 
high  surface  resistance  of  even  such  a  conductor 
as  silver,  so  that  the  temperature  of  the  thermo- 
meter for  both  readings  may  be  as  much  as  half  a 
degree  different  from  that  of  the  surface  upon 
which  the  dew  is  formed.  By  making  the  bulb  of 
the  thermometer  the  container  for  the  cooling 
agent  as  well  as  the  surface  for  the  deposition  of 
dew  the  effect  of  the  temperature  gradient  may  be 
eliminated    and   a   very   accurate    result    obtained. 

The  dry  and  wet  bulb  thermometer  appears  to  be 
the  universal  instrument  of  the  factory  for  the 
determination  of  the  hygrometic  state  of  the  air. 
A  discussion  of  the  instrument  would  be  too  long 
for  this  paper,  but  it  may  be  stated  that  although 
it  is  nearly  always  inaccurate  it  is  rarely  mislead- 
ing. In  instruments  where  the  bulbs  are  shielded 
and  the  air  is  drawn  past  the  wet  bulb  by- 
mechanical  means  most  satisfactory  results  are 
obtained,  but  the  ordinary  stationary  instrument 
is  very  unreliable. 

The  more  recent  electrical  methods  give  excellent 
results,  but  if  used  without  a  complete  knowledge 
of  the  principles  involved  may  be  very  misleading. 

Drying. — While  the  evaporation  formula  given 
are  devised  for  use  in  cooling,  crystallising,  and 
concentrating  operations,  they  may  also  be  applied 
to  drying  operations  in  air  dryers. 

If  the  rate  of  drying  does  not  exceed  the  rate  of 
liquid  ditfusion  through  the  material  the  rate  of 
drying  is  nearly  proportional  to  the  perunitage  of 
"  free  "  moisture  present  in  the  material.  The 
texture  and  plasticity  of  the  material  affect  this 
rate  to  an  extent  which  cannot  generally  be 
estimated,  and  experimental  tests  for  the  deter- 
mination of  drying  factors  (the  relation  of  the  rate 
of  drying  of  the  material  to  the  rate  of  drying  of  a 
water  surface  under  the  same  conditions)  are  always 
necessary. 

Knowing  the  maximum  and  minimum  drying 
factors  for  the  material  in  question  and  therefore 
the  maximum  and  minimum  rates  of  drying  the 
logarithmic  mean  of  these  rates  will  give  the 
average  rate  of  drying.  Since  the  determination 
of  a  logarithmic  mean  is  one  of  the  commonest 
calculations  the  chemical  engineer  must  make  I 
have  ventured  to  submit  a  graphical  method  of 
determining  it.  If  the  smaller  number  be  divided 
by  the  larger  number  and  the  fraction  obtained  be 
called  "j,"  the  logarithmic  mean  will  be  given  by 
multiplying  the  larger  number  by  the  fraction :  — 

(1-j)  -  loge  1/j 

The  values  of  this  fraction  are  given  by  the  curve 
(F.g.  3). 

Boiling  point  evaporation. — In  considering  the 
subject  of  evaporation  at  the  boiling  point  we  meet 
witli  many  new  conditions  and  limitations  tu  the 
rate  of  evaporation  possible  or  desirable.  A 
successful  evaporating  plant  is  one  in  which  for  a 
given  quantity  of  heat  supply  the  maximum  rate 
of  evaporation  is  produced  at  the  minimum  cost. 
On  this  account  it  is  necessary  to  employ  heating 
surfaces  at  their  highest  rates  of  working,  to  use 
sizes  of  vessels  and  pipe  work  so  that  for  a  given 
expenditure  in  capital,  fuel  and  labour,  the 
maximum  amount  of  profit  is  obtained. 


vol.  XLT..NY..14.]        HINCHLEY.— THE  GENERAL  PROBLEM  OF  EVAPORATION. 


245  T 


There  is  no  question  that  the  efficiency  of 
chemical  plant  is  capable  of  enormous  improvement 
by  the  application  of  sound  chemical  engineering 
science  both  in  design  and  operation.  Few  are 
aware  to  what  a  considerable  eNtent  this  improve 
ment  may  be  curried. 

The  rate  of  heat  transmission  in  evaporating 
plant  from  steam  to  water  solutions  may  vary  in 
the  same  kind  of  plant  from  300  to  over  3000 
calories  per  sq.  metre  of  surface  per  hour  per  1°  C. 


10  . 
09 

0-8 
0-7 

^0-6 

u 

~  0-5 

7 

-0-4 
03 

0-2 
01 


y^ 

-^ 

S*- 

^ 

s 

s* 

/ 

01   02   0-3 


0-4   0-5 
j=a/b 

Fig.  3. 


06   07   0-8   09   10 


temperature  difference.  This  simple  fact  illustrates 
the   possibilities  of  sound  chemical   engineering. 

In  plant  in  which  evaporation  takes  place  from 
the  surface  it  is  obvious  that  the  area  of  that 
surface  should  bear  some  relation  to  the  amount  <  f 
evaporation.  The  equation  we  have  already  dis- 
cussed fails  when  pe  =  P  (i.e.,  at  the  boiling  point), 
but  it  suggests  that  at  the  boiling  point  of  watei 
the  rate  of  evaporation  in  still  air  would  be  about 
26  kg.  per  sq.  metre  per  hour  and  that  such  an 
evaporation  would  be  produced  from  water  without 
any  disturbance  of  its  surface,  that  is,  without  any 
boiling.  This  figure  seems  to  indicate  the  rate  of 
evaporation  from  any  water  solution  at  which  no 
difficulties  from  frothing,  entrainment,  or  other 
troubles  could  occur. 

The.  maximum  rate  at  which  evaporation  might 
take  place  from  an  evaporator  is  not  easy  to  deter- 
mine, but  everyone  who  has  had  charge  of 
evaporators  or  stills  will  have  experienced  the  effect 
of  projection  of  the  liquid  from  the  still,  either  a^ 
a  whole  or  by  frothing  or  by  ordinary  entrainment. 
The  designer  of  the  plant,  however,  must  fix  a 
limit  to  the  rate  of  evaporation  from  the  surface 
in  his  particular  apparatus,  and  it  has  been  the 
author's  practice  to  suggest  the  figure  of  250  kg. 
per  sq.  metre  per  hour.  In  rectifying  plant,  where 
entrainment  must  be  avoided  at  all  costs,  this  rate 
should  not  exceed  100  kg.  per  sq.  metre  per  hour. 
These  figures  do  not  represent  the  maximum  rate 
at  which  any  apparatus  may  be  worked,  but  they 
do  give  a  convenient  design  figure. 

In  that  type  of  evaporator  in  which  the  liquid 
is  forced  through  tubes  and  the  contents  of  the 
tube  are  projected  into  the  chamber  in  which 
separation  of  liquid  and  vapour  may  take  place. 
this  limitation  of  area  does  not  arise.     In  this  type 


we  obtain  a  more  oi  less  fine  spray  in  which  the 
convex  surfaces  of  the  drop  present  a  maximum 
area  and  the  best  conditions  for  vaporisation  On 
the  other  hand,  however,  frothing  of  the  liquor 
may  impose  a  working  limit. 

An  interesing  feature  about  frothing  is  the  fact 
thai  there  is  generally  a  critical  rate  above  and 
below  which  the  plant  may  be  worked  without  any 
trouble  from  this  source. 

An  effective  "  save-all  "  or  arrangement  for  the 
separation  of  spray  from  vapour  makes  the 
question  of  area  of  pan  of  less  importance,  but  :t 
is  always  desirable  to  measure  the  amount  ;>f 
entrainment,  which  is  occasionally  excessive. 

In  most  commercial  plants  it  is  obvious  that  the 
limitation  of  the  rate  of  evaporation  is  mainly  a 
question  of  heat  transmission.  On  this  subject  it  is 
quite  easy  to  produce  observations  which  are 
mutually  contradictory,  unless  one  takes  into 
ac-eount  secondary  effects  which  are  neglected  and 
generally  misunderstood. 

It  is  generally  assumed  that  the  rate  of  heat 
transmission  through  any  given  surface  is  pro- 
portional to  the  temperature  drop,  and  this 
assumption  enables  the  chemical  engineer  to  make 
calculations  for  design  purposes  which  are  usually 
satisfactory  in  practice. 

It  has  been  stated  by  many  observers  that  the 
rate  of  heat  transmission  per  degree  Centigrade  of 
temperature  difference  per  unit  of  surface  increasi  - 
with  the  temperature  drop.  On  the  other  hand, 
there  are  quite  a  number  of  observations  which 
would  suggest  that  the  rate  of  heat  transmission  is 
greater  with  small  temperature  drops. 

In  many  experimental  results  the  figures 
obtained  are  simply  measures  of  the  rate  of  supply 
of  heating  agent  to  the  apparatus,  the  capacity  of 
the  pipe-work  to  supply  steam,  etc. 

Contradictory  results  may  be  explained  by 
simple  physical  facts  that  have  been  overlooked, 
errors  in  determination  of  mean  temperature  and 
temperature  differences  etc. 

A  few  preliminary  experiments  at  the  Imperial 
College  cave  curves  of  heat  transmission  which 
could  only  be  expressed  by  a  cubic  equation.  It 
is  obvious  that  contradictory  conclusions  could 
easily  be  drawn  from  such  experimental  results  if 
they  had  not  been  carried  far  enough  to  reveal 
their   character. 

A  slight  consideration  of  heating  by  steam  is  nil 
that  is  possible  in  this  paper. 

The  rate  of  heat  transmission  from  steam  to 
boiling  liquids  is  determined  mainly  by:  — 

(a)  temperature   drop    and    temperature   level. 

(b)  the  velocity  of  the  liquid  and  of  the  heating 
steam. 

(c)  the  density  and   viscosity  of   the  liquid. 

(d)  the  resistance  of  the  surfaces  and  scale. 

(e)  the  resistivity  of  the  material  of  which  the 
heating  surface   is  made. 

The  work  of  Badger  and  others  in  American 
ITniversities   is   very  valuable   on  these  points. 

Temperature  drop. — There  is  little  doubt  thai 
i he  rate  of  heat  transmission  is  not  strictly  pro- 
portional to  the  temperature  drop;  but  since  the 
amount  of  mechanical  disturbance  bears  some 
relation  to  temperature  drop  and  temperature 
level,  and  is  limited  by  the  construction  of  the 
plant,  no  mathematical  relation  is  possible  except 
for  a  particular  design.  It  is  found  that  with  a 
particular  type  of  plant  or  at  a  particular  tempera- 
ture level,  a  certain  temperature  drop  will  give  a 
maximum  rate  of  heat  transmission.  At  high  tem- 
perature levels  this  drop  will  be  greater  than  at  low 
temperature  levels  and  with  high  hydrostatic  heads 
greater  than  with  low  hydrostatic  heads.  With  film 
evaporation  this  drop  is  smallest. 


246t 


McDAVID.— HEAT  DEVELOPED  ON  MIXING  ACIDS  AND  WATER.  [July  31,  1922. 


Velocity  effect. — The  effect  of  temperature  drop 
and  temperature  level  is  bound  up  with  (b)  the 
effect  of  the  velocity  of  the  liquid  and  of  the 
heating  steam. 

The  effect  of  velocity  on  increasing  the  rate  of 
heat  transmission  is  well  known,  but  full  scientific 
knowledge  is  not  available. 

Scale. — The  effect  of  density  and  viscosity  of 
the  liquid  on  the  heat  transmission  will  be  obvious 
without  discussion,  but  much  experimental  work 
is  needed  on  this  point.  The  resistance  of  the 
metallic  surfaces  and  of  any  scale  formed  is  per- 
haps more  important  to  the  user  than  any  other 
point.  To  keep  clean  the  heat  transmitting  sur- 
faces of  a  plant  is  not  a  question  for  the  chemical 
engineer  only,  but  for  the  chemist  as  well.  The 
chemist  can  often  prevent  the  formation  of  a  hard 
scale  by  slight  modifications  of  the  process.  The 
chemical  engineer  in  charge  is  often  powerless, 
and  can  only  stop  for  cleaning  at  definite  in- 
tervals— with  most  plants  the  best  solution  of  the 
problem  is  only  obtained  by  the  assistance  of  the 
chemist. 

Where  the  circulation  is  high  and  the  heating 
surfaces  are  well  submerged  scale  to  a  minimum 
is  produced.  It  may  be  mentioned  that  the  pre- 
sence of  fine  solids  in  a  well  circulating  evaporator 
will  often  keep  the  surfaces  clean. 

Material. — Although  the  effect  of  the  heat  re- 
sistivity and  thickness  of  the  material  of  the  heat- 
ing surface  is  much  smaller  than  the  other  factors, 
it  must  not  be  neglected.  Rates  of  heat  trans- 
mission of  over  3000  are  not  possible  except  with 
good  heat  conductors. 

Multiple  evaporation. — It  will  be  realised  that 
owing  to  the  high  latent  heat  of  water  the 
cost  of  evaporating  water  is  very  high.  By  using 
the  evaporated  steam  as  the  heating  agent  in 
another  apparatus  a  large  portion  of  this  latent 
heat  may  be  recovered  and  a  further  evaporation 
obtained,  and  so  on.  This  is  the  well-known  system 
of  multiple  effect  evaporation. 

The  heat  pump. — Early  in  the  last  century,  it 
was  suggested  that  by  compressing  the  evaporated 
steam,  its  temperature  could  be  raised  and  it  could 
be  used  in  the  same  evaporator  as  heating  steam. 
Siemens  tried  this  plan  in  1868,  but  on  account 
of  the  low  efficiency  of  compressors  of  his  day  the 
experiment  was  a  failure.  To-day  four  or  five 
firms  are  making  plant  on  this  principle. 

On  account  of  the  immense  improvement  in 
efficiency  of  electrically-driven  turbo-eompre'ssors, 
and  also  by  the  use  of  high  pressure  steam  in- 
jector compressors,  a  considerable  amount  of 
success  has  been  obtained 

It  will  be  realised  that  in  this  form  of  evaporation 
the  condenser  is  the  heating  surface  itself  and  is 
at  a  higher  temperature  than  the  liquid  in  the 
evaporator.  Of  course,  the  condensed  water  from 
the  heating  surface  is  used  in  a  heat-exchanger 
for   heating  the   in-coming  liquid. 

Provided  that  the  temperature  rise  is  small, 
about  5°  C. ,  the  efficiency  of  the  "  heat  pump  "  is 
sufficiently  good.  By  the  turbo-compressor,  about 
in  heat  efficiency  is  obtained  and  by  the  injector 
probably  over  twice  this  amount. 

It  is  obvious  that  on  account  of  the  small  tem- 
perature difference  (3°  C.  or  4°  C.)  the  method 
cannot  be  used  efficiently  for  concentrated  salt 
solutions  and  that  in  any  case  special  methods 
must  be  used  for  obtaining  a  hic:h  coefficient  of 
heat  transmission.  In  the  Soderlund  and  Boberg 
evaporator  the  liquid  is  allowed  to  flow  in  a  thin 
film  down  vertical  tubes.  In  the  Prache  and 
Bouillon  evaporator,  mechanical  means  are  adopted 
to  move  the  liquid  at  a  high  speed  and  a  very  high 
coefficient  is  obtained. 


Communications. 


THE    HEAT    DEVELOPED   ON    MIXING    SUL- 
PHURIC ACID,  NITRIC   ACID,  AND  WATER. 

BY    J,    W.    MCDAVID,    D.SC,    F.I.C. 

It  is  well  known  that  when  sulphuric  acid  or  nitric 
acid  and  water  are  mixed  heat  is  developed,  and 
that  the  actual  amount  of  heat  depends  on  the 
initial  and  final  concentrations  of  the  acid  solution. 
The  quantity  of  heat  generated  has  been  determined 
in  the  case  of  mixtures  of  sulphuric  acid  and  water 
and  of  nitric  acid  and  water  by  Thomsen  (Thom6en's 
"  Thermochemistry,"  translated  by  K.  A.  Burke, 
p.  76).  Thomsen's  results  put  in  slightly  different 
form,  are  given  in  Tables  1  and  2,  while  they  are 
shown  graphically  in  Fig.  1. 

Table  I. 

Quantity  of  heat  liberated  when  pure  sulphuric 
acid  is  diluted  with  water  to  give  1  g.  of  solution 
of  strength  shown.  Taken  from  Thomsen's 
"Thermochemistry,"  p.  76.* 


Q.-  calories 

Mots. 

Mols. 

Total 

Gram- 

%  H.SO, 

evolved 

H.SO, 

.       H,0. 

weight  of 

calories 

in 

per  g.  of 

mixture, 

evolved 

product. 

solution 

E- 

produced. 

10 

1 

998 

9480 

98-2 

9-5 

5 

1 

508 

8930 

96-4 

17-6 

2 

1 

214 

7770 

91-6 

36-3 

1 

1 

116 

6382 

84-5 

650 

1 

1-5 

125 

8122 

78-4 

65-0 

1 

20 

134 

9404 

731 

70-4 

1 

30 

152 

11167 

64-4 

73-5 

1 

4-0 

170 

12320 

57-6 

72-5 

1 

5-0 

188 

13135 

52-1 

69-8 

1 

00 

206 

13740 

47-6 

66-7 

1 

90 

260 

14886 

37-7 

57-4 

1 

150 

368 

15950 

266 

43-4 

1 

190 

440 

16256 

22-3 

370 

1 

300 

638 

16430 

15-7 

25-8 

1 

400 

818 

16580 

120 

20-2 

1 

80-0 

1538 

16780 

6-4 

10-9 

•Of. 

also  Porter, 

Trans.  Faraday  Soc., 
Table  II. 

13,  373. 

Quantity  of  heat  liberated  when  pure  nitric  acid 
is  diluted  with  water  to  give  1  g.  of  solution  of 
strength  shown.  Data  taken  from  Thomsen's 
"  Thermochemistry,"  p.  78. 


Gram- 

%  HNO, 

Calories 

Mols. 

Mols. 

Total 

ca  lories 

in 

perg. 

HNO,. 

H„0. 

weight, 
g. 

evolved. 

product. 

solution 
produced 

10 

1 

648 

4880 

97-2 

7-5 

5 

1 

332 

4420 

94-9 

13-3 

2 

1 

144 

3915 

87-5 

27-3 

1 

1 

81 

3285 

77-8 

40-6 

1 

2 

99 

4808 

63-6 

48-1 

1 

3 

117 

5690 

53-9 

48-5 

1 

4 

135 

ro;i; 

46-7 

46-5 

1 

5 

153 

6668 

41-2 

43-4 

1 

10 

243 

7318 

25-9 

30-2 

1 

20 

423 

7440 

14-9 

17-5 

1 

40 

783 

7440 

8-0 

9-5 

1 

100 

1863 

7440 

8-4 

3-9 

Similar  data  for  mixtures  of  sulphuric  acid, 
nitric  acid,  and  water  are  very  often  required  in 
connexion  with  the  designing  of  cooling  plant  em- 
ployed in  acid  mixing,  but  hitherto,  with  the  excep- 
tion of  results  determined  for  a  few  special  cases, 
such  information  has  not  been  available.  It  was 
evident,  however,  that,  with  the  assistance  of  the 
figures  given  in  Tables  I.  and  II.,  a  very  few  series 
of  experiments  would  give  a  sufficient  number  cf 
results  to  enable  a  diagram  to  be  constructed  which 
would  be  of  considerable  assistance  in  heat  problems 
dealing  with  acid  mixing  or  acid  distillation. 

As  a  triangular  diagram  is  the  most  suitable 
method  of  lepresenting  results  for  mixed  acids,  the 
data  given  on  the  H=SO,— H20  and  HNO,— H„0 
graphs  in  Fig.  1  were  first  of  all  transferred  to  the 
triangle  in  Fig.  2.  For  this  purpose  the  per- 
centages of  sulphuric  acid  in  1  g.  of  solution,  which 


Vol.   XLI  ,  No.   14.] 


McDAVID.— HEAT  DEVELOPED  ON  MIXING  ACIDS  AND  WATER, 


247  T 


when  produced  from  pure  acid  and  water  give  10,  20, 
30,  etc.  g.-calories  of  heat,  were  read  off  from  the 
graph  and  plotted  along  the  side  H2S04 — H,0  of 
the  triangle  in  Fig.  2.  Similarly  the  results  refer- 
ing  to  mixtures  of  nitric  acid  and  water  were  read 


Fio.   I. 

Graphs  Bhowing  heat  developed  on  mixing  puro  sulphuric- 
acid,  or  20%  oleum,  or  nitric  acid  with  water.  Calculated  from 
data  given  by  Thomsen  (Thermo-Chemiatry,  p.  76)  and  Porter 
(Trans".  Faraday  Soc.,  13,  373). 


The  experiments  were  carried  out  in  the  silvered 
glass  vessel  of  an  ordinary  vacuum  flask.  In  each 
experiment  400  g.  of  mixed  acid  was  prepared  by 
placing  one  of  the  constituents  in  the  flask,  noting 
its  temperature,  bringing  the  other  constituent  to 
the  same  temperature,  then  adding  it  to  the  liquid 
in  the  flask  and  noting  the  rise  in  temperature. 

In  order  to  calculate  the  heat  developed,  a  know- 
ledge of  the  specific  heats  of  the  mixtures,  over  the 
temperature  range  employed,  is  necessary,  but  such 
data  are  not  available.  The  specific  heats  of 
mixtures  of  sulphuric  acid,  nitric  acid,  and  water 
at  20°  0.  have,  however,  been  determined  by  Pascal 
and  Gamier  (Bull.  Soc.  Chim.,  1920,  18)  and  the 
results  obtained  by  them  have  been  used  in  calcu- 
lating the  quantity  of  heat  liberated.  From  one  or 
two  isolated  specific  heat  determinations  carried  out 
at  higher  temperatures  it  is  evident  that  the  error 
introduced  in  this  manner  is  negligible  for  all 
practical  purposes. 

The  method  of  calculating  the  amount  of  heat 
developed  can  be  best  explained  by  means  of  an 
actual  example.  When  250  g.  of  49'2%  nitric  acid 
and  150  g.  of  96'  16%  sulphuric  acid  were  mixed 
there  was  a  rise  in  temperature  of  49"2°  C.  The 
water  equivalent  of  the  calorimeter  was  17  g.  and 


>*Ca 


A>  zo  30  ■*©  J*  69  7°  s° 

'/o  //3  S0(  IN  />fl%.TWi£, 

FlQ.  2. 

Heat  developed  in  g. -calorics    per  g.    of  product    when   mixed   acid   is   produced   from 
10U%  H,SO„  100%  UNO,,  and  H,0. 


off  from  Fig.  1  and  plotted  along  the  side  HN03 — 
H20  of  the  diagram  in  Fig.  2.  The  points  repre- 
senting 10,  20,  etc.  calories  were  marked  with  the 
appropriate  number. 

Next,  in  order  to  obtain  similar  points  inside  the 
triangle,  it  was  necessary  to  determine  the  heat 
developed  in  producing  mixed  acids  of  various  com- 
positions, and  for  this  purpose  mixtures  of  the  fol- 
lowing acids  were  employed: — (1)  49'2%  HN03  and 
96T6%  H2S04.  (2)  20-0%  HN03  and  96T6%  H2SO,. 
(3)  96-3%  HN03  and  60'0%  H?S04.  (4)  96-8%  HN03 
and  99"5%  H2S04.  (5)  Mixed  acid  containing 
i 9 -      H=S04,  48-4%  HNO„  P8%  H.O,  and  water 


the  specific  heat  of  the  resulting  mixed  acid  was 
0'573.  The  heat  actually  evolved  was  therefore 
(400  x  0-573+ 17)  x  49-2  =  12113  g.  calories.  But  this 
is  only  the  heat  evolved  in  producing  the  mixed  acid 
in  question  from  49'2%  nitric  acid  and  9616% 
sulphuric  acid,  and  to  obtain  the  total  heat  evolved 
in  producing  the  mixed  acid  from  100%  sulphuric 
acid,  100%  nitric  acid,  and  water,  it  is  necessary 
to  add  to  the  above  figure  the  heat  already  de- 
veloped in  producing  250  g.  of  49'2%  nitric  acid  and 
150  g.  of  96-16      sulphuric  acid. 

Now  from  Fig.  1  the  heat  developed  in  producing 
1  g.  of    96'16%    sulphuric    acid    from    H2S04    and 


248  T 


McDAVTD.— HEAT  DEVELOPED  ON  MIXING  ACIDS  AND  WATER.         [July  81,  1922. 


i   .  alories.      Hence  the  heat  developed 
in    producing   150   g.    of   96'16%    sulphuric   acid   is 
.-calories. 
Again,   from  Fig.   1   the  heat  developed   in  pro- 
ducing 1  g.  of  49'2%  nitric  acid  from  the  100%  acid 
and  v,  a  er  is   1"  S  g. -calories,  and  therefore  the  heat 
i   1  in  producing  250  g.  of  49'2%  nitric  acid  is 
a  Is.      Hence  the  total  heat  emitted    in 
producing  400  g.  of  the  mixed  acid  in  question  from 
LOO        H2S04,   100%    HNO„    and  water    is   12113  + 
2925  +  11950  =  26988    g. -calories    or    675    g. -calories 
per  g.  of  mixed  acid  produced. 

All   the   results   given    below   were   calculated    in 
this  manner. 

The  details  of  the  experiments  carried   out   and 
the  results  obtained  are  given  in  Tables  III. — VII. 

Table  III. 

Results  of  experiments  an  mixing 

mi, I  96T6%  sulphuric 


Weight 

of 
49-2% 
HNO, 
used. 


250 
300 
350 
200 
100 
100 
SO 
0 
400 


Weight 

of 
96-1% 
Ji.SO, 
used. 


150 
100 
50 
200 
250 
300 
350 
400 
0 


Composition  of 

mixed  arid 

produced. 

%  % 

H,S04.    UNO,. 


Temp, 
rise. 

•C. 


49'2%   nit  1  ic  acid 
mid. 

Heat 
developed 
in  making 
Sp.  heat  1  g.  of  the 
of  mixi  d 

mixed     acid  from 
H,SO«, 
HXO, 
and  HjO. 
g.-caiories. 


acid. 


3606 
24-04 
12-02 
48-08 
60-10 
72-12 
84-14 
90-16 
0 


30-77 
30-91 
4305 
24-61 
18-46 
12-30 
615 
0 
49-2 


49-2 
32-6 
17-4 
64-0 
720 
68-0 
47-8 


11  :,7:: 
0-615 

0  i;40 

a-52 
0-475 

u-447 
0-410 
—  5 !  *  ! 


67-5 

62-2 

56-1 

C9-7 

07-3 

59-9 

440 

190* 

47-8* 


•  Taken  from  Fig.  1. 


Table  IV. 

Results  uf  experiments  on   mixing  20%   nitric  acid 
and  96'16%.  sulphuric  acid. 

Heat 
developed 
Weight    Weight     Composition  of  in  making 

of  mixed  acid        Temp.    Sp.  heat  1  g.  of  the 

-96-1%  produced.  rise.  of  mixed 

II, so,.        %  %  °C. 

g.         HNO,.    HtSO,. 


of 

20% 

HNO, 

g- 


mixed     acid  from 
acid.        H,SO„ 
HXO, 
and  11,0. 
g.-calorics 


350 
300 
250 
200 
100 
50 
0 
400 


50 

in ij 
150 
200 
300 

:;50 

400 
0 


17-5 

15-0 

12-5 

10-0 

50 

2-5 

0 

20-0 


1202 
24-04 
36-06 
48-08 
72-12 
84-14 
96-16 
0 


22-5 
42-7 
05-6 
85-5 
105-7 
77-9 


765 
705 
640 
565 
458 
420 


41-2 

54-4 

66-8 

73-4 

68-8 

510 

19-5» 

23-5* 


•  Taken  from  Fig.  1. 


Table  V. 
Results  of  experiments  on  mixing  96*8%   nitric  acid 


and   60'0%    sulphuric   acid. 


Weight    Weight 


of 

•Ml  .-"„ 

HNO,. 

S- 


350 
300 
200 
150 
100 
50 
0 
400 


of 

60% 

H,SO,. 

B- 


50 

100 
200 
250 
300 
350 
400 
0 


Composition  of 
mix  d  acid 
produced. 
%  % 

HNO,.     HsSO,. 


84-7 
72-6 
4S-4 
36-3 
24-2 
121 
0 
96-8 


7-5 
150 
30-0 
37-5 
45-0 
52-5 
000 
0 


Temp, 
rise. 

•e. 


12-7 
19-7 
22-9 
21-2 
17-9 
11-7 


Heat 
developed 
in  making 
Sp.  heat  1  g.  of  the 

of  mixed 

mixed     at  id  from 

H,SO„ 

HNO, 

and  H.O. 

g. -calories. 


acid. 


0-49 

0-515 

0-54 

0-54 

0-54 

0-535 


22-9 
35-4 
54-2 
61-5 
68-5 
72-3 
73-5* 
8-0* 


•  Taken  from  Fig.  1. 

;\^n  in  the  last  column  of  each   ol 

the  Tables   lli     -VII.  could  now  be  plotted  on  the 

cm    hi    Fig    2  ami  an   attempt   made  to  draw 

curves  through  points  of  equal  magnitude,     li  is, 


however,  simpler  to  determine,  for  each  series,  the 
points  which  represent  10,   20,  30,  etc.  calories. 

Table  VI. 

Results  of  experiments  on  mixing 
with  99'5%  sulphuric 


Weight 

of 
96-;v\, 
UNO,. 


350 
300 
200 
150 
100 
0 
400 


Weight 

of' 

99-5% 

H,SO,. 

6- 


50 
100 
200 
250 
300 
400 
0 


Composition  of 
mixed  acid 
produced. 

<y  0/ 

HNO,.     H,S04. 


84-7 
72-6 

48-4 
36-3 

24-2 

(I 

96-8 


12-4 
24-9 
49-8 
62-3 
74-6 
99-5 
0 


Temp, 
rise. 
°C. 


14-5 
LI2-2 
30-7 
33-5 
32-7 


96'8%   nitric  acid 

acid. 

Heat 

developed 

in  making 

Sp.  heat 

1  g.  of  the 

of 

mixed 

mixed 

acid  from 

acid. 

H,SO„ 

HNO, 

and  H,0. 

g. -calories 

0-460 

13-0 

0-445 

17-5 

0-415 

19-3 

0-395 

19-2 

0-370 

17-4 

— 

2-5« 

— 

8-0* 

'  Taken  from  Fig.  1 . 


Table  VII. 


Results  of  experiments  on  mixing  mixed  acid  con- 
taining 49-8%  1I2S04  and  48-4%  HNO,  with  irate, . 


Weight 

of 

mixed 

acid. 

6- 


Weight 

of 

H.O. 

B- 


Composition  of 
mixed  acid 
produced. 

0/  Of 

HNO,.    H.SO,. 


350  50  42-35  43-75 

300  100  36-3  37-3 

250  150  30-25  31-25 

200  200  24-2  24-9 

175  225  21-1  21-8 

400  0  48-4  49-8 

•  Taken  from  Table  VT. 


Temp, 
rise. 

•c. 


63-0 
84-6 
82-5 
71-5 
63-5 


Heat 
developed 
in  making 
Sp.  heat  1  g.  of  the 

of  mixed 

mixed     acid  from 

H,SO„ 

HNO, 

and  H,0. 

g. -calories. 


acid. 


0-475 
0-540 
0-603 
0-665 
0-684 


500 
63-8 
65-7 
60-0 
56-9 
19-3* 


If  the  figures  in  the  last  column  of  Table  III. 
are  plotted  against  the  percentage  of  sulphuric 
acid  given  in  column  3,  a  graph  will  be  obtained 
from  which  the  mixed  acids  corresponding  to  10, 
20,  30,  etc.  calories  can  be  read  off.  These  points 
can  then  be  marked  on  Fig.  2.  The  results  in 
Tables  IV. — VII.  can  be  treated  in  the  same  manner 
and  when  the  points  are  plotted  on  Fig.  2,  curves 
can  readily  be  drawn  through  corresponding  points. 
Fig.  2  shows  the  completed  diagram.  The  curves 
in  most  cases  pass  through  all  the  corresponding 
points  which  were  determined  by  experiment  and 
interpolation.  Each  curve  in  the  diagram  is 
marked  with  a  number,  which  denotes  the  number 
of  g.-calories  evolved  when  1  g.  of  any  acid  situated 
on  the  curve  is  produced  from  100%  sulphuric  acid, 
100%  nitric  acid,  and  water.  The  heat  evolved  in 
the  production  of  1  g.  of  any  acid  which  is  situated 
between  two  of  the  curves  can,  of  course,  be  ob- 
tained  by   interpolation. 

The  diagram  in  Fig.  2  can  be  employed  for 
solving  many  problems  in  connexion  with  a,  id 
mixing,  but  a  great  many  problems,  for  which 
Fig.  2  is  of  no  assistance,  are  connected  with 
the  mixing  of  oleum  with  other  acids.  It  is  there- 
fore convenient  to  construct  from  the  data  already 
obtained  curves  showing  the  heat  developed  when 
1  g.  of  mixed  acid  of  any  composition  is  produced 
from,  say,  20%  oleum,  100°'  nitric  acid,  and  water. 
In  order  to  do  this  it  is  necessary  to  know  in  the 
first  place  tin-  heat  developed  in  making  any 
strength  of  sulphuric  acid  from  20%  oleum.  Porter 
(Trans.  Faraday  Sec,  13,  3731  has  dealt  exhaus- 
tively with  the  heats  of  dilution  of  oleum  and  sul- 
phuric acid,  and  the  oleum-water  graph  in  Fig.  1 
has  been  compiled  by  combining  his  figure  for  the 
dilution  of  20%  oleum  to  100°/  H.SOd  with 
Thomsen's  results  in  Table  I.  From  this  graph  the 
percentages  of  sulphuric  acid  in  1  g.  of  solution 
which  when   produced   from  20'     oleum   and   water 


Vol.  XU.,  No.  14.]     McDAVTD.— HEAT  DEVELOPED  ON  MIXING  ACIDS  AND  WATER. 


249  T 


will  generate  10,  20,  30,  etc.  g. -calories  can  be  read 
off  and  plotted  along  the  H2SO« — H.O  side  of  a 
triangular  diagram.  The  figures  on  the  HN03 — 
H,0  side  of  the  diagram  are  exactly  the  same  as 
in  Fig.  2  and  the  points  within  the  triangle  can 
all  be  obtained  by  calculation  from  the  data  given 
in  Tables  III — VII.  The  finished  diagram  is  given 
in  Fig.  3  and  will  be  found  to  give  the  same  results 
as  Fig.  2  in  such  problems  for  which  either  can  be 
employed. 


96%   sulphuric  acid  and  333  parts  of  65%   nitric 
acid  are  required. 

Now  in  the  production  of  100  parts  of  the  mixed 
acid  from  sulphuric  acid,  nitric  acid,  and  water  the 
heat  generated  =  100x57  g.-calories  (see  Fig.  2)  = 
5700  g. -calories.  But  the  heat  generated  in  making 
667  parts  of  96%  sulphuric  acid  from  H,SO,  and 
water  =  66'7x20  g.-calories  (see  Fig.  1)  =  1334  g.- 
calories.  Also  heat  generated  in  making  33'3  parts 
of  65%   nitric  acid  from  HNOs  and  water  =  (33  3 x 


-*AO, 


#lO. 


so  30  <o  So  eo 

Fia.  3. 


:■> 


Heat  developed  in  g.-calories  per  g.  of  product  when  mixed  acid  is  produced  from    20%  ol?utn,   100% 

H.N'O,.  and  11,0. 


Similar  diagrams  can  be  constructed  starting 
with  any  strengths  of  oleum  or  nitric  acid. 

Use  of  the  diagrams  in  Figures  2  and  3. 

The  diagrams  in  Figs.  2  and  3,  especially  the 
latter,  are  necessary  for  the  solution  of  all  hea.t 
problems  in  connexion  with  acid  mixing.  Suppose, 
for  example,  that  weak  nitric  acid  is  to  be  added  to 
O.O. V.  to  form  mixed  acid,  and  it  is  desired  to 
know  the  quantity  of  heat  that  will  be  generated, 
the  result  can  be  obtained  with  little  trouble  from 
either  Fig.  2  or  Fig.  3.  As  one  illustration  of  the 
use  of  the  diagrams  this  problem  is  worked  out  in 
%  detail  below. 

Again,  the  heat  generated  in  the  production  of 
nitroglycerin  mixed  acid  from  oleum  and  nitric 
acid  can  be  determined  without  difficulty.  The 
diagrams  can  also  be  employed  to  solve  thermal 
problems  in  connexion  with  acid  distillation  or 
denitration. 

Two  examples  of  the  use  of  the  diagrams  are 
given  below. 

Determination  of  heat  generated  in  mixing  96% 
suljihuric  acid  and  65%  nitric  acid  to  produce 
mixed  acid  containing  64%  H.S0„  21-7%  nitric 
acid,  and  143%  H20. 
Calculation  shows  that  to  make  100  pants  of 
mixed  acid  of  the  above  composition  66"7  parts  of 


47'5)  g.-calories  (from  Fig.  1)  =  1583  g.-calories. 
Hence  heat  generated  in  producing  100  g.  of  mixed 
acid  from  667  g.  of  96 0/  sulphuric  acid  and  333  g. 
of  65%  nitric  acid  =  (5700 -1334 -1583)  =  2783  g.- 
caIories  =  27"8  g.-calories  per  g.  mixed  acid. 

The  above  problem  can  also  be  solved  by  using 
Fig.  3  instead  of  Fig.  2,  as  follows:  — 

In  the  production  of  100  parts  of  mixed  acid  from 
oleum,  nitric  acid  and  water  the  heat  generated  = 
100x88-0  (Fig.  3)  =8800  g.-calories.  But  heat 
generated  in  making  667  parts  of  96%  sulphuric 
acid  from  oleum  and  water  =  66'7x66"5  =  4435  g.- 
calories  (Fig.  1),  and  heat  generated  in  making 
333  parts  of  65%  nitric  acid  from  HN03  and 
water  =  333x47-5  =  1583  g.-calories.  Hence  heat 
generated  in  producing  100  g.  of  mixed  acid  from 
667  g.  of  96%  sulphuric  acid  and  333  g.  of  65% 
nitric  acid  =  8800 -4435 -1583  =  2782  calories  =  27-8 
calories  per  g.  of  mixed  acid. 

In  order  to  calculate  the  temperature  rise  it  is 
only  necessary  to  divide  the  result  obtained  above 
bv  the  specific  heat,  which  is  045.  Hence  tempera- 
ture rise  in  this  case  =  27-8-0'45  =  62°  C. 

Determination  of  heat  liberated  in  the  production 
of  mixed  acid  containing  58%  H._SO„  40%  ENO„ 
and  2%  H20  from  20%  oleum  and  90%  nitric  acid. 

Calculation  shews  that  555, parts  of  oleum  and 
445  parts  of  90  %  nitric  acid  are  required  to  produce 


250  t      BAWLING.— THERMOSTAT   HEATING   AND   CONTROLLING   APPARATUS.     [July  31,  1922. 


100  parts  of  mixed  acid  of  the  above  composition. 
Now,  from  Fig.  3,  in  the  production  of  100  g.  of 
the  mixed  acid  from  20%  oleum,  anhydrous  nitric 
acid,  and  water,  the  heat  generated  =  (100x49)  = 
4900  calories.  But  from  Fig.  1  the  heat  developed 
in  producing  445  g.  of  90%  nitric  acid  from 
anhydrous  nitric  acid  and  water  =  44'5x23'3  =  1037 
calories.  Hence  heat  liberated  in  producing  100  g. 
of  mixed  acid  from  20%  oleum  and  90%  nitric  acid 
=  4900-1037=3863  =  38-6  calories  per  g.  of  mixed 
acid. 

In  conclusion,  the  author  desires  to  thank  the 
management  of  Messrs.  Nobel's  Explosives  Co., 
Ltd.,  for  permission  to  publish  these  results. 

Ardeer  Factory, 

Stevenston,  Ayrshire. 


capillary  tube;  G  is  then  closed  by  a  rubber  tube 
and  clip.  The  working  fluid — saturated  calcium 
chloride   solution   or  toluene — is   next  poured  into 


ELECTRIC     HEATLNG     AND     CONTROLLING 
APPARATUS  FOR  A  SMALL  THERMOSTAT. 

BY    S.    O.    RAWLING,    B.SC,   A.I.C. 

(Communication  No.   23  from   the   British  Photo- 
graphic Research  Laboratory.) 

In  working  with  automatically  regulated,  con- 
stant-temperature baths,  it  is  frequently  found  that 
to  change  from  one  temperature  to  another  involves 
troublesome  readjustments  of  heat  supply  and  regu- 
lating gear.  The  apparatus  to  be  described  has 
been  devised  with  a  view  of  overcoming  this  diffi- 
culty, within  the  temperature  range  from  25°  to 
40°  C. 

Electrical  heating  and  controlling  is  employed, 
and  the  general  principle  of  the  apparatus  is  illus- 
trated diagrammatically  in  Fig.  1.  Current  is 
supplied  from  the  direct  current  power  mains. 


Heater. 


Fig.  1. 

A  tliermo-regulator  controls  a  device  whereby  the 
resistance,  R3,  is  short-circuited  when  the  tempera- 
ture of  the  bath  falls  below  its  working  level.  The 
resistance,  R„  is  adjusted  so  that  when  current  is 
passed  through  it  and  the  heater  alone,  more  heat 
is  supplied  by  the  heater  than  is  necessary  to  keep 
up  the  temperature  of  the  bath.  The  second  resist- 
ance, R„  is  of  such  a  value  that  when  the  short- 
circuit  is  broken,  the  total  resistance  causes  the  rate 
of  heat  supply  to  become  too  small  to  keep  the  tem- 
perature up  to  its  working  degree. 

The  tliermo-regulator  (Fig.  2)  consists  of  a  large 
bulb,  A,  from  the  neck  of  which  a  side  arm,  B, 
slopes  downwards  and  connects  it  with  the  middle 
of  the  U-tube,  C.  The  U  -tube  itself  is  divided  into 
two  parts  by  a  seal,  D,  through  which  a  platinum 
wire  is  fused.  The  arm,  F,  of  the  U  -tube  is  pro- 
vided with  a  short  length  of  capillary  tubing  of 
about  1  mm.  bore.  A  side  tube,  G,  is  fitted  above 
the  top  of  the  capillary  and  a  rubber  stopper,  H, 
fitted  in  the  widened  end  of  the  U  -tube,  carries  a 
platinum  electrode  mounted  in  a  glass  tube.  The 
end  of  the  electrode  projects  about  15  cm.  into  the 
capillary  tube.  The  upper  end  of  the  tube  leading 
from  the  top  of  the  main  bulb  is  closed  by  a  glass 
tap,  K,  with  a  fairly  wide  bore.  It  is  essential  that 
the  plug  of  this  tap  should  be  very  well  fitted. 

To  fill  the  regulator,  clean  mercury  is  poured  into 
the   U  -tube  so  that  its  level  is  about  halfway  up  the 


Fig  2. 

the  main  bulb  by  means  of  a  funnel  of  which  the 
neck  has  been  drawn  out  so  that  it  can  be  passed 
through  the  bore  of  the  tap. 

Electrical  terminals  are  provided  on  one  side  by 
a  copper  wire  dipping  into  mercury  placed  in  the 
arm,  E,  of  the  U  -tube  and  on  the  other  by  a  wire 
dipping  into  mercury  in  the  electrode  tube  fitted 
through  the  stopper,  H. 

Adjustment  is  effected  by  heating  the  bath  to 
its  working  temperature  with  the  tap,  K,  open. 
Towards  the  end  of  the  heating,  the  rate  of  supply 
of  heat  is  reduced  to  ensure  that  the  liquid  in  the 
bulb  has  attained  the  temperature  of  the  bath. 
The  tap  is  then  turned  off  and  the  electrode  tip  is 
adjusted  to  the  surface  of  the  mercury*  in  the 
capillary  with  the  arm,  G,  open.  This  regulator 
works  well,  and  for  a  working  temperature  of  25°  C. 
is  capable  of  keeping  the  temperature  of  a  bath  con- 
taining about  27  litres  of  water  constant  to 
±0-02°  C. 

The  arrangement  of  the  short-circuiting  relay,' 
resistances,  and  switchboard  is  shown  in  Fig.  3. 

Carbon-filament  lamps  are  used  as  resistances. 
Provision  is  made  for  varying  these  resistances  by 
placing  two  bayonet  sockets  in  parallel  for  each 
resistance.  By  using  different  combinations  of 
lamps,  a  considerable  range  of  resistances  may  be 
covered.  The  relay  itself  is  part  of  an  electric  bell, 
and  consists  of  the  electromagnet,  A,  armature  and 
spring,  C,  and  the  contact  point,  B.  When  no 
current  is  passing  through  the  magnet  coils  the 
spring  of  the  armature  makes  contact  at  B  and  so 
the   resistance,   R,,   is  short-circuited   through  the 

•  Ii#  cases  where  the  temperature  need  not  be  adjusted  nearer 
than  0-1°  C.  It  Is  unnecessary  to  make  a  tine  adjustment  of  the 
electrode  point. 


Vol.  XLI .,  No.  U]        DYER  AND  WATSON.— SULPHUR  IN  VULCANISED  RUBBER. 


251  T 


spring  to  B  and  the  small  resistance,  R?,  which  is  a 
toy  resistance  of  7  ohms  placed  in  series  with  the 
principal  circuit.  When  the  temperature  of  the 
bath  rises  so  as  to  make  contact  between  the  mercury 
and  platinum  in  the  thermo-regulator,  current  will 


,     J!£ATER. 

'iFCGU'-ATOS. 


Short-circuit. 

Fig.  3. 

flow  round  the  magnet  coils  and  the  contact  at  B 
will  be  broken.  The  main  current  must  then  flow 
through  Rj  and  R2  in  series  and  in  this  way  the 
current  through  the  heater  is  diminished. 

The  terminal  board  is  made  up  of  fibre,  and  the 
variable  resistance,  R4,  is  mounted  on  a  block  of  the 
same  material.  In  making  up  this  board  it  is 
advisable  to  number  the  terminals  as  shown  in 
Fig.  3.     The  wiring  is  then  an  easy  matter. 

Efficient  stirring  is  provided  in  the  thermostat 
bath  by  means  of  a  centrifugal  stirrer  driven  by  a 
small  motor.  A  switch  is  provided  on  the  terminal 
board  to  control  the  motor,  which  takes  its  current 
from  the  mains  through  a  lamp  resistance,  R3. 

In  order  to  heat  the  bath  quickly  from  room 
temperature  a  6witch  is  arranged  to  short-circuit 
both  resistances,  R,  and  R2,  and  so  allow  the  heater 
to  develop  its  full  power. 

The  heater  actually  in  use  at  present  is  a  nickel 
"  hot  point  "  immersion  heater  capable  of  supplying 
300  watts ;  it  has  a  resistance  of  about  160  ohms, 
and  works  on  the  210-volt  circuit. 

As  an  example  of  the  method  of  calculating  the 
resistances  necessary  for  R,  and  R2  the  following 
case  may  be  taken:  — 

The  thermostat  consists  of  a  tank  of  copper, t 
30  cm.  cube,  lagged  round  the  bottom  and  sides  with 
thick  felt.  A  glass  window  20  cm.  by  22'5  cm.  in 
each  of  the  opposite  faces  is  left  uncovered.  The 
top  of  the  tank  is  open.  A  cooling  curve  was 
plotted  to  find  roughly  how  much  heat  per  second 
must  be  supplied  in  order  to  keep  the  temperature 
up  to  any  desired  degree.  The  volume  of  water  in 
the  tank  is  about  27  litres.  With  the  room  at  about 
15°  C.  and  the  bath  at  25°  C.  the  heat  lost  per 
second  is  about  12"4  calories.  This  is  equivalent  to 
52  watts.  It  is  then  necessary  to  choose  R,  and  R, 
so  that  with  the  voltage  across  the  mains  (in  this 
case  210  volts')  the  power  developed  in  the  heater 
when  R2  is  short-circuited  is  about  70  watts  and 
when  R,  and  R,  are  in  series,  about  30  watts. 


As  already  stated,  the  resistance  of  the  heater  is 
about  160  ohms.  Thus  the  current  required  to 
develop  the  necessary  power  in  the  heater  can  be 
calculated.  Heat  developed  per  second  in  a  con- 
ductor of  resistance  R  ohms  carrying  current  C 
amps.  =  CJR  watts.  When  R2  is  "short-circuited, 
0^x160=70,  where  C,  is  the  current  in  amperes 
necessary  to  give  70  watts  in  the  heater.  Hence 
'  C,  =  0-665  amp.  When  R,  and  R,  are  acting  in 
I  series,  C,2xl60  =  30,  where  C,  is  the  current  neces- 
sary to  give  30  watts  in  the  heater,  whence  C,= 
0434  amp. 

The  values  of  R,  and  R,  can  now  be  calculated. 
0-665  =  210-K160+R,)  whence  R,=  1.57  ohms  (ap- 
prox.),  0-434  =  210-K160+157  +  R,)  or  R2=167  ohms 
(approx.). 

The  resistances  chosen  were  as  follows  :  — Rt :  two 
32-candle-power  200-volt  carbon-filament  lamps  in 
parallel;  net  resistance  about  150  ohms.  R3 :  a 
single  16-candle-power  105-volt  carbon-filament 
lamp ;  resistance  about  160  ohms. 

The  lamps  used  for  the  various  resistances  must 
be  able  to  withstand  the  voltages  which  occur 
across  them.  The  conditions  obtaining  in  the 
present  arrangement  are  as  follows: — When  R,  is 
short-circuited,  the  voltage  across  R,  is  100  volts, 
across  the  heater  110  volts,  and  across  R2  nil.  When 
Ri  and  R2  are  in  series  the  voltage  across  R,  is 
67  volts,  across  the  heater  73  volts,  and  across  R2 
70  volts. 

The  use  of  lamps  for  resistances  in  circuits  that 
are  made  and  broken  frequently  has  the  advantage 
that  very  little  sparking  occurs  at  the  contacts.  As 
has  been  shown,  the  voltage  drop  across  the  short- 
circuiting  device  and  its  contact  breaker  amounts 
only  to  about  70  volts  in  the  particular  case  given. 
The  sparking  occurring  is  hardly  perceptible.  The 
only  part  of  this  apparatus  having  large  self-induct- 
ance is  the  electro-magnet  of  the  relay.  In  order  to 
cut  out  the  sparking  at  the  platinum  and  mercury 
contact  in  the  regulator,  a  small  induction  coil  con- 
denser has  been  placed  across  the  regulator  ter- 
minals, 7  and  8  (Fig.  3). 

To  estimate  the  resistances  of  carbon  filament 
lamps  the  catalogue  values  of  nominal  candle-power 
and  voltage  are  used.  The  consumption  per  nominal 
candle-power  may  be  taken  as  about  4'3  watts  for 
these  lamps.  From  this  the  watts  consumed  by  any 
lamp  working  at  its  correct  voltage  may  be  calcu- 
lated and  the  resistance  of  the  lamp  is  then  calcu- 
lated from  the  formula  R  =  E2/W,  where  R=  resist- 
ance in  ohms,  E  =  voltage  (catalogue  value),  and 
W  =  watts  consumed. 

The  apparatus  has  worked  very  well  for  six 
months.  The  lamp  combinations  for  R,  and  R3 
necessary  for  various  temperatures  have  been 
worked  out,  and  so  to  change  from  one  temperature 
to  another  takes  only  as  long  as  is  necessary  actually 
to  bring  the  temperature  of  the  bath  itself  to  the 
new  one  required. 

In  conclusion  the  author  wishes  to  express  his 
thanks  to  Dr.  T.  Slater  Price  and  to  Dr.  G.  I. 
Higson  for  much  help  and  advice  in  the  working  out 
of  the  details  of  this  apparatus. 


t  With  electrical  heating,  a  glass  battery  jar,  inverted  bell  jar, 
or  even  a  large  beaker  might  be  used  instead  of  a  metal  tank. 


THE     DETERMINATION     OF     SULPHUR    IN 
VULCANISED   RUBBER. 

BY  J.  W.  W.  DTER,  M.SC.  (LOND.),  AND  AMY  R.  WATSON, 
B.SC.    (LOND.). 

In  the  course  of  endurance  tests  on  a  large 
number  of  rubber-proofed  balloon  fabrics  it  was 
necessary  to  make  chemical  analyses  of  the 
proofings. 

The  methods  which  will  be  described  have  been 
tried  only  on  vulcanised  rubbers  suitable  for  this 
kind  of  material,  i.e..  on  mixings  containing  usually 
little    more    than    5%     of    ingredients    other    than 


252  T 


DYER  AND  WATSON.— SULPHUR  IN  VULCANISED  RUBBER. 


[July  31,  1922. 


rubber,  of  which  1 — 3%  may  be  sulphur,  but  there 
is  no  reason  for  supposing  the  usefulness  of  the 
method  is  limited  in  application  to  such  niixing6. 
For  the  purpose  in  view,  a  knowledge  of  the 
amounts  of  free  and  combined  sulphur  was  desired. 
It  was  always  preferable,  and  often  necessary,  to 
work  on  the  proofed  textile  itself,  and  not  on 
6craped-off  proofing,  and  the  oxidation  of  a  large 
amount  of  organic  matter  with  a  very  small  weight 
of  sulphur  was  thus  involved.  This  necessity  limits 
the  agreement  obtainable  with  repeat  tests, 
because  of  slight  uncertainty  as  to  the  weight  of 
the  textile  components.  It  does  not,  however, 
affect  the  figures  given  in  this  paper. 

A  review  of  available  methods,  and  some 
preliminary  experiments  led  to  adoption  of  a 
modified  form  of  the  nitric  acid  process. 

Method  for  combined  sulphur. — The  modification 
of  the  simple  nitric  acid  treatment  consists  in  the 
addition,  in  the  later  stages,  of  small  amounts  of 
potassium  permanganate,  to  complete  the  oxidation 
in  a  shorter  time.  From  0'5  to  30  g.  of  material 
(depending  on  whether  rubber  alone,  or  rubber  on 
textile  is  being  used)  is  added  to  30 — 40  c.c.  of 
nitric  acid,  sp.  gr.  T42,  in  a  suitable  open  flask. 
Gentle  heat  starts  the  reaction,  which  may  at  first 
need  restraint  by  cooling.  Subsequently  the 
mixture  is  heated  to  gentle  boiling,  with  a  funnel 
in  the  mouth  of  the  flask,  and  the  boiling  continued 
till  the  liquid  is  clear.  Powdered  pure  potassium 
permanganate  is  now  added  to  the  slightly  cooled 
liquid,  about  0'25 — 0'5  g.  at  a  time,  and  the  heating 
continued  between  the  additions.  The  first  rapid 
disappearance  of  the  permanganate  soon  slackens, 
and  finally  a  permanent  black  precipitate  is 
obtained  on  further  addition  of  a  little  perman- 
ganate :  usually  about  2  g.  in  all  is  required.  The 
contents  of  the  flask  are  transferred  to  a  basin, 
and  evaporated  to  dryness  once,  and  then  again 
after  addition  of  about  10  c.c.  of  concentrated 
hydrochloric  acid  and  a  little  water.  The  residue 
is  treated  with  water,  brought  to  a  bulk  of  i 
100  c.c,  and  made  just  acid  to  methyl  orange  at 
boiling  point.  Since  small  amounts,  usually  less 
than  0"1  g.,  of  barium  sulphate  are  involved,  great 
attention  to  the  conditions  of  precipitation  is 
necessary ;  particularly  the  free  acidity  and  bulk  of 
liquid  should  bo  kept  low.  It  is  usually  necessary 
to  filter  from  a  few  specks  of  insoluble  matter  before 
precipitation,  but  perfectly  clear,  colourless  solu- 
tions, filtering  quickly,   are  always  obtained. 

Although,  as  stated,  the  method  is  intended,  and 
is  normally  used  for  combined  sulphur  only,  we  have 
found  it  satisfactory  for  total  sulphur  where  the 
amount  of  free  sulphur  is  not  large.  The  following 
figures  exemplify  results  obtainable  by  this  and 
other  methods:  — 

Example  1. — Total  sulphur  in  a  proofed  fabric. 
Nitric  acid  only,  205%  S;  bromine  plus  nitric  acid 
plus  potassium  permanganate  to  finish,  2'09%  S; 
nitric  acid  plus  potassium  permanganate  to  finish, 
2-15%  S. 

Example  2. — Total  sulphur  in  a  proofed  fabric. 

(a)  Two  tests  by  nitric  acid — permanganate  method 
on  the  whole  fabric  gave  2'49,  2'55%— mean  2' 52%. 

(b)  Two  tests  by  Carius'  method  on  peeled-off 
proofing  gave  2' 17,  2"25%— mean  2'21%.  (c)  A  con- 
siderable amount  of  free  sulphur  is  present  in  the 
textile  of  new  proofed  fabrics.  A  determination  of 
this  in  the  cotton  enclosing  100  g.  of  rubber  gave 
035  g.  Adding  this  to  result  (b)  the  figure  2-56% 
is  obtained,  in  good  agreement  with  direct  deter- 
mination (a),  viz.,  2-52. 

Example  3. — On  a  vulcanised  mixing,  rubber  100, 
litharge  3,  sulphur  3  (total  sulphur  content  2-83%) 
the  results  obtained  were: — With  nitric  acid  alone, 
2-33  2"54 — mean  2' 46%;  nitric  acid  plus  perman- 
ganate, 2'90.  2'96— mean  2-93%. 


Example  4. — On  a  mixing  made  as  Example  3, 
but  with  double  the  quantity  of  litharge,  the  Carius 
method  gave  0'1030  g.  BaSO«,  and  the  nitric  acid 
and  permanganate  method  0T021,  0'1024  g. 

Method  for  free  sulphur.- — By  the  term  "  free 
sulphur  "  is  meant  that  extracted  by  acetone  at 
or  near  its  boiling  point.  It  is  determined  by 
oxidation  with  neutral  potassium  permanganate  in 
the  acetone  solution.  If  the  weight  of  the  acetone 
extract  is  required,  either  the  acetone  is  distilled 
off,  the  dry  extract  weighed  and  redissolved  for 
oxidation  of  the  sulphur,  or  else  two  separate 
extractions  are  made,  one  for  oxidation  direct,  and 
one  for  drying  and  weighing.  In  the  case  of  normal 
new  fabrics,  ah  amount  equivalent  to  1 — 2  g.  of 
proofing  is  used.  In  the  apparatus  employed,  about 
50 — 60  c.c.  of  acetone  is  required,  and  to  this 
acetone  extract  0'5 — 1  g.  of  pure  potassium  per- 
manganate is  added  all  at  once  in  powder  form,  the 
mixture  shaken  round  for  a  minute  or  two,  and 
allowed  to  stand  for  half  an  hour  or  so  at  room 
temperature.  If  the  deep  purple  colour  disappears 
on  this  treatment  a  little  more  permanganate  is 
added,  but  this  has  only  been  found  necessary  where 
much  oxidation  resin  is  present,  as  in  perished 
proofings,  and  then  the  determination  of  free 
sulphur  is  largely  meaningless.  Following  this  the 
acetone  is  distiiled  off  from  a  water  bath.  To 
prevent  bumping,  which  may  cause  serious  loss,  a 
glass  bead  is  put  in.  The  brown  residue  is  heated 
in  an  oven  for  a  short  time  at  100° — 110°  C.  to 
remove  every  trace  of  acetone. 

Concentrated  hydrochloric  acid  is  then  added  in 
amount*  only  slightly  in  excess  of  that  required  to 
bring  the  residue  to  a  clear  dark  greenish  solution, 
becoming  colourless  on  heating  for  a  short  time  in 
the  water  bath.  This  solution  is  diluted  a  little, 
and  filtered  from  a  very  slight  insoluble  residue. 
The  nitrate  is  brought  to  near  100  c.c,  ammonia 
cautiously  added  till  the  clear  nearly  colourless 
solution  becomes  yellowish  and  slightly  turbid,  the 
solution  made  just  acid  and  precipitated  at  boiling 
with  4  or  5  c.c.  of  N /2  barium  chloride. 

The  following  results  indicate  the  sufficiency  of 
the  method. 

Example  1. — A  quantity  of  proofed  fabric  was 
extracted  with  acetone,  and  five  equal  volumes  of 
the  extract,  each  representing  1'5  g.  of  the  original 
fabric,  were  taken. 

Method  of  oxidation.  BaS04. 

g. 

1.  Carius         00421 

2.\CoId   neutral   potassium   permanganate   in  J"     0-0418 

3. ;      acetone  solution  \     0-0413 

J'\as  3  and  4  but  heated  under  reflux  coudenser<f      rj-0426 

Example  2. — A  different  fabric  treated  as  above. 


Method. 

1.  Carius 

2.  1  g.  potass,  permanganate  in  acetone  half  an 

hour 

3.  1  g.  potass,  permanganate  in  acetone  24  hours 

4.  1  g.  potass,  permanganate  heated  under  reflux 

condenser  half  an  hour 


BaSO,. 

g- 
0-0338 

00338 
0-0341 


It  is  clear  that  the  method  is  rapid,  simple,  and 
accurate.  Blank  tests  on  all  reagents  are  necessary. 
Results  given  above  are  corrected  for  blanks,  which 
were  never  more  than  1  or  2  mg.,  and  frequently  nil. 

Acknowledgment  is  made  to  the  Director  of 
Research,  Air  Ministry,  for  permission  to  publish 
this  paper. 

Chemical  Laboratory, 
Royal  Airship  Works, 
Cardington,  Bedford. 


•  From  3  to"5  c.c.  of  acid  of  1-16  sp.  gr.  for  each  gram  of  permangan- 
ate used. 


Vol.   XLI..  No.  15.] 


TRANSACTIONS 


[August    15.   1922. 


Annual  General   Meeting. 

Wednesday,  July  5th. 


The  President,  in  calling  upon  Professor  H.  E. 
Armstrong  to  deliver  the  first  of  the  Messel 
Memorial  Lectures,  said  that  Dr.  Rudolph  Messel 
had  been  one  of  the  original  members  of  the  Society, 
and  on  his  death,  in  1920,  he  had  bequeathed 
upwards  of  £20,000  to  the  Society  of  Chemical 
Industry.  A  part  of  this  the  Council  had  decided 
to  use  for  the  first  of  a  series  of  lectures,  to  be 
known  as  the  Messel  Memorial  Lectures,  and  to 
prepare  a  medal,  which  would  be  known  as  the 
Slessel  Medal,  to  be  given,  by  vote  of  the  Council, 
to  the  most  distinguished  chemist  of  the  time  in 
England.  Dr.  Messel  had  been  President  of  the 
Society  of  Chemical  Industry  in  1911-12,  and 
during  his  visit  in  that  year  to  America  and  Canada 
he  had  done  more,  probably,  than  any  other  indi- 
vidual in  popularising  the  Society  in  North 
America.  Dr.  Messel  might  be  described  as  a 
typical  chemical  engineer.  At  first  he  had  been  a 
chemist,  and  carried  out  research  work  in  Germany 
for  many  years.  He  had  also  done  research  work 
in  this  country,  and  had  then  devoted  himself  to 
chemical  engineering  and  made  the  contact  or 
catalytic  process  for  the  manufacture  of  sulphuric 
anhydride  a  commercial  process.  After  a  few  years 
of  work  he  had  turned  out  no  less  than  10,000  tons 
of  sulphuric  anhydride  by  the  process.  Before 
calling  upon  Professor  Armstrong  to  give  the 
lecture,  the  President,  on  behalf  of  the  Society  of 
Chemical  Industry,  presented  to  him  the  Messel 
Medal  in  recognition  of  his  distinguished  career  as 
an  educationist  and  his  outstanding  work  as  a 
chemist  and  as  a  scientist. 

The  Medal  was  then  presented  to  Professor  Arm- 
strong amid  applause. 

Sir  William  Pope  said  that  the  late  Dr.  Messel 
had  been  one  of  the  great  pioneers  of  technical 
chemistry  in  the  British  Empire;  he  had  cultivated 
close  friendships  amongst  the  select  few  who  had 
been  worthy  of  his  friendship.  The  fact  that 
Professor  Armstrong  had  been  an  intimate  friend 
of  Dr.  Messel  would  alone  make  the  choice  of  the 
first  Messel  Medallist  an  appropriate  one,  but  the 
Medallist  had  many  other  qualifications.  Just  as 
Dr.  Messel  had  been  a  pioneer  in  technical 
chemistry,  so  Professor  Armstrong  had  been  a, 
pioneer  in  technical  education ;  the  great  schemes 
for  bringing  a  scientific  technical  education 
within    the    reach    of    all    who    were    capable    of 

Erofiting  by  such  a  training — schemes  which 
ad  become  realities  some  40  years  ago — had 
been  carried  into  execution  by  Professor  Arm- 
strong and  a  small  band  of  similarly  far-sighted 
enthusiasts.  It  was  certain  that  such  co-operation 
as  now  existed  between  chemical  scientists  and 
chemical  technologists  in  the  British  Empire  and  in 
America — a  co-operation  from  which  both  pure  and 
applied  chemistry  had  greatly  benefited — had 
originated  in  the  great  campaigns  for  technical 
education  which  Professor  Armstrong  and  his  few 
brother  enthusiasts  had  initiated  nearly  half  a  cen- 
tury ago.  Closely  identified  with  Professor  Arm- 
strong's conceptions  of  scientific  educational  method 
was  the  idea  that  the  student  should  early  become 
imbued  with  that  spirit  of  inquiry  which  was  the 
source  of  all  progress  in  either  pure  or  applied 
science.  Their  Medallist  had  been  himself  a  keen 
investigator ;  his  name  was  permanently  associated 
with  the  discovery  of  those  facte  and  with  the 
ennunciation  of  those  speculations  which  now 
formed  the  basis  of  our  modern  knowledge  of  the 
several  branches — inorganic,  organic,  physical,  and 


biological — into  which  the  complex  chemistry  of  to- 
day was  divided.  This  breadth  of  interest  had  been 
perpetuated  throughout  a  long  and  laborious  life, 
and  he  had  no  doubt  that  it  would  be  reflected  in 
the  vigour  and  scope  of  the  Memorial  Lecture  which 
they  were  about  to  hear;  it  could  be  seen  reflected 
in  the  fact  that  the  audience  that  morning  included 
a  large  number  of  men  who  had  been  trained  by 
Professor  Armstrong.  In  conclusion,  he  wished  to 
express  very  keenly  his  own  appreciation  of  the 
honour  which  they  had  done  to  one  of  Professor 
Armstrong's  former  students  in  calling  upon  him  to 
make  a  few  remarks  introductory  to  the  Messel 
Memorial  Lecture. 

Professor  Armstrong  then  delivered  the  Messel 
Memorial  Lecture. 


First  Messel  Memorial  Lecture 


RHAPSODIES    CULLED    FROM    THE 

THIONIC    EPOS 

CHEMICAL     CHANGE    AND     CATALYSIS 

BY      HENRY      E.      ARMSTRONG 

(Delivered  at  the  Forty-first  Annual  Meeting  of  the 
Society  at  Glasgow,  July  4th,  1922) 

Semper   aliquid   ccrti   proponendum   est. 

When  this  Address  was  undertaken — 

What  did  we  do  but  make  a  vow 
To  do  we  knew  not  what  nor  how  ?  ' 

What  should  be  my  theme?  I  could  not  well 
round  upon  you,  as  I  might  have  done  upon  the 
Brewers  when  addressing  them  last  year,  with  the 
lines— 

Thou  that  with  ale  or  viler  liquors 
Didst  inspire  Withers,  Pryn  and  Vicars 
And  force  them,  tho'  it  was  in  spite 
Of  Nature  and  their  stars,  to  write, 

unless,  indeed,  sulphurio  acid  were  counted  among 
"viler  liquors,"  a  course  I  would  not  advocate: 
in  fact,  I  shall  plead  for  it  the  place  of  Prince 
among  them  and  ask  that  once  more  due  honour 
be  given  to  its  might  and  solidarity. 

Fortunately,  you  inspired  me  by  a  flashed  vision 
of  platinum.  No  tip  more  appropriate  to  the 
occasion  could  be  imagined,  as  you  had  charged 
me  with  the  duty  of  lighting  the  torch  that  is  to 
be  kept  burning,  in  future,  to  illumine  the  memory 
of  the  man  who,  learning  from  Dbbereiner, 
Edmund  Davy  and  Wohler,  was  the  first  to  use, 
as  ia  catalyst,  the  metal  now  valued  so  highly, 
which  is  an  aid  to  man  in  so  many  ways  and  the 
most  prized  among  metals  by  woman.  Indeed, 
platinum  may  well  become  the  bond  of  union 
between  the  sexes,  a  bond  that  the  fair  ladies  now 
in  revolt  may  perchance  hereafter  admit,  when  the 
force  of  "  some  tonic"  they  "  have  drunk  "  is 
spent  and  the  spell  of  Meredith's  admonition  is 
fully  felt — 

Ah !  madam,  were  they  puppets  who  withstood 
Youth's  cravings  for  adventure,  to  preserve 

The  dedicated  ways  of  womanhood  ? 

The  light  which  leads  us  from  the  paths  of  rue, 

That  light  above  us,  never  6een  to  swerve, 
Should  be  the  home-lamp  trimmed  by  you. 

Mayhap  platinum,  fit  symbol  of  stability,  will  be 
used  to  light  that  lamp,  for  as  gold  has  led  woman 

1  American  readers  please  note,  the  citations  when  not  identified 
are  from  sources  at  least  two  centuries  old. 


2o4t 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


[Aug.  15,  1922. 


to  minister  to  man  in  the  past,  why  not  platinum 
in  the  future,  especially  as  our  gold  is  now  reduced 
to  paper  which  cannot  be  worn  with  effect  as 
jewellery  ? 

Saying  this,  however,  I  must  not  pass  the  chance 
to  appraise  the  greatness  of  our  art.  Confided  to 
a  thionic  embrace,  even  paper,  in  the  chemic  hands 
of  the  Courtauld  firm,  is  now  forced  into  the  state 
of  colloid  and  spun  into  a  simulacrum  of  the 
butterfly's  activity.  The  physicist  but  dreams  of 
changing  the  atoms :  we  are  facultative  alchemists 
and  transmute  trees  grown  on  the  cold  heights  of 
Scandinavia  into  stockings  fit  for  the  fair  in  the 
most  heated  climes.  What  can  men  of  letters  set 
against  these  achievements?  On  account  of  his 
works  the  chemist  should  be  highly  honoured  of 
men  in  all  the  pathways  of  the  world ;  woman  has 
still  to  appreciate  the  part  he  plays  in  providing 
her  not  only  with  platinum  and  stockings  but  also 
with  the  complete  series  of  rainbow  tints  which 
permit  her  to  outrival  not  merely  the  peacock  but 
even  the  lilies  of  the  field :  she  little  knows  the 
extent  to  which  in  this  and  other  ways  she  is  his 
unconscious  debtor.  Still  the  claim,  nay  the  right, 
of  chemistry  to  rank  as  fundamental,  not  only  to 
other  sciences  but  fo  all  human  activity,  has  yet 
to  be  made  clear :  those  historic  lovers  of  ale, 
Wither,  Pryn  and  Vicars,  if  with  us  to-day,  could 
but  agree  that  we  have  the  right  to  think  no  small 
beer  of  ourselves.  Is  not  this  a  point  worth 
mnking  on  such  an  occasion,  in  this  drab  town 
which  is  so  needful  of  beauty?  Think  what  we 
could  make  of  it  if  we  had  our  way;  at  least  we 
could  rid  it  of  its  chronic  murky  atmosphere,  if 
not  of  its  heritage  of  rickets. 

To  leave  the  serious,  my  task  is  to  lay  a 
foundation  and  set  an  example.  Those  who  follow, 
with  less  opportunity  to  indulge  in  panegyric,  will 
doubtless  be  moved  to  develop  some  special  theme 
and  carry  Thionism  to  greater  heights.  Hence  the 
propriety  of  my  text, 

Semper  aliquid  certi  proponendum  est, 

which  appears  to  have  been  Matthew  Arnold's 
favourite  maxim,  as  he  cites  it  more  frequently 
than  any  other  in  his  Note  Books.  At  least,  it  is  a 
good  one  for  a  scientific  essayist  and  Arnold  is  an 
honourable  example  to  follow,  as  he  was  both  critic 
and  thoughtful,  exact  writer.  The  chemist  should 
be  all  these:  is  he  either,  in  any  sufficient  way? 
If  not,  why  not?  To  take  rank  in  the  world  he 
must  not  only  hold  his  own  against  the  best  of  his 
competitors  but  force  his  way  ahead  of  them.  To 
save  the  world  from  a  Russian  fate  science  must  be 
made  as  constructively  effective  in  commanding 
human  nature  as  it  has  been  hitherto  in  hurrying 
the  nations  to  their  ultimate  destruction.  To-day, 
you  are  only  thinking  of  speeding  up  the  process 
of  wasting  Nature's  resources  and  are  giving  little 
or  no  thought  to  their  conservation.  The  chemist 
alone,  through  his  thionic  influence,  has  made  the 
Northcliffe  press  possible,  the  destruction  of 
forests  certain  :  think  what  that  means !  How  will 
you  counteract  the  evil  work? 

Our  word-spinning  literary  friends — rather  might 
we  characterise  them  as  enemies,  so  narrowly  havo 
they  led  the  world,  if  we  could  think  of  them  as 
other  than  thoughtless  offenders — infer  that  we 
cannot  express  ourselves  properly  and  Goths  up- 
braid us  from  Cambridge  that  we  are  Greekless ! 
Themselves,  they  have  little  regard  for  truth  and 
realities,  worshipping  form  rather  than  substance. 
It  is  difficult  not  to  believe  that  they  are  con- 
sciously seeking  to  prevent  us  from  coming  to 
expression  in  the  public  service :  how  otherwise  are 
we  to  account  for  the  rare  appearance  in  the  Press 
of  the  scientific  writer?  He  would  be  there,  if  in 
the  least   encouraged :     is   he   perhaps   feared    and 


kept  out  because  it  is  felt  that  he  might  show  up 
the  futility  of  the  hack  writer  or  is  it  because 
journalism  is  now  a  close  ring?  Blame  is  often  cast 
upon  public  taste  but  this  is  the  herring  acrosB  the 
trail:  the  public  is  not  so  simple  as  it  is  often 
made  out  to  be  and  is  willing  to  learn. 

The  man  of  words,  in  some  degree  conscious  of 
their  music,  is  more  or  less  careful  in  their 
arrangement;  he  would  not  be  paid  for  them  if  he 
did  not  place  them  with  fair  effect.  The  scientific 
writer,  who,  be  it  noted,  has  usually  had  the  same 
early  schooling  as  the  literary  writer,  has  his 
attention  so  fully  directed  to  realities  and  is  so 
occupied  in  thinking  out  the  consequences  of  his 
acts  and  in  placing  his  work  on  record,  that  he  is 
apt  to  give  too  little  attention  to  style  and  rhythm. 
Too  frequently,  therefore,  he  is  verbose  and  lack- 
ing in  lucidity ;  mere  tricks  of  speech  pass  muster 
which  should  be  avoided.  To  think  every  way  at 
once  is  a  little  difficult,  as  those  who  have  tried  are 
aware.  Yet  not  a  few  compare  more  than 
favourably  with  their  literary  colleagues — because 
they  have  something  real  to  say.  Darwin's  Origin 
has  often  been  cited  as  a  model  of  clear  statement : 
Huxley's  studied  style  may  be  set  against  Ruskin's 
perfervid  oratory :  both  were  founded  upon  the 
Bible ;  Huxley's  was  not  merely  the  product  of 
genius  but  due  to  the  exercise  of  thought  and  his 
sense  of  proportion,  yet  his  utterances,  at  times, 
border  on  the  sententious  and  if  not  less  convincing, 
are  certainly  less  alluring,  than  the  sentimentalist's 
spontaneous  ravings.  Let  us,  however,  be  mindful 
of  Milton's  lines:  — 

Thus  they  in  mutual  accusation  spent 

The  fruitless  hours  but  neither  self-condemning; 

And  of  their  vain  content  appeared  no  end. 

Each  of  us  has  sufficient  task  in  clearing  the  motes 
from  his  own  eyes  :  we  should  seek  to  work  together. 
Unfortunately,  the  pages  of  our  chemical 
journals  are  full  of  examples  of  careless  writing — 
of  careless  writing  due  to  careless  thinking.  Little 
is  done  to  overcome  the  influence  of  habit ;  self- 
criticism  is  rarely  practised.  We  have  no  school  of 
criticism  to  impose  discipline  in  our  ranks.  I  well 
remember  the  effect  on  myself  of  a  [stc]  appended 
by  that  old  Etonian  warrior,  Dr.  Warre,  to  a 
quotation  he  gave  from  a  letter  of  mine,  to  which 
he  was  replying  in  The  Times;  though  he  could  not 
parry  my  argument,  he  caught  me  out  over  a  split 
infinitive.  Since  then  I  have  not  repeated  the 
heinous  literary  offence  consciously  and  shall  ever 
hold  him  in  pious  memory  for  his  act  of  grace  in 
curing  me  of  the  habit.  It  may  comfort  some  if  I 
say  that  I  was  once  a  dire  offender.  The  current 
rumour  that  a  free-lance  journal  may  be  estab- 
lished in  connexion  with  the  Chemical  Societies  is 
an  augury  of  a  happier  future — if  only  the 
pedantry  of  a  publication  committee  of  superior, 
elderly  intolerants,  without  imagination,  can  be 
avoided.  Free  exchange  of  opinion,  free  criticism, 
is  much  needed  among  us;  we  are  far  too  narrow  in 
our  outlook,  too  sensitive  to  remark;  Professor 
Patterson's  famous  tilt  over  "  But  "  is  an  amusing, 
extreme  example  of  the  intolerance  of  the  hack 
editorial  mind,  worth  remembering  as  an  indication 
of  the  difficulties  to  be  overcome  and  the  danger 
we  run   in  limiting  freedom  of  expression. 

Is't  not  enough  to  make  one  strange 
That  some  men's  fancies  should  n'er  change 
But  make  all  people  do  and  say 
The  same  things  still  the  self-same  way? 

Our  position  as  chemists,  the  position  of  science, 
in  the  community,  will  depend  far  more  upon  words 
than  upon  works — upon  the  use  we  make  of  our 
English  tongue.  We  must  not  only  learn  to  weigh 
our  words  and  use  them  effectively  but  use  clean 
words,   words  that  can  be  understood.     Far  from 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


2.j5t 


being  Greekless,  we  are  overfond  of  using  an 
affected  Attic  terminology.  Striking  examples  of 
ill-directed  zeal  are  to  be  found  in  the  pretentious 
manuals  of  so-called  colloid  chemistry.  The  bee  in 
the  bonnets  of  the  dreamers  in  this  field  is  the 
terminal  oid.  After  wading  through  much  colloid 
mire  of  late,  I  am  wondering  whether  the  15,000 
odd  members  of  Dr.  Parsons'  happy  and  obedient 
flock  of  chemists  in  the  land  of  Wilder  D.  Bancroft 
do  not  consider  suspenders  a  vulgar  term  for 
braces  and  wear  their  pants  adsorbed  by  6uspend- 
oids.  If  I  be  not  misinformed,  the  younger  ladies 
now  wear  corsoids  and  chemiseoids,  no  longer  the 
real  thing;  in  fact,  I  believe  all  feminine  garments 
are  oids  in  these  days,  except  hose,  perhaps — and 
this  because  chemists  have  made  them  of  an 
attractive  sericoid  material.  Everything  seems  to 
be  now  a  shortened,  sortof-a-kind-of  what  it  used 
to  be ;  canned  goods  have  captured  the  world  and 
impudent  advertisement  counteracts  conscience. 
I  trust  what  has  been  said  will  suffice  to 

Force  you  by  right  ratiocination 

To  leave  your  vitilitigation. 

And  make  you  keep  to  the  question  close 

And  argue  dialecticos. 

The  need  of  care  has  been  specially  impressed 
upon  us  of  late  owing  to  the  attitude  adopted  by 
the  Official  Referee  of  the  Board  of  Trade 
appointed  under  the  Safeguarding  of  Industries 
Act,  1921.  Nothing  could  be  more  humiliating 
than  the  manner  in  which,  sitting  as  a  Delphic 
Oracle  in  Whitehall  or  the  Law  Courts,  this  gentle- 
man has  created  chaos  in  Chemistry  by  his  pro- 
nouncements upon  our  vocabulary.  The  discussions 
on  the  subject  in  various  Sections  of  this  Society 
have  been  far  from  illuminating;  the  lack  of  agree- 
ment among  speakers,  in  fact,  is  sufficient  proof 
that  clear  thinking  is  not  yet  our  characteristic. 

Mr.  Edmund  Gosse  tells  us,  on  the  authority  of 
the  Marquis  de  Racan,  that  the  leader  of  the 
classical  reaction  in  France,  M.  de  Malherbe,  one 
hour  before  he  died,  woke  with  a  start  out  of  a 
deep  slumber  to  rebuke  his  hostess,  who  was  also 
his  nurse,  for  using  an  expression  which  he  did  not 
consider  to  be  correct  French.  When  his  Confessor 
ventured  to  chide  him,  he  replied  that  he  could 
not  help  it  and  that  he  wished  to  preserve  up  to 
the  moment  of  his  death  the  purity  of  the  French 
language. 

My  exhortation  is,  in  like  manner,  that  we  should 
be  content  only  to  play  upon 

.     .     .     the  lyre  of  language  clear 
Love's  tongue  and  source, 

one  of  the  most  perfect  of  Meredithian  couplets. 

To  return  to  platinum,  to  mention  it  is  to  excite 
the  imagination  in  many  ways.  Its  attributes  are 
of  such  perfection  that  the  metal  must  have  been 
Nature's  first  care  had  due  forethought  been 
exercised  at  the  Creation :  it  is  clear  that  little  as 
there  is  now,  in  the  beginning  there  was  no 
conscious  science,  otherwise  platinum  would  be  aB 
iron  in  quantity  and  much  more  oxygen  free  in  the 
world.  The  electrons,  however,  seem  to  have  been 
self-willed  and  proportions  may  well  have  been 
determined  merely  by  their  affinities  as  influenced 
by  transcendental  temperatures,  just  as  is  the  com- 
plexity of  benzenoid  hydrocarbons  at  ordinary 
heats. 

Iron  has  many  attractive  qualities :  without  it 
perhaps  the  world  would  have  been  colourless  and 
drear;  without  it  perhaps  we  could  not  have  been 
fed  with  air;  yet  it  has  many  imperfections: 

Ah  me,  what  perils  do  environ 

The  man  that  meddles  with  cold  iron. 

Never  were  we  so  mindful  as  now  of  its  misuse  and 
•we  are  striving  to  minimise  this  to  the  utmost ;  but 


as  usual  are  lacking  in  outlook,  leaving  chemistry 
out  of  account  and  failing  to  take  proper  measure 
of  human  nature  and  its  structural  stability,  fail- 
ing to  realise  that  the  problem  is  chemical  at 
bottom,  living  Nature  being  but  one  huge  labor- 
atory, in  which  structure  is  the  main  determinant 
of  function,  its  operations  largely  catalytic. 

If  platinum  could  be  used  as  iron  much  trouble 
and  loss  would  be  avoided  :  polish  and  paint  would 
be  far  less  in  request;  of  no  knight's  pistol  could 
the  mock-heroic  have  been  written — 

But  Pallas  came  in  shape  of  rust 
And  'twixt  the  6pring  and  hammer  thrust 
Her  gorgon-shield,  which  made  the  cock 
Stand  stiff,  as  if  'twere  turn'd  t'  a  stock. 

Think  of  the  chemist's  generations-old  struggle 
to  decipher  the  mysteries  of  rust :  what  it  will 
eventually  be  worth  to  us  if  all  iron  be  made 
rustless! 

Helmholtz's  complaint  against  Nature  of  the 
imperfectness  of  the  eye  is  a  small  matter  in  com- 
parison with  the  lament  the  chemist  may  utter  as 
to  the  scarcity  of  platinum :  the  uses  to  which  he 
could  put  it  are  so  many  and  so  important.  The 
man  whose  mentality  it  is  my  allotted  task  to 
picture,  a  task  of  exceeding  difficulty,  was  the  first 
to  give  it  to  full  industrial  use :  this  was  his  great 
achievement. 

We  often  spoke  of  its  wonderful  activity ;  I  more 
than  once  said  to  him,  "  When  you  have  done  wjth 
using  it,  we  will  set  to  work  together  to  find  out, 
if  possible,  how  it  does  its  work."  That  day  never 
came  and  seemingly  we  drifted  away  from  our 
purpose  :  he  stuck  to  sulphuric  acid  and  kept  his 
platinum  in  technical  use ;  whilst  occasionally 
taking  a  sip  at  the  acid  I  began  to  play  with 
organic  catalysts,  not  uninfluenced  by  the  thought 
of  his  disease ;  there  was  no  money  in  them  but 
they  gave  what  I  believe  to  be  the  final  clue  to  the 
behaviour  of  platinum.  I  little  thought  that  I 
should  be  called  upon  and  privileged  to  display  my 
knowledge  in  his  honour. 

RUDOLPH   MESSEL 


I  first  met  him  in  my  initial  year  of  office  as  a 
Secretary  of  the  Chemical  Society,  in  April  1876, 
on  the  evening  when  Dr.  Squire  and  he  described 
and  demonstrated  the  process  they  had  developed 
of  manufacturing  sulphuric  anhydride,  already  in 
operation  at  Silvertown.  He  was  elected  a  Fellow 
of  the  Chemical  Society  that  same  evening.  I  was 
the  only  speaker  to  break  the  harmony  of  the  meet- 
ing by  suggesting  that  Nordhausen  sulphuric  acid 
was  not  a  mere  solution  of  the  anhydride  but 
mainly  a  definite  acid,  a  compound  of  the  anhydr- 
ide with  sulphuric  acid,  anhydrosulphuric  acid, 
then  unrecognised  except  by  Schutzenberger.  I 
trod  on  Messel's  heels  with  a  paper  on  "  Systematic 
Nomenclature  "  :    this,  too,  shadows  me  to-day. 

I  was  greatly  attracted  to  him  from  the  begin- 
ning and  we  soon  became  fast,  I  may  say  affection- 
ate, friends.  Perhaps  I  surprised  him  by  knowing 
the  work  he  had  done  as  a  student  on  strychnine 
and  maleic  acid :  I  would  here  emphasise  the  fact 
that  he  started  his  career  as  a  chemist  on  the 
organic  side.  Moreover,  I  had  been  ahead  of  him 
in  cultivating  the  acquaintance  of  sulphuric  an- 
hydride— on  German  soil — as  it  was  the  subject  of 
my  Ph.D.  thesis,  published  in  English  in  the 
Proceedings  of  the  Eoyal  Society,  under  Frank- 
land's  patronage,  in  May,  1870,  under  the  modest, 
title  "  Contributions  to  the  history  of  the  acids  of 
the  sulphur  series.  I.  On  the  action  of  Sulphuric 
Anhydride  on  several  chlorine  and  sulphur  com- 
pounds." This  was  my  introduction  to  the  Royal 
Society.     A  little  later,   in  1871,   I  made  my  first 

a2 


256  T 


ARMSTRONG.— FIRST   MESSEL  MEMORIAL   LECTURE. 


[Aug.  15,  1922. 


appearance,  as  an  independent  worker,  at  the 
Chemical  Society,  with  a  paper  on  the  use  of  sul- 
phuric chlorhydrol  as  a  sulphonating  agent. 
Messel  was  afterwards  led  to  take  an  interest  in 
this  compound  through  preparing  it  for  me. 

I  thus  came  under  thionic  fascination  at  an  early 
6tage  of  my  career  and  was  fully  prepared  to 
appreciate  Messel's  work  and  its  value,  the  more  as 
I  had  worked  alongside  Graebe  in  Leipzig  and 
Perkin  was  my  fellow  secretary. 

Messel  was  born  January  14,  1847,  in  Darmstadt. 
He  died  April  18,  1920,  at  his  chambers  in  Victoria 
Street,  London.  He  was  of  Jewish  extraction  but 
professedly  Lutheran. 

To-day  I  will  give  only  a  brief  survey  of  his 
history,  sufficient  to  make  clear  his  proclivities  and 
the  influences  to  which  he  was  subject. 

His  father,  Simon  Messel,  was  not  originally 
intended  as  his  father's  successor  in  the  banking 
business  but  was  apprenticed  to  a  Parisian  maker 
of  artistic  furniture,  which  accorded  more  with  his 
own  taste  for  art.  The  interest  of  this  fact  lies  in 
the  indication  of  the  source  of  the  highly  developed 
artistio  tastes  which  most  of  his  children  evinced. 
Before  he  had  completed  his  training  in  Paris,  how- 
ever, Simon  Messel  was  recalled  to  Darmstadt  to 
take  the  place  assigned  to  his  elder  brother,  who 
had  journeyed  to  America  and  there  disappeared 
from  the  sight  of  his  relatives.  In  consequence  of 
this  change,  Rudolph  Messel's  early  years  were 
6pent  in  what  for  those  days  ranked  as  affluence 
and  his  father  was  able  to  provide  adequately  for 
his  education.  He  was  the  second  of  five  children, 
of  whom  four  were  to  make  their  homes  in  England ; 
the  fifth  acquired  great  distinction  as  an  architect 
in  Berlin. 

He  received  his  elementary  training  at  Schmidtz's 
Academy  in  his  native  city.  Shortly  after  his 
father's  death  in  1859,  he  was  sent  to  a  Huguenot 
school  at  Friedrichsdorf  in  the  Taunus,  where  he 
remained  until  early  in  1863,  that  is  to  say,  until 
he  was  fifteen  years  old.  His  early  interest  in 
science  and  his  precocity  are  shown  by  the  following 
reference  he  made  to  this  period  in  his  Presidential 
Address  to  this  Society  in  New  York  in  1912. 

"  In  1861,  when  I  was  at  school  at  Friedrichs- 
dorf, in  Germany,  my  master,  Philip  Reis, 
invented  the  first  telephone.  I  was  present  at 
its  birth  and  assisted  Reis  in  making  the 
mechanical  parts  of  some  of  his  instruments 
and  also  repeatedly  in  his  experiments,  Reis 
being  at  one  end  of  the  circuit,  speaking  or 
singing,  I  listening  at  the  other  or  vice  versa." 

While  he  was  at  school,  the  family  circumstances 
had  changed  and  it  was  clear  that  Messel  would 
have  to  be  self-supporting  at  an  early  date.  His 
intention,  formed  during  the  last  years  at  school, 
was  to  become  an  engineer,  either  civil  or 
mechanical.  In  January,  1863,  he  discussed  his 
future  course  of  action  with  an  old  friend  of  his 
father's,  Heribert  Rau,  an  author  of  some  distinc- 
tion, then  living  in  Frankfort.  Rau  wrote  to  him  a 
letter  strongly  advising  against  this  choice  of  a 
profession,  basing  himself  upon  the  fact  that  the 
demand  for  engineers  already  fell  short  of  the 
supply,  whilst  the  boy's  religion  would,  he  said, 
militate  against  his  receiving  a  State  appointment. 
If  the  boy  were  father  to  the  man,  as  all  accounts 
indicated  that  he  was,  Rau  knew  well  the  love  of 
independence  and  self  reliance  which  were  among 
his  young  friend's  salient  characteristics.  After 
citing  the  reasons  given  above,  he  lays  the  greatest 
stress  upon  the  fact  that  to  become  an  engineer 
would  entail  many  years  of  study  preceded  by  years 
of  practical  work  at  the  bench,  so  that  the  day  when 
ho  would  bo  able  to  support  himself  must  be  far 
distant.  He  then  gives  the  young  Rudolph  positive 
advice,  which  it  is  clear  determined  all  his  future. 


He  bids  him  devote  himself  to  the  study  of  com- 
merce, which,  he  said,  would  rapidly  lead  to 
independence  and  to  combine  with  this  the  study 
of  Chemistry,  Physics  and  Technology  and  so  be- 
come a  manufacturer.  Rau  seems  to  have  felt  that 
to  become  a  manufacturer  was  a  great  falling  away 
from  grace  for  an  ardent  boy,  because  he  goes  at 
great  length  into  the  great  future  which  lies  before 
him  and  the  noble  examples  of  enlightened  and 
well-spent  lives  which  were  to  be  found  among  the 
great  manufacturers  of  the  day.  Finally,  he 
advises  Messel  to  move  to  Frankfort,  to  enter  the 
business  of  some  large  merchant,  to  attend  at  the 
same  time  lectures  in  Chemistry,  Physics  and  Tech- 
nology and  after  completing  his  apprenticeship,  to 
travel  to  France,  Belgium  and  England,  the  lands 
of  factories  and  industry,  to  keep  his  es'es  open  for 
this  or  that  article  the  making  of  which  was 
urgently  needed  and  to  become  himself  a  factory 
owner. 

That  Messel's  whole  course  of  action  was  influ- 
enced by  this  letter  is  clear,  not  only  from  the  fact 
that  he  kept  it  to  the  last  amongst  his  rarest 
treasures  but  that  he  followed  the  advice  it  con- 
tained, almost  verbally. 

In  April,  1863,  he  became  apprenticed  to 
E.  Lucius,  in  his  wholesale  drug,  chemical  and 
pharmaceutical  factory  in  Frankfort,  where,  accord- 
ing to  a  letter  from  Lucius,  he  obtained  a  thorough 
knowledge  of  the  business  in  all  its  branches.  He 
remained  in  Frankfort  until  September,  1866. 
Although  there  is  no  definite  evidence  that  he 
attended  lectures  at  the  same  time  or  who  his 
teachers  were,  there  can  be  little  doubt  that  in  this 
respect  also  he  followed  the  advice  given  him.  In 
1864  and  1865  he  was  a  member  of  the  "  Physi- 
kalischer  Verein,"  which  was  then  and  later  a 
teaching  institution ;  the  teacher  in  chemistry  was 
Prof.  Rudolph  Boettger  and  in  Physics  first  Prof. 
Oppel  and  later  Prof.  Friedrich  Kohlrausch. 

On  leaving  Lucius,  Messel  entered  the  Federal 
Polytechnic  in  Zurich,  where  he  followed  the  regu- 
lar first  year  course.  Among  the  subjects  taken 
were  organic  and  inorganic  chemistry  (taught  by 
Stadeler) ;  technical  experimental  physics  (taught 
by  Bolley) ;  mechanics,  mineralogy,  botany  and 
technical  drawing.  Messel  completed  his  year  in 
Ziirkh.  The  following  winter  he  spent  at  Heidel- 
berg studying  organic  chemistry  under  Erlenmeyer. 
According  to  a  letter  from  Bunsen,  he  worked  with 
the  utmost  zeal  on  analytical  subjects  in  the 
laboratory  of  that  great  teacher,  then  in  his  prime. 
Bunsen,  who  wrote  two  years  later,  especially  men- 
tions Messel's  manual  dexterity,  which  he  says  was 
clearly  shown  in  his  later  published  researches  on 
strychnine-oxyethylene  compounds  and  sulpho- 
maleic  acid. 

From  Heidelberg  Messel  moved  in  the  spring  of 
1868  to  Tubingen,  where  he  finished  his  education. 
Here  he  spent  a  year  attending  the  course  of  experi- 
mental physics  of  Prof.  Reusch  and  courses  in 
organic,  inorganic  and  analytical  chemistry  by  Prof. 
Strecker.  From  the  spring  of  1869  onward  he 
appears  to  have  been  engaged  in  various  inquiries 
under  Strecker.  A  description  of  those  referred  to 
by  Bunsen  in  the  letter  noted  above  formed  the 
thesis  he  presented  for  his  degree.  Messel  left 
Tubingen  for  England  in  April,  1870. 

I  believe  he  came  to  England  originally  to  act  as 
private  assistant  to  Roscoe.  During  the  6hort 
period  he  spent  in  Manchester,  he  worked  both  with 
Roscoe  and  Grace  Calvert.  The  outbreak  of  the 
Franco-Prussian  war,  however,  led  to  his  recall  to 
Germany.  Owing  to  some  physical  defect,  he  did 
not  serve  in  the  army  but  was  relegated  to  the 
Ambulance  Corps ;  he  was  wounded  while  on  service. 
When  recovered,  he  returned  to  England,  where  he 
remained  during  the  rest  of  his  life  and  ultimately 
became  an  Englishman.     He  entered  the  service  of 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


257TP 


Dun,  Squire  and  Co.  at  Stratford,  as  assistant  to 
Dr.  Squire  and  here  he  became  a  thionist;  but  the 
virus  was  already  in  his  veins. 

In  his  Presidential  Address,  he  tells  of  a  conversa- 
tion in  the  beginning  of  the  70's  with  his  former 
teacher  Strecker,  of  Tubingen — who  was  the  first  to 
discover  the  relationship  of  alizarin  with  anthracene 
— and  Briining,  of  Hochst,  on  the  importance  of 
fuming  sulphuric  acid  in  the  synthetic  alizarin  in- 
dustry, then  rising  into  importance.  To  his  question, 
how  the  acid  should  best  be  made,  Strecker  gave  the 
prescient  reply:  "That  is  a  problem  for  you  to 
solve."  A  few  experiments  convinced  him,  he  says, 
that  given  puro  gases,  the  catalytic  action  of 
platinum  was  the  rational  solution  of  the  problem. 
On  April  8,  1875,  a  telegram  came  to  him  at  the 
laboratory,  from  Squire,  asking  him  to  read  up  that 
night  about  Nordhausen  acid,  as  it  was  wanted  by 
an  alizarin  works.  The  response  was  Messelian  and 
immediate :  no  reading  was  necessary.  Next  day 
he  showed  how  simple  a  matter  it  was  to  marry 
sulphur  dioxide  with  oxygen  by  means  of  platinum. 
However,  Squire  was  conventional  and  thought 
that  the  decomposition  of  an  acid  sulphate  would  be 
a  simpler  method.  Experiments  were  made  as 
requested  but  eventually  Messel  was  told  "  to  try 
his  dodge." 

With  Messel  to  try  what  he  had  once  conceived 
as  practicable  was  to  succeed.  He  was  there 
already;  he  had  seen  and  he  conquered  forthwith. 
A  patent  was  taken  out  by  Squire  in  1875  and  the 
process  was  described  at  the  Chemical  Society  early 
in  1876.  Meanwhile,  Squire  had  established  as  a 
new  firm  Squire,  Chapman  and  Co.,  with  Messel  as 
factotum ;  he  would  have  objected  to  my  calling  him 
chemical-engineer,  as  he  had  no  belief  in  half- 
breeds,  also  he  was  an  entire  disbeliever  in  the 
attempt  to  bring  the  works  into  the  laboratory. 

The  process  was  established  at  Silvertown  and  in 
1878  he  succeeded  Squire  as  manager  of  the  works, 
which  he  only  quitted  in  1915,  when  his  health  gave 
way  under  the  excessive  strain  of  the  times. 

The  paper  Messel  and  Squire  read  at  the 
Chemical  Society  was  never  published  :  even  I  can- 
not say  why ;  probably  because  of  patents ;  from  a 
remark  made  by  Messel,  I  gather  that  it  was  not 
sent  in  by  Squire.  The  record  of  the  meeting  on 
April  20  in  the  Chemical  News  runs  simply  as 
follows :  — 

"  The  speaker  (Messel),  after  giving  a  sketch 
of  the  history  of  the  manufacture  of  sulphuric 
acid,  described  the  process  for  preparing  the 
anhydride.  The  vapour  of  ordinary  sulphuric 
acid  is  passed  through  a  white-hot  platinum 
tube,  whereby  it  is  almost  completely  decom- 
posed into  water,  oxygen  and  sulphurous 
anhydride :  the  mixed  gases,  after  passing 
through  a  leaden  worm  to  condense  the  greater 
portion  of  the  water,  are  completely  dehydrated 
in  a  leaden  tower  filled  with  coke,  over  which  a 
stream  of  concentrated  sulphuric  acid  is 
allowed  to  trickle.  The  dry  mixture  of  oxygen 
and  sulphurous  anhydride  is  now  passed 
through  platinum  tubes  heated  to  low  redness 
and  containing  fragments  of  platinum  pumice, 
when  the  gases  recombine  to  form  sulphuric 
anhydride  which  is  condensed  in  a  series  of 
Woulffe's  bottles." 

In  early  days,  I  was  a  frequent  visitor  at  Silver- 
town,  where  Messel  not  only  worked  but  also  lived 
in  the  modest  quarters  of  a  small  house  attached  to 
the  works,  until  he  removed  to  chambers  in  Ebury 
Street  and  afterwards  to  Victoria  Street.  Charac- 
teristic of  the  man  throughout  his  career  was  his 
unpretentious,  simple  mode  of  life.  I  only  knew 
him  to  be  vain  in  one  connexion — as  President  of 
this  Society;  but  he  was  very  proud  of  the  F.R.S. 
and  not  a  few  of  us  were  proud  of  him  as  a  colleague. 
Generous  and  ever  thoughtful  of  others,  unselfish  to 


a  degree,  he  had  little  thought  for  himself  and  a 
hatred  of  all  display;  the  artist  came  out,  first  in 
his  extreme  devotion  to  his  own  art — for  chemistry, 
technical  chemistry  in  particular,  is  an  art — then 
in  his  love  of  the  company  of  artists  and  other 
bohemians:  he  was  a  great  admirer  and  friend  of 
Gilbert — of  Gilbert  and  Sullivan  fame — and  a 
constant  frequenter  of  the  Savage  Club ;  may  I 
add,  as  a  judge  of  quality  in  Champagne;  in  SVeib 
and  Gesang  he  had  no  estate,  though  he  was 
musical.  Living  among  them,  he  knew  his  work- 
people and  was  in  sympathy  with  them:  hence  his 
popularity  and  power. 

One  understood  his  success  when  one  followed  his 
work.  A  man  of  astounding  vigour  and  full  of 
feeling,  he  burnt  the  candle  at  both  ends  and  all 
over  its  surface.  That  he  lasted  so  long  always 
surprised  me.  When  about  sixty  he  was  overtaken 
by  diabetes.  He  was  everything  —  not  only 
chemist,  engineer  and  business  man;  he  also  took 
care  to  cultivate  the  social  side  of  his  life ;  he  was 
the  only  manufacturer  of  my  acquaintance  who 
attended  regularly  at  scientific  gatherings  and 
showed  real  interest  in  the  proceedings.  He  was 
thorough  in  everything  he  did.  Probably  he  did 
far  too  much  himself  but  he  could  not  suffer  fools 
gladly,  though  not  often  impatient  outwardly  and 
always  considerate.  He  had  no  hobby  outside  his 
business  and  science.  During  many  years,  his  one 
way  of  recuperating  was  a  weekly  visit  to  Brighton 
on  Sundays.  He  went  down  by  the  early  train, 
walked  out  to  the  Devil's  Dyke,  had  lunch  and  then 
returned  to  town,  usually  to  spend  the  evening  with 
friends.  In  those  days  he  was  a  real  walker,  as  I 
found  when  occasionally  his  joyful  companion. 

Those  who  knew  him,  especially  in  the  early  days, 
will  remember  his  vigorous  frame,  his  black  hair 
and  sparkling  eyes,  his  smiling  face,  his  hearty  bass 
staccato  laugh,  his  peculiar  gutteral  accent.  If  his 
portrait  were  to  be  painted,  I  think  we  should  ask 
the  artist  to  depict  just  that  smile  alone,  following 
Tenniel's  living  presentation  of  the  Cheshire  Cat 
up  in  the  tree  by  its  grin.  We  can  fancy  him 
to-day,  smiling  at  King  Ruttan  and  his  crowd  and 
at  me  the  executioner,  chuckling  at  my  use  of  the 
axe  of  criticism.  He  never  mastered  English 
properly,  though  he  spoke  it  fluently.  He  was  very 
fond  of  young  people,  many  of  whom  rejoiced  in  his 
generosity.  We  who  knew  him  all  think  of  him  as 
one  of  the  most  loveablo  men  we  have  met.  His 
outlook  on  life  was  always  cheerful  and  optimistic 
but  he  was  a  close  observer  and  critic ;  always  broad, 
clear  and  careful  in  his  judgments  but  deliberate 
in  forming  them.  The  example  he  set  in  leaving 
his  fortune  to  science  is  a  remarkable  one  and  best 
proof  of  his  considerate  outlook.  Honest  and  sin- 
cere himself,  he  hated  insincerity  and  all  meanness 
of  6pirit.  He  combined  in  his  person  all  the  best  of 
German  good  qualities,  fired  and  softened  by 
Jewish  imagination. 

Nordhausen  or  Fuming  Oil  of  Vitriol  was  the  only 
kind  of  sulphuric  acid  known  to  the  early  chemists. 
Even  in  comparatively  recent  times,  not  more  than 
a  hundred  years  ago,  the  manufacture  of  Vitriolic 
acid,  by  burning  sulphur,  was  so  imperfect  a 
process,  that  the  old  method,  troublesome  and  crude 
as  it  was,  still  held  its  ground. 

The  production  of  the  anhydride,  by  decomposi- 
tion of  a  sulphate,  appears  to  have  been  known  in 
very  early  times,  indeed  up  to  the  year  1736  the 
only  way  of  preparing  sulphuric  acid  was  to  evolve 
vapours  of  the  anhydride  by  destructive  distillation 
of  a  sulphate  and  to  pass  these  into  water. 

When  Messel  and  Squire  began  their  work,  Baron 
Stark,  in  Bohemia,  was  sole  maker  of  the  fuming 
acid,  the  process  he  used  being  substantially  that 
of  Basil  Valentin?,  born  1394.  A  particular  kind 
of  Pyrite  wa3  weathered  (oxidised)  by  exposure  to 
the  air.     The  copperas  (ferrous  sulphate)  6o  formed 


2o8  T 


ARMSTRONG.— FIRST   MESSEL  MEMORIAL  LECTURE. 


[Aug.  15,  1922. 


was  dissolved  out  and  the  solution  concentrated. 
The  sulphate  crystals  which  separated  were  usually 
6old:  the  mother  liquor,  containing  much  ferric 
sulphate,  was  then  evaporated  to  dryness  and  the 
residue  slightly  roasted,  so  as  to  dry  it.  The  vitriol- 
stone,  as  it  was  called,  so  produced,  was  broken  up 
and  charged  into  small  bottle-shaped  retorts 
arranged  in  a  gallery  furnace,  in  such  a  way  that 
they  could  be  heated  to  a  high  temperature.  In- 
stead of  receiving  the  vapours  in  water,  as  in 
making  sulphuric  acid,  they  were  condensed  in  oil 
of  vitriol,  a  small  vessel  containing  the  acid  being 
luted  to  each  retort.  The  distillation  lasted  about 
36  hours  and  as  the  quantity  put  into  each  retort 
Was  small,  the  product  was  also  small.  The  con- 
sumption of  fuel  was  great  and  much  labour  was 
involved  in  charging  and  discharging  the  retorts, 
many  of  which  were  broken.  The  process  required 
great  skill  on  the  part  of  the  workers.  All  attempts 
to  manufacture  the  acid  in  larger  apparatus 
appear  to  have  ended  in  failure. 

At  the  outset,  when  the  attempt  was  made,  to 
produce  the  anhydride  by  passing  the  vapour  of 
burning  sulphur  mixed  with  air  over  heated  pumice 
coated  with  spongy  platinum,  the  chief  difficulty 
met  with  was  in  condensing  the  anhydride.  As 
Messel  and  Squire  remark — the  manner  in  which 
sulphuric  anhydride  will  evade  condensation  from 
a  gaseous  mixture  is  something  quite  marvel- 
lous. When  pure  gases  were  used,  the  condensation 
was  easily  effected;  on  this  account,  in  the  early 
days  of  the  industry,  when  the  value  of  the  fuming 
acid  was  much  greater  than  that  of  oil  of  vitriol,  a 
suitable  mixture  of  6ulphur  dioxide  with  oxygen 
was  obtained  by  decomposing  the  latter.  In  their 
experiments  referred  to  in  the  paper,  a  small 
platinum  still  about  4  inches  in  diameter  was  so 
arranged  in  a  Hofmann  Gas  Furnace  that  it  could 
conveniently  be  maintained  very  nearly  at  a  white 
heat.  Ordinary  oil  of  vitriol  was  slowly  fed  into 
the  still  and  kept  strongly  boiling;  the  vapour  was 
almost  completely  decomposed,  the  condensed  water 
containing  but  little  acid.  After  the  mixture  of 
gases  had  been  dried  by  means  of  sulphuric  acid, 
it  was  passed  over  pumice  stone  prepared  with 
platinum,  enclosed  in  a  large  tube  made  of  thick 
platinum  foil,  heated  to  a  dull-red  heat  by  the 
waste  heat  of  the  gas  furnace.  Little  or  no  sulphur 
dioxide  passed  away  when  the  heat  was  properly 
managed,  the  process  was  continuous  and  the  con- 
densation perfect.  Nearly  70  parts  of  anhydride 
were  obtained  from  100  parts  of  white  sulphuric 
acid,  the  theoretical  amount  being  80  or  thereabout. 

In  the  early  days,  the  demand  was  limited  by  the 
requirements  of  the  dyestuff  industry,  especially 
that  of  the  madder  colours.  When  the  use  of  the 
fuming  acid  was  introduced  into  the  Cordite 
industry,  in  connexion  with  the  displacement  nitra- 
tion process,  the  demand  became  much  greater.  At 
the  close  of  his  industrial  career,  Messel  was  pro- 
ducing from  250  to  300  tons  of  Oleum  per  week, 
containing  20%  of  anhydride  in  admixture  with 
sulphuric  acid. 

As  experience  was  gained  and  the  difficulty  of 
condensing  the  anhydride  was  overcome,  sulphur 
dioxide  prepared  by  burning  sulphur  and  ordinary 
air  were  used.  In  this  case  also  exact  proportions 
were  at  first  adhered  to.  I  remember  Messel  telling 
me  that  he  was  first  led  to  use  excess  of  air  and 
therefore  to  abandon  the  use  of  special  appliances 
for  the  supply  of  the  gases  in  due  proportion  by 
having  his  attention  called,  by  his  workman-fore- 
man, to  the  fact  that  the  plant  worked  better  when 
air  was  supplied  in  excess. 

In  early  days,  to  reduce  the  cost  of  carriage,  acid 
was  sent  abroad  of  80%  anhydride  strength  and 
diluted  with  '  monohydrate.'  AVhere  this  was  done 
I  forget  but  that  this  was  his  practice  I  know,  as 
when  I  once  asked  him  if  he  had  any  knowledge  of 


the  process  of  making  sulphuric  acid  (H2S04)  by 
freezing  it  out  from  oil  of  vitriol,  he  told  me  that 
he  had  at  one  time  so  made  it  for  the  purpose  stated 
above. 

Over  and  over  again  he  told  me  that  he  aimed 
at  making  vitriolic  acid  by  his  process  as  cheaply  as 
by  the  chamber  process  and  I  well  remember  the  joy 
with  which  he  told  me  that  he  had  at  last  succeeded. 

Messel's  claim  to  distinction  does  not  rest  upon 
the  discovery  of  a  chemioal  process  but  upon  his 
initial  success  in  building  up  from  the  foundation, 
unaided  and  almost  alone,  a  novel  industry  of  great 
importance  and  in  having  solved  a  variety  of 
technical  problems  of  extreme  difficulty.  His 
success  was  due  not  only  to  his  great  mechanical 
ability  and  clear  understanding  of  the  task  before 
him  but  particularly  to  his  high  moral  standard  and 
his  absolute  devotion  to  work. 

'  The  strongest  weapon  one  can  see 
In  mortal  hands  is  Constancy.' 

Doubtless,  in  later  days,  as  we  all  do,  he  derived 
assisfance  from  outside  but  this  was  only  when  his 
primary  work  was  accomplished  and  it  became 
necessary  largely  to  extend  the  plant.  We  have 
been  accustomed  to  admire  the  systematic  manner 
in  which  the  German  chemical  works  are  conducted 
with  the  aid  of  a  considerable  staff  of  trained, 
disciplined  workers :  what  always  appealed  to  me 
was  the  fact  that  he,  a  German  working  under  our 
English  conditions,  with  scarcely  any  technical 
staff,  was  long  far  in  advance  of  his  countrymen. 
His  success  was  due,  in  the  first  place,  to  his 
thorough  scientific  training  and  to  his  scientific 
outlook  but,  to  an  exceptional  degree,  to  his  moral 
attitude  towards  his  work.  The  lesson  to  be  learnt 
from  his  life  should  be  of  no  small  value  to  us. 


CHEMICAL    ACTION    AND    CATALYSIS 

AN   ESSAY   ON   CLEANNESS 

"  A  Satyrical  Allusion  to  the  Heathen  Gods,  who 
are  supposed  all  of  them  to  have  been  Kings  or 
famous  Men  in  their  Time  and  fabl'd  into  Deities  by 
the  Error  and  Ignorance  of  those  Days;  concluding 
with  a  list  of  Great  but  Vicious  Princes  in  our 
Modern  Times  fit  to  make  Gods  of  in  the  next 
Promotion." 

Chemical  Action  and  Catalysis :  if  not  these 
words,  KoraAiJo)  should  be  graven  at  the  base  of 
the  monument  to  my  friend. 

The  industry  which  Rudolph  Messel  had  so  large 
a  share  in  developing,  more  than  any  other 
perhaps,  is  commonly  thought  of  as  one  in  which 
"catalysis"  has  a  leading  part:  every  budding 
student  during  generations  past  has  been  taught 
to  regard  nitric  oxide  as  the  catalytic  agent  in 
the  chamber  process  and  platinum  as  similarly 
effective  in  the  later  contact  process.  No  two  less 
similar  processes  could  well  be  imagined;  yet  if 
choice  were  to  be  made  between  them,  I  imagine 
the  latter  would  be  regarded  as  the  "  typically  " 
catalytic  process. 

Berzelius,  in  first  communicating  his  conception 
in  1835,  included  a  long  list  of  interactions  under 
the  influence  of  agents  which  appeared  to  take  no 
permanent  part,  even  if  included,  in  the  change, 
as  they  were  ultimately  recovered  unaltered. 

Whilst  in  the  interval  attention  has  been  more 
and  more  concentrated  upon  platinum,  nickel  and 
the  enzymes  as  catalytic  agents  pur  sang,  of  late 
years  there  has  been  a  growing  tendency  to  extend 
the  conception  to  all  agents  determining  change — 
in  other  words,   to  chemical  change   in  general. 

A  strange  confusion  of  thought  prevails,  in  fact : 
rather,  may  it  be  said,  perhaps,  a  strange  lack  of 
thought.  Francis  Bacon  three  hundred  years  ago 
could  point  out,  that  "the  ill  and  unfit  choice  of 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


259  T 


words  wonderfully  obstructs  the  understanding." 
The  term  catalysis  would  seem  to  be  one  of  those 
"  Idols  of  the  Theatre,"  as  he  terms  them,  "  which 
have  immigrated  into  men's  minds  from  the  various 
dogmas  of  philosophies  and  also  from  wrong  laws 
of  demonstration." 

If,  as  Bacon  insisted,  "  words  force  and  overrule 
the  understanding  and  throw  all  into  confusion  and 
lead  men  away  into  numberless  empty  controversies 
and  idle  fancies,"  it  behoves  us  to  be  most  careful 
in  our  choice  of  words  and  concise  in  our 
definitions,  remembering  that  "even  definitions 
cannot  cure  this  evil  in  dealing  with  natural  and 
material  things,  since  the  definitions  themselves 
consist  of  words  and  those  words  beget  others,  so 
that  it  is  necessary  to  recur  to  individual  instances 
and  those  in  due  series  and  order." 

It  is  a  strange  fact  that  whilst  the  "  criteria  of 
catalysis"  are  more  or  less  fully  discussed  in 
recent  works,  there  is  practically  no  reference  to 
the  broader  problem  of  chemical  change  or  action ; 
even  Mellor,  in  his  two  encyclopoedic  volumes, 
makes  no  attempt  to  consider  the  conditions  which 
determine  it.  This  is  equally  true  of  the  lengthy 
dissertation  compiled  by  the  pillar  of  American 
Physical  Chemistry,  Wilder  D.  Bancroft  and  his 
adsorbed  body  of  assistants.  The  recent  discussion 
at  the  Faraday  Society,  apart  from  Langmuir'6 
experimental  contribution,  appears  to  have  been  in 
a  "  greenery-yallery,  Grosvenor-Gallery  "  Valhalla 
to  which  chemists  can  never  hope  to  attain — only 
Dr.  Lowry  spoke  from  a  foundation  of  fact,  in 
earthly  but  shattering  terms.*  The  main  lesson 
to  be  drawn  from  the  two  documents  is  that  Dr. 
Miall  should  continue  his  efforts  to  found  an 
Association  for  the  Discouragement  of  the  Integral 
Calculus  of  which  he  has  given  notice  in  the  U.S.A. 

Students,  we  know,  have  been  taught  of  late 
years  to  worship  Idols  of  the  Theatre,  to  lisp 
certain  Teutonic  shibboleths;  but  the  inner 
mysteries  of  chemical  change  have  never  been 
confided  to  them.  The  state  of  ignorance  induced 
by  our  text-books  is  astounding:  a  vast  burden  of 
facts  is  laid  upon  us  but  processes  are  rarely  con- 
sidered :  the  manuals  mark  no  advance  in 
methodical  treatment,  and  are  best  described  in 
Shelley's  words  as — 

....  tomes 
Of  reasoned  wrong,  glozed  on  by  ignorance. 

We  physicians  have  a  long  way  to  go  in  healing 
ourselves  before   we  prate  of  scientific  method   to 


•  Bancroft's  essay  is  written  with  child-like  innocency  of  purpose  ■ 
He  meanders  through  three  numbers  of  the  Journal  of  Industrial 
and  Engineering  Chemistry  (April  to  June)  without  ever  stating 
what  he  thinks  he  means  by  catalysis,  without  making  the  slightest 
attempt  to  overlook  the  process  of  chemical  change  In  general. 
Like  most  chemists  of  the  time,  he  seems  to  be  clad  in  little  more 
than  a  chemical  loin  cloth  :  that  a  whole  suit  is  necessary  for  a 
change  seems  never  to  have  occurred  to  him.  Such  be  your  Gods, 
Oh  Israeli 

The  same  sense  of  disappointment  is  left  on  turning  over  the 
pages  of  the  monographs  on  the  subject.  Jumble  sales  of  facts, 
vastly  interesting  and  valuable  as  catalogues  of  observations,  they 
lead  nowhere  in  particular : — 

When  they  cry, "  Steer  to  starboard  but  keep  her  head  larboard," 
What  on  earth  is  the  Helmsman  to  do  ? 
The  mind  is  reduced  to  the  condition  of  the  map  so  vividly  described 
by  the   Bellman  in  The  Hunting  of  the  Snark — "  A  perfect  and 
absolute  blank." 

The  statement  made  by  Samuel  Butler,  under  the  heading  "  First 
Principles,"  is  worthy  of  quotation  in  this  connexion : — 

"  When  we  are  impressed  by  a  few  only  or  perhaps  only 

one  of  a  number  of  ideas  which  are  bonded  pleasantly  together, 

there  is  hope  ;  when  we  see  a  good  many,  there  is  expectation  ; 

when  we  have  had  so  many  presented  to  us  that  we  have 

expected  confidently  and  the  remaining  ideas  have  not  turned 

up,  there  is  disappointment.    So  the  sailor  says  in  the  play : 

'  Here  are  my  arms,  here  is  my  manly   bosom  but  Where's 

my  Mary  ?  '  " 

Indeed,  "  Where's  my  Mary  ?  "  must  be  the  general  cry  of  those 

who  read  of  catalysis  in  the  journals  ;    we  miss  her  dear  form 

everywhere. 


the  public.    As  to  text-books,  let  us  Scrap  the  lot!* 

Spermatid;  Vigour  spreads  the  poison'd  Race, 
Conveys  Hereditary  Crimes  apace; 

What  strange,  what  inconsistent  Thing's  a  Man? 
Who  shall  his  Nature  search,  his  life  explain? 

A  constant  Bondage  bows  his  Couchant  Neck 
His  Will  corrupted  and  his  Judgement  weak. 

Subjected  Man  submits  to  the  Controul 
Of  Forty  Thousand  Tyrants  in  his  Soul. 

Wonder  no  more  the  Sons  of  such  a  Race 
Grow  ripe  for  Slavish  Principles  apace; 
The  Victory  of  Vice  is  so  Compleat 
The  Conquer'd  Faculties  at  once  submit : 
He's  born  with  Slavery  in  his  very  Face 
And  hands  it  down  to  his  subjected  Race. 

In  R.  L.  Stevenson's  apposite  words:  "Culture 
is  not  measured  by  the  greatness  of  the  field  which 
is  covered  but  by  the  nicety  with  which  we  can 
perceive  relations  in  that  field,  whether  great  or 
small." 

Thus  defined,  where  is  the  cultured  chemist  to  be 
found  to-day?  Recent  hearings  before  the  Board 
of  Trade  Official  Referee  show  that  the  witnesses 
— I  will  not  call  them  chemists — were  not  even 
agreed  as  to  what  is  "  A  Chemical  "  ;  the  innocent 
lawyer  was  trapped  into  the  belief  that  it  was 
something  manufactured.t  Doubtless  this  definition 
was  paid  for — nothing  else  could  explain  and 
excuse  its  absurdity. 

Chemical  Change 

All  single  things  dealt  with  by  the  chemist  are 
chemicals.  A  chemical  can  only  be  defined  as  a 
material  which  can  take  part  in  a  chemical  change; 
combustion  undeniably  involves  chemical  change : 
argle — Oxygen  is  a  Chemical  1  Who  manufactured 
oxygen?     We  can  only  say — It  is! 

What  is  involved  in  the  process  of  Combustion — 
to  take  the  simplest  possible  case,  that  of  the 
formation  of  hydrone  (water)  from  hydrogen  and 
oxygen?  Every  text-book  we  have  lies  in  telling 
the  student  that  hydrogen  and  oxygen  interact  to 
form  "  water."  We  know  they  do  not.  The  effect 
of  drought  upon  the  country  is  patent  to  everyone 
— especially  of  late  years — yet  no  notice  is  taken  of 
its  effect  in  chemistry.  The  remarkable  work  of 
Wanklyn,  Cowper,  Dixon  and  especially  of  H.  B. 
Baker  may  be  just  mentioned  occasionally  but  its 
entirely  fundamental  value  is  in  no  way  appreci- 
ated ;  Lowry's  work  may  be  seen  but  it  is  not  heard. 

It  is  as  Bacon  said  three  hundred  years  ago : 
"  The  Idols  and  false  notions  which  are  now  in 
possession  of  the  human  understanding  and  have 
taken  deep  root  therein  not  only  so  beset  men's 
minds  that  truth  can  hardly  find  entrance  but, 
even  after  entrance  obtained,  they  will  again  in 
the  very  instauration  of  the  sciences  meet  and 
trouble  us,  unless  men,  being  forewarned  of  the 
danger,  fortify  themselves  as  far  as  may  be  against 
their  assaults." 

Surely  it  were  time  that  we  fortified  ourselves ; 
that   we   sought   to  deserve   the   title   of   scientific 


•  It  is  estimated  that  new  books  will  be  "  Homeless  "  at  the 
Chemical  Society  five  years  hence.  It  is  clear  that  a  "Palace" 
must  be  found  in  which  the  united  Chemical  Societies  can  foregather 
with  the  books  of  the  future  and  those  of  the  past  which  are  worth 
preserving  ;  no  other  Catalyst  will  serve  the  purpose.  Meanwhile 
let  selection  be  made  of  the  few  text  books  worth  preserving  and  the 
rest  publicly  burnt,  as  a  warning  to  budding  authors  :  there  will  then 
be  sufficient  room  on  the  shelves  to  meet  passing  needs  while  the 
Palace  is  building.  "' 

t  Judgment  upon  the  Act  was  pronounced  by  the  author  of 
Robinson  Crusoe  when  he  said  : — 

Reason  is  the  Test  of  the  Law ;  for  Laws  which  are  con- 
tradictory to  Reason  are  void  in  their  own  Nature  ;  and  ought 
not  either  to  be  made  or  regarded. 


2(jOt 


ARMSTRONG.— FIRST  MESSEL  MEMORIAL   LECTURE. 


[Aug.  15,  1922. 


workers  and  thinkers?  Human  understanding  is 
frail  and  limited  but  not  so  limited  as  we  make  it 
appear.  There  is  no  conscious  effort  made  by  us 
to  be  impartial  and  logical ;  and  our  difficulties 
arise  from  lack  of  culture — from  the  gross 
specialisation  of  the  day,  which  is  largely  con- 
ditioned by  our  satanic  system  of  competitive 
examinations :  a  system  more  calculated  to  kill 
genius  and  prevent  progress  could  not  possily  be 
devised. 

Yet  hope  is  in  the  offing.  To  me  it  seems,  I  am 
glad  to  say,  that,  in  upper  scientific  circles,  there 
are  clear  signs  of  a  return  to  chemistry  and  reason 
— that  the  attention  paid  to  pseudo-physical 
aspects  having  outworn  its  welcome  is  giving  place 
to  the  desire  to  consider  the  inner  meaning  of 
chemical  phenomena,  to  be  eclectic,  to  recognise 
the  insufficiency,  if  not  the  emptiness,  of  the  treat- 
ment to  which  they  have  been  subjected  by  the 
Syncretists.  The  work  done  by  Hardy  in  corre- 
lating lubricating  power  with  chemical  structure 
and  that  of  Jacques  Loeb,  following  that  of  Hardy, 
on  proteins,  may  be  referred  to  by  way  of  example. 
We  are  returning  to  the  sane  vision  before  the 
early  workers  that  molecular  structure  is  the  key 
to  function ;  let  us  hope  that  the  change  will  be 
marked  by  the  rejection  of  the  pedantic  jargon 
which  has  so  long  marred  the  fair  field  of  our 
science. 

From  morning  to  night  we  must  impress  upon 
our  students  that  they  must  learn  to  think  for 
themselves  but  that  thinking  rightly  is  an  out- 
come of  experience,  no  easy  thing;  that  they  must 
therefore  give  due  heed  to  experience  but  have  no 
belief  in  authority — above  all,  be  wary  of  the 
journalist  and  propagandist  and  of  the  text-book. 

The  experimental  evidence  put  forward  by  H.  B. 
Baker  is  of  such  cogency  that  it  may  now  be 
asserted,  that  hydrogen  and  oxygen  cannot  inter- 
act and  that  to  determine  interaction  a  third  com- 
ponent must  be  introduced  into  the  system.  What 
is  the  nature  of  the  third  component?  Whilst 
affording  proof  that  moisture  promotes  the  change, 
Baker's  observation  that  liquid  water  might  be 
present  and  yet  no  explosion  take  place  apparently 
is  proof  that  water  alone  cannot  act  as  third  com- 
ponent. By  using  the  hardest  glass  and  gases 
liberated  from  a  solution  of  baryta,  Baker  elimin- 
ated acid  impurity  as  far  as  was  practicable;  as 
interaction  takes  place  when  these  precautions  are 
not  observed  the  legitimate  inference  is  that  water 
becomes  the  determinant  only  when  it  is  rendered 
conducting  by  the  presence  of  impurity,  usually 
acid.  The  interaction  is  an  electrolytic  process,  in 
fact.  One  Faraday  taught  this  doctrine  in  early 
days  (1833).  By  his  study  of  the  power  of  metals 
and  other  solids  to  induce  the  combination  of 
gaseous  bodies  and  of  electro-chemical  decom- 
position in  general,  he  laid  the  foundation,  for  all 
time,  of  the  theory  of  chemical  change;  and  yet, 
whilst  honouring  it  in  its  transcendental  aspects — 
for  we  recognise  that  Faraday  foreshadowed  the 
electron — we  pay  no  attention  to  the  ordinary 
applications  of  his  work.  Why  is  it  that  we  so 
rarely  read  in  order  that  we  may  mark,  learn  and 
inwardly  digest?  Whatever  of  logic  I  have  in  my 
composition,  whatever  unfortunate  tendency  to  be 
critical,  I  owe  it,  in  some  measure,  to  Trench's 
Study  of  Words  but  mainly  to  reading  Faraday. 
An  early  purchase  of  his  collected  works  was  the 
most  fortunate  I  ever  made.  The  exquisite  lucidity 
of  his  logic  at  once  impressed  me.  The  Electro- 
chemical Researches  are  in  Everyman's  Library 
and  every  youthful  student  who  wishes  to  gain  the 
scientific  habit  of  mind  should  acquire  and  master 
this  volume — if  only  as  a  literary  exercise.  All  the 
essayists  may  well  be  put  aside  for  it,  if  the  desire 
be  to  cultivate  style  and  to  escape  from  the  tyranny 


of  the  literary  plagiarists  who  eternally  harp  upon 
one  theme  and  make  no  attempt  at  progress. 

To-day,  I  but  take  up  the  position  I  took  with 
reference  to  Baker's  work  in  March,  1885,  when  he 
was  only  beginning  his  chemical  studies — merely 
telling  us  that  the  combustibility  of  phosphorus 
and  charcoal  had  been  overrated  and  misinter- 
preted. Influenced  by  a  Faradic  current  of 
thought,  intensified  by  my  association  with  two 
pioneer  workers  in  electricity,  Ayrton  and  Perry, 
I  dared  to  project  my  mind  into  the  future  and 
say  that  some  day  it  would  be  found  that  a 
mixture  of  pure  hydrogen  with  pure  oxygen  would 
be  inexplosive.  The  position,  I  assumed,  was 
perfectly  simple — that  action  always  takes  place 
and  only  takes  place  in  a  conducting  or  electrolytic 
circuit.  Neither  gas  was  a  conductor  nor  did  either 
make  water  conducting.  Following  Ayrton  and 
Perry,  I  argued  that  Ohm's  well-known  electrolytic 
law,  C  =  E/R,  was  equally  the  law  of  chemical 
change.  My  forecast  was  verified  by  Baker  in  1902 
and  he  has  since  given  not  a  few  other  proofs  of  the 
validity  of  my  thesis.* 

I  venture  to  think  that  the  discussion  we  had  on 
the  occasion  referred  to  at  the  Chemical  Society  is 
the  most  important  in  its  history  and  yet  how 
little  real  recognition  it  has  received.  Who  reads 
such  literature,  any  real  literature  to-day.  t  The 
Tit-bits  miscalled  abstracts  and  illiterate  text-books 
alone  hold  the  field.  Very  few  remain  mindful  of 
Liebig's  counsel  to  Kekule :  "No  one  who  does 
not  ruin  his  health  with  study  (he  meant  reading) 
will  ever  do  anything  in  chemistry  nowadays." 
Some  excuse,  perhaps,  is  to  be  found  in  the 
quality  of  too  many  modern  memoirs. 

Altars  have  been  set  up  everywhere  for  the 
worship  of  a  narrow  doctrine  mislabelled  Physical 
Chemistry ;  the  chief  Ikon  has  been  St.  Arrhenius, 
a  divinity  of  Scandinavian  origin;  Teutonic 
priests,  the  Ostwalds  especially,  have  ministered 
faithfully  at  his  shrine;  latterly  they  have  gradu- 
ally changed  the  material  of  his  effigy  and  have 
formed  it  in  glue.  The  fashion  set  has  not  only 
stuck  in  many  places  but  has  assumed  epidemic 
proportions.  The  ritual  the  school  has  developed 
is  as  vague,  as  wordy  and  as  mystical  as  that  of 
any  of  the  Churches.  Leipzig  for  a  time  was  a 
veritable  Lourdes  and  full  of  pilgrims ;  everyone 
knows  the  miraculous  curves  that  were  issued  from 
the  temple  there.  The  prominent  symptom  of  the 
disease  is  that  it  renders  the  mind  semi-permeable 
to  ideas;  if  any,  only  those  of  one  kind  get  through. 
However,  we  all  have  partially  permeable  intellects 
— not  semi  only  but  some  much  smaller  fraction. 
The  Americans,  as  was  to  be  expected,  have  been 
worst  hit;  we  come  next;  the  French  have  dis- 
played their  characteristic  immunity  towards 
external  influences  and  have  shown  a  sense  of  pro- 


•  A9  the  Proceedings  of  the  Chemical  Society  are  not  generally 
available,  I  venture  to  reproduce  my  prophecy : — 

"  He  (Dr.  Armstrong)  had  even  ventured  to  affirm  to  Mr. 
Dixon  that  some  day  it  would  be  ascertained  that  a  mixture 
of  pure  oxygen  with  pure  hydrogen  was  not  explosive." 

Dr.  Armstrong  said  that  the  view  which  he  now  held  was 
best  stated  by  defining  chemical  action  as  reversed  electrolysis, 
i.e.,  in  any  case  in  which  chemical  action  was  to  take  place 
it  was  essential  that  the  system  operated  upon  should  contain 
a  material  of  the  nature  of  an  electrolyte.    Neither  oxygen 
nor  hydrogen  was  an  electrolyte,  therefore  a  mixture  of  only 
these  two  gases  should  not  be  explosive ;    a  mixture  of  pure 
oxygen  and  pure  carbonic  oxide  for  like  reasons  should  not 
explode.    There  was,  however,  a  tendency  perhaps  to  exag- 
gerate the  Importance  of  water  and  to  overlook  the  possible 
presence  in  minute  quantity,  and  influence  of,  other  bodies. 
Water  not  being  an  electrolyte,  as  it  was  scarcely  probable 
that  water  and  oxygen  or  hydrogen  would  form  an  electrolyte, 
it  was  difficult  to  understand  that  the  presence  of  water  pure 
and  simple  should  be  of  influence  in  the  case  of  a  mixture  of 
oxygen  and  hydrogen." 
t  The  Americans,  almost  more  than  the  French   and  Germans, 
now  pay  scant  attention  to  outside  literature  and  are  on  the  way 
to  give  a  new  meaning  to  the  term  Monograph — not  the  graph  of 
a  subject  but  that  of  a  notion.    Falk  disregards  the  whole  of  my 
work,  including  that  on  enzymes,  in  his  monographs. 


Vol.  XIJ.,  No.  15.] 


ARMSTRONG.— FIKST  MESSEL  MEMORIAL   LECTURE. 


201  T 


portion  which  has  enabled  them  to  preserve  their 
sanity.  No  cult  can  last  for  ever ;  some  free  men 
there  still  are  in  the  world ;  the  war  has  made 
people  think  a  little;  shortly  we  shall  realise  how 
silly  we  have  been  in  adopting  clerical  methods  and 
substituting  faith  for  evidence,  particularly  in 
putting  faith  in  any  one  hypnotist  and  allowing 
him  and  his  lieutenants  to  dogmatise  us  into  belief. 
Science  is  a  human  occupation  like  others;  we  are 
all  prone  to  hero-worship  and  seekers  after  prai6e 
and  position,  making  pleasurable  statements,  are 
always  taken  too  much  at  their  own  valuation ; 
when  followed  by  the  trail  of  Nobelism  they  are 
irresistible. 

There  is  nothing  dogmatic  in  the  assertion  that 
all  chemical  change  is  an  electro-chemical,  i.e.,  an 
electrolytic  process — facts  prove  it  to  be  such :  let 
those  who  doubt  study  Faraday.  Modern  dis- 
covery only  serves  to  deepen  the  conviction.  The 
nature  of  the  electro-chemical  process,  however,  is 
still  open  to  argument. 

To  the  pure  all  things  are  pure,  it  is  said;  but 
none  of  us  dare  claim  to  be  otherwise  than  impure 
and  so  we  may  reverse  the  proverb  and  say  that  to 
us,  the  impure,  all  things  are  impure.  Strange  to 
say,  the  physicist  is  still  affecting  to  love  the 
simple  life  and  has  not  yet  learnt  to  take  things 
impurely :  he  has  yet  to  recognise  the  value  of 
chemical  soap-and-water,  the  need  of  attaching 
importance  to  cleanliness,  perhaps  it  should  rather 
be  said,  to  dirt;  his  interpretation  of  the  pheno- 
mena of  electric  discharge  has  yet  to  be  justified 
under  dry  conditions.  The  intermediary  is  difficult 
to  find.  Langmuir  seems  to  be  the  most  likely 
holder  of  the  office,  if  he  can  but  come  down  to  earth 
and  be  proportionate  in  his  judgments — in  Fara- 
day's sense;  if  he  will  work  at  the  open  window. 

The  Determinant 

Most  will  now  admit  that  the  interaction  of 
hydrogen  and  oxygen  is  determined — please  mark 
the  word — by  conducting  water.  What  is  conduct- 
ing water?  The  Arrhenists  claim  that  water  itself 
is  a  conductor — though  only  a  very  feeble  one  at 
best.  I  need  not  remind  that  the  plea,  "  It's  only  a 
wee  one,"  is  not  admitted  in  law.  The  assumption 
that  water  is  a  conductor  per  se  is  purely 
gratuitous.  The  value  accepted  is  that  arrived  at 
by  Kohlrausch — but  he  worked  in  prehistoric 
times  and  used  prehistoric  methods;  he  cannot 
conceivably  have  dealt  with  pure  water.  Pure 
water  is  impossible  in  mortal  hands.  Some  minute 
impurity  must  ever  be  present.  Knowing  as  we  do 
that  impurity  is  present  and  that  conductivity  falls 
rapidly  as  impurity  is  removed,  it  is  only  logical  to 
assume  that  ideal,  pure  water  would  be  a  non- 
conductor, at  least  to  all  ordinary  potentials.  The 
situation  is  one  which  cannot  well  be  resolved  by 
experiment.  We  must  proceed  by  way  of 
hypothesis,  as  in  the  case  of  gravitation. 

Let  our  hypothesis  be  this — that  the  interaction 
of  two  diverse  molecular  systems  is  determined  by 
the  presence  of  a  third  system,  itself  an  electrolytic 
system  and  compatible  with  them,  in  the  sense  that 
the  three  can  be  associated  into  a  single  conducting 
system.  I  would  call  this  third  system  the  Deter- 
minant and  say  that  every  chemical  change  involves 
the  presence  of  a  Determinant.  Please  mark  the 
word  Determinant  and  note  that  the  Determinant 
is  always  an  electrolyte. 

Sauce  for  the  goose  being  sauce  for  the  gander, 
all  that  I  have  said  may  be  read  backwards.  If 
hydrone  cannot  be  formed  by  the  direct  interaction 
of  hydrogen  and  oxygen,  it  cannot  be  directly 
resolved  into  these ;  some  determinant  must  inter- 
vene to  bring  about  the  decomposition.  H.  B. 
Baker  has  given  proof  of  this  thesis  by  showing,  to 
take    only    a    single    case,    that    the    stability    of 


ammonium  chloride  is  greater  the  more  carefully  it 
is  dried. 

Recognising  this,  let  us  give  effect  to  our  belated 
conversion  to  a  true  faith  by  including  in  every 
equation  the  symbol  of  the  determinant,  E  or  Ed, 
a  small  one,  if  you  will;  better  an  epsilon,  e,  if  not 
68,  as  these  foreign  6igns  will  have  greater  appear- 
ance of  learning.  Let  us  not  be  ashamed  of  acknow- 
ledging the  determinant,  especially  in  Grecian 
dress,  as  a  necessary  member  of  any  family  party  of 
chemical  agents  we  may  call  together,  e.g.,  in 
expressing  the  formation  of  hydrone  empirically,  in 
order  to  show  what  factors  are  involved,  let  us 
write :  — 

(Oa  +  eS  +  2H  3)  =  2HaO  +  eS ; 

or  if  we  wish  to  represent  the  operation  as  a  rever- 
sible change 

(0,+«S+2H3)  ^(2HJ0+e8). 

The  brackets  are  added  to  indicate  that  a  complex 
system  is  involved  in  each  case. 

The  argument  may  be  extended  even  to  explo- 
sives. We  know  from  Gattermann's  work  that  the 
stability  of  nitrogen  chloride  depends  upon  its 
purity.  In  firing  Cordite — a  mixture  of  cellulosic 
and  glyceric  nitrates — not  a  little  of  the  unburnt 
material  is  often  projected  from  the  gun  in  the 
form  of  perfect  rods  much  reduced  in  size.  The 
explosive  is  not  shaken  to  pieces  molecularly  but 
just  burnt  away  at  the  surface  and  we  have  to 
picture  to  ourselves  the  long-despised  little  ee's  or 
ed's  bombarding  this  with  incredible  activity  as  the 
charge  is  slowly  fired — slowly  in  comparison  with 
the  intra-molecular  activities  of  the  explosive 
system. 

A  horribly  pedantic  jargon  has  been  piled  up 
around  ethylic  aceto-acetate  and  other  compounds 
which  lead  a  double  life,  beginning  with  the  word 
tautomeric :  an  unnecessary  invention,  Berzelius 
having  rightly  assigned  metameric  to  such  use. 
They  were  long  represented  as  not  knowing  their 
own  minds  for  two  seconds  together — strange  to  say, 
no  Ostwald  ever  coined  the  term  Lunoids  for  them- — ■ 
as  ever  undergoing  an  internal  molecular  change 
at  their  own  sweet  wills.  It  has  always  been  clear 
that  little  eS  was  at  work.  Groves  and  I  took  this 
view  in  several  instances  in  writing  our  (Miller's) 
Organic  Chemistry  (1880);  and  Lowry,  in  my 
laboratory,  has  given  the  most  complete  proof  of 
the  thesis.  Recently,  it  has  been  found  that  either 
of  the  two  metameric  (isodynamic)  forms  of  the 
aceto-acetate  may  be  obtained  at  will  by  observing 
certain  precautions — mainly,  be  it  noted,  by  using 
quartz  instead  of  glass  vessels. 

1  have  not  yet  reached  a  terminus.  If  logical 
and  we  have  faith  in  our  prophetic  powers,  we  may 
project  our  minds  into  the  future  and  foresee  the 
time  when  it  is  admitted  that  liquids  and  also  solids 
are  not  as  we  see  them.  Baker  is  already  leading 
the  advance  into  this  field.  By  drying  benzene,  he 
has  raised  its  boiling  point  above  that  of  water — if 
indeed  the  explosive  behaviour  at  the  higher  tem- 
perature can  be  characterised  as  "  boiling."  He 
has  obtained  similar  results  with  carbon  bisulphide 
and  other  liquids.  Carnelly's  dream  of  hot  ice  was 
perhaps  not  the  absurdity  it  was  deemed  to  be  at 
the  time !  Benzene  boiling  at  107°  or  mercury  at 
about  450°  would  have  been  scoffed  at  equally. 
Benzene  and  similar  liquids  which  are  not  miseible 
with  water  are  not  easily  dried  but  once  dried  they 
are  not  easily  wetted.  Baker  being  a  veritable 
wizard  has  been  able  to  boil  off  water  through  dried 
benzene.  Modest  in  manner  and  modest  in  state- 
ment, he  has  made  far  too  little  impression  upon 
our  cloth ;  no  Teutonic  Boswell  has  log-rolled  his 
progress,  no  special  Journal  has  been  founded  to 
acclaim  the  peculiar  joys  or  drawbacks  of  the  dry 
state  in  chemistry,  no  Act  of  Congress  has  been 
passed   to    provide   for    its   operation.      The   main 


202  t 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


(Aug.  15,  1922. 


reason    probably    why    the    prophet    has    been    in- 
sufficiently honoured  even  in  his  own  country  is  the 
fact  that  we  chemists  are  educated  into  being  the 
dullest  of  drones — without  imagination.    We  cannot 
remain  dry  ourselves,  even  in  the  U.S.A.,  therefore, 
apparently,  we  have  neither  belief  nor  interest  in    j 
the  dry  state,  except  as  one  to  be  avoided ;  we  only 
subconsciously    realise    perhaps    that    you    cannot    I 
get  on  in  it;   presumably  it  is  one  involving  the    | 
death  of  chemical  change,  as  it  is  of  all  artistry,    I 
because  of  the  inanimate  life  the  molecules  enjoy 
during  drought. 

The  Catalyst 

Having  considered  the  conditions  which  deter- 
mine the  occurrence  of  chemical  change,  let  us  now 
pass  to  those  which  hasten  its  progress.  The  inter- 
action of  hydrogen  and  oxygen  is  promoted  by 
platinum  in  any  state  of  division  but  more 
especially  when  it  is  very  finely  sub-divided,  as  in 
the  spongy  platinum  first  used  for  the  purpose  by 
Dbbereiner  in  1823,  although  Humphry  Davy  had 
previously  (1817)  noted  the  inductive  effect  of  the 
metal  in  the  massive  state. 

Dbbereiner,  as  Faraday  wrote  in  1833, 

"  refers  the  effect  entirely  to  an  electrolytic 
action.  He  considers  the  platina  and  hydrogen 
as  forming  a  voltaic  element  of  the  ordinary  kind, 
in  which  the  hydrogen,  being  very  highly  positive, 
represent  the  zinc  of  the  usual  arrangement 
and  like  it,  therefore,  attracts  oxygen  and 
combines  with  it." 
The  only  essential  condition,  as  Faraday  insists, 
is  a  clean  metallic  surface.     As  he  recognised, 

"  The  effect  is  evidently  produced  by  most,  if 
not  all,  solid  bodies,  weakly  perhaps  by  many  of 
them  but  rising  to  a  high  degree  in  platina. 
Dulong  and  Thenard  have  very  philosophically 
extended  our  knowledge  of  the  property  to  its 
possession  by  all  the  metals  and  by  earths,  glass, 
stones,  etc. ;  and  every  idea  of  its  being  a  known 
and  recognised  electric  action  is  in  this  way 
removed." 
What  could  be  better,  too,  than  the  following? — 
"  All  the  phenomena  connected  with  this 
subject  press  upon  my  mind  the  conviction  that 
the  effects  in  question  are  entirely  incidental  and 
of  a  secondary  nature;  that  they  are  dependent 
upon  the  natural  conditions  of  gaseous  elasticity, 
combined  with  the  exertion  of  that  attractive 
force  possessed  by  many  bodies,  especially  those 
which  are  solid,  in  an  eminent  degree  and  pro- 
bably belonging  to  all ;  by  which  they  are  drawn 
into  association  more  or  less  close,  without  at  the 
same  time  undergoing  chemical  combination, 
though  often  assuming  the  condition  of  adhesion ; 
and  which  occasionally  leads  under  very  favour- 
able circumstances,  as  in  the  present  instance,  to 
the  combination  of  bodies  simultaneously  sub- 
jected to  this  attraction." 

The  modern  work  of  Hardy,  Langmuir  and  others 
is  justification  of  the  view  that  condensation  at 
6olid  surfaces  is  the  outcome,  not  of  a  mere 
mechanical  cohesion  but  of  an  attraction  due  to 
residual  chemical  affinity  and  therefore  selective — 
in  fact,  a  function  of  structure.  The  peculiar 
activity  of  platinum  seems  to  be  due  to  the  fact 
that  it  is  highly  attractive  of  both  hydrogen  and 
oxygen — whether  and  to  what  extent  it  combines 
with  them  to  form  an  "  oxide  "  when  exposed  to  the 
two  gases  is  open  to  question.  Willstatter  has 
argued  that  the  presence  of  some  oxygen  in 
platinum  sponge  is  essential  to  its  activity  as  a 
hydrogenating  agent  and  he  assumes  that  an  un- 
stable compound  with  both  elements  is  formed. 
Faraday's  observation  that,  although  the  plate  is 
less  readily  cleansed  when  made  the  negative  pole  in 
diluted  sulphuric  acid,  a  platinum  plate  at  which 


hydrogen  has  been  evolved,  when  clean,  is  equally 
active  in  promoting  the  interaction,  would  seem  to 
preclude  the  presence  and  need  of  oxygen,  unless 
it  be  that  the  formation  of  the  oxide  postulated  by 
Willstatter  takes  place  immediately,  by  partial  dis- 
placement of  hydrogen,  on  presentation  of  the  clean 
metal  to  the  gas ;  also  the  fact  that  most  if  not  all 
solid  bodies  are  in  some  degree  active,  is  against 
the  oxide  view ;  but  the  gradual  corrugation  of  the 
solid  metal  and  the  expansion  of  palladium  as  it  is 
charged  must  not  be  overlooked  as  favouring  it. 

For  the  present  argument,  this  is  a  question  of 
minor  importance.  The  main  function  of  the 
platinum  surface  would  6eem  to  be  to  oapture  and 
raise  the  concentration  of  the  interacting  sub- 
stances ;  not  to  induce  change  but  to  hasten  it 
by  this  increase  of  concentration.  The  determinant 
is  as  necessary  as  in  the  ordinary  case  of  interaction 
of  the  gases  in  its  absence,  as  without  it  no  elec- 
trolyte would  be  present.  The  problem  has  not  yet 
been  submitted  to  any  refined  study  but  it  is  known 
that  moisture  favours  the  action. 

I  am  thus  brought  to  the  definition  of  a  Catalyst* 
as  something  different  from  a  Determinant  and  to 
accept  the  statement,  which  is  commonly  stressed, 
that  it  is  an  agent  which  accelerates  a  change  in 
being.  Unlike  the  Determinant,  however,  the 
Catalyst  is  not  an  electrolyte  but  merely  a  solid 
superficies  at  which  the  interacting  substances 
become  condensed  and  therefore  of  increased  con- 
centration ;  hence  the  acceleration  of  the  inter- 
action and  hence  the  value  of  its  aid. 

In  the  mind's  eye,  from  Faraday's  massive  plate 
to  the  most  minute  speck  of  platinum  mounted  upon 
a  Messelian  asbestos  support,  the  change  in  size  and 
increase  in  activity  is  continuous  and  doubtless  in 
correspondence  with  the  increase  in  surface  area; 
the  greatest  activity  would  be  that  of  molecular 
fineness.  The  speck,  however,  must  remain  a  speck  : 
it  must  retain  its  particulate  character;  in  solution, 
the  molecules  are  too  often  married  with  the 
solvent,  their  distribution  is  too  uniform,  to  permit 
of  an  excited  rate  of  change. 

The  activity  of  the  catalyst  would  seem  to  be  due 
to  the  operation  of  the  force  of  residual  affinity ;  on 
no  other  assumption  can  we  well  understand  the 
preferential  activity  of  various  catalysts.  The  work 
of  Hardy  and  Langmuir  especially  has  afforded 
proof  that  molecular  structure  is  a  determining 
factor  and  that  a  single  layer  of  molecules  can 
cover  and  effectively  occupy  a  solid  surface.  The 
molecules  in  some  way  become  ranged  in  accordance 
with  their  structure.  Chemists  have  long  thought 
of  the  carboxyl  radicle  in  acids  as  the  active  part 
of  the  molecule  and  it  is  no  surprise  to  have  proof 
given  that  when  a  fatty  acid  is  spread  out  upon 
water  the  molecules  become  ranged  in  the  film  in 
serried  ranks,  like  porcupine-fishing-floats  in  a 
stream,  only  the  oarboxyl  radicle  dipping  into  the 
liquid ;  the  argument  may  be  extended  to  an  oiled 
solid  surface. 

The  character  of  the  surface  also  plays  its  part. 
Hardy  has  definitely  shown  that  glass,  metal  and 
various  kinds  of  composite  material  of  the  ebonite 
class  behave  differently.  We  can  but  imagine  that 
the  structural  character  comes  into  play  and  that 
centres  of  attraction  may  be  offered.  No  other 
explanation  can  well  be  given  of  the  entirely 
selective  activity  of  the  colloid  catalysts — the 
enzymes,  the  potent  agents  of  change  at  the  root 
of  all  vital  activity.  It  is  commonly  stated  that 
these  fit  their  compatible  hydrolytes  as  a  key  fits  a 
lock ;  the  hypothesis  was  put  forward  by  the  late 
Prof.  Emil  Fischer,  long  my  venerated  friend ;  as  he 
has  been  regarded  as  a  super-authirity,  not  only  in 

•I  believe  I  introduced  the  terra  in  1885.  Catalyzer  (catalyzer) 
i3  a  word  without  euphony  to  my  ear  and  I  would  specially 
deprecate  the  use  of  the  verb  to  catalyse  or  any  verbal  form  of  the 
term. 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST  MESSEL  MEMORIAL   LECTURE. 


263  T 


Germany  where  it  is  customary  to  worship  the 
words  of  professors  but  by  chemists  generally,  the 
suggestion  has  been  made  one  of  our  chemical 
shibboleths.  Infinitely  gullible  we  are,  as  Carlyle 
has  said.  The  suggestion  does  not  bear  thinking 
about,  charming  though  it  be  as  a  literary  parallel. 
A  key  is  something  entirely  different  from  a  lock — 
something  which  fits  into  its  blanks.  Blanks  are 
unknown  to  us  in  our  chemical  locks.  The  fit  cannot 
well  be  other  than  that  of  similarity :  in  some  part 
the  enzymic  complex  must  be  so  like  the  compatible 
hydrolyte  that  the  two  fit  together  when  super- 
posed; we  are  therefore  driven  to  think  of  this 
active  centre  as  the  hydrolyte  itself  gathered  into 
the  structure  of  the  complex.  My  son  and  I  have 
long  advocated  this  view. 

The  influence  of  proteid  colloids  other  than 
enzymes  as  catalysts  has  been  little  studied.*  The 
production  of  hydrazine  from  ammonia  and  hypo- 
chlorite, according  to  Raschig,  is  promoted  by  the 
presence  of  a  little  glue;  but  it  is  found,  I  believe, 
that  all  glues  do  not  equally  serve  the  purpose.  If 
so,  is  the  difference  due  to  some  structural 
peculiarity?  It  is  conceivable  that  the  interaction 
may  involve  the  intervention  of  a  protein  chlor- 
amine?     If  so,  structure  might  tell. 

In  addition  to  directly  active  catalysts — 
catalysts  which  exert  a  definite  attractive,  effect 
upon  substances  whose  interaction  they  promote — 
there  is  conceivably  a  neutral  class,  effective  through 
the  agency  of  the  specially  active  layer  of  simple 
hydrone  molecules  deposited  at  their  surface. 

Hydrone  and  Water 

Progress  has  too  long  been  stayed  by  the  fiction 
that  water  is  represented  by  the  symbol  0H3 — by 
the  failure  to  recognise  that  it  is  a  "  mush  "  of 
molecules  of  several  degrees  of  complexity. t  Un- 
fortunately, we  can  only  distinguish  one  at  present, 
the  simplest,  that  of  hydrone,  OH2,  probably  always 
a  minor  constituent  of  water.  Bragg's  recent  work 
rather  favours  the  view  that  ordinary  ice  is  a 
benzenoid  complex  in  which  six  hydrone  molecules 
are  conjoined.  I  have  long  been  of  the  belief  that 
water  is  to  be  thought  of  as  a  mixture  of  hydrone 
with  several  polyhydrones  of  the  polymethylene 
type. 

If  we  could  be  logical,  we  should  only  apply  the 
term  water  to  the  liquid  substance,  never  to  that 
symbolised  as  HaO.       We  have  as  little   right  to 


•  The  attempt  has  been  made  by  the  school  that  dubs  itself 
"  colloid*'  to  read  Into  the  term  the  sense  of  particulate — of  very 
finely  divided  matter  in  suspension  in  a  fluid.  Nothing  was  further 
from  Graham's  mind. 

I  would  urge  that  the  term  colloid  should  be  used  only  In  Its 
etymological  sense  and  confined  to  substances  such  as  Graham 
contemplated — substances  opposite  to  the  so-called  crystalloids  in 
the  scale  of  solubility. 

Then  that  a  distinction  be  drawn  between  actions  in  solution  and 
those  at  particulate  surfaces. 

The  passage  of  the  colloid  from  solution  into  the  particulate  state 
probably  involves  far  more  than  meets  the  eye,  even  that  of  imagina- 
tion, to-day.  McBain's  fascinating  studies  of  soaps  have  brought 
to  light  the  existence  of  a  tendency  similar  to  that  apparent  in 
compounds  such  as  the  cobaltammines  and  other  complex  salts,  in 
which  one  or  more  of  several  negative  radicles  is  lost  to  view.  In 
the  soaps,  several  primary  molecules  of  the  salt  are  merged  Into  an 
aggregate  in  which  the  alkali  is  in  large  part  hidden  away.  We  have 
to  remember  that  even  acetates  have  a  tendency  to  take  on  a  more 
complex  form  than  that  of  the  simple  molecule.  It  Is  possible  to 
think  of  a  wheel-like  arrangement  of  the  molecules,  in  which  most 
of  the  carboxylated  groups  are  at  the  hub,  the  hydrocarbon  radicles 
ranging  outwards  like  spokes.  The  coagulation  of  colloids  may  well 
involve  the  formation  of  aggregates,  in  like  manner  ;  and  the  produc- 
tion of  a  jelly  is  conceivably  due  to  the  interlocking  of  such  poly- 
merised molecules,  water  filling  the  waste  spaces.  As  Wilder  D.B. 
has  the  goodness  to  say  :  "  For  the  moment  it  looks  as  though  the 
organic  chemist  were  the  safe  man  to  follow,"  rather  than  the 
adsorbist.  Yet  such  an  explanation  can  scarcely  be  given  of  the 
agglutination  of  micro-organisms  under  some  special  conditions 
which  we  cannot  yet  appreciate  ;  the  primary  change,  in  these  cases, 
may  be  in  water. 

t  The  rapid  increase  in  the  rate  of  chemical  change  as  the  tempera- 
ture of  a  solution  Is  raised,  it  may  be  suggested,  is  mainly  due  to 
the  changes  which  water  itself  undergoes — to  its  increasing  activity. 


think  of  this  as  water  as  we  have  of  the  various 
polymethylenes  as  methylene. 

The  Pseudo-Physical  School  has  been  so  impas- 
sive and  impenetrable  by  ideas,  so  intellectually 
pachydermatous,  that  it  has  never  given  heed  to 
the  composition  of  water.  The  treatment  of  the 
problems  of  solutions  by  the  school  has  therefore 
been  purely  empirical  and  of  small  value.  The  main 
object  has  been  to  force  agreement  with  a  formula ; 
this  satisfies  the  mathematical  mind  but  not  the 
free-spirited  chemist  striving  to  see  within  and  to 
dissect  out  the  active  factors.  We  are  often  told 
that  a  return  to  the  land  is  now  our  one  hope  of 
salvation  as  a  people — in  any  case  our  ultimate  fate. 
Let  us  chemists  recognise  that  we  can  only  abide  in 
chemistry  and  let  this  be  to  us  a  word  of  real  signi- 
ficance, of  broad  and  intensive  meaning.  A  chemist 
must  be  a  chemist  and  not  a  mere  bit  of  one,  still 
less  a  formula-seeking  mathematician,  to  do 
effective  work. 

To  begin  with,  we  must  purify  and  simplify  our 
nomenclature  and  use  only  words  of  clear  import. 
We  must  arrive  at  an  understanding  as  to  the 
meaning  to  be  given  to  the  term  solution.  The 
term  solid  solution  is  a  contradiction  in  terms ; 
Colloid  solution  is  equally  bad;  in  a  crystalline 
solid  mixture  there  cannot  be  that  evenness  of  dis- 
tribution which  is  the  characteristic  of  a  solution ; 
motion  must  be  constrained  and  limited,  not 
illimitable;  there  cannot  be  that  exercise  of  affec- 
tion between  solute  and  solvent,  that  compatibility 
of  temper  due  to  oppositeness  of  character,  which 
is  at  the  root  of  solubility  and  dissolving  power, 
which  leads  to  short  marrying  long,  to  beauty 
mating  with  ugliness. 

Determinant  and  Catalyst 

This  brings  me  to  the  final  distinction  I  desire  to 
make  between  Determinant  («8)   and  Catalyst  (k). 

The  one  is  active  in  solution,  the  other  in  suspen- 
sion ;  in  the  one  case  the  distribution  of  the  com- 
ponents is  even;  in  the  other  it  is  uneven  and  local, 
the  catalyst  being  a  surface-centre  towards  whicn 
the  interacting  substances  are  attracted. 

In  the  presence  only  of  a  determinant,  the  rate 
of  change  is  in  accordance  with  the  sacred  Law  of 
Mass  Action,  which  is  ever  subject  to  modification 
however,  owing  to  changes  in  the  medium  condi- 

•  When  Mr.  Walcot  has  exhausted  his  imaginative  power  in 
depicting  Roman  and  Persian  subjects,  he  will  perhaps  find  a  worthy 
stimulus  to  his  needle  in  an  allegorical  presentment  of  the  new 
Babylon  science  is  building.  I  said  much  of  our  abuse  of  our  language 
in  1894,  in  my  first  Presidential  Address  to  the  Chemical  Society. 
As  Secretary,  I  had  had  some  influence  in  securing  uniformity  and 
clearness  of  expression.  To-day,  there  seems  to  be  no  check  to  law- 
lessness— no  clear  understanding  of  law,  no  desire  to  arrive  at  and 
obey  the  law.  Proceedings  under  the  Safeguarding  of  Industries 
Act  show  that  we  must  spring-clean  our  vocabulary  and  give  thought 
to  our  words.  Why  do  we  so  carelessly  use  Interaction  and  Reaction 
indifferently,  when  the  former  expresses  our  meaning  and  the  latter 
does  not  ?  Why  are  we  not  satisfied  to  speak  of  chemical  agents, 
instead  of  reagents  ?  The  medical  man  is  content  with  "  thera- 
peutic agents."  Why  introduce  "  reactant  "—an  unnecessary  and 
un-English  word  ?  Our  object  should  be  to  use  words  as  near  as 
possible  to  those  in  popular  use,  if  not  those  in  actual  use  :  our  desire 
being  to  live  on  terms  of  intimacy  with  the  public.  Why  coin  new 
words  when  old  ones  will  suffice  1  Adsorption  would  be  a  proper 
word  to  introduce,  if  a  new  word  were  necessary  ;  but  several  popular 
words  suffice  to  convey  the  idea  underlying  its  use.  It  is  strange  to 
the  common  ear  and  to  the  novice.  If  we  are  to  coin  new  words, 
they  should  suit  the  genius  of  our  language ;  no  language  Is  so 
hospitable  to  foreign  intruders,  yet  it  cannot  admit  every  stranger 
that  may  call  in.  To  get  over  the  difficulty  arising  from  the  alterna- 
tive use  of  absorb  and  adsorb,  it  is  proposed  to  omit  the  prefix  ;  but 
sorb  is  a  word  without  dignity,  and  the  attempt  to  introduce  it  should 
not  be  countenanced.  The  introductory  "  But"  is  a  mild  offender 
compared  with  it.  Then  why  so  un-English  a  term  as  ionic  micell 
when  aggregate  gives  complete  expression  to  the  underlying  idea : 
the  word  carries  no  crumb  of  comfort  to  the  British  ear ;  and  what 
will  it  become  in  America — My-y-sell  ?  Anything  may  happen  to 
such  a  word.  It  is  time  some  sense  of  eternal  fitness,  if  not  of 
the  ridiculous,  were  infused  into  the  scientific  mind — if  we  wish  to 
secure  public  sympathy.    Still : 

Oh  ye  who  tread  the  Narrow  Way 

By  Tophet-flare  to  Judgment  Day, 

Be  gentle  when  the  heathen  pray 

To  Buddha  at  Kamakura. 


264  T 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


[Aug.  15,  1922. 


tioned  by  the  alterations  in  molecular  character  and 
complexity  which  attend  all  interactions,  just  as 
human  laws  are  always  heing  modified  by  circum- 
stances. 

In  the  presence  of  a  catalyst,  the  action  is  not  in 
accordance  with  the  nominal  concentration  but 
much  more  rapidly  and  nearly  at  a  linear  rate  over 
the  greater  part  of  the  period  of  change.  Unfor- 
tunately, the  action  of  catalysts,  especially  of 
enzymes,  is  often  obscured  by  secondary  actions 
and  the  assumption  that  all  chemical  change  must 
be  subject  to  the  mass  action  law  has  gained  such 
credence  that  almost  everywhere  the  temptation  to 
twist  the  results  to  this  interpretation  has  been 
irresistible.  There  has,  however,  long  been  a 
suspicion  that  enzymic  hydrolysis  takes  place 
mainly  at  linear  rates,  so  long  as  disturbing 
influences  are  inoperative;  it  is  permissible  to  say, 
I  think,  that  the  work  done  in  my  laboratory, 
especially  that  with  urea  and  the  enzyme  urease, 
has  raised  this  to  a  certainty,  confirmed  as  it  has 
been,  in  the  most  striking  manner  possible,  by  the 
observations  made  by  Drs.  E.  F.  Armstrong  and 
Hilditch  on  the  hydrogenation  of  oily  fluids  in 
presence  of  very  finely  divided  metallic  nickel. 

Let  me  cross  the  t's  in  this  section  by  saying  that 
if  we  desire  to  give  expression  to  the  action  of  a 
catalyst  in  writing  an  explanatory  equation,  this 
may  be  done  as  in  the  following  example:  — 

Oa  +  eS/<-f  2H2  =  2H20  +  eSK. 
By  associating  the  symbol  of  the  electrolytic  deter- 
minant with  that  of  the  catalyst,  the  fact  is  brought 
out  that  the   former   is   necessary   and   that   both 
factors  are  concerned  in  the  operation. 

Hydroxylation  not  Oxygenation 

The  formation  of  hydrone  from  hydrogen  and 
oxygen  is  but  imperfectly  expressed  even  in  the 
equation 

03+e8  +  2H2=20H2+eS; 

it  is  true  unusual  attention  is  paid  to  the  character 
of  the  process  but  this  is  not  fully  developed  as  an 
electrolytic  event. 

When  writing  my  Introduction  to  the  Study  of 
Inorganic  Chemistry,  published  in  1874,  although 
I  was  grossly  ignorant  and  inexperienced,  I  was 
beginning  to  think.  Discussing  the  formation  of 
acids  by  the  oxidation  of  the  corresponding 
aldehydes,  having  assimilated  Avogadro's  theorem 
and  knowing  the  formula  of  oxygen,  which  few  did 
at  that  time,  I  wrote  (p.  241) :  — 

2R'.COH+Oa  =  2R'.CO(OH). 

In  a  footnote  I  added: — "  Perhaps 

R'.COH+0+OH2=R'.CO(OH)  +  OH„ 

i.e.,  the  reaction  is  one  of  double  decomposition, 
H  being  replaced  by  OH  and  does  not  consist  in  the 
mere  addition  of  oxygen."  In  Miller's  Organic 
Chemistry  (p.  417),  published  in  1880,  this  concep- 
tion was  logically  extended  to  cases  of  oxidation 
generally. 

I  had  not  then  consciously  developed  a  consistent 
electrolytic  conception  of  chemical  change,  yet  I 
was  approaching  it  and  had  foreseen  that  the 
oxidation  process  is  to  be  interpreted  as  primarily 
one  involving  hydroxylation. 

It  may  safely  be  asserted,  taking  the  facts 
generally  into  account,  that  when  acidified  water  is 
electrolysed,  hydrone  molecules  are  primarily 
resolved  not  into  oxygen  and  hydrogen  but  into 
perhydrone  (hydrogen  peroxide)  and  hydrogen :  — 


H 
H 


OH. 
OH. 


Hs 


(0,H2) 


The  dots  stand  for  the  little  eS's,  the  electrolytic 
systems  which  carry  H  and  OH  at  their  terminals. 
The  perhydrone,   maybe  a  sulphonic-perhydrol,   is 


decomposed  at  the  electrode  face.  How?  Not  by 
mere  contact  with  the  chilly  metal ;  the  process 
resorted  to  is  a  warmer  one,  I  believe,  involving 
hydroxylation  of  the  perhydrone:  — 

HO.OH+e8K+HO.OH=HO.O.OH.-t-OH2  +  €SK 

and  when  the  hydroxyls  are  crowded  together,  as 
they  are  at  certain  strengths  of  sulphuric  acid  or 
when  currents  of  relatively  high  density  are  applied 
to  the  solution,  probably  still  higher  perhydrones 
are  produced  by  a  similar  process. 

Oxygen  and  ozone  appear  to  be  the  products  of 
the  breakdown  of  these  perhydrones. 

A  wicked  and  perverse  generation,  to  the  present 
day,  we  teach  the  poor  student  that  when  water  is 
electrolysed — acid  is  added,  to  make  it  conducting, 
we  say — it  is  resolved  into  hydrogen  and  oxygen; 
occasionally  a  reference  is  made  to  by-products, 
never  to  the  probability  that  the  oxygen  is  a  by- 
or  secondary  product.  Endless  talk  about,  hydrogen 
and  hydroxyl  ions  is  probably  indulged  in  and  the 
student  carries  the  scars  of  these  through  life, 
though  nothing  more;  fiction  is  always  preferred 
to  fact,  in  reading. 

What  is  true  of  electrolysis  is  true  of  oxidation 
phenomena  generally.*  Hydrogen  is  first  burnt  to 
perhydrone  (hydrogen  peroxide) ;  the  oxygen  is 
merely  hydrogenised.  In  turn,  the  perhydrone 
molecule  serves  as  the  oxidant,  so  that  the  oxygen 
molecule  is  broken  down  in  two  stages ;  there  is  no 
reason  to  think  of  atomic  oxygen  as  ever  engaged 
in  the  operation.  Were  it  not  that  the  mystic 
word  "  ionised  "  is  now  grafted  into  our  being,  we 
should  think  without  difficulty  in  terms  of  molecules 
and  be  rational. 

Hydrocarbons  behave,  in  general,  as  hydrogen. 

Carbonic  oxide  is  peculiar  in  this  as  in  most  other 
respects.  It  is  commonly  recognised  not  only  that 
this  gas  cannot  be  burnt  dry  but  that  the  rate  of 
combustion  rises  as  the  amount  of  hydrone  in 
admixture  with  it  is  increased,  up  to  a  certain 
point;  hydrone  apparently  plays  a  peculiarly  active 
part  in  its  combustion,  primarily  through  incor- 
poration into  its  being.  In  fact,  it  is  difficult  to 
think  of  hydrone  as  active  in  conjunction  with 
carbonic  oxide  except  by  giving  rise  to  formic  acid; 
the  two  molecules  cannot  well  grip  each  other  at 
all  with  any  other  result.  Carbonic  oxide,  under 
ordinary  conditions,  is  an  alert  molecule  which 
cannot  easily  be  caught;  tamed  at  the  surface  of  a 
catalyst  it  is  docile  enough.  A  mixture  of  carbonic 
oxide  and  chlorine  must  be  well  sunburnt  to  induce 
interaction  but  an  active  charcoal  will  induce 
the  immediate  pairing  of  the  gases.  Faraday  found 
that  unheated  clean  platinum  was  without  sensible 
action  on  a  mixture  of  carbonic  oxide  with  oxygen ; 
further,  that  in  presence  of  any  considerable  pro- 
portion of  carbonic  oxide,  hydrogen  and  oxygen 
were  indifferent  to  each  other  at  the  metallic 
surface.  It  is  therefore  to  be  supposed  that  the 
carbonic  oxide  molecules,  having  the  greater  affinity 
for  platinum,  cover  up  its  surface  against  hydrogen. 
Faraday's  observations  were  confirmed  by  Groves' 
later  study  of  the  gas  battery.  It  is  an  unfortunate 
fact  that  carbonic  oxide  and  oxygen  cannot,  as  far 
as  we  know,  be  usefully  associated  in  an  electrolytic 
circuit;  if  the  disability  could  be  got  over  and 
economically,  how  golden  might  the  future  of 
industry  be. 

Given  the  initial  production  of  formic  acid,  all 
else  in  the  behaviour  of  carbonic  oxide  is  clear.  The 
oxidation  of  this  acid  presumably  involves  the 
formation  in  the  first  instance  of  a  perhydrol  (per- 
acid)  which  breaks  down  on  hydrolysis  into  carbon 
dioxide  and  hydrone:  — 

•  Compare  my  Studies  on  Oxidation,  this  Journal,  1913,  391. 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


2G5t 


OH....H      O 

HCO.OH+  +    ^HCO.O.OH  +  OHj  +  OjH, 

OH H       0 


H.CO.O  . 

I 
HO. 


OH 

t 
,H 


=  OH2  +  C02  +  OH, 


I  call  attention  to  these  operations  in  order  to 
make  clear  the  point  that  the  "  Sweet  to  the 
Sweet"  principle  prevails  in  chemistry,  as  in  life. 
Oxygen  6eeks  oxygen  but  falls  a  prey  to  hydrogen 
by  the  way.  Only  on  this  assumption  can  we  under- 
stand the  manner — sometimes  dubbed  peculiar  by 
the  thoughtless — in  which  the  oxidation  of  carbon 
compounds  is  effected.  In  the  case  of  the  fatty 
acids,  the  candle  is  mainly  burnt  not  at  both  ends 
but  at  the  carboxyl  wick;  which  is  necessarily 
attractive  as  an  electrolytic  centre.  Apparently 
the  perhydrol  that  is  formed  then  proceeds  to  curl 
ite  hydroxylic-tail  and,  like  the  whiting,  the  CH2 
radicle  next  but  one  to  the  carboxyl  group  swallows 
the  hydroxyl  at  its  tip ;  then  casting  off  hydrone,  it 
is  reduced  to  a  weakened  state,  in  which  it  soon  falls 
a  victim  to  further  hydroxylic  attack.  In  plain 
symbols — 

CH^CH^CHj.CO.OH 
CH,.CHJ.CH,.CO.O.OH 
CH,.CH.CH2.CO 

_|    +0H,=CH1.CH(0H).CH3.C0.0H 

CHs.CO.CH,.CO.OH. 


■o 


Dakin  has  written  a  special  monograph  on  the 
6ubject — but  without  discussing  the  process :  such 
is  the  advanced  state  of  our  chemistry.  Ions  to 
right  of  us,  ions  to  left  of  us,  onward  we  stumble  : 
but  look,  let  alone  see,  where  we  are  going,  rarely. 
Why  the  tail  is  swallowed  at  the  third  carbon  atom 
history  does  not  tell :  the  future  historian  will 
probably  recognise  that  it  is  a  consequence  of  a 
structural  peculiarity  innate  in  the  carbon  chain. 
The  agent  also  at  times  is  not  without  influence 
upon  the  result;  probably  it  alters  the  length  of  lash 
of  the  tail. 

I  have  yet  to  withdraw  one  reputed  catalyst  from 
your  sight — the  ferrous  salt;  to  put  it  in  its  proper 
place,  that  of  a  mere  determinant,  a  little  eh. 

By  hypothesis,  perhydrone  is  not  an  oxidising 
agent :  like  water,  it  is  not  an  electrolyte.  When 
coupled  with  an  iron  salt,  it  becomes  active,  we  may 
assume,  in  virtue  of  the  formation  of  a  perhydrol 
which  is  an  electrolyte  in  solution  :  — 


Fe 


,OH 


K 


O.OH 


^SO,H  NSO,H 

Ferrous  sulphate.        Ferrous  sulphate  perhydrol. 

This  compound  may  be  produced,  be  it  noted,  start- 
ing with  oxygen.  The  perhydrol,  moreover,  can 
not  only  serve  as  an  "oxidase"  but  also  as  a 
"  catalase  ":  it  can  oxidise  perhydrone  itself  and 
so  determine  the  liberation  of  oxygen. 

The  idea  that  oxygen  acts  directly  as  an  oxidis- 
ing agent  is  so  fixed  in  our  minds  that  it  is  with 
difficulty  put  aside;  yet  it  is  one  to  be  discarded. 

Directed  oxidation 

We  have  also  to  realise  that  hydroxylation  may 
take  place  in  the  absence  of  oxygen — under  the 
influence  of  reducing  agents.  This  process  is  one 
of  special  importance  as  playing  a  determining  part 
in  vital  phenomena,  in  fermentation,  for  example. 
It  is  that  which  renders  anaerobic  life  possible.  A 
specially  interesting  case  has  been  dealt  with 
recently  by  Gowland  Hopkins,  Morgan  and 
Stewart,  who  have  studied  the  action  of  a  peculiar 
agent  in  milk  which  induces  the  oxidation  of  both 
xanthin  and  hypoxanthin  in  presence  of  a  reducible 
substance  such  as  methylene-blue,  for  which  oxygen 


may  be  substituted.  The  agent  in  question  is  not 
a  mere  determinant  like  ferrous  sulphate  but  a 
catalyst,  as  change  proceeds  under  its  influence  at 
linear  rates.  As  its  activity  is  confined  to  the  two 
bases  mentioned,  the  catalyst  is  to  be  regarded  as 
an  enzyme,  the  more  as  it  is  destroyed  by  heat. 

The  oxidising  agent  acts  only  indirectly  as 
depolariser,  the  active  hydrogenating  agent  in  the 
oxidation  process  being  the  hydroxyl  of  hydrone 
liberated  iu  an  electrolytic  circuit  in  the  following 
manner:  — 


O'H OH 

OH.... 


OH 


X    = 


OH 

^H 


OH 

oh" 


X  is  the  oxidised  material.  Methylene-blue  (or 
other  reducible  substance)  may  be  set  in  the  place 
of  oxygen  in  this  expression.  The  only  distinction 
to  be  drawn  between  them  is  that  oxygen  has  double 
the  value  of  methylene  blue  as  a  reducible  sub- 
stance, the  perhydrone  produced  at  first  being 
itself  reducible  to  hydrone. 

The  remarkable  fact  has  been  established,  by 
Hopkins  and  his  fellow  workers,  that  with  the  aid 
of  methylene-blue  the  two  bases  are  oxidised  (to  uric 
acid)  at  molecularly  equal  rates,  twice  the  amount 
of  work  being  done  upon  the  one  as  upon  the  other : 
it  is  therefore  necessary  to  conclude  that  the  two 
oxidisable  centres  in  hypoxanthin  are  in  a  single 
circuit. 

The  striking  similarity  in  the  two  bases  and  uric 
acid  is  brought  out  clearly  when  their  formulae  are 
written  in  the  following  way,  X  being  the  centre  at 
which  hydroxylation  takes  place  :  — 

HN— CO 

I       I    N 
HO.C      c/^C.OH 

II       II  II 

N  — C  —  N 

Uric  acid. 

HN— CO  HN— CO 

I  I    NH  j       I    NH 

(X)HC      C-/%VCH(X)  HO.C      c/\?H(X) 

II  II         II  II      II  II 
N— C N                          N—  C  —  N 

Hypoxanthin.  Xanthin. 

As  the  oxidase  can  influence  or  direct  attack  at 
two  centres  simultaneously  in  hypoxanthin,  it  is 
probable  that  the  enzyme  fits  upon  a  large  section 
if  not  the  whole  of  the  molecule. 

An  enzyme  which  could  thus  act  may  be  imagined, 
containing  as  active  component  uric  acid  itself ; 
this  might  be  compatible  with  both  molecules,  as 
the  CH  group  to  be  oxidised  would  probably  be  no 
obstacle  to  its  fit,  whilst  the  presence  of  NH  in  place 
of  O  in  adenine  and  guanine  would  certainly  be  an 
interference.  It  is  possible  to  think  of  such  an 
enzyme  becoming  perhydroxylised  under  the 
influence  of  the  hydrogen  acceptor  and  the  product 
as  inducing  in  turn  the  hydroxylation  of  one  or  both 
sensitive  centres  in  the  two  bases.  The  effect  on 
hypoxanthin  would  be  like  that  of  using  two  voltaic 
cells  in  series  instead  of  a.  single  cell  of  about  half 
their  joint  electro-motive  force. 

In  ordinary  alcoholic  fermentation,  assuming  that 
the  glucose  molecule  be  primarily  resolved  into 
two  molecules  of  glyceraldehydrol, 

CH2(0H)  .CH(OH)  .CH(OH)2 

both  a  highly  reducible  and  a  highly  oxidisable 
substance,  the  reduction  of  the  one  molecule  may 
be  supposed  to  take  place,  directly  or  indirectly,  in 
virtue  of  the  hydroxylation  of  the  other. 

The  results  obtained  by  Hopkins,  Morgan  and 
Stewart  are  also  of  special  interest  in  connexion 
with  the  oxidases  so  frequently  met  with  iu  plant 
and    animal    fluids;   the   evidence    that   these   are 


266  T 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL   LECTURE. 


[Aug.  15,  1922. 


enzymes  has  hitherto  been  inconclusive,  though 
from  their  specific  behaviour  it  appeared  probable 
that  at  least  most  of  them  were. 

Such  enzymes  should  be  distinguished  from  those 
which  simply  induce  hydrolysis  of  a  single  molecule. 
These  latter  may  be  termed  homolytic,  whilst  those 
which  promote  hydroxylation  by  the  co-operative 
action  of  two  distinct  molecules,  the  one  reducible 
and  the  other  oxidisable,  may  well  be  termed 
heterolytic. 

I  thus  end  my  discussion  of  chemical  change  upon 
a  natural  note  and  pass  to 

Sulphuric  acid 

yet  only  again  to  voice  a  conplaint  of  inattention, 
if  not  of  ignorance.  Over  fifty  years  ago,  when 
fellow  students,  Horace  Brown  and  I  were  Frank- 
land's  "  Versuchsthieren,"  used  in  imagining 
graphic  formula?,  to  test  the  application  of  the  then 
new  practice  of  such  exercise ;  we  played  the  game 
much  as  that  of  noughts  and  crosses  is  by  children, 
in  accordance  with  certain  very  elementary  rules. 
To-day  we  cannot  express  the  structure  of  sulphuric 
acid  with  any  less  uncertainty  than  Horace  Brown 
and  I  did  in  those  distant  days  of  our  early 
innocence. 

What  is  the  structure  of  sulphuric  acid?  We 
simply  do  not  know.  What  indeed  do  we  mean  by 
sulphuric  acid  ?  It  is  premature  to  ask  the  question 
until  we  agree  in  our  definition  of  an  acid.  To  get 
this  fat  out  of  the  fire  will  be  no  easy  matter. 

I  ask  you  to  face  the  facts.  It  matters  little  how 
much  knowledge  we  have ;  it  can  avail  us  little  if 
we  are  not  alive  to  our  ignorance  of  things  funda- 
mental. 

The  Acid  Function 

I  have  been  much  struck  of  late  by  the  frequency 
with  which  in  examination  papers  of  schoolboys 
oxygen  is  referred  to  as  a  misnomer.  In  a  French 
scheme  for  the  reform  of  the  nomenclature  of 
inorganic  compounds,  brought  forward  at  the  Lyons 
Conference  a  few  days  ago,  the  compound  formu- 
lated HC1  is  referred  to  as  a  hydracid  and  given  the 
name  "  acide  chlor-hydrique  "  ;  we  often  go  one 
worse,  calling  it  hydrochloric  acid,  seeing  that  there 
is  no  "  chloric  "  about  it.  Such  base  use  make  we 
of  our  perversity. 

Sacre  nom  de  Lavoisier !  Oxygen  a  misnomer  I 
Hydrogen  chloride  an  acid !  Asticot  would  say : 
C'est  abracadabrant !  Are  we  not  told  that  when 
the  Quarticr  Latin  so  calls  a  thing,  there  is  no  more 
to  say?  Is  it  not  truly  written  and  for  evermore  : 
"  La  Chimie  est  line  Science  Franeaise,  Elle  jut  con- 
stitute par  Lavoisier,"  etc.  ?  In  designing  the  word 
Oxygen,  Lavoisier  rose  to  the  greatest  height  of  his 
unparalleled  genius.  Not  only  is  the  word  a  monu- 
ment to  his  astounding  insight  into  chemical 
phenomena,  to  his  philosophic  power ;  it  is  also  proof 
of  deep  philological  feeling  and  acumen,  as  well  as 
of  his  sense  of  the  beauty  of  words.  Think  of  the 
astounding  step  he  took,  after  his  instant  apprecia- 
tion of  Priestley's  discovery,  in  translating  the  old 
nonconformist's  ponderous  reminder  of  the  doubtful 
past  of  our  science  conveyed  in  the  name  Dephlo- 
gisiicated  Air  into  an  all  significant  word  of  the 
aural  and  lingual  perfection  of  Oxygen,  paralleled 
only,  to  those  who  have  an  ear  for  nordic  harmony, 
by  Sauerstoff,  which  unfortunately  we  cannot  trans- 
late into  English,  though  Sauerkraut  sounds  just 
as  well  in  our  tongue  as  in  German :  stuff  unfor- 
tunately has  gone  out  of  fashion  in  our  language; 
at  best  we  associate  it  with  either  nonsense  or 
dreams. 

Lavoisier  did  more — he  atticised  our  Science  for 
all  time ;  and  the  scribes  and  literary  Goths,  un- 
cultured in  all  but  their  own  works,  scoff  at  us  as 
Greekless !  The  while  they  are  unable  to  interpret 
a  word   so   all-meaning   as   Oxygen   or  construe    a 


single  passage  in  our  writings.  Don't  let  us  think 
of  Lavoisier  merely  as  a  man  who  heated  mercury 
in  air  and  lost  his  head ;  think  of  him  as  the  pioneer 
who  not  only  sought  to  put  system  into  the  souls  of 
chemiste  but  also  tipped  their  tongues  with 
harmony.* 

In  my  early  days,  the  Berzelian  sun  was  not  yet 
set.  Oxides  were  of  two  classes,  acidic  and  basic; 
and  these  combined  to  form  a  third,  the  salts. 
Debus  and  Williamson  spoke  of  the  oxide  formu- 
lated SO,  as  sulphuric  acid;  the  compound  formu- 
lated HjSOj  was  hydric  sulphate.  Messel  always 
spoke  of  this  latter  as  monohydrate — a  survival  of 
the  significant  Berzelian  nomenclature. 

Some  disturber  of  the  peace  then  came  along  and 
gave  unnecessary  prominence  to  the  least  of  atoms, 
Hydrogen.  A  fashion  arose  of  teaching  chemistry, 
instead  of  allowing  students  to  learn  it;  so  it  was 
necessary  to  furnish  with  definitions  the  poor 
mummers  who  taught.  For  text-book  purposes,  an 
acid  was  defined  as  a  compound  containing  hydrogen 
displacable  by  metal  through  the  action,  if  not  of 
the  metal  itself,  of  a  base,  a  miserably  thin  descrip- 
tion subject  to  many  more  exceptions  than  the 
oxygen  rule  of  Lavoisier,  if  indeed  there  be  any  to 
this  latter.  There  is  none,  if  the  acid  formed  in 
water  by  the  addition  of  hydrogen  chloride  be  in 
truth  chlorhvdric  acid,  HCl.OH,,  as  I  contended  so 
far  back  as  1885. 

When  hydrogen  is  turned  out  from  an  acid,  it  is 
in  no  direct,  open  and  honest  way ;  the  more  stal- 

•Thls  is  equally  true  of  the  name  Lavoisier  gave  to  the  companion 
of  oxygen  in  air.  The  passage  in  which  he  states  his  reasons  for 
terming  this  Azote  is  of  extraordinary  interest. 

'•  Les  proprietes  chlmiques  de  la  partie  non  respirable  de 
l'alr  de  l'atmosphere  n'etant  pas  encore  tres-bien  connues, 
nous  nous  somme  contentes  de  deduire  Ie  nom  de  sa  base  de 
la  propriety  qu'a  ce  gaz  de  priver  de  la  vie  les  animaux  qui 
le  resplrent,  nous  l'avons  done  nomine  Azote,  de  l'a  privatif 
des  Grecs  et  de  fw?j,  vie  ;  ainsi  la  partie  non  respirable  de  l'air 
sera  Ie  gaz  azotique. 

Nous  ne  nous  sommes  pas  dissimule  que  ce  nom  presentait 

quelque   chose   d'extraordinaire ;     mais   c'est   le  sort  de   tous 

les  noms  nouveaux  ;  ce  n'est  que  par  l'usage  qu'on  se  familiarise 

avec   eux.     Nous  en  avons  d'ailleurs  cherche  longtemps    un 

meilleur,  sans  qu'il  nous  ait  ete  possible  de  Ie  rencontrer ;  nous 

avions  ete  tentes  d'abord  de  Ie  nommer  gaz  alcaligene,  parce 

qu'il  est  prouve,  par  les  experiences  de  M.   Berthollet,  que 

ce  gaz  entre  dans  le  composition  de  l'alcali  volatil  ou  ammoniaque; 

mais,  d'un  autre  c6te,  nous  n'avions  pas  encore  la  preuve  qu'il 

soit  un   des  principes  constitutes  des  autres  alcalis  ;    II   est 

d'ailleurs  prouve  qu'il  entre  egalement  dans  la  combinaison 

de  l'acide  nitrique ;    on  aurait  done  ete  tout  aussi  fonde  a  le 

nommer  principe  nitrigene.    Enfln,  nous  avons  dO  rejeter  un 

nom  qui  comportait  une  idee  systematique." 

It  is  unfortunate  that  we  did  not  follow  the  French  in  preferring 

Azote  to  nitrogen — the  name  is  so  perfect  and  sigiuflcant^-as  applied 

to  the  inert  gas  in  air :  the  contrast  would  have  been  complete  had 

the  active  constituent  been  termed  Zote.    In  some  way  this  latter 

word  seems  to  lack  force  without  the  privative  a.    Still,  it  would 

not  be  difficult  to  accustom  our  ears  to  Zote  and  Azote  ;  we  should 

then  be  able  to  draw  the  distinction  that  is  so  desirable  between 

the  two  chief  materials  of  air  and  their  constituent  stuffs  symbolised 

by  O  and  N,  which  represent  Ideals :   Lavoisier  clearly  Intended  the 

names  Oxygen  and  Nitrogen  to  apply  to  these  ideals ;  he  as  definitely 

draws  a  distinction  between  azotic  gas  and  azote,  in  the  above 

passage,  as  he  does  between  oxygen  gas  and  oxygen  in  giving  his 

reason  for  the  adoption  of  this  name. 

"  Nous  avons  donne  a  la  base  de  la  portion  respirable  de  l'alr 

le  nom  d'oxygene,  en  le  derivant  de  deux  mots  Grecs,  'of us 

acide,  ytivo^ai  j'engendre,  parce,  qu'en  effet  une  des  proprietes 

les  plus  generates  de  cette  base  est  de  former  des   acldcs  en 

se  combinant  avec  la  plupart  des  substances." 

The  distinction  is  again  made  clear  in  the  following  passage : — ■ 

"De  la  Decomposition  du  Gaz  Oxygene  par  les  Metaux."  Lorsque 

les  substances  metalliques  sont  echauffees  a  un  certain  degre 

de  temp6rature,  I'oxygene  a  plus  d'affinite  avec  elles,  qu'avec 

le  calorlque  :  en  consequence  toutes  les  substances  metalliques, 

si  Ton  en  excepte  l'or,  l'argent  et  le  platine,  ont  la  propriete 

de  decomposer  le  gas  oxygene,  de  s'emparer  de  sa  base  et  d'en 

degager  le  calorique." 

Lavoisier's  clearness  of  vision  in  seeking  for  a  name  other  than 

azote,  significant  of  the  chemical  character  of  the  element,  is  very 

remarkable.    Had  he  known  of  the  amines,  he  would  surely  have 

proposed  Aminogen  and  we  should  then  have  been  in  possession  of 

two  of  the  most  perfect  names  possible. 

The  quickness  of  the  Darwinian  uptake  of  ideas  is  well  shown 
by  Erasmus  Darwin's  early  use  of  Lavoisier's  term  in  Canto  IV 
of  his  poem  "  Economy  of  Vegetation." 

Sylphs  I    from  each  sun-bright  leaf,  that  twinkling  shakes 
O'er  Earth's  green  lap  or  shoots  amid  her  lakes. 
Your  playful  bands  with  simpering  lips  invite 
And  wed  the  enamour'd  Oxygene  ts  Light. 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST   MESSEL  MEMORIAL  LECTURE. 


267  T 


wart  metal  Is  brought  in  sub  rosa  at  the  stage  door 
and  is  effective  owing  to  the  superior  attraction  it 
offers  to  the  oxygenated  radicle  of  the  acid :  in 
symbols — 


H....HSO, 
Neg.  Zn  =  Neg. 

H....HSOJ 


Ha 


. ...    HSOlN 

>Zn 
....   HSO/ 


We  are  agreed  that  in  chemistry  we  must  rely 
upon  formal  definitions  :  no  single  definition  based 
upon  behaviour  is  of  universal  application.  No 
acid  so-called  functions  as  an  acid  per  se.  The 
compounds  named  acids  are  all  inert — for  the 
simple  reason  that  they  cannot  conduct  electricity, 
all  chemical  change  being  electrolytic  in  character. 
This  could  be  asserted  fearlessly  in  Faraday's  time; 
how  much  more  then  to-day,  now  that  we  worship 
the  electron  and  regard  it  as  concerned  in  and 
guilty  of  every  chemical  crime. 

The  acid  takes  form  only  when  water  is  brought 
to  the  rescue  of  the  dielectric :  as  we  know,  when 
a  man's  married,  then  trouble  begins ;  what  happens 
when  a  dielectric  marries  water  has  long  been  a 
subject  of  debate.  Perhaps  debate  is  a  wrong  term 
to  use.  Religions  are  not  established  upon  a  basis 
of  debate :  they  are  accepted  as  faiths  by  adoring, 
unreasoning,  credulous  believers,  in  response  to 
dogmatic  assertions.  In  the  early  eighties,  a  young 
prophet  arose  who  appears  to  have  had  some  train- 
ing in  mathematics  and  physics  but  to  have  aquired 
no  feeling  for  chemistry ;  he  preached  a  gospel  in 
which  the  acids  were  described  as  degenerating  into 
the  most  abandoned  of  libertines,  as  becoming 
drunk  with  freedom,  when  cast  into  solution. 

From  this  time  on,  the  wandering  hydrogen  atom 
became  in  itself  the  personification  of  acidity — it 
is  true  it  was  featured  as  in  the  leading  strings 
of  an  adoring  opposite  positive  charge  but  the  bond 
was  admittedly  of  the  weakest  and  the  loose 
partnership  was  subject  to  constant  change.  The 
youthful  propagandist  was  properly  told  by  his 
master  that  he  did  not  know  enough  to  deal  with  so 
serious  a  subject  and  that  he  deserved  to  be  smacked 
and  put  back  into  the  nursery ;  had  he  been  put  into 
a  camisole  de  force  the  world  would  have  been  saved 
much  pother  and  many  printers'  bills.  Unfor- 
tunately, as  prophets  too  often  are,  he  was  taken 
at  his  own  valuation  and  seriously ;  it  was  not  his 
fault  but  a  consequence  of  our  lack  of  logic,  of  the 
survival  of  our  primitive  habit  of  yielding  obedience 
to  priests  and  sorcerers. 

As  Mr.  Arnold  Bennett  somewhere  says,  we  need 
to  have  "  an  ironic  realisation  of  the  humanity  of 
human  nature."  Science  is  a  new  habit  which  does 
not  fit  our  human  constitution ;  our  mental 
machinery  is  a  congeries  of  mechanisms  which  are 
only  imperfectly  correlated ;  heredity  makes  us 
dogmatists  and  prime  worshippers  of  the  Idols  of 
the  Theatre.  My  objection  has  always  been  not  to 
the  speculation  itself  but  to  the  maladroit  zeal  with 
which  it  was  spread,  the  unscientific  way  in  which 
it  was  rammed  down  our  throats  and  all  discussion 
burked  by  people  like  Ostwald,  who  obviously  did 
not  know  what  they  were  talking  about  and  dis- 
regarded the  findings  of  chemists  in  general. 
Many  of  the  contentions  were  not  only  irrational 
but  the  ignorance  displayed — particularly  in  the 
discussion  on  indicators — has  often  been  astound- 
ing; the  work  put  forward  was  biassed  and  super- 
ficial. Unfortunately,  the  physicists  have  not 
helped  us;  they  have  often  smiled  at  our  ionic 
rhapsodies  but  I  have  seen  no  evidence  that  they 
have  regarded  them  seriously. 

The  great  chemical  blunder  made  by  A'rrhenius 
and  his  worshippers  was  in  regarding  water  as 
hydrone  and  in  representing  hydrone  as  behaving 
altogether  differently  from  the  allied  hydride, 
hydrogen   chloride — by   their   assertion    that   when 


the  two  compounds  were  mixed,  whilst  the  mole- 
cules of  the  one  underwent  practically  no  change, 
those  of  the  other  fell  almost  entirely  to  pieces.  No 
reasonable  explanation  of  the  suicide  was  ever 
offered.  Even  that  great  genius  van't  Hoff,  a 
giant  among  the  pigmies,  was  carried  away  by  the 
seeming  agreement  of  fiction  with  fact.  Evil  com- 
munications corrupt  good  manners;  had  he  kept 
other  and  higher  company  he  would  not  so  easily 
have  been  led  astray  but  his  vanity  was  tickled  by 
the  way  in  which  his  osmotic  dreams  were 
apparently  made  true  by  "  ionic  "  coincidences. 
Had  he  but  witnessed  a  scrum  on  a  football  field 
and  considered  its  applications  in  chemistry  his 
vision  would  have  been  clearer.  Unfortunately,  he 
paid  no  attention  to  water  and  yet  he  loved  beer. 
The  Arch-Ionian  prophet,  perforce  of  his  Scandi- 
navian heredity,  was  necessarily  a  Hydrophobe  and 
put  no  measure  of  aqueous  humour  into  his  Koran. 
Never  yet  has  justice  been  done  to  water,  least  of 
all  in  the  U.S.A.  Mathematician  and  physicist, 
rather  than  chemist,  van't  Hoff  lacked  just  that 
element  of  feeling,  the  artist's  practical  sympathy 
with  his  subject  and  devotion  to  his  studio ;  we 
must  never  forget  that  the  laboratory  worker  is  an 
artist  and  that,  as  a  rule,  practice  comes  first;  so- 
called  theory  is  usually  but  brought  to  the  aid  of 
practice  in  justification  of  its  acts.  This  is  true  of 
agriculture  throughout  time  and  of  industry  to-day. 
The  fancied  explanations  that  have  been  given  need 
not  be  taken  too  seriously;  tentative  and  provi- 
sional for  the  most  part,  they  but  help  us  on  our 
way  and  we  must  often  be  content  to  retrace  our 
steps,  recognising  that  the  alley  up  which  we  are 
led  is  a  blind  one;  the  exercise,  however,  serves  to 
keep  us  fit  and  is  a  preparation  for  the  next  excur- 
sion. Everest  is  not  climbed  in  a  year;  many 
avalanches  may  wreck  us,  and 

'Tis  not  antiquity  nor  author 

That  makes  Truth  truth,  altho'  Time's  daughter. 

One  real  service  the  ionic  school  has  rendered 
in  systematising  the  application  of  Faraday's 
beautiful  word  ion  to  radicles  which  do  not  stand 
upon  the  order  of  their  going  but  go  once  the 
chance  be  given.  We  now  speak  of  salts  generally 
as  composed  of  positive  and  negative  ions  and  the 
definition  is  full  of  meaning.  By  implication,  it 
conveys  the  information  that  the  compound  consists 
of  easily  mobile  radicles.  On  the  other  hand, 
compounds  such  as  chlorethane  and  chlorobenzene, 
which  do  not  behave  as  salts,  are  sufficiently 
described  as  composed  of  positive  and  negative 
radicles — the  term  radicle  having  a  wider  but  less 
definite  meaning.  The  distinction  is  not  absolute 
but  sufficient  to  justify  a  line  being  drawn.  Why 
the  positive  hydrocarbon  radicle  should  exercise  so 
superior  an  attraction  and  keep  the  negative 
radicle  at  home  and  in  order  we  cannot  say.  The 
electron  worship  of  the  day  is  too  static  and  simple 
a  faith  to  satisfy  our  longing  to  explain  such  a 
mystery. 

The  second  service  of  the  Arrhenists  has  been  in 
emphasising  the  difference  in  the  strength  of  acids 
and  bases,  always  well  recognised  but  not  numeri- 
cally expressed  prior  to  the  advent  of  the  ionic 
speculation.  Unfortunately  the  service  is  marred  by 
the  way  in  which  the  conception  has  been  wrapped 
up  in  the  term  hydrogen-ion-concentration,  a  6tilted 
phrase  which  is  not  only  caviare  to  the  general 
public  but  most  misleading.  Nothing  more  was 
necessary  than  to  distinguish  between  acidity  or  if 
you  will  apparent  acidity,  as  meaning  quantity  of 
acid ;  and  effective  acidity,  as  meaning  the  propor- 
tion of  the  acid  present  in  the  immediately  active 
state.  A  layman  can  read  such  terms,  even  put 
some  meaning  into  them  and  without  his  ear  being 
offended;  hydrogen-ion-concentration  is  pure 
gibberish,  a  chord  that  cannot  be  struck  upon  "  the 


268  T 


ARMSTRONG.— FIRST   MESSEL   MEMORIAL  LECTURE. 


[Aug.  15,  1922. 


lyre  of  language  clear."  It  is  just  a  shibboleth 
which  too  often  covers  a  pretence  of  learning;  un- 
fortunately, its  forbidding  presence  is  to  be  met 
with  everywhere  and  it  is  being  shouted  loudly  in 
the  galleries  of  the  new  Babel  which  more  than 
threatens  to  overwhelm  science  and  deprive  it  of  all 
public  support.  Even  the  brewing  world  only 
recently  was  entertained  with  talk  on  Hydrogen 
Ions  in  Beer.  Fancy  Brother  Bung's  joy  at  such  a 
topic  being  under  discussion — the  query  of  the  Bar 
Parlour:  "What  new  poison  are  they  putting  into 
our  swipes?  Is  this  why  beer  is  now  such  poor 
stuff?  *  Hang  hydrogen  ions,  give  U6  a  little  more 
body  and  spirit  in  our  drink."  It  would  comfort 
them  to  know  that  there  are  no  hydrogen  ions  in 
alcohol :  it  occurs  to  me  to  aek — Is  that  perhaps  the 
reason  why  Glasgow  is  so  fond  of  petrolised  water? 

Necessarily  I  a-m  reminded  here  of  Samuel 
Butler's  story  of  the  conversation  he  overheard  in 
an  inn,  summed  up  in  the  remark  of  the  speaker  to 
the  barman — "  Imagination  will  do  any  bloody 
thing  almost."  Yes,  unfortunately,  it  will,  even 
in  the  ranks  of  science — except  make  us  wise. 

One  unforgivable  result  of  enforcing  the  doctrine 
is,  that  acidity  is  regarded  not  as  the  function  of  an 
acid  but  of  just  one  little  bit  of  the  molecule  and 
that  split  off  and  away  from  it!  I  have  sufficient 
belief  in  sulphuric  acid  to  feel  satisfied  that  it  has 
a  real  sense  of  its  own  importance  and  that  it  acts 
accordingly — that  its  positive  and  negative  radicles 
are  equally  concerned,  directly  or  indirectly,  in  all 
its  actions — always  bearing  in  mind  that  all 
chemical  interactions  are  electrolytic  manifestations 
and  polar  phenomena,  never  unilateral. 

Electrolytic  conductivity 

The  position  to-day  is  but  little,  if  in  any  way, 
different  from  that  of  1851,  when  Williamson's 
most  remarkable  communication  On  Etherification 
was  made  to  the  Chemical  Society — remarkable 
because  of  the  far-reaching  character  of  his  infer- 
ences and  because  of  his  youth  and  inexperience. 
By  a  stroke  of  genius  he  laid  bare,  probably  for  all 
time,  the  conditions  in  a  solution— by  drawing 
attention  to  the  constant  interchange  of  radicles 
which  it  was  to  be  supposed  must  always  be  going 
on,  to  account  for  the  state  of  equilibrium  at  once 
established  whenever  two  or  more  salts  are  brought 
together.  Williamson  appears  to  have  contemplated 
only  an  interchange  of  the  radicles,  never  their  free 
existence  in  solution.  Kekule  afterwards  suggested 
that  the  interchange  was  preceded  by  the  asso- 
ciation of  the  interacting  molecules,  a  view  I  advo- 
cated in  later  years  when  interpreting  the  formation 
of  substitution  derivatives  of  benzene. 

Clausius,  in  1857,  to  explain  the  behaviour  of 
electrolytes,  first  suggested  that  occasional  violent 
molecular  encounters  in  a  solution  now  and  then 
led  to  the  disruption  of  the  molecules.  Arrhenius 
extended  the  speculation,  by  assuming  that 
chemical  activity  was  proportional  to  the  degree  of 
disruption  and  that  specially  active  solutes,  such 
as  the  strong  acids,  were  all  but  entirely  dissociated. 
He  thus  opened  up  a  path  for  the  mathematical 
treatment  of  the-  subject — by  directly  connecting 
chemical  activity  with  electrioal  conductivity  in  a 
more  definite  way  than  had  Clausius,  who  was 
merely  concerned  with  electrical  behaviour.  He 
thereby  did  considerable  service;  but  he  and  his 
literary  body-slave,  Oatwald,  followed  Clausius  in 
regarding  the  action  of  the  solvent  as  merely  that 
of  a  screen ;  only  later  did  they  hedge  in  face  of  our 
protests.  By  attributing  the  "  dissociation  "  to  the 
high  specific  inductive  capacity  of  the  solvent  they 
were   but    paraphrasing   our    contention   that   the 


•  Beer,  too,  would  seem  to  be  a  terribly  toxic  substance  from  the 
point  of  view  of  "  Colloid  Chemistry,"  to  judge  from  a  recent  essay 
presented  to  brewers  on  the  Influence  of  the  "  dispersity ' '  of  the  colloid 
on  flavour.     We  must  abolish  such  moonshine  and  speak  English. 


change  was  due  to  an  interaction  of  solvent  and 
solute,  brought  about  by  the  residual  affinities  of  the 
associated  molecules ;  but  at  all  times  it  was  useless 
to  argue  the  point  with  them  on  chemical  grounds : 
they  would  not  understand  us :  a  banner  with  a  new 
device  had  been  found  and  its  possessors  hurried  on 
to  plant  it  everywhere — as  revolutionaries  mostly 
do,  without  counting  the  cost  of  the  doctrine 
they  profess.  The  one  point  I  am  anxious  to  make 
is,  that  whilst  we  must  have  imagination,  progress 
being  dependent  upon  its  exercise,  we  must  give  it 
always  the  controlled  and  guarded  use  implied  in 
Tyndall's  well-known  and  immortal  phrase.  An 
unscientific  use  may  give  us  music,  indeed  genius 
must  often  operate  in  disregard  to  the  rules  of 
science ;  but  science  is  founded  upon  imagination 
controlled  and  tried. 

Probably  we  can  assert  as  indisputable  and  all 
will  agree,  that  in  aqueous  solutions  the  ions  H  and 
OH  are  ever  on  guard  at  the  gates  of  entry  and 
exit,  armed  and  ready  for  immediate  action  on 
receipt  of  an  electric  call.  The  analogy  of  a 
corporal's  guard  is  by  no  means  one  that  is  far 
fetched;  in  this  the  units  are  connected  by  the 
invisible  link  of  discipline  and  are  the  counterpart 
of  an  electrolytic  system.  An  interchange  of 
sentries  is  not  effected  at  random  but  by  a  regulated 
polar  process.  This,  at  present,  is  perhaps  as  far 
as  we  either  can  or  may  see.  The  whole  subject  is 
in  need  of  further  experimental  study  from  an 
H.  B.  Baker  point  of  view.  We  have  not  only  to 
learn  to  use  clear  and  just  language  but  to  labour 
to  be  clean.  In  the  light  of  Baker's  recent  results, 
I  am  now  inclined  to  take  up  a  position  more 
absolute  than  that  I  adopted  36  years  ago,  in 
March,  1886;  to  doubt  if  there  be  such  a  thing  as 
a  simple  electrolyte — a  substance  which  is  an  elec- 
trolyte per  se  in  the  pure  state.  Maybe  some  day 
a  Baker  will  show  that  metallic  halides — silver 
chloride,  sodium  chloride — are  not  electrolytic  con- 
ductors and  that  metals  are  the  only  primary  con- 
ductors of  electricity ;  we  have  yet  to  learn  where 
entire  prohibition  of  impurity  will  carry  us.  I 
foresee  a  physics  very  different  from  the  present — 
no  longer  a  physics  of  freedom  but  one  of  slavery  to 
unrestrained  residual  affinity. 

We  need  to  study  afresh  the  passage  of  matter 
through  its  several  states.  It  is  already  recognised, 
on  the  basis  of  Aitken's  observations,  that  the  con- 
densation of  hydrone  to  water  involves  the  presence 
of  "  nuclei  "  :  the  nucleus  may  act  as  a  catalyst  but 
what  of  the  determinant — is  one  required?  What 
would  be  the  behaviour  of  exceptionally  purified 
gases  generally  in  exceptionally  cleansed  vessels? 
Might  not  the  Andrew's  "critical  temperature" 
be  greatly  modified?  Monatomic  molecules  of 
materials  such  as  hydrogen,  oxygen,  nitrogen,  may 
well  persist  under  "  clean  "  conditions.  Rayleigh's 
observations  on  nitrogen  and  R.  W.  Wood's  more 
recent  studies  of  hydrogen  already  lend  support  to 
tho  view. 

Thus  far  my  dream — I  trust  I  have  made  clear 
my  vision  of  the  process  of  change. 

Structure  and  Basicity  of  Sulphuric  Acid 
In  my  days  of  early  innocence,  in  1871,  I  wrote 
— "  Occupied  with  an  investigation  into  the  con- 
stitution of  sulphuric  acid " — as  the  opening 
sentence  of  the  first  of  my  Studies  on  Sulphonation. 
The  subject  still  occupies  a  cell  in  my  mind.  It  is 
strange  that,  excepting  perhaps  soda  and  not  even 
that  before  the  advent  of  the  Solvay-Mond  process, 
the  compound  manufactured  on  a  more  colossal 
scale  than  any  other  should  to-day  be  a  sealed  book 
to  us :  it  contains  but  seven  atoms,  which  cannot 
well  be  otherwise  than  simply  arranged.  Perhaps 
X-rays  will  soon  melt  the  seal  which  chemists  have 
so  long  left  intact.  It  is  the  old  story — familiarity 
breeds  contempt;  and  simplicity  is  the  most  diffi- 


Vol.  XLI.,  No.  15.] 


ARMSTRONG.— FIRST   MESSEL  MEMORIAL   LECTURE. 


2G9T 


cult  of  attributes  to  interpret.  The  major  riddles 
of  chemistry  are  carbonic  and  nitric  oxides,  CO  and 
NO;  and  sulphuric  acid. 

It  is  commonly  ranked  as  a  bibasic  acid — what 
precisely  does  this  mean?  What  valid  evidence 
have  wo  of  its  structure?  Practically  nothing  of 
consequence.  Graphic  formulae  such  as  Horace 
Brown  niul  I  constructed  on  paper,  out  of  our 
heads,  55  years  ago,  still  prevail  over  fact.  William- 
son and  Odling,  having  their  minds  filled  with 
types,  derived  the  acid  symmetrically  from  the 
double  molecule  of  hydrone, 


H 


H 


H 


H 


S02 


S02 


OH 
OH 


Their  souls  were  satisfied,  because  the  acid  could  be 
produced  from  sulphuryl  chloride,  S02C12,  and 
water :  this  proves  nothing  more  than  that  it  can 
be  so  made.  Sulphuryl  chloride  often  acts  as  a  mere 
chlorinating  agent;  years  ago  I  argued  that  it  was 
conceivable  that  in  contact  with  water  it  gave  up 
chlorine  and  that  this  acted  as  oxidising  agent 
upon  its  co-partner  sulphurous  oxide.  Sulphuric 
aiid  or  rather  the  chlorhydrol,  S03C1H,  gives  not 
sulphuryl  chloride  but  pyrosulphuryl  chloride, 
SjOjClj,  when  subjected  to  the  action  of  phosphorus 
pentachloride.  The  behaviour  of  the  supposed 
second  hydroxyl  is  peculiar :  in  fact,  there  is  no 
proof  that  sulphuric  acid  has  the  symmetric  struc- 
ture  depicted    in   the   formula 

HO.S02.OH 

In  its  behaviour,  too,  the  acid  is  not  properly 
mindful,  that  this  is  the  reputation  to  which  it  has 
to  live  up  :  the  Batesonians  would  term  it  a  facul- 
tative monogamete ;  the  sulphates  of  the  magnesian 
series  apparently  are  all  hemi-sulphates  of  the  type 

H0.X.S04H 

Only  the  dry  elements,  such  as  silver  and  the 
alkali  metals,  insist  on  keeping  undisturbed  com- 
pany with  the  acid  radicle.  Most  significant  of  all, 
as  Worley  and  I  have  contended  and  shown,  the 
sulphonic  acids  generally  have  90%  of  the  hydro- 
lytic  power  of  sulphuric  acid — and  they  are  formed, 
it  is  supposed,  by  the  mere  displacement  of  one 
hydroxyl  in  sulphuric  acid  by  a  hydrocarbon  radicle 


HO,S02.OH 


R.S02.OH 


In  my  early  days,  Kolbe  and  Wtirtz  quarrelled  over 
lactic  acid — "  The  Mountain  called  the  Squirrel 
little  Prig."  Kolbe  said  the  acid  was  uni- 
basic  though  dihydric;  Wiirtz  said  it  was  bi- 
basic. Kolbe  won  the  victory  and  it  was  settled 
for  all  time  that  the  basicity  of  an  organic  acid 
proper  is  determined  by  the  number  of  carboxyl 
groups  it  contains.  I  have  thrown  down  my  gage, 
in  like  manner,  in  defiance  of  all  comers  who  seek 
to  rate  sulphuric  acid  as  bibasic  and  I  challenge  a 
definition  of  basicity.  Inorganic  chemists  to-day 
are  but  faineant  fighters :  policeman  Arrhenius 
keeps  them  in  order  still.  Surely  someone  will  ad- 
venture his  skill  against  my  light  weight:  if  not 
60on,  I  shall  claim  the  stakes  and  insist  that  basicity 
is  to  be  defined  as  the  number  of  times  the  charac- 
teristic acid  radicle  is  repeated  in  the  molecule 
and  that  sulphuric  acid  is  but  a  mineralised  lactic 
acid.  The  argument  is  equally  applicable  to  other 
mineral  acids  (including  the  organic  acid,  carbonic 
acid)  rated  as  polybasic. 

It  is  in  no  wise  certain  even  that  sulphuric  acid 
is  a  hydroxylic  derivative :   I  believe  it  to  be  more 


probable  that    the  original    Berzelian  conception, 
embodied  in  the  formula 

S03.OH2 
may  come  to  be  regarded  as  the  more  suitable 
expression  of  its  structure  and  behaviour.  Perhaps 
only  carboxylic  and  sulphonic  acids  are  properly 
represented  as  hydroxylic  derivatives.  We  must 
always  remember  that  our  structural  formulae  are 
mainly  used  as  shorthand  expressions  of  actual 
behaviour  in  terms  of  a  conventional  symbolism. 

Very  remarkable  too  is  the  electrolytic  behaviour 
of  sulphuric  solutions — in  no  way  in  accord  with 
the  tenets  of  the  ionic  school.  The  stable  term  is 
pyrosulphuric  acid;  this  is  almost  a  non-conductor. 
In  the  passage  from  H,S20,  to  H..SO.,,  conductivity 
increases  to  a  maximum,  then  falls  to  a  minimum 
which  is  not  so  low  as  the  first;  it  then  rises  to  a 
high  maximum  approximately  at  H2S04.40H2, 
after  which  it  gradually  drops  to  zero  when  water 
is  reached.  No  other  compound  is  more  subversive 
in  its  behaviour  of  the  simple  ionic  faith ;  but  its 
vicious  example  has  been  quietly  kept  in  the  back- 
ground. Altogether  the  acid  is  one  of  the  most 
wonderful  of  compounds. 

My  theme  is  in  no  wise  exhausted;  I  have  but 
touched  the  fringes  of  thionism.  Not  a  little  should 
be  said  of  the  manufacture  of  sulphuric  acid,  of 
the  part  played  by  the  catalyst  in  the  anhydride 
process  and  by  the  determinant  in  the  chamber 
process.  Particularly  I  should  like  to  consider, 
using  Erasmus  Darwin's  melodious  words — 
How  nitrous  gas  from  iron  ingots  driven 
Drinks  with  red  lips  the  purest  breath  of  heaven 

and  acts  as  go-between  to  raise  sluggish  sulphurous 
acid  to  corrosive  rank.  The  neglect  of  nitrous 
chemistry  by  the  text  books  is  phenomenal.  Some- 
thing also  should  be  said  of  the  peculiarities  of 
thionic  activity  in  general  and  of  ©ewv  itself  but 
here  to-day  my  drama  must  end,  although  the  tale 
of  heroes  to  be  borne  by  the  Valkyrie  across  the 
bridge  into  the  thionic  Valhalla  is  complete.  I 
have  but  given  you  leit-motiven,  the  undercurrent 
of  melody,  perhaps  I  should  say  of  discord,  for 
which  the  complete  score  has  yet  to  be  written. 
The  support  to  my  arguments  must  be  given,  if  not 
in  an  appendix,  in  footnotes,  a  course  for  which 
I  have  the  precedent  set  by  the  master  mind  of 
inorganic  chemistry,  Mendeleeff,  whose  fruitful 
service  to  our  science  we  can  venerate  more  than 
ever  now  that  our  countryman  Moseley  has  placed 
his  great  imaginative  work  upon  a  6olid  spectral 
foundation  and  the  elements  are  taking  shape  as 
structural  units.  We  have  reason  to  hold  the  M's 
in  fond  memory  in  chemistry  and  a  special  corner 
in  Heaven  or  Hades  might  well  be  railed  off  for 
them  —  Mendeleeff,  Moseley,  Mond,  Miiller, 
Meldola.  To-day  we  add  Messel  to  their  number, 
as  the  most  skilful  user,  in  our  time,  of  an  element 
which  shares  its  name  with  the  Divinity — probably 
the  element  which  first  attracted  the  real  attention 
of  man,  if  not  the  foundation  stone  of  chemical 
science. 

During  over  fifty  years  past,  as  I  have  watched 
the  progress  of  chemistry,  the  advance  of  the 
organic  workers  has  been  steady  and  a  monumental 
industry  has  grown  out  of  their  labours  :  the  build- 
ing is  there  upon  impregnable  foundations,  only  a 
few  towers  and  turrets  and  features  of  ornament 
remain  to  be  added.  The  foundations  are  of  sur- 
prising simplicity — those  laid  by  Frankland  and 
Kekule,  not  forgetting  Pasteur — but  they  were  well 
and  truly  laid  and  have  been  duly  and  honestly 
built  upon. 

In  other  branches  of  chemistry,  however  great  the 
cackle  and  whatever  fuss  may  have  been  made,  no 
corresponding  progress  can  be  recorded ;  the  pro- 
gress has  been  chiefly  on  the  practical  side.  There 
has    been     little    conscious,     systematic     effort    if 


27CT         LATHE.— ANALYTICAL   PROBLEMS   IN   THE   METALLURGY   OF   NICKEL.    [Aug.  15, 1922. 


develop  a  theory  of  chemical  change ;  the  unassail- 
able foundation'laid  by  Faraday  has  in  no  way  been 
properly  extended.  The  careless  methods  of  Society 
have  been  made  the  methods  of  a  pretentious 
science.  The  growth  of  fact  has  made  us  mere 
worshippers  of  facts — and,  as  I  have  already  6aid, 
the  teacher  has  taken  the  place  of  the  learner  and 
the  teacher  can  but  follow  fashion.  Whilst  claim- 
ing to  be  members  of  a  scientific  fraternity,  we  are 
not  sufficiently  developing  and  using  scientific 
method. 

It  is  only  necessary  to  glance  at  books  like 
Mellor's  comprehensive  Treatise  or  Bayliss's  great 
work  on  General  Physiology  to  realise  the  be- 
muddled  condition  of  our  subject.  Fortunately 
there  is  evidence  of  a  return  to  an  eclectic  philo- 
sophy, to  what  Jacques  Loeb  naively  calls  the 
classical  chemistry  as  contrasted  with  Colloid 
Chemistry,"  exemplified  by  Loeb'e  own  praiseworthy 
efforts  to  raise  the  character  of  the  proteins  from 
mere  indeterminate  lumps  of  jelly  to  a  status  of 
definite  materials  behaving  in  a  simple  and  definite, 
orderly  manner,  if  only  put  under  comparable  con- 
ditions :  then  all  the  rhodomontade  of  the  glue-stuff 
ichool  can  be  put  aside  and  translated  into  a  few 
common-sense,  simple  propositions. 

Let  us  recognise  that  Chemistry  is  Chemistry,  one 
and  indivisible;  let  us  put  all  pretence  aside  and 
abolish  sects  and  sectarianism. 

II  faut  cultiver  notre  jardin 

If  I  quote  from  Candide,  following  the  example  of 
that  most  delightful  of  Bohemians,  whose  name 
alone  should  recommend  him  to  Catalysts,  Berzelius 
Nibbidard  Paragot,  it  is  with  emphasis  upon  our  j 
need  to  cultivate — first  the  Cabbage  Patch,  the  | 
vegetable  section,  which  will  give  us  all  necessary 
advitants.  If  we  be  good  gardeners  the  flowers  will 
follow  naturally  and  will  be  well  placed ;  but  let  us 
always  give  care  to  the  garden  as  a  whole,  that 
all  be  well  ordered  in  it,  planted  in  due  season ; 
never  over-fertilised  and  so  made  to  yield  over- 
grown fruit  of  poor  flavour  and  substance,  as  is  too 
much  of  our  modern  produce;  constantly  tilled  and 
weeded  most  carefully,  this  last  especially :  then 
will  it  yield  crops  in  full  measure  and  of  good 
quality. 

"  By  our  proficiency  we  know  that  we  are  in 

the  way  to  heaven,  as  we  know  a  tree  is  alive  by 

its  daily  growth." 

Prof.  G.  G.  Hexoerson,  in  proposing  a  hearty 
vote  of  thanks  to  Professor  Armstrong  for  his 
lecture,  said  that  the  meeting  would  be  memorable 
for  at  least  two  things.  One  was  that  for  the  first 
time  in  the  history  of  the  Society  a  Canadian 
chemist  occupied  the  presidential  chair.  Another 
was  that  they  had  witnessed  a  brilliant  inaugura- 
tion of  the  series  of  Messel  Memorial  Lectures. 
The  Society  had  been  indeed  fortunate  in  its 
lecturer.  The  brilliant,  exhilarating,  and  charac- 
teristic address  to  which  they  had  just  listened  had 
set  a  standard  for  future  Memorial  Lectures  which 
would  ensure  that  they  were  worthy  of  the  man 
whose  memory  they  recalled.  They  owed  Professor 
Armstrong  a  very  great  debt  of  gratitude,  not 
merely  for  his  lecture  but  also  for  the  fact  that  he 
had  provided  the  Society  with  a  new  President  in 
the  shape  of  his  own  son.  More  than  this,  he  would 
like  to  associate  himself  with  every  word  that  Sir 
William  Pope  had  said  and  to  add  what  could  not 
be  denied,  that  not  only  every  chemist  in  this 
country  but  every  chemist  in  the  civilised  world, 
had  profited  largely  by  his  work  and  example.  He, 
therefore,  asked  them  to  accord  Professor  Arm- 
strong the  vote  of  thanks  with  acclamation. 

The  vote  of  thanks  was  accorded  enthusiastically. 
Professor     Armstrong     briefly     expressed     his 
thanks. 


Canadian  Sections. 


Meeting  held  at  Ottaxca  on  May  16,  1922. 


SLR.    F.    J.    HAMBLT   IN   THE   CHAIR. 


ANALYTICAL     PROBLEMS     IN     THE 
METALLURGY  OF  NICKEL. 

BY    FRANK    E.    LATHE. 

The  main  object  of  this  paper  is  to  show  how 
the  requirements  of  both  speed  and  accuracy  have 
been  fulfilled  in  the  selection  and  development  of 
the  principal  methods  used  in  the  laboratories  of 
the  nickel  plants.  Where  several  methods  have 
been  available  reasons  will  be  stated  for  the 
choice  of  a  particular  one.  Details  will  be  given 
only  of  those  procedures  which  may  not  be  gener- 
ally known  or  widely  applied. 

At  the  outset  I  wish  to  disclaim  any  con- 
siderable share  in  the  development  of  the  methods 
now  in  use.  To  each  of  the  many  chemists  who 
have  worked  in  the  laboratories  of  the  nickel 
companies  belongs  some  of  the  credit  for  such 
efficiency  as  has  been  attained. 

Decomposition  for  the  determination  of  copper 
and  nickel. 

The  ore  of  the  Sudbury  district  consists  o4 
pyrrhotite,  chalcopyrite,  pentlandite,  and  other 
sulphides  in  a  gangue  of  norite  and  greenstone 
which  is  very  resistant  to  the  action  of  acids.  Its 
decomposition  for  the  determination  of  copper 
and  nickel  is  usually  effected  by  a  short  fusion 
with  sodium  or  potassium  bisulphate.  Nitric  and 
sulphuric  acids  may  also  be  used  satisfactorily, 
and  if  a  naked  flame  be  employed  to  expel  the 
nitric  acid  this  method  is  probably  the  more 
rapid  of  the  two,  but  when  used  for  air-cooled 
slags  and  roasted  products  a  little  hydrofluoric 
acid  should  be  added  to  insure  complete  solution 
of  the  two  metals. 

Copper. 

The  commoner  methods  in  use  at  copper  plants 
are  the  electrolytic,  iodide,  cyanide,  colorimetric, 
and  permanganate  methods.  Of  these  the  cyanide 
and  colorimetric  processes  are  excluded  because  the 
presence  of  nickel  interferes.  The  permanganate 
method  would  not  give  a  solution  suitable  for  the 
determination  of  nickel,  which  is  almost  invariably 
required.  The  result  is  that  only  the  electrolytic 
and  iodide  methods  are  used  for  copper  in  the  nickel 
district,  the  separation  of  copper  in  the  former 
being  made  by  electrolysis  in  acid  solution  and  in 
the  latter  by  precipitation  with  hydrogen  sulphide 
gas.  Both  methods,  in  the  hands  of  experienced 
men,  are  quick  and  accurate.  Each  has  its  advo- 
cates. In  general,  it  may  be  said  that  the  electro- 
lytic method  is  to  be  preferred  for  accurate  results 
on  high-grade  samples.  For  those  of  low  and 
medium  grade  it  probably  requires  more  time 
(unless  gauze  electrodes  and  rotating  anodes  are 
used)  but  less  manipulation. 

In  the  electrolytic  method,  on  account  of  the 
amount  of  iron  present  in  Sudbury  ores  and  furnace 
products,  it  will  usually  be  found  best  in  accurate 
work  to  deposit  in  sulphuric  acid  solution,  then 
dissolve  and  re-deposit  in  nitric  acid.  The  metal 
first  deposited  can  often  be  rapidly  and  completely 
dissolved  by  simply  reversing  the  current  in  the 
nitric  acid  solution. 

In  the  iodide  method  the  precipitated  copper 
sulphide  is  dissolved  in  bromine  water  and'  nitric 
acid,   the  solution  evaporated  almost  to  dryness  to 


Yol.XLL.No.16.)     LATHE.— ANALYTICAL   PROBLEMS   IN  THE   METALLURGY   OF  NICKEL.     2715 


coagulate  the  sulphur  and  expel  the  bromine,  then 
mixed  with  water  and  finished  as  usual.  The 
greatest  danger  of  loss  is  by  spattering  when  the 
evaporation  is  nearly  finished. 

Nickel. 

The  best  methods  available  are  (1)  electrolysis, 
(2)  titration  with  cyanide,  and  (3)  precipitation 
with  dimethylglyoxime. 

The  electrolytic  method  is  used  principally  on 
high-grade  samples,  6uch  as  refined  nickel  and  con- 
verter matte.  For  low-grade  samples  it  is  not  more 
accurate  than  precipitation  by  dimethylglyoxime, 
and  it  takes  much  longer.  For  electro-deposition 
the  nickel  should  be  present  in  sulphate  solution, 
strongly  ammoniacal,  and  containing  little  or  no 
chloride  or  nitrate.  Iron  causes  some  trouble 
by  adsorption  of  nickel  when  precipitated  with 
ammonia.  If  filtered  off  the  precipitate  will  always 
retain  some  nickel,  so  the  best  method  is  to  precipi- 
tate in  such  a  way  as  to  reduce  adsorption  of  nickel 
to  a  minimum,  and  then  to  leave  the  ferric 
hydroxide  in  the  solution  during  electrolysis.  The 
following  procedure;  worked  out  at  Deloro,  Ont.,  is 
satisfactory :  Sufficient  ammonia  is  added  to  pro- 
duce a  slight  precipitate,  and  this  is  dissolved  with 
a  few  drops  of  dilute  sulphuric  acid.  After  cooling, 
25 — 50  c.c.  of  ammonia  is  added,  and  the  solution 
stirred.  When  these  precautions  are  observed 
accurate  results  may  be  obtained  even  in  the 
presence  of  a  considerable  amount  of  iron. 

In  accurately  determining  the  nickel  content  of 
high-grate  material  which  is  fairly  uniform  it  is 
customary  to  take  a  sample  of  l'O — 20  g.  and  elec- 
trolyse. If  the  sample  be  "  spotty,"  however,  a 
larger  portion  must  be  used.  The  usual  method  is 
to  dissolve  100  g.,  dilute  to  one  litre,  and  measure 
out  10 — 25  c.c.  of  the  solution  with  a  pipette 
standardised  against  the  flask  used.  This  method 
is  accurate  only  if  the  greatest  precautions  are 
taken,  and  the  average  chemist  will  secure  far 
better  results  by  modifying  it  as  follows :  The 
sample  is  dissolved  in  a  flask  of  which  the  dry 
weight,  with  stopper,  is  known  to  the  nearest 
50  mg.  The  rate  of  solution  should  be  regulated 
by  the  gradual  addition  of  acid  so  that  spattering 
may  be  avoided,  and  a  small  funnel  should  for  the 
6anie  reason  be  kept  in  the  mouth  of  the  flask, 
When  solution  is  complete,  it  is  cooled  6omewhat, 
diluted  to  about  one  litre,  and  mixed  well  in  the 
stoppered  flask.  The  outside  of  the  flask  is  dried 
and  it  is  then  weighed  to  the  nearest  50  mg.  Into 
each  of  three  previously  weighed  weighing-bottles 
about  25  c.c.  of  the  solution  is  poured,  the  bottles 
are  at  once  stoppered,  and  weighed  accurately. 
The  contents  are  transferred  to  beakers,  evapo- 
rated with  sulphuric  acid  to  remove  the  nitric  acid, 
and  finished  as  usual.  By  thus  weighing  the  solu- 
tions no  close  attention  need  be  paid  to  measure- 
ments or  temperatures,  which  introduce  the  more 
serious  errors  into  the  usual  method.  The  only 
special  requirement  is  a  balance,  sensitive  to  50  mg., 
which  will  weigh  a  litre  flask.  The  results  are 
excellent. 

Nickel  deposited  by  electrolysis  always  contains 
the  cobalt  as  well,  and  if  the  percentage  of  nickel 
alone  is  required  the  cobalt  must  be  determined,  as 
below,  and  deducted.  It  is  customary  to  make  only 
occasional  determinations  of  cobalt,  and  as  a  rule 
to  report  the  total  of  the  two  as  nickel,  because  only 
a  small  percentage  of  cobalt  is  found  in  the  Sudbury 
ore. 

The  standard  rapid  method  for  nickel  is  by  titra- 
tion with  cyanide  in  alkaline  solution,  using  a  little 
silver  iodide  as  internal  indicator.  Results  are 
accurate  in  the  hands  of  a  careful  and  experienced 
operator.  As  text-books  do  not  make  sufficiently 
clear  all  the  points  to  be  observed,  this  method  will 
be  given  in  detail. 


The  following  solutions  are  required: — Sodium 
citrate,  about  140  g.  per  litre.  Silver  nitrate, 
10  g.  per  litre.  Potassium  iodide,  about  40  g.  per 
litre.  Potassium  cyanide,  23  g.  per  litre  for  samples 
containing  01  g.  of  nickel  or  more,  and  115  g.  per 
litre  for  lower-grade  samples,  the  latter  reading 
directly  in  percentage  on  05  g.  To  standardise  the 
potassium  cyanide  it  is  usual  to  employ  0'5  g.  of 
converter  matte  in  which  nickel  has  been  deter- 
mined by  electrolysis.  It  is  much  quicker,  however, 
and  at  least  equally  accurate,  to  use  a  nickel  salt, 
such  as  the  carbonate,  free  f roc  copper  and  of  known 
nickel  content.  The  treatment  of  the  standard 
should  be  the  same  as  that  followed  in  the  deter- 
mination— after  separation  of  the  copper — but 
excess  of  cyanide  should  be  avoided,  for,  owing  to 
the  absence  of  iron,  there  is  great  danger  of  over- 
titration. 

The  solution  to  be  used  for  the  determination  is 
either  the  electrolyte  from  plating  of  the  copper  or 
the  filtrate  from  the  copper  sulphide.  The  latter 
will  have  been  freed  from  hydrogen  sulphide  by 
boiling.  In  either  case  the  solution  will  contain, 
besides  nickel,  whatever  cobalt,  iron,  and  aluminium 
passed  into  solution  in  the  decomposition.  The 
presence  of  any  of  the  ordinary  acids  is  permissible, 
and  if  the  solution  contains  no  sulphates  or  free 
sulphuric  acid,  a  few  c.c.  of  the  latter  should  be 
added,  as  it  greatly  aids  the  subsequent  titration. 
The  iron  must  first  be  oxidised,  and  this  is  usually 
done  by  the  addition  of  a  few  crystals  of  potassium 
chlorate,  with  subsequent  boiling.  Many  chemists 
prefer  to  separate  the  iron  and  nickel  if  there  be 
over  0"3  or  0"4  g.  of  thfe  former  in  solution,  on 
account  of  the  greater  ease  of  titration,  though  it 
is  neither  necessary  nor  more  accurate.  If  desired 
a  good  separation  may  be  effected  by  Rothe's  ether 
method,  as  follows: — Iron  and  aluminium  are  pre- 
cipitated with  ammonia,  filtered  off,  and  washed 
once  or  twice.  The  filtrate  is  retained.  The 
hydroxides  are  dissolved  in  a  little  hydrochloric 
acid,  and  the  solution  evaporated  to  a  few  c.c, 
cooled  and  washed,  by  means  of  dilute  hydrochloric 
acid  (sp.  gr.  1"13)  in  a  wash-bottle,  into  a  small  sep- 
arating funnel.  A  volume  of  ether  equal  to  that 
of  the  solution  is  added  and  the  mixture  shaken 
thoroughly  while  cooling  under  the  tap,  and  then 
allowed  to  settle  for  a  few  minutes.  The  lower  solu- 
tion containing  the  nickel  and  cobalt  is  drawn  off, 
a  few  c.c.  of  the  dilute  hydrochloric  acid  is  added 
to  the  ether  in  the  funnel,  the  mixture  again 
shaken,  cooled,  allowed  to  settle,  and  the  lower 
layer  separated  and  combined  with  the  other  acid 
solution.  The  ether  is  expelled  by  warming  and 
finally  boiling  the  liquid,  which  is  then  combined 
with  the  ammoniacal  filtrate  for  determination  of 
the  nickel. 

Whether  or  not  the  ether  separation  has  been 
made,  the  nickel  solution  requires  the  addition  of 
sodium  citrate  or  similar  reagent  to  prevent  the 
precipitation  of  iron  and  aluminium  on  the  subse- 
quent addition  of  ammonia,  and  to  make  the  solu- 
tion clear  enough  for  titration.  A  minimum  of 
5  c.c.  is  recommended,  and  as  much  more  than  this 
as  will  make  1  c.c.  for  every  10  mg.  of  iron  in  solu- 
tion. Thus  2  g.  of  slag  with  40%  of  iron  will  require 
80  c.c.  if  the  ether  separation  has  not  been  made. 
After  the  addition  of  a  sufficient  volume  of  sodium 
citrate  solution,  the  liquid  is  made  just  alkaline 
with  ammonia,  and  about  1  or  2  c.c.  added  in 
excess.  If  as  much  as  5  c.c.  in  excess  be  added  the 
end-point  will  be  indistinct  and  the  result  slightly 
low  on  account  of  the  solvent  action  of  ammonia  on 
silver  iodide.  After  cooling  thoroughly,  preferably 
below  10°  C,  5  c.c.  of  the  silver  nitrate  solution  is 
added  from  a  burette  or  pipette.  If  a  precipitate 
of  silver  chloride  be  produced  enough  ammonia  is 
added  to  dissolve  it,  then  5  c.c.  of  the  potassium 
iodide  solution,  when  silver  iodide  will  be  precipi- 

b2 


272  T 


LATHE.— ANALYTICAL   PROBLEMS   IN  THE   METALLURGY   OF  NICKEL.     [Aug.  15, 1922. 


tated  at  onoe.  This  amount  of  potassium  iodide  is 
much  more  than  the  theoretical  quantity  necessary 
to  combine  with  the  silver  nitrate,  but  is  essential 
to  a  satisfactory  titration.  Many  chemists  add  the 
potassium  iodide  before  the  silver  nitrate,  but  if 
that  procedure  be  followed  an  insufficiency  of 
ammonia  may  be  overlooked  and  the  true  end-point 
will  occasionally  be  passed.  The  solution  is  now 
ready  for  titration,  and  if  several  determinations 
are  to  be  done  at  once  it  is  best  to  have  a  separate 
burette  for  each,  to  avoid  a  multiplicity  of  burette 
readings  with  consequent  liability  to  error.  It  is 
usually  necessary  to  make  several  additions  of 
cyanide  to  each.  If  much  nickel  be  present  in  the 
solution  the  change  in  colour  will  indicate  when  the 
end-point  is  being  approached.  Great  caution 
must  then  be  observed  not  to  add  an  excess, 
especially  if  little  or  no  iron  be  present.  When  the 
solution  contains  much  iron  it  is  safe  to  add  several 
drops  at  .a  time  until  the  solution  is  perfectly  clear, 
the  silver  iodide  having  been  dissolved  by  the  excess 
of  cyanide.  On  standing  for  a  few  moments,  how- 
ever the  turbidity  will  reappear,  and  it  must  be 
destroyed  by  the  addition  of  more  cyanide  until  the 
solution  remains  clear  for  15  minutes.  Not  more 
than  two  additions  will  usually  be  necessary  for  con- 
verter matte  or  other  samples  low  in  iron.  When 
finished,  deduction  must  be  made  from  the  burette 
reading  of  a  volume  sufficient  to  titrate  a  blank .to 
which  5  c.c.  of  silver  nitrate  has  been  added.  Hie 
result,  calculated  to  nickel,  includes  cobalt  as  welk 
If  the  end-point  be  passed,  sufficient  silver  nitrate 
may  be  added  to  restore  the  turbidity,  and  the 
titration  -again  finished,  with  a  correspondingly 
large  deduction,  but  this  is  not  recommended  for 
the  most  accurate  work.  In  titrating  solutions 
high  in  nickel  the  volume  should  be  increased  and 
th!  cvanide  added  rapidly  till  near  the  end  to 
prevent  the  precipitation  of  nickel  cyanide, 
Ni(CN),-,  which  does  not  readily  redissolve. 

The  determination  of  nickel  by  precipitation  with 
dimethylglyoxime  possesses  the  advantage  that  it 
gives  the  nickel  only,  without  cobalt  It  is  both 
quick  and  accurate,  and  its  greatest  disadvantage 
lies  in  the  fact  that  the  reagent  is  very  expensive 
Its  use  is  therefore  limited  chiefly  to  checking 
cyanide  results  on  weekly  or  monthly  samples  of 
ores  and  slags.  Iron  is  retained  in  solution  or  is 
separated  as  described  under  the  cyanide  method. 
The  degree  of  alkalinity  there  recommended  is  also 
correct  for  the  dimethylglyoxime  precipitation.*  lve 
times  as  much  reagent— in  1%  alcoholic  solution- 
should  be  added  as  the  total  of  nickel  and  cobalt 
present.  The  precipitate  is  faltered  on  a  Gooch 
falter,  preferably  using  a  small  disc  of  strong  filter 
paper  instead  of  the  usual  asbestos  mat  A  small 
amount  of  copper  in  the  solution  does  not  interfere 
with  the  dimethylglyoxime  precipitation  of  nickel, 
but  if  much  be  present  it  may  give  trouble  by 
coming  down  as  hydroxide. 

Cobalt. 

There  is  not,  so  far  as  I  am  aware,  any  method  for 
the  determination  of  cobalt  which  is  both  quick  and 
accurate  in  the  presence  of  nickel,  copper  and  iron. 
This  determination  is  not  a  part  of  the  daily  routine 
at  the  nickel  plants,  but  when  required  is  accurately 
made  as  follows :  Nickel  and  cobalt  are  separated 
from  all  other  elements  by  electro  ysis  as  already 
described.  The  deposit  is  dissolved  and  the  cobalt 
precipitated  by  either  potassium  nitrite  or  nitroso- 
fi-naphthol,  as  described  in  the  text-books  I  prefer 
the  latter  method,  as  the  cobalt  precipitate  is  more 
readily  washed  free  from  nickel.  In  either  case  it 
is  well  to  ignite  the  cobalt  precipitate,  dissolve  in 
acids,  and  electrolyse  the  sulphate  so  ution,  testing 
the  deposit  for  nickel  with  dimethylglyoxime. 

When  the  ratio  of  nickel  to  cobalt  is  approxi- 
mately 1:1  (this  does  not  apply  to  the  Sudbury  ore) 


the  above  method  may  well  be  modified  by  dissolving 
the  electrodeposited  nickel  and  cobalt  and  precipi- 
tating the  former  with  dimethylglyoxime,  obtaining 
the  cobalt  by  difference.  This  is  much  quicker, 
and,  I  believe,  more  accurate. 

The  error  introduced  by  reporting  cobalt  as  nickel 
in  Sudbury  products  is  seldom  a  large  one,  and 
generally  decreases  as  the  metallurgical  treatment 
proceeds,  due  to  the  fact  that  cobalt  is  the  more 
easily  oxidised  and  slagged,  in  both  the  furnaces 
and  converters.  The  converter  slag  produced 
during  the  latter  part  of  the  blow  is  relatively  the 
highest  in  cobalt  of  any  smelter  product. 

Silica. 
This  is  one  of  the  determinations  most  frequently 
made  at  the  nickel  smelters,  but  it  is  safe  to  say 
that  very  few  results  reported  are  really  accurate. 
Accurate  determinations  are  possible  only  by  the 
free  use  of  platinum  dishes,  repeated  evaporations 
of  filtrates  to  dryness,  correction  for  impurities  in 
the  weighed  silica,  and  various  other  precautions 
which  are  fairly  well  known  but  rarely  exercised 
Fortunately  great  accuracy  is  seldom  necessary,  and 
even  quick  results  may  be  approximately  correct 
through  the  balancing  of  dissolved  silica  against 
the  impurities  weighed. 

Most  silicious  slags  which  have  been  properly 
granulated  are  readily  decomposed  by  ordin.iry 
acids  Those  produced  at  the  nickel  plants  are 
fairly  low  in  silica,  however,  and  the  metallurgists 
in  charge  require  carbonate  fusions  for  all  routine 
work  It  may  be  of  interest  to  mention  the  i  methods 
adopted  in  two  of  the  laboratories  for  securing 
quick  results.  .     ,        , 

Plant  No  1.— 0-5  g.  of  sample  is  fused  over  a 
flame  with  about  2  g.  of  mixed  sodium  and  potas- 
sium carbonates  in  the  "  corner  of  a  large 
platinum  evaporating  dish.  When  well  fused  the 
mixture  is  cooled  somewhat,  a  small  excess  only  of 
hydrochloric  acid  over  that  necessary  to  decompose 
the  melt  is  added,  and  the  liquid  evaporated  to  dry- 
ness in  the  same  dish;  after  cooling,  the  residue 
is  extracted  with  acid,  the  solution  diluted,  and 
the  precipitate  filtered,  ignited,  and  weighed. 
Results  are  regularly  reported  in  1— li  hours 

Plant  No.  2.— Here  neither  gas  nor  large 
platinum  dishes  are  available,  so  the  method  is 
modified  as  follows :  The  sample  is  fused  m  a  muffle 
for  six  minutes  at  a  high  temperature  with  mixed 
carbonates,  using  a  25  c.c.  platinum  crucible. 
After  removal  from  the  muffle,  the  crucible  cover 
is  placed  in  position  on  a  small  porcelain  crucible 
and  as  soon  as  the  melt  has  cooled  to  a  dull  red 
heat  it  is  poured  into  the  lid.  When  properly  done 
it  does  not  adhere  to  the  metal.  Both  crucible  and 
cover,  with  the  melt,  are  placed  in  a  small  casserole 
which  is  covered  with  a  watch  glass,  and  a  small 
stream  of  1:1  hydrochloric  -acid  is  directed  ln£r™* 
crucible  through  the  lip  from  a  wash-bottle.  W  hen 
the  action  decreases  the  watch-g  ass  is  removed  and 
the  crucible  and  cover  are  washed  down  with  diluted 
hvdrochloric  acid.  The  solution  and  separated 
silica  -are  transferred  completely  to  an  eight-inch 
porcelain  crystallising  dish,  with  flat  bottom,  keep- 
ing the  total  volume  down  to  25  c.c.  if  possible. 
The  solution  is  evaporated  to  dryness  on  an  asbestos 
ring  on  a  hot  plate,  the  time  occupied  being  no. 
more  than  7-8  minutes.  The  residue  is  cooled  and 
about  15  c.c.  of  hydrochloric  acid  added  and  then 
25  cc  of  water.  The  solution  is  filtered  at 
once  by  suction,  -and  the  paper  containing  silica 
is  placed  in  a  platinum  or  nickel  crucible  and  set 
sS  theP  muffle  door.  The  burning  of  the 
niner  may  be  greatly  hastened  by  directing  into 
tPhePcruciWe  through 'a  tube  a  very  gentle  stream 
of  oxvgen  or  air.  When  the  paper  is  burned  the 
etucfble  is  moved  to  the  hottest  part  of  the  muffle 
for  a  couple  of  minutes,  then  removed,  cooled  in 


Vol.  XLI.,  No.  16.]        GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA. 


273  T 


water,  and  the  silica  weighed.  This  method 
requires  the  almost  constant  attention  of  the 
chemist,  hut  results  have  been  reported  regularly 
in  from  30  to  40  minutes,  and  with  all  the  accuracy 
necessary  for  plant  control. 

Iron. 
The  ordinary  bichromate  method  is  the  one 
generally  employed.  One  interesting  point  is  that 
in  the  analysis  of  samples  like  converter  matte, 
which  contains  an  appreciable  amount  of  the  metals 
of  the  platinum  group,  stannous  chloride  does  not 
make  the  iron  solution  colourless.  It  becomes 
nearly  60,  then  the  addition  of  more  stannous 
chloride  darkens  it  somewhat,  and  no  amount  in 
excess  will  clear  it.  The  brownish  coloration  per- 
sists even  after  the  addition  of  mercuric  chloride. 

Alumina. 

The  phosphate  method  is  used  exclusively,  it 
being  found  impossible  completely  to  free  an 
ammonia  precipitate  of  ferric  hydroxide  and 
alumina  from  nickel  and  other  salts,  even  by  dissolv- 
ing and  reprecipitating  several  times.  It  is  of 
course  necessary  to  remove  copper  with  hydrogen 
sulphide  prior  to  the  precipitation  of  aluminium 
phosphate. 

Lime  and  magnesia. 

The  usual  methods  for  these  bases  are  employed. 
Neither  one  occurs  in  large  amount  in  the  Sudbury 
ore. 

Sulphur. 

The  accurate  determination  of  sulphur  in  many 
ores  is  a  comparatively  easy  matter,  but  it  is 
rendered  difficult  at  the  nickel  smelters  owing  to  the 
6trong  tendency  of  free  sulphur  to  separate  during 
the  decomposition  of  the  Sudbury  pyrrhotite.  After 
numerous  experiments  I  have  found  the  best  method 
of  decomposition  to  be  by  means  of  a  saturated 
solution  of  potassium  chlorate  in  nitric  acid,  using 
about  30  c.c.  per  0"5  g.  sample.  Even  then  it  is 
necessary  to  watch  for  separated  sulphur ;  when 
this  is  found,  as  it  occasionally  will  be,  the  deter- 
mination must  be  begun  anew. 

The  ordinary  precipitation  of  barium  sulphate  in 
acid  solution,  in  the  presence  of  ferric  salts,  will 
almost  invariably  result  in  the  inclusion  of  iron. 
This  may  give  a  low  value  for  sulphur,  due  to  iron 
replacing  barium,  or  a  high  one,  if  iron  salts  other 
than  the  sulphate  be  retained.  These  difficulties 
may  be  avoided  by  making  the  nitrate  from  the 
"insoluble"  alkaline  with  ammonia,  following  this 
with  the  necessary  amount  of  barium  chloride  solu- 
tion, heating  for  a  few  minutes,  and  then  acidify- 
ing with  hydrochloric  acid,  using  only  a  small 
excess. 

Acidity. 

This  is  required  only  at  the  refineries.  Three 
different  methods  are  used,  depending  upon  the 
degree  of  acidity  to  be  determined : 

(1)  Strongly  acid  solutions  from  the  copper  re- 
fining department,  by  titration  with  sodium 
hydroxide  or  carbonate,  either  in  the  cold,  using 
methyl  orange  as  indicator,  or  hot,  when  the  indi- 
cator may  be  dispensed  with  and  the  first  permanent 
hydroxide  precipitate  taken  as  the  end-point.  I 
prefer  the  former. 

(2)  Feebly  acid  solutions  from  the  electrolytic 
nickel  department,  containing  sulphuric  acid  up  to 
a  few  grams  per  litre,  and  with  copper  and  iron 
practically  absent,  by  the  iodate  method.  As  this 
is  not  very  well  known  the  details  are  given:  — 
Solution  required :  Sodium  thiosulphate.  about 
9'75  g.  per  litre;  1  c.c.  =  0"005  g.  Cu.  The  acid 
equivalent,  expressed  as  sulphuric  acid,  is  0'00385  g. 
The  method  is  based  on  the  following  reaction: 

KI03+5KI  +  3H2S04  =  3H20  +  3KsSO«+6I. 
The  iodine  thus  set  free  is  titrated  with  sodium  thio- 
sulphate.    To  10  c.c.  of  sample  in  a  beaker  a  few 


crystals  of  potassium  iodide  and  a  little  starch 
solution  are  added.  If  any  colour  appears  the 
solution  is  titrated  with  sodium  thiosulphate,  the 
volume  of  which  indioates  the  amount  of  copper 
present.  A  few  milligrams  of  potassium  iodate  :s 
then  added,  when  the  blue  colour  will  reappear  if 
any  acid  be  present.  The  solution  is  at  once 
titrated  with  thiosulphate  until  colourless.  If 
ferric  salts  be  present  the  colours  will  always  re- 
appear. The  first  clearing  of  the  solution  therefore 
represents  the  end  of  the  reaction.  In  spite  of  the 
slight  interference  of  iron  this  method  is  an 
excellent  one,  and  it  may  be  used  for  acidity  as 
low  as  10  mg.  per  litre. 

(3)  When  the  acid  is  much  lower  than  10  mg.  per 
litre,  and  an  accurate  determination  is  required, 
the  potentiometer  method  of  measuring  hydrogen- 
ion  concentration  should  be  used.  As  a  detailed 
discussion  of  this  method  would  require  too  much 
space  a  few  points  only  need  be  mentioned.  The 
most  common  impurity  which  fnterferes  with  the 
electrometric  determination  of  acid  in  nickel  solu- 
tions is  copper.  About  the  only  satisfactory  method 
of  removing  it  without  changing  the  acidity  is  to 
"cement"  it  out  with  sheet  nickel.  If  present  it 
will  be  easily  detected  by  the  steady  lowering  of 
successive  voltage  readings,  though  arsenic  may 
cause  the  same  trouble.  The  presence  of  hydrogen 
peroxide  or  similar  strong  oxidising  agent  in  the 
solution  will  lower  the  readings  and  make  them 
irregular,  owing  to  action  on  the  hydrogen  electrode. 
Both  temperature  and  barometric  pressure  have 
some  effect  on  the  readings,  by  changing  the  con- 
centration of  hydrogen  on  the  electrode.  For  the 
most  accurate  work  correction  should  always  be 
made  for  them  unless  the  conditions  are  standard. 
It  is  essential  that  the  instrument  be  standardised 
frequently.  For  this  purpose  a  solution  of  sodium 
or  potassium  hydrogen  phthalate  has  been  found 
satisfactory. 

Precious  metals. 
No  review  of  the  analytical  problems  in  the 
metallurgy  of  nickel  would  be  complete  without 
mention  of  the  most  difficult  of  them  all — the  de- 
termination of  silver,  gold,  platinum,  palladium, 
iridium,  rhodium,  ruthenium,  and  osmium  in 
Sudbury  ores  and  products.  A  discussion  of  these, 
however,  would  in  itself  be  sufficient  for  a  paper  of 
considerable  length.  So  far  as  I  know,  none  of 
the  large  companies  handling  these  metals  has 
published  details  of  their  analytical  methods.  It  is 
to  be  hoped,  however,  that  this  conservative  policy 
will  not  be  indefinitely  maintained. 


Yorkshire   Section. 


Meeting  held  at   Queen's  Hotel,  Leeds,  on  May  8, 
1922. 


MR.    S.    H.    DAVIES    IN    THE    CHAIR. 


FACTORS     TNFLrKNCINfi     THE     AM5IONIA 
YIELD   IN   THE   CARBONISATION   OF   COAL. 

PART    I.— THE   ROLE   OF    OXIDATION. 

BY    H.    D.     GREENWOOD,     M.SC,    AND    H.     J.     HODSMAN, 
M.B.E.,    M.SC,    F.I.C. 

{Ijcpiiitrncnt  of  Coal  Has  and  Fuel  Industries,  The 
Univi'isity,  Leeds.) 

Introduction. 

Prior  to  1914  the  supply  of  ammonia  compounds 
was  dependent  mainly  on  the  industries  using  fuel 
in  by-product  recovery  processes,  but  the  develop- 


274  t 


GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA.        (Aug.  15,  1922. 


ment  of  the  production  of  synthetic  ammonia,  with 
output  and  selling  price  largely  independent  of 
the  circumstances  of  the  fuel  industries,  has 
abolished  the  virtual  monopoly  of  by-product  pro- 
cesses. A  new  interest  is  given  to  methods  of  in- 
creasing the  yield  of  ammonia  per  ton  of  coal 
handled,  therefore,  whether  by  increasing  the  pro- 
portion of  the  nitrogen  of  the  coal  liberated  as 
ammonia,  or  by  preserving  the  ammonia  once 
formed  from  destruction  in  or  after  leaving  the 
retort  or  oven. 

The  ammonia  obtained  in  normal  carbonisation 
practice  represents  115 — 20%  only  of  the  nitrogen 
of  the  coal.  A  similar  proportion  is  obtained  as 
free  nitrogen  in  the  gas,  and  it  is  important  in 
considering  the  development  of  by-product  processes 
to  know  how  much  of  this  results  from  destruction 
of  previously  formed  ammonia.  It  is,  however, 
possible  that  a  part  of  this  free  nitrogen  is 
liberated  as  such  from  the  coal,  and  is  therefore  an 
inevitable  loss. 

The  first  problem  is  being  dealt  with  by  A.  C. 
Monkhouse  and  J.  W.  Cobb  (Trans.  Inst.  Gas  Eng., 
1921 ;  J.,  1921,  760  a  ;  1922,  532  a).  The  experiments 
recorded  in  this  paper  were  initiated  to  study  the 
conditions  of  destruction  of  ammonia  by  oxidation 
as  distinct  from  dissociation,  because  it  has  been 
recently  suggested  that  the  former  is  the  more 
important.  On  account  of  dissociation,  the 
ammonia  in  a  hot  crude  gas  (even  if  free  from 
oxygen)  from  coal  is  in  an  unstable  condition,  and 
progressively  reverting  into  its  elements.  A  cal- 
culation based  on  the  known  equilibrium  conditions 
at  800°  C.  shows  that,  given  time,  practically  the 
whole  of  the  ammonia  present  in  crude  coal  gas 
could  be  decomposed  at  that  temperature.  This 
decomposition,  however,  proceeds  slowly  enough  for 
a  considerable  proportion  to  survive.  At  a  tempera- 
ture at  which  the  loss  in  this  way  may  still  be 
small — say  600°  C. — oxidation  of  ammonia  in  air 
may  occur  at  an  appreciable  rate.  A  knowledge 
of  the  conditions  conducing  to  loss  of  ammonia  in 
the  retort,  oven,  or  producer,  by  oxidation  by  in- 
drawn air  is  clearly  important,  and  in  particular, 
information  as  to  the  part  played  by  water  vapour 
and  materials  used  in  the  construction  of  the  plant. 
While  an  extensive  literature  has  been  compiled 
dealing  with  the  oxidation  of  ammonia  for  the 
production  of  nitric  acid,  this  other  aspect  has 
received  no  great  amount  of  study.  Data  respect- 
ing the  production  of  nitric  acid  from  ammonia 
where  conditions  are  so  unlike  those  found  in  gas 
production  are  of  limited  application.  There  is  a 
particular  obscurity  as  to  the  influence  of  moisture 
on  the  oxidation  of  ammonia.  Although  the  con- 
trary opinion  has  been  stated,  it  is  regarded  as 
being  unimportant  in  the  catalytic  formation  of 
oxides  of  nitrogen  (Partington,  "  The  Alkali  In- 
dustry," p.  229)  and  moisture  is  ignored  in  practice. 
On  the  other  hand,  there  is  in  the  carbonisation 
industries  a  widespread  impression  that  water 
vapour  exerts  a  definite  preservative  action  on  the 
ammonia  in  coal  gas.  This  view  is  frequently  held 
to  account  for  the  higher  average  yields  of  ammonia 
obtained  in  coke  oven  practice,  where  wet  slacks 
with  10%  or  more  of  water  are  carbonised.  An 
attempt  has  been  made  to  give  a  quantitative 
evaluation  of  the  effect  of  moisture,  and  Foxwell* 
(J.,  1921,  193  t)  states  that  9%  of  moisture  in  the 
slack  gives  the  conditions  most  favourable  to  high 
ammonia  yields.  Foxwell  seems  to  have  in  mind 
several  effects  traceable  to  the  water,  the  increase 
in  ammonia  formation,  retardation  in  ammonia 
destruction  due   to  dilution   with   attendant   accel- 


•  Foxwell  returns  to  this  subject  of  ammonia  losses  In  carbon- 
isation in  a  recent  paper  (J..  1922,  114T)  but  does  not  take  oxidation 
within  his  purview. 


erated  flow  of  the  gases,  or  to  some  specific  action 
of  the  water.  Of  the  first  influence — increased 
production  of  ammonia — there  is  no  doubt,  both  as 
a  result  of  experience  in  practice  and  the  experi- 
ments of  Monkhouse  and  Cobb  (iOc.  cit.).  Respect- 
ing the  other  two,  there  seems  to  be  less  certainty. 
Sommer  (Stahl  u.  Eisen,  1919,  39,  261,  294,  349; 
J.,  1919,  350  a)  has  gone  further,  and  drawn 
definite  conclusions  as  to  a  distinct  preservative 
influence  exerted  by  water  vapour.  He  also 
appears  to  regard  oxidation  as  more  important 
than  dissociation  in  causing  losses  of  ammonia.  In 
his  experiments,  ammonia  in  admixture  with  air, 
dried  or  saturated  with  moisture  at  20°  C.  (about 
2'3%  of  moisture),  was  passed  through  a  heated 
porcelain  tube  packed  with  broken  firebrick.  The 
mixture  contained  15 — 2%  of  ammonia  as  in  car- 
bonisation practice.  Even  at  250°  C.  under  this 
treatment,  loss  of  ammonia  by  oxidation  was  de- 
tected. The  presence  of  moisture  did  appear  to 
exert  a  specific  preservative  action.  At  450°  C. 
the  effect  of  moisture  was  apparently  profound. 
In  the  dried  mixture  a  loss  of  1289%  of  the 
ammonia  was  observed  and  one  of  only  2'01  %  when 
2'3%   of  water  vapour  was  present. 

In  order  to  account  in  some  way  for  the  results, 
he  postulated  the  formation  in  moist  gases  of  a 
hydrated  ammonia  molecule— say  NH4OH — pos- 
sessed of  increased  stability  as  compared  with 
ammonia  at  high  temperatures.  The  theoretical 
interest  and  practical  importance  of  such  results 
reposing  on  so  slender  an  experimental  basis  seem 
to  justify  a  critical  examination.  Sommer  appears 
to  believe  that  these  results  are  applicable  to  the 
carbonisation  process,  though  quoting  no  experi- 
ments made  in  coal  gas  mixtures,  but  from  our 
experience  these  observations  cannot  be  transferred 
directly  to  the  very  different  conditions  found  in 
a  crude  coal  gas. 

Thau  has  endeavoured  to  ascertain  the  relative 
importance  of  oxidation  and  dissociation  of 
ammonia  by  experiments  on  a  working  coke  oven 
(Brennstoff-Chem.,  1920,  1,  52,  66;  J.,  1921,  137  a). 
He  compared  the  ammonia  content  of  the  gas  when 
the  oven  was  carefully  sealed  and  when  oxygen 
was  admitted  from  a  cylinder  into  the  space  above 
the  charge,  in  which  case  the  yield  was  much  re- 
duced. Owing  to  heat  developed  here  by  com- 
bustion of  the  gas  with  oxygen,  the  temperature 
was  considerably  raised,  so  that  the  comparison  of 
dissociation  and  oxidation  was  not  made  under 
identical  temperature  conditions.  The  results, 
however,  do  bring  out  the  deleterious  action  of  in- 
drawn air  on  the  yield  of  by-products,  if  the  oven 
temperature  exceeds  600°.  The  conditions  in  an 
oven  at  work  are  so  complex  as  to  make  it  difficult 
to  associate  effect  with  cause.  Nevertheless,  Thau 
appears  to  regard  oxidation  as  the  main  cause  of 
ammonia  loss  in  the  oven. 

The  oxidation  of  ammonia,  as  is  well  known,  is 
very  sensitive  to  the  influence  of  catalysts,  both 
as  regards  speed  of  reaction  and  nature  of  pro- 
ducts, which  may  be  either  free  nitrogen  or  oxides 
of   nitrogen. 

The  reactions  may  be  written  thus  :  — 

(1)  4NH,+3O„  =  2N2  +  6H2O  +  237,600  cals. 

(2)  4NH3+5O;=4NO  +  6H2O+215,600     „ 

Reaction  (1)  would  represent  the  reaction  which 
might  conceivably  occur  in  carbonising  practice, 
but  by  the  use  of  suitable  catalysts  under  the 
proper  conditions,  a  yield  of  nitric  oxide  can  be 
obtained  almost  quantitatively,  according  to  (2), 
even  on  a  large  scale.  Neither  reaction  is  re- 
versible under  any  known  conditions.  Ammonia 
appears  to  be  completely  unstable  in  presence  of 
oxygen  at  all  temperatures.  This  is  in  agreement 
with  theoretical  requirements.   Rideal  and  Taylor 


Vol.  m,  No.  15.]     GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA. 


275  T 


("  Catalysis  in  Theory  and  Practice,"  p.  91)  calcu- 
late, by  means  of  Nernst's  heat  theorem,  the  values 
of  the  equilibrium  constants  of  the  second  reaction, 
if  assumed  to  be  reversible.  The  partial  pressures 
of  ammonia  which  must  exist  at  the.  equilibrium 
to  satisfy  the  Nernst  equation  are  inconceivably 
small.  The  circumstances  are  similar  as  regards 
reaction  (1).  The  decomposition  of  ammonia  by 
oxidation  cannot  then  be  regarded  as  limited  by 
the  attainment  of  any  equilibrium  or,  in  accord- 
ance with  the  law  of  mass  action,  by  the  operation 
of  the  reaction  in  the  reverse  sense.  This  is  im- 
portant in  considering  any  theories  to  account  for 
a  retarding  influence  of  water  vapour. 

For  a  given  catalyst  and  set  of  conditions,  there 
is  an  optimum  temperature  at  which  the  yield  of 
nitric  oxide  is  a  maximum.  Above  and  below  this 
temperature,  the  production  of  free  nitrogen  in- 
creases. At  the  lower  temperatures  this  is  ascribed 
to    the    sluggishness    of    the    reaction,    unchanged 


A  time  of  contact  was  chosen  which  was  believed 
to  be  of  the  same  order  as  that  of  the  gases  with 
the  charge  in  vertical  gas  retort  practice.  In  the 
calculation  of  this  time  of  contact  a  number  of 
arbitrary  assumptions  must  be  made,  for  the  pro- 
cess by  which  the  gas  escapes  is  complex,  and  the 
exact  mechanism  uncertain  (c/.  Foxwell,  loe.  cit., 
on  this  subject).  For  a  given  gas  delivery  in  the 
following  experiments  the  time  of  contact  will 
depend  on  the  temperature  to  which  the  gas  is 
heated.  In  the  calculation,  a  mean  temperature  of 
600°  O.  was  assumed,  and  the  time  of  contact  in 
the  experiments  adjusted  to  seven  seconds,  unless 
otherwise  stated. 

Experimental. 

The  apparatus  (Fig.  1)  consisted  essentially  of  an 
arrangement  for  producing  a  constant  stream  of 
air,  or  other  gas,  and  ammonia,  and  of  suitable 
devices  for  sampling  the  mixture,  before  and  after 
it  had  traversed  the  reaction  tube. 


ammonia    being    left    to    react    with    nitric    oxide 
formed  thus :  — 

4NH3  +  6NO = 5N2 + 6H,0 

This  alone  would  suffice  to  account  for  the  fact 
that  nitrates  and  nitrites  are  never  observed  in  gas 
liquors.  Moreover,  the  time  of  contact  in  com- 
mercial oxidation  of  ammonia  is  very  small — say 
one-hundredth  of  a  second — whereas  in  carbonisa- 
tion it  is  probably  several  seconds.  This  is  also 
true  of  the  experiments  dealt  with  in  this  paper, 
and  it  is  easy  to  understand  why  no  large  quantity 
of  oxides  of  nitrogen  has  been  observed  in  the 
presence  of  the  most  active  contact  substance 
employed. 

The  object  of  the  experiments  now  recorded  was 
to  ascertain  the  conditions  under  which  oxidation 
of  ammonia  would  occur,  comparable  with  those 
current  in  carbonisation  and  gasification  practice. 
The  effect  of  substances  of  varying  catalytic  power 
was  examined  and  also  what  influence,  if  any,  could 
be  traced  to  the  presence  of  water  vapour. 


Method  of  producing  the  mixture  of  air  and 
ammonia. 

The  ammonia  was  obtained  from  liquefied 
ammonia  gas  contained  in  the  small  steel  cylinder, 
A,  fitted  with  a  coarse  valve  and  a  fine  needle 
valve,  C,  for  an  accurate  adjustment  of  the  stream. 

The  steel  capillary  from  C  was  connected  to  the 
gauge  E  by  a  special  steel-faced  joint,  D,  the  con- 
struction of  which  will  be  understood  from  the  en- 
larged section  (Fig.  1  B).  The  ammonia  gauge  was 
a  modification  of  an  ordinary  differential  mano- 
meter, the  one  limb  being  nearly  horizontal,  and 
the  other  enlarged  into  a  bulb.  In  this  way  a 
magnified  reading  could  be  obtained. 

The  ammonia,  dried  by  the  soda-lime  tube,  F, 
passed  via  a  mercury-sealed  joint  into  the  mixing 
tube,  G,  consisting  of  a  glass  tube  20  cm.  long  and 
2  cm.  in  diameter,  loosely  packed  with  glass  wool. 
The  air  (or  other  gas)  was  drawn  from  a  steel 
cylinder  charged  at  50  atmospheres  pressure. 

'  In  order  to  maintain  a  constant  rate  of  flow,  the 
excess    air    was    allowed    to    bubble    continuously 


276T 


GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA. 


[Aug.  15,  1922. 


through  the  water  seal,  N.  The  air  passed  through 
a  tower  containing  pumice  and  sulphuric  acid  and 
then  via  the  gauge,  R,  for  measuring  the  rate  of 
flow  to  the  final  drying  tubes  containing  calcium 
chloride  and  phosphorus  pentoxide. 

The  air  gauge  was  similar  in  construction  to  the 
one  previously  described,  with  the  exception  that 
the  ammonia  gauge  was  filled  with  paraffin  oil, 
whereas  for  the  air  gauge  concentrated  sulphuric 
acid  was  used. 

After  leaving  the  mixing  tube  the  gas  mixture 
could  be  diverted  through  the  absorption  tube,  O. 
The  ammonia  is  here  absorbed  by  N /10  sulphuric 
acid,  the  remaining  gas  passing  forward  to  the  gas 
holder,  Q,  of  capacity  about  700  c.c.  The  gas 
enters  the  holder  through  the  capillary,  R,  whereby 
a  pulsating  flow  is  avoided.  The  narrow  tube  at 
the  base  of  the  holder  (Fig  1  A)  is  calibrated  so  that 
the  gas  volume  can  be  read  off  to  within  02  c.c. 

When  the  mixture  was  not  being  sampled  as 
above,  the  gases  passed  directly  through  the  re- 
action tube,  H,  then  through  a  second  absorption 
vessel,  J,  where  any  unoxidised  ammonia  was 
absorbed,  the  residue  being  collected  in  the  gas 
holder,  P.  This  was  similar  to  the  one  previously 
described,  though  of  capacity  1700  c.c. 

Alternatively,  the  mixture  could  be  passed 
through  the  Winkler  worm,  L,  containing  dilute 
caustic  soda  solution  to  absorb  oxides  of  nitrogen, 
followed  by  a  guard-tube  containing  a  solution 
of  diphenylamine  in  concentrated  sulphuric  acid, 
to  indicate  incomplete  absorption.  The  gases  then 
finally  left  the  apparatus  through  the  detachable 
sampling  tube,  Y. 

When  desired,  the  oxidation  products  could  be 
by-passed  through  the  soda-lime  tube,  Z,  to  deter- 
mine the  amount  of  water  formed  in  the  reaction. 

In  order  to  compare  the  oxidation  with  dry  and 
moist  gases  under  identical  conditions,  a  three-way 
tap  was  later   inserted   after  the   air  gauge  (Fig. 


'  r.7.' 


Sa-turator 
Fig.  2. 


2).  The  air  (or  other  gas)  could  then  be  passed 
either  through  the  drying  system  as  above,  or  else 
through  a  Claisen  flask,  where  the  gas  was  satu- 
rated with  moisture  at  a  known  temperature.  To 
prevent  condensation  of  moisture,  the  succeeding 
portions  of  the  apparatus  were  maintained  above 
this  temperature  by  suitable  heating  devices. 

The  reaction  tube  was  made  from  hard  glass 
tubing,  and  connected  to  the  three-way  cock,  I, 
by  a  sleeve  joint,  the  packing  consisting  of  a 
mixture  of  finely  powdered  silica  and  water-glass. 
The  other  end  of  the  reaction  tube  was  closed  by 
a  rubber  stopper,  through  which  were  inserted 
the  tube  conveying  the  gas  mixture  and  also  the 
thermocouple  sheath.  The  junction  of  the  thermo- 
couple could  thus  be  placed  within  the  contact 
mass,  enabling  the  temperature  of  the  latter  to  be 
measured  and  kept  constant  within  +5°  C.  The 
reaction  tube   was   heated   in   an   electric   furnace 


wound  so  that  the  zone  occupied  by  the  contact 
mass  was  uniformly  heated. 

The  tube  was  normally  packed  over  a  lehgtE 
of  6  in.  with  the  material  on  which  experiments 
were  to  be  made,  the  volume  of  the  material  being 
such  that  the  time  of  contact  of  the  gases  in  this 
zone  was  approximately  the  same  with  each  type 
of  material. 

Uniformity  of  flow  of  the  ammonia  was  main- 
tained by  keeping  constant  the  temperature  of  the 
cylinder,  A,  and  therefore  the  vapour  pressure  of 
contained  ammonia.  The  cylinder  was  placed  in 
a  bath  of  water,  and  the  whole  surounded  by  a 
cardboard  box,  the  intervening  space  being  loosely 
packed  with  cotton  wool.  The  back  pressure 
thrown  by  the  various  absorption  systems  was  so 
regulated  that  the  rate  of  flow  was  unchanged 
when  the  gases  were  passed  through  any  one  of 
these  systems. 

Method   of   experiment. 

The  streams  of  air  and  ammonia  having  been 
regulated  to  give  the  desired  percentage  of 
ammonia,  the  mixture  was  passed  through  the 
apparatus  for  about  three-quarters  of  an  hour.  The 
gases  were  then  passed  directly  into  the  holder,  Q; 
when  this  was  full  the  stream  was  diverted  through 
the  reaction  tube  and  again  collected,  on  leaving,  in 
the  holder,  P.  When  this  was  filled,  the  stream  was 
diverted  again  into  the  smaller  holder,  Q.  Thus  the 
initial  percentage  of  ammonia  in  the  gases  could  be 
determined  at  the  beginning  and  end  of  an  experi- 
ment. The  acid  in  the  absorption  tube,  O,  was 
titrated  directly  with  standard  alkali,  but  the 
ammonia  in  the  second  tube,  J,  was  determined 
by  distillation  in  the  usual  manner,  since  the 
presence  of  oxides  of  nitrogen  in  the  oxidation 
products  would  vitiate  the  results  of  a  direct 
titration. 

The  traces  of  oxides  of  nitrogen  were  estimated 
by  matching  the  colour  obtained  with  phenylene- 
diamine  hydrochloride  against  a  standard  nitrite 
solution. 

Oxidation  in  contact  with  fused  silica. 

In  order  to  obtain  some  idea  of  the  range  of 
temperature  over  which  oxidation  takes  place 
when  catalytic  influences  are  minimised,  the  re- 
action tube  was  packed  with  fragments  of  fused 
silica  taken  as  an  example  of  a  relatively  inactive 
contact  material. 

In  the  initial  experiments,  these  fragments 
filled  the  whole  tube,  but  in  all  the  succeeding 
work  only  the  central  uniformly  heated  zone  as 
already  stated  was  filled  and  the  rest  of  the  tube 
was  occupied  by  cylindrical  distance  pieces  of  fused 
silica. 

The  time  of  contact  of  the  gases  was  materially 
greater  in  the  initial  experiments,  and  hence  a 
greater  oxidation  was  found  (Table  I.).  Below 
500°  C.  small  quantities  of  nitrous  acid  were  de- 
tected in  the  absorption  apparatus,  but  never 
nitric  acid.  Above  this  temperature  the  ammonia, 
oxidised  was  all  converted  into  free  nitrogen. 
The  absence  of  nitric  acid  is  presumably  due  to 
the  small  velocity  of  the  reaction  2N0  +  O,  =  2N0.. 
Using  the  figures  given  by  Lunge  and  Berl 
(Z.  angew.  Chem.,  1907,  20,  1716)  we  find,  assum- 
ing that  3%  of  the  ammonia  is  converted  into 
nitric  oxide,  that  the  minimum  time  necessary 
for  its  further  oxidation  to  nitrogen  peroxide 
would  be  about  2  minutes  at  20°  C,  whereas  the 
time  available  in  these  experiments  was  not 
greater   than   5   seconds. 

A  series  of  experiments  was  also  carried  out 
with  nitrogen  containing  about  1 — 2%  of  oxygen, 
instead  of  the  air,  without  altering  the  packing 
in     the     reaction     tube.       The     results     given     in 


Vol.  xli.,  No.  15.]      GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA. 


277  T 


Table  I. 


Reaction  tubo 
packed 
entirely 
with  silica 
chips. 


Tube  only 
packed  over 
6  in.  with 
silica  chips. 


Rate  of 
Tem-  flow, 

perature,       litres 
•  C.      per  hour. 


400 
510 
550 

670 

750 


500 
500 

000 
720 
720 


3-94 

3-97 

3-93 

3-90 
3-97 


3-S00 
3-89 


3-78 
3-78 
3-90 


%  NH, 
entering. 


:-030 


1-800 
1-790 


1-790 
1-951 

1-879 
1-827 
1-924 


%  NH, 
leaving. 


1-981 

1-863 

1-830 

1-224 
0-885 


1-080 
1-820 

1-705 
1-512 
1  045 


%  NH, 
oxidised. 


31 

0-5 

9-5 

310 
510 

nil 

6-1 
0-4 

9-2 
17-2 
14-5 


Water  formed  by  tho 
oxidation  per  hour. 


Found. 

00015 

00056 

0-0081 

00140 
0-049 


Calc. 

00011 

0-0003 

00084 

0-0135 
00477 


Not  estimated 


00050         0-0065 
Not  estimated 


00140  0  0120 

Not  estimated 


%  O.ln 
%  O,  In  in  gases 
in  gases  leaving 
leaving  calc.  on 
furnace.  NH, 
oxidised. 


20-71 
20-70 
20-70 


20-70 
20-71 
2000 


20-30  20-35 

.Not  t'stimated 

Not  est  iruated 


Remarks. 


Trace   of    HNO„  no 
trace  of  HNO,. 
15%  of  oxidised  NH, 

present  as  HNO,. 

No  HNO,  or  HNO, 

could  be  detected. 

do.  do. 

do.  do. 

Gases  sat.  23°  C. 

Hoisture  =  2-8%. 
Dry  gases. 
Gases  sat.  23°  C. 

Moisture=2-8%. 
Gases  sat.  23"  C. 
Dry  gases. 
Gases  sat.  23°  C. 


Table  II. 


Temp. 
°C. 


595 
615 

710 
770 


Rate  of 
flow, 
litres 
per  hr. 
4-10 
410 
4- 09 
4-01 


%NH,   %NH, 
entering,  leaving. 


%  NH,     %  O, 
oxidised,  entering. 


%0, 
leaving. 


1-602 
1-505 
1-762 

1-500 


1-570 
1-432 
1-474 
0-935 


2-4 
4-7 

16-3 
35-0 


1-85  1-86 

1-97  1-95 

Not  estimated. 
1-89  1-30 


400° 


500° 


600°  7 

In  dry  air  in  contact  with  fireclay. 
In  moist  air  in  contact  with  fireclay. 
In  dry  air  in  contact  with  silica. 
In  N-,  +  1-2%  O,  in  contact  with  silica. 
In  coal  gas  +  1-2%  O.  in  contact  with  firebrick. 
In  coal  gas  +  1-2%  O,  in  contact  with  silica. 

Fig.  3. 


800° 


Table  II.  and  Fig.  3  show  that  the  oxidation  of 
ammonia  is  retarded  by  a  decrease  in  the  con- 
centration of  the  oxygen,  but  the  influence  of  this 
factor  becomes  less  pronounced  at  higher  tem- 
peratures. The  absence  of  oxides  of  nitrogen  from 
the  reaction  products  is  in  agreement  with  theory. 
Their  formation  in  the  absence  of  an  active  cata- 
lyst is  slow  and  decomposition  follows  by  reaction 
with  the  excess  of  unchanged  ammonia. 

Destruction  of  ammonia  in  coal  gas. 
On  substituting  coal  gas  containing  oxygen  for 
air,  the  loss  of  ammonia  was  greatly  reduced 
(Table  III.  and  Fig.  3),  and  was  much  less  also 
than  the  loss  in  the  presence  of  nitrogen  with  a 
similar  low  concentration  of  oxygen.  These  re- 
sults show  that  below  800°  C.  under  the  conditions 
obtaining,  though  the  ammonia  passes  through  the 
apparatus  practically  unchanged,  the  whole  of  the 
oxygen  is  removed,  presumably  by  reaction  with 
hydrogen  or  hydrocarbon  constituents  of  the  gas. 


If  the  whole  of  the  ammonia  lost  had  been  removed 
by  oxidation,  it  would  have  consumed  only  a  frac- 
tion of  the  oxygen  actually  disappearing.  Even 
at  600°  C,  a  temperature  at  which  the  oxidation 
in  air  and  (nitrogen  +  oxygen)  was  considerable, 


Table  III. 

Temp. 
°C. 

Rate  of 
flow, 
litres 

per  hr. 

%NH,    %NH,    %NH, 
entering  leaving,      loss. 

%o, 

in 

gases 
entering. 

%o, 

in 

gases 

leaving. 

625 
725 

775 

4-000 
4-595 
4-21 

1-340        1-340         nil 
1-445        1380          4-5 
1-400        1-291          80 

1-08 
1-08 
107 

nil 
nil 
nil 

the  whole  of  the  oxygen  was  removed  in  the  re- 
action tube,  while  the  ammonia  passed  through 
unimpaired.  This  points  to  the  conclusion  that 
in  a  coal  gas  the  oxidation  of  the  hydrogen  or 
hydrocarbons  takes  precedence  over  that  of 
ammonia,  and  that  if  any  of  the  latter  is  decom- 
posed at  all,  it  must  be  due  rather  to  a  dissocia- 
tion phenomenon. 


Table  TV. 


Total 
vol.  of 


Temp. 

Rate  of 

air 

°C. 

HOW, 

%  NH, 

%  NH, 

%  NH, 

+  NH, 

Remarks. 

litres 

entering. 

leaving. 

oxidised 

passed 

per  hr. 

over 
firebrick 

035 

3-71 

1-591 

0-148 

96-4 

6-7 

Gases 

040 

3-05 

1-004 

0-643 

61-5 

20-0 

saturated 

G40 

3-70 

1-709 

1-164 

320 

07-3 

at  24°  G. 

040 

3-63 

1030 

1-233 

24-4 

93-0 

to  30°  C. 

065 

3-70 

1770 

1-271 

28-8 

103 

3o  4o  Co  go 


Fig.  4. 

Loss  in  activity  of  firebrick. 


278  T 


GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA.        [Aug.  15,  1922. 


Oxidation  in  contact  with  firebrick. 

As  contact  material,  the  silica  was  replaced  by 
fragments  of  unused  fireclay  brick,  which  is  porous 
and  contains  iron  or  other  oxides  which  display 
marked  catalytic  activity  towards  these  reactions. 
Firebrick  from  the  Leeds  district  containing  1'4% 
of  ferric  oxide  was  used. 

Though  the  material  at  first  displayed  marked 
activity  this  was  found,  on  repeating  experiments 
at  any  one  temperature,  to  fall  off  rapidly.  The 
results  in  Table  IV.  (Fig.  4)  clearly  show  this  de- 
crease in  activity.  Other  samples  of  firebrick 
from  the  same  source  gave  almost  identical 
results.  Further,  the  oxidation  fell  off  at  the 
same  rate  with  mixtures  of  ammonia  with  either 
air  or  coal  gas. 

The  passage  of  dry  air  alone  had  a  similar  effect 
which  cannot,  therefore,  be  attributed  to  any  re- 
actions involved  in  the  actual  oxidation  of  the 
ammonia.  The  cause  of  this  decay  of  the  catalyst 
remains  unexplained.  The  results  obtained  when 
the  firebrick  had   attained  a  stable   condition   are 


T. 

1BLE 

V. 

Rate 

of 

0/ 

% 

/o 

Temp. 

Of 

/o 

Temp. 

flow. 

NH, 

NH, 

NH, 

of 

H,0 

Remarks. 

°C. 

litres 

enter- 

leav- 

oxi- 

satu- 

iu 

per 

ing. 

ing. 

dised. 

ration. 

gases. 

hour. 

450 

3-65 

1-620 

1-570 

31 

23°  C. 

2-8 

540 

3-69 

1-659 

1-545 

6-8 

23°  C. 

2-8 

— 

540 

3-71 

1-805 

1-632 

9-5 

Dry 

nil 

— 

640 

3-66 

1-801 

1-370 

23-9 

23°  C. 

2-8 

A    small    per- 

640 

3-67 

1-753 

1-181 

32-7 

Dry 

nil 

centage  of 

740 

3-70 

1-732 

0-827 

52-3 

23°  C. 

2-8 

NH,  was  oxi- 

740 

3-59 

1-613 

0-568 

64-9 

Dry 

nil 

dised  to  NO, 

785 

3-50 

1-802 

0-100 

94-5 

Dry 

nil 

usually  about 
2-5%    of   the 
total  NH, 
oxidised. 

Influence  of  rate  of  flow. 

740      4-90     1-356     0  682     50-0     Dry  nil 

740       3-59      1-613      0-508      04-9     Dry  nil 

740      3-00     1-976     0-395     80-0    Dry  nil 


collected  in  Table  V.,  and  for  the  purposes  of 
comparison  have  been  plotted  in  Fig.  4,  along 
with  the  figures  obtained  with  fused  silica. 

Destruction  of  ammonia  in  coal  gas  mixtures. 

The  loss  of  ammonia  in  the  presence  of  stabilised 
firebrick  was  similar  to  that  observed  in  the 
presence    of    silica,    and    as   before,    the    products 


Table  VI. 

Rate  of 

ft/ 

O' 

%      Sat. 

0/ 

% 

% 

Temp. 

flow, 

NH, 

NH, 

NH,    temp. 

H.O 

0, 

O, 

•c. 

litres 

enter- 

leav- 

loss.     °  C. 

in 

enter- 

leav- 

perhr. 

ing. 

ing. 

gases. 

ing. 

ing. 

600 

3-87 

1-509 

1-508 

nil        23 

2-8 

21 

01 

680 

4-35 

1-399 

1-360 

2-9        23 

2-8 

0-85 

nil 

780 

4-41 

1-202 

1-098 

8-7         26-5 

3-45 

0-98 

nil 

775 

3-63 

1-476 

1-353 

8-3        26-5 

3-45 

2-1 

nil 

780 

3-62 

2010 

1-810 

9-7      Dry 

— 

2-2 

nil 

were  practically  free  from  oxygen  after  contact. 
Contact  material  in  its  originally  more  active 
condition  caused  a  considerably  greater  decom- 
position. An  increase  in  the  percentage  of  oxygen 
from  1%  to  2%  had  no  appreciable  effect  on  the 
rate  of  decomposition  of  ammonia.  Here  again, 
at  600°  C.  the  oxygen  is  taken  up  by  some  con- 
stituent of  the  coai  gas  while  the  ammonia  remains 
intact,  as  in  the  experiments  of  Table  III.  There 
are,  then,  no  grounds  for  ascribing  any  loss  of 
ammonia  in  a  coal  gas  under  the  conditions  of 
these  experiments  to  oxidation  at  all.  If  this  is 
correct,  then  Sommer's  conclusions  are  unsound, 
•and  experiments  on  mixtures  of  air  and  ammonia 
are  irrelevant  to  the  phenomenon  in  coal  dis- 
tillation. 


Influence  of  water  vapour  on  the  oxidation  in  air. 

The  experimental  figures  are  given  along  with 
those  for  the  dry  gases  in  the  various  tables  to 
which  reference  has  already  been   made. 

When  mixtures  of  ammonia  and  air  were  heated 
in  contact  with  silica  (Table  I.)  the  influence  of 
moisture  was  negligible  at  the  lower  temperatures, 
and  a  reduction  of  25%  only  was  observed  in  the 
oxidation  at  700°  C.  In  coal  gas  (Table  VI.)  no 
appreciable  difference  was  observed  in  the  experi- 
ments made. 

In  the  presence  of  the  firebrick  already  men- 
tioned, the  oxidation  in  a  mixture  of  ammonia 
and  air  was  materially  influenced  by  the  presence 
of  moisture,  e.g.,  2'8%  of  water  vapour  caused  a 
decrease  in  the  percentage  oxidation  from  64%  to 
52-3%  at  740°  O.  (see  Table  V.,  Fig.  3). 

In  view  of  these  results,  the  experiments  were 
extended  to  higher  percentages  of  moisture  (Table 
VII.),  but  the  difficulty  of  preventing  condensation 
limited  the  saturation  temperature  (65°  C.  corre- 
sponding to  25%  H,0).  The  greater  stability  of 
the  ammonia  observed  in  the  presence  of  water 
vapour  may  be  attributed,  generally  speaking,  to 
two  factors,  viz.,  the  increased  rate  of  flow  with 
consequent  shortened  time  of  contact,  and  some 
specific  action — chemical  or  physical — of  the  water 
vapour. 


70 

00 

**"*»»*"*A 

50 

40 

a 
C 

6 
> 

'■——£_ 

30 

^^>c 

20 
in 

3-5  40  4-5  6-0 

Rate  of  flow  (litres  p.  hr.). 

Influence  of  moisture  on  oxidation  of  ammonia. 
Fig.  5. 

Curve  A  (Fig.  5)  shows  the  influence  on  the 
degree  of  oxidation  at  740°  C.  of  the  rate  of  flow 
alone  in  the  dry  mixture  of  ammonia  and  air.  In 
curve  C  the  percentage  oxidation  is  plotted  against 
rate  of  flow  when  the  gas  mixture  contains  water 
vapour  in  proportion  depending  on  the  tempera- 
ture of  saturation  employed.  The  percentage  of 
water  vapour  is  also  indicated.  By  subtracting 
curve  A  from  curve  C,  we  are  left  with  curve  B, 
which  may  be  regarded  as  showing  the  specific 
effect  due  to  the  water  vapour. 

This  "  specific  influence  "  of  the  water  vapour 
increased  with  the  water  content  at  first,  but  when 
12%  was  reached,  the  observed  effect  can  be 
accounted  for  by  the  smaller  time  of  contact  due 
to  increasing  percentages  of  moisture. 

These  results,  then,  confirm  qualitatively  Som- 
mer's experiments  at  lower  temperatures,  although 
no  such  powerful  influence  as  recorded  by  him  has 
been  observed.    Thus,  at  450°  C.  his  loss  of  ammonia 


Vol.  XIX,  No.  15.]         GREENWOOD  AND  HODSMAN.— THE  OXIDATION  OF  AMMONIA. 


279  T 


by  oxidation  fell  from  12%  to  2%  with  the  addition 
of  2-3%  of  water  vapour. 

Table  VII. 

Rate  of 

Rate  of     %  %  %  flow  of  air 

Temp,     flow,      NH,      NH,      NH,  Sat.  temp.    %        +water 

•C.       litres     enter-     leav-      oxi-        °  C.        H,0.     vapour 

perhr.     ing.       ing.      dised.  perhr. 

740  3-72  1-613  0-568  64-9  Dry  nil  3-72 

740  3-70  1-732  0-827  52-3  23  2-8  3-82 

740  3-76  1-936  1-348  30-4  50  12-3  4-28 

740  3-70  1-930  1-470  23-6  65  250  4-93 

In   mixtures   of   coal    gas    and    ammonia   up   to 
800°  C.  the  moisture  appeared  to  have  no  appre- 
ciable effect,    but   the   total   amount   of   ammonia    ' 
decomposed  is  small,   and  at  higher  temperatures 
the  results  might  differ. 

From  a  general  survey  of  these  results,  as  re- 
gards mixtures  of  air  and  ammonia,  we  6ee  that  a 
marked  preservative  effect  of  moisture  only  occurred 
in  the  presence  of  substances  displaying  a  consider- 
able catalytic  power.  The  activity  of  the  catalyst 
is  only  partially  impaired  by  the  moisture,  since 
the  oxidation  in  presence  of  firebrick  and  15%  of 
moisture  is  considerably  greater  than  with  silica  in 
the  absence  of  moisture. 

It  is  common  knowledge  that  the  presence  of 
moisture  is  important  in  many  reactions,  but  its 
effect  is  usually  aceelerative  and  the  inhibiting 
action  observed  here,  and  by  Sommer,  is  difficult  to 
explain.  As  just  shown,  it  is  greater  than  can  be 
accounted  for  by  mere  dilution,  and  consequent 
increase  in  rate  of  flow.  Moreover,  the  effect  is 
more  intense  with  the  first  additions  of  moisture, 
which  have  a  small  effect  on  the  rate  of  flow.  Nor 
can  it  be  ascribed  to  an  accumulation  of  the  re- 
action product  on  the  basis  of  the  law  of  ma6S 
action,  for  the  reaction,  as  indicated  at  the  outset, 
is  in  no  appreciable  degree  reversible.  The 
observation  that  the  influence  of  moisture  was  not 
marked  when  the  relatively  inert  fused  silica  was 
used  as  contact  material,  suggests  that  in  some 
way  the  catalyst  is  involved.  The  most  helpful 
conception  has  been  obtained  from  Langmuir's 
theory  of  the  unimolecular  film  at  the  catalyst 
surface.  If  we  suppose  that  the  oxidation  occurs 
between  ammonia  and  oxygen,  possibly  atomic, 
adhering  to  the  contact  mass,  but  not  covering  it 
entirely,  we  can  see  that  the  introduction  of  any 
other  gas  or  vapour  capable  of  sticking  to  the  sur- 
face, and  therefore  restricting  "mutual  access  of 
oxygen  and  ammonia,  will  have  a  preservative  effect 
towards  the  latter.  Any  gas  or  vapour  prone  to 
adhere  to  the  catalyst  would  have  the  same  effect 
which  might  be  caused  if  the  proportion  present 
were  only  small.*  The  available  catalyst  area 
once  tenanted  by  water  molecules,  the  addition 
of  further  water  vapour  would  apparently  have 
no  influence.  There  is  a  difficulty,  however,  as  it 
would  appear  that  the  water  vapour  resulting 
from  the  oxidation  of  ammonia  in  dried  gases  should 
also  have  this  "  blanketing  "  effect. 

It  is  also  necessary  to  reconcile  the  apparent  im- 
portance of  water  vapour  here  with  its  unimport- 
ance in  the  commercial  oxidation  of  ammonia.  This 
may,  however,  possibly  account  for  the  apparent 
paradox  just  mentioned.  In  the  experiments 
chronicled  here,  in  dry  mixtures  of  air  and  ammonia 
the  proportion  of  ammonia  was  low  (1 — 2%),  and  as 
this  was  only  partially  oxidised,  the  proportion  of 
water  vapour  in  the  product  was  also  small,  and 
added  water  vapour  might  make  itself  appreciably 
felt.  In  commercial  oxidation  10 — 15%  of  ammonia 
is  employed  and  completely  oxidised,  yielding  a 
corresponding  proportion  of  water  vapour  large 
enough  to  render  unimportant  the  presence  or 
absence  of  water  vapour  in  the  air  employed. 

*  Cf.  Decarriere  (J.,  1922,291a),  who  discussed  the  poisoilng 
effect  of  small  quantities  of  hydrogen  sulphide,  acetylene,  etc. 


Conclusions. 

The  destruction  of  ammonia  at  low  partial 
pressures  and  in  atmospheres  of  air,  of  nitrogen 
containing  1 — 2%  of  oxygen,  and  of  coal  gas  con- 
taining oxygen,  at  temperatures  up  to  800°  C.  both 
in  presence  of  fused  silica  and  unused  fireclay  brick, 
has  been  examined. 

The  oxidation  of  ammonia  in  air  and  in  contact 
with  the  fireclay  brick  under  the  conditions  of  the 
experiments  is  distinctly  retarded  by  water  vapour 
present  even  in  small  proportions. 

In  coal  gas  containing  oxygen,  the  destruction  of 
ammonia  is  much  less  marked  at  corresponding 
temperatures  than  with  air,  and  this  destruction, 
owing  to  the  preferential  union  of  the  oxygen  with 
the  hydrogen  etc.  present  in  the  coal  gas,  is  due 
not  to  oxidation,  but  to  a  process  of  dissociation. 
In  these  experiments  no  marked  influence  of  water 
vapour  was  observed. 

It  is  doubtful  whether  direct  oxidation  of 
ammonia  occurs  to  an  appreciable  extent  during 
carbonisation  even  when  oxygen  is  present.  The 
known  deleterious  effect  of  air  indrawn  during 
carbonisation  and  gasification  is  then  presumably 
due  to  the  local  overheating  of  the  gas  following 
upon  the  union  of  the  oxygen  with  combustible  con- 
stituents. The  rise  in  temperature  then  facilitates 
dissociation.  It  remains  to  be  proved  that  a  preser- 
vative effect  can  be  ascribed  to  the  large  volume  of 
water  vapour  in  coke  oven  gas,  i.e.,  as  distinct  from 
that  due  to  dilution  and  shortened  time  of  contact 
of  the  ammonia. 

The  experimental  work  on  this  subject  is  being 
amplified  and  will  be  the  subject  of  a  further 
communication. 

Discussion. 

Pkof.  J.  W.  Cobb  said  that  he  had  seen  this  work 
in  progress  and  appreciated  the  way  in  which  ex- 
perimental difficulties  had  been  overcome.  If  air 
was  drawn  or  forced  into  a  gas-retort,  coke-oven, 
or  gas-producer  (at  the  wrong  point)  it  undoubtedly 
lowered  the  ammonia  yield.  Presumably  from  this 
work  this  loss  was  not  due  to  direct  oxidation  of  the 
ammonia,  but  resulted  from  local  combustion  of  the 
gas  and  a  dissociation  of  ammonia,  intensified  by 
rise  of  temperature  and  catalytic  action  along  the 
6olid  surfaces  of  brick-work  or  coke. 

Mb.  W.  McD.  Mackey  said  that  the  introduction 
of  steam  or  water  vapour  into  the  by-product  coke 
oven  had  often  been  advocated,  but  the  difficulty 
was  that  the  steam  would  intervene  between  the 
walls  of  the  oven  and  the  mass  of  coal  in  course  of 
coking  and  prevent  the  passage  of  heat  from  the 
flues  to  the  coal. 

Mr.  Atjty  6aid  that  the  effect  of  water  vapour 
was  rather  similar  to  the  effect  of  charcoal  on 
phosgene.  If  the  charcoal  used  and  the  mixture  of 
phosgene  and  air  were  dry,  hydrochloric  acid  was 
produced,  but  if  the  charcoal  contained  5%  of 
moisture,  the  phosgene  was  absorbed  without  the 
formation  of  hydrochloric  acid. 

Mr.  Hodsman,  replying  to  an  inquiry  as  to  the 
effect  of  carbonising  in  iron  retorts  on  the  yield  of 
ammonia,  said  that  the  temperatures  attained  in 
such  apparatus  were  much  below  those  of  current 
practice  and  in  consequence  no  just  comparison  was 
possible.  Referring  to  Mr.  Mackey's  remarks  on 
the  effect  of  water  vapour,  he  did  not  wish  to  imply 
that  water  vapour  was  without  benefit  to  the  yield 
of  ammonia.  On  the  contrary,  he  believed  that  it 
did  operate  favourably,  but  thought  caution  desir- 
able when  accounting  for  this  effect.  The  conditions 
in  practice  were  complex,  and  even  under  the 
simplified  conditions  of  laboratory  experiment  the 
expected  result  was  often  not  attained.  The  re- 
actions of  ammonia  were  very  sensitive  to  catalysts 
and  to  temperature  under  the  conditions  of  practice. 


280  T 


DRUMMOND  AND  ZILVA.— PREPARATION  OF  COD  LIVER  OIL. 


[Aug.  15,  1922. 


Communications. 


THE  PREPARATION  OF  COD  LIVER  OIL  AND 

THE  EFFECT  OF  THE  PROCESSES  ON  THE 

VITAMIN   VALUE  OF   THE  OILS. 

BY    J.    C.    DKTJMHOND,    D.SC,    F.I.C.,    AND    S.    S.    ZILVA, 
D.SC,    PH.D.,   F.I.C. 

From  the  Biochemical  Laboratories,  Institute  of 
Physiology,  University  College,  London  and  the 
Biochemical  Department,  Lister  Institute, 
London. 

In  the  early  summer  of  1921  we  spent  several 
weeks  in  Norway  visiting  the  chief  centres  of  the 
cod  liver  oil  industry,  on  behalf  of  the  Medical 
Research  Council,  in  order  to  study  the  cause  of  the 
variations  in  the  medicinal  value  of  this  valuable 
oil.  During  the  trip  a  considerable  number  of 
factories  of  one  type  and  another  were  visited,  and 
a  large  number  of  oil  samples  of  known  origin  were 
collected  and  brought  home  for  testing  their  vita- 
min content.  We  were  accompanied  throughout  by 
Professors  Hjort  and  Hoist,  of  the  University  of 
Christiania,  who  were  also  interested  in  the  problem 
under  investigation  and  who  gave  us  very  great 
assistance  in  every  way. 

Cod  fisheries. 

The  Norwegian  cod  fishing  can  be  broadly  divided 
into  two  seasons  which  are  usually  named  the  Lofo- 
ten or  "  Skrei  "  fishing,  and  the  Finmarken  fishing. 
The  reason  for  this  differentiation,  which  is  a  fairly 
sharp  one,  is  apparent  from  a  study  of  the  valuable 
memoirs  published  by  Hjort  and  other  investigators 
on  the  life  history  of  the  cod  (Vol.  20,  Rapports, 
Conseil  Permanent  International  pour  l'Explora- 
tion  de  la  Mer,  Copenhagen,  1914).  Their  investi- 
gations covering  a  number  of  years  have  shown  that 
the  spawning  grounds  of  the  cod  in  Norwegian 
waters  are  on  the  coastal  banks  at  depths  of  10  to 
40  fathoms,  extending  right  up  the  coast  as  far 
north  as  Sorb  in  the  western  part  of  Finmarken, 
but  in  particular  on  the  famous  Romsdal  and  Lofo- 
ten banks.  The  mature  cod  termed  "  Skrei  "  visit 
these  banks  in  enormous  numbers  at  the  spawning 
season  from  January  to  April  and  are  fished  there 
during  the  "  Skrei  "  fishery.  The  ova  develop  over 
the  banks,  and  by  June  the  small  fry  are  drifting 
with  the  current  northwards  along  the  Norwegian 
coast  so  that  by  August  and  September  they  are 
found  in  far  northern  waters.  The  "  Skrei  "  fish- 
ing, which  has  its  chief  centre  at  the  Lofoten 
Islands,  therefore  covers  the  whole  time  during 
which  the  fish  are  on  the  spawning  grounds 
(January  to  April  or  May)  and  the  fish  caught  are 
almost  solely  mature  cod ;  the  other  gadoids  from 
which  liver  oils  are  prepared  elsewhere — the 
haddock,  G.  aeglefinus,  and  the  coal  fish  or  saithe, 
(?.  virens,  etc. — have  different  spawning  habits  (see 
Meek,  "Migrations  of  Fish,"  1916,  p.  212;  also 
Howell,  "  Ocean  Research  and  the  Great  Fisher- 
ies," Oxford,  1921).  It  is  probably  for  this  reason 
chiefly  that  the  cod  liver  oil  produced  at  the  Lofoten 
Islands  has  acquired  a  high  reputation,  for  the 
makers  have  been  able  to  claim  that  it  is  prepared 
from  cod  livers  only. 

The  later  fishing,  the  Finmarken  season,  some- 
times termed  the  "  lodde  "  fishing  (from  "lodde" 
the  local  name  for  the  caplin)  lasts  from  May  to  as 
late  as  August  and  is  quite  different  in  character 
from  the  "  Skrei  "  fishery.  In  the  spring  as  the 
light  becomes  more  intense  there  is  a  remarkable 
outburst  of  plant  life  in  the  sea  (Moore,  Chem. 
Soc.  Trans.,  1921,  149,  1555),  which  is  followed 
by  an  equally  remarkable  increase  in  the 
minute  animals,  copepods,  amphipods,  larval  deca- 
pods, and  molluscs,  which  feed  on  the  microscopic 


plants  and  which  in  their  turn  form  the  food  supply 
of  large  numbers  of  small  fish  and  other  marine 
animals,  6alps,  squids,  and  certain  molluscs  which 
are  the  food  of  the  cod.  On  the  northern  shores  of 
Norway  the  appearance  of  these  vast  6warms  of 
living  organisms,  sometimes  so  massed  as  to  give 
the  water  a  cloudy  or  muddy  aspect,  usually  occurs 
just  before  great  shoals  of  a  small  fish  called  the 
capelan  or  caplin  (Mallotus  villosus)  migrate  in 
from  the  more  notherly  waters  to  spawn  on  the  Fin- 
mark  coast,  after  which  they  proceed  in  a  general 
direction  eastwards  along  the  coasts  of  Finmarken 
and  Murmansk  as  far  as  the  White  Sea,  eventually 
turning  northwards  in  the  Barents  Sea.  Their 
appearance  at  the  coast  is  a  signal  to  the  fishermen 
that  the  cod  will  soon  appear,  for  they  form  an 
attraction  for  enormous  numbers  of  larger  fish, 
chiefly  cod,  haddock,  coal-fish,  and  pollock,  which 
pursue  and  devour  them  in  great  quantity.  These 
shoals  of  cod  and  other  fish  are,  however,  not  all  of 
one  origin,  as  Hjort  has  shown  (1914,  loc.  cit.).  To 
some  large  extent  they  are  the  immature  cod  of 
various  ages  and  size  which  have  followed  the  caplin 
from  Arctic  waters  but  these  are  joined  by  large 
numbers  of  spent  "  Skrei  "  which  have  spawned  on 
the  more  southerly  banks  and  which,  since  they 
feed  little  during  spawning,  have  proceeded  up  the 
coast  to  intercept  the  caplin  migration  and  "  fatten 
up."  The  Finmarken  fishing  usually  moves  along 
the  coast  in  an  easterly  direction  as  the  caplin  move 
along  and  the  fish  caught  are  chiefly  mixed  gadoids. 
One  consequence  of  this  is  that  mixed  cod  liver  oils 
are  frequently  and  indeed  somewhat  generally  pre- 
pared along  this  littoral.  The  composition  of  these 
mixed  oils  is  very  variable  but  it  would  appear  that 
those  prepared  in  the  early  part  of  the  season 
(June)  in  western  Finmarken  are  mixed  oils  from 
cod,  haddock,  and  coal-fish  but  with  a  strong  pre- 
ponderance of  cod.  Later  in  the  season  on  the 
eastern  grounds  the  proportion  of  haddock  may 
become  very  high. 

Manufacture  of  cod  liver  oil* 

The  general  methods  employed  in  the  preparation 
of  cod  liver  oil  are  well  known  (Mbller,  "Cod  Liver 
Oil  and  Chemistry,"  London,  1895;  Lewkowitsch, 
Vol.  II.,  5th  edn.,  London,  etc.). 

Rotting  process.  There  are  few  places  in  Norway 
where  oil  is  still  prepared  to  any  appreciable  extent 
from  the  fresh  livers  by  the  old  rotting  process, 
which  was  the  general  method  of  preparation  prior 
to  the  introduction  of  the  steaming  methods  in  1853 
by  Moller  (Moller,  "  Cod  Liver  Oil  and  Chem- 
istry ").  Occasionally  in  the  very  small  fishing  ham- 
lets where  the  supply  of  livers  is  not  worth  the 
introduction  of  modern  methods  this  process  may  be 
seen  in  operation.  The  livers  are  thrown  into  large 
wooden  vats  as  they  are  collected  from  time  to  timo 
and  allowed  to  rot  for  long  periods,  the  oil  rising  to 
the  surface  as  the  liver  tissue  slowly  disintegrates. 
In  some  cases  the  vats  may  remain  for  as  long  as 
2 — 3  years  before  sufficient  oil  has  been  prepared 
or  an  opportunity  to  sell  the  oil  arises.  The  oil 
yielded  by  this  process  is  usually  a  clear  golden- 
brown  coloured  product,  the  depth  of.  colour  bring 
to  a  large  extent  dependent  on  the  length  of  time 
the  contents  of  the  vat  have  been  standing.  It  also 
tends  to  possess  a  rather  objectionable  odour  owing 
to  the  presence  of  traces  of  products  of  putrefac- 
tion. As  far  as  we  could  ascertain  such  oils  are 
seldom  if  ever  sold  or  refined  for  medicinal  purposes, 
but  are  used  for  cattle  oils,  tanning,  and  the  other 
uses  of  ordinary  cod  oils.  We  were  especially  inter- 
ested to  find  survivals  of  this  process  because  there 
appears  to   be  a  general   impression   prevalent  in 

*  In  the  descriptions  of  the  processes  we  have  eliminated  all  details 
which  may  be  regarded  as  confidential  and  have  given  only  the 
broad  outlines  which  are  generally  known. 


VoL  XIX,  No.  15.]       DRUMMOND  AND  ZILVA.— PREPARATION  OF  COD  LIVER  OIL. 


281  T 


medical  circles  that  the  results  of  the  therapeutic 
use  of  modern  liver  oils  are  less  striking  than  those 
formerly  obtained  when  the  dark  and  "  black  "  oils 
were  used,  for  it  must  be  remembered  that  cod  liver 
oil  achieved  its  reputation  when  no  other  than  the 
products  of  the  rotting  process  were  available  and 
that  for  some  time  the  introduction  of  the  white 
"  steamed  "  oil  was  regarded  with  disfavour  both 
by  merchants  and  users. 

It  was  impossible  for  us  to  ascertain  the  extent 
of  destruction  of  the  vitamin  A  during  the  prepara- 
tion of  a  rotted  oil,  for  theonly  samples  we  were  able 
to  obtain  were  many  months  old  and  represented  a 
miscellaneous  collection  of  livers  throughout  that 
period.  The  samples  we  tested  for  vitamin-A  value 
showed  that  they  were  valuable  sources  of  that 
factor,  although  there  could  be  little  doubt  that 
long  standing  of  the  oil  with  a  considerable  surface 
exposed  to  air  and  light  must  have  reduced  the 
amount  of  vitamin.  The  rotted  oils  will  be  dis- 
cussed in  dealing  with  oils  produced  from  rotted 
"  Graxe." 

"Steaming"  processes.  The  introduction  of  a 
steaming  process  about  1850  revolutionised  the  cod 
liver  oil  industry,  and  to-day  there  are  few  factories 
which  do  not  employ  one  or  other  modifications  of 
this  method. 

Broadly  these  may  be  classified  into  those  methods 
in  which  the  oils  are  melted  out  in  6team-jacketed 
pans  and  those  in  which  the  liver  tissue  is  broken 
up  by  direct  steam.  Generally  speaking  there  are 
more  of  the  former  type  of  plant  in  the  Lofoten 
Island  area,  and  it  is  sometimes  spoken  of  as  the 
Lofoten  process.  The  direct  6teaming  is  on  the 
other  hand  more  frequently  employed  along  the 
Finmarken  coast.  The  two  processes  are  widely 
used,  and  almost  every  village  has  one  or  more 
"  Tranfabrik." 

Steam-jacketed  pan  process  or  "  Lofoten  pro- 
cess." The  fish,  which  are  absolutely  fresh  and  in 
fact  usually  alive  when  brought  to  6hore,  are  gutted 
on  the  quay  and  the  60und  livers  after  stripping  the 
gall  bladders  are  placed  in  barrels.  All  discoloured 
or  spotted  livers  are  discarded.  At  the  larger 
centres  the  guts  and  entrails  are  used  for  manufac- 
ture of  fish  guano,  but  where  there  is  no  facility  for 
this  they  are  thrown  overboard.  In  the  Lofoten 
Islands  since  the  fish  are  then  in  spawn  the  roes 
are  often  collected  and  salted.  The  barrels  of  livers 
are  taken  to  the  factory  and  tipped  into  the 
jacketed  vats,  which  are  heated  by  low-pressure 
steam.  When  in  the  opinion  of  the  operator  the  oil 
has  separated  satisfactorily  the  protein  matter  is  re- 
moved by  passing  the  liquid  through  a  sieve  ladle 
whilst  the  oil  is  kept  warm  and  allowed  to  stand  and 
separate.  The  product,  which  is  a  clear  white  oil, 
constitutes  the  first  fraction  and  on  cooling  it  tends 
to  deposit  crystals  of  "stearine."  The  residue  is 
again  heated  and  yields  a  second  fraction  of 
high-grade  oil  of  slightly  inferior  taste,  but  this 
fraction  is  frequently  mixed  with  the  first.  The  hot 
residue  is  then  usually  allowed  to  drain  through  a 
number  of  cloth  filtering  bags  hung  up  over  a 
tinned  gutter  which  collects  the  oil  as  it  drops 
through.  This  oil,  termed  "  posetran,"  is  usually 
of  a  clear  yellow  colour  and  possesses  a  more  pro- 
nounced taste  owing  probably  to  contact  of  the 
drops  with  air  as  they  fall  from  the  bags.  This  oil 
is  sometimes  mixed  with  the  other  two  fractions, 
but  more  generally  it  is  sold  directly  for  cattle  oil 
or  industrial  use.  The  residue  from  the  filtering 
bags  is  termed  "  graxe  "  and  is  treated  by  one  of 
three  methods. 

In  some  cases  it  is  put  back  into  the  6team 
kettles  and  afterwards  passed  through  a  hand  press 
which  yields  a  dark  yellow  oil  mainly  used  for 
technical  purposes.  The  advantage  of  this  method 
of  treating  the  "  graxe  "  is  that  it  leaves  a  residue 
suitable  for  drying  into  a  commercial  liver  meal  for 


which  there  is  now  an  increasing  demand  as  a  cattle 
food.  The  second  method  consists  of  heating  the 
"  graxe  "  over  an  open  fire  in  pans  with  stirring, 
until  all  the  water  is  driven  off  with  the  formation 
of  a  dark  brown  oil  termed  "  brandttran." 

More  frequently,  however,  the  graxe  is  thrown 
into  vats  outside  the  factory  and  allowed  to  rot  for 
2 — 3  months  with  the  formation  of  a  deep  golden- 
brown  oil  which  is  skimmed  from  the  top  when 
enough  has  accumulated. 

During  the  season  a  small  factory  will  turn  out 
5000  litres  daily. 

The  direct  steam  process.  The  general  arrange- 
ment of  this  plant,  which  is  usually  of  the  simplest 
type,    is  shown   in  the   accompanying  figure.     The 


handling  of  the  fish  is  similar  to  that  already  de- 
scribed and  the  selected  livers  are  thrown  into  the 
conical  vat,  A,  until  it  is  about  three  parts  full.  A 
simple  lid  hinged  at  its  diameter  and  perforated 
to  permit  the  steam  pipe,  C,  to  enter  the  vat,  is 
then  fastened  down  on  the  vat  by  m«ans  of  clamps 
at  the  sides.  Steam  is  then  blown  into  the  livers 
until  they  are  in  the  opinion  of  the  operator 
"cooked."  The  steam  is  turned  off,  the  lid  is 
opened,  and  the  contents  are  allowed  to  stand,  after 
which  the  deep  layer  of  oil  at  the  top  is  ladled  off 
and  poured  through  an  unbleached  linen  filter  to 
remove  protein  matter,  into  the  tank,  B.  The 
protein  remaining  on  the  filter  is  thrown  back  into 
the  vat.  The  crude  oil  in  B  is  allowed  to  settle  to 
allow  the  small  amount  of  moisture  and  tracesof  pro- 
tein to  settle  out,  after  which  it  is  run  into  storage 
tanks,  D.  The  liver  pulp  remaining  behind  in  the 
vat  is  generally  run  off  by  means  of  the  outlet,  E, 
into  rotting  vats,  F,  outside  the  factory  and  there 
allowed  to  yield  after  some  months  the  usual  type 
of  golden  brown  oil  often  termed  "  surtran."  Some- 
times in  the  better  factories  the  pulp  is  subjected 
to  pressure  to  yield  the  second  grade  of  oil  and  the 
residue  is  dried  for  liver  meal. 

Other  methods.  In  addition  to  the  very  many 
factories  where  these  widely-employed  methods  are 
used  there  exist  some  in  which  the  processes  are 
highly  elaborated  and  scientifically  controlled  and 
in  which  oils  are  carefully  prepared  under  con- 
ditions (use  of  vacuum,  atmosphere  of  carbon  di- 
oxide etc.)  which  protect  against  oxidation  (cf. 
Harrison,  Wild,  and  Robb,  E.P.  25,683  of  1907; 
Heyerdahl,  E.P.  137,514  of  1919). 

Present  trend  of  the  manufacture  of  cod  liver  oil. 

The  production  of  high-grade  marketable  medi- 
cinal oils  as  free  as  far  as  possible  from  pigment 
and  unpalatable  constituents  is  the  general  aim  of 
the  manufacturers,  but  there  is  at  present  in 
certain  cases  a  revival  of  the  interest  in  the  actual 
medicinal  or  therapeutic  qualities  of  the  oils. 

The  lack  of  knowledge  as  to  what  constituents  of 
cod  liver  oil  actually  are  responsible  for  its  thera- 


282  T 


DRUMMOND  AND  ZILVA.— PREPARATION  OF  COD  LIVER  OIL. 


[Aug.  15,  1922. 


peutic  value  is  reflected  in  the  opinions  of  "the  manu- 
facturers, of  whom  many  accept  what  is  perhaps  the 
most  general  view,  apart  from  modern  vitamin 
theories,  namely,  that  the  high  digestibility  and 
absorbability  of  the  cod  liver  oil  together  with  the 
peculiar  nature  of  the  highly  unsaturated  fatty  acid 
which  it  contains  are  the  chief  factors  concerned. 
Accordingly  it  is  found  that  one  of  the  chief  aims  of 
the  more  progressive  of  these  people  is  to  protect 
their  oil  from  oxidative  changes,  and  their  efforts  in 
this  direction  may  range  from  the  simplest  precau- 
tions up  to  the  elaborate  use  of  atmospheres  of 
carbon  dioxide  and  vacuum  vessels  referred  to  above. 
It  is  is  also  considered  by  the  practical  people  that 
contact  with  air  or  oxidative  change  generally  tends 
to  impart  an  undesirable  flavour  and  render  the  oil 
unpalatable. 

Refining. 

(1)  Crude  oils.  As  remarked  above  there  is  a 
somewhat  general  impression  prevalent  especially  in 
medical  circles  that  the  dark  brown  cod  liver  oils  are, 
or  were  at  one  time,  more  effective  as  therapeutic 
agents  than  the  clear  water-white  oils,  and  one  of  the 
chief  problems  with  which  we  were  faced  was  to  dis- 
cover the  actual  truth  on  this  matter.  It  is  also  a 
popular  belief  in  many  quarters  that  the  "  brown  " 
oils  represent  the  crude  cod  liver  oil,  the  "  real 
thing,"  and  that  the  white  oils  offered  for  sale  by 
the  retailers  are  highly  refined  products  obtained 
from  the  crude  oils  by  processes  analogous  to  those 
employed  in  the  refining  of  a  vegetable  oil.  Indeed 
it  is  not  infrequent  to  hear  it  stated  that  the 
"  white "  oils  have  lost  much  of  their  medicinal 
value  during  the  refining  to  which  they  have  been 
subjected. 

After  personal  examination  of  many  factories  and 
careful  interrogation  of  many  sources  of  informa- 
tion we  came  to  the  conclusion  that  very  small  and 
quite  negligible  quantities  of  crude  "  brown  "  oils 
are  refined  to  produce  medicinal  oils.  Several  pro- 
cesses for  this  refining  have  at  one  time  or  another 
been  put  forward  in  patents,  but  as  far  as  we  are 
aware  none  has  proved  of  any  commercial  value  on 
a  large  scale.  The  removal  of  free  acid  by  the  usual 
method  would  scarcely  be  likely  to  reduce  the 
vitamin  value  of  the  oil,  but  all  bleaching  processes 
for  reducing  pigmentation  which  are  based  on 
oxidative  changes,  ozone,  chlorine,  sunlight,  and 
aeration  would  be  harmful.  Such  processes  were 
also  condemned  years  ago  by  Moller  (op.  cit.)  on 
the  grounds  that  they  spoilt  the  flavour  and  palat- 
ability  of  the  oils. 

(2)  Mediciwd  oils.  The  medicinal  oils  prepared  in 
Lofoten,  Finmarken,  and  other  zones  are  usually 
bought  in  bulk  and  brought  south  to  the  larger 
town  such  as  Bergen  for  the  final  refining  processes. 
This  refining  essentially  consists  of  freezing  to 
effect  removal  of  stearine,  and  in  some  cases  the 
removal  of  a  certain  amount  of  pigment  by  mixing 
with  an  adsorbent  and  passing  through  a  filter- 
press.  The  refining  is  practically  always  done  the 
same  year  that  the  oil  lias  been  prepared  and  oils 
with  a  tendency  to  a  high  acid  value  are  seldom  if 
ever  touched  by  the  better  class  refineries. 

The  crystallisation  of  "  stearine "  is  usually 
carried  out  in  tanks  at  low  temperature  (0°  to  -10° 
C.)  and  the  oil  Is  then  passed  through  filter-presses, 
to  yield  the  first-grade  oil,  which  is  run  off  into 
storage  tanks  from  which  are  filled  the  metal-lined 
barrels  in  which  it  goes  to  market.  The  residue 
from  the  filter  presses  may  or  may  not  be  expressed 
under  pressure  to  yield  a  second-grade  medicinal 
oil,  which  is  usually  handled  separately.  The  stear- 
ine is  sold  largely  for  technical  use  and  varies  in  its 
content  of  oil  a  great  deal  with  the  different 
factories. 


The  highest  grades  of  oil  find  the  best  market  in 
England,  whereas  the  lower  grades  not  only  sell  well 
in  Germany  and  France  but  actually  appear  to  be 
preferred  there,  especially  in  the  former  country 
where  a  marked  yellow  colour  is  favoured. 
Influence  of  processes  on  vitamin  value  of  liver  oils. 

The  difficulty  of  investigating  satisfactorily  this 
problem  was  considerable  because  of  the  variations 
in  the  vitamin  value  of  the  liver  oils  which  occur 
naturally.  As  we  have  shown  (Biochem.  J.,  1922, 
16),  the  food  of  the  cod  is  responsible  for  the  pre- 
sence of  vitamin  A  in  the  liver  oils,  its  ultimate 
origin  being  the  unicellular  marine  plants,  diatoms, 
etc.  (Jameson,  Drummond,  and  Coward,  Biochem. 
J.,  1922,  16,  in  the  press). 

Some  variations  in  the  vitamin  value  of  liver  oils 
may  be  traced  to  differences  in  the  food  supply,  but 
also  we  are  considering  the  view  that  to  some  extent 
the  variations  are  associated  with  definite  physio- 
logical changes  in  the  tissues  of  the  fish  at  the 
different  seasons.  We  hope  before  long  to  be  able 
to  publish  more  fully  our  views  on  this  important 
question.  In  view  of  this  difficulty  we  have  only 
been  able  to  study  the  effect  of  the  processes  with 
accuracy  when  it  has  been  possible  to  obtain  samples 
of  the  same  preparation  before  and  after  they  have 
been  treated. 

We  have  throughout  employed  the  technique  des- 
cribed by  Zilva  and  Miura  (Biochem.  J.,  1921,  15, 
654)  for  the  quantitative  estimation  of  the  vitamin 
A  in  oils.  This  method  is  capable  of  yielding  results 
of  considerable  accuracy  in  the  hands  of  skilled 
workers,  and  during  the  whole  course  of  this  work 
the  results  obtained  independently  in  our  two 
laboratories  on  the  same  sample  of  oils  have  shown 
remarkably  close  agreement. 

(a)  "  Sotted  "  oils.  It  was  of  course  impossible 
to  estimate  the  extent  of  destruction  of  vitamin  A 
which  had  occurred  during  the  preparation  of  the 
samples  of  these  oils  which  we  investigated,  for  we 
had  no  means  of  judging  what  was  the  potency  of 
the  oil  in  the  original  fresh  livers.  The  alternative 
was  to  compare  the  value  of  these  "  rotted  "  oils 
with  average  oils  prepared  by  the  "  steaming  "  pro- 
cess in  the  same  locality.  The  results  are  given 
below ;  the  dosage  is  that  which  just  gives  marked 
growth  in  a  test  animal  (rat)  of  approximately  100 
grams  weight. 


Sample. 


Kfl  raw  oil 

H  2  s  urtran 
H,,     Do. 
N,      Do. 
L3  rotted 


Origin. 


Locality. 


Growth 

dosage 
in  nig. 


Rotting     of     "  graxe "     after 
steaming  out  1st  fraction. 

Do.  Do. 

Do.  Do. 

Rotting  of  "  graxe." 
Rotting  of  fresh  livers. 


Finmarken 

Do. 

Do. 

Do. 

Lofoten 


6 
2-3 

3 

3 
20 


These  values  are  all  well  within  the  limits  we  have 
found  for  oils  prepared  in  these  localities  by  the 
steaming  process,  so  that  although  the  exposure  to 
air  and  sunlight  must  to  some  extent  destroy 
vitamin  A  in  the  rotted  oils  the  amount  of  inactiva- 
tion  is  not  as  serious  as  we  had  expected  to  find. 

(6)  "  Steamed  "  oils.  From  a  consideration  of  the 
steaming  processes  as  we  saw  them  in  Norway  we 
formed  the  opinion  that  very  little  destruction  of 
vitamin  A  would  take  place  in  the  extraction  of 
the  oils  from  the  livers.  This  opinion  was  borne  out 
by  the  results  of  our  experimental  tests,  in  that  oils 
prepared  with  the  greatest  care  in  the  laboratory 
in  an  atmosphere  of  carbon  dioxide  as  well  as  those 
prepared  commercially  by  similar  methods  were  not 
appreciably  superior  to  oils  prepared  at  the  same 
time  and  from  similar  livers  by  the  "  Lofoten  "  or 
steam-jacketed  pan  method. 


Vol.  XLI.,  No.  15.]    DRUMMOND  AND  ZILVA.— PREPARATION  OF  COD  LIVER  OIL. 


233t 


Sample. 


Origin. 


Locality. 


Growth 
dosage 
in  mg. 


Li  Steam-prepared  oil.  May,  1921 

1 ,  Steam-prepared  oil,  2nd  frac- 

tion, May,  1921. 

L,  Oil  prepared  in  CO,  in  labora- 

tory, May,  1921. 

L)  Commercial    oil    prepared    in 

CO,,  1921  season. 

L,  Do.  Do. 


Lofoten 


Appro*. 
20 
15-20 

15 

15 


At  one  station  in  the  Finmarken  area,  there 
were  two  factories  in  close  proximity  one  of 
which  employed  the  steam-jacketed  pans  and  the 
other  direct  steam.  Arrangements  were  made, 
therefore,  for  batches  of  oil  to  be  made  at  the 
same  time  from  similar  batches  of  fish  (mainly  cod, 
but  also  coal-fish  and  haddock)  by  the  two  processes. 
The  results  of  the  tests  on  these  oils  was  as  follows : 


Growth 

Sample. 

Origin. 

Locality. 

dosage 
in  mg. 

K, 

Direct  steam,  June, 
filtered. 

1921,  un- 

Finmarken 

5 

K, 

Ditto,  filtered. 

5 

KM 

Jacketed-pan,  Jane, 
filtered. 

1921,  un- 

» 

3-4 

K„ 

Ditto,  filtered. 

•• 

3-4 

These  figures  appear  to  indicate  that  the  steam- 
jacketed  pan  may  be  slightly  the  better  method  for 
preserving  the  vitamin,  although  it  is  questionable 
whether  the  differences  are  outside  the  range  of 
experimental  error. 

(c)  "  Posetran."  As  described  above,  the  second 
fraction  of  the  oils  prepared  by  the  Lofoten  process 
is  termed  "  posetran."  The  preparation  of  this 
fraction,  although  it  involves  slow  passage  of  the  oil 
drop  by  drop  from  the  bags,  does  not  appear  to 
cause  appreciable  loss  of  vitamin.  Several  samples 
of  posetran  had  approximately  the  same  growth- 
promoting  power  as  that  of  the  first  fractions. 


Sample.                         Origin. 

Locality. 

Growth 
dosage 
in  mg. 

K„ 
1" 

Lofoten  process 

Posetran  of  K,» 

Haddock  oil,  Lofoten  process 

Posetran  of  K„ 

Kjelsvik 
(Finmarken) 

3-4 

2-3 

10 

10 

(d)  Refined  oils.  The  influence  of  freezing  out 
the  "  stearine"  on  the  vitamin  value  would  appear 
to  be  almost  negligible  from  our  studies  of  the 
growth-promoting  potency  of  oils  before  and  after 
being  subjected  to  that  process.  This  is  more  or  lees 
what  would  be  expected  from  the  nature  of  the  pro- 
cess. The  following  experiments  refer  to  a  typical 
Lofoten  oil  refined  at  Bergen : 


Sample. 

Origin.                             .    GroTth 

dosage  in  mg. 

Bl 
B2 
B3 

Before  any  treatment           . .         . .           15-20 
Refined,  non-freezing           ..         ..           15-20 

(e)  "  Stearine."  Different  refiners  of  cod  liver  oil 
remove  the  "stearine"  to  different  extents,  or 
rather   some   press  the    "  stearine  "    until   a  com- 


paratively hard  product  is  produced  whilst  others 
send  it  on  to  the  market  in  a  semi-liquid  form.  We 
have  tested  several  samples  of  cod  liver  oil  "stear- 
ine "  and  find  that  it  may  be  a  valuable  source  of 
vitamin  A.  A  daily  dose  of  01  g.  will  usually  give 
better  growth  than  an  equal  amount  of  an  average 
sample  of  dairy  butter,  so  that  the  present  practice 
of  using  the  stearine  for  technical  uses  would 
appear  to  be  wasteful.  From  a  scientific  standpoint 
it  is  difficult  to  understand  why  the  removal  of  the 
"stearine"  is  insisted  on  by  many  authorities. 
Professor  E.  Mellanby  has  informed  us  that  some 
two  years  ago  he  observed  the  high  value  of  cod 
liver  oil  "  stearine  "  in  the  prevention  and  cure  of 
experimental  ricket6  in  dogs.  This  result  has  not 
been  published  but  is  confirmed  by  our  results. 

Conclusion. 

From  our  exhaustive  investigations  of  the  effect 
of  the  modern  processes  of  the  preparation  of  cod 
liver  oil  on  its  vitamin  value  we  have  formed  the 
opinion  that  the  "  steaming  "  methods  yield  oils 
of  as  high,  if  not  actually  higher  potency  than  were 
yielded  by  the  old  and  almost  extinct  "rotting" 
process. 

Further,  the  modern  methods  of  refining,  if  we 
exclude,  as  we  justly  may,  the  almost  negligible 
amount  of  bleaching  of  dark  oils  which  occurs, 
scarcely  affect  the   vitamin  value  at   all. 

In  the  light  of  these  observations  it  is  obvious 
either  that  the  popular  belief  that  the  "  dark  "  oils 
are  more  valuable  as  medicinal  products  than  the 
modern  "  white  "  oils  is  erroneous  or  that  such 
belief  arose  at  a  time  when  some  actual  difference 
existed.     To  this  we  will  return  in  a  later  paper. 

There  is  no  doubt  that  fairly  wide  variations  in 
the  vitamin  content  of  liver  oils  do  occur,  and  we 
believe  that  these  variations  are  a  reflection  of 
changes  in  the  diet  or  the  physiological  state  of  the 
fish  at  different  seasons.  Our  information  is  as  yet 
insufficient  for  us  to  advance  our  views  on  this 
matter,  but  we  hope  before  long  to  present  evidence 
which  will  throw  considerable  light  on  these 
changes. 

The  trend  of  modern  methods  of  liver  oil  prepara- 
tion is  all  in  the  direction  of  the  exclusion  of 
oxidative  changes,  chiefly  on  the  grounds  of  im- 
proving flavour  and  palatability.  Fortunately, 
these  aims  are  just  those  which  will  tend  to  improve 
the  vitamin  value  of  the  oil,  although  even  now  very 
little  loss  appears  to  take  place,  as  far  as  the 
methods  of  testing  at  our  disposal  can  detect.  The 
introduction  of  any  methods  for  bleaching  or  re- 
fining liver  oils  intended  for  medicinal  use  which 
involve  oxidative  changes  are  strongly  to  be  depre- 
cated. On  the  other  hand,  from  a  purely  scientific 
standpoint  there  appear  to  be  no  adequate  reasons 
why  cod  liver  oils  should  not  be  mixed  with  oils  from 
other  fish  livers.  Indeed,  we  have  found  the  oil 
from  the  coal  fish  (Gadus  virens)  to  be  usually 
markedly  richer  in  vitamin  A  than  the  average 
samples  of  cod  liver  oil  (Zilva  and  Drummond, 
Lancet,  1921,  2,  753 ;  also  Lancet,  1922).  Further, 
from  the  same  standpoint  it  would  appear  unneces- 
sary to  remove  the  "stearine  "  as  is  now  done  in 
the  better  quality  oils.  If,  however,  there  a-re 
technical  or  other  considerations  which  make  the 
removal  advisable,  it  seems  a  pity  that  so  valuable 
a  source  of  the  vitamin  should  be  used  for  technical 
and  non-dietetic  use. 

In  conclusion  we  wish  to  express  our  deep  appre- 
ciation of  the  great  hospitality  and  kindness 
extended  to  us  throughout  our  visit  to  the  Nor- 
wegian fishing  grounds.  In  particular  we  would 
like  to  thank  Prof.  J.  Hjort,  F.R.S.,  and  Prof.  Axel 
Hoist  for  valuable  information  concerning  the  life 
history  of  the  cod,  and  Mr.  Fredricksen  and  Mr.  T. 
Lexow,  of  Melbo.  Vesteraalen,  Consul  Robertson  of 
Hammerfest,  and  Mr.  Brulm  of  Kjelvik,  Magero, 


2S4T 


HODGSON.— DETERMINATION  OF  SILICA  IN  THORIUM  NITRATE.         [Aug.  15,  1922. 


for  the  untiring  assistance  they  so  readily  gave  us 
in  studying  the  technical  side  of  the  problem. 

We  also  desire  to  thank  the  Medical  Research 
Council  for  a  financial  grant  which  enabled  this 
visit  to  be  made  and  covered  the  cost  of  the  later 
experimental  work. 


THE    DETERMINATION    OF    SMALL    QUAN- 
TITIES OF  SILICA  IN   THORIUM  NITRATE. 

BY    H.    V.    HODGSON. 

It  has  long  been  known  that  if  the  ash  content 
(consisting  of  silica  and  silicate  of  iron)  of  the 
fabric  used  for  the  manufacture  of  incandescence 
gas  mantles  exceeds  about  0'02  % ,  the  finished 
mantles  are  unduly  brittle.  It  does  not,  however, 
appear  to  be  generally  known  that  a  still  lower 
percentage  of  silica  in  the  thorium  nitrate  pro- 
duces a  similar  effect,  which  is  particularly 
noticeable  and  undesirable  in  those  mantles  where 
considerable  flexibility  is  required. 

The  absence  of  any  mention  of  this  in  the  litera- 
ture on  gas  mantle  manufacture  and  the  rare 
earths,  and  the  fact  that  on  both  theoretical  and 
practical  grounds  silica  should  not  be  present — 
especially  in  a  soluble  form — are  doubtless  the 
reasons  why  silica  is  not  included  in  the  list  of 
possible  impurities  in  technical  thorium  nitrate, 
and  why,  therefore,  no  method  appears  to  have 
been  devised  for  its  detection  and  determination. 
It  is  rather  remarkable  that  heating  the  nitrate 
to  150°  C.  does  not  render  the  silica  insoluble, 
but  conversion  to  the  chloride — a  somewhat  tedious 
process — does  so,  and  at  a  considerably  lower 
temperature. 

The  brittleness  of  the  mantles  made  from  some 
thorium  nitrate,  which  the  author  tested  recently, 
was  found  to  be  due  to  the  presence  in  the  latter 
of  silica,  and  the  following  method  was  devised 
and  successfully  used  for  its  determination. 

Fifty  grams  of  thorium  nitrate  is  dissolved  in 
150  c.c.  of  distilled  water,  and  precipitated  by  the 


addition  of  30  g.  of  pure  oxalic  acid  dissolved 
in  about  150  c.c.  of  hot  distilled  water.  The 
precipitated  thorium  oxalate  is  well  shaken  or 
stirred  and  allowed  to  stand  for  several  hours,  pre- 
ferably overnight.  It  is  then  filtered  off  and 
well  washed  with  hot  distilled  water.  The  filtrate 
is  evaporated  to  dryness,  the  excess  of  oxalic  acid 
sublimed,  and  the  residue  heated  nearly  to  dull 
redness.  When  cool,  4  or  5  c.c.  of  pure  hydro- 
chloric acid  is  added  and  about  the  same  amount 
of  distilled  water,  and  the  whole  boiled  till  all 
that  is  soluble  has  dissolved.  It  is  then  diluted 
with  hot  distilled  water,  filtered,  and  washed. 
The  filter  paper  and  contents  are  ignited  and 
weighed  in  a  platinum  crucible.  The  residue 
should  be  white  or  only  faintly  tinged  with  a 
trace  of  iron  from  the  filter  paper.  It  is  treated 
with  about  2  c.c.  of  pure  hydrofluoric  acid  solu- 
tion and  a  drop  or  two  of  sulphuric  acid,  evapor- 
ated to  dryness,  ignited,  and  the  crucible  again 
weighed,  the  loss  representing  silica. 

To  test  the  accuracy  of  the  method,  50  g.  of 
thorium  nitrate  free  from  silica  was  dissolved  in 
distilled  water,  and  to  the  solution  was  added 
10  mg.  of  silica  as  a  dilute  solution  of  sodium 
silicate,  so  that  no  precipitation  occurred.  The 
whole  was  well  stirred,  evaporated  to  dryness  on 
a  water-bath,  and  when  cool,  the  nitrate  was  dis- 
solved and  the  silica  determined  by  the  foregoing 
method.  The  whole  of  it  was  recovered.  The  test 
was  repeated,  but  with  the  difference  that  the 
nitrate  was  finally  heated  between  150°  and  155 ' 
C.  for  20  minutes.  Again  the  whole  of  the  silica 
was  recovered. 

In  order  to  determine  whether  any  6ilica  was 
obtained  from  the  oxalic  acid  or  the  vessels  used, 
30  g.  of  the  acid  was  dissolved  in  distilled  water, 
a  few  c.c.  of  pure  nitric  acid  added,  the  whole 
evaporated  to  dryness,  and  the  oxalic  acid  sub- 
limed. The  very  slight  residue  left  was  then 
treated  as  above.  This  test  was  made  several  times, 
but  the  largest  amount  of  silica  obtained  did  not 
exceed  1  mg. 


J^^l^^^rRANSACTIONS 


(August  31,   1922. 


Communications. 

NITRIC  AOID  ABSORPTION  TOAVERS. 

BY   J.    A.    HALL,   A.    JAQUES,    AND   M.    8.    LESLIE 

Although  repeated  tr.g,T^  ^"^  the  towers 
duced  lesigt hfgh ffic enVin  ^ M  ^  pr°- 

upon  t  of  the  velocitv  -3  „  '  and.  °f  the  influence 
and  the  rate  f  'w  '^"f11™''  the  gase8 
absorbing  liquid I    it  mTaht t    C0UceD,tration    of   the 

for  the  efficient  tr^tmJntnf  e  ^  COnditions 
whatsoever  might  to  ^uLi/nk?ltr0U8  fumes 
plished  as  the  result  of  ^i^'  ?hls  Was  accom- 
outin  1916  at  S  VaCCPv€ TAhel1  7rk/a"ied 
beng  arrived  at  whioh  y,j  ,  and>  a  formula 

results  W.AS^  experimental 
assumptions  we?e  made^n  " Jondltlons-.  Certain 
formula,  but  it  K  claimed Uh^  ti°  arnve.  at  ^ 
work  proves  the  truth    o?  these     ^.ff^ental 

provided  for  offdation  TM  ?*  TP*y  SPaces  »™ 
doubt  satisfactory  for\hI  treatn>ent,  whilst  no 
from  a  nitric  add I  vfiLt  J™**'?*  •  CaSe  °f  fumes 
the  best  distri&a  o?  iaikedn,0nHg,re  a7  idea  °f 
and  of  the  optimum  °ra?£ b^twTen  them  ^ma?^6 

Si1  o^rron^iS  f  re  * ^  ^ 

te^S^ gs  s  as 

process  the  net  result  of ?  ™V,';  u  °  ari  absorption 
mechanism,  m|  be^presld  ft  e^orf  * 
/       t,     ,.  ,  3^°=+H20=2HN03+NO 

more  'n'tt  ogen6  £SS  T^S  PrTeS8  wiw$ 
further  absorption!  na^ly,15    ^^"^    r6ady    fo' 

2NO+Oa='2NO,. 
in ttBSJSag **•  "towers  themselves, 
or  pumice  earthen w,™  ?'  h  aS  pieces  of  rJuartz 
which  the  wXr  or  n[tricm^°:a,ny-thing  else  by 
be  made  to  expose a° 5 ge  surface  ^  fb^'  may 
of  gas.  Only  oxidation  ™«  surlace  to  the  current 
Pipes  betwee^  the  tow"  «  orTn"^"  the  conn«*ing 
towers  left  unpacked  °Se  partfl  of  the 

^A'^^^™*  r equati-  f°r 

reacting  materials,^ of^  t^oS  3 


E£P'tTS  S-^Kjfl" A  «*  tben  from 
the  relationship  between  t£«  J!t  8h?U,d  eXPress 

t:on   and   oxidation   £ace renfe  °/  th+1  abS°rp- 
etticient  absorption  required    for  the   most 

^iT2£uar^v  ^a**  ~ry 

equation  "   lu   Justihcation   of   the 

Tt  s.        ,    ,,3X?"+H=0=2HN03+NO. 
P^uPL°Sbt1het!,ett,ot,rUS  add  iS  ««  °f  *  n»t 

&.loC.^^5^^dOhosh(, 
th^ecomp^tWj'v^S-^ate^t 

3HN02  =  HNO,+H  0+2N0 
compel,     ,Sir*  I'™  ""  %  ""«  «'  *►■ 

composition  1nXtower,f0nClUS1°n^hat    the   de" 
by  the  fact  that    nm?  Vf  ry  rapid  is  borne  out 

concentration  of  Stofa  iSST1  COnd'tlons-  "**n  tho 
towers  may  be  any  hTne  u1,TnUfin4fr+T  the  Several 

Se  °0ff  ^3Jtey^*£vsria 

S    rat^Srti^fSTcidbe  mea/-edby 

perL^r^ltribed^a'b11  'V^  °f  th°  ~ 
the  partial   pressure   of  A  absorPtwn  depended  on 

molecules.  CacC0untw\,tgaS  rec,koned  ™  NO, 
N20.  molecules      Thl  „  ,take,n  of  association  to 

late^  expe^"m;„ta[resufr;me(!,t0IbeiUStified  both  by 
consideration  Sunoosi  +b  ^  a'S°  by,  the  Allowing 
have  nN,0  then  hT  ,  a  1  ln???d  of  2nN0*  w« 
absorbed  by' water  *n  thJ *ft  f*  whlch.1,nwlecule82are 
rate  in  the  Second  but  in  the'6  WI°  ^  twice  ih« 
molecule  contains  twice  n=  u    S?°0nd   case  each 

as  in  the  first  so  that  the  n^  mir°&a.  Peroxide 
same.  '         tllafc  the  net  result  will  be  the 

'    theMte  no7efeacLonddetremJ,nrXPerimentalIy  h- 
liquid.     For   this   and  fe  UP°n   the   flow   of 

eight  towers  conUe^intrieT^rth111?  -  Mt  °f 
from  n  trie  acid  stilU  «-,!  ,       ,the  fume  main 

consisted  of  four  plain  Z%i  emiA?*ed-  L  Each  tower 
two  feet  s^x  mches  in  dfamptp  e?rt£enware  Pipe 
six  inches  lonTanVseSf"  and  about  two  feet 
having    junctions    for    +£  the  top  and  bottom 

It  may   reasonably   be   supposed   thn+   +!,„ 
from  mtric  acid  stills  produ^d  by  the  decom^ 

»  drawn  fa,  through  leakages  iVthe  J 'ipework    aid 

m  our  experiments  the  fumes  formed  20- W°/  Te 

the  gases  passing  into  the  towers  ^~30/o   of 

In  the  preliminary  experiments  to  ascertain  the 


2SUT 


TxALiLi    i\J\u    vjxnrirvo.- — nniftnj    *\kj±xj    /ujaunriiuii      iimh-,uo. 


lAUg.    C.I,     1VJ.Z. 


effect  of  variation  in  the  rate  of  flow  of  absorbing 
liquid  no  liquid  was  passed  through  towers  1— 4, 
so  that  these  acted  as  a  condensing  space  for  nitric 
acid  vapour.  Very  little  acid  condensed  in  No.  1 
toner,  and  none  in  the  succeeding  ones.  A  separate 
flow  of  water  was  arranged  through  each  of  the 
towers  5,  6,  7,  and  8,  and  the  gases  were  passed 
through  these  successively.  A  special  constant^head 
apparatus  was  arranged  so  as  to  ensure  a  constant 
flow  of  water  into  each  tower.  The  strength  of  the 
issuing  acid  was  determined  in  each  case  by  measur- 
ing its  specific  gravity. 

From  the  speed  of  flow  of  water  and  the  strength 
of  the  acid,  the  quantity  of  actual  nitric  acid 
formed  per  minute  was  calculated.  This  became 
successively  smaller  as  the  gas  passed  along  the 
towers,  the  flow  of  water  being  approximately  the 
same  in  all  the  four  towers.  The  effect  of  altering 
the  speed  of  flow  was  studied  in  succeeding  experi- 
ments. 

If  a  be  the  partial  pressure  of  nitrogen  peroxide 
in  the  gas,  and  /  the  average  flow  of  water  in  litres 
per  square  foot  of  cross-section  per  minute,  we 
assume  that  the  speed  of  production  of  nitric  acid 
per  tower  may  be  expressed  by  the  equation — 

-da/dt  =  kaxf 
The  value  of  x  was  assumed  to  be  1.     Integrating 
between  0  and  t  we  have 

loge  a0  -  loge  at  =  k/5? 
where  a0  and  at  are  the  partial  pressures  of 
nitrogen  peroxide  in  the  gases  entering  and  leaving 
the  towers  respectively.  For  a  constant  rate  of 
flow  of  gas  t  is  constant.  Thus  the  value  of  y  can 
be  calculated  from  two  pairs  of  values  of  a0,  at.  find 
/.  The  values  of  y  were  calculated  for  the  first 
tower  only,  in  order  to  eliminate  the  error  due  to 
neglect  of  the  effect  of  oxidation  of  nitric  oxide.  It 
will  be  proved  later  that  this  is  negligible  under 
these  conditions. 

The  nitric  acid  output  for  the  remaining  towers 
was  determined  in  order  to  ascertain  the  total 
amount  of  gas  absorbed,  and  also  to  afford  a  basis 
for  the  necessary  extrapolation  by  means  of  which 

Table  I. 


Experiment. 

Tower. 

Flow  of  water 

in  litres  per 
sq.  ft.  per  min. 

HN03  formed 

in 
kg.  per  min. 

at 

1 

5 
a 

7 
8 

0-437 
0-555 
0-581 
0-581 

0-64 
0-40 
0-24 
012 

Total  . .  1-40 
z  =  0-17 

1-57  =  a„ 

0-93 

2 

5 
6 
7 

8 

1-316 
0-581 
0-539 
0-581 

1-03 
0-31 
0-16 
0-09 

Total  . .  1-59 
z  =  0-17 

1-76  =«„ 

0-73 

3 

5 
6 
7 
8 

0-306 
1-454 
0-539 
0-437 

0-71 
0-76 
0-27 
0-14 

Total  . .  1-88 
z  =•  0-26 

2-14  =r>0 

1-43 

From  1  and  2,  i/  =  0-47. 

From  2  and  3,  i/=054. 

In  subsequent  calculations  y  was  taken  as  O'o. 


the  value  of  z,  the  quantity  of  gas  escaping,  was 
estimated.  This  extrapolation  was  carried  out  by 
plotting  strength  of  issuing  acid  against  the  num- 
ber of  the  tower-.  The  quantity  z  was  added  to  the 
total  quantity  of  gas  absorbed  in  order  to  obtain 
a0;  a0,  at,  and  z  were  all  expressed  in  kilograms 
of  nitric  acid  formed  per  minute.  The  results  are 
contained  in  Table  I,  and  indicate  that,  within  the 
limits  of  the  experiments,  the  rate  of  absorption  of 
nitrogen  peroxide  is  very  nearly  proportional  to 
the  6quare  root  of  the  rate  of  inflow  of  water. 

The  towers  were  next  put  into  actual  use,  and  for 
the  purpose  of  the  following  experiments  the  liquid 
was  caused  to  pass  through  each  tower  in  succession, 
that  is,  from  No.  8  to  No.  1,  without  circulation. 
When  the  system  had  reached  a  steady  state  the 
strength  of  the  acid  issuing  from  each  tower  was 
determined  by  measuring  its  density.  In  most  ex- 
periments the  steady  state  was  maintained  for 
three  hours.  The  quantity  of  nitrous  acid  in  the 
liquid  was  very  6mall  when  the  sp.  gr.  was  less 
than  1-4. 

Considerable  quantities  of  chlorine  or  nitrosyl 
chloride  were  evolved.  The  question  of  the  distri- 
bution of  chlorine  in  the  towers  will  be  discussed 
later.  In  the  absorbing  liquid  it  appeared  to  be 
present  mainly  as  hydrochloric  acid,  in  variable 
quantity.  A  typical  example  of  its  distribution 
is  given  in  Table  V.  The  chlorine  was  not  all  pre- 
sent as  hydrochloric  acid,  and  on  account  of  this 
fact  and  the  variability  of  the  chlorine  content 
during  each  experiment,  it  was  considered  that  a 
certain  error  in  the  strengths  of  the  acid  issuing 
from  the  last  three  towers  must  be  accepted.  This 
affects  the  distribution  of  output  from  the  towers, 
but  not  the  total  output.  As  an  approximation,  the 
sp.  gr.  of  the  liquid  was  corrected  in  each  case  by 
subtracting  from  it  an  amount  equal  to  d-1,  where 
d  represents  the  sp.  gr.  of  an  average  equivalent 
aqueous  solution  of  hydrochloric  acid.  Control  ex- 
periments showed  that,  so  far  as  the  hydrochloric 
acid  content  was  concerned,  this  method  of  calcula- 
tion is  satisfactory,  the  following  results  being 
obtained  :  — 


Sp.gr. 

Percentage. 

of  hydro- 

Calculated 

Calculated 

Sp.  gr.  of 

chloric 

Bp.  gr. 

concen- 

mixture. 

acid  of 

of 

tration  of 

UNO,. 

HC1. 

this  con- 
centration. 

nitric  acid. 

nitric  acid. 

38-8 

3-67 

1-201 

1-018 

1-243 

38-8 

34-7 

6-58 

1-248 

1-0S2 

1-216 

34-8 

25-4 

6-24 

1-187 

1-031 

1-166 

26-8 

21-3 

10-68 

1-183 

1-053 

1-130 

21-7 

17-2 

6-87 

1-139 

1-033 

1103 

17-6 

The  velocity  of  the  gas  current  was  measured  by 
means  of  Pitot  tubes. 

The  results  of  some  of  these  experiments  on  the 
output  of  nitric  acid  are  contained  in  Table  II. 

The  rate  of  reaction  of  the  nitrogen  peroxide 
with  the  absorbing  liquid  is  probably  determined 
in  practice  by  the  rate  at  which  the  gas  can  reach 
the  surface  of  the  liquid,  and  may  therefore  be 
expected  to  depend  simply  upon  the  partial  pres- 
sure of  nitrogen  peroxide  in  the  gas.  It  may, 
therefore,  be  expressed  provisionally  by  the 
equation 


dy/d*  =fc,(™-!/)  V.T*f 


•0) 


where  m  is  the  mass  of  nitrogen  peroxide  expressed 
in  kg.  of  equivalent  nitric  acid  contained  in  volume 
v  cub.  ft. ;  y  is  the  diminution  in  concentration  of 
nitrogen  peroxide  during  time  t  minutes,  frj  is  the 
speed  constant  for  absorption  for  the  particular 
absorbing  material  contained  in  the  tower;  /  is  the 


Vol.  XIX,  No.  16.]      HALL   AND   OTHERS.— NITRIC   ACID   ABSORPTION  TOWERS. 


287  T 


Table  II. 

Experiment  1.        t  =■  180  min. 


UNO, 

Tower. 

In-flow. 

Out-flow. 

formed. 

Kg. 

Litres. 

%  HNO,. 

%  N.O.. 

Kg. 

Litres. 

%   UNO,. 

%  N.O.. 

Kg. 

1 

4180 

302-2 

62-0 

63-1 

454-7 

823-8 

68-4 

56-8 

42-9 

2 

369-2 

274-6 

54-7 

46-9 

4180 

302-2 

620 

631 

67-2 

3 

311-6 

2450 

43-3 

371 

369-2 

274-6 

64-7 

460 

67-0 

4 

284-5 

2320 

36-2 

31-1 

311-6 

2450 

43-3 

871 

31-9 

6 

2520 

217-7 

25-9 

22-2 

284-5 

232-0 

86-2 

31-1 

37-7 

6 

231-5 

209-5 

17-9 

16-3 

252-0 

217-7 

25-9 

22-2 

23-8 

7 

218-5 

204-6 

120 

10-3 

231-5 

209-5 

17-9 

15-3 

15-2 

8 

196 

196 

0 

0 

218-5 

204-6 

120 

10-3 

26-2 

301-9 
z  =    10-1 

3120 

Experiment  2. 


t  =  ISO  mla. 


Tower. 

la-flow. 

Oat-flow. 

HNO, 
formed. 

Kg. 

Litres. 

%  HNO,. 

%  N.O.. 

Kg. 

Litres. 

%  HNO,. 

%  N.O.. 

Kg. 

1 

297-7 

231-6 

46-8 

40-2 

349-0 

258-8 

67-2 

490 

60-3 

2 

249-6 

206-6 

33-5 

28-7 

297-7 

231-6 

46-8 

40-2 

55-7 

3 

231-2 

198-7 

26-8 

230 

249-6 

206-6 

33  5 

28-7 

21-7 

4 

220-0 

194-0 

22-3 

191 

231-2 

198-7 

26-8 

230 

12-9 

6 

208-7 

189-7 

17-1 

14-7 

2200 

194-0 

22-3 

191 

13-4 

6 

202-2 

187-3 

13-9 

120 

208-7 

189-7 

17-1 

14-7 

7-6 

7 

191-6 

183-2 

8-3 

71 

202-2 

187-3 

13-9 

12-0 

12-2 

8 

178 

178 

0 

0 

191-6 

183-2 

8-3 

7-1 

15-9 

199-7 

z  =     6-3 

2050 

Experiment  3. 


t  =  240  min. 


HNO, 

Tower. 

In-flow. 

Out-flow. 

formed. 

Kg. 

Litres. 

%  HNO,. 

%  N,0„. 

Kg. 

Litres. 

%  HNO,. 

%  N,Os. 

Kg. 

1 

473-5 

343-4 

63-3 

54-3 

535-6 

380-5 

690 

59-6 

73-2 

2 

427-7 

314-3 

57-7 

49-4 

473-5 

343-4 

63-3 

54-3 

530 

8 

360-1 

278-3 

46-5 

39-9 

427-7 

314-3 

57-7 

49-4 

79-4 

4 

317-8 

258-4 

37-2 

31-9 

360-1 

278-3 

46-5 

39-9 

49-2 

5 

269-1 

236-8 

22-9 

19-6 

317-8 

258-4 

37-2 

31-9 

56-6 

6 

249-6 

228-8 

15-7 

13-3 

2691 

236-8 

22-9 

19-6 

22-4 

7 

236-8 

224-0 

101 

8-6 

249-6 

228-8 

15-7 

13-3 

15-3 

8 

216-4 

216-4 

0 

0 

236-8 

224-0 

101 

8-6 

23-9 

3730 
z  =     9-0 

382-0 

Experiment  6. 


180  min. 


HNO, 

Tower. 

In-flow. 

Out-flow. 

formed. 

Kg. 

Litres. 

%  HNO,. 

%  N.O.. 

Kg. 

Litres. 

%  HNO,. 

%  N,0„ 

Kg. 

1 

4280 

3310 

46-6 

89-9 

514-3 

377-4 

58-2 

50-0 

100-3 

2 

365-8 

3011 

34-6 

29-7 

4280 

3310 

46-5 

39-9 

72-4 

3 

337-6 

288-6 

27-7 

23-8 

365-8 

301-1 

34-6 

29-7 

331 

4 

324-8 

283-4 

24-3 

20-8 

337-6 

288-6 

27-7 

23-8 

14-6 

5 

308-0 

276-6 

19-3 

16-5 

324-8 

283-4 

24-3 

20-8 

19-5 

6 

295-7 

271-7 

14-2 

130 

308-0 

276-6 

19-3 

16-5 

17-5 

7 

273-9 

264-0 

70 

61 

295-7 

271-7 

14-2 

13-0 

22-8 

8 

257-2 

257-2 

0 

0 

273-9 

2610 

7-0 

61 

19-2 

299-4 
z  =   10-6 

310-0 

2S8T 


M.AL.L.   AW1J    UTilJSKS.- JNITKIU    AUii)    ABSORPTION    TOWERS. 


[Aug.  31,  1922. 


y=- 


(2) 


rate  of  flow  of  the  liquid  expressed  in  litres  per 
square  foot  per  minute;  and  kf  is  a  constant  de- 
pending upon  the  units  in  which  the  flow  is 
expressed. 

By  integrating  equation  (1)  between  0  and  t  we 
get  as  the  total  change  in  concentration  of  nitrogen 
peroxide  during  a  time  t  minutes — 

'l-e-7-''/*  k'i\  

Since  the  gas  is  flowing  through  the  tower  at  a 
definite  velocity  of,  say,  V  cub.  ft.  per  minute, 
time  may  be  expressed  in  terms  of  volume  of 
absorbing  space  and  velocity  of  gas  through  the 
towers.  Let  o-y  be  the  total  packed  6pace  through 
which  the  reaction  takes  place,  then  the  free  6pace 
will  be  k ,  o"  y  where  kcis  a  constant  depending  upon 
the  structure  of  the  packing  and  t  =  fcc  <r  y  /  V. 

Thus  equation  (2)  becomes 


-?o 


*-*( 


1  —  e-*i  *'/»  *c  °>/ 


0 


(3) 


The  product  k,  kf  kc  =K,  which  is  the  absorption 
coefficient  for  a  liquid  of  definite  concentration 
flowing  at  the  rate  of  1  litre  per  square  foot  per 
minute  through  a  definite  kind  of  packing. 

Instead  of  expressing  nitrogen  peroxide  in  terms 
of  concentration,  we  may  consider  the  absolute 
quantities  passing  through  the  space"  <r  y  in  a 
definite  time  T,  and  put  Y=VTy  and  P=YTm[v. 
That  is,  P  is  the  total  amount  of  nitrogen  peroxide 
entering  a  given  space  o-  during  time  T  minutes, 
and  Y  is  the  total  amount  of  nitrogen  peroxide 
reacting  with  the  liquid  in  the  space  <ry  during  the 
time  T.  Two-thirds  of  this  is  transformed  into 
nitric  acid  and  one-third  into  nitric  oxide.  In 
each  case  the  quantity  of  gas  is  expressed  in  terms 
of  equivalent  kilograms  of  nitric  acid.  Equation 
(3)  therefore  becomes  :  — 


=  P(1- 


-K, 


yn.fi). 


•(*) 


Table  III. 

Average     concentra- 

tion     %       UNO, 

in  absorption  space 

7       12-5    17       51-5 

51-5 

63-5 

640 

K, 

6-6      5-2      3-7      1-2 

3-9 

0-6 

1-4 

Temp,  of  outflowing 

liquid  in  °  C. 

32-5    29-5    36       24-5 

28-5 

26-7 

28-0 

Table 

I.        I.         I.      (11.) 

11. 

(11.) 

11. 

Experiment 

2          13          4* 

2 

6» 

1 

*  Not  shown  in  Table  n. 


There  are  considerable  irregularities  in  the 
results,  no  doubt  due  to  the  impossibility  of  main- 
taining absolutely  constant  conditions,  such  as 
temperature,  and  due  .also,  as  will  be  shown  later, 
to  the  presence  of  chlorine  in  the  gases.  With  the 
help  of  these  values,  however,  and  the  fact  that,  as 
Foerster  and  Koch  (Z.  angew.  Chem.,  1908,  21, 
2161)  have  pointed  out,  the  rate  of  absorption  of 
nitrogen  peroxide  by  nitric  acid  becomes  very 
small  when  the  concentration  of  the  acid  rises  above 
65%,  and  apparently  ceases  altogether  at  69%,  a 
curve  showing  the  general  order  of  magnitude  of 
K,  for  any  concentration  of  acid  ma}'  be  drawn 
(see  Fig.  1). 

Oxidation  equation. — The  equation  2NO+02  = 
2N02  represents  a  termoleeular  reaction.  That  the 
oxidation  approximates  very  closely  to  such  a  re- 
action for  concentrations  of  nitric  oxide  from  0  to 
20%  by  volume  has  been  shown  by  Lunge  and  Berl 


(Z.  angew.   Chem.,   1906,   19,  807;  1907,  20,  2074). 
Their    results    were    confirmed    by    Bodenstein    (Z 
angew.  Chem.,  1909,  22,  1153).     The  rate  of  oxida- 
tion may  therefore  be  expressed  in  the  form 
dx       _    (m  \  *  /~m'         \ 

ay  =M.— *)  (v~x) <5> 

where  K,  is  the  oxidation  constant;  v  the  volume 
in  cubic  feet  containing  a  mass  m  of  nitric  oxide 


K, 

for  flow  of  1  litre  per  sq.  ft. 

per  mln 

K, 

5 

s 

\ 

2 

1 

• 

|\ 

\ 

10 


30  40 

%     HNO, 

Fig.  1. 


70 


The  values  of  Y,  P,  °~y,  V,  and  /  may  be  obtained 
from  Tables  I  and  II,  and  from  these  the  values  of 
the  absorption  coefficient  K,  determined  for 
different  concentrations  of  nitric  acid  and  for 
water.  The  values  of  K,  are  derived  from  the 
amount  of  absorption  taking  place  in  the  first  tower 
only,  and  the  oxidation  in  it  is  ignored.  Table  III 
shows  the  values  of  K,  obtained  in  this  way  for 
acids  of  various  concentrations. 


660 
2-3 

23-5 

n. 

3 


and  a  mass  m'  of  oxygen  both  expressed  as  kg.  of 
equivalent  nitric  acid;  and  x  the  change  in  equiva- 
lent concentration  of  nitric  oxide  and  of  oxygen 
after  time  t. 

Integrating  between  0  and  t  we  obtain 

f        m'(  m        \     (  m        m'\     \ 

Ka-t^_^y-|loge  ,_  ,. 

\v         v  J     \  uV»  J     \  v  J  v    J 

By  converting  Lunge  and  Berl's  values  into 
equivalent  kg.  of  nitric  acid  the  value  of  Ks 
in  the  required  units  was  found.  Their  experiments 
were  carried  out  at  constant  pressure,  and  this 
introduces  complications  in  the  change  in  con- 
centration during  the  reaction,  owing  to  shrinkage 
of  the  system  as  the  oxygen  disappears.  To  obviate 
this  difficulty  the  calculation  was  always  made 
between  pairs  of  successive  values,  and  the  volume 
of  the  system  in  each  case  was  taken  as  its  volume 
at  the  beginning  of  the  reaction  interval.  The 
values  of  Ks  calculated  by  this  method  from  Lunge 
and  Berl's  experimental  results  are  shown  in 
Table  IV. 

Table  IV 

Reaction  mixture  :    125  c.c.  NO,  500  c.c.  air.    Temp.  20°  C. 


Time  in 

Percentage  of  original  NO. 

mm. 

Converted.           Unconverted. 

Ks. 

0 
1-76 

60 
2-64 

60 
3-96 

60 
7-02 

60 
13-78 

60 
29-92 

60 

0 

52-49 
61-33 
6905 
80-56 

85  28 
91-77 

ioo  7 

47-51  | 
38-67  ) 
30-95) 
19-44^ 

14-72  > 
8-23) 

128,000 
114,150 

123,400 
76,260 
90,000 

Vol.  xi.l,  No.  16]     HALL   AND   OTHERS.— NITRIC   ACID   ABSORPTION  TOWERS. 


289  T 


The  experimental  data  contained  in  this  tahle 
were  also  plotted,  the  values  of  dxldt  obtained 
graphically,  and  the  value  of  K3  calculated  from 
this  and  the  concentrations.  In  the  case  of  the 
first  pair  (t=0  to  <  =  T76-h60  minutes),  the  value 
found  was  112,700,  agreeing  substantially  ttith  the 
above.  The  value  of  Ka  in  round  figures  was  taken 
as  100,000. 

In  many  practical  cases  the  concentration  of  the 
oxygen  is  such  that  its  changes  are  negligible  com- 
pared with  changes  of  nitric  oxide  concentration 
extending  through  a  considerable  range,  a  fact 
which  admits  of  an  important  simplification  in  the 
equation,   for,   writing  the  differential   equation 

dl  =  K>{v-x)  [°=]  (") 

where  [O,]  is  the  average  oxygen  concentration 
during  the  time  t,  and  integrating  between  0  and  t 
we  obtain 


=  'v  Ks  [02]  t 


(8) 


If  o-j.    is  the  empty   oxidation   space   and   V   the 
velocity  of  gas 


t=- 


^=^K3[02] 


V 


(9) 


Converting  concentrations  into  absolute  quantities, 
as  in  the  absorption  equation,  we  may  put  X  = 
VTx  and  Q=VTm/i>,  where  X  is  the  total  quantity 
oxidised  in  the  space  o-x  and  Q  the  total  quantity 
entering  the  space  <rs  during  the  time  T. 

•      x/vt     -  Q  Kroi   <"* 

•    *  (Q-X)/VT        ™      3l    2j 


Hence 


Q-X     V3! 


VT 


K3[02]  a-, 


X  = 


Q=K3  [02] 


(10) 


V2T  +  QK3[02]^s   ■• 

The  product  Ks[0?]  may  be  regarded  as  a  single 
constant  which  will,  of  course,  have  a  different 
value  for  different  average  oxygen  concentrations. 

It  has  been  found  by  several  investigators  that 
the  velocity  of  oxidation  of  nitric  oxide  has  a  small 
negative  temperature  coefficient  (Bodenstein,  loc. 
cit.,  also  Z.  Elektrochem.,  1918,  24,  183,  and  Z. 
angew  Chem.,  1918,  31,  145;  Briner  and  Fridoeri, 
Helv.  Chim.  Acta,  1918,  1,  181 ;  J.  Chem.  Soc., 
1918,  114,  ii.,  302;  AVourtzel,  Comptes  rend.. 
1920,  170,  229).  Since,  therefore,  both  the  rate  of 
oxidation  of  nitric  oxide  and,  probably,  the  rate  of 
absorption  of  nitrogen  peroxide  (Foerster  and 
Koch,  loc.  cit.)  are  increased  by  lowering  of  tem- 
perature, it  is  evident  that  the  gases  should  be 
cooled  as  much  as  possible  before  entering  the 
towers.  This  is  advisable  also  on  another  ground, 
namely,  the  liability  to  evaporation  of  the  nitric 
acid  solution  by  the  passage  of  a  strong  current  of 
air  through  it. 

Bclationship  between  oxidation  space  o-s  and 
absorption  space  o-y. — As  the  gas  passes  through  a 
certain  portion  of  absorption  space  cry,  it  will 
become  poorer  in  nitrogen  peroxide  and  richer  in 
nitric  oxide,  that  is,  at  a  certain  point  it  will 
become  more  economical  in  space  to  stop  absorption 
and  allow  oxidation  alone  to  take  place.  To  deter- 
mine the  exact  ideal  relationship  between  °~s  and 
o-y  would  probably  be  rather  difficult,  but  we  can- 
not be  far  from  the  optimum  condition  if  we  regard 
oxidation  as  equivalent  in  value  to  absorption  and 
choose    such    values    as    will    make    the    ratio    of 


oxidation  and  absorption  with  respect  to  space 
equal,  that  is, 

dX  _  dY_ 

dcrs  —  d  o-y 

It  is  evident  that  any  considerable  departure  from 
this  state  of  affairs  would  result  in  waste  of  space 
through  devoting  it  to  a  slow  process. 

Differentiating  equations  (4)  and  (10)  we  get 


.(11) 


and 


Q'K3  [Q2]  VT 
(V*T+QK3[02]o-s)* 


.(12) 


i.e., 


PK./l  -K,«-^/Y=       Q*K3[Q2]VT 


(V«T  +  QK3[04]-s)s 


(13) 


From  equation  (13),  for  given  values  of  P,  /,  V,  T, 
and  o-y,  we  obtain  two  values  for  c-x,  one  of  which 
is  always  negative  and  has  no  meaning.  The  other 
may  be  either  positive  or  negative.  A  negative 
value  indicates  that  the  absorption  space  is  in- 
sufficient to  enable  the  mixture  to  reach  a  point  at 
which  it  is  worth  while  to  begin  to  oxidise.  If  the 
value  is  positive  it  gives  the  measure  of  the 
oxidation  space  to  be  added  to  the  absorption  space 
°"y  in  order  to  produce  the  optimum  condition. 
The  value  of  o-y  is  chosen  arbitrarily  and  should 
not  greatly  exceed  the  value  at  which  o-x=0.  The 
smaller  the  total  value  of  o-  the  more  strictly  does 
equation  (13)  represent  the  required  condition  and 
the  smaller  the  total  tower  space  necessary.  Con- 
structional requirements,  however,  may  force  the 
adoption  of  certain  oxidation  spaces,  e.g.,  the  con- 
necting pipes,  but  with  the  help  of  the  above 
equation,  knowing  the  nature  and  concentration  of 
the  gas  under  consideration,  the  plant  can  be 
adapted  very  closely  to  the  form  necessary  for 
maximum  efficiency. 

Calculation  showed  that  the  towers  employed  in 
the  above  experiments  would  have  been  more 
efficient  if  all  except  the  seventh  had  been  packed 
full  of  pumice.  The  absorption  space  in  tower  7 
should  be  40  cub.  ft.  instead  of  49  cub.  ft.  In  all 
other  cases  the  pipes  allow  more  oxidation  space 
than  is  theoretically  necessary.  This  would  give 
an  efficiency  of  96%  as  against  92"5%. 

Discussion  of  results  in  Table  II. — The  quantities 
of  nitric  acid  produced  in  each  tower  in  experi- 
ments 1 — 6  are  shown  graphically  in  Fig.  2.  The 
ringed  numbers  on  the  curves  indicate  the  corres- 
ponding experiments.  The  results  are  calculated  to 
a  time  of  three  hours  in  each  case. 

In  experiments  1,  2,  and  3  the  inflow  of  water 
was  of  the  order  of  about  0'2  litre  per  sq.  ft.  per 
minute,  and  the  velocity  of  the  gas  was  120  cub.  ft. 
per  minute.  In  experiment  4*  the  flow  of  water 
was  somewhat  greater,  namely,  about  0'3  litre  per 
sq.  ft.  per  minute,  and  the  rate  of  flow  of  gas  was 
made  lower,  resulting  in  an  enormous  absorption 
in  tower  1.  In  experiment  5*  the  stream  of  gas 
was  kept  slow  and  the  flow  of  liquid  was  also 
decreased  to  about  0T3  litre  per  sq.  ft.  per  minute. 
In  this  case  acid  of  sp.  gr.  approximately  1'44  con- 
taining nitrous  acid  issued  from  towers  1  and  2. 
The  curve  is  drawn  for  towers  3 — 8  only.  All  the 
curves  obtained  up  to  this  point  show  a  distinct 
minimum  at  tower  4.  It  was  thought  that  this 
might  be  caused  through  the  output  of  tower  5 
being  raised  in  consequence  of  the  large  oxidation 
space  occurring  in  the  fan  and  connecting  pipes  at 
this  point.  In  order  to  test  this  the  fan  was 
eliminated  and  towers  4  and  5  joined  by  a  pipe  of 
only  slightly  greater  volume  than  those  joining  the 
other  towers. 

Experiments  6  and  7*  were  made  under  these 
circumstances,  the  velocity  being  about  90  cub.  ft. 
per  minute  and  the  rate  of  inflow  of  water  being 


il.ii.i1j     n-i*u     uiuui^u. 


-A1111I1U       AVll 


Jijjoyivi  null 


lUlt  iJA\o. 


lAUg.    dl,    1W^_. 


somewhat  greater  than  0'2  litre  per  sq.  ft.  per 
minute.  The  acid  running  out  of  the  first  tower 
was  a  little  weaker  than  formerly,  namely,  58%, 
with  the  result  that  a  very  large  absorption  is 
obtained  in  the  first  two  towers.  The  results  of 
experiment  7  are  very  similar  to  those  of  experi- 


Production  of  nitric  acid  in  each  tower. 
Time  :    3  hours. 
No.  5  not  corrected  for  HCl. 
The  small  figures  refer  to  strength  of  issuing  acid. 

ment  6,  and  are  therefore  not  plotted  in  the  figure. 
In  each  case  the  results  show  a  minimum  in  pro- 
duction at  tower  4.  The  presence  of  the  minimum 
is  therefore  not  due  to  the  fan  space. 

It  is  not  improbable  that  small  differences  Tn  the 
packing  of  the  towers  may  affect  the  output  con- 
siderably. For  instance,  if  one  of  the  trays  in  the 
sections  were  tilted  slightly  the  6tream  of  water, 
especially  if  small,  would  tend  to  run  down  one 
side  of  the  tower  and  thus  diminish  the  capacity  for 
absorption.  An  experiment  was  made  to  test  this. 
One  section  of  a  tower,  filled  with  pumice,  was 
arranged  so  that  the  water  could  be  seen  issuing 
from  the  bottom.  It  was  found  that  on  introducing 
even  a  considerable  stream  of  water  at  one  side  the 
bulk  of  it  flowed  out  at  the  bottom  near  that  side 
and  the  stream  did  not  spread  beyond  the  middle  of 
the  section.  This  demonstrates  also  the  necessity 
for  efficient  distribution  of  the  liquid  at  the  top 
of  the  tower  over  the  whole  cross-section. 

The  behaviour  of  the  succeeding  towers  which 
show  certain  regularities  in  the  recurrence  of 
maximum  and  minimum  outputs  may  possibly  be 
similarly  explained.  Fluctuations  will  also  be 
caused  by  variations  in  temperature  in  the  towers, 
resulting  in  changes  in  speed  of  flow  of  gas  and 
velocity  of  reaction,  and  by  variation  in  the 
chlorine  content  of  the  gases. 

It  is  evident  that  the  speed  of  the  inflowing  gas 
causes  important  differences  in  the  distribution  of 
the  output.  In  curves  4  and  6  in  Fig.  2,  in  which 
the  speed  is  very  low,  there  is  a  very  large  initial 
output.  It  may  therefore  be  concluded  that  a 
decrease  in  the  velocity  of  the  gas  increases  the 
efficiency  of  the  towers,  as  is  also  shown  by 
equation  (4).     The  efficiency  is,  however,  governed 

•Not  reproduced  in  Table  II. 


by  other  considerations  than  the  velocity  of  the 
gas.  For  a  given  total  quantity  of  nitrous  gas, 
reduction  in  the  speed  of  flow  of  gas  involves  a  re- 
duction in  the  concentration  of  the  oxygen,  so  that 
although  the  absorption  will  be  large  at  the  begin- 
ning owing  to  large  concentration  of  nitrogen  per- 
oxide, if  the  reduction  in  speed  is  carried  too  far 
the  reaction  will  be  difficult  to  complete  because  of 
the  slowness  of  oxidation  of  the  nitric  oxide 
produced.  In  many  cases,  however,  this  velocity  is 
determined  by  the  source  of  the  gas  and  cannot  be 
diminished.  For  instance,  a  certain  minimum 
velocity  is  necessary  for  the  removal  of  fumes  from 
nitric  acid  stills. 

Fig.  3  gives  an  interesting  comparison  between 
the  actual  experimental  efficiency  of  the  towers  and 
the  theoretical  efficiency,  calculated  for  average 
conditions  of  concentration  and  velocity  of  gas  and 
flow  of  liquid,  from  equations  4  and  10.  Curves  1, 
2,  and  3  show  the  experimental  rates  of  production 
reproduced  from  Fig.  2.  Curve  4  represents  the 
theoretical  rate  of  production  per  tower.  It  will  be 
seen  that  the  calculated  curve  follows  the  same 
general  course  as  the  experimental  one  as  closely 
as  could  be  expected,  although,  as  the  conditions 
are  supposedly  ideal,  the  irregularities  are 
smoothed  out.  Since  the  efficiency  of  the  towers 
under  the  conditions  of  the  experiments  was  over 
90%,  it  follows  that  the  formulae  arrived  at  repre- 
sent the  working  of  the  process  over  a  range  of 
concentration  of  nitrous  gases  of  approximately 
10:1.  Curve  5  shows  the  theoretical  results  to  be 
obtained  if  the  towers  had  been  packed  in  the  way 
indicated  above  as  the  best. 

In  obtaining  the  figures  for  curve  4  the  amounts 
of  oxidation  taking  place  in  the  unpacked  parts  of 
the  first  tower  were  calculated.  These  were  found 
to  be  negligibly  small  even   near   the  end  of  the 


100 


tower,  thus  justifying  the  neglect  of  oxidation  in 
these  spaces  when  determining  the  absorption  co- 
efficients and  the  influence  of  rate  of  flow  of  liquid. 

Procedure  for  the  design  of  a  set  of  towers  for 
nitric  acid  stills. 

As  already  stated,  the  velocity  of  flow  of  gas  will 
probably  be  fixed  within  narrow  limits  by  circum- 


Vol.  XIX,  No.  16.]         HALL   AND   OTHERS.—  NITRIC   ACID   ABSORPTION   TOWERS. 


291  T 


stances.  From  this  velocity,  and  the  total  equiva- 
lent nitric  acid  content  of  the  gas,  the  value  of  P 
during  a  certain  time  T  may  be  calculated.  The 
flow  of  liquid  may  be  arbitrarily  fixed,  the  strength 
of  acid  which  it  is  desired  to  obtain  determined 
upon,  an  approximate  average  strength  of  acid 
flowing  through  the  first  absorption  space  thus 
assigned,  and  the  value  of  K,  for  that  strength 
taken  from  the  curve.  A  value  of  o-y  may  then  be 
chosen,  the  choice  being  guided  by  the  fact  that,  if 
the  gas  is  comparatively  rich  in  nitrogen  peroxide 
it  will  probably  require  a  fairly  large  absorption 
space  before  it  is  worth  while  to  begin  to  oxidise. 
From  equation  4  in  which  P,  K„  o-y,  V,  and  /  have 
now  definite  values,  Y  may  be  calculated.  The 
amount  of  nitrogen  peroxide  will  then  have  been 
diminished  to  P-Y,  whereas  the  amount  of  nitric 
oxide  will  have  been  increased  by  Y/3  to  Q.  In 
the  case  of  the  first  tower  for  fumes  from  nitric 
acid  stills  Y/3  =  Q.  K3[03]  may  be  determined 
from  the  known  value  of  the  oxygen  concentration 
(K,  =  100,000  and  [O,]  must  be  calculated  in  kilo- 
grams of  equivalent  nitric  acid  per  cub.  ft.  For 
20%  oxygen  at  about  20°  C,  K,[0,]  is  practically 
3000).  As  indicated  previously,  equation  (13)  will 
then  give  the  value  of  o-x  which  should  follow 
o"y.  If  this  should  prove  of  suitable  dimensions  the 
value  of  X  may  be  calculated  from  equation  (10) 
and  thus  the  composition  of  the  gas  at  the  end  of 
the  oxidation  space  determined.  If  ax  should  be 
negative  or  too  large  a  new  value  for  ay  is  chosen 
and  the  calculation  repeated.  An  approximate 
value  for  the  strength  of  the  acid  in  the  next 
absorption  space  is  now  chosen  and  the  process 
continued  until  the  absorption  has  been  carried  to 
the  desired  limit.  It  will  be  seen  from  the  fact 
that  the  velocity  of  oxidation  falls  off  as  the  square 
of  the  concentration  of  nitric  oxide,  and  the  velocity 
of  absorption  directly  as  the  concentration  of 
nitrogen  peroxide,  that,  other  things  being  equal, 
the  more  dilute  the  gases  the  bigger  the  ratio  of 
oxidation  space  to  absorption  space  required.  The 
following  illustrates  this.  A  set  of  towers  was 
calculated  for  a  case  in  which  all  the  gas  was 
originally  present  as  nitric  oxide,  and  had  a  con- 
centration of  0'72  equivalent  kg.  of  nitric  acid  per 
100  cub.  ft.  The  space  required  to  absorb  82%  was 
795  cub.  ft.,  divided  into  410  of  absorption  space 
and  385  of  oxidation  space.  To  absorb  91%  an 
additional  345  cub.  ft.  of  absorption  space  and  406 
of  oxidation  space  were  required. 

This  example  also  demonstrates  the  greatly 
increased  difficulty  of  absorption  with  dilution.  It 
is  practically  impossible  to  reduce  the  concentration 
of  the  gases  io  much  below  0T  kg.  of  equivalent 
nitric  acid  per  100  cub.  ft.  by  water  alone  under 
ordinary  atmospheric  pressure.  An  alkali  tower 
or  increased  pressure  would  be  necessary  for  further 
absorption. 

Equation  (4)  shows  that  increasing  the  flow  of 
liquid  increases  the  absorption.  Increased  flow 
without  introduction  of  extra  water  may  be 
obtained  by  more  rapid  circulation  in  each  tower 
separately.  There  are  obviously  limits  beyond 
which  it  would  not  be  advisable  to  increase  the 
flow,  but  the  rate  of  absorption  continues  to 
increase  with  increase  in  the  rate  of  flow  up  to  at 
least  2"5  litres  per  sq.  ft.  per  minute. 

Absorption   of  nitrous  fumes  from  other  sources. 
Introduction  of  oxygen. 

In  the  case  of  nitrous  gases  from  denitration 
plants,  the  gases  escaping  from  nitrating  pots,  or 
the  oxides  of  nitrogen  produced  in  the  ammonia  or 
nitrogen  oxidation  processes,  the  percentage  of 
oxygen  is  often  very  low,  the  gases  at  the  same 
time  containing  a  large  proportion  of  nitric 
oxide,  resulting  in  slow  oxidation  and  hence  slow 
auios    ui    pa^oaja   s}UB[d    uoi)d.Losqy      -uoijdjosqu 


factories  without  due  recognition  of  this  fact 
proved  deplorably  inefficient.  Indiscriminate 
addition  of  air,  however,  may  prove  equally  fatal 
through  too  great  a  dilution  of  tho  gases. 

Air  must  in  any  case  decrease  the  rate  of 
absorption  because  of  increased  dilution.  If  the 
initial  concentration  of  oxygen  is  very  low  addition 
of  air  will  speed  up  the  oxidation  at  first  in  spite 
of  dilution.  As,  however,  the  velocity  varies  as  the 
square  of  the  concentration  of  nitric  oxide  and  only 
as  the  first  power  of  the  concentration  of  oxygen, 
a  point  will  be  reached  at  which  the  effect  of 
dilution  will  overbalance  the  effect  of  increased 
concentration  of  oxygen,  and  the  rate  of  oxidation 
also  will  be  slowed  down  by  further  addition  of  air. 

Equation  (12)  affords  a  guide  as  to  the  most 
favourable  point  for  the  introduction  of  air  and  as 
to  the  amount  required  to  secure  the  best  con- 
ditions. The  average  value  of  dX/do-s  through 
unit  space  at  any  point  in  the  towers  may  be 
calculated  from  the  equation  (12)  by  putting  o-r  ■=!. 
Then  the  changes  in  K3[02]  and  V  due  to  a  small 
addition  of  air  may  be  determined  and  dX/do-x 
calculated  for  the  new  conditions,  and  so  on  for 
increasing  additions  of  air.  If  the  values  for 
dX/do-s  are  then  plotted  on  a  curve  against  per- 
centage additions  of  air  it  will  be  possible  to  see 
whether  addition  of  air  at  that  particular  point 
causes  increase  or  decrease  of  rate  of  oxidation,  and 
if  increase,  at  what  percentage  addition  the 
maximum  rate  is  reached.  It  is  probably  better  to 
choose  a  value  a  little  before  the  maximum,  after 
the  main  bulk  of  the  increase  has  taken  place, 
because  of  the  diminution  in  rate  of  absorption  to 
which   reference   has   already  been   made.     Fig.   4 


10  20  30  40  50  80  70  80 

Percentage  of  air  added. 

FlQ.    i. 

Effect  of  addition  of  air  on  rats  of  oxidation  under 
different  initial  conditions. 

gives  curves  showing  the  variation  of  dX/do-x  with 
addition  of  air  for  different  initial  values  of  Q,  V, 
and  K3[Oa]. 

For  the  absorption  of  very  dilute  fumes,  such  as 
those  produced  in  the  oxidation  of  nitrogen,  it  is 
conceivable  that  towers  under  pressure  might  be 
used.  Suppose  the  pressure  were  increased  to  10 
atmospheres  the  amount  of  absorption  space 
required  would  be  of  the  order  of  l/10th  of  that 
required  under  atmospheric  pressure,  and  the 
oxidation  space  1 /100th. 

In  the  nitration  of  phenol  to  picric  acid  by  the 
old  pot  process  about  22%  of  the  nitric  acid  dis- 
appears entirely,  even  when  efficient  absorption 
plant  for  the  escaping  fumes  is  available.  This 
points  to  the  formation  of  unabsorbable  nitrogen 
products,  for  example,  nitrogen  itself  or  nitrous 
oxide.  These  have  been  identified  in  large  quan- 
tities in  the  fumes  from  the  nitration  by  Dr.  F.  O. 
Rice.     For  the  portion   which   is   absorbable  it  is 


necessary  to  have  large  tower  accommodation 
because  of  the  variable  rate  of  evolution.  The 
latter  applies  to  fumes  evolved  in  all  nitrating 
processes. 

Further  practical  points  in  the  construction  and 
working  of  nitric  acid  absorption  towers. 

It  has  sometimes  been  found  that  the  perforations 
of  the  plates  supporting  the  packing  have  been  few 
and  small,  causing  great  resistance  to  the  flow  of 
gas  and  thus  necessitating  greatly  increased  power 
for  driving  the  suction  apparatus.  The  total  area 
of  the  perforations  should  at  least  be  equal  to  the 
cross-section  of  the  fume  mains  leading  from  the 
source  of  the  gas  and  connecting  the  towers  with 
one  another,  and  these  should  be  as  large  as  con- 
venient. For  the  same  reason  also,  the  towers 
should  be  wide,  but  only  so  wide  as  still  to  allow 
an  even  distribution  of  liquid  over  the  whole  cross- 
section. 

Large  towers  may  be  built  of  acid-proof  bricks 
and  cement  instead  of  earthenware  pipes,  but,  in 
designing  such  towers,  the  number  in  series  should 
never  be  less  than  four,  and  it  is  advisable  to  have 
six  or  more  if  the  counter-current  principle  is  to  be 
worked  successfully  for  any  but  weak  acid.  In 
order  to  obtain  acid  of  the  usual  strength,  that  is, 
55 — 60%,  it  is  necessary  to  have  acid  of  various 
strengths  in  the  system  simultaneously.  The  rate 
of  circulation  of  liquid  required  to  keep  the  packing 
effectively  wet  is  much  greater  than  the  rate  of 
forward  travel  corresponding  to  the  maximum 
possible  output  of  the  system.  This  makes  it 
impossible  to  provide,  in  one  or  two  towers,  the 
variations  in  strength  necessary  to  produce  the 
required  degree  of  absorption.  Several  units, 
circulating  independently  acids  of  different  con- 
centrations, are  necessary. 

Packing  should  be  of  such  a  nature  that  it  is  not 
easily  worn  into  channels  which  would  direct  the 
liquid  by  one  or  two  streams  only,  and  thus  pre- 
.  vent  the  exposure  of  a  large  wet  surface.  It  should 
give  a  large  superficial  area,  and  at  the  same  time 
a  large  volume  of  free  space,  so  as  to  offer  as  little 
resistance  as  possible  to  the  passage  of  gas. 
Earthenware  rings,  hollow  ball  packing,  and  pro- 
pellor  packing  may  be  recommended. 

The  concentration  of  the  issuing  acid  should  not 
be  allowed  to  exceed  60%.  Reference  to  Pig.  1 
will  show  that  above  this  concentration  absorption 
will  lie  too  small  to  make  it  advisable  to  attempt  it, 
and  practice  bears  this  out. 

The  percentage  of  nitrous  acid  in  the  issuing 
acid  affords  a  rough  test  of  the  adequacy  of  the  air 
supply.  If  it  exceeds  0'3%  more  air  should  be 
introduced,  either  by  increasing  the  suction  of  the 
plant  or  by  blowing  air  into  the  fume  main  and 
carefully  regulating  until  optimum  recovery  is 
obtained. 

The  efficiency  of  the  toners  may  be  judged  by  the 
absence  of  colour  in  the  exit  gases,  unless  the  gas 
current  is  maintained  by  means  of  a  steam  jet  at 
the  end  of  the  towers,  when  the  oxidation  of  the 
brown  fumes  completes  itself  in  .the  presence  of  the 
steam,  giving  a  cloud  of  colourless  nitric  acid. 

Effect  of  the  presence  of  chlorine  on  the 
absorption  of  nitrous  fumes. 
With  a  view  of  studying  the  influence  of  the 
presence  of  chlorine  on  the  production  of  nitric 
acid  in  the  towers,  investigations  were  carried  out 
on  the  chlorine  content  of  the  gases  entering  and 
issuing  from  the  towers,  and  of  the  nitric  acid  pro- 
duced. Experiments  were  also  made  to  determine 
the  resulting  products  when  air,  both  alone  and 
charged  with  nitrous  fumes,  was  passed  through 
mixtures  of  nitric  and  hydrochloric  acids  of  varying 
concentration.  The  results,  and  the  general  con- 
clusions to  be  drawn  from  them,  may  be  briefly 
indicated. 


All  the  chlorine  (free  and  combined)  produced  in 
the  stills,  from  the  chloride  present  as  impurity  in 
the  nitrate,  is  carried  to  the  absorption  towers. 
Most  of  the  chlorine  appears  to  be  evolved  whilst 
the  still  is  taking  in  acid,  and  probably  also  just 
after  it  has  been  lit  up.  Consequently,  the  gases 
passing  into  the  absorption  towers  vary  very  much 
in  chlorine  content,  and  we  may  have  the  para- 
doxical result,  at  certain  periods,  that  much  more 
chlorine  is  present  in  the  exit  than  in  the  entrance 
gases.  It  was  found  that  for  brief  periods  the 
chlorine  content  of  the  fumes  might  rise  to  30 — 40% 
of  the  total  gases  capable  of  reacting  with  caustic 
soda,  but  for  average  conditions  it  was  not  more 
than  about  5%,  and  might  be  less. 

If  the  gases  leaving  the  towers  are  left  in  contact 
with  water  until  all  the  nitrogen  compounds  have 
been  absorbed,  a  trace  of  free  chlorine  almost 
always  remains,  but  its  amount  is  usually  very 
smali  compared  with  the  amount  of  hydrochloric 
acid  in  the  resulting  liquid. 

The  acids  from  all  the  towers  contained  a  certain 
amount  of  chlorine  in  some  form,  but  it  was  only  in 
nitric  acid  of  concentration  less  than  about  42% 
that  appreciable  quantities  were)  found.  Above 
that  concentration  not  more  than  about  0'5%, 
reckoned  as  hydrochloric  acid,  was  in  general 
present.  A  typical  example  of  the  distribution  of 
chlorine  and  nitrous  acid  through  the  towers  is 
given  in  Table  V. 


Table  V. 

Tower  No. 

%  HNO,. 

%  HN03. 

%  HC1. 

1 

63-7 

0-31 

0-05 

2 

60-5 

0-22 

0-0* 

3 

52-5 

0-36 

0-25 

4 

42-3 

0-45 

0-47 

6 

37-4 

0-31 

1-75 

e 

25-5 

0-20 

60 

7 

16-2 

015 

8-7 

8 

9-6 

0-33 

6-6 

If  chlorine  is  mixed  with  the  brown  fumes  pro- 
duced by  the  decomposition  of  a  nitrite  by  an  acid 
the  brown  colour  persists  even  if  the  gases  are 
damp,  provided  that  no  liquid  water  is  present. 
On  the  addition  of  the  latter,  however,  the  brown 
colour  disappears  and  the  oxidation  of  the  oxides 
of  nitrogen  to  nitric  acid  appears  to  take  place 
through  the  agency  of  the  chlorine  rather  than  of 
the  oxygen  of  the  air,  even  when  the  concentration 
of  the  latter  exceeds  that  of  the  former  by  as  much 
as  five  times.  This  conclusion  agrees  with  that 
reached  by  Webb  (J.,  1921,  162  t). 

If  a  small  percentage  of  pure  hydrochloric  acid 
is  added  to  pure  nitric  acid  of  a  concentration  even 
as  low  as  30%,  a  yellow  colour  is  produced,  pre- 
sumably owing  to  the  formation  of  nitrosyl  chloride. 
If  air  is  passed  through  such  a  mixture  both 
chlorine  and  nitrogen  compounds  are  found  in  the 
resulting  gases,  and  on  treating  these  with  water 
some  free  chlorine  is  left.  This  was  the  case  even 
with  a  mixture  of  29'85%  nitric  acid  and  6'8% 
hydrochloric  acid.  The  total  given  off  is  in  much 
greater  equivalent  quantity  than  the  nitric  acid. 
If  air  charged  with  nitrous  fumes  is  now  passed 
through  the  liquid,  much  more  chlorine  is  carried 
over,  but  none  of  it  is  in  the  free  state,  and  it  is 
usually  in  much  smaller  equivalent  quantity  than 
the  nitric  acid. 

These  results  suggest  the  following  conclusions  as 
to  the  behaviour  of  chlorine  compounds  in  the 
towers. 

In  the  still  hydrochloric  and  nitric  acids  react 
practically  completely  to  produce  nitrosyl  chloride 
and  chlorine,  so  that  the  gases  reaching  the  towers 
consist  of  a  mixture  of  nitrosyl  chloride,  chlorine, 


*  UI.  ALL,  -\0.    10.  J 


uii,jiuuiv. — inr,    \aruun  irxviioouMJi.   U£    J\\JrjiAL,L>li,tl\L)K. 


293  T 


and  nitrogen  peroxide.  The  two  latter  do  not  re- 
act in  the  gaseous  state,  but  as  soon  as  absorption 
begins  and  nitric  oxide  is  produced  the  chlorine 
probably  combines  with  it,  producing  more  nitrosyl 
chloride  instead  of  nitrogen  peroxide  (Boubnoff 
and  Guye,  J.  Chim.  Phys.,  1911,  9,  290).  The  effect 
of  this  in  the  presence  of  the  stronger  acid  will  be 
to  reduce  the  effective  concentration  of  nitrogen 
peroxide  and  so  diminish  to  some  extent  the  amount 
of  absorption.  This  will  result  in  a  greater  fall  in 
the  production  of  nitric  acid  than  theory  indicates, 
unnoticeable  in  the  first  tower,  but  more  marked 
as  the  concentration  of  nitric  oxide  increases.  The 
effect,  of  course,  will  be  limited  by  the  proportion 
of  free  chlorine  in  the  fumes,  and  as  we  have  seen 
that  this  is  very  variable,  the  production  of  nitric 
acid  will  also  vary  with  it. 

When  the  gases  reach  the  acid  containing  a  con- 
siderable quantity  of  hydrochloric  acid  and  still 
fairly  rich  in  nitric  acid,  say  about  40%,  a  further 
factor  in  the  diminution  of  production  of  nitric  acid 
will  appear.  As  the  acid  becomes  richer  in  nitric 
acid  it  will  tend  to  decompose  the  hydrochloric  acid, 
giving  nitrosyl  chloride  and  chlorine,  which  will 
pass  on  with  the  nitrous  fumes.  The  fresh  chlorine 
thus  produced  will  react  with  more  nitric  oxide, 
leaving  the  gas  still  poorer  in  nitrogen  peroxide. 

Soon  after  this  point,  however,  at  35—30% 
nitric  acid,  the  nitrosyl  chloride,  if  of  sufficient 
vapour  pressure,  will  begin  to  react  with  water  to 
form  nitrous  and  hydrochloric  acids,  the  former 
being  rapidly  transformed  into  nitric  acid  and 
nitric  oxide.  If,  therefore,  the  concentration  of 
hydrochloric  acid  is  not  already  very  high,  and  if 
the  original  gases  were  rich  in  chlorine,  absorption 
may  now  become  greater  than  theoretical,  hence  the 
tendency  to  a  minimum  in  the  middle  of  the  towers. 

On  the  other  hand,  if  the  entering  gases  contain 
little  chlorine,  and  the  weaker  absorbing  liquids 
are  becoming  fairly  rich  in  nitric  and  hydrochloric 
acids,  more  decomposition  of  hydrochloric  acid,  and 
hence  of  nitric  acid,  may  take  place  than  absorp- 
tion of  nitrosyl  chloride,  so  that  more  chlorine  will 
escape  than  enter.  It  is  probably  under  these  cir- 
cumstances that  the  largest  amount  of  free 
chlorine  will  escape  from  the  towers. 

It  is  evident  from  the  whole  of  the  foregoing  that 
the  chlorine  present  is  certainly  responsible  in  part 
for  the  irregularities  in  the  absorption  coefficients. 
At  the  same  time,  owing  to  the  very  large  varia- 
tion in  the  chlorine  content  of  the  gases,  and  the 
probability  that  it  may  both  help  and  hinder  the 
absorption  under  different  conditions,  it  seems 
unlikely  that  the  curve  in  Fig.  1  gives  values  very 
far  from  the  true  ones.  This  conclusion  is  sup- 
ported by  the  fact  that  comparison  of  theoretical 
with  practical  efficiency  of  towers  absorbing  fumes 
from  a  denitrating  plant,  containing  no  chlorine, 
show  the  two  to  be  in  very  satisfactory  agreement, 
both  for  low  and  high  efficiencies. 

Summary. 

Assuming  that  the  production  of  nitric  acid  from 
the  fumes  escaping  from  nitric  acid  stills  consists 
essentially  of  two  processes — one,  absorption  of 
nitrogen  peroxide  by  water  or  weak  acid,  to  form 
nitric  acid  and  nitric  oxide,  and  the  other,  the 
oxidation  of  nitric  oxide  to  nitrogen  peroxide — the 
experimental  data  derived  from  an  actual  set  of 
absorption  towers,  together  with  the  oxidation 
constant  determined  by  other  investigators,  have 
been  utilised  for  the  development  of  mathematical 
expressions  for  the  amounts  of  absorption  and  oxida- 
tion taking  place  under  given  conditions  of  velocity 
and  concentration  of  gas,  and  of  flow  and  con- 
centration of  absorbing  liquid. 

From  these  expressions  a  third  has  been  obtained 
by  means  of  which  the  optimum  ratio  between 
absorption  and  oxidation  spaces  might  be  fixed. 


These  mathematical  expressions  are  intended  as 
empirical  rules,  which  are  borne  out  by  practical 
results,  but  are  not  put  forward  as  evidence  for 
the  truth  of  the  hypotheses  as  to  the  mechanism  of 
the  reactions  used  in  developing  them. 

The  method  of  employing  these  expressions  for 
the  design  of  absorption  towers  for  nitrous  gases 
from  different  sources  has  been  indicated. 

The  effect  upon  absorption  of  the  presence  of 
chlorine  in  the  gases  from  nitric  acid  stills  has  also 
been  discussed. 

In  conclusion  the  authors  wish  to  thank  Mr.  A. 
Moore  and  other  members  of  the  staff  at  H.M. 
Factory,  Litherland,  for  their  assistance  in  carrying 
out  the  experimental  work. 


THE    VAPOUR    PRESSURE    OF    ACET- 
ALDEHYDE. 

BY   BOBERT   GILMOCR,    B.SC,    PH.D. 

The  following  measurements  of  the  vapour 
pressure  of  acetaldehyde  at  various  temperatures 
were  carried  out  some  years  ago,  in  connexion  with 
other  experimental  work,  and  as  there  appears  to 
be  no  mention  of  similar  measurements  in  the 
literature,  they  are  perhaps  worth  recording. 

The  acetaldehyde  used  was  a  synthetic  product 
from  acetylene  and  was  available  in  quantity.  The 
sample  used  for  the  measurements  was  the  mid- 
fraction  obtained  from  about  a  litre  of  acetaldehyde 
which  was  already  of  high  purity.  This  fraction, 
amounting  to  about  70%  of  the  whole,  distilled 
within  0'03°  C,  and  practically  the  whole  of  it 
came  over  at  the  constant  temperature  of  20'55°  C. 
at  a  barometric  pressure  of  771  mm. 

The  distillation  was  carried  out  with  a  column 
about  1  in.  diameter  and  18  in.  high,  filled  with  glass 
beads  and  water-jacketed.  This  enabled  the  upper 
part  of  the  column  to  be  kept  about  5°  C  below 
the  boiling  point  of  the  acetaldehyde.  The  outlet 
from  the  column  was  connected  through  a  condenser 
cooled  by  ice  water,  with  a  receiver  packed  in  ice, 
and  the  thermometer  stem  over  the  range  used  was 
entirely  immersed  in  the  vapour.  The  thermometer 
used  was  a  "  Jena  Normal  "  which  had  been  com- 
pared with  a  calibrated  thermometer.  For  main- 
taining a  steady  pressure  the  excellent  apparatus 
described  by  Wade  and  Merriman  (Chem.  Soc. 
|  Trans.,  1911,  99,  984)  was  used.  The  vapour  pres- 
sure measurements  were  carried  out  with  the 
apparatus  described  above,  over  the  temperature 
range  of  27°  C.  to  12°  C. 

Experimental  readings.     1st  Series. 

Pressure  in  mm.  . .  770.  7311,  721-2,  700-1,  693-7,  672-4, 
652-4,  628-8,   607-7,   581-0,  555-4. 

Boiling  point,  "C.  ..  20-43,  19-07,  18-70,  18-27,  17-70,  16-91, 
1614,  15-20,  14-32,  13-20,  12-08. 

The  pressure  was  then  raised  to  atmospheric 
(770  mm.)  and  the  boiling  point  again  read.  It  was 
found  to  be  the  same  as  at  the  commencement, 
viz.  :  —20-43°  C. 


Experimental  readings.     2nd  Series. 
Pressure  in  mm. 
Boiling  point,  °C. 


772,     794-8,     826-0,     S58-8,     891-9,     922-2, 

961-9,  10111. 
20-51,     21-27,     22-30,     23-38,     24-40,     25-33, 

26-51,  27-89. 


For  the  temperatures  below  12°  C,  Wade  and 
Merriman's  apparatus  was  used  (Chem.  Soc.  Trans., 
1912,  101,  2438).  This  consists  of  a  round-bottomed 
flask  surrounded  with  cotton-wool,  and  provided 
with  a  very  fine  capillary,  a  connexion  to  vacuum, 
and  a  thermometer  with  the  bulb  immersed  in  the 
liquid. 


Experimental  readings.     3rd  Series. 

Pressure  in  mm.     . .     657-8,    617-3,    604-9,    467-5,    425-2,    381-8, 

336-8,    306-5,    275-5,    256-2,    227-7,    1S7-5, 

156-8,    127-7,    100-0. 
Boiling  point,  °C.  . .     12-30,    10-60,    9-CO,    8-40,    6-20,    3-67,    000, 

-1-23,  -3-60,  -5-50,  -8-40,  -12-15,  -15-95, 

-19-66,  -2415. 


The  experimental  values  were  plotted  and  the 
curve  smoothed.  From  the  smoothed  curve  the 
following  values  for  pressure  and  boiling  point  were 
read,  and  from  these  figures  dt/dp  calculated. 


Pressure  Boiling 

Pressure  Boiling 

in  mm. 

point, 

°C. 
27-55 

dt/dp 

dp'dt 

in  mm 

point, 
°C. 

dt/dp 

dp/dt 

1000 

00278 

35-9 

.     550 

11-71 

0-0445 

22-5 

950 

2615 

00290 

34-5 

.     500 

9-41 

00475 

210 

900 

24-67 

00307 

32-6 

.     450 

6-94 

00515 

19-4 

850 

2310 

0-0321 

81-1 

.     400 

4-28 

0-0571 

17-5 

800 

21-45 

0-0339 

29-5 

.     350 

1-10 

00646 

15-5 

780 

20-10 

0-0355 

28-2 

.     300 

-  2-50 

00743 

13-4 

760 

19-70 

00357 

28-0 

.     250 

-  6-40 

00867 

11-5 

700 

17-86 

00377 

26-5 

.     200 

-11-20 

0-1027 

9-7 

650 

16-92 

00398 

25-1 

.     150 

-17-00 

01225 

8-2 

600 

13-87 

00420 

23-8 

.     100 

-24-30 

01670 

60 

The  pressure-dt/dp  curve  was  plotted  and  from  it 
and  the  pressure-b.p.  curve  the  following  values 
were  read  and  dp/dt  calculated. 


Vapour  pressures  of  acetaldehyde. 


emj 

.  Pressure  dt/dp. 

dp/dt. 

Temp. 

Pressure 

dt/dp 

° 

in  mm. 

° 

in  mm. 

27 

981 

00284 

35-2     . 

1 

346 

0-0652 

25 

911 

00304 

32-9     . 

0 

331 

0-0680 

23 

846 

0-0324 

30-8     . 

.     -  1 

317 

00708 

21 

786 

00345 

29-0     . 

.     -  3 

290 

00763 

20 

757 

00355 

28-2     . 

.     -  5 

264 

00830 

19 

729 

00365 

27-4     . 

—  7 

241 

0-0891 

17 

676 

00387 

25-8     . 

.      -  9 

219 

00955 

15 

627 

00407 

24-6      . 

.     -11 

200 

01027 

13 

580 

00428 

23-4     . 

.     -13 

181 

0-1110 

11 

634 

0-0453 

221     . 

.     -15 

163 

01200 

9 

490 

00475 

21-0     . 

.     -17 

147 

01290 

7 

451 

00514 

19-5     . 

.     -19 

132 

01400 

6 

414 

0-0552 

18-1     . 

.      -21 

119 

01600 

3 

378 

00598 

16-7     . 

.     -23 

106 

01610 

dp/dt. 

15-3 

14-7 

141 

131 

120 

11-2 

10-5 

9-7 

90 

8-3 

7-7 

7-1 

6-6 

6-2 


Boiling  points  recorded  at   atmospheric  pressure. 

1.  20-55°  at  771  mm.  =  20-10°  at  760  mm. 

2.  20-43°  at  770  mm.  =  20-08°  at  760  mm. 

3.  20-51°  at  772  mm.  =  20-08°  at  700  mm. 

4.  20-20°  at  762  mm.  =  20-13°  at  760  mm. 
Mean  value  of  b.p.  =  20- 11°  at  760  mm. 

Note. — The  temperatures  recorded  are  corrected  for  error  of 
thermometer  down  to  -5°C,  but  riot  reduced  to  hydrogen  scale. 
Temperatures  below  -5°  C.  may  be  somewhat  erroneous,  due  to 
superheating  or  error  of  thermometer,  since  no  elaborate  precautions 
were  taken.  The  pressures  are  as  read,  at  a  temperature  of  18°  C. 
throughout. 

Density  of  acetaldehyde. 
The  densities  were  taken  in  a  carefully  calibrated 
U-shaped  pyknometer  of  capacity  about  36  c.c. 
with  capillary  bore  tubes  surmounted  by  reservoirs 
which  were  closed  by  rubber  stoppers  instead  of 
ground-in  glass  stoppers.  As  a  confirmatory  test, 
a  determination  was  made  in  a  pyknometer  with 
calibrated  capillary  tube,  with  a  small  bulb  at  the 
top  which  was  sealed  before  removing  from  the  ice 
bath ;  the  true  volume  of  the  acetaldehyde  being 
read  off  on  the  scale. 

The  usual  corrections  for  buoyancy  were  made 
when  calculating  the  results.  Densities  at  0°/0°  C, 
(1)  0-8056,  (2)  0-8060,  (3)  08058  (sealed  pykno- 
meter); mean  value  at  0°/0°  C.=0-8058.  The 
density  was  also  taken  at  16°  C. 

D  at  16°/4°  C.  =  0-7839;  at  16°/ 16°  C.  =07847. 
On  account  of  the  extreme  volatility  of  acetaldehyde 
great  difficulty  was  experienced  in  obtaining  con- 
cordant results  for  the  densities.  In  addition  the 
ease  with  which  the  substance  oxidises  makes  it 
difficult  to  be  sure  of  the  purity. 

Latent  heat  of  vaporisation  of  acetaldehyde. 

The  latent  heat  of  vaporisation  was  calculated 
according  to  the  method  of  Lewis  and  Weber 
(J.  Lid.  Eng.  Chem.,  1922,  14,  486),  using  the  curve 
obtained  by  plotting  boiling  points  of  aldehyde 
against  the  temperatures  at  which  water  has 
the  same  vapour  pressure.  This  curve  was  prac- 
tically a  straight  line  over  the  range  +27°  to 
-24°  C. 

The  value  obtained  was : — L  =  132  calories  per 
gram  at  20°  C,  from  which  Trouton's  constant 
ML/T  =  19-8. 

Robinson  in  "  The  Elements  of  Fractional  Dis- 
tillation," gives  L  =  134p6  calories  per  gram  at  the 
boiling  point,  which  agrees  fairly  well  with  the 
calculated  value  L  =  132. 

In  conclusion,  I  desire  to  express  my  thanks  to 
Messrs.  W.  Dunville  and  Co.,  Ltd.,  in  whose  labora- 
tory the  work  was  carried  out,  for  permission  to 
publish  these  figures. 


Vol.  XLI.,  No.   17.] 


TRANSACTIONS 


[Sept.  15.  1922. 


Annual  Meeting. 

A  RAPID  AND  ACCURATE  METHOD  FOR  THE 
CALIBRATION  OF  STORAGE  TANKS. 

BY    J.    W.    M'DAVID,    D.8C,    F.I.C. 

{Abridged.) 

The  volumes  of  storage  vessels  are  usually  deter- 
mined either  by  measuring  the  vessel  and  calcu- 
lating its  volume  mathematically,  or  by  filling  the 
vessel  with  water  and  weighing  the  water  as  it  is 
run  out  of  the  tank.  The  first  method  is  accurate 
only  for  rectangular  tanks  or  cylindrical  tanks 
standing  on  end,  while  the  second  method,  though 
accurate,  is  somewhat  laborious.  Another  method 
which  has  been  employed  consists  in  filling  a  tank 
with  water,  adding  a  known  weight  of  a  soluble 
salt,  and  then  analysing  a  sample  of  the  solution. 
This  is  an  ingenious  method  for  determining  the 
total  volume  of  a  vessel,  provided  there  is  adequate 
means  of  stirring  the  solution,  but  it  becomes 
laborious  if  the  volume  per  inch  of  depth  is 
required. 

A  fourth  method  which  can  be  employed  for  the 
determination  of  the  volumes  of  tanks  depends  on 
the  principle  that  water,  flowing  through  a  tube  or 
orifice  under  a  constant  head,  gives  a  constant  rate 
of  flow.  This  method,  however,  does  not  seem  to 
have  been  much  used  in  practice,  probably  owing  to 
the  fact  that  the  degree  of  accuracy  of  such  a 
method  was  not  known,  and  also,  possibly,  because 
the  amount  of  time  taken  to  fit  up  the  apparatus 
required,  and  to  determine  the  rate  of  flow  under 
a  given  head,  makes  the  method  as  laborious  as  the 


others.  It  was  thought,  however,  that  it  should  be 
possible  to  design,  on  this  principle,  a  conveniently 
portable  and  accurate  apparatus  which,  after  being 
calibrated  once  and  for  all,  would  be  available  for 
the  rapid  calibration  of  storage  tanks  of  all  shapes 
and  sizes. 

Such  an  apparatus  was  accordingly  constructed, 
and,  after  a  few  minor  alterations,  was  calibrated. 


A  description  of  the  instrument,  and  an  account  of 
the  experiments  carried  out  in  order  to  determine 
the  rate  of  flow  of  the  water,  are  given  below. 

Tho  apparatus,  which  was  designed  by  Messrs. 
J.  M.  Weir,  N.  Taylor,  and  the  author,  is  shown  in 
the  accompanying  figure.  A  is  a  brass  cylindrical 
vessel  4  inches  in  diameter,  and  about  2  ft.  1£  in. 
in  length.  The  vessel  is  open  at  the  top,  and  is 
held  in  a  vertical  position  by  means  of  three  legs, 
B,  each  of  which  carries  a  levelling  screw,  C.  A 
plumb-line  is  provided  to  ensure  that  the  apparatus 
is  6et  vertically.  Water  is  supplied  to  the 
apparatus  through  the  |-in.  inlet  cock,  D,  to  which 
a  hose-pipe  can  be  attached.  E  is  a  brass  overflow 
pipe  $  in.  in  diameter,  while  F,  a  pipe  of  similar 
size,  delivers  water  to  the  tank  to  be  calibrated. 
In  the  first  instrument  this  pipe  was,  for  conveni- 
ence, made  in  two  parts  connected  together  by 
means  of  a  screw  coupling,  G,  but  in  later  instru- 
ments this  coupling  was  omitted.  Tho  bottom  of 
the  delivery  pipe  is  fitted  with  a  screw  thread,  so 
as  to  take  a  nozzle,  H.  Five  nozzles  of  diameters 
i>  t>  i>  l>  and  3  in.  respectively  were  provided,  so 
that  the  quantity  of  water  delivered  to  the  tank 
could  be  varied. 

The  funnel,  K,  works  on  a  swivel,  so  that  it  can 
bo  placed  underneath  the  nozzle  in  an  instant,  and 
so  divert  the  water  from  the  tank  which  is  being 
calibrated.  L  is  a  plate  perforated  with  holes  J  in. 
in  diameter,  and  serves  the  double  purpose  of  form- 
ing a  support  for  the  pipes,  E  and  F,  and  at  the 
same  time  reducing  turbulence  at  the  surface  of 
the  water.  The  complete  apparatus  only  weighs 
26  lb.,  and  can  therefore  be  easily  carried  about 
from  place  to  place  by  one  person. 

The  method  of  using  the  apparatus  is  as  follows  :  — 
Tho  instrument  is  set  up  in  a  vertical  position  over 
any  convenient  inlet  hole  in  the  cover  of  the  vessel 
to  be  calibrated.  The  funnel,  K,  is  placed  under 
tho  nozzle,  and  sufficient  water  led  into  the 
apparatus  through  the  cock,  D,  until  there  is  just  a 
slight  trickle  of  water  escaping  through  the  over- 
flow pipe,  E.  In  the  experiments  carried  out  to 
calibrate  the  apparatus  the  quantity  of  water 
escaping  through  the  overflow  pipe  was  determined, 
and  averaged  0'7  lb.  to  1'5  lb.  per  minute.  As 
soon  as  water  is  leaving  the  overflow  pipe  at  the 
rate  mentioned  above,  the  head  of  water  in  the 
apparatus  has  reached  a  constant  figure,  and,  so 
long  as  this  level  is  maintained,  the  quantity  of 
water  delivered  through  the  nozzle  will  be  constant. 
When  this  condition  has  been  obtained  the  funnel, 
K,  is  smartly  drawn  from  below  the  nozzle,  and  the 
water  is  allowed  to  flow  into  the  tank.  At  the 
same  time  a  reliable  stop-watch  is  started.  If  it  is 
required  to  find  merely  the  total  volume  of  the 
tank,  the  time  taken  to  fill  it  with  water  is  noted, 
but  if  it  is  required  to  determine  the  volume  per 
inch  of  depth,  then  the  funnel,  K,  is  placed  beneath 
the  nozzle  after  a  definite  interval  of  time,  and  the 
depth  of  water  in  the  tank  measured.  By  choosing 
suitable  intervals  of  time  the  volume  per  inch  of 
depth  can  be  calculated. 

The  calibration  of  the  instrument  fitted  with 
each  of  the  five  nozzles  in  turn  was  carried  out  in 
the  following  manner: — A  large  rectangular  box 
was  placed  on  a  platform  weighing  machine  and 
tared.  The  calibrator  was  set  up  so  as  to  deliver 
water  into  the  box  while  a  short  length  of  hose  pipe 
was  fitted  to  the  overflow  pipe,  E,  to  carry  the 
water  passing  from  the  overflow  into  a  tared  bucket. 
As  soon  as  the  box  on  the  weighing  machine  had 
been  tared,  the  funnel,  K,  was  fixed  beneath  the 
nozzle  in  such  a  way  that  it  prevented  water  from 
entering  the  box.  The  water  was  then  turned  on 
and  regulated  until  the  quantity  passing  out  of  the 
overflow  was  about  1  lb.  per  minute.  The  funnel 
was  then  drawn  smartly  away,  the  time  being  taken 
by  means  of  a  stop-watch,  while  at  the  same  time 


296  t 


WALMSLEY.— TAR  DISTILLING. 


[Sept.  15, 1922. 


the  water  running  from  the  overflow  was  led  into 
the  bucket  mentioned  above.  At  the  end  of  a 
definite  time  the  funnel  was  replaced  in  position, 
and  the  bucket  drawn  from  underneath  the  over- 
flow pipe.  The  water  both  in  the  box  and  in  the 
bucket  was  then  separately  weighed.  The  reason 
for  weighing  the  latter  was  to  ensure  that  a  con- 
stant rate  of  overflow  had  been  maintained.  Dur- 
ing the  course  of  each  test  the  temperature  of  the 
water  was  noted ;  in  the  case  of  cold  water 
this  did  not  vary  by  more  than  0'2°  C.  in  any  one 
test,  while  in  the  case  of  the  warmer  water  the 
maximum  variation  was  not  more  than  1°  C.  The 
stop-watch  employed  was  found  to  agree  with 
several  other  watches  to  within  1  in  4000.  The 
weighing  machine  was  overhauled  and  tested  before 
being  used,  and  was  found  to  be  sensitive  to  the 
degree  of  0'5  lb.  in  700  lb.  At  least  three  tests  were 
carried  out  at  each  temperature,  and  with  each 
nozzle. 

The  results  of  the  calibration  experiments  showed 
that  the  apparatus  is  capable  of  giving  very 
accurate  results.  With  the  exception  of  those 
obtained  with  the  i-in.  nozzle,  all  the  results  in  any 
one  series  agreed  to  within  0'3  % .  In  the  case  of  the 
i-in.  nozzle  the  difference  between  the  highest  and 
'owest  result  in  any  one  series  was  about  0'5%,  and 
even  this  is  satisfactory,  since  the  measurement  of 
the  contents  of  a  tank  by  dipping  is  not  usually 
correct  to  J  in.  in  50  ins.  As  the  temperature  of 
the  water  affects  the  quantity  delivered,  it  is  more 
convenient  for  purposes  of  calculation,  in  using  the 
apparatus  with  water  at  any  temperature  between 
5°  and  20°  0.,  to  determine  the  quantity  delivered 
in  cubic  feet  instead  of  in  lb.  This  has  therefore 
been  done,  and  the  results  are  given  in  the  sub- 
joined table : — ■ 

Temperature     Volume  of  water  delivered  in  cubic  feet  per  minute- 

of water,0C.    i'nozzle.    s'nozzle.  4'nozzle.  g'uozzle.  ^'nozzle- 

4  ..  0-2720  ..  0-674     1012     1-404  1-642 

5  ..  0-2725  ..  0-675  1015  1-412  1-651 
12  ..  0-2731  ..  0-677  1-018  1-421  1-660 
16  .  .  0-2736  . .  0-678  1-021  1-430  1-668 
20    ..  0-2743  ..  0-679     1024     1-439  1-678 

Stress  has  already  been  laid  on  the  fact  that,  in 
order  to  obtain  the  best  results,  it  is  necessary  that 
water  should  escape  through  the  overflow  pipe,  E, 
at  approximately  constant  rate,  which  during  the 
calibration  of  the  instrument  was  0'7  to  1"5  lb.  per 
minute.  Any  increase  in  the  rate  of  overflow  is 
accompanied  by  a  slight  increase  of  head;  for 
example,  when  the  overflow  is  1  lb.  per  minute,  the 
head  is  3T9  ins.  above  the  top  of  the  delivery  pipe, 
while  when  the  overflow  is  4  lb.  per  minute  the 
head  is  3'32  ins.  above  the  same  level.  Thus,  by 
increasing  the  overflow  from  1  lb.  to  4  lb.  per 
minute  the  head  is  increased  by  J  in.  A  few  tests 
carried  out  showed  that  an  increase  of  head  of 
O'l  in.  increased  the  outflow  by  about  0T%,  so  that 
the  error  caused  by  increasing  the  overflow  from 
1  to  4  lb.  per  minute  is  not  very  great.  It  is  pre- 
ferable to  eliminate  the  source  of  error  altogether. 

When  the  rate  of  flow  had  been  determined  for 
each  of  the  nozzles,  the  apparatus  was  used  for  the 
calibration  of  several  tanks,  in  order  to  see  whether 
concordant  results  could  be  obtained. 

In  the  first  test  a  plant-measuring  vessel, 
designed  to  deliver  a  definite  volume  of  acid  to  a 
cylindrical  tank,  was  calibrated  by  running  water 
into  it  from  the  calibrator  until  water  just  appeared 
in  the  sight-glass  of  the  overflow  pipe.  In  two 
consecutive  tests,  using  the  J-in.  nozzle,  the  times 
taken  to  fill  the  measuring  vessel  were  50  min. 
47"5  sees,  and  50  min.  49  sees. — a  difference  of 
0-05%. 

The  second  test  consisted  in  the  calibration  by 
two  independent  observers  of  a  stoneware  tank  of 
about  200  gallons  capacity,  usinj.-  the  f-inch  nozzle. 
The  difference  between  the  two  exterminations  for 
the  same  volume  was  O'l  in  39  ins.,  or  about  0"2r>%. 


The  third  test  carried  out  was  the  calibration 
of  an  egg-ended  boiler,  which  had  previously  been 
twice  calibrated  by  filling  it  with  water  and  weigh- 
ing the  water  which  it  delivered  for  each  inch  of 
depth.  The  water  from  the  calibrator  was  delivered 
to  the  boiler  during  definite  intervals  of  time.  At 
the  end  of  each  interval  the  depth  of  water  in  the 
boiler  was  determined  by  means  of  the  same 
measuring  rod  that  had  been  used  in  calibrating  the 
tank  previously.  In  order  to  obtain  the  volume 
per  inch,  the  volumes  of  water  run  during  the  vari- 
ous intervals  of  time  were  plotted  graphically,  on  a 
very  large  scale,  against  the  depths  of  water  regis- 
tered in  the  boiler.  On  connecting  these  points 
to  furnish  a  smooth  curve,  it  was  found  that 
whereas  a  few  points  lay  outside  the  graph,  out  of 
these  none  was  further  from  it  than  a  distance 
representing  01  in.  in  the  dip,  whilst  the  very 
great  majority  were  within  half  this  distance.  The 
volume  per  inch  was  then  read  off  the  graph,  and 
these  results  compared  with  the  figures  obtained  by 
actually    weighing   the   water    delivered    from    the 

There  was  a  considerable  difference  in  the 
volumes  of  the  boiler  up  to  a  depth  of  10  ins.  as 
found  by  direct  weighing  of  the  water  and  by  the 
calibrator,  probably  due  to  the  fact  that  an  error 
of  O'l  in.  in  measuring  the  depth  makes,  during 
this  part  of  the  calibration,  a  considerable  per- 
centage error  in  the  volume.  At  any  rate,  it  does 
not  appear  to  be  due  to  errors  either  in  the  weigh- 
ing of  the  water  or  in  the  calibrator,  since  at 
greater  depths  when  an  error  of  O'l  in.  in  the  depth 
has  a  comparatively  6mall  effect  the  agreement  be- 
tween the  two  sets  of  results  is  highly  satisfactory. 

The  results  showed  that  the  apparatus  is  capable 
of  giving  results  quite  as  accurate  as,  if  not  more 
accurate  than,  those  that  can  be  obtained  by  the 
direct  weighing  method. 

From  the  results  of  the  three  tests  described 
above,  the  calibrator  appears  to  be  capable  of  giving 
results  correct  to  within  0'2  % ,  provided  that  the 
depth  measurements  are  read  to  that  degree  of 
accuracy.  By  using  the  largest  nozzle  a  boiler  of 
600  cub.  ft.  capacity  can  be  calibrated  in  a  little 
over  six  hours,  while  the  apparatus  is  also  suitable 
for  the  accurate  calibration  of  small  vessels  such  as 
guncotton  nitrating  pans,  one  of  which,  by  using 
the  J-in.  nozzle,  can  be  calibrated  in  less  than  ten 
minutes.  Several  of  these  instruments  have  been 
in  use  more  or  less  continuously  for  the  last  two 
years,  and  have  proved  thoroughly  satisfactory. 

The  author  wishes  to  express  his  thanks  to  the 
management  of  Messrs.  Nobel  Industries,  Limited, 
Ardeer  Factory,  Stevenston,  Ayrshire,  for  granting 
permission  to  publish  the  information  contained  in 
this  paper. 

TAR   DISTILLING. 

DT    W.   A.    WALMSLEY. 

(Abridged.) 

Up  to  about  ten  years  ago  town's  gas  was  made 
almost  exclusively  in  horizontal  retorts  at  high 
temperature,  and  the  resulting  tar  was  thick  and 
heavy.  Horizontal-retort  tar  has  been  fairly 
thoroughly  investigated  by  a  number  of  workers, 
and  its  constituents  proved  to  be  of  an  aromatic 
character.  On  distillation,  it  yields  approximately 
60 — 70%  of  pitch  of  good  merchantable  quality, 
and  30—40°'  of  oils  containing  aromatic  hydro- 
carbons of  the  benzene,  naphthalene,  and  anthra- 
cene series,  phenols  and  phenol  homologues,  pyri- 
dines, etc. 

With  the  introduction  of  the  vertical  retort, 
a  radical  change  occurred  in  the  tar.  The  specific 
gravity  was  lower,  and  the  tar  of  a  more  oily 
nature.  Glasgow  vertical  tar  vields  on  distilla- 
tion 40 — 44%   of  pitch  and  56—60%   of  oils. 


Vol.  XLI.,  Xo.  17.) 


WALMSLEY.— TAR  DISTILLING. 


297  T 


The  tar  vapours  in  horizontal  retorts  have  to 
pass  through  the  hot  outer  crust  of  the  charge, 
and  also  to  some  extent  along  the  hot  walls  of  the 
retort.  Breakdown  occurs,  and  the  resulting  tar 
is  benzenoid  in  character.  In  vortical  retorts  the 
earlier  portions  of  tar  vapours  are  provided  with 
a  cool  means  of  escape  from  the  retort  through 
zones  at  a  lower  temperature  than  that  at  which 
they  are  formed.  It  is  even  possible  that  they  have 
some  solvent  action  on  the  coal  in  these  lower  tem- 
perature zones,  and  pick  up,  in  passing,  some  of 
the  primary  constituents  of  the  coal  stuff  itself. 
The  tar  resulting  from  such  conditions  is  paraffinoid 
in  nature,  and  is  known  as  low-temperature  tar. 
The  later  portions  of  tar  vapours,  however,  are 
subjected  to  some  extent  to  the  conditions  that 
appertain  in  horizontal  retorts  and  give  benzenoid 
tar. 

Vertical-retort  tar  may  therefore  be  looked 
upon  as  a  mixture  of  high-  and  low-temperature 
tars.  No  thorough  investigation  has  been  made 
of  vertical-retort  tar.  It  contains  less  benzol 
than  horizontal  tar,  practically  no  naphthalene, 
a  large  percentage  of  compounds  extractable  with 
caustic  soda,  containing  very  little  real  phenol. 
These  compounds  would  appear  to  approximate 
to  the  phenolic  substances  extractable  from  wood 
tar  creosote,  which  contains  guaiacol  and 
eoerulignol. 

Some  recent  experiments  carried  out  by  us 
appear  to  indicate  the  presence  of  even  trihydric 
phenols  in  the  higher  boiling  portions.  They 
show  great  affinity  for  oxygen,  absorbing  it  very 
readily  in  the  same  way  as  pyrogallol. 

The  following  figures  serve  to  show  the  differ- 
ence in  distillation  range  between  the  tar  acids 
obtained  from  vertical  and  horizontal  retort  tars. 
The  whole  of  the  oils  up  to  pitch  were  extracted 
with  caustic  soda,  and  the  resulting  tar  acids 
dried   and  then  distilled. 

Horizontal-retort  tar. 

The  crude  dry  tar  acids  obtained  were  equivalent  to  9%  by 
weight  of  crude  tar,  and  had  the  following  distillation  range.using 
a  Wurtz  flask  : — 

Drop 186°  C. 

45-2%  at         200°  C. 

69% 210°  C. 

72-5% 220°  C. 

81% 230°  C. 

84-5%     ,           240°  C. 

88%       , 250°  C. 

Vertical-retort  tar. 

The  crude  dry  tar  acids  obtained  were  equivalent  to  13-2%  by 
weight  of  crude  tar,  and  had  ihe  following  distillation  range,  using 
a  Wurtz  flask  : — 
Drop 

at  


10 

28% 

45%  „ 

56%  „ 

63%  „ 

78%  „ 

84%  „ 

92%  „ 

Distilled  above  : 
fluid  when  cooled. 


185°  C 

200° C" 

210°  C" 

220°  C- 

230°  rr 

240°  C- 

280°  C- 

300°  C- 

310°  c; 

60°  C.  ruby  red  in  colour.     Gave  highly  viscous 


It     was      thought     that      tar      acids      obtained 
from    vertical-retort    tar    might    approximate    to 


some  considerable  extent  to  the  high-coefficient 
acids  obtainable  from  blast-furnace  creosote,  and 
the  comparison  between  the  distillation  ranges 
and  physical  properties  was  made,  with  the  results 
given  at  the  foot  of  this  page. 

The  following,  taken  from  monthly  distillation 
and  yield  statements  from  two  separate  works, 
one  distilling  horizontal-retort  tar,  and  the  other 
distilling  vertical-retort  tar,  illustrates  the  differ- 
ence in  specific  gravity,  percentage  of  volatile 
products,  and  percentage  of  pitch  obtained 
during  the  primary  or  crude  distillation  of  the 
tar. 


Vertical  tar. 

Horizontal  tar. 

Sp.  gr.  1091. 

Sp.  gr.  1175. 

Sp.  gr.     %  Yield. 

Sp.  gr.     %  Yield. 

Ammonia  water 

1025           40 

1003           30 

Crude  naphtha 

0-946           2-59 

0-925            1-34 

Light  oil 

—              — 

1007             602 

Middle  oil 

0-990         30-91 

1-025             618 

Creosote 

1-053          2009 

1-045          16-32 

Pitch       

—            41-47 

—            66-56 

Total          99-06 

Total          99-42 

Vertical  tar. 

Horizontal  tar. 

Viscosity  (Redwood)  at  100 

°F. ..         345  sees. 

610  sees. 

1-19% 

11-5% 

Calorific  value 

.  .     10,120  IJ.Tu.U 

16,150  B.Th.U. 

Pitch  volatile  matter     . . 

69-9% 

53% 

Fixed  carbon 

30% 

■17",, 

Free  carbon 

5% 

25% 

Ash           

0-1% 

01% 

All  crude  tar  contains  a  certain  percentage 
of  entangled  ammonia  water.  The  removal  of 
this  ammonia  water,  which  conies  over  along  with 
the  crude  naphtha  fraction,  is  the  most  trouble- 
some part  of  the  distillation.  The  still  must  be 
fired  very  cautiously,  until  all  ammonia  water  has 
been  driven  off,  otherwise  frothing  takes  place, 
and  a  considerable  quantity  of  tar  passes  over 
to  the  condensers  and  receivers. 

In  a  typical  distillation  carried  out  at  the  Provan 
works  the  total  time  of  distillation  was  28  hours, 
and  the  total  distillate  approximately  36 — 40%. 
The  distillation  of  the  crude  naphtha  and  water, 
amounting  to  only  3%,  took  22  hours,  the  remain- 
ing 33 — 37%   coming  over  in  6  hours. 

Even  at  300°  C.  the  distillate  still  contained  9% 
of  oils  boiling  at  210°  C. — probably  the  result  of 
breakdown  of  more  complex  organic  compounds, 
which  occurs  in  all  distillations. 

Fuel  used  per  ton  of  tar  distilled  at  two  of  our 
works,    using  this  type  of  still :  — 

Works  1.  For  distillation        For  steam  throughout 

only.  works  and  in  steaming 

of  tar  stills. 
1-75  cwt.  118  cwt. 

Fuel  used         . .     Dross  and  coke  breeze.  Coke  breeze. 

Works  2.  1-625  cwt.  0-57  cwt. 

Fuel  used        . .  Coke.  Coke  breeze. 

An  experiment  on  the  continuous  distillation  of 
vertical-retort  tar  was  carried  out  in  two  Wilton 
dehydration  coils,  with  a  final  steaming  still.  The 
tar  in  the  first  coil  was  maintained  at  170°  C.  and 
at  a  pressure  of  about  30  lb.  per  sq.  in.  On  releas- 
ing to  atmospheric  pressure,  naphtha  and  water 
passed  off  as  vapours  to  the  condenser,  and  the 
residual  tar  was  then  pumped  through  the  second 


Distillation  test  of  tar  acids. 


Fraction. 

Dalmarnock  crude  naphtha. 

Dalmarnock  middle  oil. 

Blast-furnace 

;ar  acids. 

%  between 

Sp.gr. 

Refractive  index. 

Sp.gr. 

Refractive 

Sp.  gr. 

Refractive 

these 

15-5°  C. 

Mean  D  line 

index. 

index. 

temperatures 

25°  C. 

% 

/o 

-190° 

24-6     . . 

1-055L 

1-5435 



— 

— 

— 

•  ■ 

190°-205° 

34-8     . . 

1036L 

1-5385 

47 

.     1038L 

.      1-5362 

21-4 

1-031L 

1-5385 

205°-210° 

7 

1022L 

1-5375 

9-7     . 

.     1020L 

.       1-5370 

11 

1-021L 

1-5330 

210°-216° 

5-7      .. 

1-020L 

1-5370 

— 

— 

— 

— 

— 

— 

210°-230° 

— 

17 

.     1013L 

.       1-5350 

30-7 

1011L 

1-5325 

230°-252° 







4-5     . 

.      1047N 

.       1-5050 

— 

— 

— 



19-4 

1-038N 

1-5530 

270°-295° 

— 

— 

— 

— 

— 

— 

7-3 

1-066N 

1-5730 

Note.— L  after  the  specific  gravity  indicates  that  the  fraction  gives  Liebe^mann  reaction  for  phenols, 
X  indicates  that  it  does  not. 


29S  t        WALLIN.— OPERATION  OF  KOPPERS  BY-PRODUCT  COKE  OVEN  PLANT.        [Sept.  15, 1922. 


coil,  where  the  temperature  and  pressure  were 
maintained  at  360°  C.  and  24  lb.  per  sq.  in.,  re- 
spectively. On  reducing  to  atmospheric  pressure, 
mixed  carbolic  and  heavy  oils  passed  away  as 
vapours  to  the  condenser,  and  the  residual  tar  was 
steamed  with  superheated  steam  in  the  final  super- 
heating still.  The  experiments  showed  that  tar 
could  be  distilled  continuously  with  production  of 
a  good  medium  soft  pitch  of  120°  F.  twist-point, 
even  without  the  final  steaming-still. 

In  the  ordinary  method  of  distillation,  the  tar 
yielded  approximately  57%  of  oils  and  43%  of  pitch. 
Under  the  conditions  of  the  experiment,  the  yields 
were  73%  of  oils  and  27%  of  pitch. 

Since  the  experiment,  the  top  portion  of  the 
second  coil  has  been  dismantled,  and  six  laps  show 
a  deposit  of  carbon.  The  first  lap  shows  from  f  in. 
to  %  in.  deposit.  The  next  three  show  a  J-in. 
deposit,  and  the  next  two  g  in.  deposit  of  carbon. 

The  oil  produced  from  the  6econd  coil  during  the 
experiment  has  been  examined,  and  a  comparison 
is  given  below  betwTeen  this  oil  and  the  oil  obtained 
by  distillation  in  the  pot  still. 


Mixed     carbolic     and 

Oil  obtained 

heavy  creosote  oils  ob- 

during experiment. 

tained  during  ordinary 
distillation  in  pot  stills. 

Sp.  gr.  15-5°  C. 

103 

1-014 

Fraction  to  300°  C.  . . 

0-991 

0-987 

Fraction    to    300°    C. 

washed  free  from  tar 

acids  and  pyridine. . 

0-9568 

0-9547 

Paraffins  (fraction  to 

300°  C.)    . . 

15% 

12% 

Loss  on  washing  with 

sulphuric  acid  (frac- 

tion    to     300°     C. 

washed  free  from  tar 

acids  and  pyridine) 

16% 

12% 

Tar  acids 

34% 

34% 

Sp.  gr.  crude  dry  tar 

acids 

1-087 

1-083 

Character  of  tar  acids 

Apparently  identical. 

Calorific  value 

17,100  B.Th.U. 

17,400  B.Th.U. 

Residue  at  300°  C.    . . 

Stiff,  sticky,  homo- 

Mobile, oily  mass 

geneous  mass.  No 

containing  crys- 

evidence   of    low- 

tals. 

boiling  substances. 

From  these  figures  it  would  appear  that  there  is 
very  little  difference  between  the  fraction  of  either 
oil  boiling  up  to  300°  C. 

On  carrying  the  distillation  of  both  oils  to  360°  C, 
the  oil  obtained  in  the  experiment  leaves  a  residue 
of  soft  pitch  amounting  to  24%,  against  9%  from 
the  ordinary  oil.  Examined  microscopically,  the 
pitch  produced  during  the  experiment  appeared  to 
contain  no  more  free  carbon  than  that  produced  in 
the  ordinary  method  of  distillation  by  the  pot  still. 

(Note  :  The  full  paper,  which  will  appear  in  the 
Proceedings  of  the  Chemical  Engineering  Group, 
also  contains  an  illustrated  account  of  the  tar 
distilling  and  auxiliary  plant  at  the  Provau 
Chemical  Works.) 


Canadian   Sections. 


Meeting  held  at  Ottaiva  on  May  15,  1922. 


MR.   F.  J.   HAMULI  IN  THE  CHAIR. 

THE  OPERATION  OF  KOPPERS  BY-PRODUCT 
COKE  OVEN  PLANT. 

BY   C.   E.    WALLIN. 

In  this  paper  the  author  will  give  a  short  descrip- 
tion of  the  Koppers  coke  plant  of  the  Dominion 
Iron  and  Steel  Co.,  Ltd,  at  Sydney,  Nova  Scotia, 
and  also  touch  briefly  on  some  points  in  connexion 


with  the  by-product  operation  and  give  a  com- 
parison between  results  obtained  from  this  plant 
and  from  the  old  oven  plant  of  another  design 
which  was  in  operation  from  1902  to  1921. 

The  importance  and  necessity  at  the  present  time 
of  taking  advantage  of  every  possible  mechanical 
improvement  in  quenching  and  handling  coke,  com- 
bined with  short  coking  time  and  maximum  recovery 
of  by-products,  led  to  the  decision  to  modernise 
the  coke  plant ;  a  contract  for  two  batteries  of 
60  ovens  each  was  placed  early  in  1917  and  the 
whole  plant  was  in  operation  in  March,  1919, 
despite  difficulties  in  the  way  of  getting  prompt 
delivery  of  material.  A  further  battery  of  the 
triangular  flue  type  has  been  constructed  but  is  not 
yet  in  operation. 

The  coal  carbonised  is  entirely  from  the  Dominion 
Coal  Co.'s  mines  at  Glace  Bay;  the  following 
is  an  average  analysis: — Volatile  matter,  33'50 ; 
fixed  carbon,  57'50;  ash,  9^00;  sulphur,  2"50%.  In 
order  to  eliminate  a  portion  of  the  ash  and  sulphur 
the  coal  is  crushed  to  §"  and  then  washed  in  a 
British  Baum  Washer  of  150  gross  tons  per  hour 
capacity,  the  coal  being  delivered  to  the  oven  bin 
by  a  36"  belt  conveyor  without  any  further 
drainage  than  is  obtained  in  the  regular  operation 
of  the  washer.  In  this  condition  the  average 
moisture  content  is  11%  and  the  average  analysis 
calculated  to  a  dry  basis: — Volatile  matter,  35'00; 
fixed  carbon,  60'50;  ash,  4"50;  sulphur,  1'75%. 

The  ovens  are  of  the  standard  Koppers  regener- 
ative type  and  of  the  following  dimensions:  — 
Length,  37'  6";  width,  pusher  side,  15 J" ;  width, 
coke  side,  18J" ;  height  from  floor  tile  to  top  of 
coal,  8'  7".  They  have  a  capacity  of  approximately 
11'3  net  tons  of  dry  coal ;  this  capacity  will  vary 
somewhat  with  the  percentage  of  moisture  in  the 
coal  and  also  with  the  degree  of  fineness  to  which 
the  coal  is  crushed. 

Each  oven  has  its  own  independent  regenerator 
and  is  a  separate  unit.  The  gas  for  heating  is 
supplied  by  means  of  a  hollow  gun  brick  running 
the  entire  length  of  the  flues,  and  fitted  with 
graduated  clay  nozzle  bricks,  each  nozzle  brick 
supplying  gas  to  individual  vertical  flues,  of  which 
there  are  16  on  the  pusher  side  and  14  on  the  coke 
side  of  the  division  wall.  The  nozzle  bricks  of  the 
largest  area  are  placed  on  the  two  outside  flues 
to  compensate  for  the  heat  lost  through  radiation 
at  the  doors  and  outside  walls;  the  nozzle  next  to 
these  is  the  smallest,  and  then  the  6ize  increases 
again  towards  the  centre  of  the  oven  to  allow  for 
loss  in  gas  pressure  and  also  loss  in  B.Th.U.  per 
cub.  ft.  of  gas  burned  owing  to  the  increase  in 
temperature  of  the  gas. 

The  necessary  air  for  combustion  is  drawn  through 
the  regenerators  by  stack  draught,  and  is  heated 
to  about  1S00°  F.,  and  from  the  regenerators  passes 
into  the  vertical  flues  alongside  the  gas  nozzles. 
The  air  supply  to  each  regenerator  is  regulated  by 
dampers,  the  damper  for  the  oven  farthest  away 
from  the  stack  having  the  widest  opening,  thus 
equalising  draught  conditions  on  each  oven. 
Further  adjustment  for  each  vertical  flue  can  be 
made  by  altering  the  size  of  the  opening  where  the 
vertical  flue  joins  the  horizontal  flue,  by  means  of 
a  sliding  brick.  The  individual  flues  can  be 
inspected  by  removal  of  a  cast  iron  cap,  and  in 
this  way  it  is  possible  to  examine  the  state  of  the 
gas  nozzles,  change  them  if  necessary,  and  generally 
keep  a  close  check  on  the  conditions  under  which 
combustion  is  taking  place.  This  careful  attention 
to  the  methods  for  regulating  gas  and  air  results 
in  the  even  heating  of  the  oven  walls  with  the 
minimum  amount  of  fuel  gas. 

The  gas  burns  on  individual  sides  of  the  division 
wall  for  periods  of  half  an  hour  at  a  time,  and  the 
reversal  of  gas  cocks  and  air  and  stack  dampers  is 
effected   by  a   master  control   operated   by   a  self- 


Vol.  XLT.,  No.  17.»      WALLIN.— OPERATION  OF  KOPPERS  BY-PRODUCT  COKE  OVEN  PLANT        299  t 


winding  clock.  This  control  sets  in  operation  the 
electric  motors  which  close  the  gas  cocks,  reverse 
stack,  and  air  dampers  and  open  the  gas  cocks  on 
the  opposite  side  of  the  ovens. 

The  coal  is  charged  into  the  ovens  from  a  larry 
equipped  with  four  hoppers,  the  coal  from  the  oven 
hin  being  weighed  into  each  hopper,  60  as  to  obtain 
as  even  a  charge  as  possible  in  the  oven,  and 
levelled  by  means  of  a  levelling  bar.  The  charging 
covers  are  then  placed  in  position,  luted  on,  and 
the  ascension  pipe  connected  to  the  collecting  main 
by  opening  a  butterfly  valve. 

A  charge  of  11"3  tons  of  coal  can  be  carbonised 
in  18  hours  with  a  flue  temperature  of  2500°  F. 
The  ovens  are  designed  for  a  coking  period  of 
16  hours,  but  with  coal  containing  11%  of  moisture 
it  is  not  deemed  advisable  to  raise  the  flue 
temperature  sufficiently  to  accomplish  this. 

At  the  end  of  the  coking  period  the  oven  is  dis- 
connected from  the  main,  the  doors  removed,  and 
the  coke  pushed  out  into  a  car  of  steel  and  cast  iron 
construction,  which  is  then  taken  by  an  electric 
locomotive  to  the  quenching  station,  where  it  is 
sprayed  with  water  for  30  to  35  seconds,  and  the 
coke,  after  draining  for  5  minutes,  is  discharged 
on  the  coke  wharf.  From  the  wharf  the  coke  is  fed 
on  to  a  belt  conveyor,  which  delivers  it  on  to  a 
|-inch  grizzly  screen,  the  furnace  coke  and  breeze 
being  delivered  direct  into  cars. 

The  gas  generated  during  the  coking  period  is 
carried  by  means  of  ascension  pipes  to  the  collect- 
ing main  and  thence  by  cross-over  and  suction  mains 
to  the  header  outside  the  primary  coolers.  The 
cross-over  mains  are  fitted  with  a  gas-governing 
device,  the  function  of  which  is  to  maintain  a  con- 
stant pressure  on  the  ovens.  It  is  operated  by  a 
float  which  is  controlled  by  the  pressure  in  the 
collecting  main;  this  float  actuates  a  lever  making 
electrical  contact  in  the  power  circuit  of  a  reversing 
motor,  and  this  in  turn  opens  or  closes  a  butterfly 
valve  on  the  main  until  the  lever  returns  to  a 
neutral  position  and  cuts  out  the  motor. 

In  order  to  keep  all  mains  clear  of  pitch  a  flush 
of  hot  tar  and  gas  liquor  is  circulated  by  a  centri- 
fugal pump  and  the  6olid  matter  filtered  off  by  suit- 
able screens  and  removed. 

The  gas  passes  through  the  primary  tubular 
coolers  in  counter  current  to  the  cooling  water,  the 
exit  temperature  of  the  gas  being  determined  by  a 
Tagliabue  temperature  control  operating  a  motor 
valve  on  the  water  inlet  line.  Here  the  greater 
part  of  the  tar  and  ammonia  liquor  is  condensed 
and  flows  to  the  hot  drain  tank  to  be  used  as  a  flush 
in  the  manner  mentioned  above. 

The  gas  is  drawn  from  the  ovens  by  means  of 
exhausters  having  a  capacity  of  700,000  cub.  ft. 
per  hour  and  driven  by  a  steam  engine  fitted  with 
piston  valves.  The  cut-off  of  these  valves  is  regu- 
lated by  a  Root's  gas  governor  which  maintains  a 
constant  vacuum  on  the  suction  main  and  elimin- 
ates irregularities  due  to  varying  quantities  of  gas 
generated  and  also,  to  a  less  extent,  to  variation  in 
steam  pressure.  After  leaving  the  coolers,  the  gas 
is  led  through  a  tar  extractor  which  removes  the 
last  traces  of  tar  and  then  into  a  reheater,  where 
its  temperature  is  raised  to  60°  C.  by  means  of 
exhaust  steam  from  the  engines.  The  heated  gas  is 
then  passed  into  the  saturator,  which  is  a  cylindri- 
cal cast-iron  vessel  lined  with  lead.  Its  passage  is 
down  a  vertical  lead  pipe  inside  the  saturator,  into 
a  horizontal  cracker  pipe  also  of  lead.  This  cracker 
pipe  is  of  inverted  U-section,  and  i6  slotted  with 
elliptical  holes  through  which  the  gas  bubbles  into 
a  saturated  solution  of  ammonium  sulphate  contain- 
ing 7%  of  free  sulphuric  acid.  The  deposited  am- 
monium sulphate  is  continually  ejected  by  an  air 
siphon  on  to  the  drain  table,  the  mother  liquor 
flowing  back  into  the  saturator.     The  addition  of 


acid  is  controlled  by  the  operator,  who  tests  the  acid 
content  of  the  bath  at  intervals  of  half  an  hour. 

The  sulphate  from  the  drain  table  is  flushed  into 
a  centrifugal  dryer,  where  it  is  washed  with  hot 
water  and  whizzed  for  15  minutes  and  then  dis- 
charged. It  contains  on  an  average  2%  of  moisture 
and  0'25%  of  free  acid. 

Dealing  with  the  type  of  coal  used  on  this  plant, 
about  50%  of  the  ammonia  is  separated  as  gas 
liquor  at  the  primary  coolers.  The  gas  liquor,  after 
separation  from  the  tar,  is  fed  into  a  6-ft.  still 
having  free  and  fixed  ammonia  stills  on  separate 
foundations,  the  lime  necessary  to  decompose  the 
fixed  ammonium  salts  being  introduced  into  the 
bottom  section  of  the  free  ammonia  still ;  the  steam 
for  operation  is  obtained  from  the  exhaust  steam 
from  the  engines  at  15  lb.  pressure.  The  liquor  feed 
is  measured  by  a  Venturi  meter,  and  these  stills 
have  successfully  treated  3000  gallons  per  hour  with 
a  loss  of  0'02  g.  per  litre  in  the  waste  liquor.  Tho 
ammonia  liberated  by  the  combined  action  of 
steam  and  lime  is  conducted  by  a  covered  pipe  to 
the  main  gas  line  between  the  reheater  and 
saturator.  The  saturator  is  at  times  liable  to 
blockage  from  formation  of  "rock  salt,"  but  by 
increasing  the  acid  content  of  the  bath  and  raising 
the  top  temperature  of  the  still  to  103°  C,  that  is 
to  say,  introducing  an  excess  of  steam,  at  the  end 
of  each  shift,  this  difficulty  is  entirely  overcome. 
The  gas  liquor  contains  8'2  g.  of  total  ammonia  per 
litre,  of  which  65%  is  fixed,  and  of  this  nearly  all 
is  present  as  chloride.  Although  the  coal  used  is 
obtained  largely  from  submarine  areas,  it  contains 
very  little  sodium  chloride,  leading  to  the  assump- 
tion that  the  chlorine  which  is  present  as  ammonium 
chloride  in  the  liquor  is  organically  combined  in 
I    the  coal. 

After  leaving  the  saturator  the  gas  passes  through 
an  acid  separator  to  remove  traces  of  acid  mother 
liquor  and  thence  to  the  final  cooler,  a  steel  tower 
60  feet  high  and  12  feet  in  diameter,  containing 
wooden  grids.  The  gas  is  here  in  direct  contact 
with  a  descending  spray  of  water,  the  consequent 
cooling  being  accompanied  by  partial  deposition  of 
naphthalene.  No  difficulty  is  experienced  in  cool- 
ing the  gas  if  necessary  to  within  3°  of  the  water- 
temperature.  After  being  cooled  the  gas  passes 
through  two  towers  100  feet  high  and  15  feet  in 
diameter,  arranged  in  series,  and  is  here  washed 
with  a  petroleum  oil  of  high  boiling  point  which 
absorbs  the  benzol  vapours  from  the  gas.  Under 
suitable  conditions  of  gas  and  oil  temperatures  and 
oil  flow,  at  least  92%  of  the  total  benzol  is  absorbed. 

After  leaving  the  benzol  scrubbers  the  gas  is 
passed  into  the  holder,  from  which  is  supplied  all 
the  gas  necessary  for  the  coking  operation,  while 
the  surplus  is  raised  to  a  suitable  pressure  and  used 
under  boilers  or  in  reheating  furnaces.  Of  the  total 
gas  generated  during  carbonisation  approximately 
40%  is  used  for  heating  the  ovens,  while  60%  or 
about  6300  cub.  ft.  per  ton  of  coal  carbonised  is 
available  for  other  purposes. 

This  plant  has  had  an  experience  which  is  prob- 
ably unique,  at  any  rate  on  this  continent.  It  is 
constructed  of  silica  brick,  and  although  it  has 
operated  for  three  years  and  a  half  with  coal  con- 
taining 11%  moisture,  a  factor  which  but  a  short 
time  ago  would  have  dismayed  even  the  most 
courageous  operator,  as  far  as  can  be  judged  it 
has  suffered  no  undue  deterioration.  In  addition 
it  has  made  coke  in  periods  ranging  from  17^  to 
48  hours,  with  frequent  changes  in  schedule  owing 
to  the  changing  business  conditions  in  the  past 
two  years. 

When  washed  coal  is  coked  in  silica  ovens  no 
undue  harm  appears  to  be  done  to  the  brickwork 
if  the  coal  is  in  a  sufficiently  fine  state  to  prevent 
the  drainage  of  the  water;  this  state  of  division 
will  depend  on  the  nature  of  the  coal  and  the 
percentage  of  water  present. 


300  T 


FLEMING.— "  ACCELERATED ■"   TEST   OF   CEMENT. 


[Sept.  15,  1922. 


Changes  in  schedule,  especially  if  frequent,  are 
more  difficult  to  combat,  as  alterations  in  flue 
temperatures  will  cause  more  or  less  serious  leaks 
in  a  brick  structure,  and  it  is  only  by  the  closest 
co-operation  between  the  battery  and  heater  fore- 
men and  the  oven  patcher  that  these  can  be  kept 
under  control. 

For  successful  operation  of  a  coke  plant  both 
from  the  point  of  view  of  coke  and  by-product 
production  it  is  necessary  to  keep  a  continual 
check  on  every  part  of  the  operation,  and  in  order 
to  accomplish  this  the  plant  is  fitted  with  recording 
instruments  giving  a  24-hour  record  of  all  necessary 
particulars,  such  as  pressure  on  ovens,  gas  tem- 
peratures at  various  parts  of  the  plant,  amount 
of  gas  consumed  on  ovens,  and  amount  of  surplus 
gas  made.  In  addition  daily  analyses  of  coal  and 
coke,  gas,  ammonia  liquor,  and  loss  of  ammonia 
at  stills  and  saturators  are  made  by  the  laboratory 
department,  and  the  coke  is  tested  at  the  ovens 
daily  by  the  shatter  and  hardness  tests.  It  is  only 
in  this  way  that  the  operation  can  be  maintained 
regular  and  errors  in  operation  can  be  detected  and 
rectified. 

It  is  important  that  the  oven  should  be  filled 
to  the  proper  level  and  that  it  should  be  as  tight 
as  possible,  and  in  addition  that  the  gas  pressure 
in  the  oven  should  be  kept  as  little  above  atmos- 
pheric pressure  as  is  practicable.  No  ovens  can  be 
absolutely  tight,  and  it  can  easily  be  understood 
that  excessive  pressure  will  cause  loss  of  gas  and 
other  by-products  into  the  flues,  and  thence  into 
the  atmosphere,  or  a  suction  will  draw  in  waste 
products  of  combustion  containing  excess  oxygen 
and  burn  up  part  of  the  gas  in  the  oven.  A  pressure 
of  2J  mm.  of  water  carried  on  the  collecting  main 
is  usually  sufficient  to  ensure  correct  conditions  in 
the  oven. 

The  most  important  factor  in  the  nature  of  the 
coke  and  the  yield  of  by-products  is  the  tempera- 
ture of  carbonisation;  this  is  determined  by  the 
speed  of  carbonisation  and  also  the  temperature 
carried  at  the  top  of  the  oven.  This  latter  factor 
determines  the  yield  and  nature  of  the  by-products, 
as  if  the  temperature  at  the  oven  tops  is  excessive, 
the  gas  in  contact  with  the  coke  and  hot  brick- 
work undergoes  complicated  chemical  changes. 

Generally  speaking,  with  increase  of  temperature 
the  coke  is  smaller  and  harder,  more  gas  is 
generated  per  ton  of  coal,  and  more  benzol  and 
naphthalene  are  produced,  while  the  tar  and 
ammonia  yields  drop.  The  light  oil  made  at  high 
temperatures  contains  a  smaller  percentage  of 
saturated  and  unsaturated  paraffin  hydrocarbons, 
the  reason  being  that  these  are  decomposed  into 
benzene  and  its  homologues,  and  this  is  evident  in 
an  increased  yield  of  benzene  and  freedom  from 
admixture  of  paraffins. 

The  yields  of  benzol  and  ammonium  sulphate  vary 
in  opposite  directions,  higher  temperatures  being 
favourable  to  the  former  and  reducing  tho  latter. 

A  comparison  of  the  ovens  working  with  coking 
periods  of  18  and  24 — 26  hours  respectively,  and 
also  of  the  yields  from  the  original  ovens  and  the 
Koppers  ovens  will  illustrate  this:  — 


Coking  period 

18  hours. 

24-26  hours. 

Flue  temperature 

. .     2500°  F. 

2200°  F. 

Coke —   .. 

Shatter  test  . . 

52% 

58% 

Hardness  test 

83% 

81% 

Ammonium  sulphate 

28-3 

30-3  lb.  per  ton  of  coal. 

Tar 

10-5 

12-0  galls,  per  ton  of  coal. 

Total  gas 

. .    11,200 

10,300  cub.  ft.  per  ton  of  coal 

Benzol  (pure)     . . 

1-8 

1-6  galls,  per  ton  of  coal. 

specific  gravity  of  0'870,  a  product  showing  a  similar 
distillation  test,  but  the  result  of  lower  temperature 
carbonisation,  will  show  a  gravity  of  only  0'860,  an 
unmistakable  evidence  of  the  presence  of  paraffin 
hydrocarbons. 

A  further  interesting  point  may  be  noted  in  the 
quality  of  the  tar  produced.  With  a  coking  time 
of  19  hours  the  specific  gravity  is  1'158  and  a  plain 
distillation  test  gives: — 3%  at  190°  C,  5%  at 
200°  C,  22%  at  250c'  C,  and  35%  at  300°  C,  wh;le 
corresponding  figures  for  tar  rtade  with  a  25-hour 
coking  period  are: — Sp.  gr.  1-132,  4%  at  190°  C, 
8%  at  200°  C,  28%  at  250°  C,  42%  at  300°  C. 

Comparison  between  the  by-product  yields  from 
the  operation  of  the  old  plant  and  the  Koppers 
plant  brings  still  further  into  prominence  the 
differences  due  to  temperature  control  and  gas 
regulation. 

In  the  case  of  the  original  plant  the  temperature 
control  was  of  very  indifferent  nature,  judged  by 
modern  standards.  The  fuel  gas  was  introduced 
through  one  straight  pipe  at  the  6ide  of  the  com- 
bustion flue  and  burnt  as  best  it  could,  the  result 
being  that  the  charge  was  unevenly  coked  and  the 
top  of  the  oven  generally  as  hot  as  the  walls. 
There  was  no  automatic  control  of  gas  pressure, 
and  it  was  no  uncommon  occurrence  to  have  ex- 
cessive suction  or  pressure  on  the  ovens.  The  yield 
of  by-products  was  very  much  less  than  with  the 
Koppers  plant.  The  surplus  gas  would  only 
average  approximately  3000  cub.  ft.  per  ton  of  coal 
against  6300  cub.  ft.  with  the  Koppers  plant,  and 
was  of  a  very  inferior  quality,  containing  25—30% 
of  nitrogen.  The  tar  yield  was  7  gallons  and  the 
yield  of  ammonium  sulphate  20  lb.  per  ton  of  coal, 
as  against  an  average  of  11  gallons  and,  say, 
28'5  lb.   respectively  with  the  Koppers  plant. 

Again,  the  influence  of  indifferent  gas  pressure 
control  and  high  heats  at  the  top  of  the  ovens  shows 
its  effect  in  the  widely  different  nature  of  the  tar, 
as  the  following  table  shows  :  — 

Original  oven  plant.  Koppers  oven  plant. 

Sp.gr 117  115 

Naphthalene            . .          . .       80  20-7  lb.  per  ton  of  tar. 

Pitch            13-2  13-2  cvrt.  per  ton  of  tar. 

containing       . .         . .       26%  18%  of  free  carbon. 

Creosote  oil             ..         ..       14%  30% 

containing        . .          . .       18%  29%  of  tar  acids. 

60's  carbolic  acid    . .         . .         2  1  gall,  per  ton  of  tar. 


Montreal   Section. 


The  presence  of  paraffin  compounds  in  the  benzol, 
although  not  detectable  by  a  distillation  test,  is 
revealed  by  the  difference  in  specific  gravity.  No 
figures  for  benzol,  toluol,  or  solvent  naphtha  can  be 
given,  as  these  are  recovered  and  purified  together 
for  use  as  motor  fuel.  But  whereas  a  motor  fuel 
made  with   a  high  oven  temperature  will  have   a» 


Meeting  held  on  March  17,  1922. 


A  STUDY  OF  CONDITIONS  CAUSING  DIS- 
INTEGRATION OF  CEMENT  UNDER  THE 
"ACCELERATED"    TEST. 

BY  A.   G.  FLEMING. 

{Abstract.) 

The  "  boil  "  or  "  accelerated  "  steam  test  for 
cement,  in  use  for  many  years,  was  first  intro- 
duced by  Michaelis  in  1870.  As  first  used,  small 
balls  of  neat  cement,  of  about  5  cm.  diameter,  were 
kept  in  moist  air  for  24  hours  and  then  placed  in 
cold  water  which  was  boiled  for  6  hours.  Despite 
various  modifications,  the  essential  details  of  the 
process  have  not  greatly  altered,  as  a  study  of  the 
present-day  American  and  Canadian  specification 
shows.  According  to  this  specification  the  test 
should  be  carried  out  as  follows  :  — 

"  A  steam  apparatus  which  can  be  maintained  at 
a  temperature  between  9S°  and  100°  C.  is  recom- 
mended. A  pat  from  cement  paste  of  normal  con- 
sistency, about  3"  diameter,  £"  thick  at  the  centre 
and  tapering  to  a  thin  edge,  shall  be  made  on  a 
clean  glass  plate  about  4  inches  square,  and  stored 
in  moist  air  for  24  hours.    In  moulding  the  pat,  the 


Vol.  XII.,  No.  17.] 


FLEMING.— "  ACCELERATED  "  TEST  OF  CEMENT. 


301  T 


cement  paste  shall  first  be  flattened  on  the  glass 
and  the  pat  made  by  drawing  the  trowel  from  the 
outer  edge  towards  the  centre.  The  pat  shall  then 
be  placed  in  an  atmosphere  of  steam  at  a  tempera- 
ture botween  98°  and  100°  C,  upon  a  suitable 
support,  1  inch  above  the  boiling  water,  for  5  hours. 
Should  the  pat  leave  the  plate,  distortion  may  be 
best  detected  with  a  straight  edge  applied  to  the 
surface  which  was  in  contact  with  the  plate." 

The  American  specification  further  advises  that : 
"In  the  present  state  of  our  knowledge  it  cannot 
be  said  that  a  cement  which  fails  to  pass  the 
accelerated  test  will  prove  defective  in  the  work : 
nor  can  a  cement  be  considered  entirely  safe  simply 
because  it  has  passed  these  tests." 

Despite  various  attempts  to  displace  the  "boil" 
test  by  others,  it  still  finds  much  favour  among 
American  cement  manufacturers  as  being  a  fair 
indication  of  weak  points  which  need  attention  and 
a  useful  gauge  of  the  essential  qualities  of  a  cement, 
although  it  is  sometimes  unnecessarily  severe. 

As  alternative  methods  to  the  "  boil  "  test  the 
following  are  sometimes  used  :  — 

(1)  Autoclave  test. — Neat  briquettes  are  made  up 
in  the  usual  way,  and  after  24  hours  in  a  moist 
chamber  are  placed  in  an  autoclave  and  covered 
with  water.  Steam  is  passed  in  until,  in  45 
minutes,  a  pressure  of  about  20  atmospheres  is 
obtained.  This  pressure  is  maintained  for  1^  hours, 
after  which  the  briquettes  are  cooled  and  broken  in 
a  standard  testing  machine.  After  a  great  deal  of 
controversy  in  the  United  States  and  Canada,  and 
considerable  investigation,  it  was  considered  that 
this  test  was  misleading  and  did  not  warrant  the 
greater  expense  entailed,  in  comparison  with  the 
more  rough-and-ready  low-pressure  "  boil "  test, 
which  was  held  to  be  quite  severe  enough  and  fully 
as  accurate  in  determining  constancy  of  volume. 

(2)  The  Le  Chatelier  test — as  carried  out  in  Great 
Britain. 

(3)  The  cold  water  test. — Pats  are  stored  in  cold 
water  for  28  days.  This  test  loses  much  of  its 
utility  from  the  fact  that  many  unsound  cements 
improve  under  water.  Usually,  too,  a  much  more 
rapid  test  is  required. 

(4)  Microscopical  test. — The  determine  free  lime 
in  cement  a  microscopical  test  is  sometimes  used. 
But  since  the  microscope  does  not  differentiate 
between  the  free  lime  (considered  by  some 
authorities  as  the  cause  of  unsoundness)  and  the 
calcium  hydroxide  developed  in  the  cement  on 
storage  and  seasoning,  it  is  not  of  much  value. 

A  number  of  comparative  tests  were  made  in 
the  author's  laboratory  with  the  primary  object  of 
noting  the  relative  effect  of  the  ordinary  "  boil  " 
test  on  test  pats  stored  under  three  different  con- 
ditions, viz.,  in  dry  air,  in  moist  air,  and  in  water 
at  70°  F.  These  tests  were  made  on  seven  different 
cements  (A,  B,  C,  D,  E,  F,  and  G),  obtained  from 
three  different  mills,  the  chemical  analyses  of  these 
cements  being  as  follows  :  — 


Mill  No.  1. 

Mill.  No. 

2, 

Mill  No.  3. 

Sample  Sample 

Sample 

Sample 

Sample 

Sample 

Sample 

A. 

B. 

C. 

D. 

K 

F. 

G. 

% 

% 

% 

0/ 

/o 

0/ 

/o 

o/ 

% 

Silica    .. 

19-72 

20-72 

21-66 

21-64 

21-20 

22-56 

22-70 

Alumina 

5-90 

5-98 

705 

7-25 

7-18 

5-90 

5-66 

Feme 

oxide  . . 

2-86 

2-62 

305 

3-25 

3-22 

2-00 

212 

Lime    .. 

6505 

63-74 

61-67 

61-59 

61-53 

6305 

6313 

Magnesia 

3-28 

3-1-4 

214 

216 

210 

2-75 

2-78 

Sulphur 

trioxide 

1  69 

1-72 

1-90 

1-86 

208 

1-72 

1-51 

Loss  on 

ignition 

106 

110 

1-80 

1-48 

1-88 

1-04 

109 

Total    .. 

99-56 

99-12 

99-27 

99-25 

99-29 

9902 

98-99 

CaO  ^ 

(SiO,+ 

30 

2-82 

2-56 

2-54 

2-60 

260 

2-60 

Al„Oa) 

Mill  1.  Cements  A  and  B. — Neat  pats  of 
cement  A  completely  disintegrated  under  the 
specification  "  boil  "  test,  as  also  did  neat  pats 
stored  under  the  three  different  conditions  afore- 
mentioned when  subjected  to  the  accelerated  test 
alter  various  intervals  up  to  62  days.  Mortar  pate, 
made  in  the  proportion  of  1  cement :  2  sand  and 
1  cement:  3  sand,  disintegrated  up  to  the  age  of 
1  month,  after  which  there  was  a  gradual  improve- 
ment. After  2  months  the  1:3  pats  were  sound, 
while  the  1:2  pats,  though  greatly  improved,  still 
showed  signs  of  checking  and  cracking  when 
subjected  to  the  test. 

Test  pieces  made  from  cement  B  passed  the  test 
perfectly,  at  all  ages  and  under  every  variation  of 
storage.  [N.B.  Cement  A  was  over-limed  and 
contained  at  least  1£%  excess  of  free  lime — a 
probable  cause  of  failure. J 

ts  ('.  D,  E. — Though  these  cements 
were  practically  identical  in  composition,  O  failed 
to  pass  the  specification  "  boil  "  test,  D  was  un- 
sound at  first  but  seasoned  in  storage  and  finally 
passed,  while  E  was  sound  both  at  first  and 
throughout  all  the  tests.  "  Boil  "  tests  were  made 
on  neat  pats  of  thesr>  cements  after  storage  in  dry 
air,  for  periods  ranging  from  16  hours  to  2  months. 
Cement  C  was  unsound  at  every  period;  D,  when 
tested  after  storing  for  16  and  24  hours,  showed 
some  cracking  and  deformation,  but  was  satis- 
factory after  storing  for  48  hours ;  E  was  sound  at 
every  period  tested. 

After  storage  in  water,  neat  C  cement  failed 
at  ages  1,  2,  and  3  days.  After  a  week  pats  were 
less  unsound,  but  curled  and  cracked  under  the 
test.  After  three  weeks,  distortion  was  very 
slight;  after  four  weeks  pats  were  quite  sound. 
The  1:2  mortar  was  sound  after  two  weeks;  the 
1:3  mortar  curled  and  cracked  in  the  test  after 
48  hours,  but  was  sound  after  72  hours. 

Neat  pats  from  D  (after  seasoning),  and  E,  as 
well  as  pats  from  1:2  and  1:3  mortars,  successfully 
passed  the  "  boil  "  test  after  storage  for  24  hours 
in  moist  air  followed  by  storage  in  water. 

Mill  3.  Cements  F,  G. — Cement  F  passed  the 
usual  specification  test,  but  the  neat  pats  checked 
and  warped  in  the  test  after  being  stored  in  moist 
or  dry  air.  The  effect  of  dry  air  was  not  so  marked 
as  that  of  moist  air,  as  pats  stored  in  dry  air  were 
sound  after  4  days.  Pats  stored  in  water  were 
sound  at  all  periods  tested.  The  mortar  pats  were 
sound  at  every  period  and  under  all  conditions. 

Cement  G  completely  failed  the  normal  specifica- 
tion test,  as  did  neat  pats  stored  under  varying 
conditions  up  to  1  month.  The  mortar  pats 
behaved  better,  and  showed  varying  degrees  of 
improvement  until,  after  2  weeks,  they  were  sound 
under  the  test. 

Conclusions  reached  from  these  experiments 
are :  — 

(1)  The  chemical  composition  of  an  average 
Portland  cement  gives  little  guidance  as  to  its 
probable  behaviour  under  the  accelerated  test. 
(Cf.  cements  F  and  G,  which  are  almost  identical! 
in  composition.) 

(2)  Unsound  cement  stored  under  water  shows 
a  marked  improvement  compared  with  that  stored 
in  air,  either  dry  or  moist — the  natural  storage  for 
cement,  at  any  rate  during  hardening,  is  under 
water. 

(3)  Mortars  poor  in  unsound  cement  improve  more 
rapidly  than  mortars  rich  in  unsound  cement. 
There  is  thus  little  danger  of  disintegration  of  a 
water-stored  concrete  made  from  poor  cement  such 
as  C. 

(4)  Mortars  in  practice  do  not  exhibit  the  weak- 
ness of  their  neat  cement. 

(5)  Mortars  and  concretes  are  improved  by  water- 
storage  ;  concrete  should  be  kept  moist,  at  any  rate 
until  completely  set. 


302  T 


REILLY  AND  BLAIR.— DECOMPOSITION  OF  PETROLEUM  RESIDUES.      (Sept.  15, 1922. 


Unsoundness  of  cement. — According  to  Ertlahl, 
unsoundness  in  the  accelerated  tests  is  due  to  the 
slower  hydration  of  dicalcium  silicate  as  com- 
pared with  that  of  tricalcium  silicate  and  calcium 
aluminates. 

Klein  and  Phillips,  on  the  other  hand,  maintain 
that  it  is  due  to  hydration  of  free  lime,  which, 
unless  very  fine,  may  hydrate  in  a  crystalline  con- 
dition and  exert  disruptive  forces  by  the  growth 
of  the  crystals,  thus  causing  disintegration  in  the 
test.  Some  cements,  however,  will  pass  the  "  boil  " 
test,  but  not  the  autoclave  test;  others  will  pass 
both  tests,  but  only  after  seasoning.  In  the  first 
case,  according  to  Klein,  the  free  lime  may  be  so 
coarse  or  so  highly-burned  .as  not  to  hydrate  in 
the  "  boil  "  test,  but  only  under  the  higher  pres- 
sure and  temperature  of  the  autoclave.  In  the 
second,  aeration  with  insufficient  water  to  allow 
of  solution  and  crystallisation  may  cause  the  free 
lime  to  hydrate  in  the  amorphous  condition.  In 
the  light  of  this,  it  would  be  natural  to  expect 
that  the  addition  of  free  caustic  lime  to  a  cement 
previous  to  mixing  with  water  would  cause  the 
cement  to  fail  under  the  test.  In  the  author's 
experiments,  however,  on  the  products  of  a 
number  of  cement  mills,  additions  of  up  to  6%  of 
quicklime — in  some  cases  even  as  much  as  10%  — 
had  no  effect  on  the  soundness  under  the  5  hours' 
"  boil  "  test.  The  probable  explanation  of  this  is 
that  lime  added  in  this  way  is  immediately  ex- 
posed to  the  hydrating  action  of  the  mixing  water, 
and  slakes  before  the  setting  of  the  cement  begins. 
The  disruptive  force  of  hydration  of  free  lime  is 
thus  expended  before  the  test-piece  becomes  hard 
and  inelastic.  The  danger  from  free  lime  comes 
when  this  lime  is  locked  up  in  small  nodules  of 
clinker,  and  hydration  is  delayed  until  the  steam 
can  penetrate  the  nodules,  by  which  time  the 
cement  is  of  course  set  and  disruption  occurs. 
This  was  borne  out  by  tests  made  on  the  fine 
flour  (passing  200-mesh)  of  an  unsound  cement. 
Test-pieces  made  from  the  finely-ground  product 
successfully  passed   the  accelerated  test. 

Experiments  with  calcium  chloride  showed  that 
additions  of  from  1  to  2%  of  this  substance  to  the 
mixing  water  would  correct  unsoundness  in  the 
"  boil  "  test  when  the  cement  pats  had  been  stored 
in  air  before  testing.  When,  however,  the  pats  of 
unsound  cement,  with  the  calcium  chloride  already 
added,  were  stored  under  water  after  they  had  set, 
in  most  cases  they  failed  to  pass  the  test.  The 
application  of  some  theory  of  chemical  action  or 
physical  cause  other  than  the  hydration  of  un- 
combined  lime  appears  necessary  in  explanation  of 
this. 

The  addition  of  alkali  carbonates  quickened  the 
set,  and  in  some  experiments  as  little  as  J  % 
caused  serious  deterioration  of  the  cement  in  the 
accelerated  test. 

These  various  experiments  seem  to  point  to  the 
fact  that  the  unsoundness  of  cement  under 
accelerated  tests  is  not  entirely  due  to  free  lime. 
The  combination  of  the  alkali  bases  (from  the 
silicates  of  the  raw  clay)  with  carbon  dioxide  from 
the  air  and  sulphur  from  the  sulphides  of  the 
clinker,  and  the  subsequent  oxidation  to  hydrated 
carbonates  and  sulphates  may,  in  some  cases,  be 
responsible  for  the  disruption  of  the  test-pieces. 
The  salutary  effect  of  the  addition  of  less  than  2% 
of  calcium  chloride  may  thus  be  due  to  the  preven- 
tion of  the  formation  crystals  of  alkali  carbonates 
and  sulphates,  which,  by  their  quickening  action 
on  the  set  of  the  cement,  would  prevent  complete 
hydration  of  free  lime  in  the  early  plastic  condition 
of  the  test-piece. 

Prevention  of  unsoundness. — As  the  combination 
of  lime  with  the  silica  and  alumina  of  the  clay 
takes  place  at  a  temperature  below  fusion  point, 
there  is  relatively  little  movement  possible  between 


the  particles  of  clinker  during  burning.  Hence 
the  finer  the  raw  materials  are  ground  before 
entering  the  kiln  the  less  chance  there  is  of  excess 
of  either  constituent  remaining  uncombined.  The 
ability  of  cement  clinker  to  pass  the  accelerated 
tests  thus  depends  greatly  on  the  fineness  of  the 
mixture  entering  the  kilns,  and  great  improve- 
ments have  been  made,  both  in  quality  and 
economy,  by  better  pulverising  machinery.  Thus, 
where  formerly  in  the  "  dry  "  process  the  mixed 
clay  and  limestone  were  ground  to  such  a  fineness 
that  90%  passed  the  100-mesh  sieve,  most  plants 
now  reduce  their  raw  mixtures  to  a  minimum 
fineness  of  95 — 96%  through  the  100-mesh  sieve  and 
80—90%  through  the  200-mesh  sieve. 

When  natural  cement  rock  is  used,  it  is  not 
necessary  to  grind  so  finely,  as  the  combination  of 
lime  and  clay  is  already  an  intimate  one.  (In  this 
connexion  it  may  be  of  interest  to  note  that  the 
Montreal  Island  deposit  approximates  so  closely  to 
the  perfect  Portland  cement  proportions  that  the 
average  stone  on  a  20-foot  face  seldom  requires  the 
addition  of  either  clay  or  stone  of  higher  lime 
content.) 

In  the  "  wet  "  process,  using  marl  and  clay,  there 
is  not  much  difficulty  in  obtaining  finely-ground 
materials,  but  in  the  "  dry  "  process  the  necessary 
intimate  mixing  can  only  be  obtained  by  heating 
the  raw  materials.  It  has  been  demonstrated  that, 
for  most  materials,  if  the  mixture  from  the  dryers 
has  a  temperature  of  150°  C,  this  is  sufficient  to 
ensure  a  fine  enough  grinding  to  give  sound  clinker. 
If  only  one  of  the  raw  materials  is  heated,  or  if  only 
the  surface  moisture  be  removed  from  both,  the 
resulting  clinker  will  probably  be  unsound.  If  both 
materials  are  heated  to  150°  C,  this  will  ensure 
the  removal  of  all  surface  moisture  and  a  sufficient 
portion  of  the  chemically  combined  water  of  the 
clay  to  give  a  sound  clinker,  provided  that  the  pro- 
portioning and  the  burning  conditions  are  correct. 
There  is  nearly  always  enough  clay  in  the  limestone 
to  make  the  drying  of  it  as  important  as  that  of  the 
clay  itself. 

In  the  author's  opinion  very  few  cases  of  unsound 
clinker  are  caused  by  a  high  lime  content  of  the 
mixture  in  the  kilns.  This  is  based  on  the  daily 
records  of  a  number  of  plants  over  some  years ;  a 
comparison  of  the  analyses  showed  a  greater  pro- 
portion of  sound  cements  among  the  products  of 
higher  lime  content. 


Communications. 


THE  THERMAL  DECOMPOSITION  OF  PETRO- 
LEUM RESIDUES  AT  REDUCED  PRESSURES. 

BY  J.  REILLY,  M.A.,  D.SC,  AND  E.  W.  BLAIR,  D.I.C.,  B.SO. 

(Preliminary  note.) 

The  dry  distillation,  at  various  pressures,  of 
petroleum  residues  of  high  boiling  point  and  vis- 
cous crude  petroleum  oils  has  been  extensively 
carried  out  owing  to  the  commercial  importance 
of  the  fuel  oils  and  other  products  produced  by 
cracking.  Refined  petroleum  residues  have  also 
been  investigated  from  a  more  general  aspect  by 
many  workers  during  the  past  fifty  years.  There 
is  still,  however,  doubt  as  to  the  constitution  of 
these  complex  petroleum  products  and  as  to  the 
nature  and  extent  of  the  chemical  change  or 
decomposition  which  occurs  when  they  are  distilled, 
especially  under  mild  conditions  in  which  secondary 
reactions  are  reduced  as  much  as  possible.  In  view 
of  the  remarkable  results  recently  obtained  by  A. 
Pictet  in  the  rapid  dry  distillation  under  reduced 


Vol.  XLI.,  No.  17.]      BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS. 


303  t 


pressure  of  certain  natural  products  it  seemed  to 
be  of  interest  to  subject  various  petroleum  residues 
to  similar  treatment,  and  to  separate,  and  if  pos- 
sible, identify,  the  different  fractions  of  the  dis- 
tillate. 

The  first  material  which  the  authors  had  occasion 
to  investigate  is  that  known  as  "  mineral  jelly  " 
or  "  petrolatum  " — a  viscous,  highly  fluorescent 
residue  obtained  from  crude  American  petroleum 
by  distillation  at  low  pressure  with  superheated 
steam.  The  "mineral  jelly"  used  in  the  follow- 
ing experiments  contained  approximately  87%  of 
carbon  and  13%  of  hydrogen,  and  had  sp.  gr. 
0-883  at  38°/38°  C.  and  flash  point  (close  test) 
238°  C.  The  dropping  point  was  47°  C.  and  the 
time  of  flow  of  50  c.c.  (at  60°  C.)  from  a  Redwood 
standard  viscometer  was  330  sees.  The  unsatura- 
tion  value  was  equivalent  to  85  mg.  of  bromine  per 
gram  of  petroleum  product. 

A  large  number  of  rapid  distillations  of  this 
material  have  been  carried  out  in  both  glass  and 
copper  vessels  at  pressures  ranging  from  atmos- 
pheric to  1  mm.  of  mercury.  Experiments  of  this 
type  are  still  in  progress  as  well  as  others  on  the 
influence  of  time  of  distillation  and  on  the  effects 
of  the  introduction  of  a  current  of  steam  or  inert 
gas  during  the  heating.  The  initial  experiments 
were  carried  out  on  250  g.  of  material  in  glass 
retorts  and  the  later  distillations  on  500 — 1000  g. 
in  copper  retorts.  The  properties  of  the  various 
fractions  obtained  show  that  more  than  simple  dis- 
tillation has  occurred  even  at  the  lowest  pressures. 
The  purified  fractions  are  being  investigated  as  to 
their  ultimate  composition  and  chemical  nature, 
molecular  weight,  specific  gravity,  viscosity,  refrac- 
tive index,  coefficient  of  expansion  and  calorific 
value.  The  oils  separated  from  the  various  fractions 
by  distillation  in  a  current  of  steam,  as  well  as  the 
gases  produced  in  the  original  distillation,  are  also 
under  examination. 

To  illustrate  the  pronounced  effect  of  the  pres- 
sure and  temperature  (which  latter  depends  to  some 
extent  on  the  rate  of  distillation)  on  the  character 
of  the  distillate,  the  following  typical  examples  of  a 
series  of  distillations  are  recorded  (see  Table  I) :  — 

Table  I. 

Bromine  Oil  (in  c.c.) 
(mg.)  volatile 

Temp,  in     Dis-       absorbed       in  steam 

Expt.  the  vapour,  tillate  per  gram  of  per  100  g. 

No.       Pressures         approx.      yield      distillate  of 

(mm.).  °C.  %        (approx.).  distillate. 


!  Copper 
retort. 
Glass 
"■tort-    }260-300 
255 — 300 


285—385 
250—  365 
275—320 

1-260—310 


14  f 

1  J 


930 

275 

95-0 

280 

960 

255 

96-5 

235 

970 

185 

97-5 

170 

97-5 

140 

980 

130 

37 
33 
21 


1 

Nil. 


There  is  a  decrease  in  the  "  volatile  oil  content " 
and  in  the  degree  of  unsaturation  of  the  distillate 
taken  as  a  whole,  as  the  distillation  pressure  is 
reduced.  These  two  properties  of  the  distillate, 
however,  do  not  vary  in  direct  proportion  with  the 
change     in     pressure.       Moreover,     the     distillate 


Table  II. 

Bromine  (mg.) 
absorbed 

Distillation 

pressure, 

Fractior 

Percentage 

per  gram  of 

mm. 

distilled. 

distillate 
(approx.). 

758 

1 

400 

290 

2 

21-5 

270 

3 

320 

230 

23 

1 

430 

125 

2 

320 

230 

3 

220 

220 

1 

1 

41-5 

75 

2 

240 

135 

3 

330 

145 

collected  at  any  one  pressure  is  not  of  constant 
composition  during  the  whole  of  the  distillation, 
since  the  separate  fractions  show  a  measurable 
difference  in  the  degree  of  unsaturation.  Table  II. 
records  this  effect  at  three  pressures. 

Part  of  the  unsaturation  of  the  first  fraction, 
especially  in  the  distillation  at  atmospheric  pres- 
sure, is  probably  caused  by  condensation  of  the 
vapours  at  the  commencement  of  the  distillation. 
This  refluxing  effect  would  tend  to  increase  crack- 
ing effects. 

At  low  pressures  the  first  fraction  sets  to  an 
almost  white  and  non-fluorescent  crystalline  wax. 
As  the  distillation  proceeds  the  colour  of  the  semi- 
solid distillate  changes  through  yellow  and  orange 
to  greenish-brown.  The  last  drops  of  the  distillate 
in  vacuum  distillation  experiments  show  an  intense 
green-red  fluorescence.  The  fractions  from  the  dis- 
tillation at  atmospheric  pressure,  while  still  liquid, 
are  all  less  fluorescent  than  the  original  mineral 
jelly.  On  setting  they  acquire  a  characteristic 
brownish-red  colour  markedly  different  from  the 
colours  of  the  fractions  obtained  at  low  pressure. 

The  unsaturated  and  saturated  portions  of  the 
fractions  can  be  partially  separated  by  steam  dis- 
tillation or  by  rapid  distillation  at  very  low  pres- 
sure under  certain  conditions.  These  portions  are 
being  further  purified  and  differentiated  by  their 
varying  solubilities  in  organic  and  inorganic  sol- 
vents and  by  other  means. 

It  is  hoped  to  publish  a  detailed  account  of  this 
work  at  a  later  date. 

This  note  is  published  by  permission  of  the 
Director  of  Armament  Supply,  to  whom  our  thanks 
are  due. 

Main  Laboratory. 

R.N.  Cordite  Factory, 

Holton  Heath,  Dorset. 


THE  OXIDATION  OF  HYDROCARBONS,  WITH 

SPECIAL  REFERENCE  TO  THE  PRODUCTION 

OF  FORMALDEHYDE. 

BY    E.     W.     BLAIR,     D.I.C.,     B.SC.     (LOND.),    A.l.C,    AND 

T.      SHERLOCK     WHEELER,     B.SC.     (LOND.),     A.  R.  CSC.  I., 

A.l.C. 

Part  I.     The  Action  of  Oxygen  on  Ethylene. 

At  present  formaldehyde  is  made  from  methyl 
alcohol  by  direct  oxidation.  This  process  has  always 
had  the  disadvantage  of  being  costly  and  even 
before  the  war  many  seemingly  cheaper  methods 
had  been  brought  forward  to  replace  it,  but  without 
success.  With  the  object  of  investigating  possible 
methods  of  manufacture,  the  authors  have  been 
engaged  for  some  time  past  on  a  study  of  the 
oxidation  of  certain  hydrocarbons.  The  following 
is  an  account  of  the  first  portion  of  the  work,  in 
which  ethylene  was  the  hydrocarbon  employed.  It 
was  selected  as  the  most  suitable  hydrocarbon  with 
which  to  commence,  after  a  study  of  the  results 
obtained  by  Willstatter  and  Bommer  (Annalen,  422, 
36),  and  by  Bone  and  his  co-workers  in  their 
researches  on  the  oxidation  of  hydrocarbons  (Trans. 
Chem.  Soc,  1902,  555;  1903,  1074;  1904,  693,  1637; 
Proc.  Chem.  Soc,  1905,  220). 

According  to  the  latter  the  interaction  of  ethylene 
and  oxygen  between  350°  and  500°  C.  in  contact 
witli  a  surface  occurs  in  the  stages  shown  on  p.  304  T 
(Trans.  Chem.  Soc,  1904,  1637). 

From  this  and  earlier  work  it  seemed  that  only 
at  temperatures  above  500°  C.  does  the  action 
of  oxygen  on  ethylene  proceed  with  any  great 
rapidity.  Yinyl  alcohol,  considered  to  be  the  first 
oxidation  product,  is  too  unstable  to  be  isolated, 
but  the  isomeric  acetaldehyde  has  been  obtained 
by  Bone  and  Wheeler,  who  regard  it  as  an  inter- 
mediate only  in  very  slow  oxidations  of  ethylene. 


304  T 


BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS.  [Sept.  15, 1922. 


Formaldehyde  is  the  most  prominent  intermediate 
product  because,  comparatively  speaking,  it  is  the 
most  stable.     But  although  the  general  details  of 


H.C.H 

||      Ethylene. 
H.C.H 

4     Oxidation. 

fH.C.OH  ") 

Rearrange-    -j        II  J*   Vinyl  alcohol. 

ment.  (_H.C.H     J 


L 
H.CO  4      Oxidation. 

Acetalde-       fH.C.OH   ] 


H.CH2     hyde. 

Oxidation.       [ 

HO.CO    "1  rn       „. 
1  Glycolhc 

H,c!oHj      acid- 


>  Dihydroxyethylene. 


H.C.OH  J 

Decomposition. 


Decomposition.  / 


CH,0    Decomposition. 


I 


Formaldehyde. 
Oxidation. 


0:CH  +  CO  +  H,0     HCOOH     Decom- 
position. 


H 


4 

H24-CO 
4  Oxidation. 
H20  +  CO 


Formic  acid. 


Oxidation. 
Oxidation.        | 

{CO(OH)2}   Carbonic 
acid. 


Decomposition. 


-*COa  +  H^O  • 


Oxidation. 


(Compounds  that  have  not  been  isolated  are  enclosed 
in  brackets.  Double  lines  show  the  most  usual  courso 
of  the  oxidation  in  their  experiments.) 

the  course  of  the  slow  oxidation  of  ethylene  had 
been  worked  out,  precise  information  was,  for  the 
most  part,  lacking  as  to  the  effects  of  temperature, 
catalysts,  etc.  A  quantitative  investigation  of  the 
conditions  of  formation  of  formaldehyde  from 
ethylene  had  been  undertaken  by  Willstatter  and 
Bommer  (toe.  cit.),  who  passed  mixtures  of  ethylene, 
oxygen,  and  nitrogen  through  a  tube  at  various 
temperatures  and  estimated  the  formaldehyde 
formed.  They  were  led  to  the  following  conclu- 
sions :  — - 

(1)  That  since  ethylene,  unless  it  be  dilute,  is 
unstable  at  temperatures  above  350°  C.  it  must 
not  amount  to  more  than  30%  of  the  gas  mixture, 
and  the  period  of  heating  must  be  very  short,  e.g., 
a  second. 

(2)  That  since  formaldehyde,  unless  it  be  dilute, 
is  unstable  at  temperatures  above  310°  C,  it  must 
not  be  formed  in  quantities  greater  than  2%  by 
volume  of  the  gas  mixture,  and,  once  formed,  must 
be  cooled  as  quickly  as  possible. 

(3)  All  catalysts  tried  accelerated  the  oxidation 
of  ethylene;  but  formaldehyde  was  never  detected 
when  they  were  used. 

The  present  work  amplifies  these  conclusions  and 
in  some  respects  modifies  them;  in  principle  the 
results  are  in  complete  agreement  with  the  hydroxyl- 
ation  theory  of  hydrocarbon  combustion  first  put 
forward  by  Bone  and  his  co-workers.  Evidence  has 
been  obtained  that,  even  under  very  different 
external  conditions,  the  stages  by  which  the  com- 
bustion of  ethylene  proceeds  do  not  change ;  the 
formation  of  formaldehyde  in  contact  with  catalysts 
and  in  oxidations  in  which  inflammation  took  place, 


has  been  proved  (c/.  Bone  and  Drugman,  Trans. 
Chem.  Soc.,  1906,  660).  Also  acetaldehyde  has  beeii 
detected  in  oxidations  under  varying  conditions,  so 
it  would  appear  that  in  our  experiments  the 
main  course  of  the  interaction  of  ethylene  and 
oxygen  is  represented  by  the  scheme  on  p.  310  T, 
which  differs  only  in  detail  from  that  of  Bone  and 
Wheeler,  The  evidence  for  these  views  is  set  out 
below,  together  with  some  other  deductions  from 
our  results;  a  full  discussion  is  given  at  the  end  of 
the  paper. 

Preparation  of  gaseous  mixtures. 

The  ethylene  used  was  prepared  by  Newth's 
method  (Trans.  Chem.  Soc,  1898,  915)  and  was  well 
washed  with  caustic  soda  and  with  distilled  water. 
We  also  made  the  gas  by  the  action  of  zinc-copper 
couple  on  the  dibromide  in  alcoholic  solution  and  by 
the  action  of  alcohol  on  sulphuric  acid  at  170°  C, 
followed  by  a  thorough  purification,  but  found 
Newth's  method  the  most  satisfactory  for  the 
quantities  we  required.  The  gas  was  tested  by 
explosion  analysis  and  rejected  unless  the  ratio 
contraction /absorption  was  between  0'99  and  l'Ol. 
Oxygen  and  nitrogen  were  obtained  from  cylinders 
and  were  washed  with  caustic  soda  and  with  water. 
The  gaseous  mixtures  were  stored  over  boiled-out 
50%  aqueous  glycerin  in  which  they  were  found  to 
be  insoluble ;  they  were  always  rendered  thoroughly 
homogeneous  either  by  shaking  or  by  allowing  to 
stand  overnight. 

Apparatus  for  direct  experiments. 

Our  first  experiments  (see  Fig.  1)  were  carried 
out  on  the  same  lines  as  Willstiitter's.  The  gas 
was  passed  from  a  graduated  gasholder  through 
a  differential  pressure  gauge,  in  which  the  fall 
in  presure  of  the  gas  in  passing  through  a  capillary 
tube  was  measured.  By  previous  calibration 
this  gave  the  rate  of  flow.  The  gas  then  entered 
a  3  or  4  mm.  hard  glass  tube  some  50  cm.  long. 
This  tube  was  heated  at  first  in  a  gas  furnace 
packed  with  asbestos,  but  in  later  experiments  in 
an  electric  tube  furnace,  40  cm.  long,  both  ends 
of  which  were  plugged  with  asbestos.  The  tem- 
perature was  measured  by  means  of  a  standardised 
indicator  and  thermo-couple ;  the  junction  of  the 
latter  was  fastened  to  the  centre  of  the  hard  glass 
tube.  The  gas,  on  leaving  the  tube,  bubbled  through 
a  wash-bottle  and  a  set  of  Liebig  bulbs,  both  con- 
taining distilled  water,  and,  freed  from  formalde- 
hyde (this  was  proved  experimentally),  was  collected 
in  a  graduated  gas-holder  fitted  with  a  three-way 
tap. 

An  experiment  was  commenced  by  passing  in  the 
initial  gas  mixture  to  test  for  leaks.  Three  or  four 
litres  of  gas  was  then  passed  through  the  apparatus 
and  away  by  the  three-way  tap  before  the  final 
receiver.  Experiments  showed  that  this  was  suffi- 
cient to  remove  all  air.  The  furnace  was  brought 
to  the  requisite  temperature,  and  the  pressure, 
temperature,  and  volume  of  the  initial  gas  mixture 
noted,  allowance  being  made  for  the  head  of  aqueous 
glycerin  in  the  gas-holder.  The  pressure  in  the 
apparatus,  as  registered  by  the  manometer,  M,  was 
also  observed.  The  gas  was  then  passed  at  a  rate 
of  the  order  of  1  litre  in  10  minutes,  and  was  thus 
heated  for  less  than  2  seconds  in  its  passage  through 
the  furnace.  The  rate  was  adjusted  by  controlling 
the  flow  of  aqueous  glycerin  from  the  final  gas- 
holder, which  was  used  as  an  aspirator ;  the  head 
of  liquid  in  the  initial  holder  was  maintained  by 
returning  the  liquid  from  A  by  closing  tap  C,  and 
turning  on  compressed  air.  The  pressure  in  the 
apparatus  was  kept  as  near  to  that  of  the  atmos- 
phere as  possible  during  the  experiment;  at  the 
end  the  manometer,  M,  was  brought  back  to  its 
initial  reading  before  stopping  the  gas  current.  This 
ensured  the  same  amount  of  gas  being  in  the  appara- 


Vol.  XII ,  No.  17.]      BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS. 


305  t 


tus  before  and  after  an  experiment.  The  pressure, 
temperature,  and  volume  of  the  final  gas  were 
measured,  and  both  gases  were  analysed  in  a  Bone 
and  Wheeler  apparatus  (Trans.  Chem.  Soc,  1904, 
All  absorptions  were  repeated  until  no 
further  contraction  occurred.  The  residual  gas, 
or  an  aliquot  portion,  was  then  mixed  with  a  suit- 
able quantity  of  pure  oxygen,  and  electrolytic  gas 
added  before  exploding  to  determine  the  ratio 
of  contraction  on  explosion  to  absorption  by  potash 
and  baryta  water  after  explosion.  This  enabled 
the  hydrogen  and  a  figure  for  the  thermal  decom- 
position of  the  ethylene  to  saturated  hydrocarbons 
to  be  obtained;  these  latter  always  had  the  approxi- 
mate composition  of  methane.  We  never  detected 
more  than  traces  of  acetylene  in  the  products. 

The  volumes  of  the   initial  and  final  gases  were 
reduced  to  N.T.P.  and  compared  as  a  check,  but 


methods  were  tested,  with  synthetic  solutions  of 
the  strengths  usually  obtained.  Also  several  experi- 
ments were  made  to  prove  that  the  amount  of 
ethylene  dissolving  in  the  wash-waters  was  not 
sufficient  to  interfere  with  the  iodometric  estima- 
tion of  formaldehyde. 

After  estimating  the  aldehydes  and  formic  acid 
present,  all  other  probable  intermediate  products 
— ethyl  alcohol,  glycol,  glyoxal,  ethylene  oxide,  and 
acetic  acid — were  tested  for  qualitatively  in  much 
the  same  manner  as  described  by  Bone  and  >Stock- 
ings  (Trans.  Chem.  Soc.,  1904,  710),  but  all  such 
tests  gave  negative  results. 

Experiments  on  catalysts. 

Our  first  series  of  experiments  was  an  extension 
of  Willstatter's  examination  of  the  effect  of  cata- 


these  volumes  could  not  be  measured  accurately 
enough  to  use  both  to  deduce  the  quantities  of 
ethylene  etc.  consumed  in  the  experiment.  This 
was  done  by  using  the  initial  volume  only  and  cal- 
culating the  final  volume  by  comparing  the  analyses 
of  the  gases,  and  making  use  of  the  fact  that  the 
quantity  of  nitrogen  did  not  change  during  the 
experiment.  The  absorbing  water  was  made  up  to 
250  c.c.  and  the  formaldehyde  estimated  in  an 
aliquot  part,  usually  iodometrically  (Z.  anal.  Chem., 
36,  19),  but  when  the  presence  of  acetaldehyde  was 
shown  by  a  precipitate  of  iodoform,  Ripper's  bisul- 
phite method  (Monatsh.,  21,  1079)  and  the  potassium 
cyanide  method  were  combined,  the  formaldehyde 
being  estimated  with  potassium  cyanide  and  the 
two  aldehydes  together  with  bisulphite ;  the  amount 
of  acetaldehyde  could  then  be  calculated.  The 
iodometric  method,  though  found  best  for  dilute 
formaldehyde  solutions,  was  not  satisfactory  when 
acetaldehyde  was  present;  the  bisulphite  method 
was  found  to  give  more  consistent  results.    All  these 


lysts  on  the  reaction.  Using  a  catalyst,  the  tem- 
perature was  gradually  reduced  and  the  time  of 
contact  and  the  dilution  of  the  gas  increased  until 
a  barely  perceptible  reaction  was  obtained.  If  then 
formaldehyde  is  being  formed  and  not  being  im- 
mediately decomposed  some  traces  of  it  at  least 
should  be  obtained.  Formaldehyde  was  detected 
but  even  with  a  scarcely  perceptible  reaction  hydro- 
gen and  carbon  monoxide  were  the  main  products. 
Once  the  temperature  is  raised  to  any  extent  the 
catalyst  causes  the  oxidation  of  carbon  monoxide 
to  carbon  dioxide,  and  even  more  so  of  hydrogen 
to  steam.  The  following  examples  taken  from  our 
experiments  will  make  clear  the  type  of  action  that 
occurs. 

Experiment  9.  Catalyst:  Platinum  gauze.  Tem- 
perature 540°  C. — Rate  of  gas-passage — I  litre  in 
5  minutes.  The  gas  was  passed  through  a  4  mm. 
tube  in  the  furnace  described,  a  roll  of  platinum 
gauze  3  cm.  long  being  placed  in  the  tube  10  cm. 
from  the  exit  of  the  furnace.     The  time  of  contact 


306  T 


BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS. 


[Sept.  15,  1922. 


of  gas  with  gauze  was  about  O'l  sec.     No  formalde- 
hyde was  obtained. 


CO,     .. 

o, 

C,H,  .. 
CO  .. 
H,       .. 

Absorption 


Initial  gas. 

o/ 
/o 

nil 
17-6 
131 

nil 

nil 

nil 


Final  gas. 
o/ 
70 

8-3 
0-6 
6-0 
4-3 
30 
0-5 


No  inflammation  took  place  in  this  experiment, 
but  the  platinum  was  somewhat  blackened  and  white 
fumes  were  formed.  The  gas  mixture  used  suffered 
a  contraction  in  volume  of  some  10%  during  the 
oxidation.  The  wash-water  was  faintly  acid.  The 
high  CO,  content  is  probably  due  to  the  oxidation 
of  the  CO  first  formed. 

No  formaldehyde  was  isolated  by  leading  the  gases 
in  a  capillary  tube  away  from  the  gauze,  so  after 
a  number  of  experiments  a  single  thickness  of 
gauze  and  a  capillary  tube  were  used. 

Experiments  13,  14,  15.  Catalyst:  Pt  gauze. — 
Rate  of  gas  passage  1  litre  in  5  minutes.  3  mm. 
tube.  Gauze  sealed  across  it  8  cm.  from  exit  end 
of  furnace.  Capillary  tube  thence  to  exit.  Time  of 
contact  less  than  10"*  sees. 

Experiment  13.    325°    No  action  detected. 
14.     385°  „  „ 


Experiment  15. 

405° 

Initial  gas. 

Final  gas 

0/ 

0/ 

CO,     . . 

nil 

nil 

0 

7-0 

6-2 

C,H,  .. 

. .       25-5 

24-7 

CO       . . 

nil 

1-3 

H,       .. 

nil 

10 

Absorption    . . 

nil 

0-2 

2  mmg.  of  formaldehyde  was  obtained  per  litre 
of  gas.  This  result  is  of  theoretical  importance,  as 
it  shows  that  even  with  a  catalyst  formaldehyde  is 
formed;  it  readily  decomposes  into  hydrogen  and 
carbon  monoxide.  Many  experiments  were  made 
with  varying  mixtures  of  gases,  but  a  satisfactory 
quantity  of  formaldehyde  was  never  obtained  using 
platinum  gauze.  It  is  probable,  however,  that  with 
very  high  rates  of  gas  passage  and  at  a  temperature 
of  about  450°  formaldehyde  could  be  obtained  in 
quantity  wi.th  a  catalyst,  especially  if  a  stabiliser 
were  used  (see  later).  Such  experiments  were  not 
carried  out,  however,  as  we  had  not  facilities  for 
dealing  with  the  high  gas-speeds  necessary.  Among 
other  catalysts  platinised  asbestos  and  ferric  oxide 
were  investigated.  The  action  of  the  former  is  very 
vigorous.  With  these  and  with  all  catalysts  tried, 
as  the  temperature  rises,  thermal  decomposition  of 
the  ethylene  can  be  observed;  but  this  is  not 
accelerated  to  such  an  extent  as  the  oxidation.  To 
sum  up,  the  effect  of  a  catalyst  is  to  lower  the  tem- 
perature at  which  the  various  oxidation  reactions 
take  place  and  to  bunch  them  together— so  to  speak 
— making  them  follow  one  another  at  very  short 
intervals. 

Extensions  of  Willstattcr's  experiments. 

The  next  point  that  arose  was  whether  in 
experiments  without  catalysts,  as  carried  out  by 
Willstatter,  it  might  not  be  better  to  heat  for  a 
shorter  time  at  a  higher  temperature.  This  was 
investigated  in  the  same  apparatus,  using  furnaces 
from  10  cm.  to  35  cm.  in  length,  and  tubes  of 
diameters  from  1  to  5  mm.  As  the  time  of  heating 
diminished  at  any  given  temperature  the  ratio  of 
acetaldehyde  to  formaldehyde  increased,  but  the 
total  conversion  was  of  course  reduced ;  the  per- 
centage yield  of  aldehyde  on  ethylene  improved,  and 
if  the  time  of  heating  at  540°  was  short  enough, 
say,  1"5  sees.,  no  carbon  monoxide  was  formed,  the 
only  loss  being  due  to  thermal  decomposition.  With 
the  same  time  of  heating  it  is  better  to  pass  the  gas 
through  a  narrow  tube  than  through  a  wide  one. 
This  is  probably  due  to  turbulence  giving  more  even 


heating  with  the  former  or  perhaps  to  an  increased 
surface  effect. 

Willstatter  did  not  work  with  less  than  20%  of 
ethylene;  on  continuing  his  investigations  in  this 
direction  by  decreasing  the  ethylene  and  increasing 
the  oxygen  content,  it  was  found  that  the  per- 
centage of  formaldehyde  on  the  ethylene  converted 
rose.  This  also  occurred  as  the  temperature  was 
reduced.  Thus  at  540°,  using  a  mixture  containing 
17%  of  ethylene  and  13%  of  oxygen,  4  mmg.  of 
formaldehyde  per  litre  in  70%  yield,  and  a  little 
acetaldehyde  were  obtained;  no  carbon  monoxide 
was  detected. 

Experiment  45. — Four   litres  of  gas  was   passed 

through  a  3  mm.   tube  in  the  same  apparatus  in 

60  minutes.    Time  of  heating  of  gas,  about  1  sec. 

Initial  gas.        Final  gas. 
o/  o/ 

CO, 

O,        

C,H. 

CO 

H, 


nil 

nil 

13-3 

13-1 

17-7 

17-5 

nil 

nil 

nil 

nil 

There  is  so  little  change  in  the  volume  in  the  gas 
before  and  after  the  experiment  that  the  percentage 
of  ethylene  in  the  final  mixture  can  be  subtracted 
directly  from  the  percentage  in  the  initial  mixture 
to  obtain  the  quantity  consumed. 

Apparatus  for  circulation. 

As  the  small  quantities  mentioned  could  not  be 
determined  very  accurately,  it  was  decided  to  circu- 
late the  gas  mixture;  in  this  way  the  course  of  the 
oxidation  could  be  followed  even  when  interaction 
was  occurring  slowly.  Our  experiments  up  to  this 
point  had  convinced  us  that  to  make  formaldehyde 
directly  from  ethylene  in  yields  approaching  the 
theoretical  the  gas  mixtures  must  be  circulated 
without  a  catalyst.  For  a  successful  circulation  it 
is  necessary  that  the  conversion  should  be  to 
formaldehyde,  and  very  little  else,  even  though  the 
amount  of  formaldehyde  is  very  small  in  conse- 
quence. 

The  circulation  apparatus  (Fig.  2)  was  as 
follows: — From  the  automatic  Sprengel  pump,  A 
(<■/.  Bone  and  Wheeler,  Trans.  Chem.  Soc,  1903, 
1076),  the  gases  passed  to  a  bulb,  B,  of  about  350  c.c. 
capacity.  Fresh  gas  was  admitted  through  the  tube, 
p,  and  three-way  tap,  tl,  by  means  of  a  mercury 
valve,  K,  arranged  to  admit  gas  automatically 
as  soon  as  the  pressure  fell  below  a  predetermined 
amount.  The  gas  then  passed  the  three-way  tap,  t2, 
whence  samples  could  be  withdrawn  into  the  bulb, 

C,  and  thence  delivered  by  three-way  tap,  t', 
and  tube,   6,  into  holders  for  analysis.     The  bulb, 

D,  prevented  any  sudden  sucking  back  of  the 
water  in  the  various  wash-bottles  during  this  opera- 
tion. By  means  of  the  three-way  taps,  J*  and  ts, 
the  gas  could  be  passed  through  either,  or  both,  of 
two  furnace  tubes,  and  their  corresponding  sets  of 
worms,  l,l,m,m.  El,  E2  were  rate  gauges,  F',  F3 
wash-bottles  containing  distilled  water  put  in  to  act 
as  flash-traps  in  the  event  of  inflammation  in  the 
tubes.  The  second  tube  was  used  only  when  it  was 
desired  to  compare  the  effect  of  tubes  of  different 
materials,  construction,  etc.  n  was  a  final  worm 
common  to  both  tubes.  All  the  worms  contained 
distilled  water.  The  arrangement  of  tubes  and 
thermo-couple  in  the  electric  furnace  was  as  before. 
L,  M,  N,  P,  were  four  gas  holders.  L  contained 
pure  ethylene,  \I  pure  oxygen,  N  pure  nitrogen, 
and  P  an  almost  equimolecular  mixture  of  the 
first  two,  made  up  sx>  that  by  adding  it  to  the  circu- 
lation gas,  the  latter  remained  nearly  constant  in 
composition.  An  experiment  was  started  by  ex- 
hausting the  apparatus  first  with  a  water  pump 
through  f6,and  then  with  the  Sprengel  pump,  using 
the  three-way  tap,  t.  When  the  apparatus  was 
exhausted,  as  shown  by  the  manometer  and  by  the 
mercury  clicking  in  the  fall  tube,  exhaustion  was 
stopped  and  the  whole  allowed  to  stand  overnight 


Vol.  XLI.,  No.  17.]        BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS. 


307  t 


to  test  for  leaks.  These  being  absent,  nitrogen, 
ethylene,  and  oxygen  were  admitted  in  the  requisite 
amounts,  the  quantities  being  controlled  by  means 
of  the  manometer,  T.  K  and  p  were  always 
swept  out  to  the  air  with  the  gas  to  be  treated,  by 
means  of  three-way  tap,  t'.  The  actual  quantities 
of  gases  admitted  were  read  from  the  graduated 
holders,  and  reduced  to  N.T.P.  The  gases  were 
circulated  for  6  hours  thoroughly  to  mix  them, 
saturate   them   with   water   vapour   and  enable   all 


To  Water  pump 


of  the  holders  continuously.  Usually  it  was  P  that 
was  connected.  If  the  mixture  in  P  was  not  keep- 
ing the  composition  constant  its  constitution  was 
altered,  by  adding  more  ethylene  or  oxygen  from 
L  or  M,  or  through  Y,  an  open  tubs  dipping 
under  mercury,  whence  also  samples  of  the  gases  in 
the  holders  could  be  taken.  If  the  constitution  of 
the  circulating  gas  required  altering  some  of  it 
could  be  pumped  off  through  t  and  fresh  gas  added, 
T  being  used  to  check  quantities. 


Fiq.  2.  Circulation  apparatus. 


adjustments  to  be  made  before  a  sample  was  drawn 
off  for  analysis.  The  furnace  was  then  heated  to  the 
required  temperature,  and  the  mercury  in  K 
adjusted  so  that  gas  was  on  the  point  of  being 
admitted,  by  adding  or  withdrawing  mercury  by  the 
bulb  R.  The  gases  were  at  times  circulated  for 
days,  being  analysed  three  times  in  24  hours.  The 
rate  was  kept  constant  by  controlling  the  air-lift 
on  the  automatic  pump  as  described  by  Bone  and 
Wheeler  (Trans.  Chem.  Soc.,  1903,  1079).  At  Z  was 
fitted  a  small  glass  reaching  half-way  across  the  top 
of  the  fall-tube.  It  was  found  that  it  broke  even 
rapid  streams  of  mercury,  thus  enabling  high  rates 
of  gas  circulation  to  be  maintained. 

By  adjusting  the  taps  connecting  L,  M,  N,  P  with 
the  tube,  X,  it  was  possible  to  admit  gas  from  one 


Results  of  circulation  experiments. 

In  our  first  experiments  the  circulation  period 
was  only  12  hours  and  no  additional  gas  was  ad- 
mitted. Pressure  readings  were  taken  at  intervals 
to  control  the  experiments  just  as  described  by 
Bone  and  Wheeler  (loc.  cit.);  the  pressure  curves 
obtained  were  of  the  type  described  by  them. 
Dilute  gases  at  temperatures  of  about  560°  were 
used,  as  our  previous  experiments  had  convinced  us 
that  this  was  the  optimum  temperature.  The  follow- 
ing is  a  typical  experiment. 

Experiment  67.  0720  litre  of  gas  at  N.T.P.  was 
circulated  at  560°  for  12  hours  at  an  initial  cor- 
rected pressure  of  748  mm.  The  corrected  pressure 
fell  76  mm.  during  the  experiment.  The  rate  of 
circulation  was  approximately  1  litre  in  30  mins. 


308  T 


BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS. 


[Sept.  15,  1922. 


A  4  mm.  tube  in  a  30  cm.  furnace  was  used,  so  the 
time  of  contact  was  about  4  sees. 


initial  gas. 

Final  gas 

COj 

/o 

nU 

/o 
0-3 

0, 

9-6 

3-5 

C,H, 

15-1 

10-8 

CO 

nil 

2-6 

Na  (saturated  hydrocarbons 

included) 

75-3 

82-8 

The  yield  of  formaldehyde  was  75  mmg.  per  litre 
(50%)  and  the  amount  of  ethylene  consumed  53  c.c. 
per  litre. 

Comparing  the  volumes  of  the  gases  before  and 
after  the  experiment  it  can  be  calculated  that  63  c.c. 
of  oxygen  and  53  c.c.  of  ethylene  were  consumed. 
There  were  obtained  in  the  products  per  litre  of 
gas  :  — 

3  c.c.  C02  =  2  c.c.  CH,  and  5  c.c.  02  (allowing  for 
26  c.c.  CO  =  13  c.c.  „  „  20  c.c.  02  „  H„0) 
75mmg.CH20=  28  c.c.     „      „  28  c.c.  02  „ 

43  c.c.  of  C2H4  and  59  c.c.  of  02  are  thus  directly 
accounted  for.  The  remainder  of  the  oxygen  was 
•consumed  in  the  formation  of  intermediate  pro- 
ducts etc.  The  ethylene  is  not  all  accounted  for, 
the  difference  in  this  case  being  due  to  thermal 
decomposition.  Thus,  for  100  c.c.  of  C2H4  used, 
4  c.c.  oxidised  to  C02,  25  c.c.  oxidised  to  CO,  53  c.c. 
oxidised  to  CH20,  and  18  c.c  was  thermally  decom- 
posed. 

This  is  a  good  conversion,  for  as  the  oxygen-con- 
tent decreased  there  w<a3  a  greater  possibility  of 
thermal  decomposition  of  the  ethylene  than  if  the 
oxygen-content  was  being  maintained.  The  slow 
rate  of  circulation  also  helped  this  decomposition 
and  also  the  oxidation  of  formaldehyde  to  formic 
acid  and  the  further  decomposition  of  the  latter  to 
.-toam  and  carbon  monoxide.  As  no  hydrogen  was 
obtained,  direct  decomposition  to  hydrogen  and 
carbon  monoxide  does  not  seem  to  occur  to  any 
extent  under  the  conditions  of  the  experiment. 

Several  circulation  experiments  of  the  above  type 
were  carried  out.  The  automatic  valve  to  admit 
fresh  gas  was  then  used,  and  experiments  were  per- 
formed with  its  aid,  -and  many  of  the  statements 
made  in  the  earlier  part  of  this  paper  as  to  the 
influence  of  surface,  time  of  heating,  dilution,  etc. 
were  confirmed.  Also  by  circulating  a  mixture  and 
raising  the  temperature  a  few  degrees  at  intervals 
of  3  hours  it  was  possible,  by  observations  of  the  fall 
in  pressure,  to  confirm  our  results  as  to  the  tem- 
perature at  which  an  appreciable  reaction  occurs 
in  a  heating  period  of  about  a  second.  Of  special 
interest  is  an  experiment  in  which;  using  a  short 
time  of  heating  (0'6  sec),  in  addition  to  100  mm. 
of  formaldehyde,  5  mmg.  of  formic  acid  was  obtained 
per  litre  per  day.  With  such  a  time  of  heating  the 
gas  does  not  reach  the  temperature  of  the  couple, 
for  even  with  a  mixture  within  the  explosive  limits, 
inflammation  does  not  occur  below  610°.  In  all  ex- 
periments in  which  much  formic  acid  was  isolated 
the  percentage  of  oxygen  washigh  (20 %),C2H4 being 
usually  about  13%.  On  the  other  hand,  by  decreas- 
ing the  oxygen-content  to  about  10%,  C2H4  remain- 
ing at  13  % ,  at  540°  as  much  as  5  mmg.  of  acetalde- 
hyde  per  litre  of  circulating  gas  was  obtained  in  a 
day.  Bone  and  Wheeler,  and  Willstatter  also 
detected  these  compounds. 

Investigations  were  then  carried  out  with  this 
apparatus  to  determine  whether  it  might  not  be 
better  to  use  explosive  mixtures  at  temperatures 
below  the  ignition  temperature,  546°  C.  It  has  been 
shown  that  the  greater  the  dilution  of  the  ethylene 
the  better  the  conversion,  but  mixtures  containing 
less  than  14%  ethylene  are  inflammable,  so  it 
remained  to  see  if  such  dilute  mixtures  could  be 
used  below  546°.  The  action,  however,  was  too  slow 
and  the  percentage  of  acetaldehyde  in  the  formalde- 
hyde produced  was  high,  viz.,  up  to  10%. 


It  is  noteworthy  that  a  large  excess  of  oxygen 
inhibits  the  oxidation,  much  more  than  a  large 
excess  of  ethylene  (see  also  Trans.  Chem.  Soc,  1904 
703,  1643).  Thus,  starting  with  a  gas  containing 
10%  of  oxygen  and  20%  of  ethylene,  and  gradually 
increasing  the  oxygen  content,  keeping  nitrogen  at 
70  % ,  the  rate  of  reaction  increases  until  the  mixture 
contains  equal  volumes  of  the  gases  but  fallls  off 
rapidly  when  the  oxygen  is  further  increased. 

By  the  aid  of  the  second  tube  shown  in  the 
diagram  the  effects  of  tubes  of  steel  etc.  were 
compared  by  passing  one  half  of  the  gas  through 
the  metallic  tube  and  the  other  half  through  the 
glass  tube.  Slight  oxidation  of  the  metallic  tubes 
occurs ;  the  metal,  and  also  the  oxides  formed,  act 
as  catalysts  and  cause  the  decomposition  of  the 
formaldehyde  (see  Expts.  IV.  and  V.,  Table  I.). 
Only  15  mmg.  of  formaldehyde  per  litre  of  ethylene 
was  obtained  in  48  hours  at  600°  with  the  steel  tube, 
but  the  formation  of  even  this  small  quantity  con- 
firms our  results  with  platinum  gauze.  The  yield 
was  T5%  on  the  ethylene  consumed.  Both  CO  and 
C02  were  formed.  Under  similar  conditions  with 
a  glass  tube  (02,  16%;  C2H4,  19%)  formaldehyde 
was  obtained  at  8  mmg.  per  litre  per  hour  in  70% 
yield.  There  was  only  a  small  quantity  of  acetalde- 
hyde in  the  product. 

Experiment  69.  (See  Experiment  III.  Table  I.). 
0'625  litre  (N.T.P.)  of  a  mixture  of  ethylene, 
oxygen,  and  nitrogen  was  circulated  at  575°  for  39 
hours.  The  rate  of  circulation  was  about  1  litre 
in  15  mins.,  the  time  of  heating  in  the  tube  being 
about  1  sec.  Fresh  gas  (C2H4  48'3%  ;  02  5T3%)  was 
admitted  automatically  and  a  25  c.c.  sample  was 
taken  after  15  hours,  the  pressure  being  kept 
constant  throughout. 


Initial  gas. 


Sample. 


Final  gas. 


NU  Nil 

15-8%=    99  c.c.    15-4%  = 


19-4%  =121  c.c. 

Nil 
64-8%  =  405  c.c. 


4  c.c. 

5  c.c. 


19-1°; 
1-1% 
64-4%=    16  c.c. 


0-2% 

14-2%=   89  c.c. 

170%  =  106  c.c. 

3-5%=   22  C.C. 

65-1%  =  404  c.c. 


192  mmg.  of  formaldehyde  and  some  acetaldehyde 
were  obtained.     0T63  litre  of  gas  containing  77  c.c. 
C2H4,  82  c.c.  02,  1  c.c.  N2  was  fed  in  during  the 
experiment.      Allowing   for   the   quantities   in   the 
sample,     there    disappeared    during    the    reaction 
87  c.c.  of  C2H4  and  88  c.c.  02,  and  there  was  found 
17  c.c.  of  residual  gas.    The  contraction  due  to  reac- 
tion =160  c.c.  Making  use  of  the  following  equations 
C,H4+0.,  =  2CH20 
C2H4+202  =  2H,0  +  2CO,  we  have 
192  mmg.  CH2O  =  70  c.c.  C2H4,  70  c.c.  O,,  140  c.c. 
contraction. 
22  c.c.  CO  =  ll  c.c.  C2H4,  22  c.c.  02,  11  c.c. 
contraction. 

Total  appearing  in  products  = 

81  c.c.  C2HJ(  92  c.c.  02,  151  c.c.  contraction. 
Total  consumed  = 

87  c.c.  CjH,,,  88  c.c.  02,  165  c.c.  contraction. 
The  oxygen  is  in  fair  agreement;  the  other  dif- 
ferences are  due  to  thermal  decomposition  which 
cannot  well  be  allowed  for,  and  to  the  difficulty  of 
measuring  accurately  the  volumes  of  the  gases 
used.  The  experiment  may  be  summarised  as 
follows  :  ■ — ■ 


Expt. 

Temp. 

CjH,. 

0=. 

mmg. 

CH20 
formed 
per  litre. 

c.c.  C2H, 
consumed 
per  litre. 

%CSH« 
-*CH,0 

69 

575° 

19-4% 

15-8% 

300 

160 

70 

The  composition  of  the  gas  must  be  carefully 
controlled  so  that  the  ethylene  does  not  fall  below 
14%.     If  a  mixture  of  50%   C2H4  and  50%   02  be 


Vol.  XLL,  No.  17.]      BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS. 


309  T 


added  through  the  automatic  valve  the  composition 
of  the  reacting  gases  will  alter  only  slowly  as  the 
oxygen  is  usually  consumed  a  little  faster  than  the 
ue.  The  method  of  calculating  the  results 
~e  experiments  will  be  clear  from  what  has 
been  given  above,  so  it  is  unnecessary  to  give 
further  details  of  gas  analysis  etc. 

The    following   is    a    summary    of   some    of    our 
circulation  experiments:  — 


Expt.       Temp. 

C2H,. 

0,. 

c.c.  C2H,  con-     Yield  CH,0 
sumed  per  litre.      per  litre. 

74            590° 

42-1% 

43-2% 

49  c.c.           60  mg.,  50% 

■     r-  1 

The  stabilising  effect  of  the  ammonia  is  here 
clearly  seen.  A  50%  yield  at  such  a  temperature 
and  with  such  a  mixture  is  interesting  considering 


Table  I. 


Temp,  of 


Diam.  of 
tube. 


%  of  ethylene 

in  mixture 

before  and  after 

experiment. 


%  of  oygxen 

in  mixture 

before  and  after 

experiment. 


Total  time 

Rate  of 

of  experi- 

passage oi 

ment 

gas  in  c.c. 

in  niins. 

per  min. 

720 

30 

840 

50 

2340 

67 

1080 

31 

2970 

31 

Time  of 

heating  of  gas 

in  each  passage 

through  tube 

in  sees. 


No.  of  mmg. 

of  formalde- 
hyde produced 

in  passage  of 

1  litre 
through  tube. 


%  of  C2H, 

consumed, 

converted  to 

formaldehyde. 


I. 
II. 

m. 

•IV. 


°c. 

560° 


mm. 
4 
3 
2 


•V.     550° 


15-l%->-10-S% 
13-4%  — 
19-4%—  L7;0% 
14-9%-*  17-5% 
12-8%  -»■   9-8% 


9-6% -»    3-5% 
14-9%-»-lS-0% 

-14-2% 
11-6%—  00% 
17-9%-*   3-9% 


4 

2-4 
10 
2 
4 


3 
2-3 


03 
0-7 


50% 
70% 
75% 

1-5% 
25% 


experiments  were  made  with  a  steel  tube  ;   the  remainder  with  ulas-  tubes. 


Formaldehyde  stabilisers. 

(a)  Steam. — The  use  of  steam  as  a  formaldehyde 
stabiliser  was  investigated ;  it  was  hoped  by  means 
of  some  such  stabiliser  to  be  able  to  isolate  a 
quantity  of  formaldehyde  from  an  oxidation  giving 
little  in  the  ordinary  way.  This  would  confirm  the 
view  that  under  all  conditions  formaldehyde  is 
formed  though  only  momentarily.  In  several 
experiments  steam  was  added  to  the  gases  up  to 
if  the  total  volume,  by  passing  the  ethylene- 
oxygen-nitrogen  mixtures  through  water  at  the 
temperature  (83°)  at  which  its  vapour  pressure  is 
slightly  more  than  half  an  atmosphere.  The  steam 
in  these  experiments  was  condensed  and  the 
formaldehyde  absorbed  by  passing  the  gases  through 
two  water-worms.  The  steam  did  stabilise  the 
formaldehyde  to  some  extent.  From  an  explosive 
mixture  (O.=50%;  C\,JH,,  =  25%),  using  a  40  cm. 
furnace,  15  mmg.  of  CH,0  was  obtained  at 
600°  in  55%  yield.  No  inflammation  took  place, 
but  in  another  experiment  at  610°  inflammation 
took  placo  and  the  yield  was  materially  reduced 
(14  mmg.  in  8%  yield).  The  steam  had  also  a 
protective  action  on  the  formic  acid.  Our  experi- 
ments showed  that,  although  no  formaldehyde  may 
be  obtained,  yet  it  is  undoubtedly  formed  even 
under  conditions  which  lead  to  inflammation  of  the 
gas  mixture.  It  may  be  added  that  steam  does  not 
stabilise  formaldehyde  in  the  presence  of  catalysts ; 
hvdrolvsis  then  seems  to  occur.  CH20+H.,0  = 
I  (I      2H2.     (See  J.  Amer.  Chem.  Soc,  1921,  1670.) 

(6)  Ammonia. — The  use  of  ammonia  to  stabilise 
formaldehvde  as  hexamethylenetetramine  was  then 
tried  (E.P.  156,136).  It  was  introduced  into  the 
gases  either  directly  or  by  bubbling  through  0'880 
ammonia  solution  (Trans.  Chem.  Soc,  1903,  1169), 
the  hexamethylenetetramine  being  distilled  with 
dilute  sulphuric  acid  to  recover  formaldehyde.  The 
following  typical  experiment  may  be  quoted. 

Experiment  74. — A  mixture  containing  42T% 
ethylene  and  43'2%  oxygen  was  passed  through  a 
bulb  of  about  500  c.c.  capacity,  and  ammonia  was 
led  into  the  bulb  at  the  same  rate.  The  mixed  gases 
were  then  passed  through  a  4  mm.  tube  in  the  usual 
furnace,  through  three  washers  to  remove  ammonia 
and  hexamethylenetetramine,  and  into  a  gas  holder. 

Rate  of  passage  of  the  ethylene-oxygen-nitrogen 
mixture  =  l  litre  in  20  minutes. 

133  litres  (at  N.T.P.)  of  the  mixture  was  passed 
through  the  tube  in  15  minutes.  The  time  of 
heating  was  3  sees. 


that  almost  50  c.c.  of  ethylene  had  entered  into  the 
reaction.  Also,  with  the  aid  of  ammonia,  we 
isolated  some  formaldehyde  in  contact  with  cata- 
lysts, but  much  thermal  decomposition  occurred. 
At  lower  temperatures  better  results  were  obtained, 
due  to  less  decomposition  of  both  the  ethylene  and 
hexamethylenetetramine.  The  latter  decomposes  if 
heated  much  above  100°;  in  a  vacuum  it  is  stable 
and  also  at  high  temperatures  when  formed  in  a 
gas  current  as  above  and  swept  out  of  the  hot  tube 
immediately.  Since  the  best  results  were  obtained 
at  lower  temperatures  it  would  seem  best  to  use 
ammonia  in  conjunction  with  a  catalyst  which 
would  lower  the  oxidation  temperature  but  would 
not  thermally  decompose  ethylene.  No  such  catalyst 
was  found,  but  the  subject  was  not  pursued  for 
the  presenco  of  formaldehyde  had  been  proved,  and 
on  economic  grounds  the  ammonia  method  seemed 
to  offer  no  advantage  over  the  direct  oxidation 
process,  more  especially  as  a  portion  of  gas  is 
oxidised  to  nitrogen.  It  may  be  noted  that  excess 
of  ammonia  increases  the  stabilising  action,  but 
even  when  using  only  a  little  it  still  exerts  to  some 
extent  its  stabilising  effect.  It  also  hinders  the 
decomposition  of  formic  acid,  which  was  always 
detected,  sometimes  in  quantity,  in  the  distillate 
in  most  of  the  experiments  in  which  ammonia  was 
used. 

It  was  not  impossible  that  in  the  presence  of 
ammonia,  hydrogen  and  carbon  monoxide  might 
yield  formaldehyde  owing  to  the  latter  being 
removed  by  the  ammonia  as  fast  as  formed.  To 
test  this  a  mixture  of  3  vols,  of  hydrogen,  3  vols, 
of  carbon  monoxide,  and  6  vols,  of  ammonia  was 
circulated  for  5  days  beginning  at  500°  and 
gradually  rising  in  2  days  to  700^.  Up  to  640° 
no  reaction  was  noted;  at  this  temperature  crystals 
appeared  on  the  exit  end  of  the  furnace  tube  and 
a  fall  in  pressure  took  place.  The  matter  was 
not  further  investigated  as  the  temperature  at 
which  this  reaction  took  place  was  too  high  to 
affect  our  ethylene  experiments.  The  crystals 
looked  not  unlike  urea. 

Discussion  of  results. 

(a)  Course  of  the  oxidation. — Our  experiments 
with  ammonia  and  steam  indicate  that  formalde- 
hyde is  always  formed  in  inflammations  and  even 
in  contact  with  catalysts.  It  then  breaks  down 
if  the  temperature  is  high,  say  above  600°,  or  if 
its  concentration  rises  above  2%  of  the  mixture. 
Otherwise  the  formaldehyde  is  oxidised,  if  enough 


310  t 


BLAIR  AND  WHEELER.— THE  OXIDATION  OF  HYDROCARBONS.  [Sept.  15, 1922. 


oxygen  is  present  and  the  time  of  heating  is  suffi- 
cient, to  formic  acid,  which  decomposes  very  readily 
into  carbon  monoxide  and  steam;  the  carbon 
monoxide  then,  oxidises  much  more  slowly  to  carbon 
dioxide.  With  dilute  ethylene  the  action  is  slow 
and  from  such  mixtures,  with  a  short  time  of 
heating,  the  formation  of  appreciable  quantities  of 
acetaldehyde  or  of  formic  acid  according  to  the 
proportion  of  oxygen  present  has  been  proved.  A 
short  period  of  heating  is  necessary  for  the  detec- 
tion of  acetaldehyde  because  it  is  an  eaily  inter- 
mediate product  and  for  that  of  formic  acid 
because  of  its  instability.  A  slight  excess  of 
oxygen  helps  the  formation  of  the  latter,  a  deficit 
or  a  large  excess  assists  that  of  the  former.  The 
inhibitory  action  of  an  excess  of  oxygen  has  been 
noted.  {Cf.  Bone  and  Andrew,  Trans.  Chem.  Soc, 
1906,  1232.) 

The  effect  of  catalysts,  concentrated  gases,  high 
temperatures  or  increased  period  of  heating  is  to 
make  the  reactions  follow  one  another  very  rapidly 
and  to  proceed  further  to  completion.  It  is  interest- 
ing to  observe  how  with  catalysts,  as  the  tempera- 
ture increases,  the  percentage  of  carbon  dioxide, 
even  with  little  oxygen,  approaches  that  of  car- 
bon monoxide,  owing  mostly  to  an  increase  in  the 
rate  of  oxidation  of  the  intermediate  products.  One 
point  may  here  be  emphasised.  Bone  and  Wheeler 
(Trans.  Chem.  Soc.,  1902,  537)  proved  that  under 
the  conditions  of  their  bulb  experiments  the  fol- 
lowing reactions  do  not  take  place :  — 

1.  CO  +H20  =  C02+H2 

2.  2CO+  02   =  2CO„ 

3.  2H3  +  02   =2H20 

so  that  in  their  experiments  carbon  dioxide  and 
water  were  only  formed  as  a  result  of  nascent  action 
and  through  direct  decomposition  of  the  hydrocar- 
bon oxidation  products.  But  in  our  experiments, 
though  I.  and  2.  were  comparatively  slow  except 
with  catalysts,  yet  3.  was  not ;  so  that  a  small  direct 
decomposition  of  formaldehyde  is  not  easy  to  dis- 
tinguish from  decomposition  via  formation  of 
formic  acid.  The  quantities  of  formaldehyde  per- 
sisting make  the  latter  more  probable. 

Acetaldehyde  was  obtained  so  frequently  that  we 
believe  that  under  the  conditions  of  our  experiments 
acetaldehyde  rather  than  dihydroxyethylene  was 
the  intermedeiate  product  of  oxidation.  It  would 
seem  that  in  oxidations  where  the  gases  are  inter- 
acting slowly  there  is  time  for  most  of  the  vinyl 
alcohol  first  formed  to  isomerise  to  acetaldehyde 
before  further  oxidation  occurs.  In  inflammations, 
however,  and  in  oxidations  accelerated  by  surfaces 
or  by  catalysts,  the  main  course  of  the  oxidation 
may  be  via  dihvdroxyethylene  as  indicated  by  Bone 
and  Wheeler  (trans.  Chem.  Soc,  1904,  1637). 

With  regard  to  the  oxidation  of  the  acetaldehyde 
formed  in  our  experiments,  Bone  and  Stockings 
(loc.  cit.)  found  that  under  the  conditions  of  their 
experiments  acetaldehyde  was  oxidised  thus  :  — 

CH3        f  CH,OH  ~1 

I      -►    i     I  [^  CO  +  CH,0  +  H,0. 

CHO       I  CHO      J 

At  first  sight  it  would  appear  from  this  that  it 
was   impossible  that  acetaldehyde  could  be   in   the 


main  course  of  the  oxidation  of  ethylene  where 
yields  of  over  50%  of  formaldehyde  are  obtained. 
But  the  scheme 

CH,       rCH.,OH1 
I        -*i    I  J.->2CH,,0 

CHO      LCHO      J 

is  quite  possible  on  the  hydroxylation  theory,  and  it 
is  probable  that  under  the  conditions  of  our  experi- 
ments acetaldehyde  did  oxidise  in  this  way.  This 
follows  from  the  consideration  that  as  the  tempera- 
ture of  oxidation  fell  the  ratio  of  acetaldehyde  to 
formaldehyde  increased,  and  yet  the  carbon  mon- 
oxide formed  decreased  until  at  550°  none  was  to 
be  detected,  although  acetaldehyde  was  present,  and 
some  must  have  oxidised  (cf.  Willstiitter  and 
Bommer,  Amialen,  422,  45 ;  also  our  experiment  45, 
p.  306  t). 

The  following  scheme  represents  then  the  main 
course  of  the  interaction  of  ethylene  and  oxygen 
under  the  conditions  of  our  experiments  :  — 


CH, 

II 
CH, 


Ethylene. 


I 

]  II  f-    Vinyl  alcohol. 

ICHOHJ 

1 
CH3 

Acetaldehyde. 
CHO 

II 
I 
CH2OH  "1 

}■  Glycollic  aldehyde. 
CHO      J 


Formaldehyde        CH20 


Formic  acid  CH,02  =- 

Carbonic  acid        [CO(OH)2] 

COo+HjO   * 


(Double  lines  show  the   most  usual   course  of   the 
oxidation  in  our  experiments). 

We  have  to  thank  Professors  W.  A.  Bone,  F.R.S., 
and  R.  V.  Wheeler  for  their  kindly  criticism  cf  our 
work.  Both  agree  with  the  above  scheme  for  the 
preponderating  course  of  oxidation  of  ethylene 
under  the  conditions  of  our  experiments. 

This  work  was  carried  out  for  the  Chemistry 
Research  Board  of  the  Department  of  Scientific  and 
Industrial  Research,  to  whom  we  are  indebted  for 
permission  to  publish  these  results. 

Main  Laboratory, 

R.N.  Cordite  Factory, 

Holton  Heath,  Dorset. 


Vol.  XLI..  No.  18.] 


TRANSACTIONS 


|  Sept.  30,  1922. 


Canadian   Sections. 


Meeting  held  at  Ottawa  on  May  15,  1922. 


MR.  F.  J.   HAJIBLY  IN  THE  CHAIR. 


THE  CORROSION  OF  CAST  IRON  AND  LEAD 
PIPES  IN  ALKALINE  SOILS. 

BY   J.    W.    SHIPLEY. 

Part  I. 
The  Corrosion  of  Iron  by-  Soil. 

The  corrosive  destruction  of  underground  metal 
structures  in  western  Canada  has  become  a  matter 
nt  real  concern  to  the  public  as  well  as  to  the 
engineering  profession.  The  disintegration  of  con- 
crete foundations,  aqueducts,  and  sewers,  when  ex- 
posed to  the  alkaline  salts  found  in  the  soils  of  the 
western  prairies,  has  led  to  an  investigation  con- 
ducted jointly  by  the  Engineering  Institute  of 
Canada  and  the  Industrial  Research  Council 
assisted  financially  by  several  western  cities,  the 
Canada  Cement  Company,  and  the  Governments  of 
Saskatchewan  and  Alberta. 

The  corrosive  destruction  of  steel  and  iron  struc- 
tures when  buried  in  these  soils  led  to  an  investiga- 
tion of  the  problem,  primarily,  in  the  interests  of 
the  Winnipeg  Electric  Street  Railway,  in  order  to 
determine  whether  such  destruction  took  place  in 
the  absence  of  stray  electric  current.  Field  obser- 
vations indicated  severe  corrosion  remote  from  rail- 
way tracks  or  in  localities  where  current  would  be 
flowing  into  the  metal  structures,  and  not  out  of 
them.  Such  was  the  case  at  the  Mental  Hospital  at 
Selkirk,  Manitoba,  where  the  flanges  on  the  bells  of 
the  cast-iron  water  main  could  be  whittled  off  with 
a  jack  knife  to  a  depth  of  a  quarter  of  an  inch  or 
more.  Soft  areas  on  the  pipe  were  marked  by 
patches  of  rust,  on  removing  which  the  iron  could 
be  dug  into  with  a  knife  blade.  At  one  spot  where 
a  limestone  pebble  was  in  contact  with  the  pipe  the 
deepest  pitting  was  observed,  the  pipe  having 
softened  to  a  depth  of  about  a  quarter  of  an  inch. 
This  pipe  line  had  been  in  the  ground  for  eight 
years,  and  was  located  1J  miles  beyond  the  northern 
extremity  of  the  trolley  line  that  runs  to  Winnipeg, 
the  nearest  sub-station  being  over  five  miles  further 
south.  The  hospital  water-pipe  system  had  no  con- 
nexion with  the  town  water  pipes,  and  the  observed 
corrosion  was  on  that  part  of  the  system  farthest 
removed  from  the  electric  railway.  A  delicate 
galvanometer  failed  to  show  any  trace  of  stray 
current. 

Other  instances  of  this  graphitic  softening  of  cast 
iron  were  found  in  the  C.P.R.  yard  at  North  Trans- 
cona.  almost  three  miles  from  the  nearest  electric 
railway  track,  and  in  St.  Boniface  at  the  stock 
yards,  half  a  mile  outside  the  area  of  electric 
railway  operations. 

Before  the  construction  of  the  concrete  aqueduct 
from  Indian  Bay  water  from  artesian  wells  to  the 
north-west  of  the  city  was  conducted  into  Winni- 
peg. Steel  water  pipes,  first  laid,  were  so  badly 
damaged  by  external  soil  corrosion  after  three  years 
that   they   were   replaced   by   cast-iron   pipes,   well 


covered  with  a  coat  of  tar.  About  half  a  mile  of 
these  pipes  was  dug  up  in  the  autumn  of  1921, 
and  examination  indicated  that  they  were  remark- 
ably well  preserved.  Corrosion  was  only  apparent 
where  the  protective  coating  had  been  abraded, 
e.g.,  beneath  the  sling  with  which  the  pipes  had 
been  lowered  into  the  trench.  The  pipes  had  been 
in  the  ground  for  eight  years. 

Breaks  in  the  cast-iron  water  main  system  within 
the  city  of  Winnipeg  are  frequently  occurring,  and 
a  number  of  these  show  the  characteristic  graphitic 
softening  clear  through  the  pipe.  Laboratory  ex- 
periments showed  that  this  softening  is  produced 
alike  by  soil  salt  solutions  acting  on  the  iron,  or 
by  an  electric  current  leaving  the  pipe.  Conse- 
quently, it  is  impossible  to  determine  what  damage 
should  be  attributed  to  stray  current  electrolysis 
and  what  to  soil  action.  The  problem  is  further 
complicated  by  the  fact  that  the  very  conditions 
most  conducive  to  soil  corrosion  are  also  most  con- 
ducive to  stray  current  electrolysis.  A  concentra- 
tion of  salts  in  the  ground  water  makes  a  path  of 
low  resistance  for  the  electric  current. 

The  soils  of  the   Winnipeg  district. 

The  soils  of  the  AVinnipeg  district  consist  of  layers 
of  lacustrine  and  alluvial  silts  and  clays  overlying 
glacial  till.  The  first  three  to  four  feet  below  the 
surface  loam  is  quite  porous  and  rich  in  finely- 
divided  limestone.  The  next  layer  is  a  dense, 
colloidal,  chocolate-coloured  clay  containing  a  con- 
siderable percentage  of  limestone,  but  quite  im- 
pervious to  the  flow  of  water.  Beneath  this  lies  a 
narrow,  dark  yellow  layer  of  limy  silt,  frequently 
filled  with  crystals  of  selenite.  This  narrow  layer 
rests  upon  the  so-called  blue  clay  or  "gumbo."  This 
last  is  very  similar  in  composition  and  texture 
to  the  5 — 6  feet  of  chocolate-coloured  clay  overlying 
thi'  is  inches  of  silt  impregnated  with  selenite.  The 
water  pipes  lie  in  the  first  or  second  clay  layers, 
while  the  back  fill  is  composed  of  a  mixture  of  all 
layers.  Crystal  aggregations  of  salts  occur  in  the 
three  lower  layers.  These  are  disseminated  along 
the  bedding  planes,  in  the  vertical  cleavages  and 
particularly  along  roots  and  rootlets,  where  the 
spaces  are  frequently  completely  filled  with  crystals. 
These  consist  largely  of  calcium  sulphate  containing 
a  little  magnesium  sulphate. 

The  water-soluble  salt  content  of  the  soil  is  fre- 
quently more  than  1%  of  the  total  weight  of  soil, 
while,  in  some  instances,  it  is  as  high  as  10%.  The 
ground  waters  contain  the  sulphates,  chlorides,  and 
carbonates  of  calcium  and  magnesium,  and  are 
saturated  in  respect  to  calcium  sulphate  and 
carbonate. 

Through  the  clay  layers  there  is  practically  no 
lateral  movement  of  the  ground  waters,  and  the  use 
of  the  term  "  water  table"  has  no  significance.  A 
difference  of  4 — 6  feet  in  the  ground  water  level  has 
been  observed  over  a  horizontal  distance  of  30  feet, 
and  this  difference  persisted  through  several 
months.  The  moisture  content  of  the  soils  varies 
between  20%  and  30%.  The  average  electrical  re- 
sistance of  eighteen  samples  was  570  ohms  per  c.c, 
the  lowest  being  206  ohms,  the  highest  1085.  A 
gravel  back  fill  saturated  with  water  gave  an  elec- 
trical resistance  of  12,750  ohms  per  c.c.  Below  is 
given  an  analysis  of  three  of  the  soil  layers  described 
above.  The  samples  were  dried  at  105°  C.  and 
treated  with  hydrochloric  acid. 


SiO. 

Fe-,0, 

AUOs 

P206 

CaO 

MgO 

Na.O 

C02 

SO, 

CI 

H,0 

insol. 

and 

In  HC1 

organic 

K> 

% 

% 

% 

% 

% 

% 

/o 

% 

Yellow  limy  silt 

430 

1-9 

5-6 

015 

170 

7'8 

0-41 

23-8 

0-4 

0-07 

0-2 

First  clav  layer 

59-2 

6-3 

111 

0-30 

5-7 

3-3 

0-95 

5-5 

3-6 

005 

3-8 

Second  clay  layer  or 

*  gumbo  " 

59-4 

60 

10-2 

0-20 

7-6 

3-3 

0-26 

5-2 

4-7 

004 

4-4 

312i 


SHIPLEY.— CORROSION   OF   IRON   AND    LEAD   IN   ALKALINE    SOILS.        [Sept.  30, 1922. 


The  clay  layers  in  the  above  table  contain  a 
higher  sulphate  content  than  the  average  of  these 
layers,  but  represent  what  is  frequently  encountered. 

Composition  of  corroded  material. 

The  graphitic  softening  of  cast  iron  differs  en- 
tirely from  the  destruction  of  steel  and  wrought 
iron.  The  two  latter  are  pitted,  and  the  material 
of  the  pipe  is  completely  carried  away,  but  cast 
iron  corrodes  without  affecting  the  form  of  the 
pipes.  No  pitting  appears  on  the  surface,  and  a 
casual  inspection  indicates  an  undamaged  condi- 
tion. Much  of  the  iron  passes  out  into  the  sur- 
rounding soil,  Heaving  a  soft,  spongy  mass  of 
residual  graphite,  silica,  and  iron,  and  frequently, 
secondary  deposits  of  sulphide,  carbonate,  and 
phosphate  appear  in  the  corroded  mass.  This 
softening  may  extend  entirely  through  the  pipe 
without  affecting  its  functioning  as  a  conduit. 

Table  I. 

Composition  oj  matter  in  soft  areas  on  cast  iron 
pipe. 


Location  of  pipe 
Portage  and  Hargrave 
Edmonton  and  Qu'Appelle 
Stock  Yards,  St.  Boniface 
Stock  Yards,  St.  Boniface 
Selkirk  Mental  Hospital 


The  proportion  of  residual  metallic  iron  decreases 
as  the  corrosion  progresses,  while  that  of  the  sili- 
cious-graphitic  residue  increases.  The  proportion 
of  the  components  in  the  graphitic  mass  bears  little 
relation  to  the  original  ingredients  of  the  cast  iron 
and  the  state  of  oxidation  varies  within  wide 
limits.  Sometimes  the  corroded  material  lifts  com- 
pletely out  of  the  pipe.  An  analysis  of  one 
of  these  "fillings"  gave  metaJllic  iron  2%,  fer- 
rous phosphate  (vivianite)  18%,  and  carbon  and 
silica  42%.  The  specific  gravity  of  the  mass  is 
often  reduced  to  one-third  of  that  of  the  original 
cast  iron. 

Besides  this  graphitic  corrosion,  scale  sometimes 
appears  on  the  pipe.  A  full  analysis  of  this  material 
was  not  attempted,  since  it  was  more  or  less  incor- 
porated with  the  soil  in  contact  with  the  pipe.  The 
large  proportion  of  iron  in  the  ferrous  condition 
was  the  most  remarkable  feature  in  the  composition 
of  this  scale. 

Table  II. 
Nature  of  iron  in  pipe  scale. 
Metal-  Ferrous  Ferric 


During  the  day  some  of  these  were  heated  to  80°  C. 
or  higher.  Graphitic  softening  was  produced  in 
more  than  half  the  samples,  the  sulphates  and 
chlorides  of  calcium  and  magnesium  attacking  the 
iron  most  actively.  Calcium  carbonate  saturated 
with  carbon  dioxide  also  proved  to  be  corrosive, 
but  the  salts  of  magnesium  were  the  worst.  In 
general  those  salts  which  formed  acid  products 
of  hydrolysis  were  most  corrosive,  while  those 
giving  basic  products  were  least. 

Heating  did  not  appear  to  hasten  the  corrosion. 
This  would  indicate  that  the  corrosive  action  is 
electro-chemical  rather  than  chemical  in  nature, 
and  the  usual  doubling  of  the  chemical  action  for 
a  10°  C.  rise  in  temperature  does  not  follow.  That 
is,  we  are  dealing  with  the  chemical  action  produced 
by  a  difference  in  E.M.F.,  and  consequently  the 
temperature  coefficient  for  voltage,  which  is  rela- 
tively small,  is  alone  concerned. 

A  set  of  experiments  in  which  samples  of  soil 
were  used  instead  of  salt  solutions  was  made  simul- 
taneously with  those  just  described.  Corrosion  of 
the  cast  iron  was  of  the  same  nature  as  that  ob- 


letallic 

Ferrous 

Ferric 

Silicious- 

iron. 

iron. 

iron. 

graphitlc 
residue. 

% 

% 

% 

% 

Remarks. 

26-2 

230 

2-2 

30-4 

Pitting  S/8'  deep. 

35-2 

16-6 

10-4 

25-6 

Pitting  3/8*  deep. 

520 

17-4 

8-9 

13-2 

Pitting  1/8'  deep. 

41-4 

240 

4-2 

18-4 

More  than  1/8*  deep,  and  sulphur  1*1  % 

49-2 

1S-4 

91 

17-8 

Pitting  1/4". 

lie  iron. 

Iron. 

Iron. 

Remarks. 

Location  of  pipe.             % 

% 

% 

Ellice  and  Donald           . .      1-4 

30-0 

7-4 

Slightly  magnetic. 

Manitoba  Gypsum  "Works     4*2 

9-7 

13-0 

Slightly  magnetic. 

Bannatyne  and  Princess    0-4 

12-5 

0-2 

Kon-magnetic. 

Stock  Yards,  St.  Boniface    11 

231 

12-5 

Slightly  magnetic. 

The  field  observations  covered  practically  the 
entire  city  of  Winnipeg,  together  with  adjacent 
municipalities,  and  included  the  examination  of 
half  a  mile  of  water  mains  along  River  Avenue, 
Fort  Rough,  and  half  a  mile  of  pipe  from  the  old 
water  district,  north  of  the  city. 

Laboratory  investigation. 

The  laboratory  investigation  was  carried  out 
with  the  object  of  determining  (1)  what  salts  were 
most  active  in  promoting  the  corrosion  of  cast  iron, 
and  (2)  what  was  the  probable  cause  of  the  cor- 
rosion. Pieces  of  cast  iron  immersed  in  salt  solu- 
tions, dilute  and  concentrated,  to  which  distilled 
water  was  added  as  evaporation  proceeded,  were 
kept  under  observation  for  a  period  of  40  days.* 

•  Smith  and  Shipley,  Report,  Engineering  Institute  of  Canada, 
Saskatoon,  Sask.,  Aug.  10,  1921.     Eng.  Inst,  of  Canada,  Oct.  1921. 


served  from  the  salt  solutions,  but  the  softening 
was  not  so  clearly  defined.  The  most  marked  local 
softening  was  observed  in  a  sample  of  soil  taken 
from  the  thin,  yellow  layer  known  to  contain  much 
calcium  sulphate  in  the  form  of  selenite. 

Concentration  cells. 

Several  concentration  cells  were  set  up  on  freshly 
polished  pieces  of  cast  iron.  These  were  made  by 
"  diking  "  off  portions  of  the  surface  of  a  cast  iron 
pipe  with  paraffin.  Then  adjacent  sections  were 
filled  with  dilute  and  concentrated  salt  solutions, 
and  liquid  electrical  connexion  made  by  an  inverted 
glass  U-tube  containing  a  wick  saturated  with  the 
dilute  solution.  Rusting  was  observed  to  take  place 
on  the  surface  containing  the  dilute  solution. 
Here  the  iron  was  going  into  solution  under  the 
influence  of  the  galvanic  action  of  the  concentration 
cell.  The  iron  ions  soon  became  hydrated  and  rust 
appeared. 

A  striking  manifestation  of  the  flow  of  current 
and  of  the  migration  of  iron  was  afforded  by  the 
passage  of  colloidal  ferric  iron  up  the  wick  of  the 
U-tube.  After  a  few  hours  the  reddish-coloured 
colloid  passed  completely  through  the  glass  tube 
and  was  being  deposited  on  the  iron  in  the  other 
division  of  the  cell.  This  phenomenon  complicated 
the  interpretation  of  the  observed  results  and 
limited  the  time  during  which  an  experiment  could 
run. 

Three  experiments  were  carried  out  in  cells 
similar  to  those  just  described  with  solutions  of 
unlike  salts. 

Table  III. 

Galvanic  electrolytic  cells  in  diverse  concentration 
on  cast  iron. 

Rusting  on  dilute  only 
Rusting  on  dilute  only. 
Rusting  on  dilute  only. 
Rusting  on  dilute  only. 
Rusting  on  dilute  only. 
CaSOi  rusted. 
Na,SO,  rusted. 
CaSO,  rusted. 

A  second  kind  of  concentration  cell  was  con- 
structed by  tightly  stoppering  the  lower  end  of  a 
glass  tube  and  suspending  in  it  a  cast-iron  bar. 
The  tube  was  half-filled  with  a  concentrated  salt 


1.  NaCl  dilute  to  NaCl  cone. 

2.  MgSO,  dilute  to  MgSO,  cone.     . . 

3.  MgCl"  dilute  to  MgC'U  cone. 

4.  NajSO,  dilute  to  Na.SO,  cone.   . . 

5.  CaSO,  dilute  to  CaSO,  6at. 

6.  Na^O,  solut'n  to  CaSO,  solut'n 

7.  NajSO,  solut'n  to  MgSO,  solut'n. 

8.  MgCli  solut'n  to  CaSOa  solut'n    . . 


Vol.  XLI,  Xo.  is.]      SHIPLEY.— CORROSION   OF   IRON  AND   LEAD   IN   ALKALLNE   SOILS.        313  t 


solution,  and  then  the  upper  half  filled  with  a 
warm  dilute  salt  solution,  care  being  taken  not  to 
mix  the  two.  The  difference  in  density  kept  the 
solutions  from  mixing  for  a  considerable  period. 
Eight  such  cells  were  constructed  and  allowed  to 
stand  for  9  months.  Table  IV.  contains  the  results 
of  this  series  of  experiments. 


Table  TV. 

Corrosion 

of  cast  iron  gravity  cells  for  nine 

months. 

Weight 

Area  of 

of  iron 

Nature  of  surface 

No.    Salt  solution 

exposed 

removed 

corroded. 

iiou. 

by 
corrosion 

sq.  cm. 

g. 

| 

1.  XaCl  above 

84 

20 

Some  soft  areas. 

MgCI,  below 

2.  ilgSO,  above 

'.'.            98 

1-8 

Soft  areas  above  surface. 

JfaCI  below 

•* 

Pits  could  be  excavated 
Jin.  deep.     Cone  and 
crater  effect. 

3.  Same    as    2, 

but 

mixed   . . 

132 

1-9 

Graphitic  areas  above. 

i.  NajSO,  above 

90 

0-7 

Graphitic     areas     over 

JIgSO,  below 

_. 

surface. 

5.  AlgSO,  above 

112 

3-2 

Graphitic  areas  with  a 

Xa,SO,  below 

few  deep  pits. 

a.  Na2SO,  above 

'.'.          132 

2-4 

Softening  quite  general 

MgCI3  below 

.. 

in  patches. 

7.  JIgSO,  dilute 

112 

0-6 

Uniform  corrosion  with 
lit  tie  localisation. 

8.  MgSO,  above 

112 

1-2 

Corrosion     fairly     well 

NaCl  below 

.. 

distributed. 

Corrosion  was  most  marked  on  the  upper  half  of 
the  cast  iron  bars.  Reddish  oxides  of  iron  formed 
in  the  upper  part  of  the  solution,  but  on  sinking  to 
the  bottom  these  became  reduced  to  bluish-green 
compounds.  Graphitic  softening  occurred  and  some 
quite  deep  pits  could  be  dug  out  with  a  knife  blade. 
Experiment  7  was  carried  out  with  the  iron  im- 
mersed in  a  dilute  magnesium  sulphate  solution 
only.  The  loss  in  weight  was  less  than  in  any  of 
the  other  cells.* 

The  results  of  these  experiments  showed  conclu- 
sively that  concentration  cell  effects  will  bring  about 
graphitic  corrosion  of  cast  iron.  Such  concentra- 
tion cells  would  be  formed  by  the  salt-impregnated 
soils  in  contact  with  the  cast  iron  water  pipes  buried 
from  6  to  10  feet  beneath  the  surface.  The  im- 
pervious nature  of  the  6oil  prevents  the  ground 
water  having  a  uniform  concentration,  and  this 
difference  in  concentration  over  short  lengths 
of  pipes  must  give  a  concentration  cell  effect. 
AVherever  crystals  of  gypsum  are  in  contact  with 
the  pipe,  there  the  solution  must  be  saturated.  At 
short  distances  removed  from  this  point  of  contact, 
the  soil  solution  wilt  be  less  concentrated.  Conse- 
quently, iron  may  pass  out  from  the  pipe  into  the 
dilute  solution,  and,  as  it  is  almost  immediately 
removed  as  insoluble  hydrate,  polarisation  does  not 
occur.  The  reduction  of  the  ferric  iron  to  ferrous 
iron  was  observed  in  the  cells  constructed  as  above, 
when  the  ferric  oxide  entered  the  cathode  areas. 
This  reduction  would  depolarise  the  cathode.  If  we 
combine  with  this  the  migration  of  the  colloidal 
ferric  hydroxide  from  anode  to  cathode,  it  is  readily 
seen  how  the  whole  process  might  continue  inde- 
finitely. Granted  a  concentration  cell,  the  continu- 
ance of  the  reaction  is  dependent  only  upon  a  supply 
of  oxygen,  and  this  supply  is  provided  by  the  oxygen 
held  in  solution  in  ground  waters. 

Electric  battery  effect  of  a  cell  consisting  of  two  cast 
iron  electrodes  in  contact  with  two  different  soils. 

Two  cells  were  so  constructed  as  to  provide  two 
pieces  of  cast  iron  not  in  contact  with  each  other, 
but  both  in  contact  with  moist  soils,  the  anode  being 

•  A  ninth  experiment  in  which  a  copper  strip  replaced  the  iron 
in  a  sodium  chloride  cell,  gave  a  bluish  insoluble  preeipitate  of  a  copper 
salt  and  in  time  beautifully  formed  crystals  of  metallic  copper 
appeared  on  the  lower  end  of  the  copper  plate  immersed  In  the 
concentrated  sodium  chloride  solution. 


in  contact  with  limy  silt  and  the  cathode  in  contact 
with  a  clay  soil,  both  soils  being  kept  moist.  One  of 
these  cells  had  an  initial  E.M.F.  of  2'1  millivolts 
and  the  other  9'2  millivolts,  which  latter  became 
7-6  millivolts  when  filled  with  distilled  water. 
Within  the  first  three  hours  No.  1  rose  10  millivolts, 
and  No.  2  rose  40  millivolts.  In  about  three  days 
No.  1  had  reached  14  millivolts  and  No.  2  63  milli- 
volts, which  were  reduced  respectively  to  12  and 
43  millivolts  after  adding  more  water.  The  voltages 
varied  for  two  months,  alternately  rising  and  fall- 
ing. At  the  end  of  about  two  months,  the  cells 
having  stood  on  open  circuit,  and  without  any  addi- 
tion of  water,  the  polarity  showed  a  reversal  in 
both  cells.  Upon  adding  water  once  more,  No.  1 
recovered  its  original  polarity  and  voltage,  but  No.  2 
increased  its  negative  polarity  to  64  millivolts 
negative,  while  No.  1  rose  to  66  millivolts  positive. 

These  results  show  that  soils  of  Winnipeg  and 
vicinity,  when  in  contact  with  iron,  can  of  them- 
selves set  up  an  appreciable  E.M.F.  like  that  of  a 
primary  battery  amply  sufficient  to  decompose  the 
iron. 

The  effect  of  gypsum. 

Medinger  (J.  Gasbeleucht.,  1918,  61,  73,  ?9)  noted 
the  autocorrosion  of  east  iron  pipes  buried  in  a  soil 
heavily  charged  with  calcium  sulphate  during  the 
occupation  of  Esch  in  the  Grand  Duchy  of  Luxem- 
bourg in  1916.  The  condition  of  the  pipes  and  the 
nature  of  the  corrosion  products  were  almost  identi- 
cal with  those  found  in  Winnipeg.  Direct  action  of 
stray  currents  or  of  free  acids  was  known  to  bo 
absent  in  this  Luxembourg  ease.  Apparently,  the 
presence  of  calcium  sulphate  had  something  to  do 
with  the  corrosion  of  the  iron  pipes. 

The  usual  explanation  for  the  autocorrosion  of 
cast  iron  lies  in  the  galvanic  action  set  up  by  differ- 
ences in  composition  of  the  metallic  structure.  The 
electric  potential  between  graphite  and  iron  is  rela- 
tively high,  and  so,  if  in  contact  with  an  electrolyte, 
the  E.M.F.  of  this  cell  would  tend  to  drive  the  iron 
into  solution.  This  tendency  would  be  much  en- 
hanced should  hydrogen  ions  be  present.  The  clay 
soils  of  the  Winnipeg  district  possess  a  high  content 
of  limestone,  and  since  calcium  carbonate  gives  basic 
products  of  hydrolysis,  the  ground  waters  would 
tend  to  be  alkaline.  But  such  waters  in  clay  soils 
are  impregnated  with  carbon  dioxide,  and  this  is 
sufficient  to  overcome  the  basic  hydrolysis  of  calcium 
carbonate,  so  that  a  slightly  acidic  condition 
results.  If  now,  gypsum  be  present,  it  will  drive 
the  equilibrium  still  further  into  the  acidic  region. 
Although  calcium  sulphate  is  a  neutral  salt,  the 
effect  of  the  added  calcium  ions  is  to  cause  an 
increase  in  the  concentration  of  the  hydrogen  ions. 
The  ionic  products  concerned  are  the  following :  — 
(i.)  (Ca)(CO,)  =  E,  (ii.)  (H)(CO,)  =  E,  (iii.)  (Ca)(SO,) 
=  E.  When  calcium  sulphate  is  added,  the  (Ca) 
content  in  solution  is  increased  and  (COs)  must 
diminish  proportionately.  This  affects  the  equi- 
librium in  equation  (ii.),  for  in  order  to  satisfy  the 
ionic  product  E  when  (CO,)  diminishes,  (H)  must 
increase  a  corresponding  amount.  Consequently, 
gypsum  causes  an  increased  acidity  in  ground  waters 
containing  free  carbon  dioxide  in  contact  with 
calcium  carbonate. 

This,  probably,  is  the  explanation  of  the  fact  that 
the  ground  waters  of  the  Winnipeg  district  are 
slightly  acid  to  phenolphthalein.  Moreover,  the 
presence  of  calcium  sulphate  would  keep  the  ground 
waters  continuously  acid,  and  thus  the  corrosion  of 
the  cast  iron  due  to  the  graphite-iron  couple  would 
proceed  apace. 

Summary. 

(1)  The  corrosion  of  cast  iron  by  soil  salts  is  of 
the  graphitic  softening  type. 

a2 


314t 


SHIPLEY.— CORROSION   OF   IRON   AND   LEAD   IN   ALKALLNE   SOILS.       iSept.  30, 1922. 


(2)  Magnesium  salts  are  the  most  corrosive  of  the 
soil  salts,  and  magnesium  sulphate  is  the  most 
effective  of  the  salts  experimented  with. 

(3)  Local  action  induced  by  naturally  occurring 
concentration  cells  may  easily  be  a  factor  in  the  soil 
corrosion  of  cast-iron  pipes. 

(4)  The  presence  of  calcium  sulphate  in  a  limy 
silt  soil  gives  a  slight  acidity  to  the  ground  waters. 

(5)  Autocorrosion  of  the  cast  iron  is  promoted  by 
this  acidity  of  the  ground  waters  due  to  the  stimu- 
lation provided  to  the  graphite-iron  galvanic  couple 
by  the  presence  of  the  hydrogen  ion.  Iron  more 
readily  displaces  hydrogen  when  the  latter  is  present 
in  the  ionic  condition. 

The  soil  corrosion  of  iron  structures  is  thus  seen 
to  be  an  electro-chemical  process,  complicated  by 
its  dependence  upon  several  variables,  of  which  the 
composition  of  the  metal  in  the  structure,  the  nature 
of  the  soil  in  contact  with  the  metal,  and  the  move- 
ments of  the  ground  waters  are  the  most  important. 

Vart  II. 

The  Soil  Corrosion  of  Lead. 

During  the  field  investigation  concerned  with  the 
damage  of  cast  iron  water-mains,  it  was  observed 
that  the  lead  service  pipes  showed  evidence  of 
corrosion.  This  disintegration  usually  took  the 
form  of  pock-marked  cavities  incrusted  with  car- 
bonate and  sulphate  of  lead,  but  sometimes  black, 
wartlike  protuberances  appeared  on  the  lead  pipe. 
"Where  the  lead  pipes  were  bent  or  in  the  neighbour- 
hood of  joints,  criss-cross  fissures  occurred  on  the 
surface,  together  with  the  characteristic  pock- 
marked cavities.  Yellow  and  red  oxides  of  lead 
appeared  on  the  surface  of  the  pipe,  the  trans- 
formation varying  in  depth  but  usually  being  about 
as  deep  as  the  fissures.  There  did  not  appear  to  be 
any  special  relation  between  the  corrosion  on  the 
cast  iron  mains  and  the  service  pipes,  as  some- 
times the  lead  was  found  deeply  pitted  and  no 
corrosion  on  the  iron  pipe  to  which  it  was  con- 
nected. The  damage  was  frequently  found  in 
electrically  negative  and  neutral  areas  and  was 
quite  marked  on  the  lead  pipe  connected  to  the 
Mental  Hospital  water  works  system  at  Selkirk, 
Manitoba. 

Laboratory  investigation. 
A  series  of  experiments  with  lead  plates  immersed 
in  salt  solutions  and  in  soils  was  carried  out,  extend- 
ing over  a  period  of  fourteen  months.  Sodium 
carbonate  was  found  to  be  the  most  corrosive  salt, 
with  magnesium  sulphate  and  calcium  carbonate 
next.  Calcium  carbonate  saturated  with  carbon 
dioxide  was  the  least  corrosive.  The  soils  also 
attacked  the  lead,  one  in  particular,  a  sample  of 
limy  silt  from  Glasgow  Street,  standing  next  to  the 
sodium  carbonate  as  a  corrosive  agent.  Several 
instances  of  corrosion  in  which  the  lead  pipe  was 
completely  perforated  had  been  reported  from  this 
neighbourhood.  An  analysis  of  the  ground  water 
and  of  the  soil  itself  did  not  give  any  clue  as  to  the 
cause  of  the  virulence  of  this  particular  soil. 

Lead  plates  exposing  37'5  sq.  cm.  surface  im- 
mersed in  salt  solutions  and  water-saturated  soils 
for  14  months  :  — 

Loss  of  weight 
Solution.  iu  grams. 

CaCO,  0-32 

Ca(HCOt), 0-21 

Na,CO,  0S2 

MgSO. 0-34 

Soil— Man.-Gypsum 0-24 

„     Glasgow  Street  . .         . .         .  -      0-60 

„     Stock  Yards,  St.  Boniface      . .         . .      0-25 

Corrosion  of  lead  anodes  and  cathodes. 

Three  experiments  were  carried  out  in  which  lead 

anodes   and  cathodes  were   immersed   in   saturated 

soils  contained  in  beakers.     A  current  of  ten  milli- 

ainps.  was  passed  continuously  for  three  days,  after 


which  the  series  was  discontinued,  owing  to  the  dis- 
integration of  the  anodes.  The  loss  at  the  anodes 
was  150%,  210%,  and  350%  respectively,  of  that 
required  by  Faraday's  law.  This  extra  loss  was 
due  to  mechanical  disintegration  of  the  anode 
accompanying  the  formation  of  the  oxides  of  lead. 
Such  extensive  losses  indicate  how  futile  it  is  to 
apply  "corrosive  coefficients"  to  the  electro- 
chemical decomposition  of  metals,  whether  it  be  by- 
stray  current,  salt  solutions,  or  soils. 

The  cathodes  did  not  appear  to  be  attacked  at  all, 
in  fact  they  showed  a  slight  gain  in  weight.  In 
order  to  find  out  whether  eathodic  corrosion  would 
occur  at  all,  nine  experiments  were  allowed  to  run 
continuously  for  60  days.  The  cathodes  were  plates 
of  lead  exposing  37"5  sq.  cm.  of  surface,  and  the 
anodes,  carbon  brushes.  These  electrodes  were 
immersed  in  salt  solutions  of  the  carbonates,  chlor- 
ides, and  sulphates  of  calcium,  magnesium,  and 
sodium,  and  were  set  up  in  series  and  a  current  of 
from  4  to  10  milliamps.  passed  continuously  for  60 
days.  The  lead  cathodes  showed  no  evidence  of 
corrosion,  but  the  carbon  anodes  were  badly  decom- 
posed . 

Salt  solution  corrosion  in  the  presence  of  nitrate. 

Lead  corrosion  is  frequently  attributed  to  the 
presence  of  nitrates.  Five  experiments  with  lead 
immersed  in  salt  solutions  containing  nitrate 
were  carried  out,  the  lead  being  immersed  in 
400  c.c.  of  the  solutions  for  eight  months. 
Saturated  solutions  of  calcium  sulphate  and 
calcium  carbonate,  saturated  with  carbon  di- 
oxide, together  with  N I 10  solutions  of  magnesium 
chloride,  magnesium  sulphate,  and  calcium  chloride 
constituted  the  series.  To  each  was  added  one  gram 
of  ammonium  nitrate.  In  every  case  the  surface  of 
the  lead  became  immediately  covered  with  a  coating 
of  black  oxide  of  varying  thickness.  This  coat  was 
very  heavy  in  the  case  of  the  lead  immersed  in  the 
magnesium  sulphate  solution,  and  quite  thin  in  the 
calcium  sulphate  solution.  Spots  of  lead  carbonate 
with  pits  beneath  were  verjT  marked  on  the  plate 
immersed  in  the  calcium  carbonate  saturated  with 
carbon  dioxide.  A  few  little  nodules  of  lead 
sulphate  formed  here  and  there,  over  the  surface 
of  the  lead,  in  the  calcium  sulphate  solution,  while 
quite  deep  pits  were  found  beneath  mixed  deposits 
of  lead  carbonate  and  chloride  in  the  chloride  solu- 
tions. These  incrustations  had  formed  at  the  point 
of  contact  of  the  lead  with  the  glass. 

The  attack  on  both  lead  and  cast  iron  was  fre- 
quently observed  to  be  more  pronounced  where  the 
metal  was  in  contact  with  a  foreign  substance,  6uch 
as  a  pebble  or  the  glass  of  the  containing  vessel,  as 
above. 

The  total  loss  of  lead  in  the  above  experiments 
was  of  the  same  order  as  that  found  in  solutions  of 
the  same  salts,  without  the  addition  of  the  nitrate. 
Possibly  the  formation  of  the  black  oxide  protected 
the  lead  from  further  corrosion,  but  whatever  the 
cause,  the  nitrate  did  not  markedly  accelerate  the 
corrosion  under  the  conditions  of  the  experiment. 

Corrosion  of  lead  plates  and  lead  foil  in  soils. 

Three  lead  plates  and  four  wax-supported  strips 
of  lead  foil  were  buried  in  moist  soil  and  left  un- 
disturbed for  several  months.  The  plates  and 
strips  were  about  six  inches  long  and  two  inches 
wide,  placed  vertically  in  large  glass  tubes  with  the 
soil  packed  closely  around  them.  Each  tube  con- 
tained two  samples  of  soil,  the  upper  half  of  the 
lead  strip  being  in  one  kind  of  soil  and  the  lower 
half  in  another.  The  tubes  were  corked  in  order  to 
prevent  evaporation.  The  lead  strips  remained  in 
t3ie  soils  for  almost  eight  months. 

Examination  at  the  end  of  this  period  disclosed 
extensive  corrosion.  The  following  observations 
were  made  at  the  end  of  eight  mouths:  — 


Vol.  XLI.,  No.  1S.J      SHIPLEY.— CORROSION   OF   IRON   AND  LEAD    IN   ALKALINE   SOILS.         315  T 


Xo.  1.  Lead  foil  badly  attacked  at  the  upper 
end,  completely  perforated.  Lower  end  of  foil  also 
corroded  and  blackened. 

No.  2.  All  foil  beyond  end  of  wax  completely 
destroyed.  Lower  end  of  foil  also  corroded  and 
blackened. 

No.  3.  Corrosion  completely  through  at  upper 
end  and  lead  disappeared.  Lower  end  also  per- 
forated.    White  lead  salt  formed. 

No.  4.  Both  protruding  ends  of  foil  completely 
destroyed.  Elsewhere  perforations  especially  when 
the  soil  found  its  way  between  the  wax  and  the  foil. 

No.  5.  Lead  plate  deeply  pitted  in  portion  buried 
in  surface  soil.  Pits  jV'  deep  or  more.  Lead 
sulphate  incrusted  over  pits. 

No.  6.     Slightly  incrusted  but  not  badly  attacked. 

No.  7.  Badly  corroded  and  incrusted.  White 
incrustant  of  lead  carbonate  ^j"  thick  on  both  sides 
of  the  upper  end  of  the  lead  strip.  Lower  end  not 
badly  attacked.     No  sulphate. 

The  results  of  this  series  of  experiments  were 
decidedly  illuminating.  They  established  without 
doubt  the  autocorrosion  of  lead  by  the  action  of  the 
soil  alone.  The  nature  of  this  corrosion  was  quite 
similar  to  that  observed  on  the  lead  service  pipes 
already  described,  the  same  crater-like  cavities 
incrusted  with  lead  carbonate  and  sulphate  being 
formed. 

Cause  and  course  of  the  corrosion. 

The  amphoteric  character  of  lead  as  regards  its 
chemical  reactions  and  the  varied  nature  of  the 
possible  products  of  corrosion,  even  under  one  set 
of  conditions,  prevents  the  adoption  of  any  one 
theory,  to  the  exclusion  of  all  others,  as  to  the 
cause  and  course  of  the  corrosion.  The  lack  of 
definite  basic  or  acidic  properties  makes  this  metal 
a  tool  of  its  environment.  The  end  products  of  the 
corrosion  are  determined  by  the  relative  solubility 
of  the  compounds  possible  under  the  particular 
conditions  under  which  the  corrosion  proceeds. 
These  possibilities  are  also  conditioned  by  the 
oxidising  or  reducing  nature  of  the  environment. 

One  of  the  first  products  found  in  the  corrosion 
of  lead  is  the  oxide,  PbO.  A  coating  of  this  oxide 
readily  forms  upon  the  surface  of  metallic  lead, 
and  is  commonly  believed  to  protect  it  from 
corrosion.  This  coating,  however,  is  actually 
soluble  in  water,  the  more  so  if  the  water  is  quite 
pure,  or  if  it  carries  much  oxygen  in  solution. 
The  sulphate  of  lead  is  slightly  soluble  in  water,  and 
the  carbonate  much  less  soluble,  so  that  in  the 
presence  ot  the  acid  radicle  of  sulphuric  or 
Cf.rbonic  acid  the  lead  hydroxide  is  easily  trans- 
formed into  carbonate  or  sulphate,  and  the  sulphate 
may  be  transformed  into  the  more  insoluble 
carbonate. 

According  to  several  authorities  lead  has  a 
peculiar  physical  property  of  occurring  in  more 
than  one  physical  modification,  even  in  the  same 
piece  of  metal,  and  these  allotropic  modifications 
may  occur  quite  near  together  in  the  same  metal. 
These  variations  of  the  physical  structure  of  the 
lead  possess  different  physical  and  electrical  pro- 
perties, and  these  differing  properties  may  persist 
for  a  long  time.  Consequently  adjacent  portions 
of  lead  in  the  same  piece  of  metal  may  set  up  a 
galvanic  couple  when  in  contact  with  an  electrolyte, 
and  provide  all  the  conditions  required  for  elec- 
trolytic self-corrosion.  This  property  of  lead  has 
been  investigated  by  Lambert  and  Cullis  (J.  Chem. 
Soc,  1915,  107,  210),  who  have  observed  as  follows: 

"  The  electrolytic  theory  of  corrosion  is  applicable 
to  lead.  The  passing  of  the  metal  into  solution 
which  precedes  corrosion  is  due  to  electrolytic 
action  between  the  electrically  different  parts  of 
the  mass  of  lead.  In  the  case  of  chemically  pure 
lead  the  physical  heterogeneity  due  to  the  presence 
of  different  allotropic  modifications  of  lead  in  the 


mass  of  the  metal  causes  some  parts  of  the  mass 
to  be  electrically  different  from  other  parts,  and 
these  electrical  differences  persist  for  a  long  time 
after  the  preparation  of  the  metal." 

The  practical  effect  of  this  allotropic  property 
of  lead  is  met  with  in  practice  by  users  of  lead 
pipe.  This  property  was  observed,  for  instance,  by 
the  engineer  of  the  Mental  Hospital  at  Selkirk, 
who  exhibited  a  piece  of  lead  pipe  taken  out  of 
the  earth,  where  it  had  been  buried  for  some  years, 
which  he  said  had  "  lost  its  life."  That  is  to 
say,  it  was  very  brittle,  had  a  different  appearance 
from  ordinary  lead,  and  was  no  longer  suitable  for 
being  worked. 

Lambert  and  Cullis  found  that  the  purest  lead 
that  it  was  possible  to  produce  by  distillation  in 
a  vacuum  was  immediately  corroded  when  immersed 
in  water  containing  oxygen.  The  first  product  of 
corrosion  under  such  circumstances  is  evidently 
lead  hydroxide  which,  when  there  are  no  Baits 
present,  will  appear  as  a  precipitate. 

It  has  also  been  ascertained  by  a  number  of 
observers  that  when  lead,  water,  and  oxygen  are 
brought  together  hydrogen  peroxide  is  formed. 
This  is  a  strong  oxidising  agent,  and  accordingly 
might  well  account  for  the  presence  of  the  higher 
oxides  of  lead  which  are  sometimes  found  amongst 
the  corrosion  products  of  lead  pipe.  We  have 
observed  several  such  transformations  of  lead.  A 
lead  union  from  a  service  pipe  in  Moose-Jaw,  Sas- 
katchewan, sent  in  for  examination,  was  found  to 
be  almost  wholly  transformed  into  a  red  oxide  of 
lead.  A  similar  case  was  shown  us  by  Mr.  A. 
Blackie,  City  Chemist  of  AVinnipeg,  in  which  a  con- 
siderable portion  of  a  piece  of  lead  pipe  consisted 
of  a  red  oxide  of  lead.  Black  oxide  of  lead  was  also 
observed  on  service  pipes  from  River  and  Glasgow 
Avenues  in  Winnipeg.  The  corroded  lead  pipe 
taken  from  Selkirk  had  an  insoluble  lead  compound 
adhering  to  the  matrix  of  clay  that  surrounded 
the  pipe,  which  was  probably  lead  peroxide.  There 
was  not  enough  of  it  to  make  an  analysis. 

L.  A.  Stenger  (Chem.  and  Met.  Eng.,  1920,  22, 
965)  attributes  the  soil  corrosion  of  lead  pipes  as 
observed  by  him  to  two  probable  sources  :  — (1)  The 
action  of  a  concentration  cell  produced  by  differ- 
ences of  concentration  of  a  salt  in  the  soil  in  contact 
with  the  pipe,  and  (2)  the  presence  in  the  soil  of  a 
substance  subject  to  a  change  in  valence,  the  bi- 
clectrolyte  causing  corrosion  in  the  cathode  areas. 

The  first  of  the  two  causes  above  mentioned  is 
similar  to  that  described  by  the  author  in  that  sec- 
tion of  this  papjr  dealing  with  the  self-corrosion  of 
cast  iron. 

The  effect  on  lead  pipe  would  be  similar  to  that 
observed  on  iron  pipe,  that  is,  the  lead  would  pass 
into  solution  where  the  metal  was  in  contact  with 
the  more  dilute  electrolyte.  Both  of  these  causes 
of  corrosion,  as  outlined  by  Stenger,  are  external  to 
the  pipe,  and  not  in  any  way  dependent  upon  the 
lack  of  homogeneity  in  the  lead. 

In  a  recent  article  in  "  Metall  und  Erz,"  on  the 
destructive  action  of  mortar  on  zinc  and  lead,  it  is 
stated  that  lead  is  attacked  by  the  limestone  alone, 
and  by  mixtures  of  limestone  and  gypsum.  This  is 
substantiated  by  the  work  of  R.  H.  Gaines,  men- 
tioned above,  as  well  as  by  the  case  of  corrosion 
noted  at  Cliarlottenburg,  Germany. 

H.  S.  Rawdon  (U.S.  Bureau  of  Standards,  Bulletin 
No.  377,  April,  1920)  describes  the  results  of  a 
series  of  experiments  on  lead  corrosion  which  show 
that  the  so-called  allotropic  modifications  of  lead 
are  produced  by  corrosion  in  an  electrolyte  by  the 
solvent  action  of  the  salt  solution  removing  the 
foreign  metals  lying  between  the  crystals  of  metallic 
lead  in  the  mass  of  the  lead.  Even  the  purest  com- 
mercial lead  is  subject  to  this  attack,  and  since  the 
metallic  impurities  removed  lie  above  lead  in  the 


316  t 


CUXLEN.— GOLD  METALLURGY  OF  THE   WITWATERSRAND. 


[Sept.  30,  1922. 


electrochemical  series,  this  form  of  corrosion  is 
quite  parallel  with  the  galvanic  action  brought 
about  between  graphite  and  iron  in  cast  iron,  when 
iron  goes  into  solution  and  graphite  remains  in  the 
pipe.  In  the  case  of  lead  pipe,  the  impurities  are 
removed  and  the  lead  in  unsupported  crystals 
remains,  imparting  to  the  pipe  that  characteristic 
crystalline  structure  and  brittleness  which  eventu- 
ally destroys  its  usefulness. 

These  observations  of  Rawdon,  supplemented  by  a 
later  investigation*  in  which  he  used  lead  of  99'99% 
purity,  subjected  under  tensile  stress  to  the  corro- 
sion of  salt  solutions,  clearly  demonstrate  the  possi- 
bility of  electrochemical  destruction  due  to  the 
presence  of  almost  infinitesimal  amounts  of  an 
impurity  in  the  metal  structure,  when  such  a 
structure  is  in  contact  with  water  containing  salts 
in  solution.  Rawdon  also  observed  that  the 
corrosion  of  lead  was  more  rapid  in  an  acid  solution. 
Recent  investigations  in  the  laboratory  of  the 
University  of  Manitoba  (not  yet  published)  indicate 
that  the  soil  waters  of  Winnipeg  in  the  presence  of 
calcium  sulphate  and  carbonate  are  slightly  acid, 
especially  when  they  contain  free  carbon  dioxide. 
Moreover,  the  function  that  mechanical  stress  plays 
in  promoting  the  corrosion  of  lead  would  lead  to 
widely  diverging  observations  on  the  extent  of  the 
corrosion  at  different  places  on  the  same  lead  pipe, 
buried  in  the  same  soil.  Whenever  the  pipe  is 
bent,  there  the  pipe  may  be  considered  to  be  under 
stress,  and  there  intergranular  cracks,  as  described 
by  Rawdon,  will  first  appear,  the  rapidity  of  the 
disintegration  depending  on  the  amount  of  the 
6tress  and  the  character  of  the  soil  solution. 

We  thus  see  how  complicated  is  the  whole  matter 
of  the  corrosion  of  lead.  Not  only  does  the 
peculiar  amphoteric  character  of  lead  enter  into 
it,  but  also  the  physical  character  of  the  crystalline 
metal  structure,  the  infinitesimal  amounts  of  inter- 
granular impurities  present,  and  the  stress  to  which 
the  structure  is  subjected.  These  factors,  com- 
bined with  the  complexities  of  the  salt  content  of 
ground  waters,  make  the  whole  question  of  the  soil 
corrosion  of  lead  a  matter  for  most  intensive  study. 

Summary. 

(1)  Salt  solutions  attack  lead,  a  carbonate  of  lead 
being  the  final  product  when  exposed  to  the  air. 

(2)  Sodium  carbonate  was  the  most  corrosive  of 
the  salts  experimented  with. 

(3)  Lead  cathodes  are  not  attacked  by  currents 
of  from  4  to  10  milliamps. 

(4)  "  Coefficients  of  corrosion  "  are  not  applicable 
to  electrochemical  decomposition. 

(5)  The  presence  of  ammonium  nitrate  appears  to 
inhibit  corrosion  by  the  formation  of  a  protective 
coating  of  lead  oxide  over  the  surface.  Such  a 
protective  coating  may  only  be  temporary. 

(6)  The  soils  of  the  Winnipeg  district  have  a 
decidedly  corrosive  action  on  lead,  the  nature  of 
the  corrosiou  being  usually  that  of  a  crater-like 
pitting  of  the  surface,  with  or  without  au  adhering 
deposit  of  lead  sulphate  or  carbonate. 

(7)  Contact  with  a  foreign  substance  localises  the 
corrosion. 

(8)  The  cause  of  the  corrosion  may  be  attributed 
to  local  galvanic  action  due  to  differences  in  the 
physical  structure  of  the  lead,  to  the  presence  of 
impurities  lodged  between  the  crystals  of  the  lead, 
or  to  concentration  cell  effects. 

Chemistry  Department, 

University  of  Manitoba. 

•  Rawdon,  Krynitsky,  and  Berliner,  "  Brittleness  produced  In 
pare  lead  by  stress  and  corrosion,"  Chem.  and  Met.  Eng.,  1922, 
26,  109. 


London    Section. 


Meeting  held  at  Burlington  House  on  March 
6,  1922. 


ME.    E.    V.    EVANS    IN    THE   CHAIR. 


GOLD   METALLURGY  OF   THE   WITWATERS- 
RAND (TRANSVAAL). 

BY    W.    CTJLLF.N. 

Although  there  have  been  frequent  references  to 
the  metallurgy  of  gold  on  the  so-called  Rand  (short 
for  Witwatersrand),  the  only  comprehensive  paper 
in  the  Journal  is  that  of  H.  de  Mosenthal  (J.,  1894, 
326).  It  was  thought  that  possibly  the  best  method 
of  recording  the  changes  or  advances  made  since 
that  date  would  be  to  describe  a  modern  plant — one 
acknowledged  to  be  almost  the  last  word  in  gold 
metallurgy.  But  even  since  this  paper  was  started 
revolutionary  proposals  have  been  made  and  have 
already  been  put  into  practice.  The  outstanding 
difference  between  1894  and  to-day  is  this,  that 
whereas  in  the  former  year  the  value  of  the  Trans- 
vaal gold  output  was  £7,500,000,  to-day  it  is  almost 
five  times  as  great,  and  in  1916  it  amounted  to 
£39,500,000.  It  may  be  mentioned  that  the 
Transvaal  output  of  to-day  is  just  50%  of  the  world's 
production. 

"  Banket,"  or  the  ore  in  which  the  gold  occurs, 
is  principally  composed  of  silica.  It  is  in  the  main 
a  mass  of  silicious  pebbles  imbedded  in  a  silicious 
matrix.  The  following  is  a  typical  analysis  of 
deep  level  "  banket '":  — SiOa  8676,  FeS2  275, 
Fe203  265,  A1203  6"91,  CaO  trace,  MgO  070%. 
The  composition  is,  of  course,  not  precisely  the  same 
throughout  the  field,  though  the  uniformity  is 
greater  than  one  would  expect. 

The  distribution  of  the  gold  in  the  ore  is  some- 
what remarkable.  The  pebbles  are  barren,  or 
practically  so.  Contrary  to  expectation  the  pyrites 
also  carries  comparatively  little  gold,  i.e.,  in  the 
same  manner  as  galena  carries  silver.  Weight  for 
weight,  pyrites  certainly  contains  more  gold  than 
the  pyrites-free  ore,  but  not  very  much  more.  The 
following  table  is  interesting  as  showing  the 
relationship  between  "  pyrite  "  and  gold  in  a 
graded  sample  of  sand :  — : 


%  Pyrite 

Dwt.  gold 

Dwt.  gold  pr 

Grade. 

(FeS,). 

per  ton. 

1%  pyrite. 

+  60  Mesh 

0-36 

1-57 

4-36 

60+  90     „ 

0-62 

1-36 

219 

90+125     „ 

2-46 

2-30 

1-07 

25  +  200      „ 

1-20 

1-80 

0-67 

—  200     „ 

2-91 

.        3-44 

0-86 

There  has  been  great  controversy  as  to  the  distri- 
bution of  the  gold,  but  nothing  has  been  discovered 
which  would  invalidate  the  following  statement :  — 
"  Although  rarely  visible  in  the  hand  specimen,  the 
gold  can  be  easily  studied  under  the  microscope  if 
specimens  known  to  be  rich  in  it  are  examined.  In 
the  slides  which  we  have  examined  the  noble  metal 
occurs  in  irregular  angular  particles  often  lying  on 
the  periphery  of  individual  pyrites  crystals  or  in 
the  interstices  between  aggregates  of  that  mineral. 
We  have  seeu  no  instance  of  the  gold  lying  inside  a 
homogeneous  crystal  or  piece  of  pyrites.  In  many 
cases  perfectly  round  pieces  of  pyrites  may  be 
observed  to  be  bounded  by  gold  particles."  * 

The  subject  of  mining  hardly  conies  within  the 
scope  of  this  paper,  but  it  is  noteworthy  that 
whereas   in   1894   Mr.    Mosenthal  stated   that  the 

1  "Rand  Metallurgical  Practice,"  VoL  I.,  p.  382. 
'Ibid.,  Vol.  I.,  p.  349. 

•Geological  Society  of  S.  Africa,  Nov.,  1904  (Hatch  and  Cor- 
Btorphlne). 


VoLXLL.Ba.18.]       CULLEN.— GOLD   METALLURGY   OF  THE   WIT  WATER  SR  AND. 


317  T 


deepest  workings  were  about  400  ft.,  to-day  plans 
are  being  matured  to  mine  at  a  depth  of  7000ft.* 
Several  mines  are  drawing  ore  to-day  from  5500  to 
6000  feet,  i.e.,  below  sea  level,  for  the  Rand  in 
places  is  almost  6000  feet  above  sea  level.  Along 
tho  row  of  mines  there  are  several  of  the  largest  and 
the  deepest  in  the  world.  Mining  at  this  great 
depth  has  introduced  problems  which  have  not  yet 
been  satisfactorily  solved. 

In  the  year  1920  there  were  forty-seven  producing 
companies  on  the  Rand.  The  smallest  milled 
57.000  tons  during  the  vear  1921  and  the  largest 
2.200,000  tons;  the  total  amount  milled  was 
24,000,000  tons,  and  the  mining  operations  absorb 
the  products  of  three  very  large  explosives  factories, 
the  combined  output  of  which  is  from  800,000— 
900,000  cases  or,  rather  over  20.000  tons  of  high 
explosives  per  annum.  At  no  other  centre  in  the 
world  is  to  be  found  such  a  concentration  of  mining 
and  metallurgical  operations. 

In  18S4,  when  the  first  record  of  gold  production 
was  made,  the  value  was  onlv  £10,096.  This  had 
become  £16,240,000  by  1898,  and  £39.500.000  by 
1915— the  year  of  greatest  production.5  In  1921 
the  production  had  fallen  by  rather  more  than  10% 
as  compared  with  1915,  but  owing  to  the  gold 
premium  the  declared  value  was  £42,000,000. 

Under  ordinary  circumstances  it  takes  from  three 
to  six  years  to  develop  and  equip  a  mine,  the  period 
depending  on  the  size  of  the  proposition,  the  depth 
of  the  workings,  and  many  other  factors.  Prior 
to  the  great  war  the  capital  involved  in  equipping 
a  mine  of  economic  size  was  about  li  million 
sterling.  To-day  it  would  be  doubled,  and  this 
expenditure  includes  practically  nothing  for  power, 
for  it  is  now  generally  purchased  in  bulk  from  a 
large  power  company. 

1  shall  now  proceed  to  describe  in  general  terms 
the  metallurgical  plant  of  the  modern  section  of 
the  New  Modderfontein  Gold  Mining  Co.,  which 
produced  gold  to  the  value  of  £2,800.000.  including 
premium,  during  the  year  1921.  This  plant  i6  in 
two  sections,  and  for  the  present  I  only  propose  to 
deal  with  the  section  which  has  been  quite  recently 
erected. 

When  the  ore  reaches  the  surface  it  is  tipped 
into  huge  storage  bins.  These  discharge  on  to  two 
conveyor  belts,  each  of  which  is  193  feet  long,  and 
which  run  at  a  speed  of  200  feet  per  minute.  These 
belts  convey  the  ore  to  a  building  in  which  the 
following  operations,  (a),  (6),  (r),  and  (<f),  take 
place  :  — 

(a)  The  ore  is  first  sprayed  with  water  to  free  it 
from  dust  and  so-called  "  fines."  Unless  this  is 
done  it  is  difficult  to  distinguish  ore  proper  from 
barren  rock  in  subsequent  operations;  the  "  fines  " 
amount  to  about  40%  of  the  total. 

(6)  The  ore  is  discharged  into  cylindrical  screens 
or  trommels,  which  separate  the  "  fines  "  from  the 
coarse  ore.  These  "  fines  "  miss  several  of  the 
subsequent  operations.  Nowadays  they  generally 
go  to  storage  bins,  and  are  fed  either  direct  to  the 
crusher  stamps  or  to  the  tube  mills.  A  plant  milling 
2000  tons  of  ore  per  dav  will  therefore  handle  800 
tons  of  "  fines." 

(c)  The  bulk  of  the  ore.  which  consists  of  the 
large  pieces,  is  discharged  from  the  interior  of  the 
screens  on  to  long,  continuously  moving  sorting 
belts  which  are  slightly  inclined.  Along  their 
whole  length  are  the  native  sorters,  who  are  very 
expert  at  their  work.  The  waste  rock  is  thrown 
into  shoots,  and  is  carried  away  by  suitable  trans- 
port arrangements  to  the  waste  dump.  The  amount 
of  sorting  varies  very  greatly.  Some  mines  do  not 
sort  at  all;  others  reject  nearly  20%.  Waste  dumps, 
when  carefully  sampled,  seldom  go  as  high  as  1  dwt. 
per  ton  =  4s.  2d.     The  sorting  depends  very  largely 

'  Institution  of  Mining  and  Metalrarey,  1921  (Clifford). 
•  Keport  of  Transvaal  Chamber  of  Mines,  1921,  p.  187. 


on  the  width  and  nature  of  the  reef  mined.     It  is, 
of  course,  impossible  to  sort  the  "  fines." 

(d)  The  large  pieces  of  ore  in  due  course  reach 
four  gyratory  crushers,  each  driven  by  a  60-h.p. 
motor.  These  reduce  the  ore  to  a  size  "suitable  for 
the  crusher  plant.  At  the  same  time  a  certain 
proportion  is  set  on  one  side  in  the  form  of  pebbles 
for  the  tube  mills  and  conveyed  to  bins  in  their 
neighbourhood  by  long  belt  conveyors. 

(e)  The  crushed  ore  on  leaving  the  gyratory 
crusher  drops  on  to  another  conveyor  belt,  3  ft. 
wide  and  130  ft.  long,  which  runs  in  an  upward 
direction  and  delivers  the  ore  by  subsidiary  belts 
to  the  stamp  mill  bins.  From  these  the  ore  is  dis- 
charged by  feeders  to  stamps  of  the  Nissen  type. 
The  crushed  product  is  discharged  as  a  pulp  through 
the  stamp  screens ;  the  coarser  the  mesh  of  these 
discharge  screens  the  coarser  the  product  and  the 
higher  the  tonnage  per  stamp.  A  stamp  has 
generally  a  drop  of  8$— -9  in.,  and  the  number  of 
drops  per  minute  is  about  90.  They  are  generally 
arranged  in  batteries  of  five,  the  five  dies  on  which 
they  drop  being  contained  in  one  so-called  mortar 
box.  An  1850-lb.  stamp  on  one  mine  crushes  2S"5 
tons  per  24  hours  through  a  screen  aperture  of 
0625  of  an  inch  square.  At  the  particular  mine  now 
being  described  a  1900-lb.  Nissen  stamp  crushes  3T5 
tons  per  24  hours  through  a  somewhat  finer  screen. 

(/)  The  crushed  ore.  or  pulp  as  it  is  now  called, 
since  it  is  mixed  with  several  times  its  weight  of 
water,  is  carried  away  from  the  stamps  by  launders 
or  open  channels  and  discharged  into  conical 
vessels  called  classifiers,  which  automatically 
separate  out  the  finest  pulp,  usually  called  slime. 
This  slime  by-passes  the  immediately  succeeding 
operation  and  goes  direct  to  the  slime  department. 
The  slime  floats  off  at  the  top,  while  the  coarser 
portion  is  discharged  from  the  bottom  of  the  cones 
direct  to  tube  mills. 

(<?)  Tube  milling,  the  next  operation,  is  perhaps 
the  most  important  of  all  the  mechanical  processes 
connected  with  the  treatment  of  the  ore.  Tube 
mills  now  do  a  great  deal  of  the  crushing  work 
formerly  done  by  stamps,  and  to  a  very  large 
extent  are  displacing  them  altogether.  The  standard 
tube  mill  of  to-day  is  22  ft.  long  and  5  ft.  6  in. 
diameter,  lined  with  a  special  steel  or  other 
material  to  resist  wear.  They  make  28  revolutions 
per  minute.  The  pebbles  referred  to  under  (d)  are 
fed  into  the  tube  mill  along  with  the  coarse  pulp, 
and  by  attrition  reduce  it  to  the  required  degree 
of  fineness.  The  general  practice  is  to  have  one 
tube  mill  for  every  ten  stamps  so  that  each  tube 
mill  has  a  grinding  capacity  of  200 — 300  tons  per 
day,  but  the  actual  amount  passed  through  is  very 
much  greater.  The  tube  mill  product  nowadays  is 
so  fine  that  90%  passes  the  90  linear  mesh  screen. 
As  in  the  case  of  stamps,  the  output  depends  en 
the  required  degree  of  fineness. 

(7i)  The  crushed  product  now  reaches  the  first 
stage  in  extracting  the  gold.  This  consists  of 
amalgamation,  and  accounts  for  45 — 65%  of  the 
precious  metal.  At  a  lower  level  than  the  tube  mills 
there  is  a  series  of  amalgamating  tables  which  in 
the  main  consist  of  copper  plates  53  sq.  ft.  super- 
ficial area.  These  slope  away  from  the  tube  mill; 
there  are  five  such  plates  for  each  mill.  The  pre- 
paration of  these  plates  and  their  subsequent 
dressing  or  cleaning  during  operation  require  a  high 
degree  of  skill.  The  process  described  by  Mosenthal 
(ktc.  cit.)  for  the  treatment  of  the  amalgam  is. 
apart  from  minor  improvements,  the  same  as  is 
carried  out  to-day.  In  the  early  days  of  the  Rand. 
and  indeed  up  till  about  1893,  amalgamation  was 
the  only  process  in  use  for  extracting  the  gold. 
The  returns  were  so  good  that  40%  of  the  gold 
content  contained  in  the  tailings  could  be  neglected 
altogether.  Later  on  those  dumps  of  tailings, 
which  survived  the  disintegrating  effects  of  wind 


318  t 


CULLEN.— GOLD   METALLURGY   OF   THE   WITWATERSRAND. 


[Sept.  30,  192 


and  rain,  made  a  fine  treasure  trove  to  many  an 
adventuring  metallurgist. 

(i)  The  cyanide  process  in  the  aggregate  treats 
24  million  tons  of  ore  per  annum  at  an  over-all 
cost  of  only  2d.- — 3d.  per  ton  for  cyanide  of  sodium.6 
One  mine  in  particular  has  reduced  its  consump- 
tion of  cyanide  to  0"18  lb.  per  ton  of  ore  treated. 
On  leaving  the  amalgamating  plates  the  pulp,  from 
which  most  of  the  coarse  gold  has  been  extracted 
by  amalgamation,  falls  to  a  series  of  so-called  6and 
pumps  (centrifugal  pumps  of  special  construction 
to  resist  the  abrasive  effects  of  the  sharp-edged  pulp 
particles).  Each  pump  is  capable  of  lifting  1300 
tons  per  hour  to  a  height  of  65  ft.,  and  it  discharges 
its  contents  into  conical  classifiers.  These  reject 
a  certain  proportion  of  their  charge  as  being 
too  coarse,  and  it  goes  back  to  the  tube  mills  for 
re-grinding,  appearing  again  in  the  same  classifiers 
after  undergoing  further  attrition. 

(j)  The  uniform  pulp  from  these  cones  is  next 
sent  to  other  cones,  where  it  is  separated  into  a 
coarse  and  fine  product  termed  "  sand  "  and 
"  slime."  These  are  treated  separately  with 
cyanide.  The  fine  product  is  brought  into  intimate 
contact  with  an  aerated  dilute  alkaline  solution  of 
sodium  cyanide  which  dissolves  the  gold. 

Tin'  sands  are  pumped  to  very  large  steel  tanks. 
In  the  plant  under  discussion  there  are  six  such 
tanks  each  measuring  52|  ft.  diam.  by  10£  ft.  deep. 
By  appropriate  appliances  the  cyanide  solution  is 
made  to  percolate  through  the  contents,  and  is 
circulated  by  centrifugal  pumps  to  aerate  solution 
and  sands.  The  great  distinction  between  sand  and 
slime  is  that  the  latter  does  not  permit  percola- 
tion. In  practice  sands  present  no  treatment  diffi- 
culties; they  contain  anything  from  2'5  dwt.  of  gold 
per  ton  and  upwards,  depending  on  the  grade  of 
the  original  ore,  and  an  extraction  of  90%  is  easily 
obtained. 

The  slimes  as  they  leave  the  cones  gravitate  to 
six  special  settling  tanks — Dorr  thickeners.  In 
this  plant,  a6  its  name  indicates,  the  surplus 
water  is  removed,  leaving  a  thick,  easily  mani- 
pulated slimy  mass,  which  is  pumped  along  with 
dilute  cyanide  solution  to  so-called  Brown  tanks. 
These  are  tall  cylinders  45  ft.  in  height  provided 
with  air-agitating  appliances  which  have  the  effect 
of  bringing  the  minute  particles  of  slime  into  most 
intimate  contact  with  the  dissolving  solution.  When 
all  the  gold  is  dissolved  the  contents  of  the  Brown 
tanks  are  discharged  into  an  immense  storage  tank 
in  which  there  is  air  agitation  to  keep  the  contents 
fluid.  From  here  the  slime  is  fed  to  a  Butters 
vacuum  filter  installation  consisting  of  300  filter 
leaves  capable  of  handling  20,000  tons  of  dry  slime 
per  month.  The  extraction  of  gold  is  very  high,  as 
the  residual  slimes  are  practically  barren.  Before 
treatment  they  contain  1'5  dwt.  per  ton  upwards. 

The  huge  quantities  of  barren  sand  and  slime 
produced  are  handled  very  cheaply  by  mechanical 
contrivances. 

One  of  the  features  of  the  Rand  is  the  immense 
sand  dumps  made  up  of  untold  millions  of  tons  of 
tailing.  They  have  formed  the  basis  of  certain 
small  industries,  but  nowadays  immense  quantities 
are  made  up  into  a  pulp  and  sent  back  into  the 
stopes  or  mine  workings,  from  which  the  material 
originally  came  as  ore.  In  time  it  consoli- 
dates into  a  sort  of  friable  sandstone  which  sup- 
ports the  roof  or  hanging  wall  and  thus  renders 
the  workings  much  more  safe.  At  the  same  time 
it  permits  more  ore  to  be  drawn  from  the  mine 
than  would  otherwise  be  the  case,  for  in  mining  at 
depth,  so-called  pillars  have  to  be  left  to  support 
the  roof,  otherwise  the  whole  mine  would  collapse. 
The  wonderful  developments  of  flotation  within 
recent  years  have  suggested  the  possibility  of  apply- 
ing it  to  the  ore  of  the  Rand  for  the  concentration 

*  Chem.  Met.  and  Min.  Soc.  of  S.  Africa,  Oct.,  1921  (Wartenweiler). 


of  the  gold.  The  proposition  from  the  economic 
point  of  view  is  exceedingly  attractive.  Accord- 
ing to  the  Minerals  Separation  Co.,  experiments 
have  been  very  satisfactory.  I  quote  the  follow- 
ing:7 Crude  ore  from  mine.  Assay  value  9'9dwt. ; 
concentrate  14'8%  of  total ;  value  659  dwt. ;  residue 
value  ()-42  dwt.;  extraction  98-5%.  Slimes  (un- 
treated). Assay  value  T34  dwt. ;  concentrate  16-4% 
of  total;  value  7'2  dwt.;  residue  value  0'20  dwt]; 
extraction  88"1%.  Old  sand  residues.  Assay  value 
1'75  dwt.;  concentrate  10'3%  of  total;  value 
126  dwt.;  residues  0'45  dwt.;  extraction  74T%. 
This  looks  poor,  but  it  is  in  effect  extraordinarily 
good  under  the  circumstances,  for  through  oxida- 
tion of  the  pyrites  old  tailings  or  residues  are  always 
very  difficult  to  treat.  No  details  are  given  as  to 
how  these  results  were  obtained,  but  they  indicate 
the  possibility  of  entirely  revolutionising  all  the 
intermediate  stages  of  current  metallurgical  prac- 
tice for  certain  classes  of  ore. 

I  now  come  to  the  alternative  processes  to  which 
reference  has  already  been  made.  On  one  point 
practically  everyone  is  agreed  nowadays — viz.,  that 
in  the  long  run  it  pays  to  grind  the  ore  as  fine  as 
possible.  Gold  is  made  more  accessible,  whether  in 
the  silicious  matrix  or  in  the  pyrites  and  whether 
amalgamation  is  retained  or  not.  To  give  an  idea 
of  what  this  means,  I  may  say  that  Id.  per  ton 
increased  or  decreased  working  costs  or  improve- 
ment in  extraction,  or  the  reverse,  means  to  the 
industry  rather  more  than  £100,000  per  annum." 
Twenty  years  ago  a  90%  extraction  of  the  total 
gold  content  was  considered  very  good  work.  To- 
day anything  lower  than  95%  is  considered  poor 
and  this  will  certainly  be  improved  upon.  This 
means,  translated  into  practice,  that  residues  are 
being  sent  to  the  dumps  which  only  contain  gold 
to  the  value  of  Is.  per  ton  or  about  0"25  dwt. 
These  excellent  results  have  not  been  brought  about 
through  radical  departures,  but  by  slow,  persistent 
effort. 

Early  attempts  to  concentrate  the  gold  into  one 
product  of  small  bulk  in  order  to  minimise  treat- 
ment costs  failed,  as  they  were  bound  to  do  in  the 
light  of  the  distribution  of  gold  in  the  ore.  A  good 
many  years  ago,  however,  G.  A.  and  H.  S.  Denny 
suggested  two  radical  departures  from  the  orthodox 
practice — viz.,  (a)  sliming  the  product  from  the 
stamps  instead  of  segregating  it  into  sands  and 
slimes ;  (6)  continuous  circulation  of  cyanide  solu- 
tion from  the  stamps  onwards.9  These  were  to  a 
certain  extent  carried  into  practice,  but  they  did 
not  commend  themselves  to  the  orthodox  school. 

No  one  has  suggested  that  alternative  processes 
will  give  much  better  extraction  results.  Indeed  it 
would  be  difficult  to  conceive  any  process  which 
could  improve  on  the  figures  just  quoted.  The  whole 
question,  therefore,  resolves  itself  into  one  of 
economics. 

Metallurgical  plants  per  ton  of  ore  treated  per 
day  cost  £215  in  1903.10.  In  1914-15  this  had  been 
reduced  to  £107,  but  probably  to-day  the  cost  is 
higher  than  it  was  in  1903.  The  main  claim  for 
the  alternative  process  is  that  while  reducing  work- 
ing charges  it  will  also  materially  reduce  capital 
outlay.  The  problems  involved  belong  essentially 
to  the  domain  of  the  engineer,  for  Rand  metallurgy 
being  comparatively  simple,  costs  depend  mainly 
on  the  efficient  and  rapid  handling  of  large  masses 
of  material. 

The  fact  that  there  are  three  definite  steps  in 
the  extraction  of  gold — viz.,  amalgamation,  treat- 
ment of  sand  by  cyanide,  and  treatment  of  slime 
by   cyanide,   leads   to  complication   of   plant,    and 

'  S.  African  Mining  J.,  Oct.,  1921,  p.  239  (Homersham). 
8  S.  African  Assoc,  for  Advancement  of  Science,  Vol.  XII.,  p.  121 
(Caldecott). 

•  S.  African  Assoc,  of  Engineers,  Vol.  XI.,  p.  215  CDc°ny). 
10  "  Rand  Metallurgical  Practice,"  Vol.  II.,  p.  337. 


Vol.  XIX,  Ho.  18.]   CULLEN.— GOLD  METALLURGY  OF  THE  WITWATERSRAND. 


319t 


moreover,  although  about  60%  the  free  gold  is  won 
at  a  very  early  stage  of  the  treatment  process  by 
amalgamation,  gold  amalgam  is  easily  stolen,  and 
there  is  a  considerable  leakage  from  this  cause. 
Another  undesirable  feature  of  the  orthodox  process 
is  the  fact  that  the  treatment  of  the  sands,  for  in- 
stance, involves  immense  outlay  in  the  way  of  tanks, 
for,  from  the  beginning  to  the  end  of  the  process, 
it  takes  10-12  days.  The  brothers  Denny  suggested 
the  use  of  tube  mills  as  a  substitute  for  stamps  a 
good  many  years  ago."  Their  contention  was  that 
on  the  one  side  ore  breakers  were  encroaching  on 
the  domain  of  the  stamp,  while  on  the  other  side 
the  tube  mill  was  equally  aggressive.  Although  the 
duty  of  the  stamp  was  being  gradually  increased 
through  the  production  of  a  coarser  pulp,  this  was 
really  being  accomplished  in  a  machine  which  was 
unsuited  for  the  purpose  from  every  point  of  view, 
and  moreover  the  capita1!  expenditure  for  stamps 
was  very  high.  I  now  come  to  the  latest  scheme 
which  is  already  working  on  a  fairly  large  scale. 
There  has  been  a  good  deal  of  general  information 
about  the  new  process  in  the  technical  press,  but  I 
am  indebted  to  Mr.  Carl  Davis,  consulting  engineer 
to  the  Anglo-American  Mining  Corporation,  for  the 
details  which  follow.  Associated  with  him  in  work- 
ing out  the  process  were  Messrs.  J.  H.  Willey  and 
S.  E.  T.  Ewing.  Mr.  Davis  has  had  the  courage  of 
his  convictions  and  has  put  his  ideas  into  practice. 
In  these  days  of  high  capital  costs  this  is  a  far 
greater  act  than  the  bald  statement  would  indicate. 
"  The  original  plant  is  laid  out  on  standard  lines, 
viz :  separation  of  the  ore  hoisted  into  oversize  and 
undersize  by  means  of  a  grizzly ;  the  undersize  being 
sent  direct  to  the  mill  storage  bin  and  the  oversize 
passing  to  sorting  belts,  where  the  waste  and  the 
tube  mill  feed  rock  is  taken  out;  the  balance  is  then 
passed  through  single  stage  gyratory  crushers  to 
the  mill  storage  bin. 

"  From  the  mill  storage  bin  the  ore  is  crushed 
by  heavy  gravitation  stamps,  the  ratio  of  stamps 
being  ten  to  one  tube  mill;  after  leaving  the  mortar 
box  the  crushed  ore  is  sent  to  a  de-watering  cone, 
the  underflow  of  which  enters  the  tube  mill;  the 
tube  mill  discharge  is  joined  by  the  overflow  from 
the  de-watering  cone,  and  the  combined  pulp  is 
then  passed  over  the  amalgamating  plates ;  from 
thence  the  total  pulp  is  elevated  to  the  primary 
classifiers,  the  underflow  of  which  is  returned  to  the 
tube  mill  circuit  for  re-grinding,  whilst  the  over- 
flow, which  is  the  final  pulp,  passes  to  the  secondary 
classifiers,  which  separate  the  pulp  into  sand  and 
slime. 

"  The  sand  is  caught  in  collecting  tanks,  and  is 
then  transferred  in  cyanide  solution  to  the  treat- 
ment tanks.  The  slime  is  caught  in  the  slime 
collecting  tanks  and  is  then  transferred  to  Pachuca 
(Brown)  tanks  for  treatment  and  thence  to  the 
Butters  plant  for  recovery  of  the  gold-bearing 
solution. 

"  In  the  extension  of  the  Springs  Mines  plant, 
the  alteration  from  existing  practice  is  as  follows  :  — 
The  average  size  of  the  fines  is  smaller  on  account 
of  the  total  run  of  the  mine  ore  being  passed  over  a 
finer  set  grizzly,  and  the  oversize  after  leaving  the 
sorting  belts  goes  to  a  steady  head  bin  which  will 
maintain  a  '  choked  feed  '  to  the  crushers. 

"  This  crusher  portion,  together  with  the  '  fines,' 
passes  to  the  tube  mill  storage  bin,  from  which  it  is 
fed  direct  to  the  tube  mills.  The  tube  mill  discharge 
flows  into  a  Dorr  classifier,  the  oversize  returning 
to  the  mill  for  re-grinding,  whilst  the  overflow, 
which  is  the  final  pulp,  is  elevated  to  the  slime 
collectors,  and  is  then  transferred  to  the  Pachuca 
tanks  and  the  Butters  plant  as  already  described. 

"  With  direct  tube  milling  as  above,  the  amount 
of  reject  pebble  is  very  large,  roughly  about  20% 
of  the  total  feed.     This  reject  pebble  is  separated 

u  Chem.  Met.  and  Min.  Soc.  oi  S.  Africa,  Vol.  IV.,  p.  217  (Denny). 


from  the  tube  mill  discharge  by  means  of  a  trommel 
attached  to  the  mill,  and  is  then  returned  to  the 
stamp  mill  bin  by  means  of  conveyor  belts  and  a 
bucket  elevator.  In  a  new  plant  it  would  be  neces- 
sary to  instal  a  small  breaking  plant  to  deal  with 
the  reject  pebbles,  but  the  stamps  being  available, 
it  was  decided  to  utilise  them. 

"  In  the  suggested  plant  the  main  differences  com- 
pared with  the  new  plant  at  Springs  are  as  follows : 

"  Firstly,  crushing  in  cyanide  solution,  and  zinc 
dust  precipitation  (the  Merrill  process)  and 
secondly,  using  a  tube  mill  of  very  much  larger 
capacity  than  the  present  standard  22  ft.  by 
5  ft.  6  in.  tube  mill — this  mill  to  have  a  capacity  of, 
say,  600  tons  per  24  hours,  and  then  stage  classifi- 
cation by  Dorr  classifiers. 

The  saving  in  capital  cost  is  very  considerable, 
probably  in  the  neighbourhood  of  20 — 40%,  and  it 
is  estimated  that  the  saving  in  working  costs  will  be 
from  20  to  25%.  A  plant  of  this  design  lends  itself 
very  readily  to  grinding  in  cyanide  solution.  This, 
in  conjunction  with  zinc  dust  precipitation  in 
Merrill  presses,  reduces  the  possibility  of  gold  theft 
to  a  minimum. 

"  In  addition  to  the  foregoing,  the  above  method, 
which  renders  finer  grinding  economically  feasible, 
will,  it  is  confidently  anticipated  (as  a  result  of 
lengthy  full-scale  trials)  result  in  a  higher  total 
extraction  of  the  gold  contents  of  the  ores  of  the 
Far  East  Rand  district." 

The  radical  departures  from  orthodox  practice 
consist  in: — (a)  The  elimination  of  the  stamp  mill 
as  a  crusher,  (b)  The  elimination  of  amalgamation, 
(c)  The  elimination  of  sands  treatment  by  cyanide 
and  the  substitution  therefor  of  one  product 
"  slimes,"  which  is  treated  by  cyanide.  (/)  The 
continuous  presence  of  cyanide  solution  within  a 
closed  circuit  right  from  the  tube  mills  onward. 

With  reference  to  (a)  the  accepted  practice  is  to 
crush  in  two  stages  after  the  breakers  have  done 
their  work,  viz.,  stamp  milling  followed  by  tube 
milling.  In  the  "  tubes  "  the  main  crushing  is 
performed  by  selected  pebbles  of  the  ore  itself 
consisting  of  6  in.  to  7  in.  cubes  which  are  with- 
drawn on  the  sorting  tables  before  the  ore  reaches 
the  breakers.  The  breakers  are  called  upon  to  do 
more  work  than  they  did  formerly  and  the  capacity 
of  the  tube  mill  has  also  been  increased  through  the 
feeding  to  it  of  a  coarser  product.  With  regard  to 
(b)  no  comment  is  required. 

Item  (c)  involves  much  finer  grinding  than  was 
practiced  before,  and  to  this  extent  will  probably 
be  slightly  more  costly,  but  on  the  other  hand  will 
make  for  higher  extraction  of  the  gold  content. 

In  regard  to  (/)  as  the  cyanide  will  be  in  contact 
with  the  ore  all  the  time,  maximum  extraction 
shduld  be  secured  and  there  should  be  a  minimum 
loss  of  cyanide  through  oxidation. 

When  the  cyanide  process  was  introduced,  it  was 
found  that  the  slimes,  which  formed  about  25%  of 
the  product  (Mosenthal  says  40%),  could  not  be 
leached,  and  they  were  therefore  discarded,  but  this 
meant  the  construction  of  expensive  slime  dams. 
Moreover  they  contained  anything  from  1J  dwt.  per 
ton  of  gold  upwards,  equal  in  value  to  rather  more 
than  6s.  As  the  difficulties  of  treating  slimes  were 
gradually  overcome,  these  slimes  became  in  turn 
treasure  troves,  as  the  tailings  did  before  them,  and 
treatment  of  accumulated  slimes  has  assisted  in 
swelling  the  profits  of  many  a  mine,  whose  profits 
from  ordinary  sources  were  commencing  to  dwindle. 
In  the  early  days  it  was  found  advisable  to  add  lime 
at  the  earliest  possible  stage,  in  the  first  instance  to 
counteract  acidity,  but  it  was  subsequently  found 
that  it  assisted  in  the  settling  of  the  slimes  and 
protected  the  cyanide.  Indeed,  it  was  along  the 
lines  of  settling  and  decantation  that  the 
problem  was  solved  in  the  end,  and  apart  from 
improvements  made  in  settling,  there  has  been 
little  change  in  slimes  treatment  for  many  years. 


320  t 


CULLEN.— GOLD    METALLURGY   OF  THE    WITWATERSRAND. 


[Sept.  30,  1922. 


To-day  slimes  are  not  only  treated  more  cheaply 
than  sands,  but,  as  might  be  inferred,  the  extrac- 
tion is  also  better. 

As  showing  the  changes  brought  about  by 
improvement  and  modifications  in  the  processes, 
the  following  tables  are  of  interest.13 


1903 


1910 


1917 


Work  done  by  stamp  mill 

100 

.     95       . 

.     65       . 

.     50 

„            tube      „ 

Nil.      . 

5       . 

.     85       . 

.     50 

„            concentrating  . 

5-5    . 

.       4-5    . 

.     1-0      . 

.    Nil. 

,,             Band  piant 

75-0    . 

.      72-5    . 

.      670    . 

.     60 

„            slime     „ 

19-5    . 

.      230    . 

.     320    . 

.     40 

Thus,  so  far  as  crushing  is  concerned,  nineteen 
years  ago  the  stamp  did  all  the  work:  in  1917  it 
did  only  50%,  the  tube  mills  being  responsible  for 
the  rest.  To-day  tube  mills  do  even  more,  and  as 
has  been  indicated,  it  is  proposed  that  the  6tamp 
should  be  eliminated  altogether.  Concurrently, 
and  owing  to  finer  grinding,  the  percentage  of 
6lime  produced  and  treated  had  risen  to  40%  by 
1917.  To-day  the  figure  must  be  considerably 
higher,  and  if  the  new  processes  are  generally 
adopted,  sands,  as  such,  will  not  be  produced  at  all. 

The  solution  of  gold  by  cyanide  takes  place 
according  to  the  equation  :  ■ — 

2Au+4NaCN+0  +  H20  =  2AuNa(CN)2+2NaOH. 

Working  cyanide  solutions  contain,  in  addition 
to  sodium  cyanide,  potassium  and  calcium  cyanides, 
as  well  as  thiocyanates  and  most  probably  ferro- 
cyanides.  Efficient  aeration  is  essential  for  the 
success  of  the  reaction.  The  gold  in  solution  is 
precipitated  or  deposited  on  zinc  shavings:  — 
2NaAu(CN)2  +  2NaOH  +  Zn  =  2Au  + 

Zn(OH)2+4NaCN. 

Compared  with  other  wet  metallurgical  processes, 
that  of  gold  extraction  on  the  Rand  can  be  classed 
as  simple,  for,  apart  from  pyrites,  there  are  no 
ingredients  which  can  cause  complications.  The 
ore  can  be  classed  as  free  milling,  for  with  the 
fine  grinding  which  is  now  universal,  even  pyrites 
yields  up  its  gold  without  trouble.  Successful  ex- 
traction depends  in  the  main  on  fine  comminution 
with  consequent  exposure  of  the  gold  particles. 
Moreover,  the  gold  does  not  exist  in  an  ultra-fine 
form,  otherwise  the  physical  process  of  amalgama- 
tion would  not  have  been  so  successful  in  the  past. 
Such  complications  as  do  arise  in  practice  are 
mainly  due  to  weathering  of  the  ore  underground 
or  when  stored  at  the  surface  in  dumps ;  before 
the  ore  reaches  the  mill  one  or  several  of  the 
following  reactions  are  possible."  FeS2  =  FeS-fS; 
S+02  =  S02;  SO„+0  +  H20  =  H2S04;  H2S04+FeS  = 
FeS04+H2S;  2F"eS01+H2S01+0  =  Fe2(SO,)3  +  H,0; 
Fe„(S0„)3  +  2H20  =  Fe,03SOs+2H2S04";  Fe,03S0a+ 
4H20  =  2Fe(OH)3  +  H2S04.  All  these  reactions  ac- 
tually take  place  and  the  mine  water  is  invariably 
acid.  This  causes  great  wear  and  tear  on  pipes, 
pumps  and  machinery  generally,  notwithstanding 
a  generous  employment  of  lime.  The  free  acid  also 
decomposes  the  silicates  present  in  the  ore  and  the 
liberated  gelatinous  silica  interferes  with  the  subse- 
quent slime  settling. 

Later  on  when  the  ore  reaches  the  stamps  and  the 
tube  mills  the  pyrites  seems  liable  to  reduction  to 
ferrous  sulphide  by  metallic  iron.  This  serves  as 
a  starting  point  for  a  series  of  reactions  similar 
to  the  above,  but  later  on  in  the  process. 

That  the  amount  of  sulphuric  acid  produced  is 
great  is  indicated  by  the  fact  that  during  cold 
weather  the  service  pipes  become  choked  with 
calcium  sulphate  which  is  very  difficult  to  remove. 
However,  the  presence  of  calcium  sulphate  in  these 
relatively  large  quantities  apparently  does  no  par- 
ticular harm  chemically. 

Theoretically  one  pound  of  cyanide  dissolves  one 
and  a  half  pounds  of  gold  in  the  presence  of  one 
ounce  of  oxygen,  but  in  practice  the  consumption  of 

~"~"&and  Metallurgical  Practice,"  Vol.  II.,  p.  12. 
"  Chem.  Met.  and  Mln.  Soc.  of  S.  Africa,  Vol.  II.,  pp.  98,  112  ; 
Vol.  VII.,  p.  S15. 


cyanide  is  much  greater,  for  the  oxygen  is  used  up 
in  other  directions,  as  is  also  the  cyanide  itself. 
The  following  reactions  are  indicative  of  these 
possibilities'* :  — 

(a)  FeS  +  6NaCN  =  Na4Fe(CN),  +  Na.S. 

Na„S+NaCN+0+H20  =  NaCNS"+2NaOH 

(6)  2FeS+9O+3H20+2CaO=2Fe(0H)3  +  2CaS04. 

(c)  Fe(OH)s  +  6NaCN  =  Na4Fe(CN),+2NaOH. 

(d)  2Fe(OH)2  +  0  +  H20  =  2Fe(OH)3. 

So  far  no  reference  has  been  made  to  the  presence 
of  soluble  sulphides,  but  that  this  is  a  possibility 
is  indicated  by  equation  (a).  Moreover,  all  com- 
mercial cyanide  contains  sulphide  in  small  quantity. 
These  sulphides  are  rendered  partially  innocuous 
by  sprinkling  the  sands  or  slimes  with  lead  acetate 
or  nitrate,  but  the  lead  sulphide  also  uses  up  avail- 
able cyanide  and  oxygen ;  the  alkali  sulphides 
which  escape  the  action  of  the  soluble  lead  salts 
most  likely  behave  as  follows: — Na2S  +  NaCN+ 
0  +  H20  =  NaCNS  +  2NaOH.  All  of  the  foregoing 
indicate  that  the  working  cyanide  solution  is  a 
much  more  complicated  affair  than  it  is  generally 
supposed  to  be. 

In  the  precipitation  of  gold  from  the  sodium 
auro-cyanide  by  means  of  zinc  nascent  hydrogen  is 
in  reality  the  active  precipitant.  The  process  is 
therefore  a  reducing  one,  whereas  the  solution  of 
the  gold  in  cyanide  is  an  oxidation  one.  About 
forty  times  the  theoretical  quantity  of  zinc  is  used 
up  during  preciptation,  but  as  lead-coated  zinc  in 
filiform  condition  is  very  readily  oxidised  both  in 
the  moist  and  wet  state  the  explanation  for  this 
excess  consumption  is  not  far  to  seek.  In  this 
connexion  the  Crowe  process  is  now  being  generally 
introduced  into  modern  plants.  It  consists  in  get- 
ting rid  of  the  dissolved  oxygen  by  evacuation  and 
through  this  means  the  zinc  consumption  has  been 
very  considerably  reduced;  indeed,  the  reduction  is 
so  great  that  it  is  not  necessary  to  treat  the  zinc- 
gold  slime  with  acid. 

Zinc  hydroxide  readily  dissolves  in  fairly  strong 
cyanide  solution  forming  double  zinc  cyanide  and 
sodium  zincate — the  so-sailed  "  white  precipitate  " 
which  is  so  troublesome  in  cold  weather;  but  even 
zinc    itself   is   attacked   by   cyanide   as   follows :  — 

Zn  +  4NaCN-f2H20  =  Na2Zn(CN).+2NaOH+Ha. 
This  sodium  zinc  cyanide  is  itself  a  solvent  for  gold 
in  the  presence  of  alkali  which,  however,  is  always 
produced  as  has  just  been  shown. 

Now  the  gold-bearing  solutions  do  not  readily 
part  with  their  gold  to  the  zinc  even  in  the  form 
of  very  fine  shavings,  0"002  in.  thick,  and  from 
what  has  just  been  said  the  reasons  are  not  far 
to  seek.  One  pound  weight  of  zinc  in  the  form  of 
shavings  exposes  thirty  square  feet  of  surface  and 
one  ton  has  therefore  a  surface  of  1'4  acres.  An 
ordinary  precipitation  plant  has  from  10 — 20  tons 
of  shavings  in  the  "  boxes  "  and  this  cannot  be 
materially  reduced,  for  the  actual  zinc  surface 
available  for  precipitation  is  small.  A  great 
advance  in  acceleration  of  precipitation  was  made 
when  the  zinc-lead  couple  was  introduced.  The 
zinc  shavings  are  merely  dipped  in  a  solution  of 
soluble  lead  salt  such  as  nitrate  or  acetate,  when  a 
coating  of  metallic  lead  is  formed.  This  facilitates 
the  evolution  of  hydrogen  from  the  decomposition  of 
the  water,  for  the  essential  requisite  for  the  precipi- 
tation of  gold  from  the  sodium  aurocyanide  is 
intimate  contact  with  the  nascent  hydrogen.. 

We  have  now  reached  the  stage  of  having  the  gold 
precipitated  on  the  zinc.  In  the  subsequent 
operations  the  mixture  of  zinc,  gold,  base  metals, 
and  impurities  generally  is  treated  with  sulphuric 
acid  or  nitre  cake;  the  residue  is  filter  pressed, 
calcined,  melted  down  with  appropriate  fluxes  and 
east  into  ingots  which,  until  quite  recently,  have 
been  shipped  to  London  for  refining. 

In  1894  the  lowest  consumption  of  cyanide  per 
ton   of  tailings  was   L16   lb. ;   the  quantity   occa- 


Vol.  XXI.,  No.  is.]    CRAWFORD.— ORGANIC   IMPURITIES   IN  COMMERCIAL  NITRIC   ACID.        321  t 


sionally  exceeded  2  lb.  per  ton.  To-day  the  amount, 
in  a  few  mines  at  any  rate,  is  just  one-tenth  of  this. 
In  1894  the  strength  of  the  cyanide  solutions 
Beemed  to  vary  between  03  and  0'6%.  To-day  the 
solutions  are  only  one-fifth  to  one-tenth  as  strong. 
There  are  naturally  no  figures  available  for  zinc 
consumption,  but  in  1914  the  consumption  was  only 
0'32  lb.  per  ton,  and  to-day  it  is  even  lower,  with 
every  prospect  of  becoming  lower  still.  Mercury— 
another  somewhat  expensive  item  on  the  "  stores  " 
side — disappeared  to  the  tune  of  J  lb.  per  ton  in 
1894  :  to-day's  figure  is  the  remarkably  low  one  of 
0T  oz.  per  ton  milled.  Then  in  1914  caustic  soda 
was  the  protective  alkali  used,  and  sometimes  the 
consumption  was  as  much  as  i  lb.  per  ton.  To-day 
lime  has  taken  its  place,  and  besides  being  equally 
effective  as  a  protector  it  has  the  great  advantage, 
as  already  pointed  out,  of  facilitating  the  settling 
of  the  slimes. 

As  on  the  mechanical  side,  there  have  been  no 
epoch-marking  developments  in  the  cyanide  process 
during  the  last  twenty  years.  Indeed,  the  figures 
just  quoted  indicate  rather  steady  and  continuous 
improvement  in  detail,  and  this  process  still  goes 
on.  Some  years  ago  J.  S.  McArthur,15  the  father 
of  the  cyanide  process,  suggested  the  substitution 
of  zinc  wafers  or  strips  fcr  the  shavings,  as  he  had 
found  them  an  improvement  in  another  connexion. 
Practical  trials  proved  very  unsatisfactory.  Men- 
tion has  been  already  made  of  the  Merrill  process 
of  precipitation,  which  is  perhaps  the  most  radical 
departure  within  recent  years.  In  essentials  it 
consists  of  emulsifyihg  zinc  dust  with  the  gold- 
bearing  cyanide  solution  and  forcing  the  mixture 
through  a  filter-press  of  special  construction.  In 
the  case  of  fairly  strong  solutions  80%  of  the  gold 
is  precipitated  at  once,  and  the  balance  is  precipi- 
tated completely  on  the  leaves  where  the  zinc-gold 
mixture  has  already  accumulated.  It  is  claimed 
that  by  this  method  the  zinc  consumption  is 
materially  reduced;  but  as  the  total  is  now  only 
about  03  lb.  per  ton  of  ore  crushed,  the  actual 
saving  under  this  head  cannot  be  very  great. 

Prior  to  the  Boer  War  the  old  Transvaal  Republic 
had  its  own  refinery  and  mint  at  Pretoria. 
Naturally,  it  was  on  quite  a  small  scale.  When 
war  broke  out  in  1914  it  was  decided  that  both 
refining  and  minting  should  be  revived.  Fortunately 
much  of  the  old  Boer  plant  was  available,  and  it 
was  indeed  put  into  working  order,  but  was  never 
worked.  The  idea,  however,  of  South  Africa  having 
its  own  refinery  and  mint  caught  the  popular  fancy. 
The  refinery,  which  started  up  quite  recently,  is 
situated  on  the  Rand  a  few  miles  from  Johannes- 
burg, but  the  mint  is  at  Pretoria.  It  is  the  largest 
of  its  kind  in  the  world,  but  the  mint  is  not  on 
such  an  ambitious  scale. 

In  the  refining  process  the  bullion16  is  first  melted 
in  a  plumbago  crucible  with  suitable  fluxes,  which 
gives  a  preliminary  purification.  The  ingot  pro- 
duced is  next  assayed,  and  if  it  contains  too  much 
refractory  metal,  or  metal  which  would  interfere 
too  much  with  the  ordinary  refining  process,  it  is 
submitted  to  a  second  and  more  drastic  fusion, 
treatment  with  air,  chlorine,  nitre,  or  possibly  all 
three.  For  the  final  stages  batches  of  about  700  oz. 
are  melted  with  a  borax  flux  in  clay  crucibles, 
standing  in  plumbago  guard  crucibles  for  safety. 
When  the  bullion  is  melted  a  clay  pipe-stem  is 
introduced  and  chlorine  and  air  passed  through  the 
molten  mass.  The  base  metals  and  the  silver  are 
converted  into  chlorides,  which  float  on  the  surface 
and  are  baled  off.  The  end-point  is  much  the  same 
as  in  a  gold  assay.  This  fine  gold  is  re-melted  in 
a  large  tilting  furnace  and  cast  into  bars  of  about 
400  oz.  each  for  export. 

""Rand  Metallurgical  Practice,"  Vol.  I.,  p.  387. 
,s  Chem.   Met.  and  Min.  Soc.  of  S.  Africa,   Vol.   XIV.,  p.   310 
(McArthor). 
"  S.  African  Mining  J.,  Dec.  3rd,  1921,  p.  467. 


Communications. 


ORGANIC     IMPURITIES     IN     COMMERCIAL 

NITRIC  ACID  AND  THEIR  EFFECT  IN  THE 

MANUFACTURE  OF   NITROGLYCERIN. 

BY  F.   A.   F.   CRAWFORD,   I). A.,   A.I.C. 

The  following  investigation  was  undertaken  for 
the  purpose  of  explaining  certain  irregularities  in 
the  manufacture  of  nitroglycerin. 

In  the  manufacture  of  nitroglycerin  which  is  to 
be  used  in  the  preparation  of  either  blasting  explo- 
sives or  cordite,  it  is  usually  stipulated  that  the 
finished  nitroglycerin  shall  stand  the  Abel  heat  test 
for  not  less  than  10  minutes.  Practically  every 
nitroglycerin  factory  has,  at  one  time  or  other, 
experienced  periods  during  which  the  nitroglycerin 
produced  failed  to  pass  this  test,  and  although 
many  efforts  have  been  made  to  ascertain  the  cause 
of  the  low  heat  test,  no  explanation  has  been  put 
forward  which  would  satisfactorily  account  for  all 
the  variations  which  have  been  noted.  A  very  pro- 
nounced period  of  low  heat  tests  has  recently  been 
experienced  at  the  Ardeer  nitroglycerin  factories 
of  Nobel  Industries,  Ltd.,  and  as  most  careful 
analyses  failed  to  detect  any  abnormality  in  the 
materials  used,  and  as  no  modification  had  been 
introduced  into  the  process  of  manufacture,  the 
following  investigation  was  instituted  in  order  to 
determine  the  cause  of  the  trouble. 

Tracing  cause  of  low  heat  test. 

Since  no  help  could  be  obtained  from  analysis,  the 
only  method  of  attack  was  to  duplicate  the  manu- 
facturing results  by  experiments  on  the  small 
scale  and  then  by  a  process  of  elimination  to  deter- 
mine the  factor  or  factors  causing  the  trouble. 

Nitroglycerin  is  manufactured  by  adding  glycerin 
to  strong  mixed  acid  of  the  composition,  HNOa 
40—44%,  H2S04  55—59%,  HaO  0-5—2-0%.  After 
nitration  is  complete  the  mixture  is  allowed  to  stand 
and  the  nitroglycerin,  which  separates  above  the 
acid  layer,  is  removed  and  washed  with  water  and 
sodium  carbonate  solution. 

It  was  found  that  when  plant  materials  were  used 
on  a  small  scale  the  resulting  nitroglycerin  showed 
low  heat  tests;  the  tests,  however,  varied  with  the 
washing  process,  so  that  washing  conditions  had  to 
be  standardised  to  give  results  similar  to  the  manu- 
facturing figures  and  these  conditions  were  then 
kept  constant  throughout  the  investigation.  Nitro- 
glycerin made  with  chemically  pure  materials  gave 
good  heat  tests,  and  by  gradually  substituting  plant 
instead  of  chemically  pure  materials  it  was  ascer- 
tained that  the  introduction  of  plant  nitric  acid 
invariably  lowered  the  heat  test,  as  shown  in  the 
following  table  :  — 

Average  heat  tests  of  nitroglycerin  made  on  small 
scale  with  various  materials. 


Average 

Mixed  acid  composed 

Glycerin. 

heat  test 

of. 

of  N/O. 
min. 

Plant  mixed  acid  No.  1 

.       Plant  No.  1538 

..       91 

„  No.  2 

61 

Pure  oleum  and  pure 

Price's      treble 

.-     14  J 

nitric  acid 

distilled    gly- 
cerin 

Pure  oleum  and  pure 

.       Plant  No.  1538 

..     14J 

nitric  acid 

Plaut  oleum  and  pure 

..     15< 

nitric  acid 

Pure  oleum  and  plant 

..       8 

nitric  acid 

The  heat  tests  given  by  mixed  acid  No.  2  were  so 
exceptionally  low  that  it  was  decided  to  investigate 
the  acid  as  well  as  the  plant  nitric  acid  and  for  con- 
venience the  results  with  mixed  acid  are  described 
first. 


322  T 


CRAWFORD.— ORGANIC   IMPURITIES   IN   COMMERCIAL   NITRIC   ACID.     [Sept.  30, 1922. 


Investigation  of  a  mixed  acid  which   gave  nitro- 
glycerin of  low  heat  test. 

Mixed  acid  No.  2  was  distilled  and  the  nitric  acid 
driven  off  was  collected  in  four  equal  fractions, 
sufficient  acid  being  distilled  to  enable  small-scale 
charges  of  glycerin  to  be  nitrated  with  each  frac- 
tion. The  heat-tests  of  the  nitroglycerins  for  the 
respective  fractions  were  3J,  9,  13J,  and  13§  mins. 
respectively,  the  last  figure  being  obtained  for  the 
residual  nitric  acid.  These  results  show  that  the 
impurity  causing  the  low  heat  test  passed  over 
almost  completely  with  the  first  fraction,  very  little 
being  present  in  the  second  fraction,  and  practically 
none  in  the  last  two  fractions.  The  next  question 
was  whether  the  substance  actually  causing  the  low 
heat  tests  was  formed  during  nitration  or  whether 
it  was  present  as  such  in  the  acid  before  nitration. 
Some  first  fraction  nitric  acid,  obtained  as  above, 
was  diluted  with  water  to  5%  strength;  nitro- 
glycerin of  good  heat  test  was  then  shaken  with  this 
dilute  acid  and  the  nitroglycerin  separated  and 
given  the  standard  washing  treatment.  The  nitro- 
glycerin before  treatment  gave  a  14  min.  heat  test, 
whereas  after  treatment  the  heat  test  was  only  5 
min.  ;  now,  as  it  is  highly  improbable  that  any  re- 
action would  have  taken  place  with  this  dilute  acid, 
the  impurity  must  be  present  as  such  in  the  original 
acid  and  is  merely  extracted  by  the  nitroglycerin  in 
the  nitration  process. 

Distillation  of  the  first  fraction  nitric  acid  alone 
did  not  effect  a  further  concentration  of  the  im- 
purity, but  it  was  found  that  if  the  nitric  acid  were 
carefully  diluted  by  means  of  ice  below  68%  strength 
and  then  distilled,  the  first  portion  of  the  distillate 
had  a  very  marked  effect  on  the  heat  test  of  nitro- 
glycerin. About  300  lb.  of  mixed  acid  was  gradually 
treated  in  above  manner,  namely,  25%  of  the  nitric 
acid  was  distilled  over;  this  nitric  acid  was  then 
poured  on  to  ice  and  again  distilled.  The  first 
fractions  obtained  in  this  last  operation  were  then 
fractionated,  particular  care  being  taken  during  all 
the  operations  to  allow  no  volatile  matter  to  escape, 
when  finally  a  distillate  was  obtained  which  con- 
tained drops  of  oil.  One  part  of  the  oil  added  to 
20,000  of  nitroglycerin  lowered  its  heat  test  from 
16  to  5  min.  The  oil  had  a  peculiar  odour  and  res- 
ponded to  the  qualitative  tests  described  later,  but 
owing  to  the  small  amount  of  oil  available  a  full 
analysis  could  not  be  made  on  this  sample.  A  more 
convenient  source  of  supply  of  this  oil  was  found  in 
plant  first  runnings  and  therefore  experiments  on 
mixed  acid  were  discontinued. 

In  addition  to  the  oil  mentioned  above,  a  small 
amount  of  a  white  solid  was  isolated  in  the  distilla- 
tion of  the  nitric  acid.  This  solid  distilled  over 
after  the  oil,  but  as  it  had  no  effect  on  the  heat 
test  of  nitroglycerin,  its  properties  have  not  yet 
been  investigated. 

Isolation  of  impurity  from  plant  nitric  acid. 

The  nitric  acid  used  in  making  mixed  acid  is 
manufactured  by  distilling  sodium  nitrate  with 
94  .'  sulphuric  acid ;  samples  of  nitric  acid  from  the 
receivers  were  drawn  throughout  a  large-scale  dis- 
tillation, and  small-scale  nitrations  were  then  per- 
formed and  gave  products  with  the  following  heat 
tests  :  Product  from  first  runnings  3,  middle  runnings 
10,  end  runnings  11,  absorption  tower  10  mins. 
These  results  are  similar  to  those  obtained  by  the 
distillation  of  mixed  acid  and  show  that  the  impurity 
passes  over  in  the  first  stages  of  distillation.  The 
plant  "  first  runnings,"  however,  contain  a  con- 
siderable quantity  of  iodine,  and  when  the  acid  is 
diluted  iodine  is  liberated  and  passes  over  with  the 
distillate  and  contaminates  the  oily  impurity,  from 
which  it  cannot  be  separated.  To  overcome  this 
difficulty  the  nitric  acid  was  mixed  with  sulphuric 
acid  and  one  third  of  the  nitric  acid  distilled  off. 
This  treatment  was  useful  for  two  reasons,  viz.,  the 
iodine  remained  behind,  probably  as  iodic  acid,  and 


a  distillate  richer  in  impurity  was  obtained.  The 
dilution  and  subsequent  distillation  of  the  nitric 
acid  was  carried  out  in  one  continuous  operation  by 
means  of  a  small  glass  tower  partially  packed  with 
glass  beads.  The  nitric  acid  was  mixed  with  water 
at  the  top  of  the  tower,  and  then  the  introduction 
of  a  jet  of  steam  supplied  sufficient  heat  to  distil 
off  the  impurity,  while  the  diluted  nitric  acid  passed 
to  the  bottom  of  the  tower  and  was  run  away  by 
means  of  a  swan-neck  tube.  The  distillate  obtained 
in  this  latter  operation  was  fractionated  and  yielded 
drops  of  oil.  The  oil  was  collected,  washed  with 
sodium  carbonate  solution  and  water,  dried, 
filtered,  and  subsequently  distilled  in  vacuo  in  a 
special  micro-apparatus.  The  yield  of  oil  from  the 
nitric  acid  was  about  0'005%. 

Identification  of  impurity  causing  low  heat  tests. 

Attempts  were  made  to  fractionate  the  oily  im- 
that  of  tetranitromethane,  but  with  a  very 
satisfactory;  evidence  was,  however,  obtained  that 
the  oil  was  a  mixture,  but  owing  to  the  small 
quantity  available  this  method  of  separation  was 
abandoned. 

The  oil  is  colourless,  with  an  odour  resembling 
that  of  tetranitromethane,  but  with  a  very 
unpleasant  action  on  the  eyes  and  nose;  it  is  in- 
soluble in  water  and  in  sodium  carbonate  solution, 
but  dissolves  slowly  in  caustic  potash,  giving  a 
yellow  solution ;  the  yellow  colour  gradually  dis- 
appears on  addition  of  a  strong  mineral  acid, 
indicating  the  presence  of  a  pseudo-acid,  and  the 
solution  obtained  gives  the  tests  for  a  chloride.  The 
oil  quickly  evolves  nitrogen  with  hydrazine  and 
caustic  potash  in  accordance  with  the  reaction  for 
tetranitro-  and  monochlorotrinitro-methane  de- 
scribed by  Macbeth',  it  dissolves  in  sodium  sulphite 
solution,  liberates  iodine  from  potassium  iodide,  and 
forms  a  yellow  crystalline  precipitate  with  alcoholic 
potash  similar  to  potassium  nitroform.  The  sp.  gr. 
of  the  oil  is  16646  at  15"5°  C.  At  -10°  it  deposits 
a  few  crystals  and  freezes  to  a  white  solid  when 
placed  in  a  freezing  mixture  of  solid  carbon  dioxide 
and  ether.  The  oil  boils  at  119°  C.  (Siwoloboff's 
method)  with  decomposition  and  is  very  volatile.  It 
gives  a  red  coloration  with  anisol  (tetranitro- 
methane gives  an  intense  red,  monochlorotrinitro- 
methane  a  deep  yellow,  dichlorodinitromethane  a 
very  pale  yellowish  green,  and  chloropicrin  none.) 

The  impurity  also  gives  the  following  colour  re- 
action which  denotes  the  presence  of  dichlorodinitro- 
methane:  2  c.c.  of  50%  caustic  potash  is  placed  in 
a  test  tube  and  1  drop  of  impurity  and  1  c.c.  of 
absolute  alcohol  added;  the  tube  is  gently  shaken, 
but  not  sufficiently  to  mix  the  two  layers,  and  the 
whole  warmed.  A  deep  wine-red  colour  appears  at 
the  junction  of  the  two  liquids. 

Difficulty  was  experienced  in  the  estimation  of 
carbon  in  the  impurity,  the  rapid  evolution  of 
nitrous  fumes  tending  to  give  results  more  than 
10%  too  high;  with  a  specially  long  combustion  tube 
and  careful  regulation  of  the  combustion,  however, 
good  results  were  obtained.  No  special  precautions 
were  taken  with  the  nitrogen  estimations  and  the 
figures  are  therefore  probably  a  little  low.  The 
analyses  are  shown  in-  comparison  with  theoretical 
figures  for  compounds  which  might  be  present. 

The  molecular  weight  shown  for  the  impurity  was 
determined  by  the  freezing  point  method,  using 
benzene  as  solvent.  The  low  molecular  weight,  low 
carbon  content,  and  physical  properties  preclude 
the  presence  of  anything  but  methane  derivatives — 
except  in  small  amounts — and  as  the  oil  does  not 
react  with  sodium  carbonate  solution  and  is  stable 
in  hot  strong  nitric  acid,  nitroform  and  unsaturated 
compounds  must  be  absent.  The  oil  must  therefore 
be  a  mixture  of  chloronitro  derivatives  of  methane, 

1  Chem.  Soc.  Trans.,  1921,  119,  354. 


Vol  XLI.,  No.  18]     CRAWFORD.—  ORGANIC   IMPURITIES   IN  COMMERCIAL   NITRIC   ACID.        323 t 


and  the  analysis  agrees  with  the  supposition  that 
it  is  a  mixture  of  approximately  40%  of  tetranitro- 
methane  with  60%  of  chlorotrinitromethane,  but 
it  could  also  represent  a  smaller  percentage  of  di- 
chlorodinitromethane or  chloropicrin  with  a  corres- 
pondingly larger  proportion  of  tetranitromethane. 

Elementary  analysis  of  impurity  and  possible 
constituents. 


Substance. 


C  N  CI  O  Mol. 

(Dill.).         wt. 

Of  O/  0/  o/ 

/o  /o  /o  /o 

6-22      24-4        1112      68-24  189 

612      28-57        —        65-31  196 


Impurity 

Tetranitromethane     . . 
Monochlorotrinitro- 

methane       ..         ..      —      6-47     22-64     19-12     48-23      185-46 
Dichlorodiuitromethane     —      6-86     1601     40-54     36-59      174-9 
Chloropicrin    ..         ..      —      7-30       8-52     64-73     19  45      164-38 
Kitroform        ..         ..0-6     7-95     27-81        —       63-64      151 
Honochloropentanitro- 

e'hane  ..         ..     —      8-29     2418     12-24     55-29      289-5 

It  is  very  difficult  to  separate  or  estimate  the 
various  constituents  of  a  mixture  of  chloronitro- 
methanes  with  tetranitromethane  owing  to  their 
closely  allied  properties,  but  an  approximate  esti- 
mate of  the  composition  was  obtained  as  follows : 
Samples  of  the  chloronitro  derivatives  of  methane 
were  prepared,  as  will  be  described  in  a  subsequent 
paper,  and  the  formation  of  the  potassium  salts  by 
means  of  potassium  ethoxide  was  studied.  "When 
a  strong  alcoholic  solution  of  tetranitromethane  is 
mixed  with  potassium  ethoxide  an  almost  theo- 
retical yield  of  potassium  nitroform  is  precipitated 
as  a  yellow  powder  mixed  with  a  small  percentage 
of  potassium  nitrate2  ;  with  chlorotrinitromethane 
the  potassium  nitroform  is  mixed  with  potassium 
chloride.  Dichlorodinitromethane  gives  a  precipi- 
tate of  potassium  ehloronitroform,  KCC1(N02)?, 
mixed  with  potassium  chloride,  but  chloropicrin  is 
completely  decomposed,  giving  a  precipitate  of 
potassium  chloride  mixed  with  potassium  nitrite, 
tetra-ethyl  orthocarbonate  remaining  in  solution.3 

The  percentage  of  dichlorodinitromethane  in  a 
mixture  of  tetranitromethane  and  chloronitro- 
methancs  can  be  roughly  determined  by  treating  the 
mixture  with  potassium  ethoxide  and  analysing  the 
precipitate.  The  potassium  chloride  is  determined 
by  direct  titration  with  silver  nitrate  and  the  total 
chlorine  by  Carius'  method ;  the  difference  between 
these  two  results  gives  the  organic  chlorine  which 
represents  one  half  of  the  chlorine  originally  present 
as  dichlorodinitromethane.  Experiments  with  pure 
dichlorodinitromethane  and  with  synthetic  mix- 
tures gave  low  figures  for  the  amount  of  dichloro 
compound,  but  by  applying  a  correction  an  approxi- 
mate idea  of  the  dichloro  compound  present  in  the 
impurity  can  be  obtained,  as  shown  below.  It 
should  be  noted  that  these  determinations  were 
carried  out  in  strong  solution,  under  standard  con- 
ditions, and  the  salts  were  analysed  as  quickly  as 
possible,  as  they  decompose  very  readily. 

Analysis  of  mixed  potassium  salts  from-  impurity  : 
Mixed  potassium  salts;  yield  on  weight  of  oil  99*0%, 
potassium  chloride  in  salts  4"6%,  total  potassium  in 
salts  (actual)  22'"%,  total  potassium  in  salts 
(theoretical)  22"2%,  organic  chlorine  2'12%,  di- 
chlorodinitromethane in  oil  10'6%,  dichlorodinitro- 
methane in  oil  (corrected  result)  13 — 14%. 

In  calculating  the  theoretical  percentage  of  total 
potassium  in  the  salts  it  has  been  assumed  that  the 
ionic  chloride  is  present  as  potassium  chloride,  the 
organic  chlorine  as  the  salt  obtained  from  dichloro- 
dinitromethane and  the  remainder  of  the  salt  is 
calculated  as  potassium  nitroform ;  it  will  be  seen 
that  both  the  actual  and  calculated  figures  are  close, 
although  the  "  actual  "  figure  is  slightly  high,  due 
to  the  presence  of  a  small  amount  of  potassium 
nitrate.     The  results  show  13 — 14%    of  dichlorodi- 

« Schmidt,  Bcr.,  1921,  S4, 1483. 
'  Bassett,  Aunalen,  1864, 132,  54. 


nitromethane  to  be  present  in  the  oil.  The  remain- 
ing chlorine  may  be  present  as  the  monoehloro- 
denvative  or  as  chloropicrin,  and  to  decide  this 
point  the  effect  of  these  compounds  on  the  heat  test 
of  nitroglycerin  was  tried.  The  method  emploved 
was  to  add  known  weights  of  these  substances"  to 
nitroglycerin  of  good  heat  test  and  then  subject  the 
nitroglycerin  to  double  the  normal  washing  process, 
the  heat  test  being  taken  before  and  after  each 
washing.     The  results  are  given  below. 

Effect  of  nitrochloro  compounds  of  methane  on  the 
heat  test  of  nitroglycerin  : 

Heat  test  of  nitroglycerin. 

„  .  ,                                                    Before  After   After  After 

Substance  added.           Percentage    addi-   addl-     1st  2nd 

added.       tion.    tion.    wash.  wash. 

_  .                 „                                               min.     min.     niin.  min. 

Tetranitromethane     . .         . .     0-01      . .     16          2          7  13 

Monochlorotrinitromethanc  . .     0-01      ..16          l\        2  2 

Dichiorodiiutromethane        ..     001     ..     17        17"       —  — 

Chloropicrin 0-01      ..16        16        

Impurity         001      ..16          2          5  7 

The  above  results  are  very  interesting;  chloro- 
picrin and  dichlorodinitromethane  in  the  concentra- 
tions used  have  no  effect  on  the  heat  test,  whereas 
monochlorotrinitro-  and  tetranitro-methane  have  a 
marked  effect.  There  is,  however,  an  essential 
difference  between  the  last  two  compounds  in  that 
tetranitromethane  can  be  fairly  readily  removed  by 
washing,  but  the  monochloro  compound  is  very 
difficult  to  remove  and  it  is  undoubtedly  this  last 
compound  which  causes  the  worst  trouble  in  manu- 
facture. The  low  heat  test  caused  by  the  presence 
of  the  impurity  is  more  difficult  to  improve  by  wash- 
ing treatment  than  that  shown  by  the  presence  of 
tetranitromethane,  and  it  may  therefore  be  inferred 
that  practically  the  whole  of  the  remaining  chlorine, 
after  allowance  has  been  made  for  the  dichloro  com- 
pound, is  present  as  monochlorotrinitromethane,. 
although  a  trace  of  chloropicrin  may  also  be  present. 
The  approximate  composition  of  the  impurity  is 
therefore:  Tetranitromethane  50 — 55%,  mono- 
chlorotrinitromethane 30 — 35%,  dichlorodinitro- 
methane 12 — 15%.  It  should  be  understood  that 
although  the  above  represents  the  impurity  actually 
isolated,  the  relative  proportions  of  the  constituents 
will  vary  from  time  to  time,  according  to  circum- 
stances as  described  in  the  next  section. 

Origin  of  impurity  in  nitric  acid. 

As  already  mentioned,  the  impurity  passed  over 
with  the  first  runnings  in  a  large-scale  distillation, 
and  to  ascertain  what  gave  rise  to  its  formation, 
small-scale  distillations  were  carried  out  using  pure 
and  also  plant  material,  sufficient  nitric  acid  being 
distilled  to  enable  nitroglycerin  to  be  made  and 
washed,  as  previously  described. 

One  sample  of  sodium  nitrate  gave  good  tests 
(14  min.)  even  with  plant  sulphuric  acid.  The  other 
two  samples  gave  low  tests  with  this  acid  (5  and  21 
mins.),  and  the  teste  were  not  improved  by  the 
substitution  of  pure  for  plant  sulphuric  acid; 
there  is  little  doubt,  therefore,  that  the  cause  lies 
with  the  nitrate. 

In  a  paper  by  Datta  (J.  Amer.  Chem.  Soc,  1916, 
1813)  it  is  stated  that  chloropicrin  and  chloronitro- 
methanes  were  obtained  by  treating  a  large  number 
of  substances  with  aqua  regia ;  now  commercial 
sodium  nitrate  always  contains  chlorides  and  traces 
of  organic  matter,  and  when  it  is  considered  that 
during  the  distillation  process  there  is  a  large  excess 
of  nitric  acid  present,  it  is  not  surprising  that  tetra- 
nitromethane and  chlorotrinitromethane  should  be 
formed.  Further  evidence  on  the  formation  of  the 
monochloro  compound  will  be  given  in  the  subse- 
quent paper.  Sodium  nitrate  No.  3,  which  gave 
good  tests,  was  a  very  "clean"  sample,  while 
sample  No.  2,  which  gave  the  worst  tests,  contained 
a  considerable  amount  of  visible  organic  impurities 


324  T 


SCHIDR0W1TZ   AND   BEAN.— STUDIES   IN   VULCANISATION. 


[Sept.  30,  1923. 


such  as  pieces  of  wood,  bag,  etc. ;  starch  was  also 
found  in  certain  portions  of  it,  and  any  of  these  in 
the  presence  of  chloride  would  be  capable  of  giving 
rise  to  the  impurity.  It  is  highly  probable  that 
traces  of  chloronitromethanes  will  be  formed  in 
almost  any  nitric  acid  prepared  by  distillation  of 
sodium  nitrate  and  sulphuric  acid,  as  it  is  almost 
impossible  to  exclude  a  small  amount  of  organic 
matter.  The  relative  proportion  of  the  various 
chloro  compounds  will,  of  course,  depend  on  the 
relative  proportion  of  chlorine  and  organic  matter 
present  and  possibly  also  on  the  nature  of  the 
organic  matter. 

Summary. 

An  oil  has  been  isolated  from  commercial  nitric 
acid  and  has  been  shown  to  be  composed  of  a  mix- 
ture of  tetranitromethane,  monochlorotrinitro- 
methane,  dichlorodinitromethane,  and  possibly  a 
trace  of  chloropicrin. 

The  formation  of  these  compounds  is  probably  due 
to  the  presence  of  traces  of  chlorides  and  of  organic 
matter  in  the  sodium  nitrate  from  which  the  nitric 
acid  is  made,   and  these  substances  are  therefore 


4-0 


3  3-0 


of  rubber-sulphur  mixings  in  the  presence  or  zinc 
oxide  was  dealt  with.  A  section  of  this  paper  dealt 
particularly  with  the  effect  of  varying  the  amount 
of  the  accelerator,  using  a  constant  proportion  of 
sulphur  to  rubber.  The  present  communication 
deals  with  the  reverse  conditions,  the  proportion  of 
accelerator  to  rubber  being  kept  constant,  with 
varying  amounts  of  sulphur. 

The  accelerator  employed,  as  before,  was  piperi- 
dyldithiocarbamate  of  piperidine,  dispersed  on 
colloidal  clay,  the  proportion  of  the  organic  com- 
pound being  25  % . 

The  rubber  used  was  throughout  the  same  batch 
of  a  standard  thin  pale  crepe.  The  base  mixing 
consisted  of  rubber  100,  zinc  oxide  2$,  accelerator 
0'5,  colloidal  clay  T5,  and  on  this  basis  six  mixings 
were  made  up,  the  amount  of  sulphur  added  varying 
from  1  to  4  parts.  The  mixings  were  made  in  the 
usual  way  on  open  rolls,  the  accelerator  being  added 
last,  mixed  with  the  zinc  oxide,  the  temperature  of 
the  rolls  being  kept  as  low  as  possible.  The  total 
sulphur  in  the  mixings  was  then  estimated  by  a 
standard  method.     24  hours  elapsed  in  every  case 


a  l-o 


20 

Time— minutes. 


Fia.  1. 


■probably  present  to  a  greater  or  less  extent  in  all 
samples  of  commercial  nitric  acid.  The  question  of 
the  occurrence  and  possible  effect  of  organic  matter 
in  certain  types  of  sulphuric  acid  used  for  the  pre- 
paration of  nitric  acid  is  being  investigated. 

The  above  oil  has  been  shown  to  cause  very  low 
heat  teste  of  nitroglycerin  in  concentrations  of  1  in 
20,000;  the  active  ingredients  are  tetranitro- 
methane and  mouochlorotrinitromethane,  the  latter 
causing  most  trouble  in  manufacture  owing  to  the 
difficulty  experienced  in  washing  it  out  of  the  nitro- 
glycerin. Dichlorodinitromethane  and  chloropicrin 
in  small  concentration  have  no  effect  on  the  heat 
test  of  nitroglycerin. 

In  conclusion  I  wish  to  express  my  thanks  to 
Messrs.  Nobel  Industries,  Ltd.,  and  particularly  to 
Mr.  Wm.  Rintoul,  O.B.E.,  for  permission  to  publish 
this  paper. 

My  thauks  are  also  due  to  Mr.  W.  J.  Boyd  for 
carrying  out  experimental  work  in  connexion  with 
the  identification  of  the  compounds. 


STUDIES    IN    VULCANISATION. 
SOME    FURTHER   EFFECTS    OF   ACCELERA- 
TION ON  THE  RUBBER  STRESS-STRAIN 
CURVE. 

BY  P.    SCH1DEOWITZ   AND   P.   L.    BEAN. 

In    a    previous   paper,*  the   effect    of   an   active 
organic  accelerator  on  the  vulcanisation  properties 

•.J.,  1921,  268  T. 


between  mixing  and  vulcanisation,  which  was 
carried  out  in  ring  moulds  in  the  press,  at  a 
temperature  of  141°  C.  (  =  40  lb.  steam),  the  plates 
being  heated  before  introduction  of  the  moulds,  and 
no  rise  given.  After  resting  for  five  days,  ring  test 
pieces  were  cut  and  tested  on  theSchopper  machine. 
Simultaneously  estimations  of  the  free  sulphur  were 
made  by  the  usual  method,  the  combined  sulphur 
being  estimated  by  difference.  The  times  of  cure 
were  1,  2£,  5,  10,  20,  30,  40  minutes.  Finding  that 
mixes  A  and  B  were  greatly  undercured  at  both  20 
and  40  minutes,  shorter  cures  were  not  employed ; 
similarly,  E  and  F  were  found  to  be  greatly  over- 
cured  at  10  minutes,  and  therefore  longer  cures 
were  not  carried  out  in  these  two  cases. 
The  results  obtained  were  as  follows:  — 

Table  I. 


Mixing. 
Total  S  %   . . 
%  S  to  rubber 


Total  sulphur  in  mixings, 

A  B  0  D 

..   101   ..   1-59   ..   1-79  ..  2-33 
..  107  ..   1-69   ..   1-90   ..   2-49 


E 
3-38 
3-66 


F 
410 
4<49 


Coefficient  of  vulcanisation. 

The  coefficient  of  vulcanisation  results  will  be 
found  in  Fig.  1.  The  curves  in  this  figure  show 
the  progress  of  curing  so  far  as  combination  with 
sulphur  is  concerned  for  mixes  A,  B,  C,  D,  and  F. 
Curve  E  is  omitted  as  the  results  obtained  obviously 
involved  some  experimental  error.  It  will  be 
observed  that  in  all  cases,  as  has  been  noted  by 
previous    workers,    combination    is    comparatively 


VoL  XIX,  No.  18.]         SCHIDROWITZ   AXD   BEAN.— STUDIES   IN   VULCANISATION. 


325  T 


lOOOl 


•i     80( 


3     60C 


2500 


a  1500 


•^1000 


Table  II. 

Mix  Cure,  mini 

E  > 

B,« 

Type' 

B« 

Eat  Bs 

A 

ssB  1   " 

.  2  . 

— 

•  — 

.  —  . . 

— 

— 

-  —  " 

.  71  . 

— 

.  — 

"? 

.  10   . 

— 

.  — 

,  — 





M 

.  20  . 

— 

.  —  . 

.  — 

699 

.  >11 

k   „ 

.  40   . 

— 

•  —  • 

.  —  . . 

402 

.  >u 

B 

.   1   . 



. 

,: 

2 





c-x: 

»»• 

.  7i    . 

*i 

.   10  . 

— 

.  —  . 

.  — 

— . 

— 

.  20  . 

— 

.  —  . 

.  — 

1018 

.  9-86 

.  40   . 

— 

•  —  • 

•  —  ■ 

792 

.  9-87 

C 

.   1   . 

— 

.  —  . 

.  —  . 

— 

.   — 

■*«] 

:: 

T 

706 

.  790  . 

.  36  .. 

1583 

.  9-09 

„ 

•  ,71  . 

734 

. .  824  . 

.  36  . 

1530 

.  9-30 

¥■3 

.  f 0  . 

755 

, .  —  . 

.  —  , 

1308 

.  9-25 

■^ea 

„ 

.  15  . 

796 

,  —  , 

.  . — 

1028 

.  927 

„ 

.  20  . 

825 

.  — 

.  —  . 

868 

.  9-26 

.  40   . 

— 

■  —  • 

•  —  • 

836 

.  9-69 

i  ° 

.   1 





.  , 

- 

„ 

2 

766 

.  —  . 

— 

950 

.  8-84 

*?  = 

„ 

.  5  . 

639 

.  720  . 

.  32  .. 

1890 

.  8-49 

T-- 

.   7*  . 

654 

.  735  . 

.  32  . 

i:::. 

.  8-66 

*,g 

.  10  . 

672 

.  too    . 

.  33  .. 

1708 

.  8-77 

.  15  . 

725 

.   804  . 

.  32  . 

1578 

.  911 

.  20  . 

733 

.  —  . 

.  — 

1317 

.   900 

k 

.  40  . 

705 

•  —  • 

.  —  .. 

1228 

.   9-36 

r  k 

.  1  . 

817 

.  924  . 

.  43  .. 

1834 

.  10-76 

^g- 

.   2   . 

050 

.  737  . 

.  35  .. 

2426 

.   9-23 

:; 

.   5   . 

585 

.  660  . 

.  30  .. 

2572 

.  8-60 

=•&- 

■   71  . 

553 

.  626  . 

.  29  .. 

2743 

.  8-21 

«~ 

.  10  . 

545 

.  019  . 

.  30  .. 

2890 

.  817 

09 

■■ 

.  15  . 
.  20 

.  40   . 

*  !, 

•   F 

.   1   . 

720 

.  810  . 

.  40  .. 

2296 

.  10-15 

. 

2 

603 

.  687  . 

.  34  .. 

2453 

.   8-73 

.   5   . 

539 

.  614  . 

.  30  .. 

2816 

.   8-25 

«  &-< 

„ 

•   71  . 

524 

.  598  . 

.  30  .. 

2686 

.   7-96 

«3 

.  10  . 

511 

.  587  . 

.  30  .. 

2859 

.   7-94 

aa 

,» 

.  15  . 

— 

.  —  . 

.  —  .. 

— 

— 

.  20   . 

— 

.  — 

— 

— 

— 

k   „ 

.  40  . 

— 

..   — 

1  E  =  clongation  %  at  a  load  corresponding  to  GOO  g.  per  sq.  mm. 
of  cross-section. 

2  E,  =  elongation  %  at  a  load  corresponding  to  1040  g.pcr  sq.  mm. 
of  cross-section. 

■  Type  (slope)  =  (E,— E)/25. 

'  B  =  breaking  strain  in  lb.  per  sq.  inch. 

*  E  at  B  =  elongation  at  break,  taking  the  original  length  ae  =  l. 

*  Total  sulphur  calculated  to  100  of  rubber. 

rapid  in  the  early  stages,  the  steepness  of  the  curve 
increasing  with  the  total  sulphur.  The  sulphur 
figures  are  not  put  forward  as  being  exhaustive, 
inasmuch  as  gross  over-  or  under-curing  was  not 
desired. 

Mechanical  properties. 

Fig.  2  indicates  the  progress  of  curing  illustrated 
by  means  of  extensions  at  loads  of  600  g.  and  10-40  g. 
per  sq.  mm.  respectively.  Fig.  3  shows  the  pro- 
gressive effect  on  the  breaking  load.  The  figures 
obtained  for  tensile  strength,  type,  etc.  will  be 
found  in  Table  II. 


10 


20 
Tinu? — minutes. 

Fig.  3. 


30 


40 


320  T 


STEVENS.— ACETONE-SOLUBLE   CONSTITUENTS   OF   RUBBER.  [Sept.  30, 1922. 


The  following  observations  may  be  made  on  the 
results  recorded  above  :  — 

1.  As  is  evident  from  Fig.  2,  and  the  data  in  the 
tables,  "  reversion  "  occurs  at  a  comparatively  early 
period  when  the  quantity  of  sulphur  does  not 
exceed,  in  round  numbers,  2\%. 

2.  As  is  evident  from  Fig.  3,  and  the  data  in  the 
tables,  moderate  curing  takes  place  with  a  sulphur 
content  of  2J%,  but  below  this  results  are  poor. 

3.  In  a  previous  paper,*  it  was  shown  that  excel- 
lent results  could  be  obtained  with  a  minimum  of 
2%  of  sulphur.  It  would  appear,  therefore,  that 
the  accelerator  used  required  2  to  2'75%  of  sulphur 
(allowing  for  variations  in  materials  and  conditions) 
to  attain  reasonably  full  activity. 

The  work  described  above  was  carried  out  at  the 
Northern  Polytechnic  Institute,  N.  7,  and  we  wish 
to  express  our  thanks  to  the  Governors  for  facilities 
afforded. 


THE  EFFECT  OF  THE  ACETONE-SOLUBLE 
CONSTITUENTS  OF  RUBBER  ON  THE 
VULCANISING    PROPERTIES. 

BY    HENRY   P.    STEVENS. 

Much  time  has  been  devoted  to  the  study  of  the 
accessory  substances  present  in  Para  rubber  which 
are  believed  to  give  rise  to  variations  in  rate  of  cure 
(or  vulcanisation),  but  the  position  remains  obscure 
and  progress  is  slow.  It  is  the  object  of  this  paper 
to  summarise  briefly  the  present  position,  particu- 
larly as  regards  the  acetone-soluble  constituents, 
and  at  the  same  time  to  publish  certain  results 
which  have  been  obtained  by  the  author  in  a  recent 
investigation  while  working  on  behalf  of  the  Rubber 
Growers'  Association. 

Mainly  as  the  result  of  the  work  of  D.  Spence, 
L.  Weber,  and  the  author, t  it  was  shown  ten  years 
ago  that  the  rate  of  vulcanisation  and  physical 
properties  of  rubber  were  dependent  upon  certain 
active  ingredients  present  in  small  amounts  in  the 
crude  rubber.  These  could  be  removed  (1)  with  the 
insoluble  matter  (mainly  nitrogenous)  or  (2)  with 
the  acetone-soluble  portion.  This  latter  also  con- 
tains nitrogen  but  in  relatively  small  amount.  The 
complete  removal  of  the  insoluble  constituents 
resulted  in  a  rubber  which,  when  mixed  with 
sulphur,  would  hardly  vulcanise  (as  shown  by  the 
physical  properties  and  small  proportion  of  the 
sulphur  combined).  Extraction  with  acetone  had 
little  or  no  effect  on  rate  of  vulcanisation  of  this 
rubber-sulphur  "mix,"  whether  the  rubber  had 
been  previously  freed  from  the  insoluble  constituent 
or  not.  If,  however,  vulcanisation  be  carried  out 
with  a  "  mix  "  containing  litharge  as  well  as 
sulphur,  it  was  found  that  previous  extraction  of 
the  rubber  with  acetone  has  a  profound  effect  on 
rate  of  vulcanising;  the  rubber  shows  very  inferior 
mechanical  properties  and  a  low  percentage  of 
combined  sulphur.  The  acetone-soluble  constituents 
appear  to  play  the  same  part  in  a  litharge  mix  as  do 
the  insoluble  (nitrogenous)  constituents  in  a  simple 
rubber-sulphur  mix. 

It  should  be  noted  that  the  process  of  extraction 
of  the  constituents,  whether  insoluble  or  acetone- 
soluble,  is  not  the  cause  of  differences  in  behaviour 
as  the  rubber  regains  its  normal  properties  on 
putting  back  into  it  the  constituents  which  have 
been  removed. 

The  next  stage  was  the  discovery  of  the  rapid 
vulcanising  properties  of  "  matured,"  that  is  putre- 
fied coagu'lum  (Eaton  and  others),  and  the  separa- 
tion from  such  rubber  of  the  nitrogenous  bases 
which  were  apparently  the  cause  of  the  rapid 
vulcanising  properties.    These  bases  were  not  found, 

•  I.oc.  cifc. 

tFor  references  see  "Plantation  Rubber  and  the  Testing  of 
Rubber,"  by  O.  S.  Whitby. 


or  were  present  in  a  very  small  proportion,  in  crepe 
as  ordinarily  prepared.  Little  doubt  exists  that 
these  bases  are  putrefaction  bases,  as  such  are 
known  to  act  as  vulcanisation  catalysts.  These 
observations  threw  some  light  on  the  variations 
noted  in  the  rate  of  vulcanisation  of  Para  rubber, 
but  it  soon  became  evident  that  much  still  remained 
obscure.  For  instance,  rubber  normally  prepared 
contains  but  little  nitrogenous  base,  and  removal  of 
this  base  by  extraction  with  acetone,  or  treatment 
with  weak  acid,  has  relatively  little  effect  on  the 
rate  of  vulcanisation.  It  is  obvious  that  the  in- 
soluble matter  (as  removed  by  benzene  treatment) 
must  contain  the  bulk  of  the  substances  which 
enable  the  ordinarily  prepared  rubber  to  vulcanise 
normally  and  that  these  substances  are  not  readily 
soluble  'bases  like  the  putrefaction  bases  extracted 
from  "  matured  "  rubber. 

As  already  stated,  these  acetone-soluble  bases* 
account  for  the  fast  vulcanising  properties  of 
"  matured  "  rubber.  Ordinary  crepe  contains  little 
or  no  soluble  bases,  consequently  acetone  extraction 
has  only  a  slight  effect  on  the  rate  of  cure.  Crepe 
will,  however,  vary  in  this  respect,  and  accordingly 
it  is  not  surprising  to  find  that  some  samples  do 
respond  to  a  greater  extent  than  others  to  acetone 
extraction  when  vulcanising  with  sulphur  only. 
Martin  and  Elliott  in  a  recent  paper  (J.,  1922, 
226  t)  have  shown  that  sheet  rubber  is  more  sus- 
ceptible than  crepe  rubber  in  this  respect,  while 
"  matured  "  (slab)  rubber  is  markedly  affected. 
The  rate  of  vulcanisation  of  ordinary  crepe  rubber 
can  be  almost  doubled  by  the  addition  of  2%  of 
acetone  extract  from  "slab"  rubber.  These 
authors  also  show  that  there  is  probably  some 
correlation  between  the  amount  of  acetone  extract 
and  rate  of  vulcanisation. t  These  results  fall  in 
very  well  with  the  foregoing  conclusions  that  slab 
rubber  owes  its  rapid  rate  of  vulcanisation  to  putre- 
factive bases.  On  the  other  hand,  there  are  certain 
published  data  which  are  difficult  to  reconcile  with 
th©  views  expressed.  Kratz  and  Flower,  in  the 
course  of  their  work  on  accelerators,  record  an 
instance  in  which  the  coefficient  of  a  sample  of 
rubber  was  increased  from  0'58  to  0'83  as  a  result 
of  36  hours'  acetone  extraction.  Another  sample  of 
rubber  treated  in  the  same  manner  gave  a  negligible 
decrease  (J.  Ind.  Eng.  Chem.,  1920,  12,  971). 

As  already  explained,  the  insoluble  constituents 
must  contain  a  catalyst  or  catalysts  insoluble  both 
in  benzene  and  acetone,  and  these  probably  consist 
of  nitrogenous  substances  more  complex  than  the 
acetone-soluble  bases.  It  is  well  I  known  that  rubber 
obtained  by  evaporating  latex  to  dryness  on  a  steam 
bath  vulcanises  rapidly,  and  in  this  respect  is  com- 
parable with  "  slab."'  As,  however,  the  tempera- 
ture employed  excludes  the  possibility  of  putrefac- 
tion, the  fast  vulcanisation  properties  of  evaporated 
latex  cannot  be  attributed  to  putrefaction  bases ; 
moreover,  extraction  with  acetone  or  water,  as  will 
be  seen  from  the  figures  recorded  belo\v,  has  no 
appreciable  effect  on  the  coefficient.  This  applies 
to  latex  whether  air-dried,  sun-dried,  or  steam- 
oven-dried.  So  prepared  the  rubber  vulcanises 
approximately  three  times  as  fast  as  ordinary  crepe. 
The  specimens  examined  were  as  follows: — (A)  Air- 
dried  and  sun-dried.  Evaporation  was  accom- 
panied by  some  putrefaction.  (B)  Steam-oven- 
dried.  (C)  As  A,  but  with  0-2"'  of  boric  acid  added 
to  the  latex  before  drying.  This  did  not  prevent 
putrefaction,  nor  did  a  much  larger  proportion  of 
boric  acid  do  so.  (D)  Crepe  rubber  as  a  control 
prepared  from  the  same  latex  as  the  three  foregoing 
samples.  (E)  Rubber  prepared  by  pouring  latex 
into  alcohol. 

•  Soluble  in  acetone  such  as  commonly  used  for  extraction.  The 
bases  might  not  dissolve  in  carefully  dried  acetone. 

t  This  had  already  been  found  by  van  Rosscm,  who  calculated 
the  correlation  coefficient  for  315  samples.  (Comm.  Neth.  Govt. 
Inst.,  1917,  196.) 


Vol.  XII.,  No.  18.]       STEVENS.— ACETONE-SOLUBLE   CONSTITUENTS    OF   RUBBER. 


327  t 


Samples  of  each  were  treated  as  follows  : — (1)  Dry 
creped,  that  is,  run  out  into  crepe  on  dry  rollers ; 
a  small  amount  of  sticky  substance  was  deposited  on 
the  rollers,  but  it  may  be  assumed  that  no  sub- 
stantial loss  ensued  and  that  the  dry  creped  rubber 
contained  practically  all  the  original  ingredients. 
(2)  Creped  and  washed  in  a  stream  of  water  on  the 
rollers,  so  as  to  remove  as  much  as  possible  of  the 
water-soluble  ingredients.  After  this  treatment  the 
rubber  was  air-dried.  (3)  Part  of  the  rubber  which 
had  been  dry  creped  as  in  (1)  was  extracted  with  hot 
acetone  in  an  all-glass  Soxhlet  extraction  apparatus 
as  in  the  determination  of  "  resin." 

The  fifteen  specimens  thus  obtained  were  mixed 
with  sulphur  in  the  usual  proportion  of  nine  parts 
of  rubber  to  one  part  of  sulphur,  and  vulcanised 
together  for  the  usual  time  and  temperature  (2 
hours  at  138°  C).  The  resulting  specimens  were 
exhaustively  extracted  with  acetone  and  the  com- 
bined sulphur  estimated  in  the  residue  in  the  usual 
manner  with  the  following  results:  — 

Coefficients. 


1. 

2. 

3. 

Dry 

Creped  and 

Acetone- 

creped. 

washed. 

A.     Air-dried  and  sun-dried     6-28 

600 

618 

B.    Steam-oven-dried       . .     7-16 

5-48 

684 

C.     As    A,    but    with    2% 

boric  acid    . .          . .      5-75 

4-70 

5-60 

D.    Ordinary  crepe  as  con- 

trol     2-20 

2-38 

2-22 

E.    Alcohol-coagulated     . .     3-94 

4-43 

4-65 

A  comparison  of  columns  1  and  2  for  samples  A, 
B,  and  C  shows  that  washing  had  the  effect  of  re- 
moving a  little  of  the  accelerating  ingredients.  If 
columns  1  and  3  be  compared  it  will  be  seen  that 
acetone  extraction  had  practically  no  effect  on 
samples  A,  B,  and  C,  or  at  the  most  reduced  the 
cure  very  slightly. 

The  control  sample  of  pale  crepe  as  ordinarily 
prepared  shows  a  slight  increase  in  rate  of  vulcan- 
isation after  wet  crepeing,  possibly  due  to  slight 
putrefaction  of  the  rubber  on  account  of  moisture 
taken  up,  although  no  odour  of  putrefaction  was 
noticeable.  Acetone  extraction  was  without  effect 
on  the  rate  of  vulcanisation. 

The  alcohol-coagulated  rubber  vulcanises  appre- 
ciably faster  than  the  control.  Wet  crepeing 
increased  the  rate  of  cure  which,  as  before,  may  be 
attributed  to  putrefaction,  but  it  is  difficult  to 
account  for  the  increased  rate  of  cure  of  the  acetone- 
extracted  rubber.  The  case  is  analogous  to  the 
observations  of  Kratz  and  Flower  already  referred 
to. 

The  acetone  extracts  were  examined,  but  the 
amounts  of  base  and  the  precipitates  obtained  with 
the  phosphotungstate  reagent  were  very  small.  It 
can  only  be  said  that  A,  B,  C,  and  E  gave  rather 
heavier  precipitates  than  the  control  sample  D. 
The  following  figures  give  the  weights  of  the 
aqueous  and  acetone  extracts  of  the  dry  creped 
rubbers:  — 


A 

B 
C 
D 
E 


Aqueous 

extract. 

o> 

00035 
00140 
0-0320 
00170 
0-0140 


Acetone 
extract. 
% 
4-47 
4-95 
5-80 
2-40 
3-80 


The  figures  for  acetone  extract  for  A,  B,  C,  and 
E  are  high,  due  no  doubt  to  the  retention  of  the 
greater  part  of  the  serum.  The  main  constituent 
of  these  extracts  is  methylinositol  or  allied  sub- 
stances. 

Portions  of  the  dry  creped  rubbers  were  placed  to 
soak  in  water  in  separate  stoppered  bottles  with  the 
addition  of  a  little  chloroform  in  each  case  to 
prevent  putrefaction.  The  eoaking  was  continued 
for  some  weeks,  and  the  water  changed  two  or  three 
times.  The  rubber  was  dried,  mixed  with  the 
ordinary    proportion    of    sulphur,    and    vulcanised 


under  the  same  conditions  as  before.     The  combined 
sulphur  was  then  estimated  in  the  vulcanisates. 

The  following  figures  give  the  coefficiente  for  the 
dry  creped  rubber  (from  the  previous  table)  and  the 
coefficients  after  soaking  and  drying  :  — 

Coefficients. 


A 

B 
C 
D 

E 


Dry  creped. 

% 
. .  6-28 
716 
5-75 
2-20 
3-94 


2. 

Same  after 

soaking  in 

water. 

/o 
6-42 
716 
5-34 
2-58 
5-27 


The  figures  show  that  for  samples  A  to  D  but 
little  change  is  produced  by  long  soaking.  The 
small  increase  shown  by  some  of  the  samples  may 
have  been  due  to  putrefaction,  for  although  the 
presence  of  chloroform  would  inhibit  these  changes 
during  the  soaking  process,  the  chloroform  would 
soon  pass  off  when  the  crepe  was  hung  up  to  air-dry, 
and  putrefaction  might  then  ensue.  The  increase 
in  rate  of  cure  of  sample  E  is  remarkable.  The 
alcohol-coagulated  rubber  gives,  in  the  first  place,  a 
coefficient  of  3'94,  which  is  increased  to  4'65  by 
acetone  extraction,  and  to  5'27  by  soaking  in  chloro- 
form water  and  drying.  Alcohol,  acetone,  and 
chloroform  would  all  presumably  inhibit  bacterial 
changes.  It  might  be  assumed  that  putrefaction 
would  set  in  at  the  last  stage  of  drying  after  the 
chloroform  had  evaporated.  This,  however,  could 
not  apply  in  the  case  of  the  acetone-extracted 
sample,  which  was  not  moistened.  Moreover,  the 
alcohol-coagulated  specimen,  which  was  washed 
with  water  and  air-dried,  showed  a  smaller  increase 
in  coefficient  than  the  acetone-extracted  specimen 
(4'43  as  against  4'65).  Also  the  effect  of  water 
washing  or  soaking  on  samples  A  to  D  was  to  reduce 
rather  than  to  increase  the  rate  of  vulcanisation. 
The  behaviour  of  the  alcohol-coagulated  rubber  is 
therefore  exceptional,  and  the  increase  in  rate  of 
cure  resulting  on  aqueous  or  acetone  extraction  can- 
not be  attributed  to  putrefactive  changes. 

Attempts  to  characterise  the  putrefactive  change 
have  not  met  with  success ;  we  do  not  know  whether 
the  bacteria  are  aerobic  or  anaerobic.  The  interior 
of  a  mass  of  putrid  coagulum  is  acid,  but  the  ex- 
terior is  covered  with  an  alkaline  slime.  It  is  in 
this  alkaline  slime  that  the  putrefactive  base  should 
be  found.  Experiments  were  undertaken  to  com- 
pare the  rate  of  vulcanisation  of  the  Interior  and 
exterior  portions.  Omitting  some  earlier  experi- 
ments, the  following  figures  may  be  quoted  :  — 


Acetic  acid  coagulated — 

(1)  Inside  portion 

(2)  Outside      „ 
Spontaneously  coagulated- 

(1)  Inside  portion 

(2)  Outside      „ 


Creped  and 
air-dried. 
Time       Kate 
of  cure,  of  cure,* 
min.  % 


Smoke-dried. 

Time       Rate 
of  cure,  of  cure,* 
min.  % 


75 
142 


161 
127 


272 
143 


127 
160 


48 
75 


430 

272 


206 
145 


•  Ordinary  pale  crepe  taken  as  standard. 

In  the  preparation  of  these  samples  the  surface 
portions  were  thin  slices  so  as  to  comprise  as  large 
a  proportion  of  the  actual  surface  as  possible,  and 
the  mass  of  coagulum  was  dried  down  so  as  to 
include  any  basic  substances  present  in  the  slimes 
on  the  surface  of  the  rubber.  It  will  be  noted  that 
there  is  a  considerable  difference  in  the  rate  of 
vulcanisation.  Except  in  the  case  of  the  air-dried 
spontaneously  coagulated  specimen  the  interior 
portions  vulcanise  much  faster  than  the  exterior. 

To  carry  the  inquiry  a  stage  further,  a  quantity 
of  this  alkaline  slime  was  collected  and  forwarded 
for  examination.  It  consisted  of  a  thick,  greasy 
liquid  with  an  abominable  odour.  A  small  quan- 
tity (5  c.c.)  was  distilled  in  steam  (1)  alone,  (2)  with 
the  addition  of  magnesia.     The  latter  was  added  to 


328  T     MORRELL.— TRANSFORMING  METHYL  a- INTO  METHYL  £-EL.£OSTEARATE.     [Sept,  30, 1922. 


facilitate  the  decomposition  of  any  salts  of  basic 
volatile  constituents,  and  enable  them  to  pass  over 
into  the  distillate.  In  both  cases  the  distillates 
and  the  residues  gave  copious  precipitates  with  the 
phosphotungstate  reagent  (after  suitable  treat- 
ment), showing  the  presence  of  simpler  nitrogenous 
bases,  such  as  are  normally  present  in  the  products 
of  putrefaction.  The  mixed  bases  were  separated 
from  the  phosphotungstates  by  the  appropriate 
procedure  and  dried  in  a  vacuum  desiccator.  The 
effect  on  the  rate  of  vulcanisation  of  rubber  was 
then  ascertained  by  mixing  the  separated  bases 
(each  from  5  c.c.  of  slime)  with  the  same  quantity 
of  ordinary  pale  crepe  rubber  (90  g.)  compounded 
with  sulphur  in  the  usual  proportion  (10  g.).  Part 
of  the  pale  crepe,  without  addition  of  bases,  was 
taken  as  a  control,  and  to  a  further  portion  was 
added  5  c.c.  of  slime.  This  was  added  gradually 
to  the  rubber  and  worked  in  on  the  rollers  before 
mixing  in  the  sulphur.  All  samples  were  vulcanised 
together  under  the  same  conditions.  The  samples 
were  then  analysed,  and  the  combined  sulphur 
determined.  The  distillate  in  the  case  of  (1)  was 
lost  and  therefore  does  not  figure  in  the  table. 

Combined  Rate 

Description.  sulphur,         of  cure, 

/o 

(1)  Control,  pale  crepe  ..         ..         ..       3-09 

(2)  Control  with  the  addition  of  the  bases 

(amounting   to   00280   g.)   from   the 
residue  of  steam  distillation  . .  . .        3-25 

(3)  Control  with  the  addition  of  the  bases 

(amounting   to   00073   g.)   from   the 
distillate    of   steam    distillation   with 


100 


105 


106 


104 


magnesia  . .  . .  . .  . .        3-29 

(4)  Control  with  the  addition  of  the  bases 

(amounting  to  00398  g.)  from  the 
residue  of  steam  distillation  with 
magnesia  . .  . .  . .  . .        3-21 

(5)  Control  with  the  addition  of  5  c.c.  of 

slimes 4-43       ..       143 

These  figures  show  that  the  bases  separated  from 
the  slimes  have  a  negligible  effect  on  the  rate  of 
vulcanisation.  The  slimes  untreated  have  an  appre- 
ciable effect.  The  separation  of  the  bases  used  in 
(2),  (3),  and  (4)  seems  to  have  resulted  in  the  loss 
of  the  active  ingredients,  as  the  slimes  alone  (5)  have 
a  much  greater  accelerating  effect. 

Similar  distillation  experiments  were  made  with 
sample  A  (air-dried  and  sun-dried  latex)  by  allow- 
ing the  dry  creped  rubber  to  soak  in  water  and 
distilling  the  extract.  This  yielded  an  alkaline 
distillate,  and  both  distillate  and  residue  (after 
extraction  of  the  base  with  lime  and  acetone) 
yielded  fairly  copious  precipitates  with  phospho- 
tungstate in  contrast  with  the  amounts  of  pre- 
cipitate yielded  by  the  acetone  extract. 

Similar  tests  were  carried  out  by  steam  dis- 
tillation in  the  presence  of  magnesia.  Twenty  g. 
yielded  bases  from  the  distillate  requiring  4T  c.c. 
of  AT/10  acid  to  neutralise  and  from  the  residue 
5T  c.c.  of  IV/10  acid  for  neutralisation.  The 
separated  bases  from  20  g.  of  the  sample  were 
incorporated  with  20  g.  of  a  control  pale  crepe  and 
the  usual  proportion  of  sulphur  and  vulcanised. 
The  following  figures  were  obtained:  — 

Coefficient.        %  Control. 
Control  (pale  crSpe)  ..         ..         309         ..         100 

Steam  and  magnesia  distilled,  bases 

from  distillate 
Steam  and  magnesia  distilled,  bases 

from  residue 
Residual  rubber  from  steam   dis- 
tillation       

Original  rubber  as  dry  creped 

It  appears  that  the  bases  separated,  whether 
volatile  or  not,  had  but  a  slight  effect  on  the  rate 
of  cure.  The  rubber  (sample  A,  dry  creped)  lost 
slightly  in  rate  of  cure  by  the  treatment.  Generally, 
therefore,  the  experiment  confirms  the  previous 
conclusion  that  the  separated  bases  do.  not  account 
for  the  fast  vulcanising  properties  of  rubber  ob- 
tained by  evaporation  of  latex. 

As  further  proof  I  may  recall  experiments  made 
some  years  ago  with  latex  treated  with  formalin. 
An  appreciable  amount  of  formalin  was  added  to  the 


3  29 
3-21 


6-53 
716 


107 
104 


211 
232 


latex,  which  showed  the  usual  premature  coagula- 
tion and  was  full  of  minute  clots.  This  latex  could 
not  possibly  have  undergone  putrefaction  after  the 
addition  of  the  formalin.  Yet  when  evaporated  to 
dryness  on  a  water-bath  it  gave  a  very  fast  vul- 
canising rubber. 

Conclusions. 

(1)  Extraction  of  evaporated  whole  latex  with 
water  or  acetone  either  causes  a  small  decrease  in 
rate  of  vulcanisation  or  it  is  without  effect. 

(2)  Extraction  of  ordinary  pale  crepe  may  in- 
crease or  slightly  decrease  the  rate  of  vulcanisation 
or  may  be  without  effect.  The  specimen  examined 
on  this  occasion  was  unaffected  by  acetone,  but 
showed  a  small  increase  as  the  result  of  water 
extraction. 

(3)  Extraction  of  alcohol-coagulated  latex  with 
water  or  acetone  results  in  an  appreciable  increase 
in  rate  of  vulcanisation. 

(4)  The  alkaline  slimes  from  the  surface  of  ma- 
tured rubbed  contain  appreciable  quantities  of 
organic  bases,  part  of  which  is  volatile.  Similar 
bases  are  obtained  by  soaking  evaporated  latex  in 
water.  The  accelerating  effect  of  these  bases  is 
small. 

(5)  The  surface  and  interior  portions  of  putrefied 
coagulum  may  show  considerable  differences  in  rate 
of  vulcanisation. 

(6)  The  formation  of  putrefaction  bases  is  prob- 
ably sufficient  to  account  for  the  high  rate  of  vul- 
canisation of  "  slab  "  or  other  "  matured  "  rubber, 
but  does  not  account  for  the  high  rate  of  vulcanisa- 
tion of  evaporated  "  whole  "  latex  or  of  alcohol- 
coagulated  latex. 

(7)  The  correlation  between  the  amount  of  acetone 
extract  and  rate  of  vulcanisation  is  not  directly 
connected  with  the  presence  of  putrefaction  bases,  as 
acetone  extraction,  which  should  remove  the  bases, 
may  result  in  a  more  rapid  vulcanising  rubber. 


THE     TRANSFORMATION     OF     METHYL     a- 

EL.EOSTEARATE     INTO     METHYL    /3-EL.SO- 

STEARATE. 

BY  R.    S.    MORRELL,    M.A.,    PH.D.,    F.I.C. 

K.  Bauer  and  K.  Herberts  (Chem.  Umschau, 
1922,  29,  229)  have  published  the  results  of  an 
investigation  on  tung  oil,  from  which  they 
conclude  that  a-elaeostearic  acid  is  transformed 
during  esterification  into  the  /8-modification,  but  if 
the  o-acid  be  heated  with  acetic  anhydride  and  the 
excess  of  anhydride  distilled  off  at  110°  C.  in  vacuo, 
subsequent  saponification  with  alcoholic  potash 
gives  the  o-acid  (m.p.  46°  C.)  only.  In  1918  I 
communicated  a  paper  to  the  Birmingham  Section 
of  the  Society  (J.,  1918,  181  t)  in  which  I  proved 
that  methyl  a-elseostearate  was  transformed  into 
the  /3-variety  on  distillation  in  vacuo.  The 
undistilled  methyl  o-ester,  prepared  from  thickened 
tung  oil  by  the  action  of  sodium  methoxide  at  the 
ordinary  temperature,  gave  on  saponification  a 
syrupy  acid  from  which  a  cerium  salt  soluble  in 
ether  was  obtained,  indicating  the  absence  of  the 
/3-acid.  I  would  not  have  called  attention  to  my 
communication  if  Bauer  and  Herberts  had  acknow- 
ledged my  work  on  methyl  elaeostearate  or  on  the 
bromination  of  /3-ela>ostearic  acid.  I  am  of  the 
opinion  that  the  conclusions  drawn  from  their 
results  are  incorrect.  There  is  the  possibility  that 
the  formation  of  solid  tetrabromide  obtained 
from  a  elseostearic  acid  is  due  to  the  transformation 
of  the  a-variety  into  the  /3-variety  by  the  action 
of  bromine.  Nicolet  (J.  Amer.  Cheni.  Soc,  1921, 
43,  938)  considers  that  this  suggestion  requires  con- 
firmation, but  it  seems  plausible.  The  yield  of 
6olid  tetrabromide  from  the  a-acid  is  small.  Bauer 
and  Herberts  had  difficulty  in  obtaining  the  solid 
tetrabromide  and  make  no  mention  of  the  fact  that 
the  £-acid  yields  a  solid  and  fluid  tetrabromide  on 
bromination. 


Vol.   XLI.,  No.  19.] 


TRANSACTIONS 


lOciober  16.  1922. 


Manchester    Section. 

Meeting  held  at  Textile  Institute  on  March  3,  1922. 


DR.    E.    ARDERN   IN   THE   CHHB. 

NOTE  ON  THE  CAUSE  OF  THE  "  SPLITTING  " 
OF    A    POTTERY    BODY. 

BY  MAY  B.  CRAVEN,  M.SC.TECH.,  A.I.C. 

The  following  is  a  brief  account  of  an  investiga- 
tion carried  out  during  the  war  in  connexion  with 
the  "  splitting  "  of  a  pottery  body.  The  investiga- 
tion concerned  an  English  ring  support  required  to 
carry  incandescence  mantles,  which  ring  split  off, 
or  splintered,  under  the  effect  of  heat,  whereas  the 
German  rings,  which  were  used  almost  exclusively 
before  the  war,  withstood  perfectly  much  greater 
variations  of  temperature.  Having  regard  to  the 
use  of  the  rings,  it  was  obviously  essential  that  the 
pottery  body,  of  which  the  ring  was  made,  should 
withstand  heat  suddenly  applied. 

When  made,  the  highest  temperature  which  the 
ring  has  to  withstand  is  reached  during  the  manu- 
facture of  the  mantle.  The  mantle,  which  is  made 
from  knitted  material  (cotton,  silk,  ramie  fibre, 
etc.),  is  tied  on  to  the  ring,  dipped  into  the  solution 
of  rare  earth  compounds,  and  then  put  on  to  a  gas 
fitting  and  fired  by  compressed  gas  at  about 
1100°  C.  This  treatment  burns  off  the  fibre  and 
leaves  the  framework  of  thorium  oxide  which  carries 
the  essential  cerium  oxide  (98%  Th02,  2%Ce03 
approx.).  It  is  during  this  firing  that  the  quality 
of  the  ring  shows  itself.  If  it  be  a  poor  ring, 
either  it  breaks,  or  small  splinters  fly  from  it,  and 
usually  some  of  these  pierce  the  mantle.  In  either 
case  there  is  a  loss — in  the  former  case  complete, 
in  the  latter  case  partial,  because  the  pierced 
mantles  cannot  be  sold  as  perfect  ones. 

During  use  the  heat  effect  is  as  a  rule  that  of 
burning  ordinary  gas,  and  "  splitting  "  from  the 
clay  ring  is  not  so  likely  to  occur,  although  with  a 
poor  ring  the  life  of  the  mantle  is  comparatively 
short ;  the  greatest  damage,  however,  is  incurred 
during  manufacture.  Where  the  mantle  is  used 
with  a  compressed  gas  supply  the  piercing  takes 
place  each  time  the  mantle  is  in  use  owing  to  the 
inability  of  the  ring  to  withstand  the  temperature 
to  which  it  is  subjected. 

The  delicate  form  of  the  ring,  with  its  tying 
groove  and  three  lugs,  by  which  it  is  supported  on 
the  burner,  preclude  the  use  of  any  pottery 
material  incapable  of  delicate  treatment.  The 
material  must  be  fine  in  grain  and  coherent,  and 
the  more  homogeneous  the  mixture  the  fewer 
.•-trains  there  will  be. 

It  was  considered  probable  that  the  difference 
between  the  English  body  and  the  German  one  was 
a  chemical  difference,  that  is,  one  of  chemical  com- 
position, and  this  was  rather  indicated  by  the  name 
"i  thi1  German  body,  "  Magnesia."  A  bone-ash  body 
would  also  withstand  heat  well.  So,  having  regard 
to  the  possibilities  of  bone-ash  and  magnesia  bodies, 
exceedingly  careful  chemical  analyses  were  made. 
The  porosities  of  the  bodies  were  also  determined. 
At  the  same  time,  for  the  purpose  of  comparison, 
an  analysis  was  made  of  an  English  clay  ring,  made 
by  a  different  firm;  this  was  certainly  better  than 
the  ring  first  examined  though  inferior  to  the 
German  one. 

Chemical  analyses. 
In  the  following  statement,  A  refers  to  the  Ger- 
man body,  B  to  the  superior  English  body,  and  C 
to  the  body  first  under  investigation. 


The  porosities  (weights  of  water  absorbed  by  100 
grams  of  body)  were:— A,  126;  B,  10'2;  C,  127  g. 

The  analyses  show  ordinary  pottery  bodies 
approximating  to  earthenware  in  tvpe,  though  as 
a  rule  earthenware  bodies  contain  at  least  70%  of 
silica. 


A. 

B. 

c. 

SiO, 

66-25 

66-17 

Bi-no 

A120, 

31-98 

.       i9-40 

3606 

Fe.O,       . . 

072 

005 

0-80 

PsOs 

103 

0-77 

018 

CaO 

003 

0-35        . 

008 

MgO 

0-70 

1-41 

0-39 

KjO  and  Na 

.0  iby  (UffJ 

— 

-00 

1-44 

Loss  on  ignition  . . 

0-25 

005 

The  alkalis  were  not  determined  separately 
because  they  were  present  in  the  usual  small  per- 
centage. TiO,  was  estimated,  but  it  also  was 
present  in  the  usual  small  percentage,  and  has  no 
significance  in  this  instance,  so  the  figures  are 
omitted. 

It  is  evident  from  the  analysis  that  the  German 
body  is  not  specially  a  "  magnesia  "  body,  neither 
is  it  a  bone-ash  body,  for  the  lime  content  is  low, 
even  unusually  low. 

The  good  English  body  approximates  in  composi- 
tion to  the  German  body,  and  the  body  under 
investigation  differs  from  it,  the  silica  content 
being  about  5%  lower  and  the  alumina  content 
about  4%  higher  than  that  of  the  German. 

The  porosities  are  much  the  same,  and  are  not 
remarkable. 

The  usual  earthenware  materials  are  ball  clav, 
china  clay,  and  flint. 

The  analysis  showed  that  the  German  raw 
materials  were  extremely  well  washed — the  almost 
complete  absence  of  alkali  (0"12%,  and  this  is  prob- 
ably experimental  error)  shows  this.  The  difference 
in  chemical  composition  is  not  enough  to  account 
for  the  success  of  the  German  and  the  failure  of  the 
English  body,  i.e.,  conclusions  drawn  from  the 
analyses  are  mainly  negative. 

Ordinary  visual  examination  of  the  fractured 
rings  showed  a  great  difference,  the  German  frac- 
ture being  granular  and  the  English  one  striated. 

Sections  were  cut  and  examined,  and  the  cause 
of  the  trouble  was  plainly  to  be  seen. 

At  a  magnificatijn  x  30  the  German  body,  Fig.  A, 
showed  finely  ground,  evenly  sized  particles.  There 
were  no  stratifications,  the  mass  being  homo- 
geneous throughout.  Black  iron  stains,  due  to 
ferri-ferrous  silicate,  occurred  here  and  there,  but 
as  the  ring  was  almost  perfect  when  in  use  the 
presence  of  the  iron  oxide  was  evidently  not  detri- 
mental. The  good  English  ring  approximated  to 
the  German  in  texture,  though  where  the  lugs  join 
the  ring  there  was  not  perfect  cohesion,  and  slight 
striations  were  faintly  visible. 

Two  sections  of  the  inferior  English  body  are 
shown,  Figs.  CI  and  02.  The  former  is  a  section 
cut  at  45°,  and  the  latter  is  a  vertical  section.  Both 
photomicrographs  show  plainly  the  extremely 
unevenly  sized  particles.  Figure  C2  shows  layers 
of  material  and  air  spaces  running  more  or  less 
transversely.  In  fact,  the  ring  is  striated  through- 
out. 

The  difference  between  the  German  ring  and  the 
English  one  is  thus  a  difference  of  mechanical  treat- 
ment of  the  material.  The  actual  pressing  of  the 
rings  had  evidently  taken  place  in  three  operations 
— first  ring,  then  ring  with  lug's,  and  then  the  com- 
plete shape  with  the  tying  groove. 

The  direction  of  the  striations  in  the  English 
ring  showed  plainly  that  they  were  the  result  of 
pressing.  If  the  die  is  not  working  in  perfect 
mechanical  adjustment  this  would  at  once  affect 
the  stresses  in  the  presser  ring.  The  English  die 
is  certainly  not  "  true."  A  die  mechanically  more 
perfect  would  prevent  the  formation  of  the  layers 
in  the  ring. 


330  T 


CRAVEN.— CAUSE   OF   THE    "  SPLITTING  "    OF   A   POTTERY   BODY.       [Oct.  16,  1922 


The  unevenly  sized  particles  of  the  English  body 
indicated  that  the  raw  materials  had  not  been 
evenly  ground.  Of  the  raw  materials  the  ball  clay 
and  china  clay  present  no  difficulty ;  they  are  soft 
and  are  very  easily  ground.  The  third  body,  flint, 
is  the  most  difficult  to  grind  to  an  impalpable 
powder.  The  imperfect  grinding  of  the  flint  is 
another  cause  of  the  trouble.     The  best  grinder  for 


former  body  silica  is  certainly  introduced  as  flint. 
but  it  could  not  be  positively  asserted  that  tho 
German  body  contained  kieselguhr.  In  any  case 
the  silica  here,  whether  derived  from  flint  or  kiesel- 
guhr, was  extremely  finely  ground,  and  that  fact 
helped  considerably  to  ensure  the  success  of  the 
German  body. 

There  can  be  no  doubt  that  the  superiority  of  the 


Photomicrographs  of  ring  sections.     x30. 
Vertical  section. — A.  German  body.  Vertical  section. — B.  Good  English  body. 


"■  W 


'31  -•  ■ 


D-+  jy&i 


S— *-»afes- 


I  s-> 


%>» 


^ 


>C  •  i 


Oblique  section. — CI.  English  body. 

I.  Staining  due  to  iron  oxide. 

D.  Crack  where  the  foot  joins  the  ring. 


Vertical  section.— C2.  English  body. 

D*.  Air  spaces. 

S.  Striations. 


flint  is  the  old  chert  mill  and  this  type  of 
mill — where  a  homogeneous  material  is  required 
—should  certainly  be  used.  Silica  occurs  naturally 
in  a  fine  state  of  division  as  diatomite  or  kiesel- 
guhr. The  fine,  even  texture  of  the  German  body 
might  be  due  to  the  use  of  kieselguhr,  and  all  tho 
sections  examined  under  polarised  light  (Dx3G0) 
showed  crystalline  particles  in  the  English  body  and 
no  crystalline  particles  in  the  German  one.     In  the 


German  body  was  due  to  the  superiority  of  the 
mechanical  treatment  of  the  German  raw  materials. 
They  were  much  better  washed,  better  ground,  and 
better  pressed  than  were  the  English  raw  materials. 
Where  a  body  has  to  withstand  heat  treatment 
no  precaution  should  be  spared  to  ensure  homo- 
geneity and  to  have  arrangements  for  pressing  such 
that  the  product  has  no  laminations,  air  films,  or 
strains  of  any  kind. 


Vol.  XIX,  No.  19.1     WHEELER  AND  BLAIR.— ACTION  OF  OZONE  ON  HYDROCARBONS. 


331t 


Communications. 


THE  ACTION  OF  OZONE  ON  HYDROCARBONS 
WITH   SPECIAL  REFERENCE  TO  THE  PRO- 
DUCTION OF  FORMALDEHYDE. 

BY    T.    SHERLOCK    WHEELER,    n.SC.(LONI).),    A. R. CSC. I., 
A. I.C.,  AND  E.   W.  BLAIR,  B.SC.(LOND.),  D.I.C.,  A.I.C. 

Part  I.     The  action  of  ozone  on  methane. 

The  action  of  ozone  on  methane  was  first  investi- 
gated by  Otto  (Ann.  Chim.,  (7),  13,  109),  who  proved 
that  at  100°  C.  a  very  slow  reaction  takes  place ; 
he  detected  formaldehyde  and  formic  acid  among 
the  products.  His  results  were  afterwards  con- 
firmed by  Drugman  (Trans.  Chem.  Soc,  1906,  89, 
939).  Both  these  researches,  however,  were  purely 
qualitative;  accordingly  the  present  authors,  having 
completed  a  quantitative  investigation  of  the  pro- 
duction of  formaldehyde  from  ethylene  by  inter- 
action with  ozone,  decided  to  study  the  interaction 
of  methane  and  ozone  on  similar  lines. 

Experimental  methods. 

The  methane  and  oxygen  for  these  experiments 
were  prepared  and  stored  as  described  by  Bone  and 
Wheeler  in  their  paper  on  the  slow  oxidation  of 
methane  (Trans.  Chem.  Soc.,  1903,  83,  555);  the 
analysis  of  the  gaseous  mixtures  obtained  is  also 
described  therein.  The  ozoniser  employed  gave 
about  4%  ozone  from  oxygen  under  the  conditions 
of  our  experiments;  the  ozone  was  estimated  by 
means  of  neutral  potassium  iodide. 

In  our  first  experiments  mixtures  of  methane  and 
oxygen  which  had  been  dried  over  sulphuric  acid 
and  phosphorus  pentoxide  were  passed  through  the 
ozoniser  and  led  into  a  hard  glass  tube  80  cm.  long 
by  2  cm.  diam.,  placed  in  an  electric  furnace  so  that 
almost  its  whole  length  could  be  heated  to  any 
desired  temperature.  The  volume  of  the  tube  was 
250  c.c,  and  as  the  gas  mixture  was  in  each  experi- 
ment passed  at  the  rate  of  1  litre  in  10  mins.  the 
period  of  heating  was  about  2£  minutes.  The  issu- 
ing gas  was  washed  in  two  water-worms  and  with 
neutral  potassium  iodide  to  remove  any  residual 
ozone,  after  which  it  was  collected  in  a  gas-holder 
filled  with  50%  glycerin  and  water.  Ground  glass 
joints  were  used  in  all  portions  of  the  apparatus  in 
contact  with  ozone. 

Before  starting  an  experiment  the  apparatus  was 
filled  with  pure  oxygen — at  the  end  of  the  experi- 
ment it  was  washed  out  into  the  final  gas-holder 
with  several  litres  of  the  same  gas.  The  pressures, 
temperatures,  and  volumes  of  the  initial  and  final 
gases  were  measured  and  compared  as  described  in 
our  paper  on  the  production  of  formaldehyde  from 
ethylene  (J.,  1922,  303  t).  Our  methods  of  esti- 
mating solutions  containing  formaldehyde,  formic 
acid,  and  hydrogen  peroxide  will  be  described  in 
another  paper. 

In  a  second  series  of  experiments  oxygen  alone 
was  passed  through  the  ozoniser  and  methane  was 
mixed  with  it  before  entering  the  reaction  tube.  To 
each  5  litreB  of  oxygen  1  litre  of  methane  was  added. 
The  oxygen  was  passed  at  the  same  rate  as  before 
to  obtain  the  same  concentration  of  ozone ;  to  have 
the  heating  period  the  same  a  slightly  wider  tube 
was  used. 

Finally  in  a  third  series  of  experiments  equal 
volumes  of  methane  and  ammonia  were  mixed  in  <a 
500-c.c.  bulb  and  the  mixture  added  to  the  ozonised 
oxygen  at  the  rate  of  2  litres  of  mixture  to  5  litres 
of  oxygen.  The  reaction  tube  was  further  corres- 
pondingly increased  in  size  so  as  to  ensure  the  same 
time  of  heating.  The  volumes  of  the  gases  were 
compared  as  before. 


Experimental  results. 

Ozonisation  of  mixtures  of  methane  and  oxygen. — 
In  these  experiments  in  which  methane  and  oxygen 
were  passed  directly  through  the  ozoniser,  it  was 
necessary  to  use  mixtures  outside  the  explosive 
limits,  which  are  4%  and  60%  of  methane.  The 
following  is  a  summary  of  some  of  our  experiments 
using  mixtures  of  oxygen  97%  and  methane  3%.  It 
is  to  be  noted  that  in  these  and  in  aill  our  experi- 
ments more  or  less  white  fumes  were  present  in  the 
gases  issuing  from  the  reaction  tube.  They  pro- 
bably consisted  of  water  in  a  finely-divided  form. 


Experiment   . . 

1 

o 

3 

4 

5 

Temp.,°C 

15 

.      100      . 

200 

300 

.      400 

mmg.  CHjO  per 

litre    of    mix- 

ture used 

03 

0-8 

.      1-5 

o.o 

.       0-5 

CH,0, 

Trace 

.    Trace    . 

.    Trace     . 

.    Trace    . 

.    Trace 

c.c.     C09     per 

litre    mixture 

used  . . 

— 

5 

7 

0 

5 

%CH,-*CH,0 

— 

!» 

14 

20 

9 

%Oa  reacting 

5 

53 

70 

68 

52 

%0,     directly 

decomposed. . 

Nil 

.        15        . 

15 

32 

43 

At  15°  C.  the  action  is  very  slow  ;  it  increases  with 
temperature  until  at  100°  C.  53%  of  the  ozone 
present  reacts  in  about  2  mins.  The  rate  of  de- 
composition of  ozone  also  increases ;  above  400° 
practically  all  the  ozone  decomposes.  It  is  probable 
that  at  these  higher  temperatures  the  oxidation  is 
rapid  and  that  any  that  does  occur  takes  place 
during  the  period  of  heating  up  the  gas,  for  even 
at  250°  the  decomposition  rate  of  ozone  is  very 
rapid. 

The  first  isolated  product  of  the  interaction  is 
formaldehyde.  It  is  quickly  further  oxidised  by 
ozone  but  its  oxidation  rate  does  not  at  first 
increase  as  fast  as  that  of  methane,  so  there  is  an 
initial  slight  rise  in  the  percentage  isolated  on  the 
methane  oxidised.  At  all  temperatures,  however, 
the  greater  portion  of  the  methane  oxidised  is 
obtained  as  carbon  dioxide.  No  carbon  monoxide 
was  detected  in  any  experiment,  so  probably  little 
is  formed  as  it  would  not  be  completely  oxidised. 
This  can  be  explained  by  assuming  that  the  ozone 
oxidises  formaldehyde  to  formic  acid  which  is  then 
rapidly  oxidised  via  carbonic  acid  to  carbon  dioxide 
and  water.  At  200°  formic  acid  decomposes  mostly 
to  carbon  dioxide  and  hydrogen  (it  may  be  noted 
that  at  500°  it  decomposes  to  carbon  monoxide  and 
water) — above  100°  ozone  attacks  hydrogen.  The 
action  of  ozone  on  methane  may  then  be  repre- 
sented— 

CHj 

1 

CH.,0 

1 

CH20, 


H2C(OH), 


I 
C02  +  H2 

->-C02  +  H20 


Owing  to  the  low  concentration  of  carbon  dioxide 
in  the  residual  gases  the  quantities  given  are  only 
approximate.  The  percentages  of  ozone  decompos- 
ing are  obtained  by  estimating  the  ozone  absorbed 
in  the  potassium  iodide  solution  and  assuming  that 
formaldehyde  and  carbon  dioxide  are  formed  accord- 
ing to  the  following  equations  : 

CH4  +  203  =  CH20 + H20 + 20, 
CH20+202  =  C02  +  H,0  +  202 

While  the  first  equation  is  probably  correct,  all 
three  atoms  of  the  ozone  molecule  may  go  to  oxidise 
formaldehyde.  This  of  course  increases  very  largely 
the  amount  of  ozene  decomposing.  It  is  difficult  to 
decide  this  point,  as  at  low  temperatures  where 
ozone  can  be  safely  assumed  not  to  have  decomposed, 


332  T 


DYER  AND  WATSON.— DETERMINATION  OF  SULPHUR  IN  RUBBER.        (Oct.  16, 


the  amount  of  carbon  dioxide  formed  is  difficult 
accurately  to  estimate  (c/.  Z.  Elektrochem.,  17, 
634). 

Experiments  were  also  made  using  mixtures  con- 
taining over  60%  of  methane;  similar  results  were 
obtained,  but  less  interaction  occurred  as  the  con- 
centration of  ozone  was  low,  and  owing  to  the  dilu- 
tion of  the  oxygen.  Some  transformations  of  the 
methane  to  unsaturated  products  by  the  discharge 
was  noticed. 

Addition  of  methane  to  ozone. — In  the  next  series 
of  experiments  methane  was  added  to  ozone  as  des- 
cribed above.  The  results  were  similar  to  those 
quoted,  the  amount  of  interaction  being  slightly 
increased  owing  to  the  greater  concentration  of 
methane.  Thus  at  300°  C.  2"5  mmg.  of  formalde- 
hyde was  obtained  per  litre  of  the  mixture  in  a 
yield  of  17%  on  the  methane  burned.  The  percent- 
age yields  of  formaldehyde  were  throughout  some 
5 — 10%  lower.  In  these  experiments  no  special  pre- 
cautions were  taken  to  dry  the  methane  added  to 
the  ozone;  this  was  done  later,  and  the  yields  rose 
to  the  figures  obtained  with  the  dried  mixtures  of 
methane  and  oxygen. 

Experiments  were  then  made  using  catalysts  and 
surfaces  to  try  if  the  interaction  of  ozone  and 
methane  could  be  accelerated  without  accelerating 
the  action  of  ozone  on  formaldehyde.  It  was  found 
that  surfaces  such  as  ignited  pumice  had  very  little 
if  any  effect.  Catalysts  such  as  nickel  oxide  pumice, 
aluminium  oxide  pumice,  ferric  oxide  pumice, 
platinised  asbestos,  etc.  accelerated  the  decomposi- 
tion of  ozone  even  below  100°  so  that  very  little 
oxidation  of  methane  occurred. 

In  some  further  experiments  methane  preheated 
to  500°  was  added  to  4%  ozone  in  the  hope  that  all 
interaction  to  formaldehyde  might  take  place  before 
the  ozone  could  decompose  or  carbon  dioxide  be 
formed.  The  results,  however,  did  not  differ  appre- 
ciably from  those  of  the  previous  experiments. 

Experiments  using  ammonia. — In  a  third  series  of 
experiments  mixtures  of  ammonia  and  methane  were 
added  to  ozone  and  passed  through  the  furnace 
as  described  above,  the  ammonia  being  added 
to  stabilise  the  formaldehyde  as  hexamethylene- 
tetramine.  In  each  experiment  dense  white  fumes 
were  formed  and  deliquescent  white  crystals  were 
deposited  at  the  entrance  to  the  furnace  tube.  On 
examination  these  proved  to  be  ammonium  formate, 
mixed  with  a  little  hexamethylenetetramine  and 
ammonium  carbonate.  On  dismantling  the  appara- 
tus a  smell  of  formamide  was  noted.  The  reaction 
tube  was  washed  out  thoroughly  with  distilled  water 
and  the  washings  added  to  the  water  from  the 
worms.  The  liquid  was  distilled  with  moderately 
dilute  sulphuric  acid  and  formaldehyde  and  formic 
acid  estimated  in  the  distillate. 

There  were  never  more  than  traces  of  hydrogen 
peroxide  or  of  nitrates  or  nitrites  present.  The 
yield  of  formaldehyde  at  various  temperatures  was 
much  the  same  as  in  experiments  where  ammonia 
was  not  added  but  the  yield  of  formic  acid  was  very 
much  increased,  the  quantity  at  each  temperature 
being  about  equal  to  the  formaldehyde  isolated.  It 
varied  slightly  directly  as  the  amount  of  ammonia 
used  and  rose  slightly  if  both  ammonia  and  methane 
were  thoroughly  dried  before  adding  to  the  dry 
ozonised  oxygen.  The  non-stabilising  of  formalde- 
hyde is  due  to  the  necessity  of  ten  molecules  inter- 
acting to  form  hexamethylenetetramine ;  this  does 
not  readily  occur  especially  at  low  temperatures  and 
with  such  llow  concentrations  of  formaldehyde.     On 


the  other  hand,  to  stabilise  formic  acid  as  ammonium 
formate  only  a  bimolecular  reaction  need  take  place. 

These  experiments  with  ammonia  support  the 
oxidation  scheme  set  out  above.  It  is  to  be  noted 
that  methyl  alcohol  was  never  detected  among  the 
products  in  our  experiments,  but  it  is  so  very 
readily  oxidised  in  comparison  with  methane  that 
it  is  not  unlikely  that  it  is  first  formed,  more 
especially  as  it  would  result  from  the  interaction  of 
1  mol.  of  methane  and  1  mol.  of  ozone.  The  oxida- 
tion scheme  is  similar  to  that  put  forward  by  Bone 
for  the  interaction  of  oxygen  and  methane  (Trans. 
Chem.  Soc,  1903,  86,  1074) ;  since  the  ozone  oxidises 
by  means  of  atomic  oxygen,  it  would  appear  that  in 
the  interaction  of  oxygen  and  methane,  atomic 
oxygen  also  comes  into  play.  The  fact  that  mois- 
ture increases  the  amount  of  formaldehyde  slightly 
corresponds  with  the  observations  of  Bone  and 
Andrew  on  the  interaction  of  hydrocarbons  and 
oxygen  in  the  absence  of  moisture  (Trans.  Chem. 
Soc.,  1906,  89,  652).  They  note  that  in  their  experi- 
ments the  accumulation  of  aldehyde  was  somewhat 
greater  in  the  dried  than  in  the  undried  gases. 
They  formed  the  opinion  that  the  greater  accumula- 
tion was  due  to  a  slight  increase  in  the  initial  rate 
of  oxidation  of  the  hydrocarbon,  the  further  rates 
of  oxidation  being  unchanged.  The  slight  increase 
in  formaldehyde  in  our  experiments  when  both 
gases  were  dried  may  be  due  to  the  same  cause,  but 
it  is  also  possible  that  the  absence  of  moisture  does 
not  affect  the  rate  of  interaction  of  ozone  and 
methane,  but  inhibits  slightly  the  oxidation  of 
formaldehyde.  It  may  be  that  absolutely  dry 
formaldehyde  and  oxygen  would  not  react. 

This  work  was  carried  out  for  the  Chemistry 
Research  Board  of  the  Scientific  and  Industrial 
Research  Department  to  whom  we  are  indebted  for 
permission  to  publish  our  results. 

Main  Laboratory, 

R.N.  Oordito  Factory, 

Holton  Heath,  Dorset. 


THE   DETERMINATION   OF   SULPHUR   IN 
VULCANISED    RUBBER. 

BY  J.   W.  W.  DYER,  M.SC.(LOND.);  AND  AMY  R.  WATSON, 
B.SC.(LOND.). 

With  reference  to  the  method  described  for  the 
determination  of  combined  sulphur  in  vulcanised 
rubber  (J.,  July  31,  1922,  251— 252  t),  our  attention 
has  been  called,  by  Mr.  A.  R.  Pearson,  to  his  prior 
description  of  the  method  and  application  to  the 
determination  of  total  sulphur  (Analyst,  1920,  45, 
405).  We  were  not  aware  of  this  at  the  time  of 
publication  of  our  paper  and  regret  the  oversight. 
Although  we  published  our  method  only  recently,  it 
was  in  constant  use  in  our  laboratory  in  the  autumn 
of  1920.  We  prefer  to  use  it  for  combined  sulphur 
only  and  not  for  total  sulphur,  unless  the  amount 
of  free  sulphur  is  small. 


ERRATUM. 

In  the  paper  on  "  Organic  impurities  in  com- 
mercial nitric  acid  and  their  effect  in  the  manu- 
facture of  nitroglycerin,"  by  E.  A.  F.  Crawford  (J., 
Sept.  30,  1922),  an  error  occurs  on  page  322  t,  col.  2. 
Line  19  "  that  of  tetranitromethane  .  .  .  very" 
should  be  replaced  by  "purity  by  distillation  but 
the  results  were  not." 


Vol.  XLI.,  No.  20.] 


TRANSACTIONS 


[Oct.  31,  1922. 


Communications. 


NOTES  ON  A  MANCHURIAN  COAL  FROM 
FUSHUN. 

BY   GODFREY   W.   HIMTJS. 

The  Fushun  colliery  is  situated  in  the  Fushun 
Prefecture,  Fengtien  Province,  some  twenty  miles 
east  of  Mukden,  on  a  branch  line  of  the  South 
Manchurian  Railway,  and  is  administered  by  the 
railway  company.  The  coalfield  has  an  area  of 
about  24  square  miles,  being  some  ten  miles  in 
length  from  east  to  west,  by  2'4  miles  in  width  from 
north  to  south.  The  colliery  is  on  a  table-land  600 
to  700  feet  above  sea  level,  which  descends  pre- 
cipitously to  the  Hun  Ho  River  on  the  northern 
side,  and  on  the  south  side  somewhat  less  steeply. 

The  lowest  formation  in  the  coalfield  is  granite 
gneiss,  which  is  overlain  by  reddish-green  tuffs 
belonging  to  the  Cambrian  system  which  are 
followed  by  alternate  layers  of  tuffaceous  sand- 
stones and  shales  of  Mesozoic  age.  The  coal-bear- 
ing strata  occur  in  Tertiary  rocks  consisting  of 
breccia,  sandstone  and  shale,  and  comprise  a  number 
of  seams  of  which  the  aggregate  workable  thick- 
ness averages  130  feet,  rising  to  a  maximum  of 
420  feet. 

Later  intrusions  consisting  of  porphyritic  dykes 
and  basalt  laccolites  occur  which  cause  a  certain 
amount  of  alteration  in  the  coal  deposits. 

The  coal  deposits  are  dated  as  of  Miocene  age,  the 
majority  of  the  associated  organic  remains  being 
plants,  amongst  which  the  following  may  be  men- 
tioned: — Osmunda  sp.,  Parrotaia  sp.,  Salix  sp., 
Glyptostrobus  ungeri,  Populus  glandulifera,  Styrax 
sp.,  Tilia  sp.,  Thuja  sp.,  Quercus  sp.,  Sequoia  sp., 
Fagus  feronice,  Aphnantha  sp.,  Ginkgo  sp. 

The  estimated  reserves  of  coal  are  eight  hundred 
million  tons,  and  the  output  has  risen  from  233,325 
tons  (British)  in  1907,  to  3,158,000  tons  in  1920. 

The  coal  is  a  poorly-coking  gas  or  almost  a  sand 
coal,  the  amount  of  volatile  matter  being  over  40% 
and  the  coke  presenting  a  somewhat  sandy  rather 
than  a  well-fused  surface. 

The  average  of  the  analyses  given  by  the  Publicity 
Department  of  the  South  Manchurian  Railway 
Company  is: — Volatile  matter  392%  ;  fixed  carbon 
56-3%  ;  ash  4'5%  ;  B.Th.U.  per  lb.  12,900.  Another 
set  of  averages  from  the  same  source  is :  — Volatile 
mr.tter  43"9%  ;  fixed  carbon  530%;  ash  3'1%  ; 
B.Th.U.  per  lb.  12,530.  C  7415%;  H  6"41%  ; 
N  1-98%  ;  O  13-59%  ;  S  077%. 

Analyses  made  in  the  author's  laboratory  of 
samples  from  consignments  aggregating  some  10,300 
tons  of  Fushun  dust  coal,  and  about  100  tons  of 
Fushun  unscreened  coal  gave:  — 


Volatile  matter 
Fixed  carbon 
Ash  .. 

B.Th.U.  per  lb. 
Sulphur 


Dust. 

Unscreei 

% 

or 

41-8 

41-7 

47-3 

48-5 

10-9 

9-8 

i.345 

12,410 

0-5 

0-5 

The  calorific  values  are  gross,  and  were  deter- 
mined in  a  Berthelot-Mahler  bomb  calorimeter  in 
these  two  cases.  The  calorific  value  of  the  coal 
substance  is  somewhat  less  than  that  of  the  general 
run  of  Far  Eastern  coals  of  similar  proximate 
analysis. 

It  was  observed  that  the  unscreened  coal  con- 
tained a  large  percentage  of  lumps,  varying  in  size 
from  about  two  inches  to  six  inches  cube,  many  of 
which  showed  yellow  transparent  or  translucent 
gummy  drops  and  bands  resembling  resin ;  other 
lumps  appeared  to  be  practically  free  from  these 
drops.     By  extraction  with  chloroform  the  gummy 


material  could  be  isolated  as  a  dark  brown  substance 
with  an  odour  of  heavy  petroleum.  The  two  sets  of 
lumps  in  the  coal  contained  very  different  amounts 
of  material  soluble  in  chloroform,  those  with  much 
"  gummy  "  material  giving  10'5%  of  extract,  the 
other  lumps  giving  2-8%,  and  the  average  sample  of 
the  coal,  3'3%. 

Analysis  of  the  extracted  material  showed:  — 
Volatile  matter  973%  ;  fixed  carbon  11%  ;  ash  1-6%  ; 
B.Th.U.  per  lb.  16,550.  C  7922%;  H  9-60%; 
O  1019%.  No  sulphur  or  nitrogen  could  be 
detected.  The  above  ultimate  analysis  was  kindlv 
made  for  the  author  by  Mr.  R.  Bachrach,  of  the 
Shanghai  Chemical  Laboratory. 

This  analysis  agrees  fairly  "well  with  that  given 
by  Carrick  Anderson  and  Roberts  for  the  resinic 
constituents  of  certain  Scottish  non-caking  coals, 
which  they  obtained  by  heating  to  300° — 315°  C.  in 
a  current  of  carbon  dioxide  (c/.  J.,  1898,  1019). 

A  sample  of  ordinary  rosin  gave  volatile  matter 
98-5%;  fixed  carbon,  trace;  ash  1'5%  ;  B.Th.U. 
per  lb.  15,710.     Saponification  value  177. 

The  resin-like  material  from  the  Fushun  coal  had 
a  saponification  value  of  130  and  melted  at  about 
140°  C. 

The  two  sets  of  lumps  into  which  the  coal  could 
be  separated  differed  considerably  in  proximate 
analysis  and  in  calorific  value,  as  will  be  seen  from 
the  annexed  table  :  — 


"Resinous" 

"Non- 

Coal. 

lumps. 

reslnous 

% 

% 

% 

\  olutile  matter 

41-7 

51-5 

460 

Fixed  carbon 

48-5 

28-8 

49-2 

Ash  . . 

9-8 

19-7 

4-8 

Sulphur 

0-5 

015 

0-75 

B.Th.U.  per  lb. 

. .  12,410 

.      12,530 

.      13,920 

If  the  results  be  reduced  to  dry  ashless  coal,  the 
figures  are  more  striking  and  can  be  seen  in  better 
perspective :  — 


Volatile  matter 
Fixed  carbon 
B.Th.U.  per  lb. 


Coal. 

v 

7b 

.       46-3 

53-7 

13,780 


"Resinous" 

lumps. 

% 

641 

35-9 

15,660 


"Non-resinous" 

lumps. 

/o 

48-3 

51-7 

14,670 


Analysis  of  the  "resinous"  lumps  after  extrac- 
tion with  chloroform  gave  : — Volatile  matter  45"6%  ; 
fixed  carbon  33-4%;  ash  21'0%.  B.Th.U.  per  lb. 
10,810. 

Examination  of  the  powdered  coal  or  of  the 
powder  derived  from  either  the  "  resinous "  or 
"non-resinous"  lumps,  in  water  under  the  micro- 
scope, showed  a  considerable  proportion  of  lemon  to 
orange-yellow  irregular  lumps  most  of  which 
vanished  after  extraction  of  the  powder  with 
chloroform. 

Following  the  observation  recorded  bv  Wheeler 
and  Burgess  (Trans.  Chem.  Soc.,  1913,  103,  1704, 
1705),  pieces  of  the  coal,  one  of  which  showed  a 
prominent  light-coloured  band,  and  which  was 
therefore  classified  as  a  "  resinous  "  lump,  and  the 
other  of  which  showed  only  one  or  two  small  gummy 
drops,  were  smoothed  on  one  face  and  placed  on  a 
photographic  plate  in  a  light-tight  box  in  an 
incubator  at  about  40°  C.  for  48  hours.  On  develop- 
ment, it  was  found  that  the  "  non-resinous  "  lump 
had  had  a  considerable  photographic  action  on  the 
plate,  a  number  of  streaks  and  bands  being  shown, 
none  of  which  corresponded  to  any  obvious  mark- 
ings on  the  original  lump.  In  the  case  of  the 
"  resinous  "  lump  there  was  scarcely  any  action. 

Summary. 

The  Fushun  coal  is  a  high-volatile  coal  of  Miocene 
age  formed  apparently  of  the  remains  of  coniferous 
plants,  and,  in  common  with  many  other  coals, 
contains  appreciable  quantities  of  comparatively 
little   altered    resin-like   substances   which   are   ex- 


334t     HOFFERT  —  DETERMINATION  OF  PHENOL  IN  MIXTURES  OF  TAR  ACIDS.     [Oct.31,1922. 


tractable  with  chloroform.  These  substances  make 
up  about  3'3%  of  the  coal,  there  being  a  tendency 
for  them  to  be  concentrated  in  certain  bands  and 
lumps  together  with  a  considerable  amount  of 
mineral  matter.  On  the  other  hand,  other  lumps 
of  the  coal  contain  only  about  one-fourth  the 
amount  of  chloroform-soluble  material,  and  these 
lumps  are  much  freer  from  mineral  matter  and 
have  a  strong  action  on  a  photographic  plate.  The 
calorific  value  of  the  resin-like  material  is  very 
high,  the  contribution  of  the  3'3%  of  resinous  sub- 
stances to  the  heat  value  of  the  coal  amounting  to 
4'4%  thereof. 

The  author  desires  to  express  his  thanks  to 
Professor  Hiroshi  Yamada,  of  the  Tung  Wen 
College,  Shanghai,  China,  for  the  information 
regarding  the  Fushun  coal  mine. 


DETERMINATION  OF  PHENOL  IN  MIXTURES 
OF  TAR  ACIDS. 

BY  W.   H.    HOFFEBT,   M.A.,  B.SC. 

Owing  to  the  similarity  in  properties  of  phenol 
and  its  homologues,  the  accurate  determination  of 
phenol  in  a  mixture  of  tar  acids  is  a  matter  of  con- 
siderable difficulty. 

Numerous  methods  have  been  proposed  from  time 
to  time.  The  most  important  papers  dealing  with 
this  subject,  recently  published,  are  those  of  Fox 
and  Barker  (J.,  1917,  842;  1918.  265  T;  1920,  169  t), 
and  Dawson  and  Mountford  (Chem.  Soc.  Trans., 
1918,  113,  923).  A  fairly  complete  summary  of 
important  papers  previously  published  is  given  in 
the  second  of  the  papers  by  Fox  and  Barker 
referred  to  above. 

The  above  authors  utilised  the  freezing  point 
relations  of  phenol  and  the  cresols  in  determining 
the  phenol  in  a  mixture  of  phenol  and  its  homo- 
logues. Since,  however,  the  lowering  of  the  freezing 
point  of  phenol  by  equal  weights  of  the  three  cresols 
differs  considerably,  owing  to  the  variable  tendency 
of  the  three  cresols  to  form  mixed  crystals  with 
phenol,  they  found  it  necessary  first  to  separate  the 
whole  of  the  phenol  originally  present  in  the 
mixture,  entirely  or  almost  entirely  in  conjunction 
with  o-cresol. 

The  method  worked  out  by  Fox  and  Barker  was 
devised  for  the  determination  of  the  residual  phenol 
in  cresylic  acid.  The  cresylic  acid  is  first  fraction- 
ated with  an  efficient  column  up  to  210°  C,  when  all 
the  phenol,  practically  all  the  cresols,  and  a  little 
xylenol  come  over.  This  distillate  is  then  again  frac- 
tionated up  to  195°  C,  after  the  addition  of  suffic- 
ient o-cresol  (if  necessary)  to  bring  over  all  the 
phenol  in  the  fraction  up  to  195°  C.  The  phenol  in 
this  fraction  is  then  determined  by  application  of 
the  freezing  point  curve  for  mixtures  of  phenol  and 
o-cresol,  which  was  shown  to  be  practically  identical, 
for  mixtures  containing  more  than  80%  of  phenol, 
with  that  obtained  from  mixtures  of  phenol  with 
the  distillate  collected  up  to  195°  C,  obtained  from 
commercial  cresylic  acid  free  from  phenol.  Accord- 
ingly, if  to  an  aliquot  part  of  the  distillate  up 
to  195°  C.  sufficient  pure  phenol  is  added  to  yield 
a  mixture  containing  at  least  80%  of  phenol,  and 
the  freezing  point  of  the  mixture  so  made  is 
determined,  the  percentage  of  phenol  in  the  dis- 
tillate up  to  195°  C.  and  hence  in  the  original 
cresylic  acid  can  be  calculated. 

The  method  gives  fairly  good  results  for  mixtures 
having  a  low  phenol  content  (less  than  10%).  When, 
however,  the  phenol  content  is  high,  a  preliminary 
fractionation  with  an  efficient  column  is  necessary, 
in  order  to  reduce  the  percentage  of  phenol  in  the 
mixture,  two  fractions  being  thus  obtained:  — 
(1)  consisting  chiefly  of  phenol  and  o-cresol,  _  the 
phenol  content  of  which  can  at  once  be  determined 


by  application  of  the  freezing  point  curve  of  phenol 
and  o-cresol ;  (2)  consisting  chiefly  of  o-cresol,  Tri- 
cresol, and  p-cresol,  with  only  a  small  percentage  of 
phenol,  the  phenol  content  of  which  is  determined, 
after  the  addition  of  sufficient  o-cresol  to  bring  over 
all  the  phenol  in  the  distillate  up  to  195°  C.,  as 
already  described. 

The  method  proposed  by  Dawson  and  Mountford 
(loe.  eit.)  for  the  determination  of  phenol  in  a 
mixture  of  phenol  and  the  three  cresols,  is  similar  to 
the  above,  the  mixture  being  mixed  with  about  half 
its  weight  of  o-cresol,  so  as  to  yield  on  distillation 
with  an  efficient  column  two  fractions: — (1)  con- 
sisting of  a  mixture  of  phenol  and  o-cresol,  and 
(2)  consisting  of  a  mixture  of  o-cresol,  m-cresol, 
and  p-cresol.  The  percentage  of  phenol  in  (1)  can 
then  be  determined  by  application  of  the  freezing 
point  curve  of  phenol  and  o-cresol. 


15 

%  Water. 
Freezing  points  of  mixtures  of  phenol  and  water. 

Fig.  1. 

Experiments  carried  out  by  the  author  to  sepa- 
rate a  mixture  of  phenol  and  cresols  in  this  way 
were,  however,  not  in  general  successful,  since  even 
when  using  an  efficient  column  it  was  only  when  the 
phenol  content  was  very  low  that  all  the  phenol 
passed  over  in  the  distillate  up  to  191°  C,  the 
boiling  point  of  o-cresol. 

The  method  to  be  described  enables  the  phenol,  in 
any  proportion,  in  a  mixture  containing  any  or  all 
of  the  three  cresols  to  be  directly  determined,  and 
depends  on  the  fact  that  the  lowering  of  the 
freezing  point  of  phenol  hydrate  by  equal  weights 
of  each  of  the  three  cresols  is  the  same. 

I'liciwl  hydrate. — It  has  long  been  known  that 
phenol  forms  a  definite  crystallisable  hydrate  with 
water,  m.p.  +  16°  C. 

The  freezing  points  of  mixtures  of  phenol  and 
water  were  determined  in  an  apparatus  of  the 
Beckmann  type,  the  freezing  points  recorded  being 
the  temperatures  at  which  liquefaction  is  complete, 
since  these  temperatures  would  correspond  with 
those  at  which  crystallisation  of  the  liquid  would 


Vol.XLl.,No.20.]    HOFFERT.—  DETERMINATION  OF  PHENOL  IN  MIXTURES  OF  TAR  ACIDS. 


335* 


begin  in  the  absence  of  supercooling.  The  results 
are  plotted  in  Fig.  1. 

It  will  be  seen  that  a  continuous  curve,  A  C,  is 
obtained  for  the  lowering  of  the  freezing  point  of 
phenol  by  addition  of  water.  When,  however,  the 
percentage  of  water  exceeds  8"5%,  phenol  hydrate 
can  crystallise  out  (as  shown  by  the  branch  curve, 
B  D)  at  temperatures  considerably  above  those 
corresponding  to  the  freezing  points  of  phenol  and 
water.  The  hydrate  curve  is  fairly  flat,  and  reaches 
a  maximum  at  16°  C,  with  8 — 9%  of  water  (cf.  also 
Fig.  2),  corresponding  to  the  formation  of  phenol 
hydrate  2CcH5OH,H„0  (water  875%).  The  ends  of 
the  curve,  C  and  I),  indicate  approximately  the 
limits  of  solubility  of  water  in  phenol  at  these 
temperatures. 

With  mixtures  of  phenol  and  the  cresols,  it  was 
found  that  phenol  hydrate  could  be  crystallised  out 
when  the  proportion  of  phenol  was  greater  than 
about  55%,  the  limiting  proportion  depending  on 
the  nature  of  the  admixed  cresol  or  cresols. 

F.p 


20 


15 


in 


i 

■  \  \  ^**%* 


0  5  10  15  20 

%  Water. 
Freezing  points  of  mixtures  of  phenol  with 

(1)  o-Cresol,  25%  by  weight,  o  — O  — O 

(2)  m-Cresol         „  „        x  —  x  —  x 

(3)  p-Cresol  „  „       •  —  % — 9 

(4)  Cresylic  acid  „  ,,       -\ \ (- 

and  water. 

Fig.  2. 

The  freezing  point  curves  of  various  mixtures  of 
phenol  and  the  cresols  with  water  were  also  deter- 
mined. These  curves  showed  that  the  lowering  of 
the  freezing  point  of  phenol  hydrate  by  each  of  the 


three  cresols  was  the  same  within  the  limits  of  ex- 
perimental error.  As  an  example,  the  curves 
obtained  with  mixtures  containing  75%  of  phenol 
in  admixture  with  (1)  o-cresol;  (2)  m-cresol ;  (3)  p- 
cresol ;  (4)  commercial  cresylic  acid  free  from  phenol 
(fraction  to  203°  C.)  are  given  in  Fig.  2. 

The  freezing  points  of  the  above  anhydrous 
mixtures  of  phenol  and  the  cresols  were  very 
different,  owing  to  the  fact  that  the  lowering  of  the 
freezing  point  of  phenol  by  equal  weights  of  the 
three  cresols  varies  considerably,  as  already  indi- 
cated, the  actual  freezing  points  obtained  being 
in  close  agreement  with  those  of  Dawson  and 
Mountford  (loc.  cit.).  The  lowering  of  the  freezing 
points  of  these  mixtures  by  addition  of  water  is 
shown  in  the  figure.  It  will  be  observed,  however, 
that  the  freezing  points  of  phenol  hydrate  sepa- 
rating from  these  mixtures  all  lie  on  one  curve 
within  the  limits  of  experimental  error.  The 
maximum  of  the  hydrate  curve  is  clearly  shown  at 
5'8°  C,  corresponding  to  about  8'5%  of  water. 
Similar  results  were  obtained  with  mixtures  con- 
taining larger  and  smaller  percentages  of  phenol. 

The  lowering  of  the  freezing  point  of  phenol 
hydrate  by  addition  of  any  or  all  the  three  cresols 
may,  therefore,  be  represented  by  a  single  curve. 
For  the  application  of  this  curve  to  the  determina- 
tion of  phenol  in  admixture  with  cresols,  it  was 
found  most  convenient  to  construct  the  curve  for 
mixtures  of  phenol  and  the  cresols  after  the  addition 
of  water  amounting  to  10%  of  the  weight  of  the 
mixture  taken  (i.e.,  the  mixture  contained  9T%  of 
water  by  weight),  since  a  definite  percentage  of 
water  must  be  present,  and  the  freezing  point  of 
the  phenol  hydrate  varies  least  with  slight  altera- 
tions in  the  water  content  when  the  water  is 
approximately  9'0%. 

The  experimental  results  recorded  for  such  mix- 
tures are  given  in  the  table  below  :  — 


(D 
Phenol  +  o-cresol  (f.p.  30-5°  C). 
Phenol  F.p  of  hydrate. 


/o 
1000 
950 
86-2 
750 
70-8 
62-9 
58-6 


•C. 

160 

14-25 

10-8 

5-8 

3-9 

—0-5 

—30 


<2) 

Phenol +  m-cresoI  (f.p.  10-4°  C). 
Phenol.         F.p.  of  hydrate. 


/o 
100-0 
90-8 
80-0 
75-0 
62-4 
58-4 


°C. 

16-0 

12-6 

81 

5-8 

—0-8 

—3-2 


(3) 


Phenol +  p-cresol  (f.p.  34-2°  C.) 
Phenol  F.p.  of  hydrate. 

%  '  C. 

1000  ..  160 


85-4 
750 
64-7 
56-6 


10-4 
5-8 
0-5 

—4-2 


(4) 
Phenol + cresylic  acid. 

Phenol.        F.p.  of  hydrate. 
%  °  C. 

100-0  . .  16-0 

90-9  .  .  12-6 

83-4  .  .  9-7 

75-0  . .  5-8 

67-4  . .  2-2 

60-0  . .        —2-0 

55-5  . .        — 4-8 

The  cresylic  acid  used  in  (4)  was  a  fraction 
obtained  from  commercial  cresylic  acid  (b.p.  195° — 
203°  C),  which  had  previously  been  freed  from 
phenol  by  adding  o-cresol  and  fractionating  twice  to 
195°  C.     The  results  are  plotted  in  Fig.  3. 

This  curve  may  be  used  to  determine  the  per- 
centage of  phenol  in  mixtures  of  phenol  and  the 
cresols.  If  the  percentage  of  phenol  exceeds  55%, 
the  determination  of  the  freezing  point  of  the 
hydrate  after  addition  of  water  amounting  to  10% 
of  the  weight  of  mixture  taken,  enables  the  per- 
centage of  phenol  in  the  mixture  to  be  read  off  at 
once  from  the  curve.  If  the  percentage  of  phenol  in 
the  mixture  is  below  55%,  a  known  proportion  of 
standard  phenol  (f.p.  40'5°  C.)  is  added  to  the 
mixture  to  bring  the  percentage  of  phenol  above 
55%. 

By  a  determination  of  the  freezing  point  of  the 
hydrate  in  this  mixture  it  is  then  possible  to  calcu- 
late the  percentage  of  phenol  in  the  original  mixture 
containing  less  than  55%  of  phenol. 


336  t    HOFFERT.— DETERMINATION   OF   PHENOL   IN   MIXTURES   OF  TAR  ACIDS.   [Oct.  31,1822. 


Process. — The  method  of  determining  the  per- 
centage of  phenol  in  a  mixture  of  tar  acids  is  as 
follows  :  — The  mixture  is  first  examined  for  neutral 
hydrocarbons  and  pyridine  bases.  If  more  than 
2—3%  of  these  impurities  is  present,  a  quantity  of 
the  sample  is  freed  from  them,  either  by  steam 
distillation  of  the  solution  in  sodium  hydroxide  or 
by  extraction  of  the  solution  with  ether  or  benzene, 
as  described  by  Fox  and  Barker  (loc.  cit.).  In 
recovering  the  tar  acids  by  acidification  of  the 
alkaline  solution  with  sulphuric  acid,  the  acid  layer 
should  be  extracted  to  recover  any  phenol  present 
in  the  sodium  sulphate  solution. 


F.p. 

fC.) 


su) 

15 

^' 

5 

0 
-5 

°^ 

k 

95 


90 


65 


60 


85         80  75  70 

%  Phenol  by  weight. 

Freezing  points  o£  phenol  hydrate,  phenol-cresol  mixtures, 
containing   9-1%    water. 

Fig.  3. 


If  a  preliminary  distillation  test  shows  that  the 
mixture  of  tar  acids,  thus  treated,  distils  over 
entirely  below  205°  C,  the  determination  of  the 
phenol  may  at  once  be  proceeded  with.  If,  how- 
ever, the  presence  of  more  than  traces  of  xylendls 
and  higher  homologues  is  indicated,  these  should 
first  be  removed  by  a  preliminary  fractionation  with 
an  efficient  column  to  203°  C.  In  this  connexion  it 
may  be  mentioned  that  when  a  large  proportion  of 
phenol  is  present,  the  distillate  obtained  above 
203°  C,  even  with  an  efficient  column,  may  still 
contain  appreciable  quantities  of  phenol.  In  most 
samples  of  cresylic  acid,  however,  the  phenol  content 
is  fairly  low  and  all  the  phenol  distils  over  below 
this  temperature.  Moreover  fractions  with  high 
phenol  content  obtained  in  works  practice  (except  in 
the  case  of  crude  carbolic  acid  itself)  have  usually 
been  obtained  by  the  fractionation  of  crude  carbolic 
acid  and  are  entirely,  or  almost  entirely,  free  from 
xylenols  and  higher  homologues.  The  method  of 
determining  the  phenol  in  crude  carbolic  acid  will 
be  described  later. 

The  mixture  of  tar  acids  obtained  above  should 
have  been  freed  from  water. 

A  known  weight  of  standard  phenol  (f.p.  405°  C.) 
is  then  added  to  a  weighed  portion  of  the  above 
mixture  (X),  so  as  to  yield  a  mixture  containing  at 
least  55%  of  phenol,  and  10%  of  its  weight  of  water 
is  run  in  from  a  burette.  For  the  determination  of 
the  freezing  point  of  the  phenol  hydrate,  12 — 15  g. 
of  this  solution  is  required.  The  freezing  point 
apparatus  is  similar  to  that  described  by  Fox  and 
Barker,  and  consists  of  a  thin-walled  test  tube, 
inserted  into  another  tube  of  slightly  larger 
diameter  acting  as  an  air  bath,  at  the  bottom  of 
which  some  dry  calcium  chloride  is  placed  to  keep 
the  air  dry  and  prevent  the  formation  of  mist. 

The  temperature  of  the  solution  is  read  on  a 
thermometer  graduated  from  +20°  to  -10°  C.  and 
reading  to  tenths  of  a  degree.  The  liquid  is  stirred 
regularly  by  means  of  a  stout  spiral  copper  wire 
stirrer.     A  preliminary   freezing  point  determina- 


tion is  first  made.  The  apparatus  is  placed  in  a 
freezing  mixture  of  ice  and  salt  and  cooled,  with 
constant  stirring,  until  crystals  of  the  hydrate 
appear.  It  is  advisable  to  seed  the  cooled  solution 
with  a  crystal  of  phenol  hydrate,  to  ensure  that 
phenol  hydrate  crystallises  out  and  not  mixed 
crystals  of  phenol  and  the  cresols.  A  tube  contain- 
ing phenol  hydrate  should  be  kept  in  the  freezing 
mixture  for  this  purpose.  The  crystals  of  the 
hydrate  are  fairly  easily  distinguished  from  those  of 
the  mixed  crystals  of  phenol  and  the  cresols. 
The  apparatus  is  then  removed  from  the  freezing 
mixture  and  allowed  to  warm  up,  with  constant 
stirring,  and  the  temperature  at  which  the  crystals 
of  hydrate  just  disappear  is  read  off  on  the  ther- 
mometer. 

A  more  careful  freezing  point  determination  is 
then  made.  The  tube  is  again  cooled,  a  freezing 
mixture  being  employed,  if  necessary,  until  the 
liquid  in  the  freezing  point  tube  is  a  few  degrees 
below  the  preliminary  freezing  point  determined 
above.  The  cooled  liquid  is  then  seeded  with  a 
crystal  of  phenol  hydrate  and  stirred  rapidly.  In 
this  way  a  fine  "cloud"  of  hydrate  crystals  is 
formed.  The  apparatus  is  now  removed  from  the 
cooling  bath  and  placed  in  a  bath  of  water  cooled 
with  ice  to  a  temperature  1° — 2°  above  that  of  the 
preliminary  freezing  point  already  determined.  The 
solution  is  constantly  stirred  and  the  temperature 
read  off  at  which  the  fine  "  cloud  "  of  crystals  just 
disappears.  By  taking  the  above  precaution  of 
obtaining  only  a  fine  "  cloud  "  of  crystals,  and  not 
allowing  large  crystals  to  form,  the  temperature  at 
which  the  crystals  just  disappear  may  be  found  with 
precision  and  successive  determinations  should  not 
differ  by  more  than  0T°  C. 

Having  obtained  the  freezing  point  _  of  the 
hydrate,  the  percentage  of  phenol  in  the  mixture  is 
then  read  off  from  the  curve  (  =  p),  and  the  per- 
centage of  phenol  (x)  in  the  original  mixture  (X)  of 
tar  acids  calculated  from  the  formula:  — 
x=  {p(a  +  b)-100b  }+a 

where  a  is  the  weight  of  original  mixture  (X)  taken 
and  6  the  weight  of  standard  phenol  added. 

The  table  below  gives  the  data  from  which  the 
phenol  hydrate  curve  used  is  constructed :  — 

%  Phenol  in 
mixture. 

100 

95 

90 

85 

80 

75 

70 

65 

60 

55 

The  above  method  has  b 
mination  of  phenol  in  cresylic  acid,  and  also  for  the 
determination  of  phenol  in  the  numerous  fractions 
with  higher  phenol  content,  obtained  in  the  working 
up  of  crude  carbolic  acid. 

Where  a  comparison  has  been  made  between  the 
present  method  and  that  of  Fox  and  Barker,  the 
results  obtained  have  been  in  fairly  good  agreement, 
as  shown  in  the  table  below  :  — 

%  Phenol  determined. 
Fox  &  Barker's 

method, 
(curve  corrected 
Hydrate  for  phenol,  Cresols  present 

method.        f.p=40-5°  C.).  (approx.). 

65-3         ..        65-9       „     o-cresol,  20%  ;  m  +  p-cresols,  14  _ 
62-8         ..        61-8       ..     o-cresol,  19%  ;  m+p-cresols,  19% 
57-5         . .        57-1       . .     Chiefly  o-cresoL 
491         ..        48-5       ..     o-cresol,  30%. 
40-8         . .        40-4       . .     o-cresol,  15%  ;  m+p-cresols,  33%. 
15-2         ..        14-5       ..     o-cresol,  16%. 
13-1  13-0       ..     o-cresol,  15%  ;  m+p-cresols,  60%. 

6-2         . .         5-8       . .     o-cresol,  30%. 

The  method  described  in  the  present  paper  has 
the   following    advantages   over   that   of    Fox    and 


F.p. 

of  hydrate 

(91% 

160 

14-25 

12-25 

10-25 

81 

5-8 

3-4 

0-75 

—2-2 

—5-2 

used 

O] 

the  det 

a*°/ 


Vol.XLL.No.20.]    GARNER  AND  WATERS.— APPARATUS  FOR  ELECTROMETRIC  TITRATION.  337  T 


Barker: — (1)  It  is  more  rapid  and  more  generally 
applicable  as  a  works  test,  since  there  is  no  pre- 
liminary fractionation  (or  fractionations)  to  sepa- 
rate the  phenol  with  o-cresol.  (2)  The  effect  of 
small  traces  of  moisture  left  in  the  phenol-cresol 
mixture  is  practically  negligible  in  the  hydrate 
method,  since  the  hydrate  curve  is  almost  flat  (9% 
water).  In  using  Fox  and  Barker's  method,  it  is 
necessary  to  dry  the  mixture  thoroughly  over 
freshly  ignited  calcium  chloride  before  determining 
the  freezing  point.  (3)  A  greater  degree  of  accuracy 
is  attainable  when  the  phenol  content  of  a  mixture 
of  phenol  and  the  cresols  is  low,  since  although  the 
slope  of  the  hydrate  curve  is  approximately  the 
same  as  that  of  the  phenol-o-cresol  freezing  point 
curve,  the  range  of  the  hydrate  curve  is  more  than 
double  that  of  the  latter  curve. 

In  the  above  investigation  the  freezing  point  of 
the  phenol  used  was  40'5°  C,  since  phenol  of  this 
freezing  point  is  readily  prepared  from  ordinary 
samples  of  phenol.  Probably  the  most  accurate 
determination  of  the  freezing  point  of  phenol  is 
that  of  Leroux  (J.  Pharm.  Chim.,  1919,  (7)  20,  88), 
who  found  that  pure  anhydrous  phenol  melts  at 
40-85°  C. 

Determination  of  phenol  in  crude  carbolic  acid. 

The  hydrate  method  enables  the  phenol  content 
of  samples  of  crude  carbolic  acid  to  be  readily  deter- 
mined. The  sample  should  first  be  freed  from 
neutral  hydrocarbons  and  pyridine  bases,  if  these 
amount  to  more  than  2 — 3%.  A  weighed  quantity 
of  the  sample  is  then  fractionated  with  an  efficient 
column.  The  water  is  collected  separately,  "  salted 
out,"  and  the  oil  returned  to  the  distillation  flask. 
The  oil  is  fractionated  to  202°  C.  (distillate  A).  To 
the  weighed  residue  about  half  its  volume  of  o-cresol 
is  added,  and  the  resulting  mixture  again  frac- 
tionated to  202°  C.  (distillate  B).  In  this  way  the 
small  amount  of  phenol  left  in  the  residue  boiling 
above  202°  C.  is  removed.  A  determination  of  the 
phenol  in  the  weighed  distillates,  A  and  B.  by  the 
hydrate  method  enables  the  percentage  of  phenol  in 
the  original  crude  carbolic  acid  to  be  calculated. 

The  thanks  of  the  author  are  due  to  Messrs. 
Bowdler  and  Bickerdike,  in  whose  research  labora- 
tory the  work  described  in  this  paper  was  carried 
out,  for  kind  permission  to  publish  the  results. 

A  SIMPLE  APPARATUS  FOR  ELECTRO- 
METRIC   TITRATION. 

BY   W.   E.   GARNER  AND  C.   A.    WATERS. 

During  the  course  of  a  number  of  experiments  on 
the  methods  of  electrometric  analysis  devised  bv 
Treadwell  and  Weiss  (Helv.  Chim.  Acta,  1919,  2, 
680),  a  simple  apparatus  was  devised  which  differs 
in  certain  essential  details  from  the  apparatus 
described  by  these  authors.  This  apparatus,  as 
may  be  seen  from  the  illustration,  consists  of  an 
electrode  vessel  attached  to  a  rotating  stirrer.  The 
electrode  vessel,  A,  carries  a  small  bulb,  which  is 
convenient  in  the  preparation  of  a  calomel 
electrode,  and  two  side  tubes  turned  downwards 
and  constricted  at  the  ends.  The  appropriate  metal 
used  as  an  electrode  is  either  fused  or  waxed  into  a 
thin  glass  tube,  and  attached  by  means  of  a  small 
binding  screw  to  a  rotating  spindle,  electrical 
connexion  being  made  through  a  small  steel 
mercury  cup,  B,  to  a  binding  screw,  C.  The 
constricted  side  tubes  of  the  electrode  vessel  are 
packed  with  asbestos  as  described  by  Treadwell,  and 
the  vessel  completely  filled  with  electrolyte  and 
supported  from  the  glass  tube  by  means  of  a  waxed 
cork.  To  prevent  the  formation  of  small  bubbles  in 
the  constricted  tubes,  it  is  advisable  to  store  in  a 
solution  of  the  electrolyte  of  the  same  strength.  It 
is  also  essential  to  avoid  the  presence  of  a  bubble 
of  air  in  the  electrode  vessel  itself,  for  this  makes 


it  more  sensitive  to  temperature  changes  and  leads 
to  leaks  during  the  analysis.  The  down  turned 
capillaries  make  it  possible  to  start  a  titration 
with  5  c.c.  of  solution  in  the  beaker,  whereas  an 
apparatus  of  the  type  described  by  Treadwell  of 
corresponding  capacity  required  nearly  50  c.c. 
before  the  ends  of  the  capillaries  were  immersed. 
The  electrode  is  best  driven  at  a  rate  of  80—90 
revolutions  per  minute.  The  outer  electrode  may  be 
of  any  convenient  form  such  as  that  shown. 


The  electromotive  force  generated  between  the 
electrodes  was  measured  by  a  high-resistance  milli- 
voltmeter  (1000  ohm)  which  was  connected  to  one 
of  the  arms  of  a  resistance  box.  The  electrodes  were 
connected  across  the  whole  resistance  of  the  box 
(10,000  ohms)  and  the  resistances  in  the  two  arms  of 
the  box  were  so  adjusted  as  to  give  the  maximum 
deflection  in  the  millivoltmeter. 

In  the  case  of  silver  titrations 


lN/100NaCl 


A,l    .VIOAgNOj    N/100  AgNOs 


Ag 


mer  electrode. 


results  giving  an  end-point  within  005  c.c. 
-V/100  NaCl  were  readily  obtained  and  reproduced 
(see  Treadwell,  loc.  cit.).  Equally  good  results  were 
obtained  with  zinc  titrations  with  potassium  ferro- 
cyanide. 

|\N/10ZnSO4 


Pt 


N/10  K4Fe  (CN)*  N/10K,Fe(CN), 


Pt 


inner  electrode. 


An  attempt  was  made  to  apply  this  method  to 
the  titration  of  sulphates  by  means  of  barium  salts 
but  it  was  found  impracticable  except  in  the  titra- 


338  T 


DRUMMOND.— THE   MANUFACTURE   OP   1.3.5-TRINITROBENZENE.        [Oct.  31,  1922. 


tion  of  the  alkali  sulphates,  when  it  worked  very 
well.    The  arrangement 

\N/20  Ba(OH)2 


Hg  !  HgSQ4  N/10  H2S04  xV/10  S04- 


Hg 


inner  elect roae. 


in  which  the  mercury  electrode  consisted  of  a  fine 
stream  of  mercury,  gave  satisfactory  results. 

The  method  is  inapplicable  to  the  sulphates  of 
metals  giving  insoluble  hydroxides. 

The  Physical  Chemical  Laboratories, 
University  College,  London. 


CRESYLIC    ACID. 

BY    J.    J.    FOX. 

Corrigenda. 

In  a  paper  dealing  with  the  composition  of 
cresylic  acid  (J.,  1920,  169  t)  a  method  for  deter- 
mining the  proportion  of  o-cresol  was  described 
depending  upon  the  specific  gravity  of  the  cresylic 
acid.  The  formula  given  was  calculated  from  the 
products  of  the  percentages  of  the  various  cresols 
and  their  specific  gravity,  but  the  accurate  method 
of  calculation  is,  of  course,  to  add  the  volumes  of 
the  constituents. 

The  correct  formula  is:  — 

8210— (8529  -  G)— (P  x  2'  942)  =  %  o-cresol, 

where  G  is  the  specific  gravity  of  the  mixture,  and 
P  the  percentage  of  phenol;  or  in  the  absence  of 
phenol :  — 

8210— (8529-=- G)=%  o-cresol. 

Li  practice  the  results  obtained  with  either 
formula  do  not  differ  greatly  because  it  happens 
that  the  specific  gravities  of  the  cresols  are  fairly 
close  together. 

The  table  of  the  "  Specific  gravities  of  phenol 
with  a  mixture  of  o-cresol  and  m-cresol  "  (J.,  1917, 
845)  should  be  deleted,  as  the  specific  gravities 
shown  refer  to  an  entirely  different  series  of 
mixtures  of  the  three  cresols  and  phenol. 


THE     MANUFACTURE     OF     1.3.5-TRINITRO- 
BENZENE. 

BY  ALAN  A.   DRTTMMOND,   M.SO. 

This  paper  gives  an  account  of  an  investigation 
of  methods  for  the  economical  production  of 
s-trinitrobenzene  with  a  view  to  its  large-scale 
manufacture.  Several  workers  have  examined 
methods  of  direct  nitration  (Hepp,  Annalen,  1882, 
215,  345;  Lobry  de  Bruyn,  Rec.  Trav.  Chim.,  1891, 
13,  149;  Radcliffe  and  Pollitt,  J.,  1921,  45  t).  An 
indirect  method  involving  nitration  has  been 
proposed  by  Frankland,  in  which  l-chloro-2.4- 
dinitrobenzene  is  nitrated  to  form  picryl  chloride 
and  the  chlorine  group  subsequently  replaced  by 
hydrogen.  No  large-scale  production  has  been 
mentioned,  however. 

Radcliffe's  work  (loc.  cit.)  showing  the  compara- 
tive ease  of  nitration  of  dinitrobenzene  using  100% 
nitric  acid  and  oleum  containing  60%  free  S03,  and 
also  the  good  result  obtained  by  Frankland  and 
Garner  (J.  1920,  257  t)  by  nitrating  chlorodinitro- 
benzene  led  to  the  work  described  in  this  paper. 

Hepp    obtained    a    yield    of    45%    of    theory   of 


trinitrobenzene  using  highly  concentrated  acids, 
whilst  Radcliffe  and  Pollitt  claimed  yields  of  70% 
of  theory. 

The  strongest  acids  readily  available  in  quantity 
in  the  factory  were  oleum  containing  about  20% 
free  S03  and  nitric  acid  containing  at  a  maximum 
not  more  than  95%  HN03.  These  acids  were  there- 
fore used  in  the  experiments  and  applied  in  the 
first  place  to  the  nitration  of  pure  m-dinitrobenzene 
recrystallised  from  alcohol  (m.p.  89'5°  C).  The 
methods  adopted  in  the  nitration  work  were 
modelled  on  those  employed  in  the  nitrating  factory 
in  the  nitration  of  mono-  and  dinitrotoluene  (see 
Technical  Records  of  Explosives  Supply.  1915 — 
1918.  No.  2.  Manufacture  of  Trinitrotoluene ;  J., 
1921,  3  e)  and  on  the  method  employed  by  Frank- 
land  and  Garner  (loc.  cit.)  in  nitrating  1-cMoro- 
2.4-dinitrobenzene.  Methods  for  the  isolation  of 
trinitrobenzene  from  the  crude  nitration  product 
containing  dinitrobenzene  were  also  investigated, 
including  those  of  crystallisation  and  also  forma- 
tion of  additive  compounds  (Hepp,  loc.  cit.,  and 
Sudborough,  Chem.  Soc.  Trans.,  1916,'  109,  1339). 
In  this  connexion  a  setting  point-composition 
curve  was  constructed  for  mixtures  of  m-dinitro- 
benzene and  1.3.5-trinitrobenzene. 

Work  on  the  following  Jines  was  carried  out : 
The  materials  used  were  oleum  containing  about 
22%  of  free  S03  (100  parts  being  equivalent  to 
104  parts  of  100%  sulphuric  acid);  nitric  acid  of 
90%  strength,  and  dinitrobenzene,  m.p.  89'5°  C. 
The  nitrations  were  carried  out  with  systematic 
alteration  of  variables,  viz.,  proportion  of  nitric 
acid,  concentration  of  nitric  acid  and  sulphuric 
acid,  proportion  of  sulphuric  acid,  time  of  nitration, 
temperature  of  nitration,  and  mode  of  mixing  the 
reaction  materials.  Comparative  nitrations  were 
carried  out  with  dinitrobenzene  and  chlorodinitro- 
benzene  under  similar  conditions. 

The  apparatus  used  was  a  round-bottomed 
nitrating  flask  with  long  glass  air  condenser 
attached  to  it  by  a  ground  glass  joint.  The  flask 
was  heated  by  an  oil  bath,  and  agitation  was 
effected  by  periodical  vigorous  shaking. 

Two  methods  were  adopted  in  the  initial  mixing 
of   the   materials  :  — 

(1)  "Hot  mixing."  The  charge  of  dinitro- 
benzene, dissolved  in  the  required  amount  of  nitric 
acid  and  warmed  to  80° — 90°  C,  was  added 
gradually  to  the  required  amount  of  oleum,  also 
heated  to  90°  C,  with  continual  shaking,  keeping 
the  temperature  of  the  mixture  at  about  95° — 
100°  C.  External  heating  was  not  required  to 
maintain  a  temperature  of  100°  C.  until  the  bulk  of 
the  solution  had  been  added. 

(2)  "  Cold  mixing."  The  dinitrobenzene,  dis- 
solved in  nitric  acid,  was  run  cold  into  oleum,  also 
at  ordinary  temperature,  without  cooling.  The 
maximum  temperature  reached  was  110°  C,  and  as 
the  final  portions  of  the  nitric  acid  solution  were 
added  the  temperature  fell.  In  each  method  the 
temperature  was  subsequently  raised  at  the  rate 
of  about  1°  C.  in  two  minutes.  The  proportion 
of  sulphuric  acid  to  nitric  acid  was  chosen  so  that 
the  waste  acid  after  nitration  and  before  dilution 
was  not  more  than  about  97%  H2SOd.  Dilution  to 
75%  H2S04  was  found  to  precipitate  the  bulk  of 
the  nitration  product.  The  yield  was  determined 
on  the  nitration  product  from  the  completely 
"  drowned  "  nitration  charge. 

The  reaction  mixture  after  each  nitration  was 
poured  into  2 — 3  times  its  weight  of  water  with 
cooling.  The  solid  product  was  filtered  off  and 
washed  twice  by  steam-blowing  and  granulating 
in  cold  water,  dried  in  the  steam-oven,  and 
weighed.     The  proportion  of  trinitrobenzene  in  the 


Vol.  XIX,  No.  20.1       DRUMMOND.—  THE   MANUFACTURE   OF   1.3.5-TRINITROBENZENE. 


339  t 


nitration  product  was  determined  from  the  setting 
point  curve  for  mixtures  of  trinitrobenzene  and 
dinitrobenzene  (<•/.  infra). 


ditions  of  nitration.  A  yield  of  68%  of  picryl  chloride 
is  obtained  as  compared  with  18%  of  trinitrobenzene, 
the  loss  of  chlorodinitrobenzene  being  14 — 15%   as 


Table 

1. 

Yields. 

Wt.  of 

104% 

90% 

Calc. 

strength 

DNB. 

No. 

DNB. 

H.SO,. 

HNO,. 

HNO,. 

of  spent 

Temp. 

Time. 

Mode  of 

TNB. 

unchanged 

Loss  % 

g- 

g- 

g- 

mols. 

acid. 

/o 

°C. 

his. 

mixing. 

%  on 
theorv. 

0/ 

on  DNB. 

on 
DNB. 

1 

20 

144 

32 

4 

96-6 

130 

12 

Hot 

18-8 

46-5 

30 

2 

20 

150* 

29 

3-6 

93-5 

130 

12 

Cold 

18-4 

47-0 

30 

3 

20 

144 

32 

4 

96-6 

130 

6 

Hot 

190 

43 

33 

4 

20 

144 

32 

4 

96-6 

130 

6 

Cold 

19-6 

47-5 

28 

5 

20 

144 

32 

4 

96-6 

130 

3 

Cold 

23 

46-5 

26 

6 

20 

296 

60 

7 

97 

130 

3 

Cold 

29-4 

23-5 

42-5 

7 

20 

308 

60 

7 

93-5 

130 

12 

Cold 

30 

17 

4-8 

8 

20 

144 

32 

4 

96-5 

120 

6 

Hot 

14 

50-5 

31 

9 

20 

1" 

32 

4 

93-5 

120 

6 

Hot 

13 

61 

21 

10 

20 

141 

30t 

4 

98 

130 

3 

Cold 

22 

43 

30-5 

11 

20 

144 

30t 

4 

96 

130 

3 

Cold 

23 

46-5 

26 

12 

30 

666 

135 

11 
*  100% 

96 
H,SO,. 

130 
1 100% 

6 
HNO„ 

Cold 

32 

1-3 

64-5 

The  effects  of  the  two  methods  of  mixing  are 
shown  in  Nos.  1 — 4.  A  twelve-hour  nitration  gives 
the  same  result  by  both  methods,  but  after  a  six- 
hour  nitration  the  method  of  hot  mixing,  as  might 
be  expected,  appears  to  have  increased  oxidation 
with  consequent  loss  of  product. 

The  time  factor  is  an  important  one  in  the 
nitration  of  dinitrobenzene.  It  has  previously  been 
thought  that  long  nitration,  extending  to  a  number 
of  days,  was  essential.  It  has,  however,  been  found 
that  the  limit  of  nitration  is  reached  in  a  much 
shorter  period,  further  action  only  leading  to  oxida- 
tion. By  reducing  the  time  of  nitration  to  3  hours 
from  the  start  of  mixing  the  materials,  marked 
improvement  over  the  result  of  6-  and  12-hour  nitra- 
tions was  obtained  (c/.  Nos.  2,  4,  5,  6,  7). 

The  effect  of  temperature  is  seen  in  two  experi- 
ments (Nos.  8  and  9)  carried  out  at  120°  C.  (cf. 
No.  3).  Nitration  at  this  temperature  evidently 
requires  a  longer  time  for  completion. 

In  Nos.  10  and  11  the  concentration  of  the  nitric 
acid  was  raised  to  100%,  but  with  4  molecules  HN03 
and  three  hours'  nitration  no  improvement  was 
obtained. 

Reference  to  the  results  of  Nos.  5,  6,  and  12  shows 
that  the  yield  of  trinitrobenzene  increases  with  the 
amount  of  nitric  acid  taken.  The  amount  of  oxida- 
tion also  increases  at  a  rapid  rate.  It  would  appear 
from  the  figures  that  a  further  increase  of  nitric 
acid  beyond  11  mols.  and  under  the  same  conditions 
would  not  effect  any  marked  improvement  in  the 
yield. 

Setting  points  of  mixtures  of  trinitrobenzene  and 
dinitrobenzene. 


Dinitrobenzene. 

Trinitrobenzene. 

Setting  point 

% 

% 

•c. 

0 

100 

121 

22-4 

77-6 

96-3 

30-4 

69-6 

85-7 

36-9 

631 

75-3 

41-2 

58-8 

70-7 

44-8 

55-2 

64-9 

47-0 

530 

61-4 

49-5 

50-5 

57-2 

50-7 

49-3 

57-S 

53-4 

46-6 

57-8 

57-2 

42-8 

60-3 

62-8 

37-2 

65-2 

71-3 

28-7 

71-5 

751 

24-9 

74-5 

80-8 

19-2 

780 

87-3 

12-7 

820 

1000 

0 

89-5 

An  indirect  method  of  preparing  trinitrobenzene 
involved  the  preliminary  nitration  of  chlorodinitro- 
benzene, and  it  was  therefore  desirable  to  compare 
the  relative  ease  of  nitration  in  each  method,  the 
tests  being  carried  out  under  exactly  similar  con- 


compared  with  35%  of  dinitrobenzene.  The  yields 
of  picryl  chloride  and  unchanged  chlorodinitro- 
benzene  were  determined  by  the  use  of  the  setting 
point  curve  for  mixtures  of  chlorodinitrobenzene 
and  picryil  chloride  (Frankland  and  Garner,  loc. 
cit.). 

The  above  table  has  been  obtained  from  the 
determination  of  setting  points  of  artificially  pre- 
pared mixtures  of  pure  trinitrobenzene  and  dinitro- 
benzene. The  curve  plotted  from  these  figures 
indicates  that  dinitrobenzene  and  trinitrobenzene 
form  a  compound  between  limits  of  45  %  and  50% 
trinitrobenzene,  with  setting  point  58°  C.  This 
compound  occasions  considerable  trouble  when 
mixtures  rich  in  dinitrobenzene  are  being  dealt 
with  for  the  recovery  of  trinitrobenzene.  It  would 
seem  to  be  the  cause  of  the  assumption  of  an 
isomeric  trinitrobenzene  made  by  Radcliffe  and 
Pollitt  (loc.  cit.;  see  also  Gibson,  J.,  1921,  90 t). 

The  yield  of  trinitrobenzene  obtained  in  the 
various  nitrations  described  has  been  determined  by 
the  use  of  a  curve  constructed  from  the  above  table. 
The  setting  point  of  the  washed,  dried  nitration 
product  was  determined  and  the  composition  read 
off  from  the  curve.  Where  there  was  uncertainty 
regarding  the  side  of  the  curve  to  which  the  par- 
ticular setting  point  referred,  a  known  proportion 
of  pure  trinitrobenzene  was  added  to  the  mixture 
and  the  setting  point  redetermined.  The  move- 
ment up  or  down  of  the  setting  point  after  the 
addition  decided  the  original  composition. 

Separation  of  trinitrobenzene  from  mixtures 
irith  dinitrobenzene. 

Attempts  were  made  to  separate  trinitrobenzene 
from  dinitrobenzene  by  :  — ■ 

(1)  Fractional  crystallisation  from  alcohol  and 
carbon  tetrachloride.  The  following  table  gives  the 
-olubilities  of  dinitrobenzene,  trinitrobenzene,  and 
the  50%  eutectic  mixture  in  alcohol :  — 


Dissolved  substance. 

DNB. 

50%  eutectic 
TNB. 


100  g.  dissolves  : 

At  100°  C.  At  20-5°  C. 

g- 

25-6 

18-2 

8-5 


g- 
3-5 

1-9 


Mixtures  of  dinitrobenzene  and  trinitrobenzene 
of  known  setting  point  and  composition  were  crys- 
tallised from  alcohol,  and  the  composition  deter- 
mined respectively  of  the  portion  crystallised  out 
and  that  remaining  in  the  mother  liquor  (by  use  of 
the  setting  point  curve).  The  results  of  these 
experiments  (see  Table)  indicate  clearly  the  diffi- 
culty of  separating  .mixtures  of  DNB  and  TNB  by 
fractional  crystallisation  from  alcohol. 


340  T 


DRUMMOND.— THE   MANUFACTURE   OP   1.3.5-TRINITROBENZENE.        [Oct.  31,  1922. 


Original 
mixture. 


Crystallised 
out. 


In  mother 
liquor. 


Setting 
point. 
•C. 

860 
66-5 
700 


Content    g.  per 
of         100  g 


Setting   Content   Setting   Content 


TNB. 
% 
70 
66 
80 


original 
mixture. 

72-5 

75-0 

80-2 


point 
°C. 

960 
770 
08-5 


of 
TNB. 

o/ 

/o 

780 
650 
32-5 


point. 

66-0 
66-5 
77-0 


of 

TNB. 

o/ 

/o 

46 
36 
21 


(2)  Fractional  precipitation  from  the  nitrating 
acids,  in  which  again  the  compound  of  trinitro- 
benzene  and  dinitrobenzene  apparently  prevents 
separation. 

(3)  Formation  of  compounds  with  aniline,  a-  and 
/3-naphthylamine  and  subsequent  recovery  of  tri- 
nitrobenzene.  The  aniline  compound  offered  most 
promise,  chiefly  because  of  the  readiness  with  which 
trinitrobenzene  can  be  recovered  by  evaporation 
of  aniline  and  simultaneous  recovery  of  the  aniline. 
From  a  mixture  of  dinitrobenzene  and  trinitro- 
benzene containing  50%  of  trinitrobenzene  a 
recovery  of  80 — 90%  of  pure  trinitrobenzene  was 
possible  by  this  means. 

The  author's  best  thanks  are  due  to  Miss  R.  M. 
Duckham,  B.Sc,  for  the  determinations  of  the 
setting  points  of  mixtures  of  trinitrobenzene  and 
dinitrobenzene,  for  the  determinations  of  the  solu- 
bilities, and  for  the  figures  obtained  in  the  recrys- 
tallisation  experiments. 

Conclusions. 

From  the  foregoing  work  conclusions  may  be 
summarised  as  follows:  — 

(1)  A  yield  of  29%  of  theory  of  trinitrobenzene 
with    a    24%    recovery    of    dinitrobenzene   may    be 


obtained  by  a  three-hour  nitration  at  130°  C.  with 
nitric  acid  of  90%  strength  and  fuming  sulphuric 
acid  containing  22%  of  free  SO.,.  The  expenditure 
of  nitric  acid  is  equivalent  to  7  molecules,  using 
sulphuric  acid  in  quantity  calculated  to  give  a  6pent 
acid  of  about  95%  H3SO«.  The  destruction  of 
dinitrobenzene  amounts  to  43%  of  the  original 
weight  of  dinitrobenzene. 

(2)  Less  nitric  acid  gives  less  trinitrobenzene  but 
also  less  loss  by  oxidation ;  thus,  4  mols.  HNO.,  gives 
22%  of  trinitrobenzene  in  three  hours  at  130°  C.  and 
30%  loss  of  dinitrobenzene. 

(3)  A  greater  amount  of  nitric  acid  gives  a 
larger  amount  of  oxidation  loss  but  a  purer  trinitro- 
benzene. Thus,  11  mols.  HNO,  gives  32%  of 
trinitrobenzene  in  6  hours,  with  about  1%  of 
dinitrobenzene  recoverable.  The  nitration  product 
is  a  good  crude  trinitrobenzene  of  setting  point 
117°— 118°  C. 

(4)  From  these  results  it  appears  that  with  the 
acids  given  the  economical  manufacture  of  trinitro- 
benzene by  direct  nitration  is  not  practicable. 

(5)  The  comparative  nitration  of  chlorodinitro- 
benzene  and  dinitrobenzene  shows  that  a  yield  of 
68  %  of  picryl  chloride  can  be  obtained  as  compared 
with  18%  of  trinitrobenzene,  the  relative  losses  of 
chlorodinitrobenzene  and  dinitrobenzene  being 
respectively  15%  and  35%.  Trinitrobenzene  can 
therefore  be  made  more  economically  from  chloro- 
dinitrobenzene through  picryl  chloride,  as  the  final 
replacement  of  the  chlorine  is  readily  accomplished. 

The  author's  thanks  are  due  to  the  Director  of 
Artillery  for  permission  to  publish  this  paper. 


Vol.   XL!..  No.  21.] 


TRANSACTIONS 


[November  15,  1922. 


London  Section. 


Meeting  held  at  Institution,  of  Mechanical 
Engineers  on  May  29,  1922. 


ME.   E.    V.   EVANS   IN   THE   CHAIB. 

THE  STRUCTURE  OF  COKE :  ITS  ORIGIN 
AND  DEVELOPMENT. 

BY  SIB  GEORGE  BEILBT. 

In  oonnexion  with  the  work  of  the  Fuel  Research 
Board  it  was  early  recognised  that  for  the  study  of 
the  behaviour  of  different  types  of  coal  during  car- 
bonisation the  ordinary  laboratory  methods  of  coal 
testing  and  analysis  were  quite  inadequate,  and 
that  for  the  purposes  of  this  inquiry  a  new  method 
of  assay  must  be  elaborated.  A  full  description  of 
the  method  which  was  ultimately  devised  and  of 
the  apparatus  in  which  it  was  carried  out  has 
already  been  published.*  In  this  apparatus  the 
yields  of  the  principal  products  of  carbonisation  at 
any  given  temperature  are  ascertained  by  direct 
weighing  and  measurement,  while  much  useful 
information  is  obtained  as  to  the  physical  and  other 
properties  of  the  products.  Of  no  less  importance 
are  the  opportunities  which  this  method  presents 
for  the  study  of  the  behaviour  of  different  types  of 
coal  during  carbonisation,  e.g.,  the  stages  in  the 
evolution  of  the  hydrocarbon  gases,  the  changes  in 
composition  of  these  at  each  stage,  and  the  influence 
of  the  fusibility  of  the  coal  on  the  ultimate  form 
and  structure  of  the  resulting  coke.  The  last- 
named  study  has  a  very  direct  bearing  on  the  prac- 
tical side  of  the  problem  of  industrial  carbonisation, 
not  only  for  the  production  of  a  satisfactory  smoke- 
less fuel  for  domestic  use,  but  also  on  the  pro- 
duction of  coke  for  metallurgical  and  other  indus- 
trial purposes. 

The  following  experimental  observations  were  for 
the  most  part  carried  out  on  average  samples  taken 
from  bulk  deliveries  of  the  different  coals  as  these 
were  received  at  H.M.  Fuel  Research  Station.  The 
deliveries  in  some  cases  represented  the  whole  coal 
from  one  definite  seam,  and  in  others  the  result 
of  screening,  or  screening  and  washing,  the  small 
coal  from  several  seams.  No  attempt  was  made 
at  this  stage  to  carry  out  the  separate  examination 
ot  the  distinct  bands  of  which  the  seams  were 
composed. 

The  samples  used  were  obtained  by  methods 
which  have  been  described  in  the  reports  of 
H.M.  Fuel  Research  Station ;  but  for  the  present 
purpose  it  is  sufficient  to  note  that  a  large  bulk 
sample  was  crushed,  mixed,  quartered,  and  finally 
ground  till  it  would  all  pass  through  a  50-mesh 
sieve.  The  material  carbonised  in  the  assay 
apparatus  in  the  laboratory  and  later  in  the  trays 
of  the  horizontal  retorts  may  therefore  be  regarded 
as  a  homogeneous  mixture,  the  behaviour  of  which 
on  carbonisation  and  the  products  obtained  there- 
from, accurately  represent  the  characteristics  of  the 
coal  as  a  whole. 

Most  seams  are  built  up  of  bands  of  varying 
fusibility,  each  of  which  would  give  different 
results  if  carbonised  by  itself.  When  coal  in  the 
rough  is  carbonised  in  gas  retorts  it  is  often 
possible  to  pick  out  pieces  of  the  coke  which  have 
obviously  resulted  from  bands  of  different  fusibility. 
When  the  more  fusible  parts  preponderate,  the 
fusion  may  become  so  general  as  to  absorb  the  less 
fusible  portions   into  one   indistinguishable  mass. 

•  Fnel  Research  Board,  Technical  Paper  No.  1 :  "  The  assay  of 
coal  lor  carbonisation  purposes,"  by  T.  Gray  and  J.  G.  King. 


In  other  cases  the  infusible  portions  retain  their 
individuality,  but  are  concreted  by  the  fused 
material  into  a  caked  mass.  The  latter  effect  is 
very  noticeable  when  a  caking  or  partially  caking 
coal  is  carbonised  in  continuous  vertical  retorts, 
while  in  heavily  charged  horizontal  retorts,  in 
which  the  charge  is  undisturbed  from  start  to 
finish,  the  effects  of  general  interfusion  are  more 
in  evidence. 

The  results  of  carbonisation  in  the  laboratory 
assay  apparatus  throw  a  great  deal  of  light  on  the 
behaviour  of  coals  of  different  fusibility  in  a  fine 
state  of  division  and  in  homogeneous  mixtures. 
Coals  for  the  purposes  of  carbonisation  may  be 
classed  under  two  heads: — (a)  those  in  which  the 
resulting  coke  occupies  a  greater  volume  than  the 
original  coal  and  (6)  those  in  which  it  occupies 
a  smaller  volume.  The  behaviour  of  class  (a)  is 
often  referred  to  as  due  to  the  "  expansion  "  of 
the  coal.  This  might  be  taken  as  implying  that 
the  actual  coke  substance,  the  material  of  which  the 
coke  structure  is  built  up,  may  be  less  dense  than 
the  coal  substance  from  which  it  is  produced. 
This  it  never  is,  for  the  coke  substance  essentially 
consists  of  carbon  in  the  vitreous  state  which  in 
itself  is  structureless,  and  the  density  of  which  is 
in  the  neighbourhood  of  1'9. 

Microscopical  study,  which  began  with  the 
examination  of  specimens  of  coke  resulting  from 
the  laboratory  assay  of  individual  coals  of  different 
degrees  of  fusibility  and  of  mixtures  of  these, 
naturally  led  to  a  more  extended  inquiry  into  the 
origin  of  coke  structure  and  as  to  the  means  by 
which  it  can  be  modified  and  controlled. 

In  charcoal  and  coke,  carbon  appears  as  the  non- 
volatile residue  of  destructive  distillation  or  car- 
bonisation. It  results  from  the  decomposition  by 
heat  of  the  complex  organic  substances  of  which 
wood,  peat,  lignite,  and  coal  are  composed,  and  the 
driving  off  by  heat  of  the  volatile  products  of  this 
decomposition.  The  higher  the  temperature  of  car- 
bonisation the  more  complete  are  the  decomposition 
and  volatilisation,  and  the  smaller  therefore  are  the 
percentages  of  hydrogen  and  other  gaseous 
elements  left  in  combination  with  the  residual  car- 
bon. By  carbonisation  at  1100°  to  1200°  C.  the 
volatile  matter  left  in  the  residue  may  be  reduced 
to  less  than  1  % . 

The  non-volatile  constituents  of  the  original 
material  are  concentrated  in  the  carbon  residue, 
and  may  exercise  a  considerable  influence  on  its 
structure.  In  the  case  of  coke  this  influence  will  be 
traced  with  some  detail  in  what  follows,  but  it  has 
a  special  significance  in  the  case  of  wood  charcoal, 
which  may  be  referred  to  now.  Even  a  superficial 
observation  of  the  charcoal  from  various  kinds  of 
wood  shows  that  the  general  features  of  the  wood 
structure  are  preserved  in  the  charcoal,  but  the 
microscope  not  only  confirms  this  general  likeness, 
it  shows  the  persistence  of  the  actual  cell  structure. 
Professor  Farmer  states  that  anyone  familiar 
with  the  micro-structure  of  various  kinds  of  wood 
can  without  difficulty  identify  the  particular  wood 
from  which  a  specimen  of  finely-powdered  charcoal 
has  been  prepared.  It  is  perhaps  not  so  generally 
known  that  this  identification  of  cell  structure  can 
to  some  extent  be  followed  to  an  even  later  stage 
by  the  study  of  the  ash  left  on  the  combustion  of 
wood  charcoal.  A  piece  of  wood  charcoal,  if 
allowed  to  burn  quietly  away  in  the  absence  of 
draughts,  leaves  its  mineral  ash  in  the  form  of  a 
delicate,  lace-like  skeleton  in  which  the  minute 
cellular  structure  of  the  wood  is  reproduced.  This 
suggests  that  these  mineral  constituents  may 
actually  contribute  to  the  preservation  of  the  plant 
cell  structure  in  the  charcoal  by  providing  infusible 
nuclei  distributed  through  the  cell  walls,  thereby 
minimising  the  obscuring  effects  of  the  fusion  of  the 
carbon  compounds  during  carbonisation.     For  we 


342  T 


BEILBY.— THE    STRUCTURE    OF   COKE. 


[Nov.  15,  1922. 


must  now  recognise  that  the  production  of  an  in- 
fusible carbonaceous  residue  from  organic  materials 
is  invariably  preceded  by  the  fusion  of  the  com- 
pounds of  carbon  with  hydrogen  and  oxygen  (and  in 
the  case  of  coal,  sulphur  and  nitrogen)  which  re- 
sult from  the  decomposition  of  these  materials  by 
heat.  For  each  type  of  organic  substance  there  is 
a  stage  in  carbon  concentration  at  which  fusibility 
ceases.  In  some  cases  the  range  of  fusibility  is  ex- 
tended by  raising  the  temperature  of  carbonisation. 
This,  as  will  be  seen,  is  the  case  in  coal  and  similar 
bituminous  materials,  while  in  carbohydrates  like 
sugar  and  cellulose  the  carbon  concentration,  with 
the  resulting  infusibility,  is  definitely  reached  at 
a  much  lower  temperature,  and  no  fresh  access  of 
fusibility  can  be-  induced  by  the  application  of 
higher  temperatures. 

In  sugar  we  are  fortunately  provided  with  a  pure 
chemical  substance  from  which  a  carbonaceous 
residue  can  be  prepared  which  is  practically  free 
from  mineral  and  other  impurities.  This  residue 
contains  only  minute  quantities  of  hydrogen  and 
oxygen,  and  it  approaches  more  nearly  to  elemen- 
tary purity  than  any  form  of  carbon  other  than 
diamond  and  graphite.  Indeed,  it  is  by  no  means 
certain  that  graphite  is  really  carbon  in  the 
elementary  state,  as  Sir  William  Bragg's  work  on 
the  atomic  structure  of  diamond  and  graphite  indi- 
cates that  in  the  relatively  open  packing  of 
graphite  there  is  room  for  a  layer  of  hydrogen 
atoms  between  the  more  densely  packed  lamellae 
which  are  in  diamond  formation.  It  may  be, 
therefore,  that  graphite  is  not  pure  carbon  but  a 
definite  compound  of  carbon  and  hydrogen. 

It  has  hitherto  been  the  custom  to  refer  to  all 
forms  of  carbon  other  than  diamond  and  graphite 
as  amorphous.  In  his  work  on  "  The  Electric 
Furnace  "  Henri  Moissan  devotes  a  chapter  to  his 
study  of  amorphous  carbon,  in  the  opening  para- 
graphs of  which  the  following  sentences  occur:  — 

"  Carbon  is  the  element  which  presents  the  most 
interesting  allotropic  varieties.  It  has  long 
attracted  the  notice  of  workers  by  its  contradictory 
properties  and  by  the  differences  existing  between 
the  specific  heats  of  the  diamond,  of  graphite  and 
of  lampblack.  .  .  .  Theses  have  often  been  written 
on  the  hypothetical  shape  of  the  carbon  atom,  but 
there  are  relatively  few  experiments  on  the  physical 
and  chemical  properties  of  the  same  carbon.  .  .  . 
In  order  to  reproduce  the  diamond,  we  were  led 
to  take  up  again  a  general  study  of  the  different 
varieties  of  carbon.  ...  In  the  first  part  we  shall 
deal  with  the  amorphous  kinds  of  carbon." 

While  Moissan  made  full  use  of  the  microscope 
in  the  study  of  graphite  and  diamond,  his  refer- 
ences to  the  micro-structure  of  amorphous  carbon 
are  very  casual,  and  amount  to  little  more  than 
the  statement  that  the  substance  was  "  amor- 
phous," which  generally  appears  to  mean  that  it 
was  in  the  form  of  a  brown  or  black  impalpable 
powder.  For  the  purpose  of  his  experimental  work 
on  the  artificial  production  of  diamond,  the  study 
of  amorphous  carbon  was  mainly  directed  to  its 
response  to  oxidation  by  oxygen  and  by  chemical 
agents  and  its  differentiation  by  these  tests  from 
graphite  and  diamond.  His  study  of  lampblack 
led  him  to  the  conclusion  that  the  carbon  in  this 
substance  can  be  polymerised  by  calcination.  The 
temperature  of  combustion  of  purified  lampblack 
in  oxygen  was  found  to  be  371°  C.  This  lampblack 
was  calcined  for  five  minutes  in  a  porcelain  crucible 
at  910°  C,  and  its  temperature  of  combustion  rose 
to  440°  C.  After  calcination  for  three  hours  the 
temperature  of  combustion  rose  to  476°  C,  and 
after  six  hours  to  506°  C.  The  density  was  raised 
by  calcination  to  187.  No  attempt  was  made  to 
associate  the  increase  of  density  and  the  reduction 
of  reactivity  with  changes  in  the  state  of  aggrega- 
tion which  should  have  been  plainly  seen  in  the 
micro-structure.      In    my   opinion   the    changes    in 


chemical  activity  may  quite  well  be  accounted 
for  by  alterations  in  molecular  aggregation  which 
in  effect  lower  the  reactivity  of  the  carbon  merely 
by  reducing  the  surface  exposed  to  oxidation. 

The  more  careful  study  of  the  aggregation  of 
solids  which  had  already  begun  some  years  before 
the  publication  of  Moissan's  work,  had  shown  that 
the  word  "  amorphous  "  was  too  apt  to  be  used 
to  cover  our  ignorance  of  forms  of  aggregation  in 
which  the  atoms  and  molecules  are  not  in  the 
orderly  formation  and  equilibrium  which  is  the 
essential  feature  of  the  crystalline  state. 

The  vitreous  state,  to  which  we  owe  so  much  in 
our  daily  lives,  where  it  is  presented  to  us  at 
every  turn,  not  only  in  its  more  obvious  forms  as 
glass  and  porcelain,  but  equally  in  metals  and 
alloys  in  the  hardened  state,  is  no  longer  regarded 
as  outside  the  scope  of  physics,  chemistry  and 
metallurgy.  It  is  a  definite  form  of  molecular 
aggregation  which  over  a  long  range  of  tempera- 
ture is  thermally  as  permanent  as  the  crystalline 
state,  while  in  many  cases  it  is  physically  the  more 
stable  form.  We  now  know  that  the  special 
rigidity  of  the  vitreous  state  is  always  associated 
with  a  state  of  strain  which  impairs  the  elastic 
freedom  of  the  individual  molecules.  The  remark- 
able hardness  of  vitreous  carbon  is  associated  with 
the  type  of  brittleness  which  results  from  this 
state  of  strain.  It  is  by  virtue  of  that  state  of 
internal  strain  that  glass  can  be  cut  by  the 
diamond.  The  diamond  does  not  really  "  cut  " 
glass;  it  cleaves  it.  The  cleft  which  can  be 
initiated  by  the  pressure  of  the  diamond  on  the 
surface,  spreads  indefinitely  in  the  plane  in  which 
it  was  initiated  owing  to  the  state  of  elastic  strain 
of  the  glass.  In  the  crystalline  state  this  elastic 
strain  does  not  exist.  A  single  well-developed 
crystal  can  be  cleft  along  certain  definite  planes, 
but  the  cleavage  in  this  case  is  due  to  the  homo- 
geneous aggregation  of  the  molecules  in  definite 
larnelke  between  which  either  cleavage  or  slip  may 
occur. 

My  own  study  of  the  steps  in  the  formation  of 
carbon  by  the  carbonisation  of  sugar  and  of  the 
micro-structure  and  properties  of  this  substance 
and  of  coke,  have  led  to  the  conclusion  that  in  most 
if  not  all  of  the  carbonaceous  residues  with  which 
we  are  familiar,  from  wood  charcoal  to  hard  coke, 
the  carbon  is  in  the  vitreous  state — it  is  a  true 
glass.  This  glass-like  character  of  the  ultimate  coke 
substance  has  from  time  to  time  been  referred  to 
by  various  observers,  though  its  significance  from 
the  physical  point  of  view  and  its  influence  on  the 
structure  and  properties  of  coke  have  not  so  far 
as  I  am  aware  been  hitherto  recognised. 

The  first  experiment  on  the  carbonisation  of 
sugar  was  made  by  slowly  heating  a  small  crystal! 
which  weighed  a  few  milligrammes  on  a  glass  micro- 
slip  on  a  hot  plate  heated  by  a  ring  burner.  Fusion 
without  discoloration  took  place  at  180° — 190°  C. 
Evolution  of  gas — mainly  water  vapour — with 
bubbling  and  foaming,  began  at  about  220°.  This 
practically  ceased  about  240° — 250°,  and  the  brown 
viscous  liquid  became  tranquil  and  remained  so 
till  about  260° — 270°,  when  gas  was  again  evolved 
with  vigorous  bubbling  and  frothing,  and  tlm 
colour  of  the  residue  became  black  except  in  films 
or  layers  of  extreme  thinness.  The  temperature* 
was  gradually  raised  to  about  450°  C.  Fig.  IT 
is  a  photomicrograph  of  the  carbon  residue  at  a 
magnification  of  xlO.  It  is  a  black  glass  which  has 
been  blown  into  a  sponge  of  communicating  bubble 
cells.  Round  the  edges  some  unburst  bubbles  are 
seen.  The  thinner  films  are  transparent  and  brown 
by  transmitted  light.  By  direct  inspection  with  the 
16-mm.  lens  small  burst  bubbles  were  detected,  the 
walls  of  which  were  so  thin  that  they  showed  the 
soap  bubble  colours.  This  vitreous  carbon  is  entirely 
without  metallic  reflection,  its  surface  is  as  smooth 


Vol.  XLI.,  Xo.  21.] 


BEILBV.— THE    STRUCTURE   OF   COKE. 


343  T 


as  glass  and  does  not  scatter  light  even  under  con- 
centrated illumination. 

Mr.  King,  chief  of  the  laboratories  of  H.M.  Fuel 
Research  Station,  has  carried  out  the  carbonisation 
of  sugar  in  the  laboratory  assay  apparatus  with  the 
following  results :  — 


Temp. 
"C.         Time. 


Amount  experimented  with :  2-3  grams. 
Behaviour. 


180         10.32       Xo  gas.    Xo  change. 

200         10.3+       Melting. 

220  10.36        Melted. 

240  10.40        Browning  and  frothing,  the 

viscous  material  blown 
into  thin  films.  Gas 
evolution ;  water  dis- 
tillate. 

250         10.43       Bapid  evolution  of  gas. 

270  10.48  Vigorous  frothing ;  char- 
ring of  the  bubble  walla 
and  films.  Light  brown 
coloured  distillate. 

290  10.51        Gas  evolution  9  c.c.  per  min. 

316  10.54        Black  residue  consisting  of 

thin  films.  Gas  evolu- 
tion still  strong. 

332  11.4  Gas  evolution  still  strong. 
Further  flaking  of  carbon 
substance. 

344         11.0         Gas  8-75  c.c.  per  min. 

374  11.21        lias  7-0      „       „       „ 

3.S0  11.28        Gas  70      „ 

393  11.37         Gas  5-5      ., 

400  11.44        Gas  3-75    ,, 

420  11.55  Gas  3  5  .,       „       „ 

468  12.20  Gas  30  ,.       „ 

4-S4  12.30  Gas  30  

495  12.35  Gas  2  75  ..        „       „ 

500  12.40  Gas  2-5  , 

508  12.39  Gas  2-5  „       ., 

516  12.55  Gas  30  .,       „ 

528  1.0  Gas  2  5  .. 

540  1.15  Gas  20  .,       „ 

550  1.25  Gas  1-75  ., 

556  1.32  Gas  1-25  „       „       ., 

562  1.38  Gas  1-25  „      „      „ 


The  carbon  residue 
is  becoming  in- 
fusible and  the 
blowing  even  of 
minute  bubbles 
has  ceased. 

Prom  this  stage 
little  or  no  fresh 
gas  was  evolved  ; 
the  gas  measured 
mainly  resulting 
from  the  expan- 
sion of  that 
in  the  apparatus 
through  rising 
temperature. 


These  results  are  not  strictly  comparable  with  my 
own  experiments  on  single  minute  crystals,  owing 
to  the  difference  in  scale,  which  was  in  the  ratio  of 
111000,  but  taking  into  account  the  very  great 
difference  in  the  scale  of  the  operations,  and  there- 
fore in  the  part  played  by  the  time  element,  the 
results  are  in  fair  agreement. 

Mr.  King  has  also  carried  out  carbonisation  ex- 
periments in  crucibles  over  a  wider  range  of  tem- 
perature to  determine  the  density  of  the  vitreous 
carbon.  At  a  temperature  of  850°  C.  a  product  of 
sp.  gr.  1'8  was  reached. 

Winter  and  Baker*  obtained  a  carbon  of  sp.  gr. 
176  by  heating  for  4  hours  at  900°  C.  After  heat- 
ing for  40  hours  the  specific  gravity  rose  to  T84. 
Forstert  found  that  sugar  charcoal  prepared  at 
high  temperature  contained  95%  of  carbon  and  1"1% 
of  hydrogen. 

Moissan  used  lampblack  as  a  standard  of  com- 
parison in  his  study  of  amorphous  carbon.  He 
states  that  the  lampblack  was  purified  by  successive 
washings  with  benzene,  alcohol  and  ether.  "  This 
is  absolutely  necessary,  and  the  quantity  of  hydro- 
carbons so  removed  was  considerable.  After  the 
ether  washing,  the  air-dried  powder  is  placed  in  an 
oven  and  the  temperature  slowly  raised  to  150°  C. 
This  lampblack  floats  on  allyl  iodide  of  1"87  density 
and  sinks  in  propyl  iodide  of  1'78  density.  Lamp- 
black so  prepared  is  far  from  being  pure.  It  holds 
tenaciously  small  quantities  of  hydrocarbons  and 
water  from  which  it  cannot  be  freed.  It  contains 
also  a  little  nitrogen. 

"  To  analyse  this  variety  of  carbon,  it  is  first 
heated  in  vacuo,  at  the  softening  point  of  glass,  in 
order  to  cause  it  to  polymerise  and  to  be  handled 

•  Chem.  Soc.  Trans.,  1920,  117,  319. 
t  Chem.  Xews,  68,  152. 


more  easily.  Some  water  and  traces  of  hydrocarbons 
are  set  free.  The  black  powder  then  gives  the 
following  figures:  — 

These  were  two  different  samples. 

No.  l.      Xo.  2. 
...  %        % 

Asl\, •    0-22  ..    0-34 

Carbon    93.21  ..   92-86 

Hydrogen 1-04  ..         i.2o 

"  If  the  hydrogen  be  expressed  as  water,  it  is 
seen  at  once  that  the  figures  add  up  to  more  than 
100,  which  shows  that  a  small  amount  of  hydrogen, 
less  than  1%,  is  still  there  in  the  form  of  hydro- 
carbon; the  remainder  comes  from  the  water  whose 
complete  removal  from  lampblack  is  not  possible." 

For  our  present  purpose  the  significance  of  the 
foregoing  analytical  results,  taken  in  connexion 
with  the  physical  properties  of  carbon  produced 
from  substances  of  known  composition,  is  that  its 
vitreous  character  becomes  more  marked  as  the  state 
of  elementary  purity  is  approached  by  the  driving 
off  of  hydrogen  or  hydrocarbons.  Though  the 
bubble  sponge  structure  must  be  regarded  as  a 
survival  of  the  fusible  state  and  the  evolution  of 
pises,  the  fact  remains  that  long  after  this  stage 
of  carbonisation  has  been  passed  the  material  re- 
tains its  glass-like  character  and  even  the  thinnest 
bubble  walls  are  still  vitreous.  The  micro-structure 
of  lampblack  films  deposited  on  a  glass  surface  has 
been  dealt  with  in  another  connexion.  ("  Aggre- 
gation and  Flow  of  Solids,"  page  64,  Fig.  35, 
Plate  XI.) 

The  hardness  of  vitreous  carbon. 

The  conversion  of  the  so-called  amorphous  forms 
of  carbon  into  graphite  by  their  exposure  to  high 
temperatures  is  well  recognised  not  only  among 
scientific  workers  but  in  industry.  Whether  this 
operation  can  be  simply  explained  as  the  natural 
passage  of  the  vitreous  to  the  crystalline  6tate, 
which  occurs  in  a  great  variety  of  substances  at  a 
temperature  much  short  of  the  liquefying  point  is, 
I  think,  still  unproved.  Experience  in  matters 
physical  shows  the  need  for  caution  in  accepting 
what  appears  to  be  the  most  simple  explanation  of 
any  phenomenon;  and  in  this  particular  case  the 
suggestion  of  Sir  William  Bragg  that  hydrogen  may 
possibly  take  part  in  the  building  up  of  graphite 
supplies  a  definite  reason  for  suspension  of  judg- 
ment. I  can  only  refer  very  briefly  to  the  sig- 
nificance of  the  suggestion  that,  in  addition  to  the 
crystalline  forms  of  carbon,  diamond  and  graphite, 
there  is  a  third  form  which  is  vitreous  and  of  lower 
density  than  either  of  these. 

If  it  is  ultimately  confirmed  that  vitreous  carbon 
has  a  density  of  185  as  compared  with  3'55  in 
diamond  and  255  in  graphite,  interesting  questions 
arise  in  regard  to  the  atomic  packing  in  the  vitreous 
state  which  may  have  an  important  bearing  on  the 
whole  theory  of  the  rigidity  of  solids. 

The  relatively  dose  packing  of  the  atoms  in  dia- 
mond seems  to  fall  naturally  in  line  with  the  extreme 
hardness  and  rigidity  of  carbon  in  that  form.  The 
sectile  quality  of  graphite,  which  causes  it  to  flow 
like  a  liquid  under  moderate  differential  pressures 
and  to  act  therefore  as  one  of  the  most  trustworthy  of 
lubricants  for  moving  surfaces  under  high  pressure, 
is  associated  by  Sir  William  Bragg  with  the  alter- 
nation of  closely  packed  layers  in  diamond  forma- 
tion with  layers  of  wider  spacing  in  which  there  is 
room  for  a  layer  of  hydrogen  atoms.  The  graphite 
which  flows  under  differential  pressure  is  composed 
of  ultramicroscopic  plates  of  diamond  hardness 
which  slip  over  each  other  with  the  freedom  of  a 
liquid.  The  question  now  arises,  by  what  atomic 
arrangement  can  we  account  for  the  extreme  hard- 
ness and  rigidity  of  vitreous  carbon  in  which  the 
packing  is  on  the  average  more  open  than  it  is  in 
graphite  ? 


344  T 


BEILBY.— THE   STRUCTURE    OF   COKE. 


[Nov.  15,  1922. 


Two  points  emerge  very  clearly  from  the  con- 
sideration of  the  physical  properties  of  the  three 
forms  of  carbon.  These  are  that  the  ultimate  atoms 
of  carbon  in  the  solid  state  must  in  themselves 
possess  great  rigidity  and  hardness,  and  that  the 
cohesive  force  within  the  molecule  under  the  in- 
fluence of  which  these  atoms  are  built  up  in  the 
rigidity  of  the  vitreous  state,  must  be  used  with  a 
much  higher  efficiency  than  in  the  case  of  graphite. 

The  micro-structure  of  coke  and  charcoal. 

The  method  of  section  cutting  of  coal  developed 
by  Mr.  Lomax  has  placed  in  the  hands  of  palceo- 
botanists  the  means  whereby  the  microscopical  study 
of  the  constituents  of  coal  as  they  occur  in  situ  in 
the  bands  of  which  coal  seams  are  built  up,  can  be 
pursued  on  the  well-established  lines  familiar  to 
botanists  and  biologists  :  that  is  by  the  examination 
of  extremely  thin,  transparent  sections.  From  the 
microscopist's  point  of  view,  this  method  has  many 
advantages.  Not  the  least  of  these  is  that  the 
examination  can  be  made  by  light  transmitted  from 
below  the  stage  of  the  microscope  which  passes 
through  the  section  directly  into  the  object  glass. 
This  means  that  light  of  any  desired  intensity  can 
be  used  under  the  most  critical  conditions,  and 
further  that  lenses  of  the  highest  resolving  power 
can  be  employed,  as  there  is  no  limit  to  the  nearness 
of  approach  of  the  lens  to  the  object.  With  lenses 
of  high  resolving  power  the  picture  as  received  at 
the  eyepiece  is  a  presentation  of  the  object  strictly 
in  two  dimensions.  When  lenses  of  longer  focus 
and  lower  resolving  power  are  used,  however,  the 
third  dimension  comes  into  the  picture  to  a  limited 
extent,  and  some  idea  may  be  gathered  of  the 
structure  of  the  object  as  a  solid. 

For  the  study  of  the  micro-structure  of  coke  and 
other  carbonaceous  residues  this  method  of  section 
cutting  is  only  available  to  a  very  limited  extent. 
Carbon  in  this  form  is  black  by  reflected  light,  but 
in  very  thin  layers  or  films  is  brown  by  transmitted 
light.  In  the  sponge-like  form  in  which  it  occurs 
in  coke  it  is  glass-like  and  brittle,  and  is  a  j  eculiarly 
difficult  material  to  prepare  in  the  form  of  sections 
thin  enough  to  be  of  any  value  for  microscopical 
examination  by  transmitted  light. 

In  a  most  interesting  paper  by  W.  Thorner  in 
1886  on  the  "  Study  of  coal,  coke,  and  charcoal,"* 
he  describes  how  he  succeeded  in  obtaining  by  grind- 
ing, thin  sections  of  specimens  of  coke  obtained 
from  a  number  of  different  sources,  and  photo- 
micrographs of  these  at  a  magnification  of  50 
diameters  are  given  in  the  original  paper.  Two 
of  these  are  reproduced,  Fig.  1  being  gas-retort 
coke  and  Fig.  2  pressed  coke.  These  serve  to 
show  the  inadequacy  of  this  method  for  the  study  of 
the  minute  structure  of  coke.  They  are  not  even 
complete  pictures  in  two  dimensions,  but  are  simply 
black  and  white  silhouettes  produced  by  light  pass- 
ing through  holes  in  an  opaque  screen,  which  to  all 
appearance  is  absolutely  structureless.  That 
Thorner  did  not  recognise  the  limitations  of  this 
method  of  examination  is  quite  clear,  for  he  says:  — 
"  Coke  made  in  gas  retorts  is  the  most  unlike  char- 
coal. It  presents  in  various  degrees  massive  pore 
walls  with  large  cells  which  might  almost  be  cailled 
caves.  The  coke  substance  is  melted  down  until  it 
has  become  an  extremely  close  impermeable  glassy 
mass." 

My  earlier  work  on  the  micro-structure  of  solids 
has  shown  the  importance  of  bringing  into  view  all 
three  dimensions  of  the  structure  under  investiga- 
tion ;  for,  however  minute  the  elements  of  structure 
may  be,  they  are  solids  of  definite  form  which  must 
be  seen  in  relief  if  their  nature  and  origin  are  to  be 
properly  understood.  From  the  microscopist's 
point  of  view  this  means  that  lenses  of  great  depth 

•  Stahl  und  Elsen,  1886,  No.  2. 


of  focus  must  be  used  even  though  this  necessarily 
involves  a  serious  sacrifice  of  resolving  power. 
Visually  the  heights  and  depths  of  a  structure  can 
bo  followed  with  the  microscope  by  focussing  up  and 
down  even  with  lenses  of  fairly  high  resolving  power, 
but  when  photomicrographs  are  desired,  only  lenses 
of  long  focus  and  lower  resolving  power  can  be 
used.  With  this  object  planar  lenses  of  4'5  cm.  and 
7'5  cm.  focus  were  used,  and  satisfactory  photo- 
graphs were  obtained  at  magnifications  from  5  to 
12  diameters,  the  surface  of  the  object  being  illu- 
minated by  a  beam  at  an  angle  of  about  45°.  The 
more  intimate  structure  was  directly  examined, 
using  a  16-mm.  apochromat  of  N.A.  03,  the  surface 
being  preferably  illuminated  by  reflected  light  from 
a  north  sky  slightly  condensed  on  the  object  by  a 
double  convex  lens. 

Carbon  in  the  form  of  coke  is  a  very  difficult 
material  to  examine  microscopically.  As  we  have 
seen,  it  is  a  black  glass,  almost  opaque  and  entirely 
without  metallic  reflection.  From  its  glass-like 
surfaces  light  under  ordinary  conditions  is  reflected 
without  scattering.  With  lenses  of  low  resolving 
power  the  reflections  from  the  surfaces  of  the  more 
minute  bubbles  or  cells  give  the  effect  of  scattering. 
On  examination  with  the  16-mm.  lens  it  is  seen  that 
the  surface  of  the  minute  bubbles  or  cells  gives  the 
effect  of  scattering,  but  on  examination  with  the 
4-mm.  lens  it  is  seen  that  the  surface  of  the  minute 
bubbles  is  still  glass-like. 

As  grinding  and  polishing  lead  to  surface  flow, 
these  operations,  if  resorted  to,  must  be  applied  to 
coke  with  great  caution,  as  they  may  obscure  or 
even  completely  destroy  the  real  structure.  For 
this  reason  freshly  broken  surfaces  are  much  to  be 
preferred  if  these  can  be  obtained  reasonably  flat. 
Broken  edges  often  show  details  of  structure  which 
would  have  been  missed  on  an  unbroken  surface. 

The  general  method  of  examination  was  as 
follows:  — 

(1)  The  selected  specimens  were  photographed  at 
their  natural  6ize. 

(2)  They  were  then  carefully  examined  in  a  good 
light  with  a  hand  lens  and  the  portion  best  suited 
for  microscopical  examination  was  broken  off  and 
trimmed  for  mounting.  In  every  case  a  specimen 
having  an  untouched  broken  surface  and  edges  was 
prepared ;  but  in  some  cases  additional  specimens 
were  prepared  by  filing  and  grinding  on  fine  emery, 
great  care  being  taken  to  remove  the  resulting  dust 
from  the  structure.  All  specimens  were  examined 
in  this  way,  so  that  the  structure  was  traced  con- 
tinuously from  natural  size  down  to  the  limits  of 
resolution  by  lenses  of  N.A.  0'3  and  095.  These 
limits  are  in  the  region  of  the  one-thousandth  and 
the  forty-thousandth  of  a  millimetre  respectively. 

(3)  While  photographs  are  of  great  value,  they 
cannot  take  the  place  of  patient  and  long-continued 
study  at  the  microscope  with  gradually  increasing 
magnification  and  resolution,  and  with  varying 
illumination. 

(4)  The  specimens  were  photographed  at  magnifi- 
cations of  from  5  to  12  diameters,  using  planar 
lenses  of  4"5  and  7'5  cm.  focus. 

In  each  case  the  lens  was  stopped  down  till  a  clear 
picture  with  the  necessary  depth  of  focus  was 
obtained. 

(5)  Many  attempts  were  made  to  photograph  the 
specimens  using  the  16-mm.  and  4-mm.  apochromats 
with  the  vertical  illuminator,  but  the  range  of  focus 
of  even  the  16-mm.  is  so  small  and  the  difficulty  of 
satisfactorily  illuminating  a  black  gjlassy  substance 
like  coke  is  so  great  that  no  satisfactory  results 
could  be  obtained  in  the  time  at  my  disposal.  I 
hope,  however,  to  have  greater  success  when  time 
permits. 

These  observations  show  that  the  coke  structure, 
however  minute,  is  due  to  the  evolution  of  gas 
bubbles    from    the    fused    or    partially    fused    coal 


3V¥ 


Fig.  1 


Fig.  2. 


Fig.  3. 


Fig.  4. 


Fig.  5. 


Fig.  6. 


Fio.  7. 


Fig.  8. 


Fig.  1). 


Fia.  13. 


Fig.   U. 


Fig.  15. 


Fig.  16. 


Fig.  17. 


Vol.  XLI.,  No.  21.] 


BEILBY.— THE   STRUCTURE   OF   COKE. 


345  T 


substance.  Probably  the  first  step  in  this  operation 
results  in  the  formation  of  a  foam  in  which  each 
bubble  is  a  self-contained  cell,  but  by  the  mutual 
perforation  of  these  bubble  cells  at  their  points  of 
contact,  a  sponge  is  produced  through  which  the 
gases  ultimately  escape  to  the  outeide  of  the  mass. 
The  special  characteristic  of  fused  coal  substance 
which  leads  to  the  continuous  development  of  this 
structure  is  that  its  decomposition  with  the  evolu- 
tion of  gas  continues  as  the  temperature  is  raised. 
Gas  which  begins  to  come  off  at  about  400°  C.  is 
still  being  evolved  at  1000°  or  even  higher;  and  the 
walls  ot  the  bubbles  which  are  generated  at  lower 
temperatures  continue  to  give  off  gas  and  to 
generate  more  and  more  minute  bubbles  as  the 
temperature  rises. 

Bubbles,  however,  can  only  be  blown  so  long  as 
the  mass  is  sufficiently  plastic.  This  places  definite 
limits  of  time  and  temperature  on  the  development 
of  this  structure,  which  ceases  when  decomposition 
has  reached  the  stage  at  which  rigidity  of  the  cell 
walls  has  set  in.  Though  gas  may  continue  to  be 
evolved  after  this  stage  is  reached,  it  can  only 
escape  from  the  surfaces  which  have  already  been 
developed  and  through  the  more  intimate  molecular 
structure  of  the  vitreous  substance. 

The  complex  character  of  the  decomposition  of  the 
fusible  constituents  of  coal  during  carbonisation 
makes  it  difficult  to  ascertain  the  limits  of  time  and 
temperature  at  which  rigidity  sets  in.  especially  as 
these  vary  considerably  with  different  types  of  coal. 
We  can,  however,  say  with  confidence  that  the 
carbon  of  which  all  forms  of  coke  and  charcoal  are 
bnilt  up,  is  a  fairly  homogeneous,  vitreous  solid  in 
which  the  vitreous  properties  become  more  and  more 
marked  as  the  state  of  elemental  purity  is 
approached  and  further,  that  the  bubble  structure 
which  is  developed  during  the  fluid  or  plastice  stage 
of  carbonisation  through  the  evolution  of  hydro- 
carbon gases,  is  finally  stereotyped  in  this  rigid 
vitreous  material. 

The  experiments  on  the  carbonisation  of  sugar, 
which  have  already  been  referred  to,  throw  a  useful 
light  on  the  subject,  for  in  this  case  these  limits 
have  actually  been  defined.  Rigidity  sets  in  at  350° 
C,  and  at  400°  C.  frothing  and  bubble-blowing  have 
ceased.  No  change  in  the  minute  structure  occurs 
when  the  temperature  is  raised  to  800°  C.  or  higher. 
In  the  experiments  with  single  minute  crystals  the 
element  of  time  was  almost  eliminated,  for  the 
crystals  only  weighed  a  few  milligrammes.  When 
che  scale  of  the  operation  was  raised  in  the  assay 
apparatus  by  about  1000  times,  the  element  of  time 
obviously  played  a  considerable  part.  The  assay 
tube  which  under  normal  conditions  is  sufficiently 
large  for  the  carbonisation  of  20  g.  of  coal,  was 
completely  filled  by  the  frothing  of  the  viscous 
material  from  2'3  g.  of  sugar  and  the  ultimate  resi- 
due consisted  of  thin  films  of  vitreous  carbon. 

Even  in  the  small  assay  tube  it  is  evident  that  the 
penetration  of  heat  through  the  frothing  material 
was  comparatively  slow  and  that  it  did  not  all  reach 
the  rigid  state  of  carbonisation  at  the  same  time. 
The  time  element  therefore  entered  much  more 
largely  into  the  operation  than  it  did  in  the  case 
of  the  single  crystal  experiments. 

In  the  carbonisation  of  coal  on  an  industrial  6cale, 
in  coke  ovens  and  gas  retorts,  the  influence  of  the 
time  element  is  generally  recognised  and  has  been 
carefully  studied  by  many  observers.  I  venture  to 
hope,  however,  that  the  definite  association  which 
has  now  been  traced  between  what  occurs  during  the 
fusion  and  frothing  stage  in  carbonisation  and  the 
ultimate  structure  of  the  coke,  may  prove  to  be  a 
new  starting  point  in  these  inquiries 

Frothing  with  the  formation  of  large  bubbles  only 
occurs  when  the  froth  is  free  to  expand  without  the 
intervention  of  solid  surfaces  against  which  the 
bubbles  burst  and  the  gas  they  contain  can  escape. 


This  was  demonstrated  by  R.  Lessing  in  1912,*  in 
the  laboratory  assay  apparatus  which  he  had 
devised.  In  this  apparatus  ground  coal  was  car- 
bonised in  an  externally-heated  silica  tube  placed 
vertically,  the  excessive  foaming  of  fusible  coals 
being  completely  controlled  by  allowing  a  loosely 
fitting  plunger  to  press  lightly  on  the  surface  of  the 
molten  coal.  This  caused  the  bubbles  to  burst  while 
the  resulting  gas  escaped  by  the  narrow  annular 
passage  between  the  plunger  and  the  inner  walls 
of  the  tube.  Lessing's  method  includes  the  measure- 
ment of  the  volume  of  the  resulting  coke  as  com- 
pared with  the  original  volume  of  the  ground  coal. 
Though  this  information  is  of  value  in  the  labora- 
tory 6tudy  of  carbonisation,  it  is  not  directly 
applicable  to  works  practice.  The  pioneering  work 
of  Lessing  is  of  the  greatest  importance  in  con- 
nexion with  this  fundamental  feature  of  carbonisa- 
tion, which  goes  far  to  explain  the  mechanism  of  the 
production  of  dense  coke  in  modern  coke  oven 
practice,  where  the  finely-divided  coal  is  tightly 
packed  in  the  ovens  by  the  application  of  pressure. 

In  modern  coke-oven  practice  the  advantages  of 
fine  crushing  and  blending  of  the  various  bands  of 
one  seam  or  of  several  distinct  seams  are  only 
partially  recognised  as  the  means  by  which  homo- 
geneity in  composition  and  uniformity  of  any 
desired  texture  in  the  coke  can  be  secured  with 
certainty.  It  is  hoped  that  the  detailed  study  of 
the  subject  which  has  been  involved  in  the  re- 
searches of  the  Fuel  Research  Board  on  carbonisa- 
tion will  throw  useful  light  on  the  structure  of  coke 
and  on  the  methods  by  which  this  may  be  modified 
at  will,  so  as  to  adapt  this  fuel  more  perfectly  to  the 
metallurgical  and  other  purposes  for  which  it  is 
produced. 

Some  two  years  ago  we  discovered  that  the  exces- 
sive foaming  of  the  more  fusible  coals  could  be 
completely  arrested  by  a  totally  different  method 
from  that  of  outside  restraint  which  results  from 
confining  the  coal  in  a  restricted  space  during 
carbonisation.  This  method  we  have  generally 
referred  to  as  blending.  It  consists  in  the  intimate 
mixing  of  fusible  with  an  infusible  or  less  fusible 
coal.  The  proportions  in  which  the  selected  coals 
should  be  mixed  can  be  quickly  determined  by  a 
few  preliminary  trials  in  the  laboratory  assay 
apparatus.  When  the  proper  mixture  has  been 
arrived  at,  little  or  no  foaming  occurs  during  car- 
bonisation, and  the  resulting  coke  occupies  a 
smaller  volume  than  the  original  coal.  This  has 
already  been  described  and  is  illustrated  in  detail 
in  Figs.  16  and  17. 

By  ensuring  the  shrinkage  of  the  coke  one  of  the 
most  serious  of  the  difficulties  in  the  carbonisation 
of  fusible  coals  is  removed.  For  the  past  two  years 
this  method  has  been  in  regular  use  at  H.M.  Fuel 
Research  Station  for  the  adjustment  of  fusibility 
so  as  to  ensure  that  the  coke  will  contract  and 
occupy  a  smaller  volume  than  the  original  coal.  The 
idea  has  been  taken  up  by  other  workers  and  is 
being  practically  applied  in  various  directions. 

As  a  variation  on  the  method  referred  to,  pulver- 
ised coke  or  breeze  has  been  successfully  used  as  the 
infusible  material  in  blends  or  mixtures.  The  most 
obvious  disadvantage  in  the  use  of  coke  for  this 
purpose  is  that,  while  it  contributes  no  gas  and  no 
oil  to  the  output  of  the  operation,  it  occupies 
space  in  the  carbonising  apparatus,  and  involves 
costs  for  handling  and  fuel  which  could  be  more 
profitably  expended  on  the  carbonisation  of  coal  of 
low  fusibility  and  high  volatile  content. 

Mr.  E.  V.  Evans  has,  however,  shown  that  an 
admirable  smokeless  domestic  fuel  can  be  produced 
bv  carbonisation  of  a  blend  of  gas-retort  breeze 
w'ith  a  fusible  coal  (c/.  J.,  1922,  206 t).  It  is  a 
remarkably    homogeneous    material    in    which    the 

•  "  A  laboratory  method  for  comparing  the  coking  properties  of 
coal."    Inst,  of  Gas  Engineers,  June  13,  1912. 


34GT 


BEILBY.— THE   STRUCTURE    OF   COKE. 


IXov.  15,  192!:. 


bubble  sponge  structure  is  uniformly  developed, 
and  on  just  the  right  scale  for  a  fuel  which  is  to 
be  used  for  domestic  purposes. 

My  own  interest  in  the  micro-structure  of  coke 
was  greatly  stimulated  by  the  remarkable  work  of 
Messrs.  E.  R.  SutclifFe  and  E.  C.  Evans*  on  the 
briquetting  of  pulverised  coal  as  a  preliminary  to 
carbonisation.  This  at  once  appealed  to  me  as  the 
logical  sequence  of  the  work  on  the  blending  of  coal 
crushed  to  a  moderate  degree  of  fineness.  It  has 
been  proved  by  these  pioneers  that  the  control  of 
bubbling  and  frothing  by  grinding  and  blending 
which  made  it  possible  to  develop  the  reactive 
surface  within  the  mass  without  too  great  a  sacri- 
fice of  density  and  robustness  could  be  almost 
indefinitely  extended  by  the  briquetting  of  finely 
ground  coal  by  pressure  as  a  preliminary  to  car- 
bonisation. It  has  therefore  been  a  work  of  great 
interest  to  trace  the  absolute  continuity  of  the 
bubble  sponge  structure  from  its  most  obvious 
appearance  in  the  carbonisation  of  a  highly  fusible 
coal  through  all  its  intermediate  stages  to  the 
remarkable  absorbent  carbon  which  was  produced 
by  Sutdiffe  and  Evans  to  replace  the  most 
absorbent  forms  of  wood  and  nut  charcoal  for  the 
gas  masks   supplied   to  our  soldiers   at   the   front. 

It  is  stated  that  this  material  has  at  least  three 
times  the  gas-absorbing  capacity  of  the  best  wood 
charcoal.  My  belief  is  that  the  absorbing  capacity 
is  mainly  if  not  entirely  a  question  of  surface, 
and  that  the  conversion  of  vitreous  carbon  into 
thin  films  by  the  blowing  of  bubbles  is  the  most 
effective  known  means  for  the  development  of 
enormous  internal  surfaces. 

The  continuity  of  the  bubble  sponge  structure  can 
be  followed  so  far  in  the  photomicrographs,  Figs. 
3  to  8,  and  in  the  enlargement  of  Fig.  6  on  Fig  9. 
By  direct  observation  with  lenses  of  higher  resolving 
power  it  has  been  followed  down  to  a  minuteness 
which  is  expressed  in  ten  thousandths  of  a  milli- 
metre. 

It  is  evident  that  Thorner's  conclusion  cannot  be 
supported  that  the  relatively  large  pores  or  cells 
which  were  disclosed  by  his  method  of  examination 
were  bounded  by  walls  consisting  of  "  an  extremely 
close,  impermeable,  glassy  mass."  We  have  seen 
on  the  contrary  that  this  glassy  mass  is  possessed 
of  a  sponge  cell  structure  which  under  suitable 
conditions  may  have  a  minute  porosity  which  is 
not  only  comparable  with  that  of  wood  charcoal, 
but  may  far  exceed  it. 

The  structure  of  coke  has  been  considered  by 
metallurgists  from  three  points  of  view.  These  are, 
porosity,  density,  and  reactivity.  Reactivity 
appears  to  be  generally  regarded  as  depending  on 
chemical  rather  than  structural  changes  in  the 
carbon.  Porosity  and  density  are  treated  as  purely 
reciprocal,  the  ratio  of  the  relative  volumes  occu- 
pied by  the  actual  coke  substance  and  by  "  pores  " 
in  any  given  specimen  being  calculated  from  the 
apparent  and  real  specific  gravities.  It  is  obvious 
that  this  method  of  estimating  porosity  gives  no 
indication  whatever  of  the  relative  area  of  the 
internal  surfaces  which  have  been  thereby 
developed,  for  this  involves  a  knowledge  of: — (1) 
The  size  of  the  pores.  (2)  Their  number  and  dis- 
tribution in  the  mass.  (3)  The  thickness  of  their 
dividing  walls. 

Consider  the  case  of  a  coke  in  which  the  ratio  is 
as  1:1,  the  specific  gravity  of  the  carbon  substance 
being  1"9  and  of  the  coke  0-9.  One  cubic  inch  of 
coke  will  contain  half  a  cubic  inch  of  carbon  sub- 
stance and  half  a  cubic  inch  of  air  space.  Assume 
that  the  whole  of  the  carbon  is  concentrated  in  the 
lower  half  of  the  cubic  inch,  and  that  this  can  be 
sliced  horizontally  into  sections  1/1000  of  an  inch 
in  thickness,   and   that  the  500  slices  so  obtained 

•  J.,  1922,  196—206  T. 


are  extended  upwards  at  intervals  of  1  / 1000  of  an 
inch,  so  that  they  occupy  the  whole  of  the  cubic 
inch.  We  should  then  have  a  block  of  coke  the 
specific  gravity  of  which  would  still  be  0'9,  and  its 
reactive  surface  would  be  about  1004  square  inches 
as  compared  with  a  reactive  surface  of  4  square 
inches  in  the  solid  block  of  carbon  substance.  It 
is  obvious  that  by  making  the  slices  of  carbon  sub- 
stances and  the  spaces  between  them  1/100  of  an 
inch  in  thickness  and  width,  the  specific  gravity 
of  the  block  would  still  be  0'9,  but  its  reactive  sur- 
face would  now  be  204  square  inches  instead  of 
1004.  By  reducing  the  spaces  between  the  slices 
of  1/1000  of  an  inch  to  one  half  the  thickness,  the 
specific  gravity  of  the  block  would  be  raised  to  1'2 
and  the  reactive  surface  to  2667  square  inches. 

So  far  therefore  as  reactive  surface  is  concerned, 
the  ideal  condition  would  be  the  subdivision  of  the 
whole  of  the  carbon  mass  into  films  of  minimum 
thickness  separated  by  spaces  of  equal  width.  This 
ideal  can  most  nearly  be  approached  by  the  bub- 
bling method,  pulverising  and  pre-briquetting  suit- 
able blends  of  coal  so  that  the  sponge  cells  are  small 
and  their  walls  as  thin  as  possible.  The  apparent 
density  of  coke  obtained  in  this  way  may  reach 
1"33  sp.  gr. ;  the  air  space  must  therefore  be  of  the 
order  of  one  fourth  of  the  volume. 

Let  us  turn  now  to  the  other  aspect  of  porosity, 
its  influence  on  the  accessibility  of  the  reactive  sur- 
faces within  the  mass  to  oxidising  gases.  The  users 
of  metallurgical  coke  have  in  the  past  attached 
great  importance  to  this  function  of  porosity,  in 
the  belief  that  full  advantage  of  the  reactivity  of 
the  internal  surfaces  can  only  be  secured  by  free 
access  of  the  oxidising  gases  and  the  equally  free 
removal  of  the  products  of  oxidation.  If  it  be 
assumed  that  Fig.  4  may  be  taken  as  a  metal- 
lurgical coke  which  meets  this  condition,  it  is 
of  interest  to  determine  the  size  of  the  larger 
bubble  units.  These  range  from  3  to  4  mm.  down 
to  about  0'5  mm.  in  diameter.  We  may  take  it 
therefore  that  free  circulation  of  gases  will  mainly 
occur  through  the  larger  of  these,  as  they  have 
probably  been  opened  up  and  kept  open  by  the 
rapid  discharge  through  them  of  the  carbonisation 
gases.  They  have  formed  ducts  through  which  the 
gases  from  the  areas  of  the  more  minute  bubbles 
have  escaped. 

In  the  much  denser  pre-briquetted  coke,  Fig.  8, 
the  larger  pores  range  from  0'5  mm.  down  to 
01  mm.,  and  it  is  evident  that  in  this  case  also 
these  have  been  the  main  ducts  for  the  escape 
of  gases,  but  the  fact  that  the  combustion  of  these 
briquettes  proceeds  definitely  from  the  outer  sur- 
faces inwards  shows  that  the  internal  circulation 
of  the  oxidising  gases  is  much  more  restricted  than 
in  the  case  of  metallurgical  coke.  Sutcliffe  and 
Evans  believe  that  the  reactive  surface  of  the  coke 
briquette  is  so  immensely  greater  than  that  of 
metallurgical  coke  that  the  increased  rate  of  com- 
bustion more  than  compensates  for  the  less  free 
circulation  throughout  the  mass.  This  question  of 
the  relation  of  "  accessibility  "  of  surfaces  to  rate 
of  combustion  is  now  being  investigated  by  Mr. 
E.  C.  Evans  and  Dr.  Wheeler,  and  also  at  H.M. 
Fuel  Research  Station. 

Descriptions  of  photomicrographs. 

Figs.  1  and  2. — Coke  structure.  Reproduction  of 
micrographs  at  a  magnification  of  x50,  which  were 
published  by  Dr.  Thorner  in  "  Stahl  und  Eisen  " 
in  1886. 

Fig.  1. — Gas  retort  coke. 

Fig.  2. — Metallurgical  coke. 

Sections  of  coke  were  prepared  by  grinding 
and  were  photographed  by  transmitted  light. 
As  the  thickness  of  these  sections,  unlike  those 
which  can  be  prepared  from  coal,  cannot  be 
so    far    reduced    that    they    become    transparent, 


Vol.XLI.,No.2l.]      DRAKELEY  AND  WILLIAMS.— EFFICIENCY  IN  CENTRIGUFAL  DRAINING.       347  T 


the  resulting  pictures  are  simply  silhouettes 
produced  by  the  passage  of  light  through  holes 
in  an  opaque  screen.  There  is  not  even  any 
certginty  that  the  holes  really  represent  the  size 
or  -hape  of  the  pores  or  elements  of  structure,  for 
in  so  fragile  a  material  as  vitreous  carbon  in  the 
form  of  thin  films  the  grinding  of  the  section  might 
easily  lead  to  the  destruction  of  the  more  minute 
elements. 

Figs.  3 — 8. — Coke  structure.  Photomicrographs 
by  G.  Beilby  in  1922.  These  were  obtained  by  the 
use  of  a  planar  lens  of  3  inch  focus  stopped  down 
to  give  depth  of  focus.  The  illumination  was  by 
reflected  light  at  an  angle  of  about  45°.  The 
magnification  was  from  5  to  10  diameters. 

Fig.  3  is  gas  coke  from  horizontal  retorts  using 
Durham  coal. 

Fig.  4  is  blast  furnace  coke  from  recovery  ovens. 
Compare  with  that  shown  in  Figs.  1  and  2. 

Fig.  5  is  a  cross  section  of  laboratory  assay  coke 
from  Mitchell  Main,  a  fairly  fusible  coal.  Con- 
siderable frothing  has  occurred  during  carbonisa- 
tion.   Compare  with  Fig.  15o. 

Fig.  G  is  gas  coke  from  vertical  retorts  using 
Arley,  a  fairly  fusible  coal.  Compare  with  the 
enlargement  of  this,  Fig.  9. 

Fig.  7  is  a  cross  section  of  laboratory  assay  coke 
from  Dalton  Main.     Compare  with  Figs.  15  A  and  B. 

Fig.  8  is  the  coke  resulting  from  the  carbonisa- 
tion of  a  briquette  made  by  the  compression  of 
pulverised  coal.  The  structure  is  only  imperfectly 
resolved  by  the  planar  lens.     Compare  Fig.  10. 

Fig.  9. — Enlargement  of  Fig  6.  Coke  from 
Arley  goal  carbonised  in  vertical  retorts  with 
steaming.  The  continuity  of  the  bubble  sponge 
structure  can  be  followed  on  this  photograph  from 
cells  of  1  mm.  down  to  005  mm.  diameter.  The 
more  minute  cells  in  the  walls  of  the  larger  bubbles 
which  appear  only  as  small  diffraction  discs,  when 
visually  resolved  by  the  16  mm.  apochromat  show 
the  continuity  of  this  structure  down  to  a  minute- 
ness of  0001  mm. 

Figs.  10 — 14. — Coke  structure.  Photomicro- 
graphs by  G.  Beilby  in  1922,  prepared  under  the 
conditions  described  for  Figs.  3 — 8. 

Fig.  10  is  coke  resulting  from  the  carbonisation 
of  the  briquetted  blend  of  Mitchell  Main  and  Ellis- 
town  Main  at  a  higher  temperature  than  that 
employed  in  Fig.  8. 

Fig.  11  is  vitreous  carbon  prepared  from  sugar, 
described  on  page  342  T.  Though  large  bubbles, 
both  burst  and  unburst,  are  seen,  the  more  minute 
structure  seen  in  coke  is  absent. 

Fig.  12  is  the  broken  surface  of  a  briquette  made 
from  pulverised  coal  (about  60  mesh)  heated  to 
380°  C.  and  compressed  at  2  tons  per  sq.  in. 

Fig  13  and  14  show  oak  charcoal  across  and  along 
the  grain  of  the  wood.  The  structure  is  practically 
a  reproduction  of  the  natural  cell  structure  of  the 
wood.  There  is  little  or  no  evidence  of  fusion  and 
bubbling. 

Fig.  15. — Coke  produced  in  the  laboratory  assay 
apparatus.     Natural  size. 

a  and  b — Dalton  Main,  a  typical  coal  which  pro- 
duces a  satisfactory  coke  for  use  as  smokeless  fuel 
for  domestic  purposes.     Compare  with  Fig.  7. 

c — Mitchell  Main,  a  fusible  coal  which  froths 
on  carbonisation.     Compare  with  Fig.   5. 

Fig.  16. — Laboratory  assay  coke  showing  the 
result  of  blending  coals  of  widely  differing  fusibility. 

A— The  carbonaceous  residue  from  Ellistown 
Main  breeze  is  practically  a  non-coherent  powder. 

b — The  coke  from  Mitchell  Main  is  an  open  sponge. 

c — The  coke  from  a  blend  of  40%  of  Ellistown 
Main  with  60%  of  Mitchell  Main  is  relatively  hard 
and  dense  and  occupies  a  much  smaller  volume  than 
the  original  coal. 

Fig.  17. — Laboratory  assay  coke  from  blends  of 
Mitchell  Main  and  Ellistown  Main  coal. 

a  and  b  are  the  cokes  as  seen  in  elevation  and 


plan  of  the  blend,  Mitchell  Main  80,',  Ellistown 
Main  20     . 

c  and  D  are  the  cokes  as  seen  in  elevation  and 
plan  of  the  blend,  Mitchell  Main  60%,  Ellistown 
Main  40     . 

The  greater  shrinkage  of  the  60-40  blend  is  very 
obvious. 


Communications. 


EFFICIENCY  IN  CENTRIFUGAL  DRAINING. 

BY    THOMAS    J.    DRAKELEY    AND    LESLIE    H.     WILLIAMS. 

In  a  former  communication,  it  has  been  shown 
by  Drakeley  and  Martin  (J.,  1921,  308— 310  t)  that 
the  reduction  of  the  speed  at  which  the  basket  of 
a  centrifuge  was  revolved  from  1198  to  697  revolu- 
tions per  minute  failed  materially  to  affect  the 
separation  of  liquor  from  the  crystals.  An  investi- 
gation has  therefore  been  made  to  determine  how 
the  speed  of  revolution  is  related  to  the  efficiency 
of  the  centrifuge.  The  efficiency  of  the  centrifuge 
has  been  defined  (loc.  cit.,  309  t)  as  the  percentage 
of  the  total  mother  liquor  which  has  been  extracted 
from  the  charge  of  crystals  at  any  particular 
moment  of  the  run. 

At  the  higher  speeds,  no  further  separation  of 
mother  liquor  occurred  after  the  crystals  had  been 
spinning  for  fifteen  minutes,  but  a  small  loss  of 
moisture  was  noted  with  longer  spins  although  no 
liquor  separated  from  the  crystals.  No  doubt  the 
loss  was  due  to  the  drying  effect  of  the  air  blowing 
through  the  charge  after  the  liquor  had  been 
extracted.  Whilst  the  latter  drying  effect  may 
assume  great  importance  in  works  practice,  it  was 
decided  to  eliminate  this  somewhat  doubtful  factor 
and  run  the  centrifuge  in  all  experiments  for 
fifteen  minutes,  so  that  comparable  results  might 
be  obtained  for  the  extraction  of  mother  liquor 
from  the  crystals. 

Hence  in  the  following  experiments  arrange- 
ments were  made  to  obtain  widely  different  speeds, 
and  in  each  case  the  centrifuge  was  run  for  a 
period  of  fifteen  minutes.  At  the  end  of  that 
period,  the  efficiency  of  the  separation  effected  in 
the  time  was  determined  by  the  method  described 
in  the  previous  paper.  Each  result  given  in 
Table  I.  is  the  average  of  six  individual  experi- 
ments. 

Table  I. 

Spratt's  centrifuge  (Manlove,  Alliott  and  Co., 
Ltd.).  Diameter  of  basket,  14  inches.  Time  for 
attaining  stated  speed,  15  seconds.  Time  of  spin, 
15  minutes. 


no. 

Maximum  speed 

Eflicien 

r.p.ni. 

1 

100 

10-8 

g 

124 

27-6 

3 

197 

62-5 

4 

330 

64-8 

6 

368 

66-6 

6 

47B 

70-6 

7 

602 

70-9 

8 

697 

71-4 

9 

868 

72-6 

0 

1198 

73-5 

The  results  plotted  in  Figure  I  show  that  the 
speed  may  be  reduced  to  a  remarkable  extent 
before  the  efficiency  of  the  separation  effected  in 
fifteen  minutes  is  seriously  diminished.  Indeed  it 
will  be  observed  that  at  a  speed  of  476  revolutions 
per  minute,  that  is,  considerably  less  than  half  the 
maximum  speed,  the  efficiency  is  only  2'9%  lower 
than  the  maximum. 

Whilst  it  may  justly  be  contended  that  this  2'9% 
drop  in  efficiency  may,  in  a  particular  case, 
represent  an  inadmissible  addition  to  the  moisture 
content  of  the  crystals,  it,  nevertheless,  shows  that 
high   speed    is   not   the   sole   factor    in   centrifuge 


348t     DRAKELEY  AND  WILLIAMS.— EFFICIENCY  IN  CENTRIFUGAL  DRAINING.     [Nov.  15,  1022. 


practice.      Indeed    the    present-day  tendency     to 

advertise    centrifuges    which     work  at    enormous 

speeds     seems     to     be     emphasising  a     doubtful 
advantage. 


200    400    600    800    1000 
Speed  (r.p.m.). 

Fig.  1. 


1200 


Bryson  (J.  Ind.  Eng.  Chem.,  1921,  13,  993) 
suggests  that  possibly  the  question  of  the  arrange- 
ment of  the  particles  under  the  centrifugal  force 
may  influence  the  efficiency  of  the  separation. 
When  particles  collect  under  the  comparatively  low 
force  of  gravity  they  assume  a  cubical  piling 
arrangement.  In  this  state,  the  maximum  volume 
of  interstices  between  the  particles  is  afforded  for 
the  passage  of  the  mother  liquor.  Even  with  low 
speeds  and  therefore  small  centrifugal  force,  the 
crystals  may  arrange  themselves  in  cubical  piling. 
However,  when  the  speed  of  the  basket  is  very 
great,  the  high  centrifugal  force  is  stated  to  cause 
the  particles  to  assume  the  most  stable  arrange- 
ment, that  is,  hexagonal  piling.  But  with  hex- 
agonal piling  the  volume  of  the  voids  is  reduced 
to  the  utmost,  and  thus  the  exit  area  for  the 
mother  liquor  is  a  minimum. 

It  was  thought  possible  that  the  change  from 
cubical  to  hexagonal  piling  might  be  sufficiently 
marked  to  give  a  sharply  defined  change  in  the 
type  of  the  extraction  or  efficiency  curve. 

The  apparent  efficiency,  that  is,  the  percentage 
of  the  total  mother  liquor  which  has  flowed  from 
the  drain  of  the  centrifuge  at  any  particular 
moment,  was  determined  at  various  speeds  and 
times  to  test  this  suggestion.  The  values  are  given 
in  Table  II.,  and  the  efficiency  is  plotted  against 
the  time  in  Fig.  2. 

Table  II. 
Spratt's    centrifuge.      Diameter    of    basket,    14 
inches.   Time  for  attaining  stated  speed,  15  seconds. 
Size  of  crystals,  0 — J  inch. 

Apparent  efficiency  (per  cent.). 


Tims 

Speed  (r.p.m.). 

(miiis.). 

100 

124 

197 

330 

368 

476 

602 

697 

1198 

0-5 

100 

14-2 

180 

350 

1-0 

— 

— 

— 

131 

15-8 

201 

250 

46-5 

55-3 

20 

— 

— 

18-5 

24-5 

29-6 

34-4 

46-7 

590 

65-4 

3-0 

— 

9-4 

25-0 

31-1 

371 

430 

561 

64-5 

69-2 

40 

— 

— 

30-8 

36-7 

44-3 

48-4 

60-8 

670 

70-5 

5-0 

— 

13-4 

34-9 

40-3 

48-6 

62-4 

630 

68-9 

71-7 

7-5 

— 

17-4 

40-4 

49-9 

570 

59-8 

66-8 

70-5 

720 

100 

7-2 

20-4 

44-8 

56-5 

60-8 

66-5 

69-3 

711 

72-5 

15-0 

10-8 

27-6 

52-5 

64-8 

68-6 

70-6 

70-9 

71-4 

73-5 

An  examination  of  the  curves  in  Fig.  2  shows 
that  there  is  no  marked  change  in  the  character 
of  the  extraction,  and  consequently  no  evidence  of 
a  change  from  cubical  to  hexagonal  piling. 

It  should  be  observed,  however,  that  before  the 
above  experiments  were  made  the  crystals  in  the 
basket  were  allowed  to  drain  free  from  excessive 
liquor,  so  that  comparable  results  could  be  obtained. 
When  the  crystals  have  thus  drained,  the  fluidity 
of  the  resulting  charge  is  far  less  than  if  they  were 
placed  in  the  basket  with  a  greater  quantity  of 
liquor.  This  decrease  in  fluidity  would  naturally 
hinder  any  possible  change  in  the  arrangement  of 
the  particles  from  a  cubical  to  hexagonal  piling 
system,  and  hence  this  may  account  for  the  absence 
of  the  anticipated  indication  in  Fig.  2. 

Experiments  were  therefore  made  in  which  the 
charge  was  introduced  into  the  basket  with  a 
sufficient  excess  of  mother  liquor  to  give  more 
fluidity.  It  was  found  impossible  to  obtain  results 
which  could  be  treated  mathematically,  but  it 
appeared  that,  as  a  general  rule,  the  best  treat- 
ment is  to  remove  the  major  part  of  the  mother 
liquor  at  a  low  speed  and  then,  after  the  fluidity 
of  the  charge  is  thereby  rendered  negligible,  to 
run  the  basket  at  a  higher  speed  to  remove  the 
remaining  liquor  (e/.  Bryson,  loc.  cit.). 

The  reason  no  results  can  be  given,  but  only  the 
general  conclusion  from  the  experiments,  is  due  to 
the  fact  that,  for  no  apparent  reason,  the  charge 
sometimes   formed   an   almost  impervious  cake  on 

so 


4  6 

Time  (mins.). 

Fig.  2. 


14     15 


the  sides  of  the  basket  which  prevented  the  separa- 
tion of  the  liquor.  At  other  times,  with  the  same 
speed  and  the  same  crystals,  and  seemingly  the 
same  conditions,  the  above  peculiarity  was  not 
noticed. 

For  works  practice,  especially  with  fine  material, 
it  would  appear  to  be  advisable  to  commence  centri- 
fuging  with  the  lower  speed,  so  that  the  initial 
piling  is  probably  largely  cubical  and  the  fluidity 
is  reduced  to  maintain  that  system  of  piling. 
Then  a  higher  speed  may  be  used  to  complete  the 
removal  of  the  liquor,  but  even  in  this  case,  the 
high  speed  should  actually  be  the  lowest  speed 
capable  of  producing  the  required  results. 

The  author's  thanks  are  due  to  Mr.  J.  Reader 
Faul  for  his  assistance  in  connexion  with  the  plant 
necessary  for  driving  the  centrifuge. 

The  Chemical  Department, 

Northern  Polytechnic  Institute, 
London,  N.  7. 


Vol.  XLI.,  No.  22.] 


TRANSACTIONS 


[Nov.  30.  1922. 


Communications. 


THE  EXTRACTION  OF  GLUCINA  (BERYLLIA) 
FROM  BERYL. 

BY    HUBERT    THOMAS    STANLEY     BRITTON,    M.SC,     A.I.O. 

Beryl,  including  the  gem  forms  emerald  and  aqua- 
marine, is  the  chief  source  of  glucinum  salts.  Its 
composition  corresponds  with  the  formula 

3GlO.ALO3.6SiO, 

and  therefore  contains  about  13'5%  of  glucina.  It 
is  coloured  in  differing  shades  by  traces  of  ferric 
oxide.  Glucinum  also  occurs  in  the  less  common 
minerals,  such  as  chrysoberyl,  euclase,  phenacite, 
leucophane,  gadolinite,  etc.  Beryl  is  by  no  means 
such  a  rare  mineral  as  is  generally  believed.  It  is 
found  in  America,  Switzerland,  Norway,  Scotland, 
Ireland,  Madagascar,  and  other  countries — much  of 
the  supply  being  of  no  use  to  the  jeweller.  Up  to 
the  present,  very  little  technical  use  has  been  made 
of  these  supplies,  although  slight  use  has  been  made 
of  glucinum  nitrate  in  the  incandescence  mantle 
industry. 

Metallic  glucinum  has  many  unique  and  useful 
properties.  Its  specific  gravity  (l-6)  is  much  lower 
than  that  of  ailuminium  (2'6).  Besides  having  an 
exceptionally  high  melting  point,  1278°  C,  it  can  be 
alloyed  with  many  metals,  for  example,  with 
aluminium,  copper,  silver,  and  iron  (vide  Lebeau, 
Comptes  rend.,  1897,  125,  1172;  Osterheld,  Z.  anorg. 
Chem.,  1916,  97,  1). 

The  isolation  of  glucina  from  beryl  involves  the 
troublesome  separation  of  the  two  remarkably 
similar  oxides,  glucina  and  alumina.  The  difficulty 
of  this  separation  may  be  inferred  from  the  number 
and  variety  of  methods  which  have  been  put  for- 
ward. Many  of  them  have  been  investigated  by  the 
author  (vide  Analyst,  1921,  46,  359—366,  437 — 445; 
1922,  47,  50—60).  Only  four  were  found  under 
certain  conditions  to  be  quantitative,  and  of  these, 
it  is  doubtful  if  any  one  could  be  worked  commerc- 
ially. It  was  decided,  therefore,  to  try  to  develop 
a  method  of  separation  which  could  be  employed  on 
a  large  scale.  These  efforts  have  not  been  com- 
pletely successful.  It  has  been  found,  however,  that 
over  90%  of  the  alumina  from  beryl  can  be  separated 
from  the  glucina  quite  easily. 

Beryl  is  not  attacked  by  acids,  except  perhaps 
when  finely  divided  by  hydrofluoric  acid.  In  order 
to  effect  its  decomposition,  it  must  first  be  ground 
to  the  consistency  of  a  flour  and  then  fused  with  a 
suitable  flux.  Grinding  can  be  carried  out  satis- 
factorily in  an  agate  mortar.  For  this  purpose, 
Joy  (Amer.  J.  Sci.,  1863,  36,  83)  employed  a  gold- 
quartz  mill.  Lebeau  (Comptes  rend.,  1895,  121,  641) 
found  that  fusion  of  pulverised  beryl  alone  in  an 
electric  furnace  caused  the  volatilisation  of  some  of 
its  silica,  after  which  the  residue  was  easily  attacked 
by  a  mixture  of  sulphuric  and  hydrofluoric  acids. 
The  following  fluxes  have  been  used  by  various 
investigators :  (a)  caustic  soda  and  caustic  potash 
(Schaub,  Annalen  (Crell),  1801,  17,  174),  (6)  calcium 
fluoride  and  sulphuric  acid  at  100° — 200°  C.  in  a 
lead  dish  (Scheffer,  Liebig's  Annalen,  1859,  109, 
144),  (c)  ammonium  fluoride,  potassium  fluoride, 
sodium  carbonate,  potassium  carbonate,  calcium 
oxide  (Joy,  loc.  cit.).  The  most  convenient  of  these 
fluxes  is  potassium  hydroxide.  Fusion  with  potash 
can  best  be  carried  out  in  a  silver  crucible,  as  was 
suggested  by  Schaub.  If  care  is  taken  to  employ  as 
low  a  temperature  as  possible,  the  fusion  can  also 
be  effected  satisfactorily  in  a  nickel  crucible.  When 
an  intimate  mixture  of  finely  ground  beryl  and  an 
excess  of  potassium  hydroxide  is  heated  over  a 
Bunsen  flame  fusion  takes  place  readily.    Generally, 


half  an  hour  will  be  found  sufficient.  If  the  fusion 
is  carried  out  at  too  high  a  temperature,  such  as 
that  attained  in  a  gas  muffle  furnace,  the  crucible 
will  be  attacked  appreciably,  much  nickel  being 
found  in  the  fused  mass.  The  fused  mass  is  ground, 
placed  in  a  beaker  and  covered  with  water.  The 
silico-aluminate  of  glucinum  and  potassium  which 
has  been  formed,  is  then  decomposed  with  a  slight 
excess  of  concentrated  sulphuric  acid.  The  precipi- 
tated silicic  acid  is  rendered  amorphous  by  carefully 
heating  on  a  sand-bath,  after  which  the  solution  is 
diluted  and  filtered.  The  mother-liquor  now  con- 
tains the  glucinum,  aluminium,  and  traces  of  iron. 

Before  passing  on  to  the  isolation  of  the  glucina 
from  the  mother-liquor,  brief  reference  should  be 
made  to  the  process  of  isolating  glucina  from  beryl 
which  has  been  worked  out  recently  by  Copaux 
(Comptes  rend.,  1919,  168,  610).  In  this  method  the 
precipitation  of  eilica  is  eliminated.  If  one  part  of 
finely  pulverised  beryl  is  heated  at  850°  C.  with  two 
parts  of  sodium  silicon1  uoride,  the  following  re- 
actions are  stated  to  take  place,  due  to  the  dissocia- 
tion of  the  silicofluoride  at  750°  C.  The  glucina  is 
converted  into  a  double  fluoride,  thus : 

2G10+SiF.,  =SiO,  +  2G1F2, 
2NaF  +  GlF;]  =  Na"_,GlFJ.   " 

and  similarly  with  the  alumina  to  form  artificial 
cryolite,  Na3AlF£.  Treating  the  pulverised  fritted 
mass  with  boiling  water  will  dissolve  the  sodium 
glucinum  fluoride,  which  is  soluble  at  100°  C.  to  the 
extent  of  28  grams  per  litre,  whereas  the  double 
aluminium  fluoride  is  only  very  slightly  soluble. 
The  aqueous  extract  contains  about  1%  of  silica  and 
2%  of  alumina.  The  addition  of  boiling  sodium 
hydroxide  solution  to  the  extract  decomposes  the 
double  glucinum  fluoride,  glucinum  hydroxide  being 
precipitated.  Copaux  claims  that  this  method  is 
capable  of  securing  90%  of  the  glucina  present. 

As  previously  stated,  fusion  with  potash  can  be 
carried  out  at  a  conveniently  low  temperature,  and 
furthermore  the  removal  of  the  silica  presents  very 
little  difficulty.  Besides  the  sulphates  of  glucinum, 
aluminium,  and  of  possible  traces  of  iron,  the 
mother  liquor  also  contains  potassium  sulphate  and 
sulphuric  acid.  Various  workers  have  taken  advant- 
age of  the  sparing  solubility  of  alum  and  have  tried 
to  remove  the  alumina  completely  as  alum.  Pollok 
endeavoured  to  separate  the  last  trace  as  alum  by 
adding  to  the  solution  an  equal  volume  of  alcohol. 
He  found,  however,  that  some  glucinum  sulphate 
also  crystallised  out  with  the  alum  (Trans.  Roy.  Soc., 
Dublin,  1904,  2,  8,  139).  No  definite  information 
appears  in  the  literature  showing  the  extent  to 
which  alumina  can  be  extracted  in  this  way.  This 
possibility  has  been  investigated  therefore  by  the 
author  from  the  standpoint  of  the  phase  rule. 

In  the  following  considerations,  the  amount  of 
iron  which  may  be  present  will  be  of  so  small  a 
magnitude  as  to  be  almost  without  influence.  Hence 
it  will  be  disregarded ;  incidentally,  its  removal  is 
a  matter  which  presents  very  little  difficulty.  Sup- 
pose that  the  free  sulphuric  acid  in  the  mother 
liquor  has  been  neutralised  with  potash.  Such  a 
solution  would  be  an  example  of  a  four-component 
system,  the  components  being  the  three  sulphates 
and  water.  After  concentrating  and  allowing  to 
attain  equilibrium  at  a  fixed  temperature,  it  is 
possible  that  either  a  single  solid  phase,  or  two  co- 
existent solid  phases,  or  in  special  instances,  three 
solid  phases  may  crystallise  out  together.  Including 
sulphuric  acid,  the  solution  will  contain  five  com- 
ponents, and  therefore  on  crystallisation  at  any 
temperature,  may  yield  any  of  the  foregoing  com- 
binations of  solid  phases  together  with  the  possibili- 
ties of  four  solid  phases,  should  the  solutions  contain 
the  solutes  in  certain  concentrations.  The  following 
are  some  of  the  6olid  phases  which  may  crystallise 


350  T 


BRITTON.— EXTRACTION  OF  GLUCINA  (BERYLLIA)  FROM  BERYL.         [Nov.  30, 1922. 


from  these  solutions :  alum,  potassium  sulphate, 
glucinum  sulphate  tetrahydrate,  aluminium  sulphate 
with  eighteen  molecules  of  water,  and  potassium 
glucinum  sulphate  dihj'drate. 

Before  proceeding  to  investigate  to  what  extent 
the  alumina  can  be  removed  in  the  form  of  alum, 
it  was  considered  advisable  to  learn  something  about 
the  crystallisation  of  alum  in  the  ternary  6ystem : 
potassium  sulphate,  aluminium  sulphate,  water,  and 
also  of  the  double  sulphate  of  glucinum  and  potas- 
sium in  the  ternary  system:  potassium  sulphate, 
glucinum  sulphate,  water  at  a  suitable  temperature. 
These  two  systems,  therefore,  have  been  investi- 
gated (vide  Britton,  Trans.  Chem.  Soc.,  1922,  121, 
983;  Britton  and  Allmand,  ibid,  1921,  119,  1463).  By 
referring  to  the  isotherm  at  25°  of  the  former 
system,  it  will  be  observed  that  alum  attains  equili- 
brium with  solutions  having  a  very  extensive  range 
of  concentrations  of  aluminium  and  potassium 
sulphates.  Moreover,  the  amount  of  aluminium 
sulphate  retained  in  the  liquid  phase  in  equilibrium 
with  alum  is  usually  small.  In  the  6econd  system, 
the  field  at  25°  of  the  potassium  glucinum  sulphate 
is  small  and  the  solutions  in  equilibrium  with  it  con- 
tain considerably  more  glucinum  sulphate  than 
aluminium  sulphate  in  the  case  of  the  alum  field  in 
the  previous  system.  The  solubility  of  aluminium 
sulphate  and  of  glucinum  sulphate  in  water  at  25° 
are  almost  equal.  Thus  it  appears  reasonable  to 
expect  that  in  the  quaternary  system— beryllium 
sulphate,  aluminium  sulphate,  potassium  sulphate, 
water — alum  will  be  the  only  solid  phase  to  separate 
at  25°  from  solutions  of  a  very  wide  range  of  con- 
centrations. 

In  view  of  this,  it  was  considered  unnecessary  to 
work  out  an  isotherm  of  the  quaternary  system.  It 
was  decided,  however,  to  investigate  how  far  separa- 
tions could  be  made  when  the  aluminium  and  beryl- 
lium sulphates  were  taken  in  the  molecular  ratio 
of  one  to  three  respectively,  this  being  the  ratio  in 
which  the  oxides  occur  in  beryl.  In  measured 
quantities  of  water,  known  amounts  of  potassium 
sulphate  were  dissolved.  These  amounts  were 
approximately  sufficient  to  produce  saturated  solu- 
tions at  25°.  At  a  few  degrees  above  that  tempera- 
ture, weighed  quantities  in  the  above  ratio  of 
aluminium  and  glucinum  sulphates  were  dissolved, 
these  amounts  having  been  arranged  to  bear  some 
simple  relationship  to  the  potassium  sulphate 
already  in  solution.  These  solutions  were  placed  in  a 
thermostat  at  25°  and  mechanically  stirred  until 
equilibrium  was  established.  Both  the  liquid  and 
solid  phases  were  then  analysed.  Table  I.  gives  the 
results,  expressed  in  molar  proportions,  obtained. 

Table  I. 


Temp.  25°  C. 


Al.o, 


Liquid  phases. 
No         K2St/..  GISO,.  Al,(SO,),.  ux-  Solid 

Taken  Found  Taken    Found  Taken  Found   tracted     phase. 


1  0-236 

2  1194 


3 


0-246 
0-203 


% 
75-4 
79-7 


Alum 


From  these  results,  it  will  be  6een  that  almost 
80%  of  the  aluminium  sulphate  can  be  removed  from 
aqueous  solutions  in  the  form  of  alum.  In  separa- 
tion No.  2,  the  molar  proportion  of  potassium 
sulphate  taken  was  twice  that  employed  in  No.  1. 
This,  however,  could  only  be  done  by  halving  the 
amounts  of  aluminium  and  glucinum  sulphates 
taken,  as  the  solutions  had  been  nearly  saturated 
with  potassium  sulphate  before  the  other  two 
sulphates  had  been  dissolved.  Again,  the  solubility 
of  potassium  sulphate  in  water  is  by  no  means  great, 
neither  does  it  increase  appreciably  with  rise  in 
temperature.  It  appears  that  increasing  the  pro- 
portion of  potassium  sulphate  results  in  a  relatively 
greater  separation  of  alum.    On  the  other  hand,  the 


solutions    become    weaker    in    glucinum  sulphate. 

This  will  be  seen  from   Table  II.   which  gives  the 

results  in  weight  percentages  which  are  otherwise 
given  in  Table  I. 


No. 
1 

2 


K,SO,. 
1-73 
611 


Table  II. 

GISO,. 

13-24 

7-74 


Al,(SO.)s. 
3-54 
1-71 


H,0. 

81-49 
85-44 


It  is  difficult  to  neutralise  exactly  the  free  acid  in 
a  solution  of  a  glucinum  salt.  Any  excess  of  potas- 
sium hydroxide  beyond  that  required  to  neutralise 
the  free  acid  in  an  aluminium  sulphate  solution 
would  be  indicated  by  the  precipitation  of  a  little 
aluminium  hydroxide,  but  in  the  case  of  an  acid 
solution  of  glucinum  sulphate  more  potassium 
hydroxide  than  that  required  for  the  neutralisation 
of  the  free  acid  would  have  to  be  added  before  a 
precipitate  of  glucinum  hydroxide  would  be  pro- 
duced. This  is  due  to  the  peculiarity  possessed  by 
soluble  glucinum  salts  of  being  able  to  retain  in 
solution  comparatively  large  amounts  of  glucinum 
hydroxide ;  in  fact,  in  a  concentrated  solution  one 
mol.  of  glucinum  sulphate  may  cause  the  solution 
of  two  mols.  of  glucinum  hydroxide  (vide  Berzelius, 
J.  Chem.  (Schweigger),  1815,  15,  296;  Parsons,  J. 
Amer.  Chem.  Soc,  1904,  26,  1433;  Parsons,  Robin- 
son, and  Fuller,  J.  Phys.  Chem.,  1907,  9,  651).  For 
this  reason,  it  seemed  desirable  to  employ  dilute 
sulphuric  acid  solutions.  Before  attempting  further 
separations,  a  few  determinations  were  made  to 
ascertain  the  effect  which  sulphuric  acid  of  about 
5N  concentration  would  have  on  the  solubility  of 
alum,  potassium  sulphate,  glucinum,  sulphate,  and 
aluminium  sulphate. 

It  was  found  that  at  25°  the  solubility  of  alum  in 
8'812V.  sulphuric  acid  was  6'23  g.  of  anhydrous  alum 
per  100  g.  of  solution  as  compared  with  6'75  g.  in 
aqueous  solution.  In  the  case  of  both  glucinum 
sulphate  and  aluminium  sulphate  in  sulphuric  acid 
solutions,  the  solubilities  are  also  diminished.  At 
25°,  the  solubility  of  glucinum  sulphate  in  water 
is  29'94  g.  per  100  g.  of  solution,  whereas  in  52V 
sulphuric  acid  it  becomes  15-91  g.  (Britton,  Trans. 
Chem.  Soc,  1921,  119,  1970).  For  aluminium 
sulphate  Wirth  found  that  the  solubility  fell  from 
27-8  g.  in  water  to  20"4  g.  in  4-3JV,  and  to  15'4  g. 
in  6-2IV  sulphuric  acid  (Z.  anorg.  Chem.,  1913,  79, 
360).  At  first,  no  reference  could  be  found  to  the 
solubility  of  potassium  sulphate  in  sulphuric  acid 
and  consequently  one  solubility  determination  was 
made.  It  was  found  that  at  25°  C,  2204  g.  of 
potassium  sulphate  was  dissolved  in  100  g.  of 
sulphuric  acid  solution,  the  percentage  of  the 
sulphuric  acid  being  16'55  and  its  normality  4"40. 
The  solid  phase  in  equilibrium  with  the  solution  was 
found  to  be  the  a^id  salt  corresponding  to  the 
formula,  3K,SO,,H2SO,,  as  the  slightly  moist  solid 
contained  84"0%  of  K2SO,  and  157%  of  H2SO, 
(calculated:  84'2%  and  15'8%  respectively).  It  was 
then  found  that  this  compound  had  been  prepared 
by  several  workers,  and  that  Stortenbeker  (Rec. 
Trav.  Chim.,  1902,  21,  400)  and  D'Ans  (Z.  anorg. 
Chem.,  1909,  63,  225)  have  investigated  the  ternary 
system — potassium  oxide,  sulphur  trioxide,  water, 
at  0°,  18°,  and  25°.  From  the  above  result,  it  will 
be  seen  that  in  4'iN  sulphuric  acid,  the  solubility  of 
potassium  sulphate  is  about  double  that  in  water. 
It  was  decided  therefore  to  investigate  fully  the 
data  obtained  by  Stortenbeker  and  D'Ans,  in  order 
to  find  to  what  extent  the  solubility  of  potassium 
sulphate  could  be  increased.  These  results  have 
been  recalculated  and  curves  showing  the  relation- 
ship between  the  solubility  of  potassium  sulphate 
and  the  concentration  of  sulphuric  acid,  plotted. 
As  no  data  concerning  the  volumes  of  the  liquid 
phases  analysed  are  given,  the  concentrations  of  the 
acid  could  not  be  expressed  in  normalities. 


Vol. XXI., No. 22]        BRITTON.— EXTRACTION  OF  GLUCINA  (BERYLLIA)  FROM  BERYL. 


351  t 


From  these  curves,  it  will  be  observed  that  those 
liquid  phases  in  equilibrium  with  SKjSO^HjSO^ 
contain  the  maximum  amounts  of  potassium 
sulphate.  By  considering  the  position  of  the  point 
corresponding  to  4"4iV  sulphuric  acid  which  was 
obtained  by  the  author,  it  will  bo  inferred  that  these 
concentrations  are  in  the  region  of  5N. 


brium  with  alum  at  0°  C.  is  of  the  same  order  as 
that  at  25°.  It  therefore  seemed  probable  that  a 
better  separation  would  ensue  if  the  solution  were 
allowed  to  attain  equilibrium  at  a  lower  tempera- 
ture. For  the  purpose  of  comparison,  a  separation 
was  carried  out  by  taking  the  same  quantities 
employed  in  the  previous  separation  and  allowing 


15  20  25  30  35 

Percentage  H,SO,. 
Curves  at  0°  &  25°  C : — calc'd  from  D'Ans'  data. 
„      „  18CC  : — Stortenbeker's  data. 


These  considerations  show  that  whereas  the  solu- 
bility of  the  two  very  soluble  salts,  aluminium  and 
glucinum  sulphates,  in  sulphuric  acid  of  about  5N 
is  somewhat  reduced,  that  of  potassium  sulphate  is 
considerably  increased.  Again,  the  small  solubility 
of  alum  is  slightly  decreased.  If  these  conclusions 
are  relatively  true  when  all  the  salts  are  present  in 
solution,  then  it  appears  that  a  method  has  been 
found  by  which  the  potassium  sulphate  content  may 
be  enhanced.  From  the  previous  experiments,  this 
seems  to  be  the  condition  necessary  to  cause  a 
greater  separation  of  alum.  This  is  confirmed  by 
the  results  obtained  from  the  following  separation. 
In  100  c.c.  of  approximately  5AT  sulphuric  acid  the 
same  quantities  as  in  No.  2  of  glucinum  sulphate 
and  aluminium  sulphate  were  dissolved,  but,  taking 
advantage  of  the  increased  solubility,  the  amount 
of  potassium  sulphate  dissolved  was  doubled.  Hence 
the  initial  solution  contained  the  sulphates  of 
glucinum,  aluminium  and  potassium  in  the  molecular 
proportion  of  three  to  one  to  four  respectively. 
After  allowing  it  to  attain  equilibrium  in  a  thermo- 
stat at  25°  C.  for  two  days,  the  composition  of  the 
liquid  phase  was  found  to  be  that  given  in  Tables 
III.  and  IV.  (No.  1). 

Table  III. 
Molar  proportions. 


Liquid  phase. 
No.       K.SO..  G1S04. 

Taken  Found  Taken  Found 


AI„(SO,),. 
Taken  Found 


0124 
0071 


AI.O, 

ex- 
tracted. 

% 

87-6 

029 


Solid 
phase. 

Alum 


At  lower  temperatures  the  solubility  of  alum  in 
water  is  considerably  less,  but  the  range  of  solutions 
of    aluminium  and   potassium   sulphate   in   equili- 


the  solution  to  attain  equilibrium  by  standing  in  an 
ice-chest  for  two  days,  the  average  temperature  of 
the  solution  being  2°  C.  The  figures  obtained  are 
those,  No.  2,  given  in  Tables  III.  and  IV.  It  will 
be  observed  that  lowering  the  temperature  resulted 
in  an  increased  separation  of  alum,  the  amount  of 
alumina  thereby  recovered  being  920%  of  tho 
amount  taken.  The  solid  phase  in  each  case  was 
analysed  and  found  to  be  alum. 

Table  IV. 
Percentages  by  weight. 


No. 

KjSO,. 

G1S04. 

AUSO,),. 

H,0. 

H.SO,. 

Normality 

1 

1017 

5-90 

0-79 

02-36 

20-78 

5-51 

2 

4-80 

0-37 

19-74 

4-98 

Hence  in  an  actual  beryl  separation,  it  is  advis- 
able to  adjust  the  concentration  of  the  sulphuric 
acid  in  the  mother  liquor,  after  the  silica  has  been 
filtered  off,  to  about  5N  by  the  addition  of  potassium 
hydroxide.  Then  saturate  the  solution  with  potas- 
sium sulphate  whilst  boiling  and  set  to  crystallise 
at  a  low  temperature  preferably  at  0°  C.  Although 
the  solid  phases  obtained  in  the  experimental 
separations  were  always  alum,  it  is  important  that 
all  the  solid  phases  obtained  should  be  examined. 
This  can  be  done  rapidly  by  dissolving  a  suitable 
quantity,  dried  between  filter  papers,  in  water  and 
titrating  a  sufficiently  dilute  solution  with  JV/10 
sodium  hydroxide  at  100°  using  phenolphthalein 
(vide  Britton,  Trans.  Chem.  Soc.,  1922,  121,  983). 

By  this  method  the  greater  part  of  the  alumina 
can  be  separated.  It  is  probable  that  the  process 
may  be  repeated  several  times  with  advantage,  but 
due  attention  must  be  paid  to  the  nature  of  the  solid 
phases  obtained. 


352  T 


BUBY.— VOLUMETRIC  DETERMINATION  OF  PHOSPHATE  IN  SOLUTION.        [Nov.  30, 1922. 


The  glucina  left  in  the  mother  liquor  may  be 
extracted  by  the  addition  in  the  cold  of  a  concen- 
trated solution  of  sodium  hydroxide  such  that  the 
last  drop  just  causes  the  re-solution  of  the  pre- 
cipitated hydroxides,  diluting  with  sufficient  water 
and  boiling  for  forty  minutes.  In  this  way  the 
glucinum  hydroxide  will  be  deposited  in  the  so- 
called  crystalline  form,  which  can  be  filtered  and 
washed  easily.  There  will  be  little  chance  of  any 
aluminium  hydroxide  being  deposited  as  the 
aluminate  solution  will  have  been  rendered  com- 
paratively stable  by  the  large  amount  of  sodium 
hydroxide  required  for  the  solution  of  the  relatively 
large  amount  of  glucinum  hydroxide.  The  glucinum 
hydroxide  thus  obtained  may  contain  a  small 
quantity  of  iron  oxide.  This  can  be  removed  by 
dissolving  in  a  little  dilute  nitric  acid  and  boiling 
to  oxidise  the  iron.  The  solution  is  then  cooled, 
neutralised,  diluted  to  a  suitable  volume,  and  satu- 
rated with  sodium  bicarbonate.  By  raising  to  and 
keeping  at  boiling  point  for  a  half  minute,  stirring 
well  all  the  timo,  it  will  be  found  that  all  the  ferric 
oxide  and  aluminium  hydroxide,  if  any,  will  be  pre- 
cipitated, leaving  the  glucina  alone  in  solution  (for 
details,  see  the  papers  in  the  "  Analyst,"  to  which 
reference  has  been  made).  The  latter  process,  of 
course,  may  be  alone  sufficient,  i.e.,  omitting  the 
sodium  hydroxide  process.  Unless  special  care  is 
taken,  however,  some  glucinum  hydroxide  will  be 
carried  down  with  the  aluminium  hydroxide  and 
consequently  lost. 

The  author  desires  to  thank  the  Chemical  Society 
for  a  grant  from  its  Research  Fund. 

University  of  London, 
King's  College. 


VOLUMETRIC    DETERMINATION    OF    PHOS- 
PHATE IN   SOLUTION. 

BY  FRANK  W.  BTJET,    M.SC. 

It  has  been  shown  (Rosin,  J.  Amer.  Chem.  Soc., 
1911,  33,  1099—1104)  that  it  is  possible  to  deter- 
mine the  amount  of  sodium  phosphate  in  solution 
volumetrically  by  means  of  silver  nitrate  if  the 
solution  be  kept  neutral  during  the  addition  of 
the  latter : 

3Na2HP01+6AgN03  =  2Ag,P01+6NaN03  +  HsPO«. 

Rosin's  method  consisted  in  first  adding  the  phos- 
phate solution  to  an  excess  of  standard  silver 
nitrate,  and  then  rendering  the  solution  neutral 
by  adding  a  suspension  of  zinc  oxide  in  water,  drop 
by  drop,  shaking  vigorously  for  two  or  three  minutes 
after  each  addition,   and  testing  for  free  acid  by 


litmus  paper.  The  precipitate  was  filtered  off  and 
the  amount  of  silver  nitrate  used  found  by  deter- 
mining the  excess  by  Volhard's  method. 

Rosin's  method  was  tested  but  was  found  tedious 
and  difficult  of  execution.  Since  the  zinc  oxide 
suspended  in  water  is  barely  alkaline,  it  is  almost 
impossible  to  attain  the  neutral  point.  Excess 
of  zinc  oxide  vitiates  the  result. 

Copper  carbonate  was  tried  instead  of  zinc  oxide, 
the  excess  of  silver  nitrate  being  determined  by 
titrating  the  filtrate  with  potassium  ferrocyanide, 
using  the  dissolved  copper  as  an  indicator.  In  this 
case  the  copper  carbonate  was  added  in  excess, 
as  it  was  found  to  have  little  effect  on  the  silver 
nitrate. 

When  ordinary  sodium  phosphate,  Na2HP04,  waa 
used  the  results  obtained  by  this  method  were  as 
reliable  as  those  obtained  by  Rosin's  method. 

For  the  acid  phosphates,  NaHaP04  and  KH2P04, 
the  method  adopted  by  Rosin  was  found  to  be  the 
better  one,  although  neither  method  was  really 
good. 

Borax  was  tried  as  it  was  thought  that  the 
neutral  point  could  then  be  more  readily  obtained. 
The  method  adopted  was  to  add  a  measured  quan- 
tity of  the  phosphate  solution  to  a  measured  excess 
of  iV/10  silver  nitrate  solution,  and  run  in  from  a 
burette  JV/10  borax  solution  until  the  liquid  was 
neutral  to  litmus.  The  solution  was  filtered  and 
the  excess  of  silver  nitrate  determined  either  (1) 
by  Volhard's  method  or  (2)  by  adding  a  measured 
quantity  of  IV/10  potassium  chloride  and  titrating 
the  excess  of  potassium  chloride  with  JV/10  silver 
nitrate,  using  potassium  chromate  as  an  indicator. 
Of  the  three  methods  tried  this  proved  to  be  the 
most  satisfactory,  the  results  being  most  reliable. 
The  results  of  a  few  titrations  with  borax  are  given 
below. 

tf/lOAgNO, 
JT/lOAgNO.WajHPO.KHjPO.NaHjPO, 
c.c. 
40 
20 
20 
20 
20 
40 
20 
40 

The  phosphates  were  kindly  supplied  by  the 
British  Drug  Houses  with  a  statement  as  to  their 
purity.  Their  statement  was  confirmed  by  finding 
the  amount  of  P205  per  100  g.  gravimetrically. 
The  correct  results  were  calculated  from  these  data. 

East  London  College, 

University  of  London. 


C.C. 

c.c. 

..10      . 

— 

— . 

.      10 

— 

10      . 

— 

10      . 

..      10      . 



;;    Z 

[      __ 

BjPO, 

used 

Calculated 

c.c. 

c.c. 

result. 

— 

17-92 

.      18 

— 

9-9 

9-98 

— 

8-17 

8-175 

— 

8-40 

8-417 

— 

8-45 

8-42 

20       .. 

25-00 

.      25-00 

10      .. 

7-51 

7-51 

20      .. 

1509 

.      1602 

Vol.  XLI.,  No.  23.1 


TRANSACTIONS 


[Dec.  15,  1922. 


Liverpool  Section. 

Meeting   held  at   the   University  of  Liverpool,   on 
Wednesday,  November  22,  1922. 


DH.   E.   F.    ARMSTRONG   IN   THE  CHAIR. 


Hurter  Memorial  Lecture. 

SOME       ACHIEVEMENTS       OF       CHEMICAL 

INDUSTRY     DURING    THE     WAR    IN     THIS 

COUNTRY    AND    IN    FRANCE. 

BY    WILLIAM   MACNAB,    C.B.E.,    P.I.O. 

One  effect  of  the  late  great  war  was  a  demand 
for  an  unprecedented  amount  of  various  explosives 
and  later  on,  for  many  chemicals  of  curious  and 
unpleasant  properties.  As  I  had  the  privilege  of 
aiding  and  of  being  closely  associated  with  the  con- 
struction and  running  of  many  of  the  factories 
which  were  erected  in  this  country  and  had  also 
the  opportunity  of  visiting  most  of  the  similar 
factories  in  France  from  time  to  time,  I  propose 
to  give  a  few  particulars  of  some  work  which  was 
accomplished  in  both  countries. 

At  first  the  demand  was  met  by  the  existing 
government  and  private  explosives  manufactories 
and  the  rapid  extension  of  these  works,  but  it  was 
soon  seen  that  the  Government  must  erect  many 
new  factories. 

Picric  acid  was  the  explosive  with  which  most  of 
our  shells  were  filled  on  the  outbreak  of  war,  for 
TNT  had  just  been  officially  adopted  and  the  stock 
of  it  and  means  of  manufacture  were  very  limited. 
America  came  to  our  aid  by  sending  over  con- 
siderable quantities  of  picric  acid  and  TNT  while 
our  new  plants  were  being  got  ready,  and  the  high 
prices  paid  for  these  commodities  induced  many 
private  manufacturers  to  start  making  picric  acid 
— with  woefully  wasteful  methods  in  the  early  days. 

The  first  Government  factory  for  the  manu- 
facture of  TNT  was  erected  at  Oldbury  on  ground 
belonging  to  Messrs.  Chance  and  Hunt.  The  first 
sod  was  cut  at  the  end  of  February,  1915,  and 
exactly  three  months  after,  the  first  ton  of  TNT 
was  produced  and  packed  ready  for  delivery.  This 
factory  was  designed  for  an  output  of  250  tons  per 
week  and  very  soon  attained  and  passed  that 
quantity 

It  was  early  seen  that  the  supply  of  toluene  from 
coal  tar  would  be  insignificant,  and  means  were 
adopted  for  increasing  the  quantity  by  stripping 
the  toluene  in  the  gas  supplied  for  heating  and 
lighting  purposes. 

Another  source,  however,  was  also  available, 
namely  petroleum  from  Borneo.  The  Asiatic 
Petroleum  Company  had  large  distilleries  in 
Holland,  where  they  separated  the  benzene,  toluene, 
and  xylene  in  the  crude  petroleum  and  concentrated 
them  as  far  as  possible  by  distillation — for  it  is 
impossible  by  that  means  to  separate  these  aromatic 
hydrocarbons  entirely  from  the  paraffins  with 
which  they  are  associated — and  were  thus  able  to 
produce  a  spirit  containing  about  55%  of  toluene 
and  the  balance  of  light  paraffins  or  petrol.  When 
this  mixture  was  treated  with  suitable  nitrating 
acids  the  toluene  was  nitrated  to  mononitrotoluene 
and,  after  separating  from  the  acid  and  washing, 
the  petrol  could  be  distilled  off,  leaving  a  very  pure 
mononitrotoluene.  This  compound  had  been  sup- 
plied to  German  dye  manufacturers  before  the  war. 
but,  as  the  Dutch  Government  would  not  permit 
mononitrotoluene  to  be  shipped  to  England, 
arrangements  were  made  for  the  transference  of 
the    entire    distillery    etc.    to     Portishead,    near 


Bristol,  and  the  Asiatic  Company  erected  plant  at 
Oldbury  for  the  production  of  mononitrotoluene 
from  their  Borneo  spirit.  Similar  plant  was  also 
erected  by  them  on  a  site  adjoining  the  much 
larger  TNT  factory,  which  was  later  erected  at 
Queen's  Ferry. 

The  manufacture  of  explosives  demands  the  use 
of  strong  acid  mixtures  containing  often  only  a 
small  percentage  of  water,  and  this  requires  efficient 
denitration  and  concentration  plant  as  well  as 
oleum. 

The  capacity  in  this  country  for  the  pro- 
duction of  oleum  was  very  limited  and  soon 
oleum  became  one  of  the  most  precious  of 
chemicals.  Large  quantities  were  purchased  in 
America,  but  there  were  amazing  experiences  in  the 
case  of  some  shipments  from  that  country,  where 
the  drums  either  were  not  strong  enough  or  else, 
owing  to  the  oleum  being  of  a  strength  which 
attacked  the  steel  drums,  the  oleum  got  loose  in 
the  ship.  Thosa  who  are  familiar  with  that  form 
of  sulphuric  acid  can  imagine  the  task  which  con- 
fronted those  of  the  staff  of  the  Department  of 
Explosives  Supply  who  were  sent  to  the  ship  when 
it  arrived  in  the  Thames  to  get  its  cargo  discharged 
and  the  bottom  of  the  ship  saved  from  disappearing 
as  sulphate  of  iron. 

Steps  were  taken  at  once  to  erect  plant  for  concen- 
trating sulphuric  acid  and  also  for  making  oleum. 
As  it  was  impossible  at  first  to  get  the  blocks  of 
volvic  lava  which  are  used  in  the  construction  of 
the  Kessler  and  Gaillard  plants,  owing  to  the 
French  having  reserved  all  the  available  supplies 
for  their  own  use,  recourse  was  had  in  the  first 
instance  to  the  various  cascade  systems  formed  of 
silicon-iron  or  silica  vessels.  These  had  to  be 
forced  to  their  utmost  capacity,  and  those  who  had 
to  work  them — and  the  inhabitants  living  near 
some  of  the  factories — had  an  unpleasant  time  from 
the  acid  fumes  in  the  atmosphere  in  the  early  days. 
The  first  oleum  plants  erected  were  on  the  Mann- 
heim system  in  which  the  sulphur  dioxide  and  air 
are  passed  over  heated  iron  oxide,  whereby  a  con- 
version of  about  40%  of  the  sulphur  dioxide  into 
sulphur  trioxide  is  effected.  The  remaining  sulphur 
dioxide  and  air  are  heated  again  and  passed  over 
platinised  asbestos  to  effect  the  final  conversion. 
The  chief  source  of  6upply  came  later  from  Grillo 
plants  which  were  erected  at  Queen's  Ferry,  Gretna, 
Avonmouth,  and  elsewhere. 

In  addition  to  a  dearth  of  chemicals,  it  soon 
became  apparent  that  there  was  going  to  be  a 
dearth  of  chemists  to  work  the  new  factories  which 
were  being  erected,  due  to  the  patriotic  way  in 
which  the  greater  number  of  chemists  of  suitable 
age  had  enlisted. 

Arrangements  were  made   and   a  large   number 

were  recalled    from   the   colours   and   sent   to   the 

I    existing    explosives   works,    where    they    got    some 

J    training    preparatory    to    beginning    in    the    new 

works.     There  was   also  a  great  dearth  of  skilled 

I    workmen  accustomed  to  chemical  or  explosives  work, 

but  many  of  these  younger  chemists  became  leading 

|    process  hands  and  well  and  intelligently  did  they 

carry  out   their   work,   with — I   am  certain — great 

benefit  to  themselves  in  their  subsequent  careers  if 

they  remained  in  industrial  chemistry.     The  mag- 

I    nificent  part  that  women  played  in  connexion  with 

J    the    manufacture   of   war   chemicals,    undertaking 

often  very  disagreeable  and  dangerous  work,   and 

|    doing   it    well,   cannot   be   forgotten   in    a   general 

survey  of  the  chemical  industrial  activities  brought 

about  by  the  war. 

An  admirable  feature  of  the  nation's  time  of 
trial  was  the  whole-hearted  way  in  which  different 
manufacturers  offered  their  information  and  ser- 
vices to  the  common  cause,  and  one  would  fain 
wish  that  a  means  could  be  discovered  in  time  of 


354  t       MACNAB.— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.    [Dec.  15,  1022. 


peace  to  get  more  joint  effort  and  mutual  help 
among  chemical  manufacturers,  as  one  way  of  best 
meeting  the  competition  of  other  countries. 

Our  own  chemical  industry  received  a  great 
stimulus  during  the  war,  but  it  must  not  be  for- 
gotten that  this  also  occurred  in  other  countries, 
and — apart  from  Germany — we  must  reckon  on 
much  more  competition  from  more  extended  and 
more  intelligently  conducted  chemical  manufacture, 
especially  in  France  and  America.  It  behoves  us 
to  take  courage  from  the  great  things  we  un- 
doubtedly accomplished,  and  utilise  to  the  full  the 
experience  gained,  not  falling  asleep  nor  lelapsing 
into  old  rule-of-thumb  ways. 

It  might  be  thought  that  in  Government  fac- 
tories erected  under  the  stress  and  menace  of  war, 
where  the  steadying  influence  of  dividends  and 
shareholders  was  not  at  work,  the  factories 
would  be  run  on  extravagant  lines.  A  careful 
study,  however,  of  the  Second  Cost  Report,  issued 
by  the  Factories  Branch  of  the  Department  of 
Explosives  Supply,  will  show  that  yields  and  costs 
compare  favourably  with  those  of  any  of  the  private 
factories. 

Monthly  meetings  of  the  superintendents  and 
heads  of  departments  from  the  different  Govern- 
ment factories  were  held  in  London,  and  the  results 
and  conditions  of  working  discussed  and  criticised, 
and  in  this  way  mutual  help  was  given  and  a 
healthy  spirit  of  emulation  created  between  the 
staffs  of  the  different  factories,  which  bore  excellent 
fruit. 

A  few  statistics  of  the  amounts  of  some  chemical 
materials  produced  during  the  war  will  show  the 
enormous  scale  on  which  explosives  were  made  :  — 

Picric  acid  68,500tons 

TNT    238,000tons 

Ammonium  nitrate  378,000  tons 

Cordite    139,000tons 

Let  us  look  at  these  materials  a  little  more  in 
detail. 

Picric  acid. — The  method  of  manufacture  of  this 
substance  in  the  early  days  was  carried  out  most  in- 
efficiently. The  phenol  was  first  sulphonated  in 
iron  vessels,  then  transferred  to  small  earthenware 
jars,  into  which  nitric  acid  was  run  at  a  slow  rate. 
During  this  nitration  process  copious  brown  nitrous 
fumes  were  given  off  and  allowed  to  escape  into  the 
>air  and  were  lost,  besides  causing  an  almost  in- 
tolerable nuisance.  With  the  view  of  diminishing  the 
flatter,  the  operations  were  generally  so  arranged 
that  the  nitration  process  was  started  in  the  even- 
ing and  the  brown  fumes  escaped  under  cloak  of 
darkness.  These  conditions  passed  muster  when  the 
output  was  comparatively  small,  but  as  the  demand 
increased,  steps  were  taken  to  conduct  the  nitrous 
fumes  to  proper  absorption  towers,  whereby  a  large 
percentage  of  nitric  acid  was  recovered. 

Although  the  manufacture  of  picric  acid  was 
chiefly  carried  out  by  private  firms,  a  great  deal  of 
work  was  done  by  members  of  the  Department  of 
Explosives  Supply  which  resulted  in  improved 
working,  both  as  to  cost  and  yield. 

Finally  a  process  was  perfected  whereby  the 
nitration  of  the  phenolsulphonie  acid  could  be 
carried  out  in  large  cast-iron  pots  by  means  of 
strong  nitrosulpliuric  acid,  thus  avoiding  the  dis- 
advantage of  having  to  use  the  small  earthen 
nitrating  pots  on  account  of  tho  dilute  acid  hitherto 
employed  for  the  nitration. 

A  most  ingenious  process  for  the  continuous 
nitration  of  the  sulphonic  acid  was  devised  and 
successfully  worked  by  Messrs.  Brookes  Chemicals, 
Limited,  at  Lightcliffe,  near  Halifax.  The  plant 
consisted  of  a  long  and  narrow  trough  about  80  feet 
by  2  feet  by  19  inches  deep,  made  of  acid-proof  brick 
and   cement,    divided   into   several   compartments. 

The  sulphonation  was  carried  out  discontinuously 
in  the  ordinary  way,  but  with  only  two  molecules  of 


sulphuric  acid  instead  of  four.  The  sulphonic  acid 
after  dilution  was  run  together  with  four  molecules 
of  spent  acid  from  the  process  into  the  first  com- 
partment of  the  trough  (C  ft.  long).  The  mixture 
was  heated  with  live  steam  to  100  C,  and  then 
overflowed  into  the  nitration  compartment  (64  ft. 
long).  Four  molecules  of  65%  nitric  acid  ran  in  at 
a  number  of  points  along  the  trough,  which  was 
covered  in  so  that  the  nitrous  fumes  could  be  col- 
lected and  carried  to  absorption  towers.  The  mix- 
ture was  kept  at  100° — 110°  C.  during  nitration, 
and  then  passed  to  the  end  section  of  the  trough 
(10  ft.  long),  where  the  picric  acid  in  fine  crystals 
and  the  spent  acid  were  cooled  by  water  coils  and 
stirred  by  compressed  air.  Thence  it  was  blown  at 
short  intervals  by  means  of  an  air  ejector  into 
earthenware  filters. 

The  home  production  of  picric  acid  increased  to 
32,000  tons  for  the  year  1917,  but  afterwards  fell 
off  as  the  quantity  of  TNT  kept  on  increasing  and 
the  various  amatols  (TNT  and  ammonium  nitrate) 
— of  which  it  formed  a  proportion — were  employed 
in  preference  to  picric  acid  as  filling  for  shells. 

As  both  the  strong  acid  nitration  process  and 
Brookes's  continuous  process  were  only  developed 
towards  the  end  of  the  war,  comparatively  little 
picric  acid  was  produced  by  their  means.  It  is 
satisfactory  to  seej  however,  that  the  manufacture 
was  greatly  improved  and  carried  to  a  high  degree 
of  perfection,  both  in  legard  to  plant  and  process, 
as  the  result  of  the  careful  study  and  experiment 
devoted  to  this  manufacture.  A  large  works  was 
laid  out  and  partly  completed  for  the  preparation 
of  picric  acid  by  the  French  process,  in  which 
sodium  nitrate  is  used  direct  instead  of  nitric  acid. 
I  shall  refer  to  this  process  when  discussing  the 
work  carried  out  in  France,  but  this  factory  never 
came  into  action  on  account  of  the  falling  off  of 
the  demand  for  picric  acid. 

Another  method  of  preparing  picric  acid  was  also 
successfully  worked,  chiefly  by  Messrs.  L.  B.  Holliday 
and  Company.  It  consisted  in  the  conversion  of 
dinitrophenol  into  picric  acid.  This  dinitrophenol 
was  formed  from  benzene,  which  was  first  converted 
into  dinitrochlorobenzene  (a  product  manufactured 
by  the  United  Alkali  Company  before  the  war).  On 
treating  this  substance  with  caustic  soda  it  is  con- 
verted into  sodium  dinitrophenolate  and— on 
further  treatment  with  acid — into  dinitrophenol, 
which  can  be  nitrated  to  picric  acid  in  cast  iron 
vessels  by  means  of  strong  acids.  This  process  had 
the  advantage  of  enlarging  the  output  of  picric 
acid,  for  the  supply  of  phenol  from  tar,  from  which 
to  make  the  picric  acid,  was  limited. 

A  considerable  quantity  of  synthetic  phenol  was 
made  in  this  country  also,  chiefly  by  the  South 
Metropolitan  Gas  Company  and  by  Brunner,  Mond 
and  Company,  and  it  was  instructive  to  see  how 
readily  an  "  inorganic  "  firm  like  Brunner,  Mond 
and  Co.  successfully  turned  themselves  into  most 
efficient  manufacturers  of  an  organic  material  by 
a  complicated  process.  This  manufacture,  however, 
never  attained  anything  like  the  large  output 
reached  by  the  French  owing  to  the  gradual  disuse 
of  picric  acid  as  a  charge  for  shells. 

When  the  war  began  comparatively  little  TNT 
was  made  here,  and  the  total  manufacturing  output 
capacity  was  only  about  20  tons  per  week.  The 
procedure  involved  long  periods  of  nitration. 
Thanks  to  a  visit  to  France,  where  a  process  of 
nitrating  toluene  direct  to  TNT  in  one  operation 
was  seen  at  work,  it  was  decided — when  laying  out 
the  works  at  Oldbury — to  aim  at  much  quicker 
nitration  than  was  being  attained  here,  by  providing 
much  more  efficient  mixing  and  cooling.  Processes 
had  also  been  carefully  worked  out  at  the  Research 
Department,  Woolwich,  which  enabled  the  Oldbury 
works  to  be  successfully  started  right  away,  and 
the  full  estimated  output  reached  in  a  very  short 
time. 


I 


i-    c 

?  -a 


B  c 


■ec 


Vol.  XIX. No. 23.]    MACXAB.—  ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.     355t 


The  largest  works  for  making  the  TNT  were 
erected  at  Queen's  Ferry,  near  Chester,  where  the 
output  reached  about  100  tons  of  TNT  per  day. 
This  large  output,  however,  was  only  attained  by 
the  most  careful  forethought  and  expeditious  modes 
of  working  and  excellent  "  team  "  work  between 
all  the  departments  involved.  For  such  an  output 
of  TNT  about  600  tons  of  fresh  mixed  acid  had  to 
be  prepared,  600  tons  of  spent  acid  had  to  be 
denitrated,  400  tons  had  to  be  concentrated,  and 
then  there  was  the  production  of  120  tons  of  nitric 
acid,  both  for  the  TNT  and  for  the  nitrocellulose 
which  was  also  produced  there.  There  was  also  a 
Grillo  plant  which  made  250  tons  per  day  of  SO,. 
The  keeping  of  a  proper  balance  of  these  enormous 
quantities  of  acids  in  their  various  stages  was  work 
of  no  mean  order,  and  it  may  be  claimed  that  the 
Sygtem  of  preparing  the  mixed  acids  worked  with 
a  regularity  and  accuracy  that  left  nothing  to  be 
desired. 

The  nitric  acid  and  water  content  of  the  acid  for 
the  nitration  of  cotton  had  to  be  within  limits  of 
0-2%. 

I  think  that  the  most  outstanding  feature  of  the 
manufacture  of  TNT,  as  carried  out  in  the  Govern- 
ment factories,  was  the  very  great  reduction  of  the 
time  occupied  in  nitration.  Before  the  war  the 
actual  time  of  nitration  for  the  three  stages  in 
which  the  process  was  generally  carried  out  was 
about  40  hours,  whereas  afterwards  it  was  reduced 
to  about  10  hours,  thus  permitting  a  much  greater 
output  from  the  plant. 

A  very  ingenious  system  of  continuous  counter- 
current  washing  of  the  TNT  was  devised  at  Oldbury 
by  Holley  and  Mott  and  adopted  elsewhere. 
The  same  principle  was  also  applied  there  to  the 
nitration  of  MNT  to  TNT,  so  that  there  was  a  con- 
tinuous output  of  washed  TNT  in  the  one  case,  and 
in  the  other  crude  TNT  from  one  end  of  the  plant 
and  spent  acid  from  the  other. 


Fig.  5. 

The  continuous  washer  consists  of  a  series  of  large 
and  small  compartments  communicating  with  each 
other  by  specially  placed  openings  (Fig.  5).  In  the 
large  compartments  stirrers  are  fixed  which  keep 
the  contents  well  mixed.  The  molten  TNT  enters 
the  first  large  compartment,  where  it  is  mixed  with 
wash  water  coming  from  the  small  compartment, 
the  emulsion  passing  through  a  series  of  perforations 
into  the  small  compartment.  In  this,  where  there 
is  no  agitation,  the  TNT  sinks  to  the  bottom  and 
Hows  forward,  through  an  opening  in  the  bottom 
of  the  dividing  plate,  into  the  next  large  compart- 
ment, where  it  is  agitated  with  less  acid  water. 
The  water  flows  from  the  small  settling  compart- 
ment through  an  opening,  at  a  higher  ilevel,  in  the 
case  of  the  end  compartment  to  waste,  or  from  the 
other  small  compartments  counter  current  to  the 
TNT  to  the  next  large  mixing  compartment.     Clean 


water  enters  the  large  compartment  at  the  other 
end  of  the  plant,  meeting  the  well-washed  TNT, 
which  has  travelled  counter  current  to  the  water 
through  the  compartments  where  the  TNT  and 
water  are  successively  mixed  and  allowed  to 
separate. 

The  nitrating  plant  is  constructed  on  the  same 
principle,  the  compartments,  however,  consisting 
of  separate  cylinders  connected  at  suitable  levels 
as  indicated  on  Fig.  6. 

R„s>am  snoring  Counter  Cjrrent  Flow  in  Conf.nuou,  titration  Plant. 

(Plan  > 

so 

,    XnroBvJy 

vo  qv     x 


A^kIS 


S-Separafor       AAg,tator        t  ■  Connection  near  tup 
m-Cannecfton  haif  way  up    b  Connection  near  i>ot  r  ^ . 

Fig.  6. 

A  system  of  purification  of  TNT  by  means  of 
sodium  sulphite,  for  which  we  are  indebted  to  the 
French,  was  put  into  successful  operation.  It 
depended  on  the  fact  that,  when  crude  TNT  is 
allowed  to  crystallise,  the  crystals  are  very  nearly 
pure  TNT,  the  impurities  being  concentrated  on  the 
surface  of  the  crystals.  As  first  devised  in  France, 
the  molten  TNT  was  allowed  to  cool  slowly  in 
shallow  pans  and  this  toffee-like  material  was  broken 
up  and  then  washed  with  sulphite  solution.  It  was 
subsequently  found  that,  if  molten  TNT  and  water 
were  allowed  to  cool  while  being  constantly  stirred 
— the  TNT  separated  out  in  fine  crystals — on  adding 
sulphite  solution  to  this  magma,  the  impurities 
were  dissolved  and  small  crystals  of  TNT  of  great 
purity  could  be  separated  by  filtration  and  washing 
with  water. 

At  first  TNT  was  not  considered  by  the  Home 
Office  to  be  an  explosive  within  the  meaning  of  the 
Act  and  could  be  used  without  the  usual  restric- 
tions of  the  Explosives  Act.  This  belief  undoubtedly 
resulted  in  greater  expedition  in  the  production  of 
the  explosive  when  it  was  so  greatly  needed  in  the 
early  days  and  possibly  was  an  advantage.  It  was 
not  long,  however,  before  there  were  unpleasant 
indications  that  it  was  not  the  well-behaved 
substance  it  was  formerly  considered  to  be. 

There  is  still  much  to  be  learned  about  TNT. 
Generally  speaking,  it  is  a  very  stable  substance, 
not  easily  brought  to  explosion.  It  has  been  chipped 
by  hammer  and  chisel  out  of  tanks  and  vessels  in 
which  it  had  solidified  without  accident,  and  yet  a 
violent  explosion  has  occurred  during  the  removal 
of  the  plug  of  an  old  cock,  which  had  stuck,  through 
which  molten  TNT  had  passed,  although  it  had 
been  steamed  to  free  it  from  TNT. 

Large  quantities  have  been  known  to  burn  with- 
out exploding,  but,  unfortunately,  several  in- 
stances occurred  in  which  fire  led  to  most  disastrous 
explosions  of  TNT. 

The  freedom  from  serious  explosions  at  the 
Government  factories  was  matter  for  much  thank- 
fulness. 

In  addition  to  explosion  risks,  considerable 
trouble  wa6  caused  at  first  to  the  health  of  the 
workers  from  the  injurious  action  of  the  TNT. 
Some  individuals  were  much  more  easily  and 
adversely  affected  than  others,  indeed  some  were 
quite  immune  to  the  action  of  the  nitro-compounds. 
Bv  careful  selection  of  the  workers  and  attention  to 

a2 


356  T      MACNAB.— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.     [Dec.  15, 1922. 


health  and  cleanliness,  their  health  wa6  soon  kept 
in  excellent  condition.  It  is  not  easy  to  get  workers, 
male  or  female,  to  take  simple  precautions  and 
avail  themselves  of  the  means  provided  for  protec- 
tion against  noxious  fumes  or  dusts ;  however, 
patience,  sympathy,  and  explanatory  information, 
do  much  in  leading  them  into  good  and  healthful 
ways  of  working. 

The  manufacture  of  sulphuric  and  nitric  acids 
developed  rapidly  as  the  demand  for  more  and  more 
explosives  increased.  At  first  the  disposal  of  the 
nitre  cake  was  effected  at  Gretna,  by  mixing  it 
with  water  and  running  it  into  the  sea.  At  Queen's 
Ferry,  it  was  sent  in  trucks  and  dumped  into  the 
sea  on  the  Welsh  coast.  Soon,  however,  the 
necessity  of  conserving  the  sulphuric  acid  arose  and 
nitre  cake  was  utilised  in  many  industries  instead 
of  sulphuric  acid.  Two  methods  were  adopted  of 
producing  the  bisulphate  in  more  convenient  form 
than  broken  cake.  One  consisted  in  running  the 
molten  bisulphate  from  the  retort  into  large, 
shallow,  circular  pans,  in  which  ploughs,  attached 
to  radial  arms,  revolved.  As  the  bisulphate  cooled 
and  began  to  crystallise,  it  was  kept  from  solidify- 
ing in  one  mass  and  the  friction  of  the  crystals 
on  each  other  resulted  in  a  fine,  dry  powder  being 
produced,  which  was  easy  to  pack  and  convenient 
to  use.  The  other  method  consisted  in  allowing  the 
bisulphate  to  flow  from  a  pipe,  subjecting  the 
molten  stream  to  a  strong  blast  of  air,  which 
atomised  and  chilled  it,  producing  a  fine  powder. 

The  production  of  sulphuric  aoid  and  oleum  was 
carried  out  on  a  great  scale.  At  Queen's  Ferry, 
250  tons  a  day  of  S03  was  made  by  the  Gril'lo 
process,  a  portion  being  dispatched  to  other 
factories. 

The  average  monthly  production  of  sulphuric  acid 
(as  100%  H..SO,)  for  the  three  months  Dec,  1916— 
Feb.,  1917  was  114,700  tons.  Of  this  17,000  tons 
came  from  contact  plants.  Explosives  absorbed 
o0,600  tons,  sulphate  of  ammonia  21,200  tons  and 
superphosphates  14,500  tons. 

Oleum  was  also  produced  bv  the  Tentelew  and 
Mannheim  plants,  but  by  far  the  largest  amount 
carte  from  the  Grillo.  plants  at  Queen's  Ferry, 
Gretna,  Avonmouth,  and  Greenwich,  also  the  most 
economical  working. 

An  interesting  development  of  the  demand  for 
lead  burners  was  the  rapid  supply  of  competent 
operatives.  Lead  burning  had  been  a  somewhat 
close  craft,  and  comparatively  few  were  initiated 
into  its  inner  mysteries. 

One  of  the  best  and  most  experienced  burners 
undertook  the  teaching  of  candidates,  and  before 
long  there  were  sufficient  capable  lead  burners  for 
all  requirements.  Advantage  was  also  taken  of 
experienced  men  in  Australia,  and  several  of  the 
complicated  leaden  nitrators  for  nitroglycerin,  all 
complete  for  use  at  Gretna,  were  sent  from 
Melbourne. 

Many  chemists  and  engineers  came  from  Australia 
and  other  colonies  and  played  important  parts  in 
the  factories,  and  have  now  returned  with  much 
useful  knowledge  and  experience  which  should  bear 
good  fruit  in  their  home  lands.  Let  us  hope  they 
have  also  carried  back  the  conviction  that  the  old 
country  is  not  so  effete  as  it  may  have  sometimes 
appeared  when  viewed  from  afar  through  the  tele- 
scope of  ignorance  or  imperfect  knowledge. 

The  manufacture  of  M.D.  cordite,  the  regulation 
propellant  explosive,  involved  the  use  of  acetone. 
The  stock  of  this  essential  solvent  was  small,  and 
supplies  had  to  come  from  overseas  and  were  un- 
certain and  inadequate.  R.D.B.  cordite  was  accord- 
ingly evolved  at  the  Research  Department, 
Woolwich,  and  made  at  Gretna  and  elsewhere.  It 
was  necessary  to  produce  a  propellant  which  would 
give  the  same  ballistics  as  M.D.  cordite  for  the 
same  size  and  weight  of  charge,   so  that  existing 


cartridge  cases;  rifles,  and  guns  could  be  used 
without  alteration. 

To  those  acquainted  with  the  interdependence  of 
chemical  composition  and  physical  state  and  form 
of  a  propellant  and  its  ballistic  results,  it  will  be 
recognised  that  it  was  no  mean  achievement  during 
the  rush  and  stress  of  war  to  produce  an  explosive 
which  did  its  work  so  admirably. 

R.D.B.  cordite  was  composed  of  nitroglycerin, 
"soluble"  nitrocellulose,  and  mineral  jolly, 
whereas  M.D.  cordite  contained  "  insoluble  "  nitro- 
cellulose or  guncotton.  This  enabled  ether-acohol 
instead  of  the  scarce  acetone,  to  be  used  as  the 
promoting  solvent  or  gelatiniser.  Alcohol  from  the 
home  distilleries  and  the  colonies  was  used  and  much 
whisky  was  held  by  the  Government  in  case  it 
might  be  necessary  to  resort  to  it  for  the  alcohol  it 
contained. 

A  large  plant,  which  made  75  tons  a  day  of  ether, 
was  erected  at  Gretna  on  the  design  of  Barbet,  of 
Paris,  which  worked  excellently. 

A  striking  .instance  of  the  pluck  and  presence  of 
mind  of  a  girl  worker  occurred  in  the  ether  factory. 
She  was  filling  a  can  with  ether  from  a  large  tank, 
when  it  burst  into  flame;  before  running  away,  she 
managed  to  shut  off  the  cock  delivering  the  ether, 
and  thus  prevented  the  development  of  a  serious 
fire. 

The  manufacture  of  a  satisfactory  nitrocellulose 
for  R.D.B.  is  much  more  difficult  than  the  produc- 
tion of  guncotton  for  M.D.  cordite;  not  only  must 
the  percentage  of  nitrogen  be  kept  within  the  limits 
of  ±0T%,  but  it  must  be  perfectly  soluble  in  ether- 
alcohol,  and  the  solution  must  have  a  certain 
viscosity.  The  first  two  conditions  are  mainly 
dependent  on  the  composition  and  temperature  of 
the  nitrating  acids,  and  can  be  steadily  maintained. 
This  involves  great  accuracy  in  preparing  the  mixed 
acids.  When  it  is  remembered  that  the  content  of 
nitric  acid  and  water  must  not  vary  more  than 
+  0'2%,  it  will  be  realised  that  the  greatest  credit- 
is  due  to  the  chemists  who  devised  and  controlled 
the  excellent  system  of  acid  mixing  and  maintain- 
ing the  balance  of  the  huge  quantities  of  aoid  being 
made,  mixed,  denitrated  and  concentrated. 

The  third  condition,  the  viscosity,  however,  is 
greatly  influenced  by  the  character  of  the  cotton. 
This  led  to  much  investigation  and  experimenta- 
tion, and  it  was  only  after  the  effects  of  the 
preliminary  treatment  of  the  cotton  waste  at  the 
mills  had  been  carefully  studied  and  standardised 
that  uniformly  satisfactory  nitrocellulose  and 
R.D.B.  could  be  regularly  produced.  Thus  the 
introduction  of  R.D.B.  led  to  a  much  better  know- 
ledge of  the  properties  and  preliminary  treatment 
of  cotton. 

A  large  plant  for  refining  40  tons  per  day  of 
crude  glycerin  wa6  erected  at  Gretna  under  the 
supervision  of  Mr.  van  Ruymbeke,  and  worked 
excellently. 

Before  America  came  into  the  war,  and  when  it 
was  being  realised  that  the  supply  of  glycerin  might 
not  be  sufficient  to  meet  the  demand,  the  erection 
of  a  large  factory  to  produce  a  nitrocellulose  pro- 
pellant was  begun  at  Henbury.  On  America 
definitely  joining  the  Allies,  the  work  on  this 
factory  was  discontinued — a  wise  decision,  seeing 
that  finished  powder  could  be  imported  from 
America  in  about  one-fourth  of  the  tonnage 
required  for  the  importation  of  the  equivalent  raw 
materials,  nitre,  sulphur,  pyrites,  and  cotton,  and 
the  destructive  activities  of  the  U-boats  were  still 
a  serious  menace. 

For  the  concentration  of  sulphuric  acid,  the  chief 
feature  was  the  extensive  use  made  of  the  Gaillard 
tower.  As  the  volvic  stone  use  by  Gaillard  could 
not  be  procured  at.  first,  many  of  these  towers  were 
constructed  of  acid-proof  tiles,  which  withstood  the 
heat  and  acid  fumes  excellently.    At  Queen's  Ferry 


Vol.  xu.,  No.  23]    MACNAB.— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.   357  t 


there  were  16  towers  9  ft.  diam.  x  50  ft.  in  height, 
and  when  the  maximum  output  was  obtaining,  even 
the  few  grains  of  SO,  per  cub.  ft.  of  gas  discharged 
to  atmosphere,  permitted  by  the  Alkali  Act,  became 
a  serious  nuisance  to  the  workers  in  the  factory, 
and  also  to  the  neighbourhood.  After  some  time, 
Cottrell's  electrical  precipitator  was  installed  and 
completely  stopped  the  nuisance,  besides  recovering 
about  25  tons  per  day  of  50%  acid. 

There  was  a  curious  evidence  of  the  comparative 
stability  of  DNT.  The  spent  acid  from  the  TNT 
manufacture  always  contained  some  DNT  in  solution. 
A  portion  separated  out  during  denitration  and  was 
recovered,  but  the  acid  sent  forward  for  concentra- 
tion still  contained  some  DNT.  It  was  undoubtedly 
chased  out  of  the  sulphuric  acid  in  the  Gaillard 
towers,  but  turned  up  unharmed  in  spite  of  the 
electric  strain  of  80,000  volts,  in  the  Cottrell  pre- 
cipitator where  some  was  recovered,  and  finally  it 
formed  an  incrustation  on  the  exit  stack  and  fell 
down  inside  from  time  to  time  and  was  collected. 

Another  important  manufacture  which  attained 
large  proportions  was  that  of  ammonium  nitrate. 

At  the  beginning  of  the  war  the  high  explosive 
shells  were  filled  either  with  picric  acid  or  with 
TNT.  To  those  of  us  who  were  acquainted  with  the 
strength  and  merits  of  the  ammonium  nitrate  class 
of  explosives,  the  employment  of  a  large  percentage 
of  ammonium  nitrate,  along  with  TNT,  seemed  the 
obvious  wav  of  producing  more  explosive  from  the 
limited  amount  of  TNT  available.  The  War  Office, 
and  especially  the  Admiralty,  were  very  conserva- 
tive, and  did  not  approve  of  an  explosive  containing 
a  hygroscopic  ingredient.  Had  there  been  a  less 
strong  man  than  Lord  Moulton  at  the  head  of  the 
Department  of  Explosives  Supply,  the  merits  of 
ammonium  nitrate  explosives  would  not  have  been 
so  quickly  ascertained  and  utilised.  He  insisted 
that  they  should  be  studied  as  the  only  means  of 
ensuring  an  adequate  supply  of  explosives,  and 
thanks  to  the  diligent  work  of  the  Research  Depart- 
ment we  soon  had  the  various  amatols  (mixtures  of 
ammonium  nitrate  and  TNT).  Large  quantities  of 
ammonium  nitrate  were  procured  from  Norway. 
Brunner  Mond  and  Co.  60on  entered  the  lists,  and 
before  long  were  turning  out  large  quantities  of 
ammonium  nitrate  by  three  different  processes  at 
their  own  factories  and  at  others  which  they  erected 
for  the  Government.  The  first  was  a  modified 
ammonia  soda  process  in  which  sodium  nitrate  re- 
placed the  chloride.  Then  calcium  nitrate,  at  first 
obtained  from  Norway,  was  treated  with  ammonium 
carbonate,  the  reaction  being  quantitative.  After- 
wards, the  calcium  nitrate  was  produced  by  the 
Ammonia  Soda  Co.  and  by  Brunner  Mond  and 
Co.  from  calcium  chloride  and  sodium  nitrate.  The 
largest  quantities  were,  however,  ultimately  pro- 
duced by  the  double  decomposition  of  ammonium 
sulphate  and  sodium  nitrate. 

It  is  so  easy  to  write  the  equations  for  these  re- 
actions and  so  difficult  to  carry  them  out.  There 
was  ample  scope  for  the  phase  rule,  and  fortunately 
one  of  its  brilliant  exponents  was  on  the  spot  in 
the  person  of  Captain  F.  A.  Freeth,  who,  by  the 
aid  of  an  elaborate  series  of  curves  and  diagrams, 
was  able  to  get  in  full  sympathy  with  all  the  phases 
of  the  different  substances  and  bring  them  com- 
pletely under  control. 

A  large  factory  was  erected  at  Swindon  by  the 
Government  for  making  ammonium  nitrate  from 
sodium  nitrate  and  ammonium  sulphate,  and  it 
turned  out  about  2000  tons  per  week. 

Many  other  chemical  manufactures  were  started 
for  the  first  time,  or  existing  ones  increased  and 
modified,  but  it  is  not  possible  to  deal  with  them 
here.  I  wish,  however,  to  6ay  a  word  about  the 
skill  and  real  heroism  of  those  who  were  engaged  in 
devising  and  working  the  processes  for  making 
poison  gases.  Some  were  killed,  some  permanently 
injured,    and   nearly   all   suffered    abominably,   yet 


they  carried  on  in  the  most  self-sacrificing  manner. 
Truly  the  chemists  did  not  fail  the  nation  in  its 
time  of  need ! 

France. 

Now,  as  to  some  of  the  achievements  of  chemical 
industry  in  France.  Towards  the  end  of  1914  I  had 
occasion  to  visit  France  when  the  seat  of  the 
Government  had  been  transferred  from  Paris  to 
Bordeaux.  There  I  found  heads  of  departments 
carrying  on  the  administrative  work  of  the  country 
and  a  great  war  under  most  trying  conditions. 
Some  in  hotels,  in  the  University,  schools,  barracks, 
and  other  public  buildings.  Think  what  it  must 
have  meant,  to  transfer  hurriedly  all  the  working 
papers  and  documents  for  carrying  on  the  affairs  of 
a  great  country  and  restart  the  machine  again.  I 
shall  never  forget  the  impression  I  got  of  the  grim 
determination  to  hold  on,  the  same  spirit  that  in- 
spired later  the  immortal  words  at  Verdun  :  "lis  no 
passeront  pas." 

The  most  cordial  relations  developed  between  the 
Ministere  des  Munitions  and  our  own  Department 
of  Explosives  Supply,  and  members  of  the  staffs 
exchanged  visits  and  inspected  the  different  fac- 
tories from  time  to  time.  They  communicated  in- 
formation freely,  and  helped  us  in  many  ways,  and 
we  reciprocated  to  the  best  of  our  ability.  I  paid 
many  visits  and  followed  the  growth  and  operating 
of  many  factories  with  the  greatest  interest.  We 
were  justly  proud  of  what  we  were  accomplishing 
here,  but  I  always  returned  from  France  somewhat 
chastened  and  full  of  admiration  and  astonishment 
at  what  they  were  accomplishing.  Here  we  had  our 
difficulties  with  "  priorities  "  and  other  hindrances 
to  rapid  constructive  work,  but  we  had  not,  like  the 
French,  many  of  our  largest  engineering  and  con- 
structional works  in  the  hands  of  the  enemy;  and 
yet — in  spite  of  such  embarrassing  difficulties — they 
made  magnificent  efforts  and  achievements. 

In  1914,  I  visited  the  large  Arsenal  near  Lyons 
and  saw  shells  being  filled  with  picric  acid  in  a  way 
which  would  have  mado  our  officials'  hair  stand  on 
end  I 

In  a  very  extensive  building,  there  were  erected 
a  large  number  of  glycerine  baths  in  which  cans  of 
picric  acid  were  stood  until  the  acid  was  melted 
ready  for  pouring  into  the  shells.  The  baths  were 
heated  by  open  coke  fires  and  the  building  was 
thronged  with  workmen.  As  the  officer  in  charge 
truly  said:  "  With  the  enemy  on  our  doorstep  and 
our  soldiers  crying  out  for  ammunition,  risks  must 
be  taken  in  factories  which  would  not  be  thought 
of  in  peace  time."  It  is  satisfactory  to  be  able  to 
record  that  no  disaster  occurred  in  that  particular 
department. 

Immediately  after  returning  from  this  visit  I 
went  to  Woolwich  Arsenal  and  was  much  impressed, 
possibly  dismayed,  with  the  leisurely  manner  in 
which  shells  were  being  filled  with  picric  acid 
there.  The  fact  of  a  large  and  important  part  of 
one's  country  having  been  invaded  and  occupied  by 
the  enemy  accounts  for  many  apparent  anomalies 
in  the  way  in  which  French  and  English  regarded 
many  things  during  the  early  days  of  the  war. 
Perhaps  it  took  us  a  little  longer  to  get  into  our 
stride,  but  we  soon  had  no  occasion  to  be  dis- 
satisfied with  our  output. 

In  France,  the  manufacture  of  explosives — both 
for  military  and  civil  purposes — was  practically  a 
monopoly  of  the  State.  It  was  conducted  by  the 
"  Service  des  Pourdes  et  Salpetres,"  which  was 
established  on  13  Fructidor  in  the  year  V.,  other- 
wise August  30,  1797.  This  Department  had  at  the 
beginning  of  the  war  10  factories,  two  for  nitro- 
cellulose at  Angouleme  and  Moulin  Blanc,  five  for 
propellant  Poudre  B,  at  Le  Pont  du  Buis, 
Ripault,  St.  Medard,  Toulouse  and  Sevran-Livry ; 
and  three  for  disruptive  explosives  at  Esquerdes, 


358  t      MACNAB.— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR,     [Dec.  15, 1922. 


Vonges  and  St.  Chamas.  About  6000  persons  were 
employed  in  these  factories  at  first  and  this  number 
rose  to  120,000  in  1917. 

Workers  employed  in  explosives  factories  from 
1914<o  1918. 


The  French  were  not  unprepared  in  regard  to 
explosives  for  a  great  war.  The  general  staff  had 
elaborated  a  plan  during  peace  in  which  it  was 
provided  that  there  should  be  capacity  for  pro- 
ducing 24  tons  of  propellant  powder  per  day.  The 
actual  capacity  of  the  Government  factories  on  the 
outbreak  of  war  was  about  22  tons  a  day,  and  there 
was  a  stock  of  750  tons  in  the  country,  so  that  the 
anticipated  requirements  of  24  tons  per  day  could 
be  easily  supplied  until  the  factories  could  bring  up 
their  outputs  sufficiently.  The  facilities  for  making 
high  explosives  were  very  limited,  but  sufficient 
stocks  had  been  accumulated  to  serve  for  the  few 
months  during  which  ijt  was  believed  a  great  war 
could  last,  and  it  was  not  considered  necessary  to 
have  available  factories  for  these  explosives. 

Almost  from  the  first,  however,  it  was  seen  that 
the  consumption  of  all  kinds  of  explosives  was  going 
to  exceed  anticipations,  and  the  Battle  of  the 
Marne  led  to  greatly  increased  demands. 

Even  the  greatest  difficulty  was  experienced  in 
keeping  up  the  supply  of  powder  for  the  Army. 
The  Navy  assisted  by  giving  up  many  guncotton 
torpedo  charges,  which  were  sent  to  the  factories 
to  be  broken  down  and  worked  up  into  powder. 
During  the  scare  which  followed  the  explosion  on 
the  "  Liberte,"  large  quantities  of  powder  had 
been  sunk  in  Toulon  Harbour.  This  powder  was 
dredged  up,  found  to  be  stable  enough,  and  was 
re-worked,  and  —in  one  way  and  another  during 
the  trying  first  months  of  storm  and  stress — the 
troops  were  kept  supplied. 

In  addition  to  enlarging  existing  factories,  two 
entirely  new  works  were  erected  at  Bracqueville, 
near  Toulouse,  and  at  Bergerac  to  produce  100  tons 
and  60  tons  per  day  respectively  of  Poudre  B. 
These  works  were  finely  laid  out  and  constructed, 
reinforced  concrete  playing  a  leading  part  in  the 
building,  and  also  in  the  chimney  stacks. 

Large  numbers  of  orientals  from  Annam  and 
Cochin  China,  and  natives  from  Algeria  and  Sene- 
gambia,  were  employed  in  the  explosives  works. 
Special  arrangements  for  their  housing  and  over- 
sight had  to  be  made,  thus  causing  additional  work. 
The  provision  of  a  competent  staff  for  the  different 
factories  was  no  easy  matter,  for  there  was  no  large 
and  well-developed  organic  chemical  industry  in 
France,  from  which  experienced  men  could  be 
obtained ;  however,  professors,  teachers,  and  many 
others  were  enlisted,  and  the  factories  were  success- 
fully brought  to  the  desired  output. 

During  repeated  visits  it  was  intensely  interesting 
to  see  the  rapid  growth  of  these  factories  and  often 
to  learn,  on  a  succeeding  visit,  that  what  had 
previously  seemed  a  very  large  output  was  then 
being  doubled. 


Angoulenie  is  the  largest  nitrocellulose  factory, 
and  was  equipped  with  the  Selwig  nitrating  centri- 
fugals and  the  Thomson  displacement  nitration 
process.  Pending  the  arrival  of  new  plant  for  these 
excellent  processes,  recourse  was  had  to  the  old 
Abel  small  pot  process,  which  could  be  easily  and 
quickly  installed,  with  all  its  inconvenience  of  much 
labour  and  noxious  fumes. 

Nitrocellulose. 

Total. 

French  production. 

Imports  from  America. 


400 


320 


240 


80 


1914     1915 


1916 


1917 

Fig.  8. 


1918 


The  manufacture  of  the  French  Poudre  B  requires 
a  large  amount  of  alcohol  as  such  and  after  con- 
version into  ether.  Here,  again,  many  in- 
genious methods  were  adopted  for  eking  out 
the  precious  liquid.  Many  of  the  large  dis- 
tilleries were  in  the  occupied  territory,  and  this 
added  much  to  the  difficulties  of  supply.  A  useful 
source  of  alcohol  was  found  in  the  quantities  of 
alcoholic  extracts  of  absinthe,  which  had  been  im- 
pounded owing  to  its  consumption  having  been  pro- 
hibited recently.  Attempts  were  made  to  produce 
alcohol  from  the  large  quantities  of  cider  fruit 
available,  but  were  unsuccessful  until  it  was  dis- 
covered that  by  mixing  a  certain  proportion  of 
beetroot  with  the  apples  fermentation  could  be 
carried  out  satisfactorily. 

In  making  the  French  powder  a  mixture  of 
"insoluble"  and  "soluble"  nitrocellulose  is 
gelatinised  by  means  of  ether-alcohol  and  then 
pressed  out  in  the  form  of  ribbon  which  is  sub- 
sequently cut  into  suitable  lengths  or  strips  or  small 
squares.  The  ribbon  had  to  be  dried  to  get  rid  of 
the  solvent  and  at  first  a  considerable  quantity  of 
ether-alcohol  was  recovered  by  drawing  the  air, 
laden  with  the  solvent,  from  the  drying  chambers 
through  a  carbonic  acid  refrigerating  system. 
Later  on  a  greatly  improved  recovery  was  obtained 
by  absorbing  the  ether-alcohol  in  the  air  in  cresol 
in  suitable  scrubbers  according  to  Bregeat's  patent. 

The  output  of  Poudre  B.  reached  as  much  as 
370  tons  per  day,  and  the  total  production  of  this 
powder  in  France,  during  the  war.  was  306,700 
tons,  whilst  117,000  tons  was  imported  from 
America. 

Picric  acid. — The  production  of  picric  acid  be- 
came one  of  the  chief  necessities  and  numerous 
proposals  were  put  forward  to  procure  an  adequate 
supply. 

In  Germany  before  the  war,  nearly  all  the  picric 
acid  was  made  from  chlorobenzene,  as  they  had 
plenty  of  chlorine  from  their  electrolytic  processes. 
No  chlorine  was  available  in  France,  but — not  to 


vol.  XLI.,  No.  23.]    MACNAB— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.    359  t 


leave  out  any  possible  means  of  increasing  their 
supplies — 1000  tons  of  chlorine  was  ordered  from 
America.  It  was  never  used  for  picric  acid,  as  the 
first  gas  attacks  in  April.  1915,  had  occurred,  and 
this  chlorine  was  handed  over  to  the  Service  du 
Materiel  Chimique  de  Guerre  for  experiment  and 
subsequent  use  in  counter  gas  attacks. 

Poudre  B. 

^^^—  Total  deliveries. 

State  factories. 

Foreign  importations. 

— . —  Successive  programmes 


1915  1916  1917 

Fig.  9. 


1918 


The  chief  source  of  the  raw  material  for  picric 
aoid  was  the  synthetic  phenol  made  from  benzene. 
The  amount  of  phenol  available  from  coal  tar  was 
6mall,  and  the  French  had  obtained  most  of  the 
phenol  they  required  from  Germany.  One  firm, 
however — the  Societe  Chimique  des  Usines  du 
Rhone — was  making  about  1  ton  of  synthetic  phenol 
per  day  before  the  war  at  St.  Fons,  near  Lyons. 
Arrangements  were  made  successively  for  increasing 
the  output  to  10,  15,  and  30  tons  per  day,  and 
finally  the  company  erected  for  the  Government  a 
new  factory  at  Peage  de  Roussillon,  further  down 
the  Rhone,  which  produced  75  tons  per  day  in 
1917.  This  was  a  magnificent  factory,  and  we  in 
England  benefited  much  in  carrying  out  our  pro- 
cesses for  making  synthetic  phenol  from  the  greater 
experience  of  the  French,  who  freely  gave  infor- 
mation. 

The  process  consisted  in  the  sulphonation  of 
benzene  with  strong  sulphuric  acid  in  the  usual 
way.  Later  on  Guyot  improved  this  stage  greatly 
by  passing  the  benzene  in  vapour  form  into  acid, 
heated  to  100°  C,  and  condensing  any  unabsorbed 
benzene  and  the  water  which  had  been  formed  by 
the  reaction.  After  drying,  the  unabsorbed  benzene 
re-entered  the  cycle.  By  this  method  nearly  all 
the  sulphuric  acid  was  utilised,  thereby  effecting 
considerable  economy  in  acid,  lime  for  neutralisa- 
tion, and  attendance. 

The  product  of  sulphonation  was  diluted  with 
water  and  neutralised  with  lime,  then  treated  with 


sodium  sulphate  or  carbonate  to  convert  the. calcium 
benzenesulphonate  into  the  sodium  salt.  The 
sodium  benzenesulphonate  solution  was  separated  by 
filtration  from  the  calcium  sulphate  or  carbonate, 
and  then  concentrated  in  vacuo  to  crystallising 
point.  The  crystals  were  then  heated  until  the 
water  of  crystallisation  was  driven  off. 

A  great  improvement  in  this  stage  was  ultimately 
introduced.  To  the  product  of  sulphonation,  which 
contained  a  considerable  amount  of  free  sulphuric 
acid,  sufficient  normal  sodium  sulphate  was  added 
to  form  sodium  benzenesulphonate,  which,  under 
certain  conditions  of  concentration  and  tempera- 
ture, crystallised  out  almost  completely  from  the 
solution.  This  method  avoided  the  neutralisation 
with  lime  and  expensive  evaporation  of  the  sodium 
benzenesulphonate  solution.  The  yield  was  not 
quite  so  high  as  by  the  old  method,  but  this  was 
much  more  than  counterbalanced  by  economy  in 
lime,  fuel,  time,  and  labour.  This  method,  along 
with  the  process  of  sulphonation  of  benzene  in  the 
state  of  vapour,  marked  distinct  progress  in  the 
manufacture  of  phenol. 

The  sodium  benzenesulphonate,  after  fusion  with 
caustic  soda  and  extraction  with  water,  gave  a 
solution  of  alkaline  phenate  and  sodium  sulphite 
which  was  precipitated.  The  sodium  phenate  solu- 
tion was  decomposed  by  sulphuric  acid,  which  set 
free  the  phenol,  which  was  decanted  and  distilled 
under  vacuum,  while  the  sodium  sulphate  in  solu- 
tion was  recovered  after  concentration  and  crystal- 
lisation, and  used  again  in  the  earlier  stage  of  the 
cycle.  Altogether,  from  Government  and  private 
factories,  200  tons  per  day  of  synthetic  phenol  was 
obtained. 

The  manufacture  of  picric  acid  attained  large 
proportions.  Private  factories  ultimately  turned 
out  about  100  tons  per  day.  New  Government 
factories  for  making  picric  acid  were  erected  at 
Sorgues  near  Avignon,  Bassens  near  Bordeaux,  and 
Oisel  near  Rouen,  their  joint  output  being  about 
180  tons  per  day.  The  works  at  St.  Chamas,  near 
Marseille,  were  also  greatly  extended  and  produced 
a  large  amount  of  picric  acid  and  other  explosives. 

The  process  almost  invariably  followed  in  Franco 
consisted  in  first  sulphonating  the  phenol,  then 
running  the  acid  sulphonate  into  a  mixture  of 
sodium  nitrate  and  dilute  nitric  acid  contained 
either  in  small  earthenware  nitrating  pots — each 
mounted  on  a  small  trolley — or  else  into  large  cast 
iron  pots  lined  with  acidproof  bricks  and  cement. 
The  large  cast  iron  pots  were  connected  perma- 
nently to  condensing  and  absorbing  towers  and  the 
small  pots,  when  charged  with  nitre  and  dilute 
nitric  acid,  were  moved  to  stations  and  connected 
to  absorbing  towers.  The  sulphonic  acid  was  run 
in,  and  a  current  of  air  blown  through  the  contents 
served  to  control  the  reaction,  remove  the  fumes 
and  promote  the  formation  of  the  picric  acid  in  fine 
crystals.  When  the  evolution  of  fumes  ceased,  after 
about  3  hours,  the  pots  were  removed  to  a  distance 
and  allowed  to  stand  for  14  hours,  when  the 
nitration  was  complete.  The  crystals  of  picric  acid 
were  separated  by  filtration,   washed  and  dried. 

This  process  has  the  advantage  of  not  requiring 
plant  for  the  manufacture  of  nitric  acid,  the  dilute 
nitric  acid  above  referred  to  coming  from  the  con- 
densation and  oxidation  of  the  nitrous  fumes 
evolved.  On  account  of  being  directly  associated  with 
the  sodium  nitrate  in  the  nitrating  pot,  the  picric 
acid  has  always  a  higher  ash  content  than  when 
made  with  nitric  acid.  This  was  looked  on  with  dis- 
favour by  our  authorities,  although  the  French 
found  it  unobjectionable.  Special  relaxation  in  the 
specification  was  contemplated  had  the  factory 
erected  in  England  for  making  picric  acid  according 
to  the  French  practice  come  into  operation. 

TNT  was  also  made  in  France  in  considerable 
quantities,  but  this  manufacture  never  attained  the 


360  t      MACNAB.— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.       [Dec.  15, 1922. 


proportions  reached  in  England.  At  first  the 
toluene  was  nitrated  direct  to  TNT  in  one  opera- 
tion, requiring  about  10  hours  in  the  nitrating 
vessels;  this  enabled  a  larger  output  to  be  obtained 
from  the  plant,  which  was  a  great  advantage  in  the 
early  days,  but  this  process  involved  a  larger  con- 
sumption of  acid  and  was  abandoned  when  more 
plant  could  be  procured.  A  three-stage  process  was 
generally  followed  afterwards. 

In  order  to  increase  still  further  the  supply  of 
explosives  endeavour  was  made  to  nitrate  *  the 
mixtures  of  o-,  in-,  and  p-xylenes  contained  in  the 
Borneo  spirit,  but  this  gave  a  most  unsatisfactory 
product,  both  from  the  manufacturing  and  usage 
points  of  view.  The  French,  however,  studied  the 
problem  and  finally  evolved  a  good  process  which 
produced  an  excellent  explosive  substance  very 
similar  in  explosive  character  to  TNT. 

The  xylenes  in  the  spirit  existed  in  three  isomeric 
forms,  m-xylene  being  the  only  one  which  gave  a 
suitable  trinitroxylene.  As  it  was  impossible  to 
separate  these  xylenes  by  physical  methods,  the 
separation  was  effected  by  treating  the  Borneo 
xylene  spirit  with  94%  sulphuric  acid.  Under  suit- 
able conditions  of  time  and  temperature,  only  the 
<i-  and  m-xylene  are  sulphonated.  After  washing, 
the  p-xylene  and  the  aliphatic  hydrocarbons  are 
distilled  off  and  the  remaining  o-  and  m-xylene- 
sulphonic  acids  are  heated  to  130°  C.  with  dilute 
sulphuric  acid,  when  the  m-xylenesulphonic  acid  is 
decomposed  and  the  ?n-xylene  driven  off,  the 
sulphonic  acid  of  o-xylene  not  being  split  up  until 
160°.  This  reaction  with  hot  dilute  sulphuric  acid 
involved  the  use  of  silicon-iron  vessels  or  other  acid- 
resisting  materials.  Considerable  success  was 
obtained  by  painting  ordinary  cast-iron  vessels  with 
a  special  acid-resisting  composition. 


Nilro  and  nitrated  explosives. 

—  Schneiderlte. 

Tollte. 
Melinite  paraffinee. 


50 


200    - 


100 


A 

/\ 

•/Jvv  V- 

/  l 

/     \ 

/        y" 

/ 

<N           \ 

f\ 

/ —          -- 

y    s*~^ r 

<s  \rJ 

v^. 

\ 

~~\-*. 

^ 

— ^--^ —       , 

1 

1914 


1915 


1917 


1918 


FlO.    10. 


Arrangements  had  been  made  in  England  for 
making  m-xylen©  in  this  way,  but  were  not  oarried 
out  as  the  supply  of  toluene  proved  sufficient  for 
our  needs. 

Chlorate  and  perchlorate  explosives. 
—  Total. 
Perchlorate  explosives. 

Chlorate  explosives. 


1915 


1916  1917 

Fig.   11. 


1918 


The  manufacture  of  chlorates  and  perchlorates 
was  carried  out  on  a  considerable  scale  at  Cheddes 
and  elsewhere  to  the  extent  of  80  tons  of  sodium 
chlorate  and  73  tons  of  ammonium  perchlorate  per 
day.  Explosives  made  from  these  compounds  as 
base,  being  too  sensitive  for  use  in  high-velocity 
shells,  were  chiefly  used  in  hand  grenades  and  trench 
mortars,  also  for  aeroplane  bombs. 

At  Angouleme  "  Yperite  "  or  mustard  gas  was 
made  according  to  a  process  devised  by  the  Societe 
Chimique  des  Usines  du  Rhone.  The  output  con- 
templated was  24  tons  per  day;  at  the  Armistice 
6  tons  per  day  was  being  made  from  2  units,  two 
others  were  ready  to  start  and  the  full  output  would 
have  been  reached  by  the  end  of  the  year. 
Angouleme  also  turned  out  70  to  80  and  Bassens  25  to 
30  tons  per  day  of  nitrogen  peroxide,  which  formed 
the  base  of  the  explosive  "  anilithe  "  used  for  filling 
aeroplane  bombs.  Like  us,  the  French  found  them- 
selves embarrassed  by  large  quantities  of  mustard 
gas  after  the  armistice,  and  much  was  taken  to 
sea  and  drowned. 

The  supply  of  oleum  soon  proved  insufficient,  and 
large  quantities  were  imported  from  America  until 
new  plants  were  erected  and  brought  into  opera- 
tion. One  oleum  plant  at  Thann,  in  Alsace,  was 
dismantled  while  under  fire  and  successfully  re- 
moved during  the  night  and  erected  and  re-started 
at  St.  Denis. 


Consumption  of  66"  sulphuric  acid  and  oleum, 
January  1915  to  October  1918. 


The  manufacture  of  nitric  acid  from  saltpetre  was 
nearly  always  carried  out  according  to  the 
Valentiner  process.  The  French  seemed  to  be  able 
to  procure  much  larger  and  better  earthenware 
plant  than  we  could  make.  It  is  interesting  in 
this  connexion  to  recall  a  visit  to  the  celebrated 
porcelain  works  at  Sevres,  where  were  seen  many 
of  the  most  skilled  makers  of  the  delicate  porcelain 
articles  busily  moulding  large  vessels  for  different 
kinds  of  chemical  work. 

The  French,  however,  did  not  consider  it  safe  to 
rely  entirely  on  Chile  saltpetre  for  their  nitric 
acid  requirements.  There  was  a  small  factory  at 
R6che-de-Rame  working  the  Pauling  process  and 
producing  2  tons  per  day  of  50%  nitric  acid.  This 
was  taken  over  by  the  Government;  later,  plant 
was  erected  by  the  Norwegian  Company  to  work 
the  Birkeland  and  Eyde  process  at  Soulom  in  the 
Pyrenees,  where  the  Midi  Railway  Co.  had  erected 


Vol. xli.No.23.]    MACNAB.— ACHIEVEMENTS  OF  CHEMICAL  INDUSTRY  DURING  THE  WAR.    361t 


a  large  hydroelectric  power  station  and  could  offer 
12,000  kw.-h.  for  this  purpose.  About  300  tons, 
calculated  as  strong  nitric  acid,  was  delivered  per 
month  from  this  works,  either  as  nitric  acid  or 
ammonium  or  sodium  nitrates,  as  required. 

A  large  plant  was  also  erected  at  Angouleme  for 
the  oxidation  of  ammonia,  derived  from  cyanamide, 
by  the  Kuhlmann-Ostwald  process.*  Arrangements 
were  made  for  the  supply  of  3500  tons  of  cyanamide 
per  month  and  the  plant  was  in  full  work  in  1917. 
The  submarine  menace  becoming  still  more 
serious,  it  was  decided  to  create  new  works  capable 
of  producing  500  tons  of  nitric  acid  and  150  tons 
of  ammonium  nitrate  per  day.  This  involved  a 
supply  of  1000  tons  of  cyanamide  and  electric 
energy  of  125,000  kw.-h.  This  power  was  found 
in  the  Pyrenees,  the  Alps,  and  centre  of  France, 
and  provision  was  also  made  for  supplying  a  reserve 
amount  from  steam. 

At  the  time  of  the  armistice  two  of  the  new  works 
had  begun  to  manufacture  and  the  others  were 
nearly  completed. 

With  all  the  plant  in  operation,  France  would 
have  ibeen  independent  of  outside  supplies  of  nitre. 
In  this  branch  of  chemical  industry  they  got  much 
ahead,  and  still  remain  far  in  advance  of  us. 

And  here  I  wish  to  express  my  thanks  to  my 
friend,  Professor  Haller,  of  Paris,  for  permission 
to  draw  on  the  information  contained  in  his  two 
papers  published  in  the  Bulletin  de  la  Societe 
d'Encouragement  pour  1'Industrie  Nationale, 
November/ December,  1920,  and  for  the  loan  of  his 
slides,  and  to  members  of  the  Service  des  Poudres 
et  Salpetres,  who  have  kindly  helped  me  from 
time  to  time. 

In  this  sketch  I  have  endeavoured  to  indicate  the 
really  magnificent  efforts  that  were  made  in  this 
country  and  in  France  in  chemical  industry  during 
the  war,  and  the  enormous  outputs  of  many  and 
varied  chemical  products.  As  achievements  of 
chemical  industry,  all  concerned  may  regard  them 
with  pride. 

And  yet  it  is  a  bitter  thought  that  all  this  inten- 
sive effort  and  expenditure  of  brains  and  intelli- 
gence resulted  literally  in  smoke  and  destruction  of 
life  and  property  that  is  truly  appalling.  As 
chemists,  we  know  better  than  most  people  the 
awful  possibilities  of  suffering  and  destruction 
another  great  war  would  entail,  unrestricted  as  it 
would  be  in  every  sense. 

It  seems  to  me  that  it  is  especially  laid  on  us 
to  bear  this  in  mind  and  combat  every  tendency 
which  might  lead  to  war,  and  endeavour  to  prevent 
mankind  from  entering  on  such  a  suicidal  course. 

Fortunately  there  is  a  more  cheerful  and  hopeful 
way  of  looking  at  these  chemical  activities. 
Chemical  industry,  in  nearly  all  its  branches, 
received  a  great  stimulus  from  the  war.  A  very 
large  number  of  chemists  were  brought  into  close 
contact  with  industrial  work,  and  have  gained  a 
valuable  experience  in  factories,  and  have  become 
practically  acquainted  with  the  construction  of 
plant  and  running  of  chemical  processes,  and — in 
many  instances — the  coup  de  grace  has  been  given 
to  rule-of-thumb  methods. 

We  were  fortunate  too  in  having  at  the  head  of 
the  Factories  Branch  of  the  Department  of  Explo- 
sives Supply  K.  B.  Quinan,  whose  good  influence 
on  our  chemical  industry  is  being  widely  felt, 
especially  through  the  work  of  the  younger  men 
who  have  assimilated — and  practise— his  excellent 
methods  of  studying  and  handling  technical  prob- 
lems. Quinan  was  an  inspiration  to  all  of  us  who 
had  the  privilege  of  working  with  him.  He  had 
much  in  common  with  the  distinguished  chemist  in 
whose  memory  these  lectures  have  been  established, 


•  Professor  Haller  has  pointed  out  that,  although  the  ammonia- 
oxidation  process  bears  the  name  of  Ostwald,  the  principle  was 
established  by  Kuhlmann,  of  Lille,  in  the  first  half  of  last  century. 


and  was  very  desirous  that  the  country  should  derive 
as  much  benefit  as  possible  from  the  knowledge  and 
experience  gained  during  the  war. 

We  may  look  forward  with  hope  to  holding  our 
own  and  competing  successfully  in  all  branches  of 
chemical  industry  if  we  seek  for,  and  apply,  the 
highest  scientific  knowledge  available. 

The  Universities  and  Colleges  I  am  sure  wish  to 
help  industry  as  much  as  possible,  whether  by  pure 
research  or  by  imparting  more  technical  teaching 
to  those  chemists  intending  to  enter  on  an  industrial 
career.  Many  of  the  professors  and  teachers  did 
splendid  work  during  the  war,  and  were  brought 
into  close  contact  with  many  works  and  those  con- 
trolling them.  This  experience,  as  well  as  the- 
broadened  sympathy  which  must  have  resulted 
between  professors  and  manufacturers,  should  also 
be  very  helpful  in  developing  technical  education 
on  sound  lines. 

In  looking  over  the  long  list  of  Hurter's  activities 
and  accomplishments  one  cannot  help  regretting 
that  we  had  not  the  advantage  of  his  great  abilities 
when  faced  with  so  many  difficult  and  important 
industrial  problems  which  he  would  have  delighted 
in  attempting  to  solve,  and  yet  one  has  to  recognise 
the  pain  it  would  have  been  to  one  so  closely  allied 
to  two  nations  caught  in  the  horrid  cataclysm  of 
war  and  feel  glad  that  he  was  spared  that  experi- 
ence. The  war  showed  us  our  lack  of  men  of 
Hurter's  stamp,  men  of  high  scientific  attainments 
coupled  with  the  knowledge  and  practice  of 
technical  working.  Undoubtedly  we  had  some 
splendid  ones,  but  not  nearly  enough.  Hurter  has 
left  us  a  great  legacy  in  showing  us  the  way  in 
which  technical  problems  should  be  handled,  which 
is  often  of  more  general  use  than  the  solving  of 
particular  ones.  Let  us  hope  these  Hurter 
memorial  lectures  will  help  effectively  to  keep  his 
name  and  influence  before  us  and  induce  us  to  pay 
closer  attention  to  what  he  can  teach  us. 

In  passing,  I  would  like  to  refer  to  a  subject 
I  have  much  at  heart  and  which  seems  to  me  not 
unsuited  to  be  mentioned  in  a  Hurter  memorial 
lecture. 

The  Institution  of  Chemical  Engineers  has  just 
come  into  actual  being.  There  has  been  much  talk 
and  discussion  from  time  to  time  as  to  the  definition 
of  a  chemical  engineer,  but  whatever  our  individual 
opinions  may  be  as  to  his  education  and  his  scope, 
I  am  certain  we  are  one  and  all  desirous  of  seeing 
British  chemical  industry  in  a  flourishing  condition. 
Some  one  in  a  works  must  have  a  good  knowledge 
of  both  chemistry  and  engineering  if  the  work  is  to 
be  wisely  co-ordinated  and  the  best  results  obtained. 

It  is  not  easy  to  prescribe  the  best  means  of 
educating  and  developing  men  of  this  class,  but  I 
am  convinced  that  it  should  be  attempted.  I  would 
earnestly  ask  those  who  are  actively  connected  with 
the  technical  side  of  chemical  industry,  as  well  as 
professors  and  teachers,  to  give  this  new  Institution 
their  whole-hearted  support,  sympathy,  and  advice, 
so  that  its  activities  may  be  wisely  directed  and 
prove  a  real  force. 

There  can  be  no  difference  of  opinion  as  to  the 
immense  value  of  Hurter's  contribution  to  the 
technology  of  chemistry,  whether  we  consider  his 
studies  of  the  means  of  promoting  action  between 
gases  and  liquids  which  were  conducted  in  such  a 
scientifically  systematic  manner,  or  his  work  in 
connexion  with  the  manufacture  of  chlorine,  or 
indeed  any  of  his  many  activities.  He  seems  to 
me  to  represent  the  highest  type  of  industrial 
chemist  or  chemical  engineer,  whose  example  should 
be  an  inspiration  to  all  of  us. 

I  cannot  but  think  that  he  would  have  approved 
of  this  new  Institution,  and  if  it  takes  him  as  an 
ideal  after  which  to  strive  to  fashion  its  members, 
chemical  industry  will  benefit  and  Hurter's  memory 
be  kept  greener  than  ever. 


362t     WEBB  AND  TAYLOR.— DETERMINATION  OF  NITROGEN  IN  NITRIC  ACID.     [Dec.  15, 1922. 


Communication. 


THE    NITROMETER    METHOD     FOR    THE 

DETERMINATION     OF     NITROGEN     IN 

NITRATES    AND    NITRIC    ACID. 

BY  H.  W.  WEBB,  M.SC,  F.I.C.,  AND  M.  TAYLOR,  D.SO. 

The  following  investigation  was  undertaken  to 
determine  the  cause  of  repeated  discrepancies 
observed  in  practice  between  the  percentage  of 
nitric  acid  in  samples  of  commercial  acid,  as  deter- 
mined by  means  of  the  nitrometer  on  the  one  hand 
and  by  titration  with  alkali  on  the  other.  The 
total  acidity  by  titration  with  alkali  was  found  to 
give  values  agreeing  with  the  total  obtained  by 
determining  the  nitrous  acid  with  permanganate 
and  the  nitric  acid  by  the  ferrous  sulphate  method 
of  Bowman  and  Scott. 

The  experiments  here  described  were  hence  carried 
out  with  the  object  of  deciding  whether  the  dis- 
crepancy was  due  to  inherent  errors  in  the  method, 
or  to  faulty  manipulation. 

The  materials  employed  consisted  of  (1)  potassium 
nitrate  recrystallised  until  free  from  chloride  and 
sulphate,  and  dried  at  120°  C. ;  (2)  concentrated 
nitric  acid  freed  from  chlorine  and  eulphuric  acid 
by  distillation,  and  from  oxides  of  nitrogen  by 
bleaching. 

In  the  case  of  potassium  nitrate  the  accuracy  of 
the  method  was  checked  by  direct  weighing,  while 
in  the  second  case  the  acid  was  titrated  against 
standard  sodium  hydroxide  solution.  IV /l  Hydro- 
chloric acid  was  prepared  by  distillation  under 
known  pressure,  according  to  the  method  of  Hulett 
and  Bonner  (J.  Amer.  Chem.  Soc.,  1909,  31,  390), 
.and  was  used  as  the  standard  in  alkali  titrations. 

The  sodium  hydroxide  solution  was  free  from 
carbon  dioxide  and  was  prepared  by  allowing  clean 
sodium,  supported  by  a  nickel  gauze,  to  deliquesce 
into  a  nickel  crucible  in  an  atmosphere  free  from 
carbon  dioxide  (Ostwald-Luther,  "  Phys.  Chem. 
Messungen,"  3rd  German  Edn.,  1910,  491). 

All  the  instruments  employed  were  calibrated,  the 
nitrometer  by  means  of  mercury,  and  burettes  by 
means  of  water.  An  Ostwald-Luther  calibration 
pipette  was  used  in  the  case  of  the  burettes. 
Standardised  weights  were  used. 

The  sulphuric  acid  used  in  the  nitrometer  was 
tested  for  freedom  from  nitrogen  (1)  by  shaking  with 
mercury  in  the  nitrometer,  (2)  by  the  ferrous 
sulphate  test,  (3)  by  diphenyilamine,  which  gave 
only  a  faint  blue  coloration  on  warming  and 
standing. 

The  pure  97%  acid  was  diluted  to  91—92%  before 
use  in  the  nitrometer. 

Manipulation. — The  quantity  of  sulphuric  acid 
was  kept  as  low  as  was  compatible  with  complete 
washing  in  of  the  nitrate. 

According  to  Marquevrol  and  Florentin  (Bull.  Soc. 
Chim.,  1911,  9,  201)  long  shaking  with  strong 
sulphuric  acid  and  mercury  causes  reduction  of 
nitric  oxide  to  nitrous  oxide  and  nitrogen,  therefore 
unnecessarily  long  shaking  was  avoided.  After 
introduction  of  the  materials  the  nitrometer  was 
given  one  shaking  consisting  of  30  to  40  separate 
snakes.  It  was  then  allowed  to  stand  for  about 
twenty  minutes  and  the  process  repeated  until  no 
more  "gas  was  liberated.  Uusually  a  slight  increase 
in  volume  was  observed  after  the  second  shaking, 
and  further  shaking  produced  no  further  increase. 
In  no  case  was  a  decrease  in  volume  observed  as  a 
result  of  repetition  of  the  shaking.  The  level  of  the 
open  limb  of  the  nitrometer  was  adjusted  until  there 
was  practically  no  influx  of  acid  from  the  cup  on 
opening  the  tap. 

It  was  observed  that  the  thermometer  attached  to 
the  outside  of  the  nitrometer  responded  more 
rapidly   to  change   in   temperature   than   the    gas. 


During  a  reading  the  thermometer  would  rise  from 
0'5°  to  l-5°  C,  while,  with  rapid  reading,  the  gas 
showed  no  change  in  volume.  Consequently  the 
temperature  was  always  read  before  the  final 
adjustment  and  reading  of  the  volume  of  the  gas. 
For  the  same  reason  the  readings  should  be  taken 
in  a  room  free  from  fluctuations  of  temperature 
such  as  are  caused  by  draughts  or  direct  sunlight. 
The  barometer  readings  were  corrected  for  tempera- 
ture and  the  pressure  was  corrected  for  the  column 
of  sulphuric  acid  in  the  cup,  the  density  of  the  acid 
being  taken  as  one-seventh  that  of  the  mercury. 
The  volume  of  the  sulphuric  acid  in  the  nitrometer 
was  read  to  allow  of  correction  for  the  solubility  of 
nitric  oxide  in  the  acid. 

In  the  calculations  1917  atomic  weights  were  used, 
and  Gray's  value  T3402  g.  was  taken  as  the  weight 
of  1  litre  of  nitric  oxide  at  0°  C.  and  under  760  mm. 
pressure.  Using  these  values,  1  c.c.  of  nitric  oxide 
is  equivalent  to  45154  mg.  of  potassium  nitrate  and 
to  2"8144  mg.  of  nitric  acid. 

Results  with  potassium  nitrate. 

(1)  03106  g.  KNO,  yielded  74'5  c.c.  NO  at  22'7°C. 
under  755'7  mm. 

Volume  of  91—92%  H2S04  in  nitrometer  =  20-5  c.c. 

Percentage  of  KN03  in  purified  potassium  nitrate 
(not  corrected  for  solubility  of  NO)  =  74'5x 
7557  x  4-5154  -i-  760(1  +  22-7xO-OO3665)3T06  = 
99-42. 

(2)  0-3152  g.  KNOs  yielded  75'5  c.c.  NO  at  25°  C. 
under  757'7  mm. 

Volume  of  H2S04  in  nitrometer  =  20'5  c.c. 
Percentage  of  KN03  (uncorrected)  =  9945. 

(3)  02836  g.  KN03  yielded  67'75  c.c.  NO  at  22°  C. 
under  757'55  mm. 

Volume  of  H2S04  in  nitrometer=12'5  c.c. 
Percentage  of  KNOs  (uncorrected)  =  99'55. 

(4)  0-3010  g.  KN03  yielded  716  c.c.  NO  at  20-8°  C. 
under  7601  mm. 

Volume  of  H.S04  in  nitrometer  =  11  c.o. 

Percentage  of  KNOs  (uncorrected)  =  99'64. 

The  above  experiments  show  that  the  larger  the 
volume  of  sulphuric  acid  in  the  nitrometer  the 
greater  the  error  in  the  determination  of  the  per- 
centage of  potassium  nitrate.  Therefore  before 
reducing  to  standard  conditions  a  correction  for  the 
solubility  of  nitric  oxide  in  the  acid  must  be  applied 
to  the  volume  actually  read. 

According  to  Lunge  (J.,  1885,  4,  448)  10  c.c.  of 
96%  sulphuric  acid  dissolves  0"35  c.c.  of  nitric  oxide 
at  18°  C.  and  under  760  mm.,  while  according  to 
Tower  (Z.  anorg.  Chem.,  1906,  50,  382)  10  c.c.  of  90% 
acid  dissolve  only  0T93  c.c.  of  nitric  oxide  at  18°  C. 

Table  I.  affords  a  comparison  of  the  effect  of  these 
two  different  corrections. 


2. 


4. 


8. 


Table  I. 


5.  6.  7. 
Vol. 

Vol.       °„  of        of  %  of  KXO, 

No.     Wt.        un-       KNOs    acid  Lunge's  Tower*s  corrected  for 

of       of         cor-       eale.        in  corr.  corr.  solubility  of 

expt.  KNOj    rected    from    nitro-  vol.  vol.  NO,  accord- 

g.         c.c         vol.     meter  c.c.  c.c.  ing  to 

c.c. 

Lunge.Tower. 

1  0-3106    68-39     99-42      20-5  69-04  68  77  100-3    99-97 

2  0-3152    69-42      99-45      20-5  7008  69-79  100-4    99-99 

3  0-2836    62-49      99-55      12-5  62-89  62-72  1001    99-92 

4  0-3010    66-39      99-64      110  66-75  66-59  100-1    99-94 


100-2    99-96 


Mean 

The  numbers  in  columns  6  and  7  were  obtained  by 
adding  the  number  of  cubic  centimetres,  presumed 
to  be  dissolved,  to  the  actual  number  read  and 
subsequently  reduced  to  standard  conditions.  The 
percentages  obtained  by  applying  Tower's  correction 
differ  inappreciably  from  100%,  while  Lunge's  cor- 
rection gives  a  value  slightly  too  high.  It  is  hence 
evident  that  the  nitrogen  in  potassium  nitrate  can 


Vol.  xu.,.Vo.  2o]      WEBB  .VXD  TAYLOR.— DETERMINATION  OF  NITROGEN  IN  NITRIC  ACID.      363t 


be  correctly  estimated  by  means  of  the  nitrometer 
when  91 — 92%  sulphuric  acid  is  employed,  and  the 
solubility  of  nitric  oxide  in  this  acid  is  assumed  to 
be  0"2  c.c.  in  10  c.c.  of  acid. 

Experiments  u-itli  nitric  acid. 

The  acid  purified  by  distillation  was  titrated 
against  pure  sodium  hydroxide  solution  free  from 
carbon  dioxide.  To  avoid  loss  of  fume  it  was 
weighed  directly  into  a  deep  flask  containing  nearly 
enough  sodium  hydroxide  to  neutralise  it,  and 
sodium  hydroxide  was  then  added  to  exact 
neutrality. 

(1)  T7715  g.  nitric  acid  required  4S'02  c.c.  0'5530Y 
NaOH  solution.     HN03=9447%. 

(2)  18381    g.    nitric    acid    required    49*82    c.c. 
0-5530.Y  NaOH  solution.     HNO,  =  94"46%. 

Nitrometer  estimations  gave  the  following 
results : — 

(1)  02664  g.  nitric  acid  yielded  949  c.c.  NO  at 
21-2°  C.  under  7639  mm. 

Volume  of  acid  in  nitrometer  =  21  c.c. 
Percentage  of  nitric  acid  (uncorrected)  =  9355. 
Corrected  for  solubility  of  NO  according  to — 

Lunge  =  9428. 

Tower  =  93'97. 

(2)  02183  g.  nitric  acid  vielded  78"8  c.c.  NO  at 
18°  C.  under  7402  mm. 

Volume  of  acid  in  nitrometer  =  25  c.c. 
Percentage  of  nitric  acid  (uncorrected)  =  92'82. 
Corrected  for  solubilitv  of  NO  according  to — 

Lunge  =  9291. 

Tower  =  93-44. 

(3)  0-2137  g.  nitric  acid  vielded  7T0  c.c.  NO  at 
217°  C.  under  7632  mm. 

Volume  of  acid  in  nitrometer  =  18  c.c. 
Percentage  of  nitric  acid  (uncorrected)  =  9431. 
Corrected  for  solubility  of  NO  according  to — 

Lunge  =  95Tl. 

Tower=94-78. 

(4)  0-2128  g.  nitric  acid  yielded  75"0  c.c.  NO  at 
17'8°  C.  under  761*4  mm. 

Volume  of  acid  in  nitrometer  =  32  c.c. 
Percentage  of  nitric  acid  (uncorrected)  =  92'04. 
Corrected  for  solubilitv  of  NO  according  to — 

Lunge  =  93-42. 
Tower  =  92-81. 
The  cause  of  the  discordance  shown  by  these 
values  was  detected  by  weighing  the  acid  from  an 
oleum  bulb  into  a  weighing  tube  containing  strong 
sulphuric  acid.  In  one  experiment  the  weight  of 
acid  removed  from  the  oleum  bulb  was  0'2079  g.  and 
the  weight  of  acid  transferred  to  the  weighing  tube 
was  0-2066  g  — a  loss  of  06    . 

Calculated  from  the  weight  of  acid  in  the  weigh- 
ing tube,  0'2066  g.  nitric  acid  vielded  74'2  c.c.  NO 
at  18°  C.  and  under  748"2  mm." 
Volume  of  acid  in  nitrometer  =  25  c.c. 
Percentage  of  nitric  acid  (uncorrected)  =93'35. 
Corrected  for  solubility  of  NO  according  to — 

Lunge  =  94'41. 
Tower  =  93-96. 
In  a  second  experiment : 

Weight  of  acid  taken  from  oleum  bulb=0'2194  g. 
Weight    of     acid    transferred     to     nitrometer  = 

02138  g.,  indicating  a  loss  of  nearlv  3%. 
0-2138  g.  of  acid  yielded  765  c.c.  of  NO  at  16-6°  C. 

under  746'1  mm. 
Volume  of  acid  in  nitrometer  =  20  c.c. 
Percentage  of  nitric  acid  (uncorrected)  =93T9. 
Corrected  for  solubility  of  NO  according  to — 

Lunge  =  94-04. 

Tower  =  9367. 

It  will  be  noticed  that  the  greater  loss  of  fume 

in  the  second  experiment  has  caused  a  further  drop 

in  the  percentage  of  nitric  acid,  in  the  acid  which 

reaches  the  nitrometer. 


In  an  attempt  to  weigh  the  acid  in  a  sealed  bulb 
loss  of  fume  was  observed  on  sealing,  and  the  per- 
centage of  nitric  acid  after  applying  Tower's  cor- 
rection was  only  92*22. 

At  this  stage  the  nitric  acid  was  re-titrated 
against  sodium  hydroxide  solution  by  neighing  into 
standard  soda  solution. 

T5054  g.  nitric  acid  required  40'79  c.c.  0'5530 
VXaOH  solution.     HNOa=94*43  j. 

Table  II. 
Percentage  of  HNO,  in  redistilled  nitric  acid. 

Determined  by  the  nitrometer. 

Uncorrected  Corrected  for  solubility  of  Determined  bv 

for  solubility  NO  according  to  titration 

of  NO.  Lunge.                Tower.  with  alkali. 

93-55  94-28                    93-97  94-47 

92-82  9391                     93-44  94-46 

94-31  9511                     94-78  94-43 

9204  93-42                     92-81  — 

From  the  values  recorded  in  Table  II.  it  is  evident 
that  the  method  of  weighing  the  acid  into  sodium 
hydroxide  solution,  instead  of  into  water,  for  the 
alkali  titration,  gives  concordant  results.  On  the 
other  hand,  fuming  nitric  acid  cannot  be  weighed 
without  loss  into  sulphuric  acid,  in  the  small  quanti- 
ties required  for  a  nitrometer  estimation. 

In  the  following  experiments  this  loss  was  minim- 
ised by  weighing  a  large  quantity  of  nitric  acid  into 
a  deep  bottle  of  about  150  c.c.  capacity  containing 
a  known  weight  of  97%  sulphuric  acid.  The  mixed 
acid  of  known  composition  can  then  be  weighed 
from  the  oleum  bulb  into  the  cup  of  the  nitrometer. 

The  following  figures  show  the  extent  to  which  loss 
of  fume  was  eliminated  by  this  method. 

Weight  of  nitric  acid  determined  by  difference  in 
weight  of  oleum  bulb  content  42740  g. 

Weight  of  nitric  acid  determined  by  increase  in 
weight  of  bottle  containing  sulphuric  acid 
42726  g. 

Therefore  the  loss  of  fume  is  now  less  than  0'04%. 

Weight  of  97  %  sulphuric  acid  53-8264  g. 

Weight  of  nitric  acid  added  42726  g. 

Percentage  of  fuming  nitric  acid  in  the  mixed 
acid  7'354. 

In  the  first  experiment  the  weight  of  mixed  acid 
employed  was  determined  by  difference  in  weight  of 
the  oleum  bulb  and  checked  by  re-weighing  in  a 
stoppered  tube. 

Weight  of  mixed  acid  taken  from  oleum  bulb  = 
26456  g. 

Weight  of  mixed  acid  in  stoppered  tube  =  2'6458  g. 

These  weights  showed  that  the  mixed  acid  could 
safely  be  weighed  into  the  cup  of  the  nitrometer, 
and  its  weight  taken  as  the  difference  between  the 
weights  of  the  oleum  bulb  contents.  Therefore  in 
the  second  experiment  the  double  weighing  was  dis- 
pensed with. 

(1)  26458  g.  of  mixed  acid  containing  01946  g. 
of  nitric  acid  vielded  724  c.c.  NO  at  19-0°  C. 
under  728*8  mm. 

Volume  of  acid  in  nitrometer  =  17  c.c. 
Percentage    of    HN03    in    fuming    acid    (uncor- 
rected) =  9391. 
Corrected  for  solubilitv  of  NO  according  to — 

Lunge  =94-69. 
Tower =9434. 

(2)  2T410  g.  of  mixed  acid  containing  0'1575  g.  of 
nitric  acid  yielded  58-6  c.c.  NO  at  19-0°  C. 
under  7294  mm. 

Volume  cf  acid  in  nitrometer  =  12  c.c. 
Percentage    of    HN03    in    fuming    acid    (uncor- 
rected) =  93-99. 
Corrected  for  solubilitv  of  NO  according  to — 

Lunge  =  9464. 

Tower  =  94-39. 


3U4  t       WEBB  AND  TAYLOR.— DETERMINATION  OF  NITROGEN  IN  NITRIC  ACID.         [Dec.  15, 192 


It  was  thought  possible  that  the  nitric  acid  might 
contain  enough  carbon  dioxide  to  have  appreciable 
effect  in  the  titration  of  the  acid  with  soda  solution. 

A  large  quantity  (3 — 4  g.)  of  the  acid  was  there- 
fore weighed  into  a  known  volume,  in  excess,  of 
standard  sodium  hydroxide  solution,  and  the  excess 
titrated  with  N /10  hydrochloric  acid  solution.  The 
sodium  hydroxide  had  been  previously  standardised 
against  hydrochloric  acid  using  the  same  two 
indicators. 

Strength  of  caustic   soda   solution  using  methyl 

orange  indicator  =  T1803iV. 
Strength  of  caustic  soda  solution  using  phenol- 

phthalein  indicator  =  1T785iV. 

(1)  55T65  c.c.  of  sodium  hydroxide   mixed  with 
4-3396  g.  HNO,  required: 

(a)  For  neutrality  to  methyl  orange  0'66  c.c. 

OT013JV  HC1  solution. 
(6)  For  neutrality  to  phenolphthalein  0'63  c.c. 

OT0132V  HC1  solution. 

(a)  Using  methyl  orange,  HN03  =  94-45%. 

(b)  Using  phenolphthalein,  HN03  =  94-40%. 

(2)  50'18  c.c.  of  sodium  hydroxide  solution  mixed 
with  3-9038  g.  HNO,  required  : 

(a)  For  neutrality  to  methyl  orange  7'84  c.c. 

0T013.ZV  HC1  solution. 
(6)  For  neutrality  to  phenolphthalein  7'11  c.c. 

0-10I3iV  HC1  solution. 
(a)  Using  methyl  orange,  HN03  =  94'34%. 
(0)  Using  phenolphthalein,  HNO.,  =  9431%. 

These  values  show  that  the  percentage  of  carbon 
dioxide  present  is  so  small  that  it  can  be  neglected 
in  considering  the  results. 

Table  III.  compares  the  results  obtained  by  weigh- 
ing the  nitric  acid  as  mixed  with  those  obtained  by 
alkali  titration  of  the  nitric  acid. 

It  is  hence  evident  that  when  fuming  nitric  acid 
is  weighed  out  in  such  a  manner  that  loss  of  fume 
is  avoided  the  use  of  the  nitrometer  gives  values  for 
the  percentage  of  nitrogen,  calculated  as  nitric  acid, 
which  agree  within  0T5%  with  the  values  obtained 
by  titration  with  alkali. 


Table  III. 
Percentage  of  HN03  in  redistilled  nitric  acid. 

Determined  by  the  nitrometer,         Determined  by  titration 
weighed,  with  97%  H2SO(.  with  alkali, 

using  as  indicator 
Uncorrected    Corrected  for  solubility       Phenol-        Methyl 
lor  solubiiity       of  NO  according  to         phthaleiu.      orange. 
of  NO.  Lunge.  Tower. 

93-91  9469  94-34 

94-47 
94-46 
93-09  94-64  94-39 

94-43 

94  4U  94-45 

94-31  94-34 


Mean 


94-37 


Conclusions 


94-41 


94-40 


1.  The  nitrogen  in  potassium  nitrate  can  be  cor- 
rectly determined  by  means  of  the  nitrometer  when 
91—92%  sulphuric  acid  is  employed,  and  the  solu- 
bility of  the  nitric  oxide  in  this  acid  is  assumed  to 
be  0'2  c.c.  in  10  c.c.  of  the  acid. 

2.  AVhen  nitric  acid  is  weighed  out  in  such  a  way 
that  loss  of  fume  is  avoided  the  nitrometer  deter- 
mination gives  values  for  the  percentage  of 
nitrogen,  calculated  as  nitric  acid,  which  agree 
within  0-15%  with  the  values  obtained  by  titration 
with  alkali. 

3.  The  correction  for  the  solubility  of  nitric  oxide 
in  sulphuric  acid  (0'35  c.c.  of  nitric  oxide  in  10  c.c. 
of  sulphuric  acid)  given  by  Lunge  (Joe.  cit.)  is  too 
high  when  91 — 92%  sulphuric  acid  is  used. 

4.  The  nitrometer  should  be  used  in  a  room  free 
from  rapid  fluctuations  in  temperature,  and  the 
temperature  should  be  read  before  the  volume  of 
gas,  in  each  case. 

5.  A  large  quantity  of  the  nitric  acid  for  analysis 
should  be  weighed  with  a  known  weight  of  strong 
sulphuric  acid  contained  in  a  deep  vessel  and  the 
necessary  amount  of  the  mixed  acid  weighed  into 
the  nitrometer. 

Technical  College,  Cardiff. 


Vol.   XLI..  No.  24.] 


TRANSACTIONS 


[Dec.  30.  1922. 


Chemical   Engineering   Group. 


Meeting    held   at    the    Chemical  Industry    Club   on 
November  10,  1922. 


THE  DE-WATERING  OF  PEAT  BY  PRESSURE. 

BY  PBOF.  J.   W.   HINCHLEY,  WH.SC,  A.It.S.M..,  F.I.O. 

(Abridrjed.) 

Peat  is  a  material  which  occurs  in  extraordinarily 
large  areas  all  over  the  world,  and  is  formed  by  the 
decomposition  of  plants  in  the  absence  of  air. 

The  quality  of  the  peat  is  determined  by  the 
character  of  the  plants  which  led  to  its  formation, 
the  latitude  of  the  place  and  the  geological  forma- 
tion of  the  country. 

Since  water  forms  the  medium  by  which  contact 
with  air  is  prevented,  the  country  where  the  peat 
accumulates  is  shaped  like  a  basin  and  the  sub- 
soil consists  of  an  impermeable  layer  of  clay  or 
similar   material. 

It  will  be  realised  that  there  is  enormous  varia- 
tion, both  chemically  and  physically,  in  the  quality 
of  peat  from  different  bogs,  and  any  discussion  on 
the  treatment  of  peat  cannot  be  exact  in  a  general 
way,  since  the  behaviour  of  the  peat  from  different 
districts  must  vary  considerably.  Peaty  matter 
contains  on  an  average,  when  free  from  moisture, 
about  58%  of  carbon,  the  remainder  being  mainly 
hydrogen  and  oxygen,  and  according  to  the 
conditions  under  which  the  deposit  is  formed, 
associated  ash  may  vary  from  05  to  20  or  30%.  It 
is  obvious  that  peat  will  contain  such  chemical 
substances  (or  their  decomposition  products)  which 
characterise  the  plants  from  which  it  is  produced, 
and  it  is  found  that  while  some  peats  contain  as 
much  as  10%  of  waxes,  resins,  etc.,  others  may 
contain  less  than  1%  of  these  substances.  As  a 
general  rule  peat  contains  less  sulphur  than  the 
plants  from  which  it  is  derived,  and  it  is  interesting 
to  note  that  this  elimination  of  sulphur  may  often 
be  observed  in  peat  bogs.  In  the  Doncaster  Bog, 
for  example,  the  light-coloured  peat  which  is  found 
near  the  surface  of  the  bog  is  continually  giving  off 
sulphurous  gases,  while  the  black  peat  immediately 
under  it  is  absolutely  free  from  smell. 

On  account  of  its  comparative  freedom  from 
sulphur,  and  its  well-divided  condition,  dry  peat 
burns  with  higher  efficiency  in  furnaces  than  coal 
and  does  not  seriously  attack  the  metal  parts  of 
the  plant.  On  this  account  peat-fired  plant  has  a 
lower  rate  of  depreciation  than  coal-fired  apparatus. 
Peat  carbon  is  a  valuable  raw  material  in  industry, 
and  it  is  possible  to  obtain  from  it  an  almost 
chemically  pure  carbon.  Its  finely-divided  con- 
dition makes  it  most  convenient  also  for  the  manu- 
facture of  decolorising  and  activated  carbons.  Raw 
peat  in  fairly-drained  bogs  usually  contain  from  85 
to  90%  water,  i.e.,  each  part  of  the  dry  substance 
is  associated  with  from  6  to  9  parts  of  water.  The 
peat  also  contains  a  quantity  of  colloidal  material 
which  is  useful  in  some  processes  for  the  utilisation 
of  peat,  whilst  in  other  processes  steps  are  taken 
to  destroy  it.  The  shrinkage  of  air-dried  peat  as 
cut  from  the  bog,  on  account  of  the  presence  of  this 
colloidal  material,  is  generally  about  70%. 

Up  to  the  present,  the  only  methods  of  utilising 
peat  which  have  persisted  have  depended  upon  air- 
diving.  The  simplest  process  consists  of  exposing 
sods  cut  from  the  peat  bog  to  the  air  for  a  sufficient 
length  of  time.  Variations  of  this  process  consist 
in  "  kneading"  or  "  masticating  "  the  peat  in  such 
a  way  that  the  plasticity  is  increased ;  so  that,  on 
drying,  the  contraction  is  greater  and  the  density 
of  the  final  product  is  raised. 


As  peat  occurs  in  the  bog,  it  may  be  taken 
roughly,  that  one  cubic  metre  of  peat  weighs  1000  kg. 
(say  one  ton),  and  as  in  the  course  of  drying,  con- 
traction takes  place,  the  density  of  the  final  peat 
may  vary  from  0  2  to  1.  It  is  obvious  that  the 
quality  of  the  peat  will  vary  with  its  depth  from 
the  surface  of  the  bog,  the  upper  layers  or  youngest 
peat  being  most  fibrous  and  the  oldest  peat,  that 
at  the  bottom  of  the  bog,  being  most  decomposed. 
At  the  same  time,  owing  to  the  water-logged  con- 
dition of  the  bog,  the  lower  layer  will  not  only 
be  more  decomposed,  but  may  contain  colloidal 
material  washed  from  the  other  layers.  The 
density  of  the  dried  peat  from  the  lower  layers  on 
account  of  pressure  will  be  much  greater  than  that 
from  the  upper  layers,  while  the  content  of  water 
is  usually  less.  Peat  from  the  upper  layers  of  many 
bogs  is  of  a  fibrous  character,  and,  after  drying, 
makes  a  most  useful  "  litter  "  for  animals,  and 
the  dust  gives  a  packing  for  fruit  and  similar  goods. 
The  products  of  the  decomposition  of  the  vegetable 
matter  have  disinfectant  properties,  which  render 
the  material  of  extremely  great  value  for  these 
purposes,  whilst,  after  use,  it  is  available  as  a 
manure. 

The  efficiency  of  methods  of  obtaining  peat  by 
air-drying  is  limited  by  the  character  of  the 
climate,  and  in  few  cases  can  more  than  two 
"  crops  "  per  year  be  obtained.  It  is  obvious, 
therefore,  that  the  commercial  utilisation  of  peat 
can  only  be  small,  since  the  rate  of  working  from 
a  bog  is  so  slow.  Attempts  have  been  made  and 
very  large  sums  of  money  have  been  lost  in  machine- 
devices  for  drying  peat  at  a  sufficiently  rapid  rate 
to  produce  commercially  an  industrial  fuel  or  other 
industrial  products. 

Now  the  calorific  value  of  ashless,  dried  peat  is 
at  the  most,  6000  calories  per  kg.  The  best  British 
peats  have  a  calorific  value  of  about  5500  calories 
per  kg.  The  calorific  value  of  peat  as  burnt  in 
furnaces  is  somewhat  lower  than  this,  on  account 
of  the  "  equilibrium-moisture  "  associated  with  it, 
and  may  generally  be  taken  at  about  3500  calories 
per  kg.  Of  all  the  processes  for  the  rapid  drying 
of  peat,  it  will  be  clear  without  much  consideration 
that  a  direct  drying  operation  could  not  be  a  com- 
mercial success.  In  the  best  drying  plants  at  least 
600  calories  is  required  for  the  evaporation  of  one 
kg.  of  water,  so  that  the  association  of  one  kg.  of 
peat  with  6  kg.  of  water  would  mean  that  the  whole 
of  the  heat  energy  available  from  the  peat  on  com- 
bustion would  be  required  for  its  drying.  Recently, 
the  problem  of  drying  by  direct  heat  has  been 
resuscitated  through  the  development  of  the  "heat 
pump  evaporator:"  Heat  pump  evaporators  are 
now  made  which  may  be  depended  upon  to  evaporate 
at  a  rate  such  that  1  kg.  of  steam  will  evaporate 
4  kg.  of  water.  Whether  this  process  can  be  applied 
to  such  a  material  as  peat  is  extremely  doubtful, 
since  the  difficulties  associated  with  evaporating 
liquids  in  such  apparatus  are  enormously  increased 
with  a  material  like  peat. 

The  author  has  been  engaged  for  several  years 
past  on  methods  of  de-watering  peat  by  pressure 
and  is  convinced  that  such  methods  offer  an  attrac- 
tive commercial  solution  of  the  problem. 

In  drying  peat  by  heat  or  by  air-drying  processes, 
the  presence  of  the  colloidal  matter  may  be  a  dis- 
tinct advantage,  but  in  getting  rid  of  the  water  by 
pressure,  the  presence  of  this  material  is  a  most 
serious  objection,  and  methods  have  to  be  adopted 
by  which  it  is  completely  or  largely  destroyed.  Both 
extreme  cold  and  heat  are  capable  of  bringing  about 
this  result,  and  the  problem  of  getting  rid  of  the 
water  is  reduced  to  devising  a  mechanical  procc-s 
which  shall  not  only  be  practical  but  will  pay. 

It  has  been  stated  that  the  percentage  of  water 
in   peat  as  it  occurs  in   a   drained   bog  is  usually 


3(5  (ST 


illJNUtti.Jil. — XHiD    JJJi-VVATiDKlJNLT    UX<     I'JiAT    BY     rKKSSUKJi. 


[Dec.  30,  1022. 


from  85  to  90%.  By  a  simple  pressing  operation  in 
the  cold,  which  can  be.  carried  out  by  means  of  a 
"squeezing-conveyer  "   at  the  bog  itself,   this  per- 

Curves  showing   change    in   pressure,    thickness   of 
cake,  flow  of  water. 

Charge    36  lb.  80-6%. 

Cakes  28-5  lb.   71-1  to  79-6%. 

Cold  pressing. 


10  15 

Time   in   minutes. 

Fig.  1. 

rentage  of  water  may  be  reduced  to  from  80  to 
81%,  or  four  parts  of  water  to  one  part  of  peat.  A 
pressure  of  50  1b.  per  sq.  in.  is  necessary  and  the 
time  of  application  will  depend  on  the  thickness  of 
the  layer. 


peat  to  remove  the  water  successfully  by  pressure 
down  to  approximately  50%.  Ekenberg  has  stated 
that  a  temperature  of  over  150°  C.  is  required  for 
this  purpose.  The  author  has  found,  however,  that 
temperatures  approaching  the  boiling  point  of  water 
are  sufficient  provided  that  suitable  apparatus  is 
used. 

The  work  of  the  author  has  been  carried  out  in 
a  press,  which,  from  a  mechanical  point  of  view, 
may  be  seriously  criticised,  but  from  a  practical 
point  of  view  is  extremely  effective  and  efficient. 
Experiments  on  this  small  press  showed  that  after 
warming  to  the  boiling  point  of  'water,  suitably 
applied  pressure  rising  slowly  to  half  a  ton  per 
sq.  in.  reduced  the  water-content  of  Norfolk  peat 
below  50%.  In  some  of  the  experiments  with  cer- 
tain Norfolk  peats  a  figure  of  35%  was  obtained, 
but  generally  the  figure  was  42  to  45%.  It  will  bo 
obvious  that  the  final  percentage  of  water  will 
depend  upon  many  factors,  but  mainly  upon  the 
original  vegetation  from  which  the  peat  was  formed 
and  its  age. 

With  peat  from  the  Doncaster  district  a  final 
moisture  content  of  55%  was  found  to  be  the  limit, 
and  in  experiments  with  peat  from  other  districts 
in  this  country  it  is  found  that  the  lower  limit  for 
practical  purposes  varies  from  about  40  to  55%  of 
moisture. 

With  regard  to  the  cold  pressing  of  peat,  it  is 
desirable  to  know  to  what  extent  cold  pressing  can 
be  applied,  and  Fig.  1  is  a  curve  obtained  in  experi- 
ments on  Somerset  peat,  from  which  it  will  be 
seen  that  at  a  pressure  of  nearly  8001b.  per  sq.  in. 
and  pressing  under  the  very  best  conditions  the 
percentage  of  water  was  only  reduced  to  an  average 
of  about  75%.     The  press  used  is  shown  in  Fig.  2 


Fig.  2. 


Practical  experiment  by  the  author  has  shown 
that  in  suitable  apparatus  it  is  not  necessary  to 
destroy  entirely  the  colloidal  matter  present  in  the 


mounted  at  the  works  of  Armstrong,  Whitworth  and 
Co.  The  stroke  of  this  press  was  18  in.  and  the  area 
of  the  pistons  120  sq.   in.,  the  width  of  the  cake 


Vol.  XIX,  No.  24.]        HINCHLEY.— THE  DE- WATERING  OF  PEAT  BY  PRESSURE. 


367  T 


being  5  in.;  the  head  and  piston  of  the  press  were 
solid,  and  the  sides  of  the  pret-6  were  formed  of 
filtering  surfaces  consisting  of  tinned  steel  wire 
gauze. 

It  will  be  noticed  from  the  curve  that  the  par- 
ticular peat  used  on  that  occasion  did  not  part 
with  any  water  until  a  pressure  of  1501b.  per  sq.  in. 
had  been  reached.  On  examination  of  the  press 
after  the  cold  pressing  was  concluded,  it  was  found 
that  the  filtering  surface  was  completely  choked, 
and  that  a  considerable  amount  of  work  in  clean- 
ing was  necessary  before  the  press  could  be  used 
again. 

As  already  stated,  the  sides  of  the  chambers  were 
provided  with  filtering  material,  and  the  mechanical 
construction  of  this  part  of  the  press  calls  for  a 
great  deal  of  ingenuity  in  order  that  the  filtering 
surfaces  of  large  presses  can  be  renewed  without 
much  loss  of  time.  The  pistons  slide  on  strips  of 
metal  which  are  used  to  hold  the  filtering  surfaces 
in  position,  and  at  the  same  time  protect  the  filter- 
ing surface  from  wear  from  the  piston  itself.  Now 
it  will  be  noticed  that  in  this  method  of  working 
the  direct  pressure  of  the  press  docs  not  come  upon 
the  filtering  surface.  During  no  part  of  the  process 
of  pressing  does  the  peat  behave  as  a  fluid,  and 
only  to  some  extent  does  it  behave  as  a  semi-fluid. 
There  is  little  doubt,  however,  that  near  the  end 
of  the  stroke  of  the  press  the  lateral  pressure  is 
not  more  than  one-third  of  the  vertical  pressure, 
whilst  at  the  beginning  of  the  pressing  the  lateral 
pressure  near  the  piston  is  about  four-fifths. 
Arrangement  are  made  in  the  press  so  that  steam 
may  pans  through  one  filtering  surface  and  dis- 
charge through  the  opposite  filtering  surface  and 
vice  versa.  At  ihe  same  time  when  the  press  is  full 
of  peat  the  admission  of  steam  may  bo  used  to  blow 
out  any  accumulation  of  deposit  at  the  back  of  the 
filtering  surfaces.  It  will  be  realised,  therefore, 
that  the  surface  of  the  peat  nearest  the  filtering 
surface  is  submitted  to  the  highest  temperature 
conditions,  and  that  normally  in  a  pressing  opera- 
tion the  colloidal  matter  in  the  centre  of  the  cake 
is  only  partially  destroyed,  while  that  nearest  the 
filtering  surface  is  wholly  destroyed. 

The  operation  of  pressing  in  this  little  press  may 
be  completed  in  from  20  mins.  to  half  an  hour,  and 
in  the  first  two  minutes  of  this  operation  the  steam- 
ing may  take  place.    Visible  steam  is  not  produced. 

Curves  showing   change   in  pressure,   thickness  of 
cake,  flow  of  water. 

Charge  33  lb.  80%. 

Cakes  19  lb.  54-4  to  59-0%. 

Steamod   for    2    mins. 


15  20 

Time  in   minutes. 

Fig.  3. 


The  curves  (Fig.  3)  show  a  typical  hot  pressing  of 
Somerset  peat  by  which  the  percentage  of  water  was 
reduced  from  80%   to  about  57%.     On  comparing 


the  curves  of  Fig.  3  with  Fig.  1  it  will  be  noticed 
how  the  water  curve  lies  much  above  the  pressure 
curve  in  the  latter  case,  and  it  will  also  be  realised 
that  the  pressure  necessary  is  now  less  than  500  lb. 
per  sq.  in.  Now  the  reduction  of  water  content 
from  80  to  60%  means  that  one  part  of  peat  asso- 
ciated with  four  parts  of  water  has  become  one  part 
of  peat  associated  with  one  and  a  half  parts  of 
water,  that  is  by  this  process  of  pressing,  two  and 
a  half  parts  of  water  associated  with  the  peat  have 
been  eliminated.  The  cost  of  a  press  and  its  wear 
and  tear  are  not  such  serious  matters  with  pressures 
up  to  500  lb.  per  sq.  in.  as  with  pressures  formerly 
considered  necessary.  The  reduction  of  the  water 
content  from  55  or  00%  to  25  or  30%  is  not  a  very 
serious  problem,  although  at  first  sight  it  would 
appear  so.  To  begin  with,  the  peat  cakes  are  dis- 
charged from  the  press  at  a  temperature  of  about 
95°  C,  and  in  cooling  down  to  the  ordinary  tem- 
perature while  exposed  in  a  suitable  way  to  the 
air,  the  actual  water  content  is  reduced  nearly  to 
50  .' .  The  further  drying  to  30%  (the  usual  air- 
dried  peat  figure)  may  be  carried  out  in  the  course 
of  4  or  5  hours  by  passage  through  a  long  tunnel 
dryer  the  air  of  which  is  heated  by  the  waste  heat 
from  the  power  plant. 

A  simple  estimation  of  the  amount  of  energy 
required  to  carry  out  this  pressing  operation  is 
desirable.  In  the  first  instance,  at  the  factory  one 
part  of  peat  is  associated  with  four  parts  of  water, 
and  it  may  be  taken  that  to  heat  this  material  to 
100°  C.  about  320  calories  per  kg.  of  dry  peat 
present  would  be  required.  Assuming  that  the 
dried  peat  had  a  calorific  value  of  5000  calories 
per  kg.,  this  means  that  between  6  and  7%  of  the 
energy  of  the  peat  is  required  fur  this  process. 
If,  however,  air-dried  peat  with  a  calorific  value  of, 
say,  3500  calories  is  being  burnt  in  the  power 
plant,  this  would  be  equivalent  to  9%  of  the  heat 
energy  available  from  that  peat.  Assuming  that 
the  power  plant  has  an  efficiency  of  50%,  which 
ought  to  be  a  sufficiently  conservative  value,  this 
would  mean  that  20%  of  the  energy  of  the  peat 
would  be  required  for  the  steaming  process. 

The  cost  of  the  pressing  processes  in  heat  energy 
is  readily  reckoned,  and  will  be  found  to  be 
approximately  0"7%  of  the  heat  energy  contained 
in  the  peat.  Since,  however,  hydraulic  plant  is 
notoriously  inefficient,  7  times  this  value  may  be 
taken  as  a  figure  certain  to  be  realised,  and  it  may 
be  assumed  that  not  more  than  5%  of  the  energy 
of  the  peat  will  be  needed  for  the  pressing  opera- 
tions. These  considerations  show  that  one  quarter 
(20%  +5%)  of  the  peat  produced  must  be  burnt  in 
the  power  plant  to  produce  the  energy  necessary 
for  the  process,  three-quarters  of  the  production 
being  available  for  the  market  or  other  purposes. 

The  little  press  illustrated  has  been  worked  for 
six  weeks  continuously  without  any  difficulty  with 
the  filtering  surfaces  and  with  practically  no 
variation  in  its  performance.  It  was  designed  after 
several  years  of  experiment  as  a  small  portion  of  a 
larger  commercial  press  of  six  chambers  to  take  a 
charge  of  1^  tons  per  operation.  Such  a  press  with 
accessories  would  cost  about  £2000,  and  would  treat 
about  60  tons  of  80%  peat  per  day  of  24  hours, 
yielding  30  tons  of  peat  cake  and  about  20  tons 
of  dried  peat  per  day,  of  which  5  tons  would  be 
burned  in  the  power  plant,  giving  a  net  yield  of 
15   tons   per   day. 

The  commercial  efficiency  of  this  process  is  bound 
up  with  that  of  the  method  of  obtaining  peat  from 
the  bog. 

This  subject  is  an  extremely  wide  one,  but  it  may 
be  assumed  that  with  a  project  of  reasonable  size, 
the  modern  excavator  or  a  modification  of  the 
dredger  would  give  that  low  cost  of  winning  from 
the  bog  that  is  necessary. 

a2 


368  t 


INMAN.— BLEACHING  AGENTS  FOR   TEXTILES   AND   PAPER  PULP.         [Dec.  30,  1922. 


The  present  wages  cost  of  cutting  peat  on  the 
peat  moors  of  England  by  hand-labour  amounts  to 
approximately  80d.  per  ton  of  product,  viz.,  air- 
dried  peat.  Since,  however,  at  the  present  time  it 
is  common  to  find  such  peat  lying  as  long  as  two 
years  before  being  removed  from  the  drying  ground, 
the  total  cost  of  producing  air-dried  peat  must  be 
very  high.  Peat-cutters  are  usually  skilled  work- 
men and  are  paid  at  a  very  good  rate  (approx.  10s. 
per  day).  The  figure  in  Somerset  is  £23  per  acre, 
the  acre  being  only  a  small  portion  of  the  total  peat 
present,  the  actual  amount  obtained  per  acre  being 
about  60  tons  of  air-dried  material. 

The  application  of  simple  machinery  to  this 
process  as  operations  become  greater  would  mean 
at  once  a  reduction  in  wages  cost  of  about  hall 
that  given,  and  the  use  of  dredgers  and  excavators 
would  reduce  this  cost  to  about  one-eighth  of  the 
hand-cutting  figure.  It  is  obvious,  therefore,  that 
the  actual  cost  of  production  of  dried  peat  will 
depend  very  largely  upon  the  outputs  determined 
upon. 

Careful  estimates  made  of  the  cost  of  production 
of  peat,  taking  reasonable  figures  for  the  winning 
process  at  the  bog  according  to  the  size  of  the 
operations  involved,  reveal  the  fact  that  the  cost 
of  dried  pressed  peat  by  this  process  would  mean,  in 
the  case  of  a  one-press  plant,  17s.  6d.  per  ton ;  with 
three  presses,  the  figure  is  immediately  reduced  to 


"  equilibrium  moisture  "  which  varies  according 
to  its  origin.  On  the  peat  bogs  themselves  the 
"  equilibrium  moisture  "  is  generally  in  the  neigh- 
bourhood of  25%,  while  in  London  the  figure  is 
approximately  15%.  A  good  fuel  should  be  as  free 
from  moisture  as  possible,  and  many  methods  have 
been  proposed  for  semi-carbonisation  to  be  followed 
by  a  briquetting  process  by  which  a  permanent  dry 
fuel  can  be  obtained. 

That  this  process  of  pressing  can  be  carried  out 
on  a  large  scale  has  been  demonstrated  by  means 
of  a  large  press  which  was  erected  at  Stockton  two 
or  three  years  ago.  This  press  was  designed  to 
handle  slurry  peat ;  the  chambers  had  a  width 
of  4  in.,  a  height  of  4  ft.  6  in.,  and  a  stroke 
of  3  ft.  9in.  Fig.  4  is  a  photograph  of  the  press 
as  it  appeared  at  the  works  of  the  Power  Gas 
Corporation,  Stockton-on-Tees.  The  press  was  in- 
tended to  extrude  the  material  after  pressing  60 
that  it  should  be  continuous  in  operation.  It  was 
found,  however,  that  the  rate  of  working  the  slurry 
peat  was  too  slow  on  account  of  the  immense 
amount  of  water  which  had  to  be  driven  through 
the  filtering  surfaces.  The  press  was  therefore 
worked  by  the  method  already  described,  for  which 
it  was  not  well  adapted,  that  is,  semi-wet  peat  was 
treated.  This  operation  was  remarkably  successful, 
and  peat  cakes  were  produced  from  Norfolk  peat 
having  a  moisture  content  of  45%. 


Fig.  4. 


7s.  3d. ;  with  five  presses  6s. ;  whilst  with  a  ten- 
press  plant  the  cost  of  production  would  be  slightly 
less  than  4s.  6d.  It  would  be  possible,  therefore, 
to  soil  such  dried  peat  at  the  factory  at  15s.  a  ton. 

One  of  the  drawbacks  of  air-dried  peat  is  the 
fact  that  its  bulk  density  is  so  low.  This  criticism 
does  not  apply  to  peat  which  has  been  dried  by 
pressure.  In  this  case  the  density  is  usually  raised 
nearly  to  that  of  water — about  60  lb.  per  cubic 
foot.  The  density  will  vary  somewhat  with  different 
peats  on  account  of  the  fact  that,  although  the 
pressure  used  increases  the  density  considerably,  a 
further  contraction  take*  place  in  the  final  drying 
operation,  and  this  is  determined  by  the  residue  of 
colloidal  material  present  in  the  cake.  This  increased 
density  is  particularly  valuable  and  facilitates  the 
manufacture  of  household  fuel  or  of  peat  charcoal 
from  the  product.     Dried  pe.it  possesses  a  definite 


Liverpool  Section. 


Meeting   held   at    Muspratt   Lecture   Theatre,   the 
University,  October  27,  1922. 


DR.   G.   C.   CLAYTON  IX  THE  CHAIR. 

DEVELOPMENTS  IN  THE  USE  OF  BLEACH- 
ING AGENTS  FOR  TEXTILES  AND 
PAPER   PULP. 

BY   W.    M.   INMAN,   M.SC,   A.I.C. 

The  practice  of  bleaching  cloth  dates  very  far 
back  in  the  world's  history.  It  is  certain  that 
until  the  discovery  of  chlorine  in  1774,  the  process 


Vol.  xix,  No.  24.]   INMAN.— BLEACHING  AGENTS  FOR  TEXTILES  AND  PAPER  PULP. 


309  T 


of   bleaching   used    in   Europe   was   essentially   the 
same  as  that  used  by  the  ancient  Egyptians. 

Until  the  middle  of  the  eighteenth  century 
Holland  was  the  bleach-field  of  Europe,  and 
English  cloth  sent  there  in  March  was  returned 
bleached  in  October.  The  process  consisted  in  first 
soaking  the  cloth  for  a  short  time  in  soda  lye,  and 
then  for  a  week  in  potash  lye,  which  was  poured 
into  it  boiling  hot.  Nest  it  was  washed  and  then 
soaked  in  buttermilk  under  pressure  for  five  or  six 
days.  After  this  the  cloth  was  spread  out  on  grass 
and  kept  wet  for  several  months  while  exposed  to 
the  summer  sun.  A  similar  process  was  adopted  in 
Scotland  early  in  the  eighteenth  century. 

The  first  improvement  in  bleaching  processes  was 
the  substitution  of  dilute  sulphuric  acid  for  sour 
milk ;  this  reduced  the  time  required  from  eight 
months  to  four.  The  next  improvement  came 
shortly  after  the  discovery  of  chlorine,  the  bleaching 
powers  of  which  did  not  escape  notice  for  long. 
Gaseous  chlorine  was  used  by  various  bleachers  in 
Great  Britain,  but  without  any  great  success. 
Then,  in  1798,  Charles  Tennant  of  Glasgow  took  out 
a  patent  for  the  production  of  bleach  liquors  by  the 
absorption  of  chlorine  in  milk  of  'lime.  His  patent 
was  set  aside  as  the  result  of  a  legal  action  because 
it  also  claimed  a  process  of  "  bucking"  with  lime, 
which  was  held  to  be  not  a  new  invention.  Tennant 
then  advanced  a  step  further  and  pi'oduced  solid 
bleaching  powder  from  slaked  lime  and  chlorine. 
This  process,  which  was  covered  by  a  fresh  patent, 
was  in  operation  at  Tennant' s  works  for  about  a 
hundred  years — in  fact  until  that  works  became  a 
part  of  the  United  Alkali  Company,  about  1890. 
The  original  bleach  chamber  is  still  standing  at  St. 
Rollox  Works,  Glasgow. 

Tennant's  original  process,  that  of  chlorinating 
milk  of  lime,  was  used  with  success  in  many  bleach 
works,  but  it  meant  that  each  works,  or  at  best 
each  bleaching  district,  must  possess  its  own 
chlorine  plant.  This  was,  of  course,  a  troublesome 
and  expensive  business.  The  We'ldon  chlorine 
process  was  the  one  in  use  at  that  time.  The  intro- 
duction of  solid  bleaching  powder  which  could  be 
easily  packed  and  transported  solved  this  difficulty, 
since  it  enabled  them  to  produce  bleach  liquor  of  any 
suitable  strength  by  means  of  a  very  simple  and 
cheap  plant. 

The  problem  for  the  manufacturer  of  chlorine  now 
became  that  of  producing  a  bleaching  agent  with 
the  highest  possible  percentage  of  available 
chlorine.  It  was  soon  discovered  that  it  was  not 
commercially  practicable  to  make  a  bleaching 
powder  containing  more  than  35 — 37%  of  available 
chlorine,  and  research  was  therefore  carried  on  in 
other  directions.  Sodium  hypochlorite  received 
much  attention.  It  had  been  used  in  dilute  solu- 
tion prepared  by  passing  chlorine  into  a  solution  of 
sodium  carbonate  until  the  liquid  began  to 
effervesce  and  to  bleach  litmus.  This  solution  was 
termed  "  Eau  de  la  barraque  "  or,  more  often,  "  Eau 
de  Javelle,"  and  contained  sodium  hypochlorite, 
sodium  chloride,  and  sodium  bicarbonate.  Sodium 
hypochlorite  was  also  produced  by  absorbing 
chlorine  in  caustic  soda  solutions.  Here  again,  as 
in  the  case  of  Tennant's  original  bleach  liquor,  the 
difficulty  of  carrying  bleaching  solution  from  the 
maker  to  the  user  was  experienced.  To  overcome 
this,  attempts  were  made  to  obtain  solid  sodium 
hypochlorite,  and  in  1898  Muspratt  and  Smith  pro- 
duced crystals  having  the  composition: — NaOCl 
37-6%,  NaCl  3"7%,  water  587%.  These  crystals 
dissolve  in  their  own  water  of  crystallisation  if 
warmed  to  about  20°  C.  and  then  rapidly  decom- 
pose. By  drying  them  in  vacuo,  however,  part  of 
the  water  of  crystallisation  can  be  removed  and  a 
more  stable  product  obtained  containing  up  to  60% 
of  available  chlorine. 


This  process  was  not,  however,  practicable  on  a 
commercial  scale  at  the  time  and  has  not  since  been 
developed. 

Investigators  in  Germany,  proceeding  on  similar 
lines,  have  produced  practically  pure  calcium  hypo- 
chlorite. In  1906  the  Chemische  Fabrik  Griesheim- 
Elektron  patented  a  process  for  the  preparation  of 
dry  and  rich  bleaching  powder.  Chlorine  is  intro- 
duced into  agitated  milk  of  lime  until  the  alkali  is 
almost  saturated.  The  solution  is  then  concentrated 
at  a  low  temperature  in  vacuo  until  calcium  hypo- 
chlorite crystals  separate  out.  These  crystals  are 
removed  by  filtration  or  in  a  centrifuge  and  dried 
rapidly,  preferably  at  a  low  temperature  in  vacuo. 
The  product  is  practically  pure  calcium  hypo- 
chlorite, and  contains  from  80  to  80%  of  available 
chlorine.  It  is  naturally  somewhat  difficult  to  ' 
manufacture,  and  the  patentees  found  it  advisable 
to  modify  the  process  and  make  solid  calcium  hypo- 
chlorite containing  50%  of  available  chlorine.  It  is 
claimed  that  this  product  is  more  stable  than 
bleaching  powder  and  that  it  gives  a  clear  solution. 
In  this  country,  at  any  rate,  it  has  not  been 
extensively  used. 

The  tendency  nowadays  is  rather  to  return  to  the 
position  of  the  year  1798 — that  is,  to  make  hypo- 
chlorites at  the  place  at  which  they  are  to  be  used. 
A  concentrated  solid  bleaching  agent  was  the 
product  aimed  at,  and  the  usual  expression  of 
the  concentration  of  a  product  was  the  percentage 
of  available  chlorine. 

In  recent  years  liquefied  chlorine  has  become  an 
article  of  commerce,  and  since  liquid  chlorine  is 
pure  chlorine,  if  it  can  be  used  for  bleaching  it  will 
be  100%  available  chlorine.  Liquid  chlorine  in  steel 
cylinders  can  be  transported  easily,  and  by  its  use 
bleach  solution  can   readily  be  made. 

An  important  possibility  has  been  opened  up  for 
the  paper  maker  by  the  introduction  of  liquid 
chlorine.  The  chief  constituent  of  esparto  grass  is 
peetocellulose,  associated  with  a  little  lignocellulose 
and  a  smaller  quantity  of  cutocellulose. 

Lignocellulose  is  readily  attacked  by  gaseous 
chlorine,  and  by  this  means  can  be  separated  into 
the  constituent  groups: — (1)  The  lignone  (a  ketone) 
which  is  chlorinated  and  can  then  be  dissolved  out. 
(2)  The  cellulose.  This  reaction  has  been  applied  to 
the  production  of  pure  cellulose  from  straw.  The 
process  is  briefly  as  follows: — The  pectic  matter  is 
removed  by  a  preliminary  boiling  with  caustic  soda, 
and  the  partially  disintegrated  lignocellulose  is  then 
exposed  to  the  action  of  chlorine.  The  quantity  of 
caustic  soda  used  is  much  less  than  would  bo 
required  to  produce  a  perfect  pulp  from  straw  by 
the  ordinary  process,  thus  avoiding  the  danger  of 
destroying  the  cellulose  itself,  with  the  consequent 
low  yield.  The  pulp  after  washing  and  partially 
freeing  from  moisture  is  exposed  to  the  action  of 
chlorine  gas  for  several  hours  until  the  lignocellu- 
loses  have  been  chlorinated.  It  is  then  bleached  in 
the  ordinary  manner  with  small  quantities  of  hypo- 
chlorites. The  bleaching  operation  is  rapid  and 
complete,  and  as  severe  alkaline  treatment  has  been 
done  away  with,  the  yield  of  cellulose  is  good.  This 
process  was  patented  in  1880,  but  was  naturally 
little  used.  The  difficulty  and  expense  of  producing 
chlorine  at  the  paper  mill  rendered  the  scheme 
impracticable. 

In  1902  Kellner  patented  the  use  of  chlorine 
produced  at  the  anode  in  the  electrolytic  process 
for  the  manufacture  of  caustic  soda,  for  the 
chlorination  of  all  kinds  of  raw  fibres  for  the 
preparation  of  pure  cellulose.  In  1905  Sir  William 
Mather  devised  an  apparatus  for  carrying  out,  in 
a  continuous  manner,  the  chlorination  process  for 
producing  cellulose  pulps. 

Pulp  made  from  straw  contains  a  high  proportion 
of  cellular  tissue  which,  although  it  i6  cellulose,  has 
no  fibrous  structure,  and  in  consequence  paper  madft 


370  T 


IXMAX.— BLEACHING  AGEXTS  FOR  TEXTILES  AND  PAPER  PULP.        [Dec.  30, 1022. 


entirely  from  straw  is  found  to  be  much  weaker 
than  that  made  from  esparto.  Straw,  however,  is 
a  cheap  materia],  and  is  capable  of  producing  a 
very  white  pulp,  which  also  has  the  property  of 
hydrating  and  partially  gelatinising  during  the 
"  beating  "  process.  This  gives  a  "  hardness  "  and 
"  rattle  "  to  the  finished  paper  which  is  considered 
desirable  for  many  purposes.  Straw  pulp  isj  there- 
fore, useful  when  mixed  with  other  pulps,  such  as 
those  from  esparto,  cotton,  or  flax,  to  produce  fino 
qualities  of  paper. 

It  is  possible  that  since  the  introduction  of  liquid 
chlorine  in  cylinders  this  "  gas  bleach  "  will  come 
dnto  favour  once  more.  The  production,  handling, 
and  control  of  chlorine  at  a  mill  were  difficult  and 
expensive  undertakings,  whilst  hypochlorites  were 
simple  and  convenient  to  use,  with  the  result  that 
hypochlorites  came  into  general  use  in  place  of 
elementary  chlorine.  This  position  may  easily  be 
leversed  now  that  the  supply  of  chlorine  on  a  com- 
mercial scale  in  a  convenient  and  easily  used  form 
is  possible. 

In  America  liquid  chlorine  has  already  been 
extensively  used  in  some  paper  mills  for  the  pro- 
duction of  bleach  liquor  from  milk  of  lime.  In 
America,  as  in  Europe,  large  plants  had  been 
installed  for  the  production  of  liquid  chlorine  for 
war  purposes,  and  even  during  the  war  attempts 
were  made  to  apply  this  liquid  chlorine  to  paper 
making.  It  was  believed  that  its  use  would  improve 
the  whole  practice  of  bleach  liquor  production  and 
would  eliminate  an  unpleasant  portion  of  the  mill 
— that  is,  the  bleach-mixing  plant.  It  was 
these  motives,  rather  than  the  hope  of  effecting 
economies,  which  inspired  the  earlier  work.  The 
war  and  the  increase  in  production  and  increase 
in  efficiency  of  liquid  chlorine  plants  put  the  whole 
matter  on  a  different  footing  and  definite  economies 
were  effected. 

The  process  used  is  as  follows: — Suitable  quan- 
tities of  lime  of  high  calcium  content  and  of  water 
are  placed  in  a  tank  and  kept  constantly  agitated. 
Quicklime  may  be  used  if  necessary,  but  it  is  pre- 
ferable to  use  slaked  lime  and  so  avoid  delays  for 
cooling.  Milk  of  lime  is  pumped  from  this  tank 
to  the  top  of  an  absorption  tower,  which  is  usually 
built  of,  or  lined  with,  stoneware.  The  tower  is 
packed  with  small  cylindrical  stoneware  rings  so 
as  to  give  a  large  absorption  surface.  The  milk 
of  lime  flows  down  this  tower  and  returns  to  the 
original  tank.  When  sufficient  time  has  elapsed 
to  ensure  a  good  circulation  being  established, 
chlorine  gas  is  introduced  at  the  base  of  the  tower 
and  absorbed  in  the  descending  stream  of  lime. 
Circulation  of  the  liquor  through  the  tower  is 
maintained  until  the  solution  has  reached  any 
desired  strength  up  to  about  50  grams  of  available 
chlorine  per  litre.  The  chlorine  supply  is  then  cut 
off  and  the  agitator  and  circulating  pump  stopped. 
The  liquor  is  allowed  to  settle  and  the  clear  bleach 
solution  run  off  to  stock  tanks.  The  small  amount 
of  sludge  remaining  is  allowed  to  accumulate 
during  several  repetitions  of  the  above  proceeding. 
When  this  accumulation  of  sludge  has  become  too 
large  for  convenience  it  is  pumped  to  a  sludge  tank 
and  washed  by  agitating  it  with  water.  After 
settling  the  wash  water  is  run  off  to  the  original 
mixing  tank  as  make-up  liquor  for  another  batch 
of  lime.  Usually  it  is  sufficient  to  wash  the  sludge 
twice  before  disposing  of  it  as  refuse.  In  some  cases 
the  use  of  a  sludge  tank  has  been  found  to  be 
unnecessary  as  the  washing  can  be  carried  out  in 
the  lime  mixing  tank. 

The  chlorine  is  supplied  from  cylinders  or,  in 
the  case  of  a  large  plant,  from  tank  wagons.  In 
America  liquid  chlorine  is  drawn  off  from  a  tank 
wagon  into  an  evaporator  consisting  essentially  of 
an  iron  still  surrounded  by  a  water  tank  which  is 
maintained  at  a  temperature  of  about  70°  C.   by 


injecting  a  suitable  quantity  of  steam  into  it. 
Liquid  chlorine  is  dripped  into  the  evaporator  and 
gas  drawn  off  to  the  absorption  towers. 

In  1921  an  efficiency  test  was  made  by  the 
Electro  Bleaching  Gas  Company  of  New  York  on  a 
plant  installed  by  them  at  a  large  paper  mill  in 
Canada.  This  plant  consists  of  a  hydrating  tank 
for  slaking  quicklime,  three  agitating  tanks  used  as 
mixers  for  the  batches  of  milk  of  lime,  an  absorption 
tower,  a  sludge  tank,  and  three  stock  tanks  for 
finished  liquor.  Each  batch  of  milk  of  lime  con- 
tained about  ten  to  twelve  thousand  gallons  and 
the  chlorine  was  absorbed  at  a  rate  between 
400  and  500  lb.  per  hour.  When  the  available 
chlorine  content  reached  35 — 40  grams  per  litre, 
depending  upon  the  amount  of  excess  lime  present, 
the  process  was  stopped  and  the  liquor  allowed 
to  settle.  A  fresh  batch  from  another  slaked  lime 
tank  was  then  started. 

Ten  batches  of  bleach  liquor  were  made,  and  the 
entire  contents  of  a  tank  wagon  were  consumed 
in  the  test.  The  wagon  was  weighed  at  the  begin- 
ning and  end  of  the  run.  Analyses  of  the  milk 
of  lime,  the  finished  bleach  liquor,  and  the  refuse 
sludge  were  made.  The  total  chlorine  (i.e., 
available  CI,  chloride  and  chlorate)  present  in  the 
original  milk  of  lime  was  2602  lb.  The  total 
chlorine  in  the  finished  liquors  was  32,642  lb.  Thus 
a  total  of  30,040  lb.  of  chlorine  had  been  absorbed. 
The  weighings  of  the  tank  wagon  showed  it  to  con- 
tain 30,000  +  100  lb.  Thus  the  efficiency  of  absorp- 
tion must  have  been  practically  100%.  Of  the 
30,040  lb.  of  chlorine  absorbed,  29,790  lb.  was 
present  as  available  chlorine.  This  means  the 
efficiency  of  absorption  from  a  bleach-making  point 
of  view  was  99T7%.  There  had  been  practically 
no  formation  of  chlorate.  Analysis  of  the  sludge 
as  it  was  run  to  waste  showed  it  to  contain  a  total 
of  92  Hb.  of  available  chlorine,  i.e.,  0-31%  of  the 
available  chlorine  absorbed.  The  amount  of  lime 
used  was  1'052  lb.  of  quicklime  per  lb.  of  chlorine 
absorbed. 

The  whole  test  shows  the  plant  to  be  very  efficient, 
and  it  has  decided  advantage  over  the  usual  method 
of  producing  bleach  liquor  from  dry  bleaching 
powder.  The  liquor  contains  less  lime  sludge,  and 
therefore  settles  more  quickly.  Strong  bleach 
liquors  can  be  prepared  and  diluted  as  required  for 
use.  Thus  a  comparatively  small  plant  has  a  large 
output.  The  reduced  quantity  of  sludge  to  be  dis- 
posed of  naturally  means  more  efficient  washing 
and  therefore  less  available  chlorine  goes  to  the 
refuse  tip.  Also  the  cost  of  sludge  disposal  is 
reduced  in  proportion  as  the  sludge  is  reduced. 

In  this  country,  as  yet,  liquid  chlorine  has  not 
effected  any  such  enormous  changes.  However, 
with  apparatus  such  as  exists  in  present-day  British 
paper  mills  and  bleach  fields  it  is  possible  to 
chlorinate  milk  of  lime  and  produce  bleach  liquors 
direct.  A  rapid  agitation  is  necessary  and  a  fairly 
deep  mixing  tank  is  desirable. 

Details  of  such  a  run  are  as  follows: — The  mill 
at  which  the  trial  was  made  uses  bleach  liquor 
at  5i°  Tw.j  that  is  about  171  g.  per  1.  of 
available  CI.  261  lb.  of  poor  lime  (85'6%  CaO) 
and  237  lb.  of  liquid  chlorine  were  used.  The 
total  quantity  of  bleach  liquor  at  5J°  Tw.  ob- 
tained was  211'5  cubic  feet,  and  it  contained 
2310  lb.  of  available  chlorine.  The  yield  of 
available  chlorine  on  the  total  chlorine  absorbed  is 
therefore  97"4%.  This  compares  very  favourably 
with  the  efficiency  of  most  bleaching  mixing  plants. 
Using  bleaching  powder  it  is  somewhat  difficult  to 
get  even  a  95%  efficiency  of  extraction;  in  fact,  so 
high  a  figure  is  probably  rare. 

There  is  one  other  method  of  using  liquid  chlorine 
to  advantage  in  the  production  of  bleach  liquor, 
and  it  is  this  last  method  which  at  the  moment  will 
probably   find   most   favour    in   the   eyes    of   paper 


vol.  XXI.,  No.  24.]    INMAN— BLEACHING  AGENTS  FOR  TEXTILES  AND  PAPER  PULP. 


371  T 


makers  and  bleachers.  It  consists  simply  in 
chlorinating  the  free  lime  present  in  flll  bleaching 
powders,  during  the  agitation  of  the  bleaching 
powder  with  water  to  make  bleach  liquor.  This 
process  can  be  undertaken  with  ease  in  the  usual 
type  of  bleach  mixer.  All  the  extra  apparatus 
required  consists  of  one  or  two  dip  pipes  leading 
down  to  the  bottom  of  the  mixer,  to  which  the 
chlorine  cylinders  can  be  connected.  If  the  agita- 
tion of  the  mixer  is  very  rapid,  having  a  peripheral 
speed  of  500  feet  per  minute  or  thereabouts,  the 
chlorine  can  be  introduced  into  the  bleach  batch  as 
liquid  and  allowed  to  vaporise  in  the  mixing  tank. 
This  allows  the  cylinders  to  be  emptied  rapidly,  and 
it  is  possible,  given  a  suitably  deep  tank  and  rapid 
agitation,  to  introduce  the  necessary  quantity  of 
chlorine  in  20 — 25  minutes.  When  agitation  is  slow 
it  is  advisable  to  bubble  chlorine  gas  into  the  liquor. 
This  is  done  by  using  cylinders  having  no  internal 
siphon  pipe,  which,  therefore,  deliver  gas.  This 
slows  the  process  down  somewhat,  but  is  not  a 
serious  obstacle  to  success.  It  has  been  found  by 
experiment  that  average  bleaching  powder,  con- 
taining 35 — 37%  of  available  chlorine,  can  absorb  by 
this  process  about  one  ninth  of  its  weight  of  extra 
chlorine.  The  residual  sludge  is,  of  course,  con- 
siderably reduced,  sometimes  to  as  little  as  one 
fourth  of  its  normal  bulk.  The  original  sludge 
consists  chiefly  of  free  lime,  and  this  has  gone  into 
solution  to  form  hypochlorite. 

Bleaching  powder  casks  contain  about  6  cwt.  of 
the  powder.  A  cylinder  of  liquid  chlorine  contains 
70  lb.  of  chlorine.  Thus  a  cask  of  bleaching  powder 
weighs  a  little  more  than  9  times  as  much  as  the 
contents  of  one  cylinder  of  chlorine.  It  will  be 
seen  that  one  cask — one  cylinder  is  a  convenient 
practical   arrangement. 

Details  of  a  typical  run  are  as  follows :  — 


Weight  of  35%  bleaching 
powder  used 

Available   chlorine   content 
of  this  quantity 

Chlorine  added  as  liquid 

Theoretically  possible  quan- 
tity of  available  chlorine 
in  finished  bleach  liquor 


=   4432      lb. 

=  1551-2  lb. 
=     360      lb. 


1911-2  lb. 


Actually  10,737  gallons  of  6°  Tw.  bleach  liquor 
was  produced,  containing  1863'9  lb.  of  available 
chlorine.  The  loss  of  available  chlorine  is  therefore 
47'3  lb.  or  2'47%.  This  proved  to  be  a  more 
economical  working  than  the  usual  mill  practice, 
and.  in  addition  the  process  has  all  the  advantages 
claimed  for  the  American  practice  of  chlorinating 
milk  of  lime  in  towers. 

1.  Stronger  bleach  liquors  can  be  obtained  if 
desired.  In  other  words,  the  output  of  any  given 
plant  can  be  considerably  increased  without  any 
other  alteration  than  the  provision  of  chlorine  inlet 
pipes.  In  one  case  as  much  bleach  liquor  is  being 
produced  in  three  mixers  as  was  originally  made  in 
five. 

2.  The  quantity  of  sludge  is  considerably  reduced. 
Instead  of  sludging  out  after  each  mixing,  two  or 
even  three  batches  can  be  mixed  in  succession  before 
the  sludge  need  be  washed  and  rejected.. 

3.  The  liquor  settles  faster.  There  is  less  solid  to 
settle. 

4.  Economy  of  bleaching  powder  is  effected.  The 
extraction  of  the  available  chlorine  is  more  com- 
plete, chiefly  because  the  reduced  amount  of  sludge 
can  be  more  efficiently  washed. 

5.  There  is  lets  bleaching  powder  dust  floating 
about  the  bleach  house  because  less  bleaching 
powder  is  used.  This  is  a  point  to  be  considered, 
as  bleaching  powder  dust  is  very  irritating  to  the 
eyes,  nose,  and  lungs. 


This  process  of  chlorinating  bleaching  powder 
during  mixing  has  been  in  use  in  Germany  for 
many  years.  It  was  seen  iby  a  Scottish  papermaker 
at  the  Zanders  Mill  before  the  war,  and  shortly 
after  the  armistice  a  member  of  the  United  Alkali 
Company's  chemical  staff  visited  this  mill  and  saw 
the  process  being  operated.  Practical  trials  were 
then  made  at  an  English  paper  mill  in  the  summer 
of  1919,  but  at  that  time  the  cost  of  liquid  chlorine 
did  not  permit  of  economical  working.  This  cost 
factor  has  since  changed,  and  the  process  now  offers 
financial  advantages. 

Summing  up  the  developments  in  the  use  of 
bleaching  agents,  it  would  appear  that  the  advent 
of  liquid  chlorine  as  an  everyday  article  of  commerce 
will  mark  a  new  era  in  bleaching  practice.  Liquid 
chlorine  is  a  comparatively  new  product  in  this 
country,  and  is  only  beginning  to  make  its  presence 
felt.  It  would  be  a  bold  statement  to  say  that  it 
is  going  to  place  bleaching  powder  among  the 
obsolete  chemicals  either  here  or  in  America,  but 
there  can  be  no  doubt  that  it  is  going  to  find 
extensive  application  either  as  an  adjunct  to 
bleaching  powder  or  in  special  cases  as  a  substitute 
for  it.  Bleach  liquors  will  be  made  by  the  con- 
sumer. We  are  reverting  to  the  position  of  over 
100  years  ago — with  one  difference,  viz.,  liquid 
chlorine  instead  of  chlorine  gas. 

Discussion. 

Mr.  R.  Easton  had  observed  that  during  the  war 
dandy  rolls  were  more  liable  to  break  clown  than 
previously.  He  asked  whether  the  breakdown  was 
due  to  chlorine  in  the  pulp  or  whether  other  factors 
were  responsible. 

Mr.  Ixman  thought  that  it  was  very  unlikely  that 
surplus  bleach  liquor  would  survive  the  various 
paper-making  operations  which  followed  the  bleach- 
ing process  and  pass  along  the  machine  to  the  dandy 
rolls  unless  an  enormous  excess  had  been  used. 

Dr.  A.  Holt  asked  whether  data  were  available 
as  to  the  stability  of  strong  solutions  of  hypo- 
chlorites in  stock  tanks. 

Mr.  Inman  said  that  the  practice  was  to  run  the 
solutions  into  tanks  where  the  sludge  settled  fairly 
quickly,  and  to  use  the  hypochlorites  practically  as 
soon  as  they  were  made — actually  they  were  not 
kept  for  more  than  two  or  three  days.  Some 
bleachers  preferred  fresh  solutions  which  contained 
excess  of  alkali  and  acted  slowly,  while  others 
preferred  older  solutions  where  the  free  alkali  had 
been  partly  neutralised  by  carbon  dioxide,  and 
which  bleached  more  quickly. 

Mr.  AitTnun  Carey  remarked  that  the  greater 
speed  with  which  sludge  settled  in  the  newer  process 
was  explained  by  the  fact  that  calcium  carbonate 
settled  quickly,  lime  slowly,  and  chlorination  of  the 
hydroxide  caused  its  removal,  leaving  only  the 
material  which  gave  a  clean  solution  readily. 

Mr.  A.  T.  Smith  said  that  the  American  practice 
was  very  interesting  as  showing  the  trend  of  affairs 
when  large-scale  production  was  required.  Varia- 
tions in  technique  with  scale  of  production  dad  not 
explain  why  the  use  of  towers  was  preferred  to  the 
direct  way  of  passing  the  gas  direct  into  milk  of 
lime.  There  was  no  doubt  about  the  convenience 
of  making  bleach  liquors  where  they  were  to  he 
used ;  further,  the  new  process  evaded  the  difficulty 
of  6ludge  disposal,  which  was  a  serious  matter  in 
older  works — it  did  not  produce  sludge  in  quantity. 
One  main  reason  why  liquid  chlorine  had  not  been 
used  as  widely  here  as  abroad  was  the  policy  of  the 
railway  companies,  who  refused  to  grant  facilities 
for  transporting  liquid  chlorine. 

The  Chairman  said  that  the  question  of  transfer 
of  liquid  chlorine  by  rail  was  of  great  importance  if 
it  was  to  be  used  in  paper  manufacture. 


372  T     WEDGWOOD  AND  HODSMAN.— DETERMINING  VOLATILE  MATTER  IN  FUELS.    [Dec.  30, 1922. 


Sydney  Section. 


Meeting  held  at  Sydney  on  October  11,  1922. 


MR.   T.   A.   COOMBS   IN  THE  CHAIR. 


NOTE  ON  THE  WAX  COATING  THE  STEMS 
OF  THE  AUSTRALIAN  "CANE  GRASS," 
GLYCESIA  BAMIGEEA,  F.v.M. 

BY  HENRY  G.    SMITH. 

Ill  addition  to  the  name  "  Cane  grass  "  this  Aus- 
tralian plant  is  also  known  as  "  Bamboo  grass." 
It  is  perennial  and  occurs  plentifully  in  certain 
localities  in  New  South  Wales,  Victoria,  and  South 
Australia.  It  is  a  coarse,  cane-like  species,  has  a 
hard  stem,  and  grows  in  what  are  known  as  "cane 
sw-amps."  It  has  considerable  weather-resisting 
properties,  and  being  quite  suitable  for  thatching  is 
•employed  lor  that  purpose  in  localities  where  it 
grows  abundantly.  The  sample  from  which  the  wax 
was  prepared  was  forwarded  to  the  Sydney  Techno- 
logical Museum  by  Mr.  J.  P.  Butler,  who  procured 
it  from  the  neighbourhood  of  Warren,  New  South 
Wales.  The  entire  stem  is  coated  with  an  almost 
colourless  wax,  which  separates  in  flakes  when  the 
stem  is  sharply  bent.  The  wax  a6  thus  separated 
melted  at  82°  C.,  and  in  appearance,  melting  point, 
and  hardness,  much  resembles  carnauba  wax,  and 
might  be  equally  well  employed  for  industrial  pur- 
poses. It  is  sufficiently  hard  and  brittle  to  be  pow- 
dered, and  although  but  little  soluble  in  ether,  yet 
the  ether  has  the  property  of  separating  the  wax 
entirely  from  the  stem,  the  greater  portion  falling 
to  the  bottom  of  the  containing  vessel  as  a  whitish 
powder. 

The  peculiarity  of  Ohjceria  wax  is  its  high  acid 
value,  thus  indicating  a  large  proportion  of  the 
wax  to  consist  of  one  or  more  of  the  higher  acids. 
The  melting  point  of  the  separated  acid  was  82°,  a 
figure  suggesting  it  to  consist  largely  of  cerotic  acid. 

For  the  preparation  of  the  wax  in  larger  quantity 
the  steins  were  cut  to  a  convenient  size,  treated  with 
cold  ether,  and  the  process  repeated.  5^  lb.  of 
material — containing  10'6%  of  moisture — gave  55 
grams  of  wax  insoluble  in  ether,  equal  to  2'2%, 
and  10  grams  soluble  in  ether,  equal  to  0'4%,  or  a 
total  of  2P6%. 

The  portion  soluble  in  ether  was  somewhat  dark 
coloured,  caused  by  the  chlorophyll  extracted  at 
the  same  time,  but  the  larger  insoluble  portion  was 
quite  light  coloured.  The  ether-soluble  portion 
melted  at  73°  C.  by  the  capillary  tube  method  in 
water,  and  the  larger  insoluble  portion  at  83°. 
Glycerin  wax  is  insoluble  in  water,  and  but  slightly 
soluble  in  alcohol,  benzene,  acetone,  and  chloroform 
in  the  cold,  but  mostly  dissolves  in  any  of  those 
solvents  when  boiled,  separating  out  again  as  the 
solution  cools.  The  portion  insoluble  in  cold  ether 
was  also  insoluble  in  boiling  ether. 

The  ether-soluble  portion  had  sp.  gr.  0"975  at 
18°  C,  and  the  insoluble  portion  09819  at  19°  C. 

The  acid  value  was  54"26 — 54-33,  and  the  separated 
acid  constituents  had  m.p.  82°  C. 

The  saponification  value  of  the  portion  of  the  wax 
insoluble  in  ether  was  89'4,  and  of  the  esters  35T. 

The  portion  of  the  wax  soluble  in  boiling  alcohol, 
and  separated  from  the  insoluble  portion,  had  m.p. 
84°— 85°  C. 


Yorkshire  Section. 


Meeting  held  at  Leeds  on  November  20,  1922. 


PROF.   J.    W.    COiiB  IN  THE  CHAIR. 

NOTE     ON     THE     DETERMINATION     OF 
VOLATILE    MATTER    IN    FUELS. 

BY   P.   WEDGWOOD,   B.SC,   AND  H.  J.   HODSMAN,    M.B.E., 
M.SC,  F.I.O. 

{Department  of  Coal  Gas  and  Fuel  Industries,  The 
University,  Leeds.) 

The  determination  of  the  volatile  matter  is  one 
of  the  most  important  tests  applied  to  fuels  both 
for  commercial  and  scientific  purposes.  For  com- 
mercial testing  a  high  degree  of  precision  in  the 
determination  is  unnecessary,  but  owing  to  the 
empirical  character  of  the  tests  a  uniformity  of 
method  is  desirable  which  will  not  be  secured  unless 
the  apparatus  is  simple  and  inexpensive.  The 
method  originally  proposed  by  the  American 
Chemical  Society  in  its  modified  form  has  been 
widely  adopted  as  forming  the  nearest  approach  to 
this  want.  Unfortunately  in  this  method  the  use 
of  a  crucible  of  platinum  is  specified.  Now 
platinum  has  obvious  advantages,  but  as  its  cost  is 
practically  prohibitive,  there  is  no  hope  that  it 
will  come  into  general  use  for  the  commercial 
testing  of  coal.  Materials  such  as  porcelain  and 
silica  differ  so  much  in  properties  from  platinum 
as  to  make  their  substitution  in  the  American  test 
impossible.  A  satisfactory  substitute  should  be 
metallic,  as  otherwise  the  temperature  necessary 
is  unattainable  in  a  crucible  heated  in  the  Bunsen 
flame. 

After  examining  a  number  of  metals  and  alloys 
we  have  found  two  materials,  though,  of  course, 
there  may  be  others  untried  by  us,  which  proved 
reasonably  satisfactory.  They  were  Monel  metal 
and  mild  steel  treated  with  aluminium  powder. 
For  this  purpose  the  crucible  embedded  in  alu- 
minium powder  enclosed  in  an  iron  tube  was  heated 
in  the  muffle.  Some  such  process  is  employed  com- 
mercially under  the  name  of  "  calorising." 

The  crucibles  (turned  out  of  the  solid)  were 
similar  in  dimensions  to  the  ordinary  platinum 
crucible — height  1J  in.,  diameter  of  top  1J  in., 
diameter  at  base  1  in.,  and  thickness  of  wall  jV  in. 
The  well-fitting  lid  was  pierced  with  a  hole  -^  in. 
in  diameter.  To  test  the  constancy  of  weight  the 
crucibles  were  heated  for  periods  of  7  minutes  in 
the  flame  of  a  Meker  burner  to  a  temperature  of 
950°  C.  The  gain  in  weight  indicated  that  the 
effect  of  oxidation  of  the  crucible  in  a  determination 
of  volatile  matter  on  1  gram  of  fuel  would  be  to 
lower  the  result  by  05%  or  less  as  compared  with 
determinations  in  platinum. 

Treated  steel  lloncl  metal 

crucible  crucible 

g.          Gain.  g.          Gain. 

Original  weight  of  crucible     . .    47-2728        —  62-7800        — 

Weight  alter  1st  7  mins.  heating  47-2798     0-0070  52-7840     00040 

2nd                  „            47-2850      00052  52-7848      0-0008 

'      3rd                   .,            47-2900      00050  52-7820— 0-0028 

'      4th                   '.,            47-2950      0-0050  52-7830      00016 

'      5th     „            „            47-2956      0-0006  52-7848      00012 
[\         „     6th     .,           „           47-3005     00049 

In  use  the  gain  in  weight  should  be  still  less 
owing  to  the  reducing  atmosphere  inside  the 
crucible.  The  crucibles  also  seemed  to  develop  in 
use  a  protective  film  of  oxide. 

A  large  number  of  coals  have  been  tested,  and 
some  of  the  figures  obtained  for  the  volatile  matter 
content  using  these  two  base  metal  crucibles  are 
set  out  in  a  table,  together  with  the  results  obtained 
when  using  a  platinum  crucible. 


Vol.  XIX,  Xo.  24.]  WEDGWOOD  AND  HODSMAN.— DETERMINING  VOLATILE  MATTER  IN  FUELS.  373  T 


The  method  used  was  substantially  the  same  as 
that  specified  by  the  United  States  Bureau  of 
Mines.  A  large  Meker  burner  was  used  surrounded 
by  a  sheet  iron  chimney  lined  with  asbestos.  The 
crucible  was  supported  so  that  the  bottom  was 
2}  cm.  above  the  burner.  The  gas  was  adjusted 
to  a  predetermined  pressure  indicated  by  a  simple 
water  gauge  so  that  the  maximum  temperature 
attained  in  the  crucible  was  930°  C.  The  tempera- 
ture was  checked  from  time  to  time  by  means  of 
a  platinum  /platinum-rhodium  thermocouple.  The 
crucible  containing  1  g.  of  coal  ground  to  pass  a 
60-mesh  sieve  (I.M.M.)  was  heated  for  exactly 
7  minutes.  It  was  then  removed  and  placed  on 
a  clean  steel  block  until  cool  enough  to  transfer 
to  the  desiccator.  When  quite  cool  it  was  re- 
weighed. 

The  temperatures  in  the  crucibles  at  the  end  of 
each  minute  during  a  period  of  7  minutes'  heating 
under  the  conditions  of  a  test  were  measured. 
The  temperature  inside  the  platinum  crucible  rose 
rapidly  to  the  maximum  in  2  minutes,  but  in  the 
base  metal  crucibles  only  after  4  minutes.  Thus 
the  charge  was  at  930°  C.  in  the  platinum  crucible 
for  5  minutes  and  for  3  minutes  only  in  the  others 
(see  fig.). 


Percentage  of  volatile  matter. 


Sample. 


Platinum         Steel  treated 


Jlonel 


crucible. 

ivith  aluminuin 

J.      metal 

Coke 

1256 



12-15 

Dutch  anthracite 

1017        . 



1012 

W  vndhani  steam  coal 

1800 

— 

17-81 

.  27-10 
(  31-44 

27-65 

26-34 

30-60 

3102 

Various  Cumberland  coals  . 

.  -  33-90 

33-56 

33-62 

35-36 
v  36-86 

35-00 

3510 

3617 

36-02 

Lignite           

59-40 

— 

5707 

(54-55) 


(53-80) 


The  loss  of  carbon  particles  in  the  stream  of 
volatile  matter  was  very  noticeable  in  the  last 
sample.  When  the  crucible  and  its  contents  were 
subjected  to  a  preliminary  gentle  heating  for  two 
minutes  before  heating  for  7  minutes  at  the  full 
temperature,  the  results  (in  brackets)  in  each  case 
were  lower  and  more  concordant. 
C° 


.,  Platinum  Crucible 
-*  3aseMeui Crucible 


Minutes 


The  results  obtained  in  the  base-metal  crucibles 
are  generally  about  0-o%  low  when  compared  with 
those  determined  in  platinum.  This  difference 
may  be  ascribed  to  various  causes,  of  which  the 
most  obvious  are: — (1)  The  increase  in  weight  of 
the  crucible  depressing  the  apparent  loss  of  volatile 
matter.  (2)  The  greater  loss  by  entrainment  of 
carbon  particles  in  the  stream  of  volatile  matter, 
due  to  the  more  rapid  rise  in  temperature  in  the 
platinum  crucible.  (3)  The  fact  that  whereas  the 
platinum  crucible  is  at  a  temperature  above  900c  C. 
for  about  6  minutes  of  the  7  minutes  period,  the 
base-metal  crucibles  are  only  maintained  above  this 
temperature  for  about  4  minutes. 

But  whatever  crucible  is  used  for  volatile  matter 
determinations,     in    order    to    obtain    concordant 


results  a  specified  procedure  must  be  strictly 
adhered  to.  In  commercial  work  extreme  precision 
is  unnecessary,  and  a  knowledge  of  the  volatile 
matter  to  the  nearest  0'5%  in  most  cases  is 
sufficient. 

In  view  of  this  and  the  fact  that  consistently 
good  results  can  be  obtained  with  suitable  base- 
metal  crucibles,  the  use  of  platinum  does  not  seem 
essential. 

Of  the  two  materials  tried  Monel  metal  seems  to 
behave  the  better.  The  crucibles  can  be  turned  in 
the  lathe  to  a  standard  size  and  thickness.  The 
finished  crucible  has,  and  maintains  in  use,  its 
smooth  surface  and  original  shape.  In  this  respect 
it  is  superior  to  platinum,  which  is  soft  and  easilv 
deformed.  Above  all,  the  metal  withstands  the  con- 
tinued action  of  heat  exceedingly  well.  To  test  this 
the  crucibles  were  put  into  regular  use  in  the 
laboratory  of  the  St.  Helen's  Coke  Ovens,  Cumber- 
land. The  original  crucible  after  at  least  50  deter- 
minations of  volatile  matter  seemed  quite  unim- 
paired. Heating  for  1  hour  in  the  muffle  furnace 
at  nearly  1000°  C.  had  little  visible  effect  on  it.  It 
developed  a  thin  oxidation  film,  tough  and  ad- 
herent. The  increase  in  weight,  however,  exceeded 
the  limit  of  permissible  error  in  a  determination  of 
volatile  matter.  Under  this  harsh  treatment  it 
behaved  better  than  the  treated  steel  crucible  which 
showed  signs  of  disintegration,  but  it  had  also  been 
previously  used  without  much  deterioration  in  more 
than  50  determinations.  These  experiments  showed 
that  the  crucibles  may  not  be  used  for  determina- 
tions of  volatile  matter  made  in  the  muffle,  the  pro- 
tective atmosphere  of  the  flame  being  essential. 

Discussion. 

Professor  Cobb  6aid  that  the  determination  of 
volatile  matter  in  coal  by  the  crucible  method  was, 
always  rather  comparative  than  absolute  and  that 
agreement  between  observers  was  only  to  be  attained 
by  defining  carefully  the  conditions  of  operation. 
Platinum  was  a  reasonably  satisfactory  material  for 
the  crucible  but  very  expensive.  About  two  years, 
ago  at  Leeds  they  had  experimented  with  porcelain 
and  silica  but  with  limited  success.  Mr.  Hodsman 
and  Mr.  Wedgwood  continuing  the  work  with 
metallic  crucibles  had,  however,  found  Monel  metal 
(and  to  a  less  extent  "  calorised  "  iron)  much  more 
promising.  Of  course,  other  alloys  might  be  as  good, 
or  better,  but  they  had  given  results  which  indicated 
definitely  that  a  metallic  substitute  for  platinum 
in  this  estimation  could  be  found  and  probably  had 
already  been  found  in  Monel  metal. 

Dr.  Forster  suggested  that  nichrome  might  be- 
suitable,  as  it  formed  a  thin  layer  of  oxide  on  its 
surface  which  acted  as  a  protection  against  further 
oxidation. 

Mr.  W.  McD.  Mackey  said  that  with  lignites  it 
was  better  to  dry  the  sample  first,  since  the  water 
vapour  was  liable  to  carry  out  small  pieces.  The 
old  method  of  determining  the  volatile  matter  in 
coal  was  3|  minutes  on  a  Bunsen  flame  and  3J 
minutes  with  a  strong  blowpipe;  the  results  were 
much  the  same  as  those  got  now.  using  the  adjusted 
Bunsen  flame,  7  minutes.  The  essential  thing 
seemed  to  be  to  get  the  temperature  up  as  quickly 
as  possible.  It  would  be  a  good  thing  if  the  crucible 
could  first  be  heated  to  the  desired  temperature  and 
the  coal  dropped  in.  He  thought  a  temperature 
above  750°  C.  could  be  got  with  silica  if  sufficient 
time  were  given. 

Mr.  Hodsman  said  that  if  a  silica  crucible  were 
used  in  place  of  platinum,  other  conditions  being 
as  specified,  the  temperature  within  the  crucible  as 
measured  by  means  of  a  thermocouple  was  about 
750°.  It  would,  of  course,  be  possible  to  attain  a 
higher  temperature  by  suitably  modifying  the  heat- 
ing arrangements.  That  would,  however,  involve 
a  departure  from  the  conditions  of  the  test.     The 


374t 


EATON  AND  BISHOP.— THE  ACCELERATION  OF  VULCANISATION.       [Dee.  30, 1922. 


coke  with  12'5%  of  volatile  matter  had  been  carbon- 
ised at  a  low  temperature. 

Mb.  Burkell  asked  if  the  roughness  on  the  steel 
crucible  could  be  removed  by  rubbing  with  sand. 
He  noted  that  the  bottom  of  the  Monel  metal 
crucible  was  rather  thick. 

Mh.  Hodsman  replied  that  the  crucibles  of  treated 
steel  had  a  roughened  surface,  even  when  new. 
They  were  thicker  at  the  bottom  than  platinum  and 
therefore  attained  the  maximum  temperature  more 
slowly.  He  added  that  duplicate  determinations 
might  vary  by  0"3%,  but  two  observeis  might  differ 
by  1  %  or  more  in  their  results,  showing  the  need 
for  uniformity  of  procedure.  There  were  several 
pieces  of  apparatus  for  effecting  the  laboratory 
distillation  of  coal,  among  which  was  one  described 
by  Bone.  Such  methods  had  their  uses  but  did  not 
meet  the  need  for  a  simple  procedure  suited  to  the 
summary  analysis  of  fuels  as  daily  practised  by 
very  large  numbers  of  chemists  in  all  kinds  of 
laboratories. 


Communication. 


THE   ACCELERATION   OP   VULCANISATION 
BY  CINCHONA    ALKALOIDS. 

BY   B.  J.   EATON,  O.B.E.,  F.I.C.,  AND  E.   O.   BISHOP, 
M.B.E.,   A. I.C. 

In  the  course  of  an  investigation  on  a  residue 
obtained  from  cinchona  bark,  comparative  experi- 
ments have  been  carried  out  on  pure  rubber-sulphur 
and  rubber-sulphur-zinc  oxide  mixes,  with  the 
•object  of  determining  the  accelerating  effect  of 
quinine,  cinchonine,  cinchonidine,  and  a  mixture 
of  the  uncrystallisable  alkaloids  of  cinchona  bark 
known  phurmaceutically  as  quiuoidine. 

The  particular  residue  under  investigation  (re- 
ferred to  subsequently  as  Accelerator  X)  was 
obtained  by  one  of  us  (B.J.E.)  while  on  leave  in 
England  in  1921.  It  is  stated  to  contain  the 
amorphous  alkaloids  remaining  after  the  separation    I 


of  quinine  and  other  crystalline  alkaloids  from  the 
extract  of  the  total  alkaloids  in  cinchona  bark. 
It  is  understood  that  the  material  is  being  used 
in  certain  rubber  manufactories  in  England,  and 
it  appears  from  information  since  received 
that  American  rubber  manufacturers  have  been 
acquainted  with  its  use  for  some  years. 

Accelerator  X  is  a  brown,  somewhat  deliquescent 
substance  which  is  very  sticky  under  the  moist,  hot 
atmospheric  conditions  in  Malaya.  The  solubility 
in  water  is  slight,  but  in  alcohol  (95%  by  volume) 
complete  solution  can  be  effected.  It  is  basio 
(soluble  in  acids  and  reprecipitated  by  alkalis),  and 
has  a  distinct  odour  of  quinoline  and  benzaldehyde. 
The  nitrogen  content,  as  determined  by  Kjeldahl's 
method,  is  2"52%. 

In  the  investigations  described  in  this  paper  the 
accelerator  was  dissolved  in  95%  alcohol  to  produce 
a  20%  solution.  Different  volumes  of  this  solution 
were  allowed  to  drip  on  to  the  raw  rubber  (in  the 
form  of  crepe)  from  a  pipette.  The  samples  of 
rubber  thus  treated  were  left  exposed  on  glass  plates 
until  the  alcohol  had  completely  evaporated.  A 
test  was  made  on  rubber  treated  with  alcohol  alone, 
which  was  found  to  vulcanise  at  the  same  rate  as  a 
control  sample. 

The  subsequent  addition  of  sulphur  or  sulphur 
and  zinc  oxide  and  the  milling  and  calendering  of 
the  mix  were  carried  out  according  to  the  standard 
practice  adopted  in  this  laboratory  (Bull.  27,  Dept. 
Agric.  P. M.S.,  1918).  Vulcanisation  was  carried 
out  in  moulds  in  a  steam  autoclave  at  140°  C.  The 
vulcanised  samples  were  cut  in  the  form  of  rings 
and  these  were  tested  on  a  Sehopper  testing  machine 
in  the  usual  manner,  24  hours  after  vulcanisation. 

The  resulLs  of  the  cures  are  judged  by  comparing 
the  stress-strain  curves  with  the  "  standard  "  curve 
(Bull.  27)  and  by  a  comparison  of  the  stress-strain 
figures  at  break.  The  figures  recorded  are  those 
giving  the  maximum  product  as  a  result  of  testing 
two  rings,  the  curves  of  which  have  been  shown 
previously  to  be  sufficient  for  a  comparison  of  rates 
of  vulcanisation. 

In  order  to  compare  the  effect  of  Accelerator  X 
with    that    of    the    crystalline    alkaloids    quinine, 


Table  1. 

Results  of  vulcanisations  with  Accelerator  X. 
Using  a  mix  of  raw  rubber  90  parts,  sulphur  10  parts. 


Accelerator  % 

Optimum  time 

Time  of  cure 

Load  at 

Elongation  at 

Type  of 

Ret. 

on 

of  cure  from 

giving  max. 

break 

break  (orig. 

Tensile 

exp. 

"  rubber  and 

curve. 

tensile  strength. 

(  kg.  per  sq.  mm.) 

length  =  100). 

product. 

sulphur." 

Mins. 

Mins. 

(.'•) 

W 

(uxft) 

Slab 

126  As 

nil 

80 

80 

1-57 

1016 

1595 

126  G9 

0-25 

75 

75 

1-31 

1014 

1315 

126  Hs 

0-50 

70 

70 

1-60 

1045 

1672 

Crepe     . . 

126  Ac 

nil 

105 

165 

1-42 

1035 

1469 

126  Dc 

0-25 

150 

150 

1-28 

1038 

1328 

„ 

126  Ec 

0-49 

120 

120 

1-62 

1035 

lt7J 

Table  2. 

Results  of  vulcanisations  with  Accelerator  X. 
Using  a  mix  of  raw  rubber  90  parts,  sulphur  10  parts,  zinc  oxide  4  parU 


Accelerator  % 

Optimum  time 

Time  of  cure 

Load  at 

Elongation  at 

Hef. 

on 

of  cure  from 

giving  max. 

break 

break  (orig. 

Tensile 

exp. 

"rubber  and 

curve. 

tensile  strength. 

(kg.  per  sq.  mm.) 

length=100). 

product. 

sulphur." 

Mins. 

Mins. 

(«) 

(ft) 

(«  x  ft) 

Slab 

126  Bs 

nil 

60 

60 

1-44 

977 

1406 

126  Ksz 

0-25 

40 

45 

1-44 

955 

1375 

126  Lsz 

0-50 

35 

40 

1-70 

960 

1632 

Crepe     . . 

126  Bo 

nil 

135 

135 

1-24 

965 

1196 

126  Sz 

0-25 

90 

90 

1-35 

960 

1316 

„ 

126  Ez 

0-50 

75 

90 

1-27 

955 

1212 

Vol.  xi.i,  xo.  24]       EATON  AND  BISHOP.— THE  ACCELERATION  OF  VULCANISATION.  375  t 


cinchonine,  and  cinchonidine  and  with  the  product 
known  as  quinoidine  a  further  series  of  vulcanisa- 
tions were  carried  out  with  two  types  of  mixings 
as  below :  — 


Mix.  A. 

Mix.  B. 

Rubber 

..     90 

Rubber 

.     90 

Sulphur 

..     10 

Sulphur 

.     10 

Alkaloid 

1 

Zinc  oxide  . . 

4 

Alkaloid      .. 

1 

Iii  both  series  the  pure  alkaloid  was  added  in  the 
form  of  the  solid  crystals  to  the  rubber  during  the 
mixing  process.  The  quinine  used  for  samples 
163  Ks  and  163  Ec  was  a  sample  of  Howard's 
quinine,  while  that  used  for  samples  163  Jc,  Fs,  and 
1- 1  n  as  a  sample  of  Java  quinine.  Since  the  tensile 
curves  for  samples  163  Ec  and  163  Jc  coincide,  it 
may  be  concluded  that  both  samples  of  quinine  are 
identical  in  their  eifect  on  vulcanisation. 


(3)  Quinoidine  and  Accelerator  X  are  not  as 
powerful  as  quinine,  cinchonine,  and  cinchonidine, 
but  they  are  possibly  not  pure  amorphous  alkaloidal 
bases,  and  probably  contain  a  certain  quantity  of 
inert  constituents  which  have  no  accelerating  effect 
on  vulcanisation. 

(4)  As  one  of  us  has  shown  previously,  although 
the  addition  of  organic  and  inorganic  accelerators 
accelerated  the  vulcanisation  of  a  slow-curing 
rubber  (crepe)  relatively  to  a  much  greater  extent 
than  that  of  a  naturally  rapid  curing  rubber  (slab), 
the  differences  between  a  naturally  rapid-  and  slow- 
curing  rubber  still  exist  after  the  addition  of  the 
artificial  accelerator,  i.e.,  the  slab  or  fast-curing 
samples  still  cure  rather  more  rapidly  than  the 
ciepe  or  slow-curing  rubber,  both  when  (a)  accele- 
rator alone  is  added,  and  (fc)  accelerator  plus  zinc 
oxide  is  added. 


Table  3. 
Mixing  A. 


Optimum  time 

Time  of  cure 

Load  at 

Elongation  at 

i    .prOf 

Exp. 

Accelerator 

of  cure  from 

iri\  inu  max. 

break  (kg. 

break  (orig 

Tensile 

rubber. 

rei. 

used  in  mix. 

curve. 

tensile  strength. 

per  sq.  mm.). 

length=loo). 

product. 

Mins. 

Mins. 

la) 

(») 

(ax  4) 

-1  li 

126  As 

nil 

75 

75 

1-57 

1016 

1595 

103  As 

i  !in  chonine 

30 

35 

1-58 

960 

1516 

163  Bs 

Cinchonidine 

25 

20 

1-60 

1030 

164S 

(1 

163  Es 

Quinine 

25 

25 

1  01 

993 

1506 

ii 

163  Ks 

Quinoidine 

50 

30 

1-36 

1030 

1400 

163  Ms 

Accelerator  X 

45 

45 

1-56 

1021 

1597 

Ciepe     .. 

126  Ac 

Nil 

165 

165 

1-42 

1035 

1469 

>>         •  • 

163  Ac 

Cinchonine 

35 

25 

1-45 

1014 

1470 

163  Be 

Cinchonidine 

30 

25 

1-28 

994 

1272 

>j 

163  Eo 

Quinine 

30 

35 

1-42 

985 

1398 

»» 

163  Jc 

Quinine 

30 

30 

1-50 

959 

1468 

» 

163  Kc 

Quinoidine 

65 

50 

1-20 

1020 

1224 

" 

163  Me 

Accelerator  X 

60 

50 

1-40 

1025 

1435 

Table  4. 
Mixing  B. 


Opl  imum  time 

Time  of  cure 

Load  at 

Type  of 

Exp. 

Accelerator 

01  cure  from 

giving  max. 

break  (kg. 

break  (oris. 

rubber. 

101. 

used  iu  mix. 

curve. 

tensile  -trench. 

per  sij.  mm. J. 

length=100). 

product. 

Mins. 

Mins. 

(a) 

(4) 

(iixi) 

Slab 

163  Gs 

Nil 

60 

00 

1-22 

980 

1195 

» 

163  Cs 

(  inchonine 

15 

15 

1-63 

1010 

1646 

,, 

163  Ds 

Cinchonidine 

15 

25 

1-90 

890 

1691 

,, 

163  Fs 

Quinine 

15 

25 

1-93 

905 

1746 

tt 

163  Ls 

Quinoidine 

15 

25 

1-65 

942 

1554 

., 

163  I's 

Accelerator  X 

15 

30 

1-82 

910 

1656 

181  Bs 

Accelerator  X 

15 

25 

1-70 

973 

■Crepe     . . 

163  Go 

Nil 

135 

135 

1-17 

998 

1184 

,> 

163  Cc 

i  iii'  honine 

25 

25 

1-51 

939 

1417 

,) 

163  Do 

*  ini  honidine 

20 

40 

1  61 

870 

1400 

„ 

163  Fc 

Quinine 

20 

25 

1  54 

935 

„ 

163  Le 

Quinoidine 

25 

30 

1-32 

930 

1227 

1408 

1535 

,, 

163  Pc 

Accelerator  X 

25 

30 

1-49 

945 

" 

181  Be 

Accelerator  X 

25 

45 

1-61 

954 

Additional  comparative  vulcanisations  carried  out 
on  crepe  and  slab  rubber,  using  smaller  proportions 
of  quinoidine  and  Accelerator  X,  gave  the  results 
shown  in  Table  5. 

The  relationships  between  the  various  samples, 
especially  in  respect  of  rates  of  vulcanisation,  are 
shown  very  clearly  in  the  tensile  curves,  which  are 
not  reproduced  here.  The  following  points  are, 
however,  of  interest : 

(1)  All  the  cinchona  alkaloidal  bases  used,  viz., 
quinine,  cinchonine,  cinchonidine,  quinoidine,  and 
Accelerator  X,  are  fairly  powerful  accelerators. 

(2)  Quinine,  cinchonine,  and  cinchonidine  appear 
to  be  practically  identical  in  their  accelerating 
•effect. 


(5)  Generally,  the  superiority  of  the  slab  rubber 
samples  containing  the  added  accelerator  compared 
with  the  crepe  samples  is  maintained,  but  is  not  so 
marked  except  in  the  case  of  the  samples  to  which 
zinc  oxide  has  been  added. 

(6)  The  addition  of  zinc  oxide  accelerates  the 
rate  of  vulcanisation  of  all  the  samples.  It  is  not 
possible,  however,  to  judge  the  samples  containing 
zinc  oxide  by  the  same  tensile  curve  used  for  the 
pure  rubber-sulphur  mixings,  since  the  curve  is 
different  in  type,  and  the  highest  tensile  figures  for 
the  samples  containing  zinc  oxide  are  obtained  in 
the  case  of  a  curve  indicating  an  "  over-cured  " 
rubber,  as  judged  by  the  standard  curve  employed 
in  comparing  tests  on  pure  rubber-sulphur  mixings. 


376  T 


EATON  AND  BISHOP.— THE  ACCELERATION  OF  VULCANISATION. 


[Dec.  30,  1922 


Table  5. 


Amount  of 

Optimum 

Time  of  cure 

Load  at 

I  Hi  ngation 

Type  of 
rubber. 

Amount  of 

zinc  oxide  as 

time  of 

giving  max. 

break 

at  break 

Tensile 

Exp. 

accelerator  as 

percentage 

cure  from 

tensile 

(kg.  per 

(orig. 

product. 

ref. 

percentage  on 

on  "  rubber 

curve. 

strength. 

sq.  mm.) 

length  =  100). 

(OX6) 

"  rubber  &  sulphur." 

and  sulphur." 

Mins. 

Mins. 

(«) 

(») 

Slab 

1G6  As 

0-25%  Quinoidine 

nil 

SO 

75 

1-22 

993 

1211 

166  Bs 

0-25%  Accelerator  X 

80 

75 

1-25 

turn 

1237 

166  Cs 

0-5  %  Quiuoidine 

70 

GO 

1-51 

1030 

lo55 

166  Ds 

0-5  %  Accelerator  X 

70 

60 

1-41 

1006 

141S 

166  Es 

0-25%  Quiuoidine 

4% 

40 

45 

1-39 

650 

1320 

166  Fs 

0-25%  Accelerator  X 

4% 

40 

40 

1-55 

990 

1534 

Cr§pe     . 

166  Ac 

0-25%  Quinoidine 

nil 

150 

120 

1-01 

1019 

1029 

166  Be 

0-25%  Accelerator  X 

150 

120 

0-98 

1004 

983 

166  Cc 

0-5  %  Quinoidine 

120 

105 

105 

980 

1029 

1  tit".  !!.■ 

0-5  %  Accelerator  X 

120 

105 

0-97 

:•;;.; 

937 

166  Ec 

0*25%  Quiuoidine 

4",. 

90 

90 

1-39 

970 

1348 

166  Fc 

0-25%  Accelerator  X 

4"., 

90 

90 

1-37 

934 

1348 

(7)  The  results  show  that  Accelerator  X  is  pro- 
bably a  very  useful  organic  accelerator,  and  also 
indicate  that  it  probably  consists  of  the  amorphous 
alkaloids  of  cinchona  bark  known  technically  as 
quinoidine.  Since  this  product  is  otherwise  a  waste 
product,  it  should  be  comparatively  inexpensive 
compared  with  many  artificial  organic  vulcanisation 
accelerators  on  the  market. 

Note. — No  attempt  has  been  made  to  isolate  a 


|  more  active  accelerator  from  the    crude    product 
!  (Accelerator  X)  nor  from  quinoidine,  neither  have 
we  determined  whether  all  or  any  of  the  accelerator 
in  these  products  is  volatile  in  steam.     It  is  pro- 
posed to  continue  the  investigation  on  these  points. 

Experimental  Vulcanising  Laboratory, 
Department  of  Agriculture, 
Kuala  Lumpur,  F.M.S. 


Vol.  XLI.,  No.  1.] 


ABSTRACTS 


IJan.  16.  1922. 


I.-GENEBAL ;  PLANT  ;    MACHINERY. 

Patents. 

Absorbing  gases  and  gaseoxis  acids;  Method  of . 

G.  Nauerz.  E.P.  142,477,  27.4.20.  Conv.,  30.4.19. 

In  absorption  apparatus  consisting  of  a  number  of 
trays  containing  liquid  within  a  tower,  the  gases 
pass  through  the  trays  by  means  of  orifices  upstand- 
ing ;il>ove  the  level  of  the  liquid,  and  are  then 
directed  downwards  by  bell-shaped  deflectors  so  as 
to  bubble  through  the  liquid.  There  may  be  several 
sets  of  interchangeable  bells  provided  with  aper- 
tures at  different  distances  from  the  edge,  so  that 
the  degree  of  absorption  may  be  varied. — B.  M.  V. 

Corrosion  and  formation   of  scale  in   steam   boilers, 
condensers  and  the  like;    Method  of  preventing 

.      L.    Renger    and    W.    Fuhrmann.      E.P. 

154,610,  30.11.20.     Conv.,  12.4.19. 

The  vessel  to  be  protected  (e.g.,  a  steam  boiler)  is 
connected  with  the  negative  pole  of  a  source  of 
direct  current  electricity,  the  insulated  positive 
electrode  being  in  an  external  vessel  in  aqueous 
communication  with  the  interior  of  the  vessel  to  be 
protected. — B.  M.  V. 

Gases;  Centrifugal  machines  for  purifying,  cooling 

and  miring  .     H.  E.  Theisen.     E.P.  165,802, 

16.8.17. 

In  a  gas  washing  machine  of  the  disintegrator  type, 
the  partitions  or  catch  surfaces  of  the  stationary 
casing  or  settling  chamber  are  made  curved,  the 
topmost  one  being  symmetrical,  the  others  spiral, 
so  as  to  deflect  the  liquid  to  one  side  and  the  gas  to 
another.  The  outermost  stationary  ring  of  atom- 
isers may  also,  or  alternatively,  be  of  spiral  shape. 
The  subdivision  of  the  settling  chamber  by  the  catch 
vanes  may  be  so  complete  that  each  outlet  between 
the  atomiser  vanes  communicates  with  a  separate 
settling  chamber. — B.  M.  V. 


Filtering-mat  [for  cleaning  gases].  F.  E.  Kling 
and  L.  B.  Weidlein.  U.S. P.  1,395,833,  1.11.21. 
Appl.,  11.3.20. 

A  device  for  cleaning  gases  comprises  a  number  of 
metallic  wool  mats  supported  in  intimate  relation 
with  each  other  in  a  frame.  The  mat  adjacent  to 
the  gas  inlet  is  the  least  dense  of  the  series.  Sup- 
ports extend  through  all  the  mats  and  are  utilised 
to  transmit  vibration  thereto. — J.  S.  G.  T. 

Separating  dust  from  gases;  Electrical  method  of 
— .     J.  E.  Lilienfeld,  and  Metallbank  u.  Metal- 
lurgische  Ges.  A.-G.     G.P.  (a)  307,071,  12.12.15, 
and  (b)  309,132,  21.1.16. 

(a)  Dust  particles  are  ionised  by  a  pulsating,  high- 
tension,  direct  current  derived  from  single-  or 
multi-phase  current,  an  inductive  resistance  being 
inserted  in  the  high-tension  circuit,  (b)  The  induc- 
tive resistance  coil  is  inserted  in  the  earthed  cir- 
cuit. An  ordinary  resistance  coil  may  then  be  em- 
ployed in  place  of  the  more  costly  high-tension  coil 
which  is  difficult  to  insulate. — J.  S.  G.  T. 

Gases;  Apparatus  for  the  electrical  precipitation  of 

dust  from .    H.  Thein.  G.P.  339,728,  24.4.19. 

The  precipitation  tubes  are  attached  permanently 
at  their  lower  ends  to  the  gas-inlet  tube,  and  are 
connected  at  their  upper  ends  with  the  outlet  tube 
in  such  a  manner  that  groups  can  be  detached  for 
blowing  out  the  precipitated  dust  by,  e.g.,  a  cur- 
rent of  purified  gas  or  air. — L.  A.  C. 


Mercury  vapour  pumps  for  liigh  vacua.  A.-G. 
Brown,  Boveri  &  Co.  E.P.  166,521,  23.6.21. 
Conv.,  17.7.20.    Addn.  to  165,400. 

Mercury  is  boiled  at  the  base  of  a  concentric  series 
of  vertical  tubes  which  .are  of  increasing  height 
from  the  outermost  to  the  central  one.  The  space 
to  be  evacuated  is  connected  with  the  outermost 
tube  near  the  base,  and  the  top  of  each  annular 
space  communicates,  at  the  same  level,  only  with 
the  next  annular  space,  the  evacuated  air  being 
finally  drawn  off  by  a  preliminary  vacuum  pump 
from  tho  top  of  the  central  tube.  The  whole  nest 
of  tubes  is  cooled  by  a  surrounding  bath  of  liquid,, 
the  lower  parts  of  all  tho  tubes  except  the  outer- 
most being  shielded  from  the  cooling  effect  by  the- 
next  tube  so  that  condensation  of  mercury  only 
takes  place  after  tho  air  has  joined  the  stream  of 
mercury.  The  cooling  liquid  may  be  used  to 
operate  an  ejector  as  a  preliminary  vacuum  pump. 

— B.  M.  V. 

Siphon  apparatus.  K.  Hickman,  and  The  Imperial 
Trust  for  the  Encouragement  of  Scientific  and 
Industrial  Research.  E.P.  171,179,  11.8.20. 
Addn.  to  163,381. 

In  the  siphon  previously  described  (J.,  1921,  456  a), 
tho  communication  between  the  ejector  (or  other 
means  of  evacuation)  and  the  top  of  the  main  siphon 
is  provided  with  a  float-operated  valve  so  that  the 
siphon  action  does  not  start  until  the  tank  is  filled 
to  a  predetermined  level.  During  discharge  of  the 
liquid  the  ingress  of  fresh  liquid  is  stopped  by  the 
action  of  a  valve  operated  by  a  flap  in  the  liquid- 
sealing  cup  at  the  bottom  of  the  long  leg  of  the 
main  siphon. — B.  M.  V. 

Intermingling  of  fluid  streams;  Means  for  effecting 

intimate  .      J.    H.   Bregeat.      E.P.    171.507, 

25.8.20. 

A  filling  for  such  apparatus  as  rectifying  stills 
consists  of  a  number  of  coaxial  helices  with  the  coils 
wound  sufficiently  close,  according  to  the  viscosity 
of  the  liquid  under  treatment,  for  the  latter  to  form 
membranes  from  coil  to  coil. — B.  M.  V. 

Crushing,  pulverising,  grinding  and  like  mills. 
J.  S.  Withers.  From  Etabl.  C.  H.  Candlot,  Soc. 
Anon.     E.P.  177,652,  29.3.21. 

A  grinding  mill  comprises  a  fixed  annular  track 
within  which  rotates  a  roller  supported  on  a  shaft 
and  single  spherical  bearing,  the  last  being  well  be- 
low the  grinding  zone  so  that  the  roller  and  shaft 
can  take  any  inclination  to  the  vertical  according 
to  the  amount  of  material  between  the  roller  and 
track,  the  crushing  force  being  produced  centri- 
fugally.  The  shaft  is  driven  by  a  pulley  the  belt 
line  of  which  passes  through  the  centre  of  the 
spherical  bearing. — B.  M.  V. 

Refrigeration  process.  A.  G.  Crawford,  Assr.  to 
H.  W.  Seaman.  U.S. P.  1,396,024,  8.11.21.  Appl., 
27.5.18. 

Substantially  pure  propylene  gas,  liquefied  by 
pressure,  is  allowed  to  evaporate,  whereby  heat  is 
extracted  from  adjacent  materials. — D.  J.  N. 

Catalyser  apparatus.  W.  F.  Cochrane,  Assr.  to 
U.S.  Industrial  Alcohol  Co.  U.S.P.  1,396,358, 
8.11.21.  Appl.,  13.6.18. 
An  annular  chamber  containing  pervious  catalytic 
material  is  provided  with  openings  near  its  ends 
connected  with  conduits  for  the  supply  of  the  sub- 
stances to  be  treated  and  the  withdrawal  of  the 
products.  The  chamber  is  disposed  between  con- 
nected inner  and  outer  chambers  through  which  a 
heating  fluid  is  circulated. — H.  H. 


2A 


Cl.  IIa.— FUEL  :  GAS  ;  MINERAL  OILS  AND  WAXES. 


[Jan.  16,  1922. 


Catalyser  apparatus.  M.  C.  Whitaker,  Assr.  to 
U.S.  Industrial  Alcohol  Co.  U.S. P.  1,396,389, 
8.11.21.  Appl.,  28.6.18. 
Catalytic  material  within  a  container  provided 
with  an  inlet  and  outlet  for  fluid  is  heated  electric- 
ally, using  a  corrugated  resistance  plate  adjacent  to 
the  material  and  a  contacting  opposed  plate. 

— H.  H. 

Catalysis;  Apparatus  for  .     A.  A.  Backhaus, 

Assr.    to    U.S.    Industrial    Alcohol    Co.      U.S.P. 
1,396,718,8.11.21.  Appl.,  24.6.18.  Renewed  5.6.19. 

Catalytic  material  is  used  in  the  form  of  a  granular 
conductor  of  electricity  which  is  maintained  at  a 
high  temperature  by  the  passage  of  an  electric 
current,  and  means  are  provided  for  varying  the 
electrical  resistance  of  the  material. — H.  H. 

Clarifying  solutions ;  Process  of .  J.  A.  McCaskell. 

U.S.P.  1,396,514,  8.11.21.     Appl.,  4.11.19. 

A  previously-  filtered  solution  is  re-filtered,  the 
filtrate  withdrawn  and  atomised  by  a  vacuum,  and 
the  filtrate  and  liberated  dissolved  oxygen  with- 
drawn from  the  vacuum  chamber  by  separate 
pumps. — B.  M.  V. 

Crystals  containing  foreign  materials  of  a  different 
specific     gravity     therefrom ;     Process     for     the 

purification  of  .     A.   A.  Backhaus.  Assr.  to 

U.S.  Industrial  Alcohol  Co.  U.S.P.  1,397,121, 
15.11.21.  Appl.,  24.6.18. 
Cry'Stals  containing  foreign  matter  lighter  than 
the  crystals  but  heavier  than  water  are  agitated  in 
a  saturated  solution  of  the  crystals,  the  foreign 
matter,  but  not  the  crystals,  being  kept  suspended 
and  removed  by  decantation  and  settling,  and  the 
liquor  being  finally  returned  for  re-use. — B.  M.  V. 

Cooling  liot  solutions;  Process  of .    H.  Balcke. 

G.P.  341,891,  4.5.19. 

Crude  liquor  to  be  cooled  is  boiled  in  a  cooling 
chamber  provided  with  a  vacuum  condenser.  On 
attaining  the  temperature  of  the  latter,  the  cooling 
chamber  is  shut  off  therefrom,  and  the  cooling  pro- 
cess carried  a  -stage  further  by  means  of  a  vacuum 
produced  by  a  steam  jet  injector.  Prior  to  enter- 
ing the  condenser,  the  steam  supplied  to  the 
injector  device  passes  through  a  preheater  for 
-warming  the  crude  liquor. — J.  S.  G.  T. 

Oxidation  of  finely-subdivided  material.  Appa- 
ratus for  oxidation  of  finely-subdivided  material. 
W.  N.  Best.  U.S.P.  1,397,791-2,  22.11.21.  Appl., 
8.2.19  and  4.6.20. 

See  E.P.  163,623  of  1920;  J.,  1921,  456  a. 

Crushers.  Smith  Engineering  Works,  Assees.  of 
T.  L.  Smith  and  E.  L.  Sanborne.  E.P.  157,138, 
8.1.21.     Conv.,  6.11.16. 

Filters  for  purifying  oil  or  <iases.  W.  F.  L.  Beth. 
E.P.  169,692,  8.9.21.     Conv.,  30.9.20. 

Air     purifying     apparatus.       G.     Porteus.       E.P. 


Hydraulic  separators  for  minerals  and  other  solids. 
E.  G.  Weddell.     E.P.  171,266-8,  24.9.20. 

Heating  liquids  and  for  like  purposes;  Apparatus 

[heat    exchangers']    for   .      A.    Kav.      E.P. 

171,815,  9.9.20. 

Drying  irood  etc.     E.P.  155,753.     See  IX. 

Jleat-insulating  composition.    E.P.  171,550.  See  IX. 


IK-FUEL;  GAS  ;  MINEDAL  OILS  AND 
WAXES. 

Producer-gas  generation;  Critical  consideration  of 

.       /.       Gwosdz.       Brennstoff-Chem.,     1921, 

2,  209—212,  345—346. 

A  historical  survey  and  theoretical  discussion  of 
producer  gas  reactions,  with  special  reference  to  the 
use  of  an  oxygen-enriched  air  supply  and  the  appli- 
cation of  external  heat  to  producers. — H.  M. 

Crude  oils  of  Borneo.    J.  Kewlev.    J.  Inst.  Petrol. 
Tech.,  1921,  7,  209—233. 

The  three  chief  producing  areas  of  Borneo  are  the 
Koetei,  Tarakan,  and  Miri  fields,  and  these  differ 
both  in  geological  structure  and  in  the  oils  they 
yield.  The  crude  oils  of  the  Koetei  fall  into  three 
main  classes,  viz.,  heavy  asphaltic  base,  light 
asphaltic  base,  and  light  paraffin  base  oils.  The 
heavy  asphaltic  oils,  which  contain  no  light  portions 
and  are  used  as  fuel,  are  produced  from  relatively 
shallow  sands.  The  light  asphaltic  oils  appear  at 
deeper  levels  and  yield  large  portions  of  benzine 
and  kerosene  (approximately  77%),  whilst  at  still 
lower  levels  a  crude  oil  rich  in  wax  is  found.  All 
the  distillates  from  Koetei  crude  oil  are  abnormally 
high  in  specific  gravity,  refractive  index  and  con- 
tent of  aromatic  hydrocarbons  (cf.  Jones  and 
Wooton,  J.,  1907,  919).  Of  these  aromatic  hydro- 
carbons, benzene,  toluene,  o-,  m-,  and  p-xylene 
(m-xylene  in  large  excess),  ethylbenzene,  /3-methyl- 
naphthene,  and  dimethylnaphthenes  have  been 
isolated,  whilst  cycloparaffins  and  reduced 
naphthenes  have  also  been  identified.  Approxi- 
mately the  Koetei  benzine  contains  26%  of 
paraffins,  35%  of  naphthenes,  and  39%  of  aromatic 
hydrocarbons.  The  crude  wax  possesses  the  lowest 
aromatic  content.  The  Koetei  benzine,  imported 
into  England  during  the  war,  proved  of  extreme 
service  in  connexion  with  the  manufacture  of 
T.N.T.  The  once-run  toluene  fraction  (12%  of  the 
benzine)  was  re-fractionated  into  a  spirit  which 
contained  58%  of  toluene  free  from  benzene  and 
xylene  and  available  for  direct  nitration.  The 
kerosene  fraction  which  normally  burns  with  the 
smoky  flame  characteristic  of  an  oil  containing 
aromatic  hydrocarbons,  may  be  refined  by  means  of 
liquid  sulphur  dioxide.  The  Tarakan  crude  oils  are 
asphaltic  in  type,  contain  no  benzine  fractions,  are 
quite  mobile  and  form  excellent  Diesel  oils.  The 
Miri  oil  contains  50%  of  benzine  and  kerosene  and 
yields  a  residuum  fuel  free  from  wax.  The  benzine 
contains  80%  of  naphthenes  and  only  small  amounts 
of  aromatic  hydrocarbons.  The  author  suggests 
that  the  oil  originating  in  foraminiferous  limestone 
has  migrated  upwards  and  the  differences  in  com- 
position are  due  to  its  arrest  at  different  levels. 

—A.  E.  D. 

Petroleum  and  petroleum  products;  Pefractometric 

examination  of .     Utz.     Petroleum,  1921,  17, 

1293—1299. 
A  comprehensive  review  of  past  work  on  the  re- 
fractive indices  of  petroleum  products.  The  re- 
fractive index  increases  with  the  boiling  point  in 
the  case  of  liquid  products,  and  with  the  melting 
point  in  the  case  of  mineral  waxes.  From  the  re- 
fractive indices  of  certain  fractions  American  crude 
oils  may  be  distinguished  from  European  crudes, 
hut  the  various  European  crudes  cannot  be  distin- 
guished from  each  other. — H.  M. 

Gasoline-  ami  kerosene-air  mixtures;  Condensation 

temperatures  of  .     R.  E.  Wilson  and  D.  P. 

Barnard.     J.   Ind.   Eng.   Chem.,   1921,   13.  906— 
912. 
The  vapour  pressures  of  different  motor  spirits  have 
been  determined  and  also  those  of  the  "  equilibrium 


Vol.  XLI.,  No.  1.) 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


3a 


solution."  which  represents  the  first  drop  which 
condenses  out  from  the  completely  vaporised  mix- 
ture: from  these  data  it  is  possible  to  calculate  the 
initial  condensation  temperature  for  any  given  mix- 
ture and  pressure.  The  "equilibrium  solution  "  is 
prepared  by  distilling  the  liquid  continuously  from 
a  flask  in  which  the  volume  of  liquid  is  kept  constant 
and  continuing  the  distillation  for  some  time  after 
the  boiling  point  of  the  liquid  reaches  a  constant 
maximum  value.  The  results  obtained  are  recorded 
graphically  and  indicate  that  failure  to  v.iporise 
gasoline  completely  is  due  more  to  inefficient 
methods  of  vaporisation  than  to  defects  in  the 
motor  spirit  itself. — W.  P.  S. 

Motor  fuels  and    their   mixtures   with   air:   Total 

sensible  heats  of :.     R.  E.  Wilson  and  D.  P. 

Barnard.      J.    Ind.    Eng.    Chem..    1921,    13,   912— 
915. 

The  total  sensible  heats  of  different  petroleum 
spirits  and  their  mixtures  with  air  have  been  deter- 
mined at  various  temperatures  up"  to  500°  C.  and 
the  results  are  recorded  in  graphs;  from  the  latter 
it  is  possible  to  obtain  the  resulting  temperature  of 
a  fuel-air  mixture  if  the  temperature  of  the  two 
constituents  before  mixing  is  known.  The  results 
also  indicate  that  the  net  effect  of  the  compression 
stroke  of  the  engine  is  to  vaporise,  rather  than  to 
condense,  the  fuel,  and  hence  that  the  most  difficult 
problem  in  connexion  with  the  vaporisation  of  the 
fuel  in  the  engine  is  to  secure  satisfactory  distri- 
bution.—"VV.  P.  S. 

Motor  sjiirit  ;  Method  of  fractionating  liquid  mix- 
tures and  its  application  to  the  preparation  of  a 

.      C.    Mariller.      Comptes   rend.,    1921,    173, 

1087—1089. 

In  the  usual  process  of  rectifying  alcohol  the  con- 
centration of  the  alcohol  is  governed  by  the  relative 
solubility  of  water  and  alcohol  in  the  condensed 
liquid  through  which  the  vapour  bubbles,  and  it  is 
necessary  to  condense  considerable  quantities  of  the 
vapour  to  obtain  effective  retention  of  the  water. 
Better  results  may  be  obtained  by  subjecting  the 
vapours  to  the  successive  action  of  one  or  several 
absorbent  liquids,  either  a  solvent  or  a  substance 
forming  with  the  absorbed  substance  a  compound 
completely  dissociated  on  heating  to  a  higher  tem- 
perature. This  absorption  method  can  also  be  ap- 
plied directly  to  liquids  and  as  a  result  a  method 
has  been  found  of  dissolving  alcohol  in  petrol  in  all 
proportions.  Thus  by  mixing  at  15°  C.  80  vols,  of 
petrol  (sp.  gr.  0'730)  with  20  vols,  of  alcohol 
(95°  G.  L.)  on  decantation  of  the  upper  layer 
85'5  vols,  of  a  liquid  containing  10  %  of  alcohol  is  ob- 
tained. By  the  further  addition  of  benzol  and  ether 
an  excellent  motor  spirit  is  obtained. — W.  G. 

Hydrogenated  compounds;  The  dracorubin  test  of 

.     W.  Schrauth  and  O.  von  Keussler.     Auto- 

Technik.  1921,  10,  [17]  3—4.    Chem.  Zentr.,  1921, 
92,  IV.,  1191.     (Cf.  Dieterieli,  J.,  1919,  306  a.) 

The  saturated  hydrocarbons  cyclohexane,  methyl- 
cyclohexane,  dimethylcyclohexane  and  decahydro- 
naphthalene  leave  dracorubin  test-papers  un- 
changed. The  unsaturated  hydrocarbons  cyclo- 
hexene,  methylcyclohexene,  and  tetrahydroaaph- 
thalene  give  the  same  coloration  of  the  paper  or 
liquid  as  benzol.  The  almost  complete  decolorisa- 
tion  of  the  test-papers  given  by  cyclohexanol  and 
methylcyclohexanol  and  the  glistening  upward 
streaks  are  characteristic  of  alcohols.  It  thus  ap- 
pears that  saturated  hydrocarbons  show  the  benzine 
(petroleum  spirit)  characteristics  and  hydrogenated 
phenols  the  alcohol  characteristics,  while  un- 
saturated hydrocarbons  show  the  unchanged  benzol 
characteristics.  These  results  are  completely  borne 
out  by  practical  experience  with  the  products  as 
motor  fuels. — H.  C.  R. 


Mineral  oils;  Degree  of  unsaturation  of ,  in  the 

Bergius  [hydrogenation]  process.     H    I    Water- 

?9lla40d6?7-680J:  P°rqUm-  *"'  ^  Chim- 
The  iodine  value  (Hanus)  was  chosen  as  the  best 
method  of  determining  the  degree  of  unsaturation 
ot  an  oil,  and  this  method  was  applied  to  the  in- 
vestigation of  an  unrefined  mineral  oil  before  and 
alter  treatment  by  the  Bergius  process  at  400°  C 
o^1^0  atm-  Eng'er  distillations  of  the  oil  up  to 
?9°  ,,°-  resulted  in  a  residue  of  83-8%  before  and 
■"'•'  ;lll'i'  treatment  Both  original  and  treated 
oils  gave  iodine  values  which  depended  to  a  great 
extent  on  the  proportions  of  iodine  solution  and  of 
oil  taken,  the  treated  oil  giving  in  all  cases  a 
slightly  higher  value.— H.  J.  E. 

Syrian   asphalt.      F.  Kbnig-Hietzing.      Petroleum 
1921,  17,  1259—1261. 

Asphalt  from  large  deposits  at  Kfarieh,  extracted 
tor  3  days  in  a  Soxhlet  apparatus  with  carbon  tetra- 
chloride, gave  23-64%  of  soluble  bitumen,  the  total 
quantity  of  bitumen  (soluble  and  insoluble)  being 
33;9%.  The  rock  is  a  dolomitic  chalky  marl  con- 
taining 28  ;■;  of  silica.  Microscopical  examination 
showed  earthy  particles,  coated  with  bitumen,  and 
principally  consisting  of  calcspar,  quartz,  and  flint. 
Extraction  with  chloroform  gave  1  to  3%  more 
soluble  bitumen.  The  asphalt  beds  of  Kfarieh  con- 
talI?i  la-yers  ot  Hferincea,  characteristic  of  upper 
chalk  strata.  The  shells  are  coated  with  bitumen, 
and  they  are  filled  with  pure  bitumen  in  place  of 
the  usual  filling  of  sand  etc.  The  shells  gave 
1143  :  of  bitumen  soluble  in  carbon  tetrachloride, 
and  a  higher  result  with  chloroform.  A  sample 
from  a  black  shining  vein  at  Kfarieh  vielded  its 
bitumen  very  quickly  on  extraction  and  gave  33"8% 
of  bitumen. — H.  M. 

Carbon  and  sulphur.     Wibaut.     See  VII. 

Patents. 

Briquettes;  Process  for  the  production  of  a  binder 
for from  sulphite-cellulose,  liquor  and  tar  dis- 
tillation residues.     G.  Mohrdieck.     G.P.  341  972 
30.5.20.  '       ' 

Concentrated  sulphite-cellulose  waste  liquor  is 
kneaded  with  molten  tar  residues,  4 — 5  pts.  of 
molten  residue  being  used  per  1 — 1£  pts.  of  waste 
liquor.  Waste  pitch  may  also  be  melted  along  with 
the  tar  residues. — A.  G. 


Coke  ovens.     A.    G.    A.    Charpy.      E.P.    150,996 
14.8.20.    Conv.,  10.9.19. 

A  coke  oveil  is  divided  into  compartments,  each 
with  its  own  heating  system,  and  mechanical  means 
are  provided  for  passing  the  coal  being  coked 
through  each  compartment  successively.  The  heat- 
ing is  so  regulated  that  by  passage  from  one  com- 
partment to  another,  the  charge  is  suddenly  raised 
in  temperature  at  a  predetermined  point.  (Refer- 
ence is  directed,  in  pursuance  of  Sect.  7,  Sub- 
sect.  4,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  945  of  1873,  1587  of  1881,  10,841  of 
1910,  3284  of  1913,  and  104,066;  J.,  1911,  675;  1914 
245;  1917,  381.)— H.  Hg. 

Coke  ovens  or  the  like.  American  Coke  and  Chemi- 
cal Co.,  Assees.  of  A.  Roberts.  E.P.  165,735, 
10.7.20.     Conv.,  11.7.19. 

The  air  supply  to  each  burner  situated  in  the  upper 
part  of  an  oven  heating  wall  is  controlled  by 
dampers  which  may  be  moved  by  ti  ols  introduced 
through  vertical  inspection  openings.  (Cf.  J.,  1921, 
837  o— H.  Hg. 

a2 


4A 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[Jan.  16, 1922. 


Coke  ovens;  Gas  burners  of  .     Coke  and  Gas 

Ovens,  Ltd.,  and  A.  R.  Smee.  E.P.  171,464. 
12.8.20. 
Each  set  of  coke-oven  heating  flues  is  provided  with 
two  sets  of  gas  burners  supplied  from  two  separate 
ducts.  Each  duct  is  fitted  with  a  three-way  valve 
so  that  it  may  be  supplied  with  gas  or  with  air  for 
the  combustion  of  any  graphite  deposited  on  the 
burners.  The  major  supply  of  air  for  combustion 
of  the  gas  may  be  preheated  and  is  admitted  to  the 
heating  flues  independently  of  the  above  valves. 

— H.  Hg. 

Coke  for  metallurgical  purposes;  Manufacture  of 
— .  A.  Baille-Barrelle.  E.P.  171,203,  20.8.20. 
Coal  is  rapidly  heated  to  the  temperature  at  which 
it  begins  to  agglomerate  (about  300°  C.)  and  then 
heated  to  the  temperature  at  which  agglomeration 
is  complete  (about  600°  C),  at  a  rate  sufficiently 
slow  to  prevent  such  condensation  of  tar  within  the 
mass  as  would  form  an  impervious  partition  zone. 
After  the  condensable  products  have  been  com- 
pletely evolved  the  coked  mass  is  quickly  raised  to 
the  final  temperature.— H.  Hg. 

Coal  gas;  [Testing  of  coal  used  for~\   manufacture 

of    .       Thermal     Industrial     and     Chemical 

(T.I.C.)  Research  Co.,  Ltd.,  and  J.  S.  Morgan. 
E.P.  171,282,  6.10.20. 
A  weighed  sample  of  coal  in  pieces  of  determined 
size  is  enclosed  in  a  cage  and  thrust  through  a  seal 
of  molten  metal  into  a  bell-shaped  vessel  partly  im- 
mersed in  the  metal.  The  metal  bath  is  maintained 
at  a  known  temperature  and  the  distillation  of  the 
coal  continued  for  a  definite  time ;  the  volatile  pro- 
ducts escape  from  the  top  of  the  bell  through  a 
condenser  and  meter. — H.  Hg. 

Illuminating-gas;  Process  and  plant  for  the  pro- 
duction of  by  distillation  of  coal.     A.  Birk- 

holz.  E.P.  148,820,  10.7.20.  Conv.,  22.10.15. 
A  vertical  retort  is  provided  with  two  superposed 
heating  chambers  separated  near  the  centre  of  the 
retort  by  a  horizontal  producer-gas  flue.  Producer- 
gas  is  admitted  to  the  base  of  the  upper  chamber 
where  it  mixes  with  air  and  burns ;  the  waste  gases 
from  the  top  of  this  chamber  are  led  through  a  by- 
pass flue  into  the  top  of  the  lower  chamber,  and 
thence  through  a  regenerator  for  preheating  the 
air.  Coal  is  fed  into  the  retort  continuously  or 
intermittently,  and  steam  is  admitted  to  the  base 
of  the  retort.  A  coke  extractor  is  provided  in  a 
curved  housing  and  co-operates  with  fixed  teeth  in 
the  housing  so  as  to  break  up  the  coke  during  ex- 
traction.— H.  Hg. 

Gas  producers.  J.  F.  Wells.  E.P.  171,488,  17.8.20. 
The  producer  is  provided  with  a  vertical  grate,  and 
the  depth  of  the  incandescent  zone  can  be  regulated 
by  the  depth  of  the  grate,  which  carries  admission 
ports  of  varying  size,  so  that,  in  a  down-draught 
producer,  more  air  is  admitted  at  the  top  of  the 
grate  than  at  the  foot,  and  vice  versa  with  an  up- 
draught  producer.  Liquid  fuel  can  be  injected 
through  the  grate  for  the  purpose  of  enriching  the 
producer  gas. — A.  G. 

Peat;    Process   and    apparatus    for    generation    of 

mechanical  energy  from icithout  previous  air 

drying.  G.  Mees.  G.P.  338,146,  21.5.20. 
The  peat  is  heated  to  150°— 250°  C.  and  pressed 
until  it  loses  about  50— 60  '  by  weight,  and  is  then 
gasified  in  a  producer.  The  water  expressed  from 
the  peat  is  used  ias  boiler-feed  water,  passing 
through  a  purifier,  and  into  a  vertical  or  a  water- 
tube  boiler,  heated  by  producer  gas  passing  from 
the  generator,  and  thence  into  a  boiler  fired  with 
air-dried  peat  or  by  producer  gas  from  producers 


fed  with  air-dried  peat,  whereupon  the  residual 
water,  as  a  concentrated  solution  of  salts,  is  led 
into  a  system  of  boiling  pans  through  a  heat 
accumulator. — A.  G. 

Ammonia;  Direct  recovery  of  from  the  pro- 
ducts of  the  destructive  distillation  of  coal  or 
the  like.  C.  Still.  E.P.  147,736,  8.7.20.  Conv., 
3.12.15.  Addn.  to  28,072  of  1912  {cf.  J.,  1913, 
590;  1914,  607). 

The  gas  is  treated,  during  the  whole  of  the  cooling 
and  reheating,  with  water  so  graded  in  quantity 
that  the  largest  quantity  of  water  is  used  in  the 
highest  and  the  smallest  quantity  of  water  in  the 
lowest  temperature  zones  of  the  gas.  The  cooling 
and  reheating  are  carried  out  in  an  equal  number 
of  successive  sections  with  graded  quantities  of 
water,  the  several  sections  being  arranged  in  pairs, 
each  consisting  of  a  cooling  and  a  heating  section, 
corresponding  with  the  temperature  zones.  A 
single  counter-current  washer  is  used  for  cooling 
and  another  for  re-heating  the  gas,  and  there  is  a 
manifold  grading  of  the  quantities  of  water  in 
ea*h  washer,  such  that  the  smallest  quantity  of 
water  in  question  is  conducted  to  the  first  washer 
for  cooling  the  gas  at  the  gas  outlet  and  that  at 
other  points  of  the  washer,  additional  quantities 
of  water  are  supplied  in  succession,  while,  on  the 
other  hand,  to  the  second  washer  the  whole  of  the 
water  from  the  first  washer  is  supplied  at  the  gas 
exit,  and  at  other  points  of  the  washer  quantities 
of  water  are  withdrawn  in  succession  for  use  in  the- 
first  washer. — A.  G. 

Ammonium   chloride;  Process  for  producing 

[from  coal  etc.].  0.  L.  Ghristenaon  and  K.  I.  M. 
Gisiko;  Gisiko  Assr.  to  B.  A.  Hedman.  U.S. P. 
1,397,264,  15.11.21.     Appl.,  12.1.21. 

A  chloride  of  a  metal  forming  an  alkaline 
hydroxide  and  free  6ilica  are  added  to  organic  sub- 
stances containing  nitrogen,  e.g.,  coal,  lignite,  or 
bituminous  slate,  and  the  ammonium  chloride 
formed  on  distillation  is  collected. — H.  R.  D. 

Gas  cleaner;  Dry  .     F.  R.  McGee  and  G.  W. 

Vreeland.  U.S.P.  1,396,767,  15.11.21.  Appl., 
22.6.21. 

A  vertical  cylindrical  container  or  tower  is  divided 
into  a  number  of  chambers  by  transverse  walls,  each 
chamber  having  an  inlet  at  the  bottom  and  outlet 
at  the  top.  Dividing  each  chamber  are  horizontal 
cleaning  mats  adapted  to  be  shaken  by  mechanism 
contained  in  cylindrical  cross  chambers  (open  to 
the  air)  forming  part  of  the  transverse  walls. 

— B.  M.  V. 

Distilling  liquids,  such  as  mineral  oils,  alcohol,  and 

the    like;    Method    of    .      L.     Granger,     C. 

Mariller,  and  Soc.  Gen.  d'Evaporation  (Proc. 
Prache  et  Bouillon).  E.P.  154,558,  3.6.20. 
Conv.,  26.11.19. 

In  distilling  crude  mineral  oils,  volatile  hydro- 
carbons, or  the  like,  the  vapours  before  final  con- 
densation are  passed  through  an  evaporator 
containing  tubular  elements  through  which  the 
cooling  water  circulates  rapidly.  Such  an 
evaporator  operates  efficiently  when  the  tempera- 
ture of  the  entering  vapours  is  only  slightly  above 
that  at  which  steam  is  generated.  The  steam  passes 
into  a  vessel  under  a  pressure  necessary  to  maintain 
the  water  passing  through  the  evaporator  at  a  suit- 
able boiling  temperature,  e.g.,  in  distilling  alcohol, 
the  pressure  is  below  that  of  the  atmosphere.  The 
steam,  after  compression,  if  necessary,  to  raise  its 
temperature,  may  be  utilised  for  preheating  or  for 
evaporating  lighter  fractions  from  the  crude  oil, 
or  for  operating  steam  engines.  Means  are 
described  for  adapting  the  process  to  both  con- 
tinuous   and    discontinuous    distilling    apparatus, 


Vol.  XII.,  No.  1.1 


Cl.  IIa.— FUEL;  GAS;  MINERAL  OILS  AND  WAXES. 


5a 


thereby  effecting  economy  in  both  heat  and  water 
imption,  the  same  cooling  water  being  circu- 
lated  continuously  through  the  apparatus. 

— L.  A.  C. 

1 1 ng   petroleum    and    oilier   hydrocarbon    oils 
'  /•  pressure;  Process  and  apparatus  for . 

Standard  Oil  Co.,  Assees.  of  H.  P.  Chamberlain. 

10. P.    164,358,    5.7.20.       Coin..    20.10.13.      (Of. 

T.S.P.  1,221,790  of  1917;  J.,  1917,  541.) 

Crude  oil  or  the  like  which  contains  little  or  no 
wax  or  coke-forming  material  is  heated  under  a 
pressure  of  about  75  lb.  per  sq.  in.  in  a  horizontal, 
cylindrical  still  of  which  the  lowest  zone  is  heated 
by  the  furnace  gases,  the  middle  zone  is  protei  ted 
both  from  direct  heating  and  from  cooling,  and  the 
top  zone,  comprising  about  30 ':  of  the  periphery  of 
the  still  and  including  a  dome  top,  is  air-cooled  to 
maintain  the  vapour  at  a  temperature  about 
350°  F.  (about  140°  C.)  below  that  of  the  oil.  A 
pipe  conveying  the  vapour  from  the  dome  to  a 
mater-cooled  condenser  is  provided  with  a  throttle 
valve  adjusted  manually  to  allow  not  more  than  2% 
of  the  original  volume  of  the  charge  to  distil  per  hr. 
The  initial  charge  of  oil  should  be  about  60%  of  the 
capacity  of  the  still,  and  should  be  not  less  than 
3400  gals.— L.  A.  C. 

Hydrocarbon  oils:  Treating  .     E.  F.  Engelke. 

E.P.  166,989,  27.4.20. 

Cracking  is  conducted  in  the  vapour  phase  in  the 
presence  of  preheated  hydrogen  at  high  pressure, 
together  with  a  catalyst.  The  contact  agent  is 
charcoal,  coke,  iron,  copper,  or  nickel.  By  means 
of  a  dephlegmator  unconverted  oil  is  re-introduced 
into  the  system. — A.  E.  D. 

Motor  spirit.    A.  G.  Burnell  and  R.  W.  Dawe.    E.P. 
171.566,  27.9.20. 

The  light  oil  deposited  from  oil-gas  stored  under 
pressure  is  agitated  and  heated  under  a  reflux  con- 
denser for  about  6  hrs.  with  an  anhydrous  metal 
chloride,  e.g.,  2  oz.  of  anhydrous  aluminium  chloride 
per  gal.  of  oil.  The  still  is  heated  by  pressure  steam 
and  the  temperature  is  adjusted  to  maintain 
the  vapour  passing  to  the  reflux  condenser  at 
75° — 85°  C.  Uncondensed  gas,  after  scrubbing 
with  sodium  hydroxide  solution  and  lime,  is  used, 
e.g.,  for  heating  or  lighting.  The  traction 
70° — 140°  C.  obtained  by  subsequent  distillation  of 
the  oil,  after  one  or  more  further  treatments  for 
shorter  periods  with  smaller  quantities  of 
aluminium  chloride  if  its  bromine  absorption  value 
is  too  high,  is  suitable  for  use  as  motor  fuel. 

— L.  A.  C. 

Motor  fuel;  Composite .    J.  P.  Foster.    TJ.S.P. 

1.384,946,  19.7.21.    Appl.,  29.11.20. 

A  mixture  of  alcohol,  ether,  and  aniline,  with  or 
without  kerosene,  e.g.,  alcohol  63%,  ether  34%, 
kerosene  2%,  and  aniline  1%  by  volume. — A.  E.  D. 

Sludge    acid     in     petroleum   refining;    Reclaiming 
— .    W.  H.  Simonson  and  O.  Mantius.     U.S.P. 
1,384,978,  19.7.21.    Appl.,  19.11.20. 

By  the  use  of  a  partial  vacuum  the  sludge  acid  is 
concentrated  at  a  temperature  so  low,  e.g.,  270° — 
290°  F.  (about  130°— 140°  C),  that  the  organic 
matter  is  not  charred. — A.  E.  D. 

Asphalt;   Manufacture   of   .      H.    R.  "Wardell, 

Assr.      to     Central     Commercial     Co.        U.S.P. 
1,385,511,  26.7.21.     Appl.,  30.8.19. 

Mixed  base  petroleum  residuum  is  incorporated 
with  asphaltic  base  residuum,  heated  to  expel  water 
but  not  to  decomposition  temperature,  and  air  is 
blown  in  till  the  mass  is  solid  at  ordinarv  tempera- 
tures.—A.  E.  D. 


Oil-bearing  solids;  Process  and  apparatus  for  treat- 
ing   .     Apparatus  fur  cracking  and  distilling 

•al.  J.  T.  Fenton.  U.S.P.  (a)  1,396,173  and 
(b)  1,396,174,  8.11.21.  Appl.,  (a)  13.12.20  and 
(b)  21.1.21. 

(a)  Finely-divided  shale,  injected  into  an  ex- 
pansion chamber  by  superheated  steam  under  pres- 
sure, is  treated  in  the  chamber  with  more  super- 
heated steam.  The  vapours  generated  are  con- 
densed, and  the  extracted  residue  is  withdrawn 
continuously  from  the  chamber,  (b)  A  mixture  of 
oil  and  steam  is  injected  into  a  cracking  chamber 
whence  the  products  pass  into  a  separator  and  ex- 
pansion chamber  of  greater  cross-sectional  area 
than  the  cracking  chamber.  The  residual  oil  is 
withdrawn  from  the  separator,  and  the  vapours 
]ia^s  from  tho  expansion  chamber  into  a  condenser. 

— L.  A.  C. 

Petroleum:     Method     of    distilling     .      E.    F. 

Burch.  U.S.P.  1,396,249,  8.11.21.    Appl.,  23.4.17. 

A  process  to  avoid  cracking  the  constituents  and 
to  improve  the  yield,  e.g.,  of  lubricating  oils,  from 
petroleum  oils  having  a  high  asphaltic  content 
consists  of  heating  the  oil  to  successively  higher 
temperatures,  and  at  each  stage  of  heating  con- 
densing only  a  portion  of  the  vapours  generated, 
the  uncondensed  fraction  being  returned  to  the 
still  during  the  next  stage. — L.  A.  C. 

[Petroleum]   hydrocarbons:   Purification     of    . 

O.  E.  Bransky,  Assr.  to  Standard  Oil  Co.  U.S.P. 
1,396,399,  8.11.21.     Appl.,  26.11.19. 

Mineral  oils  are  washed  with  an  aqueous  solution 
of  sludge  sulphonates  without  substantial  emul- 
sification. — L.  A.  C. 

Gasoline  substitute;  Making .    C.  Ellis.  U.S.P. 

1,396,999,  15.11.21.    Appl.,  4.10.13. 

Oil  heavier  than  gasoline  is  heated  to  a  tempera- 
ture sufficiently  high  to  decompose  its  principal  con- 
stituents; the  product  is  digested  without  loss  of 
heat  to  effect  further  reaction,  and  is  subsequently 
hydrogenated. — L.  A.  C. 

Decolorising  oil;  Material  for  and  method  of 

producing  the  same.  P.  W.  Prutzman,  Assr.  to 
General  Petroleum  Corp.  U.S.P.  1,397,113, 
15.11.21.     Appl.,  17.1.21. 

The  mineral  montmorillonite  (a  hydrous  aluminium 
silicate),  after  treatment  in  a  plastic  condition  with 
acid,  is  washed  free  from  acid  and  is  subsequently 
pulverised. — L.  A.  C. 

Lubricating  and  motor  oils;  Process  for  the  produc- 
tion of .     R,  Tern.     G.P.  341,295,  24.12.18. 

Addn.  to  336,334  (J.,  1921,  651a). 

Fossil  fuels  are  treated  with  hydrogen  in  the  pre- 
sence of  electrolytic  iron  at  high  temperatures  and 
high  pressure.     About  80%  of  oil  is  produced. 

—A.  G. 

Lubricating  oils;  Production  of .    Chem.  Fabr. 

Lindenhof  C.  '\Yeyl  unci  Co.  A.-G.  G.P.  341,686, 
6.3.15. 

Coal  tar  oils  freed  from  acids  and  bases,  or  crude 
benzol  containing  or  mixed  with  styrene,  cou- 
marone,  indene  and  their  homologues,  and  with 
the  addition  of  unsaturated  aliphatic  hydro- 
carbons, are  treated  with  a  condensing  agent  (sul- 
phuric acid,  aluminium  chloride,  stannic  chloride) 
in  the  usual  way.  The  residue,  boiling  above 
180°  C. ,  obtained  on  distilling  the  product,  is  dis- 
tilled in  vacuo,  suitable  gases  or  vapours  being 
passed  into  the  still  to  facilitate  distillation,  and 
the  oils  thus  obtained  are  purified  by  redistillation. 

—A.  G. 


6a 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


[.Tan.  16,  1922. 


Naphthenic  acids  and  their  salts  [from  petroleum 

refining'];  Process  for  tlie   purification   of  . 

C.  Thicme.  G.P.  341,654,  8.11.17. 
The  naphthenic  acids,  in  the  form  of  their  salts, 
are  treated  with  superheated  steam  or  a  heated, 
indifferent  gas.  Naphthenic  acids  from  Roumanian 
oils  are,  e.g.,  mixed  with  lime  and  treated  with 
superheated  steam  at  160° — 200°  C.  under  reduced 
pressure.  The  malodorous  substances  present  pass 
over  with  the  steam,  whilst  the  odourless  calcium 
salt  remains  behind  in  the  distillation  vessel.  The 
calcium  salt  is  converted  into  naphthenic  acid  by 
treatment  with  mineral  acid  or  carbon  dioxide 
under  pressure,  or  is  converted  into  the  sodium  salt 
by  treatment  with  sodium  carbonate. — A.  G. 

Fuel;  Method  of    fireproof    storing   mobile  . 

L.  W.  Bates.    E.P.  149,958,  5.8.20.  Conv.,  5.8.19. 

See  U.S.P.  1,394,060  of  1921;  J.,  1921,  837  a. 

Fuel;  Apparatus  and  process  for  the  production  of 

artificial  .     R.   Bowen,   Assr.   to  Laminated 

Coal,  Ltd.  U.S.p.  1,397,571-2,  22.11.21.  Appl., 
14.4.20. 

See  E.P.  109,995  and  134,355;  J.,  1917,  1173;  1919, 

940  a. 

Combustion;    Furnace    and    process    of    .      F. 

Seymour.    E.P.  171,132,  2.7.20. 

See  U.S.P.  1,355,172  of  1920;  J.,  1921,  112  a. 

Gas-producer.      F.     Thuman.       U.S.P.     1,398,609, 

29.11.21.    Appl.,  13.6.17. 
See  E.P.  102,597  of  1916;  J.,  1917,  125. 

Soot-carbon,  retort-graphite  ,and  other  carbon  pro- 
ducts from  natural  gas;  Process  for  the  produc- 
tion  of  .      I.    Szarvassv   and   F.    H.   Bensel, 

Assrs.  to  Riitgerswerke  A.-G.  U.S.P.  1,398,751, 
29.11.21.     Appl.,  14.2.21. 

See  E.P.  137,065  of  1919;  J.,  1921,  378  a. 

Gas-purifying  plants;  Pre-heating  of  blast-furnace 

and     like     gases     in     dry     .        Dinglersche 

Maschinenfabr.  A.-G.  E.P.  156,754,  7.1.21. 
Conv.,  17.1.14. 

See  G.P.  339,341  of  1914;  J.,  1921,  838  a. 

Hydrocarbons ;  Method  of  and  apparatus  for  crack- 
ing   .     F.  Puening.     Reissue  15,239,  29.11.21, 

of  U.S.P.  1,358,174,  9.11.20.     AppL,  21.12.16. 

See  J.,  1921,  39  a. 

Motor-fuel  for  aeroplanes.  W.  T.  Schreiber,  Assr. 
to  U.S.  Industrial  Alcohol  Co.  U.S.P.  1,398,947, 
29.11.21.     Appl.,  25.6.18. 

See  E.P.  128,916  of  1919;  J.,  1920,  539  a. 

See  also  pages  (a)  14,  Hydrogen  (E.P.  171,495). 
22.  Lubricating  compound  (E.P.  170,705).  33, 
Alcohol  from  gases  containing  ethylene  (U.S.P. 
1,385,515).  34,  Ethane  (G.P.  339,493).  35,  Fatty 
acids  etc  (G.P.  339,562).  38,  Gas  calorimeters  (E.P. 
171,246). 

Hb-DESTBUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Patents. 
Destructive  distillation  of  carbonaceous  substances. 
E.  C.  Evans.    E.P.  171,152,  5.8.20. 

Coal  is  distilled  at  750°— 1500°  F.  (400°— 815°  C.) 
in  a  vertical  retort  of  large  cross-sectional  area  by 
means  of  an  upward  current  of  hot  combustion 
gases.  The  hot  gases  may  be  produced  by  the  com- 
bustion of  producer-gas  or  of  the  non-condensable 
portion  of  the  gas  evolved  within  the  retort ;  com- 
bustion may  occur  within  the  retort,  to  the  base  of 
which  air   is   admitted,  or  within   a  chamber   sur- 


rounding the  lower  part  of  the  retort.  A  number  of 
retorts  with  one  or  more  combustion  chambers  may 
he  installed  with  one  producer,  and  valves  provided 
to  direct  the  producer-gas  to  any  one  retort,  so 
that  this  gas  may  be  used  at  the  commencement  of 
the  distillation  of  the  charge.  The  temperature  of 
the  boating  gases  is  regulated  by  the  addition  of 
unburnt  gases  or  steam,  and  by  control  of  the  air 
supply.— H.  Hg. 

Bituminous  sand,  coal,  oil  shale,  and  other  mate- 
rials which  yield  hydrocarbons;  Process  for 
distilling  — .  A.  E.  O'Dell.  From  The 
Canadian  American  Finance  and  Trading  Co., 
Ltd.     E.P.  171,213,  23.8.20. 

A  vertical,  cylindrical  still  is  divided  into  compart- 
ments by  means  of  grates  or  porous  diaphragms 
provided  with  staggered  apertures.  The  material, 
which  is  fed  on  to  the  top  grate,  is  swept  round  by 
the  arms  of  a  revolving  stirrer  until  it  drops 
through  the  aperture  on  to  the  next  plate,  and  thus 
passes  down  the  series.  The  gases  produced  by 
burning  a  mixture  of  natural  or  artificial  gas  with 
air  or  oxygen  under  pressure,  ignited,  e.g.,  by 
passage  over  a  catalyst,  are  led  into  each  compart- 
ment of  the  still,  and,  together  with  the  hydro- 
carbon vapours,  pass  out  of  the  top  of  the  still  to 
a  condenser. — L.  A.  C. 

Carbonising  apparatus.  F.  W.  Young.  U.S.P. 
1,397,029,  15.11.21.    Appl.,  27.12.19. 

A  conveyor  is  mounted  above  a  horizontal  surface 
so  that  material  may  be  intermittently  moved 
forward  along  the  surface  and  divided  into  piles 
and  sub-divisions  of  piles,  and  also  so  that  adjacent 
sub-divisions  may  be  joined. — H.  Hg. 

Peat  and  the  like;  Process  for  the  dry  distillation 

and   coking   of  .     Torfverwertungsges.   Pohl 

und  von  Dewitz.     G.P.  340,634,  24.2?20.     Addn. 
to  337,097  (J.,  1921,  618  a). 

During  distillation  the  material  is  compressed  to 
a  greater  or  lesser  degree  by  means  of  a  pressure 
partition  which  can  be  moved,  e.g.,  by  means  of 
a  shaft. — A.  G. 

Purifying  agent  [decolorising  carbon];  Process  of 

mn.king  a .    R.  W.  Mumford,  Assr.  to  Darco 

Corp.    U.S.P.  1,396,773,  15.11.21.    Appl.,  9.4.18. 

A  clarifying  and  decolorising  agent  is  made  by 
impregnating  kieselguhr  with  starch,  and  slowly 
charring  up  to  a  temperature  abovo  600°  C.  under 
circumstances  permitting  a  free  escape  of  the 
vapours  produced. — A.  G. 

Electrodes    in    vacuum    tubes,    more    especially    in 

l'ijntgen   tubes;  Process  for  fastening   the  . 

Elektrische    Gluhlampenfabrik    "  Watt  "    A.-G. 
E.P.  152,617,  16.10.20.    Conv.,  18.10.19. 

In  fixing  electrodes  in  vacuum  tubes,  more  especi- 
ally in  Rontgen  tubes,  transition  from  glass  to 
electrode  is  effected  by  a  cup,  ring  or  the  like  of 
a  metal  or  alloy,  e.g.,  an  alloy  of  iron  and  nickel, 
the  coefficient  of  expansion  of  which  differs  little 
from  that  of  glass,  those  surfaces  of  the  cup  etc. 
coming  into  contact  with  the  glass  being  provided 
with  a  thin  casing  of  a  metal,  e.g..  platinum,  which 
can  be  satisfactorily  fused  into  glass. — J.  S.  G.  T. 

Electric  gas-  or  vapour-lamps.  F.  Skaupv.  G.P. 
341,871,   5.5.15. 

In  electrical  discharge  lamps,  such  as  the  "  Moore 
light  "  tube,  and  lamps  provided  with  a  vaporisable 
cathode  consisting  of  an  alkali  metal  etc.,  vapours 
of  halogen  compounds,  more  especially  of  alu- 
minium or  zinc,  which  are  not  at  all  or  only  slightly 
decomposed  by  the  current,  are  employed  together 
with   the   rare   gases.      These   vapours   convey   the- 


Vol.  XIX,  No.  1.] 


Cl.  III.— tar  axd  tar  products. 


7a 


current  on  lighting-up  the  lamp  and  serve  to 
maintain  constancy  of  current  during  operation. 
Such  lamps  afford  a  white  light. — J.  S.  G.  T. 

ceous  materials;  Apparatus  for  distilling 
.    G.  W.  Wallace.    E.P.  171,563,  24.9.20. 

See  U.S. P.  1,358,662  of  1920;  J.,  1921,  5  a. 

Distillation  of  wood,  woody  fibre,  and  similar 
carbonaceous  substances.  P.  Poore.  U.S. P. 
1,397,181,   15.11.21.     Appl.,  7.7.19. 

See  E.P.  1-32.741  of  1919;  J.,  1920,  814  a. 

III.-TAD  AND  TAB  PRODUCTS. 

Lignite  producer  tar.     S.  Ruhemaun.     Ber.,  1921, 

54.  2.56.5—2568. 
The  crude  tar  was  dehydrated,  freed  from 
mechanical  impurities,  distilled  under  diminished 
pressure  (ca.  20  mm.),  and  finally  treated  with 
steam  at  100°  C.  Investigation  of  the  neutral  oils 
and  phenols  was  restricted  to  the  steam  distillate, 
whereas  the  total  vacuum  distillate  was  used  for 
the  examination  of  the  acids.  The  neutral  oil  was 
collected  between  83°  and  166°  C.  (12  mm.).  The 
individual  fractions  had  a  pleasant  odour  and  deep 
blue  fluorescence  which  gave  placo  after  a  time  to 
a  dark  brown  colour.  They  all  contained  sulphur 
(3'4 — 1*8%)  which  was  removed  to  only  a  small 
extent  by  distillation  over  sodium,  but  was  largely 
eliminated  by  treatment  with  sodium  in  boiling 
alcoholic  solution;  oxygen  was  also  present. 
Further  purification  was  effected  by  agitating  them 
with  methyl  alcohol  which  dissolved  the  greater 
portion  of  the  sulphur  and  the  whole  of  the  oxygen 
compounds  and  left  a  residue  containing  essentially 
paraffins  and  naphthenes.  The  latter  were  destroyed 
by  fuming  nitric  acid.  A  neutral  fraction,  b.p. 
140°— 145°  C.  at  12  mm.,  when  treated  in  this 
manner,  yielded  a  product,  b.p.  144° — 147°  C.  at 
12  mm.,  which  appears  to  be  hexadecane  or  its  next 
higher  homologue.  The  portion  of  the  tar  which 
was  soluble  in  sodium  carbonate  solution  appeared 
to  contain  acids  of  the  series,  CnH2n_202,  and 
CnH2n_102.  The  sodium  hydroxide  extract  of  the 
tar  consisted  essentially  of  phenols  which  had 
b.p.  88° — 178°  at  12  mm.  with  considerable  forma- 
tion of  pitch.  Their  separation  could  not  be  effected 
by  fractionation  but,  by  conversion  into  the  corre- 
sponding urethanes,  the  presence  of  cresol  and  its 
three  next  higher  homologues  was  established ; 
phenol  appeared  to  be  absent. — H.  W. 

Lignite    tar;   High    vacuum    distillation    plant   for 

.    R.  Neumann.     Petroleum.  1921.  17,  1257 — 

1259. 

A  description  is  given  of  a  large  plant  which  has 
been  in  operation  for  some  time  for  the  distillation 
of  tar  formed  by  Mond  producers  running  on 
lignite.  The  plant  was  required  to  distil  the  tar 
down  to  asphalt  in  one  operation,  under  reduced 
pressure,  and  as  the  yield  of  asphalt  is  small,  normal 
design  was  impossible  on  account  of  insufficient 
residue  remaining  in  the  still  to  cover  the  fire-tube. 
A  fire-tube  still  was  essential,  as  an  externally  fired 
still  would  not  be  sufficiently  strong  to  withstand 
the  high  vacuum  (65  to  70  cm.).  A  horizontal 
cylindrical  still  fitted  with  single  fire-tube  is  used 
in  conjunction  with  a  horizontal  cylindrical  vessel 
of  ecjual  capacity,  situated  at  a  slightly  lower  level, 
and  heated  by  the  flue  from  the  still.  An  overflow 
pipe,  inclined  downwards  towards  the  auxiliary 
vessel,  connects  the  latter  with  the  still.  A  pump 
W'Orks  continuously  during  the  earlier  part  of  the 
distillation,  drawing  the  liquid  from  the  base  of  the 
auxiliary  vessel  and  discharging  it  into  the  top  of 
the  still.  The  capacity  of  the  pump  is  in  excess  of 
the  rate  of  distillation  and  therefore  causes  con- 


tinual circulation.  When  distillation  has  proceeded 
sufficiently  to  leave  the  auxiliary  vessel  empty,  the 
pump  is  stopped,  and  distillation  completed  from 
the  still  alone.  In  plant  of  this  type  the  auxiliary 
vessel  may,  it  necessary,  be  larger  than  the  main 
still,  and  oils  yielding  only  small  quantities  of  resi- 
due may  be  distilled  in  one  operation.  Thermometer 
readings  show  that  the  stills  differ  only  slightly  in 
temperature,  and  fractionation  during  distillation 
i-.  satisfactory.  The  effective  circulation  minimises 
the  formation  of  coke,  and  ensures  removal  of 
water  with  the  minimum  of  frothing. — H.  M. 

Friedd-Crafts'  reaction.  111.  Migration  of  alkyl 
groups  in  the  benzene  nucleus.  M.  Copisarow. 
Trans.  Chem.  Soc.,  1921,  1 19.  1*06—1810. 

The  action  of  aluminium  chloride  on  alkylated  aro- 
matic hydrocarbons  results  in  profound  molecular 
rearrangement  comprising  migration  of  alkyl  and 
to  i  smaller  extent  of  phenyl  groups  and  also  a 
pyrogenic-like  fission  of  the  benzene  nucleus  with 
the  formation  of  members  of  the  naphthalene. 
anthracene,  and  possibly  phenanthrene  series.  The 
reaction  involving  the  migration  of  alkyl  groups  is 
reversible.  The  fission  of  the  benzene  nucleus  is 
facilitated  by  high  temperature,  concentration  of 
aluminium  chloride,  degree  of  alkylation  of  the 
hydrocarbon,  and  continuation  of  the  period  of  re- 
action beyond  the  maximum  time  required  for 
migration.  Some  experimental  results  on  the 
action  of  aluminium  chloride  on  toluene  and  xylene 
under  different  conditions  are  given. — P.  V.  M. 

yitro-de/ivatives  of  quinol.  F.  Kehrmann,  M. 
Sandoz,  and  R.  Monnier.  Helv.  Chim.  Acta, 
1921,  4,  941—948. 

The  nitration  of  monobenzoylquinol  in  acetic  acid 
solution  with  1  mol.  of  nitric  acid  yields  2-nitro-4- 
benzoylquinol,  which  is  also  obtained  by  treating 
monobenzoylquinol  with  amyl  nitrite.  Further 
nitration  yields  2.6-dinitro-4-benzoylquinol,  which 
on  hvdrolvsis  is  converted  into  Nietzki's  dinitro- 
quinol  (Annalen,  1882,  215,  143).  The  nitration  of 
dibenzovlquinol  vields  2.6-dinitro-bisnitrobenzovl- 
quinol,  'm.p.  158°— 159°  C.  The  fact  that  two  nitro- 
groups  are  introduced  into  the  quinol  nucleus  in 
this  case  is  of  interest  because  a  second  nitro-group 
cannot  be  introduced  into  the  quinol  nucleus  by  the 
further  nitration  of  2-nitrodibenzovlq.uinol.  ((7. 
J.C.S.,  Jan.)— F.  M.  R. 

LHbromoanthraquinones.  M.  Battegav  and  J. 
Claudin.  Bull.  Soc.  Chim.,  1921,  29,  1017— 1027. 
{Of.  Grandmougin,  J.,  1921,  880a.) 

A  more  detailed  account  of  work  already  published 
(f/.  J.,  1921,  340  a).  1.6-Dibromoanthraquinone, 
m.p.  204°  C,  is  obtained  by  heating  l-nitro-6-sul- 
phoanthraquinone  with  bromine  in  a  sealed  tube  for 
8  hrs.  at  210°  C.  1.7-Dibromoanthraquinone  may- 
be similarly  prepared  from  l-nitro-7-sulphoanthra- 
quinone,  or  from  1.7-diaminoanthraquinone  by  the 
Sandmeyer  reaction. — W.  G. 

Patents. 

Distillation,    of    lignite,   producer-gas    tar.     F.    W. 

Klever.  G.P.  340,314,  19.10.16.  Addn.  to  337,784 

(J.,  1921,  653  a). 
In  the  second  part  of  the  process  instead  of  using  a 
vacuum  a  strong  current  of  heated  gas  or  steam  is 
introduced.  This  modification  is  especially  advan- 
tageous if  the  first  part  of  the  process  is  carried  out 
without  a  vacuum,  e.g.,  by  introduction  of  a 
current  of  gas  or  steam,  for  the  second  part  of  the 
operation  can  then  be  carried  out  in  the  same 
apparatus  without  the  necessity  of  installing  a 
special  pump  for  the  production  of  a  high  vacuum. 


8  a  Cl.  IV.— COLOURING  MATTERS  AND  DYES.     Cl.   V.— FIBRES  ;    TEXTILES,  &c.    [Jan.  16, 1922. 


Thionaphthenecarboxylic     acids;     Preparation     of 

.       Ges.     fur     Teerverwertung     m.b.H.,     R. 

Weissgerber,  and  O.  Kruber.  G.P.  341,837, 
13.6.20. 
Carbon  dioxide  is  allowed  to  react,  in  the  absence 
of  moisture,  on  sodium  thionaphthene  and  the  re- 
sulting mixture  of  carboxylic  acids  separated  by 
fractional  acidification  of  their  sodium  salts  or  by 
fractional  distillation  of  their  methyl  esters. 
Pressed  and  carefully  dehydrated  crude  naphthal- 
ene is  heated  to  140° — 150°  C.  for  5  hrs.  with  sodam- 
ide  with  constant  stirring;  dry  carbon  dioxide  is 
then  passed  into  the  reaction  mixture  for  24  hrs. 
without  interrupting  the  heating  and  stirring. 
After  cooling  the  mass  is  vigorously  stirred  with  a 
mixture  of  toluol  (to  dissolve  excess  naphthalene) 
and  water  (to  dissolve  the  sodium  salts  of  the  car- 
boxylic acids).  The  dark  coloured  aqueous  solution 
is  separated  from  the  toluol  and  acidified  to  pre- 
cipitate the  free  thionaphthencarboxylic  acids 
which  are  re-dissolved  in  sodium  carbonate  solution 
and  separated  by  fractional  acidification,  the  2.3-di- 
carbbxylic  acid  being  a  stronger  acid  than  the  2- 
monocarboxylic  acid  that  accompanies  it.  The 
methyl  esters  boil  at  214°— 218°  C.  and  176°— 
180°  C.  respectively  under  13  mm.  pressure.  (Vf. 
Weissgerber  and  Kruber,- J.,  1920,  716  A.) 

—A.  R.  P. 

Sodiwm    salt    from   a    hydrocarbon   monosulphonic 

in  ill;  Method  of  obtaining  a .    R.  M.  Cole. 

I    ^  P.  1,396,320,  8.11.21.    Appl.,  3.12.19. 
An    aromatic    hydrocarbon    is   sulphonated    in    the 
presence  of   an  excess  of   the  hydrocarbon,   and   a 
highly  ionisable  sodium  salt  is  added,  whereby  the 
sodium  salt  of  the  sulphonic  acid  is  precipitated. 

— F.  M.  R. 

( ' mil-iii r  inul  the  like;  Process  of  treating .    W. 

Anderson.  U.S. P.  1,396,003,  8.11.21.  Appl.,  7.4.20. 

See  E.P.  158,337  of  1919;  J.,  1921,  209  a. 

Anthraquinone  derivatives;  Manufacture  of  . 

J.  Y.  Johnson.  From  Badische  Anilin-  und  Soda- 
Fabrik.     E.P.  171,292,  19.10.20. 

See  U.S.P.  1,394,851  of  1921;  J.,  1921,  840  a.  The 
reaction  maybe  lassisted  by  means  of  weak  oxidising 
agents,  e.g.,  by  passing  a  current  of  air  through 
the  mixture. 

See  also  pages  (a)  3,  Binder  for  briquettes  (G.P. 
341,972).  5,  Lubricating  oils  (G.P.  341,686).  23, 
Besin  (G.P.  341,693);  Tor  paint  (U.S.P.  1,396,674). 
31.  Chlorine  compounds  (E.P.  171.418).  35,  Fatty 
acids  etc.  (G.P.  339,562). 

IV —COLOURING  MATTERS  AND  DYES. 

Octobromoi  niHi/iit  in.     E.    Grandmougin.      Comptes 
rend.,  1921,  173,  982—985. 

Octobromoindigotin  has  been  prepared  by  the  fol- 
lowing series  of  reactions.  With  formaldehyde  tetra- 
bromoanthranilic  acid  gives  a  formalide,  which 
when  treated  with  hydrocyanic  acid  and  the  pro- 
duct hydrolysed  yields  the  glycine  of  tetrabromo- 
anthranilic  acid.  The  latter  when  boiled  with 
acetio  anhydride  gives  acetyltetrabromoindoxylic 
acid,  which  in  ammoniacal  solution  is  readily 
saponified  and  oxidised  to  octobromoindigotin. 
The  bromoindigotin  on  oxidation  with  chromic 
acid  in  acetic  acid  gives  tetrabromoisatin  and  on 
reduction  gives  a  leuco  derivative  the  sodium  salt 
of  which  is  only  sparingly  soluble.  Owing  to  this 
fact  and  the  method  of  preparation  and  red  colour 
of  octobromoindigotin,  this  substance  is  of  little 
technical  interest. — W.  G. 


Dibenzoyldiaminoanthraquinones.  M.  Battegav 
and  J.  Claudin.  Bull.  Soc.  Chim.,  1921,  29, 
1027—1036. 

A  more  detailed  account  of  work  already  published 
(c/.  J.,  1921,  340  a).  The  dibenzoyl  derivatives  are 
prepared  by  direct  benzoylation  with  benzoyl  chlor- 
ide in  a  suitable  solvent.  In  neutral  or  acid  media 
the  1.2-  and  2.3-diaminoanthracp:iinones  give 
phenyliminazole  derivatives  but  in  alkaline  solu- 
tions the  dibenzoyl  derivatives.  Of  these 
dibenzoyl  derivatives  only  the  1.4-,  1.5-,  and  1.8- 
derivatives  are  powerful  dyes,  the  intensity  of 
shade  of  the  others  being  inferior. — W.   G. 

Chromogens   of   some   lAants;   Transformation,    by 

oxidation,  of  the  into   a  red  pigment.     St. 

Jonesco.    Comptes    rend.,  1921,  173,  1006—1009. 

The  yellow  chromogens  from  such  plants  as 
Cobcea  scandens  and  Ampelopsis  hederacea  on 
oxidation  in  amyl  alcohol  with  sulphuric  acid  and 
manganese  dioxide  at  50° — 60°  C.  gave  a  violet- 
red  pigment,  but  on  reduction  did  not  give  pig- 
ments. The  results  confirm  those  of  Kozlowski  on 
beetroot  pigments  (c/.  J.,  1921,  881  a),  i.e.,  that  the 
appearance  of  red  pigments  in  plants  is  due  to  oxi- 
dation and  not  to  reduction  phenomena. — W.  G. 

Electrochemical  oxidation  of  azobenzene.  Fichter 
and  Jaeck.     See  XI. 

Standardisation  of  colours.     Trillich.     .See  XIII. 

Patents. 

Mono-azo-dycstiiffs  for  dyeing   wool;  Manufacture 

of   .      Farbw.    vorm.    Meister,    Lucius,    und 

Briining.     E.P.  146,871,  5.7.20.     Conv.,  30.6.14. 

See  G.P.  293,473  of  1914;  J.,  1916,  1056. 

Dyestuff ;  Green and  process  of  making  same. 

V.  Villiger  and  H.  von  Krannichfeldt.     U.S.P. 
1,396,483,  8.11.21.     Appl.,  9.7.20. 

See  E.P.  168,447  of  1920;  J.,  1921,  730  a. 


V.-FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Cellulose;  Sontgen-spectrographic  investigation  of 

.      R.   O.    Herzog.      Cellulosechem.,    1921,   2, 

101—102.  (Cf.  J.,  1921,  342  a). 
Cellulose  fibres  in  parallel  arrangement  Bhow  a 
Rontgen  diagram  similar  to  that  of  crystal  particles 
arranged  along  one  axis,  and  certain  conclusions 
relative  to  the  constitution  of  cellulose  may  be 
drawn  from  the  analogy.  From  the  value  of  the 
elementary  parallelopiped  it  would  appear  that  the 
group  (C^H^O;,).,  is  regularly  repeated.  Further, 
it  is  most  probable  that  the  symmetry  of  the 
rhombic  crystal  system  is  represented  in  the  cellu- 
lose molecule,  although  that  of  the  monoclinic 
system,  one  degree  lower  than  the  rhombic,  is  not 
excluded.  The  fundamental  units  must  each  con- 
tain a  cellobiose  residue,  and  the  whole  cellulose 
molecule  must  be  built  up  of  cellobiose  groups. 
Three  types  of  structure  come  into  consideration: 
(«)  Open  chains  of  dextrose  residues  linked  together 
in  groups  of  four  in  series  by  means  of  oxygen 
bonds.  (6)  Closed  rings  of  four  dextrose  compo- 
nents linked  by  oxygen  bonds ;  if  the  symmetry  is 
that  of  the  rhombic  system  this  possibility  is  ruled 
out.  (e)  Cellulose  may  consist  of  internal 
anhydrides  of  cellobiose;  according  to  the  rhombic 
symmetry  the  constituent  elements  would  be  com- 
posed of  dextrose  residues  in  pairs  linked  by 
oxygen  bonds  through  the  second  and  sixth  carbon 
atoms.  Cellulose,  hydroccllulose,  and  viscose 
exhibit   crystal  structure,    whereas   nitro-,   acetyl-, 


Vol.  XIX,  Xo.  L] 


C,..  v.— FIBRES  ;  TEXTILES  ;   CELLULOSE  :   PAPER. 


9a 


and  ethyl-celluloses  are  amorphous.  It  is  possible, 
however,  to  re-establish  arrangement  effects  by 
stretching  and  similar  mechanical  treatment 
whereby  the  tenacity  is  increased  and  the  swelling 
capacity  is  correspondingly  decreased. — J.  F.  B. 

Cellulose,    hydrocelhdose,    and   oxy cellulose ;   Com- 

parative  action  of  heat  on .    Characteri 

ijdrocelhtiose  by  dry  heot.    E.  Justin-Mueller. 
Bull.  Soc.  Chim.,  1921.  29,  9S7— 988. 

When  submitted  to  dry  heat,  hydrocellulose 
caramelises  and  becomes  brown  at  130° — 150°  C, 
at  which  temperature  oxycellulose  shows  at  the 
most  a  pale  yellow  colour,  and  cellulose  is  un- 
changed.— W.  G. 

Cellulose.   V.  New  degradation   of   eellulosi     < 

version    of     cellulose     info     a     biose-anhydride. 
K.  Hess.    Ber.,  1921,  54,  2867—2885. 

Cellulose  is  dissolved  by  acetyl  or  propionyl 
bromides  at  the  atmospheric  temperature,  and  is 
attacked  but  not  dissolved  by  benzoyl  bromide, 
whereas  it  does  not  appear  to  be  effected  by  thionyl 
chloride.  With  the  first  reagent  it  gives  a  product 
which  can  be  converted  into  penta-acetyl-3-glueose 
and  a  brominated  sugar,  apparently  a  biose.  Cello- 
I -  yields  similar  products.  The  use  of  the  re- 
agent, therefore,  throws  little  light  on  the  structure 
of  cellulose.  Acetyl  chloride  dissolves  cellulose  in 
3 — 4  days  to  an  almost  colourless  solution  which 
solidifies  rapidly  when  concentrated.  The  product 
can  be  separated  by  solution  in  glacial  acetic  acid 
and  precipitation  with  ether  into  a.  soluble  and 
insoluble  portion  (the  former  has  not  yet  been 
investigated).  The  latter  consists  of  a  mixture  of 
a  hexa-acetylanhydrobiose  and  a  chloropenta- 
acetylanhydrobiose,  the  relative  proportions  of 
which  depend  on  the  duration  of  the  original  action. 
By  treatment  with  acetic  anhydride  and  sodium 
acetate  this  product  is  converted  into  an  apparently 
homogeneous  hexa-acetylanhydrobiose,  C,dH,2016, 
small  colourless  crystals,  m.p.  265° — 270°  C, 
[a]"D= — 17"8°  in  chloroform  solution,  which  has  a 
pronounced  tendency  to  behave  as  a  colloid.  It 
is  hydrolysed  by  cold  alcoholic  potash  to  the 
corresponding  anhydrobiose,  C^H^O^^HjO,  an 
apparently  microcrystalline  powder,  which  becomes 
discoloured  at  200°  C.  but  does  not  melt  below 
270°  C.  The  properties  of  the  substance  show  con- 
siderable resemblance  to  those  of  cellulose.  Thus 
it  is  insoluble  in  water,  soluble  in  ammoniacal 
copper  hydroxide  or  silver  oxide  solutions,  but  not 
in  ammoniacal  cadmium  hydroxide  solution.  It 
shows  distinct  adsorptive  capacity  for  substantive 
cotton  dyes.  (Cf.  J.C.S.,  Jan..  1922.)— H.  W. 

Sulphite  liquor  [acid  calcium  bisulphite  solution}. 
R.  Schwarz  and  H.  Muller-Clemm.  Z.  angew. 
Chem.,  1921,  34,  599—600. 

The  conclusions  drawn  in  a  previous  communica- 
tion (J.,  1921,  504  a)  are  now  admitted  to  be  in- 
correct. The  quotient  of  combined  sulphurous  acid 
by  free  sulphurous  acid  is  not  constant  but  depends 
on  the  temperature.  It  falls  with  increasing  tem- 
perature to  24°  C,  and  then  increases  again  on 
further  temperature  rise.  In  the  temperature 
range.  20° — 33°  C  the  maximum  for  free  sul- 
phurous acid  lies  at  24°  C.  for  combined  acid  at 
29°  C,  and  for  total  acid  at  26°  C.  The  quotient 
also  depends  on  the  initial  concentration  of  sul- 
phurous acid,  increasing  from  2'0  at  the  highest 
examined  concentration   (6'5     )  to  42  at  2%. 

— G.  F.  M. 

Pop*  i  pulp:  Estimation  of  the  degree  of  beating  of 
— .     E.   W.   L.   Skark.     Fapierfabr.,   1921,   19, 
569—576. 

The  quality  of  paper  depends  most  intimately  on 
the   condition  of  the  beaten   pulp.     Three   factors 


have  to  be  taken  into  account:  subdivision  longi- 
tudinally, that  is  separation  of  the  fibre-bundles 
and  production  of  fibrillar;  subdivision  transversely, 
that  is  length  of  fibres;  colloidal  hydration,  that  is 
"  wetness  "  or  "  softness."  By  variations  in  the 
raw  material  and  its  chemical  treatment,  in  the 
nature,  pressure,  and  manipulation  of  the  beating 
elements  and  Ln  the  time  of  beating,  very  many 
degrees  and  combinations  of  these  three  factors  are 
possible.  Microscopical  measurements  permit  no 
safe  com  lu-i.m-  to  be  drawn  regarding  the  colloidal 
"softness"  of  the  beaten  pulp  and  identical 
measurements  have  been  obtained  from  two  similar 
pulps  (one  much  softer  than  the  other  through 
having  bi  en  stored  for  14  days  in  the  drainer  chest 
before  beating)  beaten  under  the  same  conditions 
yet  giving  totally  different  types  of  paper.  Owing 
to  the  complexity  of  the  factors,  apparatus 
designed  to  show  total  or  average  rates  of  draining 
of  the  pulp  do  not  afford  a  sufficient  differentiation 
between  the  different  conditions  of  beating.  The 
author  adheres  to  the  type  of  apparatus  originally 
described  by  him  (J.,  1913,  1103)  in  which  the  rate 
of  draining  of  500  c.c.  of  a  2  '  pulp  through  a 
standard  sieve  is  measured  at  half-minute  intervals, 
and  curves  are  plotted  showing  the  volumes  of 
water  passing  through  in  equal  increments  of  time- 
It  is  very  difficult  to  produce  in  the  hollander  a 
sufficient  separation  or  longitudinal  splitting  of  the 
fibres  without  a  certain  amount  of  shortening 
taking  place  at  the  same  time;  in  the  diagrams, 
however,  the  proportion  of  short  fibres  to  long 
fibres  is  well  indicated  by  a  sharp  bend  in  the  fours*' 
of  the  curve.  Long-fibred  pulps  show  the  quickest 
initial  velocity  of  draining  and  the  presence  of  short 
fibres  causes  la  subsequent  slowing  down.  Pulps 
with  uniformly  short  fibres  but  without  much 
hydration  show  much  slower  draining  at  the  start 
than  those  with  long  fibres;  they  have,  however,  a 
higher  initial  velocity  of  draining  than  hydrated 
pulps.  Hydration  or  "wetness"  of  the  pulp  is 
characterised  by  a  slower  rate  of  draining  which 
tends  to  be  more  uniform  throughout.  Thus  a  well 
hydrated  pulp  will  show  a  much  slower  initial 
velocity  than  a  short-fibred,  low-hydrated  pulp,  but 
the  latter  will  slow  down  after  the  first  one  or  two 
minutes  and  its  curve  may  cross  that  of  the  more 
uniformly  slow-draining  hydrated  pulp.  The  differ- 
ence between  the  results  obtained  with  basalt-lava 
beating  tackle  and  bronze,  as  regards  hydration,  i* 
very  clearly  shown  by  the  contour  of  these  curves; 
the  time  of  beating  in  either  case  is  indicated  by 
the  general  inclination  of  the  curves.  The 
Schopper-Riegler  pulp-tester  divides  the  water  into 
quick-flowing  and  slow-flowing  portions  and  this 
principle,  if  properly  dimensioned,  is  capable  of 
giving  results  in  the  majority  of  cases  comparable 
with  the  Skark  diagrams.  The  iauthor  has  also 
made  experiments  with  upward-flow  meters  which 
measure  the  flow  of  water  from  the  pulp  through 
a  sieve  in  the  bottom  of  a  glass  tube  inserted  into 
a  body  of  diluted  pulp. — J.  F.  B. 

Ligninsulphonic  acid  and  lignin.  [Utilisation  of 
sulphite-cellulose  waste  lyes  in  preparation  of 
electrodes  for  accumulators.']  F.  Konig.  Cellu- 
losechem.,  1921,  2,  93—101,  105—113,  117—122. 

Neutralised,  concentrated  sulphite-cellulose  waste 
liquor  was  sprayed  into  50%  sulphuric  acid  through 
a  fine  jet,  the  quantities  being  chosen  so  that  the 
final  acid  had  a  concentration  of  360  g.  per  litre. 
The  precipitated  ligninsulphonic  acid  was  re- 
dissolved  and  re-precipitated  in  the  same  way,  then 
neutralised  with  barium  carbonate  and  the  solu- 
tion of  the  barium  salt  poured  into  10  times  its 
volume  of  alcohol.  The  barium  ligninsulphonate 
had  a  composition  corresponding  with  the  formula 
C«H10O„S2Ba.  It  reduced  Fehling's  solution  but 
was  free  from  hydrolysable  carbohydrates.  Barium 
ligninsulphonate.  when  dried,  dissolves  only  slowly 


10a 


Cl.  V.— FIBRES  ;   TEXTILES  ;  CELLULOSE  ;  PAPER. 


[Jan.  10, 1922. 


iii  water;  the  solutions  are  clear  but  show  colloidal 
characteristics ;  it  has  not  been  possible  to  obtain 
colourless  preparations.  The  solutions  are  con- 
siderably ionised  and  strong  electrolytes. 
Measurements  of  conductivity  constants  at  various 
concentrations  indicated  that  two  equilibrium 
systems  co-exist  in  the  same  solution,  namely 
colloid  i*  simple  molecule,  and  molecule  ±^  ions. 
The  solutionis  of  the  free  ligninsulphonic  acid  are 
very  much  less  colloidal,  and  this  double 
phenomenon  exists  only  in  a  minor  degree;  the 
conductivity  results  are  analogous  to  those  for 
sulphuric  acid.  The  same  difference  between  the 
barium  salt  and  the  free  a<cid  is  indicated  optically 
by  the  ultramicroscopic  appearance  of  the  solutions. 
Electrical  potential  measurements  indicate  that 
ligninsulphonic  acid  belongs  to  the  class  of  "strong 
acids  "  ;  it  is  probably  dibasic.  The  major  oxidation 
products  are  carbon  dioxide  and  oxalic  acid ;  suc- 
cinic acid  is  also  found  in  small  quantities.  Nitric 
acid  apparently  forms  a  strongly  coloured  nitro 
compound  of  a  phenolic  nature.  The  action  of  ozone 
produces  formic  'acid  in  addition  to  oxalic  acid. 
Experiments  with  lignin  prepared  by  the  action  of 
hydrochloric  acid  on  wood  yielded  very  similar 
results ;  an  intermediate  amorphous  nitro  compound 
ot  an  acid  nature  was  isolated,  corresponding  by 
analysis  to  C^H^CvN.  The  aotion  of  ozone  on 
lignin  yielded  formic  acid  but  the  production  of  an 
ozonide  does  not  appear  to  be  confirmed.  A  new 
mode  of  utilising  waste  sulphite  liquors,  in  the  form 
of  barium  liguinsulphonate,  is  suggested,  namely, 
for  the  preparation  of  the  positive  electrodes  of 
accumulator  cells.  The  absence  of  permanent 
oxidation  products,  with  the  exception  of  a  trace  of 
succinic  acid,  is  a  considerable  advantage.  For 
this  purpose  it  is  not  necessary  to  isolate  the  barium 
salt  by  precipitation  with  alcohol.  The  concen- 
trated waste  liquor  is  precipitated  with  sodium 
bisulp'hate  solution  and  the  precipitated  acid  is 
neutralised  land  dissolved  with  barium  carbonate, 
or  more  economically  with  chalk.  Good  deposits 
are  obtained  in  an  electrolyte  containing  24  g.  of 
sulphuric  acid  per  litre  and  the  equivalent  of  0"5% 
of  barium  ligiiinsulphonate  with  a  current  density 
of  1"5  milliamp.  per  sq.  cm. — J.  F.  B. 

Sulphite-cellulose.     De  Hesselle.     See  XV. 

rolysaccharides.     Irvine  and  Oldham.     See  XVII. 

Patents. 

Hair,  wool,  and  furs;  Process  of  improving  . 

A.  O.  Trostel.    U.S.P.  1,371,951,  15.3.21.    Appl., 

12.12.19. 
Hair  or  coarse  wool  of  a  more  or  less  bristle-like 
character  is  converted  into  a  condition  similar  to 
that  of  high-grade  wool  in  regard  to  softness  and 
spinning  and  felting  qualities  by  treatment  for 
10 — 14  days  in  cold,  weak  milk  of  lime  to  which 
0'2%  by  weight  of  alkali  sulphide  has  been  added, 
washing  with  water,  treating  for  about  24  hrs.  in 
a  bath  of  dilute  hydrochloric  acid  of  such  concentra- 
tion that  1%  HC1  remains  in  the  bath  after  the 
alkali  present  in  the  hair  has  been  neutralised,  then 
washing  in  water,  and  drying. 

Flax  and  hemp;  Betting  of  .     O.   Ochmann. 

G.P.  340,412,  20.7.20. 
In  processes  in  which  the  retting  liquor  is  used 
repeatedly,  it  is  exposed  to  aerial  oxidation  to 
reduce  the  content  of  malodorous  and  polluting 
substances  between  successive  periods  of  contact 
with  tho  material  under  treatment. — A.  J.  H. 

Alkali  cellulose;  Manufacture  of  .     L.  Lilien- 

feld.     E.P.  149,318,  13.5.20.     Conv.,  1.8.19. 

Alkali-cellulose,   containing   small   quantities   of 
water  and  a  large  excess  of  alkali,  suitable  for  use 


in  the  preparation  of  cellulose  ethers,  is  made  by 
impregnating  cellulose  or  cellulosic  material  with 
water  or  caustic  alkali  solution,  squeezing  out  the 
excess,  and  kneading  the  finely-divided  pressed 
material  with  solid  caustic  alkali,  preferably  in 
powder  form. — D.  J.  N. 

Cellulose  ethers;  Production  of .    L.  Lilienteld. 

E.P.  163,016,  12.5.20.    Conv.,  5.5.20. 

Cellulose  ethers  are  obtained  by  impregnating 
cellulose  or  its  conversion  products  with  caustic 
alkali  solution,  and  introducing  the  etherifying 
agent  without  subjecting  the  impregnated  material 
to  a  ripening  treatment  or  removing  the  excess  of 
alkali—  D.  J.  N. 

Et  iters    of    carbohydrates     having    the    empirical 
formula  7iC'GH1005,  their  conversion  products  and 

derivatives;  Production  of  .     L.  Lilienfeld. 

E.P.  163,017,  12.5.20.    Conv.,  5.5.20. 

Carbohydrates  of  the  general  formula  (C6H10O5)n, 
such  as  cellulose,  starch,  dextrin,  and  their  conver- 
sion products,  are  treated  with  etherifying  agents 
in  presence  of  at  least  15  times  their  weight  of 
35 — 50%  caustic  alkali  solution.  Ethers  produced 
by  this  process  are  characterised  by  improved 
resistance  to  water. — D.  J.  N. 

Colloiding  carbohydrate  esters;  Process  of and 

products  thereof.  F.  E.  Stockelbach,  Assr.  to 
Commonwealth  Chemical  Corp.  U.S.P.  1,370,853, 
8.3.21.     Appl.,  23.7.20. 

A  carbohydrate  ester,  e.g..  a  cellulose  ester, 
especially  nitrocellulose,  is  mixed  with  a  phosphoric 
ester  of  an  alcohol  of  the  homologous  series  of  which 
benzyl  alcohol  is  a  member,  e.g.,  tribenzyl  phos- 
phate. 

Cellulose   esters;  Method  of   moling  .     M.  E. 

Putnam,  Assr.  to  The  Dow  Chemical  Co.  U.S.P. 
1,396,878,  15.11.21.    Appl.,  11.10.18. 

Anhydrous  cellulose  acetate,  made  by  acetylating 
cellulose  with  excess  of  acetic  anhydride,  is  hydro- 
lysed  by  adding  it  to  a  mixture  of  previously 
hydrolysed  cellulose  acetate  and  excess  of  the 
hydrolysing  solution. — D.   J.  N. 

Pyroxylin  solvent.  R.  B.  Mitchell,  Assr.  to  Athol 
Mfg.  Co.  U.S.P.  (a)  1,397,173,  and  (b)  1,397,493, 
15.11.21.     Appl.,  9.2.21  and  21.8.20. 

(a)  The  solvent  consists  essentially  of  ethyl  pro- 
pionate,  toluol,   ethyl   alcohol,    and  ethyl   acetate. 

(b)  Tho  solvent  contains  ethvl  propionate  and  toluol. 

— D.  J.  N. 

Waterproof  fibre  tube  and  process  of  making  tlte 
same.  Waterproof  fibrous  material  and  process 
of  making  the  same.  (a)  F.  A.  Burningham, 
G.  A.  Richter,  W.  B.  Van  Arsdel,  and  D.  H. 
White,  (b)  G.  A.  Richter,  W.  B.  Van  Arsdel,  and 
D.  H.  White,  Assrs.  to  Brown  Co.  U.S.P. 
(a)  1,396,021  and  (b)  1,396,060,  8.11.21.  Appl., 
(a)  20.1.20,  (b)  13.9.19. 

(a)  Fibrous  materials,  such  as  paper  tubes,  are  im- 
pregnated with  molten  sulphur,  which  is  allowed  to 
cool  and  crystallise  on  the  fibre.  The  material  is 
then  further  impregnated  with  a  solution  of  a 
phenol-condensation  product,  which,  after  evapora- 
tion of  the  solvent,  is  polymerised  by  heat,  (b) 
Fibrous  materials  impregnated  with  sulphur  are 
further  impregnated  with  a  water-repellent  com- 
pound, which  is  solid  at  ordinary  temperatures, 
e.y.,  bitumen. — D.  J.  N. 

Paper;  Process  of  recovering  used    .      R.    A. 

Marr.  U.S.P.  1,396,227,  8.11.21.  Appl.,  11.6.20. 
Waste  printed  paper  is  digested  at  a  temperature 
slightly  below  boiling  point  with  water  containing 
soft  soap  and  ammonia,  until  a  substantial  propor- 


Vol.  XIX,  Xo.  l.]       Cl.  VI.— BLEACHING  ;    DYEING,  &c.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c. 


11a 


tion  of  the  oily  matter  of  the  ink  rises  to  the  surface 
of  the  liquor.  After  removal  of  the  oily  scum  the 
mass  is  pulped  hot  in  a  beating  engine,  -whereupon 
a  further  quantity  of  oily  matter,  carrying  with  it 
the  ink  pigment,  separates  on  the  surface  and  may 
he  removed. — D.  J.  X. 

Battick    effects   on    paper;  Method   for   producing 
— .       Farbw.     vorm.     Meister,     Lucius,     unci 

B  riming.       G.P.    339,606,    12.10.19.       Addn.     to 

338,105  (J.,  1921,  621  a). 
Instead  of  water  and  other  solvents,  solutions  of 
discharge  reagents  such  as  sodium  hydrosulphite 
may  be  used  to  impregnate  the  fabric  which  is 
pressed  against  the  coloured  paper  on  which  the 
battick  effects  are  produced  as  described  in  the  chief 
patent.  Such  solutions  may  also  contain  dyestuffs 
and  the  paper  mav  be  coloured  or  not  coloured. 

—A.  J.  H. 

Waste  pulpliquors;  Process  of  recovering  the 
solids  of  -  — .  W.  H.  Dickerson.  U.S.P. 
1,396,028,  8.11.21.    Appl.,  8.12.19. 

Hot  waste  pulp-liquors  are  concentrated  and  cooled 
by  ''self-evaporation,"  further  quantities  of  water 
are  then  frozen  out,  and  the  concentrated  liquor 
is  dried  in  the  usual  manner. — T).  J.  N. 

Organic  acids  {from  waste  liquors  from  digestion  of 

wood,  straw,  etc.];  Preparation  of  salts  of  . 

Badisehe   Anilin-   und   Sodafabr.      G.P.    339,310, 
3.4.18. 

Waste  alkaline  liquors  from  the  digestion  of  wood, 
straw,  and  the  like,  are  subjected  to  gentle  oxida- 
tion whereby  products  are  obtained  which  are 
capable  of  dissolving  considerable  quantities  of 
ferric  hydroxide,  with  formation  of  stable  alkaline 
solutions.  Chlorine  and  air  are  suitable  oxidising 
agents  for  cell-pitch. — A.  J.  H. 

Sulphite-cellulose     waste     liquors;     Decomposition 

of .    A.'S.  Sulfitkul.    G.P.  341.857,  26.10.19. 

Conv..  12.0.19. 

Sulphite-cellulose  waste  liquor  is  led  continu- 
ously through  a  preheater  and  then  through  a  de- 
composition chamber,  from  the  upper  end  of  which 
is  withdrawn  the  sulphur  dioxide  formed  in  the 
reaction,  while  residual  stable  lignin  products  are 
removed  from  the  lower  end.  The  decomposition  is 
carried  out  in  two  stages,  the  first  being  brought 
about  by  means  of  indirect  heating  at  170°  C,  and 
the  other  by  means  of  direct  heating  at  200°  C. 
under  a  uniform  pressure  of  about  1')  atm.  The 
decomposition  is  aided  by  leading  air  or  oxygen 
through  the  decomposition  chamber.  The  plant  re- 
quires very  little  labour  and  attention,  and  the 
residual  lignin  products  may  be  worked  up  for 
lignin  or  used  as  fuel. — A.  J.  H. 

Degumming    textile   fibres:   Process   for   .     J. 

Meister.  U.S.P.  1,397,875,  22.11.21.  Appl.,  3.8.14. 

See  F.P.  470,128  of  1914;  J.,  1915.  24. 

Fireproofing  of  textile,  fabrics  and  other  porous 
articles.  T.  J.  I.  Craig,  Assr.  to  Whipp  Bros, 
and  Tod,  Ltd.  U.S.P.  1,397,853,  22.11.21. 
Appl.,  30.10.17. 

See  E.P.  110,221  of  1916;  J..  1917,  1232. 

Masses  or  solutions  [of  cellulose,  etc.~\  free  from 
air  and  other  gases;  Method  for  the  production 
of  —  B.  Borzvkowski.  E.P.  149.296, 
16.7.20.     Conv.,  13.8.17. 

See  U.S.P.  1,357,946-7  of  1920;  J.,  1921,  6  a. 


Artificial  silk;  Manufacture  of  viscose  . 

Bronnert.     E.P.  171,125,  14.5.20. 

See  U.S.P.  1,374,718  of  1921;  J.,  1921,  384  a. 


E. 


Artificial  sill;.     R.  D.  Lance,  Assr.  to  C.  Shrager. 

U.S.P.  1,398,525,  29.11.21.     Appl.,  1.4.13. 
See  F.P.   153.652  of  1912;  J.,  1913.  785. 

Artificial  threads;  1'  :  is  for  pro- 

duction     of  — .        B.      Borzvkowski.        E.P. 

1.49,2195,  L6.7.20.     Conv.,  31.8.17. 

hinder  f"i  briquettes.     G.P.  341,972.     See  II.\. 

Plastic   mosses.     E.P.    148,117.     See   XIII. 


VI.-BLEACHING ;  DYEING;   PRINTING; 
FINISHING. 

Patents. 

[Textile    piece    goods'];    Apparatus    for    treating 

articles with  liquids.     E.  YV.  Morgan.     E.P. 

171,891,  11.11.20 

See  U.S.I'.  1,365,936  of  1921;  J.,  1921,  145  a. 

Bleaching;  Method  of and  apparatus  therefor. 

C.  Taylor.  U.S.P.  1,396.792,  15.11.21.  Appl., 
20.9.20. 

See  E.P.  168,995  of  1920;  J.,  1921,  766  a. 

Bleaching,  dyeing,  finishing,  and  otherwise  treating 

fabrics ;  Apparatus  for  use  in  connexion  with . 

J.  Thornber,  Assr.  to  Bradford  Overs'  Assoc,  Ltd. 
U.S.P.   1,396,980,  15.11.21.     Appl.,  20.1.19. 

See  E.P.  122,241  of  1918;  J.,  1919,  132  a. 

Dyeing  fibres,  th  reads,  or  fabrics  [of  cellulose 
"i  etot,  j.  J.  F.  Briggs  and  C.  W.  Palmer,  Assrs. 
to  American  Cellulose  and  Chem.  Mfg.  Co. 
U.S.P.   1,398,357,    29.11.21.     Appl.,   21.9.20. 

See  E.P.  158,340  of  1919;    J.,  1921,  21.3a. 

Vegetable  fibres;  Process  fur  the  treatment  of  

[to  obtain  wool-like  effects'].  C.  Schwartz,  Assr. 
to  Gillet  et  Fils.  U.S.P.  1,398,804,  29.11.21. 
Appl.,  9.12.19. 

See  E.P.  136,568  of  1919;  J.,  1920,  513  a. 

Yarn;  Apparatus  for  treating  hanks  of  with 

a  liquid  contained  in  a  trough.  H.  Hablutzel. 
E.P.  159,134.  11.2.21.     Conv.;  12.2.20. 


VH.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitric  acid;  The  Valentiner  system  foe  tlie  manufac- 
ture of .     \Y.  Mason.     Chem.-Zeit.,  1921,  45, 

1161—1162. 

This  method,  in  which  sodium  nitrate  and  sulphuric 
acid  are  distilled  under  diminished  pressure,  has  the 
advantages  that  loss  of  nitrous  gas  is  impossible, 
and  that  any  breakage  in  the  condensation  plant 
can  be  replaced  without  stopping  work.  As  no 
acid  gas  must  reach  the  vacuum  pump,  a  large 
number  of  receivers  are  used,  the  later  ones  being 
filled  with  water.  The  best  results  are  obtained 
with  a  partial  vacuum  corresponding  to  6 — 10  in. 
of  mercury.  The  formation  of  nitrous  acid,  which 
is  especially  to  be  avoided  in  this  process,  is  un- 
connected with  the  use  of  an  iron  pot  but  is  caused 
by  over-heating;  with  careful  firing,  even  with 
sulphuric  acid  of  sp.  gr.  1'75,  the  nitrous  acid  con- 
tent may  be  as  low  as  0'2%.  An  undesirable 
acceleration  of  the  distillation  accompanied  by 
frothing  often  occurs  when  about  30%  of  the  nitric 
acid  has  distilled  over.  Frothing  at  the  end  of  the 
distillation  is  due  to  the  loss  of  water  from  the 
acid  sulphate.  A  nitric  acid  efficiency  of  97 — 99% 
is  obtained  by  this  method. — C.  I. 


12  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.  [Jan.  16, 1022. 


Pyrites;    Determination   of   sulphur    in    .      L. 

lais.     Ann.  Chim.  Analyt..  1921,  3,  330—335. 

A  critical  review  of  Lunge's  method,  and  certain 
suggested  modifications.  For  accurate  work  the 
original  method  without  alteration  is  to  be  pre- 
ferred, care  being  taken  to  adhere  strictly  to  all 
details  of  the  operations.  A  variation  of  this 
method,  in  which  the  insoluble  gangue  is  not 
filtered  off  before  the  precipitation  of  the  iron  with 
ammonia,  is  not  recommended  as  the  gangue  con- 
tains substances  such  as  the  sulphates  of  barium, 
strontium,  calcium,  and  lead  which  may  be  partially 
dissolved  by  the  ammonia  and  reprecipitated  with 
barium  sulphate  on  subsequent  acidification  and 
addition  of  barium  chloride.  A  second  variation 
of  Lunge's  method  which  obviates  the  washing  of 
the  insoluble  gangue  consists  in  making  up  the 
original  solution  to  100  c.c,  filtering  off  50  c.c, 
and  proceeding  with  this  filtrate  as  in  the  original 
method.  This  is  free  from  objection  provided  the 
insoluble  residue  is  comparatively  small.  A  rapid 
control  method,  not  suitable  for  accurate  work, 
consists  in  making  the  solution  in  aqua  regia  up  to 
1000  c.c.  with  water  and  ammonia,  digesting  for 
2  hrs.  at  a  moderate  temperature,  cooling,  re- 
adjusting to  1000  c.c,  filtering  off  500  c.c.  and  pro- 
ceeding with  this  portion  for  the  determination  of 
the  sulphate  after  concentration  to  200 — 300  c.c. 

— G.  F.  M. 

Pyrophosphoric     mid;     Structure     of    ■ .       T>. 

Balareff.     Z.  anorg.  Chem.,  1921,   118,  123—130. 
{Cf.  J.,  1917.  1175.) 

Pyrophosphoric  acid  cannot  be  synthesised  by 
heating  together  ortho-  and  meta-phosphoric  acids 
in  concentrated  sulphuric  acid.  The  salt, 
NaAg,P20;,  when  heated  changes  from  white  to 
yellow.  This  is  not  due  to  decomposition  into 
NaP03  and  Ag3P04  but  to  a  physical  change  in  the 
salt.  Potassium  and  rubidium  dihydrogen  phos- 
phates when  heated  to  244°  C.  lose  water  and 
form  'acid  pyrophosphates.  The  sodium  salt, 
NaH,PO,,H20,  is  very  slowly  converted  into  the 
acid  pyrophosphate  at  180°  C.  The  products  of 
further  dehydration  at  higher  temperatures  depend 
on  the  water  vapour  tension.  In  moist  air  at 
305°  C.  only  soluble  metaphosphate  is  formed,  but 
in  dry  air  at  330°  C.  about  75%  of  the  metaphos- 
phate formed  is  insoluble.  Phosphorus  oxybromide 
dehydrates  orthophosphoric  acid  to  pyrophosphoric 
acid  but  no  meta-acid  is  formed.  The  reaction  is 
complex  and  depends  on  the  temperature  and  pro- 
portions of  reacting  substances.  A  dilute  solution 
of  alkali  pyrophosphate  after  prolonged  boiling 
shows  traces  of  orthophosphate,  proving  that 
hydration  occurs  slowly. — E.  H.  R. 

Sodium  hydroxide;  Some  properties  of  fused  . 

T.   Wallace  and  A.   Fleck.     Trans.   Chem.   Soc, 
1921,  119,  1839—1860. 

The  water  content  of  fused  sodium  hydroxide  deter- 
mined by  fusion  for  one  hour  at  500°  C.  in  an  iron 
boat  in  vacuo  was  found  to  average  1*1%.  In  the 
absence  of  oxygen  no  solvent  action  of  fused  sodium 
hydroxide  on  iron  occurs  up  to  500°  C,  while  under 
the  same  conditions  the  iron  acts  as  a  reducing 
agent  on  the  small  quantities  of  impurities  in  the 
sodium  hydroxide.  By  fusion  in  iron,  nickel,  and 
copper  crucibles  at  temperatures  from  350°  to  600°  C. 
in  presence  of  air,  fused  sodium  hydroxide  dissolves 
small  quantities  of  these  metals  (up  to  0"8%  of 
copper).  Iron  is  less  vigorously  attacked  than 
copper  and  more  vigorously  than  nickel.  The 
amount  of  metal  dissolved  increases  somewhat  with 
temperature  and  is  always  much  less  than  the 
amount  of  metal  removed  (oxidised).  The  formation 
uf  crystalline  compounds  with  each  metal  and  their 
separation  is  described,  but  the  reaction  is  shown 
to  be  complex.     The  action  on  iron  and  nickel,  nt 


temperatures  of  500° — 700°  C,  is  much  increased 
by  the  addition  of  sodium  peroxide.  Analyses 
of  the  substances  formed  indicate  the  empirical 
formulae,  Na=Fe,,Oc  and  Na„Nis0ls  respectively.  In 
the  case  of  copper  the  reaction  is  retarded. 

—P.  V.  M. 

Ammonia;  Catalytic  action  of  copper  in  the  oxidar 

tion    of    by    means    of    persulphate.      G. 

Soagliarini   and   G.   Torelli.     Gazz.   Chim.    Ital., 
1921,  51,  II.,  277—280. 

In  the  oxidation  of  ammonia  by  either  potassium 
or  ammonium  persulphate,  the  oxygen  of  the  latter 
first  oxidises  the  ammonia  to  nitrous  acid,  which  is 
converted  by  the  excess  of  ammonia  into  ammonium 
nitrite,  this  being  decomposed  with  liberation  of 
nitrogen  by  the  heat  developed.  The  copper 
appears  to  act  as  an  oxygen-carrier.  The  inter- 
action of  ammonia  and  persulphate  may  serve  as 
the  basis  of  a  method  for  estimating  persulphate, 
the  nitrogen  evolved  being  measured.  (Cf.  J.C.S., 
Jan.)— T.  H.  P. 

Bromides   and    chlorides;    Determination   of    small 

quantities  of  in   iodides.     I.   M.    Kolthoff. 

Pharm.  Weekblad,  1921,  58,  1568—1569. 

After  removal  of  iodine  by  means  of  nitrite  in 
presence  of  sulphuric  acid,  the  boiled  nitrate  is 
titrated  by  Volhard's  method.    {Cf.  J.C.S.,  Jan.) 

— S.  I.  L. 

Badioactive   substances;   Adsorption    of   .      E. 

Ebler    and    A.    J.    van    Bhvn.      Ber.,    1921,    54, 
2896—2912. 

The  adsorption  of  radioactive  substances  by  silica 
etc.  is  regarded  as  essentially  a  chemical  process 
involving  the  formation  of  a  sparingly  soluble 
product,  the  process  being  secondarily  accelerated 
by  the  large  surface  exposed  by  colloidal  material. 
The  process  is  to  some  extent  reversed  by  mineral 
acids,  and  this  factor  combined  with  the  very  Hi- 
defined  and  non-reproducible  nature  of  silica  and  its 
gels,  explains  the  varying  results  obtained  by 
different  observers.  In  this  connexion,  the  adsorp- 
tive  power  of  animal  and  blood  charcoal  is  difficult 
to  explain,  but  comparative  experiments  with  these 
substances  and  pure  sugar  charcoal  show,  in  the 
case  of  uranium  X,  that  the  effect  is  due  to  im- 
purities and  not  to  the  carbon  itself.  The  co-pre- 
cipitation of  radium  and  barium  sulphates  from 
solutions  containing  radium  and  barium  is  complete 
only  when  the  barium  is  completelv  precipitated. 
{Cf.  J.C.S.,  Jan.,  1922.)— H.  AY. 

Antimonic  acid  and  the  use  of  sodium  antimonate  in 
analysis.  E.  S.  Tomula.  Z.  anorg.  Chem.,  1921, 
118,  81—92. 

It  is  shown  by  conductivity  and  other  physical 
measurements  on  solutions  of  potassium  and  sodium 
antimonates  that  these  are  salts  of  orthoantimonic 
acid,  having  the  composition  M'H.SbO.,.  The  solu- 
bility of  sodium  antimonate  in  water,  expressed  in 
mg.'of  Na.O,Sb,0.,6H,0  per  100  c.c.  of  solution, 
is  564  at  18°,  73'8  at"  25°,  and  101-8  at  33;5°  C. 
Figures  are  also  given  showing  the  solubility  in 
aqueous  ethyl  and  methyl  alcohols  and  in  1%,  2'5%, 
and  5%  solutions  of  sodium  acetate,  and  the  results 
are  utilised  in  determining  the  best  conditions  for 
the  quantitative  estimation  of  antimony  as  sodium 
antimonate,  which  arc  as  follows: — The  antimony 
must  be  in  alkaline  solution  as  sodium  sulphanti- 
monate  NaaSbS4,  and  the  solution  must  be  free  from 
potassium  salts  which  prevent  complete  precipita- 
tion. The  solution  is  warmed  to  80°  C.  and  stirred 
whilst  a  solution  of  30%  hydrogen  peroxide  is 
dropped  in  until  vigorous  evolution  of  oxygen  com- 
mences. It  is  then  boiled  until  effervescence  ceases 
The  solution  is  then  neutralised  with  acetic  acid 
until  it  is  acid  to  phenolphthalein  but  still  feebly 


Tol.  XIX,  Xo.  l.l     Cl.  ATI.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NOX-METALLIC  ELEMENTS. 


13  a 


alkaline  to  litmus.  It  is  stirred  for  i  hr.,  one  half 
its  volume  of  96%  alcohol  added,  and  6tirred  a 
further  10  mins.,  after  which  it  is  allowed  to  stand 
for  12  hrs.  The  crystalline  sodium  antimonate  is 
then  filtered  off  and  washed  on  the  filter,  first  with 
a  solution  containing  3  g.  of  sodium  acetate,  3  g.  of 
acetic  acid,  and  400  c.c.  of  ethyl  alcohol  per  1.,  and 
finally  with  50%  alcohol.  The  dried  precipitate  i- 
separated  from  the  filter  piper,  which  is  burnt 
separately,  ignited  for  15  mins.  in  a  porcelain 
crucible  over  a  full  Bunsen  flame,  and  weighed  as 
sodium  metantimonate,  NaSbO,.  When  tin  is 
present  with  the  antimony  the  first  precipitate  must 
be  re-dissolved  and  re-precipitated. — E.  H.  R. 

Selenious  acid  [ ;  Determination  of ]  and  hetero- 

polyselenites.     A.  Rosenheim  and  L.  Krause.     Z. 
anorg.  Chem..  1921,  118,  177—192. 

Selexiovs  acid  may  be  titrated  accurately  with 
sodium  hydroxide,  using  p-nitrophenol  as  indicator 
for  complete  conversion  to  XaflSeO,  and  thymol- 
phthalein  for  complete  neutralisation  to  Na,Se03. 
The  method  of  estimating  selenious  acid  by  heating 
with  potassium  iodide  and  hydrochloric  acid  solution 
and  distilling  over  the  iodine  into  potassium  iodide, 
afterwards  titrating  with  thiosulphate,  is  liable  to 
give  low  results  through  combination  taking  place 
between  selenium  and  iodine  with  formation  of 
selenium  iodide.  This  can  be  prevented  by  the 
addition  of  phosphoric  acid  to  the  distillation 
mixture.  For  0T  g.  of  selenious  acid,  2  g.  of 
potassium  iodide,  5  c.c.  of  syrupy  phosphoric  acid, 
■and  20  c.c.  of  hydrochloric  acid  (sp.  gr.  1T9)  are 
taken  and  the  mixture  distilled  until  no  more  iodine 
is  evolved. — E.  H.  R. 

Hydrogen    telluride;    Preparation    of    from 

metallic    tellwrides.      L.     Moser    and    K.     Ertl. 
Z.  anorg.  Chem.,  1921,  118,  269—283. 

The  tellurides  of  magnesium,  aluminium,  iron,  and 
zinc  were  prepared  by  distilling  tellurium  at  a  low7 
pressure  over  the  heated,  finely  divided  metal.  The 
purest  product  was  obtained  from  aluminium. 
MgTe  forms  a  brown  sintered  mass;  Al2Te3  is  a 
blackish-brown,  shining  amorphous  material,  de- 
composing in  moist  air  with  formation  of  tellurium 
hydride.  FeTe  is  grey  and  metallic,  whilst  ZnTe 
is  pale  brown ;  both  of  these  are  stable  in  air. 
Hydrogen  telluride  was  prepared  in  a  special 
apparatus  in  which,  in  an  atmosphere  of  nitrogen, 
the  powdered  metallic  telluride  was  dropped  in 
small  portions  into  acid.  If  the  action  is  allowed 
to  become  violent  the  hydrogen  telluride  is  de- 
stroyed as  fast  as  it  is  formed.  The  best  results, 
with  yields  of  over  80%,  were  obtained  with 
aluminium  telluride  and  hydrochloric  acid.  The  gas 
was  liquefied  at  the  temperature  of  a  mixture  of 
solid  carbon  dioxide  and  ether.  The  liquid,  but  not 
the  dry  gas,  decomposes  in  the  light.  The  gas,  how- 
ever, even  when  perfectly  dry,  is  immediately 
oxidised  by  oxygen. — E.  H.  R. 

Hydrogen  selenide  ;  Preparation  of from  metal 

selenides.     L.  Moser  and  E.  Doctor.     Z.  anorg. 
Chem.,  1921,  118,  284—292. 

The  selenides  of  aluminium,  magnesium,  iron,  and 
zinc  were  prepared  in  a  similar  manner  to  the 
tellurides  {cf.  supra).  The  aluminium  and  mag- 
nesium compounds  were  also  made  by  direct  com- 
bination of  the  metal  with  selenium  in  a  crucible, 
the  reaction  between  the  mixed  components  being 
started  with  a  burning  magnesium  wire.  Al,Se3 
was  obtained  practically  pure  by  the  latter  method ; 
the  other  products  were  all  contaminated  with 
metal.  ALSe,  and  MgSe  are  light  brown  powders, 
unstable  in  air;  ZnSe  is  lemon-yellow,  and  FeSe 
black  with  a  metallic  appearance ;  both  are  stable 
in  air.     Hydrogen  selenide  was  prepared  in  a  simi- 


lar manner  to  hydrogen  telluride,  by  dropping  a 
metallic  selenide  slowly  into  acid.  It  is  unstable  in 
moist  air,  and  can  be  liquefied  in  a  mixture  of  solid 
carbon  dioxide  and  ether.  It  is  not  sensitive  to  day- 
light, but  is  decomposed  by  ultraviolet  light.  When 
perfectly  drv  the  gas  is  not  decomposed  by  oxygen. 

— E.  H.'R. 

Carbon  sulphides.  Behaviour  of  amorphous  carbon 
nn,l  sulphur  nt  high  ti  mperatvres.  J.  P.  Wibaut. 
Proc.  K.  Akad.  Wetensch.,  1921,  24,  92—101. 

Two  coke-like  substances,  containing  respectively 
3'5%  and  1  '98  .  of  sulphur,  were  obtained  when  sugar 
charcoal  is  heated  with  sulphur  at  temperatures 
of  450°  C.  to  1000°  C.  They  are  very  like  coke  from 
coal  in  appearance,  and  the  sulphur  is  very  re- 
sistant to  oxidising  agents  and  cannot  be  expelled 
by  heating,     (flf.  J.C.S.,  Jan.)— J.  F.  S. 

•Solubility  <</  certain  salts  in  aqueous  ethyl  alcohol 
mi,!  water;  Formula  for  the  .  W.  D.  Tread- 
well.     Helv.  Chim.  Acta,  1921,  4,  982—991. 

It  is  shown  in  the  case  of  potassium  chlorate  that 
the  diminution  of  the  solubility  of  a  salt  in  pure 
water  by  the  addition  of  alcohol  may  depend  essen- 
tially on  the  diluting  effect  of  the  latter  in  such 
a  manner  that  the  solvent  action  is  exerted  solely 
by  the  water,  the  solvent  power  of  which 
diminishes  proportionally  to  its  dilution  by  the 
alcohol.  The  temperature  coefficient  in  this  case 
is  the  same  as  that  of  the  purely  aqueous  solution. 
The  solubility  of  highly  dissociated  salts  in  water 
can  in  many  cases  be  expressed  by  a  formula  of  the 
form  L  =  d.Kn,  where  K  is  10"  times  the  ionic 
product  of  water  at  the  corresponding  tempera- 
ture and  a  and  n  are  empirical  constants.  (Cf. 
J.C.S.,  Jan.,   1922.)— H.  W. 

See  also  pages  (a)  9,  Acid  calcium  bisulphite  solu- 
tion (Schwarz  and  Muller-Clemm).  18,  Electrolysis 
of  cerous  salts  (Sehiotz).  37,  Sulphate-free  sulphites 
(Shenefield  and  others). 


Patexts. 
Sulphuric  arid  solutions  derived  from  the  concentra- 
tion   of    nitric   acid    and    denitration   processes; 

Process    of    concentrating     aqueous .      H. 

Frischer.     G.P.  342,019,  25.3.20. 

Coxckxtratiox  of  the  hot  acid  is  effected  by  heat- 
ing in  apparatus  connected  with  the  nitric  acid 
concentrating  or  denitrating  plant,  whereby  con- 
siderable economy  of  fuel  is  effected. — J.  S.  G.  T. 

Alkali     chlorides;     Decomposition     of     .       J. 

Kersten.     E.P.  147,495,  8.7.20. 

Steam  is  injected  into  a  molten  mixture  containing 
suitable  proportions  of  alkali  chloride  and  a  fusible 
alkali  salt  of  an  acid,  such  as  silicic,  boric,  or 
phosphoric  acid,  unsaturated  as  regards  the 
alkali.  The  chlorides  are  rapidly  and  thoroughly 
decomposed  (to  the  extent  of  up  to  90%)  and  the 
alkali  liberated  combines  with  the  added  salt. 

— H.  R.  D. 

Sulphur  dioxide;  Manufacture  of  by  heating 

sulphates  of  alkaline  earths,  magnesium,  anil  iron. 
Verein  Chem.  Fabriken  in  Mannheim.  E.P. 
149,662,  8.7.20.    Conv.,  8.8.19. 

The  sulphate,  e.g.,  hepatite,  mixed  with  iron 
powder  or  filings  and  anthracite,  is  heated  to 
600°  C.  in  an  atmosphere  of  nitrogen,  whereupon 
the  product  is  further  heated  to  about  900°  C.  in  a 
mixture  of  steam  and  air  to  cause  evolution  of 
sulphur  dioxide  and  trioxide.  The  residue  is 
reduced  in  a  current  of  water-gas,  and  used 
again  in  the  process. — H.  R.  D. 


14a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[Jan.  16, 1922. 


Oxides  of  sulphur;  Production  of  from  sul- 
phates, especially  calcium  sulphate.  Metallbank 
u.  Metallurgische  Ges.  A.-G.  G.P.  305,152, 
30.6.16.     Addn.  to  227,175  (J.,  1910,  1306). 

In  a  process  carried  out  in  accordance  with  the 
chief  patent,  the  sulphate  is  employed  in  lumps. 

—J.  S.  G.  T. 

Potash   alum;   Process   for    making   .      T.    H. 

Wright.   U.S. P.  1,396,675,8.11.21.   Appl.,  11.5.20. 

An  alkaline  aqueous  solution  of  potassium  chloride 
is  treated  with  sodium  sulphate.  Aluminium 
sulphate  is  then  added  to  the  solution  rendered 
slightly  acid,  and  the  potash  alum  formed  removed 
from  the  mixture. — H.  E.  D. 

Sodium     sesquicarbonate ;    Preparation    of    . 

W.    Hirschkind,    Assr.   to  California  Alkali   Co. 
U.S. P.  1,396,841,  15.11.21.     Appl.,  19.3.20. 

Trona,  or  crude  sodium  sesquicarbonate,  is  dis- 
solved in  a  hot  solution  containing  sodium  carbon- 
ate and  bicarbonate,  the  former  being  in  consider- 
able excess  of  the  latter.  The  solution  is  cooled, 
and  the  sesquicarbonate  salt  separated  in  a  crystal- 
lised form.— H.  R,  D. 

Sludge  [from  treatment  of  greensand]  •  Reducing 

to    powder.       H.    W.    Charlton,    Assr.     to 

American      Potash      Corp.        U.S. P.      1,397,078, 
15.11.21.    Appl.,  26.4.20. 

The  putty-like  mass,  resulting  from  digestion  of 
greensand  and  lime,  is  mixed  with  unslaked  lime, 
thereby  forming  a  crumbly  material. — H.  R.  I). 

Hypochlorite     solutions;     Electrolytic     production 

of    - .      H.     B.     Slater.      U.S. P.     1.397.239, 

15.11.21.    Appl.,  9.11.20. 

During  the  electrolysis  of  a  solution  consisting 
essentially  of  an  alkali  chloride,  the  electrolyte 
Bows  through  the  electrolytic  cell  from  the  cathode 
towards   and   into  contact    with    the   anode. 

—J.  S.  G.  T. 

linn  rite ;  Process  for  'purifying .     E.  Everhart. 

U.S. P.  1,397,414,  15.11.21.     Appl.,  9.2.20. 

Bauxite  ore  contaminated  with  clay  is  disintegrated 
and  agitated  in  a  clay-deflocculating  liquid.  The 
suspended  clayey  matter  and  the  granular  bauxite 
are  then  removed  separately. — H.  R.  D. 

Cyanamides;    Manufacture  of  from   carbides. 

S.  A.  Blume.     G.P.  340,636,  1.9.20. 

Finely-divided  carbide  is  fed  into  a  rotating 
drum  divided  into  compartments  in  which  it 
is  successively  heated  to  the  reaction  tempera- 
ture, treated  with  nitrogen,  and  cooled  by  the 
current  of  nitrogen  fed  into  the  reaction  chamber. 
The  heat  of  reaction  is  utilised,  e.g.,  for  heating  a 
steam  boiler. — L.  A.  C. 

Hydrogen  gas;  Retort  furnace  with  external  firing 

for  the  generation  of  from  iron  and  steam. 

M.  Noding.  E.P.  171.195,  20.8.20. 
Drawn  iron  tubes,  charged  with  the  iron  through 
which  steam  is  to  be  passed,  are  arranged  horizon- 
tally within  a  casing  around  one  or  more  tar-oil 
flames.  The  tubes  are  removable  and  are  secured 
to  the  ends  of  the  casing  by  taper  joints.  They  are 
fitted  with  double  acting  valves  to  facilitate  the 
cyclic  operation  of  the  process.  Uniform  heating 
of  the  retorts  is  secured  by  leading  the  burnt  gases 
away  from  the  lowest  part  of  the  furnace. — H.  Hg. 

,<;  Production  of .   C.  S.  Bradley.   U.S.P. 

1,396,018,  8.11.21.    Appl.,  30.8.17. 
A  carbon  compound  is  treated  with  substances  which 
react  with  it  endothermically  and  exothermically  to 
set  free  carbon,  the  proportions  of  the  two  reagents 
being  so  regulated  that  the  reaction  temperature 


is  kept  within  prescribed  limits.  Oxidation  of  the 
liberated  carbon  is  prevented  by  conducting  the 
operation  in  the  presence  of  a  gaseous  carbon  com- 
pound.— D.  J.  N. 

Sulphur;  Process  for  purifying .     E.  F.  White 

U.S.P.  1,396,485,  8.11.21.     Appl.,  25.2.20. 

Finely  pulverised  sulphur  is  treated  with  an 
alkaline  solution. — H.  R.  D. 

Sulphur;  Method  of  and  apparatus  for  treating  and 

handling   .      F.    J.    Hill.      U.S.P.    1,397,099, 

15.11.21.     Appl.,  6.7.20. 

A  steam-jacketed  casing,  open  at  one  end  and 
closed  at  the  other,  surrounds  a  smaller  coaxial 
conduit  fur  molten  sulphur.  The  sulphur  is 
squirted  through  nozzles  in  the  conduit  near  the 
open  end  of  the  surrounding  casing,  and  is  granu- 
lated by  jets  of  water  supplied  from  a  drum  within 
the  casing,  and  is  finally  blown  out  of  the  casing 
by  steam  from  another  drum  within  the  casing. 
Steam  passes  first  through  a  pipe  within  the  sul- 
phur conduit,  then  to  the  jacket  of  the  casing,  and 
finally  to  the  drum  for  discharging  the  molten 
sulphur. — B.  M.  V. 

Phosphoric  acid;  Process  for   the    manufacture   of 

.       W.     N.     Hirschel.     and     Amsterdamsche 

Superfosfaatfabriek.  E.P.  165,759,  19.8.20. 
Conv.,  24.6.20. 

See  G.P.  340,361  of  1920;  J.,  1921,  811  a. 

Sulphurous    acid;    Process    and    apparatus   for    the 

manufacture     of    lii/uid    from     dilute    sul- 

phurous  acid  gas.  P.  Pascal,  Assr.  to  La  Manu- 
facture de  Prod.  Chim.  du  Nord,  Etabl. 
Kuhlmann.  U.S.P.  1,398,791,  29.11.21.  Appl., 
9.1.20. 

See  G.P.  325,473  of  1919;   J.,  1921,  81  a. 

Chromic   sulphate;    Manufacture   of   a   solution    of 
— .     F.  M.  Mooney.     E.P.  171,149,  4.8.20. 

See  U.S.P.  1,379,578  of  1921;  J.,  1921,  544  a. 

Carbides;  Process  for  making  .     J.   H.  Reid, 

Assr.  to  International  Nitrogen  Co.  LT.S.P. 
1,396,058,  8.11.21.     Appl.,  21.9.17. 

See  E.P.  133,100  of  1918;   J.,  1919,  900  a. 

Ammonia;    Process    of    producing    .      I.    W. 

Cederberg,  Assr.  to  H.  M.  Biickstibm  and  G.  A. 
Kvhlberger.  U.S.P.  1,396,557,  8.11.21.  Appl., 
23.2.18. 

See  E.P.  127,064  of  1918;    J.,  1919,  535  a. 

Mercuric   oxide;   Process   for    the    manufacture    of 

.      G.    Brusa,    Assr.    to    V.    Borelli    &    Co. 

U.S.P.  1,397,076,  15.11.21.     Appl.,  19.11.19. 

See  E.P.  150,917  of  1919;   J.,  1920,  722  a. 
Ammonia  recovery.     E.P.  147,736.     See  Ha. 
Ammonium  chloride.    U.S.P.  1,397,264.    See  Ha. 

VIII.-GLASS;    CERAMICS. 

"Refractory   materials;  Investigation   of  .     The 

after-contraction  test.  D.  A.  Jones.  Report  of 
Joint  Refractory  Materials  Committee  of  Inst. 
Gas  Engineers  and  Soc.  of  British  Gas  Indus- 
tries.    Gas  World,  1921,  75,  Coking  Sect.,  127. 

Instead  of  the  small  portion  usually  taken  in  the 
after-contraction  test,  whole  bricks  were  heated  in 
this  investigation.  The  brick  was  maintained  at 
the  maximum  temperature  (cone  14  for  firebricks, 
and  cone  12  for  silica  bricks)  for  2  hrs.,  the  time 
taken  to  reach  the  maximum  temperature  being 
4  hrs.  A  surface  combustion  chamber,  which  gave 
a    very    even    heat,    was    used    and    an    oxidising 


Vol.  XLI.,  No.  1] 


Cl.  IX.— BUILDING  MATERIALS. 


15a 


atmosphere  maintained  throughout.  Measurements 
were  taken  along  and  across  the  brick  with  cal- 
lipers before  and  alter  tiring,  but  the  results 
obtained  tor  the  after-contraction  were  as  dis- 
cordant as  those  obtained  with  small  test-pieces. 
The  chief  source  of  error  seems  to  be  the  dislocation 
of  the  surface  of  the  brick  after  firing.  It  is  sug- 
gested that  two  marks  should  be  made  on  the  brick, 
say  18  cm.  apart,  and  the  distance  measured  before 
and  after  firing  bv  a  pair  of  measuring  microscopes. 

— H.  S.  H. 

Patents. 

Porcelain    bodies;    Cement    for  joining   after 

owning.     Porzellanfabr.    Kahla.      E.P.    145,026, 
U.6.20.     Com-.,   6.10.17. 

A  cold  cement  for  porcelain  bodies  is  composed 
of  a  mixture  of  a  known  cement,  such  as  Portland 
cement,  magnesia  cement,  gypsum  or  glue  (all  of 
which  have  a  greater  coefficient  of  expansion  than 
porcelain)  and  a  substance,  such  as  quartz  glass, 
which  has  a  smaller  coefficient  of  expansion  than 
the  porcelain,  the  proportions  being  such  that  the 
mixture,  when  solidified,  has  the  same  coefficient 
of  expansion  as  the  porcelain. — A.  B.  S. 

Kilns    tur  filing   pottery   and   other    ware.     C.    F. 
Bailey.     E.P.  171,294,  21.10.20  and   12.2.21. 

Two  kilns  are  separated  by  an  arched  passage  above 
which  is  built  a  third  kiin,  the  three  kilns  being 
heated  by  the  circulation  of  gases  from  fires 
arranged  in  the  arched  passage  round  the  two 
lower  kilns,  over  the  arched  passage,  and  round  the 
upper  kiln.  The  waste  gases  are  led  to  the  chimney 
from  the  upper  kiln,  the  flow  being  regulated  by 
a  damper  so  as  to  retain  sufficient  heat  in  the 
kiln  walls  to  assist  the  next  firing.  The  gas  can 
lie  by-passed,  if  necessary,  so  as  to  increase  the 
heating  of  the  upper  kiln. — H.  S.  H. 

Glass;    Method    of    and    apparatus    for    removing 

l     from    united  .      S.   R.    Scholes,   L.    W. 

Nicols,    and    W.    P.    Kaufman.      E.P.    171,608, 
1.11.20. 

See  U.S. P.  1,370,673  of  1921;    J.,  1921,  303  a. 

Plate-glass;     Process    of    making    .      J.     H. 

McKelvey   and   C.   F.   Rvan.     U.S. P.    1,397,287, 

15.11.21.     Appl.,  12.4.15. 

See  E.P.  109,634  of  1916;   J.,  1917,  1129. 

Pottery  and  like  articles;  Means  tor  easting  . 

B.  J.  Allen.     U.S. P.  1.39S.760,  29.11.21.     Appl., 
25.8.19. 

See  E.P.  136,701  of  1919;    J.,  1920,  156  a. 


IX.— BUILDING  MATEBIALS. 

Cement  and  lime  water;  Discovery  of  an  equili- 
brium between .    R.  Lorenz  and  G.  Haeger- 

mann.     Z.  anorg.  Chem.,  1921,   118,  193—201. 

A  sample  of  German  Portland  cement  was  mixed 
with  12%  of  water,  pressed  into  cylinders,  kept  for 
a  month  under  water,  dried,  ground,  and  sifted 
into  two  fractions,  the  coarser  to  pass  a  5000-  but 
not  a  7560-mesh  (per  sq.  cm.)  sieve,  the  finer  to 
pass  the  latter.  The  decomposition  of  this  material 
was  studied  (in  absence  of  carbon  dioxide)  by 
stirring  it  with  distilled  water  and  determining  at 
intervals  the  lime  content  of  the  water.  At  first 
the  lime  content  of  the  water  rose  rapidly  with 
time,  during  which  period  it  is  supposed  that 
hydrolysis  of  monocalcium  silicate  and  of  tricalcium 
aluminate  takes  place,  and  silica  and  alumina  are 
precipitated  as  gels.  Later  a  period  commences 
during  which  the  lime  content  of  the  water  remains 
constant;  during  this  period  the  rate  at  which  lime 
is  taken  up  by  the  water  from  the  cement  is  equal 


to  the  rate  of  absorption  of  lime  from  solution  by 
the  gel.  Later,  however,  the  lime  content  of  the 
water  again  starts  to  increase  and  eventually  comes 
to  a  final  maximum  value  which  is,  however,  much 
less  than  the  solubility  of  lime  in  water.  The  maxi- 
mum is  shown  to  depend  on  the  quantity  of  cement 
taken  for  a  given  volume  of  water.  By  repeatedly 
changing  the  water  it  is  possible  eventually  to 
decompose  the  whole  of  the  cement.  When  this  has 
been  accomplished  it  is  found  that  there  is  a  con- 
stant ratio  (partition  coefficient)  between  the  quan- 
tity of  lime  in  the  solid  phase  and  that  in  solution, 
after  stirring  has  been  continued  long  enough  to 
arrive  at  equilibrium.  The  value  of  this  ratio  is 
about  6'9  to  7'0.  The  existence  of  a  definite  parti- 
tion coefficient  of  the  lime  between  the  water  and 
the  gel  shows  that  there  is  no  definite  compound 
formed  between  lime  and  gel,  as  is  generally 
assumed.  Exactly  similar  results  were  obtained 
with  both  coarser  and  finer-ground  cement. 

— E.  H.  R, 
Patents. 
Wood  and  other  material;  Means  for  drying  . 

E.  Vanlaetham.     E.P.  155,753,  21.12.20.     Conv., 

15.12.16. 

Waste  gases  from  furnaces,  chimneys,  or  the  like, 
are  passed  through  a  separator  to  remove  soot  etc., 
then  mixed  with  air  or  steam,  and  passed,  by  means 
of  a  fan,  over  or  through  the  wood  or  other 
material  to  be  dried. — A.  B.  S. 

Wood;  Process  of  treating  .     A.  H.  Twombly, 

A.  P.  Lundin,  and  R.  A.  Marr,  Assrs.  to 
American  Balsa  Co.,  Inc.  U.S. P.  1,396,899, 
15.11.21.     Appl.,  10.1.17. 

Wood  maintained  between  100°  and  212°  F.  (38° — 
100°  0.)  is  humidified  by  exposing  it  to  steam,  and 
is  then  immersed  in  a  bath  of  waterproofing  sub- 
stance, heated  to  212°  F.  (100°  C.)  or  above. 

—A.  B.  S. 

Basalt;  Method  for  the  continuous  melting  of . 

Soc.    "  Le    Basalte."      E.P.    158,227,    24.11.20 
Com.,  23.1.20. 

Basalt  is  melted  continuously  by  feeding  it  into  a 
vertical  shaft  situated  at  oiie  end  of  a  re- 
verberatory  furnace,  the  flames  and  hot  gases 
from  the  latter  rising  through  the  shaft,  and  so 
heating  the  basalt.  On  reaching  the  base  of  the 
shaft  the  basalt  melts  and  flows  along  the  hearth 
of  the  reverberatory  furnace  and  into  containers 
at  tho  side,  wherein  it  is  freed  from  bubbles. 

—A.  B.  S. 

Bituminous  macadam  for  paving  roads  and  the 
like  surfaces;  Method  of  and  apparatus  for  pre- 
paring   a    .      Strassenbau     A.-G.      Luzern 

E.P.  162,654,  21.4.21.     Conv.,  29.4.20. 

A  mixture  of  coarse  and  fine  constructional 
material  is  heated  and  separated  into  its  coarse 
and  fine  components,  the  coarse  material  being 
then  treated  with  bituminous  liquid  by  itself  and 
subsequently  stirred  and  remixed  with  the  fine 
material  and  the  whole  discharged  from  the 
apparatus  as  bituminous  macadam.  A  suitable 
apparatus  for  this  purpose  is  described. 

— H.  S.  H. 

Moulded  articles;  Manufacture  of  an  aggregate  or 
material  atilisable  for  making  and  the  pro- 
ducts    obtained    therefrom.       W.     J.     Mellersh- 
Jackson.     From  American  Aggregate  Co.     E  P 
171,144,  30.7.20. 

An  aggregate  for  use  in  the  manufacture  of 
moulded  articles  is  made  by  burning  a  raw 
argillaceous  material  for  a  relatively  short  time 
(about  2  hrs.)  at  such  a  temperature  that  it  is  con- 
verted into  hard,  rough  particles  and  clinkers 
which,  although  not  porous,  are  of  cellular  forma- 


16a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       [Jan.  16, 1922. 


tion.  The  nnv  material  is  subjected  to  the  highest 
temperature  employed  at  the  beginning  of  the 
burning,  which  is  completed  at  a  lower  tempera- 
ture. After  cooling  the  material  is  crushed  and,  if 
necessary,  treated  with  water  to  slake  any  con- 
tained lime.  The  aggregate  is  then  mixed  with  a 
cementitious  material  and  water,  and  the  whole 
moulded  into  the  desired  shape.  (Reference  is 
directed,  in  pursuance  of  Sect.  8,  Sub-sect.  2,  of  the- 
Patents  and  Designs  Acts,  1907  and  1919,  to  E.P. 
153.030;  J.,  1920,  821  A.)— H.  S.  H. 

Heat  insulation;  Composition  for .     H.  Smith, 

J.  Tullock,  and  L.  W.  Low.  E.P.  171,550,  9.9.20. 
A  heat-lxsulating  composition  for  steam-pipes, 
boilers,  and  the  like  and  for  refrigerating  cham- 
bers is  made  by  mixing  100  pts.  of  slag  wool, 
fibrous  asbestos,  fossil  earth,  or  felt,  10 — 15  pts.  of 
an  aqueous  solution  of  casein  in  100  pts.  of  water, 
10 — 15  pts.  of  tung  oil,  coal  tar,  pitch,  or  asphaltum 
and  3  pts.  of  borax  or  soda,  by  means  of  air  or  jets 
of  steam,  the  mixture  being  expelled  under  pres- 
sure into  a  porous  or  perforated  mould  or  applied 
111  a  plastic  state  to  the  article  to  be  insulated. 

—A.  B.  S. 

1     1:  1  nt   raw   materials;    Manufacture,   of   moulded 

pieces  or  agglomerates  of  crude .   G.  Polvsius. 

G.P.  (a)  340,449,  18.4.19,  and  (b)  340,450.  17.6.19. 
(a)  Quick-setting  cement  is  used  as  binding  agent. 
The  moulded  pieces  are  quickly  produced  and  are 
especially  suitable  for  use  in  the  production  of 
cement  in  shaft  kilns,  (b)  Low-temperature  tar  is 
used  as  binding  agent.  The  shaped  pieces  or 
agglomerates  may  be  either  smeared  with  tar  or 
dipped  therein.  Alternatively,  the  tar  may  be 
mixed  with  the  crude  mass. — J.  S.  G.  T. 

Wood  impregnating   tanks  or  retorts;  Evacuation 

of .    J.  H.  Dunstan  and  R.  A.  Davis.     E.P. 

171,928,  31.1.21. 

See  U.S. P.  1,374,069  of  1921;  J.,  1921,  349  a. 

Cements,  concretes,  and  mortars;  Composition  for 

inul  production  of  waterproof .  H.  C.  Badder, 

Assr.  to  S.  F.  Burrows  and  H.  L.  P.  Allender. 
U.S. P.  1,396,546,  8.11.21.     Appl.,  9.7.19. 

See  E.P.  141,113  of  1919;  J.,  1920,  409  a. 

X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Cast  iron;  Improvement  of by  the  addition  of 

new  elements.  W.  Guertler.  Giesserei,  1921,  8, 
134—135.     Chem.  Zentr.,  1921,  92,  IV.,  1213. 

After  eliminating  those  elements  that  are  obviously 
unsuitable,  for  different  reasons,  as  additions  to 
cast  iron,  the  remainder  may  be  divided  into  two 
classes,  tin,  arsenic,  antimony,  phosphorus,  sulphur, 
etc.,  and  manganese,  chromium,  molybdenum, 
tungsten,  vanadium,  tantalum,  zirconium,  tita- 
nium, silicon,  aluminium,  boron,  and  nickel. 
Elements  of  the  first  class  do  not  appreciably  alter 
the  properties  of  the  iron  but  lower  the  melting 
point  and  render  the  fluid  metal  less  viscous.  The 
second  class  consists  of  elements  that  form  mixed 
crystals  with  iron,  decompose  cementite,  precipitate 
the  carbon  in  the  metal  as  graphite,  and  render 
the  metal  grey.  They  also  probably  improve  the 
metal  by  making  the  graphite  more  finely  divided 
and  by  removing  impurities  without  increasing 
the  brittleness.  Their  action,  however,  depends 
largely  on  the  surrounding  conditions. — A.  R.  P. 

Iron:     Bluc-brittleness     of     -.       F.     Korber. 

Festschr.  Kaiser  Wilhelm-Ges.,  13S— 145.    Chem. 

Zentr..   1921,   92,  IV.,   1212. 
At  a  blue-heat  iron  has  a  high  tensile  strength  and 
great  resistance  to  deformation,  without  any  special 
brittleness,   the  minimum   value  of  which   lies  be- 


tween 450°  and  500°  C.  Iron  that  has  been  sub- 
jected to  a  definite  treatment  at  blue  heat 
shows,  however,  a  dangerous  brittleness  at  or- 
dinary temperatures.  Experiments  showed  that 
test-pieces  that  were  stretched  to  a  definite  ten- 
sion at  high  temperatures  gave  the  same  results 
for  elongation  and  breaking  strain  as  those  given 
by  test-pieces  stretched  to  the  same  true  tension 
at  ordinary  temperatures.  The  true  tension  is 
found  by  dividing  the  load  by  the  smallest 
cross-section  obtained  by  use  of  that  load.  These 
figures  were  determined  for  a  number  of  test-pieces 
together  with  the  increase  in  length  and  reduc- 
tion in  area  for  each  load,  and  it  was  concluded  that 
the  brittleness  of  test-pieces  that  had  been  stretched 
at  a  blue-heat  was  due  to  the  production  of  a 
higher  tension  in  the  metal  than  that  produced  by 
the  same  degree  of  stretching  at  ordinarv  tempera- 
tures.—A.  R.  P. 

Iron    and     steel;     Gases     in    .      E.     Maurer. 

Festschr.  Kaiser  Wilhelm-Ges.,  146—153.    Chem. 
Zentr.,    1921,   92,   IV.,   1213—1214. 

The  gas  content  of  deoxidised  Thomas  mild  steel 
was  determined  by  the  extraction  method  and  by 
two  chemical  methods — solution  of  the  sample  in 
acid  cupric  ammonium  chloride  solution  and  in 
neutral  mercuric  chloride  solution.  The  extraction 
method  gave  more  carbon  monoxide  than  dioxide, 
while  the  chemical  methods  gave  the  reverse,  the 
results  for  carbon  monoxide  being  higher  for  the 
mercuric  chloride  method  than  for  the  copper  salt 
method,  due,  possibly,  to  absorption  of  the  gas  by 
the  cuprous  salt  formed  in  the  process.  The  origin 
of  the  carbon  dioxide  evolved  at  the  beginning  of 
the  solution  process  is  difficult  to  explain,  but  the 
amount  evolved  increases  with  the  carbon  content 
of  the  steel  and  falls  to  nil  in  poor  carbon  steels; 
hence  it  may  be  concluded  that  worked  and  homo- 
geneous iron  contains  no  carbon  dioxide.  The 
gases  obtained  by  the  extraction  method  are  practi- 
cally completely  derived  from  the  action  of  the 
carbide  carbon  on  the  oxides  contained  in  the 
steel.— A.  R.  P. 

Steels;  Solubility  limits  of  carbon  in  ternary  . 

7.  The  system  chromium-iron-carbon.    K.  Daeves. 

Z.  anorg.  Chem.,  1921,  118,  55—66. 
A  series  of  chromium  steels  were  prepared  with 
constant  carbon  content,  varying  the  chromium 
content  until,  within  the  limits  of  1 — 2%  Cr,  a 
steel  was  obtained  showing  no  eutectic.  This 
process  was  repeated  with  different  proportions  of 
carbon  until  a  complete  curve  could  be  drawn  in 
the  triangular  diagram  separating  eutectic  from 
non-eutectic  steels.  The  solubility  of  carbon  in 
iron  is  rapidly  reduced  by  increasing  amounts  of 
chromium,  the  form  of  the  curve  being  hyperbolic. 
'I  lie  rapidly-cooled  alloys  were  so  hard  that  it  was 
necessary,  to  make  possible  the  preparation  of 
sections,  to  heat  for  several  hours  to  about  S00°  C. 
This  treatment  broke  up  the  solid  solutions  and 
caused  the  metal  to  become  soft  and  workable. 
Etching  was  accomplished  by  electrolysis  in  ammo- 
nium persulphate  solution.  When  alloys  showing 
broad  eutectic  bands,  for  example,  one  containing 
2%  C  and  5%  Cr,  were  etched  with  hot  sodium 
picrate,  the  cementite  was  unattached  and  after 
long  treatment  colour  only  appeared  along  the 
edges  of  the  cementite  and  on  the  small  enclosed 
mixed  crystals.  Alkaline  potassium  ferricyanide 
attacked  the  hard  constituent  of  the  eutectic,  giv- 
ing a  brown  to  yellow  coloration  whilst  leaving  the 
mixed  crystals  untouched.  Alloys  containing  12  to 
20%  Cr  and  03  to  0'5%  C  can  be  heated  for  many 
hours  to  about  800°  C.  in  an  oxidising  atmosphere 
without  undergoing  any  change  and  are  highly 
resistant  to  acids.  Such  alloys  could  be  used  for 
furnace  parts  and  for  similar  objects  subject  to 
exposure    to    high    temperatures.      The    solubility 


Vol.  xll,  No.  ij   Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


17a 


curve  explains  many  known  properties  of  chromium 
steels.  Those  containing  eutectic,  if  they  are  not 
well  forged,  are  likely  to  be  brittle.  The  melting 
point  of  steel  and  the  arrest  points  are  not  much 
affected  by  chromium  up  to  10%. — E.  H.  R. 

Steels;  Solubility  limits  of  carbon  in  ternary  . 

II.  The  system  tungsten-iron-carbon.  K.  Daeves. 
Z.  anorg.  Chem.,  1921,  118,  67—74. 

The  effect  of  tungsten  on  the  solubility  of  carbon  in 
iron  was  studied  in  the  same  way  as  that  of 
chromium  (cf.  supra),  and  a  similar  limiting  curve 
was  obtained,  separating  eutectic  from  non-eutectic 
steels  in  the  ternary  diagram.  The  sudden  changes 
in  the  physical  properties  of  tungsten  steels  as  the 
composition  is  varied,  observed  by  other  workers, 
occur  when  this  limiting  solubility  line  is  crossed. 
The  so-called  double  carbides  of  iron  and  chromium 
and  of  iron  and  tungsten  which  appear  when  the 
composition  passes  certain  limits  in  unworked 
metals  correspond  with  the  eutectics  which  appear 
when  the  solubility  limit  is  passed.  The  melting 
points  are  given  of  a  number  of  tungsten  steels, 
containing  up  to  14'7%  W  with  varying  amounts 
of  carbon  up  to  2%,  and  it  is  shown  that  small 
amounts  of  tungsten  raise  the  melting  point,  which 
subsequently  falls  as  the  proportion  of  tungsten 
increases. — E.  H.  R. 

Aluminium;  Production  of  single   crystals  of  

and  the.ir  tensile  properties.  H.  C.  H.  Carpenter 
and  C.  F.  Elam.  Proc.  Roy.  Soc.,  1921,  A 100, 
329—353. 

Strips  of  aluminium  (4"  xl"  xO'12.5")  can  be  con- 
verted into  single  crystals  by  heating  to  550°  C.  for 
6  hrs.,  subjecting  to  a  stress  of  0'30  ton,  and  then 
heating  at  450°  C.  for  a  day,  raising  the  tem- 
perature 15° — 20°  C.  per  day  up  to  550°,  and  then 
heating  at  600°  C.  for  1  hr.  Strips  consisting  of 
150  crystals  per  linear  inch  have  a  tensile  strength 
of  4'5 — 4"7  tons  per  sq.  in.  and  are  elongated 
36 — 38%  on  3  ins.;  those  consisting  of  a  single 
crystal  have  a  tensile  strength  208 — 4'80  tons  per 
sq.  in.  and  elongation  34 — 80%,  strips  of  two 
crystals  have  a  tensile  strength  2'8 — 3'5  tons  per 
sq.  in.  and  elongation  29 — -70%,  and  those  of  three 
crystals  have  a  tensile  strength  2'9 — 36  tons  per 
in.  and  elongation  36 — 55%. — J.  F.  S. 

Aluminium-zinc  alloys;  Thermal  expansion  of  - . 

A.  Schulze.  Phvsik.  Zeits.,  1921,  22,  403—406. 
Chem.  Zentr.,  1921,  92,  III.,  1345. 

The  coefficients  of  expansion  of  aluminium,  zinc, 
and  aluminium-zinc  alloys  containing  12'5,  25,  37"5, 
50,  625,  75,  and  S7'5  ,  Al  have  been  determined  at 
ordinary  temperatures,  at  100°  C,  200°  C,  and  at 
still  higher  temperatures.  Zinc  has  the  extra- 
ordinarily high  coefficient  of  364  x  10"  be- 
tween 20°  and  100°  C.  The  thermal  expansion 
of  zinc  between  20°  and  300°  C,  and  of  the  alloys 
containing  87'5  and  75%  Al  between  20°  and 
400°  C,  may  be  expressed  by  quadratic  interpola- 
tion formulae.  With  the  other  alloys  the  curve  is 
more  complex  due  to  the  formation  of  Al2Zn,.  The 
alloy  containing  62"5%  Al  gives  between  250°  and 
280°  C.  lower  values  on  heating  than  on  cooling, 
probablv  due  to  some  chemical  transformation. 

—A.  R.  P. 

nium  alloys;   Thermal  treatment   of  certain 

complex .    L.  Guillet.     Comptes  rend.,  1921, 

173,  979—982. 

The  hardness  of  various  aluminium-copper, 
aluminium-silicon,  aluminium-silicon-copper,  and 
aluminium-silicon-magnesium  alloys,  and  of 
quaternary  alloys  containing  all  four  constituents, 
was  measured  after  different  conditions  of  temper- 
ing, and  from  these  results  and  micrographic 
examination   of   the   alloys,    it   is   shown    that   the 


simultaneous  presence  of  silicon,  magnesium,  and 
copper  is  essential  to  obtain  the  interesting  results 
given  by  tempering  aluminium  alloys  of  high 
strength  such  as  duralumin.    (Cf.  J.,  1919.  776  a.) 

— W.  G. 

Nickel;  Concentrated  hydrochloric  acid  as  metallo- 

graphic  etching  reagent  for .    H.  S.  Rawdon 

and  M.  G.  Lorentz.  Chem.  and  Met.  Eng.,  1921, 
25,  955—956. 

Etching  nickel  or  alloys  high  in  nickel  with  cold 
concentrated  hydrochloric  acid  for  1  hr.  develops  a 
contrast  etch  pattern  without  resulting  in  pitting 
such  as  is  produced  by  etching  with  oxidising 
agents,  e.g.,  a  solution  of  nitric  acid  in  acetic  acid 
or  a  mixture  of  sulphuric  acid  and  hydrogen  per- 
oxide. Alloys  rich  in  copper  do  not  give  satisfactory 
results  with  the  reagent,  but  with  bronze,  and 
especially  aluminium-bronze,  the  results  are  as 
satisfactory  as  those  obtained  with  the  usual  etching 
agents. — A.  R.  P. 

Metals;  Phenomena  of  diffusion  of  solid  and 

cementation  of  non-ferrous  metals.  I.  Cementa- 
tion of  copper  by  means  of  ferromanganese.  G. 
Sirovich  and  A.  Cartoceti.  Gazz.  Chim.  Ital., 
1921,  51,  II.,  245—261. 

A  copper  bar,  16  mm.  diam.,  was  fixed  centrally  in 
a  porcelain  tube  glazed  internally  and  the  sur- 
rounding space  filled  with  ferromanganese  contain- 
ing 76"8%  Mn  and  4'7  C  and  mixed  with  5%  of 
wood  charcoal ;  these  materials  were  previously 
ground  to  remain  on  a  sieve  of  324  meshes  but  to 
pass  through  one  of  64  meshes  per  sq.  cm.  The 
tube  was  closed  by  rubber  stoppers  luted  with 
sodium  silicate,  a  thermo-couple  and  a  glass  tube 
bent  to  dip  into  mercury  being  passed  through  one 
of  the  stoppers.  The  tube  was  then  heated  for  some 
hours  at  900°  C.  in  a  Heraeus  furnace.  The  colour 
of  the  copper  bar  was  thus  changed  to  pale  pink, 
and  successive  layers  O'l  mm.  deep  were  found  to 
comtain  respectively  7-89,  709,  4'83,  300,  173, 
066,  0-24,  and  0093%  Mn.  Mixed  crystals  of 
copper  and  manganese  were  revealed  mierographi- 
cally.  Similar  results  were  obtained  when  the  air 
was  displaced  from  the  tube  by  means  of  nitrogen, 
but  with  carbon  monoxide  the  proportions  of  man- 
ganese in  the  outer  layers  of  the  copper  bar  were 
smaller  than  in  the  other  cases,  possibly  owing  to 
a  secondary  phenomenon  caused  by  the  gas.  In 
each  instance  the  proportions  of  iron  penetrating 
the  copper  were  small. — T.  H.  P. 

Copper,  lead,  antimony,   and  tin;  Separation  and 

estimation   of  .      Analysis  of  white   metals. 

A.  Kling  and  A.  Lassieur.  Comptes  rend.,  1921, 
173,  1081—1082. 

From  0'5  to  10  g.  of  the  alloy  is  dissolved  in  10  c.c. 
of  hydrochloric  acid  in  the  presence  of  potassium 
chlorate,  and  after  dilution  to  100  c.c.  the  liquid 
is  just  neutralised  with  sodium  hydroxide,  any  pre- 
cipitate formed  being  re-dissolved  by  the  addition 
of  4—5  g.  of  tartaric  acid.  The  liquid  is  transferred 
to  a  wax-lined  conical  flask  and  10  c.c.  of  concen- 
trated hydrofluoric  acid  and,  after  %  hr.,  10  g.  of 
sodium  acetate  and  1  c.c.  of  glacial  acetic  acid  are 
added  and  the  whole  diluted  to  300  c.c.  A  white 
precipitate  of  lead  fluoride  is  formed  but  is  not 
removed;  20  c.c.  of  a  10%  solution  of  sodium  sul- 
phide is  added,  and  after  a  time  the  precipitate 
of  the  sulphides  of  lead,  copper,  and  antimony  is 
filtered  off.  In  the  filtrate  the  tin  may  be  estimated 
either  by  precipitation  with  cupferron  (cf.  J.,  1921, 
470  a),  or  electrolytically  as  follows.  To  the  nitrate 
10—15  g.  of  boric  acid  is  added  and  the  whole  is 
boiled,  hydrogen  peroxide  being  added  when  most 
of  the  hydrogen  sulphide  has  been  boiled  off.  The 
liquid  is  cooled,  10  c.c.  of  hydrochloric  acid  and 
10  g.  of  ammonium  oxalate  are  added,  and  the  tin 


18a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Jan.  16, 1922. 


deposited  by  electrolysis  using  a  current  of  4 — 5 
amp.  for  20  mins.  The  precipitate  of  the  mixed 
sulphides  is  extracted  three  times  with  80  c.c.  of 
sodium  sulphide  solution  (sp.  gr.  1"14),  and  the 
antimony  deposited  electrolytically  from  the  extract 
after  the  addition  of  potassium  cyanide.  The 
copper  and  lead  sulphides  are  dissolved  in  nitric 
acid,  and  after  dilution  the  solution  is  electrolysed 
and  the  deposits  of  copper  and  lead  peroxide  on 
the  cathode  and  anode  respectively  are  weighed. 

— W.  G. 


Metals;    Theory  of  the  behaviour  of  during 

t  nl,l  ihairinn.  E.  Heyn.  Festschr.  Kaiser 
Wilhelm-G-es.,  121—131.  "Chem.  Zentr.,  1921,  92, 
IV.,  1213. 
The  "flowing"  of  most  metals  on  cold-drawing 
is  not  proportional  to  the  load,  but  the  resistance 
■of  the  metal  increases  with  the  amount  of  deforma- 
tion it  has  undergone  as,  in  the  process,  groups  of 
the  smallest  metallic  particles  are  sliding  over  one 
another.  The  mechanism  of  the  process  may  be 
visualised  by  imagining  the  metal  to  consist  of  two 
different  constituents— one  completely  plastic,  and 
the  other  capable  of  elastic  deformation.  To  explain 
the  displacement  of  the  elastic  limit  in  pre-loaded 
test-pieces  it  must  be  assumed  that  these  retain  a 
certain  amount  of  elastic  strain  and  tension  which 
by  some  kind  of  friction  keep  the  mass  in  equili- 
brium ;  these  forces  may  be  called  the  latent  tension 
of  the  rod.  Other  phenomena  may  be  explained 
by  the  assumption  that  on  removal  of  the  load  an 
abrasive  action  sets  in,  and  also  by  the  fact  that 
the  specific  gravity  of  metals  decreases  after  cold- 
working. — A.  R.  P. 


Hardening  of  metals;  Theory  of .     K.  Honda. 

Chem.   and  Met.  Eng.,  1921,  25,  1001—1003. 

The  view  of  Jeffries  and  Archer  (J.,  1921,  515  a) 
that  the  hardness  of  a  metal  is  due  to  the  distri- 
bution of  hard  particles  in  the  mass,  which  hinder 
the  internal  6lip  in  the  metal  under  stress,  is  not 
considered  probable.  Hardness  may  be  due  either 
to  molecular  force  or  to  the  crystalline  structure 
of  metals.  The  molecular  force  exerted  between 
two  atoms  is  a  differential  of  forces  of  attraction 
and  repulsion,  and  a  substance  may  be  said  to  be 
hard  if  a  variation  in  the  relative  configuration  of 
the  atoms  sets  up  large  forces  between  atoms.  A 
pure  metal  or  a  solid  solution  being  homogeneous, 
its  hardness  depends  solely  on  molecular  force.  In 
a  metal  having  a  crystalline  structure,  hardness 
increases  with  the  fineness  and  strained  state  of 
structure,  and  for  equal  values  in  these  properties 
the  greater  the  molecular  force  developed  by  a 
given  displacement  in  the  atomic  configuration  the 
greater  is  the  hardness  figure.  In  practice,  cold- 
working  or  over-straining  results  in  fine  crystals 
in  a  highly  stretched  state,  while  annealing  relieves 
the  strain  and  favours  grain  growth.  That  mar- 
tensite  has  a  definite  structure  is  indicated  by  the 
determination  of  the  heat  of  transformation  from 
martensite  to  pearlite,  and  it  is  probable  that  the 
intermediate  phase  of  martensite  occurs  always 
during  the  Al  transformation,  which  would  there- 
fore be  indicated  by  austenite  ^Lmartensite  7i 
pearlite.  An  essential  similarity  exists  between  the 
quenching  of  steel  and  of  duralumin,  the  hard- 
ness of  the  latter  being  due  to  the  separation  of 
CuAl,  and  Mg„Si.  Alloys  of  aluminium  and  copper 
(up  to  6%  Cu)  show  an  immediate  hardening  by 
quenching,  and  the  increase  in  hardness  by  age  is 
only  observed  when  magnesium  is  added.  Ageing 
after  quenching  is  not  due  to  metallic  magnesium, 
but  is  attributed  to  the  separation  of  Mg,Si  (the 
silicon  present  as  impurity)  from  the  solid  solution 
of  CuAl.,  in  aluminium. — C.  A.   K. 


Recrystallisation  [of  metals']  produced  by annealing . 
P.  Gaubert.  Oomptes  rend.,  1921,  173,  1089 
—1092. 

From  a  study  of  the  behaviour  of  vanillin,  which 
readily  sublimes  at  temperatures  just  below  its 
melting-point,  it  is  shown  that  recrystallisation 
may  occur  owing  to  the  inequality  of  vapour 
pressure  of  large  and  small  crystals,  but  that  this 
method  of  recrystallisation  cannot  occur  in  indus- 
trial metals.  From  the  behaviour  of  substances 
like  paraffin  wax  or  cetin,  which  give  malleable 
crystals  in  the  neighbourhood  of  their  melting- 
point,  it  is  shown  that  recrystallisation  is,  as  a 
rule,  only  possible  if  the  crystals  are  sufficiently 
malleable  for  certain  mechanical  actions  to  modify 
their  crystalline  system.  There  is  then  produced,  as 
it  were,  a  slow,  polymorphic  transformation  with, 
however,  this  difference  that  in  metals  hardened 
by  cold-working  some  intact  crystals  may  remain 
and  act  as  nuclei  to  start  the  recrystallisation. 

— W.  G. 

Alloys;  Chemical  and  electrical  behaviour  of  some 

series   of  .      W.    Jenge.      Z.    anorg.    Chem., 

1921,  118,  105—122. 
Experiments  on  a  number  of  series  of  alloys,  in- 
cluding the  Co-Si,  Ni-Si,  Mn-Si,  Cd-Sb,  Zn-Sb, 
Bi-Tl,  Pb-Tl,  Mg-Cu,  Mg-Pb,  Mg-Cd,  and  Mg-Zn 
series,  generally  confirmed  the  theory  of  Tammann 
that  crystallised  binary  compounds  such  as  are 
present  in  many  alloys  should  show  electrical  and 
chemical  properties  agreeing  very  closely  with 
those  of  one  or  other  constituent  element.  Thus  of 
the  cobalt-silicon  compounds,  when  these  were  used 
as  anodes  in  an  electric  system,  only  those  having 
less  silicon  than  corresponds  with  the  formula  CoSi 
were  attacked  by  halogen,  sulphate,  or  nitrate  ions. 
There  was  a  similar  demarcation  as  regards 
susceptibility  to  dilute  hydrochloric  acid  in  the 
cold,  CoSi3,  CoSi2,  and  CoSi  being  resistant,  whilst 
Co3Si,  and  Co3Si  were  attacked.  All  were  resistant 
to  dilute  sodium  hydroxide  solution  except  CoSi.,. 
(Of.  J.C.S.,  Jan.)— E.  H.  R. 

Cerous  salts;  Electrolysis  of  aqueous  solutions  of 

.     [Deposition  of  a  cerium-iron  alloy.'}    A.  B. 

Schiotz.     Z.  Elektrochem.,  1921,  27,  521—523. 

Electrolysis  of  solutions  containing  30  g.  of  lactic 
acid  which  has  been  neutralised  by  sodium  or  potas- 
sium hydroxide,  and  5 — 10  g.  of  sodium  chloride 
in  400  c.c.  of  a  solution  containing  4'5  g.  of  ferrous 
chloride  and  3'5 — 7'5  g.  of  cerous  chloride,  between 
a  platinum  spiral  anode  and  a  platinum  gauze 
coated  with  lead  dioxide,  yields  an  alloy  of  cerium 
and  iron  which  contains  about  62%  Ce.  The  alloy 
is  black  and  in  the  form  of  a  powder.  If  ferrous 
chloride  is  replaced  by  the  chloride  of  mercury, 
nickel,  platinum,  zinc,  or  aluminium,  a  deposit  is 
obtained  which  contains  no  cerium. — J.  F.  S. 

Lead  tree;  Disglomeration  and  formation  of   the 

autogenous   .      A.    Thiel.      Ber.,    1921,    54, 

2755—2758. 

Tin  disglomerates  (disintegrates  to  individual 
crystallites)  when  preserved  under  stannous 
chloride  solution  in  a  loosely-stoppered  bottle  for 
some  time.  Large,  uniform  crystals  of  lead  become 
strongly  corroded  when  preserved  beneath  Heller'e 
solution  for  some  weeks ;  a  considerable  quantity  of 
lead  powder  is  formed  but  there  is  no  evidence  of 
disglomeration.  The  large  crystallites  readily 
exhibit  the  formation  of  the  lead  tree  when  pre- 
served beneath  a  solution  of  lead  nitrate  acidified 
with  nitric  acid.  The  phenomenon  is  observed  only 
after  the  formation  of  a  whitish  skin  on  the  surface 
of  the  metal.  Beneath  this  skin,  the  solution  soon 
contains  lead  nitrite  almost  exclusively  and  is  there- 
fore poor  in  lead  ions,  whereas  the  external  solution 
still   contains  lead  nitrate  and  has  a  considerably 


vol.  XIX,  No.  l.J    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


19  a 


higher  lead  ion  concentration.  The  possibility  of  a 
short-circuited  concentration  cell  is  thus  provided 
whereby  the  phenomenon  is  explained.- — H.  W. 

Sulphur  in  pyrites.    Gadais.    See  VII. 

Patents. 

Wt ought-iron;  Process  of  making  .     J.  Aston, 

Assr.    to    A.    M.    Byers    Co.      U.S.P.    1,370,507, 
8.3.21.    Appl.,  4.2.20. 

By  using  the  granulated  product  of  a  steel-making 
process,  practically  free  from  slag,  as  raw  material, 
mixing  it  with  a  puddling  slag,  and  welding  to  form 
a  ball  or  bloom  of  large  size  (1  ton  or  more),  a  good 
product  can  be  obtained  without  the  usual  pre- 
liminary rolling  into  bars,  re-piling,  re-heating, 
and  re-rolling.  The  large  ball  is  squeezed  hot,  and 
rolled  directly  into  slabs  or  billets. 

Cast  iron;  Composition  for  the  treatment  of  . 

H.    L.    Coles,    Assr.    to    Niles-Bement-Pond   Co. 
U.S.P.  1,397,-104,  15.11.21.    Appl.,  10.7.20. 

Metal  for  casting  is  treated  with  a  mixture  of  a 
titanium  alloy,  a  manganese  alloy,  and  "  a 
softening  agent." — C.  A.  K. 

Steel    and    iron;    Production    of   in    Martin 

furnaces  from  material  rich  in  phosphorus  and 
sulphur.    F.  Woltron.    G.P.  341,460,  16.6.16. 

A  charge  of  coal  is  first  placed  in  the  furnace  and 
on  this  is  charged  the  usual  mixture  of  limestone, 
coal,  pig-iron,  and  lime,  the  quantity  of  pig-iron 
being  so  arranged,  according  to  its  carbon,  silicon, 
and  manganese  content,  that,  during  the  melting 
operation,  all  the  sulphur  in  the  charge  is  removed 
either  by  the  silicon  content  of  the  slag  preventing 
the  loss  of  carbon  from  the  metal  and  neutralising 
the  6lag,  thus  assisting  the  latter  to  take  up  more 
sulphur,  or  by  oxidation  and  subsequent  removal  in 
the  first  slag  skimmings.  The  melting  is  continued 
with  the  formation  of  a  clean  basic  slag  containing 
the  phosphorus,  and  after  this  has  been  skimmed  off 
the  metal  is  re-carburised  to  the  desired  extent 
either  by  sinking  carbonaceous  material  in  the  form 
of  loaded  wooden  boxes  into  the  bath  or  by  conduct- 
ing through  it,  from  tuyeres,  at  a  pressure  of 
2  atm.,  carbonaceous  gases  such  as  a  mixture  of 
carbon  dioxide  and  producer  or  illuminating  gas. 

—A.  R.  P. 

Steel,  especially  alloy  steel;  Process  for  hardening 

.     Deutsch-Luxemburgische  Bergwerks-  und 

Hiitten-A.-G.,  and  E.  H.  Schulz.     G.P.  341,659, 
25.3.20. 

The  steel  is  maintained  at  a  temperature  well  above 
the  Acl  point  until  the  formation  of  the  solid 
solution  is  complete,  when  it  is  allowed  to  cool 
slowly  to  a  temperature  just  above  this  point  and 
then  quenched.  By  this  procedure,  formation  of 
i- racks  is  avoided  and  the  resulting  metal  is 
toughened  as  well  as  hardened. — A.  R.  P. 

Shaped  pieces  of  ferrosilicon,  and  process  for  manu- 
facturing the  same.  Maschinenfabr.  Esslingen. 
G.P.  315,323,  20.11.17. 

A  mixture  of  ferrosilicon  in  the  form  of  dust  and 
small  pieces,  cement  (preferably  quick-setting),  and 
water,  or  a  salt  solution,  is  worked  up  in  a  similar 
manner  to  that  employed  in  making  moulded  articles 
from  concrete. — L.  A.  C. 

Wasting  of]  alloys  of  silicon  with  metals  of  the  iron 
and  chromium  groups.  R.  Walter.  E.P.  156,561, 
4.5.20.  Conv.,  7.1.20. 
The  decomposition  of  hardening  carbides,  e.g., 
silicon-cementite,  occurring  in  acid-resisting  alloys 
of  silicon  and  metals  of  the  iron  and  chromium 
group,  is  assisted  materially  by  delaying  the  cast- 
ing until  the  temperature  is  only  slightly  above 
the  melting-point  of  the  alloy.     Fine-grained,  soft, 


and  workable  castings  are  obtained  in  this  way  from 
alloys  rich  in  silicon  and  containing  more  than 
0-65 %C— C.  A.  K. 

Ferrous    metals;  Process  for  improving  .     A. 

Pacz.  U.S.P.  1,396,276,  8.11.21.  Appl.,  16.4.20. 
An  alloy  of  aluminium  and  silicon,  containing 
10 — 40%  Si,  is  disintegrated,  and  added  to  a  bath 
of  molten  iron. — C.  A.  K. 

Iron  articles:  Production  of  rust-resisting  coatings 

of  aluminium    on   .      Metallhiitte   Baer   und 

Co.,  Kommanditges.,  Abt.  der  Metallindustrie 
Schiele  und  Bruchsaler.  G.P.  341,289,  20.4.19. 
Addn.  to  313,185   (J.,  1919,  916  a). 

Thin  aluminium  foil  is  used  in  place  of  the 
aluminium  bronze  paint  specified  in  the  chief 
patent,  and  in  the  second  stage  of  the  heating 
process  the  temperature  is  allowed  to  rise  to  about 
800°  C— A.  R.  P. 

Steel  sheets;  Coating  xcith  tin.     S.  Peacock, 

Assr.  to  Wheeling  Steel  and  Iron  Co.  U.S.P. 
1,396,051,  8.11.21.  Appl.,  9.11.20. 
Steel  sheets  are  immersed  in  a  solution  of  stannous 
chloride  mixed  with  an  alum  having  an  alkaline 
reaction  to  reduce  the  ionisation  of  the  stannous 
chloride.  Steam  pressure  at  more  than  30  lb.  per 
sq.   in.   is  then  applied. — C.  A.  K. 

[Tinning.]  Process  ami  apparatus  for  coating 
articles  by  electro-plating  and  heat  treatment. 
A.  Marek.  E.P.  143,250,  13.5.20.   Conv.,  10.10.17. 

The  articles  to  be  coated  are  electro-plated  with 
tin  in  the  usual  manner,  and  the  plated  articles 
are  then  coated  with  a  flux  that  reacts  with  the 
metal  coating  and  reduces  its  surface  tension  when 
in  a  fused  state,  so  that,  on  subsequently  heating 
the  articles  to  a  temperature  above  the  melting- 
point  of  the  coating,  and  then  cooling  them  by 
immersion  in  a  bath  of  acidulated  water,  the  result- 
ing metal  coating  has  a  non-porous,  highly  polished 
surface  which  is  highly  resistant  to  atmospheric 
oxidation.  The  flux  is  atomised  with  compressed 
air  and  applied  to  the  articles  and  is  uniformly 
spread  over  them  by  means  of  wiping  device*);  it 
consists  of  a  solution  of  a  mixture  of  metallic  salts 
and  of  readily  dissociated  substances  and  is  pre- 
ferably of  the  following  composition: — 10 — 30%  of 
strong  hydrochloric  acid,  10—40%  of  a  30—70% 
ferric  chloride  solution,  20 — 40%  of  concentrated 
ammonium  chloride  solution,  and  20 — 40%  of  a 
5 — 20%  copper  sulphate  solution. — A.  R.  P. 

[Magnesium,;']  Electrolytic  apparatus  [for  the  pro- 

duction  of  light  metals,  especially  ].     G.  O. 

Seward.  E.P.  171,502,  23.8.20. 
An  electrolytic  apparatus  for  the  production  of 
light  metals,  e.g.,  magnesium,  by  electrolysis  of 
their  fused  halides,  consists  of  a  metallic  vessel  on 
the  bottom  of  which  is  maintained  a  layer  of  solid 
electrolyte  by  air  cooling,  and  a  cathode,  enlarged 
below  the  vessel  to  support  its  weight  and  resting  on 
a  bus-bar  to  which  the  circuit  connexions  are  made. 
The  cathode  projects  through  the  bottom  layer 
of  solid  salt  in  the  container,  and  its  upper 
end  is  surrounded  by  a  hollow  shell  filled  with 
insulating  material  to  collect  the  metal  that 
rises  to  the  surface  of  the  bath.  The  outside  of 
the  shell  is  cooled  so  as  to  obtain  a  layer  of  solid 
salt  between  it  and  the  surrounding  anodes.  The 
latter  are  individually  adjustable  and  are  arranged 
round  the  cathode  but  not  in  vertical  alinement 
with  it.— A.  R.  P. 

Separating  metals  by  electrolysis.  N.  V.  Hybinette. 
P.S.P.,   1,395,827,  1.11.21.     Appl.,  16.2.20. 

The  cathode  of  the  electrolytic  vessel  is  separated 
from  the  anode  by  a  filtering  diaphragm,  and  elec- 
trolyte  containing  free  sulphuric  acid  in  excess  of 

b2 


20  a 


Cl.  XI.— ELECTRO-CHEMISTRY. 


[Jan.  16, 1922. 


that  tolerated  at  the  cathode  enters  the  cathode 
compartment  and  flows  therefrom  to  the  anode. 

—J.  S.  G.  T. 

Tin;  Electrolytic  refining  of .     F.  C.  Mathers, 

Assr.  to  American  Smelting  and  Refining  Co. 
U.S. P.  1,397,222,  15.11.21.  Appl.,  11.10.18. 
Renewed  9.12.20. 

The  electrolyte  consists  of  a  solution  of  hydrofluoric 
and  cresylic  acids  containing  less  than  6%  by 
weight  of  tin,  and  impure  tin  is  used  as  the  anode 
with  any  suitable  cathode. — A.  R.  P. 

Brass  and  similar  scrap;  Method  of  and  means  for 

melting  .     W.  R.  Clark,  Assr.  to  Bridgeport 

Brass  Co.    U.S.P.  1,370,090,  1.3.21.    Appl.,  2.8.18. 

Loose  chips  and  cuttings  of  brass  etc.  are  com- 
pacted into  briquettes  or  "cabbages,"  and  placed 
on  a  conveyor  by  which  they  are  led  through  a 
muffle,  in  which  they  are  preheated,  and  then  dis- 
charged into  an  induction  electric  melting  furnace. 

[Lead]  ore  [blast]  furnace  and  the  venting  thereof. 
J.  Labarthe.  U.S.P.  1,370,215,  1.3.21.  Appl., 
22.9.19. 

On  opposite  sides  of  the  walls  of  the  upper  part  of 
the  furnace  are  lateral  flues  into  which  pass  the 
fume  from  the  furnace  through  connecting  passages. 
Means  are  provided  for  venting  the  flues,  the  floors 
of  which  slope  downwards  towards  other  passages  in 
the  walls  of  the  furnace,  through  which  any  dust 
etc.  deposited  in  the  flues  is  returned  to  the 
furnace. 


.      H.    Forcellon, 
U.S.P.  1,396,032, 


Sparking  alloy;  Protecting  — 
Assr.  to  Alpha  Products  Co 
8.11.21.     Appl.,  27.3.19. 

Dense  non-metallic  protective  coatings  are  pro- 
duced on  sparking  alloys,  without  impairing  their 
sparking  properties,  by  treatment  with  a  mineral 
oil  and  subsequent  application  of  heat. — D.  J.  N. 

Electric  furnace  [for  alloying  metals'].  W.  Lohrey, 
Assr.  to  Magna  Metal  Corp.  U.S.P.  1,396,374, 
8.11.21.     Appl.,  21.5.21. 

An  electric  furnace  comprises  independently  con- 
trolled heating  chambers  in  which  are  disposed  a 
mixing  crucible  and  alloy  metal  crucibles,  and  con- 
nexions whereby  metal  may  flow  to  the  former 
crucible  from  the  latter. — J.  S.  G.  T. 

Vanadium;   Process  for  recovering  .     A.    H. 

Carpenter,  Assr.  to  The  Colorado  Vanadium  Corp. 
U.S.P.  1,396,992,  15.11.21.     Appl.,  29.11.19. 

A  mixture  of  a  vanadium  compound,  sodium 
chloride,  a  relatively  stable  salt  of  an  alkali 
metal,  and  a  material  containing  sulphur,  is 
roasted  to  convert  the  vanadium  into  a  soluble 
compound. — C.  A.  K. 

Metals;  Method,  of  preparing  finely  divided  . 

A.   McGall.     U.S.P.   1,397,008,    15.11.21.   Appl., 

16.9.18.     Renewed  2.2.21. 
Easily  oxidisable  metals  may  be  prepared  in  a  finely 
divided  state  by  depositing  them  electrolytically  in 
sponge    form,    using    a    resistant    ("  immunised  ") 
anode. — C.  A.  K. 

Roasting    ores;    Process    for    .      F.    Siemens. 

G.P.  340,377,  6.3.20.    Addn.  to  336,283  (J.,  1921, 

582  a). 
Instead  of  magnesium  sulphate,  any  ore  that  can 
be  roasted  to  yield  sulphur  dioxide  may  be  roasted 
by  the  process  specified  in  the  principal  patent. 
With  ores  rich  in  sulphur  the  heat  of  the  reaction 
is  sufficient  to  maintain  both  the  roasting  operation 
and  the  ensuing  chlorination  as  well  as  to  preheat 
a  fresh  charge  of  ore. — A.  R.  P. 


Ores,  especially  iron  ores,  and  the  like;  Process  for 
the  treatment  of by  sintering  after  moisten- 
ing with  water.  Metalibank  und  Metallurgische 
Ges.,  A.-G.     G.P.  340,583,  30.12.13. 

The  ore  and  fuel  are  placed  in  a  mixing  apparatus 
and  treated  with  steam,  whereby  a  loose,  granular 
mass  is  obtained  which,  on  sintering  by  means  of 
a  blast,  allows  intimate  permeation  of  the  mass 
by  the  air,  so  that  the  process  is  more  rapid  and 
much  easier  than  without  the  steam  treatment. 

—A.  R.  P. 

Ores;   Process   of   treating    metallic   .     J.    W. 

Moffat.     E.P.  143,525,  17.5.20.    Conv.,  30.4.18. 

See  U.S.P.  1,294,514  of  1919;    J.,  1919,  328  a. 


[for  melting  zinc 
U.S.P.    1,396,677, 


Furnace;  Electric  rotating  — 
poicder].  C.  E.  Cornelius. 
8.11.21.     Appl.,  27.3.20. 

See  E.P.  170,026  of  1920;   J.,  1921,  854  a. 

Zinc-lead  ores;  Process  of  treating  complex  . 

S.  Ganelin.     U.S.P.  1,396,740,  15.11.21.     Appl., 

6.5.19. 
See  E.P.  135,968  of  1918;    J.,  1920,  117  a. 

Furnaces  [for  heat  treatment  of  metal  bars, 
forgings,  and  machine  parts  by  the  salt-bath 
process].  H.  Fuller,  R.  A.  Bedford,  and  C. 
Roberts.   E.P.  171,284,  8.10.20.   Addn.  to  141,403. 

Cupolas  or  melting  or  heating  furnaces  or  the  like. 
W.  H.  and  D.  H.  Wood.    E.P.  171,491,  19.8.20. 


XI.-ELECTH0-CHEMISTDY. 

Biochemical  and  electrochemical  oxidation  of 
organic  compounds.  F.  Fichter.  Z.  Elektro- 
chem.,  1921,  27,  487—494. 

The  similarities  between  certain  biochemical  oxida- 
tion processes  and  certain  electrochemical  processes 
are  indicated.  It  is  stated  that  the  oxygen 
liberated  at  platinum  anodes  is  not  a  mild  oxidising 
agent,  as  is  so  often  assumed,  but  the  strongest 
known,  acting  similarly  to  the  activated  oxygen  in 
living  cells. — J.  F.  S. 

Azobenzene;    Electrochemical    oxidation    of    . 

F.   Fichter   and  W.   Jaeck.     Helv.   Chim.   Acta, 

1921,  4,  1000—1009. 
The  conversion  of  azobenzene  into  tetrahydroxy- 
azobenzene  (Heilpern,  Z.  Elektrochem.,  1897,  4,  89) 
is  frequently  quoted  as  an  example  of  the  intro- 
duction of  hydroxyl  groups  into  the  benzene  nucleus 
by  anodic  oxidation.  Repetition  of  this  oxidation 
shows  that  the  product  resembles  that  obtained  by 
Heilpern,  and  is  formed  by  the  hydroxylation  of 
azobenzene,  although  it  is  not  tetrahydroxyazo- 
benzene,  but  a  complex  mixture.  Two  of  the 
reaction  products  have  now  been  isolated  from  this 
mixture  by  taking  advantage  of  the  different  solu- 
bilities of  their  acetyl-derivatives  in  benzene.  These 
products  are  pp'-dihydroxyazobenzene  and  bis- 
phenyl-pp'-disazophenol.    (C/.  J.C.S.,  Jan.) 

— F.  M.  R. 

Utilisation  of  sidphite-cellulose  waste  lyes  in  pre- 
pming  electrodes  for  accumulators.  Konig. 
See  V. 

Electrolysis  of  cerous  salts.    Schiotz.    See  X. 

Electrolytic  determination  of  antimony.  Angenot. 
See  XXIII. 

Patents. 
Electric  furnaces  for  obtaining  high  temperatures. 
Automatic  Telephone  Mfg.  Co.,  Ltd.,  and  P.  N. 
Roseby.    E.P.  171,207,  21.8.20. 

The  heating  element  of  an  electrie  furnace  for  the 


Vol.  XII.,  No.  l.] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


21a 


attainment  of  temperatures  of  1300°  C.  and  up- 
wards is  conslructed  of  iron  and  is  contained  within 
an  enclosure  through  which  a  continuous  supply  of 
hydrogen  under  pressure  is  maintained.  When  the 
furnace  is  heated  by  direct  current,  the  hydrogen 
is  generated  by  the  electrolysis  of  acidulated  water, 
the  electrodes  of  the  electrolytic  cell  being  connected 
in  series  with  the  heating  element. — J.  S.  G.  T. 

Elctrolytes  for  use  in  electrolytic  cells  [e.g.,  light- 
ning    arresters,     condensers,     rectifiers,     etc.]. 
M   bropolitan-Vickers  Electrical  Co.,  Ltd.,  Assees. 
of  J.  Slepian  and  E.  J.  ELaverstick.    E.P.  155,579, 
2.12.20.    Conv.,  9.12.19. 
An   aqueous  solution  of   an   electrolyte  capable  of 
readily  producing  asymmetric  films  on  film-forming 
metals  (e.g.,  aluminium)  is  mixed  with  a  substance 
incapable  of  producing  films  on  such  metals  when 
subjected  to  the  passage  of   alternating  currents. 
For  example,  the  electrolyte  may  consist  of  boric 
acid  30  g.,  ammonium  borate  5  g.,  sodium  hydroxido 
2—10  g.,  and  sodium  fluoride  O'o — 3  g.   in  1   1.  of 
water. 

Electric  furnaces;   [Tilting  and  other  mechanical 

arrangements  for]  three-phase  .     D.  Mauri. 

E.P.  171,494,  19.8.20. 

See  also  pages  (a)  1,  Preventing  corrosion  (E.P. 
154,610);  Electrical  separation  of  dust  (G.P.  307,071 
and  309,132);  Electrical  precipitation  (G.P. 
339,728).  14,  Hypochlorite  solutions  (U.S.P. 
1.397,239).  30,  Treating  foods  etc.  (E.P.  171,157). 
31,  Purifying  water  (U.S.P.  1,392,524). 

XII.    FATS;  OILS;  WAXES. 

Linseed  and  soya  bean  oils;  Effect  of  variation  in 
the  analytical  constants  of on  the  determina- 
tion of  linseed  oil  in  mixtures  of  the  two  oils  by 
ins  nf  the  iodine  and  hexabromide  numbers  of 
the  fatty  acids.     E.  A.  Tschudy.     J.   Ind.  Eng. 
Chem.,  1921,  13,  941—943. 
Owing  to  the  variation  in  the  analytical  constants, 
the  error  in  the  determination  of  linseed  oil  in  soya 
bean  oil  by  the  hexabromide  method  varies   from 
+  7  to  -3%  of  the  amount  of  the  oil  present,  when 
the  oils  present  have  the  widest  range  of  constants 
and  the  average  values  are  taken  for  the  calcula- 
tion ;  the  error  of  the  method  itself  increases  these 
figures  to   +13  and   -9%    respectively.     Similarly, 
when  the  linseed  oil  is  calculated  from  the  iodine 
value  of  the  mixture,  the  error  may  vary  from  +17 
xo  -18%  of  the  quantity  of  linseed  oil  present. 

— W.  P.  S. 

drape-seed  oil.     F.  Rabak.     J.  Ind.  Eng.  Chem., 

1921,  13,  919—921. 
Refined  grape-seed  oil  has  a  light  yellow  colour  and 
a  sweet,  nut-like  taste;  its  characters  are: — Sp.  gr. 
at  25°  C,  0-9204;  i^,"  =1-4720;  solidif.  pt.,  -22°  to 
-24°  C. ;  acid  value,  074;  saponif.  value,  1922; 
iodine  value,  135'8.  The  approximate  composition 
of  the  oil  is: — linolin,  53'59;  olein,  35'87;  palmitin, 
5'23;  stearin,  2'26;  unsaponifiable  matter,  1'61%. 

— W.  P.  S. 

Fats;  Some  less  common .     J.  Wolff.  Z.  Deuts. 

Oel-  und  Fettind.,  1921,  41,  449,  468—469.   Chem. 

Zentr.,  1921,  92,  IV.  1185. 
Mafuiia  fat,  from  the  seeds  of  Mafureira  oleifera 
(Trichilia  emetica,  Vahl),  is  a  soft  yellow  or 
brownish  fat  with  a  pleasant  nutty  odour.  It  has 
the  following  characters  :  — fatty  acids,  92'1 — 94'6%  ; 
unsaponifiable  matter,  IT — 1"5%,  acid  value,  31'0 — 
32-2;  saponif.  value,  202—207;  iodine  value  (Wijs), 
45-1—46,  (Hubl-Waller)  496—52;  Reichert- 
Meissl  value,  30— 34 ;  Polenske  value,  2'7;  titer, 
42'5° — 43'5°  C.  It  is  easily  deodorised  by  steam  dis- 
tillation.   Mixtures  of  the  fat  with  coconut  oil  give  \ 


good  soaps.  TJcuhuba  fat  is  obtained  from  the  seeds 
of  Myristiea  bieuhyba  s.  officinalis,  Schott.  The 
dark  colour  of  the  fat  is  due  to  a  colouring  matter 
contained  in  the  shell,  which  is  also  responsible  for 
the  characteristic  blood-red  coloration  with  sulphurio 
acid.  The  characters  of  the  fat  were  :  — fatty  acids, 
92'2%  ;  unsaponifiable  matter,  2"5%  ;  ash  (free  from 
iron),  003%;  acid  value,  307,  29'7 ;  saponif.  value, 
2240;  iodine  value  (Wijs),  127,  15'2;  liquid  fatty 
acids,  21*5%,  17'2%,  with  an  iodine  value  of  69'3 
and  70'1.  The  fat  cannot  be  used  for  soap  unless  a 
means  of  completely  removing  the  shells  before 
pressing  the  kernels  can  be  devised.  Shea  fat  is  ob- 
tained from  the  kernels  of  Butyrospermum  Parkii, 
syn.  Bassia  Parkii  and  is  a  whitish,  fairly  hard  fat 
with  a  pleasant  resin-like  odour.  Fatty  acids.  91'4-^- 
92'3%;  unsaponifiable  matter,  3'2% — 5'3%;  acid 
value,  726;  acetyl  value  of  unsaponifiable  matter, 
79T — 114.  It  gives  the  Storch-Morawski  reaction. 
The  fatty  acids  (freed  from  unsaponifiable  matter) 
melt  at  65°— 70°  C,  saponif.  value,  190T— 208-6; 
iodine  value  (Wijs),  53—64-2.  The  fat  is  suitable 
for  the  soap  industry. — H.  C.  R. 

Fatty  acids ;  Manufacture  of .  H.  Voss.  Chem.- 

Zeit.,  1921,  45,  1136—1140. 

The  manufacture  of  fatty  acids  (stearine)  on  a 
technical  scale  comprises  the  following  opera- 
tions:— Hydrolysis  of  the  cleaned,  and  if  necessary 
filtered,  neutral  fats  by  heating  for  8  hrs.  in  an 
autoclave  with  water  to  about  12  atm.  pressure  in 
presence  of  2"5 — 3%  of  their  weight  of  calcium, 
magnesium,  or  zinc  oxides.  Separation  of  the 
glycerin  liquors  and  decomposition  of  the  calcium 
soap  with  sulphuric  acid.  Drying  the  fatty  acid  by 
blowing  hot  air  through  it.  Treatment  of  the  dry 
acid  with  sulphuric  acid  monohydrate  whereby  a 
portion  of  the  oleic  acid  is  converted  into  the  sul- 
phuric ester  of  hydroxystearic  acid,  and  decompo- 
sition of  the  latter  into  hydroxystearic  acid  by  boil- 
ing with  water;  these  two  processes  are  technically 
known  as  "  acidification."  Distillation  of  the  dried 
fatty  acids  at  240°— 280°  C.  with  superheated 
steam  ;  this  results  incidentally  in  the  decomposition 
of  the  hydroxystearic  acid  with  loss  of  water  and 
formation  of  iso-oleic  acid,  m.p.  44°  C.  Purification 
of  the  distilled  acids  from  oleic  acid  by  crystallisa- 
tion and  hydraulic  pressing;  in  general  from 
1000  kg.  of  fat  350  kg.  of  oleic  acid  is  obtained  if 
the  "acidification"  process  is  employed,  otherwise 
about  540  kg.,  the  remainder  being  solid  fatty  acid 
(stearine).  The  glycerin  liquors  are  worked  up  for 
glycerol  and  the  calcium  sulphate  residues  subjected 
to  extraction  with  ligroin  or  trichloroethylene  to 
remove  the  adhering  fat. — G.  F.  M. 

Fatty    acids;    Separation    of    saturated    from   un- 
saturated     .     A.    Grtin    and    J.    Janko.      Z. 

Deuts.  Oel-  u.  Fettind.,  1921,  41,  553—555, 
572—574.  Chem.  Zentr.,  1921,  92,  IV.,  1239— 
1240. 
The  method  depends  on  the  wide  difference  in  boil- 
ing point  of  the  mixed  esters  of  the  saturated  fatty 
acids  and  of  the  bromine  addition  products  of  the 
esters  of  the  unsaturated  acids.  The  esters  are  pre- 
pared in  the  usual  way  with  1 — 2%  alcoholic  sul- 
phuric or  hydrochloric  acid.  The  bromination  is 
carried  out  by  saturating  the  chloroform  or  carbon 
tetrachloride  solution  with  bromine.  The  product  is 
freed  from  the  solvent  and  washed  with  sodium  bi- 
carbonate solution.  The  distillation  is  best  carried 
out  at  2 — 4  mm.  pressure.  The  ethyl  esters  of  the 
saturated  fatty  acids  distil  over  up  to  175°  C,  the 
decomposition  of  the  brominated  esters  not  begin- 
ning until  190°  C.  The  bromine  is  removed  from 
the  residual  brominated  esters  by  boiling  for  several 
hours  with  alcoholic  hydrochloric  acid  (2iV — 32V) 
and  granulated  zinc,  which  must  be  pure  and  have 
a  large  surface.  The  same  weight  of  zinc  should  be 
used  as  that  of  the  brominated  esters.     The  alcohol, 


22  a 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[Jan.  16, 1922. 


hydrochloric  acid,  and  salts  are  removed  by  pouring 
into  water,  and  the  esters  extracted  with  ether 
which  is  distilled  off.  The  method  gave  very  exact 
results  on  known  mixtures.  If  more  than  90%  of 
unsaturated  acids  are  present  (as  shown  by  the 
iodine  value)  an  equal  weight  of  ethyl  stearate  is 
added  to  the  mixed  esters  before  distillation  and  the 
addition  allowed  for  in  the  calculation. — H.  C.  R. 

Turkey-red  oils;  Valuation  and  examination  of  ■ . 

W.    Herbig.      Z.    Deuts.   Oel-  u.   Fettind.,   1921, 
41,  633—635.    Chem.  Zentr.,  1921,  92,  IV.,  1240. 

The  two  methods  of  analysis  laid  down  by  the  "  As- 
sociation of  German  Turkey-red-oil  Manufacturers  " 
(J.,  1921,  551a)  are  strongly  criticised.  The  first 
method  is  not  worth  consideration  as  an  analytical 
method,  while  the  second  contains  many  sources  of 
inaccuracy  and  does  not  give  constant  results. 

— H.  C.  R, 

Emulsions;  Studies  in  .  III.  Further  investi- 
gation on  the  reversal  of  type  by  electrolytes. 
S.  S.  Bhatnagar.  Trans.  Chem.  Soc,  1921,  119, 
1760—1769. 
Oil  emulsions  prepared  by  soluble  emulsifiers,  such 
as  soap,  or  by  insoluble  ones,  such  as  zinc  hydroxide, 
can  be  made  to  undergo  a  reversal  of  type  by  suit- 
able electrolytes.  An  emulsion  of  water-in-oil  can  be 
transformed  into  one  of  oil-in-water  by  electrolytes 
having  reactive  anions  as  OH'  and  P04'".  An  emul- 
sion of  oil  in  water  can  be  transformed  into  one  of 
the  reverse  type  by  electrolvtes  having  reactive 
cations  as  H',  Al'",  Fe'",  and  Th"".  Multivalent 
ions  alone  can  cause  a  reversal  of  type  of  soap  emul- 
sions. Evidence  favours  the  view  that  the  main 
factors  determining  the  reversal  of  phase  are  the 
nature  of  the  charge  on  the  emulsifying  agent  and 
its  interfacial  tension  relations  with  the  two  phases 
determined  by  the  nature  of  the  adsorption  by  the 
colloidal  surface  fibres  which  envelope  the  globules. 
Hence  all  emulsifying  agents  having  an  excess  of 
adsorbed  cations  and  wetted  by  water  yield  oil-in- 
water  emulsions,  while  those  having  an  excess  of 
adsorbed  anions  and  wetted  by  oil  give  water-in-oil 
emulsions.  The  empirical  rule  suggested  by  Clowes 
(J.,  1916,  745)  that  the  antagonistic  effects  of  elec- 
trolytes are  attributable  to  a  balance  between  the 
cations  on  the  one  hand  and  the  anions  on  the  other, 
adsorbed  by  or  reacting  with  the  constituents  of  the 
surface  film  or  membrane,  is  obeyed  by  all  emulsions 
of  either  type.— P.  V.  M. 

Cod  liver  oil  derivatives.     Berghausen   and  Stein- 
koenig.    See  XX. 

Synthesis  of  glycerol.    Pictet  and  Barbier.    See  XX. 

Catalytic  actions  at  solid  surfaces.     Armstrong  and 
Hilditch.    See  XX. 

Patents. 

Fat-dissolving   substances;  Process  for  production 

of    .      H.    T.    Bohme   A.-G.      E.P.    155,595, 

20.12.20.     Conv.,  19.12.19. 

From  1  to  5%  of  fatty  acids  is  dissolved  in  the 
hydrocarbons  or  hydrocarbon  derivatives  designed 
to  be  used  for  dissolving  the  fat  and  a  mixture  of 
approximately  equal  volumes  of  strong  alkali  solu- 
tion and  alcohol  is  added  until  a  liquid  is  produced 
which  gives  a  uniform  emulsion  when  mixed  with 
water  in  any  proportion. — H.  C.  R. 

Lubricating  compound.  W.  Crawford.  E.P.  170,705, 

12.8.20. 
A  mixture  of,  e.g.,  300  lb.  of  beef  tallow  and  20  lb. 
of  beeswax  is  heated  to  150°  F.  (about  67°  C), 
strained,  and  saponified  by  agitation  for  about 
10  mins.  with  48  lb.  of  potassium  hydroxide  solution 
of  15°  B.  (sp.  gr.  1-116)  and  50  lb.  of  water.  The 
product  is  stirred  every  J  hr.  while  cooling,   and, 


when  nearly  cold,  colouring  matter  and  a  material 
to  improve  the  odour,  e.g.,  oil  of  mirbane,  may  be 
added.— L.  A.  C. 

Fatty  acids  of  high  purity  and  melting  point;  Pro- 
cess   for    producing    .      J.     Starrels.      E.P. 

155,782,  23.12.20.    Conv.,  1.3.16. 

See  U.S.P.  1,209,512  of  1916;  J.,  1917,  224. 

Decolorising  oils.    TJ.S.P.  1,397,113.    See  Ha. 

Fatty  acids  etc.    G.P.  339,562.    See  XX. 

Derivatives  of  fatty  acids  of  marine  animal  oils. 
G.P.  341,271.    See  XX. 


XIIL— PAINTS;  PIGMENTS;  VABNISHES; 
RESINS. 

Colours;    Standardisation    of    .       H.    Trillion. 

Farben-Zeit.,  1921,  27,  672—674. 

The  systems  of  colour  classification  due  to  Ostwald, 
Hering,  and  others  are  briefly  discussed,  and  the 
author  proposes  a  decimal  system  of  specification 
wherein  red,  yellow,  light-blue,  and  violet  are 
chosen  as  primaries.  The  system  can  be  diagram- 
matically  represented  as  a  colour  star  in  which  the 
primary  colours  are  disposed  at  angular  distances 
of  90°  on  the  circumference  of  a  circle.  The  advan- 
tages of  the  system  and  its  application  to  the  speci- 
fication of  mixed  colours  are  briefly  discussed. 

—J.  S.  G.  T. 

Patents. 
Titanium  pigments;   Process   for   producing   com- 
posite   .    H.  H.  Buckman.    U.S.P.  1,396,924, 

15.11.21.    Appl.,  8.10.20. 

A  titaniferous  material  is  heated  with  carbon,  sul- 
phur, and  a  solid  inorganic  compound  of  the  metal 
required  to  accompany  the  titanium ;  the  resulting 
sulphide  melt  is  treated  with  an  acid  solvent;  the 
titanium  and  accompanying  metal  are  then  precipi- 
tated and  the  precipitate  subsequently  roasted. 

— D.  F.  T. 

Plastic  masses;  Production  of .     H.  Feldmann. 

E.P.  148,117,  9.7.20.    Conv.,  14.5.18. 

A  solution  of  celluloid  in  amyl  acetate  or  ethyl 
lactate  to  which  benzol  or  spirit,  and  a  filler  such 
as  whiting,  clay,  or  gypsum  have  been  added,  is 
applicable  as  a  filling  or  coating  material  for 
irregular  surfaces  preparatory  to  painting  or 
lacquering.  Such  a  preparation  has  an  advantage 
over  the  customary  putty  or  white  lead  in  effecting 
an  economy  in  the  use  of  linseed  oil  and  in  being 
applicable  directly  to  the  full  required  thickness. 

— D.  F.  T. 

Paints  and  the  like;  Vehicle  for and  process  of 

making  the  same.  H.  A.  Gardner.  U.S.P. 
1,370,106,  1.3.21.  Appl.,  12.8.19. 
A  non-resinous  drying  oil  is  prepared  by  polymer- 
isation of  turpentine  oil  or  pine  oil  with  5 — 7'5%  by 
weight  of  92%  sulphuric  acid,  preferably  at  about 
80°  C,  the  product  being  washed  with  water  with 
addition  of  sodium  carbonate  >f  necessary. 

Resinous  bodies;  Production  of  from  phenols 

and  oxygen.     F.  Fischer.     E.P.  149,979,  10.8.20. 
Conv.,  24.5.19. 

A  phenol,  e.g.  carbolic  acid  or  o-cresol,  is  caused  to 
react  with  oxygen  or  gases  containing  oxygen  at 
pressures  higher  than  atmospheric  pressure,  in  the 
presence  or  absence  of  aqueous  alkali  or  acid  and 
with  or  without  a  catalyst  such  as  finely-divided 
iron,  whereby  resinous  or  asphalt-like  condensation 
products  are  obtained. — A.  de  W. 


Vol.  XLI.,  No.  l.)       Cl.  XIV.— INDIA-EUBBER,  &c.     Cl.  XV.— LEATHER  ;    BONE,  &c. 


23  a 


Artificial  resins;  Manufacture  of .  J.  Y.  John- 
son. From  Badische  Anilin-  und  Soda-Fabrik. 
E.P.  170,351,  13.7.20.  Addn.  to  146,498  (<•/.  G.P. 
337,993;  J.,  1921,  631  a). 

Monocyclic  ketones,  e.g.,  cyclohexanone,  are 
treated  with  mineral  acid  or  neutral  condensing 
agents,  e.g.  50%  aqueous  or  alcoholic  sulphuric  acid 
or  zinc  chloride,  with  or  without  the  addition  of  a 
small  quantity  of  hydrochloric  acid. — A.  de  W. 

Condensation  products  from  phenols  and  aldehydes ; 

Preparation  of  resinous  ,  soluble  in  benzene 

and  oil.  Bakelite  Gcs.m.b.H.  G.P.  340,989, 
4.5.19. 

The  condensation  products  of  phenols  with  un- 
saturated hydrocarbons  are  treated  with  aldehydes, 
their  polymerisation  products  or  compounds  which 
hydrolyse  to  aldehydes,  with  or  without  the  addition 
of  neutral,  acidic,  or  basic  accelerators.  Examples 
are  given  of  the  preparation  of  resinous  products 
from  a  cresol-styrene  condensation  product  of  b.p. 
(760  mm.)  320°— 350°  C.  and  formaldehyde,  a  di- 
ainylene-phenol  condensation  product  of  b.p.  300° — 
310°  C,  phenol  and  formaldehyde,  paraformalde- 
hyde, tri-  or  polyoxymethylene,  a,  cresol-pinene  con- 
densation product  and  formaldehyde,  and  a  cresol- 
styrene  condensation  product  and  acetaldehyde. 
The  resins  are  soluble  in  benzene  and  linseed  oil, 
and  are  insoluble  in  aqueous  alkali  and  alkali  car- 
bonate solutions. — L.  A.  C. 

Resin;  Production  of  ■ ,  completely,  or  for  flic 

greater  part,  soluble  in  benzol,  from  crude  benzol. 
Deutseh-Luxemburgische  Bergwerks-  und  Hiitten- 
A.-G.,  and  S.  Hilpert.    G.P.  341,693,  11.4.17. 

The  lower-boiling  fractions  are  separated  from 
crude  benzol,  the  residue  is  treated  with  sulphuric 
acid,  and  the  resin  is  precipitated  by  the  addition 
of  water,  and  dissolved  in  benzene  hydrocarbons. 

— L.  A.  C. 

Coal  tar  paint;  Method  of  producing  .     F.  G. 

White.    U.S.P.  1,396,674,  8.11.21.    Appl.,  19.8.21. 

Raw  coal  tar  is  heated  in  a  still  to  a  temperature  at 
which  the  discharge  from  the  condenser  is  about 
1  pt.  of  water  and  3  pts.  of  light  oil.  The  distilla- 
tion is  continued  until  the  temperature  reaches 
310°  F.  (154°— 155°  C),  whereupon  the  residue  is 
cooled  and  mixed  with  sufficient  of  the  light  oil  to 
reduce  the  consistency  of  the  mass  to  that  of  a  thin 
paint.— H.  R.  D. 

Pigment;   Manufacture   of   a   white   ■ .      A.    L. 

Barbe.    U.S.P.  1,396,914,  15.11.21.    Appl.,  5.8.21. 

See  E.P.  140,301  of  1919;  J.,  1920,  377  a. 

Mesin;  Production  of .  The  Barrett  Co.,  Assees. 

of  S.  P.  Miller  and  F.  H.  Rhodes.  E.P.  149,982, 
10.8.20.    Conv.,  28.8.19. 

See  U.S.P.  1,365,423  of  1921;  J.,  1921,  154  a. 


Resins;  Manufacture  of  — 
Assees.  of  S.  P.  Miller. 
Conv.,  8.3.20. 


— .     The   Barrett   Co., 
E.P.    160,148,    7.9.20. 


See  U.S.P.  1,360,665  of  1920;  J.,  1921,  91  a. 

Coating  substances  to  protect  them  or  render  them 
non-porous ;  Material  or  the  process  of  producing 

materials    for    .      C.    A.    Cleghorn.      U.S.P. 

1,396,023,  8.11.21.     Appl.,  30.12.19. 

See  E.P.  141,414  of  1919;  J.,  1920,  459  a. 

Impregnating  composition  and  process  for  the  pro- 
duction thereof.  8.  A.  Aanerud  and  B.  F.  Hal- 
vorsen,  Assrs.  to  Norsk  Hydro-Elektrisk  Kvael- 
stofaktieselskab.  U.S.P.  1,397,197,  15.11.21. 
Appl.,  13.10.20. 

See  E.P.  154,570  of  1920;  J.,  1921,  885  a. 


XIV.-INDIA-RUBBER ;  GUTTA-PERCHA. 

Rubber  microsectioning.     H.  Green.     J    Ind    Eng 
Chem.,  1921,  13,  1130—1132. 

As  an  alternative  to  the  preparation  of  the  sample 
for  sectioning  by  freezing,  a  rectangular  or  wedge- 
shaped  piece  is  cold-vulcanised  by  immersion  in  a 
solution  of  sulphur  chloride  in  carbon  tetrachloride 
or  carbon  bisulphide;  when  dry,  the  vulcanised  piece 
of  rubber  is  introduced  into  a  rectangular  block  of 
paraffin  wax  and  is  then  sectioned  with  a  microtome. 
The  adhering  wax  is  removed  with  the  aid  of  a  little 
toluene,  the  specimen  then  being  mounted  in 
"  piperine"  for  microscopical  examination. 

— D.  F.  T. 

Rubber;  Relation  between  coefficient  of  vulcanisa- 
tion and  median  ind.  properties  of  vulcanised . 

O.  de  Vries.  J.  Ind.  Eng.  Chem.,  1921,  13, 
1133—1134. 

The  coefficient  of  vulcanisation  necessary  to  produce 
a  physical  condition  corresponding  with  an  elonga- 
tion of  990%  at  a  load  of  13  kg.  per  sq.  mm.  is 
greater  by  approximately  0'5  for  rapidly  vulcanis- 
ing rubbers  such  as  "matured"  rubber  than  for 
more  slowly  vulcanising  grades  such  as  ordinary 
crepe  rubber.  Results  recorded  by  Eaton  and  Day 
(J.,  1917,  1116)  and  Stevens  (J.,  1918,  280 t)  are 
in  accord  with  this  observation  and  indicate  that 
the  natural  accelerator  or  accelerators  in  rubber, 
contrary  to  the  artificial  accelerators  examined 
hitherto,  cause  an  increase  in  the  coefficient  of  vul- 
canisation necessary  for  the  production  of  a  definite 
standard  of  mechanical  properties;  the  effect,  how- 
ever, is  less  marked  than  the  inverse  effect  of  the 
artificial  accelerators. — D.  F.  T. 

Caoutchouc;  Determination  of  the  molecular  mag- 
nitude of  by  chemical  methods.     C.  Harries 

and  F.  Evers.  Wiss.  Veroffentl.  Siemens-Kon- 
zern,  l'J2l,  1,  87—95.  Chem.  Zentr.,  1921,  92, 
III.,  1358—1359. 

The  dihydrocnloride  obtainable  by  the  action  of 
hydrogen  chloride  on  a  chloroform  solution  of 
caoutchouc  on  reduction  yields  various  products. 
Treatment  in  solution  in  ethylene  dichloride  with 
zinc  dust  gives  a-hydrocaoutehouc,  C35H6,  or  C4„H;o ; 
in  a  high  vacuum  this  distils  in  part  undecoin- 
posed  and  is  convertible  into  an  ozonide,  C^H^O,, 
or  O„H70O,5,  a  hydrochloride  and  a  bromide.  The 
conclusion  is  drawn  that  the  molecule  of  caoutchouc 
itself  also  contains  35  or  40  atoms  of  carbon,  prefer- 
ably the  latter  number,  the  structural  formula  then 
including  eight  nuclei  —  CH2.C(CH,):CH.CH, — 
joined  together  in  a  32-atom  ring. — D.  F.  T. 

Patent. 

Rubber  compounds ;  Compounding  of  — ■ — .  R.  C. 
Hartong,  Assr.  to  The  Goodyear  Tire  and  Rubber 
Co.    U.S.P.  1,396,837,  15.11.21.    Appl.,  25.10.18. 

See  E.P.  146,993  of  1920;  J.,  1921,  595  a. 


XV.-LEATHER;  BONE;  HORN;  GLUE. 

Hide   bellies;   Water-soluble   matter  in   vegetable- 
tunned  .    W.  J.  Chater  and  D.  Woodroffe.  J. 

Soc.  Leather  Trades  Chem.,  1921,  5,  359—363. 

Analyses  of  various  vegetable-tanned  hide  bellies 
were  made  and  strips  of  the  same  bellies  were  sus- 
pended with  their  ends  in  water.  The  leathers  with 
the  highest  water-soluble  content  showed  the  least 
capillary  rise  and  vice  versa.  The  results  were 
plotted  on  a  graph  and  approximate  very  closely  to 
an  exponential  relationship  (y  =  ke '*"*),  where  x 
represents  the  percentage  of  water-soluble  matter 
and  y  the  rise  in  the  strip. — D.  W. 


24a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[Jan.  16, 1922. 


Vegetable  tannins;  Some  Indian .    W.  R.  Atkin 

and  K.  H.  Hassan.  J.  Soc  Leather  Trades 
Chem.,  1921,  S,  347—352. 
A  report  of  the  qualitative  and  quantitative 
analysis  of  ten  Indian  tanning  materials.  The  per- 
centages of  tannin  and  non-tannins  respectively  in 
the  various  materials  were :  Tarwar  (Cassia  auricu- 
lata)  bark,  16T8,  10-75;  amaltas  (C.  fistula)  bark, 
11-06,  1182;  sundri  bark,  7"23,  34;  mohani  bark, 
5'74,  7-2;  goran  (Ceriops  Koxburghiana)  bark,  12'92, 
5'6;  amla  (Phytlanthus  emblica)  bark,  14-68,  6'8; 
itsha  bark,  1T09,  7'35 ;  babul  (Acacia  arabica)  bark, 
12T,  11-76;  dhawa  (Anogeissus  latifolia)  leaves, 
18-1,  11-4;  sumac  leaves,  7-36,  123;  divi-divi  pods, 
42-21,  17-3;  pomegranate  kernel,  31-53,  12'59.  The 
barks  belong  to  group  la,  divi-divi  and  pomegranate 
to  group  lib,  and  dhawa  and  sumac  to  group  Mb 
of  the  qualitative  scheme  outlined  by  Stiasny 
(Leather  Chemists  Pocket-book,  Spon,  p.  67). 

— D.  W. 

Tannin  in  native  [German]  oaks.  E.  Vollbrecht 
and  K.  Freudenberg.  Collegium,  1921,  394—401, 
418—423. 
The  tannin  in  the  young  leaves  and  twigs  of 
Quercus  pedunculata  was  extracted  and  purified  by 
precipitation  with  lead  acetate  and  separation  from 
the  lead  acetate  precipitate  by  treatment  with 
dilute  sulphuric  acid,  whereby  the  sugar  content 
was  reduced  to  1%.  A  very  small  amount  of  free 
ellagic  acid  remained  and  traces  of  gallic  acid  which 
were  scarcely  perceptible.  Hydrolysis  of  the  pure 
tannin  with  dilute  sulphuric  acid  showed  that  it 
contained  25 — 27%  of  combined  ellagic  acid,  10%  of 
-a  glucoside,  and  50%  of  a  fundamental  tannin  sub- 
stance. The  glucoside  is  apparently  a  quercetin  di- 
glucoside.  In  the  original  tannin  1  g.-mol.  of 
ellagic  acid  is  esterified  with  760  g.  of  the  funda- 
mental tannin  which  has  a  mol.  wt.  of  385  or  770 
according  to  whether  it  contains  one  or  two  carboxyl 
groups.  It  is  optically  inactive,  strongly  orange- 
yellow  in  colour,  and  gives  a  blue-black  coloration 
with  ferric  chloride. — D.  W. 

Tanning  extracts;  Recovery  of  acetic  acid  during 

the    evaporation   of   .      G.    Vie.      J.    Amer. 

Leather  Chem.  Assoc,  1921,  16,  641—644. 
Chestnut  wood  contains  acetic  acid  which  is  volatil- 
ised during  the  evaporation  of  the  wood  extract  and 
can  be  recovered  by  passing  the  vapours  through  a 
scrubber  containing  a  solution  of  sodium  carbonate 
or  milk  of  lime.  The  saturated  solution  of  sodium 
or  calcium  acetate  is  decanted  and  evaporated  in  the 
air  in  a  double  boiler  until  the  b.p.  reaches  125°  C. 
when  it  is  run  out  in  thin  layers  and  allowed  to 
cool.  100  lb.  of  chestnut  extract  of  25°  B.  (sp. 
gr.  1-21)  yields  13  lb.  of  acetic  acid  or  238  lb.  of 
fused  sodium  acetate. — D.  W. 

Tanning    materials    for   analysis;    Preparation    of 

fresh .  H.  C.  Reed.  J.  Amer.  Leather  Chem. 

Assoc,  1921,  16,  620—622. 

In  grinding  divi-divi  for  analysis  the  pods  separate 
into  a  fine  powdery  portion  which  readily  passes 
through  the  sieve,  and  a  portion  which  will  not 
grind  nor  pass  the  sieve.  The  amount  of  each 
should  be  weighed  and  aliquot  portions  used  for  the 
analysis  since  the  tannin  contents  of  the  two  por- 
tions differ  considerably.  Bulk  samples  of  valonia 
cups  or  cups  and  beards  mixed  should  be  screened 
through  a  f"  square  mesh  and  both  screened  and 
unscreened  portions  weighed  and  the  percentage  of 
each  calculated.  Portions  of  both  in  correct  pro- 
portion should  be  weighed  out  for  analysis.  Tara 
pods  should  be  screened  to  obtain  relative  amounts 
of  coarse  and  fine ;  each  should  be  ground  up 
separately  and  portions  of  ground  and  ungrindable 
used  for  analysis. — D.  W. 


Tannin  analysis;  The  Wilson-Kern  method  of . 

J.  A.  Wilson  and  E.  J.  Kern.     J.  Amer.  Leather 

Chem.  Assoc,  1921,  16,  631—637. 
A  reply  to  Schultz's  criticisms  (J.,  1921,  858  a). 
The  authors  cite  results  obtained  from  the  analysis 
of  solid  quebracho  extract  using  different  amounts 
of  hide  powder,  the  percentage  of  tannin  found 
being  constant. — D.  W. 

Tannin  analysis;  The  Wilson-Kern  method  of . 

G.  W.  Schultz.    J.  Amer.  Leather  Chem.  Assoc, 

1921,  16,  637—641. 
In  the  Wilson  and  Kern  method  (J.,  1920,  522  a) 
the  tannin  solutions  are  filtered  before  analysis. 
The  author  shows  that  filtering  affects  the  amount 
of  tannin  estimated  by  the  new  method.  The 
insolubles  increase  by  4'4%,  while  the  tannin  is  de- 
creased by  4'47%.  The  new  method  fails  when  it 
assumes  that  hide  will  quantitatively  remove 
tannin  from  any  given  solution  and  that  a  negative 
test  with  gelatin-salt  reagent,  given  by  a  solution 
after  treatment  with  hide  powder,  can  be  accepted 
as  proof  of  such. — D.  W. 

Sulphite-cellulose     [in     tanning     extracts];     Cin- 
chonine   for    the    qualitative    and    quantitative 

detection  of  .     L.  De  Hesselle.     Collegium, 

1921,  425—430. 
15  G.  of  purest  cinchonine  is  treated  with  100  c.c. 
of  distilled  water,  and  strong  sulphuric  acid  added 
drop  by  drop  until  the  cinchonine  has  dissolved. 
15  g.  of  purest  gallotannic  acid  is  dissolved  in  a 
little  hot  water  and  diluted  to  1  1.  For  qualitative 
purposes  100  c.c  of  the  solution  to  be  tested  is 
boiled  for  2  ruins,  with  5  c.c  of  40%  hydrochloric 
acid,  then  cooled  and  filtered.  50  c.c.  of  the 
filtrate  is  treated  with  10  c.c.  of  the  gallotannic 
acid  solution  and  10  c.c.  of  the  cinchonine  sul- 
phate solution  and  slowly  heated  to  boiling.  The 
appearance  of  a  brownish-black  lumpy  precipitate 
indicates  the  presence  of  sulphite-cellulose.  For 
quantitative  work  about  7'5  g.  of  the  extract  is 
dissolved  in  450  c.c.  of  hot  distilled  water;  25  c.c. 
of  40%  hydrochloric  acid  is  added,  and  the  mix- 
ture is  made  up  to  500  c.c.  100  c.c  of  this  solu- 
tion is  boiled  for  2  mins.,  cooled,  made  up  to 
100  c.c,  filtered,  50  c.c.  of  the  filtrate  treated  with 
10  c.c.  each  of  the  gallotannic  acid  and  cinchonine 
sulphate  solutions,  slowly  heated  to  boiling,  filtered 
hot  through  a  weighed  filter,  the  precipitate 
washed  two  or  three  times  with  boiling  water, 
dried  for  2  hrs.  at  100°  C,  cooled  for  20  mins.  in 
a  desiccator,  weighed,  and  dried  again  to  con- 
stant weight.  1  g.  of  cinchonine  precipitate 
corresponds  to  1'35  g.  of  dry  sulphite-cellulose 
extract  or  2'74  g.  of  sulphite-cellulose  extract 
containing  50%   of  water. — D.   W. 

Two-bath   chrome   tanning   process;   Effect   of  acid 
containing  arsenic  on  the  reduction  liath  of  the 

.      K.   Schorlemmer.      Collegium,    1921,   430 

—431. 
Certain  samples  of  hydrochloric  acid  are  not  very 
effective  in  the  reduction  bath,  and  this  defect 
has  been  attributed  to  arsenical  impurities.  When 
thiosulphate  solutions  are  acidified  part  of  the 
sodium  thiosulphate  is  converted  into  penta- 
thionato ;  traces  of  arsenic  compounds  catalyse  this 
reaction  and  prevent  the  decomposition  of  the 
thiosulphate  into  sulphurous  acid  and  sulphur. 
The  presence  of  more  than  0'0015%  As2Oa  in  hydro- 
chloric acid  has  a  very  appreciable  effect  on  the 
reactions  taking  place,  and  more  acid  is  required 
to  liberate  sulphurous  acid  and  effect  a  proper 
reduction  of  the  chromic  acid  in  the  skins.  Not 
only  is  sulphur  precipitated  in  the  reduction  bath 
but  also  arsenic  sulphide  if  the  acid  contains 
arsenic,  and  this  would  be  detrimental  to  the 
finished  leather  owing  to  its  poisonous  nature. 

— D.  W. 


Vol.  XLI.,  No.  1.] 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


25  a 


Formaldehyde-gelatin  combination.  A.  G.  Brot- 
nian.  J.  Soc.  Leather  Trades  Chem.,  1921,  5, 
3G3— 366. 

The  amount  of  formaldehyde  fixed  by  gelatin  is  a 
function  of  the  concentration  of  the  jelly,  a  weak 
jelly  fixing  more  formaldehyde  than  a  more  con- 
centrated one  under  the  same  conditions.  Gelatin 
rendered  insoluble  by  formaldehyde  is  not  under 
strain. — D.    W. 

Calcium  oxalate  in  ihe  Gidgee  wattle.  Steel. 
See  XX. 

Patents. 

Shark-skins  and  the  like;  Process  for  treating . 

A.    Rogers,    Assr.   to   Ocean    Bond   Co.      U.S. P. 
1,395,773,  1.11.21.     Appl.,  19.7.19. 

The  skins  are  treated  with  an  acidified  solution  of 
common  salt,  and  the  excess  of  acid  is  afterwards 
removed  by  means  of  a  solution  of  common  salt. 

— D.  W. 

Vegetable    glue;    Manufacture    of    .     V.     G. 

Bloede.  U.S. P.  1,396,315,  8.11.21.  Appl.,  22.10.20. 

A  smooth  cream  of  starch  with  cold  water  is  heated 
until  a  jelly  is  formed,  and  a  basic  coagulating 
agent  is  then  intimately  mixed  with  the  jelly. 

— F.  M.  R. 

Casein;  Manufacture  of  durable  adhesives  contain- 
ing   .     E.  Trutzer.     G.P.  341,831,  19.6.18. 

Aqueous  solutions  containing  compounds  of  alkaline- 
earths  with  casein  are  evaporated  to  dryness  at 
temperatures  below  100°  C.,  and  the  water-soluble 
casein-alkaline-earth  products  thus  obtained  are 
mixed  in  a  finely  divided  state  with  alkaline- 
earth  oxides  or  hydroxides,  whereby  specially 
efficient  and  durable  adhesives  are  produced.  Such 
adhesives  are  suitable  for  cold-size,  the  sizing  of 
paper,   and  in  the  manufacture  of  paints. 

—A.  J.   H. 

Sides;  Apparatus  for  treating .    A.  N.  Walker. 

U.S. P.   1,396,699,  8.11.21.     Appl.,  4.2.20. 

See  E.P.  124,992  of  1918;  J.,  1919,  331  a. 


XVI.    SOILS ;    FEHTILISERS. 

Soils;  Secent  methods  for  the  examination  of . 

J.  Koenig,  J.  Hasenbaumer,  O.  Kleine-Mollhoff, 
and  M.  L.  Plonski.  Landw.  Jahrb.,  1921,  56,  439 
—470.    Chem.  Zentr.,  1921,  92,  IV.,  1210—1211. 

Atterberg's  process  for  the  examination  of  soils 
being  a  very  lengthy  one,  the  following  process  is  j 
recommended  as  giving  good  results  if  an  exact  j 
separation  of  the  particles  between  O'Ol  mm.  and  l 
0'002  mm.  and  finer  than  0'002  mm.  is  not  required. 
After  the  earlier  treatment  prescribed  in  the  Atter- 
berg  process  the  mixture  is  allowed  to  stand  for 
1  hr.  in  the  settling  cylinder,  the  finer  slime 
siphoned  off,  and  the  remainder  dried  and  weighed, 
the  weight  of  the  finer  material  being  found  by 
subtracting  this  percentage  from  100.  To  deter- 
mine the  acid-soluble  constituents  of  the  soil,  it  is 
heated  for  3  hrs.  with  hydrochloric  acid  of  sp.  gr. 
1"19  under  a  reflux  condenser.  The  soluble  silica 
in  the  residue  is  extracted  with  sodium  carbonate 
solution,  and  the  residue  from  this  extraction  is 
treated  with  dilute  hydrochloric  acid  to  remove 
sodium  salts  before  treating  it  with  concentrated 
sulphuric  and  hydrofluoric  acids.  The  method  of 
determining  the  water  in  the  soil  by  distilling  it 
with  high-boiling  hydrocarbons  gives  incorrect 
results,  only  part  of  the  water  chemically  com- 
bined in  the  clay  and  silicates  being  removed  by 
this  process.     Solutions  of  sodium   and  potassium 


chlorides  act  as  strong  solvents  for  the  lime  in  base- 
exchanging  silicates  and  in  gypsum,  but  only  have 
a  slight  solvent  action  on  calcium  carbonate, 
whereas  ammonium  chloride  solutions  act  con- 
versely to  this.  By  using  this  principle  it  is  pos- 
sible to  determine  the  calcium  present  as  silicate 
and  sulphate  by  extracting  the  solution  for  2  hrs. 
with  10%  potassium  chloride  solution  and  deter- 
mining the  lime  and  sulphur  trioxide  in  the  solu- 
tion; calcium  present  as  carbonate  is  then  deter- 
mined in  the  residue  by  digestion  with  10% 
ammonium  chloride  for  the  same  time. — A.  R.  P. 

Soil;  Preliminary  note  on  the  microbiology  of  the 

and  the  possible  existence  therein  of  invisible 

germs.     G.  Rossi.    Soil  Sci.,  1921,  12,  409—412. 

The  author,  after  detailing  certain  difficulties  which 
arise  in  a  study  of  the  soil  from  the  micro-biological 
point  of  view,  gives  an  account  of  certain  pre- 
liminary experiments,  which  he  considers,  however, 
insufficient  to  disprove  the  presence  of  invisible 
(ultramicroscopic)  germs  in  the  soil. — W.  G. 

Soil  toxicity,  acidity,  and  basicity;  Measuring . 

R.  H.  Carr.    J.  Ind.  Eng.  Chem.,  1921,  13,  931— 

933. 
A  certain  proportion  of  the  iron  and  aluminium 
compounds  in  soils  seems  to  be  present  in  a  form 
which  can  be  extracted  by  means  of  neutral  salt 
solutions  (e.g.,  potassium  thiocyanate) ;  the  coloured 
ferric  thiocyanate  changes  to  a  colourless  compound 
on  the  addition  of  an  alkali,  the  change  taking  place 
at  a  hydrogen  ion  concentration  of  pu  =  5'5.  The 
relative  amount  of  aluminium  in  the  solution  is 
indicated  by  the  coloration  obtained  on  the  addi- 
tion of  a  few  drops  of  logwood  tincture  Fifty  g. 
of  the  soil  is  shaken  for  2  mins.  with  30  c.c.  of 
saturated  potassium  thiocyanate  solution  (in  95% 
alcohol),  the  mixture  allowed  to  settle,  and  the 
coloured  solution  titrated  with  iV/10  alcoholic  potas- 
sium hydroxide  solution  until  the  red  colour  is 
discharged.  Each  c.c.  of  2V/10  alkali  solution  used 
is  equivalent  to  a  lime  requirement  of  200  lb.  of 
calcium  carbonate  per  acre.  If  a  red  coloration 
does  not  appear  on  the  addition  of  the  thiocyanate 
the  mixture  is  titrated  with  N/10  alcoholic  hydro- 
chloric acid ;  the  calcium  carbonate  equivalent  of 
the  soil  is  calculated  from  the  amount  of  acid 
required. — W.  P.  S. 

Soil;   Colorimetric  determination   of   [nitrates   in] 

in  a  coloured  water  extract.     P.  Emerson. 

Soil  Sci.,  1921,   12,  413^417. 

Soil  extracts  containing  large  amounts  of  soluble 
organic  matter  may  be  quickly  decolorised  by  the 
addition  of  a  suspension  of  aluminium  hydroxide 
and  subsequent  filtration,  and  nitrates  may  be  esti- 
mated colorimetrically  in  the  filtrate.  In  preparing 
soil  extracts  from  soils  of  fine  texture  it  is  desirable 
to  add  precipitated  calcium  carbonate  prior  to  the 
extraction.  The  colour  of  the  soil  extract  may  be 
gauged  by  measuring  the  amount  of  aluminium 
hydroxide  required  to  decolorise  it  as  compared  with 
the  requirements  of  standard  caramel  solutions. 

— W.  G. 

Potassium  in  soils;  Use  of  silica  crucibles  for  the 

determination  of  .     J.   S.  Jones  and  J.  C. 

Reeder.    Soil  Sci.,  1921,  12,  419—432. 

Silica  crucibles  may  be  used  instead  of  platinum 
ones  for  the  estimation  of  potassium  in  soils  by  the 
fusion  method  provided  certain  limits  of  tempera- 
ture are  observed.  The  temperature  of  the  muffle 
must  reach  812°  C.  to  ensure  perfect  fusion  and 
not  exceed  855°  C.  in  order  to  avoid  loss  by  vola- 
tilisation. It  is  preferable  to  use  an  electrically- 
heated  muffle.  A  simple  electrical  arrangement 
for  heating  single  silica  crucibles  of  the  J.  L.  Smith 
type,   10  cm.    long,   2  cm.    diam.    at   the    top   and 


20a 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


[Jan.  10, 1922. 


1'8  cm.  at  the  bottom,  which  is  very  satisfactory 
for  this  type  of  work,  consists  of  a  heating  coil 
wound  on  a  fireclay  cylinder  and  covered  with 
several  coats  of  a  mixture  of  water-glass  and  finely- 
divided  asbestos  fibre,  placed  within  a  box  of 
asbestos  board,  the  intervening  space  being  tightly 
packed  with  asbestos  fibre. — W.  G. 

Nitrogen  and  ash  constituents  of  cultivated  plants; 

Influence  of  kind  of  soil  arid  manuring  on  . 

J.  G.  Maschhaupt.  Versl.  Landbouwk.  Onder- 
zoekingen  der  Rijkslandbouwproefs.,  No.  25, 
Sep.,  1921.  Chem.  Zentr.,  1921,  92,  III.,  1370— 
1371.     (Cf.  J.,  1919,  649  a.) 

The  weight  of  the  crop  of  winter  wheat  was 
markedly  dependent  on  the  nature  of  the  soil, 
marshy  soil  giving  the  highest  and  loam  the  lowest 
yield;  the  influence  of  manuring  was  only  slight. 
Experiments  with  barley,  peas,  and  turnips  showed 
the  calcium  content  of  the  plants  to  be  independent 
of  the  richness  of  the  soil  in  lime. — D.  P.  T. 

Potassium  from  greensand  composts;  Pot  culture 

tests  on  the  availability  of  .     A.  M.  Smith 

J.  Assoc.  Off.  Agric.  Chem.,  1921,  5,  133—136. 
In  the  growth  of  barley  the  potassium  in  a  green- 
sand-sulphur-manure  compost  was  practically  equal 
in  availability  to  a  similar  amount  supplied  as 
potassium  sulphate.  Lime  did  not  decrease  the 
availability  of  potash  in  the  compost,  but  was 
necessary  to  secure  increased  yields.  The  compost 
applied  to  a  soil  of  low  potash  content,  and  deficient 
in  organic  matter,  gave  better  yields  at  the  end  of 
the  first  growing  season  than  the  same  materials 
not  composted. — A.  G.  P. 

Nitrogenous    compounds   in    soils;    Availability    of 

organic .     C.  S.  Robinson,  O.  B.  Winter,"  and 

E.  J.  Miller.  J.  Ind.  Eng.  Chem.,  1921,  13, 
933—936. 

From  a  study  of  the  amounts  of  ammonia  formed 
by  the  action  of  alkaline  permanganate  on  various 
organic  substances  it  may  be  concluded  that  all  the 
nitrogen  present  in  fertilisers  etc.,  in  the  form  of 
a-amino-aeids  and  part  of  that  present  as  acid 
amides  may  be  included  as  immediately  available 
nitrogen,  similar  to  the  nitrogen  of  ammonia  and 
nitric  acid.  Further,  there  is  a  class  of  substances, 
chiefly  peptides,  which  may  be  considered  as  being 
a  potentially  available  source  of  nitrogen,  since 
peptides  are  hvdrolysed  readily  to  amino-acids 
ete.— W.  P.  S. 

Inoculated  legumes  as  nitrogenous  fertilisers. 
P.  E.  Brown  and  J.  H.  Stallings.  Soil  Sci., 
1921,  12,  365—407. 

Red  clover  and  alfalfa  (lucerne)  were  grown  on 
Canington  loam  and  Miami  fine  sandy  loam  soils 
under  greenhouse  conditions,  the  soils  being  either 
untreated,  or  sterilised  and  inoculated  with  the 
necessary  bacterial  cultures.  The  results  indicate 
that  when  these  two  crops  are  grown  and  the  hay 
removed  there  may  be  some  gain  in  nitrogen  in  the 
soil,  the  amount  of  the  increase  varying  with  the 
legume,  the  soil  type,  the  inoculation,  and  the 
general  conditions  of  growth.  On  the  average, 
36%  of  the  total  plant  growth  of  clover  was  in  the 
roots  at  maturity,  the  figure  decreasing  with  in- 
creasing content  of  organic  matter  in  the  soil  and 
as  a  result  of  sterilisation.  With  lucerne,  about  50% 
of  the  plant  growth  was  in  the  roots  at  maturity. 
The  percentage  of  total  nitrogen  in  the  roots  of  the 
two  plants  was  greater  on  the  soil  poorer  in  organic 
matter  and  nitrogen.  Under  natural  soil  condi- 
tions 27%  in  the  case  of  clover  and  46%  in  the 
case  of  lucerne  of  the  total  plant  nitrogen  was  in 
the  roots  at  maturity.  From  0'12  to  0'25  g.  of 
nitrogen  per  plant  was  fixed  by  clover  and  lucerne 
on  untreated  soils. — W.  G. 


Copper;  Absorption  of  - 
/'hints.  F.  C.  Cook. 
281—287. 


—  from  the  soil  by  potato 
J.   Agric.  Res.,   1921,   22, 


Potato  plants  grown  in  soil  sprayed  with  insoluble 
copper  salts  contained  more  copper  in  the  leaves 
than  in  the  stems  and  only  traces  appeared  in  the 
tubers.  In  soil  treated  with  copper  sulphate  solu- 
tion the  normal  metabolism  of  the  plant  was  dis- 
turbed and  plants  were  stunted.  The  roots  of 
these  contained  more  copper  than  the  leaves.  The 
excess  of  lime  in  Bordeaux  mixture  did  not  reduce 
the  copper  absorbed  by  the  plants  compared  with 
those  treated  with  Pickering  mixture. — A.  G.  P. 

Borax  in  fertilisers;-  Distillation  method  for  the 

estimation  of  .     J.  M.  Bartlett.     J.  Assoc. 

Off.  Agric.  Chem.,  1921,  5,  88—92. 

Five  g.  of  material  (which  should  not  contain  less 
than  2%  of  anhydrous  borax)  is  placed  in  a  round- 
bottomed  flask  with  5  c.c.  of  50%  phosphoric  acid 
and  20  c.c.  of  methyl  alcohol.  The  flask  is  connected 
with  a  condenser  and  also  with  a  supply  of  methyl 
alcohol  vapour  which  is  bubbled  through  the  liquid. 
The  latter  is  distilled  for  about  30  mins.  to  give  a 
distillate  of  100  c.c.  Phenolphthalcin  is  added  to 
the  distillate  followed  by  5 — 10  c.c.  of  2V/10  sodium 
hydroxide  till  a  permanent  pink  colour  develops. 
The  methyl  alcohol  is  distilled  off  .and  the  residue, 
which  should  not  be  less  than  10  c.c,  is  transferred 
to  a  dish  and  evaporated  to  dryness,  ignited  below 
redness,  acidified  with  a  few  drops  of  N /l  hydro- 
chloric acid  and  20 — 25  c.c.  of  water,  warmed  for 
a  few  minutes  on  a  steam  hath  and  filtered.  The 
filtrate  with  washings  is  diluted  to  50 — 75  c.c.  and 
boiled  under  a  reflux  condenser  for  a  few  minutes 
to  remove  carbon  dioxide.  A  few  drops  of  methyl 
red  are  added  and  2V/10  caustic  soda  till  the  red 
colour  disappears,  after  which  about  1  g.  of  man- 
nitol  is  added  and  the  solution  titrated  with  N 110 
caustic  soda  and  phenolphthalein. — A.  G.  P. 

Neutral    ammonium    citrate    solution.      Robinson. 
See  XXIII. 

Phosphoric  acid.    Clark  and  Keeler.    See  XXIII. 

Patents. 

Fertilisers ;  Manufacture  of  .     J.  Y.  Johnson. 

From    Badische    Anilin-    und    Soda-Fabr.      E.P. 
170,474,  8.9.20. 

One  hundred  parts  of  ammonium  nitrate  is  mixed 
with  not  less  than  75  parts  of  ammonium  sulphate, 
and  water  to  make  3 — 5%  of  the  whole.  The  product 
sets  to  a  dry  non-deliquescent  fertiliser,  easv  to 
distribute— A.  G.  P. 

Fertiliser;   Production   of  .      W.    Broadbridge 

and  E.  Edser.     E.P.  171,155,  6.8.20. 

Crude  rock  phosphate,  e.g.,  phosphorite,  is  ground 
to  pass  an  80-mesh  sieve  and  concentrated  by  froth 
flotation  in  a  bath  of  aqueous  oleic  acid  containing 
sodium  silicate.  The  concentrate  is  dried,  re-ground, 
and  treated  with  sulphuric  acid  in  the  usual  way  to 
produce  superphosphate. — A.   G.   P. 

Phosphates;    Treatment    of   .      E.    C.    Soper. 

U.S. P.  1,396,149,  8.11.21.    Appl.,  6.7.18. 

Finely-ground  phosphatic  material  is  mixed  with  a 
combustible  binder  and  formed  into  briquettes, 
which  are  heated  to  a  high  temperature  so  as  to 
burn  off  the  binder  and  render  the  phosphoric  acid 
content  of  the  material  citrate-soluble. 

Superphosphate;  Apparatus  for  use  in  manufacture 

of  .     F.  W.  R.  Williams.     U.S. P.  1,398,350, 

29.11.21.     Appl.,  4.2.19. 

See  E.P.  119,074  of  1917;   J.,  1918,  710  a. 


Vol.  XL!.,  No.  l.]     Cl.  XVII.— SUGARS,  &c.    Cl.  xviii.— fermentation  industries. 


27  a 


XVII.-SUGARS ;   STARCHES;  GUMS. 

[Beef]    molasses   mother-syrups;    Relationship    be- 

tirtin  the  concentration  anil  the  purity  of  . 

G.   Schecker.     Z.   Vor.  deuts.   Zuckerind.,   1921, 

721—724. 

A  number  of  results  of  after-product  working 
collected  during  the  1920-21  campaign  in  a 
German  beet  factory  are  tabulated,  the  conditions 
in  respect  of  composition  of  massecuite,  duration  of 
:lisation  (about  7  days),  temperature  of  centri- 
fuging  (about  35°  C),  as  well  as  composition  of 
original  material,  having  been  throughout  approxi- 
mately the  same.  These  figures  show  that  a  Brix 
of  88'6  (at  35°  C.)  for  the  mother-syrup  corresponds 
to  an  apparent  purity  of  59'5  for  the  exhausted 
molasses.  Since  in  practice  it  would  be  impossible 
to  centrifuge  a  massecuite  containing  such  a  con- 
centrated mother-syrup  (owing  to  its  extreme  vis- 
cosity), water  must  be  added  previous  to  that 
operation.  The  author  prefers  to  dilute  the  mother- 
syrup  to  a  density  of  85'8°  Brix,  thus  obtaining  a 
molasses  having  a  purity  of  6T4,  and  a  sugar  having 
a  polarisation  averaging  92'8  with  an  ash  rende- 
ment  of  828.— J.  P.  U. 

Beet  carbonatation  scums;  Utilisation  of  [for 

the  production  of  a  decolorising  carbon'].  Z. 
Vytopil.  Z.  Zuckerind.  Czechoslov.,  1921,  45, 
85—89. 

Carbonatation  6cum  containing  10%  of  water  was 
carbonised  by  heating  to  500°  C.  for  4  hrs.,  when 
a  product  containing  2'52%  of  carbon,  89'9%  of 
calcium  carbonate,  and  0'30%  of  sand  and  clay  was 
obtained.  Its  decolorising  power  was  about  the 
same  as  that  of  new  animal  charcoal  in  fine  grain, 
the  sugar  liquor  being  treated  at  90° — 98°  C.  for 
30  mins.  Compared  with  animal  charcoal,  the  cost 
of  application  is  estimated  to  be  about  40%  less, 
though  a  disadvantage  is  the  inferior  power  of  the 
carbonised  scum  of  adsorbing  calcium  salts  from 
solution.— J.  P.  O. 

Polysaccharides ;  Constitution   of  .     III.   Itda- 

ship  of  l-glucosan  In  d-glucose  and  to  cellu- 
lose. J.  C.  Irvine  and  J.  W.  H.  Oldham.  Trans. 
Chem.  Soc,  1921,  119,  1744—1759. 

/-Glucosan  is  shown  to  be  1.6-/3-glucose  anhydride, 
and  hence  may  be  termed  /3-glueosan.  There  is 
no  structural  relationship  between  cellulose  and 
/3-glucosan.  The  latter  gives  a  trimethylglucose 
which  is  a  derivative  of  butylene-oxide  glucose  and 
is  quite  distinct  from  that  derived  from  cellulose 
through  trimethylcellulose.  The  formation  of 
/3-glucosan  from  cellulose  is  essentially  a  dry-distil- 
lation (involving  dehydration)  of  /?-glucose.  By  the 
identity  of  the  methylated  glucose  derived  from 
trimethylcellulose  with  that  from  cellobiose  it  is 
shown  that  the  cellobiose  residue  is  an  integral  part 
of  the  cellulose  molecule. — P.  V.  M. 

Polysaccharides.  XII.  Glycogen.  P.  Karrer.  Helv. 
Chim.  Acta,  1921,  4,  994—1000.  (Cf.  J.,  1921, 
361  a.) 

The  chemica'  similarity  of  starch  and  glycogen  is 
further  illustrated  by  the  conversion  of  the  latter 
into  methyloglycogen,  which  appears  to  be  identical 
in  all  respects  with  methylostarch,  and  into  the 
compound  (C.jHj.O^.NaOH)^  which  has  the  same 
composition  as  the  similar  substance  obtained  from 
starch.  The  possibility  is  suggested  that  starch 
and  glycogen  are  fundamentally  identical  and  that 
the  differences  in  their  behaviour  towards  water 
and  iodine  are  due  to  the  presence  of  impurities. 

-H.  W. 

Synthesis  of  a-glucoheptitol.  Pictet  and  Barbier. 
See  XX. 


Patents. 
Sugar  factory  waste  waters:  Biological  purification 

of .     H.  Stentzel.     G.P.  342,040,  27.3.20. 

A  portion  of  the  waste  water,  proportioned  to  the 
waste  heat  available,  is  submitted  to  a  fermentation 
process  at  the  most  favourable  temperature.  The 
fermented  liquid  is  then  mixed  with  the  remainder 
of  the  waste  water  and  the  whole  fermented.  The 
best  temperature  for  lactic  acid  fermentation  is 
40° — 45°  C,  while  yeast  fermentation  is  best 
carried  out  at  30°— 40°  C— J.  S.  G.  T. 

Starch;  Process  for  preventing  formation  of  lumps 

when which  swells  in  cold  water  is  dissolved. 

J.  Kantorowicz.     E.P.  145,689,  30.6.20.     Conv., 
31.5.18. 

A  substance  capable  of  thickening  ordinary  starch 
paste  is  added  to  the  starch  before,  during,  or  after 
its  formation.  Suitable  substances  are  alum, 
aluminium  sulphate,  alkali  aluminates,  feebly 
alkaline  silts  of  6odium  or  potassium,  such  as 
borax  or  sodium  phosphate,  feeble  acids,  such  as 
tannic  acids  and  their  salts,  salts  of  fatty  acids 
and  resin  acids.  Alternatively,  a  substance  which 
precipitates  starch  from  aqueous  solution,  such  as 
magnesium  sulphate,  may  be  added. — H.  H. 

Decolorising  carbon.    U.S. P.  1,396,773.    See  IIb. 

Ethers  of  carbohydrates.    E.P.  163,017.    See  V. 

Vegetable  glue.    U.S.P.  1,396,315.    See  XV. 


XVIIL-FERMENTATION  INDUSTRIES. 

ll<  i  i  s     from    mashes    boiled    under    pressure.      J. 

Rechenberg.  Z.  ges.  Brauw.,  1921,  184—186. 
The  Lazarus  process  of  mash-boiling  under  pressure 
has  been  applied  successfully  in  a  German  brewery. 
It  may  be  adapted  to  various  methods  of  mashing, 
and  in  the  case  described  the  preceding  operations 
constitute  an  infusion  process,  the  mash  being  held 
at  50°  C.  for  peptonisation  and  then  heated  slowly 
to  62° — 67°  C.  for  saccharification,  after  which  ft 
is  heated  rapidly  to  boiling  in  the  pressure  vessel 
and  when  all  the  air  has  been  driven  out  of  the 
vessel  the  latter  is  closed  and  the  pressure  allowed 
to  rise  to  15  atm.  The  mash  is  then  cooled  rapidly 
to  70°  C,  re-saccharified  by  addition  of  diastase, 
and  finally  mashed-off  at  90°  C.  The  chief  advan- 
tage of  the  process  lies  in  the  high  yields  of  extract 
obtained,  and  the  beers  produced  possess  excep- 
tional palate-fulness  and  head-forming  capacity. 
Any  undesirable  flavouring  or  aromatic  substances 
which  may  be  extracted  may  be  eliminated  by 
allowing  some  steam  to  blow-off  during  the  pressure 
boiling.  More  serious  defects  of  flavour  may  result 
from  the  use  of  unsuitable  brewing  water,  and 
especially  from  the  presence  of  carbonates  in  the 
latter.  Deearbonation  is  more  important  than 
when  ordinary  methods  of  mashing  are  employed. 
Occasionally  traces  of  unconverted  starch  may  be 
i  present  in  the  wort  when  it  is  run  off  from  the 
mash,  and  in  such  cases  some  diastase  should  be 
added  when  the  wort  is  run  into  the  copper. 

—J.  H.  L. 

Yeast;  Longevity  of  certain  species  of .    A.  R. 

Ling  and  D.  R.  Nanji.     Proc.  Roy.  Soc,  1921, 
B92,  355—357. 

Cultures  of  eight  different  species  of  yeast  were 
found  to  be  still  alive  after  storage  for  34  years 
on  dry  cotton  wool  pads  contained  in  sealed  flasks. 

— E.  S. 


28  a 


C'l.  XVIII.— fermentation  industries. 


[.Tan.  16, 1922. 


Lambic:  Yeasts  of .     H.  Kufferath  and  M.  H. 

Van    Laer.     Bull.    Soc.    Chim.    Belg.,    1921,    30, 

270—276. 
A  large  number  of  yeast  races  differing  widely  in 
attenuating  power  take  part  in  the  spontaneous 
fermentation  of  Belgian  Lambic  beer.  In  general 
they  ferment  much  more  slowly  than  culture  yeasts 
of  equal  attenuating  power,  and  in  presence  of  air 
they  produce  relatively  large  amounts  of  volatile 
acids.  Certain  races  of  high  attenuating  power 
give  rise  to  esters  having  an  odour  resembling  that 
of  old  Lambic.  These  have  much  in  common  with 
the  Brettanomyces  which,  according  to  Claussen 
(J.,  1904,  721),  take  part  in  the  secondary  fermenta- 
tion of  English  beers,  and  the  authors  distinguish 
two  new  species  designated  Brettanomyces  Bruxel- 
s  and  Brettanomyces  Lambicus. — J.  II.  L. 

Fermentation    by    yeast;    The    pressure    resulting 

from  .     R.    Kolkwitz.      Ber.   Deuts.    Botan. 

Ges.,  1921,  39,  219.  Ckem.  Zentr.,  1921,  92,  III., 
1360. 
Fermentation  experiments  were  made  with  a 
mixture  of  sucrose  10,  peptone  0'2,  nutrient  salt 
0T,  compressed  yeast  5,  and  conductivity  water 
50  pts.  in  a  closed  vessel  which  could  be  placed  in 
communication  with  a  manometer;  in  3 — 4  hrs.  the 
pressure  due  to  fermentation  frequently  rose  to 
24  atm.  and  in  a  further  similar  period  to  almost 
40  atm.  The  falling  off  in  the  rate  of  formation 
of  carbon  dioxide  is  due  less  to  the  pressure  than 
to  narcosis  by  the  dissolved  carbon  dioxide  and  to 
the  effect  of  the  alcohol  and  organic  acids  produced 
at  the  same  time.  For  the  development  of  high 
pressure  rapid  fermentation  and  suitable  nutrition 
•are  essential.  At  the  end  of  the  experiments  con- 
traction of  the  protoplasm  was  distinct  in  the  older 
yeast  cells,  but  the  young  cells  appeared  to  be 
homogeneous. — D.  F.  T. 

Alcoholic  fermentation  by  means  of  yeast  cells  under 
various  conditions.  I.  Influence  of  animal  char- 
coal and  other  adsorbents  on  the  course  of  fermen- 
tation: Formation  of  acetaldehyde.  E.  Abder- 
halden.     Fermentforsch.,  1921,  5,  89—109. 

Animal  charcoal  accelerates  fermentation  of  6Ugar 
solution  by  yeast  and  gives  rise  to  the  formation 
of  acetaldehyde;  the  latter  is  gradually  formed  also 
when  yeast  and  animal  charcoal  are  added  to 
aqueous  alcohol.  The  charcoal  acts  as  a  good 
adsorbent  of  acetaldehyde  and  may  thus,  in  addi- 
tion to  participating  in  the  secondary  formation  of 
the  aldehyde  from  ethyl  alcohol,  concentrate  and 
hence  render  evident  acetaldehyde  formed  as  a 
primary  product  in  the  fermentation  of  sugar. 
(C/.  J.C.S.,  Jan.)— T.  H.  P. 

Alcoholic  fermentation  by  means  of  yeast  cells  under 
various  conditions.  II.  E.  Abderhalden.  Fer- 
mentforsch., 1921,  5,  110—118. 

Solutions  of  acetaldehyde  which  undergo  no  loss  in 
weight  when  left  in  contact  with  either  animal  char- 
coal or  yeast,  begin  to  evolve  gas  immediately  both 
charcoal  and  yeast  are  added.  All  the  samples  of 
animal  charcoal  tried  hastened  fermentation  of 
sugar  by  yeast,  causing  formation  of  acetaldehyde, 
and  induced  decomposition  of  pyruvic  acid  into 
acetaldehyde  and  carbon  dioxide,  but  some  of  the 
samples  were  totally  unable  to  bring  about  trans- 
formation of  acetaldehyde  or  alcohol. — T.  H.  P. 

Yeast  cell;  Functions  of  the  .      Zymase    and 

carboxylase  action.  E.  Abderhalden  and  A.  Fodor. 
Fermentforsch.,  1921,  5,  138—163. 
The  fermentations  produced  by  zymase  in  its  plasma 
form  and  by  liberated  zymase  are  regarded  by  the 
authors  as  processes  which  are  quantitatively  and 
kineticaUy    different,    and   experiments   have   been 


carried  out  with  the  object  of  determining  how 
dried  yeast  differs  from  the  living  cell  and  what 
substances  are  removed  when  living  or  dried  yeast 
is  subjected  to  pressure  or  maceration.  (Cf.  J.C.S., 
Jan.).— T.  H.  P. 

Enzymes;  Action  of  hydrolysing  .    M.  H.  Van 

Laer.    Bull.  Soc.  Chim.  Belg.,  1921,  30,  261—265. 

According  to  the  author's  theory  of  the  action  of 
hydrolytic  enzymes  (J.,  1921,  482  a)  the  same 
enzyme  may  hydrolyse  different  substrates  provided 
it  is  capable  of  adsorbing  them,  and  in  such  a  case 
the  same  reaction  optimum  should  apply  to  all  the 
transformations  effected  by  the  enzyme.  Malt  ex- 
tract hydrolyses  esters  and  amygdalin,  and  the  same 
reaction  optimum  applies  to  these  transformations 
as  to  the  degradation  of  starch  and  proteins  by 
malt  extract.  It  is  possible,  therefore,  that  all 
these  hydrolytic  actions  are  the  work  of  one  enzyme. 

—J.  H.  L. 

Sarcince;  Classification  of on  the  basis  of  their 

cultural  and  morphological  behaviour  on  various 
nutrient  media.  K.  Boersch.  Inaug.  Dissert., 
Hanover,  1919.     Z.  ges.  Brauw.,  1921,  186—188. 

Fractionating  liquid  mixtures.    Mariller.    See  IIa. 

Patents. 

Brewing  beer  \by  means  of  moulds'].  E.  Dubourg. 
E.P.  146,365,  2.7.20.    Conv.,  18.1.19. 

The  malting  process  is  dispensed  with  by  the  use  of 
a  mould  of  the  Aspergillus  group,  preferably  one 
designated  Aspergillus  cerevisiw,  which  forms 
yellow  spores  and  is  capable  of  liquefying  and  sac- 
charifying starch,  and  hydrolysing  sucrose,  maltose, 
dextrins,  inulin,  and  proteins.  Raw  grain  cooked 
under  pressure  is  cooled  to  43° — 45°  C,  and  inocu- 
lated with  the  mould  in  open  tuns.  The  mash  is 
stirred  and  copiously  aerated  and  the  temperature 
is  allowed  to  fall  to  37°— 38°  C.  The  requisite 
degree  of  conversion  is  usually  attained  within 
20  hrs.  The  filtered  wort  has  a  pleasant  flavour 
and  may  be  hopped  in  the  usual  way,  whereby  a 
practically   non-alcoholic   beer  is  obtained. 

—J.  H.  L. 

Wines,  spirits,  vinegar,  and  similar  products- 
Maturing  and  improving  .     A.  Jarraud  and 

O.  M.  G.  Roussel.  E.P.  148,829,  10.7.20.  Conv., 
20.11.17. 

A  soltjblb  extract  of  oak-wood  is  prepared  by 
steeping  the  comminuted  wood  for  several  days  in 
the  cold  with  two  successive  quantities  of  dilute 
alcohol  (20 — 25%),  and  afterwards  with  distilled 
water,  the  solutions  thus  obtained  being  distilled 
in  vacuo  with  a  view  to  recover  the  alcohol  and 
obtain  the  extracted  matters  in  a  solid  form.  The 
powdered  product  is  added  to  wines  etc.  in  order 
to  avoid  the  necessity  for  prolonged  storage  in  new 
oaken  casks. — J.  H.  L. 

Cooling  liquids  [beverages]  and  charging  the  same 
with  gas  by  the  use  of  snow-like  carbonic  anhy- 
dride; Method  and  apparatus  for .     Soc.  des 

Gaz  Radioactifs  Naturels  de  Colombieres  sur  Orb. 
E.P.  152,687,  21.10.20.     Conv.,  22.10.19. 

A  vessel  with  perforated  walls  and  open  at  the 
bottom  is  charged  with  carbon  dioxide  snow  and 
then  covered  with  a  film  of  ice  by  immersion  for  a 
short  time  in  water  near  the  freezing  point.  When 
subsequently  immersed  in  the  liquid  to  be  cooled 
and  charged  with  gas  the  film  of  ice  melts  and  the 
carbon  dioxide  is  gasified ;  the  object  of  the  film  of 
ice  is  to  retard  this  gasification  and  render  it  less 
turbulent.  A  small  form  of  the  apparatus,  con- 
sisting of  a  perforated  bell-shaped  member  on  the 
end  of  a  handle,  may  be  employed  for  cooling  and 


Vol.  X1J.,  No.  1.] 


Cl.  XIXa.— FOODS. 


29  a 


carbonating  beverages  in  glasses,  the  apparatus 
being  plunged  first  into  a  vessel  containing  carbon 
dioxide  snow,  then  into  very  cold  water,  and  finally 
into  the  beverage.  Large  forms  of  the  apparatus 
may  be  employed  industrially. — J.   H.   L. 

Brewing   beer  or   the    like   liquor.      [Extinction  of 
hops^    R.  L.  Briscoe.     E.P.  171,069,  14.3.21. 

In  the  boiling  of  wort  in  the  copper,  fresh  hops, 
contained  in  a  cage,  are  immersed  in  the  wort 
during  the  latter  part  of  the  boiling  period,  and 
the  same  hops  are  afterwards  boiled  with  the  next 
charge  of  wort  during  the  whole  boiling  period. 
During  this  second  boiling  the  hops  may  be  either 
retained  in  the  cage  or  loose  in  the  wort.  In 
apparatus  claimed,  a  cylindrical  chamber,  pre- 
ferably fitted  in  the  dome  of  the  copper,  serves  to 
hold  the  cage  before  the  latter  is  immersed ;  it  is 
separated  from  the  interior  of  the  copper  by  a 
hinged  drop-bottom  which  can  be  released  to  allow 
the  suspended  cage  to  fall  into  the  wort. — J.  H.  L. 

Alcohol;     Preparation    of    [from    Siaweed], 

W.  R.  Walkey  and  A.  F.  Bargate.    E.P.  171,479, 
16.8.20. 

Seaweed,  preferably  Fucus  vesiculosus,  is  macerated 
with  water,  and  the  residue  is  separated.  The 
liquid  is  heated  under  pressure,  and  is  then  mixed 
with  liquid  obtained  by  digestion  of  the  residue 
with  acid  under  pressure.  The  mixture  is 
neutralised,  fermented  with  yeast,  and  distilled. 
The  residue  from  the  digester  is  subjected  to  dry 
distillation  for  production  of  wood-spirit  and  ace- 
tone, and  this  distillate  may  be  used  as  a  denatur- 
ant  for  the  alcohol. — H.  H. 

Distilling  alcohol  etc.     E.P.  154,558.     See  LIa. 


XIXa._F00DS. 

Wheat  flour  grades.  Buffer  action  of  water 
extracts.  C.  H.  Bailey  and  A.  C.  Peterson. 
J.  Ind.  Eng.  Chem.,  1921,  13,  916—918.  (Cf. 
J.,  1921,  445  a.) 

Variation  of  the  time  and  temperature  of  extrac- 
tion does  not  alter  appreciably  the  hydrogen  ion 
concentration  of  the  extract,  but  the  buffer  action 
of  such  extracts  increases  with  rise  of  temperature 
from  0°  to  40°  C.  Since  the  buffer  action  is  not 
affected  when  the  extract  is  boiled,  it  is  not  due 
to  coagulable  proteins.  Phosphates,  produced  by  the 
hydrolysis  of  phytin  by  phytase,  are  probably  the 
principal  buffer  substances  in  the  extract.  Extracts 
of  high-grade  flours  are  "  buffered  "  to  a  less 
extent  than  are  those  from  low-grade  flours,  conse- 
quently, less  acid  is  required  to  bring  the  hydrogen 
ion  concentration  of  a  high-grade  flour  dough  to 
the  optimum  for  bread  making  than  is  required  in 
tliu  case  of  a  low-grade  flour. — W.  P.  S. 

Bran;     Detection     of     ground     in     shorts 

[middlings'].     J.  B.  Reed.     J.  Assoc.  Off.  Agric. 
Chem.,  1921,  5,  70—74. 

The  method  depends  on  the  separation  of  the 
various  particles  by  an  air  current.  The  apparatus 
consists  of  a  tube  13  in.  long  and  1J  in.  diam., 
covered  at  one  end  with  bolting  cloth  and  inserted 
in  the  rubber  stopper  of  a  suction  flask  connected 
with  an  air  blast.  The  sample  is  placed  in  the 
tube,  and  by  varying  the  air  current  particles  of 
various  sizes  are  carried  through  the  tube  and  can 
be  collected  separately.  If  the  sample  is  previously 
ground  to  pass  a  20-mesh  sieve  it  is  possible  to 
adjust  the  air  current  so  that  a  residue  consisting 
almost  entirely  of  wheat  germ  can  be  obtained. 
Examination  with  a  hand  lens  reveals  weed  seeds 
and  foreign  matter.    In  a  good  sample  of  middlings 


the  amount  of  germ  is  4'6%.  If  less  than  2%  is 
found,  the  sample  can  be  considered  to  contain 
ground  bran. — A.  G.  P. 

Shorts  [middlings];  Detection  of  the  adulteration 

of .     D.   B.    Bisbee.     J.   Assoc.   Off.   Agric. 

them.,  1921,  5,  74—76. 

Coarse  and  re-ground  bran,  ground  rice  husk,  and 
screenings  are  found  as  adulterants  of  middlings. 
The  sample  is  first  passed  through  sieves  of  20-, 
40-,  60-,  and  100-mesh.  The  portion  retained  by 
the  20-mesh  sieve  is  bran.  The  40-mesh  portion  is 
mostly  bran  with  a  few  germ  and  endosperm  par- 
ticles. The  60-mesh  portion  contains  some  bran 
with  more  germ  and  endosperm  particles,  the 
100-mesh  portion  germ  and  endosperm  with  a  little 
bran,  and  the  portion  passing  the  last  sieve  is 
almost  entirely  endosperm.  Examination  of  the 
grades  with  a  hand  lens  confirms  their  composition. 
The  ash  of  the  original  sample  is  determined,  also 
the  fibre  content  of  each  grade  except  the  last.  The 
ash  of  bran  is  6%  and  over,  whilst  that  of  middlings 
is  2 — 5"5%.  The  fibre  of  bran  is  8'5%  and  less.  Rice 
husks  have  high  ash  and  fibre  content.  A  considera- 
tion of  the  asli  and  fibre  figures  and  an  examination 
of  the  separated  fractions  gives  ample  evidence  of 
adulteration. — A.  G.  P. 

Milk  analyses;  Application  of  the  theory  of  prob- 
ability  in   tlir    interpretation  of    .      H.    C. 

Lythgoe.     J.  Assoc.  Off.  Agric.   Chem.,  1921,  5, 
14—28. 

From  a  consideration  of  analytical  data  of  a  large 
number  of  milk  samples  it  is  concluded  that  a 
protein! fat  ratio  of  less  than  10  is  no  criterion 
that  the  milk  is  not  adulterated.  The  protein: fat 
ratio  is  a  function  of  the  solids,  fat,  and  serum  re- 
fraction of  the  milk  as  well  as  of  the  breed  of  cows, 
and  in  the  interpretation  of  results  should  be  used 
only  in  its  relation  to  those  figures.  Mixed  milk 
from  many  dairies  can  be  declared  skimmed  if  the 
protein:fat  ratio  is  less  than  l'O  provided  that  a 
sufficient  number  of  samples  is  taken  and  other 
data  support  the  conclusion.  Owing  to  the  pre- 
valence of  high  protein :fat  ratios  in  milk  from 
average  herds,  it  is  inaccurate  to  assume  that 
mixed  milk  from  a  number  of  herds  should  not  give 
a  higher  protein: fat  ratio  than  the  average  re- 
corded figures.  In  comparing  the  composition  of 
milk  from  individual  cows  with  that  from  herds, 
the  maximum  and  minimum  figures  from  indi- 
vidual cows  do  not  usually  appear  in  the  herd-milk. 
The  protein:fat  ratio  is  an  exception,  as  owing  to 
the  prevalence  of  ratios  higher  than  the  recorded 
average,  the  maximum  individual  figure  is  well 
maintained  in  the  herd  milk. — A.  G.  P. 

Fish  frozen  in  chilled  brine;  Penetration  of  salt  in 

.     L.  H.  Almv  and  E.  Field.     J.  Ind.  Eng. 

Chem.,  1921,  13,  927—930. 

When  fish  (herrings,  whiting,  flounders,  etc.)  were 
immersed  for  2  hrs.  in  brine  at  0°— 12°  F.  (-18°  to 
-12°  C.)  small  quantities  of  salt  penetrated  the 
skin  and  outer  muscular  layers,  the  average  amount 
of  salt  in  the  latter  (|  in.  deep)  being  2"88%  (calcu- 
lated on  the  dry  substance).  Slight  variations  in 
the  concentration  and  temperature  of  the  brine 
did  not  affect  the  absorption  of  the  salt  to  an  appre- 
ciable extent.  The  penetration  of  the  salt  decreased 
considerably  when  the  fish  was  cooled  at  0°  C.  before 
immersion. — W.  P.  S. 

Grapefruit;    Physiological   study    of    ripening    and 

storage  of .    L.  A.  Hawkins.    J.  Agric.  Res., 

1921,' 22,  263—278. 
In  warm  storage  the  acidity  of  the  "  Common 
Florida  "  grapefruit  (Citrus  decumana,  cf.  J., 
1918,  387  a)  increases  considerably  during  2  months, 
whilst  in  cold  storage  there  is  a  marked  decrease. 
The  amount    of    total   sugars    suffers    very    little 


30  a 


C'l.  XIXb.— WATER  PURIFICATION;  SANITATION. 


[Jan.  16, 1922. 


change.  With  fruit  on  the  tree  the  total  sugars 
increased  and  acids  decreased.  It  is  probable  that 
the  pitting  of  grapefruit  can  be  controlled  by 
curing  at  70°  C.  prior  to  cold  storage. — A.  G.  P. 


Patents. 


[Fruit]   juice  and  jellies   or  marmalade  and   con- 

serve;  Manufacture  of from  fruits  or  the  like 

vegetable  constituents.  O.  and  C.  Bielmann. 
E  P.  148,407,  9.7.20.  Conv.,  14.3.19.  Addn.  to 
147,838  (cf.  G.P.  303,995;  J.,  1920,  525  a). 
Instead  of  a  diffusion  battery  a  single  counter- 
current  vessel  is  employed  in  which  the  fruit  is  first 
extracted,  and  then,  as  it  encounters  regions  of 
higher  temperatures,  disintegrated  and  cooked.  The 
fruit  descends  in  a  vertical  cylindrical  vessel,  about 
7  m.  in  height,  in  the  upper  part  of  which  it  is 
extracted  by  an  upward  current  of  hot  sugar  solu- 
tion admitted  at  an  intermediate  point.  After 
descending  through  this  region  the  fruit  undergoes 
disintegration  in  the  lower  part  of  the  vessel, 
where,  owing  to  the  pressure  of  the  superincumbent 
charge,  a  high  temperature  can  be  maintained. 
Thus  from  the  top  of  the  vessel  a  fruit  syrup  is 
obtained  whilst  a  jam  is  discharged  from  the 
bottom  through  screened  outlets  which  retain  stalks 
and  other  large  fragments. — J.  H.  L. 

Foods  anrt  like  products:  Process  of  and  apparatus 

for  electrically  treating .    P.  S.  Smith.    E.P. 

171,157,  6.8.20. 

Food  products  etc.  in  small  containers,  e.g.,  card- 
board cartons,  are  carried  by  a  belt  conveyor 
through  the  spark-gap  of  electrodes  carrying  high- 
tension  current.  It  is  claimed  that  the  discharge 
destroys  fungus  growth,  injurious  bacteria,  and 
insects  (larva,  egg,  and  pupa). — A.  G.  P. 

Drying  fish    fruit,  and  the  like;  Process  and  appa- 
ratus for  .     J.   Noseworthy.     E.P.   171,422, 

18.5.20. 

The  fish  etc.  is  placed  on  trays  which  are  rotated 
horizontally,  and  passes  intermittently  into  a  hori- 
zontal stream  of  heated  or  cooled  drying  air 
directed  diametrically  across  the  trays.  The  trays 
may  be  arranged  in  tiers  on  a  rotary  platform  and 
the  walk  of  the  drying  chamber  be  cut  away  at 
diametrically-opposite  points  to  provide  the  inlet 
and  outlet  for  the  stream  of  air. — H.  H. 

Organic  matters   and  particularly  meat   and  fish: 

Process  for  preserving  in  the  fresh  condition . 

L.  A.  C.  Cholet.    E.P.  171,637,  20.1.21. 

The  material  is  rapidly  cooled  without  freezing, 
and  is  simultaneously  subjected  to  superficial  steri- 
lisation in  a  current  of  gaseous  antiseptic,  e.g., 
sulphur  dioxide.  It  is  then  rapidly  heated  by  a  blast 
of  sterilised  air  at  about  50° — 60°  C.  for  a  time 
sufficient  only  to  re-heat  the  surface  to  normal 
temperature,  whereupon  the  temperature  of  the 
heating  agent  is  gradually  reduced  to  normal. 

— H.  H. 

[Pasteurising]  liquids  [mill;,  cream,  etc.];  Method 

and  apparatus   for   treating    .      A.    Jensen, 

Assr.  to  Jensen  Creamerv  Machinery  Co.    U.S. P. 
1,396,632,  8.11.21.     Appl.,  31.5.19. 

Mtlk,  cream,  etc.,  is  subjected  to  sub-normal 
pressure  to  withdraw  contained  gases,  and  in  this 
condition  is  subjected  to  a  pasteurising  tempera- 
ture while  moving  rapidly  in  a  thin  layer.  The 
material  is  continuously  circulated  between  the 
point  of  sub-normal  pressure  and  the  pasteurising 
point.  The  apparatus  comprises  containers  under 
vacuum,  a  pasteuriser,  and  means  for  continuously 
circulating  liquid  under  treatment  through  any 
one  container  and  the  pasteuriser. — H.  H. 


Flour;  Process  for   sterilising   and  improving    the 

baking    qualities    of    .      K.    Dienst.      G.P. 

335,406,  12,5.17. 

The  flour  is  dried  at  a  low  temperature  and  is 
then  heated  to  80°  C.  or  over  and  suddenly  cooled, 
the  whole  process  being  carried  out  in  vacuo. 

— h.  c.  n. 

Bread;     Manufacture     of    leavened    ■ .      Ward 

Baking   Co.,   Assees.   of   H.    A.    Kohman.      E.P. 
156,635,  6.1.21.     Conv.,  15.2.18. 

See  U.S. P.  1,274,898  of  1918;  J.,  1918,  669  a. 

Milk    and    other    liquid    substances;    Device    for 

atomising  and  drying  or  evaporating  .     P. 

Miiller.  U.S. P.  1,397,445,  15.11.21.  Appl.,  24.2.20. 

See  E.P.  116,902  of  1918;  J.,  1919,  841  a. 

Butter  substitutes,  edible  fats,  and  the  like;  Manu- 
facture  of  .     W.    Clayton   and   G.    Nodder. 

U.S. P.  1,398,003,  22.11.21.     Appl.,  26.3.20. 

See  E.P.  147,257  of  1919;  J.,  1920,  637  a. 

Jams,   jellies,    and    marmalades   of   fruits;   Art   of 

muling    .      E.     Monti.      U.S. P.     1,398,339, 

29.11.21.     Appl.,  28.3.19. 

See  E.P.  133,456  of  1918;  J.,  1919,  960  a. 

Food  or  other  substances;  Treatment  [cooking  and 

sterilisation]  of by  heat  in  sealed  containers. 

N.    H.    Fooks.      E.P.     158,232,    7.1.21.      Conv., 
24.1.20. 


XIXb.-WATER   PUBLICATION ; 
SANITATION. 

Water   filter    effluents;   Residual    aluminium    com- 
pounds   in  .      A.   Wolman  and    F.   Hannan. 

Chem.  and  Met.  Eng.,  1921,  24,  728—735. 

The  authors  put  forward  the  view  that  aluminium 
compounds  in  solution  exist  in  three  states  defined 
by  the  hydrogen  ion  concentration,  viz.,  non- 
ionised  aluminium  hydroxide,  metal  aluminate, 
and  alumino-acid  salts  (aluminium  chloride, 
sulphate,  etc.).  In  water,  except  at  the 
iso-electric  point,  equilibrium  exists  between 
hydrogen  ions,  metal  aluminate,  and  non-ionised 
aluminium  hydroxide.  The  iso-electric  point  for 
the  hydroxide  is  ps  7.  If,  therefore,  a  water  has 
pK  8,  a  better  precipitation  with  aluminium  sul- 
phate would  be  obtained  if  it  were  first  acidified. 
Experiments  were  made  with  a  water  with 
pn  over  8,  to  which  0'8  c.c.  of  N j\  acid  per  litre 
was  added  and  then  1  grain  of  alum  per  gallon. 
After  standing  and  filtering  hsematoxylin  was 
added,  which  gave  a  brown  colour,  changed  to 
yellow  by  acetic  acid,  whereas  another  portion  of 
the  water  which  had  not  been  acidified  gave  on 
similar  treatment  the  usual  lavender  colour, 
changing  to  brown  with  acetic  acid.  On  standing 
overnight  these  samples  lost  carbonic  acid,  with 
the  result  that  the  pH  value  increased  slightly. 
Other  similar  experiments  are  quoted,  confirming 
the  suggested  explanation. — J.   H.   J. 

Waters;  Further  observations  on  pH  in  natural . 

A.   Wolman  and   F.   Hannan.     Chem.  and  Met. 
Eng.,  1921,  25,  502—506.  (Cf.  supra.) 

Daily  observations  of  the  temperature  and  hydro- 
gen ion  concentration  of  Lake  Ontario  water  were 
made  for  eleven  months,  both  on  fresh  samples  and 
on  the  same  after  standing  for  3 — 4  days.  The 
method  used  was  to  add  5  c.c.  of  a  0"5%  solution  of 
phenolphthalein  to  100  c.c.  of  the  water,  to  observe 
the  depth  of  colour  produced  and  to  record  the 
result  on  an  arbitrary  reaction  scale.  It  was  found 
that    the    reaction    and    the    temperature    varied 


Vol.  XIX,  No.  lj        Cl.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &o. 


31a 


together.  The  effect  of  filtration  of  the  water 
through  slow  and  rapid  6and  filters  was  to  lower 
considerably  the  hydrogen  ion  concentration  of  the 
water.  Bacteria  and  suspended  particles  are  usually 
negatively  charged,  and  these  were  removed  by 
filtration  most  efficiently  when  the  reaction  of  the 
filtered  water  was  nearly  neutral.  These  observa- 
tions explain  why  it  is  more  difficult  to  get  good 
filtration  results  in  the  warmer  months.  The  diffi- 
culty may  be  overcome  by  the  addition  of  the 
quantity  of  alum  required  to  reduce  the  hydrogen 
ion  concentration  to  the  required  point,  allowance 
being  made  for  the  amount  of  carbon  dioxide  pro- 
duced by  the  alum  added. — J.   II.  J. 

Insecticides  and  fungicides;  Report  on  [determina- 
tion nf  arsenic,  in]  .     J.  J.  T.  Graham.     J. 

Assoc.  Off.  Agric.  Chem.,  1921,  5,  33—50. 

The  following  methods  of  arsenic  determination  are 
recommended  for  adoption  as  official  methods :  — 
The  hot  bromate  method  (J.,  1915,  578)  for  the 
titration  of  the  acid  distillate  in  the  official  method 
for  the  determination  of  total  arsenic,  and  for  the 
determination  of  arsenious  oxide  in  Paris  Green 
and  calcium  arsenate.  The  official  method  (Assoc. 
Off.  Agric.  Chem.  Methods,  2nd  edn.,  1920,  p.  59) 
for  the  determination  of  water-soluble  arsenic  in 
lead  arsenate,  to  be  adopted  for  similar  determina- 
tions in  calcinm  arsenate  and  zinc  arsenite.  The 
official  distillation  method  (Assoc.  Off.  Agric.  Chem. 
Methods,  2nd  edn.,  1920,  p.  54)  for  the  determina- 
tion of  total  arsenic  in  magnesium  arsenate  and 
London  Purple.  The  zinc  oxide-sodium  carbonate 
method  (J.  Assoc.  Off.  Agric.  Chem.,  1921,  4,  397) 
for  the  determination  of  total  arsenic  in  London 
Purple.  Iodate  methods  for  arsenic  determinations 
are  not  recommended  since  materials  are  more  diffi- 
cult to  manipulate  and  are  dearer. — A.  G.  P. 

Patents. 

Water;  Process  for  the  purifying  and  clarifying  of 

.      M.    Puiggari    and   N.    Venezia.     U.S. P. 

1,392,524,  4.10.21.     Appl.,  24.11.17. 

Water,  is  made  to  flow  along  a  passage  in  which  it 
is  subjected  to  an  intensely  stressed  electric  field 
under  conditions  producing  eataphoresis. — J.  H.  J. 

Water;  Apparatus  for  purifying .    A.  J.  Reed. 

U.S.P.  1,397,452,  15.11.21.     Appl.,  28.6.21. 

Water  containing  suspended  matter  is  delivered 
into  the  centre  of  a  mass  of  coarse  anthracite  ashes 
within  a  reservoir,  the  upper  surface  of  this  mass 
being  normally  above  the  surface  of  the  water  in 
the  reservoir.  At  the  bottom  of  the  mass  is  dis- 
posed the  inlet  of  a  valve-controlled  drain  pipe,  so 
that  the  mass  may  be  cleaned  by  draining  water 
from  the  reservoir  through  the  mass  into  this  pipe. 

— H.  H. 

Hardness  due  to  residual  carbonate;  Process  of  pre- 
venting increase  of  in  water  treated  with 

hydrochloric  aciit  according  to  the  Balche  process 
and  added  to  water  circulating  in  apparatus  for 
counter-current  cooling.  M.  Tilgner.  G.P. 
341,925,  12.10.20.  (Cf'.  E.P.  135,189;  J.,  1921, 
203  a.) 

A  quantity  of  circulating  water  proportioned  to 
the  quantity  of  water  in  the  cooling  plant  at  the 
time  is  treated  with  hydrochloric  acid  so  as  just  to 
compensate  for  a  possible  increase  of  residual  hard- 
ness due  to  carbonate  produced  by  evaporation. 
The  process  under  certain  conditions  effects  con- 
siderable economy  of  water. — J.  S.  G.  T. 

Sewage  treatment.    W.  R.  Borst.  U.S.P.  1,396,397, 

8.11.21.     Appl.,  28.7.20. 
Air,   introduced  by   agitation   at  or  near  the   top 
surface,    diffuses   downwards     through     a     body  of 
sewage  under  treatment  with  aerobic  bacteria. 

— L.  A.  C. 


Chlorine   compounds   [antiseptics];  A   preparation 

of    which,    may    be    rendered    dispersible. 

W.  H.  H.  Norris  and  J.  H.  Hoseason.  E.P. 
171,418,  7.5.20. 

In  the  preparation  on  a  commercial  scale  of  chlorine 
compounds  for  antiseptic  purposes,  80%  to  140% 
by  weight  of  chlorine  is  added  to  the  raw  material 
known  as  "sharp  oil"  derived  from  coal  tar  or 
blast-furnace  tar.  The  oil  is  preferably  dissolved, 
e.g.,  in  carbon  tetrachloride,  before  adding  the 
chlorine.  The  reaction  mixturo  is  cooled  to  0° — 
15°  C.  during  the  addition  of  the  first  30—40%  of 
chlorine,  a  further  30%  being  added  at  15°— 30°  C, 
and  the  remainder  at  50°  C.  The  product  is  ren- 
dered soluble  or  dispersible  in  water  by  addition  of 
alkali  or  by  means  of  emulsifying  agents  such  as 
fatty  or  resin  soaps,  sulphonated  fatty  oils  or  acids, 
casein,  gelatin,  or,  preferably,  naphthenatos. 

— H.  II. 

[Pine,  oil  disinfectants.]  Composition  of  matter. 
C.  J.  Babb.  U.S.P.  1,370,263,  1.3.21.  Appl., 
1.4.20. 

Deterioration  of  pine  oil  disinfectants  is  prevented 
by  addition  of  glucose  or  invert  sugar. 

Disinfectant :  Method  at  producing  solidified  solu- 
ble  .    A.  Franck-Philipson.  U.S.P.  1,392,564, 

4.10.21.     Appl.,  15.3.18.     Renewed  20.3.20. 

Tar  oil  is  mixed  with  an  alkali  and  fat,  and  the 
mixture  is  saponified  and  then  concentrated  to 
effect  solidification  when  cold.  The  tar  oil  consti- 
tutes 75%  of  the  finished  product. — J.  H.  J. 

[Water]  evaporator  and  feed  water  heating  system; 

Combined  ■  [for  use   on   ships],     lliyli    heat 

level  evaporator  systems.  Evaporator  systems. 
The  Griscom-Russell  Co.,  Assees.  of  S.  Brown. 
E.P.  158,219-21,  16.S.20  and  20.8.20.  Conv., 
26.1.20. 

Sterilisation  or  pasteurisation  of  liquids;  Apparatus 

for .    A.  Mulertz.    U.S.P.  1,396,520,  8.11.21. 

Appl.,  23.8.19. 

See  E.P.  132,237  of  1919;  J.,  1920,  311a. 

Sugar  factory  waste  waters.  G.P.  342,040.  See 
XVII. 


XX— ORGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Try  pa  flavin  [3.6  -  diamino  -  N  -  methylacridinium 
chloride].  H.  Thieme.  Ber.  deuts.  Pharm.  Ges., 
1921,  31,  323—344. 

Normal  trypaflavin  is  composed  of  equimolecular 
quantities  of  two  different  stereoisomeric  forms, 
one  of  which  on  treatment  in  aqueous  solution  with 
barium  hydroxide  or  silver  oxide  is  converted  into 
a  stable  true  quaternary  ammonium  base,  whilst 
the  other  breaks  down  into  methyl  alcohol  and 
diaminoacridine.  Trypaflavin  sulphate,  prepared 
by  adding  sulphuric  acid  to  the  aqueous  solution 
of  the  base  after  separation  of  the  diaminoacridine, 
no  longer  behaved  as  a  dual  substance  on  repeat- 
ing the  treatment  with  barium  hydroxide,  as  no 
diaminoacridine  was  formed  but  only  the  full 
theoretical  quantity  of  the  quaternary  base.  The 
differing  behaviour  of  the  normal  trypaflavin  sul- 
phate and  this  new  sulphate  was  also  demon- 
strated by  conductivity  measurements  of  the  two 
salts  in  reaction  with  barium  hydroxide.  Whilst 
in  the  one  case  a  very  rapid  fall  in  the  conductivity 
during  the  first  few  minutes  was  observed,  in  the 
latter  case,  where  no  diaminoacridine  was  formed, 
no  such  rapid  fall  in  conductivity  was  noticed. 
The  slow,  continuous  fall  in  conductivity  observed 
in  both  cases  is  due  to  absorption  of  carbon 
dioxide.— G.  F.  M. 


32  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[Jan.  16, 1922. 


Mercuric  methylarsinate  and  a  solution  of  this  salt 

suitable     for    injection;    Preparation    of     ■ . 

Picon.    J.  Pharm.  Chim.,  1921,  24,  379—387. 

Mercukio  methylarsinate  can  be  obtained  in  73% 
yield  by  the  precipitation  of  an  aqueous  acid  solu- 
tion of  mercuric  acetate  by  sodium  methylarsinate. 
It  is  a  white  crystalline  substance,  only  slightly 
soluble  in  water,  but  soluble  in  an  aqueous  solu- 
tion of  phenazone.  The  salt  cannot  be  obtained 
by  reaction  between  sodium  methylarsinate  and 
mercuric  chloride.  A  solution  of  mercuric  methyl- 
arsinate suitable  for  subcutaneous  injection  is  pre- 
pared by  dissolving  0'83  g.  of  methylarsinic  acid 
and  ITS  g.  of  phenazone  in  10  c.c.  of  water,  adding 
1"28  g.  of  finely  powdered  yellow  mercuric  oxide, 
dissolving  by  the  aid  of  heat,  and  adding  to  the 
clear  solution  7  c.c.  of  IV/1  sodium  hydroxide  and 
water  to  make  100  c.c.  This  solution  can  be  kept 
without  alteration  for  six  months,  provided  it  is 
stored  in  a.  neutral  glass  vessel,  and  the  sterilisa- 
tion is  carried  out  by  three  successive  operations  of 
2  hrs.  each  at  24-hr.  intervals  at  a  temperature  not 
exceeding  60°  C.  The  toxicity  of  this  solution  is 
of  the  same  order  as  that  of  mercuric  chloride  of 
the  same  concentration.  In  the  solution  the 
mercuric  methylarsinate  is  apparently  in  combina- 
tion in  some  way  with  the  phenazone,  and  it  does 
not  respond  to  the  usual  tests  for  mercuric  ions. 
Sodium  hydroxide  and  potassium  iodide  give  no 
precipitate,  and  ammonium  hydrosulphide  gives  a 
black  coloration  only  after  about  1  min.  After  the 
addition  of  blood  serum  the  reaction  is  delayed  for 
2  mins  —  G.  P.  M. 

Cod  liver  oil;  Therapeutic  action  of  some  deriva- 
tives of  .     O.   Berghausen  and  L.  A.  Stein- 

koenig.     Amer.  J.  Pharm.,  1921,  93,  757—760. 

Morrhtjio  acid,  C8H13N03  (probably  hydroxydi- 
hydropyridine-butyric  acid),  prepared  by  extract- 
ing cod  liver  oil  with  acidified  alcohol,  and  purifying 
the  yellow  oil  obtained,  forms  a  soluble  sodium  salt 
which  in  the  form  of  a  3%  solution,  preserved  by 
the  addition  of  0'25 — 0'5%  of  phenol,  is  suitable  for 
muscular  or  intravenous  injections.  Addition  of 
calcium  acetate  to  this  solution  and  1J%  of  gelatin 
gave  a  suspension  of  insoluble  calcium  morrhuate. 
Mercurous  morrhuate,  prepared  by  adding  mer- 
curous  nitrate  to  a  3%  solution  of  sodium  morr- 
huate, washing  and  drying  the  precipitate,  is  a 
greyish,  gelatinous  substance  suitable  for  intra- 
muscular injection  in  cases  of  syphilis.  Mercuric 
morrhuate,  prepared  by  adding  the  theoretical 
quantity  of  mercuric  chloride  solution  to  sodium 
morrhuate,  forms  a  reddish-yellow  opalescent 
colloidal  solution,  which  if  neutralised  with  alkali 
hydroxide  keeps  well  at  ordinary  temperatures. 
No  precipitation  of  protein  occurs  when  this  solu- 
tion is  added  drop  by  drop  to  human  serum,  and 
the  results  with  human  blood  w-ould  indicate  that 
the  mercuric  solution  is  probably  safe  for  intra- 
venous medication. — G.  F.  M. 

Aryl  n-propyl  ketones.  Studies  in  the  n-butyl  series. 

1.  G.  T.  Morgan  and  W.  J.  Hickinbottom.  Trans. 

Chem.  Soc.,  1921,  119,  1879—1893. 
The  properties  of  aryl  derivatives  of  n-butyl  alcohol 
have  been  examined  with  a  view  to  their  economic 
utilisation.  In  passing  from  phenyl  n-propyl 
ketones  by  reduction  to  the  corresponding  n  -butyl 
hydrocarbons  the  odour  of  the  compounds,  in  con- 
trast with  the  osmophoric  theory  of  Rupe  and 
Majewski  (J.,  1901,  151),  markedly  increases  in 
intensity — a  phenomenon  specially  noticeable  with 
the  nitro  derivatives — and  is  also  dependent  on 
orientation.  Assuming  that  in  aromatic  com- 
pounds containing  more  than  one  osmophoric  group 
the  effect  of  the  osmophoric  grouping  (here  butyl 
and  butyryl),  is  variable,  the  odour  of  a  compound 
may   bo   increased   or    diminished   as   the   orienta- 


tion of  the  substance  varies.  This  is  illustrated  by 
the  preparation  of  phenyl  ?i-propyl  ketone  and 
derivatives  by  condensation  of  butyryl  chloride 
with  benzene,  chlorobenzene,  and  xylene  respec- 
tively. Substitution  in  the  meta  position  yields 
in  general  compounds  with  faint  odours,  while  the 
corresponding  ortho  compounds  possess  powerful 
characteristic  odours.  In  these  condensations  the 
introduction  of  the  butyryl  group  into  the  benzene 
ring  through  the  agency  of  the  Friedel  and  Crafts 
reaction  occurs  much  more  smoothly  than  the  sub- 
stitution of  a  butyl  group  for  chlorine  by  the 
Fittig  reaction. — P.  V.  M. 

Glycerol  und  a-glucoheptitol;  New  syntheses  of  ■ . 

A.   Pictet  and  A.   Barbier.     Helv.   Chim.   Acta, 
1921,  4,  924—928. 

Reaction  takes  place  in  accordance  with  the 
scheme : 

RCHO  +  CH3N02  ->■R•CH(OH)•CH2OH-t■ 
R■CH(OH)•CH.,•NH.,-»■R•CH(OH)•CH..OH-* 
RCH(OH)CHO. 
Thus  an  aqueous  solution  of  glycollic  aldehyde  is 
heated  on  the  water  bath  with  the  calculated 
quantity  of  nitromethane  and  a  little  solid  potas- 
sium bicarbonate.  The  cooled  solution  is  reduced 
with  aluminium  amalgam,  and  the  base  is  precipi- 
tated as  the  mercurichloride.  The  latter  is  decom- 
posed by  hydrogen  sulphide  and  the  liberated  base 
is  converted  by  nitrous  acid  into  glycerol. 
Similarly  dextrose  gives  a-glucoheptitol,  m.p. 
134° — 135°  C. ;  in  each  case  the  yields  are  very 
small.  The  synthesis  does  not  appear  to  proceed 
smoothly  with  glyceraldehyde  or  ^arabinose.  (Cf. 
J.C.S.,  Jan.,  1922.)— H.  W. 

Catalytic  actions  at  solid  surfaces.  Influence  of 
pressure  on  the  rate  of  hydrogenation  of  liquids 
in  the  presence  of  nickel.  E.  F.  Armstrong  and 
T.  P.  Hilditch.  Proc.  Roy.  Soc,  1921,  A  100, 
240—252.     (Cf.  J.,  1920,  663  a.) 

An  increase  in  the  pressure  of  hydrogen,  used  in 
the  reduction  of  unsaturated  organic  liquids  in  the 
presence  of  nickel,  causes  a  directly  proportionate 
increase  in  the  rate  of  reduction,  provided  that 
there  are  no  disturbing  factors.  The  increase  in 
rate  becomes  abnormally  large  if  other  groups 
(such  as  carboxyl  or  hydroxyl)  which  are  active 
towards  nickel,  but  not  open  to  hydrogenation,  are 
also  present.  The  nature  of  the  unsaturated 
organic  compound  has  a  determining  influence  on 
the  effect  of  the  hydrogen  concentration. — J.  F.  S. 

Calcium  oxalate;  Occurrence  of in  the  Gidgee 

wattle    (Acacia    Cambaijei).       T.     Steel.       Proc. 
Linnean  Soc.  N.S.W.,  1921,  46,  256—258. 

Samples  of  the  wood  and  bark  of  A.  Cambagei  have 
been  found  to  contain  18'82%  of  calcium  oxalate 
(CaC,0„,H30)  in  the  dry  bark  and  4"77%  in  the 
dry  wood.  These  are  the  highest  recorded  for  any 
plant.  Other  species  of  acacia  barks  show  a  con- 
tent of  1-36— S'92%  of  calcium  oxalate.— D.  W. 

Phenols    in    essential    oils;    Estimation    of    . 

W.    H.    Simmons.      Perf.    Ess.    Oil   Rcc,    1921, 
12,  384—385. 

Attention  is  called  to  the  varying  methods  of  pro- 
cedure in  estimating  the  amount  of  phenols  in 
essential  oils  by  the  alkali  hydroxide  absorption 
method.  From  5%  to  20%  alkali  solutions  have  at 
various  times  been  recommended,  but  the  more 
dilute  solution  is  probably  the  best.  The  ratio  of 
oil  to  alkali  solution  also  affects  the  result,  higher 
figures  being  obtained  with  5  c.c.  of  oil  and  100  c.c. 
of  alkali  solution  than  with  10  c.c.  of  oil  and  the 
same  volume  of  alkali,  in  the  case  of  both  thyme 
and  cinnamon  leaf  oils,  but  it  is  at  present  an  open 
question  which  is  the  more  correct  result. — G.  F.  M. 


Vol.  XLT.,  No.  10      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  Ac. 


33* 


Chenopodium   oil.     T.    A.   Henry    and    H.   Paget. 
Trans.  Chem.  Soc,  1921,  119,  i714— 1724. 

Chenopodivm  oil  consists  of  about  60%  of  aseari- 
dole,  with  about  5%  of  the  corresponding  glycol, 
and  34 — 40 %  of  a  mixture  of  hydrocarbons  contain- 
ing approximately  15°  of  cymene,  5%  of  terpinene 
yielding  by  oxidation  with  permanganate  two  forms 
of  a-S-dihydroxv-a-methyl-^-isopropvladipic  acid, 
m.p.  203°— 204°  and  189°  C.  respectively,  and  10% 
of  a  new  lreevo-rotatory  terpene  as  yet  unisolatcd. 
Traces  of  the  lower  fatty  acids,  up  to  0'9%,  and  of 
methyl  salicylate,  up  to  0'5%,  are  also  found. 
Judging  from  the  physical  constants  of  its  mixtures 
with  a-terpinene  and  cymene,  the  new  terpene  has 
approximately  the  following  properties: — h.p.  177° 
—178°  at  760' mm.,  sp.  gr.  at  15°  C.  0-847,  [o]  I5D  = 


-57c 


--V48A.     It  yields  an  optically  inactiye 


crystalline  tetrabromide,  m.p.  117°  C.  (Br 
69-88%,  70-08%,  C.oH^Br.  requires  Br  =  70-17%). 
On  oxidation  with  permanganate  in  the  cold  it 
yields  acetic  and  isobutyric  acids  and  a  volatile 
crystalline  acid,  m.p.  117°  C.  No  evidence  was 
obtained  of  the  presence  in  the  oil  of  limonene, 
phellandrene,  svlvestrene,  safrole,  or  camphor. 

—P.  V.  M. 


Patents. 

Methane;    Manufacture,    of .  Parbw.    vorm. 

Meister,    Lucius    und    Briining.  E.P.    161,924. 

10.8.20.     Cony.,  15.4.20.     Addn.  to  146,110  (J., 
1921,  26  a). 

The  temperature  of  reaction  is  regulated  by  diluting 
the  reacting  gases  with  gases  which  are  indifferent 
to  the  process,  preferably  pure  methane,  or  less 
carbon  monoxide  than  is  represented  by  the  ratio 
carbon  monoxide :hydrogen  =  1:5  is  used.  The  use 
of  methane  as  diluent  renders  it  possible  to  carry 
out  the  process  in  a  single  furnace  by  repeatedly 
re-introducing  the  mixture  into  the  same  contact 
furnace  instead  of  using  a  large  number  of  contact 
furnaces.  The  water  is  separated,  and  carbon 
monoxide  and  hydrogen  in  the  approximate  propor- 
tion of  1:3  are  freshly  introduced  at  each  circuit. 

I'.  M.  Tt. 

Iodine  compounds;  Manufacture  of  [organic]  . 

R.  Benko.    E.P.  164,306,  24.3.21.    Com-.,  1.6.20. 

A  solution  of  22'5  g.  of  iodine  in  225  g.  of  alcohol 
i^  added  to  a  solution  of  12  g.  <>l'  hexamethylene- 
tetramine  in  1  kg.  of  5  gelatin  solution.  The  mix- 
ture is  heated  until  a  clear  faintly  yellow  liquid  is 
obtained,  which  may  be  filtered  and  used  direct,  or 
evaporated  to  dryness  )'/i  vacuo.  The  product  con- 
tains 20%  of  combined  iodine,  but  no  free  iodine  or 
bcxamethylenetetramine.  It  is  used  as  an  injection 
for  the  treatment  of  tuberculosis,  for  it  is  less 
poisonous  than  iodine,  it  deposits  almost  its  total 
iodine  content  in  the  body,  and  it  is  segregated 
from  the  body  much  more  slowly  than  the  iodine 
contained  in  potassium  iodide  or  in  other  organic 
iodine  compounds. — F.  M.  R. 

Solutions    containing    aluminium    formate    and   an 

alkali  salt;  Production  of .    R.  Wolffenstein, 

and   Chem.   Fabr.   vorm.   Goldenberg,   Geromont 
und  Co.    E.P.  170,911,  20.7.20. 

A  desiccated  aluminium  salt,  such  as  aluminium 
sulphate,  the  acid  component  of  which  is  stronger 
than  formic  acid,  is  mixed  with  sodium  formate  in 
approximately  the  theoretical  quantities  for  com- 
plete double  decomposition.  The  desiccation  of  the 
aluminium  salt,  which  need  not  be  complete,  is 
essential  to  produce  a  product  for  pharmaceutical 
purposes  which  forms  a  clear  stable  solution  with 
water.— F.  M.  R. 


Aluminium  formate:  Preparation  of  water-soluble 

compounds  of .     J.  A.  Wiilfing,  Chem.  Fabr. 

G.P.  339,091,  25.8.14. 

Commercial  solutions  of  aluminium  formate  aro 
evaporated  to  dryness  with  a  water-soluble  salt  of 
formic  acid  or  one  of  its  homologues.  If  sodium 
acetate  or  magnesium  formate  is  used,  the  resulting 
product  is  a  very  soluble,  slightly  deliquescent 
powder. — A.  R.  P. 

Aspirin   and   similar   compounds;  Manufacture   of 

compressed  tablets  from  .     S.  E.  Cockerton, 

and  (ienatosan,  Ltd.    E.P.  171,178,  11.8.20. 

A-^pirin  is  mixed  with  a  farinaceous  substance,  such 
as  arrowroot  or  cornflour,  and  compressed  into  solid 
form.  The  product  is  ground  to  the  fineness  of 
castor  <-ugar  and  compressed  into  the  final  tablet  in 
the  usual  manner.  Compressed  tablets  of  phen- 
acetin,  caffeine,  saccharine,  veronal,  etc.,  may  also 
he  manufactured  by  this  process. — F.  M.  R. 

Acetylsalicylates;  Manufacture  of  calcium,  magne- 
sium and  lithium  .    Howards  and  Sons,  Ltd., 

and  J.  W.  Blagden.     E.P.  171,281,  6.10.20. 

The  preparation  of  these  acetylsalicylates  by  pre- 
cipitation with  organic  solvents  (<■/.  E.P.  4986  of 
1912  and  10,946  of  1914;  J.,  1912,  844;  1915,  982) 
is  expensive  owing  to  the  consumption  of  solvent. 
Calcium,  magnesium,  or  lithium  acetylsalicylates 
are  made  without  the  use  of  solvents  as  preeipi- 
tants  by  causing  the  metallic  carbonate  to  react 
with  acetylsalicylic  acid  in  chemically  equivalent 
quantities   in   the   presence   of   a    little    water 

— F.  M.  It. 

Alcohol;  Production   ,,f from  gas  containing 

ethylene.      C.    A.     Basore.       U.S. P.     1,385  515 
26.7.21.     Appl.,  14.3.21. 

A  mixture  of  sulphuric  acid  and  ethyl  hydrogen 
sulphate  is  mixed  with  from  50  to  70%  of  water 
and  heated  in  a  closed  vessel,  from  which  the 
alcohol  is  distilled  off.— A.  E.  D. 

Alcohol  and  dry  sodium  acetate;  Recovery  of 

from  ethyl  acetate.  Consortium  fur  Elektrochem. 
Ind.  G.m.b.H.  G.P.  339,035,  13.7.18. 
Ethyl  acetate  is  saponified  by  heating  it  with 
caustic  soda  in  the  presence  of  not  more  than 
3  mols.  of  water  to  each  mol.  of  ester,  but  with  at 
least  sufficient  water  to  ensure  that  the  resulting 
crystals  of  sodium  acetate  remain  molten  in  a  homo- 
geneous liquid,  i.e.,  that  no  anhydrous  salt  crystal- 
lises out.  The  process  may  be  carried  out  by  mixing 
the  ester  and  solid  alkali  with  sodium  acetate 
i  rystals  that  have  been  melted  in  their  own  water  of 
crystallisation.  Alter  saponification  is  complete  a 
single  distillation  yields  96%   alcohol. — A.  R.  P. 

Oxalic  acid;  Process  of  refining .    D.  E.  Kelen, 

Assr.    to    U.S.    Industrial    Alcohol    Co.      U.S. P. 
1,397,127,   15.11.21.     Appl.,  22.10.17. 

A  solution  of  crude  oxalic  acid  in  about  one-half 
of  its  weight  of  water  is  heated  nearly  to  its  boiling 
point,  and  insoluble  matter  is  separated.  After 
crystallisation,  the  liquor  is  agitated  to  separate 
the  crystals  from  suspended  matter  and  is  then 
decanted  off.  The  product  is  recrystallised,  and 
while  in  solution  is  treated  with  an  absorbent  of 
colouring  matter. — L.  A.  C 

Trichloroethylene ;  Making .    J.  R.  MacMillan, 

Assr.   to  Niagara    Alkali   Co.      U.S. P.   1,397,134, 
15.11.21.     Appl.,   2.8.20. 

Acetylene  tetrachloride  is  heated  with  lime  and  a 
non-caustic  sodium  compound  to  yield  trichloro- 
ethylene.— L.  A.  C. 


34  a 


Cl.  XX.— OBGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[Jan.  16, 1922. 


Iron  compounds  of  the  phosphoric  acid  esters  of  the 
higher  aliphatic  polyhydroxy  compounds;  Pre- 
paration   of    complex .     Farbenfabr.    vorm. 

F.  Bayer  und  Co.  G.P.  338,735,  1.6.18.' 
The  phosphoric  acid  esters  of  carbohydrates,  such  as 
hevulose,  sucrose,  and  mannitol,  are  treated  with 
ferric  salts  in  the  presence  of  alkalis.  For  example, 
calcium  Uevulosediphosphate  is  treated  with  oxalic 
acid,  sodium  hydroxide,  and  ferric  chloride, 
whereby  the  normal  ferric  salt  of  the  complex  acid 
is  precipitated  as  a  white  insoluble  powder.  This 
is  filtered  off,  made  into  a  paste  with  water  and 
treated  with  33%  caustic  soda  solution  while 
cooling  in  ice.  By  adding  95%  alcohol  to  the  deep- 
brown  solution  thus  obtained  a  dark-brown  oil 
separates,  which,  on  stirring  with  absolute  alcohol, 
changes  to  a  dark-brown  powder  consisting  of  a 
complex  iron  salt  of  lsevulosediphosphoric  acid,  con- 
taining 626%  P,  11-48%  Na,  and  15'12%  Fe.  It 
is  very  readily  soluble  in  water,  and  the  solution 
reacts  slightly  alkaline  to  litmus  and  gives  no  pre- 
cipitate with  magnesia  mixture.  Similar  deriva- 
tions of  mannitol  and  sucrose  may  be  obtained ; 
they  are  all  readily  soluble  in  water  and  find  thera- 
peutical application. — A.  R.  P. 

Bile  acids;  Preparation  of  compounds  of  the  - . 

Preparation  of  derivatives  of  cholic  acid.  J.  D. 
Riedel,  A.-G.  G.P.  (a)  338,736,  19.7.16,  and 
(b)  339,350,  22.8.16.  (b)  Addn.  to  334,553  (J., 
1921,  529  a). 

(a)  The  unsaturated  acids  (apocholic  acids)  obtained 
by  splitting  off  water  from  cholic  acid  or  its  esters 
are  coupled  in  a  known  manner  with  hydrocarbons 
or  their  derivatives,  such  as  alcohols,  bases,  alde- 
hydes, ketones,  acids,  and  esters.  For  example, 
the  unsaturated  acid  obtained  from  methyl  cholate 
by  removal  of  water  is  heated  with  96%  acetic  acid 
to  obtain,  on  cooling,  needles  of  a  new  compound, 
melting  between  135°  and  155°  C,  and  containing 

1  mol.  of  the  bile  acid  to  1  mol.  of  acetic  acid, 
which  is  completely  decomposed  by  alkalis.  Naph- 
thalene in  hot  alcoholic  solution  gives  with  apocholic 
acid  odourless,  stable  crystals,  ni.p.  173° — 174°  C, 
of   a  compound  of   1   mol.    of   the   hydrocarbon   to 

2  mols.  of  the  acid.  Addition  products  may 
similarly  be  obtained  of  the  bile  acids  with 
camphor,  strychnine,  ethyl  acetate,  benzaldehyde, 
and  ethyl  alcohol,  (b)  Cholic  acid  itself,  instead 
of  its  esters  as  specified  in  the  chief  patent,  is 
treated  with  dehydrating  agents,  such  as  dilute 
inorganic  acids,  potassium  bisulphate,  or  organic 
acids,  such  as  glycollic  or  oxalic  acids  or  mixtures 
of  inorganic  and  organic  substances.  In  addition 
to  the  method  previously  described  the  process  may 
also  be  carried  out  by  heating  cholic  acid  with  15% 
sulphuric  acid  for  6  hrs.  under  a  reflux  condenser 
until  a  syrupy  mass  is  obtained  which,  after  wash- 
ing with  water,  dissolving  in  dilute  sodium  car- 
bonate solution,  and  treating  the  resulting  solution 
with  dilute  hydrochloric  acid,  yields  a  mixture  of 
unsaturated  bile  acids  which  may  be  separated  by 
ether  and  acetic  acid  in  a  known  manner. 

—A.  B    P 

Cholic  acid  compounds  [with   aldehydes'];  Prepara- 
tion of  .     Farbenfabr.  vorm.  F.   Bayer  und 

Co.  G.P.  339,561,  23.6.14.  Addn.  to  338,486 
(J.,  1917,  403). 

The  reaction  is  brought  about  before  dissolving  the 
reacting  mass  in  alkalis,  as  follows  :  Paraformal- 
dehyde is  intimately  mixed  with  cholic  acid  and 
the  mixture  slowly  heated  in  an  open  vessel  to 
160° — 170°  C.  until  it  is  no  longer  soluble  in  sodium 
carbonate  solution — about  J  hr. — and  then  allowed 
to  cool.  The  melt  is  extracted  with  dilute  sodium 
carbonate  solution,  the  residue  dissolved  in  alcohol, 
and  the  filtered  solution  poured  into  ice-water  to 


precipitate  the  methylene  derivative  of  cholic  acid 
as  a  white  tasteless  powder,  m.p.  170°  C,  soluble 
in  alcohol  and  acetic  acid,  and  slightly  soluble  in 
benzene,  ligroin,  and  other  hydrocarbons.  'While 
this  product  has  the  valuable  therapeutical  proper- 
ties of  that  produced  as  described  in  the  chief 
patent  it  is  much  more  stable. — A.  R.  P. 

Coumarin  and  its  homologues;  Preparation  of 

W.  Ponndorf.     G.P.  338,737,  18.11.19. 

Phenols  or  phenyl  ethers  are  condensed  at  tempera- 
tures above  120°  C.  with  fumaric  or  maleic  acids 
or  their  derivatives  in  the  presence  of  zinc  chloride 
or,  better,  a  73%  solution  of  sulphuric  acid  in 
water  or  alcohol,  whereby  the  hydrogen  atom  in  the 
o-position  in  the  phenol  forms  formic  acid  with  a 
carboxyl  group  of  the  fumaric  or  maleic  acid  and 
1  mol.  of  water  is  split  off  yielding  coumaric  acid, 
which  by  the  closing  of  the  ring  yields  coumarin. 
Thus,  p-cresol  with  fumaric  acid  in  the  presence 
of  sulphuric  acid  at  130°— 180°  C.  yields  6-methyl- 
coumarin,  m.p.  72° — 73°  C— A.  R.  P. 

Ethane;    Preparation  of  - from  acetylene  and 

hydrogen.      N.   Caro   and   A.    R.    Frank.     G.P. 

339.493,  27.4.19.    Addn.  to  253,160  (J.,  1913,  109). 

A  mixture  of  1  vol.  of  acetylene  and  2  vols,  of 
hydrogen  is  passed  at  100°  C.  over  a  catalyst  con- 
sisting of  10  pts.  of  nickel  and  1  pt.  of  palladium 
deposited  on  a  porous  carrying  material  such  as 
charcoal,  clay,  porcelain,  or  asbestos.  The  result- 
ing gas  contains  90%  of  ethane.  The  use  of  the 
mixed  catalyst  prevents  overheating  and  the  forma- 
tion of  liquid  hydrocarbons. — A.  R.  P. 

Esters  of  mercuridicarboxylic  atids  and  their 
saponification  products;  Preparation  of  complex 
.       W.   Schoeller  and  W.   Schrauth.       G.P. 

339.494,  9.1.13. 

The  complex  mercuric  sulphide  compounds  of  the 
esters  of  carboxylic  acids,  obtained  by  the  action 
of  freshly  prepared  alcoholic  solutions  of  hydrogen 
sulphide  on  the  mercuric  acetate  compounds  of 
the  esters,  are  heated  alone  to  split  off  1  mol.  of 
mercuric  sulphide  and  the  resulting  mass  is  ex- 
tracted with  a  suitable  solvent.  Thus,  on  heating 
methyl  o-acetylaminobenzoate-mercuric  sulphide 
prepared  by  the  action  of  alcoholic  hydrogen  sul- 
phide on  methvl  acetylanthranilate-mercuric  ace- 
tate, to  80°— 100°  C.  it  loses  1  mol.  of  mercuric 
sulphide  and,  after  extraction  with  acetone  and 
filtration,  a  pale  yellow  compound  consisting  of 
methyl  mercuridiacetylaminobenzoate  is  obtained. 
This  is  soluble  in  methyl  and  ethyl  alcohols,  acetone, 
and  ethyl  acetate,  less  so  in  benzene  and  chloro- 
form, and  only  very  slightly  soluble  in  petroleum 
ether  or  water ;  it  is  unattacked  by  ammonium  sul- 
phide and  cold  alcoholic  stannous  chloride  solutions, 
and  melts,  after  previous  darkening,  at  about 
200°  C.  Similar  compounds  may  be  obtained  from 
the  esters  of  benzoic  and  salicylic  acids ;  they  are 
all  decomposed  by  digestion  with  JV/1  sodium 
hydroxide  solution,  and  the  resulting  solution  yields, 
after  acidifying  with  sulphuric  acid,  a  flocculent 
precipitate  of  the  free  mercuridicarboxylic  acid. 
Methyl  crotonate  combines,  in  methyl  alcohol 
solution,  with  1  mol.  of  mercuric  acetate,  and  the 
product  on  treatment  with  alcoholic  hydrogen  sul- 
phide yields  methyl  methoxybutyrate-mercuric 
sulphide,  which  on  heating  to  S0° — 100°  C.  loses 
1  mol.  of  mercuric  sulphide  and  yields  methyl 
o-mercuri-di-/3-methoxybutyrate  in  microcrystalline 
needles  soluble  in  methyl  and  ethyl  alcohols,  acetone, 
ethyl  acetate,  and  chloroform,  less  soluble  in  ben 
zene,  and  insoluble  in  petroleum  ether.  The  ester 
is  soluble  in  sodium  hydroxide  solution  and  the  free 
acid  is  produced  as  a  white  amorphous  precipitate 
soluble  in  alcohol  by  the  addition  of  sulphuric  acid 
to  the  alkaline  solution. — A.  R.  P. 


Vol.  XJJ.,  No.  l.]        Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


35  a 


Fatty    acids,  aldehydes  and  ketones;  Preparation 

of  from  mineral  oil  hydrocarbons  and  tar 

oils.     C.  Harries.     G.P.  339,562,  20.2.19. 

Oils,  such  as  lignite  tar  oils,  are  treated  with 
liquid  sulphur  dioxide  to  remove  highly  unsaturated 
compounds,  leaving  a  residue  consisting  of  paraffins 
and  aliphatic  compounds  with  a  double  linking. 
The  former  are  removed  by  freezing  and  the  resi- 
dual liquid  is  distilled  with  steam.  The  fraction 
Iioiling  between  100°  and  250°  C.  is  treated  with 
ozone  at  ordinary  temperatures  till  it  gains  8 — 12% 
in  weight,  the  ozonised  oil  is  hydrolysed  with  steam, 
the  product  is  digested  with  caustic  potash  to 
remove  the  acids  formed  and  to  destroy  peroxides 
and  again  heated  with  superheated  steam  to  remove 
the  oils  from  the  soap  solution.  The  latter  is 
evaporated  in  vacuo  with  strongly  superheated 
steam  till  the  temperature  rises  to  200°  C,  whereby 
the  last  traces  of  oil  are  removed.  The  product 
consists  of  potassium  palmitate  and  stearate.  The 
nils  recovered  by  steam  distillation  of  the  soaps  are 
again  put  through  the  process  to  convert  their 
aldehyde  content  into  a  further  yield  of  fatty  acid. 
To  convert  the  ozonides  into  aldehydes  and  ketones 
the  mass  after  hydrolysis  by  steam  is  shaken  with 
sodium  bisulphite,  the  crystalline  bisulphite  com- 
pounds are  separated  by  centrifuging,  washed 
with  alcohol  and  ether,  decomposed  by  boiling  suc- 
cessively with  sodium  carbonate  and  sulphuric  acid, 
and  the  resulting  liquid  is  distilled  with  steam. 
Better  yields  are  obtained  if  the  bisulphite  reduc- 
tion is  carried  out  in  the  presence  of  potassium 
bisulphate.  The  residual,  unattacked  oil  from  the 
ozone  treatment  melts,  according  to  the  origin  of 
the  original  oil,  between  -6°  and  -f  1°  C.  and  boils 
at  280°— 350°  C— A.  R.  P. 


Dilnjdro-derivatives  of  benzene  hydrocarbons;  Pre- 
paration of  .     Farbenfabr.  vorm.  F.  Bayer 

und  Co.     G.P.  339,563,  27.10.19. 

Unsatubated  ethers  of  the  general  formula:  — 

•  C : C • C  .  OR 

:  C • C • CH 

in  which  the  free  valencies  are  satisfied  with 
hydrogen  or  an  alkyl  group,  are  treated  with  sub- 
stances capable  of  splitting  off  water  from  the 
molecule ;  thus  l-ethoxy-A2-tetrahydrobenzene,  when 
heated  at  160°  C.  with  potassium  bisulphate 
or  passed  over  spongy  alumina  (cf.  Wislicenus,  J., 
1905,  294)  heated  to  300°  C.  yields  dihydrobenzene 
and  alcohol,  while  l-methyl-3-ethoxy-A'-cyclo- 
hexene,  when  passed  at  180° — 200°  C.  over  mag- 
nesium sulphate  that  has  previously  been  dehy- 
drated at  350°  C,  gives  an  almost  quantitative 
yield  of  l-methyl-A21-dihydrobenzene. — A.  R.  P. 

Digitalis   glucosides;   Preparation  of    tannic   acid 

compounds  of .     Knoll  und  Co.,  Chem.  Fabr. 

G.P.  339,613,  13.7.15. 

Solutions  of  the  digitalis  tannic  acids  are  treated 
with  solutions  of  the  digitalis  glucosides  in  any 
suitable  proportion,  e.g.,  an  alcoholic  solution  of  the 
mixed  digitalis  glucosides  (i.e.,  the  whole  of  the 
chloroform-soluble  glucosides)  or  of  digitoxin  or 
gitalin  (the  water-soluble  portion  of  the  glucosides) 
is  evaporated  to  dryness  with  a  solution  of  the 
tannic  acids  isolated  from  digitalis,  whereby  a  grey- 
brown  powder  of  uniform  composition  is  obtained, 
which  is  insoluble  in  water  and  dilute  acids,  soluble 
in  alcohol,  and  easily  soluble  in  dilute  alkalis.  The 
products,  on  account  of  their  ready  solubility  in 
dilute  alkali  to  yield  highly  concentrated  solutions, 
are  especially  suitable  for  intravenous  injection. 

—A.  R.  P. 


Protocatechuic  aldehyde;  Preparation  of S 

Hamburger.     G.P.   339,945,    13.5.16.     Addn.   to 
278,778  (J.,  1915,  249). 

Sulphukyl  chloride  is  used  instead  of  phosphorus 
peutachloride  to  protect  the  aldehyde  group  during 
the  action  of  the  chlorine.  The  sulphuryl  chloride 
and  chlorine  may  be  allowed  to  react  consecutively 
or  simultaneously  on  the  piperonal  and  with  or 
without  the  use  of  a  solvent.  For  example, 
piperonal  is  treated  with  sulphuryl  chloride,  the 
mixture,  after  standing  a  short  time,  is  heated  to 
100°  C.  and  saturated  with  chlorine.  The  resulting 
diehloropiperonyl  chloride  is  hydrolysed  with  water, 
and  protocatechuic  aldehyde  is  obtained  from  the 
solution  by  extraction  with  ether  or  by  evaporation. 

—A.  R.  P. 

Marine  animal  oils;    Preparation  of  solid  deriva- 
tives from  fatty  (tcids  of .     Chem.   Werke 

Greuzaeh  A.-G.     G.P.  311,271,  8.4.19.     Addn.  to 
335,911  (J.,  1921,  665  a). 

Cod-liver-oil  and  other  marine  animal  oils  are 
treated  with  suitable  oxidising  agents  and  then 
carefully  saponified,  treated  with  mild  oxidising 
agents,  or  with  animal  charcoal  or  other  deodorising 
absorbent  substances,  and  converted  into  difficultly 
soluble  salts,  especially  those  of  the  alkaline-earth 
and  heavy  metals.  For  instance,  cod-liver-oil  is  dis- 
solved in  ether,  and  a  1%  osmium  tetroxide  solu- 
tion added,  30%  hydrogen  peroxide  is  then  added, 
drop  by  drop,  so  that  the  ether  is  kept  boiling,  and 
the  reaction  completed  by  gentle  warming.  A  50% 
sodium  hydroxide  solution  is  added,  drop  by  drop, 
so  that  the  solution  is  never  appreciably  alkaline. 
The  soap  solution  is  diluted,  agitated  for  several 
hours  with  fuller's  earth  in  absence  of  air,  and  pre- 
cipitated with  calcium  chloride  solution.  The  cal- 
cium salt  can  be  obtained  quite  free  from  odour  and 
colour  by  prolonged  agitation  with  dilute  hydrogen 
peroxide.  Sprat-oil  is  suspended  in  water  at  40°  C, 
osmium  tetroxide  solution  added,  and  the  mixture 
agitated  with  air,  and  carefully  saponified.  The 
product  is  agitated  for  a  long  time  with  animal 
charcoal  in  the  cold  and  in  absence  of  air.  After 
filtering  off  the  charcoal  the  ferrous  salt  is  precipi- 
tated with  ferrous  sulphate  as  an  almost  odourless 
and  tasteless  powder  containing  8"24%  of  iron. 

— H.  C.  R. 


Fats,  albumins,  and  products  containing  the  same; 

Preparation   of   aqueous   solutions    of   .      E. 

Kolshorn.    G.P.  341,607,  26.7.16. 

Fats  or  albumins  insoluble  or  soluble  with  difficulty 
in  water  are  dissolved  in  solutions  of  "hydro tropic" 
compounds,  e.g.,  salts  of  organic  compounds  (with 
the  exception  of  bile  acids)  capable  of  forming 
alkali  salts,  or  amides  of  organic  acids.  A  list  of 
suitable  compounds  is  given,  and  methods  are 
described  for  the  preparation  of  solutions  of  casein 
in  sodium  amylsulphate,  of  sheep,  cattle,  or  human 
serum  in  sodium  hippurate,  of  a  suspension  of  egg- 
yolk  in  sodium  benzoate  or  sodium  cresotinate,  of 
pancreas-nucleoprotein  in  potassium  benzoate, 
and  of  unevaporated  milk  in  potassium  p-toluene- 
sulphonate  solution.  Serum  can  be  boiled  with  a 
50  %  urea  solution,  or  a  33  %  thiourea  solution,  with- 
out coagulating.  The  solutions  are  readily 
sterilised,  and  can  be  evaporated  to  dryness  and 
subsequently  redissolved  in  water. — L.  A.   C. 

Albumen;  Preparation  of  pure  salt-  and  acid-free 

from   its  solutions   in   salts   or  acids.      H. 

Pringsheim.     G.P.  341,969,  21.12.19. 

The  albumen  is  repeatedly  precipitated  from  its 
alkaline  solution  by  means  of  acid,  using  smaller 
quantities  of  alkali  to  redissolve  it,  and  acid  to  re- 


Ma 


Cl.  XXI— PHOTOGRAPHIC  MATERIALS  AND  PROCESSES. 


[Jau.  16, 1922. 


precipitate,  each  time  until  eventually  such  a  small 
quantity  of  acid  is  required  that  it  is  precipitated 
practically  free  from  acid. — A.  R.  P. 

1 1 ydro-de rival ives  of  2-phenylguinoline-i-carboxylic 

acid,   and   its   homologu.es;    Preparation   of  

and  their  salts.  F.  Zuckmayer.  G.P.  342,048, 
18.6.16. 
2-Phenylquinoline-4-cahboxylic  acid  or  its  alkyl 
or  alkyloxy  substitution  products,  in  which  the  sub- 
stituted group  is  in  the  quinoline  residue,  is  treated 
with  reducing  agents,  e.g.,  tin,  iron,  or  zinc  and 
hydrochloric  acid,  zinc  and  caustic  soda,  or  sodium 
amalgam,  or  it  may  be  reduced  electrolytically  at 
a  mercury  cathode.  The  resulting  phenyltetra- 
hydroquinolinecarboxylic  acids  are  less  soluble  in 
water  and  more  soluble  in  alcohol  and  benzene  than 
the  original  acids  and  form  readily  soluble  alkali 
salts  and  difficultly  soluble  alkaline-earth  salts.  The 
acids  are  more  readily  soluble  in  dilute  mineral 
acids  than  the  original  material  and  their  nitro- 
derivatives  are  only  slightly  soluble;  they  are  also 
readily  acetylated.  Examples  are  given  of  the 
method  of  making  2-phenyltetrahydroqumoline- 
4-carboxylic  acid,  white  needles,  in. p.  149°  C,  and 
S-metlioxy-2-phenyltetrahydroquinoline-4-carboxylic 
acid,  crvstallising  from  alcohol  in  white  needles, 
m.p.  185° — 186°  C.  Both  the  free  acids  and  their 
alkali  salts  are  tasteless  and,  used  therapeutically, 
remove  uric  acid  from  the  body  and  lower  its 
temperature  without  causing  the  shivering  charac- 
teristic of  known  hydroquinoline  derivatives. 
2-Phenyltet  i  aliydroqumoline-l-carboxylic  acid  may 
be  detected  in  urine  by  the  yellow  colour  it  gives 
with  concentrated  hydrochloric  acid  and  phospho- 
tungstic  acid. — A.  R.  P. 

Alcohols;  Production  of  polyvalent .  O.  Matter. 

E.P.  147,906-7,  9.7.20.  Conv.,  8.12.13  and  21.4.15. 

See  U.S.P.  1,237,076  of  1917;    J.,  1917,  1065. 

Aminoalkyl   esters   arid  alkylaminoalkyl   esters   of 

para-ami  nob  enzoic    acid;    Production     of    . 

W.    Bader,    Assr.    to   Levinstein,    Ltd.      U.S.P. 
1,396,913,  15.11.21.     Appl.,  11.10.17. 

See  E.P.  111,328  of  1916;   J.,  1918,  4  a. 


XXI.-  PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Photographic     emulsions ;     Darkening     of     sdvet 
bromide   grains  on   exposure   to   light  as  further 

evidence    of    their    heterogeneity    in    .    J. 

Ilrooksbank.      Phot,   J.,   1921,   61,   421—424. 

The  dark  crystals  often  shown  in  photomicro- 
graphs of  emulsion  grains  are  produced  by  light- 
exposure  during  the  preparation  etc.  of  the 
slides,  and  their  occurrence  may  be  avoided  by  pre- 
paring and  focussing  the  slido  by  dark-room  light 
and  photographing  on  a  panchromatic  plate 
through  a  red  filter.  Photomicrographs  are  shown 
of  tho  same  slide  exposed  to  white  light  between 
the  two  photographic  exposures,  a  considerable 
number  of  dark  grains  being  evident  on  the  second 
photograph.  Examination  of  a  number  of  emul- 
sions in  this  way  shows  that  the  speed  of  darkening 
of  an  individual  grain  is  not  a  function  of  its  size, 
and  the  percentage  of  darkened  grains  is  not 
dependent  on  tho  speed  or  colour-sensitiveness  of 
tho  emulsion,  but  is  associated  with  "  printing- 
out  "  qualities.  The  darkened  grains  are  less 
opaque  than  silver  grains  obtained  by  development. 
They  are  partially  soluble  in  weak  neutral  thiosul- 
phate  solution,  but  if  treated  with  that  or  a  solu- 


tion of  another  halogen  absorbent  in  a  strong  light 
the  amount  of  darkening  increases  but  tho  grains 
do  not  change  in  shape. — B.  V.  S. 

Silver      halide      crystals;     [Photo-]sensitivily     of 

■    which  are   geometrically   identical.     F.    C. 

Toy.     Phot.  J.,  1921,  61,  417-421. 

In  experiments  designed  to  show  whether,  in  a 
photographic  emulsion,  silver  halide  grains  of  the 
same  size  have  the  same  sensitivity,  i.e.,  are  ren- 
dered developable  by  the  same  exposure,  an  emulsion 
was  used  having  a  largo  proportion  of  well-marked 
triangular  grains  of  the  same  size.  The  emulsion 
was  coated  approximately  one  grain  thick,  exposed 
behind  a  step-wedge,  developed,  and  dried  without 
fixing.  A  count  was  then  made  of  the  remaining 
silver  halide  grains  of  one  particular  size  in  a 
given  area  of  an  unexposed  portion  of  the  plate 
and  of  each  of  the  exposed  steps  and  the  percentage 
of  developed  grains  in  each  step  calculated;  by 
adopting  certain  precautions  in  their  selection  it 
was  estimated  that  the  total  variation  in  volume  of 
tho  grains  counted  did  not  exceed  20%.  The  curve 
obtained  by  plotting  percentage  of  grains 
developed  against  exposure  was  similar  to  the  usual 
sensitometric  curve,  thus  demonstrating  a  variation 
of  sensitivity  of  silver  halide  grains  of  the  same 
size  and  shape.  This  variation  may  be  due  to 
variation  in  the  composition  of  the  crystals,  or  to 
the  structure  of  the  light  radiation  and  the 
mechanism  of  its  absorption.  In  tho  latter  case  the 
sensitivity  of  an  individual  grain  is  measured  by 
the  probability  of  its  being  made  developable  by  a 
given  exposure. — B.  V.  S. 

[Photographic']  dry  plates;  Uniform  development 
of .    O.  Bloch.    Phot.  J.,  1921,  61,  425— 428. 

More  uniform  development  of  a  photographic  plate 
is  obtained  than  by  any  of  the  usual  methods  by 
developing  in  a  dish  and  drawing  over  the  plate, 
alternately  in  either  direction  and  during  the  whole 
time  of  development,  a  roller  squeegee,  tho  rubber 
covering  of  which  has  been  replaced  by  thick  pile 
velvet.  Diagrams  are  given  showing  the  iso- 
paques  of  uniformly  exposed  plates,  one  developed 
by  this  method  and  one  by  a  careful  rocking 
method.— B.  V.  S. 

Diaminophenol  developers;  Preservation  of  —. 
L.  J.  Bunel.  Bull.  Soc.  Franc.  Phot,,  1921,  8, 
290—291. 

The  presence  of  a  small  quantity  of  lactic  acid  con- 
siderably reduces  the  rate  of  oxidation  of  a  diamiuo- 
phenol  developer  in  air  without  affecting  its  de- 
veloping power.  The  addition  of  5  c.c.  of  the  acid 
(sp.  gr.  1'21)  to  1000  c.c.  of  developer  containing 
5  g.  of  diaminophenol  and  30  g.  of  anhydrous 
sulphite,  is  recommended.  Glyceric  acid  has  a 
similar  action  but  not  glycerin. — B.  V.  8. 

Diaminophenol  developers;  Comparative  experi- 
ments on   the   stabilisers  recommended  for  . 

L.    Lobel.      Bull.    Soc.    Franv.    Phot.,    1921,    8, 
291—292. 

Comparisons  of  an  ordinary  diaminophenol 
developer,  the  same  developer  treated  with 
Desahnc's  stannous  tartrate  solution  (J.,  1921, 
529  a),  the  same  treated  with  lactic  acid  (<•/.  supra), 
and  an  ordinary  metol-quinol  developer  show  the 
second  and  third  to  last  about  twice  as  long  as  the 
first  both  as  regards  the  time  after  which  a  loss 
of  developing  power  becomes  evident  and  the  time 
required  for  total  loss  of  developing  power.  They 
are  similar  to  the  metol-quinol  developer  in  the 
former  respect,  but  have  less  than  half  the  life  in 
the  latter  respect.  Coloration  of  the  solutions  is 
not  a  reliable  guide  to  loss  of  developing  power, 
the  stabilised  developer  being  much  less  coloured 
after  complete  loss  of  developing  power  than  tho 
non-stabilised  developer. —  B.  V.  S. 


Voi.xjj.No.l.J         Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


37  a 


Patents. 

[Photographic]  silver-pictures;  Process  for  toning 

with  selenium.    Mimosa  A. -G.    G.P.  340,746, 

6.  10.17.  Addn.  to  301,019. 
The  speed  and  efficiency  of  a  toning  bath  consisting 
of  selenium  in  solution  in  neutral  or  acid  sulphite 
are  increased  by  the  addition  of  ammonium  salts, 
particularly  the  thiosulphatc,  or  of  salts  of  organic 
ammonium  bases. — B.  v.  S. 

Light-sensitive  collodion  coating  mixture  and  film. 

J.  Rheinberg.    U.S.P.  1,396,592,  8.11.21.    Appl., 

11.10.20. 
See  E.P.  166,063  of  1920;  J.,  1921,  603  a. 

XXII.-EXPLOSIVES ;  MATCHES. 

Patents. 

Explosive  compounds;  Process  of  making  and 

product  thereof.  C.  M.  Stine,  Assr.  to  E.  I.  du 
Pont  do  Nemours  and  Co.  U.S.P.  1,370,067, 
1.3.21.     Appl.,  31.5.17. 

Kxplosiye  compounds  containing  both  nitro  and 
nitrate  groups  are  prepared  by  halogenating  an 
aromatic  hydrocarbon  having  a  side  chain  consist- 
ing of  an  alkyl  group  with  more  than  one  carbon 
atom,  e.ij.,  cthylbenzene,  nitrating  the  halogen 
compound,  heating  the  nitro  compound  with  water 
under  pressure  to  replace  the  halogen  atoms  by 
hvdioxyl  groups,  and  then  again  nitrating  to 
replace  the  hydroxyl  groups  by  N03  groups.  Other 
methods  of  preparation  may  also  be  used.  Special 
claim  is  made  for  the  compounds, 

C0H3(NO2)2.CH(NO3).CHs(NO3), 

prepared  from  ethylbenzene. 

Explosive    and    method    of    manufacturing    same. 

W.    O.    Snelliug,    Assr.    to    Trojan    Powder    Co. 

U.S.P.  1,395,775,  1.11.21.    Appl.,  25.3.20. 
An  inorganic  nitrate   is  coated  with  a  solid   non- 
explosive  vulcanised  oil  and   sensitised  by   mixing 
with  a  solid  detonating  explosive. — D.  W. 

Propellent  powder;  Process  for  making .    R.  G. 

Woodbridge,  Jan.,  Assr.  to  E.  I.  du  Pont  de 
Nemours  and  Co.  U.S.P.  1,396,193,  8.11.21. 
Appl.,  14.3.21. 

Dry.  granular  nitrocellulose  is  heated  at  70° — 80°  C. 

in   contact    with   a   deterrent   material   capable  of 

diffusing  into  tho  grains. — H.  C.  R. 


XXIII.-ANALYSIS. 

Calculation    of   chemical   analyses;    Tabic   for    the 

.      W.    D.    Treadnell.      Hclv.    Chim.    Acta, 

1912,  4,  1010—1017. 

A  table  of  factors  for  use  in  the  calculation 
of  analytical  results  is  given,  the  data  being  based 
on  the  atomic  weights  adopted  by  the  Swiss  Com- 
mission on  atomic  weights. — H.  AY. 

Interferometer;  Use  of  the  Zeiss  (Rayleigh-Lowe) 

water  ■  for  tlie  analysis  of  non-aqueous  solu- 
tions. E.  Cohen  and  H.  R.  Bruins.  Proc.  K. 
Akad.  Wetensch.,  1921,  24,  114—122. 

Aqueous  solutions  may  be  analysed  by  means  of  a 
Rayleigh-Lowe  interferometer  with  an  error  of  the 
order  0'0002  .  When  great  attention  is  paid  to 
obtaining  a  constant  temperature  and  the  exclusion 
of  moisture,  and  if  the  liquid  of  the  liquid  bath  has 
a  refractive  index  of  the  same  order  as  that  of  the 
solvent,  results  of  about  the  same  accuracy  may  be 
obtained  for  solutions  in  organic  solvents. — J.  F.  S. 

Potassium     hydroxide     solution:     Preparation     of 

volumetric    alcoholic    .      S.    T.    McCallum. 

J.  Ind.  Eng.  Chein.,  1921,  13,  943. 

If     purified    wood    spirit    is    used     in     place    of 


ethyl  alcohol  in  the  preparation  of  alcoholic  potas- 
sium hydroxide  solution,  the  latter  does  not  darken 
in  colour  whin  kept. — W.  P.  S. 

Sulphites;  Sulphate-free  ■  for  standard  sulphur 

dioxide  solutions.  S.  L.  Shenefield,  F.  C.  Vil- 
hrandt,  and  J.  R.  Withrow.  Chem.  and  Met. 
Eng.,  1921,  25,  953—955. 

Sodlum  sulphite,  Na2S03,7H,0,  may  be  prepared 
free  from  sulphate  as  a  damp  crystalline  meal  by 
cooling  solutions,  made  by  passing  sulphur  dioxide 
into  sodium  carbonate  solution,  to  0°  C.  On  drying. 
even  in  the  absence  of  air,  considerable  quantities  of 
sulphate  are  formed,  probably  by  autoxidation. 
Similar  results  are  obtained  with  calcium  sulphite. 
Even  the  dry  salts  containing  some  sulphate  oxidise 
rapidly  on  exposure  to  the  air,  and  the  authors 
therefore  question  the  validity  of  work  based  on 
the  use  of  sodium  sulphite  as  a  standard.  (Cf. 
J.C.S.,  Jan.)— A.  R,  P. 

Magnesium;  Detection  of in  presence  of  mau- 

ijunesc  and  phosphoric  acid.  A.  Purgotti.  Gazz. 
Chim.  ItaL,  1921,  51,  11.,  265—266. 
Phosphoric  acid  precipitates  manganese  almost 
completely  as  tertiary  manganese  phosphate,  even 
from  a  solution  containing  a  large  proportion  of 
ammonium  chloride;  this  precipitate  change- 
rapidly  m  the  hot,  into  manganous  ammonium  phos- 
phate, which  forms  pale  pink  crystals  and  is  ana- 
logous in  composition  and  properties  to  magnesium 
ammonium  phosphate.  In  order  to  prevent  the 
manganese  precipitate  from  being  formed  during 
the  detection  of  magnesium,  the  hydrochloric  acid 
solution,  to  which  ammonia  solution  is  added  to  pre- 
cipitate the  cations  accompanying  magnesium  in 
the  third  group,  is  treated  simultaneously  with  am- 
monium sulphide  to  remove  the  manganese  as  sul- 
phide ;  after  filtration,  the  solution  may  be  tested 
for  magnesium.    (Cf.  J.C.S.,  Jan.)— T.  H.  P. 

Copper;  .1   very  senstitive  reagent  for  .     The 

Kastle-Meyer  reagent.     P.  Thomas  and  G.  Car- 
pontier.     Comptes  rend.,  1921,  173,  1082—1085. 

The  Kastle-Meyer  reagent,  a  2%  solution  of  phenol- 
phthalein  in  20  aqueous  potassium  hydroxide,  de- 
colorised by  boiling  with  zinc  powder,  gives  a  pink 
coloration  with  copper  salts  «nd  is  capable  of  detect- 
ing 1  pt.  of  copper  in  100,000,000  of  water.  Four 
drops  of  the  reagent  are  added  to  10  c.c.  of  the  solu- 
tion under  examination  and  then  1  drop  of  hydrogen 
peroxide  (5 — 0  vol.). — W.  G. 

from;    lodometric   determination   of .      I.    M. 

Kolthoff.      Pharm.    Weekblad,    1921,    58,    1510— 

1522. 
The  reaction  between  ferric  salts  and  iodides  is 
quantitative  and  suitable  for  analytical  work  under 
proper  conditions.  For  25  c.c.  of  J//10  iron  solu- 
tion, 2  c.c.  of  concentrated  hydrochloric  acid  and 
1'6  g.  of  potassium  iodide  give  quantitative  separa- 
tion of  iodine  after  standing  for  15  mins. ;.  for  10  c.c. 
of  Ml  1000  iron  solution,  in  A'/ 10  hydrochloric  acid 
solution,  O.j  g.  of  iodide  is  required.  Sulphates 
and  oxalates  interfere.     (C/.  J.C.S.,  Jan.,  1922.) 

— S.  I.  L. 

Antimony;     Electrolytic     determination,    of    ■ . 

H.  Angenot,     Bull.  Soc.  Chim.  Belg.,  1921,  30, 

268—270. 
Slightly  high  results  are  invariably  obtained  in 
tho  electrolytic  determination  of  antimony,  but  the 
percentage  error  is  fairly  constant  under  certain 
conditions.  The  author  recommends  the  use  of  a 
cathode  of  dull  platinum  gauze  on  which  the  anti- 
mony is  deposited  at  65°— 70°  C,  from  a  mixture 
of  80  c.c.  of  sodium  sulphide  solution  saturated  in 
the  cold,  and  30  c.c.  of  30%  potassium  cyanide  solu- 
tion by  means  of  a  current  of  1  amp.     The  weight 


38  a 


PATENT   LIST. 


(Jan.  16, 1922. 


oi'  tho  dried  deposit,  if  greater  than  O'l  g.,  is  multi- 
plied by  0'9762.  Halimann  (Inaug.  Diss.,  Aachen) 
m  1911  proposed  the  factor  0"9788.  If  a  platinum 
capsule,  slightly  roughened  by  means  of  aqua  regia 
ns  recommended  by  Classen,  is  employed  as 
cathode,  the  results  are  about  2  '  higher  than  those 
obtained  by  the  author's  method. — J.  H.  L. 

See  also  pages  (a)  2,  Mefractometric  examination 
of  petroleum  (Utz).  3,  "Dracorubin  test  of  hydro- 
•  i'  noted  compounds  (Schrauth  and  von  Keussler). 
12,  Sulphur  in  pyrites  (Gadais);  Ammonia  and  per- 
sulphates  (Scagliarini  and  Torelli);  Bromides  and 
chlorides  in.  iodides  (Kolthoff);  Sodium  antimonate 
(Tomula).  13,  Sclenious  acid  (Rosenheim  and 
Krause).     17,  White  metals  (Kling  and  Lassieur). 

21,  Linseed  and  soya  bean  oils  (T.schudy) ;  Saturated 
a nd    unsaturated   fatty    acids    (Grun    and   JankoV 

22,  Turkey-red  oils  (Herbig).  24,  Tanning  materials 
(Reed);  Tannin  analysis  (Wilson  and  Kern;  also 
Schultz);  Sulphite-cellulose  in  tanning  extracts  (De 
Hesselle).  25,  Sods  (Koenig  and  others);  Soil  toxi- 
city, acidity,  and  basicity  (Can);  Nitrates  in  soil 
extracts  (Emerson);  Potassium  in,  soils  (Jones  and 
Reeder).  26,  Borax  in  fertilisers  (Bartlett).  29, 
Braninmiddlings  (Reed) ;  Adulteration  of  middlings 
(Bisbee).  31,  Arsenic  in  insecticides  etc.  (Graham). 
32,  Phenols  in  essential  oils  (Simmons). 

Patents. 
Gas  calorimeters.    W.  B.  Davidson.     E.P.  171,240, 

13.9.20. 

The  calorimeter  is  filled  with  packing  material  and 
a  liquid  introduced  in  a  fine  6tate  of  division  is 
caused  to  percolate  downwards  through  fissures  or 
divisions  in  the  packing  in  counter-current  to  the 
ascending  products  of  combustion  of  the  gas  of 
which  the  calorific  value  is  to  be  determined,  where- 
by the  cooling  liquid  and  tho  gaseous  products  of 
combustion  are  brought  into  intimate  contact. 
Means  are  provided  for  measuring  the  temperature 
difference  between  the  entering  and  issuing  cooling 
liquid.  The  gaseous  products  of  combustion  may  be 
introduced  into  the  casing  through  a  slotted  or  per- 
forated annular  grid  having  a  hollow  upright  cone 
at  the  centre,  the  periphery  at  the  base  of  the  cone 
being  attached  to  the  inner  periphery  of  the  annu- 
lar grid.  The  cooling  liquid,  after  percolating 
through  the  packing,  passes  through  perforations  or 
slots  in  the  grid  into  a  spiral  trough,  and  thence  to 
a  thermometer  pocket. — J.  S.  G.  T. 

Testing  coal.    E.P.  171,282.    See  IIa. 


Patent  List. 

The  dates  given  in  this  list  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  oase  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on  sale 
at  Is.  each  at  the  Patent  Office  Sale  Branch,  Quality 
Court,  Chancery  Lane,  London,  W.C.  2.  15  days  after  the 
date  given. 

I.— GENERAL;  PLANT.;  MACHINERY. 

Applications. 

Bamburg.     Grinding-machines.    33,507.    Dec.  13. 

Barber.  Recovery  of  colloidal  matter  from 
liquids.    34,551.    Dec.  22. 

Berard  and  Drin.  Filters.  33,557.  Dec.  14. 
(Fr.,  4.1.21.) 

Bloxam  (Elektro-Osmose  A.-G.).  Colloidal-chemi- 
cal processes  for  purifying  substances.  35,062. 
Dec.  30. 

Blyth.  Apparatus  for  separating  air  or  gas  from 
material  suspended  therein.    33,282.     Dec.  12. 

Blyth.  Apparatus  for  separating  solid  materials. 
35,012.    Dec.  30. 

Buckley  and  Harvey.  Centrifugal  drying- 
machines.     33,938.    Dee.  16. 


Cleworth,  Wheal,  and  Co.,  and  Parkinson.  Ap- 
paratus for  filtering,  cooling,  humidifying,  etc.  air 
or  gas  with  liquid.    33,400.     Dec.  12. 

Cook.  Chemical  and  physical  synthesis.  34,991. 
Dec.  30. 

Oorsan.    Gas-heated  furnaces.    33,067.     Dec.  14. 

Davidson,  and  Holmes  and  Co.  Apparatus  for 
bringing  liquids  and  gases,  vapours,  fumes,  etc. 
into  intimate  contact.     34,804.    Dec.  28. 

Engelhardt,  and  Bayer  u.  Co.    33,944.    See  XX. 

Gregson,  and  King,  Taudevin,  and  Gregson. 
Furnaces,  kilns,  etc.    34,723.    Dec.  24. 

Haddan.  Treating  liquids  with  decolorising, 
purifying,  and  filtering  agents,  and  separating  un- 
dissolved substances  from  liquids.  33,532.  Dec.  13. 
(Ger.,  13.12.20.) 

Hocking.  Apparatus  for  separating  solids  from 
fluids,  or  fluids  from  vapours  or  gases.  33,827 
Dec.  10. 

Jacquelin.  Washing  and  separating  apparatus. 
34,141  and  34,290.     Dec.  19  and  20. 

Lilienfeld.  Manufacture  of  colloidally-solubh' 
substances  and  of  suspensions  or  emulsions.  34,281. 
Dec.  20.    (Austria,  21.12.20.) 

Low,  and  Low  Engineering  Co.  Mixing-appa 
ratus.     33,036.     Dec.  14. 

Liitschen  and  Metzger.  Separation  of  gaseous 
or  liquid  mixtures.  35,082.  Dec.  30.  (Ger.,  16.9.21.) 

Maschinenfabr.  Haas  Ges.  Drying-canal.  34,350. 
Dec.  21.     (Ger.,  23.12.20.) 

Oswald.      Grinding   or   disintegrating   machine 
34,705.    Dec.  24. 

Razen,  Schaefer  and  Co.,  and  Schaefer.  Furnaci 
33,502.     Dec.  13. 

Scrive.    Drying-apparatus.     34,874.     Dec.  28. 

Squire.     Rings  for  filling  absorption  towers,  di 
filiation  columns,  etc.     33,443.     Dec.  13. 

Wade  (Natural  Air  Dryers,  Inc.).  Drying  masses 
of  divided  material.    34,420.    Dec.  21. 

Complete  Specifications  Accepted. 

15,479  (1920).  Goldschmidt  A.-G.  Modifying 
physical  characteristics  of  solid  substances  produced 
by  chemical  reactions.     (144,003.)    Dec.  30. 

19,017  (1920).  Ludwig.  Treatment  of  gaseous 
and  liquid  substances  by  irradiation.  (147,649.) 
Dec.  30. 

20,596  (1920).  Soc.  Anon.  Fours  Speciaux.  See  II. 

22,880  (1920).  Hinchley.  Expressing  liquids 
from  materials  containing  them.    (172,358.)    Dec.  21. 

23,039  (1920).  Brutzkus.  Apparatus  for  chemi- 
cal production  and  research.     (149,915.)    Dec.  21. 

25,299  (1920).  Robinson  and  Son,  and  Robinson. 
Apparatus  for  separating  solid  particles  from  air. 
(172,386.)    Dec.  21. 

25.391  (1920).    Johns.    See  II. 

25.392  (1920).  Johns.  Vapour-condensing  appa- 
ratus.   (172,393.)    Dec.  21. 

25,880  (1920).  Soc.  Franco-Beige  de  Fours  a 
Coke.  Apparatus  for  effecting  tho  intimate  inter- 
mingling of  gas  and  liquid.    (160,149.)    Dec.  21. 

30,588  (1920).  Capro.  Filters.  (172,491.)  Dec.  21. 

33,309  (1920).    Nelson.  Kilns.  (172,856.)  Dec.  30. 

33,371  (1920).  Veitch,  Rowlands,  and  Rowland- 
son,  Ltd.  Mixing,  stirring,  or  agitating  apparatus. 
(172,513.)    Dec.  21. 

33,775  (1920).  Ohno.  Centrifugal  separators. 
(172,517.)    Dec.  21. 

1505-6  (1921).  Hulsmeyer.  Separation  of  air 
and  gases  from  liquids,  particularly  boiler  feed- 
water.     (157,789  and  157,790.)    Dec.  21. 

9367  (1921).  Bartmann.  Grinding-mills,  disin- 
tegrators, etc.     (173,182.)     Dec.  31. 

10,851  (1921).  Davidson.  Grinding  or  crushing 
apparatus.     (161,977.)    Dec.  31. 

11,014(1921).  Powdered  Fuel  Plant  Co.  Separa- 
tion of  solid  medium  in  suspension  from  a  gaseous 
medium.    (167,739.)    Dec.  21. 

16,161  (1921).  Scherhag.  Drying-apparatus. 
(167,154.)    Dec.  21. 


Vol.  XLI.,  No.  1.] 


PATENT    LIST. 


39  a 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;   DESTRUCTIVE  DISTILLATION; 

HEATING;  LIGHTING. 

Applications. 

Abbott  and  Davidson.  Destructive  distillation  of 
coal  etc.    34,941.    Dec.  29. 

Bonnard.  Manufacture  of  vegetable  charcoal. 
35,127.    Dec.  31. 

Brecheisen.    Treatment  of  oils.    34,685.    Dec.  23. 

Burt,  Boulton,  and  Haywood,  and  China.  34,846. 
See  II. 

Bvrnes.  Partial  combustion  methods  of  treating 
aliphatic  hvdrocarbons.  34,424.  Dec.  21.  (U.S., 
6.1.21.) 

Crosfield  and  Sons,  and  Hilditeh.  Methanation 
of  water-gas  and  manufacture  of  methane.  33,661. 
Dec.  14. 

Gill  (Verein.  Huttenwerke  Burbaeh-Eich-Diide- 
lingen).     Coal-dust  firing.     34,229.     Dec.  20. 

Johnson  (Wood).   Gas-producers.   33,660.   Dec.  14. 

Koch.    33,441.    See  VII. 

Oldfield  and  Tavlor.  Gas-cleaning  apparatus. 
33,876.    Dec.  16. 

Praceiq.  Preparation  of  pulverulent  fuels. 
34,423.    Dec.  21.    (Fr.,  24.12.20.) 

Smith.  Manufacture  of  solid  and  semi-solid 
fuels.     £5,123.    Dec.  31. 

Soc.  I'Air  Liquide.  Manufacture  of  hydrogen 
bv  partial  liquefaction  of  mixtures  of  gases  contain- 
ing it,     34,654.    Dec.  23.     (Fr.,  17.2.21.) 

Terres.  Production  of  gases  for  heating  etc. 
34,391.    Dec.  21.    (Ger.,  21.12.20.) 

Tullv.  Manufacture  of  gas  for  heating  and 
lighting.    34,302.    Dec.  20. 

Tullv.  Apparatus  for  generating  gas  from  coal. 
34.303.    Dec.  20. 

Wallace.    34,075.    See  XVII. 

Complete  Specifications  Accepted. 

18,709  (1920).  Bronn.  Treatment  of  coke-oven 
gases.    (146,839.)    Dec.  21. 

19,015  (1920).  Bronn.  Treatment  of  coke-oven 
gases.    (147,051.)    Dec.  30. 

20,596  (1920).  Soc.  Anon.  Fours  Speciaux.  Ap- 
paratus for  destructive  distillation  of  mineral  and 
organic  substances.    (14S,773.)    Dec.  30. 

21,906  (1920).  Deutsche  Erdol  A.-G.  Separation 
of  solid  and  liquid  hvdrocarbons.  (149.347. )  Dec.  31. 

22,885  (1920).  Blair.  Treatment  of  peat, 
(172  359  )    Dec    21 

25',391  (1920)'.  Johns.  Distillation  of  material 
carrying  a  percentage  of  volatile  matter.  (172,392.) 
Dec.  21. 

25,484  (1920).  Johns,  Curran,  Lowe,  and  West- 
cott.    Retorts.     (172,401.)    Dec.  21. 

25,750  (1920).  Willemse.  Production  of  water- 
gas.     (172,413.)    Dec.  21. 

26,340  (.1920).  George.  Decomposition  of  heavy 
hydrocarbon  oils  into  lighter  oils.  (151,925.) 
Dec.  30. 

26,464  (1920).  Zwillinger.  Coke-ovens.  (172,739.'* 
Dec.  30. 

27,162  (1920).  Lessing.  Treatment  of  coal  to 
cause  or  facilitate  its  breaking-up  or  crushing. 
(173,072.)    Dec.  31. 

27,999  (1920).  Glover,  West,  and  West's  Gas  Im- 
provement Co.    See  III. 

28,676  (1920).  Chown.  Carbonising  and  distil- 
ling carbonaceous  material.     (173,099.)     Doc    31 

30,160  (1920).  Ges.  f.  Landwirtech.  Bedarf,  and 
Mandelbaum.     See  XVI. 

35,909  (1920).  Soc.  Gen.  de  Fours  a  Coke.  Re- 
generative coke-ovens.     (160,442.)    Dec.  30. 

1093  (1921).  Gewerkschaft  ver.  Constantin  der 
Grosse.  Continuous  distilling  oven  for  the  manu- 
facture of  gas  and  coke.     (157,219.)    Dec.  31 

2393  (1921).  Brooke  and  Whitworth.  Furnaces 
used  in  making  producer-gas  etc.   (172,546.)  Dec,  21. 


r.  17'7i1T1  (1921)'  American  Coke  and  Chemical 
n  O^°ke-Ovens  or  the  like.  (165,737-165,740.) 
Dec.  30. 

HI.— TAR  AND  TAR  PRODUCTS. 

Applications. 
Burt,  Boulton,  and  Haywood,  and  China.    Appa- 
De^2°r  lng  coal  tar>  Petroleum,  etc.  34,846. 

Chem.  Fabr.  in  Billwarder.    Production  of  high- 
percentage    pure    anthracene.      33,645.      Dec.    14 
(Ger.,  17.12.20.) 

Morgan  Rider  and  Thermal  Industrial  and 
Chemical  Research  Co.  Distillation  of  tar.  34  279 
Dec.  20. 

National  Aniline  and  Chemical  Co.     Method  of 
effecting  caustic  fusions.    33,675.     Dec.  14.     (U  S 
li.b.21.)  '    " 

Weil.  Production  of  high-percentage  pure 
anthracene.     33,646.     Dec.  14.     (Ger.,  17.12.20.) 

Complete  Specifications  Accepted 

19,913  (1920).     Philipson.    See  XIX 

23,530  (1920).  Schroeter,  and  Tetralin  Ges  Hv- 
drogenation  of  naphthalene.     (172,688  )     Dec    30' 

27,999  (1920).  Glover,  West,  and  West's  Gas  Im- 
provement Co.     Means  for  facilitating  separation 

qlq7^r/iroomtaV',ndoi1^    (172>7S3.)    Dec.  30. 

.34, / 33  (1920)  Kagan.  Separating  and  purifying 
anthracene  and  carbazole.     (172,864  )    Dec   30 

35,853  (1920).  Fyfe,  and  British  Dyestuffs  Cor- 
poration. Manufacture  of  l-chIoro-2-aminoanthra- 
quinone.     (173,166.)     Dec.  31. 

IV.-COLOURING  MATTERS  AND  DYES. 

Applications. 
National  Aniline  and  Chemical  Co.     Production 

^ri^anf&T2'33'684-    ^^^  SS 

De^a29f°rd  (CaSSella  u-  °°^  Vat  dyestuffs.  34,955. 

M&7*  Decks'    Ltd''    and    Th0maS'      D^stuffs- 
Complete  Specifications  Accepted 

073:606?- DePcr°3drtl0n  °f  dyeStUff  ^-mediates. 

Arnn,,!f1,t+and  f3-'6.15    (1?20)-    Atack   and   Boater. 
-Manufacture  of  intermediates  and  a  dyestuff  of  the 
anthraquinone  series.     (172,682.)    Dec    30 
35,853(1920).    Fyfe  and  others.    See  HI. 

V.— FIBRES;  TEXTILES;  CELLULOSE- 
PAPER. 

Applications. 
Budde  and  others.    35,021.    See  XIV 
Claessen         Manufacture      of     elastic      flexible 

CSer21  1  2°")   mtrooeIlulose-      34-25r-      Dee.    20. 
Claessen        Manufacture    of    artificial    threads, 

films,  plastic  compositions,  etc.    35,138.    Dec   31 

q/?«oeJ-        treatment     of     cellulose     derivatives. 
■H,/oJ— 4.     Dec.  24. 

Commin  and  Hughes.  Manufacture  of  fibrous 
materials.     33,678.     Dec.  14  "orous 

Dreyfus  Manufacture  of  cellulose  derivatives. 
33,355  and  33,35/.    Dec.  12. 

Dreyfus.  Treatment  of  cellulose  and  production 
of  cellulose  derivatives.     33,356.     Dec    12 

34SmaDec   gfrilising     wool>     hair''    hi'des,     etc. 

Complete  Specification  Accepted 
31  116    (1920).      Schwarzkopf.      Manufacture    of 

nO60,1l2.)fOrDe(U.Se30m     SP,nn"lg     artificial     fibrPS 


40A 


PATENT    LIST. 


[Jan.  18, 1922. 


VI— BLEACHING  :  DYEING ;  PRINTING ; 
FINISHING. 

Applications. 

Brandwood  and  Brandwood.  Apparatus  for 
bleaching,  dyeing,  etc.  textile  fibres.  34,576. 
Dec.  23. 

Clark  and  Co.,  and  McLintock.  Mercerising- 
machines.     33,376.     Dec.  12. 

Coppin  and  Sunley.  Ornamentation  of  textile 
fabrics.    34,311.     Dec.  21. 

Farrar  and  Whitehead.  Dyeing-machines.  33,705. 
Dee.  15. 

Hardcastle.  Method  of  coloured  warp  prepara- 
tion.   34,189.     Dee.  20. 

Mayoux.  Machines  for  treating  skeins  etc.  in 
dyeing  rooms.    34,441.    Dec.  21. 

Nienstadt.  Composition  for  waterproofing 
fabrics.    34,415-5.     Dec.  12. 

Complete  Specifications  Accepted. 

15,393  (1920).    Moseley  and  Drey.    See  VII. 

20,250  (1920).  Eibergsehe,  Stoonibleekerij,  and 
Mohr.  Devise  for  bleaching  textile  fibres  and 
fabrics,  tissues,  etc.    (148,336.)    Dec.  21. 

25,160  (1920).  Boucherie.  Impregnation  of 
animal,  vegetable,  and  mineral  fibres.  (165,050.) 
Dec.  21. 

25,493  (1920).  Hindle.  Printing  cotton  and 
woven  fabrics.  (172,403.)     Dec.  21. 

26,079  (1920).  Surpass  Chemical  Co.  Process  of 
dveing.    (158,531.)    Dee.  31. 

35,944  (1920).  Clarenbaeh.  Apparatus  for  treat- 
ing fabrics  and  varus  with  liquids.  (173,167.) 
Dec.  31. 

VII—  ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC  ELEMENTS. 

Applications. 

Clero  and  Nihoul.  Manufacture  of  magnesia 
from  dolomite.    34,281.     Dec.  20.     (Fr.,  24.12.20.) 

Deguide.  Manufacture  of  barium  hydrate. 
34..250.    Dec.  20.     (Fr.,  13.1.21.) 

Deguide.  Manufacture  of  alkali-metal  silicates. 
34,251.    Dec.  20.    (Fr.,  22.1.21.) 

Deguide.  Manufacture  of  caustic  soda  or  pot- 
ash.   34,252.     Dec.  20.     (Fr.,  26.2.21.) 

Duckham,  Oldbury  S.C.  Synd.,  and  Woodall, 
Duckham  and  Jones.  Fixation  of  nitrogen.  34,280. 
Dec.  20. 

Haddan  (Gulf  Penning  Co.).  Recovery  of  alu- 
minium chloride.     33,370.     Dec.  12. 

Koch.  Manufacture  of  pure  nitrocarbonic  acid 
mixture  from  combustion  gases.  33,441.  Dec.  13. 
(Ger.,  14.12.20.) 

Meter.     Chlorine  control.     33,359.     Dec.  12. 

Meter.  Production  of  poisonous  gases.  33,360. 
Dec.  12. 

Officine  Elettrochimiche  Dr.  Rossi,  Rossi,  and 
Toniolo.  Manufacture  of  nitric  acid.  33,960. 
Dec.  16.    (Ital.,  20.12.20.) 

Soc.  PAir  Liquide.  Manufacture  of  hydrogen. 
33,783.    Dec.  15.    (Fr.,  21.1.21.) 

Soc.  l'Air  Liquide.     35,654.    See  II. 

Soper.  Treatment  of  phosphates.  34,830-1. 
Dec.  28. 

Complete  Specifications  Accepted. 

31,970  (1919).  Douglas.  Apparatus  for  making 
sulphate  of  ammonia.     (172,337.)     Dec.  21. 

19,388  (1920).  Robertson.  Obtaining  volatilis- 
able  metal  oxides.    (147,470.)    Dec.  30. 

22,606  (1920).  Kaltenbach.  Manufacture  of  sul- 
phuric acid.    (159,156.)    Dec.  21. 

23,425  (1920).  Alby  United  Carbide  Factories, 
and  Mitehlev.  Production  of  calcium  carbide. 
(172,685.)    Dec.  30. 

25,766  (1920).  L'Air  Liquide.  Direct  synthesis  of 
ammonia.     (150,744.)    Dec.  30. 


26,104  (1920).  Barker,  and  United  Alkali  Co.  See 
XL 

26,802  (1920).  Reed.     Manufacture  of  sulphuric 

acid.     (173,060.)  Dec.  31. 

33,958    (1920).  Hargreaves    and    Dunningham. 

Manufacture  of  sodium  thiosulphate.  (172,858.) 
Dec.  30. 


VIII.—  GLASS;  CERAMICS. 

Applications. 

Chance  Bros,  and  Co.,  and  Lamplough.  Glass  for 
use  with  electric  lamps.    34,262.     Dec.  20. 

Ooley,  Ramsden,  and  Zirconium  Synd.,  Ltd. 
Manufacture  of  zirconia  refractories.  34,412. 
Dec.  21. 

Continuous  Reaction  Co.,  and  Skelley.  Manufac- 
ture of  zirconia refractories.    34,411.    Dec.  21. 

Hancock.  Manufacture  of  pottery.  33,855. 
Dec.  16. 

Hodson  and  Hodson.  Manufacture  of  refractory 
dolomite  basic  bricks  etc.     34,017.     Dee.  17. 

Martin.  Apparatus  for  promoting  separation  of 
impurities  from  china  clay  suspended  in  water. 
34,921.     Dec.  29. 

Razen,  Schaefer  and  Co.,  and  Schaefer.  Refrac- 
tory composition.     33,501.     Dec.  13. 

Complete  Specification  Accepted. 

26,175  (1920).  Marino.  Metallising  articles  of 
porcelain,  pottery,  china,  etc.     (172,723.)     Dec.  30. 


IX—  BT1LDTNG   MATERIALS. 

Applications. 

Creig,  Sperni,  and  Nuroads,  Ltd.  Compositions 
for  making  floors,  bricks,  etc.     33,989.     Dec.  17. 

Hodson  and  Hodson.    31,017.    See  VIII. 

Reeken.     Artificial  stone.     33,397.     Dec.  12. 

Rigby.     Manufacture  of  cement.  34.126.  Dec.  19. 

Sperni.  Compositions  for  floors,  decks,  tiles,  etc. 
33,314.     Dec.  12. 

Complete  Specification  Accepted. 

32,501    (1920).  Naaml.    Vennoots.    Netherland 

Colonial  Trading  Co.     Composition  for  preserving 

wood    and    other  vegetable    material.       (168,843.) 
Dec.  21. 

X— METALS;  METALLURGY,   INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Archer  and  Jeffries.  Heat  treatment  of  alloys, 
33,656.     Dec.  14.     (U.S.,  4.1.21.) 

Coles.    Process  of  sherardising.    35,091.    Dec.  31. 

Conran  and  Smith.  Flux  for  brazing  caist  iron 
etc.    33,959.    Dec.  16. 

Eustis.     Electrolytic  iron.     34,503.     Dec.  22. 

Gat.  Manufacture  of  metallic  compounds  from 
ores.    34,609.    Dec.  23.    (U.S.,  2.2.21.) 

Krupp  A.-G.  Process  for  hardening  steel  alloys. 
34,237.     Dec.  20.     (Ger.,  27.1.21.) 

Kuehnrich.  Manufacture  of  steel.  34,459. 
Dec.  22. 

Leggo.    Roasting-fumaces.    34,630.    Dec.  23. 

McCracken.  Open-hearth  smelting  furnaces. 
33,748.     Dec.  15. 

McMorland.  Flux  for  soldering  etc.  33,867. 
Dec.  16. 

Merck.  Process  for  coating  with  metals  eerite 
metals  and  their  alloys.  34,275.  Dec.  20.  (Ger., 
22  8  21  ) 

Saltlick.  Manufacture  of  alloys.  33,838—33,840, 
34,914.     Dec.  16  and  29. 

Saltrick.  Purification  of  ferro-alloys  of  refrac- 
tory metals.    34,836.    Dec.  28. 


Vol.  XIX,  N'o.  1.] 


TATENT    LIST. 


41  A 


Saltrick.  Alloys.  34,837,  34,913,  and  34,915. 
Dec.  28  and  29. 

Saltrick.  Manufacture  of  manganese  and  its 
alloys.    34,838.     Dec.  28. 

Saltrick.  Manufacture  of  chrome-alloy  articles. 
34,912.     Dec.  29. 

Teisen.     Crucible  etc.  furnaces.    34.544.    Dec.  22. 

Thibaudier  and  Viteaux.  Thermic  treatment  of 
-!•  els  etc.    34,432.    Dec.  21. 

WestinghouBe  Lamp  Co.  Preparation  of  rare 
metals  and  alloys.  34,406-7.  Dec.  21.  (U.S., 
21.12.20.) 

Whitehouse.  Tank  battery  for  extracting  gold, 
silver,  etc.  ores.     34.220.     Dec.  20. 

Wurstemberger.  Preventing  selective  corrosion 
of  metallic  parts  of  copper  and  its  alloys.  34,962. 
Dec.  29.    (Switz.,  17.1.21.) 

Complete  Specifications  Accepted. 

16,067  (1920).  Scliol.  Production  of  highly 
porous  slag.    {145,032.)     Dec.  21. 

19,262  (1920).  Cannon.  Carburising  ferrous 
articles.     (172,351.)    Dec.  21. 

20,473  (1920).  Isabellen-Hiitte  Ges.  Alloys. 
11  -.505.)    Dec.  30. 

20,596  (1920).  Soc.  Anon.  Fours  Speciaux.  See 
II. 

22,459  (1920).  Imray  (Jackson  and  Co.).  Pre- 
paratory treatment  of  ores  or  metallurgical  pro- 
ducts.   (172,356.)    Dec.  21. 

25,145  (1920).  Lavaud,  Clark,  and  Baines.  Ap- 
paratus for  tempering  and  annealing.  (172,381.) 
Dec.  21. 

25. 218  (1920).  Wichmann.  Manufacture  of  com- 
positions of  metals  or  alloys  and  graphite.  (172,693.) 
Dec.  30. 

25,374  (1920).  Brougham  (Hynes).  Separating 
finely-divided  minerals  from  their  ores  by  froth 
flotation.     (172,390.)     Dec.  21. 

25,652  (1920).  Eriksson.  Reduction  of  metallic 
oxide  ores.     (172,411.)     Dec.  21. 

26,627  (1920).  Metallbank  u.  Metallurgische  Ges. 
Production  of  metal  alloys.     (155,805.)     Dec.  31. 

29,532  (1920).  Rheiniseh-Nassauische  Bergwerks- 
u.  Hiitten-A.-G.  Mechanical  roasting  and  calcining 
furnaces.     (152,667.)     Dec.  30. 

624  (1921).  Koppers.  Operating  smelting  and 
reducing  furnaces,  particularly  iron-smelting  blast 
furnaces.     (156,643.)     Dec.  30. 

625  (1921).  Koppers.  Operating  cupola  furnaces. 
(156,644.)     Dec.  30. 

2849  (1921).  Piatt.  Repairing  aluminium  sheet 
and  castings  and  attaching  copper,  brass,  steel, 
e^c.  to  aluminium.     (172,548.)     Dec.  21. 

26,903  (1921).  Schol.  Obtaining  dry  porous  slag. 
(170.287.)    Dec.  30. 

XI.— ELECTRO-CHEMISTRY. 

Applications. 

Coventry  and  Rushton.  Galvanic  cells.  34,348. 
Dec.  21. 

Cranston  and  Le  Bar.  Electrolytic  cells.  34,057. 
Dec.  17. 

Didier.     Electric  accumulators.    34,940.    Dec.  29. 

Eustis.     34,503.     See  X. 

Fuller's  United  Electric  Works,  and  Welch.  Gal- 
vanic batteries.    34,286.    Dec.  20. 

Hansen.  Electric  accumulator.  34,254.  Dec.  20. 
(Denmark.   4.10.21.) 

Heil.  Galvanic  cells.  34,848.  Dec.  28.  (Ger., 
27.12.20.) 

Monson.  Electric  treatment  of  liquids.  35,128. 
Dec.  31. 

Reid.  Cleaning  or  regenerating  plates  of  accu- 
mulators.   33,536.    Dec.  13. 

smith.  Coating  electrical  conductors.  34.054. 
Dec.  17. 

Westinghouse  Lamp  Co.  High-temperature  elec- 
tric furnaces.    33,490.    Dec.  13.    (U.S.,  13.12.20.) 


Complete  Specifications  Accepted. 

18,843  (1920).  Champion  Ignition  Co.  Insulat- 
ing material.     (146,908.)     Dec.  30. 

20,466(1920).  Fromont.  Accumulators.  (172,679.) 
Dec.  30. 

22,980  (1920).  Alexander  (Stuart  Electrolytic 
Cells,  Inc.).  Electrodes  for  electrolytic  batteries. 
(.172.6*1.)       Dee.    3d. 

26,104  (1920).  Barker,  and  United  Alkali  Co. 
Electrolytic  cells,  especially  for  producing  chlorates 
of  the  alkali  metals.    (173,028.)    Dec.  31. 

28,208  (1920).  Marks  (National  Carbon  Co.). 
Deferred-action  dry  battery.    (173,089.)    Dec.  31. 

32,034  (1920).  Chloride  Electrical  Storage  Co. 
(Smith).  Secondary  battery  plates.  (172,850.) 
Dec.  30. 

XII.— FATS;    OILS;    WAXES. 

Applications. 

Brecheisen.    34,685.    See  II. 

Cruickshank,  Ltd.,  and  Millar.  Soaps  etc. 
33,378.     Dec.  12. 

Mitsui  and  Takahashi.  Extraction  of  oils  from 
fish.    33,425.    Dec.  13. 

Mont.     34,468.     See  XIX. 

Price's  Patent  Candle  Co.,  and  Rayner.  Manu- 
facture of  fat  and  oil  splitting  reagents  and  their 
application.     34,269.     Dec.   20. 

Wallace.     34,075.     See  XVII. 

Complete  Specifications  Accepted. 

15,393  (1920).  Moseley  and  Drey.  Detergents  and 
bleaching  compounds.     (172,667.)     Dec.  30. 

19,748  (1920).  Wilbuschewitsch.  Continuous  ex- 
traction of  oil  etc.     (147,745.)     Dec.  30. 

XIII.—  PAINTS ;    PIGMENTS;    VARNISHES; 
RESINS. 

Applications. 

Barrett  Co.  Manufacture  of  resin.  33,671. 
Dec.  14.     (U.S.,  22.12.20.) 

Gerb-  u.  Farbstoff-Werke  Renner  u.  Co.  Manu- 
facture of  salts  of  sulphonated  coumarone-resins. 
35,064.    Dec.  30.     (Ger.,  8.1.21.) 

Mitchell.  Manufacture  of  lithopone.  35,150. 
Dec.  31. 

Complete  Specifications  Accepted. 

20.041  (1920).  Bucherer.  Production  of  deriva- 
tives of  condensation  products  of  formaldehyde  and 
phenols.     (14s. 139.)     Dec.  30. 

16,480  (1921).  Riitgerswerke  A.-G.,  and  Teich- 
mann.  Manufacture  of  black  printing-inks. 
(166,117.)     Dec.  21. 

19,754  (1921).  Schiffmann.  Stamping-ink. 
(172,588.)    Dec.  21. 

XIV.— INDIA-RUBBER ;    GUTTA-PERCHA. 

Applications. 

Bateman.  Rubber  solutions  or  cements.  33,797. 
Dec.  15. 

Budde,  and  Hendon  Paper  Works  Co.  Incorpora- 
tion of  rubber,  gutta-percha,  and  balata  with 
viscose  and  viscoids.     35,021.     Dec.  30. 

Falls.     Rubber  substitutes.     34,045.     Dec.  17. 

Complete  Specifications  Accepted. 

25,474  (1920).  Ostberg  and  Kenny.  Rubber 
material.     (172.398.)     Dec.  21. 

25,813  (1920).  Feldenheimer,  Plowman,  and 
Schidrowitz.  Manufacture  of  rubber.  (172,711.) 
Dec.  30. 

27,019  (1920).  Peachey  and  Skipsey.  Vulcanisa- 
tion of  materials  related  to  rubber.  (172,754.) 
Dec.  30. 

D 


42a 


PATENT    LIST. 


[Jan.  16, 1022. 


XV.— LEATHER;    BONE;     HORN;    GLUE. 

Applications. 

Byston  and  Vietinghoff.  Method  of  tanning 
leather.    34,549.     Dec.  22.     (Ger.,  22.12.20.) 

Moeller.  Tanning  and  manufacture  of  agents 
therefor.    34,415.    Dec.  21. 

Phillips.  Dyeing  and  finishing  leather.  33,641. 
Dec.  14.     (U.S.,  9.2.21.) 

Pulman.     34,999.     See  V. 

Complete  Specifications  Accepted. 

17,294  and  17,341  (1920).  R-enner  and  Moeller. 
Manufacture  of  tanning  agents.  (146,166  and 
146,180.)     Dec.  31. 

17,342  (1920).  Gerb-  u.  Farbstoff-Werke  Rentier 
u.  Co.  Manufacture  of  tanning  agents.  (146,181.) 
Dec.  21. 

20,027  (1920).  Ciicm.  Fabr.  Worms.  Tanning- 
agents  and  their  application.     (148,126.)     Dec.  31. 

XVI.— SOILS;   FERTILISERS. 

Applications. 
Soper.    34,830-1.    See  VII. 

Complete  Specifications  Accepted. 

25,338,  25,340-1,  25,344  (1920).  Soc.  d'Etudes 
Chimiques  pour  l'lndustrie.  Manufacture  of  mixed 
manures.     (151,598,  154,562-3,  159,853.)    Dec.  21. 

25,345  (1920).  Soc.  d'Etudes  Chimiques  pour 
l'lndustrie.  Preparation  of  a  nitrogen  manure. 
(159,854.)    Dec.  21. 

30,160  (1920).  Ges.  f.  Landwirtsch.  Bedarf,  and 
Mandelbaum.  Treatment  of  gas  liquor  to  extract 
a  fertiliser.     (153,006.)     Dec.  31. 

31,580  (1920).  Lipman.  Culture  and  application 
of  sulphur-oxidising  bacteria.     (161,553.)     Dec.  30. 

XVII.— SUGARS ;    STARCHES;    GUMS. 

Applications. 

Reychler.  Method  of  realising  solutions  of  starch 
in  water.     33,719.     Dec.  15. 

Wallace.  Decolorising  sugar,  syrups,  and 
mineral  or  vegetable  oils.     34,075.     Dec.  19. 

XVIIL— FERMENTATION   INDUSTRIES. 

Application. 

Haskell.  Means  for  preserving  beer,  wine,  etc. 
33,768.     Dec.  15. 

Complete  Specification  Accepted. 
26,152   (1920).      Jensen.      Manufacture  of   yeast. 
(150,968.)     Dec.  30. 

XIX.— FOODS;    WATER    PURIFICATION; 
SANITATION. 

Applications. 

Adams.  Sewage  purification  plant.  34,806. 
Dec.  28. 

Beresford.  Sewage  purification  tank.  33,552. 
Dec.  14. 

Cesbron.  Treatment  of  groats  and  semolina  for 
conversion  into  Hour.  34,694.  Dec.  23.  (Fr., 
10.1.21.) 

Davis.  Sewage  purification  tanks.  33,853. 
Dec.   16. 

Ferrari.  Preservative,  waterproof,  and  mould- 
proof  compounds  for  wrapped  food  products.  33,383. 
Dec.  12. 

Fornet.  Decomposition  of  bacteria  and  of  vege- 
table and  animal  tissues.    33,500.     Dec.  13. 

Gineste.  Sterilising  edible  molluscs,  living  fish, 
drinking  water,  etc.     33,962.     Dec.  16. 

Gross.  Manufacture  of  coffee.  33,544.  Dec.  13. 
(Fr.,  27.1.21.) 

Imhoff.  Treatment  of  sewage  in  under-drained 
settling  basins.     34,124.     Dec.  19. 


Magrath.  Apparatus  for  softening,  sterilising, 
etc.  water.    34,501.     Dec.  22. 

Mont.  Crystallisation  of  margarine  emulsions. 
34,468.     Dec.  22. 

Powling.  Production  of  granular  food  substances 
33.529.  Dec.  13. 

Wiedemann.  Utilisation  of  rice  husks.  34,565 
Dec.  22.    (Ger.,  25.8.21.) 

Complete  Specifications  Accepted. 

15,974  (1920).  Wallis,  iand  Atmosteral,  Ltd. 
Production  of  antiseptics,  and  processes  of  sterilis- 
ing, disinfecting,  etc.     (172,993.)     Dec.  31. 

15,976  (1920).  Imperial  Trust,  and  Kidd.  Pre- 
serving fruits,  vegetables,  etc.     (172,673.)    Dec.  30. 

19,913  (1920).  Philipson.  Production  of  a  solidi- 
fied emulsifiable  coal  tar  derivative  disinfectant. 
(147,861.)    Dec.  21. 

26,594  (1920).  Mocha  Manufacturing  Co.,  and 
Wimberger.  Manufacture  of  coffee  essence. 
(172,744.)     Dec.  30. 

27,780  (1920).  Maclachlan.  Treatment  of  waste 
organic  substances.     (172,777.)     Dec.  30. 

28,126(1920).  Leffer.  Cocoa  substitute.  (172,788.) 
Dec.  30. 

28,127  (1920).  Leffer.  Regenerating  cereals  and 
fish  no  longer  in  a  fresh  condition.  (172,466.) 
Dec.  21. 

30,662  (1920).  Maclachlan.  Continuous  treat- 
ment of  waste  matter.     (167,133.)    Dec.  30. 

34,711  (1920).  Roche,  Tavroges,  and  Martin. 
Manufacture  of  milk  powder.     (172,522.)    Dec.  21. 

1190  (1921).  Candy  Filter  Co.  (Schreier).  De- 
struction of  micro-organisms  in  liquids.  (157, 2S0.) 
Dec.  30. 

XX.— ORGANIC   PRODUCTS:    MEDICINAL 
SUBSTANCES;    ESSENTIAL    OILS. 

Applications. 

Byrnes.     34,424.     See  II. 

Engolhardt,  and  Bayer  u.  Co.  Separating  or 
isolating  organic  gases  or  vapours  of  organic  pro- 
ducts.    33,944.     Dec.  16. 

Joyner,  and  Nobel's  Explosives  Co.  Manufac- 
ture'of  hydrazine.     34,970.     Dec.  29. 

Lilienfeld.  Manufacture  of  a  remedy  for  malig- 
nant tumour.   34,532.    Dec.  22.    (Austria,  23.12.20.) 

Silberrad.  Chlorination  of  organic  compounds. 
33,908.     Dec.  16. 

Complete  Specifications  Accepted. 

21,777  (1920).  Adam  and  Legg.  Production  of 
butyric  aldehyde  and  butyric  acid.  (173,004.) 
Dec'.  31. 

25.336  (1920).  Soc.  d'Etudes  Chimiques  pour 
l'lndustrie.  Conversion  of  cyanamide  salts  into 
urea.     (151,596.)     Dec.  21. 

26,924  (1920).  Imray  (Soc.  Chem.  Ind.  in  Basle). 
Manufacture  of  soluble  derivatives  of  camphoric 
acid.     (173,063.)    Dec.  31. 

28,657  (1920).  Johnson  (Badisehe  Anilin  u.  Soda 
Fabr.).  Manufacture  of  alcohols,  ketones,  etc 
(173,097.)     Dec.  31. 

6150  (1921).  Soc.  Chim.  Usines  du  Rhone.  Manu- 
facture of  oxvaldehvdes  and  their  derivatives. 
(164.715.)     Dec'.  31. 

XXL— PHOTOGRAPHIC   MATERIALS   AND 

PROCESSES. 

Complete  Specifications  Accepted. 

15,193  (1920).  Bloxam  (Act.-Ges.  f.  Anilinfabr.). 
Manufacture  of  photographic  reliefs.  (172,342.) 
Dec.  21. 

25,919  (1920).  Zeochrome.  Ltd.,  and  Mills. 
Colour  kinematographv.     (172,714.)     Dec.   30. 

14,071  (1921).  Traube.  Process  for  making 
coloured  pictures.     (163,336.)     Dec.  30. 


Vol.  XL1.,  No.  2.J 


ABSTRACTS 


[Jan.  31,  1922. 


I.-CENEBAL;  PLANT;  MACHINERY. 

Air  drying;  Tin'  volume  of  air  required  in  . 

C.  T.  Mitchell.    Chem.  and  Met.  Eng.,  1921,  25, 
1088—1090. 

The  principles  of  air  drying  in  relation  to  tempera- 
ture and  humidity  are  explained  and  curves  show- 
ing directly  the  quantity  of  air,  under  different 
conditions,  required  to  evaporate  1  lb.  of  water  are 
given.  The  curves  show  the  importance  of  low 
initial  humidity  of  the  air,  e.g.,  a  given  volume  of 
air  of  111  humidity  will  absorb  at  50°  C.  as  much 
moisture  as  the  same  volume  of  air  of  511  humidity 
at  100°  C— C.  A.  K. 

Distillation  and  rectification.     L.  Gay.     Chim.  et 

Ind.,    1921,    6,   507—578.     (('/■    J.,' 1920,    287a, 
7(11  a:  1921,  69a.) 

In  the  rectification  of  binary  mixtures  the  higher 
the  temperature  of  the  mixture  the  lower  should 
be  the  level  of  introduction  of  the  initial  mixture 
into  the  apparatus  in  order  to  obtain  the  maximum 
efficiency  of  the  column.  The  minimum  heat  re- 
quired and  the  minimum  number  of  compartments 
necessary  in  the  column  when  an  initial  gaseous 
mixture  is  used  has  been  examined  in  a  similar 
manner  to  that  used  for  an  initial  liquid  mixture. 
The  minimum  intensity  of  heat  necessary  to  remove 
a  slight  impurity  from  a  liquid  has  also  been  deter- 
mined.    (Cf.  J.C.S.,  Feb.)— F.  M.  R. 

Patents. 
Air    filters.      Deutsche    Luftfilter-Bauges.    m.b.H. 
E.P.  148,847,  10.7.20.     Conv.,  15.2.19. 

The  filter  consists  of  a  number  of  rows  of  vertical 
bars  in  staggered  order  held  by  frames  at  top  and 
bottom,  the  bars  being  coated  with  a  viscous  liquid. 

— B.  M.  V 

Distilling    and    rectifying    columns    [,•    Plates   for 
— ].    E.  Barbet  et   Pils  et  Cie.     E.P.  151,988, 
29.9.20.     Com-.,  1.10.19. 

A  column  plate  which  remains  filled  with  liquid 
during  temporary  stoppages  and  yet  has  the  large 
condensing  area  of  a  perforated  plate  comprises  a 
bottom  plate  (non-perforated  except  for  the 
chimneys  mentioned  below)  having  parallel  depres- 
sions or  valleys;  chimneys  with  hoods  are  provided 
in  the  lowest  part  of  the  valleys,  the  hoods  being 
preferably  elongated  and  common  to  one  line  of 
chimneys  or  one  depression.  Perforated  plates  rest 
horizontally  upon  the  ridges  of  the  bottom  plate 
and  the  rims  of  the  hoods,  and  form  the  condensing 
surface  upon  which  cooling  coils  may  be  placed. 
The  latter  may  be  cooled  by  the  reflux  as  described 
in  E.P.  138,869  (J.,  1921,  375.0—  B.  M.  V. 

Fractional  distillation:  Method  of .     F.  Hans- 

girg.     U.S. P.  1,398,856,  29.11.21.    Appl.,  7.11.19. 

By  means  of  an  electric  current  a  constant  small 
temperature  difference  is  maintained  between 
resistances  having  large  heat-transmitting  surfaces 
and  the  liquid  under  treatment. — B.  M.  V. 

Piston  pump  for  raising  liquids  which  easily 
evaporate  at  low  temperature  ami  are  under 
vacuum  {e.g.,  liquid  air,  carbon  dioxide].  M. 
Zkick.     E.P.  152,644,  3.9.20.     Conv.,   10.10.19. 

A  maln  pump  raises  the  bulk  of  the  liquid  to  a 
medium  pressure  and  an  auxiliary  pump  raises  a 
small  portion  of  the  medium  pressure  liquid  to  a 
high  pressure.  The  piston  of  the  main  pump  is 
provided  with  a  hollow  space  with  communication 
from  (not  to)  the  cylinder  through  a  spring-loaded 
throttling  valve,  also  to  the  medium  pressure  vessel 
through  ports  in  the  cylinder  and  piston  which 
register  at  the  end  of  the  suction  stroke  only.     At 


the  end  of  the  delivery  stroke,  a  mechanically 
operated  valve  admits,  for  m  short  period  only,  high 
pressure  liquid  to  the  clearance  space  of  the 
cylinder,  driving  out  any  vapours  and  either  con- 
densing them  or  driving  them  into  the  hollow  piston 
space,  the  wire-drawing  action  through  the  throttle 
valve  cooling  the  piston,  and  leaving  it  in  good  con- 
dition to  draw  m  a  full  charge  of  the  low  pressure 
liquid.— B.  M.  V. 

Removing  gases  from  liquids  [air  from  feed  water]; 

Apparatus  for .   H.  Fothergill.    E.P.  171,757, 

17.8.20. 

The  liquid  is  sprayed,  e.g.,  by  a  spring-loaded 
mushroom  valve,  upon  surfaces  which  are  heated 
from  an  external  source,  e.g.,  by  steam  ceils.  A 
vacuum  may  be  maintained  (e.g.,  by  a  steam  ejector) 
in  the  de-aeration  vessel. — B.  M.  V. 

Pulverising  ore  and  the  like.     G.   Johnston.      E.P. 

172,067,  30.7.20. 
One  or  more  pairs  of  comparatively  narrow  rolls, 
with  the  usual  provision  for  adjusting  the  width  of 
opening  and  for  overloads,  are  run  at  a  compara- 
tively high  speed,  and  the  ore  is  fed  as  far  as  pos- 
sible, so  that  its  speed  of  fall  on  arriving  at  the  rolls 
is  equal  to  the  peripheral  speed  of  the  rolls  and  so 
that  every  particle  of  ore  is  separated  from  its 
neighbour.  If  several  pairs  of  rolls  are  used  for 
crushing  in  stages  the  later  ones  are  run  at  a  suit- 
able (higher)  speed  to  maintain  these  conditions. 
The  material  may  be  drawn  through  by  an  induced 
current  of  air. — B.  M.  V. 

Filtering  apparatus.  I.  B.  Tanner,  Assr.  to  J.  E. 
Nelson  and  Sons.  U.S. P.  1,398,285,  29.11.21. 
Appl.,  9.4.19. 

A  rectangular  stand-pipe  extends  centrally  into 
(but  not  to  the  bottom  of)  a  basin,  the  filtering 
medium  being  held  in  rectangular  frames  in  the 
space  between  the  stand-pipe  and  rim  of  the  basin. 
The  whole  is  contained  in  a  larger  tank  or  reservoir 
and  the  path  of  the  liquid  being  filtered  is  down 
the  stand-pipe,  up  through  the  filter,  and  out  over 
the  rim  of  the  basin. — B.  M.  V. 

Beactions;  [Electrical]   automatic  control  of  . 

P.   H.   Bascom,   Assr.   to  The  Dorr   Co.      U.S. P. 
1,399,181,  6.12.21.    Appl.,  26.12.19. 

A  measured  fraction  of  one  of  the  components  in- 
volved in  a  treatment  process  is  isolated  from  the 
supply  and  subjected  to  the  influence  of  the  whole 
or  a  part  of  another  component  whereby  an  inter- 
mediate component  of  the  process  is  produced.  An 
action  responsive  to  changes  in  the  electrical  con- 
ductivity of  the  intermediate  component  is  utilised 
to  control  the  treatment  process  so  as  to  maintain 
uniformity  of  the  product. — J.  S.  G.  T. 

Beactions;  [Electrical]  control  of .     P.  E.  Edel- 

man.    U.S. P.  1,399,200,  6.12.21.    Appl.,  31.1.20. 

A  treatment  process  is  controlled  by  producing  an 
action  responsive  to  changes  in  the  electrical  con- 
ductivity of  an  appropriate  component  involved  in 
the  process.  Change  of  electrical  conductivity  of 
the  component  in  question  due  to  change  of  tem- 
perature is  compensated  by  means  of  a  second  action 
responsive  to  changes  of  temperature  of  the  compo- 
nent.—J.  S.  G.  T. 

Condenser.  G.  Engel,  Assr.  to  Buffalo  Foundry  and 
Machine  Co.  U.S.P.  1,399,294,  6.12.21.  Appl., 
1.3.20. 
A  condenser  comprises  means  for  producing  a  spray 
within  a  shell  and  an  overflow  chamber  having  an 
adjustable  rotary  perforated  bottom  whereby  the 
overflow  mav  be  varied. — J.  S.  G.  T. 


44  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[Jan.  SI,  1922. 


Condenser.  R.  F.  Goecke.  U.S. P.  1,399,611,  6.12.21. 

Appl.,  29. 7. IS. 

A  space  is  formed  between  two  nesting  vessels  joined 
together  at  the  top,  the  surfaces  bounding  the  space 
being  enamelled.  The  whole  is  provided  with  a 
jacket  and  lid,  and  pipes  are  provided  for  introduc- 
ing vapours  to  and  withdrawing  them  from  the 
space  between  the  vessels. — B.  M.  V. 

Electrical  precipitating  system.  L.  W.  Chubb,  Assr. 
to  Westinghouse  Electric  and  Mfg.  Co.  U.S. P. 
1,399,422,  6.12.21.    Appl.,  9.3.18. 

The  discharge  electrode  is  provided  with  a  number 
of  annular  recesses  and  is  heated  to  incandescence, 
by  flame  blasts,  near  the  recesses,  whereby  therm- 
ionic currents  flow  from  the  electrode  when  it  is  con- 
nected with  a  source  of  electric  potential. 

—J.  S.  G.  T. 

Fume-precipitators  ;  Means  far  cleaning  the   elec- 

trodes  in   electrical  .     A.  Petersen,  Assr.  to 

International  Precipitation  Co.  U.S.P.  1.399,441, 
6.12.21.    Appl.,  10.7.16. 

The  gas  supply  pipe  is  connected  with  an  air  blast 
device  which  is  mounted  so  as  to  be  capable  of  longi- 
tudinal and  rotary  motion,  whereby  a  gas  blast  may 
be  directed  on  to  different  parts  of  the  discharge 
and  collecting  electrodes. — J.  S.  G.  T. 

Kiln    mill    dryer;    Cylindrical    .      G.    McCrae. 

U.S.P.  1,399,503,  6.12.21.    Appl.,  6.10.20. 

An  inner  metallic  shell  is  provided  with  annular 
supports  or  tyres  and  an  outer  sectional  shell  is 
secured  between  the  annular  members  and  spaced 
from  the  inner  shell. — B.  M.  V. 

Furnace  [;  Muffle  ■  —  ].  R.  Marx.  U.S.P. 
1,399,638,  6.12.21.    Appl.,  6.5.20. 

A  curtain  of  burning  gas  is  maintained  across  the 
opening  of  a  muffle  furnace,  and  a  portion  of  the 
bottom  of  the  muffle  is  kept  cooler  than  the  re- 
mainder.—J.  S.  G.  T. 

Evaporator  [dryer].  H.E.Curtis.  U.S.P.  1,399,692, 
6.12.21.     Appl.,  6.7.120. 

A  chamber,  with  an  outlet  at  the  top,  contains  a 
central  air  conduit  through  holes  in  which  air  is 
blown  in  a  spiral  manner  over  the  material  sup- 
ported on  trays  within  the  chamber. — B.  M.  V. 

Evaporation  of  liquids.  B.  Graemiger.  G.P. 
340,708,  14.9.19. 

The  liquid  is  evaporated  in  long  vertical  tubes 
around  which  the  heating  steam  is  circulated.  The 
heating  jacket  is  divided  into  compartments  one 
above  the  other,  and  steam  at  different  pressures  is 
supplied  to  the  several  compartments  so  that  the 
steam  pressure  increases  in  successive  compart- 
ments in  accordance  with  the  increasing  concentra- 
tion of  the  liquid  being  evaporated  in  the  inner 
tubes.  Alternatively,  a  rotary  compressor  divided 
into  parallel  pairs  of  low-pressure, medium-pressure, 
and  high-pressure  compartments,  respectively,  may 
be  employed.  The  vapour  from  the  liquid  being 
evaporated  is  passed  to  the  low-pressure  compart- 
ments and  compressed,  a  part  of  the  compressed 
vapour  delivered  to  the  lowest  compartment  of  the 
heating  chamber  and  the  remainder  to  the  medium- 
pressure  compartment  of  the  compressor,  wherein 
it  is  further  compressed  and  a  portion  of  the  com- 
pressed vapour  delivered  to  the  middle  compartment 
of  the  heating  chamber,  the  remainder  passing  to 
the  high-pressure  section  of  the  compressor,  and 
thence  to  the  top  compartment  of  the  heating 
chamber.  The  vapour  pressure  in  each  compart- 
ment is  controlled  in  accordance  with  the  degree  of 
concentration  of  the  liquid  in  the  respective  sections 
of  the  evaporator. — J.  S.  G.  T. 


Desiccation  or  concentration  of  solutions  and 
similar  liquids,  by  atomising  In/  means  of  hot  com- 
pressed   air;    Apparatus    for    .      P.    Wolde 

G.P.  341,751,  25.7.18. 

The  liquid  is  atomised  in  the  upper  part  of  the  dry- 
ing chamber,  and  the  compressed  air  employed 
passes  over  a  heating  jacket  around  the  chamber  on 
its  way  to  the  atomiser.  The  conduit  for  discharge 
of  vapours  evolved  in  the  drying  process  is  placed  at 
the  lop  of  the  drying  chamber  and  is  connected  with 
a  device,  such  as  a  spiral  pipe  etc.,  disposed  within 
the  vessel  containing  the  supply  of  liquid,  whereby 
preheating  of  the  liquid  is  effected. — J.  S.  G.  T. 

Gas  mixtures;  Recovery   of  valuable   constituents 

present  in  very  small  proportions   in  [e.g., 

recovery  of  oxides  of  nitrogen,  from  nitrous  gases, 
or  benzol  from  coke-oven  gas  etc.}.  Ges.  fiir 
Lindes  Eismaschinen  A.-G.  G.P.  340,864,  14.3.19. 
The  gas  mixture  is  compressed  slightly  and  then 
cooled  in  three  successive  stages  by  the  residual 
gases  resulting  from  previous  operation  of  the  pro- 
cess, by  a  refrigerating  machine,  and  again  by  re- 
sidual gases.  Finally,  after  separation  of  the'eon- 
stituent  to  be  recovered,  the  gas  is  expanded,  with 
performance  of  work,  the  resulting  cold  gases  being 
utilised  in  subsequent  operations. — J.  S.  G.  T. 

Refrigerating  machines;  Process  of  regeneration  oj 
the  heat  at  high  temperature  produced  during  the 
adiabatic    compression    operations    employed   in 

compression .     E.  Altenkirch.     G.P.  341,457, 

14.12.19. 

The  superheated  region  of  the  condenser  is  cooled 
by  a  very  small  quantity  of  water  in  order  that  the 
final  temperature  of  the  water  and  the  initial  tem- 
perature of  the  superheated  vapour  may  be  as 
nearly  equal  as  possible.  For  this  purpose,  a  small 
fraction  only  of  the  cooling  water  employed  is  by- 
passed through  the  superheated  region. — J.  S.  G.  T. 

Cooling-tower.  F.  Ubde.  U.S.P.  1.399,037,  6.12.21. 
Appl.,  19.10.15. 

See  E.P.  14,492  of  1915;  J.,  1916,  1145. 

Liquids  containing  sulphate  of  lime;  Treatment  of 

[to  prevent  formation  of  scale  during  eiHipor- 

ation].  H.  J.  Bull,  Assr.  to  A. /S.  De  Norske 
Saltverker.  U.S.P.  1,399,845,  13.12.21.  Appl. 
24.7.19. 

See  E.P.  131,279  of  1919;  J.,  1921,  1  a. 

Classifying  ami  separation  of  solid  bodies  by  com- 
bined action  of  orientation,  deviation,  and  deriva- 
tion;  Process   and   apparatus   for  .     R.    E. 

Trottier.     U.S.P.  1,400,389—90,  13.12.21.     Appl-. 
21.11.17. 

See  E.P.  104,499  of  1917;  J.,  1918,  495  a. 

Inflammable  liquids:  Apparatus  for  storing  and  de- 
lict ring   .      P.    A.    P.    V.    Mauclere.      E.P. 

166,551,  16.7.21.     Conv.,  16.7.20. 

Cyclone  separators  or  centrifugal  dust  collectors. 
R,  L.  Bobbitt.    E.P.  172,150,  14.9.20. 

Separating   solid  particles  from   air:  [Centrifugal] 

apparatus  for .     T.  Robinson  and  Son,  Ltd., 

and  C.  J.  Robinson.     E.P.  172,386,  2.9.20. 

Centrifugal  separators  [;  Stabilising  arrangement 
for  __].     a.  Ohno.     E.P.  172,517,  30.11.20. 

Classifying  powdered  materials:  Apparatus  for 
-.    H.  W.  Hardinge.     E.P.  172,525,  9.12.20. 


Vol.  XLI.,  No.  2.] 


Cl.  IIa.— FUEL  ;   GAS  ;  MINERAL  OILS  AXD  WAXES. 


45  a 


IK-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

iving    low-grade    by    the 

Madruck  process.  II.  Caro.  Naturwissensch., 
1921,  9.  740—746.  Chum.  Zentr.,  1921,  92,  IV., 
1347. 

In  the  Madruck  process  lor  drying  peat  without 
destroying  its  characteristic  properties,  raw  peat 
is  compressed  in  admixture  with  partially  dried 
peat  containing  3d  at  water  in  a  special  press, 
whereby  a  product  is  obtained,  containing  50— 60c= 
of  water,  which  closely  resembles  lignite  in  its  pro- 
perties and  possible  uses. — L.  A.  ('. 

Determined         oj    volatile   matter  in  . 

G.  Delmarcel  and  F.  Mertens.  Bull.  Fed.  Ind. 
Chim.  Belg.,  1921,  1.  3—27.  75—83. 

Results  obtained  by  the  method  of  the  American 
Coal  Committee  (J..  1900,  174)  are  constantly  high, 
the  combustion  of  the  coke  after  the  evolu- 
tion of  the  volatile  matter  is  complete,  and  the 
longer  the  heating  is  continued  after  disappearance 
of  the  flame  the  more  inaccurate  will  the  result  be. 

of  weight  be  plotted  as  ordinate?  against  time 
as  abscissa;  during  carbonisation,  a  graph  is  ob- 
tained which  can  be  divided  into  four  well-defined 
portions,  viz.,  a  preliminary  heating  period  ex- 
tending over  some  10 — 20  sees.,   during  which  the 

■ire  in  the  coal  is  driven  off,  and  during  which 
combustion  may  tike  place,  but  to  a  degree  less 
than  the  experimental  error,  a  second  rectilineal- 
portion  in  which  the  amount  of  volatile  matter 
evolved  is  proportional  to  the  time,  and  which  is 
called  the  "distillation  curve."  a  third  transition 
period  during  which  the  evolution  of  volatile  matter 
slackens  off  and  combustion  commences,  and  a 
fourth  rectilinear  portion;  representing  combustion 
of  the  coke,  the  loss  in  weight  being  proportional  to 
the  time  and  entirely  due  to  this  cause.  The  true 
content  of  volatile  matter  is  arrived  at  by  produc- 
ing the  distillation  curve  and  the  line  of  combustion 
until  they  meet,  when  the  ordinate  of  the  point  of 
intersection  represents  the  content  of  volatile 
matter.     The  distillation  curve,  when  produced  to 

the  horizontal  axis,  cuts  it  at  a  point  almost 
identical  with  the  appearance  of  a  flame  at  the 
mouth  of  the  crucible,  and  this  time  can  be  taken 
and  utilised  as  one  of  the  points  necessary  to  fix  the 
distillation  curve.  The  three  other  points  are  found 
by  stopping  the  carbonisation  before  the  flame  has 
disappeared,  cooling,  and  weighing  the  crucible  and 
contents.  This  gives  the  second  point  on  the  dis- 
tillation curve.  The  two  points  on  the  line  of  com- 
bustion an'  obtained  by  heating  a  fresh  portion  of 
the  coal  in  the  crucible  until  after  the  flame  has 
died  down,  then  noting  the  time,  cooling,  and 
weighing,  and  repeating  the  process  for  a  different 
period  of  heating.  This  method  is  known  as  the 
"Three  Point"  method.  For  practical  purposes 
the  true  value  can  be  obtained  within  0'2  :  by  tak- 
ing two  observations  on  the  line  of  combustion  and 
producing  this  line  to  meet  the  vertical  axis,  when 
the  point  of  intersection  gives  the  percentage  of 
volatile  matter.  This  is  known  as  the  "  Two  Point  " 
method  and  is  sufficiently  accurate  for  industrial 
work.  The  procedure  recommended  is  as  follows  :  — 
1  g.  of  the  finely  pulverised  coal  is  weighed  into  a 
platinum  crucible,  3  cm.  high  and  3  cm.  wide  at  the 
mouth,  provided  with  a  well-fitting  lid.  which  is 
supported  on  a  triangle  of  fine  platinum  wire,  in 
such  a  manner  that  the  base  of  the  crucible  is  3  cm. 
above  the  opening  of  the  Bunsen  burner,  which 
should  give  a  flame  18  cm.  high.  The  crucible  is 
heated  for  5  mins.,  cooled,  and  weighed,  the  loss  in 
weight  being  expressed  as  a  percentage  of  the 
weight  of  the  original  coal  (y,).  The  crucible  and 
its  contents  are  then  heated  for  another  5  mins., 
cooled,   and   again   weighed,   and  the   total   loss  in 


weight  is  again  expressed  as  a  percentage  of  the 
weight  of  the  original  coal  iv  |.  The  volatile  matter 
is  then  given  by  the  expression  x=2y,-yw  the 
volatile  organic  matter  being  obtained  by  deduct- 
ing the  moisture  content  of  the  coal  from  the  figure 
obtained  as  above.  The  original  paper  should  be 
consulted  lor  details  as  to  the  evolution  of  the  equa- 
tion x  =  2y,-yJ. — A.  G. 

Ml and  industrial  furnaces.    E.  W. 

Smith.     Midland  Jun.  Gas  Assoc..  15.12.21.     Gas 
-I..  1921,  156.  816—819. 

A  i  in  I  GH  i  e  apply  of  town's  gas  of  low  calorific 
value  has  been  widerj  advocated  there  are,  as  yet. 
no  comparative  results  to  show  that  its  cost  of 
manufacture  on  a  heat  unit  basis  is  less  than  that  of 
a  higher  grade  gas.  The  use  of  a  moderate  amount 
ui  steam  in  vertical  retorts  does,  however,  reduce 
the  cost  of  manufa  r  extent  than 

the  cost  of  distribution  is  increased.  The  economics 
of   v:  in   depend   upon   local  condi- 

tions. Many  difficulties  connected  with  the  use  of 
gas  arise  from  inadequate  gas  pressures  which  may 

due  to  the  low.r  calorific  value  or  higher  sp.  gr. 
of  the  gas.  An  outline  is  given  of  the  development 
of  surface  combustion  processes  in  England,  Ger- 
many, and  America,  respectively.  The  principle  of 
American  surface  combustion  furnaces  is  to  burn  a 
theoretical  air-gas  mixture  on  the  surface  of.  rather 
than  within,  a  refractory  material.  Incorpora 
with  each  burner  is  an  air-gas  proportioning  device 
which  is  supplied  with  either  low-pressure  gas  and 
air.  or  gas  at  1  lb.  pressure  and  injected  air.  By 
the  manipulation  of  one  valve  the  quantity  of  gas 
burnt  may  be  varied  within  wide  limits  without 
altering  the  pre-arranged  air! gas  ratio.  As  heat  is 
transmitted  within  the  furnace  almost  entirely  by 
radiation,  it  is  essential  to  obtain  maximum  flame 
temperature"-!  ]lv  avoiding  an  excess  of  air.  Means 
are  provided  for  efficiently  mixing  the  gas  and  air 
prior  to  combustion  so  as  to  avoid  delayed  combus- 
tion. The  gas  proportioner  and  mixer  are  designed 
to  maintain  relatively  high  mixture  pressures 
within  the  pipe  connecting  them  with  one  or  more 
burners.  This  ensures  good  distribution  and  also 
such  a  velocity  at  the  burners  that  the  gas  does  not 
burn  at  that  point  but  on  the  refractory  surface 
against  which  it  is  directed.     The  burner  is  a  large 

ting  with  a  small  outlet  which  is  protected  from 
radiated  heat  by  a  refractory  cement.  Very  uni- 
form temperatures  are  attained  within  the  furnace; 
and  oxidation  of  materials  being  heated  may  be 
avoided.  Combustion  in  the  working  part  of  the 
furnace  is  eliminated  without  the  use  of  a  muffle. 

— H.  Hg. 

[Gas]  pipes;   Deposit    in  steel  .     J.   J.   Scott. 

Scottish   Junior   Gas    Assoc.      Gas  J.,   1921,    156, 
750—751. 

Several  analyses  are  given  of  deposits  taken  from 
sie^-l  gas  mains  showing  that  the  material  contains 
Prussian  blue,  sulphur,  oil,  and  small  proportions 
of  silica,  lime,  sulphates,  etc.  in  addition  to  iron 
oxides.  The  corrosion  of  the  pipe  is  probably  influ- 
enced by  the  presence  of  oxygen  and  cyanides  in  the 
gas;  the  action  may  lie  diminished  by  the  deposi- 
tion of  an  oil  film.  Test-pieces  of  steel  were  sus- 
pended in  a  gas  main  and  it  was  found  that  the  sus- 
pension of  a  piece  of  potassium  cyanide  in  front  of 
the  steel  accelerated  the  formation  of  ferrocyanide 
on  the  surface. — H.  Hg. 

Oil  shales;  Apparatus  for  studying  thermal  decom- 
position of .    R.  II.  McKee  and  E.  E.  Lvder. 

Chem.  and  Met.  Eng..  1921,  25,  1100—1101.  '  {Of. 
J.,  1921,  650  a,  802  a.) 

A  convenient  apparatus  for  the  distillation  of 
shales  on  a  technical  experimental  scale  consists  of 
a  horizontal  furnace  3  ft.  in  length,  heated  by  10 

A  2 


46  a 


Cl.  IIa.— FUEL  ;  GAS  ;  MINEBAL  OILS  AND  WAXES. 


[Jan.  31,  1922. 


pressure  burners  arranged  in  two  rows.  An  iron  or 
niehrome  retort  tube  capable  of  rotation  extends 
through  the  furnace.  About  25  lb.  of  shale,  en- 
closed in  a  wire-mesh  cage,  can  be  charged  into  the 
retort  and  the  products  of  distillation  are  conveyed 
progressively  through  a  condensing  coil,  collecting 
and  Washing  bottles,  to  a  circulating  fan  and  gas 
holder.  A  small  low-pressure  boiler  furnishes  the 
desired  quantity  of  steam.  The  temperature  of 
the  furnace  is  controlled  automatically  by  a  heat 
regulator  actuated  by  a  base-metal  thermo-couple 
inserted  into  the  furnace  chamber. — C.  A.  K. 

Motor  spirit;  Production  of from  low-tempera- 
ture fni*  from  coal  ami  lignite,  and  the  conver- 
sion of  the  phenols  or  creosote  into  benzol. 
F.  Fischer.  Brennstoff-Chem.,  1921,  2,  327—330, 
347—349. 

The  yield  of  low-temperature  tar  is  greater  from 
coal  of  recent  formation  and  from  coal  of  high 
oxygen  content.  The  percentage  of  the  tar  soluble 
in  alkali  is  also  greater  in  tars  derived  from  coal  of 
recent  formation.  The  yields  of  low-temperature 
tars  from  various  types  of  coal  and  lignite,  and 
their  contents  of  solid  paraffins  and  phenols  are 
tabulated.  The  low-boiling  constituents  can  be 
most  conveniently  extracted  from  gases  from  low- 
temperature  carbonisation  by  specially  prepared 
charcoal.  The  gas  contains  3 — i8%  of  carbon  dioxide, 
5 — 15%  of  organic  sulphur  compounds,  2 — 9%  of 
carbon  monoxide,  5 — 17  %  of  hydrogen,  and  35 — 74% 
of  methane  and  homologues.  The  maximum  yield 
of  unsaturated  hydrocarbons  in  the  gas  is  14  , 
when  the  carbonisation  is  conducted  at  a  tempera- 
ture of  425°  C.  The  tars  give  enhanced  yields  of 
products  boiling  below  150°  C.  if  subjected  to 
cracking.  Autoclave  treatment  is  preferable  to 
passing  through  heated  tubes,  giving  higher  yields 
and  products  of  lower  unsaturated  content. 
Phenols  can  be  reduced  to  aromatic  hydrocarbons 
by  passing  through  tinned  iron  tubes,  preferably 
filled  with  turnings  of  tinned  iron,  at  a  temperature 
of  700° — 800°  C.  in  presence  of  excess  of  hydrogen, 
this- reaction  accounting  for  the  presence  of  benzol 
in  tars  from  coke-ovens  and  gas  retorts  (c/.  J., 
1920,  740  a).  By  suitable  treatment  it  is  possible  to 
obtain  from  gas  coal  a  total  of  5'25%  by  weight  of 
motor  spirit,  this  being  made  up  by  0'25%  stripped 
from  gas,  1  distilled  from  tar,  0-8%  cracked  from 
tar,  2%  of  crude  benzol  formed  from  the  phenols, 
and  1*2%  of  alcohols  from  conversion  of  unsaturated 
substances. — H.  M. 

Naphthenic  acnh;  Technical  purification  of  crude 

.     H.  Burstin  and  B.  Spanier.     Petroleum, 

1921,  17,  1329—1334. 
The  existing  methods  for  the  purification  of  naph- 
thenic acids  are  reviewed,  and  experiments  directed 
to  the  extraction  of  dissolved  or  emulsified  neutral 
oil  and  resinous  and  asphaltic  substances  are 
described.  The  success  of.  the  experiments  was 
measured  by  the  increase  in  acid  value  and 
saponification  value,  and  the  smallness  of  the 
amount  of  unsaponifiable  matter  present.  Treat- 
ment with  petroleum  naphtha  was  impracticable 
because  of  the  large  quantities  required,  though 
improved  results  were  obtained.  Good  results  were 
given  by  distillation  with  30%  to  60%  of  super- 
heated steam,  particularly  at  reduced  pressure. 
The  best  results  obtained  in  these  experiments,  by 
vacuum  steam  distillation,  gave  an  acid  value  of 
126,  saponification  value  of  142,  and  13  of  un- 
saponifiable matter.  Refining  with  sulphuric  acid 
also  gave  good  results.  Salts  of  strong  acids  with 
strong  bases,  such  as  common  salt,  calcium  chloride, 
and  sodium  sulphate,  are  decomposed  by  naphthenic 
acids.  The  resultant  naphthenates  are.  however, 
re-decomposed  by  carbon  dioxide,  and  this  suggests 
a  method  of  refining,  in  which  carbon  dioxide  (from 
lime  burning)  or   flue  gas   acts  upon  the   alkaline 


extract  containing  the  sodium  naphthenate  to  form 
sodium  carbonate  and  naphthenic  acids,  a  reaction 
capable  theoretically  of  continuous  working  with 
the  same  materials,  as  the  sodium  carbonate  solu- 
tion may  be  re-causticised  with  the  formation  of 
calcium  carbonate.  The  reaction  being  reversible, 
it  is  not  capable  of  being  carried  to  completion,  and 
it  is  suggested  that  the  process  should  bo  worked 
as  an  adjunct  to  refining  with  sulphuric  acid, 
resulting  in  a  saving  of  50%   of  acid. — H.  M. 

Patents. 

Fuels;  Means  of  combination  of   solid  and   liquid 
.     G.  P.  Lewis.     E.P.  172,065,  30.7.20. 

Lignite  or  other  solid  fuel  is  reduced  to  a  fine 
powder  and  allowed  to  soak  for  one  or  two  days 
under  warm  conditions  in  creosote  or  other  heavy 
hydrocarbon  having  a  partially  solvent  action. 
The  paste  thus  formed  is  further  ground  until  some 
of  the  particles  will  pass  through  a  filter  paper, 
and  is  then  mixed  with  more  creosote  or  with 
another  intersoluble  oil  such  as  crude  petroleum  or 
wood  or  peat  distillates.  The  solid  fuel  may  be 
first  reduced  to  a  rotten  condition  by  weathering 
or  by  treatment  with  alkali. — H.  Hg. 

Furl;   Production   of   high-grade,    non-hygroscopic 

from  low-grade  fuel  such  as  lignite,  peat,  or 

the  like.     I.  Scherk.     G.P.  339,743,  27.10.18. 

Low-grade  fuel  is  fed  into  a  vertical  iron  retort 
heated  at  the  top  and  cooled  at  the  lower  end. 
Heavy  tar  vapours  sink  to  the  bottom  of  the  retort 
and  are  deposited  on  and  enrich  the  fuel  therein, 
while  light  tar  vapours  (low-temperature  tar),  to- 
gether with  water  vapour,  carbon  dioxide,  and 
nitrogenous  gases  escape  at  the  top  of  the  retort. 

— L.  A.  C. 

Coke;  Manufacture  of  metallurgical  .     J.  W. 

Leadbeater.     E.P.  172,199,  2.11.20. 

A  haud  dense  coke,  free  from  sulphur,  is  produced 
by  carbonising  a  mixture  of  30 — 40  pts.  of  pulverised 
black  peat,  8 — 10  pts.  of  powdered  pitch  or  of  tar 
residue,  and  80 — 100  pts.  of  small  coal.  The  peat 
used  is  undried  and  contains  35 — 45%  of  moisture. 

— H.  Hg. 

Coke    ovens   and   the   like:   Heating    wall   for  . 

A.  Roberts,  Assr.  to  American  Coke  and  Chemical 
Co.     U.S. P.  1,399,275,  6.12.21.     Appl.,  27.1.19. 

The  heating  wall  comprises  courses  of  blocks  which 
break  joints  with  each  other;  each  block  has  its  four 
corners  recessed  and  each  course  is  so  placed, 
relatively  to  those  above  and  below  it,  that  vertical 
and  horizontal  zig-zag  gas  passages  are  formed. 

-H.  Hg. 

Coke-oven  gases;  Treatment  of .     J.  I.  Bronn. 

E.P.  146,839,  5.7.20.     Conv.,  24.10.14. 

See  U.S.P.  1,211,395  of  1917;  J.,  1917,  205.  The 
gas,  cooled  to  0°  C,  is  passed  at  40  atm.  pressure 
through  absorbent  solutions  to  remove  carbon 
dioxide  and  ethylene,  and  is  then  cooled  to  -150°  C. 
at  40  atm.  pressure  to  liquefy  all  remaining  gases 
except  hydrogen.  The  constituent  gases  are  subse- 
quently recovered  by  fractional  distillation  of  the 
condensed  liquid. 

Vertical   [ffus]  retorts  and  gas   producers.     H.  G. 
Hennebutte.  E.P.  148,943,  10.7.20.  Conv.,  12.3.18. 

A  number  of  gas  collectors,  each  having  a  large 
horizontal  opening  and  communicating  with  a 
horizontal  off-take,  are  placed  centrally  at  various 
levels  in  a  vertical  gas  retort.  The  retort  is  heated 
to  temperatures  gradually  decreasing  towards  the 
top,  by  means  of  external  annular  heating  chambers 
which  are  connected  in  series,  and  in  the  lowest  of 
which  gas  is  burnt.     The  carbonised  material  may 


Vol.  XII,  No.  i] 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES.  47  a 


W  passed  through  a  cooling  chamber  on  to  a 
mechanical  extractor  at  the  base  of  the  retort,  or 
the  cooling  chamber  mav  be  replaced  by  a  producer. 

-H.  Hg. 

Gasification  of  coal;  Plants  and  processes  for . 

Woodall.  Duckham  and  Jones  (1920).  Ltd..  and 
A.  McD.  Duckham.  E.P.  171,805,  1.9.20. 
An  arch  is  built  over  the  upper  part  of  a  producer 
upon  which  a  vertical  retort  is  superimposed,  so  as 
to  form  a  space  above  the  incandescent  coke  into 
which  tar  is  sprayed. — H.  Hg. 

Gas  i  roducers.    J.  F.  Wells.    E.P.  171. S84.  3.11.20. 

The  oxidising  (formation  of  carbon  dioxide)  and 
transformation  (reduction  of  carbon  dioxide  to 
monoxide)  zones  of  a  producer  are  arranged  side 
by  side  in  a  horizontal  chamber,  above  which  is 
placed  a  feed  hopper.  Solid  fuel  may  be  supplied 
to  either  zone  from  the  hopper;  a  control  vane  is 
fitted  to  regulate  the  supply  to  the  oxidising  zone. 
Between  the  two  zones  passages  are  left  for  the  gas 
on  either  side  of  the  descending  fuel,  and  gas  may 
be  passed  from  these  passages  direct  to  the  chimney 
or  downwards  through  the  transformation  zone. 
Air  and  steam  may  bo  admitted  below  the  grate 
of  the  oxidising  zone  in  conjunction  with  an 
auxiliary  supply  of  air.  with  or  without  liquid  fuel, 
above  the  bed  of  solid  fuel,  or  only  liquid  or  gaseous 
fuel  may  be  burnt  in  the  oxidising  zone.  By  fitting 
a  suitable  grate  to  the  transformation  zone  charcoal 
and  producer  gas  may  be  produced  therein  simul- 
taneously.— H.  Hg. 

[Gas    producers ,•]    Method    of   and   apparatus    for 

distributing    material    [fuel    in    ].      H.    F. 

Smith.  Assr.  to  The  Gas  Research  Co.  U.S. P. 
1,397,553,  22.11.21.  Appl.,  4.4.17. 
The  fuel  is  supplied  to  one  side  of  a  producer  in 
front  of  the  open  end  of  a  chamber  to  which  an 
explosive  mixture  is  supplied.  The  mixture  is 
ignited  whilst  its  supply  is  interrupted  and  the 
explosive  effect  distributes  the  fuel  within  the 
producer. — H.  Hg. 

[Gas  producers;']  (k)  Steam  regulation,  (b)  moisture 

regulation,  and  (c)  moisture  control  [for  ]. 

H.  F.  Smith,  Assr.  to  The  Gas  Research  Co. 
U.S. P.  1,397,554—6,  22.11.21.  Appl..  (a)  25.8.17, 
(b)  7.11.17.  (c)  23.2.18. 

(a)  The  amount  of  moisture  supplied  with  air  to  a 
gas  producer  is  continuously  controlled  according 
to  the  specific  gravity  of  the  gas  produced,  (b)  The 
control  is  determined  by  the  composition  (heating 
effect)  of  ihe  gas.  (c)  The  supply  of  steam  to  a 
gas  passing  through  a  saturalor  is  determined  by 
a  valve  controlled  electrically  according  to  the 
temperature  of  the  gas  leaving  the  saturator. 

— H.  Hg. 

Furnace  for  the  production  of  gas  and  coke. 
Gewerkschaft  ver.  Constantin  der  Grosse.  G.P. 
334,755.  8.5.19. 

Separate  blocks  of  fuel  (coal)  are  carried  through  a 
furnace  by  an  endless  chain  conveyor  passing 
through  and  returning  above  the  furnace.  The  out- 
let end  of  the  furnace  is  cooled  by  the  current  of  air 
passing  to  the  combustion  chamber. — L.  A.  C. 

Gas;  1' roil  net  ion  of  by-products  in  the  manufacture 

of  mired  by  the  alternate  action  of  oxygen 

and  steam  on  fuel.  F.  Sommer  and  L.  Simmers- 
bach.     G.P.  340,625,  8.10.15. 

The  fuel  is  arranged  in  one  or  more  pairs  of  re- 
action zones  and  is  treated  alternately  with  oxygen, 
or  a  gas  containing  oxygen,  and  steam  in  such  a 
manner  that  while  one  of  a  pair  of  zones  is  treated 
with  oxygen,  the  other  is  treated  with  steam.  Hy- 
drogen sulphide,  either  alone  or  mixed  with  other 


reducing  gases,  is  led  into  the  reaction  zones,  or  is 
produced  therein  by  the  addition  of  sulphur  com- 
pounds to  the  fuel. — L.  A.  C. 

Gas  producer  of  largi  capacity  with  extensive  1/ase 
in  en  and  attached  distillation  units.  Bunzlauer 
Werke  Lengersdorff  und  Co.  G.P.  340,664,  17.7.17. 

The  distillation  units  are  separated  from  each  other 
by  chambers  through  which  intermittent  streams 
ot  the  purified  gas  are  drawn  by  suction.  The  pro- 
ducts of  distillation  also  flow  intermittently  under 
suction  out  of  the  separate  units.  Channels  for 
conveying  away  the  purified  gases  and  the  products 
of  distillation  are  connected  by  adjustable  openings 
with  the  gas  chambers  and  with  the  distillation 
units  respectively. — L.  A.  C. 

Combustion    products;    Generation    of  under 

pressure.  V.  F.  Maccallum.  E.P.  171,863,  12.10.20. 

Incandescent  solid  fuel  is  contained  in  a  fire-box 
grate  into  which  fresh  fuel  mav  be  readily  fed  (<•/. 
E.P.  18,242  of  1900)  but  which' is  so  shaped  that  it 
may  be  moved  rapidly  without  dispersion  of  the 
fuel.  This  grate  is  carried  on  a  rod  passing  through 
a  combustion  chamber  and  through  cooling  water 
contained  in  part  of  the  chamber.  When  the  grate 
is  at  one  end  of  the  chamber  air  is  compressed  into 
the  chamber  through  an  inlet  so  placed  that  little 
of  the  air  comes  in  contact  with  the  fuel.  At  the 
end  of  the  compression  stroke  the  fire-box  is  rapidly 
moved  through  the  chamber  causing  an  increase  of 
pressure  due  to  active  combustion.  The  expansive 
force  of  the  combustion  products  is  utilised  in  an 
internal  combustion  engine  or  other  apparatus,  the 
fire-box  is  returned  to  its  original  position,  and  the 
cycle  repeated.  An  auxiliary  air  supply  may  be 
provided  to  assist  scavenging  of  the  chamber.  The 
chamber  is  fitted  with  a  fuel  feed  hopper  above  the 
tiie-box  and  with  doors  for  the  removal  of  ash. 
|  With  fast  engines  the  fire-box  may  be  rotated  to 
keep  the  fuel  in  position. — H.  Hg. 

Products   of   combustion  :    Method    of    treating   and 

handling  .     F.  L.  McGahan;  V.  K.  Walker 

administrix.  U.S. P.  1,398,734,  29.11.21.  Appl., 
5.7.17. 
For  recovering  tar  and  other  by-products  from 
smoke  fumes  from  fuel-burning  devices,  the  fumes 
from  a  number  of  such  devices  are  conducted  to  a 
treating  station  through  a  series  of  apparatus  m 
which  certain  constituents  are  trapped  and  concen- 
trated or  reduced,  the  trapped  constituents  being 
then  heated  to  cause  them  to  pass  out  of  the  system. 
Further  condensable  constituents  are  separated 
from  the  fumes  at  the  treating  station. — H.  H. 

(iases;  Apparatus  fm-  cleaning .    A.  G.  McKee. 

U.S.P.  1,398,598,  29.11.21.    Appl.,  19.3.19. 
A  portion  of  the  length  of  the  blades  of  a  centri- 
fugal  fan    is    surrounded   by    a    stationary    housing 
and  another  portion  by  a   perforated  serrated  shell 
which  rotates  with  the  fan. — H.  Hg. 

Oil  shales;  Method  of  treating .    S.  H.  Dolbear. 

E.P.  171,918,  4.1.21. 
OtL  shale  is  ground  to  powder,  mixed  with  water, 
and  (if  the  shale  itself  does  not  contain  enough  free 
oil)  a  little  oil  or  other  suitable  organic  substance 
added.  The  mixture  is  aerated,  whereupon  the  oil 
attaches  itself  to  the  oil  or  organic  substance  and 
is  carried  to  the  top  of  the  liquid,  as  a  froth,  which 
may  be  skimmed  off  and  distilled.  An  electrolyte,  as 
sulphuric  acid,  may  be  added  to  prevent  the  slime 
becoming  colloidal. — H.  M. 

[Mineral]    oil-distilling    apparatus.      T.    J.    Ryan. 
U.S.P.  1,397,984,  22.11.21.    Appl.,  21.7.21. 

A  supply  pipe  for  crude  oil  is  connected  with  the 
inlet  of  the  first  of  a  pair  of  stills,  and  the  outlet  of 


48  A 


Cl.  11b.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


[Jan.  31,  1922. 


each  still  is  connected  with  separate  expansion 
tanks.  Unvolatilised  oil  from  the  expansion  tank 
connected  with  the  first  still  is  conducted  to  the  in- 
let of  the  second  still,  and  vapour  from  the  expan- 
sion tanks  is  led  through  dephlegmators  to  con- 
densers, the  oil  separated  in  the  dephlegmators 
being  led  back  to  the  inlet  of  the  first  still. — L.  A.  C. 

[Mineral']   oil-distilling   apparatus.      D.    A.    Dean. 

U.S.P.  1,398,587,  29.11.21.    Appl.,  11.4.19. 
A  rotating  horizontal  retort  contains  a  number  of 
loose  elements  free  to  move  in  all  directions  and  hav- 
ing abrading  edges. — L.  A.  C. 

Bituminous  emulsion.  C.  S.  Reeve,  Assr.  to  Barrett 

Co.  U.S.P.  1,398,201,  22.11.21.  Appl.,  10.2.21. 
An  emulsion  is  prepared  by  adding  bitumen  in  a 
fluid  state  to  a  mixture  of  clay  and  water.  The 
mixture  is  agitated  and  maintained  at  a  tempera- 
ture which  will  allow  the  bitumen  to  be  dispersed 
with  minimum  coalescence. — H.  M. 

Motor-fuel  W.  T.  Schreiber,  Assr.  to  U.S.  Indus- 
trial' Alcohol  Co.  U.S.P.  1,398,948,  29.11.21. 
Appl.,  25.6.18. 

The  fuel  consists  of  a  mixture  of  90 — 92  pts.  by  vol. 
of  a  petroleum  distillate  of  30°— 50°  B.  (sp.  gr. 
0-875 — 0"778)  and  10—8  pts.  of  a  very  volatile  com- 
bustible constituent. — L.  A.  C. 

Motor-fuel.  F.  W.  Rohrs.  U.S.P.  1,399,227,  6.12.21. 

Appl.,  8.10.20. 
A  fuel   consists   of   1 — 3%    of   acetone,   8 — 15%    of 
kerosene,  and  80 — 90%  of  gasoline. — L.  A.  C. 

Motor-spirit  and  burning-oil  {kerosene'];  Obtaining 

from  higher-boiling     petroleum.       H.     P. 

Chamberlain,  Assr.  to  Standard  Oil  Co.  U.S.P. 
1,400,419,  13.12.21.  Appl.,  17.8.16. 
In  the  process  in  which  hydrocarbons  boiling  both 
below  and  above  518°  F.  (270°  C.)  (kerosene  distil- 
late) are  collected  together  in  distilling  crude  petro- 
leum under  a  relatively  low,  e.tj.,  atmospheric,  pres- 
sure, the  lighter  fractions  of  the  product  being 
separated  by  partial  distillation  under  a  relatively 
low  pressure,  and  the  residue  distilled  at  decompo- 
sition temperature  under  a  superatmospheric  pres- 
sure of  more  than  30  lb.  per  sq.  in.,  an  improve- 
ment is  effected  by  partially  distilling  the  kerosene 
distillate  under  a  relatively  low  pressure,  collecting 
separately  the  distillate  above  518°  F.,  and  distil- 
ling it  under  a  superatmospheric  pressure  of  more 
than  30  lb.  per  sq.  in. — L.  A.  C. 

Fire-resisting  asphalt  or  like  hydroearbonaceous 
material.  J.  H.  Young,  Assr.  to  H.  H.  Robert- 
son Co.    U.S.P.  1,398,991,  6.12.21.  Appl.,  16.4.20. 

The  composition  consists  of  a  mixture  of  bituminous 
material  and  chloronaphthalene  products. — L.  A.  C. 

Asphaltic  [mineral]  oils;  Method  of  treating  . 

P.  Prutzman  and  G.  L.  Goodwin,  Assrs.  to 
General  Petroleum  Corp.  U.S.P.  1,399,792, 
13.12.21.    Appl.,  27.9.17. 

A  single  fractionation  of  liquid  hydrocarbon 
material  is  effected  by  subjecting  the  exposed  sur- 
face of  an  undivided  body  of  the  same  to  the  action 
of  a  stream  of  hot  products  of  combustion  free  from 
oxygen  and  reduced  in  temperature. — L.  A.  C. 

Montan    wax;   Production   of   from   lignite. 

A.  Riebeck'sche  Montanwerke  A.-G.  G.P. 
341.763,  15.5.19.  Addn.  to  305,349  (J.,  1918,  457  a). 

The  use  of  a  mixture  of  alcohol  with  toluene  instead 
of  with  benzene  for  extracting  montan  wax  from 
lignite  has  the  advantage  that  only  30%  of  the 
mixture  boils  below  the  minimum  m.p.  of  bitumen 
(75°    C.I.    and    50%     boils    above    80°    C,    and    in 


recovering  the  solvent  from  the  extracted  material 
tho  risk  of  a  dangerous  rise  in  pressure  is  mini- 
mised.— L.  A.  C. 

Lubricating   oil;   Production   of    viscous   and 

paraffin  from  the  high-boiling  fractions  of  pro- 
diner  and  low-temperature  tar.  Allgem.  Ges.  fur 
Chem.  Ind  m.b.H.  G.P.  341.872,  8.9.17.  Addn. 
to  310,653  (J.,  1920,  327  a). 

The  oil,  after  removal  of  acid  constituents,  is 
treated  simultaneously  with  liquid  sulphur  dioxide 
and  a  hydrocarbon  insoluble  or  soluble  with  diffi- 
culty in  sulphur  dioxide.  The  upper  layer  of  added 
oil  holds  in  suspension  solid  constituents  of  the 
original  oil,  and  after  sulphur  dioxide  is  expelled 
Hum  the  lower  layer  a  highly  viscous  lubricating 
ml  remains  with  setting  point  below  0°  C,  of  which 
tho  viscosity  can  be  raised  still  further  by  blowing 
with  superheated  steam. — L.  A.  C. 

Peat;  Method  of  and  apparatus  for  treating  . 

W.  W.  Blair.    E.P.  172.359,  3.8.20. 

See  U.S.P.  1,349,714  of  1920;  J.,  1920,  684  a. 
(Reference  is  directed,  in  pursuance  of  Sect.  7, 
Sub-sect.  4,  of  the  Patents  and  Designs  Acts,  1907 
and  1919,  to  E.P.  1237  of  1891,  16,920  of  1897, 
17.119  of  1898,  and  18,282  of  1902.) 

See  also  pages  (a)  44.  Benzol  from  coke-oven  gas 
(G.P.  340,864).  50,  Oily  bodies  (E.P.  163.271). 
58,  Sulphur  from  hydrogen  sulphide  (E.P.  172,074). 
63,  Reducing  ore  ami  making  aos  (US. P.  1,398,572). 
83,  Carbon  monoxide  (E.P.  171,739). 


Hb—  DESTRUCTIVE  DISTILLATION; 
HEATING;    LIGHTING. 

Patents. 

Furl:  Low  temperature  distillation  of .    Merz 

and    MeLellan,    W.    T.    Bottomley,    and    E.    G. 
Weeks.     E.P.  171,909,  3.12.20. 

Fuel  is  distilled  in  a  retort  by  means  of  super- 
heated low-pressure  steam,  and  the  steam  and 
volatile  products  leaving  the  retort  are  passed 
through  a  heat  exchanger  wherein  clean  water  is 
evaporated.  The  steam  thus  generated  is  drawn 
away  by  a  compressor,  which  maintains  the  pressure 
of  tho  evaporated  water  within  the  heat  exchanger 
below  that  of  the  condensing  steam,  and  is  forced 
through  a  superheater  into  the  retort.  Steam  from 
an  independent  boiler  may  be  introduced  at  the 
inlet  to  the  superheater. — H.  Hg. 

Vuel  and  bituminous  rocks;  Apparatus  tor  distilling 

.      G.    Magri.      U.S.P.    1,399,267,    6.12.21. 

Appl.,  21.1.19. 

An  externally  heated  vertical  retort  with  a  charging 
hopper  and  gas  outlet  at  the  top  is  open  at  the 
bottom  and  has  an  axial  extension  also  open  at  the 
bottom.  The  retort  and  its  extension  are  supported 
on  the  roof  of  furnaces.  The  extension  discharges 
into  a  cooling  chamber  having  a  double  air-cooled 
base,  the  chamber  being  supplied  with  quenching 
water  and  fitted  with  discharge  doors.  Both  the 
furnaces  and  the  cooling  chamber  are  arranged  to 
bo  draughted  through  tho  retort. — H.  Hg. 

Wood-spirit,  pyroligneous  and  and  tar;  Process  for 

recovery  of  from  woo<l  distillation    gases. 

R.  Mayweg.  G.P.  337,845,  1.2.20. 
The  gases  are  led  through  a  series  of  condensers, 
the  first  removing  the  tar,  which  is  immediately 
removed  from  contact  with  tin-  gases,  the  second 
removing  the  pyroligneous  acid,  which  is  utilised 
for  the  cooling  of  the  first  condenser  in  the  usual 
way  and  then  runs  into  the  lime-pots.  The  mi- 
condensed  gases  are  led  away  without  entering  the 
lime-pots. — H.  C.  R. 


Vol.  XLL,  No.  2.] 


Cl.  III.— tar  and  tar  products. 


49  a 


Mercury    [vapour]    lamp.      H.    George.      U.S. P. 

1,398,546,  29.11.21.  Appl.,  4. J. 19. 
A  small  tube  is  joined  to  the  top  of  the  vessel  con- 
taining mercury  vapour,  and  extends  downwards 
within  the  vessel  nearly  to  the  bottom.  The  lower 
portion  of  the  positive  terminal,  in  the  form  of  a 
helix  of  tungsten  wire,  is  disposed  in  this  tube,  its 
extreme  lower  end  being  immersed  in  the  mercury. 

—J.  S.  G.  T. 

Incandescent    electric   lamp   [;   Glower  for  ]. 

.].   A.  Hranv.     U.S. P.  1,399,722,  6.12.21.     Appl., 

•-".'.7.16. 
A  GLOWER  for  incandescence  electric  lamps  is  made 
by  moulding  ;•  plastic  mass  of  highly  refractory 
material  into  the  desired  shape,  impregnating  it 
with  a  solution  ol  a  metallic  compound,  the  metal 
of  which  becomes  incandescent  at  the  temperature 

of  volatilisation  of  platinum,  and  reducing  I  he  

pound  (■>  metal  bj  heating  in  hydrogen. — J.  S.  G.  T. 

Carbon  ■  Pro*  >  ss  for  the  fusion  of .  0.  Lummer. 

G  I'.  342,020,  6.6.1  1. 
Cu:i,.i\  is  melted  al  the  positive  or  negative  elec- 
trode or  at  both  electrodes  of  an  are  lamp  burning 
in  air  or  other  gas  under  any  suitable  pressure,  the 
current  density  used  being  inversely  proportional 
to  the  gas  pressure,  and  being  lower  than  thai 
ordinarily  used  for  arc  lamps  when  the  gas  is  at 
atmospheric  pressure.  The  gas  surrounding  the 
electrodes  is  continually  replaced  by  fresh  gas  at 
the  same  pressure,  preferably  by  using  carbon 
electrodes  impregnated  with  materials  which  pro- 
duce  gas  under  the  influence  of  the  ave.  The  process 
may  be  used  for  the  production  of  the  puresl 
and  in  making  are  lamps  with  liquid  craters. 

—A.  R.  P. 


IH.-TAR  AND  TAD  PRODUCTS. 

Benzol  refining  plant :  Continuous .  R.  Mezger. 

Gas-  u.  Wasserfach,  1921,  6!,  825—828. 
The  crude  benzol  is  injected  by  a  pump  at  a  pres- 
sure of  3  J  atm.  through  a  jet  into  the  lower  end  of 
a  mixing  tube  placed  centrally  in  the  apparatus. 
At  the  top  of  this  tube  the  benzol  meets  a  spray  of 

the  refit •  reagent,  either  caustic  soda  solution  or 

sulphuric  acid.  The  mixture  is  distributed  by  a 
perforated  plate  over  porcelain  Raschig  rings,  and 
thence  descends  by  a  tube  which  surrounds  the 
mixing  tube.  At  the  bottom  of  this  tube  the  larger 
portion  of  the  mixture  is  again  raised  by  injector 
action  of  the  incoming  fresh  crude  benzol,  and 
subjected  again  to  the1  operations  described,  while 
the  remaining  portion  subsides  into  a  receiver. 
After  settling,  the  two  layers  are  run  oft'  separately 
by  pipes  situated  at  different  levels.  By  suitable 
adjustments  the  supply  of  crudo  benzol  and  of 
reagent,  and  the  removal  of  the  refined  product 
and  the  by-product  take  place  continuously.  The 
complete  plant  comprises  four  such  vessels,  in  the 
first  of  which  the  benzol  is  washed  with  sulphuric 
acid  of  sp.  gr.  1'665,  and  in  the  second  with  water; 
in  the  third  it  is  washed  with  caustic  soda  of  sp.  gr. 
1'36,  and  in  the  fourth  with  water.  The  approxi- 
mate content  of  tar  bases  and  of  phenol  in  the  crude 
benzol  is  ascertained  by  a  preliminary  test,  and  it 
is  found  that  for  each  litre  of  benzol  and  1%  of 
phenol  10  c.c.  of  caustic  soda  solution,  and  for  each 
litre  of  benzol  and  1%  of  pyridine  bases  3'77  c.c. 
of  Bulphuric  acid  is  required.  The  capacity  of  the 
plant  is  about  4,000,000  kg.  of  benzol  annually. 
The  loss  in  washing  amounts  to  6%  on  the  crude 
benzol. — H.  M. 

Anline      and      sulphur     monochloride ;      Beaction 

between  .     S.    Coffey.     Rec.    Trav.    Chim., 

1921,  40,  747—752. 

The  action  of  sulphur  monochloride  on  anilino  in 


cold  dilute  ethereal  solution  is  quantitative,  the 
products  being  anilino  hydrochloride  and  the 
sulphur  analogue  of  nitrobenzene,  N-dithiophenyl- 
amine,  (',11  ,N<||>N.C0HS.    The  latter  is  a  viscid 

red  liquid  which  cannot  be  distilled  or  crvstallised. 

— H.  J.  E. 

Phenanthrene ;  Quantitative  dt  1 1 1  mi  nation  of . 

A.  G.  "Williams.    J.  Amer.  Chem.  Soc,  1921,  43, 
1911—191!'. 

Fo»  materials  containing  30%  or  more  of  phenan- 
threne 0'25  g.  of  the  material  is  weighed  into  a 
50  c.c.  conical  Mask,  0"75  g.  of  iodic  acid  and  20  c.c. 
el  glacial  acetic  acid  are  added  and  the  mixture 
boiled  for  2\  hrs.  under  an  air  condenser.  After 
cooling  for  several  hours  any  anthraquino'ie  formed 
from  anthracene  present  in  the  original  material  is 
collected  in  a  Gooch  crucible  and  washed  with  the 
minimum  of  glacial  acetic  acid.  The  filtrate  and 
washings  are  evaporated  to  slightly  less  than  25  c.c, 
the  volume  made  exactly  25  c.c.  and  the  mixture 
cooled.  If  any  more  anthraquinone  separates  at 
this  stage  the  operations  are  repeated.  To  the  cold 
solution  1  g.  of  3.4-tolylenediamine  is  added  and 
the  flask  left  overnight  in  running  water  at  20°  C. 
The  phenanthraquinone,  resulting  from  the  oxida- 
tion ol  the  phenanthrene,  is  precipitated  as  tolu- 
phenanthrazine,  which  is  collected  in  a  Gooch 
<  rucible  and  washed  first  with  25  c.c.  of  50%  acetic 
acid  saturated  with  toluphenanthrazino  and  then 
with  20  c.c.  of  cold  water.  The  precipitate  is  dried 
and  weighed  and  to  the  weight  is  added  0'053  g.  to 
allow  for  the  toluphenanthrazine  remaining  in  the 
25  c.c.  of  glieial  acetic  acid  during  the  precipita- 
tion. The  factor  for  conversion  to  phenanthrene  is 
0'6052.  The  method  is,  in  general,  suitable  for  mix- 
tures of  anthracene-oil  hydrocarbons,  30%  or  higher 
in  phenanthrene,  containing  less  than  10%  of  carb- 
azole,  and  containing  no  large  amounts  of  the 
anthracene-oil  constituents  boiling  above  360°  C. 
Cruder  materials  require  preparation  directed  to- 
wards lowering  the  carbazole  content  and  removing 
the  high-boiling  constituents.  The  method  is  best 
suited  for  crude  and  refined  phenanthrenes  and 
phenanthraquinones.  It  has  been  applied  with  satis- 
factory results  directly  to  the  phenanthrene  range 
of  distillates  from  a  plant  column  distillation  of 
anthracene  oil.  For  the  qualitative  detection  of 
phenanthrene  the  material  is  oxidised  as  described 
above  and  the  filtrate,  after  the  removal  of  anthra- 
quinone, is  poured  into  water  and  the  precipitate 
filteied  off  and  washed  with  water.  The  precipitate 
is  warmed  with  concentrated  sodium  bisulphite 
solution,  any  residue  being  filtered  off.  The  filtrate 
is  washed  in  a  separating  funnel  with  one  or  two 
portions  of  carbon  tetrachloride  and  then,  after  the 
addition  of  a  fresh  portion  of  carbon  tetrachloride, 
is  acidified  with  hydrochloric  acid  containing  ferric 
chloride.  The  carbon  tetrachloride  layer,  which 
contains  the  phenanthraquinone,  is  separated  ami 
tested  by  the  reaction  of  Hilpert  and  Wolf  (Ber., 
II ' 1 3,  46,"  2217)  using  a  solution  of  antimony  penta- 
chloride  in  carbon  tetrachloride,  a  purple-red  pre- 
cipitate being  obtained  on  boiling  if  phenanthrene 
was  originally  present. — \V.  G. 

Pyridine  ami  certain   of  its  homologues;  Prepara- 
tion  of  in  a  state  of  purity.     J.  G.  Heap, 

W.  J.  Jones,  and  J.  B.  Speakman.  J.  Amer. 
Chem.  Soc,  1921,  43,  1936—1940. 
Pyridine,  2-methyl-  and  3-methylpyridine  were 
separated  from  the  crudo  coal  tar  bases  from  a  light 
oil  by  repeated  fractionation  and  subsequently  puri- 
fied through  their  addition  compounds  with  zinc 
chloride.  The  2.6-  and  2.4-dimethylpyridines  were 
similarly  obtained  from  the  crude  bases  of  a  middle 
oil,  but  were  purified  through  their  mercurichlor- 
ides.     The  boiling  points  and  specific  gravities  at 


50  a 


Cl.  IV.— colouring  matters  and  dyes. 


[Jan.  31,  1922. 


25°/ 4°  C,  determined  with  special  precautions  for 
accuracy,  were:— Pyridine,  115-3°  C. ;  0-9776:  2- 
methylpyridine,  128'°— 129°  C. ;  0-9404;  3-methyl- 
pvridine,  143-8°  C;  0-9515:  2.6-dimethylpyridine, 
137-5°  C. ;  0-9200;  2.4-dimethvlpvridine,  157-1°  C. ; 
0-9273.— W.  G. 

Patents. 

Lignite  producer  tar;  Distillation  of  .    F.  W. 

Kleyer.  G.P.  340,784,  31.12.16.  Addn.  to  337,784 
and  340,314  (J.,  1921,  653  a;  1922,  7  a). 
In  the  process  described  in  the  preceding  patents, 
the  formation  of  incrustations  on  the  walls  of  the 
still  is  avoided,  and  the  residual  pitch  is  rendered 
suitable  for  the  production  of  electrode  carbon,  by 
filtering  the  tar  hot,  either  before  the  first  or 
between  the  first  and  second  stage  of  the  process. 

— L.  A.  C. 

Tin.-  Process  for  separating  constituents  containing 

oxygen  [creosote,  etc.]  from  .     Allgem.  Ges. 

furClieiii.  Ind.  m.b.H.     G.P.  341,692,  13.1.20. 

Tar  is  treated  with  sufficient  dilute  alkali  hydroxide 
solution  to  dissolve  the  creosote,  and  subsequently 
with  an  excess  of  hot,  concentrated  alkali  hydroxide 
solution. — L.  A.  C. 

.1  nthraquinone  derivatives   [1.2-anthraguinone-iso- 

oxazoles];  Manufacture  of  .     A.  G.  Blnxara. 

From  Farbw.  vorm.  Meister,  Lucius,  und  Briin- 
ing.  E.P.  (a)  147,001,  6.7.20,  and  (b)  160,433, 
8.7.20. 

(a)  By  the  action  of  fuming  sulphuric  acid  on  1- 
iiitro-2-alkylanthraquinones  or  their  substitution 
products,  substances  insoluble  in  alkalis  and  of 
great  reactive  power  are  formed,  which  constitute 
valuable  intermediates  for  the  manufacture  of 
anthraquinone  dyestuffs.  The  substances  are  pro- 
duced by  the  elimination  of  1  mol.  of  water  from 
the  nitroalkylanthraquinone,  and  they  are  probably 
iso-oxazole  derivatives  of  the  constitution  : 


/C°\ 


\co/ 


C6H,< 


,N, 


*C/- 


R 


Example :  5-Nitro-1.2-anthraquinone-iso-oxazole  is 
obtained  by  adding  with  cooling  1  pt.  of  1.5-dinitro- 
2-methylanthraquinone  to  15  pts.  of  fuming  sul- 
phuric acid  containing  40"  of  anhydride.  The  mix- 
ture is  poured  on  ice,  and  the  precipitate  is  dried 
and  recrystallised  from  chlorobenzene.  It  forms  a 
greenish-yellow  crystalline  powder,  soluble  with 
difficulty  in  the  usual  organic  solvents,  and  not 
fusible  without  decomposition,  (b)  The  1.2-anthra- 
quinone-iso-oxazoles  are  obtained  of  much  greater 
purity  if  the  reaction  between  fuming  sulphuric 
acid  and  the  nitroalkylanthraquinone  is  conducted 
with  exclusion  of  air,  for  example  in  an  atmosphere 
of  carbon  dioxide.     (Cf.  J.C.S.,  Jan.,  1922.). 

— G.  F.  M. 

Dinitrophenol;  Process  for  the  production  of  . 

Norsk      Hvdro-Elektrisk     Kvaelstofaktieselskab. 
E.P.  153,265,  28.10.20.    Conv.,  29.10.19. 

Dinitrophenol  is  obtained  in  satisfactory  yield  by 
nit  rating  phenol  with  an  excess  of  dilute  nitric  acid 
containing  less  than  500  g.  HNO,  per  1.  Thus. 
40  kg.  of  phenol  is  mixed  with  12  1.  of  water  and 
gradually  introduced  into  280  1.  of  26%  nitric  acid 
at  15°  C.  with  strong  agitation.  The  addition  re- 
quires 4  hrs.  and  is  controlled  so  that  the  tempera- 
ture rises  slowly  to  95°  C.  The  nitrous  fumes 
evolved  are  absorbed  in  waste  acid  from  a  previous 
operation,  which  is  concentrated  sufficiently  thereby 
for  use  in  a  subsequent  nitration.  Agitation  is  con- 
tinued until  the  reaction  mass  has  cooled,  after 
which  it  is  discharged  into  a  suction  filter  to  remove 
the  dinitrophenol. — F.  M.  R. 


Phenols;  Process  of  producing  .     G.  B.  Brad- 

shaw.    U.S. P.  1,398,998,  6.12.21.    Appl.,  23.10.17. 

In  the  production  of  phenols  through  their  calcium 
salts,  an  aqueous  mixture  of  the  latter  is  acidified 
until  solution  is  complete. — F.  M.  R. 

Oily  bodies  of  high  boiling  point ;  Production  of 

from  aromatic  hydrocarbons.   L.  Lilienfeld.    E.P. 
163,271,  21.5.20.     Conv.,  10.5.20. 

Crude  coumarone  resin,  after  being  freed  from  con- 
stituents boiling  up  to  180°  C.  at  atmospheric  pres- 
sure, is  distilled  in  a  vacuum  as  complete  as  prac- 
ticable, yielding  6 — 15%  of  light-yellow,  viscous, 
fluorescent  oil  between  150°  and  300°  C.,  or  at 
rather  higher  temperatures  when  the  vacuum  is  less 
perfect.  The  product  may  be  used  as  lubricating 
oil,  insulating  material,  transformer  oil,  and  for 
pharmaceutical  purposes.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents 
and  Designs  Acts,  1907  and  1919,  to  E.P.  117,016; 
J.,  1918,  554  a.)— H.  M. 

Lubricating  oil.    G.P.  341,872.    See  IIa. 

Tar  paint.    G.P.  340,580  and  341,742.    See  XIII. 

Viscosity  of  pitch  or  tar.    E.P.  171,774.  See  XXIII. 


IV.-C0L0URING  MATTERS  AND  DYES. 

Ilalogenated  indigo  tins.     Grandmougin.     Comptes 
rend.,  1921,  173,  1363—1365.     (Cf.  J.,  1922,  8a.) 

It  is  not  possible  to  foretell  with  certainty  the 
shade  of  colour  of  new  indigotin  derivatives,  but 
the  marked  influence  of  substituents  in  the  posi- 
tions 6  and  6'  in  preventing  the  tendency  towards 
green  of  neighbouring  groups^  as  shown  in  the  case 
of  octobromoindigotin  (Joe.  at.)  is  further  verified 
in  the  chloro-series,  where  octochloroindigotin  is 
more  violet  than  the  5.5'.7.7'-tetrachloro-derivative. 
The  wave  lengths  of  the  absorption  rays  of  certain 
di-  and  tetrahalogenated  indigotins  in  solution  iu 
xylene  or  methyl  benzoate  are  given. — W.  G. 

Vat  dyestuffs;   Contribution   to   the  study  of . 

M.    Battegav   and   J.    Claudin.      Chim.   et   Ind., 
1921,  6,  592—595. 

The  fact  that  indigo  in  substance  readily  forms  a 
green  sodium  salt,  whereas  cotton  dyed  with  indigo 
is  unaffected  by  sodium  alkyloxide  indicates  that 
in  the  latter  case  indigo  is  chemically  combined 
with  the  fibre.  Indigo  dyed  on  cotton  in  a  normal 
manner  is  regarded  as  being  simultaneously 
rendered  insoluble  by  oxidation,  chemically  com- 
bined with  the  cellulose,  and  fixed  by  adsorption. 
The  considerable  difference  in  the  shade  or  inten- 
sity of  shade  of  benzoyl-o-aniinoanthraquinone, 
benzoyl-/?-aminoanthraquinone,  and  the  ten  iso- 
meric dibenzoyldianiinoantliraquinones  indicates 
the  importance  of  the  position  of  the  benzoylamino- 
group  in  the  anthraquinone  molecule,  for  this 
group  only  exerts  a  powerful  auxochromic  effect 
when  in  an  a-position.  The  affinity  of  the  coin- 
pound  for  the  cotton  fibre,  however,  is  independent 
of  the  position  of  the  benzoylamino-group  in  the 
molecule,  and  the  dyed  shade  represents  the  actual 
colour  of  the  substance  when  in  a  finely  divided  con- 
dition.—F.  M.  R. 

Phenols;  Action  of  nitrous  acid  on .     H.  A.  J. 

Schoutissen.     Rec.  Trav.  Chim..  1921,   40,   753 — 
762. 

Indophenols  may  be  prepared  from  phenols  in 
one  operation  by  a  modification  of  Liebermann's 
reaction,  nitrous  acid  being  obtained  from  nitrosyl- 
sulphuric  acid  and  the  condensation  of  nitroso- 
phenol  with  the  unchanged  phenol  being  effected 
at    as    low    a    temperature    as    possible.       As    an 


Vol.  XLI.,  No.  2.) 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;   PAPER. 


51a 


example,  the  treatment  of  resorcinol  is  described 
in  detail;  the  resulting  product  is  identical  with 
lacmoid.  In  the  preparation  of  indopheno!  from 
phenol  by  this  method  a  large  excess  of  100% 
sulphuric  acid  is  required. — H.  J.  E. 

(Juinizarin    and   alizarin:    Action    "f    bromini 

.     O.  Dimroth.  E.  Schultze,  and  F.  Heinze. 

Ber.,  1921,  54,  3035—3050.  (Cf.  J..  1916,  830.) 
(Ivimzarin  is  not  affected  by  bromine  water  at 
the  ordinary  temperature,  but  it  is  oxidised  by 
a  concentrated  solution  of  bromine  in  potassium 
bromide  to  quinizarinquinone.  By  the  action  of 
bromine  water  containing  undissolved  bromine 
quinizarinquinone  dibromide  is  formed,  which  is 
reduced  by  sulphurous  acid  to  Liebermaim  and 
Ruber's  monobromoquinizarin  (J.,  1900,  730).  and 
when  treated  with  acetic  anhydride  and  sulphuric 
acid  yields  diaeetyldibromoquinizarin,  from  which 
dibromoquinizarin  is  obtained  on  hydrolysis. 
Quinizarinquinone  methoxybromide,  yellow  crys- 
tals, m.p.  96°  C,  is  formed  by  the  action  of 
bromine  on  a  methyl  alcoholic  suspension  of  quiniz- 
arin with  ice  cooling ;  it  yields  diacetyl-3-bromo- 
purpurin-2-methyl  ether  with  acetic  anhydride. 
When  alizarin  is  treated  with  bromine  water,  or 
a  potassium  bromide  solution  of  bromine,  or 
bromine  water  and  free  bromine,  3-bromoalizarin- 
quinone  is  formed  in  each  case.  (Cf.  J.C.S.. 
Feb.)— F.  M.  R. 

Anthradiquinones  ami  anthratriguinones.  O.  Dim- 
roth and  V.  Hidcken.  Ber.,  1921,  54,  3050—3063. 
(Cf.  J.,  1916,  831;  1920,  399  a.) 

Ix  order  to  determine  the  effect  of  hydroxyl  groups 
on  the  properties,  mono-  and  dihydroxyanthradi- 
quinones  hare  been  prepared  by  the  oxidation  of 
tri-  and  tetrahydroxyanthraquinones  respectively 
with  lead  tetra-acetate.  The  hydroxy-derivatives 
of  quinizarinquinone  are  weaker  oxidising  agents 
than  the  parent  substance,  and  the  oxidising  power 
varies  with  the  position  of  the  hydroxyl  group  in 
the  molecule;  thus  5-hydroxyquinizarinquinone  is  a 
weaker  oxidising  agent  than  its  6-isomeride. 
With  regard  to  the  rate  of  oxidation  of  a  hydroxy- 
anthraquinone  to  a  diquinone.  the  oxidation  to  an 
o-quinone  proceeds  more  rapidly  than  the  oxidation 
to  a  p-quinone.  The  preparation  of  triquinones 
in  solution  is  described,  but  these  compounds  have 
not  been  isolated.     (Cf.  J.C.S..  Feb.)— F.  M.  R. 

Patents. 

Azo     dyestuffs;     Manufacture     of     easily     soluble 
otisable  .     O.  Y.  Imrav.     From  Soc.  of 

Chem.  Ind.  in  Basle.     E.P.  (a)  172.056,  23.7.20. 

and  nil  172.057.  21.7.20. 
(a)  The  introduction  of  X-methyl-cu-sulphonic  acid 
residues  into  substantive  azo  dyestuffs.  which  con- 
tain a  diazotisable  amino-group,  enhances  the 
solubility  of  the  dyestuff  without  any  detrimental 
effect  on  its  dyeing  properties.  Amines  are  diazo- 
tised  and  coupled  in  alkaline  solution  with  compo- 
nents, such  as  m-aminobenzoyl-2-amino-5-naphthol- 
7-sulphonic  acid,  and  the  product  treated  with 
sodium  bisulphite  and  formaldehyde.  These  dye- 
stuffs  are  red-brown  to  black-brown  powders  and 
their  dyeings  on  cotton  may  be  diazotised,  with 
elimination  of  the  X-methvl-<.>-sulphonic  acid 
residue,  and  developed  with  non-sulphonated  coup- 
ling components,  yielding  dyeings  of  excellent 
fastness  to  washing,  (b)  The  dyestuffs  are  made 
by  coupling  a  diazotised  amine  with  a  component  of 
the-  naphthalene  series  containing  an  external  N- 
methyl-t.j-sulphonic  acid  residue. — F.  M.  R. 

Dyestuffs;  Manufacture  of .     O.  Imray.     From 

Soc.  of  Chem.  Ind.  in  Basle.  E.P.  172.177, 
2.10.20. 

See  U.S. P.  1,387,596  of  1921;  J.,  1921.   731a. 


Dyestuff  and  mode  of  producing  it.  E.  Hart.  Assr. 
to  I.  J.  Stewart.  U.S. P.  1,399,014,  6.12.21. 
Appl.,  16.2.20. 

See   E.P.   155,726  of  192U;  J.,   1921,   113a. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPEfi. 

Fabrics;  Testing  of [after  various  treatments']. 

H.  Alt.     Textilber.,  1921.  2,  301—303,  311—313, 
326—329,  397—398,  414—415,  430— 432. 

The  effects  produced  by  "  wetting,"  rotting  (pro- 
duced by  immersion  in  a  moist  mixture  of  9  pts. 
of  black  garden  soil  and  1  pt.  of  horse-dung),  frost, 
alkalis,  and  acids  on  fabrics  and  yarns  (pure  and 
"filled")  made  from  cotton,  linen,  hemp,  paper, 
and  artificial  silk  have  been  investigated.  In  all 
cases,  the  effect  on  the  fabric  was  measured  by 
the  change  in  tensile  strength  and  elasticity  in 
both  the  warp  and  weft  directions.  Cotton  fabrics 
became  about  30%  stronger  when  wetted.  Coarsely 
woven  cotton  sail-cloth  rotted  much  more  quickly 
than  "  Makostoff  "  (cloth  woven  from  finely  spun 
Egyptian  cotton  yarn"),  although  the  former  was 
more  resistant  to  water.  Linen  fabrics  of  various 
kinds  became  nearly  100%  stronger  when  wetted, 
but  they  rotted  much  more  quickly  than  cotton 
fabrics.  Hemp  and  linen  fabrics  behaved  similarly 
towards  water  and  rotting,  the  former  fabric  being 
slightly  more  resistant.  Fabrics  made  from  paper 
yarns  rotted  quickly  and  rapidly  lost  strength  when 
wetted.  When  such  fabrics  were  impregnated  with 
aluminium  soaps  they  were  less  resistant  to  water 
and  rotting,  but  a  previous  impregnation  with  a 
coal  tar  distillate  acted  beneficially.  "  Textilose  " 
fabrics  (made  from  mixtures  of  vegetable  fibres  and 
good  quality  Swedish  soda-pulp)  resembled  paper 
yarn  fabrics  in  their  resistance  to  water  and 
rotting.  Although  "  Zellstoff  "  yarn  (made  from 
paper  pulp  by  a  wet  spinning  process)  is  stronger 
than  paper  yarn,  it  loses  considerably  more  strength 
when  wetted.  Artificial  silk  fabrics  lose  the  greater 
portion  of  their  strength  when  wetted  and  rot 
rapidly,  thus  resembling  paper  yarn  fabrics.  Im- 
mersion in  oil  exerted  an  unfavourable  influence 
on  the  resistance  of  paper  yarn  (whether  or  not 
impregnated  with  aluminium  soaps)  to  water  and 
rutting,  but  a  favourable  influence  when  the  yarn 
had  been  previously  impregnated  with  a  coal  tar 
distillate.  The  effect  of  frost  on  fabrics  was  in- 
vestigated by  testing  the  strength  of  fabric  which 
had  been  embedded  in  ice  at  -10°  to  -20°  C, 
before  and  after  thawing.  Linen  and  hemp  fabrics 
became  50 — 80%  stronger  while  in  the  frozen  or 
thawed  state  after  being  frozen  for  seven  days, 
but  paper  yarn  and  "  Textilose  "  fabrics  became 
much  weaker  except  when  they  had  been  previously 
impregnated  with  aluminium  soaps.  Taking  into 
consideration  their  great  loss  of  strength  when 
wetted,  paper  yarn  fabrics  withstood  better  than 
cotton  and  linen  fabrics  the  action  of  a  hot  10% 
solution  of  a  mixture  containing  water  61'52%, 
water  glass  (K2Si,09)  11-03%,  caustic  soda  21-57%, 
alumina  0'06%,  sodium  chloride  0"59  '  .  and  calcium 
oxide  2'90%.  "Textilose"  fabric  (probably  be- 
cause soda-pulp  and  not  sulphite-pulp  is  used  in 
its  manufacture)  withstood  better  than  cotton  and 
linen  fabrics  the  action  of  5%  hydrochloric  acid 
solution  at  18°  C,  and  is  therefore  suitable  as  a 
protection  under  acidic  conditions.  The  strength 
of  cotton  fabric  was  more  adversely  influenced  by 
hydrochloric  acid  than  by  sulphuric  and  nitric 
acids,  but  the  strength  of  paper  yarn  fabrics  was 
adverselv  affected  by  either  of  these  acids. 

—A.  J.  H. 


52  a 


Cl.  V.— FIBRES  ;   TEXTILES  ;  CELLULOSE  ;  PAPER. 


(Jan.  31, 1922. 


Sulphite  pulp:   Variables  in  the  cooking   of  . 

B.  T.  Larrabee.    Paper,  Nov.  2,  1921,  15—16. 

The  quality  and  characteristics  of  sulphite  pulp 
are  influenced  by  the  type  of  wood  employed, 
uniformity  or  otherwise  of  its  moisture  content, 
size  of  the  chips,  composition  of  the  sulphite 
liquor,  and  conditions  of  digestion.  The  following 
method  of  procedure  is  recommended  for  the  pro- 
duction of  sulphite  pul]>  suitable  for  book  papers. 
The  wood  should  be  stored  for  a  sufficiently  long 
time  for  it  to  attain  a  uniform  moisture  content 
and  f-in.  chips  should  be  used;  hemlock  should  not 
he  used  in  conjunction  witli  spruce  and  fir.  The 
sulphite  liquor  should  contain  4'9%  of  free  and 
1'1%  of  combined  sulphur  dioxide,  and  is  prefer- 
ably introduced  through  the  bottom  of  the  digester. 
The  most  satisfactory  temperature  is  290°  F. 
(143°  C.)  and  completion  of  the  digestion  is  best 
ascertained  by  the  colour  of  the  acid  liquor  and 
titration  with  iodine. — D.  J.  N. 

Esparto  grass  and  the  like;  Fractional  digestion  of 

in   Hi-   production     of    paper  pulp.     J.  E. 

Aitken.     Paper,  Nov.  2,  1921,  17—19. 

The  fractional  digestion  process,  as  applied  to 
bamboo  by  Raitt  (J.,  1921,  191 R,  and  F.P. 
453,307;  J..  1913.  785)  is  recommended  for  esparto 
grass,  and  is  claimed  to  be  more  economical  as  re- 
gards soda  consumption  and  recovery,  and  to  give 
a  pulp  of  a  better  colour,  with  a  consequent  lower 
bleach  consumption.  The  grass  is  boiled  for  about 
1  hr.  at  atmospheric  pressure  with  1"5%  of  its 
weight  of  caustic  soda,  whereby  it  loses  37%  of 
its  weight — due  to  solution  of  starch  and  pectose 
matter.  The  black  liquor  is  run  off  and  separation 
of  the  lignin  effected  by  boiling  with  14%  caustic- 
soda  (calculated  on  the  original  material)  at  a.  gauge 
pressure  of  35 — 40  per  sq.  in.  for  about  3  hrs. 
The  pulp  alter  removal  of  the  pale  amber-coloured 
lignin  liquor  is  easily  washed  with  a  relatively 
small  quantity  of  boiling  water;  the  liquor  and 
washings  are  utilised  to  provide  weak  soda  solu- 
tions .for  the  preliminary  digestion  of  further 
quantities  of  grass,  the  remainder  being  sent  to 
the  soda-recovery  plant.  The  only  disadvantage  of 
this  process  is  that  the  boiler  is  more  difficult  to 
furnish.—  D.  J.  N. 

Dyeing  cellulose  acetate.    Briggs.    See  VI. 

/.'  i     ■/    etJiers   of   carbohydrates.       Gomberg     and 
Buchler.    See  XVII. 

Patents. 
Waterproofing   of  fabrics.     W.   A.   Mitchell.     E.P. 

171,726,  21.6.20. 
The  suspended  fabric,  kept  under  slight  tension, 
and,  if  desired,  previously  dried  by  a  current  of 
hot  air,  is  sprayed  from  the  top  downwards  with 
waterproofing  solution,  supplied  under  high  pres- 
sure through  an  atomising  spray.  Air  imprisoned 
in  the  interstices  of  the  fabric  is  driven  out  by  the 
impinging  liquid,  and  better  penetration  of  the 
material  effected.  Apparatus  is  described  for 
carrying  out  the  process,  and  for  the  recovery  of 
any  prooflug  solution  that  may  drain  off  or  pass 
through  the  fabric. — D.  J.  N. 

Fibres  of  all  kinds;  Process  for  impregnating 
animal,  vegetable,  and  mineral  — — .  M. 
Boucherie.  E.P.  165,050,  31.8.20.  Conv.,  15.6.20. 
The  material  under  treatment  is  conveyed,  prefer- 
ably heated,  by  an  endless  band  below  a  tank  per- 
forated at  the  bottom  containing  a  constant  head 
of  the  impregnating  liquid,  such  as  oils,  melted  or 
dissolved  resins,  waxes,  naphthalene,  tallow,  or  the 
like.  The  temperature  of  the  liquid,  the  diameter 
of  tbe  perforations,  the  head  of  liquid  in  the  tank, 
and   the   rate    of   movement   of   the    material    are 


adjusted  according  to  the  mature  of  the  material 
and  of  the  oil,  so  that  the  drops  of  the  latter  spread 
over  the  surface  and  penetrate  the  fibres.  The 
material  then  passes  between  rollers  into  a  heated 
air-drying  apparatus  maintained,  e.g.,  at  50°  C, 
in  which  it  remains  for  2  to  8  hrs. — L.  A.  C. 

Waterproofing  material  [from  sulphite-cellulose 
waste  lye~\  and  process  for  making  the  same. 
H.  H.  Hurt,  U.S. P.  1,400,164,  13.12.21.  Appl., 
27.11.18. 

The  composition  consists  of  sulphite-cellulose  waste 
liquor  freed  from  lime,  with  sodium  sulphate  and  an 
insoluble  soap. 

Artificial  [s.'ZA-]  threads  or  filaments;  Manufacture 
of .     W.  P.  Dreaper.     E.P.  171,719,  26.5.20. 

The  freshly  precipitated  artificial  silk  thread  is 
subjected  to  the  action  of  a  stream  of  any  suitable 
liquid,  which  may  or  may  not  modify  it  chemically 
or  physically,  as  it  passes  down  the  funnel-like 
guider  into  the  centrifugal  box.  The  liquid  is 
directed  on  to  the  upper  part  of  the  funnel  guider, 
preferably  at  such  an  ancde  that  it  is  given  a  swirl- 
ing motion ;  the  constant  flow  of  liquid  down  the 
guider  materially  assists  the  passage  of  the  thread, 
and  enables  finer  threads  to  be  spun  without  risk 
of  damage,  in  addition  to  which  the  thread  may  be 
washed  or  further  treated  immediately  after  pre- 
cipitation. The  solution,  after  passing  through  the 
guider,  drops  into  the  centrifugal  box  and  is  re- 
covered. This  treatment  may  be  supplemented  by 
a  further  treatment  of  the  yarn,  preferably  in 
skein  form,  with  solutions  of  soap,  soluble  oils,  etc., 
to  prevent  the  filaments  sticking  together,  or  break- 
ing when  dried  under  tension. — D.  J.  N. 

Artificial   sill:   anil   like   threads;   Manufacture   of 

.        F.    J.   Brougham.     From    Technochemia 

A.-G.     E.P.  171,776,  20.8.20. 

Artificial  silk  threads  of  high  brilliancy  are 
obtained  from  viscose  by  treating  the  freshly  pre- 
cipitated gelatinous  thread  (precipitated  for  ex- 
ample by  sulphuric  acid  of  15 — 20%  strength)  with 
a  solution  containing  10  or  more  of  an  ammonium 
salt  (sulphate  or  chloride)  and  kept  neutral  or 
faintly  acid. — D.  J.  N. 

Artificial  sill::  Manufacture  of  [viscose']  .     E. 

Bronnert,     E.P.  172,038,  28.5.20. 

In  spinning  verv  fine  threads  according  to  E.P. 
166.931  (J.,  1921",  654a)  the  high  concentration  of 
sulphuric  acid  used  tends  to  parchmentise  the 
fibres.  The  addition  of  glucose  to  the  spinning 
bath  prevents  this  action,  and,  moreover,  affords  a 
larger  margin  in  respect  of  the  degree  of  ripeness 
of  the  viscose,  than  when  sulphuric  acid  is  used 
alone.  Other  polyhydric  alcohols,  such  as  glycerin 
or  glycol,  may  be  used  in  place  of  glucose. — F.  M.  R. 

Artificial  fibres;  Production  of  .     E.  Schulke. 

G.P.  341,833,  18.5.20. 
The  fibres  are  conveyed  by  rotating  drums  with 
an  elastic  surface  from  the  precipitation  bath  to  a 
slowly  revolving  hydroextractor.  Tbe  speed  of 
rotation  of  the  hydroextractor  is  increased  when 
it  contains  sufficient  fibre,  and  when  the  fibre  has 
been  freed  from  adhering  liquor  and  has  been  sub- 
jected to  further  treatment  it  is  wound  on  reels 
either  direct  or  after  passage  through  a  twisting 
machine. — L.  A.  C. 

Cellulose  acetates;  Production   of  moulded  articles 

from  .     Production  of  moulded  articles  from 

cellulose  acetate  and  like  cellulose  derivatives. 
A.  L.  Mond.  From  Cellon-Werke  A.  Eichen- 
griin.    E.P.  (a)  147,904,  and  (b)  171,432,  9.7.20. 

(a)  Finely  divided  cellulose  acetate,  with  or  with- 


Vol.  XI.]..  No.  2.] 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


53  a 


out  addition  of  pulverised  mineral  fillers,  softening 
agents,  e.g.,  camphor  substitutes,  high-boiling  sol- 
vents, or  fusible  organic  substances,  e.g.,  resins, 
and  preferably  with  addition  of  2 — 5%  of  an  inert 
low-boiling  liquid,  or  inert  volatile  organic  sub- 
stances, e.g.,  naphthalene,  is  forced  into  moulds 
under  high  pressure,  e.g.,  L000  kg.  per  sq.  em.,  al 
temperatures  approaching  its  decomposition  point, 
and  allowed  to  cool  under  pressure.  The  operation 
is  preferably  carried  out  in  three  stages,  the  pressed 
material  being  forced  while  hot  through  narrow 
orifices  into  the  air,  when  any  volatile  solvent 
vaporises,  leaving  a  dry,  friable  mass,  which,  after 
powdering,  may  be  mixed  with  further  quantities 
(up*to  600  )  of  fillers,  e.g.,  mineral  powders, 
asbestos,  ground  cork.  etc.  The  mixture  is  then 
pressed  into  moulds  at  140° — Ki0°  C.  and  under  a 
pressure  of  about  100  atm.  The  resulting  products 
Contain    no    volatile   solvent,    are   hard,    strong,    and 

heat-resisting,  (b)  The  three-phase  process  described 

under  (a)  is  carried  out  in  one  operation  by  forcing 
the      heated      material      through      narrow      mixing 

channels   oi    irregular   cross-section    into   a   second 

mould,  or  moulds,  where  it  i--  again  subjected  to 
heat  and  pressure.  The  ;ellulose  acetate  may  be 
partly  or  wholly  replaced  by  other  esters  or  others 
of  cellulose,  or  by  the  celluloid-like  plastic  misses 
made  from  cellulose  acetate  by  known  processes.  In 
such  cases  the  temperature  and  pressure  required 
will  be  largely  determined  by  the  character  ol  the 
material   employed. — D.   J.   N. 

Cellulose  or  its  conversion  products  and  derivatives : 

wfacture  of  ethers  of  .      L.   Lilienfeld. 

E.P.  149,320,  17.5.20.  Conv.,  6.3.19. 
Al/KYL  or  aralkyl  ethers  of  cellulose  (or  its  conver- 
sion products  or  derivatives),  which  are  insoluble  in 
water  and  soluble  in  industrial  organic  solvents, 
are  made  by  further  etherifying  previously  pre- 
pared  cellulose  ethers,  containing  a  smaller  number 
of  alkyl  or  aralkyl  groups,  in  presence  of  small 
quantities  oi  water  not  exceeding  five  times  the 
weight  of  the  cellulose  used  as  the  primary 
material.  The  preliminary  etherification,  resulting 
in  the  production  of  an  ether  soluble  or  capable  of 
swelling  in  cold  water  if  alkylating  agents  are  em- 
ployed, may  be  effected  by  adding  in  successive 
small  quantities  15 — 30  pts.  of  diethyl  sulphate  to 
100  pts.  of  an  aqueous  solution  of  an  alkali-soluble 
cellulose  derivative,  containing  about  8%  of  caustic 
soda  and  the  equivalent  of  8%  of  cellulose,  and 
heating  the  solution  gradually  so  that  the  tem- 
perature reaches  50°  C  after  about  3|  hrs.  The 
reaction  product  is  dried,  finely  powdered,  and 
mixed  with  3 — 6  pts.  of  alkali,  either  in  powder  form 
or  as  a  50%  solution.  The  resulting  mixture  is 
then  treated  with  12 — 32  pts.  by  weight  of  diethyl 
sulphate,  well  mixed,  ami  the  etherification  com- 
pleted ,at  50°— 100°  C.  The  second  etherification 
may  be  effected  with  larger  quantities  of  caustic 
soda,  e.g.,  20  pts.,  and  correspondingly  smaller 
amounts  of  alkyl  or  aralkylating  agents.  This  pro- 
cess yields  highly  etherified  products,  which  are 
readilv  washed  free  from  reaction  by-products. 

— D.  J.  N. 

Ethers  of  carbohydrates  having  the  empirical 
formula  n(C^H10Oc),  their  conversion  products 
and    derivatives;    Manufacture    of    compositions 

and    technical    products    containing  .      L. 

Lilienfeld.    E.P.  171,661,  16.8.20.    Conv.,  15.5.20. 

Alkyl  or  aralkyl  derivatives  of  carbohydrates  of 
the  general  formula  (C0HI0Oj)n,  such  as  cellulose, 
starch,  dextrin,  etc.,  their  conversion  products  or 
derivatives,  are  mixed  with  the  oilv  liquids  pre- 
pared according  to  E.P.  163,271  (('/.' p.  50  a),  with 
or  without  addition  of  volatile  solvents,  such  as 
benzene,  chloroform,  etc.  Softening  agents,  such 
as  animal  and  vegetable  oils,  phosphoric  esters  of 


phenols,  etc..  fillers  and  colouring  matters,  may 
be  added  if  desired.  The  resulting  products  may 
be  used  for  the  manufacture  of  artificial  threads, 
films,  varnishes,  etc. — D.  J.  N. 

Nitrocellulose;    Process    of    treating    — —    and    a 
valuable    nitrocellulose   product   resulting   there- 
from.    G.  C.  Bacon  and  W.  C.  Wilson,  Assrs.  to 
Atlas    Powder    Co.      U.S. P.    1,397,915,    22.11.21. 
Appl.,   7.2.21. 
In  a  process  for  making  highly  concentrated  solu- 
tions   of    nitrocellulose,    the    nitrocellulose    is   sub- 
jected to  the  action  of   artificial  ultraviolet  light. 

—A.  J.  H. 

Nitrocellulose;   Process  for  dehydrating  and 

reducing  the  tire  risk  thereof.  P.  C.  Seel,  Assr. 
to  Eastman  Kodak  Co.  U.S. P.  1,398.911, 
29.11.21.     Appl.,  9.8.20. 

Nitrocellulose  containing  water  is  treated  with 
a  liquid,  the  main  constituent  of  which  is  anhy- 
drous butyl  alcohol  of  low  volatility. — D.  J.  N. 

Nitrocellulose    compositions;     Process    of    making 

coloured  .     L.  -I.   Malone.  Assr.  to  Eastman 

Kodak    Co.      U.S. P.    1,399,357,    6.12.21.      Appl., 
20.4.21. 
Nitrocellulose    fibres    are    dyed    and    then    dis- 
solved in  a  suitable  solvent. — F.  M.  It. 

Pyroxylin  bodies;  Solvent  for .    R.  B.  Mitchell, 

Assr.     to    Atbol     Mfg.    Co.      U.S.P.     1,398,239, 
29.11.21     Appl.,  22.9.20. 
A     solvent    for    pyroxylin    contains    acetone,     an 
aliphatic  alcohol,   a   lower  member  of  the  benzene 
series  of  hydrocarbons,  and  acetanilide. 

—A.  J.  H. 

Cellulose     ester    solvent    and    resulting    cellulosic 

composition.      M.   V.   Seaton,   Assr.  to  The  Dow 

Chemical  Co.     I'.S.P.  l.:«)7,986,  22.11.21.    Appl., 

16.1.20. 

A  cellulosic  composition  contains  a  cellulose  ester 

dissolved   in  ehloropropyl  acetate. — A.   J.   H. 

Cellulose-ester  composition.  IT.  T.  Clarke,  Assr. 
to  Eastman  Kodak  Co.  U.S.P.  1,398,939,  29.11.21. 
Appl.,  27.12.20. 

The  composition  contains  a  cellulose  ester  and  a 
phenolic  ester  of  phthalic  acid. — A.  J.  H. 

Cellulose-acetate  composition.  A.  F.  Sulzer,  Assr. 
to  Eastman  Kodak  Co.  U.S.P.  1,398,949, 
29.11.21.     Appl.,  6.1.21. 

The  composition  contains  ethyl  butyrate  and 
cellulose  acetate  soluble  in  acetone. — L.  A.  C. 

Cellulose  or  paper  pulp:   Method   of   isolating   or 

extracting from  fibrous  vegetable  materials, 

and  apparatus  I  lie  re  for.  W.  Raitt.  E.P. 
171,482,   16.8.20. 

The  fractional  digestion  process  described  previ- 
ously (E.P.  15,779  of  1912  and  16,438  of  1915;  J., 
1913,  785;  1916,  1009)  is  modified  in  that  the 
material  remains  in  the  same  digester  throughout 
the  process.  The  plant  consists  preferably  of  3  or 
4  digesters,  diffusers  for  washing  the  boiled  pulp, 
and  storage  tanks  for  the  digestion  liquors.  The 
digesters  are  fitted  with  perforated  screens  at  the 
top  and  bottom,  and  discharge  pipes  are  so 
arranged  that  the  liquor  can  be  drawn  off  from 
above  the  top  screen  or  from  the  bottom  of  the 
digester.  When  the  low-pressure  treatment  is 
finished,  as  much  as  possible  of  the  liquor  is  drawn 
off  through  the  top  discharge  pipe  (to  remove 
scum  which  would  otherwise  be  filtered  off  by  the 
fibre),  the  remainder  being  blown  out  through  the 
bottom   pipe.      Fresh   soda    is   introduced    and   the 


54  a 


Ct.    VI.— BLEACHING ;     DYEING;     PRINTING;     FINISH  INC. 


[Jan.  31,  1922. 


digestion  completed,  after  which  the  contents  of 
the  digester  are  blown  into  a  diffuser,  where  the 
lignin  liquor  is  separated,  and  is  conveyed  either 
to  a  storage  tank  or  a  freshly  charged  digester, 
and   the  pulp   washed. — D.  J.   N. 

Paper  pulp;  Reclaiming from  waste  waters  of 

paper-making    machines.     E.   Partington.     EP 
171,718,  21.5.20. 

The  apparatus  consists  of  a  large  chest  provided 
near  the  bottom  with  a  rotary  paddle,  an  inlet  pipe, 
at  or  near  the  bottom,  for  the  back  water,  and  a 
number  of  outlet  pipes  arranged  at  different 
heights.  As  the  back  water  enters,  the  water  in 
the  lower  part  of  the  chest  is  kept  in  gentle  agita- 
tion by  the  slowly  rotating  paddle,  the  water  in  the 
upper  part  remaining  practically  undisturbed.  The 
suspended  matter  settles  out,  leaving  clear  water  at 
the  top  and  water  containing  increasing  amounts  of 
fibre  at  increasing  depths.  The  clear  water  may  be 
drawn  off  at  the  top,  or  water  containing  any 
desired  amount  of  fibre  may  be  drawn  off  at  one  or 
other  of  the  outlet  pipes. — D.  J.  N. 

Svlphite-ceUulose  waste  liquor;  Utilisation  of 

L.    Stein.      G.P.    341,690,    18.12.19.      Addn.    to 
339,741  and  340,453  (J.,  1921,  809  a). 

Stauch,  e.g.,  potato  starch,  or  the  like,  and  gum 
arabic  are  added  to  clarified  sulphite-cellulose  waste 
liquor  prepared  as  described  in  the  chief  patent. 

— L.  A.  C. 

Viscose;  Process  of  precipitating  .     F.  Steim- 

mig.     U.S. P.  1,399,587,  6.12.21.     Appl.,  12.8.16. 
See  F.P.  458,979  of  1913;  J.,  1913,  1153. 

Papermaking     machines,     board     machines,     pulp- 
drying  machines  and  the  like  [;  Couch   rolls  for 
-].    R.  Marx.     E.P.  172,378,  31.8.20. 


VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Cotton;  Effect  of  prolonged  bleaching   with   bleach 

liquors  of    carious  strengths   on  .      P.   Heer- 

mann   and  H.   Frederking.     Textilber.,    1921,   2, 
428—429. 

The  same  materials  and  methods  were  used  as 
described  previously  (J.,  1921,  578  a,  886  a). 
Samples  of  cotton  fabric  were  subjected  to  fifty 
immersions  of  75  mins.  each  in  bleach  liquors  at 
20°  C,  containing  l'O  and  20  g.  of  active  chlorine 
per  1.  respectively,  and  the  changes  of  tensile 
strength,  elasticity,  and  weight  of  the  samples  were 
determined  after  each  tenth  immersion.  After  fifty 
immersions  the  fabric  showed  a  decrease  in  strength 
of  35"0%  and  59"8%,  a  change  in  elasticity  of 
+5'7  _aud  -20'5%,  and  a  loss  in  weight  of  7  9 
and  8"7  respectively.  Graphs  representing  the 
results  obtained  show  that  the  decrease  in  strength 
of  cotton  fabric  during  bleaching  increases  with  an 
increase  of  the  strength  of  the  bleach  liquor,  and 
that  when  the  latter  is  doubled,  the  decrease  in 
strength  of  the  fabric  is  trebled.  When  bleach 
liquors  containing  0'5  and  l'O  g.  of  active  chlorine 
per  1.  are  used,  the  elasticity  of  the  fabric  increases 
during  bleaching,  but  it  decreases  when  the  bleach 
liquor  contains  2'0  g.  of  active  chlorine  per  1. 

—A.  J.  H. 

Mercerisation  and  spinning;  Inter-relation  of . 

H.    Lowe.      J.    Soc.    Dyers    and   Col.,    1921.    37, 
296—298. 

A  particular  degree  of  twist,  together  with  uni- 
formity of  fibre  length  and  an  equal  distribution 
of  fibres  throughout  the  yarn,  are  necessary  adjuncts 
to   successful   mercerisation.      The   real   counts   or 


fineness,  as  measured  by  the  micrometer  test,  of 
spinnings  mercerised  to  standard  length,  are 
increased  about  15%,  and  the  breakout  test  values 
are  increased  by  10 — 40%.  This  effect  can  only 
be  due  to  a  specific  modification  in  the  configuration 
of  the  fibres,  resulting  in  a  finer  size  of  yarn.  On 
the  other  hand,  spinnings  mercerised  by  the  static 
process  do  not  yield  any  marked  accretion  in 
spinning  values.  When  yarn  is  submitted  freely 
to  mercerisation  the  spinners'  twist  is  unlocked 
sufficiently  to  allow  it  to  spin  back  into  the  shrink- 
ing yarn  pro  rata  with  the  progress  of  the  reaction. 
The  degree  of  this  alteration  of  the  spinning  con- 
figuration is  a  constant  quantity  dependent  on  the 
shrinkage  of  the  individual  fibres  and  the  amount 
of  twist  contained  in  the  yarn  mercerised.  In 
modern  mercerisation  the  reaction  is  diverted  at  the 
alkali-cellulose  stage  of  maximum  shrinkage,  a 
tension-stretch  back  to  the  normal  length  is  imposed 
whilst  in  the  plastic  state,  and  is  fixed  by  water. 
This  stretching  operation  is  that  of  the  spinning 
mule,  and  supplies  the  necessary  condition  for 
revising  the  spinning  configuration.  The  great 
difference  between  the  processes  is  that,  whereas 
the  mule  spins  dry  and  depends  for  lock  entirely 
on  the  curled  and  irregular  surface  of  the  fibre, 
mercerising  revises  it  with  the  fibres  in  a  plastic 
condition.  Consequently,  the  spinning  configura- 
tion is  transformed  to  a  higher  degree  than  is 
possiblo  by  any  dry  process  of  spinning,  and  this 
explains  the  increase  in  regularity  of  structure  with 
its  concomitant  increase  in  breakout  values. 

— F.  M.  P. 

Acetyl    [cellulose    aeetate~\    silk;    Dyeing    of   . 

J.  F.  Briggs.     J.  Soc.  Dvers  and  Col'.,  1921,  37, 
287—296. 

The  introduction  of  acetyl  groups  into  the  cellulose 
molecule  causes  the  suppression  of  most  of  the 
hydroxy!  groups,  so  that  the  product  is  no  longer 
mainly  a  hydroxylated  colloid,  and  redistributes  the 
balance  between  acidic  and  basic  functions,  so  that 
the  acidic  definitely  predominate.  The  control  of 
these  two  chemical  factors  defines  the  problem  pre- 
sented to  the  dyer  in  dealing  with  cellulose  acetate 
silk.  Acetate  silk  corresponds  approximately  with 
bleached  cotton  in  its  hygrometric  relationships 
with  regard  to  conditioning,  but  the  amount  of 
water  absorbed  by  the  solid  fibre  from  surrounding 
liquid  is  far  smaller  than  with  other  artificial  fibres, 
and  it  is  to  this  fact  that  its  property  of  resisting 
frequent  and  severe  laundering  is  due.  With  few 
exceptions,  untreated  acetyl  silk  possesses  only  a 
slight  affinity  for  substantivo  cotton  dyestuffs,  and 
is,  therefore,  unstained  by  bleeding  from  other 
fibres.  Practical  methods  of  dyeing  acetyl  silk  are 
the  limited  alkali  saponification  method,  in  which 
the  constitution  of  the  silk  is  modified  from  the 
surface  inwards  so  that  it  is  dyed  in  the  same 
manner  as  the  older  artificial  silks,  and  the  direct 
method,  in  which  advantage  is  taken  of  the  pro- 
perties of  the  silk  as  a  cellulose  ester  by  dyeing  with 
selected  dyestuffs  without  any  modification  of  the 
chemical  composition  of  the  fibre.  In  the  former 
method,  acetyl  silk  saponified  in  a  50:1  bath  with 
1(1  of  sodium  hydroxide  at  75°  C.  yields  a  fibre 
consisting  of  an  outer  layer  of  23  of  cellulose,  an 
inner  core  of  67  %  of  unmodified  cellulose  acetate, 
and  an  intermediate  modified  layer  amounting  to 
10  .  This  silk  can  be  dyed  full  shades  with  basic, 
substantive,  sulphur,  and  vat  dyestuffs.  In  tin1 
latter  method,  which  is  expected  to  replace  the 
former,  the  basis  of  selection  is  by  chemical  con- 
stituent groups  favourable  to  the  absorption  and 
fixation  of  the  dyestuff,  such  as  amino-,  alkyl- 
amino-,  hydroxyl,  nitro-,  and  ketonic  groups; 
sulphonic  groups  exert  an  unfavourable  influence. 
Tannin  mordants  are  unnecessary  for  dyeing  with 
basic  dyestuffs,  and  magnesium  chloride  is  usualK 
added   to   the  dye  bath.      Certain    basic   dyestuffs, 


Vol.  xu.,  xo.  2.]     Cl.  \TL— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


such  as  Malachite  Green,  are  much  faster  to  light 
on  acetyl  silk  than  on  tannin-mordanted  cotton  or 
the  older  types  of  artificial  silks.  The  alizarins  dye 
without  a  mordant,  and  the  shades  obtained  are  not 
always  the  same  as  those  usually  associated  with 
these  colours  when  dyed  on  mordants.  Some 
yellow,  orange,  and  red  sulphonated  azo  dyestuffs 
can  be  dyed  directly  on  acetyl  silk,  and  vat  dye- 
stuffs  which  can  be  vatted  without  a  large  quantity 
of  sodium  hydroxide  may  also  be  used.  The  affinity 
of  cellulose  acetate  for  aromatic  amines,  which  can 
be  diazotised  on  the  fibre,  permits  the  development 
of  bright  shades  fast  to  washing  and  rubbing  by 
coupling  with  phenols. — F.  M.  R. 

Alizarin  Bed  dyeings;  "Brightening  of by  means 

of  tii  mds.     R.  Haller.     Textilber.,  1921, 

2,  127 — 128. 

When  an  aqueous  suspension  of  alizarin  is  added  to 
a  colloidal  solution  of  stannic  acid  (prepared  by 
adding  stannic  chloride  to  much  water,  filtering, 
and  gently  warming  the  precipitate  with  dilute 
aqueous  ammonia)  at  ordinary  temperature,  a 
colloidal  orange  coloured  tin-alizarin  lake  is  pro- 
duced which  is  decidedly  yellower  than  the  corre- 
sponding aluminium  lake.  In  aqueous  suspension, 
a  calcium-aluminium-alizarin  lake  strongly  adsorbs 
tin-alizarin  lake,  whereby  the  red  colour  of  the 
former  becomes  yellower.  In  soap  solutions,  tin 
salts  can  exist  in  a  colloidal  form.  Small  quantities 
of  unchanged  alizarin  can  always  be  extracted  from 
Turkey-red  dyeings  produced  by  the  usual  methods. 
From  these  facts  it  is  suggested  that  the  fiery  tone 
of  Alizarin  Red  dyeings  containing  tin  is  due  to 
absorption  of  a  tin-alizarin  lake  by  the  cal- 
cium-aluminium-alizarin lake,  and  not  to  chemical 
combination  of  tin  with  the  latter. — A.  J.  H. 

Formaldehyde  -  hydrosulphite  ;  New  preparation 
of  ,  and  an  economical  generator  of  hydro- 
sulphurous  '"hi.  P.  Malvczin,  C.  Rivalland. 
and  L.  Grandchamp.  Comptes  rend.,  1921,  173, 
1180—1182. 

Zinc  dust  is  suspended  in  a  40 T  solution  of  form- 
aldehyde, and  sulphur  dioxide  is  passed  in 
through  the  walls  of  a  Chamberland  filter.  A  con- 
centrated solution  of  zine-formaldehyde-hydrosul- 
phite  is  obtained,  and  the  salt  crystallises  out  on 
cooling.  This  material  is  a  very  powerful  reducing 
agent  for  indigo,  and  the  Helindone.  Indanthrene, 
Ciba.  and  like  dyestuffs,  the  results  obtained  on 
wool  and  cotton  being  satisfactory.  The  material 
is  much  more  economical  for  industrial  use  than  is 
the  88—90%  hydrosulphite.— W.  G. 

Patents. 

Colour  effects  on  fabrics;  Production  of .     The 

Calico  Printers'  Assoc.  Ltd..  F.  O.  Ashmore  and 
F.  Cochrane.     E.P.  172,193,  25.10.20. 

The  fabric  is  crumpled  and  pressed  into  an  irre- 
gularly perforated  cylinder,  which  is  then  closed 
and  immersed  in  a  dye-bath.  The  dye  penetrates 
through  the  perforations  and  produces  irregular 
markings.  The  fabric  is  then  removed  from  the 
cylinder,  again  crumpled,  pressed  into  the  cylinder, 
and  immersed  in  a  second  vat  containing  a  different 
dyestuff.  The  cylinders  may  be  rotated  or  oscil- 
lated in  the  dye-vats,  and  the  period  of  immersion 
may  be  reduced  by  the  application  of  pressure  to  the 
liquor,  or  of  suction  to  the  interior  of  the  cvlinder. 

— F.  M.  R. 

Cotton  and  other  vegetable  fibre  fabrics,  also  in- 
chiding     silk;     Production     of     pattern     effects 

on  .     R.  S.  Willows,  F.  T.  Pollitt.  and  T. 

Leach.     E.P.  171,806,  2.9.20. 

Clearly  defined  pattern  effects  are  produced  on 
fabric  containing  silk,  cotton,  flax,  jute,  ramie,  or 
nettle  fibres   by    "  conditioning  "    the   fabric   (the 


usual  processes  preparatory  to  dyeing  may  or  may 
not  be  omitted)  until  it  contains  7 — 15%  of  mois- 
ture, embossing  it  by  the  usual  methods,  and  then 
dyeing,  mercerising,  or  parchmentising  (either 
singly  or  in  combination)  the  embossed  fabric.  By 
parchmentising  after  embossing,  plain  cotton 
fabrics  may  be  caused  to  resemble  brocades.  The 
pattern  effects  remain  clearly  defined  after  the 
fabric  has  been  laundered  or  otherwise  cleaned. 

—A.  J.  H. 

Dyeing  machine.  H.  M.  Dudlev.  U.S.P.  1,397,860, 
22.11.21.     A], pi..  21.11.19. 

A  dtein'G  chamber  with  a  foraminous  top  and 
bottom  is  disposed  within  and  spaced  from  a  closed 
receptacle.  Adjoining  one  end  of  the  dyeing 
chamber  and  within  the  receptacle  is  a  chamber 
which  contains  a  rotating  propeller  and  connects  the 
upper  and  lower  chambers  formed  between  the  re- 
ceptacle and  the  dyeing  chamber.  Two  separate 
series  of  openings  connect  the  side  chambers  formed 
by  the  sides  of  the  dyeing  chamber  and  the  re- 
oeptacle  with  the  upper  and  lower  portions  of  the 
propeller  chamber. — A.  J.  H. 

Bleaching  textile  fibres  and  fabrics,  tissues,  and  the 

like;    Device    for    .     De    Eibergsche    Stoom- 

bleekerij.  voorh.  G.  J.  ten  Cate  it  Zonen,  and  R. 
Mohr.     E.P.  148,336,  9.7.20.    Conv.,  13.9.16. 

See  G.P.  311.546  of  1916;  J.,  1919,  626a. 

■   goods  and  other  articles;  Machines  for  treat- 

ing  with    liquids.     E.   W.    Morgan.     E.P. 

172,238,  18.1.21. 
See  U.S.P.  1,365,936  of  1921;  J.,  1921,  145  a. 

Cotton    fabrics;    Process    for    producing    tcool-like 

,  i,,  cts  on  .     G.  A.  Bosshard,  Assr.  to  A.-G. 

Seei  let.      Bleicherei,      Filiate      Arbon.       U.S  P 
1,400,016,  13.12.21.    Appl.,  9.7.20. 

See  E.P.  167.864  of  1920:  J.,  1921,  691a. 

Vegetable  fibres:  Process  for  the  treatment  of . 

(  .    Schwartz.    Assr.    to    Gillet    et    Fils.      U.S.P. 
1.400,380-1,  13.12.21.    Appl.,  9.12.19. 

See  E.P.  144,204  and  150,665;  J.,  1920,  542  \ ; 
192E,  143  a. 

Printing  [two  patterns  simultaneously  on]  cotton 
and  woven  fabrics,  and  apparatus  therefor.  T. 
Hindle.     E.P.  172,403,  4.9.20. 


VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Hydrochloric     arid;     Production     of     from 

hydrogen  and  chlorine  with  the  aid  of  contact 
substances  without  explosion.  B.  Neumann.  Z- 
angew.  Cheni..  1921,  34,  613— 620. 

The  complete  reduction  of  chlorine  to  hydrochloric 
acid,  yielding  a  chlorine-free  product,  is  impossible 
bv  explosion  methods,  or  by  that  of  Hoppe  (F.P. 
352.419:  J.,  1905.  925).  but  is  effected  by  passing 
the  gas  mixture  at  low  velocity  over  quartz  at 
380°  C.  If  the  quartz  is  impregnated  with  mag- 
nesium chloride,  calcium  chloride,  or  aluminium 
chloride,  the  corresponding  temperatures  are 
300°,  305°.  or  350°  C,  respectively.  The  addition 
of  1  mol.  of  water  vapour  for  each  mol.  of  hydrogen 
chloride  is  necessary  for  the  reaction  and  dilution 
with  oxvgen  has  no  ill  influence.  (C/.  J.C.S.,  ii., 
44.)— C.'  I. 

Polythionic  acids  and  polythionates.    E.  H.  Riesen- 

feld   and  G.   W.   Feld.     Z.   anorg.   Chem.,   1921, 

119,  225—270. 

The   proportions   of    tri-,   tetra-   and   pentathionie 

acids  in  solution,  together  with  sulphite,  sulphate,. 


56  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Jan.  31,  1922. 


and  thiosulphate,  can  be  determined  by  a  combina- 
tion of  the  following  processes.  The  total  poly- 
thionic  acids  can  be  determined  by  treatment  of 
the  neutral  solution  with  a  mercuric  salt,  when  the 
following  reactions  occur : 

2S30,"+2Hg'+4H20  =  2HgS+4S04"  +  8H" 
2S10."+2Hg"+4Hi!0  =  2HgS+4SCY'+8H-+2S 

2S60,"+2Hg"-f4H]iO  =  2HgS  +  4S04"  +  8H-+4S 

For  each  molecule  of  polythionate,  four  equivalents 
of  acid  are  formed  which  can  be  titrated.  Alterna- 
tively  the  polythionates  can  be  oxidised  with 
bromine  in  alkaline  solution;  the  whole  of  the  sul- 
phur is  oxidised  to  sulphate  which  can  be  estimated 
as  barium  sulphate.     The  reactions  are: 

SsO,"+   4Bra  +  0H,O  =  3SO4"  +  12H'-(-  SBr 
c  r*  "  '     r\z..    i   l  orr  m— i<in  ". i  outt'  i  l  in„ 


s4o 


)U,  -+-  *tiTi+  b±l0U  =  a«U4  +lZt±  +  SiSl" 
,06"+  7Br2  +  10H:O  =  4SO.,"  +  20H+UBr' 
iO6"  +  10Bra  +  14H2O  =  5SO4"+28H"  +  20Br' 

Trithionate  is  determined  by  boiling  the  solution 
with  excess  of  copper  sulphate,  when  the  following 
reaction  occurs,  the  other  two  polythionates  being 
unaffected:  S306 '  +  Cu"  +  2H,0  =  CuS  +  2S04"  +  4H'. 
The  copper  sulphide  is  filtered  off,  ignited,  and  the 
I  upper  oxide  weighed.  When  boiled  with  excess  of 
alkali  the  polythionates  form  thiosulphate  and  sul- 
phite by  the  following  reactions : 

2S,0,,"  +  60H'=  S,0,"+4S03+3H,0. 
2S4O0"  +  6OH'  =  3S2O3"+2SO3-r3HaO. 
2SsO0"  +  6OH'  =  3S,O3"  +  3H:,O. 

The  thiosulphate  and  sulphite  formed  can  be  esti- 
mated by  titration  with  iodine.  'When  sulphur 
dioxide  and  hydrogen  sulphide  react  in  aqueous 
solution,  the  ratio  for  maximum  formation  of 
polythionic  acids  is  2SO,:lHL.S.  When  the  ratio  is 
S02'.2H:S,  only  elementary  sulphur  is  formed.  The 
formation  of  tetrathionic  acid  is  favoured  by  rela- 
tively lew  concentration  of  sulphur  dioxide,  that  of 
trithionate  by  a  higher  concentration,  whilst  the 
proportion  of  pentathionate  is  practically  constant. 
Tetrathionic  acid  in  acid  or  neutral  solution  decom- 
poses in  a  few  days  into  tri-  and  penta-thionic  acids. 
Trithionic  acid  is  more  stable,  decomposing  only 
slowly  with  formation  of  sulphur  dioxide.  Penta- 
thionic  acid  is  the  most  stable,  decomposing  only  in 
the  course  of  months  with  deposition  of  sulphur. 
Hexathionic  acid  does  not  exist,  the  so-called  hexa- 
thionate  solutions  being  probably  pentathionate  con- 
taining sulphur  in  colloidal  solution.  When  sulphur 
dioxide  and  hydrogen  sulphide  first  react,  an  inter- 
mediate product  is  formed,  probably  a  hydrate  of 
the  unknown  sulphur  monoxide,  SO,  and  from  this 
all  the  subsequent  products  are  formed.  (Cf.  J.C.S., 
ii..  45.)— E.  H.  R. 


Yolyborates  in  aqueous  solution.  [Detection  and 
ih  termination  of  boric  acid.']  A.  Rosenheim  and 
F.  Leyser.     Z.  anorg.  Chem.,  1921,  119,  1—38. 

The  polarimetric  method  for  the  determination  of 
boric  acid,  depending  on  the  influence  of  boric  acid 
on  the  optical  rotation  of  tartaric  acid,  is  of 
limited  application  on  account  of  the  disturbing 
influence  of  other  substances  in  solution.  Boric 
acid  is  best  estimated  by  titration  with  sodium 
hydroxide  in  presence  of  niannitol,  using  phenol. 
phthalein  as  indicator.  To, detect  boric  acid  in 
presence  of  Innate,  the  dry  substance  is;  extracted 
by  boiling  with  a  little  dry  acetone,  the  solution 
filtered  and  evaporated,  the  residue  moistened  with 
a  little  methyl  alcohol  and  ignited.  The  character- 
istic green  flame  coloration  indicates  free  boric  acid. 
A  number  of  alkali  pentaborates  are  described. 
Cobalt  (Co"'),  manganese,  (Mn"),  chromium  (CV"), 
and  copper  (Cu")  form  complex  anions  with  penta- 
borate.     (Cf.  J.C.S.,  ii.,  50.)— E.  H.  R 


Saline  solutions;  Temperature  of  the  vapour  arising 

from   boiling  .     G.   Harker.     J.   Proc.   Roy. 

Soc.,  N.S.W.,  1920,  54,  218—226. 

The  vapour  of  solutions  of  calcium  chloride  boiled 
in  a  hypsometer  either  by  direct  flame  or  by  blowing 
in  steam  had  a  higher  temperature  than  the  vapour 
from  boiling  pure  water,  the  maximum  difference 
obtained  being  6T°  C.     (Cf.  Sakurai,  J.,  1892,  551.) 

— W.  G. 

Arsenious  acid;  Seducing  actions  of .  M.  Kohn. 

Monatsh.,  1921,  42,  221—226. 
Ii-'  heated  with  ammonia  solution  and  arsenious 
anhydride  in  a  sealed  tube  in  a  boiling  water  bath, 
copper  sulphate  is  reduced  to  cuprous  salt,  and  if 
the  latter  is  allowed  to  undergo  oxidation  to  the 
cupric  state  in  the  air,  the  .olution  is  found  to  con- 
tain more  arsenic  acid  thai  should  be  formed  during 
the  original  reduction  o  cupric  to  cuprous  salt. 
(Cf.  J.C.S.,  Feb.)— T.  H.  P. 

Cuprous    oxide;   Compounds   of   .     J.    Errera. 

Bull.  Acad.  Roy.  Belg.,  Cl.  des  Sci.,  1921,  [5], 
I.,  361—368.  Chem.  Zentr.,  1921.  92,  III., 
1455—1456. 
On  electrolysing  alkali  bicarbonate  solutions  free 
from  chlorine  witli  a  copper  anode,  a  film  of 
cuprous  oxide  forms  on  the  copper  and  on  top 
of  this  a  laver  of  a  green  insoluble  basic  car- 
bonate, 2CivC03,2Cu(OH)2,H,0  is  gradually  built 
up,  while  a  certain  amount  of  copper  dissolves  as 
Na_,C03,CuC03,3H,0.  No  formation  of  azurite 
was  observed.  With  high  current  densities  a  black 
deposit  of  copper,  changing  to  tho  ordinary  form 
with  acids,  was  obtained  on  the  cathode.  Electro- 
lysis of  an  alkali  silicate  solution  with  a  copper  anode 
resulted  in  the  formation  of  an  insoluble  copper 
silicate  and  a  coherent  deposit  of  cuprous  oxide  on 
the  anode.  The  formation  of  cuprous  ions  in  solu- 
tions containing  other  anions  than  those  of  the 
halogen  acids  was  studied.  Thus  cupric  nitrate 
may  be  partially  reduced  by  electrolysis  in  the  pre- 
sence of  metallic  copper  or  by  simply  heating  the 
solution  with  the  metal.  In  a  0'2X  copper  nitrate 
solution  at  97°  C,  in  the  presence  of  copper,  the 
concentration  of  the  cuprous  ions  is  SXlO"1  g.  per  1. 
while  the  ratio  Cu"/(Cu')  =  5xl03.  By  hydro- 
lysis of  such  a  solution  cuprous  oxide  is  formed,  and 
it  is  probably  by  some  similar  reaction  that  this 
compound  is  formed  in  the  carbonate  and  silicate 
solutions,  experiment  having  shown  that  it  is  pro- 
duced on  heating  an  aqueous  suspension  of  the  car- 
bonate in  a  sealed  air-free  tube  in  the  presence  of 
copper  gauze.  This  is  suggested  as  a  possible  ex-. 
planation  of  the  occurrence  of  cuprite  with  mala- 
chite and  native  copper  in  ore  deposits. — A.  R.  P. 

Telluric  ac'nl :  Preparation  of .     J.  Mever  and 

H.  Moldenhauer.  Z.  anorg.  Chem.,  1912,  119, 
132—134. 
Tellukic  acid,  HeTeOr,,  can  be  prepared  in  a  pure 
state  and  in  almost  theoretical  yield  by  oxidation 
of  tellurium  tetrachloride  with  chloric  acid. 
Powdered  tellurium  (10  g.)  is  boiled  with  10  c.c.  of 
concentrated  nitric  acid  and  3  c.c.  of  concentrated 
hydrochloric  acid  until  completely  dissolved.  To 
the  hot  solution  is  added  gradually  a  solution  con- 
taining 9  g.  of  chloric  acid  (obtained  by  adding  sul- 
phuric acid  to  a  saturated  aqueous  solution  of 
barium  chlorate)  and  the  solution  boiled  until  no 
more  chlorine  is  evolved.  To  prevent  formation  of 
explosible  oxides  of  chlorine,  slight  excess  of  chloric 
acid  is  then  added.  The  solution  is  filtered  through 
asbestos  and  concentrated  by  distillation  in  a 
vacuum  on  the  water  bath,  thus  removing  chlorine. 
When  there  is  a  tendency  to  crystallise,  the  solution 
is  further  concentrated  in  a  porcelain  dish  on  the 
water  bath,  and  the  telluric  acid  crystallised  out 
by  cooling  or  by  adding  concentrated  nitric  acid. 
The    telluric    acid    is   filtered   off    and    dried    in 


Vol.  XIX,  No.  2J     Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


57  a 


vacuum.  It  forms  a  crystalline,  snow-white  powder, 
readily  soluble  in  water. — E.  H.  R. 

Carbides  of  metalloids;  General  method  for  the  pre- 
paration nf ,  and  the  existence  "I  carbides  of 

phosphorus  ami  arsenic.     E.  de  Mahler,  Bull.  Soc. 
Chim.,  1921,  29,  1071—1073. 

Carbides  of  the  metalloids  may  be  prepared  by  the 
action  of  the  haloid  derivative  of  the  metalloid  on 
the  compound,  I.Mg.C.  -C.Mg.I,  in  ethereal  solution 
at  the  ordinary  temperature.  In  this  way  phos- 
phorus trichloride  gives  phosphorus  carbide  P,C„, 
a  white  amorphous  compound,  which  inflames  when 
warmed  in  air  giving  phosphorus  pentoxido  and 
carbon  dioxide.  Similarly  arsenic  trichloride  gives 
arsenic  carbide,  As,Cn,  an  amorphous  brown  com- 
pound, which  explodes  when  warmed  or  rubbed. 
arsenic  and  carbon  being  liberated. — W.  G. 


Charcoal  suspensions;  Oxidising  properties  of . 

F.  Feigl.     Z.  anorg.  Chem.,  1921,  119,  305—309. 

When  boiled  with  a  small  quantity  of  Merck's  blood 
charcoal  (ash=8  )  hydrogen  sulphide  was  oxidised 
to  sulphuric  acid,  potassium  iodide  to  iodine,  mer- 
curous  salts  to  mercuric,  and  oxalic  acid  to  carbon 
dioxide.  In  alkaline  solution,  potassium  iodide  was 
oxidised  to  iodate,  alkali  sulphides  and  sulphites  to 
sulphate,  cuprous  and  cuprie  sulphide  to  copper  sul- 
phate, cobalt  sulphide  to  sulphate,  potassium 
chromite  to  chromate.  Sodium  thiosulphate  in 
alkaline  or  neutral  solution  and  sodium  nitrite  in 
alkaline  solution  were  unaffected.  A  quantitative 
study  of  the  oxidation  of  trivalent  chromium  to 
chromate  was  made,  after  a  method  had  been 
devised  for  removing  a  product,  formed  by  the 
action  oi  potassium  hydroxide  on  the  charcoal, 
which  liberated  iodine  from  potassium  iodide  and 
thereby  interfered  with  the  estimation  of  chromate. 
This  was  accomplished  by  boiling  with  potassium 
permanganate,  removing  the  excess  with  hydrogen 
peroxide  and  filtering  off  the  manganese  dioxide. 
The  proportion  of  chromate  formed  increased  with 
the  proportion  of  charcoal  taken  ;  with  a  constant 
quantity  of  charcoal,  increasing  the  amount  of 
chromium  salt  taken  increased  the  total  chromate, 
but  the  percentage  oxidised  decreased.  Different 
specimens  of  charcoal  varied  widely  in  their 
oxidising  power,  but  tho  variations  seemed  to  bear 
no  relation  to  the  ash  content. — E.  H.  R. 

See  also  pages  (a)  55,  Formaldehyde-hydrosulphite 
(Malvezin  and  others).  77,  Hydrocyanic  acid 
(Fosse).  82,  Arsenic  in  silicate  rocks  (Hackl) ; 
Phosphoric  acid  (Clark  and  Keeler);  Sulphurous 
acid  (Coppetti). 

Patents. 

Hydrochloric  acid  and  alkali  sulphate;  Process  and 

apparatus  for  the  production  of  .     T.  Gold- 

schmidtA.-G.   E. P.  150,962,  9.9.20.  Conv.,  9.9.19. 

An  apparatus  for  carrying  out  a  modification  of 
the  Hargreaves  process  consists  of  an  unobstructed 
reaction  shaft  provided  at  the  base  with  a  ring 
of  discharge  pipes  for  the  sulphate.  Sodium 
chloride  is  charged  into  the  top  of  the  shaft, 
passes  a  bell  contrivance,  and  meets  a  gaseous 
counter-current  of  sulphurous  acid,  steam,  and 
oxygen,  introduced  through  a  ring  of  nozzles 
situated  above  the  space  where  the  finished  sul- 
phate is  removed.  The  gases  are  drawn  off 
through  a  ring  of  pipes  at  the  top  of  the  apparatus 
by  means  of  a  fan  and  treated  in  the  usual  manner. 
To  control  the  working  of  the  process  the  gas 
mixture  or  the  individual  components  thereof  may 
be  introduced  at  several  superimposed  places  and 
may  be  heated  or  cooled  outside  the  shaft. 

— H.  R.  D. 


Hydrochloric   acid;   Process  for  producing   highly 

concentrated .    J.  Fredriksson,  Assr.  to  The 

Kalbfleisch  Corp.  U.S. P.  1,398,224,  29.11.21. 
Appl.,  9.11.18. 

Hydrochloric  acid  of  a  strength  above  14°  B. 
(sp.  gr.  1'108)  is  distilled  and  the  resulting  vapours 
are  cooled  to  form  an  acid  condensate,  the  acid 
content  of  which  is  less  than  that  of  the  vapour 
mixture.  The  remaining  vapour  mixture  is  sub- 
jected to  further  cooling  to  produce  a  concentrated 
acid.— H.  R.  D. 

Hydrobromic   acid;   Method   of   making  ■  and 

apparatus  therefor.  (  .  \V.  Jones,  Assr.  to  The 
Dow  Chemical  Co.  U.S. P.  1,398,596,  29.11.21. 
Appl.,  31.8.18. 

Liquid  bromine  is  fed  from  a  reservoir  into  a 
heated  receptacle  into  which  a  current  of 
hydrogen  is  introduced  above  the  liquid  bromine. 
Bromine  vapour  ascends,  and  is  burned  by  means 
of  the  hydrogen  at  the  place  where  the  two  meet. 

— H.  R.  D. 


Alumina;    Extraction    of 

172,087,  24.8.20. 


D.    Tyrer.      E.P. 


Very  finely  ground  aluminiferous  material  is  in- 
timately mixed  with  finely  powdered  lime  or  lime- 
stone in  the  proportion  of  not  less  than  2  mols.  of 
lime  for  every  molecule  of  silica  and  not  less  than 
1  mol.  of  lime  for  every  molecule  of  alumina  in  the 
raw  material.  A  small  quantity  of  fluorspar  is  also 
added  as  flux.  The  mixture  is  calcined  at  1200°  C, 
and,  after  cooling,  digested  with  a  111 — 15  ,  solution 
of  sodium  carbonate.  The  hot  solution  is  filtered, 
and  the  filtrate  treated  in  known  manner  to 
separate  alumina. — H.  R.  D. 

Sodium  sulphide;  Process  fur  converting  sodium 
sulphate  to .  R.  J.  Anderson,  Assr.  to  Inter- 
na I  ion  a  I  Fuel  Conservation  Co.  U.S. P.  1,397,497, 
22.11.21.    Appl-.,  30.9.20. 

Sodium  sulphate  is  submitted  to  the  direct  action 
of  gases  containing  carbon  monoxide  in  a  rotary 
furnace  at  a  temperature  at  which  conversion  to 
sulphide  may  occur. — H.  R.  D. 

Chemical    reactions;   Method  of   performing   . 

[Manufacture    of   ammonia.]      W.    O.    Snelling. 
U.S. P.  1,397,609,  22.11.21.     Appl.,  7.9.16. 

Alkaline-earth  cyanamide  is  fed  into  a  furnace 
with  superposed  hearths  provided  with  rotary 
stirrers,  and  progressively  advanced  in  contact  with 
an  aqueous  fluid. — H.  R.  D. 

Cyanides;  Process  for  making .  0.  L.  Barnebey. 

U.S.P.  1,397,613,  22.11.21.    Appl.,  19.3.19. 

Cyanides  are  formed  by  an  endothermic  reaction, 
by  heating  layers  of  a  base,  or  a  compound  yielding 
a  base,  and  carbon,  in  an  atmosphere  of  nitrogen. 

— H.  R.  D. 

Ammonium  chloride  liquors  from  flic  am  monia  soda 

process;  Process  for  working  up  residuary  . 

T.      Lichtenhahn,      Assr.      to      Elektrizitatswerk 
Lonza.  U.S.P.  1,398,135,  22.11.21.  Appl.,  28.5.21. 

In  order  to  recover  the  carbonates  and  chlorides  con- 
tained in  the  lyes  from  the  ammonia  soda  process 
in  a  technically  pure  form,  the  lye  is  heated  to 
drive  off  the  free  carbonic  acid  and  that  combined 
with  ammonia,  the  latter  being  collected  as  am- 
monium carbonates.  The  remaining  lye  is  concen- 
trated to  from  one-third  to  two-thirds  of  its  volume 
according  to  the  amount  of  ammonium  and  sodium 
chlorides  present,  then  cooled  below  25°  C,  and  the 
precipitated  technically  pure  ammonium  chloride 
separated.  The  residual  liquor  is  further  eva- 
porated   to    from    one-third    to    two-thirds    of    its 


58  a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


IJan.  31,  1922. 


volume,  and  the  precipitated  sodium  chloride  re- 
moved at  a  temperature  as  near  as  possible  to  the 
boiling  point. — H.  R.   D. 

Lead   arsenate;    Preparation    of  .     J.    Kirby, 

M.   S.    Hopkins,    and   C.    B.    Bernhart,      U.S.P. 
1,398,267,  29.11.21.    Appl.,  28.7.21. 

An  insoluble  compound  of  lead  is  treated  with  a 
volution  containing  arsenic  in  the  presence  of  a 
sulphonated  compound  of  an  aromatic  hydrocarbon. 

— H.  R.  D. 

Ferrocyanides;  Process  for  producing  .    P.  S. 

Washburn,     Assr.    to    American    Cvanamid    Co. 
U.S.P.   1,398,453,  29.11.21.     Appl.,  7.2.20. 

A  febbotts  salt  is  caused  to  react  with  an  impure 
cyanide  containing  a  substantial  percentage  of  im- 
purities. The  insoluble  matter  present  is  removed, 
the  solution  concentrated,  and  the  ferrocyanide 
formed  is  separated  from  the  other  constituents. 

— H.  R.  D. 

Hydrogen  peroxide;  Manufacture  of  .     A.  J. 

Schumacher.     U.S.P.  1,398,468,  29.11.21.     Appl., 
9.11.20. 

In  the  manufacture  of  hydrogen  peroxide,  the  sul- 
phuric acid  used  is  continuously  cooled  during 
hydration  and  admitted  to  the  process  through 
cooled  conduits. — H.  R.  D. 

Potassium-bearing   silicates;    Process  for   treating 
— .      E.    Levitt,      U.S.P.    1,399,216,    6.12.21. 
Appl.,  27.12.20. 

PoTASSrcM-BEABlNG  silicates  are  treated  with  a  flux 
containing  boron  trioxide. — H.  R.  D. 

Clays;  Process   for  decomposing  .     E.  Levitt. 

U.S. P.  1,399,217,  6.12.21.    Appl.,  11.6.21. 

In  the  decomposition  of  clay  a  flux  is  used  contain- 
ing boron  trioxide. — H.  R,  IX 

Tungstic  oxide;  Process  of  producing  .    AV.  F. 

Bleecker,    Assr.    to  The   Tungsten    Products   Co. 
U.S.P.  1,399,245,  6.12.21.     Appl.,  9.6.20. 

Sodium  tungstate  is  heated  with  sulphuric  acid  and 
the  liberated  tungstic  acid  is  washed  free  from 
soluble  salts. — A.  R,  P. 

Magnesium  chloride;  Preparation  of  magnesia  and 

hydrochloric  acid  from .  Chem.  Fabr.  Buckau. 

G.P.  341,967,  4.1.18. 

Stronc:  solutions  of  calcium  chloride  are  treated 
with  precipitated  magnesium  carbonate,  or  with  a 
mixture  of  calcium  and  magnesium  carbonates  with 
sufficient  magnesium  sulphate  to  react  with  the 
calcium  carbonate,  or  with  a  mixture  of  calcium 
carbonate  and  magnesium  sulphate,  or  with  mag- 
nesia and  carbon  dioxide,  or  lime,  magnesium  sul- 
phate, and  carbon  dioxide.  The  resulting  mixture 
is  heated  in  a  current  of  steam  yielding  aqueous 
hydrochloric  acid  and  a  magnesia  residue  of  good 
hydraulic  properties. — A.  R,  P. 

Ammonium  nitrate;  Preparation  of from  nitric 

acid  and  ammonia.     A.  Bambach.     G.P.  342,001, 
9.6.14. 

Saturated  ammonium  nitrate  solution  is  treated 
with  the  vapour  of  nitric  acid  or  with  oxides  of 
nitrogen  that  will  produce  nitric  acid,  and  the 
resulting  solution  is  neutralised  with  ammonia  gas. 
The  reaction  may  also  be  carried  out  by  passing  the 
two  components  in  correct  proportions  simul- 
taneously into  ammonium  nitrate  solution  and 
cooling  so  as  to  crystallise  out  excess  of  the  salt, 
or  the  solution  may  be  divided  into  two  parts,  one 
of  which  is  treated  with  the  acid  vapours  and  the 
other  with  the  ammonia  gas;  on  mixing  and  cool- 
ing ammonium  nitrate  crystallises  out. — A.  R.  P. 


Sulphur  from  sulphuretted  hydrogen  and  ammonium 
sulphide  and  gases  containing  such;  Becovery  of 
— .  E.  E.  Naef.  E.P.  172,074,  23.8.20. 
Gases  containing  hydrogen  sulphide,  with  or 
without  ammonia,  are  passed  over  active  charcoal, 
such  as  eponite  or  norite,  at  ordinary  temperatures 
whereby  the  hydrogen  sulphide  is  oxidised  to  sul- 
phur. After  the  oxygen  originally  adsorbed  by  the 
charcoal  is  exhausted,  air  or  oxygen  is  mixed  with 
the  gas.  The  charcoal  and  adhering  sulphur  are 
removed  from  the  gas  stream  and  the  sulphur  is  dis- 
solved, or  separated  by  melting  or  distilling.  The 
charcoal  is  then  washed,  dried,  and  heated  to  dull 
redness  out  of  contact  with  air  before  being  used 
again.  Aqueous  solutions  of  ammonium  hydro- 
sulphide,  such  as  ordinary  gas  liquor,  are  mechanic- 
ally mixed  with  charcoal  in  the  presence  of  air; 
a  semi-dry  mixture  is  obtained  and  the  tempera- 
ture rises  as  a  result  of  the  reaction.  Ammonia 
is  evolved  and  is  recovered.  "Water  is  then  added 
and  the  charcoal  and  sulphur  are  filtered  off  from 
the  remaining  ammonia  solution,  or  the  reaction 
mass  may  be  maintained  at  60° — 100°  C.  until  no 
more  ammonia  is  evolved.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents  and 
Designs  Acts,  1907  and  1919,  to  E.P.  1410  of  1879. 
5070  of  1883,  146,141  and  146,145.)— H.  Hg. 

Sulphur;   Distillation  of  .     H.   S.   Davis   and 

W.  A.  Hamor,  Assrs.  to  Texas  Gulf  Sulphur  Co. 
U.S.P.  1,398,960,  6.12.20.     Appl.,  27.4.21. 

The  parts  of  the  retort  which  come  in  contact  with 
molten  sulphur  during  distillation  are  protected 
against  corrosion  by  a  resistant  medium  containing 
iron  and  aluminium. — II.  R.  D. 

Sulphuric  acid;  Process  for  the  production  of 

without  chambers  and  towers.  T.  Schmiedel  and 
H.  Klencke,  Assrs.  to  E.  Greutert  &  Co.  U.S.P. 
1,399,526,  6.12.21.     Appl.,  13.8.20. 

See  E.P.  149,648  of  1920;  J.,  1921,  693  a. 

Richloride  of  mercury;  Manufacture  of  .     K. 

Schantz.     E.P.  172,205,  5.11.20. 

See  U.S.P.  1,373,357  of  1921;  J.,  1921,  346  a. 

Oxides  of  nitrogen;  Catalyser  for  and  process  of 
producing  .  W.  W.  Scott,  Assr.  to  Atmos- 
pheric Nitrogen  Corp.  U.S.P.  1,399,807, 
13.12.21.     Appl.,   7.9.18. 

See  E.P.  136,158  of  1919;  J.,  1921,  258  a. 

Basic    magnesium    hypochlorite;    Process    for    the 

production    of  solid  .      G.   Keresztv   and   E. 

Wolf.   U.S.P.  1,400,167, 13.12.21.   Appl!  8.4.20. 

See  E.P.  142,081  of  1920;  J.,  1921,  80  a. 

"Recovery  of  nitrogen  oxides  from  nitrous  gases. 
G.P.  340,864.    See  I. 

Fusion  of  carbon.     G.P.  342,020.     See  Hb. 


VIII.-CLASS;  CERAMICS. 

Refractory  materials;  Expansion  of  some  at 

high       temperatures.        B.      Bogitch.        Coniptes 
rend.,   1921,    173,   1358—1360. 

Expansion  curves  for  bricks  of  fused  bauxite,  clay, 
silica,  chromite,  and  magnesia  over  the  tempera- 
ture range  0°  to  1600°  C.  are  given.  The  smallest 
expansion  is  shown  by  the  fused  bauxite,  which  is 
suitable  for  the  construction  of  furnaces  subject 
to  sudden  changes  in  temperature.  Silica  bricks 
showed  the  most  irregular  expansion.  They  ex- 
panded rapidly  up  to  600°  C.  and  then  only  very 
slowly,  and  above  1000°  C.  showed  a  slight  con- 
traction.    The   curve    shows    two    break    points   at 


Vol.  XIX,  Xo.  2.]       Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;    METALLURGY,  &o.       59  a 


210°  C.  and  570°  C.  respectively,  which  are  the 
transformation  points  of  cristobalite  and  quartz. 
Furnaces  constructed  with  such  bricks  must  only  be 
heated  up  slowly,  not  more  than  50°  C.  per  hour. 
The  curve  for  clay  bricks  is  intermediate  between 
those  for  bauxite  and  silica.  The  magnesia  and 
chromite  bricks  show  the  greatest  expansion;  and 
such  bricks  are  only  suitablo  for  the  construction  of 
furnaces  in  continuous  work.  The  expansion  of  the 
chromite  is  less  than  that  of  magnesia,  and  hence 
it  will  behave  better  than  the  magnesia  in  the 
initial  firing  of  the  furnace  or  when  the  furnace  is 
put  out  of  operation. — W.  G. 

Patents. 

{Brick']  furnaces  or  kilns.    J.  Boyer.    E.P.  172,062, 
28.7.20. 

A  single  kiln,  or  each  of  a  series  of  kilns,  is  pro- 
vided with  a  partition,  open  at  the  top,  whereby 
gases  burnt  on  one  side  of  the  partition  pass  over  it, 
through  the  material  (bricks)  to  be  fired  on  the 
opposite  side  of  the  partition  and  then  pass  out 
through  flues  in  the  floor  of  the  kiln,  the  gases  being 
supplied  by  a  gas  plant  and  drawn,  with  the  air  re- 
quired for  combustion,  through  the  kilns  by  a  suc- 
tion fan.  The  chambers  and  flues  may,  if  desired, 
be  built  of  the  materials  to  be  heated  or  dried. 
When  the  kilns  are  arranged  in  series  the  hot  gases 
may  pass  consecutively  from  one  to  another  so 
as  to  heat  each  chamber  in  turn,  suitable  shutters 
being  provided  to  control  the  flow  of  the  gases,  or 
the  kilns  may  be  arranged  to  form  a  tunnel,  each 
chamber  being  then  composed  of  two  fixed  side  walls, 
with  two  movable  walls  built  on  the  platform  of  a 
wagon  which  travels  on  a  track  through  the  kilns. 
The  walls  of  the  chambers  may  be  made  with  parts 
of  U-shape,  the  limbs  of  which  engage  with  one 
another,  so  that  one  set  of  walls  may  be  moved  with 
respect  to  the  other  set  and  the  size  and  shape  of 
the  chamber  altered  accordingly.  Each  kiln  may 
also  be  provided  with  a  heat-recuperating  chamber, 
either  movable  or  fixed,  for  heating  the  air  required 
for  the  combustion  of  the  gases.  Such  air  may,  if 
desired,  be  blown  into  the  kiln  under  pressure. 

—A.  B.  S. 

Kilns;    Gas-fired    [continuous']    .      J.    and    H. 

Morton.     E.P.  172,099,  28.8.20. 

In  a  gas-fired  kiln  having  a  number  of  chambers 
arranged  in  series,  each  chamber  is  in  direct  com- 
munication with  the  adjacent  chamber  through  a 
number  of  apertures  provided  with  dampers  which 
are  clamped  between  an  angle-iron  rail  and  a  flat 
rail.  These  rails  are  supported  on  rollers  in  a 
transverse  trough  below  the  floor-level,  the  top  of 
the  trough  being  closed  by  bricks.  The  outer  end  of 
the  rail  projects  into  a  recess  in  the  outer  wall  of 
the  kiln  and  is  provided  with  a  lever  and  screw 
mechanism  by  means  of  which  the  slabs  can  be 
caused  to  cover  or  uncover  the  openings  to  any 
desired  extent. — A.  B.  S. 

Earthenware;  Manufacture  of .     C.  E.  Fulton, 

Asm-,    to   Pittsburgh   Plate    Glass    Co.       U.S. P. 
1,398,014,  22.11.21.    Appl.,  7.6.19. 

Material  for  the  manufacture  of  clay  goods  is 
treated  with  a  mixture  of  an  alkali  hydroxide,  a 
soluble  alkali  silicate,  and  a  deflocculating  agent  of 
the  nature  of  gallic  acid. — C.  A.  K. 

Ceramic  articles;  Production  of  with  electric 

heating.  A.  Steinhardt.  G.P.  340,211,  12.9.19. 
An  already  fired  ceramic  article  is  provided  with  an 
electric  heating  element  on  the  outside  and  the 
latter  is  covered  with  another  ceramic  mass  with 
the  same  coefficient  of  expansion  as  the  heating  ele- 
ment and  composed  of  the  same  constituents  as  the 
inner  fired  article,  but  containing  also  other  com- 
pounds which  will  lower  its  fusing  and  sintering 


points  below  those  of  the  heating  element.  The 
whole  mass  is  then  fired  again.  The  cover  for  the 
heating  element  consists  chiefly  of  kaolin,  quartz, 
and  felspar  with  suitable  additions  of  magnesia, 
soda,  litharge,  and  boric  acid. — A.  It.  P. 


Viscosity    of    molten    glass. 

xxni. 


E.P.    171,774.      See 


IX.-BUILDING  MATERIALS. 

Patents. 
Plaster  casts  and  moulds;  Method    of    separating 

.     O.  Gerngross.     G.P.  (a)  340,534,  12.12.19, 

and  (d)  341,330,  17.4.20. 

(a)  The  moulds  are  smeared  with  an  aqueous  solu- 
tion of  gelatin  or  other  protein,  that  has  been 
stabilised  by  the  addition  of  an  aliphatic  aldehyde 
and  an  alkali,  (u)  Instead  of  the  aldehyde  materials 
of  the  nature  of  quinone  or  tannin  may  be  added  to 
the  gelatin  solution,  or  these  reagents  may  be 
applied  to  the  prepared  gelatin  coating. — A.  R.  P. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Iron;  The  Basset  process  for  the  direct  production 

of  .      F.    Wiist.      Stahl   u.    Eisen,    1921,    41, 

1841—1848. 
The  novelty  of  the  Basset  process  (if.  U.S. P. 
1,360,711  and  E.P.  132,622;  J.,  1921,  48  a,  589  a)  is 
the  claim  that  tho  furnace  being  fired  by  coal  dust 
the  carbon  is  burned  to  carbon  monoxide  and  not 
carbon  dioxide,  and  that  the  hydrogen  is  not 
burned,  so  that  re-oxidation  of  the  reduced  iron  is 
avoided.  This  would  require  a  high  temperature 
and  excess  of  carbon  such  as  in  the  gas  producer, 
the  gases  from  which,  however,  are  not  free  from 
carbon  dioxide,  and  under  the  more  unfavourable 
conditions  of  coal  firing  the  above  claim  is  not  prac- 
ticable. Calculations  made  by  the  author  show 
that  the  assumptions  of  Basset  with  regard  to  the 
process  of  combustion  cannot  bo  attained  in  the  con- 
tinuous smelting  of  iron,  and  it  is  not  possible  to 
prevent  re-oxidation  of  the  iron.  If  the  ore  con- 
tains a  considerable  amount  of  gangue  the  reduc- 
tion of  the  iron  is  made  difficult,  there  will  be 
greater  loss,  and  a  part  at  least  of  the  reduced  iron 
will  contain  slag.  It  is  only  possible  to  make  soft 
iron  if  pure  ores  free  from  silica  are  used.  A 
material  balance  sheet  shows  that  under  the  most 
favourable  conditions  the  coal  consumption  must  be 
greater  than  the  figure  claimed  of  500  kg.  per  ton. 
A  heat  balance  sheet  shows  that  the  Basset  process 
is  not  so  economical  as  the  blast  furnace,  and  in 
addition  the  energy  available  from  the  waste  gases 
is  15'6  h.p.-hrs.  for  the  blast  furnace  and  11'4  for 
the  Basset  process  for  each  ton  of  steel  produced  in 
24  hrs—  T.  H.  Bu. 

Tron-carbon-oxygen;Eguilibriumin  the  system . 

The  equilibrium,  fS-iron-martensite-fcrrous  oxide- 
gas.  W  Reinders  and  P.  van  Groningen.  Rec. 
Trav.  Chim.,  1921,  40,  701—706. 
The  transition  temperature  for  Fe/?-*-Fev  is  shown 
to  be  905°  C,  which  accords  well  with  previous 
determinations  by  other  methods.  The  quintuple 
point  of  the  system  where  the  five  phases,  o-iron, 
martensite,  ferrous  oxide,  carbon,  and  gas  coexist, 
is  at  740°  C.  and  2300  mm.— H.  J.  E. 

"Reversed  chilled  iron";  Steel  additions- to  pig- 
iron,  and  .     E.  Piwowarsky.     Giessereizeit., 

1921,  18,  356—359.  Chem.  Zentr.,  1921,  92,  IV., 
1318—1319. 

According  to  Bardenheuer  (J.,  1921,  472  a)  "  re- 


60  a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTROMETALLURGY.     [Jan.  31,  1922. 


versed  chilled  iron  "  is  originally  white  cast  iron  in 
which  carbide  after  solidification  has  been  incom- 
pletely decomposed  so  that  white  spots  are  still 
present  in  the  metal;  these  should  have  the  appear- 
ance of  ledeburite,  but  the  author's  researches 
showed  that  this  is  not  so.  The  cementite  appears 
as  single  flaky  spots  and  shows  no  eutectic,  having 
rather  the  appearance  of  a  secondary  precipitation 
from  the  saturated  mixed  crystal  phase.  A  rapid 
supercooling  above  the  formation  temperature  of 
the  metastable  eutectic  results  in  a  rapid  addition 
of  carbon  to  the  mixed  crystals,  and  as  the  tem- 
perature falls  this  carbon  is  precipitated  as  secon- 
dary cementite,  decomposition  into  free  carbon  and 
ferrite  only  taking  place  within  a  very  small  tem- 
perature  range.  This  theory  accounts  for  the  net- 
work arrangement  of  the  cementite  in  the  metal. 
Tlio  origin  of  the  supercooling  phenomena  is 
ascribed  not  only  to  a  low  pouring  temperature,  but 
also  to  the  sulphur  and  oxygen  content  of  the  metal 
which  increases  with  the  solidification  range.  To 
avoid  the  formation  of  hard  spots  the  silicon  con- 
tent, which  should  be  5 — 6  times  the  sulphur 
content,  should  not  be  below  1"7%.  To  test  the 
theory,  increasing  amounts  of  steel  were  added  to  a 
slightly  hypereutectic  cast  iron,  so  that  eventually 
the  mixture  was  strongly  hypoeutectic,  when  the 
castings,  which  contained  40%  of  steel,  showed  a 
large  number  of  hard  points.  On  analysis  the 
sample  showed  very  strong  oxygen  segregation, 
which  also  plays  a  prominent  part  in  the  formation 
of  "reversed  chilled  iron." — A.  R.  P. 

Iron;  Baumann  sulphur  icst,  and.  the  behaviour  of 

phosphorus   in  .        E.   Heyn,   P.   Oberhoffer, 

and    A.    Knipping.      Stahl    u.    Eisen,    1921,    41, 
1772—1775.    (Cf.  J.,  1921,  392  a.) 

In  a  discussion  on  the  Baumann  sulphur  test 
Heyn  takes  exception  to  Oberhoffer  and  Knipping's 
statement  that  phosphorus  has  no  marked  influ- 
ence on  the  darkening  of  the  bromide  paper,  and 
suggests  that  the  absence  of  darkening  in  their  ex- 
periments was  due  to  deficiency  of  acid  or  insuf- 
ficient time  of  contact.  He  points  out  that  the  test 
is  liable  to  give  deceptive  results,  and  describes 
experiments  showing  that  calcium  phosphide  laid 
on  bromide  paper  gives  a  black  stain  with  little 
more  than  a  trace  of  sulphur  present,  and  that  iron 
phosphide  sprinkled  on  the  paper  also  gives  a  dark 
stain.  In  reply  Oberhoffer  and  Knipping  reaffirm 
their  previous  statement  that  the  darkening  of  the 
bromide  paper  indicates  the  effects  of  sulphur,  and 
state  that  even  with  greatly  lengthened  time  of 
contact,  concentrated  acid,  and  increased  tempera- 
ture no  darkening  due  to  evolution  of  hydrogen 
phosphide  is  obtained. — J.  W.  D. 

Muslict  steel.    A.  H.  d'Arcambal.    Chem.  and  Met. 
Eng.;  1921,  25,  1055. 

Tests  on  a  bar  of  Mushet  steel  at  least  30  vears  old 
and  containing  2"38%  C,  P73%  Mn,  1:15%  Si, 
T12%  Cr,  and  4"80%  W,  showed  that  the  best  heat 
treatment  would  be  to  quench  from  1038°— 1093°  C. 
and  draw  back  from  538° — 566°  C,  giving  a  metal 
with  a  hardness  number  of  600  Brinell  and  87 
scleroscope.  Quenching  in  oil  from  816°  C.  and 
drawing  at  538°  0.  produced  a  martensitic-troostitic 
structure  with  a  Brinell  hardness  figure  of  512. 
An  almost  entirely  austenitic  structure  resulted 
from  quenching  at  1038°  C,  changing  to  martensite 
when  the  piece  was  drawn  at  538°  C.  The  metal  was 
overheated  and  softened  at  1204°  C  and  became 
brittle  when  air-cooled  from  538°  C.  The  structure 
was  martensitic  but  the  large  grain  boundaries 
remained. — C.  A.   K. 


Steel :  Endurance  of  - 
D.  J.  McAdam.  inn. 
25,  1081—1087.  ' 


—  under  repeated  stresses. 
Chem.  and  Met.  Eng.,  1921, 


Different    samples     of    steel    possessing    varying 


chemical  and  physical  properties  were  tested  for 
endurance  by  arranging  the  test  specimen  as  a 
rotating  cantilever  beam  in  a  modification  of  the 
■White-Souther  machine.  Stresses  of  known  magni- 
tude could  be  applied  to  the  free  end  of  the 
specimen.  Special  care  was  observed  in  the  pre- 
paration and  fixing  of  the  tapered  test-piece  to 
avoid  unequal  stress  distribution.  Detailed  chemical 
and  mechanical  tables  are  given,  and  stress-cycle 
relations  are  illustrated  by  the  semi-logarithmic 
plotting  of  idealised  graphs.  The  average  fall  in 
endurance  stress  is  not  so  rapid  as  previously  ex- 
pected, being  only  about  15%  for  a  thousandfold 
increase  in  cycles.  Endurance  stress  bears  no 
definite  ratio  to  the  proportional  limit,  but  the 
ratio  is  higher  in  annealed  than  in  hardened  metals. 
Ratios  of  endurance  stresses  to  ultimate  tensile 
stresses  are  remarkably  constant,  the  average  being 
0'44  for  10"  cycles,  and  generally  any  factor  (e.g., 
chemical  composition)  which  affects  the  breaking 
stress  also  influences  the  endurance  stress  simi- 
larly. The  results  obtained  with  carbon  steels  were 
usually  less  variable  than  those  obtained  with  alloy 
steels  and  this  is  attributed  to  the  greater  unifor- 
mity in  composition  of  the  former. — C.  A.  K. 

Steel    analysis;    Solid    sodium    hydroxide    as    an 

absorbent    for    carbon    dioxide    in   .      G.    L. 

Kelley  and  E.  W.  Evers.     J.  Ind.  Eng.  Chem., 
1921,  13,  1052. 

Granular  sodium  hydroxide,  which  will  pass  a 
5-mesh  sieve  but  be  retained  on  a  20-mesh  sieve,  is 
a  satisfactory  substitute  for  potassium  hydroxide 
solution  as  an  absorbent  for  carbon  dioxide  in  the 
determination  of  carbon  in  steel  by  the  combustion 
method.— W.  P.  S. 

Chromium    in    ferrochromium;    Determination    of 

by  electrometric  titration.    G.  L.  Kelley  and 

J.    A.    Wiley.      J.    Ind.    Eng.    Chem.,    1921,    13, 
1053—1054. 

Twenty  grams  of  sodium  carbonate  is  fused  in  a 
nickel  crucible  and  then  cooled  while  the  crucible 
is  rotated  so  as  to  form  a  lining  on  the  latter ;  a 
mixture  of  16  g.  of  sodium  peroxide  and  1  g.  of  the 
finely  divided  sample  is  then  fused  for  3  mins.  in 
the  crucible,  care  being  taken  not  to  fuse  the 
lining.  When  cold,  the  mass  is  dissolved  in  300  c.c. 
of  water,  the  solution  boiled  for  30  rains.,  cooled, 
treated  with  80  c.c.  of  sulphuric  acid  (sp.  gr.  1'58), 
boiled  for  a  further  5  mins.,  filtered,  and  the  filtrate 
diluted  to  1  1. ;  100  c.c.  of  this  solution  is  acidified 
with  25  c.c.  of  sulphuric  acid  and  titrated  with 
ferrous  ammonium  sulphate  and  bichromate  solu- 
tions, the  end-point  being  determined  electrometri- 
cally,  i.e.,  the  point  of  the  greatest  change  in  the 
oxidation-reduction  potential  during  the  titration. 

— W.  P.  S. 

Zinc;  Apparatus  for  the  gasometric  estimation  of 

in  zinc  dust.   E.  Beyne.  Ann.  Chim.  Analyt., 

1921,  3,  360. 
The  apparatus  consists  of  a  gas  burette,  the  upper 
part  of  which  below  the  glass  stopcock  is  expanded 
into  a  bulb  of  300  c.c.  capacity,  and  the  lower  part 
is  graduated  in  0"5  c.c.  divisions  from  300  to  375  c.c. 
The  lower  end  of  the  burette  is  connected  by  a 
rubber  tube  with  a  bulb  for  adjusting  the  liquid 
level  and  gas  pressure,  and  the  upper  end  communi- 
cates through  a  small  refrigerating  spiral  with  a 
Koninck  apparatus  charged  with  mineral  acid  and 
the  zinc  dust  under  examination.  In  a  simpler 
form  of  apparatus  the  latter  is  replaced  by  an 
ordinary  flask  connected  by  means  of  a  glass  tube 
with  the  stopcock  of  the  burette.— G.  F.  M. 

Copper;    Electrolytic    solution    and    deposition    of 

T   R    Briggs.     Trans.  Amer.  Electrocheui. 

Soc.,'l921,  376  a— 376  n. 

The  theory  of  the  electrolytic  solution  and  deposi- 


Vol.  xli.;  xo.  2.]    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


61a 


tion  of  copper  as  formulated  by  Luther  (J.,  1901, 
1119)  is  modified  and  the  electrolytic  behaviour  of 
copper  in  solutions  containing  copper  ions  is  ex- 
plained by  assuming  that  the  following  electro- 
chemical reactions,  or  their  reverse,  take  place,  (1) 
0u+O-*Cu,  (2)  Cu'  +  O  —  Cu '.  If  the  cuprou 
ions  formed  at  the  anode  are  removed  by  electro- 
lytic oxidation  the  copper  dissolves  as  a  divalent 
metal;  if  they  are  removed  by  chemical  means,  e.g., 
by  precipitation,  the  copper  dissolves  as  a  univalent 
metal,  while,  if  they  are  removed  both  by  chemical 
and  electrochemical  means,  copper  dissolves  with  an 
apparent  valency  between  1  and  2.  The  same  con- 
ditions govern  the  deposition  of  the  copper  at  the 
cathode.  If,  however,  the  cuprous  ions  at  the 
cathode  are  supplied  entirely  by  electrolytic  reduc- 
tion of  cupric  ions  and  are  removed  from  the  solu- 
tion, not  only  by  the  electrochemical  reaction  (1) 
above,  but  also  by  chemical  means,  such  as  hydro- 
lysis the  copper  is  deposited  with  an  apparent 
valency  of  more  than  2.  The  theory  is  applied  to  the 
behaviour  of  copper  during  electrolysis  from 
cyanide,  chloride,  and  sulphate  solutions,  and  also 
to  the  consideration  of  the  use  of  alcohol  in  the 
copper  coulometer. — A.  R.  P. 

Brasses;  Selective  corrosion  and  dezincification  of 

.     F.  de  Wurstemberger.     Rev.  Met.,  1921, 

18,  687—712. 

The  problem  of  the  selective  corrosion  and  dezinci- 
fication of  brasses  has  been  studied  with  special 
reference  to  those  used  in  the  manufacture  of  con- 
denser tubes  for  turbo-generators,  where  the  tubes 
come  into  contact  with  sea  water.  The  manner  of 
dezincification  varies  according  to  whether  the 
brass  contains  only  one  phase,  whether  all  o  or 
all  /3,  or  two.  In  the  first  case  the  metal  becomes 
gradually  more  or  less  uniformly  coated  with 
spongy  copper,  in  the  second  case  the  /3  constituent 
is  attacked  first  and  the  metal  has  the  appearance 
of  a  network  of  channels  surrounding  the  a  grains. 
The  primary  cause  of  dezincification  appears  to  be 
the  deposition  of  a  film  of  metallic  copper  on  the 
surface  of  the  metal  from  a  salt  or  oxide  of  copper 
formed  by  the  action  of  the  salt  water  on  the 
brass,  and  this  gives  rise  to  a  concentration  of 
copper  ions  sufficient  to  hinder  polarisation,  the 
zinc  then  dissolving  by  electrolytic  action.  Selec- 
tive corrosion  is  due  to  electrolytic  action  of  stray 
or  local  currents,  whereas  dezincification  may  be 
considered  to  be  due  to  selective  corrosion  that 
is,  still  going  on  or  has  already  stopped.  The 
fo-mer  phenomenon  is  characterised  by  the  appear- 
ance of  gelatinous  deposits  of  an  oxychloride  of 
zinc  along  the  a  crystal  boundaries,  and  the  water 
in  contact  with  the  metal  reacts  alkaline,  whereas 
the  latter  is  accompanied  by  deposition  of  spongy 
copper.  A  detailed  theoretical  consideration  of  the 
electrochemical  reactions  involved  is  given,  together 
with  a  review  of  previous  work  done  and  sug- 
gestions for  the  protection  of  brasses  from  cor- 
rosion.— A.  R.  P. 

Metallographic     investigations  on     the     cathodic 

deposition      of      metals      on  aluminium      and 

chromium.      S.    Kyropoulos.  Z.    anorg.    Chem., 
1921,  119,  299—304. 

Cathodic  deposition  of  one  metal  on  another  may 
take  place  uniformly  over  the  surface  of  the  metal 
or  only  at  a  number  of  isolated  points,  according 
to  the  structure  of  the  surface.  Experiments  were 
made  with  aluminium  which  had  been  annealed 
for  a  long  time  near  its.  melting  point,  ground, 
polished,  and  etched.  From  nitrate  solution,  with 
a  current  density  of  001  to  01  amp.  per  sq.  cm., 
copper  and  silver  were  deposited  almost  solely  at 
the  inter-crystalline  boundaries  and  only  at  a 
very  few  points  on  the  crystal  faces;  chromium 
and   nickel   were  deposited   more   freely,    but   still 


only  at  certain  points,  on  the  aluminium  crystals. 
"With  chromium  and  nickel  a  higher  current 
density  increased  the  number  of  points  of  deposi- 
tion, but  not  so  with  copper  and  silver.  Using 
unetched  aluminium,  deposition  still  took  place  at 
the  crystal  boundaries,  but  the  adhesion  was  much 
worse  than  on  the  etched  metal.  Using  cyanide 
solutions  instead  of  nitrate,  copper  showed  more 
tendency  to  be  deposited  on  the  crystal  faces  when 
the  current  density  was  as  high  as  05  amp.  per 
sq.  cm.  When  the  aluminium  had  been  subjected 
to  compression  until  slip  bands  appeared,  the 
copper  was  deposited  on  these  lines.  Deposition 
on  the  crystal  faces  is  favoured  under  conditions 
such  that  production  of  hydrogen  at  the  cathode 
is  possible.  That  the  resistance  of  the  crystal  sur- 
faces to  deposition  is  not  necessarily  due  to  a  film 
of  oxide  is  shown  by  the  fact  that  polished  nickel, 
etched  with  nitric  acid,  shows  a  similar  behaviour 
in  copper  nitrate,  the  copper  being  deposited  only 
at  the  crystal  boundaries.  Passive  chromium 
shows  the  phenomenon  very  markedly,  deposition 
occurring  only  at  isolated  spots  of  non-passive 
metal  or  impurity.  When  the  passivity  is  de- 
stroved.  deposition  occurs  over  the  whole  surface 
of  the  metal.— E.  H.  R. 

Aluminium  bronze;  Heat  treatment  of .    A.  A. 

Blue.     Chem.   and  Met.    Eng.,   1921,   25,    1043— 

1048. 
On  heating  aluminium  bronze  containing  7'5 — 9'o% 
Al  to  870°  C.  and  quenching  in  brine  (5%)  the 
original  eutectic  structure  changes  to  a  mass  of 
needle-like  crystals  of  the  ,3  solid  solution,  which, 
on  further  annealing  at  845° — 870°  C,  become 
larger  and  more  evenly  distributed.  Correspond- 
ing with  the  structural  change  on  quenching,  the 
alloys  become  very  much  harder,  the  maximum  in- 
crease in  hardness  (over  100%)  being  obtained  by 
quenching  from  870°  C.  in  salt  water.  Subsequent 
annealing  very  slightly  decreases  the  hardness. 
Neither  heat  treatment  nor  forging  has  any  appre- 
ciable effect  on  the  tensile  strength  or  vield  point 
of  the  alloys.— A.  R.  .P. 

Mercury;  Rapid  determination  of in  its  ores. 

A.  Heinzelmann.     Chem.-Zeit,,  1921,   45,  1226— 
1227. 

The  results  obtained  by  the  author's  method  (J., 
1921,  588  a)  on  four  samples  of  mercury  ore  are 
compared  with  those  obtained  by  a  modification  of 
Whitton's  method.  In  each  case  the  figures  ob- 
tained in  the  latter  method  are  about  0"02%  higher. 
Whitton's  method  consists  in  heating  1 — 2  g.  of 
the  finely  ground  ore  with  3  g.  of  fine  iron  filings 
and  3  g.  of  good  lime  in  a  crucible  covered  with  a 
silver  plate  kept  cool  by  a  cold  water  jacket  on  the 
upper  side.  The  mercury  collects  on  the  silver,  so 
that  the  gain  in  weight  of  the  latter  represents  the 
mercury  in  the  ore.  If  organic  matter  is  present 
oily  or  tarry  drops  may  also  collect  on  the  silver 
plate.  In  this  case  the  plate  is  washed  with  ether 
and  dried  over  a  small  flame  before  weighing.  Ores 
containing  mercurous  chloride  require  longer  heat- 
ing and  a  higher  temperature  to  liberate  all  their 
mercury  content. — A.  R.  P. 

Tellurium;  Hydrometalhvrgy   of  .     P.   Hulot 

Bull.  Soc.  Chim.,  1921,  29,  1070—1071. 

The  method  of  estimating  tellurium  after  its  con- 
version into  potassium  anhydrotellurate,  by  reduc- 
tion with  zinc  and  hydrochloric  acid  and  consequent 
precipitation  of  the  tellurium  (cf.  J.,  1920,  189  A, 
238  a)  is  modified,  in  that  aluminium  and  sodium 
or  potassium  hydroxide  are  used  as  the  source  of 
nascent  hydrogen.  The  time  required  is  reduced 
from  10  hrs.  to  1  hr.  The  aluminium  must  be  pure 
and  free  from  copper. — W.  G. 

b2 


62  a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Jan.  31,  1922. 


Patents. 

Iron  and   iron  alloys;  Apparatus  for  cementation 

of and  process  thereof.     W.  H.  Fisher  and 

P.  Chambers.  E.P.  171,750,  13.8.20. 

Iron  or  iron  alloys  contained  in  a  retort  surrounded 
by  a  furnace  casing  are  case-hardened  by  intro- 
ducing a  carbonaceous  fluid  at  a  controlled  rate 
into  a  small  vessel  in  the  base  of  the  retort.  The 
liquid  vaporises  and  passes  through  perforations 
in  the  walls  of  a  covering  cylinder  to  come  into  con- 
tact with  the  metal  to  be  carburised.  The  progress 
of  the  operation  is  judged  by  the  nature  of  the 
burning  residual  gases  from  the  retort.  The  car- 
burising  agent  preferably  consists  of  pine  tar,  a 
solvent  such  as  turpentine,  and  linseed  oil. 

— C.  A.  K. 

Iron;    Heat-resisting    .      Acid-resisting    iron. 

P.  D.  Schenck,  Assr.  to  The  Duriron  Co.  U.S. P. 
(a)  1,398,917  and  (b)  1,398,918,  29.11.21.  Appl., 
12.  and  22.4.20. 

(a)  Iron  containing  10%  of  nickel  and  30%  of 
chromium,  (b)  An  iron  alloy  containing  8 — 18%  Si, 
5—20%   Cu,  and  5—20%   Ni.— C.  A.  K. 

Iron;  Process  for  de-tinning  .      The  Thermal 

Industrial  and  Chemical  (T.I.C.)  Research  Co., 
Ltd.,  and  J.  S.  Morgan.    E.P.  172,046,  8.6.20. 

The  material  to  be  detinned  is  passed  through  the 
interface  of  a  layer  of  molten  metal,  preferably  tin, 
lead,  or  lead  alloy,  and  a  layer  of  molten  antiflux, 
preferably  caustic  soda,  at  a  temperature  above  the 
melting  point  of  tin,  either  by  submergence  or  with- 
drawal or  both.  The  metal  bath  is  enriched  in  tin, 
which  is  subsequently  extracted. — T.  H.  Bu. 

Chromium;  Process  for  electrolytically  separating 
— .  E.  Liebreich.  E.P.  159,887,  8.3.21.  Conv., 
8.3.20. 
The  electrolyte  consists  of  a  colloidal  or  partly  col- 
loidal solution  containing  a  mixture  of  chromous 
and  chromic  oxides,  preferably  produced  by  partial 
electrolytic  reduction  of  a  solution  of  chromic  acid 
or  a  soluble  chromate,  with  the  addition  of  salts  of 
trivalent  chromium  and  a  weak  acid,  such  as  boric 
acid.— A.  R.  P. 

Metals;  Separation  and  recovery  of from  mrtol- 

lic  alloys.  A.  L.  Mond.  From  Meballbank  und 
Metallurgische  Ges.  A.-G.  E.P.  171,490,  18.8.20. 
Alkali  metals,  alkaline-earth  metals,  or  alloys  of 
these  metals  are  introduced  into  the  metallic  alloys, 
so  as  to  form,  with  the  metals  to  be  separated,  com- 
pounds having  melting  points  different  from  and 
specific  gravities  equal  to  or  lower  than  those  of  the 
basic  metal.  The  alloy  or  compound  of  the  alkali 
metal  or  alkaline-earth  metal  is  then  separated  from 
the  basic  metal  by  a  known  method,  such  as  strati- 
fication, segregation,  etc. — J.  W.  D. 

Alloy    for    repairing    defective    castings.      J.     P. 
Haworth.    E.P.  171,607,  1.11.20. 

The  alloy  contains  copper  825%,  lead  42'0%,  tin 
36'75%,  ferrovanadium(35%  V)5%,  silver  6%,  nickel 
1%,  and  antimony  1%. — J.  W.  D. 

Zinc  or  zinc  and  lead;  Process  of  producing  

{from  ores].  C.  E.  Cornelius.  E.P.  171,722. 
27.5.20. 
The  zinc  or  zinc-lead  oxide  obtained  in  the  ordinary 
method  of  treating  ores  is  distilled  with  carbon  in 
the  usual  manner;  the  vapoure,  however,  are  con- 
densed rapidly  by  cooling  them  to  60° — 70°  C.  so  as 
to  obtain  all  the  metal  in  the  form  of  dust,  which  is 
then  transferred,  out  of  contact  with  the  air,  to 
another  furnace,  where  it  is  melted. — A.  R.  P. 


Zinc;  Production  of .    C.E.Cornelius.    U.S. P. 

1,398,006,  22.11.21.     Appl.,  17.3.21. 

In  the  electro-thermic  distillation  of  zinc  from  zinc 
ores,  clogging  of  the  walls  of  the  condenser  is  pre- 
vented by  the  complete  removal  of  .moisture  from  the 
charge  before  the  metal  distils. —  C.  A.  K. 

Zinc;  Extraction  of .     F.  E.  Lee,  A.  L.  MeCal- 

lum,  and  S.  G.  Blaylock,  Assrs.  to  The  Consoli- 
dated Mining  and  Smelting  Co.  of  Canada,  Ltd. 
U.S. P.  1,399,020,  6.12.21.  Appl.,  30.4.20.  Renewed 
22.7.21. 

The  ore  is  subjected  to  an  oxidising  roast,  the 
soluble  zinc  compounds  are  removed  from  the  cal- 
cines by  washing,  and  the  residue  is  heated  in  a 
sulphatising  atmosphere  to  convert  insoluble  zinc 
compounds  into  the  soluble  sulphate. — A.  R.  P. 

Sulphide  ores;  Treatment  of  complex .    W.  G. 

Perkins.     E.P.  172,101,  28.8.20. 

A  continuous  process  for  eliminating  pyrites 
particles  from  metallic  sulphide  ores  consists  in 
grinding  the  ore  and  heating  it  to  about  425°  C. 
in  an  atmosphere  of  superheated  steam  for  such  a 
time  that  the  surfaces  of  the  pyrites  particles  only 
are  affected  and  the  particles  become  paramagnetic 
and  can  be  removed  by  means  of  a  magnetic 
separator.  The  ore  is  fed  through  an  externally 
heated  rotary  cylindrical  furnace  chamber  in  one 
direction,  and  exposed  to  the  action  of  steam  pass- 
ing through  in  the  opposite  direction.  The  gases 
from  the  chamber  are  passed  into  a  condenser 
where  elementary  sulphur  and  ore  dust  particles 
are  collected.  If  the  quantity  of  hydrogen  sulphide 
produced  is  greater  than  the  proportion  required 
to  produce  elementary  sulphur  from  the  sulphur 
dioxide,  air  is  introduced  to  oxidise  the  required 
amount  of  hydrogen  sulphide. — T.  H.  Bu. 

Aluminium  alloys,  and  method  of  making  the  same. 

A.  de  Lavandeyra.  E.P.  172,155,  16.9.20. 
An  aluminium  alloy  containing  6 — 8%  Cu,  1 — 2% 
Ni,  0"25 — 1%  Mg,  with  or  without  cadmium  less 
than  1%,  cobalt  less  than  1'5%,  and  tin  less  than 
0"5%.  The  amount  of  nickel  and  cobalt  together 
should  be  between  1  and  2%.  Castings  are  heated 
to  500° — 530°  C,  and  cooled  in  oil  and  afterwards 
in  hot  water.  They  then  have  an  elastic  limit  of 
32,000  lb.  per  sq.  in.,  a  maximum  strength  of 
37,000 — 39,000  lb.  per  sq.  in.,  and  an  elongation  of 
2%  on  2  in.— T.  H.  Bu. 

Metallic  coating;  Process  for  depositing  a on 

various  metal  articles  or  objects.  F.  W.  Haines 
and  F.  L.  Sorensen,  Assrs.  to  The  Metal  Protec- 
tion Laboratory.  U.S. P.  1,397,514,  22.11.21. 
Appl.,  28.9.18. 

The  metal  article  to  be  coated  is  dipped  into  a 
solution  containing  the  coating  metal  and  an  oxide 
which  is  not  reduced  to  the  metallic  state  in  the 
process  and  which  tends  to  retard  the  rate  of 
deposition  of  the  coating  metal. — A.  R.  P. 

Copper-bearing     solutions;     Electrolysis     of    . 

P.  R.  Middleton,  Assr.  to  J.   C.  Lalor.     U.S. P. 

1,397,647,  22.11.21.  Appl.,  16.2.20. 
A  solution  containing  a  copper  salt  and  a  salt  of 
a  metal  more  electropositive  than  copper  is  electro- 
lysed by  circulating  it  through  the  cathode  com- 
partment of  an  electrolytic  cell  provided  with  a 
diaphragm  and  an  anode  of  the  more  electropositive 
metal,  whereby  copper  is  deposited  from  the 
solution. — A.  R.  P. 

[Precious  metals;!   Cyanide  piocess  [for  recovery 

of    ].      A.    W.    Hahn.      U.S.P.    1,397,684, 

22.11.21.    Appl.,  24.12.19. 
Before  adding  zinc  to  precipitate  gold  and  silver 
from  cyanide  solutions  containing  these  metals,  a 


Vol.  XLL,  No.  2.]    Cl.  X.— METALS  ;   METALLURGY,  EXCLUDING  ELECTRO-METALLURGY. 


63  a 


quantity  of  a  chemical  that  reacts  with  zinc  to  pro- 
duce hydrogen  sufficient  to  precipitate  the  precious 
metals  without  consuming  any  cyanide  is  added  to 
the  solution. — A.  R.  P. 

Metal-bearing    materials;     Process    of    cyaniding 

precious    .      J.    C.    Haun    and    A.    Silver. 

U.S. P.  1,399,458,  6.12.21.     Appl.,  4.12.20. 

The  metal  material  is  subjected  to  the  action  of  a 
solution  containing  a  cyanide,  a  bicarbonate,  and  a 
lead  compound  capable  of  combining  with  the 
sulphur  of  sulphides. — T.  H.  Bu. 

[Copper  sulphide']  ores;  [Flotation']  concentration 
of .  H.  R.  Robbins,  Assr.  to  Metals  Re- 
covery Co.  U.S. P.  1,397,703,  22.11.21.  Appl., 
30.8.17. 

The  ore  is  ground  and  made  into  a  pulp  with  water 
containing  a  non-alkaline  salt  in  solution  but  with- 
out any  organic  frothing  agent.  By  producing  fine 
air  bubbles  in  the  pulp  and  causing  them  to  rise  to 
the  surface,  the  copper  sulphide  is  also  brought  to 
the  surface  of  the  pulp  and  may  thus  be  separated 
from  the  remainder  of  the  ore. — A.  R.  P. 

Ores;  Method  of  concentration   of  .     H.    R. 

Robbins.  U.S. P.  1,398,394,  29.11.21.  Appl., 
21.10.19. 

A  uniform  downward  flow  of  pulp  is  maintained  in 
a  flotation  vat  by  pumping  pulp  from  the  lower 
section  of  the  vat  and  distributing  it  evenly  over 
the  upper  surface  of  the  pulp  mixture.  Uniformly 
distributed  gas  streams  are  caused  to  ascend 
through  the  ore  pulp,  and  the  floated  mineral 
matter  is  removed  from  the  top  of  the  vat. 

— C.  A.  K.  . 

[Sulphide]  ores;  Magnetic  separation  of  .     C. 

Thorn,  R.  W.  Diamond,  and  S.  G.  Blaylock, 
Assrs.  to  The  Consolidated  Mining  and  Smelting 
Co.  of  Canada,  Ltd.  U.S. P.  1,398,051,  22.11.21. 
Appl.,  30.4.20.    Renewed  14.10.21. 

The  ore  is  heated,  without  roasting,  to  such  a  tem- 
perature between  800°  P.  and  1200°  F.  (about 
430° — 650°  C.)  that,  on  being  properly  cooled,  it 
will  develop  its  maximum  magnetic  susceptibility. 
The  ore  is  then  artificially  cooled  under  suitable 
conditions  of  heat  exchange  and  for  such  a  length 
of  time  (5 — 15  mins.)  that  it  retains  this  suscepti- 
bility. Subsequent  treatment  on  the  magnetic 
separator  removes  the  iron  minerals  from  those  con- 
taining lead  and  zinc. — A.  R.  P. 

Cleaning   metals;  Method  of  and   composition  for 

.    J.  H.  Gravell.    U.S.P.  1,398,507,  29.11.21. 

Appl.,  27.2.20. 
Metals   are  cleaned  by   immersion   in   an   etching 
acid  in  the  presence  of  fusel  oil. — C.  A.  K. 

Ore;  Process  of  and  material  for  reducing and 

making  gas.  J.  H.  Reid,  Assr.  to  T.  I.  Hogan. 
U.S.P.  1,398,572,  29.11.21.     Appl.,  16.7.20. 

A  mixture  of  ore  and  the  necessary  fluxing  agent, 
together  with  a  coking  carbonaceous  material,  is 
heated  in  a  retort  to  produce  a  coked  aggregate 
with  evolution  of  gas.  The  coked  mass  is  then 
smelted.— C.  A.  K. 

Ores  and  the  like;  Method  of  leaching .     J.  W. 

Hornsey.  U.S.P.  1,398,723,  29.11.21.  Appl., 
13.11.17. 

Ore  or  similar  material  is  treated  successively  with 
separate  quantities  of  leach  liquor.  Suspension  of 
the  material  is  maintained  during  the  process  of 
extraction  and  the  particles  are  allowed  to  settle 
before  treatment   with  a  fresh  quantity  of  liquor. 

— C.  A.  K. 


Furnace;  Ore-treating  .     F.  J.  Bowman,  Assr. 

to  The  Grasselli  Chemical  Co.  U.S.P.  1,399,046, 
6.12.21.     Appl.,  29.12.17. 

Finely  divided  ore  and  a  supply  of  heated  oxygen 
are  separately  introduced  at  one  end  of  a  roasting 
chamber,  containing  a  number  of  heated  triangular 
elements  arranged  apex  upwards  in  transverse 
rows,  the  elements  in  any  row  being  spaced  to  lie 
between  those  in  the  two  adjacent  rows. 

— T.  H.  Bu. 

Boasting  furnace;  Mechanical  with  annular 

roasting  chamber.  F.Siemens.  G. P.  (a)  330,677, 
16.10.19,  and  (b)  340,378,  6.3.20. 
(a)  The  furnace  is  provided  with  rabbling  arms 
which  are  alternately  oppositely  inclined  so  that 
the  charge  is  raked  through  the  furnace  in  zig- 
zag manner,  (b)  The  final  third  of  the  furnace  is 
provided  with  charging  doors  so  that  reducing 
and /or  chlorinating  materials  may  be  added  to 
the  roasted  charge  at  the  end  of  the  process.  In 
this  way  both  the  preliminary  roasting  operation 
and  the  final  reducing  and /or  chlorinating  roast 
may  be  carried  out  continuously  in  the  same 
furnace. — A.  R.  P. 

Vanadium,    uranium,   and    radium;   Extraction   of 

■  from  ores.     W.   F.   Bleecker,   Assr.   to  The 

Tungsten  Products  Co.  U.S.P.  1,399,246, 
6.12.21.     Appl.,   9.6.20. 

The  ore  is  heated  with  an  aqueous  solution  of  an 
alkali  carbonate  under  pressure,  and  the  insoluble 
residue  is  filtered  off  and  digested  with  an  acid. 
The  vanadiferous  slimes  are  removed  from  the 
residue  insoluble  in  acid  by  elutriation  and 
treated  for  the  recovery  of  vanadium. — A.  R.  P. 

Metals    [molybdenum];    Extraction   of   from 

their  ores.  E.  M.  Hamilton,  Assr.  to  Hamilton, 
Beauehamp,  VVoodworth,  Inc.  U.S.P.  1,399,554, 
6.12.21.     Appl.,   7.6.17. 

Molybdenum  ore  or  concentrate  is  pulverised  to 
a  suitable  fineness  for  chemical  treatment  and 
mixed  with  an  alkaline  aqueous  solution  of  a  non- 
volatile alkali  metal  compound  to  form  a  pulp, 
which  is  heated  to  convert  the  molybdenum  into 
a  soluble  compound,  filtered,  and  the  moybdenum 
recovered  from  the  filtrate. — T.  H.  Bu. 

Metals  and  alloys  containing   boron;  Manufacture. 

of   .       R.    Walter.       G.P.    341,795,    7.11.18. 

Addn.  to  340,185  (J.,  1921,  854  a). 
In  order  to  introduce  boron  or  boron  and  carbon, 
either  alone  or  simultaneously  with  other  metals, 
into  the  surface  layer  of  metallic  articles  (i.e.,  by 
a  cementation  process)  the  articles  are  immersed 
in  a  molten  bath  containing  a  preponderance  of 
boron  compounds.  By  regulating  the  time  of  im- 
mersion and  the  temperature  of  the  bath,  which 
should  be  as  near  as  possible  to  the  melting  point 
of  the  metal,  the  depth  of  penetration  of  the  boron 
may  be  controlled. — A.  R.  P. 

Carburising  ferrous  articles;  Process  and  apparatus 
for .     F.  P.  Cannon.     E.P.  172,351,  7.7.20. 

See  U.S.P.  1,350,483  of  1920;  J.,  1920,  694  a. 

Ore  concentration.  E.  W.  Wilkinson,  Assr.  to 
Minerals  Separation  North  American  Corp. 
U.S.P.  1,398,989—90,  6.12.21.     Appl.,  31.12.18. 

See  E.P.  169,288  of  1920;  J.,  1921,  776  a. 

Tempering   and  annealing;  Apparatus  for  use   in 

[utilising  heat  contained  in  metals  after]  . 

D.  S.  de  Lavaud,  B.  F.  Clark,  and  C.  W.  Baines. 
E.P.  172,381,  31.8.20. 


64  a 


Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


[Jan.  31, 1922. 


XL-ELECTRO-CHEMISTRY. 

Compounds  of  cuprous  oxide.    Errera.    See  VII. 

Electrolytic    solution,    and    deposition    of    copper. 
Briggs.     See  X. 

Patents. 

Gas  under  pressure;  Apparatus  for  the  production 

by  electrolysis  of -.    E.  Vesme.     E.P.  171,743, 

26.7.20. 
In  an  installation  comprising  a  number  of  volta- 
meters for  the  electrolytic  production  of  gases,  pas- 
sage of  the  gases  through  the  voltameters  is  regu- 
lated by  valves  controlled  by  electric  devices  sub- 
jected to  the  pressure  of  the  gases  in  each  conduit, 
so  that  the  gases  are  delivered  at  the  same  pre- 
determined pressure.  Valves  permitting  the  gases 
to  pass  to  collecting  vessels  only  when  their  pressure 
exceeds  that  in  the  appropriate  generating  vessel 
are  also  provided.- — J.  S.  G.  T. 

Extracting  gases  from  liquids;  [Electrolytic]  pro- 
cess for .     F.  S.  Vincent.     U.S. P.  1,398,658, 

29.11.21.    Appl.,  13.1.19. 

An  airtight  tank  is  divided  into  two  chambers,  elec- 
trically connected  and  partly  filled  with  electrolyte. 
The  space  above  the  electrolyte  in  each  chamber  is 
connected  with  one  of  a  pair  of  airtight  receiving- 
chambers  from  which  all  air  is  removed  as  far  as 
possible.  An  anode  plate  is  partly  immersed  in  the 
electrolyte  in  one  chamber,  and  a  cathode  plate  in 
that  in  the  other.  The  gases  separated  by  electroly- 
tic action  are  stored  in  their  respective  receiving 
chambers.— J.  S.  G.  T. 

Accumulator   plates.      L.    de    M.    Cattley.      E.P. 
171,921,  10.1.21. 

An  intimate  mixture  of  lead  sulphate  and  litharge 
is  made  into  a  paste  with  cooked  potato  and  sul- 
phuric acid,  moulded  into  plates,  and  baked,  out  of 
contact  with  air,  at  a  temperature  rising  to  533° — 
550°  C.     The  plates  are  purified  electrolvtically. 

—J  .8.  G.  T. 


Storage-battery  separators;  Method  of  preparing 

.     C.  C.  Carpenter,  Assr.  to  U.S.  Light  and 

Heat  Corp.     U.S. P.   1,398,065,   22.11.21.     Appl., 
14.2.21. 

Wood  used   in   making  storage  battery   separators 
is  treated  with  a  lead  compound. — J.  S.  G.  T. 

Electric  accumulators;  Negative  plate  for- 
Pouchain.  U.S.P.  1,399,995,  13.12.21. 
18.9.19. 

See  E.P.  150,811  of  1919;  J.,  1920,  726  a. 
Fractional  distillation.     U.S.P.  1,398,856.     See  I. 


Electrical    control   of  reactions. 
and  1,399,200.    See  I. 


U.S.P.   1,399,181 


Electrical  precipitation.     U.S.P.  1,399,422.     See  I. 

Electrical   fume   precipitators.     U.S.P.    1,399,441. 
See  I. 

XIL-FATS;    OILS;    WAXES. 

Soya  beans;   Extraction   of  oil   and  proteins  from 

.      S.    Satow.      Technol.    Rep.    Tohoku    Imp. 

Univ.,  1921,  2,  [2],  1—124. 

There  are  upwards  of  30  varieties  of  bean  which 
may  be  classified  into  yellow,  blue,  and  black.     The 


first  contain  most  protein  and  oil,  the  last  the  least. 
The  protein  content  varies  from  35  to  40'5%  and 
the  oil  content  from  15'4  to  209%.  The  mean 
analvsis  of  16  different  varieties  was: — Water, 
10-2%  proteins,  37'8%  ;  oil,  18"9%  carbohydrates, 
23-5%;  fibre,  5-2%;  ash,  4'4%.  The  bean  of  the 
Hokkaido  contains  the  most  protein  and  the  least 
fibre.  The  Korean  bean  contains  much  carbo- 
hydrate and  less  protein.  The  beans  contain  an 
average  of  about  5%  of  soluble  protein  and 
O'Ol — 0'04%  of  non-protein  nitrogenous  matter. 
The  following  specification  is  given  for  a  good  in- 
dustrial raw  material: — Crude  protein  over  40% 
of  the  dry  bean,  soluble  protein  under  4%,  available 
protein  38%  ;  the  beans  should  be  yellow  or 
brownish-yellow  and  should  contain  not  more  than 
13%  of  water;  sp.  gr.  P308— 1310.  The  carbo- 
hydrates consist  mainly  of  non-reducing  sugars  with 
little  or  no  starch.  The  cell  membrane  consists  of 
galactan  or  hemicellulose,  with  a  little  free  cellulose. 
The  presence  of  the  hulls  in  the  crushed  bean  reduces 
the  speed  of  extraction  of  the  oil  and  the  yield  and 
gives  the  oil  and  protein  a  brown  colour.  The  hulls 
may  be  easily  removed  by  passing  the  beans  through 
a  disintegrator  at  about  65°  C.  Oil  extraction. 
The  yield  of  oil  is  improved  by  air-drying  the  beans 
to  a  moisture  content  of  about  7"5 — 12'5%  before 
crushing.  Care  must  be  taken  not  to  oxidise  the  oil. 
Benzine  is  the  most  suitable  commercial  solvent. 
For  efficient  extraction  the  conditions  are: — com- 
plete disintegration  of  the  cellular  structure,  high 
temperature  and  agitation  during  extraction. 
Steam-jacketed  rotary  drum  extractors  are  satis- 
factory, but  the  drum  must  not  ■  be  rotated  so 
rapidly  as  to  pulverise  the  beans.  The  extraction 
should  be  repeated  with  fresh  solvent  not  more  than 
three  times.  Injury  to  the  proteins  is  avoided  by 
keeping  the  temperature  below  45°  C.  and  the  water 
content  below  13%.  The  solvent  must  not  be  re- 
covered by  direct  steaming  of  the  meal,  but  by  the 
use  of  a  vacuum.  An  extractor,  5  ft.  in  diam.  and 
15  ft.  long,  with  a  capacity  of  5000  lb.  of  rolled 
beans,  is  described,  having  a  specially  designed 
stuffing-box  to  prevent  leakage  of  solvent,  air,  or 
steam.  A  suitable  speed  of  rotation  during  extrac- 
tion is  2  r.p.m.,  each  charge  of  solvent  being  kept 
in  for  1  hr.  The  solvent  can  be  completely  removed 
from  the  meal  by  finally  raising  the  vacuum  to 
29  in.  For  the  recovery  of  the  solvent  condensers 
are  used  on  the  vacuum  side  of  the  pump,  but  the 
exhaust  is  delivered  into  a  trap  to  catch  the  con- 
densing solvent  and  finally  passed  up  a  tower  of  coke 
moistened  with  vegetable  oil  or  kerosene.  The  loss 
of  solvent  is  less  than  1  % .  The  solvent  is  removed 
from  the  oil  in  the  usual  way  by  steam  distillation. 
and  the  oil  bleached  by  emulsification  with  a  1% 
solution  of  sodium  peroxide.  The  emulsion  ia 
broken  with  dilute  sulphuric  acid  and  the  oil  allowed 
to  settle  or  recovered  by  means  of  a  centrifugal 
machine.  Protein  extraction.  The  soluble  carbo- 
hydrates are  removed  from  the  meal  by  washing 
with  very  dilute  acetic  acid.  The  protein  is  then 
extracted  in  three  6tages,  viz.,  with  water,  with 
0'2% — 0'4%  sodium  sulphite  solution,  and  with  0'2% 
sodium  hydroxide  solution.  20 — 30%  of  the  total 
available  protein  is  extracted  in  the  first  stage,  a 
further  50%  in  the  second,  and  the  total  yield  is 
about  95%.  In  each  case  from  5  to  8  extractions 
are  necessary.  The  protein  extracted  in  the  second 
stage  is  suitable  for  the  manufacture  of  celluloid- 
like articles,  but  that  from  the  third  stage  is  suit- 
able only  for  lacquers  or  coating  materials.  The 
best  quality  products  are  obtained  by  purifying  by 
precipitation  with  sulphurous  acid,  sulphuric  and 
acetic  acids  being  the  next  best  precipitants.  Heat 
rapidly  hydrolyses  the  protein  into  non-precipitable 
forms  and  must  be  rigorously  excluded  in  the 
preparation  of  plastic  materials  of  good  quality.  The 
excess  water  is  separated  from  the  precipitated 
proteins  by  means  of  a  continuous  vacuum  filter, 


Vol.  XLI..  Xo.  2.] 


Ct,.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


65  a 


and  then  by  means  of  hydraulic  pressure,  the  water- 
content  being  reduced  to  55%.  The  protein  is 
finally  dried  at  the  lowest  temperature  and  highest 
vacuum  and  in  as  short  a  time  as  possible.  The  dry 
protein  is  very  tenacious  and  can  only  be  ground  in 
high-speed  disintegrators  ;  it  is  then  suitable  for  the 
manufacture  of  plastic  materials,  lacquer,  enamel,  or 
imitation  leather.  The  soluble  carbohydrates,  which 
amount  to  10 — 12%  of  the  meal  treated,  can  be 
worked  up  into  syrup  or  converted  into  alcohol  or 
lactic  acid  by  fermentation.  The  bean  residue  con- 
sists of  fibre,  galactan,  and  protein  and  can  be  used 
for  cattle-food  or  as  an  ingredient  of  linoleum-like 
products. — H.  C.  R. 


Hazel-nut  oil  and  the  estimation  of  arachidic  acid. 
J.  Pritzker  and  It.  Jungkunz.  Z.  L'uters.  Nahr. 
Genussm.,  1921,  42,  232—241. 

The  following  characters  were  given  by  two  samples 
of  hazel-nut  oil  prepared  in  the  laboratorv : — Sp. 
gr.  (15°  C.)  0-9152,  0-9156;  butvro-ref Tactometer 
(40°  C.)  54-2,  54-4;  acid  value,  6-8,  T7;  saponif. 
value,  191-3,  189-1;  iodine  value  (Hanus),  83-8,  85-4; 
Reichert-Meissl  value,  T54;  Polenske  value,  05; 
Rellier  reaction,  positive;  Baudouin  reaction,  nega- 
tive ;  Halphen's  reaction,  negative ;  Blarez's  test  for 
arachidic  acid,  trace;  Kreis'  test  for  arachidic  acid, 
negative;  unsaponifiable  matter,  0'58%  ;  fatty  acids, 
butyro-refraetometer  (40°  C),  40'6,  4T2.  Thorough 
investigation  showed  that  there  was  no  arachidic 
acid  present.  The  following  method  was  used 
for  the  estimation  of  arachidic  acid :  — 20  g.  of 
oil  was  saponified  with  40  c.c.  of  20%  potassium 
hydroxide  solution,  and  the  clear  soap  solution 
diluted  with  50  c.c.  of  hot  water  and  20  c.c.  of  25% 
hydrochloric  acid  added.  After  15  min.  the  fatty 
acids  were  separated  and  dissolved  in  180  c.c.  of 
boiling  acetone.  20  c.c.  of  IV /l  aqueous  potassium 
hydroxide  was  added  and  the  solution  allowed  to 
cool  and  to  stand  at  15°  C.  for  \  hr.  The  crystals 
obtained  were  washed  several  times  with  small 
quantities  of  acetone,  dissolved  in  water,  the  fatty 
acids  liberated  with  hydrochloric  acid,  and  dissolved 
by  warming  with  50  c.c.  of  90%  alcohol.  The  solu- 
tion was  slowly  cooled  and  left  for  3  hrs.  at  15°  C. 
When  arachidic  acid  was  present  the  precipitate 
consisted  of  fine  laminae.  It  was  filtered  off,  washed 
three  times  with  10  c.c.  of  90%  alcohol  and  trans- 
ferred to  a  weighed  flask  by  dissolving  in  boiling 
alcohol.  The  alcohol  was  evaporated  off  and  the 
residue  dried  at  100°  C.  and  weighed.  Crude  ara- 
chidic acid  melts  at  72° — 75°  C.  When  the  m.p.  was 
below  70°  C.  the  residue  was  again  recrystallised 
from  90  %  alcohol  and  re-weighed.  The  quantity 
obtained  was  corrected  for  solubility  in  90%  alcohol. 
This  method  does  not  require  large  quantities  of 
alcohol  and  ether,  and  the  troublesome  manipula- 
tion of  the  lead  soap  is  avoided. — H.  C.  R. 


Vegetalile  oils;  Detection  of  in  animal  fats. 

Precipitation  of  phytosterol  by  digitonin.     C.  F. 
Muttelet.     Ann.  Falsif.,  1921,  14,  327—333. 

In  the  method  proposed  the  cholesterol  of  animal 
fats  and  the  phytosterol  of  vegetable  fats  are  pre- 
cipitated by  treating  the  insoluble  fatty  acids  (plus 
unsaponifiable  matter)  of  the  fats  at  70°  C.  with 
alcoholic  digitonin  solution  (cf.  Klostermann,  J., 
1913,  1118);  the  precipitated  digitonides  are  col- 
lected, converted  into  acetates  by  heating  with 
acetic  anhydride,  and  the  acetates  are  crystallised 
twice  from  alcohol.  Obtained  in  this  wav,  choles- 
teryl  acetate  from  butter  fat,  lard,  or  beef  fat  has 
m.p.  114-0°— 114-3°  C,  while  phytosteryl  acetate 
from  earthnut  (arachis)  oil  or  coconut  oil  has  m.p. 
124-5°— 126-5°  C.  The  m.p.  of  the  -acetate  affords 
a  means  of  detecting  as  little  as  10%  of  vegetable 
oil  in  an  animal  fat. — W.  P.  S. 


Fat  of  barley  and  malt.     Sedlmeyer.     See  XVIII. 

Patents. 

Liquid  soaps  containing  water,  or  their  fatty  acids; 
Treatment  of  ■  — .  Henkel  und  Co.  E.P. 
172,250,  28.2.21.     Conv.,  16.12.20. 

The  soaps  or  fatty  acids  are  heated  under  pressure 
by  being  continuously  forced  through  a  pipe 
heated  to  about  250°  C.  The  reaction  is  best  com- 
pleted in  a  second  part  of  the  pipe  heated  to  a  tem- 
ire  about  50°  C.  higher  than  the  first  part,  and 
alkali  may  be  added  in  the  second  stage.  By  this 
more  uniform  heating  is  attained  than  in  an 
autoclave  and  higher  pressures  can  be  used  (about 
71)  atm.).  The  odour  and  colour  of  the  product  are 
improved  and  the.  iodine  value  is  lowered. — 11.  C.  R. 


XIII.— PAINTS  ;    PIGMENTS  ;     VARNISHES ; 
RESINS. 

Lithopone;      Manufacture      of      .       Steinau. 

Chem.-Zeit.,  1921,  45,  1238.    (Cf.  J.,  1921,  665  a.) 

The  method  of  manufacturing  lithopone  by  the  in- 
teraction of  barium  sulphide  and  zinc  sulphate  is 
discussed  with  especial  reference  to  the  production 
oi  the  barium  sulphide  used  in  the  process.  In 
order  to  get  the  greatest  yield  of  sulphide  by  reduc- 
tion of  the  sulphate  with  carbon  the  heavy  spar  used 
should  have  a  low  silica  content  and  contain  prefer- 
ably 97—98%  BaSO„.  Reduction  is  effected  by  heat- 
ing an  intimate  mixture  of  the  finely  divided 
mineral  and  carbon  in  furnaces  provided  either  with 
hand  or  with  mechanical  rabbles,  the  former  giving 
a  62 — 65%  and  the  latter  a  70 — 75%  reduction. 
The  residue  after  leaching  still  contains  about  65% 
BaS04;  it  may  be  worked  up  into  blanc  fixe  by  first 
converting  it  to  chloride  by  roasting  with  calcium 
chloride  and  carbon  and  then  precipitating  the  solu- 
tion of  the  chloride  by  means  of  sodium  sulphate, 
preferably  waste  liquors  obtained  from  lithopone 
precipitate  made  according  to  the  equation 
BaS+Na2S  +  2ZnS04  =  BaS04  +  2ZnS  +  Na,S04. 

—a.  it.  p. 

Soya  beans.     Satow.     See  XII. 

Paris   green  and  Schweinfurth' s   green.     Kolthoff 
and  Cremer.     See  XIXu. 

Patents. 

Carbon  for  pigmental  and  other  purposes;  Manu- 
facture of .    J.  Nelson.    E.P.  172,035,  21.5.20. 

Refined  lampblack  is  obtained  by  cracking  hydro- 
carbon oils  at  a  temperature  between  500°  and 
700°  C.  in  the  absence  of  air.  The  liberated  carbon, 
together  with  the  volatile  oily  and  empyreumatic 
substances  produced  with  it,  are  passed  through  a 
condensing  chamber,  heated  to  about  400°  C,  in 
which  the  carbon-black  collects,  whereas  the  vola- 
tile substances  pass  on  and  are  condensed  in  suit- 
able plant,  the  non-condensable  gases  being 
utilised  in  heating  the  plant.  In  order  to  remove 
the  last  traces  of  oil  from  the  carbon  a  current  of 
hot  gas,  e.g.,  that  obtained  in  the  process,  may  be 
passed  over  the  hot  carbon. — A.  R.  P. 

Lithopone;  Process  of  manufacturing  .    C.  R. 

Kuzell.    U.S. P.  1,399,500,  6.12.21.  Appl.,  15.8.21. 

Crude  lithopone  is  formed  by  precipitation  of  zinc 
sulphide  and  barium  sulphate,  and  the  wet  pulp  is 
finely  sprayed  into  heated  air  so  as  partly  to  oxidise 
the  zinc  sulphide. — B.  M.  V. 

Cadmium  pigment;   Manufacture   of  .     J.   R. 

Marston.  U.S. P.  1,399,506,  6.12.21.  Appl.,  15.8.21. 

Zinc  dust  precipitates  containing  metallic  copper 
and  cadmium  are  treated  with  dilute  sulphuric  acid 


GO  A 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTA-PERCHA. 


[Jan.  31,  1922. 


to  dissolve  the  zinc,  and  the  mixture  is  then  heated 
to  a  sufficient  temperature  to  dissolve  the  cadmium. 
The  filtered  solution  is  treated  with  barium 
sulphide,  thereby  producing  a  mixture  of  barium 
sulphate  and  zinc  and  cadmium  sulphides  that  is 
useful  as  a  yellow  pigment  for  paints. — A.  R.  P. 

Coating  composition  for  the  preservation  of  wood, 

pasteboard,  masonry,  leather,  sheet  iron,  fabric, 

etc.    "  Preeses  Patent  "  Eisenschutz  und  Schrau- 

benwellenbekleidung  fur  Schiffe,  G.m.b.H.    E.P. 

153,293,  4.10.20.    Conv.,  25.10.19. 

From  3  to  5  pts.  of  minium  or  zinc-white  is  mixed 

with  1 — 2  pts.  of  wood-tar  and  1J  pts.  of  diluting 

liquid,  such  as  turpentine  or  xylidine. — H.  H. 

Stamping-ink.  J.  Schiffmann.  E.P.  172,588,  22.7.21. 

A  mixture  of  a  colour  insoluble  in  water,  e.g., 
100  pts.  of  Aniline  Black,  and  25  pts.  of  iron  gallo- 
tannate,  gallate,  or  tannate,  is  heated  with  200  pts. 
of  acetin  until  dissolved,  and  5  pts.  of  carbon  black 
is  stirred  into  the  solution,  yielding  a  waterproof, 
permanent  stamping-ink  suitable  for  use  with 
either  rubber  or  metal  stamps. — L.  A.  C. 

Printers1   rollers;  Art  of  manufacturing  .     S. 

Kutner,    Assr.    to    Rapid    Roller    Co.      U.S.P. 
1,397,528,  22.11.21.     Appl.,  11.4.19. 

A  mixture  of  800  pts.  by  wt.  of  a  vegetable  oil, 
15  pts.  of  calcium  oxide,  12  pts.  of  a  mineral  oil,  and 
100  pts.  of  sulphur  chloride  is  agitated  to  permit 
the  escape  of  occluded  gases  and  then  allowed  to 
cool ;  10  pts.  of  sulphur  chloride  is  added  gradually 
with  agitation  to  100  pts.  of  the  viscous  liquid  ob- 
tained as  described  above,  and  while  still  hot  the 
mixture  is  poured  into  moulds. — L.  A.  C. 

Paint  or  varnish  composition  etc.;  Acid-resisting 

.        L.   Wickenden,      Assr.      to      Industrial 

Chemical  Co.     U.S.P.  1,398,084,  22.11.21.    Appl., 
12.7.19. 

A  mixture  of  chlorinated  petroleum  asphaltum  and 
chlorinated  hydrocarbon  material  is  dissolved  in  a 
volatile  solvent. — L.  A.  C. 

Resin  composition;  Synthetic .    E.  E.  Novotny 

and  D.  S.  Kendall,  Assrs.  to  J.  S.  Stokes.   U.S.P. 
1,398,146,  22.11.21.    Appl.,  27.10.20. 

A  mixture  of  a  fusible  condensation  product  of 
phenol  and  furfural  and  a  hardening  agent  contain- 
ing methylene  is  convertible  by  heat  into  a  hard, 
insoluble,  and  infusible  product. — L.  A.  C. 

Oils,  resins,  gums,  etc.  which  have  been  hardened ; 
Process  for    treating   and  recovering   for  re-use 

.     C.  Littleton.     U.S.P.  1,398,438,  29.11.21. 

Appl.,  27.1.21. 

Hardened  coating  material  is  suspended  in  an 
alkaline  solution  and  treated  with  active  chlorine, 
and  the  precipitate  is  separated  from  the  solution, 
dried,  and  treated  with  air. — L.  A.  C. 

Varnish;  Fireproof  .     C.  L.  Saunders,  G.  C. 

Stanley,  and  C.  W.  Bennett.     U.S.P.  1,399,026, 
6.12.21.    Appl.,  3.11.20. 

Hydrated  tin  oxide  is  intimately  incorporated 
with  an  ordinary  varnish. — A.  R.  P. 

Paint;  Preparation  of  a  rapidly  drying  - from 

tar  and  lime.     M.,  O.,  and  E.  Hochtl.     G.P.  (a) 
340,580,  17.4.17  and  (b)  341,742,  23.1.18. 

(a)  Lime  is  mixed  with  tar  in  sufficient  quantity 
to  cause  the  separation  of  the  mass  into  an 
alkaline  liquid  and  a  tacky  residue.  The  latter 
is  mixed  with  crude  tar  and  the  mixture  allowed 
to  stand  until  it  saponifies  or  curdles.  Sodium 
silicate  (water-glass)  may  be  added  to  the  lime- 
tar  paint  before  use.  The  alkaline  liquid  that  is 
obtained  in  the  process  is  useful  as  a  disinfectant 


or  for  impregnating  or  preserving  purposes,  (b) 
Pitch  or  thick  tar  is  added  to  the  mass  obtained 
by  the  addition  of  lime  to  crude  tar,  and  after 
allowing  the  mixture  to  stand  for  some  time  it  is 
poured  into  a  more  or  less  concentrated  lime  solu- 
tion (e.g.,  milk  of  lime)  until  it  no  longer  dissolves. 
The  liquid  that  separates  is  removed  and  the 
residue  is  mixed  with  water-glass.  The  resulting 
product  is  used  for  painting  or  impregnating 
fibrous  or  textile  fabrics. — A.  R.   P. 

Ultramarine ;  Process  for  the  manufacture  of . 

A.    Guillochin,    Assr.    to    J.    Guimet.      U.S.P. 
1,400,431,  13.12.21.     Appl.,  7.5.20. 

See  E.P.  152,916  of  1920;  J.,  1920,  826  a. 

Dope  or  varnish  used  in  aeroplane  construction. 
S.  E.  Groves  and  T.  W.  Holzapfel.  U.S.P. 
1,400,430,  13.12.21.     Appl.,  2.8.18. 

See  E.P.  128,659  of  1917;  J.,  1919,  647  a. 


XIV.-  INDIA-RUBBER ;  GUTTA-PERCHA. 

Rubber  coagulated  with  acid  extracted  from 
coconut  shell  and  husk.  H.  P.  Stevens.  Bull. 
Rubber  Growers'  Assoc,  1921,  3,  245. 

A  sample  of  smoked  sheet  rubber  obtained  by  the 
coagulation  of  latex  with  the  crude  acidic  liquid 
yielded  by  the  dry  distillation  of  coconut  shell 
and  husk  gave  satisfactory  results  on  vulcanisation. 

— D.  F.  T. 

Rubber;    Dryness    of    plantation   .      H.     P. 

Stevens.      Bull.    Rubber   Growers'    Assoc,    1921, 
3,  43—47. 

More  power  is  generally  required  for  the  milling 
of  plantation  rubber  than  for  wild  rubbers,  even 
including  fine  hard  Para1  rubber.  The  cause  of 
this  "dryness"  of  plantation  rubber  is  unknown, 
but  it  is  increased  in  rubber  which  has  been 
"  frozen  "  and  subsequently  thawed.  A  rough 
grading  of  raw  rubbers  as  to  plasticity  may  be 
obtained  by  masticating  small  quantities  in  an 
experimental  mill. — D.  F.  T. 

Rubber;   Tests  on  the  dryness  of  plantation  . 

H.   P.   Stevens.     Bull.  Rubber  Growers'  Assoc, 
1921,  3,  340—342. 

Of  four  samples  of  rubber  prepared  in  Java,  viz., 
rubber  coagulated  as  a  whole,  a  first  clot  obtained  by 
fractional  coagulation,  a  second  and  final  clot,  and 
a  standard  sample  of  crepe,  the  second  clot  was 
decidedly  less  viscous  and  required  less  mastication 
than  the  others.  On  introducing  as  much  clay  as 
possible  into  the  rubber  by  the  usual  method  no  con- 
nexion was  found  between  the  viscosity  or  the  ease 
of  mastication  and  the  "dryness";  the  first  clot 
rubber,  which  has  necessitated  the  longest  mastica- 
tion period,  absorbed  more  clay  than  either  the 
second  clot  rubber  or  the  crepe. — D.  F.  T. 

Rubber;  Ageing  of  plantation  - •.    H.  P.  Stevens. 

Bull.  Rubber  Growers'  Assoc,  1921,  3,  289—291. 

Examination  of  a  variety  of  samples  of  plantation 
rubber  which  had  been  stored  for  3 — 13  years  con- 
firmed earlier  results  in  revealing  no  appreciable 
deterioration;  the  rate  of  vulcanisation,  however, 
tends  to  become  more  uniform.    (Cf.  J.,  1920,  826  A.) 

— D.  F.  T. 

Mould  on  sheet  rubber.  Treatment  of  mouldy  sheets 
and  its  effect  on  the  vulcanising  properties.  H.  P. 
Stevens.  Bull.  Rubber  Growers'  Assoc,  1921,  3, 
190—191,  243—245,  472—473. 

The  smoking  of  sheet  rubber  is  not  sufficiently  fungi- 
cidal in  its  action  to  prevent  the  development  of 
mould  under  favourable  conditions.     Light  surface 


Vol.  XLL,  No.  2.] 


Cr..  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


67  a 


mould  has  no  effect  on  the  rate  of  vulcanisation,  but 
stronger  growths  sometimes  give  rise  to  consider- 
able variation.  Removal  of  mould  by  brushing,  with 
subsequent  re-smoking,  has  no  detrimental  effect  on 
the  rubber.  Treatment  with  a  suitable  preservative, 
such  as  formaldehyde  or  one  of  its  preparations, 
appears  to  be  a  satisfactory  method  for  the  preven- 
tion of  mould  growth. — U.  F.  T. 

[Rubber;]  Tests  for  variability  [of  ].     H.  P. 

Stevens.     Bull.  Rubber  Growers'  Assoc,  1921,  3, 
375—377,  393—396. 

Experiments  with  rubber  samples  representing  wide 
differences  in  rate  of  vulcanisation  show  that  the 
addition  of  5%  of  zinc  oxide  to  the  standard  mix- 
ture of  rubber  and  sulphur  is  disadvantageous,  dis- 
turbing the  proportionality  between  the  period  of 
vulcanisation  and  the  corresponding  coefficient  of 
vulcanisation  and  rendering  the  results  less  easy  of 
interpretation  (<•/.  Tuttle,  J.,  1921,  709  a).— D.  F.  T. 

Rubber;  Uniformity  in  rate  of  cure  of  crepe  from 

"slab"  :  the  advantages  and  disadvantages 

of  the  latter  form  of  manufacture.    H.  P.  Stevens. 
Bull.  Rubber  Growers'  Assoc,  1921,  8,  47—49. 

Further  experiments  confirm  the  author's  earlier 
results  showing  that  crepe  prepared  from  matured 
coagulum  varies  more  widely  than  ordinary  crepe 
rubber  in  rate  of  vulcanisation  (cf.  J.,  1920,  198  a). 

— D.  F.  T. 

[Rubber ;]  Effect  of  acids  in  retarding  the  rate  of 

cure  [of  ].     H.   P.   Stevens.     Bull.   Rubber 

Growers'  Assoc,  1920,  2,  433—435.    (Cf.  J.,  1920, 
826  a.) 

Treatment  with  hydrochloric  acid  reduces  the  rate 
of  vulcanisation  to  a  less  extent  than  with  sulphuric 
acid,  and  the  original  rate  is  more  completely  re- 
stored by  soaking  in  water.  On  account  of  its 
volatility  the  amount  of  hydrochloric  acid  retained 
by  the  rubber  is  very  6mall  and  comparable  with 
that  of  acetic  acid  retained  under  similar  circum- 
stances. Having  regard  to  the  small  amount  re- 
tained, hydrochloric  acid  probably  has  a  much 
greater  retarding  effect  than  sulphuric  acid. 

— D.  F.  T. 

[Rubber ;~]  Elongation  at  a  constant  load  as  measure 

of  the  state  of  cure  [of ]  and  the  relationship 

to  slope.     H.  P.  Stevens.    Bull.  Rubber  Growers' 
Assoc,  1921,  3,  246—248,  397—399. 

The  graphs  obtained  on  plotting  the  elongation 
at  a  definite  load  against  the  period  or  the  co- 
efficient of  vulcanisation  for  the  same  rubber  are 
almost  straight  lines  for  smoked  sheet,  but  appre- 
ciable curvature  is  evident  in  the  case  of  pale  crepe ; 
this  difference  may  be  due  to  the  presence  of  a 
small  proportion  of  accelerator  in  the  crepe,  the 
smoke  sufficing  to  inhibit  the  action  of  the  neces- 
sary micro-organisms  in  the  smoked  sheet.  The 
graphs  corresponding  with  the  elongation  at  dif- 
ferent loads  tend  to  converge  as  vulcanisation  pro- 
ceeds ;  the  actual  load  chosen  as  standard  for  the 
elongation  measurements  can  be  varied  within 
fairly  wide  limits,  e.g.,  from  0"6  to  1'3  kg.  per  sq. 
mm.,  without  further  affecting  the  simplicity  of  the 
relationships.  The  "  slope  "  decreases  with  in- 
creasing degree  of  vulcanisation  but  not  proportion- 
ately, the  rate  of  change  becoming  greater  with 
progressive  vulcanisation. — D.  F.  T. 

Patents. 

Rubber   mixing.     A.    Speedy   and   A.    P.    Crouch. 
E.P.  171,803,  31.8.20. 

A  fusible  or  soluble  condensation  product  of 
phenol  and  formaldehyde,  such  as  the  plastic  mass 
obtainable  by  heating  phenol  with  an  equal  bulk  of 
40%  formaldehyde  solution  at  80°  C,  is  used  in 
powdered   form   as   a  compounding   ingredient   for 


rubber.  Vulcanisation  is  effected  at  such  a  tem- 
perature that  the  condensation  product  does  not 
harden,  a  soft  rubber  product  resulting. — D.  F.  T. 

Rubber  material  and  process  of  manufacture  there- 
of. A.  J.OstbergandA.  Kenny.  E.P.  172,398, 
3.9.20. 
A  spongy  rubber  material  is  prepared  by  mixing, 
e.g.,  15  lb.  of  Para  rubber,  15  lb.  of  reclaimed 
rubber,  13  lb.  of  sulphur,  9  lb.  of  zinc  white,  and  1J  lb. 
of  magnesium  carbonate,  together  with  a  suitable 
amount  of  a  volatile  mineral  oil,  such  as  petroleum 
ether,  e.g.,  10  lb.  of  oil  per  45  lb.  of  the  total 
weight  of  rubber  mixing.  The  product  is  rolled  into 
sheets  or  placed  in  moulds  and  vulcanised  for  about 
1  hr.  in  a  steam-jacketed  cylinder  under  a  pressure 
of  40  lb.  per  sq.  in. — L.  A.  C. 

Caoutchouc-like  substances ;  Process  of  manufactur- 
ing   .     F.  de  la  Rosee,  Assr.  to  The  Chemical 

Foundation,  Inc.  U.S. P.  1,399,473,  6.12.21. 
Appl.,  8.1.19. 

See  G.P.  331,334  of  1918;  J.,  1921,  312  a. 

Rubber  products;  Method  of   compounding  . 

C.  O.  North,  Assr.  to  The  Goodvear  Tire  and 
Rubber  Co.  U.S. P.  1,399,789,  13.12.21.  Appl., 
11.6.20. 

See  E.P.  161,483  of  1920;  J.,  1921,  400  a. 

Rubber;  Art  of  compounding .     W.  G.  O'Brien. 

U.S. P.  1,400,231,  13.12.21.     Appl.,  22.5.19. 
See  E.P.  161,482  of  1920;  J.,  1921,  400  a. 


XV.-LEATHER;   BONE;   HORN;  GLUE. 

Tannin  content  of  Pacific  Coast  conifers.  R.  H. 
Clark  and  H.  I.  Andrews.  J.  Ind.  Eng.  Chem., 
1921,  13,  1026—1027. 

The  tannin  content  of  freshly-cut  western  hemlock 
(Tsuga  heterophylla)  bark  varies  from  90  to  15'5%  ; 
that  of  spruce  (Sitka)  bark  varies  from  120  to 
17'5%,  calculated  on  the  dry  substance.  The  larger 
quantities  are   found  during  the  summer  months. 

— W.  P.  s. 

Marri  Kino  (Red  gum  from  Eucalyptus  calophylla). 
H.  Salt.  J.  Soc.  Leather  Trades'  Chem.,  1921,  5, 
384—389. 

Marri  kino  belongs  to  the  group  of  kinos, 
which  form  turbid  solutions  in  water  owing  to  the 
presence  of  catechin.  The  kinos  or  "  gums  "  are 
not  formed  in  the  ordinary  metabolic  processes  of 
the  tree,  but  by  wood-boring  larvae.  By  boring  into 
the  sapwood  at  the  right  time  of  the  year  a  vein 
will  form  and  gum  flow  for  some  weeks  or  months 
subsequently.  The  tree  can  yield  kino  year  after 
year,  and  the  jarrah  forests  of  Western  Australia 
contain  a  large  proportion  of  marri  trees.  The 
kino  contains  68 — 70%  of  matters  absorbed  by  hide 
powder.  It  is  very  sparingly  soluble,  of  a  very  un- 
pleasant red  colour,  and  yields  a  brittle  "  cracky  " 
leather.— D.  W. 

Tannase.      K.    Freudenberg    and    E.    Vollbrecht. 

Collegium,  1921,  468-^79. 
Tannase  has  been  used  to  hydrolyse  chlorogenic 
acid  (J.,  1920,  274  a),  to  isolate  a  new  sugar  from 
hamameli-tannin  (J.,  1919,  296  a;  1920,  523  a).  to 
characterise  the  digalloylglucose  in  chebulinic 
acid  (cf.  J.,  1920,  792  a),  and  to  investigate  the 
tannins  in  chestnut  and  oak  (J.,  1921,  781a;  1922, 
24  a).  To  determine  the  activity  of  tannase 
preparations  P082  g.  of  methyl  gallate  is  dis- 
solved in  300  c.c.  of  water  and  the  acid 
liberated  by  the  tannase  titrated  with  JV/40  alkali 
and  litmus  as  indicator.  Tables  are  given  showing 
the  titration  figures  obtained  with  solutions  con- 


08  a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[Jan.  31,  1922. 


taining  i%  and  ^%  of  combined  gallic  acid  at 
different  degrees  of  hydrolysis.  Hydrolysis  in  the 
absence  of  tannase  only  progresses  at  the  rate  of 
0'015%  per  hour.  The  most  favourable  tempera- 
ture for  the  hydrolysis  by  tannase  is  33°  C,  and 
i%  of  combined  gallic  acid  is  the  best  concentration 
for  quickest  hydrolysis.  One  part  of  tannase  per 
1U  parts  of  gallic  ester  is  the  best  proportion.  The 
hydrolytic  value  of  a  sample  of  tannase  is  equal 
to  the  number  of  mg.  necessary  to  hydrolyse  half  of 
a  quantity  of  T082  g.  of  anhydrous  methyl  gallate 
dissolved  in  200  c.c.  of  water^  at  33°  C.  in  24  hrs. 
Tannase  is  prepared  by  boiling  600  g.  of  coarsely 
ground  myrobolans  with  3  1.  of  water  for  10  mins., 
and  then  3  or  4  times  in  succession  with  2  1.  of 
water.  300  g.  of  ammonium  sulphate,  9  g.  of 
dipotassium  phosphate,  and  3  g.  of  magnesum  sul- 
phate are  added  to  the  extract,  which  is  made  up 
to  12  1.  Flat  dishes  are  filled  with  this  to  a  depth 
of  4  cm.  and  Aspergillus  niger  is  grown  therein  at 
28° — 32°  C.  After  4  days  the  mould  is  kneaded 
with  water,  filtered,  the  damp  mould  treated  with 
1  1.  of  water  and  1  c.c.  of  toluene,  left  for  24  hrs., 
and  10  c.c.  of  barium  hydroxide  solution  added 
after  the  first  8  hrs.  to  neutralise  the  acid  which 
forms.  The  liquid  is  filtered  through  kieselguhr, 
the  residue  extracted  with  another  J  1.  of  water 
and  i  c.c.  of  toluene,  the  combined  extracts  con- 
centrated in  vacuo  to  50 — 60  c.c,  clarified  with 
kieselguhr,  and  the  concentrated  solution  precipi- 
tated with  5  times  its  volume  of  absolute  alcohol. 
The  preparation  is  twice  re-dissolved  in  water 
(20 — 30  c.c),  re-precipitated,  then  washed  with 
ether  and  dried,  giving  2'5 — 3'5  g.  of  a  bright  grey 
powder  of  hydrolytic  value  35. — D.  W. 

Tannin   content   of   solutions;  Influence   of  degree 

of   acidity    on    the  .     F.    C.    Thompson,    K. 

Seshachalam,  and  K.  H.  Hassan.  J.  Soc 
Leather  Trades'  Chem.,  1921,  5,  389—393. 
Different  tanning  materials  were  analysed  under 
conditions  of  varying  acidity.  The  results  show 
that  time  of  filtration,  colour,  content  of  tannin, 
and  insolubles  all  vary  considerably  with  altera- 
tions in  »H.  Atkin  and  Thompson  (J.,  1920,  605 a) 
have  shown  that  freshly  prepared  tanning  solu- 
tions may  vary  widely  in  acidity,  and  the  present 
results  show  that  such  differences  in  acidity  can- 
not be  ignored. — D.  W. 

Tan  liquor;  Colour  of  a  as  a  function  of  the 

hydrogen  ion  concentration.  J.  A.  Wilson  and 
E.  J.  Kern.  J.  Ind.  Eng.  Chem.,  1921,  13,  1025 
—1026. 
The  colour  value  of  a  tan  liquor  depends  on  its 
hydrogen  ion  concentration ;  a  change  in  the  latter 
alters  the  colour  of  both  the  liquor  and  the  leather. 
The  change  in  colour  is  over  the  range  pR  3  to  12 
and  is  reversible  if  the  liquor  is  not  long  exriosed 
to  air.— W.  P.  S. 

Bating;  Critical  study  of  .     J.  A.  Wilson  and 

G.  i>aub.  J.  Ind.  Eng.  Chem.,  1921,  13,  1137— 
1141.  (Cf.  J.,  1921,  92  a). 
Elastin  is  present  in  two  layers  of  the  skin  between 
the  epidermis  and  the  hair  roots  and  in  the  flesh 
tissue.  It  is  completely  removed  by  0'01  %  pancrea- 
tin  only  when  the  hydrogen  ion  concentration  is 
pH  7'5— S"5,  and  by  0'1%  pancreatin  at  pH  =  5"5— 8'5. 
This  is  explained  by  the  formation  of  additive  com- 
pounds between  the  enzyme  and  peptone  or  other 
foreign  matter.  The  rate  of  removal  of  elastin  from 
calf  skin  depends  on  the  concentration  of  enzyme 
and  the  time  of  digestion.  Ammonium  chloride  is 
beneficial  at  a  concentration  of  0'5  g.  per  1.,  but 
larger  amounts  show  marked  inhibitory  effects.  A 
commercial  bate  was  found  to  have  no  digestive 
action  on  elastin  at  any  concentration,  probably 
owing  to  the  presence  of  too  much  wood  fibre  filler. 

— D.  W. 


Leather;  The  microscope  as  applied  in  the  manu- 
facture of .    R.  B.  Croad  and  F.  G.  A.  Enna. 

J.  Amer.  Leather  Chem.  Assoc,  1921,  16,  690 — 
695. 

Sections  of  goat  skins  from  the  acidified  bichromate 
and  reducing  baths  of  the  two-bath  chrome  tanning 
process  and  from  a  skin  tanned  by  the  one-bath  pro- 
cess were  examined  under  the  miscroscope.  The 
osmotic  pressure  of  the  bichromate  causes  a  shrink- 
age and  crowding  together  of  the  fibres,  hence  the 
cells  are  strained  and  on  entering  the  second  bath 
the  sum  total  of  the  disruptive  force  of  the  reducing 
action  and  the  decrease  in  internal  strain  on  the 
cells  destroys  the  natural  position  of  the  fibres  and 
breaks  up  the  hyaline  layer.  In  the  one-bath  chrome 
tannage  there  is  only  slight  osmotic  action,  the  cells 
contract,  are  tanned  in  that  state,  and  so  tend  to 
give  a  tighter  leather. — D.  W. 

Leather;  Determination  of  free  sulphuric  acid  in 

.    C.  van  der  Hoeven.    Collegium,  1921,  458 — ■ 

46S. 
The  Paessler  method  (J.,  1914,  365)  has  been  shown 
to  be  unsuitable  for  quantitative  estimation  since 
dyes  and  tannins  pass  through  the  dialyser  or  ultra- 
filter  and  affect  the  titration  of  the  acid  with  alkali. 
In  the  method  proposed  a  weighed  amount  of  finely- 
divided  leather  is  extracted  in  an  extractor  with  a 
solution  of  sodium  dihydrogen  phosphate  at  a  definite 
temperature  until  after  some  hours  a  definite  volume 
of  extract  has  been  collected  and  the  SOj  has  been 
entirely  removed.  The  total  S04  is  estimated  in 
an  aliquot  portion  of  the  extract.  Neutral  sul- 
phate is  determined  in  the  ash,  care  being  taken 
in  dissolving  the  ash  that  a  little  iodine  or  bromine 
water  is  added  to  re-oxidise  any  reduced  sulphate. 
The  difference  between  the  two  determinations  gives 
the  free  sulphuric  acid. — D.  W. 

Leather;  Use.  of  perchloric  acid  for  Kjeldahl  diges- 
tions in  the  determination  of   nitrogen   in  . 

J.  G.  Parker  and  J.  T.  Terrell.  J.  Soc.  Leather 
Traces  Chem.,  1921,  5,  380—3^!. 
The  best  results  are  obtained  with  0'S  g.  of  leather, 
15  c.c.  of  6trong  sulphuric  acid,  1  g.  of  copper  sul- 
phate, and  6  c.c.  of  perchloric  acid  of  sp.  gr.  1T2. 
The  mixture  is  heated  gently  for  \  hi.,  then  strongly 
and  more  strongly  for  |  hr.  after  the  solution  has 
assumed  a  pale  greenish  appearance.  Little  nitrogen 
seems  to  be  lost  if  the  time  of  digestion  does  not 
exceed  \\  hrs. — D.  W. 

Artificial  leather  as  a  substitute  for  siceat  leathers 
[hat  linings  etc.'],  and  its  testing.  V.  Froboese. 
Z.  Unters.  Nahr.  Genussm.,  1921.  -12,  113—125. 

Certain  sweat  leather  substitutes  have  proved  harm- 
ful to  the  wearer,  in  some  cases  causing  eczema.  In 
the  manufacture  of  artificial  leather  for  this  purpose 
materials  should  be  avoided  which  in  themselves  or 
in  the  form  of  conversion  or  decomposition  products 
have  any  irritant  action  on  the  skin.  Phenol  or 
cresol  are  members  of  this  class.  Imperfect  sol- 
vents, tar  oils,  and  resin  oils  should  not  be  used. 
The  colouring  matters  used  should  be  insoluble  in 
water,  e.g..  lead  chromate  if  used  should  not  con- 
tain alkali  chromate.  The  solvent  should  be  re- 
moved as  completely  as  possible  by  prolonged 
treatment  in  the  drying  rooms.  The  bromine  test 
for  phenol  is  useless  in  testing  artificial  leathers, 
but  the  precipitate  may  be  collected,  shaken  with 
sodium  amalgam  and  water  in  a  test-tube,  gently 
warmed,  the  liquid  poured  into  a  porcelain  basin 
and  a  few  drops  of  dilute  sulphuric  acid  added  ;  if 
phenol  is  present  it  will  be  perceptible  by  its  odour. 
Another  test  is  the  bluish-violet  colour  with  ferric 
chloride  solutions.  The  "  Lex  "  test  is  very  suit- 
able and  more  sensitive.  5  c.c.  of  the  solution  to 
be  tested  is  treated  with  2  c.c  of  ammonia  and  a 
little  freshly  prepared  filtered  solution  of  bleaching 
powder,  and  heated  to  boiling.     A  blue  colour  indi- 


VoL  XLOL,  No.  2.] 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


69  a 


cates  the  presence  of  phenol.  Other  teste  include 
a  modified  nitrite  and  an  ethyl  nitrite  test.  In  the 
absence  of  phenol  and  cresol  the  substitute  should 
be  tested  as  to  insolubility  in  water.  200  sq.  cm. 
is  cut  into  strips,  covered  with  75  c.c.  of  water  in  a 
flask,  which  is  stoppered  and  left  for  24  hrs.  at 
40°  C.  Then  the  liquid  is  poured  off  and  should  be 
colourless,  transparent,  and  neutral,  and  should  not 
smell  of  glue,  camphor,  or  any  solvent.  50  c.c.  of 
the  liquor  should  be  evaporated  to  dryness  in  a 
weighed  porcelain  basin,  and  the  residue  dried  at 
80°  C.  and  weighed  to  give  the  content  of  soluble 
matter.— D.  W. 

Casein  and  gelatin;  Influence  of  electrolytes  on  the 

in  and  precipitation  of .    J.  and  R.  F. 

Loeb.     J.  Gen.  Physiol.,  1921,  4,  187—211. 

Two  types  of  'colloidal  solution  exist.  The  first 
type  is  easily  precipitated  by  small  quantities  of 
neutral  salts,  the  second  requires  much  larger  quan- 
tities. In  the  first  type  the  particles  pass  into  \ 
solution  in  consequence  of  swelling  as  the  result  of 
the  Donnan  equilibrium,  and  remain  in  solution  a6  ] 
a  result  of  the  osmotic  and  electrical  forces  which 
the  Donnan  equilibrium  necessitates.  The  second 
type  is  of  the  nature  of  true  solution,  and  there 
exist  primarily  only  ions  and  molecules,  though 
aggregates  may  be  formed  secondarily.  Measure- 
ments of  the  rate  of  solution  of  casein  chloride  in 
v  .trying  concentrations  of  acids  and  neutral  salts 
indicate  that  the  process  of  solution  is  regulated  by 
the  Donnan  equilibrium  and  that  it  is  of  the  first 
type.  The  effect  of  small  quantities  of  neutral  6alts 
as  precipitants  is  to  reduce  the  osmotic  forces  and 
also  the  electric  charges  according  to  the  theory  of 
the  Donnan  equilibrium.  Casein  dissolves  in  caustic- 
soda  solutions  essentially  like  a  crystalline  sub- 
stance, and  the  solution  is  of  the  second  type.  Solu- 
tions of  gelatin  are  also  of  this  type,  though  aggre- 
gates of  the  dissolved  particles  tend  to  form  on 
standing.  Experiments  on  the  solubility  and  vis- 
cosity of  gelatin  solutions  as  influenced  by  neutral 
salts  give  evidence  of  the  existence  of  these  aggre- 
gates.—W.  O.  K. 

Soya  beans.     Satow.     See  XII. 

Patents. 

Skins  and  hides;  Process  for  unhairing  .     W. 

Rautenstrauch.       E.P.    160,435,    4.8.20.      Conv., 
9.5.19. 

In  order  to  prevent  loss  of  hide  substance  during  the 
unhairing  process,  lime,  barium  hydroxide,  or 
strontium  hydroxide  liquors  are  enriched  with  hide 
substance  or  similar  albuminous  matter  to  such  an 
extent  that  an  approximate  balance  is  attained 
between  the  hide  substance  added  and  the  albumin 
contained  in  the  cells  of  the  hides.  A  little  disin- 
fectant is  necessary  with  lime  liquors. — D.  W. 

Iron-tanned  leather;  Process  for  the  manufacture 

of .     O.  Rbhm.     E.P.  147,797,  9.7.20.   Conv., 

2.5.18. 

Skins  are  treated  with  solutions  of  iron  salts,  and 
a  dilute  solution  of  sodium  silicate  (water-glass), 
with  or  without  the  admixture  of  formaldehyde,  is 
slowly  added  to  the  tanning  solution  either  before 
or  during  tannage. — D.  W. 

Tanning  or  impregnating  of  hides  and  skins. 
Elektro-Osmose  A.-G.  (Graf  Schwerin  Ges.). 
E.P.  152,641,  16.8.20.     Conv.,  13.10.19. 

The  hide  is  first  subjected  to  an  electric  current  in 
pure  water  between  diaphragms,  then  tanned  or 
impregnated  mechanically,  electro-osmotically,  or 
electro-mechanically. — D.  W. 


Tanning    agents;    Manufacture    of    .      A.    G. 

Bloxam.    From  H.  Renner  und  Co.    E.P.  171,729, 
24.6.20. 

Monohydric  or  polyhydric  phenols  or  homologues 
thereof  or  the  crude  alkali  fusion  of  the  sulphonic 
acid  of  the  corresponding  hydrocarbon  are  con- 
densed with  formaldehyde  or  substances  developing 
formaldehyde,  in  presence  of  alkali  or  other  in- 
organic or  organic  base,  and  the  resinous  condensa- 
tion product  is  sulphonated  or  mixed  with  sugar, 
starch,  glucose  or  substances  containing  them,  or 
sulphonated  and  mixed  with  some  unsulphonated 
product.  Variations  in  the  method  of  sulphonation 
are  included  in  the  claims.  The  sulphonated 
prodact  of  a  resinous  condensation  product  may  be 
mixed  with  phlobaphenes. — D.  W. 

Tanning    agents;    Manufacture    of    .      A.    G. 

Bloxam.      From    Gerh-    und    Farbstoffwerke    H. 
Renner  und  Co.     E.P.   172,048,  25.6.20. 

CouJfARONE  resin  obtained  from  solvent  naphtha 
by  treatment  with  concentrated  sulphuric  acid  is 
heated  with  fuming  sulphuric  acid  (20%  SO,)  until 
completely  soluble  in  water.  The  excess  of  sul- 
phuric acid  is  neutralised,  the  solution  is  concen- 
trated, the  alkali  sulphate  which  crystallises  is  fil- 
tered off,  and  the  filtrate  used  for  tanning. 
Alternatively,  solvent  naphtha  or  heavy  benzol  may 
be  treated  direct  with  a  large  excess  of  concen- 
trated sulphuric  acid  without  separating  the 
coumarone  resin. — F.  M.  R. 


XVI.-S0ILS ;  FERTILISERS. 

Soil;  Evaporation  of  water  from .   II.  Influence 

of  soil  type  and  manurial  treatment.  P..  A. 
Keen.  J.  Agric.  Sci.,  1921,  11,  433—140.  (Cf. 
J.,  1915,  146.) 

The  rate  of  evaporation  of  water  from  clay  and 
sandy  soils  is  compared,  as  also  are  the  effects  of 
farmyard  and  artificial  manures.  The  rate  of 
evaporation  depends  on  the  amounts  of  clay  and 
organic  matter  present.  The  effects  of  organic  matter 
are  more  pronounced  in  soils  having  a  high  content 
of  clay.  Soil  receiving  artificial  manures  loses  water 
more  rapidly  than  unmanured  soil,  and  this,  in 
turn,  more  rapidly  than  soil  treated  with  farmyard 
manure.  There  is  evidence  that  in  soils  containing 
water  in  excess  of  the  moisture  equivalent, 
evaporation  proceeds  as  from  a  free  water  surface. 
When  the  water  content  is  below  this,  evaporation 
is  directly  affected  by  the  soil  particles. — A.  G.  P. 

Soils;   Flocculation  of  ,   II.     N.    M.   Comber. 

J.  Agric.  Sci.,  1921,  11,  450—471.  (Cf.  J.,  1920, 
793  a.) 

The  clay  particle  is  assumed  to  consist  of  a  central 
core  surrounded  by  an  emulsoid  protective  layer, 
and  coagulation  may  result  in  three  ways. 
"  Normal  "  flocculation,  as  by  salts  of  iron  and 
aluminium,  is  precisely  similar  to  the  coagulation 
of  electro-negative  suspensoids  by  electrolytes. 
"  Indirect  "  flocculation  results  from  interaction 
between  the  flocculant  and  the  constituents  of  the 
clay  particle,  whereby  normal  flocculants  are  pro- 
duced. The  action  of  some  neutral  salts  and  acids 
is  of  this  type.  "  Abnormal  "  flocculation,  as  in 
the  case  of  lime,  is  due  to  a  reaction  between  the 
flocculant  and  the  emulsoid  surface  layer  of  the 
particle.  Although  the  flocculating  effects  of  cal- 
cium hydroxide  are  reversible  to  carbon  dioxide, 
the  formation  of  calcium  carbonate  is  not  an  essen- 
tial part  ot  the  process.  The  hydroxy]  ion  may 
function  in  two  ways  in  conjunction  with  the  cal- 
cium ion.  If  added  with  or  after  the  calcium  ion, 
it  produces  the  necessary  alkalinity  for  the  reaction 
between  calcium  salts  and  silica  etc.;  but  if  added 
before  the  calcium,  the  emulsoid  surface  of  the  clay 


70a 


Cl.  XVII.— SUGARS  ;  STARCHES;  GUMS. 


[Jan.  31,  1922.  "] 


is  peptised  and  flocculation  becomes  more  rapid 
and  the  volume  of  the  coagulum  greater.  The 
difference  in  the  action  of  lime  on  clay  and  on  silt 
particles  depends  only  on  the  relative  proportions 
of  emulsoid  surface  and  core  of  the  particle. 

—A.  G.  P. 

Soil;  Relation  between  the  clay  content  and  certain 

physical  properties  of .     B.  A.  Keen  and  H. 

Raczkowski.     J.  Agric.  Sci.,  1921,  II,  441—449. 

A  simple  process  for  determining  the  following 
physical  properties  of  soils  is  described :  — 
Apparent  specific  gravity,  water  taken  up  by  unit 
volume  of  soil,  pore  6pace,  specific  gravity,  volume 
expansion  of  soil  when  saturated  with  water.  The 
specific  gravity  and  apparent  specific  gravity  vary 
inversely,  and  the  absorptive  power  for  water,  the 
pore  space,  and  the  volume  expansion  of  the 
saturated  soil  vary  directly  with  the  percentage  of 
clay  in  the  soil.  The  effect  of  organic  matter  on 
the  constants  mentioned  is  approximately  the  same, 
weight  for  weight,  as  that  of  clay. — A.  G.  P. 

Soils;     Sulphur-oxidising     power     of     .       A. 

Demolon.    Comptes  rend.,  1921,  173,  1408—1110. 

By  growth  on  sand  cultures,  containing  free 
sulphur,  the  power  of  oxidising  sulphur  of  bac- 
terial extracts  from  different  soils  was  compared. 
Garden  soils  rich  in  organic  matter  gave  the  highest 
yield  of  sulphate.  The  presence  of  calcium  car- 
bonate is  only  necessary  if  there  is  not  enough  urea 
present  to  supply  the  ammonia  required  to  keep  the 
medium  neutral.  The  ammonifying  organisms  in 
the  soil  are  apparently  responsible  for  oxidation  of 
sulphur,  and  the  property  is  not  bacteriologically 
specific. — W.  G. 

Phosphoric  acid  in  soils  and  in  water.  I.  The  after- 
effects of  phosphatic  fertilisers  and  dissolved 
phosphate  in  ponds.  F.  Breest.  Internat.  Mitt. 
Bodenk.,  1921,  11,  111—116.  Chem.  Zentr.,  1921, 
92,  1487—1488. 

The  object  of  the  ■work  was  to  determine  if  the 
process  of  bringing  into  solution  of  reserve  soil  phos- 
phates depends  upon  biological  factors.  A  number 
of  unmanured  pond-soils  were  compared  with  others 
which  had  received  phosphatic  fertilisers  annually 
for  some  years  but  which  had  remained  unmanured 
for  a  year  previous  to  the  experiment.  The  phos- 
phorus content  of  the  soil  before  the  damming-up  of 
the  water  and  of  the  water  after  the  damming,  was 
determined.  The  increased  amounts  of  phosphate 
in  fertilised  soils  did  not  produce  increases  in  the 
phosphate  dissolved  in  the  water.  A  water  sample 
taken  immediately  at  the  soil  surface,  however,  had 
a  higher  phosphorus  content  than  an  ordinary 
sample  or  one  taken  at  the  water  surface.  It  is 
considered  probable  that  in  the  dividing  surface  of 
soil  and  water  are  located  the  biological  factors, 
e.g.,  bacteria,  which  bring  about  solution  of  in- 
soluble soil  phosphates. — A.  G.  P. 

Patents. 

Manure.  H.  E.  Fry.  U.S.P.  1,397,629,  22.11.21. 
Appl.,  16.3.21. 

The  manure  consists  of  two  portions.  The  first, 
suitable  for  ploughing  in,  consists  largely  of  com- 
pounds of  carbon,  oxygen,  nitrogen,  hydrogen,  and 
phosphorus.  The  second  portion,  a  top  dressing, 
consists  mainly  of  salts  of  potassium,  sodium, 
calcium,  magnesium,  and  iron. — A.  G.  P. 

Fertiliser,  and  method  of  producing  the  same. 
C.  L.  Paynor.  U.S.P.  1,398,113,  22.11.21.  Appl., 
7.1.21. 

Fresh  green  vegetable  matter  is  covered  with  soil 
to  maintain  a  constant  temperature  for  a  prolonged 
period.     It  is  then  dried  by  exposure  to  air,  mixed 


with  a  soured  solution  of  fruit  and  vegetable 
products  and  commercial  fertiliser  materials,  and 
dried.— A.  G.  P. 

Superphosphate ;    Manufacture    of    .       A.    L. 

Tufctle,  Assr.  to  The  Agricultural  Chemical  Corp. 
U.S.P.  1,398,816,  29.11.21.     Appl.,  15.1.21. 

The  vessel  containing  raw  phosphate  and  acid  is 
fitted  with  a  vent  pipe  below  the  surface  of  the 
reacting  mixture,  thus  allowing  steam  etc.  to 
escape  during  the  reaction  period. — A.  G.  P. 

Calcium,   cyanamide;   Process  of  granulating  . 

P.    Saves.      U.S.P.    1,399,660,    6.12.21.      Appl., 
22.11.19. 

See  E.P.  135,847  of  1919;  J.,  1920,  759  a. 


XVH.-SUGARS;  STAGCHES;  GUMS. 

Carbonatation  press  scums  {from,  beet  sugar  manu- 
facture]; Sand  in  and  its  influence  on  their 

filtration  and  washing.  V.  Stanek.  Z.  Zuckerind. 
Czechoslov.,  1921,  46,  105—109. 

Experiments  carried  out  by  the  author  confirm  the 
belief  that  the  sand  collects  in  the  lower  part  of  the 
filter  press  cake,  but  show  that  the  sugar  content  is 
higher  there  after  washing  than  at  the  sides  and  the 
top.  Experiments  on  the  rate  of  filtration  through 
small  pieces  of  the  cake  in  a  special  apparatus 
showed  that  the  higher  the  amount  of  sand,  the 
lower  is  the  permeability  to  water. — J.  P.  O. 

Molasses;   Nature   and    composition   of   cane   . 

W.  D.  Helderman.  Arch.  Suikcrind.  Nederl.- 
Indie,  1921,  29,  1249—1254.  Int.  Sugar  J.,  1921, 
23,  684—687. 

Prinsen  Geerligs'  theory  of  the  formation  of  cane 
molasses  (<•/.  J.,  1893,  365)  is  controverted.  It  is 
not  true  that  invert  sugar  alone  has  no  influence  on 
the  solubility  of  sucrose,  recent  investigations  by 
van  der  Linden  (J.,  1919,  593  a)  having  shown  that 
the  solubility  of  sucrose  is  diminished  by  the 
addition  of  either  invert  sugar  or  dextrose.  Nor 
can  it  be  concluded  that  a  so-called  "  exhausted 
molasses  "  gives  no  more  sucrose  on  further  concen- 
tration, but  loses  only  water  of  hydration,  it  having 
been  demonstrated  that  microscopic  sugar  crystals 
deposit  on  the  elimination  of  water,  though  the  rate 
of  crystallisation  is  extremely  slow.  Moreover,  it 
has  been  shown  that  hydrated  sugar-salt  compounds 
are  unstable  in  solution.  According  to  the 'author, 
molasses  is  a  solution  saturated  in  sucrose,  the  solu- 
bility of  which  is  influenced  by  the  presence  of 
various  substances,  such  as  invert  sugar,  salts,  and 
other  substances,  colloidal  and  crystalloidal.  In 
this  definition  an  explanation  is  to  be  found  for  the 
difference  in  the  solubility  of  the  sucrose  in  cane 
and  beet  molasses.  The  high  invert  sugar  content 
of  cane  molasses  causes  the  solubility  to  be  below 
the  normal ;  while  beet  molasses  possesses  only  a 
small  content  of  invert  sugar,  but  a  high  proportion 
of  various  salts,  which  cause  the  solubility  of  the 
sucrose  to  be  increased  above  the  normal  value. 

—J.  P.  O. 

Sucrose;  Analysis  of  products  containing  by 

the  neutral  double  polarisation  method,.  C.  L. 
Hinten.     Int.  Sugar.  J.,  1921,  23,  689—691. 

The  author  considers  that  it  can  be  accepted  that 
the  effect  of  the  salt  (ammonium  chloride,  sodium 
chloride,  etc.)  added  in  the  process  of  Jackson  and 
Gillis  (J.,  1920,  634  a)  exerts  for  all  practical  pur- 
poses a  constant  effect  on  the  polarisation  of  sucrose 
and  invert  sugar  at  different  concentrations,  and 
does  not  vary  according  to  the  ratio  of  salt  to  water. 


Vol.  XIX,  No.  2.] 


Cl.  XVII L— FERMENTATION  INDUSTRIES. 


71a 


as  maintained  by  Browne  (J.,  1921,  271a,  443  a). 
On  the  other  hand,  Browne  has  revealed  a  serious 
error  in  the  evaluation  of  the  divisor  used  by  Jack- 
son and  Gillis  for  the  calculation  of  the  results. 
In  the  examination  of  a  mixture  of  sucrose  and 
invert  sugar,  the  negative  constituent  of  the  divisor 
should  not  depend  only  on  the  sucrose  inverted  in 
the  determination,  as  Jackson  and  Gillis  assume, 
but  rather  on  the  total  concentration  of  invert 
sugar,  i.e.,  that,  originally  present  together  with 
that  inverted.  Therefore,  the  divisors  elaborated 
by  Jackson  and  Gillis  for  use  in  their  method  must 
be  corrected  for  the  total  concentration  of  invert 
sugar  which  may  be  present  in  the  solution  polar- 
ised; and  when  this  has  been  done  it  will  be  possible 
more  closelv  to  examine  the  real  value  of  the 
method.    {Of.  J.,  1921,  745  a.)— J.  P.  O. 

Sugar;  Estimation  of by  titration  of  the  ■pre- 
cipitated cuprous  oxide  with  alkali.  A.  Hanak. 
Z.  Unters.  Nahr.  Genussm.,  1921,  42,  248—250. 

The  cuprous  oxide  obtained  from  the  inverted  sugar 
solution  containing  not  more  than  0'5%  of  invert 
sugar,  and  50  c.o  of  Fehling's  solution  is  washed, 
dissolved  in  aqua  regia,  the  solution  diluted  to 
250 — 300  c.c  with  water  free  from  carbon  dioxide 
and  carefully  neutralised  with  alkali  so  that  it  gives 
a  pale  greenish-yellow  colour  with  methyl  orange. 
Phenolphthalein  is  added  and  2V/2  alkali  run  in 
until  the  red  colour  remains  for  3  min.  in  the  boil- 
ing solution.  1  c.c.  of  N 12  alkali  =  00159  g.  of 
copper. — H.  C.  R. 

Osazones  [of  sugars'];  Formation  of  .     M.  H. 

van   Laer   and   R.   Lomhaers.     Bull.   Soc.   Chim. 
Belg.,  1921,  30,  296—301. 

Formation  of  the  osazone  of  lsevulose  takes  place 
three  times  as  quickly  as  that  of  dextrose,  the 
primary  alcoholic  group  of  tho  former  sugar  being 
oxidised  by  phenylhydrazine  in  the  second  stage  of 
the  reaction  three  times  as  quickly  as  the  secondary 
alcoholic  group  of  the  dextrose.  The  condensation 
of  phenylhydrazine  with  the  ketone  or  aldehyde 
group  in  the  first  stage  of  the  reaction  is  practically 
instantaneous. — H.  J.  E. 

Starch-syrup  and  sugar  from  potatoes  and  maize. 
A.  Behre,  A.  During,  and  H.  Ehrecke.  Z.  Unters. 
Nahr.  Genussm.,  1921,  42,  242—246. 

As  regards  their  utilisation  in  making  artificial 
honey,  starch-syrup  and  sugar  from  maize  are  equal 
in  quality  to  the  corresponding  potato  products. 
There  is  no  means  of  detecting  the  admixture  of 
these  products  with  foodstuffs.  The  following 
iodine  method  was  found  more  reliable  than  the 
reduction  of  Fehling's  solution  for  the  estimation 
of  dextrose.  25  e.c.  of  iV/10  iodine  solution  is  added 
to  the  dilute  neutral  solution  containing  0'2  g.  of 
starch-syrup,  and  29  c.c.  of  2V/10  sodium  hydroxide 
is  then  run  in,  with  constant  shaking.  The  flask  is 
left  for  20  min.  in  a  dark  place,  2 — 3  c.c.  of  dilute 
sulphuric  acid  added  and  the  excess  of  iodine 
titrated  with  2V/10  sodium  thiosulphate.  The  per- 
centage of  dextrose  is  given  by 

180-096     100     T    ,. 
"X  W84Xd^Xl°dmetlter- 

where  a  is  the  number  of  c.c.  of  solution  used.  The 
syrup  is  then  subjected  to  the  Clerget  inversion, 
and  determination  of  the  invert  sugar  as  above, 
and  the  sucrose  obtained  from  the  difference  in 
the  two  determinations.  Tho  dextrin  inversion 
is  carried  out  by  heating  40  c.c.  of  the  solution  with 
10  c.c.  of  water  and  4  c.c.  of  hydrochloric  acid  (sp. 
gr.  V19)  in  a  long-necked  flask  on  a  briskly  boiling 
water  bath  for  2J  hrs.  and  again  estimating  the 
dextrose  as  above.  The  percentage  of  dextrin  is 
given  by  the  difference  in  dextrose-content  between 


this  and  the  solution  after  the  Clerget  inversion 
multiplied  by  09.—  H.  C.  R. 

Benzyl  ethers  of  carbohydrates.  M.  Gomberg  and 
C.  C.  Buchler.  J.  Amor.  Chem.  Soc.,  1921,  43, 
1904—1911. 

Carbohydrates  of  .all  types  are  readily  benzylatod 
and  various  benzyl  ethers  have  been  obtained  by 
heating  the  carbohydrate  with  benzyl  chloride  -and 
aqueous  sodium  hydroxide  for  several  hours  at  about 
90°  C.  Ethers  prepared  from  o-methylglucoside, 
sucrose,  dextrin,  starch,  and  cellulose  are  described 
(c/.  J.C.S.,  1922,  Feb.).  The  cellulose  ethers,  unlike 
cellulose  itself,  are  insoluble  in  Schweitzer's  reagent. 
Some  of  the  benzyl  ethers  of  the  carbohydrates  may 
prove  technically  useful  products  because  of  their 
properties  as  colloid  and  plastic  substances. — W.  G. 

German  rum.    Mezger  and  Jesser.    .See  XVIII. 

Patents. 

Lactose;  Preparation  of  pure  from  whey  and 

whey  products.    B.  Bleyer.   G.P.  341,787,  20.5.19. 

Whey  liquor  is  treated  with  lime  below  70°  C.  to 
form  the  calcium  compound  of  lactose,  and  is  subse- 
quently treated  with  carbon  dioxide  and /or  sulphur 
dioxide.  After  separating  and  washing  the  sludge, 
the  liquor  is  evaporated  until  crystallisation  begins. 

— L.  A.  C. 

Invlin  and  Icevulose;  Process  of  purifying  juices  con- 
taining   .     A.  Daniel,  Assr.  to  The  Chemical 

Foundation,     Inc.       U.S. P.     1,399,544,     6.12.21. 
Appl.,  10.4.18. 

See  G.P.  313,986  of  1916;  J.,  1920,  37  a. 

Starch;  Processes  of  modifying  or  converting  ■ . 

A.    E.    White.      From    Perkins    Glue    Co.      E.P. 
172,145,  10.9.20. 

See  U.S. P.  1,366,653  of  1921;  J.,  1921,  234  a. 
Ethers  of  carbohydrates.    E.P.  171,661.    See  V. 


XVHI.-FERMENTATI0N  INDUSTRIES. 

Barley  and  malting-products ;  Fat  of .    J.  Sedl- 

meyer.     Z.  ges.  Brauw.,  1921,  191—193. 

A  sample  of  brewing  barley  contained  2"07  g.  of 
total  fat  per  100  g.,  including  011  g.  of  unsaponifi- 
able  matter,  of  which  0'065  g.  consisted  of  sterols. 
There  was  present  also  0'66  g.  of  lecithin,  only 
0-078  g.  of  which  was  obtained  in  the  ether  extract, 
the  remainder  being  extracted  by  means  of  alcohol. 
Steeping  of  the  barley  produced  no  appreciable 
change  in  the  quantity  or  charaoter  of  the  fat 
present.  During  germination  the  amount  of  fat 
diminished  to  I'll  g.,  wholly  at  the  expense  of  the 
saponifiable  portion,  but  kilning  produced  no  fur- 
ther diminution.  The  absolute  amounts  of  un- 
saponifiable  matter  and  lecithin  remained  un- 
changed throughout  the  malting  processes.  As 
regards  the  constants  of  the  fat  present  at  different 
stages  of  malting,  it  was  found  that  the  acid  value 
increased  from  17  to  32  during  germination  and 
diminished  again  to  20  on  the  kiln,  but  the  6aponif. 
value  of  the  saponifiable  portion  of  the  fat  remained 
constant  at  191.  The  fat  present  in  the  malt  combs 
and  spent  grains  had  acid  values  of  49  and  93 
respectively.  In  determinations  of  saponif.  value 
it  was  found  necessary  to  boil  for  3  hrs.  to  obtain 
consistent  results. — J.  H.  L. 

[Brewery   worts;']    "Refrigeration   and   flocculation 

[of ].     E.  R.  Moritz.     J.  Inst.  Brew.,  1921, 

27,  565—571. 

Since  the  publication  of  H.  T.  Brown's  paper  on 
the  flocculation  of  wort  (J.,  1913,  442)  the  import- 


72  a 


Cl.  XVIII.— FERMENTATION  INDUSTRIES. 


[Jan.  31,  1922. 


ance  of  mechanical  agitation  of  the  cooling  wort  has 
been  generally  acknowledged,  and  it  has  been  con- 
cluded that  horizontal  refrigerators  produce  lees 
satisfactory  flocculation  than  vertical  ones  and  that 
the  latter  give  the  best  results  when  the  wort 
"  fusses  "  and  splashes.  The  author's  experience, 
on  the  other  hand,  whilst  confirming  Brown's  con- 
clusion respecting  the  importance  of  movement  of 
the  cooling  wort,  goes  to  show  that  horizontal  re- 
frigerators are  the  most  efficient,  and  that  vertical 
ones  give  better  flocculation  when  the  wort  flows  in 
a  comparatively  thin  film  entering  all  the  recesses 
than  when  it  flows  rapidly  and  "  fussily,"  for  in  the 
latter  case  much  of  the  wort  takes  an  almost  vertical 
path  instead  of  following  the  contour  of  the  re- 
frigerator. The  important  factor  in  causing  floccu- 
lation appears  to  be  the  length  of  travel  of  the  wort, 
a  long  path  with  no  "  fussing,"  as  in  a  horizontal 
refrigerator,  giving  better  results  than  a  short  path 
with  much  splashing. — J.  H.  L. 

Brewery;  Hydrogen  ion  concentration  in  the  . 

I.  Colorimetric  method  of  Michaelis  for  deter- 
mining pn,  and  its  application  in  brewing.  W. 
Windisch,  W.  Dietrich,  and  P.  Kolbach.  Woch. 
Brau.,  1921,  38,  275—276,  283—284,  289—290. 

The  colorimetric  method  proposed  by  Michaelis 
(J.,  1921,  490  a)  for  the  determination  of  hydrion 
concentrations  between  jbh  =  2'8  and  8'4,  when 
applied  to  worts  and  beers,  gives  results  in  close 
agreement  with  those  of  the  electrometric  method. 
The  indicator  solutions  should  be  kept  in  the  dark, 
and  should  be  checked  from  time  to  time  by  meane 
of  solutions  of  known  hydrion  concentration,  the 
preparation  of  which  from  sodium  acetate  and 
acetic  acid  is  described.  Apparatus  based  on  the 
principle  of  the  Walpole  colorimeter  may  be  used 
to  reduce  or  eliminate  errors  arising  from  the 
natural  colour  of  wort  or  beer.  Pale  beers  may  be 
diluted  8-fold,  dark  beers  16-fold,  and  portere 
40-fold  without  affecting  the  pH  value  by  more  than 
0'2.  This  is  due  to  the  action  of  the  buffer  salts 
present.  A  quantitative  measure  of  the  buffer 
action  of  beers  (Nachgiebigkeit),  with  respect  to 
hydrogen  and  hydroxyl  ions  respectively,  is  sug- 
gested. It  represents  the  percentage  of  the  hydro- 
gen ions  contained  in  1  c.c.  of  iV/10  hydrochloric 
acid  (or  of  hydroxyl  ions  contained  in  1  c.c.  of 
N/10  sodium  hydroxide),  which  are  de-ionised  on 
mixing  1  c.c.  of  the  aoid  or  alkali  with  10  c.c.  of 
beer.  For  the  beers  investigated  this  value 
amounted  to  90—92%  in  the  case  of  hydrogen  ions 
and  over  99%  in  the  case  of  hydroxyl  ions.  Beers 
of  about  the  same  hydrion  concentration  may  be 
compared,  as  regards  their  buffer  action,  by  deter- 
mining for  each  the  change  of  ps  resulting  from 
addition  of  1  c.c.  of  2V/10  acid  or  alkali  to  10  c.c. 
of  beer,  but  this  comparison  is  not  valid  for  beers 
differing   considerably    in   hydrion  concentration. 

— J.  H.  L. 

Zcfinin;   Use   of  in   the    production   of  beer. 

W.  Windisch.  Woch.  Brau.,  1921,  38,  281—282. 
Zeanin  is  a  maize  flour  practically  free  from  oil 
and  proteins,  and  is  much  preferable  to  maize  grits 
for  brewing  purposes,  as  it  gives  a  higher  yield  of 
extract,  is  not  liable  to  become  rancid,  requires 
only  a  very  short  boiling,  and  is  not  likely  to  give 
rise  to  difficulties  due  to  traces  of  unconverted 
m:i  roll  passing  into  the  copper  wort.  (Cf.  Drees- 
bach,  1917,  1106.)— J.  H.  L. 

Yeast  cells :  Shape  of  well-drained  and  pressed . 

E.  R.  Moritz.  J.  Inst.  Brew.,  1921,  27,  572. 
In  this  preliminary  note  it  is  pointed  out  that 
when  well-drained  or  pressed  yeast  is  examined 
without  water  under  the  microscope  all  or  most  of 
the  cells  appear  hcxahedral  in  shape,  whilst  there 
may  be  some   pentahedra   and   cubes,    and   at   the 


edges  a  few  globular  cells.     On  addition  of  water 
the  cells  tend  to  assume  the  globular  form. 

—J.  H.  L. 

Invertase  activity  of  yeast;  Effect  of  certain  stimu- 
lating  substances   on   the   .      E.    W.   Miller. 

J.  Biol.  Chem.,  1921,  48,  329—346. 
The  addition  of  an  alcoholic  or  aqueous  yeast  ex- 
tract to  growing  yeast  is  known  to  stimulate  both 
growth  and  formation  of  invertase.  These  two 
effects  are  produced  by  different  substances,  a  par- 
tial separation  of  which  may  be  effected  by  removal 
of  the  growth  stimulant  by  extraction  with  benzene, 
adsorption  with  fuller's  earth,  or  precipitation  with 
phosphotungstic  acid.  The  substance  accelerating 
invertase  formation  is  contained  in  high  concentra- 
tion in  a  gummy  precipitate  which  separates  from 
alcoholic  extracts  of  yeast.  Its  action  is  not  like 
that  of  a  co-enzyme,  since  it  is  without  influence 
upon  invertase  itself;  moreover,  although  Abder- 
halden  and  Schaumann  (Permentforsch.,  1919,  2, 
120)  found  that  yeast  extract  increased  the  in- 
vertase activity  of  both  dried  yeast  and  macera- 
tion juice,  the  increase  was  so  small  as  to  fall 
within  the  limits  of  experimental  error  Extracts 
of  wheat  germ  also  stimulate  growth,  but  do  not 
increase  the  invertase  concentration  in  yeast. 

— E.  S. 

Invertase;  Activity  of  absorbed .    J.  M.  Nelson 

and  D.  I.  Hitchcock.  J.  Amer.  Chem.  Soc,  1921, 
43,  1956—1961. 
Other  conditions  being  equal  and  the  velocity  of 
hydrolysis  relatively  large,  the  amount  of  sucrose 
hydrolysed  in  a  given  time  is  less  in  the  presence  of 
an  adsorbent.  The  decrease  in  rate  is  apparently 
due  largely  to  the  uneven  distribution  of  the  in- 
vertase in  the  reaction  mixture,  and  the  extent  of 
the  retardation  may  be  considerably  diminished  by 
stirring  the  mixture  and  thus  preventing  the 
settling  of  the  adsorbent.  The  contrary  results 
obtained  by  Nelson  and  Griffin  (cf.  J.,  1916,  702) 
are  thus  not  general,  but  represent  a  specific  case, 
namely,  when  the  velocity  of  hydrolysis  is  rela- 
tively small.  Under  these  conditions  it  is  possible 
that  the  rate  of  diffusion  of  the  sucrose  to  and  of 
the  invert  sugar  from  the  enzyme  combined  with 
the  adsorbent  is  greater  than  the  rate  of  hydrolysis 
of  the  sucrose. — W.  G. 

Y easts    and    bacteria;    Vitamin    requirements    of 

certain  .     C.    Funk   and  H.   E.  Dubin.     J. 

Biol.  Chem.,  1921,  48,  437—443. 
Bt  shaking  autolysed  yeast  with  either  fuller's 
earth  or  norit  (decolorising  carbon)  vitamin  B  is 
completely  removed;  the  filtrate,  however,  still 
promotes  the  growth  of  yeast.  The  authors  con- 
clude that  a  hitherto  unknown  vitamin,  for  which 
the  name  vitamin  D  is  suggested,  is  present  in 
yeast.— E.  S. 

Pentose-destroying     bacteria;     Characteristics     of 

certain  especially  as  concerns  their  action 

on  arabinose  and  xylose.  E.  B.  Fred,  W.  H. 
Peterson,  and  J.  A.  Anderson.  J.  Biol.  Chem., 
1921,  48,  385—411. 
Pure  cultures  of  twelve  strains  of  lactic  acid  bac- 
teria were  isolated  from  maize  silage  and  sauer- 
kraut. They  are  classified  in  two  main  divisions 
according  as  they  ferment  Ipevulose  with  or  with- 
out the  production  of  mannitol,  further  sub- 
division depending  upon  their  fermentative  ability 
towards  various  sugars.  The  fermentation  of 
arabinose  and  xylose  by  these  bacteria  results  in 
the  formation  of  acetic  acid,  lactic  acid,  and  carbon 
dioxide.  The  two  acids  are  formed  in  approxi- 
mately equimolecular  proportions,  the  main  course 
of  fermentation  being,  apparently,  simple  cleavage 
into  acetic  and  lactic  acids.  The  bacteria  which 
form  mannitol  also  slowly  ferment  lactic  acid  to 
acetic  acid  and  carbon  dioxide. — E.  S. 


Vol.  XIX,  Xo.  2.] 


Cl.  XIXa.— FOODS. 


73i 


Rum;   German   .      0.    Mezger  and  H.   Jesser. 

Z.  angew.  Cheni.,  1921,  34,  621—623,  629—634. 
A  beverage  similar  to  rum  in  composition  and 
iiavour  is  made  by  a  German  firm  from  the  pro- 
ducts of  beet  sugar  manufacture,  without  any 
addition  of  flavouring  essences  or  esters.  It  is  made 
by  the  fermentation  of  beet  juice,  molasses,  raw 
sugars,  and  beet  factory  by-products.  Great  im- 
portance is  attached  to  the  proper  treatment  of  the 

dunder  "  or  distillation  residue,  which  is  sub- 
jected to  a  bacterial  fermentation  after  addition  of 
sugar,  nitrogenous  matters,  and  fruits.  Undesir- 
able aromatic  substances  produced  in  the  dunder 
are  removed  by  a  special  process,  and  finally  the 
suitably  prepared  dunder  is  mixed  in  a  definite  pro- 
portion with  the  mash,  and  distilled.  The 
analvtical  constants  of  the  German  rum  are  as 
follows:— sp.  gr.  at  15°  C.  090— 0'92;  alcohol 
55—62%  by  vol. ;  extract  01— 0'3  %  .  Per  100  c.c.  of 
absolute  alcohol,  the  volatile  acidity  as  acetic  acid 
amounts  to  13 — 101  nig.,  the  esters  as  ethyl  acetate 
to  190 — 370  mg.,  aldehydes  3 — 50  mg.,  furfural 
O'l — 5  mg.,  higher  alcohols  20 — 217  mg.,  and 
Lusson-Girard  value  344 — 550.  These  values  are  all 
within  the  limits  found  in  the  analysis  of  Colonial 
rums,  although  the  acidity  and  ester-content  of 
the  German  product  are  less  variable  and  on  the 
average  lower  than  the  corresponding  values  for 
rums  from  cane  products.  Both  types  of  rum  were 
found  to  be  free  from  methyl  alcohol.  The  flavour 
of  the  German  product  was  judged  by  various 
experts  to  be  only  slightly  inferior  to  that  of  first- 
quality  Jamaica  rum.  A  short  bibliography 
relating  to  rum  is  appended. — J.  H.  L. 

Methyl  alcohol ;  Replacement  of  morphine  in  testing 

for  in    spirits.     B.   Pi'yl,    G.   Reif,   and   A. 

Hanner.     Z.  Unters.   Nahr.  Genussm.,  1921,  42, 

218—2^0. 

Guaiacol,  apomorphine,  and  gallic  acid  are  excellent 
substitutes  for  morphine  in  Fendler  and  Mannich's 
test.  O'o  c.c.  of  a  well  cooled  solution  of  0'02  g.  of 
one  of  these  substances  in  10  c.c.  of  concentrated 
sulphuric  acid  is  measured  into  a  watch  glass  on  a 
white  background  and  O'l  c.c.  of  the  colourless  oxi- 
dised distillate  from  the  spirit  is  added,  drop  by 
drop.  If  formaldehyde  is  present  guaiacol  imme- 
diately gives  a  red,  apomorphine  a  dark  greyish- 
violet,  and  gallic  acid  an  intense  greenish-yellow 
coloration.  Apomorphine  and  gallic  acid  also  give 
precipitates  if  the  mixture  is  allowed  to  stand  for 
1  hr.  05  c.c.  of  water  is  then  added,  drop  by 
drop.  The  precipitate  is  clearly  visible  on  the  fol- 
lowing day  in  the  form  of  a  ring,  and  from  its 
appearance  the  quantity  of  methyl  alcohol  present 
can  be  estimated.  Teste  carried  out  on  commercial 
samples  of  spirits  and  on  a  number  of  tinctures  gave 
excellent  results,  which  were  not  disturbed  by  the 
presence  of  higher  alcohols,  aldehydes  or  ethereal 
oils.  The  test  is  more  sensitive  than  the  morphine 
test,  showing  the  presence  of  0'25 — 2%  of  methyl 
alcohol  in  cases  in  which  the  morphine  test  failed. 
It  is  quicker,  requires  less  reagent,  and  several  tests 
can  be  carried  out  on  a  single  distillate.  For  the 
preparation  of  the  distillate  10  c.c.  of  spirit  should 
be  slowly  distilled  from  a  25  c.c.  distillation  flask 
over  a  small  luminous  flame.  The  distillate  is  con- 
densed by  an  air-condenser  bent  twice  at  right 
angles  and  70  cm.  long,  and  1  c.c.  is  collected  in  an 
ice-cooled  vessel.  This  is  oxidised  by  adding  4  c.c. 
of  20%  sulphuric  acid  and  1  g.  of  finely  powdered 
permanganate  to  the  ice-cooled  solution  in  4  or  5 
portions.  The  oxidation  should  take  at  least  i  hr. 
The  mixture  is  filtered  and  the  filtrate,  which  is  pale 
pink  in  colour,  allowed  to  stand  at  room  tempera- 
ture until  colourless.  This  solution  is  then  used  for 
the  test.  In  testing  for  traces  of  methyl  alcohol 
the  oxidation  with  permanganate  suffers  from  the 
objection  that  formaldehyde  may  be  obtained  from 
higher  alcohols,  ethers,  or  otber  methyl  compounds. 

— H.  C.  R. 


Formaldehyde  and  methyl  alcohol.  Pfyl  and  others. 
See  XX. 

Patents. 
Dealcoholising     apparatus.       R.     H.     Pflugfelder. 

U.S. P.  1,396,232,  8.11.21.  Appl.,  17.2.19. 
In  a  vertical  cylindrical  jacketed  dealcoholising 
vessel,  a  helical  shelf  fixed  to  the  walls  extends  round 
and  round  the  interior  of  the  vessel.  The  6helf  has 
transverse  corrugations  and  its  free  edge  is  higher 
than  the  edge  united  with  the  wall,  so  that  it  forms 
with  the  wall  a  V-shaped  channel,  along  which  the 
liquid  to  be  dealcoholised  is  allowed  to  flow. 

—J.  H.  L. 

Glycerol;  Manufacture  of by  fermentation.    A. 

Koch.     G.P.  338,734,  20.4.17. 

Sugar  solutions  of  high  concentration,  e.g.,  40%, 
are  fermented  and  diluted  repeatedly  in  the  course 
of  fermentation;  e.g.,  they  may  be  diluted  with  an 
equal  volume  of  water  each  time  the  alcohol-content 
attains  5%.  The  yield  of  glycerol  is  equal  to  10% 
of  the  weight  of  sugar  fermented. — J.  H.  L. 

Distillery  waste;  Treating .    (a)  A.  A.  Backhaus 

and  C.  Haner,  jun.,  (b)  A.  A.  Backhaus,  (c)  C. 
Haner,  jun. .  Assrs.  to  U.S.  Industrial  Alcohol  Co. 
U.S. P.  (a)  1,396,006,  (b)  1,396,007,  (c)  1,396,368, 
8.11.21.     Appl.,  22.10.17.  (a)  renewed  19.7.19. 

(a)  Distillery  slop  is  concentrated  and  heated  with 
sodium  hydroxide  at  175° — 250°  C,  oxalic  acid  is 
precipitated  from  the  product  by  means  of  lime  and 
filtered  off,  and  the  filtrate  is  evaporated  to  dryness 
and  distilled  with  sulphuric  acid  to  recover  volatile 
acids,  (b)  Distillery  waste  is  heated  with  caustic 
alkali  at  175°— 250°  C.  for  a  few  hours,  the 
product  is  dissolved  in  water,  oxalates  are  pre- 
cipitated as  calcium  oxalate  and  filtered  off,  the 
alkali  is  separated  from  the  filtrate,  and  the  latter 
is  then  distilled  with  a  fixed  acid  to  recover  volatile 
organic  acids,  (c)  Distillery  waste  is  heated  with 
an  alkali  at  175° — 250°  C.  to  produce  salts  of  oxalic 
and  volatile  organic  acids,  and  the  latter  are 
liberated  by  addition  of  oxalic  acid. — J.  H.  L. 

Organic,  acids;  Process  of  producing {from  dis- 
tillery waste].  A.  A.  Backhaus,  Assr.  to  U.S. 
Industrial  Alcohol  Co.  U.S. P.  1,396,008— 
1,396,010,   8.11.21.     Appl.,    (a)    22.10.17,    (b,    c) 

A  mixture  of  distillery  slop  and  caustic  alkali  is 
heated  at  160°— 250°  C.  in  presence  of  (a)  ferric 
oxide,  (b)  manganese  dioxide,  or  (c)  cerium  oxide. 

—J.  H.  L. 


XIXa. -FOODS. 

Flour    and    bread;    Detection    and    estimation    of 

adulteration    in    .       E.    Vogt.       Z.    Unters. 

Nahr.  Genussm.,  1921,  42,  145—173. 

The  microscopical  detection  and  chemical  estima- 
tion of  the  following  adulterants  of  wheaten  flour 
and  bread  are  dealt  with: — barley  meal,  maize 
flour,  prepared  oatmeal,  wheat  seconds,  potato 
starch  flour,  steamed  potatoes,  rolled  potato  flour, 
and  potato  flakes.  The  microscopical  detection 
depends  on  the  appearance  and  size  of  the  starch 
granules,  even  when  changed  by  baking.  Their 
recognition  is  simplified  by  staining  with  a  dilute 
solution  of  congo-red  in  Indian  ink.  The  detection 
of  rolled  potato  flour  and  potato  flakes  is  rendered 
difficult  by  the  transformation  during  steaming  of 
the  cell  contents  into  a  formless  mass  soluble  in 
water.  The  quantitive  estimation  of  these  adulter- 
ants by  means  of  the  microscope  is  not  possible,  but 
it  can  be  effected  chemically  by  determining  the 
"  intrinsic  alkalinity  "  of  the  the  ash  of  the  flour  or 
bread  as  follows :  —The  bread  is  dried  and  powdered 


74  a 


Cl.  XIXa.— FOODS. 


[Jan.  31,  1022. 


and  the  dry  matter  obtained  by  further  drying  for 
4—5  hrs.  at  97°— 98°  C.  About  10  g.  of  the 
powdered  bread  or  dry  flour  is  accurately  weighed 
in  a  platinum  dish,  thoroughly  moistened  with 
20  c.c.  of  standard  sodium  carbonate  solution  (about 
N /10)  and  dried  on  the  water  bath.  The  residue  is 
ignited  to  a  white  ash  which  is  dissolved  in  a  known 
volume  of  standard  hydrochloric  acid  solution 
(about  N 110)  and  a  few  drops  of  hydrogen  peroxide. 
The  solution  is  filtered  and  the  cold  filtrate  titrated 
with  N 110  sodium  hydroxide  and  methyl  orange, 
and  titrated  back  with  N /10  hydrochloric  acid. 
The  difference  of  the  equivalents  of  the  total 
volumes  of  acid  and  alkaline  solutions  expressed 
as  c.c.  of  N /I  acid  per  100  g.  of  dry  matter  gives  the 
"alkalinity  to  methyl  orange."  The  phosphoric 
acid  is  then  determined  by  removing  silica  if  neces- 
sary, adding  30  c.c.  of  neutral  40%  calcium  chloride 
solution  to  the  neutral  solution,  boiling,  cooling  to 
14°  C.  and  titrating  with  JV/10  sodium  hydroxide 
and  phenolphthalein.  This  figure  is  converted  into 
c.c.  of  N /l  solution  per  100  g.  of  dry  matter  and 
subtracted  from  the  "  alkalinity  to  methyl  orange," 
the  result  being  the  "  intrinsic  alkalinity  "  of  the 
sample.  The  values  for  wheaten  flour  lie  between 
-5  and  -15,  decreasing  with  increasing  percentage 
milled  out  of  the  grain.  Barley  meal,  maize  flour, 
and  oatmeal  give  values  of  about  -20,  wheat 
seconds  -31,  potato  starch  -5,  and  rolled  potato 
flour  and  potato  flakes  from  +20  to  +25.  The 
great  increase  of  alkalinity  of  the  ash  in  the  case 
of  potato  flours  is  due  to  the  large  amount  of 
potassium  salts  contained  in  the  sap  of  the  tuber 
and  the  small  amount  of  phosphoric  acid  present 
compared  with  that  in  grain.  The  figure  for 
mixtures  is  governed  by  the  usual  law.  By  com- 
bining microscopical  examination  with  a  determina- 
tion of  the  intrinsic  alkalinity  of  the  ash  it  is 
possible  in  many  cases  to  estimate  approximately  the 
proportions  of  different  flours  used  for  the  produc- 
tion of  a  sample  of  bread. — H.  C.  R. 

Confectionery ;  Calculation  of  added  sugar  and  fat 

in  .      K.  Baumann  and  J.  Kuhlmann.      Z. 

Unters.  Nahr.  Genussm.,  1921,  42,  225—232. 
The  water,  sugar,  fat,  and  mineral  matter  in  the 
confectionery  are  estimated  and  the  residue  taken 
as  "  protein + starch."  A  biscuit  is  then  made  of 
the  same  flour  as  that  used  for  the  original  confec- 
tionery, adding  the  same  quantity  of  yeast,  but  no 
sugar  or  fat,  and  the  water,  sugar,  fat,  and  mineral 
matter  are  determined  in  this.  The  difference  from 
100  of  the  sum  of  these  constituents  again  gives  the 
"  protein  +  starch  "  and  the  weight  of  sugar  and  fat 
per  g.  of  "  protein+starch  "  is  calculated.  From 
these  two  figures  the  amount  of  sugar  and  fat  due 
to  the  action  of  the  yeast  on  the  flour  in  the  original 
confectionery  can  be  calculated  and  the  added  sugar 
and  fat  obtained  by  subtraction.  The  results  are 
sufficiently   accurate  for   practical  purposes. 

— H.  C.  R. 

Mince-    and    sausage-meat;    Estimation    of    added 

water  in  .     J.  Grossfeld.     Z.  Unters.  Nahr. 

Genussm.,  1921,  42,  173—181. 
Duplicate  determinations  of  nitrogen  in  many 
■samples  of  meat  agreed  together  as  well  as  duplicate 
determinations  of  the  non-fatty  organic  matter  ac- 
«ordin<*  to  Feder's  method  (Z.  Unters.  Nahr. 
Genussm.,  1913,  25,  577).  The  percentage  of  nitro- 
gen x6'25  gave  values  in  good  agreement  with 
Feder's  values  for  the  non-fatty  organic  matter. 
The  former  determination  is  quicker,  simpler,  and 
cheaper  than  the  latter.  The  percentage  of  fat  is 
easily  calculated  by  subtracting  the  sum  of  the  other 
constituents  from' 100,  and  the  figures  so  obtained 
agree  closely  with  direct  determinations.  The  mini- 
mum percentage  of  added  water  is  found  by  sub- 
tracting 25  times  the  percentage  of  nitrogen  from 


the  percentage  of  water,  and  is  about  9%  lower  than 
the  probable  percentage  of  added  water  (obtained 
by  subtracting  21'4  times  the  nitrogen  percentage 
from  the  percentage  of  water).— H.  C.  R. 

Casein;  Alkaline  hydrolysis  of .    M.  A.  Griggs. 

J.  Ind.  Eng.  Chem.,  1921,  13,  1027—1028. 

The  optimum  yield  of  amino  nitrogen  (60%  of  the 
total  nitrogen)  is  obtained  by  heating  the  casein 
under  pressure  at  150°  C.  for  5  hrs.  with  10% 
sodium  hydroxide  solution,  in  the  proportion  of 
1  pt.  by  weight  of  casein  to  5  pts.  by  vol.  of  alkali 
solution.— W.  P.  S. 

Fat-soluble  factor  [vitamin];  Quantitative  estima- 
tion f)f  -.     S.  S.  Zilva  and  M.  Miura.     Bio- 

chem.  J.,  1921,  15,  654—659. 

Rats  are  used  which  have  been  kept  for  3 — 4  weeks 
on  the  basal  diet  without  growing,  and  their  weight 
should  not  exceed  70  g.  The  minimum  dose  of  tho 
active  substance  is  then  determined  which  just  in- 
duces a  definito  growth.  For  instance,  1'7  mg.  of 
the  most  active  cod  liver  oil  per  day  did  this,  and 
1'4  mg.  did  not.  The  minimum  doses  of  various 
samples  of  cod  liver  oil  varied  from  1'7  to  5  mg.,  of 
butter  from  200  to  400  mg.— G.  B. 

Vitamin  content  of  rice  [cannot  be  estimated]  by 
the  yeast  method.  Organic  nitrogen  as  a  possible 
factor  in  stimulation  of  yeast.  W.  D.  Fleming. 
J.  Biol.  Chem.,  1921,  49,  119—122. 

The  stimulation  of  yeast  growth  by  rice  extracts 
is  not  due  to  water-soluble  vitamin-B,  for  it  persists 
after  the  rice  extracts  have  been  evaporated  with 
10%  sodium  hydroxide  to  inactivate  the  vitamin. 
The  stimulation  of  yeast  growth  is  due  at  least  in 
part  to  the  organic  nitrogen  in  the  extracts. — G.  B. 

Antiscorbutic  vitamin;  Effect  of  heating  the  ■ 

in  the  presence  of  invertase.     E.  Smith  and  G. 
Medes.     J.  Biol.  Chem.,  1921,  48,  323—327. 

The  destruction  of  vitamin  C  by  heat  is  not  acceler- 
ated by  the  presence  of  invertase.- — E.  S. 

Vitamin  B;  Bacteria  as  a  source  of  the  water- 
soluble  .       S.   R.   Damon.     J.   Biol.   Chem., 

1921,  48,  379—384. 

Feeding  experiments  on  rats  indicate  that  B.  para- 
typhosus  B,  B.  coli,  and  B.  subtilis  do  not  produce 
vitamin  B. — E.  S. 

Oranges;  The  changes  which undergo  on  keep- 
ing. G.  Andre.  Comptes  rend.,  1921,  173, 
1399—1401.     (Cf.  J.,  1920,  204  a,  245  a.) 

When  oranges,  cut  in  halves,  are  kept  under  sterile 
conditions,  they  undergo  a  slight  loss  in  weight, 
which  is  accompanied  by  marked  loss  in  acidity  and 
a  slighter  diminution  in  sugar  content,  together 
with  inversion  of  some  of  the  sucrose.  These 
changes  are  somewhat  irregular,  and  are  not 
entirely  due  to  oxidation,  as  they  proceed  to  a  lesser 
extent  in  a  vacuum.  There  is  probably  some 
enzymic  action. — W.  G. 

Alfalfa    plant    [lucerne];    Proteins    of    the    . 

T.  B.  Osborne,  A.  J.  Wakeman,  and  C.  S.  Leaven- 
worth.    J.  Biol.  Chem.,  1921,  49,  63—91. 

The  paper  deals  chiefly  with  the  technique  of 
extraction.  Fresh  plants,  or  plants  frozen  after 
cutting,  are  very  finely  ground,  and  extracted 
successively  with  water,  alcohol,  dilute  aqueous 
alkali,  and  alkaline  alcohol.  This  leaves  as  residue 
32%  of  the  solids,  containing  only  5'6%  of  the 
nitrogen.  With  a  hydraulic  press  an  undiluted 
juico  is  otained,  from  which  on  the  addition  of  20% 
of  alcohol,  nearly  all  the  protein  is  precipitated, 
mixed  with  calcium  salts,  which  latter  can  be 
extracted  by  75%  alcohol  containing  a  little  hydro- 
chloric acid. — G.  B. 


Vol.  XLI.,  No.  2.] 


Cl.  XIXa.— FOODS. 


75  a 


Amino-acids  of  feeds  [feeding  stuffs};  Quantitative 

determination  of  .     T.   S.  Hamilton,  W.  B. 

Nevens,   and  H.   S.   Grindlev.      J.   Biol.   Chem., 
1921,  48,  249—272. 

Fttrtheb  improvements  have  been  made  in  the  ap- 
plication of  Van  Slyke's  method  (J.,  1911,  1135)  to 
the  estimation  of  amino-acids  in  feeding  stuffs. 
Non-protein  nitrogen  is  first  removed  from  the 
material  by  successive  extractions  with  anhydrous 
ether,  cold  absolute  alcohol,  and  cold  1  %  trichloro- 
acetic acid,  any  protein  removed  by  the  latter  being 
recovered  by  precipitation  with  colloidal  ferric  hydr- 
oxide. The  main  portion  of  the  protein  is  then  ex- 
tracted with  dilute  (0'2%)  sodium  hydroxide. 
Starch  is  removed  from  the  residue  by  treatment 
with  hot  2%  trichloroacetic  acid  and  the  remaining 
protein  extracted  by  treatment  first  with  boiling 
L'  i  hydrochloric  acid  and  then  with  cold  5%  sodium 
hydroxide.  A  small  quantity  of  protein  extracted 
with  the  starch  is  recovered  by  precipitation  of  the 
latter  by  addition  of  alcohol.  The  various  fractions 
of  protein  thus  obtained  are  hydrolysed  with  con- 
centrated hydrochloric  acid,  united,  and  submitted 
to  the  Van  Slyke  analysis.  The  method  has  been  ap- 
plied to  oats,  maize,  cottonseed  meal,  and  alfalfa. 

— E.  S. 

Amino-acids;  Method  of  separation  of from  the 

products    <>f    hydrolysis    of    proteins    nod    other 
turces.    H.  W.  Buston  and  S.  B.  Schrvver.     Bio- 
chem  J.,  1921,  15,  636—642. 

The  authors  give  preliminary  indication  of  a 
method  whereby  dicarboxylic  amino-acids  are  pre- 
cipitated by  alcohol  a6  barium  salts,  after  saturat- 
ing their  aqueous  solution  with  baryta.  If  then, 
without  removing  the  alcohol,  carbon  dioxide  is 
passed  into  the  solution,  other  amino-acids  are  pre- 
cipitated as  the  barium  carbamates  described  by 
Siegfried.     No  individual  amino-acid  was  isolated. 

— G.  B. 


Pectic  substances  of  plants.  11.  Preliminary  in- 
vestigation of  the  chemistry  of  the  cell  wall  of 
plants.  D.  rl.  F.  Clavson,  F.  W.  Norris,  and 
8.  B.  Schrvver.    Biochem.  J.,  1921,  15,  643—653. 

The  authors  call  cytopentans  substances  related  to 
Schulze's  hemicelluloses,  which  are  extracted  by 
cold  Nil  sodium  hydroxide  and  then  precipitated 
by  addition  of  alcohol.  They  are  coloured  blue  by 
iodine,  and  do  not  reduce  Fehling's  solution  until 
after  hydrolysis  by  acids,  when  they  give  40 — 85% 
of  pentosans.  Cytopentans  form  a  relatively  small 
part  of  crude  pectin  and  the  name  cytopectic  acid  is 
suggested  for  the  rest.  The  samples  of  this  acid 
from  six  species  of  plants  contained  41'22 — 
42-88%  C,  5-31—5-71%  H,  and  0-15— 0"85%  ash; 
[a]D2°  =  +260°  to  +280°.  The  percentage  of  methyl 
alcohol  set  free  by  sodium  hvdroxide  was  0'16 — 
0-42%.— G.B. 

Lupin  seeds:  Removal  of  bitter  substances  from 
.    E.  Beckmann.    Chem.-Zeit.,  1921,  45,  1149. 

The  greater  part  of  the  bitter  substances  may  be  re- 
moved by  extracting  the  decorticated  and  coarsely- 
ground  seeds  with  water  at  40° — 70°  C. ;  this  treat- 
ment renders  the  seeds  suitable  for  use  as  a  cattle 
food.  Further  extraction  with  dilute  hydrochloric 
acid  to  remove  the  last  traces  of  bitter  substance, 
as  recommended  by  Rewald  (J.,  1921,  901  a),  appears 
to  be  unnecessary. — \Y.  P.  S. 

See  also  pages  (a)  64,  Soya  beans  (Satow).  77, 
Pepper  substances  (Ott  and  Zimmermann) ;  Tiki- 
tiki  [rice-polishings]  extract  (Wells).  78,  Dulcine 
(Deniges  and  Tourrou) ;  Furfural  from,  maize  cobs 
(La  Forge).    82,  Amyl  alcohol  (Bengen). 


Patents. 
Liquids  [milk];  Process  of  treating .  G.  Sin- 
clair. U.S. P.  1,397,550,  22.11.21.  Appl.,  8.12.17. 
Milk  or  cream  is  gradually  heated  to  145° — 150°  F. 
(63° — 66°  C.),  the  temperature  is  then  raised 
suddenly  ("flashed")  to  170°— 185°  F.  (77°— 
S5°  C),  after  which  the  liquid  is  cooled  to  50° — 
65°  F.  (10°— 18°  C.)  and  incubated  at  that  temper- 
ature for  48 — 96  hrs.  The  liquid  is  then  maintained 
at  35°-45°  F.  (2°— 7°  C.)  for  an  extended  period. 
Sterile  air  is  blown  through  the  liquid  throughout 
the  process. — H.  Hg. 

Desiccating  fluid  nurtures  [milk];  Method  of . 

J.  O.  MacLachlan,  Assr.  to  Standard  Food  Pro- 
ducts Co.  U.S. P.  1,398,735,  29.11.21.  Appl., 
21.8.16.     Renewed  2.2  21. 

A  heavy  liquid  or  semi-liquid  is  reduced  to  a  dry 
finely-divided  form  by  projecting  it  at  a  high 
velocity  into  a  space  containing  a  hot  drying  gas 
and  provided  with  blades  positively  driven  at  high 
velocity.  In  treating  milk  a  preliminary  concentra- 
tion to  a  heavy  viscous  consistency  is  effected  by 
spraying  the  milk  through  hot  air. — H.  II. 

Butter  fats;   Treatment  of  .     Manufacture  of 

milk-fat.  A.  F.  Stevenson,  Assr.  to  A.  W.  John- 
ston. U.S. P.  (a)  1,397,663  and  (b)  1,397,664, 
22.11.21.    Appl.,  4.2.  and  27.4.20. 

(a)  Any  objectionable  flavour  in  butter  fat  is  re- 
moved by  washing  with  an  alkaline  solution  fol- 
lowed by  an  acid  solution  of  a  strength  capable  of 
removing  impurities  dissolved  by  the  alkali,  (b)  As 
an  initial  step  in  the  recovery  of  milk  fat  from  sour 
cream,  the  latter  is  diluted  with  acidified  water  to 
produce  the  requisite  hydrogen-ion  concentration  to 
redissolve  the  precipitated  casein. — A.  G.  P. 

Food  compound.    B.  E.  Clarke.     U.S. P.  1,397,723, 
22.11.21.    Appl.,  15.1.21. 

Milk,  malt,  and  vegetable  fat  are  emulsified  at  a 
temperature  between  that  at  which  the  enzymes 
become  active  and  that  which  renders  them  inert. 

—A.  G.  P. 

[Fruit]  juice;  Process  of  treating and  product. 

I.  S.  Merrell,  Assr.  to  Merrell-Soule  Co.  U.S. P. 
(a)  1,398,080  and  (b)  1,398,081,  22.11.21.  Appl., 
11.9.19. 

Fruit  juice  is  combined  with  (a)  starch  or  (b) 
gelatinised  starch,  and  the  mixture  is  atomised  into 
a  current  of  moisture-absorbing  air,  the  resulting 
substantially  dry  powdered  product  being  separated 
in  the  form  of  spherical  particles. — H.  H. 

Meat  product;  Powdered .     J.  C.  MacLachlan, 

Assr.  to  Standard  Food  Products  Co.  U.S. P. 
1,398,464,  29.11.21.    Appl.,  4.10.19. 

Meat  is  finely  divided  and  the  fibre  separated  and 
predigested  by  treatment  with  hydrochloric  acid. 
Two-thirds  of  the  acid  is  neutralised,  the  digested 
fibre  is  mixed  with  the  other  separated  portion  of 
the  meat,  and  the  whole  dried  and  powdered. 

—A.  G.  P. 

Ef/gs;    Method    of    freezing    and   preserving   . 

J.  M.  Hussev.  U.S. P.  1,398,860,  29.11.21.  Appl., 
31.3.21. 

Alcohol  is  added  to  egg  batter  and  the  mixture 
frozen  at  a  sufficiently  low  temperature  to  prevent 
decomposition.  It  is  kept  frozen  till  required  for 
use.  Sufficient  alcohol  is  used  to  prevent  thickening 
and  phvsical  modification  of  the  egg  when  thawed. 

—A.  G.  P. 

Agar-agar;  Process  for  making .    C.  Matsuoka. 

U.S. P.  1,399,359,  6.12.21.     Appl.,  10.10.18. 

Liqv'id  chlorine  is  added  to  dried  Gloiapeltis  in  the 

o 


76a 


Cl.  XIXb.— WATER  PURIFICATION;  SANITATION. 


[Jan.  31,  192-2. 


proportion  of  1:9  by  weight  and  the  mixture  allowed 
to  stand  until  bleached.  The  bleached  substance  is 
treated  with  sodium  thiosulphate  solution,  washed 
once  or  several  times  in  water,  and  boiled  with 
water  until  a  homogeneous  and  viscid  mass  is  ob- 
tained, which  is  frozen  at  -5°  C,  and  dried. 

— F.  M.  R. 

Vegetables,  fruit  and  the  like;  Method  of  preserv- 
ing ■ .     A.  Faitelowitz,  Assr.  to  The  Chemical 

Foundation,     Inc.       U.S. P.     1,399,471,     6.12.21. 
Appl.,  24.5.17. 

The  juice  is  separated,  condensed,  and  again  mixed 
with  the  pulp.  The  product  is  made  into  blocks  the 
bulk  of  which  contains  sufficient  moisture  to  allow 
of  the  swelling  and  dissolving  of  certain  of  the  com- 
ponents, and  is  enclosed  by  a  dried  film  of  the  same 
substance. — H.  C.  R. 

Substitute,  for  raw  coffee-beans;  Process  for  produc- 
ing a  .     A.   Heinemann.     U.S. P.   1,400,161, 

13.12.21.    Appl.,  22.7.21. 

Barley  is  incompletely  germinated,  dried,  hulled, 
steeped  in  an  infusion  of  hop  flowers  until  it  swells, 
and  then  dried  until  its  water  content  agrees  ap- 
proximately with  that  of  the  natural  grain. 

Feeding-stuffs;  Process  of  drying  bully  .     K. 

Riedinger.    G.P.  341,180,  27.2.19. 

The  chamber  for  containing  the  material  to  be  dried 
is  relatively  large,  and  it«  inner  walls  are  provided 
with  projections,  which  support  laths  periodically 
laid  upon  the  material  during  the  process  of  filling 
the  chamber.  Drying  is  effected  by  the  passage  of 
warm  air,  and  the  material  under  this  treatment 
shrinks  and  subsides  upon  the  laths  which  then 
function  as  grids,  facilitating  the  drying  process 
owing  to  the  air  passages  afforded  by  the  shrinkage 
of  the  material. — J.  S.  G.  T. 

Malted  pearl-barley;  Process  of  producing .    A. 

Heinemann.     U.S.P.  1,400,160,  13.12.21.     Appl., 
22.7.21. 

See  G.P.  335,337  of  1919;  J.,  1921,  824  a. 
Lactose.    G.P.  341,787.    See  XVII. 


XIXb.-WATED  PUBLICATION;  SANITATION. 

Sewage;  Amount  and  rhythm  of  disappearance  of 

organic   matter  during   the   purification   of  

by  the  activated  sludge  process.  P.  Courmont, 
A.  Rochaix,  and  F.  Laupin.  Comptes  rend.,  1921, 
173,  1199—1201. 
The  ratio  of  organic  matter  in  the  effluent  to  that 
in  the  crude  sewage  before  the  addition  of  activated 
sludge  varied  in  12  eases  from  61  to  68  % .  After  the 
addition  of  the  sludge  the  amount  of  organic  matter 
diminished  suddenly  on  simple  mixing  and  then 
further  diminished  gradually  and  regularly  during 
the  subsequent  aeration,  reaching  a  limit  value 
about  50%  of  that  prior  to  aeration  at  the  end  of 
about  2i  hours. — W.  G. 

Carrel-Bakin     [antiseptic]     solution     [solution^   of 
sodium  hypochlorite'];  Preparation  and  stability 

of  .     S.   A.   Schou.     Pharm.   J.,   1921,    107, 

466—468. 
The  stability  of  sodium  hypochlorite  solution  is 
actually  diminished  by  the  addition  of  an  excess  of 
sodium  bicarbonate  over' the  quantity  required  to 
convert  the  sodium  hydroxide  present  into  carbon- 
ate, and  Johannesen's  statement  to  the  contrary 
(Arch.  Pharm.  Chem.,  1920,  27,  80)  is  erroneous. 
The  maximum  stability  is  attained  by  exactly  neu- 
tralising the  free  alkali  with  hydrochloric  acid.  The 
following  method  of  preparation  is  recommended  : 


chlorinated  lime  containing  not  less  than  25%  of 
available  chlorine  is  macerated  with  ten  times  its 
weight  of  water  and  after  24  hours  the  solution  is 
filtered  and  the  amount  of  free  alkali  in  the  filtrate 
is  determined  by  titration  with  Nj 10  hydrochloric 
acid  after  the  addition  of  hydrogen  peroxide  (of 
known  acidity)  to  decompose  the  hypochlorite.  The 
required  amount  of  hydrochloric  acid  indicated  by 
the  titration  is  then  added  to  the  main  bulk  oi  the 
solution  and  the  calcium  is  precipitated  as  carbon- 
ate by  the  addition  of  the  requisite  quantity  of 
sodium  carbonate.  The  hypochlorite  is  determined 
in  the  filtered  solution  by  titration  with  iodine  and 
thiosulphate,  and  water  is  added  to  dilute  to  the 
required  strength. — G.  F.  M. 

Quinones  and  allied  compounds;  Bactericidal  action 

of .     G.  T.  Morgan  and  E.  A.  Cooper.    Bio- 

chem.  J.,  1921,  15,  587—594. 

P-Benzoqtiinone  disappears  slowly  from  solutions  to 
which  protein  has  been  added ;  quinol  can  be  de- 
tected in  the  liquid.  Quinone  is  80 — 190  times  as 
effective  as  phenol  or  quinol  in  destroying  B.  typho- 
sus; homologous  quinones  are  less,  homologous 
phenols  more  effective ;  thus  thymoquinone  is  less 
effective  than  thymol.  The  bactericidal  action  of 
quinone  is  quite  different  from  that  of  phenols 
which  are  merely  pTotein  precipitants;  it  may  be 
due  to  the  formation  of  nascent  peroxide. — G.  B. 

Copper  and  arsenic  present  together;  Iodometric 

estimation  of ,  especially  in  Paris  green  and 

Schweinfiirth's  green.     I.  M.  Kolthoff  and  C.  J. 
Cremer.    Pharm.  Weekblad,  1921,  58,  1620—1624. 

About  0'6 — 0'8  g.  of  the  pigment  is  dissolved  in 
25  c.c.  of  water  containing  5  g.  of  sodium  pyrophos- 
phate. Arsenic  is  estimated  by  JV/10  iodine,  the 
blue  solution  turning  green  at  the  end  point. 
Copper  is  then  estimated  by  addition  of  10  c.c  of 
AN  sulphuric  acid  and  2  g.  of  potassium  iodide,  the 
liberated  iodine  being  estimated  with  thiosulphate. 
In  the  standard  Lunge-Berl  method,  high  results 
are  always  obtained  for  copper,  and  it  was  found 
more  accurate  to  precipitate  as  metal  by  adding 
hydrazine  sulphate  before  the  sodium  hydroxide. 
{Of.  J.C.S.,  Feb.).— S.  I.  L. 

Patents. 

Waters;  Preparation  for  the  neutralisation  of  the 
acids  and  the  precipitation  of  the  salts  contained 

in    .      V.    G.    Lorenzo.      U.S.P.    1,399,266, 

6.12.21.    Appl.,  7.12.20. 

A  solution  of  430 — 450  g.  of  sodium  hydroxide,  26 — 
30  g.  of  sodium  sulphate,  1'5— 2  g.  of  sodium  phos- 
phate, and  0'01  g.  of  tannin  in  1000  c.c.  of  water. 

-H.  Hg. 

Antiseptic    solution.      A.     S.     Cushman.      U.S.P. 
1,399,007,  6.12.21.     Appl.,  13.6.17. 

Sulphur  dioxide  is  allowed  to  act  on  formaldehyde 
in  the  presence  of  water.  The  resulting  liquid  has 
sp.  gr.  1*4  and  is  sufficiently  stable  for  safe  trans- 
portation.— A.  G.  P. 

Poisonous  gases  [insecticide]  ;  Method  of  producing 

.      J.    W.    Van    Meter.      U.S.P.    1,399,829, 

13.12.21.     Appl.,  15.6.20. 
An  alkali  cyanide  is  treated  with  an  excess  of  chlor- 
ine.   The  mixture  of  cyanogen  liberated  by  the  heat 
of   reaction   and  excess  of  chlorine  is  suitable  for 
use  as  an  insecticide. — L.  A.  C. 

[Sewage]    sludge;   Process   of   treating   .     K. 

Imhoff  and  H.  Blunk.    U.S.P.  1,399,561,  6.12.21. 

Appl.,  19.4.13. 
See  E.P.  9092  of  1913;  J.,  1913,  882. 


Vol.  XII.,  No.  2.]       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


77a 


Disinfectant;    Process    of    producing    a    solidified 

•  inutsifiable  coal  tar  derivative .    A.  Franck- 

Philipson.    E.P.  147,861,  9.7.20.    Conv.,  15.3.18. 

See  U.S.P.  1,392,564  of  1921;  J.,  1922,  31a. 
Removing  air  from  feed  water.  E.P.  171,757.  Seel. 
Carbon  monoxide.    E.P.  171,739.    Sec  XXIII. 

XX.-0RGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Morphine,  codeine,  and  narcotine  in  Indian  opium 

[;    Determination    of    ].      J.    N.    Rakshit. 

Analyst,  1921,  46,  481—488. 
The  morphine  content  of  the  bulk  of  East  Indian 
opium  is  between  8'5  and  10'5%.  The  B.P.  process 
for  estimating  morphine  is  inapplicable  in  India 
owing  to  the  high  temperature  which  prevails.  The 
U.S.P.  process  is  better  and  compares  favourably 
with  the  author's  polarimetric  process  (J.,  1918, 
634  a).  The  solubility  of  codeine  'and  narcotine  in 
various  solvents  at  temperatures  between  20°  and 
100°  C.  has  been  determined.  For  the  estimation 
of  codeine,  an  aqueous  extract  of  powdered  opium  is 
treated  with  strong  ammonia  solution  and  filtered. 
The  ethereal  extract  of  the  filtrate  is  extracted  with 
dilute  hydrochloric  acid,  and  the  acid  extract 
evaporated  to  dryness,  thus  removing  porphyroxine 
which  becomes  insoluble.  The  residue  is  treated 
with  water,  the  solution  made  alkaline  with  caustic 
soda  solution  and  extracted  with  ether.  The  residue 
from  the  ethereal  extract  is  dissolved  in  excess  of 
dilute  acid  and  the  excess  acid  titrated  with  stan- 
dard alkali  with  litmus  as  indicator.  For  the  esti- 
mation of  narcotine,  dry  opium  powder  is  triturated 
with  lime  and  extracted  with  benzene.  The  emul- 
sion obtained  on  shaking  the  benzene  solution  with 
strong  ammonia  solution  is  heated  on  the  water 
bath  until  the  benzene  has  evaporated.  The  in- 
soluble residue  on  the  surface  of  the  ammonia  solu- 
tion is  filtered  off,  washed  free  from  ammonia,  dis- 
solved in  1%  hydrochloric  acid  solution,  made  alka- 
line with  ammonia  in  the  presence  of  benzene  and 
then  faintly  acid  with  acetic  acid.  The  benzene  ex- 
tract is  practically  pure  narcotine. — H.  K. 

Anhalonium  [cactus~]  alkaloids.  II.  Constitution  of 
pellotine,  anhalonidine,  and  anhalamine.  E. 
Spiith.  Monatsh.,  1921,  42,  97—115.  (Cf.  J., 
1919,  843  a.) 
From  the  results  previously  obtained  and  those  now 
•described  the  following  conclusions  are  drawn. 
Pellotine  methyl  ether  is  1.2-dimethyl-6.7.8-tri- 
methoxy-1.2.3.4-tetrahydroisoquinoline,  but  it  is 
uncertain  which  of  the  methoxy  groups  exists  as 
hydroxyl  in  pellotine  itself.  Similarly,  anhalonidine 
is  a  derivative  of  l-methyl-6.7.8-triniethoxy-1.2.3.4- 
tetrahydroisoquinoline,  but  here  also  which  of  the 
three  methoxy  groups  exists  as  hydroxyl  in  an- 
halonidine remains  undecided.  Anhalamine  is  one 
of  the  dimethvl  ethers  of  6.7.8-trihvdroxytetra- 
hydroisoquinoline.     (Cf.  J.C.S.,  Feb.)— T.  H.  P. 

Alkaloid  content  of  Strychnos-  and  Cola-seeds.     L. 

Rosenthaler    and    H.     B.    Weber.      Ber.    deuts. 

Pharm.  Ges.,  1921,  31,  396-^08. 
The  alkaloid  content  (brucine  and  strychnine)  of 
the  individual  seeds  of  four  batches  of  strychnos- 
seeds  was  determined  by  the  method  of  the  Swiss 
Pharmacopoeia  rV.  In  general,  between  18  and  37% 
of  the  seeds  contain  2'5  to  2"75%  of  alkaloids  and  be- 
tween 59  and  66%  of  the  seeds  contain  2'75  to  3%  ; 
the  heaviest  seeds  contain  the  least  alkaloid.  Cola- 
seeds  were  also  examined  by  the  method  of  the  Swiss 
Pharmacopoeia  TV.  The  alkaloid  content  (caffeine 
and  theobromine)  was  between  1'25  and  1'5%  for 
about  22%  of  the  seeds,  and  between  1'5  and  1'75% 
for  about  70%  of  the  seeds. — H.  K. 


Alkaloidal  content ;  Relation  between  total-nitrogen 

and  .     L.  Rosenthaler.     Ber.  deuts.  Pharm. 

Ges.,  1921,  31,  408—413. 

The  alkaloid  content  and  the  total-nitrogen  content 
(by  the  Kjeldahl  .method,  using  copper  sulphate  as 
catalyst)  were  determined  on  cola,  oalabar,  and 
areca  seeds.  No  striking  relation  was  found  between 
the  alkaloid  content  and  the  non-alkaloid  nitrogen 
content  of  the  seeds.  The  former  showed  greater 
variation  than  the  latter. — H.  K. 

Pepper-substances ;  Natural  and  artificial .    Re- 

lation  between  chemical  constitution  and  peppery 
taste.  E.  Ott  and  K.  Zimmermann.  Annalen, 
1921,  425,  314—337. 

A  comparison  of  the  tastes  of  different  amides  allied 
to  capsaicin  HO(CH30)CaHa.CH2.NH.CO.C„H17 
shows  that  the  presence  of  the  phenolic  OH-group 
in  the  basic  residue  and  of  the  unsaturated  linkage 
in  the  acidic  residue,  and  the  aliphatic  nature  of  the 
component  amine  are  all  essential  to  the  production 
of  the  peppery  taste.  The  presence  of  the  methoxyl- 
group,  the  particular  orientation  of  the  hydroxyl- 
group,  and  the  length  of  the  acid  chain  all  affect 
the  intensity  of  the  taste  in  the  sense  that  a  varia- 
tion from  the  conditions  present  in  the  capsaicin 
molecule  causes  diminution  of  intensity.  The  de- 
cylenic  acid  residue  may,  however,  be  replaced  by  a 
A<"-nonylic  or  a  .V"-undecyIenic  residue  without 
much  affecting  the  intensity  of  the  taste.  A  deli- 
cate test,  based  on  taste,  for  unsaturated  acids  is 
suggested.— C.  K.  I. 

Tikitiki   [rice   polishings~\   extract;   Preparation   of 

for  the  treatment  of  beriberi.    A.  H.  Wells. 

Philippine  J.  Sci.,  1921,  19,  67—73. 

Clean  rice  polishings  in  fine  powder  are  extracted 
for  48  hrs.  with  twice  their  weight  of  25%  (by  wt.) 
alcohol,  with  occasional  agitation.  The  extract  is 
evaporated  in  vacuo  at  a  temperature  not  exceed- 
ing 75°  C.  to  a  sp.  gr.  of  P18  at  70°  C.  The  syrup 
is  separated  by  centrifuging  from  the  inert  extrac- 
tive matter  which  separates  on  cooling,  and  is  mixed 
with  one-third  of  its  volume  of  95%  alcohol,  whereby 
a  gummy  precipitate  is  obtained  and  separated. 
The  clear  extract  is  then  further  evaporated  in 
vacuo  to  a  sp.  gr.  of  T32,  and  on  cooling  more  in- 
active matter  separates  and  is  removed  by  centri- 
fuging. The  clear  syrup  is  the%  heated  to  65°  C, 
bottled,  pasteurised  for  3  successive  days  at  62'5°  C, 
and  sealed  up.  1  c.c.  of  extract  represents  the 
active  constituents  of  20  g.  of  tikitiki.  It  contains 
a  high  percentage  of  antineuritic  vitamin,  and  is  a 
cure  for  infantile  beriberi. — G.  F.  M. 

Hydrocyanic  acid;  Synthesis  of  a  nitrogenous  prin- 
ciple of  plants by  the  oxidation  of  ammonia 

and  carbohydrates,  glycerol,  or  formaldehyde.    R. 
Fosse.    Comptes  rend.,  1921,  173,  1370—1372. 

Hvdrocyanic  acid  is  obtained  as  one  of  the  products 
by  the  oxidation  with  potassium  or  calcium  perman- 
ganate of  ammoniacal  solutions  of  dextrose,  sucrose, 
dextrin,  starch,  glycerol,  or  formaldehyde. — W.  G. 

Phenacetin    and    acetanilide;    Colour   reactions    of 

.       L.  Ekkert.       Pharm.  Zentralh.,  1921,  62, 

735—737. 

A  violet-red  coloration  is  obtained  when  0'1  g.  of 
phenacetin  is  boiled  for  1  min.  with  5  c.c.  of  10% 
sulphuric  acid,  the  solution  cooled,  diluted  to  5  c.c. 
and  treated  with  2  drops  of  1%  potassium  bichro- 
mate solution.  Under  similar  conditions,  but 
boiled  for  2  mins.,  acetanilide  gives  gradually  a 
greenish-blue  coloration. — W.  P.  S. 

Dydroxydimethylbenzylamine.       A.     Madinaveitia. 

Anal.  Fis.  Quim.,  1921,  9,  259—264. 
o-Hydroxydimethylbenztlamine,        HO.C6H,.CH3 
.N(CH3)3,    was    prepared    by    the    action    of    40% 

D 


Cl.  XX.— OBGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


[Jan.  31,  1922. 


formaldehyde  on  a  mixture  of  phenol  and  aqueous 
dimethylaniline;  it  has  b.p.  105°— 106°  at  18  mm. 
■n„15  =  l"5273.     An  analogous  compound, 
HO.Ci;H.,(OCH3).CH2.N(CH3)2) 

obtained  similarly  from  guaiacol,  is  an  oil  with  b.p. 
]  17°— 148°  C.  at  15  mm.     (67.  >.C.S.,  Feb.) 

— G.  W.  R. 

Dulcine  [phenetolvred]  ;  Microchemical  reactions  of 

.     G.   Deniges   and  R.   Tourrou.        Comptes 

rend.,  1921,  173,  1184—1186. 
If  a  few  particles  of  dulcine  on  a  microscope  slide 
are  dissolved  in  one  drop  of  nitric  acid  (sp.  gr.  1'39), 
then  on  the  addition  of  a  drop  of  water  character- 
istic miscroscopic,  orange  or  brick  red  crystals  of  p- 
ethoxynitrophenylurea  are  obtained.  These  may  be 
recrystallised,  if  necessary,  from  chloroform  in  the 
presence  of  a  trace  of  acetic  acid.  If  dilute  nitric 
acid  is  used  in  the  above  reaction  the  dulcine  does 
not  dissolve,  but  the  crystals  of  the  nitro  compound 
gradually  permeate  the  mass,  which,  under  the 
microscope,  appears  to  be  vigorously  effervescing. 
Dulcine  is  soluble  in  concentrated  sulphuric  or 
glacial  acetic  acid  and  is  deposited  from  such  solu- 
tions as  a  microcrystalline  precipitate  on  the  addi- 
tion of  water  or  alkali. — W.  G. 

Furfural;  Production  of by  the  action  of  super- 
heated water  on  aqueous  com  [maise]  cob  ex- 
tract. F.  B.  LaForge.  J.  Ind.  Eng.  Chem., 
1921,  13,  1024—1025. 

When  corn  (maize)  cobs  are  heated  with  water 
under  pressure  at  180°  C.  for  45  mins.,  the  pressure 
then  released,  and  the  vapours  passed  through  a 
condenser,  a  quantity  of  furfural  amounting  to 
2-8%  of  the  weight  of  the  cobs  is  obtained;  if  the 
liquor  is  separated  from  the  mass,  and  again  heated 
under  pressure,  a  further  yield  of  furfural  is  ob- 
tained, the  total  quantity  amounting  to  7"76%  of 
the  weight  of  the  cobs. — W.  P.  S. 

Formaldehyde;    Detection    of   with    phenols. 

[Detection  of  methyl  alcoholj]  B.  Pfyl,  G.  Reif, 
and  A.  Hanner.  Chem.-Zeit.,  1921,  45,  1220— 
1221.  (6V.  J.,  1921,  793  a.) 
Phenol  reactions  for  formaldehyde  as  previously 
carried  out  are  not  sufficiently  reliable  when  the  test 
is  to  be  adapted  to  the  detection  of  methyl  alcohol 
in  potable  spirits  or  tinctures  after  oxidation  with 
permanganate  and  subsequent  distillation,  as  colour 
reactions  are  often  simultaneously  given  by  traces  of 
other  aldehydes,  higher  alcohols,  etc.,  which  pass 
over  into  the  distillate,  and  no  certain  conclusions 
can  be  drawn  from  the  mixed  colours  produced.  A 
solution  of  guaiacol  or  apomorphine  in  sulphuric 
acid  (0'02  g.  in  10  c.c.)  gives,  however,  a  reagent 
with  which  a  sharp  distinction  can  always  be  ob- 
served if  methyl  alcohol  is  present  in  the  original 
tincture  The  reaction  is  best  carried  out  by  adding 
a  few  drops  of  the  distillate  to  0'5  c.c.  of  the  reagent 
in  a  watch  glass.  With  the  guaiacol  reagent  a  pale 
yellow  colour  is  produced,  which  in  presence  of 
formaldehyde  is  changed  to  a  clear  dark  red  tone, 
whilst  with  apomorphine  a  characteristic  precipi- 
tate is  produced  in  these  circumstances.  With 
numerous  tinctures,  in  which  by  the  usual  methods, 
small  quantities  of  methyl  alcohol  could  not  with 
certainty  be  detected,  as  little  as  0'25%  cannot 
possibly  be  overlooked  by  the  new  method. 

— G.  F.  M. 

Thymol,  menthone,  and  menthol;  Manufacture  of 

from  r  iicul u/it  us  oils.    H.  G.  Smith  and  A.  R. 

Penfold.  J.  Proc.  Roy.  Soc.  N.S.W.,  1920,  54, 
40—47. 
Piperitone,  which  is  present  to  the  extent  of  40°/  — 
50%  in  some  eucalyptus  oils  (e/.  J.,  1921,  560  a), 
when  oxidised  with  ferric  chloride  and  acetic  acid 
gives   a  25%    yield  of  thymol.     When  reduced  by 


hydrogen  in  the  presence  of  nickel  at  175° — 180°  C, 
piperitone  gives  an  almost  quantitative  yield  of 
menthone,  which  may  readily  be  converted  into 
menthol  by  treatment  with  sodium  in  aqueous  ether. 

— W.  G. 

Essential    oils    of    Leptospermum    flavescens    var. 

grandiflorum     and     Leptospermum      odoratum. 

A.  R.  Penfold.     J.  Proc.  Roy.  Soc.  N.S.W.,  1920 

54,  197—207.  (67.  J.,  1921,  870  a.) 
The  chief  constituents  of  the  essential  oil  of  Lepto- 
spermum flavescens  var.  grandiflorum  are  the  two- 
sesquiterpenes,  aromadendrene  and  eudesmene,  and 
a  sesquiterpene  alcohol  not  identified.  The  prin- 
cipal constituents  of  the  essential  oil  of  L.  odoratum 
are  eudesmol,  eudesmene,  aromadendrene,  /3-pinene, 
and  a-pinene,  together  with  small  amounts  of  the 
butyric  and  acetic  acid  esters  of  an  unknown  alcohol, 
an  unidentified  alcohol  with  a  rose-odour,  and  a 
solid  and  a  liquid  phenol.  The  yield  of  oil  was  much 
higher  from  the  leaves  cut  in  August  or  October 
than  from  those  cut  in  May,  and  in  the  latter  case 
the  oil  contained  the  minimum  amount  of  eudesmol. 

— W.  G. 

Patents. 

Butyric  aldehyde  and  butyl  alcohol;  Manufacture  of 

from    crotonic    aldehyde.       N.    Griinstein. 

E.P.  147,118,  7.7.20.  Conv.,  4.1.19. 
Butyric  aldehyde  and  butyl  alcohol  are  obtained  in 
good  yield  by  the  catalytic  hydrogenation  of  cro- 
tonic aldehyde  in  presence  of  20 — 25%  of  water  or 
steam.  The  formation  of  undesirable  by-products 
of  high  boiling  point  is  greatly  minimised  by  using 
a  large  excess  of  hydrogen,  and  the  excess  passing 
from  the  catalyst  can  be  re-circulated  after  suit- 
able cooling  to  condense  the  products  of  the  re- 
action. The  catalyst  is  prepared  by  depositing  in 
the  usual  manner  5 — 15  pts.  of  nickel  on  100  pts.  of 
pumice  or  kieselguhr,  and  the  optimum  temperature 
for  the  hydrogenation  is  100°— 130°  C.  Instead  of 
using  a  mixture  of  pure  crotonic  aldehyde  and 
water,  the  product  of  the  cracking  of  aldole  may  be 
used  with  equal  advantage.  The  reaction  may  be 
carried  out  either  in  a  tube  charged  with  the 
catalyst,  or  with  the  liquid  substances  in  an  auto- 
clave, the  hydrogen  in  the  latter  case  being  pumped 
in  at  10 — 15  atm.  pressure,  and  the  material  being 
energetically  agitated.  In  either  case  provision 
must  be  made  for  the  periodical  discharge  of  gas 
from  the  apparatus  as  the  hydrogen  becomes  con- 
taminated with  propylene  and  carbon  monoxide  pro- 
duced by  the  cracking  of  the  crotonic  aldehyde  par- 
ticularly at  the  higher  temperatures. — G.  F.  M. 

Aldol    from    acetaldehyde ;    Manufacture    of    . 

N.    Griinstein.      E.P.    147,119,    7.7.20.      Conv., 

18.3.19. 
Aldol  condensation  is  effected  by  a  smooth  and 
easily  controlled  reaction  without  the  addition  of 
ice  or  an  organic  solvent,  if  the  acetic  acid  con- 
tained in  the  aldehyde  is  first  neutralised  with  the 
requisite  quantity  of  sodium  hydroxide  solution, 
and  a  catalyst  of  alkaline  reaction  is  then  gradu- 
ally introduced  with  cooling,  the  operation  being 
preferably  conducted  in  an  atmosphere  of  nitrogen 
to  prevent  the  formation  of  further  quantities  of 
acetic  acid.  As  catalyst  aqueous  alkali  hydroxide 
not  exceeding  in  quantity  1  pt.  of  alkali  to  100  pts. 
of  acetaldehyde,  may  be  employed,  or  equally 
favourable  results  are  obtained  with  alkali  or 
alkaline-earth  carbides  and  cyanides,  or  alkaline- 
cm  th  hydroxides.  In  all  cases  the  presence  of  a 
small  quantity  of  water  appears  to  be  essential.  To 
prevent  the  condensation  proceeding  too  far,  with 
formation  of  resins  etc.,  it  is  stopped  before  all  the 
acetaldehyde  has  been  converted  into  aldole  by  add- 
ing sufficient  hydrochloric  or  acetic  acid  to  neu- 
tralise the  alkali,  separating  the  salt,  and  distilling 
the  products  in  vacuo. — G.  F.  M. 


Vol.  XLI ,  No.  2.] 


Cl.  XXI.— photographic  materials  and  processes. 


79a 


Urea;  Protest  for  the  conversion  of  cyanamide  salts 

into    .      Soc.    d'Etudes    Chim.    pour    l'Ind. 

E.P.  151,596,  2.9.20.  Conv.,  26.9.19. 
Finely-powdered  calcium  cyanamide  (15  kg.)  is 
introduced  in  small  portions  into  100  1.  of  water 
containing  13  kg.  of  concentrated  sulphuric  acid, 
a  further  12  kg.  of  acid  being  added  after  the 
addition  of  about  one-half  of  the  calcium  cyan- 
amide. Tho  solution  is  maintained  at  60°— 70°  C, 
and  is  vigorously  agitated  during  the  addition. 
Excess  sulphuric  acid  is  neutralised  by  the  addition 
of  lime,  calcium  sulphate  is  separated  by  nitration, 
and  tho  liquid  is  evaporated,  the  urea  obtained 
being  purified  by  recrystallisation.  Instead  of 
sulphuric  acid,  an  acid,  e.ij.,  phosphoric  acid,  may 
be  employed  which  forms  insoluble  salts  with  the 
metallic  impurities  (iron,  aluminium,  and  man- 
ganese) present  in  commercial  calcium  cyanamide, 
or  the  calcium  cyanamide  may  be  added  to  a 
saturated  solution  of  carbon  dioxide,  in  which  case 
the  second  stage  of  the  reaction,  i.e.,  the  conversion 
of  free  cyanamide,  formed  in  the  first  stage,  into 
urea,  is  preferably  effected  by  subsequent  treatment 
with  sulphuric  acid. — L.  A.  C. 

Alkyl  suljjhuric  acid;  Procss  of  making .    G.  P. 

Adamson,  Assr.  to  General  Chemical  Co.     U.S. P. 
1,399,238,  6.12.21.     Appl.,  29.6.20. 

Alkylsulphuric  acid  is  prepared  by  adding  alter- 
nately alkyl  alcohol  and  sulphuric  anhydride  to 
alkylsulphuric  acid  and  withdrawing  a  portion  of 
the  product. — L.  A.  C. 

Means    for    reducing     blood-pressure ;    Process    of 

making •.     G.  Zuelzer,  Assr.  to  The  Chemical 

Foundation,    Inc.       U.S. P.     1,399,535,     6.12.21. 
Appl.,  15.6.14. 

See  E.P.  14,365  of  1914 ;  J.,  1916;  557.  The  mixture 
of  bacteria  and  amboceptors  is  refrigerated  for 
about  12  hrs.,  separated  from  the  liquid  medium, 
and  washed  before  being  incorporated  with  gelatin. 

Quinine  silver  phosphate  composition  [germicide'] 
and  process  of  making  same.  R.  L.  Crowe. 
U.S. P.  1,399,604,  6.12.21.    Appl.,  24.2.20. 

Silver  phosphate,  precipitated  by  mixing  solutions 
of  a  phosphate  and  a  silver  salt,  is  dissolved  in 
syrupy  phosphoric  acid,  and  the  free  acid  is  subse- 
quently neutralised  bv  the  addition  of  quinine. 

— L.  A.  C. 

Chlorination  apparatus.  J.  W.  Van  Meter.  U.S. P. 
1,400,107,  13.12.21.     Appl.,  23.2.21. 

Liquid  to  be  chlorinated  and  chlorine  gas  under 
pressure  are  introduced  through  separate  inlets  into 
an  inverted  bottle  attached  at  the  lower  end  to  a 
small  bulb  of  transparent  material.  The  bottle  is 
contained  in  a  light-proof  cabinet,  and  the  bulb 
extends  out  of  tho  cabinet. — L.  A.  C. 

Aldehydes;  Method  of  making and  separating 

the  same  from  the  other  products  formed. 
A.  A.  Backhaus  and  F.  B.  Arentz,  Assrs.  to 
U.S.  Industrial  Alcohol  Co.  U.S. P.  1,400,205, 
13.12.21.    Appl.,  15.6.18. 

Aoetaldehyde  is  formed  by  passing  alcohol  vapour 
over  a  catalyst,  hydrogen  is  separated  from  the 
product  by  passage  through  a  scrubbing  tower  con- 
taining acetic  acid,  and  the  acetaldehyde  dissolved 
in  the  acetic  acid  is  subsequently  converted  into 
acetic  acid  by  treating  the  solution  with  heated  air 
under  pressure. — L.  A.  C. 

Ethers    of    p-hydroxyphenylurea ;    Preparation    of 

.     J.  D.  Riedel,  A.-G.    G.P.  339,101,  22.1.20. 

Addn.  to  335,877  (J.,  1921,  637  a). 
The  urea  derivative  of  p-aminophenol  is  converted 
into  hydroxyalkyl  ethers  by  the  usual  method  for 
the  preparation  of  phenyl  ethers.     Hydroxyethyl-p- 


hydroxy  phenyl  urea  and  dihydroxypropyl-p-hydroxy- 
phenylurea  (m.p.  155° — 156°  O.)  are  prepared  by 
tho  action  of  ethylenechlorohydrin  and  glycerol- 
o-monochlorohydrin  respectively  on  p-hydroxy- 
phenylurea and  sodium  methoxide  solution  at  about 
100°  C— L.  A.  C. 

Drug     product     [adrenaline];     Synthetically-com- 
pounded  and  method  of  producing  tin  some. 

W.  N.   Nagai,  Assr.  to  M.  D.  Bunnell.     U.S. P. 
1,399,144,  6.12.21.     Appl.,  1.4.16. 

See  E.P.  118,298  of  1917;  J.,  1920,  43  a. 

Oily  bodies.    E.P.  163,271.    See  III. 

Organic     acids     from     distillery     waste.       U.S. P. 
1,396,006—10  and  1,396,368.    See  XVIII. 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Photographic    emulsions;    Relation    between    sen- 
sitiveness   and    size    of    grain    in    .      S.    E. 

Sheppaxd  and  A.  P.  H.  Trivelli.  Communication 
No.  128  from  Eastman  Kodak  Research  Lab. 
Phot.  J.,  1921,  61,  400—403. 
Photomicrographs  are  given  of  two  emulsions  in 
further  illustration  of  the  fact  that  the  speed  of 
an  emulsion  is  not  conditioned  by  grain  size 
(c/.  J.,  1921,  638  a).  It  is,  however,  suggested  that 
grain  size  may  be  one  factor  in  sensitiveness  on  a 
probability  basis  involving  quantum  considerations. 
A  further  theoretical  discussion  leads  to  the  sugges- 
tion that  tho  catalytic  effect  of  silver  nuclei  depends 
on  orientation  in  relation  to  the  silver  halide  crystal 
lattice,  and  that  this  orientation  may  be  affected  by 
light-exposure. — B.  V.  S. 

[Photographic]    development ;    Restraint    of    

by  borax  and  certain  similar  salts.  E.  R. 
Bullock.  Communication  No.  127  from  Eastman 
Kodak  Research  Lab.  *J.  Franklin  Inst.,  1921, 
192,  811—812. 
The  restraining  effect  of  borax,  sodium  bicarbonate, 
or  ordinary  sodium  phosphate  when  added  to  an 
alkaline  developer  has  been  previously  ascribed  to 
a  tendency  to  produce  insoluble  silver  salts  or  to 
an  action  similar  to  that  of  soluble  bromides.  It 
is  found,  however,  that  such  salts,  being  weakly 
alkaline,  react  with  the  more  stronjily  alkaline  salts 
of  the  developer,  with  the  formation  of  intermediate 
compounds,  the  alkalinity  of  the  developing  solution 
and  consequently  its  activity  being  thus  reduced. 
In  the  absence  of  other  alkalis  such  salts  act  as 
weak  accelerators  by  reason  of  their  alkalinity. 
The  value  of  a  borax  developer  for  the  production 
of  diminished  grain  is  due  to  its  low  alkalinity,  and 
the  same  effect  is  obtained  with  a  sodium  carbonate 
developer  of  the  same  alkalinity. — B.  V.  S. 

Colloid  chemistry  and  photography.  53.  "  Schwel 
lenwert  "  (threshold  value)  and  physical  develop- 
ment. Luppo-Cramer.  Kolloid-Zeits.,  1921,  29, 
314. 
The  longer  exposure  required  for  physical  develop- 
ment as  compared  with  chemical  development  can 
be  considerablv  reduced  if  the  negative  is  first 
treated  with  a'solution  of  1%  potassium  iodide  and 
5%  sodium  sulphite,  the  latter  preventing  the 
destruction  of  the  latent  image  which  otherwise 
occurs.  It  is  preferable  also  to  use  a  developer  with 
as  little  acid  and  as  much  silver  as  possible,  and 
containing  a  protective  colloid;  e.g.,  metol  5  g., 
citric  acid  10  g.,  water  240  c.c,  20%  gum  arahic 
solution  10  c.c,  and  10%  silver  nitrate  10  c.c.  A« 
much  shadow  detail,  but  less  density,  is  obtained 
as  with  an  ordinary  glycin-potash  developer. 

— B.  V.  S. 


80  a 


Cl.  XXII.— EXPLOSIVES  ;  MATCHES. 


[Jan.  31,  1922. 


Colloid  silver  toning  with  tin  salts.  F.  Form- 
stecher.  Phot.  Rund.,  1921,  277—282.  Brit.  J. 
Phot.,  1921,  68,  759—761. 

In  the  tin  toning  process  first  described  by  Neug- 
schwender  and  since  modified  by  Namias,  Desalrne, 
.and  others  (see  also  Woolley  and  Gamble,  Brit.  J. 
Phot.,  1913,  978—991)  a  silver  print  is  bleached, 
preferably  to  ferrocyanide  or  chloride,  and  then 
treated  with  an  alkaline  stannite  solution  or  with 
stannous  chloride  and  alkali  solutions  separately. 
The  resulting  image  consists  of  an  adsorption  com- 
plex of  colloidal  silver  and  metastannic  acid ;  the 
latter  protects  the  silver  from  agglomeration  and 
the  tones,  red  to  brown,  thus  obtained  are  perma- 
nent. The  method  recommended  for  development 
papers  is  to  bleach  the  fixed  and  washed  print  in 
slightly  acidified  3%  copper  chloride  solution  and 
tone  in  a  solution  of  stannous  chloride,  10  g., 
treated  with  sodium  hydroxide  till  the  precipitate 
formed  re-dissolves  and  diluted  to  250  c.c.  The 
method  requires  modification  for  print-out  papers. 
The  fixed  and  washed  print  is  only  partially 
bleached,  and  is  tlien  washed  and  treated  for  a  short 
time  in  a  1%  stannous  chloride  solution  and  dried 
in  the  light;  the  formation  of  metastannic  acid 
occurs  during  the  drying  process,  and  the  tone 
darkens  considerably.  Stannic  chloride  solution 
also  has  a  toning  effect,  particularly  if  only  slightly 
acid  and  with  matt-albumin  papers.  In  the  case  of 
self-toning  papers,  particularly  collodion  papers 
with  a  high  gold-content,  strong  prints  are  first 
treated  with  1  %  potassium  iodide  solution  and  then 
with  a  1%  solution  of  sodio-stannic  chloride  brought 
almost  to  neutrality  with  ammonia  and  containing 
also  1T%  of  potassium  iodide,  and  are  then  washed, 
fixed,  and  washed  a6  usual. — B.  V.  S. 

[Photographic]  sepia  toning  xoith  colloidal  sulphur. 
S.  O.  Rawling.    Phot.  J.,  1922,  62,  3—5. 

To  test  more  thoroughly  the  question  as  to  whether 
colloidal  sulphur  will  react  with  the  silver  of  a 
bromide  print  (cf.  Freundlich  and  Nathansohn, 
Kolloid-Zeits.,  1921,  29,  16),  prints  were  immersed 
in  solutions  of  colloidal  sulphur  prepared  by  the 
method  of  Von  Weimarn  and  Malyshew  (Kolloid- 
Zeits.,  1911,  8,  216)  and  containing  no  hydrogen  sul- 
phite. Some  toning  occurred  with  an  over-exposed, 
under-developed  print  in  6  hrs.  at  normal  tempera- 
ture and  normal  toning  in  3  hrs.  at  45°  C.  if  the 
print  had  been  first  hardened  in  alum  solution ; 
hardening  with  formaldehyde  interfered  with  the 
toning  action.  Toning  action  was  also  obtained 
with  solutions  of  hydrogen  sulphide  when  every  pie- 
caution  was  taken  to  avoid  the  formation  of  colloidal 
sulphur  by  oxidation.  It  is  suggested  that  in 
ordinary  toning  processes,  such  as  the  hypo-alum 
method,  toning  is  chiefly  due  to  colloidal  sulphur 
formed  in  the  film  contiguous  to  the  silver  grains, 
but  that  a  certain  amount  of  toning  may  also  be 
due  to  hydrogen  sulphide. — B.  V.  S. 


Patents. 


A.  G. 
E.P. 


Photographic  reliefs;  Manufacture  of . 

Bloxam.      From  Akt.-Ges.   f.   Anilinfabr. 
172,342,  4.6.20. 

In  the  production  of  reliefs  by  the  use  of  a  poly- 
hydroxybenzene  developer,  which  hardens  the 
gelatin  in  the  neighbourhood  of  the  image,  and  then 
washing  away  the  unhardened  portions,  the  spread- 
ing of  the  tanning  effect  beyond  the  limits  of  the 
image  is  prevented  by  omitting  the  sulphite  from 
the  developing  solution  or  reducing  it  to  not  more 
than  half  the  quantity  of  the  developing  agent  and 
at  the  same  time,  if  an  alkali  carbonate  is  used  in 
the  developer,  reducing  its  proportion  to  about  10 
times  the  weight  of  the  developing  agent,  so  as  not 
to  prevent  swelling  of  the  gelatin  film ;  ammonia 
should  not  be  used  as  the  alkali  of  the  developer. 

— B.  V.  S. 


"  Blue-print  "  paper;  Preparation  of .   Durener 

Fabr.     phot.     Papiere    Renker    und    Co.      G.P. 
341,735,  15.2.21. 

A  red  or  orange  dyestuff,  such  as  Azo  Yellow  or 
Benzo  Fast  Red,  is  either  added  to  the  sensitising 
solution  of  ferric  ammonium  citrate  and  potassium 
lerricyanide  or  is  applied  to  the  paper  before  sensi- 
tising. The  resulting  prints  have  coloured  lines  on 
a  blue  ground.  The  green  tone  which  an  ordinary 
blue-print  assumes  on  long  keeping  is  changed  by 
the  complementary  action  of  the  dye  to  white.  By 
selection  of  the  dyestuff  so  as  to  obtain  the  same 
transparency  to  actinic  rays  for  the  lines  and  the 
background  fraudulent  copying  of  such  prints  is 
prevented. — B.  V.  S. 


XXII.-EXPLOSIVES;  MATCHES. 

Propellants ;  Drying  of  in  tunnel  dryers.     G. 

"Weissenberger.  Z.  ges.  Schiess-  u.  Sprengstoffw., 
1921,  16,  169—172,  179—181.  (Cf.  J.,  1920,  314  a.) 
The  powder  is  subjected  to  the  highest  temperature 
only  for  a  few  minutes  at  the  end  of  the  process,  so 
that  the  drying  air  can  be  at  a  higher  temperature 
than  in  the  case  of  drying  ovens,  and  the  process 
thereby  shortened.  Slight  variations  in  the  tem- 
perature of  the  drying  air  enable  the  content  of 
residual  solvent  in  the  final  product  to  be  controlled 
between  wide  limits,  whilst  a  more  delicate  means 
of  control  is  afforded  by  varying  the  time  taken  by 
the  powder  to  pass  through  the  dryer.  In  experi- 
ments described  the  velocity  of  the  air  current  and 
the  temperature  of  the  powder  in  the  drying  tunnel 
were  kept  constant.  Three  different  powders  were 
used  containing  between  18%  and  30%  of  total 
volatile  solvents  (acetone,  alcohol,  and  ether)  on 
entering  the  dryer.  The  loss  of  solvent  plotted 
against  time  shows  a  slow  evaporation  to  start  with, 
followed  by  more  rapid  evaporation  and  then  a 
marked  slowing  up  as  the  content  of  solvent  becomes 
small  (after  about  4  hrs.).  The  shape  and  dimen- 
sions of  the  powder  have  a  marked  influence  on  the 
rate  of  drying.  If  the  powder  is  subjected  to  air  at 
increasing  temperatures,  and  in  each  case  for  a 
constant  time  of  passage  through  the  dryer,  curves 
constructed  by  plotting  the  loss  of  solvent  against 
the  temperature  show  that  drying  begins  at  about 
20°  C.  and  increases  rapidly  with  the  temperature 
up  to  about  70°  C.  and  then  more  6lowly.  The 
average  composition  of  the  solvents  recovered  over 
one  year  was  acetone  28%,  alcohol  57%,  water  15%, 
and  the  average  output  of  the  machine  200  kg.  of 
dry  powder  per  hr.  The  total  power  consumed  was 
38  h.p.,  of  which  10'5  h.p.  was  used  for  drying  and 
27'5  h.p.  for  the  cooling  plant.  Precautions  must 
be  taken  to  prevent  the  air  becoming  saturated  with 
solvent  vapours  before  it  is  cooled,  or  nitroglycerin 
may  be  deposited.  Saturation  curves  are  given  for 
water,  acetone,  and  alcohol  between  +40°  C.  and 
-40°  C.  In  practice  conditions  are  safe  if  the 
total  volatile  solvent  to  be  removed  is  insufficient  to 
saturate  the  total  air  passing  through  the  dryer  at 
0°  C.  The  best  conditions  for  using  tunnel  dryers 
on  one  sort  of  powder  are  not  usually  the  best  for 
another  sort.  Their  use  is  therefore  most  advan- 
tageous where  the  output  is  such  that  one  machine 
can  be  utilised  for  each  sort  of  powder. — H.  C.  R. 

Patents. 

Fiises  or  ignitors  for  blasting  with  liquid  air  or 
oxygen.  S.  Sokal.  From  Sprengluft  Ges.  E.P. 
152,335,  10.7.20. 

The  igniting  mixture  contains  lead  azide  or  other 
suitable  priming  substance  and  is  enclosed  in  a 
metallic  case  provided  with  inlets  for  the  admission 
of  the  liquefied  gas. — H.  C.  R. 


VoL  XIX,  No.  2J 


Cl.  xxiii.— analysis. 


81; 


E rplusive.  G.  Weber,  Assr.  to  Soc.  les  Petits  Fils 
de  F.  de  Wendel  et  Cie.  U.S.P.  1,397,826, 
22.11.21.     Appl.,  27.9.19. 

The  explosive  consists  of  a  mixture  of  a  combustible 
organic  substance  capable  of  absorbing  liquid  air 
with  a  combustible  metallic  powder.  Less  than 
150  g.  of  metallic  powder  is  used  per  litre  of  the 
mixture.  The  mixture  is  impregnated  with  liquid 
air.— H.  C.  R. 

Explosives;  Process  for  the  manufacture  of  . 

T.   Hawkins,   Assr.   to  C.   R.    H.   Rex.       U.S.P. 
1,398,098,  22.11.21.     Appl.,  28. 6. 21. 

A  detonating  compound  is  obtained  by  the  inter- 
action of  picric  acid,  a  lead  oxide,  and  a  soluble 
nitrate.— H.  C.  R. 

Nitro starch  explosives:  Manufacture  of .    J.  B. 

Bronstein,  Assr.  to  Trojan  Powder  Co.      U.S.P. 
1,398,931,  29.11.21.     Appl.,  24.9.19. 

The  explosive  comprises  nitrostarch,  an  inorganic 
nitrate,  and  5 — 12%  of  a  viscous  fluid  free  from 
colloiding  action  upon  nitrostarch. — H.  C.  R. 

Explosive.  P.  J.  Gaffy.  U.S.P.  1,399,472,  6.12.21. 
Appl.,  23.4.20. 

Cat-tail  fibre  is  boiled  in  a  solution  of  J  lb.  of  6alt 
in  one  quart  of  water,  dried,  and  mixed  with  one 
tablespoonful  of  nitroglycerin  for  every  pound  of 
fibre.— H.  C.  R. 


Pyrotechnic  composition.  R.  R.  Fulton.  U.S.P. 
(a)  1,399,953  and  (b)  1,399,954,  13.12.21.  Appl., 
16.4.21. 

Mixtures  of  (a)  iron  oxide,  cupric  oxide,  aluminium 
metal,  magnesium  metal,  and  phosphorus  and  (b) 
iron  powder,  cupric  oxide,   and  magnesium  metal. 

— H.  C.  R. 


Mixed  acids;  Process  for  recovering  the in  the 

manufacture  of  nitric  esters  or  nitro-compounds. 
S.  Hamburger.  G.P.  (a)  341,886,  21.6.18  (Addn. 
to  299,680;  J.,  1921,  29  a)  and  (b)  341,887,  23.7.18 
(Addn.  to  300,758;  J.,  1921,  101  a). 

(a)  The  original  patent  is  extended  to  cover  the 
recovery  of  mixed  acids  in  the  manufacture  of  solid 
nitric  esters  of  the  sugars,  and  of  all  solid  nitro- 
compounds of  benzene,  toluene,  xylene,  naphtha- 
lene,   anthracene,    phenols    and    their    derivatives. 

(b)  The  original  patent  is  extended  to  cover  the  re- 
covery of  mixed  acids  in  the  manufacture  of  all  solid 
nitric  esters  of  cellulose  (except  guncotton)  and  of 
the  sugars  and  all  solid  nitro-compounds  of  benzene, 
toluene,  xylene,  naphthalene,  anthracene,  phenols 
and  their  derivatives. — H.  C.  R. 


Nitric  esters  of  ethyleneglycol  and  its  homologues ; 

Manufacture  of  .      Chem.   Fabr.   Kalk,   and 

H.    Oehme.      G.P.    341,720,    16.7.18.      Addn.    to 
338,056  (J.,  1921,  640  a). 

Instead  of  using  aqueous  solutions  or  suspensions 
of  alkaline  hydroxides  or  alkali  or  alkaline-earth 
carbonates  or  bicarbonates,  the  products  of  the 
nitration  of  gaseous  olefines  are  brought  into  inti- 
mate contact  with  the  solid  alkaline  substances  in 
absence  of  water  or  in  presence  of  very  small  quanti- 
ties of  water. 

Nitrocellulose.     U.S.P.  1,397,915.     See  V. 

Dehydrating      nitrocellulose.       U.S.P.      1,398,911. 
See  V. 


XXIII.— ANALYSIS. 

Extraction;  Simple  apparatus  for by  means  of 

solvent    vapours.      AY.    Hartmann.      Z.    Unters. 
Nahr.  Genussm.,  1921,  42,  183—184. 

To  extract  small  quantities  of  substance  a  cylin- 
drical packet  of  filter  paper,  containing  the  sub- 
stance to  be  extracted,  can  be  supported  by  means 
of  a  thin  metal  wire  bent  U-shape  in  the  mouth  of 
the  flask.  A  thin  glass  tube  can  be  slipped  over 
one  leg  of  the  bent  wire  to  keep  a  free  passage  for 
vapour  from  the  flask  to  the  condenser.  For  larger 
quantities  a  cylindrical  adapter  can  be  used,  having 
a  thin  glass  tube  passing  through  its  narrow  end 
and  bent  so  as  to  lie  along  its  inner  surface.  The 
charge  is  supported  on  a  plug  of  cotton  wool  free 
from  fat  at  the  narrow  end  of  the  adapter,  which 
passes  through  a  cork  in  the  moutli  or  the  flask. 
This  arrangement  has  been  successfully  used  for 
ether  extraction,  for  alcohol  extraction  in  the 
estimation  of  lecithin-phosphoric  acid,  and  in  deter- 
mining unsaponifiable  matter  by  the  extraction  of 
the  dry.  powdered  potassium  soap.  Results  obtained 
agree  well  with  those  obtained  with  a  Soxhlet 
apparatus. — H.  C.  R. 

Ferric  oxide;  Carrying   down  of  calcium  oxide   by 

precipitates    of    .      A.    Charriou.      Comptes 

rend.,  1921,  173,  1360—1362.     (C/.  Toporescu,  J., 

1920,  503  a.) 

In  order  to  get  the  minimum  co-precipitation  of 
calcium  hydroxide  with  ferric  hydroxide,  the  con- 
centration of  the  calcium  salt  should  be  very  small 
and  only  the  minimum  amount  of  ammonia  re- 
quisite for  the  precipitation  of  the  ferric  hydroxide 
should  bo  used. — W.  G. 

Buffer  solution  for  colorimetric  comparison.     T.  C. 
Mcllvaine.     J.  Biol.  Chem.,  1921,  49,  183—186. 

The  whole  range  from  pn  2'2  to  pB  8"0  can  be  covered 
by  mixing  0'2  M  disodium  phosphate  with  01  M 
citric  acid  in  suitable  proportions.  A  table  and  a 
graph  are  given,  by  means  of  which  a  solution  of 
any  desired  pn  within  the  above  limits  can  be 
obtained. — G.  B. 

Analysis ;  Micro-elementary by  Pregl's  method. 

A  micro-Kipp  apparatus  etc.     A.  Schoeller.     Z. 
angew.  Chem.,  1921,  34,  581—583,  586,  587. 

The  author  reviews  Pregl's  method  and  describes 
the  apparatus  and  manipulation.  A  small  Kipp 
apparatus  for  the  preparation  of  carbon  dioxide  free 
from  air  for  use  in  the  determination  of  nitrogen 
by  the  micro-method  consists  of  two  cylindrical 
bulbs,  one  above  the  other,  the  upper  one  containing 
fused  sodium-potassium  carbonate  and  being  pro- 
vided with  a  tap  and  delivery  tube,  whilst  a  side 
tube  on  the  lower  bulb  communicates  with  an  upper 
acid  reservoir ;  the  whole  apparatus  is  blown  in  one 
piece.  Convenient  means  (brass  rods  fitting  into  a 
boss)  are  described  for  attaching  the  micro-burner 
drying  chamber,  etc.,  to  the  stand. — W.  P.  S. 

Caesium  chloride;  Use  of  in  microchemistry. 

E.  H.  Ducloux.     Anal.  Asoc.  Quim.  Argentina, 

1921,  9,  215—227. 

Cesium  chloride  forms  with  different  metals  double 
chlorides,  the  crystalline  characters  of  which  may  be 
j  used  for  the  purpose  of  identification.  A  descrip- 
tion of  such  double  chlorides,  with  photomicro- 
graphs, is  given.     (Cf.  J.C.S.,  ii.,  77.)— G.  W.  R. 

Aluminium;    Volumetric    determination    of    . 

E.  J.  Kraus.    Chem.-Zeit.,  1921,  45,  1173. 

The  aluminium  in  the  form  of  sulphate,  in  neutral 

or  faintly  acid  solution,  free  from  other  interfering 

i    elements,  is  titrated  with  standard  disodium  hydro- 

i    gen  phosphate  solution,  a  few  drops  of  silver  nitrate 


82  a 


Cl.  XXIII.— ANALYSIS. 


(Jan.  31,  1922. 


solution  being  used  as  an  indicator,  as  yellow  silver 
phosphate  only  commences  to  form  after  the  comple- 
tion of  the  reaction 

Al2(S01)3  +  2Na2HP01  =  2AlP04+2Na2SO,+H2SO,. 
The  titration  is  preferably  carried  out  in  boiling 
solution,  as  the  silver  phosphate  is  more  pro- 
nouncedly yellow  in  colour  and  therefore  more  easily 
noticeable  in  presence  of  the  white  aluminium  phos- 
phate, under  these  conditions.  In  presence  of 
other  metals,  such  as  iron  etc.,  the  aluminium 
should  be  separated  (by  boiling  with  sodium 
hydroxide  and  filtering  for  example)  and  finally 
precipitated  as  hydroxide  with  ammonia.  The  pre- 
cipitate is  washed  and  dissolved  in  dilute  sulphuric 
acid  to  form  a  solution  suitable  for  titration.  This 
method  of  determining  aluminium  is  particularly 
suitable  also  in  cases  where  only  small  quantities  of 
the  metal  are  present. — G.  F.  M. 

Iron   and    manganese;    Improved   method   for    the 

separation    of    •.     M.     Carus.     Chem.-Zeit., 

1921,  45,  1194. 

In  the  method  for  the  separation  of  manganese  from 
the  metals  of  the  iron  group  by  precipitating  the 
latter  as  basic  acetates,  the  contamination  of  the 
precipitate  with  manganese  is  not  due  to  the  co- 
precipitation  of  basic  acetate,  but  to  the  formation 
of  insoluble  oxidation  products  owing  to  the  action 
of  dissolved  oxygen.  A  perfectly  clean  separation 
of  manganese  in  one  operation,  even  when  a  great 
excess  of  this  metal  is  present,  is  accordingly 
obtained  by  precipitating  with  sodium  acetate  in 
presence  of  a  few  c.c.  of  3  hydrogen  peroxide  solu- 
tion, under  which  circumstances  no  higher  oxides  of 
manganese  can  be  formed.  /The  precipitate  of  basic 
acetates  is  washed  with  dilute  acetic  acid  con- 
taining a  small  quantity  of  sodium  acetate  and 
hydrogen  peroxide,  and  finally  with  hot  water,  and 
is  then  completely  free  from  manganese. — G.  F.  M. 

Arsenic;  Estimation  of  minute  traces  of  in 

silicate  rocks.     0.  Hackl.     Chem.-Zeit.,  1921,  45, 
1169. 

TEN'g.  of  the  finely  powdered  sample  is  heated  at 
250°  C.  in  a  tube  through  which  is  passed  a  current 
of  dry  carbon  dioxide  saturated  with  bromine 
vapour.  The  exit  end  of  the  tube  is  connected  with 
a  receiver  containing  dilute  nitric  acid  in  which  the 
arsenic  bromide  is  absorbed.  The  contents  of  the 
receiver  are  then  evaporated  with  the  addition  of 
sulphuric  acid  and  the  arsenic  is  determined  by  the 
Gutzeit  method.— W.  P.  S. 

Nitrogen;  Use  of  perchloric  acid  as  an  aid  to  diges- 
tion  in    the    Kjeldahl    method    for    determining 

.     B.  Mears  and  It.  E.  Hussev.     J.  Ind.  Eng. 

Chem.,  1921,  13,  1054—1056. 

In  the  determination  of  nitrogen  in  such  substances 
as  proteins,  dried  blood,  feeding  cakes,  etc.,  by  the 
Kjeldahl  method,  the  time  required  for  the  diges- 
tion with  sulphuric  acid  is  reduced  to  about 
20  mins.  when  perchloric  acid  is  added  to  the  mix- 
ture; for  each  1  g.  of  sample,  25  c.c.  of  sulphuric 
acid,  1  g.  of  copper  sulphate,  and  2  c.c.  of  60%  per- 
chloric acid  should  be  used.  Sufficient  perchloric 
acid  must  be  used  to  decompose  the  organic  sub- 
stance and  yield  a  clear  solution  in  not  less  than 
3  mins.  or  more  than  7  mins.,  but  an  excess  of  the 
acid  causes  a  considerable  loss  of  nitrogen. 

— W.  P.  S. 

Amyl  alcohol;   Recovery   of  from   laboratory 

residues.  F.  Bengen.  Z.  Unters.  Nahr.  Genussm., 
1921,  42,  184—185,  254—255. 

Amyl  alcohol  may  be  recovered  from  the  residues 
from  Gerber  fat  estimations  by  diluting  each 
litre  with  300  c.c.  of  water  and  steam  distilling. 
Almost  all  the  amyl  alcohol  comes  over  with  the 
first  50  c.c.  The  distillate  is  saturated  with  com- 
mon   salt    made   just    alkaline   to    phenolphthalein 


with  sodium  hydroxide  to  remove  volatile  fatty 
acids,  and  the  amyl  alcohol  separated,  filtered 
through  a  dry  filter,  and  dehydrated  over  sodium 
chloride  or  sulphate.  It  is  then  fractionally  dis- 
tilled, and  the  part  coming  over  between  128°  C. 
and  132°  C.  (sp.  gr.  08144)  collected  and  used  again 
for  fat  determinations.  Almost  the  whole  can  be 
thus  recovered.  The  residues  from  Halphen's  test 
are  steam  distilled  500  c.c.  at  a  time.  The  distil- 
late is  vigorously  shaken  so  that  the  carbon 
bisulphide  and  amyl  alcohol  mix,  as  this  mixture 
takes  up  much  less  water  than  the  pure  amyl 
alcohol.  The  mixture  is  separated,  filtered  direct 
into  a  distillation  flask,  and  distilled  at  a 
rate  of  one  drop  every  two  seconds.  Carbon 
bisulphide  and  water  come  over  up  to  about  70°  C. 
The  fraction  coming  over  between  128°  and  132°  C. 
is  fit  for  use  in  Gerber  fat  determinations. — H.  C.  It. 

Neutral   solution  of  ammonium   citrate;   Composi- 
tion and  preparation  of  .     C.  S.  Robinson. 

J.  Assoc.  Off.  Agric.  Chem,  1921,  5,  93—97. 

It  is  recommended  that  a  neutral  solution  of  ammo- 
nium citrate  be  considered  as  one  in  which  the  ratio 
of  ammonia  to  anhydrous  citric  acid  is  1  :  3'794, 
and  which  shall  contain  45'33  g.  of  ammonia  and 
172'00  g.  of  anhydrous  citric  acid  per  litre  at  20°  C. 
The  requisite  amount  of  citric  acid  is  dissolved  in 
700  c.c.  of  water,  nearly  neutralised  with  ammonia 
solution,  cooled,  and  made  up  to  a  convenient 
volume,  keeping  the  sp.  gr.  above  1"09.  5  c.c.  is 
diluted  to  20  c.c  with  water  and  titrated  with  stan- 
dard ammonia  in  the  presence  of  phenol  red  until 
the  colour  approximates  to  that  produced  by  the 
same  amount  of  indicator  added  to  an  equal  volume 
of  neutral  standard  phosphate  solution  (50  c.c.  of 
M/5  dihydrogen  potassium  phosphate  +  29'63  c.c. 
of  il//5  sodium  hydroxide  in  200  c.c).  The  calcu- 
lated amount  of  ammonia  is  then  added  to  the  stock 
solution  which  is  diluted  to  the  necessary  volume. 
The  solution  should  have  sp.  gr.  T09,  and  the  com- 
position should  be  checked  bv  the  method  of  Patten 
and  Marti  (J.,  1913,  801).— A.  G.  P. 

Phosphoric  acid;    Modified  method  for  the  deter- 
mination of .    A.  W.  Clark  and  R.  F.  Keeler. 

J.  Assoc.  Off.  Agric.  Chem.,  1921,  5,  103—105. 

Two  grms.  of  the  sample  is  dissolved  in  a  mixture 
of  30  c.c.  of  concentrated  nitric  acid  and  10  c.c.  of 
hydrochloric  acid,  cooled,  diluted  to  200  c.c.  and 
filtered  through  a  dry  filter.  A  portion  equivalent 
to  0'25  g.  is  neutralised  with  ammonia  and  acidified 
with  nitric  acid,  50  c.c.  of  20%  ammonium  nitrate 
solution  added  and  the  necessary  amount  of  am- 
monium molybdate  solution.  After  allowing  to 
stand  overnight,  without  previous  heating,  and 
filtering  through  a  Gooch  crucible,  the  precipitate 
is  washed  8  times  with  2%  nitric  acid  and  twice 
with  cold  water  and  dried  for  2  hrs.  at  120°  C. 
The  conversion  factor  of  the  ammonium  phospho- 
molybdate  to  phosphoric  acid  is  0'03723. — A.  G.  P. 

Sulphurous     acid;     Determination     of    .       V. 

Coppetti.  Ann.  Chim.  Analyt.,  1921,  3,  327—330. 
The  gravimetric  method  of  Haas  for  the  determina- 
tion of  sulphurous  acid,  consisting  in  expelling  the 
sulphur  dioxide  from  the  substance  or  liquid  under 
examination  by  distillation  in  an  atmosphere  of 
carbon  dioxide,  absorbing  the  gas  in  a  solution  of 
iodine,  and  weighing  the  resulting  sulphuric  acid 
as  barium  sulphate,  gives  accurate  results  volu- 
lnetrically  if  the  absorption  is  conducted  in  a  special 
apparatus  to  prevent  loss  of  iodine  by  volatilisa- 
tion in  the  current  of  carbon  dioxide.  The  appara- 
tus consists  essentially  of  a  300  c.c.  flask  containing 
the  iodine  solution  and  fitted  with  a  delivery  tube 
from  the  distillation  flask.  Surmounting  the  flask 
is  a  spherical  absorber  containing  N[  10  thiosul- 
phate  solution  through  which  the  iodine  vapours 
and   carbon   dioxide  leaving   the   flask   must   pass. 


Vol.  XIX,  No.  2] 


PATENT    LIST. 


83  a 


When  the  distillation  is  complete  the  thiosulphate 
solution  containing  all  the  volatilised  iodine  is 
allowed  to  run  back  into  the  Hask,  and  the  excess 
of  iodine  in  the  latter  is  titrated  back  with  standard 
thiosulphate  solution. — G.  F.  M. 

Nitrogen;  Accuracy  of  Dumas'  rmthod  for  the  esti- 
mation of in  substances  rich  in  nitrogen.    E. 

Mohr.    Ber.,  1921,  54,  275S— 2767. 

The  usual  procedure  of  estimating  the  volume 
accurately  to  within  005  or  01  ex.,  and  the  pres- 
sure and  temperature  in  whole  millimetres  of  mer- 
cury and  degrees  Centigrade  is  sufficient  for  sub- 
stances containing  up  to  20 — 25%  of  nitrogen,  but 
involves  considerable  error  when  more  than  this 
amount  is  present.  The  errors  due  to  inaccurate 
reading  of  pressure  and  temperature  cannot  be 
minimised  by  increasing  the  weight  of  substance 
taken.  On  the  other  hand,  the  errors  due  to  volume 
of  gas  and  weight  of  substance  become  considerable 
when  a  small  quantity  of  substance  is  taken  and  can 
be  diminished  by  increasing  the  amount.  The  prac- 
tice of  using  small  weights  of  material  when  dealing 
with  substances  rich  in  nitrogen  by  Dumas'  method 
is  to  be  deprecated ;  Pregl's  method  should  be  used 
in  preference.  The  error  involved  in  the  measure- 
ment of  pressure  does  not  depend  to  an  appreciable 
extent  on  whether  the  gas  is  moist  or  dry  (over  50% 
potassium  hydroxide  solution),  but  the  error  in- 
volved in  measurement  of  temperature  is  lower  in 
the  latter  case.  In  spite  of  this  fact,  the  measure- 
ment is  generally  made  in  preference  over  water  by 
reason  of  the  customary  large  diameter  of  the 
Schiff's  nitrometer  and  the  formation  of  foam  over 
the  potassium  hydroxide  solution.  A  simple  and 
accurate  method  of  facilitating  calculation  is  as 
follows :  the  temperature  is  first  brought  to  whole 
degrees  by  addition  or  subtraction  of  x°  in  the  direc- 
tion of  smallest  change  and  the  pressure  is  then 
changed  by  3x  mm.  in  the  same  sense  as  the  altera- 
tion of  temperature. — H.  W. 

See  also  pages  (a)  45,  Volatile  matter  in  coal 
(Delmarcel  and  Mertens).  49,  Phenanthrene  (Wil- 
liams). 55,  Polythionaies  (Riesenfeld  and  Feld). 
56,  Boric  acid  (Rosenheim  and  Leyser).  60,  Steel 
analysis  (Kelley  and  Evers) ;  Chromium  in  ferro- 
chromiiun  (Kelley  and  Wiley);  Zinc  dust  (Beyne). 
61,  Mercury  in  ores  (Heinzehnann).  65,  Arachidic 
acid  (Pritzker  and  Jungkunz) ;  Vegetable  oils  in 
animal  fats  (Muttelet).  68,  Tannin  content  of 
solutions  (Thompson  and  others);  Sulphuric  acid 
in  leather  (Van  der  Hoeven) ;  Nitrogen  in  leather 
(Parker  and  Terrell);  Artificial  leather  (Froboese). 
70,  Sucrose  (Hinton).  71,  Sugar  (Hanak) ;  Starch 
syrup  (Behre  and  others).  72,  Hydrogen-ion  con- 
centration of  beer  etc  (Windisch  and  others).  73, 
Methyl  alcohol  in  spirits  (Pfyl  and  others) ;  Flour 
and  bread  (Vogt).  74,  Added  sugar  and  fat  in  con- 
fectionery (Baumann  and  Kuhlmann) ;  Added  water 
in  mince  and  sausage-meat  (Grossfeld) ;  Fat-soluble 
vitamins  (Zilva  and  Miura) ;  Vitamin  content  of 
rice  (Fleming).  75,  Amino-acids  in  feeding  stuffs 
(Hamilton  and  others) ;  Amino-acids  (Buston  and 
Schryver).  76,  Arsenic  and  copper  (Kolthoff  and 
Cremer).  77,  Indian  opium  (Rakshit) ;  Phenacetin 
and  acetanilide  (Ekkert).  78,  Dulcine  (Deniges  and 
Tourrou) ;  Formaldehyde  (Pfyl  and  others). 

Patents. 

Carbon  monoxide;  Apparatus  for  the  detection  and 

estimation  of .     L.  A.  Levy  and  H.  R.  Davis. 

E.P.  171,739,  20.7.20. 

A  gaseous  mixture  containing  carbon  monoxide  is 
passed  through  a  chamber  containing  a  drying 
agent,  such  as  calcium  chloride,  and  an  oxidicsii;e; 
agent,  e.g.,  a  catalytic  mixture  of  oxides  such  as  is 
employed  in  respirators,  or  a  non-catalytic  agent 
consisting  of  pumice  granules  coated  with  iodine 
pentoxide   and   fuming   sulphuric    acid.     The   heat 


evolved  by  the  oxidation  of  the  carbon  monoxide 
operates  a  thermometric  device  provided  with  a 
scale  graduated  to  indicate  directly  the  percentage 
of  carbon  monoxide  present  in  the  gaseous  mixture. 
The  zero  of  the  scale  is  adjustable  to  allow  for  varia- 
tions of  atmospheric  temperature.  If  desired,  the 
chamber  may  also  contain  a  substance  such  as  highly 
activated  charcoal  lor  the  removal  of  unsaturated 
hydrocarbons  from  the  gaseous  mixture. — J.  S.  G.  T. 

Viscosity  of  highly  viscous  materials  [molten  glass, 
pitch,   tar,   etc.];  Metlwds  of  and  apparatus  for 

determining    the    .      R.    L.     Frink.     E.P. 

171,774,  20.8.20. 

The  viscosity  is  determined  by  the  measurement  of 
the  speed  of  rotation  of  a  member  in  contact  with 
the  material  under  examination  and  subjected  to  a 
constant  torque.  Alternatively,  the  torque  neces- 
sary to  maintain  the  member  rotating  at  a  definite 
constant  speed,  or  the  angular  displacement  of  the 
member  when  subjected  to  the  torque  produced  by 
the  rotation  of  the  vessel  containing  the  viscous 
material  at  a  substantially  constant  speed,  may  be 
measured.— J.  S.  G.  T. 


Patent  List. 

_  The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given;  they  are  on  sale 
at  Is.  each  at  the  Patent  Office  Sale  Branch.  Quality 
Court,  Chancery  Lane,  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Arbuckle.  Apparatus  for  separating  liquid  and 
solid  components  of  mixtures.    657.     Jan.  9. 

Buckley  and  Harvey.  Heated  rotary  drying- 
machines.     154.     Jan    3. 

Uoppens.  Conical  mills.  757.  Jan.  10.  (Holland, 
25.1.21.) 

Coppens.  Disintegrators.  758.  Jan.  10 
(Holland,  25.1.21.) 

Eldred.  Effecting  flotation  of  particles  of  solid 
matter.    383.    Jan.  5. 

Fothergill.  Apparatus  for  removing  gases  from 
liquids.     1034.     Jan.  12. 

Frankenberger.  Dry-grinding  cylinders.  301. 
Jan.  4. 

Hadlington.     Continuous  kilns.     551.     Jan.  7. 

McMutt.    Refrigeration.    445.    Jan.  6. 

Marks  (Linde  Air  Products  Co.).  Separation  of 
gaseous  mixtures.    688.    Jan.  9. 

Moorshead.     Furnaces.    969.     Jan.  12. 

Morgan,  and  Thermal  Industrial  and  Chemical 
Research  Co.  Heat  treatment  of  substances  by 
molten  metal.     265.     Jan.  4. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Separa- 
tion of  materials.     27.     Jan.  3. 

Thorneycroft.  Apparatus  for  extracting  juice 
from  vegetable  substances.     176.     Jan.  3. 

Wildridge  and  Sinclair.  Artificial-ice  making 
914.     Jan.  11.     (Australia,  10.5.21.) 

Complete  Specifications  Accepted. 

19,256  (1920).  Mazza,  Means  for  separating  the 
constituent  elements  of  gaseous  mixtures.  (147,189  ) 
Jan.  18. 

26,994  (1920).     Hoist  and  others.    See.  II. 

27,148  and  28,590  (1920)  and  17,149  (1921). 
Monson.  Deaerating  and  deoxidising  boiler  feed 
and  other  water.     (173,301.)    Jan.  11. 


84  a 


PATENT    LIST. 


[Jan.  31,  1922. 


34,827  (1920).  Renger  and  Fuhrmann.  Prevent- 
ing corrosion  and  formation  of  fur  in  boilers,  con- 
densers, etc.     (173,418.)    Jan.  11. 

523  (1921).  Thunholm.  Apparatus  for  evaporat- 
ing liquids.     (156,592.)     Jan.  18. 

6819  (1921).  Kennedy.  Mixing  and  agitating 
machines.     (173,448.)    Jan.  11. 

7454  (1921).  Mauss.  Heat  treatment  of  liquid. 
(173,709.)    Jan.  18. 

10,601  (1921).  Mtiller.  Reducing  and  mixing 
machine.     (173,457.)     Jan.  11. 

32,125-6  (1921).  Selden  Co.,  Selden,  and  Selden. 
Apparatus  for  effecting  fractional  condensation  of 
mixtures  of  vapours  of  volatile  bodies.  (173,723-4.) 
Jan.  18. 

II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;  DESTRUCTIVE  DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Abbott  and  Davidson.  Distillation  of  coal  etc. 
1074-7.     Jan.  12. 

Boys,  and  Secretary  to  Board  of  Trade.  194. 
See  XXIII. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Purification  of  oil.     66.     Jan.  3. 

Brockway.     Gas-washers  etc.     218.     Jan.  4. 

Brockway.  Apparatus  for  manufacture  of  gas  for 
heating  or  lighting.     979.     Jan.  12. 

Cables,  Dixon,  Marsh,  and  Weir.  Fuel  briquettes. 
879.     Jan.  11. 

Cantieny.  Apparatus  for  distillation  of  coal  etc. 
927.     Jan.  11. 

Corthesy  and  Dickson.  Distillation  of  liquid 
hydrocarbons  etc.     323.     Jan.  5. 

Davies.  Carbonisation  of  coal,  lignite,  etc.  950. 
Jan.  12. 

Dunn  and  Dunn.  Gas-generators  etc.  784.  Jan.  10. 

Evans  and  Wright.  Simultaneous  fractionation 
and  distillation  of  carbonaceous  matter  by  low- 
temperature  carbonisation.     642.     Jan.  9. 

Gros  and  Simonoff.  System  of  distilling  petro- 
leum.    300.     Jan.  4. 

Gulf  Refining  Co.  Cracking  hydrocarbon  oils. 
125.5-8.     Jan.  14.     (U.S.,  15.1.21.) 

Harbord.     Manufacture  of  coke.     536.     Jan.  7. 

Ironside.  Distilling  oil  shales,  coal,  etc.  941. 
Jan.  11. 

Kotchmann.  Combustible  mixture  for  generating 
gases  under  pressure.    579.    Jan.  7.    (Ger.,  10.1.21.) 

Rigby.  Utilisation  of  fuels,  and  drying  processes 
and  apparatus  applicable  thereto.     204.     Jan.  4. 

Robertson  (Power  Specialty  Co.).  Apparatus  for 
distilling  oils  etc.     235.     Jan.  4. 

Rutten.     Gas-purifiers.     634.     Jan.  9. 

Salerni  and  Salerni.  Rotary  retorts  for  distilling 
or  heat-treatment  of  carbonaceous  etc.  materials. 
1199.     Jan.  13. 

Standard  Oil  Co.  Pyrogenetic  treatment  of 
hydrocarbon  oils.  1277.  Jan.  14.   (Holland,  15.1.21.) 

Sulzer  Freres  Soc.  Ann.  Conveying  and  cooling 
incandescent  coke  and  obtaining  water-gas.  45-7. 
Jan.  3.     (Switz.,  3.1.21.) 

Tinker.     Production  of  petrol.    569.     Jan.  7. 

Trent  Process  Corp.  Treatment  of  material 
having  an  oil-producing  content.  72.  Jan.  3. 
(U.S.,  20.1.21.) 

Trent  Process  Corp.  Fuel  substance.  73.  Jan.  3. 
(U.S.,  2.2.21.) 

Umpleby.     Gas-generators.     216.     Jan.  4. 

Weiss.  Production  of  low-temperature  tar,  semi- 
coke,  and  gas  from  solid  carbonaceous  materials. 
1069.     Jan.  12.     (Hungary,  13.1.21.) 

White  (Texas  Co.).  Manufacture  of  gasoline  etc. 
955.     Jan.  12. 

Complete  Specifications  Accepted. 

16,776  (1920).  Brownlee  and  Ganahl.  Cracking 
of  oils.     (173,242.)     Jan.  11. 


17,940  (1920).    Hunt.    See  XX. 

26,994  (1920).  Hoist,  Oosterhuis,  and  Naaml. 
Vennoots.  Philips'  Gloeilampenfabr.  Removing 
gas  residues  and  purifying  inert  gas  in  electric 
vacuum  tubes,  incandescent  lamps,  etc.  (151,611.) 
Jan.  18. 

28,682  (1920).  Sauer.  Manufacture  of  decoloris- 
ing carbon.     (173,624.)     Jan.  18. 

29,821  (1920).  Asiatic  Petroleum  Co.,  and 
Cameron.  Dehydrating  hydrocarbon  emulsions 
and /or  distilling  hydrocarbon  oils  or  their  products 
of  distillation.     (173,644.)     Jan.  18. 

31,470  (1920).  Robus.  Apparatus  for  distilling 
peat  and  recovering  products.     (173,662.)    Jan.  18. 

31,788  (1920).  Wells.  Gas  coolers,  cleaners,  or 
condensers.     (173.668.)     Jan.  18. 

11,012-3  (1921).  Powdered  Fuel  Plant  Co. 
Apparatus  for  pulverising  coal  and  other  substances. 
(168,033  and  168,582.)     Jan.  18  and  11. 

20,317  (1921.)  Klarding.  Purification  of  gas. 
(167,185.)    Jan.  18. 


III.— TAR    AND    TAR    PRODUCTS. 

Applications. 
Corthesy  and  Dickson.    323.    See  II. 
Robertson  (Power  SpecialtyCo.).    235.    See  II. 
Weiss.     1069.     See  II. 


IV.— COLOURING  MATTERS   AND   DYES. 

Application. 

Imray  (Soc.  Chem.  Ind.  in  Basle).  Manufacture 
of  dyestuffs  from  anthraquinone.     474.     Jan.  6. 

Complete  Specifications  Accepted. 

18,278  (1920).  British  Dyestuffs  Corp.,  Levin- 
stein, and  Imbert.  Manufacture  of  phenylglycine 
compounds.     (173,540.)    Jan.  18. 

22,015  (1920).  Arnot.  Azo  dyes  obtained  from 
coniferous  resins  and  their  manufacture.  (173,254.) 
Jan.  11. 

24,877  (1920).  Ransford  (Cassella  u.  Co.).  Manu- 
facture of  dyestuffs.     (151,000.)     Jan.  11. 


V.— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Claessen.  Manufacture  of  waterproof  material. 
1036.     Jan.  12.     (Ger.,  28.1.21.) 

Clavel.  Treatment  of  cellulose  derivatives.  414-5. 
Jan.  5. 

Fearnley  and  Lancaster.  Treatment  of  wool.  9. 
Jan.  3. 

Macllwaine.  Preservation  and  preparation  of 
cotton  seed.     762.     Jan.  10. 

White.  Textile  fibre-drying  machines.  435.  Jan.  6. 

White.     Textile  fibre-scouring.     436.     Jan.  6. 

Complete  Specifications  Accepted. 

17,607  (1920).  Carpmael  (Bayer  u.  Co.).  Pro- 
tecting wool  and  other  materials  from  moth. 
(173,526.)     Jan.  18. 

24,313  (1920).  Explosives  Trades,  Ltd.  (Warden- 
burg).     See  XXII. 

25,666  (1920).  D.  R.  Cotton  Mills,  Ltd.,  and 
Andrew.  Treatment  of  canvas  and  similar  woven 
fabric.     (173,572.)     Jan.  18. 

27,777  (1920).  Foster  (Mahy).  Treatment  of  flax, 
hemp,  or  other  fibrous  stems  or  straws.  (173,591.) 
Jan.  18. 

27,933  (1920).  Kawabe.  Treatment  of  ramie, 
hemp,  etc.     (173,598.)     Jan.  18. 


VoL  XII.,  No.  2.] 


PATENT    LIST. 


85  a 


VI.— BLEACHING ;   DYEING;   PRINTING; 
FINISHING. 

Applications. 

Farrell.  Apparatus  for  impregnating  fabrics 
with  a  mercerising  etc.  liquor.     1052.     Jan.  12. 

Fehr  and  Knccht.  Coating  textile  web  with 
fusible  adhesive  material.  690.  Jan.  9.  (Switz., 
5.2.21.) 

Harrison  and  Rhodes.  Dyeing  apparatus.  1228. 
Jan.  14. 

Manton  and  Newman.  Fireproofing  flannelette 
etc.     767.     Jan.  10. 

Complete  Specifications  Accepted. 

27,466  (1920).  Carpmael  (Bayer  u.  Co.).  Manu- 
facture of  mordants  and  process  of  ds'eing  basic 
dyestuffs  on  cotton.     (173,313.)     Jan.  11. 

32,509  (1920).  Bowden  and  Bowden.  Machines 
for  scouring,  bleaching,  '  dyeing,  shrinking,  etc. 
cloth,  varns,  etc.     (173,397.)     Jan.  11. 

33,246  (1920).  Simplex  Patent  Dyeing  Machine 
Co.,  and  Horsnell.  Machines  for  dyeing,  washing, 
etc.     (173,405.)     Jan.  11. 

VII.— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC    ELEMENTS. 

Applications. 

Buckman.  Titanium  complexes,  and  method  of 
producing  same.     279.     Jan.  4. 

Chem.  Werke  vorm.  Auerges.  Production  of 
pure  titanic  acids  from  titanic  ores.  363.  Jan.  5. 
<Ger.,  8.1.21.) 

Douglas.  Manufacture  of  sulphate  of  ammonia. 
441.     Jan.  6. 

Elektrizitatswerk  Lonza.  Process  for  improving 
electrolytic  mercuric  oxide.  567.  Jan.  7.  (Switz., 
8.1.21.) 

Goodwin.  Manufacture  of  oxides  of  nitrogen  and 
nitric  acid.     1288.     Jan.  14. 

Complete  Specifications  Accepted. 

26,677  (1920).  Thorssell  and  Lunden.  Produc- 
tion of  ammonia  from  cyanides.     (151,984.)    Jan.  11. 

27,122  (1920).  Johnson  (Badische  Anilin  u. 
Soda  Fabr.).  Manufacture  of  hydrochloric  acid. 
(173,300.)    Jan.  11. 

30,116  (1920).  Nitrum  A.-G.  Conversion  of 
calcium  cyanamide  into  urea.     (153,574.)     Jan.  11. 

35,633  (1920).     Goedicke.     See  XL 

36,533  (1920).  L'Air  Liquide  Soc.  Anon.  Syn- 
thetic production  of  ammonia.     (156,135.)    Jan.  11. 

VIII.— GLASS;  CERAMICS. 

Applications. 

Bacchiolelli  and  Devals.  Utilisation  of  igneous 
rocks  for  manufacture  of  ceramic  products.  1282. 
Jan.  14. 

Bacchiolelli  and  Devals.  Manufacture  of  articles 
of  melted  basalt.     1283.     Jan.  14. 

Complete  Specifications  Accepted. 

20,556  (1920).  Tucker,  Reeves,  and  Beatty. 
Obtaining  viscous  charges  of  glass  from  a  viscous 
mass  thereof.     (148,848.)     Jan.  18. 

27,049  (1920).  Loy.  Furnaces  for  burning 
ceramic  and  refractorv  products.   (173,297.)   Jan.  11. 

27,183  (1920).  Roiboul.  Manufacture  of  fila- 
ments or  threads  of  silica,  alumina,  and  other 
refractory  materials.     (165,052.)     Jan.  11. 

IX.— BUILDING   MATERIALS. 

Applications. 

Douglas  and  Phibbs.  Preservation  of  wood.  852. 
Jan.  11. 

Harbord.     Manufacture  of  cement.    379.     Jan.  5. 


Complete  Specifications  Accepted. 

22,767  (1920).  Webster.  Brick  kilns.  (173,555.) 
Jan.  18. 

27,444  (1920).  Ringer.  Facilitating  the  working 
and  increasing  the  stability  of  objects  made  from 
sorel  cement.     (159,159.)     Jan.  18. 

X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Bonnafoux.  Process  to  improve  Bessemer,  acid, 
or  basic  steel.     357.     Jan.  5. 

Eldred.     383.     See  I. 

Finch,  and  Jackson,  Ltd.  White-metal  alloy. 
920.     Jan.  11. 

Haddan  (Metallurgical  Development  Corp.). 
Treatment  of  arsenical  ores  and  materials.  171. 
Jan.  3. 

Kirby.     Metallurgical  furnaces.     277.     Jan.  4. 

Picard  and  Sulman.  Treatment  of  complex  zinc- 
bearing  ores.     935.     Jan.  11. 

Complete  Specifications  Accepted. 

18,311  (1920).  Eberhard.  Process  for  opening 
up  iron  ores  containing  phosphates.  (146,351.) 
Jan.  18. 

24,659  (1920).  Marino.  Electrolyte  for  use  in 
the  electrodeposition  of  metals  and  alloys.  (173,268.) 
Jan.  11. 

24,936  (1920).  James.  Manufacture  of  tin,  terne, 
and  like  metal-coated  plates  or  sheets.  (173,277.) 
Jan.  11. 

28,049  (1920).  Selas  Turner  Co.,  and  Turner. 
Crucible-type  furnaces.    (173,603.)    Jan.  18. 

28,087  (1920).  Burden.  Aluminium  alloys  and 
their  preparation.     (173,605.)     Jan.  18. 

28,139  (1920.)  Naef.  Manufacture  of  metals 
from  their  sulphides.     (173,337.)     Jan.  11. 

34,962  (1920).  Poulson  and  Rourke.  Treating 
or  renovating  foundry  sand.     (173,687.)     Jan.  18. 

35,198  (1920).  Lysaght,  and  Lysaght,  Ltd.  Use 
of  pyrometers  in  pots  for  annealing  metal  sheets. 
(173,688.)     Jan.  18. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

Elektrizitatswerk  Lonza.     567.  ■  See  VII. 
Knowles.     Electrolytic  cells.     1002.     Jan.  12. 

Complete  Specifications  Accepted. 

18,492  (1920).  Brydon  and  Cummings.  Galvanic 
batteries  or  cells.     (173,251.)    Jan.  11. 

24,659  (1920).    Marino.    See  X. 

32,247  (1920).  Oldham,  Oldham,  and  Oldham. 
Galvanic  batteries.     (173,671.)     Jan.  18. 

35,633  (1920).  Goedicke.  Ozone-generating  appa- 
ratus.    (173,692.)     Jan.  18. 

XII.— FATS;    OILS;    WAXES. 

Applications. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     66.     See  II. 

Hughes.     Cleansing  agents.     181.     Jan.  3. 

Macllwaine.    762.    See  V. 

Maypole  Margarine  Works,  and  Michelson. 
Manufacture  of  margarine.     580.     Jan.  7. 

Mond  (Kendall  Products  Corp.).  Manufacture 
of  detersive  agents.     1178.     Jan.  13. 

Mont.  Cooling  or  crystallising  molten  fats, 
emulsions,  etc.     975.     Jan.  12. 

Steer.  Saponaceous  cleaning-composition.  430. 
Jan.  5. 

Complete  Specification  Accepted. 
28,682  (1920).     Sauer.     See  II. 


86a 


PATENT   LIST. 


[  Jan.  31,  1922. 


XIII— PAINTS:    PIGMENTS;    VARNISHES; 
RESINS. 


Applications. 
Andreu    and   Paquet.     Production    of   dark    pig- 
Recovery   of  lac. 


ments.     469.     Jan.  6. 

Chopal   Produce  Trust,   Ltd. 
422.    Jan.  5.    (India,  29.10.21.) 

Eynon  and  Lane.     661.     See  XVII. 

Hughes.  Manufacture  of  pigments  or  paints. 
180.     Jan.  3. 

Complete  Specifications  Accepted. 

17,238  (1920).  Redmanol  Chemical  Products  Co. 
Manufacture  of  phenolic  condensation  products. 
1146.159.)     Jan  18. 

22,015  (1920).    Arnot.    See  TV. 

25,282  (1920).  Mitchell.  Manufacture  of  litho- 
pone.     (173,567.)    Jan.  18. 

28,661  (1920)  and  14,956  (1921).  Cookson  and  Co., 
and  Clarke.  Manufacture  of  oil  pigment  pastes 
from  water  pastes.     (173,350.)     Jan.  11. 


XIV.— INDIA-RUBBER;     GUTTA-PERCHA. 

Applications. 

Naugatuck  Chemical  Co.  Process  of  vulcanising 
rubber.     921.     Jan.  11.     (U.S.,  1.2.21.) 

Peachey,  and  Rowe,  White  and  Co.  India-rubber. 
172.    Jan.  3. 

Warren.  Producing  metallised  surfaces  on  rubber 
compounds  containing  sulphur.      1030.    Jan.  12. 

Complete  Specifications  Accepted. 
18,917-8     (1920).     Wade     (Goodyear     Tire     and 
Rubber  Co.).     Process  for  vulcanising  rubber  and 
manufacture    of    an    accelerator    for    use    therein. 
(173,545-6.)     Jan.  18. 


XV—  LEATHER;  BONE;  HORN;  GLUE. 

Applications. 

Conte.  Process  of  tanning.  74.  Jan.  3  (Spain, 
30.11.21.) 

Wheeler.  Drying  or  preparation  of  skins.  534. 
Jan.  7. 

Complete  Specifications  Accepted. 

17,295  and  17,343  (1920).  Gerb-  u.  Farbstoffwerke 
Renner  u.  Co.  Manufacture  of  tanning  agents. 
(146,167  and  146,182.)    Jan.  11  and  18. 

17,461  (1920).  Renner  and  Moeller.  Manufac- 
ture of  artificial  tanning  agents.  (148,750.) 
Jan.  11. 


XVI.— SOILS;  FERTILISERS. 

Complete  Specification  Accepted. 
24,933   (1920).     Molassine  Co.,   and   do  Whalley. 
Artificial  manure  or  fertiliser.     (173,276.)     Jan.  11. 

XVII.— SUGARS;  STARCHES;  GUMS. 
Applications. 
Blair    and    Hulnie.     Treatment    of    raw    sugar. 
1011.     Jan.  12. 

Eynon    and    Lane.       Treatment    of    gums    and 
resins.     661.     Jan.  9. 

Complete  Specification  Accepted. 
28,682  (1920).     Sauer.     See  II. 


XIX.— FOODS;    WATER    PURIFICATION; 
SANITATION. 

Applications. 

Ambrose     Insecticide.    728.     Jan.  10. 

Beresford.  Aero-biological  sewage  purification 
tank.    646.    Jan.  9. 

Cloud.     Preparation  of  foods.     1193.     Jan.  13. 

Daw.  Treatment  of  sewage,  water,  etc.  700. 
Jan.  10. 

Dibdin.  Purification  of  waste  organic  matters. 
639.     Jan.  9. 

Handelsvennoots.  Onder  de  Firma  Geb.  Sickesz, 
and  Sickesz.  Chocolate  and  process  of  manufac- 
turing same.    312.    Jan.  4. 

Mavpole  Margarine  Works,  and  Michelson.  580. 
See  XII. 

Thorneycroft.    176.    See  I. 

Complete  Specifications  Accepted. 

22,156  (1920).  Hepburn.  Process  for  softening 
water.     (173,255.)     Jan.  11. 

27,148  (1920).     Morison.     See  I. 

1906  (1921).  Wallis  and  Martin.  Manufacture 
of  condensed  milk.     (173,697.)     Jan.  18. 

XX— ORGANIC  PRODUCTS ;  MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Applications. 

Farbw.  vorm.  Meister,  Lucius,  u.  Bruning. 
Manufacture  of  arseno-compounds.  1081.  Jan.  12. 
(Ger.,  13.1.21.) 

Lowe.  Manufacture  of  saccharin.  389.  Jan.  5. 
(Switz.,  31.1.21.) 

Thomsen.  Obtaining  methvl  alcohol  from  resi- 
dues etc.    922.    Jan.  11. 

Complete  Specifications  Accepted. 

17,940  (1920).  Hunt.  Production  of  reactive 
acid  liquor,  alcohols,  esters,  etc.,  from  gaseous 
hydrocarbons.     (173,538.)     Jan.  18. 

17,942  (1920).  Hunt.  Conversion  of  secondary 
alcohols  into  ketones.    (173,539.)    Jan.  18. 

30,116  (1920).     Nitrum  A.-G.      See  VII. 

15,088  (1921).  Goodyear  Tire  and  Rubber  Co. 
Process  of  making  thioureas.    (164,326.)    Jan.  11. 

XXL— PHOTOGRAPHIC    MATERIALS    AND 
PROCESSES. 

Applications. 

Crowther.  Treatment  of  photographic  films  with 
solutions.     791.     Jan.  10. 

Faulstich.  Manufacture  of  multicolour  screens 
for  natural-colour  photography.     1052.    Jan.  12. 

Hochstetter.  Manufacture  of  translucent  medium 
for  photography.     290  and  293.     Jan.  4. 

Hochstetter.  Sensitising  film  and  paper.  294. 
Jan.  4. 

Hochstetter.  Sensitive  emulsions  and  process  of 
making  same.     289  and  291.     Jan.  4. 

XXII.— EXPLOSIVES ;  MATCHES. 

Complete  Specifications  Accepted. 

22,711  (1920).  Marks  (Du  Pont  de  Nemours  and 
Co.).  Propellant  and  process  of  producing  same. 
(.173.259.)     Jan.  11. 

24,313  (1920).  Explosives  Trades,  Ltd.  (Warden- 
burg).  Treatment  of  guncotton  or  other  fibrous 
materials.     (173,265.)     Jan.  11. 

XXIII  —ANALYSIS . 
Application. 

Boys,  and  Secretary  to  Board  of  Trade.  Calori- 
meters.    194.     Jan.  3. 


Vol.  XLI..  No.  3.] 


ABSTRACTS 


[Feb.  15.  1922. 


I.-GENEBAL ;  PLANT  ;    MACHINERY. 

Salt  solutions;  Boiling  puint  of  - under  varying 

pressures.  E.  M.  Baker  and  V.  H.  Waite.  Amer. 
Inst.  Chem.  Eng.,  21.6.21.  Chem.  and  Met. 
Eng.,  1921,  25,  1137—1140. 

A  knowledge  of  the  boiling  point  of  salt  solutions 
under  reduced  pressure  is  important  in  evaporator 
design.  An  apparatus  to  obtain  such  data  with  a 
maximum  absolute  error  of  0"1°  C.  is  described. 
The  temperature  is  measured  by  a  platinum 
resistance  thermometer  in  the  vapour  6paoe  but 
constantly  wetted  with  solution,  the  heating  is 
electrical,  and  the  pressure  is  kept  uniform  by  an 
automatic  electrical  regulator.  Results  are  tabu- 
lated showing  that  unsaturated  solutions  in  which 
the  vapour  pressure  of  the  solute  is  inappreciable 
follow  Duhring's  rule  within  the  limits  of  the  ahove 
error,  i.e.,  if  ty  and  r,  are  the  boiling  points  of  a 
solution  at  pressures  p,  and  p,,  and  8X  and  82  the 
boiling  points  of  water  at  these  pressures,  then 
(t1-t2)  =  K  (6l-$2),  K  being  a  constant  for  a  given 
solution.  Hence  to  obtain  a  complete  boiling-point 
curve  for  any  solution  only  two  determinations,  one 
being  at  atmospheric  pressure,  are  necessary. 

— C  I. 

Calcium  chloride-xcater;  Vapour  pressuure  of  the 

system  .      E.   M.   Baker  and  V.   H.   Waite. 

Amer.  Inst.  Chem.  Eng.,  21.6.21.  Chem.  and 
Met.  Eng.,  1921,  25,  1174—1178. 

The  boiling  points  of  four  unsaturated  solutions  and 
also  saturated  solution  of  calcium  chloride  were 
determined  over  a  range  of  100  to  760  mm.  absolute 
pressure,  and  for  each  the  temperature  at  which 
the  solution  had  a  certain  vapour  pressure  was 
plotted  against  the  corresponding  temperature  for 
water.  The  slope  of  each  line  was  calculated  and 
plotted  against  the  concentration  of  the  solutions. 
On  the  same  diagram  the  boiling  points  of  the 
solutions  at  atmospheric  pressure  were  also  marked. 
These  data  completely  define  the  hoiling  points  of 
calcium  chloride  solutions  between  the  limits  taken. 
By  using  a  general  formula  a  diagram  was  con-  ' 
structed  showing  the  relation  between  the  boiling 
points  of  water  over  a  range  50°  C.  to  100°  C.  and 
those  of  a  series  of  solutions  increasing  by  incre-  j 
ments  of  10  g.  of  calcium  chloride  up  to  saturation  ! 
point  under  corresponding  pressure  conditions.  In  ! 
conjunction  with  the  vapour  pressure  curve  of 
water  the  diagram  permits  the  practical  solution  of 
some  evaporator  problems. — T.  H.  Bu. 

Superheated  steam;  Employment  of  for  heat- 
ing melting  pans  and  stills.  H.  Voss.  Chem.- 
Zeit.,  1922,  46,  17—18. 

The  low  specific  heat  of  superheated  steam  (0"38) 
renders  it  unsuitable  for  melting  and  distilling 
ceresin  or  fatty  acids  or  for  the  distillation  of 
glycerin  or  mineral  oils. — H.  C.  R. 

Charcoal;  High  pressure  due  to  adsorption,  and  the 

density  and  volume  relations   of  .      W.   D. 

Harkins  and  D.  T.  Ewing.  J.  Amer.  Chem.  Soc., 
1921,  43,  1787—1802. 

Liquids  absorbed  by  the  micro-pores  of  charcoal  are 
subjected    to    a   "pressure    exceeding    20,000    atm. 
Water    under    these   circumstances    is    compressed 
25%  and  ether  40%.     Pores  with  a  greater  diameter    | 
than  l'2xl0"3  cm.  have  no  action  in  this  respect.    : 
It  is  estimated  that  1  c.c.  of  a  coconut  charcoal    j 
(density  0"868)  is  made  up  of  0'28  c.c.  of  micropores, 
0T8  c.c.   of  macropores,   and  0'54  c.c.   of  carbon. 
The  lower  the  apparent  density  of  a  coconut  char- 
coal in  an  organic  liquid,  the  less  is  its  adsorptive 
action  on  vapours.     This  relation  holds  better  the   [ 


more  compressible  the  liquid,  and  ether,  pentane, 
or  other  highlv  compressible  liquid  should  be  used  in 
such  tests.     (Cf.  J.C.S.,  Feb.)— J.  F.  S. 

Patents. 

Modifying  the  physical  characteristics  of  solid  sub- 
stances produced  by  chemical  reactions;  Process 

for .     Th.  Goldschmidt  A.-G.     E.P.  144,663, 

8.6.20.    Conv.,  25.7.18. 

Solid  substances  are  produced  in  various  degrees  of 
dispersion  predetermined  in  accordance  with  the 
intended  function  of  the  product,  e.g.,  as  catalyst, 
absorbent,  etc.  An  initial  solid  reagent  having  a. 
selected  "  molecular  space  volume  "  corresponding, 
to  the  desired  degree  of  dispersion  is  treated  with- 
a  liquid,  dissolved,  or  gaseous  reagent.  The  solid' 
product  is  thus  deposited  on  the  surface  of  the  solid- 
reagent,  and  by  subsequent  diffusion  of  the  fluid  re- 
agent through  this  deposit  and  similar  outward/ 
diffusion  of  the  fluid  by-product  the  reaction  is 
locally  confined.  The  degree  of  dispersion  of  the 
product  may  be  modified  by  preliminary  treatment, 
e.g.,  dehydration,  of  the  solid  reagent  to  alter  its 
structure,  by  varying  the  concentration  of  the  fluid 
reagent  or  adding  to  it  non-reacting  substances,  or 
by  varying  the  temperature  of  the  reaction.  As  an 
example  the  preparation  of  aluminium  hydroxide 
in  different  degrees  of  dispersion  by  introducing 
crystallised  ammonium  alum  and  aluminium  sul- 
phate respectively  into  cold  ammonia  solution  is 
described  (cf.  Kolilschutter,  J.,  1919,  174  a).— H.  H. 

Chemical  production  and  research;  Apparatus  for 

.    M.  Brutzkus.    E.P.  149,915.  4.8.20.   Conv., 

4.8.19. 

Chemical  reactions  are  carried  out  in  the  cylinder 
of  a  compressor  adapted  for  use  on  either  the  two- 
or  four-stroke  cycle  and  under  pressure  or  vacuum, 
one  claim  being  for  the  use  of  one  or  more  additional 
pairs  of  strokes  after  the  ordinary  cycle  before  dis- 
charge of  the  reacting  substances.  Means  such 
as  electric  arcs  or  discharges  may  be  used  for 
initiating,  and  catalytic  linings  for  promoting,  the 
reaction.  Scavenging  may  be  effected  by  external 
means  and  in  the  case  of  a  two-stroke  cylinder, 
where  the  exhaust  is  from  ports  uncovered  by  the 
piston  in  its  outermost  position,  these  ports  must 
be  covered  by  a  ring  or  sleeve  valve  during  the 
additional  pairs  of  strokes.  Various  applications 
of  the  apparatus  are  mentioned,  e.g.,  the  cracking 
of  hydrocarbon  oils,  the  manufacture  of  soda  by  the 
ammonia  process,  the  manufacture  of  chlorine  by 
the  Deacon  process,  the  oxidation  of  sulphur  di- 
oxide, the  synthesis  of  ammonia,  etc. — B.  M.  V. 

Intermingling    of   gas   and   liquid;   Apparatus   for 

effecting   the   intimate  .     Soc.  Franco-Beige 

de  Fours   a  Coke   (Soc.   Anon.).     E.P.    160,149, 
8.9.20.     Conv.,  11.3.20. 

The  liquid  is  sprayed  by  vertical  jets  of  the  gas, 
each  jet  being  surrounded  by  a  bell  or  conical  hood, 
the  gas  jet  and  bottom  of  the  hood  being  below,  but 
the  spray  outlet  of  the  hood  above,  the  level  of  the 
liquid.  The  spray  outlet  should  be  larger  in  area 
than  the  gas  jet,  and  the  height  of  the  hood  may  be 
adjustable. — B.  M.  V. 

Drying    apparatus.     A.    Scherhag.     E.P.    167,154, 

11.6.21.  Conv.,  30.7.20. 
The  material  is  supported  in  boxes  or  trays  with 
perforated  bottoms,  which  are  disposed  one  above 
the  other,  the  bottom  of  one  box  fitting  within 
sleeve-like  projections  on  the  upper  edges  of  the  bos 
next  below,  so  that  the  column  of  boxes  forms  a  flue 
for  the  drying  gas.  The  invention  relates  to  a 
mechanical  arrangement  for  lifting  all  the  boxes 
except  the  lowest,  so  that  the  latter  can  be  with- 
drawn.—B.  M.  V. 


88  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[Feb.  15,  1922. 


Separating    solid    matter    in     suspension    from    a 

gaseous  medium  ;  Means  for .     The  Powdered 

Fuel  Plant  Co.,   Ltd.,   Assees.  of  C.  M.   Stein. 
E.P.  167,739,  15.4.21.     Conv.,  12.8.20. 

The  solid  matter  is  deposited  in  a  chamber  formed 
between  two  discs,  of  which  one  or  both  can  be 
rotated.  The  crude  gas  enters  by  inlets  in  one  disc 
and  the  purified  gas  leaves  by  outlets  in  the  other 
disc,  the  outlets  being  nearer  the  centre  of  the 
chamber  than  the  inlets.  The  invention  is  particu- 
larly applicable  to  grinding  or  pulverising  appa- 
ratus in  which  the  ground  material  is  removed  by 
a  current  of  air. — H.  H. 

Separation  of  solid  particles  from  gases  by  centri- 
fugal action;   Process  and  apparatus  for  . 

J.  Martin.     G.P.  340,554,  22.11.19. 

Gas  to  be  cleaned  passes  through  a  channel  of  the 
shape    shown    in   the    figure.     Solid    particles    are 


deposited  in  the  compartments  c,  and  pass  through 
sieves  into  collecting  chambers  below. — J.  S.  G.  T. 

Separators  for  gaseous  substances,  dust  collectors, 
spark  arrestors,  dust  extractors,  and  the  like.  F. 
Morris.  E.P.  172,838,  1.11.20. 
A  rotary  motion  is  imparted  by  helical  vanes  to  the 
dust-laden  air  or  gas  as  it  traverses  a  pipe  or  funnel, 
thus  impelling  the  dust  centrifugally  into  a  collect- 
ing chamber,  the  purified  air  or  gas  passing  into  a 
pipe  which  presents  a  skimming  edge  to  the  current 
to  assist  the  separation.  To  cause  the  mixture  to 
issue  from  the  vanes  as  far  as  possible  from  the  axis 
of  the  helix,  either  the  vanes  are  mounted  on  an 
inner  cone  or  they  are  of  a  shape  to  direct  the  mix- 
ture away  from  the  axis.  The  dust  is  progressively 
removed  from  the  collecting  chamber  by  valves, 
which  prevent  the  passage  of  disturbing  gaseous 
currents  through  the  chamber.- — H.  H. 

Electrical  treatment  of  gases;  Apparatus  for  the 

.     L.   Bradley.     U.S.P.   1,400,795,   20.12.21. 

Appl.,  26.6.18. 
Apparatus  for  the  electrical  separation  of  suspended 
particles  from  gases  comprises  a  number  of  treat- 
ment   units    connected    in    series    by   electrostatic 
induction.— J.  S.  G.  T. 

Electrical    precipitators;    Device   for    cleaning    the 

electrodes    of    .       Siemens-Schuckertwerke, 

G.m.b.H.  G.P.  341,229,  12.2.19. 
Precipitated  matter  is  stripped  from  the  electrodes 
by  the  movement  of  easily  movable  wires  or  bands 
disposed  in  the  neighbourhood  of  the  electrodes,  and 
operated  either  'during  the  process  of  precipitation 
or  separately.  The  wires  are  set  in  motion  by 
making  and  breaking  the  electrode  current,  and  in 
the  case  of  wire  electrodes,  the  cleaning  device  takes 
the  form  of  a  spiral  coil  surrounding  the  main  wire 
of  the  electrode.— J.  S.  G.  T. 


Electrical  purification  of  gases;  Apparatus  for . 

J.    E.   Lilienfeld,    and   Metallbank   u.    Metallur- 
gische  Ges.  A.-G.     G.P.  343,461,  9.12.16. 

One  or  more  (or  one  or  more  rows  of)  electrodes  are 
disposed  between  and  insulated  from  the  end  elec- 
trodes in  the  precipitation  chamber  in  such  manner 
that  a  free  passage  way  is  left  between  the  end 
electrodes.  The  potentials  of  the  several  electrodes 
are  intermediate  between  those  of  immediately  ad- 
jacent electrodes,  so  that  the  gradient  of  potential 
is  uniform  across  the  whole  cross-section.  The  de- 
vice permits  the  use  of  a  higher  total  difference  of 
potential  than  when  onlv  the  end  electrodes  are 
used.— J.  S.  G.  T. 

Exjrressing  liquids  from  materials  containing  same 

[_e.g.,   peat~\;   Methods   and  apparatus  for  . 

J.  W.  Hinchley.      E.P.  172,358,  3.8.20. 

Material  such  as  wet  peat  is  freed  from  a  portion 
of  its  moisture  by  pressure  while  being  transported 
substantially  horizontally  upon  a  conveyor  provided 
with  containers  for  the  peat.  Above  and  geared 
with  the  conveyor  runs  a  similar  device  with  down- 
ward projections  which  enter  the  containers  for  the 
peat  and  compress  it  longitudinally  by  reason  of  the 
projections  having  a  greater  pitch  and  running  at 
a  slightly  higher  6peed  than  the  containers.  "  Wet 
peat,"  recently  excavated,  or  "  slurry  peat,"  can 
in  this  way  be  brought  to  the  condition  of  "  semi- 
wet  "  peat  (4  pts.  of  water  to  1  pt.  of  peat)  suitable 
for  treatment  in  the  apparatus  described  in  E.P. 
3998  of  1915  (J.,  1916,  1254).— B.  M.  V. 

Vapour  condensing  apparatus.  G.  McD.  Johns. 
E.P.  172,393,  2.9.20. 

A  number  of  vertical  circulating  tubes  are  con- 
nected in  series  through  upper  and  lower  headere. 
Alternate  tubes  extend  below  the  lower  header  and 
dip  into  a  trough  placed  under  them  for  the  recep- 
tion of  condensed  liquid.  Partitions  are  placed 
within  the  trough  between  the  extended  tubes,  and 
from  each  division  thus  formed  there  is  an  inde- 
pendent outlet  for  condensed  liquid  from  a  point 
above  the  lower  end  of  the  tube.  Each  tube  is 
covered  with  fabric,  to  the  upper  end  of  which 
water  is  supplied,  and  the  series  is  contained  in  a 
housing  through  which  a  current  of  air  is  main- 
tained. The  apparatus  is  specially  suitable  for  use 
in  connexion  with  shale  retort6  and  the  like. 

-H.  Hg. 

Mixing,  stirring,  or  agitating  apparatus.  W.  W. 
Yeitch,  M.  H.  Rowlands,  and  Rowlandson  (En- 
gineers), Ltd.     E.P.  172,513,  26.11.20. 

A  mixing  pan  with  a  hemispherical  lower  portion 
is  used.  Stirrers  or  beaters  are  carried  by  a  hori- 
zontal shaft  extending  across  the  pan  through  the 
centre  from  which  the  spherical  inner  face  of  the 
pan  is  struck,  the  arrangement  being  such  that  the 
whole  of  the  spherical  face  is  6wept  by  blades  or 
flange  feet  on  the  stirrers,  etc.  These  blades  or 
flange  feet  are  inclined  to  a  plane  containing  the 
centre  line  of  the  shaft,  blades  forming  a  diametric- 
ally opposed  pair  being  inclined  in  opposite  direc- 
tions. The  bottom  discharge  aperture  is  fitted  with 
a  horizontal  sliding  door  operated  through  a  rack 
and  pinion  mechanism. — H.  H. 

Centrifugal  machines.     A.  R.  Robertson  and  A.  F. 

Dunsmore.  E.P.  172.862,  8.12.20. 
The  discharge  from  the  basket  is  assisted  by  a 
plough  device  normally  rotating  with  the  basket  and 
brought  into  operation  by  establishing  a  difference 
of  speed  between  it  and  the  basket,  as  in  E.P.  8306 
of  1914  (J.,  1915,  15).  Means  are  provided  by  which 
the  blades  of  the  plough  device  are  raised  and 
lowered,  so  that  they  may  be  caused  to  traverse  the 
whole  vertical  wall  of  the  basket  while  in  operation. 

— H.  H. 


Vol.   XII.,  No.  3.J 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


89  a 


Centrifugal  machine.  E.  A.  Touceda.  U.S. P. 
1,401,291,  27.12.21.     Appl.,  24.11.20. 

The  basket  of  the  machine  has  two  circumferential 
walk,  one  perforated  and  one  non-perforated,  and 
the  latter  can  be  moved  out  of  the  plane  of  rota- 
tion.—B.  M.  V. 

Tube-mill.  R.  C.  Newhouse,  Assr.  to  Allis-Chalmere 
Mfg.  Co.  U.S. P.  1,399,982,  13.12.21.  Appl., 
21.2.16. 

A  tube  mill  which  is  not  strong  enough  to  stand  a 
load  of  heavy  balls  or  the  like  throughout  its  length 
may  have  its  capacity  increased  by  confining  the 
load  of  balls  to  compartments  at  each  end  and  trans- 
ferring the  material  being  ground  from  one  grinding 
compartment  to  the  other  by  means  of  helical  guides 
or  the  like  in  the  idle  space  between. — B.  M.  V. 

Catalysers;    Process    of    producing    .      J.    A. 

Steffens,    Assr.   to    U.S.    Industrial    Alcohol    Co. 
U.S. P.  1,400,247.  13.12.21.     Appl.,  24.12.18. 

A  solution  of  a  salt  of  a  catalytically-active  metal 
is  precipitated  by  addition  of  ammonia,  and  the 
ammonium  salt  formed  is  allowed  to  remain  in  the 
precipitate,  which  is  dried,  and  ignited  to  form  the 
oxide.  This  oxide  is  reduced  at  about  250° — 350°  C. 

— H.  H. 

Catalyst;  Production  of  a  highly  efficient  .     E. 

Merck,   Chem.   Fabr.,   E.   Ku'htz,   and   K.   Roth. 
G.P.  342,094,  21.6.19. 

Colloidal  metals  of  the  platinum  group  are  de- 
posited in  the  nascent  6tate  upon  carbon,  using 
gum,  dextrin,  gelatin,  etc.  as  a  protective  colloid. 
By-products  of  the  reaction  are  filtered  off,  and  the 
colloid  dried  and  heated  for  a  6hort  time.  When 
such  a  catalyst  is  employed,  the  reaction  velocity 
does  not  decrease  with  time. — J.  S.  G.  T. 

Sedimentation;  Process  of  .     C.   H.   Nordell, 

Assr.    to    W.    J.    Kenney.      U.S. P.    1,400,622, 
20.12.21.     Appl.,  16.2.20. 

A  fluid  suspension  is  rotated  in  contact  with  a 
series  of  retarding  members,  consisting  of  parallel 
plates,  with  their  common  axis  vertical  and  coinci- 
dent with  the  axis  of  rotation.  These  plates  retard 
the  movement  of  the  fluid  in  contact  with  their 
surface.  Clarified  liquid  is  -withdrawn  near  the 
under  side  of  the  plates  and  6ludge  from  the  vicinity 
of  the  upper  surface. — D.  F.  T. 

Separating  solids  from  liquids;  Apparatus  for 

S.  R.  Puryear.   U.S. P.  1,400,980,  20.12.21.  Appl., 
5.3.21. 

A  passage  for  the  pulp  is  provided  with  a  number 
of  depressions  to  aid  the  settling  of  the  solids,  an 
additional  liquid  supply  is  governed  by  the  rate  of 
flow  of  pulp,  and  inclined  screw  conveyors  remove 
the  settled  solids  from  the  depressions  and  raise 
them  above  the  liquid. — B.  M.  V. 

Mixing  liciuids  of  different  temperatures  to  produce 
a  mixture  of  definite  temperature;  Apparatus  for 
.    L.  R.  Levy.    G.P.  341,188,  27.10.20. 

The  hotter  liquid  is  delivered  direct  into  the  mixing 
tank,  above  which  is  placed  a  second  tank  into 
which  the  cooler  liquid  is  delivered,  and  in  which  a 
constant  head  of  liquid  is  maintained  by  an  outflow 
valve  controlled  by  a  float  or  similar  device.  In  the 
conduit  from  the  upper  to  the  mixing  tank,  a  valve 
automatically  controlled  by  the  temperature  of  the 
mixture  in  the  mixing  tank  regulates  the  flow  of 
the  cooler  liquid  from  the  upper  tank. — J.  S.  G.  T. 

Vacuum  distillation  plant  \_for  oil  recovery}. 
Dampfkessel  u.  Gasometer-Fabr.  A.-G.  vorm  A. 
Wilke  u.  Co., and  O.  Kulka.   G.P.  341,836,  23.9.20. 

Vapours  from  the  still  pass  to  a  dephlegmator  in 
which  oil  is  separated  and  is  delivered  therefrom  to 


a  condenser.  Water  vapour  and  gases  pass  through 
the  dephlegmator  to  a  tubular  condenser  and  thence 
to  a  spray  condenser  in  which,  by  the  operation  of  a 
moist  air  pump,  they  are  brought  into  intimate 
contact  with  a  spray  of  water. — J.  S.  G.  T. 

Filtering  surfaces  for  continuously  operated  suction 
drum.  filters.  Plausons  Forschungsinstitut 
G.m.b.H.  G.P.  342,340,  27.10.18. 
The  filtering  surface  is  preferably  constituted  of 
2 — 4  layers  of  thread-covered  metal  wire,  overlaid 
with  one  or  two  layers  of  bright  uncovered  wires, 
wound  in  the  form  of  a  coil  upon  the  cylindrical 
perforated  metal  filtering  drum.  The  surface  can 
be  rendered  less  permeable  by  the  use  of  fibrous 
material  or  cement,  or  if  desired  a  metallic  coating 
of  suitable  thickness  can  be  electrically  deposited 
upon  the  wires  or  coils  of  the  finished  article. 

—J.  S.  G.  T. 

Oxygen   and   other   liqiiefiable    gases;   Process   and 
apparatus  for  transport  of  industrial  supplies  of 

large     volumes    of    .       Heylandt    Ges.     fiir 

Apparatebau  m.b.H.     G.P.  342~,415,  28.8.17. 

Transport  of  liquid  oxygen  is  effected  in  metal 
vessels  of  volume  up  to  several  cubic  metres,  pro- 
tected against  heat  transference  by  a  single 
layer  of  incombustible  insulating  material,  more 
especially  slag  wool,  and  surrounded  by  a  jacket 
whereby  the  insulating  material  is  subjected  to  the 
cooling  action  of  liquid  evaporating  in  the  vessel. 
The  vessel  is  provided  with  a  system  of  valves  so 
that  from  it  there  can  be  drawn  off  either  liquid 
oxygen  or  gas  at  any  pressure  up  to  several 
atmospheres.. — J.  S.  G.  T. 

Chemical    reactions;    Process    and    apparatus    for 

carrying  out  by  catalysis.       J.   Koetschet, 

Assr.  to  Soc.   Chim.   Usines  du  Rhone.     U.S. P. 
1,400,959,  20.12.21.     Appl.,  26.4.19. 

See  E.P.  126,279  of  1919;  J.,  1920,  589  a. 

Copper  catah/st.  D.  A.  Legg  and  M.  A.  Adam. 
U.S. P.  1,401,117,  20.12.21.     Appl.,  24.10.21. 

See  E.P.  166,249  of  1919;  J.,  1921,  614  a. 

Heating-furnace  with  removable  hearth.  A.  F. 
Delacourt,  Assr.  to  Soc.  Anon.  Ital.  Gio.  Ansaldo 
&  Co.  U.S. P.  1,401,054,  20.12.21.  Appl.,  23.4.18. 

See  E.P.  122,928  of  1918;  J.,  1919,  209  a. 

Kiln;    Rotary    .      S.    J.    Vermaes,    Assr.    to 

Svndicaat      Electro-Staal.        U.S.P.      1,401,212, 
27.12.21.     Appl.,  26.4.20. 

See  E.P.  163,175  of  1920;  J.,  1921,  456  a. 

Centrifugal  machine.  P.  T.  Sharpies.  U.S.P. 
1,401,196,  27.12.21.     Appl.,  14.7.19. 

See  E.P.  157,688  of  1920;  J.,  1921,  170  a. 

Grinding  mills,  disintegrators,  and  like  apparatus. 
L.  Ba'rtmann.     E.P.  173,182,  29.3.21. 

Vulcanite  apparatus.    G.P.  342,098.    See  XIV. 


IU.-FUEL; 


GAS  ;  MINERAL  OILS 
WAXES. 


AND 


Sulphur  in  coal;  Determination  of .     R.  Lant 

and  E.  Lant-Ekl.  Brennstoff-Chem.,  1921,  2, 
330—332. 
For  making  large  numbers  of  estimations  of  com- 
bustible sulphur  in  coal,  a  combustion  tube  is  kept 
hot  at  one  end  and  cool  at  the  other  end.  At  the 
hot  end  fragments  of  unglazed  pottery  act  as  a  con- 
tact substance.  The  boat  with  powdered  coal  is 
introduced  at  the  cool  end  of  the  tube,  and  a  large 
excess  of  oxvgen  is  passed  through  the  apparatus. 

a2 


90a 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


IFeb.  15,   1922. 


The  boat  is  then  pushed  forward  by  a  hooked  wire 
passing  through  an  air-tight  rubber  joint.  A  cotton 
thread  projecting  from  the  boat  comes  into  contact 
with  the  hot  pottery  fragments,  burns,  and  ignites 
the  coal.  The  combustion  takes  place  at  such  a 
rate  that  no  condensation  of  tarry  substances  or 
sulphur  acids  takes  place  in  the  tube.  The  boat  is 
finally  heated  by  a  local  burner.  The  absorption 
and  estimation  of  the  sulphur  in  the  gases  is  carried 
out  in  the  usual  manner.  The  experimental  error 
is  less  than  1%.  Eschka's  method  of  estimating 
combustible  sulphur  gives  incorrect  results  owing 
to  escape  of  unburned  distillation  products.  The 
estimation  of  sulphur  in  a  bomb  interferes  with 
the  rapid  carrying  out  of  a  number  of  calorimetric 
determinations. — H.  M. 

Coke;  Dry  cooling  of  with  indifferent  gases. 

H.   Wunderlich.     Gas-  u.   Wasserfach,   1921,   64, 
703—706. 

Assuming  the  coke  to  leave  the  retort  at  1000°  C. 
and  to  be  cooled  to  260°  C,  the  heat  lost 
amounts  to  about  280,000  Cals.  per  ton,  correspond- 
ing to  a  potential  steam-raising  capacity  of  400  kg. 
of  steam,  or  roughly  40  h.p.  per  ton  of  coke.  By 
proper  cooling  an  economy  is  effected  equivalent  to 
5%  of  the  weight  of  the  coke,  corresponding  to  3% 
by  weight  of  the  original  coal.  The  hot  coke  is  dis- 
charged into  an  inclined,  cylindrical,  water-jacketed 
container,  gas-tight  manholes  being  fitted  at  the 
upper  and  lower  ends  for  charging  and  discharging. 
Air  is  blown  through  the  chamber  for  a  time,  and 
the  carbon  dioxide  resulting  from  the  combustion  of 
the  coke  is  circulated  as  the  indifferent  gas,  the  hot 
gas  being  drawn  off  at  the  top  of  the  cooler  and ' 
being  utilised  for  the  generation  of  steam  (by 
sensible  heat)  or  hot  water  in  a  waste-heat  boiler, 
and  subsequently  returned  to  the  system  at  the 
cool  end  of  the  chamber. — A.  G. 

Acetylene  and  nitrogen;  Explosion  of .     W.  15. 

Garner   and   K.    Matsuno.      Trans.    Chem.    Soc, 
1921,  119,  1903—1914. 

The  gases  produced  by  the  explosion  of  mixtures  of 
acetylene  and  nitrogen,  at  constant  volume,  contain 
up  to  3'24%  of  hydrocyanic  acid,  produced  by  com- 
bination of  the  nitrogen  with  the  acetylene  and 
with  the  carbon  and  hydrogen  liberated  from  it. 
At  the  temperature  of  the  explosion  the  principal 
products  are  carbon,  hydrogen,  hydrocyanic  acid, 
acetylene,  and  nitrogen,  the  percentages  of  the 
various  gases  in  the  cooled  mixture  depending  on 
the  rate  of  cooling.  The  reaction  constants  for  the 
equation  H2  +  N2  +  2C  =  2HCN  vary  between  00124 
for  4-13%  and  0'0069  for  2033%  of  nitrogen  in  the 
residual  gases,  corresponding  with  a  "  chilling  " 
temperature  of  1950°  and  1800°  C.  respectively.  The 
empirical  relation  [HON] /[H2][N2]°-"  =  0014  holds 
over  a  range  4 — 20%  of  nitrogen  for  an  explo- 
sion mixture  of  nitrogen  and  hydrogen  at  3  atm. 
pressure  in  a  closed  vessel  of  4  litres  capacity.  The 
presence  of  ammonia  in  the  mixture  is  attributed 
to  the  combination  of  hydrocyanic  acid  with  hydro- 
gen according  to  the  equation  HCN  +  H2  =  NH3+C, 
[NH.J/tH,]  [HON]  being  constant.  A  new  type 
of  manometer,  reading  up  to  5  atm.,  based  on  the 
expansion  of  known  volumes  of  gas  to  atmospheric 
pressure,  is  described. — P.  V.  M. 

Cuke-oven  gas;  Production  of  alcohol  and  ether  from 
the  ethylene  of  .  A.  Thau  and  W.  Bertels- 
mann. Gluckauf,  1921,  189—194,  221—225.  Gas- 
u.  Wasserfach,  1921,  64,  706. 

Coke-oven  gas,  containing  3"3%  C02,  3'5% 
saturated  hydrocarbons,  0'4%  O.,  6%  CO,  53"2%  H2) 
26"4%  CH<,  and  7'2%  N2  was  washed  with  oil  for 
benzol,  freed  from  hydrogen  sulphide,  and  collected 
in  a  vessel  of  1000  cub.  m.  capacity  It  was  dried 
with  sulphuric  acid  of  60°  B.  (sp.  gr.  1'71)  and  then 


washed  with  sulphuric  aoid  of  the  same  strength  at 
temperatures  varying  between  60°  and  135°  C.  Iron 
washers,  filled  with  lump  quartz,  were  used,  and 
these  were  lined  with  lead  when  used  with  hot  acid. 
The  yield  of  alcohol  diminished  from  20'67  g.  per 
cub.  m.  of  gas,  with  an  absorption  temperature  of 
70°  C,  to  9'16  g.  per  cub.  m.  with  a  temperature  of 
135°  C.  The  yield  at  60°  C.  was  19"32  g.  per  cub.  m. 
The  ethvlene  in  the  washed  gas  diminished  steadily 
from  0-85%  at  60°  C.  to  0'47%  at  135°  C.  The 
ethylene  content  of  the  gas  before  washing  was 
2-5%.  The  acid  used  per  cub.  m.  of  gas  at  70°  C. 
was  1"2  kg.,  and  there  was  a  loss  of  acid  with  in- 
creasing temperature  due  to  decomposition  with  the 
production  of  sulphur  dioxide,  whilst  the  alcohol 
yield  diminished  owing  to  the  decomposition  of  the 
ethylsulphuric  acid.  At  135°  C.  an  oil  distillate  was 
obtained,  smelling  strongly  of  ether,  and  the  acid 
was  of  a  gelatinous  consistency. — A.  G. 

Unsaturated   hydrocarbons   and   cracked   gasolines; 

Iodine  numbers  of .     W.  F.  Faragher,  W.  A. 

Gruse,  and  F.  H.  Garner.     J.  Ind.  Eng.  Chem., 
1921,  13,  1044—1049. 

Hanus'  and  Wijs'  reagents  give  the  same  results 
with  olefines  and  with  cracked  gasolines  for  amounts 
below  01  g.  Hanus'  reagent  prepared  in  the  ordi- 
nary manner  gives  results  with  olefines  which  indi- 
cate the  true  unsaturation,  and  small  variations  in 
the  excess  of  bromine  used  do  not  affect  the  results. 
All  the  gasolines  used  contained  diolefines,  which 
may  be  recognised  qualitatively  by  the  shape  of  the 
curves  showing  the  variation  of  the  iodine  value 
with  the  time  of  reaction  and  with  the  quantity  of 
substance  used  per  25  c.c.  of  reagent.  Iodine  values 
approximating  to  the  theoretical  value  are  obtained 
by  very  largely  increasing  the  excess  of  iodine 
present.  n-Heptine  functions  as  an  define,  for  only 
one  pair  of  halogen  atoms  is  added,  a  result  which 
i>  probably  typical  of  acetylenes  in  general.  The 
Hanus  solution  does  not  cause  any  appreciable 
substitution  of  hydrogen  in  simple  paraffin,  cyclo- 
paraffin,  or  aromatic  hydrocarbons,  or  in  straight- 
chain,  branched-chain,  or  cyclic  olefines,  or  in  di- 
olefines, acetylenes,  or  cracked  gasolines. — F.  M.  R. 

Hydrocarbons;    Helation    betxceen    the    molecular 
properties  and  the  capacity  for  fixation  of  iodine 

of  certain -.     P.  Woog.     Comptes  rend.,  1921, 

173,  1471—1473.     (Cf.  J.,  1921,  629  a.) 

The  iodine  values  of  an  homologous  series  of  Ameri- 
can oils  were  reduced  by  deducting  from  the 
quantity  of  iodine  fixed  per  grm.-mol.  of  oil  the 
quantity  corresponding  to  the  double  linkages 
present  as  calculated  from  the  mean  molecular 
surface  area  of  the  oil  on  water.  When  these  re- 
duced iodine  values  were  plotted  against  the 
molecular  weights  of  the  oils  a  regular  curve  was 
obtained,  represented  by  the  equation  log  Iu0-r  K  = 
log  I„50,  where  IM0  is  the  reduced  iodine  value  for 
any  molecular  weight  and  Ij,m  the  value  for  a 
molecular  weight  50  units  higher,  K  being  a  con- 
stant equal  to  0'0664.  This  progressive  capacity  for 
addition  or  substitution  of  iodine  is  apparently  due 
to  causes  analogous  to  those  responsible  for  the 
dissociations  which  occur  in  the  "  cracking  "  pro- 
cess. Benzene  solutions  of  these  oils  rapidly 
undergo  oxidation  when  exposed  to  sunlight  and 
the  velocity  of  oxidation  increases  with  the  number 
of  double  bonds  in  the  molecule. — W.  G. 

Superheated  steam  for  heating   melting  pans  and 
stills.     Voss.     See  I. 

Patents. 
Coke  ovens;  Regenerative .   Soc.  Gen.  de  Fours 

a  Coke  Systemes  Lecocq.     E.P.  160,442,  22.12.20. 

Conv.,  13.3.20. 
Gas  is  supplied  to  each  vertical  flue  in  the  heating 


Vol.  XLL,  No.  3.] 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


)1a 


walls  of  an  oven  through  an  independent  valve  and 
conduit.  The  conduit  is  rectangular  in  cross- 
section  and  inclined  downwards  towards  the  inspec- 
tion gallery  so  as  to  facilitate  removal  of  carbon 
deposits  by  means  of  a  scraper. —  H.  Hg. 

Coke  ovens  or  the  like.  American  Coke  and 
Chemical  Co.,  Assees.  of  A.  Roberts.  E.P. 
165,737^10,  8.9.20.     Conv.,  8.9.19. 

(a)  The  corresponding  sections  of  the  two  heating 
walls  of  an  oven  such  as  is  described  in  E.P.  150,983  j 
(J.,  1921,  617  a)  are  provided  with  a  common  re- 
generator section.  Under  the  regenerator  sections 
of  each  oven  there  is  a  pair  of  passages  tapering  in 
opposite  directions  and  connected  respectively  at 
their  wider  ends  with  a  pair  of  tunnels  extending 
along  the  oven  bench.  Alternate  regenerator  sec- 
tions communicate  through  a  number  of  openings 
with  one  of  the  passages  and  the  intermediate 
sections  communicate  with  the  other  passage.  Each 
pair  of  heating  sections  is  connected  together  by  a 
number  of  U-shaped  passages  extending  under  the 
oven ;  under  these  there  is  a  pair  of  transverse 
passages  one  of  which  is  connected  with  alter- 
nate regenerator  sections  and  with  the  U-shaped 
passages  of  the  corresponding  heating  sections,  the 
other  passage  being  similarly  connected  with  the 
intermediate    regenerator     and     heating    sections. 

(b)  Two  sets  of  gas  burner  passages  are  provided 
and  so  connected  with  gas  and  air  supplies  that 
while  one  set  is  in  normal  use,  air  may  be  admitted 
to  the  other  set  in  order  to  burn  out  carbon  deposits. 

(c)  Gas  is  admitted  to  the  heating  wall  through  a 
number  of  nozzle  blocks  each  situated  between  two 
air  inlets.  On  the  side  of  each  air  inlet  opposite 
to  the  block  there  is  a  partition  wall  which  is  ex- 
tended beyond  the  blocks  so  as  to  provide  combus- 
tion chambers.  Within  each  block  there  is  a  semi- 
circular gas  passage  for  the  transfer  of  gas  from  the 
vertical  gas  passage  in  the  partition  wall  to  a  slit 
which  delivers  it  into  the  combustion  chamber. 
Planes  of  shear  are  established  on  the  surfaces  of 
the  blocks  so  as  to  permit  independent  expansion  of 
the  heating  and  partition  walls  without  breaking 
the  continuity  of  the  gas  passages.  (d)  Longi- 
tudinal expansion  openings  are  provided  in  the 
roof  and  sole  of  the  oven  and  in  the  structure 
supporting  the  heating  and  partition  walls.  The 
openings  break  joints  with  each  other  in  the 
different  courses  and  that  in  the  sole  of  the  oven  is 
covered  by  a  false  bottom. — H.  Hg. 

Water-gas;  Process  and  apparatus  for  the  produc- 
tion of .     N.  J.  M.  Willemse.     E.P.  172,413, 

7.9.20. 

The  combustion  chamber  of  a  water-gas  plant  is 
built  of  metal  and  surrounded  by  an  annular  water 
jacket,  above  which  is  an  annular  steam  chamber. 
An  outlet  for  blow  gases  is  provided  through  the 
fuel  feeding  hopper.  The  steam  chamber  communi- 
cates through  a  three-way  cock  with  the  space  under 
the  grate  and  with  a  point  at  the  top  of  the  com- 
bustion chamber  where  oil  may  be  introduced  for 
carburetting  the  gas.  The  plug  of  the  above  cock 
is  secured  to  the  same  spindle  as  that  of  a  four-way 
cock  which  controls  the  air  supply  to  the  combustion 
chamber  and  the  passage  of  gas  to  the  scrubber.  As 
the  fuel  inlet  and  blow  gas  outlet  valve  are  con- 
nected to  a  handwheel  on  the  same  spindle  the  plant 
is  operated  by  one  control.  The  grate  of  the  com- 
bustion chamber  is  supported  on  a  vertical  screw 
spindle  operated  by  a  worm.  The  grate  is  normally 
entirely  within  a  water  jacket  but  is  moved  to  a 
lower  position  for  the  removal  of  ash. — H.  Hg. 

Producer  gas  and  the  like;  Furnaces  used  in  the 

manufacture   of  .     R.    M.    Brooke   and   W. 

Whitworth.     E.P.  172,546,  18.1.21. 

In  order  to  enable  the  maximum  quantity  of  air  to 


pass  through  the  maximum  depth  of  fuel,  a  pro- 
ducer is  built  with  the  lower  portions  of  its  front 
and  sides  downwardly  converging  above  the  air 
inlets  and  ash-pan.  The  ash-pan  extends  suffi- 
ciently far  forward  to  receive  the  fuel  which  gravi- 
tates from  the  bottom  of  the  inclined  furnace  front. 
A  bearer  is  provided  across  the  front  air  inlet,  and 
a  ledge  across  the  back  wall  of  the  furnace,  to 
support  bars  inserted  in  either  of  two  positions 
during  the  removal  of  ashes. — H.  Hg. 

Hydrocarbons;    Process    for   separating    solid   and 

tiijiiid   from    each    other.      Deutsche    Erdol 

A.-G.     E.P.  149,347,  21.7.20.     Conv.,  31.7.19. 

A  mixture  of  solid  and  liquid  hydrocarbons,  such 
as  mineral  oil  containing  paraffin  wax  in  solution, 
is  treated  at  a  temperature  at  which  the  mixture 
is  completely  fluid,  with  a  counter-current  of  a 
solvent  which  does  not  dissolve  the  solid  hydro- 
carbons, but  completely  dissolves  the  liquid  hydro- 
carbons. Suitable  solvents  are  alcohols,  ethers, 
ketones,  esters,  glacial  acetic  acid,  and  the  like. 
The  extraction  is  effected  in  a  battery  of  closed 
vessels  through  which  the  hydrocarbons  and  the 
solvent  pass  in  opposite  directions ;  the  wax  emerges 
from  one  end  of  the  series  in  a  molten  6tate  and 
crystallises  on  cooling,  while  the  solution  of  liquid 
hydrocarbons  passing  out  at  the  other  end  is  dis- 
tilled to  separate  and  recover  the  solvent. — L.  A.  C. 

Hydrocarbon  oils;  Process  and  apparatus  for  decom- 
posing heavy into  lighter  oils.   R.  D.  George. 

E.P.  151,925,  14.9.20.     Conv.,  30.9.19. 

Heavy  hydrocarbon  oil  is  fed  into  the  lower  end  of 
a  vertical  retort  provided  with  a  rotating  scraper 
for  removing  carbon  deposits  from  the  walls.  The 
oil  flows  out  of  the  top  of  the  retort  into  a  separator, 
and  the  vapours  pass  into  a  second  separator  and 
thence  to  a  condenser.  The  residual  oil  in  the  first 
separator  flows  into  a  vertical,  insulated  cylindrical 
chamber  at  a  point  below  a  wire  mesh  screen,  and 
flows  upwards  through  the  screen  to  an  outlet  pipe 
leading  back  to  the  retort.  Carbon  separated  from 
the  oil  by  the  screen  settles  to  the  bottom  of  the 
chamber,  whence  it  is  withdrawn  at  intervals.  Oil 
from  the  second  separator  and  fresh  oil  preheated 
by  passage  through  pipes  in  the  separators  pass  into 
the  chamber  above  the  screen,  and  mix  with  the 
filtered  oil  before  passing  to  the  retort. — L.  A.  C. 

Hydrocarbons;  Art  of  cracking .     J.  W.  Coast, 

jun.,  Assr.  to  The  Process  Co.  U.S. P.  1,400,800, 
20.12.21.    Appl.,  27.9.17. 

In  the  production  of  gasoline  the  distillate  obtained 
by  cracking  and  distilling  hydrocarbons  is  subjected 
to  a  vacuum  to  separate  the  most  volatile  fractions 
in  the  form  of  gas.  The  gas  is  subsequently  blended 
under  pressure  with  the  product  obtained  by  refin- 
ing the  residual  distillate. — L.  A.  C. 

Oil;  Manufacture   of   screw-cutting  .     H.   C. 

Claflin.  U.S. P.  1.401,760,  27.12.21.  Appl., 
22.3.20.     Renewed  5.11.21. 

A  heat-absorbing  lubricant  for  use,  e.g.,  in  screw- 
cutting  consists  of  a  colloidal  solution  of  sulphur 
in  oil. — L.  A.  C. 

[Coke-oven~\  walls;  Art  of  heating .  A.  Roberts, 

Assr.  to  American  Coke  and  Chemical  Co.  U.S. P. 
1,401,497,  27.12.21.  Appl.,  9.11.17.  Renewed 
28.7.20. 

See  E.P.  138,126  of  1920;  J.,  1921,  684  a. 

Gas  and  coke;  Continuously  working  distilling  oven 
for  manufacture  of .  Gewerkschaft  ver.  Con- 
stants der  Grosse.  E.P.  157,219,  8.1.21.  Conv., 
7.5.19. 

See  G.P.  334,755  of  1919;  J.,  1922,  47  a. 


92  a 


Cl.  Hb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


[Feb.  15,  192 


Water-gas     generators;     Automatically-unslagging 

shaft  construction  for  .     P.  Koster.     U.S. P. 

1,400,885,  20.12.21.    Appl.,  2.10.15. 

See  G.P.  287,616  of  1914;  J.,  1916,  246. 

Coke-oven  gases;  Treatment  of — — .     J.  I.  Bronn. 

E-P.  147,051,  6.7.20.    Conv.,  21.11.14.     Addn.  to 

146,839. 
See  U.S. P.  1,211,395  of  1917;  J.,  1917,  205. 


Heat-exchange    apparatus.      E.    Harter. 
1,403,319,  10.1.22.    Appl.,  12.5.19. 

See  E.P.  127,565  of  1919;  J..  1920,  647  a. 


U.S.P. 


Briquettes;    Presses    for    manufacture     of    hard, 

durable,  and  well-shaped .    H.  Schott.     E.P. 

173,018,  31.8.20. 

Apparatus  for  chemical  production.     E.P.  149,915. 
See  I. 

Expressing  liquid  from  peat.    E.P.  172,358.    See  I. 

Vapour  condensing  apparatus.  E.P.  172,393.  See  I. 

Separating  sulphur  from  suspensions.  G.P.  342,795. 
See  VII. 


Hb  — DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Oil  and  coal;  Destructive  distillation  of  mixtures 

of  .     J.  D.  Davis,  P.   B.  Place,   and  G.   S. 

Scott.     Ghem.   and  Met.  Eng.,  1921,  25,  1131— 
1136. 

Mixtures  of  70 — 75%  of  bituminous  coal  and 
25 — 30%  of  fuel  oil,  similar  to  those  obtained  in  the 
Trent  process  of  cleaning  coal  (c/.  Perrott  and 
Kinnev,  J.,  1921,  615  a),  were  distilled  at  tempera- 
tures between  400°  and  800°  C.  and  the  yields  of 
products  were  compared  with  the  respective  sums 
of  those  obtained  from  similar  distillations  of  coal 
and  oil  separately.  The  retort  used  consisted  of  an 
iron  pipe  6  in.  in  diam.  and  48  in.  high;  the  lower 
end  was  closed  and  the  upper  fitted  with  a  gas 
outlet  and  a  device  for  continuously  feeding  coal, 
oil,  or  mixture  in  small  increments.  The  retort  was 
electrically  heated  to  the  temperature  of  distilla- 
tion before  starting  each  experiment.  The  volatile 
products  were  passed  through  a  condenser,  a  Cottrell 
tar  mist  precipitator,  a  tube  containing  charcoal, 
and  a  gas  meter.  The  mixtures  at  all  temperatures 
yielded  less  solid  residue  than  did  the  constituents 
when  distilled  separately.  The  gas  obtained  from 
the  mixtures  was  greater  in  volume  and  of  a  higher 
calorific  value :  it  contained  less  oxides  of  carbon 
and  more  methane  than  that  obtained  from  the 
constituents.  The  differences  between  the  yields  of 
light  oils  removed  from  the  gas  were  6mall.  More 
tar  was  obtained  from  the  mixtures  except  at 
•300°  C,  when  the  oil,  treated  alone,  tended  to  distil 
without  being  cracked.  At  800°  C.  all  tars  were 
almost  completely  cracked  into  gases  and  fixed 
carbon.  Examination  of  the  tars  obtained  showed 
that  those  from  the  mixtures  had  undergone  more 
cracking  with  rising  temperatures  as  they  contained 
more  pitch.  This  extra  cracking  explained  the 
higher  gas  yields.  At  the  higher  temperatures  the 
tars  from  the  mixtures  contained  less  unsaturated 
compounds,  aromatic  hydrocarbons,  and  paraffins 
than  did  those  from  the  constituents.  In  the  mix- 
tures of  oil  and  coal  there  may  be  some  surface  ten- 
sion force  holding  part  of  the  oil  in  contact  with  the 
coal  at  temperatures  above  its  boiling  point,  thus 
creating  conditions  favourable  for  cracking  re- 
actions.— H.   Hg. 


Patents. 

Distillation    of    mineral   and    organic   substances; 

Apparatus  for  the  destructive  .     Soc.  Anon. 

"  Fours  Speciaux."  E.P.  148,773,  10.7.20.  Conv., 
30.6.19. 

A  vertical  retort  is  made  up  of  three  superposed 
parte,  viz.,  an  unheated  retort  head  fitted  with  a 
charging  apparatus  and  composed  of  metallic  seg- 
ments lined  with  refractory  material,  an  externally 
heated  refractory  section,  and  an  unheated  retort 
base  dipping  into  a  water-seal.  The  water  is  con- 
tained in  a  circular  vessel  capable  of  rotation  and 
fitted  with  a  central  screw  for  the  discharge  of 
residue  from  the  retort.  Extending  downwards 
through  the  centre  of  the  retort  head  there  is  a 
tapering  gas  off-take  pipe,  open  at  ite  lower  end 
and  perforated  throughout  its  length. — H.  'Hg. 

Distillation  of  material  [oil  shale  etc.}  carrying  a 

percentage  of  volatile  matter;  Process   of  . 

Retorts,  (a)  G.  Mc.D.  Johns,  (b)  G.  McD.  Johns, 
J.  H.  Curran,  F.  W.  Lowe,  and  J.  B.  Trescott. 
E.P.  (a)  172,392,  2.9.20,  and  (b)  172,401,  3.9.20. 

(a)  Oil  shale  or  other  fuel  ie  pulverised  until  50% 
of  it  will  pass  through  a  100-mesh  6ieve,  so  that 
during  subsequent  distillation  it  loses  ite  normal 
angle  of  repose  and  becomes  more  mobile.  The 
powder  is  continuously  fed  into  the  upper  end  of  a 
retort  inclined  at  an  angle  of  10° — 15°,  and  divided 
into  two  chambers  by  a  partition  which  projects 
from  the  roof  of  the  retort  but  which  leaves  a 
passage  along  the  floor.  The  lower  chamber  is 
placed  immediately  over  a  furnace  and  is  thus 
heated  to  a  higher  temperature  than  the  upper 
chamber,  which  is  heated  by  gases  passing  from  the 
furnace  to  the  chimney.  A  number  of  scrapers  rest 
on  the  floor  of  the  retort  and  are  attached  to  a 
reciprocating  carrier  extending  through  both 
chambers  of  the  retort.  During  forward  movement 
of  the  scrapers  the  powder  16  pushed  forward  at  a 
uniform  speed,  while  during  backward  movement 
the  scrapers  ride  over  the  powder  and  maintain  it 
in  a  thin  layer  of  uniform  thickness.  At  the  lower 
end  of  the  retort  there  is  an  outlet  forspent  material 
dipping  into  a  water  seal.  Gas  outlet  pipes  lead 
from  each  chamber  of  the  retort  into  a  common 
condenser,  (b)  The  apparatus  is  similar  in  principle 
to  that  described  above.  The  waste  gases  leaving 
the  heating  chamber  of  the  upper  part  of  the  retort 
pass  round  the  fuel  inlet  of  the  retort  before  enter- 
ing the  chimney  flue.  Covers  sealed  with  sand  are 
provided  on  the  gas  outlets  from  the  retorts  as 
safety  vents  in  case  of  explosions  ;  a  water  supply  for 
use  in  ease  of  fire  is  connected  with  the  upper  part 
of  the  retort.  The  low-temperature  chamber  may  be 
a  rectangular  metal  box  with  a  restricted  rectangu- 
lar extension  leading  into  the  flat-bottomed  high- 
temperature  chamber ;  within  the  box  longitudinal 
rails  are  fitted  to  support  the  scraper  carrier. 

-H.  Hg. 

Furnace;  Shaft  with  o  lower  cooling  chamber 

for  the  continuous  distillation  of  solid  fuels  by 
means  of  a  circulating  current  of  hot  distillation 
gases.  Carbozit  A.-G.  G.P.  340,553,  11.6.19. 
Conv.,  29.6.18. 

After  depositing  their  condensable  constituents  the 
gases  pass  through  the  cooling  chamber,  where  they 
become  heated  by  the  hot  descending  residue  from 
the  distillation  process  occurring  above;  at  the  top 
of  the  cooling  chamber  the  heated  gases  are  led  off 
into  a  superheater  and  thence  back  to  the  bottom 
of  the  upper  chamber  in  which  they  effect  the  dis- 
tillation of  the  fuel.  The  withdrawal  of  the  gases 
from  the  lower  chamber  and  their  introduction  into 
the  upper  chamber  are  facilitated  by  restricting  the 
size  of  the  passage  by  which  the  distillation  residue 
descends  from  one  to  the  other. — D.  F.  T. 


Vol.  XLL,  No.  3.) 


Cl.  III.— tar  and  tar  products. 


93  a 


Electric  incandescent  lamps;  Regeneration  of 

F.  Voglhut.  E.P.  152,652,  18.10.20.  Conv., 
17.10.19. 

The  point  of  the  bulb  of  the  lamp  is  broken  and  the 
lamp  placed  under  a  bell  jar  which  is  then  evacu- 
ated. The  lamp  is  filled  with  hydrogen  supplied 
through  the  top  part  of  the  bell  jar,  and  the  fila- 
ments electrically  welded  to  the  clips  or  holders  in 
known  manner,  the  ends  of  the  filaments  being 
previously  cemented  together. — J.  S.  G.  T. 

Glow  lamp;  Electric  .      H.  Baumhauer,  Assr. 

to  Patent-Treuhand  Ges.  fiir  Elektrische  Gliih- 
lampen  m.b.H.  G.P.  1,401,510,  27.12.21.  Appl., 
13.11.17. 

The  carbon  filament  of  an  electric  glow  lamp  is 
surrounded  by  a  rare  gas  substantially  free  from 
nitrogen.— J.  S.  G.  T. 


III.— TAD  AND  TAR  PRODUCTS. 

Sulphur yl  chloride;  Researches  on  .  I.  In- 
fluence of  catalysts:  a.  convenient  method  of 
chlorinating  benzene.  O.  Silberrad.  Chem.  Soc. 
Trans.,  1921,  119,  2029—2036. 

In  the  presence  of  suitable  catalysts,  benzene  is 
chlorinated  rapidly  by  sulphuryl  chloride,  the  re- 
action being  accompanied  by  the  formation  of 
intensely  coloured  intermediate  compounds  probably 
of  a  quinonoid  type.  The  most  suitable  catalyst  is 
aluminium  chloride  together  with  a  sulphur  com- 
pound, the  simplest  case  being  when  sulphuryl 
chloride  itself  acts  in  this  capacity  also.  When 
sulphuryl  chloride  is  run  rapidly  into  a  boiling 
mixture  of  benzene  and  aluminium  chloride,  chlori- 
nation  occurs  almost  to  the  exclusion  of  all  other  re- 
actions, about  90"  of  the  available  chlorine  combin- 
ing with  the  hydrocarbon.  This  reaction  appears 
to  be  due  to  the  tendency  of  aluminium  chloride  to 
form  a  double  compound  with  the  hydrocarbon  and 
with  sulphuryl  chloride. — F.  M.  R. 

Phenol-cresol    mixtures;    Compound    formation    in 

.     J.  Kendall  and  J.  J.  Beaver.     J.  Amer. 

Chem.  Soc.,  1921,  43,  1353—1867. 

No  addition  compounds  are  formed  when  phenol  is 
mixed  with  any  of  the  cresols,  or  when  the  cresols 
are  mixed  with  one  another.  The  absolute  purity 
of  the  cresols  and  phenol  is  best  tested  by  the  specific 
conductivity.  The  pure  materials  have  the  follow- 
ing constants :  phenol,  m.p.  39'70°  +  002  C,  specific 
conductivity  at  40°  C,  ll-98xl0"s,  at  50°  C, 
14-07x10-*;  o-cresol,  m.p.  30-60°±002°  C,  conduc- 
tivity OT27xlO~8  at  25°  C,  p-cresol,  m.p.  3455°  + 
0-02°  C,  conductivity  T378x  10"8  at  25°  C.  m-cresol,- 
m.p.  11-10°±002°  C.,  conductivity  T397X10"8  at 
25°  C.    (67.  J.C.S.,  Feb.)— J.  F.  S. 

ar-Bihydro-a-naphthols  and  their  derivatives. 
Studies  in  the  dihydionaphthalene  series.  II. 
F.  M.  Rowe  and  E.  Levin.  Chem.  Soc.  Trans., 
1921,  119,  2021—2029. 

The  course  of  the  reaction  in  the  conversion  of  a- 
naphthol  into  nr-tetrahydro-a-naphthol  by  means  of 
sodium  and  an  alcohol  is  completely  analogous  to  the 
course  of  the  reactions  in  the  hydrogenation  of 
naphthalene  and  o-naphthvlamine  under  similar 
conditions  (cf.  J..  1920,  241  t  ;  1921,  41a),  and  the 
intermediate  dihydro-derivatives  in  each  case  ex- 
hibit a  similar  behaviour  when  treated  with  sodium 
and  ethyl  alcohol.  The  two  dihydro-o-naphthols 
may  be  sulphonated  and  nitrated  under  similar  con- 
ditions to  those  employed  for  ar-tetrahvdro-e- 
naphthol  (J.,  1919,  406  a),  but  the  yields  of  the 
nitro-derivatives  are  low  on  account  of  the  un- 
saturated character  of  the  hydrogenated  ring  in  the 
dihydro-o-naphthols. — F.  M.  R. 


Naphthalene-  and  naphthol-carboxylic  acids;  Reduc- 
tion of .    H.  Weil  and  H.  Ostermeier.    Ber., 

1921,  54,  3217—3219. 

Sodium  /3-naphthoate  is  reduced  by  sodium  amalgam 
in  aqueous  solution  in  the  presence  of  boric  acid  and 
of  a  mixture  of  sodium  bisulphite  and  sufficient 
normal  sulphite  to  neutralise  the  acidity  of  the  bi- 
sulphite, to  /3-naphthaldehyde,  m.p.  60'5°— 61°  C. ; 
under  similar  conditions,  olnaphthoic  acid  is  almost 
unaffected.  l-Napththol-2-carboxvlic  acid  gives  the 
corresponding  aldehyde,  m.p.  59°  C.,  the  yield  being 
57%  of  the  acid  actually  converted.  2-Naphthol-3- 
carboxylic  acid  is  transformed  into  a  substance, 
b.p.  122°  C.  at  12  mm.,  which  appears  to  be  tetra- 
hydro-/?-naphthaldehyde.     (fif.  J.C.S.,  Feb.) 

— H.  W. 

Patents. 
Tar  and  oils;  Means  for  facilitating  the  separation 

"f   liquor   'from  .      S.   Glover,   J.   West,   and 

West's  Gas  Improvement  Co.,  Ltd.    E.P.  172,783, 
2.10.20. 

A  tower  contains  a  number  of  saucer-shaped  trays 
having  central  circular  openings,  supported,  e.g., 
on  studs  passing  through  the  walls  of  the  tower ;  a 
hollow,  perforated  cone  open  at  the  apex  and  having 
a  serrated  lower  edge  rests  on  each  tray.  Tar  fed 
on  to  the  cone  below  the  top  tray  flows  down  the 
tower  to  a  sump  at  the  bottom,  whence  it  is  drawn 
off,  and  suspended  liquor  rises  to  the  top  and  flows 
away  through  an  outlet  pipe.  Tar  scum  rising  to 
the  surface  of  the  liquor  drains  off  through  an  outlet 
at  a  slightly  higher  level  than  the  liquor  outlet. 

— L.  A.  C. 

Phenols:   Production  of  pale,   non-darkening  

from  lignite  tar  or  its  distillates.     M.  Pfautsch 
G.P.  341,231,  6.4.19. 

The  acid  fractions  of  the  tar  are  treated  with  a 
mixture  of  sodium  bisulphate  and  sodium  thiosul- 
phate.  For  instance,  lignite  tar  is  neutralised  with 
sodium  hydroxide  and  the  phenols  and  acid  oils  pre- 
cipitated with  sulphuric  acid  and  distilled.  The 
distillate  is  treated  successively  with  hot  concen- 
trated solutions  of  sodium  bisulphate  and  sodium 
thiosulphate  (10  g.  of  each  to  each  100  g.  of  distil- 
late), and  washed  with  warm  water.  The  water  and 
precipitated  sulphur  are  separated  and  the  phenols 
re-distilled.  The  product  is  of  a  pale  yellow  colour 
and  is  not  affected  by  exposure  to  light  and  air. 
Synthetic  resins  prepared  from  the  purified  phenols 
also  keep  their  pale  colour.  The  nascent  sulphur 
dioxide  has  a  stronger  bleaching  effect  than  the  free 
gas.— H.  C.  R. 

Anthracene  and  carbazole;  Separating  and  purify- 
ing  .    A.  Kagan.    E.P.  172,864,8.12.20.    (Cf. 

E.P.  119,855;  J.,  1919,  354  a.) 

Crude  anthracene  is  crystallised  from  hot  cresols 
or  a  mixture  of  phenol  and  cresols  (60%  phenol),  fil- 
tered, and  washed  with  petroleum  ether,  b.p.  80° — 
100°  C.  The  partially  purified  anthracene  is  then 
crystallised  from  pyridine.  The  pyridine  solution, 
on  distillation,  yields  crude  carbazole,  which  is  crys- 
tallised from  toluene  and  sublimed.  Crude  anthra- 
cene of  46T%  strength  yields  in  this  manner 
anthracene  of  89%  purity  and  carbazole  of  96 — 98% 
purity.— F.  M.  R. 

NSubstituted  3-dihalogenoxindoles;  Preparation  of 

.    R.Stolle.    G.P.  341,112,  20.3.19.    Addn.  to 

335,763  (J.,  1921,  503  a). 
N-Trihai.ogexacetyi.  derivatives  of  secondary 
alkylarvlamines  or  of  diarylamines,  of  the  general 
formula  NRR'.CO.C(Hal.)*  are  treated  with  alu- 
minium halides.  The  closure  of  the  ring  to  N-sub- 
stituted  dihalogenoxindole  derivatives  results,  with 
liberation  of  a  hydrogen  halide  formed  by  union  of 
a  halogen  atom  of  the  trichloroacetic  ester  with  an 


94  a    Cl.  IV.— COLOURING  MATTERS  AND  DYES.     Cl.  V.— FIBRES  ;    TEXTILES,  &o.   [Feb.  15, 1922. 


ortho  H  atom  of  the  aromatic  nucleus.  N-Phenyl- 
3-dichloro-oxindole  is  obtained  by  the  action  of 
aluminium  chloride  on  trichloroacetyldiphenyl- 
amine  in  carbon  bisulphide  solution  at  ordinary 
temperatures,  and  is  converted  into  N-phenylisatin 
by  alkalis.  If  trichloroacetylmethylaniline  is 
treated  with  aluminium  chloride  it  is  converted  into 
N-methyl-3-dichloro-oxindole.  The  products  are  used 
for  making  dyes. — T.  H.  Bu. 

Paranitroaniline ;  Manufacture  of from  paia- 

nitroacctanilide.  K.  Kasai,  Assr.  to  Mitsui 
Mining  Co.  TJ.S.P.  1,400,555,  20.12.21.  Appl., 
11.2.19. 

See  E.P.  126,944  of  1919;  J.,  1919,  892  a. 

Paint.    U.S.P.  1,401,034.    See  XIII. 


IV.-C0L0URING  MATTERS  AND  DYES. 

Azine  Scarlets;  Structure  and  colour  of  the  . 

J.  B.  Cohen  and  H.   G.   Crabtree.     Chem.   Soc. 
Trans.,  1921,  119,  2055—2070. 

Azdje  Scarlet  G  has  been  regarded  bitherto  as 
3-amino-7-dimethylamino-2-methylphenazine  metho- 
ehloride.  The  latter  substance,  however,  has  non- 
been  prepared  by  three  different  methods,  and  is 
found  to  be  a  magenta-coloured  substance.  Azine 
Scarlet  G  is  actually  3.7-diamino-2.8-dimethylphen- 
azine  methochloride  and  is  formed  by  heating 
p-aniinodiniethvl-p-toluidine  with  aminoazotoluene 
hydrochloride  (G.P.  86,608).  A  number  of  these 
compounds  have  now  been  prepared  and  it  is  found 
that  the  formation  of  the  quaternary  methochloride 
has  only  a  slight  effect  on  the  tint  of  the  parent 
hydrochloride;  the  transition  from  a  simple  amino- 
group  through  a  monoalkylated  to  a  dialkylated 
amino-group  is  accompanied  by  a  gradation  in  tint 
from  pure  scarlet,  through  scarlet-magenta,  to  pure 
magenta,  and  the  heavier  the  radicle  the  bluer  the 
shade;  the  transference  of  both  amino-groups  to 
the  same  nucleus  produces  a  fundamental  change 
in  colour;  the  replacement  of  a  benzene  by  a 
naphthalene  or  tetrahydroquinoline  nucleus  pro- 
duces little  change  in  tint;  and  the  absence  of 
radicles  in  the  nucleus  enhances  the  blueness  of  the 
shade.— F.  M.  R, 

H-Acid;  Estimation  of  -.     H.  R.  Lee.     J.  Ind. 

Eng.  Chem.,  1921,   13,  1049—1051. 

Comparative  experiments  in  which  H-acid  was 
titrated  with  diazobenzene  chloride  and  with 
p-diazotoluene  chloride  respectively  show  that  the 
rate  of  decomposition  of  diazobenzene  is  approxi- 
mately eight  times  as  rapid  in  acid  solution,  and 
one  and  a  half  times  as  rapid  in  alkaline  solution, 
as  that  of  p-diazotoluene.  Moreover,  the  rate  of 
coupling  of  p-diazotoluene  is  slightly  more  rapid 
than  that  of  diazobenzene,  whilst  the  secondary 
coupling,  which  is  marked  in  the  case  of  commercial 
samples  of  H-acid  titrated  with  diazobenzene,  is 
vary  slight  on  coupling  with  p-diazotoluene,  and 
consequently,  in  the  latter  case,  the  end-point  is 
more  definite.  The  use  of  p-diazotoluene  in  the 
estimation  of  H-acid,  y-acid,  J-acid,  S-acid,  and 
other  naphthol-  and  aminonaphtholsulphonic  acids 
is  recommended.     (Cf.  J.C.S.,  Feb.)— F.  M.  R. 

Hydroxyanthraquinones;  Preparation  of  — ■ —  from 
nitroanthraquinoncs.  E.  Schwenk.  J.  prakt. 
Chem.,  1921,  103,  106—108. 

Replacement  of  the  nitro  group  or  groups  of 
liitroanthraquinones  by  hydroxyl  may  be  readily 
effected  by  prolonged  heating  of  the  nitro-com- 
pounds  with  potassium  a-cetate  and  acetic  acid  in 
an    oil-bath    at    170°— 180°    C.     This    method    does 


not  result  in  a  similar  replacement  in  nitro-deriva- 
tives  of  the  benzene  or  naphthalene  series.  (Of. 
J.C.S.,  Feb.)— T.  H.  P. 

Isocyanines.     Hamer.     See  XXI. 

Picric  acid.    King.    .See  XXII. 


V.-FIBRES ;  TEXTILES;  CELLULOSE; 
PAPER. 

Cellulose;   Action    of   formaldehyde    on   .     M. 

Samec  and  S.  Ferjancic.      Kolloid-Chem.  Beih., 
1921,  14,  209—226. 

FoRMiLDEHYDE  reacts  with  cellulose  and  its  deriva- 
tives when  they  have  been  emulsified ;  the  products 
give  no  iodine  coloration,  but  after  washing  away 
the  formaldehyde  and  again  emulsifying  with  sul- 
phuric acid  the  iodine  coloration  may  be  obtained. 
The  charring  of  cellulose  derivatives  by  6trong 
sulphuric  acid,  and  the  esterification  are  strongly 
retarded  by  formaldehvde.     (Cf.  J.C.S.,  Feb.) 

—J.  F.  S. 

Cellulose.  VI.  Depolymerisation  of  ethyl  cellulose. 
K.  Hess  and  W.  "VVittelsbach.  Ber.,  1921,  54, 
3232—3241.    (C/.  J.,  1921,  688  a.) 

Acetolysis  of  ethylcellulose,  after  action  varying 
in  its  duration  from  2  to  144  hours,  gives  products 
which  in  very  dilute  solution  have  molecular  weights 
corresponding  with  those  calculated  for  a  tetra- 
ethylbiose  anhydride.  Depolymerisation  of  cellulose 
to  celluxose  occurs,  therefore,  with  much  greater 
readiness  than  has  been  assumed  previously.  {Cf. 
J.C.S.,  Feb.)— H.  W. 

Cellulose  stearate  and  laurate.  Preparation  and 
interchange  of  alkyl  groups  of  cellulose  esters. 
A.  Griin  and  F.  Wittka.  Z.  angew.  Chem.,  1921, 
34,  645—648.     (Cf.  J.,  1921,  226  a.) 

Cellulose  esters  of  the  higher  fatty  acids  are 
formed  by  acylation  of  cellulose  with  an  acid  chloride 
and  pyridine.  The  preparation  of  cellulose  distear- 
ate  and  dilaurate  is  best  effected  by  the  use  of  a 
large  excess  of  the  acid  chloride,  the  reaction  mix- 
ture being  diluted  with  benzene.  These  products 
are  white  fibrous  masses,  insoluble  in  the  usual  cellu- 
lose solvents,  but  soluble  in  fatty  acids  and  in 
glycerides  on  heating  to  about  200°  C.  Under  the 
microscope  the  fibres  are  cylindrical  and  swollen  to 
two  to  three  times  their  original  volume,  and  the 
lumen  has  partially  disappeared.  Sudan  III  pro- 
duces an  intense  scarlet-red  colour  with  cellulose 
distearate  and  dilaurate  which  is  not  removed 
by  50%  alcohol,  whereas  cellulose  or  cellulose 
steeped  in  fatty  acids  is  only  faintly  coloured, 
and  the  colour  is  completely  removed  by  50% 
alcohol.  These  cellulose  esters  give  wine-red 
colours  with  iodine  and  sulphuric  acid ;  the  fibre 
swells  but  little,  and  is  not  disintegrated.  Inter- 
change of  alkyl  groups  does  not  proceed  so  readily 
between  fatty  acid  ethyl  esters  and  cellulose  as 
with  glycerol.  The  interchange  of  alkyl  groups 
between  alcohols  and  the  cellulose  esters  of  the  lower 
fatty  acids  proceeds  readily,  but  the  esters  of  the 
higlier  fatty  acids  react  with  difficulty.  Thus,  cellu- 
lose triacetate  and  ethyl  alcohol  yield  cellulose 
monoacetate,  whereas  under  similar  conditions  but 
little  stearic  acid  is  removed  from  cellulose  distear- 
ate.   (Cf.  J.C.S.,  Feb.)— F.  M.  R. 

Incrusting  substances  of  plants.  II.  E.  Schmidt 
and  F.  Duvsen.  Ber.,  1921,  54,  3241—3244.  (Cf. 
J.,  1921,  764  a.) 
The  removal  of  incrusting  substances  is  effected 
more  conveniently  by  a  solution  of  chlorine  dioxide 
in  acetic  acid  (50%)  than  by  alternate  treatment 


vol.  XIX,  No.  3.]       Ct.   VI.— BLEACHING  ;    DYEING ;     PRINTING  ;     FINISHING. 


95  a 


with  chlorine  dioxide  and  sodium  sulphite ;  the 
method  has  the  advantage  that  the  attacked  incrus- 
tations remain  dissolved  in  the  acid.  After  this 
treatment,  the  presence  in  the  tissues  of  polysac- 
charides which  give  a  blue  coloration  can  be  ascer- 
tained by  means  of  zinc  chloride-iodine  solution 
which  gives  only  unreliable  results  in  the  presence 
of  incrustations.  The  simplicity  of  the  manipula- 
tion and  the  stability  of  the  solutions  render  the 
chlorine  dioxide-acetic  acid  mixture  valuable  for 
microchemical  investigations.  The  reagent  causes 
the  cell  walls  to  swell  somewhat,  but  this  action 
occurs  so  uniformly  that  the  structural  features  of 
plant  tissues  are  not  altered  thereby. — H.  W. 

Paper  palp;  Use  of  sodium  silicate  in  the  sizing  of 

.    T.  Blasweiler.    Papierfabr.,  1921,  19,  Fest- 

u.  Ausland-Heft,  43—50;  625—630,  809—816, 
875—877,  992—997,  1108—1111,  1217—1223, 
1322—1327,  1505—1511,  1512—1546. 

The  most  suitable  sodium  silicate  is  the  commercial 
water-glass  of  38°  B.  (sp.  gr.  1357)  containing 
35"45%  of  solid  polysilicate  of  the  composition  Na20, 
3'4Si03.  Precipitation  of  the  silica  by  aluminium 
sulphate  is  far  from  complete  when  the  reaction  is 
neutral  to  litmus,  owing  to  the  acidity  of  the  silicic 
acid,  but  88 — 89%  of  it  is  precipitated  when  alu- 
minium sulphate  is  added  to  definitely  acid  reaction, 
provided  the  solution  is  not  too  dilute.  Very  good 
results  are  obtained  with  printing  papers  by  the  use 
of  10%  of  the  dry  polysilicate  and  11%  of  pure  alu- 
minium sulphate,  A13(S04)3,18H.,0,  calculated  on 
the  air-dry  pulp.  Under  these  conditions;  without 
any  other  sizing  materials,  72%  of  the  silica  of  the 
polysilicate  is  precipitated  in  the  pulp ;  the  reten- 
tion of  loading  materials  is  substantially  increased, 
especially  when  talc  is  employed ;  the  strength, 
handle,  and  rattle  of  the  paper  are  greatly  improved 
and  the  paper  is  more  receptive  to  printing  ink. 
The  use  of  magnesium  sulphate  in  place  of  a  portion 
of  the  aluminium  sulphate  is  not  advantageous. 
When  the  silicate  is  used  with  rosin,  care  must  be 
taken  in  preparing  the  size  to  avoid  the  precipita- 
tion of  silica  before  it  is  added  to  the  pulp ;  this  is 
prevented  by  dissolving  the  powdered  rosin  in  a 
large  excess  of  water-glass,  corresponding  to  20 
times  the  theoretical  quantity  required  for  the  com- 
plete saponification  of  the  rosin  at  80°  C.  With  this 
mixture  and  sufficient  aluminium  sulphate  to  pro- 
duce an  acid  reaction  in  the  pulp,  well  sized  writ- 
ing papers  can  be  prepared  with  TO  or  even  05% 
of  rosin,  with  improved  strength,  handle,  and  load- 
ing material  efficiency,  as  compared  with  similar 
pulp  sized  with  3%  of  rosin.  Water-glass  also  shows 
advantages  when  mixed  with  fatty  acids,  gelatin, 
or  casein  and  used  for  engine  sizing  of  the  pulp, 
giving  superior  retention,  handle,  strength  and, 
above  all,  printing  qualities.  One  of  its  principal 
uses  is  in  conjunction  with  starch,  in  which  case 
equal  weights  of  starch  and  of  the  35%  water-glass 
are  heated  together  with  water  at  65°  C.  until  the 
starch  is  fully  gelatinised  and  the  mixture  is  then 
added  to  the  pulp.  Best  results  are  obtained  with 
10%  of  starch  and  10%  of  water-glass,  but  a  good  im- 
provement is  also  noted  with  5%  of  each  calculated 
on  the  weight  of  air-dry  pulp. — J.  F.  B. 

Sulphate   digester   gases;   Deodorisation   of   . 

G.  F.  Euderlein.  Paper,  Nov.  23,  1921,  9—10. 
The  gases  disengaged  when  a  sulphate  digester  is 
blown  are  effectively  deodorised  by  passing  them 
into  a  barometric  condenser.  A  suitable  form  con- 
sists of  two  standpipes,  24  in.  in  diam.,  water-sealed 
at  the  bottom,  and  connected  together  at  the  top 
by  a  cross  piece,  which  is  provided  with  a  safety- 
valve,  an  inlet  for  digester  gases,  and  two  small 
water  pipes,  one  for  each  standpipe.  Each  water 
pipe  extends  some  distance  down  the  centre  of  the 
standpipe,    and    is    provided    with    several,    e.g., 


14,  sprays.  The  vapours  from  the  digester  are 
rapidly  condensed  by  the  cold  water  sprays,  and  the 
sulphide  compounds  appear  to  be  oxidised  by  the 
air  dissolved  in  the  condenser  water,  with  the  result 
that  no  odour  can  be  detected  in  the  water  which 
collects  in  the  water-seal. — D.  J.  N. 

Copper  oxide-ammine-ceUulose  solutions.  Traube. 
See  VII. 

Pentosans.    Heuser  and  others.    See  XVII. 

Patents. 

Ethers  of  carhohydrates  having  the  empirical 
formula  (C^H^OJa  .  their  conversion  products  cm! 
derivatives;     Manufacture     of     compositions     of 

matter  and  technical  products   containing . 

L.  Lilienfeld.  E. P.  149,319, 14.5.20.  Conv.,  1.8.19. 

Alkyl  or  aralkyl  ethers  of  carbohydrates  of  the 
general  formula  (C6Hlc,05)n,  such  as  cellulose, 
starch,  dextrin,  and  their  derivatives,  either  alone, 
or  dissolved  in  volatile  organic  solvents,  such  as 
benzene,  carbon  tetrachloride,  etc.,  are  incorpor- 
ated with  the  oily  liquids  obtained  by  the  action  of 
acetylene  in  presence  of  aluminium  chloride  on  the 
hydrocarbons  of  high  b.pt.  (above  140°  C.)  occurring 
in  tar  oil  (E.P.  149,317;  J.,  1921,  840  a).  The  pro- 
perties of  the  resulting  products  may  be  modified  by 
the  addition  of  camphor,  cellulose  esters,  softening 
agents,  such  as  oils  and  phosphoric  esters  of  phenols, 
fillers,  or  colouring  agents.  By  this  process  pro- 
ducts are  obtained  suitable  for  the  manufacture  of 
plastic  masses,  artificial  films  or  filaments,  varn- 
ishes, insulators,  adhesives,  artificial  leather,  etc. 

— D.  J.  N. 

Cellulose;  Process  of  precipitating  from  vis- 
cose. Deutsche  Zellstoff-  Textilwerke  G.m.b.H. 
G.P.  342,641,  30.10.19.  Addn.  to  339,050  (J., 
1921,  690  a). 

The  salt  used  (cf.  loc.  cit.),  preferably  one  combin- 
ing with  water  of  crystallisation,  e.g.,  sodium  sul- 
phate, is  added  in  the  anhydrous  condition  to  the 
alkali-cellulose  before  its  conversion  into  xanthate, 
in  amount  greater  than  that  soluble  in  the  viscose 
solution.— T.  H.  Bu. 

Paper;  Manufacture  of  hard-sized  .     Holzver- 

kohlungs-Ind.     A.-G.       G.P.     342,255,     23.4.16. 
Addn.  to  339,594  (J.,  1921,  766  a). 

Fob  sizing  the  paper,  alkaline  solutions  are  used, 
which  contain  condensation  products  of  aldehydes 
with  phenols  or  hydroxy  naphthalene  compounds 
and  small  amounts  of  alkali  sulphites  or  other  suit- 
able materials  which  prevent  the  absorption  of 
oxygen  by  the  resin  solution.  Generally  an  addition 
of  05%  of  sodium  sulphite  is  sufficient  to  prevent 
coloration  of  the  alkaline  resin  solutions  by  the 
oxygen  of  the  air  and  give  a  well-sized  white  paper. 

— T.  H.  Bu. 

Nozzles  for  artificial  silk.    E.P.  160,152.    See  VIII. 

Diaphragms  for  electrolytic  cells.    G.P.  342,621  and 
343,705—6.    See  XI. 


VI.-BLEACHING :  DYEING;  PRINTING; 
FINISHING. 

Patents. 
Textile  materials;  Production  of  white  or  coloured 

effects  in .    Farbenfabr.  form.  F.  Bayer  und 

Co.    G.P.  341,270,  18.3.15. 

Insoluble  metal  compounds,  such  as  metal  soaps, 
tannates,  phosphates,  tungstates,  or  silicates,  are 
precipitated  on  dyed  or  undyed  textile  fibres  by 
means  of  oxidising  agents  such  as  permanganates  or 
chromates.    The  treated  fibre  is  worked  up  with  un- 


96  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.  [Feb.  15,  1922. 


treated  fibre  and  the  material  is  dyed  with  a  dye- 
stuff  not  fast  to  oxidising  agents  (with  the  excep- 
tion of  indigo),  and  the  reserve  removed. — L.  A.  C. 

Dyeing  with  vat  dyestuffs  in  alkaline  vats.     Kalle 
und  Co.,  A.-G.    G.P.  342,896,  8.11.16. 

The  tendency  of  certain  vat  dyestuffs  to  decompose 
during  storage  of  the  hot,  moist  dyed  fabric  after 
removal  from  the  vat  is  prevented  by  adding  to  the 
vat  ammonium  salts,  such  as  ammonium  chloride  or 
acetate.,  which  dissociate  and  liberate  acids. 

— L.  A.  C. 

[Mercerised]  fabrics;  Process  of  and  apparatus  for 

use  in  fixing  and  washing  out  in  the  piece. 

K.    Grunert    and    K.    E.    M.    Schreiner.      E.P. 
149,000,  12.7.20.    Conv.,  11.1.16. 

See  G.P.  312,087  of  1916;  J.,  1919,  897  a. 

Dyeing;  Process  of  .     Surpass  Chemical   Co., 

Assees.  of  H.  B.  Smith.     E.P.  158,531,  10.9.20. 
Conv.,  30.1.20. 

See  U.S.P.  1,368,298  of  1921;  J.,  1921,  213  a. 

Textile  fabrics  and  yarns;  Apparatus  for  treating 

with  liquids.    L.  Clarenbach.     E.P.  173,167, 

22.12.20. 

See  U.S.P.  1,389,627  of  1921;  J.,  1921,  766  a. 
Bleaching  agents.    E.P.  172,667.    See  XII. 

VII -ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitric  acid ;  Vapour  pressures  of  aqueous  solutions 

of .     AV.  C.  Sproesser  and  G.  B.  Taylor.     J. 

Amer.  Chem.  Soc,  1921,  43,  1782—1787. 

The  total  and  partial  vapour  pressures  of  nitric  acid 
solutions  of  the  concentrations  20%,  40%,  56%, 
68%,  and  80%  by  weight  have  been  measured  at 
0°  C,  35°,  50°,  65°,  and  80°  C.  A  table  for  each 
10%  increase  in  concentration  has  been  drawn  up 
for  every  10°  C,  based  on  smoothed  curves  plotted 
from  the  experimental  results.  An  excerpt  from 
the  table  is  given  below. 


Seger  gas  furnace.    The  results  obtained  with  alloys 
as  catalysts  indicate  that  the  best  catalysts  will  be 
found  within  the  range  of  composition,  Mn  55 — 65 
Cu  25—35,  Ag  5—15,  Fe  1—5,  Si  0—3%.— J.  F.  S. 

Iron  alum;  Colour  of .     J.  Bonnell  and  E.  P. 

Perman.     Trans.   Chem.   Soc,   1921,    119,   1994— 
1997. 

The  coloured  form  of  iron  ammonium  alum  is  the 
pure  form  of  the  salt.  No  appreciable  quantity  of 
manganese  was  found  in  the  coloured  crystals,  and 
the  alum  prepared  from  pure  precipitated  basic 
acetate  in  strong  acid  solution  is  always  coloured. 
The  colourless  variety  is  due  to  the  presence  of  ferric 
hydroxide  (probably  colloidal),  the  brown  colour  of 
which  neutralises  the  colour  of  the  alum.  Hydro- 
lysis of  the  salt  by  boiling,  in  the  absence  of  acid, 
produces  sufficient  hydroxide  to  neutralise  the 
colour  and  produce  colourless  crystals.  When 
strongly  acid  solutions  are  used  hydrolysis  is  pre- 
vented and  so  the  coloured  variety  of  the  alum  is 
obtained.— P.  V.  M. 

Thorium;  Estimation  of  in  monazite  sand  by 

an  emanation  method.    H.  H.  Helmick.  J.  Amer. 
Chem.  Soc.,  1921,  43,  2003—2014. 

Thorium  may  be  determined  in  monazite  sand  as 
follows :  The  sample  is  sieved  through  a  40  per  cm. 
mesh  and  dried  at  115° — 120°  C.  Two  grams  is  well 
mixed  with  5  g.  of  potassium  acid  fluoride  and  5  g. 
of  anhydrous,  recently  fused  metaphosphoric  acid 
and  slowly  brought  to  the  highest  temperature  ob- 
tainable with  a  Meker  burner  in  a  35  c.c.  platinum 
crucible.  A  further  5  g.  of  metaphosphoric  acid  is 
slowly  added  during  the  heating,  and  when  the  mass 
is  clear  it  is  allowed  to  cool.  After  cooling  20  c.c. 
of  80%  orthophosphoric  acid  is  added  and  the 
crucible  heated  in  an  air  bath  at  250° — 255°  C.  for 
3  hrs.,  the  solution  being  automatically  stirred  with 
a  platinum  wire;  in  this  way  a  viscous  solution  is 
obtained.  A  small  vessel  made  of  glass  and  fitted 
with  a  ground  stopper  and  inlet  and  outlet  tubes 
is  suspended  in  a  vessel  of  concentrated  sulphuric 
acid  at  190°— 200°  C,  and  the  liquid  from  the 
crucible  poured  in.  The  solution  vessel  is  removed 
from  the  acid,  allowed  to  cool,  and  the  remaining 


Composi- 

Partial pressures,  in  mm.,  at : 

tion  of 

solution, 

%  HNO, 

0°C. 

10°C. 

20°C. 

30°C. 

40°C.                  £0°C. 

60°C. 

70°C. 

80°C. 

by  wt. 

HaO 

HNO, 

H.O 

HNO, 

H20 

HNO, 

HsO 

HNO, 

H,0 

HNO, 

H20 

HNO, 

H,0 

HNO, 

H20 

HNO, 

HjO 

HNO, 

30 
40 
50 
60 
70 
80 

30 
2-5 
20 
1-5 
0-5 
0-5 

0-5 

2-5 

70 
6-5 
5-5 
40 
20 
1-5 

1-5 

4-5 

140 

12-5 

10-5 

80 

4-5 

2-5 

3-5 

80 

25-5 
210 
16-5 
11-6 
6-5 
4-5 

1-5 

60 

12-5 

41 
33-5 
25 
18-5 
13 
8-5 

0-5 

3-5 

9-5 

200 

67 

55 

42 

31 

21-5 

14 

0-5 

20 

5-5 

15-5 

320 

110 
91 
69 
51 
36 
23 

10 

4-5 

120 

25-5 

490 

176         — 

149         20 

117          70 

85  |    190 

58  |    41-5 

37       77-0 

258 
217 
176 
132 
89-5 
54 

10 

50 

120 

320 

640 

1250 

—J.  P.  s. 


Ammonia;  Manganese  in  the  catalytic  oxidation  of 

.    C.  S.  Piggot.    J.  Amer.  Chem.  Soc.,  1921, 

43,  2034—2045. 

Manganese  dioxide  alone  and  when  mixed  with 
copper  oxide  or  silver  oxide,  and  various  alloys  of 
manganese,  copper,  silver,  iron,  and  silica  act  as 
catalysts  in  the  oxidation  of  ammonia  to  nitric 
acid.  A  mixture  of  finely  divided  manganese  diox- 
ide with  40%  of  copper  oxide  has  an  efficiency  of 
over  90%  at  800°  C.  The  best  method  of  obtaining 
manganese  alloys  free  from  impurities  (iron,  carbon, 
silicon)  is  to  heat  the  charge  under  fused  sodium 
borate  in  a  crucible  made  of  a  mixture  of  magnesia 
and  iron  oxide,  enclosed  in  a  fireclay  muffle,  in  a 


contents  of  the  crucible  washed  in  with  two  quan- 
tities of  20  c.c.  of  water,  the  total  volume  made  up 
to  75  c.c,  and  the  vessel  closed  in  an  air-tight 
manner.  Electroscope  measurements  are  made  with 
a  blank,  prepared  in  exactly  the  same  way  as  the 
sample  except  that  the  monazite  is  omitted,  with  a 
standard  solution  containing  a  known  amount  of 
thorium,  and  with  the  sample  solution.  The  per- 
centage of  thorium  in  the  sample  (./■),  is  calculated 
by  means  of  the  expression 

x  =  A.T.  (T„  -  Tu)/Tu  (Tb  -  T,  ) 
in   which   A    is  the  percentage  of  thorium   in  the 
sample,  T.  is  the  time  of  discharge  of  the  electro- 
scope by  the  standard,  Tb  by  the  blank,  and  T„  by 


vol.  xli., No. 3]     Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


97  a 


the  sample.  Analyses  by  this  method  gave  results 
agreeing  well  with  results  obtained  by  gravimetric 
methods,  and  required  much  less  time  for  each 
determination. — J.  F.  S. 

Radioactivity  of  the  oxides  of  uranium.  C.  Staeh- 
ling.    Comptes  rend.,  1921,  173,  1468—1471. 

In  continuation  of  previous  work  (cf.  J.,  1920,  62  a) 
it  is  shown  that  the  green  oxide  of  uranium  which 
undergoes  loss  of  radioactivity  when  exposed  to  the 
air  in  thin  layers  undergoes  hydration  at  the  same 
time,  whereas  the  black  oxide,  obtained  by  calcin- 
ing at  high  temperatures,  does  not  hydrate  and 
shows  little  or  no  variation  in  radioactivity.  The 
activity  of  the  green  oxide  may  be  restored  by  cal- 
cining it  and  at  the  same  time  it  loses  slightly  in 
weight.  These  facts  tend  to  confirm  the  existence  of 
a  definite  black  oxide,  probably  an  allotropic  modi- 
fication of  the  green  oxide. — W.  G. 

Germanium.  Extraction  from  germanium-bearing 
zinc  oxide.  Non-occurrence  in  samarskite.  L.  M. 
Dennis  and  J.  Papish.  J.  Amer.  Chem.  Soc., 
1921,  43,  2131—2144. 

A  method  of  extracting  germanium  from  residues 
obtained  in  the  smelting  of  zinc  ores  is  described. 
The  residues  contain  zinc  oxide,  large  quantities  of 
lead,  arsenic,  and  cadmium,  and  small  quantities 
of  indium,  tin,  and  antimony,  in  addition  to  ger- 
manium. 1  kg.  of  the  crude  oxide  is  placed  in  a5-litre 
Pyrex  flask  connected  with  a  Liebig  condenser,  which 
leads  under  the  surface  of  water  contained  in  a 
4-litre  bottle.  Two  and  a  half  litres  of  hydrochloric 
acid  (sp.  gr.  1'18)  is  added  to  the  ore  and  the  flask 
heated  until  2  litres  of  distillate  has  been  collected. 
The  distillate  contains  all  the  germanium  and  much 
of  the  arsenic.  It  is  acidified  with  sulphuric  acid 
to  make  it  62V  and  treated  with  hydrogen  sulphide. 
When  precipitation  is  complete  it  is  allowed  to 
stand  for  24  hrs.,  filtered  by  suction  and  washed 
with  32V  sulphuric  acid  saturated  with  hydrogen 
sulphide.  The  filtrate  is  kept  for  48  hrs.,  when  a 
small  amount  of  germanium  sulphide  deposits ;  this 
is  worked  up  with  the  filtrate  from  the  next  lot. 
The  process  may  be  continued  in  two  ways.  I. 
The  moist  sulphides  are  added  to  hot  50%  sodium 
hydroxide  until  no  more  will  dissolve,  then  8  g.  of 
sodium  hydroxide  is  added  and  the  solution  placed 
in  a  Pyrex  flask  connected  with  a  condenser  and 
receiver.  Washed  chlorine  is  passed  in  to  oxidise 
the  arsenic.  When  the  solution  is  saturated  with 
chlorine  the  rate  of  entry  is  reduced  and  concen- 
trated hydrochloric  acid  added  in  large  excess.  The 
flask  is  heated  until  half  the  liquid  has  distilled 
over.  Germanium  chloride  passes  over  and  is 
hydrolysed  by  the  water  in  the  receiver,  forming 
hydrated  germanium  dioxide.  Most  of  the  ger- 
manium passes  over  in  the  first  distillation,  but  for 
complete  separation  the  process  must  be  repeated 
several  times.  The  hydrated  oxide  is  filtered  and 
washed,  first  with  dilute  sulphuric  acid,  then  with 
water,  and  dried  at  110°  C.  It  is  white  and  con- 
tains traces  of  sodium,  calcium,  and  iron,  but  no 
arsenic.  The  impurities  are  removed  by  solution 
in  sodium  hydroxide  and  a  repetition  of  the  dis- 
tillation in  chlorine.  II.  The  moist  sulphides  are 
washed  with  32V  sulphuric  acid  until  free  from 
chlorine  and  dried  at  110°  C.  They  are  then 
roasted  in  shallow  iron  dishes  at  temperatures  not 
exceeding  500°  C,  which  removes  most  of  the 
arsenic.  The  roasted  material  is  dissolved  in  50% 
sodium  hydroxide,  chlorinated  and  distilled  with 
twice  its  weight  of  hydrochloric  acid.  A  repetition 
of  the  distillation  removes  the  last  trace  of  arsenic. 
Either  process  gives  a  very  pure  germanium 
dioxide;  the  yield  is  better  by  the  first,  but  the 
second  is  more  rapid  and  economical.  Germanium 
in  ores  is  determined  by  grinding  20 — 100  g.  of  the 
finely  powdered,  dried  and  weighed  ore  into  a  paste 
with  water  and  pouring  into  a  solution  of  sodium 


hydroxide  in  a  hard  flask.  The  proportions  are : 
2  of  ore,  1  of  sodium  hydroxide,  and  5  of  water.  The 
flask  is  fitted  with  a  delivery  tube  for  leading  in 
chlorine,  a  fractionating  column,  and  a  tap  funnel. 
It  is  connected  with  a  Liebig  condenser  which  leads 
to  2  Erlenmeyer  flasks  in  series,  containing  water 
to  the  depths  of  3  cm.  and  half  full  respectively. 
The  receivers  are  cooled  with  ice.  The  distilling 
flask  is  surrounded  by  ice  and  the  contents 
saturated  with  chlorine,  the  solution  is  then 
neutralised  with  hydrochloric  acid  and  an  excess 
equal  to  twice  the  weight  of  the  ore  added.  The 
ice  is  removed  and  a  slow  distillation  in  chlorine 
carried  out  until  half  the  liquid  in  the  flask  has 
passed  over.  An  equal  volume  of  hydrochloric  acid 
is  added  to  the  distilling  flask  and  the  distillation 
continued  until  the  volume  is  again  reduced  by  one 
half.  This  is  then  repeated  once  more.  The  re- 
ceivers are  disconnected,  sulphuric  acid  added  to 
make  the  solutions  62V  and  the  solution  saturated 
with  hydrogen  sulphide  and  kept  for  24  hrs.  In 
a  successful  experiment  there  will  be  no  germanium 
in  the  second  flask.  The  precipitate  is  brought  on 
to  an  ashless  paper  and  washed  with  32V  sulphuric- 
acid  saturated  with  hydrogen  sulphide  until  free 
from  chloride,  then  washed  with  alcohol  to  remove 
the  acid  and  dried.  The  bulk  of  the  precipitate  is 
placed  in  a  porcelain  crucible,  moistened  with  111 
nitric  acid  and  warmed  to  drive  off  all  liquid, 
cooled,  treated  with  concentrated  nitric  acid,  dried 
and  ignited.  The  filter  paper  is  incinerated  in  a 
second  crucible,  treated  with  concentrated  nitric 
acid  and  ignited.  The  filtrate  from  the  germanium 
sulphide  is  kept  for  48  hrs.  and  filtered  and  the 
precipitate  treated  as  above.  The  combined  weight 
of  the  germanium  dioxide  in  the  crucibles  repre- 
sents the  germanium  in  the  ore.  Using  this  method 
the  amount  of  germanium  in  two  samples  of  the 
material  used  for  the  extraction  of  germanium  was 
f ound  to  be  0'247  %  and  0'19%  respectively.  Samars- 
kite has  been  analysed  by  this  method  and  found 
to  contain  no  germanium. — J.  F.  S. 

Alkaline  copper  hydroxide  solutions  and  copper 
oxide-ammine-cellulose  solutions.  W.  Traube. 
Ber.,  1921,  54,  3220—3232. 
The  term  "  alkaline  copper  hydroxide  solutions  " 
is  applied  to  the  aqueous  solutions  produced  from 
polyhydroxy  compounds,  copper  oxide  or  hydroxide, 
and  alkalis.  The  quantity  of  copper  hydroxide 
dissolved  by  solutions  of  glycerin  and  potassium 
hydroxide  in  which  the  concentration  of  the  latter 
remains  constant  increases  with  increasing  mole- 
cular ratio  of  alkali  to  glycerin  within  certain 
limits;  it  diminishes  with  increasing  dilution  of  the 
alkali.  Since  copper  hydroxide  is  not  soluble  in 
glycerin  or  in  alkali  hydroxide  solutions  of  the  con- 
centration used,  it  appears  that  the  action  depends 
on  the  initial  formation  of  alkali  glyceroxide  and 
reaction  of  the  latter  with  the  copper  hydroxide  to 
give  an  alkali  copper  glyceroxide.  The  behaviour 
of  polyhydroxy  alcohols  and  polyhydroxy  com- 
pounds in  general  is  similar  to  that  of  glycerol. 
The  place  of  the  fixed  alkalis  can  be  taken  by  the 
ethylenediamine  hydroxide  of  copper,  since  it  is 
found  that  the  addition  of  glycerol  enables  a  solu- 
tion of  ethylenediamine  saturated  with  copper 
hydroxide  to  dissolve  considerable  further  amounts 
of  the  latter.  A  similar  effect  is  produced  by 
mannitol  or  sucrose.  The  solubility  of  cellulose  in 
a  solution  of  the  ethylenediamine  hydroxide  of 
copper  is  also  to  be  attributed  to  the  formation  of 
an  alkoxide  compound  of  the  polyhydroxy  com- 
pounds produced  by  the  degradation  of  cellulose, 
since  it  is  found  that  a  solution  of  ethylenediamine 
saturated  with  copper  hydroxide  has  the  power  of 
dissolving  more  of  the  latter  after  being  treated 
with  cellulose.  The  ability  to  dissolve  cellulose, 
however,  is  a  specific  property  of  the  copper  solu- 
tions, since  the  ammine  compounds  of  other  metallic 


08  a 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON -METALLIC  ELEMENTS.         [Feb.  15,  1922. 


hydroxides,  which  in  all  probability  are  able  to  give 
rise  to  alkoxide  derivatives,  do  not  possess  this 
power.  The  same  conception  of  the  solution  of 
cellulose  must  be  extended  also  to  Schweizer's  solu- 
tion. Since  copper  hydroxide  is  relatively  but  little 
soluble  in  aqueous  ammonia,  it  is  not  possible  to 
obtain  concentrated  solutions  of  cellulose  directly, 
but  such  solutions  may  be  obtained  by  taking  advan- 
tage of  the  fact  that  Schweizer's  solution  saturated 
with  cellulose  has  the  power  of  dissolving  further 
amounts  of  copper  hydroxide  and  cellulose.  The 
explanation  of  the  phenomenon  is  found  in  the 
existence  in  solution  of  an  equilibrium, 

Cu(OH)2  +  4NH3±?[Cu(NH3)1](OH)2 ; 
in  proportion  as  the  ammine  is  removed  in  com- 
bination with  cellulose  or  the  products  of  its 
degradation,  the  equilibrium  is  displaced  towards 
the  right-hand  side  of  the  equation  and  further 
quantities  of  copper  hydroxide  can  be  dissolved. 
The  insolubility  of  cellulose  in  copperammdne  solu- 
tions which  have  been  treated  with  glycerol  is  due 
to  the  fact  that  the  copper  is  present  as  the  glycer- 
oxide.  The  precipitation  of  cellulose  by  glycerin 
from  its  solution  in  Schweizer'6  reagent  is  likewise 
explained.  Soluble  starch  behaves  towards  alkaline 
copper  hydroxide  solutions  in  the  same  manner  as 
the  other  polyhydroxy  compounds.  Ordinary 
starch  swells  and  becomes  intensely  blue  when 
brought  into  contact  with  ethylenediamine  solution 
saturated  with  copper  hydroxide;  the  colour  is  not 
removed  when  the  product  is  washed  repeatedly 
with  water.  The  substance  contains  nitrogen  and, 
possibly,  is  a  well-defined  compound  of  alkoxide 
nature. — H.  W. 

Lead   peroxide;    Direct    iodometric    estimation    of 

.  S.  Glasstone.    Trans.  Chem.  Soc,  1921,  119, 

1997—2001. 

Lead  peroxide  (02  g.)  or  red  lead  (0"5  g.)  is  weighed 
into  a  stoppered  bottle  containing  20  c.c.  of  36% 
hydrochloric  acid,  100  c.c.  of  water,  20 — 25  g.  of 
sodium  chloride,  and  about  1  g.  of  potassium  iodide  ; 
complete  solution  is  obtained  after  shaking  for  1 — 2 
minutes.  The  liberated  iodine  is  titrated  with  2V/20 
sodium  thiosulphate,  6tarch  being  added  near  the 
end-point.  Small  amounts  of  nitrate  have  no  effect 
on  the  result.  The  errors  of  the  Topf-Diehl  method 
(Z.  anal.  Chem.,  1887,  26,  277)  due  to  the  formation 
of  iodate  and  to  the  action  of  iodine  on  the  acetates 
used  are  obviated  by  the  use  of  hydrochloric  acid, 
sodium  chloride  so  increasing  the  solubility  of  the 
lead  peroxide  as  to  maintain  it  in  solution.  This 
method  can  be  applied  successfully  to  the  general 
estimation  of  lead,  particularly  of  lead  in  very 
dilute  solution,  i.e.,  containing  less  than  0"4%  Pb. 
The  lead  salts  are  oxidised  to  lead  peroxide  by  brom- 
ine in  boiling  alkaline  solution,  using  5%  caustic 
alkali  and  excess  of  bromine  and  keeping  the  mix- 
ture near  the  boiling  point  for  1 — 2  lira.  The  hot 
filter  containing  the  precipitated  lead  peroxide, 
washed  free  from  bromine  with  boiling  water,  is 
added  to  a  suitable  quantity  of  the  mixture  of 
hydrochloric  acid,  sodium  chloride,  and  potassium 
iodide  and  treated  as  above. — P.  V.  M. 

Catalytic  influence  of  foreign  oxides  on  the  decom- 
position of  silver  oxide,  mercuric  oxide,  and 
barium  peroxide.  J.  Kendall  and  F.  J.  Fuchs. 
J.  Amer.  Chem.  Soc,  1921,  43,  2017—2031. 

The  addition  of  cupric  oxide,  manganese  dioxide, 
ferric  oxide,  cerium  dioxide,  silica,  and  chromium 
trioxide  to  silver  oxide,  mercuric  oxide,  and  barium 
peroxide  increases  in  every  case  the  rate  of  evolu- 
tion of  oxygen  on  heating  and  in  most  cases  reduces 
the  decomposition  temperature.  In  the  case  of 
barium  peroxide  and  copper  oxide  the  decomposi- 
tion temperature  is  lowered  by  about  500°,  viz., 
from  about  825°  to  about  320°  0.— J.  F.  S. 


Copper    oxide;    Reduction    of    by    hydrogen. 

R.  N.  Pease  and  H.  S.  Taylor.     J.  Amer.  Chem. 
Soc.,  1921,  43,  2179—2188. 

The  reduction  of  copper  oxide  by  hydrogen  is  auto- 
catalytic,  metallic  copper  being  the  autocatalyst. 
The  reaction  takes  place  at  the  copper-copper  oxide 
interface.  The  presence  of  water  vapour  retards 
the  formation  of  the  copper  nuclei  but  does  not 
interfere  with  the  subsequent  action  at  the  inter- 
face; oxygen  has  the  reverse  action.  (Cf.  J.C.S., 
Feb.)— J.  F.  S. 

Selenium;    Constitution    of    .      H.    Pelabon. 

Comptes  rend.,  1921,  173,  1466—1468. 

The  grey  selenium  previously  described  (Comptes 
rend.,  1921,  172,  295)  is  6hown  to  be  a  mixture  of 
two  modifications.  The  a-modification  has  a  very 
high  specific  resistance  and  may  be  prepared  by 
heating  selenium  to  just  above  its  melting-point 
and  allowing  it  to  cool  slowly.  The  /J-modification 
has  a  very  6mall  specific  resistance  and  is  obtained 
if  molten  selenium  is  kept  at  a  temperature  just 
below  its  boiling-point  for  some  time  and  then 
allowed  to  cool.  The  /3-modification  is  not  stable  at 
low  temperatures  and  it  is  readily  changed  into  the 
a-form  by  oscillations  of  its  temperature  between 
15°  and  200°  C— W.  G. 

Silicon;  A  modification  of  soluble  in  hydro- 
fluoric acid.  W.  Manchot.  Ber.,  1921,  54,  3107— 
3111. 

Moissan  and  Siemens  (J.,  1904,  687)  have  observed 
the  formation  of  silicon  soluble  in  hydrofluoric  acid 
in  a  silver  regulus.  It  is  now  shown  that  it  is 
a  matter  of  some  difficulty  to  prepare  silicon  which 
is  completely  resistant  towards  hydrofluoric  acid  by 
Wbhler's  process  and  that  such  specimens  are  con- 
verted into  the  soluble  variety  by  molten  silver  only 
when  the  latter  is  cooled  suddenly.  The  silver  may 
be  replaced  by  aluminium.  Soluble  silicon  is  a  dark 
brown  or  pale  brown  amorphous  powder  which 
evolves  hydrogen  when  treated  with  hydrofluoric 
acid.    (Cf.  J.C.S.,  Feb.)— H.  W. 

Boiling  point  of  salt  solutions.  Vapour  pressure  of 
calcium  chloride  solutions.  Baker  and  Waite. 
See  I. 

Patents. 

Sulphuric  acid;   Process  for   the   manufacture   of 

.    M.  H.  Kaltenbach.    E.P.  159,156,  29.7.20. 

Conv.,  17.2.20. 

In  the  lead  chamber  process,  the  chambers  are  re- 
placed by  groups  of  vertical  tubes  of  about  80  cm. 
diam.,  water-jacketed  and  packed  with  Raschig 
rings  or  the  like.  The  tubes  in  any  one  group  are 
arranged  in  parallel  as  regards  gas  flow  and  acid 
feed,  and  can  be  supplied  with  Glover  acid,  Gay 
Lussac  acid,  or  water  in  any  desired  proportions. 
By  regulation  of  the  feed,  and  of  the  temperature 
by  means  of  the  water-jackets  it  is  claimed  that  the 
conditions  of  the  zone  of  greatest  intensity  of  action 
in  the  Glover  tower  can  be  reproduced  throughout 
the  system. — C.  I. 

Sulphur  oxides;  Process  for  the  preparation  of 

from  calcium  sulphate.  Badische  Anilin-  u.  Soda- 
Fabr.  G.P.  310,141,  24.5.16. 
Calcium  sulphate  is  caused  to  interact  with  am- 
monium carbonate,  and  the  ammonium  sulphate 
formed  is  treated  with  magnesium  oxide.  The  mag- 
nesium sulphate  produced  is  decomposed  by  heat 
and  used  again. — C.  I. 

Nitric  acid;  Process  of  making  highly  concentrated 

.    H.  Frischer.    G.P.  343,146,  17.5.18.  Addn. 

to  307,613  (J.,  1921,  623  a). 
The  nitric  acid  vapours  from  the  concentrator  are 
passed   through   the    inflowing   mixed   acids,    with- 


Vol. XIX, No. 3]      Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


99  a 


drawing  nitric  acid  from  the  latter.  Nitric  acid 
vapour  is  carried  down  with  the  descending  acid  and 
the  latter  is  thus  preheated  and,  in  the  balance,  en- 
riched with  nitric  acid. — C.  I. 

Nitrogen  dioxide  and  trioxide;  Process  for  the  pre- 
paration of  concentrated  - from  admixtures 

with   dry  gases.     Soc.   Anon.   L'Azote  Franeais. 
G.P.  342,412,  29.6,20.    Conv.,  18.7.19. 

The  gases  are  passed,  at  a  temperature  between 
atmospheric  and  -80°  C,  over  anhydrous  alumina 
which  has  been  dehydrated  at  a  low  temperature. 
The  resulting  addition  products  evolve  pure  nitro- 
gen oxides  of  constant  composition  by  heating, 
especially  under  a  partial  vacuum. — C.  I. 

Metal   oxides    [e.g.,   molybdenum   oxide'];   Process 

and  apparatus  for  obtaining    volatilisable  . 

F.  D.  S.  Robertson.    E.P.  147,470,  8.7.20.    Conv., 
16.12.18. 

Molybdenite  is  heated  in  a  current  of  oxygen  in  a 
suitable  receptacle  at  a  sufficiently  high  tempera- 
ture, whereby  sulphur  is  oxidised  to  sulphur 
dioxide,  and  volatile  molybdenum  oxide  produced, 
MoS2  +  70  =  Mo03  +  2S02.  The  gaseous  current  con- 
taining the  metallic  oxide  fumes  is  cooled  suffi- 
ciently to  allow  molybdenum  oxide  to  deposit  as  a 
sublimate,  then  enriched  with  oxygen  or  air,  and 
used  again,  the  process  being  continuous. — H.  R.  D. 

Molybdenum  trioxide;  Process  of  producing  . 

J.  W.  Weitzenkorn.     U.S. P.  1,401,932,  27.12.21. 
Appl.,  14.6.20. 

An  oxide  of  manganese  is  heated  with  molybdenite 
in  the  presence  of  oxygen. — A.  R.  P. 

Ammonia;     Process     and     apparatus     for     direct 

synthesis   of  .      L'Air   Liquide,    Soc.   Anon. 

pour  l'Etude  et  1'Exploit.  des  Proc.  G.  Claude. 
E.P.  150,744,  7.9.20.    Conv.,  8.9.19. 

In  the  synthesis  of  ammonia,  especially  at  very 
high  pressures,  the  rise  of  temperature  due  to  the 
heat  of  reaction  is  limited  and  controlled  by  passing 
a  portion  of  the  reacting  gases  directly  over  the 
catalytic  material,  without  preliminary  heating  in 
a  heat  exchanger,  and  mixing  them  with  another 
portion  of  the  gases  arriving  in  a  heated  condition. 
The  cold  gases  may  be  used  as  a  protecting  screen 
for  the  external  walls  of  the  reaction  chamber  in  ite 
most  exposed  zone  by  passing  a  portion  of  them  into 
an  annular  space  formed  by  an  inner  partition 
concentric  with  the  wall.  The  space  contains 
granules  of  non-catalytic  material  of  identical  6ize 
to  those  of  the  catalyst,  so  that  the  pressure  of  the 
gases  falls  correspondingly  with  the  fall  of  pressure 
in  the  catalyst  chamber,  into  which  the  cold  gases 
gradually  pass  through  orifices  in  the  partition. 

— H.  R.  D. 

Ammonia;  Process  for  the  preparation  of  — —  from 
ionised  nitrogen  and  nascent  hydrogen.  E.  R. 
Wotzel.    G.P.  342,622,  30.10.20. 

Nitrogen  or  gases  of  combustion  are  led  into  a 
narrow  heated  retort  which  is  at  the  same  time  fed 
with  carbon  which  may  be  mixed  with  metals  or 
metallic  oxides.  The  contents  pass  down  through 
a  discharge  of  high  tension  electricity  immediately 
below  which  steam  or  atomised  water  is  blown  in, 
in  the  eame  direction  as  the  stream  of  gas  and 
solids.  The  lower  part  of  the  shaft  is  strongly 
cooled  to  cause  condensation  of  the  ammonia 
formed. — C.  I. 

Nitrogen  fixation;  Apparatus  for  .  F.  Dar- 
lington, Assr.  to  Westinghouse  Electric  and  Mfg. 
Co.  TJ.S.P.  1,401,678,  27.12.21.  Appl.,  23.11.17. 
In  an  apparatus  for  effecting  a  catalytic  Chemical 
reaction,  such  as  the  fixation  of  nitrogen,  a  mixing 
device  is  employed,  formed,  in  part  at  least,  of  the 


catalytic  agent,  whereby  substantially  all  portions 
ot  the  material  to  be  treated  are  periodically  sub- 
jected to  the  action  of  the  catalyst. — J.  S.  G.  T. 

Ammonium   sulphate;   Apparatus   for  use   in   the 

uSiflSA  '      R-  p-  Douglas-  EP- 

The  salt  removed  from  the  saturator  is  transferred 
to  a  bucket  with  a  perforated  or  reticulated  base 
mounted  on  trunnions  and  fitted  with  a  suction 
chamber  underneath.  A  pipe  in  the  latter,  extend- 
ing from  the  upper  end  nearly  to  the  bottom,  pro- 
duces a  seal,  and  the  liquor  draining  off  passes 
through  a  bottom  outlet  back  to  the  store  tank  or 
saturator  The  apparatus  can  also  be  used  for 
washing  the  salt.-^C.  I. 

Ammonium    sulphide;    Conversion    of    into 

ammonium    sulphate.      Ges.    fur    Kohlentechnik 
m.b.H.     G.P.  342,623,  26.10.19. 

Ammonium  sulphide  in  aqueous  solution  either 
alone  or  mixed  with  other  substances  is  treated 
n  ltd  gases  containing  oxygen,  under  high  pressure 
and  with  warming.  In  this  way  ammonium  sul- 
phate alone  is  formed,  no  secondary  reactions 
occurring. — C.   I. 

Calcium  carbide;  Production  of .    Alby  United 

£a£    ,2„?o?tories>    Ltd>    and   J-    W-    Mitehley. 
E.P.  1/2,685,  10.8.20. 

An  agglomerate  is  produced  by  mixing  limestone 
with  pitch,  heavy  oils,  or  similar  hydrocarbons  and 
slowly  carbonising  the  mixture  in  a  chamber  or 
retort  above  700°  C.  during  a  period  of  20—40  hrs 
Ihe  agglomerate  is  then  extracted  from  the  furnace 
broken  to  a  suitable  size,  and  used  for  making 
calcium  carbide  in  the  usual  way. — H.  R.  D. 

Sodium    thiosulphate;   Manufacture    of   L 

Hargreaves     and     A.     C.     Dunningham.     '  E.p! 

Sodium  carbonate,  sulphur,  and  water  are  fed  into 
a  concentrated  solution  of  sodium  thiosulphate 
wherein  they  are  treated  with  gaseous  sulphur 
dioxide,  whilst  the  mixture  is  digested  and  circu- 
lated. The  reacting  substances  are  so  proportioned 
as  to  give  a  sodium  thiosulphate  solution  sufficiently 
concentrated  to  allow  crystallisation  without 
evaporation.  The  process  is  carried  out  in  an 
apparatus  consisting  essentially  of  a  tower  con- 
nected with  a  digester.  The  conversion  of  the 
sodium  carbonate  into  sulphite,  with  evolution  of 
carbon  dioxide,  takes  place  in  the  tower,  which  is 
fitted  with  inclined  shelves,  and  the  interaction  of 
sodium  sulphite  and  sulphur  takes  place  chiefly  in 
the  digester.  Means  are  provided  for  circulating 
the  mixture  between  the  tower  and  digester,  for 
destroying  froth,  and  for  withdrawing  a  portion  of 
the  sodium  thiosulphate  solution  through  a  filter 

— H.  R.  D." 

Electrolytic  cells,  more  especially  intended  for  use 
in  the  production  of  the  chlorates  of  the  alkali 
metals.  J.  T.  Barker,  and  The  United  Alkali 
Co.,  Ltd.     E.P.  173,028,  10.9.20. 

To  afford  a  maximum  superficial  area  for  a  given 
capacity,  relatively  to  the  current  employed,  the 
cell  is  made  of  a  greater  height  or  length,  or  both, 
at  the  expense  of  the  width.  The  cell  is  provided 
with  internal  walls  of  metal,  bare  from  a  little  below 
the  normal  level  of  electrolyte  to  a  little  above  the 
lower  end  of  the  anodes,  and  protected  by  cement 
or  other  material  at  other  parts  of  the  interior.  A 
bare  cooling  coil  is  immersed  in  the  electrolyte  and 
conjointly  with  the  bare  portion  of  the  internal 
walls  functions  as  cathode  and  cooling  means 

—J.  S.  G.  T. 


100  a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[Feb.  15,  1922. 


Potassium    carbonate;    Method    of    making    . 

I  F.  Harlow,  Assr.  to  The  Dow  Chemical  Co., 
Inc.  U.S. P.  1,400,542,  20.12.21.  Appl.,  16.6.16. 
Renewed  3.11.21. 
Alkaline  bittern  is  mixed  with  magnesium  car- 
bonate trihydrate,  and  subjected  to  the  action  of 
carbon  dioxide,  at  a  temperature  at  which  potassium 
magnesium  carbonate  is  precipitated  without 
separation  of  magnesium  chloride.  The  double 
6alt  is  then  decomposed  into  insoluble  magnesium 
carbonate  and  soluble  potassium  carbonate. 

— H.  R.  D. 

Alunite;     Method     of     calcining     .       H.     F. 

Chappell.  U.S. P.  (a)  1,401,136  and  (b)  1,401,137, 
27.12.21.  Appl.,  (a)  2.8.20  and  (b)  28.5.18.  (b)  re- 
newed 29.10.21. 

(a)  Alunite  is  calcined  at  a  temperature  in  excess 
of  that  at  which  potassium  sulphate  volatilises  until 
practically  all  the  potassium  compounds  are  con- 
verted into  potassium  sulphate,  and  aluminium 
compounds  into  aluminium  oxide.  To  prevent 
volatilisation  of  potassium  sulphate  during  the 
operation,  the  agglutinated  surface  film  produced 
by  the  partial  fusion  and  softening  of  the  potassium 
sulphate  is  removed  as  it  forms,  (b)  Alunite  is 
heated  alone  until  most  of  the  sulphur  oxides  has 
been  expelled  and  is  then  further  heated  by  com- 
bustion of  a  suitable  fuel  in  contact  with  it. 

— H.  R.  D. 

Alunite;  Process  of  treating .    M.  Shoeld,  Assr. 

to  Armour  Fertilizer  Works.     U.S. P.  1,401,741, 

27.12.21.  Appl.,  26.2.20. 
A  mixture  of  alunite  and  carbonaceous  material  is 
heated  in  a  reducing  atmosphere  at  a  temperature 
and  for  a  time  sufficient  to  decompose  only  part  of 
the  aluminium  sulphate  without  decomposing  or 
volatilising  any  of  the  potassium  sulphate. 

—A.  R.  P. 

Pyrophosphates;  Process  of  obtaining  acid  of 

the  alkali  and  alkaline-earth  metals.  Chem.  Fabr. 
Budenheim  L.  Utz  m.b.H.  G.P.  (a)  302,672, 
5.7.16,  (b)  342,209,  and  (c)  342,414,  4.8.16. 
Dihydrogen  ammonium  phosphate  is  heated  with 
(a)  its  equivalent  of  alkali  or  alkaline-earth 
hydroxide  or  carbonate,  or  (b)  alkali  chloride, 
acetate,  etc.,  or  other  alkali  salt  of  a  volatile  acid. 
2(NH,)H!P04  +  NaIC03  =  Na2H2P20,  +  2H20  +  2NH1 
+CO„.  (c)  The  impure  alkali  acid  pyrophosphate 
is  melted,  the  floating  impurities  removed,  and  the 
fused  salt  powdered,  treated  with  water,  and  dried 
at  210°  C— C.  I. 

Sodium  or  potassium  pyrophosphate ;  Process  of  pre- 
paring   acid   suitable    for    use    in    baking 

powder.  Chem.  Fabr.  Budenheim  L.  Utz  m.b.H. 
G.P.  (a)  342,207,  13.2.17,  (b)  342,208,  and  (c) 
342,797,  4.8.16. 
(a)  A  solution  of  commercial  trisodium  phosphate 
is  added  to  a  solution  of  the  salt  CaCl2,CaHPO<, 
and  the  washed  precipitate  treated  with  sodium  or 
potassium  bisulphate.  The  solution  of  alkali  di- 
hydrogen phosphate  produced  is  filtered,  evaporated, 
and  heated  to  200°— 220°  C.  (b)  Sodium  acid  pyro- 
phosphate is  prepared  by  the  interaction  of  calcium 
pyrophosphate  with  sodium  or  potassium  bisulphate 
or  with  a  mixture  of  sulphuric  acid  and  sodium  or 
potassium  sulphate,  in  calculated  quantities,  (c) 
Neutral  sodium  pyrophosphate  is  treated  with  the 
calculated  quantity  of  sulphuric  acid. — C.   I. 

Hydrosulphites;  Process  for   the   electrolytic   pre- 
paration of  .     A.-G.  fur  Anilin-Fabr.     G.P. 

342,796,  5.6.20. 
The    electrolyte    flows    past    the    cathode,    or    the 
cathode  moves  in   the  electrolyte,   with   a   velocity 


above  3'33  cm.  per  sec,  thereby  avoiding  a  loss  of 
current  efficiency  by  the  formation  of  a  neutral  or 
alkaline  deposit. — C.  I. 

( 'allium  and  magnesium  antimonides ;   Process   of 

preparing .      J.     D.     Riedel    A.-G.       G.P. 

305,025,  28.3.17.    Addn.  to  300,152  (J.,  1920,  22a). 

Antimony  is  used  in  place  of  arsenic  in  the  process 
described  previously;  e.g.,  a  mixture  of  antimony, 
calcium,  and  sand  is  fused,  cooled,  and  powdered, 
and  the  residue  used  for  fresh  treatment.  The 
antimonide  is  suitable  as  a  starting  point  for 
pharmaceutical  antimony  preparations. — C.  I. 

Sulphur;  Process  for  the  preparation  of  from 

calcium  sulphate.  Badische  Anilin-  u.  Soda-Fabr. 
G.P.  (a)  304,302,  3.11.16,  and  (b)  305,552,  4.11.16. 
Addns.  to  302,433  (J.,  1920,  365  a). 
(a)  The  solid  fuel  necessary  for  heating  the  sulphate 
to  the  temperature  of  decomposition  is  wholly  or 
partly  replaced  by  combustible  gas  or  steam,  (b) 
In  the  upper  part  of  the  shaft  furnace  reducing 
gases  or  vapours  are  blown  in  to  assist  in  the  re- 
duction of  sulphur  dioxide. — C.  I. 

Sulphur;    Separation    of    from   suspensions. 

Badische   Anilin-   u.    Soda-Fabr.      G.P.   342,795, 
19.10.19. 

Sulphur  is  separated  from  suspension  in  solutions 
used  for  gas  purification  by  mixing  with  the  latter 
a  little  mineral  oil  or  tar-oil,  which  on  rising  to 
the  surface  carries  the  sulphur  particles  with  it. 

— C.    I. 

Hydrogen  and  carbon  dioxide;  Method  of  making 
.     W.  North.     G.P.  343,391,  9.1.18. 

In  the  process  which  consists  of  treating  heated 
carbon  with  steam  in  pressure-tight  vessels,  a  high 
pressure  is  used  and  the  carbon  dioxide  removed 
from  the  gas  as  soon  as  formed. — C.  I. 

Sulphuric  acid;  Process  of  making  .      C.   J. 

Reed.     E.P.  173,060,  20.9.20. 
See  U.S. P.  1,363,918  of  1920;  J.,  1921,  146a. 

Modifying  physical  characteristics  of  solid  reaction 
products.    E.P.  144,663.     See  I. 

Apparatus  for  chemical  production.    E.P.  149,915. 
See  I. 


VIII.-  GLASS;    CERAMICS. 

Glass;  Dissociation  of  ferric  oxide  dissolved  in 

and  its  relation  to  the  colour  of  iron-bearing 
glasses.  J.  C.  Hostetter  and  H.  S.  Roberts.  J. 
Amer.  Ceram.  Soc.,  1921,  4,  927—938. 

Above  1300°  C.  ferric  oxide  is  dissociated  appreci- 
ably with  the  formation  of  oxygen  and  ferrous 
oxide.  The  same  reaction  takes  place  in  glass.  The 
percentage  of  the  iron  present  as  ferrous  oxide  in 
a  diopside  glass  (CaSi03,MgSi03)  to  which  8%  of 
iron  as  ferric  oxide  had  been  added,  varied  with  the 
temperature  at  which  the  glass  had  been  fired  as 
follows:  1400°  C,  20%;  1500°  C,  30%;  1600°  C, 
45%,  while  with  a  series  of  crown  glasses  the  follow- 
ing results  were  obtained: — 0'6  K.O,  0'4  CaO, 
2SiO,:  1310°  C,  5-8%;  1555°  C,  10-1%;  03  K20, 
0-3  Na,0,  0-4  CaO,  2Si02 :  1020°  C,  4"1%.  In  the 
two  latter  glasses  a  dissociation  of  10%  produced  a 
bright  green  colour,  while  with  a  dissociation  of 
4-l  %  the  colour  was  yellow.  Iron  compounds  in  a 
glass  may  therefore  be  "  reduced  "  by  heating  to  a 
high  temperature  under  oxidising  conditions.  The 
intensity  of  the  colour  due  to  iron  is  closely  related 
to  the  composition  of  the  glass,  but  further  investi- 
gation is  required  before  definite  conclusions  can  be 
drawn.— H.  S.  H. 


Vol.  XLI.,  No.  :S.| 


Ct,.  VIII.—  GLASS:  CERAMICS. 


101a 


Chui  mixtures  [for  glass  pots] ;  A  study  of  some  bond 

.   D.  H.  Fuller.    J.  Amer   Coram.  Soc.,  1921, 

4,  902— 915. 
Two  American  ball  clays  were  combined  in  various 
proportions  with  two  silicious  American  bond  clays 
and  compared  with  Gross  Almerode  clays  in  bodies 
containing  50%  'of  grog  as  regards  physical  proper- 
ties and  resistance  to  corrosion  by  a  glass  batch. 
It  was  concluded  that  it  was  possible  by  blending 
American  clays  to  produce  a  body  equal  or  superior 
to  the  Gross  Almerode  body.  A  more  thorough  heat 
treatment  of  pots  or  tank  blocks  in  the  arches  and 
greater  uniformity  in  temperature  during  the  burn- 
ing would  be  beneficial. — H.  S.  H. 

Silica  brick;  Variation  in  heat  treatment  of  a 

in  the  crown  of  a  tunnel  kiln.  A.  A.  Klein  and 
L.  S.  Ramsdell.  J.  Amer.  Ceram.  Soc.,  1921,  4, 
805—811. 

An  unused  silica  brick  consisted  roughly  of  25%  of 
quartz,  55  '  of  cristobalite,  and  20°-  of  tridymite. 
A  similar  brick  after  use  in  the  arch  of  a  Dressier 
tunnel  kiln  was  divided  into  three  portions.  The 
outer  (cooler)  end  did  not  differ  from  the  unused 
brick,  but  the  inner  (hotter)  end  was  tridymite  with 
a  relatively  small  amount  of  cristobalite  and  no  un- 
changed quartz.  The  middle  of  the  brick  was  com- 
posed of  tridymite  and  cristobalite  with  a  little  un- 
inverted  quartz.  It  was  concluded  from  the  micro- 
scopical examination  that  the  temperature  of  the 
cooler  end  of  the  brick  had  not  been  greater  than 
1250°  C.  and  that  of  the  hotter  end  had  not  been 
greater  than  1470°  C— H.  S.  H. 

Clay  particles;  Sedimentation  as  a  means  of  classi- 
fying extremely  fine .    H.  G.  Schurecht.    J. 

Amer.  Ceram.  Soc,  1921,  4,  812—821. 
The  rate  of  sedimentation  of  clays  was  determined 
by  weighing  a  glass  plummet  suspended  in  a  clay 
slip  at  different  intervals  of  time.  The  specific 
gravity  of  the  slip  remaining  in  suspension  is  ob- 
tained by  dividing  the  difference  between  the 
weights  of  the  plummet  in  air  and  suspended  in  the 
slip  by  the  difference  between  its  weights  in  air  and 
when  suspended  in  distilled  water.  The  average 
weight  of  clay  per  c.c.  is  given  by  D(S-d)/(D-d), 
where  D,  S,  and  d,  are  the  specific  gravities  of 
the  clay,  the  clay  slip,  and  water.  By  this 
method  it  is  possible  to  classify  particles  as  small 
as  0"0001  mm.,  whereas  particles  smaller  than 
0003  mm.  (which  constitute  more  than  half  of  many 
clays)  cannot  be  separated  by  elutriation.  The  sedi- 
mentation test  is  also  quicker,  less  subject  to  tem- 
perature variations  with  their  accompanying  errors, 
and  maintains  maximum  deflocculation  throughout 
the  test  since  the  electrolyte  content  remains  con- 
stant. English  ball  clay  had  the  highest  percentage 
of  clay  substance  (i.e.,  particles  less  than  O'OIO  mm.) 
of  any  of  the  clays  examined. — H.  S.  H. 

Porcelain    for    technical    electrical    purposes.      O. 
Boudouard.     Chim.  et  Ind.,  1921,  6,  583—591. 

Actual  porcelain  insulators  of  different  makes  were 
examined.  Chemical  analyses,  and  the  chemical 
composition  referred  to  SiO.  =  100,  were  determined. 
The  fractures  of  the  insulators  are  described,  and  a 
list  of  the  causes  of  accidents  to  insulators  in  use 
etc.  is  given.  A  great  variation  in  the  composition 
of  porcelains  for  electrical  insulators  etc.  was 
found,  the  silica  ranging  from  63'3  to  74"5%,  alu- 
mina from  2045  to  2975%,  and  alkalis  from  32 
to  64%.  Lime,  which  is  often  introduced  deliber- 
ately, varied  from  1'9  to  40%.  The  porcelains 
examined  could  be  divided  into  three  groups,  viz., 
RO,  35  A1,03,  157  SiO.;  RO,  38  Al,03.2112  SiO.; 
[(K,Na).0,CaO]  2'47  A120„  9"62  SiO...  An  exami- 
nation of  insulators  which  had  failed  in  use  showed 
that  the  porcelain  was  either  very  silicious  or  very 


calcareous.  The  permeability,  resistance  to  crush- 
ing, and  the  effect  of  plunging  alternately  in  boiling 
and  cold  water  were  studied.  Porcelains  corre- 
sponding to  the  types  shown  were  prepared  from 
felspar,  kaolin,  calcium  carbonate,  and  Fontaine- 
bleau  sand,  and  specimens  heated  to  1365°  C.  and 
1500°  C.  were  examined  microscopically.  It  was 
found  that  the  formation  of  sillimanite  depended  on 
the  temperature  to  which  the  porcelain  was  baked, 
the  duration  of  heating,  and  the  composition  of  the 
porcelain.  Lime  and  magnesia  favour  the  forma- 
tion of  sillimanite.  The  production  of  sillimanite  by 
heating  mixtures  of  silica  and  alumina  or  kaolin  and 
alumina  either  with  or  without  the  presence  of 
2 — 5%  of  fluxes  (boric  anhydride  or  fluorides)  was 
particularly  difficult.  The  presence  of  sillimanite 
improves  the  properties  of  porcelain. — H.  S.  H. 

Porcelain   bodies;   Use   of  special   oxides   in  . 

R.  F.  Geller  and  B.  J.  Woods.     J.  Amer.  Ceram. 
Soc.,  1921,  4,  842—854. 

The  oxides  of  thorium,  titanium,  and  zirconium, 
and  zirconium  silicate  were  substituted  for  flint  in 
the  porcelain  body  with  a  view  to  increase  the 
electrical  resistivity  of  the  porcelain  and  the 
mechanical  strength  as  affected  by  thermal  changes. 
Variations  in  composition  were  based  on  batch 
weights,  the  percentage  of  oxide  (or  silicate)  in- 
creasing from  27  to  49%  with  a  corresponding 
decrease  in  the  felspar  content.  A  similar  series 
using  flint  was  also  made  as  a  basis  for  comparison. 
Rutile  caused  high  drying  and  burning  shrinkage. 
The  burning  range  was  long  although  softening 
resulted  above  cone  12.  The  resistance  to  spalling 
(measured  by  heating  the  specimens  to  500°  C, 
plunging  into  running  water,  and  repeating  until 
failure  occurred)  was  above  the  normal.  Thoria  in 
place  of  flint  produced  a  body  with  a  long  burning 
range  and  a  high  refractoriness.  The  only  body 
reaching  maturity  was  that  containing  the  lowest 
percentage  of  thoria  (27%).  The  drying  shrinkage 
was  normal,  the  burning  shrinkage  very  high,  and 
the  resistance  to  spalling  very  low,  and  the  bodies 
warped  badly.  Bodies  with  zirconia  replacing  flint 
had  >a  normal  drying  shrinkage,  a  high  burning 
shrinkage,  no  warping,  a  long  firing  range,  and 
the  highest  resistance  to  spalling,  viz.,  four  times 
as  great  as  for  flint  bodies.  The  zirconium  silicate 
bodies  softened  at  temperatures  below  cone  18  and 
the  firing  range  was  short,  owing  to  the  tendency 
of  zirconia  to  form  an  eutectic  with  silica.  The 
drying  and  burning  shrinkages  were  similar  to  those 
with  the  flint  body,  but  the  resistance  to  spalling 
was  above  the  normal.  At  the  higher  temperatures 
the  specimens  tended  to  warp  and  blister  and  this 
tendency  increased  with  increasing  amount  of 
zircon.  The  electrical  resistance  was  practically  the 
same  for  all  the  specimens,  including  the  flint  body. 
Alkalis  reduce  the  resistivity  of  porcelains.  A  body 
prepared  by  substituting  zirconia  for  flint  and  a 
prepared  flux  (made  by  heating  18'2%  of  magnesium 
carbonate,  56%  of  kaolin,  and  25'8%  of  flint  to 
cone  13)  for  felspar  gave  a  high  electrical  resistivity. 

— H.  S.  H. 

Whiteware    fired    in    carborundum    saggars;    Dis- 
coloration of .  H.  Spurrier.   J.  Amer.  Ceram. 

Soc.,  1921,  4,  923—926. 

The  presence  of  finely  divided  iron  in  carborundum 
saggars  was  shown  by  subjecting  crushed  portions 
of  new  saggars  to  the  action  of  an  electro-magnet 
and  examining  the  metal  particles  removed.  It  is 
suggested  that  iron  carbonyl  is  formed  by  the 
action  of  carbon  monoxide  on  the  carborundum 
saggars,  and  that  it  is  condensed  in  the  central 
portion  of  the  bung,  then  trickles  down  the  ware 
and  is  later  decomposed  giving  iron  and  free  carbon 
which  discolour  the  ware.  Laboratory  experiments 
confirmed  this  theory. — H.  S.  H. 


102  a 


Cl.   VIII.— GLASS  ;   CERAMICS. 


[Feb.  15,  1922. 


Terra  cotta  casting;  Possibilities  of  — — .      R.  F. 
Geller.     J.  Amer.  Ceram.  Soc.,  1921,  4,  883—895. 

The  casting  properties,  viscosity,  specific  gravity, 
and  drying  behaviour  of  three  kaolins,  two  ball 
clays,  one  fireclay,  four  representative  commercial 
bodies,  and  terra  cotta  clays  were  examined.  The 
clays  and  bodies  were  blunged  with  varying  amounts 
of  salts  and  cast  in  the  form  of  small  ashlars.  The 
open  structure  of  the  kaolins  was  a  desirable  feature 
in  casting,  but  they  did  not  possess  sufficient  bond- 
ing properties.  The  ball  clays  had  sufficient 
bonding  properties,  but  they  formed  a  skin  against 
the  mould  which  was  too  dense  to  allow  the  further 
absorption  of  water  from  the  slip.  Fireclays  had 
the  general  casting  properties  of  either  a  kaolin  or 
ball  clay  depending  on  their  structure  and  on  their 
potential  casting  properties  due  to  the  salts  which 
they  contained  as  impurities.  The  commercial 
terra  cotta  bodies  tested  did  not  possess  good  cast- 
ing properties,  but  these  could  be  modified  by 
studying  the  component  clays.  The  mechanical 
difficulties  attending  the  casting  of  terra  cotta 
render  the  feasibility  of  the  process  doubtful  at  the 
present  time. — H.  S.  H. 

Terra    cotta;    Humidity   system    of    drying    . 

F.  B.  Ortman  and  H.  E.  Davis.    J.  Amer.  Ceram. 
Soc.,  1921,  4,  796—804. 

The  theory  of  humidity  drying  is  discussed  and  the 
construction  and  operation  of  a  five-room  dryer 
installed  above  a  tunnel  kiln  and  supplied  with  an 
automatic  temperature  and  humidity  control  and 
air  circulation  is  described.  It  is  claimed  that  with 
the  new  dryer  there  is  a  reduced  steam  consump- 
tion, a  50%  reduction  in  the  floor  space  required 
and  in  the  drying  time,  reduced  losses  from  cracking 
and  warping,  and  reduced  labour  costs  owing  to  the 
elimination  of  a  second  handling  of  incompletely 
dried  pieces. — H.  S.  H. 

Glazes ;  Hardness  of .     G.  Blunienthal,  jun.     J. 

Amer.  Ceram.  Soc.,  1921,  4,  896—901. 

A  .hardened  tungsten  steel  point  was  allowed  to 
bear  on  the  glazed  surface  for  3  niins.  under  a 
pressure  of  50  lb.,  the  hardness  being  calculated 
from  the  diameter  of  the  resulting  indentation.  The 
results  agreed  to  about  5%,  the  presence  of  ridges 
and  bubbles  in  the  glazes  being  the  principal  cause 
of  discordant  readings.  The  enamels  showed  the 
lowest  and  the  porcelain  glazes  the  greatest  hard- 
ness, while  the  whiteware  glazes  occupied  an 
intermediate  position.  There  was  a  well-defined 
difference  between  the  enamels  and  the  whiteware 
glazes  and  between  the  latter  and  the  porcelain 
glazes,  but  there  was  not  a  sharp  separation 
between  the  lower  and  higher  fired  porcelain  glazes. 
Increased  firing  of  the  same  glaze  increased  the 
hardness,  as  did  also  an  increase  in  the  alumina 
content  of  the  glaze.  The  thickness  of  the  glaze 
was  also  an  important  factor  in  its  hardness. 

— H.  S.  H. 

Enamels;  Production  of  some  white for  copper. 

R.  R.  Danielson  and  H.  P.  Reinecker.     J.  Amer. 
Ceram.  Soc.,  1921,  4,  827—834. 

Twenty  enamel  compositions  were  studied.  It  was 
found  that  correct  melting  was  extremely  important 
in  the  preparation  of  copper  enamels.  Slow  air 
cooling  of  the  frit  was  preferable  to  quenching  in 
water,  and  repeated  melting  promoted  opacity  and 
eliminated  dissolved  gases.  A  slightly  reducing 
atmosphere  during  firing  avoided  the  oxidation  of 
the  copper.  Sodium  oxide  improved  the  gloss  but 
reduced  the  opacity.  Lead  oxide  increased  the 
fusibility  without  materially  reducing  the  opacity. 
Cryolite  was  undesirable  as  it  tended  to  develop  a 
matt  finish.  The  boric  acid  content  should  be  low, 
and    good    enamels    were    produced    without    it. 


Arsenious  oxide  can  replace  tin  oxide  as  an  opaci- 
fier.  The  compositions  of  the  most  suitable  enamels 
are  given. — H.  S.  H. 

Patents. 
Glass  nozzles  for  use  in  the  production  of  artificial 
silk  and  other  fibres  by  spinning;  Manufacture 

of .    R.Schwarzkopf.    E. P.  160,152,  3.11.20. 

Conv.,  12.3.20. 
A  long  cylindrical  mould,  traversed  longitudinally 
by  strands  of  wire  stretched  between  two  fireproof 
perforated  discs,  is  filled  with  molten  glass  through 
an  inlet  at  or  near  the  bottom,  preferably  by 
creating  a  vacuum  in  the  mould.  The  6olid  glass 
cylinder  thus  obtained  is  cut  into  discs,  and  the  wire 
removed  chemically.  The  wire  may  be  made  from 
any  metal  which  resists  oxidation,  e.g.,  nickel  or 
silver,  and  the  glass  used  should  be  one  which  has 
a  relatively  low  melting  point. — D.  J.  N. 

[Tank    glass    melting']    furnaces.     R.    L.     Frink. 
E.P.  169,789,  2.7.20. 

A  tank  glass  melting  furnace  has  at  both  sides 
air  and  gas  passages,  preliminary  combustion 
chambers,  and  ports  for  the  discharge  of  the  burn- 
ing gases  into  the  furnace  arranged  so  that  the  gas 
is  introduced  into  the  air  stream  as  a  number  of 
jets,  and  an  intimate  mixture  of  air  and  gas  con- 
taining -an  excess  of  air  is  produced.  Reducing 
ga6es  are  thus  prevented  from  coming  into  contact 
with  the  melting  batch  materials  and  the  melted 
glass,  so  that  even  lead  glass  can  be  melted  without 
discoloration.  The  discharge  ports  for  the  products 
of  combustion  are  so  placed  that  the  latter  travel 
lengthwise  along  the  furnace  and  are  practically  all 
discharged  before  reaching  the  working  end  of  the 
furnace.  The  products  of  combustion  pass  after 
discharge  through  recuperators  used  for  heating  the 
incoming  air. — H.  S.  H. 

Glass-annealing    furnace;    Electric    .     O.     A. 

Colby,  Assr.  to  Westinghouse  Electric  and  Mfg. 
Co.     U.S. P.  1,401,674,  27.12.21.     Appl.,  7.4.20. 

The  top  and  bottom  walls  of  an  electrically  heated 
glass-annealing  furnace  are  constituted  of  a  pair  of 
resistor  blocks  of  conducting  refractory  material 
through  which  current  is  passed.  Adjacent  faces 
of  the  blocks  diverge  slightly  outwards,  and  the 
furnace  is  provided  with  a  cover  having  a  central 
opening  for  the  insertion  between  the  resistor  blocks 
of  material  to  be  treated. — J.  S.  G.  T. 

Mica,  mica  compounds,  and  the  like;  Adaptation, 

construction,    and    reconstruction    of    for 

industrial  and  domestic  purposes.    P.  B.  Crosslev. 
E.P.  169,769,  23.6.20. 

Pieces  of  mica  or  mica  compounds,  including  non- 
fragile  glass  manufactured  as  described  in  E.P. 
152,780  (J.,  1920,  820  a)  are  placed  in  contact,  and  a 
vitreous  material  or  glass,  which  melts  at  a  tem- 
perature below  that  at  which  mica  or  the  mica  com- 
pounds used  are  dehydrated,  and  which  then  com- 
bines with  and  dissolves  the  mica  etc.,  is  applied 
at  the  joint.  The  joint  is  heated  by  a  blow  pipe 
or  by  placing  in  a  furnace  until  the  glass  is  molten, 
but  pressure  need  not  be  applied.  The  melting 
point  of  the  vitreous  material  or  glass  may  be 
lowered  by  the  addition  of  metallic  oxides  or  borates 
or  borosilicates,  boric  acid,  etc.  Similarly  mica  or 
mica  compounds  can  be  joined  to  glass  or  metals  by 
using  a  suitable  solvent. — H.  S.  H. 

Vacuum    insulated    vessels.     Chem.    Werke   vorm. 

Auerges.  m.b.H.     E.P.  157,378,  10.1.21.     Conv., 

29.11.19. 
Double-walled  vacuum  heat-insulating  vessels, 
having  copper  coatings  for  the  reflecting  surfaces, 
are  heated  during  exhaustion,  reducing  gases  (e.g., 
hydrogen)  being  employed  in  the  space  enclosed  by 
the   double   walls.     The   copper   surfaces   are   thus 


Vol. XIX, No. 3]      Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;    METALLURGY,  &c.     103a 


freed  from  oxide.  In  order  to  remove  the  remainder 
of  the  gas  the  vessels  are  heated ;  a  higher  tem- 
perature (above  300°  0.)  can  be  used  than  witin 
silvered  surfaces,  and  thus  a  better  vacuum  is 
attained.— H.  8.  H. 

Porcelain,  pottery,  china,  and  the  like  electrically 
non-conductive    substances;    Metallising    articles 

made    of    .      Q.     Marino.       E.P.     172,723, 

11.9.20. 
Porcelain,  china,  etc.,  are  coated  with  metals  by 
first  removing  the  glaze,  applying  to  the  surface  of 
the  article  a  10%  solution  of  silver  nitrate  dis- 
solved in  alcohol  (or  alcohol  and  ether),  allowing  the 
solvent  to  ovaporate,  applying  a  solution  of  formic 
acid,  or  of  sodium,  potassium,  or  ammonium  for- 
mate, brushing  with  a  fine  wire  brush,  dipping  the 
article  in  a  solution  of  silver  cyanide  (about  3  oz.  of 
metallic  silver  per  quart  of  water)  at  90° — 100°  P. 
(32°— 38°  C),  and  then  washing  in  cold  water.  The 
surface  has  then  a  silver  coating,  and  can  be  plated 
with  a  metal  or  a  metallic  alloy  in  the  usual  manner. 

H.  S.  H. 

Basic  refractory  brick.     S.  B.  Newberry.     U.S. P. 

1,400,087,  13.12.21.  Appl.,  19.11.20. 
Basic  refractory  brick  is  made  by  calcining  a  mix- 
ture of  lime  and  argillaceous  matter  in  such  pro- 
portions that  the  resulting  clinker  will  not  disinte- 
grate after  long  continued  heating  or  on  exposure 
to  air,  adding  to  the  clinker  a  mixture  of  lime  and 
argillaceous  matter  of  greater  fusibility  than  the 
clinker,  moulding  the  mixture  into  blocks,  and 
burning  the  blocks  at  approximately  the  tempera- 
ture used  in  burning  ordinary  firebrick. 

Kiln;  Ring  with  smoking  device.     M.  Grimm. 

G.P.  341,971,  11.8.18. 
Three  longitudinal  flues,  i.e.,  a  waste  gas  flue  and 
two  smoke  flues,  one  above  the  other,  pass  through 
the  centre  of  the  kiln  and  are  connected  by  vertical 
passages  regularly  arranged  with  the  cross  flues 
above  the  chamber  and  also  with  the  bottom  flue. 
The  advantages  obtained  are  simplification  of  the 
closing  gear  and  economy  of  space  and  brickwork. 

— C.  I. 

Glazes   and    enamels   free   from    lead   and    boron; 

Method  of  preparing  frits  for .     H.  Harkort. 

G.P.  342,405,  8.12.17. 
In  the  first  mixing  more  alumina  than  can  be  taken 
up  is  used.     The  mixture  is  then  ground  mechani- 
cally as  finely  a6  possible  and  again  fritted  after,  if 
desired,  addition  of  basic  substances. — C.  I. 

Bituminous  clay  and  lime;  Utilisation  of .     R. 

Trails.     G.P.  342,594,  1.12.20. 
The  material  is  fused  in  moulds  by  utilisation  of 
its  heat  of  combustion.    Fluxes  or  metals  or  metallic 
compounds  may  be  added. — C.  I. 

[Glass;}  Crucible  furnace   [for  melting  ].     M. 

Mathy.  U.S. P.  1,400,759,  20.12.21.  Appl., 27.10.19. 
See  E.P.  143,117  of  1919;  J.,  1920,  490  a. 

{Ceramic]  insulating  material  and  body  composed 
thereof.  Champion  Ignition  Co.,  Assees.  of  A. 
Champion  and  T.  G.  McDougal.  E.P.  146,908, 
6.7.20.     Conv.,  22.8.17. 

See  U.S. P.  1,262,305  of  1918;  J.,  1918,  335  a. 


IX.-BUILDING  MATEDIALS. 

Patents. 
Wood  and  other  vegetable  material;  Composition  for 

preserving    .      N.    V.    Netherland    Colonial 

TradingCo.  E.P.  168,843, 17.11.20.  Conv.,  8.9.20. 
A  composition  for  preserving  wood  etc.  comprises  a 
mixture  of  an  ammoniacal  solution  of  a  metal 
hydroxide  (e.g.,  copper  hydroxide),  an  ammoniacal 


solution  of  a  metal  formate  (e.g.,  zinc  formate), 
and  an  ammoniacal  solution  of  phenol  or  an  equiva- 
lent substance,  the  ammonia  being  sufficiently  in 
excess  to  keep  the  whole  in  solution  after  it  is 
diluted.  Zinc  formate  is  substituted  for  the  zinc 
oxide  used  in  E.P.  23,139  of  1911  (F.P.  435,732; 
J.,  1912,  388),  owing  to  the  difficulty  experienced  in 
obtaining  a  suitable  solution  of  the  latter.  The 
composition  contains  about  6%  of  metal  and  about 
8%  of  phenol.— H.  S.  H. 

Concrete  coating  and  the  like.  C.  Ellis,  Assr.  to 
Ellis-Foster  Co.  U.S. P.  1,400,041,  13.12.21.  Appl., 
26.7.15. 

A  mixture  containing  tetra-chlorinated  naphtha- 
lene and  other  solid  material  capable  of  being, 
blended  with  it  and  acting  as  a  solid  solvent  for  it. 

— H.  S.  H- 

Hydraulic  cement;  Process  of  preparing from 

lignite  ash.  Elektrowerke  A.-G.,  and  H.  Luft- 
schitz.  G.P.  340,986,  21.6.19. 
Lignite  ash,  which  is  rich  in  lime  and  sulphate,  is 
washed  with  water  and  then  mixed  with  limestone 
or  silicates  and  burnt.  The  product  is  ground  and 
employed  mixed  with  ordinary  hydraulic  cement. 

— C.  I. 

Building  material;  Process  of  making  an  unfired 

from  clay  and  sulphite-cellulose  waste  liquor* 

Dr.  Plonnis  u.  Co.     G.P.  342,403,  6.9.19. 
The  clay  is  mixed  with  porous  material,  such  as  coal 
ashes  or  slag,  and  with  sulphite-cellulose  waste  lye, 
whereby   a  durable  building   material   is   obtained 
without  burning. — C.  I. 

Slag;  Method  and  apparatus  for  obtaining  porous 

■  in  as  dry  a  state  as  possible.     C.  H.  Schol. 

E.P.  170,287,  14.6.20.     Conv.,  7.3.18. 

See  G.P.  313,048  of  1918;  J.,  1919,  911  a. 

Kilns  I;  Cement  ].     J.  Nelson.     E.P.  172,856, 

25.11.20. 

See  U.S.P.  1,366,585  of  1921;  J.,  1921,  180  a. 
Electric  furnace.     G.P.  342,524.     See  XI. 

X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Cast-iron;  Production  of  synthetic .     K.  Dorn- 

hecker.     Stahl  u.  Eisen,  1921,  41,  1881—1889. 

Good  quality  scrap  iron  is  mixed  with  an  excess  of 
coke  and  sufficient  lime,  and  the  mixture  is  melted 
in  an  electric  furnace  of  the  arc  type  in  which  the 
electrodes  dip  into  the  upper  part  of  the  charge  so 
that  heat  is  generated  by  resistance  as  well  as  by  the 
arc.  The  resulting  metal  contains  3 — 4%  C,  and 
by  suitable  additions  0"5 — 4"5%  Si  may  be  intro- 
duced. The  sulphur  content  is  extremely  low 
(maximum  0'02%)  owing  to  the  desulphurising 
action  of  the  lime  in  the  presence  of  the  carbon. 
By  suitable  regulation  of  the  phosphorus  content  of 
the  material  charged  into  the  furnace,  the  amount 
in  the  metal  is  kept  below  0T%.  The  installation 
for  working  this  process  at  Aarau  is  described  in 
detail,  together  with  the  thermochemistry  and 
economics  of  the  process. — A.  R.  P. 

Cast  irons;  mechanical  and  elastic  properties   of 

and  the  use  of  the  ball  [hardness]  test.     A. 

Portevin.     Rev.  Met.,  1921,  18,  761—779. 

The  specification  tests  for  semi-steel  projectiles 
(C<3'2%)  consisted  of  tensile  tests  and  impact  tests 
from  successive  blows  of  a  falling  tup  on  specimens 
cast  separately.  These  mechanical  tests  bear  no 
relation  to  each  other,  and  are  useless  for  the  deter- 


104  A 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      [Feb.  15, 1922. 


mination  of  quality.  The  author  has  investigated 
the  properties  of  a  range  of  untreated  cast  irons, 
including  principally  semi-steels,  with  a  view  of 
finding  a  simple  and  satisfactory  test.  In  tensile 
tests  on  these  materials  the  least  bending  causes 
premature  fracture,  and  the  results  of  ordinary  in- 
dustrial tests  are  of  no  value.  Taking  the  utmost 
experimental  care  the  stress-strain  curves  of  9  dif- 
ferent ca6t  irons  were  obtained  by  means  of  a  mirror 
extensometer.  In  some  curves  there  was  no 
appearance  of  a  limit  of  proportionality,  but  as 
a  rule  it  was  less  than  one-third  of  the  breaking 
load.  The  modulus  of  elasticity  varied  from  4000 
to  11,500  kg.  per  sq.  mm.  and  bore  a  linear  rela- 
tion to  the  breaking  load.  On  account  of  this 
variation  in  the  elastic  modulus  it  was  possible,  by 
means  of  a  ringing  test,  to  pick  out  high-quality 
semi-steel  shell  by  the  high  pitch  of  the  sound  pro- 
duced, while  in  steel  projectiles  the  duration  of  the 
note  was  taken  as  a  test  of  freedom  from  hardening 
cracks.  The  compression  test  approximated  most 
closely  to  the  conditions  of  employment  of  the 
metal.  The  crushing  strength  was  4  to  5  times  the 
tensile  strength.  The  apparent  elastic  limit  was 
found  to  be  less  than  0'2  times  the  crushing 
strength  and  to  bear  a  linear  relation  to  it.  The 
amount  of  compression  varied  between  10%  and 
20%.  Tests  on  the  same  size  test  pieces  showed 
that  for  semi-steel  with  a  tensile  strength  of  25  kg. 
per  sq.  mm.,  the  limits  of  proportionality  in  ten- 
sion and  compression  were  35  and  12  kg.  per  sq. 
mm.  respectively,  but  did  not  substantiate  the  for- 
mula for  the  apparent  elastic  limit  on  compression. 
The  moduli  in  tension  and  compression  were 
approximately  the  same,  viz.,  12x10s  kg.  per  sq. 
mm.  When  tensile  tests  are  carefully  carried  out 
there  is  a  linear  relation  between  the  Brinnell  hard- 
ness numbers  and  the  breaking  loads,  also  with  the 
breaking  loads  and  elastic  limits  in  compression. 
The  ball  test  is  recommended  as  a  satisfactory  test 
of  mechanical  strength.  For  semi-steel  there  is  a 
linear  relation  between  the  shearing  strength  and 
the  breaking  load  in  bending  tests.  The  elastic 
limit  and  modulus  of  annealed  medium  hard  steel 
are  shown  to  be  approximately  the  same  in  tension 
and  compression. — T.  H.  Bu. 

High-speed     steel;     Hardness     of    ■ .     A.     H. 

d'Arcambal.      Chem.   and   Met.   Eng.,   1921,   25, 
1168—1173. 

High-speed  steels  hardened  by  the  semi-muffle, 
barium  chloride,  and  pack  methods  gave  the  same 
initial  6cleroscope  hardness.  The  highest  quench- 
ing temperature  (1260°  C.)  developed  the  greatest 
secondary  hardness  and  actual  red  hardness.  The 
structure  after  the  high  temperature  hardening  was 
partially  austenitic  with  the  carbides  and  tung- 
stides — except  for  massive  formations — in  solution. 
On  tempering  to  593° — 621°  C.  the  austenite  pre- 
sent changed  into  martensite,  the  scleroscope  hard- 
ness was  as  great  as  or  even  greater  than  in  the 
quenched  condition,  and  the  toughness  and  cutting 
efficiency  increased  by  100 — 200%.  Quenching  in  a 
bath  at  593°  C,  not  followed  by  tempering,  did  not 
give  the  same  good  properties  as  a  full  quench  fol- 
lowed by  tempering  at  593°  C.  Segregations  of 
massive  carbide  in  high-speed  steel  do  not  dissolve 
on  hardening,  and  make  the  steel  brittle  and  of  low 
red  hardness.  Forging  breaks  up  these  segrega- 
tions and  produces  better  tools.  The  scleroscope, 
Brinell  and  file  tests  give  no  indication  of  the 
cutting  properties  of  high-speed  steel. — T.  H.  Bu. 

Repeated  impact  tests  [on  mild  steel] ;  Experiments 

on .    L.  Guillet.    Rev.  Met.,  1921,  J8,  755— 

757. 

An  I8-mm.  rod  of  mild  steel  made  in  the  Martin 
furnace  was  annealed  at  850°  C.  and  divided  into 
five  portions,  four  of  which  were  turned  to  17,  16, 
15'5,     and     15    mm.     diameter    respectively.     The 


larger  rods  were  then  drawn  down  to  15  mm. 
diameter.  The  elastic  limit  and  elongation  were 
influenced  considerably,  and  the  ultimate  strength 
and  reduction  of  area  to  a  lesser  degree  by  the  cold 
working,  even  for  the  smallest  reduction.  In  the 
case  of  the  rod  drawn  down  3  mm.  the  elastic  limit 
was  increased  90%,  and  the  ultimate  strength 
50%,  the  elongation  was  reduced  76%,  and  the 
reduction  of  area  16%.  With  a  greater  reduc- 
tion than  2  mm.  the  elastic  limit  coincided  with  the 
breaking  load.  The  ratio  of  the  hardness  to  the 
ultimate  strength  varied  throughout  the  series. 
The  impact  tests  were  not  much  affected,  the  test 
pieces  bending  double  up  to  a  2  mm.  reduction.  The 
results  of  repeated  impact  tests  made  with  the 
Cambridge  machine  showed  that  the  number  of 
blows  required  for  fracture  increased  rapidly  with 
tho  degree  of  cold  working,  up  to  110%  for  a  3  mm. 
reduction.— T.  H.  Bu. 

Steel;     Intercrystalline     fracture     in     .       D. 

Hanson.     Trans.  Faraday  Soc.,  1921,  17,  91—101. 

Examples,  with  micrographs,  are  given  of  the 
development  of  intercrystalline  fractures  in  boiler- 
plates and  other  steel  articles.  While  in  most  cases 
a  certain  amount  of  corrosion  had  occurred,  there 
was  no  evidence  to  show  whether  the  cause  of  the 
cracks  was  the  penetration  of  corrosive  liquids 
between  the  crystal  boundaries  or  whether  the  metal 
had  first  cracked  owing  to  internal  stress  and 
corrosive  liquids  had  then  penetrated  the  cracks. 
While  there  is  no  reason  to  suppose  that  steel  differs 
from  non-ferrous  metals  with  regard  to  season 
cracking,  the  examples  quoted  in  the  paper  seem  to 
show  that  the  failure  occurred  solely  as  a  result  of 
either  internally  or  externally  applied  stresses. 

—A.  R.  P. 

Mild  steel;  Intercrystalline  cracking  of in  salt 

solutions.       J.  A.  Jones.       Trans.  Faraday  Soc., 
.1921,  17,  102—109. 

The  behaviour  of  stressed  bars  of  mild  steel  in  various 
salt  solutions  is  described.  Solutions  of  the  nitrates 
of  sodium,  potassium,  ammonium,  and  calcium 
rapidly  cause  the  development  of  intercrystalline 
cracks  similar  to  those  produced  by  solutions  of 
caustic  alkalis.  In  the  latter  case  while  fresh  solu- 
tions rapidly  caused  cracking  in  stressed  mild  steel 
bars,  solutions  that  had  been  used  several  times 
caused  the  formation  of  a  film  of  magnetic  oxide  of 
iron  on  the  surfaces  of  the  test-pieces,  and  no  crack- 
ing was  observed  even  after  prolonged  immersion. 
This  seems  to  provide  additional  evidence  in  support 
of  the  theory  that  the  cause  of  the  cracking  is 
absorption  of  hydrogen  by  the  intercrystalline 
amorphous  material  causing  weakening  of  the  grain 
boundaries.  Similar  results  obtained  with  solutions 
of  nitrates  appear  to  indicate  that  nitrogen  or  an 
oxide  of  nitrogen  is  the  active  agent  in  this  case. 
Support  is  lent  to  this  theory  by  the  fact  that 
addition  of  sodium  carbonate  to  the  nitrate  solu- 
tions, thereby  reducing  the  dissociation  of  the 
nitrate,  was  found  to  retard  the  rate  of  cracking. 
On  annealing  the  test-pieces  and  thus  reducing  the 
internal  stresses  the  time  that  elapsed  before  tney 
cracked  increased  with  the  temperature  of  anneal- 
ing. No  evidence  could  be  obtained  to  show  that 
internally  stressed  mild  steel  is  liable  to  crack 
spontaneously  at  ordinary,  or  even  at  slightly 
elevated,  temperatures. — A.  R.  P. 

Steel;  Mechanism  of  the  failure  of  upon  and 

after  hardening.  G.  W.  Green.  Trans.  Faraday 
Soc,  1921,  17,  139—145. 
It  is  suggested  that  the  development  of  internal 
stresses  on  hardening  steel  is  due  to  increased 
volume  change  and  decreased  molecular  mobility 
consequent  on  the  depression  of  the  reoalescence 
point    necessary    to   transform    the   austenite   into 


Vol.  XII.,  Ho.  S.]    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


105  a 


martensite,  to  instability  due  to  incompleteness  of 
this  change  and  the  presence  of  residual  austenite, 
to  variable  changes  of  volume  due  to  the  number  of 
different  constituents  in  the  metal,  and  to  contrac- 
tion of  the  outside  skin  of  the  metal  causing  a 
tendency  to  warp. — A.  R.  P. 

Metals,    especially    tool    steels;    Failure    of    

through  the  action  of  internal  stress  irregulari- 
ties* J.  N.  Greenwood.  Trans.  Faraday  Soc., 
1921,  17,  123—138. 

The  origin  of  internal  stresses  in  pure  metals  and 
alloys  is  discussed  theoretically,  and  it  is  shown  that 
the  development  of  internal  stresses  may  be  due 
either  to  cold  working  or  to  suppression  of  phase 
changes  by  rapid  cooling,  i.e.,  quenching.  In  the 
case  of  steel  considerable  volume  changes  take  place 
during  heating  and  cooling ;  thus,  the  change  from 
o-  to  y-iron  causes  a  contraction  of  0'5% ,  solution  of 
cementite  in  iron  results  in  a  variable  expansion, 
and  the  change  from  a-  to  /3-cementite  causes  a  very 
small  contraction  in  volume.  Again,  the  difference 
in  the  thermal  coefficient  of  expansion  between 
o-cementite  and  a-iron  is  sufficient  to  give  rise  in 
some  cases  to  considerable  internal  stress.  The 
conditions  governing  the  hardening  and  tempering 
of  steel  are  described  in  detail  and  the  resulting 
volume  changes  are  analysed. — A.  R.  P. 

Metals;  Mechanism  of  failure  of from  internal 

stress.  W.  H.  Hatfield.  Trans.  Faraday  Soc, 
1921,  17,  36—46. 

Experimental  evidence  is  detailed  to  controvert 
Rosenhain  and  Archbutt's  theory  (Proc.  Roy.  Soc., 
96A.,  67)  that  the  causes  of  failure  in  metals  due 
to  internal  stress  may  be  explained  by  assuming 
that  amorphous  films  exist  between  the  boundaries 
of  the  metal  crystals  of  sufficient  mobility  to  allow 
a  viscous  flow  and,  subsequently,  fracture  to  take 
place  under  low  stresses  at  ordinary  temperatures. 
The  author  considers  that  the  fractures  are  caused 
by  internal  stresses  set  up  during  processes  of  manu- 
facture which,  though  not  high  enough  initially  to 
produce  rupture,  are  able  to  fracture  the  metal 
when  it  has  been  weakened  by  chemical  or  physical 
means,  such  as  by  partial  attack  by  a  reagent,  which 
usually  proceeds  along  the  crystal  boundaries,  or 
by  deformation  during  cold  working. — A.  R.  P. 

Brass  tubes;  Internal  stresses  in  .     R.  H.  N. 

Vaudrey  and  W.  E.  Ballard.  Trans.  Faraday 
Soc.,  1921,  17,  52—57. 

In  the  production  of  hollow-drawn  brass  tubes  some 
specimens  were  found  to  have  developed  an  ap- 
parent stratification.  Immersion  of  such  tubes  in  a 
solution  of  mercurous  nitrate  resulted  in  fracture 
in  1J  mins. ;  after  removing  the  inner  skin  the 
tubes  fractured  in  1  min.,  after  removing  the  outer 
skin  in  5  mins.,  and  after  removing  both  skins  in 
18  mins.  This  behaviour  appears  to  show  that  the 
circumferential  stresses  in  the  tube  are  concen- 
trated near  the  surface,  the  outer  surface  being  in 
a  state  of  tension  and  the  inner  in  a  state  of  com- 
pression, while  the  interior  of  the  metal  is  in  fairly 
stable  equilibrium.  Tubes  made  with  little  or  no 
"  sink  "  become  uniform  by  the  thickening  of  the 
surface  layers  and  are  therefore  stable,  while  those 
made  with  larger  "sinks"  tend  to  separate  into 
layers  during  the  subsequent  pickling  and  anneal- 
ing processes. — A.  R.  P. 

Brass;  Prevention  of  season  cracking  in by  the 

removal  of   internal  stress.       H.   Moore  and  S. 

Beckinsale.      Trans.    Faraday    Soc,     1921,     17, 

162—192.     (Cf.  J.,  1921,  221  a.) 

The  reduction  of  internal  stress  and,  therefore,  of 

the  tendency  to  season-cracking  in  70:30  brass  has 

been  studied  by   annealing  specimens  of  varying 


hardness  under  various  stresses  for  different 
periods  at  temperatures  up  to  325°  C.  The  rate  of 
reduction  of  the  stresses  on  annealing  is  fairly  rapid 
at  first  for  all  temperatures,  but  eventually  becomes 
very  slow,  considerable  residual  stress  still  remain- 
ing after  annealing  for  24  hrs.  The  higher  the  tem- 
perature the  more  rapid  is  the  rate  of  reduction 
of  stress  and  the  lower  is  the  residual  stress  for  any 
given  hardness,  while  for  a  given  temperature  the 
higher  the  original  stress  the  higher  is  the  remain- 
ing stress,  although  the  amount  of  stress  removed 
is  greater  the  higher  the  original  stress.  The 
harder  the  original  brass  the  more  rapidly  is  a  given 
initial  stress  reduced  at  a  given  temperature. 
While  a  large  reduction  in  the  stress  of  cold-worked 
brass  is  brought  about  by  conditions  which  raise 
its  hardness,  some  treatment  which  slightly  reduces 
its  hardness  is  necessary  to  remove  completely  the 
stresses.  A  slight  plastic  flow  is  noticed  at  tem- 
peratures between  200°  and  300°  C.  in  cold- 
worked  brass  at  low  stresses;  this  increases  with 
the  temperature,  stress,  and  time  for  which  the 
latter  is  maintained,  and  is  the  cause  of  the  re- 
duction of  stress  by  low-temperature  annealing. 
This  flow  lowers  the  elastic  limit,  but  not  perma- 
nently, provided  that  the  time  of  treatment  does  not 
exceed  a  definite  limiting  value  depending  on  the 
temperature,  in  which  case  the  limit  of  propor- 
tionality and  the  elastic  limit  are  raised  consider- 
ably after  the  treatment.  The  results  show  that 
the  risk  of  season  cracking  in  brasses  should  be  en- 
tirely eliminated  by  a  suitable  low-temperature 
annealing  operation  after  the  final  cold-working 
operations. — A.  R.  P. 

Season   cracking  [of  brass'];  Experiences   of  

during  the  great  war.  O.  W.  Ellis.  Trans. 
Faraday  Soc,  1921,  17,  193—200. 
During  the  war  a  considerable  number  of  brass  rods 
(made  to  the  following  two  Government  specifica- 
tions— Yield  point,  20  and  8  tons  per  sq.  in. ;  maxi- 
mum stress  30  and  20  tons  per  sq.  in.,  and  elonga- 
tion 20%  and  12%  respectively)  were  found  to 
have  failed  by  season  cracking  after  storage  for  a 
longer  or  shorter  time.  After  a  number  of  tests  it 
was  found  that  annealing  the  rods  immediately 
after  drawing  at  200°— 300°  C.  for  2  hrs.  removed 
all  deleterious  stresses,  so  that  they  were  unacted 
on  by  N/100  mercuric  chloride  solution  even  after 
prolonged  immersion.  Similar  results  were  ob- 
tained by  annealing  for  £  hr.  at  350°— 400°  C, 
except  that  there  was  a  greater  fall  in  the  values 
obtained  for  yield  point  and  maximum  stress, 
although  they  remained  above  those  given  in  the 
second  specification.  (Cf.  Moore  and  Beckinsale, 
supra.) — A.  R.  P. 

Copper-cadmium  wire  for  electrical  transmission. 

W.  C.  Smith.     Chem.  and  Met.  Eng.,  1921,  25, 

1178—1179. 
Although  possessing  high  electrical  conductivity, 
the  tensile  strength  of  pure  copper  wire  limits  the 
distance  between  supports,  and  hard-drawn  copper 
wire  has  a  low  annealing  temperature  and  does  not 
satisfactorily  resist  heavy  abrasion.  Alloying  with 
small  amounts  of  cadmium  materially  remedies 
these  disadvantages.  A  basic  alloy  containing 
about  50%  Cd  was  made  under  accurately  controlled 
temperature  conditions,  and  this  was  added  to 
molten  copper  in  the  required  amount  to  give 
uniform  alloys  containing  up  to  about  1'1%  Cd. 
The  cast  alloy  with  1"1  %  Cd  is  20  to  22  points  harder 
on  the  Brinell  scale  than  copper,  and  the  wires  are 
stiffer  and  harder.  Above  a  content  of  1'2%  Cd  the 
wire  bars  begin  to  crack  when  hot  rolled.  Wire 
with  1"1%  Cd  withstands  a  temperature  of  260°  C. 
for  half  an  hour  without  softening,  a  test  which 
renders  copper  wire  dead  soft.  The  experimental 
results  show  that  in  0081-in.  diameter  wire  the 
addition  of  11%  of  cadmium  increases  the  tensile 

b2 


106  a 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Feb.  15, 1922. 


strength  from  63,000  to  100,000  lb.  per  sq.  in.  and 
only  reduces  the  electrical  conductivity  figure  from 
101  to  91,  i.e.,  approximately  10%.— T.  H.  Bu. 

Aluminium  bronze;  Use  of  macrography  for  con- 
trolling the  casting  of  .      J.  Galibourg  and 

A.  Brizon.     Rev.  Met.,  1921,  18,  780—786. 

The  greatest  difficulty  in  casting  aluminium  bronze 
(10:90)  lies  in  the  formation  of  shrinkage  cavities; 
owing  to  the  difference  between  solidus  and  liquidus 
never  being  greater  than  10°  C,  the  molten  metal  in 
the  runners  has  no  time  to  feed.  In  making  a  series 
of  castings,  in  which  the  presence  of  shrinkage 
cavities  would  have  caused  rejection,  the  authors 
endeavoured  to  locate  the  cavities  in  definite 
positions  in  the  castings,  so  that  they  could  be 
removed  on  machining.  This  was  accomplished  by 
placing  chills  at  suitable  positions  in  the  moulds. 
The  progress  of  crystallisation  was  indicated  by 
giving  the  section  an  ordinary  industrial  polish  and 
etching  with  ammonium  persulphate.  The  maxi- 
mum displacement  of  the  cavity  was  obtained  by  a 
chill  of  15  mm.  minimum  thickness.  It  was  found 
possible  to  displace  the  cavity  to  the  exterior  of  a 
casting  of  10  to  15  mm.  thickness.  The  chill  should 
envelop  the  principal  contour  angles  of  the  article, 
but  it  is  not  always  advantageous  on  the  outside 
as  on  contraction  the  metal  may  leave  the  chill. 
A  casting  temperature  of  1270°  C.  should  be  used 
and  spluttering  of  the  metal  avoided.  In  general 
bottom  casting  is  not  advisable.  The  metal  should 
enter  the  mould  by  the  straightest  possible  path 
and  rest  in  some  way  near  the  chill.  Wherever 
possible  the  material  should  be  forged  to  shape, 
which  can  be  done  without  difficulty  while  hot. 

— T.  H.  Bu. 

Lead;  Losses  of  during  the  smelting  of  low- 
grade  material.  C.  Offerhaus.  Metall  u.  Erz, 
1921,  18,  591—597. 

Details  are  given  of  the  losses  of  lead  during  3 
weekly  runs  of  a  lead  blast  furnace  charged  with  a 
mixture  of  low-grade  lead  ores,  rich  slag  (8"5%  Pb), 
and  broken  cupels.  The  average  assays  of  the 
charges  were  11'4%,  12'5%,  and  15"1%  Pb,  and  the 
losses  were  17'4%,  14'6%,  and  10'9%  respectively, 
the  greater  part  of  which  went  into  the  slag.  The 
losses  in  fume  were  about  12'5%  of  the  total  loss, 
and  the  slag  contained  T4— 1'75%  Pb.  Direct 
smelting  of  the  rich  slag  containing  8"5%  Pb  re- 
sulted in  an  unavoidable  loss  of  19%  of  the  total 
lead.  It  is  suggested  that  the  formula  for  buying 
ores  based  on  the  assay  figures  should  be  consider- 
ably modified  for  low-grade  material  owing  to  the 
relatively  higher  losses  that  ensue  during  smelting. 

—A.  R.  P. 

Lead  sheathing  of  electric  cables;  Failure  of  — — . 
L.  Archbutt.  Trans.  Faraday  Soc,  1921,  17,  22— 
35. 

The  lead  sheathing  of  certain  electric  cables  laid  in 
wooden  boxes  by  the  6ide  of  a  railway  track  was 
found  to  have  developed  in  certain  parts  a  large 
number  of  minute  intercrystalline  cracks  without 
showing  any  signs  of  corrosion.  Analysis  showed 
the  lead  to  be  of  good  quality,  but  micrographs  of 
the  good  and  defective  parts  revealed  the  fact  that 
the  latter  parts  had  a  much  more  coarsely-grained 
structure  than  the  good  parts  and  that  the  cracks 
followed  the  crystal  boundaries.  Tests  on  the  be- 
haviour of  similar  sheathing  under  a  load  of  70  lb. 
before  and  after  annealing  and  also  under  vibration 
were  carried  out.  The  sheathing  in  all  cases 
stretched  considerably  and  after  a  time  developed 
intercrystalline  cracks  and  eventually  broke ;  these 
phenomena  occurred  much  sooner  with  specimens 
under  vibration  than  with  those  at  rest  and  test- 
pieces  annealed  at  250°  C.  withstood  the  strain  for 


2 — 3  times  the  time  that  unannealed  test-pieces  did. 
The  latter  gave  an  elongation  of  about  15  % ,  as  com- 
pared with  8%  for  the  former.  It  is  suggested  that 
the  failure  of  the  metal  in  use  is  due  to  the  vibra- 
tion caused  by  passing  trains  while  it  is  in  a  state 
of  tension. — A.  R.  P. 

Lead-thallium    alloys;    Constitution    of    .      L 

Guillet.    Rev.  Met.,  1921,  18,  758—760. 

In  the  constitutional  diagram  of  the  lead-tffallium 
alloys,  the  zone  of  solid  solution  extends  from  25% 
of  lead  to  the  pure  metal,  and  the  liquidus  has  a 
maximum  at  a  concentration  corresponding  to  the 
formula,  PbTl2.  As  a  rule  a  diagram  showing  a 
single  solid  solution  is  given  by  two  ductile  metals 
or  two  brittle  ones,  and  a  compound  formed  by  one 
metal  with  another  or  with  a  metalloid  is  hard  and 
brittle.  The  lead-thallium  diagram  seemed  to  be  an 
exception,  and  to  investigate  this  point  a  series  of 
alloys  with  the  lead  content  ranging  from  3  to  100% 
was  cast  in  polished  aluminium  bronze  dies  to  facili- 
tate micro-examination.  The  hardness  was  deter- 
mined by  the  Brinell  method  and  showed  a  minimum 
at  34%  of  lead  corresponding  to  the  compound 
PbTl,,  so  that  it  is  possible  for  the  hardness  of  an 
intermetallic  compound  to  be  less  than  that  of  the 
constituent  metals. — T.  H.  Bu. 

Tin;  Electro-deposition   of  .     A.   Lottermoser 

and  H.  Brehm.     Z.  Elektrochem.,  1921,  27,  573— 
579. 

Good  deposits  of  tin  can  be  obtained  from  a  bath 
containing  16  g.  of  fused  stannous  chloride,  4  g.  of 
crystalline  stannous  chloride,  and  50  g.  of  crystal- 
line sodium  pyrophosphate  per  litre  at  50° — 60°  C. 
This  bath  has  a  hydrogen  ion  concentration  3'44x 
10~7.  Better  results  are  obtained  if  the  hydrogen 
ion  concentration  is  raised  to  70 x  10"7  by  the  addi- 
tion of  5 — 6  g.  of  tartaric  acid  per  litre.  There  is 
no  need  to  add  any  colloidal  substance  to  the  bath. 
The  cathodic  current  density  must  not  exceed  0002 
amp.  per  sq.  dm. — J.  F.  S. 

Germanium.    Dennis  and  Papish.    See  VII. 

Zinc.    Monasch.    See  XXIII. 

Tantalum,  columbium,  etc.  Schoeller  and  Powell. 
See  XXIII. 

Patents. 

Ferruginous  and  carbonaceous  materials;  Process  of 

smelting  pig  iron .    R.  Trails.    G.P.  341,458, 

19.8.19. 

Ferruginous  peat,  turf,  bituminous  shale,  coal  and 
the  like  are  made  suitable  for  direct  smelting,  with 
complete  utilisation  of  their  fuel  and  iron  content, 
by  the  addition  of  the  necessary  slag-forming 
materials,  such  as  lime,  silica,  alumina,  etc.  The 
ordinary  blast  furnace  may  be  used,  or  rotating 
drum  furnaces. — T.  H.  Bu. 

Alloy  steel.  G.  W.  Sargent  and  J.  W.  Weitzenkorn. 
U.S. P.  (a)  1,401,925  and  (b)  1,401,926,  27.12.21. 
Appl.,  14.6.20. 

An  alloy  steel  consists  of  (a)  0-4—0-65%  C,  05— 
0-8%  Mn,  1-5—2-1%  Si,  less  than  1%  to  not  more 
than  1'25%  Mo,  and  the  remainder  iron,  or  (b)  not 
more  than  08%  C,  1-15—3-0%  Mn,  less  than  1%  to 
not  more  than  l'2f>%  Mo,  and  the  remainder  iron. 

—A.  R.  P. 

Blast  furnaces;  Operation  of  — —  [to  produce  ferro- 
silicon~\.  V.  Lizounoff,  Assr.  to  M.  A.  Rosanoff. 
U.S.P.  1,400,963,  20.12.21.    Appl.,  27.4.20. 

Ferrosilicon  is  produced  from  a  charge  composed 

of   blast-furnace   slag,   coke,    and   heating   furnace 

cinder.— B.  M.  V. 


Vol.  xli.,  No.  3]    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO -METALLURGY. 


107  a 


Ferrozirconium;  Process  for  making  .     R.  M. 

McKee.  U.S.P.  1,401,265,  27.12.21.  Appl., 
17.1.19.     Renewed  29.3.21. 

Zirconium  ore  is  fused  with  iron  and  a  flux  without 
other  reducing  agent. — T.  H.  Bu. 

Zirconium   and   iron;   Process  for  alloying   . 

R,  H.  McKee.  U.S.P.  (a)  1,401,266  and  (b) 
1,401,267,  27.12.21.  Appl.,  28.2.19  and  29.3.21. 
(a)  renewed  29.3.21. 

(a)  ZrRCONHTM  oxide  ort(B)  zirconium  silicate,  free 
from  flux  or  other  reagent,  is  mixed  with  excess  of 
iron  at  a  temperature  about  the  melting  point  of 
the  latter,  so  as  to  separate  (a)  the  oxygen  from 
the  zirconium  oxide,  or  (b)  the  oxygen  and  silica 
from  the  zirconium  silicate. — T.  H.  Bu. 

Roasting  and  calcining  furnaces;  Mechanical . 

Rheinisch-Nassauische  Bergwerks-  und  Hutten- 
A.-G.    E.P.  152,667,  19.10.20.    Conv.,  20.10.19. 

In  a  roasting  furnace  consisting  of  alternate  fixed 
and  rotating  hearths,  the  latter  being  driven  at 
their  periphery,  means  are  provided  for  individual 
variation  of  the  speed,  and,  if  desired,  reversal  of 
the  direction,  of  rotation  of  the  hearths. — B.  M.  V. 

Melting  furnace  [for  metals'].  G.  H.  Benjamin. 
U.S.P.  1,401,456,  27.12.21.    Appl.,  9.4.20. 

A  metallurgical  furnace  is  provided  with  a  melting 
hearth  and  a  gathering  portion,  each  provided  with 
a  trough,  the  trough  of  the  gathering  portion  being 
on  the  same  level  as  the  outlet  end  of  the  trough 
in  the  melting  hearth. — B.  M.  V. 

Metal  alloys;  Production  of  with  the  aid  of 

intermediary  alloys.  Metallbank  und  Metallur- 
gist Ges.  A.-G.  E.P.  155,805,  17.9.20.  Conv., 
22.12.19. 

Alkali  and /or  alkaline-earth  metals,  especially 
calcium,  barium,  strontium,  magnesium,  beryllium, 
and  lithium,  may  be  incorporated  in  other  metals 
with  which  they  are  capable  of  alloying  per  se,  by 
the  use  of  an  intermediate  alloy,  the  basic  metal 
of  which  is  insoluble  or  practically  insoluble  in  the 
basic  metal  of  the  alloy  to  be  produced,  and  conse- 
quently separates  from  the  latter.  The  process  may 
be  repeated  as  many  times  as  necessary.  In  the  case 
of  aluminium  alloys,  lead  is  used  as  the  basic  metal 
of  the  intermediate  alloys. — T.  H.  Bu. 

Alloy.  A.  W.  Clement,  Assr.  to  The  Cleveland  Brass 
Mfg.  Co.  U.S.P.  1,400,527,  20.12.21.  Appl., 
21.7.17. 

An  alloy  containing  iron,  more  than  10%  Cr,  and  a 
small  quantity  of  silicon  and  aluminium,  does  not 
warp  or  deteriorate  at  high  temperature. 

— T.  H.  Bu. 

Ores  or  metallurgical  products;  Preparatory  treat- 
ment of .    O.  Imray.    From  Jackson  and  Co. 

E.P.  172,356,  28.7.20. 

A  small  quantity  of  a  nitrate  or  other  oxidising 
material  is  mixed  with  the  ore  and  a  reaction 
allowed  to  take  place  by  exposing  the  mixture  to  the 
air  at  ordinary  temperature  for  a  comparatively 
time.  Both  time  of  treatment  and  quantity  of 
reagent  are  much  lees  than  that  required  for  dead 
Toasting,  the  process  being  merely  a  preliminary 
treatment  to  other  metallurgical  processes  such  as 
leaching  or  amalgamation. — B.  M.  V. 

Froth  flotation;  Process  and  apparatus  for  sepa- 
rating finely-divided  minerals  from  their  ores  by 

.     F.    J.   Brougham.      From   D.   P.    Hynes. 

E.P.  172,390,  2.9.20. 
A    flotation    machine    consists    of    an    agitation 
chamber  containing  a  froth-producing  mechanism 
which  rotates  about  a  horizontal  axis  and  consists 
of  rotating  members  which  are  partly  submerged 


in  the  pulp  and  are  adapted  to  trap  air  from  above, 
convey  it  below  the  surface  of  the  pulp  and  there 
release  it  in  the  form  of  fine  bubbles  which  attach 
themselves,  by  means  of  the  added  oil,  to  the 
mineral  particles  and  convey  them  to  the  surface 
of  the  liquid  as  a  froth.  The  revolving  mechanism 
also  raises  the  surface  of  the  pulp  on  one  side  of  it, 
and  the  corresponding  side  of  the  chamber  is  per- 
forated at  the  level  to  which  the  surface  is  raised, 
so  that  the  froth  is  forced  through  the  holes  into 
a  settling  and  collecting  chamber. — A.  R.  P. 

{Flotation  process  of]  ore  concentration.     D.   D. 
Moffat,  U.S.P.  1,400,308,  13.12.21.  Appl.,  9.11.17. 

Air,  charged  with  the  vapour  of  the  flotation  agent, 
is  heated  and  forced  through  a  pulp  of  the  finely- 
ground  ore  suspended  in  water,  and  the  resulting 
mineral  froth  is  removed. — A.  R.  P. 

Concentrating  ore  [by  flotation];  Process  of  . 

B.  H.  Dosenbach  and  W.  A.  Scott,  Assr.  to 
Minerals  Separation  North  American  Corpora- 
tion. U.S.P.  1,401,055,  20.12.21.  Appl.,  19.7.17. 
Renewed  6.5.21. 

Gaseous  bubbles  are  introduced  into  a  freely- 
flowing  pulp  and  are  conducted  while  submerged 
to  a  breaking  down  region  where  fluctuating  air 
pressure  is  applied. — B.  M.  V. 

Reduction  of  metallic  oxides   (ores);  Process  and 

furnace  for .    H.  F.  Eriksson.    E.P.  172,411, 

6.9.20. 
The  ore  is  charged  to  the  furnace  alone,  or  with 
insufficient  solid  reducing  matter  to  effect  complete 
reduction,  the  reduction  being  effected  or  completed 
by  carbon  monoxide  blown  in  at  the  bottom  of  the 
mass.  The  reduction  zone  is  heated  electrically, 
preferably  by  means  of  an  iron  mantle  in  which 
electric  currents  are  induced  by  primary  currents 
in  copper  coils  wound  round  iron  cores  situated  at 
intervals  round  the  circumference. — B.  M.  V. 

Aluminium  sheet  and  castings;  Repairing  of  

and  attaching  copper,  brass,  steel,  and  other 
metals  to  aluminium  by  tinning,  sweating,  and 
burning  processes.  W.  H.  H.  Piatt.  E.P. 
172,548,  22.1.21. 

The  aluminium  sheet  or  casting  and  the  metal  it 
is  desired  to  weld  thereto  are  given  a  coating 
with  tin  and  a  flux.  The  latter  is  washed  off  the 
metals,  the  partB  are  joined  or  supported  in  contact 
with  one  another  in  the  desired  position,  and  a  jig 
of  sheet  iron  lined  with  fireclay  is  built  up  round 
the  joint.  An  alloy  of  2  pts.  of  tin,  1  pt.  of  zinc, 
and  2 — 3  pts.  of  aluminium  is  poured  round  the 
joint  and  then  sweated  or  burned  into  the  crevices 
with  a  blow-lamp.  For  joining  and  repairing 
aluminium  castings  or  sheets,  the  metal  is  cleaned, 
then  tinned,  and  finally  joined  or  repaired  with  an 
alloy  of  2  pts.  of  tin,  1  pt.  of  zinc,  and  0'5  pt.  of 
aluminium. — A.  R.  P. 

Copper;  Process  and  apparatus  for  refining  . 

O.  C.  Martin,  Assr.  to  Nichols  Copper  Co. 
U.S.P.  1,400,892,  20.12.21.     Appl.,  5.4.18. 

Copper  is  melted  in  a  furnace  and  a  quantity  of 
the  molten  metal  is  poured  into  a  holding  furnace 
where  it  is  poled  while  the  latter  furnace  is  being 
transferred  to  the  vicinity  of  the  casting  machine. 
While  the  copper  in  this  furnace  is  being  cast  a 
second  holding  furnace  is  being  filled,  so  that  the 
process  is  practically  continuous. — A.  R.  P. 

Lead  matte;  Method  and  apparatus  for  separating 

foreign   substances   from  .     E.    A.    Sperry. 

U.S.P.  1,401,743,  27.12.21.     Appl.,  7.2.19. 

A  matte  containing  lead  in  excess  is  used  as  the 
anode  in  an  electrolytic  cell,  so  that  the  lead  dis- 
solves in  the  electrolyte  and  is  not  deposited  on 


108 1 


Cl.  XI.— electro-chemistry. 


[Feb.  15,  1922. 


the  cathode.  Means  are  provided  for  removing  the 
separated  lead  and  other  metals  from  the  cell. 

- ~~  A .  xv ,  ±  . 

Molybdenum;    Process    of    recovering    from 

molybdenite.    G.  W.  Sargent  and  J.  W.  Weitzen- 

korn       U.S. P.    (a)   1,401,924    and    (b)    1,401,927, 

27.12.21.    Appl.,  (a)  14.6.20,  and  (b)  9.7.20. 

A  step  in  the  process  of   producing  molybdenum 

from  molybdenite  consists  in  heating  the  mineral 

with  (a)  an  oxide  of  manganese  or  (b)  iron  oxide. 

—A.  R.  P. 

Aluminium;  Process  for  the  removal  of from 

aluminous  zinc  alloys.  K.  Bornemann  and  M. 
Schmidt.  G.P.  342,366,  3.8.20. 
Metals  of  the  iron  group  are  added  to  the  molten 
aluminium-zinc  alloys,  and  the  solid  compounds  of 
aluminium  and  these  metals  are  removed  mechanic- 
ally from  the  surface  of  the  bath.  The  amount  of 
the  addition  is  such  that  the  iron  and  aluminium 
are  present  in  proportions  to  form  the  compound 
FeAL,.  The  process  is  much  simpler  than  the 
ordinary  oxidation  methods. — T.  H.  Bu. 

Metal  parts;  Repair  of  worn  by  electro- 
deposition.     W.  Ostwald.     G.P.  342,489,  3.8.20. 

Consecutive  layers  of  different  metals  or  alloys  are 
deposited  on  the  worn  part;  e.g.,  to  repair  an  in- 
dented spring  bolt,  a  thick  and  adherent  layer  of 
copper  is  followed  by  a  layer  of  brass  to  fill  in  the 
worn  place,  and  a  final  thick  layer  of  nickel  is 
deposited  to  give  a  good  surface.  Changes  in  the 
character  of  the  deposited  metal  can  be  obtained 
by  altering  the  E.M.F.  in  a  mixed  (brass)  bath. 
By  suitable  control  of  the  anodes  or  of  the  E.M.F. 
for  the  same  anodes,  the  worn  part  may  be  exactly 
filled,  so  that  little  or  no  subsequent  working  is 
necessary.  It  is  advantageous  to  deposit  graphite 
with  bearing  metals  to  improve  the  bearing  quality. 

— T.  H.  Bu. 

Metal  wires;  Process  and  apparatus  for  coating 

with  metals  by  heating  in  metallic  dusts  with  or 
without  admixtures.  W.  Kuhn.  G.P.  343,280, 
24.1.19.    Addn.  to  291,410  (J.,  1916,  742). 

The  wires  to  be  coated  are  wound  on  drums,  prefer- 
ably made  of  clay  and  provided  with  channels,  and 
the  drums  are  immersed  in  the  coating  bath  so  that 
during  the  whole  process  the  metallic  wires  are  kept 
at  an  even  temperature.  Instead  of  providing  the 
drums  with  channels  in  order  to  keep  the  wires  in 
alinement.  comb-like  arrangements  may  be  pro- 
vided between  the  drums. — A.  R.  P. 

Iron  smelting  blast  furnaces;  Method  of  and 
apparatus  for  operating  smelting  and  reducing 

furnaces,  particularly .     H.  Koppers.     E.P. 

156,643,  6.1.21.     Conv.,  27.4.18. 

See  U.S. P.  1,357,781  of  1920;  J.,  1921,  16  a. 

Cupola   furnaces;   Method   of  and  apparatus   for 

operating    .      H.    Koppers.      E.P.    156,644, 

6.1.21.  Conv.,  28.3.19.  Addn.  to  156,643  (cf. 
supra). 

See  U.S. P.  1,357,780  of  1920;  J.,  1921,  16  a. 

Alloys.      Isabellen-Hiitte.      E.P.    148,505,    10.7.20. 

Conv.,*3.2.17. 
See  G.P.  303,864  of  1917;  J.,  1921,  265  a. 

Metals  or  alloys  and  graphite;  Manufacture  of  com- 
positions   of    .      G.    H.    Wichmann.      E.P. 

172,693,  1.9.20. 

See  G.P.  332,914  of  1920;  J.,  1921,  395  a. 

Ores    and    oxygen    compounds    utilised    as    ores; 

Method  of  and  furnace  for  reducing .    F.  M. 

Wiberg.  U.S. P.  1,401,222,  27.12.21.  Appl.,  24.6.19. 
See  E.P.  130,334  of  1919;  J.,  1921,  86  a. 


Flotation  separation  of  mineral  substances.  T.  H. 
Palmer,  H.  V.  Seale,  and  R.  D.  Nevett.  U.S. P. 
1,401,435,  27.12.21.     Appl.,  2.9.19. 

See  E.P.  132,260  of  1919;  J.,  1920,  753  a. 

Zinc  sulphide  ores;  Desulphurisation  of  .     G. 

Rigg,  Assr.  to  Mining  and  Metallurgical  Pro- 
cesses Proprietary,  Ltd.  U.S.P.  1,401,733, 
27.12.21.    Appl.,  21.5.18. 

See  E.P.  119,223  of  1918;  J.,  1919,  867  a. 
Electric  furnace.    G.P.  342,524.    See  XI. 


XI.-ELECTfiO-CHEMISTfiY. 

Storage  battery  plates;  Theoretical  studies  on  the 
change  of  density  of  the  electrolyte  within  the 

pores   of  during    discharge.      H.    Tanaka. 

Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan), 
1921,  24,  1268—1272. 

Assuming  that  lead  storage  battery  plates  have 
many  continuous  pores,  and  that  sulphuric  acid  is 
consumed  uniformly  from  every  part  of  the  pores, 
the  author  has  developed  equations  by  means  of 
which  it  is  possible  to  calculate  the  concentration 
of  the  electrolyte  at  any  depth  of  the  pores,  when 
a  steady  state  has  been  attained. — K.  K. 

Copper-cadmium    wire  for  electrical   transmission. 
Smith.    See  X. 

Lead  sheathing  of  electric  cables.  Archbutt.  See  X. 


Patents. 


]■ 


Accumulators  [;  Electrolyte  for  use  in  lead 
G.  Fromont.     E.P.  172,679,  10.7.20. 

In  order  to  prevent  sulphation,  release  of  gas,  etc., 
potassium  or  sodium  sulphate  is  incorporated  in  the 
electrolyte,  preferably  by  the  addition  of  sodium  or 
potassium  carbonate  or  bicarbonate  to  the  sulphuric 
acid  used.  (Reference  is  directed,  in  accordance 
with  Sect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
Acts,  1907  and  1919,  to  E.P.  5469  of  1883,  1100  of 
1884,  15,754  of  1887,  and  4994  of  1897.)— J.  S.  G.  T. 

Dry  accumulator;   Electrical  .     P.   Baumanu. 

G.P.  343,707,  20.7.20. 

Active  material,  e.g.,  spongy  lead  or  lead  peroxide, 
in  a  very  fine  state  of  division,  is  incorporated  uni- 
formly with  a  mixture  of  charcoal  and  graphite  and 
the  whole  fashioned  into  plates.  Recesses  are  pro- 
vided in  the  plates  and.  between  these,  active 
material  without  charcoal  and  graphite  is  placed. 
In  the  battery  the  plates  are  kept  apart  and  main- 
tained in  position  by  means  of  an  insulating  binding 
impervious  to  moisture.  The  space  between  the 
plates  formed  by  the  recesses  is  filled  with  dilute  sul- 
phuric acid,  and  the  accumulator  is  charged  and  dis- 
charged in  the  usual  manner. — J.  S.  G.  T. 

Electrodes  for  electrolytic  batteries.  A.  E.  Alex- 
ander. From  Stuart  Electrolytic  Cells,  Inc.  E.P. 
172,681,  4.8.20. 

A  bi-polar  electrode  for  use  more  especially  in  an 
electrolytic  oxygen-hydrogen  generator  is  composed 
of  a  number  of  thin,  parallel,  rectangular  strips 
.separated  by  narrow  spaces  in  each  of  which  a  par- 
tition impervious  to  electrolyte  is  disposed.  Current 
entering  one  vertical  edge  of  the  strips  at  one 
polarity  leaves  the  opposite  edge  at  the  other 
polarity.— J.  S.  G.  T. 

Gas  generator  [;  Electrolytic  ].     M.   Boisen. 

U.S.P.  1,401,035,  20.12.21.    Appl.,  19.3.21. 
Tubular   vessels   of   insulating   material,    provided 
with  ga6  outlets  at  their  upper  ends,  are  suspended 
with  their  lower  open  ends  submerged  in  water  in 


Vol.  XLL,  No.  3] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


109  a 


a  tank.  Hollow  electrodes  are  supported  in  the 
vessels,  spaced  from  the  walls  and  upper  ends. 

—J.  S.  O.  T. 
Diaphragms  for  electrolysis  of  aqueous  solutions.  E. 

de  Haen  Chem.   Fabr.   "List"   G.m.b.H.     G.P. 

342,621,  10.9.18. 

Residues  resulting  from  the  evaporation,  in  a  moist 
atmosphere,  of  solutions  of  cellulose  esters  in  sol- 
vents of  high  or  low  boiling  point,  are  used  as  dia- 
phragms in  the  electrolysis  of  aqueous  solutions. 
Diaphragms  produced  in  this  manner  from  nitro- 
cellulose are  resistant  to  the  action  of  acid  solu- 
tions, e.g.,  50%  aqueous  sulphuric  acid  or  20% 
chromic  acid. — J.  S.  G.  T. 

Diaphragm  for  primary  and  secondary  batteries  and 
for  electrolytic  cells.  E.  Breuning.  G.P.  343,705, 
21.5.20. 
Strong  diaphragms,  of  small  resistance,  are  consti- 
tuted of  a  layer  of  parchmentised  filter  paper  or 
parchmentised  fine  cotton  wool  coated  on  both  sides 
with  acid-resistjng  cellulose  tissue.  The  whole  is 
supported  in  an  acid-resisting  frame,  provided  with 
ribs  for  strengthening  the  diaphragm  and  giving  it 
a  corrugated  form.  Short-circuiting  is  prevented 
by  the  use  of  such  diaphragms. — J.  S.  G.  T. 

Diaphragm  for  primary  and  secondary  batteries  and 
for  electrolytic  cells.  H.  Beckmann.  G.P.  343,706, 
11.9.20. 
Porous,  spongy  collodion  is  employed  for  making 
diaphragms,  the  openings  of  the  pores  being  about 
the  size  of  colloidal  particles.  Rigid  diaphragms  of 
such  material  offer  very  little  electrical  resistance 
and  exclude  any  possibility  of  short-circuiting. 

—J.  S.  G.  T. 

Electric-arc  furnace  for  the  roasting,  burning,  and 
sintering  of  minerals  and  the  like.  H.  Hagen- 
buch.    G.P.  342,524,  6.11.17. 

A  long  rotary  furnace  on  a  horizontal  or  slightly 
inclined  axis  is  heated  by  a  high-tension  arc  between 
electrodes  in  the  ends.  It  is  suitable  for  burning 
limestone,  cement,  etc. — C.  I. 

Muffle   furnace;   Electrically   heated  .      A.-G. 

Brown,    Boveri    u.    Co.      G.P.    342,912,    15.6.20. 
Addn.  to  341,004  (cf.  E.P.  159,195;  J.,  1921,  476  a). 

The  molten  metal  bath  employed  in  accordance  with 
the  chief  patent  is  covered  with  a  layer  of  slag,  so 
that  the  surface  is  aproximately  level.  On  fusion 
of  the  slag,  the  electrodes  are  immersed  therein  and 
the  slag  then  alone  functions  as  the  heating  resist- 
ance. Large  variations  of  current  and  short-circuit- 
ing due  to  bubbling  and  spurting  of  the  metal  bath 
are  thereby  eliminated. — J.  S.  G.  T. 

See  also  pages  (a)  88,  Electrical  treatment  of 
gases  (U.S. P.  1,400,795);  Electrical  precipitators 
(G.P.  341,229);  Electrical  purification  of  gases 
(G.P.  343,461).  99,  Electrolytic  cells  (E.P.  173,028). 
100,  Hydrosulphites  (G.P.  342,796).  102,  Glass-an- 
nealing furnace  (U.S.P.  1,401,674). 


XII.-FATS;  OILS;  WAXES. 

Safflower  oil.     A.   Howard  and  J.   S.   Remington. 
Bull.  124,  Agric.  Res.  Inst.  Pusa,  1921.    14  pp. 

Twenty-four  types  of  seed  examined  gave  oil-con- 
tents of  from  139%  to  302%,  most  having  more 
than  24%.  The  extraction  of  the  oil  on  a  semi- 
technical  scale  in  a  Scott  extractor  gave  a  yield  of 
20'6%,  the  extracted  meal  containing  2"2%  of  oil. 
This  batch  of  oil  had  the  following  characters:  — 
sp.  gr.  at  15-5°  O.,  0"9258 ;  acid  value,  9"78;  saponif. 
value,  197"3;  ester  value,  187-5;  Hehner  value,  95'7; 
butyro-refractometer  reading  (40°  C),  64;  un- 
saponifiable  matter,  1*25%;  glycerol,  426%.  The 
fatty    acids   gave  a   butyro-refractometer   reading 


(40°  C.)  of  50.  The  seeds  contained  50'4%  of  husk. 
Of  various  commercial  driers  tried  cobalt  resinate 
was  best,  the  oil  film  drying  after  21  hrs.,  and  after 
blowing,  in  18  hrs.  An  experimental  paint 
weathered  well  for  6  months,  by  which  time  the  same 
mixing  with  linseed  oil  showed  signs  of  blistering. 
A  good  soap  was  obtained  from  the  oil  by  using  the 
finely  ground  meal  as  a  filler.  A  good  pale  yellow 
edible  oil  was  also  obtained.  The  extracted  meal 
gave  the  following  analysis: — moisture,  7'50%  ;  oil, 
2-21%;  proteins,  15-96%;  carbohydrates,  35-48%; 
crude  fibre,  32"88%  ;  ash,  5*97%.  It  is  useless  as  a 
feeding  stuff  owing  to  the  high  content  of  fibre. 

— H.  C.  R. 

Gynocardia  oil;  Colour  reaction  and  spectroscopic 

detection   of  .     I.   Lifschutz.     Chem.-Zeit., 

1921,  45,  1264—1265. 

A  solution  of  one  drop  of  gynocardia  oil  in  about 
0'5  c.c.  of  chloroform  diluted  with  T5  c.c.  of  glacial 
acetic  acid  gives  with  4  or  5  drops  of  concentrated 
sulphuric  acid  a  gradually  developing,  and  finally 
an  intense  grass  green  coloration,  reddish-violet  by 
transmitted  light.  The  addition  of  a  drop  of  a  solu- 
tion of  ferric  chloride  in  glacial  acetic  acid  does  not 
change  the  colour  but  rather  intensifies  it  (distinc- 
tion from  the  oxycholesterol  reaction).  The  reaction 
is  actually  given  by  the  fatty  acids  of  the  oil  and  is 
not  due  to  the  unsaponifiable  portions  (alcohols  ete.). 
It  is,  moreover,  not  given  by  freshly  purified 
oil,  but  is  to  be  ascribed  to  an  oxidation  product 
formed  on  keeping  in  contact  with  air;  this  may, 
if  necessary,  be  artificially  generated  in  fresh  oil  by 
adding  a  small  quantity  of  benzoyl  peroxide  to  a 
solution  in  acetic  acid.  The  absorption  spectrum  of 
the  colouring  matter  produced  is  very  character- 
istic—G.  F.  M. 

C18  fatty  acids.     II.     Relation  of  oleic  and  elaidic 

acids  to  their  halogen  addition  products.     B.  H. 

Nicolet.     J.  Amer.  Chem.  Soc.,  1921,  43,  2122— 

2125. 

Using  the  anilides  of  the  various  acids  as  a  means 

of  characterising  them,  it  is  shown  that  there  is  no 

cis-trans    isomerisation    when    bromine    is    added 

to  the  double  bond  and  subsequently  removed  in  the 

case  of  oleic  and  elaidic  acids;  in  this  respect  these 

acids  differ  from  linolic  acid. — W.  G. 

Superheated  steam  for  heating  melting  pans  and 
stills.    Voss.    See  I. 

Patents. 

Oil;  Process  and  apparatus  for  the  continuous  ex- 
traction   of   .      M.    Wilbuschewitsch.      E.P. 

147,745,  8.7.20. 
The  crushed  oil-bearing  substance  is  introduced  into 
a  closed  vessel  containing  a  solvent,  and  the  mixture 
led  through  tubes  by  means  of  a  worm-conveyor 
into  a  pressing  device,  from  which  the  pressed 
material  passes  into  a  second  similar  closed  vessel, 
the  process  being  repeated  several  times.  The  oil 
dissolved  in  the  solvent  returns  to  a  part  of  the  path 
previously  traversed,  e.g.,  to  the  conveyor  between 
the  closed  vessel  and  the  pressing  device,  and  the 
solvent  flows  by  gravity  through  the  vessels  and 
tubes  connecting  them  in  the  opposite  direction  to 
the  treated  material,  which  is  finally  treated  with 
steam  and  the  solvent  vapours  condensed  and 
separated. — H.  C.  R. 

Hydrogenation  of  unsaturated  compounds  [fats']  in 
the  fluid  state.  H.  Schlink  und  Co.  A.-G.  G.P. 
341,189,  4.3.16. 
Silicates,  which  weigh  more  than  12  g.  per  20  c.c. 
in  powdered  form,  with  the  exception  of  clay, 
kaolin,  pumice,  and  talc,  are  used  as  catalyst- 
carriers.  Such  carriers,  e.g.,  cement,  powdered 
shale,  etc.,  retain  less  fat  than  kieselguhr  on  filter- 
ing after  complete  hardening. — T.  H.  Bu. 


110a 


Cl.  XIII — PAINTS,  &o.       Ct.  XIV.— INDIARUBBER;    GUTTA-PERCHA.     [Feb.  15, 1922. 


Detergents  and  bleaching  agents.     J.  F.  Moseley 
and  N.  Drey.     E.P.  172,667,  8.6.20. 

Salts  of  permono-  or  perdisulphuric  acids,  or  of 
permono-  or  perdicarbonic  acids,  are  mixed  with  an 
alkali  carbonate  and  incorporated  with  a  non-in- 
flammable solvent,  such  as  a  chlorinated  or  hydro- 
genated  hydrocarbon.  The  product,  in  the  form  of 
a  powder,  possesses  considerable  detergent  and 
bleaching  power,  and  also  solvent  action  on  fat, 
wax  and  resin.  The  presence  of  the  solvent  serves 
to  regulate  the  decomposition  of  the  per-salts. 

— F.  M.  R. 

Water-soluble    oils;   Process    for   making    or 

for  emulsifying  oils  with  water.  A.  Loewenthal. 
G.P.  342,149,  18.6.19. 
The  oils  are  treated  with  sulphur  trioxide  until  the 
desired  properties  are  attained.  The  temperature 
must  be  such  that  sulphonation  takes  place,  but  not 
so  high  as  to  char  the  oil  (e.g.,  100°— 120°  C).  The 
yield  of  water-soluble  oils  reaches  80 — 90  % . 

— H.  C.  R. 

XIII.— PAINTS;  PIGMENTS;  VABNISHES; 
fiESINS. 

Lead  peroxide.    Glasstone.    See  VII. 
Safflower  oil.     Howard  and  Remington.     See  XII. 
Patents. 

[Resinous]  condensation  products  of  formaldehyde 
and  phenols;  Process  for  the  production  of  deriva- 
tives of .    H.  Bucherer.    E.P.  148,139,  9.7.20. 

Conv.,  10.6.18. 
The  sparing  solubility  of  the  condensation  products 
of  phenols  with  formaldehyde  in  the  customary 
organic  solvents  and  their  undesirable  sensitiveness 
to  alkalis  are  remedied  by  replacing  the  hydrogen 
atoms  of  the  hydroxyl  groups  in  the  products  by 
organic  radicles.  This  can  be  effected  by  heating 
the  resinous  products  with  acetyl  chloride  or  with 
dilute  alkali  and  p-toluenesulphonyl  chloride.  The 
auxochromic  effect  of  the  hydroxyl  groups  is  reduced 
by  this  treatment  and  the  subsequent  darkening  of 
the  products  is  consequently  diminished. — D.  F.  T. 

Paint;  Method  of  making  [waterproof]  .      T. 

Blass,  Assr.  to  W.  H.  Abbott.     U.S.P.  1,401,034, 

20.12.21.    Appl.,  9.2.20. 
Crude  solvent  naphtha  is  treated  with  such  a  quan- 
tity of  sulphuric  acid  that  it  acquires  a  viscosity 
enabling  it  to  spread  properly  when  applied  with  a 
brush.— J.  S.  G.  T. 

Pitchy  materials  suitable  for  brewers'  pitch:  Pro- 
duction of  — .     H.  Rebs.     G.P.  343,466,  7.8.15. 

Viscid  resinous  condensation  products  are  produced 
from  heavy  hydrocarbons  by  successive  halogenation 
and  de-halogenation,  followed  by  evaporation,  or 
from  heavy  petroleum  oil  by  chlorination,  with  sub- 
sequent washing,  and  treatment  with  Devarda's 
alloy.  On  distillation  the  resinous  products  give  a 
residue  of  pitch,  whilst  the  distillate  can  again  be 
submitted  to  treatment. — D.  F.  T. 

Compositions  from  ethers  of  carbohydrates.  E.P. 
147,319.    See  V. 

Vulcanite-like  materials.    G.P.  342,365.    See  XIV. 


XIV.-INDIA-RUBBER ;  GUTTA-PEBCHA. 

[Rubber;]   Colour  of  smoked  sheet  . .     H.   P. 

Stevens.     Bull.  Rubber  Growers'  Assoc,  1921,  3, 

521—524. 
Contrary  to  the  general  impression,  the  shade  or 
colour  of  smoked  sheet  gives  no  indication  of  the 
strength  of  the  rubber  after  vulcanisation.    Samples 


ranging  from  a  very  light  colour  to  a  dark,  some 
even  showing  "  shortness  "  in  the  raw  state,  all 
gave  satisfactory  results  for  breaking  stress  and 
elongation  after  vulcanisation.  A  small  variation 
was  observable  an  the  rate  of  vulcanisation. 

— D.  F.  T. 

Vulcanisation;   Reactions    of    accelerators    during 

.  ///.  Carbosulph-hydryl  accelerators  and  the 

action  of  zinc  oxide.  C.  W.  Bedford  and  L.  B. 
Sebrell.  J.  Ind.  Eng.  Chem.,  1921,  13,  1034— 
1038. 

The  accelerating  power  of  the  p-diamines  and  of 
aldehyde-ammonia  is  attributed  to  their  ability  to 
react  with  6ulphur  with  formation  of  ammonium 
polysulphide,  whilst  that  of  m-diamines  and  sodium 
phenoxide  is  regarded  as  due  to  the  capacity  of 
these  substances  to  form  stable  "  disulphide-poly- 
sulphides."  Nitroso-accelerators,  like  litharge, 
function  as  secondary  accelerators  and  derive  their 
power  from  their  oxidising  character.  Aniline, 
toluidine,  piperidine,  and  dimethylamine,  in  the 
presence  of  carbon  bisulphide  and  zinc  oxide,  are 
each  capable  of  effecting  the  vulcanisation  of  a 
mixture  of  rubber  and  sulphur  dissolved  in  benzene 
at  the  ordinary  temperature;  zinc  salts  are  first 
formed  of  the  general  formula,  R.S.Zn.S.R,  and 
these  in  some  way  activate  the  sulphur.  A  mixture 
of  aniline  and  thiocarbanilide  also  will  effect 
vulcanisation  in  such  a  solution  of  rubber  and 
sulphur,  although  neither  will  alone.  Zinc  mer- 
captobenzothiazole,  zinc  thiophenol,  and  zinc  ethyl- 
xanthate  also  accelerate  the  vulcanisation  of  rubber 
by  sulphur  whether  at  the  ordinary  temperature 
with  dissolved  rubber  or  by  the  more  usual  process 
with  the  aid  of  heat.  (Cf.  J.,  1920,  199  A;  1921, 
228  a.)— D.  F.  T. 

Rubber;  Volume  increase  of  compounded under 

strain.  H.  Green.  J.  Ind.  Eng.  Chem.,  1921,  13, 
1029—1031. 
The  contention  that  agglomerated  masses  of  filler 
are  responsible  for  a  part  of  the  volume  increase 
observable  on  stretching  "  compounded  "  rubber 
(Schippel,  J.,  1920,  199  a)  is  justifiable  on  theoretical 
grounds.  Microscopic  conical  vacuoles  are  visible 
on  each  side  of  barytes  particles  in  a  thin  piece  of 
stretched  rubber  containing  this  "filler";  finer 
compounding  ingredients,  such  as  zinc  oxide  or 
carbon  black,  when  present  in  small  percentages, 
did  not  give  rise  to  visible  vacuoles. — D.  F.  T. 

Rubber;  Permanent  set  of .     F.  W.  G.  King 

and  A.  G.  Cogswell.  Indiarubber  J.,  1922,  63, 
30—32. 

Comparison  of  the  permanent  set  for  different 
vulcanised  rubbers  is  more  conveniently  made  using 
a  constant  extension  rather  than  a  constant  load. 
In  order  to  ensure  uniformity  in  the  results  a 
reasonably  high  stress  or  strain  is  desirable,  a  period 
of  20  mins.  being  sufficient  for  the  application  of 
the  stress.  Before  the  measurement  of  the  perma- 
nent set  an  interval  of  5  hrs.  or  even  less  is 
sufficient,  the  greater  part  of  the  recovery  occur- 
ring in  the  first  hour.— D.  F.  T. 

Rubber    hydrocarbon;    Discussion    of    the    tetra- 

bromide    method   for    estimating    -.      H.    L. 

Fisher,  H.  Gray,  and  R.  Merling.  J.  Ind.  Eng. 
Chem.,  1921,  13,  1031—1034. 

In  Lewis  and  McAdam's  modification  of  the  tetra- 
bromide  method  for  the  estimation  of  rubber  (J., 
1920,  578  a)  the  amount  of  potassium  iodide 
specified  for  the  replacement  of  the  excess  bromine 
by  iodine  is  insufficient.  In  any  case,  however,  the 
method  needs  further  investigation  before  it  can 
be  used  with  accuracy.  Test  analyses  of  purified 
rubber  by  the  method  showed  differences  of  from 
015  to  2427%.— D.  F.  T. 


Vol.  XII,  No.  3.J      Cl.  XV.— LEATHER  ;    BONE,  &o.     Cl.  XVI.— SOILS  ;    FERTILISERS. 


111a 


Patents. 

Rubber;  Manufacture  of .     W.  Feldenheimer, 

W.  W.  Plowman,  and  P.  Schidrowitz.  E.P. 
172,711,  7.9.20. 
Prepared  clay,  preferably  refined  by  dispersion  in 
a  fluid  medium  and  subsequent  deflocculation  (see 
E.P.  121,191;  J.,  1919,  41a),  is  mixed  in  the  dry 
state  with  a  dry,  water-soluble  soap  or  its  equiva- 
lent, such  as  a  mixture  of  oleic  acid  and  a  dry 
alkali ;  an  excess  of  the  last-named  may  be  used. 
The  product  is  of  use  as  an  ingredient  for  rubber- 
compounding  and  expedites  the  process  of  vulcani- 
sation.—D.  F.  T. 

Vulcanisation    of    materials    related    to    rubber; 

Process  for   the   .     S.   J.    Peachey   and   A. 

Skipsey.    E.P.  172,754,  22.9.20.    Addn.  to  129,826 

(J.,  1919,  688  a). 
Gutta   or  balata  in  sheet   form  or   dissolved  in  a 
suitable  solvent  such  as  carbon  bisulphide  is  vul- 
canised  by   treatment   with   sulphur    dioxide   and 
hydrogen   sulphide   at  the   ordinary  temperature. 

— D.  F.  T. 

Rubber;    Method    of    vulcanising    .      W.    M. 

Mackintosh,  Assr.  to  Kelly-Springfield  Tire  Co. 

U.S. P.  1,400,618,  20.12.21.  Appl.,  6.8.20. 
Articles  consisting  wholly  or  in  part  of  rubber  are 
vulcanised  by  enclosing  in  an  atmosphere  of  hot  air. 
The  heated  air  is  forced  in  under  pressure,  and 
steam  is  also  introduced  to  aid  the  conduction  of 
heat;  the  mixture  is  agitated  and  the  temperature 
and  pressure  are  maintained  for  the  necessary 
period.— D.  F.  T. 

Vulcanite ;  Method  for  making  chemical  apparatus 
or  its  parts  resistant  to  alkalis,  acids  and  chlorine 
by  manufacturing  it  from  or  sheathing  it  with 

.     Allgem.  Elektrizitiits-Ges.     G.P.  342,098, 

9.5.13. 

Raw  rubber  is  mixed  with  sufficient  sulphur  for  its 
complete  vulcanisation,  with  inert  fillers  such  as 
graphite,  and  with  5 — 10%  of  a  vulcanisation 
accelerator,  such  as  litharge  or  magnesia.  The 
apparatus  formed  of  or  sheathed  with  this  mixture 
is  vulcanised  for  5 — 8  hours.  The  finished  vulcanite 
material  resists  the  action  of  acid  and  chlorine. 

— D.  F.  T. 

Vulcanite-like  materials;  Method  for  the  production 

of .     Plauson's  Forschungsinstitut  G.m.b.H. 

G.P.  342,365,  17.2.20. 

PrROMUCic  acid  is  heated  under  pressure  at  120° — 
150°  C.,  together  with  phenols  and  sulphuric,  hydro- 
chloric, or  phosphoric  acid;  formaldehyde  or  its 
polymerides,  and  filling  materials  may  also  be  intro- 
duced into  the  reaction  mixture.  The  products, 
which  are  partly  soluble  in  alcohol  and  acetone  and 
completely  soluble  in  benzene,  are  also  suited  to  the 
preparation  of  varnishes. — D.  F.  T. 


XV.-LEATHEB;  BONE;  HORN;  GLUE. 

Fibrin;  Swelling  of  by  acids.     R.   Somogyi. 

Biochem.  Zeits.,  1921,  120,  103—105. 

Acids  influence  the  swelling  of  fibrin  in  a  similar 
manner  to  their  action  on  gelatin,  the  acids  follow- 
ing the  same  sequence  of  activity.  The  biologically 
important  acids,  hydrochloric,  lactic,  and  formic 
acid,  produce  pronounced  swelling. — H.  K. 

Gelatin;  Swelling  of  in  aqueous  solutions  of 

organic  acids.     A.  Kuhn.     Kolloid-Chem.  Beih., 
1921,  14,  147—208. 

The  swelling  of  gelatin  in  solutions  of  acids  is 
greater  than  in  water,  and  a  maximum  is  reached 
at  medium  concentrations  of  acids.     With  strong 


acids  the  maximum  lies  at  lower  concentrations  and 
with  weak  acids  at  higher  concentrations.  The 
swelling  is  the  result  of  four  processes  which  occur 
simultaneously,  viz.,  actual  swelling  (hydration), 
sol  formation,  hydrolysis,  and  dehydration  and 
precipitation.  The  first  process  occurs  chiefly  at 
lower  concentrations,  whilst  the  latter  processes 
occur  more  at  higher  concentrations.  (Cf.  J.C.S., 
Feb.)— J.  F.  S. 

Gelatin   sols;    Viscosity   of  .     R.    H.    Bogue. 

J.  Amer.  Chem.  Soc.,  1921,  43,  1764—1773. 
Iso-electrio  gelatin  at  a  hydrogen  ion  concentra- 
tion 2xl0"5  has  the  lowest  viscosity  and  the  lowest 
degree  of  solvation,  gelatin  chloride  at  a  hydrogen 
ion  concentration  3TxlO~*  the  highest,  and  calcium 
gelatinate  at  a  hydrogen  ion  concentration  2'5xl0"s 
is  intermediate.  If  an  excess  of  acid  is  allowed  to 
remain  in  the  gelatin  solution,  even  though  the  acid 
be  of  very  low  concentration,  the  viscosity  and 
degree  of  solvation  are  reduced.— J.  F.  S. 

Patent. 

Chamois-leather  substitute ;  Production  of  a  . 

F.  M.  Thompson.    G.P.  341,161,  30.4.18. 

The  skins  of  small  animals  are  vegetable-tanned, 
treated  with  marine  animal  oil  or  fat,  and  softened 
in  the  usual  way.  They  are  then  fulled  in  water 
after  adding  sumach.  Damaged  skins  can  be  used 
and  considerable  economies  in  fat  can  be  effected. 
The  expensive  treatment  with  egg  yolk  and  bran 
is  also  dispensed  with. — H.  C.  R. 


XVI.-S0ILS ;    FERTILISERS. 

Carbon    dioxide;    Fertilising    value    of    .      A. 

Gehring.      Landw.     Zeit.,     1921,    70,    181—197. 
Chem.  Zentr.,  1922,  93,  II.,  27—28. 

An  indication  of  the  fertility  of  soils,  or  of  soils 
mixed  with  organic  manure,  is  given  by  the  rate  of 
generation  of  carbon  dioxide  in  such  soils  as  the  re- 
sult of  bacterial  decomposition  of  organic  com- 
pounds. This  may  be  measured  by  placing  the 
sample  under  an  air-tight  bell  jar  provided  with  two 
gas  connexions  and  passing  a  current  of  air  previ- 
ously freed  from  carbon  dioxide  through  it.  The 
carbon  dioxide  produced  is  absorbed  in  caustic  pot- 
ash. In  such  a  test  no  bactericidal  substance  such 
as  sulphuric  acid  should  be  used  as  a  medium  for 
preventing  loss  of  nitrogen  from  the  manure. — C.  I. 


Saccharophosphatase. 
XVIII. 


Nemec    and    Duchon.     See 


Patents. 

Mixed  manure;  Process  for  the  manufacture  of  a 

containing  a  variable  amount  of  nitrogen 

and  phosphate.  Manufacture  of  a  mixed  manure 
containing  a  variable  amount  of  nitrogen  and 
fertilising  salts.  Manufacture  of  a  mixed  nitro- 
phosphate  manure.  Soc.  d'Etudes  Chim.  pour 
l'Industrie.  E.P.  (a)  151,597,  (b)  151,598,  (o) 
154,562,  (d)  154,563,  and  (e)  159,853,  2.9.20. 
Conv.,  (a,  b)  26.9.19,  (o,  d)  25.11.19,  (b)  2.3.20. 

(a)  Commercial  calcium  cyanamide  is  converted 
into  free  cyanamide  by  the  action  of  carbon  dioxide. 
The  filtered  cyanamide  solution  is  heated  with  sul- 
phuric acid  to  produce  urea.  Excess  of  acid  is  neu- 
tralised with  insoluble  phosphates.  Alternatively 
the  conversion  to  urea  may  be  carried  out  by  means 
of  (b)  phosphoric  acid  or  (c)  acid  salts,  e.g.;  bisul- 
phates,  or  (e)  by  the  action  of  phosphoric  acid  on  a 
mixture  of  free  cyanamide  and  its  calcium  salt. 
(d)  Cyanamide  is  polymerised  by  acid  and  the  re- 
sulting dicyanodiamide  converted  into  ammonium 
salts  by  means  of  sulphuric  or  phosphoric  acid  or 


112a 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[Feb.  15,  1922. 


acid  salts.  Part  of  the  acid  may  bo  neutralised 
by  potassium  or  calcium  salts  so  as  to  form  a  com- 
plete fertiliser. — A.  G.  P. 

Nitrogen  manure;  Process  for  the  preparation  of  a 

.  Soc.  d'Etudes  Chim.  pour  l'lndustrie.  E.P. 

159,854,  2.9.20.     Conv.,  2.3.20. 

Commercial  calcium  cyanamide  is  added  to  a  sul- 
phuric acid  solution  of  free  cyanamide.  The  mix- 
ture heats  and  solidifies  and  is  powdered.  The  pro- 
duct consists  of  a  compound  of  calcium  sulphate  and 
salts  of  urea,  and  is  non-hygroscopic. — A.  G.  P. 

Sulphur-oxidising    bacteria;   Culture   of  and 

their  application.     J.  G.  Lipman.     E.P.  161,553, 
8.11.20.    Conv.,  10.4.20. 

See  U.S. P.  1,361,596  of  1920;  J.,  1921,  55a.  The 
culture  of  sulphur-oxidising  bacteria  is  prepared  by 
incubating  a  mixture  of  100  lb.  of  sulphur,  300  lb. 
of  phosphate  rock,  0'4  lb.  of  iron  sulphate,  0'4  lb.  of 
aluminium  sulphate,  and  1600  lb.  of  fertile  soil  at 
70°_90°  F.  (21°— 32°  C.)  for  6—10  weeks,  the  mix- 
ture being  kept  about  half  saturated  with  moisture. 

Fertilisers;  Process  of  producing  potash-containing 

.     C.    Rossi.      U.S. P.    1,401,648-9,    27.12.21. 

Appl.,  24.4.19  and  15.7.21. 

See  E.P.  130,963  of  1919 ;  J.,  1920,  344  a. 


XVII.-SUGARS ;  STARCHES;  GUMS. 

Sugar  hydrolysis;  Investigation  of  the  velocity  of 

.    R.  H.  Clark.    J.  Amer.  Chem.  Soc.,  1921, 

43,  1759—1764. 

The  addition  of  a  neutral  substance  to  a  mixture  of 
6ucrose  and  an  acid,  to  keep  the  concentration  of 
water  constant  while  varying  the  concentration  of 
the  acid,  has  no  appreciable  effect  in  producing  a 
numerical  proportionality  between  the  quantity  of 
hydrogen  ions  present  and  the  inversion  velocity  of 
sucrose.  On  the  assumption  that  both  the  dissoci- 
ated and  undissociated  molecules  of  an  acid  are 
catalytically  active  in  sucrose  inversion,  the  values 
of  A'j  for  the  hydrogen  ion  of  hydrochloric,  hydro- 
bromic,  and  nitric  acid  are  the  same  (Kt  =0:234), 
whilst  that  of  sulphuric  acid  has  the  value  Kt  =  0144. 

—J.  P.  S. 


Sarin. 


Honey;  Formation  and  ripening  of .    E. 

Biochem.  Zeits.,  1921,  120,  250—258. 

Bees  were  fed  with  cane-sugar  syrup,  the  honey  col- 
lected, and  again  fed  to  the  bees.  This  process  was 
repeated  three  times.  Examination  of  the  honey 
at  each  stage  indicated  that  invertase  and  diastase 
are  specific  products  of  the  bees,  but  that  catalase, 
which  only  occurs  in  natural  lioney,  is  of  plant 
origin. — H.  K. 

Honey;  Influence  of  organic  acids  on  the  formation 

and  ripening  of .    E.  Sarin.  Biochem.  Zeits., 

1921,  120,  259—264. 

The  addition  of  acids  to  the  sugar  syrups  used  for 
feeding  bees  exerts  a  harmful  effect  on  the  bio- 
chemical processes  of  the  formation  and  ripening  of 
honey. — H.  K. 

Honey;  Detection  of  technical  invert  sugar  in . 

P.  M.  Litterscheid.     Z.  Unters.  Nahr.  Genussm. 
1921,  42,  88—90. 

5  g.  of  honey  is  extracted  twice  with  5  c.c.  of  ether 
(purified  over  sodium).  To  the  extract  is  added 
001  g.  of  resorcinol  and  when  dissolved  1  c.c.  of 
strong  hydrochloric  acid  is  added  carefully  to  form 
a  layer  below  the  ether.  The  mixture  is  allowed  to 
stand.  Withm  15  mins.  coloured  rings  appear, 
which  are  best  viewed  by  illumination  from  below. 


/3-Naphthol  may  be  substituted  for  resorcinol  and  in 
this  case  concentrated  sulphuric  acid  is  used  in 
place  of  hydrochloric  acid.  A  number  of  red-violet 
to  blue  coloured  rings  are  produced  within  15  mins. 
if  invert  sugar  is  present. — A.  G.  P. 

Starch;  Chemistry  of  .     Methylation  of  poly- 

amyloses.     H.  Pringsheim  and  W.  Persch.     Ber., 
1921,  54,  3162—3168. 

Tetra-amylose  is  not  converted  into  a  homogeneous 
product  by  sodium  hydroxide  and  methyl  sulphate. 
If,  however,  the  material  thus  obtained  containing 
28%  OCH3,  is  treated  with  methyl  iodide  and  silver 
oxide  it  gives  a  crystalline  substance  which  contains 
two  methoxy  groups  in  each  dextrose  residue.  Very 
protracted  treatment  does  not  bring  about  methyla- 
tion of  the  third  hydroxy  group.  The  process  does 
not  cause  depolymerisation  and,  in  accordance  with 
molecular  weight  determinations  in  freezing  ben- 
zene or  naphthalene,  the  product  is  to  be  regarded 
as  octamethyltetra-amylose.  It  crystallises  in 
colourless  hexagonal  plates  which  do  not  decompose 
below  250°  C.  and  has  [o]„30  = +141-5°  to  +148-2°  in 
ethyl  alcoholic  solution.  The  slight  mutarotation  is 
remarkable  since  the  original  tetra-amylose  is  not 
mutarotatory.  Fermentation  of  starch  by  a  de- 
graded specimen  of  Bacillus  macerans  has  led  to  the 
isolation  of  a  new  tetra-amylose  which  is  character- 
ised by  its  crystalline  additive  compound  with  car- 
bon bisulphide;  the  preparation  is  difficult  and 
somewhat  uncertain. — H.  W. 

Agar;  Composition  of .    Samec  and  V.  Ssajevic. 

Comptes  rend.,  1921,  173,  1474—1475. 

Agar  is  apparently  a  sulphuric  ester  of  gelose  in 
much  the  same  way  as  amylopectin  is  a  phosphoric 
ester  of  amylose.  A  gram-atom  of  sulphur  in  agar 
corresponds  to  9320  g.  of  organic  matter.  The  great 
viscosity  of  agar  is  probably  due  to  the  relatively 
high  content  of  sulphuric  ion. — W.  G. 

Pentosans.       E.     Heuser,     M.     Braden,     and     E. 
Kurschner.    J.  prakt.  Chem.,  1921,  103,  69—102. 

A  product  containing  only  0'35%  of  ash  and,  on  the 
dry  ash-free  basis,  96%  of  xylan  may  be  obtained 
by  the  following  modification  of  Salkowski's  method 
(Z.  physiol.  Chem.,  1901,  34,  35,  240):  300  g.  of 
bleached  straw  cellulose  (Heuser  and  Haug,  J., 
1918,  365  A,  650  a),  corresponding  with  100  g.  of  dry, 
ash-free  material,  is  finely  broken  up  by  hand  and 
heated  in  a  round-bottomed  flask  with  150  g.  of 
sodium  hydroxide  and  2300  c.c.  of  water.  The  liquid 
is  kept  boiling  for  45  mins.  and  then  strained 
through  a  Buchner  funnel  by  gentle  suction,  the 
first  runnings  being  returned  to  the  funnel  so  that 
a  clear,  deep  brown  filtrate  may  be  obtained.  To  the 
filtrate  at  about  50°  C.  a  litre  of  Fehling's  solution 
is  added,  the  liquid  being  stirred  and  the  volumin- 
ous, blue  precipitate  obtained  filtered  through 
gauze,  pressed  hard  and  kneaded  twice  in  a  porce- 
lain dish  with  230—300  c.c.  of  80%  alcohol,  filtration 
through  the  gauze  following  each  treatment.  The 
residue  is  kneaded  with  1  litre  of  96%  alcohol  until 
all  lumps  disappear,  hydrogen  chloride  being  then 
passed  into  the  blue  suspension  until  the  precipitate 
becomes  pure  white,  this  requiring  3 — 4  hrs.  The 
precipitate  is  filtered  off,  washed  repeatedly  with 
30%  alcohol  by  decantation,  shaken  with  ether,  left 
for  15 — 20  hrs.,  separated  from  the  ether,  and  dried 
at  60°— 70°  C.  on  a  water-bath.  The  loose,  white, 
odourless  xylan  thus  obtained  dissolves  completely 
in  sodium  hydroxide  solution  and  does  not  reduce 
Fehling's  solution,  the  yield  being  18-9%  of  the  dry 
cellulose.  Hydrolysis  of  the  xylan  has  been  effected 
under  various  conditions,  but  no  indication  of  the 
nature  of  the  4%  of  non-xylan  present  has  been  ob- 
tained.   (Cf.  J.C.S.,  Feb.)— T.  H.  P. 


Vol.  XII,  No.  3.] 


Cl.  xviii.— fermentation  industries. 


113a 


Patents. 

Artificial  honey;  Manufacture  of .     E.  Dinger. 

G.P.  342,608,  23.5.20. 
The  juice  of  6Ugar-containing  plants  is  treated  with 
salts  such  as  sodium  hydrosulphite  to  render  the 
chromogens  harmless,  and  tartaric  acid  is  subse- 
quently added  to  the  cold  solution  to  precipitate 
melassigenic  alkali  salts.  After  separating  deposited 
Baits,  the  solution  is  evaporated,  yielding  a  product 
suitable  for  use  as  a  honey  substitute. — L.  A.  C. 

Sugar  liquors;  Filtration  of .  G.  W.  S.  Simpson 

and    R.    F.    Lyle.      U.S.P.    1,401,199,    27.12.21. 
Appl.,  24.6.18. 

See  E.P.  120,055  of  1917;  J.,  1919,  24  a. 

Ethers  of  carbohydrates.    E.P.  149,319.    See  V. 

XVIII.— FERMENTATION  INDUSTRIES. 

Yeast  autolysis;  Changes  undergone  by  nitrogenous 

substances  in  the  final  phases  of  .      N.   N. 

Iwanoff.    Biochem.  Zeits.,  1921,  120,  1—24. 

If  after  yeast  autolysis  has  proceeded  for  some  time 
the  solution  be  made  alkaline,  the  ensuing  autolysis 
is  accompanied  by  an  increase  of  protein  nitrogen 
(as  estimated  by  Stutzer's  method),  at  the  expense 
of  the  original  protein  decomposition  products 
which  are  precipitable  by  lead  acetate  and  phospho- 
tungstic  acid.  The  amino-nitrogen,  however,  as 
determined  in  Van  Slyke's  method,  is  unchanged. 
If  the  autolysis  in  alkaline  solution  be  allowed  to 
continue  at  a  higher  temperature,  e.g.,  60°  C, 
there  is  a  loss  of  amino-nitrogen  unaccompanied  by 
any  increase  in  the  protein-nitrogen.  This  is  inter- 
preted as  being  due  to  the  formation  of  humin-like 
substances  at  the  expense  of  the  ammo-acids  of  the 
autolysate  and  carbohydrate. — H.  K. 

Yeast;  Protein  decomposition  in during  fer- 
mentation. N.  N.  Iwanoff.  Biochem.  Zeits., 
1921,  120,  25—61. 
Stutzer's  method  (J.  Landw.,  1880,  28,  103)  for 
the  estimation  of  proteins  in  solutions  by  precipita- 
tion with  cupric  hydroxide  does  not  differentiate 
between  proteins  and  humins.  During  fermenta- 
tion of  sugar  by  yeast  there  is  decomposition  of 
protein ;  earlier  statements  to  the  contrary  were 
based  on  results  obtained  by  Stutzer's  method,  the 
humins  formed  being  stable  to  the  proteolytic 
enzymes  present  and  compensating  for  the  loss  of 
protein.— H.  K. 

Yeast;  Influence  of  fermentation  products  on  the 

decomposition  of  proteins  in .   N.  N.  Iwanoff. 

Biochem.  Zeite.,  1921,  120,  62—80. 
During  the  process  of  fermentation  substances  are 
formed  which  inhibit  the  decomposition  of  protein. 
It  is  shown  experimentally  that  the  inhibition  is  the 
result  of  two  factors,  viz.,  the  production  of  alcohol 
during  fermentation  and  the  development  of 
acidity;  the  former  plays  the  greater  role. — H.  K. 

Yeast    fermentation ;    Action      of  acids    on    . 

R.  Somogyi.  Biochem.  Zeits.,  1921,  120,  100—102. 
Acids  exert  a  harmful  effect  on  yeast  fermentation. 
This  was  proved  by  the  examination  of  the  action  of 
thirteen  acids,  organic  and  inorganic,  at  concentra- 
tions between  2V/6  and  N / 1500.  The  inhibitory 
action  does  not  appear  to  be  solely  dependent  on 
the  hydrogen  ion  concentration,  but  on  other 
physical  properties  as  well-. — H.  K. 

Saccharqphosphatase;    Occurrence    and  action    of 

■ in  the   organism  of  the   plant.  A.   Nemec 

and    F.    Duchon.      Biochem.    Zeits.,  1921,    119, 
73—80. 

The  sodium  and  calcium  salts  of  synthetic  saccharo- 


phosphoric  acid  are  hydrolysed  with  formation  of 
free  phosphoric  acid  by  the  resting  seeds  of  the 
higher  cultivated  plants  as  well  as  by  the  leaves  of 
Solanum  tuberosum.  Aqueous  extracts  of  the  seeds 
have  the  same  power  but  to  a  lesser  degree.  Alkali 
is  inimical  to  the  action  of  the  enzyme,  the  optimum 
acidity  being  003IV  for  saccharophosphata.se  and 
0'004iy  for  the  autolytic  phosphatase  of  the  seeds. 

— H.  K. 

Amygdalin;  Decomposition  of from  the  point 

of    view    of   conjugated   fermentation    reactions. 
J.  Giaja.     J.  Chim.  Phys.,  1921,  19,  77—99. 

Amygdalin  is  decomposed  differently  by  emulsin 
from  Helix  pomatia  and  emulsin  from  almonds. 
Each  decomposition  consists  of  a  primary  and  a 
secondary  fermentation,  but  the  intermediate 
products  in  the  two  cases  are  different.  Emulsin 
from  almonds  cannot  complete  a  reaction  com- 
menced by  emulsin  from  Helix  pomatia,  but 
emulsin  from  Helix  pomatia  can  complete  a  re- 
action commenced  by  emulsin  from  almonds.  The 
final  products  in  both  reactions  are  the  same. 
LCf.  J.C.S.,  Feb.)— J.  F.  S. 

Acetone;  Determination  of in  spirits  by  means 

of  hydroxylamine.     G.  Reif.     Z.   Unters.   Nahr. 
Genussm.,  1921,  42,  80—87. 

The  method  is  intended  for  the  detection  of  spirits 
prepared  with  alcohol  denatured  with  a  mixture 
of  methyl  alcohol,  pyridine,  and  acetone.  For  the 
qualitative  detection  of  acetone  the  liquor  is  dis- 
tilled twice  with  sulphuric  acid,  the  second  time 
with  the  use  of  a  Vigreux  still-head.  The  first  2  c.c. 
of  the  distillate  is  collected  separately  in  1  c.c. 
portions,  and  to  each  1  c.c.  of  ammonia  (sp.  gr.  0'96) 
is  added,  and  the  tube  shaken,  plugged,  and  left 
to  stand  for  3  hrs.  1  c.c.  of  15%  caustic  soda  is 
then  added  and  1  c.c.  of  freshly  prepared  2'5% 
sodium  nitroprusside  solution.  Acetone  produces 
a  red  coloration  changing  to  violet  on  the  addition 
of  a  few  drops  of  50%  acetic  acid  to  the  cooled 
solution.  For  the  quantitative  estimation,  10  c.c. 
of  N/1  sulphuric  acid  is  added  to  100  c.c.  of  the 
spirit  (kept  cooled  at  15°  C),  and  the  mixture 
distilled  on  a  water  'Bath.  The  distillate  is  tested 
for  aldehyde  with  fuchsin.  If  present,  aldehyde 
is  oxidised  by  the  addition  of  10  c.c.  of  3%  hydrogen 
peroxide  and  15  c.c.  of  N /2  caustic  soda,  and  the 
mixture  heated  under  a  reflux  condenser  for  1 — - 
1J  hrs.  The  resulting  liquid  is  again  distilled, 
using  a  still-head.  _' — 5  c.c.  of  the  distillate  is 
added  to  a  solution  of  0'5  g.  of  hydroxylamine 
hydrochloride  in  30  c.c.  of  water,  made  neutral  to 
roethyl-orange  with  ]V/10  caustic  soda,  the  mixture 
is  allowed  to  stand  for  1  hr.  and  is  titrated  with 
JV/10  caustic  soda. — A.  G.  P. 

"  Alcoholic    fermentation  "     of    formaldehyde     by 
osmium.     Miiller.    See  XX. 

Patents. 

Treatment    of   gaseous   and   liquid   substances    by 
irradiation   \Jor  use   in   the   brewing   industry~\; 

Process  and  apparatus  for  the .    E.  Ludwig. 

E.P.  147,649,  8.7.20. 

The  rays  and  emanations  are  produced  by  an  open 
arc  lamp  into  the  arc  of  which  radioactive  sub- 
stances are  introduced.  Liquids  may  be  treated  in 
the  form  of  drops  or  of  a  thin  film,  and  may  be 
simultaneously  charged  with  6alts,  e.g.,  phosphates. 
The  arc,  having  its  carbons  impregnated  with 
substances  containing  radium,  may  be  arranged  in 
a  closed  chamber,  the  upper  part  of  which  is  fitted 
with  a  perforated  tube  distributing  the  liquid  to 
funnel-shaped  troughs  connected  by  horizontal  drip- 
bars.  The  treated  liquid  is  applicable  for  stimu- 
lating enzymic  activity,  e.g.,  of  malt  or  yeast,  the 


114a 


Cl.  XIXa.— FOODS. 


[Feb.  15,  1922. 


added  phosphates  and  the  nitrates,  derived  from 
nitrogen  oxides  produced  by  the  arc,  being  valuable 
supplementary  constituents. — H.  H. 

Yeast;  Manufacture   of  .      A.   J.   M.   Jensen. 

E.P.  150,968,  11.9.20.    Conv.,  12.9.19. 

Lactic  acid  bacteria  are  added  to  the  yeast  mash 
to  stop  fermentation  before  all  the  nutrient  solution 
is  exhausted,  so  that  while  being  prepared  for 
industrial  use  the  cells  are  kept  surrounded  with  a 
layer  of  nutrient  medium. — A.  G.  P. 

Brewers'  pitch.    G.P.  343.46G.    See  XIII. 

Esters.     U.S.P.  1,400,852.     See  XX. 


XIXa.-F00DS. 

Catalase  of  flour;  Studies  on .     T.  Merl  and  J. 

Daimer.     Z.  Unters.  Nahr.  Genussm     1921,  42, 
273—290. 

Wheat  embryo  was  extracted  with  a  dilute  phos- 
phate solution,  and  after  precipitation  by  alcohol, 
washing  and  drying,  a  catalase  preparation  was  ob- 
tained having  five  times  the  activity  of  the  original 
material.  The  optimum  pa  value  for  the  action  of 
the  catalase  was  from  6'2  to  just  the  alkaline  side 
of  the  neutral  point.  The  constituents  of  the  buffer 
solutions  employed  affected  the  activity  of  the 
catalase.  The  phosphate-ion  increased  the  velocity 
of  the  action  more  than  acetate  or  lactate.  The 
optimum  temperature  for  the  catalase  was  30° — 
40°  C.  and  the  temperature  coefficient  about  1"5. 
The  catalase  was  highly  resistant  to  dry  heat,  but 
easily  affected  by  moist  heat.  The  inhibitory  action 
of  alcohol,  benzene,  chloroform,  hydrocyanic  acid, 
and  toluene  varied  in  the  order  named,  toluene  hav- 
ing least  effect.  From  the  results  of  baking  tests  it 
was  concluded  that  the  catalase  plays  only  a  minor 
part  in  the  baking  process. — A.  G.  P. 

Putrefaction  of  meat;  Detection  of  the  commence- 
ment of .  J.  Tillmans,  R.  Strohecker,  and  W. 

Schutze.     Z.  Unters.  Nahr.  Genussm.,   1921,  42, 
65—75. 

The  oxygen  method  of  Tillmans  and  Mildner  (Z. 
Unters.  Nahr.  Genussm.,  1916,  32,  65)  is  improved. 
The  initiaLfiltration  is  dispensed  with  and  the  meat 
placed  directly  in  a  Winkler  flask  and  incubated. 
By  filling  the  flask  with  water  at  23°  C.  the  oxygen 
consumption  is  complete  in  4 — 6  hrs.  Putrefying 
meat  reduces  nitrates.  5  g.  of  meat  is  placed  in  a 
60  c.c.  flask,  which  is  then  filled 'with  nitrate  solu- 
tion containing  3  mg.  N205  per  litre.  Putrefaction 
is  considered  to  have  commenced  if  after  incubation 
at  37°  for  4 — 6  hrs.  the  solution  gives  no  nitrate  re- 
action with  diphenylamine.  Putrefaction  can  also 
be  detected  by  the  reduction  of  methylene  blue.  The 
meat  is  incubated  at  45°  C.  in  a  60  c.c.  flask  filled 
with  dilute  methylene  blue  solution.  Commence- 
ment of  putrefaction  is  indicated  by  the  decolorisa- 
tion  of  the  solution  in  less  than  1  hr.  The  variation 
in  the  H-ion  concentration  of  meat  during  putrefac- 
tion is  not  sufficiently  great  to  be  used  as  a  means 
of  detection. — A.  G.  P. 

Milk ;  Detection  of  soya-bean  protein  in  cows'  . 

K.  Nakayasu.     Yakugakuzasshi  (J.  Pharm.  Soc. 
Japan),  1921,  No.  476,  880—887. 

On  adding  4 — 5  drops  of  28%  potassium  hydroxide 
solution  to  10  c.c.  of  milk,  a  yellow  colour  develops 
if  soya-bean  protein  is  present;  5%  of  the  protein 
can  be  detected.  To  render  the  test  more  definite, 
the  albumins  may  be  precipitated  from  the  milk  by 
acetic  acid,  filtered  off,  and  treated  in  a  dish  with 
2—3  drops  of  the  alkali.  A  light  yellow  colour  indi- 
cates the  presence  of  soya-bean  protein ;  the  protein 
from  pure  milk  gives  a  yellow  colour  only  on 
heating. — K.  K. 


Milk;  The  amino-acids  of .     J.  E.  Pichon-Ven- 

deuil.     Bull.  Sci.  Pharmacol.,  1921,  28,  360—367, 
404—413.     Chem.  Zentr.,  1922,  93,  I.,  55. 

The  determination  of  the  amino-acids  in  milk  by 
"  formol  "  titration  or  by  nitrous  acid  is  not  satis- 
factory. The  filtrate  from  the  protein  precipitate 
contains  considerable  amounts  of  nitrogen  which 
reacts  with  phosphotungstic,  silicotungstic,  and 
trichloroacetic  acids.  The  use  of  sulphuric  acid  in 
the  above  method  is  unsatisfactory  6ince  it  causes 
a  certain  amount  of  decomposition  of  protein*.  To 
investigate  the  soluble  nitrogen-compounds,  the 
filtrate  from  an  alcoholic  protein  extract  after 
precipitation  with  65%  acetic  acid  was  evaporated 
and  treated  with  mercuric  acetate  in  the  presence 
of  soda.  The  orange  precipitate  was  purified  by 
treatment  with  hydrogen  sulphido  and  crystallised. 
From  a  litre  of  milk  about  1  g.  of  the  product  was 
obtained  from  which  glycocoll,  tyrosine,  leucine, 
aspartic  and  glutamic  acids  were  isolated.  These 
amino-acids  are  probably  not  produced  from  poly- 
peptides.—A.  G.  P. 

Proteins  of  curd  and  whey;  Determination  of  the 

.     in  mixtures  of  both.      O.  Liining  and  P. 

Herzig.      Z.   Unters.   Nahr.  Genussm.,   1921,  42, 
23—29. 

Comparison  is  made  between  the  methods  of  Liining 
and  Tonius  (J.,  1918,  746  a)  and  of  Beythien  and 
Pannwitz  (J.,  1919,  88a),  depending  on  the  solu- 
bility of  curd  in  sodium  oxalate  solution  and  in  lime- 
water  respectively.  It  is  shown  that  results  vary 
considerably  according  to  the  conditions  of  experi- 
ment, and  that  the  complete  solubility  of  the  curd 
and  the  insolubility  of  the  whey  proteins  in  either 
solution  is  seldom  obtained.  From  analyses  of 
known  mixtures  it  is  shown  that  the  lime-water 
method  is  better  for  mixtures  containing  a  pre- 
ponderance of  curd,  whilst  sodium  oxalate  is  the 
best  solvent  where  whey  is  in  excess. — A.  G.  P. 

Butter;  Process  of  churning  .  /.  A  surface- 
tension  theory.  O.  Rahn.  Forsch.  Geb.  Milchw. 
u.  Molkereiwes.,  1921,  I,  309—325.  Chem.  Zentr., 
1921,  92,  IV.,  1367—1368.  (C/.  J.,  1921,  746  a, 
866  a.) 

The  fat  globules  of  milk  are  surrounded  by  a  thin, 
viscous  covering  layer  of  a  substance  of  low  surface 
tension.  The  substance  coagulates  in  air  forming 
a  compact  membrane.  During  churning  this  cover- 
ing layer  forms  a  froth  which  rises  to  the  surface 
carrying  with  it  the  fat  globules.  The  membranes, 
coagulated  by  exposure  to  air,  are  subsequently 
broken  by  the  churning  movement,  frothing  ceases, 
and  the  fat  globules  coalesce  to  form  the  .email 
grape-like  masses  of  butter.  The  film  enclosing  the 
fat  globule  is  of  the  nature  of  a  protein  but  is 
neither  albumin  nor  casein.  Butter  formation 
takes  place  at  all  temperatures  up  to  41°  C. 

—A.  G.  P. 

Eggs;  Detection  of  constituents  of  in  baked 

foods.  O.  Noetzel.  Z.  Unters.  Nahr.  Genussm., 
1921,  42,  299—302. 
The  amount  of  egg  material  in  cakes  etc.  can  be 
estimated  by  a  determination  of  the  amount  of 
phosphate  soluble  in  alcohol.  The  dried  powdered 
material  is  extracted  for  15  hrs.  with  absolute 
alcohol.  The  residue  is  dried  at  100°  C,  broken  up 
and  made  into  a  stiff  paste  with  water.  The  paste 
is  spread  in  a  thin  layer  in  a  porcelain  dish  and  re- 
dried  at  100°  C.  It  is  then  extracted  for  a  further 
12  hrs.  with  alcohol.  The  two  extracts  are  com- 
bined and  the  phosphate  content  determined. 
Where  yeast  has  been  used  a  slight  correction  is 
necessary,  to  allow  for  the  alcohol-soluble  phosphate 
produced  during  fermentation. — A.  G.  P. 


Vol.  XLI.,  No.  3.] 


Cl.  XIXa.— FOODS. 


115a 


Sauerkraut;   Influence   of  certain   factors   on   the 

chemical  composition  of  .     O.   R.   Brunkow, 

W.    H.    Peterson,    and   E.    B.   Fred.       J.   Amer. 
Chem.  Soc.,  1921,  43,  2244—2255. 

Inoculation  with  certain  organisms  produced  a 
better  grade  of  6auerkraut  than  is  produced  by  a 
natural  fermentation,  but  the  only  organism  giving 
results  consistently  better  than  the  control  was 
B.  lactis  acidi.  The  present  data  are  not  extensive 
enough  to  warrant  the  use  of  inoculation  on  a  com- 
mercial scale.  The  presence  of  a  large  number  of 
yeasts  may  result  in  a  red  kraut  with  undesirable 
flavour.  The  concentration  of  the  brine  is  im- 
portant. The  best  kraut  was  obtained  when  a  2% 
salt  solution  was  used,  and  with  concentrations 
above  3%  the  kraut  was  tough  and  too  salt.  Lactic 
acid,  acetic  acid,  and  ethyl  alcohol  are  the  chief 
products  of  the  fermentation,  but  mannitol  may 
also  be  produced  in  varying  amounts  depending  on 
the  type  of  organisms  present.  The  relative 
amounts  of  the  various  products  can  be  influenced 
by  inoculation. — W.  G. 

Ellagic  acid;  Occurrence  of in  Bubus  Idaeus: 

the  cause  of  the  clouding  of  raspberry  juice.  H. 
Kunz-Krause.  Arch.  Pharm.,  1921,  259,  193—206. 
Raspberry  juice  on  keeping  becomes  cloudy  owing 
to  the  deposition  of  a  small  quantity  of  micro- 
crystalline  substance,  the  formation  of  which  is 
accelerated  by  the  addition  of  mineral  acids.  The 
deposit  was  collected  and  purified  and  decolorised 
by  warming  in  6oda  solution  with  hydrogen  per- 
oxide and  re-precipitating  with  acetic  acid,  and 
was  identified  as  ellagic  acid.  The  ellagic  acid 
probably  does  not  exist  as  such  either  in  the  rasp- 
berry itself  or  initially  in  the  juice,  but  originates 
from  a  molecular  complex  of  a  higher  order,  such 
as  a  tannoid  or  possibly  even  from  the  red  colour- 
ing matter  of  the  fruit  itself. — G.  F.  M. 

Foodstuffs;   Micro-analytical   processes  in   the   ex- 
amination of  .       [Determination  of  vanillin 

and  formic  acid.']  F.  Wohack.  Z.  Unters.  Nahr. 
Genussm.,  1921,  42,  290—298. 
VANTLLm  is  estimated  by  a  determination  of  the 
methoxy-group  by  a  modified  Zeisel  method.  The 
methyl  iodide  produced  by  reduction  with  hydriodic 
acid  is  decomposed  by  passing  through  a  hot  tube 
containing  platinised  asbestos.  The  liberated 
iodine  is  absorbed  in  potassium  iodide  solution  and 
titrated  with  thiosulphate.  Formic  acid  is  esti- 
mated by  distilling  in  steam  about  5  c.c.  of  an 
aqueous  extract  containing  O'l — 005  mg.  of  the 
acid.  2  g.  of  calcium  carbonate  is  suspended  in 
water  and  the  latter  heated  to  boiling.  The  dis- 
tilled vapours  are  made  to  pass  through  this 
suspension  previous  to  condensation.  When  about 
150  c.c.  of  distillate  has  been  obtained  the  carbonate 
suspension  is  filtered  and  the  filtrate  and  washings 
evaporated  and  dried  at  120°  C.  The  residue  is 
dissolved  in  water,  filtered  (keeping  the  volume  of 
liquid  at  5 — 6  c.c),  acidified  with  hydrochloric  acid, 
and  treated  with  5  c.c.  of  a  solution  containing 
5  g.  of  mercuric  chloride,  3  g.  of  sodium  acetate, 
and  3  g.  of  sodium  chloride  per  100  c.c.  The  pre- 
cipitated mercurous  chloride  is  collected  and  washed 
first  with  warm  water,  then  with  alcohol  and  finally 
with  ether,  dried,  and  weighed.  The  conversion 
factor  to  formic  acid  is  0'098. — A.  G.  P. 

Foodstuffs;  Belation  between  the   calorific  values 
of  ■ ,  obtained  by  combustion  and  by  calcula- 
tion, and  nutrition.    J.  Konig  and  J.  Schneider- 
wirth.      Z.    Unters.    Nahr.    Genussm.,    1921,    42, 
3—23. 
Thb    efficiency    of    a    foodstuff    cannot    always    be 
expressed   as   the   difference   between   the   amount 
consumed    and    that    excreted,    whether    this    be 
expressed  as  heat  values  or  as  percentage  of  the 
five    constituents — ash,     fibre,     protein,     fat,    and 


carbohydrates.  Heat  values  obtained  by  bomb- 
expenmente  agree  in  most  cases  with  those  calcu- 
lated from  values  assigned  to  each  of  the  above- 
named  constituents.  The  analysis  of  excreta  as  a 
means  of  determining  non-utilised  food  is  compli- 
cated by  the  presence  of  considerable  amounts  of 
intestinal  juices  etc.  As  a  result  of  a  large  number 
of  comparative  analyses  various  suggestions  are 
made  for  the  modification  and  amplification  of 
routine  calculations  made  in  nutrition  experiments 

—A.  G.  P. 
Swelling  of  fibrin  by  acids.    Somogyi.    See  XV. 
Pentosans.    Heuser  and  others.    See  XVII. 

Amino-acids  and  peptides.     Willstiitter  and  Wald- 
schmidt-Leitz.     See  XXIII. 

Patents. 

Milk  powder;  Manufacture  of .     J.  W.  Roche, 

J.  Tavroges,  and  G.  Martin.  E.P.  172,522,  8.12.20. 
Previous  to  drying,  sodium  bicarbonate  is  added  to 
the  milk  in  predetermined  quantity  ascertained  by 
titrating  a  sample  of  the  milk  with  caustic  soda, 
using  phenolphthalein  as  indicator.  The  action  of 
lactic  acid  in  rendering  the  protein  insoluble  during 
drying  is  thus  obviated. — A.  G.  P. 

Fruits,    vegetables   and    other   plant    tissues   and 
organic    material;    Process    of    and    apparatus 

for    preserving    .      Imperial    Trust    for    the 

Encouragement     of     Scientific     and     Industrial 

Research,  and  F.  Kidd.     E.P.  172,673,  12.6.20. 

Fruit   etc.   is   stored   in   an   artificial   atmosphere 

containing  up  to  20%  of  oxygen  and  20%  of  carbon 

dioxide,  and  70 — 90%  saturated  with  water  vapour. 

—A.  G.  *. 

Cocoa  substitute;  Process  for  manufacturing  a  food- 
stuff serving  as .   L.  G.  Leffer.    E.P.  172,788 

4.10.20. 

Material  containing  carbohydrate  is  heated  until 
caramel  is  formed  (about  150°  O.).  and  extracted 
with  water.  The  filtered  extract  is  added  to  the 
product  obtained  by  roasting  potatoes  at  130°  C.  in 
an  atmosphere  of  sulphur  dioxide  in  the  proportion 
of  24  pts.  dry  weight  to  100  pts.  of  the  potato 
product.  The  mixture  is  evaporated  to  dryness, 
0-3— 0-4%  of  vanillin  is  added,  and  the  whole  ground 
to  a  fine  powder. — A.  G.  P. 

Adherence  of  moist  [vegetable]  particles;  Process 

for  prevention  of  [during  drying].     M    F 

Mangelsdorff.    U.S.P.  1,400,176,  13.12.21.    Appl  ' 
20.9.18.  FF  ' 

Vegetable  particles  are  heated  in  the  presence  of  a 
moist  medium  and  while  heating  are  dried  by  a 
current  of  cool  moist  air. — A.  G.  P. 

Butter-oil;  Process  for  separating from  milk, 

skim-milk,   cream,   buttermilk,   butter,   etc.    W. 
Alexander,  Assr.  to  The  De  Laval  Separator  Co 
U.S.P.  1,401,853,  27.12.21.     Appl.,  15.12.19. 
The  material  is  heated  under  pressure  at  a  tempera- 
ture sufficient  to  dissolve  the  casein.     The  butter 
fat  is  afterwards  separated  from  the  water 

—A.  G.  P. 

Egg  albumin  and  yolk;  Manufacture  of  a  substitute 

for  .     J.  Grossfeld.     G.P.  342,308,  12.11.19. 

The-  solution  obtained  by  extracting  fish  roe  with  a 
solvent  for  fat  and  lecithin,  e.g.,  alcohol  or  ether,  is 
hydrogenated,  after  removal  of  a  portion  of  the 
solvent,  until  the  product  has  an  odour  similar  to 
that  of  egg  yolk.  The  remainder  of  the  solvent  is 
separated  and  the  product  is  mixed  with  material 
containing  proteins,  e.g.,  the  extracted  fish  roe 
residues. — L.  A.  C. 

Pyrophosphates  for  baking  powders.    G.P.  342,207-8 
and  342,797.     See  VII. 


116  a       Cl  XIXb.- 


-WATER  PURIFICATION,  &c.     Cl.  XX.— ORGANIC  PRODUCTS,  &c.   [Feb.  15, 1922. 


XIXb-WATEB  PUBIFICATIOH ; 
SANITATION. 

Water:  Determination  of  the  hydrogen-ion  concen- 
tration of  drinking-,  river-,  and  sea with 

indicators  but  without  buffer  solutions.  L. 
Michaelis.  Z.  Unters.  Nahr.  Genussm.,  1921,  42, 
75—80. 
The  indicator  is  a  0'01%  solution  of  m-nitrophenol. 
A  series  of  standard  tints  is  prepared  using  vary- 
ing proportions  of  the  indicator  in  an  alkaline 
medium.  Indicator  is  added  to  the  water  under 
examination  and  the  colours  matched  with  the 
standards.  The  H-ion  concentration  is  obtained  by 
a  simple  calculation.     (Cf.  J.,  1921,  102  a.) 

— A.  G.  P. 

Water;    Free    carbon    dioxide    in    and    the 

hydrogen-ion  concentration  in  water  analysis.  J. 
Tillmans.  Z.  Unters.  Nahr.  Genussm.,  1921,  42, 
98—104. 

A  general  discussion  and  criticism  of  the  work  of 

Kolthoff    (J.,    1921,    95  a,    96a,    407  a,    599a)    and 

others. — A.  G.  P. 

Sewage;  Rhythm  of  the  disappearance  of  ammonia 

during  the  purification  of  by  the.  activated 

sludge  process.  P.  Courmont,  A.  Rochaix,  and 
F.  Laupin.  Comptes  rend.,  1921,  173,  1498—1499. 
Further  experimental  evidence  is  given  in  support 
of  the  view  that  the  disappearance  of  amnionia 
during  the  purification  of  sewage  by  activated 
sludge  is  a  linear  function  of  the  time. — W.  G. 

Disinfection;  Theory  of  .     I.  Traube  and  R. 

Somogyi.  Biochem.  Zeits.,  1921,  120,  90—99. 
Experiments  with  Staphylococcus  and  B.  coli  show 
that,  apart  from  disinfectants  of  the  type  of 
potassium  permanganate  and  hydrogen  peroxide, 
which  act  chemically,  the  deciding  factors  are 
physical  forces  such  as  surface  activity,  adsorption, 
floeculation,  etc. — H.  K. 

Patents. 

Filters  [for  water].     A.  M.  Capro.     E.P.  172,491, 

29.10.20. 
The  cylindrical  body  of  the  filter  is  formed  with  an 
upper"  chamber  provided  with  a  detachable  cover,  a 
lower  chamber  of  smaller  diameter,  and  a  bottom 
compartment  with  an  inclined  floor.  The  lower 
chamber  is  divided  into  three  superposed  compart- 
ments of  successively  decreasing  diameters  down- 
wards, in  each  of  which  is  disposed  a  wire  basket 
containing  filtering  material  of  a  successively  finer 
nature.  The  rims  of  the  baskets  are  formed  with 
annular  flanges  each  resting  on  the  annular  ledge 
of  the  compartment  above.  A  ring  screwed  into 
the  upper  chamber  and  forming  a  partially-open 
floor  therefor  serves  to  hold  the  flanges  in  place  on 
the  ledges.  The  bottom  compartment  is  provided 
with  an  upper  discharge  outlet  for  purified  water 
and  a  lower  outlet  for  removal  of  sediment. — H.  H. 

Base-exchanging  material;  Operation  of  filters  con- 
taining  — — .  Permutit  A.-G.  G.P.  341,183, 
12.8.17. 
Two  filters  or  groups  of  filters  are  connected  in 
parallel.  An  electrical  device  operated  by  the  indi- 
cator of  a  meter  changes  the  feed  from  one  to  the 
other  when  a  given  volume  of  liquid  has  passed,  and 
places  the  first  filter  in  communication  with  a 
supply  of  washing  and  regenerating  liquid.  In  the 
case  of  open  filters  the  same  automatic  control  may 
be  operated  by  a  float. — C.  I. 


Water  softening;  Process  for  .       Junger  und 

Gebhardt  G.m.b.H.     G.P.  343,675,  3.3.16. 
The  water   is   treated  with   a  mixture   of   starch, 
vegetable  matter  rich  in  starch  converted  into  paste 
form  by  means  of  caustic  soda,   and  kaolin,   talc, 
kieselguhr,  or  the  like. — H.  R.  D. 

Waste    matter;    Method   and   apparatus   for    con- 
tinuously treating  .     A.  MacLachlan.     E.P. 

167,133,  29.10.20.     Conv.,  28.7.20. 
Waste  matter  (garbage)  is  broken  up  and  deodor- 
ised by  treatment  with  sulphur   dioxide,    with  or 
without  steam,  in  a  vessel  from  which  water,  grease, 
etc.  may  be  continuously  drawn  off. — A.  G.  P. 

Micro-organisms  in  liquids;  Process  for  the  destruc- 
tion of  .     The  Candy  Filter  Co.     From  A. 

Schreier.     E.P.  157,280,  10.1.21. 
The   liquid    is    filtered   through   a   bed   of   quartz, 
pumice,  or  similar  material  the  grains  of  which  are 
coated  with  a  layer  of  colloidal  silver. — A.  G.  P. 

Waste  organic  tubstances ;  Treatment  of .     A. 

Maclachlan.     E.P.  172,777,  30.9.20. 
See  U.S. P.  1,359,085-6  of  1920 ;  J.,  1921,  59  a. 


XX.-ORGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Morphine   and   other   alkaloids;   Recognition   and 

estimation  of  in  animal  excreta  and  other 

organs.  C.  Wachtel.  Biochem.  Zeite.,  1921,  120, 
265—283. 
Previously  proposed  methods  for  the  estimation  of 
nlorphine  in  animal  tissues  are  very  laborious  and 
time-consuming.  A  new  process  is  described  which 
takes  about  1£  days.  Urine  is  submitted  to  a 
preliminary  purification  by  basic  lead  acetate  and 
the  morphine  in  the  filtrate,  after  separation  of 
the  lead,  is  precipitated  by  phosphotungstic  acid 
in  feebly  acid  solution.  The  washed  precipitate  is 
decomposed  in  alkaline  solution  by  potassium 
sodium  tartrate  and  the  morphine,  in  solution, 
oxidised  to  pseudomorphine  by  an  excess  of  a 
standard  solution  of  potassium  ferricyanide.  The 
excess  of  the  latter  is  estimated  iodometrically. 
When  the  morphine  is  present  in  tissues  a  pre- 
liminary extraction  is  made  by  means  of  acidified 
alcohol.  The  extract  from  brain  or  muscle,  in 
addition  to  purification  by  basic  lead  acetate,  is 
submitted  to  further  purification  by  boiling  with 
copper  sulphate,  the  filtrate  freed  from  copper 
being  then  precipitated  with  phosphotungstic  acid. 
The  process  is  applicable  to  other  alkaloids  provided 
they  are  not  absorbed  by  the  basic  lead  acetate  pre- 
cipitate.— H.  K. 

Cocaine;  New  base  from  the  residues  of  the  hydro- 

lytic  products  of  - ,  isomeric  with  tropine  and 

pseudotropine.  J.  Trbger  and  K.  Schwarzenberg. 
Arch.  Pharm.,  1921,  259,  207—226. 
Br  fractional  crystallisation  from  alcohol  of  the 
hydrochlorides  of  the  basic  residues  left  after  the 
removal  of  the  ecgonine  from  the  product  of  the 
hydrolysis  of  the  coca  alkaloids,  the  hydrochloride 
of  a  new  base,  isomeric  with  tropine  and  pseudo- 
tropine, was  isolated  from  the  more  soluble  frac- 
tions. The  new  base,  C8H15ON,  is  a  very  hygro- 
scopic crystalline  substance,  m.p.  53°  C,  b.p.  225°— 
230°  C,  very  soluble  in  water  and  the  usual  organic 
solvents  except  petroleum  spirit,  and  distinctly 
volatile  at  ordinary  temperatures.  Its  salts  are 
also  very  'soluble  in  water  and  alcohol,  and  _are 
hygroscopic.  The  hydrochloride  melte  at  157° — 
160°  C,  the  platinichloride  at  184°  C,  the  benzoate 
(white  prisms)  at  139° — 140°  C,  and  the  methiodide 
(needles)  at  238°— 240°  C.     (Cf.  J.C.S.,  Feb.) 

— G.  F.  M. 


Vol.XLI.No.s.J       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


117a 


Palmatine;  Conversion  of  berbcrine  into  .     E. 

Spath  and  N.  Lang.     Ber.,  1921,  54,  3064—3074. 

The  methylenodioxy-group  of  tetrahydroberberine 
is  hydrolysed  by  treatment  with  methyl  alcoholic 
potassium  hydroxide  solution  at  180°  C.  The 
product  is  completely  methylated  by  treatment  with 
methyl  sulphate  in  large  excess  and  potassium 
hydroxide  and  is  subsequently  converted  into  the 
corresponding  iodide,  which  is  shown  to  be  identical 
with  tetrahydropalmatine  methiodide.  The  consti- 
tution assigned  to  palmatine  by  Feist  and  Sand- 
stede  (Arch.  Pharm.,  1918,  256,  1)  is  thus  con- 
firmed.    (Cf.  J.C.S.,  Feb.)— H.  W. 

Corydaline ;  Constitution  of  — — .     E.   Spath  and 
N.  Lang.     Ber.,  1921,  54,  3074—3078. 

Palmatine  iodide  is  converted  by  magnesium 
methyl  iodide  in  ethereal  solution  into  a-methyldi- 
hydropalmatine,  yellow  needles,  m.p.  128°— 130°  C, 
which  is  reduced  by  platinised  zinc  and  dilute  sul- 
phuric acid  to  a  mixture  of  o-methyltetrahydro- 
palmatines,  m.p.  165°  C.  and  67°— 69°  C.  respec- 
tively. Neither  of  these  substances  is  identical  with 
corydaline ;  this,  however,  should  be  the  case  if  the 
formula  for  the  latter  advanced  by  Dohbie  and 
Lauder  (J.,  1902,  137)  is  correct.     (Cf.  J.C.S.,  Feb.) 

— H.  W. 

Saponins.      V.      a-Hederin    and    its    hederagenin. 
A.  W.  van  der  Haar.     Ber.,  1921,  54,  3142—3148. 

o-Hederin,  the  crystalline"  saponin  of  ivy,  is  shown 
by  the  preparation  of  its  sodium  salt,  methyl  ester, 
and  the  tetra-acetate  of  the  latter  to  be  a  methoxy- 
tetrahydroxycarboxylic  acid.  Its  hydrolysis  is 
shown  by  the  scheme  : 
C«0HsaO;(OCH  ,)(OH)d.CO„H  +  3H„0  = 

C30H1,(OH)=:CO2H-r"CsH10O5  +  C6H12O5. 
— (Cf.  J.C.S.,  Feb.)— H.  W. 

Saponins.    VI.    Hederagenin.    A.  W.  van  der  Haar 

and  A.  Tamburello.     Ber.,  1921,  54,  3148—3158. 
It  is  shown  that  hederagenin  is  a  dihydroxymono- 
carboxylic  acid,   CJ0H47(OH)2.COaH.     Hederagenin 
does  not  contain  a  double  bond.     (Cf.  J.C.S.,  Feb.) 

— H.  W. 

Methylarsinates  of  quinine  and  of  iron;  Solutions 

of suitable  for  injection.    Picon.    J.  Pharm. 

Chim.,  1921,  24,  465—471.     (Cf.  J.,  1922,  32a.) 

<Jcinine  methylarsinate  prepared  by  Vitali's 
method  (J.,  1905,  813)  is  a  pure  basic  salt  con- 
taining 8225%  of  quinine.  It  is  soluble  in 
2000  pts.  of  water  at  20°  C,  and  is  unsuitable  for 
the  preparation  of  a  solution  for  injection  since  a 
very  large  excess  of  phenazone  is  required  to  obtain 
a  solution  of  the  required  concentration.  With  the 
neutral  quinine  methylarsinate  prepared  by  dissolv- 
ing the  pure  alkaloid  in  the  requisite  quantity  of 
acid  (21  g.  in  0'9  g.)  with  the  aid  of  1  mol.  of 
phenazone  (13  g.)  a  stable  10%  solution  can  be  pre- 
pared, which  only  at  very  low  temperatures  gives  a 
slight  crystalline  deposit.  It  gives  an  immediate 
precipitate  with  blood  serum.  A  solution  of  ferric 
methylarsinate  suitable  for  injection  is  obtained  by 
dissolving  1  mol.  of  gelatinous  ferric  hydroxide 
(freshly  precipitated)  in  aqueous  methylarsinic  acid 
(3  mols.)  and  neutralising  the  resulting  solution 
with  ammonia.  This  solution  forms  a  clear  liquid 
with  blood  serum. — G.  F.  M. 

Arsphenamine  [salvarsan]  and  related  compounds ; 
Relation  between  the  mode  of  synthesis  and  tox- 
icity of  .     W.   G.   Christiansen.     J.   Amer. 

Chem.  Soc.,  1921,  43,  2202—2210. 

The  variation  in  toxicity  of  different  samples  of 
arsphenamine  prepared  by  the  hydrosulphite  reduc- 
tion of  3-nitro-4-hydroxyphenylarsonic  acid  is  due 
to  variation  in  the  experimental  conditions  during 


the  reduction  of  the  nitro  group.  To  obtain  a 
material  with  low  toxicity  the  cold  solution  of  the 
nitro  compound  should  be  poured  into  the  cold 
solution  of  hydrosulphite  and  magnesium  chloride, 
with  vigorous  stirring,  and  the  mixture  heated  as 
rapidly  as  possible  to  55°  C.  Warm  solutions,  slow 
stirring,  and  slow  heating  gave  a  much  more  toxic 
product.  For  the  consistent  production  of 
arsphenamine  of  the  lowest  toxicity  the  starting 
material  should  be  3-amino-4-hydroxyphenylarsonic 
acid,  for  which  the  conditions  need  not  be  so  strictly 
adhered  to  at  the  commencement.  This  variation 
in  toxicity  is  apparently  general  to  the  aminoaryl 
arseno  compounds.     (Cf.  J.C.S.,  Feb.) — W.  G. 

Arsenated  benzophenone  and  its  derivatives.  W.  L. 
Lewis  and  H.  C.  Cheetham.  J.  Amer.  Chem. 
Soc,  1921,  43,  2117—2121. 

DicHLOBO-p-arsinobenzoyl  chloride  condenses  quite 
readily  with  aromatic  hydrocarbons  and  phenyl 
ethers  in  the  presence  of  anhydrous  aluminium 
chloride,  using  carbon  bisulphide  as  a  solvent. 
Benzophenone-4-arsonic  acid  and  a  number  of  its 
derivatives  are  described.    (Cf.  J.C.S.,  Feb.) 

— AV.  G. 

Organic  mercuric  derivatives ;  An  indirect  method 

of  preparation  of  and  a  method  of  linking 

carbon   to  carbon.     M.   S.   Kharasch.     J.  Amer. 
Chem.  Soc,  1921,  43,  2238—2243. 

When  mercuric  salts  of  certain  carboxylic  acids  are 
heated  carbon  dioxide  is  split  off  and  the  mercury 
takes  the  place  originally  occupied  by  the  carboxyl 
group.  Thus  mercuric  2.4-dinitrophenylacetate 
gives  2.4.2'.4'-tetranitromercurydiphenyl  and  mer- 
curic 2.4.6-trinitrobenzoate  gives  2.4.6.2'.4'.6'-hexa- 
nitromercurydiphenyl.  This  compound  when  heated 
with  mercuric  chloride  in  alcohol  gives  2.4.6-tri- 
nitrophenyl  mercuric  chloride,  which  with  iodine  in 
potassium  iodide  yields  2.4.6-trinitroiodobenzene 
and  2.4.6.2'.4'.6'-hexanitrodiphenyl.  By  heating 
2.4.2'.4'-tetranitromercurydibenzyl  in  the  dry  state 
tetranitrodibenzyl  was  obtained,  and  it  is  considered 
that  this  method  applied  to  other  similar  mercury 
compounds  may  result  in  one  carbon  atom  being 
oxidised  and  thus  the  two  carbon  atoms  becoming 
linked  together.  The  investigation  is  being  ex- 
tended to  mercury  salts  of  other  types  of  carboxylic 
acids.— W.  G. 

Botanical  chemical  observations.  E.  O.  von  Lipp- 
mann.    Ber.,  1921,  54,  3111—3114. 

In  an  isolated  case,  mannose  has  been  obtained 
from  the  fruit  of  Symphoricarpus  racemosus;  in 
subsequent  attempts  to  repeat  the  isolation  dextrose 
only  could  be  obtained.  A  lemon-yellow  deposit  on 
the  leaves  of  the  ordinary  white  anemone,  collected 
after  a  long  6pell  of  warm  weather,  was  identi- 
fied as  calcium  succinate.  The  roots  of  the 
ordinary  reed,  collected  in  early  summer,  gener- 
ally contained  about  1 — 3%  of  sucrose,  less  fre- 
quently 3 — 3'5%.  This  figure  is  somewhat  lower 
than  that  recored  recently  by  Sabalitschka  for 
roots  collected  in  November.  A  voluminous  black 
powder  found  in  the  hollow  of  a  felled  oak  became 
spontaneously  heated  when  spread  in  a  thin  layer 
in  bright  sunlight,  and  then  contained  a  consider- 
able proportion  of  mellitic  acid  which,  however, 
was  not  present  in  the  original  specimen. — H.  W. 

Benzyl  compounds.    J.  Messner.    Pharm.  Zentralh., 

1922,  63,  1. 
The  instability  of  aqueous  solutions  of  benzyl  alco- 
hol and  benzyl  benzoate,  even  in  the  absence  of  air, 
as  for  example  when  sealed  up  in  ampoules,  is 
ascribed  to  autoxidation,  catalysed  possibly  by 
traces  of  alkali  from  the  glass.  In  the  former  case 
1  mol.  of  the  alcohol  is  oxidised  to  benzaldehyde  at 
the  expense  of  a  second  which  suffers  reduction  to 


118a 


Cl.  XX- ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &c. 


[Feb.  15,  1922. 


toluene.  Aqueous  solutions  of  benzyl  benzoate 
acquire  a  strong  odour  of  benzaldehyde  after  a  week 
or  so,  although  remaining  neutral  in  reaction.  This 
is  therefore  not  a  case  of  hydrolysis,  but  of  self 
oxidation  and  reduction  according  to  the  scheme : 
C6Hs.CH2.C00C6H5-»-C6HsCH0+H0C.C(iH5. 

— G.  F.  M. 

Dicyanodiamide ;  Action  of  ammonia  water  on . 

T    L.   Davis.     J.   Amer.    Chem.    Soc.,    1921,   43, 

2230—2233. 
When  dicyanodiamide  is  heated  in  a  sealed  tube  at 
150°  C.  with  ammonia  solution  it  gives  first  guanyl- 
urea  and  then  guanidine  carbonate.  If  the  reaction 
is  prolonged  the  latter  reacts  with  ammonia  and 
carbon  dioxide  giving  in  turn  ammelide,  ammeline, 
and  finally  melamine. — W.  G. 

Guanidine   nitrate;   Preparation    of   .     T.    L. 

Davis.     J.  Amer.   Chem.   Soc.,  1921,  43,  2234— 

2238. 
Guanidine  nitrate  may  be  obtained  in  excellent 
yield  by  heating  together  dicyanodiamide  (1  mol.) 
and  ammonium  nitrate  (2'2  mols.)  either  alone  in 
the  dry  state  for  2  hrs.  at  160°  C.  or  with  water  in 
an  autoclave.  At  lower  temperatures  biguanide 
nitrate  is  the  main  product. — W.  G. 

Acetaldehyde  ;  Role  of  mercury  salts  in  the  catalytic 

transformation  of  acetylene  into  and  a  new 

commercial  process  for  the  manufacture  of  par- 
aldehyde. R.  R.  Vogt  and  J.  A.  Nieuwland.  J. 
Amer.  Chem.  Soc.,  1921,  43,  2071—2081. 
In  the  commercial  preparation  of  acetaldehyde  from 
acetylene  and  water  by  the  use  of  mercury  salts  as 
catalysts,  the  most  convenient  salt  to  use  is  mer- 
curic sulphate  in  sulphuric  acid  solution.  If  the 
acid  is  too  concentrated  it  is  very  difficult  to 
separate  the  acetaldehyde,  and  on  the  other  hand  if 
the  acid  is  too  weak  there  is  rapid  reduction  of  the 
mercuric  sulphate  to  metallic  mercury  and  conse- 
quent loss  in  activity.  To  overcome  these  difficulties 
it  was  found  advisable  to  use  the  acid  solutions  ob- 
tained in  place  of  pure  acetaldehyde  for  the  pre- 
paration of  quinaldine  or  its  derivatives.  For  this 
purpose  aniline  sulphate  is  dissolved  along  with  the 
mercuric  sulphate  before  passing  in  the  acetylene. 
The  most  satisfactory  conditions  are  to  use  a  con- 
centration of  40  %  of  sulphuric  acid  and  a  tempera- 
ture of  60°  C.  The  reduction  of  mercury  6alts  in 
dilute  acid  solutions  is  probably  due  to  hydrolysis 
and  the  only  way  in  which  acetaldehyde  can  be  ob- 
tained without  the  reduction  of  any  mercury  salt  is 
by  the  action  of  a  stream  of  moist  acetylene  at  70° — 
120°  C.  on  a  dry  mixture  of  the  mercury  sulphate- 
acetylene  compound  and  sodium,  potassium,  or  am- 
monium hydrogen  sulphate.  This  process  is,  how- 
ever, too  slow  to  be  of  any  practical  value  for  the 
preparation  of  acetaldehyde,  but  in  a  modified  form 
may  be  used  for  the  preparation  of  paraldehyde  as 
follows.  A  large  bottle  or  carboy  is  filled  with  dry 
fragments  of  glass  upon  which  is  distributed  a  pasty 
mass  consisting  of  a  mixture  of  mercuric  sulphate 
and  sodium  or  ammonium  hj'drogen  sulphate  and 
a  very  little  water.  The  moist  acetylene  is  led  in 
and  the  bottle  is  continually  rotated.  The  par- 
aldehyde accumulates  as  a  separate  layer  at  the 
bottom  of  the  bottle.  The  reaction  is  continuous 
and  an  aldehyde: mercury  ratio  of  17:1  can  be  ob- 
tained. In  this  method  no  distillation  is  necessary, 
there  are  no  by-products  or  waste  products,  and 
there  is  no  excess  acetylene  to  be  recovered. — W.  G. 

Formaldehyde;  "Alcoholic  fermentation"  of  

by  osmium.      E.  Miiller.      Ber.,  1921,  54,  3214— 
3216. 
An   aqueous   solution   of   formaldehyde  decomposes 
into  methyl  alcohol  and  carbon  dioxide  in  accord- 
ance    with     the     equation,     3CH.,0  +  H20  =  CO.!  + 


2CH,OH,  in  the  presence  of  metallic  osmium,  the 
catalytic  activity  of  which  diminishes  somewhat 
rapidly.  At  50°  C,  hydrogen  is  also  evolved  in 
6mall  amount. — H.  W. 

Formaldehyde;  Internal  or  catalytic  dehydroxida- 
tion  of  — — .  E.  Miiller.  Z.  Elektrochem.,  1921, 
27,  558—563. 

Formaldehyde  in  alkaline  solution  when  treated 
with  oxidising  agents  such  as  cuprous  oxide,  cupric 
oxide,  silver  oxide,  potassium  persulphate,  hydro- 
gen peroxide,  or  potasium  ferricyanide  is  converted 
into  formic  acid  with  the  evolution  of  hydrogen. 
The  same  reaction  occurs  on  electrolysis  of  an  alka- 
line solution  of  formaldehyde,  or  when  finely 
divided  metals,  such  as  copper,  silver,  palladium,  or 
platinum,  are  added  to  alkaline  formaldehyde.  The 
catalytic  change  is  best  shown  with  colloidal  rho- 
dium thus  :  if  to  30  c.c.  of  15]V  sodium  hydroxide 
and  50  c.c.  of  20%  formaldehyde  20  c.c.  of  colloidal 
rhodium  (0-05  g.)  is  added  at  25°  C.  there  is  an 
evolution  of  3  1.  of  hydrogen  in  two  hours.  (Cf. 
J.C.S.,  Feb.)— J.  F.  S. 

Alcohols;  Dehydroxidation  of .     E.  Miiller.     Z. 

Elektrochem.,  1921,  27,  563—567. 

A  number  of  alcohols  including  ethyl,  propyl,  iso- 
propyl,  isobutyl,  and  benzyl  alcohols,  glycol,  gly- 
cerol, and  mannitol,  in  strongly  alkaline  solution  on 
electrolysis  or  in  the  presence  of  oxidising  agents 
such  as  potassium  ferricyanide  or  in  the  presence 
of  colloidal  rhodium,  give  rise  to  hydrogen  or  hydro- 
carbons.   (Cf.  J.C.S.,  Feb.)— J.  F.  S. 

Lavender  oils,  distilled  by  open  fire  and  by  steam. 
A.  Chiris.  Perf.  Ess.  Oil  Rec.,  1921,  12,  404-^05. 

The  rotatory  power  of  lavender  oils  distilled  by 
open  fire  increases  in  absolute  value  with  the  ester 
content  from  -5°  for  32%  of  esters  to  -8°  for 
superior  oils  containing  40 — 45%  of  esters.  The 
ester  content  of  steam-distilled  lavender  oils  is 
7 — 8%  higher  than  that  of  fire-distilled  oils  of  the 
same  origin:  the  rotatory  power,  however,  does  not 
appear  in  this  case  to  increase  regularly  with  the 
ester  content,  but  varies  from  -6°  to  -9°  30'  with 
oils  containing  over  40%  of  esters.  Neither  by  the 
rotatory  power,  therefore,  nor  by  simple  organo- 
leptic examination  can  a  satisfactory  approxima- 
tion be  arrived  at  of  the  ester  content  of  a  steam- 
distilled  oil.  Steam-distilled  oils  are  less  soluble  in 
70%  alcohol  and  often  have  a  higher  sp.  gr.  (e.g., 
09)  than  oils  distilled  by  open  fire  (sp.  gr.  0"888— 
0890),  and  the  requirements  of  the  United  States 
Pharmacopoeia  (9th  Ed.)  should  be  modified  to  in- 
clude these  variations  from  the  constants  exhibited 
by  the  latter  class  of  lavender  oils. — G.  F.  M. 

Essential  oil  of  Nepeta  japonica,  Maxim.  Part  1. 
Y.  Muravama  and  T.  Itagaki.  Yakugakuzasshi 
(J.  Pharm.  Soc.  Japan),  1921,  No.  476,  869—880. 

By  the  steam  distillation  of  Nepeta  japonica, 
Maxim,  an  esential  oil  (1'8%)  with  pepper-like 
odour  was  obtained,  having  the  following  cha- 
racters:— sp.  gr.  at  14°/4°  C,  09079;  acid  value, 
14;  saponif.  value,  312;  saponif.  value  after  acety- 
lation,  51-7;  aD=+ll-8;  nD"  =  r474.  The  presence 
of  d-menthone  and  d-limonene  in  the  oil  was  proved. 
The  former  has  b.p.  204°— 206°  C.  (87°— 88°  C.  at 
13  mm.),  sp.  gr.  at  22°/4°  C.  0"8933,  [a]D=+35'60, 
nD:l  =  1-44962—  K.  K. 

Alcohol  and  ether  from  coke-oven  gas.  Thau  and 
Bertelsmann.    See  IIa. 

Gynocardia  oil.     Lifschutz.     See  XII. 
Decomposition  of  a7nygdalin.    Giaja.    See  XVIII. 


Vol.  XII.,  No.  3.] 


Cl.  XXI.— photographic  materials  and  processes. 


119a 


Patents. 

Vaccines;  Process  for  making  specific .    Elek- 

tro-Osmose  A.-G.  (Graf  Schwerin  Ges.).  E.P. 
150,319,  19.8.20.  Conv.,  19.8.19.  Addn.  to 
150,318  (J.,  1921,  673  a). 

In  treating  bacteria  as  described  in  tbe  chief 
patent,  the  process  is  so  modified,  by  reducing 
either  the  period  of  the  treatment  or  the  current 
strength,  that  the  bacteria  are  not  killed  but  are 
rendered  non-pathogenic.  Bacteria  so  treated  can 
be  cultivated  on  artificial  nutrients  without  regain- 
ing their  original  pathogenic  character,  and  are 
made  into  emulsions  with  sodium  chloride  solution 
in  the  usual  manner  for  use  as  vaccines. — L.  A.  C 

Perylene;  Manufacture  of  .     A.   Zinke.     E.P. 

165,770,  14.2.21.    Conv.,  2.7.20. 

1.12-Dihydroxyperylene  (c/.  E.P.  165,771 ;  infra) 
is  reduced  by  distilling  with  or  over  zinc  dust  or 
iron  powder.  For  example  a  mixture  of  1  pt.  of 
dihydroxyperylene  and  2  pts.  of  zinc  dust  on  dis- 
tillation in  a  current  of  hydrogen  over  heated 
pumice  stone  impregnated  with  zinc,  yields  peryl- 
ene as  a  reddish-yellow  oil  which  after  solidification 
is  purified  by  crystallisation  from  the  usual  sol- 
vents.— G.  F.M. 

Dihydroxyperylene;     Manufacture     of    .       A. 

Zinke.    E.P.  165,771,  14.2.21.    Conv.,  2.7.20. 

1  part  of  2.2'-dimethoxy-l.l'-dinaphthyl  or  other 
alkyl  derivative  of  dihydroxydinaphthyl,  is  heated 
with  4  pts.  of  aluminium  chloride  for  2  hrs.  at 
140°— 150°  C.,  with  exclusion  of  moisture.  The 
molten  mass  is  treated  with  hydrochloric  acid,  the 
dihydroxyperylene  formed  is  separated  and  purified 
by  re-precipitation  from  sodium  hydroxide  solution 
or  glacial  acetic  acid,  in  which  reagents  it  is  readily 
soluble  with  an  intense  green  fluorescence.  The 
solution  in  sodium  hydroxide  is  readily  oxidised, 
giving  the  corresponding  quinone,  which  however 
is  re-converted  into  dihydroxyperylene  by  treat- 
ment with  sodium  hydrosulphite. — G.  F.  M. 

Esters;  Method  for  the  production  of  .     A.  A. 

Backhaus,  Assr.  to  U.S.  Industrial  Alcohol  Co. 
U.S.P.  1,400,852,  20.12.21.    Appl.,  23.5.19. 

Gradually  increasing  concentrations  of  an  alcohol 
are  treated  with  a  counter-current  of  acid  fer- 
mented distillery  waste  in  the  presence  of  a 
catalyst,  and  the  esters  formed  are  separated  by  dis- 
tillation.—L.  A.  C. 

Tobacco-leaf ;  Process  of  treating .    J.  S.  Villa- 

corta.    U.S.P.  1,401,106,  20.12.21.    Appl.,  9.8.21. 

Tobacco,  after  bruising  or  destroying  the  con- 
tinuity of  the  leaf  surface,  is  successively  washed 
to  remove  nicotine  and  soluble  substances,  treated 
with  an  oxidising  agent  consisting  of  a  solution  of 
potassium  permanganate  and  sodium  chloride,  neu- 
tralised with  a  solution  of  oxalic  and  citric  acids, 
and  washed  to  remove  excess  of  chemicals. — L.  A.  C. 

Maleic    acid;    Purification    of    by    reducing 

agents.  G.  C.  Bailey,  Assr.  to  The  Barrett  Co. 
U.S.P.  1,401,937,  27.12.21.    Appl.,  9.11.20. 

A  mixture  of  maleic  acid  and  benzoquinone  is 
treated  with  a  reducing  agent. — L.  A.  C. 

Quinine  esters;  Manufacture  of .    Chem.  Fabr. 

auf  Aktien  (vorm.  E.  Schering).  G.P.  341,113, 
28.9.17. 

Esters  of  quinine  with  2-phenylquinoline-4-car- 
boxylic  acid  or  its  homologues  possess  therapeutic 
properties  superior  to  quinine  in  the  treatment  of 
malaria.  2-Phenylquinoline-4-carboxylic  acid  quin- 
j  ine  ester,  m.p.  166° — 170°  C,  is  prepared  by  heat- 
|  ing  2-phenylquinoline-4-oarboxylic  acid  chloride 
with  quinine   in   benzene  solution   at   100°   C.      6- 


M  i  i  liyl-2-phenylquinoline-4-carboxylic  acid  quinine 
ester  has  m.p.  166°— 168°  C— L.  A.  C. 

Silicic  acid-tannin-albumin  and  silicic  acid-formal- 
dchy de-tannin-albumin    compounds;    Production 

of .    J.  Burkhardt.    G.P.  341,114,  10.3.20. 

Soluble  silicates  or  colloidal  silicic  acid  solutions, 
tannin,  and  albumin  or  its  decomposition  or  halo- 
gen substitution  products,  with  or  without  formal- 
dehyde, are  allowed  to  interact,  and  the  compounds 
produced  are  precipitated  under  neutral  conditions ; 
e.g.,  egg  albumin  dissolved  in  water  is  mixed  with 
a  solution  of  sodium  polysilicates  containing  about 
25%  SiO,,  and  hydrochloric  acid  added  until  a  weak 
acid  reaction  is  obtained,  an  aqueous  solution  of 
tannin  is  added  to  the  opalescent  solution,  and  on 
heating  to  50° — 60°  C.  the  silicic  acid-tannin-albu- 
min compound  is  deposited.  Caseose,  with  crystal- 
line sodium  silicate  and  aqueous  tannin  solution, 
after  neutralisation  with  dilute  hydrochloric  acid 
and  addition  of  40%  formaldehyde  gives  silicic  acid- 
formaldehyde-tannin-caseose.  By  the  action  of 
iodine  and  potassium  iodide  on  an  alkaline  solution 
of  caseose  and  addition  of  sodium  bicarbonate  at 
about  40°  C.  iodocaseose  is  obtained  and  can  be  con- 
verted in  a  similar  manner  into  silicic  acid-formal- 
dehyde-tannin-iodocaseose.  The  products  are  in- 
soluble in  water  and  organic  solvents,  but  soluble 
in  0'5%  sodium  carbonate  solution  and  dilute 
alkalis,  from  which  they  are  precipitated  by  acids. 
They  have  therapeutic  applications. — T.  H.  Bu. 

Colloidal  solutions  of  metals;  Process  of  preparing 
and  obtaining  solid,  colloidal  metals  there- 
from.   E.  Richter.    G.P.  342,212,  16.7.19. 

Dimethyl-p-phenylenediamine  is  employed  as  the 
reducing  and  stabilising  agent.- — C.  I. 

Esters;  Continuous  process  and  apparatus  for  the 

manufacture  of  .     A.  A.  Backhaus,  Assr.  to 

U.S.  Industrial  Alcohol  Co.    U.S.P.  1,400,849-51, 
20.12.21.     Appl.,  7.8.18. 

See  E.P.  130,968-70  of  1919;  J.,  1920,  801  a. 

Dimethyl  suljmate;  Preparation  of  .     W.  N. 

Haworth    and   J.    C.    Irvine.     U.S.P.    1,401,693, 
27.12.21.     Appl.,  19.11.18. 

See  E.P.  122,498  of  1918;  J.,  1919,  233  a. 


XXI.-PH0T0GRAPHIC  MATERIALS  AND 
PROCESSES. 

Photographic    emulsions;    Size-frequency    distribu- 
tion of  particles  of  silver  halide  in  and  its 

relation  to  sensitometric  characteristics.  II.  The 
method  of  determining  size-frequency  distribu- 
tion. E.  P.  Wightman  and  S.  E.  Sheppard. 
Communication  124  from  Eastman  Kodak  Re- 
search Lab.     J.  Phys.  Chem.,  1921,  25,  561—594. 

Two  methods  have  been  used  for  the  determina- 
tion of  6ize-frequency  distribution.  In  the  first 
method  the  emulsion  to  be  tested  is  diluted  with 
25%.  glycerin  in  water,  to  allow  slower  settling 
than  with  plain  water,  and  is  then  allowed  to  settle 
either  by  gravity  or  with  the  assistance  of  a  centri- 
fugal machine  of  known  speed.  The  sediment  ob- 
tained from  a  given  quantity  of  emulsion  in  a  given 
time  is  diluted  to  a  definite  volume  and  the  number 
of  grains  then  counted  in  a  hemacytometer. 
Stokes'  law,  connecting  the  size  and  rate  of  a  fall 
of  spherical  bodies  in  a  liquid  of  known  viscosity 
and  under  a  known  force,  is  found  to  apply  ap- 
proximately to  non-spherical  particles  such  as  silver 
halide  grains  under  the  conditions  of  the  experi- 
ments; it  was  applied  therefore  to  the  determina- 
tion of  the  average  size  of  the  particles  of  the 
various  sedimentation  fractions.  The  degree  of 
dilution  of  the  sediment,  preliminary  to  the  count- 

o 


120  a 


Cl.  XXII.— EXPLOSIVES  ;  MATCHES. 


[Feb.  15,  1922. 


ing  in  the  microscope,  has  an  effect  on  the  count. 
Rapid,  but  only  approximate  results  are  obtained 
by  this  method.  The  second  method  is  a  direct 
counting  and  measuring  method  and  is  much  more 
tedious;  a  slide,  one  grain  thick,  is  examined  and 
drawn  in  the  camera  lucida,  a  photographic  en- 
largement of  the  drawing  made,  and  the  individual 
grains  measured  by  a  planimeter.  The  preliminary 
magnification  is  about  3000  and  the  total  magnifi- 
cation about  15,000.  Results  obtained  by  this 
method  agreed  with  Trivelli's  resulte  obtained  by 
photomicrographic  methods  throughout.  Tables 
and  curves  of  results  obtained  by  both  methods  are 
given. — B.  V.  S. 

Silver    compounds;    Photochemistry    of   .      F. 

Weigert    and    W.    Scholler.      Sitzungsber.    Kgl. 

Preuss.    Akad.    Wiss.    Berlin,    1921,    641—650. 

Chem.  Zentr.,  1922,  93,  I.,  4. 
Pure  silver  chloride-gelatin  emulsions  darken  only 
very  slowly  in  the  light,  the  printing  qualities  of 
emulsions  of  silver  chloride  containing  also  silver 
nitrate,  citrate,  or  tartrate,  being  due  to  the  latter 
salts  which  produce  metallic  silver  on  exposure  to 
light ;  this  acts  as  an  auto-sensitiser,  enabling  the 
strengthening  of  a  weak  picture  by  further  ex- 
posure to  yellow  light  without  a  negative.  It  is 
suggested  that  the  really  light-sensitive  material  in 
a  silver  chloride  emulsion  is  metallic  silver  which  is 
assumed  to  occur  in  fresh,  unexposed  emulsions, 
even  if  only  in  very  small  quantities  as  an  impurity. 
It  is  also  suggested  that,  since  the  light-sensitive, 
or  light-absorbent,  material  is  a  product  of  the  sub- 
sequent reaction,  the  full  mechanism  of  the  reaction 
includes  a  transfer  of  energy  from  the  "  absorb- 
ing "  metallic  silver  to  the  "  reacting  "  silver  salt 
by  the  splitting-off  of  electrons. — B.  V.  S. 

[Photography.]  Wet-collodion  formulae  of  Scott 
Archer  and  Hardwich  revised.  W.  T.  Wilkinson. 
Phot.  J.,  1922,  62,  5—7. 

The  chief  difficulties  in  the  Scott  Archer-Hardwich 
collodion  process  arise  from  the  necessity  of  using  a 
silver  nitrate  bath  saturated  with  silver  iodide. 
This  is  avoided  by  using,  instead  of  iodised  collo- 
dion, a  collodion  solution  containing  bromide  and 
chloride  (24  pts.  of  ammonium  bromide  to  about 
9  pts.  of  calcium  chloride)  and  bathing  in  plain 
silver  nitrate  solution.  Plates  so  prepared  may  be 
used  in  the  same  way  as  plates  prepared  by  the 
iodide  process,  either  as  wet  or  as  dry  plates,  and 
may  be  colour-sensitised  in  the  usual  way.  The 
speed  of  these  plates  is  about  twice  that  of  an  iodide 
plate  and  the  presence  of  chloride  (or  of  iodide) 
with  the  bromide  ensures  freedom  from  fog.  To  ob- 
tain an  emulsion  with  very  fine  grain  it  is  advisable 
to  precipitate  the  collodion  in  water,  thoroughly 
wash  it  and  dry  it  before  use. — B.  V.  S. 

Isocyanines;    Optical  and   photographic   properties 

of  some  isomeric .    F.  M.  Hamer.     Phot.  J., 

1922,  62,  8—14. 
Details  are  given  of  the  methods  adopted  in  deter- 
mining the  optical  and  photographic  properties  of 
the  16  isocyanines  previously  described  (J.,  1921, 
791  a).  Spectrograms  are  given  of  the  absorption 
and  of  the  sensitising  effect  in  each  case  and  the  re- 
sults are  also  presented  in  tabular  form. — B.  V.  S. 

Patents. 

Coloured  [photographic']  pictures;  Process  for  mak- 
ing     .      A.    Traube.      E.P.    163,336,    7.7.20. 

Conv.,  3.12.18.  Addn.  to  147,005  (J.,  1921,  325  a). 
The  dyed  picture,  prepared  according  to  the 
method'  of  the  chief  patent,  may  be  reduced  in 
colour  by  treatment  with  a  weak  acid,  or  may  be 


intensified  by  a  further  treatment  with  dye  solu- 
tion. (Reference  is  directed,  in  pursuance  of  Sect. 
7,  Sub-sect.  4,  of  the  Patents  and  Designs  Acts, 
1907  and  1919,  to  E.P.  113,617;  J.,  1918,  607  a.) 

— B.  V.  S. 

[Photographic]    reflection-copies;    Process    for    the 

production   of  .      R.    Kogel.      G.P.   341,847, 

12.11.20. 

A  thin  sensitive  silver  halide  film  is  placed  on  the 
original,  which  is  exposed  through  the  film  to  pro- 
duce an  image  by  reflection  and  this  is  developed 
with  a  developer  which  tans  the  gelatin  and  the 
soluble  parts  washed  away.  The  resulting  print 
may  be  stained  with  a  suitable  dye  or  may  be  used 
for  mechanical  printing,  in  this  case  a  thicker  film 
being  used  for  the  print. — B.  V.  S. 


XXII.— EXPLOSIVES ;  MATCHES. 

Nitrocellulose ;  Removal  of  free  acid  from  - with 

special  reference  to  the  use  of  saline  leaches. 
S.  E.  Sheppard.  J.  Ind.  Eng.  Chem.  1921,  13, 
1017—1024. 

A  neutral  solution  of  sodium  sulphate,  sp.  gr.  114, 
removes  free  acid  from  nitrocellulose  very  rapidly, 
and  the  action  is  much  more  efficient  at  18° — 20°  C. 
than  that  of  distilled  water  or  hard  water  of 
moderate  bicarbonate  alkalinity.  The  excess  of 
sodium  sulphate  is  readily  washed  out  by  water,  for 
unlike  acid,  it  is  not  adsorbed  by  nitrocellulose. 
Sulphate  leaching  at  ordinary  temperatures  does 
not  produce  highly  stable  nitrocellulose  although 
the  product  is  considerably  more  stable  than  nitro- 
cellulose repeatedly  washed  with  faintly  alkaline 
water.  Boiling  in  sulphate  solution,  however,  is 
equally  effective  with  boiling  in  water  for  increas- 
ing the  stability.  Nitrocellulose  offers  greater  re- 
sistance to  pulping  in  sulphate  solution  than  when 
water  is  used,  and  this  accords  with  the  view  that 
the  action  of  the  sulphate  in  removing  acid  consists 
in  an  osmotic  effect  on  the  fibre  membrane,  tending 
to  dehydrate  the  latter  and  expel  both  water  and 
acid ;  the  fibre  strength  and  resistance  to  mechani- 
cal disintegration  would  be  temporarily  increased 
by  this  action.  Although  pulping  is  more  difficult 
in  sulphate  solution,  removal  of  acid  is  effected 
more  quickly  than  in  water,  and  it  would  appear 
that  the  mere  mechanical  shortening  and  destruc- 
tion of  fibres  does  not  greatly  facilitate  removal  of 
acid.  Bleaching  is  effected  at  least  as  well  with 
material  which  has  been  leached  with  sulphate  as 
with  that  which  has  been  washed  with  water. 

— F.  M.  R. 


-  from  the  sulphonk 
Chem.  Soc.  Trans., 


Picric  acid;  Production  of  — 
acids  of  phenol.  R.  King. 
1921,  119,  2105—2121. 

Although  disulphonation  of  phenol  increases  the 
certainty  of  a  good  yield  of  picric  acid  (Marqueyrol, 
Carre,  and  Loriette ;  J.,  1920,  248  a),  this  is  not  the 
only  factor,  for  good  yields  are  obtained  technically 
from  mixtures  containing  a  considerable  amount  of 
phenol-4-sul phonic  acid,  provided  that  the  nitra- 
tion is  carried  out  in  presence  of  sufficient  sulphuric 
acid.  A  sulphonic  group  is  more  readily  displaced 
by  a  nitro-group  from  position  4  than  from  posi- 
tion 2.  To  obviate  the  formation  of  oxalic  acid  and 
dinitrophenol,  the  latter  of  which  is  resistant  to 
further  nitration  by  diluted  acids,  it  is  essential  to 
monosulphonate  phenol  in  position  4,  and  desirable 
to  introduce  a  second  6ulphonic  group  in  position  2, 
or,  alternatively,  to  nitrate  phenoI-4-sulpb.onic  acid 
in  presence  of  a  considerable  excess  of  sulphuric 
acid.— F.  M.  R. 


Vol.  XII.,  Xo.  3.] 


Cl.  xxiii.— analysis. 


121a 


Mercury  fulminate.    H.  Rathsburg.    Ber.,  1921.  54, 
3185—3187. 

The  presence  of  unsaturated  impurities  in  mercury 
fulminate  can  be  detected  by  the  behaviour  of  the 
specimen  towards  potassium  permanaganate,  which 
is  not  affected  by  the  pure  compound.  The  amount 
of  the  oxidising  agent  used  by  impure  specimens 
depends  on  the  medium  in  which  they  are  sus- 
pended and,  generally,  is  greatest  in  acid  and  least 
in  aqueous  suspension.  On  the  other  hand,  the  ad- 
dition of  halogen  cannot  be  applied  quantitatively, 
since  pure  mercury  fulminate  combines  with  halo- 
gen. Nevertheless,  titration  with  iodine  is  a  useful 
method  of  testing,  the  presence  of  more  reactive 
mercury  salts  being  indicated  by  the  formation  of  | 
greater  or  less  quantities  of  red  mercuric  iodide  in 
the  titrated  mixture.  The  following  process  is  more 
convenient  than  that  advocated  by  Solonina  (J., 
1910,  374)  for  the  estimation  of  oxalate  in  mercury 
fulminate.  The  specimen  (about  3  g.)  is  dissolved 
in  ammonia  (20%)  and  the  bulk  of  the  fulminate,  in 
so  Par  as  it  is  not  decomposed,  is  reprecipitated  by 
acetic  acid.  Oxalic  acid  is  precipitated  in  the  clear 
nitrate  (or  an  aliquot  portion  thereof)  with  about 
iV/1  calcium  chloride  solution,  and  the  precipitated 
calcium  oxalate  is  weighed  as  such  or  after  conver- 
sion into  calcium  oxide. — H.  W. 

Explosives;  Sensitiveness  of  very  sensitive .    J. 

Eggert.  Z.  Elektrochem.,  1921,  27,  547—558. 

Nitrogen  iodide  decomposes  according  to  the  equa- 
tion 8NH3NI3  =  5N2-(-6NH1I+9IJ;  whether  in  light 
or  dark  or  by  detonation.  It  is  not  sensitive  to 
shock,  and  effects  which  have  been  regarded  as  shock 
effects  are  shown  to  be  secondary  mechanical 
effects.  The  sensitiveness  of  dry  nitrogen  iodide  ; 
and  of  silver  amide  is  not  changed  by  cooling  to 
- 190°  C.  A  gradual  isothermal  increase  of  pres- 
sure to  5000  atm.  brings  about  a  decomposition  in 
70%  of  the  cases  of  nitrogen  iodide  and  silver  amide 
but  has  no  effect  with  other  explosives.  Local  in- 
creases in  pressure  caused  by  the  reactions  in  ex- 
plosives are  regarded  as  the  cause  of  detonation. 
(Cf.  J.C.S.,  Feb.)— J.  F.  S. 

Explosion  of  acetylene  and  nitrogen.     Garner  and 
Matsuno.    See  IIa. 

Patent. 

Detonating  and  priming  substance;  Production  of  a 
.     H.  Rathsburg.     G.P.  341,961,  24.12.19. 

Picryl  azide  (CcH,(NO,)3N3)  can  be  prepared  with- 
out danger  and  in  a  suitable  state  for  loading  into 
detonators  by  treating  trinitrochlorobenzene  with 
sodium  azide.  It  has  great  power,  brisance,  and 
heat  of  explosion,  is  easily  pressed,  and  forms  a 
good  primer. — H.  C.  R. 


XXIII.-ANALYSIS. 

Viscostalagmometer  ;  New  for  the  estimation 

of  surface  tension  and  viscosity  of  liquids  of  very 
different  fluidity.  I.  Traube.  Biocheni.  Zeits., 
1921,  126,  106—107. 

The  essential  feature  consists  in  the  adaptation  to 
the  ordinary  form  of  stalagmometer  of  five  inter- 
changeable ground-in  mouth-pieces  of  differing 
capillary  bore,  thus  allowing  measurements  to  be 
performed  with  the  same  apparatus  on  liquids  of  a 
great  range  of  fluidities. — H.  K. 

Miscible  liquids;  Separation  of by  distillation. 

A.  F.  Dufton.  Trans.  Chem.  Soc,  1921,  119, 
1988—1994. 

Several  types  of  still-heads  suitable  for  continuous 


distillation  are  described.  That  based  on  the  prin- 
ciple of  the  Dufton  still  (J.,  1919,  45  t)  has  a 
thermal  efficiency  of  15"5%  for  a  50%  mixture  of 
benzene  and  toluene.  Better  adapted  for  con- 
tinuous working  is  a  dephlegmator  still-head  made 
in  a  glass  tube  15  cm.  in  diameter  and  73  cm.  long. 
Fifteen  discs  of  copper  gauze  of  80  holes  to  the  inch 
and  fitted  each  with  a  siphon  tube  to  prevent  ac- 
cumulation of  liquid  on  the  gauze,  are  sealed  to  the 
walls  at  intervals  of  4"5  cm.,  to  support  the  de- 
phlegmating  films  of  liquid.  The  pressure  differ- 
ence between  the  sections  is  independent  of  the  mesh 
of  the  gauze.  A  still-head  made  by  filling  a  glass 
tube,  of  2"3  cm.  diameter  and  100  cm.  long,  with 
thin-walled  cylindrical  glass  beads  4  mm.  long  and 
4  mm.  diameter,  has  a  thermal  efficiency  of  47% 
for  a  50%  mixture,  and  appears  to  possess  all  the 
advantages  necessary  in  a  column  for  continuous 
distillation.— P.  V.  M. 

Indicator  method  without  buffers;  Further  elabora- 
tion of  the  [.for  determining  hydrogen  ion 

concentration'].  L.  Michaelis  and  R.  Kriiger. 
Biochem.  Zeits.,  1921,  119,  306—327. 

The  salt  error  and  temperature  coefficient  of  m- 
nitrophenol  have  been  determined,  and  a  new  one- 
colour  indicator,  2.5-dinitrophenol,  is  described.  A 
theoretical  and  practical  treatment  of  the  effect  on 
the  hydrogen  ion  concentration  of  a  solution  of  the 
addition  of  an  indicator  is  given  and  instructions 
for  the  colorimetric  estimation  of  hydrogen  ion  con- 
centration in  weakly  acid  solutions  containing  only 
small  proportions  of  buffer  substances,  e.g.,  river 
and  sea-water. — H.  K. 

Silver;  Separation  of  from  mercurous  salts. 

I.  M.  Kolthoff.  Pharm.  Weekblad,  1921,  58, 
1680—1683. 

The  mixed  chlorides  obtained  by  means  of  hydro- 
chloric acid  are  washed  free  from  lead  with  boiling 
water  and  shaken  with  2%  potassium  cyanide  solu- 
tion. Silver  and  mercuric  cyanides  dissolve,  whilst 
elementary  mercury  is  precipitated.  The  solution 
is  filtered  and  silver  detected  by  means  of  hydro- 
chloric acid;  after  filtering  again,  mercury  can  be 
detected  in  the  filtrate  by  means  of  sodium  sul- 
phide. The  test  will  detect  1  pt.  of  silver  in  1000 
of  mercurous  mercury,  and  5  pts.  of  mercury  in 
1000  of  silver.    (Cf.  J.O.S.,  Feb.)— S.  I.  L. 

Zinc;    Titration    of   .      E.    Monasch.      Pharm. 

Weekblad,  1921,  58,  1652—1656. 

The  potassium-mercuric-thiocyanate  method  (Kolt- 
hoff and  van  Dijk,  J.,  1921,  450)  gives  accurate  re- 
sults in  presence  of  aluminium  and  ferric  salts,  and 
is  therefore  suitable  for  the  estimation  of  zinc  in 
allovs  from  which  it  has  been  separated  by  means 
of  aluminium.    (Cf.  J.C.S.,  Feb.)— S.  I.  L. 

Tantalum,  columbium  a-nd  their  mineral  associates; 
Investigations  into   the  analytical   chemistry  of 

.     /.  Use  of  tartaric  acid  in  the  analysis  of 

natural  tantalocolumbates.  II.  Separation  of 
zirconium  from  tantalum  and  from  columbium. 
W.  R.  Schoeller  -and  A.  R.  Powell.  Trans.  Chem. 
Soc.,  1921,  119,  1927—1935. 

In  the  standard  method  of  analysis  of  tantalo- 
columbate  minerals,  i.e.,  decomposition  by  fusion 
with  alkali  pyrosulphate,  followed  by  hydrolysis  to 
precipitate  the  earth  acids,  precipitation  of  the 
earth  acids  is  incomplete  if  a  maximum  acidity  is 
overstepped,  and  the  precipitate  is  contaminated 
with  other  elements,  the  separation  of  which  is 
complicated.  The  authors  avoid  the  initial  hydro- 
lysis by  dissolving  the  pyrosulphate  melt  in  tartaric 
acid  solution,  in  which  the  hydroxides  of  tantalum, 
columbium,  and  titanium  are  soluble.  One  part  of 
the   finely-powdered   mineral   is  fused  with   6  pts. 


122  a 


PATENT    LIST. 


[Feb.  15,  1922 


of  sodium  pyrosulphate  in  a  silver  crucible,  and 
the  cold  mass  leached  with  a  solution  of  10  pts.  of 
tartaric  acid  in  a  maximum  of  50  pts.  of  water. 
Fusion  of  the  ignited  residue  again  with  pyro- 
sulphate may  be  necessary.  The  residue  is  analysed 
for  lead,  tin,  silica,  etc.  The  combined  filtrates  are 
freed  from  antimony,  copper,  tin,  etc.,  by  satura- 
tion with  hydrogen  sulphide,  and  from  iron, 
uranium,  and  a  small  part  of  the  manganese,  if 
present,  by  digestion  with  ammonia  and  ammonium 
sulphide.  Tungsten,  titanium,  tantalum,  colum- 
bium,  and  zirconium;  rare-earth  metals  and 
thorium;  aluminium,  glucinum,  manganese,  cal- 
cium, and  magnesium  remain  in  solution.  The 
resolution  of  this  mixture  is  being  investigated. 

For  the  separation  of  zirconium  from  tantalum 
and  columbium,  after  a  preliminary  fusion  with 
pyrosulphate,  leaching  with  water,  and  boiling  of 
the  filtrate  with  filter  pulp  and  ammonia,  the 
precipitate  is  washed  with  ammonium  nitrate, 
strongly  ignited  in  a  platinum  vessel,  fused  with 
potassium  carbonate  (5 — 20  pts.),  leached  with  hot 
water  in  a  platinum  vessel,  and  filtered  until  clear, 
the  residue  being  washed  with  2%  potassium  car- 
bonate solution,  then  with  dilute  hydrochloric  acid. 
The  washings  are  boiled  with  a  slight  excess  of 
ammonia,  filtered  through  the  same  filter,  which 
is  ignited  in  a  platinum  crucible  and  weighed.  The 
filtrate  from  the  leaching  is  acidified  with  hydro- 
chloric acid,  boiled  with  filter-pulp  and  a  slight 
excess  of  ammonia,  the  precipitate  collected,  washed 
with  water  containing  ammonium  nitrate,  strongly 
ignited  in  a  platinum  crucible  and  weighed.  The 
process  is  repeated  once  for  columbium,  twice  for 
tantalum,  and  the  final  residue  weighed  as  zirconia. 
Purification  of  this  residue  is  carried  out  by  the 
pyrosulphate  procedure  outlined  above.  The  separa- 
tion of  zirconium  from  columbium  in  this  way  is 
quantitative,  that  from  tantalum  shows  a  positive 
error  of  1 — 3%  for  zirconium  and  a  corresponding 
negative  error  for  tantalum.  The  method  is  recom- 
mended for  the  estimation  of  zirconia  in  columbate 
minerals  poor  in  tantalum,  or  in  analytical  mineral 
precipitates. — P.  V.  M. 

Amino-acids  and  peptides;  Alkalimetric  estimation 

of  .      R.    Willstatter   and    E.    Waldschmidt- 

Leitz.     Ber.,  1921,  54,  2988—2993. 

The  acid  of  ammonium  salts  can  be  estimated 
alkalimetrically  with  phenolphthalein  as  indicator 
if  the  aqueous  solution  of  the  salt  is  mixed  with  a 
sufficient  amount  of  alcohol,  since  ammonia  does  not 
affect  the  indicator  in  alcoholic  solution.  It  is 
essential  that  the  solution  should  contain  about  97% 
of  alcohol  and  that  relatively  much  indicator  should 
be  used.  Amino-acids  and  polypeptides  show  a 
similar  behaviour.  Characteristic  differences  are 
exhibited,  however,  in  the  concentration  of  the 
alcohol  which  is  necessary  for  the  elimination  of  the 
action  of  the  amino-group  or  of  hydroxy!  ions.  The 
polypeptides,  peptones,  and  proteins  behave  in  the 
same  manner  as  the  ordinary  carboxylic  acids  in 
solutions  containing  40%  of  alcohol,  whereas  amino- 
acids  of  the  aliphatic  series  or  of  aliphatic  cha- 
racter require  an  alcohol  concentration  of  about 
97%  to  produce  the  same  effect.  Ethyl  alcohol  can 
be  replaced  by  propyl  alcohol,  which  appears  even 
more  effective,  but  not  by  methyl  alcohol.  The  be- 
haviour enables  amino-acids  and  polypeptides  to  be 
estimated  simply  in  mixtures  of  these  substances  by 
titrating  with  alkali  hydroxide  solution  to  neu- 
trality towards  phenolphthalein  in  50%  and  97% 
alcoholic  solution.  If  a  and  6  are  the  volumes  of 
alkali  solution  used,  the  proportion  x  required  by 
the  amino-acids  is  100(b-o)/72,  since  the  majority 
of  the  latter  and  in  any  case  those  which  predomi- 
nate in  the  usual  mixtures  neutralise  in  50%  alco- 
holic solution  28%  of  the  amount  required  for  com- 
plete salt  formation.  The  proportion  required  by 
the  polypeptides  is  b-x. — H.  \V. 


See  also  pages  (a)  89,  Sulphur  in  coal  (Lant  and 
Lant-Ekl).  90,  Iodine  values  of  unsaturated  hydro- 
carbons (Faragher  and  others).  94,  H-Acid  (Lee). 
96,  Thorium  in  monazite  sand  (Helmick).  97,  Ger- 
manium (Dennis  and  Papish).  98,  Lead  peroxide 
(Glasstone).  109,  Gynocardia  oil  (Lifschiitz).  110, 
Rubber  (Fisher  and  others).  112,  Invert  sugar  in 
honey  (Litterscheid).  113,  Acetone  in  spirits  (Reif). 
114,  Putrefaction  of  meat  (Tillmans  and  others) ; 
Soya-bean  protein  in  milk  (Nakayasu) ;  Proteins  of 
curd  and  whey  (Liining  and  Herzig) ;  Eggs  in  baked 
food  (Noetzel).  115,  Vanillin  and  formic  acid  in 
foodstuffs  (Wohack).  116,  Hydrogen-ion  concentra- 
tion of  water  (Michaelis) ;  Morphine  etc.  (Wachtel). 
121,  Mercury  fulminate  (Rathsburg). 

Patent. 

Pyrometers   of   the   thermo-couple   type;   [Counter- 
acting  effects  of   temperature   variations   at   the 

cold  junction  of]  electrical .    R.  F.  Hamilton 

and  Co.,  Ltd.,  F.  S.  J.  Pile,  and  G.  E.  M.  Stone. 
E.P.  172,671,  10.6.20  and  5.2.21. 


Patent  List. 

_  The  dates  given  in  this  list  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on  sale 
at  la.  each  at  the  Patent  Office  Sale  Branch.  Quality 
Court,  Chancery  Lane,  London.  W.C.  2,  15  days  after  the 
dato  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Atkinson  and  Fletcher.  Regenerative  furnaces. 
2236.     Jan.  25. 

Benson.  Frictional  distillation  processes.  2273. 
Jan.  25. 

Brearley.  Evaporating,  condensing,  and  drying 
apparatus  etc.     1829.     Jan.  21. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Pyrometers.     2515.     Jan.  27. 

Croft.    Furnaces.    2343.    Jan.  26. 

Curry,  and  Ledward  and  Beckett.  Removing 
sludge  etc.  from  tanks  containing  liquid.  1473. 
Jan.  17. 

Fabry.    2624.    See  II. 

Forselles.  Apparatus  for  producing  and  utilising 
vacuum.     1639.     Jan.  19. 

Griscom-Russell  Co.  Bent-tube  evaporator.  2522. 
Jan.  27.     (U.S.,  16.9.21.) 

Loring.  Centrifugal  apparatus  for  breaking-up 
liquids  and  disseminating  them  in  6olids  or  for 
mixing  and  drying  liquids  and  solids.  2472. 
Jan.  27. 

Monson.     1803.     See  XII. 

Newcastle  Gas  Co.,  and  Wikner.     2550.    See  III. 

Owens.  Apparatus  for  removing  and  estimating 
suspended  impurities  in  the  atmosphere.  1711. 
Jan.  20. 

Rigbv  and  Rigby.  Steam  drving-cvlinders. 
2578.     Jan.  28. 

Complete  Specifications  Accepted. 

18,700  (1920).  Selden  Co.,  Selden,  and  Selden. 
Condensing  apparatus.     (173,789.)     Jan.  25. 


Vol.  .XU,  No.  3.] 


PATENT  LIST. 


123a 


20,458  (1920).  Lecesne.  Cakining-furnaces. 
(148,497.)    Jan.  25. 

20,694  (1920).  Seaman.  Refrigerant.  (148,878.) 
Jan.  25. 

26,358  (1920).  Walker.  Pulverising-mills. 
(174,119.)     Feb.  1. 

26,657  (1920).  Hofmann.  Apparatus  for  drying 
pulverulent,  granular,  or  other  substances. 
(174,124.)     Feb.  1. 

31,747(1920).  Smallwood.  Furnaces.  (174,240.) 
Feb.  1. 

32,068  (1920).  Barrett  Co.  Manufacture  of 
catalytic  agents.     (153,877.)     Jan.   25. 

781  (1921).  Logan.  Means  for  regulating  the 
specific  gravity  of  solutions.     (156,723.)     Feb.  1. 

10,634  (1921).  Emmott  and  Mercer.  Pulverising 
or  disintegrating  machines.     (173,999.)     Jan.  25. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;   DESTRUCTIVE   DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Atel.  de  Construction  de  la  Basse-Sambre.    Coal- 
washers  etc.     2276.     Jan.  25. 
Benson.     2273.     See  I. 

Benson.    Refining  petroleum  etc.    2274.    Jan.  25. 

Benson.  Treating  and  distilling  coal.  2431. 
Jan.  26. 

Benson.  Process  of  destructive  distillation. 
2432.    Jan.  26. 

Burrough.  Sawdust  fuel  briquettes.  1315. 
Jan.  16. 

Cooper  and  Wellington.  Low-temperature  fur- 
naces for  producing  smokeless  fuel  and  gases.  1969. 
Jan.  23. 

Dempster  and  Sons,  and  Toogood.  Furnaces  for 
heating  gas-retorts.     1846.     Jan.  21. 

Evans,  Hollings,  and  South  Metropolitan  Gas 
Co.     Manufacture  of  fuel.     2146.    Jan.  24. 

Fabry.     By-product  coke  ovens.     1634.     Jan.  29. 

Fabrv.  Centrifugal  drving-machines  for  coal  etc. 
2624.    Jan.  28. 

Hostetter.  Manufacture  of  liquid  fuels  for 
internal-combustion  engines  etc.  1782 — 3.  Jan.  20. 
(Ger.,  24.1.  and  1.3.21.) 

Igranic  Electric  Co.     1766.     See  XXIII. 

Jackson  (Sun  Co.).  Manufacture  of  mineral-oil 
derivatives.    2293.    Jan.  25. 

Langeler.  Retorting  of  oil  shales  etc.  2240. 
Jan.  25. 

Lucas,  Marshall,  and  V.  M.  L.  Experimental, 
Ltd.  Production  of  finely-divided  carbon  and 
hydrocarbon  derivatives.     2539.     Jan.  27. 

Maschinenfabr.  Augsburg-Niirnberg  A.-G. 
Apparatus  for  dry  distillation.  1366.  Jan.  16. 
(Ger.,  21.2.21.) 

Nesfield.  Desulphurising  mineral  oils  and  spirits. 
2263.     Jan.  25. 

Szocs.  Inoandescent  body.  2100.  Jan.  24. 
(Hungary,  17.6.18.) 

Young.  Regeneration  of  retort  settings  and 
furnaces.     1607.     Jan.  18. 

Zerner.  Oxidation  of  liquid  hydrocarbons. 
2246.    Jan.  25.     (Austria,  29.1.21.) 


Complete  Specifications  Accepted. 

17,909  (1920).  Rosanoff  Process  Co.  Fractional 
distillation  of  petroleum  etc.     (145,652.)     Jan.  25. 

19,740  (1920).  Still.  Separating  constituents 
from  coke-oven  and  like  gases.     (147,737.)     Jan.  25. 

19,742  (1920).  Evence,  Coppee,  et  Cie.  Coking- 
ovens.     (147,739.)     Jan.  25. 

20,570  (1920).  Scherk.  Partial  distillation  of 
poor  fuels.     (148,567.)     Jan.  25. 

23,647  (1920).  Stephens  (Canadian-American 
Finance  and  Trading  Co.).  Producing  saturated 
petroleum  products  from  unsaturated  compounds. 
(174,106.)    Feb.  1. 

29,250  (1920).  Moeller  and  Fonblanque.  Manu- 
facture of  illuminating  gas  and  by-products. 
(174,165.)    Feb.  1. 

29.365  (1920).  Colombo  and  Bartolomeis.  Dis- 
tillation of  fuels.     (152,650.)     Feb.  1. 

29,525  (1920).  Pyzel.  Distilling  bituminous 
materials.     (173,907.)     Jan.  25. 

29,551  (1920).  Strache  Combustion  of  bitu- 
minous fuels  with  recovery  of  the  by-products. 
(152,668.)     Feb.  1. 

29,911  (1920).  Fischer.  Reactions  upon  organic 
bodies  at  temperatures  of  red  heat  or  above. 
(152,960.)     Feb.  1. 

31,934        (1920).     Mawson.  Gas   -   producers. 

(174,245.)     Feb.  1. 

III. —TAR  AND   TAR  PRODUCTS. 

Applications. 

Burt,  Boulton,  and  Haywood,  China,  and  Fer- 
gusson.     Treatment  of  pitch.     1369.     Jan.  16. 

Burt,  Boulton,  and  Haywood,  China,  Fergusson, 
and  Miles.  Manufacture  of  pitch  containing  little 
free  carbon.     1370.     Jan.   16. 

Burt,  Boulton,  and  Haywood,  China,  Fergusson, 
Miles,  and  Warr.  Manufacture  of  bituminous 
products   from  coal   tar.      1371.      Jan.    16. 

Lnntz,  Wahl.  and  Soc.  Anon,  de  Mat.  Col.  et 
Prod.  Chim.  de  St.  Denis.  Manufacture  of  2-oxy- 
1-arylnaphthylamines.  2554.  Jan.  21.  (Fr.,  18.6.21.) 

Newcastle  and  Gateshead  Gas  Co.,  and  Wikner. 
Distillation  of  tar  etc.     2534.     Jan.  27. 

Newcastle  and  Gateshead  Gas  Co.,  and  Wikner. 
Means  for  dehydrating  liquids.     2550.     Jan.  27. 

Scottish  Dyes,  Ltd.,  and  Thomas.  Production  of 
anthraquinonesulphonic  acids.     1575.     Jan.  18. 

Complbte  Specifications  Accepted. 

20,353  (1920).  Schroeter  and  Schrauth.  Pre- 
paration of  ar-tetrahydro-|8-naphthol.  (148,408.) 
Jan.  25. 

20.366  (1920).  Tetralin  Gee.  Preparation  of 
ar-tetrahydronaphthvlthioacetic  acids.  (148,419.) 
Jan.  25. 

20,609  (1920).  Falk,  Wangemann,  and  Falk. 
Manufacture  of  tar.     (148,785.)     Jan.  25. 

20,751  (1920)  and  28,928  (1921).  Schroeter  and 
Schrauth.  Preparation  of  nitro-compounds  of 
tetrahydronaphtlialene  and  its  derivatives.  (148,923 
and  170,867.)    Jan.  25. 

22,074  (1920).  Davies,  and  Scottish  Dyes,  Ltd. 
Manufacture  of  oxy-derivatives  of  anthraquinone. 
(174,101.)     Feb.  1. 

23,113  (1920).  Atack  and  Robinson.  Halogena- 
tion  of  anthraquinone  derivatives.  (173,805.) 
Jan.  25. 


124  a 


PATENT    LIST. 


[Feb.  15,  1922. 


IV.— COLOURING   MATTERS    AND   DYES. 

Complete  Specifications  Accepted. 

28,376  (1920).  Dawson.  Manufacture  of  leuco- 
alizarin  bordeaix  and  derivatives  thereof.  (174,136.) 
Feb.  1. 


V.— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Arledter.  Treatment  of  cellulosic  material. 
1733.     Jan.  20. 

Belin.     2134.     See  XV. 

McRae.  Treatment  of  bamboo,  bagasse  etc. 
fibres  to  extract  cellulose.     1377.     Jan.  16. 

Masterman.  Manufacture  of  millboard  etc. 
2487.     Jan.  27. 

Complete  Specifications  Accepted. 

25,753  (1920).  Kirschbraun.  Waterproof  paper 
and  processes  of  making  same.     (174,114.)    Feb.  1. 

285  (1921).  Cross.  Manufacture  of  webs  or 
sheets  of  fibrous  cellulose.     (173,971.)    Jan.  25. 


VI.— BLEACHING;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Akt.-Ges.  f.  Anilinfabr.    Process  for  dveing  skins, 
hairs,  etc.    1673.    Jan.  19.    (Ger.,  29.1.21.) 

Calico   Printers'    Assoc.,   and  Fourneaux.      Mer- 
cerising and  finishing  textile  fabrics.  2548.  Jan.  27. 


VII.— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC  ELEMENTS. 

Applications. 

Carmichael  and  Co.,  and  Guillaume.  Apparatus 
for  manufacture  of  sulphuric  acid.     1388.     Jan.  17. 

Crosfield  and  Sons,  and  Wheaton.  2201.  See  XIX. 

Cumberland  Coal,  Power,  and  Chemicals,  Ltd., 
Jaques,  Tully,  and  West.  Manufacture  of  hydro- 
gen or  gases  rich  in  hydrogen.    1691.    Jan.  19. 

Deutsche  Gold-  u.  Silber-Scheideanstalt.  Produc- 
tion of  alkali  cvanide  lyes.  1861.  Jan.  21.  (Ger.. 
21.1.21.) 

Llewellyn,  Spence,  and  Spence  and  Sons.  Pre- 
paration of  titanium  compounds.    1413.    Jan.  17. 

Mehner.  Production  of  cyano-compounds  etc. 
1430.     Jan.  17. 

Phillipson.  Sulphate  of  ammonia  dryer  and 
neutraliser.     2322.     Jan.  26. 

Rhenania  Ver.  Chem.  Fabr.     1987.     See  XVI. 

Soc.  1' Azote  Francais.  Production  of  granules 
of  cyanamide  with  high  nitrogen  content.  1965. 
Jan.  23.     (Fr.,  25.1.21.) 

Twynam.  Recovery  of  fixed  atmospheric  nitrogen. 
1631.     Jan.  19. 

Complete  Specifications  Accepted. 

22,273  (1920).     Welter.     See  XII. 

25,505  (1920).  Hansford.  Manufacture  of 
neutral  sulphate  of  ammonia.     (173,818.)     Jan.  25. 

26,662  (1920).  Bacon  (Oldbury  Electro  Chemical 
Co.).  Manufacture  of  alkali  formates.  (174,125.) 
Feb.  1. 


26,663  (1920).  Bacon  (Oldbury  Electro  Chemical 
Co.).  Manufacture  of  alkali  oxalates.  (174,126.) 
Feb.  1. 

28,356  (1920).  Oldbury  Electro  Chemical  Co. 
Manufacture  of  oxalates  and  oxalic  acid.  (160,747.) 
Jan.  25. 

28,723  (1920).  Schott  u.  Gen.  Decomposition 
of  boronatrocalcite.     (153,007.)     Jan.  25. 

28,895  (1920).  Johnson  (Badische  Anilin  u.  Soda 
Fabr.).     Extraction  of  sulphur.     (174,143.)    Feb.  1. 

32,360  (1920).  Thorssell  and  Lunden.  Produc- 
tion of  pure  nitrogen.    (155,814.)    Jan.  25. 

15,813  (1921).  Tyrer.  Manufacture  of  red  oxide 
of  iron.     (174,306.)    Feb.  1. 


VIII.— GLASS;    CERAMICS. 

Applications. 

Cuming.  Junctioning  enamelled  metal,  glass, 
porcelain,  etc.  articles  and /or  protecting  same. 
2667.     Jan.  28. 

Hancock.  Manufacture  of  pottery.  2029.  Jan.  24. 

Law  (American  Abrasive  Metals  Co.).  Manufac- 
ture of  material  highly  resistant  to  penetration. 
1539  and  1540.     Jan.  18. 

Complete  Specifications  Accepted. 

19,427  (1920).  Moorshead.  Glass  furnaces. 
(173,794.)    Jan.  25. 

21,114  (1920).  Spence,  Llewellyn,  and  Spence 
and  Sons.  Drying  and  calcining  silicious  sub- 
stances.   (173,799.)    Jan.  25. 

25,075(1920).  Gaudin  and  Clarke.  Drying  china 
clay.     (174,112.)     Feb.  1. 

26,357  (1920).  Roiboul.  Fusing  and  casting 
silica,  alumina,  and  other  refractory  minerals. 
(165,051.)     Feb.  1. 

IX.— BUILDING    MATERIALS. 

Applications. 

Barrett  Co.  Manufacture  of  material  for  roof- 
ing, wall-coverings,  etc.  1598.  Jan.  18.  (U.S., 
19.1.21.) 

Bayer.  Heat-insulating  materials.    1576.  Jan.  18. 

Hornstein.  Manufacture  of  artificial  stone 
articles.     1860.    Jan.  21. 

Complete  Specifications  Accepted. 

25,784      (1920).        Crozier.        Manufacture 
cementitious  articles.     (173,823.)     Jan.  25. 

29,077   (1920).     Jager.     Production  of  artificii 
marble.     (152,359.)     Feb.  1. 

35,993  (1920).  Dalhoff  and  Lunn.  Manufacture 
of  a  material  suitable  for  making  light  concrete. 
(173,965.)    Jan.  25. 

X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-M  ETALLURG  Y. 

Applications. 

Aktiebol.  Ferrolegeringar.  Production  of  metals 
or  alloys  poor  in  carbon  and  silicon  in  electric 
furnaces.    2287.     Jan.  25.     (Sweden,  29.1.21.) 

Aktiebol.  Ferrolegeringar.  Production  of  man- 
ganese or  manganese  alloys  poor  in  carbon  and 
silicon.     2288.     Jan.  25.     (Sweden,  1.2.21.) 


Vol.  XU,  No.  3.] 


PATENT    LIST. 


125a 


British  Metal  Spray  Co.,  and  Gillespie.  Provid- 
ing objects  with  protective  coating.    2530.    Jan.  27. 

British  Metal  Spray  Co.,  and  Gillespie.  Sprav- 
ing  metals.     2531—2.    Jan.  27. 

Coolbaugh  and  Read.  Treatment  of  ores  and 
concentrates  to  convert  them  into  sulphates.  1577. 
Jan.  18. 

Goldschmidt  A.-G.  Bearing-metal  allov.  2245. 
Jan.  25.     (Ger.,  29.1.21.) 

Hernadvolgyi  Magyar  Yasipar  Reszvenytar- 
sasag.  Concentration  of  ores.  2127 — 8.  Jan.  24. 
(Hungary,  28.9.16  and  10.4.18.) 

Jones.  Manufacture  of  electroplated  goods. 
2162.    Jan.  25. 

Shrigley.     Tinning  metals.     2476.     Jan.  27. 

Complete  Specifications  Accepted. 

23,494  (1920).  Hall.  Metal  for  use  in  making 
melting  pots  etc.    (173,811.)    Jan.  25. 

26,233  (1920).  Alexander  (Luckenbach  Processes, 
Inc.).  Reagent  for  concentrating  ore  by  flotation. 
(173,830.)    Jan.  25. 

29,870  (1920).  Imbery.  Annealing  steel  or  other 
metal  wire  or  strip.     (174,200.)    Feb.  1. 

34,294  (1920).  Hamilton  and  Evans.  Manufac- 
ture of  steel  and  alloy  steels.     (174,271.)    Feb.  1. 

9207  (1921).  Passalacqua.  Soldering  aluminium 
or  its  alloys.     (164,716.)     Feb.  1. 

21,147  (1921).  Milliken.  Allovs.  (168,050.) 
Feb.  1. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Akt.  Ferrolegeringar.     2287.     See  X. 
Jeal    and    Payne.       Electric    accumulators    etc. 
1763.     Jan.  20. 

Jones.    2162.    See  X. 

Leitner.     Electric  accumulators.     1864.     Jan.  21. 

Metropolitan  Tickers  Electrical  Co.  Insulating 
sheet  materials.    1356.    Jan.  16.    (U.S.,  26.1.21.) 

Monson.  Electric  treatment  of  liquids.  2281. 
Jan.  25. 

Complete  Specifications  Accepted. 

23,537  (1920).  Wild  and  Barfield.  Electric  fur- 
naces.    (173,812.)     Jan.  25. 

25,999  (1920).  Gouin  and  Rosel.  Alkaline 
storage  batteries.     (150,961.)     Jan.  25. 

27,932  (1920).  Heraeus  Ges.,  Rohn,  and  Stahl- 
werke  Lindenburg  A.-G.  Induction  furnaces. 
(163,276.)     Feb.  1. 


XII—  FATS;     OILS;     WAXES. 

Applications. 

Culley.     Apparatus  for  expressing  oil  etc.   from 
vegetables  etc.    2468.    Jan.  27. 

Monson.      Treatment  of   liquids   and    fatty   sub- 
stances.   1803.    Jan.  20. 

Yuill.      Converting    vegetable    oils    into    edible 
materials  such  as  ghee.     2437.     Jan.  26. 

Complete  Specifications  Accepted. 

18,879   (1920).     Imhausen.     Production   of   soap 
powder.     (173,791.)    Jan.  25. 


21,291  (1920).     Byrnes.      See  XX. 

22,273  (1920).  Welter.  Production  of  saponace- 
ous soda.     (149,623.)     Jan.  25. 

28,951  (1920).  Clayton,  Nodder,  Gill,  and 
Chaviara.  Manufacture  of  margarine  and  other 
edible  fats.     (174,147.)    Feb.  1. 


XIII.— PAINTS ;      PIGMENTS;      VARNISHES; 
RESINS. 

Complete  Specification  Accepted. 
20,286  (1920).    Bucherer.    Manufacture  of  deriva- 
tives of  the  condensation   products    of     aldehydes 
and  phenols.     (148,366.)    Jan.  25. 


XIV—  INDIA-RUBBER ;     GUTTA-PERCHA. 


Applications. 

Alger  and  Frood.      Vulcanisation  of  caoutchouc 
etc.     1619.     Jan.  19. 

Collyer.     Manufacture   of  substitute  for   rubber 
and  leather  etc.     1498.     Jan.  17. 

Naugatuck      Chemical     Co.        Vulcanisation     of 
rubber.     1594.     Jan.  18.     (U.S.,  28.5.21.) 

Peachey,   and  Peachey  Process  Co.      Vulcanisa- 
tion of  rubber.     2580.     Jan.  28. 


XV.— LEATHER;    BONE;    HORN;    GLUE. 

Applications. 
Akt.-Ges.  f.  Anilinfabr.     1673.     See  VI. 

Atkin,  Roy,  and  Shaw.  Treatment  of  leather 
etc.     1643.     Jan.  19. 

Belin.  Treatment  of  caseins,  gelatinous,  albu- 
minoid, or  cellulosic  materials.    2134.    Jan.  24. 

Buchanan.  Waterproofing  compound  for  leather 
etc.     1937.     Jan.   23. 

Collyer.     1498.    See  XIV. 

Complete  Specifications  Accepted. 

18,006  (1920).  Carmichael  and  Ockleston.  Pro- 
cess of  unhairing  hides.     (173,788.)    Jan.  25. 

20,720  (1920).  Chem.  Fabr.  Worms  A.-G. 
Manufacture  of  tanning-agents.  (148,897.)  Jan.  25. 

28,247  (1920).  Clark  (Chem.  Fabr.  Worms 
A.-G.).    Tanning  animal  hides.    (173,853.)    Jan.  25. 

28,904  (1920).  Rohm.  Depilating,  neutralising, 
and  bating  hides  and  skins.     (156,079.)     Feb.  1. 


XVI.— SOILS;     FERTILISERS. 

Application. 

Rhenania  Ver.  Chem.  Fabr.,  and  Riisberg.     Pro- 
cess for  rendering  soluble  crude  phosphate.     1987 
Jan.  23.     (Ger.,  24.1.21.) 

Complete  Specification  Accepted. 

20,557     (1920).     Eberhard.      Manufacture    of    a 
natural  plant  manure.     (148,560.)    Jan.  25. 

XVII.— SUGARS  ;     STARCHES ;      GUMS. 

Application. 

Leczynski.     Manufacture  of  an  adhesive  soluble 
in  the  cold.     1380.     Jan.  16. 


126  a 


PATENT   LIST. 


[Feb.  15,  1922. 


XVIII.— FERMENTATION    INDUSTRIES. 

Applications. 

Krausz  Muskovits  Egyesult  Irnportelepeke  Resv. 
Production  of  yeast.  2337.  Jan.  26.  (Hungary, 
24.11.15.) 

Muskovits.  Manufacture  of  veast.  2334 — 6. 
Jan.  26.     (Hungary,  5.12.13,  10.  and  21.4.15.) 

Complete  Specifications  Accepted. 

20,293  (1920).  Fleischmann  Co.  Production  of 
yeast.     (148,373.)     Jan.  25. 

27,738  (1920).  Scott.  Producing  condition  and 
head  of  draught  beer.     (173,835.)     Jan.  25. 


XIX.— FOODS;    WATER    PURIFICATION; 

SANITATION. 

Applications. 

Belin.     2134.     See  XV. 

Calwell.     Making  butter.    2163.     Jan.  25. 

Candy.      Apparatus   for   filtering   water.      1457. 
Jan.  17. 

Candy.     Filtration  of  water.    2173.     Jan.  25. 

Crosfield  and  Sons,  and  Wheaton.     Manufacture 
of  a  base-exchanging  compound.     2201.     Jan.  25. 

Hartley   and   Hartley.      Purification   of   sewage. 
1328  and  1330.     Jan.   16. 

Loring.     Manufacture  of  flour.  2566 — 7.  Jan.  27. 

Schofield.     Softening  water  and  removing  boiler 
scale.     2575.     Jan.  28. 

Yuill.     2437.     See  XII. 

Complete  Specifications  Accepted. 

26,239  (1920).     Thomson.     Extraction  of  proteids 
from  whey.     (173,831.)     Jan.  25. 

28,951  (1920).     Clayton  and  others.     See  XII. 

663  (1921).     A.-G.  vorm.  Haaf  u.  Co.     See  XX. 


XX.— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES ;     ESSENTIAL     OILS. 

Applications. 

British  Dyestuffs  Corp.,  Clemo,  and  Perkin. 
Manufacture  of  chloroethyl  esters  and  treatment 
of  phenols,  alcohols,  and  amino  compounds  with 
them.     1697.     Jan.  19. 

Byrnes.  Separating  aldehyde  fatty  acids.  1362. 
Jan.  16. 

Holzverkohlungs-Ind.  A.-G.  Chlorination  of 
acetylene.    2533.     Jan.  27.     (Ger.,  29.1.21.) 

King.     Organic  compounds.     2070.     Jan.  24. 

Menzies.  Separation  of  acetone  and  methyl 
alcohol  etc.     1734.     Jan.  20. 


Complete  Specifications  Accepted. 

17,941  (1920).  Hunt.  Production  of  esters  from 
defines.     (145,652.)     Jan.  25. 

20,123  (1920)  and  31,818  (1921).  Strubell.  Ob- 
taining the  partial  antigenes  of  pathogenic 
bacteria.     (148,202  and  172,030.)    Jan.  25. 

20,398  (1920).  Poulenc  Freres,  and  Oechslin. 
Manufacture  of  dichlorides  of  monoarylarsines  and 
monochlorides  of  diarylarsines.     (173,790.)    Jan.  25. 

21,291  (1920).  Byrnes.  Separating  aldehyde 
fatty  acids  from  by-products,  and  manufacture  of 
soaps  from  these  acids.     (174,099.)     Feb.  1. 

26,381  (1920).  John.  Manufacture  of  condensa- 
tion products  of  formaldehyde  and  carbamide  or 
carbamide  derivatives.     (151,016.)     Feb.  1. 

28,749  (1920).  Johnson  (Badische  Anilin  u.  Soda 
Fabr.).  Manufacture  of  solid  condensation  pro- 
ducts.    (173,881.)     Jan.  25. 

29,911  (1920).     Fischer.     See  II. 

31,841  (1920).  Marchand.  Preparation  of 
terpineol.     (153,605.)     Jan.  25. 

663  (1921).  A.-G.  vorm.  Haaf  u.  Co.  Manu- 
facture of  healing  and  nutritive  products 
(156,667.)     Feb.  1. 


XXI— PHOTOGRAPHIC    MATERIALS    AND 
PROCESSES". 

Application. 

Pfenninger.  Photography  in  two  colours.  1319. 
Jan.  16. 

Complete  Specification  Accepted. 

20,910  (1920).  Faulstich.  Manufacture  of  multi- 
colour screens  for  natural  colour  photography. 
(152,002.)     Feb.  1. 

XXII.— EXPLOSIVES;     MATCHES. 

Applications. 

Borland,  Nolan,  and  Nobels'  Explosives  Co. 
Explosives.     2117.     Jan.  24. 

Wells.  Explosives  and  blasting-cartridges.  1660. 
Jan.  19. 


XXIII.— ANALYSIS. 

Applications. 

Baker,  and  Tintometer,  Ltd.  Apparatus  for 
testing  etc.  colour  of  small  quantities  of  liquid. 
1587.     Jan.  18. 

Igranic  Electric  Co.  (Cutler  Hammer  Manufac- 
turing Co.).     Calorimeters.     1766.     Jan.  20. 

Owens.     1711.     See  I. 

Complete  Specification  Accepted. 

20,586  (1920).  Marks  (Union  Apparatebau-Ges.). 
Apparatus  for  the  continuous  testing  of  gas  mix- 
tures.     (148,764.)     Jan.  25. 


Vol.  XLI..  No.  •».] 


ABSTRACTS 


(Feb.  28,  1922. 


I.— GENERAL;  PLANT;  MACHINERY. 

Patents. 

Grinding  or  crushing  apparatus.     M.  J.  Davidsen. 
E.P.  161,977,  13.4.21.     Com.,  22.4.20. 

A  tibilab  mill  is  divided  into  at  least  three  com- 
partments, the  first  two  containing  balls  of  different 
diameters,  and  the  third  containing  short  metal 
cylinders.  The  material  from  the  first  compart- 
ment rejected  as  too  large  is  returned  to  that  com- 
partment through  a  passage  distinct  from  the  outlet 
holes  or  passages  by  which  the  material  leaves  the 
compartment. — H.  H. 

Pulveriser    or     grinding     machine.       G.     McCrae. 
IS. P.  1,401,716,  27.12.21.     Appl.,  12.2.21. 

A  floating  grinding  plate  is  supported  by  freely- 
rolling  grinding  members  ahove  a  fixed  grinding 
plate,  disposed  at  the  lower  part  of  a  casing.  The 
upper  surface  of  the  floating  plate  co-operates  with 
rotary  grinding  members  which  are  directly  rotated 
and  transmit  the  drive.  The  bearings  of  the  rotary 
grinding  members  are  adjustable  to  and  from  the 
floating  plate. — H.  H. 

Grinding   mill.      M.   O.   Anthony,   Assr.   to   M.   C. 
Rosenfeld.  U.S. P.  1,402,468,  3.1.22.  Appl.,  19.2.20. 

In  a  disc  grinder  the  moving  disc  is  given  a  recipro- 
cating movement,  perpendicular  to  the  shaft,  as 
well  as  a  rotating  one. — 13.  M.  V. 

Fire-extinguishing   liquid.     B.    I.   Corson.     U.S. P. 
1,401,240,  27.12.21.     Appl.,  31.1.20. 

A  hue-extinguishing  liquid  comprises  the  product 
known  as  phlobaphenes  produced  in  tanning  with 
vegetable  tannins,  a  gas-producing  substance,  and 
a  composition  to  produce  fumes  non-supporting  to 
combustion  and  foam. — H.  H. 

Kiln.     J.  H.  Lemmon,  Assr.  to  Louisville  Cement 
Co.     U.S.P.  1,401,481,  27.12.21.     Appl.,  13.3.19. 

An  interior  bridge  wall  extends  across  the  kiln  from 
side  to  side  of  the  outer  wall,  from  which  it  is 
spaced  to  allow  for  expansion.  Gas  supply  flues 
communicate  with  the  kiln  chambers  through  the 
bridge  wall.— H.  H. 


Recuperator  [:  Furnace  - 
U.S.P.  1,402,325.  3.1.22 


-].     T.  J.  Yollkomrner. 
Appl.,  11.12.19. 

In  a  recuperative  furnace,  a  passage  for  preheating 
the  supply  of  air  to  the  combustion  chamber  leads 
around  the  walls  of  the  combustion  chamber  and 
through  a  conduit  situated  in  the  furnace  stack. 

— L.  A.  C. 

Furnaces;  Method  and  apparatus  for  firing  . 

C.  A.  Kellogg,  Assr.  to  The  Union  Trust  Co.,  and 
J.  A.  Chapman.  U.S.P.  1,402,773,  10.1.22. 
Appl.,  9.2.20. 

A  <. as-fired  regenerative  furnace  is  converted  to 
one  suitable  lor  the  combustion  of  more  concen- 
trated  fuel  by  fitting  a  fuel  supply  to  the  furnace, 
closing  the  usual  gas  ports,  and  connecting  the  air 
and  gas  regenerators  outside  the  furnace. — H.  Hg. 

Solids  suspended  in  or  inn  ml  by  gases;  Method  for 

removing .   F.C.Roberts.    U.S.P.  1.401.735, 

27.12.21.     Appl.,  22.1.21. 

The  current  of  gases  is  directed  into  one  or  more 
receptacles  for  an  interval  of  time,  the  current  then 
being  directed  into  other  purifying  means  for  a 
period  of  time  sufficient  to  allow  the  desired  portion 
of  the  solids  to  be  removed  from  the  gases  in  the 
first-mentioned  receptacles,  after  which  the  current 
of  gases  is  again  directed  into  the  latter  to  displace 
the  purified  gases. — A.  de  W. 


tided  matter  in  gases;  Apparatus  for  deposi- 
tion and  collection  of .     G.  C.  Lewis.    U.S.P. 

1.402,302,  3.1.22.     Appl.,  13.3.20. 

The  lower  parts  of  the  longitudinal  walls  of  a 
chamber  in  which  suspended  matter  in  gases  is 
deposited  and  collected  are  inclined  towards  the 
edges  of  a  trough,  and  a  medium  for  controlling  the 
temperature  is  circulated  in  the  spaces  under  the 
inclined  parts  of  the  walls  and  outside  the  trough. 

— B.  M.  V. 

ires;     Apparatus     for     extracting 

vapours  from .    G.  A.  Burrell,  G.  G.  Oberfell. 

and   C.   L.   Voress,   Assrs.  to   Gasoline  Recovery 
Corp.     U.S.P.  1,402,340,  3.1.22.     Appl.,  18.6.20. 

A  tower  with  a  removable  top  and  bottom  contains 
solid  absorbent  material,  and  is  provided  with  gas 
inlets  and  outlets,  a  vapour  outlet,  and  a  steam 
inlet  pipe  for  introducing  steam  into  the  absorbent 
material. — L.  A.  C. 

Gases;  Process  for  purifying  and  drying .    J.  C. 

(  lancy,    Assr.    to    The    Nitrogen    Corp.      U.S.P. 

1,403,391,   10.1.22.     Appl.,  31.12.18. 

The  gas  to  be  purified  is  passed  through  a  molten 

i    alkali  metal  under  pressure,  the  temperature  being 

I    controlled    to    enable    purification    to    take    place 

without  volatilisation  of  the  products  formed  by  the 

interaction  of  the  impurities  and  the  alkali  metal. 

—A.  R.  M. 

Steam-boilers;  means  for  preventing  the  formation 

of  scale  in .    F.  I.  du  Pont,  Assr.  to  Delaware 

Chemical    Engineering    Co.      U.S.P:     1,401,893, 
27.12.21.     Appl.,  31.5.18. 

Fresh  water  is  continuously  supplied  in  predeter- 
mined amount  to  a  steam  generator  by  a  pump,  and 
the  excess  is  continuously  removed  by  a  measuring 
engine.  Heat  is  transferred  from  the  outgoing  to 
the  ingoing  water  by  the  use  of  a  double-surface 
heat  exchanger,  and  means  are  provided  for  con- 
trolling the  discharge  of  water  from  the  heat  ex- 
changer.— H.  H. 

Evaporation  of  liquids  and  <?>  ying  of  substances; 

Devici    for .    C.  R.  Mabee.    U.S.P.  1,402,238, 

3.1.22.     Appl.,  15.12.13.     Renewed  13.2.20. 

A  jacketed  pan  is  provided  with  a  cover  and  a 
central  tube  of  relatively  large  cross-section,  open 
at  the  ends,  projecting  upwards  internally  from  the 
base  to  serve  as  a  vapour  outlet.  Conveyor  or 
-tirring  arms  are  attached  to  a  ring  surrounding 
the  outlet  tube  and  to  a  transverse  arm  close  under- 
neath tln>  cover. — B.  M.  V. 

Dehydrator.     F.    Mans.    Assr.   to   S.   J.    Spoelstra. 
LT.S.P.  1.41)2.300.  3.1.22.     Appl..  10.2.21. 

Air  is  circulated  between  a  dehydration  chamber 
and  a  refrigerator  chamber  through  flow  and  return 
conduits  which  for  a  portion  of  their  length  are  one 
within  the  other.  Valved  air  inlet  ports  are  pro- 
vided in  the  flow-  conduit  from  the  dehydration 
chamber  at  the  refrigeration  chamber,  near  the 
dehydration  chamber,  and  at  an  intermediate 
point.  Discharge  ports  arc  situated  in  the  conduit 
near  the  refrigeration  chamber  and  near  the  two 
1  itter  inlet  ports,  and  valves  are  also  provided  in 
the  conduit  itself  between  the  two  pairs  of  adjacent 
inlet  and  exhaust  ports. — B.  M.  V. 

Evaporating  liquids:  Art  uf  .     H.  J.  Zimmer- 

mann,  Assr.  to  R.  Stutzke  Co.     U.S.P.  1.402,467, 
3.1.22.     Appl.,  20.5.18. 

The  substance  from  which  liquid  is  to  be  evaporated 
is  introduced  into  a  gaseous  medium  circulating  in 
a  closed  cycle,  the  medium  being  then  cooled  in  two 
stages    to   condense    moisture   and    afterwards    re- 


12SA 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[Feb.  28,  1922. 


heated  in  two  stages  to  its  original  condition,  the 
first  stage  of  cooling  and  heating  respectively  being 
effected  by  heat  exchange. — B.  M.  V. 

Refrigeration;  Apparatus  for .     E.  R.  Candor. 

U.S. P.  1,402,716,  3.1.22.  Appl.,  24.10.19. 
A  refrigerating  apparatus  comprises  a  cooling 
chamber,  a  separato  dehydrating  chamber  with  an 
opening  to  the  atmosphere  and  means  for  removing 
the  condensed  liquid,  an  air-pipe  within  the  cooling 
chamber  and  extending  from  it  to  the  dehydrating 
chamber,  wherein  it  is  coiled ;  a  rarefier  with  inlet 
and  outlet  ports;  a  pipe  connecting  the  inlet  ports 
with  the  portion  of  the  dehydrating  chamber  oppo- 
site; a  pipe  connecting  the  air  pipe  in  the  cooling 
chamber  with  the  rarefier;  an  exhauster  of  greater 
capacity  than  the  rarefier,  to  exhaust  air  from  the 
pipe  in  the  dehydrating  chamber,  and  a  shaft  to 
operate  both  the  rarefier  and  exhauster. — A.  B.  S. 

Filter-press;  Continuous  .      Plausons   Forsch- 

ungsinstitut,  G.m.b.H.  G.P.  337,731,  6.7.18. 
The  filter  surface  consists  of  a  hollow  cylinder  con- 
structed of  a  porous  material,  such  as  asbestos, 
cement,  plaster,  kieselguhr,  coke,  graphite,  fibrous 
material,  or  mixtures  of  these,  formed  around  a 
framework  of  wire  netting  or  the  like.  The 
cylinder  may  be  provided  with  an  endless  screw, 
and  the  porositv  can  be  adjusted  mechanically. 

— L.  A.  C. 

Filtering  plant  with  vertical  filter  plates  and  hori- 
zontal  stirring  devices  for  periodic  washing  and 
automatic  removal  of  the  filter  residue.  J.  Kunz. 
G.P.  341,691,  28.9.20. 
REMOVAL  of  untreated  material  to  be  filtered  from 
the  neighbourhood  of  the  filter-residue  is  effected 
by  displacement  by  washing  water,  under  such 
conditions  that  mixing  is  reduced  to  a  minimum. 
A  floating  grating  distributes  the  inflowing  liquid 
over  the  surface  of  the  contents  of  the  respective 
filters,  eddying  motion  being  prevented  by  a  shield 
disposed  in  front  of  the  outlet  for  washing-water, 
which  discharges  at  a  quick  rate  so  that  diffusion 
is  reduced  and  uniform  washing  effected.  Filter 
frames  are  not  employed.  Separate  channels  are 
provided  for  conveying  the  filtrate  from  each  in- 
dividual filter  plate,  so  that  the  working  of  each 
plate  can  be  controlled.  The  distances  between  the 
plates  are  the  same  at  top  and  bottom,  this  facili- 
tating the  removal  of  the  filter  residue,  especially 
in  cases  where  a  stripping  device  has  to  be  em- 
ployed. The  hydrostatic  pressure  upon  the  filter 
can  be  maintained  constant,  although  the  vacuum 
employed  may  vary. — -J.  S.  G.  T. 

Filter;    Drum    suction    .       T.     Steen.       G.P. 

343,790,  6.8.19. 
The  channel  for  supplying  sludge  to  a  suction  drum 
filter  is  provided  with  an  extension  delivering  a  thin 
layer  of  the  material  on  to  the  drum  surface.  The 
layer,  which  rapidly  dries,  fills  the  space  between 
the  drum  surface  and  the  channel,  thus  avoiding 
the  necessity  for  providing  special  packing.  The 
channel  is  supported  on  adjustable  rollers  and 
presses  lightly  on  the  filter  surface. — L.  A.  C. 

Distillation  in  rotating  drums;  Apparatus  for  con- 
vening steam  to  material  during .   Maschinen- 

fabr.      Aug-burg-Niirnberg  A.-G.      G.P.  342,205, 
18.1.21. 

The  rotating  steam  inlet  tubes  are  so  constructed 
that  steam  i--  only  delivered  when  the  ends  of  the 
tubes  are  just  above  or  are  dipping  below  the  level 
of  the  material  in  the  drum. — I,.  A.  C. 


Solid  and  viscous  products  obtained  by  processes  of 
sublimation  and  distillation;  Apparatus  for  col- 
lecting   .     Farbenfabr.   vorm.  F.  Bayer  und 

Co.     G.P.  343,319,  19.9.19. 

Vapour  obtained,  e.g.,  in  purifying  a  material  by 
sublimation  or  distillation,  is  led  downwards  on  to  a 
rotating  drum.  The  solid  deposited  is  removed  by 
scrapers,  and  fractions  of  varying  degrees  of  purity 
are  obtained  by  changing  the  receptacles  into  which 
the  product  falls. — L.  A.  C. 

Boasting  or  calcining  the  products  of  reaction  of 
solid  and  liquid  materials  in  a  muffle   furnace; 

Process    and    apparatus    for   .       V.    Zieren. 

G.P.  343,460,  1.4.20. 

Solid  and  liquid  components,  e.g.,  salt  and  sul- 
phuric acid;  are  delivered  through  separate  conduits 
to  a  pan  disposed  in  the  upper  part  of  the  muffle, 
and  in  such  proportions  that  the  product  remains 
fluid.  From  the  pan  the  product  overflows  through 
a  pipe  on  to  the  floor  of  the  muffle,  where  it  is 
mixed  with  the  remainder  of  the  solid  component 
necessarv  for  the  completion  of  the  reaction. 

—J.  S.  G.  T. 

Oases  which  have  been  absorbed  by  solids;  Recover- 
ing   .  J.  S.  Morgan,  Assr.  to  Thermal  In- 
dustrial and  Chemical  (T.I.C.)  Research  Co.,  Ltd, 
U.S.P.  1,398,882,  29.11.21.     Appl.,  21.6.21. 

See  E.P.  170,323  of  1920;  J.,  1921,  834  a. 

Purification  of  liquids,  vapours,  and  gases;  Com- 
bination of  pyramidal  surfaces  [filling  material 

for    apparatus']    for    .     P.     H.    A.     Gaillet. 

U.S.P.  1,403,311,  10.1.22.     Appl.,  19.11.19. 

See  E.P.  133,971  of  1919;  J.,  1920,  435  a. 

Inflammable  and  other  liquid  in  tanks  and  pipings 
in  which  it  is  protected  from  contact  with  air; 
System  and  apparatus  for  safety  storage  and  dis- 
tribution of .     P.  A.  P.  V.  Mauclere.     E.P. 

153,587,  8.11.20.  Conv.,  7.11.19.  Addn.  to 
144,688. 

neat-accumulators;     Brick-work     for     .       0. 

Strack.     E.P.  157,967,  10.1.21.     Conv.,  6.7.14. 

Pulverising   coal  and  other  substances ;  Apparatus 

for  .     The  Powdered   Fuel  Plant  Co.,   Ltd., 

Asseee.  of  Soc.  Anon.  La  Combustion  Rationelle. 
E.P.  168,033  and  168,582,  1.5.4.21.  Conv.,  17  and 
31.8.20. 

Mixing  and  agitating  machines.  H.  Kennedy. 
E.P.  173,448, '2.3.21. 

Centrifugal  apparatus  for  separating  solid  particles 
from    air;    [Means   for   cleaning    the    blades   of] 

rotary  valves  for  use  with .    T.  Robinson  and 

Son,  Ltd.,  and  C.  J.  Robinson.  E.P.  173,725, 
2.9.20. 


Ha.-FUEL;    GAS;    MINEBAL  OILS  AND 
WAXES. 

Solid  fuels;  Systematic  examination  of  with 

particular  regard    to   the   direct   determination 

of  the  volatile  components.    W.  Fritsche.    Brenn- 

stoff-Chem.,    1921,   2,   337—343,   361—367,  377— 

383 ;  1922,  3,  4—10,  18—25. 

Moisture  should  be  estimated  as  "  mine  moisture  " 

(the  difference  between  the   moisture  contents   of 

the  freshly  mined  and  the  air-dry  coal),  moisture 

in    the    air-dried    material    (after    crushing),   and 

total  moisture.     If  the  coal  be  left  in  an  air  oven 

at  105°  C.  for  too  long  a  period,  oxidation  occurs, 

and  the  result  is  found  to  be  too  low.     The  best 


Vol.  XLI.,  No.  4] 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


129  A 


results  are  obtained  by  the  use  of  a  vacuum  desic- 
cator in  which  the  moisture  is  absorbed  in  con- 
centrated sulphuric  acid.  Distillation  with  a  mix- 
ture of  xylene  and  benzene  is  very  suitable  for 
coal  with  a  high  moisture  content.  Methods  in- 
volving the  measurement  of  the  amount  of  acetyl- 
ene produced  by  reaction  with  calcium  carbide  or 
the  amount  of  methane  produced  by  reaction  with 
magnesium  methyl  iodide  are  not  suitable  for  solid 
fuels.  Ash  may  be  expressed  either  as  original 
inorganic  matter  in  the  coal  or  as  the  residue  left 
after  combustion.  These  two  results  are  quite 
different  in  magnitude.  Incinerating  in  an  open 
dish  over  an  open  flame  gives  the  highest  results, 
whilst  ashing  in  a  porcelain  boat  in  a  current  of 
oxygen  gives  the  lowest  figure.  Pyrites  becomes 
converted  into  ferric  oxide,  silicates  lose  water  of 
crystallisation,  carbonates  lose  carbon  dioxide, 
whilst  this  is  partially  replaced  by  the  sulphur 
trioxide  produced  by  the  combustion  of  pyrites 
in  the  presence  of  ferric  oxide.  For  the  fusibility 
of  ashes,  the  method  of  Fieldner  and  Feild  (J., 
1915,  1079)  is  recommended.  The  methods  of 
Muck,  Bochum,  Finkener,  the  American  Coal 
Committee,  and  Lessing  for  the  determination  of 
volatile  matter  are  described,  together  with  the 
"  double  crucible  "  method  used  in  Belgium  and 
modifications  such  as  the  methods  of  Goutal  and 
Mahler.  In  one  case  the  determination  of  coke 
yield  by  different  methods  gave  the  following 
results: — Finkener's  method  6909%;  Muck's, 
64-69%;  Goutal's,  64-30%;  Mahler's,  64-29%; 
Bochuni's,  84'24% ;  American  Coal  Committee's, 
62-04%.  Theoretically,  Finkener's  method  (car- 
bonisation in  an  inert  atmosphere)  gives  the  most 
correct  result,  as  there  is  no  combustion  of  the 
coke.  Theoretical  results  never  correspond  to 
practical  results,  however,  as  in  practice  the 
charge  is  carbonised  to  varying  degrees,  accord- 
ing to  the  degree  of  heat  transmission  and  to  the 
position  of  the  charge  in  relation  to  the  heating 
surfaces.  The  methods  in  use  for  ultimate  analysis 
are  fully  described,  and  for  the  determination  of 
volatile  matter,  the  method  of  Fischer  and  Gluud 
(J.,  1919,  563  a),  by  carbonisation  in  a  rotary  re- 
tort, is  recommended,  although  this  is  too  compli- 
cated for  use  in  an  industrial  laboratory.  The 
aluminium  retort  of  Fischer  and  Schrader  (J., 
1920,  566  a)  is  recommended  for  practical  purposes. 

—A.  G. 
Ammonia-recovery   processes;   Steam    consumption 

in  various .    A.  Krieger.  Gas-  u.  Wasserf ach , 

1921,  65,  17—20. 
Calculations  are  given  of  the  total  steam  consump- 
tion involved  in  ammonia  recovery  by  the  indirect, 
semi-direct  (Koppers  etc.),  and  Otto  direct  process 
under  conditions  prevailing  in  coke-oven  and  gas- 
works practice  respectively.  It  is  concluded  that 
in  the  latter  case  no  saving  is  obtained  by  any  of 
the  more  recent  processes,  the  extra  power  required 
to  force  the  gas  through  the  saturators  counter- 
balancing the  steam  otherwise  required  for  distilla- 
tion. In  coke-oven  practice  a  considerable  saving 
is  possible  owing  to  the  use  of  blowers  of  greater 
mechanical  efficiency,  but  this  saving  is  dependent 
on  their  maintenance  in  good  condition,  and  correct 
proportioning  to  their  work.  In  the  Otto  direct 
process,  in  which  the  tar  is  separated  at  75°  C,  not- 
withstanding the  temperature,  a  small  quantity  of 
liquor  charged  chiefly  with  ammonium  chloride  con- 
denses. If  this  is  run  into  the  saturator  an  impure 
sulphate  results,  and  it  must  be  run  away  or  dis- 
tilled. If  it  is  allowed  to  pass  away  with  the  tar, 
serious  corrosion  of  the  tar  stills  follows.  There  is, 
therefore,  little  inducement  for  gas  works  to  adopt 
direct  processes.  Even  for  coke-ovens  their  advant- 
ages would  disappear  were  it  possible  for  ammoni- 
acal  liquor  of  a  strength  similar  to  that  of  gas  works 
liquor  to  be  made. — C.  I. 


Producer  gas  cooling  system;  Corrosion  of  a  . 

L.  E.  Jackson.     Chem.  and  Met.  Eng.,  1922,  26, 

60—64. 
Corrosion  of  the  iron  work  of  the  gas  cooling  and 
washing  system  of  a  water-gas  plant  was  found  to 
be  due  to  the  presence  of  acids,  dissolved  oxygen, 
and  suspended  coke  dust  and  ashes  in  the  circulat- 
ing water.  After  the  water  was  rendered  alkaline 
to  methyl  orange  by  treatment  with  lime  the  corro- 
sion was  reduced  by  one-half.  It  was  not  practicable 
to  make  the  water  alkaline  to  phenolphthalein  be- 
cause it  came  into  contact  with  the  gas  containing 
carbon  dioxide.  Oxygen  was  introduced  into  the 
system  in  the  water  cooling  sprays  and  in  the  fresh 
water  added  to  compensate  for  losses,  and  was  given 
up  by  the  water  in  the  gas  cooling  apparatus. 
After  filtration  of  the  water  through  steel  turnings, 
the  amount  of  corrosion  was  reduced  by  a  further 
one-quarter.  When  the  water  leaving  the  cooling 
system  was  passed  through  test  pipes  of  different 
diameters  it  was  found  that  at  a  velocity  of  12  ft. 
per  sec.,  the  loss  in  weight  of  the  pipe  was  55  mg. 
per  day  per  sq.  in.  of  surface  exposed,  whereas  the 
corresponding  loss  was  only  36  mg.  when  a  test 
piece  was  immersed  in  the  water  but  not  subjected 
to  erosive  action.  The  use  of  sea  water  freed  from 
oxygen  as  an  alternative  to  the  neutralisation  and 
re-circulation  of  fresh  water  as  indicated  above  is 
considered  with  reference  to  local  conditions  at 
Providence,  R.I. — H.  Hg. 

Petroleum;    The   solid   paraffins    in   .       M.    A. 

Rakusin.     Petroleum,  1922,   18,  5 — 9,  42 — 48. 

Experiments  were  made  with  Grosny  petroleum 
with  a  view  to  find  a  suitable  method  for  extracting 
the  solid  paraffins,  of  which  the  oil  contains  a  rela- 
tively high  percentage.  The  methods  emploved 
included  centrifuging,  filtration  through  a  Cham- 
berland  filter  and  a  Pukal  filter,  and  treatment  with 
absorbents,  e.g.,  kaolin,  powdered  filter  plate,  and 
fuller's  earth,  both  at  ordinary  and  high  tempera- 
tures, and  under  normal,  reduced,  and  increased 
pressure.  No  method  effected  a  complete  extrac- 
tion of  the  solid  paraffins,  but  a  well-Sefined  frac- 
tional separation  was  attained  by  centrifuging  the 
oil  and  subsequently  treating  the  residual  oil  with 
10%  of  fuller's  earth.  Centrifuging  removed  2'60% 
of  solid  paraffins  of  m.p.  69°  C.  and  sp.  gr.  0'8974  • 
fuller's  earth  .absorbed  0'95%  of  m.p.  50°  C.  and 
sp.  gr.  08108;  and  there  remained  in  the  oil  1*70% 
of  an  intermediate  fraction  of  m.p.  59°  C.  and  sp. 
gr.  0-8377,  which  could  only  be  extracted  by  Holde's 
distillation  method.  The  resin  content  of  the  oil 
was  reduced  by  centrifuging,  vacuum  filtration,  and 
treatment  with  fuller's  earth  under  pressure,  but 
remained  unaltered  by  treatment  with  absorbents 
under  normal  or  reduced  pressure.  The  fact  that 
the  two  fractions  of  solid  paraffins  separated  from 
the  cold  oil  by  centrifuging  and  extraction  with 
fuller's  earth  exhibited  a  crystalline  structure  under 
the  microscope  disproves  the  theory  that  these  sub- 
stances exist  in  the  crude  oil  as  amorphous  or 
"  protoparaffins,"  and  are  subsequently  converted 
bv  heat  into  crvstalline  or  "  pvroparaffins." 

— L.  A.  C. 

Mineral  oils;  Apparatus  for  determining  resistance 

to  cold  of .     K.  Glaser.     Petroleum,  1922,  18, 

81—82. 
A  vessel  containing  ice  surrounds  a  smaller  vessel 
containing  a  freezing  mixture.  In  the  latter  is  a 
thermometer  and  a  stirring  arrangement,  whilst 
above  it  is  a  vessel  partly  filled  with  water.  From 
this  last  vessel  hang  glass  siphons,  the  upper  ends 
of  which  dip  into  the  water,  while  the  lower  limbs 
bent  to  U-shape  are  immersed  in  the  freezing  mix- 
ture. The  oils  for  examination  are  introduced  into 
the  graduated  lower  limbs  of  the  siphons.  The  oils 
are  subjected  to  a  temperature  of  -10°  0.  for  one 

a2 


130a 


Cl.  IIa.— FUEL  ;   GAS  ;   MINERAL  OILS  AND  WAXES. 


[Feb.  28,  1922. 


hour.  Then,  by  a  lever,  a  stop-watch  is  started  and 
simultaneously  a  displacement  body  falls  into  the 
vessel  containing  water,  raising  the  level  of  the 
water  50  mm.  The  siphons  are  withdrawn  in  one 
minute  and  the  amount  of  rise  in  the  level  of  oil  in 
each  siphon  read  off. — H.  M. 

See  also  pages  (a)  133,  Low-temperature  tar 
(Dolch).  134,  Lubricating  oil  (Jaeobsohn).  141, 
Interaction  of  carbon  with  steam  and  with  carbon 
dioxide  (Taylor  and  Neville).  142,  Corrosion  of 
ferro-concrete  by  gas-liquor  (Haas).  147,  Insu- 
la! in  ij  oils  (Friese). 

Patents. 
Coal;  Treatment  of  to  cause  or  facilitate  its 

breaking   up   or   crushing.      It.    Lessing.      E.P. 

173,072,  23.9.20. 
Moist  coal  is  treated  with  acid  gases,  such  as 
furnace  gases  containing  sulphur  dioxide  equivalent 
to  about  0'1%  of  the  coal,  or  the  coal  may  be 
immersed  in  a  dilute  acid  solution  prior  to  crushing 
or  washing.  Acid  may  be  added  to  the  water  used 
for  washing  the  coal.  To  facilitate  the  mining  of 
coal  it  is  treated  in  situ  with  sulphur  dioxide  intro- 
duced under  pressure  through  a  bore  intersecting 
the  coal  layers. — H.  Hg. 

Straw-briquetting  machine.     J.  A.  Cowan.     U.S. P. 

1,403,294,  10.1.22.     Appl.,  30.11.20. 
The  straw  is  heated  to  soften  the  glutinous  matter 
and  afterwards  briquetted  by  pressure  and  baked. 

—A.  R.  M. 

Peat;   Process    for   drying   .     K.    von    Haken. 

G.P.  341,179,  11.9.19. 

The  peat  is  dried  in  stages,  and  the  heat  expended 
in  the  form  of  hot  air  and  steam  is  recovered  in 
heat  accumulators,  where  it  is  utilised  for  preheat- 
ing a  further  supply  of  air. — A.  G. 

Peat  and  the  like;  Process  for   treatment   of  raw 

•  in  a  closed  pressure  vessel  with  simultaneous 

compression.  Torfverwertungsges.  Pohl  u.  von 
Dewitz.  G.P.  342,337,  23.6.20.  Addn.  to  340,631 
(J.,  1922,  6a). 

The  peat  is  not  carbonised,  but  is  heated  sufficiently 
to  reduce  the  moisture  content  to  a  predetermined 
figure.  The  pressed  peat  from  the  first  operation 
is  treated  in  another  similar  vessel  with  steam 
generated  in  the  first  process. — A.  G. 

Peat;  Preparation  of  for  gasification  in  pro- 
ducers. "  Gafag,"  Gasfeuerungsges.  >Yentzel  u. 
Co.  G.P.  343,246,  21.11.19. 
The  peat  is  coated,  prior  to  gasification,  with  a 
silicious  coating,  which  renders  it  coherent,  so  that 
until  more  than  half  gasified  it  remains  in  the  form 
of  solid  pieces,  offering  very  little  resistance  to  the 
passage  of  the  gas. — A.  G. 

Peat;    Process   for   the   dehydration,    drying,    and 

carbonisation  of .    E.  Kandler.  G.P.  343,247, 

27.11.20. 

A  cylindrical  tube,  perforated  with  a  number  of 
holes,  is  fitted  into  the  vertical  face  of  the  peat  bed, 
and  the  pressure  of  the  peat  itself  leads  to  expulsion 
of  the  water  from  the  peat.  This  is  withdrawn 
from  the  tube  through  a  pipe  fitted  to  the  tube- 
flange  at  the  peat  face,  and  thorough  drying  and 
carbonisation  can  be  brought  about  by  heating  the 
tube  from  the  inside,  a  vertical  pipe  from  the 
surface  being  used  for  conducting  the  heating 
medium. — A.  G. 

Fuel;    Method    of    burning    and    apparatus 

therefor.  R.  F.  Metcalfe,  Assr.  to  Skinner 
Engine  Co.  U.S.P.  1,402,243,  3.1.22.  Appl., 
27.9.20. 

Liquid  fuel  with  sufficient  air  for  its  partial  com- 


bustion is  supplied  to  a  chamber  in  which  all  the 
fuel  is  vaporised.  The  products  of  combustion  and 
the  unburnt  fuel  are  expelled  from  the  chamber  and 
mixed  with  sufficient  air  for  complete  combustion 

-H.  Hg. 

Coke  ovens,    fi.  Zwillinger.    E.P.  172,739,  15.9.20. 

The  coking  chamber  is  heated  from  beneath  by 
means  of  a  heating  floor,  comprising  a  number  of 
horizontal  flues,  each  being  provided  at  opposite 
ends  of  the  oven  with  means  of  supply  of  gas  and 
air  respectively.  In  one  type  the  flues  are  arranged 
to  receive  gas  and  air  in  an  alternating  manner, 
i.e.,  the  gas  and  air  enter  the  flues  of  one  series  at 
one  end  of  the  oven,  the  products  of  combustion  are 
discharged  at  the  other  end,  while  in  the  other 
series,  placed  alternately  in  between  the  flues  of  the 
first  series,  the  gas  and  air  and  products  of  com- 
bustion pass  in  the  opposite  direction,  thus  pro- 
viding even  heating  along  the  floor.  Other 
arrangements  similar  in  principle  are  described,  for 
example  the  heating  floor  may  be  divided  midway 
of  the  oven  by  a  wall,  each  flue  system  being  pro- 
vided at  opposite  ends  of  the  oven  with  gas  and  air 
supply.  •The  air  may  be  preheated  by  passing 
through  a  duct  arranged  to  receive  heat  from  a 
waste  gas  manifold,  or  located  in  juxtaposition  to 
the  bottom  of  the  heating  flue.  The  air  may  also 
pass  through  special  heating  flues  formed  by  hollow 
bricks  forming  the  bottom  of  the  heating  floor. 
Arrangements  are  provided  for  a  certain  amount  of 
side  heating  of  the  oven  if  required.  Advantages 
claimed  are  that  the  heating  is  under  perfect  con- 
trol by  regulation  of  gas  and  air  valves;  there  is 
more  efficient  and  rapid  distillation  of  the  coal  than 
heretofore,  and  gas  of  better  quality  is  obtained 
owing  to  absence  of  the  deteriorating  effects  of  side 
and  top  heat  and  to  the  rapidity  of  removal  of  the 
gases  from  the  charge. — A.  R.  M. 

Coking  retort  oven.  J.  van  Ackeren,  Assr.  to 
The  Koppers  Co.  U.S.P.  1,402,272,  3.1.22. 
Appl.,  12.6.20. 

The  regenerators  are  placed  below  the  level  of  the 
ovens,  and  each  is  divided  into  a  number  of  com- 
partments communicating  individually  with  a 
group  of  combustion  flues  in  a  heating  wall  of  an 
oven.  The  respective  compartments  of  a  number 
of  regenerators  which  are  equidistant  from  the 
side  of  the  oven  battery  are  interconnected  by  a 
tunnelled  passage.  The  flow  through  each  set  of 
interconnected  compartments  is  separately  con- 
trolled—H.   Hg. 

Coal;  Apparatus  for  coking  .     C.  M.  Garland. 

U.S.P.  1,402,413,  3.1.22.     Appl.,  22.12.17. 

Coal  is  heated  in  a  retort  to  a  predetermined 
temperature  by  passing  heating  gases  through  the 
retort,  and  the  gases  are  then  diverted  to  a  heat- 
ing chamber  surrounding  the  retort,  and  the  coking 
completed   by   heating   the   retort  externally. 

-H.  Hg. 

Coke    oven;    Regenerative    .      J.    E.    Hubbell, 

Assr.  to  L.  and  A.  A.  Wilputte.    U.S.P.  1,402,770, 
10.1.22.     Appl.,  27.12.18.     Renewed  11.5.21. 

The  space  between  each  pair  of  supporting  walls 
under  a  battery  of  ovens  is  divided  into  a  number 
of  regenerator  chambers  separately  connected  with 
vertical  flues  in  the  heating  wall.  The  chambers 
are  formed  in  two  sets,  one  on  each  side  of  a 
central  flow  reversal  plane,  and  separate  conduit 
connexions  are  provided  between  the  supporting 
walls  for  groups  of  regenerators  of  each  set 
located  at  different  distances  from  the  flow  re- 
versal   plane. — H.    Hg. 


Vol.  XLI.,  No.  4.] 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


131a 


Coke  ovens:  Installation  of with  regenerators 

on  both  sides  of  a  battery  of  ovens.    W.  Schroder. 
G.P.  341,719,  17.9.15. 

Regenerators  are  built  along  the  axis  of  the  heat- 
ing conduits  and  are  operated  in  groups  of  four, 
so  that  alternately  the  air  from  a  pair  of  opposite 
regenerators  is  delivered  to  one  oven  wall,  or  when 
operating  on  low-grade  gas,  the  air  from  one  re- 
generator and  the  gas  from  another  are  delivered 
to  the  heating  conduits,  the  products  of  combustion 
passing  through  both  regenerators  to  the  other 
oven  wall.  The  installation  is  compact  and  leakage 
is  reduced  to  a  minimum. — J.  S.  G.  T. 

[Oil]  gas  producers;  Apparatus  for  protecting . 

W.  C.  Dayton,  Assr.  to  General  Oil  Gas  Corp. 
TJ.S.P.  1,402,721,  3.1.22.     Appl.,  6.11.17. 

A  mixture  of  air  and  liquid  fuel  is  supplied  to  a 
retort  through  a  valve.  Part  of  the  gas  from  the 
retort  is  mixed  with  air  and  passed  by  a  pump  to 
a  calorimetric  device,  which  actuates  an  electric 
alarm  when  the  calorific  value  of  the  gas  falls  due 
to  clogging  of  the  fuel  supply. — H.  Hg. 

Gas  producer  for  the  gasification  of  caking  coals, 
with  recovery  of  low-temperature  tar.  J.  Pintsch 
A.-G.    G.P.  341,638,  5.7.19. 

The  portion  of  the  producer  where  caking  of  the 
coal  takes  place  is  made  as  a  separate  section 
which  can  be  rotated  and  is  provided  inside  with  a 
casing  disposed  excentrically,  so  that  on  rotation 
a  horizontal  movement  of  the  coal  in  its  downward 
passage  through  the  shaft  is  produced.  Caking  is 
thereby  prevented  and  disintegration  of  the  swollen 
mass  effected.— J.  S.  G.  T. 

Fuel  [in  a  producer];  Process  for  the  continuous 
decomposition     of     steam     by     i)assage     through 

strongly    heated   .      N.    Lengersdorff.      G.P. 

341,801,  23.8.18. 
The  fuel  is  fed  into  a  producer,  the  middle  portion 
of  which  is  heated  externally  by  electrical  means. 
Steam  is  generated  by  the  quenching,  in  a  water 
trough,  of  the  ash  from  the  process  and  is  passed 
continuously  through  the  charge,  with  the  produc- 
tion of  water-gas,  the  sensible  heat  from  which  is 
utilised  to  carbonise  partially  the  fuel  above  the 
heated  zone.  The  mixture  of  water-gas  and  low- 
temperature  gas  is  very  rich,  and  is  taken  off  at  the 
top  of  the  producer.  The  ash  is  discharged  continu- 
ously by  a  worm  conveyor  from  the  water-sealed  ! 
trough  at  the  bottom  of  the  producer. — A.  G. 

Gas  producer  with  inner  gas  bell.     W.  Steinmann. 

G.P.  343,81-5,  8.1.19. 
In  the  usual  type  of  gas  producer  for  the  gasifica- 
tion of  raw  lignite  or  other  materials  containing  a 
high  percentage  of  moisture,  the  gas  becomes  so 
cool  in  the  carbonisation  zone  that  it  leaves  the 
producer  at  a  very  low  temperature  and  does  not 
dry  the  incoming  charge  of  wet  fuel.  This  dis- 
advantage is  avoided  by  taking  the  hot  gas  direct 
from  the  combustion  zone  to  the  drying  zone, 
which  also  acts  as  a  dust-catcher  and  purifies  the 
gas.  The  gas  from  the  carbonisation  zone  is  col- 
lected separately  and  the  by-products  are  recovered. 

—A.  G. 

Gas;    Purification    of    .     N.    Klarding.     E.P. 

167,185,  28.7.21.     Conv.,  28.7.20. 

Gas  containing  tar  or  dust  particles  is  passed  over 
high-potential  electrodes  and  then  through  a 
filtering  medium  composed  of  a  mass  of  irregular 
iron  rings  supported  on  a  funnel  and  supplied  to 
the  apparatus  through  a  closed  hopper.  Under  the 
funnel  is  another  perforated  funnel  containing  a 
central  agitating  device  and  to  which  is  connected 
an  outlet  pipe  for  the  iron  rings.  In  order  to 
cleanse  the  rings  before  they  leave  the  apparatus  to 


be  returned  to  the  feed  hopper,  purified  gas  is 
passed  up  the  outlet  pipe  and  through  the  mass  in 
the  perforated  funnel  into  an  outer  casing  where 
the  dust  is  deposited;  thence  the  gas  passes  to  the 
inlet  side  of  the  electrodes.  In  order  further  to 
agitate  the  rings  two  alternately  energised  electro- 
magnets are  placed  within  the  outlet  pipe. 

-H.  Hg. 

I^is  coolers,  cleansers  or  condensers.  J.  F.  Wells. 
E.P.  173,668,  10.11.20. 

Condensers  or  cleansers  for  producer-gas  are  con- 
structed of  two  or  more  sections,  the  number  being 
varied  so  as  to  adapt  the  apparatus  to  the  capacity 
of  the  producer  or  the  volume  of  gas  passing.  The 
sections  consist  of  superimposed  chambers  with 
sloping  floors  connected  by  pipes  in  such  a  manner 
that  the  gas  enters  tho  lowermost  chamber  at  the 
narrow  end  and,  proceeding  along  the  chamber,  ex- 
pands to  the  enlarged  end,  thence  passes  upwards 
into  the  next  chamber  at  its  narrow  end  and  so  on, 
the  last  or  top  chamber  being  filled  with  asbestos  or 
other  non-inflammable  scrubbing  material.  The 
several  parts  or  fittings  are  interchangeable,  thus 
enabling  the  dimensions  of  the  entire  apparatus  to 
be  varied  at  will.  Doors  are  provided  at  the  ends 
of  tho  chambers  for  the  purpose  of  cleaning,  and 
drain  pipes  are  placed  at  the  lowest  point  of  the 
inclined  floors,  by  which  any  condensed  material 
may  bo  removed. — A.  R.  M. 

Exhaust  gases  of  internal  combustion  engines  anil 
the  like;  Arrangement  for  purifying  and  render- 
ing odourless  the  .     P.  Wachtel,  Assr.  to  W. 

Schmidding.  U.S. P.  1,402,814,  10.1.22.  Appl.. 
23.9.20. 
The  gases  are  passed  into  the  bottom  portion  of  an 
oblong  container  divided  into  two  parts  by  a  hori- 
zontal partition.  After  being  freed  from  the  main 
part  of  the  oil  spray  by  passing  through  porous  coke 
or  similar  material  in  the  lower  compartment,  the 
gases  enter  the  upper  compartment.  The  latter 
contains  purifying  material,  and  is  provided  with 
partitions  so  that  the  gases  take  a  zig-zag  course 
through  the  purifying  material,  which  is  kept  con- 
stantly moist. — A.  R.  M. 

(  nl-ing  of  oils.  R.  H.  Brownlee  and  C.  F.  de 
Ganahl.     E.P.  173,242.  21.6.20. 

Oil  is  subjected  to  heat  treatment  in  a  rotary  drum 
mounted  on  rollers,  or  trunnions,  which  may  serve 
as  inlet  and  outlet  pipes  for  the  admission  and  dis- 
charge of  oil  or  vapour.  The  drum  contains  balls, 
preferably  hollow,  of  iron  or  steel,  or  of  a  material 
which  has  a  catalytic  action  on  the  oil.  The  balls, 
being  in  contact  with  the  drum,  provide  an  exten- 
sion of  heating  surface,  and  prevent  by  their  motion 
caking  or  coating  of  the  interior  of  the  drum.  The 
heating  may  be  continued  till  the  residue  becomes 
a  solid,  in  which  case  it  remains  in  a  pulverulent 
form  and  may  bo  blown  out  by  steam  or  gas,  or  used 
while  red  hot  for  the  formation  of  water-gas  or 
producer  gas.  The  balls  may  be  replaced  by  round 
or  polygonal  bars,  which  are  more  effective  crushers 
of  a  dry  residue.  The  surface  of  the  balls  should 
be  so  great  as  to  double  the  heating  surface  of  the 
drum.  A  series  of  drums  may  be  employed,  the 
oil  passing  successively  from  one  to  the  other.  The 
process  may  be  employed  for  the  distillation  of 
hydrocarbon  oils  of  high  viscosity  to  produce  a 
residual  oil  of  relatively  low  viscosity. — H.  M. 

Dehydrating  hydrocarbon  emulsions  and/or  dis- 
tilling   hydrocarbon    oils    or    their    products    of 

distillation  ;  Process  and  apparatus  for .    The 

Asiatic  Petroleum  Co..   Ltd.,   and  W.   Cameron. 

E.P.  173,644,  21.10.20. 

Hydrocarbon  emulsions,  such  as  salty  crude  oil  or 

hydrocarbon  oils,  are  injected  into  a  closed  circuit 

of    dehydrated   oil,    pumped   to   and    from   a    bulk 


132a 


Cl.  IIb.— DESTBUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


[Feb.  28,  1922. 


supply,  the  temperature  of  this  oil  being  main- 
tained above  that  of  boiling  water  by  a  heater,  and 
the  injection  taking  place  after  the  oil  has  passed 
the  heater.  The  apparatus  consists  of  a  pump  to 
inject  the  emulsion,  a  circulating  pump,  a  vapor- 
ising chamber,  and  a  heater.  The  emulsion  is  in- 
jected into  the  current  of  oil,  which  then  passes 
through  a  pipe  to  the  top  of  the  vaporising  chamber 
and  falls  over  a  spreading-cone  into  the  hot  oil  in 
the  chamber.  The  water  passes  away  in  the  form 
of  steam  by  a  pipe,  leaving  the  oil  and  suspended 
saline  matter.  A  portion  of  this  oil  is  withdrawn, 
and  may  be  handled  in  an  ordinary  still  without 
danger  of  the  formation  of  scale.  The  apparatus 
may  also  be  employed  for  distilling  hydrocarbon 
oils  or  benzine. — H.  M. 

Hydrocarbons;  Apparatus  for  refining .     W.  O. 

Snelling.  U.S. P.  1,402,455,3.1.22.  Appl.,  20.11.16. 

A  vertical,  elongated  reaction  chamber,  heated  ex- 
ternally, is  disposed  beneath  and  in  communication 
with  a  liquid  reservoir,  a  vaporising  chamber  being 
interposed  between  the  reservoir  and  the  reaction 
chamber.  Means  are  provided  for  maintaining  a 
pressure  greater  than  atmospheric  in  the  reaction 
chamber  by  equalising  the  pressures  above  and 
below  the  liquid  in  the  reservoir,  and  for  restrain- 
ing the  outflow  of  vapours  and  gases  from  the 
reservoir. — H.  M. 

[Hydrocarbon]    oils;   Method    of    purifying    . 

C.    M.    Alexander,    Assr.    to    Gulf   Refining    Co. 
U.S.P.  1,402,733,  10.1.22.     Appl.,  1.10.17. 

Oil  is  purified  by  being  transmitted,  together  with 
a  small  proportion  of  sulphuric  acid,  in  a  continu- 
ous stream  through  a  temperature-controlled  con- 
duit under  mechanical  agitation,  the  amount  of 
acid  being  sufficient  to  oxidise  unsaturated  sub- 
stances and  thus  improve  the  colour  without  appre- 
ciable removal  or  polymerisation  of  hydrocarbons. 

H.  M. 

Petroleum;    Treatment    of  .     W.    T.    Bryant, 

Assr.  to  E.  R.  Ratcliff.  U.S.P.  1,403,145,  10.1.22. 
Appl.,  16.11.17. 

To  convert  oils  into  hydrocarbons  of  lower  boiling 
point,  a  large  quantity  of  oil  is  heated  to  cracking 
temperature  with  steam  under  pressure,  and  is 
agitated  to  prevent  cracking.  The  vapours  are 
passed  under  pressure  through  a  cracking  zone  at 
a  velocity  sufficient  to  prevent  deposition  of  carbon, 
and  the  pressure  is  then  released,  causing  deposi- 
tion of  the  entrained  carbon  and  condensation  of 
the  condensable  vapours. — H.  M. 

Hydrocarbons;    Production    of    low    boiling    point 

saturated    from    heavy    hydrocarbon    oils. 

A.  S.  Ramage,  Assr.  to  F.  F.  Beall.  U.S.P. 
1,403,194,  10.1.22.  Appl.,  28.1.21. 
Hydrocarbons  of  lower  boiling  point  are  prepared 
by  subjecting  hydrocarbons  of  higher  boiling  point 
in  the  form  of  vapour  admixed  with  steam  to  the 
action  of  an  iron  compound  maintained  in  the  state 
of  ferrous  oxide  at  a  temperature  approaching 
G50°  C— H.  M. 

Mineral     oils;     Apparatus     for     treating     . 

Apparatus  for  cracking  hydrocarbons.  E.  V. 
Stone.  U.S.P.  (a)  1,403,457  and  (b)  1,403,458, 
10.1.22.    Appl.,  27.5.20. 

(a)  A  horizontal  cracking  chamber  contains  an 
attrition  tube,  and  both  the  chamber  and  the  tube 
can  be  rotated  in  the  same  and  in  opposite  direc- 
tions, (b)  An  attrition  tube  within  a  cracking 
chamber  revolves  around  the  longitudinal  axis  of 
the  chamber  to  effect  rubbing  contact  between  por- 
tions of  the  surfaces  of  the  tube  and  chamber 
shifting  around  the  circumferences  of  the  two 
-urfaces. — L.  A.  C. 


Aluminium  chloride;  Process  for  treating  residues 
resulting    from    the    treatment    of    hydrocarbon 

with  .     L.   JJurgess,   Assr.   to   Standard  Oil 

Co.     U.S.P.  1,401,113,  20.12.21.    Appl.,  15.1.18. 

The  residue  is  heated  to  a  temperature  sufficient 
to  cause  decomposition  into  volatile  products,  in- 
cluding hydrogen  chloride,  and  these  products  are 
brought  into  contact  with  aluminium  carbide  at  a 
temperature  sufficient  to  initiate  exothermic  reac- 
tion therewith. 

[Fuller's]  earth-treating  process  and  product. 
R.  G.  Tellier.  U.S.P.  1.402,112,  3.1.22.  Appl., 
12.11.20. 

Fuller's  earth,  to  be  used  for  filtering  and  de- 
colorising oil,  is  oxidised  and  partially  baked  in  a 
current  of  air  at  700°— 1350°  F.  (about  370°— 
— 730°  C.)  while  its  particles  are  in  motion  relative 
to  each  other. — H.  M. 

Fuller's  earth;  Treating  spent  .  C.  I.  Robin- 
son, Assr.  to  Standard  Oil  Co.  U.S.P.  1,403,198, 
10.1.22.     Appl.,  26.2.21. 

Spent  fuller's  earth  from  oil  filtration  processes 
is  revivified  by  washing  with  isopropyl  alcohol  of 
a  strength  of  at  least  80%  by  volume. — H.  M. 

Oils;  Means  for  purifying  and  vaporising  .     L. 

Wirtz.    U.S.P.  1,403,279,  10.1.22.    Appl.,  19.5.19. 
See  E.P.  124,895  of  1918;  J.,  1919,  352  a. 
Fertiliser  from  gas  liquor.     E.P.  153,006.   See  XVI. 


Hb.-DESTRUCTIVE  DISTILLATION; 
HEATING;   LIGHTING. 

Tungsten  powder.     Lottermoser.     See  X. 

Patents. 

Carbonisation    and     distillation    of    carbonaceous 
material.     J.  A.  Chown.     E.P.  173,099,  9.10.20. 

A  retort  is  composed  of  an  upper  and  lower  cham- 
ber, each  provided  with  a  gas  offtake  at  the  top 
and  an  outlet  valve  at  the  bottom.  Cannel  or  the 
like  is  treated  at  a  relatively  low  temperature  with 
a  liquid  hydrocarbon  in  the  upper  chamber  to  distil 
the  more  volatile  products,  and  is  then  passed 
through  the  outlet  valve  into  the  lower  chamber 
where  it  is  carbonised  at  a  higher  temperature. 
Excessive  caking  of  the  material  may  be  prevented 
by  fitting  scrapers  to  the  outlet  valve  of  the  lower 
chamber  and  operating  these  by  rotating  the  valve. 
An  independent  inlet  may  be  fitted  to  the  lower 
chamber  for  the  introduction  of  materials  to  be 
mixed  with  that  passing  from  the  upper  chamber. 

-H.  Hg. 

Decolorising  carbon;  Manufacture  of .  J.  N.  A. 

Sauer.     E.P.  173,624,  9.10.20. 

Wood  or  the  like  is  treated  as  described  in  E.P. 
167,195  (J.,  1921,  686  a)  without  the  addition  of 
any  inorganic  matter,  and  the  product  is  ground  to 
a  degree  of  fineness  short  of  that  at  which  the 
fibrous  structure  is  destroyed. — H.  Hg. 

Peat;  Apparatus  for  distillation  of  and  the 

recovery  of  the  products.  A.  J.  Robus.  E.P. 
173,662,  8.11.20. 
A  number  of  inclined  tubular  metal  retorts  are 
heated  at  their  upper  ends  by  a  furnace,  and  at 
their  lower  ends  by  waste  gases.  The  upper  ends 
open  into  a  chamber  from  the  top  of  which  gas  is 
drawn,  land  in  the  bottom  of  which  charcoal  is 
collected.  The  lower  ends  open  into  a  hopper  from 
which  raw  peat  is  fed  into  each  tube  toy  means  of  a 
spiral  screw  extending  within  the  lower  half  thereof. 


Vol.  XU,  Xo.  4.] 


Cl.  in.— tar  and  tar  products. 


133  a 


The  water  which  is  expelled  when  the  peat  is  heated 
under  pressure  is  drained  off  at  the  lower  ends  of 
the  tubes.— H.  Hg. 

Electric  vacuum  tubes,  incandescent  lamps,  and  the 
•  :  Process  of  removing  gas  residues  and  purify- 
ing inert  gases  in .     G.  Hoist,  E.  Oosterhuis, 

and    Naomi.     Yennoots.     Philips'     Gloeilampen- 
fabrieken.    E.P.  151,611.  22.9.20.    Conv..  23.9.19. 

Ax  alloy  of  an  alkali  or  alkaline-earth  metal  and  a 
nobler  (i.e.,  less  electropositive)  metal,  e.g.,  a 
calcium-tin  alloy,  is  placed  in  the  tube  at  a  point 
where  the  temperature  is  sufficiently  high  to 
vaporise  the  alkali  or  alkaline-earth  metal,  while 
the  other  constituent  of  the  alloy  does  not  vaporise 
perceptibly.  Current  is  not  conducted  by  the 
vapour  of  the  alkali  or  alkaline-earth  metal.  The 
alloy  may  be  applied  as  a  solder  upon  a  metal  part 
of  the  tube.— J.  S.  G.  T. 

in  discharge  apparatus.  British  Thomson- 
Houston  Co..  Lid..  Aasees.  of  I.  Langmuir.  E.P. 
148.132.  9.7.20.     Conv..  28.10.15. 

Seb  D.S.P.  1,244,217  of  1017  :  J..  1917.  1267. 
Decolorising  carbon.    U.S. P.  1,402,007.     See  XVII. 


Ill— TAB  AND  TAB  PB0DUCTS. 

Low-temperature   tar;   Economy   of  production   of 

.     M.   Dolch.     Z.    angew.    Chem.,   1921,   34, 

648—650. 

A  review  of  work  done  on  this  subject.  For  the 
production  of  tar,  with  a  view  to  obtain  substitutes 
for  petroleum  oils,  from  lignite  or  coal  of  consider- 
able water  content.  low-temperature  distillation  in 
rotary  retorts  is  preferable  to  treatment  in  a  pro- 
ducer. The  working  up  of  low-temperature  tar  is 
bast  carried  out  by  distillation  with  superheated 
steam  in  vacuo.  A  preliminary  removal  of  paraffin 
allows  62'5%  of  lubricating  oil  to  be  obtained  from 
the  tar.  Phenols  are  produced  by  oxidation  during 
the  distillation  of  lignite,  and  increased  quantities 
of  phenols  may  be  obtained  by  oxidation  under  pres- 
sure. Phenolic  fractions  may  be  employed  as  a 
motor  fuel  if  a  high  temperature  is  maintained  in 
the  engine ;  they  are  not  destructive  to  machine 
parts.— H.  M. 

Lignite   producer-gas  tar;  Asphaltie   substances  in 

.    J.  Mzourek.    Petroleum,  1922,  18,  77 — 81. 

500  g.  of  tar  was  treated  with  500  c.c.  of  light 
petroleum  spirit  and  the  mixture  allowed  to  stand 
for  2  hrs.  The  solution  was  decanted  and  the  thick 
precipitate  re-washed  with  a  small  quantity  of  petro- 
leum spirit  until  a  thick  black  asphaltic'substance 
was  left  which  was  completely  insoluble  in  the  spirit 
at  normal  temperature.  The  asphalt  and  the  solu- 
tion were  freed  from  petroleum  spirit  by  distiUa- 
i  and  subsequent  heating  on  the  water-bath; 
18  of  asphalt  and  52  %  of  oil  were  obtained.  The 
oil  had  sp.  gr.  0-9203,  viscosity  5"  78°  Engler  at 
50°  C,  flash  point  8S°  C.  burning  point  170°  C, 
and  cold  test  30'5°  C.  The  asphaltie  constituent 
was  a  shining  black  substance  with  a  conchoidal 
fracture,  m.p.  56°  C.  (Kramer  and  Sarnow),  flash 
point  160°  C,  burning  point  183°  C,  paraffin  con- 
tent (Holders  method,  -10°  C.)  2-3%;  4243%  was 
soluble  in  a  15%  solution  of  caustic  soda,  and  crack- 
ing distillation  gave  41%  of  oil  and  47%  of  coke, 
with  12%  loss.— H.  M. 

Hydrogenated  naphthalenes  and  their  transforma- 
tions.  I.   G.  Schroeter  [with  F.  Stahl.  H.  Haehn, 
and  C.  Prigge].     Annalen,  1922,  426,  1—17. 
Naphthalene  was  purified  by  treatment  with  finely 
divided   or    easily    fusible    metals    and    distillation 


under  reduced  pressure ;  complete  purification  was 
effected,  when  necessary,  by  sulphonation  and  dis- 
tillation with  steam.  The  purified  naphthalene 
(512  g.)  was  treated,  in  presence  of  a  suitable 
nickel  compound  as  catalyst  (15 — 20  g.).  with 
hydrogen  at  15—20  atm.  and  at  180°— 200°  C.  The 
hydrogenation  is  preferably  carried  out  in  two 
stages  :  the  first  occupying  1 — 1J  hrs.,  yields  tetra- 
hydronaphthalene (tetralin),  and  the  second,  which 
is  advantageously  performed  in  another  autoclave, 
yielding  the  decahydro-derivative.  After  hydro- 
genation to  the  tetra  stage  the  product  is  distilled 
off  and  a  further  hydrogenation  carried  out ;  25 
hydrogenations  may  be  performed  with  one  lot  of 
catalyst.  Tetrahvdronaphthalene  has  sp.  gr. 
20°/4°C.  0-971,  »„"= 1-5434,  b.p.  100°— 101°  C. 
(25  mm.),  206-5°  (75  mm.).  Decahydronaphthalene 
after  purification  by  means  of  sulphuric  acid  has 
sp.  gr.  18° /4°  0-8842,  b.p.  189°— 191°  (770  mm.). 
<<7.  J.C.S.,  i.,  122.)— C.  K.  I. 

Hydrogenated  naphthalenes  and  their  transforma- 
tions. 11.  Nitro-  and  amino-dri  ivatives  of 
tetrahydronaphthalene.  G.  Schroeter  [with  E. 
Kindermann,  C.  Dietrich,  C.  Beyschlag,  C. 
Fleischhauer.  E.  Riebensahm.  and  C.  Oesterlinl 
Annalen.  1922.  426,  17— S3. 

This  paper  describes  the  nitration  of  tetrahydro- 
naphthalene, the  reduction  of  various  mono-,  di-, 
and  tri-nitro-derivatives,  and  the  nitration  of  the 
acetyl-derivatives  of  the  amines  so  obtained.  The 
preparation  of  a  considerable  number  of  isomeric 
nitrocompounds,  amines,  and  nitro-amines  is  fully 
described.  Nitration  with  nitric  acid  in  presence 
of  much  sulphuric  acid  and  water  gives  80 — 90  oi 
a  mixture  of  the  1-  and  2-nitro-compounds,  which 
may  be  separated  by  distillation  under  reduced 
pressure  into  1-nitrotetrahvdronaphthalene,  m.p 
34°  C,  b.p.  (13  mm.)  1576  C,  and  2-nitrotetra- 
hydronaphthalene,  m.p.  31-5°  C,  b.p.  (13  mm.) 
169°  C.  The  mononitro  compounds  are  reduced 
catalytically  (the  2-compound  the  more  easily)  to 
the  corresponding  1-  and  2-amino-derivatives, 
which  have  respectively-  b.p.  146°  (12  mm.)  and 
147°— 148°  C.  (13  mm).  Nitration  of  tetrahvdro- 
naphthalene with  2  mols.  of  87%  nitric  acid'  and 
4  of  sulphuric  acid  in  the  cold,  or  further  nitration 
of  either  of  the  mononitro  compounds  yields  a  mix- 
ture of  1.3-  and  1.2-dinitro  derivatives,  which  may 
be  separated  by  crystallisation  from  organic  sol- 
vents; smaller  quantities  of  the  1.4-  and  2.3-dinitro- 
compounds  are  also  produced.  The  1.2-dinitro- 
compound  has  m.p.  102° — 103°  C,  the  1.3  95°  C. 
The  further  nitration  of  1.3-dinitrotetrahvdro- 
naphthalene  is  difficult,  but  the  1. 2-compound  yields 
1.2.4-trinitrotetrahydronaphthalene,  m.p.  95°  C. 
The  dinitro-compounds  on  catalytic  reduction  yield 
the  corresponding  diamino-compounds,  which  have 
melting  points  as  follows:  1.3- .  84° — 85°;  2  3- 
135°— 136°;  1.4-,  83°— 85°  C.      (Cf.  J.C.S.,  i.,  123.) 

— C.  K.  I. 

Hydrogenated  naphthalenes  and  their  transforma- 
tions.       III.        Tetrahydronaphthalenesulphonic 
acids,  tctrahydronaphthols  and  their  derivatives. 
G.  Schroeter  [with  Svanoe,  H.  Einbeck,  H.  Geller, 
E.  Riebensahm].     Annalen,  1922,  426,  83— 160.     ' 
Both     ar-tetrahydronaphthalene-1-sulphonic     and 
'(/-tetrahydronaphthalene  -  2  -  sulphonic     acid     are 
obtained   as    their    chlorides   w-hen   chlorosulphonic 
acid  is  allowed  to  react  with  tetrahydronaphthalene. 
The  mixture  of  sulphochlorides  may  be  separated 
by  hydrolysis  with  steam  and  extraction  of  the  pro- 
duct with  chloroform,  in  which  the  2-sulphonic  acid 
is   soluble.     Concentrated    sulphuric    acid,    on    the 
other  hand,  gives  chiefly  the  2-sulphonic  acid,  4 — 7% 
of  the  1-sulphonic  acid  being  formed  simultaneously. 
Both  acids  on  fusion  with  alkalis  give  the  corre- 
sponding  tetrahydronaphthols,    and   the   sulphonic 
chlorides      on      reduction      yield      tetrahydrothio- 


134a 


Cl.  III.— TAR  AND  TAR  PRODUCTS. 


[Feb.  28, 1922. 


naphtliols.  The  sulphonation  of  tetrahydronaphtha- 
lene,  therefore,  opens  the  way  to  the  preparation 
of  a  largo  number  of  new  aromatic  compounds. 
Among  the  products  described  are  2-tetrahydro- 
naphthol  methyl  ether  which  is  a  perfume ;  2-tetra- 
hydronaphthol  and  its  1.3-dibromo  derivative,  dis- 
infectants even  in  dilute  solution ;  and  2-tetra- 
hydronaphthol-3-carboxylic  acid,  which  is  a  stronger 
febrifuge  than  salicylic  acid.     (fit.  J.C.S.,  i.,  126). 

— C.  K.  I. 

Phenols;  Extracting  by  means  of  sodium  sul- 
phide solution.  F.  Fischer,  H.  Tropsch,  and 
P.  K.  Breuer.  Brennstoff-Chem.,  1922,  3,  1—3. 
On  treating  m-cresol  with  cold  4AT  sodium  sulphide 
solution,  a  molecular  quantity  of  the  oresol  reacts 
in  accordance  with  the  equation  :  CrH,OH+Na2S  = 
C,H,ONa+N-aHS,  and  a  somewhat  greater  quantity 
enters  into  physical  solution.  The  latter  part  only 
can  be  extracted  by  shaking  the  solution  with  an 
organic  solvent  such  as  ether  or  benzene.  If  Tri- 
cresol is  boiled  with  sodium  sulphide  solution,  the 
sodium  hydrosulphide  formed  in  accordance  with 
the  above  equation  reacts  with  a  further  molecule  of 
cresol  with  liberation  of  hydrogen  sulphide  as  fol- 
lows :— C;H;OH  +  NaHS  =  C7H7ONa+H..S,  but  the 
reaction  is  reversed  and  cresol  deposited  if  hydro- 
gen sulphide  is  passed  into  the  solution  when  cold. 
Crude  tar-oil  fractions  contain  strongly  acid  im- 
purities which  inhibit  the  extraction  of  phenols  by 
sodium  sulphide  solution,  but  if  these  impurities 
are  removed  by  a  preliminary  treatment  with  a  little 
sodium  sulphide  or  alkaline  solution,  or  even  water, 
the  extraction  proceeds  readily.  A  suitable  method 
is  to  boil  the  tar-oil  with  sodium  hydrosulphide  solu- 
tion, and  use  the  hydrogen  sulphide  evolved  to 
separate  the  phenols  from  a  previous  extraction; 
after  removing  the  phenols  deposited,  a  supply  of 
sodium  hydrosulphide  solution  is  available  for  treat- 
ing more  oil.  Sodium  sulphide  solution  dissolves 
only  the  more  strongly  acid  phenols,  such  as  cresols 
and  xylenols,  and  thus  affords  a  means  for  separat- 
ing these  from  more  weakly  acid,  high-boiling  com- 
pounds.— L.  A.  C. 

Phenol-water;  Freezing  point  diagram  of  the  system 

.    F.  H.  Rhodes  and  A.  L.  Marklev.    J.  Phvs. 

Chem.,  1921,  25,  527—534. 

Pure  phenol  melts  at  4'0S°  C.  and  forms  a  definite 
crystalline  hydrate,  2C0HsOH,H„O,  melting  at 
15'8°  C.  This  compound  forms  an  eutectic  with 
water  containing  95%  of  water  at  0"85°  C,  and  one 
with  phenol  containing  8'25%  of  water  at  15"8°  C. 
Owing  to  retarded  transformation  the  crystal 
hydrate  separates  only  on  seeding  or  very  strong 
cooling.  Consequently  a  metastable  system  is  set 
up  which  at  1'7°  C.  separates  into  two  liquid  phases 
consisting  respectively  of  a  saturated  solution  of 
water  in  phenol  and  a  saturated  solution  of  phenol 
in  water. — J.  F.  S. 

Imbricating   oil;  Production   of  from  lignite 

fur-oil.     M.  Jacobsohn.     Brennstoff-Chem.,  1922, 
3,  10—11. 

The  necessity  for  separating  phenols  from  lignite 
tar-oils  for  the  production  of  lubricating  oils  is 
obviated  by  treating  the  oils  with  a  low-boiling 
alcohol  in  the  presence  of  /3-naphthalenesulphonic 
acid,  whereby  the  phenols  are  converted  into  esters. 
For  example,  400  g.  of  lignite  tar-oil,  b.p.  100° — 
120°  C.  (15  mm.),  sp.  gr.  0"917  (20°  C),  viscosity 
P35  Engler  (50°  C.),  and  containing  8%  of  phenols, 
was  heated  with  40  g.  of  anhydrous  /3-naphthalene- 
sulphonic acid  and  25  g.  of  ethyl  alcohol  for  6  hrs. 
at  155°  C.  under  a  reflux  condenser.  The  oil  was 
separated  from  a  bottom  layer  of  residue  (40  g.),  and 
after  removal  of  excess  alcohol  by  distillation,  and 
/3-naphthalenesulphonic  acid  by  extraction  with 
water,  was  dried,  yielding  a  phenol-free  product  of 


sp.  gr.  0909,  and  viscosity  T31  Engler  (50°  C.~>. 
Practically  the  whole  of  the  /3-naphthalenesulphonic 
acid  was  recovered,  part  from  the  oil,  and  part  from 
the  residue. — L.  A.  C. 

Ethyl    alcohol-water-aromatic    hydrocarbons;    The 

system   from   30°    C.    to    -30°    C.     W.    R. 

Ormandv   and   E.    C.   Craven.      J.   Inst.   Petrol. 
Tech.,  1921,  7,  422—439. 

The  freezing  point  curves  of  binary  mixtures  of 
benzene  with  ethyl  alcohol,  toluene,  and  xylene,  and 
the  ternary  mixtures  of  benzene,  alcohol,  and  water 
and  of  benzol  (benzene  3,  toluene  1),  alcohol,  and 
water  were  determined,  and  also  the  liquid  separa- 
tion points  of  ternary  mixtures  of  benzene,  toluene, 
and  xylene  with  alcohol  and  water  at  temperatures 
ranging  from  30°  C.  to  -30°  C.  The  method 
adopted  was  to  add  from  a  burette  dilute  aqueous 
alcohol  to  known  mixtures  of  absolute  alcohol  and 
the  hydrocarbon,  maintained  at  a  constant  tempera- 
ture, until  separation  occurred.  The  full  numerical 
results  are  given  in  numerous  tables,  and  results 
obtained  by  graphical  interpolation  are  also  given 
showing  the  strengths  of  ethyl  alcohol  necessary  to 
dissolve  various  proportions  of  benzene  and  toluene 
at  15°  C,  and  xylene  at  0°  C.  In  regard  to  binary 
mixtures  of  benzene  and  toluene  the  depression  of 
the  freezing  point  of  benzene  follows  the  cryoscopie 
law  within  0'5°  C.  up  to  20%  of  toluene.  The  freez- 
ing point  for  motor  benzol  specified  by  the  National 
Benzole  Association  (-13'9°  C.)  corresponds  accord- 
ing to  the  present  results  to  a  mixture  of  69'5  vols, 
of  benzene  with  305  vols,  of  toluene,  or  65'3  vols, 
of  benzene  with  34'7  vols,  of  xylene.  In  the  ternary 
mixtures  the  solubility  of  the  three  hydrocarbons 
in  an  alcohol  of  given  strength  is  in  the  order 
benzene — toluene — xylene  except  at  temperatures 
below  the  freezing  point  of  benzene,  when  separa- 
tion of  a  solid  phase  occurs  and  the  solubility  of 
benzene  falls  below  that  of  its  homologues. 

— G.  F.  M.- 

Naphthalene,      anthracene,      phenanthrene,      and 
anthraquinone ;  Vapour  pressure  determinations 

on  between  their  melting  and  boiling  points. 

O.  A.  Nelson  and  C.  E.  Senseman.     J.  Ind.  Eng. 
Chem.,  1922,  14,  58—62. 

Vapour  pressure  determinations  over  a  range  of 
temperatures  have  been  carried  out  on  naphthalene, 
anthracene,  phenanthrene,  and  anthraquinone. 
using  Smith  and  Menzies'  dynamic  isoteniscope,  and 
tables  and  curves  of  observed  vapour  pressures  of 
these  compounds  are  recorded.  Boiling  point 
determinations  gave  anthracene  342°  C,  phenan- 
threne 340-2°  C.  anthraquinone  379-8°  C. 

— F.  M.  R. 

Patents. 

Anthraquinone  derivatives;  Halngcnation  of  . 

F.     W.     Atack     and     G.     Robertson.       U.S. P. 
1,401,125,  27.12.21.     Appl.,  3.6.21. 

Anthraqtjinone  derivatives  are  halogenated  in  a 
hot  aromatic  liquid  in  presence  of  a  neutralising 
agent.— F.  M.  R. 

a-Chloronaphthalcnc ;  Manufacture  of  derivatives  of 

.       Manufacture     of    diaminodinaphthylsul- 

phonic  acids  and  dinaphthoiminosulphonic  acids. 

Manufacture     of    naphiliasultonesulphtmic    acid 

chlorides.   Manufacture  of  1-arylamino-A-hydroxy- 

naphthalenes.     Kalle   und   Co.,    A.-G.     G.P.    (a) 

343,147,  23.1.15,  (b)  343,149,  20.7.16,  (c)  343,056, 

13.2.14,  and  (d)  343,057,  21.6.14. 

(a)  The  o-sulphonic  acid  groups  in  nitronaphthalene- 

a-sulphonic    acids    and    naphthasultone-a-sulphonic 

acids  are  replaced  by  chlorine  by  treating  the  acids 

with  chlorine,    or   with    substances   which   liberate 

chlorine    such    as   sodium    hypochlorite   or   sodium 


Vol.  XLI.,  No.  4.] 


Cl.  IV.— colouring  matters  and  dyes. 


135a 


chlorate  and  hydrochloric  acid,  in  the  presence  of  a 
solvent.  4-Chloronaphthasultone,  m.p.  181° — 
183°  C,  and  2-nitro-4.8-dichloronaphthalene,  m.p. 
132°  C,  are  prepared  respectively  from  sodium 
naphthasultone-4-sulphonate  and  the  2-nitro-4.S- 
disuiphonic  acid;  2-nitro-4.8-dichloronaphthalene  on 
reduction  yield  the  amino  compound  of  m.p. 
133°  C  and  this  on  elimination  of  the  amino  group 
yields  1.5-dichloronaphthalene.  4-Chloronaphtha- 
sultone  dissolves  on  heating  with  dilute  sodium 
hydroxide  with  the  formation  of  4-chloro-l-hydroxy- 
naphthaIene-8-sulphonic  acid,  which  is  subsequently 
hydrolysed  to  4-chloro-l-hydroxynaphthalene.  The 
preparation  of  l-nitro-S-chloronaphthalene  and 
1.1  (and  5)-dichloro-5  (and  4)-nitronaphthalene  is 
also  described,  (b)  The  1.1'-  and  2.2'-azonaphthalene- 
sulphonic  acids  are  treated  with  alkaline  or  acid 
reducing  agents.  l.l'-Diamino-2.2'-dinaphthyl- 
5.5'-disulphonic  acid,  prepared  by  heating  l.l'-azo- 
uaphthalene-5.5'-disulphonic  acid  with  stannous 
chloride  and  concentrated  hydrochloric  acid  on  the 
water  bath  until  the  yellowish-red  colour  disappears, 
crystallises  from  water  in  colourless  needles,  yields 
a  diazo  compound  with  nitrous  acid,  and  on  treat- 
ment with  sodium  amalgam  in  weak  alkaline  solu- 
tion forms  l.l'-diamino-2.2'-dinaphthyl,  which  is 
converted  to  dinaphthoimine  (dinaphthocarbazole) 
by  heating  with  hydrochloric  acid.  1.1'Azonaph- 
thalene-4.4'-disulphonic  acid  on  reduction  with 
sodium  hydrosulphite  yields  l.l'-dinaphthoimine- 
4.4'-disulphonic  acid,  which  cannot  be  diazotised  and 
yields  l.l'-dinaphthoimine  (dinaphthocarbazole) 
by  heating  to  130°  C.  with  mineral  acids.  The 
reduction  of  further  isomers  is  described,  (c)  A 
sulphonyl  chloride  group  enters  into  the  5-position 
of  a  naphthasultone,  or  the  sulphonic  group  in  a 
naphthasultonesulphonic  acid  is  converted  to  a 
sulphonyl  chloride  group,  by  treatment  with  chloro- 
sulphonic  acid.  The  products  are  stable  and 
crystallise  well,  and  are  converted  by  ammonia  or 
amines,  with  simultaneous  hydrolysis  of  the  6ultone 
ring,  into  simple  or  substituted  sulphamides  of 
the  corresponding  o-hydroxynaphthalenesulphonic 
acids.  Naphthasultone-3-sulphonic  acid  chloride, 
m.p.  185°  C,  is  prepared  by  treating  sodium 
naphthasultone-3-sulphonate  with  chlorosulphonic 
acid  at  40° — 100°  C. ;  the  corresponding  anilide  has 
m.p.  212° — 213°  C.  Naphthasultone-5-sulphonic 
acid  chloride  (from  potassium  naphthasultone-5- 
sulphonate  or  naphthasultone)  has  m.p.  194°  C, 
and  the  anilide  has  m.p.  146°— 147°  C.  Naphtha- 
sultone-3.6-disulphonic  acid  chloride  has  m.p. 
163°  C.  (d)  1.4-Dihvdroxv-  or  l-amino-4-hydroxv- 
naphthalene  is  heated,  e.g.,  to  180°— 200°  C.  with 
aromatic  amines.  l-Phenylamino-4-hydroxynaph- 
thalene  has  m.p.  92°  C,  and  forms  a  methyl  ester 
of  m.p.  139°  C,  1.2'.4'-dichlorophenylamino- 
hydroxynaphthalene,  m.p.  73°  C,  1.4'-chloro- 
phenylamino-4-hydroxynaphthalene,  m.p.  96°  C, 
l-p-tolylamino-4-hydroxynaphthalene,  m.p.  109°  C, 
l-phenylamino-4-hydroxynaphthalene-2'-carboxylic 
acid,  m.p.  247° — 249°  C,  and  4-amino-1.4'-hydroxy- 
naphthylaminodiphenyl  are  prepared  from  1.4'-di- 
hydroxynaphthalene  by  the  action  of  2.4-dichloro- 
1-aminobenzene,  p-chloroaniline,  p-toluidine,  an- 
thranilic  acid,  and  benzidine  respectively.  The 
compounds  in  alkaline  solution  are  oxidised,  e.g.,  by 
air,  to  coloured  compounds  of  the  type  of  quinone- 
anil.  The  products  described  in  the  above  patents 
are  suitable  intermediates  for  conversion  to  dve- 
stuffs  —  L.  A.  C. 

Dinitrodiphenylamine;  Process  for  preparing  . 

R.  C.  Moran,  Assr.  to  E.  I.  du  Pont  de  Nemours 
andCo.  U.S.P.  1,401,631, 27.12.21.  Appl..  5.12.18. 
Dinitrodiphenylamine  is  prepared  by  the  inter- 
action of  a  halogen-substitution  product  of  dinitro- 
benzene,  aniline,  and  an  alkali  carbonate  at 
90° — 100°  O.  in  the  absence  of  solvents  and  added 
water— H    C.  R. 


Ketones  of  the   quinoline  series;  Manufacture   of 

cyclic .     Farbw.  vorm.  Meister,  Lucius,  und 

Pruning.     G.P.  343,322,  31.1.19. 

Ketones  suitable  for  the  manufacture  of  dyestuffs 
and  having  the  general  formula 


are  prepared  by  heating  3-phenylquinoline-4-car- 
boxylic  acids  with  concentrated  sulphuric  acid  for, 
e.g.,  2  hrs.  at  about  100°  C.  The  orange-red  ketone 
prepared  from  2-hydroxy-3-phenylquinoline-4-car- 
boxylic  acid,  which  is  obtained  by  the  alkaline  con- 
densation of  isatin  with  phenylacetic  acid  chloride 
or  anhydride,  melts  above  300°  C.,  is  soluble  in 
boiling  nitrobenzene,  pyridine,  concentrated  sul- 
phuric acid,  and  alcoholic  sodium  hydroxide; 
the  yellow  ketone  from  2.3-diphenylquinoline-4- 
carboxylic  acid  is  insoluble  in  alcoholic  sodium 
hydroxide. — L.  A.  C. 

Amines;  Manufacture  of  aromatic .     C.  F.  von 

Girsewald.       G.P.    343.324,    11.7.14.       Addn.    to 
281,100  (J.,  1915,  543). 

In  the  process  described  in  the  chief  patent,  the  use 
of  porous  materials,  such  as  kieselguhr,  asbestos, 
broken  pottery,  stone,  or  the  like,  either  alone  or 
impregnated  with  finely  divided  metals  or  metal 
oxides,  as  catalytic  rilling  material  prevents  too 
violent  reduction  of  the  nitro  compound.  By  heat- 
ing 305  g.  of  nitrobenzene,  30  g.  of  asbestos,  and 
50  c.c.  of  water  to  200°— 280°  C.  with  carbon  dioxide 
and  hydrogen  under  pressures  of  30  atni.  and  100 
atm.  respectively,  a  yield  of  22  g.  (  =  94%  of  theory) 
of  aniline  is  obtained. — L.  A.  C. 


IV— COLOURING  MATTERS  AND  DYES. 

[Dye  stuff]    intermediates;    Apparatus   for  use    in 

titrating with  unstable  diazo-soluiions.  C.  P. 

Atkinson.      J.    Soc.    Dvers    and    Col.,    1922,    38, 
15—16. 

An  iron  tripod,  about  30  in.  high,  supports  a 
circular  tin  trough  containing  a  supply  of  ice- 
water,  and  inside  the  trough  is  a  circular  glass 
vessel,  with  an  outlet  through  the  centre  of  the 
trough,  to  contain  the  supply  of  diazonium  solu- 
tion. The  burette,  jacketed  with  the  outer  tube 
of  a  condenser  through  which  the  ice-water  flows, 
is  supported  by  a  triangle  attached  to  the  three 
legs  of  the  tripod.  In  one  of  the  three  legs  of  this 
support  a  holder  is  fitted  for  a  funnel  to  receive 
the  waste  water  as  it  flows  from  the  jacket  and 
conduct  it  to  the  sink. — F.  M.  R. 

2.5.1-Aminonapihtholsulphonic  acid  (A-acid)  and 
its  derivatives.  H.  T.  Bucherer  and  R.  Wahl.  J. 
prakt.  Chem.,  1921,  103,  129—162. 
2.1.5-Naphthtlaminedisu:lphonic  acid,  obtained  by 
treating  2.1-naphthylaminesulphonic  acid  with 
oleum  at  30° — 40°  C.,  is  converted  into  its  potas- 
sium derivative  and  fused  with  potash  to  give 
2.5.1-aminonaphtholsulphonic  acid  (A-acid).  The 
yield  and  nature  of  the  by-products  (2.5-amino- 
naphthol,  2.5-dihydroxynaphthalene,  and  2.5.1- 
dihydroxynaphthalenesulphonic  acid)  vary  with  the 
exact  conditions  employed.  By  coupling  with 
diazo-compounds  in  alkaline  solution,  A-acid  yields 
comparatively  acid-fast  dyestuffs,  and  it  also  yields 
a  dyestuff  with  p-nitrobenzenediazonium  chloride 
in  acid  solution.  It  yields  a  characteristic  orange 
diazonium    salt.     On    sulphonation    a    mixture    of 


136a 


Cl.  IV.— COLOURING  MATTERS  AND  DYES. 


[Feb.  28,  1922. 


2.5.1.6-  and  2.5.6.8-aminonaphtholdisulphonic  acids, 
and  2.5.6-aminonaphtholsulphonic  acid  are  ob- 
tained.   (Cf.  J.C.S.,  Feb.)— W.  O.  K. 

Nitroamino-base  for  the  manufacture  of  azo  dye- 
stuffs.  E.  Koechlin.  Sealed  Note  1489,  14.7.04. 
Bull.  Soc.  Ind.  Mulhouse,  1921,  87,  341—342. 
Report  by  M.  Battegay,  ibid.,  342—343. 
Eqttimolecular  proportions  of  dehydrothio-p- 
toluidine  and  1.2.4-chlorodinitrobenzene  are  con- 
densed, and  the  product  is  reduced  with 
ammonium  sulphide.  The  nifroamine  obtained 
is  suitable  for  the  preparation  of  azo  dyestuffs, 
and,  when  diazotised  and  coupled  with  o-  or 
/3-naphthylamine,  products  are  obtained  which 
dye  cotton  direct  bluish-red  shades  from  a  sodium 
sulphide  bath.  The  use  of  the  sodium  sulphide 
bath  is  necessary  owing  to  the  imperfect  solubility 
of  these  colouring  matters  in  water. — F.  M.  R. 

Azo  dyes  on  wool;  Production  of .    J.  Brandt. 

Sealed  Note  1028,  16.3.98.  Bull.  Soc.  Ind.  Mul- 
house, 1921,  87,  337—339.  Report  by  0.  Michel, 
ibid.,  340. 
Naphthol-  and  naphthylamine-sulphonic  acids 
possess  an  affinity  for  wool  at  the  boil  and 
although  the  fibre  is  not  appreciably  coloured 
thereby,  colours  are  developed  by  treatment  with 
diazo-solutions.  The  effects  produced  are  of  in- 
terest in  dyeing,  but  the  wool  charged  with 
naphtholsulphonic  acid  is  too  sensitive  to  light 
for  use  in  printing.  Colour  effects  may  be  pro- 
duced in  printing,  however,  by  taking  advantage 
of  the  fact  that  diazo-compounds  couple  with  wool. 
Thus,  wool  is  printed  first,  for  example,  with  a 
paste  containing  a  blue  colouring  matter  and 
chromotropic  acid,  and  then  printed  with  diazo- 
tised p-nitroaniline  and  diazotised  a-naphthyl- 
amine.  The  diazo-compounds  produce  yellow  and 
brown  shades  respectively  on  the  white  ground, 
and  convert  the  blue  into  black. — F.  M.  R. 

Direct  colouring  matter  for  cotton,  diazotisable  on 
the  fibre,  for  the  production  of  red  shades.  E. 
Koechlin.  Sealed  Note  1487,  8.7.04.  Bull.  Soc. 
Ind.  Mulhouse,  1921,  87,  341.  Report  by  M. 
Battegay,  ibid.,  342—343. 

Eqtjimolecular  proportions  of  sodium  dehydrothio- 
p-toluidinesulphonate  and  1.2.4-chlorodinitroben- 
zene are  condensed,  and  the  product  is  heated 
with  two  molecular  proportions  of  sodium  p- 
nitrotoluenesulphonate,  sulphur,  and  sodium  sul- 
phide at  130°  C.  for  5  hrs.  The  resulting  colour- 
ing matter  dyes  cotton  direct,  and,  when  diazo- 
tised on  the  fibre  and  developed  with  /3-naphthol, 
yields  a  red  fast  to  alkalis,  acids,  chlorine,  and 
milling.— F.  M.   R. 

.4.20    dyestuffs;    Electrometric    titration    of    . 

D.  O.  Jones  and  H.  P..  Lee.     J.  Ind.  Eng.  Chem., 
1922,  14,  46—48. 

Fkom  0'5 — -TO  g.  of  the  finely  powdered  dyestuff, 
sufficient  to  require  30 — 46  c.c.  of  2V/4  titanous 
chloride  for  reduction,  is  placed  in  a  reaction  flask 
with  25  c.c.  of  distilled  water,  and  heated  on  a  steam 
bath  for  10  mins.  to  dissolve  or  soften  the  particles. 
Twenty-five  c.c.  of  40%  sulphuric  acid  is  added,  the 
flask  is  stoppered,  and  a  current  of  carbon  dioxide 
is  passed  through  for  5  mins.;  35 — 50  c.c.  of  iV/4 
titanous  chloride,  being  at  least  5  c.c  in  excess  of 
that  required  for  reduction  is  added,  the  mixture 
boiled  for  5  mins.,  and  cooled  to  30°  C.  In  the 
back  titration,  the  potentiometer  is  adjusted,  and 
the  voltages  read  for  each  addition  of  N 120  ferric 
alum  solution.  The  latter  is  added  in  5  c.c.  por- 
tions at  first,  gradually  decreasing  to  O'l  c.c  or  less. 
When  passing  over  the  end-point,  the  poles  are 
reversed   in   the  usual   manner,    and   the  voltages 


read  as  the  additions  of  ferric  alum  become  larger. 
Volts  are  plotted  as  ordinates  and  c.c.  of  ferric 
alum  solution  as  abscissae,  and  the  end-point  is 
determined  from  the  curve.  For  routine  analysis 
almost  all  azo  dyestuffs  can  be  analysed  with  suf- 
ficient accuracy  without  reading  the  voltmeter  or 
plotting  a  curve.  The  potentiometer  in  this  case 
is  adjusted  at  the  beginning  of  the  back  titration, 
until,  on  closing  the  circuit,  the  galvanometer 
shows  no  deflection.  A  permanent  large  swing  of 
the  galvanometer  is  obtained  at  the  end-point. 

— F.  M.  R. 

Anthocyans  and   certain   related  pigments;   Tinc- 
torial properties  of  some  .     Part  II.     A.  E. 

Everest  and  A.  J.  Hall.     J.  Soc.  Dyers  and  Col., 
1922,  38,  9—13. 

Diazotised  amines,  such  as  aniline,  o-  and 
p-toluidine,  sulphanilic  acid,  p-nitroaniline,  a-  and 
/3-naphthylamine,  couple  with  o-hydroxybenzyl- 
idene-acetophenone,  probably  in  the  n-position  with 
respect  to  the  hydroxyl  group,  and  on  reduction 
yield  an  amino  derivative  which  is  converted  into 
the  corresponding  oxonium  salt  by  alcoholic  hydro- 
chloric acid.  The  azo  compounds  which  were  pre- 
pared from  o-hydroxybenzylidene-acetophenone 
possess  an  affinity  for  wool,  but  owing  to  their 
sparing  solubility  in  water,  their  application  is  dif- 
ficult, except  in  the  case  of  the  compound  derived 
from  sulphanilic  acid.     (Cf.  J.  O.  S.,  Mar.) 

— F.  M.  R. 

Anthocyanidins;  Detection  of  the  pseudo-bases  of 

in    plant    tissues.     R.    Combes.     Comptes 

rend.,  1922,  174,  58—61. 

Willstatter's  method  (J.,  1916,  300)  for  the 
separation  of  anthocyanidins  and  anthocyanins  by 
means  of  amyl  alcohol  cannot  be  applied  to  the 
detection  of  pseudo-bases  of  anthocyanidins  in 
plant  tissues.  It  is  necessary  to  extract  the  pig- 
ments and  characterise  them  by  examining  the  pure 
products  to  obtain  conclusive  results.  The  sub- 
stances characterised  by  Noack  in  certain  plant 
tissue  extracts  as  pseudo-bases  of  anthocvanidin 
(cf.  Z.  Botanik,  1918,  10,  561),  were  probably 
phlobatannins,  which  on  treatment  with  acid  gave 
phlobaphenes. — W.  G. 

Anthocyanin   pigments;   Formation  of   .      R. 

Combes.     Comptes  rend.,  1922,  174,  240—242. 

The  author  maintains  that  the  materials  used  by 
Jonescu  (J.,  1921,  881a;  1922,  8  a)  were  not 
-,-pyrone  pigments  but  tannins,  and  hence  his  con- 
clusions are  vitiated .— W.  G. 

Oxidation  catalysis.     Karczag.     See  XX. 


Patents. 


R.  B. 
E.P. 


[Sulphur']  dyestuffs;  Manufacture  of  , 

Ransford.  From  L.  Cassella  und  Co 
151,000,  27.8.20. 
/S-Hydroxynaphthoquinonearylimide  compounds, 
prepared  by  condensing,  e.g.,  1.2-naphthoquinone- 
4-sulphonic  acid  with  aromatic  amines,  are  either 
heated  with  sulphur,  with  or  without  the  addition 
of  a  catalyst  and/or  a  solvent  or  diluent,  or  are 
treated  with  disulphur  dichloride  or  sulphur 
sesquioxide,  or,  in  cases  where  the  aryl  residue  does 
not  contain  a  nitro  group,  are  boiled  with  alkali 
polysulphides  in  aqueous  or  alcoholic  solution,  the 
temperature  not  exceeding  150°  C.  Of  the  dye- 
stuffs  produced,  those  which  contain  a  sulphonic 
acid  or  carboxylic  acid  group  can  be  dyed  and 
printed  in  the  usual  manner  for  acid  dyestuffs ; 
those  which  do  not  contain  an  acid  group  are  vat 
dyestuffs  which  can  be  after-treated  with  chromium 
or  other  metal  salts,  yielding  fast  green  to  black 
shades. — L   A.  O. 


Vol.  XLL,  Xo.  4.) 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


137  A 


Crystal  Violet;  Process  for  making  .       H.  L. 

Trumbull   and   W.    L.    Evans,    Assrs.    to   N.    D. 
Baker.     U.S.P.  1,402,195,  3.1.22.     Appl.,  16.9.19. 

Crystal,  Violet  is  prepared  by  heating  a  mixture 
of  ciiloropierin  and  diniethylaniline. — A.  J.  H. 

Chromium  compounds  of  azo-dyestuffs.  J.  Grimmer 
and  F.  Straub,  Assrs.  to  Soc.  of  Chem.  Ind.  in 
Basle.     U.S.P.  I,402,a50,  3.1.22.     Appl.,  15.4.21. 

Mordant  dyestuffs  of  the  constitution  R.N:N.R', 
where  R  signifies  a  2-hydroxynaphthalene-4-sul- 
phonic  acid  residue  and  R'  a  halogenated 
o-naphthol  residue,  are  treated  with  an  agent 
capable  of  yielding  chromium.  The  resulting  chro- 
mium compounds  form  dark  powders  which  are 
soluble  in  water  (blue  to  greenish-black  solutions) 
and  concentrated  sulphuric  acid  (greenish-blue  to 
violet)  and  when  applied  to  wool  by  methods  suit- 
able for  acid  wool  dyes,  yield  very  fast  and  even 
blue  to  grey  shades. — A.  J.  H. 

Monoazo  dyestuffs;  Process  for  the  production  of 

.     Farbenfabr.     vorrn.     F.     Baver    und    Co. 

G.P.  305,522,  8.10.16. 

Derivatives  of  4-nitro-l-aminobenzene-2-sulphon- 
amide  in  which  both  hydrogen  atoms  of  the  amide 
group  are  replaced  by  alkyl,  aryl,  or  aralkyl  groups 
are  diazotised,  coupled  with  2-amino~8-naphthol-6- 
sulphonic  acid  in  acid  solution,  and  the  nitro-group 
reduced  with  an  alkaline  reducing  agent.  The  pro- 
ducts dye  wool  from  an  acid  bath  level  bluish-red 
shades,  fast  to  light  and  milling. — F.  M.  R. 

Vat  dyestuffs;  Process  for  the  production  of  . 

Kalle    und    Co.    A.-G.     G.P.    343,596,     14.3.14. 
Addn.  to  286,151  (J.,  1915,  1136). 

2-Anllido-1.4-naphthoquinoneanil  or  a  heteronu- 
clear  derivative  is  condensed  with  oxythionaphthene 
or  indoxyl  or  their  substitution  products,  homo- 
logues  or  analogues.  The  product  from  oxythio- 
naphthene is  identical  with  that  described  in 
example  5  in  the  principal  patent. — F.  M.  J?. 


V— FIBBES;  TEXTILES;  CELLULOSE; 
PAPER. 

[IVood]    pulp;    Determination    of    the    "  bromine 

figure"  or  "chlorine  factor"   of  and  the 

i  tilisation  of  these  quantities  in  bleaching.      A. 
Tingle.     J.  Ind.  Eng.  Chem.,  1922,  14,  40—42. 

The  extent  to  which  bromine  solutions,  approxi- 
mately Nj  10,  act  on  cellulose  and  on  unbleached 
sulphite  spruce  pulp  has  been  investigated. 
Accurate  measurements  are  possible  only  when  the 
material  is  brought  into  solution  with  a  mixture  of 
9  vols,  of  hydrochloric  acid,  of  sp.  gr.  1T9,  and 
1  vol.  of  sulphuric  acid  of  sp.  gr.  1"84,  before  treat- 
ment with  bromine.  A  measured  volume  of 
bromine  solution  in  dilute  alkali,  of  such  a  strength 
that  when  added  to  an  acid  medium  the  amount 
of  bromine  liberated  equals  the  amount  contained 
in  the  same  volume  of  A7/ 10  bromine  solution,  was 
added  to  the  acid  solution,  the  mixture  allowed  to 
stand  in  a  stoppered  vessel,  excess  of  potassium 
iodide  added,  the  mixture  largely  diluted,  and  the 
free  iodine  titrated.  Under  these  conditions  there  is 
no  reaction  between  bromine  and  cellulose  in  J  hr., 
but  a  reaction  between  bromine  and  pulp  contain- 
ing lignone  appears  to  proceed  in  definite  steps,  one 
of  which  is  complete  within  \  hr.  A  "  bromine 
figure  "  was  determined  and  is  defined  as  the  weight 
in  grms.  of  pulp  which  reacts  with  1  c.c.  of  N 1 10 
bromine  solution.  The  "chlorine  factor"  of  a 
pulp,  which  is  more  convenient  for  ultimate  use,  is 
defined  as  the  weight  of  chlorine  equivalent  to  the 
bromine  reacting  with  100  pts.  of  pulp  in  J  hr.     The 


figure  obtained  bears  a  definite  and  simple  relation 
to  the  chlorine  consumption  in  bleaching,  and  it  is 
suggested  that  for  a  well  washed  pulp,  the  weight 
of  chlorine  required  to  bleach  100  lb.  dry  weight  = 
chlorine  factor  xK.  The  value  of  K  may  vary  in 
different  mills,  but  the  value  determined  for  these 
experiments  was  3. — F.  M.  R. 

Lignin   from    winter   rye   straw;   Physico-chemical 

characterisation    of    .      E.    Beckmann,     O. 

Liesche,    and    F.    Lehmann.       Biochem.    Zeits., 
1921,  121,  293—310. 

The  formula  of  lignin  is  C^H^O,,.  This  has  been 
confirmed  in  a  number  of  ways.  There  are  four 
methoxyl  groups  present  and  on  benzoylation  four 
groups  enter  the  molecule.  The  sodium  salt  of 
lignin  contains  Na  equivalent  to  somewhat  less  than 
two  atoms.  The  molecular  weight  in  phenol  and  in 
acetic  acid  and  that  of  the  sodium  salt  in  water 
agree  with  the  above  formula.  Conductivity 
measurements  show  that  lignin  obeys  the  Ostwald 
valency  rule. — H.  K. 

Cellulose  nitrate   [nitrocellulose'];   Manufacture   of 

for   pyroxylin   plastics.      J.    R.    Du   Pont. 

Chem.  and  Met.  Eng.,  1922,  26,  11—16. 

Nitrocellulose  intended  for  the  manufacture  of 
plastics  should  contain  10'5 — 11'4%  N,  and  is  made 
either  from  pure  bleached  cotton  rag  tissue  paper, 
free  from  knots  and  sizing  materials,  or  from 
bleached  cotton  linters,  free  from  grease  and  hulls. 
The  nitrating  acid  has,  in  general,  the  composition 
H2S04,  60— 61%,  HN03,  19—20%,  H20,  21—19%, 
the  ratio  of  acid  to  cellulose,  which  must  not  contain 
more  than  1%  of  moisture?  being  about  90:1  for 
tissue  paper  and  60:1  for  hnters,  at  temperatures 
of  30°  and  35°  C.  respectively.  At  these  tempera- 
tures nitration  is  effected  in  45  mins.  and  a  yield 
of  145 — 150%  of  nitrocellulose  obtained.  The 
nitration  is  carried  out  in  acid-resisting  iron  tanks, 
provided  with  mechanical  stirrers,  and  an  outlet 
pipe  at  the  bottom,  which  permits  the  nitrated 
material  and  spent  acid  to  be  discharged  into  a 
centrifuge.  Alternatively,  the  nitration  may  be 
carried  out  in  a  centrifuge  running  at  about  30 
r.p.m.,  the  spent  acid  being  subsequently  removed 
by  opening  a  valve,  which  allows  the  acid  to  run 
away,  and  centrifuging  at  high  speeds,  e.g.,  1000 
r.p.m.  The  nitrated  cellulose,  after  centrifuging, 
is  washed  with  violent  agitation  in  a  large  volume  of 
water  (to  minimise  the  risk  of  overheating  and 
thereby  partially  decomposing  the  product),  further 
washed  in  fresh  water  till  nearly  neutral,  disinte- 
grated in  a  Duplex  beater,  loss  of  fibre  being 
avoided  by  the  use,  if  possible,  of  save-alls,  and 
bleached,  either  with  a  1%  solution  of  bleaching 
powder  for  $ — 1  hr.,  followed  by  an  antichlor,  or 
with  potassium  permanganate  (2%  on  the  weight  of 
nitrocellulose)  in  presence  of  traces  of  sulphuric 
acid,  for  1 — 2  hrs.,  followed  by  sulphurous  acid. 
The  bleached  material  is  washed  7 — 10  times  with 
hot  water,  care  being  taken  to  neutralise  the  acidity 
with  soda  ash,  any  excess  of  which  must  be  com- 
pletely washed  out.  AVhen  linters  are  used,  the 
nitrated  material,  before  being  pulped,  is  usually 
boiled  for  about  4  hrs.  with  slightly  acidified  water ; 
the  pulped  material  is  then  bleached  and  washed  in 
poachers.  As  much  as  possible  of  the  water  in  the 
washed  material  is  removed  by  centrifuging ;  the 
remainder  is  removed  either  by  repeatedly  pressing 
the  material  between  dry  cotton  wrappers,  at  a 
pressure  of,  e.g.,  3000 — 3500  lb.  per  sq.  in.,  by  mill- 
ing with  camphor,  pressing,  and  drying  at  37°  C,  or 
by  displacement  by  alcohol,  which  may  be  effected 
by  washing  the  damp  material  several  times  with 
alcohol  and  then  centrifuging  it,  or  by  forcing 
alcohol  under  high  pressure  through  cakes  of  the 
pressed  material. — D.  J.  N. 


138a 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


(Feb.  2S,  1922. 


Sulphate-pulp  mills;  Removal  of  odour  from.  . 

B.  N.  Segerfelt.     Pulp  and  Paper  Mag.,  1921,  19, 

1281—1282. 
The  gases  relieved  from  sulphate  digesters  are  de- 
odorised by  cooling  and  mixing  them  with  a  large 
quantity  of  water ;  the  oxygen  dissolved  in  the 
water  appears  to  oxidise  the  mercaptans  and 
organic  sulphides  to  odourless  compounds  (cf.  J., 
1922,  95  a).  The  bad  odour  from  the  recovery  plant 
is  almost  eliminated  by  using  boilers  and  econo- 
mises instead  of  disc  evaporators  (which  give  rise 
to  volatile  sulphur  compounds  owing  to  destructive 
distillation  of  organic  matter),  and  using  a  large 
rotary  furnace  well  supplied  with  air,  in  conjunc- 
tion with  a  large  combustion  chamber  for  the  gases 
before  entering  the  rotary  furnace,  both  working  at 
a  high  temperature.  In  this  way  sulphur  com- 
pounds are  oxidised  to  sulphur  dioxide.  The 
smallest  effective  quantity  only  of  sodium  sulphate 
should  be  added  to  the  smelters,  and  nitre  cake 
should  not  be  used.  The  bad  odours  are  entirely 
eliminated  by  adopting  the  Rinman  process  in 
which  lime  and  sufficient  caustic  soda  to  replace 
mechanical  losses  are  added  to  the  concentrated 
black  liquor,  which  is  then  distilled  at  temperatures 
approaching  500°  C.  in  a  closed  retort ;  the  distillate 
contains  valuable  by-products,  e.g.,  methyl  alcohol, 
acetone,  oils,  etc. — D.  J.  N. 

Polysaccharides.    Zwikker.    See  XVII. 

Patents. 

TFooZ  and  other  materials;  Process  for  protecting 

from  moth.     W.  Carpmael.     From  Farben- 

fabr.  vorm.  F.  Barer  und  Co.  E.P.  173,536, 
28.6.20. 
Wool  and  other  materials  are  rendered  moth-proof 
by  mordanting  them  with  one  or  a  mixture  of  the 
following  complex  acids,  viz.,  hydrogen  silico- 
fluoride,  phosphotungstic  acid,  titanium-hydro- 
fluoric acid,  antimony-tungstic  acid,  phospho- 
molybdic  acid;  or  one  of  the  following  fixed  acids, 
viz.  tungstic  acid,  uranic  acid,  colloidal  silicic  acid 
such  as  is  obtained  by  the  acidification  of  sodium 
silicate,  colloidal  stannic  acid,  molybdic  acid,  anti- 
monic  acid  (H3Sb04) ;  or  one  of  the  following  salts 
of  the  fixed  acids  mentioned  above,  viz.  potassium 
silicate,  ammonium  molybdate ;  or  hydrofluoric 
acid;  or  one  of  the  following  fluorides,  viz.,  zinc 
fluoride,  aluminium  fluoride,  titanium  fluoride,  or  a 
double  fluoride  such  as  an  ammonium  double 
fluoride.  'When  silicic  acid  is  employed  as  a  pro- 
tecting substance,  an  auxiliary  mordant  is  neces- 
sary, 6ince  otherwise,  the  silicic  acid  retained  by  the 
material  is  not  fast  to  washing.  Dyeing  may  be 
effected  before,  after,  or  simultaneously  with  the 
protective  treatment,  but  since  in  the  latter  two 
cases  the  dye  employed  fixes  some  of  the  protective 
substance,  thereby  destroying  its  protective  proper- 
ties, a  sufficient  excess  must  be  employed.  The 
methods  for  applying  the  moth-protective  sub- 
stances may  vary  considerably. — A.  J.  H. 

Flax,    hemp,    or    other    fibrous    stems    or    straws; 

Method  of  ant!  means  for  treating .      F.  G. 

Foster.    From  I.  J.  Mahy.    E.P.  173,591,  30.9.20. 

Flax  is  retted  by  the  usual  methods  (e.g.,  steeping 
in  stagnant  or  running  water)  until  the  insoluble 
gums,  chlorophyll,  etc.,  contained  in  the  epidermis 
of  the  6tems  are  rendered  viscous.  The  stems  are 
then  passed  between  rubber-covered  rollers  or  other- 
wise subjected  to  strong  pressure,  whereby  the 
viscous  gums  are  removed  and  the  woody  portion  of 
the  stems  is  crushed.  The  colour  and  strength  of 
the  flax  fibres  are  thereby  improved,  and  the  fibres 
can  bo  dried  and  scutched  more  easily  and  with  very 
littlo  production  of  dust. — A.  J.  H. 


Ramie,  hemp  and  the  like;  Process  of  treating 

T.  Kawabe.  E.P.  173,598,  1.10.20. 
Fibres  having  a  good  lustre  and  which  are  so 
twisted  that  they  are  especially  suitable  for  spinning 
and  similar  operations,  are  obtained  by  subjecting 
the  fibrous  material,  in  parts  only,  to  the  action 
of  a  hypochlorite  or  hypochlorous  acid.  The  follow- 
ing treatment  is  suitable  for  ramie :  about  62  lb.  of 
ramie  cortex  is  boiled  for  about  2  hrs.  in  110  galls. 
of  water  containing  4 — 5'5  lb.  of  caustic  soda  and  is 
then  steamed  for  about  5  hrs.,  freed  from  pectin  or 
gummy  ingredients  by  washing  in  water,  softened 
by  immersion  for  2  hrs.  in  3 — 5  galls,  of  boiling 
water  containing  about  265  lb.  of  rice  bran,  then 
washed  and  afterwards  immersed  for  24  hrs.  in  a 
filtered  solution  of  26'5  lb.  of  rice  bran  in  26  galls, 
of  water  to  which  7 — 9  pints  of  the  heavy  liquid  of 
Kadsura  japonica  (boiled  juice  of  a  plant  belonging 
to  the  Magnoliacece  family)  has  been  added.  The 
fibres  are  then  removed,  allowed  to  dry,  pounded  so 
that  the  smooth  film  with  which  they  are  covered 
is  broken,  and  then  subjected  to  the  action  of  a 
bleaching  solution  containing  sodium  or  potassium 
hypochlorite.  The  fibres  are  attacked  by  the  hypo- 
chlorous  acid  in  those  parts  where  the  film  has  been 
broken  or  removed,  and  in  consequence  of  the  irre- 
gular expansion  and  contraction  thereby  produced, 
the  fibres  become  suitably  twisted,  so  that  after 
washing,  softening  with  Marseilles  6oap.  and  comb- 
ing, they  are  suitable  for  spinning. — A.  J.  H. 

Cellulose;    Production    of    ■     from     vegetable 

matter.      G.  J.  Bustamante.      U.S.P.  1,402,210, 
3.1.22.     Appl.,  26.7.20. 

After  immersion  in  cold  water,  vegetable  matter 
is  separated  into  coarse  fibres  which  are  placed  with- 
in a  receptacle  containing  quicklime.  A  cold 
alkaline  solution  and  a  solution  containing  a  vola- 
tile alkali  are  successively  added,  and  the  bath  so 
formed  is  then  acidified  By  the  successive  addition 
of  hydrochloric  and  sulphuric  acids.  The  fibres  are 
finally  washed  with  cold  water  and  ground  to  pulp. 

—A.  J.  H. 

Nitrocellulose  solutions;  Process  for  the  production 

of  .     Chem.    Fabr.    vorm.   Weiler-ter   Meer. 

G.P.  343,162,  31.7.19. 

A  mixture  of  paraldehvde  with  ether  is  used  as 
solvent.— F.  M.  R. 

Cork  board;  Method  of  producing  .     R.  M.  S. 

Cassano.     E.P.  162,645,  6.4.21.     Conv.,  30.4.20. 

Cork,  after  reduction  to  small  particles,  is  heated 
in  small  quantities  at  a  time  within  rotating  drums 
When  the  exudation  of  the  resinous  constituents 
necessary  for  the  subsequent  agglutination  is  com- 
plete, the  hot  material  is  poured  into  iron  moulds 
and  immediately  compressed.  The  cork  particles 
may  be  continuously  fed  into  and  withdrawn  from 
the  rotating  drum,  and  the  volatile  constituents  of 
the  cork  may  be  withdrawn  and  used  as  fuel  or  for 
other  purposes. — A.  J.  H. 

Paper;  Engine-sizing  [composition]  for .     J.  A. 

De  Cew.  Assr.  to  Process  Engineers,  Inc.     U.S.P. 
1,401,525,  27.12.21.     Appl.,  24.8.21. 

The  size  consists  of  a  1%  aqueous  solution  of  rosin 
soap,  glue,  and  formaldehyde. — D.  J.  N. 

Sulphite-cellulose     waste     liquors;     Utilisation    of 

■ .     L.  Stein.     G.P.  343,140,  18.12.19.     Addn. 

to  341,690  (J.,  1922,  54  a). 
The  value  of  the  waste  liquors  for  use  in  dressing 
or  finishing  textiles  is  increased  by  the  addition  ot 
starch,  gum,  or  gum  tragacanth,  together  with  glue 
or  the  like.— F.  M.  R. 


Vol.  XIX,  So.  4.]       Cl.  VI.— BLEACHING  ;    DYEING,  &o.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.         139  a 


Cellulose  or  materials  containing  cellulose;  Treat- 
ment of  .     M.  A.  Adam.     U.S. P.  1.402.201, 

3.1.22.     Appl.,  9.3.20. 

SebE.P.  17,846  of  1915;  J.,  1917,544. 


VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Alizarin  "Red;  Quantitative  relations  in  the  fixation 

of  in  calico  printing.      R.   Haller   and  F. 

Kurzweil.     Textilber.,  1922,  3,  21—23. 

A  sample  of  bleached  calico  prepared  with  Turkey- 
red  oil  was  printed  with  a  paste  containing  100  g. 
of  Alizarin  V.  20%;  500  g.  of  neutral  starch  and 
gum  tragacanth  thickening,  100  g.  of  aluminium 
thiocvanate  of  15°  B.  (sp.  gr.  1'12),  30  g.  of  calcium 
acetate  of  15°  B.,  100  g.  of  acetic  acid  of  7°  B. 
(sp.  gr.  1'05),  and  170  g.  of  water,  afterwards 
steamed  so  as  to  develop  the  colour  and  then 
thoroughly  washed  with  hot  and  cold  distilled  water. 
Analyses  of  the  printed  fabric  and  the  wash  liquors 
showed  that  about  33%  of  the  alumina,  70%  of  the 
lime,  10%  of  the  Alizarin  and  14%  of  the  Turkey- 
red  oil  were  removed  from  the  printed  fabric  by 
washing.  In  separating  the  oil  from  the  Alizarin, 
use  was  made  of  the  solubility  of  the  former  and  the 
insolubility  of  the  latter  in  petroleum  6pirit. 
Distilled  water  was  used  for  washing  instead  of  a 
soap  solution  (as  in  large-scale  practice),  since  with 
the  latter,  fatty  substances  are  fixed  by  the  printed 
parts  of  the  fabric.  When  a  printing  paste,  in 
which  the  constituents  were  diminished  according 
to  the  above  observed  losses  in  washing,  was  used, 
very  inferior  shades  were  obtained.  Hence  in 
printing  Alizarin,  a  certain  proportion  of  the  colour 
lake  will  be  always  unfixed  and  thus  be  removable 
by  washing.  In  this  respect  the  fixation  of  Alizarin 
on  cotton  is  similar  to  that  of  Indigo  (cf.  Frei- 
berger,  J.,  1921,  175  a).— A.  J.  H. 

Chlorate-prussiate  discharge,  modified  to  prevent 
tlie  attack  of  the  rollers,  doctors  and  the  fabric. 
H.  Sunder.  Sealed  Note  2096,  3.6.11.  Bull.  Soc. 
Ind.  Mulhouse,  1921.  87,  34:3—347.  Report  by 
H.  Bourry,  ibid.,  347—348. 

A  considerable  proportion  of  the  citric  acid  in  a 
chlorate-prussiate-citric  acid  discharge  is  replaced 
by  boric  acid  together  with  a  limited  quantity  of 
ammonia  in  order  to  obviate  the  inherent  disad- 
vantages of  this  type  of  discharge.  The  white  dis- 
charge recommended  consists  of  100  pts.  of  boric 
acid,  150  pts.  of  glycerin,  and  10  pts.  of  20% 
ammonia,  heated  to  dissolve  the  boric  acid,  treated 
with  65  pts.  of  citric  acid  (111),  cooled  and  mixed 
with  500  pts.  of  neutral  British  gum  thickening, 
150  pts.  of  powdered  sodium  chlorate,  and  25  pts. 
of  powdered  potassium  ferrocyanide.  Bourry 
reports  that  boric  acid  without  citric  acid  does  not 
produce  a  practicable  discharge,  and  that  the  above 
discharge  produces  practically  the  same  effect  if  the 
boric  acid  is  omitted.  Moreover,  the  quantity  of 
ammonia  used  does  not  appear  to  be  sufficient  to 
reduce  an  appreciable  quantity  of  the  oxides  of 
chlorine  liberated  during  steaming  and  to  diminish 
the  formation  of  oxycellulose.  When  Sunder's  pro- 
cess is  carried  out  on  the  large  scale,  however,  the 
discharge  is  satisfactory,  and  tendering  and  danger 
from  fire  are  reduced  to  a  minimum,  whilst  the 
corrosion  of  the  doctor  is  appreciably  less  when 
boric  acid  is  used.  The  discharge  can  be  preserved 
unchanged  for  weeks. — F.  M.  R. 

Patents. 


Bleaching      composition.        E.      Forbes 
1.401.901,27.12.21.     Appl.,  19.3.20. 


U.S.P. 

Fabrics    are   bleached   by   subjecting   them    to    the 


action  of  a  solution  containing  bleaching  powder, 
sodium  carbonate,  and  sodium  silicate  at  about 
50°  F.  (10°  C.).— A.  J.  H. 

Bleaching  cotton;  Process  for .     H.  P.  Bassett 

U.S.P.  1,402,040,  3.1.22.  Appl.,  19.4.20. 
Cotton  is  treated  with  an  acid  solution  not  stronger 
than  1*5% ,  whereby  the  gums  and  resins  present  are 
hydrolysed  to  soluble  sugars  and  organic  acids, 
which  are  removed  by  washing.  By  further  treat- 
ment with  an  alkaline  solution  not  stronger  than 
2"5%  the  organic  acids  are  converted  into  salts,  and 
these  are  also  removed  by  washing.  The  cotton  is 
then  bleached. — A.  J.  H. 

Mordants  for  basic  dyestuffs;  Manufacture  of 

and  process  of  dyeing  basic  dyestuffs  on  cotton. 
W.  Carpmael.  From  Farbenfabr.  vorm.  F.  Bayer 
•und  Co.  E.P.  173,313,  27.9.20. 
Sulphurised  compounds  which  form  mordants 
easily  absorbed  by  unprepared  cotton,  are  prepared 
by  boiling  phenol,  its  homologues  or  substitution 
products  (except  those  containing  nitrogen),  such  as 
cresols,  chloro-  and  bromo-phenols,  and  the  like, 
with  caustic  alkali  (in  aqueous  solution),  and  sulphur 
usually  in  larger  than  equimolecular  quantities. 
For  example,  10  pts.  of  sulphur  is  added  to  26  pts. 
of  o-chlorophenol  dissolved  in  20  pts.  of  hot  water 
and  8'5  pts.  of  sodium  hydroxide,  and  the  mixture 
is  at  once  heated  to  its  boiling  point  and  boiled  for 
about  30  hrs.  The  resinous  reaction  product  is 
separated  from  the  aqueous  liquor,  dissolved  in 
200  pts.  of  hot  water  containing  15  pts.  of  sodium 
carbonate,  and  is  then  salted  out  by  means  of 
sodium  sulphate.  The  greenish  paste  thus  obtained 
is  dried  in  vacuo.  The  sodium  salt  of  the  product 
is  soluble  in  cold  and  easily  soluble  in  hot  water. 
Cotton  is  mordanted  by  immersing  it  for  J  hr.  at 
70°  C.  in  a  solution  containing  5%  of  the  mordant 
and  50%  of  common  salt.  After  being  mangled  and 
rinsed,  the  cotton  may  at  once  be  dyed  with  basic 
dyestuffs  in  the  usual  manner.  Rhodamine  B 
extra.  Methyl  Violet  B,  Auramine  O,  and  other 
basic  dyestuffs  yield  the  same  shades  as  those  pro- 
duced by  means  of  tannic  acid.  The  shades 
obtained  by  topping  (with  basic  dyestuffs)  cotton 
which  has  been  dyed  with  direct  cotton  or  sulphur 
dyestuffs  are  faster  or  more  intense  if  the  new  mor- 
dant has  previously  been  added  to  the  dye  liquor 
containing  the  direct  cotton  or  sulphur  dvestuffs. 

—A.  J.  H. 

Dyeing  yarns  and  the  like;  Process  of .    J.  A. 

Grundy,  Assr.  to  J.  Bromley  and  Sons.     U.S.P. 

1,400,675,  20.12.21.  Appl.,  11.8.21. 
Yarn  is  supported  in  a  receptacle  containing  dye- 
liquor  which  has  been  previouslv  heated  to  about 
212°  F.  (100°  C-),  and  the  dye-liquor  is  then  made  of 
uniform  density  and  discharged  within  the  region 
of  the  suspended  yarn  by  means  of  the  expansive  and 
propulsive  forces  of  air  compressed  to  about  20  lb. 
per  sq.  in.  above  atmospheric  pressure  and  delivered 
within  the  bulk  of  the  dye-liquor  by  means  of  pipes 

—A.  J.  H. 

Si 'lining,   bleaching,   dyeing,   shrinking,   or  other- 
wise treating  cloth,  yarns,  and  the  like;  Mm  hines 

for .     H.  and  T.  W.  Bowdcn.     E.P.  173,397, 

18.11.20. 

Electrolytic  cell.     U.S.P.  1,402,986.    See  XI. 

VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphuric  acid  tank  leaks  caused  b\/  xcood  borers. 

C.   E.   Crosse.     Chem.  and  Met.   Eng.,   1922,  26, 

111. 
Lead-lined  wooden  sulphuric  acid  tanks  made  from 
North  Carolina  pine  cut  in  winter  developed  leaks 


140  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIO  ELEMENTS. 


[Feb.  28,  1922. 


after  5  weeks'  use.  An  investigation  of  the  wood 
showed  the  presence  of  wood  borers  (larvse  of  the 
troat  beetle,  Monohammus  confusor).  The  worm 
had  bored  right  through  the  wood  until  it  reached 
the  lead,  and  had  then  started  boring  that  until 
the  acid  was  tapped.  To  prevent  the  recurrence  of 
similar  trouble  it  is  recommended  to  soak  suspected 
wood  in  creosote  before  use. — A.  R.  P. 

Orthophosphoric  acid;   Specific   gravity   table    for 

at  25°/ 25°  C.     N.  P.  Knowlton  and  H.  C. 

Mounce.  J.  Ind.  Eng.  Chem.,  1921,  13, 
1157—1158. 
The  table  gives  the  sp.  gr.  of  aqueous  solutions  con- 
taining from  3"39  to  90'26%  of  the  acid;  the  sp.  gr. 
figures  are  considerably  lower  than  those  given  in 
the  U.S.  Pharmacopoeia  VIII.  for  corresponding 
strengths  of  the  acid,  e.g..  for  a  concentration  of 
83'62%  of  HjPO,,  the  author  finds  the  sp.  gr.  at 
25°/25°  O.  to  be  1-6727,  whilst  the  U.S. P.  gives  the 
figure  1690.— W.  P.  S. 

Ammonia;  Accidents  observed  in  the  synthesis  of 

at  very  high  pressures  and  the  means  of 

avoiding  them.  G.  Claude.  Comptes  rend., 
1922,  174,  157—159. 
In  the  synthesis  of  ammonia  at  high  pressures,  the 
reaction  tube  being  cooled  by  molten  lead,  the  tubes 
frequently  burst,  the  fracture  commencing  at  the 
outside.  It  was  found  that  enormous  tensions  were 
set  up  in  the  thick-walled  tube  owing  to  the  differ- 
ences in  temperature  between  the  inner  and  outer 
walls  and  the  high  internal  pressure.  This  was 
overcome  to  a  large  extent  by  replacing  the  circu- 
lating molten  lead  by  kieselguhr  in  which  the  whole 
of  the  tube  was  immersed. — W.  G. 

[Sodium  cyanide;]  The  Buchcr  process  for  the 
fixation  of  nitrogen  [as ].  M.  De  K.  Thomp- 
son. Chem.  and  Met.  Eng.,  1922,  26,  124—128. 
(Cf.  Bucher,  J.,  1917,  451.) 
This  process,  depending  on  the  endotherniic  re- 
action Na2C03+4C+N„=2NaCN-l-3CO,  carried  on 
at  1000°  C.  in  the  presence  of  iron  as  a  catalyst, 
was  worked  on  the  manufacturing  scale  by  the 
U.S.  Government  during  the  war,  but  not  com- 
mercially. A  laboratory  investigation  of  the  yields 
obtainable  showed  that' these  vary  greatly  with  the 
form  in  which  the  iron  and  carbon  are  introduced. 
A  yield  of  90%  was  given  by  precipitated  iron  oxide 
and  carbon  low  in  ash  (petroleum  coke,  charcoal  or 
gas  carbon).  Ordinary  coke  gives  poor  results.  The 
mixture  is  milled  and  briquetted  with  soda  ash;  if 
the  briquettes  after  heating  contain  80%  iron  and 
total  alkali,  no  binder  is  required.  An  experimental 
furnace  consisted  of  a  vertical  cylinder  of  iron  built 
in  two  halves  and  lined  with  magnesite  bricks.  The 
briquettes  were  mixed  with  granules  of  gas  carbon 
to  increase  the  conductivity  and  the  two  electrodes 
wero  fixed  in  the  wall  near  the  top  and  bottom 
respectively.  An  additional  insulating  lining  was 
necessary  to  obtain  even  temperatures  within  the 
furnace.  The  total  cost  of  production  of  sodium 
cyanide  bv  this  method  is  estimated  at  12  cents 
per  lb— C.  I. 

Potash  shales  of  Illinois.  M.  M.  Austin  and  S.  W. 
Parr.  J.  Ind.  Eng.  Chem.,  1921,  13,  1144—1146. 
Shales  containing  5%  or  more  K,0  occur  in 
Illinois;  the  potassium  is  present  in  the  form  of 
felspar  or  glauconite  or  greensand,  and  in  more 
6tablo  combination.  In  some  cases  over  60%  of  the 
potash  is  available  as  plant  food,  and  it  is  possible, 
by  using  the  shale  in  the  manufacture  of  cement 
and  applying  known  methods  of  recovery,  to  obtain 
a  vield  of  53  lb.  of  potash  per  barrel  of  cement. 

— W.  P.  s. 


Ferric    salts;    Seduction    of    with    mercury. 

L.  W.  McCay  and  W.  T.  Anderson,  jun.   J.  Amer. 
Chem.  Soc.,  1921,  43,  2372—2378. 

Neutral  and  acid  solutions  of  ferric  chloride  are 
completely  and  rapidly  reduced  when  shaken  with 
mercury.  With  ferric  sulphate  the  reduction 
proceeds  at  20°  C.  to  an  equilibrium  which  lies  at 
53%  of  ferrous  iron,  but  if  a  little  hydrochloric  acid 
or  sodium  chloride  is  added  the  reduction  is  com- 
plete. Under  similar  conditions  titanic  acid  is  not 
reduced.  If  the  mercurous  salt  is  filtered  off  the 
ferrous  iron  in  the  solution  may  be  determined  by 
titration  with  potassium  permanganate  or  bichro- 
mate. The  method  is  rapid,  accurate,  and  conveni- 
ent. Solutions  of  potassium  ferricyanide,  potassium 
chromate,  ammonium  molybdate,  sodium  vanadate, 
and  potassium  antimonate  when  acidified  with 
hydrochloric  acid  are  all  reduced  on  shaking  with 
mercury. — J.  F.  S. 

Arsenic  sulphide;  Precipitation  of from  arsen- 
ates. J.  H.  Reedv.  J.  Amer.  Chem.  Soc.,  1921, 
43,  2419. 

The  time  required  for  the  precipitation  of  arsenic 
sulphide  from  solutions  of  arsenates  is  greatly  re- 
duced by  the  addition  of  a  small  quantity  of  a 
soluble  iodide.  The  hastening  of  the  precipitation 
is  due  to  the  reduction  of  the  arsenic  acid  to  arseni- 
ous  acid:  HaAs04  +  2HI->-H3As03  +  I2 ;  H2S+I2  U 
2HI  +  S.  The  reaction  is  applied  by  adding  1 — 2  c.c. 
of  AT/1  ammonium  iodide  solution  to  the  hot  solu- 
tion, which  contains  4  c.c.  of  AT/1  hydrochloric  acid 
in  40  c.c.  of  solution  just  before  the  hydrogen  sul- 
phide is  passed  in.  Precipitation  begins  immedi- 
ately and  is  usually  complete  in  4 — 5  mins.  An  ap- 
parent complication  arises  in  the  precipitation  of 
mercury  and  copper  as  iodides  and  in  the  partial  re- 
duction of  mercury  to  the  mercurous  condition. 
This  difficulty  is,  however,  removed  during  the  di- 
gestion with  yellow  ammonium  sulphide  which 
oxidises  both  metals  to  the  higher  valency,  precipi- 
tating them  as  mercuric  and  cupric  sulphides. 

—J.  F.  S. 

Copper  hydroxide  ■  Colloidal .     C.  Paal  and  H 

Steyer.    Kolloid-Zeits.,  1922,  30,  1—5. 

Solid  colloidal  copper  hydroxide  containing  1402% 
Cu  and  1'34%  Na  is  prepared  by  adding  to  50  c.c. 
of  2%  sodium  protalbinate,  20  c.c.  of  A^/l  sodium 
hydroxide  and  20  c.c.  of  1%  copper  sulphate, 
alternately  in  small  quantities  at  a  time.  A  light 
blue  turbid  sol  is  produced  which  is  dialysed  for 
4  days,  treated  with  3  drops  of  A/1  sodium  hydrox- 
ide, and  evaporated  to  dryness  at  60°  C.  in  a 
vacuum.  A  blackish-blue  brittle  lamellar  s  .tostance 
is  obtained  which  dissolves  in  water  giving  the 
original  sol.  Sodium  lysalbinate  may  be  substituted 
for  sodium  protalbinate  and  by  varying  the  quan- 
tities of  the  reagents  a  solid  colloid  containing 
35-47%  Cu  and  5-31%  Na  may  be  obtained.  Evapor- 
ating a  solution  of  the  copper  hydroxide  sol  to  dry- 
ness on  a  water  bath  gives  black  lamellae  of  colloidal 
copper  oxide  containing  28'58%  Cu  and  4'37%  Na. 
This  dissolves  in  water  giving  a  dark  brown  turbid 
hydrosol.—  J.  F.  S. 

Silicic  acid  and  tungsten  hydroxide  sols;  Prepara- 
tion of  by  means  of  Hildebrand  cells.     M. 

Kroger.     Kolloid-Zeits.,  1922,  30,  16—18. 

Electrolysis  of  a  1"5%  solution  of  water-glass  be- 
tween a  mercury  cathode  and  a  platinum  anode  in 
a  Hildebrand  cell  produces  a  clear  hydrosol  of  silicic 
acid  which  does  not  gelatinise  for  4  weeks.  The  sol 
from  a  6%  solution  gelatinises  immediately  it  is 
formed,  and  a  30%  solution  deposits  silica  on  the 
anode.  Electrolysis  of  a  2%  solution  of  sodium 
tungstate  in  the  same  apparatus  but  with  a  silver 
anode   produces   clear   sols   of   tungsten    hydroxide 


Vol.  XLL,  No.  i.] 


Cl.  VIII.— GLASS  ;  CERAMICS. 


141  A 


whicli  have  a  deep  brown  colour,  but  if  the  neutral 
point  is  passed  in  the  electrolysis  blue  tungsten 
compounds  are  produced.  The  sols  are  coagulated 
by  potassium  chloride  giving  a  black  powder  which 
resembles  the  lower  oxides  of  tungsten. — J.  F.  S. 

Melilites;  Some  natural  and  synthetic .    A.  F. 

Buddington.    Amer.  J.  Sci.,'  1922,  3,  35—87. 

The  minerals  of  the  melilite  group  include  akerman- 
ite,  gehlenite,  humboldtilite,  sarcolite,  fuggerite, 
and  the  melilites  rich  in  ferric  iron.  Attempts  to 
synthesise  these  minerals  have  been  made,  in  the 
course  of  which  over  one  hundred  crystalline  mix- 
tures were  prepared  of  2CaO,MgO,2Si02  (aker- 
manite),  2CaO,Al203,Si02  (gehlenite),  and  3R'0, 
R203,3Si02,  where  R'  =  Na2  or  Ca  and  R  =  Fe  or 
Al.  The  natural  gehlenites  consist  essentially  of 
solid  solutions  of  2CaO,MgO,2Si02  and  2CaO, 
Al20,,Si02  with  smaller  amounts  of  ferric  and 
ferrous  compounds.  The  humboldtilites  are  iso- 
morphous  mixtures  of  akermanite  with  3CaO,ALO,, 
3Si02,  with  minor  amounts  of  gehlenite  and  3R'0, 
R„03,3SiO,  compounds.     (Cf.  J.C.S.,  Mar.) 

— E.  H.  R. 

Thorium-X ;    Some    oxidising    properties    of    . 

P.  Lemay  and  L.  Jaloustre.    Comptes  rend.,  1922, 
174,  171—172. 

Thorium-X  exerts  a  powerful  catalytic  action  in 
the  oxidation  of  adrenaline  and  morphine,  but  no 
oxidation  of  primary  fatty  alcohols  by  it  could  be 
detected.— W.  6. 

Catalysis  in  the  interaction  of  carbon  with  steam 
and  with  carbon  dioxide.  H.  S.  Tavlor  and  H.  A. 
Neville.  J.  Amer.  Chem.  Soc.,  1921,  43,  2055— 
2071. 

The  catalvsis  of  the  reaction  between  steam  and 
carbon,  C  +  2H20  =  CO,+2H2,  was  studied  at  490°, 
525°,  and  570°  C.  by  passing  steam  at  the  rate 
of  160  c.c.  per  min.  over  charcoal  (generally  coco- 
nut-shell charcoal)  mixed  with  the  catalyst  in  a 
Pyrex  glass  apparatus.  Of  the  catalysts  studied  only 
sodium  and  potassium  carbonates  showed  any  con- 
siderable effect,  the  latter  being  the  more  active  of 
the  two,  whilst  barium  hydroxide,  water-glass, 
borax,  and  soda-lime  were  ineffective.  Iron  oxide, 
which  readily  catalyses  the  water-gas  reaction, 
CO  +  H20  =  C02+H2,  was  without  effect.  This  proves 
that  the  acceleration  of  the  reaction  between  carbon 
and  steam  by  alkali  carbonates  cannot  be  due  to 
catalysis  of  the  water-gas  reaction,  but  is  probably 
due  to  acceleration  of  the  reaction,  C+CO,  =  2CO. 
Experiments  showed  that  the  reaction  between  car- 
bon and  carbon  dioxide  is  catalysed  at  570°  C.  by 
sodium  and  potassium  carbonates,  and  to  an  even 
greater  extent  by  nickel.  Reduced  nickel  also 
catalyses  the  reaction  between  carbon  and  steam  but 
quickly  loses  its  activity.  Potassium  carbonate  also 
catalyses  the  reverse  action  2CO  =  C02+C.  The 
catalytic  activity  of  the  carbonates  was  found  not  to 
be  due  to  alternate  reduction  and  re-formation  of 
the  alkali  carbonates  thus:  K2CO,  +  C  =  K,0+2CO ; 
K20+C02  =  K2C03.  The  presence  of  the  catalyst  in 
the  charcoal  led  to  increased  adsorption  of  carbon 
dioxide  under  the  experimental  conditions.  This 
observation  accords  with  the  hypothesis  that,  in  the 
oxidation  of  carbon  surface  complexes  CxOy  are 
formed  which  decompose  into  carbon  dioxide  and 
carbon  monoxide  in  proportions  depending  on  the 
temperature.  It  is  presumably  this  surface  reaction 
which  is  influenced  by  the  catalyst. — E.  H.  R. 

Ammonia-recovery  processes.     Krieger.     See  IIa. 

Zinc  sulphate.    Tartar  and  Keyes.     See  X. 

Potassium  nitrate.    Junk.    See  XXII. 

Columbium  and  tantalum.    Merrill.    See  XXIII. 


Patents. 

Nitric  acid;  Process  of  making  .     J.  H.  Reid, 

Assr.  to  International  Nitrogen  Co.  U.S. P. 
1,400,912,  20.12.21.    Appl.,  10.9.17. 

Ozone  is  passed  into  a  closed  vessel  in  which  am- 
monia is  generated  from  calcium  cyanamide. — C.  I. 

Sulphuric  acid;  Production   of  .     C.   H.  Mac- 

Dowell,  Assr.  to  Armour  Fertilizer  Works. 
U.S.P.  1,402,941,  10.1.22.    Appl.,  20.1.21. 

In  the  lead  chamber  process  the  sprays  in  each 
chamber  are  fed  with  the  acid  produced  in  that 
chamber  after  cooling  and  diluting  it. — C.  I. 

Potassium    chloride;    Process    for    obtaining    

[from  the  flue  dust  of  cement  kilns}.  F.  S.  Moon, 
Assr.  to  International  Precipitation  Co.  U.S.P. 
1,402,173,  3.1.22.    Appl.,  22.10.19. 

The  dust,  which  contains  sodium  and  potassium  sul- 
phates, is  leached  with  sufficient  water  to  dissolve 
these  salts,  and  the  solution  is  treated  with  calcium 
chloride  sufficient  to  convert  the  alkali  sulphates 
into  chlorides,  which  are  then  separated  by  frac- 
tional crystallisation. — A.  R.  P. 

Potassium     and     aluminium     [compounds']     from 

felspar;  Process  of  recovering .   0.  M.  Brown. 

U.S.P.  1,402,831,  10.1.22.     Appl.,  25.2.20. 

Finely-ground  felspar  is  treated  with  hot  sul- 
phurous gases  and  air.  The  resulting  product  is 
leached  with  water,  and  potassium  and  aluminium 
sulphates  are  recovered  by  evaporating  the  solution. 

—J.  S.  G.  T. 

Barium  compounds ;  Preparation  of from  zinc 

blende  or  other  ores  containing  barytes.  R.  von 
Zelewski.     G.P.  343,734,  2.9.17. 

The  ore  is  reduced,  with  exclusion  of  air,  and  the 
resulting  mass  is  leached  first  with  water,  then  with 
solutions  of  acids  or  salts  to  render  soluble  any 
barium  insoluble  in  water. — A.  R.  P. 

Sulphur  dioxide;  Manufacture  of .  J.  Gravson. 

U.S.P.  1,402,062,  3.1.22.     Appl.,  29.5.20. 

See  E.P.  132,387  of  1918;  J.,  1919,  817  a. 

Sal-ammoniac  skimmings;  Method  for  the  treat- 
ment of  — .  W.  Schopper.  U.S.P.  1,403,060, 
10.1.22.    Appl.,  9.7.20. 

See  E.P.  145,085  of  1920;  J.,  1921,  734  a. 

Aluminium  chloride  crystals;  Process  of  producing 

.     S.   E.   Sieurin,   Assr.   to  Hoganas-Billes- 

holms  Aktiebolag.  U.S.P.  1,403,061,  10.1.22. 
Appl.,  7.2.20. 

See  E.P.  159,086  of  1920;  J.,  1921,  258  a. 

Calcining  the  products  of  reaction  of  solid  and 
liquid  materials.    G.P.  343,460.     See  I. 


VIII.-GLASS;  CERAMICS. 

Glass;  Annealing  and  the  mechanical  properties  of 
.   Taffin.    Comptes  rend.,  1922,  174,  159—162. 

The  phenomenon  of  annealing  of  glass  is  apparently 
only  a  viscous  deformation  under  the  action  of 
internal  stresses.  Annealing  cannot  occur  when 
these  stresses  become  equal  to  or  less  than  the  elastic 
limit.— W.  G. 

Patents. 

Glass-melting  furnace;  Gas-fired  recuperative  . 

K.  E.  V.  Johansson.    G.P.  340,918,  8.2.19. 
The  exhausted  gases  from  the  heating  chamber  pass 
through    a     ring-shaped    collecting    flue    situated 
beneath   the   hearth   of   the   furnace   and    inclined 
downwards   towards    the    glass-collecting   chamber, 


142a 


Cl.  IX.— building  materials. 


[Feb.  28,  1922. 


then  through  the  latter  into  a  flue  which  connects 
with  the  recuperator.  The  preheated  air  from 
the  latter  passes  through  a  downwardly  inclined  flue 
to  the  ring-shaped  flue  which  feeds  the  burners 
situated  in  the  base  of  the  hearth.  This  arrange- 
ment, together  with  the  introduction  of  other 
apparatus  normally  found  in  glass  furnaces,  pre- 
vents any  leakage  of  the  glass,  either  through  cracks 
in  the  bed  of  the  hearth  or  through  the  burner 
pipes,  into  the  recuperator. — A.  R.  P. 

Filaments  or  threads  of  silica,  alumina,  and  other 

refractory   materials ;  Manufacture  of  and 

apparatus  for  use  therein.  M.  de  Roiboul.  E.P. 
165,052,  24.9.20.  Conv.,  16.6.20. 
Silica,  alumina,  or  other  refractory  material  is 
fused  electrically  in  a  crucible  made  of  zirconia, 
yttria,  erbia,  or  other  refractory  oxide  (cf.  E.P. 
169,136  of  1920;  J.,  1921,  848  a),  and  filaments  are 
formed  by  partially  immersing  one  or  more  wires  of 
platinum  or  other  refractory  metal  in  the  molten 
material  and  then  withdrawing  them,  so  as  to  form 
a  series  of  conoids  rising  above  the  surface  of  the 
molten  material.  On  further  withdrawing  the  wires 
the  conoids  are  drawn  out  in  very  fine  filaments, 
which  cool  so  rapidly  that  they  are  non-adhesive, 
and  may  be  wound  around  a  rapidly  revolving  drum 
as  soon  as  they  leave  the  molten  material.  The 
several  conoidal  formations  may  be  separated  at  the 
surface  of  the  molten  material  by  means  of  a  grid 
made  of  refractory  material  and  placed  on  the 
surface  of  the  molten  material.  The  diameter  of 
the  filaments  depends  on  the  rate  of  withdrawal 
and  on  the  specific  gravity,  viscosity,  and  tempera- 
ture of  the  molten  material,  but  should  not  exceed 
0'005  mm.  The  filaments  may  be  used  singly  or 
twisted  together  to  form  threads.  The  threads  have 
a  softening  point  above  1500°  C.  and  a  fusion  point 
above  1700°  O.  The  maximum  fusion  point  of  silica 
threads  does  not  exceed  2200°  C,  and  that  of 
alumina  threads  2800°  C.  The  threads  do  not  waste 
away  or  disintegrate.  They  may  be  coloured  by 
adding  suitable  pigments  to  the  contents  of  the 
crucible,  and  the  coloured  threads  exhibit  all  the 
properties  of  coloured  precious  stones  except  those 
of  crystalline  structure.  The  sp.  gr.  is  2—3,  the 
hardness  8 — 9,  and  the  breaking  strength  several 
times  greater  than  that  of  steel  cables.  The  threads 
are  flexible  if  the  filaments  are  not  more  than 
0005  mm.  diameter.  Their  electrical  insulating 
power  is  superior  to  that  of  any  known  insulators. 

—A.  B.  S. 

Furnaces  [ftilng]  for  burninq  ceramic  and  refractory 

products.  G.  Loy.  E.P.  173,297,  22.9.20. 
A  tunnel  kiln,  in  which  the  goods  to  be  burned  are 
pushed  along  the  solo  or  on  an  intermediate  bed 
of  previously  burned  refractory  products  by  means 
of  a  mechanical  device,  is  provided  with  air  ducts 
in  the  cooling  zone  for  admitting  air  for  cooling  and 
heating  the  air  required  for  combustion.  The  roof 
of  the  preheating  zone  rises  towards  the  burning 
zone. — A.  B.  S. 

Abrasives;  Method  of  manufacturing  artificial 

from  bauxite  and  emery.  C.  J.  Brockbank,  Assr. 
to  Abrasive  Co.  U.S. P.  1,402,714,  3.1.22.  Appl., 
21.10.20. 
An  aluminous  abrasive  is  produced  by  roasting  an 
aluminous  ore  with  a  substance  capable  of  com- 
bining with  and  forming  easily  soluble  compounds 
with  the  metallic  oxides  constituting  the  impurities 
in  the  ore,  and  afterwards,  by  fusion,  segregating 
the  soluble  products  formed. — A.  B.  S. 

Dryer  for  use  in  the  manufacture  of  articles  from 
tender   clay.      T.    L.    Myers,    Assr.    to   American 

Equ lent  Co.    U.S. P.  1,403,440,  10.1.22.    Appl., 

1.3.18. 

A  dryer  comprises  a  chamber  containing  several 


rows  of  trucks  carrying  the  ware  to  be  dried,  with 
means  for  radiating  heat  on  to  the  ware  without 
creating  air-currents  and  for  moving  the  trucks  into 
drying  tunnels,  wherein  the  drying  is  completed  in 
a  current  of  hot  air. — A.  B.  S. 

Glass;  Method  of  obtaining  viscous  charges  of 

fram  a  viscous  mass  thereof.  O.  M.  Tucker, 
W.  A.  Reeves,  and  J.  M.  Beatty.  E.P.  148,848, 
10.7.20.     Conv.,  10.4.16. 


IX.— BUILDING  MATERIALS. 

Portland  cement;  Influence  of  calcium  chloride  on 

the  strength  of .    C.  R.  Platzmann.    Zement, 

1921,  10,  499—502,  556.     Chem.  Zentr.,  1922,  93, 
II.,  129—130. 

The  use  of  1 — 5%  calcium  chloride  solutions  for 
mixing  Portland  cement  considerably  increases  it6 
resistance  to  compression  during  the  first  28  days, 
but  eventually  the  same  value  is  obtained  as  when 
water  is  used.  The  tensile  strength  is  the  same  in 
tho  first  month ;  after  that  it  is  somewhat  lower 
when  calcium  chloride  is  used.  The  maximum 
effects  are  obtained  with  a  4%  solution  of  calcium 
chloride.— A.  R.  P. 

Fcrro-concrete;    Corrosive   action   of   gas-liquor   on 
.    B.  Haas.    Chem.-Zeit.,  1922,  46,  39. 

The  corrosive  action  of  gas  liquor  on  ferro-concrete 
is  probably  due  to  the  action  of  the  contained  am- 
monium salts  on  the  free  lime  in  the  material,  there- 
by causing  small  fissures  through  which  the  liquor 
can  penetrate.  The  following  instructions  are  given 
for  making  up  the  containers  so  that  they  are  im- 
pervious to,  and  not  attacked  by,  gas  liquor.  The 
aggregate  for  the  coarse  part  of  the  concrete  should 
contain  a  large  proportion  of  calcium  salts  and  this 
coarse  part  should  be  only  slightly  damp.  The  first 
coating  of  the  inner  walls  of  the  container  should  be 
free  from  loose  material  and  of  approximately  the 
same  degree  of  dampness  as  the  coarse  concrete,  and 
the  composition  and  proportion  of  the  aggregate 
should  not  vary  greatly  in  the  two  cases.  This 
layer  should  be  applied  to  a  thickness  of  6 — 7  mm. 
when  the  coarser  material  has  begun  to  harden  but 
is  still  in  a  moist  condition.  A  second  coating  of 
finer  material  with  a  mixing  ratio  of  1:1'5  or  1:1  is 
applied  while  the  first  is  still  somewhat  damp  but 
after  it  has  begun  to  harden ;  it  should  be  from 
1'5 — 2  mm.  thick.  After  the  second  layer  has 
hardened  considerably  it  is  sprayed  with  water  and 
the  excess  removed ;  soon  after  this  the  vessel  should 
be  filled  with  water  and  allowed  to  stand  for  a  week 
after  which  it  is  ready  for  use. — A.  R.  P. 

Potash  shales.    Austin  and  Parr.    See  VII. 

Patents. 

Slag;  Method  of  casting .    W.  T.  Hurst,  Assr. 

to    Slag   Rock    Machine   Co.      U.S. P.    1,402,363, 
3.1.22.    Appl.,  29.11.19. 

A  dense,  hard  slag  is  obtained  by  pouring  molten 
slag  into  a  shallow,  water-cooled  mould,  and  then 
cooling  the  whole  mass  rapidly  by  introducing  water 
on  to  the  surface  of  the  slag  as  soon  as  its  surface 
lias  solidified. — A.  B.  S. 

Dry  kiln  [for  timber].  R.  W.  Kent,  Assr.  to  Cooley 
&  Marvin  Co.  U.S.P.  1,403,417,  10.1.22.  Appl., 
2.10.20. 
A  dry  kiln  for  timber  comprises  a  rectangular 
chamber  with  inlets  and  outlets  at  opposite  ends,  a 
series  of  air  ducts  with  openings  spaced  longitudi- 
nally of  the  chamber,  a  series  of  flues  with  outlets 
placed  alternately  to  the  air  inlets,  means  for  con- 
necting each  flue  with  the  inlet  to  the  next  air  duct 


Vol.  XIX,  No.  4.]    Cl.  X.— METALS  ;  .METALLURGY,  INCLUDING  ELECTRO-METALLURGY.         143  a 


in  a  direction  from  the  discharging  end  to  the  inlet 
end  of  the  chamber,  and  air-heaters  located  between 
the  inlets  and  outlets  respectively. — A.  B.  S. 

Building  materials,  in  particular  cement ;  Method  of 

producing  a  cold  glaze  for  .     K.  Friedrich. 

U.S. P.  1,402,412,  3.1.22.    Appl.,  11.9.16. 

See  E.P.  154,236  of  1918;  J.,  1921,  47  a. 

Potassium    chloride    from    cement-kiln    flue    dust. 
U.S. P.  1,402,173.    See  VII. 


X— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

P-Iron  anil  theories  of  hardening.  E.  Maurer.  Mitt. 
Kaiser  Wilhelm  Inst.  f.  Eisenforsch.,  1920,  I,  39— 
86.    Chem.  Zentr.,  1922,  93,  I.,  84. 

After  a  critical  examination  of  old  hardening 
theories  the  author  comes  to  the  conclusion  that  the 
/3-iron  theory  must  be  discarded.  Effective  harden- 
ing takes  place  when  the  a  particles  arising  from 
the  y-iron  particles  are  constrained  to  take  up  a 
greater  volume  than  is  normal  to  them,  by  the 
greater  volume  of  the  hardening  carbon.  Each  a 
particle  experiences,  in  statu  nascendi,  high  tensile 
-tresses.  The  hardness  is  the  resultant  of  the  effort 
of  the  a  particles  to  assume  their  ordinary  volumes 
and  the  effort  of  the  hardening  carbon  to  compel 
them  to  assume  volumes  suitable  for  it.  When  the 
process  takes  place  rapidly  the  a  particles  are  in  a 
cold-worked  condition,  which  explains  the  similarity 
in  properties  of  hardened  and  cold-worked  material. 
The  theory  is  connected  with  Heyn's  cold-hardening 
theory  which  depends  on  latent  elastic  stresses. 

— T.  H.  Bu. 

Iron;  Influence  of  different  alloying  elements,  in- 
cluding carbon,  on  the  physical  properties  of . 

E.  Maurer  and  W.  Schmidt.  Mitt.  Kaiser  Wil- 
helm Inst.  f.  Eisenforsch.,  1921,  2,  5—38.  Chem. 
Zentr.,  1922,  93,  I.,  84. 

Tests  were  made  on  steels  containing  25 — 6%  Ni, 
2—3-5%  Cr,  1%  Cr+2_%  Ni,  T5%  Cr+3-6  Ni,  1% 
and  3%  Mn,  electrolytic  iron  being  used  as  a  com- 
parison material.  Metallographic  investigations 
showed  that  nickel  makes  the  pearlite  granular  and 
finely  divided,  while  chromium  makes  the  pearlitic 
masses  larger.  Chromium-nickel  steels  are  similar 
to  nickel  steels,  and  manganese  acts  similarly  to 
chromium.  The  coefficient  of  dilatation  for  elec- 
trolytic iron  is  14-31X10"6  (20°— 450°  C.)  and  de- 
creases with  the  carbon  content  but  not  proportion- 
ately to  the  Fe3C  content,  the  influence  of  the  carb- 
ide being  relatively  stronger  the  lower  its  concen- 
tration. Nickel  also  causes  a  diminution ;  its  influ- 
ence when  alone  can  be  calculated  on  the  additive 
principle.  In  chromium  steels  the  augmenting 
effect  of  chromium  carbide  on  the  dilatation  can 
more  than  compensate  the  lowering  effect  of 
chromium.  Similar  results  are  obtained  on  man- 
ganese steels.  The  additive  law  holds  good  for  the 
nickel-chromium  steels  investigated,  in  which  on  the 
whole  an  increase  in  carbon  causes  a  diminution. 
The  additive  law  also  holds  good  for  ball  hardness 
and  approximately  for  coercive  force. — T.  H.  Bu. 

Talbot  lsteel~]  process  in  comparison  with  other 
open-hearth  refining  processes.  J.  Puppe.  Stall]. 
u.  Eisen,  1922,  42,  1—10,  46—50. 

At  Witkowitz  coke-oven  gas  is  mixed  with  producer 
gas  for  use  in  the  steel  furnaces.  The  operation  of 
the  300-ton  flat  hearth-mixer  is  described  and  out- 
put figures  of  mixer  iron  and  slag  from  1912  to  1920 
are  given.  Constructional  changes  have  been  made 
in  the  furnace  installation  as  the  result  of  experi- 
ence.    In  the  case  of  the  burner  head  the  size  of  the 


ports  has  been  somewhat  diminished.  As  the  hearth 
of  the  Talbot  furnace  remains  covered,  the  dura- 
bility is  greater  than  that  of  the  Wellman  or  Marun 
furnace  and  the  consumption  of  refractories  is  less. 
The  method  of  working  these  three  furnaces  and 
the  progress  of  melting  as  regards  both  bath  and 
slag  are  shown  in  a  series  of  diagrams.  The  slag 
diagram  for  the  Talbot  furnace  differs  appreciably 
from  those  for  the  other  two  furnaces.  The  de- 
phosphorisation  of  the  mixer  iron  in  the  Talbot 
furnace  takes  place  in  about  1J  hrs.  as  compared 
with  3£  hrs.  for  the  Wellman  and  Martin  furnaces. 
The  durability  of  the  ladles  in  the  Talbot  processes 
also  greater,  as  no  slag  goes  into  them.  At  Wit- 
kowitz the  ingots  are  top  poured  except  in  the  case 
of  high-quality  steel.  All  three  furnaces  seem 
equally  good  as  regards  quality  of  material  in  the 
range  of  steels  listed,  but  boiler-plate  material  was 
generally  made  in  the  Talbot  furnace.  The  most 
suitable  proportion  of  scrap  in  the  three  processes 
is  Martin  furnace  30 — 40%,  Wellman  furnace  20 — 
L'.'i  .  Talbot  furnace  5 — 15%,  but  there  has  been  a 
tendency  to  an  increase  in  the  use  of  scrap  owing 
to  the  low  price.  The  ferromanganese  consumption 
is  least  in  the  Talbot  furnace.  The  consumption 
of  oxide  additions  and  lime  is  greatest  in  the  Talbot 
process  and  least  in  the  Martin  furnace.  The  coal 
consumption  is  a  minimum  in  the  Talbot  process^  The 
ratio  of  the  daily  production  in  heats  for  1917 — 18 
was  4-3:35:2'8  for  the  Talbot,  Wellman,  and 
Martin  furnaces  respectively,  the  time  per  ton  of 
steel  being  least  in  the  Talbot  furnace.  The  heat 
balance  sheets  show  that  the  thermal  efficiences  are  : 
Talbot  furnace  35-5%,  Wellman  28-6%,  and  Martin 
furnace  30"1%.  The  author  confirms  in  nearly  all 
particulars  the  conclusions  of  Schuster  (J.,  1914, 
551)  as  to  the  advantages  and  lower  production 
costs  of  the  Talbot  process. — T.  H.  Bu. 

Gun  steels  and  fine  steels;  Acid  open-hearth  process 

for  manufacture  of .    W.  P.  Barba  and  H.  M. 

Howe.    Min.  and  Met.,  Jan.,  1922,  32—34. 

Instructions  are  given  for  obtaining  the  best  re- 
sult s  when  casting  steel  of  the  following  composi- 
tion: 0-35—0-5%  C,  0-5—0-75%  Mn,  0-15—0-3%  Si, 
2-5—3-75%  Ni,  and  less  than  0'05%  P  and  S,  i.e.  to 
make  the  ingots  of  proper  and  uniform  composition, 
macro-  and  micro-structure  and  free  from  pipes, 
blowholes,  and  cracks.  The  steel  should  be  brought 
to  the  desired  composition  in  the  ladle  immediately 
before  pouring  into  the  mould  and  should  be  freed 
as  far  as  possible  from  oxygen  at  this  stage.  To  pre- 
vent segregation,  columnar  crystallisation,  and  pip- 
ing, it  should  be  poured  at  the  lowest  possible  tem- 
perature, depending  on  its  chemical  composition, 
and  slowly  at  first,  then  as  rapidly  as  possible.  Ex- 
ternal cracking  is  prevented  by  tapering  the  mould 
so  strongly  that  the  ingot  readily  frees  itself  from  it 
immediately  after  pouring,  and  by  fluting  or  shap- 
ing the  outer  surface  of  the  ingot,  while  internal 
cracking  is  avoided  by  removing  the  ingot  from  tho 
mould  when  it  is  sufficiently  cooled  to  be  moved 
without  danger  of  cracking  and  then  allowing  it  to 
cool  more  slowly  by  embedding  it  in  ashes,  and  by 
toughening  it  by  subjecting  it  to  a  series  of  light 
reductions  under  a  hammer  or  press.  To  prevent 
retention  of  inclusions  the  steel  should  be  deoxidised 
as  fully  as  possible  by  means  of  pig-iron  at  as  high 
a  temperature  as  the  furnace  will  permit,  then 
further  deoxidised  by  means  of  silicon  before  adding 
manganese,  and  finally  it  should  be  held  in  the  ladle 
for  a  sufficient  length  of  time  to  permit  the  inclu 
sious  to  rise  to  the  surface. — A.  R.  P. 

Chromium  steel  for  permanent  magnets.     E.  Gum- 

lich.     Stahl  n.  Eisen,  1922,  42,  41—46,  97—103. 
The  following  materials  were  investigated,  1,  2,  3,  6 
and  9%  chromium  steels  with  carbon  contents  of  0'2, 
0-5,  0-75,  and  1  %  respectively ;  specimens  of  the  2,  3, 


144  a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      [Feb.  28, 1922. 


and  6%  Cr  steels  with  1-25,  150,  and  P75%  carbon; 
and  3  6  and  9%  chromium  steels  free  from  carbon. 
Steels  with  less  than  1'2%  C  were  quenched  from 
850°  C  and  900°  C.  and  those  with  higher  carbon 
content  from  900°  C.  and  950°  C.  The  alloys  free 
from  carbon  were  quenched  from  900°  C.  and  also 
slowly  cooled.  The  specific  electrical  resistance  of 
the  a'llovs  free  from  carbon  increases  in  accordance 
with  a  smooth  curve,  but  with  the  higher  carbon 
contents  the  curves  show  a  flattening  between  3% 
and  5%  Cr,  and  at  5—6%  Cr  the  steels  with  carbon 
have  a  lower  specific  resistance  than  the  alloys  tree 
from  carbon.  The  magnetic  induction  for  field 
strength  H  =  300  the  remanence  (R),  the  coercive 
force  (K)  and  the  product  RxK  were  determined. 
The  latter  is  taken  as  a  criterion  of  the  suitability 
for  magnets.  On  this  basis  1%  Cr  and  9%  Cr  steels 
are  eliminated,  and  they  have  little  magnetic 
stability.  As  the  hardening  temperature  of  the  2,  3 
and  6%  Cr  steels  was  increased  the  product  RxK 
showed  a  maximum  at  850°  C.  and  also  at  900°  C. 
for  the  higher  carbon  alloys.  The  coercive  force  in- 
creased with  the  chromium  content  up  to  at  least 
6%.  The  remanence  was  at  a  maximum  at  about 
•37  Cr  The  RxK  curves  showed  a  maximum  at 
about  1%  C  and  3—5%  Cr.  When  the  carbon  con- 
tent was  greater  than  0'5%  the  coercive  force  was 
not  much  greater  than  for  carbon  steels,  but  the 
product  RxK  and  the  quality  of  the  magnets  were 
in  some  cases  50%  better,  and  as  good  as  those  of 
tungsten  steel  magnets,  especially  if  the  chromium 
steel  magnets  were  hardened  in  oil.  The  maturing 
or  resistance  of  chomium  steel  magnets  to  deteriora- 
tion by  mechanical  shock  (drop  tests)  and  changes  111 
temperature,  and  also  their  temperature  coefficients 
were  about  the  same  as  for  tungsten  steel.  The  in- 
fluence of  tempering  chromium  steel  magnets  from 
200°  C.  to  700°  C.  was  investigated.  The  remanence 
was  increased  but  the  coercivity  fell  and  the  product 
RxK  was  lower,  so  that  the  steels  would  have  no 
practical  application  in  the  tempered  condition. 

— T.  H.  Bu. 

Nickel;    Determination    of    in    steel.      H. 

Rubricius.  Chem.-Zeit.,  1922,  46,  26. 
2—5  G.  of  the  borings  is  dissolved  in  40—80  c.c.  of 
nitric  acid  (1:1),  the  solution  is  cooled,  transferred 
to  a  500  c.c.  graduated  flask,  250  c.c.  of  ammonia 
(sp.  gr.  091)  added,  and  the  liquid  diluted  to  the 
mark";  250  c.c.  is  filtered  through  a  dry  funnel  into 
a  large  beaker,  an  equal  volume  of  water  added, 
the  liquid  heated  to  40°  C.  and  treated  with 
20 — 30  c.c.  of  a  1%  alcoholic  solution  of  dimethyl- 
glyoxime.  The  precipitate  is  filtered  off,  washed 
with  hot  water,  dried,  ignited,  and  the  nickel  oxide 
weighed. — A.  R.  P. 

Chromium  and  nickel-chromium  alloys;  Expansion 

of  over  a  wide  range  of  temperature.     P. 

Chevenard.  Comptes  rend.,  1922,  174,  109—112. 
Between  0°  and  100°  C.  the  expansion  of  chromium 
is  exactly  reversible,  the  curve  showing  no  break. 
The  true  coefficient  of  expansion,  which  is  6'8XlO  ° 
at  0°  C,  increases  rapidly  with  the  temperature  up 
to  1000°  C,  but  the  curve  shows  a  slight  concavity 
towards  the  temperature  axis  at  the  higher  tem- 
peratures. Nickel-chromium  alloys  containing  up 
to  16%  Cr  and  from  05  to  2'5%  Mn  according  to 
the  chromium  content,  were  examined  over  the 
temperature  range  0°  to  1000°  C.  The  addition  of 
chromium  leads  to  a  very  rapid  weakening  of  the 
anomaly  of  dilatation  of  nickel,  and  when  the 
chromium  content  exceeds  5%  the  anomaly  dis- 
appears entirely.  This  addition  of  chromium  affects 
the  expansion  of  nickel  very  little  at  the  ordinary 
temperature,  but  tends  to  increase  it  at  higher 
temperatures,  probably  owing  to  the  presence  of 
the  compound  NLCr,. — W.  G. 


[Gold  and  silver]   bullion;  Dusting  and  volatilisa- 
tion losses  during  melting  of  cyanide  precipitate 

and  air  refining  of .     G.  H.  Clevenger,  F.  S. 

Mulock,  and  G.  W,  Harris.    Min.  and  Met.,  Jan., 
1922,  11—15. 

The  precipitate  obtained  by  adding  zinc  dust  to 
cyanide  solutions  containing  gold  and  silver  is 
melted  in  oil-fired  reverberatory  furnaces  under  a 
flux  of  borax  glass  and  bottle  glass.  The  original 
precipitate,  containing  75 — 85%  Ag+Au  and 
having  a  moisture  content  of  30—35%,  is  charged 
directly  into  the  hot  furnace,  together  with  the 
minimum  of  flux,  and  the  slag  is  skimmed  off  from 
the  melted  bullion,  which  is  then  treated  either  by 
blowing  low-pressure  air  over  its  surface  or  by 
bubbling  high-pressure  air  through  the  molten 
metal.  The  losses  during  the  melting  operation 
average  0'06 — 0'1%  of  the  total  silver  and  0"015 — 
0"03%  of  the  total  gold  in  the  charge,  while  in  the 
second  operation  the  losses  are  0"01 — 005%  and 
0'002— 0'013%  respectively.  The  method  of  apply- 
ing the  air  does  not  materially  affect  the  silver 
losses,  but  high-pressure  air  results  in  a  greater  loss 
of  gold  per  unit  of  time,  although  as  the  refining  is 
much  more  quickly  carried  out  by  this  process,  the 
ultimate  gold  loss  is  lower.  Air  refining  removes 
practically  all  the  base  metals  except  copper  and 
yields  a  bullion  very  suitable  for  electrolytic 
refining. — A.  R.  P. 

Copper  and  brass;  Estimation  of  small  quantities  of 

antimony  in  .     B.  S.  Evans.     Analyst,  1922, 

47,  1—9. 

5  g.  of  the  sample  is  dissolved  in  60  c.c.  of  nitric 
acid  (1:1)  and  10  c.c.  of  strong  sulphuric  acid,  and 
the  solution  is  evaporated  until  fumes  of  the  latter 
are  evolved.  The  residue  is  dissolved  in  100  c.c.  of 
water,  and  the  solution  is  heated  to  boiling  with 
14  g.  of  sodium  hypophosphite.  The  precipitated 
copper  is  filtered  off,  and  the  filtrate  is  boiled  with 
100  c.c.  of  hydrochloric  acid  and  2  g.  of  hypo- 
phosphite,  cooled  somewhat,  10  c.c.  of  benzene 
added,  and  the  solution  shaken  to  cause  the  arsenic 
to  collect  in  the  benzene.  The  liquid  is  filtered 
through  a  wet  paper,  and  the  filtrate  is  boiled  for 
1J — 2  hrs.  with  a  strip  of  copper  foil  previously 
cleaned  with  nitric  acid.  The  strip  is  removed  from 
the  liquid,  rinsed  with  cold  water,  and  the  antimony 
dissolved  off  its  surface  by  means  of  a  solution  of 
1  g.  of  sodium  peroxide  in  a  small  quantity  of  water. 
The  alkaline  solution  is  digested  for  1J — 2  hrs.  with 
0"5  g.  of  zinc  sulphide  to  remove  copper,  and  the 
filtered  liquid  is  then  acidified  with  hydrochloric 
acid,  saturated  with  sulphur  dioxide,  and  evapo- 
rated to  10  c.c.  Meanwhile  5  c.c.  of  standard 
antimony  solution  (02764  g.  of  tartar  emetic  and 
100  c.c.  of  strong  hydrochloric  acid  made  up  to  1  1. 
with  water)  is  diluted  to  80  c.c. .treated  with  sulphur 
dioxide,  and  evaporated  to  10  c.c.  After  cooling, 
5  c.c.  of  1%  gum  arabic  is  added  to  each  solution, 
and  each  is  diluted  to  100  c.c,  treated  with 
hydrogen  sulphide  for  a  few  seconds,  and  trans- 
ferred to  Nessler  tubes.  Liquid  is  poured  out  of 
that  containing  the  more  deeply  coloured  solution 
until  the  tints  match,  the  depth  of  liquid  in  the 
glasses  is  measured,  and  the  result  computed  as 
usual.  Bismuth  does  not  interfere;  in  the  presence 
of  tin.  5  g.  of  potassium  bitartrate  is  added  before 
boiling  with  hypophosphite.     (Cf.  J.C.S.,  Mar.) 

—A.  R.  P. 

Aluminium  alloys;  Analysis  of  .     H.   Mende. 

Chem.-Zeit.,  1922,  46,  49—50. 
One  gram  of  the  alloy  is  digested  with  strong  caustic 
potash  solution,  hot  water  is  added,  and  the  in- 
soluble matter  allowed  to  settle.  The  clear  liquid 
is  decanted  through  a  small  filter  and  the  residue 
washed  with  hot  water  by  decantation.  The  filtrate 
is    treated    with    sodium    sulphide    and    the    zinc 


Vol.  XII,  No.  4]    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


145a 


sulphide  filtered  off,  washed  with  hot  dilute  sodium 
sulphide  solution,  dissolved  in  sulphuric  acid,  and 
the  solution  added  to  the  main  zinc  solution 
obtained  later.  The  residue  and  ash  from  burning 
the  filter  paper  are  dissolved  in  nitric  acid,  the  tin 
precipitate  filtered  off,  ignited,  and  weighed  as 
SnOj,  and  the  filtrate  evaporated  to  fumes  with 
5  c.c.  of  sulphuric  acid.  The  mass  is  treated  with 
150  c.c.  of  water,  the  lead  sulphate  filtered  off  and 
weighed,  and  the  filtrate  electrolysed  for  1}  hrs. 
at  75°  C.  with  05  amp.  at  2 — 22  volts  to  remove  the 
copper.  The  solution,  to  which  the  zinc  solution 
obtained  above  is  added,  is  treated  with  an  excess 
of  50  c.c.  of  50%  sodium  hydroxide  solution  over 
that  required  to  neutralise  it,  and  the  zinc  deposited 
on  a  coppered  or  silvered  gauze  electrode  by  elec- 
trolysis for  2 — 3  hrs.  at  70°  0.,  using  a  current  of 
1 — 1'5  amp.  at  4  volts.  Silicon  is  determined  by 
solution  of  3  g.  of  the  alloy  in  a  mixture  of  aqua 
regia  and  dilute  sulphuric  acid,  followed  by  evapora- 
tion to  fumes,  dilution,  filtration,  and  ignition  of 
the  precipitate  before  and  after  treatment  with 
hydrofluoric  acid.  Iron  is  determined  in  the  residue 
insoluble  in  caustic  potash  by  dissolving  it  in  nitric 
acid,  removing  the  copper  and  lead  by  hydrogen 
sulphide,  and  precipitating  the  iron  in  the  filtrate 
by  ammonia  followed  by  solution  of  the  precipitate 
in  sulphuric  acid,  reduction,  and  titration.  If  the 
quantities  of  heavy  metals  are  very  small,  e.g.,  in 
pure  aluminium,  the  alloy  is  dissolved  as  far  as 
possible  in  caustic  potash,  a  large  excess  of  sulphuric 
acid  added,  the  solution  heated  till  all  has  dissolved, 
cooled,  and  titrated  direct  with  permanganate. 
(Cf.  J.C.S.,  Mar.)— A.  R.  P. 

Lead;  Brittleness  developed  in  pure  by  stress 

and  corrosion.  H.  S.  Rawdon,  A.  I.  Krynitskv, 
and  J.  F.  T.  Berliner.  Chem.  and  Met.  Eng., 
1922,  26,  109—111. 

A  number  of  experiments  were  carried  out  to 
examine  the  behaviour  of  stressed  lead  wires  on 
standing  for  long  periods  in  corrosive  solutions.  It 
was  found  that  even  very  pure  lead  under  these 
conditions,  especially  in  acid  media,  develops  inter- 
crystalline  brittleness,  and  that  the  greater  the 
stress  applied  the  more  rapidly  the  metal  fails  com- 
pared to  its  behaviour  when  not  under  stress.  The 
failure  appears  to  be  due  to  attack  on  or  alteration 
of  the  properties  of  the  bond  between  the  crystals, 
as  the  individual  crystals  themselves  retain  their 
ductility  and  other  characteristics. — A.  R.  P. 

Zinc  sulphate  solutions;  Electrical  conductivity  of 

in  the  presence  of  sulphuric  acid.     H.   V. 

Tartar  and  H.  E.  Keves.  J.  Ind.  Eng.  Chem.. 
1921,  13,  1127—1129. 

The  conductivity  of  zinc  sulphate  solution  increases 
with  the  sulphuric  acid  concentration,  but  the  con- 
ductivity of  sulphuric  acid  is  decreased  by  the 
addition  of  zinc  sulphate,  and  further  decreased  by 
addition  of  magnesium  sulphate,  which  is  commonly 
present  in  considerable  quantity  in  commercial  zinc 
sulphate  solutions  ;  small  quantities  of  added  gelatin 
are  without  effect.  The  temperature  coefficients  of 
conductivity  vary  and  are  a  function  of  the  concen- 
trations of  acid  and  zinc.  The  deposition  of  zinc  is 
accompanied  by  an  increase  in  the  volume  of  the 
electrolyte,  amounting  to  1:5 %  for  each  100  g.  of 
zinc  deposited. — W.  P.  S. 

Tungsten;  Notes  on with  particular  reference 

to  scheelite  treatment  and  the  analysis  of  low- 
grade  material.  H.  Lavers.  Proc.  Austral.  Inst. 
Min.  Met.,  1921,  101—152. 
The  chemistry  and  metallurgy  of  tungsten  are  out- 
lined in  some  detail  and  a  description  of  the  method 
of  recovering  scheelite  concentrates  from  the  ore  of 
King  Island,  Tasmania,  is  given  together  with 
methods  used  in  the  analysis  of  the  various  dressing 


products.  The  ore  consists  essentially  of  andradite 
garnet  containing  inclusions  of  scheelite  with  very 
small  quantities  of  molybdenite,  iron  pyrites,  and 
bismuth.  It  is  crushed  in  stages  to  avoid  sliming. 
tin-  scheelite.  and  the  crushed  products  are  concen- 
trated on  Wilfley  tables  to  give  a  garnet-seheelite 
concentrate  from  which  the  garnet  is  removed  by 
means  of  magnetic  separators.  The  following  volu- 
metric method  is  said  to  give  good  results  on  low- 
grade  ores  and  tailings  containing  scheelite  :  12'5  g. 
of  finely  crushed  sample  is  heated  with  20  c.c.  of  25% 
caustic  soda  on  the  water  bath  for  40  mins.,  the 
liquid  is  diluted  to  250  c.c,  and  200  c.c.  is  filtered 
through  a  dry  paper,  just  acidified  with  hydro- 
chloric acid,  and  treated  with  5  c.c.  of  5%  cinchon- 
ine  hydrochloride  solution.  The  precipitate  is 
filtered  off  and  washed  with  a  very  dilute  cinchon- 
ine  solution ;  it  is  then  dissolved  in  10  c.c.  of  am- 
monium acetate  solution  and  the  hot  liquid  treated 
with  20  c.c.  of  2V/10  lead  acetate  solution.  After 
standing  J  hr.  the  excess  of  lead  acetate  is  titrated 
with  ammonium  molybdate. — A.  R.  P. 

Tungsten    powder;   Determination   of   the   colloidal 

part    of  .     A    Lottermoser.     Kolloid-Zeits., 

1922,  30,  53—61. 

The  colloidal  content  of  tungsten  powder  may  be 
determined  by  a  suspension  method  or  by  an  optical 
method.  Suspension  method  :  the  sample  (20  g.)  is 
thoroughly  shaken  with  100  c.c.  of  water  in  a  tube 
and  allowed  to  settle  for  2  days,  75  c.c.  of  the  super- 
natant liquid  is  removed  and  75  c.c.  of  water  added 
to  the  sediment  which  is  again  shaken  and  allowed 
to  settle  for  2  days.  The  process  is  repeated  as  long 
as  a  measurable  quantity  of  tungsten  remains  in  the 
supernatant  liquid.  The  sediment  is  then  dried  and 
weighed  and  gives  the  non-colloidal  portion.  Optical 
method  :  this  consists  in  estimating  the  quantity  of 
tungsten  in  the  solution  from  the  sedimentation  by 
means  of  its  absorption  of  light.  The  light  from  a 
quartz  mercury  lamp  is  allowed  to  pass  through  the 
solution  on  to  a  potassium  photo-electric  cell  and 
the  absorption  determined  from  the  galvanometer 
deflection.  Five  samples  of  tungsten  powder  as 
used  for  the  manufacture  of  electric  lamp  filaments 
gave  7-5%,  5-5%,  1V25%,  3975  and  7'0%  of  colloid, 
respectively.     {Cf.  J.C.S.,  March.)— J.  F.  S. 

Metal  wire;  Fibrous  structure  in  hard  drawn . 

M.  Ettisch,  M.  Polvani,  and  K.  AVeissenberg.     Z. 
physik.  Chem.,  1921,  99,  332—337. 

The  crystallites  in  soft  wires  of  copper,  tungsten, 
iron,  molybdenum,  palladium,  aluminium,  silver, 
and  zinc  are  arranged  irregularly,  whilst  those  of 
hard  wires  of  the  same  metals  are  regularly 
arranged.  This  structure  has  been  termed  fibrous 
because  it  was  first  observed  in  natural  fibres  such 
as  ramie  and  silk. — J.  F.  S. 

MelUites.    Buddington.    See  VII. 

Patents. 

[Nickel  and  cobalt]  and  {.their]  alloys;  Electrolyte 

for  use  in  the  electrodeposition  of  metals .    Q. 

Marino.    E.P.  173,268,  25.8.20. 

Two  pts.  of  a  20%  ammoniacal  solution  of  a  soluble 
cobalt  or  nickel  salt,  2  pts.  of  a  10%  solution  of 
sodium  or  potassium  borotartrate,  and  1  pt.  of  a 
5%  solution  of  sodium,  potassium,  or  ammonium 
formate  are  mixed  together  and  the  resulting  pre- 
cipitate is  dissolved  by  the  addition  of  just  sufficient 
potassium  cyanide.  By  the  addition  of  suitable 
quantities  of  a  tin  or  silver  salt,  alloys  of  these 
metals  with  nickel  and  cobalt  may  be  deposited.  A 
current  density  of  o — 10  amps,  per  sq.  ft.  at  1 — 5 
volts  is  used. — A.  R.  P. 

b2 


146  a 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Feb.  28, 1922. 


Metals;  Manufacture  of from  their  sulphides. 

E.  E.  Naef.     E.P.  173,337,  5.10.20. 
The  finely  ground  metallic  sulphides  are  heated  to 
300° — 500°  C.  with  caustic  soda  and  any  or  all  of 
the    following:     sodium    carbonate,    chloride,    sul- 

Ehate,  or  sulphide  or  calcium  carbonate,  oxide,  or 
ydroxide,  in  an  atmosphere  of  hydrogen  either 
with  or  without  finely  divided  coal.  In  this  way 
metallic  lead,  silver,  iron,  cobalt,  bismuth,  or 
mercury  may  be  obtained  from  their  sulphides  by 
subsequently  leaching  the  melt.  (0/.  E.P.  168,097; 
J.,  1921,  703  a.)— A.  R.  P. 

Aluminium    alloys,    and    their    preparation.       E. 
Burden.    E.P.  173,605,  4.10.20. 

Melted  aluminium  is  granulated  by  being  poured 
into  a  solution  of  copper  sulphate,  whereby  the 
granules  become  coated  with  metallic  copper.  They 
are  removed  from  the  solution,  washed,  dried,  and 
dipped  in  paraffin  wax.  Zinc  and  tin  are  each 
separately  melted  and  granulated  and  coated  with 
paraffin  wax  by  being  poured  into  a  wax  bath.  To 
make  an  alloy  of  these  metals  in  any  desired  propor- 
tions, the  aluminium  is  first  melted  and  a  mixtuio 
of  the  zinc  and  tin  is  then  stirred  in  gradually  and, 
when  all  is  molten,  the  alloy  is  poured. — A.  R.  P. 

Brass  scrap;  Treating  .     O.  C.  Ralston,  Assr. 

to  Hooker  Electro-Chemical  Co.   U.S.P.  1,402,015, 
3.1.22.    Appl.,  2.1.20. 

The  scrap  is  dissolved  to  give  a  solution  of  copper 
and  zinc  chlorides  and  this  solution  is  treated  with 
a  further  quantity  of  scrap  to  increase  its  zinc  con- 
tent and  to  remove  the  copper  as  cuprous  chloride. 

—A.  R.  P. 

Ores;  Process  of  desulphurising and  producing 

a     combustible     gas.       H.     Batchelor.       U.S.P. 
1,403,283,  10.1.22.     Appl.,  20.5.19. 

A  preheated  gas  mixture  containing  hydrogen,  e.g., 
water-gas,  is  brought  into  contact  with  a  sulphide 
ore  to  produce  a  mixture  of  hydrogen  and  hydrogen 
sulphide.— A.  R.  P. 

Blast  furnace.    W.  Winkelman.     U.S.P.  1,402,464, 
3.1.22.     Appl.,  10.2.20. 

A  blast  furnace  is  arranged  with  zones  in  the  fol- 
lowing order,  upwards :— a  crucible  with  arches 
above,  a  melting  zone  with  means  for  burning  a 
gaseous  fuel  completely,  a  reducing  and  carburising 
zone  with  means  in  its  lower  part  for  burning 
gaseous    fuel    incompletely    to    carbon    monoxide 

— B.  M.  V. 

Ore;  Process  of  treating  .     M.   K.   Codding. 

U.S.P.  1,402,740,  10.1.22.  Appl.,  1.12.19. 
The  ore  in  a  finely  powdered  state  is  violently  agi- 
tated at  ordinary  temperature  with  a  solution  con- 
taining a  neutral  electrolyte  and  an  alkaline  electro- 
lyte for  a  time  sufficient  to  effect~physical  changes 
in  the  granules,  after  which  the  pulp  is  subjected  to 
a  process  of  gravitational  separation.— J.  W.  D. 

Mercury;  Composition  of  matter  for  extracting  and 

recovering  from  sulphide  ores.     Process  for 

extracting  mercury.  M.  K.  Codding.  U.S.P. 
(a)  1,402,741  and  (b)  1,402,742,  10.1.22.  Appl., 
27.11.17  and  15.1.18.  Renewed  11.6.21. 
(a)  An  aqueous  solution  of  Chile  saltpetre  contain- 
ing a  minor  amount  of  sodium  carbonate  and  po- 
tassium carbonate  is  used  to  extract  mercury  from 
sulphide  ores,  (b)  The  comminuted  ore  is  agitated 
with  a  saline  solution  in  the  absence  of  reducing 
metals  and  the  separated  metallic  mercury  thereby 
recovered. — J.  W.  D. 


Molybdenum  ores;  Process  for  treating  .     A. 

Kissock.    U.S.P.  1,403,035,  10.1.22.  Appl.,  6.5.1S. 
Renewed  15.8.21. 

As  a  step  in  the  recovery  of  molybdenum  as  a  salt, 
a  molybdenum  compound  is  dissolved  in  a  solution 
of  an  alkali  sulphide.— J.  W.  D. 

Metallic  arc  welding  [;  Electrode  for  — — ].  J. 
Churchward,  Assr.  to  Wilson  Welder  &  Metals 
Co.,  Inc.  U.S.P.  1,403,230,  10.1.22.  Appl.,  12.2.20. 

An  electrode  for  electric  arc  welding  has  a  uniform, 
homogeneous  outer  coating  consisting  of  a  mixture 
of  carbon  and  a  silicate  binder. — L.  A.  C. 

Copper;  Apparatus  for  producing  — — .  J.  J.  Daw- 
son.    U.S.P.  1,403,235,  10.1.22.     Appl.,   14.2.20, 

A  converter  is  mounted  on  trunnions  one  of  which 
contains  an  air  passage  which  is  connected  by  a 
short  pipe  with  the  outer  top  end  of  a  horizontal 
wind-box  against  the  side  of  the  converter;  from 
which  box  horizontal  tuyeres  open  on  a  horizontal 
plane  into  the  converter.  Outside  the  converter  a 
primary  air  pipe  is  connected  at  one  end  with  the 
air  passage  in  the  trunnion  and  near  the  other  end 
by  a  valved  pipe  with  an  oil  tank,  while  a  6econd 
valved  pipe  connects  the  bottom  of  the  oil  tank  with 
the  primary  air  pipe  near  the  trunnion. — J.  W.  D. 

Chromium;  Method  of  treating  iron  ore  for  the  re- 
covery of .  P.  A.  Eustis,  Assr.  to  C.  P.  Perin. 

U.S.P.  1,403,237,  10.1.22.     Appl.,  12.6.20. 

The  larger  proportion  of  the  iron  is  dissolved  out 
of  the  ore,  leaving  the  chromium  as  a  residue. 

—J.  W.  D. 

Metals ;  Method  and  means  for  refining .   H.  M. 

Shimer.   U.S.P.  1,403,349,  10.1.22.  Appl.,  26.1.20. 

A  metallic  charge  including  a  reducing  material  is 
confined  within  a  melting  vessel  from  which  the 
atmosphere  is  substantially  excluded,  and  the  vessel 
is  subjected  to  a  temperature  sufficient  to  fuse  the 
metallic  charge  to  a  pasty  condition,  and  then  a  flux 
is  introduced  capable  of  bringing  the  pasty  mass  to 
a  fluid  state  at  a  higher  temperature.  During  these 
operations  a  gas  is  introduced  into  the  vessel  to 
prevent  the  inflow  of  air.  The  metal  is  subsequently 
cast  separate  from  the  slag. — J.  W.  D. 

Metals  [gold,  silver,  zinc,  lead,  copper}  from  ores; 
[Electrolytic'}     process    of    and    apparatus    for 

recovering .   J.  Allingham.   U.S.P.  1,403,463, 

10.1.22.     Appl.,  26.9.19. 

The  crushed  ore  is  mixed  with  a  solution  of  sodium 
chloride  and  sodium  sulphate  and  electrolysed. 
Chlorides  and  sulphates  of  the  metals  contained  in 
the  ore,  produced  by  the  action  of  chlorine  and 
sulphuric  acid  liberated  during  the  electrolysis, 
dissolve  in  the  solution,  from  which  the  metals  are 
recovered  by  subsequent  treatment. — J.  S.  G.  T. 

Light  metals ;  Process  of  recovering from  scrap. 

K.    Hess.      G.P.    343,614,    12.2.21.      Addn.    to 
318,304  (J.,  1920,  520  a). 

The  salt  bath  is  stirred,  either  mechanically  or  by 
hand,  before  and  during  the  addition  of  the  scrap 
metal  in  such  a  way  that  the  latter  is  intimately 
mixed  with  the  molten  salts. — A.  R.  P. 

Zinc  sulphide  ores;  Process  of  roasting .  R.  von 

Zelewski.  G.P.  343,735,  16.9.17. 
The  ore  is  roasted  either  with  a  direct  flame  or 
with  the  hot  gases  from  such  a  flame  in  such  a  way 
that  the  gases  are  burnt  as  completely  as  possible 
to  carbon  dioxide.  The  heating  is  carried  out  at  a 
temperature  high  enough  to  decompose  any  refrac- 
tory sulphates,  such  as  cobalt  sulphate,  that  may 
be  present  or  formed  in  the  early  part  of  the 
process. — A.  R.  P. 


Vol.  XLI.,  No.  4. J 


Cl.  XI.— ELECTRO-CHEMISTRY. 


147  A 


Zinc  and  other  readily  volatile  metals;  Process  of 

smelting  ores  of  .     R.  von  Zelewski.     G.P. 

343,737,  2.9.17. 

The  ore  charge  to  be  reduced  is  subjected  to  a  blast 
in  a  producer  having  a  travelling  grate,  the  volatile 
vapours  being  caught  in  the  usual  manner,  while 
the  combustible  gases  produced  are  utilised  for 
tiring  gas  furnaces.  The  use  of  travelling  grates 
renders  easy  the  removal  of  the  distillation  residues 
and  the  re-charging  of  the  producer  so  as  to  make 
the  operation  practically  continuous. — A.  R.  P. 

Cerium-iron    [sparking]    alloy;    Production    of    a 

surface   capable  of  being  soldered  on  .     F. 

Deimel.    G.P.  343,826,  5.8.20. 

The  alloy  is  ca6t  into  a  mould  that  has  been  coated 
with  a  powdered  metal,  such  as  iron  or  copper,  that 
is  capable  of  being  soldered. — A.  R.  P. 

Aluminium;  Soldering   of  .      A.   Passalacqua. 

U.S.P.  1,402,644,  3.1.22.     Appl.,  23.9.20. 
See  E.P.  150,480  of  1921;  J.,  1921,  475  a.     By  use 
of   the   composition   described,    aluminium   can    be 
soldered  with  pure  tin. 

Zinc  dust;  Process  and  apparatus  for  production  of 

■.       R.     Seiffert.       E.P.     155,572,     12.11.20. 

Conv.,  12.12.19. 

See  G.P.  337,906  of  1919;  J.,  1921,  664  a. 

Zinc;  Pecovery  of  by  electrolysis.     D.  Avery 

and  R.  H.  Stevens,  Assrs.  to  Electrolytic  Zinc  Co. 
of  Australasia  Proprietary,  Ltd.  U.S.P.  1,403,065, 
10.1.22.     Appl.,  16.3.20. 

See  E.P.  155,792  of  1920;  J.,  1921,  475  A. 

Briquetting  iron  oxide  [ore].  W.  Mathesius. 
U.S.P.  1,403,437,  10.1.22.  Appl.,  18.3.16. 
Renewed  12.4.21. 

See  G.P.  304,820  of  1915;  J.,  1918,  425  a. 

Alloys;  Method  of  producing .     A.  Pacz,  Assr. 

to  General  Electric  Co.  U.S.P.  1,402,088,  3.1.22. 
Appl..  5.4.17. 

See  E.P.  127,415  of  1918;  J.,  1919,  504  a. 

Lead  and  silver;  Recovery  of  from  sulphide 

ores  and  metallurgical  products.  D.  Avery,  Assr. 
to  Amalgamated  Zinc  (De  Bavay's),  Ltd.  U.S.P 
1,402,732,  10.1.22.    Appl.,  15.4.20. 

Ses  E.P.  141,044  of  1920;  J.,  1921,  589  a. 

Annealing  metal  sheets;  [Cover  carrying  a  depend- 
ing tube  for]  use  of  pyrometers  in  pots  for . 

D.  C.  Lysaght,  and  J.  Lysaght,  Ltd.  E.P. 
173,688,  14.12.20. 

Ores  containing  barytes.     G.P.  343,734.     See  VII. 

Casting  slag.     U.S.P.  1,402,363.     See  IX. 


XI.^ELECTfiO-CHEMISTRY. 

Insulating    oils;   Dielectric   [breakdown]    value   of 

.     R.  M.  Friese.     Wiss.  Veroffentl.  Siemens- 

Konzern,  1921,   1,  41—55.      Chem.  Zentr.,  1921, 
92,  IV.,  1349. 

Insulating  oil,  prepared  by  the  purification  and 
fractional  distillation  of  petroleum  oil,  has  when 
perfectly  dry  a  maximum  dielectric  (breakdown) 
value  of  230  kilovolts  per  cm.,  but  this  is  consider- 
ably reduced  by  absorption  of  moisture  from  the 
surrounding  air,  e.g.,  in  free  contact  with  air  of 
about  50%  relative  humidity,  the  value  is  reduced 
to  about  50  kilovolts  per  cm.  In  a  sample  of  oil 
containing  approximately  001%  of  water,  the  value 
was  only  22  kilovolts  per  cm.     The  value  of  moist 


oil  can  be  increased  to  130—140  kilovolts  per  cm. 
by  heating  the  oil  below  120°  C,  or  bv  filtration. 

*  — L.  A.  C. 

Silicic  acid  and  tungsten  hydroxide  sols.  Kroger. 
See  VII. 

Electrical  conductivity  of  acid  zinc  sulphate  solu- 
tions.   Tartar  and  Keyes.    See  X. 

Patents. 
Galvanic    batteries    or    cells    [;    Dry    electrolytic 

mixture  for ].    S.  Brydon  and  E.  Cummings. 

E.P.  173,251,  3.7.20. 

A  double  metal-ammonium  salt  is  mixed  with  a 
simple  ammonium  salt,  the  latter  being  preferably 
in  greater  quantity,  and  a  colloidal  gel  added  to 
the  damp  mixture.  Thus,  the  mixture  may  consist 
of  33%  of  zinc-ammonium  chloride,  62%  of  ammo- 
nium chloride,  and  5%  of  dextrin. — J.  S.  G.  T. 

Primary  cells  •  Manufacture  of .   H.  de  Olaneta, 

Assr.  to  Winchester  Repeating  Arms  Co.  U.S.P. 
1,402,285,  3.1.22.  Appl.,  26.11.19. 
The  depolariser  used  in  a  primary  cell  is  treated, 
prior  to  assembling  the  cell,  with  a  solution  con- 
taining one  or  more  of  the  salts  present  in  the 
electrolyte,  in  order  to  remove  deleterious  soluble 
substances. — J.  S.  G.  T. 

Storage  batteries;  Non-fluid  electrolytes  for  — — . 
A.  H.  Williams,  Assr.  to  Ionite  Storage  Battery 
Co.     U.S.P.  1,403,462,  10.1.22.    Appl.,  27.4.20. 

A  non-fluid  electrolyte  consists  of  sodium  silicate 
and  a  sulphate  which,  when  electrolysed,  liberates 
its  sulphuric  radicle  as  sulphuric  acid. 

—J.  S.  G.  T. 

Galvanic  cell;  High-potential  .     Physikalisch- 

Chemische  Werke  A.-G.     G.P.  344,508,   18.8.17. 
Conv.,  1.11.15. 

A  diaphragm  cell  is  constituted  of  a  zinc  electrode 
immersed  in  a  solution  of  caustic  potash  and  a 
carbon  electrode  immersed  in  an  electrolyte  of  the 
approximate  composition :  560  g.  of  anhydrous 
sodium  bichromate,  590  c.c.  of  sulphuric  acid  of 
sp.  gr.  1'84,  and  1  litre  of  water,  care  being  taken 
in  preparing  the  solution  to  prevent  loss  of  oxygen. 
By  the  use  of  caustic  potash  in  place  of  caustic 
soda,  a  larger  initial  current  and  total  output  are 
afforded.— J.  S.  G.  T. 

Electrolytic  cell  [for  precipitating  metallic  oxides] 
and  method  of  operating  the  same.  H.  H.  Wikle 
U.S.P.  1,402,986,  10.1.22.  Appl.,  13.4.18. 
Renewed  4.4.21. 

Current  is  passed  between  electrodes  of  the  metal 
immersed  in  a  solution  containing  a  soluble  chloride 
of  the  metal,  the  solution  is  heated,  and  the  polarity 
of  the  electrodes  reversed  periodically. — J.  S.  G.  T. 

[Electric]  furnace;  Induction .     J.  L.  Brown, 

Assr.   to  C.   W.    Smiley,   J.   Cohen,    and   G.   L. 
Rogers.  U.S.P.  1,402,832, 10.1.22.  Appl.,  22.12.20. 

Electrically  conducting  material  is  heated  in  a 
non-conducting  container  surrounded  by  a  primary 
winding  of  fusible  material  contained  in  a  helical 
channel  through  which  the  fusible  material  flows 
when  molten.  The  winding  is  inserted  in  an  ener- 
gising circuit,  and  means  are  provided  for  the 
escape  of  molten  material  from  the  channel,  and  the 
supply  of  fresh  material  thereto,  so  as  to  maintain 
continuity  of  flow. — J.  S.  G.  T. 

Ozone  machine.  A.  P.  Haase,  Assr.  to  Ozone  Pure 
Airifier  Co.  U.S.P.  1,403,025,  10.1.22.  Appl., 
14.4.21. 

An  ozoniser  comprises  an  electrode  in  contact  with 
the  inner  surface  of  a  cylindrical  dielectric,  which 

B  3 


148  a 


Cl.  XII.— FATS  ;    OILS  ;    WAXES.     Cl.  XIII.— PAINTS  ;    PIGMENTS,  &c.       [Feb.  28, 1922. 


is  surrounded  by  an  electrode  formed  of  two  separ- 
able semi-cylindrical  plates  provided  with  clamping 
devices  for  binding  them  to  the  dielectric. 

—J.  S.  G.  T. 

Silicon  carbide  electrical  resistance  material  for  use 
immersed  in  oil.  C.  Conradty.  G.P.  344,049, 
21.10.20. 

The  resistance  body  is  impregnated  with  a  solution 
of  cellon  (cellulose  acetate),  current  being  passed 
during  the  process.  Thereby,  infiltration  of  oil  into 
the  carbide,  with  consequent  disintegration  of  the 
resistance  bodv  in  subsequent  use,  is  prevented 

—J.  S.  G.  T. 

Ozone  generating  apparatus.  R.  Goedicke.  E.P. 
173,692,  18.12.20. 

See  G.P.  336,943  of  1919;  J.,  1921,  593  a. 
Purification  of  gas.     E.P.  167,185.     See  IIa. 
Welding  electrode.    U.S. P.  1.403,230.     See  X. 


XII.-FATS;    OILS;    WAXES. 

Fatty  acids;  Iicactions  between  the  higher and 

salts  of  the  lower  fatty  acids.    A.  W.  Knapp  and 
R.  V.  Wadsworth.  Chem.  News,  1922,  124,  44—45. 

If  finely  powdered  sodium  acetate  is  added  to  oils 
or  melted  fats  a  gelatinous  precipitate  is  generally 
produced.  Sodium  propionate  and  sodium  butyrate 
give  similar  results.  Castor  oil  gives  no  jelly.  Pure 
glycerides  do  not  give  this  reaction,  which  is  due 
to  the  free  fatty  acid  present.  The  jelly  consists  of 
soaps  formed  by  the  interaction  of  the  salt  and  the 
free  fatty  acids.  It  is  a  reversible  colloid.  Sodium 
acetate  is  soluble  in  oleic  acid  forming  a  viscous 
solution.  When  the  solution  is  cooled  it  becomes  a. 
thick  jelly.  If  the  fatty  acid  is  dissolved  in  absolute 
alcohol  and  the  acetate  added,  a  gelatinous  precipi- 
tate of  soap  is  formed  almost  immediately.  The 
reaction  is  reversed  by  adding  water. — H.  C.  R. 

Acetyl  value  of  oils  and  fats;  Sapid  method  for  de- 
termining the .    A.  Levs.    J.  Pharm.  China., 

1922,  25,  49—56. 

The  following  values  are  determined  : — The  saponif. 
value,  S,  of  the  oil  or  fat,  the  saponif.  value,  S',  of 
the  acetylated  oil  or  fat,  and  the  ratio,  K,  between 
the  weights  of  the  acetylated  and  the  original  oil  or 
fat.  The  acetyl  value,  A,  is  then  given  by  the 
formula  A  =  S'-S/K.  To  determine  K  a  weighed 
quantity  of  the  oil  or  fat  is  boiled  with  ten  times  its 
volume  of  acetic  anhydride  under  a  reflux  condenser 
for  2  hrs.,  cooled,  diluted  with  benzene,  and  trans- 
ferred to  a  tared  dish.  The  benzene  and  excess  of 
acetic  anhydride  are  evaporated  off  on  a  water  bath 
and  the  acetylated  oil  or  fat  weighed.  The  acetyl 
value  of  an  oil  or  fat  dissolved  in  a  neutral  volatile 
solvent  having  no  action  on  acetic  anhydride  may 
be  obtained  without  weighing  the  acetylated  pro- 
duct as  follows.  One  weighed  portion  (P')  of  the 
mixture  is  acetylated  and  the  excess  of  acetic  an- 
hydride removed  as  above.  It  is  then  saponified  witii 
alcoholic  potash  giving  a  saponif.  value  S'.  A 
further  weighed  portion  is  saponified  without 
acetylation,  giving  a  saponif.  value  S.  S-S  =  A0 
represents  the  quantity  of  potassium  hydroxide  re- 
quired to  neutralise  the  acetic  acid  which  has  com- 
bined with  1  g.  of  the  mixture.  This  has  increased 
its  weight  by  42  x  AoH-56  =  0-75  A0  Therefore  the 
weight  P'  'has  become  P"  =  P'(l  +  0'75  Aq).  A 
saponif.  value  S"  can  therefore  be  calculated  based 
on  the  weight  of  acetvlated  oil  or  fat.  The  acetyl 
value  is  given  by  A='S"-S/K.— H.  C.  R. 


Glycerin;  Precipitation  of  impurities  in  crude  

with  lead  hydroxide.  K.  Fricke.  Z.  Deuts.  Oel- 
und  Fettind.,  1921,  41,  665.  Chem.  Zentr.,  1922 
93,  II.,  160. 

5 — 6  G.  of  90%  glycerin  is  treated  with  freshly  pre- 
pared lead  hydroxide  obtained  by  treating  05  g.  of 
lead  nitrate  with  0-25  g.  of  sodium  hydroxide  and 
washing  with  water,  the  wet  precipitate  being 
transferred  from  the  filter  to  the  glycerin.  Lead 
compounds  are  at  once  precipitated.  These  are 
filtered  off  and  washed  free  from  glycerol  with  cold 
water.  The  excess  of  lead  is  removed  from  the  fil- 
trate with  hydrogen  sulphide,  filtered  off,  and 
washed  free  from  glycerol.  The  hydrogen  sulphide 
is  removed  by  blowing  air  through  the  colourless 
solution,  which  is  then  evaporated  to  90 — 95  c.c, 
made  up  to  100  c.c,  and  the  glycerol  estimated  by 
a  density  determination.  This  method  gives  con- 
stant results,  which  are  however  always  lower  than 
those  obtained  by  means  of  the  acetin  method.  It 
has  too  many  sources  of  error  to  be  of  value  except 
for  technical  purposes. — H.  C.  R. 

Chloroethylenes.     Margosches  and  Baru.    See  XX. 

Patents. 

Fuller's    earth.       U.S.P.    1.402,112    and   1,403,198. 
See  IIa. 


XIII.-PAINTS ;    PIGMENTS;     VARNISHES; 
RESINS. 

Varnishes;    Changes    occurring    during    storage    of 
.  H.Wolff.  Farben-Zeit.,  1922,  27, 1047—1048. 

A  clear  varnish  which  had  become  turbid  on  storage 
in  a  cold  cellar  apparently  cleared  on  maintaining 
at  18° — 20°  C.  for  several'  days,  but  within  a  week 
subsequently  the  varnish  had  "sanded,"  without 
having  been  subjected  to  an  excessive  drop  in  tem- 
perature. The  cause  of  the  phenomenon  proved  to 
be  as  follows.  Tanking  at  low  temperature  had 
resulted  in  crystallisation  of  calcium  and  siccative 
compounds,  subsequent  warming  having  caused 
partial  solution  only,  the  insoluble  particles  being 
microscopic  in  dimensions.  By  subsequent  slight 
cooling  to  12° — 15°  C,  the  crystalline  nuclei  in- 
creased in  size  and  the  agitation  to  which  the 
varnish  was  subjected  during  transport  from  the 
factory  hastened  the  growth  rapidly  until  the  separa- 
tion of  crystal  aggregates  reported  as  "sanding" 
manifested  itself.  Complete  solution  of  the  separated 
crystalline  masses  took  place  only  on  warming  to 
50° — 60°  C.  In  some  cases  of  prolonged  storage  at 
low  temperatures,  serious  loss  of  drying  power 
without  appreciable  chemical  change  has  resulted, 
Many  faults  in  varnishes,  boiled  oils,  and  some  stiff 
paints  are  attributable  to  these  products  having 
suffered  rapid  and  severe  atmospheric  temperature 
changes. — A.  de  W. 

Patents. 
Oil    pigment    pastes;    Manufacture    of   from 

water  pastes.     Cookson  and  Co.,  Ltd.,  and  H.  E. 

Clarke.  E.P.  173,350,  9.10.20  and  30.5.21. 
Oil  pastes  containing  pigments  preferably  with 
drying  oils  such  as  linseed  oil,  can  be  prepared  by 
agitating  an  aqueous  paste  or  slime  of  the  pigment 
in  the  presence  of  a  small  proportion  of  an  activator 
which  facilitates  the  transfer  of  the  pigment.  The 
activator  may  consist  of  lead  oxide,  hydroxide, 
acetate,  borate,  or  carbonate,  or  of  a  borate  or 
carbonate  of  cobalt,  aluminium,  manganese,  or  one 
of  the  alkaline-earth  metals.  The  liberated  water  is 
separated  mechanically,  any  adherent  moisture 
being  subsequently  removed  by  evaporation. 

— D.  F.  T. 


vol.  XLI.,  No.  4]     Cl.  XIV.— INDIA-RUBBER,  &c.     Cl.  XV.— LEATHER  ;    BONE,  &o. 


149a 


Carbon  black;  Method  of  producing  .  B.  W. 

Rumbarger,  Assr.  to  Southern  Carbon  Co.  U.S. P. 

(a)  1,401,737  and  (11)  1,-1(11,738,  27.12.21.  Appl., 
5.10.2(1  and  9.3.21. 

Carbon  black  is  produced  from  a  hydrocarbon  flame 
from  which  oxygen  is  excluded  by  a  gaseous  screen 
consisting  of  a  supplemental  flame,  (b)  A  natural 
hydrocarbon  gas,  chlorine,  and  a  liquid  hydrocarbon 
are  brought  together  in  a  chlorinating  chamber,  and 
the  hydrochloric  acid  gas  formed  is  washed  out. 
The  remaining  gas  has  an  increased  carbon  and  a 
diminished  hydrogen  content  compared  with  the 
original  hydrocarbon  gas  and  is  used  for  the  produc- 
tion of  carbon  black. — A.  de  W. 

Carbon;  Process  of  producing  finely  divided  . 

R.  W.  Poindexter,  Assr.  to  N.  Goodwin.     U.S. P. 
1,402,957,  10.1.22.     Appl.,  6.1.20. 

A  vaporised  hydrocarbon,  a  little  below  its  decom- 
position temperature,  is  mixed  with  a  gas  above 
this  temperature  with  consequent  decomposition 
and  formation  of  free  carbon. — D.  P.  T. 

Titanium,  complexes  [pigments]  and  method  of  pro- 
ducing same.  H.  H.  Buckman.  U.S. P.  1,402,256, 
3.1.22.     Appl.,  15.11.20. 

A  white  titanium  complex  consisting  essentially  of 
very  fine  and  dense  particles  is  produced  by  precipi- 
tation at  temperatures  substantially  above  100°  C. 
and  under  a  pressure  substantially  above  that  of 
the  atmosphere. — A.  de  W. 

Cadmium    yellow;   Process  for  the   preparation   of 

.     Farbenfabr.  vorm.  F.  Bayer  und  Co.    G.P. 

343,953,  21.3.19. 

A  solution  of  a  cadmium  salt  is  treated  with  barium 
sulphide,  the  precipitate  is  ignited,  and  cooled  by 
quenching  it  in  water.  The  product  has  a  good 
greenish-yellow  colour. — A.  R.  P. 

Manganese  violet;  Process  for  the   preparation  of 

.     Farbenfabr.  vorm.  F.  Baver  und  Co.     G.P. 

344,156,  11.10.19. 

Manganese  peroxide  or  other  higher  oxide  of  man- 
ganese is  fused  with  ammonium  phosphate  and 
phosphoric  acid.  To  obtain  a  product  with  a  bluer 
tint  part  of  the  manganese  is  replaced  by  an  iron 
compound. — A.  R.  P. 

Benin;  Method  of  modifying  and  the  product 

thereof.   G.  W.  Miles.    U.S. P.  1,401,348,  27.12.21. 
Appl.,  7.1.20. 

Resin  is  incorporated  with  a  substance  which  aids 
oxidation  and  is  then  oxidised  until  capable  of  form- 
ing an  ammoniate  completely  soluble  in  water. 
(Cf.  U.S.P.  1,354,575;  J.,  1920,  756  a.)— A.  G.  P. 

Condensation    products    from    orthocresol;    Plastic 
— .    L.  H.  Baekeland.    U.S.P.  1,401,953,  3.1.22. 

Appl.,  10.5.13. 

A  moulding  composition  comprises  a  number  of  con- 
densation products  of  phenolic  substances  and  a 
substance  containing  a  mobile  methylene  group,  the 
mixture  including  a  condensation  product  of 
o-cresol  in  excess  of  the  proportion  existing  in  con- 
densation products  derived  from  commercial  cresol 
mixtures. — A.  de  W. 

Besin  from  wood;  Process  and  apparatus  for  the 

extraction  of with  turpentine  oil.     A.  Luck. 

G.P.  343,160,  1.2.19. 

A  container  is  filled  with  pieces  of  wood  and  turpen- 
tine oil,  and  heated  to  140°— 150°  C,  so  that  water 
and  a  portion  of  the  oil  escape  as  vapour.  The 
turpentine  oil  soaks  through  the  wood,  extracts  the 
resin,  and  is  run  off  from  the  container.  The  oil 
is  pumped  back  into  the  container  and  the  process 
repeated  until  the  sp.  gr.  of  the  solution  no  longer 


increases.  The  resin  is  recovered  by  distilling  the 
solution,  and  the  final  extraction  of  the  wood  is 
ell,,  ted  with  fresh  turpentine  oil. — F.  M.  R. 

Lithopone;  Manufacture  of  .     J  Mitchell 

E.P.  173,567,  1.9.20. 

See  U.S.P.  1,356,387  of  1920;  J.,  1920,  826  a. 

Phenolic   condensation    products;    Manufacture    of 

.     Redmanol  Chemical  Products  Co.,  Assees. 

of  L.  V.  Redman,  A.  J.  Weith,  and  F.  P.  Brock. 
E.P.  146,159,  24.6.20.  Conv.,  6.6.18. 
See  U.S.P.  1,339,134  of  1920;  J.,  1920,  460  a. 
(Reference  is  directed,  in  pursuance  of  Sect.  7,  Sub- 
sect.  4,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  9291  of  1914,  and  119,252-3;  J.,  1915, 
562;  1918,  708  a.) 


XIV.-INDIA-fiUBBEB ;  GUTTA-PERCHA. 

Patent. 

"Rubber;  Process  of  vulcanising ami  the  manu- 
facture of  an  accelerator  for  use   therein.     H. 
Wade.      From   Goodyear    Tire   and    Rubber   Co. 
E.P.  (a)  173,545,  and  (b)  173,546,  6.7.20. 
(a)   The   strongly   basic   products   obtained   by   the 
reduction  of  p-nitroso  compounds,  such  as  p-nitroso- 
dimethylaniline,  with  a  less  than  bimolecular  pro- 
portion of  hydrogen  sulphide   are  superior  to  the 
parent  nitroso-compound  as  vulcanisation  accelera- 
tors,   being   more   stable   and    less    poisonous,      (b) 
Treatment    with    carbon    bisulphide    converts    th<- 
preceding  products  into  derivatives  which  are  also 
of  value  as  accelerators  of  vulcanisation. — D.  F.  T. 

XV.-LEATHER;  BONE;  HORN;  GLUE. 

Pelt;  Influence  of  formaldehyde  on  the  adsorption 

by   of   acids    and   alkalis.      O.    Gerngross. 

Collegium,  1921,  489—491. 

Alkalis  are  absorbed  by  hide  powder  according  to 
the  Freundlich  adsorption  law.  Hide  powder  which 
has  been  treated  with  formaldehyde  absorbs  a  much 
larger  amount  of  alkali.  This  disproves  the  claim 
that  the  chemical  properties  of  the  pelt  or  hide  sub- 
stance play  no  part  in  adsorption,  particularly  in 
tanning.  There  is  a  chemical  change  in  the  hide 
substance  in  the  aldehyde  tannage,  but  whether  the 
chemical  change  is  the  cause  of  the  tannage  remains 
to  be  proved.  Hide  powder  treated  with  formalde- 
hyde absorbs  less  chromium  than  untreated  powder 
from  chrome  tanning  liquors,  but  it  is  not  certain 
if  this  is  due  to  the  colloidal  nature  of  the  chromium 
salts.— D.  W. 

Chestnut  extract;  Measurement  of  the  iron  con- 
tamination of  .     T.  G.  Greaves.     J.  Amer. 

Leather  Chem.  Assoc,  1921,  J6,  685—689. 
From  tests  on  factory  samples  it  is  computed  that 
the  distribution  of  iron  in  the  manufacture  of 
chestnut  extract  is  as  follows,  the  figures  expressing 
the  iron  as  a  percentage  of  the  units  or  weight  of 
pure  tannin,  and  the  untreated  wood  being  taken  as 
yielding  8%  of  tannin  : — Iron  in  untreated  extract, 
0-024  %  ;  in  spent  wood,  0'060% .  Of  the  total  0"084  % 
of  iron,  the  proportion  originally  in  the  wood  is 
0-006  %.  0-026%  is  added  by  the  chipper  and  a  7-ft 
drag,  0-0004  (to  0'003%)  bv  the  water  used  for 
leaching,  and  00516  (to  0049%)  by  the  shredder  and 
conveyors. 

Chrome  tannage.  VI.  Influence  of  neutral  salts  on 
the  progress  of  tannage.  D.  Burton  and  A. 
Glover.  J.  Soc.  Leather  Trades'  Chem.,  1922, 
6,  6—14. 

Experiments  were  made  with  pelt  to  determine  the 


!50a 


Cl.  XV.— LEATHER;  BONE;  HORN;  GLUE. 


[Feb.  23, 1922. 


absorption  of  acid  and  chromium  from  chrome 
tanning  liquors.  The  addition  of  sodium  chloride 
retarded  the  penetration  of  the  chromium  to  a 
greater  extent  than  did  that  of  sodium  or  potassium 
sulphates,  while  the  acidity  was  increased  by  6odium 
chloride  and  very  much  decreased  by  sodium  and 
potassium  Bulphates.  Pelt  tanned  in  liquors  to 
which  sodium  chloride  had  been  added  required  the 
longest  time  to  give  complete  absence  of  shrinkage 
on  plunging  into  boiling  water  for  one  minute. 
Sulphates  raised  the  basicity  figure  of  the  chromium 
salt  on  the  fibre  to  a  greater  extent  than  did  sodium 
chloride.  Green  and  violet  chromium  salts  had 
different  tanning  properties  on  the  pelt. — D.  W. 

Chrome  tanning.  VII.  Determination  of  the  basicity 
of  chrome  [tanning']  liquors  by  the  electrical  con- 
ductivity method.  W.  R.  Atkin  and  D.  Burton. 
J.  Soc.  Leather  Trades'  Chem.,  1922,  6,  14—19. 
The  method  of  Thomas  and  Poster  (J.  Amer. 
Leather  Chem.  Assoc,  1920,  510)  for  the  determina- 
tion of  the  basicities  of  chrome  tanning  liquors  by 
titration  with  a  standard  barium  hydroxide  solution 
has  been  used  on  chromium  sulphate,  chrome  alum, 
commercial  chrome  tanning  liquors,  and  solutions 
of  chromium  sulphate  with  additions  of  sodium 
chloride  or  sodium  sulphate.  The  end  point,  the 
point  of  minimum  electrical  conductivity,  is  difficult 
to  ascertain  in  presence  of  neutral  salts,  and  as  all 
commercial  chrome  tanning  liquors  contain  neutral 
salts  the  method  is  unsuitable  for  control  purposes 
in  the  tannery. — D.  W. 

Synthetic  tannins  and  their  uses  in  leather  manu- 
facture. G.  E.  Knowles.  J.  Soc.  Leather  Trades' 
Chem.,  1922,  6,  19—23. 
A  brief  eurvey  of  synthetic  tannins  in  which  is 
emphasised  the  failure  of  the  official  method  of 
tannin  analysis  as  a  means  of  ascertaining  their 
quality.  The  acidity  to  methyl  orange  and  the 
colour  and  quality  of  the  leather  produced  by 
tanning  a  small  piece  of  pelt  are  the  best  means  of 
judging  different  commercial  products. — D.  W. 

Tannin;  Effect  of  hard  water  on .     H.  C.  Reed. 

J.  Amer.  Leather  Chem.  Assoc.,  1922,  17,  26—32. 

The  presence  of  calcium  sulphate  in  water  used  for 
extracting  tanning  materials  results  in  a  slight  loss 
of  tannin  but  the  non-tans  are  not  increased  by  the 
amount  that  would  be  expected.  Analyses  show  a 
loss  in  tannin  and  an  increase  in  insoluble  matter, 
but  this  does  not  necessarily  mean  a  loss  of  tannin 
in  actual  practice.  There  may,  however,  be  a  loss 
to  the  tanner  owing  to  the  repressive  action  of  the 
dissolved  salts  upon  the  swelling  of  the  hide. 

— D.  W. 

Tannin  analysis;  The  official  method  of .   H.  C. 

Reed    and    T.    Blackadder.     J.    Amer.    Leather 
Chem.  Assoc.,  1922,  17,  9—15. 

It  is  necessary  that  any  official  method  of  tannin 
analysis  should  give  concordant  results,  and  that  it 
should  indicate  the  tanning  value  of  the  material  to 
the  tanner.  There  is  a  difference  between  "  tannin 
value  "  and  "  tanning  value,"  the  former  being 
dependent  on  the  definition  of  tannin.  No  method 
has  been  devised  to  parallel  the  actual  tannery  con- 
ditions, but  the  present  method  gives  a  good  esti- 
mate of  the  amount  of  matter  that  can  be  intro- 
duced from  the  tanning  material  into  the  hide  in 
the  production  of  sole  leather.  There  are  three 
states  of  a  vegetable  tannin  in  solution,  the  most 
finely  divided  portion  which  is  in  true  solution,  the 
major  portion  which  is  colloidal,  and  a  third  portion 
which  is  in  suspension.  It  is  probable  that  these 
three  are  in  equilibrium,  and  in  detannising  with 
hide  powder  the  colloidal  tannin  is  removed,  and 
the  suspended  tannin  disintegrates  into  colloidal 
particles,  and  it  appears  as  if  the  insoluble  matter 
tans.     Some  of  the  tannin   in  true  solution   asso- 


ciates to  form  larger  colloidal  particles  also.  Some 
improvement  is  necessary  in  the  determination  of 
the  insoluble  matter  in  tannin  analyses  so  as  to 
parallel  the  tanning  process.  The  absorption  of 
non-tans  is  a  source  of  error  in  the  official  method 
of  tannin  analysis.  The  tanner  uses  less  hide  per 
unit  of  tanning  matter  than  is  used  in  analysis. 
The  acidity  of  the  tanning  solutions  greatly  influ- 
ences the  analysis. — D.  W. 

[Chrome     leather     analysis^-]     Decomposition     of 

sodium  peroxide  solutions  [used  in ]  by  means 

of  metallic  iron.  R.  P.  Innes.  J.  Soc.  Leather 
Trades'  Chem.,  1922,  6,  4—5. 
In  the  oxidation  of  the  ash  from  chrome  leathers 
with  sodium  peroxide  in  an  iron  crucible,  the  excess 
peroxide  is  destroyed  more  rapidly  than  when  a 
nickel  crucible  is  used.  The  usual  method  of  esti- 
mating chromium  in  chrome  tanning  liquors  can  be 
greatly  accelerated  by  introducing  a  small  piece  of 
bright  sheet  iron  into  the  flask  in  which  the  oxida- 
tion is  conducted.  After  boiling  for  1  min.  and 
cooling,  the  iron  is  removed,  the  solution  acidified, 
treated  with  potassium  iodide,  and  titrated  as 
usual. — D.  W. 

Spent  tanwood  waste.    A.  Harvey.   J.  Soc.  Leather 

Trades'  Chem.,  1922,  6,  24—26. 
Published  data  are  summarised  indicating  the  pos- 
sibility of  utilising  spent  bark  and  tanning  woods 
for  the  production  of  acetic  acid  etc.  by  distillation. 
Spent  wattle  bark  is  being  used  for  paper-making. 

— D.  W. 

Gelatin;    Action    of    some    mixtures    of    salts    on 

sxcollen .      A.  Scala.      Ann.  d'Ig.,  1921,  31, 

289—305.  Chem.  Zentr.,  1922,  93,  I.,  100. 
(Cf.  J.,  1921,  274  a.) 
Gelatin  absorbs  salts  up  to  a  maximum,  e.g.,  2  g. 
per  100  g.  of  dry  gelatin  for  sodium  chloride.  The 
absorbed  salt  is  not  completely  removed  by  washing. 
Disodium  phosphate  and  sodium  chloride  are 
absorbed  from  a  mixture  exactly  the  same  as  if 
they  were  separate.  There  is  no  connexion  between 
the  reaction  of  the  water  and  the  amount  of  salt 
absorbed.  Sodium  chloride  represses  swelling, 
disodium  phosphate  increases  it. — D.  W. 

Gelatin-hydrochloric   acid;    The    equilibrium   . 

II.     R.  Wintgen  and  H.  Vogel.     Kolloid-Zeits., 
1922,  30,  45—53.     (Cf.  J.,  1921,  231  a.) 

Gelatin  acts  towards  hydrochloric  acid  as  a  mono- 
acid  base  of  molecular  weight  885,  calculated  to  the 
anhydrous  material,  or  1070  calculated  to  the 
air-dried  material.  It  has  an  ionisation  constant 
5'74xl0~".  A  turbidity  or  precipitation  is  observed 
near  the  iso-electric  point.  The  equivalent  conduc- 
tively  at  infinite  dilution  at  25°  C.  is  A  =  88"5  and 
the  ionic  conductivity  of  the  gelatin  ion  is  13. 
/3-Glutin  behaves  toward  hydrochloric  acid  similarly 
and  has  about  one  half  the  molecular  weight  of 
gelatin.— J.  P.  S. 

Patents. 

Tanning  agents;  Manufacture  of  .     (a,  b)  H. 

Renner  and  W.  Moeller,  (c)  Gerb-  und  Farbstoff- 

werke  H.  Renner  und  Co.  A.-G.    E.P.  (a)  146,166, 

(b)  146,1S0,  and  (c)  146,181,  25.6.20.     Conv.,  (a) 

16.2.14,  (b)  28.2.14,  and  (c)  12.11.18. 

(a)  A  wholly  or  partly  purified  cyclic  hydrocarbon, 

e.g.,  naphthalene  or  anthracene  oil,  is  heated  below 

100°  C.  with  sufficient  sulphuric  acid  to  sulphonate 

the    material    and    subsequently    to    convert    the 

product    into    a   resinous   mass    readily    soluble    in 

water.     Formaldehyde,  e.g.,  0-5%  of  40%  solution, 

or  other  condensing  agents  such  as  ketones,  phos- 

phoryl  chloride,  or  thionyl  chloride,  may  be  added 

before  or  after  the  treatment.     After  neutralisation 

of  excess  sulphuric  acid  and  subsequent  separation 

by  crystallisation  or  filtration  of  the  alkali  sulphate 


Vol.  XIX,  Xo.  4]      Cl.  XVI.— SOILS,  &c.     Cl.  XVII.— SUGARS  ;    STARCHES  ;    GUMS. 


151  A 


or  alkaline-earth  sulphate  formed,  the  free  sulphonic 
acids  present  may  be  wholly  or  partially  neutralised, 
and  the  product  mixed  with  a  vegetable  tanning 
agent,  (b)  The  acid  resins  obtained  as  by-products 
in  refining  mineral  oils  are  heated  with  a  sufficient 
quantity  of  a  cyclic  hydrocarbon  to  react  with  the 
free  sulphuric  acid  present,  either  alone  or  in  the 
presence  of  formaldehyde  or  other  condensing 
agents,  (c)  The  tanning  properties  of  solutions  of 
acid  resin  or  acid  tar  are  improved  by  adding 
chromium,  iron,  or  aluminium  hydroxide  or  carbon- 
ate equivalent  to  or  in  excess  above  that  required 
to  neutralise  the  free  sulphuric  acid,  or  by 
heating  with  a  solution  of  a  metal  chromate  in  equi- 
molecular  proportion  to  the  quantity  of  free 
sulphuric  acid.  (Reference  is  directed,  in  pur- 
suance of  Sect.  7,  Sub-sect.  4,  of  the  Patents  and 
Designs  Acts,  1907  and  1919,  to  (a)  E.P.  19,502  of 
1890,  10,321,  10,322,  and  10,323  of  1893,  4648  of 
1911,  7137,  7138,  and  18,259  of  1913,  144,657  and 
144,677,  and  (c)  E.P.  19,502  of  1890,  and  8069  of 
1913.)— L.  A.  C. 

Tanning  agents;  Manufacture  of and  applica- 
tion thereof.  Chem.  Fabr.  Worms  A.-G.  E.P. 
148,126,  9.7.20.     Conv.,  20.7.16. 

Suxphonated  or  unsulphonated  aromatic  hydroxy- 
compounds  or  metallic  salts  thereof,  capable  of 
coupling  with  a  diazo-compound,  are  coupled  with 
a  sulphonic  acid  of  an  aromatic  hydrocarbon  or  a 
metallic  salt  thereof  in  presence  of  a  suitable  con- 
densing agent.  The  coupled  product,  which  may  or 
may  not  be  further  sulphonated,  is  used  in  aqueous 
solution,  alone  or  in  admixture  with  other  tanning 
agents,  for  tanning  hides  and  skins. — D.  W. 

Iron-[tanned~]  leather;  Process  for  the  manufacture 

of  .      O.  Rohm.      U.S. P.  1,397,397,  15.11.21. 

Appl.,  9.7.20. 

See  E.P.  147,797  of  1920;  J.,  1922,  69  a. 

Tanning  composition.  R.  B.  Cock,  Assr.  to  W.  W. 
Williams.  U.S.P.  1,402,283,3.1.22.  Appl. ,31. 10.18. 

See  E.P.  121,325  of  1917;  J.,  1919,  83  a. 

XVI.-S0ILS ;  FEfiTILISEBS. 

Potash  shales.     Austin  and  Parr.     See  VII. 

Patents. 
Fertiliser;   Treatment   of   gas   liquor   in   order   to 

extract   a  .     Ges.    fur  Landwirtschaftlichen 

Bedarf,  and  R.  Mandelbaum.  E.P.  153,006, 
25.10.20.  Conv.,  24.2,19. 
Gas  liquor  is  treated  with  sulphur  or  ammonium 
sulphide,  and  air  is  blown  through  the  mixture. 
Sulphur  compounds  of  the  liquor  are  decomposed, 
sulphur  separates,  and  cyanides  are  converted  into 
thiocyanates.  The  latter  are  removed  by  distilla- 
tion.    The  distillate  is  used  as  a  liquid  fertiliser. 

—A.  G.  P. 

Acid    phosphate    or    superphosphate;    Process    for 

manufacturing   .       W.    T.    Dovle,    Assr.    to 

Sturtevant  Mill  Co.  U.S.P.  1,401,527,  27.12.21. 
Appl.,  29.3.21. 
Ground  phosphate  rock  and  acid  are  continuously 
mixed  together  and  react  to  form  soluble  calcium 
phosphate  while  being  conveyed  from  the  mixer. 
The  resulting  product  is  subsequently  disintegrated 
to  facilitate  the  escape  of  vapour. — D.  J.  N. 

Fertilising  substances;  Process  for  the  treatment  of 

undecomposed   .       D.    Lo   Monaco.       U.S.P. 

1,402,638,  3.1.22.     Appl.,  1.3.21. 
Incompletely  decomposed  fertilising  substances  are 
subjected  to  the  action  of  halogen  gases,  and  thereby 
completely  decomposed   and   rendered   suitable   for 
immediate  use. — A.  G.  P. 


Fertilisers;  Process  for  utilisation  of  silicate  rocks, 

especially  for  use  as  .     Chem.  Werke  Rhen- 

ania,  and  A.  Messerschmitt.    G.P.  300,643,  3.7.14. 
Addn.  to  300,642  (J.,  1921,  863  a). 

The  rock,  especially  leucite,  is  used  in  the  form  of 
an  impalpable  powder,  and  the  sodium  salt  used 
for  decomposition  of  the  silicate  is  kept  in  circula- 
tion, the  liquid  portion  of  the  reaction  product 
being  freed  from  most  of  the  potassium  salts  by 
crystallisation  and  then  used  for  the  treatment  of  a 
further  quantity  of  the  silicate. 


XVIL-SUGAHS ;  STARCHES;  GUMS. 

Sugar   refinery   liquors;   Mineral   constituents  re- 
tained   by    decolorising    carbon    ("  carboraffin  ") 

during    the    treatment    of   .     V.    Skola.     Z. 

Zuckerind.  Czechoslov.,  1922,  45,  165—171. 

Refinery  liquors  were  passed  through  cakes  of  de- 
colorising carbon  ("carboraffin")  deposited  in  the 
frames  of  a  filter-press  (c/.  G.P.  317,449;  J.,  1920, 
380  a),  the  cakes  being  afterwards  washed  with 
water  in  order  to  remove  the  sugar  remaining. 
Washing  removed  only  6"4%  of  the  mineral  matter 
which  had  been  adsorbed  by  the  carbon  from  the 
liquors.  Calcium  salts  were  adsorbed  by  the  carbon 
during  the  process  of  filtration  to  a  much  greater 
extent  than  potassium  or  sodium  salts.  In  washing 
the  carbon,  potassium  and  sodium  salts  were  easily 
eliminated,  but  calcium  salts  were  tenaciously  held. 
"Carboraffin"  was  found  to  contain  1T3%  ZnO, 
some  of  which  passed  into  the  liquor  during  filtra- 
tion.—J.  P.  O. 

After-products;  Difficult  boiling  of in  the  beet 

sugar  factory.     H.  Zscheye.     Deuts.  Zuckerind., 
1921,  46,  626,  645. 

In  a  beet  sugar  factory  in  Germany  during  the  last 
campaign  considerable  trouble  was  experienced  dur- 
ing the  boiling  of  the  after-products,  owing  to  froth- 
ing and  to  the  formation  of  a  pellicle  of  calcium 
salts  of  organic  acids  on  the  surface  of  the  liquid, 
ebullition  ceasing  altogether  when  a  certain  concen- 
tration had  been  reached.  Normal  boiling  was,  how- 
ever, restored  by  the  addition  of  a  small  amount  of 
vegetable  oil  (e.g.,  linseed  or  rape  oil,  using  2  litres 
to  a  "  strike  "  of  60  tons),  which  precipitated  the 
soluble  calcium  salts,  and  enabled  ebullition  to  pro- 
ceed smoothly. — J.  P.  O. 

Saccharimeter;   Ee-testing    the    100°-point   of   the 

.  //.  Preparation  of  chemically  pure  sucrose. 

A.  Kraisy.  Z.  Ver.  deuts.  Zuckerind.,  1921,  785 — 
797.    (Cf.  J.,  1921,  315  a.) 

A  70 — 73%  aqueous  solution  of  refined  sugar,  pre- 
pared at  65°  C.  with  water  rendered  faintly  alkaline 
with  80 — 100  nig.  of  sodium  carbonate  per  500  c.c, 
is  filtered  to  remove  all  crystals  and  possible  nuclei 
for  crystallisation,  and  when  nearly  cold  treated 
carefully  with  small  quantities  of  alcohol  (prefer- 
ably 99%)  and  shaken  at  each  addition.  The  total 
volume  of  alcohol  added  is  4  times  that  of  the  water 
used  for  dissolving  the  sugar.  In  this  way  a  super- 
saturated alcoholic  sugar  solution  is  obtained  which 
after  being  filtered  with  slight  suction  is  caused  to 
crystallise  by  gentle  trituration  in  a  mortar.  After 
2 — 3  hrs.  the  crystals  are  collected,  washed  several 
times  with  hot  alcohol,  and  drained  by  suction. 
When  99  %  alcohol  is  used  the  yield  of  pure  sugar  is 
62 — 65  % .  Sugar  purified  several  times  in  this  way 
contained  0002— 0005%  of  ash,  and  reduced  36— 
38  mg.  of  copper  bv  Herzfeld's  method  and  1'5 — 
1-8  mg.  by  the  author's  method  (J.,  1921,  315  a). 

—J.  H.  L. 


152a 


Cl.  xviii.— fermentation  industries. 


[Feb.  28,  1922. 


Sucrose;  Test  for  in  the  presence  of  dextrose. 

L.  A.  Congdon  and  C.  R.  Stewart.     J.  Ind.  Eng. 
Chem.,  1921,  13,  1143—1144. 

Extraction  of  a  dry  mixture  of  sucrose  and  dextrose 
with  hot  ethyl  acetate  for  3  hrs.  removes  all  the  dex- 
trose, leaving  the  sucrose  insoluble ;  crystals  of  dex- 
trose separate  from  the  ethyl  acetate  solution  when 
this  is  cooled. — W.  P.  S. 

Ozone;  Action  of on  pure  solutions  of  dextrose, 

Icevvlose,  and  sucrose.    C.  W.  Schonebaum.    Rec. 
Trav.  Chim.,  1922,  41,  44—48. 

The  sugars  in  sugar-refinery  products  are  very  re- 
sistant to  the  action  of  ozone  and  long-continued  ex- 
posure to  this  reagent  is  necessary  to  bring  about 
their  decomposition.  Ozonisation  for  about  half  an 
hour  is  sufficient  to  bring  about  considerable  de- 
colorisation  and  other  improvements  in  the  qualitj- 
of  the  juice.  There  is  little  danger  of  decomposing 
sucrose  in  this  process,  as  experiment  shows  that  it 
undergoes,  in  faintly  alkaline  solution,  no  trace  of 
decomposition  on  ozonising  for  J  hr.  at  70°  C.  When 
a  neutral  sucrose  solution  is  ozonised,  inversion  be- 
comes perceptible  only  after  one  hour. — H.  J.  E. 

Dextrose  and  sucrose;  Monosulphates  of .    III. 

C.  Neuberg  and  L.  Liebermann.    Biochem.  Zeits., 
1921,  121,  326—332. 

By  the  action  of  chlorosulphonic  acid  in  chloroform 
at  -10°  C.  on  a  pyridine  solution  of  dextrose  or 
sucrose,  the  monosulphates  of  these  carbohydrates 
are  formed  and  can  be  isolated  as  their  calcium  salts, 
which  are  amorphous.  Lactose  reacts  similarly. 
Calcium  sucrose-sulphate  has  [a]D  =  +48"0  and  cal- 
cium dextrose-sulphate  [o]D= -t-44'43. — H.  K. 

Polysaccharides ;    Constitution   of   .      J.    J.    L. 

Zwikker.    Rec.  Trav.  Chim.,  1922,  41,  49—53. 

Space  formulas  for  polysaccharides  which  are  based 
on  homogeneous  filling  of  space  are  suggested.  The 
fundamental  form  for  cellulose  is  that  of  a  tri- 
angular prism  and  for  starch  a  tetrahedron ;  these 
figures  are  regarded  as  being  made  up  of  groups  of 
straight-chain  molecules.  It  is  claimed  that  the 
formulas  are  in  accordance  with  the  properties  of  the 
respective  carbohydrates. — H.  J.  E. 

Patents. 

Decolorising  carbon  [/or  sugar  refining]  and  process 
of  moling  mine.  R.  W.  Mumford,  Assr.  to  Darco 
Corp.    U.S. P.  1,402,007,  3.1.22.    Appl.,  19.3.18. 

A  mixture  of  cane  bagasse  and  a  relatively  large 
amount  of  caustic  lime  is  slowly  heated  to  a  tem- 
perature sufficiently  high  to  causticise  calcium  car- 
bonate. The  product  is  suitable  for  the  simul- 
taneous decolorisation,  neutralisation,  and  defeca- 
tion of  sugar  cane  juice. — H.  Hg. 

Decolorising  carbon.     E.P.  173,624.     See  IIb. 


XVIII—  FERMENTATION  INDUSTRIES. 

Malt  and  its  preparations  (liquid,  syrupy,  and  dry 

extracts) ;  Diastatic  action  of .    R.  Lecoq.    J. 

Pharm.  Chim.,  1922,  25,  18—25. 

The  diastatic  action  of  malt  is  practically  confined 
to  the  temperature  range  60°— 90°  *  C.  The 
activity  is  greatest  between  70°  and  80°  C.  with  an 
optimum  at  about  75°  C.  In  admixture  with  cooked 
or  uncooked  barley  flour  the  presence  of  about  30% 
of  malt  in  the  mixture  is  sufficient  to  induce  sac- 
charification  of  the  starches  present  at  approxi- 
mately the  same  rate  as  with  malt  alone,  at  the 
corresponding  temperatures,  a  similar  optimum 
activity  occurring  at  75°  C.  The  activity  of  malt 
itself  is  3 — 4  times  greater  than  that  of  any  of  the 
extracts  prepared  commercially  from  it. — G.  F.  M. 


Amylases;  Effect  of  certain  antiseptics  upon  the 
activity  of  .  H.  C.  Sherman  and  M.  Way- 
man.  J.  Amer.  Chem.  Soc,  1921,  43,  2454 — 24ul. 
Low  concentrations  of  chloroform  did  not  affect  the 
activity  of  commercial  pancreatin  or  malt  extract, 
but  did  affect  that  of  purified  preparations  of  amyl- 
ases from  these  sources.  Toluene  had  very  little 
effect  on  the  activities  of  the  amylases  either  in  their 
natural  or  purified  condition.  These  and  other  pre- 
parations studied,  either  in  their  commercial  or 
purified  condition,  were  very  sensitive  to  formalde- 
hyde and  to  copper  sulphate  even  in  low  concentra- 
tions. The  percentage  loss  of  enzyme  action,  due  to 
the  use  of  these  two  antiseptics,  did  not  depend  on 
the  ratio  of  antiseptic  to  enzyme  or  to  substrate, 
but  on  the  concentration  of  the  antiseptic  in  the 
system. — W.  G. 

Starch;  Influence  of  certain  amino-acids  upon  the 

enzymic  hydrolysis  of .     H.  C.  Sherman  and 

F.  Walker.    J.  Amer.  Chem.  Soc.,  1921,  43,  2461— 
2469. 

Previous  work  on  asparagine  and  aspartic  acid  (cf. 
J.,  1920,  37  a)  has  been  extended  to  an  examination 
of  the  influence  of  glycine,  alanine,  tyrosine,  and 
phenylalanine  on  the  hydrolysis  of  starch  by 
enzymes.  Addition  of  any  one  of  these  amino-acids 
caused  an  increase  in  the  rate  of  hydrolysis  of  starch 
by  purified  pancreatic  amylase,  commercial  pan- 
creatin, saliva,  or  purified  malt  amylase,  but  less 
effect  was  noted  with  malt  extract,  taka-diastase, 
and  an  aspergillus  amylase.  The  addition  of  two 
amino-acids  produced  no  greater  effect  than  would 
result  from  the  same  concentration  of  one  of  them. 
The  addition  of  these  amino-acids  is  a  very  effective 
means  of  protecting  the  enzyme  from  the  deleterious 
action  of  copper  sulphate  (cf.  supra)  and  may  even 
serve  to  restore  to  full  activity  an  enzyme  which  has 
been  partly  inactivated  by  copper  sulphate.  (Cf. 
J.C.S.,  March.)— W.  G. 

Starch;  Influence  of  arginine,  liistidine,  trypto- 
phane, and  cystine  upon  the  hydrolysis  of  — —  by 
purified  pancreatic  amylase.  H.  C.  Sherman  and 
M.  L.  Caldwell.  J.  Amer.  Chem.  Soc.,  1921,  43, 
2469—2476. 

Arginine  and  cystine  both  favourably  influence  the 
amyloclastic  power  of  purified  pancreatic  amylase 
on  soluble  starch,  but  liistidine  and  tryptophane  do 
not.  Thus  there  are  apparently  specific  effects  in 
the  case  of  these  four  amino-acids  which  distinguish 
them  from  one  another  and  from  the  monoamino- 
acids  (c/.  supra). — W.  G. 

Amylases  from  different  sources;  Distinctive  pro- 
perties of .    J.  Effront.    Comptes  rend.,  1922, 

174,  18—21. 

Amylases  from  different  sources  differ  from  one 
another  in  the  ratio  of  their  liquefying  power  to 
their  saccharifying  power,  in  the  intensity  of  their 
saccharifying  power,  in  their  optimum  tempera- 
tures, in  their  resistance  to  temperatures  of  70° — 
100°  C,  and  in  their  activity  at  20°  C.  In  the  case 
of  certain  juices  or  extracts,  after  heating  to  60°  C. 
and  filtering,  the  amylase  regains,  after  filtration, 
the  activity  lost  during  heating;  in  other  cases  the 
amylase  loses  its  activity  entirely.  The  effect  of  fil- 
tration in  increasing  the  activity  is  probably  due  to 
the  removal  of  retarding  substances  of  a  colloidal 
nature  which  have  been  modified  during  the  heat- 
ing.— W.  G. 

Invertase;  Law  of  action  of :  velocity  of  hydro- 

lysis  and  reaction  of  the  medium.     H.  Colin  and 

A.  Chaudun.     Comptes  rend.,  1922,  174,  218—220. 

Ox   the   assumption    that   there   is  a    weight  a,   of 

sucrose  which  corresponds  to  a  volume,  n,  of  a  given 

invertase  preparation,  the  enzyme  transitorily  com- 


Vol.  XLI-,  Xo.  4] 


Cl.  XVIII.— fermentation  industries. 


153  a 


bining  with  the  sucrose,  it  is  shown  that  the  value 
beadily  diminishes  as  the  acidity  of  the  medium 
increases.  This  may  be  considered  as  due  to  a  di- 
minishing amount  of  enzyme  coming  into  action. 
When  the  diminution  in  the  velocity  of  hydrolysis, 
due  to  this  effect,  becomes  greater  than  the  increase 
in  velocity  of  hydrolysis  due  to  the  greater  insta- 
bility of  the  complex,  then  the  variation  of  the 
velocity  of  hydrolysis  beeofhes  negative.  This  is  in 
accord  with  the  experimental  data  that  with  in- 
creasing acidity  the  velocity  of  hydrolysis  first  in- 
creases  to  .t  maximum  and  then  diminishes. — W.  G. 

Invertase;  Regeneration  of  inactivated by  di- 
alysis. H.  von  Euler  and  O.  Svanberg.  Z. 
physiol.  Chem.,  1921,  114,  137—14^. 

Invertase  inactivated  by  silver  nitrate,  mercuric 
chloride,  or  aniline  can  be  regenerated  by  dialysis. 
Whilst  in  the  case  of  the  metal  salts  the  total  re- 
generation of  the  enzyme  cannot  be  accomplished, 
the  activity  of  invertase  inactivated  by  the  action 
of  aniline  can  be  completely  restored  by  dialysis. 
The  invertase  of  an  active  dry  preparation  could  not 
be  extracted  with  aniline. — S.  S.  Z. 

Carboligase.  II.  C.  Neuberg  and  L.  Liebermann. 
Biochem.  Zeits.,  1921,  121,  311—325. 

o-Chlorobenzyl  alcohol  and  o-chlorobenzoic  acid 
were  isolated  from  yeast  undergoing  fermentation  in 
the  presence  of  o-chlorobenzaldehyde.  The  newly- 
discovered  enzyme,  carboligase  (J.,  1921,  404  t), 
causes  a  condensation  of  a  portion  of  the  aldehyde 
with  acetaldebyde,  with  formation  of  the  ketone- 
alcohol,  C^Cl.CHOH.COCTT,,  which  exhibits  opti- 
cal activity  but  gives  an  inactive  p-nitrophenylosa- 
zone  and  thiosemicarbazone.  Anisaldehyde  does  not 
react  so  smoothly.  The  p-nitrophenylosazone  of  the 
ketone-alcohol  was,  however,  isolated. — H.  K. 

Yeast;  yitrogenous  constituents  of  .     77.  The 

purine  bases  and  the  diamino-aiids.     J.  Meisen- 
heimer.    Z.  physiol.  Chem.,  1921,  114,  205—249. 

Top  and  bottom  fermentation  yeasts  show  no  differ- 
ence in  the  composition  of  their  products  of  degra- 
dation. Ammonia  forms  8%  of  the  total  nitrogen. 
J  :  if  the  total  nitrogen  can  be  accounted  for  in 
the  purine  and  pyrimidine  bases  as  follows: — guan- 
ine 4  ':,  adenine  4%,  cytosine  (?)  2'6%,  uracil  (?) 
1*6%,  10  ;  of  the  total  nitrogen  is  present  as  histid- 
ine  and  arginine,  and  10%  as  lysine.  Of  the  60%  of 
the  total  nitrogen  found  to  be  associated  with  the 
mcnoa  mi  no-acids  (Co  was  traced  to  glycine,  10 — 
15  to  alanine,  10 — 15%  to  valine,  5 — 10  %  to  leuc- 
ine. 2  to  proline.  8%  to  phenylalanine,  3 — 5%_  to 
aspartic  acid,  6%  to  glutamic  acid,  2  to  tyrosine, 
O'o  -_  to  tryptophan,  2%  to  cystine  and  other  sul- 
phur compounds,  4'5%  to  oxyproline  (?),  O'o  to 
choline,  and  0'5%  to  glucosamine.  The  ratio  of 
amino  to  non-amino  nitrogen  as  obtained  by  the 
Van  Slyke  method  was  always  found  to  be  lower 
than  the  figures  calculated  from  the  above  data. 

— S.  S.  Z. 

Yeast  gum  and  invertase.  E.  Salkowski.  Z.  physiol. 
Chem.,  1921,  114,  307—308. 

In  reply  to  Svanberg  (J..  1921,  191  a)  the  author 
maintains  that  invertase  is  not  always  associated 
with  gum  in  yeast. — S.  S.  Z. 

Yeast;  Action  of  salts  on  the  bleaching  of  methylene 

blue  by  various  species  of .     H.  Kumagawa. 

Biochem.  Zeits.,  1921,  121,  150—163. 

The  bleaching  of  methylene  blue  by  various  dry 
yeasts  varies  enormously,  the  addition  of  metallic 
salts  usually  retarding  or  inhibiting  the  reduction 
but  by  no  means  invariably.  The  differences  ob- 
served are  attributed  to  the'influenee  of  the  physio- 
logical condition  of  the  yeast,  especiallv  its  nutri- 
tion.— H.  K. 


J '.  at  nucleic  acid.     II.     H.  Steudel  and  E.  Peiser. 
Z.  physiol.  Chem.,  1921,  114,  291—203. 

By  utilising  the  method  of  precipitating  sodium 
guanylate  with  a  concentrated  solution  of  sodium 
acetate  it  was  found  that  a  certain  yeast  nucleic 
acid  contained  12 — 14%  of  guanylic  acid. — S.  S.  Z. 

Alcoholic  sugar-fission;  New  classes  of  stimulants 

of .     1"//.    C.  Xeuberg,  E.  Reinfurth,  and  M. 

Sandberg.    Biochem.  Zeits.,  1921,  121,  215—234. 

A  large  number  of  derivatives  of  purine  have  been 
tested  and  found  without  exception  to  have  a 
marked  stimulating  effect  on  the  fermentation  of 
dextrose  by  means  of  j  east  press  juice.  The  nucleos- 
ides, adenosine  and  guanosine.  were  also  beneficial 
and  the  nucleic  acids  to  a  lesser  extent.  Degrada- 
tion products  of  purines  had  a  distinctly  favourable 
influence. — H.  K. 

Lactose-fermenting  yeasts;  Lactase  content  and  fer- 
menting power  of  .     R.  Willstatter  and  G. 

Oppenheimer.    Z.  physiol.  Chem.,  1922,  118,  168 — 
188. 

Lactase  can  be  obtained  from  fresh  yeast  without 
previously  destroying  the  cell,  providing  that  the 
acidity  is  neutralised.  The  lactose-splitting  activity 
of  yeasts,  sometimes  even  of  the  same  strain,  varies 
within  very  wide  limits.  In  some  cases  lactose  is  fer- 
mented more  quickly  than  an  equivalent  mixture  of 
dextrose  and  galactose,  and  in  certain  cases  the  fer- 
mentation of  lactose  proceeds  almost  as  quickly  as  or 
perhaps  more  quickly  than  the  hydrolysis  of  the  di- 
saccharide.  'When  the  fermentation  is  interrupted  in 
such  cases  no  monosaccharides  are  found  in  the  fer- 
menting medium.  This  differs  from  the  mechanism 
of  the  fermentation  of  sucrose,  in  which  case  hydro- 
lysis takes  place  almost  immediately.  It  is  concluded 
that  lactose-fermenting  yeasts  can  ferment  the 
sugar  without  hydrolysing  it  and  therefore  contain 
a  lactose-zymase. — S.  S.  Z. 

d-Galactose ;  Decomposition  of according  to  the 

second  mode  of  fermentation.     M.  Tomita.     Bio- 
chem. Zeits.,  1921,  121,  164—166. 

Like  dextrose,  mannose.  and  kevulose,  tf-galactose 
yields  acetaldebyde  and  glycerol  in  equimolecular 
proportions  when  fermented  in  the  presence  of 
sodium  sulphite. — H.  K. 

Cider  preservatives.     R.  D.  Scott  and  E.  G.  Will. 
J.  Ind.  Eng.  Chem.,  1921.  13,  1141—1143. 

Alcoholic  and  acetic  fermentations  in  cider  are  in- 
hibited by  the  addition  of  0'2  r;  of  salicylic  acid  or 
of  0T%  of  thymol,  and  these  two  substances  are  suit- 
able for  preserving  samples  of  cider.  The  addition 
of  0'05%  of  sodium  benzoate  or  of  0T  %  of  salicylic 
acid  might  be  of  some  use  in  preserving  cider  com- 
mercially; these  quantities  are  probably  too  large 
to  be  desirable  from  a  physiological  point  of  view, 
but  smaller  amounts  would  be  ineffective. — W.  P.  S. 

Vinegar;  Apparatus  for  measuring  the  hydrogen- 
ion   concentration  of  a  solution.     Application   to 

the  detection  of  mineral  acids  in .    A.  Kling, 

A.   and  A.  Lassieur.     Comptes  rend.,   1922,   174, 
165—168. 

A  compensation  electrometrie  method  for  measur- 
ing hydrogen-ion  concentration  is  described,  in 
which  a  niillivoltmeter  capable  of  measuring  1200 
millivolts  with  an  accuracy  of  1  millivolt  is  used. 
The  hydrogen-ion  concentration  of  vinegar  mea- 
sured with  this  apparatus  or  by  the  colorimetric 
method,  using  thymolsulphophthalein  as  indicator, 
serves  as  a  ready  means  of  detecting  the  presence 
of  mineral  acids.  Thus  the  pK  values  of  vinegar  at 
18°,  2'67 — 2'84,  were  altered  bv  the  presence  of 
024%  of  sulphuric  acid  to  174— 202.— W.  G. 


154  a 


Cl.  XIXa.— FOODS.      Cl.  XIXb.— WATER  PURIFICATION,  &c. 


[Feb.  23,  1922. 


Alcohol;  Denaturing from  the  point  of  view  of 

the  State  and  of  alcoholism.    J.  Effront.    Monit. 
Scient.,  1921,  II,  249—259. 

The  denaturants  at  present  in  use  do  not  exclude 
fraud  by  regeneration  and  do  not  render  the  alcohol 
undrinkable.  For  the  more  effective  prevention 
of  the  regeneration  or  consumption  of  denatured 
alcohol,  it  is  suggested  that  saponin  or  a  mixture  of 
saponin  and  an  emetic  should  be  used  as  denatur- 
ants for  alcohol  for  domestic  use. — W.  G. 

Alcohols.    Wolff.    See  XX. 


Water-alcohol-chloroform. 
bogen.    See  XX. 


Schoorl     and     Regen- 


XIXa-FOODS. 

Casein;  Action  of  nitrous  acid  on  .      M.    S. 

Dunn  and  H.  B.  Lewis.    J.  Biol.  Chem.,  1921,  49, 
327—341. 

The  distribution  of  nitrogen  in  casein  and  deamin- 
ised  casein  was  determined.  In  agreement  with  the 
current  view  as  to  the  nature  of  the  free  amino 
groups  in  proteins,  lysine  was  found  to  be  absent 
from  the  products  of  hydrolysis  of  deaminised 
casein,  while  the  amount  of  monoamino  nitrogen 
was  correspondingly  increased.  Some  destruction 
of  tyrosine  occurs  during  the  deamination  of 
casein. — E.  S. 

Casein  and  deaminised  casein;  Hydrolysis  of  

by  proteolytic  enzymes.    M.  S.  Dunn  and  H.  B. 
Lewis.    J.  Biol.  Chem.,  1921,  49,  343—350. 

Deaminised  casein  is  hydrolysed  by  pepsin  and 
trypsin,  but  is  unattacked  by  erepsin  except  after 
the  preliminary  action  of  either  of  the  first-named 
enzymes.  In  each  case  the  action  proceeds  at  a 
slower  rate  than  in  the  corresponding  case  of 
casein.— E.  S. 

Ovalbumin  and  serum  albumin;   Optical  rotatory 

power  of .     E.  G.  Young.     Proc.  Roy.  Soc, 

1922,  B  93,  15—35. 
The  specific  rotation  of  crystalline  ovalbumin  is 
constant  if  recrystallisation  is  made  at  the  isoelec- 
tric point,  but  varies  with  changes  in  the  hydrogen 
ion  concentration  of  the  solution.  The  constant 
values  obtained  by  the  author  are:- — [a]D"  = 
-30-81°  and  _  [o]E15= -37-53°.  Crystalline  horse 
serum  albumin  prepared  by  two  methods  had 
[a]D"=-62-8°  and  [a]E,8= -78-4°.— E.  B. 

Nutritive  properties  of  nuts.  II.  The  pecan  nut 
as  a  source  of  adequate  protein.  F.  A.  Cajori. 
J.  Biol.  Chem.,  1921,  49,  389—397. 

The  principal  protein  of  the  pecan  nut  is  a  globulin. 
This  has  been  isolated  and  its  nitrogen  distribu- 
tion determined  with  the  following  results,  amide- 
N,  9'8;  humin-N,  3'6;  arginine-N,  229;  histidine-N, 
3-7;  cyetine-N,  0-8;  lysine-N,  62;  mono-amino-N 
51-7;  and  non-amino-N,  08%  of  the  total.  Normal 
growth  takes  place  in  rats  on  diets  containing  pecan 
nuts  as  the  sole  source  of  protein  provided  the  skins, 
which  contain  tannin,  have  been  removed.  This 
may  be  effected  by  treatment  with  hot  caustic  6oda. 

— E.  S. 

Patents. 

Cereals  and  fish;  Process  for  regenerating no 

longer  in  a  fresh  condition.     L.  G.  Leffer.     E.P. 
172,446,  4.10.20. 

Cereals,  fish,  fats,  etc.,  may  be  regenerated, 
deodorised,  and  sterilised  by  immersing  in  a  dilute 
sodium  chloride  solution  which  is  then  electrolysed. 

—A.  G.  P. 


Lactic  ferment  culture  for  milk;  Process  of  pro- 
ducing   .     P.  Petersen,  Assr.  to  T.  J.  Coster. 

U.S.P.  1,401,278,  27.12.21.     Appl.,  8.12.20. 

Milk  is  heated  to  190°  F.  (88°  C.)  for  1— 1£  hrs., 
then  cooled  to  70°  F.  (21°  C.)  for  10—12  hrs.  This 
process  is  repeated  three  times,  a  culture  of  lactic 
acid  bacteria  is  added,  and  the  whole  preserved  at 
400—50°  F.  (5°— 10°  C.)  as  a  stock  culture  for 
treating  milk. — A.  G.  P. 

Grape  extract;  Process  for  the  manufacture  of . 

E.   Monti.     U.S.P.   1,401,351,   27.12.21.     Appl., 
19.11.19. 

Grape  pomace  is  extracted  at  35° — 50°  C.  with 
water  containing  1  pt.  of  sulphur  dioxide  per  1000. 
The  extract  is  clarified,  concentrated  in  vacuo,  and 
added  in  small  quantities  to  concentrated  grape 
juice. — A.  G.  P. 

Meat  preservative,  and  method  of  making  the 
same.  B.  Heller.  U.S.P.  1,402,354,  3.1.22. 
Appl.,  16.8.20. 

The  products  of  the  combustion  of  wood  are  super- 
heated, mixed  with  aqueous  vapour  and  condensed. 
The  liquor  is  percolated  through  a  saline  preserva- 
tive and  finally  evaporated. — A.  G.  P. 

Milk;  Process  of  preserving  - .     C.  L.  Arnoldi. 

U.S.P.  1,403,223,  10.1.22.    Appl.,  5.2.21. 

Fresh  milk  is  agitated  under  a  partial  vacuum  at 
a  temperature  approximately  the  same  as  that  of 
the  animal  from  which  it  is  derived,  and  is  subse- 
quently charged  with  carbon  dioxide  and  put  into 
packages  at  40°  F.  (about  5°  C.)  under  a  pressure 
of  60  lb.  per  sq.  in. — L.  A.  C. 

Drying,  baking,  roasting,  and  cooling  organic  sub- 
stances; Method  for .    G.  E.  F.  Tribes,  Assr. 

to     Soc.     Anon.      "  Proc.     Torrida."       U.S.P. 
1,403,211,  10.1.22.     Appl.,  21.1.20. 

See  E.P.  138,104  of  1920;  J.,  1920,  637  a. 


XIXb.-WATER  PURIFICATION;  SANITATION. 

Lead;  Determination  of  minute  amounts  of tn 

water  ,  with  notes  on  certain  causes  of  error.  D. 
Avery,  A.  J.  Hemingway,  V.  G.  Anderson,  and 
T.  A.  Read.  Proc.  Austral.  Inst.  Min.  Met., 
1921,  173—199. 

The  sample  is  filtered  and  the  lead  determined  in 
the  sediment  and  clear  liquid  separately.  2'5 — 5  1. 
of  the  latter  is  evaporated  to  250  c.c,  neutralised, 
and  treated  with  an  excess  of  2  c.c.  of  hydrochloric 
acid;  the  solution  is  again  filtered  and  the  filtrate 
saturated  cold  with  hydrogen  sulphide.  After 
standing  overnight,  the  solution  is  filtered,  the  pre- 
cipitate washed  with  hydrogen  sulphide  water,  and 
dissolved  in  nitric  acid.  The  solution  is  evaporated 
with  1  c.c.  of  sulphuric  acid  until  it  fumes,  20  c.c. 
of  water  and  10  c.c.  of  absolute  alcohol  are  added, 
and  the  lead  sulphate  filtered  off  next  day.  It  is 
dissolved  in  ammonium  acetate  and  the  solution,  in 
a  Nessler  tube,  treated  with  1  c.c.  of  10%  potassium 
cyanide  solution,  1  c.c.  of  ammonia,  and  six  drops 
of  freshly  prepared  ammonium  sulphide  solution. 
The  colour  is  compared  with  that  obtained  by  adding 
the  same  amounts  of  reagents  to  a  standard  lead 
solution  (1  c.c.  =  0-00001  g.  Pb).  The  sediment  is 
evaporated  to  dryness  with  hydrochloric  acid,  the 
residue  treated  with  2  c.c.  of  the  same  acid  and 
250  c.c.  of  water,  and  the  filtered  liquid  treated  as 
described  above.  Waters  containing  organic  matter, 
e.g.  urine,  are  evaporated  with  nitric  acid  to  dry- 
ness, the  residue  is  heated  to  450°— 500°  C.,  for  20 
mins.,  and  the  cold  mass  extracted  with  hydro- 
chloric acid.    The  filtered  solution  is  then  treated  as 


Vol.  XLI.,  No.  4.) 


Cl.  XIXb.— WATER  PURIFICATION ;  SANITATION. 


155  a 


described  above.  All  the  reagents  used  must  be  re- 
distilled from  glass  apparatus  free  from  lead,  the 
filter  papers  must  be  washed  free  of  lead  with  hot 
hydrochloric  acid,  hot  ammonium  acetate  and  hot 
water  successively,  and  a  volume  of  distilled  water 
equal  to  that  of  the  sample  must  be  put  through  the 
whole  process  as  a  blank.     (Cf.  J.C.S.,  Mar.) 

—A.  R.  P. 

yitrophenols;   Toxicity   of  different  towards 

Sterigmatocystis  nigra.  L.  Plantefol.  Comptes 
rend.,  1922,  174,  123—126. 

Phenol  and  its  nitro  derivatives  are  all  toxic  to- 
wards Sterigmatocystis  nigra.  Of  the  three  mono- 
nitrophenols  the  ortho  is  the  least  toxic  and  the 
para  the  most  toxic.  2.4-Dinitrophenol  is  100  times 
more  toxic  than  phenol  and  10  times  more  than  p- 
nitrophenol.  2.4.6-Trinitrophenol  is  about  as  toxic 
as  m-nitrophenol. — W.  G. 

Air;    Determination    of    small    quantities    of    im- 
purities, particularly  condensed  vapours,  in . 

A.  Sieverts.     Z.  angew.  Chem.,  1922,  35,  17—18. 

Complete  absorption  cannot  be  effected  by  leading 
the  air  through  or  over  liquid  or  solid  absorbents, 
but  results  correct  to  within  5%  can  be  obtained  by 
collecting  a  sample  of  the  air  in  an  evacuated  flask 
of  10 — 15  1.  capacity,  allowing  to  stand  for  several 
hours  to  permit  the  "  fog  "  to  settle,  and  then  rins- 
ing out  the  flask  three  times  with  a  suitable  sol- 
vent, e.g.,  water  for  sulphur  trioxide  or  dioxide, 
benzene  for  diphenylarsine  chloride,  alcohol  for  di- 
phenylarsine  cyanide,  etc.  The  impurity  is  then 
determined  volumetrically  in  an  aliquot  portion  of 
the  solvent.  By  this  means  quantities  upwards  of 
4'0  mg.  of  sulphur  trioxide  per  cub.  m.  of  air  can  be 
determined  by  titration  of  the  aqueous  washings 
from  the  flask  with  2V/1000  sodium  hydroxide  using 
an  ethereal  solution  of  iodoeosin  as  indicator. 
Similarly  sulphur  dioxide  and  the  diphenylarsine 
compounds  are  determined  by  titration  with  iV  /1000 
iodine.— G.  P.  M. 

Carbon    monoxide;    Catalytic    oxidation    of    . 

T.  H.  Rogers,  C.  S.  Piggot,  W.  H.  Bahlke,  and 
J.  M.  Jennings.  J.  Amer.  Chem.  Soc,  1921,  43, 
1973—1982. 

Experiments  were  made  with  the  object  of  discover- 
ing a  catalyst  which  would  oxidise  carbon  monoxide 
diluted  with  air  at  room  temperatures,  and  would 
at  the  same  time  be  suitable  for  use  in  a  gas  mask. 
Good  results  were  obtained  with  mixtures  of  man- 
ganese dioxide  with  other  oxides.  Several  oxide 
mixtures,  for  instance  silver  and  calcium  oxides, 
oxidise  carbon  monoxide  at  room  temperatures,  but 
the  action  is  not  catalytic  and  stops  when  the 
metallic  oxide  has  been  reduced.  Manganese  di- 
oxide is  an  essential  constituent  of  the  catalytic 
mixtures  prepared,  and  special  attention  must  be 
paid  to  the  method  of  preparing  it  and  of  mixing 
it  with  other  oxides.  The  best  activators  for  the 
manganese  dioxide  were  silver  or  copper  oxide.  The 
most  active  form  of  manganese  dioxide  was  obtained 
by  Fremy's  method,  decomposing  potassium  per- 
manganate with  concentrated  sulphuric  acid.  The 
catalyst  was  best  prepared  by  suspending  the  man- 
ganese dioxide  in  a  dilute  solution  of  a  silver  or 
copper  salt  and  precipitating  the  silver  or  copper 
or  a  mixture  of  the  two  as  carbonate  with  sodium 
carbonate  solution.  The  precipitate  was  well  washed 
by  decantation  and  thoroughly  dried.  The  most 
active  catalyst  prepared  contained  62-5%  MnO,  and 
37-5%  Ag20.  This  functioned  with  100%  efficiency 
for  10  hours  when  a  current  of  air  containing  1%  of 
carbon  monoxide  was  passed  through  a  layer  10  cm. 
deep  at  the  rate  of  500  c.c.  per  sq.  cm.  of  cross-sec- 
tion per  min.,  and  "  picked  up  "  again  for  a  second 
run  of  10  hours  with  equal  efficiency  on  a  gas  con- 
taining 0'3%  of  carbon  monoxide.     A  good  catalyst 


behaved  equally  well  at  all  temperatures  from  -5° 
to  100°  C.  with  concentrations  of  CO  from  0-08%  to 
5%.  Water  vapour  rapidly  causes  the  catalyst  to 
lose  its  activity;  reduction  of  the  active  oxides  ap- 
pears to  take  place  without  the  simultaneous  re- 
oxidation  necessary  to  make  the  process  catalytic. 

— E.  H.  R. 

Carbon  monoxide;  Catalytic  oxidation  of at 

ordinary  temperatures.  D.  R.  Merrill  and  C.  C. 
Scalione.  J.  Amer.  Chem.  Soc,  1921,  43,  1982— 
2002.  (Cf.  Lamb  and  others,  J.,  1920,  424  a; 
U.S.P.  1,345,323,  J.,  1920,  571a,  and  preceding 
abstract.) 

Two  oxide  mixtures  were  discovered  which  were  par- 
ticularly active  catalysts  in  the  oxidation  of  carbon 
monoxide  at  ordinary  temperatures,  namely,  a  four- 
component  mixture  (Hopcalite  I.)  consisting  of 
50%  Mn02,  30%  CuO,  15%  Co  A,  and  5%  Ag20, 
and  a  two-component  mixture  containing  60%  MnOa 
and  40%  CuO.  The  following  factors  influencing 
the  activity  of  the  prepared  catalysts  and  their  use 
in  gas  masks  were  studied :  the  methods  of  pre- 
paration of  the  oxides ;  the  completeness  of  washing 
of  the  precipitates ;  methods  of  mixing  and  filtra- 
tion ;  kneading  and  high-pressure  filtration  or  other 
treatment  of  the  wet  cake  ;  conditions  of  drying  and 
final  moisture  content;  the  size  of  granules  and 
utilisation  of  fines.  Manganese  dioxide  was  pre- 
pared by  mixing  150  g.  of  ground  anhydrous  man- 
ganese sulphate  with  142  g.  of  water  and  675  g.  of 
93%  sulphuric  acid.  At  50°  C,  with  good  agitation, 
150  g.  of  potassium  permanganate  was  added  gradu- 
ally in  the  form  of  a  coarse  powder,  keeping  the  tem- 
perature below  75°  C.  After  10  mins.  more  at  60° 
the  reaction  was  complete  and  the  mixture  was 
poured  in  a  fine  stream  into  25  litres  of  water  with 
thorough  agitation,  and  the  precipitated  manganese 
dioxide  washed  by  decantation  until  free  from  sul- 
phates. The  copper  oxide  was  prepared  by  adding 
caustic  alkali  to  a  boiling  copper  sulphate  solution. 
Cobaltic  oxide  was  prepared  by  precipitating  a  cold 
solution  of  cobalt  sulphate  with  sodium  hydroxide 
and  oxidising  with  6odium  hypochlorite.  For  the 
four-component  mixture  the  above  three  hydroxides 
were  mixed  in  suspension  in  a  silver  nitrate  solution 
and  the  silver  oxide  precipitated  with  sodium 
hydroxide.  For  the  two-component  mixture  the 
copper  was  preferably  precipitated  as  basic  carbon- 
ate in  presence  of  the  precipitated  manganese  diox- 
ide. The  mixed  precipitates  were  thoroughly 
washed,  filtered,  the  cake  well  kneaded,  submitted 
to  a  pressure  of  4000 — 6000  lb.  per  sq.  in.,  dried  at 
50°  C,  crushed,  screened,  and  the  granules  re-dried 
for  4  hrs.  at  200°  C,  and  preserved  in  sealed 
canisters.  The  catalysts  lose  their  activity  in  moist 
air  and  need  protection  with  a  drying  agent  such  as 
calcium  chloride  in  a  gas  mask.  The  susceptibility 
to  moisture  does  not  depend  on  the  degree  of  drying 
(dehydration)  of  the  oxides.  The  water  appears  to 
condense  on  the  surface  of  the  catalyst  as  a  thin 
film  and  so  destroy  its  activity.  Volatile  sulphur 
and  halogen  compounds  poison  the  catalyst.  The 
factors  aimed  at  in  the  preparations,  high  porosity 
and  fineness  of  particles  to  give  a  maximum  surface, 
cause  them  to  be  poor  heat  conductors.  Conse- 
quently when  attempts  were  made  to  apply  them  to 
organic  oxidations,  such  as  toluene  to  benzaldehyde 
and  naphthalene  to  phthalic  anhydride,  it  was  found 
impossible  to  control  the  temperature  to  prevent 
complete  oxidation  to  carbon  dioxide  and  water. 

— E.  H.  R. 

Patents. 

Water;  System  for  removing  air  and  gases  from 

.    R.  N.  Ehrhart,  Assr.  to  Elliott  Co.    U.S.P. 

(a)  1,401,100,  (b)  1,401,101,  and  (c)  1,401,116, 
20.12.21.    Appl.,  (a,  b)  5.6.20  and  (c)  1.4.21. 

In  a  system  in  which  heated  water  is  introduced  into 


150  A 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[Feb.  28,  1922. 


a  closed  evaporator  in  which  a  diminished  pressure 
is  maintained  so  that  the  water  begins  to  evapor- 
ate: (a)  The  vapours  are  passed  to  a  condenser,  and 
the  rate  of  condensation  is  continuously  regulated 
in  order  to  control  the  amount  of  heat  given  up  by 
the  liquid  in  the  evaporator;  (b)  air  is  withdrawn 
simultaneously  from  the  water  supplied  to  the  con- 
denser and  passing  thence  to  a  heater,  and  from 
the  steam  coming  from  the  evaporator  and  heating 
the  water  in  the  heater ;  (c)  the  capacity  of  the  ex- 
haust pump  used  for  drawing  vapours  and  gases 
from  the  evaporator  to  the  condenser  is  varied  by 
means  controlled  by  the  rate  of  condensation  in  the 
condenser. — A.  G.  P. 

Water-treating   [filtering']   process  and  apparatus. 

J.  D.  Yoder,  Assr.  to  H.  S.  B.  W.  Cochrane  Corp. 

U.S.P.  1,402,277,  3.1.22.  Appl.,  8.5.20. 
Water  is  supplied  to  one  end  of  a  treatment 
chamber  in  which  is  disposed  an  up-take  chamber 
from  which  water  is  passed  through  a  filter.  Be- 
tween the  ends  of  the  treatment  chamber  a  con- 
nexion is  provided  for  the  independent  supply  of 
wash  water  to  the  filter,  such  water  being  subse- 
quently  returned  to  the  treatment  chamber. 

—J.  S.  G.  T. 

Antiseptic,   disinfectant  and  preservative   agents; 

Employment    of   .      R.    L.    M.    Wallis,    and 

Atmosterol,  Ltd.     E.P.  172,993,  12.6.  and  4.10.20. 

Solid  antiseptics  of  the  aromatic  and  terpene 
groups,  e.g.,  thymol,  may  be  emulsified  in  water  by 
the  addition  of  an  aliphatic  alcohol  of  moderately 
high  molecular  weight,  e.g.,  butyl  alcohol.  In  the 
emulsified  state  oxidation  readily  takes  place  with 
the  formation  of  -complex,  highly  antiseptic  sub- 
stances.— A.  G.  P. 


XX.-ORGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Arsenious  chloride;  Action  of on  aniline.  J.  H. 

Schmidt.     J.  Amer.  Chem.  Soc,  1921,  43,  2449— 

2454. 
In  solution  in  n-heptane  aniline  reacts  with  arseni- 
ous chloride  to  give  trianilinearsine  hydrochloride 
(cf.  Sehiff,  Comptes  rend.,  1863,  56,  268,  1095).  This 
is  readily  transformed,  by  heating  alone  or  prefer- 
ably with  excess  of  aniline,  into  chlorophenarsazine, 
which  with  alkalis  gives  phenarsazine  oxide, 
(NH.C,.,lTa.As),0.  This  oxide  on  oxidation  with 
hydrogen  peroxide  in  alkaline  solution  gives  phenaz- 
arsonic  acid,  and  the  latter  on  nitration  yields  di- 
nitrophenazaisonic  acid,  giving  a  disodium  salt. 
Aniline  arsenate  and  dianiline  arsenate  may  readily 
be  prepared  by  warming  aniline  and  syrupy  arsenic 
acid  in  alcoholic  solution,  using  an  excess  of  aniline 
or  acid  according  to  the  salt  required.  A  simple 
arrangement  for  sublimation  in  a  vacuum,  using  a 
Becfemann  boiling  apparatus,  is  described. — W.  G. 

(hid, if  ion    catalysis.     I.      L.    Karczag.      Biochem. 
Zeits.,  1921,  117,  69—86. 

Experiments  on  the  oxidation  of  34  colouring 
matters  by  hydrogen  peroxide  under  various  experi- 
mental conditions  in  the  presence  of  iron,  copper, 
cobalt,  manganese,  nickel,  and  platinum  salts  as 
catalysts  indicate  that  the  first  four  named  have  a 
twofold  action,  analogous  to  that  of  catalase  and 
oxydase,  whilst  the  two  latter  have  only  an  oxydase- 
like  action. — H.  K. 

Cholesteryl   dibromide.      I.   Lifschutz.      Z.    physiol. 
Chem.,  1921,  114,  286—289. 

The  author's  ether  method  of  preparation  of 
cholesteryl  dibromide  yields  a  compound  m.p.  93° — 
94°  C.    On  the  other  hand,  by  the  glacial  acetic  acid 


method  the  author  obtained  from  the  same  source  a 
compound  which  melted  at  110°— 111°  C.  When 
cholesteryl  dibromide  prepared  by  the  ether  method 
was  crystallised  from  acetic  acid  a  compound  of  m.p 
110°— 111°  C.  was  obtained.  The  dibromide  and  the 
acetic  acid  are  apparently  in  chemical  combination, 
for  on  exposing  the  substance  of  m.p.  110° — 111°  C. 
to  the  air  for  two  davs  the  melting  point  dropped 
to  101°— 102°  C,  probably  owing  to  loss  of  acetic 
acid.  Moreover,  when  the  dibromide  melting  at 
111°  C.  was  crystallised  from  neutral  alcohol  the 
solvent  became  acid  and  the  newly  crvstallised  com- 
pound melted  at  93°— 94°  C.  The  cholesteryl  di- 
bromide obtained  by  Windaus  and  Ltiders,  which 
melted  at  122°  C,  is  a  different  compound  from, 
possibly  an  isomer  of,  the  dibromide  of  m.p.  93° — 
94°  C— S.  S.  Z. 

Glutamine;  Constitution  of  .     H.  Thierfelder. 

Z.  physiol.  Chem.,  1921,  114,  192—198. 

Thio-2-acetyl-1-hydantyl-5-propionamide  was  pre- 
pared from  rf-glutamine  and  potassium  thiocyanate, 
and  on  hydrolysis  with  concentrated  hydrochloric 
acid  yielded  thio-2-hydantyl-5-propionic  acid.  This 
latter  compound  on  treatment  with  chloroacetic 
acid  was  converted  into  hydantyl-5-propionic  acid. 
Based  on  this  reaction,  which  is  characteristic  of  the 
o-amino-acids,  the  author  ascribes  to  glutamine  the 
formula :   NH,CO.CH2.CH„.CH(NH„).COOH. 

— S.  S.  Z. 

Hydrocyanic  acid;  Synthesis  of  by  oxidation, 

in  ammoniacal  silver  solution,  of  alcohols,  phenols, 
and  amines.  R.  Fosse  and  A.  Hieulle.  Comptes 
rend.,  1922,  174,  39—41. 

By  the  oxidation  of  a  number  of  alcohols,  phenols, 
and  amines  by  potassium  or  calcium  permanganate 
in  ammoniacal  solution  in  the  presence  of  silver 
nitrate,  hydrocyanic  acid  was  always  formed  but  in 
variable  amount  depending  on  the  particular  sub- 
stance oxidised.  Butyl  alcohol  gave  the  lowest  yield 
and  methylamine  the  highest. — W.  G. 

Fatty  acids;  Detection  of by  the  formation  of 

their  sodium  uranyl  salts.  J.  Barlot  and  M.  T. 
Brenet.    Comptes  rend.,  1922,  174,  114—116. 

Streng's  reaction  for  the  microchemical  detection 
of  sodium  (cf.  Ber.  oberhess.  Ges.  fiir  Nat.  und. 
Heilk.,  1883,  22)  based  on  the  formation  of  a  cha- 
racteristic crystalline  precipitate  of  sodium  uranyl 
acetate  in  the  presence  of  acetic  acid,  gives  positive 
results  if  acetic  acid  is  replaced  by  its  homologues 
(acids  up  to  caproic  acid  were  tested)  in  which  there 
is  an  even  number  of  carbon  atoms  in  the  straight 
chain.  In  the  case  of  derivatives  of  acetic  acid  the 
reaction  depends  on  the  nature  of  the  substituent. 
Thus  the  chloroacetic  acids  do  not  give  the  reaction, 
but  sodium  phenylacetate  and  uranyl  nitrate  give 
at  once  crystals  of  the  double  salt,  CcH5.CH2.CO.Na, 
(CcH3.CH2.CO,),U02.— W.  G. 

Acetaldehyde;    Laboratory    preparation    of    . 

C.  E.  Adams  and  R.  J.  Williams.  J.  Amer.  Chem. 

Soc.,  1921,  43,  2420—2421. 
In  the  preparation  of  acetaldehyde  by  the  oxidation 
of  ethyl  alcohol  with  sodium  bichromate  the  yield  is 
practically  doubled  if  the  mixture  is  vigorously 
stirred  to  disengage  the  aldehyde  as  fast  as  it  is 
formed.  The  best  proportions  to  use  are  200  g.  of 
sodium  bichromate  for  100  g.  of  alcohol. — W.  G. 

Alcohols;  Determination  of by  acetylation.    H. 

Wolff.  Chem.  Umschau,  1922,  29,  2—3. 
Acetylation  is  carried  out  by  mixing  0'5  g.  of  the 
sample  with  1  c.c.  of  acetic  anhydride  in  a  test-tube 
0'6—O"8  cm.  wide  and  10  cm.  long,  sealing  the  tube, 
the  lower  end  being  kept  in  cold  water  the  while, 
and  then  heating  the  tube  for  1   hr.   in   a  boiling 


Vol.  xi.i  .  Xo.  4 .]      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


157  a 


water  bath.  After  cooling  the  tube  is  placed  in  a 
well-stoppered,  thick-walled  Hask  with  50  c.c.  of 
water  and  broken  by  vigorous  shaking.  The  stopper 
is  bound  on  and  the  flask  heated  to  about  50°  C.  for 
^  hr.  on  the  water  bath,  with  constant  shaking, 
cooled,  and  the  solution  then  made  neutral  to 
phenolphthalein.  25  c.c.  of  N /2  alcoholic  potash 
is  added  and  enough  alcohol  to  make  a  clear  solu- 
tion. The  flask  is  either  allowed  to  stand  over-night 
or  warmed  for  J — i  hr,  to  50° — 60°  C,  cooled,  and 
the  solution  titrated  back  with  iV/2  acid.  The  re- 
sults  obtained  with  methyl,  ethyl,  propyl,  and  amy] 
alcohols  were  within  less  than  1  '  of  the  theoretical. 
Solvents  such  as  petroleum  spirit  or  benzol  have  no 
effect  on  the  result.  If  esters  are  present,  their 
saponification  value  must  be  allowed  for. — H.  C.  R. 

Water-alcohol-chloroform;  The.  system  .    Misci- 

bility  of  the  components  in  different  proportions 
inn!  some  practical  applications  thereof.  N. 
Schoorl  and  A.  Regenbogen.  Rec.  Trav.  Cliim., 
1922,  41,  1—14. 

The  phase-rule  diagram  for  the  ternary  mixture  lias 
been  worked  out  from  data  derived  from  carefully 
purified  substances.  It  is  suggested  that  practical 
applications  may  be  made  in  examining  the  water 
content  of  alcohol,  and  also  the  extent  of  any  im- 
purities present  in  chloroform.  In  the  former  case, 
a  table  is  given,  based  on  experimental  results, 
showing  the  percentage  of  water  present  as  deter- 
mined by  adding  5  c.c.  of  wet  chloroform  to  the 
alcohol  and  noting  the  appearance  of  turbidity;  an 
alternative  method  is  given  which  depends  on  the 
determination  of  the  temperature  at  which  the  mix- 
ture becomes  homogeneous.  In  the  latter,  examples 
are  given  showing  the  discrepancy  between  the  tem- 
peratures at  which  the  mixture  becomes  homo- 
geneous in  the  case  of  pure  chloroform  and  chloro- 
form containing  various  percentages  of  carbon 
tetrachloride  and  methylene  chloride. — H.  J.  E. 

Chlorohydrocarbons  and  carbon  chlorides.  II. 
Sul  unit  ion  character  of  di-,  tri-,  and  per-chloro- 
ethylene.  B.  M.  Margosches  and  R.  Barn.  J. 
prakt.  Chem.,  1921,  103,  216—226. 

The  iodine  value  of  dichloroethylenes,  (CH.:OCl2 
and  CHCllCHCl),  trichloroethylene,  and  porehloro- 
ethylene  is  practically  zero  as  determined  by  means 
of  the  Htibl,  Wijs,  or  other  reagents  in  which  the 
active  agent  is  iodine  monochloride,  and  therefore 
these  solvents  can  be  safely  used  for  dissolving  fats 
in  the  determination  of  their  iodine  values. 

— W.  O.  K. 

Protective  colloids.  Carragheen  as  a  protective  col- 
loid. General  colloid-chemical  investigation  of 
the  extract  of  Irish  moss.  A.  Gutbier  and  J. 
Huber.     Kolloid-Zeits.,  1922,  30,  20—31. 

Colloidal  mucilages  of  carragheen  are  prepared  by 
immersing  the  dried  and  purified  moss  (30  g.)  in  a 
litre  of  water,  allowing  to  stand  for  some  time, 
shaking  vigorously  for  5  hrs.  and  filtering  through 
linen.  Dialysis  reduces  the  ash  content  and  removes 
the  turbidity  and  foul  odour.  The  mucilage  keeps 
without  the  addition  of  stabilising  agents.  The 
viscosity  is  decreased  by  keeping,  by  heating,  and 
by  the  addition  of  electrolytes.  The  mucilage  is  not 
coagulated  or  in  any  way  changed  visibly  by  the  ad- 
dition of  electrolytes,  except  sodium  hydroxide 
which  colours  it  light  brown.  Boiling  the  mucilage 
produces  a  very  stable  colloidal  solution.  (Cf. 
J.C.S.,  March.)— J.  F.  S. 

Protective  colloids.  Carragheen  as  a  protective 
colloid.  [Action  with]  colloidal  silver.  A.  Gutbier, 
A.  Wolf,  and  A.  Kiess.  Kolloid-Zeits.,  1922,  30, 
31—35. 

Colloidal  silver  produced  by  the  action  of  hydr- 
azine hydrate  on  silver  nitrate  in  the  presence  of 


carragheen  is  very  stable  and  may  be  preserved  for 
two  months.  The  colour  of  the  colloid  varies  with 
the  concentration  of  the  silver  nitrato  from  dark 
reddish-brown  to  brownish-yellow.  The  sol  may  be 
evaporated  to  dryness,  and  the  residue  is  entirely 
reversible.  Carragheen  itself  has  a  reducing  action 
on  silver  nitrate  producing  colloidal  silver.  The 
action  is  not  complete,  but  the  amount  of  silver 
reduced  increases  with  decreasing  concentration  of 
the  silver  nitrate. — J.  F.  S. 

Malt  mid  its  preparations.    Lecoq.    See  XVIII. 

Patents. 
Urea;  Process  for  effecting   the  change  of  calcium 

cyanamide  into  ■.     Nitrum  A.-G..  Assees.  of 

Nydegger  and  H.  Schellenberg.  E.P.  153,574, 
25.10.20.     Conv.,  7.11.19. 

Calcium  cyanamide,  e.g.,  20  kg.,  and  65  kg.  of 
nitric  acid  of  40°  B.  (sp.  gr.  P383)  are  added  con- 
currently during  30  mins.  to  100  1.  of  calcium 
nitrate  solution  of  sp.  gr.  1/5,  keeping  the  tempera- 
ture below  20°  C.  Conversion  of  the  calcium  cyan- 
amide into  urea  is  complete  after  a  further  J  hr. 

— L.  A.  C. 

Cnin phor ;    Purification,    of    crude    synthetic    . 

J.  M.  Kessler,  Assr.  to  E.  I.  du  Pont  de  Nemours 
and  Co.  U.S. P.  1,401,709,  27.12.21.  Appl., 
25.2.20. 

Camphor  containing  an  organic  halide  is  heated 
with  an  organic  acid  salt  of  high  boiling  point, 
soluble  in  molten  camphor,  at  a  temperature 
sufficient  to  decomposo  the  organic  halide,  but  in- 
sufficient to  decompose  the  camphor. — H.  H. 

(a)  Glycol;  Method  of  making .     (b)  Apparatus 

for  producing  tetrahalogenated  hydrocarbons. 
(c)  Apparatus  for  producing  ethylene,  (d)  Appa- 
ratus for  making  ethylene,  (e)  Production  of 
halogenated  hydrocarbons,  (f)  Apparatus  for  the 
production  of  halogenated  hydrocarbons,  (a  and 
b)  W.  H.  Rodebush,  (c)  M.  O.  Whitaker  and 
A.  A.  Backhaus,  (d,  e,  and  f)  A.  A.  Backhaus. 
Assrs.  to  U.S.  Industrial  Alcohol  Co.  U.S.P.  (a,  b) 
1,402,317—8,  (c)  1,402,329,  (d— f)  1,402,336—8, 
3.1.22.  Appl.,  (a,  b)  25.8.19,  (c)  11.7.19,  (d) 
19.12.18,  (e,  f)  7.5.19. 

(a)  A  glycol  is  prepared  by  the  interaction  of 
an  define  dihalide,  a  carbonate,  an  alcohol,  and  a 
salt,  soluble  in  alcohol,  of  an  organic  acid,  (b)  A 
vertical  reaction  chamber  containing  a  source  of 
light  and  an  agitator  at  the  bottom  is  connected 
with  a  tank  near  its  top  and  bottom.  Tho  tank  is 
provided  with  an  inlet  and  outlet  and  with  means 
for  the  introduction  of  chlorine,  (c)  A  preheater 
is  connected  with  a  heated  chamber  containing  a 
catalyst.  An  exit  pipe  leads  from  the  chamber  to 
a  condenser,  return  flow  pipes  lead  from  the  con- 
denser to  a  rectifier,  and  a  pipe  leads  from  the 
rectifier  to  the  preheater.  (n)  Furnace  tubes  in- 
clined upwards  towards  the  fire-box  aiy  provided 
inside  with  permeable  stops  and  with  a  phosphoric 
acid  catalyst  composition  above  the  slops,  (e  and  f) 
A  continuous  stream  of  a  halogen  and  an  olefine 
is  passed  through  cooled  tubes  into  a  vessel  for 
collecting  tho  dihalide  formed ;  the  inlet  tube  info 
the  vessel  dips  below  the  liquid  contained  therein, 
and  uncombincd  gas  is  returned  to  the  stream 
entering  the  cooled  tubes. — L.   A.  C. 

Esters:  Apparatus  for  producing   high-grade  . 

Apparatus  for   esterification.     A.    A.    Backhaus, 

Assr.    to    U.S.    Industrial    Alcohol    Co.      U.S.P. 

(a)  1,403,224,  and  (b)  1,403,225,  10.1.22.     Appl., 

16.9.  and  20.9.19. 
(a)   The  vapours  from   a  combined   preheater   and 
dephlegmator  attached  to  an  esterification  column 
pass  to  a  condenser  whence  the  condensed   liquid 


158A 


Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


[Feb.  28,  192 


passes  to  a  rectifier,  (b)  An  esterification  column 
contains  alternately  horizontal  plates  shaped  to 
hold  liquid,  each  provided  with  a  hooded  vapour 
pipe  to  force  ascending  gases  through  the  liquid, 
and  storage  plates,  each  provided  with  apertures 
with  a  comparatively  high  tube  or  cylinder  therein. 
Pipes  connect  the  plates  to  allow  liquid  to  descend. 

— L.  A.  O. 

Quaternary  ammonium  salts  of  pyridine-3-carboxylic 

acid  alkyl  esters ;  Production  of .    R.  Wolffen- 

stein.  G.P.  343,054,  23.10.19.  Addn.  to  340,874 
(J.,  1921,  903  a). 
Ptridlne-3-carboxylic  acid  alkyl  esters,  on  treat- 
ment with  alkyl  esters,  such  as  dimethyl  sulphate 
and  ethyl  nitrate,  but  excluding  alkyl  halides,  yield 
quaternary  compounds  in  the  form  of  viscous  oils 
miscible  with  water  and  alcohol,  but  insoluble  in 
ether.— L.  A.  C. 

Morphine  allyl  ether;  Manufacture  of .    G.  von 

Kereszty  and  E.  Wolf.  G.P.  343,055,  29.5.19. 
Conv.,  24.3.19. 
An  alcoholic  solution  of  an  arylsulphonic  acid  allyl 
ester  is  added,  drop  by  drop,  during  J  to  1  hr.,  at 
20° — 25°  C,  to  a  solution  of  a  morphine  alkali 
compound,  and  heated  after  a  short  time  to  40°  O. 
until  the  solution  is  no  longer  alkaline  to  phenol- 
phthalein.  O-Allylmorphine,  m.p.  67°— 68°  C,  is 
of  therapeutic  value  and  is  suitable  for  the  prepara- 
tion of  other  morphine  derivatives. — L.  A.  C. 

Metal  salt  compounds  of  pyridine-betaine  [glycerin 

substitutes'];  Manufacture  of  .     L.   Cassella 

und  Co.,  G.m.b.H.  G.P.  343,148,  18.1.18. 
Sweet,  viscous  solutions  suitable  for  use  as  a  sub- 
stitute for  glycerin  are  prepared  by  adding  a  small 
proportion  of  water  to  the  compounds,  either  alone 
or  in  admixture,  prepared  by  neutralising  di- 
pyridine-betaine  hydrochloride  with,  e.g.,  sodium 
carbonate  and /or  calcium  carbonate,  or  by  treating 
pyridine-betaine  with,  e.g.,  potassium  iodide,  mer- 
curic chloride,  or  sodium  salicylate. — L.  A.  O. 


XXII.-EXPLOSIVES;  MATCHES. 

Potassium  nitrate;  Impurities  in  synthetic as 

used  in  the  manufacture  of  gunpowder.     Junk. 
Z.  ges.  Schiess-  u.  Sprengstoffw.,  1922,  17,  1—5. 

Synthetic  potassium  nitrate  as  used  in  gunpowder 
manufacture  is  of  a  higher  degree  of  purity  than 
that  made  from  Chili  saltpetre,  but  the  impurities 
present  are  the  same.  The  highest  percentages  of 
impurities  found  were :  chloride  and  perchlorate  (as 
chlorine)  0'06%  (potassium  perchlorate  0'055%); 
potassium  nitrite,  0'05%  ;  ammonia,  traces;  potas- 
sium chlorate,  traces;  dirt  etc.  0" 06%  ;  organic  im- 
purities, traces ;  sulphuric  acid,  lime,  magnesia, 
and  heavy  metals,  traces ;  bromine  and  iodine,  ab- 
sent; moisture,  less  than  0T%.  The  presence  of 
nitrites  was  found  to  affect  the  sensitiveness  of  the 
gunpowder  to  impact  and  heat  only  slightly  if  0'5% 
was  present  and  not  markedly  until  5%  was 
reached.  The  total  chlorine  was  estimated  gravi- 
metrically  after  heating  25 — 50  g.  for  i  hr.  at  580° — 
600°  C. ;  the  chlorate  by  reducing  the  filtrate  from 
the  chloride  estimation  with  sulphurous  acid ;  the 
nitrite  colorimetrically  with  sulphanilic  acid  and  a- 
naphthylamine  in  acetic  acid  solution,  and  also  by 
adding  N/100  permanganate  and  titrating  back 
with  NI100  oxalic  acid.— H.  C.  R. 

Patents. 
Explosive.     E.  von  Herz.     U.S.P.  1,402,693,  3.1.22. 

Appl.,  25.10.20. 
See  E.P.  145,791  of  1920;  J.,  1921,  326  a. 

Dinitrodiphenylamine.    U.S.P.  1,401,631.    See  III. 


XXIII.— ANALYSIS. 

Coloured  indicators;  Salt  error  of .     I.  M.  Kolt- 

hoff.    Rec.  Trav.  Chim.,  1922,  41,  54—67. 

A  large  range  of  coloured  indicators  has  been  ex- 
amined and  the  error,  if  any,  of  each  due  to  the 
presence  of  solutions  of  salts  of  various  concentra- 
tions has  been  determined.  The  results  obtained 
are  given  in  detail  as  regards  each  indicator  and 
summarised  for  purposes  of  comparison.  From  the 
data  collected,  the  following  indicators  are  regarded 
as  suitable  :  Tropreolin  00,  methyl  orange,  dibromo- 
cresolsulphophthalein,  methyl  red,  p-nitrophenol, 
brilliant  yellow,  phenolphthalein,  thymol-sulpbo- 
phthalein.  Dimethyl  yellow  is  flocculated  by  salts, 
tetrabromophenolsulphophthalein  is  unsuitable  in 
very  dilute  solutions  of  electrolytes,  azolitmin  needs 
too  great  a  correction  for  accuracy,  tropseolin  O  is 
inaccurate. — H.  J.  E. 

Permanganate-oxalate  titrations;  Effect  of  the  pres- 
ence of  filter  paper  on  — — •.  S.  G.  Simpson.  J. 
Ind.  Eng.  Chem.,  1921,  13,  1152—1154. 
Permanganate  is  reduced  readily  by  filter  paper, 
particularly  when  the  latter  is  finely  disintegrated ; 
in  the  titration  of  calcium  oxalate,  the  precipitated 
oxalate  should  be  washed  off  the  filter  and  titrated, 
and  the  paper  added  only  when  the  titration  is 
nearly  completed. — W.  P.  S. 

Halides;  Use  of  mercuric  nitrate  instead  of  silver 

nitrate  in  determination  of .     I.  M.  Kolthoff 

and  A.  Bak.     Chem.  Weekblad,  1922,  19,  14—16. 

Mercuric  nitrate  is  used  with  sodium  nitroprusside 
as  indicator,  and  gives  accurate  results  for  chlorides 
in  concentrations  as  low  as  0009  g.  Cl  per  litre. 
Corrections  are  given  for  excess  of  reagent  required 
for  various  compositions  and  volumes.  The  method 
is  suitable  for  estimations  of  chlorides  in  conduc- 
tivity water,  urine,  etc.    (C/.  J.C.S.,  Feb.) 

— S.  I.  L. 

Columbium  and  tantalum;  Separation  of  - — ■ —  by 
means  of  selenium  oxychloride.  H.  B.  Merrill. 
J.  Amer.  Chem.  Soc,  1922,  43,  2378—2383. 
The  mixed  oxides  of  tantalum  and  columbium  to- 
gether with  titanium  oxide,  if  such  be  present,  are 
precipitated  together,  ignited,  and  weighed.  A  por- 
tion (0'2 — 0'3  g.)  of  the  mixed  ignited  oxides  is 
boiled  in  an  Erlenmeyer  flask  with  50  c.c.  of  a  1:1 
mixture  of  selenium  oxychloride  and  concentrated 
sulphuric  acid  for  30  mins.  on  a  sand  bath,  care 
being  taken  that  clouds  of  vapour  are  not  evolved. 
The  solution,  after  cooling,  is  decanted  through  a 
Gooch  crucible,  the  filtrate  is  poured  into  a  large 
volume  of  water,  and  boiled,  when  hydrated  colum- 
bium pentoxide  is  precipitated.  The  residue  in  the 
flask  is  boiled  with  20  c.c.  of  the  1:1  mixture,  de- 
canted, and  treated  as  before,  and  the  process  re- 
peated until  the  filtrate  on  hydrolysis  gives  only  a 
faint  turbidity  due  to  traces  of  tantalum  pentoxide. 
The  residue  is  then  washed  into  the  Gooch  crucible, 
and  without  much  washing  the  crucible  is  ignited 
and  weighed  ;  the  gain  in  weight  gives  the  amount  of 
tantalum  pentoxide,  and  the  columbium  pentoxide 
and  titanium  dioxide  are  obtained  by  difference. 
The  method  gives  results  which  have  a  maximum 
error  of  3  %  and  is  therefore  better  than  Marignac's 
method  and  far  more  rapid.  Pure  columbium  pent- 
oxide may  be  prepared  from  the  mixed  oxides  by 
extracting  with  sufficient  of  the  above  solvent  to 
dissolve  all  the  columbium,  but  the  mixture  should 
not  he  boiled  until  all  the  columbium  has  dissolved, 
since  this  would  mean  the  solution  of  much  tan- 
talum. The  dissolved  oxide  is  precipitated  with 
water  and  ammonia,  filtered  off,  and  ignited.  A 
repetition  of  the  process  removes  the  traces  of  tan- 
talum oxide  and  gives  a  very  pure  columbium  pent- 
oxide.    Pure   tantalum   pentoxide   is   prepared   by 


Vol.  XLL,  Xo.  4.) 


PATENT    LIST. 


159  a 


boiling  the  mixed  oxides  with  the  solvent  until  all 
the  columbium  has  dissolved,  when  a  very  pure  pro- 
duct is  obtained.  The  process  is  hastened  by  the 
addition  of  a  little  more  sulphuric  acid  to  the  sol- 
vent—J.  F.  S. 

Molybdenum  and  tungsten;  Separation  of by 

means  of  selenium  oxychloride.     H.  B.  Merrill. 
J.  Amer.  Chem.  Soc,  1921,  43,  2383—2387. 

Mixtures  of  molybdenum  and  tungsten  trioxide 
may  be  quantitatively  separated  by  boiling  1  g.  of 
the  mixture  with  30c.c.  of  a  1:1  mixture  of  selenium 
oxychloride  and  concentrated  sulphuric  acid  for 
60  mins.  The  solution  is  decanted  through  a  Gooch 
crucible  and  the  residue  washed  several  times  with 
small  quantities  of  selenium  oxychloride,  and  finally 
brought  on  to  the  filter  with  a  hot  10%  solution  of 
ammonium  nitrate.  The  crucible  is  ignited  and 
weighed,  and  gives  the  weight  of  tungsten  trioxide, 
the  molybdenum  trioxide  being  obtained  by  differ- 
ence. The  above  method,  which  is  effective  for 
mixtures  made  by  mixing  the  two  oxides  by  hand, 
does  not  work  with  mixtures  of  the  two  oxides 
precipitated  together,  if  the  amount  of  tungsten 
trioxide  is  greater  than  10  %.  In  such  cases  it  is 
impossible  to  dissolve  all  the  molybdenum  trioxide 
owing  to  the  formation  of  solid  solutions.  This 
difficulty  is  overcome  by  dissolving  the  oxides  in 
ammonia,  adding  sufficient  nitric  acid  to  precipitate 
most  of  the  tungsten,  evaporating  to  dryness  and 
proceeding  as  described  above.  The  method  gives 
good  results. — J.  F.  S. 

Nitrogen;  Micro-method  for  the  estimation  of . 

D.  Acel.     Biochem.  Zeits.,  1921,  121,  120—124. 

After  destruction  of  the  organic  matter  by  sul- 
phuric acid  in  the  usual  manner,  the  ammonia 
formed  is  not  distilled  off  but  is  determined  colori- 
metrically  by  Nessler's  reagent.  The  control  is 
treated  with  standard  ammonium  chloride  solution 
until  the  colours  match.  The  method  is  suitable  for 
the  determination  of  nitrogen  in  0"001 — 0"003  c.c.  of 
urine  or  serum,  if  these  be  diluted  for  measurement. 

— H.  K. 

Nitrogen  oxides;  Formation  of in  the  slow  com- 
bustion and  explosion  methods  in  gas  analysis. 
G.  W.  Jones  and  W.  L.  Parker.  J.  Ind.  Eng. 
Chem.,  1921,  13,  1154—1157. 

The  amount  of  nitrogen  oxides  formed  in  the  slow 
combustion  method  does  not  exceed  0'003  c.c.  if  the 
platinum  wire  is  not  heated  to  more  than  bright 
yellow  and  the  time  of  burning  is  not  more  than 
3  mins. ;  nitrogen  oxides  are  not  formed  in  the 
explosion  method  when  air  is  used  as  the  source  of 
oxygen.  Considerable  quantities  of  the  oxides  are 
produced,  however,  in  the  explosion  method  when  a 
mixture  of  air  and  oxygen  is  employed,  and  the 
error  thus  introduced  may  amount  to  2%.  The 
addition  of  oxygen  raises  the  flame  temperature  to 
a  point  at  which  nitrogen  oxides  are  produced  in 
appreciable  quantity,  and  sparking  between  the 
electrodes  is  not  the  cause  of  the  formation  of  the 
oxides.— W.  P.  S. 

See  also  pages  (a)  128,  Solid  fuels  (Fritsche). 
135,  Dyestuff  intermediates  (Atkinson).  136,  Azo 
dyestuffs  (Jones  and  Lee).  137,  "  Bromine  figure  " 
or  "  chlorine  factor"  of  wood  pulp  (Tingle).  140, 
Ferric  salts  (McCay  and  Anderson) ;  Arsenic 
(Reedy).  141,  Oxidising  properties  of  thorium-X 
(Lemay  and  Jaloustre).  144,  Nickel  in  steel 
(Rubricius) ;  Antimony  in  copper  and  brass  (Evans). 
145,  Tungsten  (Lavers).  148,  Acetyl  value  of  oils 
and  fats  (Leys) ;  Glycerin  (Fricke).  150,  Basicity 
of  chrome  liquors  (Atkin  and  Burton) ;  Tannin 
analysis  (Reed  and  Blackadder) ;  Decomposition 
of  sodium  peroxide  solutions  (Innes).  152, 
Sucrose    and    dextrose    (Congdon    and    Stewart). 


153,  Hydrogen-ion  concentration.  Mineral  acids  in 
vinegar  (Kling  and  others).  154,  Lead  in  water 
(Avery  and  others).  155,  Impurities  in  air 
(Sieverts).  156,  Fatty  acids  (Barlot  and  Brenet); 
Alcohols  (Wolff).  157,  Water-alcohol-chloroform 
(Schoorl  and  Regenbogen) ;  Chloroethylenes  (Mar- 
gosches  and  Baru). 


Patent  List. 

_  The  dates  given  in  this  Hat  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on  sale 
at  Is.  each  at  the  Patent  Office  Sale  Branch,  Quality 
Court,  Chancery  Lane,  London.  W.C.  2,  15  days  after  tbe 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Adams.     Centrifuges.     3669.     Feb.  8. 

A.-G.  Brown,  Boveri  &  Co.  Evaporating 
vaporising,  and  distilling.  3463.  Feb.  6.  (Switz., 
5.2.21.) 

Bell.     Furnaces.    3951.    Feb.  10.    (U.S.,  2.6.15.) 

Bennis.     Furnaces.     3486-S.     Feb.  7. 

Birkbeck,  Kegg,  and  Lappin.     Lubricant.    3714. 

Feb.  8. 

Blow,  and  Renshaw  Engineering  Works.  Extract- 
ing and  segregating  soft  penetrable  substances  from 
an  agglomeration  of  same  and  hard  substances. 
3614.     Feb.  7. 

Burt,  Boulton,  and  Haywood,  and  China.  Mills 
for  disintegrating  substances  in  a  liquid  medium. 
3350.     Feb.  4. 

Clapp,  and  Ferolite,  Ltd.  Crucibles,  retorts,  etc. 
3603.     Feb.  7. 

Dried  Milk  Dairy  Products,  Ltd.,  Lampitt,  and 
Palmer.  Apparatus  for  separating  and  collecting 
solid  particles  from  air.     3856.     Feb.  9. 

Hitoshima  Rutsubo  Kabushiki  Kaisha,  and 
Nakamura.     Graphite  crucibles.     2714.     Jan.  30. 

Moseley.  Production  of  colloidal  dispersions. 
3647.     Feb.  8. 

Peachey  Process  Co.,  and  Shaw.  Impregnation 
of  liquids  and  solutions  with  soluble  gases.  3405 
and  3411.     Feb.  6. 

Reavell.  Evaporators  etc.  and  manufacture  of 
same.     2843.     Jan.  31. 

Rennison  and  Sheard.     Gas-fired  furnaces.    3910. 
Feb.  10. 
Wood.     Drying  apparatus.     2956.     Feb.  1. 

Complete  Specifications  Accepted. 

22,748  (1920).  Bloxam  (Ges.  f.  Maschinelle 
Druckentwasserung).  Process  for  briquetting  or 
drying.     (174,657.)     Feb.  15. 

29,678  (1920).  Thermal  Industrial  and  Chemical 
Research  Co.,  Duckham,  and  Morgan.  Heating 
materials  at  successively  different  temperatures. 
(174,690.)     Feb.  15. 

30,661  (1920).  MacLachlan.  Deodorising  gases. 
(167,132.)     Feb.  15. 

31,204  (1920).     O'Connell  and  Kerr.     See  XIX. 

1408  (1921).  Gerken.  Furnaces.  (157,708.)  Feb.  15. 

1551  (1921).  Griffith.  Grinding  or  crushing 
machines.     (157,S26.)     Feb.  15. 


160a 


PATENT    LIST. 


[Feb.  28,  1922. 


1575  (1921).  Chem.  Fabr.  Worms.  Process  and 
apparatus  for  distillation.     (157,849.)     Feb.  8. 

12,078  (1921).  Sklenar.  Reverberatory  furnace. 
(174,881.)     Feb.  18. 

27,419  (1921).  Mayers,  and  Britons,  Ltd.  Fur- 
naces for  producing  mineral  distillates  of  definite 
composition.     (174,555.)     Feb.  8. 

31,648  (1921).  Welter.  Production  of  finely 
granulated  compounds.     (174,891.)     Feb.  15. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE    DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Amato  and  Lings.  Treatment  of  petroleum  etc. 
4056.     Feb.  11. 

Beasley,  Bourke,  Middleton,  and  Minerals  Sepa- 
ration, Ltd.     Carbonisation  of  coal.     3621.    Feb.  7. 

Birkbeck  and  others.     3714.     See  I. 

Bullinger,  Teichner,  and  Winternitz.  Process  of 
oxidising  hydrocarbons.  2739  and  2740.  Jan.  30. 
(Austria,  29.1.21.) 

Burlin.  Eliminating  sulphur  from  oils.  3854. 
Feb.  9. 

Dombrain.  Means  for  cleaning  suction  producer- 
gas.     3127.     Feb.  2. 

Fabry.     By-product  coke-ovens.     3520.     Feb.   7. 

Hovev.  Obtaining  hydrocarbon  distillates.  3447. 
Feb.  6." 

Ironside.  Distilling  oil  shales,  coal,  etc.  2729. 
Jan.  30. 

Ketley.     Calcining  mine  ash.     3780.     Feb.  9. 

Pollard.    Carburation  of  motor  fuel.   3313.   Feb.  4. 

Sharpies.     Refining  petroleum.     3787-8.    Feb.  9. 

Sulzer  Freres.  Apparatus  for  utilising  heat  from 
incandescent  coke.  2719.  Jan.  30.  (Switz.,  18.10.21.) 

Sulzer  Freres.  Plant  for  cooling  incandescent 
coke.     2720.     Jan.  30.     (Switz.,  8.11.21.) 

Complete  Specifications  Accepted. 

23,646     (1920).       Stephens  (Canadian-American 

Finance  and  Trading  Co.).  Treatment  of  hydro- 
carbons.    (174,389.)     Feb.  8. 

27,279  (1920).  Wallace.  Carbonising  carbon- 
aceous materials.     (174,676.)  Feb.   15. 

30,510  (1920).  Steele  and  Clifton.  Liquid  fuel. 
(174,712.)     Feb.  15. 

30,552  (1920)  and  21,371  (1921).  General  Electric 
Co.,  and  Goucher.  Filaments  for  incandescent 
electric  lamps.     (174,714.)     Feb.  15. 

30,661  (1920).     MacLachlan.     Sec  I. 

31,073  (1920).  Marriott.  Liquid  mixture  for 
reducing  the  consumption  of  liquid  hydrocarbon 
fuel  in  internal-combustion  motors.  (174,463.) 
Feb.  8. 

33,444(1920).  Rambush.  Gas-producers.  (174,498.) 
Feb.   8. 

2697  (1921).  Halbergerhiitte  Ges.  Dry  gas 
purifiers.     (172,270.)     Feb.  15. 

■27.  119  (1921).     Mayers  and  others.     Seel. 

III.— TAR,    AND  TAR    PRODUCTS. 

Applications. 

Atack.  Process  for  sulphurising  organic  com- 
pounds.    2827.     Jan.  31. 


Bullinger  and  others.     2739  and  2740.    See  II. 

Burlin.     3854.     See  II. 

Perkin  and  Whattam.  Manufacture  of  /3-anthrole. 
2809.     Jan.  31. 

Posseyer  Abwasser  u.  Wasserreinigungsges.  3931. 
See  XIX. 

Complete  Specifications  Accepted. 
23,646  (1920).     Stephens.     See  II. 

32,286  (1920).  Dawson,  Purification  of  anthra- 
quinone.     (174,784.)    Feb.  15. 

8432  (1921).  Benn,  Benn,  and  Benn.  Tar-dis- 
tillation and  like  stills.     (174,877.)     Feb.  15. 

IV.— COLOURING    MATTERS    AND    DYES. 

Applications. 
Atack.    2827.    See  XII. 

Carpmael  (Bayer  u.  Co.).  Manufacture  of  azo 
dyestuffs.     2880.     Jan.  31. 

Sallmann,  Straub,  and  Soc.  of  Chem.  Industry 
in  Basle.  Manufacture  of  chromium  compounds  of 
azo  dyestuffs.     3745.     Feb.  8. 

V— FIBRES;  TEXTILES ;  CELLULOSE ; 
PAPER, 

Applications. 

Barrett,  Foulds,  Willows,  and  Tootall  Broad- 
hurst  Lee  Co.  Treatment  of  textile  fabrics.  3165. 
Feb.  3. 

Jury.     4103.     See  XIV. 

Mcintosh  and  Mcintosh.  Treatment  of  textile 
fibres.    3283.     Feb.  4. 

Ros.  Treatment  of  fibrous  materials.  3324. 
Feb.  4. 

Stevenson.  Manufacture  of'  artificial  silk  from 
acetylcellulose.     2701.     Jan.  30. 

Complete  Specification  Accepted. 

22,974  (1920).  Dreyfus.  Manufacture  of  films, 
celluloid-like  masses,  etc.     (174,660.)     Feb.  15. 


VI.— BLEACHING;     DYEING;     PRINTING; 

FINISHING. 

Applications. 

Brandwood  and  Brandwood.     3039.     See  VII. 

Burgess,  Lcdward,  and  Co.,  and  Harrison.  Dye- 
ing cellulose  acetate.     3304.     Feb.  4. 

Hall,  and  Whitefield  Velvet  and  Cord  Dyeing  Co. 
Apparatus  for  dyeing  cloth.     3037.     Feb.  2. 
Lepine.     Dyeing-machines.     3644.     Feb.   8. 

Moscrop.  Removal  of  lye  from  fabrics.  4008. 
Feb.  10. 

Schmid.      Dyeing    silk    black.      3272.      Feb.    3. 

(Switz.,  7.2.21.) 

Complete  Specifications  Accepted. 

30,687  (1920V  Waite.  Apparatus  for  printing  on 
fabrics.      (174,456.)      Feb.   8. 

33,514  (1920).  Rangeley  and  Chidlow.  _  High- 
pressure  open-width  bleaching  kier.  (174.499.) 
Feb.  8. 

851  (1921).  Mehlcr  Segeltuchweberei.  Process 
of  waterproofing  fabrics.     (156,776.)     Feb.  8. 


Vol.  XIX,  No.  4.] 


PATENT  LIST. 


1G1  A 


VII—  ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC  ELEMENTS 

Applications. 

Brandwood  and  Brandwood.  Production  of 
bleaching  liquor.     3039.     Feb.   2. 

Denny  Chemical  Engineering  Co.,  and  Knibbs. 
Hydration  of  lime  etc.     2747.     Jan.  30. 

Dutt.  Extraction  of  titanium  dioxide  and 
vanadium  salte  from  bauxite.     3962.     Feb.  10. 

Dutt  and  Godfrey.  Extraction  of  uranium  and 
radium  compounds  from  bauxite.    3963.    Feb.  10. 

Evans  and  Rces.     3904.     See  X. 

Fairweather  (Federal  Phosphorus  Co.).  Produc- 
tion of  phosphoric  acid.     3022.     Feb.  1. 

Soc.  Miniere  et  Indus.  Franco-Bresilienne.  Treat- 
ment of  monazite  etc.   3875.   Feb.  9.   (Fr.,  29.12.21.) 

Complete  Specifications  Accepted. 

21,592  (1920).  Naef.  Manufacture  of  sodium 
compounds  and  by-products.     (174,653.)    Feb.  15. 

29,671  (1920).  Lew  and  Davis.  Generation  of 
oxygen.     (174,418.)    Feb.  8. 

29,850  (1920).  L'Air  Liquide  Soc.  Anon.  Catalytic 
materials  for  use  in  synthesis  of  ammonia.  (153,254.) 
Feb.  8. 

31,995  (1920).     Wohl.     See  XX. 

1529  (1921).    Koppers.    See  VIII. 

8515  (1921).  South  Metropolitan  Gas  Co.,  Evans, 
Parrish,  and  Weight.  Manufacture  of  ammonium 
sulphate.      (174,878.)     Feb.   15. 

VIII.— GLASS;   CERAMICS. 
Applications. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).  Manufacture  of  articles  of  silica.  2870. 
Jan.  31. 

Ford.  Treatment  of  alabaster  etc.  3160-1. 
Feb.  3. 

Haddan  (Corning  Glass  Works).  Modification  of 
colours  in  glasses.     3560.     Feb.  7. 

Haddan  (Corning  Glass  Works).  Finishing  glass 
articles.    3562.    Feb.  7. 

Haddan  (Corning  Glass  Works).  Heat-treatment 
of  glass  articles.     3563.     Feb.  7. 

Haddan  (Corning  Glass  Works).  Neutralising  or 
changing  colours  in  glasses.     3564.     Feb.  7. 

Haddan  (Corning  Glass  Works).  Melting  lead 
glasses.     3565.     Feb.  7. 

Haddan  (Corning  Glass  Works).  Manufacture  of 
translucent  or  opaque  glass.     3566.     Feb.  7. 

Complete  Specifications  Accepted. 

1529  (1921).  Koppers.  Tunnel  kilns  or  ovens  for 
pottery,  lime-burning,  etc.     (174,852.)     Feb.  15. 

4858  (1920).    Michel.    See  XI. 

IX.— BUILDING    MATERIALS. 

Application. 

Wake.  Manufacture  of  bricks,  paving  setts,  etc. 
from  slag.     3726.     Feb.  8. 

Complete  Specification  Accepted. 

25,137  (1920).  Webster  and  John.  Roofing,  wall- 
ing material,  etc.     (174,668.)    Feb.  15. 


X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Aitchison.    Manufacture  of  unstainabk?  irons  and 
steels.     3451.     Feb.  6. 

Ashcroft.     Precipitation  of  precious  metals  from 
cyanide  solutions.     2857.     Jan.  31. 

Boulton.     Alloy.     2909.     Feb.  1. 

Coles.     Sherardising   apparatus.     3379.     Feb.   6. 

Coles.      Manufacture    of    metallic    foils.      3390. 
Feb.  10. 

Diepschlag.     Method  of  working  blast  furnaces. 
2890.    Jan.  31.    (Ger.,  31.1.21.) 

Evans  and  Rees.     Utilising  waste  acid  obtained 
in  pickling  iron  and  steel.    3904.     Feb.  10. 

Maclaren,  and  Safe  Superheat,  Ltd.     Treatment 
of  sulphide  ores.     3626.    Feb.  7. 

Shimadzu.    Manufacture  of  metal  powder.    3602. 
Feb.  7. 

Complete  Specifications  Accepted. 

30,391     (1920).      British    Thomson-Houston    Co. 
(General  Electric  Co.).     Alloys.     (174,443.)     Feb.  8. 

30,960  (1920)  and  4718  (1921).  Nettleton.  Separa- 
tion of  minerals  etc.    (174,739.)    Feb.  15. 

62  (1921).    Chem.  Fabr.  Worms  A.-G.  Regenerat- 
ing metallic  mercury.     (156,187.)     Feb.  15. 

3251  (1921).     Goldschmidt  A.-G.     Bearing-metal 
alloy  of  high  lead  content.    (158,562.)    Feb.  8. 

3715  (1921).     Gunderson.     Process  of  case-harden- 
ing copper.    (174,863.)    Feb.  15. 

27,419(1921).    Mayers  and  others.    Seel. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Boite    and    Edridge.       Negative    electrodes    for 
batteries  etc.    3363.    Feb.  4. 

Leitner.     Accumulators.     2952  and  3849.     Feb.  1 
and  9. 

Martingnoni.    Accumulators.    3630.    Feb.  7. 

Oldham  and  Oldham.     Galvanic  batteries.     2757. 
Jan.  30. 

Soc.  Anon.  Le  Carbone.     Electric  batteries.  3937. 
Feb.  10.    (Fr.,  19.4.21.) 

Spino.    Voltaic  cells.    3228.    Feb.  3. 

Wagner.     Storage  batteries.     3452.    Feb.  6. 

Wagner.     Manufacture  of  positive  and  negative 
elements  for  storage  batteries.    3453.    Feb.  6. 

Complete  Specification  Accepted. 

4858  (1921).     Michel.     Manufacture  of  electrodes 
and  abrasives.     (174,529.)    Feb.  8. 


XII.— FATS;  OILS;  WAXES. 

Applications. 

Atack.  Compositions  containing  soap  or  oily 
matter  and  colouring  matter.    2678.    Jan.  30. 

Bellwood  and  Downs.  Extracting  oil,  fat,  wax, 
etc.  from  seeds,  nuts,  etc.  bv  a  solvent.  2796. 
Jan.  31. 


162  a 


PATENT    LIST. 


(Feb.  28,  1922. 


XIII.— PAINTS;  PIGMENTS;  VARNISHES; 

RESINS. 

Applications. 

Griffith.    Pigments.    3816.    Feb.  9. 

Shimadzu.    Paint.    3628.    Feb.  7. 

Complete  Specification  Accepted. 

22.613  (1920).  Wade  (Redmanol  Chemical  Pro- 
ducts Co.).  Manufacture  of  phenolic  condensation 
products.    (174,656.)    Feb.  15. 

XIV— INDIA-RUBBER ;  GUTTA-PERCHA. 

Applications. 

Isleworth  Rubber  Co.,  Morton,  and  Priestley. 
Treatment  of  rubber.     3997.     Feb.  10. 

Jury.  Manufacture  of  fibrous  materials  for  use 
in  rubber  articles  etc.    4103.    Feb.  11. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Applications. 

Soc.  du  Feutre.  Lime  treatment  of  skins.  3872. 
Feb.  9.    (Fr.,  19.2.21.) 

Complete  Specifications  Accepted. 

SS61  (1920).  Marris,  and  Walker  and  Sons.  Pro- 
cess of  tanning.    (174,383.)    Feb.  8. 

30,276  (1920).  Johnson  (Badische  Anilin  u.  Soda 
Fabr.).    Tanning.    (174,700.)    Feb.  15. 

XVIII—  FERMENTATION  INDUSTRIES. 
Applications. 

Klein.  Process  of  drying  yeast.  4004.  Feb.  10. 
(Austria,  15.2.21.) 

Klein.  Process  of  drying  pressed  yeast.  4005. 
Feb.  10.    (Austria,  15.2.21.) 

Klein.  Apparatus  for  drying  yeast.  4008.  Feb.  10. 
(Austria,  3.3.21.) 

Lefranc  et  Cie.     3136.     See  XX. 

Tetlow.  Manufacture  of  alcoholic  beverages. 
3046.    Feb.  2. 

XIX.— FOODS;  WATER  PURIFICATION; 
SANITATION. 

Applications. 
Adams.     Sewage  purification.    3S96.    Feb.  10. 
American  Cotton  Oil  Co.     Food  product.     3604. 
Feb.  7.     (U.S.,  5.4.21.) 


Graham.  Treatment  of  soya  beans,  and  flour 
made  therefrom.    3533.    Feb.  7. 

Mas.  Antiseptic  and  antiputrescent  compound. 
3826.    Feb.  9.    (Fr.,  28.2.21.) 

Pell  (Linden).  Reducing  percentage  of  water  in 
sewage,  sludge,  etc.    3954.    Feb.  10. 

Posseyer  Wasser  u.  Abwasserreinigungs  Ges. 
Removal  of  phenol  and  its  homologues  from  waste 
waters.    3931.    Feb.  10.    (Ger.,  10.2.21.) 

Raeve.  Treatment  of  trade  waste  waters.  3607. 
Feb.  7. 

Complete  Specifications  Accepted. 

30,048  (1920).  Thomson.  Alcoholic  solutions  of 
proteins.     (174,433.)     Feb.  8. 

30,285  (1920).  Sauer.  Production  of  a  product 
for  sanitary,  medicinal,  and  therapeutic  uses. 
(174,702.)    Feb.  15. 

31,204  (1920).  O'Connell  and  Kerr.  Internally 
heated  or  cooled  rollers  especially  for  drying,  heat- 
ing, or  cooling  milk  etc.     (154,887.)     Feb.  15. 

122  (1921).  Bleicken.  Apparatus  for  producing 
distilled  water.     (156,192.)    Feb.  15. 

4075  (1921).  Smith.  Cocoanut  food  products. 
(174,527.)    Feb.  8. 

XX.— ORGANIC  PRODUCTS;  MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS. 

Application. 

Lefranc  et  Cie.  Manufacture  of  butyric  acid 
with  recovery  of  gases  of  fermentation.  3136. 
Feb.  2.    (Fr.,' 26.9.21.) 

Complete  Specifications  Accepted. 
30,285  (1920).    Sauer.    See  XIX. 

31,195  (1920).  Wohl.  Production  of  aldehyde 
and  acetic  acid.     (154,579.)    Feb.  15. 

24,859  (1921).  Carpmael  (Cheni.  Fabr.  auf 
Aktien  vorm.  E.  Schering).  Manufacture  of  hydro- 
quinone.     (174,554.)     Feb.  8. 

|    XXL— PHOTOGRAPHIC      MATERIALS      AND 
PROCESSES. 

Applications. 

Camiller  and  Hay.  Manufacture  of  multicolour 
screens,  films,  or  plates  for  natural-colour  kine.ma- 
tography  etc.     2746.    Jan.  30. 

Collins.  Photographic  dry  plates,  films,  etc.  2922. 
Feb,  1. 


Vol.  XLL,  No.  5.] 


ABSTRACTS 


[Mar.  15,  1922. 


I -GENERAL ;  PLANT  ;    MACHINERY. 

Air,    steam,    and   carbon    dioxide;    Specific    heats 

of  .     W.   D.    Wormerslv.     Proc.   Roy.   Soc., 

1922,  A  100,  4S3— 498. 
The  energy  in  the  gases,  air,  steam  and  carbon 
dioxide  above  1000°  C.  and  the  mean  volumetric 
heat  from  1000°  to  2000°  C.  have  been  determined 
by  the  explosion  method,  and  by  utilising  values 
obtained  previously  by  Swann  and  Holborn  and 
Henning,  values  for  the  range  100° — 2000°  are 
given  in  tables  and  diagrams. — J.  F.  S. 

Thermo-couples.       Fairchild     and     Schmitt.       See 
XXIII. 

Patents. 

Separating    the    constituent    elements    of    gaseous 

mixtures;  Means  for .     E.  N.  Mazza.     E.P. 

147,189,  7.7.20.     Conv.,  7.9.15. 

The  mixture  of  gases  is  passed  through  curved  con- 
duits in  which  the  constituents  are  stratified  by  cen- 
trifugal action,  and  are  separated  by  dividing 
plates  disposed  at  the  outlets.  The  generating  lines 
of  the  inner  surfaces  of  the  conduits  are  made  up 
of  a  series  of  tangential  circular  arcs.  The  leading 
edges  of  the  dividing  plates  are  formed  by  the  in- 
tersection of  pairs  of  surfaces,  either  or  both  of 
which  may  be  convex,  concave,  or  plane,  according 
to  the  nature  and  velocity  of  the  gases.  The  con- 
duits and  the  dividing  plates  may  be  built  into  the 
casing  of  a  rotary  fan  adapted  to  supply  the  gas 
mixture  under  pressure,  and  this  casing  may  be 
rotated  about  the  axis  of  the  fan  to  increase  the 
centrifugal  action. — H.  H. 

Separating    gases;   Apparatus    for .      M.    von 

Recklinghausen,    Assr.     to    Air    Reduction    Co. 
U.S. P.  1,403,723,  17.1.22.     Appl.,  15.3.17. 

A  rectifying  column  for  separating  a  mixture  of 
liquefied  gases  by  fractional  distillation  comprises  a 
number  of  superposed  compartments  of  successively 
decreasing  transverse  area  from  the  bottom  up- 
wards. Cooling  medium  is  supplied  in  heat- 
interchanging  relation  to  the  compartments  succes- 
sively, commencing  with  the  uppermost  one,  the 
temperature  of  which  is  thus  lower  than  that  of  the 
lowermost  one. — H.  H. 

Evaporating  liquids;  Apparatus  for .     K.  L.  E. 

Thunholm.  E.P.  156,592,  6.1.21.  Conv.,  4.3.18. 
Superposed  annular  heating  members  are  each  pro- 
vided with  concentric  channels  for  the  passage  of 
steam,  the  width  of  successive  channels  decreasing 
towards  the  periphery.  The  channels  are  covered 
by  a  removable  wall  of  thin  heat-conducting 
material  through  which  heat  is  exchanged  with  the 
liquid.  These  walls  are  of  a  slightly  curved  shape 
determined  by  the  different  heights  of  the  parti- 
tions forming  the  channels.  The  cross-sectional 
area  of  the  channels  decreases  in  proportion  to  the 
condensation  of  the  steam.  The  heat-exchanging 
walls  are  provided  with  flanges  extending  down- 
wards to  facilitate  the  running  off  of  condensed 
water.— H.  H. 

Measurement  of  high  \_fluid~]  pressures;  Apparatus 

for  the  .     Comp.  des  Forges  et  d'Acieries  de 

la  Marine  et  d'Homecourt.    E.P.  161,957,  18.4.21. 
Conv.,  19.4.20. 

A  piston  adapted  to  be  acted  upon  by  the  fluid 
pressure  is  mounted  within  a  hollowed  steel  block 
provided  with  a  plug  screwed  into  a  hollowed  por- 
tion, and  crushers,  e.g.,  of  copper,  are  placed  be- 
tween the  plug  and  the  piston-head.  The  pressures 
(up  to  or  exceeding  10,000  kg.  per  sq.  cm.)  are 
measured    by    observation    of    the   crushing    effect 


directly  or  of  the  movement  of  a  rod  bearing  at  one 
end  against  the  piston-head.  The  other  end  of 
this  rod  may  act  on  a  device  for  amplifying  the 
movement  and  indicating  its  amount  on  a  scale. 

— H.  H. 

Pressure-reducing  valves  [of  cylinders  for  high- 
pressure  gas'];  Method  of  and  means  for  prevent- 
ing the  burning  out  of  ■ .     Chem.  Fabr.  Gries- 

heim-Elektron.  E.P.  166,542,  1.7.21.  Conv., 
19.7.20. 
Between  the  cylinder  proper  (containing  high- 
pressure  gas)  and  the  valve  plug  is  inserted  a  nozzle 
which  produces  a  vortical  movement  of  the  issuing 
gas  in  such  a  manner  that  the  plug  (which  is  often 
of  hard  rubber)  is  opposite  a  zone  of  low  pressure  in 
the  vortex.— B.  M.  V. 

Corrosion  and  the  formation  of  fur  in  steam  boilers, 
condensers  and  the  like;  Method  for  the  preven- 
tion  of   .     L.    Renger    and    W.    Fuhrmann. 

E.P.  173,418,  9.12.20.  Addition  to  154,610 
(J.,  1922,  1  a). 
When  a  boiler  is  fed  with  water  from  a  vessel  of 
non-conducting  material,  two  electrodes  are  im- 
mersed in  the  vessel,  one  connected  with  the  posi- 
tive pole  of  the  continuous  current,  and  one  with 
the  negative  pole  across  the  boiler.  Alternatively, 
the  positive  pole  of  the  continuous  current  is  con- 
nected with  the  boiler  across  a  rheostat  at  a  posi- 
tive potential,  the  boiler  being  at  a  negative 
potential. — J.  H.  J. 


Heat    treatment    of    liquid. 
173,709,  8.3.21. 


W.    Mauss.      E.P. 


The  pressure,  above  or  below  that  of  the  atmo- 
sphere, in  the  treatment  vessel  is  balanced  by  a 
column  of  the  treated  liquid  of  such  a  height  that 
the  vapour  pressure  of  the  steam  used  for  heating 
gives  the  temperature  required  for  treatment.  The 
working  pressure  is  held  constant  by  an  overflow  for 
the  balancing  column  of  liquid,  but  the  admission 
of  steam  and  of  untreated  liquid  is  controlled  by 
float  valves,  the  former  in  the  closed  treatment 
vessel  and  the  latter  in  an  auxiliary  feed  tank  at  a 
convenient  height.  The  rate  of  treatment  is  then 
controlled  solely  by  the  rate  of  supply  of  untreated 
liquid  to  the  feed  tank. — B.  M.  V. 

Cooling  or  heating  of  fluids;  Apparatus  for  . 

D.    Auld   and   Sons,    Ltd.,    and   D.    Rose.     E.P. 

173,966,  23.12.20. 
Means  are  described  for  cooling  or  heating  two  or 
more  liquids  simultaneously  by  means  of  the  same 
cooling  or  heating  medium. — B.  M.  V. 

Fractional  condensation  of  mixtures  of  the  vapours 
of  volatile   bodies;  Apparatus  for  effecting   the 

.     The  Selden  Co.,  and  J.  McC.  and  C.  G 

Selden.  E.P.  (a)  173,723  and  (b)  173,724,  5.7.20. 
(a)  The  mixed  vapours  are  introduced  into  the  first 
of  a  series  of  communicating  chambers,  each  fitted 
with  a  cooling  member  constituting  a  baffle  and  with 
one  or  more  foraminous  screens  adapted  to  cause 
the  separate  condensation  of  the  several  con- 
stituents. Means  are  provided  for  withdrawing 
the  condensed  fractions  separately  and  for  discharg- 
ing the  uncondensed  residue  from  the  last  chamber. 
Each  cooling  member  may  be  in  the  form  of  a 
tubular  wall  open  at  the  ends  and  of  less  width 
than  the  chamber,  (b)  Each  screen  in  the  above 
apparatus  is  pivoted  and  adapted  to  be  swung 
against  a  stop  for  shaking  off  the  condensed 
material.  Successive  chambers  of  increasing  capa- 
city may  be  formed  within  a  single  casing,  the  cool- 
ing being  effected  by  water  directed  on  to  the  tops 
of  the  chambers  and  running  down  the  side  walls. 
The  separation  of  a  mixture  of  phthalic  anhydride 
and  naphthalene  vapours  is  described. — H.  H. 


164  a 


Cl.  I.— GENERAL  j    PLANT  ;    MACHINERY. 


[Mar.  15,  1922. 


Fractional  condensation  of  mixtures  of  the  vapours 
of   volatile    bodies;   Apparatus   for  effecting    the 

.     Condensing   apparatus.     The  Seidell  Co., 

and  J.  McC.  and  C.  G.  Selden.     E.P.  (a)  174,013 
and  (b)  173,789,  5.7.20. 

(a)  In  apparatus  similar  to  that  described  in  E.P. 
173,723  (cf.  supra),  the  chambers  are  spaced  apart 
with  conduits  connecting  the  lower  portions  of 
adjacent  chambers.  For  dislodging  the  condensed 
materials  the  screens  are  pivoted  and  adapted  to  be 
swung  against  a  stop,  (b)  The  chambers  are  of 
successively  increasing  capacity,  and  are  arranged 
one  within  another,  the  flow  of  the  vapours  being 
from  the  innermost  to  the  outermost  chamber.  In 
one  form  a  casing  is  provided  having  a  flat  rear 
wall  on  which  abut  the  ends  of  an  arcuate  wall,  a 
top,  and  a  bottom,  and  a  series  of  concentric  fora- 
minous  screens  which  define  the  chambers.  In 
another  form  a  cylindrical  casing  is  divided  into 
chambers  by  concentrio  cylindrical  screens.  Brush- 
ing devices  for  cleaning  the  screens  and  scrapers 
for  moving  the  condensed  products  to  the  separate 
outlets  are  provided.  To  maintain  a  relatively  high 
temperature  in  the  innermost  chamber,  a  heating 
apparatus  in  which  the  material  to  be  vaporised  is 
mixed  with  a  gaseous  vehicle  is  located  within  the 
chamber.  A  central  vertical  conduit  is  provided  for 
the  heating  medium,  and  around  this  is  a  second 
conduit  down  which  the  gas  is  passed  and  delivered 
into  the  lower  end  of  the  mixing  chamber  which 
surrounds  this  second  conduit.  The  material  to  be 
vaporised  is  introduced  into  the  upper  end  of  the 
mixing  chamber  and  falls  over  a  series  of  baffles. 

— H.  H. 

Pulverising      or     disintegrating      machines.       R. 

Emmott  and  T.  Mercer.  E.P.  173,999,  12.4.21. 
The  grid  or  grate  of  a  disintegrator  is  formed  of 
transverse  bars  with  circumferential  depressions  or 
grooves  shaped  to  suit  the  ends  of  the  beater-bars 
or  hammers.  The  openings  in  the  grid  are  trans- 
verse to  or  inclined  in  the  direction  of  motion  of  the 
hammers,  and  are  formed  either  by  recesses  in  the 
bars  or  right  through  them. — B.  M.  V. 

Drying  pulverulent,  granular  or  other  substances. 

A.  Hofmann.  E.P.  174,124,  17.9.20. 
In  a  dryer  having  a  number  of  superposed  floors,  in 
which  the  material  is  stirred  and  caused  to  fall  from 
floor  to  floor  by  reciprocating  rakes,  mechanism  is 
provided  whereby  the  rakes  are  lowered  during  the 
whole  of  the  operative  stroke  and  raised  during  the 
whole  of  the  inoperative  stroke,  and  the  holes  in  the 
side  walls  through  which  the  operating  rods  pro- 
trude are  masked  by  plates,  rising  and  falling  with 
the  rods.— B.  M.  V. 

Dryer;  Plate  .     Drying   Products   Co.,   Ltd., 

A./S.     G.P.  344,298,  11.7.18.     Conv.,  23.10.16. 

The  surface  of  each  plate  forms  the  floor  of  an 
annular  chamber  through  which  hot,  dry  air  is 
sucked.  A  chamber  for  preheating  the  air  is  pro- 
vided below  the  drying  plate  and  air  delivered 
therefrom  through  a  pipe  to  the  annular  chamber. 
Preheating  is  effected  by  heat  radiated  from 
the  plate.  The  dryer  is  highly  efficient  thermally, 
and  the  drving  chamber  is  easily  accessible. 

—J.  S.  G.  T. 

Furnaces  [;  Recuperative  and  regenerative  ]. 

A.  Smallwood.     E.P.  174,240,  10.11.20. 

A  furnace  provided  with  recuperators  (i.e.,  heat 
exchangers  where  the  waste  gases  and  air  pass 
simultaneously  through  different  passages  of  the 
same  mass  of  brickwork)  is  arranged  for  the 
recuperators  to  be  used  also  as  regenerators  (i.e., 
the  air  is  passed  through  passages  that  have  pre- 
viously been  heated  by  waste  gases),  the  recuperat- 


ing action  continuing  meanwhile.  Alternatively, 
separate  regenerators  are  provided  in  addition  to 
the  recuperators. — B.  M.  V. 

Shaft  furnace  for  calcining  materials.     Peretti  und 

Funck.  G.P.  344,129,  9.1.20. 
The  furnace  is  designed  for  raising  the  tempera- 
ture of  the  charge  both  on  the  outside  and  through 
the  middle  in  as  equable  a  manner  as  possible.  To 
this  end  the  cross-section  of  the  shaft  is  made 
elliptical  and  a  definite  movement  is  given  to  the 
charge  from  the  narrow  ends  of  the  shaft  inwards, 
so  that  the  larger  pieces  roll  to  the  middle  and  form 
there  a  hollow  core  through  which  the  hot  gases  are 
forced  by  means  of  a  stream  of  preheated  com- 
pressed air  fed  into  the  furnace  at  the  upper  part 
of  the  tuyeres.  The  compressed  air  is  heated  by 
passing  it  through  a  hollow  annular  chamber  be- 
tween the  shaft  and  the  outer  walls  of  the  furnace. 
The  cooling  action  of  this  air  renders  it  possible  to 
support  the  shaft  with  binding  bands,  and  the 
hollow  chamber  allows  the  shaft  to  expand  and  so 
prevents  it  cracking  or  developing  small  fissures. 

—A.  R.  P. 

Calcining-furnace  with  indirect  heating.     O.  Rosch- 
mann.     G.P.  344,363,  27.4.20. 

A  nt/mber  of  calcining  chambers  through  which  the 
hot  gases  pass  are  so  constructed  with  intermediate 
chambers  inside  the  furnace  that  the  common  wall 
between  them  and  the  combustion  chamber,  behind 
the  air  circulation  flue,  is  smooth  on  the  side  facing 
the  combustion  flue,  so  that  an  equable  distribution 
of  air  is  obtained.  Each  calcining  chamber  may  be 
heated  independently  to  any  desired  degree  and  by 
passing  the  hot  gases  from  the  chambers  through 
the  hollow  walls  of  the  furnace  the  temperature  may 
be  further  increased. — A.  R.  P. 

Air  or  gas  heater  for  calcining  furnaces.     C.  Rosch- 
mann.     G.P.  344,692,  1.5.20. 

The  heater  is  arranged  in  the  walls  of  the  furnace 
in  such  a  manner  that  it  is  surrounded  by  heat- 
giving  material,  so  that  the  air  or  gases  that  pass 
through  it  are  rapidly  preheated  by  the  heat  of  the 
furnace. — A.  R.  P. 

Filter.    F.  B.  Anderson.    U.S.P.  1,403,369,  10.1.22. 

Appl.,  19.1.20. 
The  material  to  be  filtered  is  caused  to  flow  on  to  a 
belt  which  travels  over  and  in  contact  with  a 
roughened  perforated  member  forming  the  cover  of 
a  suction-box,  and  means  are  provided  for  removing 
the  solid  material  remaining  on  the  belt. — H.  H. 

Heating   at  high   temperatures;   Method  of  . 

C.    Field,    Assr.    to    Chemical    Machinery    Corp. 
U.S.P.  1,403,471,  10.1.22.     Appl.,  12.1.17. 

Indirect  heating  is  effected  by  means  of  mercury 
vapour,  heat  being  imparted  to  mercury  to  boil  it 
at  one  part  of  a  circulating  system,  and  heat 
absorbed  from  the  mercury  vapour  at  another  part 
of  the  system,  the  condensed  mercury  being  returned 
to  the  boiling  region.  Suction  is  applied  to  the 
system  at  a  point  near  the  region  of  condensation 
to  reduce  the  boiling  point  and  to  remove  uncon- 
densable  gases. — H.  H. 

Condensing  apparatus.  I.  S.  Merrell,  Assr.  to 
Merrell-Soule  Co.  U.S.P.  1,403,804,  17.1.22. 
Appl.,  2.1.17. 
Liquid  overflows  from  a  trough  surrounding  the  top 
of  a  jacketed  vertical  cylinder,  is  spread  by  centri- 
fugal means  in  a  rapidly  moving  layer  over  the  in- 
terior of  the  cylinder,  flows  downwards  under  the 
influence  of  gravity  but  hindered  by  helical  baffles, 
and  passes  out  freely  from  the  bottom  of  the 
cylinder. — B.  M.  V. 


Vol.  XIX,  No.  5.] 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


165  a 


Stills;  Apparatus  for  effecting  circulation  and  main- 
taining  clean  surfaces  in  .     A.    D.    Smith. 

U.S.P.  1,403,980,  17.1.22.  Appl.,  13.9.19. 
Means  are  provided  for  circulating  the  liquid 
longitudinally,  and  for  sweeping  the  bottom  por- 
tion of  the  still  crosswise,  the  sweeping  device  being 
caused  to  oscillate  backwards  and  forwards  in  the 
liquid  6pace  of  the  still. — A.  R.  M. 

Absorption  refrigerating  machines;  Boiler  applic- 
able for  use  as  absorber  in  .     W.  Pfleiderer. 

G.P.  343,938,  4.4.15. 
Two  vessels  are  disposed  one  above  the  other,  and 
liquid  is  forced  from  the  lower  into  the  upper,  so 
that  only  very  little  can  remain  in  the  lower  vessel 
below  the  bottom  of  the  tube  connecting  the  two. 
Loss  of  liquid  due  to  evaporation  of  liquid  con- 
stantly draining  from  the  upper  to  the  lower  vessel 
is  thereby  compensated.  The  rate  of  gas  produc- 
tion is  appreciably  increased,  and  absorption  of  gas 
effected  more  rapidly,  as  the  gas  returning  from  the 
lower  vessel  passes  through  the  absorbing  fluid 
therein  and  in  the  upper  vessel,  in  the  form  of 
bubbles.— J.  S.  G.  T. 

Filling  material  for  absorption  and  reaction  towers. 
Prym  u.  Co.  G.P.  344,139,  1.8.20.  Addn.  to 
317,166  (J.,  1920,  321  a). 

Both  ends  of  the  rings  described  in  the  chief  patent 
are  bent  inwardly  so  as  to  meet  the  inner  wall  of  the 
ring.  The  rigidity  and  surface  of  the  ring  are 
thereby  increased  and  the  possibility  of  interlocking 
of  the  rings  is  prevented. — J.  S.  G.  T. 

Fuller's  earth;  Revivifying  spent .     K.  Miiller. 

G.P.  344,499,  13.3.20. 

Spent  fuller's  earth  freed  from  fat  and  grease  is 
treated  with  an  alkali  solution,  and  is  subsequently 
separated  from  the  solution  by  filtration. — L.  A.  C. 

Refrigerant.  H.  W.  Seaman,  Assee.  of  A.  G. 
Crawford.     E.P.  148,878,  10.7.20.     Conv.,  5.2.18. 

See  U.S.P.  1,325,665  of  1919;  J.,  1920,  144  a. 

Liquefied  gas;  Method  and  means  for  storing,  trans- 
porting, and  delivering  for  use  gas  under  pressure 

from .    W.  E.  Evans.     From  Heylandt  Ges. 

fur  Apparatebau.     E.P.  149,233,  12.7.20. 

See  G.P.  342,415  of  1917;  J.,  1922,  89  a. 

Specific  gravity  of  solutions;  Means  for  regulating 
the  ^—.  L.  Logan.  E.P.  156,723,  7.1.21. 
Conv.,  12.7.16. 

See  U.S.P.  1,210,180  of  1916;  J.,  1917,  202. 

Centrifugal  filter.      W.  Mauss.      U.S.P.  1,404,157, 

17.1.22.     Appl.,  4.4.18. 
See  E.P.  119,706  of  1917;  J.,  1918,  723  a. 

Pulverising  mills.  H.  Walker.  E.P.  174,119, 14.9.20. 


Ha.-FUEL;  GAS  ;  MINERAL  OILS  AND 
WAXES. 

Coals;  Ultimate  composition  of  British .    T.  J. 

Drakeley  and  F.  W.  Smith.     Trans.  Chem.  Soc, 
1922,  121,  221—238. 

The  compositions  of  different  coals  in  terms  of 
carbon,  hydrogen,  and  oxygen  are  represented  by 
points  in  a  right-angled  isosceles  triangular  dia- 
gram, the  percentage  of  oxygen  being  represented 
as  a  distance  from  the  hypotenuse  and  the  per- 
centages of  carbon  and  hydrogen  as  distances  from 
the  vertical  side  and  base  respectively  of  the 
triangle.  These  points  all  lie  in  a  narrow  band 
enclosed  by  the  base  and  hypotenuse  of  the  triangle. 
Within  this  band  true  anthracite  coals  of  highest 


carbon  content  lie  nearest  the  angle  point,  followed 
in  order  by  steam  coals,  coking  coals,  non-coking 
coals,  and,  if  the  diagram  be  continued,  by  lignite, 
peat,  and  wood,  each  type  of  fuel  falling  into  a 
definite  position.  Cannel  coal  and  fusain  occupy 
anomalous  positions  (indicating,  possibly,  an  essen- 
tially different  origin)  in  a  disperse  region 
mainly  above  the  band.  The  influence  of  age 
causes  the  point  for  each  coal  to  be  displaced 
slightly  towards  the  anthracite  end  roughly 
parallel  to  the  band.  The  percentage  of  residual 
C,  H,  O,  N,  and  S  in  the  residues  from  bituminous 
coal  neated  in  a  silica  tube  in  a  vacuum  (15 — 20 
mm.)  show  that  the  volatile  portions  of  each 
element  are  evolved  smoothly  through  the  whole 
range  of  temperature.  Sulphur  is  evolved  very 
rapidly  at  low  temperatures,  much  less  rapidly  at 
high.  Residual  sulphur  amounts  to  only  213%  of 
the  ash  (003%  of  the  coal)  and  hence  almost  the 
whole  of  the  sulphur  is  probably  present  as  an 
organic  compound.  From  the  colour  of  the  ash  iron 
pyrites  would  seem  to  be  absent.  The  first  effect  of 
heat  is  to  decompose  the  nitrogenous  constituents 
(with  which  the  sulphur  is  usually  associated)  and 
part  of  the  cellulosic  constituents,  the  latter  decom- 
posing more  or  less  steadily  throughout  the  whole 
range  of  temperature.  As  the  temperature  rises 
the  atomic  concentration  of  carbon  in  the  gases 
diminishes,  whereas  that  of  hydrogen  increases; 
hence,  at  low  temperatures,  carbon  derivatives 
largely  constitute  the  gaseous  products  while 
hydrogen  predominates  between  800°  and  900°  C. ; 
there  is  nothing  to  indicate  the  decomposition  of  a 
new  "  hydrogen-yielding  "  constituent  at  that 
temperature.  The  quantity  of  radium  in  coal  bears 
no  relation  to  the  percentage  of  any  other  element 
present,  and  varies  considerably  from  coal  to  coal. 

—P.  V.  M. 

Coal;  Resins  in  bituminous  .      R.  V.  Wheeler 

and  R.  Wigginton.     Fuel,  1922,  1,  10—14. 

There  is  little  doubt  that  true  resins  (mixtures  of 
resin  acids,  resin  esters,  and  resenes)  occur  in 
bituminous  coal,  although  their  presence  is  not  so 
easy  to  detect  as  in  the  case  of  peat,  lignite,  and 
coals  in  a  lower  state  of  geological  formation.  What 
have  been  described  as  "  resin  bodies  "  by  many 
writers  may  in  some  oases  not  be  true  resins. 
Resins  occurring  in  bituminous  coal  differ  from 
those  of  modern  formation,  having  undergone 
changes  which  have  caused  them  to  lose  to  a  large 
extent  their  solubility  in  alcohol,  ether,  etc.  Other 
changes  have  altered  the  compounds  present,  but 
have  allowed  the  portions  so  changed  to  retain  their 
solubility.  Summaries  of  the  effect  of  various 
solvents  on  a  Westphalian  coal  are  given  (cf.  Siep- 
mann,  J.,  1891,  753).  Samples  of  what  appeared 
to  be  resins  have  been  obtained  from  British 
bituminous  coals,  in  which  they  occur  as  layers, 
reddish  brown  and  transparent  when  in  thin  flakes. 
Tests  indicate  that  these  inclusions  are  true  resins. 

—A.  R.  M. 

Water    in    fuels;     Determination    of    .       A. 

Marinot.     Ann.  Chim.  Analyt.,  1922,  4,  7—8. 

In  the  estimation  of  water  in  solid  or  liquid  fuels 
errors  may  be  introduced  by  the  absorption  of 
oxygen  or  in  the  case  of  coal  by  the  distillation  of 
organic  matter,  even  below  100°  C.  These  errors 
are  avoided  by  carrying  out  the  operation  in 
a  current  of  dry  hydrogen,  in  an  apparatus  consist- 
ing of  two  100  c.c.  flasks  connected  together  and 
heated  in  a  constant-level  water  bath.  From  10  to 
15  g.  of  the  material  is  placed  in  each  of  the 
accurately  weighed  flasks,  and  a  slow  current  of 
hydrogen  dried  in  a  calcium  chloride-sulphuric  acid 
tower  is  passed  through  for  1£  hrs.  The  vapours 
from  the  flasks  pass  through  a  horizontal  elongated 
bulb,  where  any  organic  matter  is  deposited,  into  a 

a2 


166a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[Mar.  IS,  1922. 


weighed  U-tube  containing  calcium  chloride,  the 
exit  of  which  is  protected  from  atmospheric 
moisture  by  a  guard  tube. — G.  F.  M. 

Ammonia  and  its  stability  in  the  coke  oven.  H.  J. 
Hodsman.  Coke  Oven  Managers'  Assoc,  21.1.22. 
Gas  World,  1922,  76,  Coking  Sec,  12—14. 

The  position  of  by-product  ammonia  in  relation  to 
synthetic  ammonia  is  discussed  and  the  possibilities 
are  surveyed  of  increasing  the  yields  by  conserving 
the  ammonia  after  liberation  from  the  coal.  Disso- 
ciation and  oxidation  of  ammonia  are  the  principal 
avenues  of  loss,  and  the  relative  importance  of  these 
is  discussed  with  special  reference  to  the  work  of 
Sommer  (J.,  1919,  350  a)  and  Thau  (J.,  1921,  137  a). 
The  latter  concluded  from  observations  on  a  work- 
ing coke  oven  that  dissociation  was  subsidiary  to 
oxidation,  for  which,  however,  a  minimum  tempera- 
ture of  600°  C.  is  required  in  the  oven.  The  author's 
preliminary  experiments  confirm  this  figure  and 
also  an  observation  of  Sommer's  of  an  inhibitory 
effect  of  water  vapour  on  the  oxidation  of  ammonia, 
although  it  is  doubtful  if  this  inhibition  makes  any 
difference  in  carbonisation  practice.  Sommer 
appears  to  exaggerate  the  danger  of  oxidation  at 
low  temperatures. — H.  J.  H. 

Producer  gas  from  pulverised  fuel.  F.  S.  Sinnatt 
and  L.  Slater.     Fuel,  1922,  1,  2—3. 

In  suggested  processes  for  the  manufacture  of  pro- 
ducer gas  by  passing  pulverised  fuel,  suspended  in 
air,  into  a  chamber  lined  with  refractory  material, 
in  which  the  gas  is  made  by  the  partial  combustion 
of  the  fuel  in  air  or  in  a  mixture  of  steam  and  air, 
a  difficulty  is  likely  to  be  experienced  due  to  aggre- 
gation of  the  coal  powder  to  large  particles  which 
would  be  useless  for  the  purpose  of  the  process. 
Experiments  are  quoted  and  lines  of  research 
indicated  which  may  result  in  overcoming  this 
difficulty.  By  heating  bituminous  coal  powder  for 
a  short  time  to  420° — 500°  C.  its  coking  qualities  are 
destroyed  although  the  loss  in  volatile  matter  is 
comparatively  small.  The  fineness  of  the  coal  is 
unaltered  by  the  treatment,  and  it  may  then  be 
used  in  the  gasification  chamber  without  larger 
aggregates  being  produced.  The  same  coal  powder 
coheres  badly  if  an  attempt  is  made  to  gasify  it 
without  previous  destruction  of  its  coking  proper- 
ties.— A.  R.  M. 

Gas  producer;   Temperatures   in   the  during 

operation.    H.   Koschmieder.    Brennstoff-Chem., 
1922,  3,  39—42. 

The  distribution  of  temperature  in  and  the  trans- 
ference of  heat  between  the  zones  of  the  charge  of  a 
producer  are  greatly  affected  by  the  proportions  of 
ash  and  moisture  in  the  fuel  gasified.  The  heat  of 
vaporisation  of  the  moisture  and  the  heat  required 
for  carbonising  the  fuel  form  the  minimum  sensible 
heat  which  must  be  carried  by  the  gas  rising  from 
the  zone  of  active  gasification.  The  heat  removed 
by  the  ash  and  also  radiation  losses  must  be  debited 
against  the  heating  power  of  the  fuel.  The  quantity 
of  gas  available  is  reduced  by  the  inert  constituents 
of  the  coal  and  the  necessary  sensible  heat  may  only 
be  obtainable  in  the  gas  by  raising  the  temperature 
of  gasification.  This  may  in  extreme  cases  preclude 
the  use  of  steam  in  the  blast,  and  temperatures  may 
be  required  which  give  rise  to  difficulties  with  the 
refractory  material. — H.  J.  H. 

Methane;  Production  of  from  water-gas.     H. 

Tiopsch  and  A.  Schellenberg.     Brennstoff-Chem., 
1922,  3,  33—37. 

Vignon  has  made  claims  that  water-gas  can  be  used 
as  a  source  of  methane  if  it  be  heated  with  steam 
in  contact  with  lime  and  other  contact  materials 
(c/.  J.,  1914,  737;  Ann.  Repts.,  1916,  I,  38).  The 
authors    have    been    unable    to    confirm    Vignon 's 


results.  Only  negligible  quantities  of  methane  were 
obtained  and  the  suggestion  is  made  that  in 
Vignon's  work  there  is  some  analytical  confusion  of 
methane  with  nitrogen. — H.  J.  H. 

Sulphur  in  illuminating  gas;  High-percentage, 
hydrogen  peroxide  (perhydrol)  for  the  determina- 
tion of  the  total .   A.  Klemmer.   Chem.-Zeit., 

1922,  46,  79. 

The  sulphur  compounds,  including  hydrogen 
sulphide,  carbon  oxysulphide,  carbon  bisulphide,  and 
mercaptan,  are  oxidised  to  sulphuric  acid  by  passing 
the  gas  through  a  strongly  alkaline  solution  of 
hydrogen  peroxide.  10  cc.  of  perhydrol  is  mixed 
with  80  cc  of  fairly  concentrated  sodium  hydrox- 
ide, and  the  gas  is  led  through  the  thick  crystalline 
paste  consisting  of  sodium  peroxide,  Na202,8H20, 
which  is  formed,  at  a  rate  not  exceeding  100  1. 
per  hr.  At  the  end  of  the  operation  the  liquid  is 
acidified  with  hydrochloric  acid,  boiled  to  destroy 
the  excess  hydrogen  peroxide,  and  the  sulphuric 
acid  is  precipitated  as  barium  sulphate. — G.  F.  M. 

Moisture  in  insulating  oils.    Rodman.    See  XI. 

Patents. 

Coal-dust  firing  arrangements.  P.  Schondeling. 
E.P.  157,302,  10.1.21.     Conv.,  18.12.19. 

Coal  dust  is  burnt  rapidly  and  completely  by  spray- 
ing it  by  means  of  air  into  a  stream  of  hot  combus- 
tion gases  which  may  be  produced  by  a  gas  burner 
directly  in  front  of  the  dust  inlet  or  may  be  waste 
gases  from  another  furnace. — B.  M.  V. 

Coal  sludge  or  the  like ;  Treatment  of  for  the 

manufacture   of    briquettes.      H.    Vahle.      G.P. 
341,262,  13.6.20. 

The  wet  coal  sludge  (e.g.,  from  a  washing  plant) 
is  broken  into  small  fragments,  then  dried,  cooled, 
and  ground  and  afterwards  sifted  and  dried  at  the 
same  time.  Apparatus  claimed  comprises  a  pair  of 
rollers,  one  of  which  is  heated  and  toothed,  a  con- 
veyor band  to  carry  the  crushed  coal  through  a  hot 
channel,  an  elevator  exposed  to  cooling  gases,  a 
mill,  and  a  screening  drum  exposed  to  hot  gases  for 
the  final  drying  of  the  product. — J.  H.  L. 

Coking  ovens.  E.  Coppee  et  Cie.  E.P.  147,739, 
8.7.20.     Conv.,  28.8.19. 

The  ovens  are  heated  by  groups  of  vertical  heating 
flues  within  the  oven  walls,  and  the  reversible  re- 
generators under  and  parallel  to  the  ovens  are 
divided  into  compartments  corresponding  in  num- 
ber with  the  groups  of  flues.  There  are  separate 
regenerative  systems  for  air  and  for  low-grado 
heating  gas;  the  heating  may  be  supplemented  by 
rich  gas  admitted  to  the  heating  flues  from  a 
separate  conduit,  or  may  be  effected  by  rich  gas 
alone,  in  which  case  all  the  regenerators  are  used 
for  preheating  the  air.  The  heating  and  regenera- 
tivo  systems  are  divided  into  two  independent  and 
symmetrical  halves  by  a  wall  extending  along  the 
longitudinal  axis  of  the  battery  of  ovens.  The  re- 
generator chambers  on  both  sides  of  this  wall  are 
so  connected  with  their  respective  collector  mains 
and  heating  flues  that  the  chambers  on  one  side  are 
traversed  only  by  unburnt  gas  and  air,  while  those 
on  the  other  side  are  traversed  only  by  waste  gases, 
or  vice  versa  according  to  the  reversing  phase.  The 
air  and  gas  to  be  burnt  in  a  particular  group  of 
heating  flues  pass  through  adjustable  orifices  before 
entering  their  respective  regenerator  chambers,  and 
thereafter  they,  and  the  resulting  products  of  com- 
bustion, pass  only  through  the  chambers  and 
passages  connected  with  that  group.  This  condi- 
tion is  secured  by  means  of  partitions  in  the  sub- 
hearth  passages  which  convey  the  fluids  from  the 


Vol.  XLI.,  No.  5.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


167a 


regenerators  on  one  side  of  the  axis  to  the  heating 
flues  and  thence  into  regenerators  on  the  other  side 
of  the  axis. — H.  Hg. 

Ovens  for  producing  gas  and  coke.     H.  Koppers. 
E.P.  170,515,  6.12.20. 

The  oven  is  heated  by  combustion  chambers  in 
which  the  heating  gases  ascend,  and,  in  order  to 
secure  uuiform  heating  the  cross-sectional  area  of 
the  oven  is  decreased  towards  the  top,  and  that  of 
the  combusion  chambers  increased,  by  inwardly 
tapering  or  shelving  the  side  walls  of  the  oven.  A 
horizontal  waste  gas  flue  is  built  in  the  brickwork 
at  the  top  of  the  combustion  chamber  alongside  the 
gas  space  of  the  oven ;  compensation  is  made  for  the 
longitudinal  taper  of  the  oven  walls  in  the  vertical 
joints  which  occur  in  this  brickwork.  Arched 
roofs  of  uniform  span  cover  the  waste  gas  flue  and 
the  oven.     H.  Hg. 


Illuminating  gas  and  by-products;  Manufacture  of 

.     J.  Moeller  and  L.  de  Fonblanque.     E.P. 

174,165,  16.10.20. 

Coal  is  distilled  in  a  vertical  retort  through  which 
a  gas  containing  60% — 75%  of  hydrogen  mixed 
with  20%  —25%  of  its  volume  of  steam  is  passed  at 
a  temperature  of  500°— 900°  C.  The  retort  is  pro- 
vided with  a  perforated  false  bottom  through  which 
the  gas  and  steam  are  admitted.  The  gas  leaving 
the  top  of  the  retort  is  passed  through  the  usual 
condensers  and  purifiers,  and  part  of  the  condensed 
oil  is  sprayed  with  superheated  steam  into  a  number 
of  small  iron  pipes  tor  the  production  of  the  gas 
rich  in  hydrogen.  The  iron  pipes  are  heated  by  a 
furnace,  the  waste  gases  from  which  are  used  for 
generating  steam  and  for  externally  heating  the 
retort.  The  coal  may  bo  compressed  within  the  re- 
tort by  means  of  a  ram  mounted  on  a  screw  passing 
through  the  top  of  the  retort  and  operated  by  a 
hand  wheel. — H.  Hg. 

Gas  producers.  J.  Mawson.   E.P.  174,245,  11.11.20. 

A  gas  producer,  the  horizontal  cross-section  of 
which  is  preferably  in  the  form  of  a  rectangle  w^ith 
rounded  corners,  is  provided  with  an  annular 
vaporising  chamber  to  the  top  of  which  water  or 
steam  is  supplied.  The  lower  end  of  this  chamber 
communicates  with  a  closed  ash-pit  through  an 
opening  situated  at  one  end  of  the  producer  oppo- 
site to  the  ash-pit  door.  Within  the  ash-pit  there 
is  a  hood  extending  below  the  grate  in  such  a  way 
that  vapours  from  the  annular  chamber  pass  round 
and  under  the  hood  on  their  passage  to  the  grate. 
There  is  an  opening  in  the  hood  near  the  ash-pit 
door  to  facilitate  the  removal  of  ashes.  Water 
entering  the  annular  chamber  is  caused  to  pass 
round  the  producer  by  means  of  a  spiral  baffle  or 
trough.  A  fuel-feeding  hopper  extends  into  the 
producer  so  as  to  form  an  annular  space  through 
which  gas  passes  away,  and  within  which  nickel  or 
nickel-steel  steps  are  placed  to  promote  the  conver- 
sion of  carbon  monoxide  into  methane. — H.  Hg. 


Gas    producer    with     suspended    circular    coking 
chamber.     W.  Steinmann.     G.P.  340,^09,  17.4.18. 

The  gases  from  the  coking  process  are  conducted 
away  by  a  network  of  tubes  passing  through  bell- 
shaped  chambers  which  are  situated  within  the 
coking  chamber  and  traversed  by  the  clean  water- 
gas;  these  tubes  have  inlets  at  different  heights  iin 
the  mass  of  coal  in  the  coking  chamber.  By  this 
means  the  coal  gas  and  the  clean  gas  produced  by 
the  action  of  the  mixture  of  steam  and  air  on  the 
glowing  coke  are  conducted  away  separately,  the 
latter  heating  the  bell-chambers  strongly  in  passing 
through  them. — J.  H.  L. 


Gas  producer  in  which  the  fuel  is  dried  by  means 
of  superheated  steam.  A.-G.  fiir  Brennstoffver- 
gasung.     G.P.  343,048,  11.5.17. 

The  supply  of  fuel  to  the  producer  passes  through  a 
chamber  with  an  inlet  for  superheated  steam  and  a 
vapour  outlet  at  the  lower  and  upper  ends  respec- 
tively. The  vapour  outlet  is  connected  with  the 
steam  supply  pipe  to  the  superheater,  and  the 
steam  leaving  the  superheater  passes  partly  to  the 
drying  chamber  and  partly  through  a  pipe  con- 
trolled by  a  valve  to  the  producer  chamber. 

— L.  A.  C. 

Lignite;  Process  of  producing  and  securing  pro- 
ducts from  .  J.  H.  Reid,  Assr.  to  Inter- 
national Nitrogen  Co.  U.S. P.  1,403,633,  17.1.22. 
Appl.,  27.1.14.    Renewed  16.4.21. 

Liquid  hydrocarbons  of  progressively  increasing 
carbon  content  are  produced  by  heating  a  mixture 
of  lignite  and  a  metal  oxy-compound  in  stages,  at 
successively  higher  temperatures,  by  the  passage  of 
an  electric  current. — H.  Hg. 

Coke  oven  and  like  gases;  Process  for  separating 

constituents  from ■.     C.  Still.     E.P.  147,737, 

8.7.20.     Conv.,  1.11.18. 

The  tar-free  gas  is  treated  with  suitable  absorbents 
at  a  pressure  of  100 — 200  atm.,  the  heat  of  compres- 
sion being  removed  before  absorption  takes  place  by 
cooling  to  a  temperature  not  below  0°  C.  The 
absorbed  constituents  are  recovered  in  a  highly  con- 
centrated condition,  i.e.,  in  the  solid  or  liquid  form, 
requiring  but  little  treatment  to  fit  them  for  com- 
mercial use.  By  the  use  of  high  compression  the 
recovery  of  benzene,  ammonium  salts,  etc.,  is 
effected  in  a  much  simpler  manner  and  with  much 
smaller  apparatus  than  heretofore.  Examples  are 
given  of  the  recovery  of  ammonium  salts,  benzene, 
carbon  monoxide,  ethylene  and  acetylene  deriva- 
tives, etc.  by  successive  treatments  in  a  series  of 
washers  etc.  working  under  pressure. — A.  R.  M. 

Gases;  Process  of  desulphurising .  J.  Y.  John- 
son. From  Badische  Anilin-  und  Soda-Fabr. 
E.P.  170,152,  4.8.20. 

Desulphurisation  of,  for  example,  illuminating 
gas  is  carried  out  by  means  of  active  charcoal  in  the 
presence  of  oxygen.  An  essential  point  consists  in 
the  preliminary  purification  of  the  gas  from  tarry 
matter  etc.  by  passing  it  through  a  vessel  contain- 
ing sulphuric  acid  of  about  82%  strength  or  char- 
coal or  other  suitable  material.  The  gas  then  passes 
to  the  reaction  vessel,  where  it  is  acted  upon  by 
atmospheric  oxygen,  in  the  presence  of  active  char- 
coal, whereby  the  hydrogen  sulphide  is  decomposed, 
depositing  sulphur  which  may  be  subsequently 
removed,  the  charcoal  being  used  over  again. 

—A.  R.  M. 

Sulphur;  Process  and  apparatus  for  the  extraction 

of  \Jrom   gas-purification  masses'].     J.    Y. 

Johnson.       From    Badische    Anilin-    und    Soda- 
Fabrik.     E.P.  174,143,  12.10.20. 

A  solution  of  ammonium  sulphide  containing  2'5% 
of  sulphur  as  sulphide  is  distilled  and  the  vapours 
passed  into  a  condenser,  which  delivers  the  con- 
densed liquid  into  a  vessel  containing  charcoal 
previously  U6ed  for  the  removal  of  hydrogen  sul- 
phide from  gas.  The  solution  draining  from  the 
charcoal  is  continuously  returned  to  the  still  until 
the  extraction  is  completed,  when  it  is  diverted  to  a 
separate  receiver.  As  the  distillation  is  continued 
all  the  ammonium  sulphide  is  evaporated,  and 
finally  pure  water  vapour  passes  into  the  condenser 
and  serves  to  wash  the  charcoal.  Free  sulphur 
separates  out  in  the  still,  and  may  be  recovered  by 
filtration.  Sodium  chloride  or  other  inert  electro- 
lyte   may    be    added   to   the    ammonium    sulphide 


168  a 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &c.  Cl.    HI.— TAR,  &c.        [Mar.  15,  1922. 


solution  to  facilitate  the  separation  of  sulphur.  The 
operation  may  be  started  with  a  solution  of 
ammonia  or  ammonium  carbonate  in  the  still,  or  a 
limited  quantity  of  a  stronger  ammonium  sulphide 
solution  may  be  fed  on  to  the  charcoal.  The 
residual  charcoal  is  partially  dried  and  then  used 
for  the  treatment  of  a  further  quantity  of  gas 
either  in  the  same  or  another  vessel.  Those  parts 
of  the  apparatus  which  come  into  contact  with 
ammonium  sulphide  are  made  of  aluminium. 

— H.  Hg. 

Distillation  of  petroleum  or  like  liquids;  Fractional 

.      Bosanoff   Process   Co.,   Assees.   of   H.   F. 

Perkins.     E.P.  145,652,  2.7.20.     Conv.,  2.7.19. 

The  vapours  from  the  still  are  cooled  by  the  con- 
trolled application  of  a  cooling  agent  to  a  tempera- 
ture lower  than  that  of  the  initial  boiling  point  of 
the  heavier  constituent  to  be  separated,  but  above 
the  "  dry  point  "  of  the  lighter  constituent.  (The 
"  dry  point  "  is  the  temperature  at  which  the  last 
portion  distils  an  a  laboratory  distillation  test.) 
The  uncondensed  vapours  pass  through  a  dephleg- 
mator,  and  are  then  cooled  to  substantially  the  "  dry 
point  "  temperature  of  the  lighter  constituent,  the 
remaining  uncondensed  vapours  being  condensed  in 
the  usual  manner  in  a  separate  condenser.  The 
condensed  products  from  the  dephlegmator  and 
cooling  chambers  run  back  into  the  still  in  a  direc- 
tion opposite  to  that  of  the  ascending  vapours.  It  is 
claimed  that  41  %  of  gasoline  can  be  recovered  from 
Pennsylvanian  crude  oil  by  this  process,  as  compared 
with  22%  by  the  usual  processes  and  38%  by  labora- 
tory distillation,  using  the  same  oil  and  finishing 
with  the  same  product.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents  and 
Designs  Acts,  1907  and  1919,  to  E.P.  18,579  of  1902; 
J.,  1903,  1077.)— A.  R.  M. 

Saturated   petroleum   products;   Process   for    pro- 
ducing   from  unsaturated  compounds.    A.  J. 

Stephens.      From    Canadian    American    Finance 
and  Trading  Co.,  Ltd.     E.P.  174,106,  12.8.20. 

Oils  containing  unsaturated  hydrocarbons  are 
heated  in  a  still  and  the  vapours  mixed  with 
hydrogen.  The  mixture  is  compressed  to  a  pressure 
of  4  to  5  atm.  and  passed  through  a  condenser. 
The  condensed  hydrogenated  products  are  collected 
and  the  uncondensed  gas  is  treated  for  the  produc- 
tion of  hydrogen.  The  gases  may  be  passed  over  a 
catalyst  between  the  compressor  and  the  outlet  of 
the  condenser. — H.  Hg. 

Coke  oven  doors  and  the   like.     Secure  Castings, 
Ltd.,  and  W.  H.  Wright.    E.P.  173,866,  8.10.20. 

Fuller's  earth.    G.P.  344,499.    See  I. 

Hydrogen.    U.S. P.  1,403,189.    See  VII. 


Hb—  DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Non-coking   coal  and  asphaltic  oils;  Low-tempera- 
ture distillation  of  mixtures  of .   J.  D.  Davis 

and  O.  E.  Coleman.    Chem.  and  Met.  Eng.,  1922, 
26,  173—174. 

A  non-coking  coal  containing  46'52%  of  volatile 
matter  on  the  dry  basis,  a  crude  asphaltic  oil,  and 
a  mixture  of  70%  of  the  finely-powdered  coal  and 
30%  of  the  oil  were  separately  distilled  in  an  appa- 
ratus already  described  (c/.  Davis  and  others, 
J.,  1922,  92  a).  A  5-kg.  charge  was  placed  in  the 
cold  retort,  gradually  heated  to  and  maintained  at 
600°  C.  until  gas  ceased  to  be  evolved.  The  mixture 
yielded  18%  more  solid  residue  than  did  the  con- 
stituents when  distilled  separately,  also  the  quality 
of  the  coke  was  superior.    More  than  twice  as  much 


gas  of  5%  higher  calorific  value  was  obtained  from 
the  mixture  than  from  the  constituents,  whereas 
the  yield  of  tar  oils  was  about  50%  less.  This  effect 
of  mixing  oil  and  coal  previous  to  distillation  is 
due  to  the  cracking  of  the  oil  retained  by  the 
coal  above  its  normal  boiling  point  and  might  be 
modified  bv  reduction  of  pressure  during  distilla- 
tion.— H.  Hg. 

Pyrogenic    decomposition    of    acetic    acid,    methyl 
acetate,  and  acetone.    Peytral.    See  XX. 

Patents. 

Distillation  of  fuels;  Process  of  and  retort  for . 

Colombo  and  Ing.  de  Bartolomeis,  and  R.  de 
Bartolomeis,  Assees.  of  A.B.C.D.  Soc.  Ital.  Asfalti 
Bitumi,  Catrami  e  Derivati.  E.P.  152,650, 
18.10.20.     Conv.,  18.10.19. 

A  vertical  retort  is  composed  of  an  upper  frusto- 
conical  section  superposed  on  a  similar  lower  section 
of  larger  cross-sectional  area,  there  being  a  sudden 
enlargement  at  the  junction  of  the  two  sections. 
Fuel  is  charged  into  the  top  of  the  retort  and 
distilled  in  the  upper  section,  the  residue  being 
discharged  through  the  lower  section.  Gas  free 
from  oxygen  is  admitted  to  the  base  of  the  lower 
section  so  as  to  transfer  the  sensible  heat  of  the 
residue  to  the  upper  section.  Air  is  preheated  by 
passage  through  flues  within  the  wall  of  the  lower 
section,  and  then  admitted  to  the  ba6e  of  the  upper 
section  to  effect  partial  combustion  of  the  gas  at 
that  point.  A  further  supply  of  gas  may  be 
admitted  directly  into  the  base  of  the  upper  section. 
Electrical  means  may  be  employed  to  supply 
additional  heat  to,  and  modify  the  quality  of  gas 
produced  in,  the  upper  section. — H.  Hg. 

Distilling    bituminous    materials;   Process   of   and 

apparatus   for   ■.      D.    Pyzel.      E.P.    173,907, 

19.10.20. 

Solid  and  liquid  bituminous  materials,  such  as 
asphaltum,  oil  sands,  and  heavy  petroleum  oils,  are 
mixed  in  such  proportions  that  when  subsequently 
heated  in  an  inclined  rotary  kiln  the  mixture  will 
roll  in  lumps.  Liquid  materials  may  be  mixed  with 
an  inert  solid  material  to  secure  this  condition.  The 
kiln  is  heated  by  passing  through  it  hot  combustion 
gases  free  from  excess  oxygen.  The  gases  leaving 
the  upper  end  of  the  kiln  are  passed  through  con- 
densing apparatus,  and  then  may  be  burnt  to  yield 
the  combustion  gases  or  otherwise  utilised.  The 
temperature  of  tbe  combustion  gases  is  controlled 
by  the  addition  of  unburnt  gas,  steam,  or  water. 

— H.  Hg. 

Distillation  of  poor  fuels;  Process  and  apparatus 

for    partial    .       I.    Scherk.       E.P.    148,567, 

10.7.20.     Conv.,  26.10.18. 

See  G.P.  339,743  of  1918;  J.,  1922,  46  a. 


III.-TAR  AND  TAR  PRODUCTS. 

Cedrus    atlantica;    Preparation    in    Morocco    of 

the    tar    of   :    some    chemical    and    physical 

characters.     Massy.     J.  Pharm.  Chim.,  1921,  24, 
294— 30r. 

The  trees  are  stripped  of  their  bark,  cut  into  flat 
pieces,  and  subjected  to  incomplete  combustion  in 
elongated  pits  dug  in  sloping  ground,  a  narrow 
channel  leading  from  the  lowest  point  of  the  pit  to 
a  hole  in  which  the  distilled  products  collect.  The 
pits  are  lined  with  clay.  Each  combustion  lasts 
about  24  hrs.  and  gives  a  total  of  about  7'4%  of 
crude  tar  on  the  average.  This  crude  tar  contains 
aqueous  and  earthy  impurities,  and  filtering  and 
purification  reduce  the  yield  to  about  4%.  An 
average    sample    of    the    tar    has    the    following 


Vol.  XLI.,  No.  5.] 


Cr,.  IV.— colouring  matters  and  dyes. 


169  a 


characters :  sp.  gr.  0'981 — 0'985,  distilling  below 
150°  C.  10%,  150°— 260°  C,  8"4%,  260°— 280°  C. 
34-5%,  280°— 300°  C.  30'2%,  residue  233%.  By 
steam  distillation  of  50  c.c.  of- tar  12 — 16  c.c.  of 
dextro-rotatory  volatile  products  are  obtained.  The 
tar  soluble  in  cold  water  is  very  slightly  acid,  but 
it  contains  10'3 — 12'8%  of  substances  soluble  in  5% 
sodium  hydroxide.  The  colour  obtained  in  the 
Hirschsohn-Pepin  reaction  (c/.  J.,  1906,  776,  951) 
is  yellow  to  yellowish-brown. — G.  P.  M. 

Tar;  Dehydration  of in  the  laboratory.     W.  J. 

Huff.     J.  Ind.  Eng.  Chem.,  1921,  13,  1123. 

In  order  to  avoid  the  frothing  which  frequently 
occurs  even  when  the  heating  of  tar  is  effected  from 
the  surface  downwards,  the  lower  portion  of  the 
still  is  surrounded  by  a  vessel  containing  water 
almost  up  to  the  level  of  the  tar.  Heat  is  applied 
by  means  of  a  ring  burner  to  the  shallow  exposed 
layer  of  tar;  the  presence  of  the  water  jacket 
prevents  "  bumping  "  by  checking  the  trans- 
mission of  heat  to  the  wet  tar  below ;  at  the  same 
time  by  the  evaporation  of  the  water  a  gradually 
increasing  quantity  of  tar  becomes  subjected  to  the 
action  of  the  heat,  and  when  the  water  level  falls 
below  the  bottom  of  the  still  the  tar  is  practically 
dehydrated.— D.  F.  T. 

Sodium  phenoxide ;  Production  of  in  washing 

solvent  naphtha.     W.  Gluud  and  G.  Schneider. 
Brennstoff-Chem.,  1922,  3,  37—39. 

In -the  acid  wash  of  naphtha  as  normally  practised 
at  by-product  plants,  the  phenols  are  destroyed. 
They  can  be  recovered  by  a  preliminary  washing 
with  alkali.  The  consumption  of  acid  can  then  be 
reduced  and  only  a  small  quantity  of  soda  need  be 
employed  for  final  neutralisation.  The  phenols 
recovered  form  a  very  suitable  source  of  carbolic 
acid  which  constitutes  about  40%  of  the  total  tar 
acids  present.  Details  and  costs  of  manufacture 
and  its  analytical  control  are  given  and  commercial 
advantages  are  claimed.— H.  J.  H. 

Nitrobenzene;  Action  of  sodium  sulphite  on  . 

Seyewetz  and  Vignat.     Comptes  rend.,  1922,  174, 

296—299. 
When  nitrobenzene  (1  mol.)  in  suspension  is  boiled 
with  a  10 — 20%  aqueous  solution  of  sodium  sulphite 
(2  mols.)  it  gradually  disappears,  the  solution 
becoming  coloured  and  ammonia  being  evolved. 
From  the  solution  4-aminophenol-3-sulphouic  acid 
can  be  isolated,  phenylhydroxylaminesulphonic  acid 
being  probably  formed  as  an  unstable  intermediate 
product.  The  coloration  of  the  solution  is  probably 
due  to  the  formation  of  an  azoxybenzene  and  may 
be  prevented  by  adding  sodium  bicarbonate  to  the 
sulphite  solution. — W.  G. 

Benzenedisulphonic  acid  from  benzenemonosuU 
pho-nic  acid..  G.  E.  Senseman.  J.  Ind.  Eng. 
Chem.,  1921,  13,  1124—1126. 

Using  sulphuric  acid  of  95 — 98%  concentration  in 
50 — 700%  excess,  with  periods  of  1  to  10  hrs.,  a 
temperature  of  250°  C.  is  more  efficient  than  220° 
or  280°  C.  A  large  excess  of  acid,  such  as  300 — 
700%,  is  unnecessary  and  acid  of  95%  concentration 
yields  better  results  than  98%  acid.  Sodium  (intro- 
duced as  carbonate)  or  vanadium  pentoxide  can  be 
applied  as  a  catalyst;  in  the  presence  of  0T%  of 
the  former,  calculated  on  the  sulphuric  acid  used 
(150%  excess),  heating  for  1  hr.  is  sufficient. 
No  additional  advantage  is  gained  by  using  the 
catalysts  together. — D.  F.  T. 

Reactions  between  carbon  monoxide,  hydrogen 
chloride,  and  aromatic  hydrocarbons.  Korczynski 
and  Mrozinski.     See  XX. 

Amines.     Smolenski.     See  XX. 


Patents. 

Tar;  Manufacture  of .     C.  Falk,  C.  Falk,  jun., 

and  M.  Wangemann  (legal  representatives  of  H. 
Falk).     E.P.  148,785,  10.7.20.     Conv.,  10.12.17. 

The  paraffin  content  of  tar  obtained  during  the 
distillation  of,  e.g.,  lignite,  is  increased  by  the 
addition  of  alkali  and  alkaline-earth  chlorides  to 
the  fuel.— L.  A.  C. 

Anthraquinone;    Process    for    the    purification    of 

.     E.  Portheim,  Assr.  to  Kinzlberger  und  Co. 

U.S.P.  1,404,056,  17.1.22.     Appl.,  19.8.20. 

Imptjee  anthraquinone  is  dissolved  in  a  neutral 
solvent,  treated  with  an  agent  which  forms  an  in- 
soluble precipitate  with  the  impurities,  and  the 
precipitate  separated  from  the  solution. 

Anthracene;     Purification     of     crude     .       E. 

Portheim,  Assr.  to  Kinzlberger  und  Co.     U.S.P. 
1,404,055,  17.1.22.     Appl.,  17.8.20. 

See  E.P.  144,648  of  1920;  J.,  1921,  5  a. 

ar-Tetrahydro-P-naphthol ;  Preparation  of .    G. 

Schroeter    and    W.     Schrauth.      E.P.    148,408, 
10.7.20.     Conv.,  17.5.16. 

See  G.P.  299,603  of  1916;  J.,  1919,  893  a. 

Nitro  compounds  of  tetrahydronaphthalene  and  its 

derivatives;  Preparation  of  .     G.  Schroeter 

and  W.  Schrauth.    E.P.  148,923,  10.7.20.    Conv., 
16.3.16. 

See  G.P.  299,014  and  326,486  of  1916;  J.,  1920, 
174  a  ;  1921,  463  a. 

Tetrahydronaphthalene  and  its  derivatives;  Pre- 
paration of  reduction  products  of  nitro  com- 
pounds of .     G.  Schroeter  and  W.  Schrauth. 

E.P.  170,867,  10.7.20.     Conv.,  16.3.16. 

See  G.P.  333,157  of  1916;  J.,  1921,  341  a. 

Anthraquinone  derivatives;  Halogenation  of  . 

F.  W.  Atack  and  G.  Robertson.     E.P.  173,805, 

5.8.20. 
See  U.S.P.,  1,401,125  of  1921;  J.,  1922,  134  a. 

Catalytic  agents.    E.P.  153,877.    See  XX. 


IV.-C0L0URING  MATTERS  AND  DYES. 

Isatin  Yellow  series;  Colouring  matters  of  the . 

J.   Martinet.     Rev.   Gen.    Mat.    Col.,    1921,    25, 
177—179. 

The  interaction  of  diazonium  compounds  with 
isatin-6-sulphonic  acid  in  presence  of  sodium  acetate 
results  in  the  formation  of  hydrazones  and  not  azo 
compounds,  as  is  shown  by  the  stability  of  these 
compounds  towards  reducing  agents,  and  by  the 
fact  that  identical  compounds  are  formed  by  the 
action  of  the  corresponding  hydrazine  on  isatin-6- 
sulphonic  acid.  A  number  of  these  hydrazones 
have  been  prepared  and  their  dyeing  properties 
examined.  They  dye  wool,  silk,  and  artificial  silk 
in  bright  yellow,  orange,  or  red  shades,  and  all 
possess  a  direct  affinity  for  cotton  from  an  alkaline 
bath  the  affinity  increasing  with  the  molecular 
weight.  The  p-tolylhydrazone  of  isatin-6-sulphonic 
acid  has  been  compared  with  Quinoline  Yellow 
extra,  Thioflavine  S,  and  Thiazol  Yellow  3G,  and 
although  its  fastness  properties  are  not  very  good, 
it  is  of  interest  on  account  of  its  great  tinctorial 
power,  brightness,  and  level-dyeing  properties.  A 
parallel  series  of  compounds  was  also  prepared  by 
the  action  of  various  hvdrazines  on  isatin-5- 
sulphonic  acid.    (Cf.  J.C.S.,  Mar.)— F.  M.  R. 

Diazo  compounds.   Korczynski  and  others.  S'ee  XX. 


170a 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[Mar.  15,  1922. 


Catalytic  action  of  salts  of  metals.  Korczynski. 
See  XX. 

Carbocyanines.     Braunholtz.     See  XXI. 

Patents. 

Dyestuff  of  the  anthraquinone  series;  Manufacture 
of  intermediates  [3-chIoro-2-aminoanthraquinonc 
and  3-chloro-2-amino-l-bromoanthraquinone]  and 

of  a .    F.  W.  Atack  and  C.  W.  Soutar.    E.P. 

172,682,  5.8.20. 
3-CHLORO-2-AMiNOANTHRAQurxoxE  is  obtained  by  the 
regulated  chlorination  at  ordinary  temperatures  of 
2-amiiioanthraquinone  in  a  suitable  solvent,  such  as 
glacial  acetic  acid  or  nitrobenzene,  until  the 
necessary  increase  in  weight  has  taken  place.  It 
crystallises  from  acetic  acid  in  orange-yellow 
needles,  m.p.  221°  C.  AVhen  20  pts.  is  suspended 
with  10  pts.  of  sodium  carbonate  in  nitrobenzene 
and  treated  at  ordinary  temperatures  with  21  pts. 
of  bromine  in  60  pts.  of  nitrobenzene,  1-bromo- 
2-amino-3-chloroanthraquinone  is  produced  as 
orange-coloured  needles,  m.p.  235°  C,  and  this  on 
boiling  in  nitrobenzene  solution  with  sodium  acetate 
and  copper  acetate  condenses  to  form  a  dyestuff 
having  probably  the  constitution  3.3'-dichloro- 
anthraquinone-1.2.1'.2'-N-dihydroazine.  It  dyes 
cotton  bright  blue  shades  from  a  hydrosulpbite  vat. 
All  the  above  three  reactions  may  be  performed 
consecutively  in  the  same  liquid  medium,  e.g.,  nitro- 
benzene, without  isolation  of  the  intermediate 
products. — G.  F.  M. 

Dyestuff      intermediates      [aminoanthraquinones~\; 

Production  of  .     J.  Thomas,  A.  H.   Davies, 

and  Scottish  Dyes,  Ltd.    E.P.  173,006,  23.7.20. 

Higher  yields  of  the  corresponding  amino- 
anthraquinones  and  products  of  better  quality,  are 
obtained  by  heating  1-chloroanthraquinone  or 
dichloroanthraquinones  with  aqueous  ammonia  in  , 
an  autoclave,  than  by  the  usual  process  with  the  i 
sulphonic  acids.  The  presence  of  small  amounts  of 
copper  salts  has  a  favourable  influence  on  the 
course  of  the  reaction.  Example:  100  pts.  of 
1-chloroanthraquinone  is  heated  with  700  pts.  of 
26%  ammonia  at  170°  C.  for  12  hrs.  in  presence 
of  6'1  pt.  of  copper  sulphate.  A  nearly  theoretical 
vield  of  1-aminoanthraquinone  is  obtained. 

— G.  F.  M. 

l-C'hloro-2-aminoanthraquinone;     Manufacture     of 

.     A.  W.  Fvfe,  and  British  Dyestuffs  Corp., 

Ltd.     E.P.  173,166,  21.12.20. 

I-Chloro-2-aminoanthraqitinone  is  prepared,  with- 
out previously  protecting  the  amino  group  by 
acetylation,  by  the  direct  chlorination  at  15°  O.  of 
2-aminoanthraquinone  suspended  in  10  times  its 
weight  of  nitrobenzene  or  other  suitable  solvent 
such  as  acetic  acid  or  chlorobenzene,  until  the 
requisite  increaso  in  weight  has  been  attained.  The 
vield  of  the  free  base  amounts  to  88%  of  the 
theoretical.— G.  F.  M. 

2-  Amhw-5-hydroxy naphthalene-! '-sulphonic        acid; 

Manufacture  of  a  derivative  of .    Kalle  und 

Co.,  A.-G.    G.P.  342,733,  19.3.14. 

A  iirsTDKE  of  an  aqueous  solution  of  p-phenylene- 
diamine  (1  mol.),  2-amino-5-hydroxynaphthalene- 
7-sulphonic  acid  (2  ruols.),  sodium  bisulphite 
.solution  of  38°  B.  (sp.  gr.  1"357),  and  sodium 
hydroxide  solution  of  40°  B.  (sp.  gr.  1-383)  is 
heated  for  12  hrs.  at  105°  O.  The  crystalline  re- 
action product  is  heated  with  hydrochloric  acid  to 
decompose  any  sodium  bisulphite,  yielding  sym- 
1.4-di-o-hydroxy-7'-sulpko-2'-naphthylaminobenzene, 
an   intermediate  for  the  manufacture  of  dvestuffs. 

— L.'A.  c. 


Azo  dyes  obtained  from  coniferous  resins  and  their 
process  of  manufacture.  R.  Arnot.  E.P.  173,254, 
22.7.20. 

Resins,  e.g.,  colophony,  obtained  from  Coniferce, 
the  products  obtained  by  sulphonating  the  resins, 
or  the  phenols  obtained  by  distilling  the  resins  with 
lime,  are  nitrated  with  fuming  nitric  acid,  reduced, 
diazotised,  and  coupled  with  azo  components  such 
as  R-salt.  The  sulphonated  resins  may  also  be 
coupled  with  diazo  compounds. — L.  A.  C. 

Phenylglycine    compounds;    Manufacture   of   . 

British    Dyestuffs    Corp.,    Ltd.,    H.    Levinstein, 
and  G.  Imbert.    E.P.  173,540,  2.7.20. 

Phenylglycine  compounds  are  obtained  in  one 
operation  from  trichioroethylene  by  heating  it  in 
aqueous  suspension  with  aniline  and  an  alkali, 
preferably  milk  of  lime,  in  an  autoclave  at  140° — 
190°  C,  the  treatment  being  continued  until  the 
intermediate  substances,  e.g.,  ethylenetriphenyl- 
triamine,  are  completely  transformed  into  phenyl- 
glycine  compounds.  Example:  132  pts.  of  trichioro- 
ethylene, 100  pts.  of  lime,  800  pt6.  of  water,  and 
280  pts.  of  aniline  are  heated  in  an  autoclave  with 
constant  agitation  for  24  hrs.  at  180°  C.  The  excess 
of  aniline  is  distilled  off,  the  calcium  phenylglycine 
filtered  off,  and  converted  into  the  sodium  salt  by 
boiling  with  the  requisite  quantity  of  sodium 
carbonate. — G.  F.  M. 

Dyestuffs  dyeing  on  mordant  and  process  of  making 
same.  M.  Alioth  and  E.  Bodmer,  Assrs.  to 
Durand  &  Huguenin  S.A.  U.S. P.  1,403,888, 
17.1.22.     Appl.,  12.7.21. 

An  arylido-o-hydroxycarboxylic  acid,  in  which  the 
aryl  nucleus  contains  a  sulphonic  group,  is  treated 
with  formaldehyde,  and  1  mol.  of  the  methylene- 
diarylido-o-hydroxycarboxylic  acid  obtained  is 
oxidised  in  the  presence  of  1  mol.  of  an  aromatic 
hydroxycarboxylic  acid.  The  products  give  fast, 
vivid  red  tints  when  dyed  on  chromed  wool  or 
printed  on  cotton  with  chromium  mordants. 

— L.  A.  C. 

Colour-lakes.    G.P.  343,715.    See  XIII. 

Condensation  products  of  aldehydes  and  phenols. 
E.P.  148,366.    See  XX. 


V.— FIBRES;  TEXTILES;  CELLULOSE; 
PAPEB. 

Alkali-celhdose  and  the  structure  of  cellulose.  P. 
Karrer.  Cellulosechem.,  1921,  2,  125—128.  (Cf. 
J.,  1921,  342  a,  764  A.) 

In  the  polymeric  series  of  amyloses  (maltose- 
anhydrides)  addition  compounds  with  sodium 
hydroxide  are  formed  containing  1  mol.  of  sodium 
hydroxide  to  1  mol.  of  anhydro-sugar,  whatever 
the  degreo  of  polymerisation.  These  compounds  are 
exactly  analogous  to  alkali-cellulose  and  support  the 
view  that  alkali-cellulose  is  a  definite  addition  com- 
pound having  the  formula,  C12HJ0O10,NaOH,  as 
established  by  Gladstone,  whose  experimental 
results  have  also  been  confirmed.  In  the  presence 
of  water  this  compound  is  hydrolysed  as  the  result 
of  an  equilibrium  and  the  sodium  hydroxide  can 
ultimately  be  washed  out,  but  with  excess  of  concen- 
trated sodium  hydroxide  which  is  washed  out  with 
alcohol,  the  composition  of  the  product  is  constant 
at  the  above  proportions.  Hence  by  analogy  with 
the  anhydro-maltoses,  cellulose  is  an  anhydro-cello- 
biose  in  polymerised  condition  and  most  probably, 
also  by  analogy  on  the  basis  of  its  heat  of  combus- 
tion and  Rbntgen  spectrograph^  diagram  (J.,  1922, 
9  a),  it  is  only  a  dimeride  of  anbydro-cellobiose. 
The    union    of    the    double    molecule   of    anhydro- 


Vol.  XII.,  No.  5.] 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


171  A 


cellobiose  is  effected  by  subsidiary  valencies  and 
not  through  oxygen  bonds.  The  cellulose  fibre 
substance  is  regarded  as  a  crystal  structure  built  up 
of  double  cellobiose  anhydride  molecules  in  co- 
ordinated arrangement,  these  also  being  held 
together  by  unusually  strong  valency  forces,  so  that 
destruction  of  the  organised  arrangement  generally 
involves  to  a  largo  extent  tho  rupture  of  the 
polymerised  molecules  of  anhydro-sugar.  Thus  no 
progressive  quantitative  resolution  into  components 
larger  than  dextrose  is  readily  obtained,  but 
enzymes  may  possibly  effect  a  more  systematic 
demolition. — J.  F.  B. 

Cellulose;  A  new  degradation  of .     Conversion 

of  cellulose  into  a  biose-anhydride.     P.  Karror. 
Ber.,  1922,  55,  153—156. 

A  REr-LY  to  tho  criticisms  of  Hess  (J.,  1922,  9  a). 
The  conversion  of  amyloses  by  acetyl  bromide  into 
acetobromomaltose  is  quantitative  in  the  sense  that 
the  same  yield  of  this  substance  is  obtained  from 
maltose,  amylose,  or  starch.  The  process  of  the 
depolymerisation  of  starch  does  not  appear  to  be 
involved  in  this  matter. — H.  W. 

Spruce  needles;  The  lignin-like  resins  and  tannins 

of .     A.  C.  von  Eulor.     Cellulosechem.,  1921, 

2,  128—135;  1922,  3,  1—7. 
Extracts  obtained  by  treating  spruce  needles  with 
93%  methyl  alcohol  were  divided  into  three  frac- 
tions: "crude  fat"  soluble  in  ether;  "crude 
resin  "  insoluble  in  ether  but  soluble  in  alcohol,  and 
"  molasses,"  a  syrupy  aqueous  extract.  From  the 
"  molasses  "  a  whole  series  of  definite  tannic  acids 
were  isolated,  all  closely  related  in  constitution, 
but  differentiated  by  their  solubilities  in  ether  and 
in  ethyl  acetate  and  by  their  lead  salts,  some  of 
which  were  colourless  and  some  lemon-yellow.  These 
tannins  are  ketonic  acids  derived  from  hydroxy- 
cinnamic  acid  and  are  closely  related  to  p-cumaryl- 
ferulic  acid  or  feruylferulic  acid  and  to  caffeic  acid; 
they  occur  in  various  stages  of  hydrogenation  and 
hydration  and  represent  hydroaromatio  and 
hydrated  derivatives  of  Klason's  /3-lignin.  The 
constituents  of  tho  "  crude  resin  "  composing  10% 
of  the  original  needles  are  similar  ketonic  com- 
pounds of  aldehydic  and  alcoholic  function  derived 
from  the  hydroxycinnamic  aldehydes  and  alcohols; 
they  also  are  tannins,  and  the  alcoholic  solution  of 
the  crude  resin  (which  is  not  a  true  resin) 
precipitates  gelatin.  These  substances  are  typical 
of  Klason's  a-lignin  in  various  stages  of  hydrogena- 
tion and  hj'dration.  The  crude  resin  is  extremely 
susceptible  to  change,  either  spontaneously  or  on 
solution  in  alkali  and  re-precipitatiou  by  acid.  A 
reddish-brown  product  called  "  tannin-red  "  is  thus 
produced,  which  is  analogous  to  the  phlobaphenes 
from  bark-tannins.  The  "  crude  fat  "  contains 
principally  true  fats  and  resins,  but  a  similar 
tannin-like  substance  is  present  to  the  extent  of 
about  29%.  This  tannin  is  called  abiephyllic  acid, 
but  this,  as  well  as  its  closely  allied  derivatives,  also 
appears  to  be  built  up  from  hydroxycinnamic 
aldehydes.  The  constitutional  relationships  of  all 
these  tannin-like  substances  to  lignin  is  discussed, 
the  structural  analogies  being  very  close,  and  the 
points  of  difference  consisting  in  different  degrees 
of  hydrogenation,  hydroxylation,  methoxylation, 
and  condensation.     (Cf.  J.C.S.,  March.)— J.  F.  B. 

Svlphite  waste   liquors;  Combustion  of  .     E. 

Wirth.  Papierfabr.,  1922,  20,  Go— 71. 
The  average  calorific  value  of  tho  dry  substance  of 
the  waste  liquors,  calculated  with  10%  of  ash,  may 
be  taken  at  4400  Cals.  The  actual  value  is  liable 
to  variations  owing  to  subsidiary  treatments  which 
may  increase  the  percentage  of  ash.  From  the 
calorific  value  of  the  dry  substance,  less  the  total 
heat  of  evaporation  of  the  water  present,  the  net 
calorific  value  of  the  liquor  may  be  calculated  for 


any  concentration.  This  is  nil  at  a  concentration 
of  12'5%  solids,  and  is  of  no  practical  importance 
at  concentrations  below  40%.  Owing  to  tho  nature 
of  the  organic  matters  of  the  concentrated  liquor, 
it  is  necessary  to  burn  it  with  the  assistance  of  a 
coal  tire,  and  trials  in  a  boiler  furnace  have  shown 
efficiencies  of  80%  for  a  liquor  containing  15%  of 
water  and  70%  for  liquor  containing  56%  of  water. 
Thus  the  best  results  are  obtained  by  carrying  the 
concentration  of  the  liquor  as  far  as  possible  outside 
the  furnace,  but  small  variations  in  the  water- 
content  of  the  fuel  liquor  are  not  of  very  serious 
consequence.  The  practical  limits  aro  between  15% 
and  48%  of  water,  corresponding  to  densities 
between  35°  and  45°  B.  (sp.  gr.  1299— 1421).  The 
total  acidity  of  normal  wasto  sulphite  liquor  up  to 
the  point  of  its  complete  evaporation  consumes  6  g. 
of  sodium  hydroxide  per  litre.  The  most  economical 
method  of  neutralisation  consists  in  adding  per 
cub.  m.  of  thin  liquor  (11%  solids),  3'75  kg.  of  chalk, 
2T  kg.  of  quicklime,  and  finally  traces  of  caustic 
soda.  Separation  of  the  sludges  should  be  carried 
out  beforo  passing  to  the  evaporator ;  a  slight  excess 
of  limo  in  the  fuel  liquor  preserves  the  boiler  plates; 
sodium  salts  increase  tho  ash  of  the  fuel ;  sodium 
sulphite  corrodes  the  evaporator,  and  if  present  it 
should  bo  oxidised  by  the  passage  of  air  through  the 
liquor ;  the  trace  of  caustic  soda  used  acts  as  a 
preservative  of  the  evaporator  against  corrosion. 
The  evaporation  is  conducted  by  means  of  the 
"  heat  pump,"  according  to  the  system  of  Kummler 
und  Matter  (J.,  1921,  885  a),  which  is  specially 
designed  with  self-cleaning  heating  surfaces  for  the 
.separation  of  crusts  of  calcium  sulphate,  and  the 
compressor  of  which  is  protected  against  accidental 
traces  of  acid  vapours.  With  liquor  of  this  nature, 
subject  to  the  formation  of  saline  crusts,  it  is  not 
advisable  to  aim  at  extremely  high  evaporative 
efficiencies.  A  fair  practical  efficiency  for  large- 
scale  plants  is  35 — 40  kg.  of  water  per  kw.-hr.  for 
electric  drive  or  35  kg.  per  h.p.-hr.  for  steam  turbine 
drive.  To  produce  a  quantity  of  liquid  fuel  con- 
taining 30%  of  water  sufficient  to  generate  100,000 
effective  Cals.  in  the  boiler  furnace,  285  litres  of 
original  waste  liquor  is  required,  together  with  the 
proportions  of  cheap  neutralising  chemicals  indi- 
cated above.  The  quantity  of  water  to  be  evaporated 
is  256  kg.,  for  which  the  power  consumption  is 
7  kw.-hr.  or  76  h.p.-hr.  The  hot  thick  liquor  is  fed 
directly  from  the  evaporator  into  the  boiler  furnace 
without  any  special  plant,  and  the  operation  of  the 
neutralising  and  evaporating  processes  can  be 
attended  to  by  one  man. — J.  F.  B. 

Spirit  from  sulphite-cellulose  waste  liquors.    Heuser 
and  others.     See  XVIII. 

Patents. 

Webs  or  sheets  of  fibrous  cellulose;  Manufacture  of 

■.     0.  F.  Cross.     E.P.  173,971,  4.1.21. 

Sheets  or  webs  of  fibrous  cellulose  prepared  as 
described  in  E.P.  126,174  (J.,  1919,  458  a)  are 
drained  by  treatment  with  a  reagent  capable  of 
neutralising  the  alkalinity  and  decomposing  any 
xanthate  present,  thus  causing  a  reversal  of  the 
hydration  process.  Suitable  reagents  are  weak 
acids,  such  as  acetic  or  sulphurous  acid,  or  easily 
dissociated  salts  of  stronger  acids,  such  as 
aluminium  sulphate  or  zinc  chloride  or  sulphate, 
or  sulphite-cellulose  waste  liquor.  The  reagent  is 
sprayed  on  to  the  web  during  a  suitable  period  in 
the  process,  e.g.,  between  the  first  and  second  rolls 
in  a  machine  of  the  Fourdrinier  type,  or  after 
moulding  in  the  manufacture  of  moulded  articles. 

— L.  A.  C. 

Treating    fibrous    materials.      E.P.    173,265.      See 
XXII. 

Celluloid    etc.     from     smokeless     powders.       G.P. 
344,017.    See  XXII. 


172  a  Cl.  VI.— BLEACHING  ;    DYEING,  &c.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.        [Mar.  15,  1922. 


VI.-BLEACHING ;  DYEING;   PRINTING; 
FINISHING. 

Acer  girmala.    Perkiu  and  Uyeda.    See  XV. 
Patent. 

Dyeing,  washing  and  the  like;  Apparatus  for . 

The  Simplex  Patent  Dyeing  Machine  Co.,  Ltd., 
and  J.  H.  Horsnell.  E.P.  173,405,  25.11.20. 
Addn.  to  16,199  of  1915  (J.,  1916,  1216  a). 
The  air  injector  forming  part  of  the  apparatus 
described  in  the  chief  patent  is  adapted  so  that 
either  air  and  steam  or  steam  alone  can  be  circu- 
lated through  the  apparatus  according  to  whether 
the  contents  are  required  to  be  agitated  or  boiled. 

—A.  J.  H. 


VII -ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitric  acid;  Electrolytic  concentration  of  aqueous 

solutions  of  .     I.     H.  J.  M.  Creighton.     J. 

Franklin  Inst.,  1922,  193,  89—95. 

When  a  solution  of  nitric  acid  is  electrolysed  in  a 
two-compartment  cell  with  a  porous  diaphragm,  the 
concentration  of  acid  is  increased  through  electro- 
lysis of  water,  and  at  the  same  time  the  concentra- 
tion of  acid  in  the  anolyte  is  increased  at  the 
expense  of  the  catholyte  owing  to  the  different 
migration  velocities  of  H"  and  NO,'  ions.  Part  of 
the  acid  in  the  catholyte  is  further  reduced  by 
hydrogen  to  nitrogen  oxides,  hydroxylamine,  or 
ammonia,  depending  on  the  nature  of  the  cathode. 
Experiments  were  made  with  the  object  of  utilising 
the  above  observations  for  concentrating  nitric  acid. 
The  cell  used  was  so  arranged  that  oxides  of 
nitrogen  from  the  catholyte  could  be  returned  to 
the  anolyte,  where  they  would  be  oxidised  again  to 
nitric  acid.  When  a  carbon  anode  and  cathode  were 
used,  with  an  anodic  current  density  of  4 — 5  amp. 
per  sq.  dm.  the  anode  disintegrated  violently. 
When  a  lead  cathode  was  used  it  was  rapidly 
transformed  into  a  soft,  powdery,  allotropic 
modification  of  lead.  Using  platinum  anodes  and 
cathodes  it  was  found  possible,  starting  with 
1385  g.  of  71'7%  nitric  acid  as  anolyte  and  780  g.  as 
catholyte,  to  obtain  1210  g.  of  92-2%  acid,  using 
345  ampere-hours.  By  further  electrolysis  of  this 
acid,  with  300  g.  of  the  92'2%  acid  as  anolyte  and 
285  g.  of  71-7%  acid  as  catholyte,  350  g.  of  99"65% 
acid  was  obtained  with  a  consumption  of  48  amp.- 
hrs.  and  0'30  kw.-hr.  The  porous  pot  was  much 
disintegrated  and  could  not  be  used  for  more  than 
one  experiment.  The  concentration  of  nitric  acid 
in  "  spent  acid  "  from  nitroglycerin  manufacture 
was  similarly  increased  from  1006%  HNO,  with 
1991%  H20  to  21-32%  HN02  with  4"28%  H20. 

— E.  H.  R. 

Magnesium    sulphide;    Preparation   of   pure   

and  its  phosphorescence.  II.  Phosphorescent 
magnesium,  sulphides.  Inorganic  luminescence 
phenomena.  IV.  E.  Tiede  and  F.  Richtcr.  Ber., 
1922,  55,  69—74.     (Cf.  J.,  1916,  1013.) 

Pure  magnesium  sulphide  is  obtained  by  the 
ignition  of  magnesium  oxide  or,  preferably, 
anhydrous  magnesium  sulphate  in  a  current  of 
nitrogen  laden  with  carbon  bisulphide  vapour.  The 
compound  is  not  phosphorescent,  but  becomes  so  by 
suitable  additions  of  manganese,  bismuth,  or 
antimony,  the  optimal  amount  of  added  metal  for 
1  g.  of  sulphide  being  0001 — 0002  g.  of  manganese 
as  sulphate  or  chloride,  00024  g.  of  bismuth  as  the 
basic  nitrate,  or  00013  g.  of  antimony  as  potassium- 
antimonyl  tartrate.  The  intensity  of  the  phos- 
phorescence at  the  atmospheric  temperature  with 


specimens  containing  000023 — 0'004  g.  Mn  is  almost 
constant  and  not  markedly  affected  by  wide  varia- 
tions in  the  temperature  and  duration  of  ignition. 
The  duration  of  the  phosphorescence  is  small. 
Magnesium  sulphide  containing  bismuth  exhibits 
an  intensely  blue  fluorescence,  which  is  excited  by 
daylight,  or  the  light  of  arc  or  mercury-vapour 
lamps.  Specimens  of  magnesium  sulphide  contain- 
ing antimony  have  a  delicate  yellow  colour  and  a 
persistent,  intensely  yellowish-green  phosphor- 
escence after  excitation  by  daylight,  or  the  light  of 
arc  or  mercury-vapour  lamps,  or,  particularly,  by 
exposure  to  cathode  rays.     (Gf.  J.C.S.,  Mar.) 

— H.  W. 

Sulphur  dioxide;  Oxidising  properties  of .    III. 

Copper  chlorides.  W.  Wardlaw  and  F.  W. 
Pinkard.  Trans.  Chem.  Soc.,  1922,  121,  210—221. 
(Cf.  J.,  1920,  781  A.) 

The  oxidation  of  cuprous  chloride  by  sulphur 
dioxide  in  the  presence  of  concentrated  hydrochloric 
acid  can  bo  expressed  by  the  reversible  equation, 
2Cu2Cl2  +  S02+4HC1^4CuCl2  +  2H20  +  S.  Oxidation 
by  sulphur  dioxide  is  dependent  on  the  initial 
concentration  of  the  cuprous  chloride  and  on  the 
concentration  of  the  acid.  Below  5'016%  free  HC1 
at  95°  O.  no  oxidation  of  cuprous  chloride  occurs; 
above  19'8%  free  HC1  sulphur  is  precipitated.  At 
concentrations  between  19'8%  and  14'78%  the 
precipitate  consists  of  sulphur  and  cuprous  sul- 
phide, while  between  14'78%  and  5016%  the 
precipitate  is  cuprous  sulphide,  the  formation  of 
this  substance  being  due  to  a  secondary  reaction 
between  the  cuprous  chloride  and  sulphur ; 
hydrogen  sulphide  is  not  produced.  Sulphur,  in 
the  presence  of  concentrated  hydrochloric  acid,  can 
reduce  cupric  chloride  to  cuprous  chloride  and 
sulphuric  acid.  In  dilute  acid  and  aqueous  solution 
this  does  not  occur,  but  under  these  conditions  at 
95°  C.  in  a  current  of  carbon  dioxide  cuprous 
sulphide  is  produced.  No  sulphuric  acid  is  ever 
detected  when  sulphur  dioxide  oxidises  cuprous 
chloride  in  the  presence  of  hydrochloric  acid. 

—P.  V.  M. 

Oxides   of   lead;  Physical   chemistry  of   the   . 

III.      Hydrated    lead   monoxide.      S.    Glasstone. 

Trans.   Chem.  Soc,   1922,   121,  58—66.     (Cf.  J., 

1921,  846  a.) 
Up  to  the  present  no  hydrated  oxide  of  lead  has 
been  obtained  which  has  definitely  the  composition 
either  3PbO,H„0  or  2PbO,H„0.  In  all  cases  the 
products  were  either  5PbO,2H20,  8PbO,3H20,  or 
solid  solutions  of  two  or  more  simple  hydrated 
oxides;  the  composition  of  the  oxide  depends  on 
the  temperature  and  concentration  of  the  reacting 
solutions,  the  higher  the  temperature,  and  the 
greater  the  dilution,  the  lower  within  narrow  limits 
being  the  water  content.  The  dissociation  constant 
of  the  monobasic  acid  H.HPbO,,  produced  by  dis- 
solving the  hydrated  oxide  in  water,  is  l"35xl0"'a 
at  25°  C.  The  hydrated  oxide  is  metastable  with 
respect  to  the  oxide.  Many  of  the  properties  of  the 
hydrated  oxide  can  be  explained  by  assuming  it  to 
be  a  salt  of  the  monobasic  acid  H.HPb02,  i.e.,  a 
plumbite—  P.  V.  M. 

Precipitation     with     lead;     Contribution     to     the 

practice    of   .      [Preparation   of    basic   lead 

acetate.1  H.  Langecker.  Biochem.  Zeits.,  1921, 
122,  34—38. 
Preparations  of  basic  lead  acetate  were  made  by 
mixing  lead  acetate  and  litharge  in  various  mole- 
cular proportions  and  treating  the  mixture  with  hot 
water.  The  maximum  amount  of  litharge  which 
can  be  taken  up  is  3  mols.  Schmidt's  pentabnsic 
lead  acetate  (Pharm.  Chem.,  II.,  471)  could  not  be 
obtained.  The  solubility  of  the  basic  lead  acetate 
falls  off  with  increasing  content  of  lead  oxide. 

— H.  K. 


Vol  xli.,  No.  5.]     Cl.  VH.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


173a 


Metallic  carbonyls.     R.  L.  Mond  and  A.  E.  Wallis. 
Trans.  Chem.  Soc,  1922,  121,  29—32. 

Molybdenum  oarbonyl  (cf.  J.,  1910,  625),  probably 
Mo5(CO)26,  is  almost  insoluble  in  benzene,  alcohol, 
and  other  common  solvents.  A  crystalline  volatile 
compound  of  ruthenium  and  carbon  monoxide, 
soluble  in  benzene  but  insoluble  in  alcohol  and 
water,  is  obtained  by  heating  the  metal  at  300°  C. 
with  carbon  monoxide  at  400  atm.  A  non-volatile 
compound,  Ru(CO),,  insoluble  in  benzene  and 
soluble  in  alcohol  and  water,  is  obtained  at  250°  C. 
and  350  atm.  By  the  interaction  between  carbon 
monoxide  and  freshly  reduced,  finely-divided  iron 
at  various  temperatures  and  pressures,  it  is  shown 
that  the  formation  of  Fe(CO)5  (cf.  J.,  1891,  014) 
increases  rapidly  with  increase  of  pressure  up  to 
a  temperature  of  200°  C,  above  which  the  velocity 
of  the  reaction  2CO  =  COj+0  increases  and  the  yield 
of  carbonyl  rapidly  decreases.  The  yield  of  iron 
pentacarbonyl  is  in  all  cases  very  small.  When 
carbon  monoxide  containing  5%  of  nickel  carbonyl 
vapour  and  sufficient  air  for  the  oxidation  of  the 
latter  is  passed  through  a  tube  at  200°  C,  a 
colloidal  basic  carbonate  of  nickel  of  varying  com- 
position is  deposited. — P.  V.  M. 

Metallic  carbonyls;  Action  of  nitric  oxide  on  the, 

.     R.   L.   Mond  and  A.   E.   Wallis.     Trans. 

Chem.  Soc,  1922,   121,  32—35. 

Nickel  carbonyl  in  chloroform  or  xylene  combines 
with  nitric  oxide  at  room  temperature,  giving  a 
small  quantity  of  an  intensely  blue  substance,  pos- 
sibly Ni(NO)2,  insoluble  in  water  and  other  solvents 
and  decomposed  immediately  at  90°  C.  by  dilute 
sulphuric  acid.  The  reaction  between  nitric  oxide 
and  cobalt  tetracarbonyl  is  represented  by  the 
equation  Co(C0)4  +  N0  =  Co(C0)a.NO+C0.  Cobalt 
nitrosotricarbonyl  is  a  red  volatile  liquid,  stable 
under  water  and  completely  miscible  with  alcohol, 
benzene,  ether,  etc.;  sp.  gr.  at  14°  C,  T5126; 
m.p.  -1-05°  0.,  b.p.  786°  C.  at  761  mm.  It  distils 
in  a  current  of  inert  gas  at  50° — 60°  C.  with  slight 
decomposition.  There  is  no  reaction  between  nitric 
oxide  and  cobalt  tricarbonyl  or  between  nitric  oxide 
and  diferrononacarbonyl  up  to  60°  C.  Only  a  very 
slight  reaction  occurs  at  75° — 80°  C  with  the  former 
compound,  and  at  63°  C.  with  the  latter.  At 
100°  C.  the  interaction  between  nitric  oxide  and 
diferrononacarbonyl  is  complex,  the  liquid  penta- 
carbonyl, together  with  some  tetracarbonyl,  being 
formed  first,  and  the  whole  subsequently  decom- 
posing with  violence.  At  70° — 85°  C.  the  reaction 
is  regular.     The  reaction  is  probably 

2Fe„(CO)9+NO  =  FeNO,3Fe(CO)5-l-3CO. 

—P.  V.  M. 

Liquid  air  and  oxygen  and  nitrogen;  Plant  for  the 

generation  of .    E.  Blau.    Chem.-Zeit.,  1922, 

46,  85—88. 

A  description  is  given  of  the  Heylandt  system  and 
apparatus  for  the  liquefaction  of  air  and  the 
production  of  oxygen  and  nitrogen.  In  this  system 
the  purified  and  dried  air  is  compressed  to  200  atm. 
and  at  a  temperature  of  about  10°  C,  60%  of  it 
is  led  to  an  expansion  machine,  where  external  work 
is  done  and  a  temperature  fall  of  about  160°  C. 
occurs.  The  air  is  led  from  the  expansion  cylinder 
through  an  insulated  pipe  in  countercurrent  rela- 
tion to  the  other  40%  of  the  air  still  at  high 
pressure.  This  is  thereby  cooled,  and  on  emerging 
from  the  expansion  valve  it  liquefies.  With  this 
plant  liquefaction  begins  20 — 30  mins.  after  start- 
ing, and  20%  of  the  air  compressed  is  liquefied, 
against  9 — 11%  in  the  Linde  apparatus,  with  an 
energy  consumption  of  P4 — 1"5  kw.-hrs.  per  litre, 
against  2-6-^2-8  kw.-hre.  with  the  Linde  plant.  The 
same  principle  combined  with  a  fractionating 
column  of  special  design  is  employed  for  the  separa- 
tion of  oxygen  and  nitrogen  from  air  by  liquefac- 


tion and  fractional  distillation.  In  the  larger  type 
of  plant,  not  the  whole  of  the  air  is  compressed  to 
200  atm.,  but  about  §  of  it  is  only  brought  to  a 
pressure  of  6  atm.,  which  is  requisite  for  the  lique- 
faction of  the  low-pressure  air  in  the  fractionating 
apparatus. — G.  F.  M. 

Ammoniacal  nitrogen.    Meurice.    See  XXIII. 

Patents. 

Ammonia;  Production  of from  cyanides  during 

heating  in  the  presence  of  water.  C.  T.  Thoresell 
and  H.  L.  R.  Lunden.  E.P.  151,984,  17.9.20. 
Conv.,  6.10.19. 

Cyanides  produced  by  absorption  of  free  nitrogen 
by  heated  alkali  or  alkaline-earth  metals  or  their 
compounds  and  carbon  are  withdrawn  from  the 
reaction  vessel  and  introduced  directly,  without 
cooling  below  the  reaction  temperature,  into  an 
autoclave,  together  with  water  and  with  exclusion 
of  air.  The  space  above  the  water  in  the  autoclave 
is  filled  with  a  gas  free  from  oxygen. — H.  R.  D. 

Ammonia;  Synthetic  production  of  — — .  L'Air 
Liquide,  Soc.  Anon,  pour  L'Etude  et  L'Exploit. 
des  Proc.  G.  Claude.  E.P.  156,135,  30.12.20. 
Conv.,  30.12.19. 

A  plant  for  the  synthesis  of  ammonia  by  the  use  of 
very  high  pressures  is  combined  with  a  coal  distilla- 
tion plant.  Water-gas  is  produced  by  injecting  on 
to  the  hot  coke  from  the  retorts  steam  generated 
and  superheated  by  means  of  heat  of  the  gas 
evolved  from  the  retorts.  The  water-gas  or  part  of 
it  is  mixed  with  the  distillation  gases,  and  hydrogen 
separated  from  the  mixture  by  a  solution  method, 
and  part  of  the  hydrogen  is  employed  with  air  in 
a  gas  engine  to  obtain  the  necessary  nitrogen  for 
combination  with  the  remainder  of  the  hydrogen  to 
form  ammonia. — H.  R.  D. 

Ammonium  sulphate;  Manufacture  of  neutral . 

J.  B.  Hansford.     E.P.  173,818,  4.9.20. 

Two  saturators  are  used,  with  suitable  connexions, 
so  that  the  ammonia  can  be  passed  through  either 
saturator  vessel  or  through  both  in  series  or  in 
parallel.  Ammonia  is  passed  into  sulphuric  acid 
in  the  first  saturator,  any  escaping  ammonia  being 
led  into  the  second  saturator,  the  main  supply  of 
ammonia  being  diverted  to  the  latter  when 
neutrality  has  been  reached  in  the  first  saturator. 
(Cf.  J.,  1921,  733  a.)— H.  R.  D. 

Oxalates   and  oxalic   acid;   Manufacture   of  . 

Oldbury  Electro-Chemical  Co.,  Assees.  of  W. 
Wallace.     E.P.  160,747,  6.10.20.     Conv.,  23.3.20. 

A  mixtttre  of  an  alkali  (sodium)  oxalate,  the 
equivalent  amount  of  an  alkaline-earth  (calcium) 
hydroxide,  and  water  is  heated  to  130°  C.  with 
carbon  monoxide  under  a  pressure  of  65  lb.  per 
sq.  in.  until  absorption  ceases,  with  the  production 
of  calcium  oxalate  and  sodium  formate.  The  cal- 
cium oxalate  is  separated,  and  may  be  converted 
into  oxalic  acid  by  treatment  with  sulphuric  acid, 
while  the  solution  of  sodium  formate  is  evaporated 
and  heated  to  form  sodium  oxalate,  which,  after 
removal,  e.g.,  by  extraction  with  water,  of  sodium 
carbonate  formed  during  the  reaction  is  treated  as 
described  above. — L.  A.  C. 

Formates  of  the  alkali  metals;  Manufacture  of . 

G.  O.  Bacon.  From  Oldbury  Electro  Chemical 
Co.     E.P.  174,125,  17.9.20. 

Carbon  monoxide  is  bubbled  under  pressure  into  a 
hot  solution  of  a  caustic  alkali  containing  a  finely 
divided  inert  solid  in  suspension,  whereby  the  gas  is 
broken  up  into  innumerable  small  bubbles  which  are 
readily  absorbed  by  the  alkali.  The  latter  may  be 
made,  for  example,  by  digesting  sodium  oxalate 
with  calcium  hydroxide,  in  which  case  the  solution 


174  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


[Mar.  15,  1922. 


containing  calcium  oxalate  in  suspension  is  heated 
and  treated  directly  with  carbon  monoxide  under 
pressure. — A.  R.  P. 

Oxalates  <~>f  the  alkali  metals;  Manufacture  of . 

G.   C.   Bacon.     From  Oldbury   Electro  Chemical 
Co.     E.P.  174,126,  17.9.20. 

Alkali  formate  is  melted,  heated  to  a  temperature 
below  the  temperature  of  conversion  to  oxalate 
(295°  C),  and  then  poured  into  a  separate  vessel 
maintained  at  between  380°  and  440°  C,  at  which 
temperature  over  90%  of  the  formate  is  converted 
into  oxalate  in  a  few  minutes  and  the  minimum 
amount  of  carbonate  is  produced. — A.  R.  P. 

Caustic  alkalis  from  impure  lyes;  Process  for  the 

recovery    of    pure    .     K.     Heinemann,     and 

Hoesch    und    Co.     E.P.     171,751,     14.8.20.     (Cf. 
G.P.  280,556  of  1913;  J.,  1915,  551.) 

The  lyes  are  electrolysed,  employing  a  mercury 
cathode,  the  electrolyte  flowing  from  the  anode 
through  a  porous  diaphragm  to  the  cathode.  The 
resulting  alkali  amalgam  is  decomposed  by  water. 
Oxygen  and  hydrogen  evolved  during  the  electro- 
lysis are  collected. — J.  S.  G.  T. 

Siliceous    substances;    Drying    and    calcination    of 

.     H.  Spence,  I.  P.  Llewellyn,  and  P.  Spence 

and  Sons,  Ltd.     E.P.  173,799,  13.7.20. 

In  the  treatment  of  certain  shales,  fireclay,  or  the 
like,  in  the  form  of  small  pieces,  with  sulphuric  acid 
for  extraction  of  alumina,  a  silicious  residue  is  ob- 
tained which,  when  dried  and  calcined,  has  certain 
absorptive  and  useful  properties.  For  the  effective 
burning  off  of  the  carbonaceous  matter  contained  in 
these  residues  and  the  consequent  improvement  of 
their  colour  and  absorptive  properties,  regulated 
slow  combustion  in  heaps  and  kilns  is  suitable.  For 
example,  a  flue  or  flues  are  made  by  loosely  laid 
parallel  courses  of  bricks  a  few  inches  apart,  with 
the  intermediate  space  covered  by  another  course  of 
bricks.  A  small  timber  fire  is  started  upon  this 
flue  and  at  once  covered  with  the  residue.  As  com- 
bustion proceeds  upwards  and  outwards  more 
residue  is  added  to  the  bed. — H.  R.  D. 

Sodium   silicate;    Method   of   making   flaky   . 

I.   P.  Lihme,   Assr.  to  The  Grasselli  Chem.   Co. 
U.S. P.  1,403,556,  17.1.22.     Appl.,  13.7.16. 

A  heated  cylindrical  surface  is  brought  in  contact 
with  a  solution  of  the  silicate  in  vacuo.  The  film  of 
the  dry  product  thus  formed  at  a  reduced  tempera- 
ture on  the  surface  is  removed  and  broken  up  into 
fine  flakes  readily  soluble  in  water. — H.  R.  D. 

Potassium  chloride ;  Production  of .   M.  Shoeld, 

Assr.     to     Armour     Fertilizer     Works.     U.S. P. 
1,402,973,  10.1.22.     Appl.,  17.11.20. 

Potassium  chloride  is  obtained  from  leucite  or  the 
like  by  wet  grinding  the  mineral  in  a  sodium 
chloride  solution,  adjusting  the  proportions  of  the 
ingredients  of  the  sludge  suitably  by  adding  sodium 
chloride  solution  and  subjecting  it  to  heat  and 
pressure  so  as  to  effect  the  interchange  of  the 
potassium  of  the  mineral  and  the  sodium  of  the 
solution.  The  potassium  chloride  is  then  removed 
from  the  liquors. — H.  O.  R. 

Aluminium  fluoride;  Process  for  producing  granular 

.     L.  H.  Milligan,   Assr.   to  Aluminium  Co. 

of  America.      U.S. P.  1,403,183,  10.1.22.      Appl., 
19.1.21. 

Grant/lab  aluminium  fluoride  is  obtained  by  heat- 
ing a  solution  of  the  compound  containing  free  acid 
in    excess    of   that   equivalent    to    the    aluminium. 

— H.  R.  D. 


Chrome    alum;   Process   for   manufacturing    

G.     H.    Hultman.       U.S. P.     1,403,960,     17.1.22. 
Appl.,  28.4.21. 

Feurochrome  is  dissolved  in  sulphuric  acid  and  the 
solution  treated  with  a  soluble  ammonium  salt. 

— H.  R.  D. 

Hypochlorite  solutions;  Process  of  manufacturing 

.     C.  F.  Wallace  and  J.  C.  Baker,  Assrs.  to 

Wallace  and  Tiernan  Co.,  Inc.     U.S. P.  1,403,993, 
17.1.22.     Appl.,  24.4.20. 

A  solution  of  a  base  is  continuously  intermixed 
with  a  stream  of  water,  into  which  is  introduced 
chlorine  gas. — H.  R.  D. 

Hydrogen    sulphide;    Manufacture    of   from 

calcium  sulphate.     M.   Buchner.     G.P.   301,363, 
24.12.15. 

Calcium;  sulphide,  prepared  by  heating  calcium 
sulphate  with  carbon,  is  treated  with  ammonium 
carbonate,  calcium  carbonate  is  separated  from  the 
solution  by  filtration,  and  the  ammonium  sulphide 
solution  is  treated  with  carbon  dioxide,  liberating 
hydrogen  sulphide.  The  ammonium  carbonate 
solution  remaining  and  carbon  dioxide,  prepared  by 
calcining  the  calcium  carbonate,  are  available  for 
re-use. — L.  A.  C. 

Sulphur;  Method  for  the   preparation  of  oxygen 

compounds    of    from    natural    sulphates. 

Badische  Anilin-  und  Soda-Fabr.     G.P.  304,303, 
16.12.16.    Addn.  to  298,491  (J.,  1920,  63  a). 

In  the  process  described  in  the  chief  patent,  alkali 
sulphates  are  replaced  by  other  compounds,  or 
mixtures  of  compounds,  which  absorb  sulphur 
trioxide  at  moderate  temperatures  and  evolve  it 
again  at  higher  temperatures,  which  however  are 
lower  than  those  necessary  if  an  alkali  sulphate 
alone  is  employed.- — L.  A.  C. 

Oxides,    hydroxides,    and   basic   salts    of   tri-   and 

quadrivalent    elements;    Manufacture    of    . 

Ges.    fur   Verwertung   chem.    Produkte   m.b.H., 
Kommanditges.    G.P.  344,223,  9.1.20. 
Salts,  e.g.,  sulphates,  of  tin,  titanium,  aluminium, 
etc.,  are  heated  with  magnesium  chloride  solution. 

— L.  A.  C. 

Basic    sodium-calcium    sulphate;    Preparation    of 
.     M.  Enderli.     G.P.  345,049,  4.3.19. 

Sodium  sulphate,  calcium  sulphate,  and  a  base  are 
heated  with  water,  preferably  under  pressure,  to  a 
temperature  above  100°  C,  or  sodium  sulphate 
solution  is  heated  with  calcium  hydroxide  and  the 
alkali  content  of  the  solution  is  kept  low,  e.g.  by 
neutralisation  from  time  to  time.  The  resulting 
precipitate  of  NaaCa^SOJ^OH).,  may  be  used  as 
a  substitute  for  caustic  alkali,  e.g.,  in  the  treatment 
of  straw  and  wood  cellulose,  for  the  preparation  of 
bleaching  liquors  and  formates,  for  liming  hides,  in 
the  preparation  of  lacquers  and  varnishes  etc. 

—A.  R.  P. 

Sodium  nitrite  and  potassium  nitrate;  Preparation 

of  from  mixtures  of   sodium  nitrate   and 

nitrite.  O.  Nydegger.  G.P.  345,050,  18.7.20. 
The  sodium  nitrite-nitrate  mixture  is  treated  with 
sufficient  potassium  chloride  in  boiling  solution  to 
convert  both  salts  into  potassium  salts  and  the  pre- 
cipitated sodium  chloride  is  removed.  On  cooling, 
the  greater  part  of  the  potassium  nitrate  crystal- 
lises out.  The  mother  liquor  is  heated  and  a  quan- 
tity of  the  original  sodium  salt  mixture,  containing 
sufficient  sodium  nitrate  to  re-convert  the  potas- 
sium nitrite  to  sodium  nitrite,  is  stirred  in  and  the 
solution  allowed  to  cool,  whereby  a  considerable 
amount  of  sodium  nitrite  crystallises.  The  mother 
liquor  is  treated  with  potassium  chloride  to  convert 


Vol.  XIX,  Xo.  6.] 


Cl.  VIII.— GLASS  ;  CERAMICS. 


175  a 


the  remainder  of  the  nitrite  to  the  potassium  salt 
again.  As  a  preliminary  to  the  above  treatment  the 
original  salt  mixture  may  be  treated  with  just 
sufficient  potassium  chloride  to  convert  the  sodium 
nitrate  into  potassium  nitrate  and  part  of  the 
sodium  nitrite  removed  by  crystallisation. 

—A.  R.  P. 

Sodium  carbonate  and  fluxes  containing  it;  Pre- 
paration of  by  the  ammonia-soda  process. 

W.  Wachter.     G.P.  345,258,  9.11.19. 

The  ammoniacal  brine  before  saturation  with 
carbon  dioxide  is  treated  with  bleaching  powder. 
After  precipitation  and  removal  of  the  sodium 
bicarbonate,  the  mother  liquor  is  treated  with  solu- 
tions of  kieserite  or  waste  potash  solutions,  and  the 
precipitated  crystals  are  calcined,  yielding  a  product 
suitable  for  use  as  a  flux  and  purifier  for  the  glass, 
enamel,  and  ceramic  industries. — A.  R.  P. 

Nitrogen;   Process   for   production   of   pure   . 

C.    T.   Thorssell    and   H.    L.    R.   Lunden.     E.P. 
155,811,  16.11.20. 

In  the  production  of  pure  nitrogen  by  combining 
the  oxygen  of  air  with  finely  divided  spongy  iron, 
the  heat  generated  by  the  absorption  of  oxygen  by 
the  iron  i.s  used  to  provide  the  quantity  of  heat  con- 
sumed during  the  regeneration  of  the  iron  by  re- 
duction of  the  iron  oxide  formed,  so  that  the  opera- 
tion can  be  carried  out  without  any  addition  of 
heat.  This  object  is  attained  by  using  a  counter- 
current  heat  exchanger  in  which  the  gases  leaving 
the  reaction  chamber  preheat  the  whole  or  part  of 
the  entering  gases.  The  amount  of  heat  generated 
during  the  oxidation  stage  may  be  regulated  by 
using  a  starting  material  (such  as  flue  gases)  of 
which  the  oxygen  content  is  less  than  that  of  atmo- 
spheric air  or  by  mixing  inactive  material,  prefer- 
ably ordinary  iron,  with  the  spongy  iron. — H.  R.  D. 

Hydrogen ;  Method  of  making .     C.  S.  Palmer. 

O.S.P.  1,403,189,  10.1.22.     Appl.,  3.6.18. 

A  permeable  mass  of  metallic  iron  is  confined  in  a 
space  enclosed  by  a  casing  made  principally  of  a 
metal  of  the  "  iron  group  "  of  greater  atomic  weight 
than  iron.  The  casing  is  not  more  than  1J  in. 
thick,  has  good  heat  conductivity,  and  is  not  dele- 
teriously  affected  by  the  action  of  a  mixture  of 
producer  gas  and  air  heated  to  1100°  C.  for  pro- 
longed periods.  Sufficient  heat  to  promote  the 
hydrogen  reaction  is  supplied  to  the  charge  by  con- 
duction through  the  casing  from  a  strongly  heated 
oxidising  gaseous  medium  in  contact  with  the  outer 
surface  of  the  latter,  and  the  temperature  is  main- 
tained without  direct  introduction  of  an  air  blast. 
Sufficient  steam  is  supplied  to  the  charge  to  pro- 
duce a  strongly  heated  reducing  gaseous  medium 
in  contact  with  a  substantial  portion  of  the  inner 
surface  of  the  casing. — H.  R.  I). 

Liquefying  hydrogen;  Apparatus  for .     Lilien- 

feld.     G.P.  345,052,  1.12.16. 

The  gas  flows  slowly  through  a  large  number  of 
parallel  tubes.  Re-admission  of  separated  solid  im- 
purities to  the  liquefier  is  prevented  by  a  filter  dis- 
posed in  the  lower  part  thereof.  Solidified  air  is 
separated  from  liquid  hydrogen  in  a  separate  filter 
chamber  and  is  removed  by  thawing  without  the 
liquefier  itself  being  warmed.  The  separation  of  the 
air  is  effected  without  interfering  with  the  con- 
tinuous operation  of  the  apparatus. — J.  S.  G.  T. 

Sulphur     from     gas-purification     masses.       E.P. 
174,143.     See  IIa. 

Hydrogen  and  oxygen.     G.P.  345,058.     See  XI. 


VIII.- GLASS;    CERAMICS. 

Glass;  Suggested  method  for  determining  absolute 

viscositg    of    molten    .  I.    Masson,    L.    P. 

Gilbert,   and   H.   Buckley.  J.   Soc.  Glass  Tech., 
1922,  5,  337—341. 

The  method  is  an  application  of  Ladenburg's  cor- 
rection of  Stoke's  law  to  the  measured  rate  of  fall 
of  a  metal  sphere  through  a  liquid,  and  had  been 
previously  successfully  applied  to  thick  collodion 
solutions  (J.,  1920,  558a).  Other  conditions  being 
kept  constant,  the  formula  reduced  to  ij  =  (D — d)Tx 
constant,  where  ij  is  coefficient  of  viscosity,  D  the 
density  of  sphere,  d  that  of  liquid,  and  T  the  time 
of  fall  through  a  given  distance,  the  constant  being 
fixed  for  the  apparatus.  A  shadow  of  the  steel  ball 
sinking  through  the  liquid,  was  projected  by  X-rays 
on  a  sensitive  plate  to  cause  the  ball  to  plot  its  own 
rate  of  fall.  The  density  of  the  liquid  could  be 
found  by  employing  balls  of  different  densities. 
Trials  were  made  on  artificial  syrupy  mixtures  and 
close  agreement  found  between  values  obtained  in 
this  way  and  those  from  visual  measurement.  It 
was  considered  that  a  more  powerful  X-ray  tube, 
e.g.,  of  the  Coolidge  type,  would  be  necessary  to 
yield  rays  capable  of  penetrating  the  furnace  walls 
in  an  actual  determination  on  glass. — A.  C. 

Glass;    Measurement    of    small    variations  of    re- 
fractive   index    throughout    meltings    of  optical 

.     A.  J.  Dalladay  and  P.  Twyman.  J.  Soc. 

Glass  Tech.,  1922,  S,  325—330. 

The  instrument  used  was  a  modified  Michelson 
refractometer  described  by  Twyman  (Phil.  Mag., 
1918,  35,  49)  in  which  two  images  of  the  source  of 
light  were  visible  through  the  eyepiece.  Since  with 
monochromatic  light  all  the  bands  appeared  alike 
and  the  use  of  the  instrument  depended  on  the 
recognition  of  a  particular  band  wherever  it 
appeared,  white  light  was  used  as  a  source, 
enabling  the  white  central  band  to  be  distinguished. 
A  composite  block  was  prepared  from  samples  of 
different  portions  of  the  melt  by  grinding  and  sub- 
sequent heat  treatment  and  a  test-piece  cut  from 
this  compared  with  a  homogeneous  one  from  a  single 
portion.  Inhomogeneity  in  the  composite  block 
was  readily  detected  by  a  shifting  of  the  bands,  and 
by  superimposing  a  light  of  definite  wave  length  a 
on  the  white  light,  the  actual  variation  of  refrac- 
tive index  A,u  between  the  portions  was  obtained 
from  the  formula  n  =  2£.A/i/A,  t  being  the  thickness 
of  each  of  the  two  test-pieces  and  n  the  number  of 
band  shifts  produced.  A  variation  of  0000001  in  /i 
brought  about  a  shift  of  01  band  for  A  =  5461A.U. 

—A.  C. 

Glasses;    Some    properties    of    the    lime-magnesia 

and  their  applications.     II.     S.  English  and 

W.  E.  S.  Turner.     J.  Soc.  Glass  Tech.,  1922,  5, 
357—363. 

The  annealing  temperatures  of  the  glasses 
described  in  the  preceding  abstract  were  deter- 
mined ;  those  for  the  mixed  glasses  were  distinctly 
below  those  for  the  simple  lime-soda  or  lime-mag- 
nesia ones.  The  results  suggested  that  the  glasses 
with  mixed  bases  were  softer  than  those  containing 
either  base  alone.  The  coefficients  of  expansion 
showed  an  almost  continuous  reduction  from  the 
lime-soda  to  the  lime-magnesia  glasses. — A.  C. 

Glasses;  Some  properties  of  the  lime-magnesia 

and  their  applications.  I.  V.  Dimblebv,  F.  W. 
Hodkin,  and  W.  E.  S.  Turner.  J.  Soc.  Glass 
Tech.,  1922,  5,  352—357. 
Following  the  experiments  of  Hodkin  and  Turner 
(J.,  1920,  407  a)  which  showed  that  the  replacement 
of  small  proportions  of  sodium  oxide  by  magnesia 
increased  the  rate  of  melting,  tests  were  made  on 


176  a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[Mar.  15,  1922. 


a  lime-soda  glass  of  molecular  composition, 
6SiO2,08CaO,l'2Na2O.  The  lime  was  successively 
replaced  by  magnesia,  and  the  rate  of  melting, 
"  fining,"  working  and  general  properties  were 
found  to  improve  up  to  the  molecular  ratio 
CaO:MgO  =  5:3.  When  the  ratio  was  1:1  or  more, 
the  glass  was  less  easy  to  work  than  the  plain  lime- 
soda  glass.  The  lamp-working  properties  and 
resistance  to  devitrification  were  improved  through- 
out the  series  by  the  addition  of  magnesia. — A.  C. 

Glass;  Mathematical  note  on  the  annealing  of . 

E.  D.  Williamson.     J.  Wash.  Acad.  Sci.,  1922,  12, 

1—6. 
Br  a  more  rigorous  mathematical  treatment  of  the 
equations  derived  by  Adams  and  Williamson  (J., 
1921,  81  a)  it  is  shown  that  the  time  of  annealing 
may  be  shortened  by  about  15%.  A  slab  of  plate 
glass  2  cm.  thick  should  be  annealed  at  520°  C. 
(instead  of  511°  as  in  the  previous  paper)  for 
47'6  mins.,  and  the  total  time  taken  is  174  mins. 
instead  of  4|  hrs.  The  initial  rate  of  cooling  is 
0'33°  O.  per  min.  For  a  sheet  of  glass  of  the  same 
type,  25  ft.  iu  diam.  by  2  ft.  thick,  if  the  allowable 
6train  is  20,  the  annealing  temperature  will  be 
419°  O.  for  7"5  days,  the  initial  rate  of  cooling 
211°  C.  per  day,  and  the  total  time  27"2  days. 

— E.  H.  R. 

Quartzites;   Comparative   study  of  American  and 

German as  raw  materials  for  the  silica  brick 

industry.  K.  Endell.  J.  Amer.  Ceram.  Soc, 
1921,  4,  953—960. 
Little  difference  was  found  in  the  chemical  com- 
positions and  cone  fusion  points  of  the  raw 
materials.  The  American  quartzites  contained  no 
bonding  material,  but  the  grains  in  the  German 
erratic  block  quartzites  were  set  in  a  cement  base. 
On  burning  to  cone  15  the  German  quartzites  in- 
verted to  cristobalite  much  more  rapidly  than  did 
the  American  quartzites,  thus  enabling  silica  bricks 
of  low  density  to  be  produced  more  economically 
than  is  possible  with  the  American  quartzites. 

— H.  S.  H. 

Refractory  products;  Resistance  tests  on under 

load     at     different     temperatures.      V.     Bodin. 
Trans.  Ceram.  Soc,  1921—2,  21,  56—65. 

Cubes  of  2  cm.  side  were  cut  from  the  bricks,  placed 
in  a  gas-heated  furnace  between  two  cylinders  of 
refractory  material  very  resistant  to  crushing,  and 
forming  part  of  a  specially  adapted  Fremont  metal- 
testing  machine  which  recorded  the  pressure  at  the 
moment  of  crushing.  The  crushing  resistance  at 
various  temperatures  up  to  1500°  C  was  deter- 
mined. The  crushing  resistance  of  silico-aluminous, 
aluminous,  and  silica  products  decreases  gradually 
on  heating,  the  minimum  value  being  found  about 
800°  C.  On  further  heating  the  resistance  to  load 
increases  very  rapidly  being  a  maximum  about 
1000°  C.  For  certain  clays  this  maximum  crushing 
resistance  is  more  than  four  times  the  minimum 
value  about  800°  C.  A  further  rise  of  temperature 
produces  a  progressive  decrease  in  the  crushing 
strength,  which  approaches  zero  about  1600°  C.  All 
refractory  products  tend  to  become  plastic  or  semi- 
plastic  beyond  1200°  C,  no  abrupt  rupture  then 
taking  place.  Bauxite  fired  at  1500°  C.  has  a 
higher  crushing  resistance  at  all  temperatures  than 
when  fired  at  1300°  O.  Magnesia  and  chromite 
show  no  maximum  crushing  strength.— H.  S.  H. 

Dinas    bricks    of   constant    volume.      O.    Rebuffat. 

Trans.  Ceram.  Soc.,  1921—2,  21,  66—68. 
An  Italian  quartzite  which  inverted  easily  into  the 
forms  of  silica  of  lower  density  contained  0'31%  of 
phosphoric  anhydride.  When  the  phosphoric 
anhydride  was  removed  with  nitric  acid  the  purified 
quartzite  lost  the  power  of  inverting  rapidly  into 
tridymite.       The  addition  of  0"45%   of  phosphoric 


anhydride  to  a  primary  quartzite  which  ordinarily 
was  transformed  very  slowly  into  tridymite  or 
cristobalite  produced  almost  complete  transforma- 
tion into  tridymite  on  heating  for  8  hrs.  at 
1300°— 1350°  C— H.  S.  H. 

Clays;  Dehydration  of  dried  .     J.  W.  Mellor, 

N.  Sinclair,  and  P.  S.  Devereux.     Trans.  Ceram. 
Soc,  1921—2,  21,  104—106. 

Finely  powdered  samples  of  clay  were  dried  over 
25%  sulphuric  acid  and  placed  in  desiccators  con- 
taining sulphuric  acid  of  different  concentrations 
up  to  90%.  The  desiccators  were  kept  in  a  bath  at 
25°  C,  and  the  samples  weighed  every  week.  All 
showed  a  loss  of  weight  which  was  less  for  china 
clay  than  for  the  other  clays  examined.  No  drastic 
change  occurred  in  the  clay  molecules,  as  the  water 
was  gradually  restored  on  exposure  to  a  moist 
atmosphere.  The  re-absorption  of  water  is  so  very 
slow  that  a  long  time  fs  required  to  restore  the 
original  plasticity  and  working  qualities,  and  cer- 
tain troublesome  clays  can  therefore  be  mollified  by 
desiccation. — H.  S.  H. 

Porosity  \_of  ceramic  products'].  Water  as  an  absorp- 
tion liquid.  E.  W.  Washburn  and  F.  F.  Footitt. 
J.  Amer.  Ceram.  Soc,  1921,  4,  961—982. 

The  ordinary  methods  of  immersing  the  test-piece 
in  water  without  boiling,  whether  under  ordinal  or 
greatly  reduced  pressure,  are  unreliable.  Perfectly 
dry  fired  clay  will  remove  water  from  concentrated 
sulphuric  acid  and  from  fused  calcium  chloride,  and 
if  the  test-piece  after  drying  is  allowed  to  cool  while 
exposed  to  the  atmosphere  the  errors  in  porosity 
value  due  to  absorbed  water  vapour  may  be  2%. 
Boiling  in  water  at  atmospheric  pressure  failed  to 
saturate  the  test-piece  in  1  hr.  (and  in  one  case 
in  5  hrs.).  On  continued  boiling  the  saturated 
weight  increased  linearly  with  the  time,  although 
appreciable  quantities  of  dissolved  substances  were 
removed  from  a  test-piece  by  the  hot  water.  This 
result  was  found  to  be  due  to  the  gradual  and  con- 
tinuous re-hydration  of  the  clay  by  the  hot  water. 
It  is  suggested  that  after  drying  and  cooling  the 
test-piece  should  be  kept  in  a  closed  vessel  over  95  % 
sulphuric  acid  for  several  hours  before  its  dry 
weight  is  taken.  A  vacuum  method  is  described  in 
which  water  may  be  employed  as  the  saturation 
liquid  under  conditions  where  the  above  sources  of 
error  are  reduced  to  a  minimum,  but  the  method 
is  not  satisfactory  as  a  primary  standard.  A  soak- 
ing period  is  necessary,  and  methods  are  given  for 
calculating  and  for  measuring  the  minimum 
soaking  period  required  for  a  given  test  piece  and  a 
liquid  of  known  penetrative  power. — H.  S.  H. 

Porosity  \_of  ceramic  products'].  Use  of  petroleum 
products  as  absorption  liquid,.  E.  W.  Washburn 
and  E.  N.  Bunting.  J.  Amer.  Ceram.  Soc,  1921, 
4,  983—989. 

Slaking,  chemical  reaction,  and  solvent  action  are 
avoided  if  petroleum  products  are  used  instead  of 
water  in  porosity  determinations,  while  surface 
absorption  is  also  considerably  reduced.  If  sub- 
stances having  high  fluidity  when  hot  and  compara- 
tively low  fluidity  when  cold  are  used,  the  surface 
of  the  saturated  test-piece  can  be  brought  to  a 
definite  condition  with  all  the  surface  pores  full. 
Paraffin  may  be  used,  the  test-pieces  and  paraffin 
being  heated  under  reduced  pressure  to  about 
200°  C.  After  cooling,  the  test-pieces  are  cut  out 
of  the  block  of  paraffin,  cleaned,  and  weighed.  Vase- 
lino  is  more  suitable  than  paraffin  since  it  does  not 
undergo  a  change  of  phase  in  cooling.  The 
porosities  obtained  on  using  vaseline  are  more  than 
2%  higher  than  those  obtained  with  water,  but  a 
longer  soaking  time  is  required,  as  the  penetrative 
power  of  the  vaseline  is  less  than  that  of  water. 

— H.  S.  H. 


Vol.  XLI.,  No.  5.] 


Cl.  VIII.— GLASS;  CERAMICS. 


177  a 


Earthenware   bodies  and  glazes.     H.  H.  Sortwell. 

J.  Amer.  Ceram.  Soc,  1921,  4,  990—998. 
Six  bodies  were  prepared  with  variable  clay  and 
flint  content,  and  after  biscuiting  at  cone  8  were 
glazed  with  21  earthenware  glazes  and  glost  fired  at 
cones  4  and  6.  The  results  indicated  that  the 
variability  of  the  silica  content  of  clays  would  not 
bo  great  enough  to  produce  crazing  in  a  well- 
balanced  glaze.  The  method  of  compounding  a 
glaze  had  no  effect  on  crazing,  but  it  affected  the 
gloss  and  fusibility,  an  increase  in  the  percentage 
of  material  fritted  increasing  the  gloss  and 
fusibility.  With  the  same  percentage  of  frit  the 
best  gloss  and  highest  fusibility  were  obtained  when 
the  flint  and  part  of  the  clay  were  included  in  the 
frit.  The  substitution  of  soda  for  lime,  pound  for 
pound,  as  well  as  the  direct  addition  of  soda,  in- 
creased crazing,  improved  gloss,  and  increased  the 
fusibility.  Direct  addition  of  felspar  increased 
crazing  slightly  and  diminished  gloss,  but  did  not 
noticeably  affect  the  fusibility.  Substitution  of 
1J  pts.  of  felspar  for  1  pt.  of  flint  to  maintain  the 
same  fusibility  increased  crazing  and  diminished 
gloss.  Direct  addition  of  lime  improved  gloss,  in- 
creased fusibility,  and  slightly  reduced  crazing. 

— H.  S.  H. 

Selenium  red;  Nature  of  the  colouring  properties 

of  .     A.  A.  Granger.       Trans.  Ceram.  Soc, 

1921—22,  21,  89—90. 
A  mixture  of  sulphur  and  selenium  on  cooling  after 
gentle  heating  has  a  ruby  colour,  and  is  a  solid 
solution  of  selenium  in  sulphur.  Sulphur  and 
cadmium  sulphide  do  not  give  a  new  coloration. 
Cadmium  sulphide  and  selenium  become  red  on  pro- 
longed heating,  the  selenium  reacting  with  the  free 
sulphur  contained  in  the  cadmium  sulphide.  If  the 
cadmium  sulphide  is  gently  roasted  to  eliminate  the 
free  sulphur  the  reaction  with  the  selenium  is  very 
slow.  It  is  concluded  that  the  red  coloration  is  pro- 
duced by  the  solution  of  selenium  in  sulphur,  the 
cadmium  sulphide  acting  as  a  solvent. — H.  S.  H. 

Pipettes.     Stott.     See  XXIII. 
Patents. 
Glass;  Process    and  apparatus  for  moulding  and 

annealing  .       W.  G.  Clark.       E.P.  163,267, 

11.5.21.  Conv.,  11.5.20. 
The  glass  is  fined  and  cast  while  confined  in  the 
same  container,  and  is  heated  by  the  passage  of  an 
electric  current  through  the  mass  as  a  conductor. 
After  the  glass  has  been  kept  at  a  high  temperature 
sufficiently  long  the  heating  current  is  very 
gradually  reduced,  thus  permitting  the  glass  to  cool 
so  slowly  that  no  stresses  or  strains  can  be  detected. 
Means  are  provided  for  rotating  the  glass  and  its 
mould  to  and  fro  through  90°,  thus  preventing 
segregation  of  the  constituents  of  the  glass  while  in 
a  fluid  or  semi-fluid  state. — H.  S.  H.  . 

Glass  furnaces.      T.  C.  Moorshead.      E.P.  173,794, 

8.7.20.  Conv.,  3.3.17. 
A  glass  furnace  comprises  a  melting  tank  and  a 
circular  refining  chamber,  having  a  circular  annular 
delivering  trough  surrounding  the  latter,  but  with  a 
small  portion  exposed  outside  the  furnace  so  as  to 
allow  glass  to  be  taken  up  by  a  glass-gathering 
machine  situated  at  this  point.  The  delivery  trough 
rotates  in  the  refining  chamber  so  that  only  a  small 
quantity  of  glass  is  exposed  to  the  exterior  of  the 
furnace,  and  after  becoming  chilled  is  returned  to 
the  interior  of  the  furnace  during  the  movement  of 
the  trough,  and  the  glass  in  the  trough  is  thus  main- 
tained at  the  proper  consistency. — H.  S.  H. 

Glass,   and   method   of   making    the    same.     E.    W. 

Enequist.      U.S.P.    1,403,752,    17.1.22.      Appl., 

24.11.20. 
Glass  is  made  from  material  containing  basic  soda 
slag.— J.  S.  G.  T. 


Glass-covered  rolls.  K.  Matsuo.  E.P.  173,322, 
29.9.20. 

The  outer  surface  of  a  steel  pipe  is  smoothed  and 
coated  with  a  layer  of  milk  glass  having  approxi- 
mately the  same  coefficient  of  expansion  as  the  steel, 
the  composition  of  the  glass  being  silica  (10  pts.), 
lead  oxide  (5  pts.),  borax  (4  pts.),  calcium  hydroxide 
(1  pt.),  cryolite  (08  pt.),  sodium  carbonate  (1"5  pts.), 
potassium  nitrate  (10  pts.),  and  fluorspar  (28  pts.). 
The  layer  of  milk  glass  may  be  etched  or  engraved 
with  any  desired  patterns. — H.  S.  H. 

Silica,   alumina,    and   other  refractory   materials; 

Fusing  and  casting  and  obtaining  castings 

therefrom.    M.  de  Boiboul.    E.P.  165,051, 14.9.20. 
Conv.,  15.6.20. 

The  furnace  consists  of  a  crucible  of  composition 
ZrO,  60,  Yt2Oa  15,  ThOa  5,  ErO  20%,  open  at  the 
top  and  perforated  at  the  bottom  by  a  pour  hole 
which  can  be  closed  by  a  slide  of  material  similar  to 
that  of  the  crucible.  The  crucible  iB  surrounded  by 
an  insulating  wall  of  magnesia  and  zirconia  powder 
and  is  heated  electrically,  first  by  external  carbon 
rods  and  when  at  500°  C.  by  a  high-voltage  current 
through  the  crucible  itself,  which  then  becomes 
sufficiently  conducting.  Temperatures  up  to 
2700°  C.  are  claimed,  enabling  sand,  quartz, 
alumina,  or  corundum  to  be  fused  and  cast  in 
any  ordinary  mould  provided  the  latter  be  lined 
with  the  refractory  composition  described  above. 
Castings  thus  obtained  are  claimed  to  show  very  low 
thermal  expansion,  are  free  from  strain  and  very 
hard,  and  can  be  obtained  identical  in  nature  with 
precious  stones. — A.  C. 

Drying  china  clay;  Method  of  and  means  for . 

R.  P.  B.  Gaudin  and  G.  S.  Clarke.     E.P.  174,112, 
31.8.20. 

A  drying  pan  for  china  clay  is  constructed  with  the 
furnace  near  the  middle  of  the  length,  the  products 
of  combustion  being  divided  and  passing  each  way 
through  lower  flues  to  the  ends  of  the  furnace  and 
returning  to  the  chimney  at  the  middle  through 
upper  flues  immediately  under  the  clay  being  dried. 
By-passes  with  controlling  dampers  are  provided,  at 
various  distances,  between  the  lower  and  upper  flues 
to  enable  uniform  distribution  of  heat  to  be 
obtained  and  a  further  by-pass  direct  from  the 
furnace  to  the  chimney  to  enable  the  fire  to  be  lit 
rapidly.  Passages  for  preheating  air,  with  the 
double  object  of  economy  and  reducing  expansion 
stresses,  are  provided  in  the  walls  outside  the  flues, 
the  preheated  air  being  admitted  to  the  combustion 
gases  in  the  lower  flues. — B.  M.  V. 

Tunnel  kiln.  G.  W.  Booth.  U.S.P.  1,403,734, 
17.1.22.     Appl.,  3.9.20. 

A  tunnel  kiln  has  an  air  space  formed  in  its  walls 
extending  longitudinally  through  the  preheating, 
firing,  and  cooling  zones  of  the  kiln,  a  furnace  com- 
municating with  the  interior  of  the  firing  zone  of 
the  tunnel  adjacent  to  the  cooling  zone,  a  stack 
adjacent  to  the  inlet  end  of  the  preheating  zone,  a 
flue  communicating  with  the  interior  of  the  firing 
zone  of  the  tunnel  and  extending  along  the  pre- 
heating zone  of  the  furnace  to  the  stack,  and  a  flue 
affording  communication  between  the  stack  and  the 
air  space  adjacent  to  the  inlet  end  of  the  tunnel. 

— H.  S.  H. 

Glass;  Method  and  apparatus  for  feeding  molten 

.     Howard  Automatic  Glass  Feeder  Co.,  and 

G.  E.  Howard.   E.P.  174,097  and  174,311,  13.7.20. 

Befractory  or  abrasive  products;  Charging  appa- 
ratus for  intermittently  and  continuously  operat- 
ing furnaces  for  the  production  of  .     A.  V.- 

Gowen-Lecesne.      E.P.  148,497,  10.7.20.      Conv., 
3.4.19. 


178  a 


Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;    METALLURGY,  &c.     [Mar.  15,  1922. 


IX.— BUILDING  MATEfilALS. 

Xvlolith;  Improvements  in  the  preparation  of . 

B.  Haas.  Chem.-Zeit.,  1922,  46,  88—89. 
In  the  preparation  of  xylolith  many  faults  are 
attributable  to  uncertainty  as  to  the  strength  of  the 
magnesium  chloride  liquors  employed.  The  liquors 
should  be  thoroughly  stirred  up  in  the  container 
before  the  required  quantity  is  drawn  off,  and  the 
strength  is  best  arrived  at  by  determining  the  sp. 
gr.  with  a  balance.  With  regard  to  the  question 
whether  it  is  better  to  use  the  magnesium  chloride 
liquors  from  potassium  chloride  manufacture  or 
solid  magnesium  chloride,  the  best  results,  apart 
from  considerations  of  transport,  are  obtained  with 
the  liquors,  but  if  about  2"6%  of  magnesium 
sulphate  is  added  to  the  solution  prepared  from  the 
dry  chloride  equally  good  results  are  obtainable 
with  that.  Experiments  in  this  direction  showed 
further  that  the  whole  of  the  magnesium  chloride 
can  be  replaced  by  an  equivalent,  or  preferably 
by  up  to  15%  more  than  an  equivalent  quantity 
of  kieserite  residues.  In  all  these  preparations 
quite  good  resulte  were  obtained,  particularly  in 
respect  of  increased  toughness  and  firmness,  and  a 
pleasing  shade  of  colour,  when  a  portion  of  the 
magnesium  chloride  or  kieserite  residue  was  re- 
placed by  solutions  of  metallic  salts,  particularly 
iron  salts. — G.  F.  M. 


Patents. 

Moler,  infusorial  earth,  and  the  like;  Manufacture 

of  a  material  consisting  of  and  suitable  for 

the  manufacture  of  light  concrete.     L.  G.  Dalhoff 
and  W.  K.  Lunn.     E.P.  173,965,  22.12.20. 

Moler,  black  moler,  or  a  mixture  of  clay  (80%)  and 
kieselguhr  (20%),  is  mixed  with  ground  granite, 
gneiss,  basalt  or  other  rocks  containing  felspar,  and 
water  added.  After  drying  the  mass  is  baked  at 
about  1200°  C,  a  glass-like  porous  body,  of  sp. 
gr.  less  than  1  and  suitable  for  use  in  preparing 
cooling  wall. — H.  S.  H. 

Slag;    Device    for   dry    granulation    of   .       F. 

Riedel,  Assr.  to  The  Chemical  Foundation,  Inc. 
U.S.P.  1,404,142,  17.1.22.     Appl.,  10.8.15. 

A  device  for  dry  granulation  of  slag  comprises  a 
cylindrical  cooling  wall,  an  atomising  nozzle 
mounted  so  as  to  permit  movement  in  all  directions, 
and  means  for  passing  compressed  ejecting  medium 
through  the  nozzle,  so  that  the  molten  slag  may  be 
thrown  in  a  radial  direction  at  any  portion  of  the 
cooling  wall. — H.  S.  H. 

Plastic  composition  [from  slag~].  H.  H.  Pierce, 
Assr.  to  The  Scoria  Products  Co.  U.S.P. 
1,404,162,  17.1.22.  Appl.,  28.5.20. 
A  light  artificial  sand  is  produced  from  molten  iron 
slag  by  subjecting  the  molten  slag  to  fluid  treat- 
ment to  solidify  and  disintegrate  it  into  a  mass  of 
heavy  particles  containing  iron  and  light  silicious 
particles  having  substantially  no  metallic  content, 
and  then  separating  the  light  from  the  heavy 
particles.  The  silicious  particles  are  subsequently 
reduced  mechanically  to  granular  form. — H.  S.  H. 

Limestone ;  Kiln  for  burning  .     Tinfos  Jern- 

verkA./S.    G.P.  343,771,  4.9.20.    Conv.,  26.6.19. 

The  limestone  is  burnt  in  a  stream  of  gas  heated  in 
an  arc  furnace.  Between  the  latter  and  the  kiln 
a  chamber  for  equalising  the  gas  pressure  is  pro- 
vided, which  operates  to  prevent  any  sudden  change 
of  pressure  in  the  kiln  extinguishing  the  arc.  The 
kiln  is  started  by  means  of  any  ordinary  fuel;  the 
arc  apparatus  is  connected  up  when  the  kiln  is  hot, 
so  that  a  current  of  air  is  drawn  through  it  by  con- 


vection. The  quantity  of  air  may  be  increased  by 
means  of  a  fan  placed  at  the  upper  mouth  of  the 
kiln.— A.  R.  P. 

Lime  kilns  and  the  like;  Discharge  apparatus  for 
.    P.  Dumont.     E.P.  173,982,  7.2.21. 


X.— METALS;   METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Iron  and  steel;  Manganese  economy  in  the  produc- 
tion of  by  the  basic  converter  and  open- 
hearth  process.  K.  H.  Eichel.  Montan.  Runds., 
1921,  13,  441—444.  Chem.  Zentr.,  1922,  93,  II., 
258—259. 

In  the  Thomas  process,  by  previously  melting  the 
manganese  alloy  (ferromanganese  in  an  electric 
furnace  and  speigeleisen  in  a  reverberatory),  and 
adding  it  to  the  steel  in  the  liquid  form. 25 — 33%  less 
is  required  than  by  adding  it  in  the  solid  form.  The 
former  method  permits  of  the  manganese  addition 
being  made  in  the  ladle  and,  after  allowing  the  slag 
to  rise,  a  second  quantity  may  be  added  to  complete 
the  deoxidation.  The  most  suitable  temperature  of 
the  steel  is  between  1400°  and  1500°  C,  as  then  the 
manganese  diffuses  into  the  bath  with  great 
rapidity,  exerts  its  maximum  deoxidising  power, 
and  forms  a  homogeneous  alloy,  the  composition  of 
which  may  be  controlled  with  greater  certainty. 
Part  of  the  manganese  may  be  replaced  by  silicon 
but  in  no  case  should  this  exceed  10%  nor  fall  below 
5%  of  the  total  manganese  added.  With  more  than 
10%  the  metal  bath  becomes  viscous  and  the  ingots 
rise  in  the  mould  due  to  the  effect  of  inclusions  of 
silica.  Carbon,  either  in  the  form  of  anthracite  or 
as  calcium  carbide,  may  be  used  instead  of  silicon. 
In  the  open-hearth  process  the  manganese  loss 
increases  with  the  time  taken  for  the  removal  of  the 
phosphorus.  The  two  methods  advocated  for  reduc- 
ing the  manganese  consumption,  the  rhodochrosite 
and  fluorspar  methods,  are  briefly  described.  The 
former  is  suitable  only  for  the  production  of  hard 
steel ;  in  the  latter  process  the  charge  should  have 
only  a  low  phosphorus  content  and  should  already 
contain  sufficient  carbon  and  manganese.  With 
large  quantities  of  fluorspar  there  is  danger  of 
rapid  corrosion  of  the  furnace  walls.  Reference  is 
made  to  other  methods  of  economising  the  man- 
ganese consumption,  such  as  using  liquid  man- 
ganese alloys,  replacing  part  of  the  latter  with 
silicon,  and  preventing  oxidation  of  the  alloy  before 
adding  it  to  the  charge. — A.  R.  P. 

Open-hearth     slag     containing     titanium    dioxide: 

Fusibility  of .    G.  F.  Comstock.    Chem.  and 

Met.  Eng.,  1922,  26,  165—166. 

Small  quantities  of  titanium  dioxide  in  basic  open- 
hearth  slags  have  no  effect  on  the  melting  point, 
whereas  larger  quantities,  up  to  about  27%,  lower 
the  melting  point  somewhat.  Slags  having  a  high 
melting  point,  e.g.  1400° — 1500°  C,  are  rendered 
more  fusible  by  the  addition  of  as  little  as  033% 
Ti02,  such  as  would  be  obtained  by  the  addition  of 
ferrotitanium  to  the  steel  bath. — A.  R.  P. 

Sulphur  in  iron  and  steel;  Determination  of . 

A.  Marinot.     Ann.  Chim.  Analyt.,  1922,  4,  5—6. 

Five  grams  of  the  metal  is  treated  with  30  c.c.  of 
50%  sulphuric  acid  and  60  c.c.  of  hydrochloric  acid 
in  a  conical  reaction  flask  of  375  c.c.  capacity  sur- 
mounted by  a  vertical  condenser  into  the  top  of 
which  is  ground  a  small  pear-shaped  gas  washer 
from  which  a  delivery  tube  leads  into  a  flask  con- 
taining 200  c.c.  of  a  25%  solution  of  zinc  acetate 
acidified  with  acetic  acid.  The  gas  washer  consists 
of  a  vertical  narrow  tube  surmounting,  and  in 
direct  connexion  with,  the  condenser,  and  extend- 


Vol.  XIX,  So.  50    Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.        179  a 


ing  upwards  inside  the  bulb  of  the  washer  almost  to 
touch  the  apex  of  a  conical  muff  which  surrounds 
it,  and  which  is  sealed  to  the  tube  at  the  base, 
where,  however,  it  is  perforated  with  5  or  6  small 
holes  which  allow  of  the  escape  of  the  gas  into  the 
outer  envelope  of  the  pear  and  thence  through  the 
delivery  tube  into  the  zinc  acetate  flask.  All  the 
sulphur  present  is  evolved  as  hydrogen  sulphide, 
and  a  slow  stream  of  carbon  dioxide  is  passed 
through  the  whole  apparatus  to  displace  the  gas 
and  prevent  the  formation  of  colloidal  sulphur  or 
organic  sulphur  compounds.  The  sulphur  is  finally 
estimated  by  oxidising  the  zinc  sulphide  formed  in 
the  flask  with  standard  iodine  solution,  and  titrat- 
ing the  excess  of  iodine. — G.  F.  M. 

Iron-  Bate  of  solution  of  in  dilute  sulphuric 

acid  both,   when  stationary  and  under  rotation. 


J.   A.    N.    Friend   and   J.   H. 
Chem.  Soc,  1922,  121,  41—44. 


Dennett.     Trans. 


The  rate  of  solution  of  iron  in  dilute  sulphuric  acid 
is  directly  proportional  to  the  velocity  of  rotation 
of  the  mixture.  At  4000  revolutions  per  hour  there 
is  no  falling  off  in  the  rate,  and  the  phenomenon  is 
independent  of  the  concentration  of  the  acid. 
Hence  the  solution  of  iron  in  acid  is  not  analogous 
to  the  corrosion  of  iron  in  aerated  water  (c/.  J., 
1921,  545  a).  In  stationary  mixtures  dilute  solu- 
tions of  colloids — gum  etc. — greatly  retard  the  solu- 
tion of  the  metal,  while  rise  of  temperature  in- 
creases it.  The  solution  of  pure  iron  under  these 
conditions  increases  up  to  an  acid  concentration  of 
2iV,  falls  sharply  for  3IV  acid,  and  increases  again 
up  to  5N.  Cast  iron  shows  a  maximum  rate  of  solu- 
tion at  about  2iV  acid  concentration. — P.  V.  M. 

Gold;   Assail   of   carat   .      R.    Paulin.      Chem.- 

Zeit.,  1922,  46,  116—117. 

A  detailed  account  is  given  of  the  precautions 
necessary  to  get  accurate  results  in  the  assay  of 
carat  golds  by  cupellation.  The  exact  amounts  of 
silver  and  lead  necessary  are  given  for  all  the  com- 
mercial grades  and  a  silver-gold  ratio  in  the  button 
of  2'5:l  is  recommended  as  giving  the  best  results 
in  parting. — A.  R.  P. 

Aluminium  and  duralumin;  Brittleness  developed 

in by  stress  and  corrosion.     H.  S.  Rawdon, 

A.  I.  Krynitsky,  and  J.  F.  T.  Berliner.     Chem. 
and  Met.  Eng.,  1922,  26,  154—158. 

When  commercial  aluminium  is  subjected  to  attack 
by  corrosive  liquids,  failure  occurs  owing  to  the 
microstructural  constituents  which  are  present  on 
account  of  the  impurities  in  the  metal.  In  the  cast 
metal  these  constituents  are  found  along  the  inter- 
crystalline  boundaries,  but,  after  annealing  after 
cold  work,  they  no  longer  coincide  with  the  crystal 
boundaries,  so  that,  in  the  latter  case,  the  corrosion 
is  not  truly  intercrystalline  in  character,  although 
it  may  often  appear  to  be.  Duralumin,  on  the 
other  hand,  whether  annealed  or  not,  is  subject  to 
a  true  intercrystalline  deterioration  which  is  very 
rapidly  increased  by  the  action  of  a  corroding 
medium,  especially  if  the  latter  is  of  an  acidic 
nature.  The  distribution  of  the  impurities  or 
microstructural  constituents  appears  to  have  no 
effect  in  initiating  the  corrosion ;  on  the  contrary, 
the  physical  state  of  the  alloy  and  the  character  of 
the  surface  of  the  metal  seem  to  be  the  most  im- 
portant factors  in  determining  the  stability  of  the 
alloy  under  corrosive  conditions. — A.  R.  P. 

Patents. 

Metal  [iron-nickel  alloy"]  for  use  in  making  melting 
pots  and  other  articles  to  be  subjected  to  heat. 
L.  Hall.    E.P.  173,811,  11.8.20. 

An  alloy  of  nickel  and  iron  containing  preferably 
9%  but  not  more  than  30%  Ni,  is  made  by  melting 


the  two  metals  in  clay  or  plumbago  pots  or  in  an 
open-hearth,  electric,  or  other  furnace  in  which  the 
metals  do  not  come  in  contact  with  solid  fuel.  The 
resulting  alloy  is  of  a  close-grained  structure  and 
very  resistant  to  heat;  it  is  suitable  for  the  manu- 
facture of  melting  pots,  of  metal  boxes  for  anneal- 
ing or  case-hardening,  or  of  other  articles  that  are 
subjected  to  the  action  of  gases  or  burner  flames. 

—A.  R.  P. 

Induction  \_smelting~]  furnace.  W.  C.  Heraeus 
G.m.b.H.,  W.  Rohn,  and  Stahlwerke  R.  Linden- 
berg  A.-G.  E.P.  163,276,  1.10.20.  Conv.,  19.5.20. 
An  induction  furnace  for  metallurgical  purposes 
comprises  an  annular  crucible  completely  sur- 
rounded by  a  primary  coil  formed  of  tubes  cooled  by 
the  passage  of  liquids  or  gases  which  can  be  suitably 
cooled  outside  the  furnace.  The  space  between  the 
crucible  and  the  primary  winding  is  filled  in  with 
refractory  material,  and  the  primary  is  surrounded 
on  all  sides  by  the  transformer  core  constituted  of 
ring-shaped  sheet  metal  plates  arranged  in  fan-like 
manner.  The  whole  is  enclosed  in  a  substantially 
gas-tight  chamber  in  which  any  desired  degree  of 
pressure  or  vacuum  may  be  established. 

—J.  S.  G.  T. 

Furnaces;  Crucible   tripe  .     The  Selas  Turner 

Co.,  Ltd.,  and  E.  Turner.  E.P.  173,603,  4.10.20. 
The  furnace  is  arranged  for  the  heating  gases  to 
flow  downwards  around  the  crucible,  a  flue  being 
provided  at  the  bottom  of  the  crucible  pit  and  a 
ring  burner  at  the  top.  The  crucible  pit  is  provided 
with  a  cover  with  a  central  hole  for  access  to  the 
crucible,  and  if  an  external  adjustable  and  remov- 
able burner  is  used,  with  other  holes  over  the 
annular  heating  space  and  registering  with  the 
burner  jets.  Alternatively,  the  burner  ring  may  he 
placed  in  a  recess  in  the  wall  of  the  pit. — B.  M.  V. 

Furnace;    Combination    double-muffle    preheating 

and  heat-treating  .     J.  A.  Gaskill.     U.S. P. 

1,403,313,  10.1.22.    Appl.,  23.5.19. 

Air  is  admitted  tangentially  to  the  base  of  an 
annular  jacket  surrounding  the  combustion  space 
and  the  preheated  air  passes  from  the  upper  part 
of  the  jacket  to  burners  at  the  lower  part  of  the  com- 
bustion chamber.  Each  burner  consists  of  a  fuel  jet, 
a  mixing  chamber,  and  a  nozzle  directed  tangenti- 
ally into  the  combustion  chamber.  The  lower  muffle 
in  the  combustion  chamber  extends  through  the 
walls  of  both  the  chamber  and  its  jacket  and  is  pro- 
vided with  a  door.  The  upper  preheating  muffle  is 
above  the  combustion  chamber. — B.  M.  V. 

Foundry  sand;  Process  for  treating  or  renovating 

.      A.    Poulson    and    C.    J.    Rourke.      E.P. 

173,687,  11.12.20. 

The  cohesive  properties  of  spent  foundry  sand  are 
restored  by  mixing  1  ton  of  the  sand  with  about 
1  cwt.  of  a  mixture  of  aluminium  sulphate  (37i — 
45%),  china  clay  (37£ — 45%),  and  ground  pitch 
(10 — 25%),  together  with  water  to  damp  the  mass. 

— B.  M.  V. 

Flotation;    Bengent    for    concentration    of    ore    by 

and  method  of  making  and  jirocess  of  using 

the  same.     A.  E.  Alexander.     From  Luckenbach 
Processes,  Inc.    E.P.  173,830,  13.9.20. 

Pitch,  obtained  by  the  dry  distillation  of  rosin  or 
wood  tar,  is  dissolved  in  aqueous  caustic  alkali 
either  with  or  without  a  salt  of  an  alkali  metal,  such 
as  carbonate,  phosphate,  or  silicate,  or  in  aqueous 
ammonia  alone,  or  together  with  an  alkali  or  alkali 
salt  or  both.  Any  of  the  above  mixtures  may  be 
treated  with  a  small  quantity  of  an  oil  or  with  coal 
tar  or  a  coal  tar  derivative.  The  flotation  agent  is 
introduced    into    the    ore    pulp    and    the    latter    is 


180  a 


Cl.  XL— ELECTRO-CHEMISTRY. 


[Mar.  15,  1922. 


aerated,  whereby  a  thick  tenacious  froth  carrying 
the  mineral  values  rises  to  the  surface  and  is 
separated  as  usual. — A.  R.  P. 

Molybdenum  or  alloys  thereof;  Process  for  obtain- 
ing    .     F.   M.   Becket   and   J.    A.    Holladay, 

Assrs.     to     Electro     Metallurgical     Co.       U.S. P. 
1,403,477,  17.1.22.    Appl.,  29.6.13. 

Material  containing  molybdenum  is  leached  with 
an  alkaline  sodium  compound  sufficient  in  quantity 
to  remove  all  the  molybdenum  but  to  leave  im- 
purities. The  molybdenum  is  precipitated  as 
calcium  molybdate  and  smelted. — A.  G.  P. 

Silver-bearing  ores  or  residues;  Method  of  treating 

.      P.   R.   Middleton,   Assr.   to   J.   C.   Lalor. 

U.S. P.  1,403,516,  17.1.22.    Appl.,  27.5.20. 

Ores  or  residues  containing  silver  are  mixed  with 
a  heavy  metal  chloride  and  water  and  the  damp 
mass  is  dried  and  heated  to  chlorinate  the  silver. 
Silver  chloride  is  extracted  from  the  cold  mass  in 
the  usual  way. — A.  R.  P. 

Metallic  alloy  [for  electrical  resistance  elements']. 
A.  J.  Mandell,  Assr.  to  Electrical  Alloy  Co. 
U.S. P.  1,403,558,  17.1.22.    Appl.,  29.1.20. 

Ax  alloy  for  electrical  resistance  elements  consists 
of  nickel,  copper,  iron,  and  manganese,  the  iron 
content  being  greater  than  2%,  and  the  manganese 
content  being  between  2%  and  25%  bv  weight. 

— H.  R.  D. 

Ores;    Porcess    of    reducing    .      A.    Stansfield. 

U.S. P.  1,403,576,  17.1.22.    Appl.,  27.4.20. 

The  ore  is  mixed  with  carbonaceous  matter  and  the 
mixture  is  heated  below  800°  C.  in  a  muffle  furnace, 
whereby  the  ore  is  partly  reduced.  The  charge  is 
then  transferred  to  a  furnace  of  the  reverberatory 
type  and  heated  to  a  higher  temperature  in  a 
neutral  or  reducing  atmosphere.  The  gases  from 
the  latter  furnace  supply  the  heat  to  the  flame  tube 
of  the  former  furnace  and  then  pass  through  a 
vessel  in  which  the  air  supplied  to  the  reverberatory 
is  preheated. — A.  R.  P. 

Magnetic  [ore]  separator.  G.  Ullrich,  Assr.  to  The 
Chemical  Foundation,  Inc.  U.S.P.  1,404,074, 
17.1.22.     Appl.,  8.10.14. 

A  magnetic  separator  is  provided  with  a  magnetic 
body  and  an  opposing  pole  forming  a  field  gap  with 
the  body.     The  upper  portion  of  a  suitably  guided    ! 
conveyor  belt  traverses  the  field  gap  while  the  lower    ] 
part  passes  through  a  passage  in  the  magnetic  body    | 
of  less  width  than  the  body. — A.  R.  P. 

Zinc  dust;  Process  for  the  preparation  of with 

a  high  content  of  metallic  zinc.  Rheinisch- 
Nassauische  Bergwerks  und  Hiitten  A.-G.,  and 
(a)  A.  Spieker,  (b)  A.  Spieker  and  M.  Wrobel. 
G.P.  (a)  344,425,  23.11.20,  and  (b)  344,426, 
5.12.20. 

(a)  Zinc  dust  is  treated  with  acid  such  as  hydro- 
chloric, nitric,  or  sulphuric  acid,  whereby  the  zinc 
oxide  present  is  completely  dissolved,  without,  it  is 
claimed,  any  metallic  zinc  being  attacked.  (b) 
Metallic  zinc  or  products,  other  than  zinc  dust,  con- 
taining metallic  zinc  are  added  to  the  charge  before 
distillation.  The  resulting  dust  contains  over  90% 
of  metallic  zinc. — A.  R.  P. 

Copper-zinc  alloys;  Process  for  refining  .     H. 

Leiser.    G.P.  344,645,  9.3.19. 

The  alloys  are  melted  with  pure  metallic  sodium  to 
remove  impurities  such  as  antimony  or  tin  intro- 
duced by  solders  etc.  By  this  method,  brittle  brass 
containing  the  above  impurities  may  be  rendered 
tough  and  ductile. — A.  R.  P. 


Steel  ingots;  Casting  of .     R.  C.  Coates.     E.P. 

147,565,  8.7.20.    Conv.,  20.S.17. 

See  U.S.P.  1,327,937  of  1920;  J.,  1920,  233  a. 

Alloys.    F.  Milliken.    E.P.  163,050,  9.8.21.    Conv.. 
l<.s.20. 

See  U.S.P.  1,393,388  of  1921;  J.,  1921,  854  a. 

Plating  electrolyte  and  process  of  making  same.    Q 
Marino.  U.S.P.  1,404,156,  17.1.22.  Appl.,  15.11.21. 

See  E.P.  173.268  of  1920;  J.,  1922,  145  a. 

Tin,   feme,   and  other  like  metal-coated  plates   or 

sheets;  [Machinery  for]  manufacture  of T 

James.    E.P.  173,277,  28.8.20. 

Annealing  of  steel  or  other  metal  wire  and  strip. 
A.  Imbery.    E.P.  174,200,  22.10.20. 

Granulation  of  slag.    U.S.P.  1,404,142.    See  IX. 

Plastic  composition  from  slag.     U.S.P.   1,404,162. 
.S'ee  LX. 


XI.-ELECTBO-CHEMISTRY. 

Electrical  precipitation;  Becent  progress  in  . 

E.   Anderson.     Chem.   and  Met.   Eng.,   1922,   26, 
131—153. 

In  order  to  obtain  a  high  efficiency  in  electrical  pre- 
cipitation of  particles  from  vapours  and  fumes  it 
is  necessary  to  obtain  a  conducting  deposit  on  the 
plate,  otherwise  much  power  is  lost  by  "  back-ion- 
is.ition."  The  most  satisfactory  method  of  obtain- 
ing this  result  is  to  add  water  either  in  the  form  of 
spray  or  as  steam  to  the  gases  and  to  keep  the  col- 
lecting electrode  cool  enough  to  allow  it  to  become 
coated  with  a  film  of  water.  In  treating  a  fume 
containing  a  potassium  salt  on  these  lines  sufficient 
water  was  added  to  ensure  the  precipitation  of  the 
dust  particles  as  a  solution  which  flowed  off  the 
electrode,  thereby  keeping  it  always  clean.  From 
the  results  of  these  experiments  the  following 
formula  was  deduced  for  designing  precipitation 
installations  on  a  really  economical  basis  taking 
into  account  the  first  cost  and  the  value  of  the  fume 
precipitated:  x  =  a.  log  (bjc  log  d)/log  d,  where  a: 
is  the  optimum  size  of  the  precipitator,  a  the  gas 
volume  to  be  treated,  b  a  function  of  the  unit  cost, 
rate  of  interest  and  depreciation  and  the  cost  of 
working,  c  the  value  of  the  solids,  and  d  a  function 
of  the  specific  precipitation  rate  for  the  fume  con- 
sidered.—A.  R.  P. 

Insulating  oils;  Determination  of  moisture  in . 

C.  J.  Rodman.     J.  Ind.   Eng.  Chem.,  1921,   13, 
1149—1150. 

Ax  accuracy  of  closer  than  0'002%  is  required. 
Water  is  distilled  from  the  oil  at  less  than  1  mm. 
pressure  and  at  140°  C.  during  the  rapid  agitation 
of  the  sample.  The  water  together  with  any  oil  dis- 
tillate is  collected  in  a  tube  cooled  in  liquid  air, 
re-distilled  from  this  and  collected  and  weighed  in 
a  phosphorus  pentoxide  weighing  bottle  of  special 
design.  Oil  distillates  are  not  absorbed  by  phos- 
phorus pentoxide.  Thick-walled  rubber  connexions 
are  used  and  the  joints  made  good  with  rubber 
cement.  Results  accurate  to  ±0'001%  can  be 
obtained.— H.  C.  R, 

Concentration  of  nitric  acid.    Creighton.    See  VII. 

Saccharin.    Fichter  and  Lowe.    See  XX. 

Patents. 
Electric  furnaces  [;  Method  of  preventing  burning 

out  of  ].     L.  W.  Wild  and  E.  P.  Barfield. 

E.P.  173,812,  11.8.20. 
A  bridge-piece  of  fusible  metal  arranged  within  the 


Vol.  XII.,  Xo.  5.] 


Cl.  XII.— FATS  ;   OILS  ;  WAXES. 


181 A 


furnace  and  connected  in  series  with  the  heating 
wire  employed,  fuses  when  a  predetermined  temper- 
ature is  attained  in  the  furnace,  thus  automatically 
cutting  off  the  heating  current.  (Reference  is 
directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of  the 
Patents  and  Designs  Acts,  1907  and  1919,  to  E.P. 
23,889  of  1905  and  26,929  of  1906;  J.,  1907,  534.) 

—J.  S.  G.  T. 

Insulatimj    material;    Method    for    forming    . 

J.  A.  van  der  Nolle.     U.S. P.  1,403,822,  17.1.22. 

Appl.,  7.7.20. 
Fibrous  material  is  ground  and  sifted,  and  the 
powder  added  to  a  bath  of  dilute  sulphuric  acid, 
through  which  an  electric  current  is  passed  between 
electrodes.  Resins,  albuminous  compounds,  etc., 
are  thereby  decomposed,  and  the  resulting  material 
is  collected  by  means  of  water. — J.  S.  G.  T. 

Ozone  generator.  J.  Fitzpatrick.  U.S.P.  1,403,759, 

17.1.22.  Appl.,  27.2.20. 
Of  a  number  of  spaced,  vertical,  hollow  electrically- 
conducting  units,  alternate  ones  are  connected  with 
the  positive  and  the  others  with  the  negative 
terminal  of  a  supply  of  electric  current.  A  cooling 
agent  is  circulated  through  all  the  units.  Conduits, 
communicating  with  alternate  units  connected  with 
the  atmosphere,  are  adapted  to  collect  ozone 
generated  between  the  positive  and  negative  units. 

—J.  S.  G.  T. 

Electroplating  carbon  articles.  V.  C.  Hamister, 
Assr.  to  National  Carbon  Co.  U.S.P.  1,403,903, 
17.1.22.    Appl.,  31.1.20. 

To  deposit  a  metal  coating  on  the  walk  of  a  hole  or 
recess  in  a  carbon  brush  or  similar  article,  a  rapid 
flow  of  appropriate  electrolyte  is  maintained  within 
the  hole  or  recess,  and  electric  current  passed  be- 
tween an  anode  having  an  active  surface  within  the 
hole  or  recess,  the  walls  of  the  latter  being  em- 
ployed as  cathode. — J.  S.  G.  T. 

Hydrogen  and  oxygen;  Process  and  apparatus  for 

the  electrolytic  preparation  of  .     E.   Baur. 

G.P.  345,048,  30.5.20. 

Fused  alkali  hydroxide  containing  water  is  electro- 
lysed at  a  high  current  density  in  a  vessel  externally 
heated  and  provided  with  iron  electrodes  insulated 
and  surrounded  by  bell-shaped  gas-collectors.  That 
in  which  the  hydrogen  is  collected,  is  provided  with 
means  for  introducing  further  quantities  of  steam 
into  the  fused  mass. — A.  R.  P. 


P.  Gouin  and  E. 
Conv.,  10.9.19. 


Storage  batteries;  Alkaline 

Roesel.     E.P.  150,961,  9.9.20 

See  G.P.  335,370  of  1920;  J.,  1921,  517  a. 

See  also  pages  (a)  163,  Preventing  corrosion  of 
boilers  etc.  (E.P.  173,418).  167,  Products  from 
lignite  (U.S.P.  1,403,633).  174,  Caustic  alkalis 
(E.P.  171,751).  178,  Burning  limestone  (G.P. 
343,771).  179,  Induction  furnace  (E.P.  163,276). 
180,  Electrical  resistance  alloy  (U.S.P.  1,403,558). 

XII.-FATS;  OILS;  WAXES. 

Fatty  acids;  Determination  of  by  volatilisa- 
tion in,  steam.  W.  Arnold.  Z.  Unters.  Nahr. 
Genussm.,  1921,  42,  345—372. 
From  a  large  number  of  determinations  of  the 
Reichert-Meissl  and  Polenske  values  of  pure  fatty 
acids,  using  the  Polenske  apparatus  and  weights  of 
fatty  acid  varying  from  001  g.  to  0"5  g.,  it  appears 
that  butyric  and  caproic  acids  only  give  a  Reichert- 
Meissl  value ;  caprylic  and  capric  acids  give  both 
Reichert-Meissl  and  Polenske  values,  the  Reichert- 
Meissl  value  of  capric  acid  being  distinct  but  very 
small.  Acids  from  lauric  upwards  only  give  Polen- 
ske values.    Of  the  insoluble  acids  capric  and  lauric 


acids  are  easily  volatile,  palmitic  and  stearic  acids 
volatile  with  difficulty,  rnyristic  acid  standing  mid- 
way between  the  two  groups.  In  the  case  of 
palmitic  and  stearic  acids  the  Polenske  value  is 
independent  of  the  quantity  of  acid  present.  With 
rnyristic  acid  this  is  only  the  case  if  more  than 
0"06  g.  is  present.  Lauric  acid  gives  a  maximum 
Polenske  value  with  03  g.  present.  In  the  case  of 
the  easily  volatile  acids  there  is  a  rough  propor- 
tionality between  the  Reichert-Meissl  and  Polenske 
values  and  the  weight  of  acid  present.  The  later 
fractions  of  the  higher  acids  are  only  very  slowly 
yolatile  in  steam,  but  even  fractions  of  1  mg.  are 
easily  visible  in  the  condensed  liquid.  The  fact  that 
the  Polenske  value  of  the  higher  fatty  acids  is 
independent  of  the  weight  present  is  useful  in  the 
analysis  of  mixtures  of  fatty  acids.  The  work  of 
R.  K.  Dons  on  the  estimation  of  capric,  lauric,  and 
rnyristic  acids  in  butter  by  distillation  of  the  fatty 
acids  in  steam  (Z.  Unters.  Nahr.  Genussm.,  1908, 
16,  719)  is  described  and  discussed.  The  method  is 
interesting  from  a  theoretical  point  of  view,  but 
cannot  be  considered  established  as  a  practical 
method  of  analysing  fatty  acid  mixtures. — H.  C.  R. 

Hydrolysis  of  fats;  Mechanism  of  catalytic  action 

in  the .     E.  Briner  and  A.  Trampler.     Helv. 

Chim.  Acta,  1922,  5,  18—20. 

The  product  obtained  by  the  sulphonation  of  phenyl- 
acetic  acid  is  markedly  inferior  to  hydrochloric 
or  sulphuric  acid  as  a  catalyst  in  the  hydrolysis 
of  ethyl  acetate  in  homogeneous  solution.  The 
presence  of  a  common  group  in  catalyst  and  sub- 
strate does  not  thus  appear  to  confer  any  supple- 
mentary chemical  activity  on  the  former.  In 
Twitchell's  and  similar  reagents,  the  activity  of  the 
sulphonic  group  is  diminished  by  the  presence  of 
the  aliphatic  residue,  but  this  effect  is  more  than 
compensated  by  the  greater  mutual  solubility  of 
catalyst  and  fat,  caused  by  the  two  similar  groups. 

— H.  W. 

Emulsions;    Stability    and   inversion    of   oil-water 

.     L.  W.  Parsons  and  O.  G.  Wilson,  jun.     J. 

Ind.  Eng.  Chem.,  1921,  13,  1116—1123. 

"  Nujol,"  a  highly  purified  mineral  oil,  was  used 
in  most  of  the  work.     Aqueous  solutions  of  sodium 
oleate  were  used  as  emulsifying  agents  for  produc- 
ing oil-in-water  emulsions,  and  soaps  of  polyvalent 
metals  soluble  in  oil,  such  as  magnesium  oleate,  for 
producing  water-in-oil   emulsions.     The    emulsions 
were  prepared  by  vigorously  stirring  together  equal 
volumes   of   oil   and   water  for  2   min.    and  finally 
passing  the  mixture  five  times  through  a  Brigg's 
homogeniser.     Brigg's  drop  method  was  found  most 
satisfactory  for  determining  which  was  the  continu- 
ous phase.      It   consists   of  touching   an   excess   of 
either  pure  phase  with  a  drop  of  emulsion.     If  the 
emulsion  mixes  readily,  the  continuous  phase  is  the 
same  as  the  pure  liquid  used.     No  true  inversion 
point    was    noticed    when    the    volume    ratio    was 
changed.     A  maximum   ratio  of  volume  of   oil  to 
total  volume  of  emulsion  was  found,  above  which 
it    was    impossible    to   obtain   homogeneous    oil-in- 
water  emulsions.     This  ratio  was  084  for  Nujol  and 
0'83  and  0'87  for  two  commercial  lubricants  studied. 
When   varying   mixtures   of   opposing   emulsifying 
agents  (sodium  and  magnesium  oleates)  were  used, 
in  all  cases  the  resulting  emulsions  settled  out  in 
three  layers — oil,   water,   and  varying  amounts  of 
emulsion  between  them.     The  water-in-oil  emulsion 
is  much  coarser-grained  and  less  stable  than  the 
oil-in-water,    and   undergoes  gradual   "  breaking  " 
with  separation  of  oil.     The  presence  of  both  types 
of   emulsion    was    independent    of    the    method    of 
preparation.     The  effect  of  inversion  by  metathesis 
by  means  of  the  addition  of  magnesium  salts,  ferrous 
and  aluminium  sulphates  and  ferric  chloride  showed 

b2 


182a 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[Mar.  13,  1922. 


that  salts  of  divalent  or  trivalent  metals  could  com- 
pletely invert  oil-in-water  emulsions.  Very  little 
effect  is  due  to  variation  of  the  anion.  The  ratio 
of  the  equivalent  concentrations  of  the  inverting 
and  emulsifying  agents  is  the  determining  factor 
and  not  the  absolute  concentration  of  the  former. 
Sodium  oleate  produced  more  stable  emulsions  than 
the  soaps  of  polyvalent  metals.  The  salting  out  of 
oil-in-water  emulsions  by  means  of  sodium  chloride, 
sodium  iodide,  and  sodium  sulphate  showed  that 
concentrations  of  022  M,  018  M  and  0;24  M  res- 
pectively were  required  to  break  emulsions  made 
with  equal  volumes  of  the  two  phases.  No  invert- 
ing action  occurred  in  this  case  and  the  salting  out 
effect  was  a  function  of  the  concentration  of  salt 
added  and  not  of  the  ratio  of  the  concentrations 
of  salt  and  emulsifying  agent.  The  effect  of  the 
following  stabilising  agents  was  studied  :  — sodium 
benzenesulphonate,  colloidal  colouring  matter  from 
crude  mineral  oil,  the  sodium  salt  of  a  sulphonated 
oil,  the  alcoholic  extract  from  an  acid-treated  oil, 
amylene.  Amylene  was  the  only  substance  which 
showed  an  important  stabilising  effect.  Emulsions 
were  prepared  with  eight  crude  oils  and  commercial 
lubricants  and  sodium  oleate  solution.  Concentra- 
tions of  sodium  chloride  varying  from  0'24  to  0'45 
M  were  required  to  break  these  emulsions.  In  two 
cases  water-in-oil  emulsions  were  obtained. 

— H.  C.  R. 

Coconut  oil  in  butter.     Muttelet.     See  XIXa. 


Patents. 

Fats  and  oils;  Bleaching  of with  fuller's  earth. 

H.  Bollmann.  G.P.  344,633,  24.9.19. 
The  fatty  matter  is  treated  with  a  mixture  of  oil 
and  fuller's  earth  in  counter-current  and  under 
agitation  in  such  a  way  that  the  oil  to  be  bleached 
moves  faster  than  the  mixture  of  fuller's  earth  and 
oil.  The  oil  passes  from  one  vessel  to  another 
through  filters  and  the  fuller's  earth  mixture  is 
pumped  in  the  opposite  direction  at  a  slower  speed. 
Means  are  provided  for  mixing  together  the  oil  and 
fuller's  earth  in  the  individual  vessels  and  for  heat- 
ing them.— H.  C.  R. 

Saponaceous  soda;  Process  for  producing .    A. 

Welter.     E.P.   149.623.   26.7.20.     Conv.,  24.7.19. 

Addn.  to  136,841  (J.,  1921,  215  a). 
Fatty  acids  or  their  mixtures  with  water  or  with 
soap  solutions  are  spraved  on  to  the  moving  soda. 

— H.  C.  R. 


Aldehyde-fatty  acids;  Process  for  separating  

from  the  by-products  accompanying  their  produc- 
tion and  the  manufacture  of  soaps  from  these 
acids.  C.  P.  Byrnes.  E.P.  174,099,  14.7.20. 
The  aldehyde-fatty  acids  obtained  by  the  partial 
oxidation  of  hydrocarbon  vapours  according  to  E.P. 
138,113  (J.,  1921,  636  a)  can  be  separated  by  con- 
verting them  into  insoluble  metallic  salts,  particu- 
larly calcium  salts.  The  acids  may  be  recovered 
from  these  salts  by  adding  excess  of  acid,  or  by 
boiling  them  with  an  alkali  salt  they  may  be  con- 
verted into  soluble  soaps. — H.  C.  R. 

Soap  powder;  Process  and  apparatus  for  the  pro- 
duction of' .     A.   Imhausen.     E.P.   173,791, 

6.7.20. 

See   G.P.    310,122-3,   310,62-5-6,    and   339,417;   J., 

1921,  519  a,  594  a,  741a. 

Fuller's  earth.    G.P.  344,499.    Seel. 


XIII.-PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Drying  oils;  Mechanism  of  the  oxidation  of as 

elucidated  by  a  study  of  the  true  oxygen  absorp- 
tion. III.  Action  of  driers.  S.  Coffey.  Trans. 
Chem.  Soc,  1922,  121,  17—23. 

The  presence  of  manganese,  cobalt,  and  lead  driers 
modifies  the  course  of  the  oxidation  of  linseed  oil ; 
they  cannot  therefore  function  strictly  as  catalysts. 
A  lower  oxygen  absorption  results  in  each  case,  the 
absorption  in  presence  of  the  various  driers  decreas- 
ing in  the  following  order :  cobalt  oxide,  lead  ace- 
tate, manganese  borate,  litharge,  red  lead,  and 
while  the  rate  of  main  oxidation  is  unaltered  the 
period  of  induction  is  much  shortened.  From 
analogous  results  of  Morrell  (J.,  1918,  130  a)  on  the 
oxidation  of  cerium  salts  of  linolenic  acid,  it  is 
probable  that,  with  lead  oxide  as  drier,  the  oxygen 
absorption  for  linolic  acid  amounts  to  one  mole,  and 
for  a-linolenic  acid  to  six  atoms.  The  amount  of 
carbon  dioxide  evolved  during  oxidation  is  approxi- 
mately unchanged  by  the  presence  of  a  drier.  In 
presence  of  driers  (PbO)  no  trace  of  hydrogen  per- 
oxide can  be  detected  during  oxidation. — P.  V.  M. 

Japanese  lac;  Main   constituent   of   .     VIII. 

Position  of  the  double  bonds  in  the  side-chain  of 
urushiol  and  demonstration  that  urushiol  is  not 
homogeneous.  R.  Majima.  Ber.,  1922,  55,  172 — 
191. 

Hydrourushiol  is  present  to  the  extent  of  up  to 
10%  in  urushiol,  the  main  constituent  of  Japanese 
lac.  In  addition,  the  following  compounds  are 
probably  present : 

C6H3(OH)2.[CH,]7.CH:CH.[CH2]5.CHs, 
which  on  oxidation  gives  rise  to  heptanal  and  the 
acid,    C£H3(OH).,.[CH2]7.CO.>H   or    its   homologues, 
and 

C6H3(OH)2.[CH2]7.CH:CH.[CH2]4.CH:CH2, 
which  is  oxidised  to  formic  acid  and  the  same 
aromatic  substances  as  the  preceding  compound. 
Analyses  of  the  bromide  and  ozonide  of  the 
dimethyl  ether  and  the  volume  of  hydrogen  absorbed 
during  reduction  indicate,  however,  that  it  con- 
tains two  double  bonds  in  the  molecule.  Urushiol 
is  a  mixture  of  compounds  which  differ  from  one 
another  in  the  number  and  position  of  the  double 
bonds  present  in  the  long  normal  carbon  chain. 
In  this  respect  it  exhibits  a  close  similarity  to  the 
drying  oils.  It  is  difficult  or  almost  impossible  by 
the  available  methods  to  separate  urushiol  quanti- 
tatively into  its  components.  Since,  however,  all 
the  latter  are  converted  by  reduction  into  the  same 
hydrourushiol,  it  appears  desirable  to  retain  the 
name  '  urushiol  '  for  the  original  mixture  which 
is  regarded  as  having  a  mean  molecular  formula, 
C2lH3202  or  CcH3(OH)2.ClsH27.  The  isolation  of 
veratrol-o-carboxylic  acid  from  the  products  of  the 
oxidation  of  urushiol  dimethyl  ether  by  potassium 
permanganate  affords  valuable  confirmation  of  the 
constitution  of  urushiol  as  deduced  by  other 
methods.     (Cf.  J.C.S.,  Mar.)— H.  W. 

Japanese    lac;    Main    constituent    of    .      IX. 

Chemical  investigation  of  the  different,  naturally- 
occurring  species  of  lac  which  are  closely  allied 
to  Japanese  lac.     R.   Majima.     Ber.,   1922,   55, 
191—214. 
A   Burmese  lac  (from  the  stems   of   Melanorrhcea 
usitata,    Wall)    to    which    the    name     '  Thitsi  '    is 
applied  is  shown  to  contain  thitsiol,  a  homologue 
of  isohydrourushiol  with  an  unsaturated  side-chain. 
As  judged  by  the  amount  of  hydrothitsiol  formed 
by  reduction,  this  substance  cannot  comprise  more 
than   one-third   of   the  material   investigated.      In 
this  respect  the  Burmese  variety  differs  markedly 


Vol.  XLI.,  Xo.  5.J 


Cl.  XIV.— INDIA-RUBBER  ;    GUTTA-PERCHA. 


1S3  a 


from  the  Japanese  and  Indo-Chinese  products,  since 
in  the  latter  cases  the  crude  material  consists  of 
substances  which  can  be  reduced  to  hydrourushiol 
or  hydrolaccol  to  the  extent  of  at  least  90%.  Indo- 
Chinese  lac,  probably  tapped  from  Bhus  succe- 
danea,  L.  fils,  contains  mainly  laccol  which  is 
reduced  readily  to  hydrolaccol,  C.3H1IP02,  m.p.  63° — 
64°  C.  ;  the  latter  is  isomeric  with  hydrothitsiol  and 
is  a  higher  homologue  of  hydrourushiol.  Formosa 
lac  from  Semeocarpus  vernicifera  and  a  product 
from  Bhus  ambigua,  Lav.,  or  Shits  orientalis,  Sohn 
contain  laccol  as  main  constituent,  whereas  mainly 
urushiol  is  present  in  two  specimens  of  Chinese  lac 
(probably  from  BIius  vernicifera  or  a  closely  allied 
species).  A  Siamese  lac  was  found  to  be  impure 
and  to  consist  in  all  probability  of  a  mixture  of 
Indo-Chinese  and  Burmese  lac.  The  toxic  action  of 
Japanese  lac  is  due  to  urushiol.  Laccol  and  thit- 
siol  are  approximately  equally  poisonous  but  con- 
siderably less  so  than  urushiol.     (Cf.  J.C.S.,  Mar.) 

— H.  AV. 

Colophenic  acids.    O.  Aschan.    Ber.,  1922,  55,  1—3. 

The  author  is  unable  to  share  Fahrion's  view  (J., 
1921,  780  a)  that  colophenic  acid  is  identical  with 
the  oxyabietic  acid  obtained  by  the  autoxidation  of 
colophony  and  points  out  that  it  is  not  possible  for 
Fahrion's  substance  to  be  homogeneous.  Colophenic 
acid  is  an  excellent  material  for  the  preparation  of 
varnishes,  its  solutions  in  ethyl  or  methyl  alcohol 
giving  a  film  which  becomes  very  hard  on  exposure 
to  the  air.— H.  W. 

Selenium  red.    Granger.    See  VIII. 

Patents. 

Bed  oxide  of  iron  [pigment];  Manufacture  of . 

D.  Tyrer.     E.P.  174,306,  8.6.21. 

Galvaniser's  waste  liquor  or  other  liquor  contain- 
ing ferrous  chloride  is  digested  with  scrap-iron  till 
no  more  dissolves.  1000  1.  of  this  solution  contain- 
ing about  30%  FeCl2  is  evaporated  to  dryness  with 
1000  kg.  of  ground  witherite  or  other  form  of 
barium  carbonate.  The  dry  residue  is  heated  to 
300°  C.  in  an  oxidising  atmosphere  until  it  changes 
to  a  uniform  red  colour.  After  cooling  the  mass  is 
treated  with  2000  1.  of  water,  stirred  vigorously, 
and  the  whole  allowed  to  settle  for  a  short  time. 
The  suspension  of  red  oxide  is  decanted  from  the 
heavier  unaltered  barium  carbonate  and  the  pig- 
ment is  filtered  off,  washed,  and  dried.  Barium 
chloride  is  recovered  from  the'  filtrate  and  the  un- 
altered witherite  is  used  again.  A  quantity  of 
limonite  may  be  added  to  the  liquor  at  the  same 
time  as  the  witherite  in  order  to  increase  the  yield 
of  red  oxide.  The  witherite  should  all  pass  though 
a  30-mesh  screen  and  be  retained  on  one  of  150- 
mesh. — A.  R.  P. 

Colour-lakes  insoluble  in  oils;  Process  for  making 
.    C.  S.  Fuchs.    G.P.  343,715,  16.9.19. 

Aqueous  solutions  of  alkali  salts  of  lignic  or  humic 
acids  and  dyestuffs  are  precipitated  with  acids  or 
metallic  salts.  Black  colour-lakes  are  chiefly  ob- 
tained which  are  not  obtainable  by  known  methods. 

— H.  C.  R. 

[Besmous]  condensation  products  of  formaldehyde 
and  carbamide  or  carbamide  derivatives;  Manu- 
facture of .    H.  John.    E.P.  151,016,  14.9.20. 

Conv.,  16.5.18. 

See  U.S. P.  1,355,834  of  1920;  J.,  1920,  826  a. 
Azo  dyes  from  resins.    E.P.  173,254.    See  IV. 


XIV.-INDIA-RUBBEH ;  GUTTA-PERCHA. 

[Rubber;}  Undercured  smoked  sheet  .     R    O 

Bishop.  Agric.  Bull.  F.M.S.,  1921,  9,  79—85. 
On  determining  the  total  percentage  loss  when 
smoked  sheet  is  dried  in  a  desiccator,  and  the  in- 
crease in  weight  when  the  dried  rubber  is  exposed 
to  the  air  for  24  hrs.,  it  is  found  that  the  latter 
(termed  "surface  moisture")  amounts  to  roughly 
3  of  the  total  moisture,  which  averages  about  0"5%. 
Opacity  is  not  necessarily  characteristic  of 
"undercured"  smoked  sheet,  in  the  sense  of 
smoked  sheet  with  an  unusually  high  content  of 
internal  moisture.  Although  moist  rubbers  appear 
to  be  more  liable  to  mould  development,  this  is 
probably  because  the  substances  which  promote 
mould  growth  tend  to  increase  the  moisture  con- 
tent. The  presence  of  moisture  in  smoked  sheet 
rubber  causes  no  apparent  effect  on  its  subsequent 
vulcanising  properties. — D.  F.  T. 

Bubber  and  rubber  stock;  Solubility  of  gases  in 

and  effect  of  solubility  on  penetrability.  C.  S. 
Venable  and  T.  Fuwa.  J.  Ind.  Eng.  Cheni.,  1922. 
14,  139—170. 

A  gas  absorbed  by  rubber  is  generally  held  in  true 
solution  and  not  by  adsorption.  In  the  case  ot 
carbon  dioxide  the  amount  of  gas  held  in  true  solu- 
tion is  directly  proportional  to  the  pressure  and 
independent  of  the  degree  of  vulcanisation  and  of 
the  presence  of  compounding  ingredients.  With 
rise  of  temperature  the  solubility  decreases  rapidly. 
The  relative  rate  of  penetration  of  a  gas  through 
rubber  is  related  to  its  density  and  solubility,  but 
other  factors  such  as  the  size  and  structure  of  the 
gas  molecule  and  the  viscosity  of  the  rubber  also 
exert  a  marked  influence. — D.  F.  T. 

Bubber;  Energy  absorbing  capacity  of  vulcanised 

.    H.  P.  Gurney  and  C.  H.  Tavener.    J.  Ind. 

Eng.  Chem.,  1922,   14,  134—139. 

Fine  Para  rubber  possesses  no  distinct  advantage 
over  plantation  rubber  in  hysteresis  endurance.  Ex- 
cessive vulcanisation  produces  lower  hysteresis  than 
more  moderate  vulcanisation  whereas  under-vulcan- 
isation  produces  greater  hysteresis  on  the  first  cycle 
but  more  rapid  decay  on  following  cycles.  For 
hysteresis  and  shock-absorbing  purposes,  vulcanised 
rubber  without  additional  ingredients,  although  it 
possesses  no  advantage  on  the  first  cycle,  exhibits 
greater  capacity  to  absorb  energy  prior  to  rupture, 
superior  hysteresis  endurance,  and  greater  rate  of 
extension  relative  to  rate  of  energy  absorption. 

— D.  F.  T. 


Bubber  and  rubber  goods;   Determination  of  the 

acetone-soluble  substance  in .    J.  Lagerqvist. 

Svensk  Kem.  Tidskr.,  1921,  33,  198—205.    Chem. 
Zentr.,  1922,  93,  II.,  269. 

Independent  estimations  of  the  acetone-soluble 
material  in  rubber  frequently  show  considerable 
discrepancies.  Lower  results  are  obtained  if  the 
extract  is  dried  under  the  ordinary  pressure  and  at 
90° — 105°  C.  than  under  reduced  pressure  at  50°  C. 
In  the  former  case  it  is  almost  impossible  to  obtain 
concordant  figures. — D.  F.  T. 

Patent. 

Accelerator    of    vulcanisation;    Production    of    an 
.    W.  Esch.     G.P.  344,061,  12.11.19. 

Calcined  magnesia  is  mixed  with  aqueous  caustic 
alkali ;  the  mixture  can  be  converted  into  a  fine 
powder  in  which  the  caustic  alkali  intensifies  the 
effectiveness  of  the  magnesia. — D.  F.  T. 


184  a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[Mar.  15,  1922. 


XV.-LEATHER;  BONE;  HORN;  GLUE. 

Catechu-tannins.    I.  Paulhnia  tannin.    M.  Nieren- 
stein.    Trans.  Chem.  Soc,  1922,  121,  23—28. 

The  tannin  from  Paullinia  cupana  seeds  is  shown 
to  be  a  crystalline  normal  glucoside  consisting  of 
1  mol.  of  dextrose  and  2  mols.  of  gambier-catechin- 
carboxylic  acid  forming  a  depside.  This  gambier- 
catechin  is  not  identical,  but  probably  isomeric, 
with  a  previously  described  synthetic  gambier- 
ratechin  (Annalcn,  1913,  396,  194).  The  formula, 
015H80(OH)5-CO-0(qCGH1105)Cl5HB0(OH)3-COOH, 
is  assigned  to  paullinia  tannin.  By  hydrolysis  of  its 
methylo-derivative  it  is  shown  that  the  catechol 
nucleus  in  1  mol.  of  /3-gambier-catechincarboxylic 
acid  is  combined  directly  with  the  other  mol.  of  /3- 
gambier-catechincarboxylic  acid  and  also  with 
dextrose.  Paullinia  tannin,  m.p.  (dihydrate)  199° — 
201°  C,  (anhydrous)  259°— 261°  C.  with  decomposi- 
tion, gives  all  the  colour  reactions  of  the  catechu- 
tannins  and  forms  crystalline  alkali  salts.  Optical 
and  other  properties  are  described. — P.  V.  M. 

Tannins;    Crystalline   synthetic    .     P.    Karrer 

and  H.   R.   Salomon.*   Helv.   Chim.   Acta,   1922, 
5,  108—123. 

A  solution  of  lsevoglucosan  in  chloroform  is  con- 
verted by  triacetylgalloyl  chloride  and  quinoline 
into  tri-(triacetylgalloyl)-la3voglucosan, 


tannins  which  are  freely  soluble  in  alcohol  and 
water  are  all  mixtures,  the  components  of  which  in 
the  pure  condition  are  characterised  by  sparing 
solubility.  The  typical  tannin  reactions,  such  as 
gelatinisation  with  alcoholic  arsenic  acid  solution, 
are  not  exhibited  by  monogalloyllfevoglucosan, 
which  in  this  respect  behaves  similarly  to  Fischer's 
monogalloylglucose;  the  presence  of  at  least  two 
galloyl  residues  in  the  sugar  molecule  appears 
essential  to  the  development  of  tannin  character- 
istics.—H.  W. 

Acer  ginnala;  Occurrence  of  a  crystalline  tannin  in 

the  leaves  of .    A.  G.  Perkin  and  Y.  Uyeda. 

Trans.  Chem.  Soc,  1922,  121,  66—76. 

The  leaves  of  Acer  ginnala  yield  about  60%  of  a 
crystalline  tannin,  acertannin,  C^H^O,,,  and  40% 
of  an  amorphous  mixture  consisting  of  ellagic  acid, 
quercetin,  an  amorphous  tannin,  mainly  galloyl- 
aceritols,  together  with  small  amounts  of  a  flavonol 
glucoside,  and  a  substance  probably  a  phlobo 
(catechol)  tannin.  Acertannin  crystallises  in  two 
forms  with  2  and  4  mols.  H20  respectively,  and 
forms  a  crystalline  oeta-aeetyl  compound.  It  is 
hydrolysed  by  5%  sulphuric  acid  to  2  mols.  of  gallic 
acid  and  a  dextro-rotatory  sugar  aceritol,  C6Hl:Os, 
m.p.  142° — 143°  C.  Thus  there  are  present  two 
galloyl  nuclei  which  are  separately  attached  to  the 
sugar  nucleus.  The  resistance  of  acertannin  to 
acids — of  the  order  of  gallotannin — indicates  that 


CH2.CH[O.C6H2(O.C2H30)J.CH.CH[0.06H:r(O.C2H30)3].CH[O.CtiH2(O.C2H30)3].CH) 

'—  — o—  — ' 
O 


m.p.  (indefinite)  137°  C,  after  softening  at  126°  C. ; 
[a]D21= -10'45°  in  acetone  solution,  which  has  not 
been  obtained  in  the  crystalline  condition.  It  is 
hydrolysed  by  an  excess  of  sodium  hydroxide  in 
aqueous-acetone  solution  at  0°  C,  and  the  solution, 
after  neutralisation  and  removal  of  acetone  in  a 
vacuum,  deposits  successively  two  gelatinous  pre- 
cipitates, A  and  B.  a-Trigalloyllsevoglucosan,  long 
six-sided  crystals,  decomp.  250°— 320°  C,  [a]D"  = 
- 18'02°  in  alcoholic  solution,  is  obtained  from  the 
former.  The  ability  of  the  substance  (and  others  of 
this  class)  to  give  the  typical  tannin  reactions 
cannot  be  investigated  since  it  is  insoluble  in  water, 
but  in  10%  alcoholic  solution  it  readily  causes 
gelatinisation  with  arsenic  acid.  It  gives  a 
potassium  salt  which  is  sparingly  soluble  in  alcohol 
(this  property  appears  so  widespread  among  the 
tannins  that  it  is  doubtful  if  they  can  be  purified 
by  the  potassium  acetate  method).  The  precipitate, 
B  (see  above),  gives  /3-trigalloyllsevoglucosan,  broad 
needles  and  flat  rectangular  plates,  decomp.  270° — 
320°  C,  [a]D18=- 21-00°  in  alcoholic  solution  (the 
potassium  salt  is  described).  The  a-  and  /3-com- 
pounds  are  differentiated  clearly  by  their  behaviour 
towards  ferric  chloride  in  alcoholic  solution,  the 
former  giving  a  bluish-black,  gelatinous  precipitate, 
whereas,  under  similar  conditions,  the  latter  yields 
only  a  bluish-violet  solution  without  a  precipitate. 
Digalloyllsevoglucosan,  colourless  needles,  decomp. 
220°— 270°  C,  [a]D18=  -27-93°  in  alcoholic  solution, 
is  prepared  by  extraction  of  the  filtrates  from  A 
and  B  with  ethyl  acetate.  The  mother  liquors  from 
the  crystallisation  of  the  digalloyl-derivative  con- 
tain gallic  acid  and  monogallovllajvoglucosan,  de- 
comp. 240°  C.  after  darkening  at  220°  C.  It  is 
remarkable  that  the  trigalloyllrevoglucosans,  when 
impure,  are  freely  soluble  in  acetone  or  alcohol,  in 
which  they  dissolve  but  sparingly  after  being  re- 
crystallised  ;  similarly,  crude  digalloylhevoglucosan 
dissolves  with  great  ease  in  water,  in  which  the  pure 
product  is  very  sparingly  soluble.  It  appears 
probable,  therefore,  that  the  natural  and  synthetic 


it  is  a  sugar  ester  and  not  a  glucosido-gallic  acid. 
Acertannin  is  unsuitable  for  tanning  purposes,  the 
hide  being  converted  into  a  hard  brittle  material. 
It  is,  however,  very  suitable  for  the  black  dyeing  of 
silk  and  cotton  on  an  iron  mordant  (cf.  J.,  1918, 
462a).  Aceritol  behaves  as  a  polyhydric  alcohol,  and 
is  probably  an  anhydro-hexitol  derived  from 
mannitol  or  sorbitol. — P.  V.  M. 

Tannase.     K.  Preudenberg  and  E.  Vollbrecht.     Z. 

physiol.  Chem.,  1921,  116,  277—292. 
A   description  of  the  method  of   preparation   and 
estimation  of  tannase  {cf.  J.,  1922,  67a).— S.  S.  Z. 

Pelt;  Jlydrolytic  action   of  neutral   salts  on  . 

W.  Moeller.  Z.  Leder  u.  Gerbereichem.,  1921,  1, 
12—20.  Chem.  Zentr.,  1922,  93,  II.,  225—226. 
The  author  has  investigated  the  action  of  neutral 
salts  on  hide  powder  and  finds  that  up  to  15% 
strength  the  hydrolytic  action  of  solutions  of  sodium 
chloride  is  independent  of  the  concentration  and 
varies  only  with  the  time.  There  is  no  appreciable 
hydrolysis  with  sodium  chloride  under  14  days.  The 
effect  of  solutions  of  sodium  sulphate  is  inversely, 
proportional  to  the  concentration  and  directly 
proportional  to  the  time.  The  hydrolysis  is  practi- 
cally nil  with  15%  solutions.  The  effect  of  1 — 5% 
solutions  of  ammonium  sulphate  is  independent  of 
the  concentration  and  varies  somewhat  with  the 
time.  The  effect  of  acid  solutions  of  ammonium 
sulphate  is  proportional  to  the  time  and  varies 
slightly  with  the  concentration. — D.  W. 

Vegetable    tanning;    The   proteolytic    constants    in 

.     W.  Moeller.     Z.  Leder  u.  Gerbereicliem., 

1921,  1,  28—33.  Chem.  Zentr.,  1922,  93,  II.,  225. 
The  absorption  of  tannin  by  hide  powder  is  inde- 
pendent of  the  concentration  and  volume,  and  en- 
tirely depends  on  the  absolute  amount  of  tannin 
present.  So-called  "  dead  tannage  "  cannot  be 
effected  with  tannin  itself  even  in  very  strong  solu- 
tion.    A  "  dead  tannage  "  is  produced  by  concen- 


Vol.  XT.I..  N  l    5  I 


Cl.  XV.— LEATHER;  BONE;  HORN;  GLUE. 


185  a 


trated  solutions  of  quebracho  tannin  of  about 
6—10%  strength.  The  proteolytic  constant  remains 
the  same  for  all  concentrations  and  volumes. — D.  W. 

Tanning  process  in  presence  of  alkali.  W.  Moeller. 
Z.  Leder  u,  Gerbcreichem.,  1921,  I,  2—12.  Chem. 
Zentr.,  1922,  93,  II.,  225. 

The  author  has  investigated  the  effect  of  vegetable 
tannins,  and  particularly  quebracho,  on  hide  powder 
in  presence  of  variable  amounts  of  sodium 
hydroxide,  and  finds  that  practically  no  tannin  is 
taken  up.  Variations  are  attributable  to  experi- 
mental error.  This  phenomenon  is  attributed  to 
hydrolysis  of  the  hide,  and  the  theory  of  tannage 
is  linked  up  with  that  of  Von  Weimarn  on  the 
stability  of  colloidal  peptised  solutions. — D.  W. 

Hide  substance;  Influence  of  sodium  chloride, 
sodium  sulphate,  and  sucrose  on  the  combination 

of  chromic  ion   with  .      A.    W.    Thomas   and 

S.  B.  Foster.  J.  Ind.  Eng.  Chem.,  1922,  14,  132— 
133. 

With  an  increasing  proportion  of  sodium  chloride 
the  combination  of  chromium  with  hide  substance 
gradually  decreases  until  a  minimum  is  attained; 
thifi  result  is  similar  to  that  observed  earlier  by 
Wilson  and  Kern  for  magnesium  chloride.  Sodium 
sulphate  exerts  a  greater  inhibiting  action  than 
sodium  chloride  and  with  increasing  proportions  a 
minimum  is  only  obtained  when  the  liquor  is  very 
concentrated.  Sucrose  has  no  effect  except  at 
higher  concentrations.  The  results  indicate  that 
the  effect  of  hydration  is  secondary  to  that  of  the 
formation  of  additive  compounds.  The  salts  are 
believed  to  form  additive  compounds  with  the  con- 
stituents of  the  chrome  liquor,  thereby  rendering 
them  less  active  towards  the  hide  substance ;  the 
above-mentioned  occurrence  of  a  minimum  and  sub- 
sequent increase  in  the  effect  is  attributed  to  the 
gradually  increasing  influence  of  hydration  of  the 
salt,  whereby  the  effective  concentration  of  the 
chromium  is  virtually  exalted. — D.  P.  T. 

Leather  hydrolysis;  Progress  of  in  Fahrion's 

boiling  test.  W.  Moeller.  Z.  Leder  u.  Gerberei- 
chem.,  1921,  1,  47—54.  Chem.  Zentr.,  1922,  93, 
II.,  226—227. 

The  decomposition  products  dissolved  out  of 
different  leathers  by  the  hot  water  test  contain  no 
gelatin,  but  only  peptones,  peptides,  amino-acids, 
etc.  In  the  determination  of  the  "  water  resist- 
ance "  by  Fahrion's  method  (J.,  1908,  1031),  the 
substances  dissolved  from  leathers  of  high  resist- 
ance consist  of  degradation  products  of  the  hide 
6ubstance,  and  in  the  case  of  leathers  of  low  resist- 
ance the  solution  contains  a  small  amount  of  hide 
substance.  The  amount  of  hide  decomposition  pro- 
duct from  a  leather  varies  only  within  small  limits. 
Leathers  of  low  resistance  to  water  yield  a  large 
amount  of  soluble  gelatinous  matter  derived  from 
the  tanning  materials  used  in  tanning  the  leather. 
Collagen  is  transformed  into  gelatin  by  boiling,  and 
this  is  tanned  and  precipitated. — D.  W. 

Leather;   Examination   of  by  Rontgen  rays. 

W.   Moeller.     Z.   Leder   u.   Gerbereichem.,   1921, 
1,  41—47.    Chem.  Zentr.,  1922,  93,  II.,  226. 

From  the  appearance  of  leather  examined  by  means 
of  Rontgen  rays,  the  author  concludes  that,  in 
regard  to  the  properties  and  nature  of  the  ultimate 
particles,  hide  and  leather  fibres  possess  a  crystal- 
line character  and  that  tannage  with  any  material 
causes  no  change  in  the  crystalline  structure.  The 
power  of  leather  to  absorb  Rontgen  rays  is  a 
function  of  the  absorptive  power  of  the  tanning 
material  used. — D.  W. 


Fat-liquoring    leather;    Reactions    in    .      W. 

Moeller.      Z.    Leder   u.    Gerbereichem.,    1921,    I, 
20—28.     Chem.  Zentr.,  1922,  93,  II.,  225. 

When  leather  is  fat-liquored  with  marine  animal 
oils,  the  unsaturated  fatty  acids  undergo  autoxida- 
tion  by  atmospheric  oxygen,  the  vegetable  tannins 
functioning  as  oxygen-carriers.  The  unsatur- 
ated fatty  acids  in  the  oils  are  converted  into 
hydroxy-aeids  and  the  phenolic  constituents  of  the 
tannins  are  oxidised  to  phlobaphenes.  The  oxidised 
compounds  from  the  oil  exercise  a  tanning  action 
just  as  in  chamoising  and  they  are  retained  by  the 
regetahle-tanned  leather  in  the  same 'way  as  by 
chamoised  leather. — D.  W. 

Tannins  of  spruce  needles.    Von  Euler.    See  V. 


Patents. 

Tanning  agents;  Manufacture  of  .     Gerb-  und 

Farbstoffwerke  II.  Renner  und  Co.  A.-G.     E.P. 

146,167,  25.6.20.     Conv.,  7.7.15. 

Tanning  agents  which  are  sulphonated  and  con- 
densed derivatives  of  cyclic  hydrocarbons  or  phenols 
are  oxidised  with  the  aid  of  a  chromate,  particu- 
larly potassium  bichromate,  wholly,  until  they  are 
more  sparingly  soluble  or  insoluble  in  water, 
but  soluble  when  mixed  with  water  -  soluble 
artificial  tanning  agents  and  show  no  colour 
reaction  with  a  ferric  salt,  or  partially  to  such  an 
extent  that  sufficient  unoxidised  tanning  agent 
remains  to  retain  the  oxidised  matter  in  solution. 
The  products  are  mixed  with  soluble  organic 
tanning  agents  and  used  in  tanning.  Oxidised 
sulphonated  condensation  products  of  cyclic  hydro- 
carbons or  phenols  or  mixtures  of  the  two  are  used 
for  tanning.  (Reference  is  directed,  in  pursuance 
of  Sect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
Acts,  1907  and  1919,  to  E.P.  16,647  of  1886,  19,502 
of  1890,  10,320-3  of  1893,  17,346  of  1899,  4648  of 
1911,  and  8069  of  1913;  J.,  188S,  39;  1892,  22;  1893, 
756;  1900,  923;  1912,  324;  1914,  543.)— D.  W. 

Tanning  agents;  Manufacture  of .     Gerb-  und 

Farbstoffwerke  H.  Renner  und  Co.  A.-G.  E  P 
146,182,  25.6.20.  Conv.,  21.11.18.  Addn.  to 
146,167  (cf.  supra). 

Acin  resin  is  treated  with  an  alkali  or  alkaline- 
earth  chromate  or  bichromate  or  chromic  acid  so  as 
to  produce  a  mixture  of  the  oxidised  acid  resin  and 
chromium  salt  free  from  chromic  acid  or  chromate. 
(Reference  is  directed,  in  pursuance  of  Sect.  7,  Sub- 
sect.  4,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  19,502  of  1890  and  17,346  of  1899;  J., 
1892,  22;  1900,  923.)— D.  W. 

Tanning    agents;   Manufacture    of   artificial   . 

H.  Renner  and  W.  Moeller.  E.P.  148,750,  26.6.20. 
Conv.,  31.7.19. 

Coumarone-resins,  which  may  or  may  not  contain 
indene,  are  condensed  and  sulphonated  together 
with  aromatic  substances  which  contain  phenol 
groups,  with  or  without  the  use  of  formaldehyde. 
The  sulphonated  tanning  agent  from  coumarone- 
resin  may  be  condensed  with  the  non-sulphonated 
alkaline  condensation  product  from  formaldehyde 
and  phenol,  or  the  sulphonated  alkaline  condensa- 
tion product  from  formaldehyde  and  phenol  may  be 
condensed  with  coumarone-resins.  Coumarone- 
resins  or  their  sulphonation  products  are  condensed 
by  means  of  sulphuric  acid  with  aromatic  or  other 
cyclic  hydrocarbons  or  the  sulphonation  products 
of  the  so-called  acid  resins,  with  or  without  the 
use  of  formaldehyde.  The  products  in  every  case 
are  improved  by  oxidising  them  to  quinone-like  com- 
pounds.— D.  W. 


186  a 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


[Mar.  15,  1922. 


Glue;  Process  for  obtaining from  bones,  fish  or 

leather  refuse,  etc.  Plausons  Forschungsinstitut. 
G.P.  344,233,  3.3.21. 
The  substances  are  finely  comminuted  and  mixed 
with  water  and  are  then  introduced  under  eteam 
pressures  up  to  1*8  atm.  into  a  colloid-mill,  where 
they  are  reduced  to  the  colloidal  condition.  Small 
quantities  of  oxidising  agents  may  be  added.  A 
second  treatment  in  the  colloid-mill  with  chlorin- 
ated hydrocarbons,  ether,  ether-alcohol,  or  ether- 
acetone  reduces  the  glue-liquor  to  an  emulsion  which 
can  be  separated  by  various  methods  into  a  pure 
aqueous  gltie  solution  and  an  emulsion  containing 
fat  and  proteins.  The  glue  can  thus  be  separated 
from  fat  and  other  impurities. — H.  C.  R. 


Proteins;  Process  for  deodorising  products  from  the 

hydrolysis  of  especially  those  yielding  glue. 

Plausons  Forschungsinstitut.  G.P.  344,632, 
13.9.19. 
Akter  passing  gases  through  the  solution,  sub- 
stances capable  of  forming  condensation  products 
are  added  and  the  mixture  is  strongly  agitated  with 
air.  Formaldehyde  or  formic  acid  may  be  used, 
also  phenols  and  substances  containing  phenols.  A 
mixture  of  formaldehyde  or  formic  acid  with 
phenols  or  their  derivatives  is  particularly  suitable. 
Cleavage  products  from  leather,  skins,  and  hoofs 
can  be  thus  converted  into  valuable  products. 

— H.  C.  R. 


XVI.-SOILS ;    FERTILISERS. 

Soil  reaction;  Effect  of  gypsum  on  .       L.  W. 

Erdman.    Soil  Sci.,  192i,  12,  433—447. 

Typical  acid,  neutral,  and  alkaline  soils  were  mixed 
with  gypsum  in  varying  quantities  and  stored  under 
controlled  moisture  conditions.  Periodical  deter- 
minations were  made  of  the  lime  requirements 
(Stephenson's  modification  of  the  Tacke  method; 
cf.  J.,  1918,  776  a)  and  of  the  H-ion  concentration. 
In  quantities  of  from  100  to  2000  lb.  per  acre, 
gypsum  did  not  increase  or  correct  soil  acidity  as 
determined  by  the  lime  requirement ;  and  in 
quantity  up  to  500  lb.  per  acre  did  not  affect  the 
H-ion  concentration.  At  the  rate  of  1000—2000  lb. 
per  acre,  increases  in  pH  values  were  obtained  of 
009 — 0'28  according  to  the  type  of  soil  used.  No 
evidence  could  be  obtained  to  show  definitely  that 
gypsum  affects  soil  acidity. — A.  G.  P. 


Magnesium    salts;   Harmful    mechanical    effect    of 

on  soils.    A.  von  Nostitz.    Landw.  Versuchs- 

Stat.,  1921,  99,  27—40. 

The  effect  of  various  salts  on  soil  texture  was 
studied  by  estimating  the  force  required  to  break 
spheres  formed  by  treating  the  soil  with  different 
solutions,  moulding  to  shape  and  drying  at  50°  C. 
Increase  in  cohesiveness  as  shown  by  this  means  was 
found  in  all  cases  where  magnesium  salts  were  used. 
Similar  results  were  obtained  using  quartz  powder 
in  place  of  soil.  The  effect  of  magnesium  salts  is 
regarded  as  purely  mechanical  and  not  due  to  any 
chemical  action  or  effect  on  the  colloidal  properties 
of  the  soil—  G.  W.  R. 

Soils;    Practical   significance    of    organic   carbon : 

nitrogen  ratio  in  .     J.  W.  Read.     Soil  Sci., 

1921,  12,  491—493. 

The  carbon  :  nitrogen  ratios  and  crop  yields  of  a 
number  of  soils  are  recorded.  There  is  no  correla- 
tion between  productivity  and  the  carbon  :  nitrogen 
ratio.— A.  G.  P. 


Soil;  Relation  between  the  chlorine  index  and  the 

nitrogen  content  of  a  .     C.  Veil.     Comptes 

rend.,    1922,    174,   317—319.     {Cf.   Lapicque   und 
Barbe,  J.,  1919,  114  a.) 

In  general  the  richer  a  soil  is  in  nitrogen,  the  higher 
is  its  chlorine  index.  Soils  containing  more  than 
0'4%  nitrogen  had  a  chlorine  index  above  30;  soils 
with  less  than  0"1%  nitrogen  had  a  chlorine 
index  7— 12.— W.  G. 

Tropical  soils;  Nitrification  and  denitrificat ion  in 

.    F.  C.  Gerretsen.     Arch.  Suikerind.  Neder- 

land-Ind.,     1921,     1397—1532.       Chem.     Zentr., 
1922,  93,  II.,  255—256. 

The  hydrogen  ion  concentration  is  the  determining 
factor  in  the  nitrification  of  the  soils  tested ;  with 
concentrations  between  p„  =  3'9 — 4'4  and  above  7'2 
no  nitrite  can  be  detected.  The  most  suitable 
soil  for  nitrification  appears  to  be  the  so-called 
"  tarapan  "  soil,  the  looseness  of  which  is  the 
greatest  factor  in  neutralising  any  free  acidity  that 
may  develop ;  its  content  of  calcium  carbonate  and 
ferric  hydroxide  is  also  an  important  asset  in  this 
connexion.  When  ammonium  sulphate  is  applied 
as  a  fertiliser  and  is  evenly  distributed  it  remains 
in  the  upper  10 — 20  cm.  of  soil  if  the  loam  content 
amounts  to  10%.  Whereas  nitrifying  bacteria  can 
no  longer  develop  in  solutions  containing  more  than 
1'5 — 2%  of  ammonium  sulphate  and  the  maximum 
amount  of  nitrate  is  formed  in  sandy  soils  with  1% 
solutions  of  the  salt,  the  nitrification  obtained  in 
a  strongly  adsorptive  tarapan  soil  with  4%  of 
ammonium  sulphate  in  the  ground-water  is  still  90% 
of  the  maximum.  The  benefit  of  the  adsorption 
of  ammonia  by  the  soil  is  lost  after  1 — 2  months,  the 
nitrate  formed  being  easily  washed  out,  e.g.,  81% 
from  the  tarapan  soils  and  54%  from  light  loamy 
soils.  The  nitrifying  power  of  different  soils  may 
vary  considerably  without  deleterious  effect  on  their 
fertility;  soils  in  which  rice  is  cultivated,  for 
example,  have  practically  without  exception  a  very 
low  nitrifying  power.  Tests  on  a  number  of  barren 
soils  showed  that  after  aeration  or  admixture  with 
a  well  limed,  adsorptive  soil,  the  nitrification  was 
retarded  for  about  a  week,  after  which  it  increased 
regularly.  Denitrification  ensues  if  the  fertiliser 
contains  only  nitrate  and  no  organic  substance,  and 
appears  to  coincide  with  a  reduction  in  the  content 
of  ferric  or  manganic  hydroxide  and  is  a  sign  of  the 
bad  condition  of  the  soil.  In  tropical  6oils  denitri- 
fication may  cause  a  considerable  yearly  loss  of 
nitrate,  and  hence  of  fertiliser. — A.  R.  P. 

Sumac  acids;  Influence  of on  the  assimilation 

of  phosphoric  acid  [by  plants].   K.  Mack.    Chein.- 
Zeit.,  1922,  46,  73—75. 

The  soil  phosphates  are  rendered  insoluble  by  the 
action  of  hydroxides,  carbonates,  and  especially 
silicates  of  calcium,  magnesium,  iron,  and  alu- 
minium. On  the  other  hand,  organic  acids  (acetic, 
lactic,  butyric,  etc.)  produced  by  bacterial  action 
tend  toward  the  production  of  soluble  phosphates. 
Stoklasa  (Chem.-Zeit.,  1921,  1116—1188)  has  shown 
that  phosphorus  in  organic  combination  is  more 
readily  assimilated  by  bacteria  than  inorganic  phos- 
phates and  it  is  supposed  that  complex  "  humo- 
phosphates  "  exist  in  soils,  in  a  form  assimilable  by 
plants.  Finely  powdered  phosphates  were  mixed 
with  freshly  prepared,  colloidal  humic  acid  and 
after  48  hrs.  at  room  temperature  considerable 
amounts  of  tertiary  phosphates  had  been  converted 
into  soluble  monophosphates.  Ammonium  humate 
solution  under  similar  conditions  rendered  soluble 
more  iron  and  aluminium  phosphates  and  less 
calcium  phosphate  than  the  free  acid.  Substances 
(humic-phospho-aluminates)  containing  both  the 
metallic-  and  phosphate-ions  in  the  anion  appear 
to  be  formed.  Magnesia  mixture  did  not  pre- 
cipitate all  the  contained  phosphorus.     In  alkaline 


Vol.  XLI.,  Xo.  5.] 


Cl.  XVII.— SUGARS  ;  STARCHES;  GUMS. 


187. 


soils  the  phosphates  of  iron  and  aluminium  are 
readily  converted  by  humic  acid  into  an  assimilable 
form.  Superphosphates,  by  destroying  the  alka- 
linity of  the  soil,  may  reduce  or  even  prevent  this 
conversion.  To  obtain  the  best  results  from  phos- 
phatic  fertilisers,  they  should  be  used  in  conjunction 
with  organic  manures. — A.  G.  P. 

Sulphur;  Oxidation  of by  soil  micro-organisms. 

J.  G.  Lipnian,  S.  A.  Waksman,  and  J.  S.  Joffe. 
Soil  Sci.,  1921,  12,  475—490. 

Pure  cultures  of  the  sulphur-oxidising  organism  of 
soils  were  obtained  and  a  detailed  study  of  the 
chemical  changes  produced  by  it  is  recorded.  The 
H-ion  concentration  and  titratable  acidity  of  the 
medium  increased  steadily  with  the  age  of  the 
culture.  The  production  of  sulphates  is  followed  by 
the  solution  of  phosphates,  this  reaching  a  maxi- 
mum after  15  days.  It  may  be  possible  to  utilise 
the  organism  for  increasing  soil  acidity  sufficiently 
to  prevent  the  growth  of  potato  scab,  to  reclaim 
black  alkali  soils,  and  to  increase  the  availability 
of  potassium  and  phosphorus  compounds  of  the 
soil.     (Cf.  J.C.S.,  March.)— A.  G.  P. 

Bock   suit;  Experiments   with   common  .        /. 

Effect  on  asparagus.  II.  Eradication  of  weeds 
and  cleaning  of  roadsides  with  salt.  III.  After- 
effects of  salt.  W.  Rudolfs.  Soil  Sci.,  1921,  12, 
449—474. 

As  the  result  of  field  trials  it  is  shown  that  the 
growth  of  asparagus  (length  and  number  of  stems) 
increases  with  the  amount  of  salt  used  up  to  500  lb. 
per  acre.  Application  of  2 — 2J-  tons  of  salt  per  acre 
kills  ground  vegetation  and  many  weeds,  but  the 
results  are  not  sufficiently  permanent  to  be  suc- 
cessful. 3 — 4  tons  per  acre  does  not  kill  deep- 
rooted  plants  but  checks  growth  to  some  extent. 
A  dressing  of  5 — 6  tons  per  acre  applied  to  cut 
vegetation  during  or  immediately  before  rain  is 
effective.  A  dressing  of  8  tons  per  acre  kills  all 
vegetation  except  asparagus.  Salting  is  most 
effective  at  or  shortly  after  mid-season.  Injurious 
effects  of  dressings  of  4 — 5  tons  of  salt  per  acre  were 
perceptible  in  the  second  year  on  weeds  and  brush- 
wood. With  3 — 3"5  tons  per  acre,  treated  plots 
showed  no  difference  in  the  second  year  from  the 
untreated.  Where  2 — 2'5  tons  per  acre  was  used 
some  fertilising  effect  was  observed. — A.  G.  P. 

Patents. 

Iron  ore  containing  phosphates;  Process  for  opening 

up  .      R.  Eberhard.       E.P.  146,351,  2.7.20. 

Conv.,  23.2.18. 

A  thin  paste  of  suitable  bacterial  food  (plant  resi- 
dues) is  prepared  and  fermentation  is  started  by 
the  addition  of  sour  milk  or  the  liquor  of  pickled 
cabbage.  The  mixture  is  added  to  the  ore  and  if 
necessary  raised  to  the  fermentation  temperature. 
The  mass  is  subsequently  filtered  and  the  filtrate, 
which  contains  iron  and  phosphate  in  solution,  may 
be  used  as  a  fertiliser  or  for  other  purposes. 

—A.  G.  P. 

Manure;  Process  for  the  manufacture  of  a  natural 

plant .    R.  Eberhard.     E.P.  143,560,  10.7.20. 

Conv.,  6.3.18.     Addn.  to  146,351  'cf.  supra). 

The  fermented  material  described  in  the  main 
patent  is  rendered  neutral  or  alkaline,  mixed  with 
absorbent  mineral  matter  and  dried,  forming  a  pro- 
duct which  can  be  easily  distributed. — A.  G.  P. 

Fertiliser.     The  Molassine  Co.,  Ltd.,  and  H.  C.  S 
de  Whalley.     E.P.  173,276,  28.8.20. 

Finely  divided  peat  is  treated  with  ammonium 
sulphate  (5—10%)  and,  if  necessary,  5—15%  of 
calcium  carbonate,  and  is  applied  to  the  soil  as  a 
fertiliser. — A.  G.  P. 


Fertiliser.     S.  J.  Smith.     U.S. P.  1,402,102,  3.1.22. 
Appl.,  24.1.21. 

Dried  absorbent  organic  litter  is  sprayed  with  a 
liquor  containing  ammonium  and  potassium  salts 
and  agitated  during  the  process.— A.  G.  P. 

Acid  phosphate  or  superphosphate;  Apparatus  for 

manufacturing  .     T.  J.  Sturtevant,  Assr.  to 

Sturtevant  Mill  Co.     U.S. P.   1,403,820,   17.1.22. 
Appl.,  26.4.21. 

A  mixture  of  ground  phosphate  rock  and  acid 
enters  the  upper  end  of  an  inclined  chamber  pro- 
vided with  means  for  feeding  the  mixture,  after 
solidification,  down  the  incline  into  a  disintegrator 
at  the  lower  end  of  the  chamber. — J.  S.  G.  T. 

Fertiliser.     B.  Stollberg.     G.P.  342,971,  15.2.19. 
Magnesium  oxychloride  is  used.     It  is  more  effec- 
tive  than   the  sulphate,    hydroxide,    or  carbonate, 
without  their  injurious  effect. — A.  G.  P. 

Exterminating  uinelouse.  G.P.  343,865.  See  XIXb. 


XVII.- SUGARS;  STARCHES;  GUMS. 

Sugar  cane;  Deterioration  of after  cutting.   R. 

Elliott.     Int.  Sugar  J.,  1922,  24,  100. 

Five  tests  made  in  different  districts  in  Hawaii 
with  Yellow  Caledonia  cane  gave  the  following 
average  figures  indicating  the  percentage  loss 
occurring  after  cutting:  — 

2  days.  4  days.  6  days.  8  davs. 

Burnt        ..  ..        8-88      ..      12-43      ..      1900      ..      23-82 

Unburnt  ..  ..       5-67      ..      14-28     ..      17-39      ..     20-50 

In  some  of  the  tests  the  results  of  the  individual 
analyses  were  erratic,  and  it  was  found  necessary 
that  each  bundle  of  cane  should  weigh  at  least 
75 — 100  lb.,  and  contain  40  or  more  stalks,  which 
should  be  selected  in  consecutive  order  in  the  line 

—J.  P.  O. 

Bagasse;  Use  of  hot  water  for  washing  sugar  from 

.     M.  Bird.     Int.  Sugar  J.,  1922,  24,  80—81. 

Figures  are  given  demonstrating  that  when  macera- 
tion is  effected  with  hot  water  at  148° — 160°  F 
(51°— 57°  C.)  the  bagasse  contains  0'65— 0'78%  less 
sugar  than  when  cold  water  is  applied  to  the  cane 
undergoing  crushing.  Further  advantages  are  that 
less  steam  is  necessary  for  heating  the  mixed  juice 
to  the  temperature  required  for  clarification,  and 
that  the  bagasse  loses  an  appreciable  amount  of 
moisture  (about  0'5%)  while  passing  from  mill  to 
furnace. — J.  P.  O. 

Carboraffin   decolorising    carbon;    Experiments   on 

the  application  of .   J.  Dedek.   Z.  Zuckerind. 

Czechoslov.,  1922,  46,  177—183. 

Liquors  obtained  by  re-melting  washed  raw  beet 
sugars  to  a  density  of  about  55°  Brix  were  pumped 
through  presses  in  the  chambers  of  which  a  layer  of 
"  Carboraffin  "  (25—32  mm.  thick)  had  been  de- 
posited (G.P:  317,449;  J.,  1920,  380a).  Working 
thus  the  carbon  required  for  a  sufficient  decolorisa- 
tion  was  0"07 — 0"15%  of  the  raw  sugar  re-melted; 
but  syrups  from  the  evaporators  required  a  greater 
amount.  The  alkalinity  of  the  liquor  decreased 
considerably  as  the  result  of  this  treatment,  due 
to  the  adsorption  of  calcium  salts,  and  sometimes 
also  to  the  presence  of  acid  in  the  carbon.  Liquor 
previous  to  treatment  must  be  rendered  perfectly 
clear,  otherwise  the  consumption  of  carbon  is 
increased  to  a  marked  extent,  in  addition  to 
which  the  rate  of  filtration  suffers.  A  temperature 
approaching  as  closely  as  possible  to  95°  C.  is  the 
optimum  both  for  decolorisation  and  for  filtration. 
{Cf.  Skola,  J.,  1921,  190  a.)— J.  P.  O. 


IS-!   \ 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[Mar.  15,  1922. 


I'affinose;  Determination  of  in  beet  molasses. 

G.   Schecker.     Z.   Ver.  deuts.   Zuckerind.,   1922, 

1—6. 
As  the  presence  of  impurities  in  beet  molasses,  ash 
for  example,  vitiates  to  a  greater  or  less  extent  the 
determination  of  raffinose  by  Herzfeld's  modifica- 
tion of  Creydt's  method,  the  author  treated  a 
solution  of  the  product  with  barium  hydroxide, 
filtered,  washed  the  precipitated  saccharates,  de- 
composed them  with  carbon  dioxide,  and  thus 
obtained  after  filtration  a  liquid  containing  the 
sucrose  and  raffinose  in  an  almost  pure  state,  this 
liquid  after  concentration  being  examined  for 
raffinose  by  Herzfeld's  modification.  It  was  found, 
however,  that  the  precipitation  of  raffinose  in  this 
way  was  incomplete,  and  that  the  solution  of 
molasses  had  to  be  treated  with  barium  hydroxide 
five  times  before  a  filtrate  containing  no  "  plus- 
sugar  "  could  be  obtained.  With  such  a  filtrate  a 
figure  which  agreed  well  with  that  given  by  the 
llorzfeld  modification  when  applied  directly  was 
obtained,  and  it  is  concluded  that  in  the  direct 
application  of  the  Herzfeld  method  the  various 
errors  involved  in  the  examination  of  an  impure 
product,  such  as  beet  molasses,  are  mutually  com- 
pensating.— J.  P.  O. 

Sucrose;  Colour  reaction  for .     Kryz.     Oesterr. 

Chem.-Zeit.,  1921,  24,  141—142. 

A  yellow  coloration  is  obtained  when  a  mixture  of 
saturated  ammonium  nickel  sulphate  solution,  1, 
sucrose  solution,  1  c.c,  and  sulphuric  acid  or  hydro- 
chloric acid,  a  few  drops,  is  boiled ;  as  the  boiling 
is  continued  the  yellow  coloration  changes  to  red 
and  the  mixture  retains  its  red  colour  when  cooled, 
The  reaction  is  not  given  by  less  than  5  mg.  of 
sucrose  or  by  other  sugars.  The  green  colour  of  the 
ammonium  nickel  sulphate  is  not  altered,  even  in 
the  presence  of  sucrose,  if  the  sulphuric  acid  or 
hvdrochloric  acid  is  replaced  by  nitric  acid. 

— W.  P.  s. 

Lavulose;   Identification   of   in   presence    of 

aldoses.  I.  M.  Kolthoff.  Chem.  Weekblad,  1922, 
19,  1—2. 
To  identify  0'2  mg.  of  lsevulose  in  presence  of 
10  mg.  each  of  dextrose,  sucrose,  and  lactose,  2  c.c. 
of  the  1%  sugar  solution  is  treated  first  with  4  c.c. 
of  .2V/ 10  iodine  and  then  with  5  c.c.  of  22V  sodium 
hydroxide.  The  mixture  is  shaken,  and  after  stand- 
ing for  lj  hrs.  excess  of  iodine  is  removed  with  a 
few  drops  of  2V/1  thiosulphate,  and  2  c.c.  each  of 
Fehling's  solutions  Nos.  II.  and  No.  I.  are  added 
and  the  solution  warmed  for  not  more  than  5 
minutes  on  a  water  bath.  Lsevulose  gives  the  usual 
coloration;  after  5  mins.,  dextrose  gives  the  colora- 
tion.    (Cj.  J.C.S.,  Feb.)— S.  I.  L. 

Sugars;  Chemistry  of  the  .    H.  Kiliani.    Ber., 

1922,  55,  75—101.     (Cf.  J.,  1921,  315  a.) 

The  oxidation  of  sugars  and  polyhydroxy-acids  by 
nitric  acid  at  the  atmospheric  temperature  should 
be  effected  in  the  absence  of  air.  It  is  now  recog- 
nised that  the  oxidation  may  lead  to  the  production 
of  a-keto-acids,  the  predominance  of  aldehydic  or 
ketonic  product  appearing  to  depend  on  the  con- 
figuration of  the  original  material.  The  following 
processes  are  described  in  detail-  the  oxidation  of 
d-glucose  or  d-gluconic  acid  to  a-ketogluconic  acid, 
CH.OH.[CH(OH)]s.CO.CO:,H;  the  preparation  of 
rhamnonic  acid ;  the  conversion  of  the  latter  or 
rhamnose  to  the  lactone  of  a-ketorhamnonic  acid ; 
the  oxidation  of  a-galaheptonic  acid  to  7-manno- 
hepturonic  lactone.  Definite  configurations  are 
assigned  to  digitoxose,  digitoxosecarboxylic  acid, 
and  digitalonic  acid.  A  large  number  of  salts  of 
trihydroxyadipic  acid  (from  metasaccharin),  of 
?-trihydroxyglutaric  acid,  and  of  a-galaheptane- 
pentoldicarboxylic  acid  are  described.     Precise  and 


modified  directions  are  given  for  the  crystallisation 
of  d-galactonic  acid,  and  for  the  preparation  of 
galaheptonic  acid  from  d-galactose  and  of  l- 
mannonic  and  (-gluconic  acids  from  arabinose.  (Cf. 
J.C.S.,  Mar.)— H.  W. 

Anhydro-sugars ;  Constitution  and  configuration  of 

the  .     P.  Karrer  and  A.  P.  Smirnoff.     Helv. 

Chim.  Acta,  1922,  5,  124—128. 

TriacetylL/EVOGLucosan  is  converted  by  liquid 
hydrogen  bromide  at  the  atmospheric  temperature 
in  the  course  of  a  few  days  into  acetodibromo- 
glucose,  thus  confirming  the  constitution  assigned 
to  lsevoglucosan  by  Pictet  (Helv.  Chim.  Acta,  1920, 
3,  640).  The  reaction  is  effected  more  advantage- 
ously with  phosphorus  pentabromide  and,  in  thia 
form,  is  the  readiest  and  best  method  of  preparing 
acetodibromoglucose.  These  observations  render  it 
possible  to  assign  spatial  configurations  to  laevoglu- 
cosan,  anhydroglucose,  diglucan  and  isodiglucan 
and  the  dilactones  of  the  saccharic  acids.  (Cf. 
J.C.S.,  March.)— H.  W. 

Starch  grains.  A.  Reychler.  Bull.  Soc.  Chim. 
Belg.,  1922,  31,  18—22.    (Cf.  J.,  1921,  745  a.) 

A  reply  to  Gillis  (cf.  J.,  1921,  482  a).— W.  G. 

Polysaccharides.  XIII.  Inulin  and  the  alkali  hydr- 
oxide  compounds  of  anhydro-sugars.  P.  Karrer, 
M.  Staub  and  A.  Walti.  Helv.  Chim.  Acta, 
1922,  5,  129—139. 

The  additive  compounds  of  polymeric  anhydro- 
sugars  and  sodium  hydroxide  are  prepared 
conveniently  by  precipitating  solutions  of  the 
amy  loses  in  sodium  hydroxide  (8 — 10%)  by  alcohol 
and  washing  the  precipitates  thoroughly  with  96% 
alcohol ;  adsorbed  sodium  hydroxide  is  not  in  general 
completely  removed  by  absolute  alcohol.  The 
compounds  of  a-diamylose,  a-tetra-amylose,  /?-hexa- 
amylose,  and  o-octa-amylose  with  potassium 
hydroxide  have  been  obtained  and  conform  to  the 
type  (C12H.00,0,KOH)S.  Inulin  sodium  hydroxide 
(CjH^OsjNaOH),;.  and  inulin  potassium  hydroxide 
(C6H,„Os,KOH)  x  are  described ;  their  composition 
brings  additional  evidence  in  favour  of  the  view 
that  inulin  is  a  polymeric  form  of  anhydro-fructose. 
This  view  is  supported  further  by  the  observation 
that  lsevulose  is  the  sole  product  of  the  action  of 
acetvl  bromide  on  inulin  even  under  very  mild  con- 
ditions.   (Cf.  J.C.S.,  March.)— H.  W. 

Degradation  of  cellulose.    Karrer.    See  V. 

Patents. 

Sugar;  Processes  of  systematicalhj  sulphuring  the 

juices  obtained  during  the  manufacture  of  . 

M.  von  AVierusz-Kowalski,  Assr.  to  The  Chemical 
Foundation.  U.S. P.  1,399,533,  6.12.21.  Appl., 
29.7.16. 
Raw  sugar  juices  are  treated  with  sulphur  dioxide 
in  the  cold  until  an  acid  reaction  is  obtained  and 
then  neutralised  with  lime  water,  after  which  they 
are  rendered  alkaline  with  milk  of  lime,  heated, 
filtered,  again  limed  whilst  hot,  filtered  again,  and 
evaporated  and  boiled  to  massecuite. — J.  H.  L. 

Molasses;   Process   for  recovering    materials   from 

.     H.  de  Fine  Olivarius.     U.S. P.  1,401,433, 

27.12.21.  Appl.,  14.1.19. 
Molasses  is  mixed  with  alcohol  and  treated  with 
sufficient  lime  to  precipitate  impurities  but  not 
sucrose,  and  after  filtration  the  liquid  is  agitated 
with  a  further  quantity  of  lime  to  precipitate  the 
sucrose  as  calcium  saccharate. — J.  H.  L. 

Sugar  juices;  Purification  of .    I.  Hunyady  and 

M.  Malbaski.    G.P.  344,485,  15.7.17. 
Juice  is  treated  with  05  to  3%  of  basic  aluminium 
carbonate,     produced     by     adding     a     solution    of 


Vol.  XLI.,  Xo.  5.] 


Cl.  XVIII.— fermentation  industries. 


189  a 


ammonium  alum  (saturated  at  100°  C.)  to  a  cold 
concentrated  solution  of  ammonium  carbonate  or 
bicarbonate  while  stirring,  the  temperature  of  the 
mixture  not  being  permitted  to  rise  above  30°  C, 
and  the  resulting  precipitate  well  washed.  After 
filtering  the  juice,  it  may  be  submitted  to  a  second 
treatment  with  the  aluminium  precipitate,  using  a 
smaller  amount  than  before. — J.  P.  O. 

Sorghum     syrup;    Process    of    making    .      A. 

Hinton.  U.S. P.  1,403,412,  10.1.22.  Appl.,  19.7.19. 

Strained  sorghum  juice  (50  galls.)  is  boiled  for 
30  mins.,  and  the  froth  removed.  50  galls,  of  cold 
sorghum  juice  is  added,  stirred,  and  skimmed,  a 
small  quantity  of  baking  soda  is  added  and  after 
removing  precipitated  impurities,  the  liquor  is 
evaporated  to  a  syrup. — A.  G.  P. 


XVIII.-FERMENTATION  INDUSTRIES. 

Malts  produced  by  the  process  involving  resting 
periods  in  presence  of  carbon  dioxide.  H.  Luers. 
Z.  ges.  Brauw.,  1921  199—204. 

Comparative  maltings  -by  the  Kropff  system  (J., 
1912,  39),  the  ordinary  floor  method,  and  the  pneu- 
matic drum  system,  substantially  confirmed  the 
conclusions  of  previous  investigators  respecting 
the  Kropff  system  (cf.  Adler,  J.,  1917,  156). 
Judiciously  applied,  this  system  will  effect  a  saving 
of  4%  or  more  of  the  grain,  by  reducing  the  malting 
loss  due  to  respiration  and  rootlet  growth,  and  will 
produce  malts  equal  to  those  obtained  on  the  floors 
in  respect  of  modification  and  extract  yield.  The 
most  pronounced  feature  of  Kropff  malts  is  their 
dark  colour.  This  is  doubtless  due  to  their  high 
content  of  amino-acids  and  other  proteolytic  pro- 
ducts, which  react  with  sugars  during  the  kilning 
process  {cf.  Ruckdesehel,  J.,  1915,  192).  The  rich- 
ness of  the  Kropff  malts  in  respect  of  amino-acids 
also  leads  to  formation  of  an  abnormally  large  pro- 
portion of  acids,  esters,  and  higher  alcohols  during 
fermentation  (cf.  Ehrlich  and  Pistschimuka,  J., 
1912,  506)  in  consequence  of  which  the  beers  acquire 
a  somewhat  vinous  flavour. — J.  H.  L. 

Alcoholic  fermentation;  Course  of in  presence 

of  calcium   carbonate.     J.  Kerb  and  K.   Zecken- 
dorf.    Biochem.  Zeits.,  1921,  122,  307—314. 

The  authors  are  unable  to  confirm  the  experiments 
of  Fernbach  and  Schoen  (cf.  J.,  1914,  97,  707;  1920, 
345  a)  on  the  production  of  considerable  quantities 
of  pyruvic  acid  by  fermentation  in  presence  of  cal- 
cium carbonate.  Its  production  in  Fernbach  and 
Schoen's  experiments  must  have  been  as  a  by- 
product due  to  oxidation  of  lactic  acid  by  use  of  an 
atypical  yeast. — H.  K. 

Pyruvic  acid  as  an  intermediate  product  in  the 
alcoholic  fission  of  sugar.  M.  von  Grab.  Biochem. 
Zeits.,  1921,  123,  69—89. 

Apart  from  the  experiments  of  Fernbach  and 
Schoen  (J.,  1914,  97,  707;  1920,  345a)  with  an 
atypical  yeast,  pyruvic  acid  has  never  been  isolated 
as  an  intermediate  product  in  a  typical  yeast  fer- 
mentation. By  use  of  a  new  fixative,  /3-naphthyl- 
amine,  the  author  has  isolated  the  condensation 
product  of  pyruvic  acid  and  /3-naphthylamine, 
namely,  c-methyl-/?-naphthocinchoninic  acid,  from 
the  interaction  of  press  juice  and  dextrose. — H.  K. 

Fermentation;  Formation  of  acetaldehyde  and  the 

realisation  of  the  second  form  of with  various 

fungi.      C.    Neuberg   and    C.    Cohen.      Biochem. 
Zeits.,  1921,  122,  204—224. 

A  large  number  of  micro-organisms  can  ferment 
dextrose    with     production     of    acetaldehyde     and 


glycerol.  The  acetaldehyde  was  fixed  by  addition 
of  sodium  bisulphite  or  calcium  sulphite.  When 
the  proportion  of  acetaldehyde  was  large,  the  pro- 
duction of  an  equivalent  proportion  of  glycerol  was 
demonstrated. — H.  K. 

Yeast;  Dismutation  of  various  aldehydes  by  . 

H.     Kumagawa.      Biochem.    Zeits.,     192i,     123, 
225—230. 

Isobutylaldehyde,  isovaleraldehyde,  cenanthalde- 
hyde,  and  benzaldehyde  when  submitted  to  the 
action  of  yeast  in  a  1%  sodium  bicarbonate  solution, 
undergo  the  Cannizzaro  reaction  and  yield  the 
corresponding  alcohols  and  acids.  The  amount  of 
alcohol  is  usually  somewhat  in  excess  of  the  mole- 
cular equivalent  of  acid  owing  to  a  parallel  phyto- 
chemical  reduction  of  the  original  aldehyde. — H.  K. 

Fermentation   without   yeast.     A.    Bau.    Biochem. 
Zeits.,  1921,  122,  303—306. 

A  criticism  of  the  claims  of  Baur  and  Herzfeld 
(J.,  1921,900  a).— H.  K. 

Invertase  and  maltase;  Extraction  of  adsorbed 

from  the  adsorption  products.    R.  Willstiitter  and 
R.  Kuhn.     Z.  physiol.  Chem.,  1921,  123,  53—66. 

Monosodittm  phosphate  accelerates  the  extraction 
of  adsorbed  invertase  from  alumina  with  a  solution 
of  sucrose.  A  phosphate  mixture  of  pH  =  7  has  the 
same  effect.  This  is  not  due  either  to  the  definite 
H  ion  concentration  or  to  the  specific  action  of  the 
phosphate,  as  a  citrate  buffer  of  pH  =  4'5  produces 
a  similar  acceleration  but  not  an  acetate  buffer  of 
this  H  ion  concentration.  Very  low  concentrations 
of  glycerol  sometimes  raise  the  extracting  power  of 
primary  phosphates.  Maltose  solutions  do  not 
remove  adsorbed  invertase  from  alumina  but  they 
can  do  so  in  the  presence  of  monosodium  phosphate. 
Adsorbed  maltase  is  not  extracted  by  maltose  alone 
but  is  extracted  by  maltose  in  the  presence  of  a 
buffer  mixture. — S.  S.  Z. 

Invertase  and  raffinase;  Specific  nature  of .     R. 

Willstatter  and  R.   Kuhn.       Z.   physiol.   Chem., 
1921,  115,  180—198. 

The  quotient,  time  value  for  raffinase /time  value 
for  invertase,  for  several  preparations  of  inverting 
enzymes  was  found  to  be  11'3.  Similar  quotients 
were  also  worked  out  for  a  number  of  yeasts.  It  is 
concluded  that  invertase  and  raffinase  are  two 
different  enzymes.  From  the  constant  quotient 
obtained  with  the  various  inverting  preparations 
it  may  be  assumed  that  the  two  enzymes  show  a 
great  similarity  in  some  of  their  physical  proper- 
ties and  are  therefore  not  amenable  to  fractiona- 
tion.—S.  S.  Z. 

Yeasts  poor  in  maltase  ;  Fermenting  activity  of ■. 

R.    Willstiitter    and    W.    Steibelt.      Z.    physiol. 
Chem.,  1921,  115,  211—134. 

The  approximate  figure  for  the  quotient,  time  value 
for  maltase /time  value  for  invertase,  for  brewer's 
yeast  was  found  to  be  20.  The  time  values  for 
invertase  in  various  strains  of  brewer's  yeast  did 
not  show  great  variations;  on  the  other  hand,  in 
some  strains  of  distillers'  yeast  the  values  differed 
within  wide  limits,  as  also  did  the  time  values  foi- 
maltase  in  different  strains.  The  fermenting 
capacity  of  the  various  yeasts  was  studied.  From 
the  observations  made  it  was  concluded  that  maltose 
can  be  fermented  without  being  previously  hydro- 
lysed,  as  the  hydrolysis  with  some  strains  of  yeast 
proceeded  much  more  slowly  than  the  actual 
fermentation  with  those  strains.  No  dextrose 
could  be  established  in  the  fermenting  medium 
when  the  fermentation  of  maltose  carried  out  with 
yeasts  free  from  maltase  was  interrupted. — S.  S.  Z. 


190  a 


Cl.  xviii.— fermentation  industries. 


[Mar.  15,  1922. 


Maltose  and  a-glucosidase ;   Non-identity   of  ■ . 

B.    Willstiitter    and    W.    Steibelt.     Z.     physiol. 
Chem.,  1921,  115,  199—210. 

A  number  of  preparations  and  yeasts  have  given 
quotients,  time  value  for  a-glucosidase /time  value 
for  maltose,  of  varying  magnitudes.  The  two 
enzymes  are  therefore  not  identical. — S.  S.   Z. 

Vitamin  B  and  co-enzymes.  II.  H.  von  Euler  and 
K.  Mvrbaek.  Z.  physiol.  Chem.,  1921,  115, 
155—169. 

A  method  is  described  by  means  of  which  vitamin 
B  ("  biocatalyst  ")  is  estimated  quantitatively  by 
its  power  of  stimulating  alcoholic  fermentation.  A 
maximum  is  reached  by  the  addition  of  the  stimu- 
lating substance,  after  which  any  further  addition 
inhibits  the  fermentation.  Utilising  this  method  it 
is  found  that  a  considerable  quantity  of  the  vita- 
min is  used  up  in  the  human  body  per  dav. 

— s.  s.  z. 

Yeast;   Thermostability  of  the   co-enzyme  and  its 

separation  from  vitamin  B  from  ■ .    T.  Tholin. 

Z.  physiol.  Chem.,  1921,  115,  236—256. 

One-half  of  the  co-enzyme  is  destroyed  on  heatinc 
at  96°  C.  for  1  hr.  or  at  100°  C.  for  37  mins.  at 
pa  =  5'6.  The  vitamins  from  yeast  and  cabbage 
which  accelerate  alcoholic  fermentation  differ  in 
their  thermostability  from  the  co-enzyme  and  are 
therefore  not  identical  with  the  latter.  It  is  thus 
possible  to  separate  the  two  principles. — S.  S.  Z. 

Fructose  diphosphate   (hexosephosphate) ;  Enzymic 

synthesis  of  .     H.  von  Euler  and  F.  Nord- 

lund.     Z.  physiol.  Chem.,  1921,  116,  230—244. 

The  optimum  H  ion  concentration  for  the  forma- 
tion of  fructose  diphosphate  by  a  bottom  fermenta- 
tion yeast  was  found  to  be  pH  =  6'2 — 6'6.  This 
reaction  is  about  the  optimum  for  all  sugars; 
la?vulose,  however,  showed  a  reaction  curve  some- 
what different  from  that  of  other  sugars. — S.  S.  Z. 

Oxalic  acid  turbidity  [in  beers'],  and  related  prob- 
lems. K.  Geys.  Z.  ges.  Brauw.,  1922,  2 — 5, 
9—11. 

The  origin  of  the  calcium  oxalate  crystals  occa- 
sionally observed  in  beers  (cf.  Will,  J.,  1913,  708; 
1916,  191)  has  been  investigated  by  Bau,  who  has 
worked  out  a  method  for  determining  minute 
quantities  of  oxalic  acid  in  brewing  materials  and 
products  (J.,  1918,  524  a).  The  author  observed 
that  calcium  oxalate  very  frequently  separates  from 
beers  recovered  from  the  yeast  presses  although 
the  amount  present  is  usually  less  than  in  beers 
taken  directly  from  the  vats,  e.g.,  an  8%  beer  from 
the  vats  contained  32  mg.  of  calcium  oxalate  per 
1.  as  compared  with  24  mg.  in  the  beer  recovered 
from  the  yeast.  Beer  recovered  from  the  yeast  has, 
as  a  rule,  an  abnormally  low  acidity,  e.g.,  in  the 
case  cited  above  pH  =  5'73  as  compared  with  pH  = 
4'46  for  the  corresponding  beer  from  the  vat,  and 
it  is  concluded  that  this  low  acidity  favours  the 
separation  of  calcium  oxalate  and  accounts  for  the 
frequent  appearance  of  crystals  of  this  salt  in  beer 
from  the  yeast  presses.  The  observations  recorded 
by  Will  (loc.  cit.)  confirm  the  conclusion  that  low 
acidity  is  the  important  factor  in  determining  the 
separation  of  oxalate  crystals  in  beers. — J.  H.  L. 

Wine;    Detection    of    formic    acid    in    .      W. 

Fresenius  and  L.  Griinhut.    Z.  anal.  Chem.    1921, 
60,  457—463. 

One  hundred  cc.  of  the  wine  is  acidified  with  sul- 
phuric acid,  extracted  with  ether,  the  ethereal 
solution  is  shaken  with  dilute  sodium  hydroxide 
solution,  and  the  alkaline  solution  is  separated  and 
evaporated  to  dryness.     The  dry  residue  is  heated 


at  130°  C.  for  1  hr.  to  remove  any  traces  of  formal- 
dehyde which  may  be  present,  then  dissolved  in 
10  cc.  of  water  and  5  cc.  of  hydrochloric  acid  (sp. 
gr.  1T2)  and  0'4  g.  of  magnesium  turnings  added. 
After  2  hrs.,  5  cc.  of  the  mixture  is  distilled  aud 
the  distillate  is  mixed  with  2  cc  of  milk  and  7  cc 
of  hydrochloric  acid  (sp.  gr.  1T2)  containing  a  trace 
of  ferric  chloride.  If  the  wine  contained  formic 
acid  or  its  compounds,  a  violet  coloration  develops 
in  the  liquid  and  on  the  precipitated  milk  proteins. 

— W.  P.  S. 

Asphodel  tubers;  Technical  utilisation  of [for 

production  of  alcohol].  M.  Bamberger,  A.  Janice, 
and  G.  Schluck.  Oesterr.  Chem.-Zeit.,  1922,  25, 
1—4.    (Cf.  Savini,  J.,  1919,  302  a.) 

Alcohol  of  good  quality  may  be  produced  from  the 
tubers  of  Asphodelus  ramosus,  L.,  a  plant  widely 
distributed  in  the  countries  bordering  on  the 
Mediterranean,  by  boiling  the  pulped  or  sliced 
tubers  with  dilute  sulphuric  acid,  e.g.,  0'25%, 
straining  the  mash  as  thoroughly  as  possible,  and 
fermenting  the  juice  with  a  pure  culture  yeast 
acclimatised  to  similar  worts.  Using  a  selected 
distillery  yeast  the  authors  obtained  a  yield  equiva- 
lent to  5'29  1.  of  absolute  alcohol  per  100  kg.  of 
tubers  in  laboratory  experiments,  and  on  a  large 
scale  it  should  be  possible  to  obtain  4 — 5  1.  The 
tubers  are  widely  believed  to  contain  a  toxic  sub- 
stance which  is  destroyed  or  volatilised  by  heating. 
The  possibility  of  this  substance  passing  into  the 
alcohol  produced  was  not  investigated  by  the 
authors. — J.  H.  L. 

Spirit  from  sulphite-cellulose  waste  liquors;  Amount 

of  acetaldehyde   and  paraldehyde  in  .     E. 

Heuser,  K.  Schwarz,  and  H.  Magnus.  Papier- 
fabr.,  1922,  20,  1—5. 

The  first  runnings  obtained  in  the  rectification  of 
raw  sulphite  spirit  contain  acetaldehyde  in  amounts 
which  sometimes  exceed  10 — 11%.  Part  of  the 
aldehyde  may  be  present  in  a  polymerised  form  as 
paraldehyde,  especially  in  old  samples.  The  un- 
polymerised  aldehyde  may  be  determined  by  treat- 
ing a  dilute  aqueous  solution  of  the  sample,  con- 
taining not  more  than  0'5%  of  aldehyde,  with  an 
excess  of  potassium  bisulphite  solution,  and 
titrating  the  excess  with  iodine  solution  (cf.  Ripper, 
Monatsh.,  1907,  21,  1084).  The  same  method  applied 
after  the  sample  has  been  boiled  with  dilute  sul- 
phuric acid  for  an  hour  under  a  reflux  condenser,  to 
depolymerise  the  paraldehyde,  gives  the  total  alde- 
hyde present.  Two  samples  of  first  runnings 
analysed  by  the  authors  contained  261  and  5"48% 
of  unpolymerised  aldehyde  and  1"28  and  0'54%  of 
paraldehyde.  The  recovery  of  the  greater  part  of 
the  aldehyde  present  in  first  runnings,  in  a  con- 
dition of  more  than  90%  purity,  would  probably 
require  two  or  three  rectifications. — J.  H.  L. 

Tannase.  Freudenberg  and  Vollbrecht.  See  XV. 
Trypsin.    Ringer.    See  XIXa. 

Patents. 

Yeast;  Production  of  .     The  Fleischmann  Co., 

Assees.  of  M.  Nilsson  and  N.  S.  Harrison.    E.P. 
148,373,  9.7.20.    Conv.,  7.1.19. 

Molasses  or  similar  fermentable  material  is  diluted 
with  water  mixed  with  phosphorus-containing 
material  (e.g.,  phosphates)  and  nitrogen-containing 
substances  (e.g..  ammonium  salts),  inoculated  with 
yeast,  and  whilst  maintained  at  25° — 30°  C, 
aerated  for  24  hrs.  From  50 — 60%  of  yeast  is 
produced. — A.  G.  P. 

Yeast   preparations;   Production   of   durable    wine 

.    F.  Sauer.    G.P.  343,138,  5.9.20. 

For  the  conservation  or  transport  of  preparations 


Vol.  XLI.,  So.  5] 


Cl.  XIXa.— FOODS. 


191  A 


of  wine  yeast,  dried  fruits  rich  in  sugar,  sterilised 
by  heat,  are  inoculated  with  the  yeast  and  then 
dried  at  a  low  temperature  in  sterile  air. — J.  H.  L. 

Beverages;     Preparing     low-alcoholic     and     non- 
alcoholic    .      H.    Heuser.      U.S. P.    1,401,700, 

27.12.21.     Appl.,  12.1.20. 

A  small  proportion  of  volatile  saturated  aliphatic 
acid  is  added  to  a  de-alcoholised  fermented  beverage 
to  improve  the  flavour  and  bouquet. — J.  H.  L. 


XIXa.-FOODS. 

Goat's  milk;  Simplified  molecular  constant  of . 

Fonzes-Diacon.    Ann.  Falsif.,  1921,  14,  404—406. 

The  simplified  molecular  constant  (cf.  J.,  1916,  613; 
1919,  475  a)  of  goat's  milk  is  about  90.  The  com- 
position of  certain  samples  of  goat's  milk  is  similar 
tj  that  of  cow's  milk  containing  10%  of  added 
water,  but  the  simplified  molecular  constant  distin- 
guishes the  one  from  the  other. — W.  P.  S. 

Coconut  oil  in  butter;  New  method  for  the  detec- 
tion   of  .     C.   F.   Muttelet.     Comptes  rend., 

1922,  174,  220—223. 

The  sterols  present  in  the  butter  are  precipitated 
from  the  free  fatty  acids  by  means  of  digitonin  and 
converted  into  the  acetates.  If  the  acetate  melts 
above  114'2°  C.  the  presence  of  vegetable  oil  is 
indicated. — W.  G. 

Foodstuffs;    Determination    of   moisture    in   . 

G.    A.    Stutterheim.      Pharm.    Weekblad,    1922, 
59,  68—70. 

The  apparatus  proposed  by  Meihuizen  for  estima- 
tion of  moisture  by  use  of  a  current  of  air  dried  over 
sulphuric  acid  (cf.  E.P.  114,620;  J.,  1918,  357  a) 
gives  satisfactory  results  only  at  a  temperature  of 
100°  C.  If  the  dried  material  be  weighed  whilst 
still  warm,  the  correction  of  3  mg.  suggested  is  in 
many  cases  far  too  )ow,  differences  of  19  mg.  being 
not  uncommon.  Sulphuric  acid  desiccators  are  not 
satisfactory,  as  samples  left  overnight  have  been 
found  to  gain  up  to  15  mg.  in  weight. — S.  I.  L. 

Starch  syrup  in  fruit  juices,  jams,  etc.;  Formula. 

for  the  calculation  of .    A.  Rinck.    Z.  Unters. 

Nahr.  Genussm.,  1921,  42,  372—382. 

The  method  of  Juckenack  and  Pasternack  (Z. 
Unters.  Nahr.  Genussm.,  1904,  8,  10)  is  used  for 
the  practical  determinations.  10  g.  of  the  material 
containing  sugar  is  dissolved  in  100  e.c.  of  water, 
the  sp.  gr.  of  the  extract  determined  and  its  sugar- 
content  thus  obtained.  The  polarisation  of  the 
solution  after  clarification  with  lead  acetate  and 
Clerget  inversion  is  then  determined  and  the  figure 
for  the  original  solution  (10  g.  in  100  c.c.)  calcu- 
lated. The  following  formula?  can  then  be  applied  : 
[(Extract  x0-43)  +  polarisation]/0-311 

=  %  of  anhydrous  starch  svrup, 
[ (Extract  x  0'43)  +  polarisation]  / 0255 

=  %  of  starch  svrup  containing  water, 
[(Extract  x  2'682)  -  polarisation]  /  0-311 

=  %  of  sucrose. 
The  use  of  these  formulae  renders  unnecessary  the 
calculation  of  the  specific  rotation  of  the  extract. 

— H.  C.  R. 

Vitamins  from  the  standpoint  of  structural 
chemistry.  R.  R.  Williams.  J.  Ind.  Eng.  Chem., 
1921,  13,  1107—1108. 

0-Hydroxypymdine  is  shown  by  titration  with 
bromine  to  be  non-enolic  in  neutral  solution,  like 
the  a-  and  7-compounds.  It  forms  a  N-methyl  ether 
which  is  a  viscous  oil,  miscible  with  water  in  all 
proportions  and  not  volatile  in  steam.  Three 
modifications  of  4-phenylisocytosine  were  prepared. 


two  of  which  had  identical  melting  points  and 
crystallographic  properties  but  differed  greatly  in 
their  solubility  in  alcohol.  Two  freshly  prepared 
modifications,  corresponding  in  appearance  to  the 
/3  and  8  forms  of  Johnson  and  Hill  (J.  Amer.  Chem. 
Soc,  1914,  36,  1201),  were  fed  to  pigeons  and  all 
the  birds  receiving  one  of  them  lost  weight  less 
rapidly  than  those  receiving  the  other.  After  being 
kept  for  two  months  the  two  preparations  showed 
no  physiological  difference.  The  result  is  what 
would  be  expected  if  the  one  preparation  contained 
a  small  quantity  of  an  unstable  antineuritic  sub- 
stance which  disappeared  on  keeping. — H.  C.  R. 

Vitamins  from  the  standpoint  of  physical  chemistry. 
V.  K.  La  Mer.  J.  Ind.  Eng.  Chem.,  1921,  13, 
1108—1110. 

The  amount  of  vitamin  A  in  skimmed  milk  is 
roughly  equal  to  that  contained  in  the  fat  layer. 
The  water-soluble  B  vitamin  is  somewhat  soluble  in 
tatty  oils.  The  B  vitamin  is  adsorbed  by  fuller's 
earth  and  by  dialysed  iron.  Blood  charcoal  removes 
a  measurable  amount  of  vitamin  C  from  orange 
juice.  The  extent  of  adsorption  is  very  sensitive 
to  changes  in  the  hydrogen  ion  concentration. 
Vitamin  C  is  partially  retained  on  filtration 
through  Chamberland  candles.  The  destruction  of 
the  antiscorbutic  vitamin  by  heat  is  a  chemical 
reaction,  the  velocity  of  which  is  accelerated  by 
increase  in  temperature  according  to  the  equation 
X  =  K.t'  where  X  =  pereentage  destruction,  t  =  time 
in  hours,  and  values  of  K  are  0"26,  039,  and  0'49 
for  60°,  80°,  and  100°  C.  respectively.  These  data 
exclude  the  possibility  of  vitamin  C  being  of  a 
protein-  or  enzyme-like  nature.  Heating  at  a 
reduced  hydrogen-ion  concentration  resulted  in  an 
increased  velocity  of  destruction.  Bubbling  oxygen 
through  the  solution  at  100°  C.  caused  the  complete 
destruction  of  the  vitamin  in  1  hr.,  both  in  acid  and 
in  weakly  alkaline  solution.  Bubbling  hydrogen 
through  caused  somewhat  greater  destruction  than 
when  no  gas  was  used. — H.  C.  R. 

Vitamin;  Experiments  on  the  isolation  of  the  anti- 
neuritic   .     A.  Seidell.     J.  Ind.  Eng.  Chem., 

1921,  13,  1111—1115. 

Of  the  insoluble  compounds  obtained  from  concen- 
trated vitamin  extracts  from  brewer's  yeast  by 
successive  precipitation  with  silver  nitrate  and 
ammoniacal  silver  nitrate,  the  first  was  found  to 
consist  principally  of  adenine-silver  and  the  second 
of  a  silver  compound  of  a  base  closely  related  to 
histidine.  Feeding  experiments  on  pigeons  showed 
that  the  silver  nitrate  precipitate  was  inactive,  but 
that  the  ammoniacal  silver  precipitate  caused 
prompt  and  complete  cures  of  polyneuritis  in  doses 
of  4  mg.  Doses  of  4 — 8  mg.  on  alternate  days  did 
not,  however,  prevent  the  loss  of  weight  of  birds 
fed  on  a  diet  of  polished  rice.  Both  precipitates 
tenaciously  retain  nitrate  or  nitric  acid,  and  this 
remains  in  solution  after  removal  of  the  silver,  with 
the  result  that  the  crystals  obtained  are  in  both 
cases  nitrates.  Feeding  tests  of  the  crystalline 
compounds  on  pigeons  showed  that  they  retain  very 
little,  if  any,  of  the  anti-neuritic  properties  of  the 
ammoniacal  silver  precipitate.  The  loss  of  activity 
may  be  due  to  the  presence  of  nitric  acid  in  the 
crystals.— H.  C.  R. 

Lupins  and  their  utilisation.  C.  Brahm.  Z.  angew. 
Chem.,  1922,  35,  45—48. 

A  review  of  the  literature  concerning  the  com- 
position of  lupins  from  the  point  of  view  of  fodder 
and  of  the  methods  of  removing  the  noxious  alka- 
loidal  substances.  Attention  is  confined  to  the 
white,  blue,  and  yellow  lupins  (Lupinus  albus, 
L.  august  if  olius,  and  L.  luteus).  Numerous  analyses 
of  these  varieties  are  recorded. — A.  G.  P. 


192  a 


Cl.  XIXa.— FOODS. 


[Mat.  15,  1022. 


Trypsin ;  Influence  of  reaction  on  the  action  of . 

I.    W.  E.  Ringer.    Z.  physiol.  Chem.,  1921,  116, 

107—128. 
The  optimum  H-ion  concentration  for  the  action 
of  trypsin  at  37°  C.  was,  under  certain  conditions, 
found  to  be  pH  =  ll'3.  Strongly  acid  solutions 
inactivated  the  enzyme.  At  a  H-ion  concentration 
of  jih  =  3'15  trypsin  could  be  kept  unaltered  at 
37°  C.  As  the  H-ion  concentration  diminished  the 
inactivation  became  more  marked.  At  pH  =  12  the 
enzyme  was  almost  instantaneously  destroyed.  The 
maximum  imbibition  of  fibrin  took  place  at  a  re- 
action which  had  an  instantaneous  inactivating 
action  on  trypsin. — S.  S.  Z. 

Tryptophan;    Colorimetric    experiments    on    . 

VI.  The  tryptophan  content  of  some  foods  and 
the  tryptophan  requirement  of  man.  O.  Ftirth 
and  F.  Lieben.  Biochem.  Zeits.,  1921,  122, 
58—65. 

The  tryptophan  content  of  a  large  number  of  food- 
stuffs was  determined  colorimetrically  by  Voisenet's 
test.  As  the  presence  of  a  large  proportion  of  fats 
or  starch  interferes  with  the  reaction,  the  proteins 
were  isolated  in  some  cases.  On  an  average  the 
tryptophan  content  of  nutritive  protein  is  between 
2  and  2-4%.— H.  K. 

Protein  derivative;  A   basic  .     K.   Felix.     Z. 

physiol.  Chem.,  1921,  116,  150—165. 

Basic  protein  derivatives  were  obtained  from  the 
mucous  membrane  of  the  intestine,  from  the  lym- 
phatic glands,  and  from  the  thymus.  They  were 
prepared  by  extracting  the  tissues  with  dilute 
hydrochloric  acid,  precipitating  the  histone  by 
saturating  with  sodium  chloride,  and  finally  precipi- 
tating the  basic  derivative  with  phosphotungstic 
acid.  The  distribution  of  nitrogen  in  these  deriva- 
tives has  been  determined.  Trypsin  did  not  digest 
these  substances. — S.  S.  Z. 

Calcium  sulphate;  Solubility  of in  products  of 

protein  hydrolysis.  E.  P.  Haiissler.  Landw. 
Versuchs-Stat.,  1921,  99,  61—64. 

The  products  of  protein  (peptone)  hydrolysis  raise 
appreciably  the  solubility  of  calcium  sulphate  in 
water.  This  may  be  due  to  the  formation  of  double 
salts.  It  is  probable  that  a  similar  increase  in 
solubility  occurs  with  calcium  phosphate. — G.  W.  R. 

Vitamin  B.    Von  Euler  and  Myrback.    See  XVIII. 

Albumin  in  milk.    Meillere  and  de  Saint-Rat.    See 
XXIII. 

Patents. 

Edible  shell  fish;  Method  and  means  for  purifying 
.  A.  T.  Masterman.    E.P.  173,285,  20.9.20. 

The  shell  fish  are  mechanically  cleaned  and  placed 
in  a  tank  of  brine  and  treated  with  chlorine,  either 
gaseous,  or  as  hypochlorite  or  produced  by  electro- 
lysis of  the  brine. — A.  G.  P. 

Condensed  milk ;  Manufacture  of .  R.  A.  Wallis 

and  G.  Martin.     E.P.  173,697,  12.1.21. 

Fresh  milk  is  evaporated  to  about  a  third  of  its 
volume  in  a  film  evaporator,  in  which  it  is  heated 
for  less  than  two  seconds,  at  not  above  120°  F. 
(49°  C).  A  mixture  of  dried  milk  (1  pt.)  and  sugar 
(2J  pts.)  is  added  to  obtain  the  right  consistency. 
The  product  may  be  stabilised  by  the  addition  of 
emulsifying  agents  (Irish  moss  mucilage,  traga- 
canth,  gelatin,  etc.). — A.  G.  P. 

Whey;  Process  for  the  extraction  of  proteins  from 
.    D.  Thomson.    E.P.  173,831,  13.9.20. 

The  acidity  of  whey  is  reduced  in  stages  by  suc- 
cessive additions  of  alkali,  the  protein  precipitated 


at  each  stage  is  removed,  washed  with  alcohol, 
rendered  approximately  neutral,  and  dried. 

—A.  G.  P. 

Powdered  whey;   Process  for  making  stable  ■ 

from  dried  whey.    Metallbank  und  Metallurgische 
Ges.     G.P.  344,450,  15.5.20. 

The  dried  whey  is  allowed  to  take  up  moisture  from 
the  air  or  is  artificially  moistened,  and  is  then  dried 
until  it  will  mill  to  a  loose  powder. — H.  C.  R. 

Butter  fat;  Manufacture  of  .     E.  B.  Phelps, 

A.  F.  Stevenson,  and  J.  C.  Baker,  Assrs.  to  A   W 
Johnson.  U.S. P.  1,404,054, 17.1.22.  Appl.,  31.1.20. 

Butter  is  melted  and  washed  first  with  pure  water. 
then  with  acidulated  water  and  finally  with  pure 
water,  the  fat  being  separated  from  the  wash  water 
in  each  stage. — A.  G.  P. 

Meat;  Preserving  and  storing  .  F.  T.  Duns- 
ford.    E.P.  173,847,  5.10.20. 

Prior  to  or  after  placing  the  meat  in  storage 
chambers  it  is  sprayed  with,  or  dropped  in,  a  solu- 
tion containing  a  detergent  and  emulsifying  agent 
(e.g.  soap)  and  an  antiseptic  of  an  aromatic  or 
terpene  nature  {e.g.,  thymol,  carvacrol,  etc.). 

—A.  G.  P. 

Margarine  and  other  edible  fats;  Manufacture  of 

.     W.  Clayton,  C.  Nodder,  J.   F.  Gill,  and 

J.  N.  Chaviara.    E.P.  174,147,  13.10.20. 

Automatic  control  of  the  consistency  of  the  finished 
product  is  obtained  by  means  of  a  slide  valve  con- 
trolling the  steam  supply  to  the  blender  and  cooler. 
The  valve  is  actuated  by  a  piston  moved  by  fluctua- 
tions in  the  pressure  exerted  by  the  material  in  the 
pipe  line  leading  from  a  pump  to  the  cooler.  Any 
increase  in  the  solidity  of  the  material  causes  an 
increase  of  pressure  in  this  pipe,  which  results  in 
an  increased  steam  supply  and  consequent  reduction 
in  the  hardness  of  the  product. — H.  C.  R. 

Organic  and  inorganic  substances  \_e.g.  meat]; 
Method  of  treating  .  Method  of  and  appa- 
ratus for  treating  organic  substances.  J.  N. 
Alsop,  Assr.  to  Packers  Meat  Smoking  Corp. 
U.S. P.  (a)  1,402,203  and  (b)  1,402,204,  3.1.22. 
Appl.,  25.11.19  and  12.11.20. 

(a)  Meat  is  cured  by  connecting  it  with  the  negative 
pole  of  an  electric  circuit,  and  while  in  the  elec- 
trified condition  subjecting  it  to  the  action  of  a 
gaseous  treating  agent,  (b)  The  meat  is  connected 
with  the  negative  pole  of  an  electric  circuit,  and  is 
carried  by  an  endless  conveyor  past  the  positive  pole 
in  a  chamber  in  which  it  can  be  subjected  to  a  smok- 
ing agent. — A.  G.  P. 

Artificial  milk  products;  Process  for  the  prepara- 
tion of  — .  H.  T.  Habbema.  U.S. P.  1,403,405, 
10.1.22.    Appl.,  27.5.19. 

Fats  are  emulsified  in  liquids  containing  albumin- 
ous substances,  and  which  are  made  nearly  neutral 
but  not  alkaline  by  addition  of  an  alkaline  sub- 
stance. The  emulsion  can  be  made  into  butter  or 
cheese. — A.  G.  P. 

Flavouring  extract  and  process  of  preparing  same. 
J.  B.  Albach.  U.S. P.  1,403,473,  17.1.22.  Appl., 
24.5.18. 

An  alcoholic  extract  of  the  flavouring  material  is 
mixed  with  a  flavourless  soluble,  heavy  liquid  of  low 
volatility  and  non-crystallisable.  The  mixture  is 
warmed  to  a  temperature  not  above  125°  F.  (51°  C.) 
and  allowed  to  stand.  The  alcohol  is  then  removed, 
and  the  remaining  liquid  reduced  to  about  the  same 
volume  as  the  original  extract. — A.  G.  P. 

Peptones.    U.S.P.  1,403,892.    See  XX. 


Vol.  XLI.,  Xo.  5.] 


Cl.  XIXb.— WATER  PURIFICATION;  SANITATION. 


193  a 


XIXb.- WATER   PUBLICATION ; 
SANITATION. 

Carbon   dioxide;  Determination  of  free  and  com- 
bined   [in  loafer].     J.  A.  Shaw.     J.  Ind.  Eng. 

Chem.,  1921,  13,  1151—1152. 

The  apparatus  consists  of  a  cylindrical  bulb  pro- 
vided at  the  top  with  a  three-way  tap  which  affords 
communication  with  a  measuring  burette  or  with 
a  small  funnel ;  another  three-way  tap  at  the 
bottom  places  the  cylindrical  bulb  in  communica- 
tion with  a  second  bulb  below  the  first  or  with  a 
tube  leading  to  a  mercury  reservoir,  this  tube  also 
being  connected  with  the  bottom  of  the  second 
bulb.  The  whole  apparatus  is  filled  with  mercury, 
a  suitable  quantity  of  the  water  sample  (together 
with  a  quantity  of  sulphuric  acid  if  the  total  carbon 
dioxide  is  to  be  determined)  is  introduced  through 
the  funnel  into  the  cylindrical  bulb,  there  subjected 
to  a  low  pressure  (by  lowering  the  mercury  reser- 
voir), and  any  liberated  gas  is  passed  over  into  the 
burette;  the  liquid  is  then  drawn  completely  into 
the  lower  bulb,  thus  producing  a  partial  vacuum 
in  the  upper  bulb.  Communication  between  the 
two  is  then  cut  off  by  turning  the  tap,  and  the 
reservoir  is  raised  so  that  mercury  enters  the  upper 
bulb  by  means  of  the  side  tube  and  the  other 
branch  of  the  three-way  tap.  By  repeating  these 
operations  several  times,  all  carbon  dioxide  is 
liberated  from  the  water  and  collected  in  the 
burette,  where  its  volume  may  be  noted.  (Cf.  S. 
Harvey,  Analyst,  1894,  19,  121.)— W.  P.  S. 

Cresol;  Comparison  of  the  antiseptic  value  of  

in  aqueous  and  in  soap  solutions.  B.  Lange.  Z. 
Hyg.  u.  Infekt-Krankh.,  1921,  94,  82—106.  Cheni. 
Zentr.,  1922,  93,  II.,  172. 

The  improvement  in  the  antiseptic  action  of  cresol 
by  the  addition  of  soap,  depends  on  the  use  of  a 
suitable  soap  (e.g.  potash-linseed  oil  soap)  and  the 
correct  cresolisoap  ratio.  The  relative  improve- 
ment is  more  apparent  in  dilute  solutions  (0'2 — 
0'4%)  than  in  more  concentrated  ones.  In  the 
action  on  strong  bacterial  growths  no  advantage 
was  observed  in  the  use  of  soap.  It  is  pointed  out 
that  no  method  of  determining  antiseptic  values  is 
suitable  for  all  purposes  —  different  substances 
requiring  different  methods  of  evaluation. 

—A.  G.  P. 

Antisepsis;  Chemo-therapeutic  .     Pt.  III.     A 

new  antiseptic  (2  -  ethoxy  -  6.9  -  diaminoacridine 
hydrochloride).  J.  Morgenroth,  R.  Schnitzer, 
and  E.  Rosenberg.  Deutsch.  med.  Woch.,  1921, 
47,  1317—1320.  Chem.  Zentr.,  1922,  93,  I.,  213— 
214. 
Laboratory  experiments  show  that  the  2-alkoxy- 
derivatives  of  9-ethanolaminoacridine  have  a  strong 
germicidal  action  upon  streptococci.  These  deriva- 
tives are  effective  in  the  following  dilutions :  2- 
methoxv-,  1:60,000;  2-ethoxy-,  1:80,000;  2-allyloxy-, 
1:100,000;  2-propyloxy-,  l:*3,000;  2-isobutyloxy-, 
1:40,000;  2-isoamyloxy-,  1:16,000.  Whilst  the 
laboratory  experiments  showed  no  great  differences, 
animal  experiments  showed  that  the  2-ethoxy-com- 
pound  was  considerably  the  most  effective,  and  that 
the  allyloxy-compound  was  comparatively  ineffec- 
tive. Further  experiments  showed  that  the  6.9- 
diaminoacridines  were  the  best.  The  greatest  effec- 
tiveness was  shown  by  2-ethoxy-6.9-diamino- 
acridine,  the  hydrochloride  of  which  is  sold  under 
the  name  of  "  rivanol."  With  a  dilution  of  1:40,000 
complete  sterilisation  could  be  obtained  in  the  sub- 
cutaneous connective  tissue  of  the  mouse.  The 
action  sets  in  very  quickly  and  is  permanent.  The 
compound  is  soluble  in  water  on  warming,  and  the 
solution  is  neutral  and  of  a  clear  yellow  colour,  but 
darkens  on  exposure  to  light  with  the  formation  of 
a  deposit. — J.  H.  J. 


Pyromucic  acid;  Bactericidal  action  of .    H.  P. 

Kaufmann.     Ber.,  1922,  55,  289—290. 

Pyromucic  acid  in  05%  and  1%  solution  kills  B. 
coli  within  5  mins.,  in  0'25%  solution  within 
30  mins.,  and  in  0"1%  solution  within  7  hrs. ; 
development  is  arrested  in  0'05%  solution. 
Staphylococcus  aureus  is  rather  more  resistant  to 
pyromucic  acid.  The  salts  of  the  latter  have  only 
slight  bactericidal  action.  In  its  effect,  pyromucic 
acid  is  very  similar  to  benzoic  acid,  but  the  latter  is 
much  superior  in  practical  application  to  products 
such  as  fruit  and  meat. — H.  W. 

Patents. 

Softening  of  water;  Process  for  the  .     G.  G. 

Hepburn.  E.P.  173,255,  24.7.20. 
Water  to  be  softened  is  filtered  through  a  bed  of 
peat  or  an  inert  substance  mixed  with  humic  and 
ulmic  acids.  When  the  peat  becomes  exhausted  it 
is  regenerated  by  treatment  with  a  solution  of  an 
alkali  salt  and  subsequent  washing.  The  peat  may 
be  enriched  by  the  addition  of  humic  and  ulmic  acid 
substances  which  form  insoluble  salts  with  the 
alkalis  and  alkaline-earth  metals. — J.  H.  J. 

Heating  and  de-aerating  liquids  [boiler-feed  water']. 
D.  B.  Morison.    E.P.  173,534,  24.6.20. 

Aerated  water  to  be  treated  is  introduced  into  the 
bottom  of  a  pipe-like  structure  where  it  meets  thin 
streams  of  steam,  which  causes  a  liberation  of  air 
from  the  water,  and  both  water  and  air  pass 
upwards  at  the  same  rate  to  the  top  of  the  struc- 
ture, when  the  air  escapes  iuto  a  hood  and  outlet, 
and  the  water  overflows  and  passes  through  a  dis- 
charge pipe  at  the  same  level.  The  air  outlet  may 
be  provided  with  a  cooling  device.  Between  the 
de-aerator  and  a  boiler-feed  pump  a  tank  and  float 
may  be  placed  to  permit  of  the  treated  water  pass- 
ing directly  to  the  pump,  only  any  excess  going  to 
the  tank. — J.  H.  J. 

De-aeratinq  and  de-oxidisinq  boiler  feed  and  other 
water.  D.  B.  Morison.  E.P.  173,301,  23.9.  and 
8.10.20,  and  22.6.21. 
Water  to  be  treated  is  passed  through  a  heating 
and  de-aerating  apparatus  (cf.  supra)  and  then 
through  a  de-oxidising  chamber  containing  iron 
shavings  in  frames.  Any  of  the  frames  may  be 
raised  as  required  and  transferred  to  a  vessel  con- 
taining a  cleansing  reagent  without  stopping  the 
treatment. — J.  H.  J. 

Destruction  of  rodents  (rats,  mice,  etc.);  Means  for 

the .  Bavaria  Ges.  Fabrikations-  und  Export- 

Geschaft  Chem.  Prod.  und.  landw.  Maschinen 
und  Gerate.     G.P.  343,863,  20.7.20. 

Theobromine  is  mixed  with  dough  which  is  baked 

in  small  cakes;  or,  it  may  be  added  to  a  mixture  of 

sterilised  milk  and  sugar. — A.  G.  P. 

Fungicide  and  insecticide.     Farbenfabr.  vorm.  F. 

Bayer  und  Co.     G.P.  343,864,  28.2.15. 
Alkyloxyalkyl  ethers  and  alkyl  ethers  of  phenol 
and  cresol  can  be  used  in  the  form  of  vapour,  or, 
mixed  with  a  porous  powder  as  a  paste,  or  in  solu- 
tion.—A.  G.  P. 

Vine  louse;  Means  of  exterminating  .     J.  H. 

Horst.    G.P.  343,865,  20.7.20. 
The  preparation  is  a  mixture  of  pyridine,   nitro- 
benzene, and  chlorine.     While  the  individual  con- 
stituents are  injurious  to   the  plant,   the  mixture 
kills  lice  and  eggs,  without  affecting  the  vine. 

—A.  G.  P. 

Parasiticide.    J.  Mengel.    G.P.  343,866,  27.7.20. 

A  parasiticide  is  dissolved  in  o-dichlorobenzene 
The  preparation  adheres  to  the  hair  and  skin  with- 
out producing  oiliness. — A.  G.  P. 


194  a 


Cl.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &c. 


[Mar.  13,  1922. 


XX.— ORGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Caffeine;  Silicotungstic  acid  applied  io  the  estima- 
tion of  .     A.   Azadian.     Bull.    Soc.    Chim. 

Bclg.,  1922,  31,  15—18. 

Silicotungstic  acid  may  be  used  for  the  estimation 
of  caffeine  in  the  same  manner  as  it  is  used  for 
nicotine.  In  the  presence  of  5%  hydrochloric  acid 
it  gives  with  caffeine  a  precipitate  having  the  com- 
position, 12W03,Si02,2H20,3CBH1I,02N„6H:!0,  which 
on  ignition  leaves  a  residue  of  the  composi- 
tion, 12W03,Si02.  The  factor  for  converting  the 
weight  of  the  residue  into  weight  of  caffeine  is 
02646.  The  reagent  is  sensitive  to  caffeine  at  a 
dilution  of  1  in  50,000.— W.  G. 

Strychnine;    Acid    methylarsinate    of    ■ .      J. 

Bouillot.     J.  Pharm.  Chim.,  1921,  24,  289—294; 
1922,  25,  92—97. 

Strychnine  forms  two  well-defined  soluble  salts 
with  methylarsinic  acid  containing  respectively  one 
and  two  mols.  of  the  alkaloid  combined  with  1  mol. 
of  the  acid.  It  is  the  former  or  acid  salt  which  con- 
stitutes in  a  more  or  less  pure  condition  the 
strychnine  methylarsinate  of  commerce.  The  salt 
was  prepared  in  a  pure  state  by  dissolving  strych- 
nine (1  mol.)  in  a  solution  of  methylarsinic  acid  in 
70%  alcohol,  and  allowing  to  crystallise  in  a  vacuum 
over  sulphuric  acid.  It  forms  long  colourless 
needles,  soluble  in  14'5  pts.  of  water  at  20°  C,  and 
in  146  pts.  of  90%  alcohol.  It  has  the  composition 
CH,.AsO(OH)2,C21H2202N2,2HaO.  It  is  stable  at 
ordinary  temperatures,  but  decomposes  when 
heated  above  60°  C.  Some  commercial  samples 
examined  contained  a  larger  percentage  of  arsenic 
than  is  required  by  the  above  formula.  This  is  due 
to  the  presence  of  free  methylarsinic  acid,  the  total 
amount  of  which  in  the  salt  can  be  accurately  deter- 
mined by  adding  to  a  solution  of  the  salt  a  known 
excess  of  N  / 10  6odium  hydroxide,  filtering  from  the 
precipitated  strychnine,  and  titrating  back  the 
excess  of  alkali  in  an  aliquot  portion  with  AT/10 
sulphuric  acid,  using  as  indicator  rosolic  acid 
towards  which  methylarsinic  acid  behaves  as  a 
monobasic  acid. — G.  F.  M. 

Aniline  glucoside  (Glucose  anilide) .  T.  Sabalitschka. 

Ber.  deuts.  Pharm.  Ges.,  1921,  31,  439—445. 
Aoetobromoglucose  reacts  with  aniline  at  ordinary 
temperatures,  and  after  24  hrs.  the  initially  clear 
solution  sets  to  a  solid  mass  from  which  aniline 
tetra-acetyl-d-glucoside  can  be  isolated  in  long 
needles,  m.p.  95° — 96°  C.  On  hydrolysis  in  methyl 
alcoholic  solution  with  barium  hydroxide  it  was 
converted  into  aniline  rf-glucoside.  This  substance 
could  not  be  obtained  crystalline.  It  was  deposited 
from  organic  solvents  as  a  gelatinous  mass  which  on 
drying  formed  a  white  powder,  m.p.  147°  C, 
[a]/^  -52'4  (after  4  days)  Aniline  glucoside  thus 
prepared  was  identical  with  the  glucose  anilide 
obtained  by  Sorokin  (J.  prakt.  Chem.,  1888,  37, 
292)  by  the  direct  action  of  aniline  on  dextrose,  and 
to  which  the  structure  of  a  Schiff's  base  had 
originally  been  ascribed. — G.  F.  M. 


Sera;  Action  of  metals  on 
Reitler.     Biochem.  Zeits. 


.     L.  Hess  and  R. 

1921,  123,  51—68. 

Active  sera  are  more  easily  precipitable  by  polished 
copper  than  inactive  (complement-free)  sera.  This 
observation  is  made  use  of  for  examining  a  number 
of  biological  properties  of  sera. — H.  K. 

Thymine;  New  method  for  the   detection  of  ■ . 

6.  Baudisch  and  T.  B.  Johnson.     Ber.,  1922,  55, 

18—21. 
The  method  depends  on  the  conversion  of  thymine 
into   urea,    acetylcarbinol,    and    pyruvic   acid,    the 
latter  being  identified  as  indigo.     Preliminary  ex- 


periments showed  that  the  action  is  not  influenced 
by  the  presence  of  uracil,  cytosine,  or  sugar.  An 
aqueous  solution  of  sodium  bicarbonate  is  treated 
successively  with  aqueous  solutions  of  thymine  and 
ferrous  sulphate;  the  mixture  is  thoroughly 
agitated  with  air  which  causes  the  gradual  conver- 
sion of  the  white  ferrous  bicarbonate  into  ferric 
hydroxide.  The  latter  is  removed  and  the  filtrate 
is  concentrated  on  the  water  bath,  whereupon  the 
solution  which  is  at  first  odourless  and  does  not 
reduce  Fehling's  solution  acquires  a  characteristic 
odour  and  strong  reducing  properties,  probably 
owing  to  a  Cannizarro  reaction  resulting  in  the 
formation  of  acetylcarbinol  and  pyruvic  acid.  The 
presence  of  the  former  is  conveniently  established 
by  distillation  of  the  liquid  and  treatment  of  the 
distillate  with  o-aminobenzaldehyde ;  the  solution  is 
boiled  till  the  odour  of  the  latter  disappears,  cooled, 
acidified  w*ith  hydrochloric  acid,  and  made  alkaline 
again  with  sodium  bicarbonate.  The  presence  of 
3-hydroxyquinaldine  is  shown  by  the  blue  fluor- 
escence of  the  solution,  the  reaction  being  unusually 
sensitive.  The  residue  from  the  distillation  con- 
tains the  pyruvic  acid,  the  presence  of  which  is 
detected  by  the  formation  of  indigo  after  addition 
of  o-nitrobenzaldehyde  and  sodium  hydroxide.  The 
dyestuff  is  extracted  with  chloroform  •  the  formation 
of  a  blue  solution  enables  the  presence  of  2—5  mg. 
of  thymine  to  be  established  with  certainty. — H.  W. 

/S-Methylanihraquinone;  Derivatives  of  — — .  7. 
Synthesis  of  chrysophanic  acid  (1 .8-dihydroxyS- 
■methylanthraquinone)  and  1.5  -dihydroxy  -3  - 
methylanthraquinone.  R.  Eder  and  C.  Widmer. 
Helv.  Chim.  Acta,  1922,  5,  3—17. 

o-Nitrophthalic  anhydride  and  m-cresol  in  the 
presence  of  boric  acid  at  170°- — 180°  C.  give  3.6- 
dimethvl-3'(or  6')-nitrofluoran,  m.p.  240°— 241°  C, 
a  substance,  C2,Hl50G,  m.p.  210°— 211°  C,  6-nitro- 
o-2'-hydroxy-p'-toluoylbenzoic  acid, 

C0H3(CH3)(OH).CO.CaH;,(NO2).CO2H, 
pale-green  prisms,  m.p.  227°  C,  and  3-nitro-o-2'- 
hydroxv-p'-toluoylbenzoic  acid,  prisms  and  needles, 
m.p.  239°— 240°'C.  If  the  condensation  is  effected 
with  aluminium  chloride,  3-nitro-o-2'-hydroxy-j)'- 
toluoylbenzoic  acid  is  the  only  product  which  can 
be  isolated.  Attempts  to  convert  the  nitro-acids 
smoothly  into  anthraquinone  derivatives  by  means 
of  concentrated  sulphuric  acid  were  unsuccessful. 
They  are  reduced  by  ferrous  hydroxide  in  boiling 
ammoniacal  solution  to  6-amino-o-2'-hydroxy-p'- 
toluovlbenzoic  acid,  almost  colourless  leaflets,  m.p. 
227°— 228°  C,  and  3-amino-o-2'-hydroxy-p'-toluoyl- 
benzoic  acid,  leaflets,  m.p.  233° — 234°C,  respec- 
tively, which  are  converted  in  the  usual  manner 
into  6-hydroxy-o-2'-hydroxy-p'-toluoyIbenzoic  acid, 
m.p.  175° — 176°  C,  and  3-hvdroxy-o-2'-hydroxy-p'- 
toluoylbenzoic  acid,  m.p.  229°— 230°  C.  The  6- 
hvdroxy  acid  is  transformed  by  concentrated  sul- 
phuric'acid  at  160°— 170°  C.  into  1.5-dihydroxy-3- 
methylanthraquinone,  m.p.  190° — 191°  C,  whereas 
the  3-hydroxy  acid  is  converted  by  a  mixture  of 
boric  and  sulphuric  acids  into  1.8-dihydroxy-3- 
methylanthraquinone,  m.p.  193° — 194°  C,  which  is 
identical  with  natural  chrvsophanic  acid.  (Cf. 
J.C.S.,  Mar.)— H.  W. 

Green     plants;     Chemical     constituents     of    ■ . 

AT/7.     Presence  of  ethylidenelactic  acid  in  the 

leaves  of  the  blackberry  (Rubus  fructicosus).    H. 

Franzen   and   E.   Keyssner.     Z.   physiol.   Chem., 

1921,  116,  166—168.  * 
Ethylidenelactic  acid  was  detected  in  the  leaves 
of  the  blackberry.— S.  S.  Z. 

Adrenaline;   Tests  for  .     L.    Zechner   and   F. 

Wischo.      Pharm.    Monatsh.,    1921,    2,    141—146. 

Chem.  Zentr.,  1922,  93,  II.,  229. 
In  applying  the  ferric  chloride  test  for  adrenaline, 


Vol.  XIX,  No.  5]       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


195  a 


one  drop  of  a  50%,  5%,  and  0'5%  ferric  chloride 
solution  gives  the  best  results  with  adrenaline  con- 
centrations respectively  of  1:100,  1:1000,  and 
lower;  with  concentrations  as  low  as  1:1,000,000 
and  1:10,000,000,  6—10  c.c.  of  the  adrenaline  solu- 
tion is  compared  against  a  blank  test  with  an  equal 
volume  of  distilled  water.  The  test  is  carried  out 
preferably  at  10° — 15°  C,  and  is  characterised  by 
the  formation  of  a  red  coloration  as  end  point. 
Reduction  of  the  ferric  salt  to  a  ferrous  salt  takes 
place  in  the  test,  a  change  which  proceeds  more 
rapidly  at  higher  temperatures.  The  ferric  chloride 
test  is  sensitive  to  concentrations  of  1:10,000,000, 
and  the  potassium  bichromate  and  potassium  per- 
manganate tests  to  1:100,000;  the  Frankel-Aller 
reaction  with  iodic  acid  is  also  recommended. 

— L.  A.   C. 

Auto-oxidation  [of  organic  substances];  Anti- 
oxygens.  C.  Moureu  and  C.  Dufraisse.  Comptes 
rend.,  1922,  174,  258—264. 

The  auto-oxidation  of  a  number  of  substances  such 
as  acrolein  may  be  inhibited  by  the  presence  of 
traces  of  certain  compounds  to  which  the  authors 
assign  the  name  anti-oxygens.  Most  of  these  com- 
pounds belong  to  the  phenol  group  and  of  these 
quinol,  catechol,  and  pyrogallol  are  particularly 
active.  They  also  inhibit  the  secondary  reactions 
which  frequently  accompany  the  phenomenon  of 
auto-oxidation.  Their  protecting  action  may  be 
prolonged  for  at  least  two  years,  providing  the  sub- 
stance capable  of  undergoing  auto-oxidation  does 
not  sublime  away  from  the  anti-oxygen.  The 
inhibiting  action  is  apparently  catalytic  and  it  is 
of  interest  to  note  that  traces  of  pyrogallol,  a  sub- 
stance commonly  used  for  absorbing  oxygen,  acts 
as  an  anti-oxygen.  The  bearing  of  these  observa- 
tions in  biological  phenomena  is  discussed  and  it  is 
suggested  that  the  toxic  properties  of  phenols  are 
connected  with  their  activities  as  anti-oxygens. 

— W.  G. 

o-Tduenesulphonamide ;  Electrochemical  oxidation 

of [to  saccharin].    F.  Fichter  and  H.  Lowe. 

Helv.  Chim.  Acta,  1922,  5,  60—69. 

Saccharin  is  not  produced  in  appreciable  amount 
by  the  electrolysis  of  solutions  of  o-toluenesulphon- 
amide  in  an  excess  of  aqueous  sodium  hydroxide  at 
platinum,  nickel,  or  copper  anodes  (cf.  E.P.  8661 
of  1895;  J.,  1895,  769);  the  sulphonamide  appears 
to  be  completely  decomposed  with  the  formation  of 
sodium  sulphate.  In  JV/2  sulphuric  acid  solution 
small  quantities  of  saccharin  are  formed,  but  diffi- 
culties are  caused  by  the  oxidation  of  o-toluenesul- 
phonamide  beyond  the  o-sulphobenzoic  acid  stage 
and  also  by  the  loss  of  ammonia  from  the  amide 
which  is  not  attributable  to  hydrolysis.  The  latter 
effect  can  be  avoided  by  operating  in  ammoniacal 
solution,  in  which  the  ammonia  functions  as  "  rela- 
tive depolariser  "  and  in  4JV-ammoniacal  solution 
in  the  presence  of  ammonium  sulphate  at  40°  C. 
and  at  a  platinum  gauze  anode,  the  material  yield 
of  saccharin  is  43'7%  and  the  current  yield  9'2%. 
The  most  favourable  results,  however,  (material 
yield  75'4%,  current  yield  42"6%)  are  obtained  by 
the  electrolysis  of  o-toluenesulphonamide  dissolved 
and  suspended  in  22V  sodium  carbonate  solution  at 
about  60°  C.  with  a  platinum  gauze  anode  and 
rotating  lead  cathode  which  secures  efficient  stir- 
ring of  the  mixture ;  a  porous  cell  is  unnecessary. 
The  success  of  the  method  does  not  depend  on  the 
intermediate  formation  of  potassium  percarbonate. 

— H.  W. 

Saccharin;  Suggested  method  for  the  quantitative 

separation    of    ■    from    p-sulphaminobenzoic 

acid.  W.  Herzog  and  J.  Kreidl.  Oesterr. 
Chem.-Zeit.,  1921,  24,  165—166. 

A    method    for    the    estimation    of    p-sulphamino- 


benzoic acid  in  commercial  saccharin  has  been, 
described  by  O.  Beyer  (Ueber  die  Kontrolle  und! 
Herstellung  von  Saccharin,  p.  97),  which  consists 
in  dissolving  the  substance  in  a  slight  excess  of 
ammonia  solution,  adding  a  50%  excess  of  acetic 
acid,  and  keeping  for  12  hrs.  The  p-acid  is  said 
to  be  completely  precipitated  under  these  condi- 
tions, whilst  the  more  strongly  acidic  saccharin 
remains  in  solution  as  undecomposed  ammonium 
salt.  Experimental  investigation  of  the  method 
with  known  mixtures  of  the  two  pure  substances 
showed,  however,  that  the  results  were  inaccurate- 
to  the  extent  of  2 — 3%.  In  mixtures  containing. 
5  and  25%  respectively  of  p-acid,  for  example,  the 
quantities  found  were  only  333  and  23"11%. 

— g.'f.  m. 

Hydrogenation  ;  Mechanism  of  catalytic  .     A 

Skita.  Ber.,  .1922,  55,  139—143. 
Willstatter  and  Waldschmidt-Leitz  (J.,  1921, 
161  a)  have  pointed  out  the  necessity  of  priming 
the  platinum  catalyst  with  oxygen  during  the 
course  of  many  hydrogenations  and  have  advanced 
the  hypothesis  that  a  platinum  superoxide  or  oxide 
is  formed  as  intermediate  product.  This  suggestion 
is  quite  consonant  with  the  author's  repeated 
observation  that  the  activity  of  the  catalyst  pro- 
duced in  situ  is  superior  to  that  of  the  pre-formed 
agent,  since  the  experimental  conditions  do  not 
guarantee  the  complete  absence  of  oxygen.  Com- 
parative experiments  with  a  platinum  catalyst 
produced  in  situ  do  not  show  any  difference  in  the 
rate  of  hydrogenation  of  pulegone  or  as-p-xylidine 
when  every  trace  of  oxygen  is  excluded  or  when 
special  precautions  to  this  end  are  not  observed ; 
the  formation  of  a  superoxide  as  catalyst  cannot 
therefore  be  assumed  in  these  cases.  Further,  if 
the  platinum  catalyst  is  in  reality  a  superoxide, 
its  oxygen  must  liberate  iodine  from  potassium 
iodide,  and  hydrogenation  must  therefore  be  im- 
possible in  the  presence  of  the  salt.  It  is  found, 
however,  that  phenol  is  reduced  smoothly  to  cyclo- 
hexanol  at  40°  C.  in  the  presence  of  potassium 
iodide.  On  the  other  hand,  the  addition  of  the 
latter  completely  inhibits  the  reduction  of  phenol 
or  as-p-xylenol  at  the  atmospheric  temperature, 
whereas  reaction  occurs  slowly  but  quantatively 
when  the  mixture  is  heated  to  50°  C.  At  the  higher 
temperature,  therefore,  it  seems  impossible  that 
hydrogenation  should  depend  on  the  formation  of  a 
platinum  superoxide.  It  has  not  yet  been  eluci- 
dated whether  the  failure  of  the  action  at  the 
atmospheric  temperature  is  due  to  the  inacEivation 
of  a  platinum  superoxide  or  to  poisoning  of  th& 
catalyst.— H.  W. 

Sulphuryl  chloride;  Action  of on  organic  sub- 
stances. I.  Simple  mo  no  substituted  benzenes. 
T.  H.  Durrans.  Trans.  Chem.  Soc.,  1922,  121, 
44—49. 
The  action  of  sulphuryl  chloride  on  various  organic 
substances  has  been  examined  by  boiling  the  sub- 
stance under  atmospheric  pressure  for  several  hours 
with  a  large  excess  of  sulphuryl  chloride.  Under 
these  conditions  benzoyl  chloride  was  obtained  from 
benzaldehyde,  phenyldichloroacetonitrile  from  phe- 
nylacetonitrile,  wu-dichloroacetophenone  from 
acetophenone,  p-chlorophenol  from  aqueous  sodium 
phenoxide,  2.3.4.6-tetrachlorophenol  from  anhydr- 
ous sodium  phenoxide,  phenylace'tic  anhydride  and 
phenylacetyl  chloride  from  sodium  phenylacetate, 
and  traces  of  benzonitrile  only  from  benzamide. 
Sulphuryl  chloride  has  no  action  on  benzophenone, 
nitrobenzene,  sodium  benzenesulphonate,  and  tri- 
phenyl  phosphate. — P.  V.  M. 

Bismuth  salts  of  phenolcarboxylic  acids;  Hydrolytic 

decomposition  of  .     A.  Perling.     Ber.  deuts. 

Pharm.  Ges.,  1921,  31,  433—438. 

The  hydrolysis  by  water  of  the  neutral  and  basio 

C 


196  a 


Cl.  XX— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  ETC.         [Mar.  15,  1922. 


bismuth  salts  of  benzoic,  salicylic,  protocatechuic, 
gallic,  and  cinnamic  acids  proceeds  to  a  definite 
limit  which  is  attained  when  they*are  heated  at 
100°  O.  with  four  consecutive  quantities  of  water 
for  a  total  of  10  hrs.  Both  the  neutral  and  basic 
salts  of  the  various  acids  eventually  attain  the  same 
composition,  the  only  salt  remaining  unchanged 
being  the  basic  benzoate  having  the  composition 
(C6H5C02BiO)6,Bi03.  The  experimentally  deter- 
mined composition  of  the  final  hydrolytic  products 
of  all  the  other  bismuth  salts  above  mentioned  was 
found  to  be  in  close  agreement  with  the  theoretical 
figure  required  for  a  salt  of  the  composition 
(RCOOBiO)f,,Bi203,  analogous  to  the  basic  benzoate 
(R  =  phenol  residue),  and  it  is  therefore  evident  that 
hydrolysis  proceeds  to  precisely  the  same  point  with 
all  the  salts.  When  shaken  at  37°  C.  with  0'25% 
hydrochloric  acid,  that  is  under  conditions  resembl- 
ing those  existing  in  the  stomach,  a  slightly  greater 
degree  of  hydrolysis  was  observed. — G.  F.  M. 

Diazo-compounds ;  New  catalysts  for  the  decomposi- 
tion of .     A.  Korczynski,  W.  Mrozin6ki,  and 

W.  Vielau.  Rocz.  Chem.,  1921,  1,  140—146. 
Salts  of  nickel  and  cobalt  may  be  used  instead  of 
copper  salts  in  the  Sandmeyer  reaction.  Both 
metals  are  not  equally  efficient  in  all  Sandmeyer 
changes,  thus  the  double  potassium-nickel  cyanide 
converts  diazobenzene  compounds  into  benzonitrile 
at  the  boiling  point  as  efficiently  as  in  the  original 
Sandmeyer  reaction,  but  cobalt  compounds  are  not 
suited  to  this  reaction.  Cobalt  thiocyanate  gives 
a  good  yield  of  phenyl  thiocyanate  when  boiled  with 
diazobenzene  compounds,  but  nickel  gives  a  very 
poor  yield.  The  formation  of  chlorobenzene  from 
diazobenzene  chloride  is  not  efficiently  catalysed  by 
cobalt  chloride. — J.  F.  S. 

Catalytic  action  of  salts  of  metals  on  the  reactions 
of  organic  compounds.  A.  Korczynski.  Rocz. 
Chem.,  1921,  1,  316—323. 
Salts  of  various  metals  have  been  used  as  catalysts 
in  place  of  cuprous  salts  in  the  Sandmeyer  reaction. 
The  action  was  studied  in  the  case  of  p-nitrodiazo- 
benzene  thiocyanate,  and  the  yield  of  phenyl  thio- 
cyanate determined.  The  following  figures  are 
recorded  for  salts  of  various  metals :  chromium 
6'6%,  manganese  10%,  iron  80%,  cobalt  53%,  nickel 
30%,  copper  (powder)  60%,  zinc  3%,  tungsten  20%, 
and  uranium  20%.  With  uranium  phenyl  thiocyan- 
ate is  obtained  only  on  heating  the  mixture,  whilst 
the  other  catalysts  act  in  cold  mixtures.  Salts  of 
tungsten  are  good  catalysts  for  the  halogenation  of 
aromatic  hydrocarbons,  thus  benzene  in  the  pre- 
sence of  tungsten  or  tungsten  hexachloride  and 
bromine,  yields  p-dibromobenzene.  The  metals 
gold,  aluminium,  gallium,  indium,  thallium,  tin, 
antimony,  bismuth,  iron,  manganese,  molybdenum, 
thorium,  and  tungsten  and  their  salts,  phosphorus, 
tellurium,    and   iodine   also   catalvse  this   reaction. 

—J.  F.  S. 

Catalysts  for  the  reaction  between  carbon  monoxide, 
hydrogen  chloride,  and  aromatic  hydrocarbons. 
A.  Korczvnski  and  W.  Mrozinski.  Rocz.  Chem., 
1921,  1,  324—327. 
Cuprous  chloride  may  be  replaced  by  cobalt 
chloride,  nickel  chloride,  ferric  chloride,  or  tungsten 
hexachloride  in  Gattermann's  reaction  for  the 
production  of  aromatic  aldehydes  by  the  action  of 
a  mixture  of  carbon  monoxide  and  hydrogen 
chloride  on  an  aromatic  hydrocarbon  in  the  presence 
of  cuprous  chloride  and  aluminium  chloride.  The 
yield  of  p-tolyl  aldehyde  from  toluene,  compared 
with  that  obtained  when  cuprous  chloride  is  used, 
is:  nickel  chloride  54%,  cobalt  chloride  50%,  ferric 
chloride  14%,  and  tungsten  hexachloride  5%. 
Nickel  chloride  also  acts  catalytically  in  the  same 
reaction  with  mesitylene. — J.  F.  S. 


Monochlorourea.  Preparation  of  chlorohydrins  by 
its  action  on  ethylenic  hydrocarbons.  A.  Detoeuf. 
Bull.  Soc.  Chim.,  1922,  31,  102—108. 

Monochlorourea  may  readily  be  obtained  in  a 
crystalline  form  by  the  action  of  chlorine  on  urea 
in  the  presence  of  a  little  water  at  0°  C.  At  the 
same  time  a  certain  amount  of  urea  hydrochloride 
is  also  formed.  The  chlorourea  may  be  obtained  in 
20%  aqueous  solution  by  passing  chlorine  through 
a  mixture  of  urea  (120  g.),  water  (GO  g.),  and 
powdered  marble  (60  g.)  at  0°  C,  until  the 
theoretical  amount  of  chlorine  is  absorbed.  The 
solution  is  then  filtered.  Such  a  solution,  after 
the  addition  of  5%  of  acetic  acid,  readily  reacts 
with  ethylenic  hydrocarbons  to  give  the  correspond- 
ing chlorohydrins.  The  presence  of  this  acid  or  its 
equivalent  in  the  form  of  urea  hydrochloride  is 
necessary  if  the  reaction  is  to  proceed  at  any 
appreciable  velocity. — W.  G. 

Amines;   Preparation   of  from   alcohols   and 

ammonia.     E.  and  K.  Smolenski.     Rocz.  Chem., 
1921,  1,  232—243. 

Methyl,  ethyl,  and  amyl  alcohols  react  with 
ammonia  at  about  300°  C.  in  the  presence  of  a 
dehydrating  catalyst,  such  as  alumina  or  kaolin, 
to  form  primary,  secondary,  and  tertiary  amines. 
Secondary  products  consisting  of  olefines  and  ethers 
are  also  formed.  In  the  case  of  ethyl  alcohol  at 
300° — 330°  C,  when  the  molecular  proportion  is 
two  of  alcohol  to  one  of  ammonia,  a  yield  of  53%  of 
amine,  25%  of  ether,  and  20%  of  ethylene  is 
obtained.  Aniline  and  methyl  alcohol  in  the  mole- 
cular proportion  1:4  give  toluidines  and  xylidines 
at  350°  C,  but  if  the  temperature  is  kept  below 
330°  C.  the  yield  is  practically  zero. — J.  F.  S. 

Acetic  acid;  Mode  of  sudden  pyrogenic  decom- 
position of ■  at  high  temperature.    E.  Peytral. 

Bull.  Soc.  Chim.,  1922,  31,  113—118. 

In  the  sudden  pyrogenic  decomposition  of  acetic 
acid  vapour  at  about  1150°  C,  three  primary  re- 
actions occur,  namely, 

(1)  2CH3.CO„H  =  (CH3CO)20+H20; 

(2)  CH3.CO,H  =  CO,+CHj; 

(3)  2CH3.C02H  =  2CO+C2H4-r2H2O, 

of  which  (1)  is  more  important,  the  greater  the 
velocity  of  flow  of  the  vapour.  Two  secondary 
reactions  also  occur,  namely, 

(4)  CO„  +  CH,=CO  +  H20+H2  +  C; 

(5)  C2Hd  =  C2H2+H2. 

In  reaction  (4)  instead  of  the  formation  of  free 
carbon,  highly  condensed  hydrocarbons  are  probably 
formed.— W.  G. 

Methyl  acetate;  Mode  of  pyrogenic  decomposition 

of at  high  temperature.     E.  Peytral.     Bull. 

Soc.  Chim.,  1922,  31,  118—122. 

In  the  pyrogenic  decomposition  of  methyl  acetate  at 
high   temperatures,   the  two  primarv  changes   are 

(1)  CH3.C02CH3  =  2CH3.CHO+H.CHOand 

(2)  2CH,.C02CH3  =  2CH3.CO,H+C2H1. 

The  two  aldehydes  formed  in  reaction  (1)  tend  to 
decompose,  giving  methane  and  carbon  monoxide, 
and  hydrogen  and  carbon  monoxide  respectively, 
whilst  the  acetic  acid  formed  in  reaction  (2)  tends 
to  decompose  in  the  manner  already  described 
(cf.  supra). — W.  G. 

Acetone;  Mode  of  pyrogenic  decomposition  of 

at  high  temperature.  E.  Peytral.  Bull.  Soc. 
Chim.,  1922,  31,  122—124.  (Cf.  supra.) 
The  sudden  pyrogenic  decomposition  of  acetone  at 
high  temperatures  consists  almost  exclusively  of  a 
simple  scission  of  the  molecule  into  ketene  and 
methane.  The  ketene  then  decomposes,  giving 
carbon  monoxide  and  ethylene. — W.  G. 


Vol.  six,  No.  5.]       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  ETC. 


197  a 


Acetaldehyde;  Simple  and   exact   method  for   the 

direct    quantitative    estimation    of   in    the 

presence  of  acetone.     W.  Stepp  and  R.  Fricke. 
Z.  physiol.  Chem.,  1921,  116,  293—301. 

To  determine  acetaldehyde  the  solution  is  treated 
with  an  excess  of  alkaline  ammoniacal  silver  of 
known  strength,  the  reduced  silver  is  filtered  off, 
and  the  unreduced  silver  is  titrated  in  the  acidified 
filtrate  with  ammonium  cyanate,  using  ammonium- 
iron  alum  as  indicator.  An  accuracy  of  a  few  tenths 
of  1  mg.  can  be  obtained.  In  order  to  estimate  the 
ac'etone,  the  acetaldehyde  is  removed  by  boiling 
with  silver  oxide  or  with  Fehling's  solution,  the 
liquid  is  distilled  and  the  acetone  determined  in 
the  distillate  by  the  Messinger-Huppert  method 
If  the  acetaldehyde  is  required  to  be  estimated 
at  the  same  time  a  known  suspension  of  silver  oxide 
is  used,  and  the  residual  silver  oxide  is  dissolved 
in  ammonia  and  estimated  volumetrically. — S.  S.  Z. 

Spanish  fennel  oil.     C.   E.   Sage  and  A.   Goodale. 
Perf.  Essent.  Oil  Rec.,  1922,  13,  18. 

Genuine  Spanish  fennel  fruits,  derived  from  plants 
grown  under  the  ordinary  conditions  prevailing  in 
Spain,  vielded  3'75%  of  volatile  oil  having  the 
following  characters:— Sp.  gr.  0-9638  at  15-5°  C, 
0-9571  at  25°  0.,  n  =  P5243  at  25°  C,  [a]  =  +  17-8°, 
solubility  1  in  5  in  80%  alcohol,  congealing  point 
-3-5°  C.,  distillation  180°— 200°  C,  7%;  200°— 
210°,  18%;  210°— 225°,  57%;  225°— 235°,  15%; 
above  235°  C,  3%.  The  oil  does  not  contain  any 
notable  proportion  of  fenchone,  and  the  amount  of 
anethole  is  not  sufficiently  high  to  make  the  oil  as 
good  for  medicinal  purposes  as  Saxon  or  Galician 
fennel  oil.— G.  F.  M. 

Patents. 

Aldehydes  and  phenols;  Process  for  production  of 

derivatives  of  the  condensation  products  of . 

H.    Bucherer.      E.P.     148,366,    9.7.20.      Conv., 
22.3.19.    Addn.  to  148,139  (J.,  1922,  110  a). 

The  hydroxyl  groups  of  primary  resinous  condensa- 
tion products  of  formaldehyde  and  phenols  may  be 
partially  or  completely  closed  by  the  radicles  of 
bromovaleric,  cinnamic,  salicylic,  and  mandelic  acids 
and  the  like,  giving  products  of  therapeutic  value. 
Further,  products  can  be  obtained  by  mixing  the 
primary  resinous  condensation  products  (a)  with 
aromatic  amino-,  hydroxy-,  aminohydroxy-, 
diamino-,  or  dihydroxy-compounds  or  their  carb- 
oxylic  or  sulphonic  acids  or  other  derivatives  (6), 
and  then  combining  the  constituents  (a)  and  (b)  to 
form  new  secondary  condensation  products  (a-c-b) 
by  means  of  radicles  (c)  such  as  .CO.,  .CO. CO., 
.CH2.CO.,  .CH?.CH2.,  provided  respectively  by 
phosgene,  oxalic  acid,  chloroacetic  acid,  and 
ethylene  bromide.  The  products  are  useful  for  the 
manufacture  of  dyestuffs. — H.  C.  R. 

Catalytic   agents    \_for   oxidation   of   organic   com- 
pounds'] ;  Manufacture  of .    The  Barrett  Co., 

Assees.  of  C.  R.  Downs.  E.P.  153,877,  12.11.20. 
Conv.,  13.11.19. 
A  metallic  oxide,  e.g.,  vanadium  or  molybdenum 
oxide,  which  catalyses  the  oxidation  of  organic 
compounds  in  the  state  of  vapour,  is  deposited  on 
small  rough  particles  of  aluminium,  which  may  be 
prepared  by  melting  the  aluminium  and  stirring  it 
as  it  cools.  The  aluminium  particles  may  be  intro- 
duced, for  example,  into  an  aqueous  solution  of 
ammonium  vanadate,  the  water  being  then  evapo- 
rated, and  the  residue  heated.  The  particles,  thus 
activated,  may  be  placed  on  screens  or  perforated 
tubes  in  the  reaction  zone,  where  an  oxygen-con- 
taining gas  and  a  vaporised  organic  compound  are 
brought  into  contact.  The  oxidation  of  benzene 
to  maleic  acid,  of  anthracene  to  anthraquinone, 
and  of  naphthalene  to  phthalic  anhydride  are 
referred  to. — H.  H. 


Thioureas;  Process  of  making .     The  Goodyear 

Tire  and  Rubber  Co.,  Assees.  of  W.  J.  Kelly  and 
C.  H.  Smith.  E.P.  164,326,  31.5.21.  Conv.,  5.6.20. 
In  the  manufacture  of  substituted  thioureas  by  the 
action  of  carbon  bisulphide  on  a  primary  amine,  the 
speed  of  the  reaction  is  greatly  increased  and  a 
product  of  greater  purity  is  obtained  if  the  reaction 
is  carried  out  at  a  temperature  above  the  boiling 
point  of  carbon  bisulphide,  but  below  that  of  the 
amine,  by  passing,  for  example,  the  superheated 
vapours  of  carbon  bisulphide  into  the  amine  pre- 
viously heated  to  the  desired  temperature  in  a 
steam-jacketed  pan.  Thus  a  yield  of  85%  of  the 
theoretical  quantity  of  diphenylthiourea  is  ob- 
tained in  4 — 5  hrs.  by  passing  carbon  bisulphide 
vapour  into  aniline  heated  initially  at  88° — 92°  C, 
and  gradually  increasing  to  110° — 115°  C.  The  pro- 
duct is  finally  stirred  into  cold  water,  unchanged 
aniline  removed  by  steam  distillation,  and  the  thio- 
urea filtered  off  and  dried. — G.  F.  M. 

[B.ydr'joxyaldehydes  and  their  derivatives;  Manu- 
facture of  .     Soc.  Chim.   Usines  du  Rhone. 

E.P.  164,715,  25.2.21.    Conv.,  9.6.20. 

In  the  manufacture" of  aromatic  hydroxyaldehydes 
by  the  process  described  in  E.P.  161,679  (J.,  1921, 
448  a)  equally  good  results  are  obtained  without  the 
use  of  an  organic  solvent.  Thus  vanillin  is  obtained 
by  adding  a  concentrated  solution  of  5'3  kg.  of 
sodium  nitrite  and,  after  some  time,  4  kg.  of 
guaiacol  and  8  kg.  of  40%  formaldehyde  solution  to 
a  solution  of  8  kg.  of  dimethylaniline  in  33  kg.  of 
hydrochloric  acid  containing  33  kg.  of  ice.  A  low 
temperature  is  maintained  for  some  hours  and  the 
reaction  is  completed  on  a  water  bath.  (Reference 
is  directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  139,153  and  157,850;  J.,  1920,  527  a;  1921, 
716  a.)— G.  F.  M. 

Partial  antigenes  of  pathogenetic  bacteria  (a)  non- 
resistant  and  (b)  resistant  against  acids;  Obtain- 
ing the .    A.  Strubell.    E.P.  (a)  172,030  and 

(b)   148,202,   9.7.20.     Conv.,   (a)   11.2.14  and   (b) 
28.12.14. 

(a)  Bacteria  such  as  staphylococci  are  fattened  by 
growth  in  a  bouillon  solution  containing  2 — 12%  of 
sugar,  and  are  subsequently  dried  and  extracted 
with  ether  containing  5%  of  benzoyl  chloride.  The 
solution  is  filtered ;  the  residue  consisting  of  the 
staphyloalbumin,  is  washed  repeatedly  with  alcohol 
and  ether  and  dried,  while  the  solution  is 
evaporated  and  the  residue  fractionated  by  treat- 
ment with  alcohol  and  ether  until  the  staphyloacid 
lipoids  are  obtained  in  alcoholic  solution  and  the 
staphylococcus  neutral  fat  is  all  present  in  ethereal 
solution,  (b)  Tubercle  bacilli  and  other  acid-proof 
bacteria  fattened  as  described  in  (a)  are  washed  by 
decantation  with  5 — 10%  phenol  solution  until  the 
liquor  no  longer  becomes  cloudy  ;  the  product  is  then 
treated  with  500—1000  g.  of  2—8%  phenol  solution 
per  1  g.  of  bacteria  for  3—5  months  at  37°— 58°  C. 
After  decanting  off  the  liquor,  the  residue  is  made 
up  to  a  concentration  of  1:1000  with  a  salt  solution 
containing  J%  of  phenol. — L.  A.  C. 

Butyric  aldehyde;  Production  of  and  butyric 

acid  therefrom.     M.  A.  Adam  and  D.  A.  Legg. 
E.P.  173,004,  20.7.20. 

Butyric  aldehyde  is  obtained  by  dehydrogenating 
n-butyl  alcohol  by  passing  it  over  a  fused  copper 
oxide  catalvst,  or  the  copper  catalyst  obtained  there- 
from, at  preferably  280°— 320°  C,  and  fractionally 
distilling  the  product.  About  75%  conversion  is 
obtainable  in  one  passage  over  the  catalyst.  Butyric 
acid  is  prepared  from  the  liquid  aldehyde  by  adding 
a  small  proportion  of  an  oxygen-carrying  catalyst, 
e.g.   manganese  butyrate,    and   introducing  air  or 


198  a 


Cl.  XXI.— photographic  materials  and  processes. 


[Mar.  15,  1922. 


oxygen  at  either  ordinary  or  higher  pressures,  with 
suitable  cooling  to  maintain  the  liquid  below  the 
boiling  point  of  butyric  aldehyde. — G.  F.  M. 

Camphoric  acid;  Manufacture  of  soluble  derivatives 

of .     O.  Imray.    From  Soc.  of  Chem.  Ind.  in 

Basle.    E.P.  173,063,  21.9.20. 

Soluble  derivatives  which  have  the  therapeutic 
properties  of  camphor  but  which  give  stable  solu- 
tions in  water,  sterilisable  by  heat  and  therefore 
suitable  for  subcutaneous  injection  are  exemplified 
by  certain  N-substituted  derivatives  of  camphoric 

acid  imide  of  the  type     Cjau<^>N-R.N.ET 

where  R  is  an  alkyl  or  alkylene  group  and  R'  and  R" 
are  hydrogen  or  alkyl  or  alkylene  groups.  These 
compounds  are  obtainable  from  camphoric  acid 
imide  by  the  usual  methods  as  for  example  by  caus- 
ing its  isolated  dry  salt  or  a  solution  to  react  with 
polyhalogenated  saturated  or  unsaturated  hydro- 
carbons such  as  ethylene  dibromide,  or  with  halogen- 
hydrins  such  as  glycol  iodohydrin,  and  the  N- 
halogen  alkyl  or  N-halogen  alkylene  derivative  of 
camphoric  acid  imide  thu6  obtained  (after  substitut- 
ing halogen  for  hydroxyl  if  a  halogenhydrin  has 
been  used)  is  treated  with  ammonia  or  an  alkyl- 
amine.  Alternatively  camphoric  acid  or  its  anhydr- 
ide may  be  caused  to  react  with  a  diamine  of  the 
type,  NH,.R.NR'R".  Among  the  imide  derivatives 
described  are  camphoric  acid  /3-aminoethylimide 
hydrobromide,  a  slowly  solidifying  6yrup  ;  camphoric 
acid  /3-dimethylaminoethylimide  hydrobromide, 
lustrous  needles,  ni.p.  207°  C,  very  soluble  in  water 
and  alcohol ;  the  /3-allylaminoethylimide  hydrobrom- 
ide, leaflets,  m.p.  144°  C,  and  /3-piperidylethyl 
camphoric  acid  imide  hydrobromide,  forming  fine 
felted  needles,  m.p.  1935°  C.    (Cf.  J.C.S.,  Mar.) 

— G.  F.  M. 


Alcohols,   ketones  and  the   like   {lithium  formate, 
methyl    alcohol,    acetone,    etc.] ;    Production    of 

.    J.  Y.  Johnson.    From  Badische  Anilin  und 

Soda  Fabr.     E.P.  173,097,  9.10.20. 

Carbon  monoxide  may  be  used  as  starting  material 
for  the  production  of  alcohols,  ketones,  etc.,  through 
the  intermediate  formation  of  lithium  formate, 
which  on  heating  to  380° — 420°  C,  preferably  in  a 
current  of  moist  hydrogen  under  diminished 
pressure,  is  decomposed  with  the  formation  of 
methyl  alcohol,  acetone,  etc.,  as  well  as  oily  and 
empyreumatic  substances.  Lithium  formate  is 
obtained  by  the  action  of  carbon  monoxide  on 
lithium  hydroxide  or  carbonate  in  presence  of  water 
at  a  temperature  of  120° — 250°  C.  and  a  pressure 
of  20 — 70  atm.  When  absorption  is  complete  the 
solution  is  evaporated  and  the  dry  salt  powdered 
and  transferred  to  the  decomposition  apparatus 
which  may  consist  of  a  tubular  vessel  with  a  con- 
veyor worm,  or  of  shallow  pans  or  revolving  drums 
heated  in  a  bath  of  fused  saltpetre.  The  residue 
after  decomposition  consists  of  lithium  carbonate 
and  carbon,  and  may  be  utilised  again  for  the  pro- 
duction of  formate,  but  provision  must  be  made,  by 
washing  the  gases  or  otherwise,  for  the  removal  of 
the  carbon  dioxide  produced  during  absorption  of 
the  monoxide:  Li3C03  +  H30  +  2CO  =  2HCOOLi+ 
CO„.— G.  F.  M. 


Peptones  and  hamatin;  Process  of  recovering  

from  blood.    E.  E.  Butterfield.    U.S. P.  1,403,892, 
17.1.22.     Appl.,  14.2.20. 

A  dilute  solution  of  serum  proteins  and  hemo- 
globin is  digested  with  a  mineral  acid  and  pepsin. 
The  solution  of  hydrolysed  proteins  is  evaporated 
after  separation  from  agglutinated  hcematin. 

— L.  A.  C. 


Acetic  anhydride;  Method  of  making  .     C.  J. 

Strosacker,  Assr.  to  The  Dow  Chemical  Co. 
U.S.P.  1,403,920,  17.1.22.    Appl.,  12.3.18. 

A  mixture  of  an  acetate  and  sulphur  chloride  is 
maintained  at  20°  C.  under  a  pressure  approxi- 
mately 5  lb.  above  1  atm. ;  the  pressure  is  subse- 
quently reduced  and  the  temperature  raised 
gradually  to  110°  C.  to  distil  off  the  acetic 
anhydride. — L.  A.  C. 

Pancreatin-    Manufacture    of    activated   and 

stabilisation  of  same.  D.  E.  Neun,  Assr.  to  G.  W. 
Carnrick  Co.  U.S.P.  1,404,137,  17.1.22.  Appl., 
25.5.20. 

A  digestive  composition  contains  7"5 — 10%  of  di- 
sodium  phosphate,  10 — 13'5%  of  sodium  chloride, 
and  pancreatin,  all  the  constituents  being  free  from 
moisture. — L.  A.  C. 

N-Nitroso-derivatives    of    secondary   amines;   Pre- 
paration of  .     E.  Schmidt  and  H.  Fischer. 

G.P.  343,249,  21.2.20. 

A  boiling  alcoholic  solution  of  pyridine  and  a 
tertiary  amine  of  the  general  formula,  NR,.R2.R, 
(R,=alkyl,  R2  and  R3=alkyl  or  aryl)  is  treated  with 
tetranitromethane.  Examples  are  given  of  the  pre- 
paration of  o-methylnitroso-aminotoluene,  nitroso- 
diethylamdne,  and  N-nitrosodiphenylamine,  m.p. 
66'5°  C,  from  o-dimethylaminotoluene,  triethyl- 
amine,  and  N-methyldiphenylamine  respectively. 
The  nitroform  obtained  as  a  by-product  is  readily 
converted  to  tetranitromethane. — L.  A.  C. 

Healing   and   nutritive   products;   Manufacture   of 

.    A.-G.  vorm.  Haaf  und  Co.     E.P.  156,667, 

6.1.21.    Conv.,  2.4.14. 

See  G.P.  324,747  of  1914;  1920,  833  a. 

Ethyl  alcohol;  Process  for  the  manufacture  of 

from  acetaldehyde.  T.  Lichtenhahn,  Assr.  to 
Elektrizitiitswerk  Lonza.  U.S.P.  1,403,794, 
17.1.22.    Appl.,  28.7.21. 

See  E.P.  134,521  of  1919;  J.,  1920,  135  a. 


XXI.-PH0T0GRAPHIC  MATERIALS  AND 
PROCESSES. 

Carbocyanines ;  Comparison  of  three  isomeric . 

W.  T.  K.  Uraunholtz.     Trans.  Chem.  Soc,  1922, 
121,  169—173. 

The  absorption  spectra  of  6.6'-,  5.5'-,  and  7.7'- 
diethoxy-l.l'-diethylcarbocyanmes  show  two  well- 
defined  bands  in  the  visible  region,  the  less  refran- 
gible being  the  more  intense.  The  sensitisation 
spectra  maxima  are  situated  nearer  the  red  end  of 
the  spectrum  than  the  corresponding  absorption 
bands.  The  latter,  which  are  similar  in  all  three 
compounds,  are  situated  nearest  to  the  red  end  in 
the  6.6'-,  and  furthest  from  the  red  end  in  the  5.5'- 
derivative,  while  the  sensitisation  spectra  show  an 
analogous  variation,  accompanied  by  a  contraction 
of  the  breadth  of  the  sensitisation  bands  in  the 
5.5'-  as  compared  with  the  6.6'-  and  7.7'-  derivatives. 

—P.  V.  M. 

Patent. 

Colour  photography ;  Manufacture  of  multi-colour 

screens  for  natural  .      P.    Faulstich.     E.P. 

152,002,  12.7.20. 

A  carrier  composed  of  colourless  gelatin,  glue, 
collodion,  etc.,  formed  upon  glass,  film,  paper  or 
other  material,  is  coloured  by  depositing  thereon, 
by  atomising  or  spraying,  rapidly-drying  dyed 
solutions  of  celluloid  or  cellulose,  and  colouring 
parts  not  covered  by  the  spraying  or  atomising 
process,  by  immersion  in  a  dye-bath.    The  spraying 


Vol.  XII,  No.  5.)        Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


199  a 


and  immersion  may  be  effected  successively,  or,  if 
desired,  two  or  more  colours  may  be  sprayed  prior 
to  immersion  of  the  carrier  in  the  dye-bath. 
(Reference  is  directed,  in  purusanco  of  Sect.  7,  Sub- 
sect  4,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  5377  of  1910;  J.,  1910,  978.) 

—J.  S.  G.  T. 


XXII.-EXPLOSIVES ;   MATCHES. 

Explosives;  Velocity  of  decomposition  of  high 

in  a  vacuum.  111.  Mercuric  fulminate.  R.  C. 
Farmer.  Trans.  Chem.  Soc.,  1922,  121,  174— 
187.  (67.  J.,  1921,  63  a,  100  a.) 
Mercuric  fulminate  undergoes  a  regulated  decom- 
position in  a  vacuum.  The  velocity  curves  for  the 
brown  fulminate  at  80°  C.  show  an  incubation 
period  of  80  hrs.,  followed  by  an  evolution  of  carbon 
dioxide  rapidly  increasing  to  a  constant  velocity  of 
0'25  c.c.  per  g.  per  hour.  Further  heating  causes 
a  slight  increase  of  velocity  until  the  gas  evolution 
abruptly  ceases,  leaving  an  inert  residue,  the  total 
gas  evolution  corresponding  to  0'58  moles  per  mole 
of  fulminate.  White  fulminate  shows  a  consider- 
ably longer  incubation  period,  and  a  less  abrupt 
beginning  of  gas  evolution,  which  then  proceeds 
with  an  accelerated  velocity,  ultimately  exceeding 
that  of  the  brown  variety.  The  temperature  co- 
efficient is  1'12 — 1T3  per  degree.  Light  initiates 
a  slow,  continuous  decomposition  of  both  varieties 
of  fulminate,  which  ceases  in  the  dark.  Addition 
of  other  substances,  or  solution  in  water  or  alcohol 
does  not,  as  a  rule,  materially  modify  the  decom- 
position, though  acids  accelerate  and  alkalis  and 
water  retard  the  velocity.  Fine  subdivision,  or 
compression  into  pellets  increases  the  rate  of  de- 
composition, though  not  proportionally  to  the 
increase  of  surface.  After  such  treatment  the 
velocity  curve  of  the  white  fulminate  approximates 
to  that  of  the  brown.  The  initial  quiescent  period 
is  not  due  to  absorption  of  the  gas  evolved,  there 
is  no  indication  of  a  retarding  catalyst,  and  the 
fulminate  on  cooling  from  the  point  of  incipient  gas 
evolution  does  not  revert  to  its  original  condition. 
The  increase  in  velocity  towards  the  end  of  the 
decomposition  indicates  the  progressive  formation 
of  a  catalyst  which  initiates  the  sudden  evolution 
of  gas  at  the  end  of  the  quiescent  period.  This 
catalyst  can  be  removed  to  some  extent  from  the 
fulminate  after  partial  decomposition  by  extraction 
with  water  or  acetone,  or  the  action  can  be  inten- 
sified by  addition  of  decomposed  fulminate  residue. 
Possibly  the  rate  of  action  of  the  catalyst  is  limited 
by  the  surface  decomposition  of  the  fulminate;  in 
the  later  stages  of  decomposition  the  rate  of  gas 
evolution  per  gram  of  fulminate  increases. 

—P.  V.  M. 

Explosions ;  Thermodynamical  theory  of  .     7. 

and   II.      J.    B.    Henderson    and    H.    R.    Hasse. 

Proc.  Roy.  Soc.,  1922,  A100,  461—482. 
Calculations  of  the  maximum  temperature  and 
pressure  of  an  explosion  in  a  closed  vessel  and  the 
ideal  indicator  diagram  are  recorded.  The 
maximum  temperature  of  Mark  I.  cordite  in  a  gun 
is  3210°  C.  and  the  maximum  pressure  8370  atm. 
or  55'1  tons  per  sq.  inch.  With  MI)  cordite  the 
maximum  temperature  is  2870°  C. — J.  F.  S. 

Patents. 
Liquid    air;    Cartridges    for    blasting    with    . 

S.  Sokal.     From  Sprengluft  Ges.     E.P.  148,537, 

10.7.20. 
Finely-divided  and  thoroughly  dried  peat  is  used 
as  the  absorbent  substance.  It  is  best  employed 
after  charring,  and  by  mixing  it  with  3 — 6%  of 
finely-powdered  cork  or  other  easily  inflammable 
material,  the  transmission  of  the  ignition  is 
facilitated.— H.  C.  R. 


Guncotton  or  other  fibrous  materials;  Process  for 

treating   .     Explosives   Trades   Ltd.      From 

F.  A.  Wardenburg.    E.P.  173,265,  20.8.20. 

The  waste  liquid  from  washing  or  pulping  gun- 
cotton  or  other  fibrous  material  is  utilised  by  caus- 
ing it  to  flow  through  a  body  of  the  unpulped 
material  by  which  means  the  fibrous  material  is 
given  a  preliminary  washing,  and  fibre  carried  away 
in  the  wash-water  is  recovered.  Hot  and  cold  wash 
waters  may  be  kept  separate,  the  cold  water  being 
used  in  the  "  drowning  "  process  and  the  hot  water 
in  the  boiling  process. — H.  C.  R. 

Explosives;  Method  of  handling  high  .     J.  A. 

Schofield    and    C.    W.    Hall.      U.S.P.    1,402,971, 
10.1.22.    Appl.,  19.11.19. 

In  order  to  melt  the  explosive,  water  in  a  receptacle 
is  raised  to  the  boiling  point  by  jets  of  steam 
previous  to  introducing  the  explosive. — H.  C.  R. 

Ammonium  nitrate  explosives;  Process  for  manu- 
facturing easily  cast  with  a  low  content  of 

nitro-compounds.       Vereinigte     Kbln-Rottweiler 
Pulverfabriken.    G.P.  303,980,  1.11.17. 

The  mixture  consiste  of  at  least  60%  of  ammonium 
nitrate,  up  to  10%  of  "cell-pitch  lye"  (c/.  Land- 
mark, J.,  1915,  257),  less  than  20%  of  sodium  nitrate 
and  less  than  30%  of  trinitrotoluene  or  other  nitro- 
compound. The  addition  of  the  "cell-pitch  lye" 
considerably  lowers  the  melting  point,  aids  in  the 
mixing  of  the  nitrates  and  nitro-compounds,  and 
prevents  the  separating  out  of  the  constituents. 

— H.  C.  R. 

Smokeless  powders  and  waste  from  their  manufac- 
ture; Process  for  converting  into  celluloid 

etc.    Westfalisch-Anhaltische    Sprengstoff    A.-G. 
G.P.  344,017,  29.11.18. 

The  raw  material  after  the  removal  of  nitroglycerin 
by  extraction  with  ether  or  alcohol,  is  treated  with 
a  mixture  of  nitric  and  sulphuric  acids.  Partial 
denitration  takes  place.  The  product  can  be  used 
for  the  manufacture  of  celluloid,  varnishes,  or 
artificial  silk.— H.  C.  R. 

Propellant  [explosive"]  and  process  of  producing 
same.  E.  C.  R.  Marks.  From  E.  I.  du  Pont  de 
Nemours  and  Co.     E.P.  173,259,  30.7.20. 

See  U.S.P.  1,357,865  of  1920;  J.,  1920,  835  a.  A 
suitable  addition  is  tin  dioxide,  with  or  without  lead 
oxide  or  carbonate. 


XXIII.-ANALYSIS. 

Platinum'.platinum-rhodium     thermocouples;     Life 

tests  of .   C.  O.  Fairchild  and  H.  M.  Schmitt. 

Chem.  and  Met.  Eng.,  1922,  26,  158—160. 

Samples  of  English  and  American  platinum". 
platinum-10%  rhodium  thermocouples  were  tested 
against  a  standard  couple  after  various  heat  treat- 
ments, comprising  heating  for  long  periods  at 
1400°— 1600°  C,  prolonged  treatment  with  fused 
borax,  and  electrical  heating  in  the  air.  The  actual 
loss  in  weight  after  the  latter  treatment  was  con- 
siderably less  than  1  mg.  even  after  heating  for 
3  hrs.  at  1450°— 1600°  C.  The  change  in  calibra- 
tion, however,  was  very  marked,  especially  with  the 
English  couple,  which  at  1200°  C.  indicated 
82°  C.  less,  whereas  the  American  only  showed  a 
reduction  of  20°  C.  Analyses  showed  all  the  metals 
to  contain  traces  of  calcium  and  copper,  while  the 
English  alloy  wire  contained  0"34%  Fe,  which  was 
evidently  the  cause  of  the  rapid  deterioration.  On 
pointing  this  out  to  the  English  makers,  they  pro- 
duced a  new  couple  which  was  found  spectroscopi- 
cally  free  from  all  impurities  with  the  exception  of 
minute  traces  of  copper  and  calcium.     This  couple 


200  a 


Cl.  xxiii.— analysis. 


[Mar.  15,  1922. 


after  very  severe  heat  and  chemical  treatment 
showed  a  variation  of  +2°  C.  on  the  standard. 
After  heating  for  23  hrs.  at  1500°  C.  traces  of 
rhodium  were  found  to  have  diffused  into,  or 
volatilised  on  to,  the  platinum  wire.  The  English 
maker  is  now  producing  a  13%  Rh  alloy  wire  which 
has  a  thermo-electric  power  against  pure  platinum 
of  about  14  microvolts  at  1200°  C.  instead  of  the 
12  microvolts  given  by  the  old  10%  Rh  wire. 

— A.  R.  P. 

Calorimeter;   New    type    of    adiabatic    .     W. 

Swientoslawski.    Rocz.  Chem.,  1921,  1,  157 — 165. 

The  calorimeter  differs  from  that  of  Richards  (cf. 
J.,  1907,  893)  in  the  following  points.  The  stirrer 
in  the  adiabatic  jacket  is  replaced  by  a  current  of 
air,  the  adiabatic  jacket  is  filled  with  water,  the 
heating  or  cooling  of  the  adiabatic  jacket  is  effected 
by  hot  or  cold  water  respectively,  the  clamps  which 
served  to  make  an  air-tight  joint  at  the  cover  aro 
eliminated  and  the  seal  is  made  by  a  viscous  sub- 
stance such  as  vaseline  contained  in  a  groove 
soldered  on  the  inside  of  the  adiabatic  jacket. 

—J.  F.  S. 

Pipettes;  Note  on  .      V.  Stott.     J.  Soc.  Glass 

Tech.,  1922,  5,  307—325. 
Observations  were  made  to  obtain  data  as  to  the 
effects  of  variation  of  delivery  time  and  drainage 
time  on  the  volume  delivered  by  pipettes  of  different 
capacities  (2  c.c.  up  to  100  c.c.).  The  drainage 
times  varied  from  2  to  240  sees,  and  the  delivery 
times  between  half  the  minimum  and  twice  the 
maximum  time  allowed  by  the  National  Physical 
Laboratory.  The  necessity  for  fixing  the  delivery 
time  is  shown  from  tabulated  results  in  which  the 
change  in  volume  delivered  due  to  change  in 
delivery  time  between  the  limits  indicated  above, 
drainage  time  being  constant,  is  in  every  case  in 
excess  of  the  tolerance  allowed  by  the  National 
Physical  Laboratory  for  "  Class  A  "  pipettes.  The 
initial  rate  of  drainage  was  greater  after  a  short 
than  after  a  long  delivery  time,  so  that  less  error 
was  introduced  by  a  deviation  from  the  specified 
drainage  time  if  this  was  reasonably  long  (15 — 
30  sees.).  There  should  be  minimum  and  maximum 
delivery  times,  which  should  be  etched  on  the 
pipette. — A.  C. 

Qualitative  reactions;  Sensitiveness  of  .     HI. 

Strontium  ions.    O.  Lutz.    Z.  anal.  Chem.,  1921, 

60,  433—441.  (Cf.  J.,  1921,  751a.) 
The  following  are  the  minimum  concentrations  of 
strontium  which  yield  reactions  when  5  c.c.  of  a 
strontium  salt  solution  is  treated  in  the  cold  with 
0"5  c.c.  of  various  reagents :  —Sodium  phosphate, 
1:9400;  sodium  sulphite,  1:12,000;  ammonium  oxa- 
late, 1:50,000;  ammonium  carbonate  and  ammonia 
(at  100°  C),  1:210,000;  sodium  carbonate, 
1:250,000;  sulphuric  acid,  1:125,000;  sulphuric  acid 
plus  5  c.c.  of  alcohol,  1:1,400,000.— W.  P.  S. 

Potassium;    Volumetric    determination    of    - . 

Macheleidt.  Woch  Brau.,  1922,  39,  23—24. 
A  standard  bitartrate  solution  is  prepared  by 
dissolving  60  g.  of  tartaric  acid  and  16  g.  of  caustic 
soda  in  water,  diluting  to  1  litre  and  adding  6  g. 
of  potassium  bitartrate.  After  shaking  and  stand- 
ing for  2  hrs.,  30  c.c.  is  filtered  off  and  titrated 
with  2V/10  barium  hydroxide.  A  second  30  c.c.  is 
filtered  off  and  weighed,  0"5 — 075  g.  of  the  sample 
is  stirred  in,  and  the  whole  is  allowed  to  stand  for 
1 — 2  hrs.  The  precipitated  potassium  bitartrate 
is  collected  on  a  dry  filter  without  washing  and  the 
filtrate  is  collected  in  a  tared  basin  and  weighed. 
It  is  then  titrated  with  the  barium  hydroxide  as 
before.  If  p  c.c.  were  required  in  the  first  titra- 
tion, q  c.c.  in  the  second,  and  if  IT'  is  the  weight 


of  the  solution  and  sample  before  filtration  and 
w  the  weight  of  the  clear  filtrate  titrated,  then  the 
K20  content  of  the  sample  is  given  by  the  equation 
a;  =  0-00471  (p-Wqj w)/(l- 0-01884(j /it).  All  other 
metals,  with  the  exception  of  magnesium  and 
strontium,  interfere  and  must  be  removed  before 
the  titration.  The  alkali  salts  must  be  free  from 
ammonium  salts  and  phosphates  and  must  be 
neutral  in  reaction. — A.  R.  P. 

Nitrogen;  Apparatus  for  collecting  the  ammonia  in 

the  determination  of  total  .     Application  to 

the  determination  of  albumin  in  milk.  G.  Meillere 
and  de  Saint-Rat.  J.  Pharm.  Chim.,  1922,  25, 
100—103. 
The  apparatus  consists  essentially  of  a  steam 
generating  flask  connected  with  a  bent  thistle  tube 
which  passes  to  the  bottom  of  an  inclined  round- 
bottomed  flask  about  6  cm.  in  diameter,  in  which 
the  acid  liquid  is  placed  after  decomposition  in  the 
usual  way  in  a  Kjeldahl  flask.  The  ammonia  carried 
along  with  the  steam  passes  out  of  the  round- 
bottomed  flask  through  a  tubuhire  in  the  neck,  on 
to  which  a  bulb  is  blown  with  internal  projections 
to  prevent  liquid  splashing  over.  A  tube  from  the 
bulb  lepds  to  the  top  of  a  small  vertical  condenser, 
the  lower  end  of  which  is  drawn  out  to  a  fine 
opening  which  dips  just  below  the  surface  of  some 
water  in  a  beaker  into  which  the  aqueous  ammonia 
distils.  The  liquid  is  kept  neutral  as  the  ammonia 
distils  over  by  running  in  as  required  standard  acid 
from  a  burette,  graduated  in  005  c.c.  divisions, 
with  alizarin  red  as  indicator.  The  apparatus  is 
designed  particularly  for  the  determination  of  very 
small  quantities  of  ammonia,  as,  for  example,  in 
the  determination  of  albumin  in  milk,  2 — 5  c.c. 
being  sufficient  for  each  experiment. — G.  F.  M. 

Ammoniacal  nitrogen;  Sapid  method  for  the  deter- 
mination  of   .      R.    Meurice.      Ann.    Chim. 

Analyt.,  1922,  4,  9—10. 
In  the  estimation  of  ammonium  salts  by  conversion 
into  hexamethylenetetramine  and  titration  of  the 
free  acid  thus  produced,  errors  are  likely  to  occur 
if  phenolphthalein  is  used  as  indicator  in  the 
preliminary  exact  neutralisation  of  the  ammonium 
salt,  owing  to  the  uncertainty  of  this  indicator  in 
presence  of  ammonia.  This  error  is  eliminated  if 
rosolic  acid  is  used  as  indicator  at  this  stage,  but 
as  under  ordinary  circumstances  it  is  also  sensitive 
to  hexamethylenetetramine  a  special  device  is 
adopted  to  render  it  insensitive.  After  the  mixture 
of  ammonium  salt  and  formaldehyde  has  stood  for 
about  30  mins.  an  equal  volume  of  ether  is  added, 
and  the  whole  is  well  shaken,  whereby  the  rosolic 
acid  passes  into  the  ether  and  becomes  insensitive 
to  the  amine,  although  still  sensitive  to  a  strong 
base  such  as  sodium  hydroxide.  Titration  with 
standard  alkali  of  the  free  acid  originally  combined 
with  ammonia  can  then  be  proceeded  with  until  the 
appearance  of  a  pale  rose  coloration,  which  persists 
on  agitation  of  the  aqueous  and  ethereal  layers. 

— G.  F.  M. 
See  also  pages  (a)  165,  Water  in  fuels  (Marinot). 
166,  Sulphur  in  gas  (Klemmer).  176,  Porosity  of 
ceramic  products  (Washburn  and  others).  178, 
Sulphur  in  iron  and  steel  (Marinot).  179,  Gold 
assay  (Paulin).  180,  Moisture  in  insulating  oils 
(Rootman).  181,  Fatty  acids  (Arnold).  183, 
Acetone-soluble  substances  in  rubber  (Lagerqvist). 
188,  Baffinose  in  beet  molasses  (Schecker) ;  Sucrose 
(Kryz);  Lavulose  (Kolthoff).  190,  Formic  acid  in 
wine  (Fresenius  and  Griinhut).  191,  Coconut  oil 
in  butter  (Muttelet) ;  Moisture  in  foodstuffs 
(Stutterheim) ;  Starch  syrup  in  fruit  juices  etc. 
(Rinck).  193,  Carbon  dioxide  in  water  (Shaw). 
194,  Caffeine  (Azadian) ;  Thymine  (Baudisch  and 
Johnson);  Adrenaline  (Zechner  and  Wischo).  195, 
Saccharin  (Herzog  and  Kreidl).  197,  Acetaldehyde 
and  acetone  (Stepp  and  Fricke). 


Vol.  XLI.,  No.  5.] 


PATENT  LIST. 


201  a 


Patent. 

Photometers,  more  especially  sector  spectrophoto- 
meters. S.  J.  Lewis.  E.P.  174,2-54,  17.11.20. 
Addn.  to  15,663  of  1915  (J.,  1916,  1273). 

Increased  flexibility  of  the  spectrophotometer 
described  in  the  chief  patent  is  secured  by  substi- 
tuting mirrors  for  the  reflecting  prisms,  the  mirrors 
on  which  the  light  first  falls  being  capable  of  rota- 
tion about  an  axis  or  axes.  Lenses  are  eliminated 
either  wholly  or  in  part  from  the  optical  train  by 
substituting  a  curved  reflecting  surface  or  mirror 
for  one  or  more  of  the  plane  reflecting  surfaces. 

—J.  S.  G.  T. 


Patent   List. 

The  dates  given  in  this  list  are,  in  the  oase  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  oase  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on  sale 
at  Is.  each  at  the  Patent  Office  Sale  Branch,  Quality 
Court,  Chancery  Lane,  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Bell  Bros.,  Ltd.,  and  Powell.  Apparatus  for  dry- 
salts  etc.    4508.    Feb.  15. 

Benson.    5108.    See  X. 

Bollmann.     4720.     See  XX. 

Duckham,  Kent,  and  Woodall,  Duckham,  and 
Jones.     Tunnel  kilns.     5546.     Feb.  24. 

Eley.     Furnaces.     5028.     Feb.  21. 

Imray  (Andriessens).  Carrying  out  endothermic 
gas  reactions.    5367.    Feb.  23. 

Keene.    Filtering  apparatus.    5097.    Feb.  21. 

Laurent.  Helical  hearth-furnaces.  4227.  Feb.  13. 

Lewis.  Apparatus  for  depositing  and  collecting 
suspended  matter  in  gases.    5558.     Feb.  24. 

Quinan.    4739.    See  II. 

Schweiz.  Sodafabrik.  Treatment  of  bleaching 
earths.    5670.    Feb.  25.    (Switz.,  2.3.21.) 

Silica  Gel  Corp.  Recovery  of  solutes  from  solu- 
tion.   5232.    Feb.  22.    (U.S.,  25.2.21.) 

Thompson.    Rotary  drier.    5444.    Feb.  24. 

Tonkin.    Grinding-mill.    4456.    Feb.  15. 

Traun's  Forschungslaboratorium  Ges.  Disinte- 
grator.   5587-8.    Feb.  25.    (Ger.,  8.2.19.) 

Traun's  Forschungslaboratorium  Ges.  Producing 
colloidal  dispersions.     5589.     Feb.  25. 

Willis.    4154.    See  XII. 


Complete  Specifications  Accepted. 

29,185  (1920).  Mond  (International  Precipitation 
Co.).  Electrical  precipitation  of  suspended  particles 
from  gaseous  media.    (174,995.)    Feb.  22. 

31,100  (1920).  Harris.  Dehydrator.  (175,352.) 
Mar.  1. 

33,638  (1920).  Gill  (Sharpies  Specialty  Co.). 
Centrifugally  separating  substances.  (175,121.) 
Feb.  22. 

35,033(1920).  Sturgeon.  Centrifugal  separators. 
(175,478.)    Mar.  1. 

1003(1921).  Smith  Engineering  Works.  Crushers. 
(157,137.)    Feb.  22. 

2036  (1921).  Vernon.  Tunnel  ovens  or  kilns. 
(175,171.)    Feb.  22. 


11,199(1921).  Acheson.  Deflocculating  solid  sub- 
stances.   (163,032.)    Feb.  22. 

11,496  (1921).  Fiechter.  Filter  for  gaseous 
media.     (163,039.)     Mar.  1. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;  DESTRUCTIVE  DISTLLLATION; 

HEATING;  LIGHTING. 

Applications. 

Acock.    Economising  fuel.    4234.    Feb.  14. 

Andrews  and  Co.,  and  Duckham.    4863.    See  X. 

Auchinachie.  Fuel  for  internal-combustion 
motors.    5111.     Feb.  21. 

Benson.    Treatment  of  oils  etc.    4859.    Feb.  18. 

Benson.    Refining  petroleum  etc.    5536.    Feb.  24. 

Beswick  and  Rambush.  Manufacture  of  producer- 
gas  with  recovery  of  by-products.    5118.     Feb.  21. 

Egeling.  Saturators  for  recovering  salts  from  dis- 
tillation gases.    4745.    Feb.  17.    (Ger.,  17.2.21.) 

Hawthorn,  King,  and  Mortimore.  Purifying  oils 
containing  sulphur.    4607.    Feb.  16. 

Ironside.  Distilling  oil  shale,  coal,  etc.  4969. 
Feb.  20. 

Jaeger  and  Smidt.  Production  of  liquid  fuel. 
4194.    Feb.  13. 

Jennings  (Stinnes).  Chlorination  of  mineral  wax 
or  ozokerite.     4581.     Feb.  16. 

Maclaren,  and  Safe  Superheat,  Ltd.  Distilla- 
tion of  coal  etc.,  and  production  of  briquettes.  4511. 
Feb.  15. 

Maclaren,  and  Safe  Superheat,  Ltd.  Retorts. 
5559.    Feb.  24. 

Mannock.  Utilisation  of  blast-furnace  gas.  4426. 
Feb.  15. 

Moeller.  Fractional  distillation  of  hydrocarbons. 
5041.    Feb.  21. 

Moscicki.  Dry  distillation  of  bituminous  or 
cellulose-containing  material.    4629.    Feb.  16. 

Mueller.  Treatment  of  peat.  4924.  Feb.  20. 
(Sweden,  26.2.21.) 

Nihon  Glycerine  Kogyo  Kaisha.    4617.     See  XII. 

Otto  u.  Co.  Vertical  chamber  furnaces.  4230. 
Feb.  13.    (Ger.,  14.2.21.) 

Paterson.  Desulphurising  oils  etc.  5391.  Feb.  23. 

Pintsch  A.-G.  Process  for  smouldering  shale  etc. 
5419.    Feb.  23. 

Quinan.  Distillation  of  hydrocarbon-yielding 
material.    4738.    Feb.  17. 

Quinan.  Distillation  of  complex  materials. 
4739.    Feb.  17. 

Complete  Specificati,ons  Accepted. 

23,357  (1920).  Stephens  (Canadian  American 
Finance  and  Trading  Co.).  Volatilising  and  decom- 
posing hydrocarbons.     (174,965.)     Feb.  22. 

23,545  (1920).  Brown.  Regenerative  coke-ovens. 
(175,312.)    Mar.  1. 

24,338  (1920).  Roberts.  Coking  coal.  (175,319.) 
Mar.  1. 

30,749  (1920)  and  18,837  (1921).  Maclaren.  Heat- 
ing or  drying  wet  powdered  fuel.  (175,004.)  Feb.  22. 

31,555  (1920).  Emerson.  Conversion  of  hydro- 
carbon oils.     (163,277.)     Feb.  22. 

32,250  (1920).  Ingham,  Clark  and  Co.,  and 
Tervet.   Heat  treatment  of  oils.    (175,406.)    Mar.  1. 

32,667  (1920).  Sato.  Coke-ovens.  (175,091.) 
Feb.  22. 

33,461  (1920).  Ehrat.  Recovery  of  petroleum 
and  natural  gas.     (175,116.)     Feb.  22. 

34,334  (1920).  Union  Apparatebauges.  See 
XXIII. 

35,332(1920).  Trent.  Treatment  of  carbonaceous 
materials.     (159,497.)    Feb.  22. 

2696  (1921).  Halbergerhutte  Ges.  Purification 
of  blast  furnace  and  like  gases.    (172,269.)    Mar.  1. 


202  a 


PATENT    LIST. 


[Mar.  15,  1922. 


III.— TAR  AND  TAR  PRODUCTS. 

Applications. 

Chapman  and  Tizard.  Chlorinating  hydrocarbons 
and  their  derivatives.     5646.     Feb.  25. 
Moeller.    5041.    See  II. 

Complete  Specifications  Accepted. 

31,140  (1920).  British  Dyestuffs  Corp.,  Baddiley, 
Payman,  and  Wignall.  Manufacture  of  orthosul- 
phonic  acids  of  aromatic  amines.   (175,019.)  Feb.  22. 

7014  (1921).  Soc  Anon.  Mat.  Col.  et  Prod.  Chim. 
de  St.-Denis,  and  Wahl.  Chlorotoluenes.  (159,837.) 
Feb.  22. 


IV.— COLOURING   MATTERS   AND    DYES. 

Applications. 

Aris.  Production  of  phenylamine  black  and  pro- 
cess of  dyeing  therewith.  4737.  Feb.  17.  (Spain, 
1.3.21.) 

Harrison.  Manufacture  of  azo  dyestuffs.  4880. 
Feb.  20. 

Imray  (Soc.  Chem.  Ind.  in  Basle).  Manufacture 
of  azo  dyestuffs.     4626.     Feb.  16. 

Lucke.  Deriving  hydrazobenzol  etc.  4492. 
Feb.  15. 


V.— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Applications. 

British  Cellulose  and  Chemical  Manuf.  Co., 
Palmer,  and  Whitehead.  Manufacture  of  textile 
products.    4832.    Feb.  18. 

Fibre  Corp.,  Ltd.,  and  Michot.  Preparation  of 
flax  etc.     4847.     Feb.  18. 

Green.  Compositions  of  cellulose  acetate  and 
cellulose  nitrate.    5414.    Feb.  23. 

Johnson  (Badische  Anilin  u.  Soda-Fabr.).  Treat- 
ing wood.    4323.    Feb.  14. 

Moscicki.    4629.    See  II. 

Moss.    Renovating  celluloid  etc.    5480.    Feb.  24. 

Schmidt.  Obtaining  and  cleaning  cellulose  from 
wood  etc.    4321.    Feb.  14.    (Ger.,  4.1.22.) 

Simpson  and  Valentine.  Imparting  an  iridescent 
coating  to  paper  etc.    5658.    Feb.  25. 

Valentine.  Production  of  translucent  paper  or 
fabrics.    5659.    Feb.  25. 

Complete  Specifications  Accepted. 

22,898  and  23,165  (1920).  Bronnert.  Manufac- 
ture of  artificial  silk.     (174,960-1.)    Feb.  22. 

27,904  (1920).  Bustamante.  Obtaining  cellulose 
from  vegetable  matter.     (175,330.)     Mar.  1. 

29,022  (1920).  Bartelt.  Apparatus  for  v/ashing 
etc.  fibres,  yarns,  fabrics,  etc.     (175,344.)     Mar.  1. 

31,367  (1920).  Thornton  (Feculose  Co.  of 
America).  Method  of  sizing  paper.  (175,034.) 
Feb.  22. 

Denoel.  Apparatus  for  testing  the 
(153,578.)  Feb.  22. 
Courrier.  Production  of  pulp  for 
(153,598.)  Feb.  22. 
35,629  and  35,630  (1920).  British  Cellulose  and 
Chemical  Manuf.  Co.,  and  Richardson.  Treatment 
of  cellulose  acetate  products.  (175,485-6.)  Mar.  1. 
12,463  (1921).  Forster.  Obtaining  transparent 
effects  on  cotton  and  mixed  fabrics.  (162,627.) 
Mar.  1. 


31,396  (1920). 
sizing  of  paper. 

31,527  (1920). 
making  paper. 


VI— BLEACHING ;  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Aris.    4737.    See  IV. 

British  Transfer  Printing  Co.,  and  Walton. 
Transfer  printing  on  fabrics.    5230.    Feb.  22. 

Rule  and  Tiracchini.  Composition  for  dyeing 
hair  etc.     4231.     Feb.  13. 

Complete  Specification  Accepted. 

23,466  (1920).  Alvord.  Yarn-printing  mechan- 
ism.    (175,310.)     Mar.  1. 


VII.— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Andreu.  Fixation  of  nitrogen.  5336.  Feb.  23. 
(Fr.,  23.2.21.) 

Ashcroft.  Electrolysing  fused  salts  and  recover- 
ing metals  and  acid  radicles  etc.     4835.     Feb.  18. 

Bichowsky.  Synthetic  production  of  alkali  metal 
cyanides.     5217.     Feb.  22. 

Blanc.  Separation  of  chlorides  of  aluminium  and 
potassium  in  solutions  obtained  in  treating  leucite. 
4435.    Feb.  15.    (Ital.,  7.3.21.) 

Blanc.  Treatment  of  silicates  to  obtain  saline 
solutions  free  from  silica.  4436.  Feb.  15.  (Ital., 
14.6.21.) 

Blanc.  Treatment  of  alum  to  obtain  sulphates  of 
potassium  with  ammonium  and  free  alumina.  4437. 
Feb.  15.    (Ital.,  16.6.21.) 

Crosland.  Kilns  for  calcining  lime  etc.  4989. 
Feb.  21. 

Deuts.  Gold-  u.  Silber-Scheideanstalt,  and  Lieb- 
knecht.  Producing  solutions  containing  hydrogen 
peroxide.    4610.     Feb.  16. 

Egeling.    4745.    See  II. 

Farbenfabr.  vorm.  F.  Bayer  u.  Co.  Manufacture 
of  hyposulphites.     4981.     Feb.  20.     (Ger.,  3.3.21.) 

Pease  and  Partners,  and  Stephenson.  Manufac- 
ture of  sulphate  of  ammonia.    4224.    Feb.  13. 

Soc.  Chim.  Usines  du  Rhone.  Purification  of 
gases  for  synthetic  production  of  ammonia.  4773. 
Feb.  17.     (Fr.,  25.3.21.) 

Wolvekamp.    4731-2.    See  XX. 

Complete  Specifications  Accepted. 

25,359  (1920).  Nitrogen  Corp.  Production  of 
sodium  bicarbonate  and  hydrogen.  (158,863.)  Feb. 
22. 

29,235  (1920).  Blanc  and  Jourdan.  Separation 
of  the  constituents  of  potassic  rocks.  (175,348.) 
Mar.  1. 

30,793  (1920).  Wolcott.  Production  of  aluminium 
chloride.     (175,006.)    Feb.  22. 

32,039  (1920).  Rogers  and  Masterman.  Electro- 
lytic apparatus  for  preparing  hypochlorite  solu- 
tions.   (175,390.)    Mar.  1. 

36,456  (1920).  Harger,  and  Woodcroft  Manuf. 
Co.  Manufacture  of  hydrogen  and  mixtures  of 
hydrogen  and  nitrogen.     (175,501.)     Mar.  1. 

2589  (1921).  Thorssell  and  Lunden.  Production 
of  nitrogen  compounds.     (175,517.)     Mar.  1. 

7045  (1921).  Kelly  and  Walker.  Manufacture  of 
borax  and  boric  acid.    (175,201.)    Feb.  22. 


VIII.— GLASS;  CERAMICS. 

Applications. 

Goldstein.  Producing  artificial  stones  for  drill- 
ing, turning,  and  wire  drawing.  4599.  Feb.  16. 
(Ger.,  16.2.21.) 


Vol.  XIX,  .No.  5.] 


PATENT  LIST. 


203  a 


Sallaway. 
Feb.  25. 


Treatment   of  glass  surfaces.      5666. 


Complete  Specifications  Accepted. 

31,129  (1920).  Sturm.  Kilns  for  drying  and  burn- 
ing ceramic  products  etc.     (163,973.)    Feb.  22. 

31,505  (1920).  Feldenheimer  and  Plowman. 
Treatment  of  clay.    (175,050.)    Feb.  22. 


IX—  BUILDING   MATERIALS. 
Applications. 

Baines.  Material  for  building,  roofing,  etc.  4919 
Feb.  20. 

Bentley  and  Clarke.  Binding-substances.  5148. 
Feb.  22. 

Brown.  Bituminous  mixtures  for  road-makin" 
etc.    4717.    Feb.  17. 

Crosland.    4989.    See  VII. 

Johnson  (Badische  Anilin-  u.  Soda-Fabr.).  4323. 
See  V. 

Wills.    Bituminous  compositions.    4261.    Feb.  14. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURG  Y . 

Applications. 

Andrews  and  Co.,  and  Duckham.  Manufacture 
of  ore  or  fuel  briquettes  etc.    4863.    Feb.  18. 

Ashcroft.     4835.     See  VII. 

Benson.    Flotation  processes  etc.    5108.    Feb.  21. 

Coles.  Coating  iron  and  steel  wire  etc.  with  zinc. 
5267.     Feb.  23. 

Coles.  Coating  sheets  with  other  metals.  5268. 
Feb.  23. 

Ellis  (Gamlen).  Reducing  or  smelting  ore.  4741. 
Feb.  17. 

Hutchins.  Electrodeposition  of  metals.  4481. 
Feb.  15. 

Jones,  Parker,  and  Smith.  Production  of  un- 
tarnishable  alloys.     5179.     Feb.  22. 

Jones,  Parker,  and  Smith.  Producing  colours  in 
metals  or  alloys.    5617.    Feb.  25. 

McPhail.    Production  of  an  alloy.    5155.  Feb.  22. 

Saltrick.  Alloys.  4808^810,  5382-5.  Feb.  18 
and  23. 

Wild  and  Wild.  Manufacture  of  ferrochromium 
alloys.    4628.    Feb.  16. 

Complete  Specifications  Accepted. 

28,436  (1920).  Vivian.  Treatment  of  ores  etc. 
<175,333.)    Mar.  1. 

31,963  (1920).  Lemmon,  Sulman,  and  Minerals 
Separation,  Ltd.  Recovery  of  gold  from  pvritic 
ores.     (175,384.)     Mar.  1. 

35,326  (1920).  North  and  Loosli.  Production  of 
zirconium.     (155,299.)     Mar.  1. 

2569  (1921).  Dunklev  and  Ryan.  White  metal 
allov.    (175,516.)    Mar.'l. 

2696  (1921).    Halbergerhutte  Ges.    See  II. 

9068  (1921).  T.avlor.  Cupola  furnaces.  (175,207.) 
Feb.  22. 

17,130  (1921).  Isabellenhiitte  Ges.  Silver  allovs. 
(169,144.)    Mar.  1. 

26,167  (1921).  Ormiston.  Solder  for  aluminium 
etc.    (175,228.)    Feb.  22. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Ashcroft.    4835.    See  VII. 
Hutchins.    4381.    Sec  X. 


Neumann  and  Neumann.  Electric  accumulators. 
4488.    Feb.  15.    (Ger.,  5.1.22.) 

Prior  and  Riley.    Selenium  cells.    5542.     Feb.  24. 

Weatherill.  Single-fluid  primary  cell.  4637. 
Feb.  16. 

Complete  Specifications  Accepted. 

28,250  (1920).  Soc.  de  1'AccumuIator  Tudor. 
Electric  accumulators.     (153,570.)     Feb.  22 

29,185  (1920).    Mond.    See  I. 

31,641  (1920).  Automatic  Telephone  Manuf.  Co., 
and  Koseby.  Electric  resistance  material.  (175,365.) 
Mar.  1. 

32,039  (1920).    Rogers  and  Masterman.    See  VII. 

32,208  (1920).  Harrison  (Dow  Chemical  Co.). 
Electrolvtic  cells.     (175,401.)    Mar.  1. 

36,528  (1920).  Eimer.  Electric  furnaces.  (156,133.) 
Feb.  22. 

5501  (1921).     Hiorth.     Induction  furnaces. 

26,905  (1921).  Siemens-Schuckertwerke.  Elec- 
tric precipitating  plants.    (170,835.)     Mar.  1. 


XII.— FATS;  OILS;  WAXES. 
Applications. 

Bollmann.  Decolorising  and  purifying  fats  and 
oils.    4719.    Feb.  17. 

Calderwood  and  others.     4195.     See  XIII. 

Chem.  Engineering  Co.,  and  Spensley.  Extrac- 
tion of  oils  and  fats  from  seeds,  nuts,  etc.  5338. 
Feb.  23. 

Nihon  Glycerine  Kogyo  Kaisha.  Manufacture  of 
hydrocarbon  oils  from  oils,  fats,  and  fatty  acids. 
4617.     Feb.  16.     (Japan,  25.2.21.) 

Willis.  Clarifying  solvents  and  oils.  4154.  Feb. 
13. 

Complete  Specifications  Accepted. 

31,145  (1920).  Jackson  (American  Cotton  Oil 
Co.).  Hydrogenation  of  oils  and  liquid  fats. 
(175,021.)    Feb.  22. 

31,436  (1920).  Parodi.  Apparatus  for  refining 
fats  and  oils.    (153,579.)    Feb.  22. 


XIII.— PAINTS; 


PIGMENTS ;    VARNISHES ; 

RESINS. 


Applications. 


Preparation   of 
linoleums,    etc. 


Calderwood,   Reihl,   and  Webb, 
oils   for    varnishes,    printing    inks 

4195.  Feb.  13. 
Chem.    Engineering   Co.,   and   Spensley.     Manu- 
facture of  inks,  paints,  etc.    5339.    Feb.  23. 

Jaeger  and  Smidt.     Production  of  printers  ink. 

4196.  Feb.  13. 

Complete  Specifications  Accepted. 

31,199  (1920).  Fraymouth,  Nagle,  and  Kestner 
Evaporator  Co.  Separating  impurities  from  stick- 
lac  to  obtain  pure  or  practically  pure  lac  resin. 
(175,023.)    Feb.  22. 

33,435  (1920).  Melamid.  Manufacture  of  resinous 
substances  and  tanning  materials.  (163,679.)  Feb. 
22. 


XIV.— INDIA-RUBBER ;   GU1TA-PERCHA. 

Applications. 

Cadwell.  Process  for  vulcanising  rubber.  4518. 
Feb.  15.    (U.S.,  25.3.21.) 

Hug.  Regeneration  etc.  of  rubber.  4950.  Feb. 
20.    (Fr.,  21.3.21.) 

Koller.    Treatment  of  rubber  etc.    5668.    Feb.  25. 


204  a 


PATENT    LIST. 


[Mar.  15,  1922. 


Complete  Specification  Accepted. 


31,955  (1920).    White  (Goodrich  Co  )•    Vulcanisa- 
tion of  rubber  articles.     (1/5,383.)    Mar.  l. 


XV.— LEATHER;  BONE;  HORN;  GLUE. 

Applications. 
Carniichael     and     Ockleston.       Manufacture     of 

leaMha€cdon"ld5-  Treatment  of  leather.     5484.     Feb. 
24. 

Complete  Specifications  Accepted 
23,697    (1920).     Long.     Treatment   of   vegetable 
iV23^799(1(1920)3    Richer.'    Depilation  of  hides  and 

Sk27S837( VlS40  Carmichael  and  Ockleston     Treat- 
ment   of    hides,    skins,    etc.,    to    produce   leather. 

(131494)(lS"  Carmichael  and  Ockleston.     Tan- 

"fcfaff    ChemNabr    Worms.     Manufac- 
ture  of  tanning  materials.     (154,153.)     Mar.  1 
tU3l,608  (1920).     Chem    ^^orms      Uzwizc- 
ture  of  tanning  materials.     (154  162  )    Feb.  22. 
33,425  (1920).    Melamid.    bee  Xlll. 

XVI.— SOILS;  FERTILISERS. 

Application. 

Rhenania  Ver.  Chem  Fabr  and  Rusberg. 
Rendering  soluble  crude  phosphates.  4966.  Feb.  20. 
(Ger.,  23.3.21.) 

XVII.-SUGARS;  STARCHES ;  GUMS. 

Application. 

Alexander  (Stein-Hall  Mamif  Co.).  Starch  con- 
version products.    4298.    Feb.  14. 

XVIII.—  FERMENTATION  INDUSTRIES. 

Application. 

Lumlev  and  Lumlev  and  Co.,  Making  or  brewing 
beer  etc.    5633.    Feb.  25. 

TTv  _FOODS  •  WATER  PURIFICATION  ; 
SANITATION. 

Applications. 

British  Dyestuffs  Corp.,  Fairbrother  and  Ren- 
ehaw      Treatment  of  sewage.     5515.     *eb.  Z4. 

Chem  Engineering  Co  and  Spensley.  Recovery 
of   products  from  pips  of  locust  beans  etc.     o340. 

F<Macara      Preparation  of  cocoa  and  coffee  beans, 
nuts,  etc.    5063.    Feb.  21. 

Complete  Specifications  Accepted. 

35  063  (1920).  Baker.  Bleaching  and  maturing 
flour.    (159,166.)    Mar.  1.  .     , 

6786  (1921).  Stohr.  Manufacture  of  milk  food 
preparations  containing  iron.    (159,87/.)    Mar    i. 

10  682  (1921).  Remus  and  others.  Production  of 
meat  powder.    (175,561.)    Mar.  1. 


XX— ORGANIC  PRODUCTS;  MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS. 

Applications. 

Boehringer  Sohn,  and  Stenzl.  Preparation  of 
papaverine  nitrite.     5050.     Feb.  21. 

Bollmann.  Separating  extractive  matters  from 
organic  constantly-boiling  solutions  of  mixtures  of 
solvents.    4720.    Feb.  17. 

Chapman  and  Tizard.    5646.    Jsee  111. 

Hirschberg.  Production  of  formaldehyde.  5212-4. 

King.     Organic  compounds.    5314.    Feb.  23. 

Schmidt.  Production  of  serum.  4320.  Feb.  14. 
(Ger.,  4.1.22.)  .  .  J 

Wolvekamp.  Organic  mercury  derivatives  ot 
aurin  tricarboxylic  acid  and  their  alkali  salts. 
4370.     Feb.  14.  .  ...  , 

Wolvekamp.  Soluble  combinations  with  a  col- 
loidal sulpharsenite.    4371.    Feb.  14 

Wolvekamp.  Colloidal  compounds  of  antimony 
sulphide.    4372.    Feb.  14. 

Complete  Specifications  Accepted. 

32  037  (1920).  British  Cellulose  and  Chem.  Manuf. 
Co  'and  Bader.  Manufacture  of  dialkyl  sulphates. 
(175,077.)    Feb.  22.  . 

32,350-1  (1920).  Merck.  Preparation  of  tropiuone 
monocarboxylic  acid  esters.     (153,918-9.)     Mar.  1. 

34  231  (1920).  Meister,  Lucius,  u.  Brumng. 
Manufacture  of  esters  of  dioxydiethyl  sulphide. 
(154,907.)    Feb.  22.  . 

36  035  (1920).  Spitz.  Manufacture  of  calcium 
iodide  preparations  for  therapeutic  purposes. 
i    (155,781.)     Feb.  22.  . 

1100  (1921).  Meister,  Lucius,  u.  Brumng.  Manu- 
I  facture  of  a  complex  aurothiosahcyhc  acid. 
(157,226.)    Feb.  22. 


XXI  —PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Applications. 

Schrott.        Transforming      photographic      silver 
images  into  tanned  gelatin  images.    5256.    beb.  16. 

(Austria,  23.2.21.) 

Trist.       Photographically-sensitive     paper 

4957.    Feb.  20.  .  - 

Wiebking.     Photographic  dry  plates. 
13.     (Ger.,  13.2.21.) 


etc. 


4218.  Feb. 


Complete  Specifications  Accepted. 


Photographic  printing 
therefore.        (175,317.) 


24,208  (1920).    Schwartz, 
processes     and     materials 

M30  748  (1920)  and  20,436  (1921).      Shepherd,  and 
Colour   Photography,    Ltd.      Colour    photography. 

(  31  846  (1920).'    Warner.     Producing  photographs 
in  natural  colours.    (175,373.)    Mar   1.         . 

766(1921).     Ulig.     Screen  for  ?}1»*^e™,1S|,  a5jd 

photomechanical  reproductions.    (lo6,718.)  reb.  a. 

XXIIL— ANALYSIS. 

Complete  Specification  Accepted. 

34  334  (1920).  Union  Apparatebauges.  Process, 
and  apparatus'  for  determining  the  heat  value  ot 
gases.     (156,577.)    Feb.  22. 


Vol.  XLI.,  No.  6.] 


ABSTRACTS 


[Mar.  31.  1922. 


I.-GENERAL;  PLANT;  MACHINERY. 

Glucose  as  a  preventive  of  automobile  radiator  freez- 
ing. C.  H.  La  Wall.  Anier.  J.  Pharm.,  1922,  94, 
97—98. 

An  efficient  anti-freezing  mixture  for  automobile 
radiators  is  obtained  by  adding  to  the  water  1.5 — 
20%  of  commercial  glucose.  This  mixture  does  not 
actually  freeze  and  harden  even  at  -6°  F. 
(-21°  C),  it  has  no  corrosive  action  on  metals  or  on 
the  rubber  piece  connexions,  and,  unlike  alcohol 
mixtures    only  the  water  requires  replenishing. 

— G.  F.  M. 

Patents. 

Filling  high  pressure  vessels  with  liquefiable  gases 
such  as  oxygen,  nitrogen,  hydrogen,  or  air:  Pro- 
cess for W.  E.  Evans.    From  Hevlandt  Ges. 

fur  Apparatebau  m.b.H.    E.P.  153,308,  1.10.20. 

In  order  to  facilitate  filling  of  the  cylinder  with  the 
gas  in  a  liquid  state  and  to  prevent  excessive  cool- 
ing and  embrittlement  of  the  cylinder,  an  inner  thin 
cylinder  is  provided  communicating  with  the  valve 
and  with  the  exterior  cylinder  at  the  top  only  and 
maintained  out  of  contact  with  the  outer  cylinder. 
The  inner  cylinder  may  be  inserted  by  removing  a 
conical  plug  in  the  main  cylinder  head,  or  may  be 
made  small,  of  soft  metal,  and  expanded  to  the 
correct  size  by  hydraulic  pressure  after  insertion. 
One  inner  cylinder  may  serve  for  filling  several 
main  cylinders. — B.  M.  V. 

Distillation;  Process  of  and  apparatus  there- 
for. Chem.  Fabr.  Worms  A.-G.  E.P.  157,849, 
10.1.21.    Conv.,  6.8.17. 

The  stills  are  formed  as  horizontal  fire-tube  boilers, 
the  fire  gases  passing  through  U-shaped  horizontal 
tubes.  The  gases  are  admitted  and  exhausted  by 
means  of  side  passages  on  opposite  sides  of  the  shell, 
thus  avoiding  the  use  of  end  tube-plates  and  render- 
ing the  still  suitable  for  high-boiling  liquids.  The 
same  gases  may  be  passed  through  two  or  more  stills 
in  series. — B.  M.  V. 

Density  of  water  in  a  steam  boiler  or  of  other  liquids 
in  evaporating  plants;  Apparatus  for  measuring 

or  indicating  the  .     W.  H.  Porter  and  J.  W. 

Spensley.     E.P.  174,679,  28.9.20. 

Alongside  the  ordinary  water-level  gauge  of  a 
boiler  is  mounted  a  similar  gauge  the  water  end  of 
which  is  connected  with  the  boiler  near  the  bottom 
by  means  of  an  internal  or  external  tube.  The 
gauge  is  supplied  with  a  trickle  of  fresh  water  either 
by  condensation  from  the  steam  space  or  from  the 
feed  water,  and  the  difference  in  level  shown  in  the 
two  gauges  is  a  measure  of  the  density  of  the  water 
in  the  boiler.— B.  M.  V. 

Heating  materials  at  successively  different  tempera- 

tures;  Method,  and  apparatus  for .     Thermal 

Industrial  and  Chemical  (T.I.C.)  Research  Co., 
A.  McD.  Duckham,  and  J.  S.  Morgan.  E.P. 
174,690,  20.10.20. 

The  material  to  be  heated,  which  may  be,  for 
example,  a  solid  or  a  liquid  undergoing  distillation, 
is  caused  to  pass  through  molten  metal  in  the  form 
of  a  layer  beneath  a  submerged  surface,  e.g.,  by 
means  of  a  rotating  horizontal  drum  of  cylindrical 
or  polygonal  cross-section,  the  lower  portion  of 
which  is  submerged  in  the  molten  metal.  The 
desired  result  may  be  obtained  either  by  varying 
the  speed  of  travel  of  the  material  or  by  altering 
the  temperature  of  the  molten  metal.  The  material 
may  also  be  passed  successively  through  several 
baths  at  different  temperatures,  and,  if  desired, 
allowed  to  cool  after  each  passage.     Distillation  of    J 


oils  may  be  carried  out  without  cracking  due  to 
overheating  and  easy  control  of  the  progress  of  dis- 
tillation is  possible. — A.  R.  M. 

Finely  granidated  compounds;  Process  for  produc- 
ing   .    A.  Welter.    E.P.  174,891,  26.7.20. 

The  process  described  in  E.P.  136,841  (J.,  1921, 
215  a)  is  used  for  coating  semi-stable  or  hygroscopic 
chemicals  in  finely  divided  form  with  a  protective 
film  of  another  material.  For  example,  crystalline 
sodium  perborate  is  sucked  or  blown,  and  a  solution 
of  water-glass  sprayed,  into  the  top  of  the  tower, 
and  the  coated  particles,  dried  by  the  air  draught, 
fall  to  the  bottom  as  a  non-sticky  powder.  (Refer- 
ence is  directed,  in  pursuance  of  Sect.  7,  Sub-sect,  4, 
of  the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  5490  and  26,384  of  1908  and  18,330  of  1911 ;  J., 
1911,  1276.)— B.  M.  V. 

Drying  machine.  N.  C.  Hero.  TJ.S.P.  1,403,778, 
17.1.22.    Appl.,  9.2.20. 

The  dryer  comprises  three  inclined  concentric 
cylinders.  A  supply  pipe  passes  up  the  central 
cylinder  and  leads  to  the  intermediate  cylinder. 
Combustion  products  from  a  furnace  pass  down  the 
central  cylinder  and  thence  through  the  outer 
cylinder.— G.  I.  H. 

Dryer.  H.  Howson,  Assr,  to  Proctor  and  Schwartz, 
Inc.    U.S. P.  1,404,614,  24.1.22.    Appl.,  13.10.20. 

A  dryer  is  divided  into  compartments  by  a  vertical 
partition,  and  a  fan  is  placed  on  the  diagonal  plane 
between  the  top  of  the  partition  and  a  corner  of  the 
outer  shell,  the  fan  being  so  mounted  that  it  can  be 
swung  right  out  of  the  dryer. — B.  M.  V. 

Drying  apparatus;  Conveyor  — — .  G.  D.  Harris, 
Assr.  to  National  Evaporator  Corp.  U.S. P. 
1,405,781,  7.2.22.  Appl.,  20.4.18.  Renewed  2.2.20 

A  drying  chamber  is  fitted  with  a  conveyor  and 
with  means  for  circulating  a  drying  agent  and 
directing  it  transversely  to  the  direction  of  move- 
ment of  the  conveyor.  The  conveyor  and  the  devices 
for  directing  the  drying  agent  are  supported  inde- 
pendently within  the  chamber. — H.  H. 

Dryer;  Trough  — 
1.1.20. 


F.  A.  Otto.     G.P.  344,010, 


Warm  air  supplied  to  the  dryer  is  distributed  by  a 
drum  provided  with  radial  pockets  operating  after 
the  manner  of  scoops.  The  walls  of  the  pockets  are 
perforated,  so  that  the  interior  of  the  drum  com- 
municates with  the  interior  of  the  trough.  The 
warm  air  is  brought  into  very  intimate  contact  with 
the  material  to  be  dried. — J.  S.  G.  T. 

Filter  and  hydraulic  press;  Combined .     F.  E. 

Stevenson,   Assr.    to   The   Hydraulic  Press   Mfg. 
Co.    U.S. P.  1,404,490,  24.1.22.    Appl.,  13.8.20. 

A  series  of  independent  containers  and  plungers 
are  inserted  between  two  press-heads  and  com- 
pressed by  a  hydraulic  ram  in  one  of  the  heads.  The 
containers  and  plungers  are  secured  against  lateral 
and  vertical  movement,  but  can  be  moved  endways 
in  either  direction,  by  mechanical  means,  such  as  a 
rack  and  pawls,  independently  of  the  action  of  the 
ram,  for  discharging  etc. — B.  M.  V. 

Filtering  apparatus.    A.  L.  Genter,  Assr.  to  United 
Filters  Corp.     U.S. P.   1,405,406,   7.2.22.     Appl 
8.10.19. 

A  filter  in  which  the  filtering  medium  is  a  granular 
material,  such  as  sand,  is  provided  with  an  injector 
nozzle  at  the  bottom  for  agitating  the  sand  during 
washing,  the  injector  being  removable  and  adjust- 
able to  suit  varying  pressures  of  the  wash  water. 

— B.  M.  V. 


206. 


Cl!   I.— GENERAL;    PLANT;    MACHINERY. 


[Mar.  31,  1922. 


Colloid  membranes  for  filtration  purposes;  Produc- 
tion   'if    cloudy    or   opaque    .     E.    de    Haen, 

them.  Fabr.  "List."  G.P.  342,792,  4.11.17. 
Aqueous  colloidal  solutions  of  animal  or  vegetable 
materials  such  as  cuprammonium-cellulose,  viscose, 
gelatin,  if  necessary  distributed  over  a  support,  are 
treated  with  coagulating  or  decomposing  agents, 
such  as  acids,  salt  solutions,  alcohol,  etc.;  either  in 
the  liquid  or  vapour  state.  The  porosity  of  the 
filter  is  controlled  by  regulating  the  proportion  of 
the  colloid  solution  employed  or  by  varying  the  con- 
centration of  the  coagulating  or  precipitating 
agent.  A  dense  filter  is  obtained  by  using  a  concen- 
trated solution  of  the  coagulating  agent,  while  the 
use  of  a  dilute  solution  results  in  the  production  of 
a  very  porous  filter. — J.  S.  G.  T. 

Gravitational  separator.     [Pulp  thickener.]    J.  V. 

Slade,  Assr.  to  The  Dorr  Co.     U.S. P.  1,405.022. 

31.1.22.  AppL,  31.7.20. 
In  a  gravitational  separator  having  a  number  of 
superposed  compartments,  the  pipe  for  decanting 
liquid  from  each  compartment  consists  of  a  vertical 
stand  pipe,  the  natural  discharge  level  of  which  is 
lower  than  the  proper  operating  level  of  the  liquid, 
but  is  adjustable  by  mechanical  means. — B.  M.  V. 

Concentrating  liquids;  Process  and  apparatus  for   , 

.     E.  Zahm,  Assr.  to  Zahm  and  Nagel  Co., 

Inc.    U.S.P.  1,405,085,  31.1.22.    AppL,  12.9.19. 

A  centrifugal  motion  is  imparted  to  the  liquid_  on 
the  interior  of  an  externally  heated  vertical 
cylinder,  and  the  vapours  are  drawn  off  at  the  axis 
at  several  different  levels. — B.  M.  V. 

Inspissating     [evaporating]    liquids;    Methods    of 

.    E.' Wirth-Frey.    U.S.P.  1,405,244,  31.1.22. 

AppL,  15.3.19. 
The    liquor     is    passed    through    three    or    more 
evaporators  in  series  and  the  steam  from  them  all 
is  compressed  and  supplied  first  to  the  last  vessel 
alone  and  then  passed  to  the  others  in  parallel. 

— B.  M.  V. 

Evaporator  system.  S.  Brown,  Assr.  to  The  Griseom 
Russell  Co.  U.S.P.  1,405,483,  7.2.22.  AppL,  26.1.20. 
An  evaporating  unit  supplied  from  a  feed  heater  is 
provided  with  means  for  discharging  the  concen- 
trated solution  and  with  means  for  utilising  the 
heat  of  the  vapour  from  the  concentrated  solution 
in  the  feed  heater. — H.  H. 

Evaporating  apparatus.  O.  Carr,  Assr.  to  Cardem 
Process  Co.  U.S.P.  1,405,756,  7.2.22.  AppL, 
12.9.16. 
The  drying  (evaporating)  chamber  is  fitted  with  an 
atomiser  to  which  the  liquid  and  an  atomising  dry- 
ing gas  are  supplied.  A  "  trimmer  "  is  provided 
to  surround  the  spray  stream  to  remove  the  wide- 
angled  particles,  which  are  received  in  a  trap 
chamber.  The  trapped  liquid  is  conveyed  back  for 
further  treatment. — H.  H. 

Evaporating  moisture-containing  materials:  Appa- 

,,,/„,,  for .     G.  D.  Harris,  Assr.  to  National 

Evaporator  Corp.  U.S.P.  1,405,780,  7.2.22. 
AppL,  26.12.17.  Renewed  25.4.21. 
The  main  chamber  of  the  apparatus  is  divided  into 
compartments,  the  division  walls  being  so  arranged 
as  to  direct  a  gaseous  drying  medium  through  the 
compartments  successively.  The  materials  are 
placed  on  a  series  of  supports  in  each  compartment, 
and  "  boosters  "  (heaters)  are  so  placed  adjacent  to 
the  supports  and  in  the  line  of  flow  of  the  gases  that 
the  latter  flow  alternately  into  contact  with  the 
materials  and  with  the  "  boosters."— H.  H. 


Antifreeze   mixture;   Non-corroding   .      A.    Z. 

Pedersen.       U.S.P.     1,405,320,    31.1.22.      AppL, 
13.10.20. 

A  substance  that  will  depress  the  freezing  point 
and  an  easily  soluble  chromate  are  dissolved  in 
water. — B.  M.  V. 

Extracting  dust  and  fume  from  gases  or  air  in  which 
then   are    carried   in   suspension;   Apparatus   for 

.      H.    Milliken.      U.S.P.    1,405,613,    7.2.22. 

AppL,  6.9.21. 
The  dust  is  removed  in  successive  stages  in  each  of 
which  the  gas  is  caused  to  impinge  more  or  less 
squarely  against  suitable  surfaces  and  the  direc- 
tion of  flow  is  changed  abruptly,  so  that  the  gas 
moves  at  a  reduced  velocity  along  the  surfaces,  upon 
which  du.st  is  thus  deposited.  The  gas  is  then  sub- 
jected to  uniform  acceleration  and  is  redirected  pre- 
paratory to  a  repetition  of  the  treatment — H.  H. 

Electrification  and  precipitation  of  suspended 
particles  from  gases  or  liquids;  Process  and  appa- 
ratus for  .       Metallbank  u.   Metallurgische 

Ges.  A.-G.     G.P.  344,705,  23.5.14. 

After  discharge  through  a  series  of  jets  disposed 
around  the  circumference  of  a  hollow  cylinder,  the 
gas  or  liquid  flows  in  the  direction  of  the  field 
towards  the  precipitating  electrode,  after  which  it 
flows  vertically  along  the  electrode  transversely  to 
the  field.  Needle  points  are  placed  in  the  jets  em- 
ployed.^!. S.  G.  T. 

Discharge    electrodes    in    electrical    gas    purifying 

plant;  Arrangement  of .    Siemens-Schuckert- 

werke  Ges.m.b.H.  G.P.  345,253,  12.2.20. 
The  discharge  electrodes  are  suspended  from  plates 
disposed  transversely  to  the  gas  stream  and  not 
functioning  as  insulators.  The  plates  prevent  mo- 
tion of  the  gas  in  the  immediate  neighbourhood  of 
the  insulators,  where  only  very  little,  if  any,  pre- 
cipitation occurs. — J.  S.  G.  T. 

Gases  or  vapours;  Process  and  apparatus  for  remove 

ing  moisture  from ,  and  for  heating  gases  and 

vapours.  E.  Josse  and  W.  Gensecke.  G.P 
345,233,  6.1.17. 
The  gas  or  vapour  expands  through  a  nozzle  ani 
passes  into  a  conduit,  provided  with  drainage  for 
any  separated  liquid,  through  which  it  flows  with 
the  minimum  of  turbulence.  The  conduit  is  curv 
or  otherwise  shaped  so  that  separation  of  gas 
vapour  from  the  liquid  particles  is  effected.  The 
plant  likewise  comprises  a  "diffuser  "  for  the  con- 
version of  the  kinetic  energy  of  the  gas  or  vapour 
stream  into  energy  of  compression,  whereby  the  gas 
or  vapour  is  heated. — J.  S.  G.  T. 

Chemical  apparatus  [for  containing  and  mixing  a 
chemically  reacting  charge].  W.  H.  Mahler. 
U.S.P.  1,405,733,  7.2.22.  AppL,  25.5.18.  Re- 
newed 26.4.21. 
A  movable  container  is  provided  with  means  for 
indicating  the  temperature  of  the  interior  and  with 
a  number  of  narrow  shelves,  parallel  to  the  axis  of 
the  container,  extending  from  one  end  of  the  con- 
tainer to  the  other,  for  elevating  the  relatively 
heavier  portions  of  the  charge  and  returning  these 
to  the  charge.  Each  shelf  has  an  edge  engag- 
ing the  inner  face  of  the  container  and  extends  in- 
wards towards  the  centre.  Spaced  agitation 
members  extend  inwards  and  nearer  to  the  centre 
of  the  container  than  the  sleeves. — L.  A.  C. 

Electro-osmotic     dehydration     plant;     Process     of 

operating  a  complete  constituted  of  a  steam 

engine,  dynamo,  filter  press  and  drying  plant, 
utilising  the  waste  heat  of  the  process.  Elektro- 
Osmoso  A.-G.  (Graf  Schwerin  Ges.).  G.P. 
345,251,28.9.19. 

The  steam-engine  is  operated  in  such  manner  that 


IV- 

id 

P 

nd 
ror 
ith 
ed 
or 


Vol.  XIX,  Xo.  6.] 


Cl.  11a.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


207a 


the  waste  thermal  and  electrical  energy  derived 
from  the  plant  is  just  sufficient  to  produce  the 
desired  degree  of  drying  of  the  dehydrated  mass 
treated  in  the  plant.  The  material  to  be  de- 
hydrated is  passed  through  a  mixer-condenser,  to 
which  the  exhaust  steam,  after  passing  through  a 
device  for  heating  the  drying  air,  is  likewise 
delivered.  This  device  permits  the  utilisation  of  the 
latent  heat  of  the  water  in  the  circuit.  Heat  loss 
is  still  further  reduced  by  using  two  electro-osmotic 
filter-presses,  each  being  alternately  employed  for 
dehydrating  and  discharging. — J.  S.  G.  T. 

Grinding  or  crushing  machines.  A.  J.  Griffith, 
Issee.  of  J.  K.  Griffith.  E.P.  157,826,  10.1.21. 
Conv.,  18.4.16. 

See  U.S. P.  1.295,482  of  1919;  J.,  1919,  311a. 

nding  machine.  W.  E.  Trent,  Assr.  to  Trent 
Process  Corp.  U.S. P.  1.406.109,  7.2.22.  Appl., 
3.9.20. 

See  E.P.  168,561  of  1920;  J.,  1921.  726  a. 

Furnace;  Regenerative  .     M.  Mathy.     U.S. P. 

1.404.626,  24.1.22.     Appl.,  21.9.20. 

See  E.P.  164,991  of  1920;  J.,  1921,  568  a. 

Mi.rinii  apparatus.    K.  Pfisterer.    U.S. P.  1.404,701, 
24.1.22.     Appl.,  29.10.20. 

See  E.P.  152.649  of  1920;  J.,  1921,  833  a. 

Surface  steam  condensers;  1'rotes*  of  preventing  the 
deposition    of   scale    ■>.    sludge  from    the   cooling 

water  in  .  A.    Holle.   Assr.   to  Machinenbau 

A.-G.  Balcke.     U.S.P.   1,405,783,  7.2.22.     Appl., 
28  5.19. 

See  E.P.  135,189  of  1919;  J.,  1921,  203  a. 

Furnace  fronts.    J.  Reid.     E.P.  174,430.  22.10.20. 

8<  parating  minerals  and  other  substances  [by  means 
of    differences    in    thrir    frictional    resistance']; 

Method    of    and    apparatus    therefor.       S. 

Nettleton.    E.P.  174,739,  2.11.20  and  10.2.21. 


Ha-FUEL;    GAS;    MINEBAL  OILS  AND 
WAXES. 

Coal;   Formation   and   chemical   structure   of  . 

P.  Fischer.    Naturwiss.,  1921.  9,  958—965.  Chem. 
Zentr.,  1922,  93,  I.,  254. 

A  resume  is  given  of  the  author's  earlier  work  on 
this  subject  (J.,  1921,  172  a).  In  reply  to  Erdmann's 
criticism  (<•/.  J.,  1921,  570  a)  that  the  clearly  visible 
cell  structure  in  coal  is  contrary  to  the  author's 
lignin  theory,  he  states  that  the  objection  cannot 
be  maintained,  since  the  wood  structure  was  still 
visible  in  the  lignin  obtained  by  Willstatter  (cf.  J., 
1913,  822)  from  wood.— "W.  P. 

Washery  waste  [from  collieries];  Treatment  of . 

E.  Berl  and  H.  Vierheller.   Z.  angew.  Chem.,  1922, 
35,  76 — 77. 

Washery  refuse  contains  usually  25%  of  combustible 
matter.  This  may  be  partly  recovered  by  flotation 
in  water  with  addition  of  oil,  which  carries  the 
carbonaceous  matter  to  the  top.  While  flotation  in 
water  alone  of  material  passing  through  a  sieve  of 
0"4^mm.  mesh  only  effected  a  concentration  up  to 
34"7%  of  combustible  matter,  the  same  material 
ground  to  pass  through  a  sieve  of  015  mm.  mesh 
and  shaken  with  water  and  benzol  yielded  a  con- 
centrate containing  54-7:;  of  combustible  matter. 
On  repeating  the  process  a  product  containing 
71'  I  of  combustible  matter  was  obtained.  Similar 
results  were  given  by  crude  petroleum,  engine  oil, 
paraffin  oil,  castor  oil,  and  turpentine  in  place  of 
benzol. — C.  I. 


Coke;    Determination    of    the    apparent    specific 

gravity  of .     F.  Haiisser.     Ber.  Ges.  Kohlen- 

techn.,  1.  23—25.  Chem.  Zentr.,  1922,  93,  II.,  351. 
The  following  method  of  determining  the  apparent 
specific  gravity  of  coke  is  recommended.  The  sample 
piece,  of  suitable  6ize,  is  ground  to  a  roughly  circular 
shape  and  dried  until  the  weight  is  constant.  It  is 
then  dipped,  repeatedly  if  necessary,  in  melted 
paraffin  wax  so  as  to  be  coated  with 'an  unbroken 
laj  Br,  and  weighed  again.  It  is  then  weighed  under 
water.  Trials  have  shown  that  increased  duration 
of  time  in  the  ovens  produces  a  denser  coke  less 
suitable  for  blast-furnace  use. — C.  I. 

Producer  gas  power  plant;  Some  observations  on  a 

.     H.  S.  Denny  and  N.  V.  S.  Knibbs.     Inst. 

Mech.    Eng..    24.1.22.       Engineering,    1922,    113, 
119—122,  152—154,  184. 

Detailed   working  results  over   a  long  period   are 
given  in  respect  of  a   plant  consisting  of  7  Mond 
gas    producers    supplying    gas    to    engines    driving 
dynamos  of  7400  kw.  total  nominal  capacity.     The 
coal  slack  used  contained  9%  of  ash,  34%  of  Volatile 
matter,  and  T4%  of  nitrogen,  and  had  a  calorific 
value  of  12,500  B.Th.U.     The  saturation  tempera- 
ture of  the  air  blast  was  85'5°  C.  and  the  average 
quantity    of    ammonium    sulphate    recovered    was 
60-4  lb.  per  ton  of  coal.     The  average  net  calorific 
value   of   the   producer   gas   was    121    B.Th.U.    per 
cub.  ft.  saturated  at  15°  C.     Before  being  used  to 
supply  gas  engines  the  producers  had  been  operated 
for  the  recovery  of  ammonium  sulphate,  irrespective 
of  the  gas  yield,  and  under  these  conditions  a  yield 
of  76  lb.  of  ammonium  sulphate  per  ton  had  been 
obtained    over    a    period    of    two    years.      For   the 
purpose  of  obtaining  a  detailed  thermal  balance  of 
the  whole  system,  covering  a  period  of  one  week, 
the  volume  of  gas  generated  in  the  producers  per 
ton  of  coal  was  estimated  by  four  methods.     Deter- 
minations of  velocity  in  the  gas  main  between  the 
cooling  tower  and  the  tar  separator  gave  a  gas  yield 
of  132,500  cub.  ft. ;  calculations  based  on  the  piston 
displacement  of  the  engines,  considered  in  conjunc- 
tion with  the  volume  actually  supplied  through  a 
rotary  meter  to  one  engine,  gave  a  yield  of  124,000 
cub.  ft. ;  a  carbon  balance  on  the  producer  gave  a 
yield  of  150,000  cub.  ft. ;  an  ammonia-sulphuric  acid 
balance  on  the  absorption  towers  gave   a  yield  of 
129,000  cub.   ft.     For   the  purpose  of  this  work  a 
yield  of  130,000  cub.  ft.  per  ton  was  assumed.     The 
sources  of  heat  entering  the  producer  system  were 
coal  gasified,  coal  burnt  under  boilers,   and  steam 
supplied  from  boilers  heated  by  the  engine  exhaust, 
and  the  net  calorific  value  of  the  cold  gas  produced 
was  42'7%  of  this  total  gross  heat  value  or  58"2%  of 
the   gross   heat   value   of   the   coal    gasified.      The 
difference  between  these  two  values  was  mainly  due 
to  the  inefficiency  of  the  boiler  plant.     The  gross 
heat  value  of  the  hot  gas  produced  was  S0'9%  of  the 
above  total  gross  heat  value,  19"1  %  representing  the 
direct  loss  of  sensible  heat  and  the  loss  due  to  ashes, 
dust,  tar,  etc.     The  efficiency  of  the  gas  engines  was 
24%  and  that  of  the  generators  93%.     After  allow- 
ing for  the  steam  generated  in  the  engine  exhaust 
boilers  the  electrical  energy  generated  wa6  10'2% 
of  the  equivalent  gross  heat  value  of  the  total  coal 
consumption.   The  above  resultswereobtainedunder 
nearly   full   load   conditions;   under   half   load  con- 
ditions  the    overall   efficiency   was   7'6%    and   it   is 
considered  that   1 1 "  1  %    efficiency  might  have  been 
obtained  if  the  whole  power  plant  had  been  tuned 
to  an  efficiency  equal  to  that  of  the  best  unit  under 
full  load.     Working  records  are  given  to  show  the 
relationship  between  the  load  on  the  producers,  the 
recovery  of  ammonia,  and  the  quality  of  gas  made. 
It    is    concluded    that    a    high    producer    capacity 
cannot  be  maintained  together  with  a  gas  of  high 
calorific  value  and  ammonia  content  (cf.  Humphrey, 
J..  1901.  107).— H.  Hg. 

a2 


208  a 


Cl.  Ha.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[Mar.  31,  1922. 


Electrical  gasification  of  fuel;  Possibilities  of  ■ . 

A.  Helfenstein.    Z.  angew.  Chem,  1922,  35,  73—76. 

The  carbonisation  or  preferably  complete  gasifi- 
cation of  solid  fuel  by  electrical  heating  may  be 
found  to  be  an  economical  method  of  employing  the 
surplus  power  of  a  station  at  times  of  light  load. 
Complete  gasification  would  usually  be  effected  by 
the  aid  of  steam,  since  concentrated  carbon  dioxide, 
as  distinct  from  flue-gases,  is  rarely  available. 
Very  low-grade  fuel,  e.g.,  lignite,  peat,  anthracite 
dust,  coke  breeze,  shale,  and  cinders  can  be  made  to 
yield  a  satisfactory  producer  gas  with  electrical 
heating,  a  high  ash  content  being  no  hindrance. 
The  usual  current  consumption  would  be  1"1 — 1"3 
kw.  per  cub.  m.  of  gas,  varying  little  with  the 
nature  of  the  fuel.  The  gas,  being  of  high  calorific 
value  owing  to  the  absence  of  diluents,  would  be 
especially  suitable  for  high  temperature  work.  The 
advantage  of  electrical  heating  is,  however,  more 
distinct  in  the  case  of  liquid  fuel,  particularly  in  the 
cracking  of  oils,  in  which  the  exact  regulation  of 
temperature  is  of  importance.  The  localisation  of 
heat  attainable  would  also  be  of  advantage  in  the 
distillation  of  oil  shale.  Again,  the  vaporisation  of 
gas  oil  by  electrical  heating,  with  the  use  of  a  little 
steam,  is  unattended  by  the  loss  due  to  the  form- 
ation of  tar  and  separation  of  carbon  incident  to  the 
usual  method.  The  method,  as  applied  to  liquid 
fuels,  especially  lends  itself  to  the  use  of  small  units. 
Such  oil  gas  might,  for  instance,  be  generated  along 
the  route  of  an  electric  railway  for  lighting  and 
heating  stations,  and  for  industrial  use.  It  may 
also  be  possible  to  employ  gas  generated  in  periods 
of  easy  load,  by  the  use  of  gas  engines  to  enable  a 
generating  station  to  meet  the  demands  of  times  of 
maximum  load. — C.  I. 

Pyridine ;  Recovery  of in  ammonium  sulphate 

saturaiors.  W.  Gluud  and  G.  Schneider.  Ber. 
Ges.  Kohlentechn.,  1,  42 — 43.  Chem.  Zentr., 
1922,  93,  II.,  317. 

Pyridine  if  present  is  evolved  on  heating  even 
strongly  acid  ammonium  sulphate  solutions,  and, 
consequently,  in  coke-oven  practice  the  greater  part 
of  the  pyridine  content  of  the  gas  passes  through 
the  saturator  unabsorbed.  It  can  only  be  recovered 
by  washing  with  cold  sulphuric  acid. — C.  I. 

Mineral    oils;    Capillary    properties    of   ■ .       D. 

Holde.     Chem.-Zeit.,  1921,  46,  3—4. 

Mineral  lubricating  oils  and  the  polymerisation 
products  of  lignite  paraffin  oil  have,  on  the  average, 
lower  surface  tensions  (3'00 — 3'14)  than  fatty  oils 
(318 — 3'32),  but  the  value  of  an  oil  as  a  lubricator 
depends  not  only  on  its  high  surface  tension  but 
also  on  the  size  of  the  angle  of  contact,  which  varies 
with  the  nature  of  the  oil  from  24°  to  39°.  The 
product  of  the  surface  tension  of  an  oil  in  air  and 
the  cosine  of  the  angle  of  contact  (the  Lenard 
number)  is  a  measure  of  the  affinity  of  an  oil  for  the 
metal  to  be  lubricated.  The  results  obtained  by  von 
Dallwitz- Wegener's  film  method  for  determining 
surface  tension  give  values  3 — 11%  higher  than 
those  obtained  by  the  drop  method.  The  addition 
of  fatty  acids  to  oils  free  from  them  lowers  the 
coefficient  of  friction  under  high  pressure. 

—A.  R.  P. 

Petroleum  products;  Some  new .     J.  H.  James. 

Chem.  and  Met.  Eng.,  1922,  26,  209—212. 

Laboratory  experiments  on  the  catalytic  oxidation 
of  petroleum  hydrocarbons  indicate  a  possible  com- 
mercial use  for  the  products  obtained.  Oxides  of 
metals  of  high  atomic  weight  and  low  atomic 
volume,  e.g.,  molybdenum  and  uranium,  appear  to 
be  the  most  promising  catalysts.  Good  results  have 
been  obtained  by  passing  a  mixture  of  hydrocarbon 
vapours  and  air  through  a  thin  layer  (1  cm.)  of 
uranium   oxide    and   then   through   two    successive 


layers  of  molybdenum  oxide.  Uranium  oxide  at 
280°— 330°  C.  favours  the  formation  of  aldehydes, 
which  are  further  oxidised  to  acids  by  the  subsequent 
layers  of  catalyst  at  a  temperature  of  about  370°  C. 
The  products  represent  all  the  stages  of  oxidation 
from  alcohols  to  oxygenated  acids,  together  with 
hydrocarbons  and  secondary  oxidation  products. 
The  unsaponifiable  portion,  given  the  name  of 
"congeneric  oil,"  consists  of  oxidation  products  of 
high  molecular  weight  which  have  definite  lubri- 
cating properties.  Saponification  of  the  oxygenated 
acids  with  sodium  hydroxide  leads  to  considerable 
resinification,  and  the  liberated  resinified  acids  may 
find  use  as  cheap  varnish  gum  and  paint  film 
substitutes.  If  saponification  is  carried  out  with 
calcium  hydroxide,  calcium  soap  of  good  colour  is 
obtained  without  resinification.  One  application  of 
the  oxidation  mixture  as  it  comes  from  the  appa- 
ratus is  in  the  field  of  oil  flotation,  the  value  being 
about  half  that  of  pine  oil,  and  a  second  is  indicated 
by  the  possibility  of  oxidising  the  cheaper  fractions 
of  petroleum  for  use  as  a  fuel  in  internal  combustion 
engines. — C.  A.  K. 

Montan  wax;  The  acids  of  .     H.  Tropsch  and 

A.  Kreutzer.     Brennstoff-Chem.,  1922,  3,  49. 

The  crude  montanic  acid  which  has  hitherto  been 
regarded  as  the  only  acid  present  in  montan  wax, 
and  to  which  the  formula?  C2aH,B02  and  C29Hse02 
have  variously  been  ascribed,  was  esterified  with 
methyl  alcohol,  and  the  resulting  ester  was 
separated  into  two  fractions,  boiling  at  265° — 
267-5°  C.  and  277'5°— 280°  C.  at  5  mm.  pressure, 
respectively.  From  each  fraction  the  acid  was 
again  isolated  and  purified  by  fractional  precipita- 
tion with  magnesium  acetate,  and  recrystallisation 
from  acetic  acid.  The  acids  obtained  had  equivalent 
weights  of  410-7  and  439"0  and  m.ps.  of  82°  C.  and 
86° — 86'5°  C,  respectively,  and  it  is  therefore  con- 
cluded that  the  former  is  an  acid  of  the  formula 
C=,HslO,,  for  which  the  name  carbocerinic  acid  is 
suggested,  and  the  latter  is  pure  montanic  acid  of 
the  formula  C29H5a02.— G.  F.  M. 

Formation  of  phenols  from  lignite.    Graefe.    Sec  III. 

Sulphur  in  petroleum,  coal,  and  gas.     Ter  Meulen. 
See  XXIII. 

Patents. 

Coal  briquette  and  process  of  manufacturing  th 
same.  C.M.Machold.  U.S. P.  1,404,869,  31.1.22 
Appl.,  28.1.21. 

A  mixture  of  91%  of  coal,  6%  of  hard  pitch,  2%  o. 
glycerin,  and  1  %  of  paraffin  is  compressed. — H.  Hg. 

-  with  recovery 
E.P.    152,668, 


.: 


Bituminous  fuels;  Combustion  of  - 
of  by-products.  H.  Strache 
19.10.20.     Conv.,  6.8.19. 

The  fuel  is  supplied  out  of  contact  with  the  air 
through  pipes  or  retorts  placed  in  the  furnace 
itself.  The  gases  produced  are  conducted  around 
these  retorts  and  additional  heating  of  the  fuel  is 
effected  by  drawing  through  it  some  of  the  combus- 
tion gases.  After  separation  of  the  by-products  the 
gas  is  led  back  to  the  furnace  and  burnt. — W.  P. 

Gaseous  fuel.  J.  R.  Rose  and  J.  Harris,  Assrs.  to 
Carbo-Oxygen  Co.  U.S.P.  1,404,219-37,  24.1.22. 
Appl.,  26.12.19. 

Gas  mixtures  suitable  for  cutting,  welding,  and 
heating  purposes  are  composed  of  hydrogen  and  (1) 
2'5% — 12'5%  of  its  volume  each  of  propane  and 
ethylene,  (2)  2'5% — 12'5%  each  of  illuminating  gas 
and  carbon  monoxide,  (3)  2'5% — 12"5/0  each  of  coke- 
oven  gas  and  ethylene,  (4)  2'5% — 12'5  70  each  of  coke- 
oven  gas  and  butane,  (5)  2'5% — 12'5%  each  of 
methane  and  propane,  (6)  2'5% — 12"5%  each  of 
carbon  monoxide  and  butane,  (7)  2'5% — 12'5%  each 


Vol.  XLL,  No.  6.1 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


209  a 


of  carbon  monoxide  and  propane,  (8)  2'5% — 12'5% 
each  of  coke-oven  gas  and  propane,  (9)  at  least 
2'5%  each,  but  not  more  than  25%  of  the  mixture 
of  butane  and  ethylene,  (10)  2*5% — 12"5%  each  of 
illuminating  gas  and  ethylene,  (11)  2"5% — 12'5% 
each  of  methane  and  ethylene,  (12)  5% — 25%  of 
propane,  (13)  5%— 25%  of  ethylene,  (14)  2'5%  — 
12'5%  each  of  butane  and  propane,  (15)  2"5% — 
12'5%  each  of  methane  and  carbon  monoxide,  (16) 
5%— 25%  of  butane,  (17)  2"5%— 12"5%  each  of 
methane  and  butane,  (18)  2'5% — 12"5%  each  of  coke- 
oven  gas  and  methane,  or  (19)  2'5% — 12'5%  each  of 
methane  and  illuminating  gas. — H.  Hg. 

Oas  producers  and  the  like.  N.  E.  Rambush.  E.P. 
174,498,  26.11.20. 

A  separate  steam  engine  is  connected  with  each 
mechanically  operated  part  of  a  producer,  and  the 
steam  from  each  engine  is  exhausted  into  the  air 
blast  main.  In  those  cases  where  each  alternate 
stroke  of  the  piston  rod  is  an  idle  stroke  the  rod  is 
connected  with  the  piston  of  an  air  dash-pot  having 
adjustable  air  exhaust  valves  at  one  end  and  air 
inlet  valves  at  the  other  end. — H.  Hg. 

Water-gas:    Making    sulphur -free   .      C.    S. 

Palmer.    U.S. P.  1,405,863,  7.2.22.    Appl.,  3.6.18. 

Charcoal,  free  from  sulphur,  is  enclosed  in  a  space 
haying  an  envelope,  not  exceeding  1£  in-  in  thick- 
ness, made  principally  of  a  metal  associated  with 
iron  in  the  "  iron  group  "  of  Mendeleef's  table  and 
of  greater  atomic  weight  than  iron.  The  charge  is 
heated  by  mean6  of  a  highly  heated  gaseous  medium 
of  an  oxidising  nature  in  contact  with  the  outer 
surface  of  the  envelope,  the  water-gas  reaction  being 
continuously  effected  by  passing  the  requisite  quan- 
tity of  steam  through  the  charge. — A.  R.  M. 

Fireclay  [nasi  retort  with  iron  reinforcement.      C. 

Francke.     G.P.  344,159,  23.6.20. 
An  iron  layer  is  placed  within  the  hollow  walls  of 
the  fireclay  retort,  close  against  the  inner  wall,  and 
spaced  from  the  outer  wall  to  provide  room  for  ex- 
pansion.— W.  P. 

Vertical  [gas]  retorts  or  chamber  ovens  with  re- 
generative, heating.  Dessauer  Vertikal-Ofen- 
Ges.m.b.H.  G.P.  344,220,  26.1.19.  Conv.,  28.6.18. 
The  heated  gases  are  led  in  a  zig-zag  direction  be- 
tween consecutive  retorts  alternately  up  one  side  and 
down  the  other  of  each  retort.  Openings  in  the 
dividing  walls  between  the  heating  flues  are  pro- 
vided with  suitable  regulators,  so  that  the  flues  may 
be    placed    in    communication    one    with    anotner. 

— W.  P. 

Gas-purifiers;  Dry .    Halbergerhtitte  G.m.b.H. 

E.P.  172,270,  20.1.21.     Conv.,  1.12.20. 

The  reverse  current  of  gas  used  for  the  purpose  of 
removing  dust  from  the  dust-catching  surfaces  is 
preheated  by  passing  it  through  a  duct  in  heat- 
exchanging  relation  with  the  purifier,  thereby 
avoiding  the  use  of  a  separate  heater  for  the  cleans- 
ing medium.  Where  desirable  a  portion  of  the 
heater  for  the  crude  ga6  may  be  used  for  the  pur- 
pose of  heating  the  cleaning  gas. — A.  R.  M. 

Liquid  fuel.  C.  C.  D.  Steele  and  H.  B.  Clifton. 
E.P.  174,712,  22.11.20.' 

A  mixture  of  petroleum  distillate  (e.g.,  kerosene), 
napthalene,  camphor,  benzene,  mineral  naphtha, 
and  wood  spirit.  Sulphur,  ether,  turpentine,  and 
ammonia  may  be  added  if  desired. — A.  R.  M. 

Liquid  fuel.  W.  T.  Schreiber,  Assr.  to  U.S.  Indus- 
trial Alcohol  Co.  U.S.P.  1,405,806,  7.2.22.  Appl., 
28.5.21. 

Calcium  carbide  is  added  to  a  mixture  of  aqueou6 


alcohol,  a  light  petroleum  distillate,  and  a  heavier 
hydrocarbon,  thereby  dehydrating  the  mixture, 
which  dissolves  the  acetylene  formed.  A  composi- 
tion is  produced  which  will  not  separate  into  its 
constituents  at  low  temperatures. — A.  R.  M. 

Liquid  fuel.  M.  C.  Whitaker,  Assr.  to  U.S.  Indus- 
trial Alcohol  Co.  U.S.P.  1,105,809,  7.2.22.  Appl., 
22.11.17. 

A  mixture  of  gasoline,  kerosene,  and  an  alcohol 
containing  a  "  terpine  "  as  a  blending  agent. 

—A.  R.  M. 

Hydrocarbons;  Process  for  treating  .     A.   J. 

Stephens.  From  Canadian  American  Finance 
and  Trading  Co.,  Ltd.     E.P.  174,389,  12.8.20. 

Hydrocarbon's  are  distilled  without  the  aid  of  a 
carrier  and  the  resulting  vapours  are  condensed  at 
a  pressure  greater  than  that  at  which  vaporisation 
takes  place,  and  at,  or  immediately  below,  the  dew 
point,  so  as  to  effect  recombination  of  the  hydrogen 
dissociated  by  contact  with  the  catalytically  active 
hot  walls  of  the  still,  and  to  saturate  unsaturated 
compounds.  The  apparatus  comprises  a  still  con- 
nected by  a  conduit  with  a  compressor  ;  a  condeneer, 
in  which  the  pressure  is  greater  than  in  the  still 
and  conduit,  and  a  receiver,  or  a  series  of  con- 
densers and  receivers;  means  for  regulating  the 
pressure  in  the  still  and  condenser  and  for  fraction- 
ating the  products,  and  a  gas  trap  and  outlet  for 
non-condensable  gases.  A  pressure  of  4 — 5  atm. 
has  been  found  suitable  for  hydrogenation.  The 
process  is  also  applicable  to  the  treatment  of 
vapours  from  gas  and  shale  retort6  and  coke  ovens. 

— H.  M. 

(a)  Petroleum  oils;  Process  of  refining  viscous 

(b,  c)  Process  for  clarifying  and  improving  the 
colour  of  petroleum  oils,  (a)  R.  W.  Hanna, 
(b,  c)  M.  L.  Chappell  and  M.  M.  Moore,  Assrs.  to 
Standard  Oil  Co.  of  California.  U.S.P.  1,404,389 
and  1,404,374-5,  24.1.22.  Appl.,  (a)  13.1,  (B)  c) 
18.2.20. 

(a)  A  mixture  of  viscous  petroleum  distillate  with 
sulphuric  acid  is  forced  under  pressure,  in  the 
absence  of  air,  into  a  conduit  in  which  the  heat  of 
reaction    is    removed    immediately    by   conduction. 

(b)  A  mixture  of  petroleum  oil  and  a  clarifying  and 
decolorising  agent  is  heated  rapidly  to  the  tempera- 
ture necessary  for  decolorisation,  the  mixture  is 
cooled  rapidly  when  decolorisation  is  complete  to  a 
temperature  sufficiently  low  to  prevent  rapid  oxida- 
tion, and  the  agent  and  adsorbed  colouring  matter 
are  separated  from  the  oil.  (c)  In  the  process 
described  in  (b)  water  is  added  to  the  mixture  of  oil 
and  a  clarifying  and  decolorising  agent,  whereby 
the  steam  generated  at  the  decolorising  tempera- 
ture prevents  contact  of  air  with  the  oil  and  con- 
sequent oxidation. — L.  A.  C. 

Low-boiling  hydrocarbons;  Process  of  making  ■ . 

O.  M.  Alexander,  Assr.  to  Gulf  Refining  Co. 
U.S.P.  1,404,725,  31.1.22.    Appl.,  8.3.16. 

The  vapours  of  high-boiling  hydrocarbons,  together 
with  a  portion  of  reheated  and  broken-down 
returned  hydrocarbon  gases,  are  passed  through  a 
zone  heated  to  500°  C.—L.  A.  C. 

Gasoline;  Manufacture  of .    A.  McD.  McAfee, 

Assr.  to  Gulf  Refining  Co.  U.S.P.  1,405,054, 
31.1.22.     Appl.,  12.7.18. 

A  continuous  process  for  the  manufacture  of  gaso- 
line consists  in  distilling  higher  boiling  petroleum 
oils  in  presence  of  aluminium  chloride,  the  still 
being  periodically  replenished  with  fresh  petroleum 
and  aluminium  chloride,  and  the  contents  main- 
tained in  constant  agitation,   whilst  prior  to  each 


210a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[Mar.  31,  192 


addition  of  aluminium  chloride  the  bottom  layer  of 
exhausted  chloride  is  tapped  off  without  interrupt- 
ing the  agitation. — G.  F.  M. 

(a)  Petroleum  emulsions;  Dehydrator  for .     (b) 

Apparatus  for  removing  water  from  petroleum 
emulsions.  (c,  g)  Apparatus  for  dehydrating 
petroleum  emulsions,  (d)  System  of  water  con- 
trol for  electrical  dehydrators.  (e)  Dehydrator. 
(f,  n)  Method  and  apparatus  for  dehydrating 
petroleum  emulsions,  (h)  Dehydrator  for  petro- 
leum emulsions  and  water-controlled  systems  for 
same,  (i,  k)  Process  of  dehydrating  emulsions. 
(j)  Process  for  dehydrating  petroleum  emulsions. 
(l)  Method  and  apparatus  for  dehydrating  petro- 
leum oils.  F.  W.  Harris,  Assr.  to  Petroleum 
Rectifying  Co.  U.S. P.  1,405,117—30,  31.1.22. 
Appl.,  (a)  28.5.17,  (b)  28.4.19,  (c)  19.6.19,  (d) 
8.7.19,  (e)  18.9.19,  (p)  13.5.18,  (g)  8.8.18,  (h) 
30.4.19,  (i)  12.5.19,  (j)  1.8.19,  (k)  4.8.19,  (l) 
27.12.16,  (m)  6.2.18,  (n)  6.7.21.  Renewed  (f  to  k) 
31.5.21,  (l,  m)  28.6.21. 

(a)  In  a  vessel  containing  crude  oil  an  electrode  is 
mounted  axiully  within  an  electrode  of  opposite 
polarity,  consisting  of  a  number  of  concentric 
metallic  shells.  The  container  has  inlets  for  air  and 
for  crude  oil,  and  outlets  for  treated  oil  and  for 
water.  The  oil  inlet  discharges  axially  to  the  elec- 
trode and  the  oil  takes  a  tortuous  path  through  the 
container,  the  oil  and  water  separating  by  gravity 
after  electric  treatment,  (b)  A  treater  contains 
electrodes  between  which  an  electromotive  force  is 
maintained.  The  oil  circulates  from  a  tank  through 
the  treater  and  back  again  to  the  tank  in  a  closed 
circuit.  The  wet  oil  is  introduced  into  this  circuit, 
(c)  The  emulsion  is  introduced  under  pressure  into 
a  gas-tight  shell,  through  the  wall  of  which  an  elec- 
trical conductor  passes  to  an  electrode  inside  the 
shell.  The  conductor  is  insulated  from  the  shell, 
the  insulation  forming  a  gas-tight  joint.  Between 
the  conductor  and  the  shell  a  sufficient  voltage  is 
maintained  to  cause  dehydration  of  the  emulsion. 
Means  are  provided  for  withdrawing  the  treated 
oil  and  water  from  the  shell,  (d)  A  tank  in  the 
dehydrator  contains  a  body  of  water.  An  electrode 
is  suspended  in  a  body  of  emulsion  above  the  water, 
and  an  electromotive  force  is  maintained  between 
the  electrode  and  the  water.  The  level  of  the  water 
may  be  lowered  by  means  of  an  outlet  pipe  provided 
with  a  valve,  which  is  controlled  electrically, 
through  a  relay,  by  the  variations  in  the  electric 
current  between  the  electrode  and  the  water,  (e) 
The  oil  to  be  dehydrated  is  fed  to  ia  tank  in  the 
■bottom  of  which  a  body  of  water  can  be  retained. 
An  electromotive  force  is  maintained  between  two 
electrodes  supported  above  the  surface  of  the  water 
in  the  tank,  one  at  least  of  the  electrodes  being 
electrically  insulated  from  the  tank.  Water  may 
be  automatically  withdrawn  from  the  tank  to 
maintain  its  upper  surface  constant  between  limits. 
An  outlet  pipe  withdraws  cleaned  oil  from  the  top 
of  the  tank,  (f)  A  container  has  within  it  a  pair  of 
electrodes  in  axial  alinement.  One  of  the  electrodes 
is  insulated  from  the  container.  A  conduit  is 
adapted  to  the  container  to  direct  the  inflow  of  che 
emulsion  parallel  to  the  axis,  and  exposed  to  the 
electric  field  between  the  electrodes.  Inlets  and 
outlets  for  the  emulsion  are  provided,  (g)  The 
dehydrator  comprises  a  vertical  pipe  electrically 
connected  to  form  one  electrode,  and  a  flexible 
electrode  of  chain  or  the  like  is  suspended  within 
the  pipe  and  insulated  from  it.  The  emulsion  is 
introduced  at  the  bottom  of  the  pipe.  The  upper 
end  of  the  pipe  is  surrounded  by  a  chamber  for 
receiving  the  emulsion  after  its  passage  through  the 
pipe,  and  outlets  from  the  chamber  are  provided  for 
the  constituents  of  the  emulsion  after  treatment. 
(h)  The  dehydrator  comprises  a  tank  in  which  are 
disposed  concentric  cylinders,  open  above  and  below, 


alternately  of  opposite  electric  polarity.  One  series 
of  cylinders  is  insulated  from  the  other  series,  and 
the  two  series  form  the  poles  of  a  source  of  electric 
energy.  (i)  The  emulsion  is  passed  into  water, 
through  which  it  rises  owing  to  its  different  sp.  gr., 
and  to  which  it  gives  up  its  larger  particles  of  water. 
It  then  passes  through  an  electric  field,  by  which  the 
particles  of  water  are  caused  to  agglomerate,  after 
which  they  settle  by  gravity.  The  water  and  oil 
are  separately  withdrawn.  (j)  The  emulsion  is 
injected  into  a  body  of  relatively  dry  emulsion, 
which  is  circulated  in  a  closed  path  between  charged 
electrodes.  The  precipitated  water  is  withdrawn 
from  below,  and  the  desired  product  from  the  top. 
(k)  A  tank  contains  a  body  of  dry  oil  within  a  fluid 
in  a  state  of  electrolytic  stress.  Wet  oil  is  injected 
into  the  tank  and  a  circulation  to  mix  the  wet  oil 
with  the  dry  oil  is  set  up  by  heating  devices,  (l)  An 
electric  current  is  caused  to  flow  between  electrodes 
immersed  in  the  body  of  the  emulsion.  The  current 
path  is  subjected  to  the  action  of  a  magnetic  field 
so  as  to  cause  the  path  to  move  through  the 
emulsion,  (m)  The  emulsion  is  forced  under  pressure 
through  a  confined  space  from  which  air  is  excluded 
and  in  which  electrical  discharges  are  caused  to  take 
place,  (n)  To  dehydrate  fine  emulsions  of  oil  and 
water  they  are  mixed  with  coarse  emulsion  and  the 
mixture  subjected  to  the  action  of  an  electric 
current. — H.  M. 

[Heavy    mineral    oils;']    Pressure    distillation    \pf 

].     E.  M.  Clark,  Assr.  to  Standard  Oil  Co. 

U.S.P.  1,405,286,  31.1.22.     Appl.,  31.3.19. 

In  distilling  heavy  oils  under  pressure  for  the  pro- 
duction of  lighter  oils,  the  vapours  generated  are 
brought,  under  the  pressure  prevailing  in  the  still, 
in  contact  with  a  large  body  of  oil,  which  is  main- 
tained at  a  constant  temperature  below  that  of  the 
still,  and  from  which  a  continuous  stream  of  oil  flows 
into  the  still.  The  vapours  not  condensed  in  the 
body  of  oil  are  led  awav  and  condensed  separately. 

— L.  A.  C. 

Distilling  heavy  hydrocarbons,  shale  and  the  like; 

Apparatus  for  .     W.   D.   P.    Aims.     U.S.P. 

1,405,704,  7.2.22.     Appl.,  15.11.20. 

A  transverse  plate  is  disposed  within  a  chamber 
provided  with  an  off-take  for  distillate.  A  series  of 
troughs  having  extended  side  walls  form  with  the 
plate  a  partition  dividing  the  chamber  into  upper 
and  lower  compartments,  the  troughs  being  open  to 
the  upper  compartment.  Conveyor-screw  casings 
extend  from  the  ends  of  the  troughs  outside  the 
chamber,  and  conveyor  screws  are  provided  in  the 
troughs  and  chamber.  Separate  heating  devices, 
all  enclosed  in  the  lower  compartment,  are  provided 
below  the  several  troughs. — J.  S.  G.  T. 

[Organic]  acids;  Process  for  the  production  of 

from  natural  gas,  mineral  oil  and  its  distillation 
products,  producer-gas  tar,  etc.  H.  Strache. 
G.P.  344,877,  1.2.17.     Conv.g  20.1.17. 

Unsaturated  hydrocarbons  are  extracted  from  the 
materials  mentioned  by  mineral  acids,  and  the 
mixture  of  esters,  without  previous  heating,  is 
treated  with  a  gentle  oxidising  agent  with  initial 
cooling.  For  example,  the  acid  tar  produced  in  the 
refining  of  mineral  oils  with  sulphuric  acid  is 
treated  with  chromic  acid  with  cooling,  whereby  no 
resinification  or  evolution  of  sulphur  dioxide  occurs. 
The  process  is  best  carried  out  by  treatment  with 
potassium  bichromate  and  sulphuric  acid  in  a  vessel 
provided  with  a  reflux  condenser.  The  ketones  and 
acids  produced  are  distilled  with  steam.  The  pro- 
ducts which  float  on  the  surface  when  hot,  and  set 
on  oooling,  are  skimmed  off,  freed  from  chromic 
oxide  by  treatment  with  dilute  acid,  purified  if 
necessary,  and  made  into  soap. — C.  1. 


Vol.  XLI.,  Xo.  6]        Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &c.         Cl.   III.— TAR,  &c. 


ill  A 


Waste  gases  from  internal  combustion  engines; 
Process  for  cleansing  and  de-odorising  the  ■ — — . 
\V.  Sohmidding.  E.P.  160,748,  14.10.20.  Conv., 
26.3.20.     Addn.  to  150,738. 

See  U.S.P.  1,402,814  of  1922;  J.,  1922,  131  a. 

Petroleum  oils:  Vitrification  of  .     J.  J.  Hood, 

Assr.  to  The  Oil  Refining  Improvements  Co.,  Ltd. 
U.S.P.  1,404,293^1,  24.1.22.     Appl.,  22.7.19. 

See  E.P.  145,818  of  1919;  J.,  1920,  651  a. 

Liquid  fuels;  Process  of  producing  .       W.   T. 

Sehreiber,  Assr.  to  U.S.  Industrial  Alcohol  Co. 
U.S.P.  1,405,805,  7.2.22.     Appl.,  31.1.18. 

See  E.P.  149,398  of  1919;  J.,  1920,  6S4  a. 

Hydrocarbon;   Process   of  presenting  in   the 

form  of  a  thin  film  of  large  surface  area  to  the 
action  of  an  oxidising  agent.  E.  Gevers-Orban. 
U.S.P.  1,404,435,  24.i.22.     Appl.,  26.12.12. 

See  P.P.  452,344  of  1912;  J.,  1913,  649. 

See  also  pages  (a)  205,  Beating  materials  (E.P. 
171  690).  215,  Ammonium  sulphate  (E.P.  174,878). 
216,  Sulphur  from  spent  oxide  (U.S.P.  1,404,199); 
Aluminium  chloride  from,  hydrocarbon  residues 
(U.S.P.  1,405,734).  224,  Preserving  wood  and 
metah  (U.S.P.  1,404,501). 


Hb.-DESTRUCTIVE  DISTILLATION ; 
HEATING;   LIGHTING. 

Patents. 

Elect  lie  lamp;  Mercury  \_vapour~\  .     R.  L.  M. 

Belleaud     and     J.     Barrollier.       E.P.     168,022, 
10.12.20.     Conv.,  14.8.20. 

The  temperatures  of  the  electrodes  of  a  mercury  or 
amalgam  vapour  lamp  are  controlled  and  equalised 
by  surrounding  the  electrodes  with  a  mass  of  com- 
pressed gas,  mercury,  or  other  substance  of  high 
thermal  conductivity  contained  in  a  chamber 
secured  to  the  lamp  in  the  region  of  the  ends  of 
the  arc.  Alternatively  two  separate  chambers,  each 
surrounding  an  electrode,  and  connected  by  material 
of  high  thermal  conductivity ;  may  be  employed,  or 
the  regulating  mass  may  consist  of  a  metal  envelope, 
a  bundle  of  wires,  or  a  mass  of  quartz  or  porcelain 
uniting  the  electrodes.  One  common  regulating 
mass  may  be  applied  to  a  number  of  lamps.  The 
device  prevents  transfer  of  mercury  from  anode  to 
cathode  during  operation  of  the  lamp. — J.  S.  G.  T. 

Drawn  wire  [tungsten  etc.']  filaments.  General 
Electric  Co.,  Ltd.,  and  F.  S.  Goucher.  E.P. 
174,714,  28.10.20  and  11.8.21. 

Drawn  wire  filaments  for  use  in  incandescence 
electric  lamps  are  given  a  stable  structure,  in  which 
individual  crystals  of  the  metal  are  effectively  inter- 
locked at  their  boundaries,  by  annealing,  applying 
a  suitable  strain  to  the  wire,  and  then  passing  it 
through  a  zone  of  steep  temperature  gradient,  the 
maximum  temperature  being  very  high.  Thus  in 
the  case  of  a  tungsten  wire  of  0'043  mm.  diam,  con- 
taining 0'6%  of  thoria,  the  wire  is  annealed  in  a 
reducing  atmosphere  at  about  1600°  C.  for  one 
second,  reduced  to  0'4  mm.  diam.  by  drawing 
through  a  die  at  300°  C,  and  finally  passed  through 
a  heated  zone  about  1  cm.  long.  The  process  is 
applicable  to  either  squirted  filaments  or  drawn 
wires.— J.  S.  G.  T. 

Carbonising  carbonaceous  materials;  Process  for 
.     G.  W.  Wallace.     E.P.  174,676,  24.9.20. 

See  U.S.P.  1,358,663  of  1920;  J.,  1921,  5  a. 
Beating  materials.     E.P.  174,690.    See  I. 


Ill— TAB  AND  TAR  PRODUCTS. 

Phenols;   Formation  of  from  the   bituminous 

portion  of  lignite.    E.  Graefe.    Brennstoff-Chem., 
1922,  3,  56—57. 

Contrary  to  the  statement  of  Klever  (Brennstoff- 
Chem.,  1921  2,  298)  it  is  Bhown  that  the  resinous 
matter  of  the  bitumen  is  not  the  source  of  the 
phenols  of  coal  tar.  Montan  wax  was  separated  by 
extraction  with  hot  alcohol  into  wax,  resin,  and 
insoluble  matter.  The  wax  distillate  was  free  from 
phenols,  whilst  the  resin,  which  had  sp.  gr.  T063, 
m.p.  71°  C,  acid  value  27-5,  saponif.  value  55'5, 
Lve  on  destructive  distillation  67%  of  distillate, 
10'4%  of  coke,  and  22'6 %  of  gas.  The  distillate 
contained  83%  of  unsaponiflable  oil,  3-8%  of 
organic  acids,  and  only  4'2%  of  phenols,  less,  in  fact, 
than  the  average  amount  found  in  ordinary  coal  tar. 

— G.  F.  M. 

Low-temperature  tar-  Absence  of  naphthalene  a?id 

t/ie    presence    of    its    derivatives    in    .       F. 

Fischer,  H.  Schrader,  and  C.  Zerbe.     Brennstoff- 
Chem.,   1922,  3,  57—59. 

The  presence  of  naphthalene  derivatives,  notabh 
a-  and  /3-methylnaphthalene,  in  low-temperature  tar 
was  established  by  isolating  the  picrates  obtained 
from  the  various  fractions.  The  greatest  amount 
was  produced  from  the  fractions  240° — 245°  C, 
and  245°— 250°  C.  Knublauch's  picrate  method 
(J.,  1918,  458  a)  for  the  determination  of  naphtha- 
lene in  tar  will  therefore  obviously  not  give  the 
true  naphthalene  content,  since  also  naphthalene 
homologues  and  possibly  other  aromatic  hydrocar- 
bons forming  piorates  will  be  included.  The  steam 
distillation  method  of  Fischer  and  Gluud  (J.,  1919. 
941  a)  is  accordingly  to  be  preferred,  and  tested  in 
this  way  a  good  low-temperature  tar  should  show 
no  naphthalene  content.  The  naphthalene  present 
in  coke-oven  tar  is  formed  by  thermal  dealkylation 
or  reduction  of  naphthalene  or  naphthol  homo- 
logues.— G.  F.  M. 

Patents. 

Stills;  Tar-distillation  and  the  like .    C.,  C.  H., 

and  C.  L.  Benn.     E.P.  174,877,  18.3.21. 

In  stills  having  a  dome-shaped  bottom,  destruction 
of  the  riveted  joint  between  the  bottom  and  the 
vertical  walls  of  the  still  is  prevented  by  providing 
around  the  dome  a  flat  annular  base  having  a  flange 
turned  downwards  and  riveted  to  the  bottom  edge 
of  the  walls  of  the  still.  The  annular  base  rests 
on  brickwork  provided  with  grooves  in  which  the 
joint  is  sunk,  thereby  protecting  it  from  the  direct 
action  of  the  furnace  gases.  At  the  gap  in  the 
brickwork  support  forming  a  radial  flue  to  convey 
furnace  gases  from  below  the  still  to  the  space 
around  the  sides,  the  joint  is  protected  by  a  cover- 
sing  shoe,  or  by  other  suitable  means. — L.  A.  C. 

ar-Tetrahydronaphthvlthioacetie.     acids;     Prepara- 
tion of .    Tetralin  Ges.  m.b.H.    E.P.  148,419, 

10.7.20.     Conv.,  25.2.19. 

Tetrahydronaphthalene  is  sulphonated  with 
ehlorosulphonic  acid  at  a  temperature  not  exceed- 
ing 5°  C.,  the  resulting  tetrahydronaphthalene- 
sulphonic  chlorides  are  reduced  with  zinc  dust  and 
hydrochloric  acid  to  a  mixture  of  1-  and  2-tetra- 
hydronaphthylthiols,  an  oil  boiling  at  143° — 147°  C. 
at  15  mm.  pressure,  and  this,  after  purification  by 
distillation  under  reduced  pressure,  is  condensed 
in  alkaline  solution  with  monochloroacetic  acid, 
with  the  formation  of  1-  and  2-tetrahydronaphthyl- 
thioacetic  acids,  C10H,,.S.CH2COOH.  The  acids  are 
separated  by  adding  concentrated  ammonium  chlor- 
ide solution  to  the  reaction  mixture,  whereupon  the 
ammonium  salt  of  the  2-acid  separates  in  crvstalline 
flakes.     The  pure  acid  melts  at  69° — 70°  C.     From 


212  a    Cl.  IV.— COLOURING  MATTERS  AND  DYES.     Cl.  V.— FIBRES  ;  TEXTILES,  &c.     [Mar.  31,  1:122. 


the  mother  liquors  from  the  ammonium  salt  the 
1-acid  is  precipitated  with  hydrochloric  acid  as  a 
voluminous  white  powder,  which  after  crystallisa- 
tion from  benzene  melts  at  133°— 135°  C.  Both  the 
acids  are  easily  converted  into  tetrahydronaphthyl- 
thioindigo. — G.  F.  M. 

Beactions  -upon  organic  bodies  at  temperatures  of 
red  heat  or  above.  [Production  of  toluol  and 
benzol  from  cresol.]  F.  Fischer.  E.P.  152,960, 
22.10.20.    Conv.,  22.10.19. 

In  reactions  upon  organic  substances  in  the  presence 
or  absence  of  hydrogen  at  high  temperatures  (600° 
— 1000°  C),  separation  of  carbon  does  not  occur 
if  the  apparatus  is  coated  with  a  catalyst  composed 
of  tin  or  a  tin  alloy,  and  the  yield  of  the  desired 
reaction  product  is  thereby  increased.  For  ex- 
ample, in  tinned  iron  apparatus  a  60%  yield  of 
toluol  or  a  mixture  of  toluol  and  benzol  can  be 
obtained  by  the  reaction  between  tar  cresol  and 
hydrogen.     (Cf.  J.,  1920,  740  a.)— A.  J.  H. 

Antnraguinone ;  Process  for  the  purification  of . 

W.  H.  Dawson.     E.P.  174,784,  16.11.20. 

Anthraquinone  of  m.p.  287°  C.  or  higher  is  pre- 
pared by  recrystallising  the  crude  product,  of,  e.g., 
92%  purity,  from  phenolic  compounds  containing 
at  least  one  alkyl  group  in  the  nucleus,  e.g.,  cresylic 
acid.  The  solution  is  boiled  to  distil  off  water,  and, 
after  cooling,  the  crystallised  anthraquinone  is 
separated  and  washed  with  dilute  sodium  hydroxide 
solution.  The  mother  liquor  is  treated  with  sodium 
hydroxide  solution,  whereby  anthracene  and  other 
impurities  are  precipitated.- — L.  A.  C. 

Ui/drazobenzol    and    its    homologues;    Method    of 

deriving .    W.H.Mahler.    U.S.  P.  1,405,732, 

7.2.22.     Appl.,  25.5.18. 

Hydrazobenzene  is  prepared  by  treating  nitroben- 
zene with  aqueous  sodium  hydroxide  solution  and 
particles  of  zinc  having^  a  large  mass  of  small  surface 
area  compared  with  filings.  The  full  charges  of  the 
constituents  are  mixed  simultaneously,  and  gases 
evolved  are  discharged  from  the  apparatus. 

— L.  A.  C. 

Tar;  Separation  of  oils  and  pitch  from  .     R. 

Lessing.    U.S.P.  1,405,234,  31.1.22.  Appl.,  9.9.18. 
See  E.P.  130,362  of  1918;  J.  1919,  676  a. 


IV.— COLOURING  .MATTERS  AND  DYES. 

p-Cymene.     Wheeler  and  Smithey.     See  XX. 

Patents. 

Anthraquinone;  Manufacture  of  [hydr]oxy-deriva- 

tives  of [e.g.,  alizarin'].    A.  H.  Davies,  and 

Scottish  Dyes,  Ltd.     E.P.  174,101,  23.7.20. 

Diiiydroxyanthraquinones  are  obtained  by  auto- 
claving  monochloroanthraquinoncs  with  solutions 
of  caustic  alkalis  in  presence  of  oxidising  agents 
such  as  chlorates  or  nitrates.  For  example  alizarin 
is  obtained  by  heating  a  mixture  of  78  pts.  of  2- 
chloroanthraquinone,  275  pts.  of  sodium  hydroxide, 
11'3  pts.  of  sodium  chlorate,  and  850  pts.  of  water 
for  24  hrs.  at  170°  C.  The  product  is  diluted  with 
2000  pts.  of  water,  boiled,  filtered,  and  the  residue 
again  extracted  with  boiling  dilute  caustic  soda 
solution.  The  combined  filtrates  are  then  acidi- 
fied with  hydrochloric  acid  to  precipitate  the 
alizarin. — G.    F.   M. 

Leuco  Alizarin  Bordeaux  and  [halogen]  derivatives 

thereof:  Manufacture  of  .     W.  H.  Dawson. 

E.P.  174,136,  7.10.20. 
Tf   Alizarin    Bordeaux    and    its    monochloro-deriva- 
tive    are    reduced    in    alkaline    solution    by    means 


of  sodium  hydrosulphite,  the  leuco-compound9 
obtained  oxidise  less  readily  and  are  easier 
to  handle  than  those  obtained  when  the  reduction 
is  effected  by  means  of  caustic  soda  and  zinc.  It 
is  advantageous  to  precipitate  the  leuco-compounds 
from  hot  solutions,  since  they  are  then  obtained 
in  a  state  more  reactive  towards  aromatic  amines. 

—A.  J.  H. 

Di/estuffs  of  the  triphenylmethane  series  which  can 

be  after-chromed;  Manufacture  of .    L.  Cas- 

sella  und  Co.     G.P.  344,900,  14.7.15. 

Derivatives  of  di-(dichloromethyl-)benzene  halo- 
genated  in  the  nucleus  are  condensed  with  aromatic 
o-hydroxycarboxylic  acids,  e.g.,  o-cresotinic  acid, 
either  by  heating  a  mixture  of  the  compounds  in 
the  presence  of  concentrated  sulphuric  acid,  or  by 
dissolving  a  di-(dichloromethyl-)benzene  derivative 
in  hot  concentrated  sulphuric  acid  and  subsequently 
adding  an  o-hydroxycarboxylic  acid  to  the  cooled 
solution.  The  leuco-compounds  obtained  are  oxi- 
dised to  dyestuffs  by  the  usual  method.  The 
halogen  derivatives  of  di-(dichloromethyl-)benzene, 
prepared  by  chlorinating  under  the  action  of  light 
at  high  temperatures  derivatives  of  the  xylenes 
halogenated  in  the  nucleus,  include:  1.3-di-R- 
monochlorobenzene,  b.p.  (760  mm.)  291° — 292°  C. ; 
1.3-di-R-dichlorobenzene,  b.p.  312°— 313°  C. ;  1.4- 
di-R-dichlorobenzene,  b.p.  313°— 316°  C. ;  1.2-di-R- 
trichlorobenzene,  b.p.  322°— 324°  C. ;  1.3-di-R- 
trichlorobenzene,  b.p.  330°— 331°  C. ;  1.4-di-R- 
trichlorobenzene,  b.p.  331°— 333°  C. ;  1.3-di-R- 
tetrachlorobenzene.  m.p.  83°  C,  b.p.  359°— 360°  C. ; 
and  1.4-di-R-tetrachlorobenzene,  m.p.  168°  C,  where 
R  =  (dichloromethyl).  The  products  dye  wool  red- 
dish-brown shades,  which  when  after-chromed  change 
to  blue  or  bluish-green  shades. — L.  A.  C. 

Azo  dyes.  R.  Haugwitz,  Assr.  to  Akt.-Ges.  fiir 
Anilin-Fabr.  U.S.P.  1,405,6S7,  7.2.22.  Appl., 
5.7.16. 

See  E.P.  166,033  of  1920;  J.,  1921,  619  a. 


V.-FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Yarns;  Elastic  properties  of  - .    J.  A.  Matthew. 

J.  Textile  Inst.,  1922,  13,  45—54. 

After  being  stretched,  flax  (green,  boiled,  or 
bleached),  hemp,  and  cotton  yarns  become  perfectly 
el.i-tie.  and  their  elongation  is  proportional  to  the 
applied  load.  Yarn  becomes  less  elastic  as  its  break- 
ing point  is  approached.  The  greater  rate  of 
stretching  of  grey  over  bleached  cotton  yarn  is 
apparently  due  to  the  lubricating  effect  of  the  wax 
which  the  former  contains.  The  elasticity  of  yarns 
is  greatly  influenced  by  the  character  of  the  fibres 
of  which  they  are  composed. — A.  J.  H. 

Yarns;  Stress-strain  curves  of  various .    G.  F- 

New.    J.  Textile  Inst.,  1922,  13,  25—40. 

By  means  of  a  modification  of  Barr's  wire  testing 
machine,  stress-strain  curves  of  flax,  cotton,  hemp, 
viscose  silk,  worsted,  and  ramie  yarns  have  been 
obtained  and  the  influence  of  various  factors  sw  ii 
as  weight,  twist,  boiling,  bleaching,  and  sizing  on 
yarn  behaviour  is  discussed.  A  theory  explaining 
the  mechanism  of  yarn  fractures  is  developed. 
Hysteresis  curves  of  linen  and  cotton  yarns  are 
given  and  discussed. — A.  J.  H. 

Celluloses;  Action  of  mineral  acids  on  cr}ide  . 

Concurrent  formation  and  destruction  of  reducing 
substances.  Utilisation  of  the  secondary  products 
of  this  destruction.  G.  Meunier.  Comptes  rend., 
1922,   174,  468—470. 

Mineral  acids  attack  celluloses  in  the  cold  giving 


Vol.  XIX,  No.  6.]        Cl.   VI.— BLEACHING  ;    DYEING;    PRINTING;    FINISHING. 


213a 


reducing  substances,  but  if  hot  acids  are  used  then 
the  acids  destroy  the  reducing  substances  formed 
and  the  resulting  products  are  formic  and  acetic 
acids,  furfural,  methyl  alcohol,  acetone,  lsevulinic 
and  ulmic  acids,  resins  and  brown  colouring  sub- 
stances. Steam  is  used  to  remove  the  volatile  sub- 
stances as  formed.  The  results  obtained  with  spruce 
shavings  are  given.  The  amounts  of  insoluble  sub- 
stances and  reducing  substances  respectively  vary 
with  the  time,  according  to  the  nature  of  the  acid 
used,  the  weight  and  concentration  of  the  acid  solu- 
tion, and  the  manner  in  which  the  concentration 
and  temperature  of  the  solution  have  varied  during 
the  experiment.  The  industrial  interest  in  the  use 
of  hot  dilute  acids  lies  in  the  fact  that  lignocellu- 
loses  can  be  degraded  as  profoundly  as  with  cold 
acids  by  the  U6e  of  much  less  acid,  in  a  shorter  time, 
and  under  conditions  which  permit  of  variation, 
within  wide  limits,  of  the  relative  and  absolute 
amounts  of  reducing  substances  and  their  products 
of  decomposition  obtained. — W.  G. 

Paper  pulp  from  megasse.  Fowler  and  Bannerjee. 
See  XVII. 

p-Cymcne.     Wheeler  and  Smithey.      See  XX. 

Cystine.     Merrill.     See  XX. 

Patents. 

Films;  Process  of  producing  homogeneous  products 

including    [from    cellulose    esters'].      H.    F. 

Willkie,  Assr.  to  U.S.  Industrial  Alcohol  Co. 
U.S. P.  1,400,196,  13.12.21.  Appl.,  12.4.20. 
A  FILM  is  produced  by  evaporation  of  a  solution  of 
a  cellulose  ester  in  a  solvent  consisting  of  an  ester 
having  a  dehydrating  action  and  an  alcohol  adapted 
to  form  a  mixture  of  constant  boiling  point  with 
water  and  to  carry  off  the  latter  during  the  evapor- 
ation of  the  solvent. — J.  H.  L. 

CeUulose-ethcr  solvent  and  composition.  S.  J. 
Carroll,  Assr.  to  Eastman  Kodak  Co.  U.S. P. 
1,405,487,  7.2.22.    Appl.,  9.6.21. 

A  solvent  for  cellulose  ethers  comprises  a  mixture 
of  chloroform  and  methyl  alcohol. — H.  H. 

TFaterproo/  paper,  and  process  of  making  same.  L. 
Kirschbraun.    E.P.  174,114,  7.9.20. 

The  non-adhesive  waterproofing  emulsion  described 
in  U.S. P.  1,302,810  (J.,  1919,  494  a)  is  made  by  a 
continuous  process,  in  which  molten  asphalt,  or  the 
like  (e.g.,  tar,  pitch,  resins,  etc.),  at  about  163° — 
177°  C.  is  introduced  simultaneously  with  a  thin 
stream  of  an  aqueous  suspension  of  colloidal  mineral 
matter,  e.g.,  clay,  into  a  previously  prepared  quan- 
tity of  the  emulsion,  contained  in  a  mixer,  and 
kept  in  violent  agitation  by  a  rapidly  revolving 
stirrer  fitted  with  helical  blades,  the  temperature 
of  the  mass  being  maintained  at  about  66°  C.  The 
operation  may  be  conducted  under  pressure  when 
asphalt  having  a  high  melting-point  is  used.  The 
finished  product,  which  should  contain  about  50% 
of  asphalt,  40%  of  water,  and  10%  of  clay,  is  with- 
drawn from  the  bottom  of  the  mixer,  diluted  with 
water,  passed  through  a  fine  strainer,  and  pumped 
into  storage  tanks  provided  with  agitators. 
This  emulsion  may  be  added  in  varying  quantities, 
up  to  193%  of  asphalt  on  the  weight  of  dry  fibre, 
to  beaten  pulp,  and  the  stock  mav  lie  run  on  a  Four- 
drinier  or  cylinder  machine.  The  sheets  may  be 
heat-dried,  in  which  case  the  asphalt  particles 
coalesce  and  form  a  continuous  film  throughout  the 
sheet,  or  air-dried,  in  which  case  the  particles 
retain  their  individual  character  and  help  to 
strengthen  the  sheet. — D.  J.  N. 


Waterproof  impregnation  of  paper  yarn  and  fabrics. 
H.  T.  Bbhme  A.-G.  G.P.  346,061,  18.10.17.  Addn. 
to  332,473  (J.,  1921,  295  a). 

The  material  to  be  treated  passes  in  succession 
through  a  bath  of  montan  wax  or  of  crude  montan 
wax  emulsion  and  a  precipitation  bath  containing 
a  weak  acid  or  an  acid  salt  of  an  alkali  metal  of  the 
corresponding  concentration. — H.  C.  R. 

Sulphite-cellulose  waste  liquors;  Process  for  treat- 
<>i'i  before  conversion  into  sizing  composi- 
tions, adhesives,  feeding-stuffs,  etc.  Zellstoff- 
fabrik  Waldhof,  and  H.  Clemm.  G.P.  345,774, 
10.11.20. 

Before  neutralisation,  sulphite-cellulose  waste 
liquor  is  allowed  to  remain  in  contact  with  finely 
divided  wood  or  other  cellulosic  material,  whereby 
the  greater  part  of  its  content  of  sulphur  dioxide 
is  removed.  Wood  chips  which  are  subsequently 
to  be  converted  into  pulp  are  suitable  for  this 
purpose. — A.  J.  H. 

Drying  textile  materials;  Apparatus  for  .     A. 

Hudson  and  V.  S.  Lyles.     E.P.  174,510,  8.12.20. 

Tanning  materials.     E.P.  171,136.     See  XV. 


VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Cotton  fabrics;    Effect    of  scouring  and   bleaching 

upon    flu-   structure   and  strength   of  .     J. 

Huebner.      J.    Soc.   Dyers    and    Col.,    1922,    38, 
29—40. 

Cotton  fabric  which  is  scoured  by  alternately 
boiling  it  in  a  solution  containing  caustic  soda 
and  soda  ash  in  an  open  kier  and  souring  it  with 
dilute  hydrochloric  acid,  suffers  a  loss  in  weight 
of  about  10%,  of  which  3%  is  due  to  loss  from  the 
fibre.  Moreover,  in  the  warp  and  weft,  the 
number  of  threads  per  inch  are  increased  and 
decreased  respectively.  Fine  fabrics  shrink  to  a 
greater  extent  in  the  weft  way  than  coarse  fabrics. 
The  change  of  elasticity  of  a  fabric  produced  by 
scouring  can  be  deduced  from  the  regain  (the 
difference  between  the  length  of  a  fabric  and  the 
length  of  a  thread  after  removal  from  that  fabric) 
in  the  warp  and  weft.  Generally  the  loss  of  tensile 
strength  in  the  warp  is  greater  than  that  in  the 
weft  and  is  less  in  fabrics  woven  from  folded  yarns 
than  in  fabrics  woven  from  single  yarns.  The  mean 
ratio  of  the  breaking  strain  of  grey  fabrics  to  that 
of  the  scoured  fabrics  is  less  than  the  ratio  of  the 
weight  per  sq.  m.  of  grey  to  that  of  the  scoured 
fabrics.  When  cotton  fabric  is  subjected  to  a  lime 
boil,  the  number  of  warp  threads  is  increased  but 
the  number  of  weft  threads  is  unchanged,  whereas 
after  a  caustic  soda  boil  the  number  of  weft  threads 
is  increased  by  2%.  A  gentle  boil  in  soda  ash 
slightly  increases  the  tensile  strength  of  the  warp 
and  weft  threads,  whereas  a  caustic  soda  and  soda 
ash  boil  produces  a  loss  of  strength.  A  lime  boil 
only  slightly  affects  the  tensile  strength  of  a  fabric. 
After  chemicking,  a  fabric  has  increased  tensile 
strength.  Careful  scouring  with  lime,  soda  ash,  or 
caustic  soda  and  bleaching  does  not  unduly  reduce 
the  tensile  strength  of  fabrics.  _  The  effects  of 
scouring  processes  on  the  ripping  and  tensile 
strains  of  a  fabric  are  not  directly  comparable, 
and  neither  test  alone  gives  a  complete  record  of 
the  changes  which  occur  in  the  fabric.  On  the 
whole,  the  results  indicate  that  the  method  _  by 
which  the  effect  of  chemical  agents  and  mechanical 
processes  upon  the  strength  of  a  fabric  is  deter- 
mined by  measurement  of  the  tensile  strength  of 
single  threads  is  not  entirely  reliable. —  A.  J.  H. 


214  \ 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Mar.  31,  1922. 


Cotton;  Effect  of  prolonged  bleaching  with   bleach 

liquors  at   different   temperatures    on  ■ .      P. 

Heermann  and  H.  Frederking.  Textilber.,  1922, 
:;.  hi— 03. 
Investigations  carried  out  in  a  similar  manner  to 
those  described  previously  (J.,  1921,  578  a,  886  a; 
1922,  54  a),  show  that  warm  bleach  liquors  seriously 
diminish  the  durability  of  the  fabrics.  Cotton 
fabrics  after  fifty  immersions  of  75  mins.  each  in 
bleach  liquors  at  29°  and  37°  C.  and  containing 
0'5  g.  of  active  chlorine  per  1.,  lost  39T  and  60'7% 
in  tensile  strength,  4-5  and  8-2%  in  elasticity,  and 
60  and  12"2%  in  weight  respectively.  Under  similar 
conditions,  except  that  the  temperature  of  the 
bleach  liquor  was  20°  C,  the  loss  of  strength  of 
cotton  fabric  was  about  16%.— A.  J.  H. 

Manganese     Bronze;     Method     for     dyeing     . 

Report  by  C.  Sunder  on  Sealed  Note  849,  9.1.96, 
of  F.  V.  Kallab.  Bull.  Soc.  Iud.  Mulhouse,  1921, 
87,  431 — 436.  Further  note  by  L.  Bloch,  ibid., 
436—437. 
Sunder  reports  that  Kallab's  method  for  dyeing 
Manganese  Bronze  in  which  a  fabric  impregnated 
with  a  reducing  agent  (preferably  antimony 
tannate)  is  treated  with  a  solution  containing 
potassium  permanganate,  is  of  but  little  importance. 
The  irregular  reducing  action  of  the  tannic  acid 
does  not  allow  the  production  of  uniform  shades, 
and,  moreover,  in  the  production  of  coloured  effects 
by  means  of  tin  salts  and  basic  dyestuffs,  it  is  neces- 
sary to  fix  the  latter  with  tannic  acid,  so  that  the 
apparent  saving  of  this  mordant  cannot  in  practice 
be  effected.  A  more  reliable  process  for  dyeing 
Manganese  Bronze  is  that  of  Balanchc  in  which  the 
fabric  is  padded  with  a  mixture  containing  man- 
ganese acetate  and  a  bichromate  and  is  then 
steamed.  It  is  also  difficult  to  obtain  uniform 
shades  by  means  of  Depierre's  method  in  which 
manganese  chloride  is  used  as  a  reducing  agent.  In 
a  successful  process  described  by  Bloch,  the  fabric 
is  padded  with  a  solution  at  50°  C.  containing 
150  g.  of  manganese  chloride  per  1.,  dried  in  a  hot 
flue,  twice  passed  through  cold  caustic  soda  of 
20°  B.  (sp.  gr.  1T6),  allowed  to  hang  for  several 
hours,  washed,  dried,  passed  through  a  solution  at 
95°  C.  containing  40  kg.  of  potassium  bichromate 
per  100  1.,  and  then  washed  and  dried. — A.  J.  H. 

Patents. 
Dyeing  apparatus.    \V.  H.  Davis.  U.S. P.  1,405,299, 

31.1.22.  Appl.,  5.7.17. 
An  apparatus  for  treating  yarns  and  the  like  con- 
sists of  a  container  having  an  open  top,  within 
which  are  several  perforated  vertical  yarn  holders 
extending  towards  the  top.  The  liquor  can  be 
circulated  laterally  from  the  yarn  holders  into  the 
container  or  in  the  reverse  direction.  The  con- 
tainer has  a  water-tight  cover  to  which  is  attached 
an  adjustable  press-plate  by  means  of  which  the 
yarn  is  compressed  on  the  holders  when  the  cover 
is  closed. — A.  J.  H. 

Cotton  or  other  vegetable  fibres;  Process  for  mak- 
ing  "  effect  "  threads  from  — — .  L.  Cassella  und 
Co.  G.P.  346,883,  11.4.19. 
The  vegetable  fibre  is  treated  with  alkali  and  then 
with  a  solution  of  an  aromatic  acid  chloride  in  an 
indifferent  solvent.  For  instance  cotton  previously 
treated  with  alkali  is  introduced  into  a  solution  of 
benzoyl  chloride  in  benzene  at  30° — 40°  C. 

— H.  C.  R. 

Bleaching  textile  fibres  and  fabrics,  tissues,  and  the 

like:  Method  and  device  for .    R.  Mohr,  Assr. 

to  Naaml.  Vennoots.  de  Eibergsche  Stoom- 
bleekerij,  voorh.  G.  J.  Ten  Cate  en  Zonen. 
U.S. P.  1,404,467,  24.1.22.    Appl.,  24.3.21. 

See  G.P.  311,546  of  1916;  J.,  1919,  626  a. 


Wool,  slubbing.  yarns,  and  other  fibrous  material; 

Apparatus     for     treating     [dyeing']     .       J. 

Kershaw.   U.S. P.  1,405,038,  31.1.22.   Appl.,  5.1.21. 
See  E.P.  162,720  of  1919;  J.,  1921,  467  a. 

Bleaching    kie, r;   \M'agon   for"]    high   pressure   open 

width  .     A.  Rangelev  and  A.  Chidlow.     E.P. 

174,499,  27.11.20. 


VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Ammonia;  Role  of  gaseous  impurities  in  the 
catalytic  oxidation  of  .  Influence  of  hydro- 
gen phosphide.  E.  Decarriere.  Comptes  rend., 
1922,  174,  460—461.    (67.  J.,  1921,  542  a,  580  a.) 

Hydrogen  phosphide  when  present  in  the  ammonia- 
air  mixture  as  the  sole  gaseous  impurity  and  only 
to  the  extent  of  0'00002%  exercises  a  harmful  effect 
on  the  platinum  catalyst  and  reduces  the  oxidation 
by  nearly  30%.  If  the  gas  is  present  to  the  extent 
of  0-02%'  the  yield  falls  from  93/8%  to  3'9%.  In 
every  case,  however,  the  activity  of  the  catalyst 
was  regenerated  when  the  impurity  was  removed, 
the  regeneration  being  slower  the  greater  the  per- 
centage of  the  impurity  originally  present.  In  some 
cases  industrial  catalysts  of  the  type  of  those  of 
Ostwald  may  be  destroyed  by  the  momentary 
presence  of  traces  of  hydrogen  phosphide  under 
certain  favourable  circumstances. — W.  G. 

Ammonia;  Electronic  synthesis  of  .     II.     E. 

Hiedemann.     Chem.-Zeit.,  1922,  46,  97.     (Of.  J., 
1921,  845  a.) 

The  formation  of  ammonia  by  passing  a  mixture  of 
nitrogen  and  hydrogen  through  an  electron  tube  is 
not  due  to  the  catalytic  action  of  the  white  hot 
platinum  or  tungsten  cathode,  as  no  ammonia  is 
formed  if  the  electrons  have  "  a  velocity  of  only 
2  volts,"  nor  is  it  due  to  the  glow  discharge  of  the 
ionised  gases,  as  appreciable  amounts  of  ammonia 
are  formed  at  tensions  below  the  ionisation  tension 
of  nitrogen  and  hydrogen. — A.  R.  P. 

Sodium  hydrosulphite.  F.  W.  Hevl  and  F.  E. 
Greer.     Amer.  J.  Pharm.,  1922,  94,  80—92. 

The  most  satisfactory  laboratory  method  for  the 
production  of  sodium  hydrosulphite  is  by  the  action 
of  sodium  bisulphite  on  sodium  formaldehyde] 
sulphoxylate,  which  may  be  prepared  by  the  reduc- 
tion of  commercial  hydrosulphite  with  zinc  duM  ,im! 
zinc  oxide  in  presence  of  formalin,  and  recrystallis- 
ing  the  crystals  first  obtained  from  water  at  a  tem- 
perature not  exceeding  70°  C.  The  purity  of  the 
product  may  best  be  determined  by  direct  titration 
of  a  hot  solution  with  standard  methylene  blue 
solution.  Sodium  formaldehyde-sulphoxylate  is 
soluble  in  glycerin  to  the  extent  of  about  74  g.  in 
100  c.c.  It  has  apparently  no  toxic  action  on  rats 
when  administered  by  intravenous  injection.  It 
was  not  found  possible  to  prepare  analytically  pure 
anhydrous  sodium  hydrosulphite  even  by  the 
method  from  sodium  formaldehyde-sulplioxvlate 
indicated  above  and  salting  out  the  product  by 
means  of  strong  brine,  although  97'7%  purity  U 
claimed  in  U.S. P.  990,457  (E.P.  11,906  of  1910:  J  . 
1911,  621).  The  best  results  obtained  were  yields  of 
55 — 60%  of  the  theory  with  a  purity  of  80 — 85%, 
and  neither  by  recrystallisatiou  nor  salting  out  from 
air-free  aqueous  solutions  in  an  inert  atmosphere 
could  the  salt  be  further  purified.  Both  sodium 
hydrosulphite  and  its  products  of  decomp' 
injected  intravenously  into  rats  are  toxic  in  doses 
of  about  200  mg.  per  kg.  of  bodv  weight  upwards. 

— G.  F.  M. 


Vol.  XLI.,  No.  6.]     Cl.  VII.—  ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


215  a 


Sodium  aluminates.  Equilibria  in  the  system 
y,i,()—AhO—E.O.  F.  Goudriaan.  Rec.  Trav. 
Chim.,  1922,  41,  82—95. 
At  30°  C.  two  stable  aluminates  exist,  hav- 
ing the  composition  4Na,0,3AI,O3,16H,0  and 
4Na,O,Al,O,,10H,O  respectively.  "  Both  are  de- 
composed by  water  and  by  dilute  solutions  of 
sodium  hydroxide.  A  diagram  is  given  showing  the 
limiting  concentration  of  the  alkali,  below  which 
this  decomposition  takes  place.  Aluminium 
hydroxide  may  be  obtained  in  different  forms 
according  to  the  method  of  preparation ;  a  crystal- 
line hydrate  of  the  composition,  Al,O3,3H.,0,  may 
be  obtained  by  precipitation  of  a  solution  of  sodium 
aluminato  with  carbon  dioxide,  preferably  by  ex- 
posure of  the  solution  to  atmospheric  carbon 
dioxide.  The  gel  form  of  the  hydroxide  is  regarded 
as  a  metastable  phase  of  variable  composition  ;  the 
quantity  of  alkali  which  it  retains  is  not  constant, 
it  is  very  probable  that  there  exists  a  definite 
transition  point  between  the  gel  and  the  crystalline 
forms  of  the  hydroxide.  The  swelling  of  the  dry 
particles  of  oxide  and  hydroxide  mainly  depends 
on  the  alkalinity  of  the  solution  :  at  30°  C.  the 
oxide  is  metastable  with  respect  to  the  hydrate. 

— H.  J.  E. 

Barium  peroxide;   Velocity  of  formation   of  . 

N.    Sasaki.      Mem.    Coll.    Sci.    Kyoto,    1921,    5, 

9—96. 
The  velocity  of  formation  of  barium  peroxide  from 
barium  oxido  and  oxygen  at  400° — 625°  C.  was 
studied  with  the  aid  of  a  special  balance  so  con- 
structed that  the  specimen  under  examination 
could  be  weighed  at  any  time,  being  suspended  from 
one  arm  of  the  balance  which  was  totally  enclosed 
and  operated  from  outside  by  means  of  magnets. 
The  balance  is  suitable  for  weighing  at  any  tem- 
perature, under  any  pressure,  or  in  an  atmosphere 
of  any  gas  not  reacting  with  the  metal  of  the 
balance.  A  new  type  of  gas-washer  was  also 
devised,  consisting  of  a  glass  U-tube,  one  arm  of 
which  was  of  narrow  bore,  the  other  expanded  into 
a  long  bulb.  The  two  arms  were  bridged  by  a 
narrow-bore  spiral  or  worm  in  such  a  manner  that 
the  gas,  entering  by  the  narrow  arm,  bubbled 
through  the  liquid  in  the  spiral  and  escaped  into 
the  wide  arm,  which  served  as  a  reservoir  for  the 
washing  liquid.  The  passage  of  the  gas  keeps  the 
liquid  circulating  in  the  U-tube.  The  velocity 
curves  for  the  formation  of  barium  peroxide  were  of 
an  unusual  form,  which  may  be  explained  on  the 
assumption  that  the  oxide  consists  of  a  great  num- 
ber of  very  small,  equal  spherical  particles  which 
begin  to  react  one  ofter  another,  the  number  of 
spheres  becoming  active  in  unit  time  being  propor- 
tional to  the  quantity  of  peroxide  already  formed. 

— E.  H.  R. 

Uranium  oxides;  Belationship  between  the  different 

.      P.    Jolibois    and    R.    Bossuet.      Comptes 

rend.,  1922,  174,  386—388. 

When    uranic    anhydride,    U03,    is    heated    in    a 

vacuum  at  502°   C.,   it   is  decomposed   giving   the 

oxide,    U308,   the    action   being   irreversible.      The 

i    oxide,  U02,  when  heated  in  oxygen  is  oxidised  very 

rapidly,  the  action   commencing  at  about  185°  C. 

The  only  product  is  the  oxide,  U308.    When  heated 

:    in  a  current  of  hydrogen  the   oxide,  U308,   shows 

.    signs  of  reduction  at  625°  C,  the  reduction  being 

,    complete  at  650°  C.     The  only  product  is  the  oxide, 

i    U02.     When   heated    for   3   hrs.    in    a    vacuum   at 

1000°  C.  the  oxide,  U308,  only  loses  a  very  small 

fraction  of  its  oxygen.     In  order  to  get  complete 

dissociation  to  UO„  the  temperature  must  be  raised 

to  2000°  C— W.  G. 

Uranium  oxides.    P.  Lebeau.    Comptes  rend.,  1922, 
174,  388—391  (c/.  supra). 

From  a   consideration   of    the  work    done   on    the 


oxides  of  uranium  the  author  concludes  that  the 
only  oxides  of  uranium  which  have  a  definite  exist- 
ence are  UO,,  U308,  and  UO,.  The  so-called  black 
oxides  have  the  composition,  U308.  They  are  stable 
in  air  and  can  be  heated  at  1000°  C.  under  atmos- 
pheric pressure  without  decomposition.  The  green 
oxides  prepared  at  temperatures  below  800°  C.  con- 
tain varying  amounts  of  uranic  anhydride  and  can 
undergo  change  when  exposed  to  moist  air,  the 
uranic  anhvdride  present  undergoing  hydration 
(c/.  Staehling,  J.,  1922,  97  a).— W.  G. 

Nitrogen  oxides.    Allison  and  others.    Sec  XLXb. 

Patents. 

Sulphuric  anhydride  and  sulphuric  acid;  Manufac- 
ture  of  .      M.   F.   Chase   and   F.   E.    Pierce, 

Assrs.  to  The  Cos  Process  Co.     U.S. P.  1,405,669, 
7.2.22.     Appl.,  9.7.20. 

Molten  brimstone  is  burned  with  air  dried  suffi- 
ciently to  prevent  the  formation  of  acid  mist  etc. 
in  the  burner  gases,  which  are  subsequently  humidi- 
fied to  the  limited  extent  required  for  efficient  con- 
version.— H.  R.  D. 

Sulphuric  acid  chambers  or  towers;  Process  and 

apparatus  for  improving   the   working  of  . 

E.  A.  Gaillard.  G.P.  346,121,  24.2.21.  Conv., 
3.6.20. 
Cold  nitrous  vitriol  is  atomised  by  a  turbine  device 
and  caused  to  trickle  down  the  inner  walls  of  the 
lead  chambers.  The  chambers  are  preferably  conical 
in  form.— H.  R.  D. 

Ammonia;  Catalytic  materials  for  use  in  the  syn- 
thesis of  .     L'Air  Liquide,  Soc.  Anon,  pour 

I'Etude  et  l'Exploit.  des  Proc.  G.  Claude.  E.P. 
153,254,  21.10.20.  Conv.,  28.10.19. 
Iron  is  melted  under  a  jet  of  oxygen,  and  the  melt, 
consisting  mainly  of  ferrous  oxide  and  molten  iron, 
allowed  to  flow  into  a  magnesia  crucible.  When 
sufficient  has  been  collected,  a  strong  jet  of  oxygen 
is  directed  into  the  molten  mass.  This  completes 
oxidation  with  development  of  a  very  high  tempera- 
ture and  solution  of  some  of  the  magnesia  of  the 
crucible.  The  product  thus  obtained,  when  cast,  is 
a  good  catalyst  for  the  synthesis  of  ammonia  at  very 
high  pressures,  but  has  a  life  of  only  10 — 15  hrs. 
If,  however,  5 — 10%  of  lime  with  a  small  proportion 
of  alkali  oxide  is  added  to  the  iron  while  the  crucible 
is  being  filled,  this  lime  being  dissolved  by  the 
agitation  with  the  oxygen  blast,  a  catalyst  with  a 
life  of  some  hundreds  of  hours  and  giving  a  con- 
version of  40 — 50%  of  the  reacting  gases  is  obtained. 

— C.  I. 

Ammonium  sulphate;  Manufacture  of .    South 

Metropolitan  Gas  Co.,  E.  V.  Evans,  P.  Parrish, 
and  O.  W.  Weight.  E.P.  174,878,  18.3.21. 
Ammonium  sulphate  crystals  from  a  saturator  are 
treated  with  three  times  their  weight  of  mother 
liquor  from  the  saturator,  which  liquor  has  first 
been  made  alkaline  with  sufficient  ammonia,  free 
from  hydrogen  sulphide,  to  neutralise  the  liquor  and 
also  the  acid  likely  to  be  present  in  the  crystals, 
then  oxidised,  for  example  with  air,  till  no  further 
precipitate  is  produced,  and  filtered.  The  process 
is  suitable  for  neutralising  the  fine  crystals  obtained 
in  the  direct  or  semi-direct  processesof  recovering 
ammonia  from  coke-oven  gas,  and  yields  a  salt  of 
good  colour. — H.  R.  D. 

Sodium  compounds ;  Manufacture  of  ,  and  by- 
products. E.  E.  Naef.  E.P.  174,653,  10.11.20. 
Sodium  sulphide  of  61  %  strength  is  treated 
with  air  or  oxygen  in  presence  of  finely  divided 
activated  charcoal  powder,  whereupon  a  violent 
reaction  takes  place  accompanied  by  a  considerable 


216a 


Cl.  Vn.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.  [Mar.  31,  1922. 


rise  of  temperature.  The  temperature  is  controlled 
by  providing  the  reaction  chamber  with  a  cooling 
jacket.  The  reaction  products  are  sodium  thiosul- 
phate  and  caustic  soda  with  a  small  proportion  of 
sodium  carbonate.  They  may  be  separated  by 
several  methods,  e.g.,  by  dissolving  in  water,  con- 
centrating and  recovering  the  sodium  thiosulphate 
by  crystallisation  :  by  extracting  the  caustic  soda  by 
means  of  hot  alcohol ;  by  treating  the  cold  aqueous 
solution  with  carbon  dioxide,  filtering  off  the  pre- 
cipitated sodium  bicarbonate,  and  crystallising 
sodium  thiosulphate  from  the  filtrate;  treating  the 
hot  aqueous  solution  with  carbon  dioxide  and 
separating  the  resulting  mixture  of  sodium  car- 
bonate and  thiosulphate  by  fractional  crystallisa- 
tion; electrolysing  the  aqueous  solution  at  20° — 
60°  O.  in  a  cell  with  a  porous  diaphragm,  whereby 
caustic  6oda  solution  is  obtained  at  the  cathode  and 
sulphur  and  dilute  sulphuric  acid  at  the  anode. 

— H.  R.  D. 

Sodium  carbonate  and  ammonium  chloride;  Manu- 
facture of  from  crude  calcium   cyanamide. 

Elektrizitatswerk  Lonza  A.-G.,  and  H.  Danneel. 
G.P.  346,244,  6.7.20. 
Calcium  cyanamide  mixed  with  water  and  6odium 
chloride  is  treated  with  carbon  dioxide,  preferably 
in  presence  of  alkali  carbonate.  The  following 
reactions  take  place:  — 

CaCN2  +  2NaOI  +  4H„0  +  C02  = 

CaC03 +2NH1Cl+Na2C03 ; 
CaCN2  +  2NaCl+5H„0  +  2C02  = 

CaC03+2NHJCl+2NaHC03. 

— H.  R.  D. 

Hydroxides  of  sodium  and  potassium;  Manufacture 
of .    C.  Deguide.    G.P.  346,808,  27.3.21. 

Dl-  or  tri-barium  silicate  or  an  intermediate  silicate 
is  decomposed  by  means  of  water  and  alkali  sul- 
phate. The  silicate  is  prepared  by  calcining  a 
mixture  of  barium  monosilicate  and  barium  sulphate 
with  carbon. — H.  R.  D. 

Potassium  compounds  [from  distillery  slop];  Process 

of  obtaining .    M.  C.  Whitaker,  Assr.  to  U.S. 

Industrial  Alcohol  Co.    U.S.P.  1,400,192,  13.12.21. 
Appl.,  31.12.17. 
Distillery  slop  is  brought  into  contact,  as  a  spray, 
with  vapours  containing  silicon  tetrafluoride. 

—J.  H.  L. 

Aluminium  chloride;  Manufacture  of .     F.  W. 

Hall,  Assr.  to  The  Texas  Co.     U.S.P.  1,405,115, 
31.1.22.    Appl.,  1.3.20. 

Aluminium  chloride  is  produced  by  bringing 
together  alumina,  sulphur,  and  chlorine  at  a  tem- 
perature sufficient  for  chemical  action.— H.  M. 

Aluminium  chloride;  Process  for  the  production  of 

anhydrous  .     L.  Burgess,  Assr.  to  Standard 

Oil  Co.    U.S.P.  1,405,183,  31.1.22.  Appl.,  13.5.19. 

Finely  powdered  aluminium  carbide  is  fed  continu- 
ously into  a  current  of  gaseous  hydrogen  chloride, 
with  which  it  is  mixed  by  agitation.  The  mixture 
is  passed  into  a  chamber  and  the  reaction  started  by 
application  of  heat. — H.  R.  D. 

Aluminium   chloride;  Manufacture   of  [from 

hydrocarbon   residues].     A.  M.   McAfee,  Asisr.  to 
Gulf    Refining    Co.      U.S.P.    1,405,734,    7.2.22. 
Appl.,  22.3.19. 
Hydrocarbon    residues    containing   combined    alu- 
minium chloride  are  decomposed  by  heat,  and  the 
aluminium  chloride  vapour  is  condensed. — L.  A.  C. 

Magnesia;    Production   of   .     H.   P.   Bassett. 

U.S.P.  1,405,388,  7.2.22.    Appl.,  17.1.21. 
A    mixture    containing    magnesium    chloride    and 


magnesia  is  heated  at  900°— 1200°  F.  (about  480°— 
650°  C.)  in  the  presence  of  steam,  and  the  product 
is  unshed  to  remove  chlorine  and  chlorine  com- 
pounds.— H.  R.  D. 

Sulphurous     acid;     Manufacture     of     ■ from 

materials  containing  small  quantities  <>f  sulphur 
(pyrites,  spent  oxide,  etc.).  P.  Kircheisen.  G.P. 
345,563,  30.1.18. 

The  material  is  roasted  with  utilisation  of  the  heat 

of  combustion  of  hydrogen  sulphide  as  a  source  of 

heat.— H.  It.  D. 

Nitrous   gases;   Absorption   of   by    means    of 

water.  H.  Pauling.  G.P.  345,668,  1.6.20. 
The  circulating  absorption  liquid  before  re-entering 
the  absorption  apparatus  is  subjected  to  a  counter 
current  of  air  or  other  gas  containing  oxygen.  The 
issuing  air  containing  nitrous  fumes  is  passed 
through  an  oxidation  chamber  and  a  cooler  and 
then  passed  to  the  absorption  apparatus. — H.  R  D. 

ilkali  silicates;  Manufacture  of .    C.  Deguide. 

G.P.  345,669,  2.2.21. 
Barium  silicate  is  heated  with  a  solution  of  alkali 
carbonate   or  sulphate.       The  solution   containing 
alkali  silicate  is  separated  and  concentrated. 

— H.  R.  D. 

Nitrides  of  aluminium,  magnesium,  calcium,  boron, 

etc.;  Process  for  making .    K.  Kaiser.     G.P. 

346,112,  6.6.20. 
Nitrogen  is  passed  over  heated  sulphides  of  alu- 
minium, magnesium,  calcium,  or  boron.  Ammonia 
is  simultaneously  produced  by  passing  nitrogen  and 
hydrogen  sulphide  alternately  or  together  over  the 
heated  sulphides. — H    R.  D. 

Magnesium    nitride;    Manufacture    of    .      K. 

Kaiser.     G.P.  346,437,  26.5.20. 
Nitrogen  is  passed  over  heated  or  through  molten 
anhydrous  magnesium  chloride. — H.  R.  D. 

Calcium   hydride;   Electric  furnace  for^producing 

from  lime  and  hydrogen.     A.  Kiesewalter. 

G.P.  346,119,  4.3.21. 
The  arc  flame  is  disposed  above  a  trough  divided  by 
means  of  a  bridge  into  two  parts,  into  one  of  which 
opens  a  tube  for  the  supply  of  hydrogen.  By  this 
means  the  process  is  conducted  without  any  dis- 
turbance. If  too  little  hydrogen  is  supplied 
metallic  calcium  is  formed  and  mixes  with  the 
calcium  hydride. — H.  R.  D. 

Sulphur;    Process    and    apparatus    for    extracting 

from    spent    oxide    from     gasworks.      A. 

Given,   Assr.   to   Stevens-Aylsworth  Co.      U.S.P. 
1,404,199,  24.1.22.    Appl.,  27.9.18. 
Spent  oxide  is  treated  with  benzol,  and  the  result- 
ing solution  treated  for  the  separation  of  benzol 
and  sulphur. — H.  R.  D. 

Ozone    of   any   desired    concentration;   Prodi 

of    .      Siemens    und    Halske    A.-G.      G.P. 

346,062,  9.7.20. 
Ozone     produced     from    a    circulating    current    of 
oxygen  is  liquefied  at  one  part  of  the  circuit,  and 
the  liquefied  ozone  is  vaporised  outside  the  circuit 
by  means  of  air  or  other  gas  to  give  ozonised  air  or 
ozonised    gas   of   any   desired    concentration 
cold  produced  by  the  vaporisation  of  the  liq 
ozone  and  the  excess  cold  of  the  apparatus  in  which 
the  liquefied  oxygen  is  produced  are  utilised  in  heat 
exchanging  apparatus  in  connexion  with  the  liq"' 
fication  of  the  ozone. — H.  R.  D. 

Finely  granulated  compounds.   E. P.  174,891.   Seel 

Oxygen.    E.P.  174,418.    See  XLXb. 


vol.  xil .  \o  C]     Cl.  VIII.— GLASS,  &c.     Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS,  &c.     217  a' 


VIII.— GLASS;  CERAMICS. 

Lehrs;  Operation  of .    C.  E.  Frazier.    J.  Amer. 

Ceram.  Soc,  1922,  5,  37 — £2. 

Muffle  and  open  types  of  lehrs  are  compared.  The 
former  have  more  uniform  temperatures  in  the  an- 
nealing chamber  and  the  ingress  of  cold  air  by  the 
side  of  the  pans  is  prevented.  They  allow  better 
control  of  the  temperature,  the  pyrometric 
indications  are  more  reliable,  and  less  fuel  is  re- 
quired for  a  given  output.  It  is  recommended  that 
the  lehr  chains  should  have  a  working  strain  of 
5800  lb.  at  200  ft.  per  minute.— H.  S.  H. 

Clays;   Microscopical    examination   of   the    mineral 

constituents    of    some    American    .      H.    G. 

Sqhurecht.    J.  Amer.  Ceram.  Soc,  1922,  5,  3—24. 

Each  sample  of  clay  was  separated  into  nine 
different  grain  sizes  by  screening  and  elutriation, 
and  each  size  was  examined  separately  under  the 
microscope.  The  different  portions  were  then  fired 
at  1000°  C.  and  their  colours  noted,  the  minerals 
causing  the  undesirable  colours  being  examined 
microscopically.  English  china  clays  were  found  to 
consist  of  plate-shaped  crystals  and  aggregates  of 
kaolinite  particles  with  an  index  of  refraction  of 
T56 — 1*57.  Muscovite  and  tourmaline  were  the 
most  abundant  accessory  minerals,  while  only  traces 
of  alkali-felspar  and  quartz  were  found.  North 
Carolina  kaolin  was  similar  to  the  English  clay,  but 
was  coarser  grained  and  contained  more  quartz. 
Georgia,  South  Carolina,  and  some  Pennsylvania 
kaolins  consist  largely  of  "colloidal"  kaolin,  with 
quartz  and  muscovite  as  the  chief  accessory 
minerals.  The  objectionable  abrasive  features  of 
the  American  clays,  causing  excessive  wear  to 
machinery,  can  be  overcome  by  superior  refining 
methods,  but  it  is  not  possible  at  present  to  trans- 
form the  "colloidal"  kaolinite  particles  into  the 
crystalline  form. — H.  S.  H. 

Porcelain;    Low   fire   .      C.    F.    Binns    and   T. 

Burdick.    J.  Amer.  Ceram.  Soc.,  1922,  5,  25—27. 

Test  pieces  were  cast  from  a  mixture  of  English 
china  clav  (40  pts.),  Georgia  clay  (6  pts.),  felspar 
(12  pts.), "flint  (20  pts.),  and  frit  (22  pts.),  the  frit 
being  prepared  from  crvolite  (126  pts.),  magnesite 
(42  pts.),  felspar  (165  pts.),  and  flint  (90  pts.).  The 
pieces  were  fired  at  cone  02  or  lower  to  harden  them 
and  then  glazed  and  fired  at  cone  4.  The  best  glaze 
tried  contained  whiting  (32  pts.),  nitre  (56*5  pts.), 
borax  (45'8  pts.),  soda  ash  (19  pts.),  magnesite 
(8-4  pts.),  calcined  clay  (533  pts.),  flint  (108  pts.). 
Georgia  clay  (18  pts.)  was  added  to  the  fritted 
batch.  A  pleasing  porcelain  was  obtained,  and 
under-glaze  colours  were  used  with  some  success  in 
decoration. — H.  S.  H. 

Shrinkage    measurements   [on    ceramic   products]; 

Convenient  instrument  for  making  • .     W.  C. 

Broga  and  C.  J.  Hudson.     J.  Amer.  Ceram.  Soc, 
1922,  5,  34—36. 

Discs  are  prepared  from  the  clay  samples  and 
placed  both  before  and  after  firing  on  the  instru- 
ment described.  A  wire  stretches  round  the  disc 
and  the  circumference  is  read  off  by  a  pointer  mov- 
ing over  a  graduated  scale. — H.  S.  H. 

Porosity  [of  ceramic  bodies'];  Procedure  for  deter- 
mining    61/  methods  of  absorption.     E.  W. 

Washburn  and  E.  N.  Bunting.    J.  Amer.  Ceram. 
Soc,  1922,  5,  48—56. 

The  test-piece  is  smoothed  and  cleaned  and  the  dry 
weight  found  after  standing  for  a  few  hours  over 
95%  sulphuric  acid.  It  is  then  placed  in  the  absorp- 
tion vessel,  which  is  described  fully,  suitably  pre- 
pared vaseline  being  used  as  the  absorption  iiquid. 
A  new  pycnometer  method,  which  is  applicable  to 


shaped  test-pieces  or  to  granular  material,  is  de- 
scribed. This  method  permits  control  of  the  maxi- 
mum size  of  opening  which  is  to  be  classed  as  a  pore, 
and  can  also  be  made  to  indicate  directly  the  neces- 
sary soaking  period. — H.  S.  H. 

Vapour  lustres;   Degree   to  which  different   glaze 

compositions    take    .      R.    T.    Watkins       J 

Amer.  Ceram.  Soc,  1922,  5,  28—33. 
Glazes  were  applied  to  biscuit  whiteware  tile  and 
the  pieces  fired  to  cone  10  in  a  laboratory  kiln.  The 
glazed  tiles  were  placed  in  a  small  electric  furnace 
near  the  top  and  heated  to  700°  C.  for  half  an  hour. 
Enough  of  a  mixture  of  barium  nitrate  (2  pts.), 
strontium  nitrate  (1  pt.),  stannic  chloride  (3  pts.), 
bismuth  nitrate  (0"5  pt.),  and  sulphur  (1  pt.),  was 
placed  on  the  floor  of  the  furnace  to  fill  it  with  thick 
vapours.  It  was  found  that  glazes  with  a  medium 
or  low  acid  content  and  a  B,03  to  SiO,  ratio  of  1  to 
2'5  could  be  given  the  best  mother-of-pearl  effects. 
High  lead  and  low  lime  content  seemed  beneficial 

— H.  S.  H. 
Patents. 

Kilns;  System  of .  L.  Weeks.  TJ.S.P.  1,404,412, 

24.1.22.    Appl.,  12.8.20. 

Two  kilns  are  each  equipped  with  an  annular  heat 
chamber  in  the  walls.  A  subterranean  passage  from 
one  kiln  has  its  outlet  between  the  two  kilns,  and  a 
flue  passing  through  the  side  wall  connects  the  heat- 
ing chamber  of  the  other  kiln  with  this  outlet. 

— H.  S.  H. 

Furnace,  kiln,  or  the  like  [for  ceramic  and  refrac- 
tory products].  A.  Bigot.  TJ.S.P.  1,404,427, 
24.1.22.    Appl.,  2.11.18. 

See  E.P.  132,069  of  1918;  J.,  1919,  769  a. 


IX.-BUILDING  MATERIALS. 


Patents. 


[Cement]  kiln;  Rotary  - 
to  F.  L.  Smidth  &  Co. 
Appl.,  21.3.21. 


— .     J.  S.  Fasting,  Assr. 
U.S. P.  1,404,381,  24.1.22. 


A  rotary  kiln  is  provided  with  a  cooling  device  for 
the  clinker  consisting  of  an  annular  chamber 
coaxial  with  the  kiln,  open  at  one  end  and  com- 
municating at  the  other  with  a  chamber  at  the  end 
of  the  kiln,  through  which  clinker  travels  longitudi- 
nally after  discharge  from  the  kiln.  Cooling  air,  in 
excess  of  that  required  for  combustion  in  the  kiln, 
is  introduced  into  the  open  end  of  the  annular 
chamber,  the  excess  passing  from  the  chamber  at 
the  end  of  the  kiln.— J.  S.  G.  T. 

Beat  -  insulating  and  resisting  material.  E.  T. 
Holmberg.  Assr.  to  The  James  H.  Herron  Co. 
U.S. P.  1.404,438,  24.1.22.    Appl.,  7.4.19. 

A  mixture  of  about  30%  of  magnesia  and  70%  of  an 
infusorial  silicious  earth  is  moistened  with  a 
saturated  solution  of  magnesium  chloride  and 
pressed  in  moulds. — A.  R.  P. 

Preserving  wood.    U.S. P.  1,404,501.     See  XIII. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

"  Hard"  iron  castings.     Prache.    Rev.  Met.,  1922, 
19,  1—10. 

A  review  of  the  properties  and  production  of  hard 
castings  used  for  certain  projectiles,  in  view  of  the 
adaptation  of  such  products  for  non-military  uses. 
The  breaking  strain  of  the  cast  metal  should  not  be 


218a         Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO  METALLURGY. 


[Mar.  SI,  1922. 


less  than  30  kg.  per  sq.  mm.,  or  the  Brinell  impres- 
sion (3000  kg.  load)  more  than  4'4  mm.  diam. 
Maximum  limits  given  are  0T2%  S,  0"20%  P,  and 
3"2%  total  carbon,  and  the  distribution  between 
graphitic  and  combined  carbon  is  correct  when  the 
metal  is  slightly  speckled,  or  just  grey.  This  con- 
dition is  reached  when  75 — 77%  of  the  carbon  is  in 
the  graphitic  state.  The  influence  exerted  by 
silicon,  sulphur,  and  phosphorus  follows  that  of 
general  casting  practice. — C.  A.  K. 

Steel    converter;    Temperature    of    molten    metal 

charged  to  the .     A.  Cornu-Thenard.     Rev. 

Met.,  1922,  19,  37—38. 

The  author  supports  the  view  of  Holz  (J.,  1921, 
737  a)  that  the  transference  of  metal  at  high  tem- 
perature from  the  melter  to  the  converter  proves 
economical  in  the  last  stage  of  the  process  and 
favours  a  high  quality  of  steel.  If  the  temperature 
is  too  low  in  the  melter  or  mixer,  the  metal  is 
viscous  and  not  only  is  the  period  of  blowing  in- 
creased, but  the  loss  of  iron  in  the  6lag  may  be 
increased  to  12 — 14%.  An  example  is  quoted  from 
works  practice  where  metal  having  the  composition 
3  2o— 34  C,  0-30— 0-45%  Si,  0'5— 0  7  Mn, 
1-90— 2-00%  P,  004— 0-07%  S,  is  transferred  to  the 
converter  at  a  temperature  of  1300°  C.  The  blow- 
ing period  is  10 — 12  min.  with  a  pressure  varying 
from  T8  kg.  at  the  beginning  to  2'5  kg.  at  the  end, 
and  the  loss  of  iron  is  about  7*7%. — C.  A.  K. 

Sulphur  in  iron,  steel,  and  cant  iron;  Determination 

of .    H.  ter  Meulen.    Rec.  Trav.  Chini.,  1922. 

41,  121—123. 

The  accepted  method,  in  which  the  sulphur  is  ob- 
tained as  hydrogen  sulphide  by  dissolving  the  metal 
in  hydrochloric  acid,  has  given  inconsistent  results 
in  the  author's  experiments.  The  conclusion  is 
drawn  that  concentrated  acid  should  only  be  used 
for  chilled  cast  iron,  whereas  for  steel,  iron,  and 
grey  cast  iron  dilute  acid  suffices ;  further,  the 
passage  of  the  evolved  gases  through  a  hot  tube 
before  absorption  of  hydrogen  sulphide  is  unneces- 
sary.—H.  J.  E. 

Steel;    Determination    of    nitrogen    in    .      F. 

Hurum  and  H.  Fay.    Chem.  and  Met.  Eng.,  1922, 
26,  218—222. 

A  modification  of  the  iodide-iodate  titration 
method  is  considered  the  most  satisfactory  for  the 
accurate  estimation  of  nitrogen  in  high-speed  and 
ordinary  steels.  The  dissolving  flask  should  be 
fitted  with  a  dropping  funnel,  reflux  condenser,  and 
bubble  tube,  ground  glass  joints  being  essential. 
Reagents  must  be  treated  specially  by  known 
methods  to  remove  any  nitrogen  in  the  form  of 
ammonia,  nitrites,  etc.  Approximately  5  g.  of  steel 
is  dissolved  in  hydrochloric  acid,  of  sp.  gr.  1T2,  in 
the  dissolving  flask.  The  gases  evolved  pass  through 
the  condenser  and  any  ammonia  is  trapped  by  a 
little  hydrochloric  acid  in  the  bubble  tube.  When 
solution  has  been  completed  the  contents  of  the  flask 
together  with  washings  are  transferred  to  the 
dropping  funnel  of  the  distillation  apparatus. 
50  c.c.  of  sodium  hydroxide  solution  of  equi- 
molecular  strength  to  the  hydrochloric  acid,  and 
10  c.c.  of  an  alkaline  potassium  permanganate  solu- 
tion (8  g.  KMnO,  and  200  g.  NaOH  in  1  1.  of  water) 
are  boiled  in  the  distillation  flask  to  expel  ammonia, 
and  the  receiver  containing  10  c.c.  of  37/100  sul- 
phuric acid  is  connected  to  the  tin  condenser.  Boil- 
ing is  continued  for  a  few  minutes  after  running  the 
ferrous  solution  into  the  flask.  Excess  of  sulphuric 
acid  in  the  receiver  is  titrated  with  2V/ 100  sodium 
thiosulphate  solution  after  adding  4  c.c.  of  a  5% 
potassium  iodido  solution  and  2  c.c.  of  a  5%  solu- 
tion of  potassium  iodate.  A  blank  titration  to 
standardise  the  solutions  is  necessary.— C.  A.  K. 


Steels;   Utilisation   of  the   thermo-electric  force  of 

contact     i"     identify     some    .       Galibourg 

Comptes  rend.,  1922,  174,  547—550. 

A  simple  apparatus  is  figured  and  described  for 
measuring  the  thermo-electric  force  of  contact  of 
steels.  It  consists  essentially  of  a  bath  of  mercury, 
or,  for  higher  temperatures,  a  bath  of  lead,  into 
which  are  plunged  on  the  one  hand  a  wire  of  elec- 
trolytic iron  and  on  the  other  hand  a  piece  of  the 
steel  under  examination.  These  are  in  turn  con- 
nected to  the  two  terminals  of  a  millivoltmeter. 
Within  5  sees,  after  the  two  contacts  have  been 
made  with  the  metal  bath  the  reading  on  the  volt- 
meter is  steady  and  is  taken.  This  method  has  been 
applied  to  carbon-,  silicon-,  nickel-,  and  chromium- 
tungsten-steels  and  the  results  show  that  the  differ- 
between  the  electromotive  forces  of  different 
steels  are  sufficiently  great  at  the  temperature 
chosen,  120°  C,  to  allow  of  a  classification  of 
ordinary  and  special  steels  in  an  order  different 
from  that  given  by  hardness  determinations  by  the 
Brinell  method.  This  method,  therefore,  gives  a 
second  means  for  presuming  the  nature  of  a  steel 
which  cannot  be  analysed. — W.  G. 

Zinc    [in    ores    etc."];    Volumetric   and   gravimetrii 

determination  of .    S.  Urbasch.    Chem.-Zeit., 

1922,  46,  6—7,  29—30,  53—55,  97—99,  101—103, 
125—127,  133—134,  138—139. 

The  quantitative  separation  of  zinc  from  all  the 
common  metals,  its  gravimetric  determination  as 
oxide  and  volumetric  determination  by  the  ferro- 
cyanide  and  sulphide  methods  have  been  examined 
in  great  detail.  The  following  modified  ferro- 
cyanide  method  is  recommended  for  routine  work  on 
ores  and  smelter  products,  and  if  followed  in  detail 
gives  results  comparing  favourably  with  those  ob- 
tained by  other  methods.  1'5  g.  of  the  very  finely 
powdered  sample  is  dissolved  in  20  c.c.  of  fuming 
hydrochloric  acid,  3  c.c.  of  strong  nitric  and  6  c.c. 
of  1:1  sulphuric  acid  are  added  and  the  solution 
evaporated  to  expel  most  of  the  hydrochloric  acid. 
The  assay  is  then  treated  with  hydrofluoric  acid, 
drop  by  drop,  until  all  gelatinous  silica  has  dis- 
solved (the  glass  of  the  beaker  must  be  free  from 
zinc)  and  the  heating  continued  till  fumes  of  sul- 
phuric acid  are  evolved.  The  residue  is  dissolved  in 
60  c.c.  of  water,  the  solution  saturated  at  60° — 
70°  C.  with  hydrogen  sulphide,  filtered,  and  the 
filtrate  boiled  to  expel  excess  of  the  gas.  The  boil- 
ing solution  is  oxidised  with  3 — 5  c.c.  of  3% 
hydrogen  peroxide,  allowed  to  cool,  treated  with 
0'5 — 2'0  c.c.  of  bromine  and  diluted  to  180  c.c. 
20  g.  of  ammonium  chloride  is  added,  followed  by 
100  c.c.  of  ammonia  (sp.  gr.  091)  and  the  solution  is 
diluted  to  300  c.c.  in  a  graduated  flask.  100  c.c. 
(  =  0'5  g.  of  ore)  is  filtered  through  a  dry  paper  into 
a  beaker  which  is  allowed  to  stand  on  a  warm  sand 
bath  overnight  to  expel  the  bulk  of  the  free 
ammonia.  The  solution  is  exactly  neutralised  with 
hydrochloric  acid,  3  drops  of  1:1  acid  are  added  in 
excess,  the  liquid  is  diluted  to  150  c.c,  heated  to 
boiling,  and  titrated  with  potassium  ferrocyanide 
(21"6  g.  per  1.)  until  the  blue  colour  of  the  solution 
fades  to  white  (3  c.c.  of  ferric  chloride  solution  con- 
taining 0T  g.  of  iron  per  1.  is  previously  added  us 
indicator).  A  standard  zinc  chloride  solution  con- 
taining 5  g.  of  zinc  per  1.  is  then  carefully  run  into 
the  assay  until  the  blue  colour  just  reappears  and 
this  amount  of  zinc  is  deducted  from  that  found  in 
the  first  titration.  The  ferrocyanide  is  standardised 
against  pure  zinc  that  has  been  through  the  same 
series  of  operations  as  the  assay.  A  large  exi 
ferrocyanide  must  lie  avoided  in  the  first  titration 
or  high  results  will  be  obtained.  "With  very 
quantities  of  zinc  (i.e.  less  than  5  Big.)  the  volume 
of  the  solution  before  titration  should  not  exceed 
30  c.c.  and  it  should  contain  not  more  than  0-5  g. 


Vol.  XU,  No.  6.J     Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.  219  a 


of  ammonium  chloride ;  only  0'2  c.c.  of  the  iron  indi- 
cator is  added  and  1  c.c.  excess  of  ferrocyanide  after 
the  change  from  blue  to  white.  The  latter  solution 
in  this  case  is  1  /o  the  strength  given  above.  The 
separation  of  zinc  from  cadmium  by  means  of  hydro- 
gen sulphide  in  10 %  hydrochloric  acid  is  not  com- 
plete, in  the  presence  of  much  zinc,  in  one  operation, 
as  the  cadmium  sulphide  adsorbs  zine.  Complete 
separation  of  the  cadmium  may  be  obtained  by  boil- 
ing the  solution  (100  c.c.)  containing  5  c.c.  of  strong 
hydrochloric  acid  for  30 — 45  min.  with  a  strip  of 
aluminium,  adding  30  c.c.  of  strong  hydrogen  sul- 
phide water  and  filtering  off  the  cadmium  precipi- 
tate, washing  it  with  hydrogen  sulphide  solution. 
Zinc  may  readily  be  precipitated  as  sulphide  from  a 
solution  containing  1  c.c.  of  2V/1  acid  and  less  than 
0T5  g.  of  metal  per  100  c.c.  by  saturating  the  solu- 
tion with  hydrogen  sulphide  at  50°  C. ;  from  solu- 
tions containing  slightly  more  acid  than  this  com- 
plete precipitation  is  effected  by  heating  under  pres- 
sure; in  either  case  separation  from  the  other 
metals  of  the  ammonium  sulphide  group  is  complete 
except  when  much  cobalt  is  present,  in  which  case 
the  first  precipitate  is  green  and  contains  cobalt. 
The  Schaffner  volumetric  zinc  assay  is  discussed  at 
some  length  and  it  is  shown  that,  in  order  to  obtain 
concordant  results,  the  concentration  of  ammonium 
salts  and  ammonia  must  be  as  low  as  possible  and, 
in  any  case,  the  same  in  the  assav  as  in  the 
standard.— A.  R.  P. 


—  /com]  the  leach 
Reisenegger.     Z. 


[Zinc  and  copper ;  Recovery  of  — 
liquors  of  burnt  pyrites.  H. 
angew.  Chem.,  1922,  35,  57. 

Copfer  is  recovered,  by  precipitation  by  means  of 
scrap  iron,  from  the  liquors  obtained  by  leaching 
pyrites  residues  with  water,  either  before  or  after 
a  chloridising  roast.  The  ferrous  salts  in  the  solu- 
tion are  then  oxidised  by  chlorine  gas  and  the  iron 
precipitated  by  addition  of  zinc  oxide,  with  the  pro- 
duction of  an  equivalent  quantity  of  zinc  salt.  Ad- 
dition of  ammonia  results  in  a  precipitate  of  zinc 
hydroxide,  and  the  ammonium  salts  in  solution  are 
recovered  for  use  as  fertilisers. — A.  R.  P. 

Tin  and   zinc;    Corrosion   patterns   on   cold-worked 

.      H.    S.    Rawdon,    A.    I.    Krynitskv,    and 

J.  F.  T.  Berliner.     Chem.  and  Met,  Eng.\  1922, 
26,  212—213. 

Specimens  of  high-grade  tin,  reduced  by  cold  rolling 
to  strips  approximately  0'15  cm.  thick,  were  an- 
nealed and  subjected  to  the  action  of  alcoholic  solu- 
tions of  stannous  chloride,  acidified  to  the  extent 
of  &5N—2-2N.  The  attack  was  distinctly  more 
severe  along  the  grain  boundaries  than  in  the  in- 
terior of  the  crystals,  though  after  a  period  of  87 
days,  no  evidence  of  intercrystalline  fissures  was 
obtained  on  bending  the  corroded  specimens.  In 
certain  cases  a  peculiar  cellular  pattern  appeared 
to  be  superimposed  on  the  crystal  structure  pattern 
and  was  apparently  associated  with  previous 
mechanical  treatment  of  the  metal.  Corrosion  of 
annealed  zinc  by  acid  solutions  of  zinc  sulphate 
appears  to  be  of  an  intercrystalline  nature,  but  the 
metal  is  not  affected  seriously  in  its  properties.  The 
corrosion  pits  were  arranged  in  rather  definite  lines 
which  coincided  with  the  direction  of  rolling. 

— C.  A.  K. 

Nickel   and   aluminium;    Extraction   of   from 

Cuban  iron  ores.  C.  R.  Hayward.  Chem.  and 
Met.  Eng.,  1922,  26,  261—266. 
CrBAN  iron  ores  contain  0"5 — 08%  Ni.  which  is  not 
sufficiently  high  to  give  the  resulting  metal  an 
increased  value  commensurate  with  the  content  of 
nickel.  The  most  successful  method  of  extracting 
nickel  from  the  ore  was  found  to  be  by  roasting  at 
475°  C.  in  an  atmosphere  of  sulphur  dioxide  and  air 
(ratio  1:2).  Experiments  in  a  laboratory  type 
Wedge  furnace  showed  that  a  recovery  of  70%   of 


the  nickel,  70%  of  the  manganese,  and  40—70%  of 
the  alumina,  depending  on  the  relative  amounts  of 
clay  and  bauxite  in  the  ore,  might  be  expected  on 
a  commercial  plant.  The  roasted  material  was 
leached  with  water  in  contact  with  scrap  iron  to 
reduce  the  iron  present  to  the  ferrous  state,  and 
after  filter-pressing  and  washing,  the  cake  together 
with  the  roasted  pyrites  was  sintered  for  use  in  a 
blast  furnace.  Treatment  of  the  solution  with 
calcium  chloride  gave  a  precipitate  of  calcium  sul- 
phate, and  the  clear  solution  of  metallic  chlorides 
was  precipitated  fractionally  with  an  excess  of  cal- 
cium carbonate.  Aluminium  hydroxide  separated 
in  the  cold  solution  before  iron,  which  was  removed 
by  aeration  of  the  liquor  at  60°  C.  Nickel  and 
manganese  were  precipitated  readily  by  addition  of 
quicklime,  leaving  the  solution  to  be  concentrated 
and  returned  to  the  calcium  sulphate  precipitating 
tank. — C.  A.  K. 

Aluminium;  Recrystallisation  diai/ram  of .     E. 

Rassow  and  L.  Velde.     Z.  Metallic,  1921,  13,  557. 

The  average  grain  size  of  aluminium  has  been  deter- 
mined for  temperatures  between  200°  and  600°  C. 
after  cold  work  resulting  in  reductions  of  height  of 
the  test-piece  of  between  5%  and  75%,  and  the  re- 
sults are  plotted  on  a  space  diagram.  For  every 
height  reduction  there  is  a  definite  temperature 
above  which  recrystallisation  rapidly  takes  place; 
with  a  75%  reduction  this  is  below  300°  C,  with  a 
5%  reduction  above  400°  C.  The  grain  size  after 
recrystallisation  increases  with  the  temperature  at 
which  this  takes  place  and  is,  therefore,  greater  the 
smaller  the  amount  of  cold  work  that  has  been  done 
on  the  metal. — A.  R.  P. 

Aluminium;  Influence  of  the  nature  of  the  deforma- 
tion undergone  by  on  the  recn/stallisation 

diagram.  E.  Rassow.  Z.  Metallk.,  1921,  13,  558. 
(fit.  supra.) 
The  nature  of  the  deformation  undergone  by 
aluminium — whether  rolled,  pressed,  or  rolled  and 
then  hammered — has  no  influence  on  the  tempera- 
ture at  which  recrystallisation  takes  place  or  on  the 
grain  size,  nor  does  secondary  deformation  result  in 
abnormally  large  grain-growth  as  is  the  case  with 
tin  (<■/.  Masing,  J.,  1921,  351  a).— A.  R.  P. 

Silumin,    a    new    light    alloy.      J.    Czochralski.    Z. 

Metallk.,  1921,  13,  507—510. 
Siltjmin  consists  of  aluminium  with  11 — 14%  Si  and 
small  quantities  of  other  elements.  It  has  sp.  gr. 
25 — 265,  tensile  strength  20  kg.  per  sq.  mm.,  and 
elongation  5 — 10  %  ;  both  of  the  latter  properties 
are  considerably  better  than  those  of  the  ordinary 
aluminium  alloys  with  zinc  and  copper  now  in  use. 
Its  resistance  to  corrosion  over  prolonged  periods  is 
much  greater  than  that  of  pure  aluminium  or  any 
of  its  commercial  alloys  and  it  is  a  good  conductor 
of  heat,  and  is,  therefore,  very  suitable  for  use  in 
making  steam  kettles  and  other  similar  apparatus 
and  in  the  motor  industry. — A.  R.  P. 

Metals;  Slip  interference  theory  of  the  hardening  of 

.     Z.  Jeffries  and  R.  S.  Archer.     Chem.  and 

Met.  Eng.,  1922,  26,  249—252. 

A  general  reply  to  commentators  on  the  authors' 
theory  of  slip  interference  (J.,  1921,  515  a).  Definite 
proof  of  changed  orientation  during  cold  working 
has  since  been  advanced  by  other  workers.  (J.,  1921, 
852  a).  The  alternative  hypothesis  of  Honda  (J., 
1922,  18  a)  is  regarded  as  untenable  in  view  of  the 
failure  of  other  observers  to  find  evidence  of 
allotropy  in  aluminium.  In  the  light  of  recent 
knowledge  of  crystal  structure  it  is  probable  that 
the  carbon  in  austenite  is  present  in  individual 
atoms  and  that  the  crystal  is  the  smallest  unit  of 
the  complex.  Atoms  of  iron  and  carbon  are  also 
considered  as  units  in  the  space  lattice  of  cementite, 
and  there  is  no  evidence  of  the  existence  of  definite 


220  a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Mar.  31,  1922. 


molecules  of  the  latter.  The  authors  bring  forward 
later  evidence  of  other  workers  to  support  the  view 
that  most  of  the  iron  in  martensite  possesses  the 
6pace  lattice  arrangement  of  o  iron,  and  that  the 
ferrite  in  martensite  is  of  submicroscopic  grain  size. 
All  lines  of  evidence  point  to  the  absence  of  crystal- 
line cementite  in  the  martensite  of  freshly  hardened 
eutectoid  or  hypo-eutectoid  steels,  and  to  its  forma- 
tion on  reheating  these  steels  even  at  a  low  tem- 
perature. Carbon  in  freshly  formed  martensite  is 
regarded  as  in  the  atomic  state,  and  this  view  is 
consistent  with  the  heat  evolution  observed  by 
Honda  in  the  tempering  of  martensite.  It  is  pro- 
bable that  some  cementite  is  formed  by  the  direct 
association  of  iron  and  carbon  during  the  ageing  of 
steel  (martensitic)  at  atmospheric  temperatures. 
Internal  stresses  can  be  disregarded  as  a  cause  of 
hardness  which  is  due  primarily  to  the  submicro- 
scopic grains  of  a  iron,  and  in  a  lesser  degree  to  the 
dispersal  of  carbon  atoms  throughout  the  matrix. 

— C.  A.  K. 

Metals   and    alloys;    Variation    of    the    mechanical 

properties  of at  low  temperatures.  L.  Guillet 

and  J.  Cournot.  Comptes  rend.,  1922,  174,  384— 
386. 
TnE  hardness  and  resilience  of  a  number  of  metals 
and  alloys  have  been  measured  at  20°  C,  -20°  C, 
-80°  C,  and  -190°  C.  In  general  there  is  an  in- 
crease in  hardness  with  cooling.  Brittleness  at  low 
temperatures  is  a  characteristic  of  ferrite,  the 
rapidity  of  the  fall  in  resilience  as  a  function  of  the 
temperature  being  greater  as  the  ferrite  content  is 
higher.  Nickel  and  copper,  on  the  other  hand,  do 
not  cause  brittleness  in  alloys,  and  aluminium,  if 
present  to  any  great  extent,  tends  to  produce  a 
slight  increase  in  the  resilience.  Pure  austenite 
sufficiently  rich  in  nickel  does  not  show  brittleness 
at  low  temperatures.  Special  pearlitic  steels  con- 
taining nickel  have  a  high  brittleness  in  liquid  air, 
but  the  addition  of  nickel  retards  the  lowering  of 
the  resilience  with  fall  in  temperature.  There  is 
evidence  of  a  return  to  normal  properties  at  the 
ordinarv  temperature  in  the  case  of  an  alloy  kept 
for  16  hrs.  at  -190°  C.  and  then  for  24  hrs.  at 
+20°  C— W.  G. 

lAlloys     forming     mixed     crystals;]     Segregation 

phenomena  [in  ].     O.  Bauer  and  H.  Arndt. 

Z.  Metallk.,  1921,  13,  497—506,  557—564. 

The  behaviour  of  the  following  alloys  that  give  rise 
to  mixed  crystal  phases  on  cooling  was  investigated : 
copper  with  tin,  nickel,  manganese,  and  zinc, 
mercury-lead,  aluminium  with  zinc  and  copper, 
silver-copper,  gold-silver,  and  iron-carbon.  With 
the  majority  of  these  alloys  rapid  cooling  through 
the  solidification  range  resulted  in  intercrystalline 
segregation  and  segregation  in  the  ingot.  The 
alloy  Cu  75,  Ni  25%,  however,  whiie  showing  the 
former  did  not  segregate  in  the  ingot.  On  cooling 
the  ingots  very  slowly  60  that  there  was  very  little 
temperature  difference  between  the  inside  and  the 
outer  skin,  no  segregation  could  be  discerned  in  the 
ingot  nor  in  the  individual  crystals  except  in  the 
copper-manganese  series,  in  which  very  slight  segre- 
gation of  the  latter  type  was  observed.  No  segre- 
gation of  any  kind  was  found  in  the  copper-zinc  and 
lead-mercury  series  under  any  conditions  of  cooling, 
probably  due  to  the  small  solidification  range  of  the 
alloys.  Only  the  gold-silver  and  iron-carbon  alloys 
exhibited  a  "  normal  "  segregation  in  the  ingot; 
the  other  alloys  tested  showed  "reversed"  segre- 
gation. A  theoretical  explanation  of  the  phenomena 
described  above  is  advanced  based  on  the  suggestion 
that  the  different  kinds  of  segregation  are  due  to 
the  different  rates  at  which  the  crystals  that  form 
first  grow  in  the  directions  of  their  crystallographic 
axes  together  with  the  different  diffusion  velocities 
of  one  metal  into  the  other. — A.  R.  P. 


Ternary   and   quaternary   alloys;   Graphical  repre- 
sentation [of  the  melting  point  curves'}  of  . 

\V.   Hommel.       Z.  Metallk.,   1921,   13,  456—465, 
511—518,  565—569. 

Ternary  systems  may  be  represented  by  making  use 
of  a  right-angled  isosceles  triangle,  the  proportions 
of  each  of  two  of  the  constituents  being  represented 
by  distances  measured  perpendicular  to  the  equal 
sides  and  that  of  the  third  being  found  by  measur- 
ing the  length  of  a  line  from  the  point,  giving  the 
composition  as  regards  the  first  two  constituents,  to 
the  hypotenuse  parallel  with  either  side.  The  tem- 
perature is  represented  on  a  second  rectangular 
diagram  of  which  the  hypotenuse  of  the  triangle 
forms  one  side.  The  melting  points  are  plotted  on 
the  lower  diagram  by  projecting  a  line  downwards 
perpendicular  to  the  hypotenuse  from  the  point  in 
the  upper  diagram  representing  composition  to 
meet  the  corresponding  temperature  ordinate. 
Diagrams  are  constructed  for  several  ternary 
systems  in  which  both,  eutectics  and  compounds 
occur.  Similarly  a  quaternary  system  may  be 
represented  by  a  tetrahedron,  three  of  whose  sides 
are  right-angled  isosceles  triangles  and  the  fourth 
an  equilateral  triangle.  Three  of  the  constituents 
are  represented  by  the  edges  of  the  tetrahedron 
forming  the  right  angle  and  the  fourth  is  obtained 
by  projection  on  the  other  side  in  a  similar  way  to 
that  used  with  the  ternary  system.  The  space  dia- 
gram is  projected  on  to  the  three  right-angled  tri- 
angular sides  of  the  tetrahedron,  which  is  then 
opened  out  for  representation  on  a  plane  surface, 
so  that  it  appears  as  three  right-angled  isosceles 
triangles  two  of  which  are  standing  on  the  equal 
sides  of  the  third.  The  temperature  is  represented 
on  a  second  graph  constructed  on  the  hypotenuse  of 
the  lower  triangle  in  a  similar  way  to  that  described 
for  a  ternary  alloy.  The  diagram  is  explained  with 
reference  to  the  bismuth-lead-tin-cadmiuni  series  of 
alloys.— A.  R.  P. 

Thermal  analysis   [of  metals   ere.].-  Apparatus  for 
.     Chev'enard.  Rev.  Met.,  1922,  19,  39—43. 

An  apparatus  to  record  transformation  or  other 
thermal  phenomena  of  materials  undergoing  heat 
treatment  has  been  devised  and  is  more  sensitive 
than  that  previously  described  (Rev.  Met.,  1920. 
687;  cf.  J.,  1917,  881,  882).  The  specimen  to  be 
examined  is  fitted  in  the  closed  end  of  a  silica  tube 
and  the  variation  in  length  when  heated  is  conveyed 
to  a  magnifying  lever  by  means  of  an  interposed 
"  Pyros  "  rod.  A  record  of  the  movement  of  the 
lever  arm  is  obtained  on  a  clockwork  drum.  In 
order  to  compensate  for  the  thermal  effect  on  the 
pencil,  an  independent  record  is  obtained  on  the 
drum  representing  the  variation  in  length  of  a 
similar  "  Pyros  "  rod  fitted  in  the  tube  independent 
of  the  test  specimen.  Comparison  between  the  two 
curves  simultaneously  produced  gives  a  quantitative 
value  for  the  dilatometric  changes  in  the  test-piece. 

— C.  A.  K. 

Manganese  and  cobalt.    Ditz.    See  XXIII. 

Patents. 

Steel  and  alloy  steels;  Manufacture  of .    W.  B. 

Hamilton  and  T.  A.  Evans.  E.P.  174.271,  4.12.20. 

A  rath  of  molten  decarburised  steel  is  covered  with 
a  silicious  lime  slag  in  an  electric  furnace,  and  a 
mixture  of  aluminium  and  chrome  ore  added.  Com- 
plete reduction  to  metallic  chromium  is  effected, 
but  about  25%  of  the  chromium  is  retained  in  the 
viscous  slag  produced.  This  may  be  recovered  in 
the  metal  by  lowering  the  electrodes  into  the  slag 
and  rabbling  the  two  [avers  of  slag  together. 

— C.  A.  K. 


Vol.  XIX,  No.  6.]    Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


221a 


Nickel-chrome    steel;    Heat     treatment    of    . 

Method  of  treating  steel  alloys  which  contain 
chromium  and  nickel.  B.  Strauss.  U.S. P.  (a) 
1,404,907,  and  (b)  1,404,908,  31.1.22.  Appl., 
25.6.13  and  19.6.14. 

(a)  The  hardness  of  alloy  steels  containing  6 — 25% 
Cr,  20 — 0'5%  Ni,  and  not  more  than  1%  C,  is  re- 
duced to  a  workable  degree  by  heating  the  metal  to 
a  temperature  between  500°  C.  and  the  critical 
point,  and  then  cooling  it.  (b)  Alloy  steels  of  the 
above  character  mav  be  toughened  and  made  non- 
magnetic by  heating  them  to  1100°— 1200°  C.  and 
subsequently  cooling  them  quickly. — C.  A.  K. 

Steel;  Process  and  apparatus  for  the  production  of 

in  the  blast  furnace  fired  with  liquid  fuel. 

C.  von  Thai.  G.P.  345,377,  31.1.20.  Conv., 
25.11.15. 

A  mixture  of  liquid  fuel,  e.g.  petroleum  or 
petroleum  residues,  emulsified  with  water,  and  air 
in  such  proportion  that  the  fuel  reduces  as  well  as 
heats  the  charge,  is  sprayed  in  some  distance  above 
the  bed  of  a  blast  furnace  of  the  usual  form.  A 
number  of  large  water-cooled  doors  are  provided  in 
the  furnace  whereby  the  burners,  which  are  easily 
removable,  may  be  directed  into  any  desired  part 
of  the  furnace  so  as  to  hasten  the  smelting  opera- 
tion.—A.  R.  P. 

Cast  iron  turnings;  Process  of  bricjuetting .    A. 

Houmbller.  G.P.  346,068,  12.12.20.  Conv.,  19.8.20. 

The  turnings  are  treated  first  with  milk  of  lime, 
then  with  water-glass,  and  pressed  into  blocks  under 
a  pressure  of  at  least  110  kg.  per  sq.  cm.  The  re- 
sulting briquettes  are  verv  strong  and  hard. 

—A.  R.  P. 

Bearing  metal  alloy  of  high  lend  content.  T.  Gold- 
schmidt  A.-G.  E.P.  158,562,  26.1.21.  Conv., 
26.1.20. 
A  bearing  metal  with  a  Brinell  hardness  of  more 
than  30,  and  free  from  tendency  to  crumble,  con- 
tains 74-5— S4'5%  Pb,  10—15%  Sb,  5—10%  Sn,  and 
about  0"5%  P.  The  phosphorus  is  introduced  pre- 
ferably in  the  form  of  an  alloy  with  copper,  man- 
ganese, or  zinc. — C.  A.  K. 

Soldering  aluminium  or  aluminium  alloys.  A. 
Passalacqua.  E.P.  164,716.  24.3.21.  Conv., 
11.6.20.  Addition  to  159,480  (J.,  1921,  475  a). 
Superficial  cleaning  of  the  aluminium  alloy  before 
the  treatment  for  soldering  is  necessary  owing  to 
the  separation  of  the  solder  in  consequence  of  the 
formation  of  aluminium  oxide.  Pieces  to  be 
soldered  are  immersed  for  10 — 12  mins.  in  either  of 
the  following  solutions:  sodium  sulphite  50  pts., 
sodium  phosphate  30,  potassium  chloride  30,  sodium 
hydroxide  50 — 200,  water  1000  pts.,  or  potassium 
iodide  50  pts.,  potassium  carbonate  30,  sodium 
thiosulphate  20,  sodium  hvdroxide  50 — 200,  water 
1000  pts.— C.  A.  K. 

Catting  of  metals  and  alloys.     J.  E.  Hurst.     E.P. 

T74,25S,  20.11.20. 
In  the  centrifugal  casting  of  metals  the  mould  is  so 
constructed  that  its  inner  surface  can  be  maintained 
at  a  temperature  of  300°— 600°  C,  varying  with  the 
nature  of  the  casting  metal  and  the  temperature 
gradient  of  the  casting  thus  controlled.  A  spiral 
channel  may  be  formed  in  the  walls  of  the  mould,  or 
a  sheet  metal  jacket  may  be  welded  round  the  out- 
side of  the  mould,  the  control  being  effected  by 
water-cooling  in  either  case.  The  cooling  jackets  of 
several  moulds  may  be  connected  in  series,  prefer- 
ably through  a  heat  exchanger.— C.  A.  K. 

Alloys.     The  British   Thomson-Houston   Co.,   Ltd. 

From  General  Electric  Co.  E.P.  174,443,  27.10.20. 

An  allov  of  iron  containing  6 — 15%   (e.g.  10%)  Al, 

1—3%  (2°i)  Mo,  and  less  than  T5%  (0"5%)  Ti  is  suit- 


able for  castings  subject  to  repeated  heating  and 
cooling,  e.g.,  castings  used  in  the  heat  treatment  of 
steel.  The  metal  must  be  protected  against  oxida- 
tion during  the  casting  process,  and  a  cryolite  flux 
is  used  for  this  purpose. — C.  A.  K. 

beratory  furnace  [for  melting  metals'].    W.  F. 
Sklenar.     E.P.  174, SSI,  27.4.21. 

j  A  reverberatory  furnace  is  constructed  in  an  iron 
|  casing  on  an  iron  framework  which  is  not  fixed  in 
any  way  and  may  be  provided  with  wheels  to  render 
it  portable.  The  furnace  is  fired  with  solid  fuel,  has 
forced  draught,  and  the  uptake  for  the  spent  gases 
serves  also  as  a  hopper  for  feeding  the  charge. 

— B.  M.  V. 

Boasting  furnace;  Pofary for  zinc  ore*  and  the 

like.  Schlesische  Akt.-Ges.  fur  Bergbau  nnd 
Zinkhutcenbetrieb.  G.P.  34G.142,  24.1.20. 
In  a  rotary  roasting  furnace,  in  which  the  lining 
consists  of  ring-shaped  courses  of  bricks  and  is  pro- 
vided with  projections  inclined  downwards  to  the 
next  lower  course,  whereby  the  charge  during  rota- 
tion is  raised  and  then  slides  down  on  to  the  next 
course,  the  projections  follow  immediately  after  one 
another  without  intermediate  partitions,  so  that  the 
charge  flows  evenly  through  the  furnace  from  course 
to  course  without  any  sintering  taking  place. 

—A.  R.  P. 
Seating  [easily  fusible']  metal;  Apparatus  for  and 

method  of  .     W.  W.  Kemp  and  W.  H.  Van 

Horn.  U.S. P.  1,404,615,  24.1.22.  Appl.,  19.6.18. 
A  flame  is  maintained  in  a  chamber  entirely  sub- 
merged in  the  metal  and  provided  with  vents  to 
allow  the  products  of  combustion  to  bubble  through 
the  metal.— B.  M.  V. 

Lead  ores;  Method  of  reducing .  E.  H.  Hamil- 
ton, Assr.  to  U.S.  Smelting,  Refining,  and  Mining 
Co.  U.S. P.  1,404,714,  24.1.22.  Appl.,  2.7.19. 
In  the  reduction  of  lead  ores  in  a  blast  furnace, 
finely  divided  carbonaceous  fuel,  in  regulated 
quantity,  is  introduced  with  the  necessary  air 
through  tuyeres  to  produce  an  atmosphere  of  carbon 
monoxide  in  addition  to  supplying  part  of  the  heat 
necessary  to  fuse  the  charge. — C.  A.  K. 

Lead-coating  process.  R.  J.  Shoemaker,  Assr.  to 
Leadizing  Co.  U.S. P.  1,405,167,  31.1.22.  Appl., 
15.4.20. 
Metals  to  be  coated  with  lead  are  heated  in  a  solu- 
tion of  lead  acetate  to  cause  dissociation  of  the  salt 
and  deposition  of  lead.  The  coated  article  is  then 
heated  in  a  mixture  of  zinc  chloride  and  sodium 
chloride  until  the  lead  fuses  and  flows. — C.  A.  K. 

Metallurgical  products   [containing   zinc];  Process 

for  the  preparation  of for  the  blast  furnace 

or  converter.  Rheinisch-Nassauische  Bergwerks 
und  Hutten-A.-G.,  and  Spieker.  G.P.  345,826, 
13.4.20. 
For  removal  of  zinc  by  volatilisation  in  the  blast 
furnace,  smelter  products  substantially  free  from 
sulphur  are  mixed  with  molten  slag,  preferably  with 
the  addition  of  basic  substances,  so  as  to  obtain 
lumps  of  the  mixture  suitable  for  charging  direct 
into  the  blast  furnace.  In  this  way  the  zinc  is 
easily  and  quickly  liberated  in  the  subsequent 
smelting. — A.  R.  P. 

Copper;   Process    of   case    hardening  .      A.   S. 

Gundersen.     E.P.  174,863,  31.1.21. 
See  U.S. P.  1.372,423  of  1921 ;  J.,  1921,  353  a.     Rice 
and    "  pearline  "    powder    (a    mixture    of    grease, 
caustic  soda,  soda  ash,  and  rosin)  or  their  equiva- 
lents are  used  in  addition  to  zinc. 

Pulp  thickener.     U.S.P.  1,405,022.     See  I. 

Preserving  metals.     U.S.P.  1,404,501.     See  XIII. 


222  k 


Cl.  XI.— ELECTRO-CHEMISTRY.        Ct.  XII.— FATS  ;   OILS;  WAXES.         [Mar.  SI,  1922. 


XL-ELECTRO-CHEMISTRY. 

Insulating  materials;  Effect  of  heat  on  the  electric 

strength  of  some  commercial .     W.  S.  Flight. 

J.  Inst.  Elect.  Eng.,  1920,  60,  218—235. 

Tiik  variations  in  electric  strength  between  30°  C. 
and  100°  C.  of  solid  insulators  employed  in  the 
manufacture  of  electrical  machinery  and  apparatus 
have  been  determined.  The  tests  were  carried  out 
on  Hat  sheets  or  on  cylinders  of  not  less  than  8  in. 
iliam.,  the  electric  strength  being  determined  in 
dry  and  damp  air  and  in  oil.  The  results  obtained 
are  shown  in  the  accompanying  table. 


Breaking  down  voltage 

Breaking  down  voltage 

for  l-li)  in 

thickness. 

for  1-16  in 

thickness. 

Average  of  air  tests. 

Average  of  oil  tests. 

M.itrriiil. 

Percentage 

Percentage 

At  30°  C. 

increase  or 

decrease  at 

100°  c. 

At  30°  C. 

decrease  at 
100°  C. 

Kilo- volts 

Kilo-volts 

Papers 

12-0 

+   14 

32-2 

-27 

Micarta 

27-9 

-  75 

28-8 

-61 

Fuller  board. . 

18-0 

-   6-7 

27 

-35 

Varnished  cloth 

27-8 

-   41-6 

30-7 

-24-6 

WQca  products 

29-3 

+  5-8 

35 

-14-4 

Varnished  paper     . . 

24-8 

-  30-6 

38-5 

-54 

Varnished     asbestos 

paper 
Fibre 

7-3 

-   84 

15-0 

-44 

7-5 

-  80 

25 

-70 

Treated  wood 

— 

— . 

17 

-33-5 

Moulded  composition 

5-0 

-   48 

90 

-78 

The  results  show  that  the  electric  strength  of  most 
solid  insulating  materials  at  present  in  use 
decreases  with  increase  in  temperature  up  to 
100°  C.  It  is  urged  that  insulating  materials 
should  be  tested  at  100°  C.  and  not  at  air 
temperature. — J.  S.  G.  T. 

Electrical  gasification  of  fuel.  Helfenstein.  See  IIa. 


Electronic  synthesis  of  ammonia.    Hiedemann. 
VII. 


See 


Patents. 


U.S. P.  1,404,387, 


Electrolytic  cell.     S.  M.  Green. 
24.1.22.     Appl.,  26.2.21. 

Two  endless  cathodes  disposed  one  within  the  other 
are  arranged  within  a  casing  so  as  to  form  an  end- 
less anode  chamber,  which  is  provided  with  anode- 
forming  means. — J.  S.  G.  T. 

Electrolytic  cells;  Diaphragm  for  horizontally  strati- 
fied   .    Farbenfabriken  vorm.  F.  Baver  u.  Co. 

G.P.  345,132,  20.4.18. 

Diaphragms  are  made  of  a  mixture  of  gritty 
material  consisting  of  ground  up  diaphragms,  clay 
or  pumice,  and  a  binding  agent,  forming  a  porous 
mass  on  setting. — J.  S.  G.  T. 

Storage  battery.  W.  H.  Wood.  U.S.P.  (a) 
1,405.702  and  Cu)  1,405,703,  7.2.22.  Appl.,  (a) 
24.1.21,  (b)  1.6.20. 

(a)  A  storage  battery  plate  consists  essentially  of 
lead  oxide  mixed  with  short  lengths  of  animal  hair 
from  which  the  external  scales  have  been  removed. 
(lO  An  acid-resisting  storage-battery  plate  is  made 
pervious  by  means  of  keratin. — J.  s!  G.  T. 

Depolarising  material  of  dry  batteries;  Process  for 

regenerating   .     Siemens   und  Halske  A.-G 

G  IV  345,264,  5.ti. 20. 

The  powdered  moist  mass  is  treated,  either  with  or 
without  removal  of  saline  impurities,  with  ozone  to 
rcoxidise  the  manganese  oxide  to  dioxide. — A.  R.  P. 


Electrode  carbon;  Manufacture  of  ,  for  use  in 

electro-chemical,  electro-metallurgical,  etc.  pro- 
cesses, more  especially  in  the  production  of 
aluminium.  Chem.  Fabr.  Griesheim-Elektron. 
G.P.  301,722,  21.2.16. 

Lignite,  more  especially  lignite  of  low  ash  content 
such  as  occurs  in  the  middle  strata  of  the  Cologne 
mines,  is  carbonised  and  heated  to  a  high  tempera- 
ture. If  necessary,  iron  is  removed  magnetically 
In  in  the  resulting  product. — J.  S.  G.  T. 

Electrodes  and  abrasives:  Proa  »$  and  apparatus  for 

making    .       W.    G.    Michel.       E.P.     174,529, 

11.2.21. 

See  U.S.P.  1,378,599  of  1921 ;  J.,  1921,  593  a. 

Electric  furnace.     M.  H.  Bennett,  Assr.  to  Seovill 
Mfg.Co.    U.S.P.  1,404,734,31.1.22.    Appl..  1.10.19. 
See  E.P.  160,082  of  1920;  J.,  1921,  309  a. 

Electrical  purification  of  gases.     G.P.  344,705  and 
345,253.    See  I. 

Electro-osmotic  dehydration.    G.P.  345,251.    See  I. 

Calcium  hydride.    G.P.  346,119.    See  VII. 


X1I.-FATS;    OILS;    WAXES. 

Corn    [maize]   oil;    Chemical   composition   of  . 

W.  F.  Baughman  and  G.  S.  Jamieson.    J.  Amer. 
Chem.  Soc.,  1921,  43,  2696—2702. 

The  sample  of  maize  oil  examined  had  sp.  gr.  at 
25°/  25°  a,  09185;  n2°  =  U4717;  iodine  value 
(Hanus)  1172;  saponif.  value  1873;  unsaponifiable 
matter  1'7%  ;  saturated  acids  112%  ;  unsaturated 
acids  82'5%.  Detailed  analysis  showed  its  composi- 
tion to  be  as  follows: — Glycerides  of  oleic  acid 
45'4%,  of  linolic  acid  40'9%,  of  palmitic  acid,  7'7  , 
of  stearic  acid  3"5%,  of  arachidic  acid  0'4%,  and  of 
lignoceric  acid  0'2%,  together  with  1'7%  of  un- 
saponifiable matter.  There  was  no  evidence  of  the 
presence  of  any  hvpogaeic  acid  (c/.  Leathes,  "  The 
Fats,"  1910).— W.  G. 

Soya-bean   od;  The   uranium   nitrate  test  for  

Utz.     Chem.  Umschau,   1922,  29,  29—30. 

The  colour  reaction  between  uranium  nitrate  or 
uranium  acetate  solution  and  soya-bean  oil  (c/. 
Newhall,  J.,  1921,  51  a)  is  not  sufficiently  character- 
istic to  6erve  for  the  distinction  of  this  oil  from 
other  oils  and  fats.  Under  certain  circumstances 
it  fails  completely  with  mixtures  of  soya-bean  oil 
with  other  oils  and  fats. — H.  C.  R. 

Shark  and  ray-fish  liver  oils;  Higher  alcohols  in  the 

unsaponifiable  matter  fi-om  .     M.  Tsujimoto 

and  Y.  Tovama.     Chem.  Umschau,  1922,  29,  27— 
29,  35—37,  43—45. 

Kacvrazame  oil  (from  the  liver  of  Hewanchus 
corinus,  Jordan  and  Gilbert)  has  the  following 
characters:— Sp.  gr.  at  15°/4°  C,  09146.  add 
value  049,  saponif.  value  163'0,  iodine  value  (Wijs) 
124"5,  ir"D  =  V4740,  Hehner  value  97'70,  unsaponi- 
fiable matter  1524%,  glycerol  5'43%,  acid  value  of 
the  tatty  acids  1925,  polybromide  value  of  the  fatty 
acids  26*30%.  The  oil  contains  no  sqtialene.  The 
unsaponifiable  matter  consists  chiefly  of  two  new 
dihydric  alcohols,  .mo  saturated  and  the  other  tin 
saturated,  probably  having  the  formula'  ('  II  0 
and  C20II„O,  reap  ctively.  The  unsaturated  alcohol 
is  converted  into  the  saturated  one  by  hydrogenataon 
in  alcoholic  solution  at  room  temperature  in  the 
presence  of  platinum  black.  The  alcohols  have 
been  named  batyl  and  selachyl  alcohols  respectively. 
The  former  consists  of  colourless  rectangular 
lamina"  with  a  silvery  lustre,  melting  at  69°  C,  the 


Vol  \I.T .,  No.  6.J 


Cl.  Xffl.- PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


223  a 


ltter  of  a  yellowish  coloured  liquid,  iodine  value 
8-9,  sp.  gr.  at  15°/4°  C.  0;9206,  n15D  =  r4690. 
'hese  alcoliols  also  form  the  principal  constituents 
f  the  unsaponifiable  matter  of  the  liver  oils  from 
be  following  species :  — Cirrhigaleus  barbifer 
kanaka),  Somniosus  microcephalics  (Block  and 
neider),  Narcaciun  tokionis  (Tanaka),  Chimaera 
wstoni  (Tanaka),  Chimaera  mitsukurii  (Dean). 
'hey  also  occur  together  with  large  quantities  of 
jualene  in  the  unsaponifiable  matter  from  the 
ver  oils  of  Lepidorhinus  kimbei  (Tanaka)  and 
'minus  squamulosus  (Giinther).  The  liver  oil  from 
thlamydoselachus  anguineus  (Garman)  probably 
ontains  another  alcohol  as  principal  constituent  of 
be  unsaponifiable  matter.  The  principal  con- 
tituent  of  the  unsaponifiable  matter  of  Doran-ei 
Dasyatis  sp.)  oil  is  cholesterol. — H.  C.  R. 

fastor  bean  lipase,  its  preparation  and  some  of  its 
perties.      D.  E.  Halev  and  J.  F.  Lyman.      J. 
Amor.  Cliem.  Soc.,  1921, "43,  2664—2670. 

lX  active  lipase  preparation  is  best  obtained  from 
astor  beans  by  extracting  the  crushed,  hull-free 
eans  with  petroleum  ether.  Lipase  zymogen  is 
ctivated  by  acid,  but  the  active  enzyme  is  unstable 
nd  is  rapidly  destroyed  in  an  acid  medium  in  the 
bsence  of  fats.  In  the  presence  of  fats  the  enzyme 
hows  much  greater  stability.  The  zymogen  form 
ppears  to  be  somewhat  soluble  in  fats  or  in  a  mix- 
ure  of  fat  and  ether,  but  is  insoluble  in  ether  alone. 
*ke  optimum  hydrogen-ion  concentration  for  castor 
iean  lipase  is  lxl0"s.  As  the  acidity  increases 
,bove  this  point  the  lipolytic  activity  falls  and  stops 
ntirely  at  a  concentration  of  about  lxlO"3.  The 
lydrolysis  of  hard  fats  by  the  castor  bean  lipase  in 
he  presence  of  water  is  accelerated  by  the  addition 
if  petroleum  ether.  The  hydrolysis  of  oils  is 
imilarly  somewhat  hastened. — W.  G. 

Uycerides ;  Thin  layers  formed  by  mixtures  of . 

P.  Collet.     Comptes  rend.,  1922,  174,  544—545. 

In  the  case  of  thin  layers  formed  by  mixtures  of 
jlycerides  the  curves  showing  the  variations  of  sur- 
ace  as  a  function  of  the  composition  are  not 
traight  lines.  Hence  the  law  of  association  of  two 
rfycerides  in  the  same  thin  layer  is  not  purely  addi- 
ive.  The  curves  show,  sharply  defined,  either  a 
naximum  or  a  minimum.  At  the  time  of  solidifica- 
ion  of  a  glyceride  in  a  thin  layer  identical  mole- 
ules  apparently  associate  four  by  four.  In  a  mix- 
ture, chemically  different  molecules  group  them- 
elves  in  a  simple  manner,  their  association  being 
haracterised  by  a  maximum  or  a  minimum  exten- 
ion  on  water. — W.  G. 

'/itamin  of  cod  liver  oil.    Lax.     See  XX. 

Patents. 

Zydrogenating  process  and  apparatus.  W.  B.  All- 
bright.  U.S. P.  1,404,708—9,  24.1.22.  Appl., 
28.6.15  and  5.11.19.     Renewed  22.9.20. 

["he  process  comprises  mixing  the  oil  with  a 
;atalyst,  causing  a  rapid  stream  of  the  mixture  and 
arge  bubbles  of  hydrogen  to  flow  along  a  straight 
>ath,  spilling  the  mixture  through  an  atmosphere 
if  hydrogen,  drawing  hydrogen  gas  over  constantly 
igitated  thin  films  of  the  mixture,  and  finally  caus- 
ng  a  slow  flow  of  the  mixture  and  small  bubbles  of 
lydrogen  through  a  circuitous  path.  The  appa- 
•atus  comprises  a  closed  container  fitted  with  skim- 
ning  devices,  and  a  central  cylindrical  portion 
livided  from  the  rest  of  the  container  and  provided 
vith  stirrers  and  restricted  passages  at  the  bottom. 
Means  are  provided  for  drawing  hydrogen  from  the 
itmosphere  at  the  top  of  the  container  and  forcing 
t  through  the  liquid  in  the  two  compartments,  also 
or  spilling  the  liquid  from  the  central  compartment 
hrough  the  atmosphere  of  hydrogen  at  the  top  of 
he  container. — H.  C.  R. 


Palm-oil  fatty  acids;  Process  for  obtaining  a  crystal- 
Usable   distillate   from   .     M.   Lamberts    and 

K.  Fricke.     G.P.  346,402,  16.7.20. 

From  7  to  10%  of  oleic  acid  is  added  to  the  fatty 
acid  mixture  before  distilling. — H.  C.  R. 

Wool-fat;  Process  for  obtaining  alcohols  and  acids 

from  - .     I.  Lifschutz.     G.P.  346,433,  1.12.18. 

Addn.  to  324,667  (J.,  1920,  790  a). 

The  crude  saponification  products  obtained  accord- 
ing to  the  main  patent  are  treated  with  solvents  in 
which  the  unsaponifiable  matter  dissolves  but  the 
soaps  are  insoluble.  The  latter  can  then  be  worked 
up  into  fatty  acids  and  the  former  used  for 
varnishes,  polishes,  or  impregnating  purposes 
either  alone  or  mixed  with  other  waxes  or  varnishes 
dissolved  in  the  usual  solvents. — H.  C.  R. 

Acids  from  mineral  oils  etc.    G.P.  344,877.    See  IIa. 


XIIJ.-PAINTS  ;    PIGMENTS;    VARNISHES; 
RESINS. 

Turpentine  nil  from  the  Aleppo  pine;  Composition 

of  .     G.  Dupont.     Comptes  rend.,  1922,  174, 

395—398. 

Turpentine  oil  from  the  Aleppo  pine  contains  a 
fraction  which  only  distils  over  at  a  much  higher 
temperature  than  does  pinene.  This  fraction  con- 
sists of  i-bornyl  acetate  and  a  sesquiterpene  not  yet 
identified.  The  composition  of  the  fresh  oil  is 
approximately  d-pinene  95%,  i-bornyl  acetate 
1'14%,  sesquiterpene  3"8%.— W.  G. 

Coumarone-resin ;  Process  for  making  pale  elastic 

.     G.   Schneider.     Ber.   Ges.  Kohlentechnik, 

1921,  39—41.     Chem.  Zentr.,  1922,  93,  II.,  329. 

In  order  to  obtain  very  pale  and  elastic  coumarone- 
resins  it  is  not  only  necessary  to  keep  the  tempera- 
ture low  during  the  polymerisation  process,  but  also 
during  the  evaporation  of  the  solvent.  High-boil- 
ing solvents  can  be  evaporated  at  comparatively  low 
temperatures  by  passing  a  gentle  current  of  air 
over  the  material.  By  keeping  the  temperature  at 
90°  C.  a  very  pale  coumarone-resin  with  a  softening 
point  of  80°  C.  can  be  made,  with  an  evaporation 
loss  of  only  2%  of  solvent.— H.  C.  R. 

Petroleum  products.    James.    See  IIa. 

Patents. 

[Zinc  white  and  lead  sxdphate  pigments'];  Furnace 
and  apparatus  for  the  production  of  mineral  dis- 
tillates [metallic  fumes,  e.g. ]  of  definite  com- 
position. H.  Mayers,  and  Britons,  Ltd.  E.P. 
174,555,  7.10.18. 

The  furnace  is  divided  into  three  zones,  the  upper 
and  lower  being  water-cooled  to  maintain  a  sub- 
stantially lower  temperature  in  them  than  that  in 
the  middle  zone.  The  ore,  which  need  not  be  dried, 
is  fed  into  the  furnace  by  means  of  a  conical  hopper 
having  a  large  diameter  at  the  bottom  and  a  rotat- 
ing impeller  blade  which  drives  the  mineral  through 
an  aperture  in  the  hopper,  from  which  it  falls  on  to 
a  rotating  distributing  device  which  spreads  it 
evenly  over  the  surface  of  the  fuel  in  the  middle 
zone.  The  metallic  vapours  rising  from  the  charge 
are  oxidised  in  the  cooler  upper  zone  by  admitting 
a  regulated  supply  of  air  thereto,  and  the  resulting 
oxidised  fume  is  carried  through  a  series  of  settling 
chambers,  then  into  a  casing  divided  into  a  number 
of  sections,  each  provided  with  a  filter-bag.  Means 
are  provided  for  opening  and  closing  any  or  all  of 
these  filters  as  desired,  and  all  the  controls  of  the 
furnace  are  worked  from  one  position  in  front  of 
it.— A.  R.  P. 

b2 


224  a 


(i.    XIV.— INDIA-RUBBER,  &c.     Cl.   XV.— LEATHER  ;    BONE,  &c. 


(Mar.  31,  1922. 


Antimony    sulphide    pigment;    Preparation    of   an 

of  good  covering  power  and  heat-resistant 

properties.    R.  Becker.    G.P.  345,773,  23.7.20. 

A  solution  of  Schlippe's  salt  (sodium  sulphanti- 
monate)  is  heated  with  an  equivalent  quantity  oi 
an  ammonium  salt,  or  the  solution  may  be  treated 
with  loss  ammonium  salt  than  this  and  the  mixture 
heated  until  the  desired  tint  is  obtained,  when  a 
ilt,  dilute  nitric  acid,  or  nitrous  vitriol  is 
added  to  complete  the  reaction. — A.  R.  P. 

Wood   and  metals;   Composition   \_]rom   spent   gas- 
purifying    material]    and   process  for  preserving 
— .     W.  V.   Watson,  Assr.  to  San  Diego  Con- 
solidated Gas  and  Electric  Co.     U.S. P.  1,404,501, 
24.1.22.    Appl.,  27.5.20. 

A  composition  for  preserving  wood  and  metals  con- 
sists of  the  refuse  sponge  from  gas  purifiers  incor- 
porated with  a  further  quantity  of  tar  and  a 
volatile  solvent  fluid. — A.  R.  P. 

Linseed  oil;  Substitute  for  ■ [in  varnishes  etc."]. 

E.  Stern.     G.P.  345,816,  23.4.19. 

Coumarone  or  indene,  or  distillates  containing 
these  substances,  are  used  either  alone  or  in  admix- 
ture with  linseed  oil  or  similar  paint  vehicle.  These 
mixtures  are  preferable  to  benzene  solutions  of 
coumarone-resins  as  they  do  not  become  brittle  on 
hardening  nor,  when  used  with  soft  resins,  do  they 
give  rise  to  sticky  coatings  which  dissolve  previous 
ones. — A.  R.  P. 

Phenolic  condensation  products;  Manufacture  of 
.  H.  Wade.  From  Redmanol  Chemical  Pro- 
ducts Co.     E.P.  174,656,  29.7.20. 

See  U.S.P.  1,358,394  of  1920;  J.,  1921,  19  a. 
Products  from  wool  fat.    G.P.  346,433.    See  XII. 


XIV.-INDIA-RUBBER ;  GUTTA-PERCHA. 

Mineral  rubber.  C.  O.  North.  Chem.  and  Met. 
.   Eng.,  1922,  26,  253—260. 

In  proportions  between  3  and  15  vols,  per  100  of 
rubber  the  presence  of  "  mineral  rubber,"  prepared 
from  asphalt  residue  and  gilsonite,  has  a  beneficial 
influence  on  the  tensile  strength  of  vulcanised 
rubber  and  on  the  amount  of  energy  absorbed  in 
stretching  to  a  load  of  20  kg.  per  sq.  cm.  or  to  the 
breaking  point.  Beyond  15  vols,  it  is  practically 
without  influence  on  the  stress-strain  curve,  on  the 
final  elongation  and  on  the  energy  absorption  at  a 
load  of  20  kg.  per  sq.  cm.  or  at  break.  On  account 
of  its  plastic  character  it  does,  however,  affect  the 
hysteresis,  rate  of  recovery,  and  permanent  set  and 
exhibits  a  marked  difference  from  such  rubber-com- 
pounding ingredients  as  zinc  oxide  ;  the  sluggishness 
of  recovery  of  the  vulcanised  rubber  becomes  par- 
ticularly marked  if  more  than  15  vcls.  of  "  mineral 
rubber  "  is  prefeont.  The  slopes  of  the  curves  for 
the  effect  of  varying  proportions  of  "  mineral 
rubber,"  zinc  oxide,  and  gas  black  on  the  perma- 
nent set  and  hysteresis  respectively,  show  a  remark- 
able agreement. — D.  P.  T. 

Sulphur  in  vulcanised  rubber.     Ter  Meulen.     See 
XXIII. 

Patent. 

Pulcanisates ;  Process  for  improving  the  properties 

of  .      Farbenfabr.   vorm.   F.   Bayer  mid  Co. 

G.P.  345,160,  20.2.17. 
To  the  material  to  be  vulcanised  there  are  added  an 
aliphatic  or  aromatic  amino-compound  (e.g.  diethyl- 
aniline),  the  sulphate  of  a  similar  base  (e.g.  aniline 
sulphate),  and  a  metallic  oxide  or  peroxide  or  other 
compound  capable  of  yielding  oxygen  at  the  vulcan- 
ising temperature. — D.  F.  T. 


XV.-LEATHER;   BONE;   HORN ;  GLUE. 

Tanning      materials;     Relative     adsorption     from 

liquors    prepared    from    different    .      H.    G. 

Bennett  and  N.  L.  Holmes.  J.  Soc.  Leathei 
Trades  Chem.,  1922,  6,  49—66. 
Adsorption  isotherms  were  determined  experiment- 
ally for  three  tanning  materials  over  a  definite 
range  of  concentrations  in  weak  liquors.  The  re- 
sults for  different  materials  are  compared.  Over 
the  range  of  concentrations  employed,  myrobalans 
shows  better  absorption  by  hide  powder  than 
mimosa  bark  or  valonia.  The  results  show  ap- 
proximate agreement  with  the  adsorption  law,  but 
the  values  of  the  "  constants  "  a  and  n  of  the  equa- 
tion x— mac1'"  obtained  experimentally  were  not 
quite  constant.  The  value  of  a  varied  with  the 
ratio  of  the  amount  of  hide  powder  used  (in)  to  the 
amount  of  soluble  matter  in  the  original  solution 
(x+c).  This  is  attributed  to  alterations  in  the 
specific  surface  of  the  adsorbents  by  a  simultaneous 
adsorption  of  hydrions  naturally  present.  A  blend 
of  materials  may  show  better  adsorption  than  either 
material  alone,  because  the  natural  acidity  of  one 
material  will  affect  the  adsorption  of  tannin  from 
the  other  material.  The  mathematical  expression 
of  adsorption  from  tannin  infusions  is  complex, 
especially  in  the  case  of  mixtures,  and  is  further 
complicated  by  the  possibility  of  surface  changes 
from  other  sources,  such  as  lyotrope  influence. 

— D.  W. 

Non-tannin  enigma;  Solution  of  the  .     H.  C 

Reed.  J.  Amer.  Leather  Chem.  Assoc,  1922,  17, 
48—55. 
A  portion  of  the  soluble  matter  from  hide  powder 
is  precipitated  by  the  tannin  in  tannin  analyses, 
but  there  is  a  residue  which  increases  the  amount 
of  non-tans  determined.  The  apparent  increase  in 
the  amount  of  neutral  salts  in  a  solution  after  shak- 
ing it  with  hide  powder  is  due  to  this  residual 
soluble  matter  from  the  powder.  When  corrections 
are  made  for  soluble  matter  obtained  in  a  blank  ex- 
periment, the  apparent  increase  is  obviated.  The 
greater  the  volume  of  water  the  greater  the 
hydrolysis  of  the  hide  powder.  The  greater  the  pro- 
portion of  tannin  to  hide  powder,  the  less  the 
hydrolysis,  and  the  greater  the  absorption  of  non- 
t.umin.  Gallic  acid  is  a  potential  tanning  material 
but  is  absorbed  by  hide  powder  in  proportion  not 
truly  representative  of  its  value. — D.  W. 

Gelatin;  Titration  curve  of .     D.  J.  Lloyd  and 

C.  Mayes.  Proc.  Roy.  Soc,  1922,  B  93,  69—85. 
Estimations  were  made  of  the  hydrogen  ion  con- 
centrations of  solutions  of  gelatin  in  known  concen- 
trations of  acid  and  alkali,  and  the  amount  of  com- 
bined acid  or  alkali  calculated  in  each  case.  It  is 
concluded  from  the  results  that  for  concentrations 
of  acid  not  exceeding  0'02-V  combination  occurs  at 
the  free  amino  groups  of  the  gelatin  molecule;  for 
greater  concentrations  of  acid,  however,  there  is 
probably  also  combination  at  the  nitrogen  of  the 
peptide  linkages.  No  conclusion  was  drawn  as  to 
the  mode  of  attachment  of  alkalis,  but  it  is  probable 
that  the  number  of  positions  of  attachment  fo~ 
bases  is  different  from  the  number  of  positions  for 
acids,  i.e.,  that  the  reacting  weight,  molecular 
weight  /basicity  (or  acidity),  is  not  the  same  in  acid 
and  alkaline  solution. — E.  S. 
Patents. 

Tanning    intents;    Manufacture    of    .      Chem. 

Fabr.  Worms  A.-G.  E.P.  148,897,  10.7.20.  Con-.. 
17.8.16. 
VEGETABLE  tanning  agents  are  condensed  with  a  sul- 
phonic  acid  of  an  aromatic  hydrocarbon  or  a  phenol, 
or  a  salt  thereof,  and  formaldehyde,  or  the  flul- 
phonic  acid  may  be  first  condensed  with  formalde- 
hyde and  then  with  a  vegetable  tanning  agent  and 
formaldehyde. — D.  W. 


Vol.  XIX,  No.  6.] 


Cl.  XVI.— SOILS  ;   FERTILISERS. 


225  a 


\inning  materials;  Process  for  obtaining from 

cellulose  waste  sulphite  lyes.  A.  Romer,  and 
Deutseh-Koloniale  Gerb-  und  Farbstoff  Ges.  E.P. 
171,136,  7.7.20. 

'he  lye  is  treated  with  lime,  calcium  carbonate,  or 
he  like,  filtered  to  remove  precipitated  calcium 
ulphite  etc.,  then  treated  with  alkali  carbonate  or 
he  like  to  convert  the  calcium  lignosulphates  into 
ulpho-lignin  alkali  salts,  with  precipitation  of  the 
ime.  After  filtering  the  solution  is  treated  with  a 
uantity  of  acid,  e.g.,  hydrochloric  acid,  or  an  acid- 
cting  salt,  which  is  not  materially  less  than  half 
he  quantity  theoretically  required  and  not  more 
han  that  required  for  complete  conversion  of  the 
lkali  sulpho-lignin  salts.  Before  treatment  with 
Ikali  carbonate  the  lye  may  be  fermented  to  remove 
ugar. — D.  W. 

'aiming  animal  hides.  W.  T.  Clark.  From  Chem. 
Fabr.  Worms  A.-G.  E.P.  173,853,  5.10.20.  Addn. 
to  136,193  (J.,  1920,  165  a). 

ron  salts  are  partially  converted  into  the  formate 
nd  the  mixture  used  for  tanning  purposes. — D.  W. 

'oluhle    condensation    products    {tanning    agents']; 

Production    of    .      J.    Y.    Johnson.      From 

Badische  Anilin  und  Soda  Fabrik.  E.P.  173,881, 
11.10.20. 

Naphthalene,  other  bicyclic  hydrocarbons,  car- 
azole,  halogen  substitution  products  of  the  same, 
r  their  sulphonic  acids,  but  excluding  their 
ydroxy  derivatives,  are  condensed  with  a  carbo- 
ydrate  so  that  sulphonic  acid  groups  are  contained 
a  the  final  product,  which  is  treated  to  remove  most 
f  the  mineral  acid  and  used  for  tanning. — D.  W. 

Wining.  J.  Y.  Johnson.  From  Badische  Anilin 
und  Soda  Fabrik.    E.P.  174,700,  26.10.20. 

!akbohydrates  (cellulose,  starch,  dextrin,  sugar, 
tc.)  are  mixed  with  sulphuric  acid  and  condensed 
'ith  aromatic  hydrocarbons,  or  carbazole,  or 
alogen  substitution  products  thereof  free  from 
ydroxyl.  Acid  aqueous  solutions  of  the  products, 
'ith  or  without  vegetable  tanning  materials,  are 
sed  in  tanning  hides  and  skins. — D.  W. 

hpilation,  neutralisation  and  bating  of  hides  and 

skins;  Process   for  the   - .     O.    Rohm.     E.P. 

156,079,  12.10.20.    Conv.,  31.12.19. 

[ides  are  treated  for  the  purpose  of  depilation 
ith  a  solution  of  caustic  alkali,  or  alkaline-earth 
r  ammonia,  which  contains  a  salt  of  an  alkali  or 
lkaline-earth  metal,  more  particularly  sodium  sul- 
hate.  A  solution  of  a  neutralising  agent,  e.g. 
xlium  bicarbonate,  is  then  added  and  pancreatic 
nzymes  for  .bating  purposes.  The  depilatory  mix- 
ure  mav  be  fused  together  and  prepared  in  tablet 
arm.— D.  W. 

tides;    Process   for   unhairing  .      T.    B.    Car- 

michael  and  W.  H.  Ockleston.  E.P.  173,788, 
2.7.20. 

[ides  are  treated  first  with  a  0'5%  solution  of 
odium  sulphide  and  then  with  a  0'5%  solution  of 
austic  soda.  The  hides  may  be  suspended  or 
rumined  in  the  liquors. — D.  W. 

Aquid  glue;  Process  for  the  preparation  of  a . 

E.  Herzinger.    G.P.  345,601,  17.11.20. 

lKtmal  glue  is  treated  with  carbon  tetrachloride 
'hereby  it  first  swells  and  eventually  yields  a  liquid 
lass.  Carbon  tetrachloride  may  also  be  added 
nstead  of  part  of  the  acids  hitherto  used  in  making 
iquid  glue.— A.  R.  P. 


Gaseim^glue;  Water-resistant .    Leim-Industrie 

G.m.b.H.     G.P.  345,684,  3.9.20. 
The  glue  consists  of  a  mixture  of  casein,  lime,  and 
an    alkali    salt    to    which    about    1*5%    of    barium 
peroxide   is    added   to   increase   its    water-resisting 
power. — A.  R.  P. 

Gelatin  and  glue;  Process  for  recovering from 

bones.     E.  Bergmann.    G.P.  315,775,  2.10.18. 

After  removal  of  the  calcium  phosphate  the  bone 
material  is  subjected  to  the  action  of  an  enzyme, 
e.g.,  pepsin,  which  will  decompose  proteins.  The 
process  is  carried  out  in  acid  solutions,  so  as  to 
avoid  simultaneous  decomposition  of  fatty  matter, 
and  after  partial  decomposition  has  taken  place  the 
remaining  insoluble  material  is  worked  up  by  known 
processes  into  gelatin  and  glue. — A.  R.  P. 

Leathers  and  skins;  Process  for  tanning  .     H. 

Morin,  Assr.   to  Genty,   Hough  et  Cie.     U.S. P. 
1,404,633,  24.1.22.    Appl.,  6.12.16. 

See  E.P.  100,163  of  1916;  J.,  1916,  854. 

Chrome    tanning;    Process    of 
U.S.P.    1,404,957,    31.1.22. 
newed  29.1.18. 

See  G.P.  274,549  of  1913;  J.,  1914,  759. 

Glue  and  the  like;  Process  for  making from 

glue    material.      O.    Rohm.      U.S.P.    1,405,741, 
7.2.22.     Appl.,  10.3.17. 

See  E.P.  104,181  of  1917;  J.,  1917,  1141. 

Tanning:   [Means  for  supplying  liquor  to  the  pits 

in  the]  process  of  .     H.  C.  Marris,  and  W. 

Walker  and  Sons,  Ltd.     E.P.  174,383,  29.12.20. 


Appl. 


F.    Hirsch. 
5.3.14.      Re- 


XVI.-S0ILS ;  FERTILISERS. 

Soil;  Factors  affecting  the  hydrogen  ion  concentra- 
tion of  the and  its  relation  to  plant  distribu- 
tion. W.  R.  G.  Atkins.  Sci.  Proc.  Roy.  Dubl. 
Soc,  1922,  16,  369—413. 

The  maximum  alkalinity  in  soil  due  to  calcium 
carbonate  is  pB  901.  In  the  presence  of  carbon 
dioxide  lower  alkalinity  is  obtained  owing  to  the 
formation  of  calcium  bicarbonate.  In  the  presence 
of  magnesium  carbonate,  alkalinity  up  to  pa  10'0  is 
possible.  Higher  alkalinities  may  be  possible  where 
sodium  carbonate  is  present  in  the  soil.  Data  are 
given  showing  the  relation  of  soil  reaction  to  geology 
and  topography.     (Of.  J.C.S.,  April.)— G.  W.  R. 

Hydrogen  ion  concentration  of  plant  cells.  W.  R.  G. 
Atkins.  Sci.  Proc.  Roy.  Dubl.  Soc,  1922,  16, 
414—434. 

A  large  number  of  observations  on  the  reaction  of 
plant  cells  gave  values  ranging  from  pH  14  to 
p„  8'0.  Varying  reactions  are  found  under  differing 
cultural  conditions  and  in  different  parts  of  the 
same  plant.     (Cf.  J.C.S.,  April.)— G.  W.  R, 

Soil:  Partial  sterilisation  .of  .     G.  Riviere  and 

G.  Pichard.    Comptes  rend.,  1922,  174,  493—495. 

Sodium  arsenate,  when  applied  to  the  soil  at  the 
rate  of  2 — 4  g.  per  sq.  m.,  gives  a  marked  increase 
in  the  yield  of  wheat,  oats,  or  potatoes,  the  in- 
creases being  anything  from  20  to  50%.  This  is 
shown  to  be  a  partial  sterilisation  effect,  the  soil 
protozoa  being  destroyed.  If  heavier  dressings,  e.g., 
10  g.  per  sq.  m.,  are  used  there  is  an  injurious  effect 
on  the  crop. — W.  G. 


226  a 


Cl.  XVII.— SUGARS  ;   STARCHES  ;   GUMS. 


(Mar.  31,  1922. 


Manurial  experiments;  Questions  concerning  the 
technique  of  research  — ■ — .  Kleberger.  Landw. 
Versuchs-Stat.,  1922,  99,  162—172. 

In  sand  culture  work  the  type  of  sand  used  is  an 
important  factor.  Analyses  of  typical  sands  are 
given.  Sand  leached  with  dilute  hydrochloric  acid 
and  washed  with  distilled  water,  still  possessed  an 
acidity  equivalent  to  25  g.  of  calcium  carbonate 
per  kg.  Sand  for  culture  work  should  be  titrated 
and  the  necessary  amounts  of  calcium  or  magnesium 
carbonate  should  be  added,  otherwise  considerable 
differences  in  crop  production  occur.  The  effect  of 
size  of  grain  on  water-holding  capacity  and  aeration 
is  to  be  considered.  The  most  suitable  mixture 
consists  of  33%  of  sand  greater  than  3  mm.  diam., 
33%  less  than  3  mm.  and  greater  than  0'5  mm., 
28%  less  than  0"5  mm.,  with  6%  of  ground  washed 
quartz  as  a  subsoil  layer.  In  estimating  the  limit 
of  error  in  field  trials,  3  ten-plot  series  should  be 
used. — A.  G.  P. 


Lead  salts;  Action  of  - 
Oomptes  rend.,  1922, 


— ■  on  plants. 
174,  488—491. 


E.  Bonnet. 


Lead  salts  exert  an  unfavourable  influence  on  the 
growth  of  plants.  Their  effect  varies  somewhat 
with  the  species  of  plant,  but  is  generally  shown  by 
a  curtailment  of  the  root  development  even  when 
the  salts  are  at  a  dilution  equivalent  to  N I '2000. 
In  2V/10  solutions  the  plants  absorb  lead  and  the 
absorbed  metal  is  found  entirely  in  the  roots.  The 
younger  the  plant  the  more  sensitive  it  is  to 
lead  salts.  The  transpiration  of  plants  growing  in 
solutions  containing  lead  salts  is  appreciably 
diminished  as  compared  with  that  of  plants  grow- 
ing in  pure  water.  Certain  seeds  are  very  sensitive 
to  lead  salts  if  steeped  in  their  solutions  prior  to 
germination,  but  here  again  the  susceptibility 
varies  with  the  species  of  the  plant. — W.  G. 


XVII. -SUGARS;   STARCHES;  GUMS. 

Beetroots;  Composition  of  wild  .     E.  Saillard. 

Comptes  rend.,  1922,  174,  411—412. 

The  wild  beetroots  analysed  came  from  Finisterre. 
They  contained  higher  percentages  of  dry  matter, 
insoluble  marc,  total  nitrogen,  mineral  matter, 
chlorine,  sodium,  magnesium,  and  phosphoric  acid 
than  the  cultivated  varieties.  Their  sugar  content 
varied  from  14  to  20%,  but  their  juice,  as  a  source 
of  sugar,  was  rather  impure. — W.  G. 

Odoriferous  constituents  of  the  beet,  and  their 
separation.  K.  Andrlik.  Z.  Zuckerind.  Czecho- 
slov.,  1922,  46,  201—205. 

Steam  was  passed  through  beet  slices,  condensed, 
and  the  condensed  liquid  redistilled.  It  was  found 
that  the  beet  had  thus  been  freed  entirely  from  its 
odoriferous  constituents,  and  that  these  could  be 
obtained  in  a  concentrated  condition  in  the  first  2% 
of  the  second  distillate,  the  amount  being  0'005%. 
Two  distinct  constituents  at  least  were  present,  the 
first  distilling  over  below  70°  C.,  and  the  second  at 
about  100°  C.,  but  they  were  not  identified. 

—J.  P.  O. 

Beet  juice;  Production  of  a  fodder  from  the  non- 
sugars  of .  Z.  Vytopil.  Z.  Zuckerind.  Czecho- 

slov.,  1922,  46,  236—237. 

On  modifying  Claassen's  process  (G.P.,  307,575;  J., 
1919,  26  a),  by  the  addition  of  0'5%  of  finely  chopped 
hay,  about  1"S%  of  a  precipitate  was  obtained  which 
after  drying  had  the  composition:  water,  106;  ash, 
260;  fibre,  133;  protein,  7'5 ;  fat,  0"7 ;  sugar,  120; 
and  nitrogen-free  organic  matter  soluble  in  water, 
299%.— J.  P.  O. 


Cane  molasses;  Influence  of  colloids  on  the  viscosity 

of  Java .     W.  D.  Helderman  and  V.  Khain- 

ovsky.     Arch.  Suikerind.  Nederl. -Indie,  1921,  29, 
1229—1235,  1344—1347. 

Using  Arndt's  apparatus  (Z.  Elektrochem.,  1907, 
13,  578)  slightly  modified,  the  viscosity  of  molasses 
before  and  after  treatment  with  decolorising  carbon 
and  kieselguhr  was  examined.  In  all  the  cases  con- 
sidered, a  marked  diminution  of  the  viscosity  was 
observed,  especially  in  the  case  of  "  Norit  "  de- 
colorising carbon,  though  analyses  showed  that  the 
amount  of  colloids  eliminated  was  very  small, 
Operating  on  raw  juice  with  "Norit,"  it  was 
possible  to  obtain  a  liquid  which  when  examined  by 
the  ultra-microscope  appeared  to  be  colloid-free, 
but  the  amount  of  carbon  necessary  was  2 — 3%  of 
the  weight  of  juice,  which  is  considered  excessive 
for  economical  application.  Enumeration  of  the 
particles  using  the  slit  ultra-microscope  showed  that 
whereas  originally  5' 11  millions  per  cub.  mm.  were 
present,  after  treatment  with  17'6%  of  "  Norit," 
4'93  millions  remained  in  defecation  molasses,  but 
only  039  million  in  carbonatation  molasses. 

—J.  P.  O. 

Plauson  ultra-filter-press  and  the  processes  involved 
in  the  defecation,  carbonatation,  and  filtration 
{of  sugar  juices'].  B.  Block.  Zentr.  Zuckerind., 
1921,  29,  1264—1265.  Chem.  Zentr.,  1921,  92, 
IV.,  1363. 

True  crystallisation  processes  are  involved  in  the 
carbonatation  of  sugar  juices.  Calcium  sucrate 
crystallises  on  colloidal  particles  suspended  in  the 
juice ;  the  particles  of  calcium  hydroxide  still 
present  are  gradually  dissolved  and  converted  into 
sucrate  and  the  decomposition  of  the  latter  by 
carbon  dioxide  is  followed  by  the  crystallisation  of 
calcium  carbonate  on  proteid  colloids.  Filtration 
of  the  carbonated  juice  in  frame  filter-presses  or 
Kelly  presses  is  subject  to  certain  imperfections 
which  are  remedied  by  the  use  of  the  ultra-filter- 
press  designed  by  the  author.  With  this  press  it 
will  be  possible  to  filter  raw  juice  without  any  treat- 
ment with  lime,  although  an  addition  of  0'5%  or 
less  will  probably  be  found  necessary  to  decompose 
the  non-sugars.  Molasses,  filtered  with  a  small 
quantity  of  carboraffin  (decolorising  carbon),  passes 
through  the  ultra-filter-press  in  a  mobile  state, 
almost  decolorised  and  odourless,  the  colloidal  im- 
purities being  retained  by  the  press.  Waste  waters 
from  the  diffusion  process  can  be  filtered  without 
any  other  treatment,  and  beet  syrup  may  be  pro- 
duced directly  from  the  beets. — J.  H.  L. 

Dextrose;  Mutarotation  of  — ■ —  under  the  influ- 
ence of  sodium  chloride.  H.  Murschhauser. 
Biochem.  Zeits.,  1921,  125,  158—178. 

Addition  of  pure  sodium  chloride  to  dextrose  solu- 
tion undergoing  mutarotation  causes  an  increase  of 
the  velocity  of  mutarotation  inversely  proportional 
to  the  increased  concentration  of  the  salt.  Im- 
purities in  sodium  chloride  influence  the  velocity 
constant  considerably.  With  ordinary  cookin 
the  constant  was  almost  doubled,  whilst  with  a 
fused  analytically  pure  sodium  chloride  there  was 
an  8-fold  increase  due  to  development  of  alkali. 

-H.  K. 

Dextrose;    Influence    of    on    the    dialysis    of 

sucrose   through   a  parchment    membrane.     The 

possibility    of    the    separation    of   dextrose    from 

sucrose  by  dialysis.     L.   A.   Congdon  and   II     I! 

Ingersoll.    J.  Amer.  Chem.  Soc.,  1921,  43,  2588— 

2597. 

The  influence  of  dextrose  on  the  dialysis  of  sucrose 

in   solutions   containing  both   sugars   is   of  such  a 

character  as  to  keep  the  ratio  of  the  percentage  of 

original  dextrose  to  percentage  of  original  sucrose 

dialysed    approximately   constant    at    about   2"5!l, 


Vol.  XLI.,  No.  a.] 


Cl.  XVIII.- FERMENTATION  INDUSTRIES. 


227  a 


irrespective  of  the  concentration  of  the  sucrose,  pro- 
vided that  the  concentration  of  the  dextrose  is  not 
less  than  2%  and  the  time  of  dialysis  has  exceeded 
3  his.  In  solutions  containing  less  than  2%  of 
dextrose,  the  dextrose  dialyses  at  a  much  greater 
rate,  and  when  the  concentration  is  only  0"125 
the  above  ratio  is  about  5:1.  With  a  solution  con- 
taining 0'125%  of  dextrose  and  6'25%  of  sucrose  the 
whole  of  the  dextrose  was  removed  by  dialvsis  for 
51  hrs.— W.  G. 

Megasse  [sugar-cane  refuse];  Production  of  power 

alcohol  and  paper  pulp  from  .     Ci.  J.  Fowler 

and  B.  Bannerjee.     J.  Indian  Inst.  Sci.,  1921,   I, 
241—260. 

Megasse  was  subjected  to  acid  hydrolysis  under 
varying  conditions  of  time,  pressure,  quantity  and 
concentration  of  acid,  with  the  object  of  obtaining 
a  high  yield  of  fermentable  sugars  without  render- 
ing the  residual  fibre  unsuited  for  papermaking. 
The  best  results  were  obtained  by  digesting  the 
material  (which  contained  7%  of  unexpressed  sugar) 
for  15 — 30  rams,  at  65  lb.  per  sq.  in.  with  not  more 
than  6%  of  sulphuric  acid  (H„SO«)  at  a  concentra- 
tion of  0-35— 0-50%.  A  36%  yield  of  reducing 
sugars  (determined  volumetrically)  was  obtained : 
this  might  be  increased  by  working  at  higher  pres- 
sures, e.g.,  up  to  112  lb.  per  sq.  in.  (cf.  Kressmann, 
J.,  1914,  880;  1915,  1221).  The  neutralised  extract 
was  concentrated  to  about  10%  strength  and  fer- 
mented with  beer  yeast,  grown  in  glucose  solutions 
containing  increasing  amounts  of  megasse  extract, 
in  order  to  cultivate  a  yeast  better  able  to  with- 
stand the  inhibiting  action  of  the  non-sugars  in  the 
extract.  60%  of  the  theoretical  yield  of  alcohol  was 
obtained — equivalent  to  8 — 9%  alcohol  on  the 
weight  of  megasse.  The  most  satisfactory  way  of 
fermenting  the  extract,  however,  is  in  admixture 
with,  three  times  its  weight  of  cane  molasses.  The 
fibrous  residue,  amounting  to  about  52%  of  the 
original  material,  can  be  treated  by  the  soda  process, 
and  could  be  used  for  wrapping  papers,  boards,  etc., 
or  in  admixture  with  rag  pulp. — D.  J.  N. 

Glucose    for    preventing    freezing     in    automobile 
radiators.    La  Wall.    See  I. 

Invertase    action.      Nelson    and    Hitchcock.      See 
XVIII. 


XVIII. -FERMENTATION  INDUSTRIES. 

Brewery;  Hydrogen-ion  concentration  in  the  . 

77.    W.  Windisch  and  P.  Kolbach.     Woch.  Brau., 
1921,  38,  295—297.    {Cf.  J.,  1922,  72  a.) 

Titration  of  wort  or  beer  with  the  aid  of  two  suit- 
able indicators  affords  data  from  which  the  original 
hydrion  concentration  may  be  deduced.  If  the 
changes  in  the  pH  value  produced  by  treating 
100  c.c.  of  a  wort  or  beer  with  successive  1  c.c.  in- 
crements of  JV/10  sodium  hydroxide  aud  2V/10 
hydrochloric  acid,  are  plotted  against  the  volumes 
of  alkali  and  acid  added  (these  being  measured  in 
opposite  directions  from  the  origin),  the  graph  ob- 
tained is  practically  a  straight  line.  This  graph 
may  accordingly  be  constructed  if  two  points  on  it 
are  determined  by  titrating  the  wort  or  beer  with 
alkali  or  acid  with  the  aid  of  two  indicators  such 
as  neutral  red  (pH  =  7'0)  and  methyl  orange  (p„  = 
4'53)  or  y-dinitrophenol  (pn  =  4'88,  cf.  Michaelis,  J., 
1921,  490  a).  Graphs  of  this  kind  show  at  once  the 
pa  value  of  the  untreated  wort  or  beer,  and  afford 
information  respecting  the  buffer  action  of  the  salts 
present,  i.e.,  how  much  acid  or  alkali  is  required  to 
produce  any  given  change  in  the  hydrion  concentra- 
tion.— J.  H.  L. 


Alcoholic  sugar-fission;  Stimulants  of  ■.     V777. 

C.  Neuberg  and  M.  Sandberg.     Biochem.  Zeits., 
1921,  125,  202—219. 

Purines,  their  complex  derivatives,  or  their  degra- 
dation products,  accelerate  the  fermentation  of 
dextrose  by  living  yeast  cells  just  as  they  accelerate 
the  action  of  press-juice  (J.,  1922,  153  a).  Caffeine 
and  alloxan,  however,  retard  the  action  of  living 
cells— H.  K. 

i-Innsitol;  Fermentation  of .    J.  A.  Hewitt  and 

D.  B.  Steabben.     Biochem.  J.,  1921,  15,  665—666. 

The  main  products  of  the  fermentation  of  inositol 
are  alcohol,  acetic  acid,  succinic  acid,  and  carbon 
dioxide,  and  small  quantities  of  lactic  acid  and 
formic  acid.  Dextrose  apparently  is  not  an  inter- 
mediate product. — W.  O.  K. 

Amylases;  Inhibition  phenomena  in  .     77.     U. 

O'lsson.  Z.  physiol.  Chem.,  1921,  117,  91—145. 

The  optimum  reaction  for  the  action  of  a  sample 
of  ptyalin  in  the  presence  of  sodium  chloride  and 
sodium  acetate  was  found  to  be  pH  =  6'4.  Malt 
diastase  is  inactivated  more  readily  than  ptyalin. 
Iodine  and  fluorine  ions  have  no  inactivating  influ- 
ence on  malt  diastase.  Ferric  chloride  in  low  con- 
centration activates,  in  higher  concentrations  in- 
activates malt  diastase.  On  dialysing  ptyalin  an 
activator  is  removed  which  consists  chiefly  of  salts, 
the  presence  of  which  is  necessary  for  the  usual 
diastatic  action.  The  action  of  various  inhibiting 
reagents  is  described.  It  is  suggested  that  the  in- 
activating capacity  of  some  of  the  heavy  metals 
might  be  utilised  as  a  means  of  detecting  very  small 
traces  of  these  metals. — S.  S.  Z. 

Blood  enzymes.  I.  Occurence  of  maltase  in  mam- 
malian blood.  A.  Compton.  Biochem.  J.,  1921, 
15,  681—686. 

Maltase  is  present  in  the  blood-serum  of  the  dog, 
pig,  goat,  horse,  and  ox,  and  is  absent  in  that  of 
the  cat,  guinea-pig,  rabbit,  and  man. — W.  O.  K. 

Invertase  action;  Uniformity  in .   J.  M.  Nelson 

and  D.  I.  Hitchcock.  J.  Amer.  Chem.  Soc,  1921, 
43,  2632—2655.  (Cf.  Nelson  and  Vosburgh,  J., 
1917,  560.) 
The  equation,  f  =  l/n[logl00/(100-p)  +  0-002642p- 
0-0000088602r-0-0000001034p3],  where  t  is  the  time, 
p  the  percentage  of  sucrose  inverted,  and  n  is  a 
constant  which  is  proportional  to  the  amount  of 
active  invertase  present,  has  been  deduced  and  fits 
the  experimental  data  over  an  extreme  range  of 
invertase  concentration  of  12:1.  The  hydrolysis- 
time  curves  for  normal  invertase  are  of  the  same 
shape  for  these  different  invertase  concentrations. 
The  curve  with  normal  invertase  has  the  same  shape 
at  temperatures  varying  from  15u  to  35°  C,  and  at 
hydrogen-ion  concentrations  from  4'0xl0"5  to 
3"2xl0"'.  All  invertase  preparations  from  yeast 
are  not  alike  in  their  action.  Some  of  them  are 
abnormal  in  allowing  the  hydrolysis  of  sucrose  to 
slow  up  more  than  others  after  the  first  20%  of  the 
inversion.  One  such  abnormal  preparation  was 
rendered  normal  by  the  addition  of  boiled  normal 
invertase  or  of  0"1A7  sodium  chloride,  but  another 
was  not  affected  by  such  treatment.  Further 
dialysis  or  partial  inactivation  by  heating  or  by 
exposure  to  ultra-violet  light  did  not  render  normal 
invertase  preparations  abnormal. — W.  G. 

Vitamins.    VI.    [Effect  on  enzymes.~\    U.  Sammar- 

tino.  Biochem.  Zeits.,  1921,  125,  25—41. 
Vitamin  (origin  not  stated)  accelerates  markedly 
the  action  of  cell-free  zymase.  The  action  of  pepsin 
on  coagulated  blood-albumin  is  not  changed  by  addi- 
tion of  vitamin  but  both  the  action  of  trypsin  on 
blood-albumin  and  of  diastase  on  starch  are 
accelerated  between   10   and  20%.     The   action  on 


Cl.  XIXa.— FOODS. 


[Mar.  31,  1922. 


is    more    complex    and    depends    on    other 
3  such  a.;  reaction  of  the  medium,  and  nature 
of  th  present. — H.  K. 

Lactic  ferment;  Growth  in  tolerance  of  the to 

poisons.  (Specificity,  simultaneity  and  alter- 
nance.)  C.  Richet,  E.  Baohrach,  and  H.  Cardot. 
Comptes  rend.,  1922,  174,  345— 331. 

Tin-:  lactic  ferment  may  become  accustomed  to  an 
inorganic  poison  when  grown  in  its  presence.  This 
tolerance  is  specific  to  the  particular  poison,  but 
the  organism  may  become  accustomed  to  two 
poisons,  such  as  arsenic  and  cadmium  salts  together, 
by  growth  on  media  containing  both  these  elements. 
If,  in  order  to  obtain  simultaneous  tolerance  of  two 
poisons,  the  organisms  arc  grown  alternatively  on 
media  containing  one  of  the  poisons  in  each  case, 
tolerance  for  both  is  acquired,  but  to  a  lesser  extent 
than  if  both  the  poifons  were  in  the  same  culture 
medium  for  the  organism. — W.  G. 

Emulsin.     B.  Helferich.     Z.  physioI.  Chem.,  1921, 
117,  159—171. 

A  satisfactory  method  for  preparing  emulsin  from 
the  kernel  of  the  plum  is  to  mill  the  stones,  extract 
the  paste  with  water  under  toluene  for  9  weeks, 
filter,  and  precipitate  with  95%  alcohol.  Prolonged 
extraction  and  precipitation  from  dilute  solution 
conduce  to  more  potent  preparations.  The  enzyme 
can  be  purified  by  dialysis.  The  conditions  for* the 
quantitative  estimation  of  the  activity  of  /?-glucos- 
ldases  are  also  described. — S.  S.  Z. 

Emulsin.      R.     Willstatter     and    W.    Csanyi.      Z 
physiol.  Chem.,  1921,  117,  172—200. 

The  optimum  reaction  for  the  hydrolysis  of 
amygdalin  by  emulsin  lies  in  the  neighbourhood  of 
neutrality,  for  the  hydrolysis  of  lactose  and  raffinose 
more  on  the  acid  side.  Emulsin  preparations  kept 
for  about  six  months  showed  considerable  loss  of 
activity.  Prom  the  difference  of  the  quotients  of 
the  hydrolysis  of  /J-methylglucoside,  lactose,  and 
raffinose  from  that  of  amygdalin,  of  the  hydrolysis 
of  lactose  from  that  of  prunasin,  of  the  hydrolysis 
of  /3-glucoside  from  that  of  prunasin  by  various  pre- 
parations from  sweet  and  bitter  almonds  and  apri- 
cot kernels,  it  is  concluded  that  the  emulsin 
reactions  are  of  the  nature  of  independent  enzyme 
reactions  and  that  the  preparations  are  mixtures  of 
numerous  enzymes  capable  of  degrading  glucosides 
and  polyoses. — S.  S.  Z. 

Lipase.    Haley  and  Lyman.    See  XII. 

Alcohol  from  megasse.    Fowler  and  Banneriee.    See 
XVII. 

Diastatic  power  of  milk.    Weizmiiller.    See  XIXa. 

Patents. 

Soy;    Bice    for    manufacturing    .       M.    Oniki. 

U.S.P.  1,400,374,  13.12.21.  Appl.,  18.4.18. 
A  c ti.tuke  of  Aspergillus  Onikii  on  a  cereal  medium 
is  treated  with  a  mixture  of  steamed  beans  and 
roasted  wheat,  and  formed  into  soy,  the  liquid  being 
subsequently  separated  from  the  solid  residue  and 
sterilised  and  clarified. — J.  H.  L. 

Potassium  compounds  from  distillery  slop.     U.S.P. 
1,400,192.     See  VII. 


XIXa. -FOODS. 

Mill;:  Preservation  of by  small  quantities  of 

hydrogen  peroxide.     A.  Midler.     Milchw.  Zentr., 
1922,  51,  26—29. 

The  literature  on  the  subject  of  milk  preservation 
by  the  addition  of  hydrogen  peroxide  is  briefly 
reviewed  and  the  results  of  laboratory  experiments 


in  conjunction  with  dairy  work  are  described. 
All  the  experiments  indicate  that  the  keeping 
properties  of  milk  which  has  been  previously  heated 
to  70° — 75°  C.  and  then  cooled  are  improved  by  the 
addition  of  small  quantities  of  hydrogen  peroxide. 
The  improvement  is  greater  the  greater  the 
addition  of  peroxide  within  the  limits  tried  (002 — 
II  US  pt.  per  1000).— J.  R. 

Itair  cow's  milk  and  orange-juice;  Combined  action 

of  as  antiscorbutic  substances.     S.  Wright 

Biochcm.  J.,  1921,  15,  694—702. 

Raw  cow's  milk  and  orange-juice  can  replace  one 
another  in  the  food  as  antiscorbutics.  There  is 
evidence  that  a  mixture  is  more  effective  than 
either  separately. — W.  O.  K. 

Diastatic  power  of  cows'  mill:  towards  various 
starches.  F.  Weizmiiller.  Biochem.  Zeits.,  1921, 
125,  179—186. 

The  diastatic  action  of  cows'  milk  was  determined 
at  various  temperatures  on  a  number  of  varieties 
of  starch.  The  results  show  that  the  diastaaq 
present  in  cows'  milk  has  an  optimum  tempera- 
ture of  37°  C.  This,  together  with  its  different 
behaviour  towards  a  variety  of  starches,  indicates 
a  difference  between  the  diastase  of  milk  and  other 
diastatic  enzymes. — H.  K. 


Agar;  Sulphur  content  of  - 
H.  Ohle.     Biochem.  Zeits. 


— .     C.  Xeuberg  and 
1921,  125,  311—313. 


Observations  pointing  to  the  existence  in  agar  of 
sulphur  bound  organically  are  recorded.  Hydrogen 
sulphide  is  evolved  by  bacterial  action  and  hydro- 
lysis sets  free  sulphuric  acid. — H.  K. 

Sweetness  of  artificial  sweetening  agents;  Measure- 
ment of .     R.  Pauli.     Biochem.  Zeite.,  192L 

125,  97—105. 

To  find  the  concentration  of  solutions  of  saccharin 
which  correspond  to  a  2%  solution  of  6ucrose,  two 
solutions  of  saccharin  are  chosen,  for  example, 
80  mg.  and  8  nig.  per  litre.  The  first  is  much  sweeter 
and  the  second  less  sweet  than  the  sucrose  solution. 
Seven  other  saccharin  solutions  are  then  prepared 
intermediate  in  concentration  between  8  and  80  ma. 
and  each  differing  by  9  mg.  By  comparing  the 
tastes  of  these  solutions  under  defined  conditions, 
with  20  or  more  persons,  a  zone  of  equivalent  sweet- 
ness is  obtained.  By  calculation  from  the  number 
of  observations  which  fall  in  this  zone  it  is  possible 
to  obtain  a  representative  value  for  the  sweetneM 
of  saccharin  in  terms  of  sucrose.  The  value  found 
for  saccharin  is  29  mg.  per  litre. — H.  K. 

Alfalfa  [lucerne'}  hay ;  Nitrogen  compounds  in . 

H.  G.  Miller.     J.   Amer.   Chem.   Soc,   1921,  43, 
2656—2663. 

Non-protein  nitrogenous  compounds  to  the  extent 
of  about  28%  of  the  total  nitrogen  were  easily 
extracted  with  hot  water  from  lucerne  hay.  Alkali 
extracted  more  protein  from  the  finely  ground  than 
from  the  coarse  material.  Such  protein  extracted 
by  dilute  alkali  had  a  nitrogen  content  of  13%  .  and 
contained  the  basic  amino-acids  arginine,  histidine, 
lysine,  and  cystine.  As  compared  with  the  seed 
protein  the  leaf  protein  contained  smaller  amount* 
of  arginine  and  amide  nitrogen  and  this  nuy 
account  for  the  difference  in  the  total  nitrogen 
content  of  the  two  proteins.  The  purine  fraction 
contained  3'2%  of  the  total  nitrogen. — W.  G. 

Desaminoproteins.     J.    Herzig   and   H.   Lieb.     Z. 
physiol.   Chem.,   1921,    117,   1—12. 

Desaminogi.tjtin,  desamino-ovalbumin,  desamino- 
casein,  and  desaminogliadin  yield  approximately 
the  same  amount  of  amino  nitrogen  by  the  Van 
Slyko  and  Sbrensen  methods  as  the  respective  pro- 
teins from  which  they  are  derived. — S.  S.  Z. 


Vol.  XLL,  Xo.  6.] 


Cl.  XIXb.— WATEB  PURIFICATION;  SANITATION. 


229  a 


Fodder  from  beet  juice.     Vytopil.     See  XVII. 
Vitamins.     Sammartino.     See  XVIII. 
Vitamin  of  cod  liver  oil.     Lax.     See  XX. 
Kjeldahl  method.     Kleemann.     See  XXIII. 

Patents. 

I'rotcins;   Alcoholic   solutions   of  animal  and 

methods  of  preparing  same.  D.  Thomson.  E.P. 
174,433,  23.10.20. 
Substances  rich  in  animal  protein,  such  as  minced 
meats  freed  from  fat,  are  treated  with  a  dilute 
alkaline  solution,  preferably  4  pts.  of  A"/5  sodium 
carbonate  solution  to  1  pt.  of  meat  at  40°  C.  The 
mixture  is  filtered  and  N/5  hydrochloric  acid  or 
dilute  glycerophosphoric  acid  added  gradually  to  the 
clear  solution  until  the  acidity  corresponds  approxi- 
mately to  pH=4'7.  The  flocculent  precipitate 
formed  is  separated  but  not  dried,  and  just  redis- 
solved  at  40°  C.  in  IV/5  hydrochloric  acid  or  dilute  | 
glycerophosphoric  acid.  The  resulting  translucent  j 
semi-gelatinous  mass  is  dissolved  in  an  alcoholic 
liquor,  such  as  whisky  or  brandy,  or  in  a  strong 
wine  free  from  tannin. — J.  R. 

Coconut  food  products.  L.  M.  Smith.  E.P.  174,527, 

3.2.21. 
The    finely-grouud    endosperm     from    coconut    or 
copra  is  mixed  with  25 — 50%  of  its  weight  of  water, 
the  mass  is  subjected  to  a  small  pressure  with  the    I 
object  of  removing  some  oil  as  well  as  other  sub-    i 
stances,   and   the   resulting   solid   material   is   then    j 
roasted  either   alone,   or   mixed   with  sugar,   until 
crisp  and  dry.     The  product  contains  15 — 25%   of 
pure    neutral    oil    or    fat,     practically    free    from 
rancidity,   and  the  cell  walls  of  the  tissue  of  the 
endosperm  are  rendered  weak  and  tender  by  the 
treatment. — J.  R. 

[Citrus  fruit;"]    Food  product  and  process  of  mak- 
ing the  same   [from  ].       P.  C.  Wadsworth, 

Assr.   to  Taylor's.        U.S. P.    1,400,191,    13.12.21. 
Appl.,  17.1L19. 

Citrus  fruit  is  cooked  with  the  peel,  until  tender, 
and  after  the  liquid  containing  the  oil  and  terpenes 
has  been  separated  the  fruit  is  mixed  with  sugar 
and  cane  syrup,  heated  to  boiling,  drained  from 
the  superfluous  liquid,  and  moulded  and  dried  to 
form  cakes  of  uniform  consistency  and  permanent 
character.— J.  H.  L. 

Vegetable    materials;    Conservation    of    .      T. 

Schweizer.      U.S. P.    1,404,549,    24.1.22.      Appl., 
31.3.21. 

By  damaging  the  epidermis  of  vegetable  material 
the  latter  becomes  a  conductor  of  electricity,  and  if 
an  electric  current  is  then  passed  through  the 
material,  which  itself  acts  as  an  electrolyte,  the 
material  is  sterilised. — J.  R. 

Flour;  Process   of   maturing   and   bleaching   . 

J.  C.  Baker,  Assr.   to  Wallace  and  Tiernan  Co. 
U.S. P.  1,404,922,  31.1.22.     Appl.,  2.2.20. 

"  Gaseous  hypochlorous  acid  "  is  brought  into 
intimate  contact  with  flour. — J.  R. 

Milk  and  like  liquids;  Internally  heated  or  cooled 
rollers  especially  applicable  to  drying,  heating,  or 

cooling  of  .     J.  O'Connell  and'H.  H.  Kerr. 

E.P.  154,887,  4.11.20.     Conv.,  3.12.19. 

XIXb.-WATER  PURIFICATION;  SANITATION. 

Sewage;  Applicability  of  the  process  of  purification 

of by   activated    sludge    to    the    separative 

system.     L.    Cavel.      Comptes    rend.,    1922,    174, 
578—580. 

Laboratory  experiments  conducted  on  a  strong 
sewage,  obtained  from  a  town  where  the  separative 


system  is  adopted  and  thus  the  sewage  is  not  diluted 
by  rain  water,  show  that  the  activated  sludge 
process  may  quite  well  be  applied  to  6Uch  material, 
in  the  laboratory  trials  the  alkalinity,  the  ammonia, 
and  the  sulphides  disappeared  completely,  the 
oxidisability  was  lowered  by  72-8%,  the  number  of 
bacteria  by  92-4%,  and  the  organic  nitrogen  by  76%. 

— W.  G. 

Bacillus  coli;  Biology  of .    Endo's  reaction.    O. 

Fernandez  and  T.  Garmendia.    Anal.  Fis.  Qui'm., 
1921,  19,  313—319. 

The  red  colour  produced  by  Bac.  coli  in  Endo's 
medium  (bouillon,  with  agar  containing  lactose, 
fuchsin,  and  sodium  sulphite)  is  probably  produced 
not  by  acetaldehyde  but  by  lower  acids  of  the  fatty 
series.  The  production  of  acetaldehyde  by  the 
agency  of  Bac.  coli  was  studied,  using  different 
modifications  of  Endo's  medium.  (Cf.  J.C.S.,  April.) 

— G.  W.  R. 

Disinfection  in  terms  of  the  Meyer-Overton  theory. 

P.  G.  F.  Vermast.     Biochem.  Zeits.,  1921,   125, 

106—148. 
Experiments  conducted  with  Bac.  coli  show  that  in 
acid  and  neutral  media  disinfection  with  benzoic 
acid  depends  on  the  concentration  of  the  undissoci- 
ated  acid.  The  benzoic  anion  and  the  hydrogen  ion 
concentrations  can  undergo  considerable  variation 
without  affecting  the  disinfecting  value  provided 
that  the  concentration  of  undissociated  acid  remains 
the  same.  The  results  with  benzoic  and  salicylic 
acids  in  neutral  and  acid  media  confirm  the  Meyer- 
Overton  lipoid  theory  if  the  distribution  coefficient 
be  based  on  the  concentration  of  undissociated  acid. 
In  alkaline  media  the  disinfecting  value  is  not 
apparently  in  agreement  with  theory. — H.  K. 

Formaldehyde   and   bacteria   and  spores;   Relation 

between .    E.  Hailer.    Biochem.  Zeits.,  1921, 

125,  69—83. 

Anthrax  spores  and  vegetative  bacterial  forms, 
for  example,  paratyphus  bacilli  and  staphylococci, 
were  treated  with  formaldehyde  solution  followed 
by  sodium  sulphite  solution.  In  the  case  of  the 
spores,  the  sodium  sulphite  inhibits  the  toxic  action 
of  the  formaldehyde  in  proportion  to  its  concentra- 
tion, provided  that  the  formaldehyde  has  not  been 
allowed  to  act  too  long.  The  results  are  interpreted 
on  the  view  that  the  formaldehyde  forms  an  addi- 
tion product  with  the  amino-groups  which  is 
decomposed  by  sulphite,  whereas  prolonged  action 
of  formaldehyde  gives  rise  to  an  irreversible  com- 
plex, ,N:CH2.  The  results  with  vegetative  bacterial 
forms  are  less  simple. — H.  K. 

Formaldehyde    solutions;    Bactericidal     action    of 

■ .      E.   Hailer.      Biochem.    Zeits.,   1921,    125, 

84—96. 

The  toxic  action  of  formaldehyde  continues  after 
removal  of  anthrax  spores  or  vegetative  bacilli  from 
the  solution,  if  there  be  no  nutrient  material  avail- 
able. In  the  case  of  the  spores  this  after-effect  is 
the  more  pronounced  the  drier  the  spores  become 
owing  to  loss  of  water  with  consequent  increased 
formaldehyde  concentration. — H.  K. 

Antiseptic  action  of  some  chloro-derivatives  of 
methane,  ethane,  and  ethylene;  Comparative  ex- 
periments on  the .  G.  Joachimoglu.  Biochem. 

Zeits.,  1921,  124,  130—136. 

The  antiseptic  action  of  aqueous  solutions  of  chloro- 
derivatives  of  methane,  ethane,  and  ethylene  on 
Vibrio  Metschnikoff  falls  off  in  the  order  hexachloro- 
ethane,  tetrachloroethylene,  pentachloroethane,  car- 
bon tetrachloride,  trichloroethylene,  dichloroethyl- 
ene,  ethylidene  chloride,  tetrachloroethane,  ethyl- 
ene dichloride,  chloroform,   dichloromethane. 

— H.  K. 


230  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[Mar.  31,  1922. 


Nitrogen  oxides  [in  air~\ ;  Determination  of  [small 

quantities  of] .    V.  C.  Allison,  W.  L.  Parker, 

and    G.    W.    Jones.      U.S.    Bur.    Mines,    Tech. 
Paper  249,  1921.     (Cf.  J.,  1919,  267  a.) 

The  phenoldisulphonic  acid  method  for  the  deter- 
mination of  nitrates  in  water  analysis  is  adapted 
to  the  determination  of  minute  quantities  of  oxides 
of  nitrogen  in  air.  The  sample  is  taken  in  an 
evacuated  tube  of  about  250  c.c.  capacity,  and  after 
the  usual  analysis  has  been  made  for  carbon 
dioxide,  oxygen,  carbon  monoxide,  etc.,  5  c.c.  of 
10%  sodium  hydroxide  solution  and  5  c.c.  of 
hydrogen  peroxide  are  introduced  into  the  tube, 
which  is  closed  and  rotated  to  coat  the  inside  with 
a  film  of  the  liquid,  and  is  then  left  for  30  mins. 
The  contents  are  then  washed  through  a  filter  paper 
into  a  150  c.c.  beaker  and  evaporated  just  to  dry- 
ness. The  residue  is  treated  with  2  c.c.  of  the 
phenoldisulphonic  acid  reagent,  diluted  to  10  c.c, 
filtered  into  a  Nessler  tube,  15  c.c.  of  ammonia  is 
added  and  the  whole  made  up  to  100  c.c.  and  com- 
pared with  standards  prepared  similarly  from  a 
standard  potassium  nitrate  solution.  The  method 
is  sensitive  to  10  pts.  of  oxides  of  nitrogen  in 
1,000,000  parts  of  air  with  an  accuracy  of  5  or  6 
parts  per  million. — G.  P.  M. 

Bed  squill  in  rat  poisons;  Anah/sis  and  use  of . 

C.  L.  Claremont.  Analyst,  1922,  47,  60—66. 
Red  squill  (Urginea  scilla)  is  used  as  a  rat  poison 
in  various  forms,  the  finely  chopped  raw  bulb  or 
the  expressed  juice  mixed  with  suitable  ingredients 
to  form  an  attractive  bait,  the  dried  and  powdered 
bulb,  or  an  aqueous  extract  prepared  by  maceration 
of  the  bulb  with  or  without  the  addition  of  a  trace 
of  hydrochloric  acid,  being  the  forms  most  com- 
monly met  with.  Analysis  of  red  squill  powders 
give  fairly  uniform  figures  of  which  the  following 
are  typical:  Ash  6'7%,  extract  to  water  59'16%, 
reducing  sugar  922%,  total  sugar  after  inversion 
50'66%,  toxicity  in  mg.  per  kg.  body  weight  600. 
In  a  rat  poison  supposed  to  contain  squill,  if  a 
considerable  aqueous  extract  is  found  giving  com- 
parable sugar  figures,  it  would  be  reasonable  to 
presume  its  presence.  White  squill  is  non-toxic, 
and  save  for  the  absence  of  colour  in  the  extract, 
there  is  no  certain  method  of  distinguishing  it  from 
red  squill.  There  seems  to  be  no  evidence  that  any 
one  of  the  various  preparations  has  any  advantage 
over  the  others  as  a  rat  poison.  Whatever  the  toxic 
principle  may  be,  it  seems  uniformly  distributed  in 
the  scales  and  bulb,  and  no  advantage  is  obtained 
by  alcohol  extraction  over  aqueous  extraction  in 
the  preparation  of  liquid  or  pasty  extracts  of  the 
bulb.— G.  F.  M. 

Patents. 
Oxygen  gas;  Generation  of  [for  respirators 

etc."].    L.  A.  Lew  and  H.  Davis.     E.P.  171,418, 

20.10.20. 
For  breathing  apparatus  and  analogous  cases,  a 
mixture  is  used  contnining  sodium  perborate  mono- 
hydrate  and  about  1  %  of  potassium  permanganate 
or  manganese  dioxide.  On  contact  with  water  the 
mixture  evolves  oxygen.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents 
and  Designs  Acts,  1907  and  1919,  to  E.P.  4500  of 
1904,  23.165  of  1906.  7062,  10,066,  and  24.641  of 
1910,  and  18.987  of  1911;  J.,  1907,  1139;  1911,  130; 
1912,  923.)— H.  R.  D. 

Respirators;  Cartridge  for  charging  .  employ- 
ing  a  replaceable    mass  of  peroxides.     Ges.    fur 
Verwertung     chem.     Produkte     m.b.H.,     Kom- 
manditges.     G.P.  345,285,  7.7.17. 
TnF.  replaceable  mass  is  covered  above  and  below  by 
a    layer    of    potassium    peroxide    or   of    potassinm- 
sodium  peroxide.     The  cartridges  are  more  efficient 
than  those  contnining  sodium  peroxide  alone,  and 
the  filling  material  does  not  cake. — J.  S.  G.  T. 


Germ-free  air;  Continuous  production  of A 

Wolff.     G.P.  346,201,  25.1.21.     Addn.  to  316,516 
(J.,  1920,  500  a). 

The  air  is  treated  with  an  extremely  finely  divided 
aqueous -solution  containing  ozone  and  a  substance 
facilitating  the  fixation  of  ozone,  the  air  and  solu- 
tion flowing  in  the  same  direction.  The  solution, 
after  being  again  ozonized,  is  used  for  the  purifica- 
tion of  further  quantities  of  air. — H.  C.  R. 

Distilled     water;     [Regulating     and     controlling} 

apparatus  for  production  of  .     B.  Bleicken 

E.P.  156,192,  3.1.21.     Conv.,  20.7.11.     Addn    to 
2191  of  1914  and  156,191. 


XX.-0RGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;   ESSENTIAL  OILS. 

Alkaloid,  taxine,  from  the  yew  tree  (Taxus  bac- 
cata).  E.  Winterstein  and  D.  Iatrides.  Z. 
physiol.  Chem.,  1921,  117,  240—243. 

Taxine  forms  0-7 — 1'4%  of  the  dry  matter  of  the 
needles  of  the  yew.  The  alkaloid,  its  salts  and 
derivatives,  could  not  be  obtained  crystalline.  On 
hydrolysis  with  acids  a  resinous  substance,  cinnamic 
acid,  and  acetic  acid  are  obtained.  The  alkaloid 
can  take  up  2  mols.  of  hydrogen,  four  acetyl  groups, 
and  2  mols.  of  bromine.  A  methiodide  can  also  be 
prepared.  On  oxidation  with  hydrogen  peroxide 
taxine  does  not  yield  a  well-defined  substance. 
With  potassium  permanganate  benzoic  acid,  acetic 
acid,  oxalic  acid,  benzonitrile,  and  a  reducing  sub- 
stance are  obtained.  Pharmacological  experi- 
ments with  taxine  are  described. — S.  S.  Z. 

Carrageen     (Chondrus     crispus);      Occurrence     of 

ethereal  sulphates  in  .     P.  Haas.     Biochem. 

J.,  1921,  15,  469—476. 

About  70%  (on  the  dry  weight)  of  carrageen  or 
Irish  moss  (Chondrus  crispus)  is  soluble  in  water. 
This  soluble  extract  contains  at  least  two  substances 
varying  considerably  in  their  solubilities  in  cold 
and  hot  water.  The  more  soluble  substance  gives 
with  cold  water  a  thick  viscous  solution,  while  the 
other  substance  on  dissolving  in  hot  water  gives  a 
solution  which  tends  to  gelatinise  on  cooling.  The 
latter  substance  is  the  calcium  salt  of  an  ethereal 
sulphate  (a  combination  of  sulphuric  acid  with  a 
carbohydrate  complex).  In  water  the  calcium  is 
ionised  while  the  sulphate  is  non-ionised.  On 
hydrolysis  with  acid,  however,  the  sulphate  radicle 
is  freed  and  then  becomes  ionisable.  These  results 
account  for  the  observations  made  by  earlier 
workers  that  the  high  ash  content  of  Chondrus 
crispus  is  not  reduced  by  dialysis.  This  is  the  first 
recorded  instance  of  the  presence  of  ethereal  sul- 
phates among  plant  products.— J.  R. 

Adrenaline  solutions  for  injections.  L.  Debucquet. 
J.  Pharm.  Chini.,  1922,  25,  136—139. 

One  grm.  of  adrenaline  is  dissolved  in  650  c.c.  of 
a  cold  saturated  solution  of  benzoic  acid  in  di- 
water  which  has  been  previously  boiled,  and  to  it 
is  added  7  g.  of  sodium  chloride,  and  the  solution 
is  made  up  to  1  litre  with  more  of  the  benzoic  acid 
solution,  and  filtered.  Such  a  solution  if  put  into 
ampoules  remains  intact  and  active.  The  initial 
rotatory  power  of  the  adrenaline  undergoes  no 
change,  and  the  activity  of  the  base  is  at  its 
maximum. — W.  G. 

Vitamin  of  cod  liver  oil.  H.  Lax.  Biochem. 
Zeits.,  1921,  125,  265—271. 

Experimental  beri-beri  produced  in  pigeons  by  a 
diet  of  polished  rice  was  uninfluenced  either  b; 
liver  oil  or  bv  an  alcoholic  extract  of  cod  liver  oil 
(2  litres  gave  11  g.  of  extract).— H  .K. 


Vol.  XIX,  No.  6.1      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


231a 


Sodium  qlycocholate;  Hemolytic  action  of .    E. 

Ponder.     Proc.  Roy.  Soc,  1922,  B  93,  86—103. 

Seium  albumin,  peptone,  adrenaline,  pituitrin, 
histamine,  and  histidine  accelerate  or  retard  the 
haemolytic  activity  of  sodium  glj-cocholate  according 
as  they  are  added  after  or  before  the  latter  to  the 
suspension  of  blood  cells.  The  author  is  unable  to 
explain  his  results  on  the  theory  that  the  bile  salt 
dissolves  the  corpuscle  envelope,  but  suggests  that 
they  are  due  to  a  disturbance  of  surface  tension  at 
the  surface  of  the  corpuscle.  Blood  serum  inhibits 
the  haemolytic  action  of  both  sodium  taurocholate 
and  sodium  glycocholate. — E.  S. 

p-Cymene.  III.  Bromination  of  2-amino-p-cymene . 
A.  S.  Wheeler  and  I.  W.  Smithey.  J.  Amer. 
Chem.  Soc,  1921,  43,  2611—2618. 

In  the  purification  of  p-cymene,  isolated  from 
spruce  turpentine,  itself  a  by-product  in  the  manu- 
facture of  paper  by  the  sulphite  process,  it  is  neces- 
sary, in  addition  to  the  steps  previously  given  (cf. 
J.,  1918,  364  a),  to  treat  the  cymene  with  a  limited 
amount  of  concentrated  sulphuric  acid,  otherwise  it 
acquires  a  yellow  colour  on  standing  and  does  not 
behave  satisfactorily  when  nitrated  or  brominated. 
The  bromination  of  2-amino-2J-cymene  gives  2- 
amino-3(  ?)-bromo-p-cymene,  and  certain  of  its 
derivatives  are  described  including  those  obtained 
by  coupling  its  diazonium  salt  with  the  amino- 
cymene,  aniline,  or  p-nitroaniline.  (Cf.  J.C.S., 
March.)— W.  G. 

glycogen;  Change  in  — —  under  the  influence  of 
light.  G.  Bayer.  Biochem.  Zeits.,  1921,  124, 
97—99. 

Glycogen  exposed  to  sunlight  becomes  insoluble  in 
water.  Its  reactions  support  the  view  that  the 
product  is  either  a  polymeric  form  or  that  there  has 
teen  a  physical  alteration  of  the  surface  of  the 
glycogen  whereby  the  hydrophilic  sol-forming  layers 
of  the  surface  have  been  transformed  into  a 
dehydrated  form,  which  can  no  longer  exhibit  the 
property  of  imbibition. — H.  K. 

Cystine.     A.  R.  T.  Merrill.     J.  Amer.  Chem.  Soc, 

1921,  43,  2688—2696. 

In  the  preparation  of  cystine  from  wool  by  boiling 
it  with  concentrated  hydrochloric  acid  the  yield  is 
materially  increased  by  boiling  for  12  hrs.  instead 
of  3  hrs.  For  the  precipitation  of  the  cystine 
eodium  acetate  may  be  added  as  a  buffer  in  amount 
such  that  the  hydrogen-ion  concentration  of  the 
solution  is  between  10"'  and  10"" ;  it  should  be  about 
10"3  to  obtain  the  cystine  free  from  tyrosine.  The 
highest  yield  of  cystine  thus  obtained  was  5'2%  of 
the  weight  of  the  wool  taken.  For  the  purification 
of  crude  cystine  its  solution  may  be  decolorised  by 
"  Norit  "  decolorising  carbon  which  has  previously 
been  boiled  with  dilute  hydrochloric  acid,  and  in 
that  case  very  little  of  the  cystine  is  absorbed. 

— W.  G. 

Urea;  Transformation  of  ammonia  into  .      C. 

Matignon  and  M.  Frejacques.       Comptes  rend., 

1922,  174,  455—457.    (Cf.  J.,  1921,  25  a.) 

The  yields  of  urea  from  ammonium  carbamate  at 
the  equilibrium  point  at  different  temperatures  are 
given.  Applying  the  law  of  mass  action  to  the 
system  in  equilibrium  the  authors  calculate  the  heat 
of  the  reaction  to  be  -6  cal.,  the  experimental 
value  being  -7"7.  The  progress  of  the  reaction 
with  time  at  different  temperatures  from  130°  C. 
to  145°  C.  has  been  studied  and  the  curves  indicate 
that  the  water  formed  has  an  effect  on  the  velocity 
of  the  reaction.  Catalysts  such  as  thoria,  alumina, 
silica,  and  kaolin  produce  a  slight  acceleration  at 
low  temperatures,  but  have  no  effect  at  about 
150°  C— W.  G. 


Selenium    and    tellurium;   Pharmacology    of   . 

II.  Action  of  their  acids  on  diphtheria  bacilli. 
G.  Joachimoglu  and  W.  Hirose.  Biochem.  Zeits., 
1921,  125,  1 — 1. 

The  growth  of  diphtheria  bacilli  is  inhibited  by  the 
oxy-acids  of  tellurium  and  selenium.  The  active 
concentrations  of  tellurium  and  selenium  are  :  for 
tellurites  1:420,  for  tellurates  1:125.  for  selenites 
1:1160,  and  for  selenates  1:666.  Diphtheria  bacilli 
are  much  less  sensitive  than  bacilli  of  the  typhus- 
coli  group,  which  latter  are  killed  at  dilutions  of 
tellurium  400  times  those  given  above. — H.  K. 

Selenium   and    tellurium;    Pharmacology    of   . 

III.  Action  of  their  acids  on  the  organs  of  the 
circulation.  G.  Joachimoglu  and  W.  Hirose. 
Biochem.  Zeits.,  1921,  125,  5—11. 

On  the  isolated  frog's  heart  sodium  tellurite  is  at 
least  200  times  as  toxic  as  sodium  tellurate,  and 
sodium  selenite  at  least  100  times  as  toxic  as  sodium 
selenate.  The  selenite  is  also  much  more  toxic  than 
the  tellurite.  The  musculature  of  the  heart  has  a 
reducing  effect  on  the  first  three  salts  mentioned. 
Sodium  selenite  and  tellurite  have  a  more  powerful 
depressor  action  than  sodium  selenate  and  tellurate 
on  the  blood  pressure  of  the  rabbit. — H.  K. 

Carbon    oxysulphide;    Pharmacology    of   .     R. 

Fischer.  Biochem.  Zeits.,  1921,  125,  12—24. 
The  action  of  carbon  oxysulphide  was  investigated 
on  frogs  and  rabbits  and  on  blood  in  vitro.  The  gas 
is  unstable  and  readily  forms  hydrogen  sulphide. 
The  frog  is  relatively  resistant,  an  atmosphere  con- 
taining 4'5%  of  the  gas  causing  death  in  1  hr.  In 
the  case  of  the  rabbit  inhalation  of  the  air  con- 
taining less  than  1%  of  the  gas  leads  to  death.  In 
both  cases  death  is  due  to  respiratory  failure. 
There  is  no  apparent  change  of  blood  in  vivo,  but 
in  vitro  blood  treated  with  carbon  oxysulphide 
shows  the  absorption  bands  of  sulph-haemoglobin. 

— H.  K. 

Perfumes;  Advantages  of  the  extraction  process  for 

the  preparation  of  .    Gattefosse.     Riv.  Ital. 

Essenze  Profumi,  1921,  3,  109—110.  Chem. 
Zentr.,  1922,  93,  II.,  331. 

Whilst  3000—5000  kg.  of  roses  is  required  to  yield 

1  kg.  of  otto  by  distillation  with  steam,  4000  kg. 
will  yield  by  extraction  and  steam  distillation  of  the 
extract,  in  addition  to  1  kg.  of  volatile  oil,  about 

2  kg.  of  a  less  volatile  extract  which  forms  an  excel- 
lenrperfume  base,  particularly  for  soaps.  Products 
of  like  character  can  be  prepared  also  from 
patchouli,  geranium,  sandal  wood,  lavender,  etc., 
and  appear  in  commerce  under  the  names  "  resin- 
odors,  "  resinoids,"  "  resinaromas."— G.  F.  M. 

Aleppo  turpentine  oil.    Dupont.    See  XIII. 

Emulsin.       (1)     Helferich.       (2)     Willstatter     and 
Csanyi.    See  XVIII. 

Sweetening  agents.     Pauli.     See  XIXa. 

Patents. 

Terpineol;    Preparation    of   .      R.    Marchand. 

E.P.  153,605,  10.11.20.  Conv.,  10.11.19. 
Terpineol  is  obtained  from  terpin  hydrate  in  nearly 
theoretical  yield  by  distilling  it  with  an  organic 
sulphonic  acid,  preferably  o-quinolinesulphonic  acid. 
Example.  3  pts.  of  terpin  hydrate  is  distilled  with 
1  pt.  of  o-quinolinesulphonic  acid  and  9  pts.  of 
water.  Terpineol  and  water  distil  over  and,  if 
desired,  the  process  may  be  run  continuously,  a 
further  2  pts.  of  terpin  hydrate  being  added  when 
16  pts.  of  terpineol  has  distilled.— G.  F.  M. 


232  a 


Cl.  XXI.— PHOTOGRAPHIC  MATERIALS  AND  PROCESSES. 


[Mar.  31,  1922. 


Mercury;  Process  for  regenerating   metallic   r 

[from    spent    catalysts].      Chem.    Fabr.    Worms 
A.-G.     E.P.  156,187,  3.1.21.     Conv.,  24.1.19. 

Slime  containing  spent  mercury  catalyst  is  agitated 
below  300°  C.  for  several  hrs.  with  a  metal  having 
a  reducing  action,  e.g.,  with  10%  of  its  weight  of 
iron  powder. — L.  A.  C. 

Arsines;  Manufacture   of  dichlorides  of  monoaryl- 

arsines     and     monochlorides     of     diaryl-     . 

Poulenc  Freres,  and  C.  Oechslin.  E.P.  173,796, 
10.7.20. 
Mixtures  of  the  dichlorides  of  monoarylarsines 
and  the  monochlorides  of  diarylarsines  are  obtained 
by  causing  arsenic  trichloride  or  the  dichloride  of 
a  monoarylarsine  to  react  at  ordinary  pressure 
with  a  triarylarsine  or  the  monochloride  of  a 
diarylarsine,  at  an  elevated  temperature  varying 
from  240°  to  360°  C.  for  different  arsines.  The 
reagents  may  be  continuously  added  to  the  triaryl- 
arsine heated  to  the  desired  temperature,  or  the 
mixture  of  the  two  substances  may  be  passed 
through  a  heated  tube.  The  proportion  of  mono- 
and  dichlorides  in  the  product  depends  on  the 
temperature  to  which  the  triarylarsine  is  heated, 
the  velocity  of  addition  of  the  arsenic  trichloride, 
and  its  form  of  entry  and  the  form  of  the 
'apparatus.  (Reference  is  directed,  in  pursuance 
of  Sect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
Acts,  1907  and  1919,  to  E.P.  142,880;  J.,  1920, 
527  a.)— G.  F.  M. 

Arsanilic   acid;  Process   of  making   primary  . 

P.   A.   Kober,  Assr.  to  E.  R.   Squibb  and   Sons. 
U.S. P.   1,405,228,   31.1.22.     Appl.,    18.11.18. 

Primary  arsanilic  acid  is  obtained  without  any 
appreciable  contamination  with  secondary  arsanilic 
acid  by  heating  a  mixture  of  3 — 4  mols.  of  aniline 
and  2  mols.  of  arsenic  acid  first  at  160°— 170°  C. 
and  then  at  180°— 185°  C— G.   F.  M. 

Hydroquinone     [quinol];    Manufacture     of    . 

W.    Carpmael.      From    Chem.    Fabr.    auf    Akt. 
vorm.  E.  Schering.     E.P.  174,554,  19.9.21. 

Quinol  is  obtained  by  heating  quinhydrone  either 
with  an  aqueous  mixture  of  &  ferrous  salt  and 
an  alkaline-earth  carbonate  or  with  metallic  iron 
and  water.  The  process  may  also  be  utilised  in 
the  reduction  of  quinone  to  quinol,  about  one-half 
of  the  quinone  being  reduced  in  the  usual  manner 
and  the  reduction  being  then  completed  in  accord- 
ance with  one  of  the  above  methods.     Examples: 

(1)  11  kg.  of  quinhydrone  is  added  gradually  to  a 
boiling  mixture  of  27'8  kg.  of  ferrous  sulphate, 
19'7  kg.  of  precipitated  barium  carbonate,  and 
100  I.  of  water.  When  the  evolution  of  carbon 
dioxide  has  ceased  the  liquid  is  filtered  while  hot, 
and   the   filtrate   evaporated   to   dryness   in   vacuo. 

(2)  To  the  sulphuric  acid  quinone  solution,  obtained 
by  the  oxidation  of  9'3  kg.  of  aniline,  is  added 
sufficient  iron  to  neutralise  the  acid,  and  the 
mixture  is  run  into  a  briskly  stirred  boiling  mixture 
of  2"2  kg.  of  iron  and  30  kg.  of  water.— G.  F.  M. 

Product  [containing  decolorising  carbon']  adapted 
particularly  for  sanitary,  medicinal  and  thera- 
peutic   uses;    Process    for    producing    a    . 

J.  N.  A.  Sauer.    E.P.  174,702,  26.10.20. 

Decolorising  carbon  of  vegetable  origin  is  agitated 
successively  with  hot,  dilute  alkaline  and  acid 
solutions,  e.g.,  2 — 20%  sodium  hydroxide  and 
9'5 — 5%  hydrochloric  or  nitric  acid.  The  carbon 
is  washed  with  hot  water  after  each  treatment  until 
no  more  of  the  reagent  is  dissolved,  and  is  finally 
heated  with  superheated  steam,  or  to,  e.g.,  1200°  C. 
in  closed  retorts  to  expel  absorbed  acid.  Treat- 
ment with  acid  may  precede  treatment  with  alkali 
provided   a  volatile   alkali,    such   as    ammonia,    is 


employed.  The  product  is  ground  to  a  powder,  and 
may  be  compressed  to  tablets  using  a  binder,  6uch 
as  cane  sugar  or  lactose,  which  does  not  impair  its 
adsorptive  capacity. — L.  A.  C. 

Methyl  formate;  Process  of    making  .     H.  F. 

Willkie,  Assr.  to  U.S.  Industrial  Alcohol  Co 
U.S. P.  1,400,195,  13.12.21.    Appl.,  24.12.18. 

Methyl  alcohol  is  converted  into  methyl  formate 

by  the  aid  of  a  metallic  catalyst,  between  350°  and 

450°  F.  (177°— 232°  C.).— J.  H.  L. 

Butyric     acid;     Manufacture     of     .       F.     A. 

McDermott  and  R.  Glasgow,  Assrs.  to  The 
Fleischmann  Co.  U.S.P.  1,405,055,  3.1.22. 
Appl.,  13.12.17. 

Butyric  acid  is  isolated  by  adding  to  its  solutions 
the  hydroxide  (or  carbonate)  of  a  metal  which  forms 
an  insoluble  butyrate,  separating  this,  decomposing 
it  with  an  acid  stronger  than  butyric  acid,  and  dis- 
tilling off  the  liberated  butyric  acid. — G.  F.  M. 

Aromatic  aldehydes  and  their  substitution  deriva- 
tives; Production  of .     C.  O.  Benedetti  and 

A.  P.  and  W.  Vanselow.  U.S.P.  1,405,261, 
31.1.22.     Appl.,  5.5.20. 

Aromatic  aldehydes  and  their  substitution  deriva- 
tives are  obtained  by  oxidising  a  phenylcarbinol 
by  means  of  a  hypochlorite  solution  and  separating 
the  aldehyde  from  the  reaction  mixture  as  it  is 
formed.— G.  F.  M. 

Ozone   compounds;  Apparatus  for  and  process  of 

'preparing .    A.  J.  Moisant,  Assr.  to  General 

Research  Laboratories.  U.S.P.  1,406,058,  7.2.22. 
Appl.,  3.6.16. 
In  a  process  for  producing  ozonides,  small 
successive  charges  of  substances  to  be  ozonised  are 
fed  to  a  stream  of  fluid,  under  pressure,  passing 
through  a  conduit  communicating  with  a  mixing 
chamber  to  which  ozone  is  supplied.  A  diluting 
chamber  into  which  air  is  injected  communicates 
with  the  mixing  chamber. — J.  S.  G.  T. 

Colloidal  metals;  Preparation  of .    E.  Richter. 

G.P.  345,756,  25.3.19. 

A  dilute  solution  containing  the  metal  is  treated 
with  a  reducing  agent  of  animal  origin,  e.g., 
adrenaline  or  its  salts. 

Colloidal  solution  of  metals,  and  metallic  oxides. 
F.  Sichel  Kommanditges.,  and  E.  Stern.  G.P. 
345,757,  2.9.20. 

Xanthic  acid  compounds  of  starch  are  used  as  a 
protective  colloid. — H.  It.  D. 

Organic  acids.    G.P.  344,877.     See  IIa. 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Photographic  dry  plates;  Verification  of  the  photo- 
chemical  equivalent   laiv  with   .     J.   Egbert 

and   W.   Noddack.      Sitzungsber.    Preuss.    Akad. 

Wiss.  Berlin,  1921,  29,  631—635.     Chem.  Zentr., 

1922,  93,  I.,  169. 

According  to  Einstein's  law,  when  silver  bromide  is 

decomposed  by  light  into  silver  and  bromine,  each 

absorbed  quantum  should  correspond  with  an  a 

of  silver.  To  test  this,  commercial  dry  plates  were 
exposed  to  monochromatic  light  for  varying  times, 
and  the  number  of  quanta  received  was  calculated. 
The  silver  produced  was  estimated  by  Volhard's 
method  after  removing  it  by  nitric  acid  from  the 
fixed  plate.  The  photochemical  absorption,  i.e.,  the 
percentage  of  energy  employed  in  the  production  of 
silver  atoms,  was  by  this  method  found  to  vary  con- 
siderably for  different  plates  (from  1%  to  10%),  but 


Vol.  XLI.,  No.  6.] 


Cl.  XXI.— photographic  materials  and  processes. 


233  a 


in  all  cases  the  photometric  absorption  measured 
optically  was  of  the  same  order,  thus  affording  con- 
firmation of  tho  law.  Further  experiments  showed 
that  about  one  hundred  quanta  are  absorbed  for 
every  grain  made  developable,  and  it  is  suggested 
that  the  silver  atom  must  be  produced  on  the  sur- 
face of  the  grain  to  render  it  developable.  In  sup- 
port of  this  it  is  calculated  that  tho  ratio  of  mole- 
cules on  the  surface  of  the  grain  to  the  total 
molecules  is  1:300.  Thus  every  absorbed  quantum 
does  not  produce  a  developed  grain  of  silver,  but 
each  such  silver  grain  corresponds  with  one 
quantum,  and  the  number  of  developed  grains  is 
proportional  to  the  amount  of  light,  with  the 
particular  intensity  of  illumination  used. — G.  I.  H. 

Photographic  plates  for  the  extreme  ultra-violet. 
J.  Duclaux  and  P.  Jeantet.  J.  Phys.  et  Radium, 
1921,  2,  156—159.  Chem.  Zentr.,  1922,  93,  II., 
231. 
Two  methods  are  described  for  preparing  photo- 
graphic plates  which  are  sensitive  to  wave-lengths 
less  than  1900  A.U.  These  methods  are  very  simple 
and  rapid  compared  with  those  devised  by 
Schumann,  though  the  same  principle  is  used  in 
the  first  method,  in  which  an  ordinary  commercial 
plate  is  bathed  in  4ZV  sulphuric  acid,  whereby  the 
greater  part  of  the  gelatin  is  removed.  In  the 
second  method  the  plate  is  covered  with  a  layer  of  a 
substance  having  a  fluorescent  spectrum  in  the 
blue  and  violet.  The  substance  which  gives  the 
best  results  is  ordinary  machine  oil.  The  plates  are 
found  to  be  at  least  10  times  more  sensitive  than 
any  previously  used. — G.  I.  H. 

Itadiography ;  Influence  of  temperature  on  the  sen- 
sitiveness  of   emulsions  in  .     A.    Zimmern. 

Comptes  rend.,  1922,  174,  453—455. 

No  very  marked  difference  was  noted  in  the  depth 
of  colour  produced  on  a  plate  exposed  to  ordinary 
light  at  the  ordinary  temperature  and  at  60° — 80°  C. 
With  X-rays,  however,  rise  in  temperature  is  accom- 
panied by  increase  in  depth,  the  ratio  being  2'5 
between  15°  and  85°  C,  and  2  between  15°  and 
60°  0.  In  other  words,  an  exposure  of  13  sees,  at 
60°  0.  produces  the  same  effect  as  an  exposure  of 
20  sees,  in  the  cold.  Using  a  reinforcing  screen 
thermal  reinforcement  is  no  longer  produced.  The 
phenomenon  is  accentuated  slightly  by  the  use  of 
the  thick  emulsions  common  in  radiography.  From 
tho  practical  point  of  view  thermal  reinforcement 
can  be  used  in  radiograph}^  where  it  is  desirable  to 
avoid  the  use  of  luminescent  screens,  as  for 
example  when  it  is  important  not  to  modify  the 
identity  of  tho  radiations  to  be  registered  on  the 
piate  —  W.  G. 

Cellulose     acetate     [cinematograph]     films;    Non- 
inflammable  .     Clement.     Bull.  Soc.  Franc. 

Phot.,  1921,  8,  343—347. 

Comparative  tests  upon  selected  celluloid  and  non- 
inflammable  cellulose  acetate  cinematograph  films 
gave  the  following  results: — The  celluloid  film  was 
less  elastic,  had  slightly  higher  tensile  strength,  and 
was  a  little  less  fragile  than  the  non-inflammable 
I  film.  Tho  latter  shrank  less  than  celluloid  on  keep- 
ing in  air,  but  when  subjected  to  immersion  in 
developing  solutions  and  in  the  subsequent  opera- 
tions of  washing  and  drying  it  behaved  in  the  same 
way  as  celluloid. — G.  I.  H. 

;  [Photographic]  desensitising  of  silver  bromide  and 
the  Safranine  process.  (Development  in  bright 
light.)  Luppo-Cramer.  Z.  angew.  Chem.,  1922, 
35,  69—70. 

A  review  is  given  of  methods  of  desensitising  the 
photographic  plate.  The  most  efficient  desensitiser 
is  phenosafranine  ;  tolusafranine,  dimethylsafranine 
and  tetramethylsafranine  are  almost  equal  in  value. 


If  10  c.c.  of  stock  solution  of  phenosafranine 
(1:2000)  be  added  to  100  c.c.  of  developer  the  plate 
can  be  developed  in  bright  yellow  light  and 
removed  from  tho  solution  for  examination. 
Orthochromatic  and,  with  certain  precautions, 
panchromatic  plates  can  be  thus  developed  in  bright 
yellow  light,  or  even  in  naked  candle-light  if 
stronger  dye  solution  or  a  preliminary  bath  of 
phenosafranine  solution  be  used.  The  desensitising 
action  is  not  due  to  the  solution  acting  as  a  safe 
light,  but  to  action  on  the  silver  of  the  emulsion. 
The  effect  seems  to  be  connected  with  the  amino- 
group,  and  all  the  desensitisers  described  possess  a 
quinone-imide  structure. — G.  I.  H. 

Colloid  chemistry  and  photography.  Part  53. 
Acceleration  of  development,  and  fogging  by  dye- 
stuffs.  H.  Liippo-Cramer.  Kolloid-Zeits.,  1922, 
30,  114—117. 

M  \ny  basic  dyestuffs  noticeably  accelerate  the 
action  of  a  quinol  developer.  As  physical  develop- 
ment is  similarly  accelerated  by  acid  dyestuffs  the 
action  is  probably  due  to  some  colloid  coagulation 
phenomenon.  It  was  found  that  this  action  of 
basic  dyestuffs  is  confined  to  the  quinol  developer. 
The  fogging  action  of  basic  dyestuffs  is  a  similar 
phenomenon.  Methylene  Blue,  which  is  an  effective 
fogging  agent  even  in  small  concentration,  consider- 
ably accelerated  development  with  a  slow-acting 
metol-quinol  developer  (no  alkali).  In  the  exposed 
portions  the  dye  was  attacked  by  the  developer,  and 
decolorised,  before  any  silver  deposit  appeared.  Fog, 
distributed  through  the  film,  not  on  its  surface,  is 
produced  by  the  action  of  Methylene  Blue  and 
certain  other  dyestuffs  when  neol  (p-aminosalicylic 
acid)  or  catechol  is  used  as  developer,  but  only  in 
presence  of  manganese  (produced  from  manganese 
dioxide  antihalatkm  substratum),  copper,  or  iron 
salts.  These  effects  were  also  investigated  by  using, 
as  a  system  similar  to  a  plate  undergoing  develop- 
ment, a  slow-working  silvering  bath.  The  analogy 
is  not  complete,  since  acid,  as  well  as  basic,  dyestuffs 
cause  acceleration  and  give  rise  to  a  precipitate  of 
grey  powdered  silver  in  place  of  the  usual  mirror. 
Attention  is  drawn  to  the  colloidal  nature  of  these 
phenomena,  and  to  other  similar  effects. — G.  I.  H. 

Photographic    emulsion;   Action   of  soluble   iodides 

and  cyanides  on  .     S.   E.   Sheppard.     Phot. 

J.,  1922,  62,  88—97. 
The  accelerating  and  fogging  action  of  iodides 
previously  noticed  (J.,  1920,  248  a)  has  been 
attributed  by  Renwiek  (J..  1921,  99  a)  to  red  sensi- 
tising. The  present  work  shows  that,  while  the 
previously  observed  phenomena  were  not  due  to  this 
effect,  it  may  occur  in  certain  cases.  By  iodising 
various  plates  and  exposing  in  a  diffraction  grating 
wedge  spectrograph  it  was  shown  that  the  effect  is 
specific  to  certain  emulsions,  usually  those  without 
initial  red  sensitiveness,  although  enhancement  as 
well  as  extension  of  sensitiveness  may  occur.  It  is 
thus  probable  that  early  incorporation  of  iodide  in 
the  emulsion  may  produce  nearly  the  same  red 
sensitiveness  as  bathing  the  plate,  and  Renwick's 
explanation  of  the  effect  as  due  to  reaggregation  of 
the  silver  amicrons  is  therefore  inadequate.  It  is 
suggested  that  the  effect  is  due  to  the  orienting 
effect  of  silver  iodide  or  cyanide  on  silver  amicrons 
formed  by  the  light  of  shorter  wave-length,  and 
known  cases  of  such  positive  autocatalysis  in  photo- 
chemical change  are  quoted  in  support  of  this 
theory.  The  direct  fogging  action  of  iodides  and 
cyanides  in  physical  development  has  been  com- 
pletely confirmed,  but  in  the  case  of  chemical 
development,  preliminary  treatment  with  potassium 
iodide  does  not  give  fog  but  reduces  it.  Addition 
of  the  iodide  to  the  developer  has  in  many  cases  a 
distinct  fogging  action,  which  is  reduced  by  a  pre- 
liminary   iodide    bath,    and    by    reduction    of    the 


23  1  a 


Cl.  XXII.— EXPLOSIVES  ;  MATCHES. 


[5:p.r.  31,  1922. 


sulphite  content  of  the  developer.  These  results 
are  consistent  with  the  theory  that  the  fogging  is 
due  to  physical  development  occurring  simul- 
taneously with  chemical  development  and  are  not 
explicable  on  the  germ  exposure  theory  of  Liippo- 
Cranier.— G.  I.  H. 

[Photographic!  reducer;  Potassium  persulphate  as 
a .   G.  I.  Higson.   Phot.  J.,  1922,  62,  98—109. 

A  solution  of  the  pure  salt  in  distilled  water  was 
found  to  give,  under  all  conditions,  slightly  super- 
proportional  reduction,  and  is  very  suitable  for  the 
reduction  of  overdeveloped  negatives.  The  addition 
of  various  salts  produces  effects  similar  to  those 
with  an  ammonium  persulphate  reducer ;  hydrogen, 
ferric,  and  cupric  ions  accelerate  the  reduction  but 
do  not  alter  its  type,  while  chloride  ions  in  suitable 
concentration  retard,  and  cause  violently  super- 
proportional  action,  which  persists  when  the 
reducer  is  accelerated  with  acid.  The  addition  of 
cupric  or  ferric  ions  to  a  reducer  containing 
chlorides  causes  subtractive  reduction,  but  silver 
ions  cause  super-proportional  reduction  of  the  same 
type  as  that  obtained  with  a  distilled  water  solution. 
These  results  are  explained  by  modifying  the  cata- 
lytic theory  of  persulphate  reduction  by  considering 
hydrogen  ions,  and  not  silver  ions,  the  catalyst  of 
the  reaction  between  persulphate  ions  and  silver. 
Since  silver  catalyses  the  reaction  between  per- 
sulphate ions  and  water,  with  the  production  of 
hydrogen  ions,  the  silver  ions,  produced  in  the 
course  of  reduction,  indirectly  catalyse  the  reaction 
of  reduction  which  is  thus  autocatalytic.  The  auto- 
catalysis  was  confirmed  by  an  examination  of  the 
velocity  of  reduction  and  is  stated  to  be  an  adequate 
explanation  of  the  super-proportional  action. 
Exception  is  taken  to  Sheppard's  statements  to  the 
contrary  (Phot,  J.,  1921,  61,  460)  and  formula}  are 
deduced  to  show  that  he  is  incorrect. — G.  I.  H. 

Patents. 

Pliotographic  film  and  paper;  Process   and  appa- 
ratus for  sensitising  .      P.  W.   Hochstetter, 

Assr.  to  W.  I.  Ohmer.  U.S.P.  1,403,779,  17.1.22. 
Appl.,  13.11.19. 

The  machine  is  arranged  for  the  medium  to  pass  in 
succession  cutting  discs,  sensitising  apparatus, 
refrigerator,  dryer,  and  seasoner. — G.  I.  H. 

Cellulosic  film;  Sensitive  [photographic-]  and 

process  for  producing  the.  same.  J.  E.  Branden- 
berger,  Assr.  to  La  Soc.  La  Cellophane.  U.S.P. 
1,404,737,  31.1.22.     Appl.,  7.3.21. 

Cellulosic  film  is  impregnated  with  a  solution  of  a 
silver  halogen  salt,  which  is  then  precipitated 
within  the  film  by  means  of  a  suitable  liquid. 

—J.  S.  G.  T. 


XXII.-EXPLOSIVES;  MATCHES. 

Pyrofulmin,  a  decomposition  product  of  mercury 
fulminate.  A.  Langhans.  Z.  ges.  Schiess-  u. 
Sprengstoffw.,  1922,  17,  9—11,  18—21,  26—28. 

Mercury  fulminate  is  completely  changed  into  a 
non-explosive  substance  by  heating  at  90°  C.  for 
about  100  his.  either  dry  or  wet.  The  product  is 
of  a  yellowish-brown  colour  and  6hows  the  un- 
changed crystalline  form  of  mercury  fulminate. 
I'll''  change  follows  the  same  course  with  both  grey 
and  white  fulminate  and  can  be  followed  b'v 
oiuing  the  mercury  electrolytically  in  the 
substance.     A  gradual  rise  takes  place  from  70-42% 


— the  value  for  pure  fulminate — to  74 — 76'6%  in  the 
non-explosive  substance,  which  is  named  pyro- 
fulmin. The  heating  of  commercial  cap  and  deto- 
nator compositions  containing  mercury  fulminate 
at  90°  C.  for  150 — 200  hrs.  caused  in  every  case 
decomposition  of  the  fulminate.  The  caps  began 
to  give  failures  in  firing  after  heating  for  40 — 
60  hrs.,  the  detonators  after  60  hrs.  A  number  of 
mixtures  of  fulminate  with  potassium  chlorate  con- 
taining increasing  quantities  of  the  latter  were 
heated  at  90°  C.  for  200  hrs.  The  loss  of  explosive 
viol  nee  was  less  marked  in  the  case  of  the  mixtures 
containing  a  higher  proportion  of  potassium 
chlorate  than  in  the  other  cases.  Pyrofulmin  is 
insoluble  in  water  and  in  the  usual  organic 
solvents  and  is  neutral  to  iitmus.  It  swells  on 
heating  and  evolves  white  choking  vapours.  Its 
content  of  mercury  is  not  quite  constant,  but 
never  exceeds  76'G~=;  nitrogen  9'88%  ;  carbon 
6'21%,  oxygen  7'51%.  The  loss  of  weight  of 
mercury  fulminate  on  heating,  therefore,  is  due 
mainly  to  carbon  and  oxygen.  Pyrofulmin  is 
probably  not  a  definite  compound  but  a  mixture. 
It  does  not  give  rosaniline  on  treatment  with 
phenylhydrazine,  is  scarcely  affected  by  ammonia 
or  pyridine,  gives  carbon  dioxide  with  cold  hydro- 
chloric acid,  and  on  treatment  with  acetic,  oxalic, 
tartaric,  or  lactic  acid  gives  basic  salts  of  these 
acids.  It  is  reduced  by  formic  acid  to  inercurous 
oxide.  Bromine,  bromine  water,  or  alcoholic 
bromine  gives  mercuric  bromide  and  cyanogen 
bromide.  Chlorine  gives  mercury  oxychloiide  and 
probably  cyanogen  chloride.  Iodine  in  alcoholic 
solution  gives  mercuric  iodide  and  cyanogen  iodide. 
Sodium  hypobromite  gives  no  blue  compound  as 
with  fulminate,  but  decomposes  the  pyrofulmin 
with  evolution  of  carbon  dioxide.  Ammonium 
sulphide  gives  mercuric  sulphide  and  on  evapor- 
ating the  filtrate  the  thiocyanate  reaction  is 
obtained  with  ferric  chloride.  Ammonium  thio- 
cyanate reacts  with  pyrofulmin  giving  ammonia 
and  carbon  dioxide  and  possibly  mercury  thio- 
cyanate. Cold  acid  permanganate  reacts  ouly 
slowly,  but  on  warming  it  is  decolorised  and  the 
pyrofulmin  goes  into  solution.  Electrolysis  gives 
no  characteristic  products.  These  reactions  are  not 
conclusive,  but  point  to  pyrofulmin  being  a  mixture 
of  mercuric  oxycyanide  [Hg(OCN)CN]  with  some 
mercuric  oxide. — H.  C.  R. 

Combustion      of     colloidal      [explosive]      powders; 

Velocity  of  .     P.  Bourgoin.     Comptes  rend., 

1922,  174,  532—534. 
Experiments  on  the  combustion  of  a  given  powder 
mixed  with  different  substances  having  different 
temperatures  of  combustion  show  that  the 
velocity  of  combustion  of  a  given  powder  is  an 
increasing  function  of  the  temperature.  The 
hypothesis  is  enunciated  that  the  velocity  of  com- 
bustion of  a  colloidal  powder  is  at  each  instant 
proportional  to  the  quantity  of  heat,  supposed 
uniformly  distributed,  contained  in  unit  volume  of 
the  vessel  in  which  the  combustion  is  effected. 

— \Y.  Q. 

Patents. 

Detonating   composition ;   Primary  .       W.  M. 

Dehn.     U.S.P.  1,404,687,  24.1.22.     Appl.,  27 

The  composition  comprises  diazodinitrophenol  and 
an  oxidising  salt  of  a  fixed  alkali,  containing 
chlorine.— H.  C.  R. 

Explosive.    G.  Weber.  Assr.  to  Soc.   los  lYiits  Fils 
de  F.  de  Wendel  et  Cie.    U.S.P.  1,406,121,  i 
Appl..  27.9.19. 

An    explosive    comprising    a    combustible    organic 

substance  adapted  to  absorb  liquid  air,   a  silicide, 

and  liquid  air. — H.  C.  R. 


Vol.  XIX,  No.  6.] 


PATENT   LIST. 


235  a 


XXIII.-ANALYSIS. 

Nephelometry.     A    nephelometer   with    a    constant 
dard.       A.  A.  "Weinberg.       Biochem.  Zeits., 
1921,  125.  292—310. 

A  nkv.-  nephelometer  and  point-source  of  light  are 
described  which  embody  the  best  features  of  the 
Kober  (cf.  J.,  1918,  75  t)  and  Kleinmann  (J.,  1920, 
707  a)  nephelometers.  the  most  striking  feature 
being  the  introduction  of  the  Lummer-Brodhun 
prism  whereby  the  two  fields  are  rendered  con- 
centric Nephelometric  estimations  with  such  an 
instrument  are  comparative,  and  a  modified 
nephelometer  is  described  with  a  permanent  stan- 
dard. This  is  attained  by  replacing  one  of  the  tube 
systems  by  two  nicols,  the  lower  of  which  can  be 
rotated  relative  to  the  upper  one,  thus  reducing  the 
light  to  any  degree  as  recorded  by  a  scale  on  the 
nicols.  For  coloured  solutions  a  slip  of  coloured 
glass  can  be  inserted. — H.  K. 

Hydrogen  ion  concentration;  Colorimetric  deter- 
mination of ,  without  the  use  of  buffer  solu- 
tions. I.  M.  Kolthoff.  Pharm.  AVeekblad,  1922, 
59,  104— US. 

With  the  dual  colour  indicators,  neutral  red, 
methyl  orange,  trop?eolin  00,  and  partly  also  with 
methyl  red,  the  value  of  pB  can  be  determined  by 
comparing  the  colour  obtained  with  the  colours  ob- 
tained by  mixing  standard  solutions  of  ferric  chlor- 
ide and  cobalt  nitrate  in  certain  proportions ;  tables 
are  given  for  values  of  pH  and  ratios  of  the  iron  and 
cobalt  solutions.  For  the  single  colour  indicators, 
phenolphthalein  and  n-nitrophenol,  the  comparison 
solutions  are  prepared  from  alkaline  solutions  of  the 
indicator  itself.  Tables  are  given  covering  the 
whole  range  of  values  of  pH  from  2'0  to  100.  (Cf. 
J.C.S.,  March.)— S.  I.  L. 

Manganese  and  cobalt;  Detection  of by  means 

of  the  benzidine  and  thiocyanate  reactions  respec- 
tively.   H.  Ditz.  Chem.-Zeit.,  1922,  46,  121—122. 

The  author  claims  priority  for  the  method  described 
by  Feigl  and  Stern  (J.,  1921,  280  a)  for  detecting 
traces  of  manganese  by  the  blue  coloration  produced 
on  adding  an  acetic  acid  solution  of  benzidine  to  the 
peroxidised  manganese  compound  formed  by 
autoxidation  in  an  alkaline  medium.  As  little  as 
0'008  mg.  of  manganese  can  be  detected  by  this 
method.  No  interference  with  the  reaction  by  iron 
salts  occurs  provided  a  sufficient  excess  of  acetic 
acid  is  present,  and  it  can  therefore  be  used  for  the 
detection  of  manganese  in  iron  ores  and  slags. 
Vogel's  thiocyanate  reaction  for  cobalt  (Ber.,  1879, 
12,  2314)  is  rendered  more  sensitive  by  using 
acetone  instead  of  either  amyl  or  ethyl  alcohol,  and 
quantities  of  the  order  of  0'003  mg.  of  the  metal  can 
be  detected  by  this  means. — G.  F.  M. 

Sulphur;  Determination  of  in  organic  com- 
pounds, also  in  some  technical  products, 
petroleum  oils,  coal,  illuminating  gas,  and 
rubber.  H.  ter  Meulen.  Rec.  Trav.  Chim.,  1922, 
41,  112—120. 

The  organic  substance  containing  sulphur  (20  mg.) 
is  heated  in  a  stream  of  hydrogen  until  completely 
volatilised  or  decomposed.  The  gas  stream  is  led 
over  heated  platinised  asbestos,  which  converts  all 
the  sulphur  into  hydrogen  sulphide.  The  latter  is 
absorbed  in  alkali  and  estimated  either  volumetri- 
cally  by  means  of  iodine  or,  if  the  amount  is  small, 
colorimetrically  with  sodium  plumbite.  Too  large 
a  quantity  of  material  should  be  avoided,  and  to 
ensure  complete  combination  of  hydrogen  and  sul- 
phur the  heating  must  not  be  too  rapid  and  the 
current  of  hydrogen  must  not  be  passed  too  quickly. 
The  activity  of  the  catalyst  may  fall  off,  usually 
owing  to  denosition  of  carbon,  and  the  latter  should 


be  burnt  off  after  each  determination.  Experi- 
mental results  for  some  organic  sulphur  compounds 
are  given;  they  are  in  good  agreement  with  the 
theoretical  values.  Details  are  given  of  sulphur 
determinations  in  petroleum  and  its  distillates 
(50  mg.  used),  coal  (50  mg.  +  lO  mg.  of  borax) 
illuminating  gas  (1  I.)  and  vulcanised  rubber 
(10  mg.+lO  mg.  of  borax)  by  the  above  method  and 
also  gravimetncally,  consistent  results  bein<* 
obtained  in  each  case. — H.  J.  E. 

See  also  pages  (a)  207,  Apparent  sp.  gr.  of  coke 
(Hatisser).  218,  Sulphur  m  iron  and  steel  (Ter 
Meulen h    Nii  steel    (Hurum    and    Fay)  ■ 

Identifying  steels  (Galibourg) ;  Zinc  in  ores  etc' 
(T  rbaseh).  220,  Thermal  analysis  of  metals  (Cheven- 
ard).  222,  Soya-bean  oil  (Utz).  227,  Hydrogen-ion 
concentration  (Windisch  and  Kolbach).  230.  Nitro- 
gen oxides  (Allison  and  others);  Bed  squill  in  rat 
jmtsons  (Claremont). 

Patents. 
Gas  mixtures;  Apparatus  for  the  continuous  testing 

°'  ~ •     E.  C.  R.   Marks.     From  Union  Appa- 

ratebau-Ges.m.b.H.     E.P.   148,764,   10.7.20. 

The  gas  mixture  is  passed  successively  through  a 
capillary  and  a  nozzle  and  the  differential  pressure 
between  the  capillary  and  nozzle  continuously 
recorded.  Variations  in  the  initial  pressure  of  the 
gas  are  automatically  compensated  by  a  device  con- 
sisting of  two  capillary  resistances'  and  a  mano- 
meter preferably  placed  in  a  float  of  the  recording 
manometer.  Variations  of  temperature  and  pres- 
sure are  automatically  compensated  by  bringing  a 
current  of  air  into  heat-exchanging  contact  with  a 
current  of  gas  to  be  tested,  and  then  passing  the  air 
through  a  capillary  and  a  nozzle,  the  manometer 
employed  therewith  being  connected  by  cord  tackle 
with  that  employed  in  the  gas  circuit,  so  that 
the  recording  stylus  is  not  influenced  by  the  similar 
and  simultaneous  variations  of  the  two  mano- 
meters. Devices  for  filtering  the  air  and  gas  are 
disposed  within  one  another  so  as  to  effect  equalisa- 
tion of  temperature. — J.  S.  G.  T. 

Viscosimeter.      H.    N.    Moody.     U.S.P.    1,405,538, 
7.2.22.    Appl.,  5.1.20. 

Liquid,  the  viscosity  of  which  is  to  be  determined, 
flows  under  gravity,  from  one  limb  of  a  vertical  U- 
tube  to  the  other,  through  an  orifice  of  predeter- 
mined size  in  a  stationary  diaphragm  provided  with 
a  valve,  independent  of  the  diaphragm,  for  closing 
the  orifice.— J.  S.  G.  T. 


Patent  List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised,  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on 
s:ile  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL:  PLANT;  MACHINERY. 

Applications. 

A.-G.  der  Maschinenfabr.  Escher,  Wyss  u.  Co. 
Evaporators  for  refrigerating  machines.  7154. 
Mar.  10.     (Switz.,  28.4.21.) 

Benson.  Operating  heating  and  power-producing 
plants  at  above  critical  temperatures  and  pressures. 
6245.     Mar.  2. 


236  a 


PATE  XT    LIST. 


[Mar.  31,  1922. 


Benson.  Filters  and  absorption  masses.  6246. 
Mar.  2. 

Billard.  Introduction  of  solid  particles  in  suspen- 
sion into  gases.     6173.     Mar.  2.     (Fr.,  25.4.21.) 

Birch.  Saturation  of  fluids  by  gases  or  air. 
Mar.  8. 

Burt,  Boulton,  and  Haywood,  and  Cbina.  Minute 
disintegration  of  substances.     6893.     Mar.  8. 

Oafferata  and  Cafferata.  Calcining  or  drying 
furnaces.     6219.     Mar.  2. 

Dellwik,  Testrup,  and  Techno-Chemical  Labora- 
tories, Ltd.  Separation  of  liquid  from  other  matter. 
6473.     Mar.  4. 

Deutsche  Werke  A.-G.,  and  Dorner.  Filters. 
6172.     Mar.  2. 

Fiddes.  Effecting  intimate  contact  between  solids 
and  liquids  and  gas  or  air  for  impregnating  and /or 
diving.    6559.     Mar.  6. 

Fleureau  and  Twigg.     6726.     See  VIII. 

Colby  (Utility  Compressor  Co.).  Non-oxidising 
refrigerant  gas.     6326.     Mar.  8. 

Mars.  Dehydrating  plastic  material.  6090.  Mar.  1. 

Morgan,  and  Woodall,  Duckham,  and  Jones. 
Separation  of  mixed  gases.     6081.     Mar.  1. 

Mnscicki.  Superheating  gases  or  vapours.  6600. 
Mar.  6. 

Powdered  Fuel  Plant  Co.  Pulverising  apparatus. 
6552.     Mar.  6.     (Fr.,  31.12.21.) 

Rigby.  Heating  or  cooling  liquids  or  admixed 
liquids  and  solids  in  evaporative  etc.  treatment. 
6593.     Mar.  6. 

Rigby.     Treating  materials.     7038.     Mar.  10. 

Rushen  (Siemens-Schuckertwerke).  Electrical 
separation  of  suspended  particles  from  gases.  7260. 
Mar.  11. 

Verner.  Apparatus  for  separating  substances  of 
different  specific  gravities.  6254.  Mar.  2.  (Ger., 
2.3.21.) 

Wright  and  Young.    Filtration.     6432.     Mar.  4. 

Complete  Specifications  Accepted. 

24,095(1920).   Mather.    Stills.    (175,666.)   Mar.  8. 

25,531  (1920).  Skinner.  Apparatus  for  conduct- 
ing furnacing  operations.     (176,025.)     Mar.  15. 

29,881  (1920).     Goskar.    See  II. 

32,672  (1920).  Edwards.  Apparatus  for  mixing 
liquid  with  powdered  materials  continuously. 
(175,744.)     Mar.  8. 

33,196(1920).  Reid.  Furnaces.  (176,081.)  Mar.  15. 

33,468  (1920).  Robertson  (Power  Specialty  Co.). 
Stills.     (176,102.)     Mar.  15. 

34,774  (1920).  Hall  and  Mills.  Grinding  and 
crushing  mills  etc.    (175,814.)    Mar.  8. 

35,862(1920).  Mazza.  Centrifugal  separation  of 
gaseous  mixtures.     (175,840.)     Mar.  8. 

5889  (1921).  Sec.  Gen.  d'Evaporation.  Appa- 
ratus for  leaching  minerals.     (161,159.)     Mar.  8. 

26,376  (1921).  Marks  (Kobseff).  Disincrustants. 
(176,294.)     Mar.  15. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE    DISTILLATION ; 

HEATING;    LIGHTING. 

Applications. 

Clark  and  Travers.  Manufacture  of  gas  from 
coal  etc.     6931.     Mar.  9. 

Collis.  Combination  fuel  for  briquettes.  6470. 
Mar.  4.  . 

Freeman.  Fractional  distillation  of  mineral  oils 
and  spirite.     5899.     Feb.  28. 

Freeman.  Manufacture  of  liquid  fuels.  63al. 
Mar.  3. 

Ganahl.  Distillation  of  coal,  shales,  etc.  6886. 
Mar.  8. 

Roller.     Bluminating  compound.     6317.     Mar.  3. 


Lucas.  Hydrogenation  of  hvdrocarbons.  6708. 
Mar.  7. 

Moeller.  Evaporating  water  from  peat  etc. 
6277  and  6927.     Mar.  3  and  9. 

N.  V.  Philips  Olocilampenl'abr.  Manufacture  of 
carbon  bodies.    6834.     Mar.  8.     (Holland,  12.3.21.) 

Norsk  Hydro-Elektrisk  Kvaelstafaktieselskab. 
6377  and  6S89.     See  VII. 

Ridge.     Purification  of  oils.     6479.     Mar.  4. 

Steenbergh.  Apparatus  for  cracking  mineral  oil 
to  produce  gasolene.     5743.     Feb.  27. 

Westwood.  Apparatus  for  making  coal  gas. 
5861.     Feb.  28. 

Willis.     Solidifying  benzine  etc.     6501.     Mar.  6. 

Complete  Specifications  Accepted. 

25,151  (1920).  Lewis.  Method  of  carbonising 
coal  etc.     (175,670.)     Mar.  8. 

26,451  (1920).  Soc.  Franco-Beige  do  Fours  a 
Coke.  Treatment  of  gases  from  gas-producers. 
(160,151.)     Mar.  15. 

27,881  (1920)  and  19,362  (1921).  Goskar.  Drying 
coal  or  other  material  in  a  granular  or  percolatable 
body  or  mass  form.     (175,674.)     Mar.  8. 

30,471  (1920).  Sinnatt  and  Lockett.  Manufacture 
of  combustible  materials  from  coal,  peat,  etc.  and 
sewage  and  trade  waste  activated  sludges. 
(176,053.)     Mar.  15. 

32,055  (1920).  Thiele  and  Cordes.  Preparation 
of  lubricating  and  cylinder  oils.    (154,895.)    Mar.  8. 

33,46.5-7  (1920).  Robertson  (Power  Specialty 
Co.).  Apparatus  for  distilling  oils.  (176,099 — 
176,101.)     Mar.  15. 

33.674  (1920).  Koppers.  Gas-producers  with 
means  for  utilising  waste  heat.    (176,113.)    Mar.  15. 

33.675  (1920).  Koppers.  Regenerative  retort 
settings.    (175,778.)    Mar.  8. 

34.260  (1920).  Merz  and  McLellan,  Bottomley, 
and  Weeks.  Large  scale  power  production  by  low 
temperature  distillation  of  solid  fuel.  (176,149.) 
.Mar.  15. 

34.261  (1920).  Merz  and  McLellan,  Bottomley, 
and  Weeks.  Plant  comprising  fuel-distillation  and 
steam-power  apparatus.     (175,800.)     Mar.  S. 

526  and  729  (1921).     Erdmann.     See  III. 

3923  (1921).  Ulingworth.  Coking  of  coal. 
(175,883.)     Mar.  8. 

6760  (1921).  Marks  (Soc.  des  Fours  a  Coke 
Scmet-Solvay  et  Piette).  Coke-ovens.  (175,902.) 
Mar.  8. 

15,330  (1921).  Mine  Safety  Appliances  Co.  Gas- 
purifying  compositions.     (167,151.)    Mar.  15. 


III.— TAR    AND    TAR    PRODUCTS. 
Application. 
Lucas.     6708.     See  II. 

Complete  Specifications  Accepted. 

526  (1921).  Erdmann.  Obtaining  highly  viscous 
lubricating  oils  from  lignite  tar  and  shale  tar. 
(156,594.)     Mar.  15. 

729  (1921).  Erdmann.  Obtaining  highly  viscous 
lubricating  oils  from  peat  tar.    (156,695.)    Mar.  15. 


IV.— COLOURING   MATTERS    AND   DYES. 
Applications. 

Bloxam  (Chem.  Fabr.  Griesheim-Elektron) 
Manufacture  of  azo  dyestuffs.     6256.     Mar.  2. 

Carpmael  (Bayer  u.  Co.).  Manufacture  of  va 
dyestuffs.     5819.     Feb.  27. 

Ransford  (Cassella  u.  Co.).  Manufacture  of  M 
dyestuffs  of  the  anthraquinone  series.  5820.  Feb.  2i 


Vol.  XLI.,  No.  C] 


PATENT  LIST. 


237  a 


V— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Bader,  Dickie,  and  British  Cellulose  and  Chem. 
Manuf.  Co.  Manufacture  of  compositions  with 
cellulose  derivatives.     6843.     Mar.  8. 

Burlin.  Treatment  of  waste  papers.  7135. 
Mar.    10. 

MacCallum.  Manufacture  of  cellulose  pulp  for 
paper-making.    5723.    Feb.  27. 

Complete  Specifications  Accepted. 

27,534  (1920).  British  Cellulose  and  Chem. 
Manuf.  Co.,  and  Richardson.  Treatment  of  cellu- 
loso  acetate  products.     (176,034.)     Mar.  15. 

32,706  (1920).  Dreaper.  Manufacture  and 
treatment  of  artificial  textile  filamente.  (175,746.) 
Mar.  8. 

1094  (1921).  Haddan  (Fabr.  de  Soie  Artificielle 
de  Tubize).  Spinning  nitrocellulose  solution. 
(157,220.)     Mar.  15.      • 

VI— BLEACHING:  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Brandwood  and  Brandwood.  Bleaching  of  wound 
yarns.    7091.     Mar.  10. 

British  Dyestuffs  Corp.,  and  Sanderson.  Mixtures 
for  dyeing.     7255.     Mar.  11. 

Lishman  and  Lishman.  Machines  for  dyeing, 
bleaching,  sizing,  etc.  yarn,  cloth,  etc.  6780. 
Mar.  8. 

Complete  Specification  Accepted. 

33,073  (1920).  Nelson.  Mercerising  cotton. 
(175,761.)     Mar.  8. 


VII.— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Blumenfeld  and  Weizmann.  Production  of 
titanic  acid.     6086.     Mar.  1. 

Burt,  Boulton,  and  Haywood,  Elphick,  and  Gray. 
Manufacture  of  colloidal  sulphur.    6891.    Mar.  8. 

Daniels.  Treatment  of  carbonate  of  soda.  7118. 
Mar.  10. 

Kiesewalter.  Production  of  calcium  hydride. 
5758.     Feb.  27.     (Ger    4.3.21.) 

Morgan,  and  Woodall,  Duckham,  and  Jones. 
Separating  oxygen  from  air.     6081.     Mar.  1. 

Norsk  Hydro-Elektrisk  Kvaelstofaktieselskab. 
Manufacture  of  hydrogen,  carbonic  oxide,  or  mix- 
tures of  these  gases.  6377  and  6889.  Mar.  3  and  8. 
(Norway,  9.3.  and  7.6.21.) 

Simon.  Manufacture  of  magnesia  or  magnesium 
carbonate  from  materials  containing  magnesium 
and  calcium.     6737.     Mar.  7.     (Ger.,  7.3.21.) 

Complete  Specifications  Accepted. 

34,124  (1920).  Casale  and  Lepre6tre.  Apparatus 
for  the  catalytic  synthesis  of  ammonia.  (176,144.) 
Mar.  15. 

34,193  (1920).  Harding  and  Jones.  Production 
of  sodium  pentaborate  from  boron  ores.  (175,795.) 
Mar.  8. 

6122  (1921).  Hultman.  Manufacture  of  chro- 
mium alums.     (159,469.)     Mar.  15. 

VHL— GLASS ;    CERAMICS. 

Applications. 
British  Thomson-Houston   Co.   (General   Electric 
Co.).      Method  of   making   silica   or   quartz   glass. 
6856.     Mar.  8. 


Fleureau  and  Twigg.  Furnaces  for  fusing  basalt 
etc.    6726.    Mar.  7. 

IX— BUILDING    MATERIALS. 

Applications. 

Norris.  Treatment  of  composition  flooring  etc. 
7189.    Mar.  11.  * 

Williams.  Manufacture  of  concrete,  artificial 
stone,  or  mortar.     5704.     Feb.  27. 

X.— METALS  ;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Besford,  Day,  and  Holland.  Determining  com- 
position of  alloys  for  soldering  aluminium.  7157 
Mar.  10. 

Coles.  Removing  scale,  oxide,  or  rust  from 
metallic  surfaces.     5863.     Feb.  28. 

Coles.  Protecting  iron  and  steel  from  corrosion. 
6508.    Mar.  6. 

Coles.     Production  of  zinc  foil.     6509.     Mar.   6. 

Coles.  Manufacture  of  bronze  powders.  7043 
Mar.  10. 

France.    Mineral-washing  plant.    7134.    Mar.  10. 

Girouard  and  Jones.  Reduction  of  ores.  6433. 
Mar.  4. 

Jenkins.  Coating  and  welding  metals.  5970. 
Feb.   28. 

Lohe.  Cupola  furnaces.  7220.  Mar.  11.  (Ger., 
11.3.21.) 

McClelland.  Cupola  or  blast  furnaces.  7261. 
Mar.  11. 

Passalacqua.  Soldering  aluminium.  5763. 
Feb.  27.    (Fr.,  28.2.21.) 

Saltrick.    Alloys.    6691-4.    Mar.  7. 

Stiefel.     Annealing  etc.  furnaces.    6084.    Mar.  1. 

Ddylite  Process  Co.  Processes  of  rust-proofing. 
7199.    Mar.  11.    (U.S.,  9.4.21.) 

Walter.  Desulphurising  media  for  metals  and 
process  of  desulphurising  iron.     7098.     Mar.  10. 

White  (American  Smelting  and  Refining  Co.). 
Treatment  of  metallurgical  gases.     7167.     Mar.  10. 

Wild  and  Wild.  Manufacture  of  unstainable 
irons  and  steels.    6047.    Mar.  1. 

Complete  Specifications  Accepted. 

31,052  (1920).  Turton.  Apparatus  for  electro- 
deposition  of  metals.    (176,064.)     Mar.  15. 

219  (1921).  Jalabert.  Apparatus  for  classifying 
ores  according  to  density.     (156,226.)     Mar.  15. 

1488  (1921).  Lohmann.  Withdrawal  of  the 
carbon  from  metals  of  a  high  melting  temperature. 
(157,780.)     Mar.  15. 

5889  (1921).     Soc.    Gen.  d'Evaporation.     See  I. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

Fuller,  and  Fuller's  United  Electric  Works. 
Galvanic  batteries.     6622.     Mar.  7. 

Ransford  (Smith).  Manufacture  of  electrical 
conductors.     6575.     Mar.  6. 

Rushen.     7260.     See  I. 

Vare.  Element  for  storage  battery  cells.  7142. 
Mar.  10.     (Belg.,  10.3.21.) 

Complete  Specifications  Accepted. 

25,035  (1920).  Davis.  Storage  batteries. 
(176,020.)     Mar.  15. 

26,246  (1920).  Harris  and  Rose.  Electrolytic 
cell.     (175,672.)     Mar.  8. 

31,052  (1920).— Turton.    See  X. 

33,696  (1920).     Whalley  and  others.     See  XIII. 

2269  (1921).  Spiel.  Carrying  out  electrorhemir:il 
gas  reactions.     (158,250.)    Mar.  15. 


238  a 


PATENT    LIST. 


[Mar.  SI,  1922. 


2899  (1921).     Van  Raden  and  Co..  and  Rankin 
Electric  accumulators.     (175,878.)     Mar.  8. 

5-^93  (1921).  Richards.  Construction  of  accumu- 
lators.    (175,896.)     Mar.  8.  . 

6138  (1921).  Heap,  and  Chloride  Electrical 
Storage  Co.  Secondary  batteries  or  accumulators. 
(176.244.)     Mar.  15. 

7143  (1921).  Szarvasy.  Apparatus  for  treating 
fases  with  silent  electric  discharges.  (159,843.) 
Alar.  8. 

XII.— FATS;    OILS;    WAXES. 

Applications. 

Bamburg.     Hydrolysis.     6322.     Mar.  3. 
Holdcroft,  and  Hull  Oil  Manuf.  Co.      Bleaching 
fats,  fatty  oils,  and  fatty  acids.     6313.     Mar.  3. 
Ridge.     6479.    See  II. 

XIH.— PAINTS;    PIGMENTS;    VARNISHES; 

RESINS. 


Applications. 


6852.      Mar.  8. 


Abbe.      Manufacture  of  paints. 
(U.S.,  8.3.21.) 

Attwater  and  Byrom.  Manufacture  of  formalde- 
hyde condensation  products  of  phenols.  6024. 
Mar.  1. 

Bilton  and  Prince.  Manufacture  of  ink.  6287. 
Mar.  3. 

Cordes  u.  Co.  Manufacture  of  light-proof  lilho- 
pone.     6348.     Mar.  3.     (Ger.,  4.5.21.) 

Sankey.  Fixing  and  preserving  dyes  and  inks  on 
paper.     6654.     Mar.  7. 

Complete  Specifications  Accepted. 

33,189  (1920).  Schou.  Emulsions  for  painting 
and  priming  etc.     (175,764.)     Mar.  8. 

33,696  (1920).  Whalley,  and  Micanite  and  Insu- 
lators Co.  Recovery  of  varnish  and  other  in- 
gredients from  waste  micanite  etc.  (176,117.) 
Mar.  15. 

283  (1921).  Akt.-Ges.  f.  Anilinfabr.  Production 
of  paints,  varnishes,  polishes,  etc.  (156,250.) 
Mar.  15. 

XIV.— INDIA-RUBBER;   GUTTA-PERCHA. 

Applications. 

Betteridge,  Dunworth,  and  Greengate  and  Irv.ell 
Rubber  Co.  Manufacture  of  rubber  articles.  6415. 
Mar.  4. 

Betteridge,  Dunworth,  and  Greengate  and  Irwell 
Rubber  Co.  Manufacture  of  gutta-percha-like 
bodies.     6416.     Mar.  4. 

General  Rubber  Co.  Treating  rubber  latex. 
0585.     Mar.  6.     (U.S.,  7.12.21.) 

Jones.     Treatment  of  rubber.     7247.     Mar.  11. 

XVI.— SOILS;  FERTILISERS. 
Application. 
Du  Vallon.     Fertilisers,  insecticides,  etc.     6466. 
Mar.  4. 

XVII.— SUGARS;  STARCHES;  GUMS. 

Complete  Specification    Accepted. 

29,167  (1920).  Venditti.  Apparatus  for  effect- 
ing crystallisation  of  sugar  solutions.  (175,680.) 
Mar.  8. 

XVIII.— FERMENTATION  INDUSTRIES. 

Application. 
Benson.     Fermented  beverage.     6940.     Mar.  9. 
Complete  Specifications  Accepted. 
__  35,283-4  and  35,287-8  (1920).    Verein  der  Spiritus 
I'aliiikanten  in  Deutschland.  Production  and  treat- 
ment of  yeast.    (1  55, 282-3,  155,286-7.)    Mar.  IS. 


17,834  (1921).  Ricard,  Allenet  et  Cie.  Manu- 
facture of  acetone  and  butyl  alcohol  by  fermenta- 
tion    (176,284.)     Mar.  15. 

XIX—  FOODS;  WATER  PURIFICATION; 
SANITATION. 

Applications. 

Briggs  and  Jenkins.  Absorption  of  carbon 
dioxide  from  air  etc.     6487.     Mar.  4. 

Dibdin.  Purification  of  waste  organic  liquids. 
6389.     Mar.  4. 

Du  Vallon.     6466.     See  XVI. 

Koller.     Sterilising  compound.     6318.     Mar.  3. 

Mininberg.     Food  products.     5950.     Feb.  28. 

Miiller  Ges.,  and  Ostertag.  Clearing  and  purify- 
ing water  for  steam  boilers.     6374.     Mar.  3. 

Complete  Specifications  Accepted. 

30,471  (1920).     Sinnatt  and  Lockett.     See  II. 

32,630  (1920).  Buffa.  Preparation  of  chocolate. 
(175,740.)     Mar.  8.  • 

15,330  (1921).  Mine  Safety  Appliances  Co.  See 
II. 

XX— ORGANIC  PRODUCTS ;  MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Applications. 

Bamburg.     6322.     See  XII. 

Blagdon,  and  Howards  and  Sons.  Manufacture 
of  thymol.     7170.     Mar.  10. 

British  Dyestuffs  Corp.,  Green,  and  Oxley. 
Separating  aJkylamines  from  ammonia  etc.  gases. 
6488.    Mar.  4. 

Margulies.  Preparation  of  organic  arsenic  com- 
pounds.    7119,  7120,  7144.     Mar.  10. 

Soc.  Chim.  des  Usines  du  Rhone.  Production  of 
solutions  of  volatile  oils.  7014.  Mar.  9.  (Ger., 
20.4.21.) 

Complete  Specifications  Accepted. 

29,106  (1920).  Imray  (Meister,  Lucius,  u. 
Briining).  Manufacture  of  therapeutically  active 
acridine  derivatives.     (176,038.)     Mar.   15. 

33,482  (1920)  and  3995  (1921).  Usher  and 
Metcalfe.  Extraction  of  essential  oils.  (176,104.) 
Mar.  15. 

33,848  (1920).  Haus.  Manufacture  of  derivatives 
of  3.3'-diamino-4.4'-dioxvarsenobenzene.  (155,577.) 
Mar.  15. 

36,377  (1920).  Chem.  Fabr.  Flora.  Manufacture 
of  silver  thioglycollate  of  sodium.  (156,103.)   Mar.  8. 

464  (1921).  Bayer  u.  Co.  Separating  or  isolating 
organic  gases  or  vapours  of  organic  products. 
(156,543.)    Mar.  8. 

4556  (1921).  Atack.  Condensation  of  o-benzoyl- 
benzoic  acid.     (176,235.)     Mar.  15. 

17,834(1921).   Ricard,  Allenet  et  Cie.  Sr,  XVIII. 

XXL— PHOTOGRAPHIC   MATERIALS    AND 
PROCESSES. 

Applications. 

Forbes.     Colour  photography.     6253.     Mar.  2. 

Hamburger.  Colour  photography  etc.  6722. 
Mar.  7. 

Kodak,  Ltd.  Photographic  reversal  processes. 
5873.    Feb.  28.    (U.S.,  2,3.21.) 

Lyell.  Natural-colour  kmematograph  films  and 
plates.     7096.     Mar.   10. 

Shawcross.     Preparation  and  treatment  of  | 
graphic  ferric  films  for  lithographic  transfer 
Mar.   11. 

Complete  Specification  Accf.pted. 
2981  (1921).    La  Cellophane  Soc.  Anon.     Prepara- 
tion   of    photographic    films    permeable    to    water. 
(162,266.)    Mar.  8. 


Vol.  XLI.,  No.  7.] 


ABSTRACTS 


[April  15,  1922. 


I. -GENERAL;  PLANT;    MACHINERY. 

Solvent  recovery;  Explosion-proof  process  of  - . 

B.  P.  Dodge.     Chem.  and  Met.  Eng.,  1922,  26, 

416—419. 
A  review  of  the  Lewis  recovery  system,  in  which 
cleaned  flue-gas,  which  may  be  generated  in  a 
special  producer  plant  using  coke,  or  by  burning  oil, 
is  used  as  the  drying  medium.  No  explosive  mix- 
ture of  gasoline  or  benzene  with  air  is  possible  if 
the  oxygen  content  of  the  air  be  reduced  to  about 
12%.  From  a  coke-fired  producer,  gas  containing 
18—20%  of  carbon  dioxide  and  01 — 1'5%  of  oxygen 
can  be  regularly  produced.  The  heat  can  be 
economically  utilised  in  large  plants  only.  1  lb.  of 
coke  can  produce  120  cub.  ft.,  or  1  gallon  of 
oil,  1600  cub.  ft.  of  dry  gas  at  70°  C.  The 
machinery  used  for  impregnation  is  effectively 
hooded  to  prevent  leakage.  To  reduce  the  cost,  part 
of  the  flue-gas  may  be  re-circulated  from  the 
recovery  plant.  Formulae  are  given  for  calculating 
the  permissible  amount  of  gas  for  re-circulation, 
allowing  for  the  leakage  of  air  into  the  gas,  and  for 
a  maximum  oxygen  content  of  5 — 6%  ;  75 — 80%  re- 
circulation is  permissible  with  a  well-designed  hood. 

— H.  M. 

Distillation;  Relation  between  the  composition  of 
vapour  and  liquor  in  — — .  E.  Piron.  Chem.  and 
Met.  Eng.,  1922,  26,  317—320. 

For  some  mixtures  the  relative  proportion  (k)  of  a 
constituent  in  the  vapour  and  in  the  liquor  may  be 
determined  experimentally  by  the  comparison  of 
analytical  data  obtained  from  a  large  number  of 
small  fractions  of  distillate  and  from  the  residual 
liquor.  An  average  value  for  "  k  "  may  be 
calculated  from  the  formula,  (Q0'Q)k_1  =  S0/S,  in 
which  Q0  and  Q  are  the  initial  and  final  volumes  of 
liquor  and  S  ,,  S,  the  initial  and  final  concentra- 
tions of  one  component  of  the  liquor.  When 
analytical  separation  of  mutually  soluble  con- 
stituents is  difficult  an  expression  based  upon  the 
partial  pressures  of  the  same  component  in  the  two 
phases  can  be  calculated,  compensating  for  the 
difference  in  vapour  pressure  as  observed  by 
different  authorities.  The  values  of  K  =  p/P,  in 
which  p  is  the  vapour  pressure  of  the  constituent 
and  P  the  pressure  under  which  distillation  is 
effected,  may  be  obtained  from  a  table  of 
"  corrected  "  vapour  pressures,  K  being  vari- 
able with  the  concentration  of  liquor. — C.  A.  K. 

Cellulose  nitrate  [nitrocellulose]  as  an  emulsifying 
agent.  H.  N.  Holmes  and  D.  H.  Cameron.  J. 
Amer.  Chem.  Soc.,  1922,  44,  66—70. 

Nitrocellulose  serves  as  an  excellent  emulsifying 
agent  in  dispersing  water  or  glycerol  throughout 
amyl  acetate,  acetone  or  other  substance  in  which 
nitrocellulose  is  soluble.  Visible  concentration 
films  of  nitrocellulose  are  formed  around  large  drops 
if  water,  emulsified  in  mixtures  of  amyl  acetate  and 
oenzene. — J.  F.  S. 

Emulsions;  Chromatic  .     H.   N.   Holmes   and 

D.  H.  Cameron.    J.  Amer.  Chem.  Soc,  1922,  44, 
71—74. 

wo  immiscible  liquids  can  be  emulsified  with  suit-    I 
ble  emulsifying  agents,  such  as  nitrocellulose,  to    I 
roduce  a  transparent  emulsion  when  the  refractive    j 
idex  and  the  dispersive  power  (nF — «t)  of  the  two 
hases    are    the    same.      A    chromatic    (structural 
>lour)  emulsion   is  produced   when   the  refractive 
idex  of  both  phases  is  the  same  and  the  dispersive 
ower  of  one  phase  is  much  greater  than  that  of  the 
-her  phase.     The  greater  the  difference  the  more 
itense  the  colour. — J.  F.  S. 


Decolorising  action  of  bone-black.     Hall,  jun.     See 
XVII. 

Kdpchar.    Turrentine  and  Tanner.    See  XVII. 

Patents. 

Filter  for   gaseous  media   [;   Sand  1.      L.    B 

Fiechter.  E.P.  163,039,  21.4.21.  Conv.,  6.5.20. 
In  a  gas-filter  in  which  the  filtering  medium  con- 
sists of  granular  material  spread  in  a  layer  on  a 
perforated  or  porous  conveyor  band,  false  side  walls 
are  provided  within  the  apparatus  which  are  nearer 
to  each  other  than  the  full  width  of  the  conveyor 
band  and  extend  close  down  to  the  latter  into  the 
layer  of  granular  material,  so  as  to  cause  the  thick- 
ness of  the  layer  to  be  uniform  across  its  whole 
effective  width. — B.  M.  V. 

Precipitating  plant;  Electric  [for  separating 

dry  material  from  wet  gases].  Siemens-Schuckert- 
werke  Ges.m.b.H.  E.P.  170,835,  11.10.21.  Conv., 
28.10.20. 

Gas  to  be  electrically  treated  is  heated  to  a  tempera- 
ture above  its  dew-point  before  entering  the  treat- 
ment chamber.  The  temperature  of  hot  gases 
derived  from  furnaces  etc.  is  prevented  from  falling 
below  the  dew-point  by  insulating  the  supply  pipes 
and  separating  chambers. — J.  S.  G.  T. 

Precipitation   of  suspended  particles   from   gases; 

Apparatus  for  electrical .    G.  A.  White,  Assr. 

to  International  Precipitation  Co.  U.S. P. 
1,407,311,  21.2.22.     Appl.,  4.6.18. 

A  unidirectional  high  potential  difference  is  main- 
tained between  discharge  electrodes  and  collecting 
electrodes  in  the  precipitating  chamber.  A  con- 
ducting filter,  at  the  same  potential  as  the  collect- 
ing electrodes,  is  arranged  in  the  path  of  the  gases 
passing  from  the  chamber.— J.  S.  G.  T. 

Immersing  subdivided  solids  or  liquids  in  liquids, 
particularly   applicable   for   immersing   solids   or 

liquids  in  molten  metal;  Method  of .  Thermal 

Industrial  and  Chemical  (T.I.C.)  Research  Co., 
Ltd.,  and  J.  S.  Morgan.    E.P.  174,974,  7.9.20. 

A  rotating  cylinder  or  travelling  band  dips  into  the 
surface  of  the  liquid  {e.g.  molten  lead),  the  cylinder 
or  band  being  made  of  a  material  that  will  not  be 
wetted  by  the  liquid ;  the  other  material  to  be 
treated  (e.g.  hydrous  tar  to  be  distilled)  is  spread 
in  a  thin  layer  on  the  cylinder  or  band  and  is  forced 
by  it  into  the  "  re-entrant  angle  "  (concavity) 
formed  in  the  surface  of  the  liquid  and  is  scraped, 
or  falls,  off  after  emergence. — B.  M.  V. 

Centrifugal   separators.      R.    A.    Sturgeon.      E.P. 
175,478,  13.12.20. 

The  pulp  to  be  separated  into  solid  and  liquid  con- 
stituents is  fed  to  an  annular  space  between  the  two 
walls  of  the  basket,  under  a  centrifugal  head  pro- 
duced by  supplying  the  material  through  a  hollow 
axial  shaft  and  radial  passages.  If  the  solid  is 
heavier  than  the  liquid  a  filtering  medium  is  applied 
to  the  inner  wall,  but  if  the  liquid  is  the  heavier  the 
filtering  medium  is  on  the  outer  wall.  Filtration 
will  take  place  until  the  solid  is  packed  tight  in  the 
annular  space,  giving  a  filter-press  effect.  Discharge 
of  the  cake  may  be  effected  without  stopping  the 
rotation  by  displacing  the  outer  wall  (c/.  E.P. 
24,038  of  1913;  J.,  1915,  263).— B.  M.  V. 

Separating  and  classifying  apparatus.  L.  H.  Falley. 

U.S.P.  1,406,177,  14.2.22.    Appl.,  27.5.19. 
The  apparatus  comprises   a  settling  tank,   a  par- 
tition dividing  this  into  a  down-flow  and  an  up-flow 
settling    compartment,     means     for     feeding    the 
material  to  be  treated  into  the  upper  end  of  the 


240  a 


Cl.  IIa.— FUEL ;  GAS ;  MINERAL  OILS  AND  WAXES. 


[April   15,   1922. 


down-flow  compartment  and  for  supplying  fluid  at 
the  lower  end  of  the  up-iiow  compartment,  and  a 
number  of  deflectors  within  the  up-flow  compart- 
ment arranged  to  produce  cross-currents  at  various 
levels.  The  partition  is  provided  with  a  passage 
affording  communication  between  the  two  compart- 
ments above  the  lower  end  of  the  up-flow  compart- 
ment.—H.  C.  R. 

Settling  tank.    C.  Allen.    U.S.P.  1,406,323,  14.2.22. 

Appl.,  18.2.20. 
A  funnel-shaped  vessel  is  divided  into  two  compart- 
ments by  a  horizontal  partition  near  the  bottom. 
The  partition  is  provided  with  two  valve-controlled 
openings,  one  of  which  is  operated  by  hand,  and  the 
other  by  a  buoyant  member,  which  is  responsive  to 
changes  in  the  density  of  the  material  in  the  upper 
compartment,  and  allows  the  heavier  product  to 
pass  through  into  the  lower  compartment.  The 
lighter  material  escapes  over  the  rim  of  the  vessel, 
and  is  recovered. — D.  J.  N. 

Liquid-treating  apparatus.  I.  B.  Tanner,  Assr.  to 
J.  E.  Nelson  and  Sons.  U.S.P.  1,407,499,  21.2.22. 
Appl.,  23.7.21. 
Liquid  is  admitted  to  a  settling  tank  through  a 
valve  the  opening  of  which  is  controlled  by  the  pres- 
sure of  the  incoming  liquid.  The  position  of  the 
valve  also  controls  the  relation  of  ports  in  a  decant 
pipe  to  the  level  of  liquid  in  a  chemical  tank,  the 
arrangement  being  such  that  a  higher  pressure  of 
the  incoming  liquid  results  in  a  larger  main  valve 
opening  and  a  larger  port  opening  in  the  chemical 
decant  pipe.  The  chemical  solution  is  delivered  to 
the  settling  tank.— B.  M.  V. 

Filters;  Method  of  cleansing  [sand]  .     C.  A. 

Brown.  U.S.P.  1,406,340, 14.2.22.  Appl.,  8.2.18. 
In  a  sand  filter  which  is  washed  with  liquid  forced 
in  below  the  sand,  the  velocity  of  the  liquid  is  caused 
to  increase  and  decrease  in  alternate  adjacent 
parallel  columns  so  that  the  particles  of  sand  will 
grind  against  each  other  and  break  up  lumps  of 
impurities.     (Cf.  U.S.P.  1,383,384;  J.,  1921,  614  a.) 

— B.  M.  V. 

Befrigerating   systems;  Method  of  use  of  sulphur 

dioxide  in  artificial  .     P.  W.  Robison,  Assr- 

to  Utility  Compressor  Co.  U.S.P.  1,406,582, 
14.2.22.  Appl.,  3.4.19. 
A  system  which  it  is  desired  to  charge  with 
sulphur  dioxide  is  cleaned  by  first  drying  and  then 
charging  with  carbon  dioxide  at  about  50  lb.  per 
sq.  in.  and  exhausting.  The  last  two  operations  are 
repeated  several  times,  finally  leaving  the  pressure 
of  carbon  dioxide  slightly  ahove  that  of  the 
atmosphere  prior  to  charging  with  sulphur  dioxide. 

— B.  M.  V. 

Emulsoids;   Method  for  produeinn  .       E.    E. 

Werner.  U.S.P.  1,406,791, 14.2.22.   Appl.,  6.12.20. 

Oil  is  emulsified  in  a  heavier  liquid  (e.g.,  water)  by 
rapidly  revolving  an  abrasive  plate  in  the  heavier 
liquid.  The  plate  is  made  of  such  smoothness  that 
the  oil  will  form  continuously  diminishing  strata 
within  the  liquid  cone  formed  by  the  centrifugal 
action,  and  the  two  liquids  and  resulting  emulsoid 
will  gvrate  with  the  minimum  of  agitation. 

— B.  M.  V. 

Evaporating    liquids;    Apparatus    for    .      P. 

Muller,  Assr.  to  The  Chemical  Foundation,  Inc. 
U.S.P.  1,406,997,  21.2.22.     Appl.,  7.12.14. 

The  liquid  to  be  dried  (evaporated)  is  sprayed  from 
a  "  feed  wall  "  into  a  chamber  where  it  meets  a 
drying  medium.— B.  M.  V. 


Deflocculating  solid  substances  [graphite  etc.']; 
Method  of  .     E.  G.  Acheson.     E.P.  163,032, 

18.4.21.  Conv.,  1.5.20. 

See  U.S.P.  1,345,306  of  1920;  J.,  1920,  564  a. 

Mixing  granular  substances,  such  as  seeds,  grain, 
mineral  products  and  the  like;  Process  and  appa- 
ratus for .    0.  Krause.    E.P.  175,170, 13.1.21. 

See  U.S.P.  1,369,248  of  1921;  J.,  1921,  249  a. 

Condenser.      R.    N.    Ehrhart.      U.S.P.    1,407,137, 

21.2.22.  Appl.,  8.11.18. 

See  E.P.  134,852  of  1919;  J.,  1920,  681  a. 

F  ractional-distilling  apparatus.    E.  A.  R.  Chenard; 

J.    Chenard    exor.      U.S.P.    1,407,380,    21.2.22. 

Appl.,  18.8.19. 
See  E.P.  130,992  of  1919;  J.,  1920,  92  a. 

Mixing  and  kneading  ;  Method  of  and  apparatus  for 

.      A.  P.  Lohmann.      E.P.  150,269,  16.8.20. 

Conv.,  16.8.19. 

Inflammable  liquids;  Storage  of  highly  .       J. 

Muchka.    E.P.  153,915, 16.11.20.    Conv.,  30.10.16. 

Crushers.  Smith  Engineering  Works,  Assees.  of 
E.  L.  Sanborne.  E.P.  157,137,  8.1.21.  Conv., 
14.11.17. 

Separators    [;    Hydraulic,    pneumatic,    or    hydro- 

pneumatic    ]     for    granular    materials.      I. 

Lupascu.     E.P.  175,334,  7.10.20. 

Strainer  apparatus  [with  magnetic  strainer]  for  re- 
moving solids  from  liquids.  E.  B.  Chapman. 
E.P.  175,345,  14.10.20. 

Leaching  minerals.     U.S.P.  1,406,525.     See  X. 


Ha.-FUEL;  GAS  ;  MINERAL  OILS  AND 
WAXES. 

Coal;  Researches  on  the  chemistry  of .    //.  The 

resinic  constituents  and  coking  propensities  of 
coals.  W.  A.  Bone,  A.  R.  Pearson,  E.  Sinkinson, 
and  W.  E.  Stockings.  Proc.  Roy.  Soc.,  1922, 
A  100,  582—598. 

As    the    proportion    of    volatile    matter    in    coal 
increases  above  30%  there  is  a  gradual  diminution 
in  coking  properties,  but  as  it  decreases  there  is  an 
abrupt  disappearance  of  coking  properties  in  the 
region  of  15—20%  of  volatile  matter.    Certain  coals 
of  similar  ultimate  composition,  and  derived  from 
the   same   locality,    are   widely    different    in   their 
coking    qualities.      The    results    of    the    present 
researches  do  not  support  the  attempts  which  hav< 
been  made  to  correlate  the  coking  property  with  th< 
resin  content  of  coal  (cf.  Illingworth,  J.,  1920,  111 
and   134  t).     Several  coals  were   extracted   in  at 
atmosphere  of  nitrogen  with  acetone  and  benzen< 
respectively,   using  a  modified  Soxhlet  apparatus 
From  066%   to  12"56%   of  the  coal  substance  wa 
extracted  without  impairing  the  coking  properties 
Two  hard  coking  coals  were  extracted  successivel; 
with  ether   for   11   days,    alcohol   for  9  days,   am 
benzene  for  15  days.     The  total  extracts  amount? 
to  663%   and  5-ll%  ;  each  residue  after  drying  r 
nitrogen  yielded  as  6trong  a  coke  as  did  the  origins 
coal.      The    destruction    of    coking    properties    b 
extraction  of  coal  with  pyridine  is  due  to  depoh 
merisation   of   the   coal   substance    (cf.    Bone  an 
Sarjant,   J.,    1919,    752  a).      Extraction   of  cokin 
coals    for  one    day    with   symmetrical   tetrachlorc 
ethane,   which  attacks  the  coal  with  evolution  < 
hydrochloric  acid,    left   non-coking  residues.     Tr 
chloroethylene  left  coking  residues,  as  did  chlon 


Vol.  XLI.,  No.  7.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


241  a 


>rm  at  its  boiling  point,  but  coking  properties  were 
sstroyed  by  the  action  of  chloroform  vapour  at 
!0° — 270°  C.  One  kg.  of  coal  was  treated,  in  a 
;ssel  fitted  with  a  reflux  condenser,  with  a  mixture 
!  equal  volumes  of  pyridine  and  amyl  alcohol, 
art  of  the  extract  was  soluble  in  ether  and  was 
irther  separated  into  a  non-resinous  wax-like  sub- 
,ance,  soluble  in  petroleum,  and  a  resin,  insoluble 
i  petroleum,  to  which  the  formula,  C31H3203,  is 
scribed.  The  portion  insoluble  in  ether  consisted 
;  humic  substances  which  were  soluble  in  chloro- 
>rm  and  partially  soluble  in  alcoholic  potash 
ilution  and  which,  like  cellulose  itself,  showed  an 
cothermic  decomposition  within  the  temperature 
inge  275°— 375°  C.  (c/.  Hollings  and  Cobb,  J., 
)15,  862).  These  substances  probably  constituted 
considerable  part  of  the  pyridine-chloroform 
ctract  prepared  by  Clark  and  Wheeler  (J.,  1913, 
J9).  The  influence  of  the  various  substances 
ms  isolated  in  the  formation  of  coke  was  deter- 
ined  by  mixing  them  in  varying  proportions  with 
powdered  coke  and  heating  the  mixture  in  a  small 
on  vessel  at  900°  C.  The  wax-like  substance  and 
le  portion  of  a  pyridine  extract  which  was  in- 
iluble  in  chloroform  gave  pulverulent  residues, 
he  resin  and  the  alkali-soluble  humic  material  had 
msiderable  cementing  power  but  not  more  than 
%  of  the  resin  was  obtained  from  coal.  The  chloro- 
irm-soluble  humic  material  gave  a  firm  coke ;  the 
ield  of  this  was  4%  from  a  strongly  coking  coal 
ut  only  1'7%  from  a  weakly  coking  coal.  The  chief 
inding  agente  in  coking  appear  to  be  those  humic 
•ansformation  products  of  cellulose  having  fusion 
jmperatures  below  those  at  which  they  rapidly 
ecompose. — H.  Hg. 

as  from  destructive  distillation  of  a  mixture  of 

water-gas  tar  and  coal;  Study  of  ■ .     R.  L. 

Brown.  Cheni.  and  Met.  Eng.,  1922,  26,  363—365. 

.  mixture  of  70%  of  gas  coal  and  30%  of  water-gas 
ir,  resulting  from  the  Trent  process  for  cleaning 
aal  (cf.  Perrott  and  Kinney,  J.,  1921,  615  a),  was 
istilled  in  a  gas-retort  and  an  examination  made 
f  the  unsaturated  hydrocarbons  found  in  the  gas 
fter  removal  of  tar  and  ammonia.  The  gas  sample 
as  treated  with  caustic  soda  to  remove  hydrogen 
llphide  and  with  charcoal  to  remove  oils  and 
apours,  and  was  then  measured  and  passed 
irough  a  train  of  three  wash  bottles  containing 
romine  covered  by  a  little  water.  The  wash  bottles 
ere  immersed  in  a  bath  maintained  at  5°  C.  The 
olume  of  gas  treated  was  40  cub.  ft.  and  about 
%  of  this  was  absorbed  by  the  bromine.  The  crude 
lomidL-s  produced  were  washed  with  sodium  car- 
onate  and  water,  dried  with  calcium  chloride  and 
■actionated  under  reduced  pressure  in  an 
tmosphere  of  nitrogen.  The  first  fraction  boiling 
slow  60°  C.  at  12  mm.  was  further  fractionated 
ito  five  fractions,  which,  from  a  consideration  of 
leir  physical  properties,  were  identified  as 
)  benzene,  (b)  ethylene  dibromide,  87'5%,  and 
onobromopentane,  12'5%,  (c)  propylene 
bromide,  (d)  butylene  dibromides,  90%,  and 
onobromobenzene,  10%,  and  (e)  amylene 
bromides  with  p-dibromobenzene.  The  second 
action  boiling  up  to  125°  C.  at  35  mm.  consisted  of 
bromobenzenes,  and  the  residue  was  a  tarry  mass 
>m  which  tetrabromobutane  was  extracted  by 
ler.  The  quantities  of  define  derivatives  were 
uivalent  to  23"10  cub.  ft.  of  ethylene,  1034  cub. 
of  propylene,  2'25  cub.  ft.  of  butylene,  and 
■C  cub.  ft.  of  amylene  per  1000  cub.  ft.  of  gae. 

— H.  Hg. 

'ji  carbonyl;  Formation  of from  coal  gas 

,i'Sed  for  lighting  railway  carriages,  and  preren- 
,  ion  of  the  same.  H.  Bunte  and  E.  Terres.  Gas- 
i.  Wasserfach,  1922,  65,  145—147. 

t  istitction  of  coal  gas  for  oil  gas  for  filling  the 


cylinders  for  railway  carriage  lighting  was  followed 
by  a  great  decrease  in  the  illuminating  power  of  the 
incandescence  mantles  owing  to  deposition  of  iron 
oxide  from  iron  carbonyl  present  in  the  gas.  The 
formation  of  iron  carbonyl  was  shown  to  be 
dependent  upon  the  proportion  of  carbon  monoxide 
in  the  gas,  the  nature  of  the  iron  surface  with 
which  it  came  in  contact,  the  pressure,  the  time  of 
contact,  and  the  temperature,  and  was  favoured  by 
the  presence  of  hydrogen.  In  a  cylinder  with 
polished  iron  surface  after  20  days  the  gae  contained 
1"6  mg.  of  iron  per  cub.  m.  of  the  contained  gas, 
while  in  one  with  a  hammered  surface  the  gas  con- 
tained 28  mg.  of  iron.  In  vessels  containing  gas  at  a 
pressure  of  10  atm.  there  was  a  great  increase  in  the 
iron  content  of  the  gas  with  the  lapse  of  time;  in 
one  case  3'9  mg.  of  iron  per  cub.  m.  was  found  im- 
mediately after  filling,  420  mg.  offer  60  days,  and 
1100  mg.  after  240  days,  but  the  results  varied 
greatly,  depending  also  upon  other  factors.  The 
presence  of  hydrocarbons  in  the  gas  greatly 
diminished  the  formation  of  iron  carbonyl,  probably 
owing  to  the  condensation  of  a  film  of  liquid  hydro- 
carbons on  the  surface  of  the  iron.  The  surface  of 
the  cylinders,  with  lapse  of  time,  became  inert,  and 
no  more  carbonyl  was  formed.  The  optimum  tem- 
perature for  the  formation  of  carbonyl  was  found 
to  be  50°  C.  To  prevent  the  undesirable  effects  of 
the  iron  compound  on  the  mantles  the  gas  might 
be  passed  through  a  red-hot  tube  before  reaching 
the  burner,  when  the  carbonyl  would  be  decom- 
posed. A  way  of  obviating  the  formation  of 
carbonyl  would  be  the  abstraction  of  carbon 
monoxide  from  the  gas  by  the  action  of  steam,  at  a 
suitable  temperature  and  in  the  presence  of  a 
catalyst,  with  the  formation  of  carbon  dioxide  and 
hydrogen. — H.  M. 

Wash   oils  for  removing   benzol  and  naphthalene 

from  gas;  Examination  of  .     F.   Pannertz. 

Gas-  u.  Wasserfach,  1922,  65,  113—115. 

One  hundred  litres  of  pure  air  is  drawn  successively 
through  50  c.c.  of  crude  benzol,  70  c.c.  of  the  oil  to 
be  tested,  20  c.c.  of  dilute  sulphuric  acid,  and  80  c.c. 
and  20  c.c.  respectively  of  saturated  picric  acid 
solution.  The  loss  in  weight  of  the  crude  benzol, 
and  the  increase  in  weight  of  the  test-oil,  indicate 
the  absorbing  capacity  of  the  test-oil  for  benzol, 
whilst  in  the  two  picric  acid  vessels  it  is  seen 
whether  the  oil  gives  up  too  much  naphthalene,  and 
whether,  for  this  reason,  it  is  unsuitable  for  further 
use  as  a  scrubbing  oil.  The  main  disadvantage  is 
that  traces  of  benzol  vapour  which  may  be  carried 
over  render  the  naphthalene  picrate  lighter,  and 
instead  of  separating  out,  the  picrate  collects  in 
flocculent  layers  in  the  upper  part  of  the  acid 
solution.  With  practice,  however,  one  can  easily 
judge  whether  the  oil  gives  up  too  much 
naphthalene,  and  if  a  quantitative  determination 
is  necessary  a  pipette,  with  closed  top,  can  be 
pushed  through  the  picrate  precipitate,  and  the 
clear  liquor  sucked  off.  By  this  means,  filtering 
(which  introduces  greater  errors)  can  be  avoided. 
V  —A.  G. 

Shale;  Saturated  and  unsaturated  oils  from  . 

C.  W.  Botkin.     Chem.  and  Met.  Eng.,  1922,  26, 

398—401.  (C/.  J.,  1921,  458  a.) 
Shale  oils  of  various  origins  were  distilled  from  a 
distillation  flask.  The  amount  of  saturated  com- 
pounds (insoluble  in  cold  concentrated  sulphuric 
acid)  was  greater  in  the  distillate  than  in  crude  oil. 
Analyses  of  the  crude  oil  and  the  distillate  indicated 
that  nitrogen  was  expelled  during  distillation,  and 
that  the  increase  in  saturated  substances  in  the  oil 
was  greatest  (11 — 18%)  when  the  loss  of  nitrogen 
was  greatest  (17%  of  total  nitrogen),  suggesting 
that  the  formation  of  saturated  compounds  during 
distillation  is  caused  by  the  decomposition  of  un- 

a2 


242  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[April   15,   1922. 


stable  nitrogen  compounds.  Heavy  fractions  pre- 
pared by  steam  distillation  of  the  crude  shale  oil 
were  rich  in  unsaturated  compounds,  and  on  redis- 
tillation (without  steam)  the  total  content  of 
saturated  compounds  was  increased.  A  similar 
change  towards  increased  content  of  saturated 
compounds,  though  less  pronounced,  was  observed 
on  the  distillation  of  lighter  fractions.  It  is  con- 
cluded that  an  unstable  highly  unsaturated 
substance  is  formed  by  the  primary  decomposition 
of  kerogen,  and  from  this  lighter  compounds  of 
higher  saturated  content  are  formed  by  secondary 
decomposition.  Crude  shale  oils  consist  of  both 
primary  and  secondary  decomposition  products. 

— H.  M. 

Petroleum-  Artificial  from  fish  oils.     II.     K. 

Kobayashi  and  E.  Yamaguchi.  Kogyo-Kwagaku 
Zasshi  (J.  Chem.  Ind.,  Japan),  1921,  24,  1399— 
1420.  (Cf.  J.,  1921,  250  a.) 
Artificial  petroleum  has  been  prepared  from  fish 
oils  on  the  laboratory  scale,  and  also  on  a  semi- 
industrial  scale,  using  a  flat  retort  designed  by 
Kobayashi.  The  yield  of  the  petroleum  depends  upon 
the  kind  of  fish  oil,  the  construction  of  the  retort, 
the  duration  of  distillation,  and  the  properties  of 
the  contact  material  used,  such  as  Japanese  acid 
clay  or  fuller's  earth.  In  each  case  25  gallons  of 
fish  oil  was  mixed  with  180  lb',  of  granular  Japanese 
acid  clay  and  covered  with  150  (or  180)  lb.  of  the 
new  or  once  used  clay.  Shark  oil  (sp.  gr.  09192, 
saponif.  value  1636)  gave  74%  (calc.  on  the  material 
used)  of  distillate  (sp.  gr.  08502,  saponif.  value 
38'2);  sardine  oil  (sp.  gr.  0-9272,  saponif.  value 
1736)  61%  of  distillate  (sp.  gr.  0'8600,  saponif. 
value  47'6),  and  arctic  sperm  oil  (sp.  gr.  08775, 
saponif.  value  1142)  64%  of  distillate  (sp.  gr. 
08080,  saponif.  value  122).  On  fractional  distilla- 
tion the  artificial  petroleum  gave  3'8%  of  gasoline 
(b.p.  below  100°  C,  sp.  gr.  06932),  8'0%  of 
naphtha  (b.p.  100°— 150°  C,  sp.  gr.  07428),  6"2% 
of  lamp  oil  (b.p.  150°— 200°  C,  sp.  gr.  0-7880),  8'0% 
of  heavier  lamp  oil  (b.p.  200°— 250°  C.  sp.  gr. 
08272),  and  39"0%  of  machine  oil  (b.p.  above 
250°  C,  sp.  gr.  0-8875).— K.  K. 

Petroleum;  Artificial from  soya  bean,  coconut, 

and  chrysalis  oils  and  stearine.  K.  Kobayashi. 
KogyS-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan), 
1921,  24,  1421—1424. 
A  mixtuhe  of  the  sample  and  finely  powdered 
Japanese  acid  clayischarged  into  an  iron  retort  and 
covered  with  the  same  clay.  The  retort  is  gradually 
heated  under  the  ordinary  pressure,  the  distillation 
being  completed  at  about  700°  C.  The  product  has 
a  greenish  fluorescence  and  an  odour  very  similar  to 
that  of  the  artificial  petroleum  obtained  from  fish 
oils  (cf.  supra).  Soya  bean  oil  (sp.  gr.  09268, 
saponif.  value  1923)  gave  55%  of  distillate,  which 
was  further  fractionated  into  10%  of  light  oil  (b.p. 
below  150°  C,  sp.  gr.  0-7380,  saponif.  value  77), 
17-3%  of  illuminating  oil  (150°— 250°  C,  sp.  gr. 
08173,  saponif.  value  188),  and  27-7%  of  neutral 
and  heavy  oil  (above  280°  C,  sp.  gr.  0-8903,  saponif. 
value  22-3).  Coconut  oil  (sp.  gr.  09294,  saponif. 
value  253'5)  produced  54-7%  of  distillate  (sp.  gr. 
08176,  saponif.  value  83-5),  which  gave  96%  of 
light  oil  (sp.  gr.  0;7679,  saponif.  value  110),  34-7% 
of  illuminating  oil  (sp.  gr.  0'8244,  saponif.  value 
68'1)  and  10"4%  of  neutral  and  heavy  oil  (sp.  gr. 
0"9060,  saponif.  value  89'3).  Chrvsalis  oil  (sp.  gr. 
09256,  saponif.  value  200-5)  gave  56"6%  of  distillate 
(sp.  gr.  0'8499,  saponif.  value  41'8);  and  stearine 
(m.p.  53°  C,  neutral,  value  211)  gave  63-4%  of  dis- 
tillate (sp.  gr.  0-8177,  saponif.  value  52-2),  which 
gave  11'62%  of  light  oil  (sp.  gr.  07160,  saponif. 
value  5-2),  19-67%  of  illuminating  oil  (sp.  gr.  08041. 
saponif.  value  8'6),  and  32"11%  of  neutral  and 
heavy  oil  (sp.  gr.  08668,  saponif.  value  42-5). 

— K.  K. 


Boundary  lubrication.  The  paraffin  series.  W  B 
Hardy  and  I.  Doubleday.  Proc.  Roy.  Soc.,  1922' 
A  100,  550—574.  '  ' 

Boundary  lubrication,  in  which  the  solid  surfaces 
are  near  enough  together  to  influence  the  physical 
properties    of   the    lubricant,    as    with    "dry"    or 
''greasy"  surfaces,   differs  greatly  from  complete 
lubrication,  in  which  the  surfaces  are  floated  apart 
by  the  lubricant.     In  boundary  lubrication  friction 
depends  on  the  lubricant  and  also  on  the  chemical 
nature  of  the  solid  boundaries.     Investigations  were 
made  with   normal    paraffins   and   their   acids  and 
alcohols  on  polished  surfaces  of  bismuth,  glass,  and 
steel.     The  sliding  element  had  a  spherical  surface 
and  was  applied  to  a  plane  surface.     The  pull  on  the 
slider  was   parallel   to   the  plane   surface  and  was 
measured  by  weights.     "  Clean  "  surfaces,  or  those 
from  which   the  grosser   impurities   have  been  re- 
moved, are  marked  by  the  development  of  a  high  and 
constant  value  for  friction,  the  coefficient  being  for 
glass   094   and   for   steel   074.     The   coefficient  of 
friction  n  is  independent  of  the  weight  and  of  the 
curvature.     Tables  give  the  observed  value  of  \i  for 
a  series  of  alcohols  and  surfaces  of  glass  and  steel, 
with   varying   weights.     The   flooded   state   is  pro- 
duced by  placing  a  drop   of  the  lubricant  on  the 
plate,  so  that  the  slider  stands  in  a  pool  of  fluid.     A 
drop  of  lubricant  of  sensible  vapour  pressure  placed 
on  a  clean  plate  slowly  develops  a  primary  film  over 
the  plate  by  primary  spreading.     The  same  result 
may  follow  the  introduction  of  vapour  of  a  lubricant 
of   sufficiently   high   vapour   pressure.     Friction   is 
independent  of  the  quantity  of  lubricant  present  it 
there  be  enough  to  develop  the  primary  film,  and 
the  vapour  pressure  of  the  film  is  the  same  as  that  ol 
the  free  surface  of  the  drop.     Curves  snowing  the 
coefficient  of  friction  in  relation  to  g.-mols.  of  ethyl 
alcohol  per   litre  of  air  are  substantially  straight 
lines  except  at  very  low  vapour  pressures,  but  do  not 
meet  the  /i-axis  at  the  "clean  "  value,  as  a  finite 
concentration  of  lubricant  on  the  surface  is  needed 
to  produce  any  fall  in  friction.     The  curves  for  glass 
and  steel  are  parallel  to  each  other  over  the  lineal 
portion,  as  also  are  curves  for  6olid  lubricants.     On 
polishing    off    a   liquid    film    with   clean    linen   th< 
friction  rises  to  the  "clean  "  value,  but  with  solids 
an  invisible  film  of  low  friction  is  left.     Curves  are 
given    showing    friction    values     plotted    against 
molecular   weight.      For  each   chemical   series  the 
curve  is  a  straight  line.     Changing  the  nature  of 
the  solid  face  causes  the  curve  to  be  moved  para'l' 
to  itself.     When  the  slider  is  the  softer  of  two  solids, 
and  the  plate  the  harder,  the  value  of  -i  is  exactly 
midway  between  the  values  obtained  with  the  two 
solids  when  both  slider  and  plate  are  made  of  the 
same  material.     When  two  solid  faces  are  separated 
by  a  layer  of  lubricant  the  molecules  cf  the  i 
are   highly   oriented,    and   the    lubricant   loses   itt 
fluidity  under  the  influence  of  the  attractive  field: 
of  the  solids.      The  system   is   homogeneous  alonj 
surfaces    parallel    to    the    solid    faces,    and    whei 
tangential  force  is  applied  slipping  occurs  along  on> 
or  two  planes.     There   is   no   break   in  the  curve 
connecting  friction  with  molecular  weight  when  th< 
lubricant   becomes    a    solid.     Current    opinions    ;i 
regards   the   nature   of   the   film   of   lubricant   ar 
reviewed,   and  deductions  made.     Appendices  des 
with  irregularlv  loaded  sliders  and  spreading. 

-H.  U 

Oil   films    in    high   speed   bearings;   Thicknest  »>. 

resistance  of .    G.  Stoney,  R.  O.  Boswall.  an 

J.  Massey.  Engineering,  1922,  113,  249—250. 
An*  apparatus  is  described  by  means  of  which  it 
possible  to  determine  the  thickness  of  oil  films  i 
bearings  and  to  discover  in  what  way  this  thickne 
changes  with  variations  in  load,  rubbing  speed  at 
viscosity.  Within  the  limits  of  the  experiment 
which   were  395  to   117'5   lb.   per   sq.    inch  loa 


Vol.  XLI.,  No.  7. 


Ul.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


243  a 


28 — 67  ft.  per  second  rubbing  velocity,  and  0'416 — 
0157  C.G.S.  units  viscosity  of  lubricating  oil,  the 
eccentricity,  e,  and  the  intensity  of  shear,  p,  may 
be  expressed  approximately  by  the  formulae : 
e  =  0-00986A.'>-"V,'-"/P0-'5  in.,  and  p  =  0-0370\°-"V0-"* 
xpo.a;s  jij  per  Sq  jn  ^  where  A  is  the  viscosity  in 
dynes  per  sq.  cm. ;  V  the  rubbing  speed  in  ft.  per 
second;  and  P  the  pressure  in  lb.  per  sq.  inch  on 
the  brasses.  These  formulas  compare  not  unfavour- 
ably with  the  theoretical  formulas.  The  formulae 
agree  as  to  the  dependence  of  shear  on  load,  in 
opposition  to  the  usually  accepted  statement  that 
shear  is  independent  of  pressure.  The  position  for 
the  line  of  centres  with  reference  to  the  vertical  axis 
appears  to  be  independent  of  load  and  speed,  and 
only  slightly  dependent  upon  viscosity.  Curves  are 
given  showing  the  relationship  between  temperature 
and  viscosity,  the  results  for  total  load  of  59'2  lb. 
per  sq.  in.,  and  for  the  determination  of  values  for 
eccentricity  and  shear  for  any  combination  of  A,  P, 
and  V.— H.  M. 

Lubrication;  Present  position  of  the  theory  of . 

Giimbel.    Forschungsarb.  Geb.  Ingenieurw.,  1920, 
[224],  3—27.    Chem.  Zentr.,  1922,  93,  II.,  489. 

The  author  characterises  the  conditions  of  dry, 
liquid  and  semi-liquid  friction.  The  influence  of 
temperature  on  the  viscosity  of  lubricants  is  repre- 
sented by  the  equation 

l/'/  =  U/>;)mm+K(0-<?min)2. 
where  n  is  the  viscosity  and  6  the  temperature,  9miD 
being  the  temperature  at  which  the  fluidity  (I  I  if)  is 
a  minimum.  Engler's  and  Hofer's  experiments 
show  that  K  is  greater  the  lower  the  viscosity  of 
the  oil.  Olive  oil  would  be  the  best  lubricant  and 
water  entirely  unsuitable  as  such.  A  new  apparatus 
is  proposed  for  the  measurement  of  fluidity,  the 
outlet  opening  being  a  capillary  slit.  The  Von 
Dallwitz-Wegener  theory,  whereby  the  minimum 
quantity  of  lubricant  required  is  dependent  on  the 
surface  tension  and  the  angle  of  contact  between 
the  lubricated  surface  and  the  lubricant,  is  criti- 
cised, and  capillary  forces  are  considered  to  be 
without  influence  on  the  friction  between  properly 
lubricated  surfaces  of  machine  parts. — H.  C.  R. 

Manuring  with  gas  liquor.    Mews.    See  XVI. 

Patents. 

Carbonaceous  materials;  Treatment  of .   W.  E. 

.    Trent.      E.P.  159,497,  15.12.20.      Conv.,  25.2.20. 
Addn.  to  151,236  (J.,  1921,  684  a). 

The  mixture  of  oil  and  solid  carbonaceous  material 
>roduced  in  the  cleaning  process  is  mixed  with 
aore  oil  and  forced  through  an  externally  heated 
oiled  pipe  in  order  to  volatilise  the  oil  and  the 
olatile  portion  of  the  solid  material.  Air  or  gas  ; 
lay  also  be  passed  through  the  pipe  as  a  carrying 
ledium  for  the  solid  particles.  The  carbonised  j 
oWder  and  the  vapours  issuing  from  the  heated 
ipe  are  passed  into  a  separator  from  which  the 
owder  is  withdrawn,  and  the  vapours  are  passed 
orward  into  a  condenser  and  recovered  for  further 
se.  A  further  separation  of  ash  particles  may  be 
fected  by  rapidly  heating  the  materials  in  the  tube 
r  by  subjecting  the  heated  materials  to  a  sudden  j 
eduction  in  pressure.  The  powder  and  vapours 
re  in  this  case  treated  with  water  to  effect  con- 
^nsation  of  the  vapours,  and  ash  is  eliminated 
oni  the  resulting  mixture  as  in  the  original  pro- 
ss.— H.  Hg. 

riquetting   or  drying;  Presses  for  .      A.   G.    j 

Bloxam.     From  Ges.  fur  Maschinelle  Druckent-    , 
wiisserung    m.b.H.    (Madruck).      E.P.     174,657, 
30.7.20. 

pbess  of  the  type  comprising  a  number  of  moulds, 
ranged   on  the   circumference   of   a   circle,    into 


which  plungers  are  moved  by  means  of  a  cam  path 
with  which  the  plungers  engage  or  against  which 
they  bear,  is  so  constructed  that  the  proportion  of 
the  cycle  of  movement  which  is  devoted  to  actual 
compression  is  about  70—75%,  instead  of  50%  or 
less  as  hitherto.  By  this  means  it  is  possible  to  expel 
efficiently  the  water  from  colloidal  masess,  such  as 
wet  peat  and  coal  slimes  containing  up  to  95% 
of  water  and  to  compress  the  partially  dehydrated 
mass  into  briquettes.  A  gradual  and  regular  appli- 
cation of  pressure  is  essential  for  the  treatment  of 
such  materials.     (Cf.  Caro,  J.,  1922,  45  a.) 

— A.  R.  M. 

Fuel;  Utilisation  of  wet  powdered  A     F 

Maclaren.  E.P.  175,004,  30.10.20  and  12.7.21. 
Wet  powdered  fuel,  hitherto  not  suitable  for  gasifi- 
cation or  combustion,  is  utilised  by  delivering  it, 
in  small  particles  or  aggregations,  into  a  stream  of 
hot  air,  steam,  or  other  suitable  gas,  at  500° — 1500° 
F.  (260°— 815°  C).  The  stream  is  broken  up  and 
the  settling  of  the  particles  retarded  by  means  of 
rotating  agitators  moving  in  the  tube  carrying  the 
mixture  of  fuel  dust  and  gas.  The  material  is  pro- 
pelled by  means  of  the  stream  of  gas,  to  a  place, 
such  as  a  furnace  or  producer,  where  it  is  burnt 
or  gasified  as  required.  Alternatively  the  material 
may  be  wholly  or  partially  gasified  during  its  pro- 
pulsion, whereby  water-gas,  producer-gas,  or 
gaseous  distillation  products  are  formed. — A.  R.  M. 


Pulverising  fuel;  Machines  for 
E.P.  175,301,  25.2.21. 


C.  E.  Blyth. 


A  disc  rotates  within  a  casing  and  impellers  pro- 
jecting from  both  faces  of  the  disc  co-operate  with 
fixed  pins  within  the  casing.  Fuel  is  fed  through 
an  opening  in  one  side  of  the  casing  and  heated  air 
is  admitted  at  an  adjacent  point.  The  air  and  sus- 
pended particles  pass  around  the  edge  of  the  disc 
and  are  withdrawn  near  the  axis  on  the  side  oppo- 
site to  the  inlet.  There  is  sufficient  clearance 
between  the  impellers  and  the  casing  to  permit  the 
passage  of  fuel  particles  from  the  periphery  to  the 
axis  of  the  machine  on  either  side  of  the  disc. 
Blades  are  fitted  to  the  periphery  of  the  disc  on  the 
inlet  side  of  the  casing,  and  also  around  the  hub 
of  the  disc  at  the  outlet  side,  in  order  to  throw 
back  tho  coarser  particles  amongst  the  impellers. 

— H.  Hg. 

Lignite  and  peat;  Process  for  dehydrating  ■ by 

treatment  with  solvents  miscible  with  water.    M. 
Kriiger.    G.P.  346,291,  1.9.20. 

The  wet  material  is  treated  with  the  solvent  in  a 
continuous  counter-current  apparatus.  Ethyl  and 
methyl  alcohols,  acetone  oils  and  mixtures  of  the 
same  can  bo  used  as  solvents.  The  solvents  having 
low  boiling  points  can  be  recovered  by  aid  of  the 
heat  in  tho  vapours  evolved  during  the  drying  of 
the  lignite.— H.  C.  R. 

Coke  ovens.    T.  Sato.    E.P.  175,091,  19.11.20. 

The  whole  or  a  part  of  the  air  required  for  combus- 
tion of  the  heating  gases  in  a  coke  oven  is  supplied 
from  a  number  of  boxes  constructed  of  refractory 
material  and  fitted  in  the  walls  of  the  oven.  The 
side  of  the  box  facing  the  combustion  chamber  is 
provided  with  a  number  of  openingB  arranged  in 
staggered  formation  and  of  such  size  that  air  issue? 
therefrom  at  a  relatively  high  velocity.  The  open- 
ings are  inclined  towards  the  outlet  end  of  the  oven 
in  order  to  assist  the  natural  draught. — H.  Hg. 

Coke-ovens;    Regenerative   .      J.    H.    Brown. 

E.P.  175,312,  11.8.20. 

A  regenerative  coke  oven  of  the  Otto  type,  as 
described  in  E.P.  147,231,  147,740,  and  147,741  (J., 
1921,  501  a,  617  a,  727  a),  has  regenerators  built  on 


244  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[April   15,   1922. 


arches,   and  gas  supply  pipes  extending  vertically 
between   the    regenerators.    .  The   air   and   gas   are 
supplied  under  pressure,  and  can  be  regulated  from 
beneath  the  arches  by  means  of  readily  accessible 
cocks.      A   modification   is  described   in   which  the    i 
principle  is  adapted  to  regenerators  which  are  not   j 
divided  into  compartments  to  correspond  with  the   | 
individual  flues,  but  are  divided  parallel  with  the 
oven  to  allow  of  the  use  of  lean  gas  for  heating. 

—A.  R.  M. 

Gas  producer.  J.  R.  George,  Assr.  to  Morgan 
Construction  Co.  U.S. P.  1,406,637,  14.2.22. 
Appl.,  1.7.15. 

An  ash  support,  on  which  the  bed  of  fuel  rests,  is 
provided  with  movable  means  whereby  blast  may 
be  discharged  into  the  bed  over  the  entire  suriace 
of  the  ash  support,  provision  being  made  for  con- 
trolling the- discharge  of  the  ashes. — A.  R.  M. 

Fuel  having  a  high  moisture  content;  Process  for 

distilling by  means  of  steam  liberated  in  the 

drying  zone  and  subsequently  superheated.  A.-G. 
fur  Brennstoffvergasung.    G.P.  345,131,  19.10.19. 

The  steam  is  passed  repeatedly  through  the  distil- 
lation zone  before  it  escapes  with  the  products  of 
distillation  to  the  condensers. — L.  A.  C. 

Acetylene ;  Method  for  manufacturing  cylinders  for 

dissolved .     O.  H.  Skinner  and  H.  S.  Smith, 

Assrs.    to    Prest-O-Lite    Co.      U.S.P.    1,407,588, 
21.2.22.     Appl.,  5.7.16. 

The  cylinder,  after  being  filled  with  a  semi-liquid 
ceramic  mass,  is  closed,  and  a  further  supply  of  the 
material  forced  in  under  pressure,  the  whole  being 
then  baked. — A.  R.  M. 

Acetylene ;  Process  for  purifying  from  hydro- 
gen phosphide  and  hydrogen  sulphide.  A. 
Wacker  Ges.  fiir  elektrochem.  Ind.  G.P.  346,311, 
2.6.20. 

Solutions  of  chlorine  or  bromine  in  indifferent  sol- 
vents are  allowed  to  act  on  the  acetylene.  The  dilu- 
tions used  are  such  that  the  acetylene  itself  is  un- 
affected. Explosions  do  not  occur,  as  the  acetylene 
only  comes  into  contact  with  the  exact  quantity  of 
the  purifying  agent  required. — H.  C.  R. 

Blast  furnace  and  like  gases;  Purification  of . 

Halbergerhutte  Ges.m.b.H.  E.P.  172,269,  20.1.21. 
Conv.,  1.12.20. 

Blast-furnace  gas  or  similar  gas,  prior  to  filtration 
or  purification,  is  superheated  by  the  addition  of  a 
hot  current  of  air,  or  of  products  of  combustion 
from  a  burner  or  furnace.  A  diverted  current  of 
the  crude  gas,  which  has  been  heated  by  passing 
through  a  hot  refractory  regenerator,  may  be  used 
for  the  purpose  if  desired.  The  superheating  may 
be  due  either  to  the  heat  exchange  between  the  hot 
current  and  the  crude  gas,  or  to  the  heat  of  com- 
bustion of  a  portion  of  the  crude  gas,  the  combus- 
tion being  supported  by  oxygen  present  in  the 
current  of  air  or  the  like.  A  valve  device  may  be 
used  to  control  the  flow  of  the  current  of  hot  gas  so 
that  it  passes  either  into  the  open  air  or  into  the 
crude  gas. — A.  R.  M. 

Hydrogen    sulphide;   Process   for    separating    

from  the  gases  from  the  distillation  of  coal.     J. 
Terwelp.    G.P.  346,310,  19.11.16. 

After  the  removal  of  ammonia,  the  gas  is  treated 
with  solutions  containing  at  least  7%  of  alkali  car- 
bonate, at  as  high  a  temperature  as  possible.  The 
hydrogen  sulphide  is  recovered  from  the  solution, 
which  can  be  used  over  again. — H.  C.  R. 


Gas-purifying  material;  Preparation  and  revivifica- 
tion of  exhausted  to  recover  the  contained 

free  sulphur.  B.  Loewe.  G.P.  346,063,  8.7.20. 
The  substance  from  purifier  boxes,  after  treatment 
with  water,  preferably  at  a  pressure  slightly  above 
atmospheric,  is  subjected  to  the  action  of  a  current 
of  steam  superheated  to  above  200°  C.  and  then 
treated  with  alkali. — H.  M. 

Hydrocarbons;  Volatilising  and  decomposing  . 

A.  J.  Stephens.  From  Canadian  American 
Finance  and  Trading  Co.  E.P.  174,965,  9.8.20. 
Developments  and  modifications  of  the"  process  de- 
scribed in  E.P.  169,763  (J.,  1921,  804  a)  are  claimed. 
Heat  is  imparted  instantaneously  to  the  hydrocar- 
bon substance  by  causing  it  to  flow  together  with  a 
heating  fluid  in  a  first  stage,  and  sometimes  the 
hydrocarbon  vapours  and  further  heating  fluid  in 
subsequent  stages.  Particular  distillation  products 
are  won  by  controlling  the  condensation  in  the 
several  stages.  By  imparting  to  the  hydrocarbon 
an  excess  of  heat  units,  and  the  subsequent  expan- 
sion of  the  mixture,  large  molecules  are  broken  up 
into  small  ones,  and  the  use  of  hot  metallic  surfaces 
and  consequent  dehydrogenation  aud  polymerisa- 
tion are  avoided.  The  hydrocarbon  vapours  are 
separated  by  filtration,  and  the  recovery  of  the  pro- 
ducts is  effected  continuously.  When  steam  is  em- 
ployed as  the  heating  fluid  it  is  not  used  at  such  a 
temperature  as  to  result  in  the  oxidation  of  the  oil 
vapours.  It  is  possible  to  obtain  30  U.S.  galls,  of  oil 
from  a  short  ton  of  Alberta  tar  sands.  The  oil 
contains  15%  of  bitumen  and  may  yield  8% 
of  gasoline,  30%  of  kerosene  and  40%  of  heavy 
oil.  The  crushed  and  screened  sand  is  melted 
by  steam  or  direct  fire,  and  then  passes  to  a  mixer, 
or  directly  to  a  hydrocarbon  separator,  which  com- 
prises two  heated  compartments  with  filtering  par- 
titions of  wire  gauze  or  porous  material  between 
them,  and  mixing  and  heating  inlet  chambers,  con- 
nected with  the  conduit  from  the  melter  and  with 
steam  branches.  The  volatile  contents  of  the 
separator  pass  continuously  through  the  filtering 
partition,  and  solid  matter  and  coke  are  discharged 
from  the  bottom  of  the  compartment  through  a 
valve  and  water  seal.  The  partition  is  kept  from 
becoming  clogged  by  periodical  reversal  of  the  direc- 
tion of  flow.  The  filtered  hydrocarbons  flow  through 
conduits  to  a  series  of  condensers  and  scrubbers,  to 
which  further  heating  fluid,  or  cooling  water,  may 
be  admitted.  Liquids  are  drawn  off  from  the 
scrubbers  and  passed  to  a  receiver,  whence  they  may 
be  returned  through  the  scrubbers,  or  through  s 
cooler  to  a  tank.  A  different  fraction  of  the  hydro- 
carbons may  be  drawn  off  from  each  scrubber. 

— H.  M. 

Centrifugally  separating  substances  [.e.g.,  paraffi' 

wax  from  oil];  Method,  and  mechanism  for 

H.   A.   Gill.     From  The   Sharpies   Specialty  Co 
E.P.  175,121,  29.11.20. 

See  U.S.P.  1,373,743  of  1921;  J.,  1921,  334a.  Oi 
containing  paraffin  wax  is  chilled  to  precipitate  ihi 
wax  and  then  subjected,  together  with  an  im 
miscible  carrier  liquid,  to  centrifugal  force  in  a  re 
volving  bowl  having  discharge  passages  with  con 
trolling  means  at  distances  from  the  axis  of  rotatioi 
adjusted  according  to  the  respective  densities  of  oil 
wax,  and  carrier  liquid. 

Dchydrator    [for    petroleum    emulsions'].      F.    W 

Harris.  E.P.  175,352,  3.11.20. 
The  dehydrator  comprises  a  closed  tank  into  whir 
the  emulsion  is  introduced  by  a  perforated  pipe  a 
the  bottom.  Clean  oil  is  withdrawn  from  the  to 
and  water  from  the  bottom.  A  stationary  hollo' 
cylindrical  electrode  hangs  from  the  top  of  the  tan 
and  is  insulated  from  it.  Surrounding  this  ele< 
trode  and  electrically  connected  with  the  tank,  is 


Vol.  XLI.,  No.  7.]        Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &c.         Cl.   III.— TAR,  &c. 


245  a 


rotating  electrode  formed  of  angle  irons  secured 
obliquely  to  a  ring  and  spider  and  rotated  at  about 
50  revs,  per  minute  by  bevel  wheels  and  a  shaft  pass- 
ing through  a  stuffing-box  in  the  side  of  the  tank. 
The  rotation  of  the  angle  irons  causes  agitation  of 
the  emulsion  and  a  current  setting  downwards  in 
the  space  between  the  stationary  electrode  and  the 
tank,  in  which  space  dehydration  takes  place.  An 
electric  potential  is  maintained  between  the  two 
electrodes  by  means  of  a  transformer.  When  the 
electric  current  becomes  short-circuited  by  the 
formation  of  chains  of  water  particles  between  the 
electrodes  the  current  is,  by  an  automatic  device, 
cut  off  for  a  period  which  may  be  about  20  seconds, 
and  at  the  same  time  the  supply  of  emulsion  and  the 
withdrawal  of  water  are  shut  off.  The  interruption 
of  the  current  causes  disruption  of  the  chains,  and 
the  supply  of  current  is  then  resumed. — H.  M. 

Substances  which  solidify  on  cooling  [paraffin  wax'] ; 
Preparation  of from  oily  substances  by  filtra- 
tion and  the  use  of  volatile  solvents.  F.  Seiden- 
schnur.  G.P.  344,873,  9.6.20. 
To  separate  the  substances  which  solidify  on  cooling 
from  the  cooled  and  agitated  mixture  of  raw 
material  and  solvent,  ordinary  closed  filter-presses 
with  flushing  arrangements  and  pipes  for  hot  and 
cold  brine  are  used.  The  warm  solvent  used  for 
flushing  and  cleansing  the  filter-cloth  from  the 
filter-cake  and  impurities,  after  the  melting  and 
running  off  of  the  filter-cake,  is  passed  through  the 
filter-cloth  in  counter-current  to  the  filtrate.  The 
filter-cake  and  impurities  are  thus  removed,  and  the 
filter-cloth  left  clean  and  permeable.  The  solvent 
may  be  used  repeatedly.  The  process  is  especially 
applicable  to  the  separation  of  paraffin  wax  from 
products  of  distillation. — H.  M. 

Mineral  oils;  Process  for  raising  the  viscosity  and 

boiling   point   of for  producing   lubricants. 

Chem.     Fabr.     Dubois    und     Kaufmann.      G.P. 
346,309,  25.11.15. 
Mineral  oils  of  low  viscosity  are  chlorinated,  and 
chlorine  is  subsequently  split  off  from  the  products 
by  treatment  with  water,  alkalis,  or  acids. 

— L.  A.  C. 

Fvel;  Solid  and  process  of  malting  the  same. 

N.  C.  Tommasi  and  H.  Danneel,  Assrs.  to  Elek- 
trizitatswerk  Lonza.  U.S.P.  1,407,101,  21.2.22. 
Appl.,  22.3.20. 

See  E.P.  144,589  of  1920;  J.,  1920,  714  a. 

'  Coking  coal;  Process  and  apparatus  for  .     A. 

Roberts.    E.P.  175,319,  21.8.20. 
;See  U.S.P.  1,352,696  of  1920;  J.,  1920,  715  a. 

Betort  for  carbonising  coal;  Vertical  .     W.  T. 

Gardner,    Assr.     to     Isbell-Porter    Co.      U.S.P. 

1,407,996,  28.2.22.     Appl.,  24.12.20. 
See  E.P.  152,548  of  1919;  J.,  1920,  775  a. 
Wet  coal  vertical  dryer   [;   Bakes  or  scrapers  for 

].    D.  and  D.  Harvie.    E.P.  174,536,  5.9.21. 

Fatty  acids  from  montan  wax.    G.P.  346,362.    See 
XII. 

Painf,  oil.    U.S.P.  1,407,469.    See  XIII. 

Organic  acids.    G.P.  346,520.    See  XX. 


Hb-DESTBUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Patents. 

Destructive  distillation;  Method  of .  Apparatus 

for  distilling  substances.    W.  M.  Duncan.   U.S.P. 
1,407,017-8,  21.2.22.    Appl.,  29.8.18. 

The  material  to  be  distilled  is  continuously  con- 
'eyed  through  a  horizontal  retort  within  the  top 
vail  of  which  heating  gases  pass   in  the  opposite 


direction.  The  vapours  evolved  in  the  several  tem- 
perature zones  of  the  retort  are  drawn  downwards 
from  the  bottom  of  the  material  and  are  separately 
collected  and  condensed.  The  retort  is  provided 
with  a  feeding  device  and  with  an  outlet  for  the 
residue  and  within  it  is  an  endless  conveyor.  Baffle 
walls  are  built  in  the  heating  flue.  Immediately 
under  the  travelling  charge  of  material  there  is  a 
number  of  independent  vapour  conduits  with 
intakes  coextensive  with  the  width  of  the  retort. 

-H.  Hg. 

Charcoal;  Method  of  treating  .     H.  J.  Haber, 

Assr.  to  P.  North,  G.  M.  Potter,  and  W.  Hoyt. 
U.S.P.  1,407,531,  21.2.22.     Appl.,  18.4.18. 

Hot  charcoal  is  fed  into  the  top  of  a  closed  vessel 
wherein  it  is  continuously  sprayed  with  a  cooling 
solution.  The  quenched  charcoal  is  continuously 
withdrawn  from  the  bottom  of  the  vessel. — H.  Hg. 

Electric  incandescent  lamps;  Manufacture  of . 

N.     V.     Philips'     Gloeilampenfabrieken.       E.P. 
154,190,  17.11.20.     Conv.,  21.11.19. 

Substances,  such  as  phosphorus  suboxide,  which 
decompose  to  form  drying  agents  on  heating,  are 
placed  in  the  lamps  before  they  are  exhausted.  The 
lamps  are  sealed  off  and  then  suitably  heated. 

— H.  Hg. 


III.-TAR  AND  TAR  PRODUCTS. 

Lignite  producer  tar.     F.  Fischer.     Ber.,  1922,  55, 
505—506. 

A  criticism  of  Ruhemann's  communication  (J., 
1922,  7a).— H.  W. 

Benzene    and    naphthalene;    Ethylation    of   . 

C.  H.  Milligan  and  E.  E.  Reid.    J.  Amer.  Chem. 
Soc.,  1922,  44,  206—210. 

By  the  aid  of  intensive  stirring  ethylene  can  be 
made  to  react  with  benzene  in  the  presence  of 
aluminium  chloride  at  70° — 90°  C.  so  rapidly  and 
completely  that  this  becomes  a  practical  method 
for  the  ethylation  of  benzene.  A  mixture  of  ethyl- 
benzene  and  the  more  highly  ethylated  benzenes  is 
always  obtained,  but  may  fairly  readily  be  separa- 
ted into  its  components.  If  the  polyethylbenzenes 
are  stirred  with  benzene  in  the  presence  of 
aluminium  chloride  they  will  give  up  some  of  their 
ethyl  groups  to  the  benzene.  In  a  similar  manner 
naphthalene  may  be  ethylated  by  stirring  it  vigor- 
ously in  benzene  with  polyethylbenzenes  and  alu- 
minium chloride  at  80°  C— W.G. 

Wash  oils  for  benzol.     Pannertz.     See  Ha. 

Phenols  etc.     Hanke  and  Koessler.     See  XX. 

Patents. 

Drying  oils;  Manufacture  of from  lignite  and 

producer-gas  tar.  K.  Bube.  G.P.  345,855, 
11.1.19. 
A  product  suitable  for  use  as  a  substitute  for  lin- 
seed oil  in  the  manufacture  of  varnish,  paint, 
linoleum,  and  the  like,  is  prepared  by  treating 
lignite  or  producer-gas  tar  with  nitric  acid  or  nitro- 
gen oxides  and  air,  and  washing  the  product  with 
water.  The  product  dries  more  rapidly  if  after 
nitration  it  is  treated  with  lead  monoxide  at  about 
150°  C— L.  A.  C. 

Benzene;   Becovery  of  \_from  washing  oils']. 

Gasser    und    Frank    G.m.b.H.      G.P.     345,869, 

6.11.20. 
The    vapours    obtained    by    heating   the    oil    with 
indirect    and    direct    steam    respectively    are    con- 
densed separately.     The  condensed  liquid  from  the 


246  a 


Cl.  IV.— COLOURING  MATTERS  AND  DYES. 


[April   15,   1922. 


fraction  separated  by  means  of  direct  steam  is 
heated  to  separate  the  low-boiling  constituents, 
which  are  added  to  and  worked  up  in  admixture 
with  the  pure  benzene  vapour. — L.  A.  C. 

Resorcinol;  Manufacture  of .    H.  McCormack. 

TJ.S.P.  1,406,745,  14.2.22.  Appl.,  9.2.20. 
A  solution  in  hot  water  of  the  melt  obtained  by 
fusing  benzenedisulphonic  acid  with  sodium  hydr- 
oxide is  cooled,  sodium  sulphite  crystals  are 
separated,  and  the  solution  is  neutralised  by  the 
addition  of  sulphuric  acid.  After  separating  sodium 
sulphate  crystals  deposited  on  cooling,  the  solution 
is  evaporated  to  dryness  and  extracted  with  a  selec- 
tive solvent  for  resorcinol. — L.  A.  C. 

Immersing  solids  or  liquids  in  molten  metal.    E.P. 
174,974.    See  I. 


IV.— COLOURING  MATTERS  AND  DYES. 

Indigo;  Nature  of  the  changes  occurring  during  the 

extraction  of from  the  Java  plant  (Indigo- 

fera  arrccta).  I.  Relation  between  the  acidity 
developed  in  the  steeping  and  the  yield  and 
purity  of  the  indigo  obtained.  W.  A.  Davis. 
Agric.  Res.  Inst.  Pusa,  Indigo  Pubn.  No  9,  1921. 

During  the  "  steeping  process  "  the  indican  of  the 
plant  is  hydrolysed  to  indoxyl  and  dextrose,  and  in 
ordinary  practical  working  this  so-called  fermenta- 
tion is  probably  both  bacterial  and  enzynaic.  The 
author  considers  that  purely  enzymic  fermentation 
is  undesirable  and  leads  to  low  quality  and  yield 
of  the  resulting  indigo,  as  the  leaf  contains  destruc- 
tive enzymes  which  convert  indican  or  indoxyl  into 
products  other  than  indigo.  This  accounts  for  the 
poor  yields  and  quality  during  the  first  few  days 
of  mahai,  when  bacteria  are  largely  absent  from 
the  steeping  vats,  and  the  bacterial  character  of 
the  water  used  is  the  principal  factor  in  determin- 
ing high  quality  and  high  yield  in  the  ordinary 
process  of  manufacture.  Difficulties  of  bad  settling 
and  all  the  disagreeable  characteristics  of  the 
"green  vat"  disappear  when  indican-splitting 
bacteria  are  present  in  large  numbers,  and  the 
selection  of  favourable  non-destructive  types  of 
bacteria  and  the  study  of  the  best  methods  of 
establishing  them  in  the  vat  are  therefore  matters 
of  great  importance.  Another  factor  which  exercises 
a  great  influence  on  the  yield  and  quality  of  the 
indigo  is  the  acidity  developed  in  the  vat  by  bac- 
terial action,  the  quality  falling  off  practically  pro- 
portionally to  the  development  of  acidity.  This 
acidity  is  due  to  carbonic  acid ;  it  is  not  possible  to 
neutralise  it  in  practice  by  the  addition  of  alkalis, 
and  it  is  suggested  that  the  best  results  might  be 
obtained  by  the  introduction  of  ammonia-producing 
organisms  into  the  vat  to  work  conjointly  with  the 
indican-hydrolysing  bacteria. — G.   P.   M. 

Indigo;  Synthesis  of  from  fumaric  acid  and 

aniline.   G.  C.  Bailey  and  It.  S.  Potter.    J.  Amer. 
Chem.  Soc.,  1922,  44,  215—216. 

Fumaric  acid  is  brominated  in  acetic  acid  solution 
giving  dibromosuccinic  acid,  which  is  then  con- 
verted into  dianilidosuccinic  acid.  A  molecular 
mixture  of  potassium  and  sodium  hydroxides  is 
dehydrated  in  a  closed  iron  pot  at  450°  C.  with 
stirring.  Sodamide  is  then  added,  a  stream  of 
dry  ammonia  is  passed  through  the  pot  and  the 
sodium  salt  of  the  dianilidosuccinic  acid  is  slowly 
added,  the  mixture  being  kept  at  230°— 240°  C.  for 
li  hrs.  The  melt  is  dissolved  in  water  and  air  is 
blown  through,  the  indigo  being  precipitated.  The 
yield  of  indigo  is  60"4%  and  its  purity  is  96"5%. 

— W.  G. 


Halogenated  isatins.     E.  Grandmougin.     Comptes 
rend.,  1922,  174,  620—623. 

The  halogenated  isatins  described  were  prepared 
by  oxidation  of  the  corresponding  halogenated 
indigos  in  acetic  acid  solution  with  chromic  acid. 
Oximes  and  phenylhydrazones  were  prepared  from 
the  isatins  and  were  in  all  cases  /3-substituted 
derivatives.  The  absorption  of  these  compounds  in 
the  ultraviolet  has  been  studied  and  the  results 
show  that  the  absorption  of  the  substituted  deriva- 
tives is  essentially  of  the  same  character  as  that  of 
their  parent  isatins.     (Cf.  J.C.S.,  April.) — W.  G. 


Lakes;  Alizarin-iron .     A.  W.  Bull  and  J.  R. 

Adams.     J.  Phys.  Chem.,  1921,  25,  660—664. 

Iron-alizarin  lakes  are  not  true  chemical  com- 
pounds (cf.  Biltz  and  Utescher,  J.,  1906,  118)  but 
adsorption  complexes  of  ferric  hydroxide  and 
sodium-alizarin.  The  adsorption  of  sodium  hydr- 
oxide by  ferric  hydroxide  is  not  markedly  affected 
by  alizarin. — J.  P.  S. 

2-Hydroxyanthraquinone ;    Some    products   of   the 

reduction   of  .      A.   G.    Perkin    and   T.    W. 

Whattam.  Chem.  Soc.  Trans.,  1922,  121,  289— 
300. 
Reduction  at  100°  C.  for  2  hrs.  of  200  pts.  of  crude 
2-hydroxyanthraquinone  in  800  pts.  of  ammonia 
(sp.  gr.  0'880)  and  500  pts.  of  water  (in  an  appara- 
tus excluding  free  access  of  air),  with  200  pts.  of 
zinc  dust,  50  c.c.  of  dilute  ammonia  being  added 
every  15  mins.,  gives  mainly  3-hydroxyanthranol 
and  then  by  oxidation  as  the  ammonium  salt  due  to 
slight  access  of  air  some  3.3'-dihydroxydianthrone; 
the  latter  is  not  found  if  the  reduction  is  carried 
out  in  a  closed  autoclave  or  in  an  atmosphere  of 
hydrogen.  The  longer  the  digestion  the  smaller 
is  the  amount  of  anthranol  obtained.  2.2'-Dihydr- 
oxydianthryl  is  also  formed  during  the  reaction. 
With  these  substances  and  their  derivatives  a  com- 
plete series  of  reduction  products  in  the  reduction 
of  2-hydroxyanthraquinone  to  2-anthrol  has  been 
obtained.  2.2'-Dihydroxydianthryl  combines  with 
diazo  compounds  to  form  azo  dyestuffs  somewhat 
bluer  in  colour  than  those  yielded  by  2-anthrol. 

—P.  V.  M. 

Colouring  matter  of  red  roses.     G.  Currey.     Proc. 

Roy.  Soc.,  1922,  B  93,  194—197. 
An  examination  of  the  petals  of  the  deep  red  rose 
"  George  Dickson  "  has  shown  the  presence  of  the 
anthocyan  pigment,  cyanin,  to  the  extent  of  10%  of 
the  dried  petals.  An  unidentified  yellow  sap  pig- 
ment is  also  present.  It  gives  an  anthocyan  on 
reduction. — H.  K. 

Derivatives  of  straw  lignin.    Paschke.    See  V. 

Patents. 

Anthraquinone    dyestuffs;    Manufacture    of    ■ 

Chem.  Fabr.  Griesheim-Elektron.  G.P.  343,065, 
2.8.19. 
Thiazoleanthrone  (anthraquinone-1-thiazole),  or  a 
derivative,  is  fused  with  potassium  hydroxide,  pre- 
ferably with  the  addition  of  methyl  or  amyl  alcohol, 
yielding  dithiazoleanthrone.  The  product  is  soluble 
with  difficulty  in  organic  solvents,  e.g.,  1  pt.  in 
1000  pts.  of  boiling  nitrobenzene,  and  dyes  cotton 
blue  shades  in  the  vat  which  oxidise  in  the  air  to 
yellow  shades  fast  to  chlorine.  Sodium  thiazo  e- 
anthronesulphonate,  prepared  by  treating  thiazole- 
anthrone with  3  pts.  of  40%  oleum  at  140°  C,  on 
treatment  with  potassium  hydroxide  and  methyl 
alcohol  at  110°  C.  yields  dithiazoleanthronedisul- 
phonic  acid,  which  dyes  wool  direct  and  cotton 
yellow  shades  from  a  blue  vat. — L.  A.  C. 


Vol.  XLI.,  No.  7. 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


247  a 


o-Hydiroxydisazo  dyestuffs;  Manufacture  of  second- 
ary   .     Farbenfabr.  vorra.  F.  Bayer  und  Co. 

G.P.  346,250,  17.11.16. 

Monoazo  dyestuffs  prepared  by  coupling  o-diazo- 
phenols  with  unsulphonated  aminohydroxynaphthal- 
enes,  such  as  l-amino-6-,  or  2-amino-5,  7,  or  8- 
hydroxynaphthalene,  are  diazotised  and  coupled 
with  azo  components,  such  as  phenols,  amines, 
pyrazolones,  or  methylketol.  Alternatively,  di- 
azotised aminohydroxynaphthalenes  are  coupled 
with  azo  components  and  the  products  are  coupled 
with  o-diazophenols.  The  dyestuffs  after-chromed 
on  wool  yield  level  brown,  green,  violet,  and  black 
shades  fast  to  milling,  potting,  light,  and  carbonis- 
ing.— L.  A.  C. 

Ortho\hydr\oxyazo  dyes  for  wool.  W.  Herzberg  and 
0.  Scharfenberg,  Assrs.  to  Act.-Ges.  fiir  Anilin- 
Fabrikation.  U.S. P.  1,408,296,  28.2.22.  Appl., 
30.8.21. 

Seb  E.P.  168,681  of  1920;  J.,  1921,  731  a. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPEB. 

[Wood]  pulp;  Use  of  clean  water  as  a  preservative 

for  storing  mechanical  .     R.  J.  Blair  and  E. 

Parke-Cameron.    Pulp  and  Paper  Mag.,  1922,  20, 
64—67. 

Experiments  extending  over  a  period  of  17  months 
indicate  that  mechanical  wood  pulp  deteriorates 
only  very  slowly  if  stored  in  clean  water,  the 
deterioration  being  least  when  the  pulp  is  in  lap 
form  and  is  stored  in  running  water.  Cold  storage 
at  34°— 36°  F.  (1°— 2°  C.)  proved  to  be  even  more 
effective,  the  deterioration  being  very  slight  after 
storage  for  17  months.- — D.  J.  N. 

Jack  pine;  Utilisation  of in  the  manufacture 

of  newsprint   [paper].     M.   Neilson.     Pulp   and 
Paper  Mag.,  1922,  20,  61—63. 

Jack  pine,  treated  by  the  sulphite  process,  gives  a 
pulp  which  is  quite  suitable  for  newsprint  paper ; 
the  fibre,  though  coarse,  is  fairly  strong,  and,  when 
mixed  with  mechanical  pulp,  gives  a  sheet  which  is 
as  strong  as  one  containing  an  equal  percentage  of 
spruce  sulphite  pulp.  The  best  conditions  of  diges- 
tion appear  to  be  9—10  hrs.  with  an  acid  liquor  con- 
taining 6—62%  of  total  S02  and  12— 1-36%  of 
combined  S02,  the  temperature  being  allowed  to  rise 
to  a  maximum  of  145°  C.  The  screenings  amount 
to  about  14%,  as  against  8%  for  spruce,  cooked 
under  similar  conditions.  Jack  pine  can  be  used  for 
1  mechanical  pulp,  if  the  stones  are  properly  dressed. 
Careless  grinding  may  result  in  the  production  of 
short  floury  stock,  which  runs  "  sticky  "  on  the 
machine,  and  appears  to  be  the  cause  of  the  so- 
called  "  pitch  "  troubles.— D.  J.  N. 

Cellulose  acetate  from  wood  celluloses.  E. 
Hagglund,  N.  Lofman,  and  E.  Farber.  Cellulose- 
chem.,  1922,  3,  13—19. 

Cellulose  isolated  by  extracting  sawdust  with  40% 
hydrochloric  acid  in  the  cold  and  precipitating  with 
water  gives  brittle  cellulose  acetate  films ;  only  low 
degrees  of  acetylation  are  obtained  with  a  sulphuric 
acid  catalyst,  but  triacetylated  products  are  formed 
with  zinc  chloride  or  sodium  ethylsulphate  catalysts 
at  70°  C.  Sulphite-cellulose  gives  satisfactory  pro- 
ducts after  a  suitable  preliminary  treatment,  pre- 
ferably with  glacial  acetic  acid,  by  acetylation  with 
sodium  ethylsulphate  as  catalyst.  Sodium  bisul- 
phate  is  also  capable  of  giving  good  products  with 
relatively  low  cupric-reducing  values.  Without  due 
precautions,  or  with  sulphuric  acid  as  catalyst  there 
is  a  great  tendency  to  form  products  approaching 
tetra-acetate  in  acetyl  value,  with  very  high  copper 


values,  imperfect  solubility  in  acetone,  and  giving 
brittle  films.  Previous  dehydration  of  the  cellulose 
by  heating  with  acetic  anhydride  and  acetic  acid 
without  a  catalyst  tends  to  retard  or  inhibit  the 
subsequent  acetylation  and,  in  general,  the  presence 
of  a  little  water  is  favourable.  The  best  results  are 
obtained  by  a  pre-treatment  of  5  g.  of  sulphite  pulp 
with  20  g.  of  acetic  acid  (100%),  0'5  g.  of  water,  and 
OS  g.  of  sodium  bisulphate  at  50°— 70°  C.  for 
17  hrs.;  25  g.  of  acetic  anhydride  is  then  added  to 
the  cooled  mixture  without  allowing  the  tempera- 
ture to  exceed  60°  C.  until  all  the  cellulose  has  dis- 
solved. The  reaction  is  completed  by  heating  at 
70°  C.  for  half  an  hour ;  5'5 — 60  c.c.  of  water  is  then 
added  to  effect  the  modification  of  solubility,  and 
the  mixture  is  digested  at  50°  C.  for  65 — 70  hrs.  in 
order  to  obtain  a  product  which  is  soluble  in  acetone 
and  insoluble  in  chloroform. — J.  F.  B. 

Straw  lignin;  Derivatives  of  — —  .  F.  Paschke. 
'  Cellulosechem.,  1922,  3,  19—21. 

Derivatives  were  prepared  from  lignin  isolated 
from  straw  by  digestion  with  sodium  carbonate.  By 
heating  with  phenylhydrazine,  ligninphenylhydr- 
azone  is  obtained  with  a  yield  of  80%  of  the  weight 
of  lignin.  This  is  insoluble  in  water  and  petroleum 
spirit,  soluble  in  acetone,  alcohol,  and  tetrachloro- 
ethane.  Its  solutions  in  the  last-named  solvent  dry 
to  a  transparent,  adherent  varnish  film.  By  heat- 
ing with  nitrosodimethylaniline  and  hydrochloric 
acid,  lignin  yields  Lignocyanin,  a  dyestuff  analogous 
to  Gallocyanin,  which  dyes  silk  and  mordanted 
cotton  a  fast  brownish-violet,  preferably  from  a 
weak  acetic  acid  bath  ;  it  can  bo  used  in  calico  print- 
ing on  cotton  prepared  with  bichromate  and  tartaric 
acid.  With  sulphuryl  chloride  in  the  cold  lignin 
gives  a  compound  containing  both  sulphur  and 
chlorine ;  when  heated  with  sulphuryl  chloride  at 
100°  C.  under  pressure  lignin  yields  a  chloride  con- 
taining 3822%  Cl  and  free  from  sulphur,  which  is 
soluble  in  organic  media  giving  clear  varnish  films. 
With  phosphorus  pentachloride  in  tetrachloroethane 
solution  a  similar  chloride  is  obtained  but  contain- 
ing 19T8%  Cl.  These  two  last  derivatives  might 
find  technical  application  as  lacquers,  (fif.  J.C.S., 
April.)— J.  F.  B. 

Pine  lignin;  Constitution  of .    II.    P.  Klason. 

Ber.,  1922,  55,  448—455. 
The  homogeneity  of  calcium  a-lignosulphonate  (J., 
1920,  778  a)  is  established  by  the  uniformity  in  com- 
position of  specimens  of  the  /3-naphthylamine  salt 
obtained  from  it  by  fractional  precipitation  with 
/3-naphthylamine  hydrochloride.  Oxidation  of  a- 
lignosulphonic  acid  with  hydrogen  peroxide  at  the 
atmospheric  temperature  and  precipitation  of  the 
product  with  a-naphthylamine  leads  to  the  forma- 
tion of  a  salt,  CmHj.Oh'SNj,  the  composition  of 
which  indicates  that  the  aldehydic  group  has  been 
oxidised  to  a  carboxyl  group  and  a  methylene  to  a 
ketonic  group.  /3-Naphthylamine  a-lignosulphonato 
contains  two  hydroxy  groups,  since  it  gives  a  di- 
acetyl  compound  when  treated  with  acetic  anhydr- 
ide ;  as,  however,  only  one  of  these  can  be  methyl- 
ated, it  appears  that  one  only  is  attached  to  a 
benzenoid  nucleus,  whereas  the  other  is  united  to  a 
more  aliphatic  group.  A  modified  formula  for  a- 
lignin  is  proposed.    {Cf.  J.C.S.,  April.)— H.  W. 

Lignin  as  it  occurs  in  wood.    P.  Klason.    Ber.,  1922, 

55,  455—456. 
A  specimen  of  lignin  obtained  from  pine  wood  by  re- 
peated alternate  extraction  with  boiling  water  and 
alcohol  containing  a  little  acetic  acid  was  found, 
after  allowance  for  the  water  contained  in  it,  to  give 
analytical  results  in  excellent  harmony  with  those 
calculated  for  lignin  (J.,  1920,  778a).  The  sub- 
stance also  gave  the  typical  lignin  reactions.  As 
far  as  can  be  observed  by  reason  of  the  colour  of  the 


248  a 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[April   15,   1922. 


solutions,  lignin  and  lignosulphonic  acid  are 
optically  inactive. — H.  W. 

Collodion  membranes.    Looney.    See  XXIII. 
Patents. 

Waterproofing    fabrics;    [Continuous']    process    of 

.     V.  Mehler.  Segeltuchweberei,  A.-G.     E.P. 

156,776,  7.1.21.    Conv.,  22.4.16. 

The  fabric,  after  passing  through  a  bath  of,  e.g., 
aluminium  sulphate  solution,  is  pressed,  and,  while 
travelling  in  an  upward  direction,  sprayed  with  the 
second  impregnating  solution,  e.g.,  a  solution  of 
soap  or  oil,  excess  of  which  is  removed  by  press  rolls. 
The  treated  fabric  is  dried  in  the  usual  way. 

— D.J.  N. 

Wool;   Process   of   scouring   .     T.    D.    Smith. 

U.S.P.  1,405,560,  7.2.22.    Appl.,  7.5.21. 

Wool  is  treated  in  a  bath  containing  dissolved 
potassium  alginate. — D.  J.  N. 

Friction  facings,  and  process  of  making  same. 
L.  W.  Goold.  From  The  Ravbestos  Co.  E.P. 
(a),  174,685  and  (b),  175,232,  1.10.20. 

(a)  Felted  asbestos  boards,  made  from  asbestos  pulp 
to  which  has  been  added  a  small  quantity,  e.g., 
1'6%  on  the  weight  of  asbestos,  of  an  oxidising 
agent  such  as  red  lead,  are  calendered  to  the  re- 
quired thickness  and  soaked  for  £  hr.  in  double- 
boiled  linseed  oil  containing  6%  of  gilsonite  or  other 
asphalt  in  solution,  and  thinned  to  1297  sp.  gr. 
with  gasoline.  The  treated  boards  after  removal 
of  the  solvent  at  200°  F.  (about  90°  C.)  are  baked 
for  12  hrs.  at  250°  F.  (about  120°  C),  immersed  for 
a  few  minutes  in  a  bath  containing  66%  of  double- 
boiled  linseed  oil  and  33%  of  gasoline,  and  finally 
baked  for  24  hrs.  at  300°  F.  (about  150°  C.)  to 
render  the  oil  substantially  insoluble  in  gasoline. 
The  finished  product  is  hard  and  possesses  a  high 
tensile   strength,    e.g.,    4000 — 4600   lb.    per   sq.    in. 

(b)  The  process  described  in  (a)  is  modified  in  that 
resinate  of  lead,  cobalt,  or  the  like  is  mixed  with 
the  beaten  pulp,  and  toluol  is  used  as  a  diluent  for 
the  oil,  in  which  case  one  saturation  of  the  asbestos 
board  is  sufficient. — D.  J.  N. 

Artificial  [viscose]  silk;  Manufacture  of  .     E. 

like  masses,  blocks  and  other  products  or  articles 

[from ].     H.  Dreyfus.     E.P.  174,660,  4.8.20. 

Cellulose  ethers  in  a  molten  condition,  e.g.,  at 
about  170°  C,  with  or  without  the  addition  of  small 
quantities,  e.g.,  up  to  10%,  of  volatile  solvents,  are 
used  for  the  manufacture  of  films,  threads,  tubes, 
and  the  like.  Fillers,  colouring  agents,  or  plastify- 
ing  agents  may  be  added  if  desired. — D.  J.  N. 

Artificial  [viscose]  silk;  Manufacture  of  .     E. 

Bronnert.     E.P.  174,960,  3.8.20. 

The  stretch-spinning  process  (cf.  E.P.  8083  of 
1902,  and  8711,  15,448,  and  15,449  of  1908;  J.,  1903, 
550;  1908,  977)  can  be  carried  out  with  viscose 
solutions  containing  a  high  percentage  of  only 
slightly  degraded  cellulose  if  a  coagulating  bath 
containing  0"5 — 1  %  of  a  benzenemono-  or  di-sul- 
phonic  acid,  or  lactic  acid,  together  with  about  5% 
of  ammonium  sulphate  and  5 — 10%  of  glucose,  is 
used.  The  viscose  falls  through  comparatively 
large  apertures  (0"8 — 1  mm.)  into  a  column  of  the 
coagulating  liquid  20 — 40  cm.  long,  and  is  stretched 
by  its  own  weight  into  a  fine  thread,  which  is  then 
fixed  with  weak  acid,  preferably  as  it  slides  down 
an  inclined  plane. — D.  J.  N. 

Viscose;   Treatment  of  artificial  goods  from  . 

M.  Luft.  U.S.P.  1,404,535,  24.1.22.  Appl.,  9.3.20. 
Sulphur  occluded  in  the  interstices  of  materials 
made    from    viscose    is    removed    by   treating    the 


material  with  a  solution  containing  soap  and 
sodium  sulphide. — D.  J.  N. 

Cellulose-ether  composition.  Cellulose-ether  solvent 
and  composition.  P.  C.  Seel,  Assr.  to  Eastman 
Kodak  Co.  U.S.P.  (a)  1,405,448  and  (b)  1,405,449, 
7.2.22.    Appl.,  25.2.21  and  9.6.21. 

(a)  A  cellulose  ether  is  mixed  with  ethyl  butyrate. 

(b)  A  cellulose  ether  is  dissolved  in  a  mixture  of 
benzol  and  methyl  acetate. — D.  J.  N. 

Cellulose-ether  composition.  H.  T.  Clarke  Assr. 
to  Eastman  Kodak  Co.  U.S.P.  (a)  1,405,490  and 
(b)  1,405,491,  7.2.22.    Appl.,  25.2.21. 

A  cellulose  ether  is  mixed  with  (a)  a  benzoic  acid 
ester  of  a  monohydroxy  aliphatic  alcohol  containing 
4 — 5  carbon  atoms,  or  (b)  with  phenvl  phthalate. 

— D.  J.  N. 

Cellulose  acetate  solution.  M.  E.  Putnam  and 
W.  E.  Kirst,  Assrs.  to  The  Dow  Chemical  Co. 
U.S.P.  1,406,224,  14.2.22.     Appl.,  11.12.18. 

Cellulose  acetate  dissolved  in  a  small  quantity  of 
chlorhydrin  is  mixed  with  a  relatively  small  quan- 
tity of  an  alcoholic  compound  and  a  relatively  large 
quantity  of  an  aromatic  hydrocarbon. — D.  J.  N. 

Cellulose  esters;  Process  for  making  easily  soluble 

.      Knoll    und    Co.      G.P.    346,672,    1.3.12. 

Addn.  to  G.P.  297,504. 

Solutions  of  cellulose  esters  in  chloroform  or 
acetone  containing  water  are  heated  to  90° — 100° 
C.  in  the  absence  of  catalysts,  until  a  sample  dis- 
solves to  a  clear  solution  in  ethyl  acetate.  For 
instance,  cellulose  acetate  may  be  heated  with  90% 
formic  or  acetic  acid. — H.  C.  R. 

Paper;  Method  of  sizing  .     A.   A.  Thornton. 

From   Feculose   Co.   of   America.      E.P.   175,034, 

5.11.20. 
Resin  size  is  mixed  with  15 — 20%  (on  the  weight  of 
resin)  of  modified  starch,  e.g.,  feculose,  previously 
boiled  with  6 — 8  times  its  weight  of  water.  Other 
colloids  such  as  glue,  casein,  or  albumin  may  be 
used,  and  sodium  silicate  may  be  added  if  desired. 
The  mixture,  after  dilution  with  water,  is  added 
to  the  beater  and  precipitated  with  alum.  This 
composition  enables  good  sizing  effects  to  be 
obtained  with  about  one-half  the  usual  quantity  of 
resin,  and  a  correspondingly  smaller  quantity  of 
alum.— D.  J.  N. 

Paper;  Eemoval  of  printer's  ink  from .    A.  F. 

Allen,  A.  F.  McCoy,  and  R.  O.  Sternberger, 
Assrs.  to  Tidewater  Paper  Mills  Co.  U.S.P. 
1,406,322,  14.2.22.  Appl.,  22.12.20. 
The  disintegrated  paper  is  agitated,  first  with  a 
solution  of  alkali  to  remove  the  oil  and  pigment 
from  the  fibre,  and  then  with  a  solution  of  soap  to 
emulsify  the  oil. — D.  J.  N. 

Fabric  used  in  the  manufacture  of  balloons  nnd 
dirigible  airships.  A.  Johnston,  Assr.  to  The 
North  British  Rubber  Co.  U.S.P.  1.407,197, 
21.2.22.     Appl.,  15.9.19. 

See  E.P.  124,520  of  1916 ;  J.,  1919,  357  a. 

Artificial  silk;  Manufacture  of  [viscose]  .     E. 

Bronnert.     E.P.  174,961,  6.8.20. 
See  U.S.P.  1,393,199  of  1921;  J.,  1921,  808  a. 

Viscose    threads;  Machine   for  spinning,   washing, 

and  drying  .     M.  Denis.     U.S.P.  1,408,350, 

28.2.22.     Appl.,  31.3.21. 

See  E.P.  125,394  of  1919;  J.,  1920,  103  a. 

Cellulose;  Process  of  obtaining from  vegetable 

matter.  G.  J.  Bustamante.   E.P.  175,330, 1.10.20. 
See  U.S.P.  1,402,210  of  1922;  J.,  1922,  138  a. 


Vol.  XLI.,  No.  7.]     Cl.  VI.— BLEACHING  ;    DYEING,  &c.     Cl.  VII.— ACIDS  ;    ALKALIS.  &c.       249  A 


Pulp  for  making  paper;  Process  of  atid  apparatus 

for  producing    [mechanical  ].     A.   Courrier. 

E.P.  153,598,  8.11.20.     Conv.,  11.11.19. 

Paper  making  and  other  like  purposes;  Beating  or 

comminuting  or  pulping  machinery  for .     H. 

Arledter.     E.P.  174,985,  6.10.20. 

Sizing  of  paper;  Apparatus  for  testing  the  — ■ —  [by 
the  ink  method].  J.  Denoel.  E.P.  153,578, 
6.11.20.    Conv.,  6.11.19. 


VI.- BLEACHING  ;  DYEING;  PRINTING; 
FINISHING. 

Alizarin-iron  lakes.     Bull  and  Adams.     See  IV. 

Patents. 

Dyeing;    Apparatus    for    .      W.     H.     Davis. 

U.S. P.  1,407,387,  21.2.22.     Appl.,  3.1.19. 

In  an  apparatus  of  the  tvpe  described  in  U.S. P. 
1,405,299  (J.,  1922,  214  a)  a  follower  plate  rests  in 
the  tops  of  the  yarn  holders  and  a  threaded  rod 
extending  through  a  threaded  opening  in  the  cover 
is  connected  with  the  follower  plate  by  a  swivel 
joint. 

Dyeing  glad  leather  with  coal-tar  dyestuffs; 
Process  for  - — — .  L.  Cassella  und  Co.,  G.m.b.H. 
G.P.  346,694,  1.8.19. 

Uniform  dyeings  on  glace  leather  are  obtained  by 

I     treating     the     leather     with     a     tanning     solution 

i     neutralised   by  the  addition   of   an   alkali,   e.g.,   a 

solution  of  gambier  neutralised  with  borax,  previous 

to  dyeing  with  basic  or  acid  dyestuffs. — L.  A.  C. 

Dyeings  and  colour  lakes;  Production  of  fast 

to  light.     Badische  Anilin-  und  Soda-Fabr.     G.P. 

347.129,  1.11.14.      Addn.    to    286,467    (see    F.P. 
474,706;  J.,  1915,  1085). 

I  Complex  metatungstic  acids,  or  their  salts,  are 
applied  to  material  dyed  with  acid  dyestuffs  con- 
taining one  or  more  amino  groups  in  addition  to 
one  or  more  sulphonic  groups,  or  added  to  colour 
lakes  prepared  from  such  dyestuffs. — L.  A.  C. 

Dyeings;  Production   of  fast   to  washing   on 

animal  and  vegetable  fibres.    L.  Cassella  und  Co., 
G.m.b.H.    G.P.  347,198,  12.3.19. 

Fibrous  materials  are  dipped  in  solutions  of  salts 
(hydrochlorides)  of  aminocarbazoles,  e.g.,  tetra- 
amirocarbazole,  and,  without  drying,  are  subse- 
quently treated  with  oxidising  agents,  diazo  com- 
pounds, or  other  fixing  agents.  Various  shades  of 
brown  are  obtained  by  oxidising  with  copper  com- 
pounds, chromium  compounds,  or  perborates,  or  by 
treatment  with  diazo-p-  (or  m-)nitrobenzene. 

— L.  A.  C. 

Effect  threads  of  cotton  or  other  vegetable  material; 
Production  of  .     L.  Cassella  und  Co.     G.P. 

347.130,  4.4.16. 

The  cotton  or  other  vegetable  fibre  is  treated  with 
the  vapour  of  acetic  anhydride  in  the  presence  of 
condensing  agents,  but  not  so  far  as  to  produce  a 
cellulose  acetate  soluble  in  the  usual  solvents.  For 
example  cotton  is  dipped  in  a  25%  solution  of  zinc 
chloride,  pressed  and  rapidly  dried  at  not  too  high 
a  temperature.  It  is  then  transferred  to  a  vessel 
with  an  air-tight  cover,  in  which  acetic  anhydride 
is  vaporised  under  reduced  pressure,  and  the 
vapours  are  allowed  to  react  at  40° — 45°  C.  for  50 
hrs.  The  increase  of  weight  of  the  fibre  must  not 
be  greater  than  40 — 45%  .  The  thread  thus  obtained 
is  soft  and  pliable,  possesses  great  tensile  strength 
and  cannot  be  dyed  with  direct  dvestuffs. 

— H.  C.  R. 


Effect   threads;    Production   of   ■ from   animal 

fibres.    L.  Cassella  und  Co.    G.P.  347,197,  3.5.19. 

The  fibre  is  treated  with  soluble  condensation  pro- 
ducts of  phenols  or  similar  substances  with  alde- 
hydes, or  the  constituents  of  these  condensation 
products  are  allowed  to  react  on  the  fibre.  Wool 
treated  with  insoluble  condensation  products  takes 
up  dyestuffs  very  readily,  whereas  animal  fibres 
treated  with  the  soluble  condensation  products  take 
up  dvestuffs  only  with  difficulty  or  not  at  all. 

— H.  C.  R. 


Tarn     printing  mechanism. 
175,310,  10.8.20. 


C.     Alvord.       E.P. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphur  in   iron  pyrites;   Determination   of  . 

G.    Chaudron    and    G.    Juge-Boirard.      Comptes 
rend.,  1922,  174,  683—685. 

When  iron  pyrites  is  dissolved  in  nitric  acid  or 
aqua  rcgia  a  certain  amount  of  free  sulphur  always 
separates  if  the  temperature  exceeds  60°  C.  in  the 
case  of  marcassite  or  pyrites  containing  other 
metallic  sulphides.  If,  however,  the  acid  is  allowed 
to  react  at  the  room  temperature,  there  is  no 
separation  of  free  sulphur  but  the  time  required 
for  complete  solution  is  much  longer. — W.  G. 


Nitrous  anhydride. 
490—491. 


F.  Foerster.     Ber.,  1922,  55, 


The  existence  of  undecomposed  nitrogen  trioxide 
in  nitrous  fumes,  assumed  by  Wieland  (J.,  1921, 
763  a),  has  been  established  experimentally  by  Le 
Blanc  (J.,  1906,  869)  and  Foerster  (J.,  1910,  1374). 

— H.  W. 

Ammonia;  Elimination  of  the  heat  of  reaction  in 

the  synthesis  of at  very  high  pressures.     G. 

Claude.    Comptes  rend.,  1922,  174,  681—683. 

In  adopting  the  method  previously  suggested  (cf. 
J.,  1922,  140  a)  for  obtaining  a  uniform  tempera- 
ture over  the  walls  of  the  reaction  tube,  it  became 
necessary  to  find  some  other  means  of  removing 
the-  heat  of  reaction.  The  desired  result  can  be 
achieved  by  placing  the  catalyst  in  a  thin-walled 
inner  tube  and  allowing  the  incoming  cold  gases 
to  circulate  through  the  annular  space.  The  inner 
tube  is  so  constructed,  by  varying  the  thickness  of 
the  tube  along  its  length,  that  the  amount  of  heat 
removed  at  any  point  is  just  equal  to  the  amount  of 
heat  generated  at  that  point.  Under  these  condi- 
tions the  life  of  the  reaction  tubes  is  greatly 
increased  and  it  is  possible  to  replace  the  catalyst 
very  easily  as  it  becomes  exhausted. — W.  G. 

Ammonia-water;  The  system  as  a  basis  for  a 

theory  of  the  solution  of  gases  in  liquids.  B.  S. 
Neuhausen  and  W.  A.  Patrick.  J.  Phys.  Chem., 
1921,  25,  693—720. 
The  solubility  of  ammonia,  and  the  partial  pressures 
and  density  of  aqueous  solutions  of  ammonia  at 
partial  pressures  varying  from  750  mm.  to  3600  mm. 
have  been  determined  at  0°,  20°,  and  40°  C.  An 
excerpt  from  the  tabulated  results  is  given  below. 


Temp. 
0°C. 


20°  C. 


40°  C. 


Mol.  frac- 

Partial 

Partial 

Density 

%   Con- 

tion % 

pressure  of 

pressure  of 

of 

traction  in 

ammonia. 

ammonia. 

water. 

solution. 

volume. 

51-676 

915  mm. 

1-25  mm. 

0-842 

7-50 

61-206 

1409     „ 

077      „ 

0-817 

9-21 

66-621 

1865     „ 

0-46      „ 

0-795 

8-12 

34.886 

728     „ 

9-4 

0-882 

707 

42-392 

1165-    „ 

8-58      „ 

0-862 

8-17 

49-941 

1938     „ 

6-33      „ 

0.825 

9-47 

66-923 

3277     „ 

4.15      „ 

0-815 

965 

33  134 

1376     „ 

290 

0-8755 

7-74 

25011 

752     „ 

365 

0.902 

605 

44-624 

3226     „ 

180 

0-837 

9-49 

46335 

3640     „ 

17-6       „ 

0-828 

'J  40 

250  a 


Cr..  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.      [April  15.  1922. 


The  solubility  of  ammonia,  hydrogen  chloride, 
sulphur  dioxide,  and  carbon  dioxide  in  water  at 
varied  temperatures  and  pressures  can  be  well 
represented  by  the  formula,  V  =  K(P<r/P0)' ",  where 
V  is  the  volume  occupied  by  the  liquefied  gas  dis- 
solved per  grm.  of  water,  P„  is  the  vapour  tension 
and  <r  the  surface  tension  of  the  liquefied  gas  at  the 
temperature,  and  P  is  the  equilibrium  gas  pressure. 
The  constant,  K,  for  ammonia  has  the  value  049  and 
1/n  has  the  value  069.— J.  F.  S. 


Ammonia;  Adsorption  of by  silica  gel.     L.  Y. 

Davidheiser  and  W.  A.  Patrick.    J.  Amer.  Chem. 
Soc,  1922,  44,  1—8. 

Silica  gels  containing  as  little  as  0'33%  of  water 
adsorb  considerable  volumes  of  ammonia,  but  con- 
siderably less  than  do  gels  containing  4'93%  of 
water.  The  adsorption  of  ammonia  is  satisfactorily 
explained  by  capillary  condensation  if  a  correction 
is  made  for  the  amount  of  gas  which  dissolves  in  the 
water.— J.  F.  S. 


Hydro  sulphurous  and  sulphoxylic  acids;  Volumetric 

method  for  the  estimation  of .    F.  De  Bacho. 

Giorn.  Chim.  Ind.  Appl.,  1921,  3,  501—502. 

The  method  depends  on  the  fact  that  excess  of 
formaldehyde  forms  with  hydrosulphite  a  solution 
highly  resistant  to  oxidation  by  means  of  atmo- 
spheric oxygen,  the  influence  of  sodium  bisulphite, 
sodium  metabisulphite,  and  sodium  sulphite  being 
completely  eliminated.  The  first  two  of  these  im- 
purities do  not  act  on  the  2V/10  iodine  and  sodium 
(or  barium)  hydroxide  solutions  employed,  and  the 
third  is  converted  into  sodium  bisulphite  by  addi- 
tion of  sulphuric  acid.  The  effect  of  sodium  thio- 
sulphate  on  the  titration  cannot  be  avoided,  but  this 
salt  may  be  estimated  and  allowance  made  for  it. 
The  reactions  occurring  during  the  estimation  are 
represented  by  the  equations  :  — 

(1)  Na2S204+3H20+4r+NaHS04  +  4HI+NaHS02; 
(2)  NaHS02+4I+2H2CH-NaHSO,+4HI; 

(3)NaHSO,+4HI  +  5NaOH-fNa:!SO,+4NaI+5H20; 
(4)  2Na2S203+2I->-Na2S406  +  2NaI. 

About  1  g.  of  the  sodium  hydrosulphite  or  1 — -2  g. 
of  sodium  formaldehyde-sulphoxylate  is  dissolved  in 
a  weighing  bottle  in  10  c.c.  of  40%  formaldehyde 
solution,  with  the  addition,  if  necessary,  of  5  c.c.  of 
water,  the  bottle  being  then  closed.  After  the  lapse 
of  about  20  mins.,  the  solution  is  introduced  quanti- 
tatively into  a  500  c.c.  flask,  to  which  are  added  also 
150 — 200  c.c.  of  water,  2  drops  of  methyl  orange 
(1:1000),  and  sufficient  iV/1  sulphuric  acid  to  give  a 
distinctly  acid  reaction ;  excess  of  the  acid  must, 
however,  be  avoided.  To  50  c.c.  of  this  solution 
containing  2  drops  of  phenolphthalein  solution, 
iV/10  sodium  hydroxide  solution  free  from  carbon 
dioxide,  or  barium  hydroxide  solution,  is  added 
until  the  colour  becomes  pink,  the  liquid  being  then 
titrated  with  2V/ 10  iodine  solution  in  presence  of 
starch  paste.  In  absence  of  thiosulphate  or  with 
low-grade  sulphoxylates,  the  results  thus  obtained 
are  satisfactory.  In  other  cases  the  liquid  is  de- 
colorised with  a  drop  of  Ar/10  sodium  thiosulphate 
and  titrated  with  N/10  sodium  hydroxide  free  from 
carbon  dioxide  or  with  2V/10  barium  hydroxide;  for 
this  second  titration  the  water  used  must  be  free 
from  carbon  dioxide  and  the  iodine  solution  devoid 
of  free  acid.  The  acid  formed  after  the  titration 
with  iodine  solution  is  the  basis  for  calculating  the 
content  of  Na2S20;  or  of  NaHS02,  one  equivalent  of 
NaOH  corresponding  with  one-fifth  of  an  equivalent 
of  Na2S204  or  NaHSO,  (equation  3).  The  content 
of  Na2S2Oj  is  deduced  by  multiplying  by  0'8  the 
number  of  c.c.  of  sodium  hydroxide  used  and  sub- 
tracting from  the  result  the  number  of  c.c.  of  iodine 
taken  (equation  4). — T.  H.  P. 


Nitrous  acid;    Action   of  on  iodides   in   the 

presence  of  oxygen.  [Iodometric  determination 
of  nitrites.]  M.  Lombard.  Bull.  Soc.  Chim., 
1922,  31,  161—169. 

When  nitrous  acid  acts  upon  iodides  in  the  presence 
of  oxygen,  the  nitrous  acid  is  regenerated  as  fast 
as  it  disappears.  Without  taking  slight  losses  into 
account  two  causes  limit  the  phenomenon.  One  of 
these  causes  is  not  within  the  control  of  the  analyst. 
It  is  the  production  of  a  small  but  relatively  con- 
stant amount  of  nitrogen.  The  other  cause,  which 
is  of  variable  importance,  depends  almost  entirely 
on  the  method  of  working.  It  is  the  production  of 
nitrate,  which  may  be  nil.  It  is  this  production  of 
nitrate  which,  coupled  with  the  losses  by  diffusion, 
leads  to  such  variable  results.  The  author  considers 
that,  in  view  of  these  facts,  the  estimation  of 
nitrites  by  the  liberation  of  iodine  in  the  presence 
of  oxygen  is  impossible.  Comparable  results  might 
be  obtained  by  the  same  analyst  working  under 
minutely  controlled  conditions,  which  would,  how- 
ever, be  difficult  to  realise,  but  different  workers 
would  probably  obtain  widely  divergent  results  for 
the  same  material. — W.  G. 

Potassium  ferrocyanide;  Solubility  of in  water. 

Ice  curve  and  cryohydric  point.  E.  Fabris.  Gazz. 
Chim.  Ital.,  1921,  51,  [II],  374—380. 

The  solubility  of  potassium  ferrocyanide  in  grms.  of 
the  salt  per  100  grms.  of  water  is  represented 
between  0°  and  100°  C.  by  two  almost  rectilinear 
curves  meeting  at  80°  C,  the  actual  number  of 
grms.  keing  1425  at  0°,  6747  at  80°,  and  8550  at 
100°  C.  No  evidence  is  obtainable  of  transformation 
of  one  hydrate  into  another  occurring  at  80°  C, 
although  this  temperature  is  given  in  Landolt's 
Tables  as  a  transformation  point.  The  cryohydrio 
point  is  found  to  be  -1'58°  C,  the  corresponding 
concentration  being  13'1  g.  of  the  anhydrous  salt 
per  100  g.  of  water.— T.  H.  P. 

Potassium    perchlorate;    Formation   of  ■ from 

potassium  chlorate.  V.  Lenher,  H.  W.  Stone, 
and  H.  H.  Skinner.  J.  Amer.  Chem.  Soc.,  1922, 
44,  143—144. 

Potassium  perchlorate  is  formed  to  the  extent  of 
11%  when  potassium  chlorate  is  treated  cautiously 
with  sulphuric  acid  and  the  mixture  kept  for  5  hrs. 
Evaporation  of  potassium  chlorate  with  nitric  acid 
of  all  concentrations,  except  the  fuming  acid,  on  a 
steam  bath  gives  a  30%  yield  of  perchlorate.  A 
15%  yield  is  obtained  when  potassium  chlorate  is 
boiled  with  85%  phosphoric  acid.  Potassium 
chlorate  and  chromium  trioxide  boiled  with  just 
sufficient  water  to  maintain  a  solution  gives  11%  of 
perchlorate.  Saturated  oxalic  acid  solution,  25% 
tartaric  acid,  glacial  and  dilute  acetic  acid,  50% 
ehloroacetic  acid,  25%  lactic  acid,  50%  arsenic  acid, 
20%  permanganic  and  persulphuric  acids  have  no 
action  on  potassium  chlorate.  Formic,  trichloro- 
acetic, hydrofluoric,  and  hydrochloric  acids  decom- 
pose potassium  chlorate  but  produce  no  perchlorate. 

— J.  F.  S. 

Gypsum;  Simple  process  for  obtaining  crystallised 

.     L.  Bourgeois.     Bull.  Soc.  Chim.,  1922,  31, 

160—161. 
Nitric  acid  (40°  B.,  sp.  gr.  13S4)  is  diluted  with 
one-third  of  its  volume  of  water  and  then  saturated 
at  just  below  its  boiling-point  with  calcium  sul- 
phate. The  clear  liquid  is  decanted  off  and  allowed 
to  cool.  After  eight  days  crystals  of  gypsum  begin 
to  appear.  They  differ  from  those  obtained  by 
using  hydrochloric  acid  as  solvent  in  that  they  are 
not  fibrous  or  felted. — W.  G. 

Ionium  content  of  radium  residues.    E.  Rona.   Ber., 

1922,  55,  294—301. 
The  content  of  ionium  in  various  radium  residues 


Vol.  XLI.,  No.  7.]     Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  j  NON-METALLIC  ELEMENTS. 


251  A 


has  been  estimated  according  to  the  "  indicator  " 
method  with  the  aid  of  uranium  X.  The  final 
residues  obtained  during  the  extraction  of  radium 
in  Austria  still  contain  approximately  16%  of  the 
ionium  present  originally  in  the  pitchblende. 
Thorough  extraction  of  the  latter  with  nitric  acid 
gives,  on  a  laboratory  scale,  residues  which  are 
almost  completely  free  from  ionium.  (C/.  J.C.S., 
April.)— H.  W. 

Oxides  which  are  stable  at  red  heat  (prepared  by 
different  methods  and  possessing  different  proper- 
ties); Examination  of  metallic by  the  X-ray 

spectrum.      J.   A.   Hedvall.      Z.  anorg.   Chem., 
1922,  120,  327—340. 

The  properties  (colour,  density,  etc.)  of  certain 
oxides  prepared  by  different  methods  vary.  The 
common  assumption  of  the  existence  of  different 
modifications  in  explanation  of  these  differences  is 
regarded  a6  highly  improbable.  The  author  examined 
the  following  oxides  by  the  X-ray  spectrum 
method:  Fe2Os  (27),  Fe304  (2),  A1203  (5),  CoO  (2), 
Co,0,  (3),  NiO  (6),  MgO  (7),  ZnO  (6),  CuO  (11), 
Sn02  (3).  The  numbers  in  brackets  give  the  number 
of  different  methods  employed  in  their  preparation. 
They  were  all  found  to  be  crystalline  or  crypto- 
crystalline,  and  different  preparations  of  the  same 
oxide  gave  identical  spectra  which  were  the  same 
as  for  the  natural  minerals.  Many  of  the  oxides 
were  heated  to  1150°  C.  for  some  time.  This  caused 
a  change  in  some  of  their  properties  but  the  X-ray 
spectum  remained  unchanged.  These  changes  of 
properties  are  not  caused  by  changes  in  structure. 

— W.  T. 

Sulphur   dioxide   and    water;   Equilibrium    in    the 

reaction   between    .     F.   R.    Bichowsky.      J. 

Amer.  Chem.  Soc.,  1922,  44,  116—132. 

Liquid  sulphur  and  dilute  sulphuric  acid  react 
according  to  the  equations  : 

(1)  S(V)+2H2S04(aq)  =  2H„0(liq)  +  3S02(ga6)  and 

(2)  4S(AA>)  +  4H20(liq)=3H2S(gas)  +  H2S04(aq); 

both  reactions  are  reversible  and  in  reactions  with 
acids  of  greater  mol-fraction  than  0'05  and  at 
temperatures  up  to  the  critical  temperature  of 
water  the  second  reaction  is  negligible.  A  new 
apparatus  for  measuring  equilibrium  and  vapour 
pressures  of  corrosive  liquids  at  high  temperatures 
and  pressures  is  described.  It  consists  essentially  of 
a  quartz  tube  contained  in  a  mercury-filled  steel 
bomb  which  communicates  with  a  pressure  gauge. 
The  quartz  tube  is  constructed  so  that  the  material 
is  contained  in  a  chamber  at  the  top ;  this  communi- 
cates through  a  quartz  capillary  with  a  second 
chamber  filled  with  mercury  which  is  in  contact  with 
the  mercury  in  the  steel  jacket. — J.  F.  S. 

Persulphides  of  hydrogen;  Preparation  and  pro- 
perties of .    J.  H.  Walton  and  L.  B.  Parsons. 

J.  Amer.  Chem.  Soc,  1921,  43,  2539—2548. 

Hydrogen  disulphide  and  trisulphide  are  prepared 
as  follows:  2  kg.  of  crystallised  sodium  sulphide  and 
300  g.  of  flowers  of  sulphur  are  treated  with  800  c.c. 
of  water  in  a  3-litre  flask  closed  by  a  Bunsen  valve. 
When  all  the  sulphide  has  dissolved  the  flask  is 
heated  on  a  water  bath  with  occasional  shaking  for 
3 — 4  hrs.  until  the  sulphur  has  dissolved.  The  solu- 
tion of  polysulphide  thus  obtained  is  run  at  the  rate 
of  3  1.  an  hour  under  the  surface  of  rapidly  stirred 
hydrochloric  acid  (sp.  gr.  T19)  at  -4°  C.  to  -10°  C. 
until  a  brown  scum  rises  to  the  surface.  The 
emulsion  thus  obtained  settles  and  an  oil  (400 — 500 
c.c.)  consisting  of  the  two  sulphides  separates.  It 
is  dried  with  phosphorus  pentoxide  and  distilled  in 
a  quartz  apparatus  fitted  with  two  receivers  in 
series,  the  first  being  cooled  by  water  and  the  second 
by  ice  and  salt.  The  distillation  is  carried  out  at 
20 — 25  mm.  pressure  and  the  distilling  flask  heated 
in  a  glycerin  bath  at  120°  C.     Two  volumes  of  tfte 


freshly  prepared  mixture  yields  §  vol.  of  the  trisul- 
phide and  £  vol.  of  the  disulphide.  For  the  analysis 
of  the  sulphides,  2 — 3  g.  is  weighed  in  a  75  mm. 
quartz  test-tube,  the  tube  is  almost  filled  with 
carbon  bisulphide  and  the  contents  poured  into  a 
75  mm.  tared  quartz  dish  and  the  tube  rinsed  out 
with  20  c.c.  of  carbon  bisulphide.  About  10  c.c. 
of  pure  acetone  is  added  to  the  dish,  which  is  covered 
with  a  watch  glass.  After  the  evolution  of  hydro- 
gen sulphide  has  ceased,  the  cover  glass  is  washed 
with  carbon  bisulphide,  the  contents  of  the  dish 
allowed  to  evaporate  spontaneously  and  the  residue 
of  rhombic  sulphur  dried  at  90°  C.  and  weighed. 
Hydrogen  trisulphide,  H,Sa,  is  a  mobile  yellow  oil 
with  an  odour  similar  to  that  of  camphor  and 
sulphur  monochloride;  it  is  irritating  to  the  eyes 
and  nose.  On  cooling  it  becomes  quite  colourless ; 
it  is  soluble  in  benzene,  toluene,  chloroform,  carbon 
bisulphide,  ether,  and  heptane  and  is  catalytically 
decomposed  by  alcohols,  ketones,  aniline,  nitro- 
benzene, and  pyridine.  On  cooling  it  becomes  more 
and  more  viscous  as  the  temperature  is  reduced  to 
-75°  C.  but  shows  no  sharp  freezing  point.  It 
behaves  similarly  to  hydrogen  sulphide  toward 
ether  solutions  of  metallic  salts.  Metallic  oxides 
and  alkalis  decompose  it,  some  so  violently  as  to 
cause  it  to  ignite.  It  dissolves  readily  in  liquid 
hydrogen  sulphide,  and  sulphur  is  readily  dissolved 
by  it.  Hydrogen  disulphide,  H2S2,  which  has  not 
been  obtained  quite  pure,  is  a  colourless  mobile  oil, 
which  boils  at  74"5°  C.  and  melts  between  -88°  C. 
and  -90°  C,  but  shows  no  sharp  point  of  solidifica- 
tion. It  has  a  more  irritating  odour  than  the  tri- 
sulphide. It  is  soluble  in  the  same  solvents  as  the 
trisulphide,  but  is  more  violently  decomposed  by 
acetone. — J.  F.  S. 

Selenium  dioxide;  Hydrates  of .     W.  Manchot 

and   K.    Ortner.      Z.   anorg.    Chem.,    1922,    120, 
300—309. 

Examination  of  the  freezing  point  and  vapour 
pressure  curves  of  the  system  Se02-H,0  indicated 
the  existence  of  the  hydrate  Se02,H20.  The  degree 
of  dissociation  was  found  to  be  approximately  the 
same  as  that  for  tartaric  acid.  No  evidence  could 
be  obtained  of  the  existence  of  (H2Se03)2  in  a  freshly 
prepared  solution,  as  claimed  by  Rosenheim  and 
Krause  (c/.  J.,  1922,  13  a).— W.  T. 

Silicon;  Modifications  of .     Solubility  of  silicon 

in  hydrofluoric  acid.    W.  Manchot  and  H.  Funk. 
Z.  anorg.  Chem.,  1922,  120,  277—299. 

Specimens  of  silicon  obtained  from  an  aluminium 
regulus  were  examined.  Increasing  the  tempera- 
ture of  the  melt  from  900°  to  1650°  C.  had  but  little 
effect  on  the  character  of  the  silicon,  and  concentra- 
tion of  silicon  in  the  regulus  also  could  be  varied 
from  025  to  10%  without  much  effect,  but  a  higher 
concentration  (>10%)  favoured  the  formation  of 
crystals.  Rapid  cooling  of  the  regulus  gave  a 
greyish  black  amorphous  (no  crystalline  form  could 
be  detected  at  960  magnification)  silicon  (sp.  gr. 
2'23),  which  reacted  briskly  with  hydrofluoric  acid 
with  evolution  of  hydrogen,  leaving  a  brown 
amorphous  residue  (sp.  gr.  2'20)  apparently  in- 
soluble in  hydrofluoric  acid.  This  brown  variety 
was  very  active,  reacting  violently  with  fuming 
nitric  acid,  sodium  hydroxide,  chlorine,  and  bromine 
at  ordinary  temperatures.  This  reactivity  was  • 
found  to  be  due  to  adsorbed  hydrogen ;  on  removing 
the  hydrogen  the  substance  reacted  with  hydro- 
fluoric acid  and  behaved  in  the  same  way  as  the 
greyish  black  amorphous  form.  On  cooling  the 
regulus  slowly,  crystalline  silicon  was  obtained 
(sp.  gr.  230) ;  this  form  reacted  but  slowly  with 
hydrofluoric  acid.  The  aluminium  could  be  replaced 
by  a  silver  regulus.  Silicon  of  99%  solubility  in 
hydrofluoric  acid,  as  claimed  by  Moissan  and 
Siemens   (J.,    1904,   687),    could  not  be   prepared. 


252  a 


Cl.  Vn.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.     [April  15,  1922. 


Silicon  completely  resistant  towards  hydrofluoric 
acid  could  not  be  obtained.  Ordinary  silicon  heated 
to  2000°  C.  and  suddenly  cooled  behaved  in  the  same 
way  as  when  slowly  cooled.  This  leads  the  author 
to  believe  that  the  various  forms  obtained  from  the 
reguli  are  not  allotropic  modifications.  The  sudden 
cooling  of  the  solution  and  solidification  of  the  metal 
solvent  gives  extremely  fine  particles ;  the  reactivity 
is  ascribed  to  this  fineness  and  not  to  a  new  form. 
A  like  degree  of  fineness  could  not  be  obtained 
mechanically.  Silicon  in  mixtures  of  silicon  and 
silica  was  estimated  by  measuring  the  volume  of 
hydrogen  liberated  from  potassium  hydroxide 
solution.— W.  T. 

Oxygen-hydrogen  catalysis  by  platinum  metals,  and 
the  contact  potentials  in  presence  of  aqueous 
electrolytes.  K.  A.  Hofmann.  Ber.,  1922.  55, 
573—588. 

Wtxlstatter  and  Waldschmidt  (J.,  1921,  161a)  are 
not  justified  in  concluding  that  their  results,  from 
experiments  with  platinum  black,  are  incompatible 
with  the  views  of  Hofmann  and  Zipfel  (J.,  1920, 
265  a),  who  used  platinised  porous  earthenware.  No 
indication  could  be  observed  of  the  peroxide-hydride 
to  which  Willstiitter  and  Waldschmidt  ascribe  the 
favourable  effect  of  oxygen  on  the  catalvtic  activity 
of  hydrogen  (G.P.  301,364,  J.,  1920,  722  a;  Will- 
statter  and  Waldschmidt,  loc.  cit.).  The  volume  of 
oxygen  occluded  by  platinised  earthenware  is  so 
small  that  any  peroxide  produced  cannot  bear  any 
relation  to  the  actual  effect  of  oxygen  on  catalysis, 
which  is  rather  due  to  its  influence  on  the  catalyst 
surface.  Measurements  of  variations  of  contact 
potential  during  catalysis  lead  to  the  same  con- 
clusion. Further,  hydrogen  peroxide  is  shown 
always  to  act  as  a  strong  oxidising  agent  in  contact 
with  such  surfaces,  so  that  it  is  highly  improbable 
that  any  peroxide-hydride  could  exert  a  reducing 
influence,  apart  from  the  rapidity  with  which  the 
known  peroxides  are  decomposed  by  platinum 
metals.  Hydrogen  peroxide  may  be  an  inter- 
mediate product  in  the  formation  of  water,  but  its 
existence  is  so  transient  as  to  elude  detection.  (C/. 
J.C.S.,  April.)— J.  K. 

Oxygen;  Method  of  determining  traces  of  in 

hydrogen.     A.  T.  Larson  and  E.  C.  White.     J. 
Amer.  Chem.  Soc.,  1922,  44,  20—25. 

Traces  of  oxygen  may  be  rapidly  and  accurately 
determined  in  nitrogen-hydrogen  mixtures,  such  as 
are  used  in  the  synthetic  manufacture  of  ammonia, 
by  the  following  method :  The  gas  mixture  is 
passed  through  a  platinised  platinum  catalyst  which 
is  heated  to  305°  C.  in  a  carefully  regulated  di- 
phenylamine  vapour  bath,  and  the  rise  in  tempera- 
ture, due  to  the  combustion  of  oxygen,  measured  by 
a  copper-constantan  thermo-element.  The  deflec- 
tions of  a  sensitive  galvanometer  attached  to  the 
thermo-element  give  a  measure  of  the  oxygen 
content  of  the  gas.  Concentrations  of  oxygen  as 
low  as  0001%  may  be  determined  easily  with  a 
maximum  error  of  3%,  and  by  modification  of  the 
measuring  instrument  the  method  may  be  used  for 
oxygen  concentrations  up  to  1%. — J.  F.  S. 

Hydrogen   and  nitrogen;  Active   modifications   of 

produced  by  a-rays.    F.  H.  Newman.     Phil. 

Mag.,  1922,  43,  455—162. 

The  a-rays  from  polonium  were  allowed  to  act  on 
nitrogen  at  different  pressures  in  the  presence  of 
sodium,  potassium,  sulphur,  phosphorus,  iodine, 
magnesium,  arsenic,  mercury,  and  an  alloy  of 
6odium  and  potassium.  Some  gas  was  absorbed. 
Similar  experiments  with  hydrogen  gave  absorp- 
tions with  sulphur,  phosphorus,  and  iodine.  The 
absorption  was  shown  to  be  due,  at  least  in  some 
cases,  to  the  formation  of  nitrides  and  hydrides. 
The  chemical  activity  of  the  gases  is  due  to  active 


modifications,  probably  consisting  of  neutral  atoms 
and  triatomic  molecules,  and  not  to  ions.  The 
a-rays  are  the  only  ones  effective  in  the  rays  from 
radioactive  substances. — J.  R.  P. 

Ammoniacal    saponification    and    manufacture    of 
ammonia.     Garelli.     See  XII. 

Sodium  hydroxide  solution  free  from  carbon  dioxide 
Cornog.    See  XXIII. 

Titrations  in  alcohol  solutions.  Bishop  and  others 
See  XXIII. 

Patents. 

Boronatrocalcite;    Process    of    decomposing    

Schott  &  Gen.     E.P.   153,007,   11.10.20.     Conv.', 

Boronatrocalcite  is  treated  with  such  a  quantity 
of  water  and  sulphuric  acid,  or  weak  lye  (dilute 
boric  acid  solution)  and  sulphuric  acid,  that  no  acid 
reaction  is  produced,  and  is  heated  to  about  75°  C. 
The  resulting  sludge  consisting  of  calcium  sulphate 
and  unattacked  boronatrocalcite  is  separated,  and 
from  the  solution  sodium  pentaborate,  Na,0, 
5B2O,,10H,O,  and  boric  acid  are  recovered.  By 
treating  the  sludge  with  more  sulphuric  acid  and 
washing,  a  further  quantity  of  boric  acid  can  be 
recovered. — H.  R.  D. 

Borax  and  boric  acid;  Process  for  manufacture  of 

.      A.    Kelly   and   R.   B.   R.    Walker.      E.P. 

175,201,  3.3.21. 

Sodium  pentaborate  solution  is  treated  with  sodium 
chloride  in  sufficient  quantity  to  convert  the  penta- 
borate   into    borax   on    addition   of    a   determined 
quantity  of  ammonia : 
2Na2B1„01s+6NaCl+6NH1OH  = 

5Na2B,07  +  6NH4Cl+3H20. 
The  borax  is  crystallised  out  of  the  solution,  the 
crystals  being  then  drained  and  washed  free  from 
mother  liquor  containing  ammonium  chloride.  The 
filtrate  and  washings  are  distilled  to  recover  the 
ammonia,  lime  being  added  if  there  is  not  sufficient 
dissolved  borax  to  liberate  the  whole  of  the 
ammonia,  and  from  the  residual  liquor  boric  acid 
or  boric  acid  and  calcium  borate  are  recovered  by 
crystallisation. — H.  R.  D. 

Aluminium  chloride;  Process  for  producing  . 

E.  R.  AVolcott.     E.P.  175,006,  1.11.20. 

A  mixture  of  carbonaceous  material  and  a  material 
containing  aluminium  silicate,  e.g.,  clay,  or  a 
naturally  occurring  material  containing  aluminium 
silicate  and  carbonaceous  matter,  such  as  oil  shale, 
slatey  coal,  etc.,  is  dried,  then  heated  sufficiently  to 
distil  off  volatile  hydrocarbons,  and  the  residue 
heated  to  a  higher  temperature  in  the  presence  of 
a  chloridising  agent  to  form  aluminium  chloride, 
which  is  volatilised  and  collected.  The  residue  if 
still  containing  carbon  may  be  utilised  for  the  pro- 
duction of  water-gas  or  producer-gas.  The 
aluminium  chloride  is  collected  in  a  chamber  from 
which  air  is  excluded,  or  it  may  be  collected  in  a 
liquid  such  as  alcohol,  carbon  tetrachloride,  or 
liquid  hydrocarbon,  which  serves  as  a  protecting 
medium. — H.  R.  D. 

Hypochlorite  solutions;  Electrolytic  apparatus  for 
preparing  — ■ — .  D.  McG.  Rogers  and  A.  T. 
Masterman.     E.P.  175,390,  12.11.20. 

The  flat  electrodes  employed  are  supported  within 
a  substantially  non-conducting  frame  open  at  the 
bottom  and  at  the  sides  opposite  the  edges  of  the 
electrodes.  Perforated  non-conducting  plates,  the 
edges  of  which  are  closely  adjacent  to  the  inside 
walls  of  the  frame,  are  placed  between  adjacent 
positive  and  negative  faces  of  the  electrodes.  A 
ledge  provided  with  a  movable  cover  is  arranged 


Vol.  XLI.,  No.  7.] 


Cl.  VIII.— GLASS;  CERAMICS. 


253  a 


under  each  of  the  openings  in  the  sides  of  the 
frame.  Similar  electrodes  are  connected  together 
by  bus-bars.— J.  8.  G.  T. 

Alkali  metal  cyanates;  Method  of  producing  . 

O.  Liebknecht.  U.S. P.  1,406,662,  14.2.22.  Appl., 
23.5.19. 

Alxali  cyanide  is  caused  to  react  with  alkali  per- 
oxide in  presence  of  water. — H.  R.  D. 

Potassium  chlorate;  Process  for  purifying  for 

use  in  the  manufacture  of  explosives  and  matches. 
K.  W.  Jurisch  and  H.  von  Schleinitz.  G.P. 
301,673,  13.7.16.  Addn.  to  300,714  (J.,  1921, 
197  a). 

In  the  electrolytic  process  for  the  manufacture  of 
potassium  chlorate,  reagents  such  as  chromates 
employed  in  the  process  are  precipitated  and 
separated  by  filtration,  before  potassium  chlorate 
is  crystallised  and  subsequently  purified  as  described 
in  the  chief  patent. — L.  A.  C. 

Sulphates;   Method   of  decomposition   of  ,   in 

particular  calcium  sulpliate,  with  recovery  of  the 
sulphur  as  oxides  of  sulphur.  Metallbank  und 
Metallurgische  Ges.  A.-G.    G.P.  307,043,  11.11.16. 

The  sulphur  is  recovered  as  sulphur  dioxide  by 
!  forcing  a  blast  of  air  through  a  mixture  of  the 
sulphate  and  carbon.  The  air  supply  is  regulated 
in  proportion  to  the  height  of  the  charge,  so  that 
the  decomposition  temperature  is  attained  at  the 
surface  of  the  charge  where  the  gases  containing 
sulphur  dioxide  escape. — J.  B.  F. 

Calcium    cyanamide;    Process   for    conglomerating 

sludge  produced  by   the  decomposition  of  . 

Baverische  Stickstoff-Werke  A.-G.  G.P.  346,761, 
18.4.19. 

The  sludge  is  mixed  with  a  small  quantity  of  an 
alkaline-earth  salt,  e.g.,  of  calcium  chloride,  which 
forms  a  solid  compound  with  lime,  and  sintered  at 

ja  suitable  temperature,  yielding  a  product  suitable 
for  use  in  the  manufacture  of  calcium  carbide.  The 
carbon  in  the  sludge  may  be  utilised  as  fuel  in  the 

[sintering  process  or  for  the  subsequent  production 
of  carbide. — A.  G.  P. 


i  Barium,  compounds,  rcith  alumina  or  silica  or 
.  alumina  and  silica;  Method  for  the  preparation 
'■    of .     C.  A.  Beringer.     G.P.  347,374,  30.4.20. 

Alumina    or    material    containing    alumina,     e.g., 

jiauxite,  or  silica  or  material  containing  silica,  or 

ilioa  and  alumina  (clay)   is  suspended   in  barium 

ulphide  solution   and   heated   to   a   comparatively 

iigh  temperature  in  an  autoclave. — J.  B.  F. 

iromine;    Method    and    apparatus   for    extracting 

.     H.  H.  Dow,  Assr.  to  The  Dow  Chemical 

Co.  U.S.P.  1,406,624,  14.2.22.  Appl.,  7.6.16. 
Renewed  14.8.20. 

&RINE  containing  bromide  is  treated  to  set  free  less 
han  the  total  amount  of  bromine  present.  The 
rine  is  then  allowed  to  stand  in  presence  of  free 
ilorine  long  enough  for  the  latter  to  react  with 
le  residual  bromide.— H.  R.  D. 

ulphur;  Process  of  extracting  .  A.  K.  Sedg- 
wick. U.S.P.  1,406,905,  14.2.22.  Appl.,  26.1.21. 
olphur  ore  and  oil  are  introduced  into  a  bath  of 
olten  sulphur  and  mixed;  the  solid  particles  rise 
i  the  surface  of  the  bath. — H.  R.  D. 

itric  acid;  Manufacture  of  .       P.  A.  Guve, 

Assr.  to  F.  Gros  et  Bouehardy.  U.S.P.  1,407,530, 
21.2.22.     Appl.,  29.5.18. 

:e  E.P.  131,336  of  1918;  J.,  1919,  763  a. 


Sodium  bicarbonate  and  hydrogen;  Method  of  pro- 
ducing   .     The  Nitrogen  Corp.,  Assees.  of  A. 

Nagelvoort.    E.P.  158,863,  2.9.20.    Conv.,  7.2.20. 

See  U.S.P.  1,352,211  of  1920;  J.,  1920,  689  a. 

Hydrogen  sulphide;  Process  for  the  production  of 

from  sulphurous   gases.     W.   J.   Browning 

U.S.P.  1,407,323,  21.2.22.     Appl.,  12.11.19. 

See  E.P.  158,288  of  1919;  J.,  1921,  215  a. 

Perborates;  Manufacture  of .  J.  K.  Langhard, 

Assr.  to  Frederiksstad  Elektrokemiske  Fabriker 
A./S.    U.S.P.  1,408,364,  28.2.22.    Appl.,  6.2.20. 

See  E.P.  139,753  of  1920;  J.,  1920,  819  a. 

Gas-purifying  material.    G.P.  346,063.    See  IIa. 

Recovery  of  soda  from  boiler  water.  G.P.  347,373. 
See  XLXb. 


VIII.-GLASS;    CEfiAMICS. 

Refractory    brick;    Effect    of    weather    upon    the 

strength  of  .     R.  M.   Howe,   S.  M.   Phelps, 

and   R.   F.   Ferguson.     J.   Amer.   Ceram.    Soc, 
1922,  5,  107—111. 

Magnesia,  silica,  and  fireclay  bricks  were  piled  on 
the  ground  and  exposed  to  the  action  of  the  weather 
for  3,  6,  9,  and  12  month  periods.  The  cold  crush- 
ing strength  of  the  magnesia  bricks  decreased  15% 
in  6  months  and  33%  in  12  months,  a  result  inter- 
preted as  representing  still  greater  decrease  in  re- 
sistance to  abrasion  and  spalling.  Magnesia  bricks 
which  had  weathered  for  12  months  sheared  under 
a  load  of  25  lb.  per  sq.  in.  40°  C.  lower  than  did  the 
original  bricks.  Silica  bricks  had  decreased  in 
crushing  strength  by  39%  after  exposure  for 
12  months.  Open,  porous,  hand-made  fireclay 
bricks,  having  an  end  crushing  strength  of  only 
500  lb.  per  sq.  in.,  were  practically  worthless  after 
exposure  for  6  months.  Finely  ground,  den6e, 
hard-burned  fireclay  bricks,  especially  those  of 
medium  or  low  refractoriness  and  having  an  end 
cold  crushing  strength  approximately  5000  lb.  per 
sq.  in.,  do  not  deteriorate  much  on  exposure  to  the 
action  of  weather. — H.  S.  H. 

Porosity  [of  ceramic  products'];  Determination  of 
by  means  of  gas  expansion.  E.  W.  Wash- 
burn and  E.  N.  Bunting.  J.  Amer.  Ceram.  Soc., 
1922,  5,  112—129. 
The  volume  of  the  pores  is  measured  by  allowing 
the  gas  which  fills  the  pores  to  expand  into  a 
measured  volume  and  measuring  the  accompanying 
fall  in  pressure.  A  new  porosimeter,  which 
measures  accurately  both  pore  and  bulk  volume,  is 
described.  A  complete  porosity  determination  can 
be  made  in  5  mins.,  no  weighing  is  required,  and 
the  results  are  reproducible  to  one  unit  in  the  first 
decimal  place  of  the  percentage  porosity.  Higher 
accuracy  can  be  attained  when  required.  The  re- 
sults obtained  are  in  all  cases  higher  than  those 
given  by  liquid  absorption  methods.  The  gas  used 
may  be  dry  air,  hydrogen,  or  helium.  The  results 
show  that  complete  filling  of  the  pores  in  a  reason- 
able time  cannot  be  secured  by  any  of  the  usual 
liquid  absorption  methods. — H.  S.  H. 

Fish  scaling  [of  enamels'];  Factory  control  of  ■ . 

J.  S.  Grainer.     J.  Amer.  Ceram.  Soc.,  1922,  5, 

95—101. 
The  causes  of  fish  scaling  are  stated  to  be  under-  or 
over-firing  but  especially  the  latter,  since  its  effects 
are  usually  not  evident  until  some  time  after  the 
ware  has  been  produced;  the  use  of  a  clay  which 
does  not  give  a  free-running  uniform  coat  without 


254  a       Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;    METALLURGY,  &c.     [April  15,  1922. 


the  use  of  excessive  amounts  of  flotation  agents ; 
the  use  of  unsuitable  furnaces.  An  open  type 
furnace  is  preferable  for  the  firing  of  enamelled 
ware.— H.  S.  H. 

Patents. 
Kilns  for  drying  and  burning  ceramic  products  and 
the    like.      H.    Sturm.      E.P.    163,973,    3.11.20. 
Conv.,  25.5.20. 

The  kiln  comprises  concentric  annular  drying  and 
burning  chambers  having  revolving  hearths,  the 
drying  chamber  being  at  a  higher  level  than  the 
burning  chamber.  A  furnace  is  placed  at  one  part 
of  the  circuit  of  the  burning  chamber  so  that  the 
goods  in  this  chamber  first  meet  the  products  of 
combustion,  then  pass  through  the  furnace  space 
and  afterwards  enter  a  cooler  zone.  Means  are  pro- 
vided for  introducing  air  heated  by  waste  heat  into 
the  drying  chamber  through  flues  so  distributed 
about  the  circumference  of  the  chamber  that  its 
temperature  gradually  increases  from  the  entrance 
to  the  exit.— H.  S.  H. 

Tunnel  kilns  for  pottery,  lime  burning,  and  the 
like.    H.  Koppers.    E.P.  174,852,  10.1.21. 

The  tunnel  of  a  kiln  slopes  downward  towards  both 
ends  from  an  elevated  heating  chamber  in  the 
middle.  The  cooling  zone  of  the  kiln  is  detached 
from  the  heated  portion,  movable  doors  being  pro- 
vided to  close  the  open  ends.  Air  for  cooling  enters 
the  discharging  end  of  the  kiln,  passes  in  a  contrary 
direction  to  the  travel  of  the  hot  goods,  and  is  con- 
veyed by  a  main  to  the  first  section  of  the  kiln  to 
preheat  the  entering  material.  The  middle  portion 
of  the  kiln  is  independent  of  the  other  parts  in  its 
heating  arrangements,  and  reversible  regenerators 
are  provided.— C.  A.  K. 

Tunnel  ovens  or  kilns.  F.  S.  Vernon.  E.P.  175,171, 
14.1.21. 

The  oven  or  kiln  is  widened  at  the  firing  zone  where 
it  is  divided  longitudinally  by  a  central  wall  to  form 
two  firing  zones,  one  for  bisque  and  the  other  for 
glost  firing.  The  entrance  end  of  the  tunnel  is  pro- 
vided with  two  tracks  which  overlap  each  other, 
one  leading  to  the  bisque  zone  and  the  other  to  the 
glost  zone.  After  leaving  the  firing  zones  these 
merge  into  one  track.  By  suitably  alternating  the 
trucks  on  one  track  with  those  on  the  other,  the 
trucks  may  remain  in  the  firing  zones  for  any  de- 
sired different  periods  before  passing  to  the  outlet. 
The  trucks  have  rounded  ends  so  that  they  can  be 
advanced  by  engagement  with  each  other  without 
fouling  where  the  tracks  diverge  or  converge. 

— H.  S.  H. 

[Down-draught  ki!ns.~\  Apparatus  for  baking 
materials.  I.  M.  Justice  and  G.  A.  Willigman. 
U.S.P.  1,405,593,  7.2.22.    Appl.,  8.11.20. 

The  waste  gases  of  a  kiln  leave  on  the  opposite  side 
to  that  on  which  the  kiln  is  fired,  and  traverse  a 
flue,  communicating  with  a  trough  sloping  down- 
wards.— C  A.  K. 

Porcelain;    Multiple    oven   for  .      W.    Seiffert 

Nachf.     G.P.  344,841,  5.12.19. 

Two  ovens  are  placed  one  above  the  other.  The 
lower  oven  is  fired  directly  in  the  usual  manner,  and 
the  products  of  combustion  pass  through  an  upcast 
flue  to  the  upper  oven,  and  so  heat  it.  Near  the  top, 
the  upcast  flue  is  expanded  and  provided  with  a 
perforated  6lab,  which  regulates  the  passage  of  the 
gases  into  the  upper  oven  and  effects  a  saving  in 
fuel.— A.  B.  S. 

Clay;   Treatment  of  .     W.   Feldenheimer  and 

W.  W.  Plowman.    E.P.  175,050,  8.11.20. 

The  clay  is  deflocculated  in  an  aqueous  medium  by 
means  of  an  alkali  resinate  which  may  be  prepared 


by  dissolving  commercial  resin  in  a  solution  of 
caustic  soda  or  of  sodium  silicate.  After  the  im- 
purities have  settled  the  clay  suspension  is  run  into 
a  depositing  tank,  where  the  clay  may  be  precipi- 
tated by  any  suitable  material  as  described  in 
E.P.  121,191  (J.,  1919,  41  a).— H.  S.  H. 

Enamelling    and    glazing;    Process    for   N 

Meurer.  G.P.  347,229,  3.4.21. 
The  enamel  is  applied  in  the  form  of  paste,  dried, 
and  then  fused  by  means  of  a  reducing  flame  fed 
with  "  mixed  gas  "  under  pressure,  the  flame  being 
moved  about  so  that  air  has  momentary  access  to 
the  parts  to  be  enamelled.  The  resulting  enamels 
are  resistant  to  sudden  changes  in  temperature  and 
to  mechanical  shock,  and  the  use  of  a  kiln  or  oven 
and  of  dusty  enamels  is  avoided. — A.  B.  S. 

Cylinders  for  dissolved  acetylene.    US. P.  1,407,588. 
See  IIa. 


IX.— BUILDING  MATEBIALS. 

Patents. 
Cement  and  concrete.     E.  Longan  y  Senan,  Assr. 
to  A.   G.   di   Godio.     U.S.P.   1,406,421,   14.2.22. 
Appl.,  4.2.20. 

Finely  powdered,  extremely  hard,  granular, 
crystalline  igneous  rock  rich  in  silica  and  alumina 
and  poor  in  lime  is  added  to  cement.  Calcined 
fragments  of  the  igneous  rock  are  then  added  to  the 
mixture.  The  free  lime  in  the  cement  reacts  with 
the  powdered  rock,  while  the  cement  reacts  chemi- 
cally upon  the  surface  of  the  calcined  rock  so  as  to 
produce  a  monolithic  concrete  of  great  resistance. 

— H.  S.  H. 

Cement;    Manufacture    of   moulded   articles   from 

.     W.   E.   W.   Richards.     U.S.P.   1,408,401, 

28.2.22.    Appl.,  29.11.18. 

See  E.P.  121,986  of  1917;  J.,  1919,  142  a. 
Tunnel  kilns.    E.P.  174,852.    See  VIII. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLUBGY. 

Cast  iron;  Manufacture   of  synthetic  in   th" 

electric  furnace.     W.  L.   Morrison.     Chem.  and 
Met.  Eng.,  1922,  26,  312—316. 

Experimental    work   was    carried    out   in   a   2-ton 
electric  furnace  of  the  stationary  type,  with  a  con- 
sumption of  750  kw.     Carbon   and  firebrick  were 
displaced    in    favour    of    a    rammed   silica   bottom. 
Continuous    charging    and     intermittent    tapping 
proved   the  most  efficient  method  of  operation  in 
the  smelting  of  turnings,  borings,  and  small  scrap, 
and  a  representative  mixture  would  be  500  lb.  oi 
turnings,  50  lb.  of  anthracite  dust,  20  lb.  of  50/- 
ferrosilicon,  2  lb.  of  80%   ferromanganese,  5  lb.  ol 
lime,  and  2  lb.  of  spar.    Accumulated  slag  had  to  b< 
removed  about  every  two  days,  and  efficient  carbon 
ising  was  effected  by  using  fine  anthracite  or  char 
coal,  or  by  operating  with  a  cover  of  4 — 6  in.  ol 
coal  over  the  metal.     The  addition  of  lime  is  neces 
sary  only  when  low  limits  for  sulphur  are  specifier 
and  its  use  is  deleterious,  as  graphite  separates  ou 
if  the  carbon  content  exceeds  3'65  %  and  causes  th' 
metal  to  be  sluggish.    Aluminium  carbide  is  forme< 
at  the  temperature   of  the   furnace   and   produce 
blowholes  and  the  appearance  of  burnt  iron  in  th 
product.     The  defect  can  be  prevented  only  by 
proper  selection   of  refractories   and  by  excludin 
dry   aluminous   slags   from   the   metal.      Operatm 
costs  are  influenced  greatly  by  the  working  perio 


Vol.  XLI.,  Xo.  7.]     Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


255  A 


as  shown  by  the  total  cost  per  net  ton  of  iron  when 
working  one  (§4033),  two  (83018),  and  three 
(S27'40)  shifts.  The  average  analysis  of  iron  made 
was  2-25%  Si,  3'5%  C,  0'65%'Mn,  0004%  S, 
015%  P.— C.  A.  K. 

"  Reversed  chilled  iron  "  and  related  phenomena. 

W.  Heike.  Stahl  u.  Eisen,  1922,  42,  325—332. 
Experiments  are  described  which  show  that  the 
formation  of  "  reversed  chilled  iron  "  is  not  due 
to  the  high  sulphur  or  phosphorus  content  of  the 
sample,  nor  to  the  presence  of  dissolved  oxygen, 
nor  primarily  to  supercooling  phenomena  (cf. 
Bardenheuer,  J.,  1921,  472  a,  and  Piwowarsky,  J., 
1922,  59  a),  but  is  most  probably  due  to  pressure 
changes.  The  decomposition  of  cementite  into 
graphite  and  ferrite  is  accompanied  by  an  increase 
in  volume  and  if,  owing  to  the  surrounding  condi- 
tions, the  material  is  unable  to  expand,  the  corres- 
ponding increase  of  internal  pressure  tends  to 
suppress  the  decomposition  with  the  consequent 
formation  of  hard  spots.  A  similar  explanation  is 
advanced  to  account  for  the  so-called  "  black  frac- 
ture "  of  a  steel  specimen  in  which  no  temper 
carbon  had  precipitated  and  for  the  separation, 
round  the  outer  shell  of  an  ingot  of  cast-iron,  of 
graphite  while  the  interior  remained  white  and 
hard.— A.  R.  P. 

Hardening  [of  steel}.  A.  Poucholle.  Comptes 
rend.,  1922,  174,  611—613. 
I  Curves  are  given  showing  the  variation  in  length 
,  of  steel  wires  as  a  function  of  the  time  of  cooling 
I  after  different  treatments.  Hardening  is  charac- 
terised by  the  absence  of  the  transformation  point 
Arl  at  low  temperature.  The  transformation  of 
-,-iron  into  a-iron  only  takes  place  at  the  point  Ar2, 
that  is  at  about  200°  C.  Over  the  temperature 
range  650°— 200°  C,  from  the  point  Arl  to  the 
point  Ar2,  the  curves  do  not  show  any  break.  How- 
ever, invariably  in  this  region  and  only  in  this 
region,  mechanical  tensions  appear,  being  mani- 
fested by  sharp  cracks  and  accompanied  by  the 
projection  of  the  thin  skin  of  oxide.  The  trans- 
formation point  Arl  is  lowered  if  hardening  is 
followed  by  annealing.  Similarly  the  temperature 
at  which  hardening  is  obtained  is  lowered  by  succes- 
sive hardening  treatments.  The  amplitude  of  the 
inflexion  Arl  is  diminished  by  rise  in  temperature, 
until  it  becomes  nil,  and  also  by  the  duration  of 
the  heating  if  the  temperature  remains  constant. 

— W.  G. 

'Jold  bullion;  Assay  of  ■ •.     A.  Westwood.     Inst. 

Metals,  9.3.22.  [Advance  copy.]  4  pages. 
foE  the  assay  of  carat  gold  bullion  sufficient  copper 
s  added  to  the  sample  to  give,  together  with  the 
illoy  in  the  sample,  an  amount  equal  to  2 — 2J  times 
he  weight  of  gold  present,  and  the  whole  is  melted 
n  a  clay  cup  in  a  silica  tube  through  which  a  cur- 
ent  of  steam  is  passed.  Heating  is  continued  for 
mins.  after  the  copper  has  melted  and  the  cooled 
utton  is  rolled  into  a  fillet  and  parted  as  usual. 
n  apparatus  is  described  for  carrying  out  a  large 
umber  of  trials  simultaneously  by  the  method. 

—A.  R,  P. 

ead  ores  [galena];  Behaviour  of  zinc  blende  and 

barytes  in  the  blast-roasting  of .   C.  Dorschel. 

Metall  u.  Erz,  1922,  19,  29—38,  57—64. 
IE  presence  of  barytes  in  lead  ores  leads  to  no 
mplications  in  the  blast-roasting  process ;  the 
lal  product  is  sufficiently  low  in  sulphur  to  be 
arged  directly  into  the  blast  furnace,  and  in 
ses  where  a  considerable  proportion  of  barytes 
present  the  roasted  material  contains  less  zinc 
d  lead  sulphates  than  similar  material  obtained 
>m  ores  free  from  barytes.  Practically  no 
composition  of   the  barytes  takes   place   in   the 


process  and  in  ores  where  it  is  intimately  mixed 
with  the  metallic  minerals  it  materially  assists  the 
roasting  by  keeping  the  mass  porous.  The  presence 
of  zinc  blende  tends  to  shorten  the  process  of  roast- 
ing and  leads  to  more  complete  desulphurisation, 
and  it  keeps  the  charge  porous  owing  to  the  greater 
difficulty  with  which  the  resulting  zinc  oxide  com- 
bines with  the  gangue  constituents.  The  presence 
of  much  blende  in  the  ore  increases  the  tempera- 
ture of  the  charge  rapidly  at  first  and  a  consider- 
able amount  of  sulphate  is  formed  which  slows 
down  the  reaction  and  thus  allows  ores  having  a 
high  sulphur  content  to  be  satisfactorily  roasted. 
It  is  possible  to  blast-roast  Clausthal  zinc  blende 
ores  (free  from  lead)  containing  11 — 14%  S  if  suit- 
able quantities  of  limestone  and  sand  are  added  to 
the  charge.  The  thermochemistry  of  the  blast- 
roasting  process  is  discussed. — A.  R.  P. 

Season  cracking  and  its  prevention.  [Condenser 
tubes.]  H.  Moore  and  S.  Beckinsale.  Inst,  of 
Metals,  Mar.,  1922.     [Advance  copy.]  22  pp. 

Tests  on  low  temperature  annealing  for  the 
removal  of  internal  stresses  in  brass  (J.,  1920, 
369  a)  have  been  extended  to  Admiralty  condenser 
tubes  (Cu  70,  Zn  29,  Sn  1).  There  is  no  reason  to 
doubt  that  the  splitting  of  condenser  tubes  is  an 
example  of  the  season  cracking  of  brass,  probably 
accentuated  by  the  presence  of  ammonium  com- 
pounds. Results  obtained  by  annealing  at  200° — 
325°  C.  are  similar  to  those  obtained  with  70:30 
brass  in  that  the  rate  of  reduction  of  stresses 
increases  with  the  temperature  and  diminishes 
progressively  with  the  time.  The  best  mechanical 
properties  in  the  case  of  hard  condenser  tube  brass 
are  given  by  treatment  at  225° — 275°  C.  Failure 
by  season  cracking  is  improbable  when  the  internal 
stress  is  not  more  than  4 — 5  tons  per  sq.  in.,  and 
experimental  results  show  that  annealing  for  30 
mins.  at  280°— 300°  C.  would  remove  all  liability 
to  the  development  of  season  cracking. — C.  A.  K. 

Bronze;    Constituents    of    ancient   ,    and    the 

constitutional  relation  between  the  original  alloy 
and  its  patina.  T.  Matsuno.  Kogyo-Kwagaku 
Zasshi  (J.  Chem.  Ind.,  Japan),  1921,  24,  1369— 
1386. 

The  author  has  determined  the  composition  of 
ancient  Japanese  and  Chinese  mirrors  and  coins 
and  Corean  spoons.  The  constitutional  relation 
between  the  original  alloys  and  the  corrosion  pro- 
ducts, is  discussed.  In  alloys  composed  of  mixed 
crystals,  corrosion  takes  place  in  a  homogeneous 
material,  and  there  is  no  difference  in  the  composi- 
tion of  the  alloy  before  and  after  corrosion.  Eutec- 
toid  alloys,  on  the  other  hand,  being  heterogeneous, 
exhibit  selective  corrosion,  and  the  metal  after 
corrosion  has  not  the  same  composition  as  the 
original  alloy.  To  ascertain  the  composition  of  the 
original  alloy,  the  sample  should  therefore  be 
analysed  without  taking  off  its  patina,  and  the 
composition  should  be  calculated  from  the  percent- 
ages of  the  various  metals  found,  neglecting  water, 
carbonic  acid,  and  all  other  acid  radicles. — K.  K. 

"  Aluminium "   alloys;  Some  causes  of  failure   in 

.     W.   Rosenhain.     Inst,   of  Metals,   March, 

1922.  [Advance  copy.]  4  pp. 
A  number  of  specimens  described  as  cast  aluminium 
alloys  have  been  examined  owing  to  the  growth  and 
distortion  of  the  metal  during  commercial  usage. 
Analyses  of  two  typical  samples,  the  casing  of  an 
electricity  meter,  "and  a  cast  name  plate,  proved 
that  the  alloys  could  not  be  classed  as  light 
aluminium  alloys;  the  preponderating  metal  was 
zinc  and  the  alloys  might  be  expected  to  undergo 
spontaneous  changes  and  disintegration  under  a 
process  of  ageing  (cf.  J.,  1920,  370  a).— C.  A.  K. 

ii 


256a       Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO  -METALLURGY.      [April  15,  1922. 


Aluminium  and  zinc;  Alloys  of  .     D.  Hanson 

and  M.  L.  V.  Gayler.  Inst.  Metals,  9.3.22. 
[Advance  copy].  28  pages. 
With  a  view  of  redetermining  the  peritectic  and 
solidus  lines  and  the  constitution  of  the  solid  alloys 
below  these  lines,  experiments  were  carried  out  in 
which  various  alloys  were  subjected  to  a  prolonged 
anneal  at  different  temperatures,  then  quenched, 
and  the  structure  examined.  The  results  obtained 
showed  that  the  eutectic  line  at  380°  C.  ends  at 
82%  Zn  and  a  sloping  solidus  joins  this  point  and 
that  representing  an  alloy  containing  70%  Zn  at 
the  peritectic  line  (443°  C.)  which  is  prolonged  only 
a  short  distance  beyond  this  point  towards  the 
aluminium  end  of  the  diagram.  From  here  a 
sloping  solidus  extends  to  the  m.  pt.  of  aluminium. 
The  limits  of  the  field  of  existence  of  the  /?  phase 
are  lines  joining  the  eutectoid  point  at  79%  Zn 
(256°  C.)  with  the  eutectic  line  at  82%  Zn  and  with 
the  peritectic  line  at  70%  Zn.  The  eutectoid  line 
at  256°  C.  extends  to  about  35%  Zn  and  a  line 
joining  this  point  with  the  peritectic  line  at  70% 
Zn  marks  the  change  from  homogeneous  y  solid 
solution  to  the  duplex  fl  +  y  phase.  The  fS  phase 
is  stable  only  above  the  eutectoid  line,  so  that  alloys 
quenched  from  above  this  line  exhibit  the  pheno- 
menon of  age-hardening,  which  is  also  accompanied 
by  the  evolution  of  heat  consequent  on  the  decompo- 
sition of  the  j8  phase  into  a  mixture  of  a  and  y. 
Age-hardening  was  also  noticed  in  the  case  of  alloys 
containing  from  60%  to  20%  Zn ;  those  containing 
35—20%  Zn  hardened  spontaneously  at  0°  C.  with 
the  deposition  of  the  a  phase  from  the  y,  and  those 
containing  60 — 35%  Zn.  while  not  hardening  spon- 
taneously at  0°  C,  age-hardened  at  100°  C. 

—A.  R.  P. 

Nickel-silvers;  Some  mechanical  properties  of  the 

.    F.  C.  Thompson  and  E.  Whitehead.    Inst. 

Metals,  9.3.22.    [Advance  copy.]    33  pages. 
The  effect  of  the  temperature  of  annealing  on  the 
mechanical   properties  of   nickel-silvers  containing 
10%,  15%,  and  20%   Ni  has  been  determined  and 
the  results  are  illustrated  graphically.    All  the  tests 
showed  a  marked  change  in  the  properties  of  the 
allovs  at  300°  C.   and  a  further  small  change  be- 
tween 550°  and  600°  C.    With  increase  in  the  nickel 
content  of  the  alloy  the  tensile  strength  increases 
slightly,  but  the  maximum  ductility  is  considerably 
reduced,    e.g.,  the  alloy  containing  10%    Ni   after 
annealing   at   800°    C.    has    a   tensile   strength    of 
21  tons  per  sq.  in.  and  an  elongation  of  67%,  while 
for  a  similarly  treated  20%  Ni  alloy  the  figures  are 
26  tons  per  sq.  in.  and  45%  respectively.     The  most 
satisfactory    annealing    temperatures    are    725° — 
825°  C.  for  the  10%,  700°— 800°  C.  for  the  15%,  and 
800°  C.  for  the  20%  alloy,  and  it  appears  to  be  im- 
material whether   the  annealed  alloy  is  quenched, 
air-cooled,   or  cooled   in   the  muffle.      If,   however, 
quenching  is  resorted  to  for  economical  reasons,  it 
6hould  be  done  at  once  and  not  after  the  metal  has 
cooled  somewhat,   as  this  may  lead  to  brittleness. 
Almost  the  whole  of  the  softening  and  the  maxi- 
mum increase  in  ductility  take  place  in  the  first 
11 — 2  hours  of  the   annealing,   and  there  is  little 
difference  in  material  annealed  for  a  short  time  at  a 
high  temperature  and  that  annealed  for  a  longer 
time  at  a  lower  temperature.     Nickel-silvers  may 
be  heated  to  a  high  temperature  for  a  long  time 
without  deterioration  provided  they  are  protected 
from  oxidation  by  the  furnace  gases,  e.g.,  by  im- 
mersion in  a  salt  bath. — A.  R.  P. 

German  silver;  Investigation  of  .     W.  Voigt. 

Z.  anorg.  Chem.,  1922,  120,  309—319. 
At.i.  Cu-Ni-Zn  alloys  except  those  rich  in  zinc  are 
easily    worked,      the    electrical    resistance,    deter- 
mined after  heating  the  wires  to  the  temperatures 
of  minimum  resistance,  is  affected  only  slightly  by 


increasing  amounts  of  zinc  if  the  Cu:Ni  ratio  re- 
mains constant.  The  resistance  increases  much 
more  rapidly  on  increasing  the  nickel  content.  The 
thermoelectric  effect  is  increased  by  increasing 
amounts  of  zinc  if  the  ratio  Cu:Ni  is  constant.  In- 
creasing additions  of  zinc  to  copper  alone  decrease 
the  thermoelectric  effect,  and  a  considerable  de- 
crease was  observed  on  increasing  the  nickel  con- 
tent, the  ratio  CulZn  being  kept  constant.  In 
general  the  surface  representing  the  thermoelectric 
effect  on  the  diagram  runs  parallel  to  that  repre- 
senting the  reciprocal  of  resistance.  All  the  alloys 
showed  a  solution  tension  approximately  equal  to 
that  of  copper.  They  all  precipitated  copper  gradu- 
ally from  a  copper  sulphate  solution.  The  passivity 
of  nickel  only  protects  the  alloy  when  its  content  is 
031  and  043"  mol.— W.  T. 

Tin;    Hecrystallisation    of    cold-worked    .      G. 

Masing.     Wiss.    Veroffentl.    Siemens  -  Konzern, 

1921,  1,  [2],  96—103. 
Cold-eolled  tin  commences  to  recrystallise  at 
ordinary  temperatures  immediately  after  rolling 
and  the  grain  size,  after  standing  for  18  hrs.,  is 
approximately  the  same  as  that  obtained  by  anneal- 
ing at  temperatures  up  to  150°  C.  and  depends  on 
the  amount  of  rolling  the  tin  has  undergone.  If  the 
annealing  is  carried  out  at  170°— 180°  C.  secondary 
recrystallisation,  in  which  the  smaller  crystals  grow 
at  the  expense  of  their  neighbours,  sets  in,  and  the 
resulting  metal  has  a  very  coarse  crystalline  struc- 
ture. If  it  is  rolled  again  and  once  more  allowed 
to  stand  the  primary  crystals  that  form  are  larger 
than  before,  but  of  about  the  same  size  as  those  pro- 
duced by  annealing  up  to  150°  C.  In  this  case  no 
secondary  recrystallisation  takes  place  at  tempera- 
tures below  150°  C.  similar  to  that  produced  by  a 
change  in  the  method  of  working,  e.g.,  hammering 
instead  of  rolling.    (C/.  J.,  1921,  351  a.)— A.  R.  P. 

j   Tin  alloys  containing  iron;  Simple  method  for  the 

analysis  of  .    A.  Meyer.    Chem.-Zeit.,  1922, 

46,  209. 
Solution  of  a  tin  alloy  containing  iron  in  nitric 

|  acid  leaves  a  colloidal  residue  of  metastannic  acid 
which  contains  part  of  the  iron,  and  the  liquor  still 
contains  some  tin.     Complete  separation  of  the  tin 

I  from  such  alloys  may  be  effected  by  dissolving  the 
metal  in  aqua'  regia",  neutralising  the  liquid  with 

1  caustic  soda  and  adding  20  c.c.  of  strong  sodium 

i  sulphide  solution.  After  boiling  for  a  few  minutes 
the  precipitated  sulphides  of  copper,  iron,  nickel, 
etc.,  are  filtered  off,  washed  with  hot  water  and 
separated  in  the  usual  manner.  The  filtrate  is 
boiled  with  hydrochloric  acid  and  the  precipitated 
tin  sulphide  is  filtered  off,  washed  with  dilute 
ammonium  acetate  solution,  ignited  to,  and 
weighed  as,  tin  oxide. — A.  R.  P. 

Nickel;  Determination  of  small  quantities  of  zinc 

in  technical .    K.  Breisch  and  K.  Chalupny. 

Z.  angew.  Chem.,  1922,  35,  119. 
The  separation  of  small  quantities  of  zinc  from  1 
very  large  amount  of  nickel  by  means  of  hydrogen 
sulphide  in  weakly  acid  solutions  or  in  the  presence 
of  formic  acid  requires  several  repetitions  of  1 
process  to  remove  all  the  nickel  For  the  deter- 
mination of  zinc  in  technical  nickel  the  following 
process  is  recommended.  5—10  g.  of  the  metal  i* 
dissolved  in  nitric  acid,  the  solution  is  neutralise" 
with  caustic  potash,  and  potassium  cyanide  solu- 
tion is  added,  with  vigorous  shaking,  until  al  tne 
green  nickel  cyanide  has  redissolved.  The  solution 
is  filtered  from  the  iron  and  silica  precipitate  ana 
he  filtrate,  after  dilution  to  500-700  cc» 
treated  with'  20-30  c.c.  of  2N  sodium  sulph  de  ela- 
tion boiled  for  i  hr.  and  allowed  to  stand  untJl  tne 
z'inc'  sulphide  -ttles.  The  latter  is  filtered^ 
washed  with  dilute  ammonium  nitrate  solution  con 


Vol.  XIX,  No.  7.]    Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.    257  a 


taining  some  sodium  sulphide,  and  dissolved  in  sul- 
phuric acid.  The  solution  is  made  ammoniacal, 
25  c.c.  of  strong  ammonia  a-dded  in  excess,  and  the 
zinc  deposited  electrolytically  with  a  current  of 
2  amps,  on  a  coppered  platinum  net  cathode. 

—A.  R.  P. 

Copper  and  phosphorus;  Rate  of  combination   of 

at  various  temperatures.     C.   A.    Edwards 

and  A.  J.  Murphy.     Inst.  Metals,  9.3.22.     [Ad- 
vance copy.]     31  pages. 

Solid  copper  and  phosphorus  were  heated  in  the 
same  tube,  the  reacting  substances  and  products 
thus  being  approximately  at  equilibrium  at  each 
temperature.  The  maximum  rate  of  phosphorisa- 
tion  of  copper  is  about  640°  C,  and  this  tempera- 
ture affords  a  quick,  safe,  and  economic  rate  of 
phosphorisation.  At  temperatures  below  640°  C. 
the  tendency  would  be  to  produce  alloys  containing 
more  than  15%  P.  Evidence  is  given  for  the  exist- 
ence of  the  two  phosphides,  CuP  and  Cu6P2,  in  the 
copper-phosphorus  system. — J.  B.  F. 

,  Cupro-nickel ;  Internal  mechanism  of  cold  work  and 

recrystallisation    in    .       F.     Adcock.       Inst. 

Metals,  8.3.22.     [Advance  copy.]    20  pages. 

Commercial   cupro-nickel,   Cu   80%,    Ni   20%,    re- 
vealed marked  cores    and  required  annealing  in  a 
muffle  furnace  for  24  hrs.  to  obtain  uniform  distri- 
bution of  the  nickel  and  copper  content.    The  usual 
methods  of  etching  were  only  partially  successful 
and  a  method  of  electrolytic  etching  in  a  solution 
of  citric  acid  is  described.     An  annealed  ingot  crop 
was  repeatedly   rolled   until  the  thickness  was   re- 
duced from  1"  to  J",  portions  being  removed  when 
thicknesses  f>f  \"  and  \"  were  attained,  i.e.,  reduced 
approximately   50%,    75%,    and   88%    respectively, 
without  intermediate  annealing.    The  metal  in  each 
•?ase  was  then  subjected  to  micro-examination.    The 
characteristics  of  the  75%  reduced  metal  were  inter- 
mediate between  those  reduced  50%    and  88%    re- 
ipectively.     Dark  lines  or  bands  appeared  on  the 
rrystal  grains,  and  these  are  really  traces  of  planes 
vhich  pass  through  the  alloy.     Two  sets  of  planes 
vere  discovered,    but   the    two   sets   were   not  co- 
xistent  within  the  boundaries  of  any  single  crystal, 
ihiring  the  rolling  the  crystal  grains  were  caused  to 
jlip  or  fault  along  these  planes,  which  were  more 
umerous  in  the  88%  reduced  material.    The  effect 
If     annealing     the     cold     worked     material     was 
ixamined.     The  specimens  were  heated  for  half  an 
our  in  an  electric  furnace  at  temperatures  rang- 
lg  from  412°  C.  to  980°  C.     In  the  case  of  the  88% 
induced  material  no  new  crystal  grains  appeared 
;low  440°  C. ;  crystallisation  was  complete  about 
|10°  C.     The  new  crystal  grains  in  the  specimens 
eated    at    the    various    annealing    temperatures 
rmed  along  "etch  bands,"  which  represented  the 
aces  of  the  "  slip  planes  "  in  the  surface,  along 
e  "  strain  lines  "  parallel  to  the  direction  of  roll- 
g,  or  along  the  boundaries  of  deformed  crystal 
ains,  or  mechanical  inclusions.     When  annealed 
960° — 980°  C.  the  crystal  grains  were  comparable 
size  to  those  existing  in  the  metal  before  rolling. 
le  theory  advanced  is  that  the  etch  bands  are  the 
ices  of  planes  along  which  slip  has  taken  place 
ring  rolling.     These   planes  contain    amorphous 
terial  in  which  are  embedded  crystal  fragments 
^bed  off  the  crystal  grains  by  slipping  or  fault- 
;.     On  annealing  these   fragments   give   rise  to 
lids  of  new  crystals  in  the  amorphous  material. 
Hire  amorphous  material  will  be  available  along 
1j>  strain   lines   and   new   crystals   will   therefore 
< relop  in  these  directions.     The  crystalline  frag- 
ilnts  which   form  the  nuclei  of  the   new  crystal 
H\  ins  will  be  oriented  quite  at  random  in  respect 
t pne  another  and  to  the  crystals  from  which  they 
v  e   detached,   and   hence   the   new   crystals   may 
psent  widely  different  orientations.     In  the  case 


of  the  50%  reduced  material,  on  annealing  re- 
crystallisation  began  about  480°  C.  and  was  com- 
plete about  665°  C.  The  effect  of  annealing  on 
"  hardness  "  was  examined  in  the  case  of  the  88% 
reduced  metal.  Appreciable  softening  sets  in  only 
when  the  temperature  is  above  that  at  which  re- 
crystallisation  begins.  The  hardness  falls  rapidly 
from  440°  C.  to  460°  C,  after  which  the  fall  is  more 
gradual  and  continues  up  to  a  temperature  as  high 
;    as  970°  C—  J.  B.  F. 

Beery stabilisation    and    grain-growth    [in    metals']; 

Effect  of  impurities  on  .     Research  Staff  of 

General  Electric  Co.,  London.  (C.  J.  Smithells.) 
Inst.  Metals,  8.3.22.  [Advance  copy.]  28  pages. 
The  preparation  of  pure  tungsten  and  the  effect  of 
introducing  certain  impurities  are  described.  The 
metals  were  drawn  into  fine  wire  0"04  mm.  diam., 
wound  in  a  spiral,  mounted  as  filaments  in  a  gas- 
filled  incandescence  lamp  and  annealed  at  2500°  K. 
The  period  of  annealing  varied  from  a  fraction  of  a 
second  to  1000  hrs.  Longitudinal  sections  of  the 
wire  were  prepared  and  development  of  crystalline 
structure  was  observed.  Provided  sufficient  time  is 
given  at  a  sufficiently  high  temperature  the  im- 
purities which  remain  undissolved  in  the  metal 
segregate  in  the  grain  boundaries  on  annealing. 
The  presence  of  these  impurities  in  the  grain 
boundaries  hinders  crystal  growth.  Alkali  metals 
and  oxygen  combine  with  tungsten  and  oxygen  to 
form  "bronzes  "  which  are  soluble  in  tungsten  and 
show  exaggerated  growth  in  presence  of  insoluble 
impurities,  but  no  exaggerated  growth  with  sodium 
alone.  A  vapour  pressure  hypothesis  is  put  forward 
according  to  which  grain-growth  after  recrystallisa- 
tion takes  place  by  a  process  analogous  to  distilla- 
tion. Crystal  grains  of  lower  vapour  pressure 
develop  at  the  expense  of  those  of  higher  vapour 
pressure.  This  lowering  of  vapour  pressure  may  be 
caused  by  a  dissolved  substance,  while  the  growth 
of  the  crystal  grain  is  exaggerated  by  the  addition 
of  insoluble  substances.  This  theory  is  further 
developed  on  the  assumption  of  the  existence  of  a 
layer  of  amorphous  metal  between  the  crystal  grains 
and  that  plastic  deformation  increases  the  amount 
of  this  material  between  the  grains,  and  also 
generates  it  at  the  planes  of  slip  within  the  crystals. 
All  crystals  exert  a  certain  vapour  pressure  at  the 
surface  between  two  crystals;  there  is  constant 
evaporation  of  the  molecules  of  each  crystal  into  the 
amorphous  material  between  them  and  condensa- 
tion of  molecules  on  their  surface  results.  More 
molecules  will  condense  on  the  crystal  of  lower 
vapour  pressure  than  will  leave  it,  and  it  would 
therefore  grow  at  the  expense  of  its  neighbours  of 
higher  vapour  pressure.  The  previous  results  of 
other  workers  are  reviewed  in  the  light  of  this 
theory.    (Of.  preceding  abstract.)— J.  B.  F. 

Ores,  concentrates  and  smelter  products;  Valuation 

of .    L.  C.  Stuckey.    Bull.  Inst.  Min.  Met., 

March,  1922.  34  pages. 
The  standard  methods  of  determining  the  value  of 
ores  of  all  the  metals  in  commercial  use  based  on 
the  market  price  of  the  metal  and  the  assay  of  the 
ore  are  given,  together  with  the  various  returning 
charges  and  penalties  imposed  for  objectionable 
constituents  of  the  ores.  For  the  more  important 
metals  production  costs  over  a  number  of  years 
are  also  detailed. — A.  R.  P. 

Sulphur  in  pyrites.     Chaudron  and  Juge-Boirard. 

See  VII. 
Silicon.    Manchot.    See  VII. 
Kelpchar.    Turrentine  and  Tanner.    See  XVII. 

Co-precipitation  of  vanadic  acid  with  ammonium 
phosphomolybdate.     Cain    and    Hostetter.      See 

XXIII. 

b2 


258  a 


Cl.  X.— METALS  ; 


METALLURGY,  INCLUDING  ELECTRO-METALLURGY      [April  15, 1922. 


Patents. 

\ddn.  to  309,264  (J.,  1921,  853  a). 
.nm  resins  waste  acid  from  the  purification  of  I 
hvdroc-frbons,  or  residues  from  the  distillation  of 
S?S  impounds,  are  added  to  the  pickling  bath 
instead  of  or  in  addition  to  the  substances  men- 
t^ned  in  the  chief  patent.  The  process  »  "rtdde 
for  separating  rust,  zinc,  tin,  and  the  like  from 
iron  and  can  be  applied  also  to  cast  iron  and  iron 
alloys.— L.  A.  C. 

Iron  articles;  Production  of  rust-  and  heat-resist- 
ing coatings  of  aluminium  bronze  on  -—-. 
Metallhutte  Baer  und Co  Kommanditges.  G.P. 
347,302,  6.12.19.  Addn.  to  339,326  (J.,  i^i- 
704  a).  . 

The  intermediate  layer  of  zinc  bronze  ".applied  as 
a  varnish,  and  not  by  rubbing  as  described  in  the 
chief  patent. — L.  A.  C. 
Cupola   furnaces.     C.    E.    Taylor.      E.P.    175,207, 

18.5.21. 
In  a  cupola  furnace  fitted  with  tangential  tuyeres 
the  whid-box  is  formed  from  plates  of  channel 
section  shaped  round  and  attached  to  the  furnace 
rising  The  wind  belt  is  of  rectangular  shape  in 
cross-section  and  decreases  in  cross-sectional  area 
from  the  entry  to  the  last  tuyere,  so  as  to  maintain 
a  more  uniform  air  distribution  in  tbejgrnace^ 

Solder  for  aluminium .and  other -metals  and  alloys. 

C    P    Ormiston.     E.P.  175,228,  4.10.^1. 
Ham-grade  solder  is  prepared  by  adding  2  oz.  o 
ettaceum    wax  to  a  molten   mixture  g  8  - ^.of 

KMi  sll'g    Parties' to   collect  on   the 

Surface  of   the  molten  metal.      Pj°P°rtSn  1*8    ana 
solder  of  low  melting  pouit^  are  Zn  9,,  SnJ8,  and 

;  Sr  of  iVof  Ws,  S?  lb"  of  aluminium, 
and  Jib.  of  nickel,  melted  together  and^art ,  ^ 

-.      A.    C. 


Ores    and    the    like;    Treatment    of    - 
Vivian.     E.P.  1/5,333,  /.lU.zu. 

S'.  iStance  b'.uit.W.  ■»».  *?'"££%  %   I 

coated  with  copper.— A.  K.  r. 

^■rtS^SSSBrfTid  Wescott  Inc 
ITSP  CO  1,406,595,  (b)  1,406  596  and  (c) 
1,406597.  14.2.22.    Appl.,  (a)  5.1.20,  (a)  14.5.20, 

(A)a  THEC)fin^ly2ground  ore  -treated  with  chlorine 
at  a  temperature  not  exceeding  600°  C.  and  trie 
volatileTron  and  arsenic  chlorides  are  removed  and 
leoarated  (b)  The  chlorination  process  is  carried 
o?t  in  an  apparatus  in  which  the  heated  ore  passes 

Sng  1h:WWati.eTchloeHdes  Reduced  pas- 
through  a  condensing  apparatus  which  collects  the 


bulk  of  the  arsenious  chloride,  then  through  scrub- 
bers to  remove  the  remainder,  (c)  The  arsenious 
chloride  produced  in  the  process  is  hydrolysed  to 
vield  an  arsenical  hydrochloric  acid  solution  which 
is  used  for  extracting  the  ore  previous  to  chlorina- 
tion—A.  R.  P. 

Leaching     minerals;     Apparatus     for .      C. 

Bouillon.  TJ.S.P.  1,406,525,  14.2.22.  Appl., 
16.2.21. 
A  leaching  apparatus  consists  of  a  horizontal 
rotary  cylinder  containing  a  helicoidal  worm  The 
cylinder  is  divided  into  a  number  of  closed  com- 
partments by  means  of  partitions,  the  worm  pass- 
ing through  openings  at  the  periphery  of  each 
partition. — C.  A.  K. 

Copper;  Treatment  of  ores  containing  oxides  of 
E.  B.  Thornhill.  U.S. P.  1,407,045, 
21.2.22.  Appl.,  2.7.21. 
The  ore  is  treated  with  a  solvent,  such  as  sulphuric- 
acid  which  dissolves  the  metallic  oxides,  and  the 
solution  is  treated  with  spongy  iron  obtained  by 
reduction  of  iron  oxide.  The  copper  is  precipitated 
in  a  flocculent  form  and  is  recovered  from  the  solu- 
tion by  notation. — A.  R.  P. 

Copper;  Extraction  and  recovery  of  — -.    N.  \ 
Hvbinette     Assr.    to    Kristianssands    Nikkelraf- 
SSsverke     U.S.P,1,407,420,  21.2.22.  APP1., 

15.2.21. 
Copper  sulphide  ore  is  subjected  to  at  least  two 
successive  roasting  and  leaching  operations  the 
first  leaching  being  carried  out  with  a  solution  of 
salts  which  assist  in  the  second  roasting  operation. 
The  leach  liquors  are  electrolysed  for  copper  with- 
out the  use  of  diaphragms,  to  which  end  the  solu- 
tions are  kept  low  in  iron  by  removing  a  certain 
amount  of  the  spent  electrolyte  from  the  circmt 
before  using  the  remainder  for  the  leaching  opera- 
tion.—A.  R.  P. 

Platinum,  allov.     F.   B.  Fry,  Assr.  to  The  H.  A. 
Wilson  Co      U.S.P.   1,407,525,   21.2.22.     Appl, 
2.4.20. 
The  alloy  consists  of  platinum  with  less  than  la ,, 
Mo.— A.  R.  P. 
Metals  and  alloys  containing   °raphite;  Manufoc- 

f..rf,  nf  G.  H.  Wichmann.     G.P.  34b,9^, 

1  2  21  Addn.  to  332,914  (J.,  1921,  395  a). 
The  granulated  metal  or  alloy  is  first  given  a  thin 
coating  of  graphite  paint  by  any  suitable  process. 
,  then  mixed  with  the  graphite  emulsion  and  an  m- 
!  different  material,  either  liquid  or  solid,  wnien  m 
nearly  all  expressed  in  the  subsequent .pressing  and 
which  serves  to  prevent  oxidation.  In  this  manner 
the  tendency  of  the  graphite  to  coagulate  into  flock* 
i  overcome-and  the  final  metal  contains i  evenly  dis- 
tributed inclusions  of  finely  divided  graphite. 


Nickel    and    nickel-rich    alloys    (cupro-nickel     «'• 

chrome,    and    German    «^e3£l&i8. 

autogenous  welding  of .    N  ere  in lgte  .u «.  , 

Nickel-Werke  A.-G.  vorm    West  al.sches  N«M 
walzwerk     Fleitmann,     Witte    und    Co. 
347  107,  2.2.21. 
Manganese  is  added  to  the  nickel  or  nickel  aHor » 
an  amount  depending  on  the  nickel  content,  to ,Vr 
vent  absorption  of  gas  or  inclusion  of  oxide  MX* 
formation  of  porous  or  brittle  welds,     in  inu»       . 
cllan  metallic  welds  are  obtained  without  the  use 
of  flux.— A.  R.  P. 

See  G.P.  324,945  of  1919;  J.,  1920,  788  a. 


Vol.  XLI.,  No.  7.]       Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS  ;  OILS;  WAXES. 


259  a 


Electro-plating  metallic  bodies.     J.  S.  Groff.     E.P. 
175,456,  1.12.20. 

See  U.S.P.  1,364,051  of  1920;  J.,  1921,  120  a. 

Metals;  Process  for  the  extraction  of .     W.  J. 

Browning.  U.S.P.  1,407,324,  21.2.22.  Appl., 
28.8.20. 

See  E.P.  162,682  of  1919;  J.,  1921,  475  a. 
Blast-furnace  gas.    E.P.  172,269.    See  IL\. 
Induction  smelting  furnace.    E.P.  159,191.  See  XI. 

XI.-ELECTR0-CHEMISTHY. 

Electrode  manufacture ;  Production  of  shrunk  coke 

in .    J.  L.  McK.  Yardley.     Chem.  and  Met. 

Eng.,  1922,  26,  321—322. 

Petroleum  coke  is  the  most  suitable  material  for  i 
the  production  of  electrodes  since  it  contains  90 — 
95%  of  fixed  carbon,  5 — 10%  of  volatile  matter,  and 
less  than  1%  of  sulphur  or  ash.  In  recent  installa- 
tions calcining  of  the  material  to  remove  volatile 
matter  and  produce  shrunk  coke,  is  carried  out  in 
an  open  top,  single  phase,  electric  furnace  of  either 
the  two  top,  or  the  top  and  bottom  electrode  type. 
The  latter  form  consists  of  a  cylindrical  steel  shell, 
14  ft.  high  and  13  ft.  in  diam.,  lined  with  firebrick, 
and  the  bottom  may  be  either  flat  or  shaped  like  an 
inverted  truncated  cone.  A  layer  of  carbon  in 
which  8  iron  bars  are  imbedded  radially  constitutes 
one  set  of  electrodes ;  the  other  set,  consisting  of 
8  carbons,  7  in.  in  diam.,  are  movable  in  a  vertical 
direction  by  means  of  winches.  To  commence 
operations  one  electrode  is  lowered  to  the  bottom 
of  the  furnace  and  petroleum  coke  is  placed  round 
the  arc  until  a  flow  of  current  is  established.  Each 
electrode  is  started  in  a  similar  manner,  and  when 
all  are  in  operation  the  furnace  is  loaded  and  the 
electrodes  are  raised  as  rapidly  as  the  flow  of 
current  permits.  The  current  capacity  of  one 
furnace  of  the  top  and  bottom  electrode  type  is 
1000  kv.a.,  and  three  furnaces,  working  in  a  cycle, 
are  required  for  an  even  load  distribution  and  an 
output  of  about  25  tons  per  day. — C.  A.  K. 

Electro-tit  ration  apfiaratus.    Goode.    See  XXIII. 

Patents. 
Induction   [smelting]  furnace.     K.  A.   F.   Hiorth. 
E.P.  159,191,  17.2.21.     Conv.,  21.2.20. 

The  smelting  channel,  constituting  the  secondary 
>f  the  induction  circuit,  is  encased  within  an  air- 
ight  sheet-metal  jacket  in  which  any  desired  pres- 
ureor  vacuum  may  be  maintained. — J.  S.  G.  T. 

Resistance  material;  Electric and  a  process  for 

manufacturing  same.  Automatic  Telephone  Mfg. 
Co.,  Ltd.,  and  P.  N.  Roseby.  E.P.  175,365, 
9.11.20. 

in  arc  is  struck  between  two  copper  electrodes  in 
ontact  with  a  mass  of  copper  oxide.  The  molten 
ath  may  be  maintained  or  increased  by  the  addi- 
on  of  copper  or  copper  oxide  to  the  molten  copper 
side.  The  resistance  of  the  fused  material  may 
9  varied  by  using  direct  current  in  the  arc  and  col- 
cting  from  nearer  the  positiveor  negative  electrode 
■spectively,  according  as  material  of  higher  orlower 
distance  is  required.     Alternatively  the  resistance 

the  material  may  be  increased  by  heating  in  air 
•  oxygen,  and  reduced  by  heating  in  hydrogen  or 
her  reducing  medium.  A  resistance  element  is 
rmed  of  a  mass  of  the  material  connecting  two 
nductors,  e.g.  platinum  wires,  and  may  be 
iclosed  in  an  atmosphere  of  inert  gas,  a  vacuum, 

in  a  very  small  volume  of  air.  When  heated  to 
0°  C,  the  resistance  of  the  material  falls  to  about 


0"15%  of  its  value  at  ordinary  temperature.  The 
material  is  applied  to  the  construction  of  a  variety 
of  thermal  electrical  relays  and  similar  devices. 

—J.  S.  G.  T. 

Brine  and  waterproof  material;  Process  for  making 

and  insulating .    J.  P.  Elliott;  M.  B.  Elliott, 

extrix.  U.S.P.  1,406,174,  14.2.22.  Appl.,  23.11.17. 

Finely  divided  fusible  material  capable  of  resisting 
the  action  of  acids  and  brines  and  having  insulating 
properties  is  intimately  mixed  with  the  wet  pulp. 
The  mixture  is  compressed  so  as  to  drive  out  a  large 
part  of  the  water,  coated  with  baking  or  stoving 
japan,  and  baked  at  a  temperature  high  enough  to 
fuse  the  fusible  material. — H.  C.  R. 

Electrolysis;    Apparatus    for    .     E.    A.    Allen. 

U.S.P.   1,407,313,   21.2.22.     Appl.,  15.2.19.     Re- 
newed 21.10.21. 

A  cathode  in  the  form  of  a  metallic  tube  is  pro- 
vided with  a  bottom  upon  which  rests  an  insulated 
anode  surrounded  by  the  cathode.  The  whole  is 
contained  within  a  casing. — J.  S.  G.  T. 

Gas  cell,  with  application  of  difference  of  gas 
potential  to  porous  electrodes.  C.  Gaiser.  G.P. 
346,771,  8.10.18. 

The  porous  electrode  material  is  used  in  the 
colloidal  form,  and  may  be  of  a  noble  metal,  or  any 
other  metal  or  metalloid  or  inorganic  material. 
The  colloidal  electrode  material  may  be  mixed  or 
placed  in  contact  with  easily  reducible  or  oxidis- 
able  substances  so  that  the  electrode  also  acts  as  a 
catalyst.  The  gases  considered  to  act  most  advan- 
tageously are  air  or  oxygen  on  the  one  hand,  and 
hydrogen  or  coal  gas  on  the  other. — J.  B.  F. 

Electrical  furnaces.  A.  Eimer.  E.P.  156,133, 
30.12.20.     Conv.,  18.7.11. 

See  U.S.P.  1,197,275  of  1916;  J.,  1916,  1068. 

Electrolytic  cells.  G.  Harrison.  From  Dow 
Chemical  Co.    E.P.  175,401,  15.11.20. 

See  U.S.P.  1,365,875  of  1921;  J.,  1921,  153  a. 

Electrolytic  apparatus.  H.  Tobler,  Assr.  to 
American  Bromine  Co.  Reissue  15,297,  28.2.22, 
of  U.S.P.  1,380,853,  7.6.21.     Appl.,  30.12.21. 

See  J.,  1921,  544  a. 

Electrolytic  apparatus.  G.  O.  Seward,  Assignor  to 
American  Magnesium  Corp.  U.S.P.  1,408,142, 
28.2.22.     Appl.,  11.10.17.     Renewed  3.5.21. 

See  E.P.  171,502  of  1920;  J.,  1922,  19  a. 

Electrical  precipitation.  E.P.  170,835.  U.S.P. 
1,407,311.    See  I. 

Behydrator  for  emulsions.    E.P.  175,352.    See  IIa. 

Electrolytic  apparatus.    E.P.  175,390.    See  VII. 

Potassium  chlorate.    G.P.  301,673.    See  VII. 


XII.-FATS;  OILS;  WAXES. 

C1S    acids.      HI.    Four   tetrahydroxystearic    acids 
derived  from  linolic  acid,  and  their  significance 
with  regard  to  the  linolic  acid  of  common  oils. 
B    H.  Nicolet  and  H.  L.  Cox.     J.  Amer.  Chem. 
Soc,  1922,  44,  144—152. 
The  linolic  acid  used  in  this  work  was  regenerated 
from  the  tetrabromide,  m.p.  114°  C,  itself  prepared 
from  the  dried  fatty  acids  of  cottonseed  oil.     On 
oxidation  of  this  acid  with  cold  alkaline  perman- 
ganate two  isomeric  sativic  acids  were  obtained. 
When  linolic  acid  was  treated  with  hypobromous 


260  a 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


[April  15,  1922. 


or  hypochlorous  acid  additive  compounds  were 
obtained,  which  by  passage  through  the  corres- 
ponding tetra-acetoxystearic  acid  ultimately  gave 
two  other  isomeric  sativic  acids.  In  view  of  these 
results  and  other  known  facts  the  authors  are  of 
the  opinion  that  only  two  of  the  four  possible 
stereoisomeric  linolic  acids  occur,  at  least  in 
important  amounts,  in  linolic  acid  as  usually  pre- 
pared. These  are  the  trans-trans  and  trans-cis 
forms.     (67.,  J.C.8.,  April.)— W.  G. 

Erucic  acid  and  its  anhydride.     D.  Holde  and  C. 

Wilke.  Z.  angew.  Chem.,  1922,  35,  105. 
Erucic  acid,  which  has  hitherto  never  been 
obtained  free  from  arachidic  and  other  saturated 
fatty  acids,  was  isolated  in  a  pure  condition  by 
fractional  precipitation  with  lithium  acetate.  The 
acid  thus  obtained  had  an  iodine  value  of  743 
(theory  75' 1).  The  anhydride  was  obtained  by 
treating  the  acid  under  pressure  with  acetic 
anhydride,  and  was  purified  by  crystallisation  from 
alcohol.  It  melted  at  46°— 46'5°  C,  was  very  resist- 
ant to  ]V/10  aqueous  alkali  hydroxide  and  25% 
hydrochloric  acid,  but  was  completely  converted 
into  erucic  acid  by  boiling  water. — G.  F.  M. 

Fats;  Synthesis  of by  means  of  enzymes  from 

moulds  and  yeast.  H.  Haehn.  Z.  techn.  Biol., 
1921,  9,  217—224.  Chem.  Zentr.,  1922,  93,  I., 
506—507. 
The  possibility  of  the  synthesis  of  fats  by  means 
of  enzymes  in  the  absence  of  living  organisms  was 
examined.  Attempts  to  synthesise  esters  with 
yeast  extract  and  Lebedew's  dried  yeast  in  the 
presence  of  water  gave  no  definite  result,  nor  were 
attempts  to  detect  microscopically  the  formation 
of  fat  by  means  of  the  enzyme  of  Endomyces 
vernalis  and  yeasts  successful.  Whilst  living  cells 
produced  fat  in  the  presence  of  dextrose  or 
alcohol,  experiments  under  the  same  conditions  but 
with  toluene  or  other  poisons  present  gave  uncer- 
tain results,  and  no  properly  established  case  of 
fat  synthesis  apart  from  living  matter  was 
obtained.  This  is  probably  due  to  the  fact  that 
with  the  methods  employed,  in  addition  to  the 
living  cells  being  destroyed,  the  lipoid  structure 
was  also  damaged.  Fat  was  also  obtained  from  the 
living  cells  in  the  presence  of  acetaldehyde  or 
aldol— H.  C.  R. 

Tung  and  other  vegetable  oils;  Determination  of 

the  acid  value  of  .     L.  L.  Steele  and  G.  G. 

Sward.     J.  Ind.  Eng.  Chem.,  1922,  14,  57—58. 

When  alcohol  alone  is  used  as  the  solvent  in  the 
determination  of  the  acid  value  of  vegetable  oils  the 
results  obtained  are  too  low,  particularly  in  the 
case  of  tung  oils  having  a  6mall  acid  value;  a  mix- 
ture of  equal  parts  of  alcohol  and  benzene,  how- 
ever, gives  trustworthy  results.  The  titration 
should  be  made  with  alcoholic  potassium  hydroxide 
or  sodium  hydroxide  solution. — W.  P.  S. 

Ammoniacal  saponification  and  industrial  manu- 
facture of  ammonia.  F.  Garelli.  Giorn.  Chim. 
Ind.  Appl.,  1921,  3,  487-^89. 

The  author  discusses  the  probable  effects  on  the 
Solvay  soda  industry  of  the  possibility  of  obtaining 
cheap  and  unlimited  supplies  of  synthetic  ammonia. 
The  ammonium  chloride  produced  in  the  Solvay 
process  can  be  utilised  directly  as  a  nitrogenous 
fertiliser,  and  its  use  in  this  way,  although  it  neces- 
sitates continual  introduction  into  the  cycle  of  fresh 
supplies  of  ammonia,  seems  preferable  to  regenera- 
tion of  ammonia  from  the  ammonium  chloride, 
which  involves  considerable  expense.  Ammonia 
may  also  be  employed  advantageously  in  place  of 
sodium  hydroxide  in  soap  manufacture,  economy 
of  fuel  resulting  from  the  fact  that  saponification 
by  means  of  ammonia  occurs  at  the  ordinary  tem- 


perature. Further,  lime  is  saved,  the 
connected  with  the  regeneration  and  recovery  of 
the  total  ammonia  are  sensibly  diminished,  and 
the  excess  of  sodium  chloride,  necessary  for  the 
complete  transformation  of  the  ammonium  soap, 
is  recovered  owing  to  the  different  solubility  rela- 
tions of  sodium  and  ammonium  chlorides. — T.  H.  P. 

Glycerol;  Determination  of in  the  presence  of 

sugars  [in  transparent  soaps  etc.].  L.  F.  Hoyt 
and  H.  V.  Pemberton.  J.  Ind.  Eng.  Chem., 
1922,  14,  54—56. 

To  determine  glycerol  in  transparent  soaps,  which 
nearly  always  contain  sucrose,  the  sample  is  dis- 
solved in  hot  water,  acidified  with  sulphuric  acid, 
the  mixture  heated  to  expel  any  alcohol  which  may 
be  present,  and  the  insoluble  fatty  acids  are  then 
separated ;  the  aqueous  solution  is  treated  with 
silver  sulphate,  diluted  to  a  definite  volume,  and 
the  glycerol  and  sucrose  are  oxidised  together  in 
an  aliquot  portion  of  the  solution  by  means  of 
potassium  bichromate  and  sulphuric  acid  as  in  the 
usual  method  of  glycerol  analysis,  but  using  a  some- 
what larger  excess  of  the  oxidising  mixture.  The 
sugar  is  determined  in  a  separate  aliquot  portion, 
and  the  glycerol  is  found  by  difference.  The 
method  may  be  used  in  the  case  of  certain  products 
other  than  soaps,  e.g.,  in  fermentation  products, 
but  cannot  be  applied  if  the  sample  contains  com- 
mercial starch  syrup. — W.  P.  S. 

Soap  solutions;  Detergent  power  of .    R.  T.  A. 

Mees.  Chem.  Weekblad,  1922,  19,  82—85. 
Detergent  power  is  a  chemical  property,  due  to 
the  opposition  within  the  insoluble  soap  molecule 
of  a  reactive  sodium  ion  to  an  inert  carbon- 
hydrogen  chain.  In  presence  of  oily  matter  and 
water  the  soap  forms  intermediate  layers  possessing 
polar  solubilities;  surface  tension  therefore  dis- 
appears.   (C/.  J.C.S.,  April.)— S.  I.  L. 

Petroleum      from     fish      oils.        Kobayashi     and 
Yamaguchi.    See  IIa. 

Petroleum  from,  soya  bean  oil  etc.    Kobayashi.    See 
IIa. 

Kelpchar.    Turrentine  and  Tanner.    See  XVII. 

Titrations  in  alcohol  solutions.    Bishop  and  others. 
See  XXIII. 

Patents. 

Fats  and  oils;   Apparatus  for  refining   .     P. 

Parodi.    E.P.  153,579,  6.11.20.    Conv.,  20.3.18. 

The  fat  or  oil  is  passed  downwards  through  a  dis- 
tillation column  against  a  rising  current  of  steam. 
The  column  is  provided  in  the  interior  with  rotary 
and  fixed  members  arranged  alternately  so  as  to 
bring  the  oil  into  intimate  contact  with  the  steam. 
The  rotary  members  are  mounted  on  a  shaft  passing 
centrally  through  the  column,  and  a  number  of 
flanged  discs  are  mounted  on  the  shaft  above  the 
rotary  members.  An  air-tight  chamber  surrouno- 
ing  the  lower  end  of  the  column  receives  the  treated 
oil,  and  oan  be  heated  by  means  of  a  spiral  steam 
pipe.  The  upper  part  of  the  column  is  surrounded 
by  a  casing,  and  perforated  discs  placed  in  the  space 
between  the  casing  and  the  column  serve  to  prevent 
any  steam  which  escapes  from  the  oil  receptacle 
from  carrying  away  with  it  particles  of  oil. 

— H.  C.  R. 

Hydrogenation  of  oils  and  liquid  fats.  W.  J- 
Mellersh-Jackson.  From  The  American  Cotton 
Oil  Co.  E.P.  175,021,  3.11.20. 
The  hydrogen  is  admitted  through  a  distributing 
plate  made  of  porous  material,  e.g.,  "  Filtros,"  at 
the  lowest  part  of  the  body  of  oil  to  be  treated,  and 


Vol.  XLI.,  No.  7.]     Cl.  XIII — PAINTS,  &o.       Cl.  XIV.— INDIA-RUBBER;    GUTTA-PERCHA.       201a 


is  thus  uniformly  distributed  in  the  form  of  minute 
bubbles  throughout  the  mass.  The  reaction  is 
thereby  greatly  accelerated,  the  use  of  moving  parts 
avoided,  and  the  quantity  of  catalyst  and  hydrogen 
necessary  considerably  reduced. — H.  C.  R. 

Fatty  acids;   Manufacture   of  from   montan 

wax.    F.  Fischer  and  H.  Tropsch.    G.P.  346,362, 
16.8.17. 

Crude  or  purified  montan  wax  is  treated  with  ozone 
in  the  presence  or  absence  of  solvents.  The  fatty 
acids  obtained,  m.p.  60° — 70°  C.,  dissolve  in 
aqueous  sodium  carbonate,  yielding  a  solution 
which  lathers  well  and  can  be  employed  as  a  soap 
solution. — L.  A.  C. 

Bleaching  of  fats  and  oils  by  means  of  fuller's  earth. 

H.  Bollmann.     G.P.  347,153,  27.3.20.     Addn.  to 

344,633  (J.,  1922,  182  a). 
The  oil  is  driven  through  the  apparatus  by  means 
of  a  single  pump  which  in  one  stroke  forces  the  oil 
to  be  bleached  through  the  filter,  causing  the  valves 
in  the  pipes  connecting  the  various  stages  to  close, 
and  in  the  other  stroke  sucks  part  of  the  mixture  of 
oil  and  fuller's  earth  in  the  opposite  direction 
through  the  above-mentioned  valves. — H.  C.  R. 

Extraction  of  oil-  and  fat-containing  material  by  the 
washing  or  diffusion  process;  Apparatus  for  the 

.      Schlotterhose    und    Co.      G.P.    347,394, 

29.8.19. 
One  or  more  filtering  surfaces  are  arranged  in  the 
extraction  vessel  in  such  a  manner  that  on  drain- 
ing or  sucking  away  the  solution  of  oil  or  fat  they 
are  completely  covered  with  the  extracted  material, 
so  that  the  solvent  is  not  only  decanted,  but  also 
1    sucked  away  from  the  extracted  material.     The  ex- 
'    traction   vessel    may   be   separated   from   an   outer 
!   vessel  by  the  filtering  surface,  the  whole  revolving 
together.    The  solvent  is  then  collected  in  the  outer 
vessel  and  can  be  removed  from  it  by  means  of  lifts 
or  pumps. — H.  C.  R. 

Organic  acids.    G.P.  346,520.    See  XX. 


Paint  oil  and  process  of  making  the  same.  F.  A. 
Levenhagen  and  J.  W.  Evans.  U.S. P.  1,407,469, 
21.2.22.    Appl.,  21.4.19. 

A  mixture  of  crude  mineral  oil  and  drying  oil  is 
treated  with  less  than  2%  by  volume  of  sulphur 
chloride. — L.  A.  C. 


C.    Ellis,    Assr.    to 
U.S.P.      1,406,175, 


Paint    and   varnish   remover. 
Chadeloid     Chemioal     Co. 
14.2.22.     Appl.,  31.12.20. 

The  composition  comprises  hydronaphthalene,  an 
alcoholic  solvent  miscible  therewith,  and  a  few  per 
cent,  of  wax. — H.  C.  R. 

Resinous  substances  and  tanning  materials;  Manu- 
facture   of    .     M.    Melamid.     E.P.    163,679, 

26.11.20.    Conv.,  17.5.20. 

j    On  passing  acetylene  into  a  mixture  of  cresols  with 

i    some  acid  in  the  presence  of  mercury  as  catalyst, 

!    condensation  products  are  formed.    AVhen  distilled 

under  reduced  pressure  the  resulting  mixture  yields 

as  main  distillate  a  substance  which  after  sulphona- 

tion   is  completely   soluble   in  water   and   possesses 

■    tanning  properties.     The  distillation  residue  forms 

a   hard   transparent   resin   soluble    in   alcohol    and 

I    benzene.— D.  F.  T. 

1  Resin;  Production  of  high-grade from  turpen- 
tine and  crude  resins  containing  turpentine. 
Plauson's  Forschungsinstitut  G.m.b.H.  G.P. 
346,308,  6.5.20. 

Turpentine,  or  crude  resin,  is  heated  with  a  ferric 
salt  in  the  presence  or  absence  of  hypochlorites,  and 

I  the  product  is  washed  with  w\iter  until  all  soluble 
constituents  are  removed.  A  tougher  and  less 
brittle  resin  is  obtained  by  passing  air  or  oxygen 
through  a  molten  mixture  of  the  product  with  1 — 
5%  of  a  monohydric  or  polyhydric  phenol  or  phenol 

1    ester. — L.  A.  C. 

Drying  oils.    G.P.  345,855.    See  III. 
j    Colour  lakes.    G.P.  347,129.    See  VI. 


XIII.-PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Derivatives  of  straw  lignin.    Paschke.    See  V. 

Kaiva-kawa  resin.     Murayama  and  Mayeda.     See 
XX. 

Patents. 

Cadmium  pigment;  Manufacture  of  a  yellow  . 

Farbenfabr.  vorm.  F.  Bayer  und  Co.  G.P. 
347,152,  4.7.19.  Addn.  to  343,953  (J.,  1922, 
149  a). 

Pigments  of  a  more  distinctly  greenish  yellow 
colour  are  obtained  by  precipitating  with  barium 
sulphide  in  presence  of  zinc  compounds. 

Oils;  Heat  treatment  of  [drying  or  semi-drying} 

.   R.  I.  Clark  and  Co.,  Ltd.,  and  J.  N.  Tervet. 

E.P.  175,406,  15  11.20. 

Drying  or  semi-drying  oils,  such  as  linseed  oil  or 
Chinese  wood  (tung)  oil,  are  heated  to  progressively 
higher  temperatures  up  to,  e.g.,  700°  F.  (about 
370°  C.)  in  the  absence  of  air  by  passage  through  a 
series  of  pipes  or  a  spiral  passage  situated  within  a 
hurnace  chamber.  The  oil  after  leaving  the 
ipparatus  is  cooled  gradually  in  the  absence  of  air 
is  it  passes  through  a  pipe  to  a  receiver.  All  parts 
)f  the  apparatus  exposed  to  the  action  of  hot  oil  are 

onstructed  of  acid-resisting,  non-corrosive  metal, 
md  the  heating  pipes  are  provided  with  vent  pipes 

or  the  escape  of  gases  and  vapours.  Different 
lorms  of  apparatus  suitable  for  carrying  out  the 
Urocess  are  described. — L.  A.  C. 


XIV.-INDIA-RUBBEH;  GUTTA-PERCHA. 

[Rubber]  latex;  Properties  of  dried  .     H.  P. 

Stevens.      Bull.  Rubber    Growers'    Assoc,    1922, 
4,  86—89. 

Examination  of  a  series  of  five  samples  of  rubber 
showed  that  the  high  rate  of  vulcanisation  of 
evaporated  latex  cannot  be  explained  by  the 
presence  of  an  accelerating  substance  pre-formed 
in  the  latex.  The  rapid  vulcanisation  of  evaporated 
latex  also  can  be  due  only  in  a  small  degree  to 
putrefactive  bases. — D.  F.  T. 

[Vulcanisation ;]  Supposed  "retarding"   effect  of 
dimethylamine       dimethyldithiocarbamate       [on 

].     P.   L.   Bean.     Indiarubber  J.,   1922,  63, 

354. 
Vulcanisation  of  a  mixture  of  rubber  89'9%, 
sulphur  10%,  and  dimethylamine  dimethyldithio- 
carbamate gave  no  confirmation  of  the  statement 
(Tuttle,  J.,  1921,  709  a)  that  the  last-named  under 
these  conditions  retards  vulcanisation;  a  slight 
acceleration  was  observable. — D.  F.  T. 

Caoutchouc ;  Photopolymerisation  of  vinyl  chloride 

and  the  problem  of .    J.  Plotnikow.     Z.  wiss. 

Phot.,  1922,  21,  117—134. 
Solutions  of  vinyl  chloride  in  99%  ethyl  alcohol, 
acetone,  carbon  tetrachloride,  methyl  alcohol,  ether, 
and  toluene  when  exposed  to  the  action  of  the  ex- 
treme ultra-violet  light  at  temperatures  between 
15'2°  and  25-2°  C.  deposit  a  pure  white  powder  as 
polymerisation  product.     In  the  presence  of  salts 


202  A 


Cl.  XV.— LEATHER;  BONE;  HORN;  GLUE. 


[April  15,  1922. 


of  manganese,  cobalt,  nickel,  copper,  vanadium, 
and  uranium,  the  reaction  is  catalysed  and  takes 
place  in  visible  light.  The  process  as  carried  out  in 
the  presence  of  uranyl  salts  in  sunlight  has  been 
made  the  subject  of  a  patent  application.  The  pro- 
duct resembles  rice  powder  and  is  slightly  soluble 
in  acetone,  methyl  alcohol,  and  ethyl  alcohol,  more 
soluble  in  benzene,  chlorobenzene,  carbon  tetra- 
chloride, and  carbon  bisulphide  and  very  soluble  in 
phenyl  acetate.  It  separates  from  solvents  in  which 
it  is  fairly  soluble  as  an  elastic  film  which  loses  its 
elasticity  on  keeping.  On  mixing  with  40%  of 
cedar  oil,  40%  of  French  turpentine,  65%  of  pine 
oil;  or  60%  of  camphor,  yellow  waxes  are  produced; 
30%  of  castor  oil  converts  it  into  a  somewhat  sticky 
whitish-grey  mass,  and  with  60%  of  copaiba  balsam 
it  yields  a  dark  wax-like  mass;  with  70 — 75%  of 
castor  oil  or  75%  of  pine  oil  it  yields  a  vaseline-like 
mass.  Jellies  are  produced  on  mixing  with  50 — 72% 
of  aniline  or  70 — 85%  of  tetralin,  whilst  with  40% 
of  tetralin,  50%  of  Peru  balsam,  or  23%  of  rosemary 
oil  it  gives  a  solid  elastic  mass. — J.  F.  S. 

Vulcanisation;  Reactions  of  accelerators  during 
.  IV.  Mechanism  of  the  action  of  zinc  com- 
pounds. C.  W.  Bedford  and  L.  B.  Sebrell.  J. 
Ind.  Eng.  Chem.,  1922,  14,  25—31. 

Thiouram  disulphides  contain  sulphur  available 
for  vulcanisation  by  heat ;  the  presence  of  zinc  oxide 
imparts  a  higher  modulus  to  the  vulcanisate  but  re- 
tards the  chemical  change.  When  applied  as 
accelerators  in  hot  vulcanisation,  the  thiouram  di- 
sulphides give  rise  to  alkylammonium  polysulphides 
and  trithiocarbonates,  and,  in  the  presence  of  zinc 
oxide,  also  to  zinc  alkyldithiocarbamates.  For  the 
vulcanisation  of  rubber-sulphur  solutions  at  the 
ordinary  temperature,  thiouram  disulphides  are  in- 
effective even  with  the  addition  of  zinc  oxide,  unless 
hydrogen  sulphide  is  also  present.  The  amine 
dithiocarbamate  accelerators  effect  vulcanisation  in 
rubber-sulphur  solutions  at  the  ordinary  tempera- 
ture in  the  presence  of  zinc  oxide;  the  addition  of 
aniline  favours  the  process.  In  heat  cures  these 
dithiocarbamate  accelerators  react  with  hydrogen 
sulphide,  produced  from  the  rubber  resins  or  pro- 
teins and  sulphur,  giving  rise  to  alkylammonium 
polysulphides  and  trithiocarbonates  which  in  the 
presence  of  zinc  oxide  are  powerful  vulcanising 
agents ;  in  the  additional  presence  of  aniline  the 
mechanism  is  somewhat  modified,  zinc  sulphides  or 
persulphides  being  then  more  easily  formed 
together  with  the  aniline  alkyldithiocarbamate. 
Thiocarbanilide  functions  as  a  mercaptan  yielding  a 
zinc  or  lead  mercaptide ;  in  vulcanisation  these  give 
rise  to  polysulphides  which  form  the  actual  vulcan- 
ising agents.  The  arylguanidines  react  with 
hydrogen  sulphide  giving  arylammonium  sulphides 
and  thence  polysulphides ;  the  aid  of  metallic  oxides 
is  not  required  except  as  inorganic  fillers.  Zinc 
pentasulphide  obtained  by  precipitation  from  solu- 
tions of  sodium  pentasulphide  and  zinc  salts,  or  by 
compounding  rubber  with  zinc  sulphide  and  the 
necessary  sulphur,  vulcanises  more  rapidly  than  the 
corresponding  quantity  of  free  sulphur  alone.  All 
vulcanising  reactions  are  ascribed  to  some  form  of 
polysulphide  sulphur  which  furnishes  sulphur  in  an 
especially  active  state.  Vulcanisation  by  hydrogen 
6ulphide  and  sulphur  dioxide  is  not  due  to 
"nascent"  sulphur  but  to  an  active  modification 
of  sulphur  which  can  be  isolated  as  an  unstable 
bright  yellow  solid;  this,  in  a  freshly  precipitated 
condition  from  the  reaction  in  benzene,  is  capable 
of  vulcanising  dissolved  rubber. — D.  F.  T. 

Patents. 

Vulcanisation;   Process   of   .      E.    Levinstein. 

U.S.P.  1,406,197,  14.2.22.    Appl.,  7.10.20. 

Vulcanisation  is  effected  by  heating  rubber  with 
barium  thiosulphate. — D.  F."  T. 


Balata;  Method  of  deresinating  and  purifying . 

C.  H.  Keith  and  N.  G.  Madge,  Assrs.  to  Revere 
Rubber  Co.  U.S.P.  1,406,654,  14.2.22.  Appl., 
14.11.21. 

The  resinous  constituents  of  balata  are  removed  by 
a  solvent ;  the  residual  balata  is  then  dissolved,  and 
after  mechanical  removal  of  its  impurities,  the 
balata  is  recovered  from  the  solution  and  dried  and 
compacted.— D.  F.  T. 

Bubber  and  like  materials;  Machines  for  mixing  or 

masticating  .     Farrel  Foundry  and  Machine 

Co.,  Assees.  of  D.  R.  Bowen  and  C.  F.  Schnuck. 
E.P.  172,976-7,  10.1.21.    Conv.,  14.9.17. 


XV.-LEATHER;  BONE;  H0BN;  GLUE. 

Tan  liauor;  Effect  of  change  of  acidity  on  the  rate 

of   diffusion   of   into  gelatin   jelly.     J.    A. 

Wilson  and  E.  J.  Kern.  J.   Ind.  Eng.   Chem., 
1922,  14,  45—46. 

Gambier  and  quebracho  extracts  show  marked 
differences  in  the  rate  of  tanning  and  of  penetration 
into  the  hide,  the  rate  of  penetration  depending  on 
the  hydrogen  ion  concentration  and  on  the  non- 
tannin  content  of  the  liquor.  Gambier,  which  has  a 
high  ratio  of  non-tannin  to  tannin,  begins  to  pene- 
trate at  a  pa  value  of  3'0  and  reaches  its  maximum 
at  6"0;  quebracho  shows  but  little  penetration 
until  a  pn  value  of  4'7,  the  isoelectric  point  of 
gelatin,  is  reached.  At  p„  values  greater  than  9, 
however,  the  quebracho  liquor  penetrates  at  the 
greater  rate,  possibly  because  of  its  higher  tannin 
content.  The  shape  of  the  interface  between  a  tan 
liquor  and  gelatin  jelly  is  also  a  function  of  the 
hydrogen  ion  concentration. — W.  P.  S. 

Collagen;  Isoelectric  point  of .     A.  W.  Thomas 

and  M.  W.  Kellv.     J.  Amer.  Chem.  Soc,  1922, 
44,  195—201. 

The  swelling  method  of  determining  the  isoelectric 
point  of  American  hide  powder  as  a  source  of 
collagen  can  only  be  used  for  the  purpose  of  locating 
the  approximate  isoelectric  region  when  solutions 
with  wridely  differing  pH  values  are  used  and  conse- 
quently large  swelling  differences  are  obtained. 
Using  the  dye  method  the  pH  values  obtained  for 
the  isoelectric  point  varied  from  4'6  to  5'4  with  an 
average  of  5'0.  The  results  indicate  that  hide 
substance  generally  referred  to  as  collagen  is  a 
mixture  of  proteins  rather  than  one  simple  protein. 
The  isoelectric  points  of  a  number  of  proteins  as 
reported  in  the  literature  are  tabulated. — W.  G. 

Gelatin;   Swelling  and    gelation   of  .      R.  H. 

Bogue.     J.  Ind.  Eng.  Chem.,  1922,  14,  32—35. 

Gelatin  sols  and  gels  were  treated  with  solutions  of 
sodium  silicates  in  which  the  ratio  of  Na20  to  SiO; 
varied  regularly  from  1:4  to  1:1.  The  swelling  and 
viscosity  (at  35°  C.)  increased  with  a  decrease  in  the 
silica  content,  the  percentage  of  soda  being  kept 
constant.  This  change  in  the  viscosity  and  swelling 
was  dependent  on  the  hydrogen  ion  concentration 
rather  than  on  varying  silica  content.  The  two 
properties  reached  their  maximum  at  a  pH  value  of 
about  8'5  and  decreased  slightly  at  higher  values: 
the  jelly  consistence  (at  10°  C),  however,  was  sol.d 
at  values  between  47  and  8'0,  soft  at  85  and  liquid 
at  9-0.— W.  P.  S. 

Gelatin;  Significance  of  the  isoelectric  point  for  the 

preparation  of  ash-free  ■ .    J.  Loeb.    J.  Amer. 

Chem.  Soc,  1922,  44,  213—215. 

A  reply  to  Smith  (J.,  1921,  743  a).— W.  G. 


Vol.  XLI.,  Xo.  7.] 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


263  a 


Patents. 

Tanning  materials;  Manufacture  of  .     Chem. 

Fabr.     Worms    A.-G.       E.P.     154,162,     18.11.20. 
Conv.,  20.8.17. 

Water-soluble  products  having  pronounced  tan- 
ning properties  are  obtained  by  allowing  acid 
sulphites  to  act  below  100°  C.  on  aromatic  hydroxy- 
compounds  or  their  alkali  salts,  in  the  presence  of 
formaldehyde  or  of  some  substance  generating 
formaldehyde.— D.  F.  T. 

Dyeing  glace  leather.     G.P.  346,694.     See  VI. 

Tanning  materials.     E.P.  163,679.     See  XIII. 


XVI.-S0ILS ;    FERTILISERS. 

Soil    dispersoids;    Tyndallmeter    reading    of    . 

F.  M.  Scales  and  F.  W.  Marsh.  J.  Ind.  Eng. 
Chem.,  1922,  14,  52—54. 

A  measure  of  the  concentration  of  the  dispersoids 
in  a  soil  may  be  obtained  by  means  of  the  Tyndall- 
meter described  by  Tolman  and  Vliet  (J.,  1919, 
275  a.  306  a);  the  suspensions  are  prepared  under 
uniform  conditions  and  the  results  obtained  furnish 
an  index  of  the  comparative  concentrations  of  the 
!  small  particles  which  may  be  important  factors  in 
the  maintenance  of  soil  fertility. — W.  P.  S. 

.  Soil  moisture;  Classification  of .  F.  W.  Parker. 

Soil  SoL,  1922,  13,  43—54. 
The  presence  of  "  unfree  water"  (Bouyoucos  and 
McCool;  J.,  1921,  231a)  in  soils  is  questioned.    The 
abnormal    increase    in    freezing    point   depression, 
with    decrease    in    moisture    content    of    soils,    is 
brought  about  by  finely  divided  solids  and  not  by 
"unfree"    water.      Glycerin    and    alcohol   do   not 
extract  "  unfree"  water  from  soils.     It  is  possible 
to  displace  soil  solution  from  soils  having  a  moisture 
.content     less     than     the     content     of     "  unfree  " 
moisture.      In  soils  containing   amounts   of   water 
less  than  the  "  water-holding  capacity,"  the  water 
is  held  by  forces  of  adhesion,   which  increase  with 
'decreasing  moisture  content  and  which  may  eventu- 
illy  become  sufficiently  great  to  prevent  the  freez- 
ng  of  the  water.     The  older  classification  of  6oil 
noisture  into  hygroscopic,  capillary,   and  gravita- 
tional water  is  preferred  to  the  classification  pro- 
oosed  by  Bouyoucos. — A.  G.  P. 

ioil   solution    obtained    by    the    Lipman    pressure 
method;  Ferrous  sulphate   treatment  of  soil  as 

influencing  the  .     C.  B.  Lipman.     Soil  Sci., 

1922,  13,  55—56. 

Analyses  are  recorded  of  solutions  obtained  by  the 
■ressure  method  (Univ.  Cal.  Pub.  Agr.  Sci.,  1918, 
i  131 — 134)  from  soils  treated  with  ferrous  sul- 
hate.  The  latter  appears  to  increase  non-volatile 
)lids  in  the  soil  solution  and  to  precipitate 
issolved  organic  matter.  Iron  is  substituted  for 
ilcium  and  potassium  and  6ome  phosphorus  is 
rought  into  solution. — A.  G.  P. 

oRs;  Belation  of  hydrogen-ion    concentration    in 

to    their    "  lime    requirement."      H.    W. 

Johnson.    Soil  Sci.,  1922,  13,  7—22. 

be  hydrogen-ion  concentration  of  a  number  of 
ils  was  measured  by  means  of  a  hydrogen  electrode 
id  compared  with  "  lime  requirement  "  values 
tained  by  several  standard  methods.  There  was 
apparent  relationship  between  the  lime  require- 
mt  (Veitch  method;  cf.  J.,  1904,  762)  and  the 
drogen-ion    concentration.      Lime     requirement 

Slues  by  the  Truog  method  (J.,  1916,  699)  were  a 
■nbination  of  the  Veitch  lime  requirement  and  the 
drogen-ion  concentration.  In  similar  6oils  there 
•ms    some    relationship    between    the    apparent 


quantity  of  acids  and  their  strength.  In  mineral 
6oils,  acidity  is  due  to  weathering  and  leaching 
rather  than  to  accumulated  organic  matter.  Clay 
and  organic  matter  in  soils  act  as  buffers  in  regu- 
lating the  H-ion  concentration. — A.  G.  P. 

Soil  organic  mutter;  Use  of  the  conventional  carbon 

factor  in  estimating .    J.  W.  Read  and  R.  H. 

Ridgell.    Soil  Sci.,  1922,  13,  1—6. 

Son,  organic  matter  and  organic  carbon  were  esti- 
mated in  a  number  of  soils  bv  the  rapid  dry  com- 
bustion method  (J.,  1921,  442  a).  The  generally 
accepted  carbon  factor  (based  on  the  assumption 
that  soil  organic  matter  contains  58%  of  carbon) 
gives  uniformly  low  results.  It  is  doubtful  if  the  use 
of  any  arbitrary  carbon  factor  is  justifiable.  A 
conventional  nitrogen  factor  for  determining  soil 
organic  matter  would  appear  to  be  more  reliable. 

—A.  G.  P. 

I'lmite,  a  constituent  of  black  sandstone.    T.  Steel. 

Proc.  Linnean  Soc.  N.S.W.,  1921,  46,  213—215. 
The  grains  of  a  black  friable  sandstone  found  along 
the  coast  of  New  South  Wales  are  covered  with  a 
thin  dark-coloured  film  resembling  a  coat  of 
varnish.  On  lixiviating  the  pulverised  rock,  this 
dark  coating  is  readily  separated  and  obtained  free 
from  sand,  and  when  dry  forms  a  dark  brown 
powder.  The  properties  and  analysis  of  this  powder 
agree  closely  with  those  for  humus  obtained  from 
I  brown  peat  etc.  The  term  "  ulmite  "  is  proposed 
i  for  this  form  of  humus  as  found  coating  sandstone 
grains.    (Cf.  J.,  1921,  59  t.)— J.  B.  F. 

I    Sulphur;   Chemistry   of  the   oxidation   of   by 

micro-organisms  to  sulphuric  acid  and  transforma- 
tion of  insoluble  phosphates  into  soluble  forms. 
S.  A.  Waksman  and  J.  S.  Joffe.  J.  Biol.  Chem., 
1922,  50,  35—45. 

The  sulphuric  acid  produced  in  the  soil  by  sulphur- 
oxidising  bacteria  converts  insoluble  phosphates 
into  soluble  forms  (cf.  Lipman  and  others,  J.,  1916, 
1268;  1917,  227).  Using  cultures  of  the  organism 
in  a  liquid  medium  to  which  tricalcium  phosphate 
1  has  been  added,  it  is  shown  that  the  acidity  of  the 
medium  increases  to  about  pH  2'8,  at  which  value  it 
remains  constant  until  all  the  phosphate  has  been 
converted  into  a  soluble  form. — E.  S. 

Crude  gas  liquor;  Manuring  with  .     J.  Mews. 

Gas-  und  Wasserfach,  1922,  65,  123—124. 

Crude  gas  liquor  may  be  used  generally  as  a  fer- 
tiliser,    preferably     in     conjunction     with     liquid 
manure.    It  is  best  used  during  heavy  rains  or  snow 
and  should  be  diluted  with  water  or  liquid  manure. 
1    At  least  a  week  should  elapse  before  sowing  seed 
■    on  treated  land,  and  some  rain  during  that  interval 
!    is  advantageous.    Applications  recommended  are  of 
the  order  of  600 — 1200  litres  per  1000  sq.  m.    Grass 
land  can  only  be  treated  during  wet  weather.    Land 
1    for  grain  crops  should  be  treated  during  the  winter, 
|    as  the  liquor  cannot  be  used   for  a  top  dressing. 
j    Young  fruit  trees  should  not  be  treated  with  gas 
liquor,  hut  old  trees  are  benefited  thereby. 

—A.  G.  P. 

Plant  growth   in  water  cultures;  Aluminium  salts 
and  acids  at  various  hydrogen-ion  concentrations 

in  relation  to  .      S.  D.   Conner  and  O.  H. 

Sears.  Soil  Sci.,  1922,  13,  23—33. 
Rye,  barley,  and  corn  (maize)  were  grown  in  various 
nutrient  solutions  to  which  aluminium  salts  and  also 
I  free  acids  were  added.  In  general  good  growth  was 
I  accompanied  by  decreased  H-ion  concentration  in 
the  media.  Comparison  of  the  effects  of  aluminium 
salts  of  various  acids,  with  those  of  equivalent 
quantities  of  the  free  acids,  leads  to  the  conclusion 
that  the  toxicity  of  aluminium  salts  is  due  to  the 
aluminium-ion  rather  than  to  the  increased  H-ion 


264  a 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[April  15,  1922. 


concentration  produced.  The  toxicity  of  many 
acid  6oils  is  due  to  the  presence  of  easily  Boluble 
aluminium  salts. — A.  G.  P. 

Seeds;  Method  for  estimating  the  vitality  of  

by  a  biochemical  method.  A.  Nemec  and  F. 
Duchon.  Comptes  rend.,  1922,  174,  632—634. 
(Cf.  J.,  1921,  899  a.) 
The  catalase  activity  of  the  seed  is  measured  by 
determining  the  amount  of  oxygen  liberated  from 
hydrogen  peroxide  by  a  known  weight  of  powdered 
seed  in  5  mins.,  under  definite  conditions.  Results 
with  different  species  show  that  the  volume  of 
oxygen  liberated  increases  steadily  with  the 
germinative  capacity  of  the  seed,  the  curve  show- 
ing their  relationship  being  a  smooth  one. — W.  G. 

Copper  sprays.    Villedieu.    See  XIXb. 

Patents. 

Calcium  cyanamide;  Process  for  the  production  of 

non-injurious    .       Rhenania    Verein    Chem. 

Fabriken  A.-G.,  und  G.  A.  Voerkelius.  G.P. 
345,815,  6.3.20. 
Calcium  carbide  is  mixed  with  finely  ground 
volcanic  rock  silicates  before  treatment  with 
nitrogen.  The  product  is  not  caustic,  does  not 
become  dusty,  and  contains  soluble  potash. 

—A.  G.  P. 

Ammonium  nitrate  fertiliser.  B.  F.  Halvorsen, 
Assr  to  Norsk  Hydro-Elektrisk  Kvaelstofaktie- 
selskab.    U.S. P.  1,406,455,  14.2.22.    Appl.,  8.7.19. 

See  E.P.  129,974  of  1919;  J.,  1920,  243  a. 


XVII.- SUGARS;  STARCHES;  GUMS. 

Sugar  products;  Factor  to  be  used  for  the  conver- 
sion of  the  svlphated  to  the  cairbonated  ash  of 

.     J.  Mikolasek.     Z.  Zuckerind.  Czechoslov., 

1922,  45,  246—247. 
Determinations  made  with  beet  molasses  and  beet 
raw  sugars  gave  a  difference  of  about  20%  between 
the  sulphated  and  carbonated  ash,  leading  the 
author  to  recommend  the  application  of  the  factor 
08  for  the  conversion  of  the  former  to  the  latter, 
instead  of  0'9,  as  now  generally  used.  (Cf.  Ogilvie 
and  Lindfield,  J.,  1918,  254  a.)— J.  P.  O. 

Strontium  hydroxide ;  Solubility  of in  sucrose. 

solutions.      D.    Sidersky.      Bull.    Assoc.    Chim. 
Sucr.,  1921,  39,  174—177. 

Operating  with  pure  sucrose  solutions  containing 
from  2  to  25  gr.  per  1.,  the  solubility  of  strontium 
hydroxide  at  3°,  15°  24°,  and  40°  C,  has  been 
determined.  The  values  obtained  are  expressed 
by  the  following  formulae  in  which  P  is  the  % 
sucrose  by  weight  and  S  the  SrO  dissolved.  At 
3°  C,  S=0-37+0085P.  At  15°  0.,  S=0-56+0091P. 
At  24°  C,  S  =  077  +  0-133P.  At  40°  C,  S  = 
l'47+0-207P.  Based  on  these  results  a  table  has 
been  compiled  showing  the  values  for  SrO  and 
Sr(OH)2,8H,0  for  sucrose  solutions  from  1  to 
25%  by  weight  and  for  the  four  temperatures 
named. — J.  P.  O. 

Dextrose;  Influence  of  sodium  chloride  on  the 
mutarotation  of  in  hydrochloric  acid  solu- 
tion. I.  H.  Murschhauser.  Biochem.  Zeits., 
1921,  126,  40—54. 

In  2V/10  hydrochloric  acid  solution  the  velocity 
constants  of  the  mutarotation  of  dextrose  show  an 
increase  proportional  to  the  concentration  of  sodium 
chloride  in  the  solution. — H.  K. 


liaffinose;  Improved  method  for  the  preparation 

of  .     E.   P.   Clark.     J.   Amer.  Chem.   Soc, 

1922,  44,  210—213.  (Cf.  Hudson  and  Harding, 
J.,  1914,  1102.) 

Cottonseed  meal  is  extracted  by  percolation,  which 
must  be  done  quickly.  The  extract  is  purified  by 
treatment  with  basic  lead  acetate  and  the  excess 
of  lead  is  removed  by  the  addition  of  oxalic  acid. 
The  sugar  is  then  separated  from  solution  as  in- 
soluble calcium  raffinosate.  To  regenerate  the 
raffinose  this  compound  is  decomposed  with  carbon 
dioxide.  The  resulting  solution  is  evaporated 
under  reduced  pressure  until  it  contains  70 — 75% 
of  total  solids  and  then  the  raffinose  is  caused  to 
crystallise  by  addition  of  alcohol.  A  simple  stir- 
ring device  for  the  convenient  and  rapid  decompo- 
sition of  the  raffinosate  with  carbon  dioxide  is 
described. — W.   G. 

Beet  carbonatation  scums;  Utilisation  of  by 

dry  distillation  for  the  preparation  of  a  decoloris- 
ing carbon.  Z.  Vytopil.  Z.  Zuckerind. 
Czechoslov.,  1922,  45,  249. 

Further  experience  with  carbonised  beet  scum 
prepared  in  the  manner  previously  described  (J., 
1922,  27  a)  leads  the  author  to  state  that  its 
efficiency  is  too  low  to  justify  its  recommendation 
as  a  decolorising  carbon  for  use  in  sugar  manufac- 
ture.—J.  P.  O. 

Bone-black;  Decolorising   action  of  .     C.   H. 

Hall,  jun.    J.  Ind.  Eng.  Chem.,  1922,  14,  18. 

The  decolorising  action  of  bone-black  is  due 
entirely  to  a  mixture  of  nitrogenous  decomposition 
products  contained  in  the  material  (cf.  Patterson, 
J.,  1903,  608);  these  products  are  insoluble  in 
alcohol,  ether,  petroleum  spirit,  and  chloroform, 
and  soluble  in  ammonia,  hydrochloric  acid,  and 
sulphuric  acid.  If  the  bone-black  is  treated  with 
hydrochloric  acid,  filtered,  the  insoluble  portion 
then  digested  at  100°  C.  for  2  hrs.  with  sulphuric 
acid,  the  mixture  again  filtered,  and  the  filtrato 
diluted  with  water,  a  brown  precipitate  settles  out 
gradually ;  a  few  drops  of  a  concentrated  suspension 
of  this  precipitate  in  water  is  equal  in  decolorising 
action  to  several  g.  of  good  bone-black. — W.  P.  S. 

Potash  from  kelp.  Applicability  of  kelpchar  as  a 
bleaching  and.  purifying  agent.  J.  W.  Turren- 
tine  and  H.  G.  Tanner.  J.  Ind.  Eng.  Chem., 
1922,  14,  19—24.     (Cf.  J.,  1921,  339  a,  656  a.) 

A  satisfactory  decolorising  carbon,  termed  kelp- 
char  (cf.  J.,  1921,  339  a),  is  now  being  prepared 
on  a  large  scale  from  Pacific  Coast  kelp.  The 
following  method  is  described  for  determining  the 
comparative  value  of  a  charcoal :  — 50  g.  of  cane 
sugar  molasses  is  dissolved  in  water,  the  solution 
neutralised  with  sodium  hydroxide  or  acetic  acid, 
3  c.c.  of  glacial  acetic  acid,  15  g.  of  sodium  acetate, 
and  2  c.c.  of  formaldehyde  solution  are  added,  and 
the  mixture  is  diluted  to  1  1. ;  80  c.c.  of  this  solution 
is  treated  with  2  g.  of  the  charcoal  to  be  test 
boiled,  and  filtered  while  hot.  The  filtrate  is  com- 
pared colorimetrically  with  a  series  of  filtrates  pre- 
pared in  the  same  manner  but  with  varying  quan- 
tities of  a  standard  charcoal.  The  retort  method 
is  the  best  known  method  of  reactivating  6pent 
kelpchar,  but  wet  methods  (e.g.,  washing  witli 
sodium  hydroxide  solution  etc.)  also  appear  to  b( 
effective.  Apart  from  decolorising  value,  the  due] 
characters  of  a  good  charcoal  are  size  anc 
uniformity  of  the  particles,  hardness,  and  freedon 
from  soluble  impurities.  Tests  on  the  use  o< 
kelpchar  in  sugar  refining  for  the  decolorisation  o 
malt  syrup,  citric  acid,  oils,  and  dyestuff  inter 
mediates,  and  for  the  precipitation  of  gold  fron 
cyanide  solutions  are  describee!. — W.  P.  S. 


Vol.  XLL,  No.  7.] 


Cr..  XVIII.— FERMENTATION  INDUSTRIES. 


265  a 


Corn  [maize]  products  starches;  Comparison  of 
various  — — ■  as  shown  by  the  Bingham-Greene 
plastometer.  C.  E.  G.  Porst  and  M.  Moskowitz. 
J.  Ind.  Eng.  Chem.,  1922,  14,  49—52. 

The  rigidity,  mobility,  and  "  yield  shear  "  value  of 
starch  pastes,  prepared  under  definite  conditions, 
may  be  determined  by  the  plastometer  (ef.  J.,  1921, 
821  a),  and  the  results  obtained  indicate  the  pro- 
perties of  the  different  grades  of  starch. — W.  P.  S. 


XVIII.-FEBMENTATION  INDUSTRIES. 

Barley;  Report  on  the  relation  of  the  nitrogenous 

matter   in   to    brewing    value.      H.    F.    E. 

Hulton.    J.  Inst.  Brew.,  1922,  28,  33—142,  Suppl. 

This  is  a  review  of  the  literature  relating  to  the 
nature  and  amount  of  the  nitrogenous  matters 
present  in  barley,  the  influence  of  hereditary  factors 
and  conditions  of  growth  on  the  nitrogen-content 
of  the  grain,  and  the  relation  between  the  nitrogen- 
content  of  barley  and  the  size  and  weight  of  the 
corns,  their  mellowness  or  maturation,  "  coarse- 
ness," germinative  capacity,  and  tendency  to 
"heating"  on  the  malting  floor,  the  time  required 
for  modification  and  the  yield  and  quality  of  extract 
obtainable  from  the  resulting  malt.  Authorities 
have  differed  in  opinion  on  almost  all  these  points. 
The  author  considers  that  the  balance  of  evidence 
indicates  that  the  following  factors  contribute  to 
produce  barleys  of  high  nitrogen-content :  Too  rapid 
or  delayed  maturation;  a  hot  and  dry  season;  wide 
planting  with  resulting  lack  of  root  competition; 
too   rich   or   heavy   soil ;    excessive   use   of    nitrate 

i  manures  or  nitrogenous  fertilisers  used  alone  or 
without  admixture  with  other  manures ;  large  and 
coarse  corns;  the  particular  strain  of  barley  culti- 
vated   if   of   high    nitrogen-content.     Richness   in 

I  nitrogen  is  usually  associated  with  the  following 
qualities  in  barley: — A  high  tillering  rate  in  the 
growing  plant  and  a  low  ratio  of  grain  to  straw ; 

I  defective  maturation  ;  steeliness  ;  low  bushel  weight ; 

I  large  corns  of  high  density  ;  tendency  to  heat  on  the 

1  malting  floors ;  high  malting  loss  by  respiration ; 
sluggish  modification ;  high  proportion  of  nitrogen 
in  the  finished  malt  and  of  uncoagulable  proteins 
in  the  wort  therefrom ;  low  yield  of  extract ;  tend- 
ency to  fret  and  haze  in  the  finished  beer,  but  on 
the  other  hand  good  head-retaining  capacity.  The 
'majority  of  these  attributes  are  undesirable,  at  least 
from  the  maltster's  point  of  view,  and  it  is  not  sur- 
prising that  the  balance  of  opinion  is  unfavourable 
to  a  high  nitrogen-content  in  brewing  barleys :  but 
further  investigation  is  required  to  ascertain  the 
precise  influence  of  the  quantity  and  nature  of  the 
nitrogenous  matters  on  the  character  of  the  beer 
produced,  and  such  investigation  must  precede  any 
•ational  attempt  on  the  part  of  the  breeder  to 
produce  barleys  of  the  most  suitable  character  in 
espect  of  nitrogenous  constituents. — J.   H.  L. 

ilcoholic   sugar  fission;   Stimulants  of  .     IX. 

C.  Neuberg  and  M.  Sandberg.     Biochem.  Zeits., 
1921,  126,  153—178. 

Vith  few  exceptions  a  large  number  of  substances 
•elonging  to  very  varied  groups  of  substances 
ave  a  stimulating  influence  on  the  action  of  living 
east,  and  in  some  cases  on  press  juice.  The  groups 
samined  were  :  bitter  substances,  bile  acids  (sodium 
ilts  inhibit),  various  varieties  of  charcoal, 
iponins,  cystin  and  derivatives  containing  cvstin. 

— H.  K. 

'aize;  Enzymic  conversion  and  degradation  of  the 

nitrogenous  constituents  of .    Application  to 

the  manufacture  of  yeast.     P.  Nottin.     Coniptes 
rend.,  1922,  174,  712—714. 

)   obtain    the    maximum    of   nitrogenous    matter 


assimilable  by  the  yeast  it  is  necessary  to  avoid 
killing,  by  heat,  the  tryptic  enzymes  in  the  maize. 
The  most  satisfactory  procedure  is  to  leave  the  crude 
maize  flour,  without  malt,  in  contact  with  water  at 
60°  C.  The  nitrogenous  material  dissolves  in  the 
water  and  the  residue  is  filtered  off  and  heated  in 
the  usual  way.  The  filtrate  is  added  to  it  and  then 
the  malt  for  the  saccharification.  This  process, 
which  prevents  the  enzymes  of  the  maize  being 
destroyed,  gives  a  better  utilisation  of  the  proteins 
and  an  increase  in  the  yield  of  yeast. — W.  G. 

Vitamins.  II.  Acceleration  of  yeast  fermentation 
by  extracts  of  animal  orgaiis.  S.  Frankel  and  J. 
Hager.  Biochem.  Zeits.,  1921,  126,  189 — 226. 
The  water-soluble  portion  of  the  alcoholic  extract 
of  a  large  number  (31)  of  animal  tissues  was  tested 
in  its  action  on  the  rate  of  evolution  of  carbon 
dioxide  in  yeast  fermentation.  All  extracts  except 
that  of  the  bone  marrow  had  a  strong  accelerating 
influence. — H.  K. 

Vitamins.      III.    Fermentation-accelerating    influ- 
ence of  extracts  from  plants  and  the  action  of 
choline  and  aminoethyl  alcohol  on  fermentation. 
S.  Frankel  and  A.  Scharf .    Biochem.  Zeits.,  1921, 
126,  227—264. 
The  water-soluble  portion  of  alcoholic  extracts  of  a 
large     number     of     grains     and     vegetables     was 
examined    in    its    action    on    yeast    fermentation. 
Vegetable  roots  and  grains  were  feebly  active,  leaves 
of  vegetables  more  active,  and  leek-like  vegetables 
most  active.    Extract  of  celery  and  of  yolk  of  eggs 
were  very  active,  but  choline  and  aminoethyl  alcohol 
were  inhibitory. — H.  K. 

Vitamins;  Adsorption  of .    S.  Frankel  and  A. 

Scharf.  Biochem.  Zeits.,  1921,  126,  265—268. 
Utilising  a  purified  water-soluble  vitamin  prepara- 
tion from  yeast  (J.,  1921,  273  a),  the  authors  have 
examined  the  adsorption  of  the  vitamin  as  deter- 
mined by  its  accelerating  influence  on  yeast  fer- 
mentation, by  fullers'  earth,  by  kaolin  and  by 
alumina.  Kaolin  adsorbs  it  completely,  fullers' 
earth  slightly  less,  and  alumina  not  at  all. — H.  K. 

Vitamins;  Chemistry  of  .     S.  Frankel  and  A. 

Scharf.     Biochem.   Zeits.,  1921,   126,  269—280. 

A  renewed  attempt  to  isolate  the  water-soluble 
vitamin  from  yeast  and  rice  polishings.  By  ex- 
amining the  activity  of  preparations  of  vitamin  on 
yeast  fermentation  the  vitamin  was  found  to  be  con- 
centrated in  the  mercuric  chloride  precipitate.  In 
the  case  of  rice  polishings  the  filtrate  was  inactive, 
the  precipitate  active  but  containing  choline 
which  is  inhibitory.  From  5  kg.  of  fresh  yeast 
the  choline  fraction  was  freed  from  choline  by  pre- 
cipitation as  platinum  salt,  and  the  active  vitamin 
precipitated  from  the  filtrate  with  aqueous  mercuric 
chloride.  The  very  small  quantity  of  precipitate, 
freed  from  mercury,  was  very  active,  contained 
nitrogen,  but  failed  to  give  Molisch's  reaction  for 
carbohydrate  groups. — H.  K. 

Invertase  of  Mucor  racemosus.  S.  Kostytschew 
and  P.  Eliasberg.  Z.  phvsiol.  Chem.,  1922,  118, 
233—235. 

Mucor  racemosus-  contains  invertase,  but  Mucor 
racemosus+  does  not. — S.  S.  Z. 

Mulberry  juice;  Fermentation  of .     P.  Bertolo. 

Giorn.  Chim.  Ind.  Appl.,  1921,  3,  492—493. 

Mulberhy  juice,  extracted  by  pressure  in  67'5% 
yield,  had  sp.  gr.  1T85  and  acid,  calculated  as  tar- 
taric acid,  0'32%,  and  contained  8"80%  or,  after 
being  boiled  for  3  hrs..  12"75%  of  reducing  sugars. 
On  fermentation  it  yielded  a  clear,  dark  red  wine  of 
agreeable  odour  and  somewhat  bitter  flavour,  and 
showing  sp.  gr.  T031;  alcohol,  5'6%  by  vol.;  total 


266  a 


Cl.  XIXa.— FOODS. 


[April   15,   1922. 


and  volatile  acidities,  as  tartaric  acid,  0"93  and 
0'098%  respectively;  extract,  9'15%  ;  potassium  bi- 
tartrate,  0'189%  ;  free  tartaric  acid,  small  propor- 
tion; reducing  sugar,  2"57%  ;  ash,  0'71%  ;  glycerol, 
0'62%  ;  tannin  substances,  0'70%  ;  citric  acid,  small 
proportion.  If  the  juice  is  boiled  for  3  hrs.  prior 
to  fermentation,  the  resulting  wine  contains  7%  of 
alcohol  by  volume. — T.  H.  P. 

Glycerol  in  presence  of  sugars.    Hovt  and  Pernber- 
ton.     See  XII. 

Histamine     and    other     iminazoles.     Hanke     and 
Koessler.     See  XX. 

XIXa.-F00DS. 

Cream;  Formation  of  .       O.  Rahn.       Kolloid- 

Zeits.,  1922,  30,  110—114.     (Cf.  J.,  1921,  746  a, 
866  a.) 

The  aggregates  of  fat  globules  in  heated  milk  rise 
more  slowly  than  those  in  unheated  milk,  whilst  the 
single  globules  rise  more  rapidly  in  heated  milk.  The 
separation  of  cream  in  unheated  milk  is  due  almost 
entirely  to  the  separation  of  aggregates  of  fat 
globules,  whilst  in  heated  milk  it  is  due  to  the 
separation  of  individual  globules  and  small  aggre- 
gates. The  larger  the  fat  aggregates  the  more 
rapidly  they  rise.  The  slow  formation  of  cream  in 
heated  milk  is  due  to  the  slow  rate  of  rising  of 
the  fat  globules.  The  action  of  heat  on  milk  is 
to  disturb  the.  formation  of  fat  aggregates  due  to 
the  destruction  of  the  "  stickiness  "  of  the  natural 
sheath  of  the  fat  globules. — J.  F.  S. 

Casein;   Ultramicroscopical   investigation    of  . 

B.  Bleyer  and  R.  Seidl.     Kolloid-Zeits.,  1922,  30, 
117—118. 

Casein  and  paracasein  behave  differently  towards 
alkalis  and  alkaline-earth  hydroxides  than  towards 
acids,  inasmuch  as  the  individual  particles  as  seen 
in  the  ultramicroscope  are  much  larger  in  acid 
solutions.  The  particles  of  the  casein  derivatives 
are  larger  and  move  more  slowly  than  those  of  the 
paracasein  derivatives.  The  acid  casein  and  para- 
casein derivatives  are  not  true  chemical  compounds 
but  adsorption  complexes. — J.  F.   S. 

Protein;  Coagulation  of  6y  sunlight.      E.  G. 

Young.     Proc.  Roy.  Soc,  1922,  B  93,  235—248. 

Sunlight  or  light  from  the  arc-lamp  when  freed 
from  infra-red  and  ultra-violet  rays  can  effect  the 
coagulation  of  serum  albumin  and  egg  albumin 
when  these  have  been  recrystallised  several  times. 
The  process  consists  of  two  separate  reactions, 
denaturation  and  flocculation.  During  the  primary 
reaction  there  is  an  increase  of  viscosity  and  specific 
rotation  and  a  decrease  of  surface  tension,  and  at 
the  same  time  a  convergence  of  the  reaction  of  the 
solution  towards  neutrality  independent  of  the 
initial  hydrogen  ion  concentration  of  the  solution. 
Serum  albumin  is  much  more  sensitive  than  egg 
albumin.  The  role  of  light  is  similar  to  that  of 
heat — a  catalyst  of  the  primary  reaction. — H.  K. 

Antiscorbutic   vitamin    (vitamin   C);   Quantitative 

determination    of    the    .     H.    C.    Sherman, 

V.  K.  LaMer,  and  H.  L.  Campbell.      J.  Amer. 
Chem.  Soc.,  1922,  44,  165—172. 

The  method  of  measurement  consists  in  a  series  of 
observations  upon  animals  receiving  no  vitamin  C 
and  different  measured  amounts  of  the  material  in 
question  up  to  the  amount  which  affords  complete 
protection  and  permits  optimum  growth.  The 
symptoms  and  autopsy  findings  are  interpreted  in 
terms  of  the  percentage  of  the  required  amount  of 
antiscorbutic  substance  which  was  actually  received 
by  the  animal  in  any  individual  case.  The  following 
modified  basal  ration  is  considered  preferable  to  the 


one  commonly  adopted.  Ground  oats  59%,  skim 
milk  powder  heated  on  open  trays  at  110°  C.  30%, 
freshly  prepared  butter  fat  10%,  and  sodium 
chloride  1%.— W.  G. 

Antiscorbutic  vitamin  (vitamin  C);  Effect  of  tem- 
perature and  the  concentration  of  hydrogen  ions 

upon    the   rate   of  destruction   of  .      V.   K. 

LaMer,  H.  L.  Campbell,  and  H.  C.  Sherman.     J 
Amer.  Chem.  Soc,  1922,  44,  172—181. 

Using  tomato  juice  as  the  source  of  vitamin  C  and 
the  quantitative  method  previously  described  (cf. 
supra)  it  is  shown  that,  under  the  experimental  con- 
ditions, the  velocity  of  destruction  of  vitamin  C  by 
heat  decreases  with  the  time  and  in  greater  degree 
than  would  be  expected  if  the  reaction  followed  the 
unimolecular  law  or  the  square  root  rule  of 
Schutz.  The  temperature  coefficient  is  low,  namelv, 
QI0(60°— 80°  C.)  =  l-23;  Q10(80°— 100°  C.)  =  ri2.  The 
effect  of  reducing  the  hydrogen-ion  concentration 
from  pH  =  4'3  to  p„=5'2  to  4'9  is  to  increase  the 
destruction  during  1  hour  at  100°  C.  from  50%  to 
about  58%.  When  the  material  was  made  alkaline, 
pH  =  10"9— 8"3,  the  destruction  was  61- — 65%.  If 
after  heating  the  material  was  allowed  to  remain 
alkaline  at  10°  C.  for  five  days  there  was  still  further 
destruction  of  the  vitamin  C. — W.  G. 

Accessory  food  factors  [vitamins'].  II.  R.  Gralka 
and  H.  Aron.  Biochem.  Zeits.,  1921,  126,  147 — 
152.     (Cf.  J.,  1921,  406a.) 

Experiments  on  rats  indicate  that  a  lack  of  fat- 
soluble  vitamin  is  borne  much  better  if  copious 
water-soluble  extractives,  for  example,  of  carrots 
and  bran,  be  added  to  the  diet. — H.  K. 

Sulphurous  acid  in  preserved  apple  juice;  Pro- 
gressive disappearance  of  free .     Warcollier 

and  Le  Moal.    Comptes  rend.,  1922,  174,  634—637. 

The  sulphited  juices  examined  were  prepared 
from  rotten  apples  and  the  conversion  of  free 
added  sulphurous  acid  into  combined  acid  was 
investigated.  It  was  found  to  be  due  to  the 
action  of  oxidising  enzymes  present  in  the  moulds 
of  the  juice.  These  enzymes  formed,  at  the 
expense  of  the  sugars  and  pectin  substances  of 
the  juice,  substances  of  an  aldehydic  or  ketonic 
nature  which  fixed  the  sulphurous  acid.  At  the 
same  time  there  was  a  marked  increase  in  the 
acidity  of  the  medium.  Apple  juice  which  is  to  be 
preserved  for  a  long  period  (say  1  year)  for  cider 
making  should,  therefore,  be  prepared  only  from 
sound  fruit  free  from  moulds.— W.  G. 

Adsorption  of  vitamins.  Frankel  and  Scharf.  See 
XVIII. 

Chemistry  of  vitamins.  Frankel  and  Scharf.  See 
XVIII. 

Patents. 
Powdered  milk  and  other  food  products;  Process 

of    manufacturing    .      W.     P.    Heath    and 

R.  M.  Washburn.  U.S.P.  1,406,381,  14.2.22. 
Appl.,  12.4.20. 
Milk  is  mixed  with  a  sterile  non-oxidising  gas 
under  pressure  and  is  forced  through  an  atomiser 
into  an  evaporating  chamber,  through  which 
heated  air  is  passed.  A  solid  milk  powder  impreg- 
nated with  the  gas  is  produced. — H.  C.  R. 

Milk  [samples  for  analysis'];  Preservative  for . 

G.  Grindrod,  Assr.  to  Carnation  Milk  Products 
Co.  U.S.P.  1,393,282,  11.10.21.  Appl.,  7.1. IS. 
Mercuric  chloride  is  heated  with  an  alkali  chloride 
,  in  presence  of  water.  A  solution  of  a  fuchsine  salt 
containing  an  excess  of  hydrochloric  acid  is  added 
in  amount  sufficient  for  approximately  1%  of  fuch- 
sine in  the  final  product,  and  the  mixture  is  diluted 


Vol.  XIX,  No.  7.]    Cl  XIXb.— WATER  PURIFICATION,  &c.     Cx.  XX.— ORGANIC  PRODUCTS,  &c.      267  A 


XIXb.- WATER  PUBIFICATION; 
SANITATION. 

disinfectants;  Comparison   of  methods   of   testing 

and    valuing    .     E.    Hailer.     Deutsch    med. 

Woeh.,  1921,  47,  1384—1387.  Chem.  Zentr., 
1922,  93,  II.,  29.5—296.  (Cf.  J.,  1921,  486  a, 
635  a.) 

'omparative  tests  were  made  of  various  methods 
or  the  valuation  of  disinfectants,  including  the 
iideal- Walker  method,  the  Lancet  method,  and  the 
imerican  process  depending  on  the  Rideal-Walker 
rinciple.  Pure  cresol  preparations  containing  dif- 
?rent  percentages  of  cresol,  and  cresol  soap  were 
sed.  Against  staphylococci  and  paratyphoid 
lacilli,  the  60%  cresol  preparation  was  superior  to 
le  others,  but  against  the  B.  coli  the  cresol  soap 


until  it  contains  approximately  1  g.  of  mercuric 
chloride  per  c.c.  It  is  claimed  that  2 — 3  drops  of 
the  solution  is  sufficient  for  preserving  12  oz.  of 
milk.— H.  H. 

Meat;  Preservation  of .    G.  Schnabel.    U.S. P. 

1,406,513,   14.2.22.     Appl.,   2.4.21. 

Salt  is  sprayed  on  to  the  meat,  which  is  then  dried 
in  a  current  of  air  at  a  temperature  below  that  of 
coagulation  of  albumin  until  it  shows  a  loss  of 
15 — 30%  in  weight.  The  meat  keeps  for  several 
months  and  after  boiling  has  the  characteristics 
of  fresh  meat. — H.  C.  R. 

Fruit  juices;  Process  of  clarifying .    A.  Gusmer. 

U.S.P.  1,406,554,  14.2.22.     Appl.,  17.11.20.     Re- 
newed 24.12.21. 

A  non-malt  diastatic  fungus,  in  the  form  of 
separate  porous  flaky  particles,  is  added  to  the 
fruit  juice  at  120°  F.  (49°  C).  The  juice  is 
agitated  until  a  sample  fails  to  show  a  blue  colour 
with  iodine.  The  temperature  is  then  raised  to 
about  150°  F.  (65-5°  C.)  to  destroy  the  diastatic 
power  of  the  fungus. — H.  C.  R. 

Albumin;  Process  for  making  foliated .    Chem. 

Verwertungsges.     G.P.  346,219,  3.6.19. 

The  crude  albumin  solution,  e.g.,  blood  freed  from 
fibrin,  is  converted  into  a  powder  in  the  usual  way 
by  spraying  or  drying  on  heated  rolls  in  vacuo  at 
40° — 50°  C  The  powder  is  then  dissolved  in  water 
to  form  a  solution  of  sp.  gr.  1027 — 105  and  the 
solution  dried  on  plates. — H.  C.  R. 

Fat  and  albumin;  Process  for  separating  from 

bones.  Militarkonservenfabr.  Heinemann  und 
Hanka.  G.P.  346,917,  19.9.20.  Addn.  to  325,755 
(J.,  1920,831a). 

The  bones  are  treated  as  described  in  the  principal 
patent  without  previous  extraction  of  the  fat  by 
means  of  sodium  carbonate  solution. — H.  C.  R. 

Flour:   Process   of   bleaching   and  maturing   . 

J.  O.  Baker.  E.P.  159,166,  13.12.20.  Conv., 
14.2.20. 

See  U.S.P.  1,367,530  of  1921;  J.,  1921,  364  a. 

Milk  food  preparations  containing  iron;  Manufac- 
ture of  .     F.  Stohr.     E.P.  159,877,   1.3.21. 

Conv.,  9.3.20. 

(See  U.S.P.  1,393,049  of  1921;  J.,  1921,  871  a. 

Meat  powder;  Process  for  the  production  of  . 

W.  F.  Remus,  A.  E.  Macredie.  C.  F.  Cork,  A.  A. 
McNeill,  and  W.  J.  Abbott,  E.P.  175.561, 
12.4.21. 

See  U.S.P.  1,382,673  of  1921;  J.,  1921,  634  a. 


was  superior.  In  all  cases  the  60%  cresol  prepara- 
tion had  about  a  30%  higher  carbolic  acid  coefficient 
than  the  50%  preparation,  and  cresol  preparations 
containing  xylenol  were  more  active  than  pure 
water  solutions  of  cresol.  Tested  by  the  author's 
germ  carrier  method  these  differences  disappeared, 
and  cresol  soap  solutions  were  less  active  than  pure 
water  solutions  on  bacteria  dried  on  cambric.  On 
the  other  hand,  on  bacteria  dried  on  garnets  the 
soap  solutions  were  not  less  active  than  the  water 
solutions,  and  by  the  suspension  method  the  soaps 
were  much  superior.  Disinfectants  containing  tar 
oils,  and  also  chloro-m-cresol,  which  had  a  high 
carbolic  acid  coefficient  by  other  methods,  when 
tested  by  the  germ  carrier  method  proved  to  be 
inferior  to  cresol  solutions  with  a  coefficient  of  3. 
The  germ  carrier  method  is  considered  to  be  the 
most  reliable. — J.  H.  J. 

Copper  [fungicidal]  sprays.  G.  and  G.  Villedieu. 
Comptes  rend.,  1922,  174,  707—709.  (Cf  J.,  1920. 
638  a;  1921,  193  a.) 

A  2%  solution  of  sodium  sulphate  or  a  VS%  solu- 
tion of  sodium  or  potassium  chloride  will  completely 
prevent  the  bursting  of  the  conidias  of  phv- 
tophthora,  and  a  saturated  solution  of  calcium  sul- 
phate markedly  inhibits  it.  The  authors  consider 
that  the  anticryptogamic  action  of  copper  sprays, 
such  as  Burgundy  or  Bordeaux  mixtures,  may  be 
explained  as  due  to  the  presence  of  these  alkali  or 
calcium  salts,  without  considering  the  possible  con- 
version of  the  copper  into  a  soluble  form. — W.  G. 

Patents. 

Soda;  Method  of  recovery  of from  feed  water 

of  locomotives.  H.  Lentz.  G.P.  347,373,  14.1.21. 
To  recover  soda  from  water  which  has  been  treated 
by  the  permutite  process,  the  boiler  water  is  occa- 
sionally blown  off  in  large  quantities,  or  continu- 
ously drawn  off  in  small  quantities,  and  led  to  a 
crystallisation  vessel  placed  near  the  fire  box.  When 
the  water  is  drawn  off  continuously  in  small 
quantities  it  is  subsequently  evaporated  until 
saturated. — J.  B.  F. 


Effluents  from  picric  acid  works. 
XXII. 


G.P.  347,011.  See 


XX.-OHGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Cinchona  alkaloids.  XXIV.  Synthesis  of  vinyl- 
free  quinatoxins  and  quinaketones.  P.  Rabe,  K. 
Kindler,  and  O.  Wagner.  Ber.,  1922,  55,  532— 
541. 

An  account  of  syntheses,  by  methods  previously  in- 
dicated, of  quinatoxins  and  quinaketones,  from 
ethyl  cinchonate,  the  initial  steps  being  the  con- 
densation of  ethyl  /?-N-benzoylpiperidylpropionate 
with  ethyl  cinchonate  and  ethvl  quinate  respec- 
tively.    (Cf.  J.C.S.,  April.)— J.  K. 

Saponin-likc  substances ;  Physiological  and  foaming 

properties  of after  treatment  with  alkali  or 

with   bromine.     E.   Sieburg   and   F.   Bachmann. 
Biochem.  Zeits.,  1921,  126,  130—141. 

The  biological  activity  of  cyclamin,  digitonin, 
saponin,  pur.  alb.,  quillaia  saponin,  and  guaiacum 
saponin  were  compared  before  and  after  treatment 
with  baryta  or  bromine.  As  a  rule  such  treatment 
with  a  few  exceptions  results  in  a  depression  of 
activity  as  exemplified  by  the  property  of  foaming, 
by  precipitation  with  cholesterol,  by  haemolysis  of 
corpuscles,  by  toxicity  on  the  frog's  heart,  and  by 
toxicity  on  tadpoles.  There  is,  however,  no  close 
parallelism  between  these  properties  except  the 
actions  on  the  frog's  heart  and  on  tadpoles. — H.  K. 


268  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o.         [April  15, 1922. 


Chinese  drug  "  Hsiung-Ch'uang" ;  Chemical  con- 
stituents of  a  .     /.     Y.  Murayama.     Yaku- 

gakuzasshi  (J.  Pharm.  Soc.  Japan),  1921,  No. 
477,  951—959. 
An  essential  oil  (P5%)  was  obtained  by  steam  dis- 
tillation of  "Hsiung-Ch'uang"  or  "  Ch'uang- 
Hsiang,"  dried  roots  of  Cnidium  officinale,  Makino, 
cultivated  in  Hokkaido.  The  oil  has  a  brownish 
yellow  colour  and  characteristic  odour,  ite  constants 
'being  as  follows:  sp.  gr.  at  17°  C,  10133;  acid 
value,  11'5;  saponif.  value,  2474;  saponif.  value 
after  acetylation,  3136;  oD=-43-5°;  and  nB"  = 
T5107.  After  removing  acids  and  phenols  by  treat- 
ment with  10%  sodium  carbonate  and  5%  sodium 
hydroxide  solutions,  a  lactone,  C12H1802,  b.p.  178° — 
180°  C.  at  13  mm.,  sp.  gr.  P047,  aB=  -65-0°,  nD"  = 
1-5061,  was  isolated,  which  appears  to  be  an  isomer 
of  sedanolide  (Ciamician  and  Silber,  J.,  1897,  462). 

— K.  K 

Kawa-kawa  resin.  {Preliminary  note.)  Y.  Mura- 
vama  and  K.  Mayeda.  Yakugakuzasshi  (J. 
Pharm.  Soc.  Japan),  1921,  No.  477,  959—968. 
(Cf.  ibid.,  1916,  393  and  1918,  563.) 
Kawaic  acid,  ClsH16Os,  contains  one  methoxyl 
group  and  on  heating  with  alcoholic  potash  gives 
benzaldehyde  and  a  methoxyl-containing  compound, 
C14H16Oa,  light  yellow  leaves,  m.p.  164°  C.  When 
oxidised  with  potassium  permanganate  it  yields 
benzoic  acid  and  benzaldehyde.  A  new  acid,  (3- 
kawaic  acid,  CUH1S04,  colourless  needles,  m.p. 
101° — 103°  C,  was  isolated  from  the  mother  liquor 
from  kawaic  acid.  It  contains  a  methoxyl  group 
and  gives  benzoic  acid  when  oxidised  with  potassium 
permanganate. — K.  K. 

Proteinogenous  amines.  XII.  Production  of  hist- 
amine and  other  iminazoles  from  histidine  by  the 
action  of  micro-organisms.  M.  T.  Hanke  and 
K.  K.  Koessler.  J.  Biol.  Chem.,  1922,  50,  131— 
191. 
A  study  was  made  of  the  action  of  a  large  number 
of  micro-organisms  upon  histidine  using  the 
standard  medium  previously  employed  (c/.,  J.,  1919, 
962  a).  The  results  are  presented  in  tabular  form. 
Addition  of  leucine  to  the  medium  facilitated  the 
growth  of  all  the  organisms  and,  in  those  cases 
where  decarboxylation  occurred,  increased  the  rate 
of  production  of  histamine.  The  effect  upon  B.  coh 
cystitis  of  additions  of  other  amino-acids  was  also 
investigated.  Alanine,  leucine,  arginine,  glycine, 
and  peptone  augmented  both  the  growth  of  the 
organism  and  the  rate  of  production  of  histamine; 
tyrosine  increased  growth  alone ;  glutamic  acid  and 
tryptophan  increased  growth  but  diminished  the 
yield  of  histamine;  whilst  cystine  retarded  growth 
and  almost  prevented  the  formation  of  histamine. 

— E.  S. 

Proteinogenous  amines.  XIV.  Microchemical  colori- 
metric  method  for  estimating  tyrosine,  tyramine, 
and  other  phenols.  M.  T.  Hanke  and  K.  K. 
Koessler.  J.  Biol.  Chem.,  1922,  50,  235—270. 
The  colour  reaction  given  by  phenol,  o-,  m-,  and  p- 
cresol,  p-hydroxyphenylacetic,  p-hydroxyphenylpro- 
pionic,  and  p-hydroxyphenyllactic  acids  with 
sodium  p-diazobenzenesulphonate  may  be  used  for 
the  colorimetric  estimation  of  the6e  substances.  The 
details  of  the  method  are  practically  identical  with 
those  previously  described  for  the  estimation  of 
iminazole  derivatives  (J.,  1919,  962  a).  Tyrosine 
and  tyramine  give  with  a  solution  of  diazobenzene- 
sulphonic  acid  in  6odium  carbonate  a  pink  colora- 
tion which  rapidly  changes  to  yellow.  Addition  of 
sodium  hydroxide  produces  an  intensification  of  the 
vellow  and  a  restoration,  to  a  small  extent,  of  the 
pink  coloration,  but  at  no  stage  is  the  intensity  pro- 
portional to  the  concentration  of  the  phenol.  If, 
however,  sodium  hydroxide  and  then  hydroxylamine 


hydrochloride  are  added  to  the  solution  an  intense 
bluish-red  colour  is  obtained  which  is  proportional 
to  the  amount  of  tyrosine  or  tyramine  present.  The 
coloration  so  produced  may  consequently  be  em- 
ployed for  the  estimation  of  small  quantities  of 
these  two  substances.  Ammonium  salts,  leucine, 
glycine,  hydrogen  peroxide,  formaldehyde,  acet- 
aldehyde,  acetone,  acetoacetic  acid,  dextrose,  and 
alcohols  interfere  with  the  colour. — E.  S. 

Proteinogenous  amines.    XV.    Quantitative  method 
for  the  separation  and  estimation  of  phenols  in- 
cluding phenol,  o-,  m-,  and  p-cresol,  p-hydroxy- 
phenylacetic,    p-hydroxyphenylpropionic,   and   p- 
hydroxyphenyllactic    acids,     tyrosine,    and    tyr- 
amine.    M.  T.  Hanke  and  K.  K.  Koessler.     J. 
Biol.  Chem.,  1922,  50,  271—288. 
The  method  of  separation  described  was  designed  to 
render    possible    the    application    of    the    authors' 
method  for  the  estimation  of  certain  phenolic  sub- 
stances (cf.  supra)  to  mixtures  of  these  substances. 
It    is    intended    primarily    for    use    in    bacterial 
metabolism  studies  on  tyrosine  and  is  not  applicable 
to  more  complex  liquids  such  as  urine  or  blood.    The 
liquid  containing  the  mixture  of  phenols  is  acidified 
and  distilled,  whereby  phenol  and  the  cresols  pass 
over.     Non-amino  phenolic  acids  are  removed  from 
the  residual  liquid  by  extraction  with  ether,  after 
which  it  is  made  alkaline  with  sodium  carbonate 
and  extracted  with  amyl  alcohol.     Tyramine  is  thus 
removed   whilst   tyrosine   remains    in   the    alkaline 
solution.    Separation  is  thus  effected  into  four  frac- 
tions.    If,  as  will  normally  be  the  case  in  bacterial 
metabolism  experiments,  only  one  member  of  each 
fraction  is  present,  the  estimation  is  proceeded  with 
after   appropriate   treatment  of   the   various  solu- 
tions.    The  method  fails,   however,  in   those  cases 
where  more  than  one  member  of  each  fraction  is 
present  since  further  separation  is  impossible. 

- — E.  S. 

Formic    acid;   Influence    of   temperature    on    two 

alternative    modes    of    decomposition    of    . 

C  N.  Hinshelwood,  H.  Hartley,  and  B.  Topley. 
Proc.  Roy.  Soc,  1922,  A  100,  575—581. 
The  thermal  decomposition  of  formic  acid  expressed 
by  the  two  equations  HCO,H  =  H20  +  CO  and 
HCO,H  =  C02  +  H2  takes  place  at  the  same  rate  in 
both  "cases  at  200°— 300°  C,  although  the  critical 
increments  are  widely  different,  namely  Bco  =16,000 
cals.  per  mol.  and  Bco2= 28,000  cals.  per  mol.  (Cf. 
J.C.S.,  April.)— J.  F.  S. 

Alcohol;  Transfer  of  hydrogen  from  an  to  an 

aldehyde.  C.  H.  Milligan  and  E.  E.  Roid.  J. 
Amer.  Chem.  Soc,  1922,  44,  202—205. 
By  passing  the  mixed  vapours  of  an  aldehyde  and 
ethyl  alcohol  over  ceria  at  300°— 380°  C.  the  alde- 
hyde is  hydrogenated  to  the  corresponding  alcohol 
and  the  ethyl  alcohol  is  oxidised  to  acetaldehyde. 
In  this  way  benzyl,  phenylethyl,  and  heptyl  alcohols 
and  citronellol  have  been  obtained  from  the  corres- 
ponding aldehydes.  The  yields  are  low  and  the  life 
of  the  catalyst  is  short,  as  it  soon  becomes  foul 
owing  to  the  production  of  gummy  substances.  . 
may  be  regenerated  by  treatment  with  steam 
followed  by  oxides  of  nitrogen  and  a  second  treat- 
ment with  steam.  A  small  proportion  of  manganese 
in  the  ceria  appears  to  increase  its  activity.  1 
ceria  is  replaced  by  copper  on  an  inert  support 
benzaldehyde  is  reduced  to  toluene.— W.  G. 

Acetaldehyde,  aldol,  and  glyoxylic  acid;  AnoJ'jtird 

conception  and  differentiation  of .  R.  Fricke. 

Z.  physiol.  Chem.,  1921,  116,  129—149. 
Aldol  forms  a  complex  with  "dimedon  "  (dimethyl- 
dihydroresorcinol)  which  can  be  differentiated  from 
the' analogous  acetaldehyde  complex  by  *ts  >"sol.u' 
bility  in  light  petroleum.  (Cf.  J.C.S.,  \9H,  »•> 
300.)— S.  S.  Z. 


Vol.  XXI.,  No.  7.]      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


2G9. 


Ethylene;  Hydrogenation  of  in  contact  with 

nickel.     E.  K.  Rideal.    Chem.  Soc.  Trans.,  1922, 
121,  309—318. 

For  the  catalytic   hydrogenation   of   ethylene  the 
most   active   and    uniform    nickel    catalyst   is   pre- 
pared by  immersing  nickel  foil  for  a  few  minutes 
in  dilute  nitric  acid.     The  film  of  nickel  nitrate  is 
partly   decomposed   by    heating    over    a    hydrogen 
flame  and  finally  by  reduction  in  the  hydrogenation 
apparatus  by  admission  of  hydrogen   at  low  pres- 
sures, reduction  to  a  black  active  nickel  occurring 
lbove  340°  C.     Decomposition  of  the  nitrate  to  the 
ixide    yields    a   less    active    catalyst.      For    hydro- 
genation all   traces  of   oxygen   are   removed   from 
he  hydrogen — prepared   by   electrolysis  of  caustic 
aotash — by  passage  over  red-hot  copper.     In  pure 
jases  there  is  no  period  of  induction ;  this  pheno- 
menon when  observed  is  due  to  the  presence  of  the 
nore    slowly    hydrogenated    oxygen,    the    rate    of 
lydrogenation    being    proportional    to   the    partial 
)ressure  of  the  oxygen  and  inversely  proportional  to 
hat  of  the  ethylene.     Large  quantities  of  oxygen 
rreversibly  poison  the  catalyst,  indicating  the  possi- 
bility of  the  adsorption  of  this  gas  by  two  distinct 
irocesses.     In  excess  of  hydrogen  the  reaction  velo- 
ity  is  proportional  to  the  partial  pressure  of  the 
thylene,    in   excess   of   ethylene   to    the   hydrogen 
artial  pressure.     Ethane  acts  as  an  inert  diluent, 
'he  optimum  temperature  is  about  137°  C.     The 
lechanism  of  the  hydrogenation  can  be  explained 
y  Langmuir's  theory  of  contact  action. — P.  V.  M. 

erpin    hydrate;    Occurrence    of   in   nature. 

'  F.  N.  Guild.    J.  Amer.  Chem.  Soc,  1922,  44,  216. 

crystalline  substance  found  in  pine  logs  which 
id  been  buried  for  at  least  500  years  was  identified 
i  terpin  hydrate,  C10H20O2,H2O.— W.   G. 

'onobromated   camphor;  Determination   of  . 

E.  0.  Eaton.    J.  Ind.  Eng.  Chem.,  1922,  14,  24. 

quantity  of  the  powdered  material  (e.g.,  tablets 
c.)  containing  about  0'2  g.  of  monobromated  cam- 
lor  is  digested  with  25  c.c.  of  hot  alcohol,  the 
lution  filtered  and  the  insoluble  portion  washed 
th  hot  alcohol ;  the  alcoholic  solution  is  treated 
th  50  c.c.  of  2V/2  alcoholic  potassium  hydroxide 
lution  and  25  c.c.  of  0'4%  alcoholic  silver  nitrate 
'ution,  and  boiled  under  a  reflux  condenser  for 
>  hrs.  During  this  time,  a  further  25  c.c.  of  the 
ver  nitrate  solution  is  added  in  small  portions 
a  time  through  the  condenser.  After  cooling, 
B  mixture  is  diluted  with  water  to  200  c.c,  the 
ution  decanted  and  the  precipitate  washed  with 
ter.  The  solution  is  boiled  for  5  mins.  with  the 
dition  of  1  g.  of  zinc  dust,  filtered,  the  filtrate 
dified  with  nitric  acid,  and  treated  with  an 
:ess  of  silver  nitrate  solution  (aqueous).  The 
,  ^cipitated  silver  bromide  is  collected  and 
'jighed;  silver  bromide  xl23  =  monobromocamphor. 
|  ring  the  first  part  of  the  process  potassium 
1  imide,  and  not  silver  bromide,  is  formed. 

— W.  P.  S. 

'  i/mus  vulgaris;  Italian  oil  of .    P.  Leone  and 

5.  Angelescu.    Gazz,  Chim.  Ital.,  1921,  51,  ["11.1, 
91—395. 

1  is  oil,  distilled  in  a  current  of  steam  from  the 
"pie  plant  and  obtained  in  T06%  yield,  is  deep 
I  and  has  an  intense,  aromatic  odour.  Its 
<■  racters  are:  Sp.  gr.  at  0°/4°,  0-9351;  at 
ri°/4°  °-  °'925°;  V2  =  T49646;  aD*>=  -325°; 
L;d  =-3'57°;  acid  value,  35;  ester  value,  1T4, 
c  responding  with  4%  of  acetate  of  C10H180;  alde- 
1)  es  and  ketones  absent.  The  oil  contains  38%  of 
P  nols,  consisting  almost  solely  of  thymol;  19%  of 
ii  'alcohols,  in  which  borneol  and  linalool  probably 
P  lominate;  18%  of  cymene  and  small  proportions 
pi  sters  and  free  acids.    The  chemical  and  physical 


constants  of  the  portion  of  the  oil  insoluble  in  5% 
sodium  hydroxide  solution  are  given. — T.  H.  P. 

Satureja  montana;  Italian  oil  of  .     P.  Leone 

and  E.  Angelescu.     Gazz.  Chim.  Ital.,  1921,  51, 
[II.],  386—390. 

This  oil,  obtained  in  T63%  yield  by  extraction  of 
the  whole  plant  by  acetone,  is  yellow  and  has  an 
intense  aromatic  odour  and  a  burning  taste.  Its 
characters  are:  Sp.  gr.  at  ll°/4°,  09161,  at 
25°/4°  C,  0-9053;  V  =  r49926;  aD"=-2-78°; 
[a]D"=-3-05°;  acid  value,  222;  ester  value,  453, 
corresponding  with  1"58%  of  acetate  of  C10HlsO: 
aldehydes  and  ketones  absent.  The  oil  contains  28% 
of  carvacrol,  10%  of  alcohols  not  identified,  27% 
of  cymene,  and  14%  of  dipentene. — T.  H.  P. 

0(7   of  peppermint ;    Biogenesis    of   .      R.    E. 

Kremers.     J.  Biol.  Chem.,  1922,  50,  31—34. 

An  investigation  of  the  cohobated  oils  of  American 
and  Japanese  peppermints  showed  that  the  latter 
consisted  almost  wholly  of  pulegone,  whilst  the 
former  contained  menthone  and  menthol  as  main 
constituents  and,  in  addition,  methyl-1-cyclohexan- 
one-3.  Acetone  was  present  in  the  cohobated 
aqueous  distillate.  Schemes  for  the  possible  bio- 
genesis of  the  main  constituents  of  the  oils  of 
peppermint  (Mentha  piperita)  and  spearmint 
(Mentha  spicata)  are  outlined. — E.  S. 

Eucalyptus  oil;  Critical  examination  of  the  aromo> 

tic  aldehydes  occurring  in  .     A.  R.  Penfold. 

Trans.  Chem.  Soc.,  1922,  121,  266—269. 

A  simple  and  efficient  method  for  separating 
cuminaldehyde  from  its  mixtures  with  the  lsevoro- 
tatory  aldehyde,  phellandral,  and  with  cryptal 
depends  upon  the  conversion  of  the  three  aldehydes 
into  their  respective  bisulphite  derivaties.  The  oil 
obtained  by  steam  distillation  of  the  leaves  and 
branchlets  of  E.  hemiphloia,  N.S.W.  is  fractionated 
at  760  mm.  Portions  distilling  above  185°  C.  are 
shaken  at  intervals  for  24  hrs.  with  35%  sodium 
bisulphite  solution  (pure  bisulphite  is  essential). 
The  crystalline  compound  obtained,  after  washing 
with  alcohol-ether  and  drying,  is  decomposed  with 
sodium  carbonate  and  steam  distilled,  giving  a 
mixed  aldehyde — "  aromadendral  " — which  on  boil- 
ing for  1  hr.  with  35%  bisulphite  solution  and 
standing  yields  the  crystalline  cuminaldehyde  bisul- 
phite compound.  Phellandral  as  the  soluble  sul- 
phonic  acid  remains  in  the  filtrate,  from  which  it 
can  be  extracted  by  caustic  soda.  "Aromadend- 
ral "  is  thus  a  mixture  of  cuminaldehyde  and  phel- 
landral. The  filtrate  from  the  original  bisulphite 
treatment  is  again  treated  with  35%  bisulphite 
solution  for  24  hrs.,  giving  a  second  crop  of  solid 
bisulphite  compound  from  which  pure  phellandral 
([a]D2°=  -138'9)  can  be  extracted.  The  correspond- 
ing filtrate,  after  freeing  from  oil,  on  decomposing 
with  caustic  soda  gives  the  aldehyde,  cryptal, 
[a]D2°= -80-75.— P.  V.  M. 

Bismuth  compound  of  the  aromatic  series  and  its 
therapeutic  activity.  H.  Grenet  and  H.  Drouin. 
Comptes  rend.,  1922,  174,  647—648. 

The  substance  is  a  phenolic  derivative  and  its  con- 
tent of  active  metal  is  comparable  with  that  of 
sodium  or  potassium  bismutho-tartrate.  Injected 
in  a  human  subject  either  intravenously  or  subcu- 
taneously  in  amount  not  exceeding  01  g.,  it  causes 
no  inconvenience  except  occasionally  a  sharp  pain 
in  the  jaw  which  quickly  passes.  With  0'1  g.  doses 
repeated  three  times  per  week  the  disappearance 
of  primary,  secondary  and  tertiary  syphilitic 
lesions  occurred  with  a  rapidity  comparable  with 
that  given  by  the  arsenobenzenes.  The  Bordet- 
Wassermann  reaction  was  less  rapidly  influenced. 

— W.  G. 


270  a 


Cl.  XXI.— photographic  materials  and  processes. 


[April   16,   1922. 


Copper;   Variously   coloured   modifications    of    col- 
loidal   .     C.  Paal  and  H.   Steyer.     Kolloid- 

Zeits.,  1922,  30,  88—97. 
Colloidal  copper  exists  in  reddish-brown,  blue,  two 
ruby  red,  brown,  olive,  and  green  coloured  modifi- 
cations. The  two  ruby  red  varieties  and  the  blue 
variety  may  be  prepared  by  reducing  copper  hydr- 
oxide sols  with  hydrazine  hydrate  in  ammoniacal 
solutions  of  lysalbinic  acid  and  protalbinic  acid  and 
their  sodium  salts. — J.  F.  S. 

Selenium;  Influence  of  freezing  on  colloidal  . 

A.   Gutbier  and   R.   Emslander.      Kolloid-Zeits., 
1922,  30,  97—110. 

Colloidal  selenium  may  be  prepared  by  dissolving 
the  element  in  hydrazine  hydrate  and  pouring  into 
water  at  ordinary  temperature.  This  sol  is  stable 
only  in  the  presence  of  an  optimum  concentration 
of  electrolyte.  A  particularly  stable  sol  is  formed 
by  adding  10  vols,  of  a  1:2000  hydrazine  hydrate 
solution  to  1  vol.  of  0002M  solution  of  selenium 
dioxide  at  60°  C— J.  F.  S. 

Eelpchar.    Turrentine  and  Tanner.     See  XVII. 

Titrations  in  alcohol  solutions.     Bishop  and  others. 
See  XXIII. 

Patents. 
Tropinonemonocarboxylic  acid  esters;  Preparation 

of  .     E.  Merck  Chem.  Fabr.     G.P.  344,031, 

24.8.19. 
Tropinonemonocarboxylic  acid  ethyl  ester,  pre- 
pared by  reaction  between  succindialdehyde,  mono- 
methylamine,  and  monocalcium  acetonedicarboxylic 
acid  ethyl  ester  in  aqueous  solution,  is  in  the 
anhydrous  state  a  non-cryetalline  oil  which  on  ex- 
posure to  air  absorbs  apparently  2  mols.  of  water, 
forming  a  crystalline  compound,  m.p.  57° — 58°  C, 
soluble  in  alcohol,  ether,  and  chloroform.  The  com- 
pound yields  a  picrate  of  m.p.  133° — 135°  C.,  and  is 
converted  to  tropinone  by  boiling  with  dilute  sul- 
phuric acid. — L.  A.  C. 

Tropinoncmonocarboxvlic  acid  esters;  Preparation 

of   .      E.    Merck.      E.P.    153,918,    16.11.20. 

Conv.,  23.8.19.  Addn.  to  153,919. 
Instead  of  using  pure  esters  of  acetonedicarboxylic 
acid  as  described  in  the  chief  patent  (cf.  G.P. 
344,031 ;  supra),  the  non-purified  product  obtained 
by  partial  esterification  of  crude  acetonedicar- 
boxylic acid  is  employed. 

Organic  acids  and  their  salts;  Manufacture  of 

[from  hydrocarbons'].  Farbenfabr.  vorm.  F. 
Bayer  und  Co.  G.P.  346,520,  2.12.17. 
Hydrocarbons  such  as  hexane,  paraffin,  vaseline  oil, 
petroleum  oil,  and  naphthenes,  are  treated  with  air 
for  24—36  hrs.  at  150°  C.  in  the  presence  of  about 
2%  of  a  light  metal,  such  as  sodium,  potassium, 
magnesium,  or  aluminium.  Over  20%  of  the  hydro- 
carbon is  converted  into  fatty  acids  including 
formic  acid,  acetic  acid,  and  the  like,  together  with 
higher  hydrogenated  cyclic  acids,  the  alkali  salts  of 
which  are  suitable  for  use  as  soaps. — L.  A.  C. 

Terpenes  and  hemiterpenes;  Preparation  of  - . 

F.  Leibbrandt.  G.P.  346,700,  10.5.19. 
Acetone  and  vinyl  halides,  or  their  homologues,  are 
heated  in  a  closed  vessel  with  a  metal,  such  as  zinc, 
which  reacts  readily  with  alkyl  halides.  For 
example,  acetone  and  vinyl  bromide  yield,  on  heat- 
ing for  4  hrs.  at  150°  C.  under  pressure,  a  mixture 
of  butadiene,  isoprene,  terpenes,  and  polyterpenes. 

— L.  A.  C. 


Tropinone  monocarboxylic  acid  esters;  Preparation 

of   .      E.    Merck.      E.P.    153,919,    16.11.20. 

Conv.,  23.8.19. 

See  G.P.  344,031  of  1919 ;  preceding. 

Calcium  iodide;  Process  for  the  manufacture  of  pre- 
parations of fit  for  therapeutic  purposes.  W 

Spitz.     E.P.  155,781,  23.12.20.     Conv.,  10.3.16. 

See  G.P.  318,343  of  1916;  J.,  1920,  467  a. 

Butyl  alcohol;  Production   of  secondary  .     C. 

Weizmann   and   D.    A.   Legg.     U.S. P.    1,408,320, 
28.2.22.    Appl.,  10.11.17. 

See  E.P.  161,591  of  1916;  J.,  1921,  4-18  a 


XXL— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

[Photographic]  developers ;  Conditions  affecting  the 
apparent  activity  of  some  organic  — — .  W.  F.  A. 
Ermen.     Phot.  J.,  1922,  62,  123—129. 

By  examination  of  the  characteristic  curve  and 
time  of  appearance  of  image  of  Kodak  Portrait  film 
developed  in  various  developers,  the  factors  influ- 
encing the  activity  of  these  were  investigated,  the 
data  obtained  being  given  in  the  form  of  curves 
and  tables.  Various  substitution  compounds  of  p- 
aminophenol,  both  with  and  without  bromide, 
showed  no  definite  effect  which  could  be  attributed 
to  substitution.  The  effect  of  the  concentration  of 
sodium  carbonate  was  examined,  not  only  for  this 
series  of  developers,  but  also  for  those  of  the  quinol 
series,  and  for  mixtures.  The  aminophenols 
develop  satisfactorily  without  carbonate,  and  de- 
velopment is  accelerated  by  increasing  concentra- 
tion of  this  up  to  a  limit  at  2V/5,  but  with  the  quinol 
developers  unsatisfactory  results  are  obtained  up 
to  an  alkali  concentration  of  N/10,  after  which 
development  is  accelerated,  no  maximum  being 
reached,  although  carbonate  concentrations  up  to 
N/2"5  were  tried.  The  acceleration  of  development 
by  quinol  in  presence  of  safranine  (Desensitol)  was 
confirmed,  a  similar  effect  found  for  toluhydro- 
quinone,  a  lesser  acceleration  for  chlorohydro- 
quinone,  and  a  very  slight  one  for  oxyphenylglycin 
There  is  no  acceleration  in  the  case  of  pyrogallol 
and  actually  a  retardation  with  metliylaminocresol. 

— G.  I.  H. 

Patents. 

Colour  photography.     J.  F.  Shepherd,  and  Colou 
Photography,   Ltd.     E.P.   175,003,  30.10.20  an. 
29.7.21. 
Coloured  prints  are  made  from  three-colour  nega 
tives  by  superimposing  upon  a  carbon  print,  on  i 
temporary  support  and  of  a  magenta  colour  (th 
tone   of   which   may   be   modified   by   immersion  r 
Flavazine  and /or  Naphthol  Yellow),  two  chemical! 
toned  bromide  prints.     The  first  of  these,  on  tram 
ferrotype  paper,    is   toned   blue-green   in   a  ferri 
ferricvanide  solution,  and  the  second,  applied  afte 
the  removal  of  the  paper  base  of  the  first,  is  tone 
yellow  in  a  mercuric  iodide  solution.     The  popi 
base  of  the  second  print  forms  the  support  of  v 
finished    picture    when    the   carbon    print   and   i 
temporary   support    are   separated.      Alternative! 
the  blue-green   and  yellow   images  may  be  wpe 
posed  as  described,   and  the  magenta  image  tin 
impressed  by  means  of  a  dye  printing  plate. 

— G.  I.  ri. 

Photographic  printing  processes  and  solutions  a' 
materials  therefor.  Y.  A.  F.  Schwartz.  *-J 
175,317,  20.8.20. 

Paper  or  similar  material  is  sensitised  with  a  sol 


Vol.  XLI.,  No.  7.]      Cl.  XXn.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


271  a 


tion  of  silver  phosphate  and  the  ferric  salt  of  an 
organic  acid,  e.g.,  ferric  oxalate,  the  solution  being 
thickened  as  desired  with  a  suitable  colloid.  Dur- 
ing printing  the  ferric  salt  is  reduced  to  the  ferrous 
state  in  the  exposed  portions  and  at  the  same  time 
the  silver  phosphate  is  affected.  Ou  treating  the 
exposed  paper  with  the  alkali  salt  of  an  organic  acid 
(preferably  that  used  in  the  sensitiser),  the  ferrous 
salt  in  the  exposed  portions  acts  as  a  developer  of 
the  silver  phosphate,  producing  a  silver  image. 

— G.  I.  H. 

Photographs  in  natural  colours;  Method  of  produc- 
ing   .   F.  M.  Warner.    E.P.  175,373,  10.11.20. 

A  positive  transparency  in  natural  colours  is  pro- 
duced by  first  making  a  negative  on  a  plate  having 
a  permanent  colour  screen  of  the  usual  type  in  the 
form  of  a  regularly  recurring  pattern,  and  then 
printing  from  this  on  a  panchromatic  plate  a  mono- 
chrome positive,  which  is  mounted  in  register  with 
a  replica  of  the  screen  through  which  the  negative 
was  made. — G.  I.  H. 

1  Fluorescent  [radiographic]  screens,  and  methods  of 
manufacturing     the     same.       British     Thomson- 

!  Houston  Co.,  Ltd.  From  General  Electric  Co. 
E.P.  175,428,  19.11.20. 
Screens  are  prepared  by  mixing  a  fluorescent  sub- 
' stance,  such  as  calcium  tungstate,  with  a  suitable 
binding  material,  such  as  a  solution  of  celluloid,  at 
an  elevated  temperature,  preferably  about  45°  C, 
'and  pouring  the  resulting  compound  into  a  smooth- 
'surfaced  mould.  By  evaporation  of  the  solvent  a 
screen  is  produced,  having  a  relatively  hard, 
Juniform  surface  capable  of  being  cleansed  by 
washing. — G.  I.  H. 


XXII.-EXPLOSIVES;    MATCHES. 

Coluene;   Products   of    nitration   of  .     W.   H. 

Gibson,  R.  Duckham,  and  R.  Fairbairn.     Chem. 
Soc.  Trans.,  1922,  121,  270— 2S3. 

'ob   ascertaining   the   composition    of  commercial 
lononitrotoluene,   the  second  crystallisation   point 
j  determined,   and  an  equal  quantity  of  pure  p- 
jitrotoluene  is  then  added  and  the  initial  crystal- 
sation  point  of  the  mixture  determined.     The  per- 
I'ntage  of  p-nitrotoluene,  P,  in  this  mixture  can  be 
i'ad  off  from  the  binary  fusion  curve  of  the  ortho 
|id  para  compounds.   The  percentage,  p,  of  p-nitro- 
[iluene  in  the  original  mixture  is  then  given   by 
P-50).    From  the  ternary  fusion  curve  for  ortho, 
jeta,  and  para  derivatives  the  percentage,  m,  of 
■eta  compound  in  the  eutectic  of  the  original  mix- 
re  can  be  read;   the  required  percentage,  x,   of 
■nitrotoluene    in   the   mixture   is   then    given   by 
=  4m(100-p)/300+m.     A  general  method  applic- 
le  for  ternary  mixtures  based  on  the  determina- 
■n  of  the  second  crystallisation  point  of  the  mix- 
re  before  and  after  addition  of  a  known  percent- 
■  3  of  one   of   the  constituents   is   also  described. 

-  monitrotoluene  prepared  under  the  usual  condi- 
'  nsof  nitration  will  contain  approximately  o-nitro- 
t  uene  62%  +1,  p-nitrotoluene  335  to  32%,  m-nitro- 

1  lene  4  5  to  4  2%.  Low  temperature  tends  to  re- 
<  e  the  proportion  of  the  meta  and  to  increase  that 
ojthe  para  compound,   but  the   variation    is   not 

-  icient  to  make  the  suppression  of  m-nitrotoluene 
f'Uible.  From  the  binary  fusion  curves  and  the 
tnary  diagram  of  3.4-,  2.3-  and  2.5-dinitrotoluene 
it  is    shown    that    dinitration    of    p-nitrotoluene, 

!.)  with  240  pts.  of  a  mixed  acid  (H,S04  77%, 
£  0,  113%,  H,0  11-7%)  at  40°  and  70°  C.  gives 

2  dinitrotoluene  onlv;  o-nitrotoluene  gives  a  mix- 
Is  ■  of  2.4-,  (2/3)  and  2.6-dinitrotoluene  (1/3),  and 
m  itrotoluene  a  mixture  of  55%,  25%,  and  20%  of 
I.       2.3-,     and     2.5-dinitrotoluene     respectively. 


Crude  mononitrotoluene  gives  a  mixed  dinitro- 
toluene containing  74"8%  of  2.4-,  20"7%  of  2.6-,  2o% 
of  3.4-,  1-1%  of  2.3-,  and  0"9%  of  2.5-dinitrotoluene. 
Similarly  from  the  ternary  diagram  for  crude  tri- 
nitrotoluene nitration  of  o-,  m-,  and  p-nitrotoluene 
100  pts.,  with  1000  pts.  of  acid  containing  H,SO! 
78%,  HNO,  17-5%,  H20  4-5%,  gives  crude  trinitro- 
toluene containing  89—96%  of  2.4.6-trinitro- 
toluene,  37 — 4  .  of  other  isomerides,  and  71 — 
0"8%  of  dinitrotoluene.  Loss  on  purification  by 
centrifuging,  cold  alcohol  washing,  or  sulphite 
treatment  depends  on  the  composition  of  the  crude 
trinitrotoluene.  A  comparison  of  the  thermal 
analysis  of  the  products  of  nitration  with  the  fusion 
curves  of  2.3.4-  and  2.3.6-trinitrotoluene  and  2.3.6- 
and  3.4.6-trinitrotoluenes  indicated  that  2.3-dinitro- 
toluene  gave  16%  of  2.3.6-trinitrotoluene  and  2.5- 
dinitrotoluene  13%.  From  the  comparison  of  the 
products  of  direct  nitration  of  m-nitrotoluene  the 
proportions  of  the  isomeric  trinitrotoluenes  ob- 
tained are  63T%  of  3.4.6-,  303%  of  2.3.4-,  and  66% 
of  2.3.6-trinitrotoluene.  The  proportions  of  the 
iiitro-derivatives  obtained  from  toluene  at  each 
stage  of  nitration  are  given. — P.  V.  M. 

Patents. 

Nitric  acid  fumes  [from  manufacture  of  nitrocellu- 
lose etc."];  Method  of  recovering  waste .     W. 

de  Sveshnikoff.    U.S.P.  1,406,353,  14.2.22.  Appl., 
27.1.21. 

The  fumes  withdrawn  from  the  nitrating  apparatus 
are  led  through  a  tower  containing  acid-resisting 
material  presenting  a  large  condensing  surface. 
The  fumes  are  precipitated  as  a  result  of  their  ex- 
pansion on  entering  the  tower  and  their  contact 
with  the  cold  surfaces  of  the  filling  material  in  the 
tower  without  moistening  the  latter  with  water. 

— H.  C.  R. 

Detonators;   Composition  for  .     R.   M.   Cook 

and  B.  Grotta,  Assrs.  to  Atlas  Powder  Co. 
U.S.P.  1,406,977,  21.2.22.    Appl.,  25.9.20. 

A  composition  containing  a  primary  detonating 
compound  and  hexanitrodiphenylamine. — L.  A.  C. 

Picric  acid;  Method  fur  the  removal  of  ■ ,  fium 

the  effluents  from  picric  acid  works  etc.  J. 
Klemenz.     G.P.  347,011,  23.5.18. 

The  waste  water  is  treated  with  a  quantity  of 
bleaching  powder  corresponding  to  the  content  of 
picric  acid,  and  then  by  the  addition  of  hydro- 
chloric acid  or  other  strong  acid  chlorine  is  set  free. 
The  treated  effluent  can  be  sent  into  the  drain  or 
river  without  fear  of  the  separation  of  picric  acid. 

—J.  B.  F. 

Match  compositions;  Process  of  treating  omd 

tlie  product  thereof.  W.  A.  Fairburn,  Assr.  to 
The  Diamond  Match  Co.  IT.S.P.  1,406,176. 
11.2.22.    Appl..  7.6.21. 

The  composition  is  agitated  in  the  presence  of  gas 

so  as  to  produce  an  aggregation  of  minute  bubble 

within  it.— H.  C.  R. 

Explosive.     A.   Wohl.     U.S.P.    1,408,056,   28.2.22. 

Appl.,  4.6.20. 
See  E.P.  146,258  of  1920;  J.,  1921,  562  a. 

Potassium  chlorate.     G.P.  301,673.     See  VII. 


XXIII.-ANALYSIS. 

Collodion  membranes;  Preparation  of  flexible  ■ . 

J.  M.  Looney.    J.  Biol.  Chem.,  1922,  50,  1—4. 
Collodion  membranes,  which  remain  flexible  after 
being  dried  and  still  retain  their  permeability,  may 
be  prepared  from  a  solution  of  collodion  in  alcohol- 

o 


272a 


Cl.  XXIII.— ANALYSIS. 


[April  15,  1!I2l>. 


ether  solvent  to  which  ethyl  acetate  has  been  added. 
The  solvents  are  used  in  the  following  proportions : 
alcohol  25  c.c.,  ether  75  c.c,  ethyl  acetate  15  c.c. 

— E.  S. 

Electro-titration    apparatus;    Continuous    reading 

.    K.  H.  Goode.    J.  Amer.  Chem.  Soc,  1922, 

44,  26—29. 
An  electro-titration  apparatus  for  the  determina- 
tion of  hydrogen  ion  concentration  is  described,  by 
means  of  which  the  E.M.F.  between  a  calomel 
electrode  and  a  hydrogen  electrode  may  be  read 
continuously.  The  voltmeter  consists  of  a  three- 
electrode  vacuum  valve  ("  audion  ").  The  valve 
consists  of  a  highly  exhausted  glass  bulb  containing 
an  incandescent  filament  surrounded  by  a  grid  of 
fine  wire,  which  itself  is  surrounded  by  a  metallic 
plate.  A  battery  of  20 — 100  volts  connected 
between  the  plate  and  filament,  through  a  D'Arson- 
val  galvanometer,  produces  a  current  through  the 
plate  circuit,  the  magnitude  of  which  is  propor- 
tional to  the  potential  of  the  grid.  The  filament 
is  connected  to  a  6-volt  circuit  containing  a  resist- 
ance which  adjusts  the  current  to  106  ampere. 
The  current  in  the  plate  circuit,  1  p,  may  be 
regarded  as  the  sum  of  a  constant  current,  I0, 
which  is  independent  of  the  grid  potential,  and  a 
current  Ip-Io  which  is  a  linear  function  of  the  grid 
potential.  The  current  I0  is  balanced  by  an  equal 
current  in  the  opposite  direction  and  Ip-Io  is 
measured  with  the  galvanometer  which  is  calibrated 
to  read  cither  in  volts  or  Sorensen's  units.  The 
calomel  cell  is  connected  with  the  negative  pole  of 
the  filament  circuit  and  the  hydrogen  electrode  with 
the  grid.  The  apparatus,  using  a  galvanometer  of 
sensitiveness  10'lxlO"6  ampere  per  scale  division, 
is  sensitive  to  O'l  Sorensen  unit  or  0'006  volt. 

—J.  F.  S. 

Sodium    hydroxide    [solutions]    free    from    carton 
dioxide:  Simple  method  for  the   preparation   of 

.    J.  Cornog.    J.  Amer.  Chem.  Soc.,  1921,  43, 

2573—2574. 

Solutions  of  sodium  hydroxide  free  from  carbon 
dioxide  may  be  prepared  as  follows:  distilled  water 
is  boiled  to  remove  carbon  dioxide,  after  which, 
when  cold  enough,  a  layer  of  ether  3 — 4  cm.  deep  is 
added.  Pieces  of  sodium,  not  exceeding  1  cm. 
diam.,  are  dropped  in;  they  remain  suspended  in 
tho  ether  and  are  slowly  dissolved  by  the  water 
contained  in  the  ether,  and  the  sodium  hydroxide 
passes  into  the  water.  AVhen  all  the  sodium  has 
dissolved  the  main  quantity  of  ether  is  removed  by 
a  pipette  and  the  last  trace  is  removed  by  boiling. 
There  is  no  danger  of  fire  if  the  layer  of  ether  has 
a  depth  sufficient  to  prevent  the  sodium  from 
coming  into  contact  with  air  and  water  simul- 
taneously. The  depth  of  the  ether  layer  should  be 
3 — 4  times  the  diameter  of  the  pieces  of  sodium 
added.  The  ether  removes  in  addition  all  con- 
tamination due  to  adhering  oil.  The  product  gives 
no  precipitate  with  barium  hydroxide  solution. 

—J.  F.  S. 

Acids  or  bases;  Titration  of  moderately  strong  

in  the  presence  of  very  weak  ones.  I.  M.  Kolthoff. 
Pharm.  Weekblad,  1922,  59,  129—142. 

For  two  acids  of  the  same  concentration  in  presence 
of  sufficient  alkali  to  neutralise  the  stronger  only, 
the  hydrogen  ion  concentration  =  VK,K2.  In 
titrating,  the  approximate  values  of  the  concentra- 
tions of  each  must  be  determined ;  the  final  titra- 
tion is  then  carried  out  with  the  aid  of  a  buffer 
solution  of  the  same  ps  value  or  a  comparison  solu- 
tion made  from  the  sodium  salt  of  the  strong  acid 
and  the  necessary  proportion  of  the  weak  acid.    For 


accurate  results  the  value  of  K,:K2  must  be  not 
less  than  1x10*.     (Cf.  J.C.S.,  March.)— S.  I.  L. 

Phenol-red  as  an  indicator  for  acidity  of  media.  A. 
Massink.  Pharm.  Weekblad,  1921,  58,  1133—^ 
1136. 

The  indicator  has  a  salt-error,  giving  about  0'2 
deviation  in  the  values  of  pB.     (Cf.  J.C.S.,  April  ) 

— S.  I.  L. 

Potassium  ferricyanide  as  a  reagent  in  iodometry 
I.  M.  Kolthoff.  Pharm.  Weekblad,  1922,  59, 
66—68. 

The  author's  earlier  method  for  the  standardisation 
of  thiosulphate  solutions  by  means  of  ferricyanide 
(cf.  J.,  1920,  61  a)  gives  accurate  results  if  care  is 
taken  to  use  pure  reagents  free  from  iron,  (it 
J.C.S.,  March.)— S.  I.  L. 

Analysis;    Quantitative by    centrifuge.      0. 

Arrhenius.     J.  Amer.  Chem.  Soc.,  1922,  44,  132— 
134. 

The  estimation  of  calcium,  magnesium,  and  phop 
phoric,  sulphuric,  and  nitric  acids  may  be  effected 
by  precipitating  the  various  substances  in  the  usual 
way  and  transferring  the  precipitate  and  mother- 
liquor  to  tubes  25  cm.  diam.  at  the  top  and  pro- 
vided with  a^  steep  funnel  below  leading  to  a 
capillary  tube  4  cm.  long  and  1  mm.  diam.  The  pre- 
cipitate is  allowed  to  settle  in  the  capillary  stem  and 
the  tube  centrifuged  until  tho  height  of  the  column 
of  precipitate  is  constant,  which  usually  takes 
30  mins.  The  height  of  the  column  is  read  and  re- 
duced to  the  weight  standard  by  comparison  with  a 
precipitate  similarly  obtained  from  a  known  weight 
of  the  same  substance.  The  method  claims  no  great 
degree  of  accuracy  and  is  suggested  as  a  suitable 
method  of  analysis  of  soil  and  similar  substances. 

—J.  F.  S. 

Phosphoric  acid;  Argentometric  titration  of  . 

I.  M.  Kolthoff.  Pharm.  Weekblad,  1922,  59,  205— 

215. 
If  the  solution  be  made  neutral  to  phenol  red  by 
moans  of  sodium  hydroxide,  phosphoric  acid  may  be 
estimated  by  adding  excess  of  silver  nitrate,  filter- 
ing, and  titrating  the  excess  of  silver  by  Volhard'e 
method.  The  method  may  be  applied  to  estimate 
phosphates  in  urine.     (Cf.  J.C.S.,  April.) — S.  I.  L. 

Vanadic     acid;     Co-precipitation     of     with 

ammonium  phosphomolybdate  [in  analysU  ■•' 
steels'].  J.  R.  Cain  and  J.  C.  Hostetter.  J.  Amer. 
Chem.  Soc.,  1921,  43,  2552—2562. 
The  conditions  under  which  the  simultaneous  pre- 
cipitation of  vanadic  acid  and  ammonium  phospho- 
molybdate in  the  analysis  of  steels  (J.,  1912,  4361  is 
best  effected,  have  been  investigated.  The  co-pre- 
cipitation is  a  partition  of  the  vanadic  acid  between 
the  solution  and  the  solid  phase  and  the  maximum 
absorption  by  the  solid  phase  occurs  at  40° — 50°  C'. 
in  the  presence  of  22V  nitric  acid.  Dilution  n 
the  amount  of  absorption,  but  this  may  be  counter- 
acted by  the  addition  of  ammonium  nitrate.  Tin 
ammonium  vanado-phosphomolybdates  are  probablv 
a  series  of  solid  solutions,  the  end  members  of  which 
are  ammonium  phosphomolybdate  and  ammonium 
phosphovanadate. — J.  F.  S. 

Antimony;   New    method,   of   detecting 

Haferkorn.     Chem.-Zeit.,  1922,  46,  186. 
In  the  method  of  detecting  antimony  by  the  form;'; 
tion  of  a  black  stain  on  a  platinum  sheet  introduces 
into  the  chloride  solution  together  with  a  piece  ol 
metallic  zinc,  the  platinum  may  be  replaced  by  ■' 
piece    of   copper    foil    which    has    been   dipped   I 
mercuric  chloride  solution  and  the  resulting  mim 
polished  with   a  cloth.      Tin   and   arsenic  g 
indication  in  the  test. — A.  P.  P. 


Vol.  XLI.,  No.  7.] 


Cl.  XXIII.— analysis. 


273\ 


Arsenic;  Separation  of from  tungsten,  vanad- 
ium, and  molybdenum  by  means  of  methyl  alcohol 
in  a  current  of  air.  L.  Moser  and  J.  Ehrlich. 
Ber.,  1922,  55,  430—437. 

Trtvalbnt  arsenic  can  be  separated  quantitatively 
from  antimony  and  other  metals  at  the  tempera- 
ture of  boiling  water  by  volatilising  it  partly  as 
methyl  arsenite  and  partly  as  arsenic  trichloride 
in  a  current  of  air  (Moser  and  Perjatel,  J.,  1912, 
718).  In  the  presence  of  tungstic  acid,  however, 
the  removal  of  arsenic  is  incomplete,  owing  to  the 
adsorption  of  a  portion  of  the  arsenic  trichloride 
by  colloidal  tungstic  acid.  The  difficulty  can  be 
avoided  by  bringing  the  latter  into  highly  disperse 
solution  by  addition  of  pyrogallol  or  tartaric, 
oxalic  or  citric,  or,  preferably,  acetic  acid.  The 
solution  containing  the  tungstate  and  arsenious 
oxide  (arsenic  acid  must  be  reduced  by  one  of  the 
customary  methods)  is  evaporated  to  small  bulk 
and  treated  with  glacial  acetic  acid  (20  c.c.)  and 
concentrated  hydrochloric  acid  (120- — 150  c.c); 
after  addition  of  methyl  alcohol  (30  c.c.)  distilla- 
tion is  effected  as  described  previously  in  a  current 
of  air.  Arsenic  is  estimated,  preferably  iodometric- 
ally.  in  the  distillate.  The  residue  in  the  distilla- 
tion flask  is  evaporated  to  dr3Tness  on  the  water 
bath;  the  solid  so  obtained  is  dissolved  in  dilute 
sodium  hydroxide  solution  and  tungstic  acid  is 
precipitated  as  mercurous  tungstate.  The  separa- 
tion of  arsenic  from  molybdenum  and  vanadium  is 
effected  without  difficulty  by  the  ester  method;  it 
is  only  necessary  to  make  certain  that  a  sufficient 
•  amount  of  the  reducing  agent  is  added  (even  when 
i  the  arsenic  is  present  in  the  trivalent  state)  since 
'  it  is  attacked  by  molvbdic  and  vanadic  acids. 

— H.  W. 


Arsenic;  Theory  of  the  distillation  of  and  a 

new  separation  of  arsenic  from  all  metals  in  a 
current  of  air.    L.  Moser  and  J.  Ehrlich.     Ber., 
1922,  55,  437—447. 
A  winE-iiouTHED  flask  of  300  c.c.  capacity  is  pro- 
vided with  a  rubber  stopper  carrying  an  inlet  tube 
for  air,   a  stoppered  dropping  funnel   and   a  bulb 
tube  connected  with  a  long  glass  tube  dipping  into 
water   (250   c.c.)   contained   in    a   beaker   which    is 
,ooled  by  running  water.     Arsenious  oxide  (0'15 — 
■)"25  g.)   is  dissolved   in   concentrated   hydrochloric 
'icid  (sp.   gr.   119,  50  c.c.)  in  the  flask,   which  is 
mmediately   immersed   up  to  the   neck  in   boiling 
vater  whilst  a  brisk  current  of  air  is  passed  through 
he  solution.      At   intervals    of    10   mins.,    further 
■  dditions   of    concentrated    hydrochloric    acid    (20 
.c.)  are  made.     After  40 — 60  mins.  the  distillation 
s  interrupted  and  the  arsenic  is  titrated  in  the  dis- 
illate  with  2V/10  potassium  bromate  solution.     The 
rocedure  is  similar  when  potassium  bromide  (about 
'5  g.)  is  used,  but  two  or  at  most  three  additions 
f  hydrochloric  acid   are  then   sufficient.      Arsenic 
cid  must  be  reduced   in   the  usual   manner   with 
■rrous  sulphate,  hydrazine  sulphate,  or  even  with 
otassium  bromide  alone.     The  accelerating  action 
the    latter   on    the   distillation    of    arsenic    tri- 
lloride  is  due  to  the  repression  of  hydrolysis;  the 
ime   effect   is   observed    with    a   number   of   other 
ibstances  which  dissolve  freely  in  water  but  very 
laringly  in  concentrated   hvdrochloric  acid. 

— H.  W. 


ermanium  and  arsenic;  Separation  of .    J.  H 

Miiller.  J.  Amer.  Chem.  Soc,  1921,  43,  2549— 
2552. 

vdrogen  sulphide  does  not  precipitate  germanium 
Iphide  from  solutions  of  fluogermanic  acid  and 
logermanates  in  hydrofluoric  acid.  This  fact  is 
ule  use  of  in  the  separation  of  arsenic  from  ger- 


manium and  may  be  used  for  the  quantitative 
determination  of  very  small  quantities  of  arsenic 
in  germanium  compounds  by  precipitation  with 
hydrogen  sulphide  in  presence  of  a  large  excess  of 
hydrofluoric  acid.  The  method  is  accurate  and 
rapid  and  may  be  safely  used  to  estimate  quantities 
of  arsenic  down  to  0'01  % . — J.  F.  S. 


Aluminium  from  beryllium  [gluci-num];  Separation 

°f •     HI.     H.  T.  S.  Britton.     Analyst,  1922, 

47,  50—60.    (Cf.  J.,  1921,  751  a,  905  a.)  * 

Berzelius'  method  consisting  in  boiling  the  pre- 
cipitated hydroxides  with  ammonium  chloride  solu- 
tion whereby  the  glucinum  hydroxide  is  dissolved, 
is  unsatisfactory  as  no  means  could  be  found  by 
which  the  occlusion  of  glucinum  hydroxide  by 
aluminium  hydroxide  could  be  avoided",  the  results 
being  accordingly  low  for  glucinum  and  correspond- 
ingly high  for  aluminium.  Wunder  and  AVenger's 
sodium  carbonate  fusion  method  (J.,  1912,  664)  is 
satisfactory,  but  the  time  required  for  an  analysis 
is  long,  as  two  fusions  are  necessary  for  a  complete 
separation.  The  thiosulphate  method  in  which  the 
neutral  salt  solutions  are  boiled  with  an  excess  of 
sodium  thiosulphate  until  evolution  of  sulphur 
dioxide  has  ceased  (</.  Glassman,  J.,  1906,  1121) 
does  not  give  quantitative  separations  owing  to  ad- 
sorption of  glucinum  by  the  aluminium  hydroxide 
which  is  precipitated.  Haven's  ether-hydrochloric 
acid  method  (Amer.  J.  Sci.,  1S97,  4,  111)  is  quanti- 
tative and  is  one  of  the  most  satisfactory  of  those 
investigated.  No  other  methods  were  investigated 
but  of  those  remaining  it  is  probable  that  only 
Kling  and  Gelin's  basic  acetate  distillation  method 
(Bull.  Soc.  Chim.,  1914,  15,  205)  and  Renz's 
ethylamine  method  (J.,  1903,  1129)  are  quantita- 
tive, and,  as  the  former  requires  considerable 
manipulation  and  time  and  the  latter  involves  the 
use  of  a  large  quantity  of  an  expensive  reagent, 
they  have  no  particular  feature  to  recommend 
them.— G.  F.  M. 


Titrations  in  ethyl  alcohol  as  solvent.  E.  R.  Bishop, 
E.  B.  Kittredge,  and  J.  H.  Hildebrand.  J.  Amer. 
Chem.  Soc,  1922,  44,  135—140. 

Alcoholic  solutions  of  acetic,  maleic,  palmitic,  and 
sulphuric  acids,  p-chlorophenol,  and  phenol  may  be 
titrated  with  an  alcoholic  solution  of  sodium 
ethoxide  using  the  hydrogen  electrode  as  indicator. 
Similar  titrations  of  alcoholic  solutions  of  ammonia 
and  aniline  by  alcoholic  solutions  of  hydrogen  chlor- 
ide also  give  sharp  and  accurate  end-points  when  the 
same  indicator  is  used.  The  colour  changes  and  the 
hydrogen  potential  of  the  change  are  recorded  for 
a  number  of  indicators,  as  follows :  Bitter  almond 
oil  green,  green,  0'69  colourless;  bromophenol  blue, 
yellow  0'34  green  047  blue;  cresol  red,  pink  0'20 
orange  0'30;  curcumin,  greenish  yellow  0"66  red 
0"85  orange  0'91  golden;  cyanine,  colourless  0'24 
blue ;  gallein,  rose  0'68  violet  blue ;  iodeosin,  golden 
brown  0'20  pink;  methyl  green,  blue  0'66  lavender; 
methyl  orange,  pink  0'20  orange  0'23  yellow;  methyl 
violet,  violet  0'95  colourless;  methyl  red,  red  0'54 
orange  0'62  yellow ;  naphthol-benzoin,  light  brown 
0"70  blue;  p-nitrophenol,  colourless  0'61  yellow- 
green  ;  phenolphthalein,  colourless  0'68  red  ;  resorcin 
blue,  red  0'39  blue;  rosolic  acid,  golden  0'58  orange 
0'65  pink ;  sodium  alizarinsulphonate,  greenish 
yellow  O'oO  orange  0'57  rose  0'82  violet;  thymol 
blue,  red  0'30  golden ;  thymol-phthalein,  colourless 
082  blue;  trinitrobenzene,  colourless  0"68  golden 
orange;  tropaeolin,  salmon  pink  0'20  orange  0'23 
golden,  and  tropaeolin  00,  pink  0"15  orange  0'20 
yellow.  Palmitic  acid  in  the  presence  of  tripal- 
mitin  may  be  titrated  in  alcoholic  solution  by 
sodium  ethoxide  using  thvmolphthalein  as  indicator. 

—J.  F.  S. 


274  A 


PATENT    LIST. 


[April   15,   1922. 


Carbon    and    hydrogen    [in    organic    substances]; 

Microchemical  determination  of .    F.  Wrede. 

Ber.,  1922,  55,  557—563. 
A  detailed  discussion  of  apparatus,  absorbent  and 
oxidising   materials,   -and    procedure    necessary   for 
the    microchemical    determination    of    carbon    and 
hydrogen  in  organic  compounds  by  Pregl's  method. 

— J.  K. 

Hydrogen  peroxide;  Effect  of in  the  decompo- 

sition  of  plant  and  animal  material  in  the  Kjel- 
dahl  method  [of  determining  nitrogen'].  Klee- 
mann.  Landw.  Versuchs-Stat.,  1922,  99,  150— 
161. 
Various  modifications  of  the  original  Kjeldahl 
method  are  reviewed.  In  using  hydrogen  peroxide 
in  the  preliminary  digestion  of  cattle  foods  etc.  1  g. 
of  air-dried  material  (or  5  g.  of  green  material)  is 
treated  with  25  c.c.  of  30%  hydrogen  peroxide, 
added  in  two  portions,  and  warmed  for  1 — 2  min. 
when  the  initial  effervescence  has  ceased.  40  c.c.  of 
98%  sulphuric  acid  is  then  added  slowly,  followed 
by  15  g.  of  potassium  sulphate,  and  the  whole  is 
heated  for  15 — 20  mins.  With  lower  proportions  of 
hydrogen  peroxide  there  is  excessive  frothing.  In 
the  case  of  milk,  a  50  c.c.  sample  is  used  with  25  c.c. 
of  hydrogen  peroxide,  40  c.c.  of  sulphuric  acid,  and 
1  g.  of  mercury.  The  mixture  should  be  cooled  to 
steady  the  initial  oxidation.  Fats  are  oxidised 
relatively  slowly,  and  heating  for  60  min.  in  all  may 
be  required  for  complete  oxidation. — A.  G.  P. 

Nitrogen  estimation;  Accuracy  of  Dumas'  method 

of  ■ .     E.  Mohr.    Ber.,  1922,  55,  597. 

An  explanation  of  an  ambiguous  phrase  in  a  pre- 
vious paper  (c/.  J.,  1922,  83  a).— J.  K. 

Miscible  liquids;  Separation  of  ■ by  distillation. 

A.   F.   Dufton.     Chem.    Soc.   Trans.,   1922,    121, 

306—308. 
A  still  by  which  continuous  separation  of  a  binary 
mixture  can  be  carried  out  in  the  laboratory  has 
been  constructed  on  the  principle  of  the  column  de- 
scribed previously  (J.,  1922,  121  a).  A  column,  1  in. 
in  diameter,  is  filled  for  200  cm.  with  thin-walled 
cylindrical  glass  beads,  4  mm.  by  4  mm.,  and  lagged 
to  prevent  loss  of  heat  by  radiation.  A  copper  tube 
extending  centrally  down  the  upper  half  of  the 
column  and  connected  with  a  reservoir  provides  for 
the  introduction  of  the  liquid,  the  rate  of  flow  being 
regulated  by  a  screw  valve  connected  with  a  con- 
stant-level chamber  between  the  tube  and  the 
reservoir.  At  a  rate  of  heating  of  800  cals.  per 
minute  97"7  c.c.  of  pure  benzene  and  100  c.c.  of  pure 
toluene  were  separated  in  1  hr.  from  a  50%  mixture, 
corresponding  to  a  thermal  efficiency  of  38%.  A 
thermal  efficiency  of  41%  was  obtained  in  a  column 
165  cm.  long  when,  with  a  heat  supply  of  915  cals. 
per  minute,  623  c.c.  of  pure  benzene  and  60  c.c.  of 
pure  toluene  were  separated  in  30  mins.  The  purity 
of  the  producte  is  indicated  by  sensitive  ebullio- 
scopes  at  the  top  and  bottom  of  the  column,  use 
being  made  of  the  tension  tube  of  Chapman  Jones 
(Chem.  Soc.  Trans.,  1898,  73,  175)  for  the  boiling 
points  of  small  quantities  of  liquid.  The  tubes  are 
calibrated  by  means  of  a  sample  of  the  desired  pro- 
duct and  arranged  so  that  both  the  open  and  closed 
ends  are  immersed  in  the  vapour  of  the  product. 

—P.  V.  M. 

See  also  pages  (a)  249,  Sulphur  in  pyrites  (Chau- 
ilron  and  Juge-Boirard).  250,  Hydrosulphurous 
and  sulphoxylic  acids  (De  Bacho) ;  Nitrites  (Lom- 
bard). 252,  Oxygen  in  hydrogen  (Larson  and 
White).  255,  Gold  bullion  (Westwood).  256,  Tin 
alloys  containing  iron  (Meyer);  Zinc  in  technical 
nickel  (Breiseh  and  Chalupny).     260,  Acid  value  of 


oils  (Steele  and  Sward) ;  Glycerol  (Hoyt  and  Pember- 
ton).  263,  Soil  organic  matter  (Read  and  Ridgell). 
264,  Seeds  (Nemec  and  Duchon).  264,  Ash  of  sugar 
products  (Mikolasek) ;  Eelpchar  (Turrentine  and 
Tanner).  266,  Antiscorbutic  vitamin  (Sherman 
and  others).  267,  Disinfectants  (Hailer).  268, 
Tyrosine,  tyramine,  etc.  Phenols  etc.  (Hanke  and 
Koessler);  Acetaldehyde,  aldol,  and  glyoxylic  arid 
(Fricke).     269,   Monobromated  camphor  (Eaton). 

Patents. 

Gases;  Process  and  apparatus  for  determining  the 

heat  value  of  .     "  Union  "  Apparateban^i  s. 

E.P.  156,577,  4.12.20.     Conv.,  3.1.20. 

See  G.P.  338,636  of  1920;  J.,  1921,  720  a. 

Milk.    U.S. P.  1,393,282.    See  XIXa. 


Patent  List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised,  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given :  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Baker,  Prescott,  and  Baker,  Sons,  and  Perkins. 
Grinding  mills.    8461.    Mar.  23. 

Barton,  and  Lead  Products  Synd.  Apparatus 
for  depositing  and  conveying  light  substances  hi 
suspension  in  effluents  etc.     8160.     Mar.  21. 

Benson.     Distillation.     7491.     Mar.  14. 

Benson.  Raising  volatilisable  substances  to  con- 
dition of  vapour.    7889  and  8098.    Mar.  17  and  20. 

Benson.  Condensing-media  for  power  plants. 
8097.    Mar.  20. 

Billon,  and  Poulenc  Freres.  Uniformly  dividing 
and /or  preserving  pulverulent  etc.  material.  7894. 
Mar.  17. 

Cone  and  Hall.    7900.    See  VIII. 

Corsellis.  Centrifugal  separation  of  solids  from 
liquids.    8439.     Mar:  23. 

Gilchrist.    Furnaces.    8235.    Mar.  21. 
Heenan.     Furnaces.     7464.     Mar.  14. 
Hindley  and  Hindley.     Apparatus  for  cooling  oi 
heating  liquids.     7772."    Mar.  16. 

Johnston.  Roll  for  crushing-mills  etc.  8163 
Mar.  21. 

Meek.     Furnaces.     8186.     Mar.  21. 

Minton.  Treating  materials  in  a  vacuum.  7511 
Mar.  14. 

Morison.     Evaporators.    8632.    Mar.  24. 
Oddie.     Apparatus  for  separating  dust  etc.  fror 
air  and  gases.     8427.     Mar.  23. 
Wright.     8267.     See  X. 

Complete  Specifications  Accepted. 

24,079(1920).    Mauss.    Vacuum  filters.  (17fl 
Mar.  22. 


Vol.  XLI.,  No.  7.] 


PATENT  LIST. 


275  a 


29,104  and  30,059  (1920).  Woodall,  Duckham, 
and  Jones,  Ltd.,  and  Duckham.  Furnaces  for  pro- 
ducing chemical  change.  (176,834  and  176,836.) 
Mar.  29. 

30,975  (1920).  Thermal  Industrial  and  Chemical 
Research  Co.,  and  Morgan.  Heating  substances  to 
produce  certain  chemical  changes.  (176,438.) 
Mar.  22. 

31,582  (1920).  Avrutik.  Separation  of  liquids 
and  solids.     (176,446.)     Mar.  22. 

34,428  (1920).  Foster.  Furnaces.  (176,857.) 
Mar.  29. 

34.517  (1920).  Jung.  Rotary-disc  filters. 
(176,495.)    Mar.  22. 

34,568  (1920).  Ibing.  Effecting  exchange  of  heat 
between  immiscible  fluids.     (176,499.)     Mar.  22. 

34,731  (1920).     Thermal  Industrial  and  Chemical 
!  Research   Co.,   and   Morgan.      Producing  chemical 
reactions  by  action  of  heat.     (176,863.)     Mar.  29. 

35,548  (1920).  Hoyle.  Centrifugal  driers. 
(176,903.)    Mar.  29. 

883  (1921).  Norsk  Hydro-Elektrisk  Kvaelstof- 
aktieselskab.  Apparatus  for  effecting  continuous 
crystallisation  of  solutions.     (156,793.)    Mar.  22. 

1097  (1921).  Still.  Saturators  for  producing 
solid  salts  by  treating  gases  with  liquid.  (157,223.) 
Mar.  29. 

1198  (1921).  Hernu.  Apparatus  for  purifying 
and  treating  gases.     (157,287.)    Mar.  22. 

2275  (1921).    Kestner.    See  XIX. 

4132  (1921).  Johnson  and  Hurrell.  Rotary  filter. 
(176,619.)    Mar.  22. 

4499  (1921).  Atkinson,  and  Stein  and  Atkinson. 
Continous  furnaces.     (176,625.)    Mar.  22. 

9710  (1921).  Mobs,  and  Deutsche  Werke  A.-G. 
Grinding-mills.     (176,686.)     Mar.  22. 

9931  (1921).  Mauss.  Vacuum  filters.  (177,067.) 
Mar.  29. 

14,231  (1921).  Lodge  Fume  Co.,  and  Stallard. 
See  XI. 

25,248  (1921).  Lodge  Fume  Co.  (Metallbank  u. 
Metallurgische  Ges.).    See  XI. 


JIT.—  FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;  DESTRUCTIVE  DISTILLATION; 

HEATING;  LIGHTING. 

Applications. 

Bibb,  Hudson,  and  Knight.  Apparatus  for  heat- 
reating  and  carbonising  briquettes  etc.  7427. 
>Iar.  14. 

Brook.     Gas-producers.     7796.     Mar.  17. 

Brooke  and  Whitworth.  Vertical  gas-retorts. 
531.    Mar.  24. 

Brown  and  Co.,  Grant,   and  Jones.     Means  for 
Itering  blast-furnace  etc.  gases.    7333.     Mar.  13. 
Brown.    8468.    See  XXIII. 

Commin  and  Hughes.  Treating  carbon.  8654. 
Lar.  25. 

Cross.  Treatment  of  petroleum  oil.  8174. 
tar.  21. 

Curran.    Compressed  fuel.     7991.     Mar.  18. 

Evans,  Stanier,  and  South  Metropolitan  Gas  Co. 
urification  of  gases  from  hydrogen  sulphide.  8105. 
Car.  20. 

;  Goehtz.    Gas-producers.    8482.    Mar.  23. 

,  Gregory.    Water-gas  generators.    8270.    Mar.  22. 


Hall.  Manufacture  of  fuel  briquettes.  7694. 
Mar.  16. 

Lucas.     Retorts.    7941.    Mar.  18. 

Moseley.  Destructive  distillation  of  carbonaceous 
and  oil-bearing  materials.    8009.    Mar.  20. 

Porte.  Continuous  distillation  of  wood.  7906. 
Mar.  18.    (Fr.,  19.3.21.) 

Complete  Specifications  Accepted. 

26,568  (1920).  Strafford  and  Pick.  Manufacture 
of  solid  fuel  and  distillation  of  tar.  (176,822.) 
Mar.  29. 

32,214  (1920).  Bronder  and  Costigan.  Apparatus 
for  recovering  the  volatile  constituents  of  shale  etc. 
(176,847.)    Mar.  29. 

34,126  (1920).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Manufacture  of  carbon. 
(176,476.)    Mar.  22. 

34,590  (1920).  Fleischer.  Manufacture  of  coal 
distillation  products.    (154,938.)    Mar.  22. 

35,165  (1920)  and  17,940  (1921).  Coke  and  Gas 
Ovens,  Ltd.,  and  Kimbell.  Regenerative  coke- 
ovens.    (176,533.)    Mar.  22. 

35,334  (1920).  Carpenter.  Device  for  collecting 
gas  from  one  or  more  retorts.    (176,891.)    Mar.  29. 

454  (1921).  Langer.  Lubricant  for  use  in 
cylinders  of  steam-engines  etc.    (164,303.)    Mar.  22. 

1197  (1921).  Hernu.  Gas-generators.  (157,286.) 
Mar.  29. 

1198  (1921).  Hernu.    See  I. 

1609  (1921).  Pollacsek.  Manufacture  of  briq- 
uettes.    (157,908.)     Mar.  22. 


III.— TAR  AND  TAR  PRODUCTS. 

Application. 

Moeller.  Manufacture  of  products  soluble  in 
water  from  hydrocarbons  of  high  boiling  point  of 
tar  oils.    8708.    Mar.  25. 

Complete  Specifications  Accepted. 

26,568  (1920).    Strafford  and  Pick.    See  II. 

35,014(1920).  Scheibler.  Manufacture  of  sulphur 
preparations  of  the  thiophene  series  from  tar-oils 
of  bituminous  rock  rich  in  sulphur.  (155,259.) 
Mar.  29. 

157  and  455  (1921).  Chem.  Fabv.  Worms.  Manu- 
facture of  anthraquinone  and  its  derivatives. 
(156,215  and  156,538.)    Mar.  29. 


IV.— COLOURING  MATTERS  AND  DYES. 

Applications. 

Gardner  and  Williams.  Production  of  artificial 
dyes.    7335.    Mar.  13. 

Imray  (Soc.  Chem.  Ind.  in  Basle).  Manufacture 
of  intermediate  products  for  dyestuffs.  7968. 
Mar.  18. 

Imray  (Soc.  Chem.  Ind.  in  Basle).  Manufacture 
of  a  derivative  of  pyrazolone  and  of  dyestuffs  there- 
from.   8375.    Mar.  22. 

Stephan.  Production  of  sulphurous  acid  com- 
pounds of  isatin-anilides.     8059.    Mar.  20. 

Complete  Specifications  Accepted. 

29,096  (1920).  Ransford  (Cassella  u.  Co.).  Manu- 
facture of  dyestuffs.     (176,833.)    Mar.  29. 


276  a 


PATENT    LIST. 


[April   15,   1922. 


36.536  (1920).  Segaller,  Peacock,  and  British 
Dyestuffs  Corp.  Manufacture  of  oxy  and  sulpho-oxy 
derivatives  of  anthraquinone.     (176,925.)    Mar.  29. 


V.— FIBRES;   TEXTILES;   CELLULOSE; 
PAPER. 

Applications. 

Dederich  (Muehlenbein).  Manufacture  of  cellu- 
losic  substances.     7711.     Mar.  16. 

Dreyfus.  Manufacture  of  cellulose  derivatives. 
3602-5.    Mar.  24. 

Phillips.  Cellulose  ester  and  process  of  forming 
same.     8492.     Mar.  23.     (U.S.,  24.3.21.) 

Complete  Specifications  Accepted. 

28,350  (1920).  Dreyfus.  Manufacture  of  cellu- 
lose derivatives.     (176,420.)     Mar.  22. 

34,840  (1920).  Gassmann.  Manufacture  of  dur- 
able masses  from  viscose.     (155,211.)    Mar.  29. 

399  (1921).  Muller  and  Heigis.  Treatment  of 
plant  fibres  etc.     (156,512.)     Mar.  22. 

1085  (1921).  International  Paper  Co.  Drying 
paper.     (157,212.)     Mar.  29. 

1608  (1921).  Pollacsek.  Manufacture  of  a  mastic 
or  binding  substance  from  sulphite  lye.  (157,907.) 
Mar.  29. 

3898(1921).    Cew  and  Marx.    See  XIII. 

4191  (1921).  Joliot.  Manufacture  of  brilliant 
cellulose  threads.     (168,575.)    Mar.  29. 

5372  (1921).  Tiburzi.  Manufacture  of  paper. 
(167,139.)    Mar.  22. 

VI—  BLEACHING ;  DYEING ;  PRINTING  ; 
FINISHING. 

Applications. 

Bloxam  (Akt.-Ges.  f.  Anilinfabr.).  Dyeing  furs, 
hairs,  etc.    7884.    Mar.  18. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Dyeing  silk  and  mixed  fabrics  containing  same. 
7980.    Mar.  18. 

Farbw.  vorm  Meister,  Lucius,  u.  Briining. 
Manufacture  of  stable,  dry  and  readily  soluble  vat- 
preparations  for  dyeing.  8254.  Mar.  21.  (Ger., 
26.3.21.) 

Mcintosh  and  Mcintosh.  Process  and  composi- 
tion for  dyeing.     7556.     Mar.  15. 

Newell.  Dyeing  animal  and  vegetable  fibre. 
7535.     Mar.  15. 

Nordbohmische  Industrie-Ges.  Kunst-Batik,  and 
Klinger.     Printing  fabrics.     8487.     Mar.  23. 

Complete  Specifications  Accepted. 

30,644  (1920).  Touchstone,  Gardner,  Bangle, 
Sullivan,  and  Hardin.  Dyeing  or  otherwise  treat- 
ing warps  etc.     (176,429.)    Mar.  22. 

34,965  (1920).  Hodson.  Bleaching  textile  fabrics 
and  materials.     (176,869.)     Mar.  29. 

35,196  (1920).  Clavel.  Dyeing  cellulose  acetate. 
(176.535.)     Mar.  22. 

VI  r—  ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Barton  and  others.     8159.     .SVe  XIII. 

Consortium  f.  Elektrochem.  Ind.  Manufacture 
of  anhydrous  chlorides.  7370.  Mar.  13.  (Ger., 
11.3.21.) 


Holbrnnncr,  Jouve,  and  Soc.  Hydro-Electrique  et 
Metallurgique  de  Palais.  Manufacture  of  chrom- 
ates  and  bichromates.  7878.  Mar.  17.  (Fr., 
17.3.21.) 

Lessing.  Manufacture  of  neutral  sulphate  of 
ammonia.     8615.     Mar.  24. 

Quinan.     8480.    See  XVI. 

Soc.  Chim.  de  la  Grande-Paroisse.  Apparatus  for 
svnthesis  of  ammonia.  8251.  Mar.  21.  (Fr. 
31.3.21.) 

Todd  and  Watson.  Production  of  ammonium 
chloride.     7302.     Mar.  13. 


Complete  Specifications  Accepted. 

25,402  (1920).  Pattison  (Mathieson  Alkali 
Works).  Recovery  of  ammonia  in  the  ammonia- 
soda  process.    (176,400.)    Mar.  22. 

35,354  (1920).  L'Air  Liquide.  Direct  synthesis 
of  ammonia.     (155,302).     Mar.  29. 

36,519  (1920).  Shimadzu.  Lead  oxides  and  their 
manufacture.     (176,924.)    Mar.  29. 

1097  (1921).    Still.    See  I. 

2281  (1921).  Pearson.  Manufacture  of  zinc 
oxide.     (176,588.)     Mar.  22. 

3033  (1921).  South  Metropolitan  Gas  Co.,  and 
Parrish.  Manufacture  of  ammonium  sulphate. 
(176,977.)    Mar.  29. 

H.730  (1921).  Johnson  (Badische  Anilin  u.  Soda- 
Fabr.).  Manufacture  of  finely-divided  sulphur. 
(177,103.)     Mar.  29. 


VIII.— GLASS;  CEBAMICS. 

Applications. 

Cone  and  Hale.  Refractory  linings  for  furnaces. 
7900.     Mar.  17. 

Cowlishaw,  Garnett,  Greenwood,  and  Reid.  He- 
fractory  basic  bricks  etc.     7916.     Mar.  18. 

Green.     Ceramic  material.     7912.     Mar.  18. 

Hughes.     Printing  on  glass  etc.     7711.     Mar.  16. 

Complete  Specifications  Accepted. 

28,248  (1920).  Woodall,  Duckbam,  and  Jones, 
and  Duckham.  Gas-fired  pottery  kilns.  (176,419.1 
Mar.  22. 

30,657  (1920).  Wade  (Titanium  Pigment  Co.). 
Manufacture  of  glassware.     (176,430.)    Mar.  22. 

30,964-5     (1920).       Marks     (Buffalo     Bel. 
Corp.).       Refractory     compositions.       (176,436  i 
Mar.  22. 

35,796  (1920).  Osmosis  Co.,  Highfield,  and 
Laurie.  Mining  or  concentration  of  clay. 
(176,549.)     Mar.  22. 

4099  (1921).     Briggs.    ,SVe  XIII. 

12,673  (1921).    Travel*;.     Glasshouse  pot  furnai  I 
(177,085.)    Mar.  29. 


IX—  BUILDING  MATERIALS. 

Applications. 

Carpmael  (Chem.   Fabr.   Weiler-ter   Meer).     Im- 
pregnating wood.     8228.     Mar.  21. 
Caudemberg.    Paving  compound.    8607.  Mar.  24. 

Warland.     Colouring  or  treating  wood  etc. 
Mar.  25. 


Vol.  XLI.,  No.  7.] 


PATENT    LIST. 


277  a 


Complete  Specification  Accepted. 

33  704   (1920).     Hensman.     Treatment  of  timber 
with  gaseous  fluid.     (176,463.)    Mar.  22. 


X- METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Brown  and  Co..  and  others.     7333.     See  II. 

Carbonex,  Ltd.,  and  Rod  well.  Compound  for 
hardening  iron  or  steel.     ^5^2.     Mar.  24. 

Coles.  Manufacture  of  nickel  foil  or  strip.  7940. 
Mar.  18. 

Cross  and  Ellis,  Ltd.,  Ellis,  and  (iranter.  Treat- 
ing metal  surfaces.     8575.     Mar.  24. 

Dura nt  and  Sulnian.  Recovery  of  metals  from 
ores.     8704.     Mar.  25. 

Mackenzie.  Alloys  containing  chromium  and 
iron.     8365.     Mar.  22. 

Minerals  Separation,  Ltd.  (Minerals  Separation 
and  De  Bavav's  Processes,  Australia).  Separation 
of  sulphide  ores.     7777.     Mar.  16. 

Nobel.  Production  of  ferrochromium  alloys. 
8478.     Mar.  23. 

Nobel.  Production  of  rustless  steel.  8479.  Mar.  23. 

Norske  Molybdenprodukter  Akt.  Alloys  of 
molybdenum.     8013.     Mar.  20.     (Ger.,  26.3.21.) 

Saltrick.     Alloys.     7831-3.     Mar.  17. 

SaltricU.     Metals  and  alloys.     8692.     Mar.  25. 

Steel-Nickel  Process  Synd.,  Jones,  and  Mond. 
Welding  covering  metals.     7488.     Mar.  14. 

Steel-Nickel  Process  Synd.,  and  Mond.  Covering 
steel  etc.  with  nickel  alloy  etc.     7489.     Mar.  14. 

Wade  (Naaml.  Vennoots.  Philips  Gloeilampen- 
jfabr.).  Manufacture  of  bodies  from  metals  of  high 
inielting  point.     8630.     Mar.  24. 

Walter.  Desulphurising  iron.  8153.  Mar.  21. 
(Ger.,  28.4.21.) 

Wright.  Furnaces  for  heating,  melting,  etc. 
8267.     Mar.  22. 

Complete  Specifications  Accepted. 


25,788  (1920).   Cyclops  Steel  Co. 
Mar.  22. 


Alloys.   (151,981.) 


26,234  (1920).  Alexander  (Cobb  Electro  Reduc- 
ionCorp.).   Reduction  of  ores.   (176,819.)   Mar.  29. 

28,539  (1920).  Hamilton.  Treatment  of  sulphide 
nd  oxidised  ores.     (152,289.)     Mar.  22. 

30,508  (1920)  and  20,205-6  (1921).  Dyson  and 
litchison.  Purification  of  tungsten  ores  and  resi- 
.  ues  containing  oxides  of  tungsten.  (176,428  and 
76,729.)     Mar.  22. 


31,380  (1920). 
Iiambault     et 
lar.  29. 

36,255  (1920). 
impounds  fro 
76,918.)     Mar 


Soc.   Anon. 
Decazeville. 


de  Commentry-Four- 
Alloys.       (159,858.) 


Heat  treatment  of  steel. 


Collier.  Extraction  of  metallic 
i  blast  furnace  and  like  slags. 
29. 

1194  (1921).     Kubasta. 
76,576.)     Mar.  22. 

2918  (1921).  Low.  Soldering  aluminium. 
76,973.)     Mar.  29. 

3672  (1921).  Fairweather  (A vesta  Jernverks). 
roducing  silicon  -  manganese  chrome  -  steel. 
76,610.)     Mar.  22. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Barfield  and  Wild.  Electric  furnaces.  7366. 
Mar.  13. 

Cnlley  and  Mott.  Electric  accumulator.  8540. 
Mar.  24. 

Hancock  and  Hancock.  Electric  resistance 
furnaces.     8590.     Mar.  24. 

Hedley.  Materials  for  use  as  electric  conductors. 
8026.     Mar.  20. 

Soc.  Le  Carbone.  Electric  cells.  7621-2.  Mar.  15. 
(Fr.,  3.6.  and  9.12.21.) 

Voigt.     Electric   accumulators.     8191.     Mar.    21. 

Complete  Specifications  Accepted. 

35,620  (1920).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Electric  resistance  material. 
(176,905.)     Mar.  29. 

6505(1921).   Imbery.    Electric  furnaces.  (176,658.). 
Mar.  22. 

14,231  (1921).  Lodge  Fume  Co..  and  Stallard. 
Electrical  precipitation  apparatus.  (176,713.) 
Mar.  22. 

25,248  (1921).  Lodge  Fume  Co.  (Metallbank  u. 
Metallurgist-he  Ges.).  Electrical  gas  purification. 
(177.117.)     Mar.  29. 


XII.— FATS;     OILS;     WAXES. 

Applications. 

Bigginbotham.  Extracting  fats  from  organic 
tissues.     7325.     Mar.  13. 

McMullen.     7448.    See  XV. 
North.     7843.     See  XIX. 

Sizer.  Expressing  etc.  machines  for  treating  oil- 
bearing  material.     7640.     Mar.  16. 

Complete  Specifications  Accepted. 

35,382(1920).  Hey.  Removing  suspended  matter 
from  liquid  oils  and  solvents  containing  oils  in  solu- 
tion.    (176,540.)     Mar.  22. 

1460  (1921).  Chadbourne.  Manufacture  of 
(saponaceous  compositions.     (176,577.)     Mar.  22. 

XIII.— PAINTS;    PIGMENTS;    VARNISHES; 
RESINS. 

Applications. 

Barton,  and  Lead  Products  Synd.  Apparatus  for 
manufacture  of  lead  oxide.     8159.     Mar.  21. 

Hattori  and  Tsuboi.  Protective  coating  for  ships 
etc.     8094.     Mar.  20. 

Ishida.     Printing-ink.     8095.     Mar.  20. 

Complete  Specifications  Accepted. 

3898  (1921).  Cew  and  Marks.  Preparing  dilute 
solutions  of  rosin  soap.     (176,995.)     Mar.  29. 

4099  (1921).  Briggs.  Enamels.  (168,293.)  Mar.  29. 

35,150  (1921).  Mitchell.  Apparatus  for  making 
lithopone.     (177,123.)     Mar.  29. 

XIV— INDIA-RUBBER ;     GUTTA-PERCHA. 

Application. 

Dessau,  and  Plantation  Rubber  Manufacturing 
Co.     Printing  on  indiarubber.     8032.     Mar.  20. 


278  a 


PATENT    LIST. 


[April   15,   1922. 


Complete  Specifications  Accepted. 

36  459—36,460  (1920).  Traun's  Forschungslabora- 
toriiim  Gee.  Manufacture  of  rubber-like  sub- 
stances.    (156,118-9.)     Mar.  29. 


XV.— LEATHER;  BONE;  HORN;  GLUE. 

Applications. 

Imperial  Trust,  and  Schryver.     Manufacture  of 
gelatin  from  bones.     7627.     Mar.  15. 
°  McMullen.      Soft   soap   for  leather  tanners   and 
dressers.     7448.     Mar.  14. 

XVI.— SOILS;     FERTHJSERS. 

Application. 

Quinan.     Manufacture  of  superphosphate.    8480. 
Mar.  23. 


XVIII.— FERMENTATION   INDUSTRIES. 

Application. 
Ruymbeke.    Production  of  alcohol.    8367.    Mar.  22. 

Complete  Specification  Accepted. 

36,264  (1920).  Nathan-Institut.  Cooling  beer 
wort  and  separating  sludge  therefrom.  (155,847.) 
Mar.  29. 


2275  (1921).  Kestner.  Removal  of  dissolved 
oxygen  from  water.     (164,712.)     Mar.  29. 

6419  (1921).  Carpmael  (Bayer  u.  Co.).  Dis- 
infecting inseetieidal  and  fungicidal  compositions. 
(177,027.)    Mar.  29. 

23,005  (1921).  Thermokept  Products  Corp. 
Treating  vegetables  in  preparation  for  canning. 
(158,885.)     Mar.  29. 

XX.— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS. 

Applications. 

Boake,  Roberts,  and  Co.,  and  Durrans.  Per- 
fumes.    8448.     Mar.  23. 

Marks  (Bergel,  Chem.  Fabr.  Grunau,  and  Kalil- 
baum.  Chem.  Fabr.).  Production  of  an  anti- 
syphilis  substance.     8483.     Mar.  23. 

Complete  Specifications  Accepted. 

32,349  (1920).  Merck  and  Wolfes.  Preparation 
of  tr'opinone  monocarboxylic  acid  esters.  (153,917.) 
Mar.  29. 

3138  (1921).  Schering  Chem.  Fabr.  Manufac- 
ture of  a  diethylbarbituric  acid  compound. 
(158,558.)     Mar.   29. 

8343  (1921).  Mond  (Metallbank  u.  Metallurgist*? 
Ges  )  Evaporating,  concentrating,  and  drying 
solutions  of  urea.     (177,056.)     Mar.  29. 

16,526  (1921).  Merck,  Wolfes,  and  Maedw. 
Preparation  of  tropinone  monocarboxylic  acid 
esters.     (164,757.)     Mar.  22. 


XIX— FOODS;    WATER    PURIFICATION; 
SANITATION. 

Applications. 

Mocha  Manufacturing  Co.,  and  Wimbcrger. 
Flavouring  paste.     7646.     Mar.  16. 

North.  Separating  milk  fat  or  butter  oil  from 
milk  and  cream.     7843.     Mar.  17. 

O'Shaughnessy.  Treatment  of  sewage  liquor 
etc.     7983.     Mar.  18. 

Complete  Specifications  Accepted. 

25,485  (1920).  Springborn.  Treatment  of  peat 
muss  for  purifying  sewage,  effluents,  etc.  (17b,81b.) 
.Mar.  29. 

34  485  (1920).  Hartley  and  Hartley.  Purifica- 
tion'of  sewage.     (176,494.)     Mar.  22. 

34  709  and  34,710  (1920).  Roche,  TavroBSS, 
and  Martin.  Manufacture  of  condensed  milk. 
(176,508-9.)     Mar.  22. 

121  (1921).  Bleicken.  Apparatus  for  producing 
distilled  water.     (156,191.)     Mar.  29. 

2151  (1921).  Bolton  and  Mills.  Aerating  and 
circulating  sewage  etc     (176,957.)     Mar.  '2'.'. 


XXI —PHOTOGRAPHIC  MATERIALS   AND 
PROCESSES. 

Complete  Specification  Accepted. 

10,949  (1921).  Davies.  Means  for  use  in  th 
manufacture  of  photographic  papers.  (177,078.) 
Mar.  29. 


XXII.— EXPLOSIVES ;    MATCHES. 

Application. 

Vautin.  Separating  nitro-aromatic  compounds 
from  explosives  etc.     8167.     Mar.  21. 

XXIII.'— ANALYSIS. 

Application. 
Brown.     Bomb  calorimeters.     8468.     Mar.  38. 

Complete  Specifications  Accepted. 

1117  (1921).  Daynes,  and  Cambride  and  P«u 
Instrument  Co.  Detection  ant  measurement  o 
gases.     (176,574.)     Mar.  22. 

31,747-8       (1921).  Zeiss.  Refractometci 

(172,621-2).     Mar.  22. 


Vol.  XLI.,  No.  8.] 


ABSTRACTS 


[April  29,  1922. 


I.-GENERAL;  PLANT;  MACHINERY. 

Beat  transfer.    W.  H.  McAclams  and  T.  H.  Frost 
J.  Ind.  Eng.  Chem.,  1922,  14,  13—18. 

For  the  transfer  of  heat  from  a  fluid,  through  a 
solid  (as  a  metal  pipe),  and  to  a  fluid,  as,  for  in- 
stance, in  a  steam  condenser,  an  over-all  coefficient 
of  heat  transfer  cannot  be  adopted  without  the 
admission  of  serious  errors.  The  equation  for  heat 
transfer  contains  too  many  separate  variables  to 
allow  of  corrections  being  applied  to  one  single 
factor.  The  resistance  to  heat  transfer,  measured 
by  the  drop  in  temperature,  is  principally  located 
in  the  two  stationary  films  of  fluid  contiguous  to  tho 
two  surfaces  of  the  solid.  The  transfer  of  heat  by 
conduction  in  the  solid,  or  by  convection  in  the  body 
of  the  fluid  is  comparatively  rapid,  but  a  largo  re- 
sistance is  presented  by  the  feeble  conductivity  of 
the  stationary  film  of  fluid.  This  film  is  reduced  in 
thickness  and  resistance  by  an  increase  in  velocity 
of  the  fluid,  but  not  in  direct  proportion.  The  ex- 
pression,  conductivity /length,  cannot  be  used  in 
connexion  with  the  film,  as  its  thickness  is  always  an 
unknown  quantity.  Its  thickness  depends  on  the 
viscosity  of  the  fluid,  which  is  a  hyperbolic  function 
of  the  temperature.     Other  varying  factors  are,  in 

I  the  case  of  a  condensing  vapour,  the  amount  of 
(incondensable  gas  present,  the  cleanness  of  the  sur- 
face of  the  solid,  and  the  nature  of  the  fluid.  The 
coefficient  of  transfer  for  steam  was  found  to  be 
approximately  eight  times  that  for  benzene  vapour 
or  carbon  tetrachloride  vapour.  Formulae  are  given 
for  the  rate  of  transfer  from  steam  to  water  and 

(•tables  of  observations  on  the  heat  transfer  of 
vapours  and  the  thermal  conductivity  of  liquids. 

— H.  M. 

Hrai  interchangers;  Experiments  with .    F.  It. 

.    Biehowsky.  J.  Ind.  Eng.  Chem.,  1922,  14,  62—64. 

In  liquid  air  machines  and  other  refrigerators  the 
loss  of  efficiency  due  to  poor  thermal  insulation 
irdinarily  is  small  compared  with  that  due  to  poor 
linterchange.  The  efficiency  of  heat  interchange 
ras  studied  by  means  of  an  apparatus  consisting  of 
i  gas-conducting  tube,  0124  in.  in  internal  diam., 
Iirough  which  was  stretched  centrally  a  wire  of 
Wo    40  constantan.     Leads  of  No.  40  copper  wire 

■  ere  connected  with  the  ends  and  the  middle  of  the 
oiistantan  wire,  the  whole  forming  a  differential 
liernio-element  giving  the  temperature  of  the  gas 
t  these  points.     The  tube  was  immersed  in  a  bath 

liquid    air.     The    temperature    drop    per    unit 
ngth  of   tube  was   independent   of   the   pressure, 
iversely   proportional   to  the   rate   of   flow  of   gas 
irougli  the  tube,  and  proportional  to  the  tempera- 
ire  head  from  bath  to  incoming  gas.     A  formula 
given   by   which   it   is   possible  to   calculate   the 
ngth  of  tubing  necessary  for  an  ideal  interchanger 
given  thermal  efficiency.    The  results  accord  with 
actice     in     interchangers     of    the     best     design. 
quefiers  of  copper  tube,  flattened,  and  twisted  to 
able  it  to  stand  high   pressure  without  bulging, 
ly  give  an  efficiency  of  70  ,u  of  theory. — H.  M. 

fomobilr;  A  chemicalh/  controlled  .     G.  G. 

Brown.  J.  Ind.  Eng.  Chem.,  1922,  14,  6—12. 
ABOLINE  engine  was  set  up  in  the  laboratory  and 
inected  with  a  hydraulic  dynamometer,  a  speed 
icator,  and  means  for  determining  torque  and 
pressure  in  the  intake  manifold.  A  sampling 
e  in  the  exhaust  pipe  was  connected  with  an 
(at  apparatus.  The  results  of  experiments  are 
iressed  in  graphs  showing  the  effect  of  mixture 

■  eventration  and  compression  ratio  on  thermal 
1  iency,  the  intensity  and  velocity  of  combustion 
o  different    air-gasoline    mixtures,"   indicator   dia- 

nis   of  turbulent   and   quiet   mixtures,    and   the 


brake  horse-power  and  thermal  efficiencv  developed 
with  varying  temperature  of  air  and  mixture- 
concentration.  The  supply  of  air  becomes  less 
as  its  density  decreases  with  increase  in  tempera- 
ture, while  the  flow  of  gasoline  through  an  orifice 
increases  with  the  temperature.  The  influence  of 
turbulence  of  mixture  is  very  great  on  the  reaction 
velocity  of  the  mixture.  The  highest  efficiency  is 
attained  by  the  use  of  lean  mixtures.  It  was  found 
possible  to  construct  a  carburettor  in  which  the 
supply  of  mixture  was  automatically  controlled  bv 
the  suction  in  the  manifold  and  the  temperature  of 
the  exhaust  gases  so  as  to  make  for  the  greatest 
efficiency. — H.  M. 

Lubricators;  Mechanical .  A.  B.  Smith.   Diesel 

Engine  Users'  Assoc.,  10.2.22. 

Internal  combustion  engines  make  great  demands 
on  the  lubricator,  as  a  brief  stoppage  of  the  supplv 
may  result  in  piston  seizure  or  abrasion  of  working 
surfaces.  The  lubricant  should  be  supplied  in  the 
exact  quantity  necessary  only.  Sight  feed  under 
pressure  is  recommended.  Numerous  diagrams  of 
lubricators  are  given,  and  their  deficiencies  and 
advantages  discussed.  The  most  difficult  task  of 
the  lubricator  is  to  deliver  oil  in  small  quantities 
against  high  pressure. — H.  M. 

Patents. 
Evaporators  and  other  apparatus;  Apparatus  for 

reg ula t  ing  th e.  discharge  of  liquid  from .    The 

Gnscom-Kussell  Co.,   Assees.   of  J.   Price.     E  P 
158,858,  11.8.20.     Conv.,  9.2.20. 

The  object  is  to  maintain  a  fixed  ratio  between  the 
rates  of  flow  of  two  fluid  streams  such  as  the  supplv 
and  discharge  streams  of  an  evaporator.  A  valve 
controlling  one  of  the  streams  is  actuated  from  a 
diaphragm  arrangement  connected  with  two  Ven- 
turi  passages,  one  in  each  stream.  The  normal  and 
restricted  bores  of  the  Venturi  passages  may  be  so 
connected  with  the  diaphragm  arrangement  as  to 
set  up  on  opposite  sides  thereof  pressure  differen- 
tials corresponding  to  ttie  rates  of  flow,  or  the 
restricted  bores  only  may  be  connected  one  with 
each  side  of  a  single  diaphragm. — H.  H. 

Mixing   liquid   with   powdered  materials   continu- 
ously;   Apparatus    for   .      F.    W.    Edwards. 

E.P.  175,744,  19.11.20. 

A  powder-feeding  hopper  and  a  liquid-feeding 
roller  supply  the  constituents  to  one  or  more  rolls 
each  fitted  with  a  scraper,  and  a  worm  conveyer  is 
provided  for  discharging  the  mixture.  The  scrapers 
may  form  part  of  the  conveyer  casing. — H.  H. 

Fuel-distillation  and  steam-power  apparatus;  Plant 

comprisinq    ■ .      Merz   and    McLellan,    AY.    T. 

Bottomlev,    and    E.    G.    Weeks.      E.P.    175,800, 
3.12.20. 

Bleed  steam  or  exhaust  steam  from  a  steam-power 
unit  such  as  a  turbine  is  utilised  in  low-temperature 
carbonisation  plant,  and  passes  with  distillation 
gases  therefrom  through  heat-exchangers  in  which 
make-up  water  is  evaporated.  The  clean  make-up 
steam  thus  produced  is  introduced  into  the  power 
u'nlr  at  a  part  or  stage  working  at  a  pressure  sub- 
stantially equal  to  that  of  the  make-up  steam.  The 
steam  delivered  to  the  carbonisation  plant  may  first 
be  passed  through  a  low-pressure  high-temperature 
superheater. — H.  H. 

Low  temperature  distillation  [by  steam~\  of  solid  fuel 

[cuid];   Larqe   scale    power   production    by   . 

Merz  and  McLellan,  W.  T.  Bottomlev,  and  E.  G. 
Weeks.     E.P.  176,149,  3.12.20. 

In  the  process  described  in  E.P.  117,290  (J..  1918, 
499  A),  the  steam  bled  from  an  intermediate  stage 


280  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[April  29,  1022. 


or  the  exhaust  of  a  Bteam  engine  of  any  sort, 
instead  of  being  fouled  by  use  in  the  retort,  is  kept 
in  a  closed  circuit,  being  eventually  returned  to  the 
hot  well  and  boiler.  The  steam  used  for  distillation 
in  the  retort  is  produced  from  other  water  by  the 
condensation  of  the  bled  steam  in  a  heat  exchanger 
or  condenser  which  may  preferably  be  subdivided 
into  several  stages  so  that  the  counter-current  prin- 
ciple may  be  utilised.  The  retort  steam  is  then 
superheated  by  another  heat  exchanger  in  the  path 
of  the  retort  gases  and  by  a  low-pressure  high-tem- 
perature superheater  in  the  boiler  smoke-box.  The 
issuing  retort  gases  pass  through  the  heat  ex- 
changer last  mentioned,  then  through  a  water 
heater  for  the  boiler  feed  between  the  hot  well  and 
the  boiler,  then  to  a  cooler,  tar  collector,  and 
stripping  plant.  The  last-mentioned  heat  exchanger 
and  superheater  and  retort  may  be  by-passed  when 
it  is  desired  temporarily  to  put  the  retort  out  of 
commission. — B.  M.  V. 

Separation  of  gaseous  mixtures;  Centrifugal  means 

for    the    .      E.    N.    Mazza.      E.P.    175,840, 

21.12.20. 
As  a  development  of  the  processes  described  in  E.P. 
13,737  of  1911  and  147,189  (c/.  P.P.  430,621;  J., 
1911,  1366),  the  gaseous  mixture  is  subjected  to  suc- 
cessive centrifugings  in  the  same  apparatus,  the 
fractions  separated  at  each  stage  being  thus  en- 
riched in  or  deprived  of  certain  components  at  the 
succeeding  stages  without  necessitating  any  in- 
crease in  the  speed  of  the  drum,  or  in  the  velocity 
of  the  fluid  in  the  passages.  The  mixture  is  first 
admitted  to  a  zone  provided  with  a  screen  which 
diverts  it  towards  the  periphery  of  the  drum.  The 
lightest  products  pass  thence  to  a  second  zone  from 
which  they  are  discharged,  while  the  remaining 
heavier  portions  enter  an  annular  peripheral  zone 
in  which  a  second  centrifugal  separation  is  effected, 
and  so  on.  The  separated  fractions  are  discharged 
through  partitioned  compartments  of  a  stationary 
shell  surrounding  the  drum. — H.  H. 

Centrifugal   machines.      T.    Broadbent    and    Sons, 
Ltd.,  and  H.  Broadbent.    E.P.  176,186,  30.12.20. 

A  water-driven  centrifugal  machine  is  provided 
with  two  driving  jets,  one  for  maintaining  the 
speed  of  rotation  and  the  other  for  providing  the 
additional  power  for  accelerating,  and  these,  and 
the  brake,  are  provided  with  a  differential  valve  to 
give  the  following  method  of  working.  At  starting 
the  differential  valve  is  fully  raised  and  both  jets 
are  in  operation,  and  the  pressure  of  the  water 
supplied  to  the  maintaining  jet  prevents  the  brake 
Deing  applied.  After  a  certain  lapse  of  time,  deter- 
mined by  the  flow  of  water  into  a  tank  containing 
a  float  or  by  other  means,  the  differential  valve  is 
permitted  to  fall  half  way  and  cut  off  the  accelerat- 
ing jet.  After  a  further  lapse  of  time  the  differ- 
ential valve  is  permitted  to  fall  completely,  cutting 
off  all  power  and  permitting  the  application  of  the 
brake  either  by  hand  or  by  a  spring.— B.  M.  V. 

Disincrustants  and  apparatus  for  preparing  and 
continuously  introducing  the  same  into  steam 
boilers.  E.  C.  R.  Marks.  From  J.  Kobseff. 
E.P.  176,294,  6.10.21. 
The  disincrustant  is  an  emulsion  containing  the 
mucilaginous  constituents  but  not  the  oils  of  oil- 
liearing  seeds  such  as  those  of  flax  or  hemp,  and  is 
obtained  by  the  action  on  the  seeds  of  soda  and  con- 
densed steam.  To  the  seeds,  placed  in  a  perforated 
cylinder,  is  added  about  1  %  of  soda,  with  or  without 
the  further  addition  of  about  £%  of  starch.  Within 
the  cylinder  is  placed  a  perforated  tube  communi- 
cating by  a  valve-controlled  tube  with  the  water 
space  of  the  boiler,  and  around  the  cylinder  is 
arranged  a  casing,  formed  with  cooling  fins  on  its 


outer  surface  and  communicating  by  a  valve-con- 
trolled tube  with  the  steam  space  of  the  boiler 

— H.  H. 

Drying  of  liquids  and  semi-Hquids;  Apparatus  for 

.    J.  C.  Miller,  Assr.  to  The  Evaporating  and 

Drying  Machinery  Co.  U.S. P.  1,407,701,  28.2.22 
Appl.,  10.5.18. 

The  material  to  be  dried  is  fed  to  the  interior  of  a 
rapidly  rotating  cylinder  from  the  open  end  of 
which  it  is  flung  by  centrifugal  force  across  a  stream 
of  air  passing  in  the  space  between  the  cylinder  and 
a  surrounding  casing,  the  amount  of  air  being 
regulated  by  an  adjustable  annular  opening 

— B.  M.  V. 

Drying  materials;  Apparatus  for .     Method  of 

and  apparatus  for  drying  materials.  B.  S. 
Harrison,  Assr.  to  Carrier  Engineering  Corp. 
U.S. P.  (a)  1,408,456  and  (b)  1,408,457,  7.3.22. 
Appl.,  4.12.18. 

(a)  The  material  to  be  dried  is  treated  to  prevent 
oxidation  and  then  falls  downward  through  a 
chamber  where  it  meets  ascending  air,  the  tempera- 
ture of  which  is  controlled  both  before  entering, 
and  while  in,  the  chamber.  The  chamber  is  pro- 
vided with  means  for  controlling  the  temperature 
of,  and  providing  a  higher  relative  humidity  in, 
the  upper  portion,  (b)  Materials  such  as  sliced 
fruits  and  vegetables  are  subjected  to  drying  in  two 
different  zones,  the  first  having  a  temperature  of 
200°— 250°  F.  and  a  relative  humidity  of  20  to  30% 
and  the  second  zone  having  a  temperature  gradu- 
ally falling  from  160°  P.  and  a  relative  humidity 
falling  from  8%.— B.  M.  V. 

Drying  apparatus.  P.  C.  Stephens,  Assr.  to  The 
Wittemann  Co.  U.S.P.  1,408,483,  7.3.22.  Appl., 
14.5.18. 

Two  drying  drums  arranged  close  together  form  the 
bottom  of  a  receptacle  for  the  material  to  be  dried. 
The  receptacle  is  formed  with  side  and  end  walls, 
and  on  the  latter  are  mounted  arc-shaped  packing 
members  adapted  to  engage  the  curved  peripheries 
of  the  drums  and  adjustable  to  and  from  the  drums. 

— H.  H. 

Waste  furnace  gases;  Means  for  utilising  — — . 
G.  A.  Witte,  Assr.  to  International  Precipitation 
Co.  U.S.P.  1,407,717,  28.2.22.  Appl.,  8.4.19. 
A  boiler  is  formed  by  mounting  non-vertical  water 
tubes  in  a  casing  divided  by  vertical  walls  into  com- 
partments. An  external  connexion  is  provided 
from  the  lower  end  of  each  compartment  to  tbe 
upper  end  of  the  next  compartment.  The  hoi 
are  delivered  to  the  top  of  the  first  compartment 
and  pass  downwards  through  each  compartment  in 
turn  in  contact  with  the  water  tubes. — H.  H. 

Waste-heat    boiler    system    [for    cement    plant*} 
Waste-heat   boiler-cleaning  system.     J.   E.  Bell 
U.S.P.    (a)   1,408,972   and   (b)   1,408,973,   7.3.22 
Appl.,  19.10.20. 
(a)   A  elite   receives  hot  gases   from   a   number  0 
cement  kilns,  a  second  flue  is  provided  with  separat 
connexions  to  each   of   a  number   of  motor-drive 
exhausters,  and  a  number  of  waste-heat  boilers  ar 
connected  between  the  flues.    The  connexions  to  tli 
various  boilers  and  exhausters   are  adapted  to  b 
closed    separately   to    allow   of    any    one   boiler  i 
exhauster  being  cut  out  of  service,     (b)  The  systet 
includes  a  chamber  having  normally  a  high  dnni>il 
suction  and  a  second  chamber  having  normally 
somewhat   smaller   draught  suction.  ,A  valve-coi 
trolled  passage  is  provided  through  which  fluo  du 
accumulating  in  the  second  chamber  may  pass  in 
the  first  chamber  upon  opening  the  valve— H.  n 


Vol.  XLI.,  No.  8.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


281a 


Settling  and  thickening  device.     C.  Allen.     U.S. P. 

1.408.154,  28.2.22.     Appl.,  4.5.20. 

A  gravity  separator  or  thickener  comprises  an 
inverted  conical  vessel  having  a  discharge  orifice  at 
the  bottom  for  the  quickly  settling  heavy  particles. 
The  vessel  is  open  at  the  top  and  arranged  to  allow 
the  lighter  particles  to  overflow  at  the  rim.  Means 
are  provided  for  introducing  material  to  be  treated 
at  the  top  of  the  vessel.  A  perforated  pipe,  supplied 
with  water  in  such  a  manner  that  it  issues  from  the 
perforations  at  a  uniform  velocity,  is  placed  where 
plastic  masses  tend  to  form  and  so  prevents  their 
formation. — H.  S.  H. 

Grinding  circuit;  Closed  .     C.  Allen.     U.S. P. 

1.408.155,  28.2.22.     Appl.,  10.6.20. 

A  closed  grinding  circuit  includes  a  pulveriser,  an 
elevator  into  which  the  pulverised  material  dis- 
charges, and  a  classifying  and  de-watering  vessel  to 
1  receive  the  material  from  the  elevator.  The  classi- 
fying vessel  has  a  rim  overflow  for  the  light,  slowly 
settling  particles  and  a  discharge  orifice  at  the 
bottom  for  quickly  settling,  heavy  particles,  the 
discharge  being  controlled  as  required  by  changes 
in  density  of  the  material  in  the  vessel.  Means  are 
provided  for  returning  the  classified  and  de-watered 
material  to  the  pulveriser. — H.  S.  H. 

Heating   system.;   High   temperature   .      B.    S. 

Earrison,    Assr.    to   Carrier    Engineering   Corp. 
U.S.P.  1,408,458,  7.3.22.    Appl.,  18.9.20. 

An  oven  is  heated  by  a  medium  travelling  in  a 
'  closed  circuit  between  the  oven  and  a  heater,  and  is 
'  ventilated  by  a  fluid  heated  by  the  waste  heat  from 
j  the  heater.— B.  M.  V. 

Filter-press ;   Continuous  ■ .      Plauson's  Forsch- 

ungsinst.  G.m.b.H.    G.P.  342,018,  2.8.18.    Addn. 
to  337,731  (J.,  1922,  128  a). 

JIn  the  apparatus  described  in  the  chief  patent,  two 
ior  more  of  the  filter  elements  are  connected  to  form 
la  filter  block  so  that  the  porosity  of  the  filter  surface 
jean  be  varied  by  altering  the  pressure  on  the  plates. 

— L.  A.  C. 

Leaching  minerals;  Apparatus  for .     Soc.  Gen. 

d'Evaporation    Proc.   Prat-he   et  Bouillon.     E.P. 
161,159,  21.2.21.    Conv.,  30.3.20. 

See  U.S.P.  1,406,525  of  1922 ;  J.,  1922,  258  a. 

Organic  gases  or  vapours  of  organic  products;  Pro- 
cess for  separating  or  isolating .    Farbenfabr. 

vorm.   F.   Bayer  und  Oo.     E.P.   156,543,   5.1.21. 
Conv.,  3.11.16. 

'BE  G.P.  310,092  of  1916;  J.,  1921,  204  a. 
tills.    E.P.  175,666.    See  IIa. 


HA.-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

morphous  carbon;  Behaviour  of  on  heating 

with  sulphur.    Carbon  sulphides.    J.  P.  Wibaut. 
Rec.  Trav.  Chim.,  1922,  41,  153—171. 

ie  sulphur  content  of  coke   is  probably  derived 

mi    the    sulphur    originally    present    in    coal    as 

rites.     The  latter  decomposes  above  500°  C.,  and 

s  sulphur   that    is   liberated   combines  with    the 

rbon  to  form  a  sulphide  of  carbon  which  is  praeti- 

■jly  non-volatile  at  1000°  C.    The  author's  experi- 

"-,  nts  show  that  on  heating  carbon  with  sulphur  a 

I  jportion   of   the   latter   is   retained   by   the  solid 

<  bon  as  combined  sulphur,  the  percentage  so  re- 

1  ned  depending  on  the  nature  of  the  carbon  and 

1  its  surface.    Similar  compounds  are  formed  from 

bon  and  oxygen. — H.  J.  E. 


Oil-gas    hydrocarbon;    Compressed    .      A.    G. 

Burnell   and  R.   W.   Dawe.     Gas  J.,   1922,    157, 
640—642. 

1000  cub.  ft.  of  oil-gas  deposits  about  1  gall,  of 
hydrocarbon  liquid  in  the  tanks  into  which  the  gas 
is  forced  at  a  pressure  of  about  150  lb.  per  sq.  in. 
The  hydrocarbon  contains  a  large  proportion  of 
benzene  and  its  homologues.  It  cannot  be  used  as 
motor  spirit  because  it  leaves  a  gummy  deposit  on 
evaporation.  The  gummy  constituents  were  found 
to  be  present  in  all  fractions  of  the  hydrocarbon 
which  gave  a  high  bromine  value.  By  treatment  in 
a  still  with  anhydrous  aluminium  chloride,  under 
reflux  distillation,  a  satisfactory  motor  spirit  was 
produced.  The  contents  of  the  still  were  slowly 
raised  to  70°  C.  and  then  in  a  further  4—6  his.  to 
85°  C.  Then  fractional  distillation  was  carried  out, 
all  fractions  coming  off  below  140°  C.  being  washed 
with  soda.  The  cost  of  reagents  was  2Jd.  per 
finished  gallon.  The  distillate  was  liable  to  contain 
organic  chlorides  if  its  bromine  value  was  higher 
than  a  certain  figure.  The  loss  as  gas  was  7%,  and 
the  average  yield  of  motor  spirit  70%.  Diagrams 
show  the  distillation  points,  bromine  value,  and 
sp.  gr.  of  the  crude  and  refined  fractions. — H.  M. 

Shale-oil  residue;  'Relation  of  to  other  bitu- 
mens. C.  W.  Botkin.  Chem.  and  Met.  Eng., 
1922,  26,  445—448. 

A  detailed  comparison  of  the  physical  and  chemical 
properties  and  products  of  destructive  distillation 
of  the  residues  of  Colorado  and  Utah  shale-oils,  on 
the  one  hand,  and  of  gilsonite,  grahamite,  and 
asphalt,  petroleum  residues  and  rosin,  on  the  other, 
is  given.  The  resemblance  between  shale  oil  residue 
and  gilsonite  is  close,  and  suggests  that  this  natural 
bitumen  may  be  associated  with  oil  shale  in  its 
origin.  Asphalt  yields  much  less  oil  on  distillation. 
In  all  cases  an  increase  of  the  content  of  saturated 
hydrocarbons  takes  place  on  distillation,  due  to 
chemical  changes  and  accompanied  in  the  case  of 
rosin  by  the  formation  of  water.  In  the  case  of 
shale  oil  residue,  which  contains  2%  of  nitrogen, 
this  latter  is  largely  lost  on  distillation,  so  that  it 
may  be  inferred  that  the  compounds  decomposed 
contain  nitrogen. — C.  I. 

Petroleum;  Analyses  of  Czechoslovakian  .     F. 

Schulz.     Petroleum,  1922,  18,  321—323. 

Petroleum  from  Gbely  is  very  similar  to  some  types 
of  Louisiana  oil,  being  distinguished  by  a  fraction 
from  150°  to  200°  C.  having  an  odour  of  terpenes, 
which  is  due,  however,  not  to  terpenes,  but  to 
hydrocarbons  of  the  CnHg,-,  series.  The  oil  is 
rather  higher  in  sp.  gr.  than  Louisiana  oil  and  is 
optically  active.  It  contains  no  paraffin  wax.  On 
distillation  with  superheated  steam  the  flash  point 
of  the  distillate  and  of  the  residue  rises  very  slowly, 
and  the  residue  soon  attains  a  high  viscosity,  with- 
out the  formation  of  asphalt;  for  instance,  for  a  35% 
residue,  flash  point  232°  C,  viscosity  9'5°  Engler 
at  100°  C.  Hodonin  oil  is  identical  with  Gbely  oil. 
Oils  from  Bohuslavice,  Turzovka,  and  Mikova  re- 
semble the  best  Pennsylvanian  oils,  are  almost  free 
from  asphalt,  and  contain  only  0"025%  of  sulphur. 
At  300°  C.  the  residue  is  a  light,  transparent 
vaseline  of  setting  point  26°— 28°  C.  The  Mikova 
oil  differs  from  the  preceding  two  oils  in  containing 
rather  more  asphalt,  easily  separable  with  alcohol- 
ether.— H.  M. 

Mineral  oils;  Determination  of  aromatic  hydrocar- 
bons in  fractions  of  .     H.  I.  Waterman  and 

J.  N.  J.  Perquin.  Rec.  Trav.  Chim.,  1922,  41, 
192—198. 
The  "  aniline  point  "  method  described  by  Tizard 
and  Marshall  (J.,  1921,  20  t),  which  consists  in  not- 
ing the  temperature  at  which  a  mixture  of  equal 
volumes  of  aniline  and  the  hydrocarbon  separates 

a2 


282  a 


Cl.  nA.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[April  29,  1922. 


before  and  after  treatment  of  the  latter  with  98% 
sulphuric  acid,  is  considerably  affected  by  the 
nature  of  the  fraction  dealt  with.  Trial  mixtures 
containing  benzene,  naphthalene,  and  phenanthr- 
ene  gave  results  which  were  not  consistent  with  the 
amount  of  added  aromatic  hydrocarbon. — H.  J.  E. 

Paraffin    wax;   Influence    of   the    elements   of   the 

u.nini  n  group  un .  H.  Siebeneck.  Petroleum, 

L922,  18,  281—286. 

Paraffin*  wax  is  attacked  by  air  or  oxygen  when  the 
gas  is  bubbled  through  the  material  heated  to  about 
L35c  C  After  10  hrs.  acid  vapours  are  evolved, 
and  after  22  hrs.  the  product  contains  30 — 40%  of 
saponifiable  matter,  according  to  whether  air  or 
oxygen  is  used.  By  longer  treatment  a  product 
containing  52'65%  of  saponifiable  substances  was 
obtained,  having  an  acid  value  59'03  and  an  ester 
value  93'91,  corresponding  to  about  30  .  of  free, 
and  70%  of  esterified  acids.  The  acids  produced 
arc  saturated  fatty  acids,  and  the  volatile  portion 
of  the  product  consists  of  lower  members  of  the 
same  series  together  with  water,  and  amounts  in  all 
to  about  7  ;  of  the  paraffin  employed.  When  hard 
paraffin  is  heated  with  sulphur,  evolution  of  hydro- 
gen  sulphide  commences  at  150°  C,  and  at  230°  C. 
it  is  liberated  freely  together  with  carbon  bisulphide. 
After  treatment  lor  72  his.  at  this  temperature  a 
brownish-black  fatty  mass  remains  from  which  after 
extraction  with  carbon  bisulphide  followed  by  ether, 
an  amorphous  black  substance  is  obtained  contain- 
ing only  a  negligible  percentage  of  hydrogen,  and 
having  a  composition  closely  agreeing  with  the 
formula  (CSS)X.  The  substance  is  indifferent  to 
alkalis  and  organic  solvents,  but  is  attacked  by  con- 
centrated sulphuric  and  nitric  acids.  A  similar 
dehydrogenation  of  the  paraffin  was  produced  by 
the  action  of  selenium  and  tellurium,  hut  higher 
temperatures  were  necessary  (300° — 370°  C.)  and  no 
product  corresponding  to  the  sulphurised  paraffin 
could  be  isolated.  The  presence  of  small  quantities 
of  sulphur  or  selenium  apparently  completely 
inhibits  the  above-described  oxidation  of  hard 
paraffin.— G.  F.  M. 

Sulphuric  acid;   "Recovery  of  from   the   waste 

acid  of  petroleum  refineries.     A.  W.  Coster  van 
Voorhout,    Chem.  Weekblad,  1922,  19,  115—117. 

The  tarry,  viscous  acid  sludge  from  refining  is 
diluted  to  50°— 60°  B.  (sp.  gr.  153— 1-71)  with 
warm  water,  the  mixture  is  pumped  into  a  jacketed 
autoclave,  consisting  of  an  iron  inner  vessel  lined 
with  lead,  enclosed  by  a  similar  outer  lead-lined 
vessel  4  in.  larger  in  radius.  A  pressure  of  6 — 8  atm. 
is  established  in  the  inner  vessel  by  pumping  in  an 
indifferent  gas  such  as  carbon  dioxide,  and  the 
sludge  is  heated  to  200°— 220°  C.  for  2  hrs.  by  the 
introduction  of  superheated  steam  into  the  jacket. 
Xo  sulphur  dioxide  or  sulphur  trioxide  vapour  is 
formed  during  the  reaction.  The  lead  lining  is 
attacked  by  the  diluted  acid  at  about  180°  C  but 
is  easv  to  repair.  The  asphaltic  residue  may  be 
fractionally  distilled  for  the  recovery  of  oil.  500  g. 
of  sludge 'gave  191  g.  of  392 %  sulphuric  acid, 
31-8  g.  of  oil,  and  a  loss  of  121  g.  The  loss  may  be 
reduced  to  6—7%.  Another  sample  gave  703%  of 
very  viscous  soft  asphalt  and  273%  of  sulphuric 
acid.— H.  M. 

Chemically  controlled  automobile.    Brown.    See  I. 

Mechanical  lubricators.    Smith.    See  I. 

Patents. 

Drying  coal  or  other  material  in  a  granular  or 
percolatable    body    or   mass   form:    Method   and 

means  for  . '   T.  A.  Goskar.     E.P.   175,671, 

1.10.20  and  1-.7.1'1. 

The  material   is  dried   in   the   form   of   a   vertical 


column  in  a  chamber,  the  walls  of  which  are 
perforated  so  that  heated  air  or  gases  can  pass 
through  the  material  to  be  dried;  the  walls  of  the 
chamber  diverge  downwards,  and  the  heated  air 
or  gas  is  passed  by  induction.  The  whole  of  the 
material  may  be  heated  to  the  same  temperature, 
or  zones  of  graduated  temperature  may  be  produced 
by  arranging  a  series  of  superposed  chambers  above 
a  cold  air  chamber,  the  supply  of  cold  air  to  each 
chamber  being  automatically  controlled  by  pyro- 
meters or  other  suitable  means.  Several  columns 
of  material  may  be  disposed  in  one  apparatus,  hav- 
ing a  common  air  or  gas  supply.  The  material  may 
be  discharged  continuously  or  intermittently. 

—A.  R.  M. 

Combustible  materials;  Manufacture  of  from 

carbonaceous  solids  such  as  coals,  peats,  and  the 
like,  and  se.uaqe  and  trade  waste  activated 
sludges.  F.  S.  Sinnatt  and  W.  T.  Lockett.  E.P. 
176,053,  28.10.20. 

A  fuel  is  prepared  by  mixing  about  5%  (dry  basis) 
of  the  residue  obtained  in  aerobic  systems  of  purifi- 
cation of  sewage  and  trade  waste  or  in  aerobic 
treatment  of  humus,  and  containing  80 — 90%  of 
water,  with  a  solid  fuel  to  form  a  paste.  Water  is- 
removed  from  the  product  by  pressing  and  drying. 
The  coking  properties  of  coal  are  improved  by  the 
use  of  a  small  proportion  of  the  residue.  Larger 
proportions  of  the  residue  are  employed  when  the 
object  is  to  recover  ammonia  from  the  product. 

-H.  Hg. 

Fuel;  Process  of  forming .    D.  Markle.    U.S. P. 

1,407,700,  28.2.22.     Appl.,  22.3.20. 

A  homogeneous  non-cellular  carbonaceous  fuel  is 
prepared  by  mixing  not  less  than  60%  of  anthracite 
slack  with  not  more  than  40%  of  bituminous  coking 
coal,  grinding  the  mixture  till  85%  will  pass 
through  a  40-mesh  and  95%  through  a  20-mesh 
screen,  then  retorting  without  compacting  at  such 
a  temperature  that  the  bituminous  particles  will 
soften  and  lose  their  volatile  elements. — B.  M.  V. 

Peat;    Process    and    plant    for    the    generation   of 

mechanical     energy     from     raw     without 

previous  air-drying.       G.  Mees.       G.P.  341,973, 
4.12.20.     Addn'to  338,146  (J.,  1922,  4  a). 

Fluid  peat-pulp  is  passed  into  retorts  which  are  en 
constructed  as  to  act  also  as  presses,  and  60 — 70% 
of  the  water  is  extracted  and  passed  through  a 
water  purifier  to  a  steam  boiler.  The  partially 
dried  peat  is  then  forced  through  a  conduit  into  the 
gas  producer  charging  apparatus,  and  a  further 
quantity  of  water  is  liberated  as  steam,  which  is 
passed  either  directly  to  the  air  blast  or,  after 
passage  through  a  steam  jet  apparatus,  to  one  of 
the  turbines  used  for  supplying  the  preheated  air  to 
the  producers. — A.  G. 

Coke  ovens.    E.  C.  R.  Marks.    From  Soc.  des  Fours 
a   Coke   Semet-Solvav   et   Piette.     E.P.   175,902. 
1.3.21. 
To  ensure  the  minimum  quantity  of  free  oxygen  U 
the  waste  gases  from  a  coke  oven  setting  of  the  type 
described   in   E.P.    127.165   (J.,    1919,   493  a),  and, 
consequently,   the   maximum   of   heating  efficiency, 
provision  is  made  for  a  primary  admission  of  ga- 
at  the  base  of  the  vertical  flues  situated  on  one  side 
of  the  axis  of  the  battery  receiving  an  ev 
hot  air.  and  for  one  or  more  secondary  gas  lnlel 
in  that  part  of  the  horizontal  collecting  flue  which 
is   situated   on   the   other  side  of   the   axis  of  the 
battery.     The  air  still  in  excess  in  the  product*  Ot 
combustion  is  thereby  utilised  in  effecting  secondar- 
combustion  in  the  flues  leading  downwards  to  tne 
regenerators. — A.  R.  M. 


Vol.  XLI.,  No.  8.J 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


283  a 


Carbonising  coal  and  the  like.     G.  P.  Lewis.     E.P. 
175,670,  31.8.20. 

Coal,  lignite,  peat  or  the  like  is  dried,  powdered 
very  finely  and  intimately  mixed  with  a  suitable 
hydrocarbon,  tar-oil,  or  similar  liquid,  if  necessary 
with  addition  of  lime  to  neutralise  acidity,  and 
boric  compounds  to  prevent  clogging.  The  mobile 
liquid  mixture  is  passed  under  a  high  pressure  (not 
exceeding  25  atm.)  through  a  long  circuit  of  small- 
bore piping  heated  to  a  temperature  not  exceeding 
500°  C  and  is  then  injected  into  a  chamber  in 
which  the  greater  portion  of  the  liquid  is  vaporised, 
part  of  the  vapour  "  cracked,"  and  the  coal  etc. 
subjected  to  destructive  distillation.  The  products 
are  passed  to  condensers  to  recover  oils,  ammonia, 
etc.  After  the  greater  portion  of  the  liquid  has 
been  vaporised,  the  temperature  of  the  chamber 
may  be  raised  still  further,  whereby  additional 
quantities  of  oils  are  recovered,  and  the  residual 
semi-liquid  mass  is  suitable  for  use  as  a  binder  for 
briquettes  or  for  other  purposes,  or  after  still 
further  heating  for  forming  into  briquettes.  The 
briquettes  may  be  used  for  the  production  of  gas  by 
distillation  in  retorts  or  in  gas  producers. — A.  R.  M. 

Coking  of  coal.     S.  R.  Illingworth.     E.P.  175,888, 
2.2.21.     Addn.  to  164,104  (J.,  1921,  501  a). 

After  preheating  the  coal,  as  described  in  the  chief 
patent,  it  is  crushed  if  necessary  and  heated  to  a 
temperature  not  exceeding  600°  C,  and  preferably 
not  exceeding  500°  C,  which  treatment  produces  a 
hard  fuel,  concurrent  with  the  production  of  excel- 
lent yields  of  by-products.  A  good  metallurgical 
.  coke  may  be  made  from  this  product  by  further 
heating  to  900°— 1000°  C— A.  R.  M. 

'[Gas]    retort    settings;    Begencrativc    .       H. 

Koppers.     E.P.  175,778,  29.11.20. 

In  a  setting  for  horizontal  or  inclined  retorts,  two 
,  pairs  of  regenerators  are  provided  below  each  unit 
of    setting    containing     several     retorts,     running 
parallel  with  the  retorts.     The  pairs  of  regenerators 
are  reversible,    one    pair    acting    as   heat    accumu- 
lators, while  the  other  heats  the  gas  and  air,  the 
relative  functions  being  changed  over  periodically. 
Heating  flues  are  provided  between  the  retorts  and 
the  regenerators,  carrying  gas  and  air,  and  serving 
;o  conduct  the  waste  heat  to  the  accumulators  in 
hat  half  of  the  system  in  which  the  gases  travel 
owards  the  chimney.     In  general,  each  side  of  the 
et  has  two  flues  connected  with  one  regenerator 
ind  one  flue,  situated  between  these  two,  connected 
nth  the  other  regenerator.     If  rich  gas  from  the 
etorts  is  utilised,  it  is  introduced  through  the  roof 
f  the  setting  at  a  point  where  the  current  changes 
ts  direction  on  reversal  of  the  heating  operation; 
he  gas  burns  in  a  downward  direction,  and  is  not 
reheated.     By  means  of  damper-slides,  the  heating 
f  the  upper  row  of  retorts  in  a  set  may  be  elimi- 
ated  and  the   output   reduced  by-,   say,   one   half, 
ithout  loss  of  efficiency.     In  the  space  between  the 
>p  of  the  retorts  and  the  arched  roof,  water  heaters 
steam  generators  may  he  provided  to  make  use 
the  spare  heat.     To  facilitate  reduction  of  area 
burner  nozzles  when  changing  over  from  lean  to 
ch  gas,  the  burners  are  made  accessible  through 
spection  holes  in  the  front  face  of  the  setting. 

—A.  R.  M. 

><il-distillation  retort.  A.  Roberts,  Assr.  to 
American  Coke  and  Chemical  Co.  U.S. P. 
1,408,640,7.3.22.  Appl.,  15.9.16.  Renewed  13.2.20. 
IE  heating  walls  of  a  continuously  operated 
aered  vertical  retort  are  built  of  blocks  which  are 
:essed  in  their  centre  portions  and  laid  so  as  to 
)vide  a  series  of  interconnected  zig-zag  gas 
ssages.  Each  wall  is  divided  into  a  number  of 
lependent    horizontal    zone*,     and    fuel    gas    is 


supplied  through  a  number  of  nozzles,  each  with  an 
independent  control,  to  each  zone.  In  the  lower 
part  of  each  wall  there  are  passages  in  which  air  is 
preheated  and  from  which  it  is  delivered  to  points 
near  the  gas  nozzles. — H.  Hg. 

Coking  installation  with  internal  heating.  H. 
Freise.     G.P.  345,959,  19.3.21. 

Partitions  are  suspended  in  pairs  in  the  oven, 
and  are  provided  with  horizontal,  zigzag  passages 
for  the  heating  gas  on  the  outer  side,  whilst  on  the 
inner  sides,  enclosing  the  material  to  be  coked, 
there  are  vertical  knife-like  ribs,  between  which  are 
disposed  vertical  movable  knives. — A.  G. 

Gas;  Process  for   the   continuous  manufacture   of 

■ ■  in  vertical  retorts  or  chambers.     L.  Gumz. 

G.P.  346,941,  6.6.20. 

The  coal  is  not  fed  continuously  to  the  gasification 
zone,  but  at  intervals  of  half  an  hour,  and  the  zone 
is  heated,  in  its  upper  portion,  to  1200° — 1500°  C, 
whilst  the  lower  portion  is  heated  to  a  temperature 
increasing  in  the  downward  direction  to  1600° — 
1800°  C.  This  process  permits  the  continuous 
gasification  of  other  coals  than  English  gas  coals, 
which  were  the  only  coals  which  could  previously  be 
treated  thus. — A.  G. 

Pitch;  Apparatus  for  producing  high-boiling  oil  and 

coke   from  .     Gebr.   Siemens   und  Co.     G.P. 

344,709,  20.6.20. 

Several  retorts  are  connected  together  by  pipes  and 
with  a  supply  of  gaseous  fuel  by  pipes  and  valves, 
bo  that  any  desired  number  of  retorts  can  be  placed 
in  communication  with  the  source  of  gas,  whilst  hot 
exhausted  retorts  can  be  placed  in  the  path  of 
incoming  cold  air,  and  cold  filled  retorts  can  be 
heated  by  the  waste  gases. — D.  F.  T. 

670.?  producers  with  means  for  utilising  waste  heat. 
H.  Koppers.     E.P.  176,113,  29.11.20. 

The  shell  of  a  gas  producer  is  surrounded  by  a 
jacket  within  which  a  liquid  is  circulated  at  a 
sufficiently  high  temperature  to  prevent  condensa- 
tion of  water  within  the  shell  and  under  conditions 
which  avoid  generation  of  steam  within  the  jacket. 
The  liquid  may  be  a  heavy  oil  which  circulates 
through  the  tubes  of  a  steam  boiler,  or  it  may  be 
water  under  pressure.  In  the  latter  case  the  jacket 
is  connected  with  an  elevated  drum  provided  with 
a  steam  dome,  and  as  the  water  circulates  steam  is 
generated  in  the  drum  owing  to  the  reduction  in 
pressure.  The  water  level  within  the  drum  is  pre- 
served by  a  float  arrangement  and  the  steam 
generated  is  added  to  the  air  blast.  By  the  pro- 
vision of  suitable  valves  in  the  circulation  system 
the  jackets  of  several  producers  may  be  connected 
with  one  drum. — H.  Hg. 

Gas  producer.    F.  Siemens.    G.P.  344,698,  23.7.19. 

The  grate  of  the  producer  forms  an  arched  channel 
by  w-ay  of  which  steam  and  air  can  be  introduced; 
the  ashes  fall  through  the  arch  into  the  channel  and 
are  removed  at  its  two  ends.  By  this  device  the 
need  for  a  water  pit  and  walls  for  sealing  is  obviated 
and  only  one  door  is  necessary  in  the  side.  Such  a 
producer  can  bo  built  on  a  larger  scale  than  has 
been  possible  hitherto. — D.  F.  T. 

Gas  producer  with  shaft  of  rectangular  cross- 
si^  tiun  Akt.-Ges.  fiir  Brennstoffvergasung.  G.P. 
344,855,  30.11.17. 

The  producer  is  operated  by  internal  heating  and 
has  two  partitions  a  little  removed  from  each  of  two 
opposite  walls,  parallel  to  these  walls  and  extending 
from  the  top  of  the  producer  some  distance  down- 
wards. The  producer  gas  issues  from  a  connexion 
at  the  top  of  the  central  portion  of  the  chamber, 


284  a 


Cl.  Ha.—  FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[April  29,  1922. 


whilst  the  distillation  gases  leave  by  connexions  at 
the  top  of  the  two  side  "  pockets  "  formed  between 
the  walls  and  the  partitions. — D.  F.  T. 

Gases  from  gas  producers;  Process  for  the  treat- 
ment  of   .      Soc.   Franco-Beige   de   Fours   a 

Coke.     E.P.  160,151,  15.9.20.     Conv.,  11.3.20. 

Gas  from  a  producer  passes  through  a  heat  ex- 
changer into  a  condenser  wherein,  by  means  of 
water  sprays,  it  is  cooled  to  about  100°  C.  The 
water  removes  tar,  which  is  separated,  and  fixed 
ammonia  compounds  which  are  concentrated  by  re- 
circulation of  the  water.  The  gas  passes  forward 
through  a  centrifugal  tar  extractor,  a  closed 
saturator  containing  sulphuric  acid,  and  a  water 
scrubber.  The  water  from  the  condenser  passes 
into  a  vessel  wherein  the  air  blast  is  bubbled 
through  it  before  passing  through  the  heat  ex- 
changers. The  solution  in  the  saturator  is  heated 
by  means  of  steam  obtained  from  the  exhaust  of  the 
engines  driving  the  plant,  or  from  the  jacket  of  the 
producer,  and  superheated  if  necessary.  When 
this  6team  leaves  the  circulating  coil  in  the  satu- 
rator it  is  added  to  the  air  blast.  The  condenser 
water  is  re-circulated  after  being  cooled  by  the  air 
blast.  The  water  leaving  the  scrubber  is  used  for 
maintaining  the  volume  of  water  circulating 
through  the  condensers  and  as  feed  water  to  the 
jacket  of  the  producer. — H.  Hg. 

Gases;  Recovery  of  by-ziroducts  from  distillate . 

C.  S.  Lomax,  Assr.  to  American  Coke  and 
Chemical  Co.  U.S. P.  1,408,105,  28.2.22.  Appl.. 
22.12.19. 

Gas  from  a  carbonisation  process  is  delivered  from 
the  hot  main  into  a  tar-separator  without  reduction 
of  temperature,  passing  afterwards  through  a 
passage  or  flue  in  which  it  is  subjected  to  a  high 
potential  electric  current,  to  cause  precipitation  of 
suspended  particles  and  thence  to  an  ammonia 
saturator. — A.  R.  M. 

Gases;  Apparatus  for  purifying  and  treating  . 

H.  Hernu.  U.S. P.  1,408,736,  7.3.22.  Appl.,  2.7.20. 

Through  a  casing  which  is  divided  into  three  com- 
partments there  passes  a  rotary  shaft  which  is 
central  with  a  gas  inlet.  Near  the  gas  inlet  there 
is  mounted  on  the  shaft  a  tuibine  wheel  having 
staggered  blades,  a  circular  well  into  which  a  jet  of 
water  is  directed,  and  an  open  face.  Adjacent  to 
this  a  cage  with  an  open-work  periphery  and 
perforations  in  its  rear  face  is  fixed  on  the  shaft. 
Behind  the  cage  there  is  a  screening  wall  with  a 
central  gas  passage.  AVithin  the  chamber  formed 
by  this  wall  and  another  similar  wall  there  are  a 
number  of  perforated  discs  and  a  bowl-shaped  disc 
fixed  on  the  shaft.  Behind  this  chamber  an  exhaust 
and  drying  drum  is  mounted  on  the  shaft. — H.  Hg. 

OH    shales;    Process    for    the    treatment    of  - . 

Plauson's  Forschungsinst.  G.m.b.H.  G.P.  346,459, 
22.8.20. 

The  shale  is  finely  ground,  then  heated  in  presence 
of  steam  in  a  high-pressure  retort,  for  a  long  or 
short  time  at  200°— 450°  C.  and  a  pressure  of  1^50 
atm.  It  is  then  beaten  up  in  a  high-speed  mill  with 
a  large  quantity  of  water,  in  the  presence  or 
absence  of  emulsifying  agents,  or  solvents  for  oil, 
bitumen,  or  paraffin,  until  all,  or  nearly  all,  of  the 
oil  or  bitumen  is  extracted  as  an  emulsion.  The 
emulsion  is  filtered  in  a  filter-press  or  centrifuged 
to  remove  the  inorganic  portion  of  the  shale,  and 
is  then  treated,  either  by  heating,  acidifying,  or 
demulsification,  to  separate  the  oil  or  bitumen.  The 
process  permits  of  the  recovery  of  the  whole  of  the 
bitumen  (10 — 12%,  or  in  certain  cases  18%)  as  oil. 

—A.  G. 


Stills  [for  crude  oil].     P.  Mather.     E.P.   175,666, 
18.8.20. 

A  still  for  crude  oils,  particularly  topped  oils,  or 
other  liquids  consists  of  a  vertical  cylindrical  casing, 
within  and  concentric  with  which  is  a  cylindrical 
vapour  outlet  tube.  The  annular  space  between 
the  casing  and  vapour  outlet  tube  is  divided  by 
segmental  fittings  into  a  series  of  compartments 
forming  a  helical  channel,  each  compartment  being 
ended  by  a  weir,  over  which  the  liquid  to  be  distilled 
flows  into  the  next  lower  compartment.  The  bottom 
of  each  compartment  is  lower  at  the  edge  in  contact 
with  the  outer  casing,  and  rises  towards  the  vapour 
tube,  with  the  effect  that  the  liquid  in  the  com- 
partments of  the  channel  entirely  covers  the  surface 
of  the  outer  casing,  while  a  space  for  the  vapours 
formed  as  left  at  the  side  nearer  to  the  vapour  tube. 
The  exterior  surface  of  the  casing  is  heated  by 
annular  flues  connected  with  separate  combustion 
chambers,  in  which  liquid  fuel  or  gas  is  burned.  The 
crude  oil  is  supplied  continuously  to  the  still  at  the 
top,  and  the  temperature  is  regulated  6o  that  it 
increases  from  the  top  to  the  bottom  of  the  still. 
The  wall  of  the  vapour  tube  has  openings  to 
receive  the  vapour  from  the  compartments,  and 
the  vapour  tube  may  be  divided  into  several  parts, 
from  which  different  fractions  may  be  collected. 
The  waste  heat  from  the  flue  gases,  the  vapours, 
and  the  residue  may  be  employed  to  preheat  the 
crude  oil.  By  means  of  pipes  passing  through  the 
vapour  tube  superheated  steam  may  be  conducted 
to  the  compartments  of  the  still.  Partitions  divide 
different  sections  of  the  helical  channel,  and  doors 
are  provided  in  the  partitions,  by  which  connexion 
may  lie  made  between  the  sections  if  desired.  The 
vapours  from  the  divisions  of  the  vapour  tube  are 
conducted  to  dephlegmators  and  thence  to  con- 
densers, and  the  vapour  tube  itself  ma3'  be  packed 
to  serve  as  a  dephlegmator. — H.  M. 

(a,  b,  c)   Oils;  Apparatus  for  distilling  .     (d) 

Stills.      T.    E.    Robertson.      From    The    Power 
Specialty  Co.     E.P.  176,099—102,  26.11.20. 
(a)  An  oil  still  consists  of  a  heating  chamber  divided 
into  a  front  and  a  rear  compartment  by  a  wall,  the 
hot  gases  from  the  fire  passing  upwards  in  the  front 
chamber  and  downwards  in  the  rear  chamber,  and 
thence  to  the  flue  or  stack.     In  each  chamber  are 
banks,  each  of  two  sets  of  long  horizontal  tubes. 
The  two  vertical  sets  of  each  bank  are  connected  by 
headers  in  series  one  with  another,  and  the  two  sete 
of  each  bank  are  connected  in  multiple  with  the 
pipe  conveying  oil  to  the  bank.     The  oil  to  be  dis- 
tilled is  introduced  at  the  bottom  bank  of  tubes  in 
the    rear     chamber,     and     flows    upward     in    this 
chamber,  in  counter-current  to  the  hot  gases.  From 
the  rear  chamber  the  oil  passes  to  the  bottom  of  the 
banks  in  the  front  chamber   and  there  flows  upward 
in  the  same  direction  as  the  current  of  hot  gases. 
The  tubes  are  covered  with  corrugated  iron  cast- 
ings, which  serve  the  purpose  of  conveying  heat  to 
the  pipes  and  preventing  bulging  of  the  pipes.    The 
pipes  in  the  rear  chamber  are  of  relatively  small 
diameter.    The  bottom  bank,  or  lower  two  banks  hi 
the   front  chamber   are  covered   by   castings  with 
shallower   corrugations    than    those    of   the   upper 
banks,  with  the  effect  that,  these  rows  being  ex- 
posed to  the  fiercest  heat  of  the  fire,  less  heat  will 
be   conducted   to   the   pipes.      The    pipes   in   each 
chamber  are  supported  by   a   middle  wall,   and  by 
bars,  supported  by  the  side  walls,  under  each  ban  1< 
The  oil  passes  out  from  the  topmost  bank  in  tin 
front  chamber.      The   pipes   may   be   connected   in 
parallel  if  it  be  desired  that  the  oil  should  circulate 
more  slowly  through  the  still,     (b)  The  still  consisti 
of    a    lower    fire    chamber    and    an    upper   heating 
chamber.     The  fire  chamber  is  roofed  by  a  series  of 
transverse  steel   pipes  encased  in   firebrick  blocks 
The  heating  chamber  contains  a  number  of  trans- 


Vol.  XLI.,  No.  8.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


285  a 


verse  banks  of  steel  tubes  in  corrugated  cast  iron 
casings.  The  hot  gases  from  the  fire  after  passing 
along  the  fire  chamber,  rise  through  a  communi- 
cating passage  and  pass  back  along  the  upper  heat- 
ing chamber.  The  oil  to  be  distilled  is  introduced 
into  the  tubes  covering  the  lower  chamber  at  the 
end  furthest  from  the  fire,  and  passes  through  these 
tubes  in  series,  and  thence  to  the  first  bank  in  the 
path  of  the  hot  gases  in  the  upper  chamber,  and 
through  the  banks  in  that  chamber  in  series.  The 
ends  of  the  pipes  are  bare  of  casing  and  each  is  sup- 
ported by  a  rectangular  end  plate,  these  plates 
forming  the  walls  of  the  heating  chamber.  The 
pipes  are  joined  up  outside  the  plate  by  cast-steel 
headers,  and  the  ends  of  the  pipes  are  sufficiently 
long  to  allow  them  to  be  cut  off,  if  necessary,  and 
expanded  into  new  headers.  The  oil  at  any  point 
in  the  banks  of  pipes  may  be  withdrawn  through  a 
pipe  into  a  horizontal  separating  tank,  whence  the 
vapours  formed  up  to  that  point  may  be  withdrawn. 
The  still  is  adapted  for  use  in  the  topping  process, 
(c)  In  a  still  as  described  in  (a)  the  oil  from  the  top 
of  the  bank  of  pipes  in  the  front  chamber  is  led  to 
a  separator  for  removing  the  vapours  set  free  by 
heat,  the  unvaporised  oil  passing  to  a  receptacle. 
The  oil,  in  its  passage  through  the  pipes,  does  not, 
however,  give  off  all  the  vapours  which  it  should, 
and  volatile  constituents  are  carried  over  in  liquid 
form  to  the  separator.  Therefore  a  means  is  pro- 
vided for  returning  unvolatilised  oil  from  the 
separator  to  the  tubes  in  the  front  compartment,  to 
produce  cracking  and  a  larger  output  of  vapour. 
The  oil  to  be  returned  may  be  taken  from  the  upper 
and  lighter  layers  in  the  separator.  There  may  be 
an  auxiliary  separator,  in  the  upper  part  of  the 
main  separator,  in  which  the  separation  of  un- 
volatilised liquid  may  be  effected  by  means  of  baffle 
plates,  such  liquid  falling  to  the  bottom  of  the  main 
separator.  A  valve  between  the  banks  of  tubes  and 
the  separator  allows  a  higher  pressure  to  be  main- 
tained in  the  tubes  than  in  the  separator,  (d)  In 
stills  in  which  the  oil  is  subjected  to  a  gradually 
increasing  temperature  in  successive  banks  of  tubes 
|  or  heating  surfaces,  e.g.,  in  stills  similar  to  that 
j  described  in  (u),  the  oil  after  passing  through  each 
bank  of  tubes  is  conducted  to  a  separator.  Asso- 
ciated with  each  separator  is  a  pressure  control 
chamber  containing  a  valve   and  float,  so  that  if 

I  the  level  of  liquid  in  the  chamber  rises  to  a  certain 
extent,  as  when  an  obstruction  occurs  in  the  suc- 
ceeding bank  of  pipes,  the  outlet  of  gas  is  stopped, 
and  the  accumulating  pressure  forces  the  liquid 
through  the  next  bank. — H.  M. 

[Hydrocarbon]  oil;  Distillation  of .    A.  C.  Arm- 

|    strong.    U.S. P.  1,408,242,  28.2.22.    Appl.,  5.1.18. 

;The  vapour  from  hydrocarbons  is  passed  through  a 
(series  of  condensation  zones.  The  condensed 
liquid  from  some  of  the  zones  is  returned  for  re- 
listillation,  and  that  from  other  zones  escapes  by 
gravity  into  a  storage  zone,  against  a  pressure 
ligher  than  that  of  the  condensation  zones. 

— H.  M. 


'jvibricating  and  cylinder  oils;  Preparation  of . 

F.    C.    Thiele    and    C.    Cordes.      E.P.     154,895, 
12.11.20.    Conv.,  24.11.19. 

/Ubricating  and  cylinder  oils  of  high  viscosity  and 
ght  colour  are  prepared  from  dark  asphaltic 
etroleums  and  petroleum  residues  by  heating  the 
itter  to  200°— 300°  C.  in  an  upright  vessel  or 
igester,  provided  with  a  reflux  condenser  and  filled 
ith  a  substance  containing  hydrosilicates  or  hydro- 
licic  acid,  as  Florida  earth,  or  Kambara  earth, 
he  digester  is  heated  by  flue  gases,  and  the  tem- 
erature  should  not  exceed  300°  C.  After  heating 
r  several  hours  the  pale  oil  is  drawn  off  and  is 
lickened  in  a  still  by  means  of  dry  steam  and  a  low 
re.     The  thickened  oil  may  be  filtered  in  a  filter 


column  at  60°— 80°  C.  The  lrydrosilicatemaybe  used 
tor  successive  charges  of  crude  oil  if  it  be  washed 
from  adherent  oil  with  benzene  and  then  washed 
with  organic  solvents,  such  as  carbon  tetrachloride, 
carbon  bisulphide,  or  benzol,  and  dried  by  flue 
gases.  A  Wietze  crude  oil  containing  48%  of  con- 
stituents boiling  above  350°  C.  gave  by  treatment 
20—22%  of  pale  green  cylinder  oil  with  a  viscosity 
of  4°— 5°  and  a  flash  point  about  280°  C.  An 
analysis  of  the  pitch  compounds  absorbed  by  the 
hydrosihcate  gave  90%  of  cresol  compounds,  2%  of 
yellow  resinous  substances,  and  8%  of  dark  sul- 
phurous and  phosphoriferous  compounds.  On  oxida- 
tion in  the  air,  the  residue  forms  "  hard  asphalt." 

— H.  M. 

Lubricating  oils;  Process  for  obtaining  paraffin  and 

highly  viscous from  lignite  tar  and  shale  tar. 

E.  Erdmann.  E.P.  156,594,  6.1.21.  Conv., 
22.1.18. 

Shale  tar,  lignite  tar,  or  lignite  producer  tar  is 
treated  with  superheated  steam  till  the  lighter  con- 
stituents are  driven  off.  The  residue  is  mixed  with 
about  twice  its  volume  of  acetone,  and  cooled  to 
about  0°  C.  The  paraffin  contained  in  the  residue 
is  precipitated,  and  after  24  hrs.  may  be  filtered 
off  and  washed  with  acetone.  It  may  be  further 
purified  by  dissolving  in  an  indifferent  solvent, 
treating  with  sulphuric  acid  and  soda  lye,  and  pre- 
cipitating with  acetone.  From  the  residue  the 
lighter  oils  may  be  driven  off  by  steam  at  a 
temperature  of  200°— 250°  C,  leaving  lubricating 
oils  of  high  viscosity,  the  distillate  being  suitable 
for  motor  oil.  The  order  of  the  removal  of  the  light 
fractions  and  the  treatment  with  acetone  may  be 
reversed.  The  light  oils  may  be  removed  by  heating 
in  a  dry  vacuum  instead  of  treating  with  super- 
heated steam.  The  acetone  is  recovered  by  distilla- 
tion prior  to  the  removal  of  the  motor  oils. — H.  M. 

Lubricating    oils;    Process    for    obtaining    highly 

viscous from  peat  tar.     E.  Erdmann.     E.P. 

156,695,  7.1.21.  Conv.,  9.9.19.  Addition  to 
156,594  (cf.  supra). 

Peat  tar  is  mixed  with  about  an  equal  weight  of 
acetone  and  the  mixture  cooled  below  0°  C.  The 
precipitated  paraffin  may  be  filtered  off  and  washed 
with  acetone.  The  creosote  oils  may  also  be  re- 
moved from  the  tar  by  passing  the  filtrate  through 
a  washing  column  in  which  it  is  washed  with  a  23% 
aqueous  acetone  solution.  The  acetone  in  solution 
is  distilled  off  from  the  washed  oil  and  then  the 
more  volatile  oils  are  driven  off  by  treating  with 
superheated  steam  at  250°  C,  or  by  heating  in 
vacuo  to  a  temperature  below  250°  C.,  leaving  a 
residue  of  viscous  lubricating  oil. — H.  M. 

Hydrocarbon  oils;  Method  of  treating .     A.  S, 

Ramage,  Assr.  to  Bostaph  Engineering  Corp. 
U.S.P.  1,407,770,  28.2.22.     Appl.,  6.4.17. 

Hydrocarbon  oils  rich  in  defines  are  treated  with 
strong  sulphuric  iacid,  by  which  the  bulk  of  the 
olefines  are  converted  into  high-boiling  substances, 
with  formation  of  sulphuric  acid  derivatives  of 
olefines.  A  separation  of  these  products  is  effected 
by  dissolving  and  hydrolysing  the  sulphuric  acid 
derivatives  and  recovering  the  volatile  products  of 
the  hydrolysis  by  distillation. — H.  M. 

Low   boiling-point   hydrocarbons ;  Process  for   the 

continuous   production   of   from   petroleum 

oils.  R.  W.  Hanna,  Assr.  to  Standard  Oil  Co. 
of  California.  U.S.P.  1,408,698,  7.3.22.  Appl., 
22.12.19.     Renewed  22.10.21. 

Petroleum  oil  is  continuously  circulated  through  a 
closed  system  together  with  a  solvent  oil  of  lower 
boiling  point,  unaffected  by  the  cracking  tempera- 
ture and  pressure  which  is  maintained  in  the 
system.      The   vapour   from    the  cracked   oil   con- 


286  a 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &c.         Cl.   111.— TAR,  &c. 


[April  20,  1922. 


tinuously  passes  out  of  the  system,  and  the  heavy 
derivatives  from  the  cracked  oil  are  taken  up  by  the 
solvent  oil,  which  js  discharged  as  required,  to 
prevent  the  deposition  of  carbon  in  the  system. 

— H.  M. 

Wax-sweating  apparatus.     A.  Housholder.     U.S. P. 

1,408,200,  28.2.22.  Appl.,  16.7.19. 
The  apparatus  comprises  a  vertical  series  of  spaced 
independently  controlled  units,  each  comprising  a 
pan,  divided  by  a  perforated  partition  into  upper 
and  loner  compartments,  and  open-ended  heating 
Hues  extending  upward  from  the  bottom  of  each  pan 
and  terminating  in  the  space  above  the  same.  A 
c  hamber  which  can  be  heated  is  provided  beneath 
the  lowest  pan,  in  communication  with  the  flues. 

— H.  M. 

Petroleum  products;  Method  of  (a)  preparing  clay 
tor,  and  (b)  recovering  clay  used  in,  the  bleaching 

of  '■ .     C.  W.   Stratford.     U.S. P.  1.408,655-6, 

7.3.22.  Appl.,  21.3.21. 
(a)  The  crude  clay  and  acid  are  thoroughly  mixed 
by  passing  through  a  series  of  agitators ;  the 
mixture  is  then  passed  through  thickening  and 
washing  vessels  in  which  it  is  reduced  to  slime. 
The  slime  is  filtered,  and  the  filtrate  passed  back 
through  the  thickening  and  washing  vessels  as  a 
counter  current  to  the  flow  of  the  slime.  The 
filtered  clay  is  dried  and  crushed,  (b)  The  spent 
clay  is  agitated  with  naphtha,  the  mixture  reduced 
to  slime  in  thickening  and  washing  vessels,  the 
-lime  dried,  and  the  naphtha  distilled  off. — J.  B.  F. 

Gat     producers.     L.      Nelson.     U.S. P.      1,408,465, 
7.3.22.     Appl.,  15.11.17. 

See  E.P.  112,128  of  1917;  J.,  1919,  66  a. 

Burning  liquid  fuel  alone   or  in  conjunction   with 
solid    fuel    and    colloidal    mixtures;    Appliances 

[atomisers']  for  .     G.  U.  Morgan  and  G.  A. 

Clavey.     E.P.  175,785,  1.12.20  and  30.8.21. 

See  also  pages  (a)  279,  Fuel  distillation  and  stearn- 
poicer  apparatus  (E.P.  175,800  and  176,149).  288, 
Dyes  from  bitumen  (U.S.P.  1,409,083).  296,  Plastic 
composition  (U.S.P.  1,409,088).  300,  Lubricating 
oils  etc.  (G.P.  347,084).  301,  Paint  oil  (U.S.P. 
1,408,544). 

IIb— DESTRUCTIVE  DISTILLATION; 
HEATING;    LIGHTING. 

TT'oorf;  Effect  of  adding  various  chemicals  to  ■ 

previous  to  distillation.  L.  F.  Hawley.  J.  Ind. 
Eng.  Chem.,  1922,  14,  43—44. 

Distillation  trials  were  made  with  silver  maple 
and  oak  sawdust  briquetted  with  the  admixture  of 
a  solid  chemical  or  impregnated  with  the  chemical 
in  solution,  to  ascertain  the  effect  of  such 
admixture  on  the  yield  of  methyl  alcohol  and  acetic 
acid.  With  silver  birch  sawdust  phosphoric  acid 
had  very  little  effect.  Lime  gave  some  increase  in 
the  alcohol  production  and  considerably  less  acid 
yield.  10%  of  calcium  carbonate  gave  some  increase 
in  alcohol  and  undiminished  yield  of  acid.  1'5% 
of  sodium  carbonate  gave  an  increase  of  50%  in  the 
yield  of  alcohol  and  normal  yield  of  acid.  Rather 
larger  proportions  of  sodium  silicate  gave  a  similar 
result.  Magnesia  had  little  effect.  The  effect  of 
impregnating  blocks  of  wood  with  103%  of  sodium 
•  arbonate  was  to  give  50%  more  alcohol  with  no 
decrease  in  acid  yield.  (Cf.  J.,  1921,  763  a.)— H.  M. 

i'.os  burners;  Design  of  atmospheric  .     W.  M. 

Berry,  I.  V.  Brumbaugh,  G.  F.  Moulton,  and 
G.  B.  Shawn.  U.S.  Bureau  of  Standards,  Techno- 
logic Paper  No.  193,  1921.     62  pages. 

Amongst  the  points  investigated  were  the  theory  of 


flow  of  gas  through  different  types  of  orifices,  the 
principles  governing  the  rate  of  entrainment  of 
primary  air  by  the  jet  of  gas  issuing  from  the  orifice, 
the  design  of  the  injecting  tube,  the  gas  consump- 
tion of  burners  of  different  port  areas  or  burner 
head  orifices,  and  the  effect  of  adjustment  of  the  air 
shutter  provided  for  regulating  the  amount  of 
primary  air  injected.  The  type6  of  orifices  investi- 
gated include  sharp-edge  orifices  with  angles  of 
approach  to  the  orifice  ranging  from  8°  to  90°  and 
various  channel  orifices  provided  with  various 
angles  of  approach  and  lengths  of  channel.  The 
discharge  coefficient  of  a  sharp-edge  orifice  with  a 
given  angle  of  approach  is  a  constant  for  ordinary 
sizes  of  gas  orifices  and  over  the  customary  range  of 
pressures.  A  curious  anomaly  is  shown  by  the 
values  of  the  discharge  coefficient  in  the  case  of  a 
channel  orifice  of  0221  in.  diameter.  As  the  length 
of  channel  increases  from  zero,  the  discharge  co- 
efficient increases  initially,  attains  a  maximum 
value,  and  thereafter  decreases.  For  any  give* 
burner  the  ratio  between  the  momentum  of  the  gas 
stream  and  the  momentum  of  the  air-gas  mixture 
entering  the  burner  is  a  constant.  The  relations 
deduced  from  the  experimental  results  enable  the 
volume  of  air  injected  by  a  gas  of  known  specific 
gravity  issuing  from  an  orifice  under  a  given 
pressure  to  be  readily  calculated.  The  injector  tube 
affording  the  optimum  injector  action  is  constructed 
so  that  the  lines  of  approach  to  the  inlet  approach 
gradually  to  the  outlet.  The  curvature  of  the 
approach  should  be  not  less  than  3  in.  radius  for  a 
§-in.  throat,  other  sizes  being  proportioned  about 
the  same.  The  outlet  angle  should  be  about  2°.  Tin- 
area  of  the  injector  throat  should  be  about  43  ot 
the  area  of  the  burner  ports.  The  relative  injecting 
powers  of  other  designs  of  tubes  are  tabulated. 
The  openings  for  the  injection  of  primary  air  should 
be  of  such  area  that  the  velocity  of  the  air  thereat 
is  not  greater  than  4  or  5  ft.  per  second. — J.  S.  G.  T. 

Patents. 

Charcoal    for    decolorising    and    other    pur 

Manufacture    of    .       K.    Eberhardt.       G.P. 

347,695,  11.6.20. 
Residues  containing  mineral  matter  and  a  high 
percentage  of  carbon,  obtained  by  treating  with 
acids,  nitrogenous  or  albuminous  material,  or 
material  containing  carbohydrates,  are  distilled  in 
the  absence  of  air  yielding  fats  and  oils,  ammonia, 
hydrocarbons,  and  illuminating  gas,  in  addition  to 
charcoal. — L.  A.  C. 

Bituminous  fuels;  Process  for  extracting  arid  dis- 
tilling   .  Maschinenfabr.  Augsburg-Niirnberg 

A.-G.  G.P.  347,805,  28.9.19. 
The  fuel,  freed  from  moisture,  is  continuously  ex- 
ti acted  with,  e.g..  hot  benzene,  whereby  the  hygro- 
scopic moisture  and  light  hydrocarbons  are  ex- 
tracted, and  the  residue  is  treated  with  super- 
heated steam  for  the  production  of  low-temperature 
tar.— A.  G. 


III.-TAH  AND  TAB  PRODUCTS. 

Tar;  Continuous  distillation  of with 

small  daily  outputs.  C.  Ab-der-Halden.  Chim. 
ct  Ind.,  1922,  7,  226—234. 
The  author's  system,  which  is  now  working  at  two 
French  gas  works  distilling  respectively  5  andle 
tons  per  24  hrs.,  is  intended  chiefly  for  handling 
limited  quantities.  The  tar  is  filtered,  settled,  and 
dehydrated.  It  then  passes  through  a  column  still 
heated  by  a  coal  fire  or  by  gas  at  the  bottom  and 
fed  with  suoerheated  steam.  With  a  maximum  in- 
ternal temperature  of  200°  C,  distillation  i- 


Vol.  XIX,  Xo.  8.] 


Cl.  IV.— colouring  matters  and  dyes. 


287  a 


plete  and  pitch  flows  out  at  the  bottom.  The  dis- 
tillation products  are  fractionally  condensed,  the 
creosote  in  the  tubes  of  the  dehydrator  and  the 
lighter  products  with  water  cooling.  Obstruction 
ot  the  tar  feed  pipe  is  guarded  against  by  filtration, 
while,  since  the  regulation  of  the  distillation  pro- 
ducts is  thermometries,  variations  in  the  viscosity 
of  the  tar  can  be  compensated  for.  This  method  of 
control  also  makes  special  skill  on  the  part  of  the 
operative  unnecessary.  It  is  claimed  that  the 
fractionation  is  particularly  good  and  the  products 
clean.  The  coal  consumption  is  4'5%,  or  including 
that  required  for  raising  steam  11 %. — C.  I. 

rhenoh:  Sensitive  test  for  .     J.  Moir.     J.  S. 

Afr.  Chem.  Inst.,  1922,  5,  8—9. 

The  solution  to  be  tested  is  treated  with  5  c.c.  of 
/-mtraniline  hydrochloride  solution  (p-nitraniline 
log.,  -hydrochloric  acid  40,  water  500  c.c.),  de- 
colorised previously  by  the  addition  of  sodium 
nitrite  solution.  If  much  phenol  is  present,  an 
orange-coloured  precipitate  forms.  The  mixture  is 
then  rendered  alkaline  with  sodium  hydroxide;  a 
salmon-pink  to  ruby-red  coloration  is  obtained 
according  to  the  quantity  of  phenol  present. 
Phenol  itself  may  be  distinguished  from  cresols  etc. 
by  the  fact  that  the  solution  coloured  salmon-pink 
shows  a  broad  absorption  band  at  A.494.  The  sensi- 
tiveness of  the  test  is  1:1,000,000.— W.  P.  S. 

Dimethylaniline,;  Electrochemical  oxidation,  of . 

F.  Fichter  and  E.  Rothenberger.  Helv.  Chilli. 
Acta,  1922,  5,  166—181. 

Dimethylanilixe  is  oxidised  to  tetramethylbenzi- 
dine  at  a  lead  anode  in  2N  sulphuric  acid  solution, 
but  the  yield  is  poor  owing  to  formation  of  carbon 
dioxide,  nitrogen,  some  carbon  monoxide,  and 
formaldehyde,  which  last  condenses  with  unoxi- 
dised  base  to  form  tetramethyldiaminodiphenyl- 
methane.  If  platinum  electrodes  are  used  for  the 
oxidation,  the  benzidine  is  accompanied  by  what  is 
probably  the  oxide  of  ja-dimethylaminophenol, 
since  it  decomposes  on  distillation  into  trimethyl- 
phenyl-p-phcnylenediamine.  Tetra  -  ethylbenzidine 
is  almost  the  sole  product  of  the  oxidation  of 
diethylamide  at  a  lead  peroxide  anode.  (Cf. 
J.C.S.,  April.)— J.  K. 

Patents. 

Tnr  ete;  Device  for  the  dehydration  of  .     H. 

Mandutz  and  M.  Wohlleben.  G.P.  347.232, 
17.7.17. 

The  tar  is  caused  to  flow  over  a  series  of  heated, 
inclined  plates  arranged  baffle-fashion  in  a  closed 
chamber.— D.  F.  T. 

Tor  acids;  Process  for  the  separation  of  solid  

from  tar  oils.    O.  T.  Otto.     G.P.  348,149,  18.5.21. 

Aqueous  solutions  of  salts  are  introduced  into  the 
oil  which  is  heated  above  the  boiling  point  of  the 
solvent,  and  are  thoroughly  admixed  with  the  oil 
by  stirring  or  other  mechanical  means,  until  the 
solvent  is  vaporised.  The  quantity  of  salt  solution 
is  so  limited  that  the  solvent  is  evaporated  by  the 
■  xcess  heat  of  the  oil,  the  salt  being  deposited  in 
the  oil  as  finely  divided  solid  matter.  The  phenol 
particles  react  with  the  salt  crystals  and  collect  on 
the  surface  of  the  crystals  as  flakes  and  can  thus 
)e  separated  from  the  oil,  and  collected  on  the 
lottom  of  the  container. — A.  G. 

hlorotoluenes  [,•  Separation  of ].     Soc.  Anon. 

des  Matieres  Colorantes  et  Prod.  Chim.  de  St. 
Denis,  and  A.  R.  Wahl.  E.P.  159,837,  3.3.21. 
Conv.,  6.3.20. 

-Chlorotoluene  is  much  more  readily  sulphonated 
'ian  the  p-compound,  and  advantage  is  taken  of 
'  lis  to  effect  a  separation  of  the  two  chlorotoluenes 


from  the  mixture  obtained  by  the  catalytic  chlorina- 
tion  of  toluene.  For  example,  if  40  pts.  of  chloro- 
toluenes is  treated  with  75  pts.  of  93%  sulphuric 
acid  at  114° — 115°  C.  for  2£  hrs.,  and  the  operation 
is  then  interrupted  and  the  supernatant  oil 
separated,  the  sulphonic  acid  obtained  is  almost 
entirely  that  of  the  o-chlorotoluene,  which  can  be 
recovered  by  hydrolysis.  On  the  other  hand,  if  the 
sulphonation  is  continued  until  the  whole  of  the 
o-derivative  and  only  a  small  proportion  of  the 
^-derivative  is  sulphonated,  the  unsulphonated  oil 
consists  of  p-chlorotoluene  of  97%  purity  and  may 
amount  to  as  much  as  95%  of  the  p-derivative  con- 
tained in  the  original  mixture. — G.  F.  M. 

Ortho  sulphonic  acids  of  aromatic  amines;  Manu- 
facture  of  .     British  Dyestuffs  Corp.,  Ltd., 

J.    Baddiley,    J.    B.    Payman,    and   H.    Wignall. 
E.P.  175,019,  3.11.20. 

Primary  aromatic  amines  are  treated  with  chloro- 
sulphonic  acid  in  presence  of  a  suitable  solvent, 
preferably  tetrachloroethane,  and  the  sulphonation 
is  completed  by  heating.  Sometimes  a  chloro-sulph- 
onate  separates  out  as  an  intermediate  product,  and 
may,  if  desired,  be  collected  by  filtration  and 
treated  further  in  the  absence  of  a  solvent. 
Example.  121  g.  of  as-Hi-xylidine  is  dissolved  in 
500  g.  of  tetrachloroethane,  and  122  g.  of  chloro- 
sulphonic  acid  is  added  with  agitation,  the  tempera- 
ture being  allowed  to  rise  to  80°  C.  The  mixture 
is  then  gradually  heated  to  the  boiling  point,  and 
boiling  under  a  reflux  condenser  is  continued  until 
the  evolution  of  hydrogen  chloride  ceases.  After 
cooling,  the  «s-m-xylidine-5-sulphonic  acid  is 
extracted  from  the  reaction  mixture  with  aqueous 
alkali,  and  the  free  acid  isolated  by  precipitation 
with  hydrochloric  acid. — G.  F.  M. 

Lubricating  oils.     E.P.   156,594  and  156,695.     See 
IIa. 

Oil  and  coke  from  pitch.     G.P.  344,709.     See  IIa. 


IV.-COLOUfiING  MATTEDS  AND  DYES. 

Leucoindiijos;   Acylated  and    alkylated   .      E. 

Grandmougin.     Comptes  rend.,  1922,   174,  758 — 

760. 
When  methyl  sulphate  acts  on  a  solution  of  Indigo 
White  kept"  alkaline  throughout  the  reaction  an 
O-dimethylindigotin,  m.p.  252°  C,  is  obtained, 
which,  on  oxidation  with  nitrous  acid,  yields 
indigotin  again,  and  with  chromic  acid  gives  isatin. 
Acylation  under  similar  conditions  must  also  give 
O-acylated  derivatives,  but  during  their  oxidation 
the  acyl  group  migrates  from  the  oxygen  to  the 
nitrogen  of  the  indigotin  and  the  stable  ketonic 
form  of  indigotin  results. — W.  G. 

Triphenylmcthane  dyestuffs;  So-called  peroxidation 

products  of  leuco-derivatives  of  .     F.   Keur- 

maiiii,  G.  Rov,  and  M.  Ramm.  Helv.  Chim. 
Acta,  1922,  5,  153—157. 
The  poor  yields  and  unsatisfactory  products  often 
obtained  by  the  oxidation  of  the  leuco-derivatiyes 
of  triphenylmethane  dyestuffs  with  lead  peroxide 
are  shown  to  be  due  to  formation  of,  for  example, 
benzoic  acid  and  tetramethyldiphenoquinone- 
imonium  salts  from  Malachite  Green,  and  a  similar 
product  from  Brilliant  Green.  The  same  salts  with 
carbon  dioxide  are  respectively  obtained  from 
Michler's  hvdrol  and  its  tetraethyl  analogue.  The 
formation  o"f  a  dinitro-derivative  from  tetramethyl- 
benzidine  by  the  action  of  dilute  nitric  acid  or 
nitrous  acid  is  preceded  by  that  of  the  above 
imonium  salt.     (Cf.  J.C.S.,  April.)— J.  K. 


288  a 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[April  29,  1922. 


Colour   and    constitution.      VIII.      F.    Kehrniann. 

Helv.   Chim.   Acta,   1922,   5,   158—163.     (C/.   J., 

1921,  539  a.) 
The  colour  of  basic  nitrogen  compounds  is  lightened 
by  salt  formation  if  this  destroys  the  unsaturated 
condition,  and  intensified  if  this  persists  (as  in  the 
cases  of  Auramine  base,  azo  compounds,  azo- 
methines,  and  members  of  the  quinoline,  pyridine, 
acridine,  phenazine,  etc.  series).  If  no  change 
occurs  in  the  degree  of  saturation  (for  example, 
ammonium,  imonium,  cyclonium,  and  diazonium 
compounds),  the  colour  is  unchanged.  Similar 
generalisations  apply  to  basic  sulphur  and  oxygen 
compounds,  as  far  as  our  present  knowledge  permits 
judgment.  The  group  .CH:CH.  is  in  this  respect 
apparently  analogous  to  the  azo-group.  These 
rules  appiv  equallv  to  6alt-formation  from  pseudo- 
bases.     (Cf.  J.C.S.,  April.)— J.  K. 

Permeability    of   dead    membranes    [fo    dyestuffs]; 
Influence  of  the  hydrogen  ion  concentration  on    i 

the  ,  on  the  adsorption  by  protein-sols,  and 

on  the  metabolic  interchange  of  cells  and  tissues. 
A.  Bethe.  Biochem.  Zeits.,  1922,  127,  18—33. 
The  diffusion  of  acid  dyestuffs  through  parchment 
is  accelerated  in  acid  solution  and  depressed  in 
alkaline  solution,  whilst  the  reverse  is  true  for  basic 
dyestuffs.  If  the  dyestuffs  be  allowed  to  diffuse 
into  a  protein  solution,  for  instance,  milk,  gelatin, 
or  serum,  there  is  preferential  distribution  of  the 
dyestuff  in  the  protein  solution  if  an  acid  dyestuff 
be  dissolved  in  acid  solution  and  the  basic  dyestuff 
in  alkaline  solution.  The  process  can  be  reversed 
by  adding  alkali  or  acid.  The  analogy  is  extended 
to  vital  staining,  where  the  hydrogen  ion  concentra- 
tion is  assumed  to  play  an  essential  role. — H.  K. 

Patents. 

Ortho[]nitlioxy]azo    dyes.      W.    Herzberg    and    O. 

Scharfenberg,  Assrs.  to  Act.-Ges.  fur  Anilin-Fabr. 

U.S.P.  1,408,297,  28.2.22.     Appl.,  5.11.21. 
Claim  is  made  to  an  o-hydroxyazo  dye  obtained  by 
coupling       3.4.6-trichloro-2-diazo-l-hydroxybenzene 
with  l-acetylamino-S-hydroxynaphthalene-4-sul- 

phonic  acid.  The  sodium  salt  of  the  dyestuff  is  a 
dark  powder  soluble  in  water  with  blue  colour.  By 
addition  of  sodium  carbonate  and  caustic  6oda,  the 
aqueous  solution  becomes  red  and  yellowish-red 
respectively ;  by  addition  of  an  acid,  a  violet-red 
precipitate  is  'formed.  The  dyestuff  yields  blue 
shades  of  excellent  fastness  on  chromed  wool  or  on 
unmordanted  wool  by  means  of  the  meta-chrome 
and  top-chroming  methods. — A.  J.  H. 

Ortho[hydroxy-]monoazo   dyes.      W.   Lange,    Assr. 

to  Act.-Ges.  fiir  Anilin-Fabr.     U.S.P.  1,408,363, 

28.2.22.  Appl.,  5.11.21. 
Monoazo  dvestuffs  are  claimed  having  the  general 
formula  OH.C6H,.(4)(6)(N02)2.(2)N,.CtH:.(2)OH, 
(3)XHR,(5)CH3  (R  =  acidic  group),  which  are 
derived  from  diazotised  picramic  acid  and  2-R- 
amino-4-methylphenol.  The  sodium  salts  of  the 
dyestuffs  are  dark  powders  soluble  in  hot  water 
thereby  vielding  brown  solutions  which  become 
redder  on'  addition  of  caustic  soda,  and  from  which 
bv  addition  of  an  acid  the  dyestuffs  are  precipitated 
as  brown  flakes.  The  dyestuffs  dissolve  in  concen- 
trated sulphuric  acid  with  a  red-brown  colour. 

—A.  J.  H. 

Azo  dyes.  B.  Schoner  and  O.  Siebert,  Assrs.  to 
Act.-Ges,  fur  Anilin-Fabr.  U.S.P.  1,408,405, 
28.2.22.     Appl.,  30.8.21. 

An   azo   dvestuff    is   claimed,    having    the   formula 
NHC.HJO.CBH..(2)OCH,...(5)S03H...(4)N?. 

"  (l)C1„H,(2)NH2...(6)SO,H...(8)OH. 
It  is  a  dark  powder,  soluble  in  water,  the  solution 


dyeing  wool  a  bluish  red.  It  is  less  soluble  in 
alcohol,  insoluble  in  ether  and  benzene. — A.  J.  H. 

Dye  and  process  of  producing  dyes  [from  bitumen] 
H.  H.  Culmer.  U.S.P.  1,409,083,  7.3.22.  Appl., 
29.9.17. 

The  products  obtained  by  the  destructive  distilla- 
tion of  asphaltic  bitumens  are  acidified  to  precipi- 
tate dye  materials,  which  are  then  separated  from 
oil  and  acid  and  subsequently  dissolved  in  a  solvent 
or  carrier. — L.  A.  C. 


V.-FIBfiES;  TEXTILES;  CELLULOSE; 
PAPER. 

Typha  domingensis;  Digestion  of [for  paper 

palp].   E.  Heuser  and  J.  Haugerod.   Papierfabr., 
1922,  20,  253—262. 

Typha  domingensis  is  a  rush  growing  in  marshy 
tracts  to  a  height  of  4  m.,  principally  in  South 
America.  The  raw  material,  in  the  form  of  stems 
and  leaves,  was  prepared  for  treatment  by  drying 
and  chopping.  Analysis  showed :  Crude  cellulose, 
45-1;  ash,  4'09;  silica,  0112;  fat  and  wax,  947; 
"  wood  gum,"  44'31 ;  pentosans,  18'25%.  On  diges- 
tion with  7'5%  of  lime,  under  2 — 3  atm.  pressure,  it 
yielded  80%  of  a  brown  pulp  similar  to  straw  pulp 
and  suitable  for  making  strawboards  or  for  mixing 
with  wood  pulps  for  wrapping  papers.  Owing  to 
the  large  proportion  of  pith  tissue,  this  pulp  was 
''  self-sized  "  by  the  gelatinous  products.  By  the 
sulphate  process  of  digestion,  the  cellulose  pulps 
obtained  were  not  suitable  for  the  manufacture  of 
fine  white  papers  owing  to  the  heterogeneous  nature 
of  the  raw  material.  The  losses  of  cellular  residues 
were  large,  and  splinters  of  insufficiently  digested 
fibre-bundles  were  present.  The  most  favourable 
conditions  were  obtained  by  digesting  the  material 
with  12  times  its  weight  of  a  liquor  containing 
9"04  g.  of  sodium  hydroxide  and  4'5  g.  of  sodium 
sulphide  per  litre.  The  yield  of  washed  pulp  was 
431%.  This  pulp  contained  too  many  splinters  to 
be  used  in  the  unbleached  condition,  but  after 
bleaching  with  5%  of  chlorine  it  was  suitable  for 
the  manufacture  of  cream  or  yellowish  papers  ol 
medium  quality,  preferably  in  admixture  with 
stronger  materials.  These  results  were  obtained  by 
digestion  for  4  hrs.  with  a  maximum  temperature 
of  153°  C,  but  it  would  be  preferable  to  boil  for  a 
longer  time  at  a  somewhat  lower  temperature.  The 
dimensions  of  the  bast  fibres  range  from  0'8  to 
1'65  mm.  in  length  (occasionally  up  to  4'2  mm.)  and 
from  30  to  55fi  in  thickness';  numerous  cellular 
residues  are  present. — J.  F.  B. 

Cellulose;  New  process  for  the  manufacture  of 

and  the  bleaching  of  pulp  with  chlorine.  De 
Perdiguier.  Chim.  et  Ind.,  1922,  7,  238—243. 
Early  attempts  to  apply  the  action  of  chlorine  t< 
the  bleaching  of  straw-pulp  etc.  in  the  paper 
industry  ended  in  failure  owing  chiefly  to  defects  m 
the  quality  of  the  fibre  produced.  The  chlorination 
of  the  noii-cellulosic  constituents  of  pulp  is  a  sub- 
stitution action,  with  liberation  of  an  equivalent 
quantity  of  hydrochloric  acid,  and  it  is  to  this  by- 
product, which  under  the  conditions  of  treatment 
attained  a  considerable  concentration  and  a!?» 
became  heated,  that  the  damage  to  the  fibre  w«8 
due.  The  de  Vains  process  overcomes  this  dirBcuhy 
bv  the  use  of  an  aqueous  solution  of  chlorine.  TM 
straw  or  other  raw  material,  with  8—9%  of  ' 
weight  of  soda  and  4  times  its  weight  of  water,  >- 
heated  for  2  hrs.  at  a  pressure  of  2  kg.  per  sq.  cm. 
and  for  2  hrs.  at  4  kg.  per  sq.  cm.  It  is  then  washed 
with  hot  water,  afterwards  with  cold  water  and 
reduced  to  half-stuff.  This  is  pumped  into  a 
chlorinating    vessel     which     is     also     fed    with     > 


Vol.  XLL.  No.  8] 


Cu  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


289  a 


regulated  continuous  supply  of  chlorine  water.  The 
pulp  is  then  treated  with  dilute  soda  solution, 
washed,  and  the  bleaching  completed  with  a  solu- 
tion of  bleaching  powder.  The  whole  process  is 
mechanically  operated  and  requires  only  one 
attendant.  Six  factories  having  a  total  output  of 
100  ton9  per  day  are  in  course  of  erection  to  work 
this  process,  using  straw,  alfa  (esparto),  rice-straw, 
and  bamboo  as  raw  material. — C.  I. 

Cellulose;    Alleged    adsorption    of    alumina    from 

aluminium  sulphate  solutions  by .   A.  Tingle. 

J.  Ind.  Eng.  Chem.,  1922,  14,  198—199. 

Neither  acid-washed  filter  paper  nor  well  washed 
bleached  sulphite  pulp  removes  any  analytically 
appreciable  amounts  of  alumina  from  a  basic  solu- 
tion of  aluminium  sulphate  and  the  observed  with- 
drawal of  alumina  from  solutions  of  the  sulphate  in 
presence  of  cellulose  is  due  to  chemical  precipitation 
by  non-cellulose  material  present  as  an  impurity. 
In  no  case  could  adsorption  of  alumina  by  cellulose 
of  reasonable  purity  be  observed.  Methods  of 
investigation  which  depend  on  attempts  to  separate 
aluminium  salts  from  cellulose  by  repeated  washing 
can  only  be  employed  when  great  caution  is  used 
as  to  the  nature  of  the  materials,  and  when  basic 
solutions  are  in  question  they  can  never  he  trusted, 
as  mere  dilution  of  a  basic  aluminium  sulphate  solu- 
tion, for  example,  will  cause  precipitation. 

— G.  F.  M. 

Cellulose.    Karrer  and  Smirnoff.     See  XVII. 


Penetrability  of  filter  paper. 
See  XXIII. 

Patents. 


Griffin  and  Parish. 


L.  M. 


Silk  and  other  fibres:  Weiahtinn  of  — 
Wohlgemuth.    G.P.  312,301,  1.9.16. 

Kidees  are  weighted  by  first  impregnating  them 
with  the  hydroxide  of  a  metal  such  as  boron, 
zirconium,  titanium,  or  thorium,  or  a  basic  metallic 
silicate  and  then  treating  them  with  solutions  con- 
taining salts  capable  of  forming  adsorption  com- 
pounds with  the  hydroxide  on  the  fibres.  For 
example,  silk  is  weighted  with  a  zirconium-zinc  ad- 
sorption compound  by  impregnating  it  with  a  solu- 
tion containing  zirconium  chloride,  steaming  or 
treating  with  alkalis  to  precipitate  zirconium 
hydroxide,  and  then  treating  with  a  basic  solution 
of  zinc  sulphate.  The  process  enables  fibres  to  he 
weighted  with  metals  for  which  they  have  but  little 
affinity.— A.  J.  H. 

Wool,  fur,  and  the  like;  Process  for  the  protection 

of from  moths.    Farbenfabr.  vorm.  F.  Bayer 

und  Co.    G.P.  344,266,  14.5.18,  and  344,596-8,  7, 
14,  and  16.1.19. 

The  wool  or  fur  is  treated  with  a  solution  of  the 

Eotecting  agent  in  cold  or  hot  water,  benzene, 
nzine,  carbon  tetrachloride,  etc.,  or  is  sprinkled 
th  such  a  solution.  In  addition  to  the  compounds 
nentioned  previously  (cf.  E.P.  173,536;  J.,  1922, 
138a),  the  following  may  be  used: — phenol-p-sul- 
)honic  acid,  nitro-p-toluic  acid,  acetylphenylamino- 
icetic  acid,  p-cresocinic  acid,  1-aminonaphthalene- 
!.6.8-trisulphonic  acid,  benzenesulphonic  acids, 
litro-  and  chloro-benzenesulphonic  acids,  amino- 
lenzenesulphonic  acids,  their  N-alkyl  or  acyl  de- 
rivatives, aminophenolsulphonic  acids,  the  corre- 
ponding  carboxylic  acids  or  the  corresponding  de- 
ivatives  of  naphthalene,  anthracene,  anthraquin- 
■ne,  diphenyl,  ditolyl,  stilbene,  diphenylmethane, 
enzophenone,  quinoline,  acridine,  carbazole,  and 
arboxylic  acids  in  which  the  COOH  group  occurs  in 
he  side  chain  of  aromatic  or  heterocyclic  com- 
ounds,  as,  e.g.,  phenylacetic  acid  or  benzilic  acid, 
'he  same  effect  is  produced  with  aromatic  halogen- 
ree  compounds,  which  are  only  slightly  soluble  or 
i soluble  in  water. — A.  G. 


Nitrocellulose  solution;  Process  of  spinning  . 

R.  Haddan.  From  Fabr.  de  Soie  Artificielle  de 
Tubize.     E.P.  157,220,  8.1.21. 

In  the  manufacture  of  artificial  silk,  hair,  films, 
etc.,  a  solution  of  nitrocellulose  in  alcohol  and 
ether  is  forced  through  an  orifice  and  immediately 
(without  previous  contact  with  air)  coagulated  in 
a  bath  containing  sulphuric  acid  of  30—65% 
according  to  the  moisture  content  of  the  nitro- 
cellulose solution.  The  coagulating  bath  is  prefer- 
ably 40  cm.  in  length,  and  the  winding  bobbins 
may  also  be  directly  sprinkled  with  acid  of  the  same 
strength.  Coagulation  of  the  cellulose  solution 
takes  place  quickly,  and  the  products,  after  wash- 
ing and  drying,  have  a  high  lustre.  The  alcohol, 
ether,  and  acid  are  recovered  by  distillation  of  the 
coagulating  solution.  The  process  is  suitable  for 
coagulating  solutions  of  nitrocellulose  containing 
other  solvents,  such  as  acetone  and  ethyl  acetate. 

—A.  J.  H. 

Cellulose  acetate  products;  Treatment  of  [to 

increase  their  affinity  for  dycstnffs].  British 
Cellulose  and  Chemical  Mfg.  Co.,  Ltd.,  and  L.  G. 
Richardson.  E.P.  (a)  175,485  and  (b)  175,486, 
18.12.20. 

(a)  The  superficial  saponification  of  cellulose  acetate 
threads,  particularly  those  made  from  cellulose 
acetates  lower  than  the  triacetate  (cf.  E.P.  169,741 ; 
J.,  1921,  808  a)  is  more  readily  controlled  if  the 
saponifying  bath  contains  up  to  5%  (preferably 
1 — 2%)  of  an  alkali  salt  of  a  strong  mineral  acid, 
e.g.,  sodium  chloride  or  sulphate,  part  of  which 
may,  if  desired,  be  replaced  by  sodium  acetate  or 
other  agents  (cf.  infra)  having  a  controlling  effect 
on  saponification,  (b)  Alkali  salts  which  appear  to 
dissociate  in  dilute  aqueous  solution  into  free  alkali 
and  acid,  e.g.,  alkali  silicates,  aluminates,  borates, 
are  used  either  alone  or  in  conjunction  with  other 
hydrolysing  agents  to  effect  the  superficial  saponifi- 
cation of  cellulose  acetate  products,  previous  to  or 
concurrent  with  dyeing.  Sodium  silicate  is  prefer- 
ably used  at  a  concentration  of  about  6  lb.  of  sodium 
silicate  (sp.  gr.  T70)  per  100  galls,  of  water,  and 
in  such  quantity  that,  when  the  saponification  has 
reached  the  desired  limit,  the  residual  alkali  is 
sufficient  to  keep  the  whole  of  the  silicic  acid  in 
solution,  a  safe  ratio  of  residual  alkali  (NaOH)  to 
total  silica  (SiO„)  being  40:100.  The  alkalinity  of 
the  bath  may  be  subsequently  restored  by  the  addi- 
tion of  the  calculated  quantity  of  caustic  soda. 

— D.  J.  N. 

Cellulose  acetate  products;  Treatment  of  [to 

prepare  them  for  dyeing'].  British  Cellulose  and 
Chemical  Mfg.  Co.,  Ltd.,  and  L.  G.  Richardson. 
E.P.  176,034,  28.9.20. 
In  preparing  cellulose  acetate  for  dyeing  by  the 
partial  alkaline  saponification  process  (E.P. 
169,741  ;  J.,  1921,  808  a)  the  accumulation  of  sodium 
acetate  which  occurs  in  the  saponification  bath 
intensifies  or  controls  the  saponification  process, 
and  also  enables  level  dyeing  of  the  saponified  pro- 
ducts to  be  more  easily  obtained.  Hence  small 
quantities,  up  to  about  5%,  but  preferably  1—2%, 
of  sodium  acetate  are  added  to  the  bath  at  the 
commencement  of  the  saponification  process. 

—A.  J.  H. 

Artificial     textile     filaments     of    organic     origin; 

Manufacture  and  treatment  of  [to  render 

them  fireproof  and  waterproof].  W.  P.  Dreaper. 
E.P.  175,746,  19.11.20. 
Artificial  silk  filaments,  before  being  converted 
into  "staple  fibre,"  are  impregnated  with  fire- 
proofing  compounds,  e.g.,  metallic  tungstates;  this 
treatment  may,  if  desired,  be  such  that  the  fila- 
ments are  rendered  both  fireproof  and  waterproof. 
A   suitable   impregnating   solution    is  obtained   by 


290  a 


Cl.    VI.— BLEACHING ;    DYEING;     PRINTING;     FINISHING. 


[April  29,  1022. 


diluting  to  the  required  degree  a  mixture  of 
100  pts.  of  aluminium  acetate  solution  (sp.  gr.  1'13), 
10  pts.  of  acetic  acid  (sp.  gr.  L06),  and  200  pts.  of 
sodium  tungstate  solution  (sp.  gr.  1'40);  aluminium 
acetate  added  in  excess  of  this  quantity  acts  as  a 
waterproofing  agent. — D.  J.  N. 

Viscose;  Manufacture  of  artificial  poods  from . 

M.    Luft.      U.S. P.    1,407,696,    28.2.22.      Appl., 
9.3.20. 

Acids  derived  from  naphthenes  are  added  to 
viscose  solutions. — D.  J.  N. 

Cellulose  solution.  AV.  T.  Scheele,  Assr.  to  H.  M. 
Specht.  U.S. P.  1,408,035,  28.2.22.  Appl.,  24.11.20. 

A  solution  comprising  copal  and  cellulose  acetate 
dissolved  in  a  ketone  having  a  boiling  point  between 
80°  and  227°  C— A.  de  W. 

Cellulose-ester  plastic.  J.  M.  Kessler,  Assr.  to 
E.  I.  du  Pont  de  Nemours  and  Co.  U.S. P. 
1,408,095,  28.2.22.     Appl.,  26.11.19. 

The  composition  is  formed  from  a  cellulose  ester 
and  a  softening  agent  comprising  an  alkyl  ester 
of  an  acyloxycarbocyelie  acid. — B.  M.  V. 

Cellulose-ester  composition.  B.  E.  Eldrcd,  Assr.  to 
Chemical  Development  Co.  U.S. P.  1,408,423, 
28.2.22.     Appl.,   14.2.18. 

A  cellulose  ester  is  dissolved  in  a  water-soluble 
olefine  chlorhydrin  containing  water. — D.  J.  N. 

Cork ;  Process  of  manufacture  of  slabs  of  compressed 

.     E.  Hornstein.     U.S. P.  1,407,655,  21.2.22. 

Appl.,  13.7.14. 

Thin  sheets  of  compressed  cork  are  superimposed 
to  form  a  slab  of  the  desired  thickness,  heated  to 
incipient  decomposition,  and  subjected  to  pressure. 
(C/.  Ost,  J.,  1918,  409  a.)— D.  J.  N. 

Sulphite-cellulose  waste  liquor;  Utilisation  of  the 
free    sulphurous   acid   and    that    combined    with 

lignin     present     in ■        E.     Miirbe.       G.P. 

344,955,  21.1.14. 

The  sulphite-cellulose  waste  liquors  are  led  from  the 
digester  into  a  separator,  to  which  is  attached  a 
condenser  through  which  the  vapours  and  free 
sulphur  dioxide  are  drawn.  The  condensed  aqueous 
liquid  thus  obtained  and  the  free  sulphur  dioxide 
are  then  cooled  to  about  25°  C,  led  together  into  a 
mixing  chamber,  and  sufficient  water  added  so  that 
almost  complete  .absorption  of  the  sulphur  dioxide 
is  effected  and  a  pure  3%  solution  of  this  gas  thus 
obtained.  Any  unabsorbed  sulphur  dioxide  is  led 
to  an  absorption  tower.  A  further  quantity  of 
sulphur  dioxide  (20 — 25%  of  the  amount  present 
in  the  original  sulphite  liquor)  is  recovered  by 
concentrating  the  lye  in  an  autoclave  at  200° — 
210°  C.  under  a  pressure  of  about  20  atm.,  whereby 
lignin  is  precipitated  and  the  combined  sulphur 
dioxide  set  free. — A.  J.  H. 

Sizing  paper.    G.P.  347,014.    See  VI. 


VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Mordanting  of  ivool;  Use  of  alumina  as  a  substitute 

for    tin    in    the    .      H.    Grosheintz.      Sealed 

Note  1066,  16.11.1898.  Bull.  Soc.  Ind.  Mulhouse, 
1921,  87,  574.  Report  by  P.  Gerlinger,  ibid.,  575. 
Wool  which  lias  been  mordanted  with  aluminium 
instead  of  tin  salts  is  more  absorbent  and  gives 
heavier  shades  when  dyed.  In  the  process  of  mor- 
danting, woollen  fabric,  bleached  or  partially 
blenched,    is   given   four   ends   in   a  jig  continuing 


2  kg.  of  bleaching  powder  (7%),  100  g.  of  aluminium 
sulphate  crystals,  200  g.  of  sulphuric  acid  of  66°  B. 
(sp.  gr.  184),  and  250  1.  of  water,  and  is  then, 
without  washing,  given  a  further  four  ends  in  a 
jig  containing  1  kg.  of  sodium  bisulphite  of  30°  B. 
(sp.  gr.  1"26)  and  the  minimum  quantity  of  water. 
After  remaining  "  batched-up  "  for  about  J  hr.  the 
fabric  is  thoroughly  washed  and  dried.  Gerlinger 
suggests  that  the  increased  absorbent  power  of  the 
wool  is  due  to  the  action  of  the  active  chlorine, 
and  that  modern  methods  for  chlorinating  wool 
would  probably  be  much  more  effective. — A.  J.  H. 

Discharging  basic  dyestuffs;  Method  for  ■ with 

Hydrosulphite  N.F.  and  Leucotrope.  J.  Pokorny. 
Sealed  Note  2200,  30.7.13.  Bull.  Soc.  Ind.  Mul- 
house, 1921,  87,  572.  Report  by  M.  Battegay, 
ibid.,  573. 

The  addition  of  Leucotrope  O  to  a  discharge  paste 
containing  Hydrosulphite  N.F.  cone,  enables  satis- 
factory white  and  coloured  discharges  to  be  obtained 
i    on  coloured   grounds   produced  by  means  of  basic 
dyes      and      a      tannin-antimony      mordant.      For 
'    example,  fabrics  dyed  with  New  Methylene  Blue  N, 
Thionine  Blue,   and  other   dyestuffs  which  cannot 
I   be   discharged   satisfactorily   by    means   of   Hydro- 
sulphite N.F.  alone,  are  perfectly  discharged  when 
printed    with    a    paste    containing    Hydrosulphite 
N.F.  cone,  and  50  g.  of  Leucotrope  U  per  kg.  of 
paste,  steamed  for  4 — 6  mins.  in  a  small  Mather- 
.Platt,   washed,   and  then  soaped.     Leucotrope  W, 
'    anthraquinone,    etc.,    may    be    employed    as    sub- 
j    stitutes   for   Leucotrope  O.      Battegay   points   out 
I   that  the  process  may  be  of  special  value  when  vat 
dyes  sensitive  to  caustic  soda  but  not  to  Leuco- 
trope O  are  used  in  the  discharge  paste. — A.  J.  H. 

Fastness  of  dyes  to  gases  and  the  detection  of 
formaldehyde.  P.  Heermann.  Textilber.,  1922, 
3,  101—102. 

[  Experiments  have  been  made  with  the  object  of 
I  discovering  a  reliable  method  for  detecting  formal- 
dehyde under  similar  conditions  to  those  described 
by  Ristenpart  (J.,  1921,  505  a)  in  which  dyed  fabrics 
were  discoloured  by  formaldehyde  vapours  arising 
from  the  cardboard  boxes  in  which  the  fabrics  were 
stored.  When  immersed  in  Schiff's  reagent,  paper 
containing  formaldehyde  products  gave  a  red 
j  colour  within  a  few  seconds,  while  pure  textile 
materials  produced  no  immediate  colour  although 
after  prolonged  immersion,  a  bluish-red  colour  was 
produced.  Many  common  papers  and  paper  pulps 
which  contained  no  formaldehyde  yielded,  within 
half  an  hour  and  under  the  same  conditions, 
distinct  red  colorations,  but  these  were  probabh 
due  to  the  activity  of  the  aldehyde  groups  present 
I  in  the  lignin,  although  the  colorations  were  not 
proportional  to  the  amount  of  lignin  present.  The 
presence  of  lignin  does  not  render  Schiff's  reagent 
1  less  sensitive  to  formaldehyde.  When  Colin 's 
'  method,  in  which  formaldehyde  is  detected  by  the 
bluish-red  colour  which  it  gives  with  sulphuric  acid 
(preferably  the  monohydrate)  in  which  a  trace  of 
resoreinol  has  been  dissolved,  is  used  for  detecting 
the  presence  of  formaldehyde  in  fabrics  and  paper 
a  secondary  greyish  brown  coloration  is  produced 
by  an  action  between  the  cellulose  and  the  sulphuric 
acid.  Hence  Schiff's  reagent  is  more  delicate  for 
this  purpose.  For  quantitative  estimation  of 
formaldehyde  in  fabrics  containing  formaldehyde 
condensation  products,  tho  fabric  should  be  treated 
with  dilute  acid;  the  formaldehyde  is  liberated  by 
hydrolysis,  and  may  be  distilled  and  estimated  in 
the  distillate  by  the  usual  methods. — A.  J.  H. 

Permeability   of   membranes   to   dyestuffs.     Betbe. 
See  IV. 


Vol.  xli  ,  No.  s  )      Cl.  VII.— ACIDS  ;  ALKALIS;  SALTS;  NON-METALLIC  ELEMENTS. 


291  A 


Patents. 

Mercerising  of  cotton.     A.  Nelson.     E.P.   175,761, 
24.11.20. 

In  order  that  the  fibres  may  be  completely  pene- 
trated by  caustic  soda,  cotton  is  mercerised  when 
in  the  form  of  chains  of  slubber  rovings  to  which 
sufficient  twist  has  been  imparted  in  a  stubbing 
frame  so  that  it  withstands  the  shrinkage  which 
occurs  during  mercerisation. — A.  J.  H. 

Cotton  and  mixed  fabrics;  Process  for  obtaining 

transparent  effects  on  .     H.  Forster.     E.P. 

162.-627,  30.4.21.  Cony.,  30.4.20. 
Transparent  and  lustrous  effects  on  cotton  or 
mixed  fabrics  are  obtained  when  the  fabric  is 
treated  with  sulphuric  acid  of  49° — 50'5°  B.  (sp. 
gr.  1'515 — 1'536)  at  normal  temperature  for  1 — 3 
mins.,  stretched  at  the  same  time  or  subsequently, 
washed  and  dried  under  the  greatest  possible  ten- 
sion, then  treated  under  tension  with  sulphuric  acid 
of  52°— 54°  B.  (sp.  gr.  F563— P597)  for  3—5  sees, 
at  normal  temperature,  and  finally  mercerised  (with 
or  without  previous  washing  and  drying)  with 
caustic  soda  of  30°— 40°  B.  (sp.  gr.  1-26—1 -38)  for 

\  several  seconds.  The  weaker  sulphuric  acid  may 
be  replaced  by  known  substitutes,  e.g.,  phosphoric 

I  acid  of  55°— 57°  B.  (sp.  gr.  161— 165),  hydrochloric 
acid  of  sp.  gr.  119.  nitric  acid  of  43°— 46°  B.  (sp. 
gr.  142— 1-47)  at  60°— 70°  C,  zinc  chloride  solution 
of  66°  B.  (sp.  gr.  1-84)  at  60°— 70°  C,  or  a  cupram- 
monium  solution  containing  10  g.  of  copper  sul- 
phate, 90  g.  of  water,  5  g.  of  glycerin,  and  9'5  g. 
of  caustic  potash.   Figured  effects  may  be  obtained. 

'—A.  J.  H. 

Fibres,  yarns,  fabrics  and  the  like;  Apparatus  for 

washing    and    otherwise    treating   .      F.    L. 

Bartelt.  E.P.  175,344,  13.10.20. 
An  apparatus  suitable  for  cleansing,  bleaching, 
degreasing,  and  dyeing  textile  materials,  consists 
of  a  jacketed  tank  within  which  are  two  or  more 
propellers,  each  enclosed  within  a  cage  of  wire 
netting.  The  propellers  drive  the  washing  liquor 
in  opposite  directions  against  the  textile  materials, 
and  also  allow  the  treated  materials  to  be  subse- 
quently dried  by  means  of  hot  air  without  removal 
,  from  the  machine. — A.  J.  H. 

llescrves  [in  printing];  Preparation   of  especially 

resistant    .      L.     Cassella    und     Co.      G.P. 

347,277,  15.4.19. 

Reserves  are  produced  by  means  of  condensation 
products  (insoluble  in  water)  obtained  by  the  action 
of  aldehydes  and  their  polymers  on  phenols  or  their 
homologues  and  derivatives.  Solvents  such  as 
glycerin,  alcohol,  phenol,  acetic  acid,  etc.  and  suit- 
able metallic  salts  are  added  to  the  condensation 
products.  Such  reserves  are  not  destroyed  by 
mmersion  in  hot  dve  and  mordant  liquors. 

—A.  J.  H. 

Fabrics   containing    animal    and   vegetable    fibres; 

Process    for     waterproofing     ■     [and     sizing 

paper].     Farbenfabr.   vorm.    F.    Baver   und   Co. 
G.P.  347,014,  14.12.18. 

Cotton,  wool,  and  linen  fabrics  are  waterproofed  by 
mpregnating  them  with  a  solution  containing  the 
alt  of  a  cellulose-fatty  acid  compound  and  then, 
;fter  drying,  treating  them  with  a  solution  contain- 
ng  aluminium  formate  or  other  aluminium  salt. 
Suitable  cellulose  compounds  are  obtained  by  treat- 
ng  the  salt  of  a  halogenated  fatty  acid  (e.g., 
odium  chloroacetate)  with  a  metallic  compound  of 
ellulose  (e.g.,  NaOH-cellulose).  The  process  can 
e  used  for  the  sizing  of  paper. — A.  J.  H. 

'ellulose    acetate.      E.P.    175.485-6    and    176,034. 
See  V. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphuric  acid;  Intensive  manufacture  of [by 

the  chamber  process].     P.  Le  Breton.     Chim.  et 
Ind.,  1922,  7,  253—250. 

Most  modifications  of  the  chamber  process  in  the 
direction  of  diminishing  the  chamber  space  have 
been  attended  with  the  disadvantage  that  the  life 
of  ihe  chamber  is  reduced  in  proportion.  The 
Gaillard  process  (F.P.  528,080,  G.P.  346,121;  J.t 
1922,  215  a)  seeks  to  remedy  this  excessive  wear  and 
tear  by  the  use  of  a  turbine  just  underneath  the 
centre  of  the  top  of  the  chamber,  which  latter  is 
an  inverted  truncated  cone.  The  turbine  is  fed 
with  cold,  somewhat  dilute  sulphuric  acid,  which  is 
projected  outwards  against  the  upper  part  of  the 
sides.  Some  of  it  trickles  down  the  sides  and  the 
remainder  falls  as  a  mist  of  dilute  acid.  The  cham- 
ber walls  are  thus  cooled  and  also  protected  against 
the  action  of  nitrosyl  sulphate.  Connecting  pipes 
are  similarly  protected  by  sprays,  and  the  use  of 
cold  water  sprays  in  the  chambers  is  dispensed  with. 
A  plant  constructed  on  this  principle  has  given  art 
output  of  15  kg.  of  acid  of  53°  B.  (sp.  gr.  158)  per 
cub.  m.  of  chamber  space. — C.  I. 

Nitric  acid   solutions:   Concentrating   dilute   -. 

C.  D.  Carpenter  and  J.  Babor.     Chem.  and  Met. 
Eng.,1922,  26,443—444. 

Dili^te  nitric  arid  solutions  were  distilled  by  heat- 
ing in  a  bath  of  calcium  chloride  solution  without 
a  fractionating  column,  the  delivery  tube  being 
immersed  in  the  heated  solution  up  to  its  connexion 
with  the  condenser.  Successive  portions  of  the 
distillato  were  titrated.  The  (results  obtained 
showed  a  loss  of  3%  of  the  nitric  acid  in  concen- 
trating from  10%  to  20%  HN03,  9'3%  between  20' 
and  30%  HN03,  and  209%  between  30  and  40% 
HN03.  The  curve  representing  the  relation  between 
the  volume  of  the  residual  solution  and  the  concen- 
tration of  nitric  acid  contained  therein  is  a  regular 
hyperbola,  terminating  at  a  point  corresponding  to 
the  constant  boiling-point  mixture.  Concentration 
under  the  conditions  described  is  therefore  not 
economically  possible. — C.  I. 

Nitric  oxide;  Oxidation  of  and  its  catalysis. 

C.  L.  Burdick.     J.  Amer.  Chem.  Soc.,  1922,  44, 
244—251. 

The  reaction  2NO+0,  =2NO„  is  not  catalysed  by 
ordinary  porous  material  such  as  glass,  pumice, 
asbestos,  or  charcoal  or  by  the  same  substances- 
impregnated  by  metal  or  metallic  oxides  at  tempera- 
tures between  0°  and  100°  C.  Highly  absorptive 
varieties  of  charcoal  may,  however,  increase  the 
velocity  500  times.  Water  vapour  decreases  the 
activity  of  the  charcoal  catalysts  strongly,  but  this 
effect  is  to  a  large  extent  counteracted  by  an  eleva- 
tion of  temperature  above  the  point  of  condensation 
of  aqueous  vapour.  The  temperature  coefficient  of 
the  catalysed  and  non-catalysed  reaction  is  nega- 
tive, but  in  the  presence  of  water  vapour  it  is- 
apparently  positive. — J.  F.  S. 

Ammonia   gas;  Pole  of  gaseous  impurities  in  the 

catalytic     oxidation     of    .       E.     Decarriere. 

Comptes    rend.,    1922,    174,    756—758.      (Cf.    J., 
1920,  542  a,  580  a.) 

Jcst  as  hydrogen  sulphide  is  capable  of  neutra- 
lising the  injurious  effect  of  acetylene  in  the  cata- 
lytic oxidation  of  ammonia  by  finely  divided 
platinum,  so  it  is  capable  of  neutralising  the 
injurious  action  of  hydrogen  phosphide.  This  effect 
is  not  due  to  the  dissociation  of  the  sulphide  and 
the  consequent  liberation  of  hydrogen. — W.  G. 


292  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIC  ELEMENTS.         [April  29, 1922. 


Ammonia  catalysts;  Study  of  .     7.    Apparatus 

for  the  small-scale  testing  of  ammonia  catalysts 
at  atmospheric  pressure.  A.  T.  Larson,  W.  L. 
Newton,  and  W.  Hawkins.  Chem.  and  Met. 
Eng.,  1922,  26.  493—497. 

Ammonia  gas  from  liquid  ammonia  is  decomposed 
into  nitrogen  and  hydrogen  in  an  apparatus  in 
which  the  ammonia  gas  passes  over  hot  steel  wool; 
then  round  a  coil  heated  electrically  to  bright 
redness.  At  first  the  decomposition  is  low,  but 
later  as  the  steel  wool  becomes  sufficiently  activated 
the  greater  portion  of  the  gas  is  decomposed  on  its 
surface,  and  the  free  ammonia  in  the  exit  gases 
falls  to  about  001%.  The  nitrogen  and  hydrogen 
mixture  thus  obtained  is  purified  and  dried.  Traces 
of  oxygen  are  removed  by  passing  the  mixture  over 
highly  pyrophoric  copper  at  280°  C,  while  any 
carbon  monoxide  present  is,  by  passing  over  a  nickel 
catalyst,  converted  into  methane,  which  is  inert  to 
ammonia  catalysts.  The  catalyst  to  be  tested,  about 
5  c.c.  by  vol.,  is  contained  in  a  Pyrex  glass  tube, 
which  is  heated  in  an  electric  furnace  to  the 
required  temperature,  and  the  purified  nitrogen 
and  hydrogen  mixture  is  passed  over.  The  effective- 
ness of  the  catalyst  is  determined  by  the  ratio  of 
ammonia  to  nitrogen  and  hydrogen  in  the  outflow- 
ing gas.  At  atmospheric  pressure  the  amount  of 
ammonia  is  always  small,  hence  a  large  sample  of 
gas  is  tested  by  passing  the  outlet  gas  through 
standard  sulphuric  acid,  and  titrating  the  excess  of 
acid  with  alkali,  using  methyl  red  as  indicator. 

—J.  B.  P. 

Processes     NH„C00NHa+H„0  ^(NH^CO,      and 

C0,+HMZl&~C03;    The  ' .      C.     Faurholt. 

Z.  anorg.  Chem.,  1921,  120,  85—102. 

When  an  aqueous  solution  of  carbon  dioxide  is 
added  to  a  large  excess  of  ammonia  solution,  the 
anhydrous  carbon  dioxide  present  combines  to  form 
ammonium  carbamate,  whilst  hydrated  carbon 
dioxide,  i.e.,  carbonic  acid,  forms  ammonium  car- 
bonate. In  the  presence  of  excess  of  ammonia  the 
carbamate  is  so  stable  that  the  carbonate  can  be 
precipitated  as  barium  carbonate  and  estimated. 
This  method  has  been  applied  to  determining  the 
proportion  of  carbonic  acid  in  an  aqueous  solution 
of  carbon  dioxide,  and  hence  the  true  dissociation 
constant,  which  was  found  to  be  lO"1'".  The  velocity 
of  hydration  of  carbon  dioxide  into  carbonic  acid  in 
solutions  of  different  alkalinity  was  also  determined. 
Further,  the  velocity  of  the  reaction 

NH.COONH.+H.Oi^NHJXO, 
in  alkaline,  aqueous,  and  acid  solutions  and  the 
equilibrium  constant  were  determined.  The  weakest 
acids  decompose  ammonium  carbamate  instantly 
and  completely.  An  aqueous  solution  of  the  car- 
bamate, 0'05  mol.,  at  0°  C,  attains  equilibrium 
in  about  a  day;  in  iV/10  ammonia  solution  3 
days  is  required,  and  in  a  0'4N  solution  10  days. 
At  18°  C.  the  reaction  is  20  times  as  fast.  In 
sodium  hydroxide  solution  equilibrium  is  reached 
much  more  slowly,  requiring,  at  18°  C,  three  days 
in  a  iV/10  solution  and  about  a  month  in  a  Nil 
solution.     (Cf.  J.C.S.,  April.)— E.  H.  R. 

Perchlorate. ;  Determination  of by  Rothmund's 

method.     F.    K6nig.      Z.    anorg.    Chem.,    1921, 
120,  48. 

In  the  determination  of  perchlorate  by  reduction 
with  titanous  sulphate  by  Rothmund's  method 
{J.,  1909,  546),  it  is  unnecessary  to  pass  a  continuous 
current  of  hydrogen  or  carbon  dioxide  through  the 
flask  if  a  long  narrow  glass  tube  is  adapted  to  the 
reflux  condenser  to  prevent  circulation  of  air.  For 
the  oxidation  of  excess  of  titanous  sulphate,  ferric 
ammonium  sulphate  is  better  than  permanganate 
in  view  of  the  fact  that  the  latter  may  attack  the 
hydrochloric  acid,  and  that  in  the  subsequent 
Volhard  determination  of  chlorine  the  presence  of 


a  ferric  salt  is  necessary.  Water^oluble  titanic 
sulphate  is  now  a  commercial  product,  supplied  in 
paste  form,  and  can  easily  be  reduced  electrolytic- 
ally,  using  lead  electrodes. — E.  H.  R. 

Ferric   chloride;   Reduction   of  .      A.    Pickles 

Chem.  News,  1922,  124,  93—94. 

If  fine  copper  gauze  is  immersed  in  slightly  acid 
ferric  chloride  solution,  and  a  current  of  hydrogen 
then  passed  through  the  latter,  the  ferric  salt  is 
reduced  rapidly.  The  reaction  appears  to  be  one 
of  adsorption,  but,  owing  to  the  indeterminate 
amounts  of  cuprous  chloride  produced,  its  quantita- 
tive application  is  limited. — W.  P.  S. 

Rare  earths;  Separation  of by  basic  precipita- 
tion. W.  Prandtl  and  J.  Rauchenberger.  Z. 
anorg.  Chem.,  1921,  120,  120—128. 

In  a  previous  paper  (J.,  1920,  486  a)  it  was  shown 
that  lanthanum  could  be  separated  from  praseo- 
dymium and  neodymium  by  taking  advantage  of  the 
different  solubilities  of  the  oxides  in  ammonia- 
ammonium  chloride  solutions.  Samaria,  under 
similar  conditions,  approximates  in  solubility  to  the 
didymia  earths.  Similar  differences  are  found  when 
nitrates  are  used  instead  of  chlorides.  Neutral  solu- 
tions of  the  rare  earth  nitrates  were  precipitated 
with  the  calculated  quantities  of  ammonia,  accord- 
ing to  the  equation, 

Me(NOa)3+3NH3+3H20  *;  Me(OH)3+3NH,NOs, 
in  1,  2,  3,  4  and  5N  solutions  of  ammonium  nitrate 
at  temperatures  of  15°,  30°,  50°,  and  100°  C,  and 
the  solubilities  were  determined  and  plotted  at  each 
concentration.  The  greatest  solubility  differences 
were  found  in  4 — 5iV  solution  of  ammonium  nitrate 
at  100°  C.  In  presence  of  a  molecular  proportion 
of  magnesium  nitrate  the  curves  for  Pr,  Nd,  and 
Sm  were  separated  somewhat  more  widely  than  in 
its  absence.  Zinc  nitrate  had  a  much  greater  effect, 
increasing  the  solubilities  of  praseodymia,  neo- 
dymia,  and  samaria  by  50%  and  that  of  lanthana  by 
100%,  so  that  the  last  became  four  times  as  soluble 
as  the  other  three.  The  effecte  are  due  to  the  forma- 
tion of  basic  salts  of  varying  composition  and 
solubility.     (Cf.  J.C.S.,  April.)— E.  H.  R. 

Hydrogen  peroxide:  its  manufacture  and  preserva- 
tion. P.  Poetschke.  J.  Ind.  Eng.  Chem.,  1922, 
14,  181—185. 

The  technical  preparation  of  hydrogen  peroxide 
from  barium  peroxide  is  described,  special  attention 
being  directed  towards  the  precautions  which  mu^t 
be  taken  to  obtain  a  stable  product.  The  barium 
peroxide  should  be  completely  hydrated  to  a  smooth 
cream  of  the  octo-  or  deca-hydrate  before  the  addi- 
tion of  acid,  as  the  presence  of  gritty  particles 
may  cause  the  whole  batch  to  decompose  in  a  few 
minutes  during  completion  of  the  "  saturation. ,r 
The  reaction  of  the  solution  must  never  be  allowed 
to  become  alkaline,  and  the  end  reaction  should  be 
neutral  or  very  faintly  acid.  The  type  of  glass 
bottles  in  which  hydrogen  peroxide  is  stored  is  one 
of  the  most  important  factors  in  its  keeping 
qualities,  a  suitable  quality  of  glass  and  exclusion 
of  light  being  far  more  effective  in  restraining  de- 
composition than  are  any  of  the  preservatives 
studied.  Experiments  on  the  effect  of  light  showed 
that  orange  and  red  light  afford  some  protection, 
but  blue  light  actually  causes  a  more  rapid  deterio- 
ration than  white  light.  Preservatives,  such  a- 
acetanilide,  retard  decomposition  to  some  extent, 
but  the  other  factors  above  mentioned  may  often 
overbalance  the  restraining  effect  of  a  preservative. 
Quinine  sulphate  has  advantages  over  acetanilide  in 
that  only  one-tenth  the  quantity  (2J  grains  pei 
gallon)  is  required  and  no  foreign  odour  or  discolor- 
ation results.  This  quantity,  moreover^  does  not 
render  the  solution  bitter  to  the  taste. — G.  F.  M. 


Vol.  XII,  No.  8.1      Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


293  a 


Calcium  silicides.     L.  Wohler  and  P.  Miiller.     Z. 

anorg.  Chem.,  1921,  120,  49—70. 
The  lower  calcium  silicide,  to  which  various  formulas 
have  been  assigned,  is  shown  to  be  the  monosilicide, 
CaSi  or  Ca2Si2.  It  is  formed,  free  from  disilicide, 
by  heating  a  mixture  of  1  pt.  of  calcium  with 
1 — 2  pts.  of  silicon  in  a  magnesia  boat  at  1050°  C. 
in  an  atmosphere  of  carbon  dioxide.  A  violent  re- 
action starts  and  the  mass  becomes  incandescent. 
It  must  be  quickly  cooled,  and  when  powdered 
breaks  up  into  small  shining  metallic  leaflets.  The 
density  of  the  substance,  containing  a  small  propor- 
tion of  uncombined  silicon,  is  2'346.  The  pure 
disilicide,  CaSi,,  cannot  be  obtained  by  heating 
calcium  and  silicon  together,  but  is  formed  when 
the  monosilicide  is  heated  in  hydrogen  at  1010°  C, 
according  to  the  equation, 

Ca2Si2+H2  =  CaSi2  +  CaH2. 
In  presence  of  excess  of  silicon  the  calcium  hydride 
reacts  with  this  to  form  more  disilicide.  The  heats 
of  formation  of  the  two  silicides  from  their  elements 
are,  Ca2Si2,  +  166-3  cals.  and  CaSi2,  +  208'7  cals.  The 
monosilicide  is  stable  at  high  and  the  disilicide  at 
lower  temperatures,  the  latter  being  stable  at  least 
up  to  1000°  C.  The  two  may  be  distinguished  by 
their  reactions  with  dilute  hydrochloric  acid ;  the 
monosilicide  evolves  a  spontaneously  inflammable 
silicon  hydride,  probably  silicoethylene,  Si2H4,  leav- 
ing a  residue  of  white  hydrated  silica,  whilst  the 
disiliride  gives  off  hydrogen  and  leaves  a  yellow 
residue,  the  so-called  silicone.     (Cf.  J.C.S.,  April.) 

— E.  H.  R. 

Metallic  hydrides;  Preparation  of  gaseous from 

alloys  and  solutions.  F.  Paneth,  A.  Johannsen 
and  M.  Matthies.  Ber.,  1922,  55,  769—775. 
The  gaseous  hydrides  of  tin  and  bismuth  have  been 
.obtained  by  melting  the  respective  metals  with 
magnesium  and  decomposing  the  products  so  formed 
with  dilute  acid,  but  the  yields  are  very  small  and 
[uncertain.  Tin  hydride  is  readily  prepared  in  good 
yield  and  with  perfect  uniformity  by  the  action  of 
iraagnesium  on  a  solution  of  tin  sulphate  and  sul- 
phuric acid.  A  solution  of  stannous  chloride  in 
hydrochloric  acid  may  be  substituted  for  the 
sulphate,  but,  in  this  case,  the  deposit  obtained 
when  the  gas  is  subsequently  passed  through  a 
heated  glass  tube  consists  of  colourless  stannous 
j'hloride  (due  to  hydrogen  chloride  carried  forward 
.ivith  the  gas)  in  place  of  metallic  tin.  This  pro- 
)ably  accounts  for  the  previous  non-observance  of 
'  he  formation  of  tin  hydride  when  tin  is  used  for 
venerating  hydrogen  in  Marsh's  test  for  arsenic. 

— H.  W. 

Metallic  hydrides;  Preparation  of  gaseous  by 

the  spark  discharge.  F.  Paneth,  M.  Matthies, 
and  E.  Sehmidt-Hebbel.  Ber.,  1922,  55,  775— 
789. 

Jaseous  hydrides  of  lead,  bismuth,  tin.  antimony, 
ellurium,  germanium,  arsenic,  and  selenium  but 
ot  of  aluminium,  zinc,  or  mercury  are  formed 
'hen  an  electrical  discharge  is  passed  through 
ydrogen  under  diminished  pressure  in  presence  of 
he  metals.  The  discharge  tube  is  so  arranged  that 
ie  gases  are  withdrawn  as  rapidly  as  possible  from 
ie  neighbourhood  of  the  discharge.  The  electrodes 
re  of  platinum  and  one  of  them  is  surrounded  with 
ie  finely-divided  metal  under  investigation.  The 
iccess  of  the  method  depends  on  the  presence  of  a 
litable  catalyst ;  purified  coal  gas  is  generally  used, 
it  methane  and  the  vapours  from  rubber,  ethyl 
cohol,  ether,  glycerol,  light  petroleum,  paraffin, 
id  paper  are  also  active.     (Cf.  J.C.S.,  April.) 

— H.  W. 

'Marine;']  Reaction  equilibria  in  [the,  manufacture 

of &i/]  the  Deacon  process.    B.  Neumann.    Z. 

angew.  Chem.,  1922,  35,  130—132. 

ie  experimental   results  of   Lunge   and   Marmier 


(Z.  angew.  Chem.,  1897,  105),  and  of  Neumann  and 
Preuschen  (Z.  angew.  Chem.,  1915,  28,  233)  on  the 
Deacon  reaction  with  a  mixture  of  25%  of  hydro- 
chloric acid  gas  and  75%  of  air,  are  summarised  by 
means  of  graphs  and  compared  with  theoretical 
figures  calculated  from  Treadwell's  determination 
of  the  equilibrium  constant  (J.,  1919,  814  a).  The 
optimum  yields  obtained  by  Lunge  and  Marmier 
(over  70%  at  470°— 490°  C.)  are  shown  to  be  in 
excess  of  the  theoretical  which  result  is  ascribed  to 
experimental  errors,  and  their  methods  of  tempera- 
ture measurement  are  criticised.  While  the 
theoretical  yield  of  chlorine  continuously  decreases 
with  the  temperature,  the  experimental  yields  ob- 
tained by  Neumann  and  Preuschen,  using  the 
double  chloride  of  copper  and  sodium,  rise,  up  to 
470°  C,  at  which  temperature  they  meet  the 
theoretical  curve  and  then  descend  in  close  agree- 
ment with  it.  By  applying  temperature  corrections 
to  Lunge  and  Marmier's  results  with  cupric  chlor- 
ide they  can  be  brought  into  agreement  with  theory 
at  temperatures  above  the  optima  at  420° — 440°  C. 
The  divergence  from  theory  at  lower  temperatures 
is  due  to  low  reaction  velocity,  and  the  conditions 
for  a  satisfactory  yield  lie  within  narrow  limits  of 
temperature. — C.  I. 

Nitrogen;  Cathodic  reduction  of  elementary  . 

F.  Fichter  and  R.  Suter.  Helv.  Chini.  Acta,  1922, 
5,  246—255.  (Cf.  Tiede  and  Schleede,  J.,  1921, 
258  a.) 

Experiments  are  described  in  which,  after  making 
full  allowance  for  the  effects  of  impurities  by 
blank  experiments,  on  an  average  0'3  mg.  ammonia 
per  160  amp. -min.  was  consistently  obtained  from 
nitrogen  under  200  atm.  pressure  by  use  of  platinum 
electrodes  of  large  surface,  freshly  and  thickly 
platinised,  the  electrolyte  being  1%  sulphuric  acid. 
The  cathode  surface  quickly  loses  its  efficiency,  and 
this  cannot  be  restored  by  oxidation.  No  definite 
evidence  of  ammonia  formation  could  be  obtained 
when  a  morcurv  cathode  was  employed.  (Cf.  J.C.S., 
April.)— J.  K." 

Carbon  and  sulphur.    Wibaut.    Sec  IIa. 

Sulphuric  acid  from  icaste  acid.  Coster  van 
Voorhout.     See  IIa. 

Patents. 

Sodium    pentaborate;    Production    of    from 

boron  ores.  K.  Harding  and  B.  D.  Jones.  E.P. 
175,795,  3.12.20. 
Sodium  pentaborate,  Na2B10O10,10H,O,  is  pro- 
duced by  the  addition  of  sulphuric  acid  and  nitre- 
rake  (or  other  sodium  sulphate  compounds)  to  a 
boron  one,  such  as  colemanite,  boracite,  ulescite, 
&c,  the  proportion  of  Na,0  present  being  slightly  in 
excess  of  that  theoretically  required  to  form  sodium 
pentaborate  with  the  B,03  present,  and  the  SO, 
being  present  in  sufficient  quantity  to  precipitate 
all  the  calcium  as  sulphate.  The  borate  ore  is  pre- 
ferably charged  into  water  or  mother  liquor  and 
agitated  with  the  calculated  amounts  of  nitre-cake 
and  sulphuric  acid,  the  pentaborate  being 
crystallised  out  from  the  filtered  liquor. — A.  R.  M. 

Potassic  rocks  [e.g.,  leucite];  Separation  of  the 
constituents  of  — — .  G.  A.  Blanc  and  F.  Jourdan. 
E.P.  175,348,  15.10.20. 

Leucite  or  similar  material  is  fed  into  a  tubular 
furnace  and  subjected  to  the  action  of  a  current  of 
hydrochloric  acid  gas  at  a  temperature  gradually 
rising  from  300°  to  600°  C.  In  this  way  the  chlorides 
of  iron,  aluminium,  oalcium,  and  magnesium,  which 
are  first  formed  are  decomposed  with  recovery  of 
their  hydrochloric  acid  content,  the  final  product 
containing  sodium  and  potassium  chlorides,  which 
are  separated  from  the  insoluble  matter  by  lixivia- 


294A 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEiMENTS. 


[April  211,  11122. 


tion.  If  desired,  the  chlorides  produced  may  be 
treated  with  sulphuric  acid  in  «  retort  and  the 
regenerated  hot  hydrochloric  .acid  vapours  passed 
back  into  the  furnace. — 0.  I. 

Potassium-containing  silicates;  Extraction  of  solu- 
ble potassium  compounds  from .    W.  Glaeser. 

U.S.P.  1,409,319,  7.3.22.     Appl.,  1.3.20. 
The   finely-divided   mineral    is     thoroughly    mixed 
with  sodium  sulphate   and  lime,   and  the  mixture 
heated  to  about  800°  C.  in  a  closed  chamber.    Potas- 
eium  sulphate  is  recovered  from  the  furnace  mix-   j 
ture  by  leaching  and  crystallisation. — H.  R.  D. 

Nitrogen  compounds;  Production   of  by  the   \ 

absorption  of  nitrogen  in  a  mixture  of  reaction. 
C.  T.  Thorssell  and  H.  L.  R.  Lunden.  E.P. 
175,517,  19.1.21. 
I.n  the  production  of  nitrogen  compounds  by  the 
absorption  of  nitrogen  in  a  mixture  of  carbon  and 
compounds  of  alkali  or  alkaline-earth  metals  in 
a  shaft  furnace,  the  mixture  treated  is  used  in  the 
form  of  hard  spherical  pellets  of  1—2  cm.  diara. 
This  permits  most  efficient  contact  in  the  furnace 
and  also  facilitates  previous  drying  in  a  rotary 
dryer.— C.  I. 

Nitrogen  fixation;  Method  of  .     C.  W.  Miles. 

U.S.P.  1,408,625,  7.3.22.     Appl.,  22.7.18. 
Oxygen  and  hydrogen  produced  electrolytically  are 
separately  mixed  with  and  caused  to  combine  with 
nitrogen  in  independent  fixation  chambers. 

— H.  R.  D. 

Nitrogen;  Fixation  of .    K.  P.  McElroy,  Assr. 

to  Ferro  Chemicals,  Inc.  U.S.P.  1,408,754, 
7.3.22.  Appl.,  27.2.18.  Renewed  29.7.21. 
A  mixture  of  gases,  containing  carbon  monoxide 
and  nitrogen,  is  exposed  to  the  action  of  a  heated 
catalyst  capable  of  decomposing  the  carbon 
monoxide,  whereby  in  presence  of  water  vapour 
volatile  nitrogen  compounds  are  produced.  The 
gases  are  passed  through  sulphuric  acid  to  absorb 
the  nitrogen  compounds. — H.  R.  D. 

Ammonia;  Catalytic  apparatus  for  the  synthesis  of 

.     L.  Casale,  Assr.  to  R.  Leprestre.     U.S.P. 

1,408,987,  7.3.22.    Appl.,  7.10.20. 
The   tube    containing    the    catalyst    is    completely 
separate  from  the  heating  device  and  from  an  ex- 
ternal tube  capable  of  withstanding  pressure. 

—J.  B.  F. 

Furnacing    operations;   Apparatus  for  conducting 

.    (Manufacture  of  salt-cake.']  L.  B.  Skinner. 

E.P.  176,025,  4.9.20. 
The  materials  are  led  to  a  mixing  pan  and  then 
advanced  along  a  rectangular  slightly  inclined 
hearth  by  means  of  a  mechanically  operated 
rabbling  apparatus.  The  heat  is  supplied  mainly 
from  the  roof,  which  is  composed  of  carborundum 
brick  of  high  heat  conductivity  and  chemically 
very  inert ;  a  silica  brick  may  be  used,  but  fireclay 
is  not  a  sufficiently  good  conductor.  The  space 
between  the  roof  and  an  outer  roof  of  refractory 
material  forms  the  flue  for  the  heating  gases.  The 
mixing  pan  may  be  inclined,  and  the  rabbling 
mechanism  is  so  arranged  that  the  mixture  is  not 
advanced  on  to  the  hearth  until  the  bath  thickens 
up  sufficiently  to  form  a  "chunk."  The  rate  at 
which  the  material  .advances  through  the  calcining 
zone  is  controlled  by  regulating  the  speed  of  the 
rabbling  mechanism.  The  temperature  is  pro- 
gressively increased  as  the  material  advances  toward 
the  discharging  end.  and  the  possibility  of  "  balling 
up  "  is  completely  eliminated.     Instead  of  a  plain 


inclined  hearth  a  stepped  or  terraced  hearth  may 
be  used  advantageouslv  in  certain  operations. 

—J.  B.  F. 

Thorium   [compounds'];  Recovery  of  .     L.  W. 

Rvan,     Assr.     to     Lindsay    Light     Co.       U.S.P. 
1,407,441,  21.2.22.     Appl.,  1.7.18. 

A  phosphate  containing  sodium  and  hydrogen  is 
gently  heated  and  the  soluble  metaphosphate  pro- 
duced is  added  to  an  acid  solution  containing 
thorium  in  addition  to  rare  earth  metals  and  iron. 

— C.  I. 

Chromic  acid  regeneration.    R.  H.  McKee.    U.S.P. 
1,408,618,  7.3.22.    Appl.,  4.9.19. 

In  a  continuous  process  of  oxidising  solutions  con- 
taining a  chromium  salt,  a  definite  flow  of  the  solu- 
tion is  produced  past  opposed  anode  and  cathode 
surfaces  separated  by  a  porous  diaphragm,  and 
a  current  is  passed  between  the  electrodes. 

— H.  R.  D. 

Titanium    nitrogen    compounds ;    Process    of    pro- 

ducini/ .    F.  Von  Bichowsky  and  J.  Harthan. 

U.S.P.  1,408,661,  7.3.22.     Appl.,  25.10.20. 

Ilmenite  is  heated  with  carbon  and  an  oxygen  salt, 
other  than  an  alkali  salt  of  a  thio  acid,  in  presence 
of  nitrogen,  the  amount  of  salt  being  insufficient 
to  convert  all  the  ilmenite  into  titanate. — J.  B.  F. 

Hydrocyanic  acid;  Transportation   of  .     F.  J. 

Metzger,  Assr.  to  Air  Reduction  Co.,  Inc. 
U.S.P.  1,408,757,  7.3.22.     Appl.,  27.1.20. 

A  vessel  provided  with  a  clip  to  hold  the  containei 
of  acid  is  filled  with  a  composition  comprising  ai 
absorbent  material  and  a  material  callable  of  com 
billing  chemically  with  hydrocyanic  acid. — H.  R.  D 

Salts;   Apparatus  for   crystallising  from   ho 

solutions.  Maschinenbau-A.-G.  Balcke.  G.P 
347,370,  3.11.20.  Addn.  to  340,022  (J.,  1921 
812  a). 

Instead  of  blowing  air  over  the  hot  liquor  a 
described  in  the  chief  patent,  air  is  withdrawn  fror 
the  compartments  by  suction,  and  fresh  air  i 
admitted  through  adjustable  openings. 

— L.  A.  C. 

Potassium  salts  and  the  like ;  Process  and  apparatu 

for     dissolving      crude     .       G.      Sauerbre^ 

Maschinenfabr.,  A.-G.    G.P.  '547,371,  22.3.21. 

Crude  potassium  salts  are  fed  on  to  perforate 
buckets  attached  to  an  endless  chain  which  passi 
through  a  U-shaped  extraction  vessel,  and  as  th 
buckets  pass  out  of  the  vessel,  the  residues  are  di: 
charged.  The  excess  in  weight  of  the  crude  salt 
over  that  of  the  residues  provides  the  motive  powe 
tor  driving  the  chain.  The  extraction  vessel  is  su 
rounded  by  a  steam-jacket,  and  the  liquor  from  tl 
vessel  passes  into  a  chamber  surrounding  tl 
steam-jacket  to  ensure  complete  solution  of  the  sa 
particles  before  the  liquor  leaves  the  apparatu 
The  inlets  and  outlets  are  so  arranged  that  tl 
liquor  and  crude  salts  may  pass  through  tl 
apparatus  in  the  same  or  in  opposite  directions,  i 
partly  in  the  same,  and  partly  in  opposite  dire 
tions. — L.  A.  C. 

Sulphur  dioxide;  Manufacture  of from  cnhiu 

(or   barium)    sulphide.      Metallbank    und   Met: 
lurgische  Ges.  A.-G.    G.P.  347,694,  19.1.16. 
In  the   production  of  sulphur  dioxide  by  heatii 
calcium  (or  barium)  sulphide  in  a  current  of  air, 
sulphate  is  added  as  a  flux  to  cause  the  mass 
sinter  or  melt;  the  flux  is  added  in  such  proportio 
that  it  is  itself  decomposed  by  the  excess  heat 
combustion  of  the  calcium  sulphide. — L.  A.  C. 


Vol.  XLL,  No.  8.]     Cl.  VIII.— GLASS  ;    CERAMICS.     Cl.  IX.— BUILDING  MATERIALS. 


295  a 


Sodium    hydroxide;    Manufacture    of    pure    . 

Badische  Anilin-  und  Soda-Fabr.  G.P.  347,816, 
10.7.20. 

Solutions  of  sodium  hydroxide  containing,  but  not 
saturated  with  salts  are  brought  to  such  a  concen- 
tration that  the  heptahydrate,  2NaOH,7H20, 
separates  on  cooling,  and  the  crystals  are  separated 
from  the  liquor. — L.  A.  C. 

Hydrogen  and  mixtures  of  hydrogen  and  nitrogen; 

Manufacture  of .    J.  Harger,  and  Woodcroft 

Mfg.  Co.,  Ltd.  E.P.  175,501,  30.12.20. 
In  the  iron  oxide  process  for  hydrogen  manufacture 
using  producer  gas  and  steam  alternately,  the  spent 
producer  gas  is  used  to  drive  a  gas  engine.  The 
exhaust  gases  from  the  latter  are  employed  to  main- 
tain the  heat  of  the  oxide  of  iron  retorts  and  then 
pass  on  to  a  waste  heat  boiler.  If  a  mixture  of 
hydrogen  with  nitrogen  is  being  manufactured,  the 
gases  in  the  oxide  of  iron  retorts  are  swept  out 
with  nitrogen  before  steaming,  an  increased  yield 
of  hydrogen  being  thus  obtained. — C.  I. 

Sulphur;  Process  for  obtaining  .    R.  S.  Perry, 

P.  W.  Webster,  and  V.  K.  Bovnton,  Assrs.  to 
Perrv  and  Webster,  Inc.  U.S. P.  1,408,467, 
7.3.22.     Appl.,  9.7.20. 

In  order  to  obtain  the  sulphur  in  a  mixture  of  sul- 
phur and  gangue  containing  water,  the  mixture  is 
forced  under  pressure  through  a  bath  of  molten 
sulphur  which  collects  that  present  in  the  mixture 
while  allowing  the  gangue  and  water  to  pass 
through.— A.  R.  P. 

Chromium   alums;    Manufacture    of  G     H 

'    Hultman.     E.P.  159,469,  23.2.21.     Conv.,  1.3.2o' 

Addn.  to  138,594  <cf.  U.S.P.  1,343,725;  J.,  1920, 

545a). 

See    U.S.P.    1,403,960    of    1922;    J.,    1922,    174a. 

Sodium-chromium 

'umilar  process. 

immonia;    Apparatus    for    catalytic    synthesis    of 

.    L.  Casale  and  R.  Leprestre.    E.P.  176,144, 

2.12.20. 

|ee  U.S.P.  1,408,987  of  1922;  preceding. 
lime  burning.     G.P.  346,226.     See  IX. 

VIII.-GLASS;  CERAMICS. 

lay  substance;  Attack  of by  lime.    E.  Selch 

Sprechsaal,  1922,  55,  1—3.  Chem.  Zentr.,  1922, 
93,  II,  563. 

se  higher  the  proportion  of  lime  in  a  ceramic 
ixture  and  the  higher  the  temperature  to  which 
is  heated,  the  greater  will  be  the  proportion  of 
luble  silica,  alumina,  and  lime  in  the  burned 
oduct.  In  calcined  mixtures,  even  when  the 
mperature  has  reached  cone  12  (1350°  C),  the 
ie  is  almost  completely  soluble  in  hydrochloric 
id.  A  measure  of  the  action  of  lime  on  clay 
ostanee  is  obtained  by  dividing  the  proportion  of 
fuble  silica  or  alumina  by  that  of  soluble  lime, 
e  resistance  of  the  burned  ware  to  acetic  acid 
)<reases  with  an  increase  in  the  firing  tempera- 
*j'j  The  ProPort'on  of  alumina  soluble  in  acetic 
i  a.  decreases  as  the  solubilitv  of  the  lime  increases. 

—A.  B.  S. 

Fst-pressed    Iceramic]     bodies;    Suggested    new 

\iethods  in  the  preparation  of .    H.  Spurrier 

I.  Amer.  Ceram.  Soc,  1922,  5,  151—156. 

1  Iimat-?irial  shouId  be  ground  in  a  continuous 
P  ble  mill  of  the  self-feeding  tvpe.  No  segregation 
a     to    differences    in    densitv    need    be    feared. 


alum    may    be    prepared   by    a 


Instead  of  the  common  practice  of  drying  com- 
pletely, wetting  down,  tempering,  and  grinding, 
it  is  suggested  that  the  press-cake  should  only  be 
dried  until  its  water  content  is  16%.  This  should 
be  followed  immediately  by  disintegrating  and 
pressing.  It  is  suggested  that  a  blast  of  hot  air 
might  be  applied  to  the  clay  as  it  leaves  the  mill 
for  the  disintegrator,  thus  drying  and  disintegrat- 
ing the  clay  in  one  operation. — H.  S.  H. 

Patents  . 
Vitreous    material;    Manufacturing    objects    from. 

.    H.  P.  Amphlett,  and  The  Hume  Pipe  and 

Concrete  Construction  Co.,  Ltd.     E.P.   176,058. 
30.10.20. 

Vtitreous  material,  e.g.,  glass,  heated  until  suffi- 
ciently fluid,  is  wholly  or  partly  shaped  while  being 
subjected  in  a  mould  to  centrifugal  force,  so  that 
impurities  or  other  matter  of  lower  specific  gravity 
are  collected  on  the  interior  surface.  At  the  same 
time  the  glass  is  clarified  by  the  removal  of  air 
bubbles.  Steam  or  air  under  pressure  may  be 
admitted  to  the  interior  of  the  mould  so  as  to  com- 
press the  material  before  it  finally  hardens. 
Heavier  material,  suitable  for  decoration  or  for 
strengthening  the  ware,  may  be  introduced  into  ' 
the  vitreous  fluid  and  will  appear  upon  the  surface 
of  the  article  when  it  is  removed  from  the  mould. 

— H.  S.  H. 

Glass.  E.  C.  Sullivan  and  W.  C.  Taylor,  Assis.  to 
Corning  Glass  Works.  U.S.P.  1,408,145,  28.2.22. 
Appl.,  16.12.20. 

A  glass  contains  over  70%  of  silica,  over  1%  of 
alumina,  and  over  20%  of  soda  and  oxides  of  the 
divalent  elements  of  the  second  group  of  the 
periodic  system,  the  molecular  percentage  of  the 
oxides  of  divalent  elements  totalling  7  and  being 
less  than  12.— H.  S.  H. 

Quartz;   Fusion    of   .      H.    Helberger.      G.P. 

310,134,  10.12.13. 

In  order  to  produce  a  quartz  glass  free  from  bubbles 
the  quartz  is  fused  electrically  in  vacuo,  after  which 
the  melting  chamber  is  filled  with  gas  under  pres- 
sure, and  this  pressure  is  maintained  until  the 
quartz  has  solidified.  The  pressure  of  the  gas  may  be 
adjusted  so  that  any  bubbles  still  remaining  in  the 
molten  quartz  will  have  the  same  volume  as  when 
the  quartz  glass  is  cold ;  by  this  means  internal 
stresses  in  the  material  are  avoided. — A.  B.  S. 

Enamelling  and  glazing  metallic  objects;  Process 
for .     N.  Meurer.     G.P.  347,496,  3.4.21. 

The  objects  are  coated  with  a  film  of  copper,  nickel, 
cobalt,  or  other  suitable  metal  by  spraying.  The 
enamel  containing  easily  reducible  metallic  oxides 
attaches  itself  very  strongly  to  this  film. — D.  F.  T. 

Dental    cement.       S.     Schiff.       U.S.P.     1,408,960, 

7.3.22.     Appl.,  9.7.20. 
See  E.P.  145,052  of  1920;  J.,  1921,  624  a. 


IX.— BUILDING  MATERIALS. 

Blast-furnace    slags;   Hydraulic   setting   properties 

of  basic .       W.  Krebs.       Zemment,  1922,  11, 

1—3,  15—17,  40—44.  Chem.  Zentr.,  1922,  93, 
11,  563—564. 
A  long  series  of  experiments  and  a  study  of  the 
work  of  previous  investigators  has  shown  that  all 
basic  blast-furnace  slags  in  a  glassy,  granulated 
state  can  be  converted  into  hydraulic  cements  by 
the  addition  of  alkali  minerals  and  gypsum.  Such 
cements  harden  better  than  is  required  by  the 
(German)  standard  specification,  and  they  are 
unaffected  by  three  months'  storage. — A.  B.  S. 


296  A        Cl.  X.-METALS 


METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


[April  29,  1922. 


Patbnts. 

TJ  S.P.  1,408,760,  7.3.22.     Appl.,  16.8.20 
STEE,  wool  At-  is  mixed  with  a  njassrfd^ 
grated  fibrous  absorben ™^    ^  ^nder   presSurc 
,8   saturated    ^  soluD »  from  the  mould 

S3  SSSUS^SSS.  of  calci^londe. 

=eteRCo:  LUWS.P.   1,409,088,   7.3.22.     APP1., 
11  11  20      Renewed  4.1.^- 

s%- i=»?  $— -»'i.^ 

40 — 60%  of  bitumen.— L.  A.  ^. 

sawa  sr-S  sgaA-.  •>• — 

again  without  further  purification.— A.  I*. 

18  12  20 
The  kiln  is  provided  with  a  charging  device  where- 

producer-gas. — A.  B.  S. 

Wood;  Metkodand  means   for  %£?%£ £ 

[preservation]  of——.     ^  VSnVe 
.      1,409,087,  7.3.22.     Appl,  8.4.20. 
See  E.P.  151,661  of  1919;  J.,  1920,  750  a. 

Waste-fceat  barter.    TJ.S.P.  1,408,972-3.    Seel. 

X -METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 


The  reaction's  taking  place  during ;  the redu cti on  of 

metallic   oxides   with  carbon   in   ^  e™c 

furnace  excluding  air  differ  from '  those  w 

iu  the  air-blown  furnace      Chenucal  ana  ^ 

calculations  are  made c* i  »  basi    «      ,     t  carbon 
of  oxygen  in  the  mineral  and  the^^  ^ 

for  reduction      If  the  char  e  ^  ^ 

carbon    the    balance    ui  .     ,        carbon  dioxide 

Theoretically  the  gases  contain  {^  c«  ndin 

and  more  carbon  monoxide,  ™™  *c°l        leaving 
increase  in  the  potential .£* .of  to  gases  j-^ 

the  furnace  "f'^^e      in  practice  carbon  in 
developed  in  the  &£»*»■.    in  P  increases  the 

excess  accumulates  in, ««  furnaw  a  ge  fa 

conductivity  of  the  charge      A  m^K     0  tho 

temperature  occurs   around   the   we £  q{ 

voltage  is  not  lowered    and  the reduc   .^.^ 

is  accelerated.     In^e.rse.  c°n°hvan  equivalent  to  the 
the  carbon  present    s  tattu  |q  e 

oxygen  content  of  ,™X*nd  contain   less  carbon 
richer  in  carboti   dioxide  and  con  in   the 

monoxide,   unreduced  mineral  a ecu mu 
furnace  with  increased  resist a*ce  of  thee n     g 
a  lower  temperature  in  the  furnace.— 


Cast-iron:   Desulphurisation   ^.J™1'^,"""^^ 
oxidising   substances    and    gives    rise   to   a    highly 

s£%y  «ssss  Ke  .a'1!: 

nefomWnea  wHh    the    iron    the    V^^^ 
carried  out  if  the ,  metal  u ^covered  w ith  an  acid^ 

E3S3s3£3SU5K  j 

outweigh  the  extra  cost.— A.  K.  r. 

carbon  was  in  the  combined  state.      W.  i*. 
Snectroaraphic  analysis  in  metallurgy;  Use  of-—-- 

iispiiigi 

position  on  the  same  p  at e      L«™^>let    Hmit  of 
"iven. — C.  A.  K. 


given. — *s.  ■■»■  —  .    , 

[Advance  copy.]     4  pages. 
IK  the  process  of  sherardising .the ,  z.nc M »*■£« 
the  iron  grows  outward  from  the  surfa ce  or 
similar  to  the  growth  of  bark  on  a  tree  v 

of  the  coating  ejer  contains  less  « *«£*,,,  frolv 
ftoWA  6cLpciihtionZmo?  the  coating  «. 
proportionally,  indicating the •**$%?&  jA 


Vol.  XII.,  xo.  si    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTKO-METALLURGY.  297a 


depends  on  the  layer  of  solid  solution  (6 — 10%  Pe), 
whereas  the  compound,  FeZn3,  rapidly  rusts  in 
water,  it  is  important  that  all  zinc  dust  used  for 
sherardising  should  contain  less  than  10%  Fe,  and, 
preferably,  less  than  7%,  as  with  dusts  containing 
7 — 10%  Fe  the  rate  of  deposition  is  lowered  very 
considerably.  A  good  sherardised  coating  should 
not  give  an  iron  test  with  ferricyanide  after  boiling 
for  10  mins.  with  10%  ammonium  chloride  solution. 

—A.  R.  P. 

Zinc-base    alloys;    Constitution    of    binary    . 

W.   M.   Peirce.     Trans.   Amer.   Inst.   Min.   Met. 
Eng.,  Feb.,  1922.     [Advance  copy.]     26  pages. 

The  existence  and  extent  of  the  formation  of  solid 
solutions  in  zinc  of  lead,  cadmium,  iron,  copper, 
aluminium,  nickel,  cobalt,  manganese,  magnesium, 
and  tin  has  been  determined  by  means  of  conduc- 
tivity measurements  and  microscopical  analysis. 
No  evidence  of  solid  solution  of  lead  in  zinc  was 
obtained  by  hardness  or  conductivity  measurements. 
The  microstructure  of  zinc  containing  as  little  as 
in!  Pb  shows  a  secondary  constituent,  while  with 
larger  quantities  the  lead  appears  as  linear  groups 
of  small  globules  forming  a  polygonal  network,  and 
is  readily  detected,  after  polishing  and  etching,  by 
the  formation  of  pits.  Cadmium  is  held  in  solid 
solution  in  chill  castings  of  zinc  up  to  about  1% 
at  ordinary  temperatures,  and  to  about  1'5%  at 
250°  C,  while  iron  has  a  maximum  solid  solubility 

i  of  about  0'02%,  larger  quantities  being  readily 
detected  in  the  microstructure  by  the  formation  of 

I  a  hard  white  constituent,  FeZn,,  which  is  left  in 
high   relief   by   the   polishing.      With  copper,   zinc 

,  forms  two  solid  solutions  in  the  zinc-rich  region 
e  and  t;,  the  limit  of  solubility  of  the  former  in  the 

;  latter  corresponding  to  a  copper  content  of  1'81  % . 

i  The  conductivity  of  zinc  first  rises  with  addition  of 

copper  up  to  00-5 %,  then  uniformly  falls  with  an 

inflection  in  the  curve  at  1*25%  Cu.     The  solubility 

of  aluminium  in  zinc  rises  from  about  0'25%  Al  at 

ordinary  temperatures  to  about  0'85%  AI  at  335°  C, 

that  of  nickel  in  zinc  varies  with  the  temperature, 

|but  does  not  exceed  0'1%    Ni,  that  of  manganese 

lincreases  from  about  01%  Mn  at  20°  C.  to  0'4%  at 

400°  C,  and  that  of  cobalt  is  below  0-03%  Co,  while 

'tin  and  magnesium  show  no  signs  of  forming  solid 

solutions  in  zinc.    In  the  nickel-zinc  series  a  eutectic 

)f  zinc  and  NiZn3  is  formed  at  about  0'2%  Ni ;  in 

he  manganese-zinc  series  the  zinc-MnZn,  eutectic 

contains  09%   Mn  and  melts  at  418°  C,  while  in 

he  cobalt-zinc  series  the  zinc-CoZn4  eutectic  con- 

ains  less  than  0'05%  Co.— A.  R.  P. 

led  brass;  Influence  of  bismuth  in .    J.  -Czoch- 

ralski.     Z.   Metallk.,   1922,    14,  70—72.     (Cf    J 

1921,  515  a,  547  a,  815  a.) 

•'he  presence  of  bismuth  over  0"1%  decreases  very 

Uipidly  the  tensile  strength,  ductility,  and  resist- 

nce  to  shock  of  red  brass  (86%  Cu,  9%  Sn,  5%  Zn), 

nd   slightly    reduces    its   hardness.      Up    to   0"1% 

'ismuth  has  no  harmful  effect  on  the  mechanical 

roperties,  and  as  it  increases  the  fluidity  of  the 

olten  metal  and  results  in  the  production  of  better 

istings,  it  is  suggested  that  the  permissible  limit 

bismuth  in  red  brass  should  be  raised  to  0'1%. 

—A.  R.  P.  ' 

loys  for  die-casting.    A.  Kaufmann.    Z.  Metallk., 

1922,  14,  8—12. 

ie  essential  characteristics  of  an  alloy  for  casting 

Idles  under  pressure  are  that  it  must  not  oxidise 
idily  nor  attack  the  crucible  in  which  it  is  melted, 
must  have  no  tendency  to  segregate  and  be  suffi- 
ntly  fluid  to  fill  all  the  fine  channels  in  the  die 
■i  freezing,  and  it  must  show  practically  no  shrink- 
:3  in  height  and  have  the  highest  possible  latent 
•it  combined  with  good  plasticity  and  high 
lisile  strength   at  the   moment  of   solidification. 


A  number  of  commercial  alloys  are  reviewed  in 
respect  to  these  requirements.  Tin-lead  allovs, 
Tenax  metal  (zinc  containing  copper  and  alu- 
minium), and  Durolith-metal  give  very  satisfactory 
die  castings,  whereas  pure  or  nearly  pure  zinc  is 
useless  owing  to  its  brittleness  at'  temperatures 
just  below  the  melting  point.  Illustrations  of  a 
variety  of  articles  made  by  the  process  using 
different  alloys  are  given,  and  a  discussion  is  ap- 
pended giving  the  experience  of  others  in  the  use 
of  zinc  alloys  with  varying  amounts  of  copper, 
lead,  antimony,  cadmium,  and  tin  for  die  casting. 

—A.  R.  P. 

Bearing  metals;  Arsenical  .     H.  J.  Roast  and 

C.  F.  Pascoe.  Trans.  Amer.  Inst.  Min.  Met. 
Eng.,  Feb.,  1922.  [Advance  copy.]  10  pages. 
The  addition  of  08— 1"5%  of  arsenic  to  bearing 
metals^  containing  78—84%  Pb,  20—12%  Sb,  and 
0—2-6%  Cu  has  no  effect  on  the  eutectic  point,  but 
it  produces,  instead  of  the  coarsely  crystalline  struc- 
ture of  the  arsenic-free  alloy,  a  very  fine-grained 
metal  having  finely  divided  hard  crystals  dissemi- 
nated evenly  throughout  a  softer  but'tough  matrix. 
The  arsenical  alloys  maintain  their  hardness  with 
rising  temperature  better  than  those  free  from 
arsenic  and  are  more  fluid  at  370°  C.  and  give 
therefore  better  castings;  they  withstand  pressures 
of  1000  lb.  per  sq.  in.  without  deformation,  and  at 
5000  lb.  per  sq.  in.  there  is  only  a  slight  deforma- 
tion.—A.   R.   P. 

White  metal  and  similar  anti-friction  alloys;  Rapid 

analysis    of    .     L.     Bertiaux.     Ann.    Chim. 

Analyt.,   1922,  4,  77—79. 

Antimony  is  determined  in  one  portion  by  solution 
of  the  alloy  in  sulphuric  acid,  followed  by  titration 
with  permanganate  in  the  presence  of  hydrochloric 
acid  and  methyl  orange.  A  further  quantity  of 
10  g.  is  dissolved  in  nitric  acid  together  with  a 
known  quantity  of  filings  of  pure  tin  (five  times 
the  weight  of  antimony  present),  and  the  resulting 
mass  is  boiled  with  400  c.c.  of  water  and  a  little 
ammonium  nitrate  to  precipitate  tin  and  antimony. 
After  cooling  the  solution  is  diluted  to  500  c.c.  and 
filtered  through  a  dry  paper.  Aliquot  parts  are 
electrolysed  for  copper  and  for  lead  (as  peroxide) 
after  addition  of  copper  nitrate.  The  other  metals 
are  determined  in  the  solution  from  which  the 
copper  has  been  removed,  and  the  tin  is  taken  by 
difference. — A.  R.  P. 

Hardening    [of   metals'];   Phenomena,  of  and 

their  generalisation.     L.  Guillet.     Chim.  et  Ind  , 
1922,  7,  211—225. 

Alloys  can  be  classified,  from  the  point  of  view  of 
their  phase  rule  diagrams,  into  those  which  form 
an  eutectic,  e.g.,  steels,  bronzes,  aluminium  bronze, 
brasses,  etc. ;  those  in  which  a  transformation  line 
separates  a  zone  with  one  constituent  from  a  zone 
with  two  constituents,  e.g.,  duralumin,  and  those  in 
which  the  zone  of  two  constituents  is  limited 
laterally  by  two  incurved  lines.  Variation  in  the 
rate  of  cooling  produces  successively  the  structures 
known  as  austenite  (the  6olid  solution  formed  with 
very  rapid  cooling),  martensite,  osmondite  (troost- 
ite,  sorbite),  and  pearlite.  This  series  is  complete 
in  the.  case  of  the  steels,  and  some  members  of  it  are 
known  with  all  alloys  forming  an  eutectic  mixture. 
The  martensitic  structure  always  represents  the 
greatest  hardness  obtainable  by  quenching.  The 
addition  of  a  third  constituent  to  such  binary 
alloys,  as  in  the  case  of  nickel  steel,  lowers  the 
transformation  points  and  modifies  the  results  of 
quenching.  A  variation  is  introduced  when  a  pair 
of  metals  form  a  solid  solution  in  part  of  the 
diagram,  as  in  the  case  of  a  lead-tin  alloy  rich  in 
lead.  The  curve  bounding  the  solid  solution  is  in- 
clined so  that  on  heating  the  two  phases  pass  into 

o 


298  a        Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO -METALLURGY. 


[April  29,  1922. 


one.  In  such  a  case  quenching  results  in  the  pro- 
duction of  a  homogeneous  structure,  but  the  dis- 
solved constituent  can  be  precipitated  in  the 
required  state  by  re-heating,  with  increase  of  hard- 
ness. A  detailed  study  from  this  point  of  view  of 
the  complex  case  of  duralumin  (3'5%  Cu,  0-5%  Mg, 
05%  Mn),  with  photomicrographs  is  given,  and  the 
influence  of  silicon  present  as  an  impurity  in  the 
aluminium  is  shown.  It  is  suggested  that  failures 
with  duralumin  have  been  due  to  the  non-recogni- 
tion of  silicon  as  an  essential  constituent. — C.  I. 

Solid   solutions   [of  metals];   Crystal   structure    of 

.    E.  C.  Bain.    Trans.  Amer.  Inst.  Min.  Met. 

Eng.,   Feb.,  1922.  [Advance  copy.]   15  pages. 

Ax  examination  of  the  crystalline  structure  of 
various  dual  metal  mixtures  by  means  of  the  X-ray 
spectrometer  shows  that  a  solid  solution  forms  by 
the  replacement  of  the  solvent  atoms  by  solute 
atoms.  When  the  two  metals  are  of  the  same 
crystallographic  type  they  form  continuous  solid 
solutions,  and  the  lattice  size  may  change  gradually 
from  one  pure  metal  to  the  other.  If  the  pure 
solute  is  of  a  different  crystal  type  from  the  sol- 
vent the  parent  lattice  changes  very  little  in  dimen- 
sions and  a  limit  of  solubility  is  reached,  at  which 
point  a  new  lattice  is  formed,  which  may  be  inter- 
mediate or  may  be  that  of  the  solute.  Thermal 
treatment  may  alter  the  range  of  overlapping 
lattices  towards  one  or  other  of  the  pure  metals. 
This  is  most  noticeable  if  one  of  the  metals  can 
exist  in  allotropic  forms. — J.  B.  F. 

Basic    slag.      Dieckmann    and    Houdremont.     See 
XVI. 

Patents. 
Iron  ores;  Process  for  smelting  low-grade  calcareous 

.     Harzer  Werke   zu   Riibeland   und   Zorge. 

G.P.  347,976,  17.9.20. 

The  ore  is  smelted  with  rocks  containing  carbo- 
naceous matter,  e.g.,  bituminous  shale,  as  a  flux. 
The  fuel  content  of  the  rock  reduces  the  amount  of 
coal  to  be  added  to  the  charge,  and  ammonia  and 
tar  products  may  be  recovered  from  the  furnace 
gases. — A.  R.  P. 

Iron,  steel,  and  alloys  thereof;  Method  and  means 

for  ca i  bu using  .     A.  J.  P.  Bertschv.     U.S. P. 

1,408,686,  7.3.22.  Appl.,  3.1.20. 
Iron  and  steel  articles  are  case-carburised  by  heat- 
ing them  to  a  point  above  the  critical  temperature 
for  hardening,  in  a  uniform  stream  of  a  relatively 
complex  hydrocarbon  which  is  unstable  at  the 
temperature  of  the  process. — A.  R.   P. 

Silrcr    alloys.      Isabellenhuette    Ges.m.b.H.      E.P. 

169,144,  22.6.21.  Conv.,  13.9.20. 
Ax  alloy  containing  at  least  50%  Ag  with  varying 
combinations  of  manganese,  aluminium,  silicon, 
copper;  e.g.,  80%  Ag,  7—9%  Al,  11—13%  man- 
ganese-copper alloy  (70%  Cu,  30%  Mn).  The  allov 
iv  harder  than  90:10  silver-copper  alloy,  and  may 
be  heat  treated  at  200°  C,  after  which  treatment  it 
possesses  slight  magnetic  properties.  More  than 
■'!  Al  must  bo  present  if  the  alloy  is  to  be  sub- 
jected to  the  hardening  treatment  at  200°  C 

— C.  A.  K. 

Gold;  Recovery  of  —  from  pyritic  ores.  R.  J. 
Lemmon,  H.  L.  Sulman,  and  Minerals  Separa- 
tion, Ltd.  E.P.  175,384,  11.11.20. 
Crushed  gold-bearing  ore  is  treated  by  a  known 
froth  flotation  process,  preferably  in  a  neutral  or 
alkaline  condition  and  using  a  tar  oil  containing 
phenol  or  cresol.  A  second  separation  is  effected 
after  precipitating  a  mineral  compound  (ferrous 
sulphide)  in  the  pulp.  Gold  is  separated  with 
pyrites,  and  the  recovery  of  pyrites  may  be  taken 


as  an  index  of  the  recovery  of  gold.  The  concen- 
trate is  treated  subsequently  by  the  usual  cvanide 
process. — C.  A.  K. 

White  metal  alloy.  J.  Dunkley  and  E.  J  Rvan 
E.P.  175,516,  16.1.21.  " 

A  -white  metal  alloy  which  does  not  tarnish  and 
possesses  a  high  lustre  resembling  silver  contains 
23J  Pts.  Cu,  14}  Zn,  9*  Ni,  2  Pb,  £  "  phos  copper,'"' 
i  pt.  Al.  A  flux  of  3  pts.  of  broken  glass  and  2  pts 
of  charcoal  is  used  in  the  melting  operation,  and 
the  pouring  temperature  should  be  1700°  F 
(930°  C.).— C.  A.  K. 

Metals;  Apparatus  for  the  electrodeposition  of 

W.  Turton.     E.P.  176,064,  3.11.20. 

In  an  apparatus  for  the  electrodeposition  of  metals 
consisting  of  two  hollow  rolls  tilled  with  electrolyte 
and  having  their  working  surface  covered  vtitli 
absorbent  material,  the  axles  of  the  rolls  consist  of 
hollow  tubes  through  which  the  electrolyte  is  fed, 
and  the  anodes  are  formed  of  suitable  rods  which 
are  fixed  parallel  to  the  axis  inside  each  roll 

—A.  R.  P. 

Ores;    Reduction    of   .      W.    E     F     Bradley 

U.S. P.  1,407,372,  21.2.22.     Appl.,  10.8.18. 
Gases  produced  by  the  distillation  of  coal  are  used 
as  a  reducing  agent,  and  the  coke  residue  is  burned 
out  of  contact  with  the  ore  to  maintain  the  tempera- 
ture necessary  for  the  reduction. — C.  A.  K. 

Flotation  agent  and  method  of  making  sanu 
A.  and  M.  Hirsch.  U.S. P.  1,407,749,  28.2.22 
Appl.,  30.6.20. 

A  flotation  agent  is  prepared  by  nitrating  crude 
naphthalene  and  xylene  and  reducing  the  product 
to  the  amino-compounds. — B.  M.  V. 

Carburising  compound.  J.  H.  Schmitt.  U.S  P. 
1,407,951,  28.2.22.     Appl.,  11.1.21. 

A  carburising  compound  comprising  carbon,  petro- 
leum shale,  and  calcium  cyanamide. — A.  de  W. 

Regenerator  chamber  {for  metallurgical  furnaces]. 
J.  H.  Gray.  U.S. P.  1,408,086,  28.2.22.  Appl.. 
15.6.21. 

The  waste  gases  are  led  to  the  regenerator  through 
a  passage  passing  right  round  the  regenerator,  th 
dust  being  separated  from  the  gases  in  this  pa 
by  centrifugal  action. — B.  M.  V. 

Magnetic  material;  Process  for  the  removal  of 

from    admixture    with-    non-magnetic    mate! 
F.    Krupp    A.-G.    Grusonwerk.       G.P.    346,943, 
24.2.20. 

The  material  is  fed  on  to  a  moving  perforated 
magnetic  belt  having  two  independent  magnetic 
zones,  whereby  the  fine  non-magnetic  material  falls 
through  the  belt  while  the  fine  magnetic  ma 
clings  to  the  under-side  of  it,  and  is  carried  alont: 
to  the  zone  where  the  coarser  material  is  scpa; 
By  a  suitable  arrangement  of  the  magnetic  field 
the  coarser,  and  heavier,  particles  may  be  made  to 
drop  off  the  magnet  before  the  lighter  and  finer 
material. — A.  R.  P. 

Pyrites,  blende,  and  other  sulphide  ores;  P 

for  the  sulphatising-  or  dead-roasting  of .   ^  • 

Buddeus.     G.P.  348,004,  4.9.20. 

The  fine  dust  is  removed  from  the  ore,  and  by  any 
suitable  known  method  is  converted  into  a  granular 
material  which  is  re-mixed  with  the  remainder  of 
the  ore,  and  the  whole  given  a  preliminary  roa 
in  a  mechanical  roasting  furnace.  The  hot  dis- 
charge from  the  latter  is  subjected  to  blast-roasting 
to  complete  the  oxidation  of  the  sulphur. — A.  P.  P- 


Vol.  XII,  -Vo.  8.]  Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS;  OILS;  WAXES. 


299, 


Ores;  Apparatus  for  classifying  according  to 

density.     E.    P.     F.     Jalabert.     E.P.     156,226, 
4.1.21.     Conv.,  30.9.19. 

Enamelling  metals.    G.P.  347,496.    See  VIII. 
Electrolytic  apparatus.   U.S.P.   1,408,141.  See  XI. 

XL-ELECTRO-CHEMISTRY. 

Electrochemical     oxidation      of     dimethylaniline. 
Fichter  and  Rothenberger.    See  III. 

Cathodic  reduction  of  nitrogen.    Fichter  and  Suter. 
See  VII. 

Patents. 

Oases;  Apparatus  for  treating  [mixtures  of]  

with  silent  electric  discharges.  I.  Szarvasy.  E.P 
159,843,  4.3.21.     Conv.,  15.2.18. 

A  gas  mixture,  e.g.,  a  mixture  of  chlorine  and 
methane,  is  subjected  to  the  silent  electric  dis- 
charge in  the  annular  space  between  two  tubes. 
Near  the  inlets  for  the  gases  the  annular  space  is 
enlarged,  e.g.,  by  making  the  inner  tube  narrower 
at  this  part,  the  enlarged  portion  forming  a  mixing 
chamber,  which  is  preferably  filled  with  non- 
reactive  material,  e.g.,  glass  beads,  serving  to  mix 
the  gases  prior  to  their  passage  to  the  reaction 
space.— J.  S.  G.  T. 

Electrolytic  cell.    J.  Harris  and  J.  R.  Rose.     E.P. 
175,672,  13.9.20. 

In  an  electrolytic  cell  of  the  tvpe  described  in  E.P. 
140,563  (cf.  U.S.P.  1,297,157;  J.,  1919,  425a),  the 
electrodes  are  provided  with  upwardly  extending 
V-shaped  ribs  on  their  generating  surfaces,  and  the 
diaphragms  between  the  electrodes  meet  the  outer 
edges  of  the  ribs  so  as  to  form  passages  serving  to 
direct  the  gases  into  the  collecting  chambers  above. 
These  chambers  are  formed  in  the  upper  parts  of 
supporting  frames  in  which  the  electrodes,  of  sub- 
stantially rectangular  form,  are  arranged. 

—J.  S.  G.  T. 

Electrolytic  apparatus.  G.  O.  Seward,  Assr.  to 
I   American   Magnesium   Corp.     U.S.P.    1,408,141, 

28.2.22.     Appl.,  11.10.17.     Renewed  3.5.21. 

^n  electrolytic  cell,  for  producing  a  metal  lignter 

han  the  electrolyte,  comprises  a  vessel  containing 

molten  fluoride  bath,  the  walls  of  the  vessel  being 

istant  from  the  electrodes  so  that  a  solid  layer  of 

dt  is  formed  on  them.    A  cathode  projects  into  the 

cctrolyte  through  the  layer  at  the  bottom  of  the 

ill,  and  independently  adjustable  anodes  hang  in 

,ie    vessel    out    of    vertical    alinement     with    the 

ithode.     Means  are  provided  for  cooling  the  upper 

irtion  of  the  bath,  whereby  the  portion  above  the 

thode  is  separated  from  the  regions  surrounding 

e  anodes,  thus  forming  an  enclosure  for  receiving 

e  molten  light  metal  which  rises  from  the  cathode. 

—J.  S.  G.  T. 

one;    Apparatus    for    the    production    of    . 

Spiess  und  Ey.  G.P.  347,483,  12.6.14. 
E  front  side  of  a  fan-chamber  through  which  air 
sucked  is  either  arranged  as,  or  carries,  an  elec- 
de,  while  the  second  electrode  is  so  arranged 
?osite  it  that  the  air  to  be  ozonised  flows  between 
i  electrodes.  By  passing  a  high  frequency 
■rnating  current  between  the  electrodes  while 
intaining  a  moderately  rapid  stream  of  air  a 
itivcly  high  concentration  of  ozone  is  produced. 

—A.  R.  P. 

umulators;  Manufacture  of  diaphragms  for 
— .  Akkumulatoren-Fabr.  A.-G.  G.P.  347,615, 
5.2.20. 

N  sheets  of  rubber,  or  similar  soft  acid-resisting 


material  capable  of  being  hardened,  are  stitched 
together  by  a  large  number  of  threads  of  porous, 
acid-resisting  material,  or  material  which  is  dis- 
solved by  acid,  and  the  resulting  block  of  material 
is  vulcanised  or  hardened. — L.  A.  C. 

Electrochemical  gas  reactions;  Method  and  appa- 

ratus  for    carrying    out   .     H.    Spiel.     E  P. 

158,250,  17.1.21.     Conv.,  19.7.17. 

See  G.P.  317,502  of  1918;  J.,  1920,  375  a. 

See  also  pages  (a)  281,  By-products  from  gases 
(U.S.P.  1,408,105).  294,  Chromic  acid  (U.S.P. 
1.108,618);  Nitrogen  fixation  (U.S.P.  1,408,625). 
300,  Dehydrating  oils  etc.  (G.P.  347,537).  301, 
Waste  micaniti  (E.P.  176,117) 


XII.-FATS;    OILS;   WAXES. 

Partially    hydrolysed    fats;   Analysis   of .     W. 

Fahrion.     Chcm.  Umschau,  1922,  29,  54—55,  60— 
61,  66—67,  75—76,  88—89.     (Cf.  J.,  1921,  355  a.) 
In  using  the  factor  lOOxacid  value/saponif.  value 
for  calculating  the  percentage  of  free  fatty  acids  in 
a  sample  of  partially  hydrolysed  fat  it  is  assumed 
ih.it    the  saponif.   value  of  tho  neutral  fat   is  the 
same  as  the  acid  value  of  the  fatty  acids  obtained 
from  it,  and  that  the  free  fatty  acids  have  no  ester 
value,   their   acid   value   being   the  same   as   their 
saponif.    value.      Neither   of   these    assumptions   is 
justified.     The  former  involves  an  error  in  the  per- 
centage of  fatty  acids  amounting  to  a  maximum  of 
+1"1%  when  there  is  50%  present.     That  the  latter 
assumption  is  not  justified  is  shown  by  a  list  of  acid 
values  and  saponif.  values  of  fatty  acids  of  various 
oils   and   fats.     In  almost  every  case  tho  saponif. 
value  is  higher  than  the  acid  value,  tho  difference 
being  over  ten  units  in  tho  case  of  the  fatty  acids 
from    cottonseed    oil,    apricot    kernel    oil,    cherry 
kernel  oil,  walnut  oil,  linseed  oil,  palmitic  acid,  and 
oleic  acid,  especially   when  the  oils  or  fatty  acids 
have  been  stored  for  long  periods  in  the  light.     This 
difference  is  shown  in  even  greater  degree  by  tho 
fatty  acids  of  kapok  and  baobab  oils  and  by  certain 
marine   oils.     A  third   assumption   made   in  using 
the  above  formula  is  that  the  various  glyoerides  in 
a  fat  are  all  hydrolysed  at  an  equal  rate.     This  is 
approximately  true  in  the  case  of  alkaline  saponifi- 
cation, but  it  is  doubtful  if  this  is  so  in  the  case  of 
hydrolysing  with  steam  under  pressure,  by  means 
of  castor  seed  lipase,  or  by  means  of  hydrochloric 
acid.       For    example,    castor    seed    lipase    hardly 
attacks  triacetin  and  only  partially  hydrolyses  tri- 
butyrin,  and  the  neutral  tat  from  a  sample  of  palm 
kernel    oil    partially    hydrolysed    in    the    autoclave 
shows  a  markedly  lower  saponif.  value  than  the  free 
fatty  acids.     Therefore  the  quantity  of  free  fatty 
acid   in  partially  hydrolysed  fats  cannot  be  calcu- 
lated from  the  acid  value,  because  the  acid  value  of 
the  liberated  fatty  acids  may  fall  appreciably  both 
during  the  process  and  after  its  completion. 

— H.  C.  R. 

Acetyl  values  [of  fats'];  Simpler  method  of  deter- 
mining   .    L.  W.  Cook.    J.  Amer.  Chem.  Soc, 

1922,  44,  392—394. 

A  modification  of  Andre's  formula  (J.,  1921,  396  a) 
is  given  for  calculating  the  acetyl  value  of  an  oil 
from  its  saponification  values  before  and  after 
acetylation.  The  new  formula  is  A  =  (S'-S)/ 
(1-6'00075S),  where  A  is  the  acetyl  value,  S  the 
saponification  value  before  acetylation,  and  S'  the 
value  after  acetylation.  Similarly  the  percentage 
of  alcohol  in  the  original  sample  is  given  by  the 
expression  M(S'-S)/(560-042S'),  providing  the 
molecular  weight,  M,  of  the  alcohol  is  known. 

— W.  G. 
c2 


300  A 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[April  29,  1922. 


Prickly    dog-fish    liver    oil.      T.    Lexow.       Chem. 

Umsehau,  1922,  29,  59—60. 
The  oil  from  the  liver  of  Acanthias  vulgaris,  Kisso 
was  almost  water-white  and  had  a  faint  not  un- 
pleasant odour.  On  standing  at  15°  C.  some  stearine 
was  deposited.  The  following  values  were 
obtained:— Sp.  gr.  at  15°/ 15°  C,  0-9125;  acid 
value,  nil ;  saponif .  value,  156-4 ;  iodine  value 
(Wijs),  HOT;  unsaponifiable  matter,  12-31%  ;  fatty 
acids,  79-28%  ;  glycerol,  8T8%.  The  fatty  acids  freed 
from  unsaponifiable  matter  had  m.p.  27'8°  C. ;  acid 
value,  1778;  saponif.  value,  1895;  mean  moleculai 
weight,  296"1.  The  unsaponifiable  matter  is  soft 
and  crystalline:  iodine  value,  729;  m.p.  613° — 
85°  C.  It  is  soluble  in  an  equal  weight  of  lukewarm 
alcohol  and  crystals  are  deposited  on  cooling  to 
-5°  C.  The  cholesterol  test  is  given,  but  the  acetate 
melts  below  100°  C.  The  presence  of  higher  alcohols 
or  of  squalene  is  not  indicated. — H.  C.  R. 

Zoomaric      acid.       S.      Schmidt-Nielsen.       Chem. 

Umsehau,  1922,  29,  54. 
The  correct  name  for  the  acid,  C10H30O2,  which  is 
found  in  the  oils  and  fats  of  most  marine  animals,  is    l 
zoomaric   acid   and   not  zoomargaric   acid.     It  was 
discovered  by  H.  Bull  in  cod  liver  oil.     The  name    . 
clupanodonic  acid  belongs  to  an  acid,  C1BH260.,  and 
not  to  the  acid,  C2,H3402,  which  is  also  a  constituent    j 
of  herring  oil. — H.  C.  R. 

Eydrogenation   at   ordinary   pressures;   Apparatus    1 

for  .     J.   Klimont,     Chem.-Zeit.,    1922,   46, 

275. 
An  ordinary  distillation  flask  of  about  150  c.c. 
capacity  has  a  glass  tube  sealed  horizontally  into 
the  neck  and  bent  at  right  angles  inside  the  flask 
so  that  it  passes  vertically  downwards  and  ends  in 
a  small  depression  blown  in  the  bottom  of  the  flask. 
The  flask  is  also  provided  with  a  rubber  stopper 
carrying  a  short  glass  tube  bent  at  right  angles 
which  may  be  connected  with  a  manometer,  and  a 
thermometer  dipping  into  the  liquid  in  the  flask. 
The  flask  is  filled  by  means  of  a  long-stemmed  funnel 
with  a  mixture  of  the  substance  to  be  hydrogenated 
and  the  catalyst,  and  is  heated  by  means  of  a  I 
Bunsen  burner.  The  mixture  is  kept  in  constant  [ 
agitation  by  a  stream  of  hydrogen  which  enters 
through  the  tube  dipping  into  the  liquid  and  leaves 
through  the  other  side-tube. — H.  C.  R. 

Paraffin  wax.     Siebeneck.     See  IIa. 

Butter  fat.    Frog  and  Schmidt-Nielsen.    ScbXIXa. 

Fats  and  carbohydrates.     Miiller.     See  XIXa. 

Patents. 

Coconut    oil;    Process    of    manufacturing    neutral 

W    S    Cookson,   Assr.   to  L.   M.   Smith. 

U.S.P.  1,407,930,  28.2.22.  Appl.,  25.2.19. 
The  coconut  endosperm  is  comminuted  in  the  pre- 
sence of  water  and  the  liquid  portion  extracted  at 
the  ordinary  temperature.  The  extract  is  concen- 
trated and  the  oil  subsequently  separated  by 
raising  the  temperature  of  the  concentrated  extract 
above  the  melting  point  of  coconut  fat  lowering 
it  below  the  solidification  temperature  of  coconut 
oil,  and  pouring  off  the  separated  oil.   — 1±.  O.  K. 

Fish-livers;  Process  for  preserving  the  residues 
from  steaming  -  — .  Schlotterhose  mid  Co. 
G.P.  347,479,  9.11.19. 
The  livers  are  steamed  under  about  1  atm.  pressure 
and  are  then  dried.  A  double-decked  pressure 
vessel  is  used.  The  upper  compartment  receives 
the  livers  in  a  perforated  container  for  the  steam- 
ing process,  whilst  the  lower  compartment  is  pro- 
vided with  a  heating  arrangement  and  serves  for 
the  drying  process.     A  liver-oil  of  good  quality  is 


obtained  and  the  dry  residue,  which  still  contains 
about  8%  of  fat,  can  be  kept  for  several  weeks  and 
can  be  completely  extracted  later. — H.  C.  R. 

Fatty     acids;    Process    for    distilling    .       ]£ 

Kubierschky.     G.P.  347,828,  1.2.20. 

The  crude  fatty  acids  are  heated  by  passing  them 
continuously  through  a  heating  coil  and  are  then 
treated  with  superheated  steam  in  counter-current 
in  a.  distillation  column,  whereby  the  volatile  and 
non-volatile  constituents  are  separated.  The  hot 
vapours  distilling  over  can  be  used  for  the  genera- 
tion of  the  steam  necessary  for  the  process  before 
being  condensed.  As  a  result  of  the  short  period 
of  heating  decomposition  of  the  fatty  acids  is 
avoided  and  a  distillate  of  uniformly  good  quality 
is  obtained. — H.  C.  R. 

Oils,  fats  and  aqueous  emulsions;  Electrical  process 

for  the  dehydration  of .  Elektro-Osmose  A.-G 

(Graf  Schwerin  Ges.).    G.P.  347,537,  23.7.19. 

Oils  and  fats  are  rapidly  and  completely  freed 
from  moisture  by  subjecting  them  to  an  electro- 
osmotic  action  in  an  apparatus  in  which  electro- 
negative and  positive  semipermeable  membranes 
are  arranged  near  to  the  anode  and  cathode  res- 
pectively.— A.  J.  H. 

Lubricating  oils,  leather  grease,  artificial  vaseline, 
lanolinc-like  materials,   etc.;  Production  of  very 

viscous  from  mineral,  animal,  or  vegetable 

oils.  Plauson's  Forschungsinstitut  G.m.b.H. 
G.P.  347,084,  22.5.20. 
Bituminous  substances,  particularly  montan  wax, 
are  stirred  warm  with  an  aldehyde  such  as  formal- 
dehyde and  sodium  hydroxide  solution;  ketones  and 
polyhydric  alcohols  may  also  be  added.  After  wash- 
ing and  drying,  the  product  is  melted  with  a  vari- 
able proportion  of  mineral,  animal,  or  vegetable 
oil  according  to  the  desired  final  material.  For  the 
production  of  salve-like  emulsions  the  artificial 
vaseline  thus  obtained  is  intimately  mixed  with 
water.  The  products  can  also  be  used  to  raise  the 
viscosity  of  oils. — D.  F.  T. 

Tyre-filling  composition.    E.P.  175,389.    See  XIV. 


XIIJ.-PAINTS ;     PIGMENTS;    VARNISHES; 
P.ESINS. 

Colophenic  acid.  W.  Fahrion.  Ber.,  1922,  55,  709. 
In  reply  to  Aschan  (cf.  J.,  1922,  183  a)  the  author 
points  out  that  the  different  varieties  of  colophony 
contain  a  large  but  unknown  number  of  resin  acids, 
all  of  which,  in  so  far  as  they  have  been  isolated, 
possess  the  formula,  C20H30O.,,  and  are  soluble  in 
light  petroleum.  They  are  all  converted  by  atmos- 
pheric oxygen  into  darker  coloured,  amorphous 
autoxidation  products  which  are  insoluble  in  light 
petroleum  and  arc  classed  as  oxyabietic  acids.  (I/. 
J.C.S.,   April,  1922.)— H.  AV. 

Patents. 
Paints,  varnishes,  polishes,  and  the  like:  Produr- 

tion    of    .       A.-G.    fiir    Anilin-Fabr.      b? 

156,250,  4.1.21.     Conv.,  18.12.15. 
Hydrogenated     naphthalene,     e.g.,     1.2.3.4-tetra 
hydronaphthalcno,   is  used   as  a  substitute  for 
of     turpentine     in     the     manufacture    of    paints 
varnishes,  polishes,  and  the  like. — L.  A.  C. 

Sticklac;   Process   for   separating   impurities  fro" 

to  obtain  pure  lac  resin.    W.  A.  FraymoiUh 

J.  C.  Naale,  and  Kestner  Evaporator  «  E" 
gineering  Co.,  Ltd.     E.P.  175,023,  4.11.20. 

Crude  sticklac,  graded  to  pass  a  sieve  of  20  mesne 


Vol.  XII.,  No.  8.J 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTA-PERCHA. 


301a 


to  the  inch  but  retained  on  one  30  to  the  inch, 
is  washed,  preferably  in  slightly  alkaline  water,  in 
an  agitator  and  fed  into  a  rotary  or  shaking  sieve 
or  basket  hydro-extractor  to  drain.  It  is  then 
mixed  with  a  liquid  of  density  greater  than  water, 
e.g.,  solutions  of  salts,  sugar  syrup,  etc.,  and  the 
cream  or  pulp  fed  into  a  mechanical  settler  or 
non-perforated  centrifuge,  whereby  separation  of 
lac  resin  from  woody  particles  and  insect  debris 
is  effected. — A.  de  W. 

Emulsions  for  painting  and  priming  or  like  pur- 
poses and  methods  of  preparing  said  emulsions. 
E.  V.  Schou.    E.P.  175,764,  24.11.20. 

Puke  water  or  a  "  ropy  "  aqueous  solution  con- 
taining a  viscous  ingredient,  such  as  glue,  gum, 
casein,  or  the  like,  is  gradually  added  with 
vigorous  stirring  to  a  tough,  sticky,  oleaginous 
material  possessing  emulsifying  properties,  e.g.,  an 
oxidised  or  polymerised  drying  or  semi-drying  oil, 
turpentine  oil  blended  with  resins,  rubber,  etc., 
whereby  the  aqueous  portion  is  emulsified  as  a 
finely-divided  disperse  phase.  The  emulsion  may 
be  thinned  by  addition  of  a  thin  oily  diluent  such 
as  petrol,  turpentine,  etc.,  thereby  diluting  the 
continuous  phase.  Stabilisation  of  the  emulsion 
may  be  effected  by  a  homogenising  treatment 
whereby  the  particles  of  the  disperse  phase  are 
reduced  to  a  diameter  of  l/i — 5/t  or  less.  Pigments 
may  bo  added  either  in  the  dry  state  or  after 
being  previously  ground  in  oil. — A.  de  W. 

1  Varnish  and  other  ingredients;  Recovery  of  
from  waste  micanite  and  the  like.  H.  C.  S.  do 
Whalley,  and  The  Micanite  and  Insulators  Co., 
Ltd.  E.P.  176,117,  29.11.20.  Addn.  to  155,318 
(J.,  1921,  91  a). 

Scbap  micanite  or  the  like  is  softened  and  opened 
up  by  treatment  for  about  J  hr.  above  100°  C. 
under  atmospheric  pressure  with  a  liquid  such  as 
naphtha  of  b.p.  150°  to  200°  C,  which  partly  dis- 
solves the  varnish,  or  with  gum  or  wood  turpen- 
tine, which  exert  no  solvent  action.  The  mass  is 
subsequently  agitated  in  the  cold  with  a  solvent 
such  as  amyl  alcohol,  wood  spirit,  or  acetic  acid 
to  dissolve  the  varnish. — L.  A.  C. 

Varnish  oils;  Manufacture   of .     A.   Schwarc- 

man,  Assr.  to  S.  Kellogg  and  Sons,  Inc.     U.S. P. 
1,407,952,   28.2.22.     Appl.,   17.3.21. 

A  small  amount  of  a  linoleate  of  a  non-catalytic 
metal  in  solution  in  an  excess  of  linseed  oil  fatty 
acids  is  incorporated  in  raw  linseed  oil  to  inhibit 
"  breaking."— A.  de  W. 

Varnish,  paint  or  cement  and  process  of  making 
same.  H.  F.  AVillkie,  Assr.  to  U.S.  Industrial 
Alcohol  Co.  U.S. P.  1,408,325,  28.2.22.  Appl., 
12.4.20. 

V  coating  material  comprises  a  rosin,  turpentine, 
ind  a  solvent  containing  ethyl  acetate  and  alcohol 
idapted  to  carry  off  water  during  evaporation. 

—A.  de  W. 

'oinf  oil.    G.  I.  St.  John,  Assr.  to  F.  F.  Cassidv. 
U.S.P.  1,408,544,   7.3.22.     Appl.,   22.4.20. 

i  paint  oil  comprises  rubber  gums  dissolved  in  un- 
;iturated  hydrocarbon  oil  derived  from  acid  sludges 
btained  in  purifying  crude  mineral  oil  distillates. 

— L.  A.  C. 

ondensation    products    from    aromatic    hydroxy- 

carboxylic  acids;   Preparation   of  resinous  ■ . 

Farbw.    vorm.    Meister,    Lucius,    und    Briining. 

O.P.  344,034,  26.3.20. 
Iixtures  of  different  aromatic  o-hydroxycarboxylic 

ids,   e.g.,   of  the  three  isomeric  cresotinic  acids, 


or  of  salicylic  acid  and  m-  and  p-cresotinic  acids, 
are  heated  with  the  usual  acid  condensing  agents 
such  as  phosphorus  oxychloride,  acetyl  chloride, 
acetic  anhydride,  carbonyl  chloride,  and  sulphuryl 
chloride,  whereby  resins  are  obtained  which  are 
completely  soluble  in  acetone,  benzol,  amyl 
acetate,  paraldehyde,  solvent  naphtha,  tetrahydro- 
naphthalene,  and  linseed  oil.  When  applied  to 
metal,  wood,  etc.,  such  solutions  produce  a  hard, 
glossy  surface  which  is  resistant  to  chemical  re- 
agents and  has  good  fastness  to  light,  air,  and 
water. — A.  J.  H. 

Oil  pastes  [paints'];  Process  for  the  conversion  of 

certain  water  pastes  into  .     H.  P.  Fletcher, 

Assr.  to  A.  J.  Parker.    Reissue  15,298,  7.3.22,  of 
U.S.P.  1,317,784,  7.10.19.    Appl.,  30.9.21. 

See  E.P.  122,612  of  1918;  J.,  1919,  187  a. 


XIV.    INDIA-RUBBER ;  GUTTA-PERCHA. 

Rubber ;  Properties  of  raw .   K.  Asano.   J.  Ind. 

Chim.,  Tokio.     Chem.  Zentr.,  1922,  93,  II.,  530. 

Carbon  dioxide,  hydrogen,  nitrogen,  and  oxygen 
have  no  appreciable  effect  on  rubber  films  at  tem- 
peratures up  to  70°  C.  in  the  dark,  and  up  to  the 
same  temperature  the  depolymorising  effect  of  heat, 
as  judged  by  the  viscosity  of  solutions  of  the  rubber, 
is  but  slight.  Oxidising  gases  tend  to  cause  a 
reduction  in  the  viscosity,  whilst  carbon  dioxide 
tends  to  check  depolymerisation  and  the  develop- 
ment of  tackiness.  Light  causes  concurrent  poly- 
merisation and  depolymerisation,  the  polymerised 
rubber  being  insoluble.  Copper  induces  tackiness 
by  depolymerisation  without  oxidation.  (0/.  Van 
Rossem,  J.,  1915,  671.)— D.  F.  T. 


Cold  vulcanisation.  S.  J.  Peachev.  Inst.  Rubber 
Ind.,  14.3.22.  Indiarubber  J.,  1921,  63,  427—431. 
(Cf.  J.,  1921,  5  t.) 

With  dry  mixings,  vulcanisation  by  hydrogen 
sulphide  and  sulphur  dioxide  is  normally  limited  to 
sheets  up  to  3.}  mm.  thick,  although  in  the  presence 
of  porous  fillers  it  is  possible  to  use  sheets  up  to 
a  thickness  of  -J-  inch.  Vulcanisation  in  solution 
can  be  effected  in  any  desired  bulk,  and  it  is  possible 
to  "  wet-mould  "  various  articles,  allowance  being 
made  for  the  shrinkage  during  drying.  In  order 
to  obtain  a  gel  with  a  vulcanisation  coefficient  of  2i, 
it  is  convenient  to  mix  10  vols,  of  a  12  J  %  solution 
of  rubber  in  pyridine-free  benzol  or  naphtha 
saturated  with  hydrogen  sulphide,  with  1  vol.  of  a 
solution  of  2'4  g.  of  sulphur  dioxide  in  100  c.c.  of 
benzene  or  naphtha.  The  reaction  between  the  dis- 
solved rubber  and  the  active  sulphur  is  not  quite 
complete,  but  in  working  for  coefficients  of  1 — 2J 
only  traces  of  free  sulphur  are  produced. — D.  F.  T. 

Vulcanised  rubber;  Determination  of  the  true  free 
sulphur  and.  true   coefficient  of  vulcanisation  in 

.     27.     W.  J.  Kelly.     J.   Ind.  Eng.  Chem., 

1922,  14,  196—197. 
The  sulphur  extracted  from  compounded  rubber  by 
acetone  represents  true  free  sulphur,  together  with 
part  of  the  sulphur  combined  with  resins,  proteins, 
and  accelerators;  the  sulphur  in  the  residual  rubber 
is  present  in  combination  with  rubber,  with  resins, 
proteins,  and  accelerators,  and  with  metals  as 
sulphides  and  sulphates.  A  scheme  of  analysis  is 
suggested  on  the  lines  indicated  earlier  (J.,  1920, 
728  A),  with  the  additional  determination  of  the 
quantity  of  "  acetone-insoluble  sulphur  "  in  the 
accelerators,  which  can  be  extracted  by  a  mixture 
of  ether  and  aqueous  hydrochloric  acid. — D.  F.  T. 


302  a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[April  29,  1022. 


Patents. 

Vulcanisation  of  rubber  articles.     E.    A.    White. 

From  The   B.    P.    Goodrich   Co.      E.P.    175,383, 

11.11.20. 
The  article,  e.g.,  a  motor  cover  built  up  on  an 
annular  core,  is  placed  between  the  two  halves  of 
the  outer  mould.  Without  completely  closing  the 
latter,  steam  heat  is  applied  inside  the  vulcanising 
chamber  until  the  tread  rubber  is  sufficiently 
softened,  the  steam  pressure  being  then  reduced  so 
that  any  condensed  water  in  the  mould  is  re- 
evaporated.  The  mould  is  then  closed  by  mechanical 
pressure,  and  vulcanisation  is  completed  by  re- 
admitting steam  into  the  chamber.  This  procedure 
reduces  the  displacement  of  the  fabric  by  the  flow 
of  the  rubber  in  the  mould.— D.  F.  T. 

Cementing  or  uniting  leather,  leather  containing 
rubber  or  rubber-containing  surfaces  or  the  like 
together  or  to  one  another.  S.  J.  Peachey. 
E.P.  176,073,  23.11.20. 

Two  surfaces  to  be  united  consisting  of  or  con- 
taining leather,  rubber,  or  the  like,  are  coated  with 
a  layer  of  a  gel  of  vulcanised  rubber,  prepared,  e.g., 
as  described  in  E.P.  129,826  (J.,  1919,  688  a),  and 
pressed  together  to  effect  cohesion. — L.  A.  C. 

Tyre-fitting  composition  and  process  of  manufactur- 
ing  sa.me.  W.  H.  Hayward,  and  Adanae,  Ltd. 
E.P.  175,389,  12.11.20. 

In  producing  a  tyre-filling  composition  by  the  action 
of  sulphur  chloride  on  a  vegetable  oil  in  the  presence 
of  magnesia,  an  oil  mixture  of  iodine  value  approx. 
1 10  gives  the  best  results.  For  this  purpose  soya 
bean  oil,  linseed  oil,  or  poppy  seed  oil  may  be  mixed 
with  rape  oil,  arachis  oil,  or  olive  oil;  as  an  alterna- 
tive, a  mixture  of  maize  oil  with  cottonseed  oil 
and/or  sesame  oil  may  be  used.  Venetian  red  is 
added  for  colouring. — D.  F.  T. 

Vulcanising  rubber  articles ;  Method  of .    H.  D. 

Ayres,  Assr.  to  The  B.  F.  Goodrich  Co.  U.S.P. 
1,408,678,  7.3.22.  Appl.,  27.3.19.  Renewed 
27.7.21. 

See  E.P.  175,383  of  1920;  preceding. 

llubber  latex;  Processes  and  apparatus  for  rolling 

freshly  coagulated  .     Soc.  Anon.  Comp.   des 

Caoutchoucs  do  Padang.  E.P.  160,169,  15.3.21. 
Conv.,  15.3.20. 


Diaphragms     for     accumulators. 
See  XI. 


G.P.     347,615. 


XV.-LEATHEH;  BONE;  HORN;  GLUE. 

Tanning  extracts;  Colloid  content  of  vegetable . 

Attempts  to  correlate  astringency  with  the 
potential  difference  of  the  particles  against  the 
aqueous  phase.  A.  W.  Thomas  and  S.  B.  Foster. 
J.  Ind.  Eng.  Chem.,  1922,  14,  191—195. 
Measurement  of  the  potential  difference  of  the 
tannin  particles  in  various  vegetable  extracts 
against  the  .aqueous  phase  shows  that  the  order  of 
these  values  is  approximately  the  same  as  the  order 
of  the  astringency  of  the  extracts.  The  potential 
difference  increases  with  dilution  of  the  extract, 
decreases  with  increasing  acidity,  and  is  increased 
by  dialysis  of  the  extract,  and  it  would  seem  possi- 
ble therefore  by  simple  chemical  treatment  to  vary 
the  astringency  of  a  given  extract,  and  thus  render 
it  suitable  for  any  desired  tanning  process.  Pre- 
cipitation tests  made  on  the  extracts  with  various 
electrolytes  indicate  that  there  is  a  largo  amount 
of  colloidal  matter  present  belonging  to  a  type  of 
dispersion  with  properties  between  the  intermediate 
and  hydrophilic  dispersions. — G.  F.  M. 


Sugars  in  tannin  extracts  of  analytical  strength; 

Estimation  of  reducing .     H.  L.  Longbottom. 

J.  Amer.  Leather  Chem.  Assoc,  1922,  117,  104— 
109. 

200  c.c.  of  the  tannin  solution  is  mixed  with  10  c.c. 
of  a  saturated  solution  of  normal  lead  acetate, 
allowed  to  stand  for  20  mins.,  filtered,  and  160  c.c. 
of  the  filtrate  made  just  turbid  by  the  addition  of 
5N  sodium  hydroxide  solutions;  5  c.c.  of  solution  of 
basic  lead  acetate  is  added,  the  precipitate  allowed 
to  settle,  filtered  off,  and  150  c.c.  of  filtrate  collected. 
To  this  is  added  15  c.c.  of  a  saturated  solution  of 
sodium  sulphate,  the  mixture  stirred  well,  allowed 
to  settle,  filtered,  and  the  precipitate  washed  with 
a  minimum  of  water.  The  filtrate  is  inverted  with 
strong  hydrochloric  acid,  neutralised,  and  made  up 
to  200  c.c,  and  50  c.c  is  titrated  with  standard 
Fehling's  solution,  using  potassium  iodide-starch 
solution  as  external  indicator. — D.  W. 

Tan  liquors;  Measurement   of  plumping  value  of 

.     H.  C.  Reed  and  T.  Blackadder.     J.  Amer. 

Leather  Chem.  Assoc,  1922,  17,  109—115. 

Of  the  methods  suggested  for  the  measurement  of 
the  plumping  value  of  tan  liquors,  that  of  Claflin 
(J.,  1921,  230  a)  6eems  the  best  practical  method. 
Several  features  in  the  method  require  standardis- 
ing :  — the  moisture  content  of  the  hide  powder,  the 
acidity  of  the  powder,  and  the  effect  of  salts  on  the 
swelling. — D.  W. 

Chrome  tanning  VIII.  Determination  of  the 
basicity  figures  of  chrome  [tanning']  liquors.  D. 
Burton,  A.  Glover,  and  R.  P.  Wood.  J.  Soc. 
Leather  Trades  Chem.,  1922,  6,  92—97. 

50  c.c.  of  the  solution  is  treated  with  25  c.c.  of 
"  20  vol."  hydrogen  peroxide  and  25  c.c.  of  N jl 
sodium  hydroxide,  the  solution  diluted  with  50  c.c. 
of  distilled  water,  heated  gently  and  boiled  for 
J  hr. ;  25  c.c.  of  TV/1  sulphuric  acid  is  then  added, 
the  solution  boiled  again,  diluted  with  cold  freshly- 
boiled  distilled  water  and  titrated  with  N  /l  sodium 
hydroxide  in  presence  of  phenolphthalein.  The 
solution  is  next  diluted  to  500  c.c  and  the  chromium 
in  an  aliquot  portion  determined  volumetrically. 
The  acidity  of  the  hydrogen  peroxide  is  determined 
and  allowance  made  for  it  in  calculating  the  a<  idit> 
of  the  chromo  liquor.  The  results  obtained  with  the 
new  method  are  slightly  higher  than  those  by  th 
Procter-McCandlish  method  (J.,  1907,  458)  which 
are  known  to  be  low  owing  to  the  precipitation  of 
basic  salts  and  the  absorption  of  sodium  hydroxide 
by  the  precipitated  chromium  hydroxide. — D.  W. 

Tannin;  Effect  of  formaldehyde  on  the  adsorption 

of  by   hide.     O.   Cerngross  and  H.   Boser. 

Collegium',  1922,  1—13. 
Hide  powder  was  treated  with  tannin  solutions  of 
concentrations  0'85 — 8"5  g.  per  1.  for  periods  of  4, 
48,  and  168  hrs.  and  the  adsorption  found  to  comply 
with  the  Freundlich  adsorption  law.  The  adsorption 
of  tannin  by  hide  powder  is  practically  complet  • 
in  2  days.  When  hide  powder  is  tanned  with 
formaldehyde  and  then  submitted  to  tannin  solu- 
tions; the  capacity  of  the  hide  powder  to  ;< 
tannin  is  much  diminished.  Equilibrium  in  the 
system  tannin,  water,  hide  powder  treated  with 
formaldehyde  is  not  attained  in  2  days,  but  thi 
centration  of  tannin  varies  only  a  little  in  the 
succeeding  5  days.  Comparative  tests  with  pi 
and  leather  tanned  with  formaldehyde  showed  that 
the  adsorption  of  tho  tannin  was  hindered  ami 
diminished  in  the  case  of  the  leather.  The  use  ot 
formaldehyde  as  a  preliminary  tannage  prior  to 
vegetable  tannage  requires  care  since  the  tech- 
nical tanning  materials  resemble  tannin  in  then 
behaviour. — D.  W. 


Vol.  XIX,  No.  8.] 


Cl.  XV— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


303  a 


Hide  powder;  Swelling  of .    //.     E.  C.  Porter. 

J.  Soc.  Leather  Trades  Chem.,   1922,  6,  83—89. 

(Cf.  J.,  1921,  781  a.) 
The  previous  work  has  been  repeated  and  the 
swelling  phenomena  at  or  near  the  maxima  has  been 
examined  more  closely  and  the  presence  of  the  ex- 
pected maximum  in  alkaline  swelling  proved.  On 
increasing  the  alkalinity  of  the  solution  after  this 
maximum  is  passed,  the  volume  does  not  long  con- 
tinue to  diminish  but  passes  through  a  minimum 
and  then  increases  rapidly  again.  From  p„  4'8  to 
Ph  12*5  it  appears  that  the  osomotic  effect  of  ions 
within  the  swollen  powder  increases  more  rapidly 
than  the  repressive  power  of  the  very  few  ions  in 
the  external  solution.  At  pH  12'5  the  repressive 
osmotic  effects  of  ions  and  molecules  in  the  external 
solution  causes  a  diminution  in  volume.  After 
pH  13'2  is  reached,  the  volume  increases  again,  since 
the  cohesive  forces  of  the  jelly  structure  are  being 
so  rapidly  reduced  that  weaker  swelling  forces  can 
produce  larger  effects  of  swelling,  or  new  reacting 
groups  in  the  hide  substance  come  into  effect  and 
the  chemical  equivalent  of  the  hide  protein 
diminishes.  The  equilibrium  solutions  have  been 
analysed  to  determine  the  dissolved  hide  substance. 
The  second  rise  in  the  increase  in  the  swelling  of 
the  hide  powder  with  alkali  takes  place  just  after 
a  sudden  rise  in  the  amount  of  hide  6ubstance  dis- 
solved. The  view  that  a  greater  combining  capacity 
for  acids  and  bases  may  exist  at  certain  definite 
hydrion  concentrations  is  supported  by  Lloyd  and 
Mayes'  work  (J.,  1922,  224  a).— D.  W. 

Leather  tanned  with  synthetic  tannins;  Action  of 

hot  water  on .     W.  Moeller.     Z.  Leder-  und 

Gerbereichem.,  1921,  !,  100—103.     Chem.  Zontr., 
1922,  93,  II.,  659.    (.Of.  J.,  1922,  185  a.) 

Leather  tanned  with  the  svnthetic  tannins 
Neradol  D  and  ND,  Ordoval  G  and  2G,  and  Ewol 
are  much  less  resistant  to  the  action  of  hot  water 
than  vegetable-  and  mineral-tanned  leathers,  but 
about  equal  to  formaldehyde-tanned  leather.  More 
than  50%  of  the  hide  substance  in  leathers  tanned 
with  synthetic  tannins  is  hydrolysed  by  the  water, 
whereas  with  other  leathers  the  average  is  not  more 
than  10%.— D.  W. 

Chrome  leather  analysis.  III.  Extraction  of  oils 
and  fats  from  chrome  leather.  D.  Woodroffe.  J. 
Soc.  Leather  Trade  Chem.,  1922,  6,  97—102. 

The  inferior  solvent  properties  of  petroleum  spirit 
vre  demonstrated  and  arguments  put  forward  for 
;he  adoption  of  chloroform  as  the  official  solvent  for 

he  extraction  of  oils  and  fats  from  chrome  leather. 

igures  are  given  showing  the  comparative  solvent 

>roperties  of  trichloroethylene,  benzene,  ether,  and 

hloroform. — D.  W. 


hrome     [tanned']     leather;     Application     of     the 
Procter-Searle  method  to  the  determination  of  the 

acidity  of .     W.  It.  Atkin.     J.  Soc.  Leather 

Trades  Chem.,  1922,  6,  89—92. 

ome  sodium  chromate  is  formed  when  the  usual 
rocter-Searle  method  is  applied  to  chrome  leather, 
he  following  modification  is  suggested: — A 
uxture  of  2—3  g.  of  leather  and  25  c.c.  of  N/10 
idium  carbonate  is  evaporated  to  dryness  in  a 
latinum  dish  on  a  water  bath,  the  residue  heated 
i  160°  C.  in  an  air  oven  for  £  hr.,  ignited,  treated 
ith  boiling  distilled  water  and  22  c.c.  of  2V/10 
ilphuric  acid,  the  solution  boiled  to  expel  carbon 
oxide,  and  titrated  with  2V/10  sodium  hydroxide 
id  phenolphthalein.  The  chromate  in  the  solution 
estimated  volumetrically  and  allowance  made  for 
e  sodium  carbonate  lost  in  this  way.  With  chrome 
luors  the  method  yielded  results  higher  in  every 
se  than  those  obtained  by  the  Procter-McCandlish 
Hhod  (J.,  1907,  458).— D.  W. 


Chrome-leather;  Action  of  soap  on  .     Immen- 

dorfer  and  Pfiihler.  Chem.  Umschau,  1922,  29, 
73—74. 

Experiments  to  determine  the  action  of  soap  on 
chrome-leather  showed  that  the  alcoholic  extract  of 
two-bath  leather  consists  of  63—85%  free  oleic  acid. 
In  the  case  of  single-bath  leather  the  alkali  of  the 
soap  was  found  to  have  penetrated  into  the  leather 
to  a  certain  extent.  The  more  completely  single- 
bath  leather  has  been  de-acidified  the  more  free 
oleic  acid  can  be  extracted  from  it  with  neutral 
alcohol.— H.  C.  R. 

Gelatin;   The   processes   in  tanning   of  .     W. 

Moeller.  Z.  Leder-  und  Gerbereichem.,  1921,  I, 
80—89.  Chem.  Zentr.,  1922,  93,  II.,  659.  (Cf. 
J.,  1921,  632  a.) 

When  gelatin  is  tanned  with  formaldehyde, 
quebracho-tannin,  or  chrome  tanning  liquors  the 
effect  depends  generally  on  the  coagulability  of  the 
gelatin  used.  The  coagulable  portions  of  the  gelatin 
are  present  in  the  residual  tanning  solution  as  a 
jelly  so  that  there  is  a  proteolytic  factor  in  gelatin 
tanning.  Gallotannin  apparently  forms  an  excep- 
tion which  can  be  explained  by  the  sudden  forma- 
ion  of  a  membrane  which  encloses  the  untanned 
gelatin  particles.  There  is  a  connexion  between  the 
action  of  hot  water  on  different  kinds  of  leather  and 
the  proteolytic  substances  formed  and  those  formed 
in  the  gelatin  tannage  with  the  same  material". 

— D.  W. 

Gelatin;    Drying    and    swelling    of    .      S.    E. 

Sheppard  and  F.  A.  Elliott.  J.  Anier.  Chem. 
Soc.,  1922,  44,  373—379. 

From  experiments  with  "  leaf  "  gelatin  and  with 
gelatin  in  the  form  of  cubes  the  authors  conclude 
that  the  "case  hardening"  effect,  in  particular  as 
initiated  at  edges  and  corners,  is  responsible  for  two 
important  phenomena  in  the  hydration-dehydration 
cycle  of  gelatin  jellies.  The  first,  noted  with  leaf 
gelatin,  is  that  the  greatest  shrinkage  and  subse- 
quent swelling  take  place  perpendicular  to  the 
largest  evaporating  surface  (cf.  Shreve,  Science, 
1918,  48,  324).  The  second  is  the  apparent  influence 
of  the  original  concentration  of  the  gelatin  jelly 
on  its  swelling  limit  subsequent  to  drying.  This  is 
regarded  as  due  to  the  initial  case-hardening,  which 
preserves  an  approximate  "  skin  extension  "  corre- 
sponding to  the  original  figure.  On  this  basis,  any 
structure  is  not  inherent  in  the  gelatin,  but  is  an 
environmental  impress,  a  strain  structure  in  the 
original  mass. —  W.  G. 

Osmosis ;  Relation  of  anomalous to  the  swelling 

of  colloidal  material.  F.  E.  Bartell  and  L.  B. 
Sims.     J.  Amer.  Chem.  Soc,  1922,  44,  289—299. 

Solutions  which  exhibit  a  negative  osmotic 
tendency  toward  parchment  are  found  to  produce 
swelling,  and  those  which  exhibit  a  positive  osmotic 
tendency  produce  shrinking  in  laminaria.  From 
reference  to  the  literature  this  behaviour  is  found 
to  be  general.  It  is  suggested  that  study  of 
anomalous  osmose  and  its  relation  to  the  swelling  of 
colloid  materials  would  find  important  applications 
in  tanning,  preservation  of  fruit,  meat,  etc.  (Cf. 
J.C.S.,  April.)— J.  F.  S. 

Patents. 

Tanning  materials;  Manufacture  of  .     Chem. 

Fabr.  Worms  A.-G.  E.P.  154,153,  17.11.20. 
Conv.,  18.11.19. 

An  acid  sulphite,  and  an  aldehyde  other  than 
formaldehyde  are  caused  to  act  on  an  aromatic 
hydroxy-compound  or  an  alkali  salt  thereof  under 
ordinary  pressure  at  a  temperature  up  to  100°  C, 
with  or  without  the  addition  of  other  materials. 

— D.  W. 


304  a 


Cl.  XVI.— SOILS,  &c.     Cr,.  XVII.— SUGARS  ;    STARCHES  ;    GUMS. 


[April  29,  1922. 


Hides  anil  shins :  Method  for  the  depilation  of  - . 

O.  Richter.    E.P.  175,314,  14.8.20. 

Wetted  hides  or  skins  are  placed  in  closed  chambers 
containing  150 — 300  g.  of  ammonia  per  cub.  m.  at 
ordinary  or  increased  pressure  at  37° — 45°  C.  The 
air  in  the  chamber  is  kept  humid  and  the  ammonia 
in  the  skins  may  be  recovered  by  converting  it  into 
a  soluble  6alt  and  washing. — D.  W. 

Hides,  shins  and  the  like;  Treatment  of  for 

the  production  of  leather.  T.  B.  Carmichael  and 
W.  H.  Ockleston.    E.P.  175,329,  1.10.20. 

Hides  and  skins  are  treated  with  a  quantity  of  a 
solution  of  10  pts.  of  formaldehyde  and  90  pts.  of 
sodium  bisulphite  liquor  of  25%  strength,  corre- 
sponding to  0'5%  of  formaldehyde  on  the  pelt  weight 
for  12  hrs.  and  then  with  other  tanning  agents. 

— D.  W. 

Tanning.    T.  TS.  Carmichael  and  W.  H.  Ockleston. 
E.P.  175,362,  8.11.20. 

Hides  or  skins  are  tanned  with  vegetable  or  other 
tanning  agents,  then  treated  with  a  10 — 25% 
solution  of  pyridine  for  the  purpose  of  fixing  the 
tanning  agent,  after  which  they  may  be  washed  in 
weak  solutions  of  organic  acids. — D.  W. 

Plastic   masses;   Preparation   of  from    blood. 

haemoglobin,  or  like  protein,  substances,  and 
■manufacture  of  articles  therefrom.  W.  P. 
Thompson.  From  H.  Plauson.  E.P.  170,035, 
30.9.20. 

See  U.S.P.  1,395,729  of  1921 ;  J.,  1921,  898  a.  The 
binder  is  prepared  by  dispersing  protein  in  a  liquid 
by  high-speed  intensive  mechanical  disintegration, 
e.g.,  in  a  colloid-mill. 

Leather  grease.     G.P.  347,084.    See  XII. 

Cementing  leather  etc.    E.P.  176,073.    See  XIV. 


XVI.-S0ILS ;  FEHTILISEBS. 

Soil   solution.      J.    E.   Greaves    and   C.    T.    Hirst. 
J.  Ind.  Eug.  Cheni.,  1922,  14,  224—226. 

Clear  soil  extracts  may  be  obtained  by  adding  2% 
of  lime,  ferric  sulphate,  ferric  alum,  sodium  alum, 
or  potassium  alum  to  the  soil-water  mixture,  by 
filtering  through  a  Pasteur-Chamberland  filter,  or 
by  centrifuging.  The  most  efficient  of  these  means 
is  the  filter,  and  when  sulphates  are  to  be  deter- 
mined that,  or  the  centrifuge,  alone  are  admissible. 
Lime  and  ferric  salts  cause  a  considerable  loss  of 
nitrates.  For  general  purposes  sodium  alum  or 
potassium  alum  is  quite  satisfactory,  giving  a  clear 
solution  with  a  minimum  loss  of  salts.  In  the  deter- 
mination of  chlorides  and  nitrates  nothing  is  gained 
by  agitating  the  soil  and  water  for  more  than 
5  mins.  provided  the  soil  is  finely  divided  and  the 
solution  vigorously  shaken.  In  the  case  of  sul- 
phates a  longer  time  is  required  to  reach  equili- 
brium. Usually  5  pts.  of  water  to  I  pt.  of  soil  is 
sufficient,  but  this  will  also  depend  on  the  quantity 
and  nature  of  the  sulphates  present.  Where 
nitrates  are  to  be  determined  in  a  soil  solution  and 
alum  is  used  as  a  flocculant  no  other  antiseptic  is 
necessary,  but  when  alum  is  not  used  and  the  solu- 
tions are  to  stand  for  some  time  the  addition  of 
0'5  iC.c.  of  chloroform  to  each  sample  is  advisable. 

— G.   F.   M. 

Basic     slag;      Some     compounds     in     the     system 

l>iO—P,0s    and     their    relation     to    .       T. 

Dieckmann     and    E.     Houdremont.      Z.     auorg. 
Chem.,  1921,  120,  129—149. 

A  number  of  compounds  of  calcium  and  phosphoric 
a<  id  were  prepared  and  examined  with  respect  to 
physical  properties  and  solubility  in  2%  citric  acid 


with  the  object  of  throwing  some  light  on  the  con- 
stituents of  basic  slag.  The  results  obtained  are 
summarised  in  the  table: — ■ 


Compound. 


Citric  aci  I 
solubility. 


Tetracalcium  phosphate,4C'aO, 

P„Os  

Oxyapatite,  3(Ca,P,0,),CaO 
Tricalcium  phosphate,  Ca3P403 
Calcium  pyrophosphate 
Calcium  metaphosphate 
Calcium  silicophosphate,  5  CaO. 

P.Os.SiO. 

Fluorapatitc,  CaF2,  3Ca3P,0, 


92-1 

670 

90-2 

1-6 


96-2 
10-1 


M.p. 
°C. 

1030 
1540 
1670 
1230 
970-9S0 

1760 
1630 


8;i.  gr. 


2-99 

314 

309 

2-65-2-32 

3-01 
31S 


The  highly  soluble  tetracalcium  phosphate  is  decom- 
posed by  prolonged  heating  at  1000°  C.  or  by  slow 
cooling,  forming  tho  less  soluble  oxyapatite.  The 
soluble  silicophosphate,  however,  retains  its  solu- 
bility under  these  conditions.  It  is  therefore  im- 
portant to  add  to  basic  slag  sufficient  silica  to 
neutralise  free  lime  if  a  soluble  phosphate  is  to  be 
obtained.  The  silicophosphate  is  probably  a  com- 
pound of  tricalcium  phosphate  and  orthocalcium 
silicate  3CaO,P20,,2CaO,Si02,  and  not  a  tetra- 
calcium phosphate,  4CaO,l\Os,CaO,SiO.,  since 
the  latter  would  decompose  to  give  insoluble 
oxyapatite.  The  current  view  is  that  the  slag  con- 
tains only  tetracalcium  phosphate,  since  tricalcium 
phosphate  is  reducible  by  iron,  but  this  cannot  be 
taken  as  satisfactorily  established.  A  description 
is  given  of  a  new  type  of  furnace,  the  Schnabel 
furnace,  working  on  the  surface  combustion  prin- 
ciple, in  which  temperatures  up  to  1750°  C.  can  be 
obtained  in  a  neutral  or  slightly  oxidising  atmo- 
sphere.   (Cf.  J.C.S.,  April.)— E.  H.  R. 

Seeds;  Determination  of  the  germinative  capacity 

of  other  than  by  germination.     P.  Lesagc. 

Comptes  rend.,   1922,   174,  766—767. 

Apropos  of  the  work  of  Nemec  and  Duchon  (J., 
1922,  264  a)  the  author  points  out  that  some  years 
ago  (cf.  Comptes  rend.,  1911,  152,  615)  he  outlined 
a  method  for  determining  the  germinative  capacity 
of  the  seeds  of  Lepidium  sativum  in  4  hrs.  by  the 
formation  or  absence  of  colour  when  the  seeds  were 
immersed  in  solutions  of  potassium  hydroxide  of 
different  strengths.  The  method  is  applicable  to 
other  species — W.  G. 

Patents. 

Fertilisers:  Process  for  the  production  of .    R. 

Balmer.       U.S.P.     1,408,064,     28.2.22.      AppL, 
24.9.19.     Renewed  24.12.21. 

A  bed  built  up  of  alternate  layers  of  nitrogenous 
wastes  and  ashes  from  the  incineration  of  refuse  is 
steamed  to  produce  a  fertiliser. — A.  G.  P. 

Fertiliser.  A.  H.  Cowles.  U.S.P.  1,408,169,  28. I1. •-'-' 
AppL,  21.12.18.    Renewed  11.5.21. 

Potash-containing  silicious  rocks  are  sintered  with 
lime  in  such  proportions  as  to  form  di-calciuni  sili- 
cate containing  a  quantity  of  potassium  aluminate. 

— A.  G.  P. 


XVII.-SUGARS ;    STABCHES;  GUMS. 

Polysacchai'ides.     XIV.  Ami/loses.     P.  Karrcr  una 
E.  Burklin.    Helv.  Chim.  Acta,  1922,  5,  181—187. 
(Cf.  J.,  1922,  183  a.) 
Pringsheim's   "triamylosc"    (cf.   J.,   1912,   lOOli. 
like  o-diamylose  and  /?-hexa-amylosc,  furnishi 
same   quantities  of   acetobromomaltose  and  hopta- 
acetylmaltose    as    the    corresponding    amount    I 
maltose,  and  is  shown  by  comparison  of  a  number  ol 
properties    to    be    identical    with     0-hexa-ani 
Hence   all   methods   of   breaking  down   the  6tnnli 
molecule  have  so   far  furnished   either  maltose  «' 
simple  or  polymeric  forms  of  its  anhydride.    Bince, 


Vol  XIX,  Xo.  8.] 


Cl.  xviii.— fermentation  industries. 


305  a 


further,  the  acetylation  of  /3-hexa-amylose  by  zinc 
chloride  and  acetic  anhydride  occurs  without  depoly- 
merisation,  it  may  also  be  possible  to  avoid  this  in 
the  cases  of  starch  and  cellulose.  (Cf.  J.C.S., 
April.)— J.  K. 

Polysaccharides.  AT.  Amyloses.  Constitution  of 
diamylose  and  the  anhydro-sugar  (cellosan)  of 
cellulose.  P.  Karrer  and  A.  P.  Smirnoff.'  Helv. 
Chim.  Acta,  1922,  5,  187—201.    (Cf.  supra.) 

AcETO-1-bromoglueose,  but  no  1'6-dibromo-deriva- 
tive,  is  obtained  from  the  action  of  phosphorus 
pentabromide  on  penta-acetylglucose  or  octa- 
acetylcellobiose,  whilst  from  octa-acetylmaltose  both 
mono-  and  di-bromo-eompounds  are  formed.  On  the 
other  hand,  acetylated  diamylose,  and  also  its 
polymer,  starch,  furnish  the  dibromo-derivative 
alone.  Hence,  in  diamylose  the  anhydro-oxygen 
atom  connects  the  1-  with  one  of  the  8-,  9-,  11-,  or 
12-carbon  atoms  of  the  maltose  molecule.  "  Tri- 
acetylcellulose "  behaves  similarly,  a  result  irre- 
concilable with  a  conception  of  the  cellulose  molecule 
as  a  chain  or  cyclic  structure  of  cellobiose  molecules, 
but  in  accordance  with  its  formulation  as  a  poly- 
meric- anhydro-cellulose  (cf.  J.,  1922,  170a).  This 
anhydride,  now  termed  cellosan,  must  therefore 
have  ;he  formula 

I °~,l 

O.CH  .CHOH.CH.CHOH.CHOH.CH.O 


I  Hi  HOH.CHOH.CH CH.CHOH 

O I 

whi^h  at  once  explains  the  formation  of  trimethyl- 
instead    of    tetramethyl-glucose    from    methylated 
cellulose.      Further,    it    represents   cellosan    as    an 
anhydride  of  maltose   (or  isomaltose),   so  that  its 
degradation  may  occur  in  two  ways,  viz.,  to  cello- 
biose  or   to  maltose.     Hence    it    is    that    at   most 
•50 — 60  %    of  acetocellobiose  is  obtainable  by  aceto- 
cellulose  (J.,  1921,  402  a).    The  easy  hydro- 
•      of  maltose   by   acids   explains  the   failure  to 
detect  its  formation  either  in  this  reaction  or  among 
the  products  of  the   action  of   acetyl  bromide  on 
cellulose  (J.,  1921,  784  a).    Of  the  three  remaining 
ik  formulae  for  diamylose,  that  of  the  1 — 12 
anhydride 


I 


-O- 


O.CH,. CHOH.CH.CHOH.CHOH.CH.O 
CH.CHOH.CHOH.CH.CHOH CH3 


is  alone  acceptable.  It  explains  the  complete  con- 
version of  starch  and  diamylose  into  maltose,  6ince 
the  same  result  must  follow  from  the  rupture  of 
cither  of  the  two  gluc-osidic  linkings.  It  now  only 
remains  to  determine  wha't  degrees  of  polymerisa- 
tion of  cellosan  and  diamylose  are  respectively 
represented  by  cellulose  and  starch.  (Cf.  J.C.S., 
)— J.  K. 

Polysaccharides;  Constitution  of  .      J.  J.  L. 

Zwikker.     Itec.  Trav.  Chim.,  1922,  41,  152. 

A  mistake  in  formulae  given  in  a  previous  paper 
(cf.  J.,  1922,  152  a)  is  corrected  and  its  significance 
briefly  discussed. — H.  J.  E. 

•  sugar.     Basse.     See  XIXa. 

Fats  and  carbohydrates.     Miiller.     Sec  XIXa. 

Patents. 

Sugar   solutions;    Apparatus     for     effecting     the 

crystallisation    of    .       L.     Venditti.       E.P. 

175,680,  15.10.20. 

The  apparatus  consists  of  a  series  of  alternate  cooi- 
ng and  mixing   chambers.      The   hot   sugar   mass 


flows  through  the  cooling  chambers  in  the  opposite 
direction  to  the  water  in  the  longitudinal  cooling 
tubes.  The  intermediate  mixing  chambers  are 
arranged  to  correct  changes  in  density  of  the  sugar 
solution  due  to  cooling,  and  thus  produce  a  steady 
formation  of  crystals  throughout  the  mass. 

—A.  G.  P. 


XVIII— FERMENTATION  INDUSTRIES. 

Carbohydrate  metabolism  [of  yeast];  Bole  of  acid 

in  .     V.     H.  Elias  and  S.  Weiss.     Biochem. 

Zeits.,  1922,  127,  1—12. 
The  glycogen  content  of  yeast  cells  is  unaltered  by 
treatment  with  acids,  but  with  alkali  the  glycogen 
increases,  and  at  higher  concentrations  of  alkali 
passes  into  the  surrounding  fluid.  This  increase  of 
glycogen  is  not  at  the  expense  of  the  sugar,  but  of 
protein,  as  is  demonstrated  by  an  increase  in  the 
non  precipitable  nitrogen. — H.  K. 

Vitamin  content  of  micro-organisms  [yeast  etc.']  in 
relation  to  the  composition  of  the  culture  medium. 
C.  Eijkman,  C.  J.  C.  van  Hoogenhuijze,  and 
T.  J.  G.  Derks.  J.  Biol.  Chem.,  1922,  50,  311— 
314. 
Yeast  was  cultivated  in  three  types  of  media — 
synthetic  media  composed  of  pure  chemicals,  media 
containing  the  anti-neuritic  vitamin,  and  media  in 
which  this  vitamin  had  been  destroyed  by  heat.  Of 
the  cultures  so  obtained  only  those  grown  in  the 
second  and  third  types  possessed  anti-neuritic 
properties.  Growing  yeast  removes  the  anti- 
neuritic  vitamin  from  the  medium  in  which  it  is 
grown  ;  this  effect  is  not  due  merely  to  a  physical 
process  of  adsorption.  From  these  results  the 
authors  conclude  that  yeast  is  unable  to  synthesise 
the  anti-neuritic  factor  but  is  capable  of  regener- 
ating it  after  it  has  been  destroyed  by  heat.  They 
also  question  the  identity  of  the  water-soluble  B 
vitamin  with  the  anti-neuritic  factor.  B.  coli  com- 
munis remains  devoid  of  the  anti-neuritic  factor 
even  when  cultivated  in  a  medium  containing  this 
vitamin. — E.  S. 

Yeast  protein.    A.  Kiesel.    Z.  physiol.  Chem.,  1922, 

118,  304—306. 
Yeast  protein  on  hydrolysis  yielded  297%  of  histi- 
dine,  315%  of  arginine,  and  363%  of  lysine. 

— S.  S.  Z. 

Diastase;  Action  of  trypsin  and  pepsin  on .   W. 

Biedermann.     Biochem.  Zeits.,  1922,  127,  38^6. 

Experiments  with  salivary  diastase  show  that  the 
enzvme  is  destroyed  by  pepsin  but  not  by  trypsin. 

— H.  K. 

Carboligase.  III.  C.  Neuberg  and  H.  Ohle.  Bio- 
chem. Zeits.,  1922,  127,  327—339. 
The  ketone-alcohol  produced  from  benzaldehyde  and 
dextrose  under  the  influence  of  the  carboligase  of 
veast  (cf.  J.,  1921,  404  a)  is  proved  to  have  the  con- 
stitution /-CoHJ.CH0H.C0.CH3  by  the  observation 
that  treatment  with  phenylmagnesium  bromide 
converts  it  into  a  diglycol  which  on  treatment  with 
dilute  sulphuric  acid  passes  into  methylphenylaceto- 
phenone  CcH5.CO.CH(CH,)C6H5.— H.  K. 

Determination   of  water  in   alcohol.     Schoorl  and 
Regenbogen.     See  XX. 

Patents. 
(a,  c)  Yeast;  Production  of .     (b)  Treatment  of 

yeast.      (d)    Production    of    compressed    yeast. 

Verein  der  Spiritusfabrikanten  in  Deutschland. 

E.P.   155.2S2-3  and  155,286-7,  15.12.20.     Conv., 

(a)  24.2.15,  (b)  26.6.15,  (c)  15.3.15,  (r>)  19.8.15. 
See  G.P.  300,663-4  and  303,251-2;  J.,  1920,  245  a, 
345  a. 


306  a 


Cl.  XIXa.— FOODS. 


[April  29,  1922. 


XIXa. -FOODS. 

Vitamin  si  ml  its.  IX.  Influence  of  tlie  diet  of  the 
cow  upon  the  quantity  of  vitamins  A  and  B  in  the 
milk.  C.  Kennedy,  R.  A.  Dutcher,  and  C.  H. 
Eckles.     J.  Biol.  Chem.,  1922,  SO,  339—359. 

Feeding  experiments  upon  rats  indicate  that  the 
vitamins  A  and  B  contained  in  milk  are  not  pro- 
duced by  the  cow  but  are  derived  entirely  from  its 
rations. — E.  S. 

Butter-fat ;  Distribution  of  fatty  arids  in .     F. 

Frog  and  S.   Schmidt-Nielsen.     Biochem.   Zeits., 
1922,  127,  168—173. 

Fractionation  under  reduced  pressure  of  the  methyl 
and  ethyl  esters  of  the  acids  of  butter-fat  prepared 
from  the  milk  of  cows  fed  on  a  standard  mixed  diet 
gave  the  following  percentage  composition  of  the 
acids: — Acetic,  a  trace;  butyric  3"4%,  hexoic  3"3%, 
octoic  1'9%,  decoic  3'0%,  lauric  3'7%,  myristic 
12-9%,  palmitic  20'8%,  stearic  6"2%,  oleic  27"0%, 
and  unidentified  acids  9'8%.  Some  of  the  unidenti- 
fied acids  probably  arise  from  the  feeding  materials. 

— H.  K. 

Gluten  casein  of  buckwheat.  A.  Kiesel.  Z.  physiol. 
Chem.,  1922,  118,  301—303. 

The  gluten  casein  of  buckwheat  on  hydrolysis  with 
sulphuric  acid  yielded  0'84%  of  histidine,  Y'13%  of 
arginine,  and  1'48%  of  lysine. — S.  S.  Z. 

Sulphur  in  proteins.  I.  Effect  of  acid  hydrolysis 
upon  cystine.  W.  F.  Hoffman  and  It.  A.  Gortner. 
J.  Amer.  Chem.  Soc,  1922,  44,  341—360. 

When  pure  cystine,  crystallising  in  hexagonal 
plates,  is  boiled  with  20%  hydrochloric  acid  for 
varying  lengths  of  time  up  to  192  hrs.,  it  is  only 
very  Blowly  decomposed,  and  during  the  time  of  an 
ordinary  protein  hydrolysis  there  would  not  be  any 
appreciable  decomposition.  During  the  192  hrs. 
only  a  very  small  amount  of  carbon  dioxide  is 
liberated  and  very  little  sulphur  is  broken  off.  A 
small  amount  of  hydrogen  sulphide  is  evolved  and 
some  elementary  sulphur  separates,  but  no  sulphate 
is  formed.  The  amount  of  cystine  precipitable  by 
phosphotungstic  acid  decreases  rapidly  during  the 
first  48  hrs.  boiling,  after  which  it  remains  prac- 
tically constant.  The  amount  of  total  nitrogen 
remains  constant,  the  amount  of  amino-nitrogen 
slowly  decreasing  and  the  amount  of  ammonia- 
nitrogen  showing  a  corresponding  slow  increase. 
The  optical  rotation  of  the  cystine  solution  falls 
rapidly  during  the  boiling  to  complete  inactivity  at 
the  end  of  96  hrs.  From  the  residual  hydrolysate 
an  isomeric  cystine  was  isolated,  crystallising  in 
small  microscopic  prisms  and  differing  in  its 
physical  and  chemical  properties  from  the  original 
cystine,  being  more  soluble  in  water  and  giving  a 
more  soluble  phosphotungstate.    (Cf.  J.C.S.,  April.) 

— W.  G. 

Tyrosine    content    of    proteins;    Determination    of 

the    .       O.     Fiirth      and    W.     Fleischmann. 

Biochem.  Zeits.,  1922,  127,  137—149. 

A  comparison  of  the  various  processes  for  the 
estimation  of  tyrosine  in  proteins  shows  that  the 
quantity  of  tyrosine  which  can  be  isolated  gravi- 
metrically  is  far  below  that  estimated  colori- 
metrically.  The  method  of  Folin  and  Denis 
(J.  Biol.  Chem  1912,  12,  245),  the  colorimetric 
estimations  by  the  diazo-reaction  and  by  Alillon's 
reagent  give  maximum  values.  The  most  suitable 
method  found  is  the  absorption  of  bromine  in  acid 
solution  by  the  protein  hydrolysate  after  removal 
of  substances  precipitable  by  phosphotungstic  acid. 

— H.  K. 


Protein-ions;     Mobility      of      .        W.      Pauli 

Biochem.  Zeits.,  1922,  127,  150—155. 
The  mobility  of  the  protein  cations  of  serum 
albumin,  glutin,  and  glutose  increases  to  a  maxi- 
mum with  increased  addition  of  hydrochloric  acid. 
Conductivity  measurements  with  casein  and  globu- 
lin (acid  proteins)  show  that  casein  forms  a 
trivalent  and  globulin  a  quadrivalent  anion. 

— H.  K. 

Pepsin;    New    method    for     estimation     of    . 

K.   Glassner.     Biochem.   Zeits.,   1922,   127,  31*>— 
315. 

The  method  depends  on  the  observation  that 
globin,  which  is  readily  prepared  from  haemo- 
globin by  a  slight  modification  of  Strauss  and 
Griitzner's  method  (Z.  physiol.  Chem.,  1921,  112, 
167),  is  precipitated  from  hydrochloric  acid  solution 
by  ammonia,  and  is  insoluble  in  excess  of  ammonia, 
especially  if  a  few  drops  of  ammonium  chloride 
solution  be  added.  The  degree  of  digestion  of 
globin  by  pepsin  or  gastric  juice  is  measured  by 
the  degree  of  precipitation  of  unchanged  globin. 

H.  K. 

Vanillin;    liefractometric    determination    of 

in  vanilla-sugar.     P.  Hasse.     Chem.-Zeit.,  1922, 
46,  233—234. 

Three  grins,  of  the  sugar  is  shaken  for  1  min.  with 
3  c.c.  of  ether  and  allowed  to  settle.  The  butyro- 
refractometer  readings  of  the  ether  used  and  that 
of  the  ethereal  solution  of  vanillin  are  then  taken. 
The  difference  multiplied  by  0'4  gives  the  percentage 
of  vanillin  in  the  sugar.  The  temperature  of  the 
prism  is  immaterial  provided  it  is  the  same  for  both 
readings. — H.  C.  B. 

Fats  and  carbohydrates;   Bclutions   between  . 

<H.  Miiller.     Helv.  Chim.  Acta,  1922,  5,  163—166. 

It  is  suggested  that  fats  may  undergo,  not  only 
/3-oxidation,  but  also  S-oxidation,  in  the  organism, 
so  giving  rise  to,  for  example,  succinic  and  butyric 
acids.  The  organism  is  known  to  contain  an 
oxidase,  by  which  succinic  acid  can  be  converted 
into  fumaric  acid,  which  has  been  detected  in  fresh 
meat,  and,  it  is  now  found,  can  be  converted  into 
lactic  acid  and  carbon  dioxide  by  treatment  of  its 
sodium  salt  with  fresh  yeast.     (Cf-  J.C.S.,  April.) 

— J.  K. 

Anomalous  osmose.    Bartell  and  Sims.    See  XV. 

Vitamin  content  of  micro-organisms.     Eijman  and 
others.     See  XVIII. 

Yeast  protein.     Kiesel.     See  XVIII. 

Patents. 

Wheat;  Treatment  of for  the  manufacture  of 

bread.  L.  Negro.  E.P.  175,695,  21.10.20. 
In  order  to  produce  an  unobjectionable  whole-meal 
flour  the  diastases  of  the  bran  are  destroyed  by 
desiccation  followed  by  heating  for  30  mins.  at 
100°  C.  This  is  effected  by  causing  the  wheat  to 
flow  in  a  zig-zag  path  through  a  vertical  cylinder 
divided  by  horizontal  heated  partitions.  The  heated 
wheat  is  macerated  with  water  and  passed  to  a 
cutting  and  kneading  machine  previous  to  making 
into  bread. — A.  G.  P. 

Mineral  waters;  Preparation  of  - .     F.   Evere. 

G.P.  346,578,  10.12.20. 
Mineral  waters  containing  alkali  and  alkaline- 
earth  metals  are  made  by  dissolving  suitable 
metallic  lactates  in  water  saturated  with  carbon 
dioxido  or  by  adding  the  corresponding  carbonate 
followed  by  the  equivalent  amount  of  lactic  nciu 
to  the  water.  The  solutions  obtained  are  more 
stable  than  those  produced  by  the  use  of  carbonates 


vol.  XIX,  >o.  8]  Cl.  XIXb.— WATER  PURIFICATION,  &c.     Cl.  XX.— ORGANIC  PRODUCTS,  &c.   307  a 


and,  especially  in  the  case  of  ferruginous  waters, 
do  not  deposit  a  sediment  on  standing. — A.  R.  P. 

Chocolate  and  other  plastic  materials;  Apparatus 

for   heating   or   cooling   .      W.    E.    Prescott, 

Assr.  to  J.  Baker  and  Sons.  U.S. P.  1,408,827, 
7.3.22.    Appl.,  27.9.19. 

See  E.P.  131,495  of  1918;    J.,  1919,  788  a. 

Drying  materials.    U.S. P.  1,408,456-7.    See  I. 


XIXb.-WATER  PURIFICATION;  SANITATION. 

Formaldehyde ;    Disinfecting    action    of    aqueous 

solutions  of .     V.  Gegenbauer.     Arch.  Hyg., 

1922,  90,  239—253.  Chem.  Zentr.,  1922,  93,  II., 
663. 
Formaldehyde  forms  chemical  compounds  with 
proteins,  whilst  with  lipoids  it  forms  solutions,  the 
molecular  weight  in  both  phases  being  the  same. 
In  a  state  of  equilibrium,  1  g.  of  the  protein  used 
unites  with  about  01  g.  of  formaldehyde,  and  in 
1  g.  of  oil  about  one-fifth  of  the  quantity  present  in 
the  aqueous  liquor  is  dissolved.  Experiments  with 
yeast  showed  that  here  also  formaldehyde-protein 
compounds  are  formed ;  complete  combination  is 
attained  only  after  two  days,  whilst  with  a  shorter 
time  of  contact,  the  degree  of  combination  is 
dependent  on  the  concentration  of  formaldehyde  in 
the  aqueous  solution.  Ammonia  does  not  decom- 
pose the  compound  of  formaldehyde  and  protein. 
Croner's  statement  that  the  addition  of  methyl 
alcohol  decreases  the  disinfecting  effect  of  formal- 
dehyde solutions  against  staphylococci  is  confirmed. 
For  anthrax  spores  the  same  relation  was  not  found 
to  hold,  at  least  with  the  quantities  of  methyl 
alcohol  occurring  in  commercial  formalin. — A.  G. 

Sheep-dip;    Oxidation  of  polysulphide  during  use 

of .    F.  L.  Melvill.     J.  S.  Afr.  Chem.  Inst., 

1922,  5,  9—16. 

Analyses  of  a  lime-sulphur  dip  before  and  after 
use  for  dipping  100  sheep  showed  that  the  loss  of 
polysulphide  sulphur  (the  effective  ingredient  for 
"scab")  did  not  exceed  10%  (calculated  on  the 
active  sulphur  originally  present),  although  the 
volume  of  the  mixture  was  reduced  from  250  to  120 
galls,  during  the  operation. — W.  P.  S. 

Carbon  monoxide;  Physiological  principles  govern- 
ing  ventilation    when   the   air   is    contaminated 

with  .     Y.  Henderson  and  H.  W.  Haggard. 

J.  Ind.  Eng.  Chem.,  1922,  14,  229—236. 

Experiments  were  undertaken  to  determine  what 
percentage  saturations  of  the  blood  with  carbon 
monoxide  cause  appreciable  discomfort  and  what 
is  the  limit  of  safety.  The  time  required  for  the 
attainment  of  half-equilibrium  with  persons  sitting 
at  rest  and  breathing  concentrations  of  carbon 
monoxide  up  to  7  pts.  per  18,000  was  never  much 
less  than  1  hr.  For  exposures  of  45  mins.  a  con- 
centration of  4  pts.  in  10,000  was  tolerated  with 
complete  safety,  and  with  apparent  freedom  from 
any  disagreeable  effects,  the  saturation  of  the 
blood  with  carbon  monoxide  at  the  end  of  that 
time  being  in  all  cases  in  the  neighbourhood  of 
20%.  The  general  results  obtained  may  be  sum- 
marised by  the  statement  that  when  the  time  of 
exposure  in  hours  multiplied  by  the  concentration 
of  carbon  monoxide  in  parts  per  10,000  is  3  or  less 
there  is  no  perceptible  physiological  effect.  When 
this  product  equals  6  there  is  a  just  perceptible 
effect,  at  9  headache  and  nausea  are  induced,  and 
at  15  or  more  the  conditions  are  dangerous  to  life. 
If  the  volume  of  breathing  is  increased  by  exercise 
or  work  the  rate  of  absorption  of  carbon  monoxide 
is  increased  accordingly.     After  a  return  to  fresh 


air  the  elimination  of  carbon  monoxide  through 
the  lungs  proceeds  at  the  rate  of  30 — 60%  reduc- 
tion of  the  blood  saturation  per  hour.  In  the 
exhaust  gas  from  an  internal  combustion  engine 
driven  by  petrol  carbon  monoxide  is  the  only  con- 
siderable toxic  constituent,  but  in  combustion  pro- 
ducts from  benzol  or  illuminating  gas  other  acces- 
sory toxic  substances  are  present. — G.  F.  M. 

Patents. 

Antiseptic;  Preparation  of  an  from   phenol, 

formaldehyde,    and    bole.      A.    Stephan.      G.P. 
344,241,  2.8.19. 

The  bob  is  intimately  mixed  with  the  condensation 
product  of  the  formaldehyde  and  phenol  in  alkaline 
solution,  and  after  boiling  the  mixture  for  the 
purpose  of  sterilisation  and  subsequent  cooling  to 
50° — 60°  C,  the  condensation  product  is  precipi- 
tated by  addition  of  acid  Phenol,  40%  formal- 
dehyde, and  caustic  potash  (40°  B.,  sp.  gr.  1384) 
are  heated  together  under  a  reflux  condenser  until, 
on  the  addition  of  acid  to  a  test  sample,  a  con- 
densation product  separates  which  is  pulverulent 
at  low  temperatures.  To  prevent  further  con- 
densation, water  is  added.  The  mixture  is  incor- 
porated with  bole,  heated  for  half  an  hour  for  the 
purpose  of  sterilisation,  cooled  to  50° — 60°  C, 
treated  with  hydrochloric  acid,  and  the  product 
washed  and  dried.  It  is  suitable  for  use  as  a  wound 
dressing  and  for  dermato logical  purposes. — A.  G. 

Combustible  materials  from  sewage  sludge.     E.P 
176,053.    See  Ha. 


XX.-0RGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Strychnos  alkaloids.  XXXI.  Violet  and  green 
colour  reactions  of  cacothelin.  H.  Leuchs.  Ber., 
1922,  55,  724—732. 

The  recognition  of  cacothelin  as  a  quinone, 
C21H,107N31HN03  (Ber.,  1922,  55,  564),  has  necessi- 
tated a  re-examination  of  the  colour  reactions  it 
gives  with  stannous  chloride  and  sulphurous  acid. 
The  violet  salts  are  derived  from  the  corresponding 
quinol  and  have  the  formula,  C,1H,J0,N,1HX. 
The  greyish  green  salts  are  to  be  regarded  as  quin- 
hydrone  compounds.     (Cf.  J.C.S.,  April.) — H.  W. 

Alkaloids;  Identification  of  under  the  micro- 
scope from  the  form  of  their  picrate  crystals. 
B.  E.  Nelson  and  H.  A.  Leonard.  J.  Amer. 
Chem.  Soc,  1922,  44,  369—375. 

The  more  commonly  occurring  vegetable  alkaloids 
may  be  tentatively  identified  under  the  microscope 
by  the  form  or  habit  of  their  picrate  crystals,  pre- 
pared under  standard  conditions.  A  chart  is  given 
showing  the  microcrystalline  structure  of  the 
picrates  of  twenty-five  of  the  alkaloids.  For  the 
test  the  aqueous  solution  of  the  alkaloid  is  slightly 
acidified  with  hydrochloric  acid,  and  a  slight  excess 
of  a  saturated  solution  of  picric  acid  is  added.  The 
precipitated  picrate  is  washed  in  a  centrifuge  and 
recrystallised  from  the  smallest  possible  amount  of 
warm  95%  alcohol.  The  crystals  are  separated 
centrifugally  and  examined  under  the  microscope 
without  a  cover  slip. — W.  G. 

Pyrimidines  from  alkylmalonic  esters  and  aromatic 
amidines  A.  W.  Dox  and  L.  Yoder.  J.  Amer. 
Chem.  Soc,  1922,  44,  361—366. 
Alkyt.malonic  esters  readily  condense  with 
aromatic  amidines  in  the  presence  of  sodium 
ethoxide  to  give  5-monoalkyl-  or  5.5-dialkyl-2- 
phenyl-4.6-diketotetrahydropyrimidines.  The  mono 
alkyl  derivatives  are  insoluble  yellow  compounds 
and  the  dialkyl  derivatives  soluble  colourless  com- 


■MIS  i 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[April  29,  1022. 


pounds.  With  two  exceptions,  the  monoalkyl  de- 
rivatives all  melt  above  300°  C,  but  the  dialkyl 
derivatives  all  melt  considerably  below  300°  C.  A 
number  of  these  pyrimidine  derivatives,  prepared 
with  a  view  of  studying  their  physiological 
properties,  are  described.     (Cf.  J.C.S.,  April.) 

— W.  G. 

Phenylacetylene;    Preparation    of    - .      J.    C. 

Hessler.     J.  Amer.  Chem.  Soc,  1922,  44,  425— 

426. 

In  the  preparation  of  phenylacetylene  from  u- 
bromostyrene  by  Nef's  method  (Annalen,  1899,  308, 
264)  the  yield  may  be  increased  from  60%  to  80% 
by  using  molten  potassium  hydroxide  heated  at 
200° — 215°  C.  in  place  of  alcoholic  potassium 
hydroxide. — W.  G. 

Nitrobenzene  in  benzaldehyde;  Simple  test  for  ■ . 

P.  Hasse.     Chem.-Zeit.,  1922,  46,  234. 

Sodium  bisulphite  (0'2  g.)  is  added  to  a  few  drops  of 
the  sample  in  test  tube  half  filled  with  water  and 
the  whole  shaken  up.  The  odour  of  benzaldehyde 
disappears,  but  that  of  nitrobenzene  remains  if  this 
compound  is  present.  If  sulphur  dioxide  is  given 
off  normal  sodium  sulphite  may  be  added  to  absorb 
it.— H.  C.  R. 

Alumina,  iitania,  and  thoria;  Action  of upon 

ethyl  and  isopropyl  acetates.  H.  Adkins  and 
A.  G.  Krause.  J.  Anrcr.  Chem.  Soc,  1922,  44, 
385—392. 

Alumina,  titania,  and  thoria  are  not  specific  in 
their  action  in  so  far  as  the  mode  of  decomposition 
of  acetic  esters  is  concerned.  In  determining  the 
order  of  efficiency  of  these  catalysts  for  such  re- 
actions, the  method  of  preparation  of  the  catalyst 
is  of  equal,  if  not  of  greater,  importance  than  the 
particular  metal  present  in  the  oxide.  The  course 
of  the  decomposition  of  the  ester  is  not  determined 
by  the  relative  instabilities  of  the  intermediate 
compounds  formed  between  the  catalyst  and  the 
acid  and  the  catalyst  and  the  alcohol.  The  prob- 
ability is  that  the  saponification  of  the  ester 
precedes  the  decomposition.  A  sample  of  unignited 
alumina,  prepared  from  the  hydroxide  was  found 
to  exert  a  marked  condensing  action  upon  acetone 
at  455°  C.— W.  G. 

Selenium  monochloride;  Action  of  upon  pro- 
pylene, butylene,  and  amylene.  C.  E.  Boord  and 
F.  F.  Cope.  J.  Amer.  Chem.  Soc,  1922,  44, 
395—401. 
The  action  of  selenium  monochloride  on  ethylene, 
resulting  in  the  formation  of  /?/3'-dichlorodiethyl 
sclenide  dichloride  (cf.  Bausor  and  others,  J.,  1921, 
61  a),  really  takes  place  in  two  stages,  namely, 
2C2H4+Se„Cl,  =  (ClC,H,),Se  +  Se:  and  (ClC.H,),Se 
+  Se:CL  =  (ClC:HJ);!SeCL;+2Se.  The  action  may'be 
stopped  at  the  first  stage  by  adding  the  mono- 
chloride to  the  ethylene,  and  these  two  stages 
have  been  obtained  with  propylene,  butylene,  and 
amylene,  but  with  the  two  latter  it  is  not  easy  to 
complete  the  second  stage.  The  selenides  and  their 
dichlorides  are  described.     (Cf.  J.C.S.,  April.) 

— W.  G. 

Hydroxylamine  and   hydrazine;  Volumetric  deter- 
mination   of    .       A.    Kurtenacker    and    J. 

Wagner.     Z.  anorg.  Chern.,  1921,  120,  261—266. 

Hydroxylamine  can  be  oxidised  quantitatively  to 
nitric  acid  by  a  bromate-bromide  mixture  in 
sulphuric  acid  solution  (Rupp  and  Mader,  J.,  1913, 
710).  The  oxidation  is  not  complete,  however, 
unless  a  large  excess  of  oxidising  agent  is  used,  and 
for  analytical  purposes  it  is  better  to  use  bromate 
alone  and  hydrochloric  acid.  The  hydroxylamine 
solution  (10  to  40  ex.,  containing  about  1*14  g. 
NH.OH.HC1  per  1.)  is  mixed  with  10—33  c.c.  excess 


j  of  IV/10  potassium  bromate  solution  and  40  c.c.  of 
j  1:1  hydrochloric  acid  and  allowed  to  stand  for 
15  mins.  Potassium  iodide  solution  is  then  added 
and  the  liberated  iodine  is  titrated  with  thio- 
sulphate.  Hydrazine  is  oxidised  by  bromate  or  a 
bromate-bromide  mixture  in  hydrochloric  acid 
solution  at  once  to  nitrogen.  The  estimation  can 
be  carried  out  exactly  as  for  hydroxylamine,  or  a 
direct  titration  with  bromate  can  be  made  using 
indigo  as  indicator.  The  hydrazine  solution,  10  to 
40  c.c.  containing  about  2'6  g.  N2H4,2HC1  per  1.,  is 
mixed  with  2 — 3  g.  of  potassium  bromide  and  40  c.c. 
of  1:1  hydrochloric  acid  and  is  titrated  at  60°  C. 
with  N 1 10  bromate.  Towards  the  end  of  the  titra- 
tion a  few  drops  of  indigo  solution  are  added  and 
titration  continued  until  the  colour  becomes  yellow. 
Hydroxylamine  and  hydrazine  may  be  estimated 
together.  The  sum  of  the  two  is  first  determined 
in  a  sample  by  bromate  titration  as  for  hydroxyl- 
amine alone.  A  second  sample  is  then  oxidised  with 
bromate  in  an  atmosphere  of  carbon  dioxide  and  tli 
nitrogen  evolved  is  collected  and  weighed.  This 
gives  the  hydrazine  content,  and  the  hydroxylamine 
can  then  be  calculated. — E.  H.  R. 

Water-alcohol-earbon  bisulphide;  The  system  . 

Miscibility  of  the  three  components  in  different 
proportions  and  practical  applications  derived 
therefrom.  [Determination  of  tcater  in  alcohol.} 
N.  Schoorl  and  A.  Regenbogen.  Rec.  Trav. 
Chim.,  1922,  41,  125—134. 

Determination  of  the  limits  of  homogeneous 
mixture  of  the  ternary  system  provides  a  method 
of  estimating  small  percentages  of  water  in  alcohol. 
Two  volumes  of  the  latter  is  added  to  5  vols,  of 
carbon  bisulphide  and  the  temperature  at  which 
homogeneous  mixing  occurs  is  noted.  A  table  is 
given  showing  temperatures  obtained  by  using 
specimens  of  alcohol  containing  up  to  6%  of  water. 

- — H.  J.  E. 

Colloid   disperse   systems;   Analytical   chemistry  of 

.     /.    Estimation  of  silver  ion  in  the  presence 

of  colloidal  silver.  A.  Gutbier,  J.  Huber,  and  O. 
Kuppinger.     Ber.,  1922,  55,  748—752. 

To  determine  the  quantity  of  unreduced  silver 
salt  in  silver  sols  prepared  by  reduction,  a 
measured  volume  of  the  protected  colloidal  system, 
prepared  at  the  atmospheric  temperature  and  in 
the  dark,  is  agitated  with  a  corresponding  excess 
of  pure  solid  ammonium  carbonate  until  the  salt  is 
completely  dissolved  and  the  precipitated  silver 
carbonate  has  again  passed  entirely  into  solution. 
The  mixture  is  slowly  poured  into  methyl  alcohol 
which  has  been  freshly  distilled  over  lime,  after 
which  it  is  allowed  to  remain  at  rest  in  the  dark  for 
about  24  hrs.  until  the  precipitate  has  subsided 
completely.  The  supernatant  liquid  should  now  be 
colourless*.  The  precipitate  is  carefully  washed  with 
alcohol  by  decantation  and  finally  on  the  filter.  The 
united  filtrate  and  washings  are  freed  from  alcohol 
by  evaporation  on  the  water  bath,  cooled,  acidified 
with  nitric  acid  and  titrated  by  Volhard's  method. 
(Cf.  J.C.S.,  April.)— H.  W. 

Pepsin.     Gliissner.     See  XIXa. 
Vanilla-sugar.     Hasse.     Sec  XIXa. 
Patents. 

Acetaldehyde  and  acetic  acid;  Production  of • 

A.  Wohl.    E.P.  154,579,  4.11.20.    Conv.,  24.11.19- 
In  the  catalytic  hydration  of  acetylene  to  acetal- 
dehyde mercury  salts  may  be  replaced  by  sal 
heavy  metals,  which  are  not  volatile,  and  which  arc 
not  appreciably  transformed  into  oxides  at  teni] 
turcs  below  red  heat,  such  as  preferably  basil 
vanadate;   the  basic   molybdates   or  chromates  ol 
zinc,  copper,  cobalt,  nickel,  or  cadmium  may  abo 


Vol.  XII.,  No.  8.] 


Cl.  XXI.— photographic  materials  and  processes. 


:;o'.»  \ 


be  used,  but  with  inferior  results.  The  acetylene 
is  mixed  with  a  considerable  excess  of  air  and  steam, 
and  under  favourable  conditions,  at  about  360°  C, 
75 — 80%  of  the  theoretical  yield  of  acetaldehyde, 
together  with  5%   of  acetic  acid,  is  obtained. 

— G.  F.  M. 

Di[hydr~\oocy  diethyl     sulphide;     Manufacture      of 

esters  of  .     Farbw.   vorm.   Meister,   Lucius, 

and  Briining.  E.P.  154,907,  3.12.20.  Conv., 20.1.19. 

Esters  of  dihydroxydiethyl  sulphide  are  obtained 
by  the  interaction  of  organic  acids  or  their 
anhydrides  with  the  dihydroxy  compound;  thus 
diaeetoxydiethyl  sulphide  is  prepared  by  slowly 
dropping  5  pts.  of  dihydroxydiethyl  sulphide  on  to 
6  pts.  of  acetic  anhydride  heated  at  120°  C.  It 
forms  a  mobile  liquid,  b.p.  142° — 150°  C.  at  12  mm. 
pressure,  immiscible  with  water  and,  unlike  the 
parent  substance,  is  very  stable. — G.  F.  M. 

Dialkyl  sulphates;  Manufacture   of  ■ .     British 

Cellulose  and  Chemical  Mfg.  Co.,  Ltd.,  and  W. 
Bader.     E.P.  175,077,  12.11.20. 

Dialkyl  sulphates  are  prepared  from  alky] 
hydrogen  sulphates  or  mixtures  of  alky]  hydrogen 
sulphates  with  sulphuric  acid  and  /or  the  corre- 
sponding alcohol  by  distilling  under  reduced  pres- 
sure in  such  a  way  that  at  a  given  moment  only 
the  small  part  of  the  liquid  which  is  actually  under- 
going distillation  is  under  the  influence  of  the  heat 
and  the  products  of  distillation,  both  vapours  and 
residue,  are  quickly  and  continuously  removed  from 
the  sphere  of  the  reaction.  A  vertical  tube,  elec- 
trically or  otherwise  heated,  may  be  employed,  the 
liquid  flowing  in  at  the  top  through  a  small  revolv- 
ing orifice  which  deposits  it  on  the  inner  surface 
of  the  tube,  so  that  it  flows  downwards  as  a  thin 
film  to  the  heated  zone  where  the  dialkyl  sulphate 
distils  off  in  the  vacuum  and  is  subsequently  con- 
densed, whilst  the  sulphuric  acid  and  tarry  matter 
remaining  collect  at  the  bottom  of  the  tube.  Far 
the  preparation  of  diethyl  sulphate  a  mixture  pre- 
pared from  60  pts.  of  ethyl  alcohol  and  40  pts.  of 
70%  fuming  sulphuric  acid  is  drawn  by  the 
vacuum  into  the  tube  or  still,  which  is  heated  at 
110°  C.  under  a  pressure  of  5  mm.  The  yield  of 
diethyl  sulphate  is  actually  higher  than  the  amount 
of  ethyl  hydrogen  sulphate  originally  present  could 
theoretically  produce,  owing  to  the  re-combination 
of  sulphuric  acid  liberated  in  the  reaction  with  the 
free  alcohol  present  in  the  solution. — G.  F.  M. 

Essential  oils  and  other  volatile  substances;  Process 

of  and  apparatus   for    extracting   - .      F.    L. 

Usher  and  E.  T.  Metcalfe.    E.P.  176,104,  26.11.20 
and  3.2.21. 

Essential  oils  and  the  like  are  extracted  by  treat- 
ing finely  divided  material  containing  the  6ame 
with  a  current  of  heated  indifferent  gas,  such  as 
nitrogen.  The  gas  and  vapour  leaving  the  ex- 
traction apparatus  pass  through  a  heat  exchanger 
for  preheating  the  supply  of  gas  before  it  enters 
the  main  heater,  and  thence  to  a  condenser.  The 
oil  is  collected  in  closed  vessels  below  the  condenser, 
and  the  uncondensed  gas  is  pumped  through  the 
preheater  and  heater  back  to  the  extraction  vessel, 
fresh  gas  being  supplied  as  necessary.  Alterna- 
tively, the  material  may  be  extracted  with  steam, 
in  which  case  the  vapours  are  passed  through  a  con- 
denser in  which  the  cooling  water  is  maintained 
under  such  a  reduced  pressure  that  it  boils  and 
liberates  a  secondary  supply  of  steam,  which  is  com- 
pressed and  passed  into  the  extraction  chamber. 

— L.  A.  C. 

Bcxamcthylenetetramine ;   Process   for   the  manu- 
facture of .     H.  Plauson.    U.S. P.  1,408,826, 

7.3.22.     Appl.,  12.2.21. 
HEXAiiETHYLENETETnAMiME  is  prepared  by  oxidising 
methane  in  the  presence  of  ammonia. — L.  A.  C. 


Arsenical  compound  of  the  acridine  series  and 
process  ef  making  the  same.  L.  Benda,  Assr.  to 
L.  Cassella  und  Co.  U.S. P.  1,408,974,  7.3.22. 
Appl.,  14.7.21. 

Diazo-compounds  of  amino-10-alkylacridiniuiu  com- 
pounds are  treated  with  arsenites. — H.  H. 

Ethyl  ehloro-  and  fluorosulphonates ;  Production  of 
— .     W.   Traube.     G.P.   342,898,    15.7.19,   and 
346,245,  26.9.20. 

Ethyl  chlorosulphonate  and  fluorosulphonate  are 
obtained  by  the  action  of  the  corresponding  acids 
on  gaseous  mixtures  containing  ethylene.  By  apply- 
ing the  ehloro-  or  fluoro-sulphonic  acid  in  admixture 
with  an  inert  liquid,  such  as  sulphuric  acid  or  nitro- 
benzene, the  loss  by  evaporation  of  the  volatile  ester 
can  be  reduced. — D.  F.  T. 

Terpineol;   Process   for    the    preparation   of   . 

R.  Marchand.  U.S.P.  1,408,462,  7.3.22.  '  Appl., 
8.12.20. 

See  E.P.  153,605  of  1920;  J.,  1922,  231  a. 

Acetic  anil :  Process  of  making by  oxidation  of 

acetic  aldehyde.  A.  Guyot,  Assr.  to  La  Comp.  des 
Prod.  Chim.  d'Alais  et  de  la  Camargue.  U.S.P. 
1,409,098,  7.3.22.     Appl.,  25.4.18. 

See  E.P.  130,651  of  1918;    J.,  1919,  739  a. 
Treating  mixtures  of  gases.    E.P.  159,843.    See  XI. 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Photochemical  equivalent  law;  The  Einstein  . 

F.  Weigert.  Physik.  Zeits.,  1921,  22,  674—676. 
Chem.  Zentr.,  1922,  93,  I,  671.  (67.  J.,  1922, 
120  a,  232  a.) 

The  Einstein  law  was  verified  in  the  case  of  silver 
chloride  (P.O. P.)  emulsion.  This  emulsion  contains 
excess  of  silver  nitrate  and  soluble  organic  silver 
salts  and  the  coloration  on  exposure  arises  from 
the  production  of  finely  divided  metallic  silver, 
which  was  estimated  nephelometrically.  The  silver 
is  produced  not  from  the  silver  chloride  but  from 
the  excess  of  other  silver  salts.  It  is  formed  very 
slowly  at  first,  the  reaction  velocity  then  increas- 
ing, which  points  to  the  formation  of  a  catalyst, 
which  can  only  be  the  silver  itself.  The  law  was 
proved  for  monochromatic  blue  light  (436/1/0  when 
the  light  absorbed,  not  by  the  silver  plus  silver 
chloride  but  by  the  silver  alone,  was  taken  into 
account.  The  law  is  invalid  for  any  appreciable 
exposure  and  darkening,  but  holds  when  the 
results  are  extrapolated  to  a  zero  content  of 
silver.  It  is  suggested  that  there  is  an  internal 
photoelectric  effect  causing  the  emission  of  elec- 
trons from  the  silver,  these  being  absorbed  by 
neighbouring  molecules  lacking  electrons.  The 
values  of  Eggert  and  Noddack  (loc.  cit.)  for  the 
absorption  of  violet  light  by  yellow  silver  films 
appear  to  be  too  low,  photographic  methods  having 
shown  that  these  should  be  73 — 84%,  so  that  the 
law  does  not  seem  to  have  yet  been  proved  for  the 
photographic  plate. — G.   I.  H. 

Patents. 

Photographic  films  permeable  to  irafer;  Process  for 

the   preparation    of   .      La   Cellophane   Soc. 

Anon.     E.P.    162,266,    24  1.21.     Conv.,    19.4.20. 

Films  of  cellulose  (viscose),  permeable  to  water, 
are  rendered  light-sensitive  by  impregnating  them 
with  a  solution  of  a  silver  halide  in  a  suitable 
solvent  (such  as  silver  iodide  in  aqueous  potassium 
iodide  solution  or  silver  bromide  in  a  warm  aqueous 


310a 


Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


[April  £9.  1922. 


solution  of  an  alkali  bromide),  and  afterwards,  by 
Boaking  in  water,  precipitating  the  silver  halide 
within  the  film.— G.  I.  H. 

Photographic  silver  halide   emulsions;  Process  for 

del  reusing  tin  sensitiveness  of .    Farbenfabr. 

voi  ni.  F.  '  Bayer  und  Co.  G.P.  346,851,  26.10.20. 
Flowers  of  sulphur,  or  an  emulsion  or  solution  of 
sulphur,  is  added  to  the  finished  emulsion,  which 
is  then  stirred  for  half  an  hour,  when  the  sensitive- 
ness is  considerably  reduced,  without  any  increase 
in  the  tendency  to  fog  even  on  prolonged  develop- 
ment. A  gaslight  emulsion  thus  treated  easily 
gives  brown  tones  on  development  Considerable 
quantities  of  sulphur  or  other  elements  of  the  same 
group  (selenium  or  tellurium)  may  be  used. 

— G.  I.  H. 


XXII.— EXPLOSIVES;  MATCHES. 

Nitroglycerin;    Quantitative    separation    of    nitro- 

body  mixtures  from .     W.  Dickson  and  W.  C. 

Eas'terbrook.     Analyst,  1922,  47,  112—117. 

The  nitroglycerin  is  destroyed  by  treatment  with 
ferrous  sulphate  or  a  hydrochloric  acid  solution  of 
ferrous  chloride  in  the  ptesence  of  methyl  alcohol, 
and  the  residual  nitrocompounds  are  extracted 
with  ether  and  weighed.  The  ferrous  chloride 
method  is  preferred,  the  detailed  manipulation 
being  as  follows :  — The  ethereal  extract  of  the 
explosive  containing  nitroglycerin  and  nitro- 
compounds (nitrotoluenes  etc.)  is  allowed  to 
evaporate  spontaneously,  the  residue  is  dissolved 
in  40  c.c.  of  methyl  alcohol,  25  c.c.  of  concentrated 
hydrochloric  acid  is  added,  and  25  c.c.  of  saturated 
ferrous  chloride  solution  lor  each  grm.  of  nitro- 
glycerin present.  After  24  hrs.  the  solution  is 
extracted  with  ether,  the  ethereal  extract  is  washed 
with  water,  dried  with  calcium  chloride,  and 
allowed  to  evaporate  spontaneously.  The  residue 
is  dried  to  constant  weight  in  vacuo  over  sulphuric 
acid,  and  weighed.  The  object  of  carrying  out  the 
operation  in  presence  of  methyl  alcohol  is  to  pre- 
vent  further  nitration  of  the  nitrocompounds 
during  the  destruction  of  the  nitroglycerin. 

— G.  F.  M. 

Griincotton  and  smokeless  powders;  Apparatus  for 

determining  the   liability  of  .     J.  D.  Berk- 

hout.  Z.  gos.  Schiess-  und  Sprengstoffw.,  1922, 
17,  33—34. 
Two  forms  of  constant  temperature  ovens  for  use 
in  carrying  out  heat-tests  are  described  and  illus- 
trated. The  oven.;  are  double  walled  and  contain 
glycerin.  They  are  heated  by  means  of  gas,  and 
are  provided  with  the  usual  type  of  thcrmo- 
regulator.  The  oven  is  preferably  enclosed  in  a 
tin  box  and  provided  with  a  registering  thermo- 
meter. One  type  contains  a  fan  rotating  about  a 
il  axis  for  equalising  the  temperature  inside 
the  oven.— H.  C.  B. 

Patents. 

Explosive  mixture.     P.   E.   Haynes,   Assr.   to   The 
Linde     Air     Products     Co.       TJ.S.P.     1,408,293, 
28.2.22.     Appl.,  23.7.20. 
A  mixture  of  dried  sola  wood  and  a  liquid  oxidis- 
ing agent. — A.  J.  H. 

Emulsified  reaction  mixtures  obtained  in  nitration 

processes;  Method  for  the  purification  of  . 

Farbenfabr.  vorm.  F.  Baver  und  Co.  G.P. 
:m,929,  18.9.18. 

The   emulsion    is   led   into  concentrated  sulphuric 


acid  through  a  plate  with  perforations  of  diameter 
3  mm.  or  less;  this  treatment  causes  the  separation 
of  solid  matter,  while  the  nitric  acid  and  other 
nitrogen  compounds  are  retained  in  the  sulphuric 
acid  for  further  use.  The  method  is  particularly 
applicable  to  the  treatment  of  the  waste  acid  from 
the  dinitration  of  toluene. — D.  F.  T. 


XXIII.— ANALYSIS. 

Absorption  spectroscopy;  New  method  of .    W. 

Gerlach  and  E.  Koch.    Ber.,  1922,  55,  695—697. 

A  light  of  great  and  constant  intensity  is  obtained 
by  connecting  a  battery  of  Leyden  jars  (capacity 
about  30,000  cm.)  with  a  spark  gap  of  constant 
dimensions  and  an  iron  wire  which  is  to  be  dis- 
integrated (about  2  cm.  long  and  0031  mm.  diam.). 
The  battery  is  slowly  charged  from  a  small  machine 
until  an  arc  is  struck  across  the  gap,  whereupon 
the  wire  is  disintegrated  with  a  blinding  flash  and 
the  current  is  broken;  a  single  discharge  is  in- 
variably sufficient  for  spectrograph^  purposes. 
Constancy  in  the  brightness  of  the  flash  is  guaran- 
teed by  constancy  of  the  energy  expended  in  pro- 
ducing it;  this  depends  only  on  the  dimensions  of 
the  spark  gap  and  the  thickness  of  the  wire.  The 
arrangement  of  the  apparatus  and  the  methods  for 
its  adjustment  are  fully  described  and  figured  in 
the  original. — H.   W. 

Nephclometer:  Simple  theory  of  the.  .     P.  V. 

TVells.     J.  Amer.  Chem.  Soc,  1922,  44,  267—276. 

The  reflection  and  transmission  methods  of  nephew 
ometry  cannot  both  be  used  in  nephelometric 
measurements  except  in  the  case  of  solutions  and 
suspensions  of  intermediate  concentration.  With 
dilute  suspensions,  for  example  10"'  g.  per  c.c.  or 
less,  the  transmissions  are  quite  insensitive,  whilst 
the  reflection  remains  sensitive  down  to  the  limit  of 
vision.  Although  masses  in  suspension,  much  too 
small  to  be  detected  by  the  most  delicate  balance 
can  be  easily  measured  in  a  Tyndall  beam,  the  pre- 
cision of  such  a  measurement  can  never  exceed  that 
of  the  best  photometry,  that  is  about  0'2  ;.  For 
sensitive  and  rapid  work  nephelometry  takes  in 
place  with  other  volumetric  methods. — J.  F.  S. 

Elutriator ;  New for  rapid  use     T.  M.  Lowiy. 

Faraday  Soc,  9.3.22.     [Advance  proof.] 

A  Boswell's  elutriator  is  modified  by  making  the 
vert  ical  tube  taper  smoothly  from  25  mm.  to  2  mm. 
and  then  sealing  it  on  to  a  2  mm.  capillary  of 
length  about  100  mm.,  this  capillary  carrying  a  tap. 
After  elutriation  for  about  30  niins.  the  gritty 
residue  is  allowed  to  settle  in  the  capillary  tube, 
which  is  tapped  until  the  height  of  the  column  M 
grit  becomes  constant.  The  height  of  this  column 
indicates  the  proportion  of  coarse  material  in  the 
ground  sample.  A  few  gravimetric  determinations 
or  t  lie  weight  of  the  residue  enables  the  tube  to  be 
calibrated]  so  that  the  instrument  can  then  be  used 
by  workmen. — H.  S.  H. 

/•.'/  a  1 1  iai ion;  Grading  of  powders  by  .     T.   M. 

Lowry    and    L.    P.    McHatton.      Faraday    Soc., 

9.3.22.  [Advance  proof.] 
The  methods  of  grading  particles  by  sifting,  micro- 
scopical examination,  air  separation,  and  watei 
separation  are  discussed  critically.  The  size  ot 
particles  removed  from  an  elutriator  with  a  vortical 
flow  of  water  of  3,  4,  5,  6,  7,  and  8  mm.  per  sec.  « ■  ■ 
determined.  The  particles  obtained  with  a  wide 
tube  (about  28  mm.  diam.  were  much  more  uniformly 
graded   than   those   obtained   with    a   narrow   tube 


Vol.  XIX,  No. ! 


PATENT  LIST. 


311  A 


(13  mm.  diam.).  The  results  with  barytes  showed 
that  the  critical  diam.  of  a  particle  for  a  given 
velocity  was  higher  by  about  5%  in  the  narrow  than 
in  the  wide  tube.  The  critical  diam.  decreased  with 
rising  temperature,  the  temperature  coefficient 
Iteing  0"4%  per  1°  C.  The  logarithm  of  the  critical 
diameter  was  a  linear  function  of  the  velocity  of 
flow,  the  relationship  being  logd  =  2'67  +  kv,  where 
k  is  a  constant  depending  on  the  diameter  of  the 
tube  and  the  temperature  of  the  water.  For  the 
same  conditions  of  flow  the  sectional  areas  of  quartz 
and  barytes  particles  were  in  the  ratio  20:1,  which 
was  practically  identical  with  that  of  the  gravita- 
tional forces  on  the  particles.  The  lifting  power  of 
the  water  was  thus  proportional  to  the  area  of  the 
particles.— H.  S.  H. 

Iodine;  Comparative  values  of  different  specimen* 

of for  use  in  chemical  measurements.     C.  W. 

Foulk  and  S.  Morris.  J.  Amer.  Chem.  Soc, 
1922,  44,  221—229. 
Iodine  purified  by  6everal  methods,  including  wet 
and  dry  sublimation  and  drying  over  sulphuric  acid 
and  phosphorus  pentoxide  differs  from  iodine  puri- 
fied for  atomic  weight  purposes  by  not  more  than 
0024  %  when  titrated  with  sodium  thiosulphate.  A 
rubber  stopper  may  be  used  in  place  of  a  glass 
stepper  for  closing  the  flask  in  which  iodine  is 
titrated.  The  usual  methods,  as  given  in  text 
books  on  analytical  chemistry,  of  drying  iodine  over 
sulphuric  acid  or  phosphorus  pentoxide  in  a  desic- 
cator, are  open  to  criticism  if  the  iodine  has  pre- 
viously solidified  in  the  presence  of  water. 
Powdered  iodine  when  exposed  with  water  under  a 
bell-jar  takes  up  0"09%  of  its  weight  in  48  hrs., 
whilst  crystals  take  up  only  O'Oo1;:  in  5  days.  Ex- 
posure to  sulphuric  acid  removes  the  whole  of  the 
water  in  10  days. — J.  F.  S. 

Arsenic:  Errors  caused  by  nitrates  and  nitrites  in 

the    determination    of    by    the    distillation 

method,    and    a    means    for    their    prevention. 
J.  J.  T.  Graham  and  C.  M.  Smith.     J.  Ind.  Eng. 
Chem.,  1922,  14,  207—209. 
In  the  presence  of  nitrates  or  nitrites  the  distilla- 
tion  method   for   the  determination   of   arsenic   as 
usually    carried    out    using    cuprous    chloride    or 
cuprous  chloride  and  ferrous  sulphate  as  reducing 
agent,  gives  low  results  owing  to  some  volatile  sub- 
stance, probably  nitrosyl  chloride,  which  is  carried 
over  w7ith  the  arsenic  trichloride  into  the  distillate 
and  oxidises  the  trivalent  to  quinquevalent  arsenic. 
The  extent  of  the  oxidation  depends  largely  on  the 
length  of  time  the  distillate  is  kept  before  titra- 
|  tion.    The  error  may  be  avoided  by  using  hydrazine 
sulphate    preferably    in    conjunction    with    sodium 
bromide     as     the     reducing    agent,     whereby     the 
nitrates  etc.  are  reduced  to  nitrogen.    For  a  sample 
j  containing  the  equivalent  of  not  more  than  0"6  g.  of 
ASjOj,  50  c.c.  of  a  solution  containing  2%   each  of 
hydrazine  sulphate  and  sodium  bromide  in  dilute 
(1:4)    hydrochloric    acid   will   be    required   for    the 
analysis.     The   mixture   is   boiled   for   2 — 3   mins., 
!  100  c.e.  of  concentrated  hydrochloric  acid  is  added, 
and  distillation  proceeded  with  in  the  usual  way. 

— G.  F.  M. 

Oxygen  in  organic  compounds;  Detection  of  . 

J.  Piccard.  Helv.  Chim.  Acta,  1922,  5,  243—244. 
A  method  for  the  detection  of  oxygen  in 
organic  compounds  may  be  based  on  the  formation 
of  a  brown  solution  when  iodine  is  dissolved  in 
oxygenated  solvents,  such  as  alcohol,  ether,  acetone, 
in  place  of  the  blue  solution  furnished  by  other 
solvents.  Excess  of  iodine  must  be  avoided,  since 
the  brown  colour  depends  on  the  formation  of  an 
idditive  compound  with  the  oxygen  atom.  The 
iddition  of  2%  of  ether  to  a  solution  of  iodine  in 
10C  parts  of  benzene  causes  a  noticeable  brown 
oloration  if  a  layer  of  solution  90  cm.  in  depth  be 
Examined. — J.  K. 


Phosphorus:    Bapid    colorimrtric    method    for    the 

quantitative  determination  of  the.  inorqanic 

in  small  mm, nuts  of  serum.  F.  F.  Tisdall.  J. 
Biol.  Chem.,  1922  50,  329—337. 
The  estimation  is  performed  on  1  c.c.  of  serum. 
Proteins  are  removed  by  means  of  trichloroacetic 
acid,  and  the  inorganic  phosphates  then  precipi- 
tated as  strychnine  phosphomolybdate  by  the  addi- 
tion of  a  strychnine  molybda'te  reagent.  After 
centrifuging  and  washing  with  the  minimum 
amount  of  water  the  precipitate  is  dissolved  in  1% 
sodium  hydroxide,  diluted,  and  the  colour  produced 
on  reduction  with  20%  potassium  ferrocyanide  and 
concentrated  hydrochloric  acid  compared  with  a 
standard.     The  error  does  not  exceed  5%. — E.  S. 

See  also  pages  (a)  281,  Aromatic  hydrocarbons  in 

mineral  oils  (Waterman  and  Perquin).  287,  Phenols 
(Moir).  290,_  Formaldehyde  (Heermann).  292, 
Perchlorate  (Konig).  296,  Spectrograph™  analysis 
(De  Gramont).  297,  Antifriction  alloys  (Bertiaux). 
299j  Partially  hydrolysed  fats  (Fahrion);  Acctiil 
value  (Cook).  301,  Vulcanised  rubber  (Kelly).  302, 
Sugars  in  tannin  extracts  (Longbottom) ;  Chrome 
tanning  liquors  (Burton  and  others).  303,  Chrome 
leather  (Woodroffe) ;  Acidity  of  chrome  leather 
(Atkin).  304,  Soil  solution  (Greaves  and  Hirst). 
306,  Tyrosine  content  of  proteins  (Fiirth  and 
Fleischmann) ;  Pepsin  (Glassner);  Vanilla-sugar 
(Hasse).  307,  Alkaloids  (Nelson  and  Leonard). 
308,  Nitrobenzene  in  benzaldehydc  (Hasse); 
Hydroxylamine  ami  hydrazine  (Kurtenacker  and 
Wagner);  Water  in  alcohol  (Schoorl  and  Regen- 
bogen) ;  Colloid-disperse  systems  (Gutbier  and 
others).  310,  Nitroglycerin  mixtures  (Dickson  and 
Easterbrook) ;  Stability  of  guncotton  etc.  (Berk- 
hout). 


Patent   List. 

_  The  dates  given  in  this  list  are,  in  the  case  of  Applica- 
tions for  Patents,  tnose  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on  sale 
at  Is.  each  at  the  Patent  Office  Sale  Branch.  Quality 
Court,  Chancery  Lane.  London.  W.C.  2,  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Baker,  Prescott,  and  Baker,  Sons,  and  Perkins. 
Stones  of  grinding-mills.    9890.    Apr.  6. 

Bates.  Compositions  for  covering  steam  pipes, 
boilers,  etc.     9266.     Mar.  31. 

Chedlow  and  Seddon.    Furnaces.    8935.    Mar.  28. 

Chemical  Engineering  Co.,  and  Spensley.  Pro- 
ducing intimate  mixtures  of  substances  and  obtain- 
ing chemical  products  therefrom.     9681.     Apr.  4. 

Constantinesco.  Producing  mixtures  of  liquids 
and  gases.    9760.    Apr.  5. 

Dellwik,  and  Techno-Chemical  Laboratories,  Ltd. 
Continuous  filtering  apparatus.     9366.     Mar.  31. 

Hallas  and  Povcv.  Disintegrating,  emulsifying, 
and  colloiding  materials.     9015.     Mar.  29. 

Hutchins.  Drying  or  calcining  machines  of  the 
rotarv  tube  type.     9540.     Apr.  3. 

Judelson.     Evaporators.     9430.     Apr.  1. 

Judelsou.     Dryers.     9432.     Apr.  1. 

Marks  (Royal  Baking  Powder  Co.)  Apparatus 
!  for  effecting"  chemical  reactions  by  means  of 
amalgams.     9545.     Apr.  3. 

Pallister.     Evaporating-pans.     9329.     Mar.  31. 

Rigbv.     Drying.     9998.     Apr.  7. 

Wade.     9361.     See  XVIII. 

Zellstofffabrik  Waldhof,  Clemm,  and  Schneider. 
Recovering  waste  heat  of  gases  and  vapours.  9426. 
Apr.  1.     (Ger.,  11.4.21.) 


312a 


PATENT    LIST. 


[April  29,  1983. 


Complete  Specifications  Accepted. 

29.641  (1920).  Conover.  Apparatus  for  bringing 
about  and  controlling  reactions  between  gases. 
1 152,671.)     Apr.  5. 

30,653  (1920).  Woodall,  Duckham,  and  Jones, 
Duckham,  and  Kent.  Tunnel  kilns.  (177,561.) 
Apr.  12. 

35.064  (1920).  Acheson.  Defloceulating  solid 
materials.     (157,887.)     Apr.  5. 

36,554  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  dispersoids,  colloid  powder, 
and  masses  therefrom.     (156,142.)     Apr.  12. 

1682  (1921).  Grosse.  Dry  method  of  purifying 
gases  and  vapours.     (157,966.)     Apr.  12. 

2581  (1921).  Vaccaro.  Desiccators.  (177,307.) 
Apr.  5. 

3496  (1921).  Bibb.  Furnace  or  kiln.  (177,323.) 
Apr.  5. 

5656  (1921).  Streatman.  Decolorising  liquids. 
(172.272.)     Apr.  12. 

6291  (1921).    Piatt.    Furnaces.    (177,365.)    Apr.  5. 

5587-8  (1922).  Traun's  Forschungslaboratorium 
Ges.  Disintegrator  for  producing  dispersoids. 
(176,002-3.)     Apr.  5. 

II.— FUEL;      GAS:      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE    DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Beasley  and  Middleton.  Production  of  coke. 
9813.     Apr.  5. 

Colman  and  others.     9316.     See  III. 

Eichwald,  Hardt,  and  Vogel.  Manufacture  of 
lubricating  oils.     9697.     Apr.  4.     (Ger.,  8.4.21.) 

Fisher,  and  Midland  Coal  Products,  Ltd.  Manu- 
facture of  smokeless  etc.  fuel  from  coal.  9247. 
Mar.  31. 

Gartlan  and  Gooderham.  Treatment  of  hydro- 
carbons.    9672-3.     Apr.  4. 

Hearson  and  Lofthouse.  Complete  gasification 
plant.     9127.     Mar.  30. 

Polvsius.  Low-temperature  carbonisation.  10,079. 
Apr.  8.    (Ger.,  3.5.18.) 

Schmaltz.  Preventing  spontaneous  combustion 
of  coal  in  store.     10,011.     Apr.  8.     (Ger.,  11.7.21.) 

Soc.  Anon.  PAir  Chaud.  Gas-producers.  9671. 
Apr.  4.     (Be!g.,  8.3.22.) 

Thompson.     Dehydration  of  peat.    9405.    Apr.  1. 

Complete  Specifications  Accepted. 

15,602  (1919).  Sauer.  Regeneration  of  decolor- 
ising carbon.     (177.180.)     Apr.  5. 

27,910  and  30,537  (1920).  Lewis.  Protective  pro- 
gressive distillation  and  gasification  of  solid  carbon- 
aceous matters.     (177.556  and  177,559.)     Apr.  12. 

32,341  (1920).  Muchka.  Production  of  inert  gas 
mixtures  of  nitrogen  and  carbon  dioxide.  (153,916.) 
Apr.  5. 

35,744  (1920).  Parker.  Gas  producers  and 
carbonisers.     (177,236.)     Apr.  5. 

35,748  (1920).  Barrs.  Low  temperature  distilla- 
tion.    (177,239.)     Apr.  5. 

35,959  (1920).  Emerson.  Conversion  of  hydro- 
carbon oils.     (168,573.)     Apr.  5. 

36,088  (1920).  Stansfield.  Carbonising  coal  etc. 
(177,588.)     Apr.  12. 

36.126  (1920).  Brownlee  and  Ganahl.  Treatment 
of  hydrocarbon  oils.    (177, 589. ">    Apr.  12. 

36,136  (1920).  Tulloch  and  Smith.  Solid  fuel 
vaporiser  or  gas  producer.     (177,590.)     Apr.  12. 

36,464  (1920J.  Traun's  Forschungslaboratorium 
Ges.    See  XX. 

36,550  (1920).  Traun's  Forschungslaboratorium 
<'••-.-.  Extraction  of  mnntan  wax  from  bituminous 
coal.     (156,138.)     Apr.  12. 

36,553  (1920).  Traun's  Forschungslaboratorium 
Ges.  Oxidising  paraffin  etc.  and  obtaining  soaps. 
(156,141.)     Apr.  12. 


36,659  (1920).  Georgs-Marien-Bcrgwerks.  Gas- 
producers.    (156,168.)    Apr.  5. 

727  (1921).  Erdmann.  Obtaining  paraffin  from 
lignite  tar,  shale  tar,  etc.     (156,693.)     Apr.  5. 

1448  (1921).    Brat.    See  VII. 

1774(1921).  Dickson.  Gas-producers.  (177,289.) 
Apr.  5. 

Ill— TAR    AND    TAR    PRODUCTS. 

Applications. 

Colman,  Forwood,  Taplay,  and  Yeoman.     Treat- 
ment of  hydrocarbons.     9316.     Mar.  31. 
Gartlan  and  Gooderham.     9672-3.     Ser  II. 

Complete  Specifications  Accepted. 

35,523  (1920).  Scheibler.  Manufacture  of  sulphui 
preparations  of  the  thiophene  series  from  tar  oils  of 
bituminous  rock.     (155,546.)     Apr.  5. 

457  (1921).  Chem.  Fabr.  Worms.  Manufacture 
of  anthraquinoue  and  its  derivatives.  (156,540.) 
Apr.  5. 

IV.— COLOURING    MATTERS    AND    DYES. 

Applications. 

British  Dyestuffs  Corp.,  Adams,  and  Green, 
Production  of  red  basic  dyestuffs.    9060.    .Alar.  29. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Preparation  of  azo  compounds.     9792.     Apr.  5. 


-FIBRES;    TEXTILES; 
PAPER. 

Applications. 


CELLULOSE ; 


Bourcet  and  Regnault.  Removing  ink  from 
printed  papers.     9515.     Apr.  3. 

Lilienfeld.  Manufacture  of  cellulose  derivatives. 
9465-6.     Apr.  1.     (Austria.  2.4.21.) 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Manu- 
facture of  cellulose  derivatives  and  fibrous  products. 
9265.     Mar.  31. 

Riley  and  Taylor.  Treatment  of  textile  etc. 
fibrous  material.     9703.     Apr.  4. 

Schmidt.  Chlorination  of  cellulose  Ives.  9323. 
Mar.31.     (Fr.,  7.4.21.) 

Snia  Soc.  Treatment  of  viscose  substances.  9905. 
Apr.  6.     (Ital.,  7.4.21.) 

Zdanowich.  Manufacture  of  cellulose  acetates 
etc.     9796.     Apr.  5. 

Zellstofffabr.  Waldhof.  Regenerating  sulphurous 
acid  and  waste  heat  from  sulphite-cellulose  boilers. 
9427.     Apr.  1.     (Ger.,  27.4.21.) 

Complete  Specifications  Accepted. 

401  (1921).  Lutz.  Sizing  and  impregnating 
paper,  cardboard,  woven  fabrics,  etc.  with  animal 
size  or  gelatin.     (156,513.)     Apr.  12. 

402  (1921).  Lutz.  Sizing  and  impregnating 
paper,  cardboard,  fabrics,  etc.     (156,514.)    Apr.  5. 

VI.— BLEACHING;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Mead.     Waterproofing.     8856.     Mar.  28. 
Smith.       Bleaching.       9436.       Apr.     1. 
19.7.21.) 

Complete  Specifications  Accepted. 

32,968  (1920).  Peachev.  Process  for  proofing 
materials.     (177,566.)     Apr.  12. 

34.612  (1920).  Leek  and  Sons,  and  Leek.  Dyeing, 
bleaching,  tin-weighting,  scouring,  etc.  machines. 
(177.211.)     Apr.  5. 

401-2  (1921).     Lutz.     See.  V. 

22,248  (1921).  Internat.  Textile  Devices,  Inc. 
Apparatus  for  dyeing  tops,  yarns,  etc.  (170,273.) 
Apr.  5. 


Vd.  XLI.,  No.  8.] 


PATENT  LIST. 


313  a 


VII.— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC    ELEMENTS. 
Applications. 
Craig,   and   Spence    and    Sons.       Granulation  of 
aluminous  materials.     9834.     Apr.  6. 

Dutt.  Extraction  of  titanium  dioxide  and 
vanadium  salts  from  bauxite.     9828.     Apr.  6. 

Lever  Bros.,  Ltd.,  Tainsh,  and  Thomas.  Manu- 
facture of  caustic  soda.     9039.     Mar.  29. 

Lever  Bros.,  Ltd.,  Thomas,  and  Williams. 
Manufacture  of  caustic  soda.    9040.     Mar.  29. 

Complete  Specifications  Accepted. 

27,491  (1920).  Norsk  Hydro-Elektrisk  Kvaelstof- 
aktieselskab.  Catalyst  for  synthetic  manufacture  of 
ammonia.     (153.290.)     Apr.'  12. 

1448  (1921).  Brat.  Recovery  of  ammonia  from 
peat.     (157,746.)     Apr.  12. 

2693  (1921).  British  Cellulose  and  Chem.  Manuf. 
Co.,  and  Bader.  Manufacture  of  pyrosulphates. 
(177.310.)     Apr.  5. 

3949  (1921).  L'Air  Liquide.  Synthesis  of 
ammonia.     (158,849.)     Apr.  5. 

5108  (1921).  Guignard.  Production  of  ammonia 
from  nitrogen  or  cyanogen  compounds  of  titanium. 
(160.454.)     Apr.  12. 

12.116  (1921).  South  Metropolitan  Gas  Co.,  and 
Parrish.  Manufacture  of  neutral  sulphate  of 
ammonia.     (177,726.)     Apr.  12. 

15,894  (1921).  Levitt.  Treatment  of  silicates. 
(177,736.)    Apr.  12. 

16,320  (1921).  Chambers,  Hammond,  and  Sowden. 
Treating  waste  or  other  liquors  containing  ferrous 
chloride.     (177,444.)     Apr.  5. 

18,188  (1921),  and  2201  (1922).  Crosfield  and 
Sons,  and  Wheaton.    See  XIX. 

31,611  (1921).  Mehner.  Formation  of  cyanic 
compounds.     (172,027.)     Apr.  5. 

VIII— GLASS ;    CERAMICS. 
Applications. 
Feldenheimer     and     Plowman.      Purification    of 
clay.    8817.     Mar.  27. 

Jackson  (Libbey-Owens  Sheet  Glass  Co.).  Draw- 
ing sheet  glass.     9678  and  9709.     Apr.  4. 

Complete  Specifications  Accepted. 

27,118  (1920).  Riddle.  Porcelain.  (177,553.) 
Apr.  12. 

1277  (1921).  Pazsiczky.  Production  of  spun  glass. 
(157,360.)    Apr.  12. 

30,468  (1921).  Freuler.  Manufacture  of  glassy 
material.     (171,692.)     Apr.  5. 

IX.— BUILDING   MATERIALS. 

Application. 
Alexandenson  and  Olsson.     Impregnating-agents 
for  preserving  wood.     9541.     Apr.  3. 

Complete  Specifications  Accepted. 

32,456  (1920).  Barrie  and  Chadwick.  Aromatic 
hydrocarbon  cement.     (154,152.)     Apr.  5. 

3903  (1921).  Winkler.  Treatment  of  cement, 
mortar,  concrete,  etc.     (168,847.)     Apr.  12. 

i  X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Evans  and  Hamilton.  Manufacture  of  metals 
and  alloys  from  ores  and  compounds.  8849. 
Mar.  28. 

Jones.  Separation  of  mixed  metals  etc.  9588. 
Apr.  4. 

Loring.  Method  of  refining  metals.  9734. 
ipr.  5. 

Metropolitan-Vickers  Electrical  Co.  Iron  alloy. 
»683.    Apr.  4.    (U.S.,  21.4.21.) 

Moll.  Reverberatory  open-hearth  furnaces  etc. 
1577.     Apr.  3.     (Ger.,  2.4.21.) 


9845. 


Peirse.       Shingling     mild     steel     scrap. 
Apr.  6. 

Poplawski.  Composition  to  remove  copper  from 
barrels  of  steel  guns.     9750.     Apr.  5. 

Rohn,  and  Vacuumschmelze  ties.  Process  of 
melting  metals.     9363.     Mar.  31. 

Rudd.  Furnaces  for  heat-treating  high-speed 
steel.     8S39.     Mar.  28. 

Saltrick.     Alloys.     9421-2.     Apr.  1. 

Trubey.  Production  of  stainless  iron  or  steel  or 
steej  containing  chromium.     9528.     Apr.  3. 

Wild  and  Wild.  Manufacture  of  ferrochromium 
etc.  alloys.     9417-8.     Apr.  1. 

Complete  Specifications  Accepted. 

27,493  (1920).  Bourcoud.  Reduction  of  metallic 
oxides.     (151,644.)     Apr.  12 

33,167  (1920).  Baker  and  Co.  Alloys.  (157,884.) 
Apr.  12. 

35,814  (1920).  Houmoller.  Briquetting  iron 
chips  for  use  in  cupola  furnaces.     (168,025.)   Apr.  5 

451  (1921).  Metallhiitte  Baer  u.  Co.  Casting 
aluminium  and  other  metals.     (156,536.)     Apr.  5. 

1300  (1921).  Volmer.  Production  of  copper 
coatings  on  non-metallic  materials.  (157,379.) 
Apr.  12. 

XL— ELECTRO-CHEMISTRY. 
Applications. 
Beswick,    and    Fuller's    United    Electric   Works. 
Galvanic  batteries.     9378.     Apr.  1. 

Marchesi.     Electric  furnaces.     8842.     Mar.  28. 
Timms.     Accumulators.     8966.     Mar.  29. 

Complete  Specifications  Accepted. 

32,296  (1920).  Leitner.  Electric  accumulators. 
U77.198.)     Apr.  5. 

36,170  (1920).  Traun's  Forschungslaboratorium 
Ges.  Filter  electrodes  for  electrolysis.  (155,835.) 
Apr.  5. 

3849  (1922).  Leitner.  Electric  accumulators. 
(177,479.)     Apr.  5. 

XII.— FATS;    OILS;    WAXES. 
Applications. 
Bloxam     (Akt.-Ges.     f.    Anilinfabr.).      Washing 
agents.    9994.    Apr.  7. 

Guernsey.     Detergent  compound.     9679.     Apr.  4. 

Complete  Specification  Accepted. 
36,553   (1920).     Traun's   Forschungslaboratorium 
Ges.    See  II. 

XIII.— PAINTS;    PIGMENTS;    VARNISHES; 

RESINS. 
Applications. 

Ellis  (Walker).  Manufacture  of  paint,  varnish, 
etc.    9702.    Apr.  4. 

Hannay.  Manufacture  of  white  pigment  from 
lead  ore.    9234.    Mar.  30. 

Walker.  Manufacture  of  paint,  varnish,  etc. 
9699.     Apr.  4. 

Complete  Specifications  Accepted. 

36,561  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture       of       coating-oompositions. 

(156,149.)    Apr.  12. 

36,563  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  resinous  condensation  pro- 
ducts.   (156,151.)    Apr.  12. 

1415  (1921).  Deutsch  Luxemburgische  Bergwerks 
u.  Hiitten  A.-G.  Recovery  of  resinous  substances 
from  waste  sulphuric  acid.     (157,715.)     Apr.  5. 

XIV.— INDLA-RUBBER ;    GUTTA-PERCHA. 

Applications. 
Cliffe,  Townsend,  Wakeford,  and  Robson  Machine 
Tool   Co.     Apparatus  for   treating  rubber.     9737. 
Apr.  5. 


314a 


PATENT    LIST. 


[April  29,  1922. 


Rubber  Growers'  Assoc.  (Edwardes).  Prepara- 
tion of  rubber.     9665.     Apr.  4. 

Complete  Specifications  Accepted. 

32,496  (1920).  Balke  and  Leysieffer.  Production 
of  plastic  bodies  resembling  vulcanised  rubber. 
(154,157.)     Apr.  12. 

36,128  (1920).  Wickham,  and  Roa,  Ltd.  Appa- 
ratus for  treating  latex.     (177,262.)    Apr.  5. 

36,562  (1920).  Traun'.s  Forschungslaboratorium 
Ges.   Reclaiming  waste  rubber.    (156,150.)   Apr.  12. 

XV.— LEATHER;    BONE;    HORN;    GLEE. 
Applications. 

Moeller.  Manufacture  of  tanning  agents.  9995. 
Apr.  7. 

Redfern,  and  Walker  and  Sons.  Manufacture 
of  tanning  extracts.     10,025.     Apr.  8. 

Complete  Specifications  Accepted. 

627-8  (1921).  Niessen.  Extraction  of  glue. 
(156,646-7.)     Apr.  5. 

XVI.— SOILS;    FERTILISERS. 

Application. 

ZellstofFfabr.  Waldhof.  Manufacture  of  fer- 
tilisers.    9428.     Apr.  1.     (Ger.,  27.4.21.) 

Complete  Specification  Accepted. 

36,465  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  phosphatic  manures. 
(156,124).     Apr.  12. 


XVII.— SUGARS;    STARCHES;    GUMS. 
Applications. 
Jacobs.     System  of  pan  boiling  in  sugar  manu- 
facture.   9151.     Mar.  30. 

Stewart  and  Co.  (Mauss).     Apparatus  for  clarify- 
ing sugar  juices,  solutions,  etc.     9494.     Apr.  3. 
Thomson.    9778.    See  XLX. 

XVIII.—  FERMENTATION  INDUSTRIES. 

Application. 
Wade  (Schneible).  Distilling  alcoholic  etc.  liquids. 
9361.    Mar.  31. 

Complete  Specifications  Accepted. 

35,282,  35,285-6,  35,289  35,290,  35,292-4  (1920). 
Verein  der  Spiritusfabrikanten  in  Deutschland. 
Production  of  yeast.  (155,281,  155,284-5,  155,288-9, 
155.291-3.)    Apr.  5. 

35,291  (1920).  Verein  der  Spiritusfabrikanten  in 
Deutschland.  Treatment  of  the  froth  of  ferment- 
ing or  boiling  liquids.     (155,290.)     Apr.  5. 

XIX.— FOODS:  WATER  PURIFICATION; 
SANITATION. 

Applications. 

Campbell  Baking  Co.  Process  of  bread-makinc 
8884.    Mar.  28.    (U.S.,  30.3.21.) 

Chemical  Engineering  Co.,  and  Spensley.  Pro- 
duction, mixing,  or  refining  of  food  products  con- 
taining fats.     9682.     Apr.  4. 

Dried  Milk  Dairy  Products.  Ltd.,  and  Sierra. 
Manufacture  of  milk  powder.    8804.     Mar.  27. 

Kahn.     Preserving  raw  eggs.    10,059.    Apr.  8. 

Thomson.  Recovery  of  proteins  and  milk  sugar 
from  whey.    9778.    Apr.  5. 

Complete  Specifications  Accepted. 

1399  and  1400  (1921).  Kestner.  Abstracting 
oxygen  from  water.    (164,711  and  166,875.)    Apr.  5. 

18,188  (1921)  and  2201  (1922).  Crosfield  and  Sons, 
and  Wheaton.  Manufacture  of  a  base-exchanging 
compound.     (177,746.)     Apr.  12. 


XX.— ORGANIC   PRODUCTS;   MEDICINAL 
SUBSTANCES ;  ESSENTHL  OILS. 

Applications. 

Adam.  Galbraith,  and  Siderfin.  Reduction  of 
organic  compounds  etc.     9564.    Apr.  3. 

Dreyfus.  Manufacture  of  organic  derivatives. 
9957.     Apr.  7. 

Maeder,  Wolfes,  and  Merck.  Manufacture  of 
nortropinone  derivatives.  9461.  Apr.  1.  (Ger., 
4.4.21.) 

Complete  Specifications  Accepted. 

27,646  (1920).  Dreyfus.  Manufacture  of  alkyl 
sulphates.     (177,189.)     Apr.  5. 

a5,970  (1920).  Stockholms  Superfosfat  Fabr.  Akt. 
Manufacture  of  acetaldehyde  from  acetylene. 
(155,775.)    Apr.  5. 

36,260  (1920).  Fabr.  de  Prod.  Chim.  de  Thann  et 
de  Mulhouse.  Manufacture  of  borneol.  (164,302.) 
Apr.  12. 

36,4.57  and  36,463  (1920).  Traun's  Forschungs- 
laboratorium Ges.  Manufacture  of  diolefines  etc. 
(156,116  and  156,122.)     Apr.  12. 

36,458  and  36,461  (1920).  Traun's  Forschungs- 
laboratorium (>es.  Manufacture  of  vinvl  com- 
pounds.    (156,117  and  156,120.)  Apr.  5. 

36,464  (1920).  Traun's  Forschungslaboratorium 
Ges.  Extraction  of  unsaturated  hydrocarbons  from 
hydrocarbon  mixtures  or  carbonaceous  material. 
(156,123.)     Apr.  12. 

36,548  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  hexamethvlenetetramine  and 
formaldehyde.    (156,136.)    Apr.  5. 

36,551  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  low-boiling  chlorinated  hydro- 
carbon.    (156,139.)    Apr.  5. 

36.558  (1920).  Traun's  Forschungslaboratorium 
Ges.  Oxidation  of  acetaldehvde  to  acetic  acid. 
(156,146.)    Apr.  12. 

36.559  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  acetaldehvde  or  acetic  acid. 
(156,147.)    Apr.  12. 

36.560  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  formaldehyde  and  methvl 
alcohol.     (156,148.)    Apr.  12. 

257  (1921).  Wohl.  Oxidation  of  hydrocarbons  to 
carbonvl  compounds  or  acids.     (156,244.)    Apr.  12. 

815  (1921).  Boot's  Pure  Drug  Co.,  and  Anderson. 
Manufacture  of  derivatives  of  3.3'-diamino-4.4'- 
dihvdroxvarsenobenzene.     (177,283.)    Apr.  5. 

2411  (1921).  Wargons  Akt.,  and  Lidholm.  Pro- 
duction of  cvanamide  from  calcium  cvanamide. 
(159,866.)    Apr.  5. 

6160  (1921).  Carpmael  (Bayer  u.  Co.).  Manu- 
facture of  ethylene  derivatives.     (177,362.)    Apr.  5. 

XXL— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Application. 

Pfenninger.  Photography  in  two  colours.  9955. 
Apr.  7. 

Complete  Specifications  Accepted. 

35,988  (1920).  Kent.  Photographic  transfer 
processes.     (177,255.)    Apr.  5. 

10,950  (1921).  Davies.  Means  for  coating  webs 
of  photographic  paper.     (177,417.)     Apr.  5. 

XXII.— EXPLOSIVES ;  MATCHES. 

Application. 

Hawkins.  Manufacture  of  explosive.  8903 
Mar.  28. 

Complete  Specification  Accepted. 
17,622  (1921).     Rathsburg.     Manufacture  of  ex- 
plosives and  primers.     (177,741.)     Apr.  12. 


Vol.  XLI..  No.  9.] 


ABSTRACTS 


[May  15,  1922". 


I.-GENERAL ;  PLANT  ;    MACHINERY. 

Gases  and  liquids;  Bates  of  absorption  and  heat 

transfer   between   .      W.    G.    Whitman    and 

J.    L.    Keats.       J.    Ind.    Eng.    Chem.,    1922.    14, 
186—191. 

The  rate  at  which  a  substance  is  absorbed  by  a 
liquid  from  a  gas,  or  removed  by  a  gas  from  a 
liquid,  is  governed  by  the  same  law  which  governs 
the  transference  of  heat  or  electricity.  The  main 
resistance  to  the  transfer  of  heat  between  a  gas 
and  a  liquid  consists  of  the  layer  of  liquid  at  the 
surface  in  contact  with  the  gas  and  the  layer  of 
gas  in  contact  with  the  liquid.  Through  these  two 
films  the  heat  must  pass  by  diffusion.  The  flow 
may  be  expressed  by  the  formula 

d_Q  (T-t)  AT 

de         Bq-Rl         Bg— Bl 
dQ/d0  being  equal  to  B.Th.TJ.  passing  from  gas  to 
liquid  per  minute;  T-t  =  difference  in  temperature 
or  driving  temperature  potential  between  liquid  and 
gas;  RG  =  resistance  of  gas  film  and  RL   resistance 

of  liquid  film.     Another   formula   is  -.^  =haVAT, 

where  ha  is  the  coefficient  of  heat  transfer  in 
B.Th.U.  per  cub.  ft.  per  1°  P.  per  min.,  and  V  the 
total  volume  of  the  equipment.  The  equation  for 
absorption  of  matter  from  a  gas  by  a  liquid  is 
similar  to  that  for  heat  transfer,  as 

dW/d0  =  k'aV(P-p)  =  k'aVAp, 
where  d\V/d0  =  lb.  of  material  absorbed  per  minute; 
k'a  =  coefficient  of  absorption  in  lb.  of  material 
absorbed  per  cub.  ft.  per  min.  per  mm.  of  mercury 
pressure  difference,  and  Ap  =  driving  pressure  in 
mm.  of  mercury.  na/k'a=s  is  proportional  to  the 
humid  heat  of  the  gas,  that  is,  the  amount  of  heat 
in  B.Th.U.  necessary  to  raise  lib.  of  inert  carrier 
plus  the  solute  associated  with  it  1°  F.  The  velo- 
city of  the  gas  greatly  influences  heat  transfer  or 
absorption  in  cases  where  the  liquid  is  held  by  a 
solid  substance,  as  in  coke  towers.  The  influence  of 
rate  of  flow  of  liquid  is  very  limited.  The  efficiency 
of  transfer  is  greatly  dependent  upon  the  design  of 
the  apparatus. — H.  M. 

Specific  heats  of  air,  steam,  and  carbon  dioxide. 
R.  T.  Glazebrook.  Proc.  Roy.  Soc,  1922,  A  101, 
112—114. 

The  results  ascribed  by  Womersley  (J.,  1922,  163  a), 
to  Holborn  and  Henning,  for  the  range  of  tem- 
peratures 200°  C— 1000°  C.  are  from  6—8%  higher 
than  the  actual  values  calculated  from  the  figures 
given  by  these  experimenters  (Ann.  Phys.,  1907, 
23,  809).  Similarly,  Womersiey's  experimental 
values  up  to  1400°  C.  are  about  6%  higher  than 
those  of  Holborn.  Holborn  and  Henning's  values 
agree  with  those  of  Piers  and  Bjerram  (Z.  physik. 
Chem.,  1911  and  1912).— J.  S.  G.  T. 

Thermometric  anemometer.    Thomas.    See  XXIII. 

Patents. 
Seating   of  liquids;   Method   of  and   arrangement 

for  the  .     Aktiebolaget  Vaporackumulator. 

E.P.  157,753,  10.1.21.  Conv.,  9.1.20. 
1  Steam  is  taken  more  or  less  regularly  from  another 
team  consumer  (e.g.,  "  bled  "  from  an  engine)  and 
tored  in  an  accumulator  to  meet  an  intermittent 
emand  from  such  apparatus  as  dye-vats,  bleaching 
pparatus,  etc.  (Reference  is  directed,  in  pursu- 
nce  of  Sect.  7,  Sub.-sect.  4,  of  the  Patents  and 
•esigns  Acts,  1907  and  1919,  to  E.P.  6894  of  1914, 
29,272,  135,474,  and  135,479.)— B.  M.  V. 


Heating  substances;  Process  of for  producing 

certain  chemical  changes.  [Wood  distillation: 
oxidation  of  methane  to  formaldehyde.}  Thermal 
Industrial  and  Chemical  (T.I.C.)  Research  Co  ,. 
Ltd.,  and  J.  S.  Morgan.  E.P.  176,438,  2.11.20. 
To  avoid  disturbances  due  to  exothermic  heating  irr 
effecting  chemical  changes  produced  by  heating 
solid,  liquid,  or  gaseous  substances,  the  substances 
are  caused  to  travel  in  a  finely  divided  state 
through  molten  metal  maintained  at  the  desired 
temperature.  In  the  destructive  distillation  of 
wood,  the  finely  divided  wood  is  carried  by  a  band 
travelling  (as  in  the  apparatus  of  E.P.  174,974;  J., 
1922,  239  a)  in  contact  with  molten  lead  at  350°  C. 
Methane  is  oxidised  to  formaldehyde  by  bubbling 
it  with  air  or  oxygen  through  molten  metal  at 
350°— 400°  C,  using  preferablv  a  still  as  in  E.P. 
170,617  (J.,   1921,  877  a).— H.  H. 

Exchange   of   heat   between  two   immiscible   fluids 
of  different  densities:  Process  and  apparatus  for 

effecting .     H.  Ibing.     E.P.  176,499,  7.12.20. 

The  heavier  liquid  is  caused  to  flow  horizontally  and 
downwards,  and  the  lighter  liquid  horizontally  and 
upwards  in  a  number  of  layers,  the  liquids  being  in. 
contact  between  shelves  or  baffles  which  produce  the 
layers.  The  containing  vessel  is  maintained  full,  so 
that  besides  direct  heat  transmission  between  the 
liquids  there  is  indirect  transfer  through  the  shelves 

— B.  M.  V. 

Heat    exchanger.       E.     Prat.       U.S. P.     1,409,967, 

21.3.22.     Appl.,  29.10.20. 
A  heat  exchanger   for  fluids  is  built  up   of  plain 
plates  held  in  frames  which   are  partly  solid  and 
partly  elastic  and  wavy  to  allow  of  the  passage  of 
fluids,  and  are  provided  with  solid  baffles. — B.  M.  V. 


W.  Mauss.     E.P.  176,395, 


Filters;  Vacuum  — 

18.8.20. 

The  filter  leaves  are  secured  to  and  communicate 
internally  with  the  bore  of  a  hollow  shaft  fitted 
with  a  vacuum  valve  and  a  steam  valve,  and 
adapted  to  be  oscillated  for  immersing  the  leaves 
alternately  in  a  filter  tank  and  in  a  wash  tank.  As 
the  filtration  proceeds  the  diminishing  permeability 
of  the  leaves  causes  the  liquid  level  in  the  filter  tank 
to  rise  and  actuate  a  float  which  sets  in  motion 
mechanism  for  transferring  the  leaves  to  the  wash 
tank.  Towards  the  end  of  this  movement  the 
vacuum  is  cut  off  and  steam  is  admitted  to  loosen 
the  deposited  matter  prior  to  its  removal  by  the 
wash  water.  The  immersion  in  the  wash  tank 
actuates  a  float  which  sets  in  motion  the  trans- 
ferring mechanism  in  the  reverse  direction,  and 
closes  the  steam  valve.  The  vacuum  valve  is  opened 
automatically  when  the  leaves  again  enter  the  filter 
tank.  The  feed-valve  for  the  material  to  be  filtered 
is  closed  automatically  by  a  float  which  becomes 
operative  upon  the  removal  of  the  leaves  from  the 
filter  tank.  The  apparatus  is  more  particularly  for 
use  in  removing  flocculated  albuminous  matter  from 
sugar  juice. — H.  H. 

Filter;  Eotary  .     R.   M.   Johnson   and  G.   C. 

Hurrell.  E.P.  176,619,  4.2.21. 
The  filter  drum,  which  may  be  provided  with  a 
permeable  covering  as  in  E.P.  174,116,  makes  a 
number  of  revolutions  to  effect  the  successive  opera- 
tions of  forming  the  cake,  washing  and  otherwise 
treating  it,  and  removing  the  dried  product,  and 
this  cycle  of  operations  is  automatically  and  con- 
tinuously repeated.  The  treatment  may  include 
steaming,  washing,  or  impregnating  the  cake,  one 
or  more  revolutions  being  allowed  for  each  opera- 
tion. The  various  operations  are  brought  into 
action  by  cams  on  a  countershaft  fitted  with 
change-speed  gearing. — H.  H. 


31G  a 


Ci»  I.— GENERAL;    PLANT;    MACHINERY. 


[Slay  15,  1022. 


Filter  press.    A.  Burger.     U.S. P.  1,409,231, 14.3.22. 
Appl.,  6.6.19. 

The  filter  press  is  provided  with  a  screw  shaft 
which  engages  a  non-rotating  nut  in  the  movable 
head,  and  is  fitted  with  a  worm  gear ;  the  casing 
and  the  worm  shaft  move  with  the  worm  gear  in  the 
direction  of  the  screw  shaft,  means  being  provided 
to  prevent  their  revolution. — D.  F.  T. 

Filter.      M.    Kessler.      U.S. P.    1,410,017,   21.3.22. 
Appl.,  13.8.19. 

A  cylindrical  casing  contains  impervious  inlet 
distributing  plates  and  alternating  impervious 
discharge-collecting  plates,  with  interposed  filter 
elements.  The  filter  elements,  which  are  of  greater 
area  than  the  plates,  are  in  contact  alternately  at 
the  inner  and  outer  edges  of  the  plates,  thus  form- 
ing a  continuous  zig-zag  filtering  path.  Liquid  is 
supplied  to  the  inlet  plates  and  collected  from  the 
discharge  plates. — L.  A.  C. 

Drum-filter  agitator.  E.  S.  Pettis.  U.S.P. 
1,410,221,  21.3.22.     Appl.,  5.3.19. 

A  housing  provided  with  a  number  of  inlet  and 
discharge  openings  on  opposite  sides,  and  with 
means  inside  for  circulating  pulp  through  the 
openings,  is  mounted  below  a  filter  in  a  pulp- 
receiving  tank. — L.  A.  C. 

Centrifugal  filter.  T.  H.  Parker,  S.  G.  Gassaway, 
and  J.  W.  Whitson.  U.S.P.  1,410,264,  21.3.22. 
Appl.,  12.1.20. 

A  conical  drum  provided  with  a  foraminous  lateral 
wall  and  a  spiral  blade  arranged  adjacent  to  the 
surface  of  the  drum  are  rotated  at  different  speeds 
in  the  same  direction.  Means  are  provided  for 
feeding  material  to  be  filtered  into  the  drum  and 
for  adjusting  the  clearance  between  the  drum  and 
the  blade.— H.  H. 

Electrical  precipitation  apparatus.  The  Lodge  Fume 
Co.,  and  N.  Stallard.     E.P.  176,713,  21.5.21. 

A  freely  movable  rod  is  caused,  under  the  impact 
of  a  hammer,  to  transmit  a  blow  to  a  cross-bar 
carrying  the  discharge  electrodes,  whereby  accumu- 
lated precipitated  particles  are  dislodged.  After 
each  blow,  the  return  of  the  rod  to  its  normal 
position  is  effected  by  its  own  weight  or  by  a  spring. 
The  hammer  may  also  be  employed  to  deliver 
periodic  blows  to  the  tubes  or  plates  employed  in 
a  precipitation  plant. — J.  S.  G.  T. 

Electrodes  [in   electrical  precipitators'];   Magnetic 

steadying  device  for  .     H.  A.  Wintermute, 

Assr.     to     Research     Corp.       U.S.P.     1,409,508, 
14.3.22.     Appl.,  20.5.21. 

In  an  electrical  precipitator  in  which  spaced 
movable  discharge  electrodes  are  suspended  from  a 
support,  magnetic  means  are  provided  to  hold  the 
group  in  a  predetermined  position. — J.  S.  G.  T. 

Electrical  precipitation  of  suspended  particles  from 

gases;    Method    and    apparatus    for    .       E. 

Anderson,   Assr.   to    International    Precipitation 
Co.     U.S.P.  1,409,901,  21.3.22.     Appl.,  7.6.21. 

Gases  containing  suspended  matter  pass  between 
electrodes  to  which  an  alternating  potential 
difference  is  applied,  artd  one  of  the  electrodes  is 
heated  so  as  to  act  as  a  thermionic  valve  whereby 
the  applied  alternating  current  is  rectified,  and  pre- 
cipitation of  suspended  matter  effected  upon  the 
electrode  which  is  not  heated. — J.  S.  G.  T. 

Electrical   purification    of    gases;   Process   of,    and 

apparatus   far  .      P.   Besta.      G.P.   347,599, 

29.7.20. 

The  precipitating  electrodes  in  a  plant  utilising 
high-tension     current     are     formed     of     stratified 


granular  material  or  iron  rings.  To  remove  dust 
from  the  filtering  material,  the  latter  is  allowed  to 
slide  down  into  a  sieve-like  perforated  funnel  pro- 
vided with  a  shaking  device.  The  funnel  is  fitted 
with  a  pipe  for  removal  of  the  cleansed  filtering 
material,  and  for  introduction  of  a  by-passed 
stream  of  purified  gas,  whereby  dust  is  blown  from 
the  filter  material  into  the  lower  part  of  the  plant, 
whence  it  is  removed  periodically. — J.  S.  G.  T. 

Vapours  and  gases;  Apparatus  for  purifying  

by  passage  through  narrow  slits.  O.  Buhring. 
G.P.  345,360,  6.3.21.  Addn.  to  312,994  (J.,  1919, 
887a). 

In  an  apparatus  similar  to  that  described  in  the 
chief  patent,  the  partition  wall,  6  (see  fig.  loc.  cit.), 
extends  only  to  the  points  where  it  is  nearest  to  the 
external  walls  of  the  vessel,  the  central  partition, 
/,  is  omitted  and  the  two  inner  chambers,  c  and  c', 
are  replaced  by  a  single  cylindrical  chamber  with 
an  opening  at  the  top.  A  partition  of  inverted 
trough  shape  situated  at  the  bottom  of  the  vessel 
forms  a  collecting  chamber  for  condensed  water  and 
the  like,  which  escapes  through  a  pipe  at  the  bottom 
of  the  vessel. — L.  A.  C. 

Solid  particles  from  the  exit  gases  of  evaporators ; 

Process     for     separating     .       Process     and 

apparatus  for  separating  solid  constituents  from 
liquids  by  evaporation.  Process  and  apparatus  for 
atomising  and  diffusing  liquids  prior  to  evapora- 
tion,. Process  and  apparatus  for  separating  solid 
constituents  from  liquids  hi/  evaporation.  G.  A. 
Krause  und  Co.,  A.-G.  G.P.  (a)  345,806.  3.4.17, 
(b)  345,807,  6.4.17,  (c)  347,022,  1.4.17,  and 
(d)  347,138,  3.4.17. 

(a)  The  hot  gases  used  as  evaporating  agent  pass 
out  through  openings  on  all  sides  of  the  evaporator 
into  a  surrounding  jacket  in  which  the  gases  expand 
and  flow  with  decreased  velocity,  thereby  facili- 
tating deposition  of  solid  particles,  (b)  A  horizontal 
or  slightly  inclined  stream  of  hot  gases  is  passed 
through  an  evaporating  chambeT,  and  a  stream  of 
liquid  atomised  by  means  of  a  centrifugal  device  is 
led  in  immediately  above  the  gas.  (c)  Atomisation 
of  liquids  by  rapidly  rotating  centrifugal  apparatus 
is  intensified  by  applying  a  current  of  air  in  the 
direction  of  the  stream  of  particles,  or  the  current 
may  be  applied  to  vary  the  trajectory  of  the  stream. 
(d)  Hot  gases  are  led  into  an  evaporating  chamber 
in  such  a  manner  that  they  form  an  open,  funnel- 
shaped  stream  flowing  either  upwards  or  down- 
wards, and  a  stream  of  the  atomised  liquid  is 
injected  into  the  open  end  of  the  funnel. — L.  A.  C. 

( trystalliser.     T.  E.  Stevens,  Assr.  to  Potash  Reduc- 
tion Co.  U.S.P.  1,409,607,  14.3.22.  Appl.,  7.7.21. 

A  crystallising  tank  contains  a  spiral  refrigerat- 
ing coil  and  a  co-axial  shaft  to  which  are  attached 
brushes  which  wipe  both  the  inside  and  outside 
surfaces  of  the  coil. — B.  M.  V. 

Centrifugal  separator   [for   two  liquids'}.       C.   '•' 

Paul,  jun.,  Assr.  to  E.  Nalle,  W.  P.  Allen,  and    5. 

Rosengren.       U.S.P.  1,409,763,  14.3.22.      AppL 

15.6.21. 
The  basket  is  provided  with  a  number  of  conccntri 
cylindrical  walls,  the  annular  chambers  thus  I' 
communicating  with  adjacent  ones  alternate 
top  and  bottom.     The  transfer  passages  aro  double 
and  arranged  in  such  a  way  that  the  lighter  liquii 
from  any  inner  wall  is  led  to  the  next  inner  wall 
aud   the  heavier   liquid  from  outer  wall  to  oute 
wall.— B.  M.  V. 
Drying  apparatus.    P.  Barducci.    U.S.P.  1,409,91; 

21.3.22.     Appl.,  22.3.21. 
A  casing  is  divided  into  two  chambers  each  coi 
taining  means  for  supporting  the  material  to  I 


Vol.  XLI.,  Xo.  9.1 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


317  a 


dried.  A  drying  medium  is  circulated  through 
both  the  chambers  and  to  or  from  external 
apparatus  (such  as  heaters  or  dehydrators)  by 
means  of  three  fans  on  a  common  shaft.  The 
larger  fan  is  in  a  cross  duct  connecting  the 
opposite  and  remoter  sides  of  the  two  chambers, 
and  the  two  smaller  fans  in  outer  ducts  leading 
to  or  from  external  apparatus.  Ports  with  valves 
give  communication  between  the  cross  duct  and 
the  drying  chambers  and  between  the  cross  and 
outer  ducts.  One  large  and  several  smaller  valved 
passages  are  also  provided  in  the  partition  between 
the  two  chambers.  The  valves  are  interconnected 
to  ensure  correct  operation. — B.  M.  V. 

Drying  chamber.    A  Sebaber  and  J.  Kletti.     G.P. 

346,174,  22.5.20. 
The  end  walls  of  a  drying  chamber  slope  to  form 
a  trapezoid  section,  and  the  inlet  and  outlet  for 
the  hot  gases  are  attached  at  the  smaller  angles 
formed  by  the  junction  of  the  ends  with  the  top 
and  bottom  respectively  of  the  chamber.  Partitions 
operated  by  levers  distribute  the  air  at  the  inlet, 
and  the  material  is  contained  in  trays  arranged 
in  steps  downwards  from  the  inlet  to  the  outlet 
end  of  the  chamber. — L.  A.  C. 

Hydraulic  classifier.     C.  Allen.     U.S. P.  1,410,152, 

21.3.22.  Appl.,  6.2.19. 
A  tank  for  use  in  separating  solids  suspended  in 
liquid  has  a  bottom  discharge  orifice  for  the  heavier 
product  and  an  overflow  rim  for  the  lighter  pro- 
duct. Streams  of  water  are  introduced  at  upper 
and  lower  levels,  the  upper  stream  acting  to  sub- 
ject the  settling  particles  to  a  classifying  action, 
and  the  lower  stream  serving  to  supply  water  to 
the  discharge  orifice.  A  conical  spreader  is  pro- 
vided to  distribute  the  force  of  each  stream  and 
to  prevent  agitation  of  the  contents  of  the  tank. 

— H.  H. 

Liquids;    Process  for    evaporating   .       P.    E. 

Matter.     G.P.  345,804,  11.4.18. 
Liquids  are  evaporated  in  two  stages,  the  heating 
agent  for  the  second  stage  being  steam  superheated 
by  compression,   and  that  for   the  first  stage  the 
vapour  from  the  second  stage  of  the  process. 

— L.  A.  C. 
Evaporating    solutions    by    means    of    compressed 
waste  steam;  Means  for  regulating  processes  for 

.       Allgemeine     Elektrizitats  -  Ges.       G.P. 

346,294,  29.8.20. 
i  The  pressure  of  the  steam  and  the  back-pressure  of 
the  liquid  are  adjusted  according  to  the  work  of 
,  evaporation,    and   the    pressure  variations    in   the 
heating  chamber  are  effected  by  regulating  the  dis- 
charge of  uncondensable  gas  or  vapour. — L.  A.  C. 

Liquid,  powdered,  or  gaseous  material;  Process  and 

apparatus  for  treating  by  injection  into  a 

stream  of  air  or  other  gases.  Metallbank  und 
Metallurgist  Ges.,  A.-G.  G.P.  345,805,  15.5.20. 
Material  is  atomised  in  two  or  more  superposed 
zones  in  a  stream  of  hot  gases  or  the  like,  and  either 
the  same  kind  of  material  is  discharged  into  each 
zone  to  accelerate  the  drying  action,  or  different 
'material  is  discharged  into  the  separate  zones  if  a 
'mixed  product,  e.g.,  a  mixture  of  dried  fruit  juice 
and  foodstuffs,  is  required.  The  drying  action  may 
be  further  accelerated  by  discharging  atomised 
combustible  material  into  the  zones  in  the  opposite 
direction  to  the  stream  of  atomised  material. 

— L.  A.  C. 

Furnace;  High-pressure  .     Siemens  u.  Halske 

A.-G.     G.P.  348,669,  13.11.20. 
^    strong-walled    tube    forms    the    shell    of    the 
urnace.     The  furnace  chamber  is  surrounded  with 
a£    utS  °^  mater'al  °f  high  thermal  conductivity  by 
vhich  heat  escaping  laterally  from  the  furnace  is 


conducted  to  the  axles  of  the  end  doors  of  the 
furnace.  These  jackets  increase  in  cross-sectional 
area  from  the  middle  of  the  furnace  chamber 
towards  the  axles,  which  are  provided  with  water 
cooling,  and  which,  in  the  case  of  electrical  heating, 
are  employed  as  conductors  of  current. — J.  S.  G.  T. 

Liquefied  gases;  Vessels  for  conveying  and  storing 

.       W.  E.  Evans.       From  \V.  Rohn.       E.P. 

119,234,  1.10.20. 

See  G.P.  302,532  of  1916;  J.,  1920,  53  a. 

Reactions   between  gases;  Apparatus  for  bringing 

about   and  controlling   .     C.    Conover.     E.P. 

152,671,  20.10.20.     Conv.,  30.4.19. 

See  U.S. P.  1,324,443  of  1919;  J.,  1920,  93  a. 

Crystallisation  of  solutions;  Apparatus  for  effecting 

continuous  .     Norsk  Hvdro-Elektrisk  Kvael- 

stofaktieselskab.  E.P.  156,798,  7.1.21.  Conv., 
17.9.14. 

See  F.P.  479,668  of  1915;  J.,  1916,  1145. 

De flocculating  solid  materials  and  agents  therefor. 

E.  G.  Acheson.     E.P.  157,887,  13.12.20.     Conv., 

22.1.20. 
See  U.S. P.  1,345,305  of  1920;  J.,  1920,  564  a. 

Separation  of  liquids  and  solids.     J.  Avrutik.    E.P. 

176,446,  8.11.20. 
See  U.S. P.  1,360,708  of  1920;  J.,  1921,  34  a. 

Mixing  apparatus.    R.  B.  Grey.    U.S.P.  1,409,542, 

14.3.22.     Appl.,  19.7.20. 
See  E.P.  138,286  of  1919;  J.,  1920,  255  a. 

Drying  apparatus.    A.  Huillard.    U.S.P.  1,410,063, 

21.3.22.     Appl.,  13.8.13. 
See  F.P.  461,612  of  1913;  J.,  1914,  187. 

Drying  apparatus.      W.  Wurl.      U.S.P.  1,411,199, 

28.3.22.     Appl.,  12.8.21. 
See  G.P.  323,462  of  1914;  J.,  1920,  774  a. 

Sand  filter.      L.  E.  Raimbert.      U.S.P.  1,410,121, 

21.3.22.     Appl.,  15.3.21. 
See  E.P.  160,762  of  1921 ;  J.,  1921,  799  a. 

Centrifuge.    L.  Von  May,  Assr.  to  C.  A.  Fesca  und 
Sohn.     U.S.P.  1,410,146,  21.3.22.    Appl.,  16.3.20. 
See  E.P.  137,827  of  1920;  J.,  1921,  109  a. 

Heat    exchanger;   Tubular   .       C.    A.   Brown. 

U.S.P.  1,410,548,  28.3.22.     Appl.,  2.5.21. 
See  E.P.  166,930  of  1920;  J.,  1921,  648  a. 

Density  of  liquids  in  containers  [evaporators  etc.']; 

Apparatus  for  measuring  or  indicating  the  . 

W.  H.  Porter,  Assr.  to  J.  W.  Spensley.     U.S.P. 

1,410,836,  28.3.22.     Appl.,  1.10.21. 
See  E.P.  174,679  of  1920;  J.,  1922,  205  a. 

Mixing  machines  for  concrete,  mortar,  paint,  and 
other  materials  [:  Means  for  preventing  entry  of 

material  into  the  bearings  of ].    C.  L.  Brown. 

E.P.  176,465,  30.11.20. 

Filter  masses.    G.P.  310,792.    See  XXIII. 


Ha.-FUEL; 


GAS  ;  MINERAL  OILS 
WAXES. 


AND 


Coal;  Origin  and  chemical  structure  of  .      F. 

Fischer    and    H.    Schrader.       Brennstoff-Chem., 
1922,  3,  65—72.     (fif.  J.,  1921,  172  a  ;  1922,  207  a.) 

The  authors  confirm  their  previous  conclusions  that 
the  humic  acids  have  been  derived  from  the  lignin 
constituent.  Results  of  experiments  on  the  autoxi- 
dation   of  cellulose,    lignin,    pine  sawdust,   lignite, 

a2 


318a 


Cl.  nA.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[May  15, 1922. 


and  coal  are  given.  The  methoxyl  content  of  the 
original  lignin  was  136%,  whilst  that  of  the  humic 
acids  produced  from  the  lignin  was  7'6%.  The 
residue  contained  107%  of  methoxyl.  The  period 
of  autoxidation  was  41  days,  but  on  further  treat- 
ment, the  methoxyl  figure  would  undoubtedly 
approach  that  of  the  lignite  (20)  and  coal  (nil). 
Experiments  on  the  fermentation  of  cellulose, 
sphagnum  moss,  sawdust,  artificial  mixtures  of 
cellulose  and  lignin,  and  lignin  alone  are  also 
described,  and  it  is  concluded  that  coal  has  been 
produced  largely  from  arboraceous  vegetation  con- 
taining a  considerable  proportion  of  lignin. — A.  G. 

Fuels;  New  hypothesis  of  the  origin  of  natural 

G.    Calcagni.       Gazz.    Chim.    Ital.,    1922,   52,   I  , 
87—93.  ' 

The  author  considers  that  coal,  graphite,  petro- 
leum, etc.  may  have  had  their  origin  in  organic 
compounds,  even  of  great  complexity,  existing  on 
the  earth  long  prior  to  the  appearance  of  life 

— T.  H.  P. 

Coal;  Froth  flotation  of  .     O.  C.  Ralston  and 

A.  P.  Wichmann.     Chem.  and  Met.  Eng.,  1922 
26,  500—503. 

In  laboratory-scale  trials  on  the  froth  flotation  of 
coal  from  the  Pacific  North  West  district,  it  was 
found  that  the  cleanest  coal  is  the  most  easily 
floated  and  coals  having  a  bright  lustre  are  more 
susceptible  to  treatment  than  dull  coals.  Contrary 
to  expectation,  very  fine  coal  slime  does  not  con- 
centrate as  well  as  granular  material,  and  in  this 
respect  the  mode  of  occurrence  of  mineral  matter  is 
important,  as  in  some  ooals  the  mineral  impurities 
are  not  liberated  from  the  coal  substance  bv  the 
finest  commercial  grinding.  Careful  selection  of 
frothing  agents  is  essential,  as  the  coal  appears  to 
absorb  the  excess  of  oil  from  the  water  and  so  spoil 
the  frothing  properties,  and  fine  coal  particles  often 
give  a  dirty  froth  as  a  result  of  being  over-oiled. 
Tests  on  the  removal  of  ash  from  finely  ground  coke 
were  not  successful.     (Cf.  J.,  1921,  758  a    835  a.) 

— C.  A.  K. 

Coals;  Pyridine  extraction  of  Upper  Silesian  ■ . 

F.   Hofmann  and  P.   Damm.     Brennstoff-Chem., 
1922,  3,  73—79,  81—91. 

The  combined  extract  from  cold  and  hot  extraction 
with  pyridine  was  treated  with  ether,  the  soluble 
portion  being  shaken  with  20%  sulphuric  acid  to 
separate  the  pyridine  and  coal  bases.  The  ethereal 
solution  was  then  shaken  with  5%  caustic  6oda 
solution,  the  alkaline  liquor  containing  the  phenols 
and  acids.  The  neutral  substances  contained  in  the 
ethereal  solution  were  then  subjected  to  distillation, 
the  fractions  being  collected  as  follows  :— Fraction  I 
up  to  100°  C.  (1—2  mm.),  Fraction  II  100°— 150°  C 
(1  mm.),  Fraction  III  150°— 200°  C.  (1  mm.), 
Fraction  IV  200°— 250°  C.  (1  mm.),  Fraction  V 
over  250°  C.  (1  mm.).  Fraction  I  was  thin,  yellow 
and  practically  odourless.  Fraction  II  was  thin, 
yellowish  red,  had  an  odour  of  petroleum,  and 
showed  a  feeble  bluish  fluorescence.  Fraction  III 
was  thick  and  viscous,  of  the  colour  of  port  wine, 
and  in  cold  weather  crystals  separated  out.  This 
fraction  gave  a  strong  greenish  fluorescence.  Frac- 
tion IV  was  very  viscous,  brownish  red  in  colour, 
had  a  greenish  fluorescence,  and  solidified  completely 
in  cold  weather.  Fraction  V,  which  included 
substances  boiling  up  to  290°  C,  was  resinous  in 
consistency,  dark  reddish  brown  in  colour,  and 
fluorescent,  whilst  crystals  separated  out  on  stand- 
ing. The  unsaturated  compounds  are  members  of 
the  series  C„H2n4.  CnH2n^,  CHa,,,.  and  CnH2„_I0. 
llie  nrst  four  fractions  show  specific  gravities 
higher  than  those  given  by  Pictet  for  similar  frac- 
tions (cf.  J.,  1913,  1098;  1914,  70;  1915,  163,  604; 
1916,  1145).    Full  data  relating  to  the  composition 


and  physical  properties  of  the  products  isolated  are 
given.- — A.  G. 

Lignites;  Some  constituents  of .    II.    R.  Ciusa 

and  M.  Croce.  Gazz.  Chim.  Ital.,  1922,  52,  I., 
125—128.     (Cf.  J.,  1921,  335  a.) 

Of  the  various  organic  compounds  which  have  been 
found  in  lignites,  branchite,  bombiccite,  hartite, 
the  hydrocarbon  of  Terui  lignite,  and  hofmannite, 
all  have  m.p.  74° — 75°  C.  and  compositions  and 
molecular  weights  corresponding  with  the  formula, 
C2,H,(.  They  are  not  identical  with  the  dihydro- 
camphene  of  this  formula,  which  has  m.p.  85° — 
86°  C.  and  not,  as  has  been  stated,  74°— 75°  C.  (Cf 
J.C.S.,  May.)— T.  H.  P. 

Lignite;  Increased  oxygen  absorption  of when 

moistened  with  alkali  hydroxide.  Van  Walther 
and  W.  Bielenberg.  Brennstoff-Chem.,  1922,  3, 
97. 

In  experiments  made  with  a  view  to  ascertain  the 
connexion  between  the  absorption  of  oxygen  and  the 
liability  to  spontaneous  combustion  of  lignite,  it 
was  found  that  an  extracted  lignite  absorbed  more 
oxygen  in  a  like  period  than  an  unextracted  lignite, 
which  fact  may  be  due  to  the  greater  lignin  content 
of  the  extracted  sample.  1  g.  of  extracted  lignite 
absorbed  16'9  c.c.  of  oxygen  in  50  min.,  whereas  1  g. 
of  unextracted  coal  absorbed  only  14'4  c.c.  in  the 
same  time.  The  results  varied  greatly  according  to 
the  amount  of  moisture  present  and  the  manner  in 
which  the  substance  was  brought  into  contact  with 
oxygen.  Continued  shaking  proved  to  be  a  favour- 
able condition  for  absorption.  A  connexion  was 
shown  between  the  absorption  figures  and  the  risk 
of  spontaneous  combustion.  Lignite  tar  oils  may 
absorb  considerable  quantities  of  oxygen  when 
exposed  to  that  gas  in  mixture  with  alkali.— H.  M. 

Peat;  Dispersoid-chemistry  of  .     /.  Nature  of 

the  water-holding  power  of  peat.  Wo.  Ostwald. 
Kolloid-Zeits.,  1921,  29,  316—333. 

An  introductory  paper  dealing  with  the  different 
modes  in  which  water  is  held  by  peat,  with  a  general 
theoretical   discussion   of   possible   methods   of   de- 
hydration.    The  most   important  of  the  modes  ir 
which  water  is  held  by  peat  and  the  possible  methodt 
of   treatment   are   as  follows :  — Water  occluded  ii 
hollow  spaces,     either  open  spaces  similar  to  thos< 
in  sponges,  or  closed  cells  in  a  honeycomb  structure 
can  be  liberated  or  separated  by  mechanical  pres 
sure,  by  destruction  of  the  coarser  peat  structure  b 
comminution   alone  or  in  presence  of  additions  o 
coke,  dried  peat,  etc.,  by  freezing,  by  disintegrate 
with   a    steam   blast   or    the   like.     Water   held   i 
capillary   spaces  can  be  liberated  or  separated  1» 
destruction  and  opening  of  the  capillary  spaces  fa 
fine    grinding  especially    in   presence   of   excess  i 
water  or  by  treatment  at  low  or  high  temperature: 
by  treatment  with  substances  which  lower  the  su 
face  tension  of  water  or  with  liquids  capable  of  di 
placing   water    from   the   capillaries ;   by   electric 
endosmosis.     For  the  water  in  colloidal  combinatu 
in    gels   of    humus,    humic    acid,    cellulose,    ligni 
pectin,  etc.,  the  means  indicated  are  coagulation 
peptisation  of  the  gels  or  a  part  of  the  same  or 
combination  of  these  methods.     For  the  removal 
water  held  osmotically  the  cell  membranes  exerti 
this  action  must  be  destroyed  by  heating,  fn 
addition   of    chemicals,   etc.     Chemically   con 
water  is  liberated  by  decomposition  of  the  peat  si 
stance  by  distillation,   gasification,   etc.     A  bibl- 
graphy  is  appended  to  the  paper. 

Peat;   Dispersoid-chemistry   of  .      Disi 

chemical  changes  in  pint  by  steaming  under pim 
sure  (ten  Bosch  process).  Wo.  Ostwald  and  • 
Wolski.     Kolloid-Zeits.,  1922,  30,  119—133. 

The  ten  Bosch   process  for   removing  water  fr° 


Vol.  XLI.,  No.  9.] 


Cl.  Ha.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


319a 


peat,  prior  to  its  conversion  into  briquettes  for  fuel, 
consists  in  submitting  the  peat  to  6team  at  140° — 
160°  C.  under  the  pressure  required  to  obtain  such 
a  temperature,  and  the  pressure  of  the  column  of 
peat  under  treatment  (c/.  TJ.S.P.  1,290,494  and 
E.P.  123,061;  J.,  1919,  166  a,  565  a).  The  treatment 
takes  place  in  an  iron  tower,  50  cm.  diameter  and 
16  m.  high.  The  peat  is  forced  down  the  tower  by 
three  rotary  forcing  appliances  and  is  treated 
periodically  for  1  min.  with  steam  in  the  centre  of 
the  tower.  Peat  which  contains  85 — 90%  of  water 
on  entering  the  tower  leaves  it  with  68 — 72%,  and 
this  on  mechanical  pressing  is  reduced  to  25  %  .  The 
authors  consider  that  on  heating  under  pressure  the 
peat  gels  are,  in  part  (mainly  the  humus  gels), 
peptized  and  converted  into  liquid  drops,  whilst  at 
the  same  time  another  portion  of  the  peat  gels  is 
coagulated  and  converted  into  a  condition  poor  in 
water,  and  capillary  and  occluded  water  is  set  free 
by  the  pressure,  so  that  a  blackish  peat  water  and 
the  dehydrated  peat  pulp  are  produced  in  the 
tower.— J.  F.  S. 

Peat;  Dispersoid-chemistry  of .    II.  Change  in 

dispersity  of  peat  on  dewatering  by  the,  ten  Bosch 
process.  Wo.  Ostwald  and  P.  Wolski.  Kolloid- 
Zeits.,  1922,  30,  187—198.    {Cf.  supra.) 

Evidence  was  obtained  of  coagulation  and  peptisa- 
tion  of  colloid-bound  water  during  treatment  of 
peat  by  the  ten  Bosch  process.  This  process  also 
removes  the  occluded  water.  With  increasing  tem- 
perature the  rate  of  dewatering  increases  more 
rapidly  than  the  surface  tension  decreases,  and 
capillarv  water  is  also  more  easily  eliminated. 

— W.  T. 

Swelling   in   coking;   Determination   of  degree   of 

.      R.    Lant.      Brennstoff-Chem.,    1922,     3, 

97—98. 
The  degree  of  swelling  is  defined  as  (volumeof  coke)/ 
(initial  volume  of  coal) — 1.  Two  pieces  of  coal  each 
of  about  1  c.c.  volume  are  weighed.  One  of  them 
is  dipped  in  melted  paraffin,  and  its  volume  ascer- 
tained by  immersion  in  a  measuring  cylinder  filled 
with  water.  From  the  weight  and  volume  the 
specific  gravity  of  the  coal  is  calculated,  and  from 
this  figure  the  volume  of  the  second  piece  of  coal 
calculated.  The  second  piece  is  coked  in  a  cru- 
cible in  the  same  manner  as  for  proximate  analysis, 
the  resulting  coke  dipped  in  paraffin,  and  its 
volume  measured.  The  paraffin  is  not  applied  to 
the  piece  of  coal  to  be  tested,  so  as  not  to  interfere 
with  the  coking  process.  In  cases  in  which  the  coal 
decrepitates  during  coking  a  briquette  is  made  of 
the  powdered  coal  for  coking,  and  the  volume  esti- 
mated not  by  measurement  of  the  briquette,  but 
from  the  specific  gravity  and  weight  of  the  coal. 
It  is  found  that  the  coking  process  is  not  influenced 
by  the  briquetting  of  the  coal.  Investigations  are 
being  made  of  the  influence  of  the  rapidity  of  heat- 
ing on  the  swelling  in  coking. — H.  M. 

[Coal']  carbonising  notes.  J.  S.  Thorman.  London 
and  S.  District  Jun.  Gas  Assoc,  31.3.22.  Gas  J., 
1922,  158,  27—31. 

When  gas  producers  installed  in  connexion  with 
retort  settings  are  fitted  with  step  grates  the  grate 
area  should  be  1'5  sq.  ft.  per  ton  of  coal  carbonised 
per  day  and  the  depth  of  the  fuel  bed  should  be  at 
least  6  ft.  when  using  large  coke.  The  depth  may 
be  reduced  to  45  ins.  with  1'5-in.  coke  and  30  ins. 
with  1-in.  coke.  After  removal  of  large  clinker 
from  the  residue  drawn  from  the  grates  it  was 
found  that  the  material  contained  50—60%  of  com- 
bustible matter.  The  whole  of  this  was  thrown  back 
into  the  furnace  through  a  dome-shaped  shoot 
immediately  prior  to  the  addition  of  fresh  coke. 
The  coke  thereby  saved  amounted  to  0'5  cwt.  per 


ton  of  coal  and  the  combustible  matter  in  the 
clinker  removed  was  reduced  to  1%.  An  analysis 
of  the  gas  evolved  from  coal  half  an  hour  after  all 
illuminating  gas  had  been  driven  off  showed  1*4% 
C02,  7-0%  CO,  65-7%  H2,  22"8%  CH„  Pl%  CDHm, 
and  2-0%  N,;  the  calorific  value  was  471  B.Th.TJ. 
One  hour  later  the  calorific  value  was  285  B.Th.TJ. 
per  cub.  ft.  Details  are  given  of  methods  of  con- 
trolling carbonising  operations. — H.  Hg. 

Pitch  coke;  Determination  of  volatile  combustible 

matter  in .    H.  E.  Lloyd  and  F.  W.  Yeager. 

J.  Ind.  Eng.  Chem.,  1922,  14,  220—222. 
The  estimation  of  volatile  matter  in  pitch  coke 
used  for  electrodes  was  oarried  out  by  different 
methods.  The  results  obtained  were  very  discord- 
ant, depending  upon  the  size  of  crucible,  the  tight- 
ness of  the  crucible  lid,  the  quantity  of  coke  taken, 
and  the  time  of  heating.  It  is  suggested  that  the 
coke  (2  g.)  should  be  heated  for  7  mins.  in  a 
crucible  with  a  tight-fitting  lid,  weighed,  and 
again  heated  for  7  mins.,  and  the  loss  in  the  latter 
period  deducted  from  that  in  the  first  period,  in 
order  to  ascertain  the  volatile  matter,  the  loss  in 
the  second  period  being  supposed  to  represent  the 
loss  by  oxidation  in  the  first  period.  The  results 
obtained  with  cokes  of  higher  content  of  volatile 
matter  are  probably  more  nearly  correct  because  of 
the  maintenance  of  a  non-oxidising  atmosphere  in 
the  crucible. — H.  M. 

Petroleum  mixtures  and  paraffin  wax;  Colour  of 

.       M.     Bomberg.       Petroleum,     1922,     18, 

361—363. 
The  colour  value  (Stammer)  of  petroleum  mixtures 
may  be  computed  with  tolerable  accuracy  from  the 
fractional  proportions  of  the  constituents  divided 
by  their  respective  colour  values,  the  sum  of  these 
giving  the  reciprocal  of  the  colour  value  of  the 
mixture.  The  colour  of  paraffin  wax  may  be  stated 
by  comparing,  in  a  Stammer  apparatus,  the  light 
reflected  from  a  planed  surface  of  a  piece  of  wax 
1  cm.  thick  with  that  transmitted  by  a  standard 
solution  of  potassium  bichromate.  Crude  paraffin 
wax,  treated  with  4%  of  different  bleaching  agents, 
gave  the  following  comparative  colour  values: 
Tonsil,  5;  animal  charcoal,  255;  Frankonit,  40'5; 
Floridin  I.,  520;  Floridin  II.,  850,  and  fuller's 
earth,  2460.— H.  M. 

Petroleum  oils  used  on  Diesel  engines;  Some  charac- 
teristics   of    .      H.    Moore.      Diesel    Engine 

Users'  Assoc,  7.4.22. 
The  present-day  knowledge  of  petroleum  oils  is 
insufficient  to  allow  of  the  prediction  of  the  be- 
haviour of  any  fuel  oil  on  an  engine  as  an  exact 
function  of  its  analysis,  without  reference  to  past 
experience.  The  closed  flash  point  is  of  no  use  for 
determining  the  behaviour  of  fuel  oil  in  an  engine. 
The  viscosity  affects  the  thermal  efficiency  of  the 
engine,  the  less  viscous  oils  showing  the  greater 
efficiency,  and  advantage  of  this  fact  should  be 
taken  by  preheating  fuel  supplies  on  a  more  elabor- 
ate scale  than  is  usual.  The  cold  test  shows  the 
presence  of  paraffins,  which  interfere  with  the 
settling  of  ash  and  water,  leading  to  trouble  with 
engines.  The  oil  should  have  a  cold  test  below 
0°  C.  The  heat  value  does  not  vary  greatly,  and 
is  mainly  required  for  determinations  of  over-all 
thermal  efficiency.  Determination  of  the  ultimate 
composition  is  not  necessary.  The  sulphur  content 
appears  to  have  little  influence  on  the  behaviour 
of  the  oil  in  engines.  It  is  only  necessary  to  ascer- 
tain the  spontaneous  ignition  temperature  when  a 
new  type  of  fuel  is  being  investigated.  The  ash 
content  is  of  the  greatest  importance,  as  engines 
are  very  sensitive  to  the  presence  of  ash,  and 
various  specifications  give  a. maximum  limit  of  ash 


320  a 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[May  15,  192 


from  0"05%   to  0'08%.     Soft  ashes,  such  as  sodium 
sulphate,  generally  given  by  tar  oils,  are  not  nearly 
so  injurious  as  the  ashes  containing  iron  and  silica 
yielded  by  petroleum  oils,  the  ash  from  petroleum 
being  more  abrasive.     The  ash  accumulates  in  the 
lubricant  adhering  to  the  cylinder  walls  and  abrades 
the  metal  surfaces.     Mechanical  impurities,  usually 
leaves  or   material   from   wrappers   used   on  barrel 
bungs,    accumulate    in    the    pulverisers    of    Diesel 
engines ;  such  impurities  are  seldom  present  in  resi- 
dual oils,  but  occasionally  leaves  are  found  in  crude 
oil.     A  water  content  of  over  1%  causes  misfiring, 
leading    to    smoky   exhaust    and    gummy    exhaust 
valves,  together  with  contamination  of  the  lubricat- 
ing oil  with  unburned  but  partially  carbonised  fuel 
oil.     The  Engler  distillation  is  not  necessary  with 
residual    fuel    oils,    but    is    required    when    light 
crude  oils  are  being  tested  in  order  to  detect  the 
presence  of  petrol  fractions,  which  cause  "  bump- 
ing "  of  the  engine  unless  special  flame  plates  are 
employed.       Coke     value,     and     contents     of     soft 
asphaitum      and      hard      asphaltum      are      closely 
interrelated,     but     the     hard     asphaltum     is     the 
main  cause  of  carbonisation   in   engines.     Certain 
oils,   such   as  those  from  Barbados  and  Comodoro 
Rivadavia,   are   rich   in   soft   asphaltum   (insoluble 
in   alcohol-ether   mixture),   but   are    comparatively 
free  from  hard  asphaltum  (insoluble  in  petroleum 
ether).       Such     oils     can    be     burned     with     com- 
parative    ease,     though     of     very     high     gravity 
and     high     viscosity.       The     Mexican     oils     con- 
tain    a    comparatively     large     quantity     of     hard 
asphaltum,  and  are  therefore  more  difficult  to  burn 
than  other  asphaltic  oils  of  similar  gravity.     For 
commercial  purposes   eight  tests   are   suggested   as 
being  of  the  greatest  importance.    These  are  specific 
gravity,   closed  flash   point,   cold  test,   heat  value, 
■ash  content,  water  content,  coke  value,  and  content 
of  hard  asphaltum.     The  design  of  engines  greatly 
affects  their  capability  of  burning  heavy  oils,  the 
four  predominating  factors  being  speed  of  engine, 
compression    pressure,     maximum    mean    effective 
pressure   at   which  engine   will   run,    and   type    of 
injection  (blast  air  or  mechanical).    A  large  number 
of  analyses  of  petroleum  fuel  oils  are  embodied  in 
the  paper. — H.  M. 

Paraffin  wax;  Effect  of  on  the  properties  of 

mineral  oils.     A.  P.  Bjerregaard.     J.  Ind.  Eng. 
Chem.,  1922,  14,  215—217. 
The  addition  of  paraffin  wax  decreases  the  viscosity 
of  viscous  mineral  lubricating  oils,  raises  the  freez- 
ing point,  and  lowers  the  specific  gravity.     It  has 
no  effect  on  the  viscosity  when  this  value  is  low. 
In  the  experiments,  paraffin  wax  freed  from  oil  by 
pressure   and   washing  with   petroleum   spirit,   but 
not  refined,  was  used.    The  addition  of  paraffin  wax 
produces  the  same  effect  as  the  addition  of  an  oil 
of  70  seconds  viscosity  Saybolt  (100°  F.).    The  graph 
of  effect  of  paraffin  wax  on  freezing  point  is  a  very 
steep  curve,  a  very  large  effect  being  produced  bv 
the  addition  of  5%  of  wax.     The  solidification  of  oils 
to  which  paraffin  wax  has  been  added  is  due  to  the 
growth  of  a  network  of  crystals  which  retains  the 
rest  of  the  oil  in  the  interstices.     The  oil  may  be 
again  liquefied  by  stirring  and  then  solidifies  again 
at   a   lower   temperature,   so   that   different   freez- 
ing points  may  be  obtained  for  the  same  mixture. 
The  effect  of  "addition  of  paraffin  wax  on  specific 
gravity  is  shown  by  a  straight  line  graph,  as  there 
is  no  change  in  the  total  volume  when  the  wax  is 
dissolved  in  the  oil.     The  amount  of  wax  present  in 
oils  may  be  approximately  determined  by  ascertain- 
ing their  freezing  points. — H.  M. 

Fossil  war  of  Monte  Fold.    It.  Ciusa  and  R.  Vois. 

Gazz.  Chim.  Ital.,  1922,  52,  I.,  135—136. 
This  wax  occurs  in  white,  yellow,  or  grey  scales  or 
films,  has  m.p.  47°— 49°  C.  (crude)  or  50s— 52°  C. 


(purified),  contains  the  paraffin  hydrocarbons, 
C.jH,,,  C,,HS„  and  C26H31,  together  with  higher 
members  of  the  series,  and  is  devoid  of  compounds 
containing  oxygen  or  sulphur. — T.  H.  P. 

Casinghead    gasoline;    An    unusual    type   of   . 

C.   E.   Coates   and   B.   Y.   Tims.     J.    Ind.   Eng. 

Chem.,  1922,  14,  219—222. 
Natural  gas  from  some  wells  in  Louisiana,  on  being 
conveyed  in  pipes,  deposits  a  liquid  having  certain 
properties  not  common  to  ordinary  casinghead  gaso- 
line. It  has  an  odour  of  cedar  or  pine  oil,  is  slightly 
fluorescent,  contains  l-09%  of  sulphur,  and  has 
^"  =  1-459,  and  sp.  gr.  0848  at  245°  C./24\5°  C. 
On  distilling  500  c.c.  of  this  liquid  only  2  c.c.  came 
over  below  195°  C,  and  most  of  the  remainder  up 
to  226°  C,  when  heavy  yellow  fumes  were  given 
off  and  a  small  amount  of  tarry  matter  was  left. 
It  probably  contains  dicyclopentyl  and  its  methyl 
derivatives.  On  re-distillation  of  the  fractions 
there  was  slight  decomposition. — H.  M. 

Catalytic  decomposition  of  shark  oil.    Mailhe.    See 

xii. 

Calorimetric  bomb.    Roth.    See  XXIII. 

Patents. 

Lignite,   peat  and  similar  materials;  Process  for 

producing  a  smokeless  fuel  from  .     H.  Pape. 

G.P.  342,128,  24.11.20. 
The  dried,  finely  divided  material  is  carbonised  at 
a  low  temperature  so  that  the  less  volatile  oils,  and 
especially  the  paraffin  wax,  remain  in  the  mass.  If 
necessary  the  finely  divided  material,  before  or  after 
carbonisation,  may  be  treated  with  paraffin  wax  in 
case  sufficient  of  the  latter  is  not  present  to  yield  a 
satisfactory  fuel.  The  product  in  the  dry  state 
"lows  without  appreciable  evolution  of  smoke. 

—J.  H.  L. 

Coke    ovens;  Regenerative   .      Coke    and   Gas 

Ovens,  Ltd.,  and  H.  F.  Kimbell.  E.P.  176,533, 
14.12.20  and  1.7.21. 
The  arrangement  of  regenerators  and  gas  and  air 
flues  is  simplified,  a  complicated  system  of  control 
valves  being  avoided.  A  battery  of  ovens,  having 
main  gas  and  air  flues  on  opposite  sides  of  the 
battery,  is  divided  into  units  of,  say,  four  or  more 
ovens  and  two  pairs  of  regenerators  for  gas  and 
air.  Reversing  valves  and  flues  are  provided  for 
controlling  the  working  of  the  regenerators.  Each 
regenerator  has  an  inlet  gas  or  air  flue,  and  each 
pair  has  a  waste  gas  flue  leading  to  the  main  waste 
gas  flue,  which  extends  longitudinally  throughout 
the  length  of  the  battery  between  the  pairs  of 
regenerators.  The  two  regenerators  of  each  pair 
are  adjacent  to  their  main  flue,  and  extend  across 
the  width  of  the  unit.  In  the  space  between  tin-  two 
pairs  of  regenerators,  parallel  pairs  of  flues  are 
arranged,  one  receiving  gas,  and  the  other  air, 
and  the  air  and  gas  pass  in  the  same  direction. 
The  members  of  each  pair  of  regenerators  may  be 
arranged  side  by  side  in  a  tunnel  extending  longi- 
tudinally through  the  substructure  of  the  battery. 
An  auxiliary  supply  of  coke-oven  gas  may  be  used 
if  necessary,  the  air  supply  in  such  case  then  1»'  0g 
passed  through  the  poor  gas  main.— A.  R.  M. 

Carbonising  furnace  retort.  Furnace  retort  am 
discharge  mechanism  therefor.  C.  H.  Simtli 
Assr.  to  International  Coal  Product  torp 
U.S.P.  (a)  1,409,598  and  (b)  1,409,599  14.3.22 
Appl.,  26.3.20  and  20.9.20.  (Cf.  E.P.  125,381  o 
1919;  J.,  1920,  509  a.) 

(a)   The  furnace  comprises   a  carbonising   portioi 


Vol.  XLI.,  So.  9.) 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


321  a 


superposed  upon  a  recuperator  portion.  The  former  | 
is  an  inclined  chamber,  divided  by  partitions 
parallel  to  the  roof  and  floor  into  several  carbonis- 
ing spaces.  The  floor  of  the  carbonising  chamber  has 
an  inverted  step  formation  on  its  lower  surface, 
which  rests  on  the  roof  of  the  recuperator,  the 
latter  having  a  step  formation  on  its  upper  surface. 
Between  the  steps  are  vertical  expansion  spaces, 
which  wholly  or  partially  close  up  when  the 
furnace  is  heated.  The  recuperator  is  divided  by 
horizontal  partitions  which  separate  the  ingoing 
air  from  the  outgoing  hot  waste  gases,  thereby 
providing  an  interchange  of  heat,  (b)  The  dis- 
charge mechanism  comprises  a  screw  conveyor  j 
located  in  a  tubular  chamber,  discharging  into  a 
box.  The  discharge  parts  are  fitted  with  a  remov- 
able member  which  provides  an  upwardly  sloping 
inner  surface  against  which  the  material  is  forced  ' 
when  the  screw  mechanism  is  in  action,  the  member 
being  of  such  shape  and  dimensions  that,  when 
removed  from  place,  the  screw  conveying  device 
can  also  be  removed  bv  endwise  movement. 

—A.  R.  M. 

Gases;   Method   of   and   apparatus   for   producing 

.       I.    Hechenbleikner,     Assr.     to    Southern 

Electro-Chemical  Co.  U.S. P.  1,409,295,  14.3.22. 
Appl.,  6.10.19. 
A  gas-producing  charge  is  fed  into  a  furnace 
simultaneously  with  a  fluid  which  is  introduced  at 
a  suitable  point,  for  the  purpose  of  preventing 
incrustation  and  maintaining  the  material  in  a 
free-flowing  condition. — A.  R.  M. 

Gas  producer.  C.  Gamer.  U.S. P.  1,409,440, 
14.3.22.    Appl.,  18.12.20. 

The  producer  comprises  a  receptacle  in  which  is 
suspended  a  rotary  shoot  for  delivering  the  material 
to  be  gasified,  and  mechanical  means  for  actuating 
'  the  stoking  device  and  simultaneously  rotating  the 
shoot.— A.  R.  M. 

Gas    producers;     Attachment    for    .       A.     L. 

Galusha.  U.S. P.  1,409,941,  21.3.22.  Appl.,  21.8.20. 

I  A  gas  producer  is  combined  with  a  chamber  througk 
which  a  mixture  of  steam  and  air  is  admitted  to  ti>o 

i  ash-pit,  the  volume  of  the  mixture  being  controlled 
by  the  excess  of  pressure  in  the  chamber  above  that 
of  the  atmosphere. — A.  B.  S. 

Lubricant  suitable  for  use  in  the  cylinders  of  steam 
engines  and  the  like.  H.  Langer.  E.P.  164,303, 
5.1.21.    Conv.,  3.6.20. 

Water  or  aqueous  solutions  are  incorporated 
mechanically,  by  mixing  devices,  such  as  nozzles, 
with  mineral  oils  or  mixtures  of  mineral  oils  with 

i  vegetable  or  animal  oils,  whereby  the  volume  of  the 

;  lubricant  is  increased  without  the  latter  becoming 
more  fluid,  and  the  internal  friction  of  the  oil  is 
diminished,  without  its  capacity  of  adhering  to  the 
surfaces  to  be  lubricated  being  adversely  affected. 
When  the  product  is  used  as  a  cylinder  lubricant, 

,  the  water  is  vaporised  on  entering  the  hot  zone, 
and  the  oil  is  atomised  between  the  working  parts 

.  or  spread  as  a  thin  film  over  the  surfaces  to  be 
lubricated.  The  water  by  evaporating  withdraws 
heat  from  the  oil.  preventing  its  decomposition  with 
the  deposition  of  carbon,  and  any  oil  constituents 
of  low  boiling  point  are  retained  in  the  liquid  state, 
and  the  inflammability  of  the  lubricant  is  dimin- 

Iished.  The  lubricant  is  well  suited  for  the  abstrac- 
tion of  heat  developed  at  the  moving  parts,  as  the 
conductivity  of  water  is  greater  than  that  of  oil  in 
the  proportion  0o:0-l,  and  whereas  the  specific 
'heat  of  oil  is  about  04,  that  of  the  lubricant  is  at 
least  0-7—  H.  M. 


Gasoline;  Apparatus  for  cracking  mineral  oils  to 

produce .    Process  of  treating  mineral  oil  for 

the  production  of  gasoline.  B.  Van  Steenbergh. 
U.S. P.  1,407,339-40,  21.2.22.  Appl.,  (a)  16.12.20, 
(b)  20.4.1S;  renewed  20.5.21. 

(a)  The  apparatus  comprises  a  chamber  with  walls 
of  non-conducting  material;  spaced  pipes  extending 
through  the  walls  and  enclosing  electric  heaters, 
these  pipes  having  an  external  coating  of  catalytic 
material ;  deflecting  pipes  between  the  heating  pipes  ; 
means,  outside  the  chamber,  for  preheating  the  oil 
to  be  treated  and  for  spraying  the  preheated  oil  on 
to  the  heating  pipes  ;  a  pipe  for  admitting  hydrogen 
at  the  bottom  of  the  chamber,  and  a  receptacle  at 
the  bottom  for  residual  oil.  (b)  Preheated  oil  is 
sprayed  in  contact  with  pipes  heated  internally  so 
as  to  crack  part  of  the  oil  and  vaporise  part,  and  the 
mixed  vapours  are  repeatedly  deflected  and  brought 
in  contact  with  similar  heating  pipes  until  the  de- 
sired proportion  of  oil  has  been  cracked.  The  unde- 
composed  vapours  largely  protect  the  cracked  pro- 
ducts from  further  decomposition,  and  the  forma- 
tion of  permanent  gas  is  reduced  to  a  minimum. 

Oil-cracking  apparatus.  J.  B.  Edwards,  Assr.  to 
Tide  Water  Oil  Co.  U.S. P.  1,410,175,  21.3.22. 
Appl.,  17.2.20. 

A  pressure  oil  still  for  the  cracking  of  petroleum 
or  its  fractions  of  higher  boiling  point  comprises  a 
shell  having  a  vapour  outlet  at  the  top,  connected 
with  a  vapour  eduction  system,  and  means  for 
maintaining  a  pressure  in  the  eduction  system  and 
still.  A  valve  in  the  upper  part  of  the  shell  is  mov- 
able upward  to  a  seat  at  the  entrance  to  the  educ- 
tion system  and  adapted  to  be  held  thereto  by  the 
pressure  in  the  shell  after  rupture  in  the  eduction 
system.  Means  are  provided  for  keeping  the  valve 
in  the  open  position  and  for  closing  it. — H.  M. 

Motor  fuel  [gasoline~\;  Manufacture  of .     C.  M. 

Alexander,   Assr.   to   Gulf   Refining   Co.     U.S. P. 
1.407,619,  21.2.22.    Appl.,  30.11.17. 
The  vapour  of  crude  petroleum  or  its  distillates  or 
distillation  residues  is  passed  through  a  heated  zone 
at  about  500°  C.  at  ordinary  pressure  and  at  a  rate 
sufficiently  rapid  to  ensure  that  a  substantial  por- 
tion of  the  vapour  passes  through  unchanged.     The 
issuing   vapours   are  fractionally  condensed  to   re- 
|    cover  gasoline  and  other  low-boiling  products,  and 
i    the   high-boiling   products   and  unchanged  oil  are 
returned  for  furtlver  treatment. 

Motor  fuel.  A.  S.  Ramage,  Assr.  to  Chemical  Re- 
search Svndicate,  Ltd.  U.S.P.  1,409,404,  14.3.22. 
Appl.,  27.10.21.  ' 

A  hydrocarbon  mixture  suitable  for  motor  fuel  con- 
sists chiefly  of  polymethylene  substances  of  higher 
boiling  point  than  cyclohexane,  and  has  a  boiling 
point  range  of  about  40° — 180°  C,  sp.  gr.  about 
0'78 — O'SO,  and  refractive  index  about  1'44.  A 
chart  showing  the  properties  of  its  fractions  is 
given. — H.  M. 

Motor    fuel.      Chem.    Fabr.    Worms    A.-G.      G.P. 

341,162,    24.5.19.     Addn.    to   339,989   (J.,    1921, 

762  a). 
The  hydrocarbons  of  the  benzene  series  are  wholly 
or  partially  replaced  by  paraldehyde. — H.  C.  R. 

Mineral  oil  and  its  distillates;  Purification  of  

with  acetone  or  its  homologues.  H.  Rebs.  G.P. 
348,089,  24.4.17. 
Resin-forming  hydrocarbons  are  removed  by  treat- 
ment between  +3°  and  -2°  C.  with  acetone  or  its 
homologues.  At  higher  temperatures  paraffin  hydro- 
carbons are  also  dissolved. — H.  C.  R. 


:\-22  a 


Cl.  IIb.— DESTBUCTTIVE  DISTILLATION,  &c.         Cl.   III.— TAR,  &c. 


[May  15,  1922. 


[OH  refinery]  sludge  treatment.  F.  Salathe,  Assr. 
to  Western  Gas  Construction  Co.  U.S. P. 
1,409,590,  14.3.22.    Appl.,  26.3.21. 

Sulphuric  acid  is  recovered  from  acid  sludges  from 
crude  oils  by  mining  the  sludge  with  solvent 
naphtha. — H.  M. 

Coke  oven.  A.  Roberts,  Assr.  to  Chicago  Trust  Co. 
U.S.P.  1,411,224,  28.3.22.     Appl.,  8.9.19. 

See  E.P.  150,983  of  1920;  J.,  1921,  617  a. 

Carbonising  furnace  retort.  C.  H.  Smith,  Assr.  to 
International  Coal  Products  Corp.  U.S.P. 
1,409,597,  14.3.22.    Appl.,  3.4.18. 

See  E.P.  125,381  of  1919;  J.,  1920,  509  a. 

Gas  generating  apparatus.  H.  Brocker.  E.P. 
157,239,  8.1.21.    Conv.,  29.11.17. 

See  G.P.  314,118  of  1917;  J.,  1920,  5  a. 

Gas;  Process  for  making  .     J.  U.  McDonald. 

Reissue    15,320,    28.3.22,    of    U.S.P.     1,367,321, 
1.2.21.    Appl.,  2.3.21. 

See  J.,  1921,  207  a. 

Peat;    [Travelling']   apparatus   for   extracting   and 

kneading    .      J.    Bobst    &    Fils    S.A.      E.P. 

155,275,  14.12.20.    Conv.,  14.2.19. 

Gas  producers  [;  Feeding  and  distributing  fuel  in  j 
].    D.  B.  Dickson.    E.P.  177,289,  11.1.21. 

See    also    pages    (a)    334,    Removing    suspended  j 
matter  from  oils  (E.P.   176,540).       353,   Detecting 
firedamp    (G.P.    346,682);    Gas-testing   instruments 
(E.P.  176,524) ;  Detection  and  measurement  of  gases 
(E.P.  176,574);  Gas  analysis  (G.P.  346,084). 

IIb— DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Oil  of  cade.    Huerre.    See  XX. 
Patents. 

[Active]    carbon;   Manufacture    of  .      British 

Thomson-Houston  Co.,  Ltd.    Prom  General  Elec- 
tric Co.     E.P.  176,476,  2.12.20. 

Activated  carbon  is  produced  by  subjecting  car- 
bonaceous matter,  6uch  as  nut  shells  or  other 
material  having  a  high  density  and  stone-cell  struc- 
ture, to  a  process  of  distillation  at  a  temperature 
of  over  700°  C,  and  then  subjecting  it,  while  con- 
tinuing the  heating,  to  the  action  of  steam  or 
other  oxidising  gas  which  does  not  cause  any 
appreciable  combustion  of  the  carbon,  but  removes 
those  hydrocarbons  which  are  s?.id  to  render  the 
-carbon  inert.  The  product  may  be  used  for  removal 
-or  absorption  of  gases,  for  clarifying  and  decoloris- 
ing liquids,  for  assisting  in  the  production  of  high 
wacua,  etc.  A  method  is  described  for  determining 
comparative  activities  of  activated  carbon,  based  on 
the  time  taken  for  chloropicrin  vapour  to  escape 
through  a  tube  containing  the  material. — A.  R.  M. 

Gas  mantles  and  other  articles  or  materials;  [Appa- 

-traius  for]  testing  [the  tensile  strength  of]  . 

J.  T.  Robin.     E.P.  176,442,  4.11.20. 

"The  lower  end  of  the  mantle  is  immersed  in  melted 
wax  contained  in  a  shallow  dish,  and  the  wax  then 
allowed  to  solidify.  The  dish  is  attached  to  a  float 
normally  balanced  in  liquid  in  a  container,  so  that 
by  decreasing  the  depth  of  liquid  in  the  container, 
the  tension  exerted  upon  the  mantle  can  be  continu- 
ously increased. — J.  S.  G.  T. 

Coal  distillation  products;  Manufacture  of .    E. 

Fleischer.    E.P.  154,938,  7.12.20.    Conv.,  8.12.16. 
See  G.P.  298,085  of  1916;  J.,  1920,  622  a. 


Distillation    of   carbonaceous    materials;    Charging 

means  for  retorts  for  the  .     J.  West,  West's 

Gas  Improvement  Co.,  Ltd.,  and  W.  Wild.     E.P 
177,422,  18.4.21. 

Wood  distillation.    E.P.  176,438.    See  I. 


IIL-TAD  AND  TAR  PRODUCTS. 

Aniline;    Catalytic    preparation    of    .      0.    W. 

Brown  and  C.  O.  Henke.     J.  Phvs.  Chem.,  1922, 
26,  161—191. 

Aniline  may  be  prepared  with  a  95"2%  yield  by 
passing  nitrobenzene  vapour  at  the  rate  of  3'9  g. 
per  hour  with  a  710%  excess  of  hydrogen  over  a  re- 
duced nickel  catalyst  at  192°  C.  Using  a  copper 
catalyst  at  253°  C.  with  the  same  amount  of 
materials  the  yield  is  96'2%.  The  nickel  catalyst  is 
best  prepared  by  heating  the  nitrate  at  450°  C.  and 
reducing  the  oxide  thus  obtained  at  380°  C.  in 
hydrogen.  If  the  reduction  temperature  is  too  high 
the  catalyst  is  too  active  and  the  reduction  of  nitro- 
benzene proceeds  too  far.  The  copper  catalyst  is 
prepared  by  igniting  the  nitrate  at  415°  C.  and 
reducing  the  oxide  at  475°  C.    (C/.  J.C.S.,  May.) 

—J.  F.  S. 

X it ro-compounds ;   Reduction   of  6y  stannous 

chloride.      H.    Goldschmidt,    E.    Storm,    and    0. 
Hassel.    Z.  physik.  Chem.,  1922,  100,  197—207. 

In  the  reduction  of  nitro-compounds  by  stannous 
chloride  and  hydrochloric  acid  a  portion  of  the  acid 
may     be     replaced     by     metal     chlorides     (sodium, 
lithium,    ammonium,   calcium,   or  barium)   without 
reducing  the  reaction  velocity.     Cadmium  chloride 
reduces   the  velocity  constant  from   10'35  to  514. 
In  the  reduction  by  stannous  bromide  and  hydro- 
bromic  acid  metallic  bromides  may  be  substituted 
for  a  portion  of  the  hydrobromic  acid,  but  cadmium 
bromide  behaves  in  the  same  way  as  the  chloride 
The  addition  of  strong  acids,  such  as  sulphuric  anc 
benzenesulphonic    acids,    has    little    effect   on    th< 
velocity,  but  reduction  with  stannous  chloride  anc 
sulphuric  acid  in  the  absence  of  hydrochloric  acii 
proceeds    very    slowly :     thus    the    reduction    of   i 
0033  N   solution  of    m-nitraniline  by   2V/1   hydro 
chloric    acid    and   Nf 10    stannous    chloride    has   i 
velocity  constant  9'96,  but  if  the  hydrochloric  aci< 
is  entirelv  replaced  bv  Ar/1  sulphuric  acid  the  valu 
falls  to  0:44.— J.  F.  S. 


Patents. 


-.     F.    E.   Dodp. 
U.S.P.    1,409,89: 


Solvent   naphtha:   Cracking   — 
Assr.     to    The    Barrett    Co. 
14.3.22.    Appl.,  17.7.18. 

Benzene  and  toluene  are  produced  by  introducin 
xylene  and  mesitylene  into  the  heated  space  aboi 
the  hot  coke  in  a  coke  oven.  The  products  forme 
are  collected  at  about  600°— S00°  C— L.  A.  C. 

Tar  acids;   Obtaining   .     W.   Runge,   Assr. 

International     Coal     Products     Corp.       U.S. 
1,409,588,  14.3.22.    Appl.,  8.2.18. 

The  salt  of  a  tar  acid  is  brought  into  intimate  co 
tact  with  carbon  dioxide,  in  the  presence  of  wat. 
under  a  pressure  of  about  100  lb.  per  sq.  in.  a 
the  free  tar  acid  liberated  is  separated  from  t 
solution. — H.  M. 

Hydrocarbons;  Sublimation  of .    W.  B.  Murp 

and  W.  G.  Dunning,  Assrs.  to  The  Barrett  I 
U.S.P.  1,409,897,  14.3.22.    Appl.,  1.4.20. 

Hydrocarbons  capable  of  being  sublimed  ■■> 
purified  by  sublimation  by  means  of  steam,  and  U 
vapours  are  diluted  with  sufficient  air  to  cause  J 
hydrocarbon  to  condense. — L.  A.  C. 


Vol.  X  LI.  So.  9]  Cl.  IV.— COLOURING  MATTERS  AND  DYES.     Cl.  V.— FIBRES  ;    TEXTILES,  &c.     323  a 


o-Benzoylbenzoic  acid;  Condensation  of .  [Pre- 
paration of  anthraquinone.]  F.  W.  Atack.  E.P. 
176,235,  9.2.21. 

Diluted  sulphuric  acid  (75 — 80%)  is  as  effective  as 
concentrated  acid  in  promoting  the  condensation  of 
o-benzoylbenzoic  acid  to  anthraquinone.  20  pts.  of 
o-benzovlbenzoic  acid  is  added  gradually  to  150  pts. 
of  80%  "sulphuric  acid  heated  to  165°— 170°  C.  dur- 
ing 2\  hrs.  After  cooling  the  anthraquinone  is 
filtered  off  and  purified  in  the  usual  way.  The  spent 
acid  may  he  employed  repeatedly,  being  brought  up 
to  the  desired  strength  either  by  concentration  in  a 
pan,  by  adding  sulphur  trioxide,  or  continuously, 
during  the  condensation,  by  blowing  hot  air  through 
it  and  thus  removing  the  water  as  it  is  formed.  In 
the  latter  case  the  operation  may  be  rendered  con- 
tinuous by  running  in  o-benzoylbenzoic  acid  in  the 
molten  state,  the  process  being  interrupted  merely 
for  the  removal  of  the  anthraquinone  when  neces- 
sary.—G.  F.  M. 

Sulphur  preparations  of  the  thiophene  series;  Pro- 
cess for  the  manufacture  of from  tar  oils  of 

bituminous  ruck  rich  in  sulphur.  H.  Scheibler. 
E.P.  155,259,  11.12.20.     Conv.,  28.4.14. 

See  G.P.  327.050  of  1914;  J.,  1921,  173  a. 

IV.— COLOURING  MATTERS  AND  DYES. 

Methyl  Violet;  Method  for  making .    H.  J.  M. 

Creighton.  Proc.  Nova  Scotia  Inst.  Sci.,  1922, 
15,  5T— 61. 

Bt  the  following  method  Methyl  Violet  with  a  2B 
shade  was  obtained  in  75 — 85%   yield.     Anhydrous 

copper  sulphate  or  a  mixture  of  hydrated  and  an- 
hydrous salt  corresponding  with  12  kg.  of  hydrated 
salt  is  intimately  mixed  with  190  kg.  of  dried  sodium 
chloride.  To  this  mixture,  with  constant  stirring, 
is  added  8  kg.  of  phenol  dissolved  in  1  1.  of  water, 
followed  by  the  gradual  addition  of  20  kg.  of  di- 
methylaniline.  The  mixture  is  transferred  to  a  closed 
iron  vessel  equipped  with  a  stirring  and  mixing 
device,  in  which  it  is  continuously  stirred  at  57° — 
60°  C.  until  a  sample  when  squeezed  in  the  hand 
forms  a  coherent  ball.  This  requires  about  8  hours. 
The  melt  is  then  boiled  in  a  wooden  vat  with  1000  1. 
of  water  and  13  kg.  of  slaked  lime  with  high-pres- 
sure steam  until  free  from  lumps.  After  settling, 
the  liquor  containing  the  phenol  as  calcium  phen- 
oxide  and  the  salt  is  run  off.  The  residue,  consist- 
ing of  a  double  salt  of  the  colour  base  and  cuprous 
chloride,  is  decomposed  by  adding  1000  1.  of  water. 
heating  to  70°  C,  and  slowly  adding  3'3  kg.  of 
sodium  sulphide  dissolved  in  a  little  water,  stirring 
continuously.  At  the  end  of  half  an  hour  the  liquid 
is  raised  to  the  boil  for  5  or  6  hrs.  The  colour  base 
and  copper  sulphide  are  allowed  to  settle,  the  liquor 

1  is  decanted,  and  the  residue  washed  twice  with 
1000  1.  of  water.     To  separate  the  colour  base  from 

:  the  copper  sulphide,  the  residue  is  extracted  by 
boiling  with  1000  1.  of  water  containing  15  kg.  of 
sulphuric  acid.  The  dyestuff  solution  is  decanted 
from  the  residual  copper  sulphide,  which  is  ex- 
tracted in  a  similar  manner  a  second  time.  To  the 
combined  solutions  sufficient  sodium  hydroxide  solu- 

,  tion  is  added  almost  to  neutralise  free  acid,  and  the 

;  dyestuff  is  salted  out  with  sodium  chloride.  To 
purify  it.  the  green  resinous  mass  is  re-dissolved  in 

I  750  1.  of  boiling  water,  the  solution  filtered,  and  the 
dyestuff  again  salted  out. — E.  H.  R. 

I  Patents. 

Azo  dye.     H.  Geldermann  and  F.  Mever,  Assrs.  to 
A.-G.  fur  Anilin-Fabr.    U.S.P.  1,411,245,  28.3.22. 
Appl.,  15.8.21. 
j  See  E.P.  145,057  of  1920;  J.,  1921,  619  a. 
i  Standardising  basic  dyestuff s.     G.P.  347,359.     See 


V.-FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Cottons;  The  copper  number  of .    Koehler  and 

Marqueyrol.  Mem.  Poudres,  1921,  18,  73—80. 

The  following  method  of  determining  the  copper 
number  of  cottons  is  recommended.  25  g.  of  the 
cotton  is  treated  with  100  c.c.  of  a  solution  made 
by  mixing  5  c.c.  of  a  solution  of  100  g.  of  crystallised 
copper  sulphate  in  1  1.  of  water  and  95  c.c.  of  a  solu- 
tion containing  crystallised  sodium  carbonate  350  g., 
sodium  bicarbonate  50  g.,  and  water  1  litre.  The 
mixed  solutions  are  heated  to  boiling  and  poured  on 
to  the  cotton  in  a  conical  flask  which  is  then  placed 
in  a  steam  bath  for  3  hrs.  The  cotton  and  the 
cuprous  oxide  are  separated  by  filtration,  washed 
with  boiling  water  containing  a  little  sodium  car- 
bonate, and  transferred  to  a  flask  containing  50  c.c. 
of  distilled  water.  The  cuprous  oxide  is  then  dis- 
solved by  treatment  with  5  c.c.  of  a  solution  con- 
taining 50  g.  of  ferric  sulphate,  250  g.  of  sulphuric 
acid,  and  1  1.  of  water.  The  cotton  is  filtered  off  and 
washed  and  the  ferrous  sulphate  formed  is  titrated 
with  a  solution  of  potassium  permanganate  contain- 
ing 1"25  g.  per  litre,  1  c.c.  of  which  corresponds  to 
25  nig.  Cu.  This  method  gives  very  concordant  re- 
sults. A  table  of  the  copper  numbers  of  cottons 
from  different  sources  is  given.  Virgin  cottons 
which  have  been  properly  treated  have  copper 
numbers  below  0"2.  It  is  suggested  that  cotton  for 
nitration  should  have  a  maximum  figure  of  0'3,  but 
the  relation  between  the  copper  number  and  the 
stability  after  nitration  is  not  yet  clear. — H.  C.  R. 

Cellulose  acetate;  Solubility  of in  the  salts  of 

the     alkalis     and    alkaline  -  earth     metals.      K. 
Schweiger.     Z.  physiol.  Cheni.,  1921,  117,  61—66. 

The  solubility  of  various  preparations  of  cellulose 
acetate  in  concentrated  solutions  of  a  number  of  the 
alkali  and  alkaline-earth  salts  is  given  in  tabular 
form.  The  acetyl  groups  are  not  affected,  but  the 
cellulose  molecule  is  degraded.  The  solubility  of 
cellulose  acetate  is  similar  to  that  of  cellulose  (c/. 
Herzog  and  Beck,  J.,  1921,  254a:  Williams,  1921, 
221  t;  Von  Weimarn,  1921,  842  a).  Nitrocellulose 
dissolves  in  calcium  thiocyanate  solution  and  swells 
in  calcium  chloride  solution,  without  appreciable 
decomposition. — S.  S.  Z. 

Ultra-violet  light;  Action  of  on   gels.     [Em- 
brittling of  celluloid  and  decomposition  of  acetic 
acid  and  acetone.]    E.  O.  Holmes  jun.,  and  W.  A. 
Patrick.     J.  Phys.  Chem.,  1922,  26,  25—41. 
Silica  gels  impregnated  with  acetic  acid  or  acetone 
on  exposure  to  ultra-violet  light  give  off   gaseous 
products  which  consist  of  a  mixture  of  the  organic 
liquid    and    its    photochemical    decomposition    pro- 
ducts.   Celluloid  under  the  same  treatment  becomes 
brown  and  brittle  with  the  liberation  of  gaseous  pro- 
ducts, but  here  not  only  adsorbed  liquid  but  also  the 
gel  itself  is  decomposed  by  the  light.     (Cf.  J.C.S., 
May.)— J.  F.  S. 

China   clay   [for  paper-making];   Suggested   stan- 
dards for  moisture  and  grit  in  ,  and  method 

of  estimating  grit.  J.  Strachan.  Proc._  Tech. 
Sect.  Papermakers'  Assoc,  1922,  2,  170 — 174. 
It  is  suggested  that,  in  view  of  the  high  costs  of 
carriage  and  labour,  china  clay  should  be  sold  on  a. 
1 — 2%  moisture  basis,  instead  of  the  present  12% 
basis,  and  further  that  the  following  figures  should 
represent  the  maximum  quantity  of  grit  allowable 
in  various  grades  of  clay:  china  clay  for  coating 
01%,  for  fine  papers  0"25%,  and  for  newspaper 
0-5%.  Grit  is  estimated  as  follows: — an  aqueous 
suspension  of  clay  (25  g.  per  litre)  is  allowed  to  settle 
for  2  mins.  in  one  of,  e.g.,  4  jars,  each  having  a 
capacity  of  1  1.  at  25  cm.  depth.     One-halt  of  the 


324  a 


Cl.   VI.— BLEACHING ;     DYEING;     PRINTING;     FINISHING. 


[May  15,  1922. 


contents  of  the  first  jar  is  poured  into  the  second 
jar,  both  are  filled  to  the  litre  mark  with  water  and 
allowed  to  settle  for  a  further  2  mins. ;  one-half  of 
the  contents  of  the  second  jar  is  poured  into  the 
third  jar,  and  one-half  of  the  contents  of  the  first 
jar  into  the  second  jar.  These  operations  are  re- 
peated until  the  whole  of  the  clay  has  been  removed, 
the  decanted  liquor  from  the  last  jar  of  the  series 
being  rejected.  The  separated  grit  is  dried, 
weighed,  and  examined  for  mica  etc.  The  water 
used  should  be  a  soft  water,  free  from  organic 
matter,  and  at  a  temperature  of  about  20°  C. 

— D.  J.  N. 

Waterproofing  efficiency  of  some  di-  and  trivalent 
salts  of  the  higher  fatty  acids  and  their  adsorp- 
tion by  the  fibres  of  paper.  S.  C.  Bhatnagar.  J. 
Phys.  Chem.,  1922,  26,  61—71. 

Utensils  constructed  of  paper  or  paper  pulp  may 
be  made  water-tight  by  immersing  in  benzene  or 
turpentine  solutions  of  the  oleates  and  linolates  of 
aluminium,  copper,  zinc,  nickel,  manganese,  lead, 
and  magnesium.  The  efficiency  of  the  various  soaps 
is  very  different  and  in  decreasing  efficiency  follows 
the  order:  copper  oleate,  magnesium  oleate,  copper 
linolate,  magnesium  linolate,  nickel  oleate,  nickel 
linolate,  zinc  oleate,  zinc  linolate,  aluminium 
oleate,  lead  oleate. — J.  F.  S. 

Reaction  for  wood.    Adler.    See  XX. 

Patents. 

Cellulose  derivatives  {ethers'] ;  Manufacture  of 
.    H.  Dreyfus.    E.P.  176,420,  6.10.20. 

The  process  described  in  E.P.  164,374,  164,375,  and 
164,377  (J.,  1921,  540  a),  for  the  manufacture  of 
cellulose  ethers  is  carried  out  in  presence  of  non- 
aqueous inert  diluents  such  as  benzol,  carbon 
tetrachloride,  ether,  etc.,  with  or  without  the  addi- 
tion of  the  limited  quantities  of  water  specified  in 
the  former  patents.  The  requisite  quantity  of 
alkali  is  ground  with  the  cellulose  or  its  conversion 
products  in  presence  of,  e.g.,  benzol,  or  the  cellulose 
or  its  conversion  products,  suspended  in  the 
diluent,  may  be  disintegrated  in  a  beating  engine, 
and  ground  with  alkali,  with  or  without  removal  of 
part  of  the  diluent.  In  both  cases  the  mixture  is 
preferably  cooled  during  the  grinding  operation. 
This  method  of  procedure  minimises  the  risk  of 
overheating  the  cellulose,  and  retards  any  oxidising 
action  exerted  by  the  alkali.  Etherification  of  the 
alkali-cellulose  thus  obtained  is  carried  out  in 
presence  of  inert  diluents,  preferably  in  quantity 
not  exceeding  the  volume  of  the  etherifying  agent 
to  be  used. — D.  J.  N. 

Pulp;  Method  of  bleaching  .     G.   M.  Trostel. 

U.S. P.  1,409,799,  14.3.22.     Appl.,  17.6.21.  ' 

Fibrous  and  cellulosic  materials  are  treated  with 
bleaching  agents  and,  when  the  required  colour  is 
obtained,  excess  of  the  bleaching  agent  is  removed 
by  passing  air  through  the  material. — D.  J.  N. 

Paper;   Manufacture   of  .     A.   Tiburzi.     E.P. 

167,139,  16.2.21.  Conv.,  24.7.20. 
Smooth  shiny  paper,  especially  suitable  for  use  in 
the  gold-beating  industry,  is  made  by  passing  paper 
through  a  bath  of  e.g.,  10 — 12\:  caustic  soda  solu- 
tion, or  50 — 60%  sodium  carbonate  solution,  and 
then  through  a  calendering  machine.  Apparatus 
is  described  in  which  the  paper,  as  it  is  unwound 
from  one  reel  on  to  another,  is  moistened  on  one 
side  by  a  roller  partly  immersed  in  a  bath  of  the 
solution. — D.  J.  N. 


Vegetable  fibres;  Process  for  disintegrating for 

use  in  the  textile  and  paper  industries.  C. 
Moriondi,  Assr.  to  Soc.  Anon,  des  Brevets  Peu- 
faillit.    U.S. P.  1,410,069,  21.3.22.    Appl.,  9.7.14. 

See  F.P.  475,245  of  1914;  J.,  1916,  39. 

Plant  fibres  and  the  like;  Treatment  of  ■ — ■ —  \_for 
manufacture  of  cellulose].  M.  Miiller  and  O. 
Heigis.     E.P.  156,512,  5.1.21.    Conv.,  12.2.14. 

See  G.P.  284,681  of  1914;  J.,  1915,  1048. 

Paper;    Method    of   and    means    for    drying   . 

International  Paper  Co.,  Assees.  of  A.  H.  White. 
E.P.  157,212,  8.1.21.    Conv.,  29.5.15. 

See  U.S. P.  1,232,141  of  1917;  J.,  1917,  960. 

Paper-making   stock;   Process   and   apparatus   for 

preparing .    C.  H.  Allen  and  E.  J.  Trimbey, 

Assrs.  to  Great  Northern  Paper  Co.  Reissue 
15,311,  21.3.22,  of  U.S. P.  1,357,760,  2.11.20. 
Appl.,  4.1.22. 

See  J.,  1921,  7  a. 

Paper-making  machines;  Apparatus  for  reclaiming 
paper  pulp  and  the  like  from  the  waste  waters  in 

.    E.  Partington.    U.S. P.  1,409,885,  14.3.22. 

Appl.,  30.11.21. 

See  E.P.  171,718  of  1920;  J.,  1922,  54  a. 


Paper    pulp    refining    engines. 
176,744,  26.11.20. 


S.    Milne.      E.P. 


Pulp  beating  engines. 
23.12.20. 


E.  Mahler.     E.P.  176,914, 


Removing   suspended   matter   from   oils   etc.     E.P. 
176,540.    See  XII. 


VI.- BLEACHING  ;  DYEING;   PRINTING; 
FINISHING. 

Cotton  dyeing;  Substantive  - .     R.    Auerbach. 

Kolloid-Zei'ts.,  1922,  30,  166—168. 

The  influence  of  various  salts  on  the  dyeing  of 
cotton  by  substantive  dyestuffs  was  investigated. 
In  each  case  an  optimum  concentration  of  the  salt 
was  found,  and  this  was  almost  inversely  propor- 
tional to  its  precipitating  power  on  the  colloid 
systems.  The  amount  of  dyestuffs  taken  up  by  the 
threads  also  decreases  with  increasing  precipitating 
power  of  the  salts.  The  strong  mineral  acids  did 
not  follow  the  same  rule,  no  optimum  concentration 
being  found.     (Cf.  J.,  1921,  843  a.)— W.  T. 

Patents. 

Dyeing    or    otherwise    treating    warps    or    other 

materials;    Processes    for    and    apparatus 

therefor.  B.  F.  Touchstone,  T.  E.  Gardner,  J.  A. 
Bangle,  D.  M.  Sullivan,  and  J.  E.  Hardin.  E.P. 
176,429,  29.10.20. 
Warp  yarn  taken  direct  from  bobbins  is  drawn  in 
sheet  form  at  a  uniform  rate  through  dyeing  vats 
and  other  yarn-treating  agencies.  Dye  stock  is 
added  continuously  to  the  dyeing  vats  at  a  rate 
sufficient  to  compensate  for  the  dye  removed  by  the 
yarn.  The  sheet  may  be  divided,  and  sets  of  ends 
led  through  different  dyeing  vats,  if  differently 
coloured  groups  of  yarn  are  required.  After  dy- 
ing, the  sheet  passes  through  washing  vats  and 
over  drying  rollers,  and  is  then  sized,  again  dried, 
slashed,  and  beamed.  To  maintain  a  constant  rate 
through  the  dyeing  vats  during  stoppages  in  subse- 
quent processes,  e.g.,  while  substituting  an  empty 
for  a  full  beam,  the  yarn  passes  over  and  under  a 
number  of  alternately  fixed  and  sliding  rollers 
situated  between  the  drying  cylinders  and  the  siz«  r ; 


Vol.  xlj.,  Ko.  9]       Cl.  VII.— ACIDS  ;  ALKALIS  ;  SALTS  j  NON-METALLIC  ELEMENTS. 


325  a 


in  the  event  of  a  stoppage,  the  sliding  rollers  fall 
by  gravity  and  thus  take  up  the  slack.  Selvedge 
threads  are  added  before  the  sizing  process. 

— L.  A.  C. 

Dyeing  and  bleaching;  Process  of .    J.  F.  King, 

Assr.  to  H.  B.  Haines.  U.S. P.  1,409,184,  14.3.22. 
Appl.,  9.12.19. 
The  material  is  heated  in  a  solution  containing 
sodium  chloride,  sodium  bicarbonate,  sodium  per- 
oxide, sodium  sulphate,  sodium  hydroxide,  and  a 
dye-stuff—  L.  A.  C. 

Eaic  silk;  Process  for  degumming  in  presence 

of  vat-dyed  silk.  H.  Bernhard  and  0.  Jaeck, 
Assrs.  to  Soc.  of  Chem.  Ind.  in  Basle.  U.S. P. 
1,409,653,  14.3.22.  Appl.,  13.9.21. 
Reduction  of  the  vat  dyestuff  and  running  of  the 
colouring  matter  on  to  the  undyed  silk  during  de- 
gumming  are  prevented  by  the  addition  of  an  alkali 
persulphate  to  the  bath. — L.  A.  C. 

Colo]ir    effects;    Process    for    producing    .      L. 

Ornstein.  U.S.P.  1,410,344, 21.3.22.  Appl., 17.5.21. 

Colouring  matter  either  alone  or  with  a  colour 
vehicle  is  applied  to  a  surface  and  then  covered  with 
a  solution  of  a  finishing  material  in  which  the 
colouring  matter  or  the  colour  vehicle  is  soluble. 

—J.  R. 

Basic  dyestuffs;  Process  for  fixing [on  cotton']. 

Material  for  standardising  basic  dyestuffs.  Pro- 
cess for  printing  pigments  on  textiles  using  cellu- 
lose acetate  as  fixing  agent.  Farbenfabr.  vorm. 
F.  Baver  und  Co.  G.P.  (.0  347,131,  16.5.19,  (b) 
347,359,  24.1.20,  and  (c)  347,276,  26.7.19. 

(a)  The water-soluble  condensation  products  of  alde- 
hydes, e.g.,  formaldehyde  or  acetaldehyde,  with 
resorcinol,  pyrogallol,  or  other  di-  or  polyhydroxy- 
benzenes,  or  their  sulphonic  or  carboxylic  acids, 
are  used  instead  of  tannin  for  fixing  basic  dyestuffs 
on  cotton.  The  products  may  be  applied  alone  to 
the  material,  or  may  be  fixed  by  mordants  before 
dyeing.  The  dyeings  are  fast  to  iron,  (b)  Basic 
dyestuffs  brought  to  a  standard  strength  by  the 
addition  of  urea  instead  of  dextrin  are  more  soluble 
and  show  no  tendency  to  gelatinise,  (c)  Cellulose 
acetate  dissolved  in  calcium  thiocyanate  solution  is 
employed  as  a  fixing  agent. — L.  A.  C. 

During   tops,   yarns,  and  the   like;   Apparatus  for 

.    International  Textile  Devices,  Inc.,  Assees. 

of  A.  Aslrworth.  E.P.  170,273,  22.8.21.  Conv., 
15.10.20. 

See  U.S.P.  1,374,628  of  1921 ;  J.,  1921,  385  a. 

Dyeing    cellulose    acetate;    Process    for   .      R. 

Clavel.     E.P.  176.535,  14.12.20. 

See  U.S.P.  1,378,443  of  1921;  J.,  1921,  579  a. 

Fibres,  yarns,  fabrics,  and  the  like:  Apparatus  for 

—.      F.    L.    Bartelt. 
Appl.,  9.12.21. 

5EE  E.P.  175,344  of  1920;  J.,  1922,  291  a. 
Ueating  of  liquids.    E.P.  157,753.    See  I. 


washing    and    treating 
U.S.P.  1,409,271,  14.3.22 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Immonia  catalysts;  Study  of  .     II.  Apparatus 

for  the  small-scale  testing  of  ammonia  catalysts  at 
variable  pressures.  A.  T.  Larson  and  A.  P. 
Brooks.  Chem.  and  Met.  Eng.,  1922,  26,  555—560. 

The  general  principle  of  the  apparatus  and  method 


of  operation  are  as  described  previously  (cf.  J.,  1922, 
292  a),  the  various  parts  being  strengthened  so  as  to 
work  at  pressures  up  to  100  atm.  The  catalyst  is 
contained  in  a  copper  tube,  which  is  inserted  in  a 
"  catalyst  bomb,"  in  which  the  mixed  gases  are  pre- 
heated before  coming  in  contact  with  the  catalyst. 
The  poisoning  effect  of  water  vapour  and  carbon 
monoxide  can  also  be  studied.  Details  of  pressure 
and  temperature  control  are  given.  To  determine 
the  effectiveness  of  the  catalyst,  the  gases  from  the 
catalyst  bomb  are  reduced  to  atmosptieric  pressure 
and  passed  through  a  4%  solution  of  boric  acid  to 
absorb  the  ammonia.  The  boric  acid  solution  is  then 
titrated  with  standard  sulphuric  acid  using  methyl 
orange  as  indicator  and  titrating  to  a  definite  colour 
as  end  point.  The  absorption  of  ammonia  by  boric 
acid  is  very  rapid  and  complete  and  the  method 
permits  of  the  use  of  only  one  standard  solution. 

—J.  B.  F. 

Ammonia  catalysts;  Study  of .    III.  Apparatus 

for  moderate-scale  testing  of  ammonia  catalysts  at 
100  atmospheres  pressure.  R.  S.  Tour.  Chem. 
and  Met.  Eng.,  1922,  26,  588—593. 

An  apparatus  is  described  designed  to  carry  out 
more  exhaustive  teststhan  those  described  previously 
(cf.  J.,  1922,  292  A,  and  supra)  under  conditions  ap- 
proximating to  commercial  operations,  and  capable 
of  working  over  long  periods  in  order  to  determine 
the  effective  life  of  the  catalyst,  the  re-activating, 
the  sensitiveness  to  and  recovery  from  poisoning  by 
carbon  monoxide  and  water  vapour  etc.  The 
nitrogen  and  hydrogen  mixture  is  prepared  either 
by  decomposing  ammonia  or  by  mixing  electrolytic 
hydrogen  with  the  requisite  amount  of  air  and 
deoxidising.  The  catalyst  tube  consists  of  two 
parts,  the  upper  portion  being  of  steel  packed  with 
copper  turnings  which  act  as  a  preheater  for  the 
mixed  gases  before  these  come  in  contact  with  the 
catalyst,  and  a  lower  portion  of  heavy-walled 
copper  tube  about  1  in.  internal  diameter  which  is 
charged  with  the  catalyst  to  be  tested.  The  com- 
plete plant  includes  a  battery  of  eight  catalyst 
bombs  which  may  be  worked  independently  or  in 
series.  The  ammonia  produced  is  estimated  by 
drawing  a  sample  of  the  gas  through  boric  acid  solu- 
tion and  titrating  with  standard  sulphuric  acid 
using  bromophenol  blue  (tetrabromophenolsul- 
phonephthalein)  as  indicator.  The  bulk  of  the 
catalysed  gas  is  passed  through  water  scrubbers  and 
the  ammonia  absorbed,  the  gas  from  the  scrubbers  is 
then  passed  back  to  the  low-pressure  holders  and 
re-circulated. — J.  B.  F. 

Sodium    bicarbonate;    Preparation    of    .      E. 

Toporescu.    Comptes  rend.,  1922,  174,  870—873. 

A  study  of  the  equilibrium  of  the  four  salts,  sodium 
chloride,  sodium  bicarbonate,  ammonium  chloride, 
and  ammonium  bicarbonate  with  their  saturated 
solutions  at  15°  C,  together  with  measurements  on 
mixtures  of  two  or  three  of  them.  From  the  results 
a  solubility  diagram  is  constructed  according  to  Le 
Chatelier's  method  (cf.  ibid.,  1894,  118,  415;  J.,  1921, 
214  a),  and  from  this  diagram  it  is  possible  to  calcu- 
late the  amount  of  the  different  salts  which  will 
crystallise  out  when  a  solution  of  known  initial  com- 
position is  progressively  evaporated. — W.  G. 

Sodium   carbonate;   Manufacture    of  by   the 

ammonia  process.  H.  Le  Chatelier.  Comptes 
rend.,  1922,  174,  836—841. 
Using  Toporescu's  results  (cf.  siipra)  diagrams  are 
presented  by  means  of  which  it  is  possible  to  calcu- 
late the  theoretical  yields  in  the  ammonia-soda  pro- 
cess, under  different  conditions  and  starting  with 
mixtures  of  given  initial  composition.  The 
theoretical  maximum  yield  obtainable  may  be  con- 
siderably reduced  by  slight  alterations  in  the  calcu- 


326  a 


Cr..  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIO  ELEMENTS. 


[May  15, 1922. 


lated  initial  composition  of  the  solution.  These  re- 
sults have  been  obtained  by  the  evaporation  of  solu- 
tions originally  very  dilute,  but  it  is  possible  to 
apply  them  to  manufacturing  conditions  in  which 
salts  are  added  to  a  fixed  amount  of  water,  which  is 
kept  constant  throughout  the  separation  of  the  bi- 
carbonate. Under  such  conditions  it  is  possible  to 
calculate  the  amount  of  water  on  the  one  hand  or 
salt  on  the  other  hand  which  it  may  be  necessary  to 
add  in  order  to  get  the  maximum  yield  of  pure 
bicarbonate. — W.  G. 

Perchloric  acid  and  its  salts;  Chemical  kinetics  of 

.      G.    Bredig    and   J.    Michel.      Z.    physik. 

Chem.,  1922,  100,  124—138. 
The  times  required  for  the  reduction  of  a  given 
amount  of  perchloric  acid  at  40°  C.  and  in  the  pres- 
ence of  an  equal  excess  of  sulphuric  or  hydrochloric 
acid  by  trivalent  titanium,  trivalent  molybdenum, 
and  divalent  chromium  are  in  the  ratio,  Ti:Mo 
(olive- green)  :  Cr  :  Mo(orange) : :  1  :  18  :  1300  :  40,000. 
The  velocity  of  reduction  by  titanium  is  directly 
proportional  to  the  concentration  of  the  triva- 
lent titanium  and  the  perchloric  acid.  At 
low  concentrations  the  influence  of  the  concen- 
tration of  sulphuric  acid  or  hydrochloric  acid 
is  very  small,  but  beyond  a  given  concentration 
(4'45iV  sulphuric  acid,  4'69IV  hydrochloric  acid)  the 
velocity  increases  linearly  with  the  acid  concentra- 
tion. The  kinetic  equation  is  of  the  first  order  and 
indicates  that  the  velocity  is  governed  by  a  first 
order  partial  reaction.  The  whole  reduction  is 
represented  by  the  equation  4Ti2(S04)3+4H.S04+ 
H'C101=8Ti(S04).  +  4H,0+HCl.     (Cf.  J.C.S.,  May.) 

—J.  F.  S. 

Potassium  perchlorate;  Rapid  analysis  of .     V. 

Lenher  and  M.  Tosterud.     J.  Amer.  Chem.  Soc, 

1922,  44,  611—612. 
The  following  method  is  the  most  satisfactory  for 
the  determination  of  perchlorate  :  A  0'5  g.  sample 
■  is  mixed  in  an  agate  mortar  with  l'O  g.  of  man- 
ganese dioxide,  transferred  to  a  porcelain  crucible, 
and  heated-  for  15  mins.  at  600°— 700°  C.  After 
cooling,  the  mass  is  extracted  with  hot  water, 
filtered,  and  the  chlorine  determined  by  either 
Mohr's  or  Volhard's  method.  The  results  are  about 
0-2 — 0-3%  low  due  to  loss  by  volatilisation.  A  blank 
experiment  with  manganese  dioxide  should  always 
be  carried  out. — J.  F.  S. 

Ammonium  perchlorate;  Density  of  aqueous  solu- 
tions of  .      A.  Mazzucchelli  and  S.  Anselmi. 

Gazz.  Chim.  Ital.,  1922,  52,  I.,  147—152. 
The  densities  of  aqueous  ammonium  perchlorate 
solutions  of  p%  concentration  or  n-normality  are 
given  by  the  equations,  d15  =  0'99913+4-6826.10-\p-r 
1-425. 10-5.p2-r2.10-,.p:'  or  0-99913+5632.10-3.n- 
5-24.10-\/r-5-2.10-\7is,  and  d25  =  099707  +  4-7898. 
10-J.»+r920.10-s.j>2+T33.10-8.p\  (Cf.  J.C.S.,  May.) 

— T.  H.  P. 

Potassium  permanganate;  Thermal   decomposition 

of  .     E.   Moles  and   M.   Crespi.     Z.   physik. 

Chem.,  1922,  100,  337—345. 
Pure  dry  potassium  permanganate  commences  to 
decompose  at  200°  C.  and  the  decomposition  is  com- 
plete at  240°  C.  The  pressures  observed  when  per- 
manganate is  heated  to  lower  temperatures  are  due 
to  the  presence  of  carbonate  and  water.  The  heat 
of  dissociation  is  60,000  cals.  The  decomposition 
of  potassium  permanganate  by  heat  is  represented 
by  the  equation 

10KMnO4  =  3KJVInO4  +  2K2MnO3  +  5MnO2  +  6O2. 
{Cf.  J.C.S.,  U«y.)—J.  F.  S. 

Sodium,  perborate;  Electrolytic  production  of . 

P.    S.    Alsgaard.       J.    Phys.    Chem.,    1922,    26, 

137—155. 
A  yield  of  1L55  g.  of  sodium  perborate  per  litre 


may  be  obtained  by  electrolysing  a  solution  of  45  g. 
of  borax,  130  g.  of  sodium  carbonate,  45  g.  of 
sodium  bicarbonate,  2  g.  of  potassium  bichromate, 
and  2  g.  of  water-glass  per  litre  at  10°  C.  between 
a  suitably  shaped  copper  pipe  as  cathode  and  a 
platinum  anode.  The  current  efficiency  of  the  pro- 
cess is  40  % .  The  materials  required  to  produce  one 
ton  of  sodium  perborate  per  day  and  the  mechanical 
power  necessary  are  estimated  as  follows :  700  kg. 
of  borax,  200  kg.  of  soda  ash  per  ton,  450  h.p.  per 
year.  Seven  kg.  of  platinum  would  be  required  and 
10  labourers  to  work  the  plant. — J.  F.  S. 

Potassium    permanganate;    Solubility    of   in 

solutions  of  potassium  sulphate  and  sodium  sul- 
phate.    H.   M.  Trimble.     J.  Amer.  Chem.   Soc, 
1922,  44,  451—460. 
The  solubility  of  potassium  permanganate  in  solu- 
tions of  potassium  sulphate  decreases  with  increas- 
ing concentration  of  the  sulphate.     In  solutions  of 
sodium  sulphate  the  solubility  increases  to  a  maxi- 
mum, with  6%  of  sodium  sulphate,  and  then  slowly 
decreases  to  a  minimum  which  occurs  with  a  solu- 
tion saturated  with  sodium  sulphate.     The  follow- 
ing values  are  recorded  for  25°  C.  in  parts  of  potas- 
sium permanganate  per  100  pts.  of  solvent. 
%K2S04      0-00     0-80     1-98     5-47     7-79     9-26(o) 
KMnO,        7-64     7-06     6-29     4-73     4-02     3-68 

%Na,S04    0-00     0-88     4-62     7-05     9-34    12-85    17-05 

19-43     21-04(a) 
KMnO,       7-64     7-33     7-83     7-75     7.07       7-27     6.68 

6-25     5-91. 
In  both  cases  the  solutions  a  are  saturated  with  both 
salts.— J.  F.  S. 

Potassium  ferricyanide;  Decomposition  of  by 

heat.     V.  Cuttioa.     Gazz.  Chim.  Ital.,  1922,  52, 
I.,  20—25. 

When  kept  at  230°  C,  potassium  ferricyanide 
undergoes  complete  decomposition  in  accordance 
with  the  equation : 

2K3Fe(CN)c  =  2FeC2+2N?  +  C2N2+6KCN. 
A  green  substance  formed  during  the  early  stages  of 
the  heating  shows  the  oxidising  properties  of  the 
original  salt  but  gives  certain  different  reactions, 
and  contains  complex  iron  cyanides  with  less  than 
six  cyanogen  groups  in  the  molecule. — T.  H.  P. 

Alkaline  solutions  of  iodine;  Kinetic  study  of . 

O.  Lievin.  Comptes  rend.,  1922,  174,  868—870. 
As  the  amount  of  alkali  hydroxide  present  for  a 
given  weight  of  iodine  increases  the  free  iodine  dis- 
appears more  rapidly,  but  the  hypoiodite  disappear- 
more  slowly.  The  presence  of  the  iodide  formed 
accelerates  the  reaction.  Dilution  of  the  systen: 
causes  a  diminution  in  the  velocity  of  the  reaction 
If  sodium  carbonate  or  the  tribasic  phosphate  an 
used  as  the  source  of  alkali  then  the  reaction  i: 
accelerated  by  the  addition  of  alkali  and  by  lh< 
dilution  of  the  system,  in  so  far  as  the  formatioi 
of  iodato  is  concerned. — W.  G. 

Chromic  chloride;  Electrolytic  reduction  of t 

the  divalent  salt.  M.  O.  Taylor,  W.  A.  Gersdorff 
and  E.  J.  Tovrea.  J.  Amer.  Chem.  Soc,  1922 
44,  612—614. 
When  chromic  chloride  solution  is  electrolysed  i 
a  two-compartment  cell  between  a  spiral  spong 
lead  cathode  and  five  graphite  anodes,  it  is  redac* 
to  chromous  chloride.  With  a  total  cathode  surfac 
of  1'24  sq.  dm.  and  a  current  of  1'6  amps,  a  currer 
efficiency  of  96%  may  be  obtained  over  the  perio 
required  to  reduce  87  %  of  the  chromium  if  the  soli 
tion  is  rapidly  stirred  and  if  the  current  is  reduce 
when  hydrogen  commences  to  be  evolved.  With  ii 
unchanged  current  the  efficiency  is  only  53%  for  tt 
same  amount  of  reduction. — J.  F.   S. 


Vol.  so.,  No.  9.]     Cl.  VII.— ACIDS  ;  ALKALIS;  SALTS;  NON-METALLIC  ELEMENTS. 


327  a 


Normal  chromium-  nitride  and  the  formation  of 
complex  salts.  E.  Oliveri-Mandala  and  G. 
Cornelia.  Gazz.  Chim.  Ital.,  1922,  52,  I.,  112— 
115. 

Methods    are    given    for    the    preparation    of    the 

compounds,    CrN„3CaH5N ;    Cr(N3)3,    and    Cr(N,)3, 

3NaN3.    {Cf.  J.C.S.,  May.)— T.  H.  P. 

Phosphine;  Gravimetric  estimation  of  and  a 

new  apparatus  for  gas  analysis.     L.   Moser  and 
A.  Brukl.     Z.  anorg.  Chem.,  1921,  121,  73—94. 

Phosphine  of  all  concentrations  is  completely 
absorbed  by  2AT  iodic  acid,  2V/10  silver  nitrate, 
N/5  mercuric  chloride,  N/5  auric  chloride,  and 
N/5  copper  sulphate  solutions.  The  metal  salt 
solution  in  each  case  contains  phosphoric  acid, 
which  after  removal  of  the  excess  metal  ion  is 
estimated  as  magnesium  pyrophosphate.  The 
absorption  in  the  various  cases  may  be  represented 
bv  the  equations:  8AgN03  +  PHJ  +  4H,0  =  H3PO«+ 
8Ag+8HN03 ;  14HgCl2  +  2PH3  +  7H,0  =  H,PO,+ 
H3P04+14HCl+14HgCl ;  8AuCl3  +  3PH3+12H20  = 
8Au  +  24HC1  +  3H3PO. ;  7CuSO,  +  2PH3  +  7H20  = 
H3P03  +  H3PO,+7Cu+7H2S04.  In  the  case  of  iodic 
acid  the  reaction  is  represented  by  the  equation; 
8HI03+5PH3  =  5H3P04  +  4I,+4H:,0  and  in  this  case 
the  solution,  after  the  absorption  is  complete,  is 
heated  to  boiling  and  the  iodine  distilled  into  potas- 
sium iodide  and  titrated  with  thiosulphate,  whilst 
the  phosphoric  acid  is  estimated  as  magnesium 
pyrophosphate.  The  analytical  results  in  all  oases 
are  good.  The  absorption  of  the  gas  is  carried  out 
in  a  closed  absorptimeter,  which  consists  of  a  glass 
bulb  (120  c.c.)  to  the  bottom  of  which  a  glass  tube 
10  cm.  long  and  3  mm.  bore  is  attached,  and  to  the 
,  top  a  capillary  tube  which  is  bent  twice  at  right 
:  angles  for  connecting  with  a  gas  burette.  The 
,  capillary  carries  a  tap  which  in  addition  to  the 
ordinary  bore  is  also  bored  along  its  axis.  The 
'  apparatus  stands  in  a  beaker  which  contains  the 
!   absorbing  liquid.     (Cf.  J.C.S.,  May.)— J.  F.  S. 

Detonating  [oxyhydrogen~\   gas;  Ignition  point  of 

.     A.  Mitscherlich.     Z.  anorg.  Chem.,  1921, 

121,  53—66. 

The  ignition  temperature  of  oxyhydrogen  gas  in- 
creases with  decreasing  rate  of  flow,  and  with 
increasing  pressure,  but  is  not  affected  by  the 
diameter  of  the  explosion  tube  if  this  is  greater 
than  05  mm.    The  following  values  are  recorded  :  — 

v    280    187     130    93    37 

t°  592°  592°  593°  594°  601° 

p    150    200     250      300      400     500       600      650 

t°  592°  607-5°  622°  630-5°  644°  651"5°  659-5°  663-0° 

where  t  is  the  ignition  temperature,  p  the  pressure, 
and  v  the  number  of  c.c.  passing  a  cross  section  of 
1  sq.  cm.  per  sec.    (Cf.  J.C.S.,  May.)— J.  F.  S. 

Mixed  acid.    Marqueyrol  and  Loriette.    See  XXII. 

Hydrocyanic  acid.     Sundberg.     See  XXIII. 

Patents. 

Sulphur  burners;  Oxidising  device  for .    A.  G. 

Hinzke.  U.S. P.  1,410,061,21.3.22.  Appl.,  23.11.21. 

A  sulphur  burner  is  fitted  with  secondary  air  ports 
in  the  outlet  flue,  the  air  feed  to  which  can  be  regu- 
lated, and  above  these  a  perforated  dome  within 
the  flue.— C.  I. 

Sulphur;  Kiln  and  tower  plant  for  the  combustion 

of   .      A.    Hansen.      G.P.   347,972,    10.4.21. 

Conv.,  17.8.20. 

A  cylindrical  burner  is  provided  with  an  agitator 
consisting  of  blades  rotating  on  a  horizontal  axis. 

— C.  I. 


Nitric  acid;  Process  for  the  preparation  of  - free 

from  chlorine  and  from  lower  oxides  of  nitrogen. 
Rhenania,  Verein  Ohem.  Fabr.,  A.-G.,  Zweignie- 
derlassung  Mannheim.     G.P.  348,288,  20.3.14. 

A  current  of  air  or  of  inert  gas  is  introduced  into 
the  retort  immediately  above  the  surface  of  the 
mixture  of  sodium  nitrate  and  sulphuric  acid. — C.  I. 

Separating  felspar  and  quartz;  Method  of  . 

F.  P.  Knight  and  J.  T.  Shimmin.  U.S. P. 
1,404,974,  31.1.22.     Appl.,  22.6.21. 

Minerals  containing  quartz  and  felspar  are  ground 
sufficiently  to  liberate  the  granules  of  each  mineral 
from  the  other,  and  are  washed  on  an  inclined 
surface  with  a  stream  of  water  applied  in  6uch  a 
manner  as  to  secure  the  separation  of  the  granules 
into  bands  in  accordance  with  their  respective 
resistances  to  movement. — J.  H.  J. 

Nitrogen  compounds;  Method  of  producing  . 

H.  Specketer,  Assr,  to  Chem.  Fabr.  Griesheim- 
Elektron.   U.S.P.  1,409,124,  7.3.22.   Appl.,  6.1.22. 

A  mixture  of  a  finely  divided  metallic  oxygen  com- 
pound and  coal  is  heated  to  such  a  temperature 
that  it  becomes  a  conductor  of  electricity,  and  dur- 
ing the  passage  of  the  current  it  is  agitated  in  an 
atmosphere  of  nitrogen. — A.  G.  P. 

[Sodium    carbonate  ,•]    Process    of    treating    alkali 
metal  salts  and  alkali  metal-salt  brines  [for  the 

recovery  of ].     C.  F.  Runey  and  J.  H.  Shaw, 

Assrs.  to  Potash  Reduction  Co.  U.S.P.  1,409,784, 
14.3.22.     Appl.,  30.3.21. 

A  brine  containing  alkali  chloride  and  carbonate  is 
evaporated  until  the  salts  crystallising  out  contain 
less  than  0'6%  Cl.  This  salt  is  then  separated  and 
recrystallised  from  water. — C.  I. 

Bleaching   powder  and   process   of   producing    the 

same.     E.  T.  Ladd  and  E.  C.  Speiden,  Assrs.  to 

Isco    Chemical    Co.     U.S.P.    1,409,955,    21.3.22. 

Appl.,  5.3.21. 

The  coarser  and  finer  particles  of  calcium  hydroxide 

are  separated  and  chlorinated  separately.- — C.  I. 

Sodium-aluminium   fluoride ;  Process   for   the   pre- 
paration of almost  free  from  silica.    Humann 

und  Teisler,  Chem.  Fabr.     G.P.  348,274,  21.10.20. 

To  an  aluminium  fluoride  solution  containing 
silica  the  necessary  quantity  of  sodium  salt  is  added 
gradually  with  good  agitation  and  warming. — C.  I. 

Tin;  Process  for  the   precipitation  of  from 

alkaline      solutions.      F.      Brogelmann.       G.P. 
348,670,  21.1.14. 
An   insoluble   magnesium   salt,    e.g.,    carbonate   or 
phosphate,  is  used  as  the  precipitating  agent. — C.  I. 

Hydrogen  sulphide;  Process  for  the  preparation  of 
.     M.  Buchner.     G.P.  348,768,  27.8.16. 

The  sulphide  or  hydrosulphide  of  an  alkali  metal  is 
melted  iu  its  water  of  crystallisation,  and  carbon 
dioxide  introduced  with  continuous  heating. — C.  I. 

Silicic  acid;  Preparation  of  amorphous  free 

from  alkali.  J.  Michael  und  Co.  G.P.  348,769, 
23.2.21. 
Silica  is  precipitated,  washed  with  water  or  acid, 
and  treated  with  a  metallic  6alt,  e.g.,  a.  salt  of 
magnesium,  aluminium,  or  of  an  alkaline  earth, 
and  then  washed  in  the  usual  way. — C.  I. 

Sulphur     extraction.       J.     T.     Fenton.       U.S.P. 

1,409,338,  14.3.22.     Appl.,  9.2.21. 
Sulphur  ore  is  injected  in  a  comminuted  state  into 
a  chamber  maintained  above  the  boiling  point  of 
sulphur,  a  hot  stream  of  an  elastic  fluid  carrying 
the  vapour  away  to  a  condensing  system. — A.  R.  M. 


328  a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[May  15,  1922. 


Solid  salts  [e.g.,  ammonium  sulphate];  Saturators 

for  producing  by  treatment  of  gases  with 

liquid.  C.  Still.  E.P.  157,223,  8.1.21.  Conv., 
8.8.19. 

See  G.P.  328,394  of  1919;  J.,  1921,  147  a. 

Ammonia-soda  process;  Recovery  of  ammonia  in  the 

.     E.  W.  Pattison.     From  Mathieson  Alkali 

Works,  Inc.     E.P.  176,400,  3.9.20. 

See  U.S. P.  1,378,593  of  1921;  J.,  1921,  583  a. 

Sodium,  hicarbonate  and  hydrogen;  Method  of  pro- 
ducing   .  A.  Nagelvoort,  Assr.  to  The  Nitro- 
gen Corp.  Reissue  15,314,  21.3.22,  of  U.S. P. 
1,352,211,  7.9.20.     Appl.,  16.7.21. 

See  J.,  1920,  689  a. 

Zinc  oxide;  Process  for  the  recovery  of from 

zinciferous  materials,  especially  slags.  P.  C.  W. 
Timm.    U.S.P.  1,409,318,  14.3.22.    Appl.,  29.4.13. 

See  E.P.  10,376  of  1913;  J.,  1913,  980. 

Nitrogen  and  carbon  dioxide;  Production  of  inert 
gas  mixtures  of  by  means  of  internal  com- 
bustion engines.  J.  Muchka.  E.P.  153,916, 
16.11.20.     Conv.,  3.12.17. 

See  G.P.  311,438  of  1918;  J.,  1919,  901  a. 

Nitrogen  and  carbon  dioxide;  Production  of  gas 

mixtures  of  that  are  deficient  in  oxygen. 

J.  Muchka.  U.S.P.  1,406,479,  14.2.22.  Appl., 
6.1.21. 

See  G.P.  311,438  of  1918;  J.,  1919,  901  a. 
Electrolysis  of  solutions.    G.P.  348,483.    See  XI. 


VIII.-6LASS;    CERAMICS. 

Glass;  Measurement   of   the   surface   of  powdered 

.     H.   Wolff.     Z.    angew.    Chem.,    1922,    35, 

138—140. 

An  estimate  of  the  surface  area  of  powdered  glass 
is  obtained  by  comparing  the  losses  in  weight  of  a 
known  amount  of  the  powder,  and  a  plate  of  the 
same  type  of  glass  of  which  the  superficial  area  can 
be  measured,  when  treated  for  a  specified  time  with 
a  rapidly  stirred  hot  solution  containing  145  g.  of 
Na2COs,10H2O  and  25  g.  of  NaOH  per  litre.  With 
this  solvent  at  95°  C,  and  a  stirrer  driven  at  about 
400  revs,  per  minute,  a  loss  in  weight  of  the  order 
of  5%  is  attained  with  the  powder  in  30  mins.,  whilst 
with  the  plates  treatment  for  2  hrs.  is  necessary  to 
obtain  a  sufficiently  accurately  weighable  loss. 
Considerable  differences  were  found  in  the  super- 
ficial areas  of  powders  of  the  same  6ized  particles 
(as  graded  by  sieves)  derived  from  different 
varieties  of  glass;  for  example,  the  area  of  1  c.c.  of 
powdered  Jena  glass  was  730 — 830  sq.  cm.,  of 
window  gla6s  960 — 1000  sq.  cm.,  and  of  photo- 
graphic plate  about  1100  sq.  cm.  The  difference  is 
ascribed  to  the  different  types  of  glass  splintering 
on  powdering  into  particles  of  different  shapes. 

— G.  F.  M. 

China  clay.    Strachan.    See  V. 

Clay  as  an  ampholyte.    Arrhenius.    See  XVI. 

Patents. 

Vitreous    material;    Manufacturing    objects    from 
— .     H.  P.  Amphlett,  and  the  Hume  Pipe  and 
Concrete  Construction  Co.,   Ltd.      E.P.    176,737, 
30.10.20. 

Objects  of  vitreous  material  are  made  by  first 
forming  a  blank  and  then  finishing  the  shaping  of 
this  in  a  rotating  mould  maintained  at  a  suitable 
temperature  (cf.  E.P.  176,058;  J.,  1922,  295  a). 

—A.  B.  S. 


Pottery  kilns;  Gas-fired  .  Woodhall,  Duck- 
ham,  and  Jones  (1920),  Ltd.,  and  A.  McD. 
Duckham.    E.P.  176,419,  5.10.20. 

A  gas-fired  kiln  wherein  the  bags  or  combustion 
chambers  are  independent  of  the  kiln  walls,  and  are 
placed  nearer  the  middle  of  the  kiln  so  as  to  divide 
it  into  two  or  more  parts. — A.  B.  S. 

Ceramic   ware;   Burning    with    thermit   as  a 

source  of  heat.  K.  L.  Luckhard.  G.P.  347,676, 
6.3.20. 
Crucibles  or  wagons  containing  thermit  are  placed 
between  and  around  the  material  to  be  burned. 
When  all  the  heat  from  one  charge  of  thermit  has 
been  evolved,  the  crucible  or  wagon  is  replaced  by 
another  containing  a  fresh  charge  of  thermit,  this 
being  repeated  until  the  ware  is  fully  burned. 
Alternatively,  the  crucible  or  wagon  is  withdrawn 
from  the  heating  chamber  sufficiently  to  be  emptii 
and  recharged  with  thermit,  and  the  proce 
repeated.  By  this  means,  the  temperature  can 
raised  steadily,  and  an  effect  obtained  similar 
that  with  coal-firing.  All  kinds  of  ceramic  ware 
including  enamelled  ware,  crucibles,  and  grindin 
wheels,  may  be  burned  with  thermit. — A.  B.  S. 

Refractory        composition.  Non  -  rccrystallisrd 

refractory  composition.  E.  C.  R.  Marks.  From 
Buffalo  Refractory  Corp.  E.P.  (a)  176,436  and 
(b)  176,437,  2.11.20. 
(a)  An  elastic  and  very  durable  refractory  material 
which  does  not  crack,  disintegrate,  corrode,  or 
oxidise,  and  resists  chemical  action,  is  made  by 
mixing  crystalline  or  flake  graphite  25  pts.,  silicon 
carbide  68  pts.,  clay  7  pts.,  and  a  suitable  propor- 
tion of  a  carbonaceous  binder  such  as  tar,  pitch  or 
molasses.  Other  fluxes  such  as  borax  may  be  sub- 
stituted for  part  of  the  clay,  (b)  A  similar  material 
is  made  by  mixing  a  refractory  product  from  an 
electric  furnace  (such  as  fused  alumina  or  fused 
silica)  60  pts.,  crystalline  graphite  20  pts.,  a  car- 
bonaceous binder  12  pts.,  and  a  flux  8  pts.  The 
mixture  is  made  into  crucibles  and  other  articles, 
and  is  then  baked  at  1000°  C— A.  B.  S. 

Refractory  andjor  other  goods;  Stoves  for  drying 

.      W.    J.    Gardner,    J.    Holland,    and    S. 

Gardner.  E.P.  176,598,  26.1.21. 
A  stove  for  drying  refractory  and  other  goods 
comprises  a  long  chamber  through  which  the  goods 
are  slowly  carried  on  a  suitable  conveyor  or  on 
trucks,  the  chamber  being  heated  by  flues  which 
extend  throughout  its  length  beneath  the  floor 
and  in  the  side  walls,  and  a  cooling  chamber, 
which  forms  an  extension  of  the  drying  chamber. 
Means  are  provided  for  some  of  the  goods  to  be 
disconnected  from  the  conveyor  so  as  to  permit  their 
remaining  for  a  longer  time  in  the  dryer.  A  current 
of  air  may  be  drawn  through  the  dryer  by  means 
of  a  chimney  or  fan,  and  dampers  are  provided  to 
regulate  the  temperature  and  rate  of  drying. 

—A.  B.  S. 

Zirconium    oxide    or    zircon    earth;    Binding    anl 

compacting  bodies  made  from  .     Dr.  North, 

Kommandit-Ges.  G.P.  344,840,  17.7.14. 
Zirconium  oxide  is  mixed  with  a  refractory 
material  of  high  thermal  conductivity,  such  as 
silicon  carbide  and  electrically  fused  alumina,  ami 
a  fluid  or  a  binding  agent,  whereby  the  refractory 
material  of  high  conductivity  distributes  the  heat 
uniformly  through  the  material,  so  that  not  only  i- 
the  mixture  well  bound  together  in  itself,  but  its 
union  with  a  supporting  material,  such  as  grog,  19 
effected.— A.  B.  S. 

Clay;    Mining     or    concentration    of .      The 

Osmosis  Co.,  Ltd.  J.  S.  Highfield,  and  D. 
Northall-Laurie.     E.P.  176,549,  21.12.20. 

Clay     brought     into     suspension     and     afterwards 


Vol.  x Li.,  No.  9.]      Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;    METALLURGY,  &c.      329  a 


deflocculated  by  means  of  an  electrolyte,  but  so  that 
the  liquid  contains,  say,  20%  of  clay  in  suspension, 
is  run  into  tanks,  in  the  lower  part  of  which  is  a 
paddle  or  stirrer  which  rotates  at  a  sufficiently  slow 
rate  (1  r.  p.  m.)  to  prevent  the  formation  of  a  solid 
deposit,  yet  allows  the  clay  to  settle.  The  liquid 
remains  in  the  tanks  for  several  days,  during  which 
time  a  thick  layer  of  creamy  consistency,  containing 
about  equal  proportions  of  clay  and  water,  is 
formed,  after  which  the  supernatant  liquor  is  run 
off  and  the  creamy  layer  is  dried.  The  supernatant 
liquor  may  be  used  in  mining  more  clay  or  it  may 
be  run  into  a  settling  tank  and  allowed  to  rest  until 
all  the  clay  settles  out.  The  object  of  this  procedure 
is  to  supply  the  clay  to  the  dryers  in  the  form  of  a 
fluid,  and  not  of  a  paste,  such  as  that  produced  in 
an  ordinary  settling  tank.  The  cost  of  digging  out 
the  paste  is  thereby  saved. — A.  B.  S. 


— .    J.  A.  Jeffery, 
U.S. P.   1,409,953, 


Insulating  material;  Ceramic  - 

A-*-r.    to   Jeffery-Dewitt    Co. 

21.3.22.  Appl.,  15.5.20. 
The  batch  consists  of  sillimanite,  a  flux,  and  a  clay 
mixture  the  clay  content  of  which,  when  heated  by 
itself,  matures  at  the  same  temperature  as  does  the 
ceramic  body. — C.  I. 

Moulds  of  peat  and  plaster.    A.  Kampshoff.     G.P. 

344,204,  14.2.20. 
Moulds  are  made  by  compressing  a  mixture  of 
freshly-won  peat  with  sulphates,  alum,  or  other 
materials  which  will  facilitate  the  separation  of  the 
fibrous  material  and  water  in  colloidal  combination 
in  the  peat  and  improve  the  effect  of  the  plaster. 
The  mixture  may,  with  advantage,  be  stored  for 
!some  time  before  it  is  used.  Moulds  made  in  this 
manner  dry  rapidly,  harden  quickly,  and  have  con- 
siderable strength. — A.  B.  S. 

Glnsswarc;  Manufacture  of .    H.  Wade.    From 

Titanium  Pigment  Co.     E.P.  176,430,  29.10.20. 

See  U.S.P.  1,362,917  of  1920;  J.,  1921,  471a. 

I  Glass;  Process  of  and  apparatus  for  feeding  . 

I  Apparatus  [moulding  machines']  for  manufactur- 
ing, nlass  articles.  W.  J.  Miller.  E.P.  151,605—6, 
13.9.20.    Conv.,  23.9.19. 

IX.— BUILDING  MATERIALS. 

Patents. 

Sore!  cement;  Process  for  facilitating  the  working 
and  increasing  the  stability  of  objects  made   of 

.    F.  Ringer.    E.P.  159,159,  27.9.20.    Conv., 

19.2.20.  Addn.  to  151,641. 
'A  weak  (4%)  solution  of  glue  and  formalin  (40%)  is 
added  to  the  materials  used  for  making  the  articles, 
md  the  latter  are  immersed  in  a  concentrated  solu- 
'  ion  of  sal  ammoniac  (ammonium  chloride)  and 
afterwards  rubbed  with  a  potassium  soap.  The 
irticles  will  then  retain  their  clean,  brilliant  surface 
md  remain  free  from  exudations. — A.  B.  S. 

I^imber;  Treatment  of  - with  a  gaseous  fluid. 
H.  Hensman.     E.P.  176,463,  29.11.20. 

)ne  end  of  a  trunk  or  log  of  timber  is  subjected  to 
he  action  of  hot  air  under  pressure,  whilst  the 
ther  is  exposed  to  the  atmosphere.  (Reference  is 
irected,  in  pursuance  of  Sec.  7,  Sub-sec.  4,  of  the 
'atents  and  Designs  Acts,  1907  and  1919,  to  E.P. 
103  of  1905.)— A.  B.  S. 

'lastic  composition  and  process  of  producing  the 
same.  G.  M.  Formby,  Assr.  to  Formbv  Petrinite 
Corp.    U.S.P.  1,409,939,  21.3.22.    Appl.,  11.5.20. 

ALciuii  oxychloride  which  has  been   heated  with 

me  in  the  presence  of  water  is  mixed  with  plaster 

'i  Paris.— A.  B.  S. 


Mason's  hydrated  lime;  Improving  the  quality  of 

.     F.  C.  Welch.     U.S.P.  1,410,087,  21.3.22. 

Appl.,  8.11.21. 
The   plasticity   of   hydrated  lime   is   increased   by 
grinding  the  lime  in  contact  with  a  drying  agent. 

—A.  B.  S. 

Cement    etc.;    Shaft    kiln   for    burning    - .      F. 

Krupp  A.-G.,  Grusonwerk.  G.P.  347,886,  28.11.19. 
The  burning  and  cooling  zones  of  a  shaft  kiln  for 
cement  etc.  are  fitted  with  a  lining  of  high  con- 
ductivity, which  is  cooled  by  being  surrounded  by  a 
casing  which  prevents  loss  of  heat  by  radiation  and 
by  passing  the  air  required  for  combustion  down- 
wards between  the  casing  and  the  lining.  Better 
use  is  thereby  made  of  the  heat  in  the  kiln. 

—A.  B.  S. 

Wood;   Method   and  apparatus    for    transforming 

[and  colouring'] .    H.  F.  Weiss,  Assr.  to  C.  F. 

Burgess  Laboratories.    Reissue  15,316,  21.3.22,  of 
U.S.P.  1,366,225,  18.1.21.    Appl.,  16.11.21. 

See  J.,  1921,  180  a. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Blast  furnace;  Possibdity  of  using  oxygen  in  the 

.      T.   Wagner.      Stahl   u.    Eisen,    1922,    42, 

456—460. 

Whether  a  notable  economy  in  the  consumption  of 
coke  in  blast-furnace  practice  is  possible  depends 
in  the  first  place  on  the  quality  of  the  ore. 
Diminishing  the  coke,  however,  does  not  allow 
reduction  of  the  total  carbon  in  the  furnace,  and 
carbon  must  be  introduced  either  as  gas  or  as 
coal  dust  injected  through  the  tuyeres.  For  the  best 
economy  of  the  furnace  the  falling  off  in  heat  pro- 
duction which  follows  as  the  result  of  using  less 
coke  must  be  equalised  by  a  diminution  in  the 
total  heat  lost.  This  equalisation  is  brought  about 
by  reducing  the  nitrogen  content  of  the  blast  by 
mixing  oxygen  with  the  air  used.  The  percentage 
of  oxygen  required  is  greater  when  producer  gas 
is  used  to  maintain  a  uniform  temperature  in  the 
melting  chamber,  and  lower  when  burning  coal  dust. 

—J.  W.  D. 

Cast  iron;  Malleableizing  of  white .   A.  Phillips 

and  E.  S.  Davenport.  Amer.  Inst.  Min.  Met. 
Eng.,  Feb.,  1922.  [Advance  copy.]  23  pages. 
Determinations  of  critical  points  made  on  white 
cast  iron  and  commercial  malleable  iron  indicated 
745°  C.  as  the  Arl  point  for  hard  irons  cooled  at 
the  rate  of  approximately  1°  C.  per  6econd.  Bars 
of  white  cast  iron  annealed  in  the  hottest  and 
coolest  parts  of  a  mill  furnace  showed  very  slight 
differences  both  as  regards  their  tensile  properties 
and  microstructure,  meeting  the  specification  suc- 
cessfully. Bars  were  also  annealed  in  the  laboratory 
at  temperatures  ranging  from  750°  to  1100°  C. 
Normal  black  fractures  were  obtained  at  1100°  C. 
and  830°  C,  the  bar  annealed  at  the  lower  tempera- 
ture giving  a  slightly  better  tensile  value,  while 
that  annealed  at  the  higher  temperature  gave  a 
higher  ductility.  Micro-examinations  of  the  bars 
annealed  at  these  different  temperatures  lead  to 
the  conclusions  that  the  ferrite  grain  size  increases 
with  the  temperature  and  time  of  annealing  and 
that  the  temper  carbon  produced  at  the  lower 
temperatures  is  more  compact  and  sharply  outlined 
than  the  graphitic  areas  formed  at  the  higher 
temperatures.  Graphitisation  experiments  carried 
out  on  normal  white  cast  iron  by  quenching  speci- 
mens after  varying  times  from  800°  C.  give 
interesting  data  as  to  the  size,  condition,  and 
appearance  of  the  temper  carbon. — J.  W.  D. 


330  a 


Cl.  X.-METALS  ;  METALLURGY.  INCLUDING  ELECTRO -METALLURGY^ 


[May  15,  1922. 


Iron  ■  Electrolytic  deposition  of for  building  up 

''Zrnar  uJersize S  parts.    D    R.  Kellogg     Amer. 
Inst.    Min.    Met.    Eng.,    Feb.,    1922.     [Advance 
copy.]    6  pp. 
Experiments  on  the  electro-deposition  of  iron  were 
„lade  according  to  the  procedure  "commendedby 
Thomas   (Automotive   Industries,    Aug.    2b,    VJM). 
Electrolytic  cleaning  was  satisfactory  only  when  the 
current  density  was  sufficiently  high  to  render  the 
iron  passive.     The  cold  plating  solution  contained 
75  E   of  ferrous  ammonium  sulphate  per  1.,  together 
with  an  excess  of  ferrous  carbonate  to  reduce  the 
H-ion  concentration,   and  powdered  charcoal,   and 
a   smooth,    tough   deposit   was   obtained^    using    a 
current  density  of  1  amp.  per  sq.  dm      The  rate  of 
deposition  was  increased  by  the  use  of  a  hot  plating 
bath    (50°— 70°   0.)    containing   300    g.    of   ferrous 
ammonium  sulphate  per  1.,  working  with  a  current 
density  of  67  amp.  per  sq.  dm.,  and  the  coating 
produced  was  more  suitable  for  machining  opera- 
tions      Cast  iron   becomes  covered   with   graphite 
during  the  electrolytic  cleaning  process,  but  plating 
may  be  carried  out  successfully  without  an  inter- 
mediate film   of   copper.     Close  regulation   of   the 
hydrogen  ion  concentration  is  not  necessary  in  the 
hot-bath  process,  as  anodic  corrosion  is  so  complete 
that   oxidation   is   practically   negligible     and   the 
addition  of  ferrous  carbonate  was  reduced  finally  to 
a  very  small  quantity.     The  use  of  wood  containers 
was  found  unsatisfactory. — C.  A.  K. 

Ordnance  steel;  Effect  of   sulphur  and  oxides  in 

\y    J.  Priestley.     Amer.  Inst.  Min.  Met. 

Eng.',  Feb.,  1922.     [Advance  copy.]     15  pp. 
Ordnance  steel  made  in  the  electric  furnace  has  a 
greater    freedom    from     oxides    and    non-metal  ic 
impurities  than  ordinary  open-hearth  steel.      1  he 
lower  phosphorus  content  has  a  slight  effect  on  the 
elongation,  due  to  producing  a  smaller  gram  and 
decreased  brittleness.    Owing  to  the  large  percent- 
age  of   manganese   which   the   steels  contain,    the 
small   amount  of  sulphur  present  occurs   as  man- 
ganese sulphide  in  the  form  of  long  thin  shreds, 
which   do   not   affect   the   elastic    limit   or    tensile 
strength,  but  which  give  a  lower  elongation  and 
lower  contraction  in  the  tangential  tests  than  in 
the  longitudinal  tests.     In  melting,  the  conditions 
which  bring  about  the  elimination  of  the  sulphur 
(a  reducing  atmosphere  and  a  calcium  carbide  slag) 
ensure    that    oxides    and    other    non-metallic    im- 
purities  are   also   eliminated.      The   grain   of   this 
electric  steel  is  also  more  uniform  and  more  dense 
If  it  is  cast  at  too  high  a  temperature  or  chilled 
beyond   a  certain    point    in    the    mould,    incipient 
cracks  develop.     The  method  of  pouring  the  steel 
has  little  effect  on  its  properties.— J.   W.  v. 


Gases  in.  iron  and  steel;  determination  of  . 

A.  Vita.  Stahl  u.  Eisen,  1922,  42,  445—456. 
Samples  of  various  steels  and  iron  alloys  were 
treated  with  a  copper  solution  containing  either 
citric  or  tartaric  acid  in  a  glass  flask  fitted  with 
extraction  tubes,  the  solution  being  heated  to 
nearly  60°  C.  and  shaken  to  accelerate  reaction 
In  the  case  of  ferrosilicon  it  is  necessary  to  add 
a  little  hydrofluoric  acid.  The  results  obtained  are 
tabulated.    (C/.  Meurer,  J.,  1922,  16  a.)-J.  W.  D. 

Steel;  Effect  of  time  in  reheating  quenched  medium 
carbon below  the  critical  range.    C.  R.  Hay- 
ward     D.    M.    MacNeil,    and    R.    L.    Presbrey. 
Amer.  Inst.  Min.  Met.  Eng.,  Feb.,  1922.     [Ad- 
vance copy.]    5  pp. 
Three  specimen  steels  containing  0'46,   0"44,   and 
D"48%  C   respectively  were  quenched  at  850    C,  and 
subsequently    reheated    for    different    intervals    of 
time  at  300°,  400°,  500°,  and  600°  C.     Somewhat 
irregular   results   were   obtained,   but   an   average 


shows  that  heating  for  5  mine,  at  300°  C.  increases 
the  ductility  and  reduces  the  strength  consider- 
ably There  was  a  marked  increase  in  ductility 
between  400°  and  500°  C,  without  an  equivalent 
reduction  in  strength,  and  accompanied  by  a 
change  to  a  definite  yield  point.  The  specimen 
heated  to  600°  C.  was  nearly  as  ductile  as  annealed 
metal  but  had  an  elastic  limit  about  60°/o  greater. 
Definite  mechanical  properties  are  associated  with 
each  annealing  temperature,  and  these  are  attained 
in  a  very  short  period,  e.g.,  from  a  few  minutes  to 
about  1  hr.,  depending  on  the  temperature 
attained. — C.  A.  K. 

Steel:  Effect  of  quality  of on  case-carburising 

results.  H.  W.  McQuaid  and  E.  W.  Ehn    Amer. 
Inst.    Min.    Met.    Eng.,    Feb.,    1922.      [Advance 
copy.]     22  pp. 
The  occurrence  of   soft  areas  in  steel   after  case- 
hardening  was  traced  to  definite  heats  of  basic  open- 
hearth  metal,   the  carburising  of  which   generally 
proved  less  satisfactory  than  that  of  electric  steel. 
The     gradation     zone     of     abnormal     steel    shows 
irregular  small  crystals  with  massive  cementite,  and 
the  pearlite  areas  in  the  core  are  small  and   not 
well   defined,    while    banding   and   ghost    lines    are 
common.      Abnormality   was   present   m   all  stages 
of  manufacture  back  to  the  ingot,  and  the  influence 
of  the  presence  of  oxides  was  shown  by  the  break- 
ing down  of  normal  lamellar  pearlite  in  the  vicinity 
of   ghost   lines.      Inclusions   of    iron    sulphide    and 
oxide  induce  the  formation  of  massive  cementite, 
but  manganese  sulphide  has  no  bad  effect,     [severe 
oxidising  conditions  promote  the  breaking  down  of 
pearlite,    and   steel   which   would  behave  normally 
during   case-hardening   may    be    converted    to   a 
abnormal  steel  by  heating  to  1260°  C.  or  higher 
an  oxidising  atmosphere.        As  a   rule     "nhmsht 
steel  is  abnormal  in  this  respect,  and  the  addition 
of  a  deoxidiser  is  necessary  to  produce  a  normal 
low-carbon    steel.      The    results    obtained    m    case- 
carburising  constitute   a  check  on  the   extent  ot 
deoxidation  of  the  metal  in  previous  operations. 

— C .  A .  1\  - 

Steel;   Resistance   of  to   torsion  or   bending 

between  ordinary  temperatures  and  risible  red- 
ness.   J.  Seigle.    Rev.  Met.,  1922,  19,  178—180. 
Steel  in  the  form  of  wire  was  subjected  to  torsion 
and  bending  tests,  a  short  length  of  the  wire  being 
heated  to  the  temperature  of  experiment.    At  a  re 
heat   the   whole  effect  of   torsion  occurred   in  the 
heated  portion  of  a  mild  steel  wire,  which  proved 
very  malleable  and  not  easily  fractured      At  W  - 
340°  C.  (blue)  nearly  all  the  torsion  effect  was  shown 
in  the  hot  part,  and  the  metal  soon  broke,  while 
the  torsion   strain   was  spread   unevenly   over  W 
whole  length  of  wire  when  the  middle  portion  W« 
maintained  at  100°-250°  C.    (yellow),   the ,  hca tec 
wire  showing   less   permanent   distortion   than  CM 
cold    portion.     Hard    steels    did    not    exhibit    th, 
differential   effects   between    the   heated    and   .- 
parts  of  the  wire.     The  malleability  of  mild  f 
followed  a  similar  course  in  wire-drawing  operatic. 
under  varying  temperature  conditions. — O.  A.  J*.. 


Martensite  formed  spontaneously  from  ««*«* 

X-ray  data  on  .     E.  C.  Bain.     Chem.  an 

Met.  Eng.,  1922,  26,  543—545. 
The  re-examination  of  a  specimen   of  steel  wtae 
had  been  examined  15  months  earlier  and  found 
be     lar<re-grained     austenite,     showed     that     in 
austenite  had  been  transformed  almost ^entire* 
martensite    at   the   ordinary    temperature       Who 
placed  in  the  X-ray  spectrometer  the  original ^etcne 
surface  gave  a  normal  spectrogram  of i  fern ite. 
grain  size  of  the  martensite  was  smaller .«"»™ 
grain  size  of  the  austenite. from  .which  it  WTW 
and  corresponded  in  dimensions  with  the  gram 


Vol.  XEL,  No.  9]    Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.  331a 


i  of  an  ingot  of  tungsten.     The  old  grain  boundaries 

enclosed    many    crystal    fragments    which    resulted 

I  from  the  transformation  of  the  y-iron  arrangement 

j  to     the     o-iron     arrangement,     corroborating     the 

theory   of   the    fine-grained   nature    of    martensite 

(cf.  Jeffries  and  Archer,  J.,  1921,  515  a).— C.  A.  K. 

j  Eigh-speed  and  tungsten  steels;  Manufacture   of 

.      J.    W.    Weitzenkorn.      Chem.    and    Met 

Eng.,  1922,  26,  504—508. 

I  The  addition   of   ferrotungsten  to  molten  steel   in 

I  preference   to  metallic  tungsten   prevents   the   in- 

[  complete   alloying  often  found  when  the  latter   i« 

I  used.     The  segregation  of  carbide  eutectic  during 

I  the  solidification  of  an  ingot  produces  the  charac- 

I  teristic    woody    fracture    which    prevents    uniform 

annealing  or  hardening  of  the  metal.     The  extent 

of  segregation  is  dependent  on  the  time  of  solidifica- 

I  tion,  and  heavy  mechanical  treatment  is  necessary 

to  break  up  the  hardened  area.     The  average  com- 

|  position  of  the  carbide  residue  left  after  solution  of 

steel   in   10%    nitric   acid  was  31"    C,   559%    W, 

331%  Cr,  1-52%  V,  36T7%  Fe.— C.  A.  K. 

| Electrolytic    zinc;    Effect    of    impurities   on   . 

G.  D.   Scholl.     Chem.   and  Met.   Eng.,   1922,   26, 
595—602. 

None  of  the  impurities  tested — arsenic,  antimony, 
I  nickel,  cobalt,  and  copper — in  the  proportion  of  a 
■  few    parts   per   million   had   any   deleterious   effect 
upon  the  deposition  of  electrolytic  zinc  during  the 
I  first    15 — 20    hrs.      After    this    time,    however,    all 
caused    a    more    or    less    rapid   re-solution    of    the 
'  deposited   zinc,    so   that   the   cathodes    assumed    a 
pitted  appearance  characteristic  of  the  particular 
1  impurity  present.     Arsenic  makes  the  deposit  full 
I  of  holes,  the  rear  edges  of  which  are  blackened,  as 
j  also  is  the  aluminium  cathode  behind  them.     Anti- 
mony causes  such  rapid  re-solution  of  the  deposit 
that  after   30  hrs.   only  a  skeleton   is  left  on  the 
Icathode.     Cobalt,  present  to  the  extent  of  only  one 
part   per   million,    results   in   the   production   of   a 
i fibrous,  badly  corroded  deposit,  while  nickel  gives 
.rise   to   the  formation   of   large   concentric   banded 
corrosion  pits  and  porous  deposits.    Copper  appears 
I  to  be  the  least  undesirable  impurity,  1  pt.  in  20,000 
only  slightly  reducing  the  current  efficiency. 

—A.  R.  P. 

Aluminium  alloys;  Studies  on  the  ageing  of  . 

W.  Fraenkel  and  E.  Scheuer.    Z.  Metallk.,  1922, 
H,  49—58,  111—118. 

|The  effect  of  ageing  on  the  electrical  and 
mechanical  properties  of  two  aluminium  alloys,  A 
containing  8%  Zn  and  05%  Mg,  and  B  containing 
4'5%  Cu,  0'5%  Mg,  and  0'5%  Mn,  has  been  studied. 
The  resistance  of  the  alloy  gradually  changes  at  a 
"ate  and  to  an  extent  depending  on  the  tempera- 
ture from  which  it  has  been  quenched  and  the  tem- 
perature of  ageing,  alloy  A  showing  a  maximum 
alteration  in  the  minimum  time  after  quenching 
rom  530°  C.  and  alloy  B  after  quenching  from 
1)60°  C.  In  both  cases  the  alteration  of  the  resist- 
mce  is  smaller  the  higher  the  ageing  temperature, 
ilthough  with  higher  temperatures  the  change 
akes  place  more  rapidly  and  at  100°  C.  occupies 
•nly  a  few  minutes.  The  resistance  of  alloy  A  to 
,  orrosion  by  hydrochloric  acid  is  very  much 
ncreased  by  quenching  from  530°  C,  and  still  more 
o  by  ageing  the  quenched  alloy  at  ordinary  tem- 
eratures.  Ageing  at  100°  C.  increases  the  rate 
f  solution  above  that  of  the  quenched  alloy,  while 
igeing  at  200°  C.  causes  the  alloy  to  dissolve  twice 
is  rapidly  as  it  does  in  the  annealed  state.  The 
B.M.F.  of  a  cell  containing  an  annealed  anode  and 
In  aged  cathode  of  alloy  A  is  0-l  volt,  while  the 
j-eshly  quenched  alloy  has  a  thermo-electric  power 
1)°— 100°  C.)  of  over  100  microvolts  against  the 
ged  alloy.     A  noticeable  decrease  in  density  was 


also  observed  on  ageing  alloy  A,  but  alloy  B  showed 
a  slight  increase.  Tests  made  on  a  series  of  similar 
alloys  containing  increasing  amounts  of  magnesium 
showed  that  magnesium  up  to  2%  had  very  little 
effect  on  the  tensile  strength  of  either  the  annealed 
or  quenched  and  aged  alloys,  but  that  it  caused  a 
considerable  reduction  of  the  specific  conductivity, 
the  curve  for  the  annealed  alloys  falling  away 
concave  to  the  axis  of  %Mg,  while  that  for  the 
quenched  and  aged  alloys  is  convex  to  the  same 
axis.  A  theoretical  discussion  of  the  changes 
taking  place  in  the  alloys  during  ageing  is  given. 

—A.  R.  P. 

Aluminium  alloys-  Corrosion  of  certain  L 

Rolla.  Gazz.  Chini.  Ital.,  1922,  52,  I.,  79—87. 
By  means  of  Desch's  method,  in  which  the  metal  is 
made  the  positive  pole  in  the  electrolysis  of  sodium 
chloride  solution,  the  author  has  investigated  the 
corrosion  of  various  aluminium-zinc  and  aluminium- 
magnesium  alloys  prepared  in  a  current  of  hydrogen 
in  the  electric  furnace.  Solid  solutions  of  zinc  in 
aluminium  are  corroded  so  that  neither  of  the  two 
components  exerts  a  true  protecting  action  on  the 
other,  the  phenomenon  being  not  electro-chemical, 
but  purely  chemical  in  character.  Of  two  mag- 
nesium-aluminium alloys,  the  one  containing  the 
higher  proportion  of  magnesium  was  corroded  the 
more  rapidly.  A  voluminous  precipitate,  consisting 
principally  of  aluminium  hydroxide,  was  formed  in 
each  case,  the  magnesium  being  removed  in  greater 
proportion  than  the  aluminium.  The  corrosion  is 
greatly  influenced  and  rendered  discontinuous  by 
the  protective  action  of  the  adherent  aluminium 
hydroxide.     (Cf.  J.C.S.,  May.)— T.  H.  P. 

Aluminium-molybdenum  alloys.     H.  Reimann      Z 
Metallk.,  1922,  14,  119—123. 

A  series  of  aluminium-molybdenum  alloys  was  pro- 
duced by  reducing  molybdenite  with  aluminium 
powder,  and  the  equilibrium  diagram  of  the  alloys 
was  studied.  The  eutectic  contains  very  small 
quantities  of  molybdenum  and  melts  at  658°  C. 
The  liquidus  rises  sharply  from  this  point,  and 
with  only  10%  Mo  is  above  1100°  C.  In  cooling 
alloys  containing  more  than  10%  Mo  an  arrest 
point  was  noticed  at  1130°  C.  and  a  6econd  one  at 
735°  C.  In  all  the  alloys  a  fern-like  structure,  con- 
sisting of  needles  of  Al,Mo  or  Al4Mo  is  present, 
and  this  appears  to  be  absolutely  insoluble  in 
aluminium  and  has  a  great  tendency  to  settle  to 
the  bottom  of  the  molten  alloy.  Molybdenum 
rapidly  increases  the  hardness  of  aluminium,  but 
renders  it  exceedingly  brittle,  so  that  not  more 
than  a  few  hundredths  per  cent,  could  be  intro- 
duced into  any  commercial  alloy. — A.  R.  P. 

Tungsten;    Determination  of  aluminium  in  . 

V.  and  K.  Froboese.     Z.  anal.  Chem.,  1922,  61, 
107—110. 

Three  g.  of  the  finely-divided  metal  is  ignited  for 
1  hr.  in  a  platinum  crucible,  then  fused  with  a 
mixture  of  sodium  and  potassium  carbonates,  the 
mass  dissolved  in  hot  water,  and  the  solution 
filtered.  The  insoluble  matter  remaining  on  the 
filter  is  ignited,  heated  with  hydrofluoric  acid  and 
a  drop  of  sulphuric  acid,  and  the  residue  fused 
with  potassium  pyrosulphate.  After  cooling,  the 
mass  is  dissolved  in  hot  water  acidified  with  sul- 
phuric acid,  the  solution  filtered,  the  filtrate  ren- 
dered strongly  alkaline,  boiled,  and  again  filtered; 
this  treatment  serves  to  separate  the  aluminium 
from  the  iron  when  a  small  quantity  only  of  the 
latter  is  present.  If  the  sample  contains  much  iron 
it  is  better  to  separate  it  by  means  of  "  cupferron  " 
reagent.  The  filtrate  from  the  "  cupferron  "  preci- 
pitate is  rendered  slightly  alkaline  with  ammonia, 
the  precipitated  aluminium  hydroxide  is  collected, 
washed    with    2'5%    ammonium    nitrate    solution, 


332  a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.        [May  15, 192 


ignited,  and  weighed.  The  alkaline  filtrate  from  the  j 
sodium-potassium  carbonate  fusion  may  contain  a 
trace  of  aluminium ;  to  recover  this  the  filtrate  is 
evaporated  almost  to  dryness,  acidified  with  hydro-  i 
chloric  acid,  again  evaporated,  and  the  dry  residue 
extracted  with  hot  dilute  hydrochloric  acid;  the 
filtered  acid  solution  is  rendered  alkaline  with 
sodium  hydroxide,  then  acidified,  and  the  alu- 
minium precipitated  at  once  by  the  addition  of 
ammonia. — W.  P.  S. 

Cathodic  deposits  from  mixed  solutions  of  two 
simple  metallic  salts.  W.  H.  Creutzfeldt.  Z. 
anorg.  Chem.,  1921,  121,  25—52. 

Fine-grained  crystalline  deposits  of  the  following 
pairs  of  metals — copper-cadmium,  copper-lead, 
copper-iron,  silver-copper,  silver-cadmium,  and 
silver-zinc,  may  be  obtained  of  all  compositions  by 
the  electrolysis  of  solutions  of  simple  salts  of  the 
component  metals.  The  composition  of  the  deposit 
varies  with  the  current  density  and  the  composition  j 
of  the  solution.  The  deposits  .ire  easily  oxidised, 
and  water  completely  removes  the  more  electro- 
positive metal  from  the  deposit  in  a  few  hours.  ' 
To  obtain  a  deposit  of  a  given  composition  it  is 
necessary  that  the  current  density  be  increased 
with  increasing  concentration  of  the  solution. 
More  vigorous  agitation  or  reduction  of  tempera- 
ture acts  in  the  same  way  as  increase  in  current 
density.     (Cf.  J.C.S.,  May.)— J.  F.  S. 


Patents. 


J.  C.  M.  Kubasta. 


Steel;  Heat  treatment  of — 
E.P.  176,576,  10.1.21. 

In  the  heat  treatment  of  steel,  the  container  is 
flushed  out  with  oxygen  during  the  heating  process, 
preferably  between  the  critical  points  Acl  and  Arl. 
When  the  supply  of  oxygen  is  stopped  a  vacuum  is 
produced  by  oxidation  of  the  metal,  and  air  is 
drawn  in,  the  contained  oxygen  also  combining,  so 
that  the  steel  cools  in  an  atmosphere  of  almost 
pure  nitrogen.  At  the  temperature  recommended 
the  affinities  of  iron  and  carbon  for  oxygen  are  of 
the  same  order,  and  carbon  is  not  oxidised  preferen- 
tially leaving  a  decarburised  metal  (soft  skin). 

— C.  A.  K. 

Silicon-manganese-chrome    steel;    Method    of  pro- 
ducing   .       H.    G.    C.    Fairweather.       From 

Avesta    Jernverks     Aktiebolag.       E.P.     176,610, 
31.1.21. 

A  metal  having  a  low  carbon  content  is  produced 
with  only  a  small  loss  of  alloying  metals  by  adding 
the  required  quantity  of  manganese-iron  to  molten 
steel  in  the  furnace,  tapping  the  metal,  and  adding 
the  silicon-iron  and  chromium-iron  alloys  to  the 
metal  when  in  the  ladle.  The  silicon-iron  and 
chromium-iron  alloys  may  be  melted  together  in  an 
electric  furnace  before  addition  to  the  molten  steel. 

— C.  A.  K. 

Steel  and  iron;  Protective  coating  for .     T.  A. 

Edison.  U.S.P.  1,410,391,  21.3.22.  Appl.,  2.12.19. 
A  protective  coating  which  may  be  removed  easily 
consists  of  an  "  unctuous  material  "  and  zinc  dust 

— C.  A.  K. 

Alloys.     Cyclops  Steel  Co.,  A6sees.  of  C.  T.  Evans. 
E.P.  151,981,  7.9.20.     Conv.,  3.10.19. 

An  alloy  containing  iron,  silicon,  a  refractory  metal 
of  the  carbon  group  (zirconium),  and  chromium. 
Manganese,  nickel,  and  copper  may  also  be  con- 
stituents. An  allov  of  this  class  may  contain,  be- 
sides iron,  2%  Si  (Z'r),  3—7%  Cr,  5—20%  Ni,  2—5% 
Mn,  3%  Cu.  The  resulting  metal  is  tough  and 
resistant  to  corrosion. — C.  A.  K. 


Metals    of    high    melting    temperature    [tungsten, 

uranium,  etc.~]  ;   IV ithdrawal  of  carbon  from . 

H.  Lohmann.  E.P.  157,780,  10.1.21.  Conv., 
13.1.19. 

Carbon  may  be  removed  from  tungsten,  uranium, 
and  similar  metals  in  mass  by  heating  the  metal 
to  a  temperature  near  to  its  melting  point  in  a 
vacuum  or  in  a  current  of  neutral  gas.  Carbon  is 
vaporised  without  any  oxidising  or  reducing  agents 
being  present. — C.  A.  K. 

[Silver  mirrors;]     Preparation  of  metal  reflecting 

surfaces  [ J.     The  British  Thomson  Houston 

Co.,  Ltd.  From  General  Electric  Co.  E.P. 
176,456,  26.11.20. 
A  convex  surface  of  glass  of  the  desired  6hape  is 
coated  chemically  or  mechanically  with  metallic 
silver  and  an  annular  band  of  bronze  lacquer  is 
painted  round  the  periphery.  To  this  is  clamped  a 
brass  ring  which  ultimately  provides  a  framework 
for  the  mirror,  and  serves  for  connecting  the  leads 
in  the  subsequent  electrolytic  operations.  A  layer 
of  silver  is  deposited  electrolytically  on  the  pre- 
vious silver  coating,  and  this  is  then  strengthened 
by  the  deposition  of  a  relatively  thick  layer  of 
copper  upon  it.  The  whole  is  now  consolidated  by 
a  backing  of  plaster  of  Paris  or  Portland  cement, 
and  the  glass  form  is  carefully  removed  after  the 
cement  has  set,  leaving  a  silver  mirror  of  the  de- 
sired shape  and  considerable  strength. — A.  R.  P. 

Oxides  of  (a)  chromium  or  (b)  tungsten;  Purifica- 
tion of  ores  and  residues  containing .   W.  H. 

Dvson  and  L.  Aitchison.  E.P.  (a)  176,729, 
28.10.20  and  14.7.21,  and  (b)  176,428,  28.10.20 
and  27.7.21. 

The  ore  is  heated,  with  the  addition  of  a  carbon- 
aceous reducing  agent,  in  an  atmosphere  of  chlorine 
or  of  hydrogen  chloride,  either  alone  or  mixed  with 
hydrogen  or  chlorine,  to  such  temperatures  that 
the  ore  constituents  are  selectively  and  succes- 
sively volatilised  as  chlorides.  The  following 
examples  are  given :  (a)  Chromite  is  heated  to 
900°  C.  in  a  mixture  of  equal  volumes  of  hydrogen 
and  hydrogen  chloride  until  all  the  iron  has 
volatilised  and  the  residue  is  then  heated  to 
1200°  C.  in  chlorine  to  distil  off  the  chromium; 
(b)  wolfram  is  heated  to  600°  C.  in  a  mixture  of 
equal  volumes  of  chlorine  and  hydrogen  chloride 
to  remove  the  tin,  the  temperature  is  then  raised 
to  900°  C.  and  the  distillate,  consisting  of  the 
chlorides  of  iron,  manganese,  and  tungsten,  is 
collected  in  water  so  as  to  precipitate  the  tungsten 
as  oxide. — A.  R.  P. 

Compound  metal  body  and  method  of  making  the 
same.     A.   Ortiz,   Assr.   to  General   Electric  Co. 
U.S.P.   1.409,017,   7.3.22.     Appl.,   23.12.14.     Re- 
newed 12.8.21. 
Articles  of  iron  are  lowered   into  a  molten  bath 
of   a   non-ferrous   metal   at   such  a   rate   that  the 
upwardly     projecting     meniscus     due     to     surface 
tension  is  maintained   during  the  operation. 

— C.  A.  K. 

Aluminium-silicon  alloys;  Process  for  making  cast- 
ings of  .     J.  D.  Edwards,  F.  C.  Frary,  and 

H.  V.  Churchill,  Assrs.  to  Aluminium  Co.  of 
America.  U.S.P.  1.410,461,  21.3.22.  Appl.. 
27.11.20. 
The  molten  alloy  is  treated  with  an  alkali  metal 
and,  after  casting,  is  caused  to  solidify  while 
sufficient  alkali  metal  remains  in  it  to  affect 
favourably  its  structure.— A.  R.  P. 

Steel;    Manufacture    of    .      R.    A.    Hadfield. 

U.S.P.  1,410,749,  28.3.22.    Appl.,  26.5.20. 
See  E.P.  164,395  of  1919;  J.,  1921,  548  a. 


Vol 


XIX,  No.  9.1       Cl.  XI.— ELECTRO-CHEMISTRY.       Ci,.  XII.— FATS  ;  OILS  ;  WAXES. 


333  a 


Ores:  Apparatus  for  classifying  according   to 

-  density.      E.    P.    F.    Jalabert.      E.P.    157,096, 
8.1.21.     Conv.,  26.12.19.     Addn.  to  156,226. 

Furnaces;  Continuous  ■  [jor  heat  treatment  of 

billets  etc.  of  irregular  shape].  J.  S.  Atkinson, 
and  Stein  and  Atkinson,  Ltd.  E.P.  176,625, 
8.2.21. 

lilter  masses.     G.P.  310,792.     See  XXIII. 


XI.-ELECTBO-CHEMISTRY. 

Volatile  matter  in  pitch  coke.  Llovd  and  Yeager. 
See  IIa. 

Sodium  perborate.     Alsgaard.     See  VII. 

Electrolytic  reduction  of  chromic  chloride.  Taylor 
and  others.    See  VII. 

Cathodic  deposits.     Creutzfeldt.     See  X. 

Tellurium  and  selenium.     Miiller.     See  XXIII. 

Patents. 

Electrical  furnaces.  A.  Imbery.  E.P.  176,658, 
28.2.21. 

The  outer  surface  of  an  electric  furnace  constructed 
of  silicon  carbide  is  provided  with  a  helical  groove 
to  receive  the  heating  coil  or  strip  of  molybdenum 
or  molybdenum  alloy,  which  is  enclosed  within  an 
air-tight  chamber  containing  an  inert  gas,  e.g. 
hydrogen.— J.  S.  G.  T. 

Electric  furnace  [;  Crucible  for ].  C.  H.  Car- 
penter, Assr.  to  Westinghouse  Electric  and  Mfg. 
Co.     U.S. P.  1,409,669,  14.3.22.     Appl.,  6.8.20. 

A  crucible  for  use  in  an  electric  furnace  is  pro- 
vided with  two  projections  to  which  detachable 
lugs,  extending  into  compartments  containing 
granular  material,  are  connected. — J.  S.  G.  T. 

Galvanic  cell.  F.  Booker  and  A.  Eichhoff.  G.P. 
347,906,  16.11.18. 

The  negative  electrode,  formed  of  two  amalgamated 
Bine  cylinders  in  direct  electrical  contact,  or  be- 
tween which  electrical  connexion  is  effected  by 
means  of  zinc  amalgam,  is  moistened  by  a  concen- 
trated alkaline  electrolyte.  The  electrode  possesses 
high  conductivity  and  long  life. — J.  S.  G.  T. 

Primary  galvanic  cell,  having  a  zinc  electrode  in  an 
alkaline  solution,  and  a  carbon  electrode  in  acid 
chromate  solution.  C.  Drucker.  G.P.  348,161, 
20.5.20. 

As  electrolyte  a  solid  mixture  of  a  number  of 
materials  is  used,  such  that  on  the  chromic  acid 
side,  chromate  ions  and  hydrogen  ions  are  pro- 
|  duced,  while  the  necessary  hydroxyl  ions  are  pro- 
;  duced  on  the  alkali  side,  when  water  is  added  to 
both  sides.     Thus  for  large  current  and  6hort  life, 

I  a  mixture  of  calcium  chromate  and  potassium 
bisulphate  may  be  employed  as  electrolyte  surround- 
ing the  carbon  electrode,  while  a  mixture  such  as 
one  containing  barium  chromate  and  calcium  di- 
hydrogen  phosphate,  which  affords  relatively 
smaller  quantities  of  chromate  and  hydrogen  ions, 
may  be  employed  if  a  longer  life  is  desired. 

—J.  S.  G.  T. 

Electrolytic  decomposition  of  solutions  etc.  Elek- 
trizitats-A.-G.  vorm  Schuckert  u.  Co.,  and  H. 
Koelsch.  G.P.  348,483,  5.2.21. 
The  electrolyte  holds  in  suspension  an  added  sub- 
stance which  offers  very  little  resistance  to  the 
passage  of  current,  which  does  not  react  with  the 
electrolyte  nor  with  the  products  of  the  electrolysis 


and  which  is  not  decomposed  during  the  process  of 
electrolysis.  Thus  magnesium  hydroxide  may  be 
added  when  an  aqueous  alkaline  solution  is  electro- 
lysed for  the  production  of  oxygen  and  hydrogen. 
Diaphragms  of  asbestos  cloth,  gauze,  etc.,  may  be 
employed.— J.  S.  G.  T. 

Electrodes    for    electrolysis;    Filter    .    H.    O. 

Traun's  Forschungslaboratorium.     E.P.   155,835, 
24.12.20.     Conv.,  6.7.18. 

See  G.P.  322,600  of  1918;  J.,  1920,  696  a. 

Electrolytic  apparatus  for  preparing  hypochlorite 
solutions.  D.  McG.  Rogers  and  A.  T.  Master- 
man.    U.S. P.  1,409,782,  14.3.22.    Appl.,  30.11.21. 

See  E.P.  175,390  of  1920;  J.,  1922,  252  a. 

Electrolytic  cell.  H.  C.  Jenkins.  U.S.P.  1,410,681, 
28.3.22.     Appl.,  10.6.19. 

See  E.P.  129,083  of  1918;  J.,  1919,  644  a. 

Electric  resistance  material  and  methods  of  manu- 
facturing the  same.  The  British  Thomson- 
Houston  Co.  From  General  Electric  Co.  E.P. 
176,905,  18.12.20. 

See  U.S.P.  1,394,949  of  1921;  J.,  1921,  856  a. 

Electric  induction  furnace.  A.  Hiorth,  Assr.  to 
A.  IS.  Hiorth's  Elektriske  Induktionsovn.  U.S.P. 
1,410,304,  21.3.22.    Appl.,  9.2.21. 

See  E.P.  159,191  of  1921;  J.,  1922,  259  a. 

Electrical  precipitators.  E.P.  176,713.  U.S.P. 
1,409,508,  1,409,901.     G.P.  347,599.     See  I. 

Insulating  material.     U.S.P.  1,409,953.     See  VIII. 


XII.- FATS;  OILS;  WAXES. 

Organic  solvents  for  vegetable-oil  extraction;  Non- 
flammable mixtures  of  .     A.  F.  Sievers  and 

J.  D.  Mclntyre.  Chem.  and  Met.  Eng.,  1922,  26, 
603—606. 
Mixtures  of  30  vols,  of  benzene  and  70  vols,  of 
carbon  tetrachloride,  20  vols,  of  benzene  and  80 
vols,  of  trichloroethylene,  and  35  vols,  of  gasoline 
(b.  pt.  at  250  mm.,  85°  C.)  and  65  vols,  of  carbon 
tetrachloride  are  non-inflammable  and  yield 
vapours  that  cannot  be  exploded  or  set  on  fire  by 
an  electric  spark.  When  these  mixtures  are  dis- 
tilled either  by  steam  or  directly,  the  last-men- 
tioned mixture  yields  very  inflammable  fractions, 
while  the  benzene  mixtures  produce  a  dangerous 
fraction  at  the  end  and  beginning  of  the  distilla- 
tion respectively.  Entirely  safe  mixtures,  which 
are  25—15%  cheaper  than  the  pure  chlorinated 
hydrocarbons  but  3J — 4  times  as  expensive  as 
benzene,  consist  of  carbon  tetrachloride  72%, 
benzene  28%,  or  trichloroethvlene  83%,  benzene 
17%.— A.  R.  P. 

Beef  fat;  Composition  of .    J.  Dekker.  Pharm. 

Weekblad,  1922,  59,  305—320. 
One  kg.  of  beef  fat  was  melted,  allowed  to  cool 
slowly,  and  the  resulting  dense  mass  of  crystals 
pressed  through  gauze,  giving  550  g.  of  stearine. 
This  was  dissolved  in  550  g.  of  ether  and  recrystal- 
lised.  and  the  same  procedure  repeated.  As  a 
result  of  about  a  month's  work  on  these  lines  it  was 
possible  to  arrange  the  crystalline  products  in 
three  groups,  having  melting  points  of  approxi- 
mately 70°  C,  63°  C,  and  58°  C.  The  presence  of 
tristearin,  distearopalmitin,  and  dipalmitostearin 
was  presumed.  The  apex  angle  of  the  crystals  in 
the  various  fractions  differed.  The  results  found 
for  tristearin,  isolated  by  repeated  recrystallisation 
from   ether  of   the   fraction   of  m.p.   70°   C,   were 

b2 


334  a 


Cl.  XII.— FATS  ;    OILS  ;  'WAXES.     Cfc.  XIII.— PAINTS  ;    PIGMENTS,  &c.        [May  15, 1922. 


in  p.  71*2°  C,  saponif.  value,  189'6,  molecular 
weight  of  fatty  acids,  279'5,  m.p.  of  fatty  acids 
acids,  68po°  C,  agreeing  closely  with  the  cal- 
culated figures.  The  fraction  68°  C,  after 
repeated  recrystallisation  from  ether,  had  m.p. 
595°  C,  saponif.  value,  198-2,  add  value,  211;4, 
molecular  weight  of  fattv  acids,  2649,  and  initial 
m.p.  of  fatty  acids,  555°  C— H.  M. 

Glycerides;  Constitution  of  from  the  point  of 

view  of  the  co-ordination  theory.  A.  Griin. 
Oesterr.  Chem.-Zeit.,  1922,  25,  37—38.  (Cf.  J., 
1921,  225  a,  226  a.) 

The  hypothesis  of  the  existence  of  glycerides  in  the 

two  forms,  RCOOR,  and  RC<o}R>  i8  not 
advanced  solely  with  the  object  of  explaining  the 
double  melting  point  of  certain  members  of  this 
class,  but  mainly  to  account  for  their  unusual  re- 
activity which  resembles  frequently  that  of  salts, 
except  in  the  greater  slowness  of  reaction.  Reasons 
are  advanced  for  considering  the  isolation  of  co- 
ordination forms  less  probable  in  the  cases  of  the 
methyl  and  ethyl  esters  than  of  glycerides. 
Dimorphism  does  not  afford  an  adequate  explana- 
tion of  the  occurrence  of  glycerides  in  forms  with 
different  melting  points,  and  is  itself  only  an  out- 
ward expression  of  difference  in  internal  structure. 

— H.  W. 

Gnicus  Benedktus  oil.  A.  Ferenez.  Seife,  1922, 
7,  452.  Chem.  Zentr.,  1922,  93,  I.,  578.  (Cf.  J., 
1920,  71  a.) 
The  characters  of  the  oil  are:  Sp.  gr.  at  15°  C., 
0:9255;  nD"  =  l'4653;  saponif.  value,  196-5 ;  acid 
value,  166;  and  iodine  value,  1396.  A  thin  layer 
on  a  'glass  plate  had  not  dried  after  24  hrs.  The 
oil  is  thus  a  semi-drying  oil.  similar  to  hemp  oil, 
and  is  suitable  for  the  manufacture  of  soap  and 
varnish. — L.  A.  C. 

Shark  oil;  Catalytic  decomposition  of    .      A. 

Mailhe.  Bull.  Soc.  Chim.,  1922,  31,  249—252. 
The  method  used  for  vegetable  oils  (cf.  J.,  1921, 
650  A,  803  a)  has  been  applied  to  shark  oil  as  an 
example  of  an  animal  oil.  When  the  vapours  of 
this  oil  were  passed  over  a  mixture  of  aluminium 
and  copper  at  600°— 650°  O.  acrolein  and  gaseous 
hydrocarbons  were  obtained  together  with  a  liquid 
containing  unsaturated  acids  and  hydrocarbons. 
The  acids  were  separated  and,  on  hydrogenating 
the  mixture  over  nickel  at  230°— 240°  C,  heptoic, 
pelargonic,  and  lauric  acids  were  identified  in  the 
products.  The  liquid  left  after  removing  the  un- 
saturated acids  was  hydrogenated  over  nickel  at 
ig0<> — 200°  C.  and  the  product  consisted  of 
saturated  paraffin  hydrocarbons,  cyclic  hydro- 
carbons, and  aromatic  hydrocarbons  of  which 
benzene,  toluene,  and  m-xylene  were  identified. 
This  mixture  of  hydrocarbons  can  be  separated  by 
fractionation  into  "a  petrol  boiling  at  70° — 150°  C. 
and  an  illuminating  oil  distilling  at  150°— 270°  C. 

— W.  G. 

Oleic   acid;    Catalytic   decomposition   of  .      A. 

Mailhe.  Comptes  rend.,  1922,  174,  873—874. 
When  oleic  acid  vapours  are  passed  over  a  mix- 
ture of  aluminium  and  copper  at  600°— 650°  C. 
they  are  decomposed,  giving  a  gas  rich  in  hydro- 
carbons and  hydrogen  together  with  a  liquid  con- 
taining a  mixture  of  unsaturated  hydrocarbons. 
When  this  mixture  is  hvdrogenated  by  passage  over 
nickel  at  180°— 200°  0.  a  mixture  of  aliphatic  and 
aromatic  hydrocarbons  is  obtained,  and  amongst 
the  latter  benzene,  toluene,  and  m-xylene  were 
identified. — W.   G. 


Soap  solutions;  Surface  tension  of for  different 

concentrations.     A.  L.  Naravan  and  G.  Subrah- 
manyam.     Phil.  Mag,  1922,  43,  663—671. 

The  surface  tensions  of  solutions  of  "  Castyl  "  6oap 
and  sodium  oleate  have  been  determined  by  the 
bubble  method  and  the  results  checked  against 
those  given  by  the  capillary  tube  method.  Details 
of  the  apparatus  are  given.  The  surface  tension  of 
"  Castyl  "  soap  solution  is  practically  independent 
of  the  dilution  up  to  0-23  g.  per  100  c.e.  of  solu- 
tion. Beyond  this  dilution  it  rises  rapidly  to  that 
of  water. — W.  E.  G. 

Patents. 
Oils  and  solvents  containing  oils  in  solution  ;  Process 

for  removing  suspended  matter  from  liquid  . 

H.  Hey.  E.P.  176,540,  16.12.20. 
Sulphonated  oils  produced  by  the  action  of  strong 
sulphuric  acid  on  oleic  or  ricinoleic  acid  or  their 
glycerides  are  used  for  removing  finely  divided  sus- 
pensions of  water  and  solids  from  waste  lubricating 
oils  and  from  organic  solvents  which  have  been 
used  in  extracting  oils  etc.  from  textile  materials, 
seeds,  or  bones,  or  which  have  been  used  in  dry- 
cleaning.  The  sulphonated  oils  may  be  used 
diluted  with  hydrocarbons  such  as  petrol,  benzol, 
solvent  naphtha.  Alkali  compounds  of  sulphonated 
oils  obtained  by  neutralising  them  with  aqueous 
or  alcoholic  potassium  or  sodium  hydroxide  or 
ammonia  may  also  be  used.  100  galls,  of  hot  oil 
or  cold  solvent  can  be  clarified  by  mixing  it  with 
1  pint  of  sulphonated  oil,  or  2  pints  of  the  aqueous 
or  alcoholic  solution  of  sulphonated  oils  or  their 
soaps,  followed  by  settling  for  1  hr. — H.  C.  R. 

Glycerides;  Process   of  removing   acids  from   . 

W.  Gleitz;  G.  Kapmever,  administrator.     TJ.S.P. 

1,408,804,  7.3.22.     Appl.,  15.8.21. 
Free  fatty  acids  are  removed  from  fats  by  dissofo 
ing  the  latter  in  solvents  in  which  soap  and  alkali 
are  insoluble.     Alkali  is  added  to  the  solution,  and 
the  soap  formed  is  precipitated  and  removed. 

—A.  G.  P. 

Saponaceous   compositions;    Manufacture    of   . 

F.  G.  Chadbourne.    E.P.  176,577,  10.1.21.    Addn. 

to  160,892  (J.,  1921,  356  a).  ■ 
The  filling  material  used  is  a  superfine  china  clay 
having  particles  of  diameter  about  000004.  in. 

— H.  C.  R. 

Oil;  Extraction  of hy  volatile  solvents.    A.  W. 

Mcllwaine  and  G.  F.  Holdcroft.  U.S. P.  1.410,822. 

28.3.22.     Appl.,  8.8.19. 
See  E.P.  136,870  of  1918;  J.,  1920,  163  a. 

[Oil-~]cake-meal    forming     presses;     Apparatv 

controlling  the  operations  of .  P.  D.  Weston 

and    Olympia    Oil    and    Cake    Co.,  Ltd.       F..P. 
176,413,"  16.6.21. 

Food  product.    TJ.S.P.  1,410,345-6.    See  XIXa. 

XIII.-PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Vanadium  compounds  as  driers  for  linseed  oil 
F.  H.  Rhodes  and  K.  S.  Chen.  J.  Ind.  Eng- 
Chem.,  1922,  14,  222—224. 
Satisfactory  driers  for  linseed  oil  may  be  prepan  a 
by  heating  ammonium  metavanadate  with  rosin  M 
linseed  oil.  The  driers  thus  prepared,  when  used 
in  amounts  sufficient  to  give  0'2%  of  vanadium  in 
the  oil.  cause  it  to  drv  to  a  hard,  tough,  smootn 
film.  Vanadium  is  superior  to  lead  in  drying  power 
and  gives  smoother  and  tougher  films  than  does 
manganese  or  cobalt.     The   principal  objection  to 


Vol.  XIX,  No.  9.] 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTA-PERCHA. 


335  a 


vanadium  driers  is  that  they  darken  the  oil  some- 
what. The  initial  oxidation  of  linseed  oil  contain- 
ing vanadium  drier  is  much  more  rapid  than  that 
of  oil  containing  an  equal  amount  of  lead  drier, 
and  the  rapid  absorption  of  oxygen  continues  for 
a  much  longer  time.  About  1'75  times  as  much 
oxygen  is  absorbed. — H.  C.  R. 

Patents. 

Zinc  oxide   [pigment];  Manufacture  of  .     A. 

Pearson.     E.P.  176,588,  17.1.21. 

The  coloured  oxides  of  lead  or  cadmium,  which  if 
present  depreciate  the  value  of  zinc  oxide  as  a 
pigment,  are  removed  as  follows :  The  necessary 
amount  of  sulphuric  acid  or  of  finely  divided 
anhydrous  zinc  sulphate  is  intimately  mixed  with 
the  oxide  and  the  mixture  heated  in  a  muffle  furnace 
to  a  temperature  rising  from  720°  C.  to  820°  C.  for 
30  mins.  As  basic  zinc  sulphate  decomposes  at 
755°  C.  the  whole  of  the  sulphuric  anhydride  is 
then  combined  in  the  white  basic  salts  6Pb0.5S03, 
and  5CdO,4S03.  These  salts  decompose  at  878°  C, 
which  temperature  should  not  be  reached. — C.  I. 

Titanic  oxide  products  [pigments'] ;  Method  of  pro- 
ducing  composite  .     L.   E.   Barton,  Assr.  to 

Titanium   Pigment  Co.,   Inc.      U.S. P.   1,409,648, 
14.3.22.     Appl.,  23.4.20. 

A  pigment  contains  barium  sulphate,  titanic  oxide, 
and  sodium  sulphate. — L.  A.  C. 

Composition  applicable  for  use  as  floor  coverings 
and  the  like  and  for  other  purposes.  H.  Frood. 
E.P.  176,405,   7.9.20. 

Organic  and /or  inorganic  fibrous  material,  before 
or  after  treatment  with  a  cementitious  substance 
such  as  varnish,  enamel,  a  phenol-formaldehyde 
condensation  product,  or  the  like,  is  disintegrated 
or  shredded  in  such  a  manner  as  to  preserve  the 
original  length  of  the  fibres,  and  the  product  is 
kneaded  to  a  uniform  mass  with  rubber  and/or 
casein  or  animal  glue,  together  with  filling  material, 
colouring  matter,  and  the  like.  The  fibrous  material 
and  rubber  respectively  may  be  fireproofed  by  treat- 
ment with  solutions  of  sodium  silicate,  zinc  chloride, 
antimony  trichloride,  or  the  like,  and  by  chlorina- 
tion  or  other  means.  The  composition  is  rolled  into 
sheets  or  moulded  into  shape,  and  is  subsequently 
vulcanised. — L.  A.  C. 

Printing  or  lithographing  ink.  H.  X.  Holmes  and 
D.  H.  Cameron.  U.S. P.  1,410,012,  21.3.22. 
Appl.,  6.6.21. 

Ink  for  printing  or  lithographing  is  prepared  by 
emulsifying  in  ink,  in  the  presence  of  gum  dammar, 
a  liquid  of  the  "  watery  "  type,  to  produce  an  emul- 
sion of  the  water-in-oil  type. — L.  A.  C. 


-.     G.   W.   Miles, 
U.S. P.    1,410,211, 


Resin;  Method  of  oxidising  - 
Assr.  to  Ross  Chemical  Co. 
21.3.22.     Appl.,  12.3.20. 

Finely  divided  resin  is  oxidised  by  treatment  with 
hydrogen  peroxide  in  water. — L.  A.  C. 


Titanium  oxide  pigment  and  method  of  producing 
the  same.  W.  F.  Washburn,  Assr.  to  Titan  Co. 
A./S.    U.S.P.  1,412,027,  4.4.22.    Appl.,  23.1.20. 

See  E.P.  149,316  of  1920;  J.,  1921,  552  a. 

Resinous  substances;  Process  for  the  recovery  of 
— —  from  waste  sulphuric  acid,  [from  refining  tar 
oils].  Deutseh-Luxemburgische  Bergwerks-  und 
Hiitten-A.-G.  E.P.  157,715,  10.1.21.  Conv., 
11.5.16. 

See  G.P.  319,011  of  1916;  J.,  1920,  577  a. 


Rosm  soap;  Methods  of  preparing  dilute  solutions 

of J.  A.  De  Cew  and  R.  J.  Marx.     E.P. 

176,995,  2.2.21. 

See  U.S.P.  1,370,884  of  1921;  J.,  1921,  311  a. 

XIV.-INDIA-HUBBEB;  GUTTA-PEBCHA. 

[Rubber;]    Effect   of  proportion  of   coagulant   on 

rutc    of    cure    [vulcunisation    of   ].      H.    P. 

Stevens.      Bull.      Rubber  Growers'  Assoc,  19221 
4,  134—137. 

The  initial  increase  in  the  proportion  of  a  coagulant 
has  a  much  greater  effect  than  subsequent  in- 
creases, and  the  effect  on  the  chemical  combination 
of  rubber  with  sulphur  is  more  marked  than  on  the 
alteration  of  the  extensibility  of  the  rubber.  The 
minimal  proportion  of  acetic  acid  (1:1200)  produces 
a  more  rapidly  vulcanising  rubber  than  the  minimal 
proportion  of  alum  (1:400),  and  the  latter  in  turn 
has  a  greater  effect  than  sulphuric  acid  (1:2000). 
Increase  in  the  proportion  of  coagulant  has  a 
greater  retarding  effect  on  the  rate  of  vulcanisa- 
tion of  sheet  than  of  crepe  rubber.  Of  the 
coagulants  mentioned,  acetic  acid  is  the  most 
satisfactory  and  sulphuric  acid  the  least. 

— D.  F.  T. 

Mould  [on  rubber;]  Prevention  [of  ].     H.  P. 

Stevens.     Bull.  Rubber  Growers'  Assoc.,  1922,  4, 
132—133. 

On  account  of  its  volatile  character,  the  effect  of 
formalin  in  preventing  the  development  of  surface 
mould  on  rubber  is  fugitive.  Sodium  silicofluoride 
is  a  very  satisfactory  preservative  for  the  purpose. 
It  is  introduced  into  the  latex  in  a  proportion  of  at 
least  1*8  g.  per  3  litres.  This  proportion  does  not 
,  interfere  with  the  ordinary  coagulation  process  nor 
with  the  satisfactory  vulcanisation  of  the  rubber. 

— D.  F.  T. 

Rubber;  Action  of  concentrated  sulphuric  acid  on 

natural  tin, I  artificial .  F.  Kirchhof.  Kolloid- 

Zeits.,  1922,  30,  176—186. 
The  action  of  concentrated  sulphuric  acid  on 
rubber  in  organic  solvents  (benzene,  carbon  bisul- 
phide, carbon,  tetrachloride,  etc.)  is  chiefly  chemi- 
cal, whereby  the  hydrocarbons  undergo  a  change  in 
composition  as  well  as  a  change  in  structure.  This 
change  is  accompanied  by  a  change  in  physical 
properties  (elasticity,  plasticity,  solubility,  specific 
gravity).  The  spatial  spiral-8-ring  was  found  the 
most  probable  structure — for  Para  caoutchouc  the 
two  or  three  open  spiral-8-ring,  i.e.,  C20H31  or 
C30HSO,  for  African  caoutchouc  a  closed  spiral-8- 
ring,  i.e.,  C?0H32  or  C30Hla.  Gutta-percha  seems  to 
take  a  position  between  these  two.  A  new  interpre- 
tation of  the  oxidation  processes  of  vulcanised 
rubber  is  indicated.  The  hard,  brittle  mass  obtained 
is  the  oxidation  product  of  tetramethylene-caout- 
chouc  obtained  by  transformation  of  caoutchouc. 
(Cf.  J.,  1921,  91a.)— W.  T. 

Patents. 

Rubber  products  and  method  of  making  the  same. 
Gasket,  packing,  etc.  Rubber  gasket,  packinq, 
etc.  E.  0.  Benjamin.  U.S.P.  (a)  1,409,275,  (b) 
1,409,276,  (c)  1,409,277,  14.3.22.  Appl.,  (a) 
26.6.18,  (b)  and  (c)  1.7.18. 

(a)  A  vulcanisable  "  gum  material  "  is  mixed  with 
a  vulcanising  agent,  and  then  with  a  comminuted 
inert  substance,  the  particles  of  which  are  coated 
with  a  primary  soluble  condensation  product  of  the 
phenol-formaldehyde  type ;  the  mixture  can  be 
hardened  by  heating,  (b,  c)  A  resilient,  non-sticky 
gasket  or  packing  material  is  made  from  a  mineral 
filler,  with  or  without  a  lubricating  material,  held 
and   protected   by   a   rubber   mixture   of   the   type 


336  a 


Cl.  XV.— LEATHER)  BONE;  HORN;  GLUE. 


[May  15,  1922. 


described  in   (a);  the  completed  material  contains 
less  than  1%  of  uncombined  sulphur. — D.  F.  T. 

Ebonite   solution.     W.   B.    Pratt,    Assr.    to   E.    H. 

Clapp   Rubber    Co.      U.S.P.    1,409,570,    14.3.22. 

Appl.,   11.5.18. 
The    solvent    used    for     the    ebonite    solution     is 
obtained   by   digesting   spirits   of  turpentine   with 
oxalic  acid  and  distilling  off  the  light  oils. — D.  F.  T. 

Bubber-like  substances;  Process  for  the  manufac- 
ture of .     H.  O.  Traun's  Forschungslaborato- 

rium.    E.P.  156,119,  30.12.20.     Conv.,  31.10.18. 

Bee  G.P.  329,593  of  1918;  J.,  1921,  270  a. 

Floor  coverings  etc.     E.P.  176,405.     See  XIII. 


XV.-LEATHER;  BONE;  H0DN ;  GLUE. 

Hide  and  pelt;   Contribution  to  the  biology  and 

chemistry  of  .     The  mineral  constituents  of 

hide  and  pelt.  W.  Moeller.  Z.  Leder-  u.  Gerb.- 
Chem.,  1921—2,  1,  115—124. 
A  hide,  preserved  with  antiseptio  mineral  ealte, 
and  containing  a  high  percentage  of  ash,  was  given 
six  washings  in  distilled  water,  each  of  3  days 
duration.  Cuttings  from  the  hide  and  the  wash 
waters  were  analysed  after  each  wash.  Soaking 
removed  a  large  amount  of  mineral  matter  from 
the  hide,  and  the  proportions  of  the  different  con- 
stituents varied  with  the  different  washings.  The 
relative  ash  content  and  the  percentage  composi- 
tion of  the  mineral  constituents  of  the  pelt  were 
fairly  constant  for  a  small  amount  of  washing. 
With  repeated  soaking,  the  amount  of  mineral 
matter  extracted  was  proportional  to  the  amount 
of  hide  substance  hydrolysed.  Calcium  salts  and 
silicic  acid  were  removed  from  the  pelt  by  the  re- 
peated 6oakings.  During  the  processes  of  liming 
■and  bating  the  amount  of  mineral  matter  in  the 
pelt  does  not  alter,  but  most  of  the  silicic  acid  is 
replaced  by  lime.  After  the  repeated  soakings  the 
hide  was  like  pelt  and  could  have  been  tanned 
without  further  treatment. — D.  W. 

Hydrolysis  [of]  and  adsorption  [by  hide  powder']  ; 

The  relation  between  .       W.   Moeller.       Z. 

Leder-  u.  Gerb.-Chem.,  1921-2,  1,  125—136. 
The  results  obtained  previously  (c/.  J.,  1920,  730  a), 
establishing  the  relation  between  hydrolysis  and 
the  apparent  adsorption  values  of  hide  powder  with 
hydrochloric  acid,  have  been  confirmed.  After  the 
acid  has  been  in  contact  with  the  powder  for  a  time 
a  maximum  hydrolytic  effect  is  obtained.  The 
hydrolysis  and  the  amount  of  acid  adsorbed  depend 
oil  the  degree  of  dispersion  of  the  hide  powder. 
With  increased  dispersion  the  hydrolysis  of  the 
hide  powder  becomes  independent  of  the  concentra- 
tion of  the  acid.  The  use  of  large  volumes  of  hydro- 
chloric acid  gives  diminishing  deviations  in  the 
hydrolytic  and  adsorption  effects.  Hydrolysis  in 
strong  solutions  attains  its  maximum  in  8  days  and 
then  falls  away.  The  hydrolysis  in  large  volumes 
of  the  acid  is  the  same  as  for  smaller  volumes  after 
8  days,  but  it  continues  to  increase  in  JV/10  and 
N 12  solutions  of  hydrochloric  acid,  until  after  4 — 8 
weeks,  80 — 90%  of  the  hide  powder  has  been  hydro- 
lysed.—D.  W. 

Tannin  analysis;    Official  method  of  .      H.  C. 

Heed    and    T.    Blackadder.        J.    Amer.    Leather 
Ghem.  Assoc,  1922,  17,  158—166. 

The  adsorption  of  "non-tannins  by  hide  powder  can 
be  reduced  by  diminishing  the  amount  of  ponder 
used,  and  complete  detannisation  can  be  effected  by 
shaking  the  tannin  solution  for  1 — 2  hrs.  instead 
of  10 — 20  mins.     Better  adsorption  of  the  tans  can 


be  effected  by  detannising  in  a  more  acid  solution. 
Mineral  acids  decompose  the  non-tan  residues,  so 
that  formic  acid  should  be  used,  and  a  mixture  of 
quinol  and  chromic  acid  for  the  pre-tannage  of  the 
hide  powder.  This  precludes  the  possibility  of  the 
formation  of  free  mineral  acid  with  consequent 
charring  of  the  non-tan  residues.  Errors  arise 
from  the  presence  of  lime  in  the  hide  powder  which 
can  be  reduced  by  washing  four  times  after  the 
pre-tannage,  then  shaking  four  times  with  formic 
acid  of  suitable  dilution,  squeezing  after  each  treat- 
ment. The  non-tans  figure  is  diminished  progres- 
sively by  shaking  with  solutions  of  increasing 
strength.  The  results  are  illustrated  graphically, 
and  from  theoretical  considerations  the  authors 
show  that  the  official  concentration  of  4  g.  per  1.  is 
not  the  best  for  obtaining  accurate  results;  a 
higher  concentration  would  be  better.— D.  W; 

Density  of  a  [tanning]  solution;    Factor  relating 

the to  its  concentration.     H.  G.  Bennett  and 

N.  L.  Holmes.     J.  Soc.  Leather  Trades'  Cheni., 
1922,  6,  102—113. 

The  factor  (y)  connecting  the  degree  Barkometer  of 
a  solution  with  its  concentration  by  volume  is  deter- 
mined in  the  case  of  inorganic  salts  by  the  sp.  gr. 
of  the  solute,  the  volume  change  caused  in  dissolv- 
ing, and  the  position  of  the  ions  of  the  solute,  espe- 
cially the  anion,  in  the  lyotrope  series.  In  the  case 
of  non-ionisable  substances,  and  still  more  in  the 
case  of  colloids,  the  value  of  y  is  determined  chiefly 
by  the  density  of  the  solute,  and  is  usually  much 
more  constant  than  for  salts.  The  values  of  y  for 
the  soluble  solids  of  tanning  materials  are  character- 
istic, and  the  differing  values  for  bark  and  myro- 
balans,  for  example,  may  be  utilised  for  determining 
the  relative  proportions  of  the  two  in  mixtures  and 
for  following  the  course  of  leaching  of  such  mix- 
tures. Methods  of  utilising  the  factor  y  in  prepar- 
ing tannin  solutions  of  analytical  strength  and  in 
making  approximate  tests  are  indicated. 

Tannery  liquors;    [Prevention  of]  fermentation  in 

.     B.   S.  Levine.      J.   Amer.  Leather  Chem. 

Assoc,  1922,  17,  151—154. 

Mould  formation  on  tannery  liquors  can  be  pre- 
vented by  sprinkling  the  surface  with  thymol, 
certain  copper  salts,  or  a  thin  layer  of  petroleum 
oil.  The  development  of  moulds,  bacteria,  and 
yeasts  can  be  prevented  by  arranging  a  thin  copper 
sheet  in  contact  with  the  surface  of  the  liquor  or 
by  so  arranging  the  sheet  that  when  the  liquor  is 
stirred  up  everv  part  of  it  comes  into  contact  with 
the  sheet.— D.  W. 

Tannase.     D.  Rhind  and  F.  E.  Smith.     Biochem. 
J.,  1922,  16,  1—2. 

A  method  has  been  elaborated  for  estimating  the 
hydrolysing  power  of  tannase  by  measuring  the 
tannin  present  in  a  solution  before  and  after 
action  by  the  enzyme  for  varying  periods.  The 
tannin  is  determined  by  titrating  the  whole  solu- 
tion with  potassium  permanganate  in  presence  of 
indigo-carmine,  the  tannin  is  then  removed  bv 
Nierenstein's  caseinogen  method,  and  the  solution 
is  again  titrated  with  potassium  permanganate. 
The  difference  between  the  two  titrations  repre- 
sents the  amount  of  gallotannin  present. — W.  0.  K. 

Synthetic    tanning    materials;    Critical     study    of 

determination  of  the  active  constituents  of  - 

by  the.  hide  powder  method.    S.  Kohn,  J.  Breedie, 

and  E.  Crede.     J.  Amer.  Leather  Chem.  Assoc, 

1922,  17,  166—180. 

Synthetic  tanning  materials  can  be  divided  into 

"  combination  "     tans     and     "  adsorption  "    tans. 

Some  contain  compounds  which  combine  chemically 

with  the  hide  substance,  but  the  products  are  not 


Vol.  XLI.,  No.  9.) 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


337  a 


very  stable  or  insoluble,  and  a  lower  degree  of  in- 
dependence  of   the   concentration   of   the    solution 
and  a  lower  resistance  to  washing  are  shown.     The 
definition  of  a  combination  tan  should  include  some 
limits  of  stability  and  insolubility  of  the  compound 
with  collagen.     The  hide  powder  method  of  analysis 
of  synthetic  tans  can   never   replace   tanning   ex- 
periments.    Certain  uncondensed  sulphonic   acids, 
e.g.  naphthalenesulphonic  acid,  respond  to  the  hide 
powder  method  of  analysis  like  tans,  although  they 
are  not  actually  tanning  agents.     It  is  misleading 
to  compare  a  tannin  unit  of  one  type  of  synthetic 
tan  with  that  of  another  or  with  a  unit  of  vegetable 
tan,   because   they   possess   widely   different   mole- 
cular weights.     Their  tanning  value  lies  as  much 
in  the  increased  efficiency  they  give  to  the  use  of 
vegetable  tannins  with  which  they  are  mixed  as  in 
their  value  as  tannins  themselves.    The  hide  powder 
method  forms  no  guide  to  the  relative  efficiencies  of 
different  synthetic  tannins  in  this  respect.     Samples 
should  be  analysed  for  soluble  solids,  organic  matter, 
and  correct  acidity,  which  is  that  acidity  at  which  a 
solution  of  the  synthetic  tan,  after  being  shaken 
with  hide  powder,  shows  neither  free  acid  nor  tan 
in  the  filtrate.     40  g.  of  the  sample  is  dissolved  in 
|  1  1.  of  water,   100  c.c.   of  the  solution  neutralised 
|  with  20  c.c.  of  jV/10  sodium  hydroxide,  evaporated 
to  dryness  to  give  the  soluble  solids  and  a  correction 
\  made  for  the  sodium  introduced.    To  determine  the 
I  correct   acidity   100-c.c.   samples   are   treated   with 
I  5  g.  of  air-dry  hide  powder,   starting  with  a  low 
acidity  and  gradually  increasing  until  the  filtrate 
if.  both  neutral  and  detannised.     Results  of  analyses 
!  of  a  certain  sample  at  different  acidities  show  that 
i  ac  zero  acidity  the  whole  of  the  tannin  is  present 
as  "  adsorption  tan."  at  the  "correct  acidity  "  as 
"combination  tan,"   because  the  sample  does  not 
then  contain  any  sodium  sulphonates  which  follow 
■  the  law   of    adsorption.       Analyses     according     to 
Wilson  and  Kern's  method  (J.,  1920,  522  a)  at  the 
."correct    acidity"    give   approximately   the    same 
'  result  as  the   official   method,     thus     proving    the 
absence  of  adsorption  tans.    The  "  correct  acidity  " 
varies  only  slightly  with  increased  concentration  of 
synthetic  tannins  of  the  best  type,  but  much  more 

Iwith  those  containing  inferior  tans. — D.   W. 
Aldehyde  tannage;  Influence  of  the  Cannizzaro  re- 
action on  the  .     W.  Moeller.     Z.  Leder-  u. 
Gerb.-Chem.,  1921—2,  1,  54—64. 

The  apparent  diminution  in  the  power  of  aldehyde- 
tanned  hide  to  absorb  acid  is  explained  by  the  pre- 
sence of  formic  acid  in  the  formaldehyde,  the  forma- 
tion of  methyleneamino-acids  with  the  hide 
decomposition  products,  and  the  catalytic  formation 
■  of  formic  acid  by  the  Cannizzaro  reaction.  Formal- 
dehyde solutions  cannot  he  kept  neutral  because 
this  reaction  is  always  proceeding.  The  pre- 
sence of  hide  powder  or  of  animal  charcoal 
icatalyses  the  reactions  taking  place  according  as 
!the  conditions  are  favourable  to  the  Cannizzaro 
reaction  or  the  aldol  condensation,  so  that  the 
theory  that  the  ba?ic  groups  in  the  hide  substance 
ire  saturated  by  the  formaldehyde  tannage  is  un- 
tenable. The  cause  of  the  diminished  power  of 
idsorption  must  be  in  the  formaldehyde  solution 
md  not  in   the   adsorbent. — D.   W. 

relatin  solutions;  Physical  characteristics  of  . 

C.  E.  Davis  and  E.  T.  Oakes.     J.  Amer.  Chem. 

Soc.,  1922,  44,  464—479.  (Cf.  J.,  1921,  898  a.) 
The  density  of  a  gelatin  solution  of  any  concentra- 
ion  and  at  any  temperature,  expressed  in  g.  per  c.c, 
= ) equal  to  the  density  of  water  at  that  temperature 
>Ius  (xx  0-00290)  where  x  is  the  percentage  con- 
entration  of  gelatin  by  weight.  The  viscosity- 
temperature  curve  of  gelatin  solutions  has  a  sharp 
leflection  at  the  transition  temperature  of  gelatin. 


There  are  two  maxima  in  the  viscosity-hydrogen  ion 
concentration  curve  for  gelatin,  which  are  equi- 
distant from  the  neutral  point  of  water ;  the  effect 
of  the  isoelectric  point,  pa  4'7,  is  not  noticeable  on 
the  curve.  The  transition  point  of  gelatin  sol  form 
A^gel  form  B  is  at  38-03°  C— J.  F.  S. 

Patents. 

Adhesive  and  coating  composition.  R.  Scherer, 
Assr.  to  H.  Barna.  U.S. P.  1,409,472,  14.3.22. 
Appl.,  19.8.21. 

A  composition  consisting  of  a  mixture  of  casein, 
sodium  sulphite,  sodium  fluoride,  and  calcium  oxide 
or  hvdroxide  together  with  a  colouring  agent. 

— D.  W. 


XVI.    SOILS ;    FERTILISERS. 

Alkali  soils;  Some  experiments  on  reclamation  of 

infertile   by   means    of    gypsum   and    other 

treatments.  P.  L.  Hibbard.  'Soil  Sci.,  1922,  13, 
125—134. 

Excessive  salinity  of  soils  may  be  removed  by 
leaching.  Alkalinity  due  to  sodium  silicate  or  car- 
bonate may  be  partially  ameliorated  by  treatment 
with  gypsum,  but  further  leaching  with  water  is 
necessary  to  restore  fertility.  Organic  manures,  by 
increasing  the  content  of  carbon  dioxide  in  the 
soils,  may  lower  the  intensity  of  alkalinity 
sufficiently  to  enable  plants  to  grow.  Soils  contain- 
ing more  than  0'5°/„  of  sodium  salts  cannot  be  ren- 
dered fertile  by  gypsum  alone  unless  the  sodium 
salts  can  be  leached  out.  In  leaching  very  alkaline 
soils  a  flocculating  agent  such  as  gypsum  or  calcium 
bicarbonate  is  necessary  to  prevent  puddling  of  the 
surface  soil  and  the  consequent  impossibility  of 
percolation.  Water  used  for  leaching  should  not 
contain  sodium  carbonate.  The  removal  of  sodium 
sulphate  or  chloride  from  saline  soils  is  usually 
attended  by  decreased  H-ion  concentration  before 
all  the  sodium  carbonate  is  removed. — A.  G.  P. 

Alumitiiu,.i  salts  in  the  soil;  Nature  of and 

their  influence  on  ammonification  and  nitri- 
fication. I.  A.  Denison.  Soil  Sci.,  1922,  13, 
81—106. 

The  aluminium  found  in  aqueous  soil  extracts  by 
many  workers  is  shown  to  exist  as  aluminium 
hydroxide  hydrosol.  In  several  acid  6oils  exam- 
ined no  dialysable  aluminium  salts  could  be  found. 
When  basic  ions  displace  aluminium  from  soil 
minerals,  the  aluminium  appears  as  hydroxide,  and 
salts  are  only  formed  when  the  H-ion  concentra- 
tion passes  a  certain  maximum  figure.  This  may 
be  brought  about  by  the  adsorption  of  basic  ions 
from  other  added  salts  and  by  the  bacterial  oxida- 
tion of  sulphur.  The  toxicity  of  "  acid  "  soils  is 
probably  due  to  causes  other  than  the  production 
of  soluble  aluminium  salts,  which  would  appear 
rather  as  a  result  of  acidity.  Aluminium  salts 
stimulate  ammonification  but  tend  to  inhibit  nitri- 
fication— at  all  events  for  a  period.  Two  months 
after  treatment  with  aluminium  salts  soils  began  to 
show  improved  nitrate  production,  probably  owing 
to  the  inactivation  of  the  toxic  salts  by  the  soil. 
The  inhibition  of  nitrification  by  aluminium  salts 
is  most  readily  reduced  by  calcium  carbonate. 

—A.  G.  P. 

Clay  as  an  ampholyte.      O.  Arrhenius.      J.  Amer. 
Chem.  Soc,  1922,  44,  521—524. 

Clays  of  different  origin  and  different  reaction 
have  the  same  iso-electric  point,  and  the  curve 
obtained  by  plotting  the  rate  of  settling  against 
the  hydrogen  ion  concentration  has  the  same  course 
as  that  for  gelatin.   Clay  acts  as  an  amphoteric  elec- 


338  a 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


(May  15,  1922. 


trolyte,  and  can  therefore  combine  with  either  acid 
or  base.  This  is  also  shown  by  the  buffer  action  of 
clay— J.  F.  S. 

Soil  sterilisation  for  tomatoes.  T.  Parker,  A.  W. 
Long,  and  J.  S.  Mitchell.  Bull.  Bur.  Bio-Tech., 
1922,  No.  5,  134—142. 

Partial  sterilisation  experiments,  using  dichloro- 
cresol  mixed  with  cresol  or  absorbed  in  basic  slag, 
sodium  p  toluene  sulphochloramide  and  cresylic  acid 
respectively  as  antiseptics  are  described.  In  all 
cases,  however,  judging  by  the  crop  yields,  the 
chemicals  were  applied  at  too  great  a  concentra- 
tion. The  experiments  do,  however,  show  the  value 
of  the  above  chemicals  in  preventing  root-canker 
and  eelworm  damage. — W.  G. 


Sulphur  oxidation;  Studies  of  in  sulphur- 
floats-soil  mixtures.  J.  S.  Joffe.  Soil  Sci.,  1922, 
13,  107—118. 

The  effect  of  aeration  on  the  oxidation  of  sulphur 
in  the  mixtures  was  studied  by  observation  of  the 
amounts  of  rock  phosphate  rendered  available.  In 
80 — 100  days  aerated  mixtures  contained  6%  more 
available  phosphate  than  the  controls,  and  this 
difference  persisted  during  the  remainder  of  the 
experiment.  When  the  acidity  produced  a  pH-value 
of  2'8  only  the  sulphur-oxidising  bacteria  could  be 
found  in  the  composts;  and  after  this  point  was 
reached  no  advantage  could  be  claimed  for  aeration. 
Initial  treatment  of  the  mixtures  with  dilute  sul- 
phuric acid  tended  to  accelerate  the  initial  stages 
of  the  oxidation.  This  is  possibly  due  to  a  simpli- 
fication of  the  bacterial  flora  by  the  acid.  Data 
show  that  the  critical  acidity  for  the  conversion  of 
insoluble  to  soluble  phosphates  corresponds  to 
pH  2'7 — 8.  The  presence  of  fluorides  in  the  rock 
phosphate  "  floats  "  causes  the  formation  of  silicon 
tetrafluoride  during  the  oxidation,  but  this  has  no 
apparent  injurious  action  on  the  bacteria. 

—A.  G.  P. 


Plants;  Behaviour  of  certain  organic  compounds  in 
— — .  XIV.  G.  Ciamician  and  A.  Galizzi.  Gazz. 
Chim.  Ital.,  1922,  52,  I.,  3—20.  (Cf.  J.,  1921, 
555  a.) 

Investigations  of  the  resistance  of  a  number  of 
organic  compounds  to  oxidation  by  pulped  spinach 
confirm  the  previous  conclusion  that  the  chemical 
actions  of  such  compounds  on  plants  are  not  deter- 
mined solely  by  etherification  of  the  hydroxyl, 
amino,  and  imino  groups,  but  are  dependent  also  on 
other  differences  of  constitution.  The  most 
poisonous  products  are  not  necessarily  those  most 
resistant  to  oxidation  by  vegetable  enzymes. 
Xanthine  and  ammonia  exert  deleterious  actions  on 
the  bean  plant,  and  there  is  now  no  evidence 
against  the  view  that  fundamental  compounds 
harmless  to  plants  yield  innocuous  derivatives. 
Tests  made  with  ethyl  and  potassium  succinates  and 
oxalates  confirm  the  earlier  observation  that  esters 
are  more  injurious  to  bean  plants  than  the  corre- 
sponding potassium  salts.  Alcohols  influence  the 
development  of  plants  similarly  to  the  amines,  but 
do  not  give  rise  to  the  phenomena  characteristic  of 
the  alkaloids;  further,  the  action  diminishes  with 
increase  in  the  number  of  carbon  atoms  in  the 
normal  chain.  Isobutyl  and  isoamyl  alcohols,  like 
isoamylarnine,  show  abnormally  high  toxicity,  prob- 
ably owing  to  the  presence  of  a  methyl  group  in  the 
side-chain  of  the  alcohol  radicle.  For  compounds 
with  equal  numbers  of  carbon  atoms  the  series — 
amines,  alcohols,  aldehydes,  acids — represents  the 
order  of  diminishing  toxicity  towards  plants,  the 
toxicity  increasing  with  the  resistance  offered  to 
enzymic  oxidation.     {Cf.  J.C.S.,  May.) — T.  H.  P. 


Patents. 

Fertiliser    and    its    use.     E.     E.     Free.      U.S. P. 
1,409,126,  7.3.22.    Appl.,  8.5.16. 

Plant  growth  is  stimulated  by  substances  which 
are  poisonous  when  used  in  excess.  The  toxic 
quantity  for  a  particular  soil  is  determined,  and 
the  requisite  amount  of  the  stimulant  in  a  rela- 
tively insoluble  form  is  added  so  as  to  produce  a 
sufficiently  concentrated  solution  in  the  soil  to 
ensure  a  stimulating  effect. — A.  G.  P. 

Fertiliser.    W.  O.  Snelling,  Assr.  to  Trojan  Powder 
Co.     U.S. P.  1,410,037,  21.3.22.     Appl.,  18.4.19. 

A  nitrated  carbohydrate  is  used  as  a  fertiliser. 

— C.  I. 

Calcium    cyanamide;   Production  of  a   non-dusty, 

readily     distributable      crude     .     Ehenania 

Verein  Chem.  Fabr.  A.-G.,  and  A.  Messerschmitt. 
G.P.  348,779,  23.10.17. 

A  non-dusty  calcium  product,  which  does  not  lose 
nitrogen  on  prolonged  storage,  is  made  by  inti- 
mately mixing  finely  ground  calcium  cyanamide  and 
silicophosphates  made  by  a  dry  process. — A.  B.  S. 


XVII.-SUGARS ;  STARCHES;  GUMS. 

Dextrose;  Manufacture   of   chemically   pure   . 

C.  E.  G.  Porst  and  N.  V.  S.  Mumford.    J.  Ind. 
Eng.  Chem.,  1922,  14,  217—218. 

The  raw  material  was  "  Cerelose,"  a  corn  (maize) 
sugar  made  by  allowing  a  highly  converted  maize 
syrup  to  crystallise,  cutting  the  resulting  mass  into 
slabs,  pressing  out  the  mother  liquor  and  drying 
the  pulverised  cake.  This  was  mixed  in  a  kneading 
machine  with  enough  water  to  give  a  mixture  which 
could  be  ceutrifuged.  The  purity  was  thus  raised 
to  99'0%.  The  sugar  was  then  heated  with  enough 
water  to  give  a  solution  of  63° — 68°  lirix. 
30 — 40  gals,  of  solution  being  made  up,  heated  to 
70° — 80°  C,  and  passed  through  a  bone-black  filter 
at  this  temperature.  The  filtrate  was  collected  in 
10-gal.  glazed  stoneware  vessels  and  allowed  to 
crystallise  without  the  addition  of  "  seed  "  for 
48—72  hrs.  The  massecuite  was  centrifuged  .ind 
washed  with  water,  this  process  taking  J — j  hr. 
The  sugar  then  contained  20 — 30%  of  water,  and 
was  further  dried  in  an  air  dryer  at  40° — 50°  C.  to 
lees  than  1  %  of  water.  The  dextrose  obtained  by 
this  single  crystallisation  had  a  purity  of  99'90— 
9995%.— H.  C.  R. 

Dextrose;   Estimation  of  small   quantities  of  

by  Bertrand's  process.  I.  Greiner.  Biochem. 
Zeits.,  1922,  128,  274—278. 
Accurate  results  for  the  estimation  of  quantities 
of  dextrose  less  than  10  rag.  are  obtained  by  Ber- 
trand's process  if  10  c.c.  of  the  sugar  solution  be 
taken,  mixed  with  10  c.c.  of  the  copper  solution, 
and  10  c.c.  of  a  solution  containing  150  g.  of  sodium 
carbonate  and  30  g.  of  sodium  bicarbonate  per  litn 
be  added,  followed  by  10  c.c.  of  _.  the  potassium 
sodium  tartrate  solution,  and  the  process  carried 
out  in  the  standard  manner,  except  that  after  boil- 
ing the  solution  for  3  mins.  it  is  allowed  to  coo 
for  15  mins.  For  the  titration  a  5  c.c.  buretti 
graduated  to  0'01  c.c.  is  recommended.  The  milli 
grams  of  copper  corresponding  to  milligram?  <■ 
dextrose  are  shown  in  the  following  table:  — 
Cu  208 187  16-6 146 125  10'5  8"44  6"39  434  8'2! 

Dextrose  10       98765       4321 

— H.  K. 

Dextrose;     Influence    of    sodium    chloride    on   th< 

mutarotation    of  in  alkaline    solution. 

Murschhauser.        Biochem.      Zeits.,      1922,      IW 
215—228. 

In  2V/2000  sodium  carbonate  solution  the  velooit; 


Vol.  XLI..  Xo.  9.] 


Cl.  xviii.— fermentation  industries. 


339  a 


of  mutarotation  of  dextrose  solution  is  retarded  by 
the  presence  of  sodium  chloride.  The  retardation 
is  proportional  to  the  square  root  of  the  concentra- 
tion of  sodium  chloride. — H.  K. 

Dextrose;  Influence  of  sodium  chloride  on  the 
mutarotation  of  in  hydrochloric  acid  solu- 
tion. II.  H.  Murschhauser.  Biochem.  Zeits., 
1922,  128,  229—244.     (Cf.  J.,  1922,  264  a.) 

The  velocity  constants  of  the  mutarotation  of  dex- 
trose at  20'4°  C.  'have  been  determined  in  aqueous 
solution,  in  22V  and  42V  sodium  chloride  solution,  in 
inc  Teasing  concentrations  of  hydrochloric  acid  from 
(£'046%  to  0'54%,  and  in  22V  and  42V  sodium  chloride 
solutions  containing  increasing  amounts  of  hydro- 
chloric acid  between  0'046  and  0'54%.  The  uni- 
molecular  law  is  obeyed  throughout,  and  although 
at  concentrations  of  hydrochloric  acid  below  0'089  % , 
2.Y  and  42V  sodium  chloride  lower  the  velocity  of 
mutarotation  compared  with  hydrochloric  acid  solu- 
sodium  chloride,  increase  proportionally  to  the  con- 
stants of  the  mutarotation,  whether  in  hydrochloric 
acid  solution  alone  or  accompanied  by  22V  or  42V 
sodium  chloride,  increase  proportionally  to  the  con- 
centration of  hydrochloric  acid. — H.  K. 

Dextrose;  Law  governing  mutarotation  of ■  and 

the    concent  rat to  n    of   acid.       H.    Murschhauser. 
Biochem.  Zeits.,  1922.  128,  24.5—250. 

At  constant  temperature,  the  increase  in  the 
velocity  constant  of  mutarotation  of  dextrose  due 
to  increasing  amounts  of  hydrochloric  acid  is  pro- 
portional to  the  concentration  of  the  acid.  Thus 
KhCi-Kh.,o  =  48-5  Choi  at  20"40°  C.  If,  however, 
not  the  difference  of  velocity  constants  Khci  —  Kh2o 
but  the  velocity  constant  in  presence  of  hydrochloric 
acid,  Khci,  bo  divided  by  the  square  root  of  the  con- 
centration of  the  hydrochloric  acid  (i.e.,  the 
hydrogen  ion  concentration),  another  constant  is 
obtained.  The  first  equation  given  enables  one  to 
determine  either  the  strength  of  a  hydrochloric  acid 
solution  from  the  velocity  constant  or  the  reverse. 

— H.  K. 

Phosphates;    Function  of  in  the  oxidatios.  of 

ilhh-nse  [dextrose]  by  hydrogen  peroxide.  A. 
Harden  and  F.  R.  Henley.  Biochem.  J.,  1922, 
16,  143—147. 
The  chief  function  of  phosphates  in  the  oxidation 
of  dextrose  by  hydrogen  peroxide  appears  to  be  the 
regulation  of  the  hvdrogen  ion  concentration,  as 
other  buffer  mixtures  (NaHC03  +  CO,;  Na3As04  + 
NaH2AsOi;  NaC.H.O,;  K,HPO.,  +  KH3P04)  can  re- 
place phosphates.  Hydrogen  peroxide  is  more 
stable  in  presence  of  phosphates  than  at  the  same 
/'„  in  their  absence. — W.  O.  K. 

Formic  acid;  Formation  of during  the  decom- 
position of  dextrose  in  alkaline  solutions.  H.  I. 
Waterman  and  M.  J.  van  Tussenbroek.  Chem. 
Weekblad,  1922,  19,  135—136. 

When  air  is  drawn  through   alkaline  solutions  of 

dextrose,  formic  aoid  is  formed,  but  no  carbon 
i  dioxide    at    ordinary    temperature.        (Cf.   J.C.S., 

May.)— S.   I.   L. 

Mannose;    Preparation  of  .     E.  P.  Clark.     J. 

Biol.  Chem.,  1922,  51,  1—2. 
The  method  described  is  simpler  and  gives  better 
yields  than  those  of  Hudson  and  Sawyer  (J.,  1917, 
W7i  and  of  Horton  (J.,  1921,  864a).  Sifted 
ivory  nut  shavings  are  added  to  ten  times 
their  weight  of  boiling  1  %  sodium  hydroxide  and 
allowed  to  stand  for  half  an  hour  with  occasional 
stirring.  They  are  then  thoroughly  washed  with 
water  and  dried.  The  material  (500  g.)  so  obtained 
is  mixed  w-ith  an  equal  weight  of  75%  sulphuric  acid 
and  allowed  to  stand  for  a  day,  after  which  the 
resulting  mass    is    dissolved  in   water,   diluted    to 


5\  litres,  and  boiled  for  2i  hrs.  The  solution  is 
then  neutralised  with  barium  carbonate  paste  and 
filtered  through  a  thin  layer  of  active  carbon,  the 
last  traces  of  barium  being  removed  by  adding  a 
few  c.c.  of  dilute  sulphuric  acid  and  again  filtering. 
The  filtrate  is  concentrated  until  it  contains  87 — 
88%  of  total  solids,  mixed  with  an  equal  volume  of 
glacial  acetic  acid,  seeded,  and  frozen.  Finally  it 
is  allowed  to  thaw  slowly  in  a  refrigerator  when 
crystallisation  of  the  mannose  takes  place. — E.  S. 

Inulin;   Preparation  of with  special  reference 

to  artichoke  tubers  as  a  source.     J.  J.  Willaman. 
J.  Biol.  Chem.,  1922,  51,  275—283. 

The  ground  and  washed  tubers  are  boiled  for  15  to 
20  mins.  with  water  containing  calcium  carbonate 
(1300  c.c.  of  water  and  30  g.  of  calcium  carbonate  to 
each  kg.)  and  the  juice  then  expressed  in  a  press. 
After  repeating  the  process  on  the  residue  the  com- 
bined extracts  are  clarified  by  means  of  lead  acetate, 
any  excess  of  the  latter  being  removed  by  addition 
of  ammonium  oxalate.  The  clear  liquid  is  then 
evaporated  until  it  contains  40 — 60%  of  solids, 
cooled  slowly,  and  maintained  at  0° — 5°  C.  for 
crystallisation.  Recrystallisation  from  water  is 
repeated  until  the  specific  rotation  reaches  -38°  or 
-39°.  A  study  of  the  optical  rotation  during 
successive  recrystallisations  confirms  the  view  that 
inulin  is  a  mixture  of  substances.  Artichoke  tubers 
are  not  a  good  source  of  true  inulin.- — E.  S. 

Starch;  Method  for  measuring  the  liquefaction  of 
— .     U.  Olsson.     Z.  physiol.  Chem.,  1922,   119, 
1—3. 

The  method  is  based  on  the  principle  of  recording 
the  time  taken  by  a  glass  ball  to  drop  in  the  fluid 
contained  in  an  evacuated  tube. — S.  S.  Z. 

Xylan.     E.   Salkowskl.     Z.    physiol.   Chem.,    1921, 
117,  48—60. 

Improvements  in  the  author's  method  of  prepara- 
tion of  xylan  (Z.  physiol.  Chem.,  1902,  34,  162)  are 
described.  Xylan  has  the  formula  CjHa04,  and  on 
hydrolysis  combines  with  1  mol.  of  water  to  form 
xylose.  For  calculating  the  quantity  of  xylose  from 
the  weight  of  copper  corresponding  to  the  cuprous 
oxide  formed  on  reduction  with  Fehling's  solution, 
the  factor  0'5527  should  be  used  for  a  0'1%  solution 
(cf.  Stone,  J.,  1891,  377).  This  factor  is,  however, 
correct  only  for  a  pure  aqueous  solution;  on  heat- 
ing with  dilute  hydrochloric  acid  the  reducing 
power  of  xylose  is  considerably  reduced  similarly 
to  that  of  dextrose  (cf.  Murschhauser,  J.,  1921, 
783  a).— S.  S.  Z. 


Vacuum  filters. 


Patent. 
E.P.  176,395. 


See  I. 


XVIIL— FERMENTATION  INDUSTRIES. 


II. 

A. 


Barley  and  malt;  Pests  and  diseases  of  . 

Fungi  and  the  fungus  diseases  of  barley.     F. 

Mason.  J.  Inst.  Brew.,  1922,  28,  325—353. 
Among  the  common  diseases  caused  by  fungi  in 
barley  only  smuts,  rusts,  and  to  some  extent  stripe 
disease  are  at  present  subject  to  control.  In  the 
near  future  it  is  possible  that  a  method  of  treat- 
ment involving  the  use  of  hot  air  will  be  found 
applicable  to  a  large  number  of  diseases  of  cereals. 
The  two  methods  of  treatment  at  present  in  use 
to  control  smuts  are  treatment  by  hot  water  and 
treatment  by  solutions  of  chemical  substances  of 
known  fungicidal  properties,  e.g.,  copper  sulphate 
and  formalin.  While  the  hot  water  treatment  may 
be  used  for  organisms  inside  the  seed,  the  chemical 
method  can  only  be  used  for  the  destruction  of 
spores  outside  the  seed. — J.  R. 


340  a 


Cl.  XVIII.— FERMENTATION  industries. 


[May  15,  1922 


Yeast;  Bate  of  formation  and  yield  of in  wort. 

N.  A.  Clark.     J.  Phys.  Chem.,  1922,  121,  42—60. 

If  wort  is  seeded  with  actively  budding  yeast  cells 
(Sacch.  cerev.,  Race  F)  and  the  culture  properly 
shaken  and  aerated  at  25°  C.  the  rate  of  reproduc- 
tion follows  the  formula,  log  C/C0  =  kt,  where 
fc  =  0"160,  from  the  moment  of  seeding  until  the  crop 
reaches  100,000,000  cells  per  c.c,  whether  the  seed- 
ing be  5  cells  or  8,000,000  cells  per  c.c.  At  this  point 
the  solution  contains  T8%  of  alcohol.  Whenthecon- 
centration  of  alcohol  exceeds  1'8%,  the  constant  k 
must  be  replaced  bv  a  function  of  the  percentage 
of  alcohol  (a),  k  =  0-2774 -0-0806a+0'00854a2,  which 
holds  from  1'8%  to  5'0%.  The  crop  of  yeast 
reaches  its  maximum,  about  325,000,000  cells 
per  c.c.,  in  about  24  hrs. ;  this  maximum  is  inde- 
pendent of  the  seeding  up  to  25,000,000  cells  per 
c.c;  but  if  the  wort  be  seeded  up  to  400,000,000 
cells  per  c.c.  the  crop  may  reach  675,000,000 ;  this 
difference  is  to  be  ascribed  to  the  lower  content  of 
alcohol.  If  wort  be  diluted  with  an  artificial 
medium  made  up  from  sucrose  and  salts,  the  rate 
of  reproduction  is  the  same  as  in  pure  wort;  the 
maximum  crop  is  also  the  same  provided  that  the 
culture  medium  contains  at  least  10 7„  of  wort.  In 
solutions  containing  less  wort  the  rate  is  the  same 
as  usual,  but  the  maximum  crop  is  less ;  this  is 
ascribed  to  lack  of  bios  in  the  culture  liquid.  Quan- 
titative measurements  of  the  maximum  crop  may 
be  used  as  a  convenient  means  of  determining  bios. 
Washed  yeast  cake  rapidly  absorbs  bios  from  wort, 
and  if  enough  yeast  is  used  the  removal  is  prac- 
tically complete  and  the  cells  do  not  bud. — J.  F.  S. 

Water-soluble  B  and.  bios  in  yeast  growth.  E.  I. 
Fulmer  and  V.  E.  Nelson.  J.  Biol.  Chem.,  1922, 
51,  77—81. 

The  authors  confirm  their  previous  results  that 
alcoholic  extracts  of  wheat  embryo  or  alfalfa 
(lucerne)  do  not  improve  "  medium  F  "  for  the 
growth  of  yeast  (J.,  1921,  273  a).  Thev  agree,  how- 
ever, with  Eddy  and  others  (J.,  1921,  713  a)  that 
this  medium  is  improved  by  aqueous  extracts  of 
these  substances,  and  conclude  that  bios  is  ex- 
tracted by  water  but  not  by  alcohol. — E.  S. 

[Water-soluble    B    and     bios    in    yeast    growth.'] 
Beply  to  Fulmer,  Nelson,  and  Sherwood  concern- 
ing Medium  F.     W.  H.  Eddy,  H.  L.  Heft,  and 
H.     C.     Stevenson.     J.    Biol.    Chem.,    1922,    51, 
83—85. 
A  reply  to  Fulmer  and  Nelson  (cf.  supra),  in  which 
it    is    maintained    that    the    growth    of    yeast    in 
medium   F   is   stimulated   by   addition   of   alcoholic 
extracts  of  alfalfa  (lucerne),  especially  when  these 
are    added   in    much    greater   concentrations   than 
those  used  by  Fulmer   and   Nelson.      The   authors 
agree  that  the  yeast  test  is  not  an  accurate  measure 
of  vitamin  B,   but  do  not  consider  that  it  is  yet 
proved  that  this  factor  has  no  stimulating  action 
on  yeast. — E.  S. 

Yeast-growth   stimulant;  Action   of  .     O.   K. 

Wright.     Biochem.  J.,  1922,   16,  137—142. 

The  growth  of  yeast  is  at  first  not  affected  by 
ammonium  sulphate,  but  is  dependent  on  the 
presence  of  "  bios  "  (yeast  extract  or  decitrated 
lemon  juice)  until  a  concentration  of  5 — 6  million 
cells  per  c.c.  is  reached.  After  that  growth  pro- 
ceeds further  in  the  presence  of  ammonium  sul- 
phate.—W.  0.  K. 

Artificial  zymogens.  II.  M.  Jacoby.  Biochem. 
Zeits.,  1922,  128,  80—88. 

By  the  use  of  Tschugaeff's  reaction  it  is  shown  that 
more  nickel  is  taken  up  from  nickel  powder  by  a 
urease  solution  than  by  water.  The  longer  a  urease 
solution  is  kept  in  contact  with  nickel  powder  or 
nickel   oxide   the   greater    the    decline   of    enzymic 


activity  due  to  formation  of  artificial  zymogen.  The 
filtrate  from  such  solutions  is  restored  to  activity 
by  potassium  cyanide. — H.  K. 

Artificial  zymogens.  III.  M.  Jacoby  and  T. 
Shimizu.     Biochem.  Zeits,  1922,  128,  89—94. 

Metallic  nickel,  cobalt,  copper  and  zinc  inactivate 
urease  but  iron  is  without  action.  Cobalt,  copper 
and  zinc  inactivate  more  quickly  than  nickel,  and  in 
the  case  of  cobalt  and  copper  the  quantity  of 
artificial  zymogen  which  can  be  reactivated  by 
potassium  cvanide  or  glycine  falls  off  rapidlv  with 
time.— H.  K. 

Artificial  zymogens.  IV.  Inactivation  and  re- 
activation of  taka-diastase.  M.  Jacoby  and  T. 
Shimizu.     Biochem.  Zeits.,  1922,  128,  95—99. 

Diastase  solution  is  not  inactivated  by  contact  with 
metallic  iron,  nickel,  copper,  or  cobalt.  Inactiva- 
tion by  mercuric  chloride  is  temporary,  the  activity 
being  restored  by  potassium  cyanide. — H.  K. 

Enzymes  and  zymogens;  Adsorption  of  .     7. 

M.  Jacobv  and  T.  Shimizu.  Biochem.  Zeits.,  1922, 
128,  100—102. 

Urease  is  partly  adsorbed  by  tribasic  calcium 
phosphate  but  more  completely  in  the  presence  of 
electrolytes.  Urease  inactivated  by  nickel  or  cobalt 
is  completely  adsorbed  and  is  reactivated  by 
potassium  cyanide.  Dibasic  calcium  phosphate  has 
no  action. — H.  K. 

Enzymes  and  zymogens;  Adsorption  of  .     II. 

Action  of  cholesterol  on  urease.     M.  Jacobv  and 
T.  Shimizu.    Biochem.  Zeits.,  1922,  128,  103^107. 

A  solution  of  urease  treated  with  an  alcoholic 
cholesterol  solution  and  filtered  loses  activity,  the 
precipitate  being  very  weakly  active  and  the  filtrate 
slightly  active  but  having  ite  activity  restored  by 
glycine  or  serum.  An  inactivated  urease  (by  nickel) 
when  treated  with  cholesterol  and  filtered  pa 
unchanged  into  the  filtrate  and  is  reactivated  by 
glycine  or  potassium  cyanide. — H.  K. 

Alcoholic    fermentation;    Course    of   in    the 

presence  of  urea.    M.  Sandberg.    Biochem.  Zeits., 
1922,  128,  76—79. 

Sucrose  is  fermented  by  top  and  bottom  yeasts  in 
the  presence  of  large  quantities  of  urea  with  pro- 
duction of  about  4%  less  alcohol  than  in  the  absi 
of  urea.     The  urea  is  unchanged  at  the  end  of  the 
fermentation. — H.  K. 

Wooldridge    brewing    process;   Some   notes   on   the 

.     H.  B.  Wooldridge.     J.  Inst.  Brew.. 

28,  318—324. 
The  process  (cf.  Ling  and  Wooldridge,  J.,  1914, 
329)  is  being  worked  at  present  in  10-  to  50-barrel 
installations,  the  vessels  being  made  of  cast-iron. 
The  advantages  claimed  for  the  process  are  first  the 
i  production  of  running  sound  beers,  and  secondly 
'  saving  in  space,  building  plant,  time,  labour,  and 
fuel— J.  R. 

Beer  deposits;  Isolation  of  bacteria  from  .    P. 

Hampshire.     Bull.   Bur.   Bio-Tech.,   1922.   No.   " 

128—131. 
The  following  medium  is  suggested  as  likely  tc 
give  the  best  cultures  of  bacteria  from  beer,  pro- 
viding the  medium  is  used  in  an  atmosphere  ol 
carbon  dioxide.  100  g.  of  yeast  is  autolysed  ir 
500  c.c.  of  water  for  48  hrs.  in  an  incubator  aiu 
then  the  clear  solution  is  poured  off;  500  c.c.  of  won 
is  inoculated  with  yeast  and  fermentation  is  allowec 
to  progress  for  24 — 36  hrs.  The  two  solutim 
mixed,  1*5%  of  agar  is  added,  and  the  whole  i 
steamed  and  filtered.  The  p„  of  the  medium  i 
adjusted   to  4'0   and    immediately   before   pounnf 


Vol.  XLI..  Xo.  9.) 


Cl.  XIXa.— FOODS. 


341a 


into  the  plates  a  small  amount  of  alcohol  is  added 
to  the  melted  medium  under  aseptic  conditions. 

— W.  G. 

Lactic  fermentation.   "Remembrance"  in  bacteria. 

C.  Richet.  E.  Bachrach,  and  H.  Cardot.    Comptes 

rend.,  1922,  174,  842—845:     (Cf.  J.,  1922,  228  a.) 

It   has   previously   been    shown    that   bacteria    can 

become  accustomed  to  certain  toxic  substances.     It 

i  is  now  shown  that  this  tolerance  persists  through  a 
considerable    number    of    generations    even    if    the 

'bacteria  are  grown  on  media  devoid  of  the  toxic 
substances.  Thus  the  conclusion  is  reached  that 
when  two  cultures  of  bacteria,  of  the  same  species, 
have  prown,  even  for  only  a  very  short  time,  in 
very  slightly  different  media,  they  are  different 
from  one  another. — W.  G. 

Vinegars;  Polarisation  of .    R.  W.  Balcom  and 

E.  Yanovskv.  J.  Assoc.  Off.  Agric.  Chem.,  1921, 
5,  245—248. 

The  use  of  lead  salts  for  the  clarification  of  cider 
vinegars  preliminary  to  polarimetric  examination 
is  to  be  avoided,  since  solutions  so  treated  show  an 
altered  rotatory  power.  If  the  polarimetric  figure 
is  to  be  of  value  from  the  analytical  standpoint  it 
[should  be  representative  of  all  the  optically  active 
isubstances  normally  present  in  a  cider  vinegar 
(usually  lrevulose.  malic  acid,  lactic  acid,  and  rarely 
dextrose).  If  necessary  to  clarify,  decolorising 
charcoals  such  as  eponite  or  norit  are  recommended. 

— J.  R. 

Tannase.    Rhind  and  Smith.    See  XV. 

Measuring  liquefaction  of  starch.  Olsson.  .See  XVII. 

Spice     extract      and      pill      basis      from      yeast. 
Babalitschka  and  Riesenberg.    See  XIXa. 

Patents. 

icetone  and  butyl  alcohol;  Manufacture  of by 

fermentation.  Soc.  Ricard.  Allenet,  et  Cie.  E.P. 
176,284,  30.0.21.    Conv.,  28.2.21. 

Modifications  of  E.P.  130,666  (J.,  1919,  787  a)  are 
lescribed.      Small    quantities     (30    vols.)    of    non- 
;t«rilised     wort     are     added    to     large    quantities 
450  vols.)    of    fermenting    wort.      After    an    hour 
10  vols,  is  removed  and  allowed  to  ferment  to  com- 
)letion  in  a  separate  vessel,  and  a  further  30  vols. 
>f  non-sterilised  wort  added  to  the  original  mash. 
■0—60  successive  additions  may  be  made.    The  non-    ] 
terilised  wort  is   prepared   by   boiling  amylaceous    I 
naterial  to  a  high  concentration  (30%)  and  diluting    j 
uitably  with  non-sterile  water.     When  applied  to 
aocharine   non-sterilised   worts,   the   wort   may   be 
lliluted  with  water  without  preliminarv  boiling. 

—A.  G.  P. 

east;   Production  of  .      Yerein  der  Spiritus- 

Fabrikanten  in  Deutschland.  E.P.  155,281, 
155,284—5,  155,288—9,  155,291—3,  15.12.20. 
Com-.,  16.3.,  31.3.,  19.3.,  7.5.,  23.12.,  12.4.,  15.4., 
and  23.4.15. 

•ee    G.P.    300,662,    303.221—2,    303.253,    303,311, 
04.241—3;    J.,  1920,  345  a,  381a,  463  a. 

leer  wort;    Method  of  and  apparatus  for  cooling 

■  and  separating  sludge  therefrom.     Nathan- 

Institut   A.-G.     E.P.    155.S47,    24.12.20.     Conv., 
!  19.5.14. 

ee  U.S.P.  1,235,231  of  1917;    J.,  1917,  1059. 

fill:  vinegar;    Process  for  obtaining  .     H.  P 

Felicien,  Assr.  to  F.  Huberty  et  Cie.  U.S. P. 
1,410,809,  28.3.22.     Appl.,  2.7.20. 

EB  F.P.  463,266  of  1913;   J.,  1914,  370. 


XIXa.-F00DS. 

Flours;    Physico-chemical    studies    of    strong    and 

weak     .       Imbihitional     properties     of     the 

glutens  from  strong  and  weak  flours.  P.  F. 
Sharp  and  R.  A.  Gortner.  J.  Phys.  Chem.,  1922, 
26,  101—136. 

Gluten  from  strong  flour  has  a  much  higher  rate 
of  imbibition  than  that  from  weak  flour,  both  in 
acid  and  alkaline  solutions.  Drying  glutens  at 
45c — 50°  C.  in  a  vacuum  oven  markedly  changes  the 
chemical  properties  in  the  sense  that  glutens  from 
various  flours  become  more  nearly  alike.  A  weak 
flour  is  weak  because  its  gluten  possesses  markedly 
inferior  colloidal  properties,  and  is  not  so  perfect  a 
colloidal  gel  as  is  the  gluten  of  a  strong  flour. 

—J.  F.  S. 

Cow's   milk:   Do    the   amino-acids   occur   in   ? 

Y.  Hijikata.  J.  Biol.  Chem.,  1922,  51,  165—170. 
After  removal  of  proteins  and  lactose  from  fresh 
cow's  milk  derivatives  of  the  following  substances 
were  isolated  from  the  filtrate  :  lysine,  arginine. 
histidine,  guanine,  adenine,  choline.  Evidence 
was  also  obtained  of  the  presence  of  mono-amin»- 
acids—  E.  S. 

Milk:  Preservation  of  by  small  quantities  of 

hydrogen  peroxide.  A.  Midler.  Milchw.  Zentr., 
1922,  51,  25—29,  37—39,  49—53,  and  61—64.  (Cf. 
J.,  1922,228  a.) 

It  was  found  most  satisfactorv  to  heat  the  milk 
to  70°— 71°  C.  for  i  hr.  and  to  cool  to  15°— 20°  C. 
before  adding  the  peroxide.  Heating  above  this 
temperature  even  for  a  short  period  produced  the 
taste  characteristic  of  "  cooked  "  milk.  0"15%  of 
hydrogen  peroxide  in  milk  could  be  tasted  imme- 
diately after  addition,  but  in  24  hrs.  the  taste  dis- 
appeared. The  taste  of  1  %  peroxide  disappeared 
after  48  hrs.  Bacterial  counts  of  treated  milk 
(0"1%)  were  enormously  reduced  during  the  first 
3 — 5  days,  and  had  not  regained  the  control  figure 
at  the  seventh  day.  Milk  treated  with  0'1%  of 
hydrogen  peroxide  after  pasteurisation  remained 
fresh  for  3—4  times  as  long  as  milk  pasteurised  only. 
Dairy  trials  showed  that  there  was  considerable  re- 
infection of  the  pasteurised  milk  during  the  cool- 
ing process.  The  use  of  rusty  cans  decreases  the 
efficiency  of  the  hydrogen  peroxide  owing  to  the 
catalytic  action  of  the  rust. — A.  G.  P. 

Peroxidase;  Determination  of  - in  milk.     F.  E. 

Rice  and  T.  Hanzawa.  J.  Ind.  Eng.  Chem., 
1922,  14,  201—202. 

The  method  of  Bach  and  Chodat  (J.,  1904,  505)  for 
the  determination  of  peroxidase  in  plant  juices  is 
adapted  for  milk.  It  depends  on  the  oxidation  of 
pyrogallol  by  hydrogen  peroxide,  the  reaction  being 
catalysed  by  peroxidase.  The  number  of  mg.  of 
purpurogallin  precipitated  by  the  action  of  10  c.c.  of 
milk  is  called  the  "  peroxidase  number."  The  re- 
action takes  seven  days,  and  air  must  be  excluded. 
The  residue  after  filtration  is  washed  with  petro- 
leum ether  to  remove  fat.  Whole  and  skim  milk 
are  about  equal  in  peroxidase  activity.  Heating 
milk  below  155°  F.  (6S'3°  C.)  for  30  min.  reduces  but 
does  not  destroy  peroxidase  activity,  which  is  also 
reduced  slightly  by  keeping  on  ice  for  two  days. 
Samples  of  milk  for  peroxidase  estimation  must  not 
be  preserved  with  mercuric  chloride  or  formal- 
dehyde.—H.  C.  R. 

Malted  milk;  Determination  of  fat  in  .     J.  T. 

Keister.     J.   Assoc.   Off.   Agric.   Chem.,   1921,   5, 

176—177. 
The  Roese-Gottiieb  method  of  extracting  fat  from 
malted  milk  can  be  simplified,  and  yet  more  accu- 
rate and  concordant  results  obtained  if  certain  pre- 


342  a 


Cl.  XIXa.— FOODS. 


[May  15,  1922. 


cautions  are  taken.  It  is  necessary  to  emulsify  the 
malted  milk  thoroughly  with  water  so  as  to  facili- 
tate the  solution  of  the  dextrin  and  prevent  forma- 
tion of  lumps  on  subsequent  addition  of  the  alcohol. 
The  fat  can  be  extracted  completely  without  the 
use  of  ammonia,  but  three  extractions  are  necessary. 

—J.  R. 

Casein  from  cow's  milk.     B.  Bleyer  and  R.  Seidl. 

Biochem.  Zeits.,  1922,  128,  48—75. 
A  comparison  has  been  made  of  two  specially  puri- 
fied caseins,  one  prepared  by  the  action  of  lactic 
acid  on  milk  and  the  other  by  the  action  of 
rennin.  The  acid-casein  contained  15'5%  and 
rennin-casein  15'64%  N.  The  equivalent  weight  of 
both  caseins  determined  by  making  neutral  to 
phenolphthalein  by  caustic  alkalis,  ammonia,  or 
alkaline-earth  hydroxides  was  1145.  When  excess 
of  the  two  caseins  was  shaken  with  increasing 
amounts  of  calcium,  strontium,  or  barium 
hydroxides  at  constant  temperature,  the  ratio  of 
the  base  taken  up  by  the  caseins  to  the  amount 
left  free  in  the  solution  was  a  constant  (Henry's 
law.  When  shaken  with  hydrochloric,  sulphuric, 
lactic,  and  acetic  acids  of  increasing  concentration 
(N /2500  to  AT/100)  the  rennin-casein  absorbed  more 
of  each  of  the  acids  than  the  acid-casein.  Henry's 
law  only  held  for  the  highest  dilutions  of  acids,  the 
relation  at  higher  concentrations  being  one  of 
adsorption. — H.  K. 

Fish;  Preservation  of  frozen  in  chilled  brine. 

L.  H.  Almy  and  E.  Field.  J.  Ind.  Eng.  Chem., 
1922,  14,  203—206.  (Cf.  J.,  1922,  29  a.) 
Fish  were  frozen  in  air  at  -10°  F.  (-23°  C.)  and 
in  15%  brine  at  its  freezing  point.  In  general  fish 
frozen  in  air  lost  somewhat  in  weight,  while  there 
was  a  slight  gain  in  weight  upon  freezing  in  brine. 
On  storage  fish  frozen  in  brine  usually  lost  less  than 
those  frozen  in  air.  Fish  frozen  in  brine  could  be 
successfully  glazed  after  a  preliminary  rinsing  in 
cold  water.  The  method  of  freezing  had  no  effect 
on  the  amounts  of  fair-free  solids,  ammonia  and 
amine  nitrogen,  on  the  rate  of  decomposition  after 
removal  from  freezer  storage,  or  on  the  number 
or  general  character  of  the  bacterial  flora  in  the  [ 
skin,  flesh,  and  intestines.  Cooking  tests  showed 
that  fish  frozen  either  in  air  or  in  brine  were 
perfectly  edible  at  the  end  of  the  storage  periods, 
but  the  texture  and  flavour  of  those  frozen  in 
brine  were  slightly  better  than  of  those  frozen  in 
air.— H.  C.  R. 

Leavens:   their  action  and  measurement.      C.    E. 

Davis  and  D.  J.  Maveety.     J.  Ind.  Eng.  Chem., 

1922,  14,  210—212. 
The  reactions  between  tartaric  acid,  cream  of 
tartar,  phosphoric  acid,  and  primary  calcium 
phosphate  respectively  and  sodium  carbonate  were 
studied  with,  a  view  to  determine  the  ratios  of 
these  substances  to  be  used  in  acid  leavens  for 
complete  neutralisation.  Titrations  were  carried 
out  with  phenolphthalein  and  methyl  orange 
as  indicators,  and  electrometric  titrations  and 
direct  estimations  of  carbon  dioxide  evolved  were 
also  made.  In  the  case  of  tartaric  acid  and  cream 
of  tartar  all  the  hydrogen  ion  of  the  acid  is 
neutralised.  In  the  case  of  phosphoric  acid  the 
reaction  conies  to  an  end  with  the  formation  of 
disodium  phosphate.  The  reaction  of  sodium 
bicarbonate  and  primary  calcium  phosphate  depends 
on  the  concentration  of  hydroxy!  ion  present. 
Liberal  excess  of  sodium  bicarbonate  causes 
tertiary  calcium  phosphate  to  form. — H.  C.  R. 

Coffee;    Pobusta .      A.    Yiehoever   and   H.    A. 

Lepper.     J.   Assoc.   Off.    Agric.   Chem.,   1921,   5, 

274—288. 
The  species  or  group  of   Coffea   robusta   has   now 


attained  an  important  economic  significance  as  a 
source  of  coffee  of  a  grade,  however,  up  to  the 
present,  inferior  to  that  from  plants  of  C.  arabica 
and  C.  liberica.  It  is  now  grown  in  Java  to  a  larger 
extent  than  both  C.  arabica  and  C-  liberica 
together.  Coffee  from  Coffea  robusta  contains 
about  2%  of  caffeine — a  figure  somewhat  higher 
than  is  usually  found  in  Java  (C.  arabica),  Mocha, 
or  South  American  coffee  species,  though  the  figure 
does  not  exceed  the  maximum  limit  found  in  coffees 
generally.  The  ether  extract  calculated  on  the 
moisture-free  sample  varies  between  7'5%  and 
11'4%  by  weight,  the  comparative  figures  of  other 
coffees  examined  varying  between  137  and  15'8%. 
About  30";  of  the  coffee  is  extracted  by  cold  water, 
and  in  this  test,  as  in  others  carried  out  (excepting 
those  mentioned  above),  no  marked  divergence 
from  other  coffees  was  found. — J.  R. 

Gelatin;  Value  of  in  relation  to  the  nitrogm 

requirements  of  man.    R.  Robison.    Biochem.  J., 
1922,  16,  111—130. 

On  a  diet  practically  free  from  nitrogen,  a  certain 
minimum  amount  of  nitrogen,  derived  from  the 
tissues  of  the  body,  is  used  and  excreted.  If  a  diet 
otherwise  equivalent  but  containing  nitrogen  in  the 
form  of  gelatin  be  given  there  is  a  saving  in  the 
body-nitrogen  so  used.  By  feeding  on  diets  con- 
taining in  the  gelatin  4'88  g.,  7'54  g.,  and  12'00  g. 
of  nitrogen  per  day,  the  author  has  found,  after 
making  certain  allowances,  a  saving  of  between 
119  and  lop;,  0  and  5'3;c,  81  and  1I7. 
respectively  of  the  minimum  bodv-nitrogen. 

— W.  O.  K. 

Proteins  of  the  adsuki  bean,  Phaseolus  angularit; 

Chemical  study  of  the  .    D.  B.  Jones,  A.  J. 

Finks,  and  C.  E.  F.  Gersdorff.     J.  Biol.  Chem., 
1922,  51,  103—114. 

The  adsuki  bean  contains  21' 13%  of  protein 
(N  X  6'25).  By  extraction  with  sodium  chloride 
solution  an  a-  and  a  /3-globulin  were  obtained  which 
were  separated  by  fractional  precipitation  with 
ammonium  sulphate.  Both  globulins  gave  positive 
tests  for  tryptophan.  They  differed  mainly  in  their 
sulphur  content.  Using  Van  Slyke's  method,  the 
following  values  were  obtained  for  the  diamine 
acids  :  a-globulin — arginine  5'45,  histidine  2'25, 
lysine  S'30,  cystine  1'63;  fl-globulin — arginine  7'00, 
histidine  2'51,  lysine  8-41,  cystine  0'86  _.  The 
adsuki  bean  was  also  found  to  contain  a  small 
quantity  of  an  albumin. — E.  S. 

Nitrogen  distribution  of  proteins  extracted  by 
sodium  hydroxide  solution  from  cottonseed  meal, 
the  soya  bean  and  the  coconut.     W.  G.  Friede- 
mann.     J.  Biol.  Chem.,  1922,  51,  17—20. 
The   following   results   were  obtained :    cottonseed 
meal — amide  N  10'54,  humin  N  2'09,  cystine  N  I'll. 
arginine  N  23'48,  histidine  N  494,  lysine  N  5'10, 
amino    N    of    filtrate   51'26%  ;    soya    bean — amide 
N   11-31,   humin  N  F84,   cystine  N   104,   argini  le 
N    14-57,    histidine   N    5'92,   lysine   N   8-26,   amino 
N    of    filtrate    54'32;„  ;     coconut — amide    N    7'40, 
humin  N  2-08,   cystine  N  0-86,   arginine   N    :*-  ' '■ ' 
histidine  N  4,88,  lysine  N  456,  total  N  of  filtraf 
51-35%.— E.  S. 

Pectin;  Estimation  of as  calcium  pectate  nrul 

the  application  of  this  method  to  the  detern 
tion  of  the  soluble  pectin  in  apples.  M.  H.  I 
and  D.  Haynes.     Biochem.  J.,  1922,  16,  60—69. 

Pectin    can    be    determined    as    calcium    pei 
empirical     formula    C„H„0lsCa,    by   preeipi 
with  calcium  chloride  and  hydrochloric  acid  ondi 
determined  conditions.     A  method  is  described  '• 
the   extraction  of   the   soluble  pectin   from  appfc 
and  some  analytical  results  are  given. — W.  0.  K. 


Vol.  XLI.,  .Vo.  9.] 


Cl.  XIXb.—  WATER    PURIFICATION  ;     SANITATION. 


343  a 


Vitamin    content;   Examination   of    some     Indian 

foodstuffs  for  their .    S.  N.  Ghose.    Biochem. 

J.,  1922,  16,  35—41. 

Certain  principal  foodstuffs  consumed  by  the  people 
of  Bengal   have  been  examined   for   their   vitamin 
content,  with  the  following  results.     Pure  Indian 
"  ghee  "   is  as  rich  in   vitamin  A  as  pure  butter, 
while  remelted  "  ghee  "  appears  to  be  deficient,  and 
adulterated   "  ghee  "   only  efficient  as  a  source  of 
,the  vitamin  when  administered  in  large  quantities. 
iCertaan  edible  vegetable  oils,  e.g.,  coconut  oil,  pure 
mustard    oil,    contain    some    vitamin    A.     Lentils 
■showed    good    content    of    vitamin    B.     Bleached 
[Indian  flour  is  deficient  in  vitamin  B,  while  crude 
I"  attah  "  and  unbleached  Indian  flour  contain  con- 
siderable quantities. — W.  O.  K. 


[vitamins'];   Conditions  of 
S.   S.   Zilva.       Biochem. 


Accessory   food  factor 

inactivat ion  of  

J.,  1922,  16,  42—48. 

IThe  accessory  food-factors  in  cod  liver  oil  and  in 
Idecitrated  lemon  juice  are  easily  destroyed  by 
.ozone  at  ordinary  temperature,  whereas  autolysed 
yeast  retains  its  activity  under  exposure  to  ozone. 
Passing  air  through  decitrated  lemon  juice  at 
(ordinary  temperature,  or  through  cod  liver  oil  at 
|120°  C.  destroys  their  active  factors.  Ultraviolet 
have  no  effect  on  the  accessory  food  factors 
(in  the  absence  of  air.  The  effect  of  boiling  is 
apparently  due  to  oxidation,  as  the  potency  of 
;lecitrated  lemon  juice  is  not  destroyed  by  boiling 
in  an  atmosphere  of  carbon  dioxide.  Decitrated 
emon  juice  also  retains  its  activity  to  a  very  con- 
siderable extent  after  hydrolysis  for  five  hours  by 
•i.V  hvdrochloric  acid  in  an  atmosphere  of  carbon 
dioxide—  W.  O.  K. 

Wat-solubh  vitamin.  X.  Occurrence  of  the  fat- 
J  soluble  vitamin  with  yellow  plant  pigments. 
1  H.  Steenbock  and  M.  T.  Sell.  J.  Biol.  Chem., 
J   1922,  51,  63—75. 

foBDixG  experiments  with  rats  indicate  that  the 
rellow     pigmented     varieties     of     sweet     potatoes. 

arrets,  and  cabbage  leaves  are  richer  in  the  fat- 
■  oluble  vitamin  than  the  white  varieties.     Further 

xamples  of  the  association  of  this   vitamin   with 

ellow  pigments  are  thus  furnished. — E.  S. 

lushrooms;  A  spice  powder  from and  a  spice 

'  extinct  and  pill  basis  from  yeast.  T.  Sabalitschka 

and  H.   Riesenberg.     Ber.   deuts.    Pharm.   Ges., 

1922,  32,  48—55. 

|'he  mushrooms  are  dried  in  vacuo  and  powdered. 

i'he  product,  which  has  a  pleasant  sharp  peppery 
iste,  has  the  composition  water  9'3?o,  nitrogenous 

;  distances  227%,  ether  extract  (fat)  2-5%,  nitrogen- 

j-ee  extractive  matter  45"4%,  fibre  136%,  ash  6'5%. 

lore  than  one-third  of  the  nitrogenous  substance 

removed   by   extraction   with   water,   and   in    all 

G  v?  ^°°  °^  tne  or'g'nal  dried  substance  is 
■luble  m  water.  A  yeast  extract,  which  appears 
i  the  market  as  a  dark  brown,  thick,  sticky 
juid  with  a  pleasant  aromatic  odour,  and 
lmarily  intended  as  a  condiment,  is  also  valuable 

,;  a  stomachic,  and  mixed  with  a  yeast  powder 
rms  an  excellent  excipient  for  the  preparation  of 
U  masses  in  pharmacy  and  a  substitute  for  ex- 
act of  liquorice. — G.   F.   M. 

Patents. 

indented  milk:  Manufacture  of  (a)  sweetened  or 

(b)    unsweetened   .      (a)    J.    W.    Roche,    J 

lavroges,  L.  O'Brien,  H.  Tongue  and  G.  Martin. 
'"'  J;  w  -Roche,  J.   Tavroges,   and  G.   Martin. 
E.P.  (a)  176,508  and  (b)  176,509,  8.12.20. 
'Milk    heated    and    concentrated    as    described 
■aer   (b)    is   mixed   with   sugar   and    the   product 


/S\  ,unrer  concentrated  under  reduced  pressure. 
<?a  l  > .  1S  subiect«d  t0  preliminary  heating  in  a 
flash  pasteuriser  and  to  final  concentration  to 
standard  density  under  reduced  pressure,  as  de- 
scribed. The  aim  is  that  no  portion  of  the  milk 
shall  be  subjected  to  a  high  temperature  for  more 
than  a  very  short  period.  From  experimental 
results  it  is  shown  that  the  time  taken  for  1  gall, 
of  milk  to  pass  both  the  pasteuriser  and  "the 
evaporator  under  test  varied  from  16'5  to  205 
sees  with  .a  reduction  of  about  70%  in  the  volume 
of  the  liquid.  The  vitamin  content  of  the  milk 
is  preserved  to  a  greater  extent  in  this  process 
than  in  earlier  processes  and  a  saving  in  fuel  is 
also  effected. — J.  R. 

Condensing  process  and  apparatus  [for  milk  and 
the  like!  I  S.  Merrell,  Assr.  to  Merrell-Soule 
Co.  U.S.P.  1,410,492,  21.3.22.  Appl.,  16.9.16. 
Heated  milk  or  other  liquid  to  be  concentrated 
is  allowed  to  overflow  from  a  trough  in  a  number  of 
streams  which  unite  and  flow  down  the  interior 
surface  of  a  tubular  container.  A  forced  upward 
rotating  current  of  air  meets  the  liquid  in  its 
descent. — J.  R. 

Food  product,  and  method  of  preparing  the  same. 
tt a  T\  ,"S'  Assr-  to  Gorton-Pew  Fisheries  Co. 
U.S.P.  1,408,803,  7.3.22.     Appl.,  16.4.20. 

Fish  is  embedded  in  a  jelly  produced  from  sea 
?q£oW  ™  "ig  a  softening  point  below  100°  F. 
(*>  U).  1  he  fish  and  jelly  are  placed  in  tins  and 
heated,  cooled  to  38°  C,  the  tins  sealed,  and 
sterilised  at  a  temperature  above  230°  F    (110°  C  ) 

—A.  G.  P. ' 

Food  Product.  Treatment  of  cottonseed  meats 
C.  O.  Phillips,  Assr.  to  The  American  Cotton  Oil 
£r\>ooU-S;P',(A)    L410-315    and    (b)    1,410,346, 

oHoo"    Appl-  5421  and  16-320-     <»>  renewed 
2o>  1 .22. 

(a)  A  food  product  is  obtained  by  mixing  cottonseed 
meal  h  ith  a  solution  of  calcium  chloride  (equivalent 
to  1  %  by  weight  of  calcium  chloride  on  the  meal). 
The  calcium  chloride  solution  may  be  added  to 
cooked  cottonseed  meats  before  expressing  the  oil. 

(b)  Cottonseed  meats  are  cooked  in  intimate  admix- 
ture with  a  small  quantity  of  calcium  chloride  and 
oil  is  expressed  from  the  resulting  product. — J.  R. 

Food  product  and  process  of  making  same.  J  W 
Barwell,  Assr.  to  Blatchford  Calf  Meal  Co.  U  S  P' 
1,409,435,  14.3.22.  Appl.,  5.12.18. 
An  extract  of  malt  and  flour  is  mixed  with  strained 
honey,  milk,  salt,  and  sodium  phosphate,  the  mix- 
ture is  partially  dried,  mixed  with  sodium  bicar- 
bonate, and  the  drying  completed. — J.  R. 


XIXb.- WATER   PURIFICATION; 
SANITATION. 

Iron  from    water;   Efficiency   of  open  and    closed 

filters   for    the    removal   of   .      K.    Kisskalt 

Gas-  u.  Wasserfach,  1922,  65,  85—86. 
Simultaneous  experiments  were  made  on  the  use 
of  open  and  closed  filters  for  the  removal  of  iron 
from  a  water  supply.  The  apparatus  was  working 
continuously  and  observations  were  made  on  ten 
days  spread  over  a  couple  of  months.  The  water 
contained  2 — 4  mg.  FeO  per  litre.  A  considerable 
part  of  the  iron  was  removed  in  the  trickling 
(oxidising)  chamber  from  which  the  filters  were 
supplied.  The  closed  filter  gave  better  results  than 
the  open  filter.  The  iron  in  the  effluent  from  the 
closed  filter  varied  from  a  trace  to  026  mg.  FeO 
per  litre. — J.  H.  J. 


344  a 


Cl.  XIXb.— WATER    PURIFICATION;    SANITATION. 


[May  15,  1922. 


Sewage    disposal    plant;    Activated    sludge    . 

D.     W.     Townsend.       Engineering,     1922,     113, 

211—214,  244—246. 
The  plant  described  is  in  course  of  erection  for 
the  treatment  of  the  sewage  of  the  city  of 
Milwaukee,  U.S.A.,  and  is  designed  for  a  popula- 
tion of  588,750.  The  sewage  after  passing  through 
grit  chambers  and  fine  screens  receives  20%  by 
volume  of  activated  sludge,  and  passes  through 
a  mixing  channel  into  a  feed  channel  supplying 
24  aeration  tanks.  Each  tank  is  15  ft.  deep,  and 
with  an  aeration  period  of  6  hrs.  will  treat 
3,580,500  galls,  per  day.  Each  tank  is  separated 
into  two  compartments  by  a  baffle  wall,  thereby 
causing  a  reversed  flow.  The  outlet  pipes  dis- 
charge into  channels  supplying  15  settling  tanks. 
Each  tank  is  octagonal  in  shape  at  the  top,  with 
sides  converging  to  form  a  circular  bottom ;  the 
depth  is  15  ft.,  and  the  surface  area  of  each  is 
8550  sq.  ft.  Each  tank  will  treat  13,680,000  galls, 
per  day.  The  effluent  is  drawn  off  at  the  surface 
and  discharges  into  a  channel  running  into  Lake 
Michigan.  The  sludge  is  withdrawn  from  the 
"bottom  of  each  settling  tank  and  passes  to  sludge 
pumps  for  return  to  the  incoming  sewage  or  for 
conveyance  to  sludge  presses.  Aeration  is  carried 
out  by  means  of  washed  air  at  a  pressure  of  10  lb. 
per  sq.  in.  conveyed  to  diffuser  plates  in  the 
bottom  of  the  aeration  tanks.  The  amount  of  air 
supplied  is  at  the  rate  of  1'5  cub.  ft.  per  gallon 
of  sewage. — J.  H.  J. 

Suspended  impurity  in  the  air.  J.  S.  Owens. 
Proc.  Roy.   Soc.,   1922,   A   101,   18—37. 

Suspended  impurity  in  the  air  is  determined  by 
causing  a  jet  of  air,  saturated  with  water  vapour, 
to  issue  through  a  slot  about  0T  mm.  wide  and 
from  2  to  10  mm.  long  to  impinge  upon  a  micro- 
scope cover  glass.  Under  suitable  conditions,  dust 
carried  by  the  jet  adheres  to  the  glass,  and  the 
'  number  of  dust  particles  so  deposited  is  subse- 
quently determined  microscopically.  Results 
obtained  indicate  that  suspended  dust  in  the  air 
is  one  of  the  chief  factors  governing  visibility  in 
absence  of  fog.  Air  expired  by  breathing  was 
found  to  contain  a  large  proportion  of  the  in- 
spired suspended  matter.  It  appears  highly 
probable  that  a  fair  proportion  of  the  suspended 
impurity  present  in  the  air  over  England  is  trans- 
ported from  the  Continent. — J.  S.  G.  T. 

Patents. 
Water-distilling  apparatus.     C.   E.   Kells.     U.S. P. 
(a)  1.404,971  and  (b)  1,404,972,  31.1.22.     Appl., 
(a)  14.8.20  (renewed  5.5.21)  and  (b)  9.4.21. 

(a)  In  a  continuous  form  of  still  the  distilled  water 
is  collected  in  a  receiver  on  one  arm  of  a  lever,  the 
other  arm  of  which  carries  a  counterbalancing 
vessel  which  receives  a  portion  of  the  condenser 
water.  The  action  of  the  lever  is  such  that  when 
sufficient  distilled  water  is  collected  or  when  the 
•condenser  water  supply  fails  the  gas  supply  is  cut 
off.  (b)  In  a  similar  apparatus  to  that  described 
under  (a)  one  arm  of  the  lever  carries  a  weight 
instead  of  the  distilled  water  receiver. — J.  H.  J. 

Water;  Method  for  determining  the  quantity  of  an 
appropriate  chemical  that  should  be  added  per 
unit  of  volume  of  • — —  in  order  to  fit  it  for  use  in 
the  arts.  C.  W.  Rice.  U.S. P.  1,405,940,  9.2.22. 
Appl.,  26.7.18. 

A  measured  excess  of  a  hardness-removing  chemical 
is  added  to  a  sample  of  the  water  to  be  softened, 
the  precipitate  is  filtered  off,  and  the  filtrate  is 
titrated  against  two  indicators  to  give  the  amount 
of  chemical  unused,  and  the  amount  unused  plus 
that  used   in  destroying  the  temporary  hardness. 


The  factors  are  thus  obtained  for  calculating  the 
appropriate  amount  required. — J.  H.  J. 

Sewage;  Purification  of  .     J.   W.   ai.d  C    J 

•  Hartley.    E.P.  176,494,  7.12.20. 

Sewagb  mixed  with  activated  sludge  is  passed 
through  a  series  of  separate  self-contained  tanks, 
in  which  the  sewage  is  rapidly  circulated  by  v.-uit.'u; 
means,  whilst  at  the  same  time  it  passes  by  gravity 
from  tank  to  tank,  from  inlet  to  outlet  through  the 
whole  or  any  smaller  number  of  tanks.  Extra  tan!;s 
may  be  provided  for  dealing  with  increased  How, 
these  being  operated  on  the  "  fill  and  draw  "  system 
on  decrease  of  flow. — J.  R. 

Sewage  purifier.  J.  P.  Ball.  U.S.P.  1,410,358, 
21.3.22.    Appl.,  9.10.19. 

Sewage  sludge  is  received  in  a  vessel  containing 
agitating  and  aerating  devices  and  connected  with 
a  collecting  vessel  provided  with  a  vent.  The 
collecting  vessel  is  formed  to  provide  a  circuitous 
path  for  the  aerated  sludge. — J.  R. 

Gases  [from  treatment  of  garbage] ;  Method  of  and 

apparatus  for  deodorising  .     A.  Maclachlan. 

E.P.  167,132,  29.10.20.    Conv.,  28.7.20. 

Gases  from  the  treatment  of  waste  organic  matter 
are  passed  into  a  stack,  at  a  constricted  point  of 
which  they  are  mixed  with  sulphur  dioxide  brought 
by  a  pipe  from  a  sulphur  burner  terminating  in  a 
nozzle.  Subsequently  the  mixed  gases  meet  a  water 
spray  before  passing  to  a  sewer. — J.  H.  J. 

Gas-purifying  compositions  and  their  production. 
Mine  Safety  Appliances  Co.,  Assees.  of  R.  P. 
Mase.     E.P'.    167,151,    2.6.21.     Conv.,    5.6.20. 

Granular  pumice  is  slowly  added  to  fused  caustic 
soda  at  a  temperature  about  50°C.  above  the  melt- 
ing point  of  the  latter,  until  after  a  rapid  evolution 
of  gas  the  mass  suddenly  becomes  viscous.  A 
j  further  quantity  of  pumice  is  then  added  quickly, 
with  stirring,  and  the  mixture  is  allowed  to  cool, 
when  it  breaks  up  into  pieces  about  the  size  of  the 
original  pumice  granules.  These  are  packed  in  air- 
tight containers  before  cooling  below  100°C.  The 
product  is  suitable  for  use  in  respirators  and  in 
laboratory  work. — A.  G.  P. 

Deodorising    offensive     gaseous     emanations    from 

organic  matter;  Process  of .     Y.  Henderson 

and  H.  W.  Haggard.  U.S.P.  1,410,249,  21.3.22. 
Appl.,  5.3.21. 
The  objectionable  odour  from  offensive  gases  is 
removed  by  admixture  of  the  gases  with  a  current 
of  air  containing  chlorine.  For  example,  moist 
gaseous  chlorine  is  injected  into  effluent  air  from 
ventilation  systems. — J.  R. 

Phylloxera;    Means   for    the    destruction    of  • 

J.  H.  Horst.  G.P.  346,643,  22.10.20.  Addn.  to 
343,865  (J.,  1922,  193  a). 
Pyridine  is  omitted  from  the  mixture  described 
in  the  chief  patent,  a  mixture  of,  e.g.,  equal  parts 
of  carbon  bisulphide  and  nitrobenzene  being 
employed  for  the  destruction  of  phylloxera. 

— L.  A.  C. 

Soapy    [waste!    waters;   Process   for  decomposing 
——.     C.   Bouillon.     U.S.P.   1,410,882,   28 
Appl.,  29.6.20. 

See  F.P.  475,550  of  1914;  J.,  1916,  67. 

Hater:  Apparatus  for  production  of  distilled  • 
B.  Bleicken.  E.P.  156,191,  3.1.21.  Oonv., 
23.3.14.     Addn.  to  2191  of  1914. 

Detecting  inpurities  in  gases.  G.P.  346,682.  Se' 
XXIII. 


Vol.  xli.,  No.  9.]       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


345  a 


XX.-ORGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES;    ESSENTIAL  OILS. 

Aconite;  Determination,  of  the  alkaloids  in  extract 

of  .     A.  Astruc,  E.  Canals,  and  R.  Bordier. 

.     J.  Pharm.  Chim.,  1922,  25,  161—164. 

The  official  method  of  the  French  codex   for  the 
determination  of  the  alkaloids  in  extract  of  aconite 

'  gives  low  results  owing  to  their  incomplete  extrac- 
tion by  the  specified  quantity  of  ether.  The  fol- 
lowing method  of  operation  is  recommended  in  pre- 

I  ference  : — 5  g.  of  extract  is  diluted  to  25  c.c.  with 
water,  and  acidified  with  10  c.c.  of  10%  nitric  acid, 
the  alkaloids  are  liberated  by  the  addition  of  5  c.c. 
of  ammonia,  and  the  solution  is  extracted  three 
times  with  quantities  of  100  c.c  of  ether  with  vigor- 
ous and  repeated  agitation  during  10  mins.  for  each 
extraction.  It  is  then  extracted  four  times  with 
50  c.c.  of  ether,  and  the  fourth  extract  should  be 

,  free  from   alkaloid  when   a   portion   is  evaporated 

1  and  tested  by  Valser  and  Mayer's  reagent.       The 
alkaloid  in  the  united  ethereal  extracts   is  trans-    I 
ferred  to  aqueous  solution  by  extraction  with  dilute   ' 
nitric  acid,  followed  by  four  washings  with  water, 

'  and  is  then  precipitated  in  the  usual  way  from  the 

I  filtered  aqueous  solution  by  adding  15  c.c.  of  5  % 
silieotungstic  acid  and  20  c.c.  of  10%   nitric  acid. 

I  The  precipitate  is  collected  on  a  filter  and  ignited, 
and  the  weight  of  the  residue  multiplied  by  the 

(factor  0'793  gives   the   weight   of   alkaloid   in   the 
io  c.c.  of  extract  taken. — G.  F.  M. 

•  ine  (novocaine);  Method  for  the  examination 

I    of  .     A.  W.  Hanson.     J.  Assoc.   Off.  Agric. 

Chem.,  1921,  5,  163—166. 

By  heating  a  known  weight  of  the  novocaine  pro- 
duct with  JY/10  sodium  hydroxide  solution  the  com- 
pound is  decomposed  with  the  quantitative 
formation  of  sodium  p-aminobenzoate.  By  deter- 
mining the  amount  of  bromine  which  the  hydrolysed 
solution  will  absorb  under  fixed  conditions  the 
imount  of  novocaine  in  the  original  product  may  be 
•alculated.  1  mol.  of  novocaine  is  equivalent  to 
I  molr.  (6  atoms)  of  bromine.  The  bromine  figure 
•  found  by  adding  excess  of  a  standard  solution 
ontaining  potassium  bromide  and  bromate, 
lWating  the  bromine  by  adding  hydrochloric  acid 
olution,  removing  the  excess  of  bromine  by  add- 
ng  potassium  iodide  solution,  and  titrating  the 
Iodine  liberated  with  standard  sodium  thiosulphate 
olution.  A  control  should  be  carried  out  if  other 
ubstances  are  present. — J.  R. 

\lrgot  of  diss  and  ergot  of  oats:  Chemical  composi- 
tion of  the .  G.  Tanret.   Comptes  rend.,  1922, 

174,  827—830. 

he  ergot  of  diss,  Ampelodesmos  tenax,  Linck,  from 
forth  Africa,  and  that  of  the  Algerian  oats  contain 
le  same  principles  as  the  ergot  of  rye,  but  the 
roportions  are  very  variable  in  passing  from  one 
lecies  to  another.  The  ergot  of  diss  is  very  poor 
i  crystallised  ergotinine,  but  that  of  oats  is  richer 
i  this  principle  than  the  average  ergot  from  rye. 
i  years  of  scarcity  the  ergot  of  rye  might  appar- 
ltly  be  replaced  by  that  of  oats  but  not  by  that  of 
ss  in  all  its  uses. — W.  G. 

'•thelin — the  alleged  growth-controlling  substance 
of  the  anterior  lobe  of  the  pituitary  gland.  J.  C. 
Brummond  and  R.  K.  Cannan.  Biochem.  J., 
1922,  16,  53—59. 

"thelin,  which  Robertson  claims  to  have  isolated 
:>m  the  anterior  lobe  of  the  pituitary  gland,  is 
'parently  a  mixture,  chiefly  of  substances  of  the 
>oid  class.  Robertson's  deductions  as  to  the 
]eet  of  tethelin  and  of  anterior  lobe  of  the 
tuitary  on  growth  are  not  warranted. — W.  O.  K. 


Lecithin;   Unsaturated   fatty   acids   of   liver  . 

P.  A.  Levene  and  H.  S.  Simms.    J.  Biol.  Chem., 
1922,  51,  285—294. 

From  the  product  of  bromination  of  the  fatty  acids, 
obtained  from  liver  lecithin,  a  substance  corre- 
sponding to  an  octobromo-arachidic  acid  was 
isolated.  When  reconverted  into  a  tetra- 
unsaturated  acid  this  yielded  arachidonic  acid, 
whilst  the  latter,  on  reduction,  gave  arachidic  acid. 
The  residue  from  the  bromination,  on  similar  treat- 
ment, gave  first  oleic  and  then  stearic  acid.  On  the 
assumption  that  arachidonic  and  oleic  acids  are 
the  only  unsaturated  aoids  present  in  liver  lecithin, 
it  is  calculated  from  the  iodine  values  that  lecithin 
obtained  by  extraction  of  liver  with  acetone 
contains  oleic  and  arachidonic  acids  in  the  ratio 
1*3:1,  whilst  the  ratio  for  that  extracted  by  ether  is 
4-3:1.    (Cf.  J.,  1921,  789  a.)— E.  S. 

Bile  acids.  XL  Oxidation-  of  cholic  acid.  H. 
Wieland  and  O.  Schlichting.  Z.  phvsiol.  Chem., 
1922,  119,  76—97. 

Blloidanic  acid  was  prepared  by  oxidising  bilianic 
acid  and  also  by  the  oxidation  of  cholic  acid  with 
fuming  nitric  acid.  This  acid  as  well  as  its  acid 
ester  and  its  hydrated  compound  were  compared 
with  those  prepared  by  other  workers.  The  con- 
stitution of  biloidanic  acid  is  discussed. — S.  S.  Z. 

Sesqui-mustard  gas  or  bis-fi-chloroethyl  ether  of 
ethylenedithioglycol.  R.  Rosen  and  E.  E.  Reid. 
J.  Amer.  Chem.  Soc.,  1922,  44,  634—636. 

The  authors  confirm  the  results  of  Bennett  (cf.  J., 
1921,  410  a;  Trans.  Chem.  Soc,  1921,  119,  1860)  as 
to  the  method  of  preparing  monothioethyleneglycol 
and  ethylenebis-/3-chloroethyl  sulphide. — W.  G. 

Urea;  Hypobromite  reaction  on  .     P.  Menaul. 

J.  Biol.  Chem.,  1922,  51,  87—88. 

The  author  was  unable  to  obtain  accurate  results 
in  the  estimation  of  urea  by  Stehle's  modification 
(J>  Biol.  Chem.,  1921,  47,  13)  of  the  hypobromite 
method.— E.  S. 

Urea:  Gasometric  estimation  of  — .  R.  L. 
Stehle.     J.  Biol.  Chem.,  1922,  51,  89—92. 

A  reply  to  Menaul  (cf.  supra)  in  which  it  is  main- 
tained that  the  author's  method  for  the  estimation 
of  urea  does  yield  accurate  results. — E.  S. 

Acetaldehyde;  Eapid  method  for  the  estimation  of 

.     N.  K.  Smitt.     Bull.  Bur.  Bio-Tech.,  1922, 

No.  5,  117—118. 
To  5  c.c.  of  the  acetaldehyde  solution,  diluted  if 
necessary  so  as  to  contain  from  OT  to  5%  of  the 
aldehyde,  5  c.c.  of  a.  solution  of  benzidine  hydro- 
chloride solution  (cf.  Treadwell,  Analytical  Chem., 
1919,  Vol.  II.,  715)  is  added  and  after  30  min.  the 
yellow  colour  is  matched  against  the  colours  of 
standard  acetaldehyde  tubes  similarly  treated  with 
the  reagent.  It  is  necessary  to  do  the  matching 
reasonably  soon  as  formaldehyde  gives  the  same 
colour,  but  in  this  case  it  only  develops  slowly.  The 
method  is  not  sufficiently  sensitive  to  be  used  for 
very  small  amounts  of  acetaldehyde. — W.  G. 

Acetaldehyde ;  Further  facts  about  the  use  of  the 

"  silver  method"  in  the  estimation  of .     Its 

application  in  the  estimation  of  other  aldehydes. 
A  convenient  method  of  accumulation  of  aldehyde 
and   other  volatile   substances  from   body  fluids. 
R.  Fricke.    Z.  physiol.  Chem.,  1922,  118,  241—246. 
Further   details    about   the   method   described   by 
Stepp  and  Fricke  (J.,  1922,  197  a).      Acetaldehyde 
can  be  removed  from  body  fluids  by  steam  distilla- 
tion.—S.  S.  Z. 


346  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[May  15,  1922. 


Anise  fruit;  Testing  and  evaluation  of  .     W. 

Brandt  and  M.  Wolff.     Ber.  deuts.  Pharm.  Ges., 
1922,  32,  34—48. 

The  chemical  and  microscopical  tests  to  which 
anise  fruit,  if  genuine,  should  respond  are 
described  in  detail,  together  with  methods  for 
the  detection  of  falsifications.  The  most  dangerous 
falsifications  are  admixture  of  conium  or  hyoscy- 
anius.  The  former  is  detected  by  distilling  the 
drug  with  aqueous  potash,  evaporating  the  acidi 
tied  distillate  to  dryness  to  remove  anise  oil, 
and  redistilling  with  potassium  hydroxide.  The 
presence  of  coniine  in  the  distillate  is  revealed 
by  the  formation  of  a  distinct  brownish-white 
precipitate  with  potassium  bromide-bromine  solu- 
tion. For  the  detection  of  hyoscyamus  seeds  in 
anise  powder  the  microscopical  method  is  to  be 
preferred,  less  than  1%  being  detectable  with 
certainty  by  the  characteristic  brownish  thick- 
walled  cells  of  the  seed  epidermis,  with  wavy  side 
walls.  Thin-walled  parenchyma  cells  with  delicate 
spiral  or  net-shaped  thickenings  derived  from  the 
fruit  of  Aethusa  cynapium  should  also  be  entirely 
absent.  A  high  percentage  of  ash  insoluble  in 
hydrochloric  acid  is  generally  a  sign  of  lack  of 
sufficient  care  in  the  gathering  and  storage  of  the 
drug,  and  samples  containing  more  than  1  %  should 
be  rejected.  Total  ash  should  not  exceed  10%,  and 
the  volatile  oil  content  should  be  at  least  1*5%. 

— G.  F.  M. 


Wood;  A  reaction  for  and  some  observations 

on  anethole.      O.  Adler.      Biochem  Zeits.,  1922, 
128,  32—34. 

All  varieties  of  wood  when  warmed  with  a  glacial 
acetic  acid  solution  of  phenylhydrazine  hydro- 
chloride become  coloured  green,  adhering  fragments 
of  bark  becoming  reddish-brown.  Furfural  (but 
not  pentoses),  oil  of  anise  and  oil  of  fennel  also  give 
this  green  coloration.  Anethole,  a  constituent  of 
these  oils,  gives  the  same  coloration  when  of  com- 
mercial purity,  but  when  pure  does  not.  The  con- 
stituent responsible  for  the  colour  reaction  has  not 
been  traced,  although  it  distils  over  with  anethole 
and  is  produced  from  anethole  by  oxidising  agents 
and  in  other  ways. — H.  K. 


Oil  of  cade;  Role  played  by  the  various  elements  of 
the  wood  of  Juniperus  oxycedrus  in  the  forma- 
tion of  .     R.    Huerre.     J.    Pharm.    Chim., 

1922,  25,  165—173,  214—221.  {Cf.  J.,  1921,  488  a.) 
The  various  constituents  of  oil  of  cade  are  produced 
by  the  action  of  heat  on  certain  well-defined 
elements  contained  in  the  wood  of  Juniperus 
oxycedrus,  of  which  two  groups  may  be  distin- 
guished, viz.,  the  water-soluble  portions,  the 
essential  oil,  a  resin  soluble  in  both  petroleum  spirit 
and  ether,  and  a  resin  soluble  only  in  ether,  all  of 
which  contribute  to  the  production  of  a  pyrogenous 
oil  lighter  than  water,  and  secondly  a  resin  soluble 
in  ethyl  acetate,  and  the  deresinifed  wood  itself, 
both  of  which  under  the  action  of  heat  furnish  a 
tarry  distillate  heavier  than  water.  The  above 
elements  of  the  wood  gave  the  following  percentages 
of  their  weights  of  distillate: — Water-soluble 
matter  9%,  essential  oil  100%,  resin  soluble  in 
petroleum  spirit  55%,  resin  soluble  in  ether  45°;, 
resin  soluble  in  ethyl  acetate  33%,  wood  2%.  The 
light  oil  obtained  from  the  first  group  of  materials 
acts  as  a  solvent  for  the  tar  contained  in  the  oil 
obtained  by  the  distillation  of  the  entire  wood,  and 
if  this  is  poor  in  essential  oil  but  little  oil  of  cade  is 
produced,  whilst  if  it  is  also  poor  in  resins  soluble 
in  petroleum  spirit  and  ether  only  a  trace  is 
obtained  consisting  of  tar  heavier  than  water. 

— G.  F.  M. 


Santalol;  Study  of  the  distillation  method  for  the 

estimation  of in  santal  oil.  C.  W.  Harrison 

J.  Assoc.  Off.  Agric.  Chem.,  1921,  5,  166—171. 

In  the  U.S. P.  method  of  estimating  santalol  in 
santal  oil,  the  latter  is  acetylated  and  a  weighed 
quantity  of  the  dry  filtered  acetylated  oil  saponified. 
From  the  amount  of  alkali  required  for  the  saponi- 
fication the  percentage  of  santalol  present  in  the 
original  oil  can  be  calculated.  In  the  modified 
method  the  residual  solution  from  the  saponification 
is  made  slightly  alkaline,  evaporated  to  a  small  bulk, 
then  made  acid  with  dilute  sulphuric  acid  and  dis- 
tilled in  a  current  of  steam.  The  distillate  is 
titrated  with  standard  alkali  and  the  percentage  of 
santalol  calculated.  In  the  examination  of  santal 
oils  adulterated  with  saponifiable  oils  the  older 
method  is  liable  to  error.  It  is  claimed  that  the 
distillation  method  reveals  this  class  of  adultera- 
tion, but  further  work  is  required  with  the  method 
before  it  is  completely  standardised. — J.  R. 

Thymus  striatus;  Essential  oil  of  Italian  .    P. 

Leone  and  E.  Angelescu.    Gazz.  Chim.  Ital..  1922, 
52,  I.,  152—157. 

The  dried  complete  plant  yielded  0'342%  of  a  lemon- 
yellow  oil  of  aromatic  odour  and  burning  taste,  and 
containing  30%  of  thvmol,  9"5%  of  unidentified  free 
alcohols,  2'83%  of  esters,  little  free  acid,  29 '  of 
cvmene,  and  4'5%  of  a  sesquiterpene,  b.p.  250° — 
260°  C,  which  is  apparently  monocyclic.  The 
characters  of  the  dried,  filtered  oil  are :  sp.  gr.  at 
0°/4°  C,  0-9181;  at  13'5°/4°  C,  0-9084;  n„"  = 
1-49373;  [<-.]„"  =  -4-29°  ;  acid  value.  1"9  ;  ester  value. 
8'1 ;  aldehydes  and  ketones,  absent.  The  chemical 
and  physical  characters  of  the  portion  of  the  oil 
insoluble  in  5%  sodium  hvdroxide  solution  are 
given.— T.  H.  P. 

Origanum  vulgare;  Various  oils  of  fron>  dif- 
ferent parts  of  Italy.  E.  Angelescu.  Gazz.  Chim. 
Ital.,  1922,  52, 1.,  157—166. 

Three  samples  of  Origanum  vulgare,  the  first  pur- 
chased on  the  market  (1)  and  the  others  gathered 
at  Valle  d'Inferno   (2)    and   in   Sicilv   (3),   vielded 
respectively  0'204,  0"072,  and  1-106 %  of  oil  on  the 
whole  plant.   The  compositions  and  characters  of  I 
three  oils  are  as  follows  :   (1)  6'7%  of  thymol.  15'4°c 
of  unidentified  free  alcohols.  2'63%  of  esters,  a  small 
proportion  of  free  acid,  and  12'5%   of  a  sesquiter- 
pene,    b.p.     245° — 250°    C,     apparently    bievclic; 
sp.  gr.  at  0°/4°  C,  0-9092;  at  13-5°/4°'C,  0-8999; 
nD" =1-49599;     [a]D:- =- 34-68° ;    acid    value.    0-86; 
saponif.  value,  8'4 ;  aldehvdes  and  ketones,  absent. 
(2)  2-2%  of  thymol,  12'86%  of  unidentified  alcohols. 
2'56%   of  esters,  and  probably  a  sesquiterpene;  sp 
gr.    at  0°/4°    C,   0-9203;    at   13'50/4°   C,    09101 : 
7iD"  =  1-50306;     [ay2  =-697°;     acid     value.    0-86: 
saponif.    value,    8'2.      (3)    50%    of    thymol,    i 
unidentified  free  alcohols,  0'85%  of  esters,  traces  oi 
free  acid,  17-5%  of  cvmene.  and  10'5%  of  dipontene  . 
sp.  gr.  at  0°/4°  C.,' 09343;  at  13\5°/40  C,  0 
»V!:-=r50029;     [a]D"  =  -f0-03°;     acid    vain. 
saponif.  value,  3'17;  aldehydes  and  ketones,  absent, 

— T.  H.  P. 

Hydrargyrum,  oxveyanatum;  Explosions  causi 

.     E.  Merck.     Chem.-Zeit.,  1922,  46,  299. 

A  complete  explanation  of  mercuric  oxyeyanide  on 
plosions  is  lacking,  but  in  many  instances  fri 
is  apparently  the  cause,  particularly  if  the  substana 
is  rubbed  in  a  thin  layer  even  with  a  wooden  spi 
Trituration  of  the  substance  in  a  mortar,  or  st 
in  glass-stoppered  bottles  should  therefore  alway 
be  avoided. — G.  F.  M. 

Decomposition  of  adsorbed  acetic  acid  and  w 
by  ultra-violet  light.    Holmes,  jun.,  and  Patrick 
See  V. 


Vol.  XLI.,  No.  9.]         Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


347  a 


Organic    compounds    in    plants.     Ciamician     and 
Galizzi.    See  XVI. 

Pill  basis  from  yeast.     Sabalitschka  and  Riesenbcrg. 
See  XIX  a. 

Patents. 

3.3'-Diamino-4A'-di[hydr~\oxyarsenobenzene;  Manu- 
facture of  derivatives  of  .    G.  Speyer-Haus. 

E.P.  155,577,  30.11.20.     Conv.,  12.12.19. 

Derivatives  of  diaminodihydroxyarsenobenzene 
which  are  stable  in  aqueous  solution  are  obtained  by 
dissolving  together  equal  weights  of  the  methylene- 
sulphoxylate  of  3.3'-diaminc-4.4'-dihydroxyarseno- 
benzene  and  dts  sodium  6alt  or  the  complex  silver 
compound  of  the  sodium  salt.  That  new  chemical 
compounds  are  thereby  formed  is  proved  by  the  fact 
that  the  resulting  solutions  no  longer  give  precipi- 
tates with  carbon  dioxide,  and  the  silver  solution 
gives  no  precipitate  with  sodium  chloride.  The 
solutions  keep  unchanged  for  many  hours  without 
formation  of  any  precipitate  or  increase  in  toxicity, 
or  any  loss  of  therapeutic  activity. — G.  F.  M. 

Silvcr-thiogh/collate    of    sodium;    Manufacture    of 

.       Chem.     Fabr.     Flora.       E.P.     156,103, 

29.12.20.     Conv.,  12.11.19. 

Thioglycollio  arid  is  treated  with  an  equivalent 
quantity  of  a  water-soluble  silver  salt  and  an  excess 
of  a  solution  of  sodium  hydroxide.  Either  reagent 
may  bo  employed  first,  but  if  the  former,  the  yellow 
precipitate  of  silver-thioglycollic  acid, 

AgS.CH:.CO:H, 
which  is  formed,   is  first  filtered  off  and  then  die- 
solved  in  the  soda  solution.     The  sodium  salt,  which 

fis  exceedingly  soluble  in  water,  is  isolated  by  pre- 
cipitation as  a  heavy  yellow  powder,  with  alcohol. 

jit   is  of   value    for   the   therapeutic    treatment   of 

^onoeocci  diseases. — G.  F.  M. 

Paste,  adapted  to  serve  as  a  neutral  basis  for  oint- 
ments; Process  for  producing  a  durable  infusible 

soft  .     E.   Brauchli.     E.P.   156,796,   7.1.21. 

Conv.,  4.4.18. 
A  durable,  infusible,  neutral  ointment  base  is  pre- 
pared by  dissolving  non-coagulated  albumin,  soluble 
in  water  without  forming  a  residue,  in  glycerin  of, 
6.J.,  sp.  gr.  1"23,  and  subsequently  heating  the  clear 
solution  an  the  water-bath  until  the  albumin  has 
completely  coagulated.  Other  materials,  such  as 
nedicinal  compounds  or  colouring  matters,  may  be 
ncorporated  in  the  product,  either  by  solution  in 
he  glycerin,  or   bv   admixture   after   coagulation. 

— L.  A.  C. 

icridine  derivatives;  Manufacture  of  new  thera- 
peutically active .     O.  Imray.     From  Farbw. 

vorm.     Meister,     Lucius,     und     Briining.     E.P. 
176,038,  14.10.20. 

Therapeutically  active  acridine  derivatives  having 
i  bactericidal  action  are  obtained  by  introducing 
nto  the  9-position  of  acridine,  or  its  substitution 
iroducts,  an  amino  group,  or  an  amino  group  sub- 
tituted  by  one  or  two  organic  radicles  other  than 
ryl  groups.  These  compounds  are  obtained  by 
ausing  ammonia  or  a  primary  or  secondary  amine 
)ther  than  an  arylamine)  to  act  upon  a  9-halogen- 
cridine  or  a  9-alkoxy-  or  phenoxy-acridine  in 
resence  or  absence  of  a  catalyst,  such  as  a  copper 
lit.  They  may  also  be  obtained  by  the  reduction 
a  9-hydrazino-acridine,  or  by  decomposing  the 
aide  of  a  9-acridine-carboxylic  acid,  or  treatment 
ith  hypochlorite  of  an  amide  of  this  acid  or 
nally  by  reduction  of  a  9-nitro-acridine.  Detailed 
lamples  are  given  of  the  preparation  of  9-amino- 

ridines  or  substituted  aminoacridines  by  all  of 
lese  methods.     Among  the  substances  mentioned 

e  2-ethoxy-9-ethanolaminoacridine,  yellow  crys- 
•ls,   m.p.   146°   C,   prepared    by   heating   amino- 


ethanol  with  2-etlioxy-9-ehloroacridine  in  absolute 
alcoholic  solution  at  100°  C. ;  2-ethoxy-9-antipyrine- 
aminoacridine,  yellowish-red  crystals,  m.p.  257°  C, 
similarly  prepared  from  4-arninoantipyrine;  9- 
aminoacridine,  yellow  needles,  m.p.  236°  C.  pre- 
pared either  by  autoclaving  9-chloroacridine  or 
9-ethoxyacridine  with  alcoholic  ammonia,  or  by  re- 
ducing 9-phenylhydrazinoacridine  with  zinc  dust 
and  acetic  acid,  or  by  other  methods  above  men- 
tioned.   (Cf.  J.C.S.,  May.).— G.  F.  M. 

Alcohols;  Manufacture  of .     G.  C.  Schumann 

and  G.  Steimmig,  Assrs.  to  Badische  Anilin-  und 
Soda-Fabr.  U.S.P.  1,410,223,  21.3.22.  Appl., 
Zo.o.Zl. 

A  mixture  of  aldehyde  vapours  and  hydrogen  is 
passed  over  a  catalyst  prepared  by  the  reduction  of 
a  copper  compound  which  has  been  obtained  below 
glowing  heat. — L.  A.  C. 

Aralkyl    ethers;    Process    for    the    preparation    of 

symmetrical  .     Farbenfabr.   vorm.  F    Bayer 

und  Co.  G.P.  343,930,  8.5.19. 
Aralkyl  halides  are  heated  with  caustic  alkali 
Dibenzyl  ether,  a  clear  liquid  with  faint  blue 
fluorescence,  is  obtained  by  heating  benzyl  chloride 
with  caustic  potash  at  180°— 200°  C,  or  with 
caustic  soda  at  90°— 120°  C.  Ditolyldimethyl  ether 
is  yielded  by  commercial  xylyl  chloride  and' caustic 
potash  at  180°— 200°  C.  Secondary  reactions  do  not 
occur. — C.  I. 

Triacetin;  Process   for    the    preparation   of  . 

Farbenfabr.    vorm.    F.    Bayer    und    Co.       G  P 

347,897,  16.12.19. 
Glycerin  is  treated  with  acetic  anhydride  with 
warming,  and.  after  reaction  has  commenced,  the 
decomposition  is  completed  with  no  further  extrane- 
ous heat.  The  method  is  rapid,  and  the  yield 
90—95%  of  the  theoretical.— C.  I. 

Camphene  hydrochloride;  Process  for  the  prepara- 
tion of  true. .    Chem.  Fabr.  auf  Actien  (vorm 

E.  Schering).     G.P.  348,484,  12.8.20. 
(VmI'HEne,  suitably  diluted,  is  treated  with  gaseous 
hydrogen  chloride  at  a  low  temperature,   and  the 
excess  acid  removed.     Camphene  hydrochloride 
CH3.CH.C(CH3)3 
I       OH,  |  " 

CTL.CH.C(CH3)C1 

forms  snow-white  feathery  crystals,  of  m.p.  125° 

127°  C,  and  lias  a  strong  menthol-like  odour,  which 
distinguishes  it  from  pinene  hydrochloride  and  iso- 
bornyl  chloride.  It  is  unstable,  easily  losing  HCI, 
and  also  gradually  becoming  converted  into  iso- 
bornyl  chloride  (m.p.  157°  C).  With  acids  this 
conversion  is  very  rapid  at  atmospheric  tempera- 
ture. On  shaking  with  water  or  alkali  it  is 
quantitatively  converted  into  camphene  hydrate 

— C.  I. 

(  yanamide;  Method  of  producing from  calcium 

cyanamide.  Wargons  Aktiebolag,  and  J.  H  Lid- 
holm.  E.P.  159,866,  18.1.21.  Conv.,  3.3.20. 
See  U.S.P.  1,380,223  of  1921 ;  J.,  1921,  544  a.  The 
temperature  is  maintained  during  the  reaction  at 
not  less  than  30°  C.  by  moderate  cooling;  and  the 
alkalinity  of  the  reaction  mixture  is  not  allowed  to 
exceed  0'5  N. 

Acetic  acid;  Manufacture  of .     H    W    Mathe- 

son.  U.S.P.  1,410,207,  21.3.22.  Appl.,  26  11  17 
See  E.P.  132,558  of  1918;  J.,  1919,  846a.  The 
reaction  is  carried  out  under  a  pressure  up  to 
120  lb.  per  sq.  in. 

Aurothiosalicylic  arid;  Manufacture   of  a  complex 

.       Farbw.     vorm.     Meister,     Lucius,     und 

Bruuing.     E.P.  157,226,  8.1.21.     Conv.,  13.10.15 

See  U.S.P.  1,207,284  of  1916;  J.,  1917,  163. 

c 


348  a      Cl.  XXI.— PHOTOGRAPHIC  MATERIALS,  &c.     Cl.  XXII.— EXPLOSIVES,  &o.    'May  15, 1022. 


Vaccines;  Process  for  the  preparation  of  detoxicated 

D.  Thomson.      U.S.P.  1,409,796,  14.3.22. 

Appl.,  21.11.19. 

See  E.P.  136,036  of  1919;  J.,  1920,  135  a. 

D'niminoacridine;  Manufacture  of .     R.  Meyer, 

Assr.  to  Poulenc  Preres.  U.S.P.  1,410,494, 
21.3.22.     Appl.,  3.6.19. 

See  E.P.  137,214  of  1919 ;  J.,  1920,  247  a. 

Alkyl  esters  of  sulphuric  acid;    Process  for  the  pro- 
duction    of    neutral     .     E.     Kuh.     U.S.P. 

1,411,215,  28.3.22.     Appl.,  11.9.20. 

See  E.P.  149,688  of  1920;  J.,  1921,  561  a. 
Formaldehyde  from  methane.     E.P.  176,438.    See  I. 


XXI—  PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Photographic  emulsion;  Kcducibility  of  the  indi- 
vidual  halide   grains   in   a  .     T.   Svedberg. 

Phot.  J.,  1922,  62,  183—186. 

Statistical  experiments  were  made  with  photo- 
graphic plates  containing  a  single  layer  of  approxi- 
mately uniform  spherical  grains,  methods  having 
been  evolved  whereby  photomicrographs  of  the 
grains  may  be  made  before  exposure  to  actinic  light, 
in  addition  to  those  made  after  development  and 
after  desilvering  (removal  of  the  developed  grains). 
The  percentage  of  developed  grains  among  those 
in  contact  with  other  grains  was  the  same  as  the 
general  percentage ;  the  reducibility  of  the  grains  is 
therefore  not  transferred  from  one  grain  to  another. 
Measurements,  before  and  after  development,  of  the 
undeveloped  grains,  showed  that  these  are  not 
corroded  by  the  developer  (ferrous  oxalate,  and  in 
some  experiments,  metol-quinol).  After  desilvering, 
the  positions  previously  occupied  by  the  developed 
grains  revealed  residues  of  incompletely  developed 
grains  in  about  one  case  per  cent.,  and  there  is 
thus  only  a  small  error  in  the  author's  method  of 
estimating  the  percentage  of  developable  grains  by 
comparing  the  total  number  present  before  and 
after  desilvering.     (Cf.  J.,  1921,  638  a.)— G.  I.  H. 

Photographic   emulsions;   Grain  analysis   of  . 

S.  E.  Sheppard  and  A.  P.  H.  Trivelli.     Phot.  J., 
1922,  62,  196—197.     (Cf.  supra.) 

In  diluting  an  emulsion  for  the  preparation  of 
single-layer  plates  there  is  little  danger  of  fog,  pro- 
vided that  exposure  to  the  dark-room  light  is  brief, 
and  that  the  temperature  of  the  emulsion  is  in- 
creased for  a  short  time  only.  Examination  of  the 
residues  left  after  desilvering  with  chromic  acid 
solution  shows  that  only  a  negligible  error  in  Sved- 
berg's  method  of  grain  analysis  is  caused  by  the 
presence  of  incompletely  developed  grains. — G.T.  H. 

Photographic   emulsions;  Belation   between   sensi- 
tiveness and  size  of  grain  in  .      Part  2.     T. 

Svedberg.     Phot.  J.,  1922,  62,  186—192.     (Cf.  J., 
1921,  638  a.) 

On  the  assumptions  that  the  product  of  light  action 
on  the  silver  halide  grain,  i.e.,  the  substance  of  the 
latent  image,  consists  of  small  centres  distributed 
through  the  grain  (or  the  light-affected  portion 
thereof)  according  to  the  laws  of  chance,  and  that  a 
grain  will  be  developable  only  if  it  contains  one  or 
more  of  these  centres  in  a  position  accessible  to  the 
developer,  a  theory  is  developed  to  account  for  the 
behaviour  of  the  grains  towards  light.  This  hap- 
hazard distribution  of  the  centres  explains  the  fact 
that  not  all  the  grains  of  a  certain  size  are  made 
developable  by  a  certain  exposure.  Experimental 
confirmation  was  obtained  by  partial  development 


of  exposed  grains,  when  the  local  deposition  of  silver 
renders  the  centres  visible  after  fixation.  The  rela- 
tion between  the  average  number  of  centres  per 
grain  and  the  grain  size  was  thus  investigated. 
Different  results  were  obtained  with  light  and 
X-rays,  explanations  for  which  are  suggested. 

— G.  I.  H. 

Photographic  developers;  Methods  of  testing  

J.  1.  Crabtree.    Brit.  J.  Phot.,  1922,  69,  153—156 
170—172,  188—190. 

An  account  of  simple  photographic  methods  which 
can  be  used  for  testing  unknown  developers  against 
a  standard,  together  with  an  explanation  in  popular 
language  of  the  phenomena  of  development. 

— G.  I.  H. 

Colloid  chemistry  and  photography.  Part  55, 
Theory  of  acceleration  of  development  by  iodidet. 
H.  Luppo-Cramer.  Kolloid  -  Zeits.,  1922,  30, 
186—187. 

A  HEPLY  to  recent  criticisms  by  Sheppard  and  Meyer 
(cf.  J.,  1922,  233  a)  of  the  author's  "  germ  ex- 
posure "  theory.  This  theory  is  not  founded  only  on 
certain  phenomena  of  development,  biit  also  ex- 
plains a  totally  different  reaction,  viz.,  the  easy 
destructive  action  of  oxidising  agents  on  the  silver 
germs  of  synthetic  photohalides  and  the  visible 
or  latent  image  when,  and  only  when,  these  have 
been  treated  with  potassium  iodide  solution. 
Attention  is  also  drawn  to  the  similar  accelerating 
effect  of  dyestuffs  (cf.  J.,  1922,  233  a).— G.  I.  H. 


XXII -EXPLOSIVES;    MATCHES. 

Guncotton   and    "  Poudre   B";    Temperatures   of 

ignition  of in  vacuo  and  in  air.    Koehlcr  and 

Marqueyrol.    Mem.  Poudres,  1921,  18,  138—149. 

Samples  of  001 — 01  g.  were  heated  in  glass  tube* 
immersed  in  an  oil-bath  and  either  open  to  the  air 
or  subjected  to  the  constant  suction  of  a  water- 
pump,  the  pressure  being  about  14  mm.  The 
ignition-point  was  indicated  by  a  slight  explosion 
in  the  case  of  open  tubes,  and  by  a  feeble  glow,  dis- 
continuity in  the  sound  of  the  pump,  and  movement 
of  the  manometer  in  the  case  of  the  samples  under 
vacuum.  Tables  are  given  showing  the  tempera- 
tures of  ignition  of  various  samples  of  guncotton 
and  powders  in  air  and  in  vacuo  at  various  rates  of 
increase  of  temperature.  The  temperatures  are 
practically  the  same  in  air,  in  vacuo,  and  in  an 
atmosphere  of  carbon  dioxide,  and  range  from  182° 
to  190°  C.  for  guncotton  and  from  174°  to  180°  C. 
for  "  Poudre  B."  In  cases  where  the  temperature 
was  raised  slowly  guncotton  appeared  to  take  fire 
somewhat  more  easily  in  air  than  in  a  vacuum. 
This  is  ascribed  to  the  removal  of  the  products  of 
decomposition  in  the  latter  case  as  soon  as  they  wen' 
formed.  The  temperature  at  which  "  Poudre  B  " 
took  fire  was  lower  than  that  for  guncotton,  which 
may  be  accounted  for  by  the  higher  density  of  the 
former.  The  experiments  show  that  no  useful 
purpose  would  be  served  by  storing  nitrocellulose 
powders  under  vacuum. — H.  C.  R. 

Guncottons;     [Determination     of     coefficient    of] 

gelatinisation   of   .      J.    Desmaroux.     Mem. 

Poudres,  1921,  18,  169—182. 
An  account  is  given  of  attempts  to  measure  the 
variations  shown  by  different  samples  of  guncotton 
in  their  ability  to  form  pastes.  The  best  result- 
were  obtained  by  measuring  the  solubility  of  tin 
guncotton  in  mixtures  of  amyl  alcohol  and  ether 
The  presence  of  water  and  the  temperature  have  a 
very  marked  influence.  The  addition  of  1% 
water  increased  the  solubility  of  one  sample  iron 
16%  to  100%  and  a  decrease  of  temperature  iron 
20°  C.  to  12°  C.  increased  the  solubility  of  anothei 


Vol.  XLI.,  No.  9.) 


Cl.  XXII.— EXPLOSIVES  ;  MATCHES. 


349  a 


sample  from  16-5%  to  82'5%.  The  addition  of  water 
provides  a  means  of  readily  varying  the  properties 
of  the  solvent  to  suit  various  types  of  guncottons. 
In  practice  the  method  is  as  follows  : — 25  c.c.  of  the 
amyl  alcohol  mixture  is  added  to  1*5  g.  of  the  gun- 
cotton  in  a  thick  glass  test-tube.  The  tube  is  placed 
in  a  water  bath,  kept  at  20°  C,  and  shaken  from 
time  to  time.  After  48  hrs.  it  is  centrifuged,  10  c.c. 
of  the  clear  liquid  evaporated  to  dryness,  and  the 
residue  weighed  (  =  r).  If  p  is  the  weight  of  the 
powder  taken  the  coefficient  of  gelatinisation  is 
given  by  S  =  (25r  /  lOp)  X 100.  This  method  was  used 
throughout  the  War  at  the  Poudrerie  du  Pont-de- 
Buis.  Curves  are  given  showing  how  the  yield  of 
paste  and  consumption  of  solvent  varied  with  the 
coefficient  of  gelatinisation  of  the  guncotton  used. 

— H.  C.  R, 

Coefficient  of  gelatinisation  [of  guncotton\;  Modifi- 
cation of  the  method  of  measuring  the  .    Ab 

der  Halden.     Mem.  Poudres,  1921,  18,  183—184. 

The  method  of  determining  the  coefficient  of 
gelatinisation  of  guncottons  by  determining  their 
solubility  in  amyl  alcohol-ether  mixtures  (cf.  supra) 
cannot  be  applied  to  certain  samples  owing  to  the 
impossibility  of  separating  solution  and  precipitate. 
This  difficulty  is  overcome  and  the  use  of  a  centri- 
fuge obviated  by  taking  only  0'5  g.  of  guncotton 
and  withdrawing  only  5  c.c.  of  the  clear  solution 
after  allowing  48  hours  for  equilibrium  to  be 
attained.  With  these  quantities  the  coefficient  of 
gelatinisation  is  given  directly  by  the  number  of 
mg.  of  dry  extract  obtained.  The  figures  obtained 
are  much  higher  than  those  obtained  with  1"5  g.  of 
guncotton,  but  are  more  concordant. — H.  C.  R. 

Guncotton;    Gelatinisation   of    .      Marqueyrol 

and  Florentin.   Mem.  Poudres,  1921,  18,  150—167. 

The  preparation  and  properties  of  the  following 
gelatinising  substances  are  described,  phenyl  car- 
bonate (m.p.  78°  C),  dimethylphenyl-o-toiylurea 
(a  viscous  liquid),  dimethyldi-o-tolylurea  (m.p. 
89°  C),  ethyl  sebacate  (b.p.  307°— 308°  C).  A 
comparison  of  the  gelatinising  power  of  various 
substances  on  guncotton  No.  2  at  35°  C.  gave  the 
following  as  the  order  of  decreasing  efficiency : 
ethyl  6ebacate,  dimethylphenyl-o-tolylurea,  di- 
methyldi-o-tolylurea, camphor,  diethyldiphenylurea, 
dimethyldiphenylurea  (Centralite).  The  first  two 
substances  are  easily  and  cheaply  obtained  and  are 
promising  gelatinisers  for  nitrocellulose  powders. 
Sebacic  acid  is  obtained  by  the  dry  distillation  of 
the  alkali  salts  of  the  greater  number  of  fatty 
acids  of  high  molecular  weight,  particularly 
ricinoleic  acid.  These  substances  are  scarcely  vola- 
tile at  ordinary  temperatures  and  are  miscible  in 
all  proportions  with  alcohol  and  ether  so  that  only 
.small  quantities  of  solvents  are  necessary.  The 
preparation  of  triphenyl  phosphate,  ethyl  stearate, 
and  ethyl  ricinoleate  is  also  described  and  the 
gelatinising  power  of  the  following  substances  com- 
pared: — ethyl  succinate,  ethyl  phthalate,  ethyl 
citrate,  benzyl  benzoate,  ethyl  malonate,  triphenyl 
phosphate,  ethyl  oxalate,  ethyl  stearate,  aceto- 
phenone,  benzyl  acetate,  ethyl  acetoacetate,  and 
ethyl  ricinoleate.  None  of  these  substances  is 
equal  to  ethyl  sebacate  or  dimethvlphenyltolvlurea 
in  gelatinising  power  at  35°— 40°  C.  Of  the 
esters  of  monobasic  acids,  the  lower  members  have 
the  higher  gelatinising  power,  while  of  the  esters 
of  dibasic  acids  the  higher  members  gelatinise  best. 

— H.  C.  R. 


Uric  esters. 
angew. 


Nitrogen;  Determination  of  in  nitrii 

H.  Kesseler,  R.  Rohm,  and  G.  Lutz.     Z. 
Chem.,  1922,  35,  145. 

The   esters    are    saponified    at   40°— 50°    C.    with 
iqueous  potassium  hydroxide  (1:1),  the  nitrates  and 


nitrites  so  obtained  reduced  to  ammonia  with 
Devarda's  alloy  (50%  Cu,  45%  Al,  and  5%  Zn),  the 
ammonia  distilled  over  into  2V/ 10  sulphuric  acid, 
and  the  excess  of  acid  titrated  with  NjlO  sodium 
hydroxide  with  methyl-red  as  indicator.  The  method 
is  specially  recommended  for  nitrostarches  to  which 
other  rapid  methods  cannot  be  applied.— JH.  C.  R. 

Ammonium  nitrate;  Explosibility  of  .     C.   E. 

Munroe.     Ohem.  and  Met.  Eng.,  1922,  20,  535— 
542. 

A  review  of  the  uses  and  properties  of  ammonium 
nitrate  and  an  account  of  the  chief  accidents  in 
which  it  has  been  involved,  and  of  recent  tests  to 
determine  the  conditions  under  which  it  can  be 
detonated.  It  ds  concluded  that  "  ammonium 
nitrate  offers  very  much  the  same  fire  hazard  as 
sodium  nitrate,"  iand  that  when  stored  by  itself  in 
wooden  receptacles  and  apart  from  explosive  sub- 
stances it  is  not  to  be  considered  an  explosive  for 
tiansportation  and  storage. — H.  C.  R. 

Powders  and  explosives;  Action  of  Hertzian  waves 
on   .      Briotet.      Mem.    Poudres,    1921,    18, 

208—226. 

Hertzian  waves  and  powerful  electrostatic  fields  are 
without  influence  on  the  stability  of  powders.  On 
the  other  hand  energetic  oscillating  fields  are 
capable  of  inducing  high  E.M.P.'s  by  induction  in 
masses  of  metal  not  in  electrical  contact  with  the 
source  producing  these  fields.  These  E.M.F.'s  can 
give  rise  to  sparks  capable  of  firing  explosives. 
These  conditions  arise  in  the  case  of  oscillating  dis- 
charges of  atmospheric  electricity  during  thunder- 
storms, but  would  only  be  dangerous  in  the  case  of 
exposed  explosives  not  enclosed  by  metallic  con- 
ductors. The  remedy  is  to  "earth  "  thoroughly  all 
metallic  objects  in  the  neighbourhood  of  exposed 
explosives. — H.   C.  R. 

Stability  of  nitrocellulose  powlers;  Employment  of 
the  quartz  mercury  vapour  lamp  in  the  study  of 
the .   Briotet.  Mem.  Poudres,  1921,  18,  185— 

207 

The  direct  employment  of  the  quartz  mercury 
vapour  lamp  is  not  justifiable  since  its  action  is 
distinct  from  that  of  the  agents  which  come  into 
play  in  the  ordinary  storage  of  powders.  Its  employ- 
ment when  standardised  against  the  heat  test  is 
rendered  impossible  by  practical  difficulties  due  to 
the  lack  of  uniformity  of  the  field  of  radiation,  the 
rapid  absorption  by  air  of  radiation  of  very  short 
wave  length,  which  is  the  most  active  chemically, 
and  the  rapid  variation  of  the  quality  of  the  radia- 
tion with  slight  differences  in  the  voltage  and 
amperage  used.  These  difficulties  make  the  mercury 
vapour  lamp  useless  as  an  instrument  of  precision 
and  not  likely  in  the  present  state  of  knowledge  to 
give  useful  results  in  the  study  of  the  stability  of 
powders. — H.  C.  R. 

1.2 A-Dinitrophenetol  and  1.2A.6-trinitrophenetol ; 
Preparation  of  — — .  M.  Marqueyrol  and  A. 
Scohy.     Mem.  Poudres,  1921,  18,  70—72. 

1.2.4-Dinitrophenetol  is  prepared  by  the  action  of 
alcoholic  sodium  hydroxide  on  1.2.4-chlorodinitro- 
benzene.  An  orange-coloured  mass  of  crystals  is 
obtained  which  is  washed  with  water  until  colourless. 
The  yield  ds  92—93%  of  the  theoretical,  the  loss  of 
alcohol  being  14%  of  that  used.  1.2.4.6-Trinitro- 
phenetol  is  obtained  by  nitrating  the  dinitro  com- 
pound. It  consists  of  fine  white  crvstals  melting  at 
78-5°  C.  The  yield  obtained  is  96%  of  the  theoretical. 

— H.  C.  R. 

Mixed  acid;   Analysis  of  .      Marquevrol   and 

Loriette.     Mem.  Poudres,  1921,  18,  81—86. 

The  total  acidity  (a)  is  determined  by  titration  with 
N/2  potassium  hydroxide  and   is  expressed  as  g. 


350  a 


Cl.  XXIII.— ANALYSIS. 


[May  15,  1922. 


H,S04  per  100  g.  of  mixture.     The  nitrous  acid  (p) 
is  determined  by  titration  with  2V/2  potassium  per- 
manganate and  is  expressed  as  g.  N„04  per  100  g. 
of  mixture.     The   number  of  c.c.   (n)   of   nitrogen 
peroxide  evolved  by  100  g.  of  the  mixture  is  obtained 
by   means    of    the    Lunge    nitrometer.      If    S  =  the 
number  of  g.   of  11,80,,    N   the  number   of   g.   of 
HN03  per  100  g.  of  the  mixture,  then 
A  =  S  +  49N/63+98p/92,  and 
n  =  22340(N/63+2p/92), 
whence  S  and  N  can  be  calculated. — H.  C.  R. 

Copper   number    of    cotton.      Koehler    and    Mar- 
queyrol.    See  V. 

Potassium  perehlorate.    Lenher  and  Tosterud.    See 
VII. 

Hydrargyrum  oxycyanatum  explosions.  Merck.  See 
XX. 

Patents. 

Propellent  or  explosive;  Process  for  producing  a 

■  from   picric   acid.      J.    N.    Ludwig.      G.P. 

301,709,  3.9.15. 
A  solution  of  picric  acid  is  treated  with  such 
quantities  of  potassium,  lead,  and  silver  nitrates 
that  the  precipitate  consists  mainly  of  potassium 
picrate,  but  contains  small  quantities  of  the  above- 
mentioned  nitrates.  The  temperature  of  ignition 
of  the  potassium  picrate  is  by  this  means  lowered 
without  appreciably  reducing  its  safety.  This  is 
an  advantage  when  rapid  ignition  is  required,  as 
for  example  in  Flobert  cartridges. — H.  C.  R. 

Spent  acids  from  nitration;  Process  for  purifying 

.    Sprengstoff  A.-G.  Carbonit.    G.P.  301,797, 

3.5.17. 

The  nitro-compounds  are  removed  by  extraction 
with  trichloroethylene  or  other  chlorinated  hydro- 
carbons, e.g.,  tetrachloroethane,  and  can  be  re- 
covered after  evaporation.  No  dilution  of  the  spent 
acids  with  water  is  necessary.  The  losses  of  tri- 
chloroethylene are  very  small.— H.  C.  R. 

Nitrate  powders;  Process  for  making  cohesive  cords 

of .     T.  Welter.     G.P.  303,350,  9.3.16. 

Plastic  mixtures  of  potassium  or  sodium  nitrate 
and  nitrocresolsulphonic  acid  are  pressed  through 
tubes,  cut  into  suitable  lengths,  and  dried.  The 
resulting  oords  have  a  particularly  high  density  and 
retain  their  form  well. — H.  C.  R. 

Nitrocellulose ;  Process  for  stabilising .   Elektro- 

Osmose  A.-G.  (Graf  Schwerin-Ges.),  G.P. 
348,136,  9.11.18.  Addn.  to  305,512  (J.,  1920,  374  a). 
The  unstable  or  incompletely  stabilised  nitro- 
cellulose is  subjected  to  the  displacement  process 
according  to  the  original  patent  until  sufficiently 
stable.  The  displacement  is  at  first  carried  out 
with  dilute  and  finally  with  concentrated  alcohol. 
The  thorough  stabilisation  of  nitrocellulose  is 
effected  more  simply  and  quickly  than  by  the  usual 
processes. — H.  C.  R. 

XXIII.-ANALYSIS. 

Anemometer;  The  thermometric  .       J.  S.   G. 

Thomas.  Phil.  Mag.,  1922,  43,  688—698. 
The  thermometric  anemometer  of  C.  C.  Thomas  is 
based  upon  the  principle  that  if  heat  is  imparted  to 
a  stream  of  gas  so  as  to  raise  the  temperature  of 
the  stream  by  a  constant  amount,  then  the  heat 
energy  so  imparted  is  proportional  to  the  rate  of 
flow  of  the  gas.  It  is  shown  that  owing  to  the  exist- 
ence of  heat  losses  by  radiation  etc.,  the  principle 
is  not  applicable,  in  general,  to  the  determination 
of  slow  rates  of  flow.  There  is  a  minimum  value  of 
tho  energy  supply  required  to  heat  the  stream 
through  a  definite  range  of  temperature,  and  the 


dependence  of  the  corresponding  limiting  velocity 
upon  the  disposition  of  the  thermometer  with  regard 
to  the  heating  element  employed  is  shown  by  means 
of  calibration  curves  obtained  for  various  distances 
li't  u  ccn  the  thermometer  and  the  heating  element 

—J.  S.  G.  T. 

Calorimetric  bomb;  New .  W.  A.  Roth.   Breun- 

stoff-Chem.,  1922,  3,  104—105.  (Of.  J.,  1921 
872  a.) 
Krupp's  V,A  6teel  has  a  tensile  strength  of  75  kg., 
a  specific  heat  of  0-1163  between  100°  and  18°  C, 
and  stands  between  copper  and  silver  in  the  electro- 
motive series.  In  calorimetric  bombs  made  of  this 
material  the  tube  for  leading  off  the  combustion 
gases  for  analysis  from  the  bottom  of  the  bomb  was 
found  to  be  subject  to  corrosion  when  made  of 
nickel-silver  or  silver,  but  a  silver  tube  covered  with 
a  coating  of  silver  bromide  gave,  with  coal  contain- 
ing 5'9%  S,  only  002%  of  dissolved  iron  and  no 
dissolved  silver.  No  nickel  was  found  in  the  bomb 
water  by  the  dimethylglyoxime  test.  In  a  bomb  of 
this  description  2000  determinations  of  calorific 
value  have  been  carried  through  quite  satisfactorily. 

— H.  M. 

Spectrophotometer ;   Modified  form   of   double   slit 

.     A.    L.    Narayan.     Phil.    Mag.,   1922,   43, 

662— 6G3. 
A  pendulum  operated  electromagnetically  and  pro- 
vided with  a  double  slit  is  mounted  in  front  of  the 
collimator  slit  of  the  spectrograph.  This  form  of 
spectrophotometer  is  free  from  the  defects  of 
Vierordts  type,  giving  a  better  method  of  regulating 
the  brightness  of  the  spectrum.  It  also  possesses 
many  of  the  advantages  of  the  sector  photometer. 

— W.  E.  G. 

Piezometry;  Researches  in  absolute .     /.    Com- 
parison  of   gravity  manometer   and   glass   com- 
pression   manometers.      E.    Cardoso.      II.   Com- 
parison   of    gravity    manometer    and    nitrogen 
manometer.    Compressibility  of  nitrogen  at  16° C. 
E.  Cardoso  and  T.  Levi.     J.  Chim.  Phys.,  1921, 
19,  217—257. 
The  "  thermometric  "  type  of  glass  compressional 
manometer    is    ordinarily    less    reliable    than    the 
gravity  or  piston  form  of  manometer.     Castor  oil 
is  tho  best  liquid  to  use  in  the  piston  type  of  mano- 
meter.    A  form  of  piston  manometer,  small  in  size 
and  comparatively  easily  manipulated,  is  described 
which  permits  pressures  up  to  100  atm.  to  be  deter- 
mined correct  to   ±005  atm.     A  method  of  deter- 
mining the  radius  of  the  piston  cylinder  employed 
in  the  manometer  correct  to  +0'000065  cm.  is  also 
given.      The    indications    of    gravity    manometers 
agreed  with  values  of  the  pressure  determined  by 
three  nitrogen  manometers,  to  within  about  +0*10 
atm.  for  pressures  up  to  about  95  atm. — J.  S.  G  .T. 

Filter  paper;  Penetrability  of .     R.  C.  Griffin 

and  H.  C.  Parish.  J.  Ind.  Eng.  Chem.,  1922, 
14,  199—200. 
An  apparatus  is  described  for  testing  the  penetra- 
bility of  filter  paper  by  observing  the  time  required 
to  pass  100  c.c.  of  distilled  water  at  20°  C.  through 
a  2-inch  disc  of  the  paper  under  a  constant  head  ot 
9  in.  of  water.  The  apparatus,  which  is  constructed 
mostly  of  lead,  consists  of  an  overflow  cup  connected 
by  a  pipe  with  the  under  side  of  a  wire  gauze  which 
supports  the  filter  paper  disc  and  which  is  pi 
9  in.  below  the  top  of  the  overflow  cup.  The  dis- 
tilled water  is  fed  into  the  connecting  pipe  at  such 
a  rate  that  it  overflows  at  the  cup,  as  well  •'- 
through  the  outlet  pipe  of  the  apparatus  after  pass- 
ing through  the  filter  paper,  and  the  number  ot 
seconds  required  to  collect  100  c.c.  at  the  outlet  is 
ascertained  by  a  stop  watch.  The  temperature  of 
the  water  had  a  marked  influence  on  the  speed  ol 
filtration,    water    at   30°    C.    for   example    passing 


Vol.  XLL,  No.  9.] 


Cl.  xxiii.— analysis. 


351a 


through  more  than  twice  as  rapidly  as  water  at 
0°  C.  under  otherwise  similar  conditions.  The  time 
factor  is  also  important,  and  even  when  distilled 
water  is  used  the  filtration  slows  down  after  a  time, 
owing  to  the  hydration  and  expansion  of  the  fibres. 
A  paper  which  initially  had  a  penetrability  of  25 
sees,  gave  a  value  of  1000  sees  after  2  hrs. — G.  F.  M. 

Micro-extraction     apparatus.       F.      Laquor.        Z. 

physiol.  Chem.,  1922,  118,  215—217. 
An  adaptation  of  an  extraction  apparatus  for  the 
detection  of  small  quantities  of  lactic  acid  of  the 
order  2 — 10  mg.  in  tissues. — S.  S.  Z. 

Xylenol  blue  and  its  proposed  use  as  a  new  and  im- 
proved   indicator    in    chemical    and    biochemical 
work.     A.  Cohen.     Biochem.  J.,  1922,  16,  30—34. 
The      author       recommends       as      an       indicator 
1.4 -dimethyl-  5-  hydroxybenzenesulphonephthalein 
(xylenol    blue),    which    has    an    acid    range    from 
2>H1'2    (red)    to    pa2'8    (yellow),     and    an    alkaline 
range  from  pH8'Q  (yellow)  to  p„9'6  (blue).     This  new 
indicator  possesses  several  advantages  over  thymol 
blue,  in  place  of  which  it  can  be  successfully  em- 
|  ployed— W.   O.   K. 

Oxalic    acid;    Hydrated    as    an    oxidimetric 

standard.  A.  E.  Hill  and  T.  M.  Smith.  J. 
Amer.  Chem.  Soc.,  1922,  44,  546—557. 

.  Crystals  of  hydrated  oxalic  acid  as  usually  pre- 
pared from  aqueous  solution  contain  several  tenths 

■  per  cent,  of  included  water,  which  is  not  entirely 
lost  by  exposure  for  4  months  to  atmospheres  of 

'  the  same  aqueous  tension  as  the  crystals.  Crystals 

1  superficially  dry  will  lose  their  included  water  in 
about  24  hours  if  ground  to  pass  a  100-mesh  sieve 
and  set  in  an  atmosphere  of  an  aqueous  tension  in 
equilibrium  with  the  hydrate.  A  mixture  of  the 
hydrated  and  anhydrous  acid  is  the  only  desiccat- 
ing agent  giving  an  aqueous  tension  in  equilibrium 
with  the  hydrate  at  all  temperatures.  The  powdered 
hydrate  can  be  dried  in  about  an  hour  in  a  current 

i  of  air  passed  over  this  desiccating  agent,  so  that 
its  oxidimetric  value  agrees  with  that  of  sodium 
oxalate  within  0-025%.— J.  F.  8. 

Calcium;  Effect  of  hydrogen  ion  concentration  upon 

the  estimation  of  .     A.  T.   Shohl.     J.   Biol. 

Chem.,  1922,  50,  527—536. 
In  the  estimation  of  calcium  in  the  presence  of 
magnesium  and  phosphate  by  McCrudden's  method 
(J.,  1909,  170)  the  hydrogen  ion  concentration  must 
be  kept  within  the  limits  pH  4'0  and  pH  5'6.  With  a 
more  acid  solution  calcium  oxalate  dissolves,  whilst 
.with  a  less  acid  one  magnesium  ammonium 
phosphate  is  precipitated — E.  S. 

Oxides  of  iron  and  aluminium;  Separation  of  the 

' from  admixture  uith  calcium   oxide  by  the 

nitrate  method.  Charriou.  Comptes  rend., 
1922,  174,  751—754.  (Cf.  J.,  1922,  81  a.) 
Kn  St.  Claire  Deville's  method  for  the  separation  of 
he  oxides  of  iron  and  aluminium  from  calcium 
ixide  by  means  of  ammonium  nitrate,  it  is  prefer- 
able to  dry  the  precipitated  hydroxides  at  a 
emperature  not  exceeding  150°  C.  and  in  the 
iresence  of  ammonium  nitrate.  The  residue  is 
hen  extracted  three  times  with  a  boiling  10% 
olution  of  ammonium  nitrate  and  subsequently 
vashed  with  boiling  water.  Under  these  conditions 
he  separation  is  complete. — W.  G. 

'■'Pl'i'r;  New  iodometric  method  for  the  deter- 
mination of  .     R.  Lang.     Z.  anorg.  Chem., 

1921,  120,  181—202. 

he   method    depends    upon    the   oxidation    of    a 

uprous  salt,  preferably  cuprous  thiocyanate,  with 
known  quantity   of   iodine   to   cupric   salt,    and 

itrntion  of  the  excess  of  iodine  with  thiosulphate. 

wo  processes  have  been  worked  out,    the  cupric 


salt  being  first  reduced  with  sulphurous  acid  and 
with  potassium  cyanide  respectively.  The  advan- 
tage of  the  latter  method  is  that  the  reducing  agent 
is  selective  to  copper.  In  the  first  process  a  solu- 
tion of  cupric  salt,  rendered  feebly  acid  with 
mineral  acid  and  containing  at  most  028  g.  of 
copper,  is  reduced  with  excess  of  sulphurous  acid 
and  diluted  to  Nl  10.  Ammonium  thiocyanate 
solution  is  added  to  precipitate  the  copper  as 
cuprous  thiocyanate,  and  the  solution  is  boiled  to 
expel  sulphur  dioxide.  After  cooling,  a  mixture 
of  5  pts.  by  vol.  of  ammonium  oxalate  (45  g. 
(NH4),C204,H,0  per  1.)  and  7  pts.  of  oxalic  acid 
(120  g"  H.CjO'^/iHjO  per  1.)  is  added,  and  the  whole 
is  diluted  to  400  c.c.  N 1 10  solution  of  iodine  is  run 
in  with  shaking  until  a  clear  solution  is  obtained 
and  excess  of  iodine  is  titrated  with  thiosulphate. 
In  the  alternative  process  the  cupric  solution  con- 
taining 028  g.  of  copper,  in  a  long-necked  flask,  is 
made  ammoniacal  and  reduced  with  N 1 2  potassium 
cyanide  solution.  After  addition  of  1  g.  of 
ammonium  thiocyanate  the  solution  is  acidified 
with  concentrated  oxalic  acid  solution,  keeping 
cold,  so  that  all  the  copper  is  precipitated  as 
thiocyanate.  The  oxidation  with  iodine  and 
titration  proceed  as  before.  An  inexpensive  iodine 
solution,  which  is  quite  stable,  is  prepared  by  dis- 
solving 12'7  g.  of  iodine  in  a  solution  of  3  g.  of 
potassium  cyanide  in  a  little  water  and  diluting  to 
a  litre.  The  processes  are  applicable,  with  slight 
precautions  and  modifications,  in  presence  of  all  the 
common  metals.     (Cf.  J.C.S.,  April.)— E.  H.  It. 

Zinc;  Determination  of ■  as  sidphate.  A.  Gut- 
bier  and  K.  Staib.  Z.  anal.  Chem.,  1922,  61, 
97—103. 
Zinc  salts  and  compounds  may  be  converted  into 
sulphate  and  weighed  as  such  after  heating  for 
15  mins.  at  about  500°  C. ;  zinc  sulphate  does  not 
dissociate  below  675°  C.  To  ensure  the  removal  of 
the  last  traces  of  free  sulphuric  acid,  the  heated 
residue  should  be  moistened  with  a  few  drops  of 
water,  dried,  and  again  heated.  If  desired,  the 
zinc  Sulphate  mav  be  converted  into  oxide  by 
heating  it  over  a  blast-flame  until  no  further  loss 
in  weight  occurs. — W.  P.  S. 

Manganese ;  Determination  of as  sulphate.    J. 

Huber.  Z.  anal.  Chem.,  1922,  61,  103—107. 
Anhydrous  manganese  sulphate  is  obtained  when 
a  sulphuric  acid  solution  of  a  manganese  salt  is 
evaporated  and  the  residue  heated  at  360°— 400°  C. ; 
dissociation  of  the  sulphate  does  not  take  place 
below  650°  C— W.  P.  S. 

Tin;   Titration   of with   ferric   chloride.     L 

Smith.  Z.  anal.  Chem.,  1922,  61,  113—120.  (Cf. 
Hallet,  J.,  1916,  1087.) 
Tin  salt  solutions,  after  reduction,  may  be  titrated 
with  ferric  chloride  solution,  the  end-point  being 
denoted  by  the  appearance  of  a  greenish-yellow 
coloration.  The  reduotion  is  made  by  boiling  the 
hydrochloric  acid  solution  with  the  addition  ot 
aluminium  or  zinc  foil,  preferably  the  latter ;  the 
reducing  metal  is  added  in  two  successive  quantities 
(about  5  g.  of  zinc  is  used  for  each  1  g.  of  tin) 
followed  by  a  further  quantity  of  hydrochloric  acid, 
the  solution  is  then  diluted  with  boiling  water  and 
at  once  titrated. — W.  P.  S. 

Tellurium  and  selenium;  Cathodic  deposition  of  - — - 
from  their  oxyacids  and  their  eleetroanalyttcal 
determination.     E.   Miiller.     Z.    physik.    Chem., 
1922,  100,  346—366. 
Selenium  may  be  detected  by   adding  3  drops  of 
concentrated  sulphuric  acid  to  2  c.c.  of  the  solution 
and  a  few  crystals  of  hydrazine  sulphate  and  boil- 
ing;   a    red    coloration    or    precipitate    indicates 
selenium ;  the  reaction  is  sensitive  to  5  mg.  Se  per 
litre.     Tellurium  .is  deteoted   by   boiling   1   c.c.   of 


352  a 


Cd.  XXIII.— ANALYSIS. 


[May  16, 1922. 


solution  with  1  c.c.  of  concentrated  ammonia  and  a 
little  hydrazine   sulphate;    a   brown   coloration   or 
precipitate    indicates    tellurium;    the    reaction    is 
sensitive  to  10  mg.  Te  per  litre.    Selenium  and  tel- 
lurium may  be  detected   in  the  same  solution  by 
adding  3  drops  of  concentrated  sulphuric  acid  and 
a  crystal   of   hydrazine  6ulphate   to   3   c.c.   of   the 
solution  and  boiling;  a  red  precipitate  or  coloration 
indicating  selenium  is  filtered  off,  the  solution  made 
alkaline  with  concentrated  ammonia,  hydrazine  sul- 
phate added,  and  the  solution  boiled;  a  brown  pre- 
cipitate or  coloration  indicates  tellurium.     Seleni- 
ous  and  selenic  acid  together  are  detected  by  treat- 
ing 3  c.c.  of  the  solution  with  5  c.c.  of  concentrated 
sulphuric  acid   and  a  little   solid   sodium  sulphite 
and  boiling;  a  red  precipitate  indicates  selenious 
acid.     This  reaction  is  sensitive  to  5  mg.   Se  per 
litre.     After  filtration  3  c.c.  of  concentrated  hydro- 
chloric acid  and  more  sodium  sulphite  are  added 
and  the  solution  again  boiled,  when  a  further  red 
precipitate  or  coloration  indicates  selenic  acid.   The 
sensitiveness  is  the  same  as  above.    Tellurous  acid 
and  telluric  acid  in  the  same  solution  are  detected 
by   electrolysis    in   2N    sulphuric   acid    solution,    a 
cathode  deposit  of   tellurium   indicating  tellurous 
acid;  after  all  the  tellurium  from  the  tellurous  acid 
is  deposited,  the  solution  is  boiled  with  sulphuric 
acid  and  sodium  sulphite,   when  a  brown  deposit 
indicates  telluric  acid.     The  cathodic  decomposition 
potential    of    tellurous    acid    is    -048    volt.      No 
deposition     potential     could     be     obtained     for 
tellurium     from     a     sulphuric    acid     solution    of 
telluric     acid      which     indicates     that     tellurium 
cannot    be    electro-deposited    from     telluric     acid. 
Selenium    is     deposited     from     selenious     acid     at 
about  0-05  volt,  but  the  first  selenium  deposited  acts 
as  an  insulating  diaphragm  and  prevents  further 
deposition,  and  on  raising  the  voltage  the  selenium 
falls  away  from  the  electrode  in  flakes.     On  adding 
copper   sulphate   to   a   sulphuric   acid   solution   of 
selenious  acid,  selenium  and  copper  are  simultane- 
ously deposited  in  a  conducting  form  at  015  volt, 
and    all   the   selenium   may   be  deposited    at   this 
potential.     Selenium  cannot  be  electrolytically  de- 
posited from  selenic  acid  on  platinum  at  20°  C.  or 
80°  C.  Tellurium  in  tellurous  acid  may  be  quantita- 
tively determined  as  follows:    A  maximum  weight 
of  0-25  g.  of  tellurous  acid  is  dissolved  in  175  c.c. 
of  22V  sulphuric  acid  and  electrolysed  for  2i  hours 
between  two  Winkler  platinum  electrodes  which  are 
directly  connected  with  a  single  lead  accumulator. 
The  solution  must  be  rapidly  stirred  during  the  elec- 
trolysis.   The  deposit,  which  is  uniformly  dense  and 
grey,  is  washed  with  water  and  alcohol  and  dried 
over  sulphuric  acid  in  a  desiccator.     The  average 
error  of  the  method  is  +01%.     Tellurous  acid  may 
be  estimated  in  the  presence  of  telluric  acid  by  this 
method,  and  after  the  tellurium  from  the  tellurous 
acid  has  been  removed  the  solution  is  boiled  with 
hydrochloric  acid  to  reduce  the  telluric  acid,   and 
the  estimation  carried  out  as  above.    Selenium  may 
be  estimated  in  selenious  acid  as  follows:   Selenious 
acid  containing  not  more  than  007  g.  of  selenium 
is  dissolved  in  22V  sulphuric  acid  and  mixed  with 
copper  sulphate  in  22V  sulphuric  acid,  so  that  the 
concentration   of    copper    is   4   times   that    of    the 
selenium,    and   electrolysed  between   two   Winkler 
electrodes  for  2  hours  at  ordinary  temperatures  with 
rapid  stirring  by  the  current  from   a  single  lead 
accumulator.     The  deposit  of  copper  and  selenium 
is   washed   with    water    and    alcohol   and   carefully 
dried.     The  method  is  good  but  suffers  in  accuracy 
on  account  of  the  small  amount  of  selenium  which 
may  be  used  in  the  determination. — J.  F.  S. 

Hydrocyanic  acid;  Sensitiveness  of  some  tests  for 

.     T.  Sundberg.       Z.  anal.  Chem.,  1922,  61, 

110—112. 

The  ferrocyanide  reaction  will  detect  the  presence 


of  as  little  as  0023  mg.  of  HON  in  10  c.c.  of  solution, 
and  the  test,  moreover,  is  characteristic  of  cyanides. 
Other  sensitive  tests  are  the  guaiacum-copper  sul- 
phate test  (0001  mg.)  and  the  copper-benzidine 
acetate  test  (0-005  mg.).— W.  P.  S. 

Iodine  electrode;  Application  of  in  potentio- 

metric  titrations.     I.   M.   Kolthoff.     Rec.   Trav. 
Chim.,  1922,  41,  172—191. 

Iodides  may  be  estimated  accurately  by  the 
potentiometric  method  with  an  iodine  electrode; 
there  is  a  small  error  (about  0-8%)  in  neutral 
solution,  but  in  sulphuric  acid  solution  the  error  is 
negligible,  though  the  work  is  tedious  as  some  time 
is  required  to  reach  a  steady  value  of  the  electrode 
potential.  An  equivalent  quantity  of  bromide  and 
twenty  times  the  equivalent  of  chloride  may 
present  without  interfering  with  the  accuracy 
the  estimation.  The  method  is  very  useful 
estimations  of  mercuric  chloride.  Mercuric  salts 
give  very  accurate  results  when  used  for  iodine 
titrations  ;  the  nitrate  cannot  be  employed  owing  to 
its  oxidising  action,  but  the  perchlorate  is  quite 
suitable.  The  method  may  be  applied  to  estima- 
tions of  thallous  salts  and  probably  to  such  metals 
as  palladium,  but  is  useless  for  lead  and  bismuth. 

— H.  J.  E. 

Solubility    of    slightly     miscible    liquids;     Optical 
method  for  the   determination  of  the  reciprocal 

.     0.  Cheneveau.     Comptes  rend.,  1922,  174, 

815—817. 
The  refractive  indices  of  the  solvent  and  of  the 
solution  are  measured  in  a  specially  constructed 
prism  divided  into  two  cells.  Formulae  are  given 
by  means  of  which,  from  the  readings  taken,  it  is 
possible  to  calculate  the  solubility  of  the  one  liquid 
in  the  other. — W.  G. 

See  also  pages  (a)  319,  Volatile  matter  in  pitch 
coke  (Lloyd  and  Yeager).  323,  Copper  number  of 
cotton  (Koehler  and  Marqueyrol) ;  Grtt  in  china  clay 
(Strachan).  326,  Potassium  perchlorate  (Lenher 
and  Tosterud).  327,  Phosphine  (Moser  and  firuhl). 
328,  Surface  of  powdered  glass  (Wolff).  331,  Alu- 
minium in  tungsten  (Froboese).  336,  Tannin 
analyses  (Reed  and  Blackadder);  Tannase  (Rhmd 
and  Smith.  338,  Dextrose  (Greiner).  339,  Lique- 
faction of  starch  (Olsson).  341,  Vinegars  (Balcom 
and  Yanovskv);  Peroxidase  in  milk  (Rice  and 
Hanzawa);  Fat  in  malted  milk  (Keister).  34J, 
Pectin  (Carre  and  Havnes).  344,  Suspended  im- 
purity in  air  (Owens).  345,  Aconite  extract  (Astruc 
and  others);  Novocaine  (Hanson);  Urea  (Menaul, 
also  Stehle);  Acetaldehyde  (Smitt) ;  Acctaldchyiie 
etc.  (Fricke).  346,  Anise  fruit  (Brandt  and  WoUt) ; 
Wood  (Adler);  Santalol  in  santal  oil  (Harrison. 
348,  Gelatinisation  of  guncotton  (Desmaroux).  JW, 
Gelatinisation  of  guncotton  (Ab  der  Ha  den); 
Nitrogen  in  nitric  esters  (Kesseler  and  others), 
Mixed  acid  (Marqueyrol  and  Loriette). 

Patents. 
Fcfractometers.  Eefractometers forliquids.  C.Zeiss. 

E  P.  (a)  172,621  and  (b)  172,622,  28.11.21.   Conv., 

(a)  9.12.  and  (b)  13.12.20. 
(a)  In  stationarv  total-reflection  refractometere  of 
the  type  in  which  the  refractometer  is  so  fastened 
to  the  vessel  containing  the  liquid  that  the  totaUJ 
reflecting  surface  of  the  entrance  prisms  is  continu- 
ously washed  by  the  liquid  in  the  vessel,  another 
reflecting  surface  is  disposed  behind  the  totally  re- 
flecting surface  so  that  the  trays  from  tins  latter 
are  deflected  through  an  angle  of  about  90  .  1W» 
reflecting  surface  and  the  system  of  entrance  prisms 
form  a  single  glass  body  Means  are  P™v'«dlo 
cleaning  the  surface  of  the  system  of  entrance 
prisms  from  outside,     (b)  The  device  for  reading  the 


Vol.  XIX,  No.  9.] 


PATENT    LIST. 


353  A 


value  of  the  refractive  index  of  a  liquid  is  provided 
with  an  adjusting  device  enabling  the  effect  of  tem- 
perature upon  the  refractive  index  of  the  liquid  to 
be  directly  allowed  for.— J.  S.  G.  T. 

Funnels  for  laboratory  and  other  purposes.  The 
Worcester  Royal  Porcelain  Co.,  Ltd.,  and  G.  N. 
White.  E.P.  176,279,  7.6.21. 
TnE  funnel  is  a  modification  of  the  ordinary  form 
of  Buchner  funnel  so  arranged  that  suction  can  be 
applied  to  the  funnel  itself  below  the  perforated 
diaphragm  instead  of  to  a  specially  constructed  re- 
ceiver, and  the  device  can  thus  be  employed  with 
any  ordinary  flask  and  the  transference  of  the 
filtrate  is  thereby  obviated.  A  conical  baffle  is  pro- 
vided below  the  diaphragm  forming  an  annular 
space  between  it  and  the  lower  conical  outer  wall 
of  the  funnel,  thus  preventing  the  filtrate  entering 
the  suction  tube  which  is  situated  at  the  top  of 
the  annular  chamber. — G.  F.  M. 

(Ins;  Apparatus  for  controlling  or  regulating   the 

flow  of  to  a  testing  instrument  or  the  like. 

South  Metropolitan  Gas  Co.,   and  D.  Chandler. 

E.P.  176,524,  10.12.20. 

The  flow  of  gas  to  a  testing  instrument  is  controlled 

so  as  to  correct  for  changes  in  density,  temperature, 

or  pressure,   by  a  valve  which   is  actuated  by  the 

!  movement  of  a  beam  on  one  arm  of  which  is  a 
chamber  through  which  the  gas  passes  and  to  the 

jother  arm  of  which  one  end  of  an  aneroid  box  is 
fixed.  Either  the  chamber  or  the  aneroid  box,  or 
both,  may  be  replaced  by  a  sealed  bell  or  by  a  rigid 
box  having  a  flexible  diaphragm;  or  the  beam  may 

■  be  omitted  and  the  lower  end  of  an  aneroid  box 

|  connected  with  the  crown  of  a  sealed  bell  through 
which  the  gas  flows,  the  movement  of  the  bell  then 
actuating  the  gas  valve. — H.  Hg. 

Gases;  Detection  and  measurement,  of .     H.  A. 

Daynes,  and  The  Cambridge  and  Paul  Instrument 

Co.,  Ltd.  E.P.  176,574,  8.1.21. 
In  the  determination  of  a  known  constituent  in 
a  gaseous  mixture  by  measurement  of  the  rate  of 
heat  loss  of  an  electrically  heated  wire  exposed  to 
the  gas  as  described  in  E.P.  124,453  (J.,  1919, 
393  a),  the  effect  of  an  extraneous  constituent  is 
eliminated  by  ensuring  saturation  with  it  at  the 
isame  temperature  both  of  the  gas  and  of  the 
standard  of  comparison.  The  determination  of 
carbon  dioxide  in  flue  gas  which,  together  with  the 
standard  of  comparison,  has  been  cooled  below  its 
dew  point  is  described. — H.  Hg. 

Gas  analysis;  Apparatus  for without  stopcocks 

and  valves.  0.  Matzerath.  G.P.  346,084,  9.5.19. 
A  known  volume  of  gas  is  displaced  by  liquid  from 
a  measuring  vessel,  and  passes  into  a  vessel  partly 
filled  with  an  absorption  liquid.  The  portion  of 
the  gas  not  absorbed  by  the  liquid  collects  in  a 
bell,  and  thus  displaces  a  corresponding  volume  of 
the  absorption  liquid  and  causes  an  equal  volume 
of  air  from  the  upper  part  of  the  vessel  to  rise 
into  another  vessel,  where  it  actuates  a  bell  con- 
nected with   recording  mechanism. — L.   A.   C. 

Gases;  Apparatus  for  testing  - .    R.  Hase.   G.P. 

346,322,  25.7.19. 
The  thermal  conductivities  of  different  gases  are 
compared  by  measuring  the  alteration  in  the 
electrical  resistance  of  a  thin  metal  wire  sur- 
rounded by  the  gas.  Two  metal  wires  of  high 
electrical  resistance,  i.e.,  several  hundred  ohms, 
and  of  exactly  equal  thermal  capacity,  are  con- 
nected together  in  a  compensating  circuit  and  are 
sontained  in  a  channel  in  a  metal  block  through 
which  the  gas  is  passed.  Apart  from  analytical 
uses,  the  apparatus  can  be  attached  to  <a  bore  tube 
*nd  employed  for  detecting  leaks  in  underground 
?as  conduitB.— L.  A.  C. 


Gases;  Apparatus  for  detecting  the  presence  of 
impurities  in  especially  detection  of  fire- 
damp. Siemens  und  Halske,  A.-G.  G.P.  346,682, 
5.5.16. 
The  presence  of  impurities  in  the  air,  or  other 
gases,  is  detected  by  comparing  the  thermal  con- 
ductivity of  the  sample  with  that  of  pure  air 
under  similar  conditions.  Samples  of  the  gas  and 
of  pure  air  are  contained  at  rest  in  separate 
chambers  cut  out  of  a  block  of  metal,  or  connected 
together  and  enclosed  in  a  liquid  of  high  thermal 
conductivity  to  ensure  temperature  equilibrium. 
The  vessel  is  rendered  airtight  by  means  of  a 
membrane,  and  is  connected  by  capillary  tubes 
with  means  for  pumping  in  gas,  and  with  a  tubo 
filled  with  a  drying  agent  communicating  with  tho 
atmosphere. — L.  A.  C. 

Filter  masses  for  analytical  or  industrial  processes 

for  separating  copper,  cadmium,  zinc,  orthclike, 

from     solutions.       L.     M.     Wohlgemuth.       G.P. 

310,792,  22.8.15. 

Porous  filter  masses  are  impregnated  with  gels  of 

zirconium,  titanium,  or  thallium  hydroxides. 

— L.  A.  C. 

Gas-purifying  composition.  E.P.  167,151.  See  XLXb. 


Patent   List. 


The  dates  given  in  this  list  b.tg% 
tions  for  Patents,  those  of  applicat 
Complete    Specifications    accepted. 
Journals  in  which  the  acceptance  i 
Specifications    thus    advertised    as 
inspection  at  the  Patent  Office  imm 
tion  within  two  months  of  the  date 
at    Is.    each    at   the    Patent    Office 
Court,  Chancery  Lane,  London.  W 
date  given. 


in  the  case  of  Applica- 

ion,  and  in  the  oase  of 

those    of    the    Official 

announced.     Complete 

accepted    are    open    to 

ediately,  and  to  opposi- 

given ;  they  are  on  sale 

Sale    Branch.    Quality 

.C.  2.  15  days  after  the 


I.—  GENERAL;  PLANT;  MACHINERY. 

Applications. 

Blyfli.  Apparatus  for  separating  air  or  gas  from 
material  suspended  therein.     10,575.     Apr.  13. 

Cheshire  Kitchens,  Inc.  Dehydration.  11,131. 
Apr.  20.     (U.S.  21.3.22.) 

Constantinesco.  Producing  mixtures  of  liquids 
and  gases.     10,697.    Apr.  13. 

Elias.  Treatment  of  liquids  with  gases.  10,166. 
Apr.  10. 

Higginbottom.  Drying-apparatus  for  powders 
etc.     10,129.     Apr.  10. 

Hinchley,  and  Plauson's  (Parent  Co.),  Ltd.  Dis- 
integrators for  producing  colloidal  dispersions. 
10,567.     Apr.  13. 

Keith,  and  Keith  and  Blackman  Co.  Ovens  etc. 
10,294-5.     Apr.  11. 

MacKay.     Refrigeration.     10,362.     Apr.  11. 

Marchant.    Edge  runner-mills.    10,692.    Apr.  13. 

Minton.     Drying  material.     11,017.     Apr.  19. 

Moeth.     Filtering-apparatus.     11,087.     Apr.  20. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Rotary 
filters.     10,121.     Apr.  10. 

Soc.  1'AirLiquide.  Cooling  gases.  10,551.  Apr.  12. 
(Fr.,  15.4.21.) 

Soc.  l'Air  Liquide.  Devices  for  bringing  liquids 
and  gases  into  contact.  11,169.  Apr.  20.  (Fr., 
21.4.21.) 

Soderlund,  Testrup,  and  Techno-Chemical  Labora- 
tories. Recovery  of  heat  from  treated  material. 
10,528.     Apr.  12. 

Spensley.  Grinding  or  disintegrating  and  mix- 
ing machines.     10,607.    Apr.  13. 

Vernay.  Filtering-apparatus.  10,493.  Apr.  12. 
(Fr.,  23.4.21.) 

Wilderman.     10,458.     See  XIV. 

Wommer.  Mixing  materials.  10,515.  Apr.  12. 
(Ger.,  10.5.21.) 


3".4  a 


PATENT    LIST. 


[May  15,  1922. 


Complete  Specifications  Accepted. 

28,100  (1920).  Keene.  Filtering-apparatus. 
(177,819.)     Apr.  20. 

28,173  (1920).  Fraymouth,  Reavell,  and  Kestner 
Evaporator  and  Eng.  Co.  Extracting  soluble 
matter  from  powdered  or  crushed  material  or  sub- 
stances other  than  tanstuffs.     (177,820.)     Apr.  20. 

36,171  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  dispersoids.  (155,836.)  Apr.  20. 

36  (1921).  Giesecke.  Making  agglomerates  to 
be  sintered  in  shaft  furnaces.     (156,183.)     Apr.  26. 

351  (1921).-  Nitrogen  Products  Co.  Furnaces. 
(156,478.)     Apr.  20. 

5765  (1921).  Straatman.  Decolorising  liquids. 
0  71,027.)     Apr.  26. 

7561  (1921).  Duffield  and  Longbottom.  Rotary 
furnaces.     (178,283.)     Apr.  26. 

7664  (1921).  Fooks.  Heat-treating  bodies  in  a 
retort  or  similar  fluid-tight  vessel.  (177,974.) 
Apr.  20. 

16,802  (1921).  Thunholm.  Apparatus  for  evapo- 
rating liquids  to  dryness.     (165,094.)     Apr.  20. 

27,089  (1921).    Siemens-Schuckertwerke.    See  XI. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;   DESTRUCTIVE  DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

C'oburn.  and  Scottish  Bye-Products,  Ltd.  Manu- 
facture of  lubricating-greases.     10,749.     Apr.  18. 

Cureton  and  Rowlson.  Manufacture  of  fuel 
briquettes.     11,217.     Apr.  21. 

Davics.  Carbonisation  and /or  gasification  of 
furls.     11,150.     Apr.  20. 

Dunstan.  Treatment  of  liquid  hydrocarbons. 
11,405.     Apr.  22. 

Dunstan.  Purification  of  mineral  oils.  11,406. 
Apr.  22. 

Hickman.  Fuel  oil  for  internal-combustion 
engines.     11,340.     Apr.  22. 

Horsman.     11,298.     See  XIX. 

Humphreys  and  Glasgow  (Evans  and  Terzian). 
Manufacture  of  gas.     11,313.     Apr.  21. 

Hutton.     10,449.     See  XX. 

Morgan.  Fuel  for  internal-combustion  engines. 
11,365.     Apr.  22. 

Mueller.     10,174.     See  VII. 

Paterson.  Desulphurisation  of  oils  etc.  11,378. 
Apr.  22. 

Re-id.  Manufacture  of  gas  fuel  from  lime-kiln 
gases.     10,911.     Apr.  18. 

Complete  Specifications  Accepted. 

33,725  (1920).  Bates.  Treatment  of  solid  fuel 
fin-  transportation  thereof.     (154,605.)     Apr.  20. 

34,555  (1920.)  Knibbs.  Distillation  of  solid 
hydrocarbon-containing        material.  (178,157.) 

Apr.  26. 

35,012  (1920).  Hughes  and_  Mitchell.  Gas- 
generators  or  producers.     (177,845.)     Apr.  20. 

36,298  (1920).  Bates.  Production  of  composite 
mobile  fuels.     (160.754.)     Apr.  20. 

36,552  (1920).  Traun's  Forschungslaboratorium 
Ges.  Manufacture  of  lubricating-oils.  (156,140.) 
Apr.  20. 

36,589  (1920).  Stokes  and  Waldie.  Gas  cooling 
and  purifying  apparatus.     (177,855.)     Apr.  20. 

409(1921).  Langer.  Lubrieat  ing-oil  emulsion. 
(156,517.)     Apr.  26. 

182  (1921).  Bates.  Storing  composite  mobile 
fuels.     (159,173.)     Apr.  26. 

576  (1921).  Bamber  and  Parker.  Producer-gas 
generators.     (177,878.)     Apr.  20. 

1  t 17  (1921).     Brat.     Sec  VII. 

L509  (1921).  Hartmann.  Recovery  of  benzol 
hydrocarbons  from  coke-oven  gas.  (157,793.)  Apr. 20. 

15^7  (1921).  Dolenskv.  Gas-producers.  (157,859.) 
Apr.  26. 


1984  (1921).  Brooke  and  Whitworth.  Apparatus 
for  the  manufacture  of  gas.     (178,208.)     Apr.  26 

6015  (1921).  Kansas  City  Gasoline  Co.  Art  of 
cracking  hydrocarbons.     (162,269.)     Apr.  26. 

19,452  (1921).  Penhale.  Alcohol  fuel.  (178,373.) 
Apr.  26. 

III.— TAR    AND    TAR    PRODUCTS. 

Complete  Specifications  Accepted. 
689  (1921).     Plauson  and  Vielle.     See  XII. 
1509  (1921).     Hartmann.     See  II. 

IV.— COLOURING    MATTERS    AND    DYES. 

Applications. 
Carpmael  (Bayer  u.   Co.).     Manufacture  of  azo 
dyes.     11,037.     Apr.  19. 

Parker  and  Parker.    Dyestuffs.    10,884.    Apr.  18. 

Complete  Specifications  Accepted. 
575  (1921).     Glover  and  Martin.     Manufacture  of 
household  dyes.     (178,179.)     Apr.  26. 

V.— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Associated  Paper  Mills  (Both).  Compound  paper 
sheet.      10,118.     Apr.   10. 

Associated  Paper  Mills  (Roth).  Manufacture  of 
coated  paper.     10,119.     Apr.  10. 

Barrett,  Foulds,  and  Tootall  Broadhurst  Lee  Co. 
Treatment  of  cellulosic  fibres  and  fabrics.  10,565. 
Apr.  13. 

Glanzfaden  A.-G.  Production  of  spinnable  yarn 
from  viscose  solutions.  10,703.  Apr.  13.  (Ger., 
10.6.21.) 

Knecht.     Treatment  of  cotton.     10,110.     Apr.  10. 

Soc.  Chim.  Usines  du  Rhone.  Treatment  of 
cellulose,  acetate  before  dyeing.  10,991.  Apr.  19. 
(Fr.,  10.2.22.) 

Complete  Specifications  Accepted. 

31,394  (1920).  Dreaper.  Manufacture  of  arti- 
ficial fibres.     (178,151.)     Apr.  26. 

31,465  (1920).  Dreaper.  Manufacture  of  viscose 
solutions.     (178,152.)     Apr.  26. 

36,002  (1920).  Claessen.  Manufacture  of  water- 
proof materials.     (155,778.)     Apr.  20. 

275  (1921).  British  Cellulose  and  Chcm.  Manuf. 
Co.,  Palmer,  and  Dickie.  Manufacture  of  artificial 
filaments,  threads,  and  films.     (177,868.)     Apr.  20. 

403  (1921).  Exportingenieure  f.  Papier-  u. 
Zellstofftech.  Treatment  of  paper,  cardboard,  etc. 
(169,676.)     Apr.  26. 

470  (1921).     Stein.     Utilising  concentrated 
sulphite  liquor.     (156,546.)     Apr.  20. 

1350  (1921).  Krantz.  Drying  textile  materials 
(157,425.)     Apr.  26. 

1562  (1921).  Waentig  and  Gierisch.  Process  ol 
obtaining  cellulose.     (178,196.)     Apr.  26. 

1968  (1921).       McKellar.       Treatment  of  1« 
fabrics  to  remove  grease,  wax,  etc.  preparatory  ' 
bleaching,  scouring,  or  finishing.   (178,206.)   Apr.  % 

2099  (1921).  Salmon.  Bleaching  stuff  or  fibre 
in  the  manufacture  of  paper.     (178,209.)     Apr.  26 

4523  (1921).  Kjimpf.  Recovery  of  carbon  h\ 
sulphide  in  working  up  viscose.    (170,817.)    Apr.  20 

VI.— BLEACHING :    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Akt.-Ges.  f.  Anilinfabr.  Dveing  wool.  10, 70S 
Apr.  13.     (Ger.,  7.11.21.) 

Bloxam  (Akt.-Ges.  f.  Anilinfabr.).  Dyeing  ton 
hairs,  feathers,  etc.     10,913.     Apr.  18. 

Cohen  and  Lew.  Waterproofing  fabrics.  10,69< 
Apr.  13. 

Ransford  (Cassella  u.  Co.).  Treating  fibres  t 
produce  shot  effects.     10,383.     Apr.  11. 


Vol.  XLI.,  No.  9.] 


PATENT  LIST. 


355  a 


Rule.  Composition  for  dyeing  hair  etc.  11,308. 
Apr.  21. 

Complete  Specifications  Accepted. 

1240  (1921).  Zimmer's  Erben.  Apparatus  for 
colouring  webs  of  fibrous  material  by  spraying. 
(157,328.)     Apr.  20. 

4073  (1921).  Calico  Printers'  Assoc.,  and  Nelson. 
Printing  textile  fabrics.     (177,926.)     Apr.  20. 

7367  (1921).  Taylor.  Machines  for  dyeing  and 
printing  or  treating  fabrics  etc.   (177,969.)   Apr.  20. 

VII.— ACIDS;    ALKALIS;    SALTS;     NON- 
METALLIC    ELEMENTS. 

Applications. 

Christopher  and  Kay.  Apparatus  for  neutral- 
ising and  drying  sulphate  of  ammonia.  11,236. 
Apr.  21. 

Cocksedge.  Manufacture  of  a  sodium  compound. 
11,325.    Apr.  22. 

Marks  (Du  Pont  de  Nemours  and  Co.).  Manu- 
facture of  cyanides.     11,022.     Apr.  19. 

Mueller.  Recovery  of  hydrocyanic  acid  from 
gases.     10,174.     Apr.  10. 

Nitrogen  Corp.  Ammonia  synthesis.  11,023. 
Apr.  19.     (U.S.,  30.4.21.) 

Reid.     10,911.     See  II. 

Thwaite.  Apparatus  for  simultaneously  drying, 
grinding,  and  neutralising  acid  sulphate  of 
ammonia  salts.     11,196.     Apr.  21. 

!  Complete  Specifications  Accepted. 

20,989  (1920).  Evans  (Heylandt  Ges.).  Utilisa- 
tion of  liquefied  oxygen.     (153,309.)     Apr.  26. 

34,141  (1920).  Simpson,  and  Minerals  Separation, 
Ltd.     Concentration  of  ores  containing  elemental 
sulphur.     (177,839.)    Apr.  20. 
36,664    (1920).      Koppers    Co.      Manufacture    of 

•  ammonium  sulphate.     (156,170.)     Apr.  20. 

757  (1921).  Aschkenasi.  Manufacture  of  per- 
borates and  disodium  perphosphates.  (156,713.) 
Apr.  26. 

.  882  (1921).  Norsk  Hydro-Elektrisk  Kvaelstofakt. 
.Removing  solid  nitrogen  oxide6  from  refrigeration 
.devices.     (156,797.)     Apr.  26. 

1447  (1921).  Brat.  Recovering  nitrogen  in  the 
form  of  ammonia  from  peat.  (157,745.)  Apr.  26. 
2119  (1921).  New  Jersey  Zinc  Co.  Manufacture 
of  zinc  oxide.  (165,767.)  Apr.  26. 
.  6026  (1921).  Tulloch.  Recoverv  of  salts  from 
their  solutions.     (178,263.)     Apr.  26. 

•  26,440  (1921).    Lessing.    Manufacture  of  sulphate 
of  ammonia.     (178,046.)    Apr.  20. 

VIII.— GLASS;  CERAMICS. 
Applications. 

Bourdeau.  Abrasive  and  fire-resisting  material. 
11,039.    Apr.  19. 

Chance  Bros,  and  Co.,  and  Forster.  Glass. 
10,369.    Apr.  11. 

Cunnington.  Kilns  for  drying  china  clay. 
10,570.     Apr.  13. 

Grauel.    Glass-furnaces.    11,012.     Apr.  19. 

Grauel.    Glass-refining  furnaces.  11,013.  Apr.  19. 

IX.— BUILDING   MATERIALS. 

Applications. 
Decking.       Production     of     artificial     building- 
naterials.     11,181.     Apr.  20. 
Jones.    Manufacture  of  bricks.     10,752.     Apr.  18. 

Complete  Specification  Accepted. 
9549     (1921).       Mejer.       Impregnating-eomposi- 
lon  tor  cure  of  efflorescence  in  brick,  mortar,  and 
'laster  walls.    (177,990.)    Apr.  20. 

X.— METALS  ;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Applications. 
Ashcroft   and   La  cell.      Treatment    of     ores  etc. 
0,1/3.     Apr.  10. 


Bansen,  Luhn,  and  Faconeisen  Walzwerk.  Heat- 
ing-furnace.   11,048.    Apr.  19. 

Friedlaender.  Surface-hardening  of  steel. 
10,802.    Apr.  18. 

Goldschmidt  and  Stock.  Electrolytically  manu- 
facturing compact  beryllium.     11,046.     Apr.  19. 

Mai.  Producing  protective  layer  on  iron,  steel, 
etc.     10,947.    Apr.  19. 

Musgrove,  and  Newlay  Wheel  Co.  Heating  or 
annealing  furnaces.     10,816-7.     Apr.  18. 

Ransford  (Scovill  Manuf.  Co.).  Metal  anodes  for 
electrodeposition.     10,386.     Apr.  11. 

Saltrick.     Alloys.     10,619,  10,621.     Apr.  13. 

Saltrick.  Metals  and  alloys.  10,620,  10,623. 
Apr.  13. 

Saltrick.    Alloy  castings.    10,622.    Apr.  13. 

Sutcliffe.    Blast  furnaces.     10,227.    Apr.  10. 
Complete  Specifications  Accepted. 

28,389  (1920).  Metals  Extraction  Corp.  of 
America.  Separation  of  metal  from  ores.  (152,029.) 
Apr.  26. 

31,379  (1920).  Soc.  Anon,  de  Commentry  Four- 
chambault  et  Decazeville.  Alloys.  (159,857.) 
Apr.  26. 

33,818  (1920).  Moa  Iron  and  Development  Corp. 
Treatment  of  ores  etc.     (155,246.)    Apr.  20. 

472  (1921).  Sehutz.  Removing  carbon  from  iron 
or  other  metals  and  allovs.     (156,548.)     Apr.  26. 

485  (1921).  Mathesius.  Lead  alloys.  (156,552.) 
Apr.  26. 

832  (1921).  Koppers.  Operating  smelting  and 
reducing  furnaces,  especially  blast-furnaces. 
(156,765.)    Apr.  20. 

1206  (1921).  Linnmann.  Production  of  raw  iron 
or  cast  iron  from  clippings.     (157,295.)    Apr.  26. 

1404  (1921).  Loke.  Manufacture  of  refined  iron 
or  steel  direct  from  oxidised  titanic  iron  (157,705.) 
Apr.  26. 

1480  (1921).  Lohmann.  Manufacture  of  very 
hard  alloys  for  tools  etc.     (157,774.)    Apr.  26. 

1500  (1921).  Slntineami.  Electrolytic  separa- 
tion of.  platinum  from  other  metals.  (157,785.) 
Apr.  26. 

1890  (1921).  Bishop.  Recovery  of  metallic  con- 
stituents from  a  mixture.     (157,984.)     Apr.  20. 

4360  (1921).  Haglung.  Treatment  of  copper- 
nickel  matte.    (158,887.)    Apr.  26. 

XI  .—ELECTRO-CHEMISTRY. 
Applications. 

Baker.  Electric  apparatus  for  producing  ozone. 
10,700.     Apr.  13. 

Barfield  and  Wild.  Electric  furnaces.  10,512. 
Apr.  12. 

Chloride  Electrical  Storage  Co.  (Kershaw). 
Storage  batteries.     10,371.     Apr.  11. 

Chloride  Electrical  Storage  Co.  (Ford).  Storage 
batteries.    10,674.    Apr.  13. 

Fuller,  and  Fuller's  United  Electric  Works. 
Galvanic  batteries.     10,421.     Apr.  12. 

Goldschmidt  and  Stock.     11,046.     See,  X. 

Helfenstein.  Closed  electric  furnace.  10,548. 
Apr.  12.     (Austria,  12.4.21.) 

Lis.  Electric  batteries.     10,659.    Apr.  13. 

Pechkranz.  Electrolysis  of  water.   10,650.  Apr.  13. 

Pehrson.  Rotating  or  oscillating  electric  furance 
plants.     10,401.     Apr.  11.     (Sweden,  12.4.21 .) 

Prior  and  Rilev.    Selenium  cells.  10,471.  Apr.  12. 

Ransford.     10,386.     See  X. 

Soc.  Anon.  Le  Carbone.  Primary  cells.  11,295. 
Apr.  21.    (Fr.,  1S.3.22.) 

Woodburn.    Electrodes.    10,946.    Apr.  19. 
Complete  Specifications  Accepted. 

36,668  (1920).  Urbasch.  Primary  batteries. 
(156,171.)     Apr.  20. 

1500  (1921).     Slatineanu.     See  X. 

6759  (1921).  Chloride  Electrical  Storage  Co. 
(Ford).     Secondary  batteries.     (178,271.)     Apr.  26- 

d 


33GA 


PATENT   LIST. 


[May  15,  1922. 


8943—4     (1921).       Case.       Photoelectric     cells. 

al87oS"a92ltPrSiemens-Schuokertwerke.     Purify- 
ing gases  by  electricity.     (170,575.)     Apr.  20. 

XII.— FATS;  OILS;  WAXES. 
Applications. 
Golding,  and  United  Alkali  Co.    Manufacture  of 
cleansingconipositions.    10,890.    Apr.  18. 

Schuefer.    Extraction  of  oil  from  seeds,  nuts,  etc. 

10,568.    Apr.  13.  ,     ,     lnW 

Welford.    Producing  oils  and  by-products.  10,^2/  /. 

Apr.  11. 

Complete  Specifications  Accepted. 
142     (1921).       Pech.       Manufacture     of     soap. 

295  (1921).  Byk  Guldenwerke  Chem.  Fabr.  Re- 
covery of  fatty  acids  from  fatty-acid  mixtures. 
(156,259.)    Apr.  20.  „  .   .  , 

689  (1921).  Plauson  and  Vielle.  Refining  and 
otherwise  treating  oils,  fate,  and  tars.  (17b,l»3.) 
Apr.  26.  ,     .,   , 

777  (1921).  Schneider.  Extraction  of  oil  from 
rape  seed,  etc.    (156,722.)    April  26. 

XIII— PAINTS;    PIGMENTS;    VARNISHES; 
RESINS. 
Applications. 
Buckman.       Pigments     and     their     production. 
10,387.     Apr.  11. 

Kulas  and  Pauling.  Making  shaped  and 
hardened  articles  from  products  of  phenol  and 
formaldehyde  etc.    10,436.    Apr.  12. 

XIV— INDIA-RUBBER;    GUTTA-PERCHA. 

Applications. 

Jones.     Preparation  of  rubber.    10,304.    Apr.  11. 

Wilderman.     Manufacture     of      porous     bodies, 
diaphragms,  filters,  etc.  of  ebonite.  10,458.  Apr.  12. 
Complete  Specifications  Accepted. 

1554  (1921).  Farrel  Foundry  and  Machine  Co. 
Machines  for  mixing  or  masticating  rubber  etc. 
(157,829.)     Apr.  20. 

12,343  (1921).  Maguire,  Agar,  and  Coulter 
(Davidson).  Preparation  of  preservative  sub- 
stances for  rubber  latex.     (178,337.)    Apr.  26. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Applications. 
Ellis        Manufacture    of    translucent    hides    or 
skins.     10,384.     Apr.  11. 

Nobel  Industries,  Ltd.  (Du  Pont  de  Nemours 
and  Co.).  Non-cracking  coating  compositions  for 
artificial  leather  etc.     10,675.    Apr.  13. 

Complete  Specifications  Accepted. 

28.174  (1920).  Fraymouth,  Reavell,  and  Kestner 
Evaporator  and  Eng.  Co.  Extraction  of  tannin 
from  tanstuffs.     (178,138.)     Apr.  25. 

28.175  (1920).  Fraymouth,  Reavell,  and  Kestner 
Evaporator  and  Eng.  Co.  Treatment  of  the 
powdered  and  fine  particles  of  crushed  or  milled 
tanstuffs.     (178,139.)    Apr.  26. 

813  (1921).  Chem.  Fabr.  Worms.  Manufacture 
of  tannin  materials.     (156,749.)     Apr.  26. 

XVI.— SOILS;  FERTILISERS. 
Application. 
Rupprecht.     Treating    plant    culture    with    sul- 
phur.    10,699.     Apr.  13.     (Ger.,  15.4.21.) 

XVII.— SUGARS;    STARCHES;    GUMS. 
Complete  Specification  Accepted. 
8989  (1921).     Bloxam   (Kantorowicz).     Manufac- 
ture of  starch  paste.     (177,985.)     Apr.  20. 


XVIII— FERMENTATION  INDUSTRIES. 

Complete  Specification  Accepted. 
36,565    (1920).     Traun's   Forschungslaboratorium 
Ges.'  Improving  the  odour,  taste,  and  digestibility 
of  raw  yeast.     (156,153.)     Apr.  26. 

XIX— FOODS;    WATER    PURIFICATION; 

SANITATION. 

Applications. 

Cheshire  Kitchens,  Inc.     Food  product.     10,986. 
Apr.   19.     (U.S.,  4.1.22.) 

Horsman.  Disposal  of  refuse  by  combustion 
with  other  fuels.     11,298.     Apr.  21. 

Meter.     Chlorinating  fluids.     10,996.     Apr.  19. 

Orvig.  Preservation  agent.  11,163.  Apr.  20. 
(Norway,  20.5.21.)  lnOM 

Shetly.  Substitute  for  double  cream.  10,267. 
Apr.  11. 

Stevenson.      Sterilisation    of   milk   etc.     11,003. 

Apr.   19. 

Complete  Specifications  Accepted. 

1264 — 5  (1921).  Domaschintzky.  Synthetic  milk. 
(157,351—2.)     Apr.  20. 

4074  (1921).  Smith.  Preparing  foods  from 
cocoanuts  and  the  milk  thereof.   (177,927.)   Apr.  20. 

XX.— ORGANIC  PRODUCTS;  MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS. 

Applications. 

Consort,  f.  Elektrochem.  Ind.  Manufacture  of 
formaldehyde.     10,912.     Apr.  18.     (Ger.,  18.4.21) 

Elektrizitiitewerk  Lonza.  Manufacture  of  aldol 
from     acetaldehyde.     10,203.     Apr.     10.     (Switz., 

Hulton.  Production  of  a  soluble  hydrocarbon. 
10,449.     Apr.  12.  . 

Imray  (Meister,  Lucius,  u.  Bruning).  Manufac- 
ture of  therapeutically-active  acridine  derivatives. 
11,034.     Apr.  19.  . 

Metz  Complex  arseno  -  stibino  compounds. 
10,183.    Apr.  10.     (U.S.,  21.4.21.) 

Complete  Specifications  Accepted. 

36,462  (1920).  Traun's  Forschungslaboratorium 
Ges  '  Manufacture  of  vinyl  sulphuric  acid  and  ite 
homologues.     (156,121.)     Apr.  20. 

114  (1921).  Boehringer  Sohn.  Production  ot 
a-lobeline.    (156,190.)    Apr.  20. 

258  (1921).  Wohl.  Catalytic  oxidation  of_ hydro- 
carbons to  carbonyl  compounds  or  acids.  (156,246.) 
Apr.   20.  „       .         .. 

1579  (1921).  Meister,  Lucius,  u.  Bruning.  Manu- 
facture of  complex  aurothiophenols.  (15 1,006.) 
Apr.  26.  _..  ,       „,  . 

5019  (1921).  Soc.  Chim.  Usines  du  llhone. 
Manufacture  of  saccharin.     (165,438.)    Apr.  20. 

XXI— PHOTOGRAPHIC    MATERIALS    AND 
PROCESSES. 

Application. 

Johnson.  Photographic  printing  -  out  paper. 
10,363.     Apr.  11.     (U.S.,  25.4.21.) 

Lichte.  Apparatus  for  coating  photographic 
etc.  films.    11,175.    Apr.  20.    (Ger.,  22.4.21.) 

XXII.— EXPLOSIVES;   MATCHES. 

Applications. 

Herz.     Manufacture  of  detonators  etc.     1U" 

Nichols.  Pvrotechnic  composition  for  signalling 
devices.     11,010.     Apr.  19. 

XXIII.— ANALYSIS. 

Complete  Specification  Accepted. 
8322  (1921).     Taylor.    Refractometers.    (178,2!    ■' 
Apr.  26. 


Vol.  XLI..  No.   10.] 


ABSTRACTS 


[ivlay  31,  1922. 


I.— GENERAL;  PLANT;  MACHINERY. 

Gases  absorbed  by  charcoals  and  carbonised  lignites; 

Thermal  evolution  of .     S.  McLean.     Trans. 

Roy.  Soc.  Canada,  1921,  15,  iii.,  73—84. 

An  investigation  of  the  heat  developed  when  air, 
oxygen,  nitrogen,  or  carbon  dioxide  is  adsorbed  by 
wood  or  coconut  charcoal,  or  lignite  carbonised  at 
various  temperatures  between  350°  C.  and  550°  C. 
Oxygen  develops  the  greatest  amount  of  heat  per 
unit  volume  of  gas  adsorbed.  During  the  adsorp- 
tion, both  carbon  dioxide  and  carbon  monoxide  are 
formed.  The  greatest  evolution  of  heat  per  unit 
mass  of  adsorbent  occurs  with  carbon  dioxide.  The 
thermal  effect  for  air  is  much  smaller  than  for 
oxygen,  and  less  carbon  dioxide  and  carbon  mon- 
oxide are  produced.  In  the  case  of  oxygen  adsorp- 
tion, the  amount  of  gas  adsorbed  diminishes  until 
a  constant  value  is  attained  on  repeating  the  ex- 
periment. The  same  holds  for  the  heat  developed 
per  unit  mass  of  adsorbent.  The  heat  developed  by 
the  adsorption  of  carbon  dioxide  is  not  accounted 
for  by  the  latent  heat  of  evaporation.  The  coarser 
kinds  of  charcoal  adsorb  more  oxygen  and  form 
carbon  dioxide  more  readily  than  other  kinds. 

—J.  S.  G.  T. 

Liquids;   Flow    of   through    commercial   pipe 

lines.  R.  E.  Wilson,  W.  H.  McAdams,  and  M. 
Seltzer.    J.  Ind.  Eng.  Chem.,  1922,  14,  105—119. 

Experimental  work  was  carried  out  to  fill  in  gaps 
in  the  existing  data  concerning  the  flow  of  fluids 
in  pipes  of  commercial  size  and  roughness,  especi- 
ally  for   very    viscous   liquids   and    in   the  critical 
region  between  viscous  and  turbulent  flow,  and  to 
,  determine    correction    factors    for    pressure    drop 
!  round  bends.     The  results  obtained  have  been  com- 
bined   with    existing    information    and    data,    and 
|  methods  of  calculation  are  given  which  cover  prac- 
tically the  whole  subject  of  the  flow  of  all  fluids,  in- 
cluding gases  and  dry  vapours,  through  commercial 
.pipelines. — W.  P.  S. 

I                                    Patents. 
Dispersoids;  Process  for  the  manufacture  of  . 

:    H.  0.  Traun's  Forschungslaboratorium  G.m.b.H. 
(    E.P.  155,836,  24.12.20.    Conv.,  8.2.19. 

]The  material  is  circulated  with  the  required  dis- 
persing medium  through  a  disintegrator  which  is 
run  at  a  very  high  speed  (over  1000—2000  m.  per 
min.)  and  which  concentrates  the  grinding  pressure 
it  very  few  points.  The  quantity  of  dispersing 
nedium  must  be  largo  compared  with  that  of  the 
}hase  to  be  dispersed,  and  a  dispersion  accelerator 
a  substance  in  which  the  phase  to  be  dispersed  is  I 
'ilightly  soluble)  and  /or  a  substance  which  will 
prevent  concentration  of  ions  may  be  added,  e.g., 
ulphur  may  be  dispersed  in  water  with  the  aid  of 
i  little  carbon  bisulphide;  potash  olein  soap,  or 
annin  or  a  phenolsulphonic  acid  may  be  used  to  j 
id  the  dispersion  cf  graphite  in  water.  The  sub- 
tances  may  be  treated  in  the  colloid  mill  at  the 
loment  of  their  formation. — B.  M.  V. 

Hspersoids ;  Disintegrator  for  producing  .    H. 

O.  Traun's  Forschungslaboratorium  G.m.b.H. 
E.P.  (a)  176,002  and  (b)  176,003,  24.12.20.  Conv., 
8.2.19. 

'isintegrating  machines  are  constructed  so  that 
ie  material  to  be  dispersed  is  subjected  to  heavy 
icalised  pressure  in  the  dispersing  medium,  the 
tter  being  prevented  from  escaping  by  a  liquid- 
ght  casing,  (a)  A  rapidly  rotating  heater  wheel 
"  wheels  is  or  are  provided  with  pins  or  projections 
i  the  circumference  which  engage  with  the  spaces 
itween  pins  on  the  adjacent  wheels  or  on  a  fixed 


abutment,  (b)  Two  rapidly  rotating  cylinders  be- 
tween which  localised  contact  takes  place  are  used. 
In  each  case  the  wheels  or  cylinders  are  pressed 
together  by  a  spring  block  which  also  forms  a  dis- 
integrating surface.  (6*/.  J.,  1921,  799  a.)— B.  M.  V. 

Furnaces  for  producing  chemical  changes.  Woodall, 
Duckham  and  Jones  (1920),  Ltd.,  and  A.  McD. 
Duckham.  E.P.  (a)  176,834,  14.10.20,  and  (b) 
176,836,  23.10.20. 
The  furnaces  are  constructed  each  with  an  annular 
rotating  hearth  surrounded  in  a  gas-tight  manner 
by  fixed  walls  and  a  roof.  The  material  is  spread 
on  the  hearth  in  a  thin  layer  by  a  gas-tight  feeding 
device  and  removed  after  nearly  one  revolution  (or 
after  several  complete  revolutions  if  desired)  by  a 
gas-tight  discharging  device  (such  as  a  scraper  or 
elevator  or  both  combined)  situated  immediately 
behind  the  charging  device.  A  flue  for  waste  gases- 
leads  to  a  chimney  from  a  point  over  the  hearth 
just  in  front  of  the  charging  device.  Air  is  pre- 
heated and  the  charge  cooled  by  supplying  the 
air  to  a  point  just  behind  the  discharging  device 
whence  it  passes  round  to  a  point  about  180° 
therefrom  where  it  is  joined  by  gas  and  combustion 
takes  place,  the  burning  gases  passing  on  round  to 
the  chimney  flue,  (a)  In  a  muffle  furnace  the  pre- 
heating of  air  and  combustion  of  gas  are  effected 
in  an  annular  flue  above  the  muffle  tunnel,  and 
the  material  is  heated  by  heat  conducted  through 
the  arch  above  the  travelling  hearth,  which 
is  shaped  and  arranged  to  allow  the  smallest 
convenient  space  between  the  hearth  and  roof.  An 
additional  uppermost  annular  flue  may  be  provided 
for  preheating  the  gas.  (b)  In  a  reverberatory 
furnace,  the  preheating  of  air  and  combustion  take 
place  in  contact  with  the  material. — B.  M.  V. 

Furnaces.    H.  Foster.    E.P.  176,857,  6.12.20. 

Gas  from  a  producer  is  burnt  in  the  combustion 
chambet  of  a  reverberatory  or  other  furnace  imme- 
diately adjoining.  The  waste  gases  are  used  to  heat 
a  steam  boiler  also  immediately  adjoining  and  pre- 
ferably above  the  furnace.  A  steam  superheater  is 
provided  through  which  the  steam  for  blowing  the 
producer  is  passed,  and  the  secondary  air  is  pre- 
heated in  passages  under  the  furnace  by  means  of 
heat  from  the  bed  of  the  furnace  and /or  from  a  coil 
carrying  superheated  steam  from  the  superheater. 

— B.  M.  V. 

Furnace  or  kiln.  D.  H.  Bibb.  E.P.  177,323,  28.1.21. 

A  furnace,  kiln,  or  oven  is  divided  into  chambers  by 
one  or  more  horizontal  floors  with  a  separate  heat- 
ing device  over  each  floor.  Conveyors  in  each 
chamber  discharge  the  materials  through  an  open- 
ing in  the  floor  into  the  chamber  below.  The  heaters 
are  preferably  inclined  to  the  sides  of  the  chambers 
so  that  holders  such  as  trays  on  the  conveyors  are 
always  directly  above  at  least  one  heater. — H.  H. 

Furnace.  C.  N.  Morrison,  Assr.  to  The  Dow 
Chemical  Co.  U.S.P.  1,411,450,  4.4.22.  Appl., 
24.9.19. 

A  combustion  chamber  is  combined  with  a  heating 
chamber,  through  which  passes  a  duct  for  the 
material  to  be  heated,  and  with  a  stack.  An  ap- 
proximately uniform  temperature  is  maintained  in 
the  heating  chamber  by  providing  graduated  open- 
ings between  it  and  the  combustion  chamber. 

— H.  H. 

Chemical  reactions  [e.g.,  manufacture  of  phenol  and 
of  sodium  nitrite]  by  the  action  of  heat;  Method 
and  apparatus  for  producing  .  Thermal  In- 
dustrial and  Chemical  (T.I.C.)  Research  Co.,  Ltd., 
and  J.  S.  Morgan.     E.P.  176,864,  8.12.20. 

A  fusion  process  in  which  a  mixture  of  the  reacting 


358  A 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[May  81,  1922. 


inati  rials  is  caused  to  flow  in  a  thin  layer  on  or 
through  a  bath  of  molten  metal.  The  metal  may 
or  may  not  take  part  in  the  reaction,  an  example 
of  the  latter  being  the  manufacture  of  phenol  from 
benzenesulphonic  acid  and  caustic  soda,  and  an 
example  of  the  former  being  the  formation  of  sodium 
nitrite  (and  lead  oxide)  by  the  reaction  of  sodium 
nitrate  upon  lead.  The  apparatus  described  in 
E.P.  174,974  (J.,  1922,  239  a)  is  suitable  for  carry- 
ing out  the  invention. — B.  M.  V. 

Centrifugal  dryers.  H.  P.  Hoyle.  E.P.  176,903, 
17.12.20.     Addn.  to  164,500  (J.,  1921,  535a). 

The  dryer,  e.g.  for  wet  coal,  is  combined  with  a  dis- 
integrator mounted  on  the  shaft  carrying  the 
screen.  The  disintegrator  may  comprise  a  set  of 
bars  carried  by  the  screen  shaft  co-acting  with 
another  set  fixed  to  the  casing,  or  may  be  a  conical 
casting  secured  to  the  screen  shaft  and  formed  with 
serrations  co-acting  with  similar  serrations  on  the 
casing.  The  screen  may  be  carried  by  a  spider  of 
which  the  arms  form  a  fan  for  blowing  air  through 
the  screen. — H.  H. 

Heating  and  drying  apparatus.  G.  Keith,  D.  B. 
Bain,  and  G.  S.  Teggin.  E.P.  177,710,  2.4.21. 
The  apparatus  consists  of  a  trunk-shaped  tube  con- 
taining a  cup-shaped  burner  fitted  with  fins  extend- 
ing to  the  walls  of  the  tube,  and  suitable  fans  for 
supplying  air  to  the  burner.  Provision  is  made  for 
the  insertion  of  a  steam  jet  for  inducing  re-circula- 
tion through  the  tube  of  a  portion  of  the  partially 
cooled  gas  mixture  from  the  apparatus  to  be  heated 
or  dried  and /or  of  a  steam  jet  for  supplying  the 
air  necessary  for  the  combustion  of  the  gas. 

—A.  R.  P. 

Dryer.     W.  V.  Lewis.     U.S. P.   1,409,740,   14.3.22. 

Appl.,  20.1.20. 
The  drying  chamber  is  provided  with  an  inner 
cylindrical  heating  chamber  and  a  rotary  device 
having  flights,  arranged  in  staggered  relation, 
which  alternately  deposit  the  material  to  be  dried 
upon  the  upper  surface  of  the  heating  chamber 
and  then  remove  it  therefrom. 

Vacuum  filters.    W.  Mauss.     E.P.  177,067,  4.4.21. 

In  a  vacuum  leaf  filter,  the  filter  leaves  remain 
stationary  in  the  filtering  tank  until  the  permea- 
bility of  the  cake  falls  to  a  predetermined  point, 
whereupon  by  the  action  of  a  float  in  the  tank 
which  also  governs  the  admission  of  the  material 
to  be  filtered,  the  leaves  are  automatically  trans- 
ferred to  the  discharging  compartment,  cleansed, 
the  motion  reversed,  and  the  leaves  brought  back 
into  the  filtering  tank  without  substantial  pause. 

— B.  M.  V. 

Centrifugal  filler.  T.  H.  Parker,  S.  G.  Gassaway, 
and  J'.  W.  Whitson.  U.S. P.  1,411,582,  4.4.22. 
Appl.,  21.2.20. 

In  a  centrifugal  filter  provided  with  a  concave  belt 
comprising  a  filtering  medium,  means  are  provided 
for  rotating  the  belt  about  an  axis  removed  there- 
from and  for  driving  the  belt. — H.  H. 

Corrosion  of  apparatus  or  plant;  Means  for  treat- 
ing   steam    to    reduce    or    prevent in  which 

it  is  utilised.  Means  for  reducing  or  prevent- 
ing corrosion  of  turbine  blading.  R.  W. 
Bailey,  and  Metropolitan  Vickers  Electrical  Co., 
Ltd.     E.P.  (a)  177,234  and  (b)  177,235,  20.12.20. 

(a)  Steam  is  passed  through  a  strainer  of  corrodihle 
material  when  at  such  a  degree  of  wetness  that  the 
rate  of  corrosion  is  <a  maximum.  If  the  steam  is 
not  sufficiently  wet,  water  may  be  sprayed  in,  pre- 
ferably above  the  steam  while  passing  over  a  first 
portion    of    the    corrodible    material,    the    wetted 


steam  then  passing  through  or  over  another  portion 
of  corrodible  material,  (b)  Corrosion  appears  to  be 
a  maximum  at  the  stage  when  the  steam  is  slightly 
wet,  therefore  water  (or  a  dilute  solution  of  an 
alkali  or  other  neutralising  agent)  is  sprayed  into 
the  turbine  at  a  point  just  before  where  the  steam 
would  naturally  become  wet. — B.  M.  V. 

Condensing  or  heating  device;  Fluid  .     L    F 

Forseille.  U.S. P.  1,410,561,28.3.22.  Appl.,27.5.2o! 
A  chamber  provided  with  baffle  plates  is  disposed 
within  a  casing.  A  series  of  tubes,  triangular  in 
cross  section,  pass  through  the  baffle  plates  and  the 
casing,  and  are  disposed  so  that  adjacent  sides  of 
adjoining  tubes  are  parallel  and  inclined  to  a  direct 
line  of  passage  of  fluid  between  the  baffle  plates. 

—J.  S.  G.  T. 

Fire   extinguishers;  Antifreezing   charge  for  . 

F.  Cremer,  Assr.  to  E.  E.  McMorran  and  W.  S. 

Tiffany.  U.S.P.  1,410,735,  28.3.22.  Appl.,  5.7.19. 
One  portion  of  the  charge  consists  of  calcium 
chloride  solution  and  calcium  carbonate,  the  other 
being  an  acid,  which  does  not  give  a  precipitate 
with  calcium  chloride. — D.  J.  N. 

Ball  [grinding']  machine.  R.  Grey,  Assr.  to 
National  Finance  Co.  U.S.P.  1,410,851,  28.3.22. 
Appl.,  25.2.20.     Renewed  6.10.21. 

A  grinding  pan  is  fitted  with  a  renewable  ring 
upon  which  the  balls  are  placed,  a  second  ring  rest- 
ing on  the  balls.  A  pulley  ring  connected  with  this 
second  ring  is  provided  with  resilient  means  for 
holding  it  central  to  the  axis  of  the  pan. — H.  H. 

Bleat  exchanger.  J.  I.  Thompson,  Assr.  to  The 
Koppers  Co.  U.S.P.  1,411,313,  4.4.22.  Appl., 
4.8.19. 
One  medium  is  circulated  through  a  tank  divided 
into  communicating  compartments  fitted  with 
transverse  baffles.  The  other  medium  is  circulated 
through  a  nest  of  pipes  which  pass  through  the 
baffles  and  form  therewith  a  unit  supported  within 
and  removable  from  the  compartments  in  a  direc- 
tion parallel  to  the  planes  of  the  baffles. — H.  H. 

Chemical  fusions;  Blanketing  medium  for and 

method  of  making  same.  H.  H.  Dow,  Assr.  to 
The  Dow  Chemical  Co.  U.S.P.  1,411,421,  4.4.22. 
Appl.,  31.8.18. 

Flue  gases  are  treated  to  remove  carbon  dioxide, 
and  the  resulting  gases  are  added  to  a  hydrocarbon 
vapour  to  form  a  neutral  blanketing  medium  (ef. 
U.S.P.  1,379,619;  J.,  1921,  800  a).— H.  H. 

Centrifugal  separator.  S.  H.  Hall,  Assr.  to  The 
De  Laval  Separator  Co.  U.S.P.  1,411,782,  4.4.22. 
Appl.,  15.7.21. 
A  bowl,  providing  a  separating  compartment,  is 
combined  with  means  providing  two  independent 
feed  passages  extending  down  the  central  part  cf 
the  bowl  within  the  separating  compartment.  One 
passage  discharges  between  the  centre  and  the 
periphery  of  the  bowl,  and  the  other  discharges  rela- 
tively close  to  the  periphery. — H.  H. 

FArclro-osmotic  dehydration;  Process  and  apparatus 

for  .     Elektro-Osmose-A.-G.   (Graf  Schwerin 

Ges.).  G.P.  347,598,  6.2.20. 
In  an  electro-osmotic  dehydration  plant  of  the 
filter-press  type,  during  the  passage  of  electric 
current  an  empty  chamber  is  provided  between  the 
filter  chamber  and  the  supply  conduit.  For 
example,  subsequent  to  filling  the  filter  chamber  ami 
prior  to  the  osmotic  process,  the  part  of  the  supply 
conduit  adjacent  to  the  filter  chamber  may  be 
emptied,  preferably  by  means  of  pressure  air  or 
steam.     During  the  osmosis  the  filter  chamber  is 


Vol.  XII.,  No.  10.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


369  a 


refilled  from  separate  supply  chambers  by  means  of 
pressure  air  or  steam.  The  device  effects  economy 
of  electrical  energy  and  prevents  stopping  up  of 
the  supply  openings  of  the  eeveral  chambers  due  to 
secondary  osmosis  occurring  thereat  on  account  of 
high  current  density. — J.  S.  G.  T. 

Gases  and  vapours;  Dry  method  of  purifying  . 

L.  C.  Grosse.  E.P.  157,966,  10.1.21.  Conv.,  1.9.13. 

See  G.P.  296,837  of  1913;  J.,  1917,  586. 

Mixing     liquids    having    different     temperatures; 

Apparatus  for .    L.  R.  Levy.     E.P.  170,852, 

25.10.21.     Conv.,  26.10.20. 

See  G.P.  341,188  of  1920;  J.,  1922,  89  a. 

Concentrating,   classifying,   or  separating  pulveru- 
lent material.    F.  Ondra.    E.P.  177,615,  4.1.21. 

Chemical  reactions  by  means  of  amalgams.     U.S. P. 
1,411,507.    SeeX. 


ILv-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

Acid  water  from  coal  mines;  Nature  and  determina- 
tion of  the  acidity  of  .     W.  A.  Selvig  and 

W.  C.  Ratliff.  J.  Ind.  Eng.  Chem.,  1922,  14, 
125—127. 

The  acidity  of  mine  water  is  due  to  the  presence  of 
liron  and  aluminium  sulphates  and  free  sulphuric 
iacid  produced  by  the  action  of  moisture  and  air  on 
the  pyrites  contained  in  the  coal.  Direct  titration 
of  the  acidity  with  sodium  hydroxide  solution,  using 
, methyl  orange  as  indicator,  yields  results  which 
indicate  too  large  a  quantity  of  free  sulphuric  acid 
owing  to  the  hydrolysis  of  the  iron  and  aluminium 
sulphates ;  if  the  ferric  sulphate  is  reduced  pre- 
viously by  means  of  potassium  iodide,  the  results 
obtained  are  more  nearly  correct.  The  aluminium 
sulphate  must  be  determined  gravimotrically  and 
in  allowance  made  for  its  quantity.  Probably,  for 
practical  purposes,  determination  of  the  total 
icidity  of  the  water  is  of  as  great  importance  as  the 
ictual  free  acid  present,  6ince  the  iron  and 
iluminium  sulphates  are  latent  sources  of  free  acid 
md  play  an  important  part  in  the  corrosive  action 
if  mine  waters. — \Y.  P.  S. 

jow-giade  gases;  Improving  the  quality  of  . 

Wussow.  Z.  Sauerst.  u.  Stiekst.-Ind.,  1921,  13, 
120—121;  1922,  14,  2—6,  16—18.  Chem.  Zentr., 
1922,  93,  II.,  797. 

bom  gases  of  low  value,  including  some  producer 
;ases,  the  useful  gases  such  as  hydrogen  and  carbon 
nonoxide  can  be  extracted  by  a  diffusion  process, 
n  indifferent  gas,  such  as  steam,  being  passed 
hrough  the  chamber  at  the  diffusion  wall  in  a  con- 
rary  direction  to  the  other  gases.  The  possibility 
f  using  incandescent  iron  as  a  diffusion  wall  is 
idicated.— A.  B.  S. 


oal  and  coke;  Recovering from  ashes.    W.  D. 

Green.    Chem.  and  Met.  Eng.,  1922,  26,  701. 

HE  ashes  from  certain  industrial  operations  may 
»ntain  as  much  as  60%  of  combustible  matter 
liich  may  be  recovered.  Three  tests  were  carried 
it  by  grinding  the  ashes  and  treating  by  flotation 
i  a  Janney  test  machine  using  various  liquids. 
'ith  ashes  ground  to  pass  a  10-mesh  screen  (open- 
ig  T651  mm.),  70'6%  of  the  total  combustible 
atter  was  recovered  by  the  use  of  raw  pine  oil  and 
arrett  No.  4  flotation  oil,  and  88'7%  by  the  use 

Barrett  No.  4  flotation  oil  and  crude  turpentine 
ith  a  small  quantity  of  sulphuric  acid  at  the  end 

the  test.  With  ashes  ground  to  pass  a  20-mesh 
reen  (0"833  mm.  opening),  and  using  Barrett  Salt 


?j6j  *y  heavy  ol1  with  a  little  crude  turpentine 
added  atter  a  few  minutes'  agitation,  a  recovery  of 
94'5%  was  obtained. — A.  R.  M. 

Coal  for  carbonisation;  Noxious  effects  of  saline  sub- 
stances m  .     [Corrosion  of  refractories  and 

tar  stdls.]     M.  Boehm.     Gas  J.,  1922,  158,  206— 

208. 

The  active  agents  in  corrosion  of  refractories  used 
in  carbonising  plant  are  alkalis  and  chlorine.  The 
effect  of  chlorine  is  the  most  serious,  particularly 
in  the  case  of  tar  stills,  where  the  main  destructive 
action  is  due  to  ammonium  chloride.  Satisfactory 
results  were  obtained  on  tar  stills  by  centrifuging 
the  slightly  heated  tar,  whereby  the  proportion  of 
ammoniacal  liquor  was  reduced  "to  1%.  During  the 
operation  a  separation  of  free  carbon  also  took 
place.  A  considerable  saving  of  heat  is  at  the  same 
time  effected,  as  there  is  only  a  small  amount  of 
water  left  for  evaporation  in  the  still. — A.  R.  M. 

Coal  gas;  Liquid  purification  of .    F.  W.  Sperr. 

Amer.  Gas  Assoc.  Gas  World,  1922,  76,  334—336. 
Hydrogen  sulphide,  hydrocyanic  acid,  and  part  of 
the  carbon  dioxide  are  removed  by  passing  the  gas 
through  a  scrubber  containing  a  solution  of  sodium 
carbonate.  The  reactions  are  reversible  and,  on 
aeration  of  the  fouled  solution,  the  absorbed  im- 
purities are  driven  off  and  the  solution  regenerated 
for  use  again.  Conditions  favouring  the  decompo- 
sition of  the  fouled  liquid  are  the  presence  of  an 
excess  of  sodium  bicarbonate,  the  rapid  dilution  or 
removal  of  the  gaseous  products  of  the  revivifying 
reaction,  viz.,  hydrogen  sulphide  and  hydrocyanic 
acid,  the  presence  of  an  excess  of  carbon  dioxide  in 
contact  with  the  solution.  The  process  may  be  suc- 
cessfully operated  in  conjunction  with  the  usual 
oxide  purification  process,  the  latter  being  used  for 
the  removal  of  the  last  traces  of  hydrogen  sulphide. 
Owinp;  to  the  previous  removal  of  hydrocyanic  acid 
and  the  bulk  of  the  hydrogen  sulphide,  purification 
and  revivification  in  situ  in  the  oxide  boxes  is 
rendered  easy.  Very  considerable  savings  in  work- 
ing cost  and  floor  space  are  effected  as  compared 
with  dry  purification.  Existing  benzol  plants  may 
readily  be  converted  and  adapted  to  the  process. 
One  pound  of  soda  ash  is  sufficient  to  supply  the 
deficit  of  soda  removed  as  inert  material  by  20,000 
cub.  ft.  of  coal  gas. — A.  R.  M. 

Combustion  of  complex  gaseous  mixtures.  W.  Pay- 
man  and  R.  V.  Wheeler.  Chem.  Soc.  Trans., 
1922,  121,  363—379. 

The  speed  of  propagation  of  flame  in  the  limit  mix- 
tures of  each  of  the  paraffin  hydrocarbons  with  air 
is  the  same  under  standard  conditions,  and  in 
general  if  the  limit  mixture  of  one  gas  with  air  be 
mixed  in  any  proportion  with  the  limit  mixture  of 
the  same  type  of  another  gas  with  air  the  speed  of 
propagation  of  flame  in  the  resulting  complex  mix- 
ture is  unchanged.  The  law  of  speeds  of  propaga- 
tion of  flame  in  complex  mixtures,  of  different  in- 
flammable gases  with  air  or  oxygen  can  thus  be 
stated  as  follows: — "Given  two  or  more  mixtures 
of  air  or  oxygen  with  different  individual  gases,  in 
each  of  which  the  speed  of  propagation  of  flame  is 
the  same,  all  combinations  of  the  mixtures  of  the 
same  type  propagate  flame  at  the  same  speeds, 
under  the  same  conditions  of  experiment."  Hence 
as  regards  the  propagation  of  flame  a  mixture  of  a 
number  of  different  combustible  gases  with  air  can 
be  regarded  as  the  summation  of  mixtures  of  each 
individual  gas  with  air,  the  proportions  of  com- 
bustible gas  and  air  in  each  being  such  that  the 
speed  of  flame  in  it,  if  the  mixture  were  burning 
alone,  would  be  the  same  as  in  the  complex  mixture. 
Further,  in  a  mixture  of  several  inflammable  gases 
with  air  trie  gas  which  will  monopolise  most  oxygen 
in  the  propagation  of  flame  at  a  given  speed  is  that 

a2 


3G0A 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[May  31,  1922. 


which  when  burning  alone  with  the  same  speed  of 
flame  is  associated  with  most  air.  The  apparent 
greater  affinity  of  methane  for  oxygen  than  that 
shown  by  either  hydrogen  or  carbon  monoxide 
follows  as  a  natural  consequence  of  this  law  of 
speeds.  On  these  grounds  the  method  of  calculation 
of  the  relative  affinities  of  these  gases,  and  the 
theoretical  deductions  therefrom  made  by  Bone  (J., 
1915,  786)  are  criticised.— P.  V.  M. 

Fuel  resembling  petroleum;  Preparation  of  a  liquid 

by  the  distillation  of  the  calcium  salts  of 

soya-bean  oil  fatty  acids.  M.  Sato.  Kogyo- 
Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan),  1922, 
25,  13—24. 

By  the  dry  distillation  of  100  g.  of  the  calcium  6alts 
of  soya-bean  oil  fatty  acids  about  73  c.c.  of  oily  dis- 
tillate and  about  8  1.  of  combustible  gas  were  ob- 
tained. The  oily  distillate  has  an  odour  resembling 
that  of  cracked  petroleum  and  a  pale  greenish- 
yellow  colour  with  a  fluorescence  similar  to  that 
shown  by  petroleum.  Ite  characters  are  aB  follow  : 
Sp.  gr.  0-8261  at  15°  C. ;  iodine  value,  117"4;  acid 
value,  0'3 ;  refining  loss  with  concentrated  sulphuric 
acid  (15%  by  vol.)  and  sodium  hydroxide  (sp.  gr. 
1-155;  5%  by  vol.),  22"0%  ;  calorific  value,  9956  cals. 
The  gas  contains  2'4%  (by  vol.)  C02,  4'0%  Oa,  18-1% 
of  heavy  hydrocarbons,  10*3%  CO,  P4%  H3,  50"7% 
CH4,  and  12'3%  N2— K.  K. 

Paraffin  wax;   Composition  of  .     F.   Francis, 

J.  C.  Pope,  and  R.  H.  Coysh.  Chem.  Soc.  Trans., 
1922,  121,  496—513. 
When  paraffin  wax  is  subjected  for  long  periods  to 
the  action  of  air  at  temperatures  not  exceeding 
110°  C,  or  of  oxygen  at  100°  C,  in  presence  of 
small  quantities  of  turpentine,  a  selective  oxidation 
takes  place  apparently  of  one  class  of  constituents 
in  the  wax ;  the  resulting  products  are  less 
numerous  than  those  obtained  at  higher  tempera- 
tures, and  certain  of  them  are  comparable  in 
molecular  magnitude  with  the  hydrocarbons  present 
in  the  wax.  The  part  played  by  the  turpentine  is 
at  present  obscure,  but  although  without  it  no  oxi- 
dation takes  place  with  air  within  the  time  during 
which  the  experiments  lasted,  yet  with  oxygen  oxi- 
dation does  take  place,  commencing  about  1  month 
after  the  wax  has  been  continuously  treated  with 
the  gas.  Since  two  synthetic  normal  paraffins, 
CleHJ4  and  C32H66,  were  not  oxidised  at  all  under 
the  above  conditions  it  6eems  probable  that  it  is 
some  at  present  unknown  constituents  of  the  wax 
other  than  normal  paraffins  which  undergo  oxida- 
tion. This  view  is  strengthened  by  the  fact  that  it 
is  possible  by  distillation  in  a  high  vacuum  to  obtain 
fractions  of  the  wax  which  are  more  readily 
oxidised  than  others.  Apart  from  products  of 
oxidation  produced  in  small  amount,  the  sub- 
stances remaining  in  the  reaction  flask  consist  of 
acidic  substances  of  high  molecular  weight  non- 
acidic  oxidised  material,  and  unattacked  hydro- 
carbons. The  acidic  substances  were  differentiated 
into  four  groups,  a,  /3,  y,  and  8.  The  o-  and  /3-acids 
constituting  32  %  of  the  total  products  are  the  main 
products  of  oxidation  by  air.  The  mixture  has  the 
mean  composition  C  73-3;  H  1V4;  O  15-2%.  It  is 
insoluble  in  water  or  aqueous  alcohol  and  has 
a  mean  mol.  wt.  of  about  408.  It  was  separated 
into  an  acid  (or  acids)  of  low  in. p.  and  higher  mol. 
wt.  termed  the  o-acids  and  acids  of  higher  m.p.  and 
smaller  mol.  wt.  termed  the  /3-acids.  These  solid 
/3-acids  and  <a  liquid  y-acid  of  higher  acid  value  are 
the  main  acidic  products  of  oxidation  by  oxygen 
(47%  of  the  total  oxidation  mixture).  The  liquid 
Y-acids  are  slightly  soluble  in  aqueous  alcohol,  and 
the  8-acids,  which  are  only  produced  in  small 
amount  and  have  not  yet  been  further  investigated, 
are  considerably  soluble  in  water.    The  /3-acids  have 


been  separated  into  at  least  four  constituents  by 
means  of  the  relative  Bolubility  of  their  lead  salts  in 
alcohol.— G.  F.  M. 

Oiliness  or  lubricating  properties  of  the  various 
series  of  hydrocarbons.  W.  F.  Seyer.  Trans.  Roy. 
Soc.  Canada,  1921,  15,  iii.,  69—71. 

An  investigation  of  the  relative  lubricating  pro- 
perties of  the  saturated  and  unsaturated  con- 
stituents of  a  mineral  lubricating  oil  distilled  from 
a  California  crude  asphaltic  base  petroleum.  Tested 
at  33°— 34°  C.  for  a  load  of  700  lb.  in  a  machine 
giving  a  speed  of  400  revolutions  per  min.,  the  re- 
spective lubricating  powers  of  the  unsaturated  and 
saturated  constituents,  reduced  to  a  comparison 
basis  of  equal  viscosity,  were  found  to  be  in  the 
ratio  2:1.— J.  S.  G.  T. 

Gases  absorbed  by  charcoal  etc.    MacLean.     See  I. 

Col-e  for  blast-furnace  and  foundry  uses.  Koppers. 
See  X. 

Toxicity  index  of  internal  combustion  engines. 
Kohn  Abrest.     See  XIXb. 

Bomb  corrosion  in  calorimetric  determinations. 
Olin  and  Wilkin.    See  XXIII. 

Patents. 

Briquettes;  Processes  for  the  manufacture  of . 

E.    Pollacsek.      E.P.    157,908,    10.1.21.      Conv., 

17.10.19. 
Briquettes  are  prepared  by  compressing  in  the  cold 
state  a  mixture  of  coal  dust,  or  rubbish  or  waste 
metals,  and  a  binder  prepared  from  alkaline  sul- 
phite-cellulose waste  lye  and  mineral  oil  as  des- 
cribed in  E.P.  157,907  (page  368  a).— H.  Hg. 

Peat;  Process  and  apparatus  for  treating  to 

obtain  a  dry  product  of  high  calorific  value.  E. 
von  Springborn.  G.P.  347,361,  31.12.19.  Conv.. 
30.5.18,   14.6,  27.9,  and  18.10.19. 

A  paste  containing  saltpetre,  a  distributing  agent 
such  as  graphite,  peat  charcoal,  or  the  like,  water 
and  peat,  is  mixed  with  peat,  and  the  mixture  it 
dried  either  without  the  employment  of  pressure 
or  by  separating  a  portion  of  the  water  under  pres 
sure  and  subsequently  drying  in  the  air  or  other 
wise. — L.  A.  C. 

Peat;  Process  for  increasing  the  carbon  content  o. 

.      H.    A.    Miiller.      G.P.    347,813,    16.3.21 

Conv.,  26.2.21. 
A  suspension  of  peat  in  water  is  treated,  in  th< 
absence  of  light  and  air,  with  bacteria  and  fun<; 
obtained  from  sewage.  Nutrients  such  as  salts  0 
phosphoric  acid,  and  potassium  and  magnesiun 
salts,  are  added  to  aid  bacterial  growth,  and  th 
liquor  separated  from  the  peat  after  treatment  : 
used  in  treating  fresh  quantities  of  peat. — L.  A.  ( 

Lignite,  peat,  etc.;  Drying  of .   W.  SteinmaM 

G.P.  347,918,  29.11.19. 
Preliminary  drying  is  effected  in  a  heated  dryin 
chamber  under  reduced  pressure,  and  the  prodm 
is   transferred   directly   from   the   drying  chambe 
into  a  gas  producer. — H.  M. 

G'ofce    ovens;    Carbon-consuming   means   for  — 
Cokinq  retort  oven.     J.   van   Ackeren,   Assr.  t 
The   Koppers   Co.     U.S.P.    1,410,783-4,   28.3.2! 
Appl.,  (a)  5.1.20,  (b)  27.4.20. 
(a)   Exhaust  passages,   with  which  control  valv< 
are  connected,   are  provided   between   the  heatin 
flues  of  a  coke  oven  and  the  fuel-gas  passages  leat 
ing  to   the  burner   nozzles   in    order   to   permit 
portion  of  the  gases  leaving  the  heating  flues 
pass  direct  to  the  gas  passages  for  the  purpose  I 


Vol.  XLI.,  No.  10.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


301  a 


burning  carbon  deposited  therein,  (b)  Means  are 
provided  for  connecting  a  regenerator  with  the 
heating  walls  on  both  sides  of  an  oven  or  with  only 
a  single  heating  wall,  as  desired. — H.  Hg. 

Fuel;  Manufacture   of  solid  and  distillation 

of   tar.     W.   W.   Strafford   and   8.   Pick.      E.P. 
176,822,  16.9.20. 

Solid  fuel  which  is  smokeless  and  readily  com- 
bustible is  obtained  by  mixing  finely  powdered  coal, 
coke,  or  other  carbonaceous  substances  with  a  com- 
pound or  compounds  of  barium,  preferably  barium 
carbonate,  with  or  without  the  addition  of  char- 
coal, adding  tar  in  sufficient  quantity  to  bind  the 
particles  together,  and  retorting  the  mixture  at 
400°  to  1000°  C.  The  pitch  fraction  and  the  free 
carbon  are  left  behind  in  the  resulting  solid  fuel, 
and  the  liquid  distillate  can  be  readily  fractionated. 

—A.  R.  M. 

Gas  producers.  Georgs-Marien-Bergwerks-  und 
Hiitten-Verein,  A.-G.  E.P.  156,168,  31.12.20. 
Conv.,  14.5.15. 

!In  a  gas  producer  operating  to  produce  a  liquid 
'slag  interruptions  in  working  due  to  solidification 
of  the  slag  are  prevented  by  adding  iron  rich  in 
phosphorus,  or  other  suitable  metal.  The  molten 
iron,  being  mobile  and  heavy,  runs  rapidly  from 
the  hot  part  of  the  furnace  into  the  cooler  part 
below,  thereby  maintaining  the  slag  in  a  liquid 
condition. — A.   R.   M. 

'■Gas  generators.  H.  Hernu.  E.P.  157,286,  10.1.21. 
i    Conv.,  9.12.18. 

To  obtain  constant  composition  of  gas  with  varying 
output,  the  fuel  bed  of  the  producer  is  formed  of 
three  superposed  fire-zones,  the  variations  in 
temperature  taking  place  mainly  in  the  middle 
and  upper  parts  of  the  full  bed.  Surrounding  the 
middle  portion  and  forming  an  arch  above  the  fuel 
;is  a  vaporiser  supplying  steam  to  the  producer. 
Any  variation  in  gas  output  therefore,  will  cause 
\i  corresponding  variation  in  the  rate  of  evapora- 
tion of  water,  thereby  ensuring  a  volume  of  steam 
>eing  delivered  in  proportion  to  the  gas  made. 

—A.  R.  M. 

Has  producers  and  carbonisers.  T.  H.  Parker. 
E.P.  177,236,  20.12.20. 

The  producer  is  provided  with  two  grates,  of 
.onical  truncated  form,  one  above  the  other.  The 
;rates  may  be  formed  aa  complete  units  or  in 
ections.  Air  or  steam  is  caused  to  pass  through 
he  bed  of  fuel  from  an  annular  or  other  space 
urrounding  the  grates,  by  means  of  pressure  or 
uction,  provision  being  made  for  reversing  the 
'irection  of  flow  if  desired.  In  the  lower  part  of 
he  generator  is  a  clinker  cutter,  consisting  of  a 
emispherical  or  semicircular  member  covering  the 
ottom  of  the  lower  grate,  and  operated  from  out- 
ide  by  means  of  a  lever.  Teeth  on  the  free  edges 
f  the  cutter  serve  to  break  up  the  clinker  as  it 
I  discharged.  Two  or  more  producers  may  be 
lupled  together,  the  waste  heat  from  the  first 
|aing  utilised  for  the  purpose  of  carbonising  the 
lei  in  the  one  following.- — A.  R.  M. 

as  producer.     T.   G.   Tulloch  and  D.   J.   Smith. 
E.P.  177,590,  23.12.20. 

»  a  gas  producer  using  solid  fuel,  means  are  pro- 
ided  for  ensuring  a  constant  feed  of  fuel,  the 
ilivery  or  output  of  gas  being  determined  solely 
7  varying  or  controlling  the  amount  of  air  and 
earn  and,  if  desired,  hydrocarbons  or  other 
inching  media  introduced.  The  fuel  feed  is  of 
ie  continuously  rotating  type,  the  fuel  passing 
to  the  producer  down  a  depending  tube,  the  end 
which   is    closed    by   the    body   of    fuel    in    the 


apparatus.  Thus,  although  the  feeder  may  continue 
in  movement,  no  delivery  of  fuel  is  possible  unless 
its  level  falls  below  that  of  the  end  of  the  depend- 
ing tube,  which  is  fixed  telescopic-ally  so  as  to  allow 
of  regulation  and  adjustment.  Baffle  plates  are 
provided  above  the  fuel-bed  to  prevent  the  outward 
passage  of  any  fuel  particles  with  the  gas.  Means 
are  provided  for  keeping  the  fuel  continuously 
agitated. — A.  R.  M. 

Water-gas;  Method  of  manufacturing .    H.  L 

Doherty.  U.S.P.  1,409,682,  14.3.22.  Appl., 
9.1.12.  Renewed  26.11.19. 
A  column  of  ignited  fuel  is  moved,  at  a  rate  greater 
than  the  rate  of  combustion,  through  each  of  two 
chambers  which  are  in  functional  co-operation.  The 
fuel  is  highly  heated  by  passing  a  current  of  air 
through  the  chambers  in  series,  in  one  direction  in 
one  chamber  and  in  the  opposite  direction  in  the 
other,  and  water-gas  is  then  generated  by  passing 
steam  similarly  through  the  chambers  in  series. 

Gas    making.     E.    L.    Hall,    Assr.    to    H.    Papst. 

U.S.P.  1,409,709,  14.3.22.  Appl.,  8.6.20. 
Oil  is  cracked  at  a  temperature  at  which  a  tar  of 
the  nature  of  coal  tar  is  formed,  and  after  separat- 
ing tar  and  condensable  hydrocarbons  from  the  gas 
produced,  the  latter  is  reheated  to  produce  further 
cracking,  and  the  tar  and  condensable  products 
and/or  free  carbon  are  collected. 

Illuminating  gas  from  peat  etc.;  Betort  and  process 

for   producing    .      B.    R.    Gyllenram.      G.P. 

345,967,  16.3.18.    Conv.,  26.11.16. 

A  vertical  retort  is  heated  more  strongly  towards 
the  bottom.  The  gases  from  the  first  and  coolest 
zone,  consisting  mainly  of  steam,  are  conducted 
through  the  fuel  in  the  third  zone,  to  facilitate  the 
liberation  of  tar  from  the  fuel  in  this  zone.  The 
gases  from  the  second  zone,  consisting  mostly  of 
carbon  dioxide  and  steam,  are  conducted  through 
the  fuel  in  the  fourth  and  hottest  zone,  and  are 
there  decomposed.  The  tar  formed  is  mostly  re- 
moved without  decomposition,  and  the  gases  from 
the  third  and  fourth  zones,  possessing  a  maximum 
heat  value,  are  withdrawn. — H.  M. 

Gas;  Device  used  for  collecting  from  one  or 

more  retorts.  C.  Carpenter.  E.P.  176,891, 
15.12.20. 
Gas  from  one  or  more  retorts  enters  an  hydraulic 
main  through  dip  pipes.  The  main  is  connected 
with  a  container  having  a  sealed  liquor  overflow 
chamber  in  such  a  way  that  when  it  is  desired  to 
seal  the  dip  pipes  with  liquor  equality  of  gas  pres- 
sure and  of  liquor  level  can  be  established  in  the 
main,  the  container,  and  -the  overflow  chamber. 
When  it  is  desired  to  unseal  the  dip  pipes  the  gas 
connexions  between  the  main  and  the  container,  and 
between  the  container  and  the  overflow  chamber, 
are  closed,  and  a  partial  vacuum  is  created  wjthin 
the  container  so  that  liquor  flows  from  the  main  to 
the  container.  For  this  purpose  the  container  is 
connected  with  a  gas  main  in  which  a  relatively 
high  vacuum  exists  and  the  overflow  chamber  is 
connected  with  a  main  in  which  a  lower  vacuum 
exists.  The  necessary  gas  valves  are  connected  by 
chains  with  a  single  control. — H.  Hg. 

Gas    [acetylene'];    Storing    under    pressure. 

Svenska    Aktiebolaget    Gas-Accumulator.       E.P. 

173,506,  22.12.21.  Conv.,  31.12.20. 
In  a  receiver  containing  a  porous  filling  mass  for 
storing  gas,  e.g.  acetylene,  under  pressure,  an 
elastic  cushion  is  placed  upon  the  filling  mass 
between  the  latter  and  the  gas  outlet,  thereby 
maintaining  the  filling  mass  in  position  and  expand- 
ing in  the  event  of  collapse  of  the  mass.     Holes, 


362  a 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


[May  31,  1922. 


lined  with  netting  or  other  protecting  material, 
may  be  drilled  into  the  cushion  in  order  to  increase 
the  free  space. — A.  R.  M. 

Liquid  fuel;  Process  of  and  apparatus  for  combus- 
tion of .     E.Becker.     E.P.  177,204,  22.11.20. 

Liquid  fuel  is  vaporised  and  the  air  for  combustion 
is  preheated  by  the  heat  of  combustion,  the  air 
being  divided  into  separate  streams  of  primary  and 
secondary  air.  The  apparatus  is  constructed  so  ae 
to  supply  the  secondary  air  at  a  higher  temperature 
than  the  primary  air.  The  flame  is  directed  down- 
wards from  the  point  of  its  formation  to  its  exit 
from  the  combustion  chamber. — A.  R.  M. 

Liquid  fuel;  Apparatus  for  combustion  of .     E. 

■Becker.      E.P.    177,752,    21.10.21.      Addition  to 
177,204  (c/.  supra). 

The  primary  air  is  caused  to  flow  over  the  cover  of 
the  annular  dish  containing  the  liquid  fuel  and 
enters  the  apparatus  through  the  circular  opening 
presented  by  the  cover.  The  stream  of  air  is  given 
a  conical  form  by  a  grating  consisting  of  concentric 
rings  inclined  inwards  and  downwards.  The  secon- 
dary air  current  is  also  given  a  conical  form  by 
passing  through  an  annular  slot  between  the  lower 
wall  of  the  dish  and  the  upper  edge  of  the  fireproof 
brickwork  upon  which  it  rests.- — A.  R.  M. 

Mineral  oils;  Refining  of  .     C.  Ehlere.     G.P. 

348,342,  10.6.20. 
The  mineral  oils  are  treated  with  amines  containing 
a  benzene  ring,  6uch  as  aniline,  toluidine,  xylidine, 
or  crude  substances  containing  such  amines,  which 
dissolve  the  resinous,  tarry  and  asphaltic  con- 
stituents of  the  oils.  From  30  to  70  pts.  of  amines 
is  used  to  100  pts.  of  oil.  The  amines  with  the  im- 
purities are  separated  from  the  oil,  and  the  last 
traces  are  removed  by  steam  distillation. — H.  M. 

Distillation  gases  in  vertical  retorts;  Apparatus  for 

.     evolving    ■ .      J.    Pieters.      U.S. P.    1,412,629, 

11.4.22.     Appl.,  1.7.20. 

See  E.P.  163,230  of  1920;  J.,  1921,  459  a. 

Hydrocarbon  oils  and  the  like;  Apparatus  for  the 

cracking  of  .     J.  Nelson.     U.S.P.  1,412,540, 

11.4.22.     Appl.,  2.3.18. 

See  E.P.  116,304  of  1917;  J.,  1918,  457  a. 

See  also  pages  (a)  373,  Removing  hydrogen  sul- 
phide from  gases  (G.P.  348,409 — 10) ;  Evaporating 
alkali  sulphide,  solutions  (G.P.  349,793).  382, 
Lubricating  oil  substitute  (G.P.  348,087).  391, 
Chlorinated  hydrocarbons  (E.P.  156,139);  Ethylene 
derivatives  from  coal  gas  (E.P.  177,362). 

Hb.— DESTRUCTIVE  DISTILLATION; 
HEATING;   LIGHTING. 

Distillation   yields  from  British   Columbia  fir  and 

alder  woods;    Destructive   .     W.   A.    Hardy. 

Trans.  Roy.  Soc.  Canada,  1921,  15,  iii.,  111—115. 

Fir  and  alder  woods  were  distilled  for  6 — 8  hrs.  in 
a  steel  retort  2  ft.  long  and  6  in.  diam.,  the  final 
temperature  of  distillation  being  about  700°  F. 
(370°  C).  Alder  wood  yielded  about  990  lb.  of 
charcoal,  181  lb.  of  calcium  acetate,  4  Imperial  galls, 
of  85%  methyl  alcohol,  and  17  galls,  of  tar  per  cord 
of  3000  lb.  of  alder  distilled.  The  corresponding 
figures  per  cord  of  3200  lb.  of  fir  were  1200  lb.  of 
charcoal,  69  lb.  of  calcium  acetate,  1'5  galls,  of  85% 
methyl  alcohol,  and  19  galls,  of  tar.  Alder  charcoal 
is  even  grained  and  of  high  quality.  The  distillation 
of  alder  must  be  preceded  by  artificial  drying  or 
drying  under  cover. — J.  S.  G.  T. 

Toxicity  index  for  lighting  and  heating  apparatus. 
Kohn  Abrest.     See  XIXb. 


Patents. 

[CoaZ;]  Low  temperature  distillation  [of ]      E 

Bans.  E.P.  177,239,  20.12.20. 
Tubular  heating  conduits  are  disposed  on  the  upper 
surface  of  a  retort  bottom  and  are  embedded  in  coal 
which  forms  the  working  bottom  of  the  retort.  The 
coal  to  be  distilled  is  pushed  forward  over  the  work- 
ing bottom  by  a  reciprocating  rabble  which  is  so 
guided  that  it  does  not  enter  the  bottom  layer. 
Each  heating  conduit  is  self-contained  and  is  carried 
on  rollers ;  it  passes  through  a  stuffing-box  at  one 
end  of  the  retort  and  discharges  waste  gases  into  a 
collecting  flue.  At  the  other  end  of  the  retort  each 
conduit  is  connected  with  an  extension  through  two 
right-angle  bends  arranged  to  allow  expansion  of 
the  conduit  during  heating.  The  conduits  may  he 
formed  by  tamping  partially  distilled  coal  around 
cores  which  may  afterwards  be  withdrawn. — H.  Hg. 

Gasification   of   solid   carbonaceous   matters;  Pro- 
tective progressive  distillation  and  .     G.  P. 

Lewis.     E.P.  177,556,  1.10.20. 

In  a  plant  for  the  distillation  and  gasification  of 
carbonaceous  matter,  with  recovery  of  ammonia  and 
oils,  a  retort  is  combined  with  a  producer,  the  latter 
being  situated  in  the  lower  portion  of  the  apparatus 
so  that  a  part  of  the  gas  generated  by  the  passage 
of  steam  and  air  through  the  incandescent  fuel 
passes  upwards  through  the  retort,  thereby  effecting 
carbonisation  of  the  matter  therein.  Carbonisation 
is  completed  by  arranging  the  retort  6o  that  its 
upper  portion  is  at  a  comparatively  low  tempera- 
ture, say  200°  C,  while  its  lower  portion  is  in  the 
region  of  1300°  C,  the  temperature  of  the  fuel  in 
its  passage  down  the  retort  being  thus  progressively 
raised.  Heat  is  also  supplied  to  the  retort  by  the 
combustion,  in  flues  surrounding  it,  of  a  portion  of 
the  producer  gases,  before  or  after  purification. 
The  waste  gases  from  the  system  may  be  employed 
for  heating  the  secondary  air,  or /and  for  the  pro- 
duction of  the  steam  required. — A.  R.  M. 

Gasification   of   solid   carbonaceous   matters;  Pro- 
tective progressive  distillation  and  .     G.  P. 

Lewis.     E.P.  177,559,  28.10.20. 

In  the  apparatus  and  process  described  in  E.P. 
177,556  {cf.  supra)  modifications  are  introduced 
adapted  more  particularly  for  the  distillation  ana 
gasification  of  strongly  coking  coals.  The  lower 
ends  of  the  retorts  may  communicate  with  the  upper 
end  of  the  producer  by  means  of  funnel-shaped 
chambers,  and  the  coke  passed  downwards  by  the 
aid  of  mechanically  operated  rollers,  or  the  retorts 
may  be  built  separate  from  the  producer,  the  coke 
being  conveyed  from  the  outlet  of  the  retorts  to  the 
hopper  chamber  of  the  producer  by  means  of  a 
conveyor.  Boric  or  alkaline  compounds  may  with 
advantage  be  added  to  the  raw  fuel. — A.  R.  M. 

Carbonising  coal  and  the  like;  Process  and 

ratus   for  .      E.    Stansfield.      E.P.   177,688, 

23.12.20. 
Carbonaceous    material    is   caused   to   descend   by 
gravity  in  a  thin  layer  over  an  inclined  heating 
surface,  forming  the  floor  of  a  retort,  its  rate  of 
travel  being  regulated  by  its  rate  of  withdrawal, 
either    continuously    or    intermittently,    from   the 
lower  end  of  the  retort.     The  material  is  agitated, 
and   the  thickness  of    the   layer   (which  gradua lly 
increases  from  the  cooler  to  the  hotter  parte  of  the 
retort)  is  regulated  by  a  series  of  baffles  adjustable 
with  regard  to  the  floor.       Provision  is  made  ! 
removing  the  gases  evolved  at  different  tempera- 
tures through  different  outlets.       By  dividing  tn< 
floor  into  two  or  more  longitudinal  parallel  cnanne. 
it   is   possible   to   localise    any   slip   in  the  ctargt 
thereby  ensuring  a  more  equalised  evolution  or  ga: 
in  the  retort. — A.  R.  M. 


Vol.  XLI.,  So.  10.] 


Cl.  III.— tar  and  tar  products. 


3G3a 


[Acetate]  distillation ;  Apparatus  for  dry .     N. 

Statham,  Assr.  to  West  Virginia  Pulp  and  Paper 
Co.  U.S. P.  1,411,529,  4.4.22.  Appl.,  15.11.15. 
Renewed  30.6.21. 

1    In  an  apparatus  for  acetate  distillation  (cf.  U.S. P. 

|  1,298,594;  J.,  1919,  459  a)  a  rotary  horizontal 
cylindrical  retort  is  enclosed  in  an  annular  heating 
chamber,  with  regulated  inlet  ports  beneath  the 
ascending  side  of  the  retort  and  outlet  ports 
staggered  in  relation  to  the  inlets,  through  which 
the  heating  gases  escape  after  travelling  around  the 
retort.  Charging  holes  in  the  heating  chamber  co- 
operate with  those  in  the  retort,  and  discharge  holes 
in  the  retort  can  be  connected  with  removable 
sleeves  in  the  heating  chamber.  The  pipes  for 
admitting  vapour  into  or  discharging  it  from  the 
retort  have  raised  ends  to  minimise  choking. 

—A.  B.  S. 

Charcoal;  Manufacture  of  decolorising   .     W. 

Eberlein.     G.P.  307,053,  7.3.18. 

Highly  active  decolorising  charcoal  is  prepared  by 
heating  a  mixture  of  the  alkaline  extract  of  organic 
material,  such  as  peat,  with  alumina,  kieselguhr,  or 
the  like,  in  the  absence  of  air,  and  subsequently 
extracting  the  soluble  constituents  of  the  product. 

— L.  A.  C. 

Electrical  glow  lamps  and  the  like;  Process  of  ex- 
hausting and  sealing  .     K.  Finckh,  Assr.  to 

Patent-Treuhand-Ges.  fiir  Elektrische  Gliih- 
lampen  m.b.H.  U.S. P.  1,410,665,  28.3.22.  Appl., 
24.6.21. 

For  purposes  of  facilitating  sealing  off  the  lamp,  a 
substance  which  lowers  the  melting  point  of  the 
glass  is  applied  to  the  open  end  of  the  short  stem 
or  pipe  provided  for  exhausting  the  lamp. 

—J.  S.  G.  T. 

Tungsten  incandescence  lamps;  Process  of  prevent- 
ing blackening  of  .       Patent  Treuhand-Ges. 

fiir  Elektrische  Gliihlampen  m.b.H.  G.P. 
349,276,  18.2.19. 

Sputtering  of  the  tungsten  with  the  production  of 
a  dark  deposit  on  the  lamp,  is  prevented  by  coating 
the  filament  and  its  support  with  a  borate,  more 
especially  potassium  borate. — J.  S.  G.  T. 


HI-TAD  AND  TAD  PD0DUCTS. 

Water-gas  tar  emulsions.      W.  W.  Odell.       Amer. 
Gas  Assoc.  Monthly.     Gas  J.,  1922,  158,  152—153. 

Water-gas  tar  emulsions  are  of  the  type  where  water 

is  the  inner  phase.     Free  carbon  is  the  emulsifying 

agent,  its  effect  being  different  in  amount  with  tars 

of    different    compositions.       Other    factors    being 

equal,    the   tendency    to   form  stable   emulsions    is 

greater  as  the  percentage  of  uncracked  oil  increases. 

Naphthalene  and  other  unsaturated  compounds  do 

not  form  emulsions  so  readily  as  do  the  paraffin  oile. 

There  is  an  optimum  amount  of  free  carbon  for  the 

ormation  of  6table  emulsions,  and,  if  this  amount 

)e  exceeded  there  is  a  distinct   tendency   for   the 

igglomeration     and     separation     of     the     water. 

Powdered  coal  and  similar  substances  behave  very 

mich  like  pure  carbon  in  this  respect,  causing  the 

ar  and  carbonaceous  matter  to  form  a  putty-like 

ua6s.     The  state  of  division   of  the  carbon  has  a 

ireat  bearing  on  its  efficacy  in  causing  the  separa- 

ion  of  the  water.     In  ordinary  water-gas  practice 

he  factors  which  cause  incomplete  cracking  of  the 

il    promote    the    formation    of    the    most    stable 

mulsions. — A.  R.  M. 

'Jonochlorotoluenes.    A.  Wahl,  G.  Normand,  and  G. 
Vermeylen.     Comptes  rend.,  1922,  174,  946—949. 

or  the  determination  of  the  relative  amounts  of 


o-  and  p-chlorotoluenes  formed  in  the  chlorination 
of  toluene  under  different  conditions  a  curve  is 
given  showing  the  melting  points  of  mixtures  of 
these  two  isomerides.  In  the  absence  of  a  catalyst 
almost  the  only  product  of  the  action  of  chlorine  on 
toluene  at  100°  C.  is  benzyl  chloride,  but  in  the 
presence  of  lead  chloride  the  product  consists 
mainly  of  a  mixture  of  the  two  chlorotoluenes  con- 
taining about  62%  of  the  ortho  isomeride.  This 
explains  the  accidental  formation  of  chlorotoluene 
in  the  industrial  preparation  of  benzyl  chloride,  the 
presence  of  moisture  in  the  apparatus  facilitating 
the  attack  of  the  lead  with  the  abundant  deposition 
of  lead  chloride  which  then  catalyses  the  reaction. 

— W.  G. 

Dinitrotoluidines.  O.  L.  Brady,  J.  N.  E.  Day,  and 
W.  J.  W.  Rolt.  Chem.  Soc.  Trans.,  1922,  121, 
526—532. 

Op  the  sixteen  isomeric  dinitrotoluidines  thirteen 
are  known,  and  of  the  remaining  three  two  have 
now  been  synthesised,  viz.,  the  4.5-  and  5.6-dinitro- 
m-toluidines,  by  the  nitration  of  5-nitro-aceto- 
m-toluidide.  This  substance  was  prepared  from 
aceto-p-toluidido  through  3.5-dinitro-aceto-p-tolui- 
dide,  3.5-dinitro-p-toluidine,  3.5-dinitrotoluene 
and  5-nitro-m-toluidine.  When  the  toluidide  is 
nitrated  in  presence  of  sulphuric  acid,  5.6-dinitro- 
aceto-m-toluidide  forms  the  bulk  of  the  product, 
whilst  if  fuming  nitric  acid  alone  is  U6ed  for  nitra- 
tion the  4.5-isomeride  preponderates.  The  sub- 
stances were  purified  by  fractional  crystallisation 
of  the  acetyl  derivatives  and  of  the  amines,  but  in 
none  of  the  mother  liquors  could  any  trace  be  found 
of  the  2.5-dinitro-compound,  which  is  now  the  only 
unknown  dinitrotoluidine.  5.6-Dinitro-m-toluidine 
crystallises  from  benzene  in  orange  yellow  plates, 
m.p.  165°  C.  4.5-Dinitro-m-toluidine  crystallises 
from  alcohol  in  large  brownish  yellow  needles,  m.p. 
141°  0.— G.  F.  M. 

s 
Nitro  compounds;  Catalytic  reduction  of  aromatic 

■  and  a  new  method  for  the  preparation  of 

fS-arylhydroxylamines.  1.  K.  Brand  and  J. 
Steiner.  Ber.,  1922,  55,  875—887. 
In  neutral  aqueous-alcoholic  solution  in  the 
presence  of  palladinised  animal  charcoal,  nitro- 
benzene can  be  reduced  to  /8-phenylhydroxylamine 
(yield  80%)  or  aniline  (yield  90%),  the  extent  of  the 
reduction  being  controlled  by  regulating  the  quan- 
tity of  hydrogen  used.  Provided  that  the  change 
does  not  occur  too  vigorously,  there  is  little  fear  of 
initially  formed  /3-phenylhydroxylamine  being 
further  reduced  to  aniline  so  long  as  unchanged 
nitrobenzene  is  present.  m-Dinitrobenzene  gives 
successively  l-nitro-3-hydroxylaminobenzene  {fi-m- 
nitrophenylhydroxylamine),  m-nitroaniline,  and 
m-phenylenediamine.  2.4-Dinitrotoluene  gives 
2-nitro-4-hydroxylaminotoluene  and  toluylene-2.4- 
diamine,  whilst  2.6-dinitrotoluene  yields  2-nitro- 
6-hydroxylaminotoluene,  2-nitro-6-aminotoluene, 
and  toluylene-2.6-diamine.  In  sufficiently  alkaline 
solution  and  in  the  presence  of  palladinised  animal 
charcoal,  aryl  nitro  compounds  are  converted  suc- 
cessively into  azoxy-  and  hydrazo-compounds ;  if  the 
concentration  of  the  alkali  is  too  small,  the  primary 
amine   is   the   main    product.     {Cf.    J.C.S.,    May.) 

— H.  W. 

Phthalic   anhydride;  Preparation   of by  the 

catalysis  of  the  vapour  phase  reaction  between 

naphthalene   and  atmospheric   air.     C.    Conover 

and  H.  D.  Gibbs.    J.  Ind.  Eng.  Chem.,  1922,  14, 

120—125. 

Naphthalene    is    oxidised    to    phthalic    anhydride 

when  a  mixture  of  naphthalene  vapour  and  air  is 

passed  through  a  heated  tube  containing  a  catalyst. 

Vanadium   pentoxide  is  the   best  catalyst  for   the 

purpose,  at  450°  C.  about  87%  of  the  naphthalene 


364  a 


Cl.  IV.— COLOURING  MATTERS  AND  DYES. 


[May  31,  1922. 


attacked  being  converted  into  phthalic  anhydride; 
molybdenum  trioxide  is  also  a  fairly  good  catalyst. 
Vanadium  pentoxide  which  has  been  fused  and  then 
powdered  gives  better  results  than  does  the  light 
powdered  oxide  obtained  by  decomposing 
ammonium  metavanadate  at  low  temperatures; 
arsenic  trioxide  and  sulphur  dioxide  do  not  affect 
the  catalyst  but  sodium  salts  interfere  considerably 
with  its  efficiency.  Besides  phthalic  anhydride  the 
oxidation  produces  small  quantities  of  benzoic  acid, 
carbon  dioxide,  other  substances  which  have  not 
been  identified,  and  possibly  naphthols. — W.  P.  S. 

(3-Naphthylamine ;     Preparation,     of     [from 

naphthalene-/3-monosulphonic  acid]  without 
isolation  of  the  intermediate  /3-naphthol.  A.  F. 
Campbell.  J.  Soc.  Dyers  and  Col.,  1922,  38, 
114—115. 
A  crude  /3-naphthylamine  product,  containing 
96—97%  of  /3-naphthylamine  and  3 — 4%  of 
/3/3-dinaphthylamine,  was  prepared  directly  by 
heating  under  pressure  for  several  hours  a  mixture 
of  the  crude  sodium  naphtholate  melt  (formed  in 
the  usual  manner  by  fusing  the  sodium  6alt  of 
naphthalene-/3-monosulphonic  acid  with  caustic 
soda)  and  ammonium  sulphate.  The  crude  product 
was  purified  by  distillation  in  vacuo,  whereby  pure 
/3-naphthylamine,  m.p.  112°  C,  was  obtained.  The 
yield  of  /3-naphthylamine  was  64%  of  theory 
calculated  on  the  conversion  of  the  sodium 
6iilphonate. — A.  J.  H. 

Corrosion  of  tar  stills.    Boehm.    See  IIa. 

Chemical  reactions  caused  by  the  silent  discharge. 
Miyamoto.     See  XI. 

Patents. 

Benzene  vapour;  Process  of  recovery  of from 

air.     E.  Goltstein.     G.P.  348,287,  23.6.20. 

The  benzene  -  air  mixture,  containing  a  large 
excess  of  air,  is  passed  through  a  condenser  or 
similar  device  maintained  at  a  low  temperature, 
the  walls  of  the  condenser  having  been  previously 
coated  with  solid  benzene.  The  process  is  applic- 
able to  the  recovery  of  benzene  from  air  containing 
from  4  to  12%  of  the  vapour,  such  as  is  produced  in 
the  evaporation  of  rubber  solutions. — J.  S.  G.  T. 

Sulphur    preparations    of    the     thiophene     series; 

Manufacture  of from  tar  oils  of  bituminous 

rock  rich  in  oil.  H.  Scheibler.  E.P.  155,546, 
17.12.20.  Conv.,  24.11.15.  Addn.  to  155,259 
(G.P.  327,050;  J.,  1921,  173  a). 

Crude  tar  oils  rich  in  sulphur  obtained  from 
bituminous  rock,  after  a  preliminary  purification 
by  treatment  with  alkali  hydroxides  and  alkaline- 
earth  oxides  as  described  in  the  chief  patent,  are 
further  purified  by  treatment  below  120°  C.  with 
sodium,  or  sodamide,  or  with  sodium  with  simul- 
taneous passage  of  ammonia  through  the  liquid. 
The  product  is  distilled  under  reduced  pressure  in 
the  presence  of  sodium. — L.  A.  C. 

See  also  pages  (a)  357,  Phenol  (E.P.  176,864). 
361,  Distillation  of  tar  (E.P.  176,822).  375,  Cement 
(E.P.  154,152).  382,  Paint  (U.S. P.  1,374,161). 
391,  Chlorinated  hydrocarbons  (E.P.   156,139). 


IV —COLOURING  HATTERS  AND  DYES. 

1  'i.t tl  lie  stuffs;  A  new  class  of containing  sulphur 

and    nitrogen.      A.    Reissert.       Ber.,     1922,    55, 
858—873. 

8  -  Aminonaphthalene  - 1  -  suxphinio  acid,  m.p. 
143°  C.  (decomp.),  is  prepared  conveniently  by  the 
action  of  sodium  hydroxide  and  ferrous  sulphate  on 
the       solution       obtained     by     warming     8-nitro- 


naphthalene-1-sulphonyl  chloride  with  sodium 
sulphite  and  sodium  bicarbonate.  When  its  solu- 
tion is  treated  with  so  much  hydrochloric  acid  that 
Congo  red  paper  is  just  turned  blue  and  then 
allowed  to  remain  at  the  atmospheric  temperature 
for      a     day,      it      suffers      dehydration     yielding 

naphthothiam,      O10H,  <  .     ,      almost      colourless 
NH 

needles  which  become  transformed  into  the  blue 
dyestuff,  Naphthothiam  Blue,  at  153°— 155°  C. 
The  latter  substance  i6  more  readily  prepared  by 
warming  an  aqueous  solution  of  naphthothiam  or 
8-aminonaphthalene-l-sulphinic  acid  with  hydro- 
chloric acid.  In  appearance  and  solubility  it  closely 
resembles  indigo.  From  a  hydrosulphite  vat  it  gives 
dull,  violet-blue  shades  on  wool  and  rather  purer 
tones  on  cotton  for  which,  however,  it  has  little 
affinity.  The  application  of  a  similar  series  of 
reactions  to  4-nitro-l-acetylaminonaphthalene-5- 
sulphinic  acid  leads  to  the  production  of  Diamino- 
naphthothiam  Blue,  C20H,0(NH2)2ON2S2,  which 
closely  resembles  the  parent  dyestuff.  Naphthionic 
acid,  on  the  other  hand,  only  yields  a  trace  of  dye- 
stuff  when  thus  treated.  The  presence  of  the  oxygen 
atom  in  the  dyestuff  is  not  essential  to  the  develop- 
ment of  tinctorial  properties  since  a  similar  blue 
dyestuff  of  the  apparent  composition,  Cj0H,2N2Sj, 
is  obtained  readily  by  the  atmospheric  oxidation  of 
8-thiol-a-naphthylamine  or  of  l.l'-diaminodi- 
naphthyl-8.8'-disulphide.     {Cf.  J.C.S.,   May.) 

— H.  W. 

Dehydrotliio-p-toluidine   and  the   two   primulines; 

Dyestuffs  derived  from, and  their  affinity  for 

cotton.     G.  R.  Levi.     Giorn.  Chim.   Ind.  Appi., 
1922,  4,  62—63. 

By  diazotising  dehydrothio-p-toluidine,  true  Primu- 
line  and  Kalle  Prumuline,  and  coupling  the  respec- 
tive products  with  H-acid,  the  author  has  obtained 
three  colouring  matters  soluble  in  water.  Dyeing 
experiments  on  cotton  were  made  with  these  under 
similar  conditions,  the  dye  baths  being  examined 
colorimetrically  before  and  after  the  dyeing.  The 
results  show  that  the  intensities  of  the  coloration  of 
the  cotton,  that  is,  the  degrees  of  affinity  for  cotton 
of  the  colouring  matters  from  the  three  bases,  are 
identical.  The  brilliancy  of  the  coloration  varies, 
however,  in  the  three  instances,  diminishing  as  the 
number  of  thiazole  groups  present  increases. 

— T.  H.  P. 

1.2A.5-Tetrahydroxybenzene;     Colouring     matters 

from and  related  substances.    D.  N.  Mukerji. 

Chem.  Soc.  Trans.,  1922,  121,  545—552. 

With  the  object  of  studying  the  effect  of  an  in< 
in  the  number  of  auxochromes  on  the  colour  of  dye- 
stuffs,   attempts  were  made  to  prepare  a  series  of 
dyestuffs  from  1.2.4.5-tetrahydroxybenzene,  but  as 
the   yield   of  the  parent  substance  was  extremely 
small  and  no  simple  means  for  its  preparation  could 
bo  found,  only  the  phthalein  and  the  condensation 
product   with   formaldehyde  were   prepared.     Con- 
trary  to   expectation    the    phthaleiu    dissolved   in 
alkali  with  only  a  magenta  colour.     The  following 
new  dyestuffs  from  hydroxyquinol,   phloroghi. 
pyrogallol,    and   2.4-diaminophenol   were   also  pre- 
pared :    —  4'.4"-tetramethyldiamino-2.5-dihydroxy- 
fuchsone,  blue-black  in  alkali,  greenish-black  shades 
on  chrome;  4'.4"-tetramethvldiamino-2.6-diliydro>:v- 
fuchsone,  bluish  violet  in  alkali,  blue-black  shad  « 
on       chrome;       4'-dimethylamino-2.3.7-trihydroxy- 
9-phenylfluorone,   reddish-violet  in  alkali,  reddish- 
violet   shades    on   chrome;   4'-dimethylamino-1.8.8- 
trihydroxy-9-phenylfluorone,      orange      in      alkali, 
orange     shades     on     chrome;     2.4.5.7-tetra-an 
4'  -  dimethylamino  -  9  -  phenylfluorone       trichli 
brownish-yellow   in   acids,   greyish-black  shade 
chrome;  and  benzeneazohydroxyquinol,  onnnge-iv'l 
in  alkali,  brownish-red  shades  on  chrome. — G.  F.  M. 


Vol.  SLI..  No.  10.] 


Cl.  IV.— colouring  matters  and  dyes. 


365  a 


Cyanine  dyes.  IV.  Cyanine  dyes  of  the  benzothi- 
azole  series.  W.  H.  Mills.  Chem.  Soc.  Trans., 
1922,  121,  455—466. 

By  condensing  mixtures  of  the  alkyl  iodides  of 
benzotkiazoles  by  means  of  pyridine,  dyestuffs 
analogous  to  the  eyanines  were  obtained.  The  pro- 
duct obtained  from  benzothiazole  ethiodide  and 
I-methylbenzothiazole  ethiodide  consisted  of  a  mix- 
ture of  a  purple  dyestuff  crystallising  in  prisms  with 
a  steel  blue  metallic  lustre  and  a  yellow  dyestuff, 
which  were  separated  from  one  another  by  flotation 
on  carbon  tetrachloride  and  subsequent  recrystalli- 
sation.  The  yellow  dyestuff  is  a  cyanine  of  the 
benzothiazole  series,  and  is  accordingly  termed 
2.2'-diethylthiocyanine  iodide, 


"Nn-f 


\r 


C8H4<  >C:CH.C<  >C6H4 

It  form6  bright  yellow  prismatic  needles,  m.p. 
311°  0.  (with  decomp.).  The  purple  dyestuff  con- 
tains two  more  carbon  and  two  more  hydrogen 
atoms  than  the  yellow  thiocyanine,  and  it  is  prob- 
able that  these  are  situated  in  the  chain  connecting 
the  two  benzothiazole  nuclei.  The  dyestuffs  of  this 
class  are  consequently  termed  carbothiocyanines. 
Both  dyestuffs  are  powerful  photographic  sensi- 
tisers.  The  corresponding  dimethylthiocyanines 
and  also  5-methyl-2.2'-diethylthiocyanine  iodide  and 
5.5'-dimethyl-2.2'-diethylcarbothiocyanine  iodide 
were  also  prepared. — G.  F.  M. 

Benzanthrone ;  Some  reactions   of  .       A.    G. 

Perkin  and  G.  D.  Spencer.     Chem.  Soc.  Trans., 
'    1922,  121,  474—482. 

When  benzanthrone  is  fused  with  potassium 
lydroxide  and  potassium  chlorate  at  230° — 240°  C. 
;or  3 — 4  hours,  there  is  formed,  in  addition  to 
^iolanthrone,  a  yellow  fluorescent  substance  iden- 
tical with  the  hydroxybenzanthrone  obtained  by 
-he  action  of  sulphuric  acid  and  glycerol  on 
i-hydroxyanthranol.  If  an  equal  weight  of  anthra- 
(uinone  is  added  to  the  melt,  still  better  yields  of 
lydroxybenzanthrone  (86%)  are  obtained,  the 
nthraquinone  apparently  acting  as  the  main 
oxidising  agent,  though  the  presence  of  chlorate  is 
till  requisite  to  obtain  the  best  results.  It  is 
hown  that  the  hydroxyl  group  in  this  compound 
annot  occupy  either  of  the  positions  7  or  8  as  in 
'enzalizarin  (7.8  -  dihydroxybenzanthrone),  and 
easons  are  given  for  regarding  it  as  2-hydroxy- 
enzanthrone.  On  heating  with  strong  ammonia 
nder  pressure  2-aminobenzanthrone,  bright  red 
eedles,  m.p.  223°— 224°  C,  is  produced.— G.  F.  M. 

)yes  containing  the  furane  ring.  R.  R.  Renshaw 
and  N.  M.  Naylor.  J.  Amer.  Chem.  Soc,  1922, 
44,  862—864. 

'N  repeating  the  work  of  Fischer  (cf.  Ber.,  1877, 
,»,  1626;  Annalen, -1883,  206,  141)  on  the  furane 
nalogue  of  Malachite  Green  the  authors  find  that 
ae  product  obtained  by  oxidising  tetramethyl- 
iaminodiphenylfurylmethane  has  a  deeper  colour 
lan  Malachite  Green,  and  that  it  is  an  equally 
able  dyestuff,  giving  handsome  effects  on  silk  and 
oo\.  Pyromucic  acid,  when  condensed  with  pyro- 
lallol,  gives  a  yellowish-brown  powder,  m.p.  160°  C, 
hich  is  presumably  the  furane  analogue  of 
lizarin  Yellow  A.  It  gives  a  dark  tan  colour  on 
)tton  mordanted  with  TuTkey-red  oil. — W.  G. 

carlet  pelargonium;  Colouring  matter  of  the . 

G.  S.  Currey.  Chem.  Soc.  Trans.,  1922,  121, 
319—323. 

he  anthocyanin,  pelargonin,  isolated  by  "Will- 
atter  and  Bolton  (Annalen,  1915,  408,  42)  from 
ie  petals  of  that  variety  of  Pelargonium  zonale 
lown  as  the  "  scarlet  meteor,"  has  now  been 
itained  from  a  variety  of  the  same  species  grown 


in  Australia  and  known  as  "  Jame6  Kelway."  The 
anthocyanin  occurs  in  the  petals  as  an  oxonium  salt 
to  the  extent  of  about  6%  of  the  dry  weight.  It 
was  isolated  by  extraction  with  96%  alcohol,  and 
was  precipitated  as  the  chloride  by  adding  alcoholic 
hydrogen  chloride  and  ether  to  the  extract.  On 
hydrolysis  it  gave  dextrose  and  pelargonidin. 

— G.  F.  M. 

Patents. 
Dyestuffs;  Manufacture  of  .     R.  B.  Ransford. 

From  L.  Cassella  und  Co.    E.P.  176,833,  14.10.20. 

Addn.  to  151,000  (J.,  1922,  136  a). 
Dyestuffs  similar  to  those  described  in  the  chief 
patent  are  obtained  by  condensing  sulphurised 
arylamines  having  the  sulphur  or  the  sulphur- 
containing  group  in  the  ortho  position  to  the 
amino  group,  with  /3-naphthoquinone  or  one  of  its 
substitution  products.  Suitable  sulphurised  aryl- 
amines are  o-aminoarylmercaptans,  o-aminoaryl- 
thiosulphonic  acids,  o-aminoaryl  disulphides,  and  the 
sulphurised  products  of  the  reaction  described  in 
E.P.  17,417  of  1914  (J.,  1921,  619A)and  their  deriva- 
tives obtained  by  treating  them  with  water  and 
an  alkali,  except  those  which  contain  an  additional 
mono-  or  dialkyl-amino  group  in  the  p-position  to 
the  primary  amino  group.  Of  the  dyestuffs  so  pro- 
duced, those  containing  sulphonic  or  oarboxylic 
acid  groups  are  acid  mordant  dyestuffs  and  those 
free  from  such  groups  are  vat  dyestuffs. — A.  J.  H. 

Dyestuffs  of  the  acridine  series;  Manufacture  of 
— ■.      A.-G.    fur    Anilin-Fabr.      G.P.    303,203, 
23.6.17. 

sym.-UitEA  derivatives  of  ro-diamines  of  the  benzene 
series,  e.g.,  3.3-diaminodiphenylurea,  are  heated 
to  200° — 210°  C.  in  the  presence  of  diluents  such  as 
glycerin  or  naphthalene,  with  salts  of  alkylated  or 
non-aiklyated  m-diamines  of  the  benzene  series, 
e.g.,  l-met^iyl-2.4-diaminobenzene  hydrochloride,  or 
with  /J-naphthylamine  hydrochloride.  The  dye- 
stuffs  level  well,  have  good  covering  power,  are  not 
attacked  by  lime  solutions,  and  are  suitable  for 
dyeing  leather. — L.  A.  C. 

Acridine  dyestuffs;  Manufacture  of  .       A.-G. 

fur  Anilin-Fabr.     G.P.  307,165,  30.9.17. 

Diforjtyl  derivatives  of  sym.-m-diaminodiphenyl- 
urea  or  its  derivatives  are  heated  in  the  presence  of 
a  diluent,  6uch  as  glycerin  or  naphthalene,  with 
salts  of  aromatic  m-diamines  or  of  2-naphthylamine, 
or  their  derivatives,  or  with  a  salt  of  sym.-m- 
diaminodiphenylurea  or  its  derivatives,  or  m- 
diaminodiphenylurea  or  its  derivatives  are  heated 
with  formyl  derivatives  of  aromatic  diamines  or  of 
2-naphthylamine.  Formation  of  the  dyestuffs 
begins  at  about  140°  C,  and  is  complete  at  180° — 
190°  C.  The  dyestuffs  dye  tannin-mordanted  cotton 
or  leather  yellow  to  orange-yellow  shades. — L.  A.  C. 

Hair  dyes;  Manufacture  of in  the  form  of  oils, 

pomades,  emulsions, and  the  like.     O.  Volz.     G.P. 
344,529,  27.11.14. 

Hydroxy-  or  aminohydroxy-derivatives  of  benzene 
are  dissolved  in  oils,  fats,  fatty  hydrocarbons, 
alcohols,  esters,  or  mixtures  of  the  same,  to- 
gether with  heavy  metal  salts  or  resin  acids  or 
fatty  acids  soluble  in  the  same  solvents.  For 
example,  hot  solutions  are  mixed  containing  respec- 
tively cobalt  and  nickel  stearates  and  benzyl 
benzoate,  and  pyrogallol,  ethyl  acetate,  olive  oil, 
liquid  paraffin  D.A.B.,  and  soap  powder.  A  cream 
is  prepared  by  adding  a  hot  solution  containing 
nickel,  cobalt,  and  iron  stearates,  stearin,  benzyl 
benzoate,  and  turpentine  to  a  heated  mixture  of 
colophonium,  ceresin,  liquid  paraffin  D.A.B.,  olive 
oil,  and  soap  powder,  and  subsequently  adding  a 
hot  solution  containing  pyrogallol,  liquid  paraffin, 


366. 


Cl.  V— FIBRES  ;   TEXTILES  ;   CELLULOSE  ;   PAPER. 


[Maj  31,  1922. 


diaminophenyl  stearate  (or  benzoate),  N-mono- 
methyl-p-aminophenyl  stearate  (or  benzoate), 
glycerin  of  30°  B.  (sp.  gr.  1-26),  96%  alcohol,  and 
ethyl  acetate.  The  dyeings  are  fast  and  free  from 
metallic  appearance,  and  are  improved  by  subse- 
quently brushing  the  hair  with  dilute  ammonia 
solution. — L.  A.  0. 

Vyestuffs  of  the  indigo  series.  M.  Bouvier,  Assr. 
to  Soc.  Chim.  des  Usines  du  Rhone.  U.S. P. 
1,412,038,  11.4.22.     Appl.,  29.7.20. 

Seb  E.P.  152,634  of  1920;  J.,  1921,  841  A. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 


-.   E.  Correns.   Faser- 
Chem.  Zentr.,  1922, 


Flax;  Pectin  substances  of — 
forsch.,  1921,  1,  229—240. 
93,  I.,  696. 

The  pectin  substances  of  flax  contain  as  an  essential 
constituent  hexose  groups  with  galactose  and  a 
d-galacturonic  acid  as  well  as  an  araban  grouping 
which  is  easily  hydrolysable.  The  latter  group  con- 
tains arabinose  and  a  methylpentose.  From  experi- 
ments on  the  common  gentian  root  it  is  probable 
that  the  occurrence  of  methylpentose  as  a  compo- 
nent of  the  araban  grouping  is  general  in  the 
pectins.  Flax  pectin  gives  a  dextro-rotatory  solu- 
tion, and  this  rotation  is  increased  on  removal  of  the 
araban  group.  The  methoxyl  content  of  the  pectin6 
varies  with  the  treatment  that  they  have  received  but 
is  constant  for  uniform  treatment.  The  difference 
between  different  pectins  is  connected  with  the 
part  of  the  plant  from  which  the  pectin  is  derived. 
It  is  not  correct  to  assume  that  there  is  10%  of 
OCHj  radicle  in  the  pectin,  and  to  estimate  the 
content  of  pectins  on  this  assumption. — J.  R. 

Staining  of  [coffon]  fabrics;  Causes  of .     E.  J. 

Sidebotham.       J.  Soc.  Dyers  and  Col.,  1922,  38, 
97—99. 

Stains  (discolorations)  which  had  developed  on 
printed  cotton  fabric  wrapped  on  a  board  and  par- 
celled in  cotton  tillot  cloth  were  found  to  be  caused 
by  a  fungus  (Botrytis)  originally  present  in  the 
board.  When  isolated  as  a  pure  culture  the  fungus 
was  found  to  grow  on  damp  cotton  fabric,  slowly 
at  temperatures  below  60°  F.  (15'5°  C),  but  very 
rapidly  at  90°— 100°  F.  (32°— 38°  O.).  Sea  water 
was  less  favourable  than  ordinary  water  to  its 
growth.  The  distribution  of  the  fungus  was  not 
affected  by  the  coloured  pattern  of  the  fabric,  but 
the  cotton  was  partially  decomposed.  Dark  stains 
which  developed  on  bleached  calico  which  had  been 
wrapped  in  Hessian  union  fabric  and  sent  to 
Mexico,  were  traced  to  the  presence  of  pitch  in  the 
Hessian  wrapping.  The  stains  were  easily  removed 
by  means  of  organic  solvents  such  as  benzene  and 
xylene,  but  alcohol  was  much  less  effective. 

—A.  J.  H. 

Cellulose;  Industrial  preparation   of  by   the 

chlorine  process.  A.  Cerruti.  Giorn.  Chim.  Ind. 
Applic,  1922,  4,  64—65. 
The  results  of  the  author's  experience  of  the  appli- 
cation of  the  chlorine  process  to  poplar  wood  differ 
in  some  respects  from  those  published  by  Pomilio 
(Giorn.  Chim.  Ind.  Appl.,  Sept.,  1921).  The  chlorine 
was  used  wet  as  it  leaves  the  electrolytic  cell,  and  the 
process  comprised  the  three  operations  :  treatment 
of  the  wood  with  alkali  by  imbibition  in  an 
autoclave,  subjection  of  the  treated  fibre  to  the 
action  of  chlorine,  and  washing  of  the  chlorinated 
wood  with  alkaline  solution.  The  minimum  amounts 
of  chlorine  and  caustic  soda  necessary  to  obtain 
100  kg.  of  dry  commercial  cellulose  were  respectively 
45  and  9  kg.,  as  compared  with  28  and  5  kg.  respec- 


tively given  by  Pomilio;  the  amount  of  fuel  con- 
sumed is  15  kg.,  as  stated  by  Pomilio.  The  technical 
difficulties  of  the  process  are  referred  to  briefly. 

— T.  H.  P. 

Fluorescent  powers  of  cellulose,  sugars  and  other 

substances;   Determination   of   the  .      S.   J. 

Lewis.     J.  Soc.  Dyers  and  Col.,  1922,  38,  68—76, 
99—108. 

The  investigation  of  the  fluorescent  properties  of 
cellulose  previously  described  (J.,  1921,  620  a)  has 
been  continued  and  a  method  of  spectro-fluoresco- 
metry  has  been  developed  which  is  capable  of  an 
accuracy  of  1  %  relative  to  the  fluorescence  of  filter 
paper  (Whatman  No.  42)  which  has  been  chosen  as 
a  standard.  The  moisture  content  of  a  substance 
has  but  little  influence  on  its  fluorescent  properties, 
so  that  all  the  substances  as  yet  examined  have  been 
used  in  their  air-dry  solid  state.  The  fluorescent 
properties  of  cellulose,  hydrocellulose,  cellulose 
acetate,  viscose,  nitrocellulose,  wool,  silk,  wood,  and 
sugars  nave  been  quantitatively  determined  over  a 
wide  range  of  the  spectrum,  the  results  being 
expressed  by  means  of  curves,  the  forms  of  which 
show  definite  relationships  to  the  characters  of  the 
substances  examined.  The  distortion  of  some  curves 
relating  both  to  sugar  and  to  celluloses  at  a  wave 
length  of  about  2460a,  observed  in  certain  cases 
only,  would  appear  to  express  some  special  feature 
of  their  molecular  structure.  In  some  cases  where 
the  molecule  is  composed  of  several  groups  of  the 
same  kind  there  is  a  reinforcement  of  the  fluor- 
escent power  proportional  to  the  number  of  the 
groups.  In  other  cases  where  several  different 
groups  are  present  within  the  molecule  there  is 
reduction  of  or  interference  with  the  fluorescent 
power.  It  is  not  yet  possible,  however,  to  draw  any 
general  conclusions.— A.  J.  H. 

Wood  cellulose;  Chemistry  of  .      I.    Acetolysis 

of  spruce  pulp.  L.  E.  Wise  and  W.  C.  Russell. 
J.  Ind.  Eng.  Chem.,  1922,  14,  285—287. 
Spruce  sulphite  pulp  was  acetolysed  by  incorpora- 
tion in  the  cold  with  acetic  anhydride  and  concen- 
trated sulphuric  acid.  The  mixture  was  allowed  to 
stand  at  25°— 27°  C.  for  6 — 7  days  when  a  stiff 
crystalline  paste  was  obtained.  Melting  point  de- 
terminations indicated  that  the  crystalline  product 
obtained  from  spruce  was  identical  with  that 
obtained  from  cotton  (m.p.  2255°  C.  uncorr.). 
Experimental  evidence  is  presented  that  normal 
cellulose  is  the  precursor  of  cellobiose  octa-acetate 
and  that  normal  spruce  cellulose  yields  the  same 
amount  of  the  octa-acetate  as  does  normal  cotton 
cellulose  under  identical  conditions  of  acetolyBJS. 
It  is  therefore  considered  that  Hibbert's  formula 
(J..  Ind.  Eng.  Chem.,  1921,  13,  334)  may  represent 
the  constitution  of  normal  spruce  cellulose  as  will 
as  that  of  normal  cotton  cellulose  and  that  cellulose 
from  the  "  lignocellulose "  of  wood,  and  cotton 
cellulose  may  be  identical. — H.  C.  R. 

Cellulose;  Studies  on .     II.  A  new  form  of  th< 

hydrogen  capillary  yiscosimeter.  M.  Nakano. 
Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan'. 
1921,  24,  1395—1398.  (Cf.  J.,  1921,  807  a.) 
A  modified  hydrogen  capillary  viscosimeter  I 
described,  specially  suitable  for  cupramniomuni 
solutions  of  cellulose,  and  possessing  the  advantage 
over  that  used  by  Gibson  and  others  (J.,  1920,  541  A) 
of  being  simpler  in  manipulation  and  avoiding  loss 
of  ammonia  from  the  cuprammonium  solution.  It 
consists  of  a  stoppered  glass  vessel  of  about  30  c.e. 
capacity  provided  with  two  branch  tubes,  one  at 
the  top' extending  vertically  upwards  and  connecter 
bv  a  side  tube  with  a  supply  of  hydrogen,  and  tne 
other  at  the  bottom  connected  with  a  vertical 
capillary  tube  12  cm.  long,  surmounted  by  a  duid 
of  about  3  c.c.  capacity.       The  tube  at  the  upper 


Vol.  XLI.,  No.  10] 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


367  a 


part  of  the  bulb  is  provided  with  a  side  outlet  for 
hydrogen  and  its  upper  end  is  connected  with  the 
upper  end  of  the  other  branch  tube  by  a  piece  of 
rubber  tubing  45 — 60  cm.  long.  Air  in  the  appa- 
ratus is  displaced  by  hydrogen,  the  cellulose  and 
cuprammonium  solution  are  introduced,  and  the 
apparatus  is  shaken  to  dissolve  the  cellulose  and 
then  immersed  in  a  thermostat.  The  solution  is 
forced  up  into  the  capillary  bulb  by  pressing  the 
rubber  tubing. — K.  K. 

Incrustants  [of  cellulose  fibres'];  Behaviour  of 

in  the  viscose  process.  C.  G.  Schwalbe  and  E. 
Becker.  Zellstoff  und  Papier,  1921,  1,  168—170. 
Chem.  Zentr.,  1921,  92,  IV.,  1153. 

Viscose  silk  differs  from  o-cellulose  by  its  higher  con- 
tent of  incrusting  substances  and  its  higher  degree 
of  swelling.  The  content  of  incrusting  substances 
is  dependent  on  the  purity  of  the  raw  materials 
used  for  making  the  viscose  silk,  which  is  chemically 
identical  with  cellulose  but  differs  from  it  in  having 
a  fibreless  structure,  in  its  blue  iodine  reaction,  its 
greater  hygroscopicitv,  and  its  higher  copper  value. 

—A.  J.  H. 

Cellulose  acetate;   Technical  analysis  of  .     O. 

Torii.  Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind., 
Japan),  1922,  25,  118—131. 

From  a  comparison  of  the  methods  of  Green  and 
Perkin,  Ost,  Woodbridge,  Barthelemy,  Eberstadt, 
and  Barnett  for  the  technical  analysis  of  cellulose 
acetate  the  author  concludes  that  Eberstadt's 
method  is  the  best  in  principle.  The  following  pro- 
cedure is  recommended :  0'2 — 03  g.  of  the  sample 
is  moistened  with  a  small  quantity  of  alcohol,  to 
which  10  c.c.  of  jV/1  alkali  solution  is  added,  the 
mixture  is  left  for  about  1  hour,  with  frequent 
shakings,  at  the  room  temperature,  and  the  remain- 
.  ing  alkali  is  then  titrated  with  iV/1  acid. — K.  K. 

Gloss  of  photographic  papers.     Jones  and  Fillius. 
See  XXI. 

Patents. 

Viscose-  Manufacture  of  durable  masses  from . 

H.  Gassman.  E.P.  155,211,  9.12.20.  Conv., 
12.12.19. 

Viscose,  which  it  is  desired  to  impregnate  with 
oils,  resins,  etc.,  is  treated  with  these  substances 
after  it  has  coagulated,  e.g.,  the  coagulated  viscose 
is  heated  in  a  bath  of  the  impregnating  material, 
or,  if  in  the  form  of  sheets,  is  passed  between  hot 
rollers,  the  liquid  or  liquefied  impregnating  material 
being  added  in  drops.  The  coagulation  of  the 
viscose  previous  to  the  above  treatment  is  effected 
under  conditions  which  limit  the  contraction  of  the 
product  as  it  dries,  and  thereby  increase  its 
elasticity,  e.g.,  viscose  solution  is  coagulated  in 
wooden  frames  provided  with  detachable  glass 
bottoms,  which  are  subsequently  removed,  leaving 
a  sheet  of  coagulated  viscose  adhering  to  the  frame. 
Reaction  by-products  are  removed  by  washing  the 
■sheet,  preferably  while  on  the  frame,  first  with  a 
solution  of  common  salt  with  or  without  heating, 
ind  subsequently  with  water. — D.  J.  N. 

Spinning    nozzles    for    artificial    threads.      Suden- 

burger    Maschinenfabr.    u.    Eisengiesserei    A.-G. 

zu  Magdeburg,  Zweigniederlassung,  vorm.  F.  H. 

Meyer,   Assees.   of   E.    Schiilke   and   W.    Eisner. 

E.P.  161,526,  8.4.21.  Conv.,  10.4.20. 
Spinning  nozzles  for  use  in  the  production  of  arti- 
lcial  threads  are  made  from  phenol-formaldehyde 
ondensation  products.  A  cylindrical  (or  pris- 
natic)  mould,  containing  a  number  of  metallic, 
■  g.,  copper,  wires  parallel  to  each  other  and  to 
he  axis  of  the  cylinder  is  filled  with  the  molten 


condensation  product;  the  resulting  block  is 
hardened  by  any  suitable  process,  removed  from 
the  mould,  cut  into  discs,  and  treated  chemically 
to  remove  the  wire. — D.   J.   N. 

Cellulose     threads;     Process     for     manufacturing 

brilliant  .     P.  Joliot.     E.P.  168,575,  4.2.21. 

Conv.,  30.8.20.    Addn.  to  1572  of  1915  (J.,  1915, 
1409). 

The  process  described  in  the  original  patent  may, 
with  omission  of  the  stretching  operation  after  the 
transformation  of  the  alkali-cellulose  into  xanthate, 
be  applied  to  cellulose  fibres  in  the  raw  state,  to 
flock,  and  to  all  kinds  of  waste  fabric.  The  treat- 
ment effects  the  removal  of  gums  and  other  im- 
purities, and  imparts  increased  brilliance  and 
elasticity  to  the  fibre. — D.  J.  N. 

Cellulose-ether  solvent  and  composition.  S.  J. 
Carrol,  Assr.  to  Eastman  Kodak  Co.  U.S. P. 
1,411,708,  4.4.22.     Appl.,  5.4.21. 

A  cellulose  ether  is  dissolved  in  a  mixture  of 
monochlorobenzene  and  a  monohydroxy  aliphatic 
alcohol— D.  J.  N. 

Softening  agents  [for  treating  articles  of  celluloid, 

or  the  like'];  Preparation  of  .     Chem.  Fabr. 

Griesheim-Elektron.      G.P.    (a)   348,628    and    (b) 
348,629,  22.4.20. 

Softening  agents  for  use  in  treating  celluloid  are 
prepared  by  converting  (a)  either  the  whole  or  part 
of  the  mixture  of  acid  oils  obtained  from  most 
tars,  or  (b)  a  mixture  of  phenols  containing  25  to 
30%  of  o-  or  m-cresol,  into  the  corresponding  phos- 
phoric acid  esters. — L.  A.  C. 

Paper,  cardboard,  woven  fabrics  and  like  materials; 

Sizing  ami  impregnating  of with  an  until  size 

or    gelatin.     A.     Lutz.       E.P.     156,513,     5.1.21. 
Conv.,  2.7.15. 

Sizing  or  impregnation  is  effected  by  means  of  an 
animal  size  or  gelatin  containing  lactic  acid,  which 
latter  causes  the  size  to  penetrate  more  deeply  into 
the  material  under  treatment.  About  30%  of  lactic 
acid  (on  the  weight  of  dry  size)  is  used  and  it  is 
then  possible  to  employ  a  30 — 49%  solution  of 
animal  size.  The  temperature  of  the  sizing  solu- 
tion should  not  exceed  45°  C.  for  any  considerable 
length  of  time,  otherwise  decomposition  of  the  size 
may  occur. — A.  J.  H. 

Sizing  and  impregnating  of  paper,  cardboard, 
woven  fabrics,  and  the  like.  A.  Lutz.  E.P. 
156,514,  5.1.21.     Conv.,  2.7.15. 

Animal  size  or  casein  used  for  sizing  and  im- 
pregnating paper,  cardboard,  fabrics  and  the  like 
is  hardened  by  treating  it,  either  before  or  after 
the  impregnating  operation,  with  2%  (on  the 
weight  of  dry  size)  of  "  methylolformamide," 
H.CO.NH.CHJOH.  When  used  in  large  quantities, 
e.g.,  20%  on  the  weight  of  paper  or  fabric  treated, 
"  methylolformamide,"  by  virtue  of  its  hygroscopic 
properties,  imparts  a  flexible  leather-like  character 
to  the  material. — D.  J.  N. 

Paper;    Coated    .      H.    R.    Rafsky.      U.S. P. 

1,374,112,5.4.21.    Appl.,  7.8.17.   Renewed,  19.8.20. 

The  surface  of  the  paper  is  coated  with  a  pigment 
produced  by  the  interaction  of  sodium  carbonate 
and  slaked  magnesian  lime  in  an  aqueous  medium, 
and  an  adhesive. 

Waxed  paper  stock;  Process  for  treating  [io 

remove  the  wax,  and  reduce  the  paper  to  pulp]. 

S.    H.    Dunwell.      U.S.P.     1,410,739,      28.3.22. 

Appl.,  15.4.19. 

Waxed  paper  is  beaten  up  in  hot  water  (65°  C.  or 

above)   containing   sufficient   hydrochloric    acid   to 


368  a 


Cl.    VI.— BLEACHING ;     DYEING;     PRINTING;     FINISHING. 


[May  31,  1922. 


react  with  the  size  in  the  paper.  After  removal  of 
the  wax  from  its  surface  the  solution  is  drained 
from  the  stock,  and  the  latter  is  further  treated  in 
a  beating  engine  with  alkali  to  saponify  any  oily 
matter,  and  thereby  facilitate  the  removal  of  the 
remaining  filler. — D.  J.  N. 

Sulphite  lye;  Manufacture  of  a  mastic  or  binding 

substance     from,    .       E.     Pollacsek.       E.P. 

157,907,  10.1.21.     Conv.,  17.10.19. 

A  liquid  of  great  adhesive  power,  and  suitable  for 
use  in  the  manufacture  of  briquettes  and  the  like, 
is  made  by  neutralising  sulphite-cellulose  waste 
liquor  with  slaked  lime,  evaporating  the  liquid, 
after  separation  of  the  precipitated  sludge,  until  a 
sample  immediately  solidifies  on  cooling,  and  then 
adding  to  the  boiling  mass  a  heavy  mineral  oil  in 
such  quantity  that  a  further  sample  remains  liquid 
on  cooling. — D.  J.  N. 

See  also  pages  (a)  378,  Copper  coatings  on  cellu- 
loid (E.P.  157,379).  381,  Vispersoids  (E.P.  156,142). 
383,  Plastic  bodies  (E.P.  154,157);  Treating  fibrous 
material  (U.S. P.  1,411,786).  384,  Tanning  mater- 
ials (G.P.  347,201). 

VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Hypochlorous  acid  and  chlorine  and  a  comparison 
of  their  bleaching  action.  R.  L.  Taylor.  J.  Soc. 
Dyers  and  Col.,  1922,  38,  93—97. 
When  immersed  in  moderately  strong  solutions 
(N /10)  of  equal  oxidising  powers  and  containing 
chlorine  or  hypochlorous  acid,  pieces  of  calico  dyed 
with  Indigo  or  Turkey  Red  are  at  first  more  rapidly 
bleached  in  the  former  solution,  but  owing  to  the 
formation  of  hydrochloric  acid  and  free  chlorine 
during  the  bleaching  action,  the  solution  of  hypo- 
chlorous acid  ultimately  becomes  more  active. 
According  to  the  equation,  H0C1+HC1^H20+C12, 
a  mixture  consisting  of  2  vols,  of  N  /500  solution 
of  hypochlorous  acid  and  1  vol.  of  JV/500  solution 
of  hydrochloric  acid  should  have  the  same  bleaching 
properties  as  N/750  solution  of  chlorine,  and  this 
was  verified  by  experiment.  In  the  bleaching  of 
solutions  of  dyestuffs,  e.g.,  Cochineal,  Crystal 
Violet,  ihdigosulphonic  acid,  infusion  of  red  rose 
leaves,  etc.,  a  dilute  solution  containing  chlorine 
acted  2 — 3  time6  more  rapidly  than  one  of  equal 
oxidising  power  but  containing  hypochlorous  acid. 
The  bleaching  power  of  NjlO  solution  of  hypo- 
chlorous acid  is  much  increased  by  addition  of 
hydrochloric  acid,  and  to  a  less  extent  by  sul- 
phuric, nitric,  phosphoric,  and  acetic  acids,  but  in 
the  case  of  JV/500  hypochlorous  acid,  hydrochloric 
acid  alone  has  this  effect.  On  addition  of  a  very 
dilute  solution  of  chlorine  (ZV/2000)  to  a  litmus 
solution,  the  colour  of  the  latter  changes  to  bright 
red,  then  purple,  and  slowly  disappears.  From 
this,  and  since  hypochlorous  acid  has  very  little 
reddening  action  on  litmus,  it  is  deduced  that  the 
chlorine  itself  acts  directly  on  the  litmus,  and  not, 
as  is  usually  assumed,  on  the  water.  On  the 
whole,  the  author  considers  chlorine  to  be  a  more 
active  bleaching  agent  than  hypochlorous  acid,  and 
criticises  certain  opposing  conclusions  drawn  by 
Higgins  (cf.  J.,  1914,  785,  1152)  from  experiments 
on  the  bleaching  of  linen.  The  hypochlorous  acid 
used  was  obtained  as  a  solution  containing  about 
4  g.  of  the  pure  acid  per  1.,  by  distilling  bleaching 
powder  with  30  pts.  of  water  and  2  pts.  of  boric 
acid.  It  lost  63%  and  87%  of  its  oxidising  power 
when  exposed  to  ordinary  diffused  sunlight  for  five 
and  six  months  respectively,  but  when  kept  in  the 
dark  the  loss  was  28%  in  five  months  and  about 
50%  in  six  years.  With  silver  nitrate,  the  solution 
of  hypochlorous  acid  yielded  no  immediate  pre- 
cipitate.— A.  J.  H. 


Wool;  Mordanting  for  [dyeing  with]   Hetnar- 

fine.     A.   B.    Craven.     J.   Soc.   Dyers   and  Col., 
1922,  38,  108—111. 

The  use  of  sulphites  and  bisulphites  as  substitutes 
for  the  usual  but  more  expensive  cream  of  tartar 
in  the  chrome  mordanting  of  wool  has  been  in- 
vestigated. When  wool  was  mordanted  with 
potassium  bichromate  and  a  bisulphite,  or  a  sul- 
phite and  sulphuric  acid,  the  resulting  dyeings 
obtained  by  means  of  Hematine  crystals  (fully 
oxidised)  differed  considerably  in  strength,  but 
these  differences  were  ultimately  traced  to  the  in- 
fluence of  sulphurous  acid  retained  by  the  wool. 
Hence,  after  mordanting  the  wool  should  be 
treated  with  an  alkali  (excess  must  be  avoided) 
such  as  ammonia,  soda  ash,  or  borax.  However 
reduced  and  whether  treated  with  an  alkali  or  not, 
a  reduced  chrome  mordant  yields  dyeings  stronger, 
brighter,  and  faster  to  light  than  those  obtained 
on  a  yellow  (unreduced)  chrome  mordant.  The 
alkali  treatment  of  a  reduced  chrome  mordant  in- 
creases its  basicity,  and  this  also  aids  the  produc- 
tion of  superior  dyeings.  A  mordant  obtained  by 
means  of  a  bichromate  and  lactic  acid,  with  or 
without  alkali  after-treatment,  yields  satisfactory 
dyeings.  A  suitable  mordanting  liquor,  which 
becomes  exhausted  in  one  hour,  contains  2- — 3%  of 
a  bichromate  and  5'3 — 8"0%  of  lactic  acid  (50%). 
Wool  mordanted  with  3%  of  bichromate  and  1%  of 
sulphuric  acid  can  be  reduced  in  a  separate  bath 
containing  25%  of  bisulphite  (25%  S02)  and  0'5% 
of  sulphuric  acid.  For  after-treatment  with 
alkali,  2"5%  of  soda  ash  is  suitable.     In  practice. 

i    the  use  of  a  less  fully  oxidised  Hematine  on  an  un- 

I    reduced     chrome     mordant     is     not     satisfactory. 

;    When  dyed  on  a  reduced  chrome  mordant,  Hema- 

',    tine  is  faster  to  rubbing. — A.  J.  H. 

Patents. 

[    Bleaching    textile   fabrics  and   materials;   Process 
of .     J.  Hodson.     E.P.  176,869,  11.12.20. 

In  the  bleaching  of  textile  fabrics,  the  lime  or 
caustic  soda  "  boil  "  is  replaced  by  a  treatment 
with  a  solution  containing  ammonia,  soda  ash,  and 
soap.  For  example,  in  a  "  white  bleach,"  35  cwt. 
of  grey  fabric  is  boiled  in  a  solution  containing 
8  galls,  of  ammonia  (commercial  strength),  150  lb. 
of  soda  ash,  and  30  lb.  of  soap,  and  is  then  washed 
in  a  hot  soap  liquor,  rinsed  in  cold  water, 
chemicked,  rinsed,  again  chemicked,  rinsed, 
soured,  washed  in  cold  water,  and  dried. 

—A.  J.  H. 

Dyeing,  bleaching,  tin  u-eighting,  scouring  and  the 
like  machines.  C.  Leek  and  Sons,  Ltd.,  and  H. 
Leek.  E.P.  177,211,  8.12.20. 
The  machine  comprises  a  framework  which  is 
attached  to  the  top  of  a  dye-beck  and  supports  a 
number  of  revolving  reels  having  a  cross-shaped 
cross-section  and  on  which  hanks  of  silk  or  other 
textile  material  are  suspended.  The  framework 
can  be  raised  or  lowered  and  the  reels  are  inter- 
connected by  suitable  gearing  so  that  they  can  be 
rotated  during  this  rising  and  falling  movement. 

—A.  J.  H. 

Logwood  dyeing.  W.  A.  Felder,  Assr.  to  Taylor 
White  Extracting  Co.  U.S.P.  1,412,024,  4.4.22. 
Appl.,  19.5.21. 
Textile  materials  composed  of  animal  fibres  which 
have  been  mordanted  and  then  dyed  with  logwood 
are  subsequently  oxidised  with  the  sodium  salts 
of  the  oxy-acids  of  the  non-metallic  elements  present 
in  groups  V  and  VII  of  the  periodic  table.  Intense 
and  fast  black  shades  are  thereby  obtained. 

—A.  J.  H. 


Vol.  XL1.,  No.  10.]       Cl.  VH.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


309, 


Cotton  and  other  vegetable  fibre  fabrics,  also  in- 
cluding  silk;    Production    of   pattern    effects   in 

.     R.  S.  Willows,  F.  T.  Pollitt,  and  T.  Leach. 

U.S.P.   1,411,598,   4.4.22.     Appl.,   11.1.22. 

See  E.P.  171,806  of  1920;  J.,  1922,  55  a. 


VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphuric    acid    processes;    Introduction    of   nitre 

into as  mixed  acid.     E.  L.  Larison.     Chem. 

and  Met.  Eng.,  1922,  26,  642—644. 

The  plant  described  consists  of  nitric  acid  retorts 
of  the  usual  type  and  a  condensing  tower.  The 
latter,  serving  two  one-ton  retorts,  is  made  of  acid- 

j  proof  brick,  20x4x4  ft.,  and  is  packed  with 
similar  bricks  set  on  edge.  In  this  the  nitric  acid 
is  absorbed  in  sulphuric  acid  of  60°  B.  (sp.  gr.  T71) 
to  form  a  mixed  acid  containing  the  equivalent  of 
165  lb.  of  nitre  per  cub.  ft.  The  mixed  acid  is 
pumped  to  the  Glover  tower  or  circulated  by  a 
cast-iron  Lewis  centrifugal  pump.  The  connexions 
from  the  retort  are  of  6-in.  "  corrosiron  "  pipe, 
and  these  have   proved   durable    in   4   years'    eon- 

]  tinuous  use,  whilst  the  pump  has  been  in  use  for 
over  2  years  without  need  of  repairs.  The  nitre 
efficiency  obtained  is  96%. — C.  I. 

I  Chlorosul phonic      acid;      Analysis   of      ■ .        G. 

Weissenberger  and  A.   Zoder.     Z.   anal.   Chem., 
1922,  61,  41—48. 

Volumetric  methods  for  the  determination  of  the 
hydrochloric  acid  resulting  from  the  decomposition 
of  chlorosulphonic  acid  by  water  yield  too  high 
results  owing  to  the  presence  of  sulphate  ions  in 
the  previously  neutralised  solution;  this  applies 
whether  the  titration  is  made  according  to  Mohr's 
method  or  Volhard's  method.  Gravimetric  methods 
for  estimating  the  hydrochloric  acid  and  sulphuric 
acid  are,  however,  trustworthy.  Fairly  accurate 
results  may  also  be  obtained  by  distilling  the 
sample  in  a  glass  apparatus  and  collecting  and 
weighing  the  fraction  which  distils  at  154° — 
156°  O.— W.  P.  8. 


Ammonia  catalysts;  Study  of .    IV.  Behaviour 

of  an  iron  catalyst  under  varying  conditions  of 
pressure,  temperature,  and  gas  velocity.  A.  T. 
Larson  and  R.  S.  Tour.  Chem.  and  Met.  Eng., 
1922,  26,  647—654.    (Cf.  J.,  1922,  292  a,  325  a.) 

A    systematic    series    of    experiments    has    been 

made   to   show    the    relation    of   the    efficiency    of 

certain  catalysts  to  pressure,  temperature,  space.- 

velocity,  i.e.,  volume  of  gas  passing  per  unit  vol. 

catalyst  in   unit  time,   and  proportion  of  catalyst 

poison  (carbon  monoxide  or  water-vapour)  present. 

Two  of  these  variables  were  fixed,  and  a  series  of 

curves  was   obtained   showing  the  relation   of  the 

jfficiency     (calculated     on     the    basis     of     Haber's 

squilibrium   values)   to  the  remainder.     The  cata- 

ysts   used    consisted    of    metallic    iron    containing 

!"5 — 3'5%  of  a  promoter.     The  size  of  the  granules 

s  of  no  importance.     As  regards  catalyst  poisons 

10  difference  was  detected  in  the  effect  of  the  two 

nvestigated.      Carbon   monoxide    in   contact    with 

he  catalyst  oxidises  hydrogen   to   water,    so  that 

he  two  poisons  are  equivalent.     A  further  series 

f  curves  is  plotted  substituting  the  percentage  of 

immonia  in  the  gas  for  the  efficiency.     These  show 

he   modifying   influence  of   the   variation    in    the 

;aseous  equilibrium,   which  may  be  very  great  as 

'ith  pressure  variation,  or  nil  as  with  variation  in 

he  proportion  of  catalyst  poison  present.       With 

>ure  gases  no  deterioration   of  the  catalyst  with 

ime  could  be  detected,  but  some  catalysts  deteri- 

ra+e   more   rapidly   at   higher   temperatures.     A 


temperature  above  550°  C.  is  always  injurious. 
Poisons  produce  a  gradual  permanent  deteriora- 
tion.—C.  I. 

Ammonia  catalysts;  Study  of  .     V.  Effect  of 

pressure  on  catalytic  activity.  A.  T.  Larson. 
Chem.  and  Met.  Eng.,  1922,  26,  683—685.  (Cf. 
supra.) 

Eleven  catalysts  were  tested,  all  being  iron  oxides 
with  different  promoters.  The  temperature  was 
450°  C,  and  the  pressures  ranged  from  1  to  100 
atm.  Results  are  given  for  both  wet  and  dry  gases. 
Although  the  actual  percentage  of  ammonia  in- 
creases with  increase  of  pressure,  the  percentage 
efficiency  (ratio  of  actual  percentage  of  ammonia  in 
the  gas  to  that  theoretically  possible  under  the 
given  conditions)  does  not  increase;  but  with  most 
of  the  catalysts  tested  there  is  a  decrease,  which 
may  be  very  considerable.  From  the  results 
obtained  at  low  pressures  it  is  not  possible  to 
predict  with  any  degree  of  certainty  the  efficiency 
of  the  catalyst  at  high  pressures.  The  efficiency- 
pressure  curves  are  continuous  and  if  the  efficiency 
of  a  catalyst  is  known  at  pressures  sufficiently  far 
removed  to  give  the  general  trend  of  the  curve,  the 
efficiency  at  higher  pressures  can  be  very  closely 
predicted  by  extrapolation.  The  general  effect  of 
water  vapour  is  to  reduce  the  efficiency,  the  extent 
varying  with  the  different  catalysts. — J.  B.  F. 

Sodium   sulphate   in   commercial   salt-cake;   Sapid 

estimation  of .     M.  Mateui  and  S.  Kimura. 

Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan), 
1922,  25,  111—117. 

A  modification  of  Isbert  and  Venator's  method 
(Z.  angew.  Chem.,  4,  66)  is  described.  About 
0'5  g.  of  the  sample  is  dissolved  in  a  little  water, 
to  which  1  c.c.  of  5N  ammonium  carbonate  solution, 
1  c.c.  of  1%  ammonium  sulphate  solution,  12  c.c. 
of  alcohol  (about  90%),  and  10  c.c.  25%  ammonia 
are  added*:  The  mixture  is  stirred  for  30  min.  or 
frequently  agitated  and  allowed  to  stand  overnight, 
and  then  filtered.  The  clear  filtrate  is  evaporated 
to  dryness,  the  residue  ignited  in  a  platinum 
crucible  and  weighed.  By  deducting  from  the 
weight  that  of  the  sodium  sulphate  corresponding 
to  the  sodium  chloride  found  in  the  original  sample 
by  titration,  the  real  sodium  sulphate  originally 
present  is  found.  Six  hours  is  sufficient  for  the 
whole  determination. — K.  K. 

Ammonium  chloride;  Preparation  of  .     P.  M. 

Monval.     Comptes  rend.,  1922,  174,  1014—1017. 

A  study  of  the  conditions  governing  the  crystallisa- 
tion of  ammonium  chloride  at  15°  C.  either  from 
pure  solution  or  from  solutions  containing  one  or 
more  of  the  salts,  sodium  chloride,  sodium  car- 
bonate, and  ammonium  carbonate.  A  Le  Chatelier 
diagram  showing  the  surfaces  of  saturation  is  given. 
Commercially  in  the  ammonia-soda  process  the 
ammonium  chloride  is  not  crystallised  out  directly 
from  the  liquor  from  which  the  sodium  bicarbonate 
has  been  extracted,  but  the  bicarbonates  present  in 
this  liquor  are  first  converted  into  normal  carbon- 
ates by  the  addition  of  ammonia. — W.  G. 

Ammonium  chloride,   sodium  sulphate,  ammonium 
sulphate,  sodium  chloride,  water;  The  quaternary 

system .      A.    C.    D.    Rivett.       Chem.    Soc. 

Trans.,  1922,  121,  379—393. 
The  heterogeneous  equilibria  in  the  quaternary 
system  ammonium  chloride,  sodium  sulphate,  ammo- 
nium sulphate,  sodium  chloride,  water  have  been 
investigated  at  80°,  60°,  40°,  25°,  and  0°  C,  and 
graphically  represented  by  the  pyramidal  method 
(Schreinemakers,  Z.  physik.  Chem.,  1909,  69,  557), 
the  apex  of  the  pyramid  corresponding  with  pure 
water  and  the  four  corners  of  the  base  with  the 
respective  salts.     At  80°  and  60°  C.  the  isotherms 


370  a 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIO  ELEMENTS. 


[May  31,  1922. 


are  simple,  containing  four  saturation  surfaces, 
hence  the  model  consists  of  twelve  regions,  one 
above  the  saturation  surfaces  containing  all  un- 
saturated solutions  and  eleven  below.  Ammonium 
chloride  and  sodium  sulphate  can  exist  as  solids  in 
equilibrium  with  any  one  of  a  6eries  of  solutions, 
but  ammonium  sulphate  and  sodium  chloride 
cannot.  At  59"3°  C.  a  fifth  saturation  surface 
begins  with  the  appearance  of  the  hydrated  double 
salt,  Na2S04,(NH.,).,S04,4H20,  and  expands  with 
fall  of  temperature  until  the  system  becomes  in- 
variant at  50-0°  +  0'05°  (corr.),  with  the  appearance 
of  the  new  solid  phase,  ammonium  chloride,  in 
addition  to  the  two  sulphates  and  the  double 
sulphate.  On  cooling  below  50°  ammonium  sul- 
phate disappears  as  a  solid  phase  and  the  model 
contains  sixteen  regions,  one  above  and  fifteen  below 
the  saturation  surfaces.  The  type  of  isotherm 
remains  unchanged  until  the  appearance  of 
Na-.SO^lOHsO  at  32-3°  C.  Below  this  temperature 
the  quaternary  system  reaches  its  maximum  com- 
plexity with  six  saturation  surfaces.  The  deca- 
hydrate surface  increases  to  26"5°  when  an  invariant 
point  for  decahydrate,  sodium  sulphate,  and  double 
salt  is  reached.  Below  26'5°  these  three  salts  can 
co-exist  only  if  a  fourth  component  be  added.  With 
fall  of  temperature  the  saturation  surface  of  sodium 
sulphate  diminishes  and  below  17-9°  this  salt  can 
he  in  equilibrium  with  quaternary  solutions  only. 
At  still  lower  temperatures  there  are  two  invariant 
quaternary  systems,  i.e.,  ammonium  chloride,  double 
6alt,  sodium  sulphate,  solution  and  sodium  chloride, 
sodium  sulphate,  decahydrate,  solution,  each  of  which 
becomes  invariant  by  the  production  of  a  new 
phase  on  further  cooling.  The  first  invariant  point 
is  ir3°  C.  at  which  the  solid  phases  ammonium 
chloride,  sodium  chloride,  sodium  sulphate,  and 
decahydrate  co-exist  with  solution.  Further  cooling 
results  in  the  disappearance  of  sodium  chloride  as  a 
solid  phase.  The  new  invariant  system  ammonium 
-chloride,  sodium  sulphate,  decahydrate,  and  solu- 
tion becomes  invariant  at  lTO0  C.  with  the 
formation  of  double  salt  as  a  new  solid  phase.  This 
is  the  lowest  temperature  at  which  anhydrous 
sodium  sulphate  can  exist  in  a  quaternary  system. 

—P.  V.  M. 

Sodium  sulphate;  Production  of  from  ammo- 
nium sulphate  and  sodium  chloride.   W.  Dominik. 
Przemysl    Chem.,     1921,     5,     257—263.      Chem. 
Zentr.,  1922,  93,  I,  851. 
The  most  favourable  conditions  for  the  conversion 
of  ammonium  sulphate  into  sodium  sulphate  are,  on 
experimental  and  theoretical  grounds,  stated  to  be 
a  proportion  of  69  g.  of  ammonium  sulphate  to  61  g. 
of  sodium  chloride  and  100  g.  of  water,  in  presence 
of   about  16  g.    of   ammonium  chloride,    at  about 
.600°  C— C.  I. 

Normal  ammonium  sulphate;  Meltinq  point  of  ■ . 

R.  Kattwinkel.  Ber.,  1922,  55,  874. 
Contrary  to  the  statement  of  Caspar  (J.,  1920, 
485  a),  a  definite  melting  point  cannot  be  assigned 
to  normal  ammonium  sulphate ;  with  increasing 
temperature  it  suffers  loss  of  ammonia,  decompo- 
sition becoming  complete  at  355°  C.  (c/.  Watson 
Smith,  J.,  1895,  629;  1896,  3).— H.  W. 

Carbon  dioxide;  Velocity  of  absorption  of  by 

alkaline  solutions.       P.   Riou.       Comptes  rend., 
1922,  174,  1017—1019. 

For  a  given  area  of  absorbing  surface  the  velocity 
of  absorption  of  carbon  dioxide  by  a  solution  of 
sodium  carbonate  diminishes  as  the  concentration 
of  the  sodium  carbonate  increases.  It  is  also 
diminished  by  the  presence  in  the  solution  of 
increasing  amounts  of  sodium  chloride  or  bi- 
carbonate, or  by  dilution  of  the  carbon  dioxide  by 
air.     On  the  other  hand  it  is  markedly  increased  by 


agitation  or  rise  in  temperature  of  the  absorbing 
liquid.— W.  G. 

Potassium  and  aluminium  compounds ;  Production 

of    from    Italian     leucites.      D.     Pomilio. 

Chim.  et  Ind.,  1922,  7,  425—437. 

Large  quantities  of  potassium-bearing  silicates  of 
volcanic  origin  occur  in  Italy,  the  richest  being  at 
Vico,  Bracciano,  and  Roccamonfina.  Potash  in  the 
form  of  leucite  is  estimated  to  amount  to  0"88xl0'° 
metric  tons,  a  quantity  of  the  same  order  as  that 
in  the  Stassfurt  deposits.  Italian  leucite  contains 
7 — 12%  K„0  which  may  be  increased  by  magnetic 
separation,  but  for  the  production  of  potash  and 
aluminium  compounds  the  crude  lava,  which  dis- 
integrates to  a  fine  powder  on  exposure,  is  decom- 
posed either  by  an  alkaline  or  acid  medium.  A 
complete  cycle  of  operations  is  carried  out  in  the 
hydrochloric  acid  treatment  of  leucite,  and  this  pro- 
cess possesses  the  advantage  of  economy  in  fuel. 
Leucite  in  a  fine  state  of  division  is  extracted  by  a 
circulating  stream  of  warm  hydrochloric  acid  and 
the  silicious  residue  is  washed  and  dried.  A  con- 
siderable proportion  of  the  potassium  chloride  sepa- 
rates on  cooling  the  extract,  and  the  resulting 
liquor  is  electrolysed  to  remove  iron.  Electrolysis  is 
continued  with  a  neutral  catholyte  to  precipitate 
alumina,  and  chlorine  and  hydrogen  are  disengaged, 
from  which  hydrochloric  acid  is  formed  to  repeat 
the  cycle. — C.  A.  K. 

Aluminium   sulphate   solutions;   Determination  of 

free  acid   in  acid   .      H.    Zschokke  and  L. 

Hauselmann.     Chem.-Zeit.,   1922,  46,  302. 

The  following  modification  of  Iwanow's  method 
(J.,  1913,  286)  is  recommended.  10  c.c.  of  the 
aluminium  sulphate  solution,  10  c.c.  of  barium 
chloride  solution  (1:10),  5  c.c.  of  potassium  ferro- 
cyanide  solution  (1:10),  which  must  not  be  more 
than  6  days  old,  and  60  c.c.  of  boiling  water  are 
poured  in  the  above  order  into  a  100  c.c.  flask.  A 
gelatin  solution  (1:50)  is  added,  drop  by  drop,  with 
agitation,  until  the  precipitate  that  is  formed 
becomes  flocculent  and  settles  easily.  The  mixture 
is  cooled  and  diluted  to  100  c.c,  allowed  to  settle, 
and  filtered.  50  c.c.  of  the  clear  colourless  filtrate 
is  diluted  with  50  c.c.  of  water  and  titrated  with 
2V/10  sodium  hydroxide  until  neutral  to  methyl 
orange.  The  temperature  of  the  solution  must; 
never  exceed  85°  C.,  and  the  excess  of  potassium 
ferrocyanide  must  not  be  too  great  or  low  results 
will  be  obtained.  If  the  quantity  of  acid  present 
be  over  6  g.  per  litre  the  filtrate  remains  cloudy  and 
a  few  drops  of  N/10  sodium  hydroxide  should  be 
added  before  precipitation. — H.  C.  R. 

Copper  sulphide;  New  observations  on  .    W. 

Gluud.     Ber.,  1922,  55,  952—953. 

The  oxidation  of  cupric  sulphide  by  air  at  the  atmo- 
spheric pressure  proceeds  rapidly  in  ammoniacal 
suspension  with  the  production  of  a  mixture  of 
sulphate  and  thiosulphate ;  cuprous  sulphide  if 
similarly  but  more  slowly  oxidised.  In  neutral  or 
acid  solution  the  change  is  slower  and  necessitates 
the  use  of  compressed  air  at  temperatures  up  to 
160°  C. ;  cupric  sulphate  is  formed.  Under  certain 
circumstances  the  sulphur  is  deposited  in  the  ele- 
mentary state;  the  chief  conditions  are  that  the 
copper  solution  should  not  be  precipitated  com- 
pletely, that  the  oxidation  should  be  effected 
immediately,  and  that  the  solution  should  contain, 
in  addition  to  ammonia,  considerable  amounts  ot 
dissolved  salts,  preferably  ammonium  compounds 

— H.  W. 

Ferric  oxide;  Colour  of  .     J.  A.  Hedvall.    Z. 

anorg.  Chem.,  1922,   121,  217—224. 
The  colour  of  ferric  oxide   may  vary  from  bright 
yellow  to  bluish-black.     The  light-coloured  variety 


Vol.  xli.,  xo.  10.)       Cl.  VTI.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIC  ELEMENTS. 


371a 


!  is  obtained  by  the  cautious  heating  of  any  of  the 
sulphates  of  iron,  the  darkest  varieties  are  obtained 
by  heating  any  of  the  other  compounds  or  iron;  the 
sulphate  also  gives  the  darker  variety  on  heating 
with  a  flux  or  alone  to  650°  C.     When  heated  to 

j  650° — 1000°  C.  all  the  varieties  become  brown  or 
dark  violet;  above  1000°  C.  they  become  black  or 
bluish-black  (the  colour  of  specular  iron  ore).  Heat- 
ing above  650°  C.  causes  a  permanent  change  in 
colour.  The  author  examined  specimens  of  ferric 
oxide  prepared  by  twenty-seven  different  methods ; 
they  were  all  crystalline.  The  bright  yellow  variety 
consisted  of  thin  plates,  the  others  were  small  grains 
or  short  prisms.  They  all  gave  the  same  X-ray 
spectrum  and  therefore  belong  to  the  same  system. 
The  change  from  the  bright  yellow  to  the  darker 
variety  took  place  at  700°  C,  the  leaflets  losing 
their  form  (surface  tension  overcome)  and  becoming 
granular— W.  T. 

Ferric   oxide — sulphuric  acid — water;   The   system 

.       M.     P.    Applebev    and    S.    H.     Wilkes. 

Chem.  Soc.  Trans.,  1922,"  121,  337—348. 

In  the  system  Fe203 — S03 — H20  the  solid  phase  at 

concentrations  of  S03  less  than  29'6%  at  18°  C.  or 

27%  at  25°  C.  consists  of  solid  solutions  of  variable 

composition,    possibly    of    ferric    oxide    in    a    basic 

sulphate.     At  25°  C,   but  not  at  18°  C,   at  acid 

concentrations  of  27% — 30%  S03  a  solid  anhydrous 

.basic   salt,    5(Fe203,3S03),2Fe203    separates.       The 

normal     sulphate,     which     has     the     composition, 

Fe203,3SO3,7H,O,     is    the    stable    phase    at    acid 

.concentrations  between  2964  and  3T88%  of  S03  at 

18°  and  between  30  and  32%  of  S03  at  25°  C.     It  is 

only  stable  in  the  presence  of  free  acid  and  not  in 

contact    with    solutions    of    its    own    composition. 

When  the  concentration  of  S03  exceeds  32%  at  18° 

jr  322%  at  25°  C.  the  solid  phase  is  a  very  soluble 

|jcid  sulphate,   Fe,03,4S0379H,0,   the  solubility  of 

!*'hich  decreases  rapidly  as  the  concentration  of  SO, 

ncreases  until  at  38%   of  SO,  at  18°  and  40%   at 

|25°  C.   it  is  almost  wholly   insoluble.      The  liquid 

iihase  is  colourless  and  up  to  45%   SO,  no  trace  of 

ron  can  be  detected  in  the  solution.     The  range  of 

Existence  of  the  acid  sulphate  decreases  with  rise  of 

emperature.     The  acid-normal  salt  eutectic  occurs 

.it  an  acid  concentration  of  3T88%  S03  at  18°  and 

ibove  32%  at  25°  C.     The  deposits  from  commercial 

'  nitrate  of  iron  "   mordant   and   the  voluminous 

iwollen   mass   deposited   from   strong    solutions    of 

erric  sulphate  on  standing  are  not  basic  sulphates 

>ut  the  same  acid  sulphate  as  that  obtained  in  acid 

lolutions.— P.  V.  M. 

lydrogen;  Liquefaction  of .     J.  C.  McLennan. 

Trans.  Roy.  Soc.  Canada,  1921,  15,  iii.,  31—36. 
n  a  process  for  the  liquefaction  of  hydrogen  of 
nitial  purity  99'5%,  the  expansion  coil  became 
hoked  with  solid  oxygen  after  a  small  quantity  of 
iquid  hydrogen  was  obtained.  This  difficulty  was 
bviated  by  passing  the  gas  over  palladinised 
sbestos   maintained  at   about  400°   C.     The  com- 

ressing,  purifying,  and  liquefying  systems  are 
etailed.— J.  S.  G.  T. 

hydrogen;   Spontaneous   ignition   of   ■   issuing 

from  iets  .  W.  Nusselt.  Z.  Ver.  Deuts.  Ing., 
1922,  66,  203—206.  Chem.  Zentr.,  1922,  93,  II., 
787. 

he  spontaneous  ignition  of  currents  of  hydrogen  is 
msed  by  the  electrification  of  dust  particles  by 
iction  against  the  slit  from  which  the  gas  is 
suing,  the  electric  discharge  from  these  particles 
;niting  the  explosive  mixture  formed  at  the  point 
'  exit  of  the  hydrogen. — H.  C.  R. 

llcium  and  its  alloys;  Absorption  of  nitrogen  by 

.      O.  Ruff  and  H.   Hartmann.      Z.   anorg. 

Chem.,  1922,  121,  167—177. 

ethods   of   preparing  calcium   alloys  are   given. 

ie  rate  at  which   alloys  rich    in  calcium   absorb 


nitrogen  depends  on  volume  relationship,  tempera- 
ture, potential  of  the  added  metal,  and  the  calcium 
nitride  content  of  the  alloy.  The  contraction  of 
calcium  in  the  formation  of  the  nitride  keeps  the 
exposed  surface  porous,  but  pure  calcium  is  almost 
passive  towards  nitrogen.  Metals  more  strongly 
positive  than  calcium,  e.g.,  potassium,  barium, 
accelerate  the  absorption;  of  the  others  some  (Mg, 
Pb,  Sn)  have  no  effect,  others  (As,  Sb)  retard  it, 
whilst  some  (Bi,  Cu,  Zn)  inhibit  it.  Calcium 
nitride  acts  as  a  catalyst  in  all  cases.  With  calcium 
alloys  containing  5%  of  the  nitride  pure  argon  can 
be  obtained  from  air  in  a  few  minutes  at  a  tempera- 
ture below  320°  C— W.  T. 

See  also  pages  (a)  378,  Magnesium  from  salt 
works  residues  (Boynton  and  others).  386,  Am- 
monia recovery  in  the  sugar  factory  (Andrlik  and 
Skola).  394,  Iodine  and  sulphurous  acid  (Mac- 
aulay).  395,  Cyanides  and  halides  (Miiller  and 
Lauterbach)- 

Patents. 

Ammonia;  Catalyser  for  the  synthetic  manufacture 

of  and  process  of  producing  same.     Norsk 

Hydro-Elektrisk  Kvaelstofaktieselskab.  E.P. 
153,290,  27.9.20.  Conv.,  28.10.19. 
Complex  cyanides  of  iron  and  alkali  metals, 
in  which  there  is  less  than  2  mols.  of  alkali 
cyanide  for  each  molecule  of  iron  cyanide,  e.g., 
(NH4)3KFe(CN)6  and  K2Fe2(CN)„  are  heated  to 
a  temperature  below  500°  C.  The  product  acts  as 
a  catalyst  for  the  production  of  synthetic  ammonia 
at  temperatures  not  higher  than  400°  C,  and  the 
pressure  need  not  exceed  100  atm.  If  the  cyanides 
are  decomposed  at  600°— 700°  C.  (red  heat)  the 
resulting  product  is  a  very  inferior  catalyst. 

— j.  B.  F. 

Ammorda;  Synthesis  of .     L'Air  Liquide,  Soc. 

Anon,  pour  l'Etude  et  l'Exploit.  des  Proc.  G. 
Claude.  NE.P.  (a)  155,302,  15.12.20,  and  (b) 
158,849,  2.2.21.  Conv.,  15.12.19  and  2.2.20. 
(a)  In  the  synthesis  of  ammonia,  using  very  high 
pressure,  the  temperature  of  the  catalyst  tube  is 
maintained  as  near  as  possible  to  the  normal  tem- 
perature of  the  reaction,  by  absorbing  the  heat 
developed  by  a  bath  containing  a  liquid  having  a 
boiling  point  approximately  that  of  the  reaction 
temperature,  e.g.,  sulphur,  with  or  without  the 
addition  of  other  substances  to  raise  the  boiling 
point,  or  a  liquid,  such  as  a  molten  metal,  which 
is  maintained  at  an  approximately  constant  tem- 
perature by  circulating  and  cooling  the  metal  at 
a  point  remote  from  the  catalyst,  (b)  The  residual 
gases  from  the  catalyst  tube  are  returned  to  the 
last  cylinder  of  the  hyper-compressor  and  re- 
circulated until  the  accumulation  of  inert  gases, 
or  the  disproportion  of  hydrogen  to  nitrogen 
renders  the  mixture  unsuitable. — J.  B.  F. 

Ammonia;  Process  for  recovering  from  peat 

P.  Brat.  E.P.  157,746,  10.1.21.  Conv.,  20.7.18. 
The  nitrogen  of  peat  is  converted  into  ammonia 
when  peat  containing  about  66%  of  water  is 
heated  with  one-tenth  of  its  weight  of  soda-lye 
under  a  pressure  of  not  less  than  6  atm.  to  170° — 
200°  C— J.  B.  F. 

Ammonium  sulphate;  Manufacture  of .     South 

Metropolitan  Gas  Co.,  and  P.  Parrish.  E.P. 
176,977,  24.1.21. 
In  the  neutralisation  of  acid  ammonium  sulphate 
according  to  the  usual  method  any  pyridine 
present  escapes  into  the  atmosphere.  This  is 
avoided  as  follows.  The  fixed  and  free  ammonia 
stills  work  into  separate  saturators.  The  acid  salt 
formed  in  the  saturator  connected  with  the  free 
ammonia  still  is  centrifuged  and  discharged  into 
the   saturator   connected   with   the   fixed    ammonia 


Cl.  VH.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


[May  31,  1922. 


still.  This  is  worked  to  slight  alkalinity,  which 
can  be  done  in  this  case  without  discoloration  of 
the  salt,  the  pyridine  passes  on  with  the  waste 
gases,  and  the  neutral  salt  is  dried. — C.  I. 

Sulphate  of  ammonia;  Manufacture  of  neutral 

and  apparatus  in  connexion  therewith.  South 
Metropolitan  Gas  Co.,  and  P.  Parrish.  E.P. 
177,726,  27.4.21. 
A  solution  of  ammonia  of  a  strength  suitable  for 
washing  ammonium  sulphate  crystals  is  obtained 
by  passing  the  hot  waste  liquor  from  the  fixed 
ammonia  still,  through  a  chamber  arranged  as  a 
tubular  feed  water  heater.  The  steam  and 
ammonia  are  condensed  in  a  tubular  condenser, 
producing  and  maintaining  a  reduced  pressure  in 
the  chamber.  The  condensed  liquid  is  drawn  off 
periodically  and  is  of  suitable  dilution  for  the  pro- 
duction of  neutral  ammonium  sulphate  from  acid 
ammonium  sulphate  crystals. — J.  B.   F. 

Cyanic  compounds;  Formation  of .     {Fixation 

of  nitrogen.^  H.  Mehner.  E.P.  172,027,  25.11.21. 
Conv.,  26.11.20. 
Alkali  is  converted  into  cyanide  by  reducing  with 
carbon  in  presence  of  nitrogen.  Carbon  is  impreg- 
nated with  alkali  and  heated  on  a  pervious  hearth 
of  a  reverberatory  furnace.  The  nitrogen  is  admitted 
with  the  fuel,  e.g.,  in  the  form  of  producer  gas. 
The  air  necessary  for  combustion  is  admitted  at  a 
higher  level  than  the  producer  gas.  Neither  the 
charge  nor  the  products  come  into  contact  with 
the  flame  or  the  products  of  combustion.  The 
products  of  the  reaction  are  conducted  away 
through  the  pervious  hearth.  The  reaction  is 
carried  out  at  as  low  a  temperature  as  possible 
by  circulating  cold  gases  or  water  through  hollow 
grate-bars  which  constitute  the  hearth,  the  cooling 
material  escaping  through  small  holes  in  the 
grate-bars  into  the  products  of  the  reaction.  Cool- 
ing agents  which  react  with  the  products  may  be 
used;  thus  in  the  case  of  water,  the  cyanide  is 
converted  into  ammonia  and  alkali,  the  latter 
being  re-introduced  into  the  charge. — J.  B.  F. 

Nitrogen  compounds  of  titanium;  Process  for  the 

decomposition  of .     G.  P.  Guignard.     U.S. P. 

1,411,087,  28.3.22.    Appl.,  17.2.21. 
The  compounds  are  treated  with  water  vapour  in 
vacuo  at  360°— 600°  C,  and  the  nitrogenous  pro- 
ducts are  removed  as  formed. — A.  G.  P. 

Alumina;  Preparation  of  from  clay.     F.  W. 

Howorth.  From  A./S.  Hoyangsfaldene  Norsk 
Aluminium  Co.  E.P.  169,301,  29.6.20. 
Air-dried  clay  is  mixed  with  a  quantity  of  sul- 
phuric acid,  insufficient  to  convert  the  whole  of 
the  metallic  contents  into  sulphates,  with  forma- 
tion of  free  silica.  After  crystallising  potash  alum 
from  tbe  solution,  a  further  quantity  of  the  alum 
is  precipitated  by  addition  of  potassium  sulphate 
recovered  in  a  later  stage  of  the  process.  The  alum 
is  dehydrated  and  then  decomposed  by  heating  at 
700°— 800°  C.  in  a  tube  furnace.  The  residue  of 
alumina  and  potassium  sulphate  is  heated  with  a 
cold-saturated  solution  of  potassium  sulphate  to 
100°  C,  the  alumina  filtered  off,  and  the  solution 
cooled  to  crystallise  the  potassium  sulphate. 

— H.  R.  D. 

Alumina  and  potash;  Process  of  producing  . 

H.  P.  Bassett.    U.S.P.  1,410,642,  28.3.22.    Appl., 

14.4.21. 
Silicates  containing  alumina  are  mixed  witb  alkali 
carbonate  and  a  sodium  salt  of  a  mineral  acid  and 
heated,   yielding   insoluble  sodium  aluminium   sili- 
cate.    The  latter  is  treated  with  caustic  soda  and 


the  oxides  of  iron  and  calcium,  yielding  sodium 
aluminate,  which  is  treated  as  usual. — C.  I. 

Lead  oxides  and  process  to  manufacture  the  same 
G.  Shimadzu.     E.P.  176,924,  30.12.20. 

Very  finely  powdered  lead,  of  apparent  sp.  gr.  1 
to  3,  is  prepared  by  the  friction  of  lead  balls  in  a 
slowly  revolving  drum.  This  powder,  which  can 
be  ignited  by  a  match,  is  converted  into  litharge 
by  an  initial  application  of  heat  only.  The  oxida- 
tion once  started  continues  spontaneously  without 
the  use  of  steam  or  other  oxidising  agent.  The 
litharge  can  be  converted  into  red  lead  in  the 
usual  way. — C.  I. 

Pyrosulphates;     Manufacture     of    .       British 

Cellulose  and  Chemical  Mfg.  Co.,  Ltd.,  and  \f. 
Bader.     E.P.  177,310,  20.1.21. 

Alkali  bisulphate,  or  sulphate  and  sulphuric  acid 
in  the  proportion  to  form  bisulphate,  is  heated  to 
a  temperature  between  200°  and  300°  C.  under 
reduced  pressure,  the  mass  being  continuously 
agitated.  A  temperature  of  250°  C.  and  a  pressure 
of  3  to  5  in.  of  mercury  are  most  suitable.  The 
melting  point  of  the  mixture  after  a  time  it 
slightly  below  180°  C.  and  remains  so  until  near  the 
end  of  the  reaction.  A  short  time  before  the  end 
point  is  reached  the  melting  point  rises  rapidly 
and  if  the  temperature  is  not  increased  the  mass 
sets  solid.  The  solid  formed  at  250°  C.  under  a 
good  vacuum  is  porous  and  friable.  The  pan  is 
fitted  with  a  strong  agitator,  which  breaks  up 
the  solidifying  mass,  and  finally  reduces  it  to 
powder.  The  pan  in  which  the  operation  a 
carried  out  may  be  heated  externally  or  an 
alternating  current  may  be  passed  through  the 
mixture. — J.   B.   F. 

Ferrous  chloride;  Treating  waste  or  other  liquors 

containing     .       E.     V.     Chambers,     T.     C. 

Hammond,     and     W.     Sowden.       E.P.     177.444. 
14.6.21. 

The  liquor  is  treated  with  sulphuric  acid  and  the 
mixture  passed  through  a  cascade  heater.  The 
hydrochloric  acid  and  steam  evolved  pass  through 
condensers,  the  uncondensed  hydrochloric  acid 
being  recovered  by  means  of  a  scrubber.  Ferrous 
sulphate  crystallises  out  from  the  liquor  leaving  the 
heater,  and  the  mother  liquor  is  returned  for 
further  treatment. — J.  B.  F. 

Base-exchanging  compound ;  Manufacture  of  a  new 

.      J.  Crosfield  and  Sons,   Ltd..   and  H.  J. 

Wheaton.     E.P.  177,746,  5.7.21  and  25.1.22. 

Solutions  of  sodium  silicate  and  sodium  aluminate 
are  mixed  in  the  cold,  so  that  the  whole  mass  forms 
a  gel  containing  alumina  in  an  amount  correspond- 
ing to  not  less  than  6%  and  not  more  than  16%  of 
the  total  solids  originally  present.  The  gel  is  dried 
in  a  current  of  warm  air  until  it  becomes  just  hard; 
it  is  then  washed  free  from  uncombined  sodium 
silicate  and  free  alkali,  the  product  thereby  becom- 
ing granular.  The  lixiviated  mass  is  used  as  a 
base-exchanging  compound.  The  presence  of  excess 
of  free  caustic  soda,  and  of  sulphates,  chlorides,  and 
other  impurities  which  act  as  electrolytes  is  to  be 
avoided  as  far  as  possible. — J.  B.  F. 

Alkali-metal  silicate;  Dry  .      A.  A.  Dunham. 

Assr.  to  The  Casein  Mfg.  Co.    U.S.P.  1,373,224. 

29.3.21.  Appl.,  30.12.19. 
A  dry,  porous,  flaky  material  which  when  added  to 
casein  glue  gives  a  mixture  free  from  grittiness,  U 
prepared  bv  adding  2—10::  of  casein  to  water-glass 
of  12°  B.  (sp.  gr.  109)  and  drying  the  liquid  on  a 
surface  heated  to  at  least  212°  F.  (100°  C). 


Vol.  XIX,  No.  10.]     Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


373  a 


Phosphate-rock  calcining  process.  Apparatus  for 
calcining  phosphate,  rock.  M.  Shoeld,  Assr.  to 
Armour  Fertilizer  Works.  U.S. P.  (a)  1,393,839 
and  (b)  1,393,840,  18.10.21.     Appl.,  24.2.20. 

(a)  Phosphate-rock  is  heated  to  the  reaction 
i  temperature  in  a  few  seconds  to  prevent  any  sub- 
stantial preliminary  detrimental  heat  action  on  the 
;  material,  (b)  An  apparatus  for  carrying  out  the 
!  process  described  under  (a)  comprises  a  rotary  tube 
furnace  and  means  for  introducing  under  pressure  a 
.  slurry  containing  the  material  under  treatment 
I  suddenly  and  directly  into  the  hot  reaction  zone  of 
I  the  furnace.— H.  R.  D. 

Phosphorus   content   of   phosphatic   materials;   Pe- 

Icovery  of  the  .  J.  N.  Carothers,  Assr.  to 
Federal  Phosphorus  Co.  U.S. P.  1,410,550, 
28.3.22.     Appl.,  11.3.20.     Renewed,  25.4.21. 

Phosphatic  material  is  heated  with  silicious  and 
carbonaceous  matter  in  an  electric  furnace.     Part 

;  of  the  vapour  is  treated  with  iron,  and  the  re- 
mainder   with     oxygen     and    steam,     whereby     an 

I  approximately  quantitative  yield  of  ferro-phos- 
pkorus  and  phosphoric  acid  is  obtained. — C.  I. 

Potassium  compounds;  Process  for  recovering  

from  brines  containing  the  same  in  association 
with  other  chemical  compounds.  C.  E.  Dolbear, 
Assr.  to  D.  C.  Norcross,  J.  H.  Miller,  and  G.  J. 
Henry.  U.S. P.  1,394,978,  25.10.21.  Appl.,  10.3.19. 

'Calcium  sulphate  is  added  to  an  alkaline  solution 
•containing  potassium  salts  and  carbonates  and /or 
.borates. — H.  R.  D. 

Tungsten  trioxide;  Recovery  of from  tungsten 

J  ores  and  the  like.  S.  J.  Lubowsky,  Assr.  to  Metal 
1  and  Thermit  Corp.  U.S. P.  1,410,584,  28.3.22. 
,    Appl.,  26.1.20. 

The  material  containing  tungsten  is  roasted  with  a 

haloid  salt  of  an  alkaliferous  metal,  the  product 
^digested  with  mineral  acid,   and  the  solid  residue 

separated. — J.  B.  F. 

"Jarbon  oxysulphide ;  Removal  of  from  gases. 

Badische  Anilin-  und  Soda-Fabrik.  G.P.  348,408, 
3.4.18. 

iThe  gases  are  treated  with  an  alkaline  solution  of 
';ron  oxide,  and  the  solution  reoxidised  by  blowing 
iir  ihrough  it.     The  process  is  of  use  in  the  produc- 
ion  of  sulphur  from  natural  sulphates. — H.  M. 


Jydrogen  sulphide;  Process  for  removing from 

gases.  Badische  Anilin-  und  Soda-Fabrik.  G.P. 
348,409,  3.4.18,  and  348,410,  11.4.18. 

.iLkaline  solutions  of  iron  oxide  are  used,  the  iron 
xide  being  retained  in  solution  by  means  of  organic 

I'aste  matter  from  wood,  straw,  etc.  or  the  products 
f  oxidation  of  such  matter,  or  solutions  containing 
irbohydrates  from  the  waste  products  of  the  treat- 
lent  of  vegetable  matter  or  their  products  of 
scomposition  or  oxidation,  for  instance,  molasses 
•  the  spent  wash  from  spirit  distillation. — H.  M. 

'agnesium  hypochlorite  and  hypobromite;  Process 

of  manufacture  of  basic  .     E.  Merck,  Chem. 

Fabr.  G.P.  349,435,  21.4.21.  Addn.  to  305,419 
(J.,  1918,  467  a). 

f  a  process  for  the  manufacture  of  magnesium 
'pochlorite  or  hypobromite  by  passing  chlorine  or 
omine  respectively  into  a  suspension  of  magnesium 
ide  or  magnesium  hydroxide  in  accordance  with 
P.  305,419  or  334,654  (J.,  1918,  467  a  ;  1921,  433  a), 
solution  of  a  salt,  more  particularly  of  calcium 
loride  or  calcium  bromide,  iS  used  in  place  of 
•ter  as  suspending  medium,  and  the  reaction  is 
rried  out  at  a  higher  temperature. — J.  S.  G.  T. 


Sulphurous  acid  from  calcium  sulphide;  Process  of 

producing   .      Metallbank   u.    Metallurgist 

Ges.  A.-G.  G.P.  349,739,  25.12.17. 
Calcium  sulphide  is  dissolved  in  or  mixed  with  fluid 
furnace  slag,  and  air  blown  into  the  solution  or 
mixture.  In  order  that  the  slag  may  take  up 
calcium  sulphide,  substances  such  as  silica  or 
alumina  are  added  periodically.  Slag,  e.g.,  blast 
furnace  slag,  containing  calcium  sulphide  is  added 
to  the  mixing  and  oxidising  bath  at  intervals  or 
continuously,  and  a  corresponding  mass  of  material 
already  treated  removed  therefrom  at  the  same 
time.  Alternatively,  a  mixture  of  calcium  sulphate 
and  coal  may  be  used  in  place  of  calcium  sulphide, 
and  the  fluid  mixture  made  by  melting  down  a 
mixture  of  these  materials  with  the  slag. 

—J.  S.  G.  T. 

Alkali   sulphides;   Evaporating   solutions   of  , 

prepared  by  passing  gases  containing  sulphur 
compounds  obtained  in  distilling  coal  through 
alkali  carbonate  solutions.  H.  Raupp  and  A. 
Gasser.     G.P.  349,793,  28.4.21. 

Hot  gases  containing  hydrogen  sulphide  are  passed 
through  solutions  of  alkali  sulphides  contained  in 
closed  vessels,  and  the  gases  are  subsequently  re- 
turned to  the  main  gas  stream. — L.  A.  C. 

Sulphur;  Manufacttire  of  finely-divided .     J.  Y. 

Johnson.  From  Badische  Anilin-  u.  Soda-Fabr. 
E.P.  177,103,  11.7.21. 

A  solution  of  ammonium  polysulphide  is  evaporated 
in  the  presence  of  a  colloid,  e.g.,  soap,  gelatin, 
casein,  sulphite-cellulose  waste-liquor,  glycerin, 
foots,  etc.,  until  the  ammonia  and  hydrogen  sul- 
phide are  practically  completely  driven  off.  A 
very  finely  divided  white  sulphur,  capable  of  form- 
ing stable  Sf  Is,  is  obtained,  which  may  be  separated 
as  a  paste  by  addition  of  an  electrolyte  or  mechani- 
cally. Alternatively  the  partially  evaporated  solu- 
tion may  be  acidified  and  oxidised,  e.g.,  with  nitric 
acid.  Sulphur  paste  prepared  in  this  way,  which 
can  be  converted  into  a  sol  by  shaking  with  water, 
is  suitable  for  pharmaceutical  use  and  for  the  treat- 
ment of  plant  diseases. — C.  I. 

Liquefaction   of  hydrogen;  Process   of  .       G. 

Hiibers.  G.P.  349,600,  23.9.15. 
External  cooling  by  liquid  air  is  employed  only 
during  the  preliminary  cooling  of  the  plant  from 
the  temperature  of  liquid  air  to  the  temperature  of 
liquid  hydrogen,  subsequent  cooling  being  effected 
by  the  expansion  of  the  hydrogen  itself.  The  cool- 
ing apparatus,  from  the  point  of  admission  of  air 
or  hydrogen  up  to  about  a  point  at  which  the  tem- 
perature of  liquid  air  is  attained,  is  divided  into 
two  groups  of  tubes.  During  the  processes  of  air 
liquefaction  and  the  final  liquefaction  of  hydrogen, 
these  tubes  are  traversed  by  air  or  hydrogen  in  the 
same  direction.  During  the  intermediate  period 
when  the  plant  is  being  cooled  from  the  tempera- 
ture of  liquid  air  to  that  of  liquid  hydrogen,  one 
group  of  tubes  is  shut  off  by  a  valve  and  connected 
with  the  liquid  air  reservoir,  so  that  the  air  now 
traverses  this  group  of  tubes  in  counter  current  to 
the  stream  of  compressed  hydrogen.  A  vacuum 
jacket  surrounding  the  coldest  part  of  the  plant  is 
connected  with  a  similar  jacket  surrounding  the 
warmer  parts,  so  that  in  virtue  of  the  high  vacuum 
maintained  in  the  former,  a  high  vacuum  is  main- 
tained throughout.  The  coldest  part  of  the  plant 
is  disposed  centrally  within  the  next  coldest  part, 
so  as  to  improve  the  thermal  insulation  of  tho 
apparatus.  Between  the  inner  and  external  parts 
a  vacuum  jacket  connected  with  the  jackets  already 
mentioned  is  arranged. — J.  S.  G.  T. 


371a 


Cl.  VIII.— GLASS;  CERAMICS. 


[May  31,  1922. 


Silicates;   Process   for   treating   .      E.    Levitt. 

E.P.  177,736,  9.6.21. 

See  U.S.P.  1,399,216—7  of  1921;  J.,  1922,  58  a. 

Hare  earths;  Process  of  manufacturing  compounds 

of  metals  of  the .    0.  Dietsche,  Assr.  to  Gebr. 

Siemens  und  Co.  U.S.P.  1,371,741,  15.3.21. 
AppL,  20.3.14.     Renewed  17.7.20. 

See  E.P.  8015  and  9087  of  1914  and  F.P.  470,633 ; 
J.,  1914,  830;  1915,  283,  871. 

Alkali  perborates;  Manufacture  of  .     O.  Lieb- 

kneclit,  Assr.  to  The  Roessler  and  Hasslacher 
Chemical  Co.  U.S.P.  1,395,685,  1.11.21.  AppL, 
27.1.17. 

See  E.P.  102,359  of  1916;  J.,  1917,  83. 

Ammonium   sulphate:   Purification    of   crude   ■ . 

N.  Wilton.  U.S.P.  1,412,549,  11.4.22.  Appl., 
9.8.20. 

See  E.P.  154,328  of  1919;  J.,  1921,  44  a. 

Sodium  nitrite.     E.P.  176,864.     See  I. 

Potash  recovery  in  cement  manufacture.     U.S  P 
1,411,518.    See  IX. 

Zinc  solution.    U.S.P.  1,409,727.    See  X. 

Electrolytic  cell.     U.S.P.  1,373,394.     See  XL 


VIII.-6LASS;  CERAMICS. 

Glass;  Manufacture  of in  an  electric  radiation 

furnace.  V.  M.  Sauyageon.  Chim.  et  Ind.,  1922, 
7,  452—455. 

After  unsuccessful  trials  in  an  electric  furnace 
using  the  glass  batch  as  a  resistor,  a  furnace  heated 
entirely  by  radiation  was  constructed.  The  furnace 
consisted  of  two  parts,  a  chamber  containing  a  glass 
pot  (400  kg.),  covered  by  an  arch  and  an  electric 
resistance  furnace.  The  latter  was  built  of  niag- 
nesite  and  was  divided  by  partitions  into  three  com- 
partments which  were  filled  with  granular  carbon 
and  provided  the  heating  element.  Single-phase 
alternating  current  was  employed  and  the  mag- 
nesite  arch  was  found  to  be  an  efficient  conductor 
of  heat  to  the  lower  chamber.  2T1  kg.  of  glass  was 
made  per  kw.-day  and  it  was  expected  to  attain  a 
production  of  5 — 9  kg.  per  kw.-day  in  a  furnace  con- 
taining two  pots  with  a  combined  capacity  of  1200 — 
1400  kg—  C.  A.  K. 

Ultraviolet  rays;  Protective  spectacles  for .    T. 

Inagaki.  Asahigarasu  Kabushiki  Kaisha  Shikenjo 
Hokoku  (Report  of  Laboratory  of  Asahi  Glass 
Co.).     1921. 

Spectrograph™?  studies  on  many  glasses  have  been 
conducted  to  find  suitable  glasses  for  use  as  pro- 
tective spectacles  in  glass  works.  A  quartz  spectro- 
graphic apparatus  was  used,  with  carbon  and  iron 
rods  as  light  sources.  Noviweld  glass  is  suitable  for 
observing  the  fused  mass  in  the  glass  pot,  Crookes' 
glass  B  shade  (Wellsworth  Crookes'  Neutral  tint, 
Absorption  B)  for  the  front  part  of  the  furnace,  and 
Crookes'  glass  A  shade  {ibid.,  Absorption  A)  for 
glass  blowers.     (Cf.  Crookes,  J.,  1914,  646.)— K.  K. 

Patents. 

Glassy  material ;  Manufacture  of .     P.  Tschudi- 

Freuler.     E.P.  171,692,  15.11.21.  Conv.,  16.11.20. 

A  glass  of  which  the  main  constituent  has  the  com- 
position, 6Si02,AL03,3CaO,  is  made  from  natural 
rock,  e.g.  schist,  to  which  if  deficient  in  any  of  the 
above  constituents  is  added  before  melting  the 
correct  amount  of  that  component.     The  product  is 


claimed  to  possess  extraordinary  electrical  resist- 
ance, small  coefficient  of  thermal  expansion,  and 
great  resistance  to  chemical  reagents. — A.  C. 

Glass;  Delivery  of  molten  .     T.  C.  Moorshead 

E.P.  176,980,  26.1.21. 

In  an  arrangement  for  the  delivery  of  molten  glass 
to  moulds,  the  glass  is  heated  in  transit  from  the 
furnace  to  the  mould  by  means  of  a  mufHe  bridging 
the  space  between  the  pouring  boot  of  the  furnace 
and  the  mould,  which  is  suitably  heated,  e.g.  by  a 
Bunsen  flame  injected  at  the  bottom  tangentially 
to  the  inner  cylindrical  surface  of  the  muffle,  so 
that  the  hot  gas  swirls  up  round  the  falling  glass 
column,  which  reaches  the  mould  at  a  temperature 
equal  to  or  even  greater  than  that  at  which  it  left 
the  furnace. — A.  C. 

Glass  house  pot  furnaces.     M.  W.  Travers.     E  P 

177,085,  3.5.21. 

The  patent  relates  to  "  direct  fired  "  and  gas  fired 
furnaces  of  the  Boetius  type,  and  provides  for  the 
injection  of  the  secondary  air  from  a  blower  through 
a  main  surrounding  the  furnace,  out  of  which  run 
pipes  below  the  siege  blocks  opening  into  the  gas 
chamber  just  below  the  eye.  It  is  claimed  that  this 
allows  a  lower  temperature  to  be  maintained  in  the 
fuel  bed  without  decrease  of  temperature  in  the 
furnace. — A.  C. 

Glass  (a)  W.  C.  Taylor  and  H.  P.  Gage,  (b)  W.  C. 
Taylor,  Assrs.  to  The  Corning  Glass  AVorks. 
U.S.P.  (a)  1,411,133  and  (b)  1,411,134,  28.3.22. 
Appl.,  20.  and  24.12.20. 

(a)  The  claim  is  for  a  glass  containing  manganese 
dioxide  and  chromium  sesquioxide,  and  which  in 
plates  6  mm.  thick  is  opaque  to  visible  light,  (b) 
The  colouring  effect  of  manganese  dioxide  in  a  glass 
is  intensified  by  the  addition  of  an  oxygen  com- 
pound of  chromium. — A.  C. 

Brick  kilns.    H.  Webster.    E.P.  173,555,  30.7.20. 

Several  intermittent  rectangular  kilns  are 
arranged  along  each  side  of  a  central  flue  with 
waste  heat  flues  alongside  and  connexions  from  the 
central  flue  to  the  chimney.  Another  flue  surrounds 
the  kilns  and  is  connected  with  each  of  them  and 
with  the  central  flue.  The  kilns  are  connected  with 
valve-controlled  flues,  so  that  the  surplus  heat  from 
one  can  be  utilised  in  others.  The  roof  of  each  kiln 
is  fitted  with  a  boiler,  so  as  to  provide  steam  for 
power  etc.  from  the  waste  heat,  which  would  other- 
wise be  radiated  from  the  roof. — A.  B.  S. 

Kilns;  Furnace  for  brick   and  tile  .     H.  B. 

Straight.  U.S.P.  1,411,534,  4.4.22.  Appl.,  22.7.19. 

A  firebox  or  furnace  for  brick  and  tile  kilns  con- 
sists of  a  tube  in  the  wall  of  the  kiln,  inclined  down- 
wards and  outwards,  and  supplied  at  its  lower  end 
with  combustible  gases,  which  are  mixed  prior  to 
entering  the  kiln. — A.  B.  S. 

Kiln.     J.   B.  Riffle  and  L.   H.   Hartman.     U.8.P. 

1,411,871,  4.4.22.  AppL,  5.5.21. 
A  circular  kiln  has  a  central  flue  with  a  heat  de- 
flector in  the  lower  part  of  it,  two  firebox 
opposite  sides  of  the  kiln,  heating  flues  connecting 
the  central  flue  with  the  fireboxes,  and  radial  exit 
flues  beneath  the  floor  of  the  kiln,  with  lateral 
branches  parallel  to  its  circumference  and  communi- 
cating with  the  interior  of  the  kiln  and  with  seve"' 
chimney  stacks  provided  with  dampers  and  spaced 
around  the  top  face  of  the  vertical  wall  of  the  kiln. 

—A.  B.  S. 

Burning  ceramic  materials  (porcelain  etc.)  in 

Kilns.     Allgem.  -Elektrizitats-Ges.     G.P.  348,141, 
27.3.20. 

In  a  tunnel  kiln,  the  heating  of  the  firing  zone  and, 


Vol.  XIX,  Xo.  io.]     Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS;    METALLURGY,  &c.     375a 


if  required,  part  of  the  preheating  zone,  is  stopped 
when  the  goods  are  sintered,  and  the  cars  are  not 
moved  forward  until  the  ware  in  them  has  hardened. 
To  avoid  undue  cooling  in  the  preheating  zone,  it 
is  desirable  to  heat  it  more  strongly  than  usual 
when  the  heat  is  shut  off  from  the  firing  zone. 

—A.  B.  S. 

on.      D.    E.    Collins.      U.S. P. 
1,411,812,  4.4.22.    Appl.,  19.5.21. 
A  refractory  bonding  and  glazing  composition  con- 
sists of  a  mixture  of  fireclay,  a   hydraulic  cement, 
and  a  metallic  sulphide. — A.  R.  P. 

Glass:    Apparatus    for   forming    articles    of   . 

W.  J.  Miller.  E.P.  152,597,  156,569,  and 
174,644—5,  24.9.20.  Conv.,  16.10.19,  5.1.20, 
16.10.19,  and  16.10.19. 

Glass;  Method  of  and  means  for  producing  spun 

.     G.  von  Pazsiczky.     E.P.  157,360,  10.1.21. 

Conv.,  7.4.19. 

Glass;  Apparatus  for  gathering ■  from  a  molten 

Pilkington  Bros.,  Ltd.,  A.  C.  Pilkington, 
and  J.  Gaskell.    E.P.  177,682,  3.3.21. 

Copper  coatings  on  glass.    E.P.  157,379.    See  X. 


IX.-BUILDING  MATERIALS. 

[Cement]  mortars;  Resistance  of  to  abrasion. 

'  H.  Xitzsche.     Zement,  1922,  11,  6-5—68,  79—81, 
99—102.     Chem.  Zentr.,  1922,  93,  II.,  792—793. 

Mortars  were  made  using  three  Portland  cements, 

kwo  iron  Portland  cements,  and  three  blast-furnace 

jilag  cements,  with  several  kinds  of  sand,  quartz, 

etc.   in  various  proportions.     The  test-pieces  after 

SI.  45,   52,   66,   90,   and   111  days,   either   plain   or 

waterproofed,    were   subjected   to   the    action   of   a 

nial  grinding  wheel,   using  fused  corundum  as 

ibrasive.     The  blast-furnace  slag  cements  behaved 

he  best,  whilst  the  iron  Portland  cements  were  the 

east  resistant  to  abrasion.     The  hydraulic  modulus 

ppeared  to  be   important  in  connexion  with  the 

brasion  of  the  Portland  and  iron  Portland  cements. 

There    appears    to    be    no   connexion   between   the 

esistance  to  abrasion  and  the  kind  of  sand  used. 

—A.  B.  S. 


Patents. 

'ement;  Aromatic  hydrocarbon .    W.  S.  Barrie 

and  L.  Chadwick.  E.P.  154.152,  17.11.20.  Conv., 
27.5.18. 

,.  mixture   of   1 — 4   pts.    of   pitch,   tar   or  similar 

Material  of  sp.  gr.  IT.  with  1  pt.  of  a  sulphate  is 

leafed  to  120°— 180°  C— A.  B.  S. 

uilding    materials;    Manufacture    of    with 

ligneous  fragments.  A.  Polla.  E.P.  155,268, 
13.12.20. 

^cneods  fragments,  such  as  shavings  or  sawdust, 
|*e  mixed  with  hydrated  lime  or  alkali  hydroxide, 
lie  product  is  dried  and  mixed  with  sand  or  scoria, 

id  agglomerated  by  means  of  cement  or  the  like, 
'teferenee  is  directed,  in  pursuance  of  Sect.  7,  Sub- 

ct.  4,  of  the  Patents  and  Designs  Acts,  1907  and 
1 19,    to   E.P.    8217   of    1884,    24,359   of    1902    and 

4,154;  J.,  1903,  698;  1917,  388.)— A.  B.  S. 

[dash  values  [salts] ;  Recovery  of from  potassi- 

ferous  materials  [in  cement  manufacture'].  E.  O. 
Rhodes  and  R.  C.  Haff,  Assrs.  to  Western  Pre- 
cipitation Co.  U.S. P.  1,411.518,  4.4.22.  Appl., 
19.3.18. 

potash-bearing  cement  mix  is  clinkered  by  direct 
ing,  the  fuel  being  separately  introduced.     The 


formation  of  potassium  compounds  of  low  solubility 
is  restricted  by  supplying  to  the  kiln  atmosphere  a 
suitable  compound  of  a  metal  forming  an  alkaline 
oxide,  and  also  a  substance  which  assists  its  action. 
The  potash  is  recovered  from  the  exit  gases. — C.  I. 

Concrete  vessels;  Production  of  impermeable 

to  oil  and  similar  liquids.  A.  Guttmann.  G.P. 
339,583,  11.4.18. 
The  concrete  to  be  used  for  vessels  for  containing 
oil  etc.  is  mixed  with  calcium  chloride  or  other 
strongly  hygroscopic  salt.  The  vessel,  when  com- 
pleted, is  coated  with  a  water-glass  paint  and  then 
immersed  in  water,  which  is  applied  under  pres- 
sure.—A.  B.  S. 

TT'ood;    Preservation    of   .     A.    Wirth.      G.P. 

344,914,  15.8.20. 
The  material  is  saturated  with  an  aqueous  solution 
of  pyrocresols,  or  their  salts,  sometimes  with  the 
addition  of  other  antiseptic  or  fire-resisting  sub- 
stances. Solutions  of  residues  rich  in  pyrocresols, 
or  their  salts,  in  oil  or  in  tar  oil,  or  a  mixture  of 
such  residues,  saponified  with  sodium  hydroxide, 
and  sodium  fluoride  diluted  with  water,  may  be 
used,  or  the  compounds  of  pyrocresols  and  organic 
bases,  such  as  trimethylamine,  betaine,  aniline, 
quinoline  and  pyridine.  The  solubility  of  pyro- 
cresols in  water  may  be  increased  by  the  addition 
of  salts  of  boric  or  orthophosphoric  acid. — H.  M. 

Plastic  masses.     E.P.  156,137.    Sec  XIII. 

X— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Cohe  for  blast-furnace  and  foundry  uses;  Proposals 

for  t-sting  .     H.  Koppers.     Stahl  u.  Eisen, 

1922,  42,  £69— 573. 

Coke  which  is  not  heated  above  650°— 800°  C. 
during  its  preparation  is  comparatively  easily 
burned.  Such  a  coke,  not  overheated,  is  specially 
suited  to  blast-furnace  work  on  account  of  its  ease 
of  burning,  porosity,  and  lump-strength  (resistance 
to  crushing),  while  a  much  overheated  coke  is 
difficult  to  burn  and  is  of  more  use  in  the  foundry. 
A  practical  test  of  the  ease  of  burning  carried  out 
in  a  small  shaft  furnace  is  suggested.  A  more  pre- 
cise indication  is  obtained  as  to  the  suitability  of 
coke  for  furnace  or  foundry  purposes  by  heating  the 
coke  and  measuring  the  temperature  at  which  un- 
interrupted gasification  continues.  This  corre- 
sponds with  the  temperature  attained  during 
manufacture. — J.  TV.  D. 

Cast   iron;   Influence    of    the    temperature^  on   the 

mechanical    properties    of    .      F.    Graziam. 

Giorn.  Chini.  Ind.  Applic,  1922,  4,  53—56. 
The  effects  of  heating  to  various  temperatures  on 
the  properties  of  a  number  of  samples  of  cast  iron 
containing  percentages  of  phosphorus  ranging  from 
0'21  to  1'15  have  been  investigated.  The  compo- 
sitions of  the  metals  were  not  appreciably  affected 
by  the  heating.  Tensile  tests  on  the  samples  at 
different  temperatures  show  that  the  limiting 
temperature  bevond  which  the  strength  of  cast  iron 
diminishes  rapidly  with  rise  of  temperature  is 
500°  C  and  not  400°  as  has  been  stated  by  various 
authors.  Before  this  limiting  temperature  is 
reached  heating  causes  increased  strength,  such 
increase  being  verified  up  to  400°  C.  and,  in  some 
cases,  up  to  500°  C.  In  general  the  samples  with 
the  higher  proportions  of  phosphorus  are  the 
strongest  even  when  heated. — T.  H.  P. 

Ingot  defects  in  silicon  open-hearth  steel  and  their 
ention.     F.   Pacher.     Stahl   u.    Eisen,    1922, 
42,  485—492,  533—540,  573—577. 
after   discussing    the   sources   of    defects    due    to 

b2 


376  i 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.         [Mny  81,  1052. 


tapping,  ingot  moulds,  and  casting,  the  solidifica- 
tion of  the  molten  steel  to  atmospheric  temperature 
is  considered.  During  this  period  the  steel  is 
subject  to  great  dangers  resulting  from  mechanical 
forces,  and  from  uneven  temperature  conditions 
occurring  during  the  tapping  and  cooling.  These 
cause  damage,  produce  defects,  and  lower  the 
quality  of  the  best  melted  steels.  The  chemical 
composition  of  the  steel  plays  an  insignificant  part 
in  comparison  with  the  foregoing.  Since  the  defects 
are  due  to  conditions  which  produce  structural 
separations,  further  working  up  of  the  ingot  cannot 
lessen  their  effect  to  any  great  extent.  The  best 
practicable  means  is  to  reduce  as  far  as  possible  the 
number  of  the  causes  resulting  in  the  production 
of  defects.— J.  W.  D. 

Steel  and  iron;  Estimation  of  carbon  in .      A. 

Travers.     Chim.  et  Ind.,  1922,  7,  3—12,  442—451. 

The  method  of  estimation  of  carbon  in  iron  by 
oxidation  with  a  mixture  of  sulphuric  and  chromic 
acids  is  not  accurate  as  a  proportion  of  the  carbon, 
varying  with  the  nature  of  the  metal,  is  not  oxidised 
completely  to  carbon  dioxide.  Gases  evolved  from 
steel  dissolved  in  this  way  in  a  neutral  atmosphere 
contained  carbon  monoxide,  saturated  hydrocarbons, 
hydrogen,  and  traces  of  oxygen  from  the  decompo- 
sition of  chromic  acid.  Addition  of  copper  sulphate 
(Ulgreen,  Z.  anal.  Chem.,  1881,  430)  did  not  de- 
crease the  incompletely  burned  carbon,  which  varied 
from  2%  of  the  total  carbon  with  a  mild  steel  to 
21%  with  ferromanganese.  The  relatively  different 
quantities  of  hydrogen  evolved  point  to  the  possi- 
bility of  the  presence  of  polymers  of  Fe3C  in  the 
metal.  The  true  carbon  content  cannot  be  calcu- 
lated from  the  results  obtained  by  the  use  of  a 
definite  factor.  A  closer  approximation  to  the 
correct  value  is  obtained  if  steel  is  dissolved  in  a 
solution  of  copper-ammonium  chloride,  and  the 
residue  of  carbon  oxidised.  The  colorimetric 
method  of  estimation  (Eggertz)  does  not  indicate 
the  true  carbon  content,  as  carbon  dioxide,  carbon 
monoxide,  and  saturated  hydrocarbons  are  evolved 
in  the  process  of  solution.  Intensity  of  coloration 
decreases  rapidly  with  increase  in  temperature,  and 
more  slowly  as  the  period  of  solution  is  extended. 
The  reaction  producing  the  characteristic  brown 
tint  is  complex,  nitric  acid  being  reduced  principally 
to  nitric  oxide,  together  with  smaller  quantities  of 
nitrogen  peroxide,  nitrous  oxide,  nitrogen  and 
ammonia.  The  tint  is  due  almost  entirely  to 
nitrogen  derivatives  which  are  soluble  in  a  mixture 
of  alcohol  and  ether.  Practically  the  combustion 
method  is  used  almost  exclusively  owing  to  its 
rapidity,  and  accuracy  when  applied  to  the  different 
products  of  modern  steel  practice.  Oxidation  is 
effected  rapidly  at  1050°— 1100°  C,  or  at  about 
950°  C.  in  the  presence  of  a  catalyst,  e.g.,  copper 
oxide,  or  a  wide  range  of  metallic  oxides.  A  source 
of  pure  oxygen  and  a  satisfactory  absorbent  for  the 
carbon'  dioxide  are  necessary.  The  volumetric 
estimation  of  the  absorbed  carbon  dioxide  is  recom- 
mended.— C.  A.  K. 

Carbon   in   cast-iron   and   steel;   Determination    of 

by  the  Corleis  apparatus.     G.  Batta  and  H. 

Thvssen.  Bull.  Soc.  Chim.  Belg.,  1922,  31,  112— 
117. 
The  details  of  the  methods  recommended  for  estima- 
tion of  carbon  in  iron  and  steel  vary  considerably. 
The  authors  have  carried  out  a  large  number  of 
experiments  with  a  view  to  decide  on  a  standard 
method.  The  increase  in  weight  of  the  carbon 
dioxide  absorbent  obtained  in  blank  experiments  is 
due  to  moisture,  as  complete  drying  of  the  gases  is 
a  matter  of  some  difficulty,  although  it  is  probable 
that  this  error  is  less  in  actual  determinations. 
The  speed  at  which  the  gases  pass  should  not 
exceed  one  bubble  per  second  and  the  carbon  dioxide 


absorption  tube  should  be  preceded  by  two  or  three 
sulphuric  acid  tubes.  Accuracy  is  greater  when  a 
fairly  large  sample  is  dealt  with,  but  the  maximum 
quantity  should  be  5  g.  for  steel  and  3  g.  for  cast 
iron.  The  method  is  not  applicable  to  certain 
hardened  steels  (piano  wire),  to  6teel  of  high 
chromium  content,  or  to  steel  which  contains  more 
than  2%  of  carbon,  as  the  results  obtained  in  these 
cases  are  too  low. — H.  J.  E. 

Chromium  steels;  Spontaneous  passivity   of  . 

G.  Tammann.  Stahl  u.  Eisen,  1922,  42,  577—578. 
The  protective  effect  of  chromium  was  studied  by 
observing  the  behaviour  of  three  chromium  steels  in 
different  electrolytes.  While  the  protection  afforded 
by  a  noble  metal  on  a  less  noble  metal  is  complete 
so  far  as  the  noble  metal  is  not  attacked  by  re- 
agents, protection  by  passivity  is  limited  and  only 
occurs  in  contact  with  those  reagents  which  induce 
passivity.  A  non-rusting  chromium  steel,  for 
example,  is  dissolved  by  dilute  hydrochloric  acid 
but  resists  the  attack  of  strong  nitric  acid,  and  the 
same  is  true  of  the  various  alloys  recommended  as 
platinum  substitutes. — J.  W.  D. 

Manganese   [in  ferromanganese  and  spiegeleisen']; 

Determination  of  by  Knorre's  persulphate 

method.  Nicolardot,  Geloso,  and  Reglade.  Ann. 
Chim.  Analyt.,  1922,  4,  69—77,  102—110. 
The  composition  of  the  precipitate  produced  by 
ammonium  persulphate  in  manganese  sulphate 
solutions  depends  on  the  iron  content  of  the  solution 
and  if  this  precipitate  is  dissolved  in  ferrous 
sulphate  and  the  excess  titrated  with  permanganate 
the  manganese  factor  of  the  latter  decreases  from 
0'498 xFe  factor  when  the  precipitate  is  produced 
from  pure  manganese  sulphate  solutions,  to  the 
theoretical  value  for  Mn02,  viz.,  0'49176xFe  factor, 
when  produced  from  solutions  containing  nine  or 
more  times  as  much  iron  as  manganese.  Rather 
than  add  this  large  amount  of  iron  to  the  assay 
solutions  the  authors  prefer  to  introduce  a  correc- 
tion into  the  final  calculation  and  have  constructed 
a  graph  showing  the  correction  to  be  applied  for  any 
percentage  of  iron  in  commercial  ferromanganese 
alloys.  The  analysis  of  such  alloys  is  carried  out  as 
follows  :  0'2 — 0'5  g.  of  ferromanganese  or  0'5 — 1  g. 
of  spiegeleisen  is  dissolved  in  25  c.c  of  sulphuric 
acid  (1:4)  and  a  little  nitric  acid  and  the  solution 
evaporated  until  the  former  fumes  strongly.  The 
solution  is  diluted  and  filtered,  the  filtrate  is  diluted 
to  400  c.c,  heated  to  boiling,  and  treated  with  10  g. 
of  ammonium  persulphate.  After  boiling  for 
15  mins.  it  is  allowed  to  cool  for  a  few  minutes  and 
then  again  boiled  for  5  mins.  with  a  further  5  g. 
of  the  persulphate.  The  precipitate  is  filtered  oft, 
washed,  dissolved  in  excess  of  ferrous  sulphate,  and 
the  excess  titrated  with  permanganate  as  usual. 
The  manganese  factor  of  the  permanganate  is  taken 
as  half  the  iron  factor  and  the  percentage  of  man- 
ganese is  calculated  from  this  and  a  correction  made 
by  subtracting  the  corresponding  figure  on  the 
graph.  The  filtrate  from  the  original  manganc ■>■ 
precipitate  and  the  insoluble  matter  from  t! 
sulphuric  acid  treatment  still  contain  traces  of 
manganese.  The  latter  is  ignited,  dissolved  in 
hydrofluoric  and  sulphuric  acids  and  the  solution 
heated  till  the  latter  fumes.  After  diluting,  tins 
solution  is  added  to  the  main  filtrate  and  the  whole 
is  heated  to  60°  C.  with  20  c.c.  of  saturated  silver 
sulphate  solution  and  2  g.  of  ammmonium  per- 
sulphate. When  the  solution  has  cooled  again  the 
permanganate  formed  is  titrated  with  a  standard 
arsenite  solution  containing  0-5  g.  As303  per  100  c.c. 

— A.  R.  "■ 

Gold  ore;  Features  of  metallurgy  of  a  refractory 

F.  Wartenweiler.     J.  Chem.  Met.  hoc.  o. 

Afr.,  1922,  22,  147—152. 

The  gold  ore  of  Prestea  in  Gold  Coast  Colony  con- 


Vol.  xil,  \o.  10.]    Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       377a 


sists  of  a  white  quartz,  brecciated  and  seamed  with 
soft  carbonaceous  schist,  the  gold  being  partly  free 
and  partly  associated  with  sulphides  of  arsenic,  anti- 
mony, iron,  and  zinc.  About  65%  of  the  total  gold 
is  recovered  by  grinding,  concentration,  and  pan 
amalgamation ;  the  tailings  from  this  treatment 
are  then  cyanided,  but  part  of  the  gold  is  re- 
precipitated  by  the  carbonaceous  material  in  the 
ore,  and  to  recover  this  portion  the  tailings  from  the 
cyanide  treatment  are  leached  with  a  solution  of 
sodium  sulphide.  The  gold  is  recovered  from  the 
cyanide  solution  by  precipitation  with  zinc  and 
from  the  sulphide  solution  by  precipitation  with 
copper.  Part  of  the  concentrate  is  roasted  before 
cyaniding  to  remove  the  bulk  of  the  sulphur  and 
arsenic  and  free  the  gold.  The  extraction  in  the 
last  two  processes  is  16%  and  4%  respectively, 
I  giving  a  total  extraction  of  over  85%  of  the  gold. 

—A.  R.  P. 

Osmiridium    concentrate;    Manipulation    of   . 

R.  A.  Cooper.    J.  Chem.  Met.  Soc.  S.  Afr.,  1922, 
22,  152—154. 

I  In  order  to  recover  the  osmiridium  from  the  Wit- 
I  watersrand  concentrates,  they  are  first  treated 
i  with  nitric  acid  to  remove  sulphide  minerals,  then 
with  cold  10%  aqua  regia  to  dissolve  the  gold. 
i  As  the  latter  process  dissolves  some  of  the  platinum 
and  rhodium,  the  gold  solution  is  evaporated  to 
a  small  bulk  and  treated  with  a  considerable 
quantity  of  ammonium  chloride  to  recover  the 
platinum  and  any  iridium  dissolved.  The  filtrate 
i  from  the  ammonium  chloride  treatment  is  heated 
with  sodium  sulphite  to  precipitate  the  gold  and 
the  residue  from  the  aqua  regia  treatment  of  the 
original  material  is  heated  w7ith  hydrofluoric  acid, 
i well  washed,  and  carefully  panned  to  obtain  a  high- 
grade  osmiridium  concentrate.  Attention  is  drawn 
ito  the  possibility  of  loss  of  osmiridium  in  the  gold 
lassay  if  the  lead  is  poured  from  the  crucible  and 
|to  the  danger  of  obtaining  high  results  by  weigh- 
'ing  the  residue,  after  parting  the  silver  bead  and 
'extraction  of  the  gold  and  platinum  with  aqua 
'regia,  without  reducing  in  hydrogen  at  a  high 
temperature. — A.  R.  P. 

Copper  ores;  Treatment  of  low-grade  con- 
taining lime  and  magnesia  by  wet  methods. 
A.  S.  Schott.  Metall  u.  Erz,  1922,  19,  85—92, 
112—119,  140—152. 

\.pter  reviewing  the  various  methods  that  have 
>een  proposed  for  extracting  copper  by  leaching 
rom  low-grade  oxidised  or  roasted  ores  and  for 
eeovering  the  copper  from  the  solution,  a  number 
f  experiments  are  described  in  which  calcareous 
nd  dolomitic  ores  containing  different  copper 
minerals  were  leached  with  solutions  of  ammonia 
nd  ammonium  salts  or  with  cyanide  solutions. 
n  the  first  case  the  most  satisfactory  results  were 
btained  by  the  use  of  a  weak,  preferably  2%, 
mmoniacal  solution  of  ammonium  carbonate,  the 
elative  proportions  of  free  ammonia  and  carbonate 
eing  adjusted  according  to  the  nature  of  the 
ipper  mineral  present;  thus,  for  carbonate  ores, 
3— —75%  of  the  ammonia  should  be  uncombined, 
hile  ores  containing  cupric  or  cuprous  oxide 
lould  be  leached  with  solutions  in  which  50%  of 
le  ammonia  is  free.  The  presence  of  ammonium 
irbonate  in  the  solution  increases  the  solubility 
the  copper  minerals  and  retards  the  oxidation 
the  ammonia  to  nitrite.  The  copper  is  best 
covered  from  the  leach  liquors  by  distilling  off 
ie  ammonia  by  means  of  steam,  whereby  a  dis- 
llate  containing  ammonia  and  ammonium  car- 
mate  is  obtained  for  further  use  and  the  copper 
deposited  as  cupric  oxide  or  as  a  basic  carbonate. 
Hassium  cyanide  solution  gives  a  very  good 
traction  of  copper  from  ores  containing  cuprite 


or  malachite,  but  a  much  poorer  and  slower  ex- 
traction from  roasted  ores  or  those  containing 
azurite.  With  cuprite  no  loss  of  cyanide  occurs 
in  the  leaching  process,  but  the  other  copper 
minerals  cause  losses  up  to  15%.  Further  large 
losses  of  cyanide,  amounting  altogether  to  over 
70%  of  the  total,  occur  during  the  subsequent 
recovery  of  the  copper  from  the  solutions  by 
electrolysis  (the  only  practical  method  of  recover- 
ing the  copper),  so  that  the  process  seems  to  be 
uneconomical  on  the  large  scale  with  the  present 
cost  of  cyanide. — A.  R.  P. 

Zinc    smelting;    Blue    powder    in    .      W.     R. 

Ingalls.  Min.  and  Met.,  April,  1922,  13—14. 
The  author  has  collected  from  a  number  of 
American  and  European  spelter  works  their 
figures  for  the  production  of  blue-powder  and 
other  distillation  residues  containing  zinc  that 
have  to  be  redistilled.  In  America  these  residues 
amount  sometimes  to  as  much  as  50%  of  the 
weight  of  ore  originally  charged  into  the  furnace, 
but  the  general  average  may  be  taken  as  being 
about  33%  and  the  zinc  lost  in  the  second  dis- 
tillation is  about  30%.  The  European  zinc  distill- 
ing practice  is  better  than  the  American  with 
regard  to  the  by-products,  this  being  probably 
due  to  the  type  of  furnace  front  used,  to  the 
enclosing  of  the  condensers  in  deep  closets,  and 
to  the  custom  of  drawing  the  spelter  only  once  each 
day.— A.  R.  P. 

Alloys  of  aluminium  and  copper.  B.  Ohtani  and 
T.  Hemmi.  Kogyo-Kwagaku  Zasshi  (J.  Chem. 
Ind.,  Japan),  1921,  24,  1353—1368. 
The  authors  have  studied  the  constitution 
of  aluminium  with  magnesium  by  the  methods  of 
thermal  analysis  and  micrography,  the  solubility 
of  ALCu  i\  aluminium  being  determined  by  means 
of  electrical  resistance  measurements.  A  complete 
equilibrium  diagram  for  alloys  containing  up  to 
60%  Cu  is  given.  The  limit  of  solubility  of  AL,Cu 
in  aluminium  is  T5%  Cu  at  420°  C,  2'6%  Cu  at 
460°  C,  and  4'8%  Cu  at  520°  C.  Silicon  which 
always  exists  in  aluminium  causes  exothermic 
phenomena  on  cooling.  The  tensile  strength  is 
increased  and  the  elongation  and  reduction  are 
decreased  by  the  addition  of  copper.  The  hardness 
increases  linearly  with  the  copper  content;  the 
specific  gravity  also  increases  linearly  with  the 
copper  content,  but  the  increment  is  only  10% 
with  the  16%  Cu  alloy.— K.  K. 

Alloys  of  aluminium  and  magnesium.     B.  Ohtani. 

Kogvo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan), 

1922,  25,  36—52. 
The  author  has  studied  thoroughly  the  binary  alloys 
of  aluminium  with  magnesium  by  the  methods  of 
thermal  analysis,  micrography,  and  electrical 
resistance  and  has  also  examined  their  mechanical 
properties.  A  complete  equilibrium  diagram  for 
alloys  containing  up  to  40%  Mg  is  given.  The 
saturated  solid  solution  (/:>')  of  aluminium  in  the 
compound  Al3Mg2  or  Al,Mg3  contains  36%  Mg.  The 
limit  of  solid  solution  of  the  compound  in  alumin- 
ium, as  determined  by  electrical  resistance  measure- 
ments, is  about  9-7%  Mg  at  400°  C.  and  about  7'3% 
Mg  at  320°  C.  The  tensile  strength  and  elastic 
limit  of  the  alloys  show  a  maximum  at  about  8% 
Mg,  the  properties  of  the  chill  and  sand  cast  alloys 
being  as  follows:  — 

Sand  casting        Chill  casting 
Tensile  strength,  kg.  per  sq.  mm.      . .         15-31         . .        15-83 
Elastic  limit,  kg.  per  sq.  mm.  10-83         . .        13-00 

Elongation,  %  on  50-8  mm 40  . .  3-5 

Deduction  of  area,  % 3<3         •  •        H'O 

The  hardness  increases  linearly  and  the  specific 
gravity  decreases  linearly  with  magnesium  con- 
tent.—K.  K. 


378  A        Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO  -METALLURGY.         [Stay  31,  1922. 


Magnesium;    Electrolytic    recovery    of   from 

soli  works  residues.  K.  S.  Boynton,  V.  Lang- 
ford,  and  J.  F.  G.  Hicks.  J.  Ind.  Eng.  Chem., 
1922,  14,  146—157. 
Crude  hydrated  magnesium  chloride,  obtained  as 
a  Iby-pro'duct  in  the  recovery  of  salt  from  sea- 
water  is  mixed  with  ammonium  chloride  and 
sodium  chloride  (MgCl2,6H30  10,  NaCl  1,  and 
NH4C1  1  part)  and  then  dehydrated  by  heating  in 
a  rotating  cylinder;  the  addition  of  the  chlorides 
mentioned  is  necessary  to  prevent  the  formation 
of  basic  salts.  The  dry  mixture  is  then  heated 
in  iron  pots  until  ammonium  chloride  has  been 
expelled  completely,  and  the  residue  is  fused  and 
electrolysed.  Carbon  anodes  and  iron  cathodes  are 
employed,  with  a  current  of  100  amps,  and  6  volts. 
Electrolysis  is  effected  in  an  atmosphere  of  coal 
gas.  About  11  tons  of  crude  hydrated  magnesium 
chloride  is  required  to  produce  1  ton  of  metal,  and 
the  estimated  cost  is  0'939  dollar  per  lb.  of  metallic 
magnesium  for  1-ton  charges. — W.  P.  S. 

Cobalt-tungsten  alloys.     K.  Kreitz.     Metall  u.  Erz, 

1922,  19,  137—140. 
Cobalt  and  tungsten  form  mixed  crystals  at  both 
ends  of  the  series;  the  cobalt-rich  crystals  contain 
from  0  to  40%  W,  and  those  rich  in  tungsten,  less 
than  20%  Co.    Alloys  containing  from  40  to  45%  W 
show  a  structure  consisting  of  cobalt-rich  crystals 
in  a  eutectic  ground  mass  of  the  same  constituent 
and    the   compound    CoW.     The    eutectic    contains 
41-5%  W  and  melts  at  1480°  C,  while  the  compound, 
CoW,    melts    at    about    1650°    C.      There    is    also 
evidence  of  the  formation  of  a  second  compound, 
Co0W,  melting  at  about  1500°  C.     Sound  ingots  of 
cobalt-tungsten  alloys  may  be  obtained  by  melting 
the  constituents,  together  with  an  amount  of  25% 
titanium-cobalt    alloy    as    deoxidiser    sufficient    to 
provide  0-4%  Ti  in  the  melt,  and  casting  the  metal 
in   a   sand    mould.      The   resulting   ingot   contains 
■  about  0T%  Ti  and  its  hardness  increases  with  the 
tungsten  content  to  a  maximum  at  75%  W.    Alloys 
containing  more  than  10%   W  are  not  machinable 
and  those  containing  more  than  45%  W  are  exceed- 
ingly brittle.     The  10%  W  alloy  has  a  hardness  of 
282    (Brinell)    and    is   suitable   for   use   in    cutting 
tools.       With     increasing     tungsten     content     the 
specific    electrical    resistance    of    the    alloys    rises 
very  rapidly,  while  the  solubility  in  sulphuric  acid 
increases   to    a   maximum    at  3%    W,    then   slowly 
falls.— A.  R.  P. 

Corrosion  of  metals;  Influence  of  protective  colloids 

on  the  and  on  the  velocity  of  chemical  and 

physical  change.  J.  A.  N.  Friend  and  R.  H. 
Vallance.  Chem.  Soc.  Trans.,  1922,  121,  466— 
474. 
Protective  colloids  tend  to  retard  the  velocity  of 
chemical  or  physical  reactions  which  involve  a 
change  of  state  from  solid  to  liquid  or  vice  versa. 
For  the  colloids  gum  acacia,  dextrin,  starch 
(potato),  agar,  egg-albumin,  gelatin,  the  relative 
retardation  increases  in  the  order  named.  Sucrose 
has  usually  an  accelerating  effect  on  such  re- 
actions, the  rate  of  corrosion  of  both  ferrous 
and  non-ferrous  metals  is  retarded — that  of  lead 
markedly  so — by  the  presence  of  protective  col- 
loids. The  phenomenon  is  due  to  adsorption  and 
in  many  cases  the  adsorption  law  is  obeyed.  The 
reduced  catalytic  activity  of  inorganic  hydrosols 
in  the  presence  of  these  colloids,  the  Liesegang 
ring  formation,  the  rato  of  coalescence  of  mole- 
cules and  of  dispersion  of  molecular  aggregates 
are  due  to  the  same  phenomenon.  Protective  col- 
loids have  a  negligible  effect  on  reactions  involving 
no  change  of  physical  state. — P.  V.  M. 


Metals;   Development  of  surface   colours   on  ■ 

[by  heating  in  gases  and  vapours'].    G.  Tamman. 
Stahl  u.  Eisen,  1922,  42,  615—618. 

On  heating  silver,  copper,  or  lead  in  an  atmosphere 
containing  iodine  vapour  the  metal  becomes  coated 
with  a  thin  layer  of  iodide,  the  rate  of  increase 
of  thickness  of  which  is  inversely  proportional  to 
the  thickness  of  the  coating,  i.e.,  if  the  thickness 
of  the  coating  is  plotted  against  the  time  the  curve 
is  a  parabola.  Quite  a  different  relation  holds  for 
the  oxidation  of  metals  in  dry  air,  in  which  case 
the  thickness  of  the  coating  is  a  linear  function  of 
the  logarithm  of  the  time  of  exposure  and  varies 
with  the  temperature.  The  initial  velocity  of 
formation  of  the  film  is  very  great,  but  it  falls 
with  extreme  rapidity,  so  that  after  an  extremely 
thin  film  has  formed  no  further  appreciable  oxida- 
tion takes  place.  In  moist  air,  however,  these 
relations  do  not  hold  and  the  rate  of  oxidation  is 
dependent  on  the  temperature  and  on  the  structure 
of  the  metal.  The  latter  fact  is  discussed  from  the 
point  of  view  of  the  space-lattice  theory. — A.  R.  P. 

Absorption  of  nitrogen   by  calcium  and  Us  alloys. 
Ruff  and  Hartmann.     See  VII. 

Patents. 

Aluminium   and   other   metals;    Casting    of   . 

Metallhutte  Baer  und  Co.    E.P.  156,536,  5.1.21. 

Conv.,  19.9.19. 
Moulds  used  in  the  casting  of  aluminium  may  be 
coated  with  a  mixture  of  powdered  aluminium  and 
an  adhesive  substance,  e.g.,  spirit  varnish,  dissolved 
shellac  or  dextrin,  the  medium  being  burned  out 
afterwards  by  heat.  The  process  is  applicable  also 
to  the  casting  of  nickel,  copper,  and  alloys  of  these 
metals.— C.  A.  K. 

Copper  coatings;  Production  of on  non-metaUie 

materials  [glass,  celluloid].  M.  Volmer.  E.P. 
157,379,  10.1.21.  Conv.,  12.11.19. 
Non-metallic  materials,  such  as  glass  or  celluloid, 
are  given  a  very  thin,  non-reflecting  coating  of  silver 
by  any  known  chemical  method,  e.g.,  reduction  of 
silver  "nitrate  by  glucose,  and,  after  washing,  a  coat- 
ing of  copper  is  applied  by  reducing  copper  salts  by 
strong  reducing  agents. — A.  R.  P. 

Alloys  Soc.  Anon,  de  Commcntry,  Fourchambault 
et  Decazeville.  E.P.  159,858.  5.11.20.  Conv., 
28.2.20.  Addn.  to  140,509  (J.,  1920,  412  a). 
The  iron  alloy  described  in  the  principal  patent  is 
modified  so  as  to  correspond  with  one  of  the  follow- 
ing compositions :— 25— 40%  Ni,  10—15%  Cr,  1—5% 
Mn,  0-3-1%  C;  25—40%  Ni,  10—15%  Cr,  0-5-1% 
Mn,  0-3—1%  C;  25— 40%  Ni,  8—10%  Cr,  1-5%  Mn, 
03 — 1%  C.  Tungsten  and  molybdenum  may  be 
introduced  to  the  extent  of  0-2 — 5%.— C.  A.  K. 

Alloys  of  sodium  containing  one  or  more  of  the 
metals  iron,  manganese,  and  silicon  ;  Manufc 

of  .     W.  Sohuen,  H.  K.  Grosspeter,  and  A. 

Kemper.     G.P.  349,425,  20.2.17. 
The    metal    to    bo    alloyed    with   sodium    is   finely 
divided  and  preferablv  heated  to  a  red  heat  ir.  a 
crucible    provided    with    a    lid,    which    is   quiofcl; 
replaced  after  addition  of  the  sodium.     The  aUoj» 
are  not  affected  by  atmospheric  conditions 

— J.  S.  u.  1- 

Cupola  furnaces  and  blast  furnaces;  Blast  of  -—-■ 

M.    Gottschalk,   A.   Beinshagen,   and  J.  Berber. 

E.P.  168,023,  10.12.20. 

Water  is  introduced  into  the  entering  blast  in  the 

form  of  detached  drops  or  a  thin  stream.— C.  A.  •&•• 


Vol.  xlt  .  x. .  10]     Cn.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       379  a 


Blast-furnace  work;  Apparatus  and  method  of  dis- 
tributing    pulverised     coal     in    .       R.     A. 

Wagstaff,  Assr.  to  American  Smelting  and  Re- 
fining Co.  U.S. P.  1,411,072,  28.3.22.  Appl., 
4.12.19. 

Pulverised  fuel  is  fed  in  a  substantially  solid 
stream  into  a  chamber  maintained  below  atmos- 
pheric pressure.  Air  under  low  pressure  is  intro- 
duced, and  the  mixture  of  air  and  fuel  is  drawn 
■by  suction  into  the  furnace  through  a  number  of 
ports. — C.  A.  K. 

Ores;  Method  and  apparatus  for  reduction  of . 

A.  E.  Alexander.  From  The  Cobb  Electro  Re- 
duction Corp.     E.P.  176,819,  13.9.20. 

A  complex  ore  is  smelted  by  placing  it  in  a  bath  of 
a  relatively  high  resistance  through  which  a  direct 
current  of  electricity  is  passed,  the  cathode  being  at 
the  bottom  of  the  bath,  whereby  the  fused  metals 
will  be  stratified  in  the  order  of  their  eleetro-posi- 
tiveness  by  the  passage  of  the  current.  'The  main 
current  which  passes  between  an  anode  and  cathode 
immersed  in  the  fused  metal  is  regulated,  and  spark- 
|  ing  is  prevented,  by  automatically  passing  a 
secondary  direct  current  an  different  directions 
through  the  mass  by  changing  the  polarity  of  the 
electrodes  of  the  secondary  circuit  as  conditions 
in  the  main  current  vary. — J.  W.  D. 

Sings;  Extraction  of  metallic  compounds  from,  blast 

furnace    and    similar   .      A.    Collier.      E.P. 

176,918,  23.9.21. 

I  Molten  slag  is  caused  to  flow  down   a  trough  of 
1  Ar-section   into   a   flowing   solution  of   hydrochloric 
1  acid  in  a  closed  chamber.     Sulphuric  acid  is  added 
'  and  the  mass  filtered,  the  clear  filtrate  being  con- 
centrated    and     heated    to    redness.      Magnesium 
sulphate  is  obtained  in  solution  by  extraction  with 
water;  oxides  of  iron,  manganese,  and  aluminium 
remain  insoluble.     The  operations  are  made  largely 
mechanical  by  the  use  of   agitators   and   a   rotary 
heating  tube. — C.  A.  K. 

Soldering  of  aluminium.  H.  Lowe.  E.P.  176,973, 
24.1.21. 

A  solder  composed  approximately  of  75%  of  tin, 
20%  of  zinc,  and  5%  of  antimony  is  used. — J.  W.  D. 

Composition  of  matter.  [Soldering  flux.']  O.  F. 
Reinhold,  Assignor  to  Foster-Reinhold  Labora- 
tories.   U.S. P.  1,374,233,  12.4.21.    Appl.,  15.4.19. 

A  flux  for  use  in  soldering  metals,  especially 
aluminium,  consists  of  a  mixture  of  metallic  salts 
and  an  aminc-substitution  compound  of  mota- 
carbonic  acid,  e.g.,  urea.  A  mixture  of  1  pt.  of 
sodium  chloride  and  4  pts.  of  zinc  chloride, 
together  with  a  small  quantity  of  urea,  is  suitable. 

Coating  metals  [sherardising];  Apparatus  for  

with  metals.  The  British  Thomson-Houston  Co., 
Ltd.  From  General  Electric  Co.  E.P.  177,608, 
31.12.20. 

jThe  apparatus  consists  of  a  double-walled  drum 
nounted  on  trunnions  and  revolved  by  suitable  gear. 
Between  the  walls  an  electrical  heating  unit  is  dis- 
Josed  and  the  articles  to  be  sherardised  are  enclosed 
n  a  container  which  fits  exactly  into  the  double- 
.valled  heating  vessel  and  is  fitted  with  hooks  so 
hat  it  can  readily  be  removed.  By  providing  a 
lumber  of  these  containers  a  second  may  be  in- 
erted  in  the  hot  drum  immediately  after  the  first, 
md  so  on. — A.  R.  P. 

'inc  solution;  Method    of    producing    pure  . 

E.   Kardos,   Assr.   to  Metal  and   Thermit   Corp. 

U.S. P.   1,409,727,  14.3.22.     Appl.,  20.12.19. 
Solutions  of  zinc  salts  are  purified  by  treatment 


with  zinc  and  a  metal  electronegative  to  zinc, 
whereby  metals  electronegative  to  zinc  are  pre- 
cipitated. 

Metals  from  their  ores;  Process  for  recovering  — — . 

E.  S.  Leaver  and  C.  E.  van  Barneveld.     U.S. P. 

1,410,936,  28.3.22.  Appl.,  11.6.19. 
Pulp  containing  a  non-sulphide  ore  material 
together  with  water  is  subjected  to  the  action  of 
hot  gases  containing  sulphur  dioxide  and  oxygen, 
in  order  to  produce  metallic  sulphate  in  solution, 
the  metal  being  then  separated  from  solution  by 
precipitation. — J.  W.  D. 

Gold  and  silver  oris;  Treatment  of .     A.  Dorf- 

man,.  Asm-,  to  Mclntyre  Porcupine  Mines,  Ltd. 
U.S. P.  1.411,326,  4.4.22.  Appl.,  20.6.21. 
As  a  preliminary  step  in  the  cyanide  process  of 
treating  ores  containing  organic  or  carbonaceous 
matter,  the  ore  is  treated  during  or  after  crushing 
with  a  small  quantity  of  mineral  oil. — J.  W.  D. 

Chemical   reactions;  Apparatus  for   effecting  

by  means  of  amalgams.  H.  W.  Paulus,  Assr.  to 
Royal  Baking  Powder  Co.  U.S.P.  1,411,507, 
4.4.22.  Appl.,  26.2.21. 
A  later  of  mercury  is  contained  in  a  stationary 
receptacle  provided  with  a  porous  bottom  im- 
pervious to  mercury.  An  electrolyte  is  brought 
into  contact  with  the  mercury  surface  resting  on 
the  porous  bottom,  and  an  electric  current  is 
passed  through  the  mercury.  The  material  to  be 
acted  upon  by  the  amalgam  is  brought  into  contact 
with  the  upper  surface  of  the  mercury. — H.  H. 

Copper-nickel    matte;    Process    of    treating    -. 

G.    Haglund.      G.P.    343,079,    27.1.21.      Conv., 

10.2.20. 
The  Matte  is  blown  in  a  converter  until  consider- 
ably less  sulphur  is  present  than  corresponds  to 
sulphides  "of  the  metals.  Part  of  this  converted 
matte  is  then  agitated  with  acid  in  the  presence  of 
air,  and  the  resulting  solution,  which  contains  a 
higher  proportion  of  nickel  relatively  to  copper 
than  the  original  matte,  is  digested  with  a  further 
quantity  of  the  treated  matte  to  remove  the  copper 
from  the  solution.  The  residues  from  both  diges- 
tions are  roasted  and  the  copper-nickel  oxide 
mixture  leached  with  dilute  acid,  whereby  chiefly 
copper  is  dissolved  and  no  appreciable  quantity  of 
nickel.  Copper  is  obtained  from  the  latter  solu- 
tion and  nickel  from  the  former,  while  all  the- 
precious  metals  remain  in  the  final  insoluble 
residue.  This  is  reduced  to  metal  and  worked  up 
for  its  recovery. — A.  R.  P. 

Briquetting  iron  chip*  for  use  in  cupola  furnaces; 

Method  of  .     A.  Hoiimoller.     E.P.   168,025, 

21.12.20.     Conv.,  19.8.20. 
See   G.P.   346,068  of   1920;   J.,   1922,   221a.     The 
pressure  specified    is   660 — 1000   kg.    per  sq.    cm., 
according   to   the    height  of   the   briquette,    which 
varies  from  6  to  9  cm. 

Iron  and  steel  and  alloys  thereof;  Heat  treatment 

of   articles   of  .     W.    M.    Mordey.      U.S.P. 

1,412,484,  11.4.22.     Conv.,  2.6.20. 

See  E.P.  131,575  of  1918;  J.,  1919,  77S  a. 

Reducing  metallic  oxides;  Method  of  and  apparatus 

for .   A.  E.  Bourcoud.   E.P.  151,644,  27.9.20. 

Conv.,  17.6.  IS. 

See  U.S.P.  1,344,977  of  1920;  J.,  1920,575  a. 

Alloys.  Baker  and  Co.,  Inc.,  Assees.  of  F.  E.  Carter. 

E.P.  157,884,  24.11.20.    Conv.,  20.1.20. 
See  U.S.P.  1,357,272  of  1920;  J.,  1921,  15  a. 

Treating   phosphatic    material.     U.S.P.   1,410,550. 
See  VII. 


380  A     Cl.  XI.— ELECTRO-CHEMISTRY.     Cl.  XII.— FATS,  &c.     Cl.  XIII.— PAINTS,  &c.    [May  31,  1922. 


XL-ELECTRO-CHEMISTRY. 

Chemical  reactions  caused  by  silent  discharge.'. 
(I.)  Ethylene  and  nitrogen.  (II.)  Benzene  and 
carbon  dioxide.  S.Miyamoto.  Nippon  Kwagaku 
Kwai  Shi  (J.  Chem.  Soc.  Japan),  1922,  43,  21—48. 

By  subjecting  a  mixture  of  ethylene  and  nitrogen 
(1:2  by  vol.)  to  an  electric  field  caused  by  an  alter- 
nating current  of  10,000  volts  and  50  cycles,  the  fol- 
lowing substances  were  formed  :  A  nitrile  Ci„H31CN  ; 
an  amine,  Cj0H.,8N4O2 ;  unsaturated  compounds, 
C10H,0O,  0,„H„0,  C„H„dO,  a  mixture  of  C15H2aO 
and  C„H„0„_and  CIBH3,0;  a  solid,  (C22H3!,02)n  ; 
hydrogen  cyanide;  acetylene;  hydrogen  and  ethane 
(c/.  Berthelot,  Ann.  Chim.  Phys.,  1899  [7],  16,  21). 
By  the  interaction  of  carbon  dioxide  and  benzene 
under  the  same  conditions,  a  phenolic  compound 
(C10Hlc)Oj)j,  was  formed. — K.  K. 

Glass  manufacture  in  an  electric  radiation  furnace. 
Sauvageon.     See  VII. 

Patents. 

Electrolytic  cell  {for  production  of  alkali  and 
chlorine'].  E.  A.  and  H.  I.  Allen,  Assrs.  to  Elec- 
tron Chemical  Co.  U.S.P.  1,373,394,  5.4.21. 
Appl.,  9.12.19. 

The  cell  comprises  a  cylindrical  cathode,  the  inner 
active  face  of  which  is  oovered  by  a  porous  cylindri- 
cal diaphragm,  and  a  cylindrical  tubular  anode 
occupying  the  space  within  the  cathode  and 
diaphragm. 

Electrolytic  cell  {for  electrolysis  of  water'].  Elek- 
trizitats-A.-G.  vorm.  Schuckert  u.  Co.,  F.  Petz, 
and  H.  KoeLsoh.    G.P.  349,538,  15.6.20. 

The  electrodes  are  enclosed  within  diaphragms, 
which  are  open  below  and  closed  above  and  which 
hang  freely  over  the  cathodes  and  (or)  anodes.  They 
■  are  provided  at  their  "upper  ends  with  hollow  circu- 
lar collars  provided  with  openings,  and  the 
diaphragms  are  hung  from  these.  Massive  hoods 
disposed  above  these  collars  and  separated  therefrom 
by  the  diaphragms  serve  for  the  collection  of  gas. 
The  electrodes  are  spaced  so  as  to  afford  between 
them  a  chamber  for  the  collection  of  gases 
separating  from  the  mixed  gases  within  the 
diaphragms,  openings  for  the  passage  of  these  gases 
being  provided  between  the  hoods.  The  surface  of 
the  electrolyte  is  covered  by  a  bell  provided  with  a 
number  of  compartments  for  the  separate  collection 
of  the  pure  gases  and  of  the  mixed  gases  from  within 
the  diaphragms. — J.  S.  G.  T. 

Electric  gas-generator.  R.  Bosner.  U.S.P. 
1,374,237,  12.4.21.    Appl.,  17.6.20. 

A  rotor  of  incombustible  dielectric  material  is 
mounted  within  a  casing  also  of  incombustible 
dielectric  material.  An  electrode  carried  by  the 
rotor  travels  past  a  fixed  electrode  connected  with 
the  casing  and  thence  through  a  gas-generating 
chamber  within  the  casing  extending  from  the  fixed 
electrode  to  an  outlet.  Means  are  provided  for 
admitting  air  to  the  gas-generating  chamber  at  the 
fixed  electrode,  and  a  source  of  high-potential 
alternating  current  is  connected  with  the  electrodes. 
The  gas  produced  has  germicidal  properties. 

Elr, -trie  furnace.  W.  S.  Hadaway,  jun.  U.S.P. 
1,410,566,  28.3.22.    Appl.,  17.6.20. 

An  electric  glower,  supplied  with  current  and  com- 
posed of  material  which  while  non-conducting  at 
ordinary  temperature  becomes  a  conductor  when 
hot,  is  disposed  within  a  fuel-combustion  chamber  of 
an  electric  furnace.  Hot  vapour  passes  through  the 
glower  into  the  fuel.— J.  S.  G.  T. 


Graphitised    material;    Method    of    making    . 

A.   P.   Sullivan,   Assr.  to   Stackpole  Carbon  Co.     ) 
U.S.P.  1,411,537,  4.4.22.    Appl.,  26.1.21. 

Pieces  of  moulded  carbon  are  heated  by  passage  in 
continuous  succession  in  contact  with  an  electrically 
heated  resistance  element. — J.  S.  G.  T. 

Electrolytic  caustic  soda  cell.  N.  Statham,  Assr.  to 
Industrial  Chemical  Co.  U.S.P.  1,411,530,  4.4.22. 
Appl.,  31.5.17.    Renewed  30.6.21. 

See  E.P.  114,974  of  1917;  J.,  1918,  380  a. 

Electro-osmotic  dehydration.    G.P.  347,598.    See  I. 

Treating   phosphatic   material.      U.S.P.    1,410,550.    . 
See  VII. 


XII.-FATS;    OILS;    WAXES. 

Liquid  fuel  from  soya-bean  oil.     Sato.     See  IIa. 

Patents. 

Fatty    acid    alkyl    esters;    Manufacture    of    . 

Bvk-Guldenwerke     Chem.     Fabr.     A.-G.       G.P. 
349,011,  3.7.17. 

Animal  and  vegetable  oils  and  fats,  such  as  linseed 
oil,  marine  animal  oils,  waste  fat,  or  the  like,  are 
heated  with  six  times  the  theoretical  weight  of  an 
alcohol  for  12  hrs.  at  200°  C.  The  reaction  is 
accelerated  by  the  addition  of  alkali  or  alkaline- 
earth  oxides  as  catalysts. — L.  A.  C. 

Fat  and  oil;  Extraction  of from  raw  materials. 

H.  Bollmann.     U.S.P.  1,411,154,  28.3.22.     Appl., 

22.6.20. 
See  G.P.  303,846  of  1916;  J.,  1920,  459  a. 
Edible  product.     U.S.P.  1,372,616.     See  XIXa. 


XIIL-PAINTS ;     PIGMENTS;    VARNISHES; 
RESINS. 

Rosin   extraction;  New  solvents  for  .     H.  K. 

Benson  and  A.  L.  Bennett.     J.  Ind.  Eng.  Chem., 
1922,  14,  307—308. 

When  resinous  wood  of  pulp  size  is  treated  at  70°  C. 
with  8  times  its  weight  of  ammonia  solution  (5% 
NH.OH)  for  10  hrs.  94"5%  of  the  rosin  is  extracted. 
The  ammonia  extract  decomposes  slowly  in  the  air 
at  ordinary  temperatures ;  at  90°— 100°  C.  it  is 
rapidly  and  completely  decomposed,  yielding 
ammonia  vapour  and  finely  divided  rosin  and  humue 
in  suspension.  The  rosin  and  humus  may  be 
separated  with  petroleum  ether.  None  of  the 
solvent  is  retained  in  the  humus  after  heating. 
Wood  chips  saturated  with  ammonia  solution  give 
off  the  ammonia  completely  when  steam  distilled. 
Denatured  ethyl  alcohol  of  70%  strength  is  ar 
efficient  a  solvent  for  rosin  as  ammonia,  benzene 
turpentine,  or  petroleum  ether. — H.  C.  R. 

Varnish  resins;  Changes  in on  heating.    F.  H 

Rhodes  and  H.  F.  Johnson.  J.  Ind.  Eng.  Chem. 
1922,  14,  279—280. 
Determinations  of  the  acid  and  iodine  values  o 
Congo,  East  India,  and  Manila  copals,  Pontiai.ak 
and  kauri  were  made  before  heating  and  aftei 
heating  to  300°  C,  350°  C,  and  390°  C.  In  ever; 
instance  heating  caused  a  decrease  in  arid  value 
The  iodine  value  of  Congo  copal  decreased,  that  o 
East  India  copal  increased.  The  iodine  values  o 
the  other  resins  increased  slightly  when  they  wer 
heated  at  300°  C.  but  decreased  at  the  high? 
temperatures.  The  decrease  of  the  acid  value  l 
considered  to  be  due  to  the  splitting  off  of  carboxy 
groups  and  evolution  of  carbon  dioxide  and  water 


Vol.  XLI.,  Xo.  10.] 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;   VARNISHES  ;   RESINS. 


381a 


Changes  in  the  iodine  value  would  be  influenced  by 
the  degree  to  which  oxidation  or  polymerisation 
was  compensated  for  by  cracking  or  depolymerisa- 
tion.  There  is  no  apparent  relation  between  the 
change  in  iodine  value  and  acid  value  and  loss  in 
weight  on  heating. — H.  C.  R. 

Lead,  manganese,  and  cobalt  in  varnishes  and  oil 

lacquers;    Vetection    of    .       H.     Vollmann. 

Farben-Zeit.,  1922,  27,  1943—1944. 

The  presence  of  lead  can  be  rapidly  detected  by 
diluting  with  an  equal  volume  of  light  petroleum 
and  shaking  vigorously  for  2  mins.  with  a  dilute 
solution  of  potassium  bichromate;  if  lead  is  present 
a  yellow  precipitate  collects  at  the  contact  surface 
of  the  two  liquids.  Manganese  and  cobalt  are 
absent  if  a  little  of  the  aqueous  solution  obtained 
on  shaking  a  mixture  of  the  varnish  and  light 
petroleum  with  dilute  potassium  hydroxide  solution, 
fails  to  develop  a  blue  coloration  in  an  acetic  acid 
solution  of  benzidine.  The  presence  of  cobalt 
interferes  with  the  test  for  manganese  by  lead 
peroxide  in  which  any  manganese  in  the  ash  from 
the  varnish  is  oxidised  in  hot  dilute  nitric  acid 
solution  to  permanganic  acid.  In  the  presence  of 
cobalt,  manganese  is  best  detected  by  the  produc- 
tion of  a  red  solution  of  potassium  mangani- 
oxalate;  a  solution  of  the  ash  in  dilute  hydrochloric 
acid,  after  being  boiled  for  a  few  minutes,  is  treated 
iwith  sufficient  concentrated  potassium  oxalate 
solution  to  neutralise  the  hydrochloric  acid;  the 
addition  of  sodium  nitrite  solution  then  gives  rise 
to  a  rose  colour  which  is  converted  into  currant  red 
ion  the  addition  of  a  little  hydrogen  peroxide. 
^Cobalt  can  be  detected  by  applying  the  test  with 
an  acetic  acid  solution  of  o-nitroso-/3-naphthol  or 
better  of  /3-nitroso-a-naphthol  to  a  solution  of  the 
ash  or  directly  to  a  mixture  of  the  varnish  or  lacquer 
with  benzene  or  benzine.  An  alternative  method 
is  to  6hake  1J  c.c.  of  the  mixture  with  J  c.c.  of 
boncentrated  ammonium  thiocyanate,  J  c.c.  of  amyl 
lalcohol  and  3 — 4  c.c.  of  ether ;  if  the  ether-alcohol 
llayer  has  a  red  colour  due  to  the  presence  of  iron, 
'I  c.c.  of  ammonium  acetate  solution  and  2 — 3  drops 
,>f  a  saturated  solution  of  tartaric  acid  are  also 
ldded;  on  the  further  addition  of  1  c.c.  of  acetone 
l-he  aqueous  layer  shows  a  blue  colour  if  cobalt  is 
present.— D.  F.  T. 

lolour  of  ferric  oxide.     Hedvall.     See  VII. 

Patents. 

lithopone;  Apparatus  for  the  manufacture  of . 

J.  L.  Mitchell.     E.P.  177,123,  1.9.20. 

V.  gas-fired  calcining  chamber  is  provided  with  a 
eed  hopper  at  one  end,  a  discharge  hopper  extend- 
ng  into  a  water  trougb,  which  acts  as  a  water  seal 
nd  quenching  medium,  at  the  other  end,  and  a 
crew  shaft,  provided  with  spiral  blades  and 
perated  by  a  driving  and  reversing  gear,  arranged 
■entrally  through  the  furnace.  Both  the  charging 
,nd  discharging  hoppers  are  provided  with  doors 
pening  into  chambers  which  act  as  sealed  gas  vents 

Ireventing  the  entrance  of  air  into  the  apparatus. 
—A.  R.  P. 

•ithopone;  Manufacture  of  .     Apparatus  for 

manufacturing  lithopone.  (a)  F.  G.  Breyer, 
P.  R.  Croll  and  C.  W.  Farber,  (b)  (c)  J.  A. 
Singmaster  and  F.  G.  Breyer,  and  (d)  J.  A. 
Singmaster,  F.  G.  Breyer  and  O.  W.  Farber, 
Assrs.  to  The  New  Jersey  Zinc  Co.  U.S. P. 
1,411,645—8,  4.4.22.  Appl.,  (a)  2.10.19,  (b) 
4.12.19,  (c)  (d)  14.8.20. 

0  Solutions  of  barium  sulphide  and  zinc  sulphate 
re  mixed  in  the  presence  of  such  a  quantity  of 
ectrolyte  (previously  determined  by  a  series  of 
nail  tests)  that  the  resulting  product,  after  drying 
nd  calcining  at  a  temperature  at  which  the  de- 


sired strength  and  colour  are  developed,  will  be 
substantially  resistant  to  light  and  have  an  oil- 
absorbing  capacity  sufficient  for  commercial  re- 
quirements, (b)  The  lithopone  is  calcined  in  a  tall, 
narrow,  upright  retort,  the  heating  of  which  is  so 
regulated  that  all  of  the  pigment  is  heated  to  the 
desired  temperature  without  any  overheating 
taking  place,  (c)  The  retort  is  made  of  good  heat- 
conducting  material,  and  has  a  diameter  of  less  than 
12  in.  and  a  height  of  at  least  25  ft.  (d)  Claim  is 
made  for  a  lithopone  which  is  highly  resistant  to 
sunlight  possesses  relatively  low  oil-absorption,  is 
practically  non-reactive  to  ultra-violet  light,  and 
contains  less  than  0'5%  of  zinc  oxide  soluble  in 
acetic  acid. — A.  R.  P. 

[Titanium  oxide]  pigment  and  method  of  making 
same.  H.  H.  Buckman.  U.S. P.  1,411,839, 
4.4.22.  Appl.,  5.3.21. 
A  solid  inorganic  oxygen  compound  of  titanium 
and  barium  sulphate  are  ground  together  with 
water  and  a  binding  material,  and  the  mixture  is 
calcined  to  cause  the  particles  of  the  constituents 
to  cohere. — A.  R.  P. 

Plastic   masses;   Process    for   the    manufacture   of 

■.     Manufacture  of  dispersoids,  colloid  powder 

and  masses  therefrom.  Process  for  the  manu- 
facture of  coating  compositions  \_varnishes, 
lacquers,  and  the  like'].  Process  for  manufacture 
of  resinous  condensation  products  and  varnishes. 
H.  O.  Traun's  Forschungslaboratorium  G.m.b.H. 
E.P.  (a)  156,137,  (b)  156,142,  (c)  156,149,  (d) 
156,151,  31.12.20.  Conv.,  (a)  15.3.19,  (b)  29.8.18, 
(o)  23.4.18,  (d)  24.5.18. 
(a)  Filling  material,  such  as  ground  wood,  straw, 
paper,  peat,  cellular  material,  asbestos,  or  the  like, 
is  treated  with  an  aldehyde,  e.g.,  formaldehyde, 
and  a  kstone,  e.g.,  acetone,  in  the  presence  of  an 
alkali,  suet,  as  ammonia  or  sodium  hydroxide, 
whereby  an  aldebyde-ketone  condensation  product 
is  deposited  on  the  filler  in  a  fine  state  of  division. 
After  evaporating  the  water,  the  product  is  pressed 
into  moulds  or  stamped  into  shape  at  120° — 200°  C. 
at  a  pressure  above  150  atm.  The  product  is  suit- 
able for  use,  e.g.,  as  artificial  wood,  and  its  proper- 
ties may  be  varied  by  the  use  of  other  fillers,  such 
as  cement,  graphite,  talc,  etc.,  or  by  the  addition 
of  rubber  resin,  to  increase  its  elasticity,  or 
of  resins,  shellac,  or  the  like,  to  increase  its 
insulating  power,  (b)  Gelatin,  cellulose  esters,  pro- 
tein, and  the  like,  are  obtained  in  the  form  of 
colloidal  powders  without  previous  solution  by 
grinding  the  material,  together  with  a  large  quan- 
tity of  a  non-solvent  liquid,  in  a  disintegrator  run- 
ning at  high  speed,  e.g.}  wdth  a  peripheral  velocity 
of  about  2000  m.  per  min.,  such  as  the  colloid  mill 
described  in  E.P.  155,836  (page  357  a).  The  addition 
of  about  1  to  5%  of  soap  or  a  substance  in  which 
the  colloid  dissolves  or  swells  accelerates  the  rate 
of  dispersion.  Alcohol  (96%),  petroleum  ether,  and 
xylene  are  suitable  non-solvents  for  treating  gelatin, 
protein,  and  acetone-soluble  cellulose  esters  respec- 
tively; the  liquid  is  subsequently  separated  partly 
by  filtration  and  partly  by  evaporation  at  low 
temperatures.  (c)  Natural  or  artificial  resins, 
vulcanised  or  unvulcanised  rubber,  or  the  like,  are 
treated  as  described  in  (b)  with  non-solvent  liquids, 
such  as  petroleum  ether,  benzene,  chlorhydrins,  or 
other  organic  liquids  of  b.p.  below  200°  C.,  or  oils, 
in  the  presence  of  small  quantities  of  solvents  or 
swelling  agents  for  the  material.  A  portion  of  the 
liquid  may  be  subsequently  removed,  e.g.,  by  dis- 
tillation in  vacuo,  (d)  Vinyl  compounds,  such  as 
esters,  ethers,  or  halides,  or  condensation  products 
thereof,  are  heated  with  phenol  and  formaldehyde, 
or,  e.g.,  hexamethylenetetramine,  or  with  phenol- 
formaldehyde  condensation  products,  for  the  pro- 
duction of  artificial  resins.     Accelerators,   such  as 


3S2A 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTAPERCHA. 


[May  31,  1922 


organic  anhydrides  or  peroxides,  or  non-explosive 
ozonides,  may  also  be  added.  Condensation  may  be 
effected  in  the  presence  of  low-boiling  solvents,  e.g., 
methyl  alcohol,  ethyl  alcohol,  or  acetone,  and  the 
solution  may  thou  be  used  for  impregnating  wood 
or  the  like  the  solvent  being  subsequently  removed 
by  heat,— L.  A.  O. 

Paint.     C.   S.   Hathaway,   Assr.   to  J.   A.   Locke. 

U.S. P.  1,374,161,  5.4.21.     Appl.,  24.3.20. 
A    mixture    containing    water-gas    tar,    hydraulic 
cement  to  combine  with  the  water  present  in  the 
tar,   manganese   resinate,   and  an   organic  solvent, 
together  with  other  ingredients  if  desired. 

i  oating  and  impregnating  agent,  and  process  of 
making  it.  A.  J.  Rowland,  Assr.  to  The  Federal 
Products  Co.  U.S. P.  (a)  1.393,832  and  (b) 
1,393,833,  18.10.21.     Appl.,  6.10.20. 

(a)  Rubber  is  dissolved  in  a  metallic  oleate  whilst 
the  latter  is  kept  at  a  high  temperature,  and  the 
temperature  is  then  raised  and  steam  blown  through 
the  mixture.  The  temperature  is  then  reduced  and 
the  product  dissolved  by  the  addition  of  a  solvent. 

(b)  After  heating  the  oleate,  air  is  blown  through 
the  mass  until  "the  product  becomes  pliable  and 
elastic  on  cooling,  then  the  temperature  is  increased 
and  steam  blown  through  till  the  product  is  de- 
odorised.— H.  R.  D. 

Impregnating  and  coating  composition  and  method 
of    preparing    same.      E.     T.    Oakes,    Assr.    to 
National  Biscuit  Co.       U.S.P.  1,411,371,  4.4.22. 
Appl.,  19.1.20. 
Tung  oil  is  heated  until  it  gelatinises  and  the  pro- 
duct is  subdivided  and  incorporated  with  a  liquid 
which  causes  it  to  swell  and  remain  suspended  in  a 
finely  divided  state  in  the  liquid. — A.  R.  P. 

(a,  b)  Besinous  condensation  products ; Manufacture 

of from  naphthylamines.      (c)  Manufacture 

of  resinous  condensation  products.  Farbw.  vorm. 
Meister,  Lucius,  und  Briining.  G.P.  (a)  300,685, 
31.3.17,  (b)  303,953,  16.4.16,  (c)  305,026,  9.9.17. 
(a)  Acetaldehyde  reacts  with  /}-naphthylamine  and 
with  mixtures  of  a-  and  /3-naphthylamine  in  the 
presence  of  solvents,  e.g.,  benzene,  to  form  a  hard 
resinous  compound  and  a  product  resembling 
Canada  balsam  respectively ;  the  products  are 
suitable  for  use  in  the  manufacture  of  varnishes 
and  tracing  paper,  (b)  A  product  suitable  for  use 
as  a  substitute  for  colophonium  is  prepared  by 
treating  a  mixture  of,  e.g.,  equal  parts  of  a-  and  /3- 
naphthvlamine  with  formaldehyde;  the  mixture  is 
agitated  at  100°  C,  and,  after  cooling  and  sepa- 
rating the  aqueous  layer,  the  product  is  purified  by 
kneading  under  hot  water,  and  dried  at  about 
120°  C.  (c)  A  mixture  of  ct-naphthylamine  and 
primary  amines  of  the  benzene  series,  e.g.,  com- 
mercial xvlidine,  is  treated  as  described  in  (b). 

— L.  A.  C. 

Printing  colours;  Double-tone  .     Chem.  Fabr. 

Worms,  A.-G.     G.P.  347,902,  9.2.17. 

Rapidly  drying  printing  colours  are  prepared  by 
mixing  printers'  ink,  mineral  oil  acids,  i.e.,  naph- 
thenic  acids,  or  their  salts,  and  the  bases  of  colours 
which  are  rendered  soluble  in  oils  and  fats  by  treat- 
ment with  naphthenic  acids. — L.  A.  C. 

Counwrone-resin;     Process     for     rendering     

capable  of  enwlsification.  Riitgerswerke  A.-G. 
G.P.  348,063,  6.9.18. 
Coumarone-resin  is  melted  in  the  presence  of  salts 
which  promote  emulsification,  such  as  alkali  salts 
of  aromatic  sulphonic  acids  or  of  naphthenic  acids, 
or  is  heated  with  concentrated  sulphuric  acid  and 
the  product  neutralised  by  alkalis.      The   product 


obtained  on  treating  tar  fractions  with  sulphuric 
acid  for  the  separation  of  coumarone-resin  may  be 
treated  with  a  further  quantity  of  sulphuric  acid, 
and  subsequently  neutralised.  Paper,  fibrous 
material,  or  wood  is  soaked  in  the  emulsions 
obtained,  and  the  resin  is  precipitated  on  the  fibres 
by  the  addition  of  salts  of  heavy  metals  or  alkaline- 
,  artli   salts. — L.   A.    C. 

Drying  oils,   varnishes,  paint  oils,  rust-preventing 
oils,  lubricating  oils,  and  the  like;  Manufacture 

of   a   substitute    for  .      W.   O.    F.    Schilsky. 

G.P.  348,087,  1.7.17. 

A  dr\-ing  oil  is  prepared  by  heating  furfural,  or 
its  derivatives  or  homologues,  with  metal  com- 
pounds capable  of  yielding  oxygen,  such  as  lead 
oxides,  manganese  oxide,  zinc  oxide,  or  per-aoid 
e.g.,  furfural  is  boiled  with  lead  oxide  for  6 
under  a  reflux  condenser. — L.  A.  C. 

Lacquers,  varnishes,  and  the  like;  Manufacture 

a    base   for  .     Chem.    Fabr.    Worms,   A.-f 

G.P.  348,088,  20.8.19. 
Drying  oils,  vegetable  resins,  and  animal  or  vege- 
table waxes,  either  alone  or  in  admixture,  are 
added  to  polymerised  tar-oil  fractions  containing 
polymerised  coumarone,  indene,  or  their  homo- 
logues, and  solvent-naphtha  fractions  are  subse- 
quently separated  by  distillation. — L.  A.  C. 

Besins;  Solvents  for  ,   especially  for  artificial 

resins.  Badische  Anilin-  und  Seda-Fabr.  G.P. 
348,297,  20.1.20. 
Partially  hydrogenated  monocyclic  hydrocarbons, 
other  than  terpene  hydrocarbons,  e.g.,  tetrahydro- 
toluene,  tetrahydroxylene,  di-  or  tetrahydroben- 
zene,  or  cyclopentadiene,  or  mixtures  containing 
the  same,  are  superior  to  completely  hydrogenated 
hydrocarbons,  such  as  cyclohexane,  as  solvents  for 
resins. — L.   A.   C. 

Extraction  and.  impregnation  purposes;  Production 

of  [liquid]   agents  for  and  for  addition  to 

rubber.  Deutsche  Peerless-Ges.  m.b.H.  G.P. 
349,699,  25.11.19. 
Solvents,  impregnating  agents  and  rubber-com- 
pounding ingredients  which  are  acidic  or  tend  to 
develop  acidity,  e.g.,  chlorinated  hydrocarbons  and 
wood  tar,  are  treated  with  organic  bases  such  as 
pyridine,  aniline,  or  quinoline.  The  products  have 
no  corrosive  action  on  metals,  while  rubber  goods, 
manufactured  with  a  solvent  treated  in  this  way, 
vulcanise  more  rapidly. — D.  F.  T. 

Lead  oxides.    E.P.  176,924.     See  VII. 


XIV.— INDIA-RUBBER ;  GUTTA-PERCHA. 

Sulphur;  Solubility  of in  rubber.  C.  S.  Venable 

and  C.  D.  Greene.  J.  Ind.  Eng.  Chem.,  1922, 
14,  319—321. 
Thin  strips  of  rubber  that  had  been  compounded 
with  different  amounts  of  sulphur  were  packed  in 
flowers  of  sulphur  and  kept  at  the  desired  tem- 
perature until  equilibrium  was  established.  The 
samples  were  then  analysed  for  free  and  combined 
sulphur.  Equilibrium  was  approached  from  above 
and  below,  and  all  samples  were  given  a  pre- 
liminary heating  at  120°  C.  to  insure  complete 
solution  of  crvstals  of  sulphur  before  being  placed 
in  the  pack.  The  solubility  of  sulphur  in 
rubber  increases  slowly  with  the  percentage  of 
combined  sulphur  and  more  rapidly  as  the  tempera- 
ture increases.  Above  7"-.  of  combined  sulphur  solu- 
bility values  could  not  be  obtained  by  the  method 
used",  as  the  rubber  became  impermeable  to  free 
sulphur.     Curves  are  given  showing  tho  variation 


Vol.  XLI..  No.  10.] 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


383  a 


in  solubility  of  free  sulphur  with  changes  in  com- 
bined sulphur  at  95°  C,  75°  C,  and  55°  C.  In 
each  case  the  variation  is  linear. — H.  C.  R. 

Btlbber;  Estimation,  of  as  tetrdbrotnide.     F. 

Utz.     Gummi-Zeit.,  1922,  36,  791—792. 

A  weighed  quantity  of  the  caoutchouc  tetrabromide 
is  introduced  into  a  globular  flask  of  100 — 150  c.c. 
capacity.  The  flask  is  closed  with  a  rubber  bung 
fitted  with  a  tap  funnel  the  stem  of  which  nearly 
reaches  the  bottom  of  the  flask  and  with  a  bent 
glass  tube  which  is  connected  with  a  set  of  absorp- 
tion bulbs.  The  flask  is  immersed  in  a  cold  oil  bath 
and  a  cooled  solution  of  1 — 1J  g.  of  silver  nitrate 
and  4 — 8  g.  of  potassium  bichromate  in  40  c.c.  of 
concentrated  sulphuric  acid  is  cautiously  intro- 
duced. After  the  introduction  of  the  w:hole  of  this 
solution  the  bath  is  gradually  warmed  to  135° — 
140°  C.  After  45  mins.  the  reaction  is  ended  and 
gentle  suction  is  applied  at  the  outlet  of  the  absorp- 
tion bulbs  (the  tap  of  the  funnel  now  being  opened), 
to  carry  over  all  the  bromine.  The  liquid  in  the 
absorption  bulbs  consists  of  20  c.c.  of  a  mixture  of 
15  sodium  hydroxide  solution  with  a  saturated 
solution  of  sodium  sulphite  in  equal  volumes.  After 
the  reaction  this  reagent  is  transferred  to  a  flask, 
strongly  acidified  with  nitric  acid  and  its  bromine 
content  determined.  The  rubber  bung  outlasts  a 
considerable  number  of  estimations. — D.  P.  T. 

Patents. 

Rubl>cr;   Production    of    plastic    bodies   resembling 

vulcanised  .      P.    Balke   and   G.    Levsieffer. 

E.P.  154,157,  17.11.20.     Conv.,  19.3.19. 

Cellulose  derivatives,  e.g.,  the  nitrate  or  acetate, 

■  are  mixed  with  water,  and  with  such  gelatinising 

i  media  as  ethylacetanilide,  triacetin,  and  triphenyl 

I  phosphate,   the  latter  being  less  in  quantity  than 

I  the  cellulose  derivative  but  more  than  would  lie  used 

for   gelatinising    this    in    the   dry   state.       During 

mixing  there  are  also  incorporated  filling  materials 

such  as  calcium  carbonate,  barytes,  and  cork  dust, 

the  proportion  by  weight  being  from  one  to  three 

times  that  of  the  cellulose  compound.     The  mixture 

is  then  heated  and  the  kneading  continued   until 

the  water   is   removed,   when   the  material  can   be 

moulded  at  110°— 150°  C— D.  F.  T. 

Rubber-like  substances;  Process  for  the  manufacture 

of  .     H.  O.  Traun's  Forschungslaboratorium 

G.m.b.H.   E.P.  156,118,  30.12.20.   Conv.,  31.10.18. 

By  polymerising  butadiene,  isoprene,  or  dimethyl- 
butadiene  in  the  presence  of  acrolein-methylamine, 
CH2:CHCH:NCH3,  or  an  analogous  compound 
containing  a  conjugated  pair  of  double  bonds,  the 
latter  undergoes  concurrent  polymerisation  and  the 
product  resembles  natural  rubber  in  being  readily 
vulcanisable. — D.  F.  T. 

Rubber;  Process  of  reclaiming  ivaste  .     H.  O. 

Traun's       Forschungskiboratorium       Ges.m.b.H. 

E.P.  156,150,  31.12.20.  Conv.,  23.4.18. 
Waste  rubber  which  has  not  been  exhaustively 
vulcanised  is  intensively  disintegrated  in  a  colloid 
mill  (cf.  E.P.  155,836 ;  page  357  a)  in  the  presence  of 
water  together  with  small  quantities  of  soaps  or 
:olloids  such  as  glue,  casein,  etc.,  and  of  a  swelling 
agent,  such  as  benzene  or  xylene;  compounds  of  an 
dkaline  nature,  e.g.  mineral  alkalis,  ammonia,  and 
organic  amines  may  also  be  present  to  aid  the  re- 
moval of  sulphur.  The  resulting  liquid  mixture 
contains  the  rubber  in  a  colloidally  dispersed  form 
>nd  resembles  natural  rubber  latex. — D.  F.  T. 

.Rubber]   latex;   Apparatus   for   the    treatment   of 

.     H.   A.   Wickham,   and   Roa,   Ltd.     E.P. 

177,262,  23.12.20. 

[tie  latex,  distributed  evenly  over  an  endless  band 


inside  a  suitable  chamber  is  exposed  to  a  current  of 
smoke  which  enters  at  the  lower  end  of  the  chamber. 
The  smoke  current  leaves  by  an  outlet  near  the 
upper  end  of  the  chamber  a  little  below  the  point  of 
entry  of  the  latex.  To  direct  the  flow  of  the  smoke 
the  mouth  of  the  outlet  is  provided  on  one  side  with 
a  scoop,  while  the  outlet  pipe  is  also  provided  with 
an  internal  annular  trough  to  prevent  any  con- 
densed moisture  trickling  back  into  the  smoke 
chamber.— D.  F.  T. 

<i     materials;     Process    for    .       S.     J. 

Peaehey.       E.P.     177,566,     23.11.20.      Addn.    to 
129,826  (J.,  1919,  688  a). 

Fabrics,  paper,  leather,  rubber,  wood,  metal,  or 
stone  may  be  rendered  waterproof  by  the  applica- 
tion of  a  covering  of  vulcanised  rubber  gel  or  of  a 
mixture  of  solutions  capable  of  yielding  such  a  gel, 
vulcanisation  being  effected  in  the  manner  described 
earlier.— D.  F.  T. 

Rubber;   Method   of   treating   manufactured   . 

R.  B.  Martin.    U.S. P.  1,410,699,  28.3.22.    Appl., 
14.5.19. 

The  surface  of  hardened  rubber  is  treated  with  a 
mixture  of  a  non-injurious  oil  with  a  rubber-restor- 
ing substance,  e.g.  cottonseed  oil  and  aniline. 

— D.  F.  T. 

Vulcanisation  accelerator.  M.  L.  Weiss,  Assr.  to 
Dovan  Chemical  Corp.  U.S. P.  1,411,231,  28.3.22. 
Appl.,  12.11.21. 

A  disubstituted  guanidine  is  introduced  into  the 
rubber  mixture  for  the  purpose  of  expediting 
vulcanisation. — D.  F.  T. 

Fibrous    material;   Process   of   treating  [with 

rubber]    and    product    thereof.      E.    Hopkinson. 
U.S. P.  1,411,786,  4.4.22.     Appl.,  24.4.20. 

FiBRors  lAiterial,  e.g.  thread  or  fabric,  is  treated 
with  rubber  latex  and  the  water  then  eliminated. 
If  desired,  a  layer  of  rubber  containing  a  vulcanis- 
ing ingredient  may  be  applied  to  the  treated 
material,  which  is  finally  vulcanised. — D.  F.  T. 

Recovering  benzene  vapour.    G. P.  348,287.  See  III. 

Coating  compositions.     E.P.  156,149.     See  XIII. 

Riiliber-compounding  ingredients.  G.P.  349,699. 
See  XIII. 


XV.-LEATHEH;  BONE;  HORN;  GLUE. 

Tannin;   Time   and   concentration   factors   in   com- 
bination  of  with    liulc   substance.       A.   W. 

Thomas  and  M.  W.  Kelly.     J.  Ind.  Eng.  Chem., 
1922,  14,  292—294. 

Weighed  portions  of  hide  powder  were  shaken 
with  tan  solution  of  six  different  concentrations, 
filtered,  washed  until  no  non-tannins  were  present  in 
the  filtrate  as  shown  by  testing  with  ferric  chloride, 
dried,  and  the  weight  of  tannin  adsorbed  per 
100  g.  of  protein  (Nx5'614)  determined.  Quebracho 
and  gambier  were  used  and  three  series  of  adsorp- 
tion tests  were  carried  out  on  each  for  6  hrs.,  72 
hrs.,  and  2  weeks  respectively.  Quebracho  showed 
in  every  case  a  well-marked  maximum  when  the 
weight  of  tannin  adsorbed  per  100  g.  of  protein 
was  plotted  against  the  concentration  of  the  tannin 
solution,  an  increase  in  the  latter  above  a  certain 
point  causing  a  falling  off  in  the  weight  of  tannin 
adsorbed.  Gambier,  on  the  other  hand,  gave  a 
steady  increase  of  adsorption  with  the  increase  in 
the  concentration  of  tannin  solution  used.  It  is 
considered  that  the  astringent  nature  of  quebracho 
causes   a   hardening  of   the   outer   coating   of   the 


381a 


Cl.  XVI.— SOILS;  FERTILISERS. 


[May  31,  1922. 


particles  of  hide  which  prevents  its  action  on  the 
interior,  while  gambier,  being  less  astringent, 
gradually  tans  the  whole  mass. — H.  C.  R. 

Catechin;  Optical  activity  of  .     K.  Feist  and 

A.  Futtermenger.  Ber.,  1922,  55,  942—944.  (Cf. 
Feist  and  Schon,  J.,  1921,  92  A ;  Freudenberg, 
J.,  1921,  521  a.) 
The  observation  of  the  optical  activity  of  catechin 
in  water,  alcohol,  or  aqueous  acetone  is  rendered 
very  difficult  by  the  impossibility  of  using  any  but 
very  dilute  solutions.  Exact  values  can  only  be 
obtained  when  the  hydroxy  groups  of  the  catechin 
are  protected  by  esterification  or  etherification. 
The  acetyl  derivatives  of  three  different  specimens 
of  catechin  examined  in  acetylene  tetrachloride 
solution  gave  the  values  [a]Dl5=  +35°,  -13°,  and 
-30°  respectively. — H.  W. 

Patents. 

Hides;    Tanning    of    .       J.    R.     Zink.       G.P. 

346,197,  11.10.19. 
Tanning  is  carried  out  by  the  simultaneous  use  of 
formaldehyde  and  m-dihydroxybenzene,  or  of  form- 
aldehyde and  the  low-molecular  condensation  pro- 
ducts of  formaldehyde  and  resorcinol  in  aqueous 
solution.  Electrolytes  such  as  acids  or  salts,  for 
instance  lactic  acid,  sodium  chloride,  aluminium 
sulphate,  and  sodium  acetate,  or  other  substances, 
may  be  added  to  the  partially  spent  liquor  to  renew 
its  activity.  The  process  may  be  used  in  conjunc- 
tion with  other  tanning  and  dyeing  processes. 

— H.  M. 

Tanning  materials;  Production  of  from  sul- 
phite-cellulose waste  liquor.  Deutsch-Koloniale 
Gerb-  und  Farbstoff-Ges.  m.b.H.  G.P.  347,201, 
23.8.17. 
The  liquor  from  which  saccharine  matter  is 
removed  by  fermentation  is  neutralised  by  calcium 
hydroxide  or  carbonate,  filtered,  and  electrolysed 
with  a  current  of  about  2  amperes  and  15 — 20  volts. 
Calcium  hydroxide  is  deposited  at  the  negative 
pole  and  ligninsulphonic  acids  almost  free  from  cal- 
cium at  the  anode,  which  latter  products  may  be  at 
once  used  for  tanning,  or  may  be  concentrated  by 
evaporation.  The  proportion  of  tanning  to  non- 
tanning  substances  in  the  electrolysed  liquor  is  3:1 
and  the  proportion  of  ash  in  the  tanning  substances 
is  similar  to  that  of  vegetable  tanning  materials. 
The  proportion  of  tanning  substances  is  higher 
when  the  liquor  has  been  subjected  to  alcoholic 
fermentation  prior  to  the  process. — H.  M. 

Glue;  Process  of  and  apparatus  for  extracting 

from  raw  materials  by  means  of  steam  and  water. 
K.  Niessen.  E.P.  (a)  156,646  and  (n)  156,647, 
6.1.21.  Conv.,  27.11.  and  8.12.19. 
(a)  The  extraction  is  performed  systematically  ina 
battery  of  extractors,  operating  in  each  extractor 
first  with  steam  under  vacuum  and  then  with  hot 
water,  the  water  being  forced  from  one  extractor 
to  the  next  till  the  desired  degree  of  saturation  is 
attained.  The  first  extraction  process  in  an  extrac- 
tor charged  with  fresh  raw  material  is  short,  the 
duration  increasing  with  each  subsequent  extrac- 
tion so  that  the  glue  liquor  is  uniformly  saturated. 
The  boiler  is  of  such  capacity  that  the  steam 
generated  suffices  for  heating  one  charge  of  steep- 
ing liquid  for  each  extractor  in  the  series  and  the 
beating  surface  is  so  arranged  that  the  periods  for 
evaporating  the  several  quantities  of  steeping 
liquids  increase  progressively.  The  heated  cooling 
water  and  condensed  water  from  the  extractors  are 
utilised  as  steeping  liquor  and  the  apparatus  is  pro- 
vided with  automatic  regulators  on  steam  and 
liquor  lines  actuated  by  floats,  (d)  The  extractor 
may  be  divided  into  two  concentric  compartments 


of  equal  capacity,  steam  under  vacuum  and  water 
boiled  under  vacuum  acting  alternately  in  each 
compartment  on  the  raw  material,  the  steam  being 
in  one  while  the  water  is  in  the  other. — H.  C.  R. 

Wood    glue;    Manufacture    of    .      F.     Sichel 

Komrn.-Ges.,  and  E.  Stern.  G.P.  348,542, 
20.5.19. 
Alkaline  starch  decomposition  products  containing 
at  least  25%  of  starch  are  wholly  or  partially 
neutralised  by  treatment  with  feeble  acid-forming 
gases,  such  as  sulphur  dioxide  or  carbon  dioxide. 
The  deleterious  action  of  the  alkali  upon  wood  i3 
thus  prevented  without  loss  of  adhesive  power. 

— L.  A.  C. 

Alkali  silicate.     U.S.P.  1,373,224.     See  VII. 

Dispersoids  etc.    E.P.  156,142.    See  XIII. 


XVI.-S0ILS ;  FERTILISERS. 

Soil  acidity  and  its  effect  on  germinating  plants. 

O.  Lemmermann  and  L.   Fresenius.     Z.   Pnanz. 

Dung.,  1922,  A,  I,  12—32. 
Three  types  of  acidity  are  distinguished,  namely, 
the  actual  acidity  of  the  soil  moisture  due  to  the 
presence  of  acids,  the  latent  acidity  developed  in 
the  presence  of  solutions  of  neutral  salts  due  to  base 
exchange,  whereby  salts  of  iron  and  aluminium 
appear  in  the  soil  extract  and  produce  acidity  by 
hydrolysis,  and  the  latent  acidity  developed  in  the 
presence  of  salts  of  weak  acids  and  strong  bases, 
where  the  base  is  absorbed  by  the  soil  colloids  and 
the  acid  remains  in  the  soil  extract.  The  third 
type  of  acidity  is  not  considered  important  from  the 
plant  physiological  point  of  view.  Titratable 
acidity  of  these  three  types  and  hydrogen  ion  con- 
centration show  a  general  agreement  for  a  number 
of  soils  examined.  The  toleration  of  seedlings  of 
cereals  to  acidity  varies,  being  greatest  in  the  case 
of  oats  and  least  in  the  case  of  wheat.  Soil  acidity 
must  be  considered  in  relation  with  manurial  treat- 
ment. Soils  may  have  little  active  acidity  but 
marked  latent  acidity.  With  such  soils  no  injurious 
effect  due  to  acidity  is  observable  unless  dressings 
of  neutral  salts  such  as  potassium  chloride  are  also 
given.  The  .acceptance  of  any  particular  degree  of 
acidity  as  measured  by  pH  as  critical  is  not  to  be 
recommended  owing  to  the  varying  toleration  of 
acidity  by  plants.     {Cf.  J.C.S.,  May.)— G.  \V.  R. 

Soil  acidity;  Factors  in  the  development  of  . 

J.  Konig,  J.  Hasenbaumer,  and  E.  Kroger.    Z. 

Pflanz.  Dung.,  1922,  A,  1,  3—12. 
Normal  applications  of  superphosphate,  potassium 
salts,  and  ammonium  6alts  produce  slight  increases 
in  soil  acidity  as  measured  by  p„.  Sodium  nitrate, 
nitrolim,  and  basic  slag  have  little  effect,  while 
calcium  carbonate  decreases  acidity.  Similar  results 
are  obtained  with  soil  carrying  a  crop  of  oats.  In 
experiments  with  soil  carrying  different  crops,  peas, 
lupins,  and  buckwheat  give  an  increase  in  soil 
acidity,  whilst  maize,  grass,  clover,  and  mustard 
give  slight  decreases.  The  results  are  in  agreement 
with  observations  on  the  aciditv  of  the  root  sap  of 
the  plants  used.    (Cf.  J.C.S.,  May.)— G.  W.  R. 

Cultivation    and    nitrogen    fertilisation.      H.    A. 

Noyes,  J.  H.  Martsolf,  and  H.  T.  King.  .  J.  Inu- 

Eng.  Chem.,  1922,  14,  299—302. 
Organic  matter  favours  nitrate  formation  in  soils, 
as  also  does  cultivation.  Early  applications  of 
sodium  nitrate  and  proper  cultivation  give  consider- 
able quantities  of  nitrates  in  vineyards  at  the  time 
second  applications  are  often  made.  Turning  under 
cover  crops  in  vinevards  in  the  spring  gives  an  n 
creased  content  of  nitrates  in  the  soil.     Exaimna- 


Vol.  XIX,  No.  10.] 


Cl.  XVII.—  SUGARS  ;  STARCHES  ;  GUMS. 


385  a 


tion  of  soil  from  well-cultivated  vineyards  at 
regular  intervals  during  the  growing  season  showed 
the  presence  of  considerable  amounts  of  nitrates 
except  at  the  start  of  the  growingseason.  An  appli- 
cation of  available  nitrogen  at'  ploughing  time 
would  therefore  appear  to  be  sufficient. — H.  C.  R. 

Cyanamide    in    some    fertiliser   mixtures.      W.    S. 
Landis.    J.  Ind.  Eng.  Chem.,  1922,  14,  143—145. 

Experiments  with  a  large  range  of  fertiliser  mix- 
:  tures  containing  cyanamide  showed  that  little,  if 
I  any,    of   the    latter    is    transformed    into    dicyano- 

diamide,  as  stated  by  Harger  (J.,  1921,  93  a). 

— W.  P.  S. 

Fertilisers;  Formation  of  dicyanodiamide  in  . 

J.  E.  Breckenridge.     J.  Ind.  Eng.  Chem.,  1922, 
14,  145. 

The  author  finds  that  dicyanodiamide  is  not  present 
,in  mixed  fertilisers  containing  cyanamide  and  8% 
|  of  available  phosphoric  acid,  and  he  is  unable  to 

confirm  the  statement  of  Harger  that  cyanamide  is 
.converted  gradually  into  dicyanodiamide  (J.,  1921, 
J93a).— W.  P.  S. 

Patents. 

'Phosphatic  manures;  Process  for  the  manufacture 

!of .  H.  O.  Traun's  Forschungslaboratorium 
G.m.b.H.  E.P.  156,124,  30.12.20.  Conv.,  5.11.19. 
Insoluble  phosphates,  such  as  slag  phosphate,  are 
'converted  to  a  colloidal  form  and  rendered  suitable 
jfor  use  as  manures  by  treatment  with  a  large 
^quantity  of  water  and  about  O'l  to  3%  of  a  mineral 
.acid  or  alkali  in  a  high-speed  disintegrator,  such 
(as  that  described  in  E.P.  155,836  (page  357  a).  The 
product  is  subsequently  filtered  and  dried.  The 
process  may  be  carried  out  at,  e.g.,  90°  to  95°  C, 
or  under  pressure,  and  other  substances  which  act 
is  protective  colloids,  e.g.,  tannin,  or  6alts  of 
lysalbinic  acid  or  humic  acid,  or  the  like,  may  also 
be  added.— L.  A.  C. 

?o$  inoculation;   Composition   of  matter  for,   and 

method  of  .     W.  B.  Guv.     U.S.P.  1,411,088, 

28.3.22.     Appl.,  17.5.21. 

The  composition  consists  of  a  fertilising  substance 
n  combination  with  yeast. — A.  G.  P. 

fertilisers  containing   phosphoric   acid  and   potas- 
sium;  Process   for   the    production    of- .     T. 

Haege.    U.S.P.  1,411,696,  4.4.22.    Appl.,  22.3.21. 

dhosphatic  material,  alkali  silicates  and  lime  (or 
narl)  are  melted  together. — A.  G.  P. 


XVII.-SUGADS ;    STAHCHES;  GUMS. 

Iieet  juices;  Use  of  lime  containing  magnesia  for 
the  carbonatation  of  —. — .     K.  Andrlik  and  W. 
Kohn.    Z.  Zuckerind.  Czechoslov.,  1922,  46,  263— 
1   267. 

Jsing  a  lime  made  from  a  dolomite  containing 
5"76%  CaO,  16-40%  MgO.  juices  were  obtained  in 
iboratory  experiments  which  after  carbonatation 
.'ere  clearer,  lighter,  and  sometimes  purer  than 
hose  obtained  under  otherwise  similar  conditions 
.ith  the  use  of  lime  made  from  limestone  contain- 
ing a  minimum  amount  of  magnesia.  So  long  as  the 
lkalinity  of  the  first  carbonatation  was  maintained 
t  about  0'1%,  no  magnesia  passed  into  the  juice, 
he  procedure  adopted  being  to  add  1\  %  of  the  lime 
s  milk  at  17°  B.  (sp.  gr.  T134)  to  the  juice  heated 

Io  80°  C.,  saturate  with  carbon  dioxide  to  an 
lkalinity  of  01%,  filter,  heat  the  filtrate  to  80°  C, 
aturate  with  carbon  dioxide  to  0'01%,  heat  to  boil- 
ig  point,  and  lastly  to  filter  again. — J.  P.  0. 


Syrups,  molasses  and  liquors  of  the  beet  factory  and 
refinery;  Use  of  dolomitic  lime  for  the  carbona- 
tation of  the .    K.  Andrlik  and  W.  K'ohn.    Z. 

Zuckerind.  Czechoslov.,  1922,  46,  311—315. 

In  laboratory  experiments  on  the  use  of  lime  con- 
taining a  high  percentage  of  magnesia  for  the  car- 
bonatation of  beet  products  such  as  green  syrup, 
molasses  resulting  from  the  affining  of  raw  sugar, 
and  liquor  produced  by  the  remelting  of  raw  sugar, 
the  increase  in  purity  and  decrease  in  colour  were 
particularly  satisfactory  in  comparison  with  results 
obtained  with  lime  containing  a  minimum  amount 
of  magnesia,  a  constituent  which  hitherto  has 
always  been  considered  deleterious.  As  in  the  ex- 
periments with  beet  juices  (cf.  supra),  "  gassing  " 
with  carbon  dioxide  was  stopped  at  an  alkalinity 
of  about  0\L%,  after  which  filtration  and  a  second 
carbonatation  to  neutrality  followed,  under  which 
conditions  no  appreciable  amount  of  magnesia 
passed  into  solution  in  the  product  treated 

—J.  P.  O. 

Beet  juice ;  Separation  previous  to  carbonatation  of 

the  precipitate  produced  by  the  liming  of  . 

V.     Stanek    and    J.    Vondrak.      Z.     Zuckerind. 
Czechslov.,  1922,  46,  299—306. 

Block  (Deutsche  Zuckerind.,  1918,  383;  1919,  321) 
and  others  have  advocated  the  preliminary  addi- 
tion of  a  small  amount  of  lime  to  the  heated  juice, 
and  the  removal  by  filtration  of  the  precipitate 
thus  produced,  claiming  that  the  amount  of  lime 
subsequently  required  for  effecting  carbonatation 
can  thus  be  diminished.  Experiments  carried  out 
by  the  authors,  however,  show  that  no  economy  in 
lime  can  be  realised  by  this  procedure. — J.  P.  O. 

Decolorising  charcoal;  Preparation  and  evalua- 
tion of  a  from  bagasse.     C.  E.  Coates.     J. 

Ind.  Eng.  Chem.,  1922,  14,  29-5—298. 
The  quantify  of  colour  left  in  the  solution  after 
decolorising  was  taken  as  a  measure  of  the  efficiency 
of  a  charcoal,  one  leaving  5%  being  twice  as  efficient 
as  one  leaving  10%.  The  bagasse  charcoals  were 
compared  with  a  good  grade  commercial  decoloris- 
ing charcoal  on  a  standard  test  solution  (3%  solu- 
tion of  third  molasses).  6  g.  of  charcoal  was  added 
to  200  c.c.  of  test  solution  and  the  mixture  heated 
in  a  boiling  water  bath  for  10  min.  with  occasional 
agitation.  The  filtered  solutions  were  compared 
when  cool  in  a  Duboscq  colorimeter.  The  acidity 
was  found  to  exercise  a  marked  effect  on  the  effici- 
ency of  decolorisation  so  that  for  these  comparative 
experiments  a  standard  hydrogen  ion  concentration 
of  0'007iV  was  used.  The  bagasse  charcoal  was 
prepared  by  heating  the  bagasse  to  500° — 600°  C.  in 
an  improvised  retort  for  15 — 20  min.,  grinding  to 
70  to  90-mesh,  extracting  with  hot  water,  and  dry- 
ing. The  product  was  then  heated  to  800°  C.  in  an 
electric  furnace  for  1  hr.,  boiled  with  20%  sodium 
hydroxide  and  subsequently  with  hydrochloric  acid 
(1:1),  washed  and  dried  by  "heating  to  200°  C.  The 
resulting  charcoal  had  a  decolorising  power  of  260 
as  compared  with  the  standard  100.  It  is  particu- 
larly efficient  in  removing  the  red  colouring  sub- 
stances, and  can  be  revivified  either  by  boiling  with 
5%  sodium  hydroxide  and  then  with  5%  hydro- 
chloric acid  or  by  retorting  in  the  usual  way. 
Yellow  commercial  hydrochloric  acid  used  for  wash- 
ing the  char  came  through  quite  colourless. 

— H.  C.  R. 

Clarification  of  solutions  containing  reducing  sugars 

by  basic  lead  acetate.    Effect  of  different  delead- 

ing  agents.     D.  T.  Englis  and  C.  Y.  Tsang.     J. 

Amer.  Chem.  Soc,  1922,  44,  865—867. 

The  removal  of  excess  of  basic  lead  acetate,  used  as 

a  clarifying   agent,   from   solutions  of  dextrose  or 

kevulose  results  in  the  loss  of  sugar.     Of  the  agents 

tried,   namely,   potassium   oxalate,   disodium  phos- 


386  a 


Cl.  XVIII.— FERMENTATION  INDUSTRIES. 


[May  31.  1922. 


phate,  potassium  sulphate,  potassium  sodium  tar- 
trate, and  sodium  carbonate,  the  least  loss  of  sugar 
occurred  when  disodium  phosphate  was  used.  In 
general  the  loss  of  laevulose  is  much  greater  than 
that  of  dextrose.  If  the  precipitate  is  washed  a 
much  smaller  loss  is  observed. — W.  G. 

d-Glucose;  Catalytic  hydrog enation  of  .  Pre- 
liminary note.  W.  E.  Cake.  J.  Amer.  Chem. 
Soc.,  1922,  44,  859—861. 
When  dextrose  is  hydrogenated  in  Ar/2  potassium 
hydroxide  solution  in  the  presence  of  platinum 
black  d-sorbitol  and  d-mannitol  are  obtained. 

— A\ .  G. 

Ammonia;  Becovery  of  from  the  evaporator 

condensed  water  of  the  beet  sugar  factory.  K. 
Andrlik  and  V.  Skola.  Z.  Zuckerind.  Czechoslov., 
1922,  46,  275—285,  287—292. 
Laboratory  experiments  are  described  demonstrat- 
ing that  it  is  impracticable  to  recover  the  ammonia 
present  in  the  condensed  water  drawn  from  the 
multiple  effect  evaporator  of  a  beet  sugar  factory 
(c/.  J.,  1921,  315  a).  Only  88"7%  of  the  total  nitro- 
gen in  this  water  is  present  as  ammonia  and  it  is 
there  in  a  very  dilute  state.  Distillation  in  an 
apparatus  provided  with  a  dephlegmator  is  shown  to 
be  an  uneconomical  method  of  effecting  the  con- 
centration of  the  ammonia. — J.  P.  O. 

[.Sugar]    canes,    Myoporum    exudation,    Australian 

fungi  and  fruits;  Aiudyses  of  Fijian  native  . 

T.  Steel.  Proc.  Linnean  Soc,  N.S.W.,  1921,  46, 
487—491. 
"  Vico  "  cane,  considered  to  be  a  variety  of  Sac- 
charurn  officinarum,  contains  only  about  3%  of 
sucrose  and  1%  of  reducing  sugars;  but  in 
"  Anani,"  a  native  cane,  10-88%  of  sucrose,  0'52% 
of  reducing  sugars,  15"54%  of  fibre,  and  0"26%  of 
water-soluble  ash,  were  found.  Roots  of  the 
Dragon  tree  (Cordyline  terminalis),  which  after 
roasting  are  used  as  food  by  the  natives,  contain 
'30%  of  inulin  and  3-3%  of  laevulose  (and  no  starch) 
when  raw,  and  40%  of  Isevulose  and  7 — 10%  of 
caramel  when  cooked.  A  dark  brown  exudation 
from  Myoporum  platycarpum  was  found  to  contain 
89-65%  of  mannitol,  2"87%  of  reducing  sugars,  and 
1-1%  of  ash.  Various  Australian  fungi  (including 
Peziza  fasciculosa,  Polyporus  mylittae,  and  Xylo- 
stroma  giga.nteum)  contained  from  03  to  6'86e_  of 
nitrogen  (on  the  dry  matter).  Analyses  are  given 
of  a  number  of  Australian  fruits. — J.  P.  0. 

Fluorescent  powers  of  sugars.    Lewis.    See  V. 

Patents. 

Decolorising  carbon;  Process  for  the  regeneration 

of .     J.  N.  A.  Sauer.     E.P.  177,180,  20.6.19. 

After  washing  with  water,  the  spent  carbon  is 
boiled  with  a  solution  of  hydrochloric  acid,  or  other 
suitable  acid  other  than  sulphuric  acid,  the  acid 
being  subsequently  separated,  and  the  carbon 
washed.  This  treatment  may  be  repeated  several 
times,  after  which  the  carbon  is  submitted  to 
revivification  in  two  steps,  one  of  these  consisting 
in  an  acid  treatment  as  described,  and  the  other  in 
re-burning,  the  latter  step  sometimes  preferably 
preceding  the  other;  or,  acid  treatment,  re-burn- 
ing, and  another  acid  treatment  may  be  succes- 
sively applied. — J.  P.  O. 

Sugar;  Recovery  of  from  press  and  diffusion 

waters  and  saturation  scum.  H.  J.  N.  Kessener 
and  N.  L.  Sbhngen.  G.P.  345,551,  9.6.16.  Conv., 
8.6.  and  16.11.15  and  22.2.16. 

Press  water,  diffusion  water,  or  a  mixture  of  both 
is  treated  with  the  whole  or  a  large  portion  (at  hast 


one-quarter)  of  the  saturation  scum  produced.  A 
heavy  floeculent  precipitate  is  formed,  and  the 
clarified  liquid  is  returned  for  use  again. — J.  R. 

Sugar;  Manufacture  of  without  the  produc- 
tion of  molasses.  A.  A.  Holland.  G.P.  348,064, 
20.6.18. 
The  residual  juices  from  the  refining  process  after 
filtration  and  removal  of  salts,  if  necessary,  are 
converted  into  sugar  suitable  for  consumption  by 
direct  drying  by  means  of  heated  air ;  for  example 
juice  may  be  atomised  in  contact  with  a  current  of 
warm  air. — J.  R. 

Starch-conversion    products.      U.S. P.     1,411,203-4. 
See  XIXa. 

XVIII.-FERMENTATION  INDUSTRIES. 

Invertase.  II.    R.  Willstiiiter  and  F.  Racke.   Anna 

len,  1922,  427,  111—141. 
AYith  regard  to  the  nature  of  the  enzymatic  pro- 
cess by  means  of  which  invertase  may  be  set  free 
from  the  yeast  cell,  and  the  condition  in  which  it 
occurs  in  the  cell,  the  general  conclusion  is  reached 
that  the  invertase  occurs  chemically  free  but  is 
closed  in  and  prevented  from  diffusing  by  the 
membranes  of  the  cell  structure.  The  function  of 
the  liberating  enzyme,  which  is  evidently  a  poly- 
saccharase,  like  tannase  or  diastase,  is  to  destroy 
these  membranes  so  that  the  invertase  can  dissolve 
and  diffuse  away.  The  following  process  for 
extracting  invertase  is  an  application  of  this  view. 
The  yeast  is  killed  by  means  of  warm  ethyl  acetate 
which  destroys  the  polysaccharase  originally  pre- 
sent. A  proteolytic  enzyme,  such  as  pepsin  or 
trypsin,  is  then  added  to  dissolve  out  the  proteins. 
Finally  the  invertase  is  liberated  by  the  action  of 
diastase.     (Gf.  J.C.S.,  May.)— C.  K.  I. 

TFines    from    flooded    vineyards;    Composition    of 

.     L.    Semichon    and   R.    Dutauziet.     Ann. 

Falsif.,  1922,  15,  6—20. 

During  last  summer  certain  vineyards  were  flooded 
when  the  grapes  were  ready  for  gathering;  a  great 
,  quantity  of  the  grapes  were  destroyed  completely, 
but  a  portion,  more  or  less  covered  with  mud,  was 
harvested  and  used  for  wine  making.  The  wines 
contained  a  relatively  large  quantity  of  total  solids 
(20 — 27  g.  per  1.)  and  of  ash  (4—6  g.  per  1.);  the 
amount  of  potassium  bitartrate  was  usually  low 
and  the  total  tartaric  acid  was  in  all  cases  very 
much  less  than  the  total  potassium.—  W.  P.  S. 

Wines;  Determination  of  sulphur  dioxide  in  . 

Martini  and  A.  Nourrisson.     Ann.  Falsif.,  1922, 

15,  25—26. 
Two  c.c.  of  phosphoric  acid  is  placed  in  a  distilla- 
tion flask  connected  with  a  receiver  containing 
10  c.c.  of  A7/60  potassium  bichromate  solution  ami 
the  air  is  exhausted  from  the  whole  apparatus : 
50  c.c.  of  the  wine  is  then  admitted  to  the  flask 
through  a  tapped  funnel  and  distilled  under 
reduced  pressure  for  5  mins.  The  contents  of  the 
receiver  are  transferred  to  a  flask,  boiled  to  expel 
traces  of  alcohol,  and  the  excess  of  bichromate  is 
determined  by  adding  2  c.c.  of  hydrochloric  acid  to 
be  hot  solution,  cooling  the  mixture,  adding  3  c.c. 
of  2V/10  potassium  iodide  solution  and  titratii 
liberated   iodine  with  2V/10  thiosulphate  solution. 

— AV.  P.  S. 

Patents. 

Froth  of  fermenting  or  boiling  liquids;  Treatment 

of   and    apparatus    therefor.       Vorein   der 

Spiritus-Fabrikanten  in  Deutschland.  E.r- 
155,290,  15.12.20.     Conv.,  19.8.16. 

Froth  is  removed  from  the  surface  of  the  liquids 


Vol.  XLI.,  No.  10.] 


Cl.  XIXa.— FOODS. 


387  a 


by  suction  through  nozzles,  operated  by  compressed 
air,  steam,  etc.  The  froth  is  projected  against  the 
wall  of  a  casing  and  the  separated  liquid  returned 
to  the  main  bulk. — A.  G.  P. 

Worts;  Process  and  apparatus  for  pre-f  ermentation 

of  - under   the    conditions   of    natural    and 

absolute  pure  ueast  culture.     W.  Greiner.     G.P. 
349,258,  13.8.20. 
Heavily    hopped    wort    of    high    concentration    is 
I  brought    to    fermentation    with    natural    yeast    in 
I  closed  vessels  protected  against  infection  and  con- 
|  nected  with  a  wort  steriliser  and  a  yeast  cylinder 
[  by  sterilised  tubes,  and  when  fermenting  strongly, 
is  transferred  into  the  usual  fermentation  vats  con- 
taining the  main  'wort.     In  working  with  absolute, 
pure  yeast  cultures,   an   apparatus  for   producing 
the  same  is  attached  to  the  vessels. — L.  A.  C. 

Ferment    filter.      M.     Kiutsi.       U.S. P.     1.412.818, 
11.4.22.     Appl.,  10.11.15.     Renewed  4.2.22. 

See  E.P.  16,096  of  1915;  J.,  1917,  42. 


XIXa. -FOODS. 

Bough;  Loss  of  carbon  dioxide  from  as  an 

index  of  //"»/•  strength.  C.  H.  Bailev  and  M. 
Weigley.  J.  Ind.  Eng.  Chem.,  1922,"  14,  147— 
150. 

| The  loss  of  carbon  dioxide   per   unit  increase  in 
i  volume  of  dough  under  definite  conditions  affords 
a  measure  of  the  gas-holding  capacity  of  the  dough 
land  is  a  means  of  distinguishing  "  strong  "   from 
"  weak  "  flours.     The  dough  is  prepared  by  knead- 
ting  together  flour  350,  yeast  4'35,  salt  5"25,  sugar 
j8'75  g.,  and  a  sufficient  quantity  of  water,  and  is 
then  divided  into  two  portions;  one  of  these  is  used 
iimmediately     for     the     determinations     described 
below,  whilst  the  other  is  fermented  at  28°  C.  for 
4   hrs.    before    being   tested.      In    both    cases,    the 
portions  are  weighed  into  aliquot  parts  each  repre- 
senting 50  g.  of  flour ;  one  of  these  is  placed  in  a 
cylinder  containing  600  c.c.  of  water  and  its  volume 
is  measured ;   another  portion   is   placed   in   a   dry 
graduated  cylinder   and   its   volume   noted   as   fer- 
iientation    proceeds,    whilst     a    third     portion    is 
moulded  into  a  shallow  iron  pan,  7  cm.  in  diameter 
|ind  l-8  cm.  in  depth.     This  pan  is  then  placed  in  a 
dass   vessel;    a    current    of    air    free    from    carbon 
lioxide  is  passed  into  the  top  of  the  latter  and  the 
>otton:  of  the  vessel  is  connected  with  an  absorp- 
ion  tower  containing  a  definite  volume  of  standard 
larium  hydroxide  solution.     The  absorption  vessel 
s  replaced  by  another  every  30  mins.  and  the  resi- 
lual    barium    hydroxide    titrated.      The    following 
esults  were  obtained  with  two  flours:  — 


Time. 


Strong  flour. 


Weak  flour. 


Carbon 
dioxide  loss. 


Volume  of 

dough. 

c.c. 


Carbon 

dioxide  loss. 

mg. 


Volume  of 

dough. 

cc. 


Mia. 

0 
30 
60 
90 
120 


No  previous  fermentation. 


151 
29-6 
41-9 
50-6 


63 

78 

113 

165 

203 


25-4 

46-3 

740 

1130 


63 

74 
101 
144 
183 


Fermented  normally 


0 



71 

62 

30 

27-4 

14.". 

31 

128 

60 

64-9 

219 

710 

176 

90 

101-6 

254 

133  5 

180 

-W.  P.  s. 


Sour  mill:;   Analysis   of  .      A.    Kling  and  A 

Lassieur.  Ann.  Falsif.,  1922,  15,  95—101. 
If  the  state  of  the  milk  is  such  that  the  sample 
cannot  be  made  homogeneous,  the  determination 
must  be  carried  out  on  the  whole  sample.  The 
content  of  total  solids  of  a  milk  no  longer  fresh 
must  always  be  suspect  and  niav  be  very  different 
from  that  of  the  fresh  milk.  It  bears  no  relation 
to  the  appearance  of  the  sample  when  analysed. 
The  determination  of  fat  is  more  reliable  and 
varies  little  with  time.  The  aciditv  of  the  fat 
obtained  should  however  be  determined  to  ensure 
that  the  glycerides  are  not  partially  hydrolysed. 
The  determination  of  casein  precipitated  by 
acid  is  quite  unreliable  in  the  case  of 
sour  samples.  The  determination  of  lactose  is 
of  doubtful  value,  but  is  best  carried  out  by  Hildt'<= 
method  (J.,  1919,  ol.O.  The  ash  is  affected 
by  the  partial  volatilisation  of  chlorides  to  the  ex- 
tent of  2%  or  more.  The  total  nitrogen  is  quite 
unaffected.  It  is  recommended  that  decisions  on 
samples  of  milk  which  have  become  sour  be  based  on 
determinations  of  butter  fat  and  total  nitrogen. 
The  careful  cleansing  of  sample  bottles  for  milk  is 
recommended  and  wherever  possible  the  keeping  of 
samples  in  refrigerators. — H.  C.  R. 

red  fish;  Chemical  examination  of  G 

Hinard.  Ann.  Falsif.,  1922,  15,  72—79. 
The  presence  of  ptomaines  affords  no  proof  of  de- 
composition having  set  in,  and  the  presence  of 
ammonia  also  gives  no  certain  indication.  The 
ratio  of  ammoniacal  nitrogen  to  total  soluble 
nitrogen  is  however  of  importance  in  judging  the 
state  of  preserved  fish.  Experiments  were  carried 
m  hake  ("  colin,"  "  merlu  ")  flesh.  The  fish 
was  macerated  with  water  for  18  hrs.,  1  litre  of  ex- 
tract corresponding  to  600  g.  of  fish,  and  the  liquid 
txu.ict  heated  alone  to  100°  C.  and  115°  C.  (in 
an  autoclave)  and  to  the  same  temperatures  with 
the  addition  of  1%  and  2%  of  glacial  acetic  acid. 
In  no  case  was  the  presence  of  peptone  detected. 
The  ratios  of  ammoniacal  nitrogen  to  total  dissolved 
nitrogen  given  by  four  different  samples  of  well  pre- 
pared sterile  preserved  hake  were  4'4%,  o-0%,  5-3% 
and  57,.  A  recently  prepared  and  merchantable 
sample  of  preserved  herrings,  prepared  with  fish 
previously  transported  under  unfavourable  condi- 
tions, gave  a  ratio  of  12'8%.  On  the  other  hand,  a 
bad  sample  of  hake  which  had  a  strong  odour  gave 
a  ratio  of  24'7%.  This  ratio  increases  gradually 
with  time  in  the  case  of  preserved  fish  as  in  that  of 
meat.  In  one  case  the  average  figure  increased 
from  11*8%  to  15-8%  after  storage  for  14  months, 
in  another  from  4"6%  to  6'7%  after  12  months.  The 
quantity  of  nitrogen  titratable  by  foraiol  remains 
however  fairly  constant.  Chemical  analysis  alone 
only  affords  vague  indications  of  the  state  of  pre- 
servation of  fish. — H.  C.  R. 

Fish  scales:  Value  of as  a  means  of  identifica- 
tion of  the  fish  used  in  manufactured  products. 
R.  E.  Essery.     Analyst,  1922,  47,  163—166. 

The  microscopical  examination  of  scales  separated 
from  canned  fish  products  is  utilised  as  a  source  of 
information  as  to  the  variety  of  fish  used. — A.  G.  P. 

P-Naphthol;  Detection  of in  foods,  spices,  and 

beverages.  Y.  Kinugasa  and  H.  Tatsuno.  Yaku- 
gakuzasshi  (J.  Pharm.  Soc.  Japan),  1922,  Xo. 
479,  18—24. 

The  method  is  a  modification  of  Riegler's  method 
for  the  detection  of  nitrous  acid  in  water  (J.,  1897, 
699).  For  the  detection  of  /3-naphthol  in  soya- 
sauce,  for  example,  100  c.c.  of  the  sauce  is  acidified 
with  a  mixture  of  15  c.c.  of  sulphuric  acid  and  the 
same  volume  of  water,  and  shaken  with  200  c.c. 
of    a    mixture    of    equal    volumes    of    ether    and 


388  a 


Ci»  XIXa.— FOODS. 


[May  31,  1922. 


petroleum  ether.  The  ethereal  solution  is  evapo- 
rated and  the  residue  is  extracted  thrice  with 
10  c.c.  of  petroleum  ether  each  time.  The  extract 
is  evaporated  and  the  residue  is  dissolved  in 
10  c.c.  of  water,  the  solution  filtered  and  shaken 
with  10  c.c.  of  petroleum  ether.  The  petroleum 
ether  solution  is  evaporated  and  the  residue  dis- 
solved in  a  6mall  quantity  of  water,  to  which  2  drops 
of  sodium  naphthionate  solution  (0'1%),  1  drop  of 
sodium  nitrite  solution  (01%)  and  1  drop  of  hydro- 
chloric acid  are  added  and  shaken.  When 
ammonia  is  added  gradually  to  the  solution,  a  rose- 
red  colour  develops,  owing  to  the  formation  of 
Fast  Red  A,  which  dyes  red  shades  on  wool  and  on 
cotton  mordanted  with  alum.  O'OOl  mg.  of  /J- 
naphthol  in  1  1.  gives  the  coloration. — K.  K. 

Baking  powder;  Determination  of  carbon  dioxide 

in .    C.  S.  Robinson  and  S.  L.  Bandemer.    J. 

Ind.  Eng.  Ohem.,  1922,  14,  119. 

A  method  proposed  originally  by  Van  Slyke  for  the 
determination  of  carbon  dioxide  in  blood  plasma 
(J.,  1917,  944;  cf.  also  J.,  1920,  130a)  may  be  ap- 
plied to  the  determination  of  total  and  residual 
carbon  dioxide  in  baking  powder.  To  determine 
total  carbon  dioxide,  0"l  g.  of  the  sample  is  treated 
as  described  in  the  original  paper;  for  the  residual 
carbon  dioxide,  2  g.  of  the  sample  is  mixed  with 
20  c.c.  of  water,  the  mixture  is  kept  at  ordinary 
temperature  for  20  mins.,  then  heated  at  100°  C. 
for  20  mins.,  and  finally  boiled  for  1  min.  After 
cooling,  the  mixture  is  diluted  to  25  c.c,  and  1  c.c. 
of  this  solution  is  used  for  the  determination. 

— W.  P.  s. 

Cacao   beans   and  cocoa;   Theobromine   content   of 

.    R.  V.  Wadsworth.  Analyst,  1922,  47,  152— 

163. 
The  theobromine  content  of  many  types  of  beans 
was  determined  by  the  method  described  previously 
(J.,  1921,  192  a).  The  figure  varies  with  the  variety 
and  with  the  amount  of  fermentation  to  which  the 
bean  has  been  subjected.  The  extreme  figures  were 
0-9  and  1-7%  of  the  shelled  bean  or  22— 3-9%  of  the 
dried,  fat-free  material.  The  amount  of  theobrom- 
ine in  the  shell  varies  more  than  that  in  the  bean, 
and  increases  during  fermentation.  The  germ  as 
separated  commercially  contains  2T%  of  theo- 
bromine. There  is  no  appreciable  loss  of  theo- 
bromine during  roasting.  Manufactured  cocoas 
have  in  general  a  higher  theobromine  content  than 
is  usually  accepted. — A.  G.  P. 

Esters  in  flavouring  extracts.    Beyer.    See  XX. 

Patents. 

Cooling  apparatus  serving  to  cool  fatty  substances, 

emulsions,  and  the  like;  Rotary  .     H.  J.  J. 

Bigum.  E.P.  155,755,  21.12.20.  Conv.,  22.12.19. 
The  annular  space  through  which  the  cooling  liquid 
flows  in  rotary  cooling  drums  for  margarine  manu- 
facture is  made  very  narrow  and  less  in  width  than 
the  radial  depth  of  the  ribs  on  the  inside  of  the 
drum-shell.  The  speed  of  flow  of  the  cooling  liquid 
is  thereby  increased  and  with  it  the  rate  of  heat 
transmission.  An  inner  cylindrical  wall  may  be  pro- 
vided having  recesses  to  receive  the  reinforcing  ribs, 
or  the  inner  cylindrical  wall  may  be  divided  into 
several  elements  inserted  between  the  reinforcing 
ribs  and  located  between  an  inner  cylinder  and  the 
inner  face  of  the  cooling  cylinder .— H.  C.  R. 

Edible  product;  Esterified  .     C.  Ellis.     U.S. P. 

1,372,616,  22.3.21.    Appl.,  29.6.17. 
Ethyl  stearate  (m.p.  about  26°  0.),  ethyl   palmi- 
tate,  or  a  mixture  of  the  two,  prepared  by  esterifi- 
cation  of  the  fatty  acid  or  mixture  of  acids  with 
alcohol   in   presence  of   sulphuric   acid,   and   freed 


from  noxious  and  odorous  impurities  by  treatment 
with  steam,  is  suitable,  in  admixture  with  other 
fatty  material,  for  use  as  a  shortening  agent. 

Pectic  substances,  and  process  for  making  the  same 
F.  W.  Huber.  U.S. P.  1,410,920,  28.3.22.  Appl., 
8.11.20.  | 

Fruit  or  vegetable  matter  is  treated  with  an 
alkaline  solution,  and  acid  is  added  to  the  resulting 
solution  until  a  precipitate  of  a  poetic  substance 
is  formed  which  consists  of  a  gel  irreversible  to 
colloidal  solution  by  treatment  with  water  alone. 

—J.  R. 

Malted  food  and  process  of  producing  the  same. 
R.  Wahl.  U.S. P.  1,410,973,  28.3.22.  Appl., 
10.12.20. 

Degerminated  and  ground  kiln-dried  malt  is  made 
into  a  dough  which  is  divided  into  particles  and 
baked  to  increase  the  canamelisation. — J.  R. 

Food;  Article  of .  M.  Schenk,  Assr.  to  Stein- 
Hall  Mfg.  Co.  U.S. P.  1,411,192,  28.3.22.  Appl, 
28.10.18. 

A  claim  is  made  for  a  food  product  consisting  of  a 
starch  conversion  product  containing  starch  and 
starch  sugars  to  the  extent  of  at  least  6%  of  amyl- 
ose  and  its  polymers  (cf.  infra). — J.  R. 

Starch-conversion  product.  Method  of  preparing 
starch  conversion  products  [for  use  in  improving 
doughl.  R.  E.  Bright,  Assr.  to  Stein-Hall  Mfg. 
Co.  U.S. P.  1,411,203—4,  28.3.22.  Appl.,  7.2.21 
and  17.12.21. 

Dry  starch  material  is  treated  with  |%  of  hydro- 
chloric acid,  diluted  to  about  11°  B.  (sp  gr.  1'08), 
and  subjected  to  heat  until  substantially  all  the 
water  is  driven  off,  heating  being  continued  at  a 
high  temperature  until  a  dry  product  containing 
more  than  6%  of  mono-  and  poly-saccharides  is 
obtained.  The  dry  degradation  product  thus  pre- 
pared may  be  used  for  improving  dough. — J.  P.  0. 

Cocoa  and  calcium  chloride;  Homogeneous  durable 

mixture   of  and  process  for  producing  the 

same.      E.    Felheim.      U.S.P.    1,411,618,    4.4.22. 
Appl.,  16.7.20. 

A  concentrated  solution  of  calcium  chloride  is 
added  to  dry  cocoa  so  as  to  obtain  a  product  con- 
taining calcium  chloride,  cocoa,  and  about  70%  of 
a  chemical  combination  of  calcium  chloride  and 
cocoa. — J.  R. 

Malted,  milk  preparation;  Process  for  the  produc- 
tion  of   a  .      Siichsische   Malzindustrie   und 

Nahrmittelfabr.  K.  S.  Felix.  G.P.  347,231. 
12.10.19. 
A  product  which  is  very  easily  assimilated  is 
obtained,  by  the  infusion  mashing  process  from 
skimmed  milk  and  a  malt  which  is  of  high  enzyme 
content  and  practically  free  from  acidity.  After 
treatment  on  the  floor  with  the  minimum  accesi 
of  air,  the  malt  is  treated  at  the  most  favourable 
temperature  for  enzyme  formation  in  completely 
closed  kilns  without  exposure  to  air,  and  then  the 
kilning  is  completed  as  usual. — J.  R. 

Proteins;  Process  of  obtaining  from  legumin- 
ous seeds.  J.  Pohl.  G.P.  348,755,  31.5.19. 
Solutions  of  proteins  obtained  by  treating  legu- 
minous seeds  with  solutions  of  sodium  chloride  or 
the  like  are  treated  with  acid  to  convert  the  pro- 
tein into  acid  albumin.  The  protein  is  precipitated 
from  solution  in  the  form  of  coarse  flakes  by 
neutralising  the  acid  with  alkali,  and  pouring  the 
solution  into  a  large  bulk  of  water. — L.  A.  C. 


Vol.  XIX,  Ko.  10.] 


Cl.  XIXb.— WATER    PURIFICATION;     SANITATION. 


389  a 


XIXb.-WATEB  PURIFICATION;  SANITATION. 

Corrosion  of  iron;  Control  of by  de-activation 

of   water.     F.   N.    Speller.     J.    Franklin   Inst., 
1922,  193,  515—542. 

Corrosion  of  iron  in  closed  systems,  e.g.,  boilers, 
hot  water  systems,   and  pipes,  is  determined  to  a 
great  extent  by  the  amount  of  free  oxygen  in  solu- 
tion in  the  water.    The  influence  of  the  composition 
of  the  iron  is  relatively  small  compared  with  other 
factors.     Protective  coatings  are  ineffective  in  com- 
I  parison   with  the   removal  of  oxygen   from   water. 
:  American  practice  favours  the  removal  of  dissolved 
|  oxygen  by   contact  with   a  large  surface   of  scrap 
.  iron,  or  expanded  metal,  followed  by  filtration  of 
I  the  water  to  remove  suspended  iron  oxide.     Resi- 
dual oxygen  may  be  reduced  to  0'75  c.c.  per  1.  or 
less  by  this  means,  dependent  on  the  temperature, 
volume    of    water,    and    other    factors.       Heating 
water  to  200°  F.   (93°  C.)   in   a  vented   container 
'.  under  atmospheric  pressure  will  reduce  the  oxygen 
content   to    0"5  c.c.   per   1..    and   most   feed    water 
heaters,    if    vented,    partially    attain    this    result. 
Cold  water,  if  corrosive,  e.g.,  sea-water,  loses  80% 
'  of  its  dissolved   oxygen   when   subjected  to   a  high 
j  vacuum.     Chemical  and  mechanical  means  may  be 
combined    for    the    de-activation    of    water    under 
specialised  conditions.     (Cf.  Cobb  and  Dongill,  J., 
1914,  403;  Kestner,  J.,  1921,  67  T.)— C.  A.  K. 

Activated    sludge    [seu-age    purification]    process; 

Preliminary  studu   of  the  .     J.   A.   Wilson, 

W.  R.  Copeland,'  and  H.  M.  Heisig.  J.  Ind. 
Chem.,  1922,  14,  128—130. 

Although  hydrogen  ion  concentration  is  an 
important  factor  in  the  filtration  of  sludges  (cf.  J., 
1921,  559  a),  other  conditions  have  a  considerable 
effect  on  the  rate  of  filtration.  Low  temperature 
interferes  with  the  filtration  but  aeration  improves 
the  rate.  Aeration  is  more  effective  at  22°  C.  than 
at  34°  C,  but  the  action  is  not  merely  mechanical, 
jsince  aeration  with  hydrogen  makes  the  sludge 
worse  whilst  air  or  oxygen  makes  it  better;  if,  how- 
ever, the  sludge  is  covered  with  xylene,  oxygen  is 
of  no  more  value  than  is  hydrogen. — W.  P.  S. 

Air;  Determination  of  small  quantities  of  injurious 

acids    in   .      G.    Lambris.      Z.    anal.    Chem., 

1922,  61,  20—40. 

Flue  gases  may  contain  sulphurous,  sulphuric,  and 
lydroehloric  acid  gases  which  have  an  injurious 
iction  on  vegetation.  To  determine  the  amounts 
)f  these  acids  the  air  is  aspirated,  for  2 — 3  hrs.  at 
he  rate  of  about  100  1.  per  hr.,  through  two  absorp- 
ion  vessels  the  first  of  which  is  packed  with  cotton 
vool  moistened  with  water  and  the  second  with 
otton  wool  moistened  with  hydrogen  peroxide, 
^he  sulphuric  and  hydrochloric  acids  and  10%  of 
he  sulphurous  acid  axe  absorbed  in  the  first  vessel 
nd  the  remainder  of  the  sulphurous  acid  is 
bsorbed  in  the  second  vessel.  The  usual  volu- 
letric  and  gravimetric  methods  are  employed  for 
he  determination  of  the  amounts  of  the  acids  in 
ach  vessel.  If  desired,  the  sulphurous  acid  col- 
?cted  in  the  first  vessel  may  be  expelled  and  trans- 

rred  to  the  second  vessel  by  means  of  a  current 
f  pure  air.     The  method  is  suitable  for  the  deter- 

lination  of  as  little  as  1  pt.  of  acid  per  500,000  pts. 

t  air.— W.  P.  S. 

ojcicity  of  apparatus  for  lighting  and  heating  and 

of  internal  combustion  engines;  Index  of  . 

Kohn  Abrest.     Comptes  rend.,  1922,   174,  1046 — 

1048. 

he  index  of  toxicity  is  the  ratio  of  CO/C02  in 
lie  gases  examined.  This  value  is  highest  in  the 
:haust  gases  from  a  petrol  motor.     The  value  for 


the  fumes  from  charcoal  or  coke  stoves  is  variable 
.ind  depends  to  a  large  extent  on  the  quality  of  the 
fuel.  With  the  usual  gas  heating  or  lighting 
apparatus  the  indices  are  not  high  except  in  the 
ase  of  defective  burners.  From  the  health  point 
of  view,  however,  the  ratio  in  the  products  of  com- 
bustion from  domestic  fittings  should  not  exceed 
001.— W.  G. 

Patents. 

(a,    c)    Oxygen;   Process   of  abstracting    from 

water  by  means  of  metallic  filters,  (b)  Eemoval 
from,  water  of  oxygen  dissolved  therein.  P. 
Kestner.  E.P.  (a)  164,711,  10.1.21,  (b)  164,712, 
17.1.21,  and  (c)  166,875,  10.1.21.  Conv.,  (a) 
10.6.20,  (b)  9.6.20,  (c)  22.7.20. 

(a)  To  obviate  the  clogging  of  filters  of  iron  filings 
by  layers  of  ferric  hydroxide,  filtering  is  periodi- 
cally suspended  to  allow  the  iron  to  react  with  the 
rust  formed.  Ferroso-ferric  hydroxide,  Fe3(OH)8, 
is  thus  produced,  and  will  absorb  oxygen  when  the 
flow  of  water  recommences,  (b)  In  the  process  of 
removing  oxygen  from  water  by  means  of  filters  of 
iron  turnings,  05  to  6%  of  manganese  is  added  to 
the  iron  to  increase  catalytically  the  rate  of  oxygen 
absorption,  (c)  The  suspension  of  filtration  de- 
scribed under  (a)  is  avoided  by  alternating  the 
direction  of  flow  of  the  water.  One  portion  of  the 
filtering  medium  is  thus  regenerated  while  the 
other  is  acting  as  a  filter. — A.  G.  P. 

Peat  moss;  Treatment  of to  be  employed  in  the 

purification  of  sewage  effluent,  waste  liquors  from 

factories  and  the  like,  and  apparatus  for  use  in 

said    purification.      E.    von    Springborn.      E.P. 

176,816,  3.9.20. 

The   peat  is  cut  in   rectangular  blocks,  soaked  in 

alum  solution,  and  dried  at  95°  C.  in  an  oven  from 

which  steam  can  escape  but  air  cannot  enter.     The 

apparatus  Yonsists  of   a  preliminary  accumulation 

tank  from  which  the  effluent  passes  through  a  series 

of   filtering   tanks   containing   sludge   screens    and 

filters  of  peat  moss  fitted  in  frames. — A.  G.  P. 

Sewage  and  other  foul  waters;  Means  for  aerating 

and  circulating .    J.  Bolton  and  M.  W.  Mills. 

E.P.  176,957,  15.1.21. 
A  single  tank  divided  by  a  shell  wall  into  an  inner 
and  an  outer  settling  compartment  is  employed. 
Sewage  is  discharged  slowly  at  the  top  into  the 
inner  compartment  and  is  aerated  and  circulated 
therein.  The  sewage  passes  through  the  openings 
at  the  base  of  the  shell  wall  into  the  outer  com- 
partment in  which  it  rises  slowly.  A  state  of  prac- 
tical quiescence  exists  in  this  compartment  and  the 
sludge  readily  settles.  The  purified  liquid  flows 
continuously  over  a  sill  into  an  effluent  channel. 

— J.  R. 

Disinfecting,  insecticidal,  and  fungicidal  composi- 
tions. W.  Carpmael.  From  Farbenfabr.  vorm. 
F.  Bayer  und  Co.  E.P.  177,027,  25.2.21. 
A  mixture  of  sulphur  and  a  sulphide  of  an  alkali 
or  alkaline-earth  metal  (other  than  calcium  sul- 
phide) gives  a  product  which  in  the  dry  condition 
is  stable  on  exposure  to  air.  By  the  addition  of 
water  even  in  large  amounts  a  very  effective  disin- 
fectant is  produced. — J.  R. 

Air  containing  carbon  monoxide  or  other  poisonous 

impurities;  Process  and  apparatus  for  purifying 

——.      H.    Guillemard.      G.P.    348,694,    6.7.20. 

Conv.,  3.10.17. 

Impure   air  containing,    e.g.   carbon   monoxide,   is 

passed  successively  through  two  chambers  connected 

by    a   curved    tube.     The    first    chamber    contains 

pumice   stone   saturated   with   a   mixture   of    iodic 

acid,   iodine  pentoxide,  or  periodic   acid  and  eul- 


390  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c.         [May  31,  1922. 


phuric  acid  to  oxidise  carbon  monoxide  to  carbon 
dioxide,  which  is  absorbed,  together  with  iodine 
liberated  by  the  reaction,  by  charcoal,  alkali  hydr- 
oxides, or  alkali  peroxides  in  the  second  chamber. 

— L.  A.  C. 

Finely  divided  sulphur.    E.P.  177,103.    gee  VII. 

Base-exchanging  compound.  E.P.  177,746.   See  VII. 

Electric  gas-generator.    U.S.P.  1,374,237.    See  XI. 

XX.— ORGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Laudanine;  Synthesis  of  .     E.  Spath  and  N. 

Lang.     Monatsh.,   1921,   42,   273—285.     (Cf.  J., 
1921,  24  a.) 

The  synthesis  of  laudanine  has  been  successfully 
accomplished.  Homoisovanillic  acid  (3-hydroxy-4- 
methoxyphenylacetic  acid)  was  synthesised,  the 
carbethoxy-derivative  prepared  and  converted  into 
the  acid  chloride.  This  was  condensed  with  /3- 
aminoethy]-3.4-dimethoxybenzene,  forming  a  com- 
pound, which,  on  treatment  with  phosphorus  pent- 
oxide,  was  converted  into  an  isoquinoline  deriva- 
tive. This  was  converted  into  the  corresponding 
methylisoquinolinium  chloride  which,  when  re- 
duced, the  carbethoxy  group  being  removed  at  the 
same  time  by  hydrolysis,  gave  laudanine,  identical 
with  the  natural  alkaloid.     (Cf.  J.C.S.,  June.) 

— E.  H.  R. 

Anhalonium  [cactus]  alkaloids.  III.  Constitution 
of  anhaline.  E.  Spath.  Monatsh.,  1921,  42,  263— 
266. 
The  identity  of  anhaline  with  hordenine,  the  active 
constituent  of  malt,  has  been  confirmed  by  direct 
comparison  of  the  bases  and  of  a  number  of  deriva- 
tives (cf.  J.,  1919,  843  a).— E.  H.  R. 

Alkaloids  of  the  Pareira-root.  II.  Isochondoden- 
drine.  P.  Faltis  and  F.  Neumann.  Monatsh., 
1921,  42,  311—376.    (Cf.  J.,  1913,  306;  1915,  680.) 

The  alkaloids  of  the  Pareira-root,  to  which  the 
name  bebeerines  has  been  applied,  should,  it  is  pro- 
posed, be  known  as  chondodendrines,  since  the  true 
source  of  Pareira-root  is  Chondodendron  platy- 
phyllum,  and  it  has  no  relation  with  the  bebeerin 
tree,  Nectandra  Bodiaei,  as  has  been  supposed. 
The  chemical  decomposition  of  isobebeerine,  or  iso- 
chondodendrine,  has  been  studied  in  detail  and  a 
formula  is  proposed  for  the  monomethylated 
alkaloid.    (Cf.  J.C.S.,  June.)— E.  H.  R. 

Bicinine;  Constitution  of  .     E.  Spath  and  E. 

Tschelnitz.     Monatsh.,  1921,  42,  251—262. 

Two  decomposition  products  of  ricinine,  C8H,N02 
and  C,H8N02,  have  been  synthesised  and  their  con- 
stitutions established.  The  former  is  4-hydroxy-l- 
methyl-1.2-dihydropyrid-2-one  or,  less  probably,  the 
isomeric  pyrid^4-one.  The  second  compound, 
C,H9N02,  is  the  O-methyl  derivative  of  the  first. 
Ricinine  itself  cannot  be  the  methyl  ester  of  a 
carboxylic  acid  as  hitherto  supposed  (cf.  J.,  1918, 
441  a),  but  probably  contains  a  glyoxaline  ring 
fused  with  the  pyridine  ring.     (Cf.  J.C.S.,  June.) 

— E.  H.  R. 

Coto-bark;   Active   constituents   of   the   true   . 

Synthesis  of  cotoin.     E.   Spath   and   K.   Fuchs. 
Monatsh.,  1921,  42,  267—272. 

Coto'in,  which  is  a  nionomethyl  ether  of  2.4.6-tri- 
hydroxybenzophenone,  was  synthesised  by  methyla- 
tion  of  trihydroxybenzophenone  with  diazomethane 
in  ether  solution  at  -12°  C.  Although  somewhat 
loss  than  1  mol.  of  methylating  agent  was  used,  the 


product  contained,  besides  36%  of  cotoin,  26%  of 
methylcotoin  (2.4-dimethoxy-6-hydroxybenzophen- 
one)  and  2%  of  the  trimethoxy-compound.  Methyl- 
ation  of  2.4.6-trihydroxybenzophenone  with  methyl 
alcohol  and  hydrochloric  acid  gave  no  cotoin  and 
only  methyl  benzoate  was  isolated  from  the  reaction 
product.— E.  H.  R. 

Saponins.    VII.    A.  W.  van  der  Haar.    Ber.,  1922, 
55,  1054—1066. 

Many  sapogenins,  such  as  hederagenin  and  others, 
are  related  closely  to  one  another  and  to  the  terpene 
hydrocarbons  (e.g.  sesquiterpenes)  on  the  one  hand 
and  to  phytosterols  (sitosterol),  cholesterol,  and 
phytosterol-like  substances  on  the  other  hand. 
Hederagenin  is  decomposed  by  distillation  with  zinc 
dust  in  a  current  of  hydrogen  into  sesquiterpenes, 
carbon  dioxide,  and  water  in  accordance  with  the 
equation : 

C3„H(J(OH)2.CO2H+H2  =  2ClsH2,+C02+2H20. 
The  sesquiterpene,  which  is  volatile  with  steam  and 
gives  the  violet  coloration  characteristic  of  sapo- 
genins and  saponins  with  sulphuric  acid,  is  to  be 
regarded  as  the  primary  product  of  the  decomposi- 
tion. During  the  process  it  undergoes  partial  con- 
version into  terpene  hydrocarbons  which  are  not 
volatile  with  steam  and  give  a  bluish-green  colour 
with  glacial  acetic  and  sulphuric  acids.  The  volatile 
sesquiterpene  fraction  is  a  mixture.  (Cf.  J.C.S., 
May.)— H.  W. 

Arsphenamine  [salvarsan];  Sulphur  content  of 

and  its  relation  to  the  mode  of  synthesis  and  the 
toxicity.  I.  W.  G.  Christiansen.  J.  Amer. 
Chem.  Soc.,  1922,  44,  847—854.  (Cf.  J.,  1922, 
117  a;  Fargher  and  Pyman,  J.,  1920,  465  a.) 

The  total  sulphur  content  of  salvarsan  preparations 
varies  from  0'4  to  3%  according  to  the  method  of 
preparation,  and  those  which  have  the  highest 
sulphur  content  are  the  most  toxic.  There  is  no 
direct  relation  between  these  two  factors  however. 
Only  the  sulphur  in  excess  of  that  introduced  when 
3-nitro-4-hydroxyphenylarsonic  acid  is  reduced  by 
hydrosulphite  under  the  most  favourable  conditions 
has  any  great  effect  on  the  toxicity.  The  sulphonic 
acid  of  6alvarsan,  described  by  King  (J.,  1921,  636  a, 
789  a),  could  only  be  isolated  from  salvarsan  pre- 
parations made  from  the  nitro-acid  under  the  least 
favourable  conditions.  The  presence  of  this  sul- 
phonic acid  cannot  account  for  the  whole  of  the  high 
toxicity  which  is  found. — W.  G. 

Arsphenamine  [salvarsan'];  Sxdphur  content  of 

arid  its  relation  to  the  mode  of  synthesis  and  the 
toxicity.  II.  W.  G.  Christiansen.  J.  Amer. 
Chem.  Soc.,  1922,  44,  854—859.  (Cf.  supra.) 
Highly  toxic  salvarsan  preparations  with  high 
sulphur  content  prepared  by  the  hydrosulphite  re- 
duction of  3-nitro-4-hydroxyphenylarsonic  acid 
differ  from  those  obtained  from  known  mixtures  of 
3-amino-4-hydroxyphenylarsonic  acid  and  its  5-sul- 
phonic  acid,  in  several  points,  such  as  the  rate  sit 
which  the  sulphonic  acid  separates  from  the  alcohol 
solution,  the  effect  of  temperature  on  the  formation 
of  the  precipitate,  the  ease  of  separation  of  the  pre- 
cipitate from  the  mother  liquor,  and  the  rate  of 
death  of  rats  when  the  preparations  are  injected 
intravenously.  These  differences,  it  is  suggested, 
may  be  due  to  heating  causing  a  rearrangement  of 
6onie  unstable  substance  or  to  an  alteration  in 
colloidal  properties. — W.  G. 

Organic     nitro     compounds     containing     mercury. 

G.  W.  Raiziss  and  A.  Proskouriakoff.     J.  Amer. 

Chem.  Soc.,  1922,  44,  787—793. 
The   introduction  of  mercury  into  the  nucleus  in 
the  case  of  nitrophenols  and  nitrosalicylic  acid  is 
effected  by  warming  the  compound  in  water  with 


Vol.  xu,  No.  10.]     Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  4o. 


391  a 


either  mercuric  oxide  or  acetate  for  several  hours. 
A  mixture  of  mono-  and  dimercurated  products 
usually  results.  The  ehloromercuri-compounds  are 
obtained  from  the  corresponding  acetoxymercuri- 
compounds  by  the  action  of  hydrochloric  acid.  The 
biological  properties  of  these  compounds  have  been 
examined  and  sodium  hydroxymercuri-o-nitrophen- 
oxide  was  found  to  be  far  superior  to  the  others  in 
its  bactericidal  action.     (Cf.  J.C.S.,  May.) — W.  G. 

Cyanamide;  Syntheses  with  .     Cyanamidoethyl 

alcohol  and  guanidoethyl  alcohol.  E.  Fromm  and 
E.  Honold.     Ber.,  192*2,  55,  902—911. 

Cyanamidoethyl  alcohol,  CN.NH.CH2.CH,OH,  is 
an  oily  liquid  which  could  be  neither  cauesd  to  crys- 
tallise nor  distilled  without  decomposition  even  in  a 
vacuum,  is  prepared  by  the  action  of  ethylene 
chlorohydrin  on  an  aqueous  solution  of  sodium 
cvanamide.  It  is  converted  by  treatment  of  its 
boiling  alcoholic  solution  with  gaseous  ammonia  into 
guanidoethvl  alcohol, 

NH  :  C(NH2).NH.CH,.CH2OH, 
which  could   not  be  purified.     (Cf.   J.C.S.,   May.) 

— H.  W. 

I 

Hydroxylamine.    I.    Simple  method  of  preparation 

of  free  hydroxylamine.  H.  Lecher  and  J.  Hof- 
mann.     Ber.,  1922,  55,  912—919. 

Free  hydroxylamine  is  prepared  by  the  gradual 
addition  of  a  solution  of  sodium  ethoxide  in  ethyl 
alcohol  to  a  well-stirred  suspension  of  finely  divided 
hydroxylamine  hydrochloride  in  the  same  medium ; 
the  rate  of  addition  must  be  so  regulated  that  the 
local  alkalinity  produced  by  each  drop  of  the 
ethoxide  solution  disappears  instantaneously.  The 
precipitated  sodium  chloride  is  removed,  and  the 
filtrate  is  allowed  to  remain  undisturbed  in  a 
freezing  mixture  of  ice  and  salt  until  it  attains 
-18°  C.  The  large  crystals  of  hydroxylamine  thus 
produced    are    filtered,     washed    thoroughly    with 

I  absolute  ether  and  brought  into  a  desiccator  which 
s  immediately  evacuated.  In  this  manner  there 
s  no  loss  of  hydroxylamine  by  decomposition 
luring  the  preparation,  but  about  5'4%  of  it  is 
etained  by  the  precipitated  sodium  chloride.  The 
ield  of  solid  hydroxylamine  is  about  40%  of  that 
I  heoretically  possible,  but  the  remainder  can  be 
ecovered  readily  as  hydrochloride  from  the  alcc- 
lolic  mother  liquor.  The  product  contains  about 
>"%  of  hydroxylamine,  the  remainder  being  water. 
t  is  somewhat  less  stable  than  specimens  purified 
'V  distillation,  and  is  sensiblv  changed  after  being 
reserved  for  24  hours.     (Cf.  J.C.S.,  May.)— H.  W. 

liters;  Determination  of in  imitation  flavour- 
ing extracts.  G.  F.  Beyer.  J.  Ind.  Eng.  Chem., 
1922,   14,  324—325. 

jx  commonly  used  esters  are  completely  recovered 
y  distillation  with  50%  alcohol,  provided  the  re- 
eiving  flask  is  properly  closed  with  a  mercury  trap 
alve.  All  imitation  flavouring  extracts  should  be 
istilled  before  the  total  esters  are  determined,  as 
?ducing  sugars  which  may  be  present  will  react 
ith  the  alkali.  Water  is  not  a  satisfactory 
iponification  medium.  Saponification  was  expe- 
ited  by  allowing  the  mixture  of  esters  and  sodium 
vdroxide  to  stand  in  a  well-stoppered  bottle  over- 
ight.  Half  an  hour  on  a  steam  bath  is  then 
ifficient  to  complete  saponification. — H.  C.  R. 

Idehydes   and    ketones;    Estimation    of  by 

means  of  hydroxylamine.  A.  H.  Bennett  and 
F.  K.  Donovan.     Analyst,  1922,  47,  146—152. 

he  oxime  method  of  Bennett  (J.,  1909,  159)  for 
ie  estimation  of  citral  in  lemon  oil  was  applied 
•  the  analysis  of  other  aldehydes  and  ketones, 
^rmaldehyde,  acetone,  benzaldehyde,  and  cin- 
imic  aldehyde  gave  almost  theoretical  results, 
imphor  failed  to  give  satisfactory  figures.    With 


carvone  the  experimental  conditions  must  be  care- 
fully standardised.  Fairly  good  results  were  ob- 
tained with  citronellal  and  citral. — A.  G.  P. 

Chemical  reactions  caused  by  the  silent  discharge. 
Miyamoto.     See  XI. 

Patents. 

Acetaldehyde ;  Method  of  manufacturing from 

acetylene.     Stockholms  Superfosfat  Fabr.  Aktie- 
bolag.     E.P.  155,775,  22.12.20.     Conv.,  16.12.19. 

In  the  manufacture  of  acetaldehyde  by  passing 
acetylene  through  a  catalytic  solution  containing 
mercury  sulphate  and  sulphuric  acid,  the  solution 
is  withdrawn  continuously  from  the  reaction  vessel 
and  pumped  successively  through  a  wide  vertical 
tube  in  which  mercury  mud  and  other  insoluble 
impurities  settle  out,  a  steam-heated  vessel  to  expel 
dissolved  acetaldehyde,  an  electric  oxidation  vessel 
in  which  mercury  is  used  as  the  anode  to  maintain 
the  concentration  of  mercury  in  the  solution,  and 
a  steam-jacketed  heater  whence  the  liquid  returns 
to  the  reaction  vessel.  Mercury  mud  is  removed 
from  the  deposition  tube  and  treated  for  the 
recovery  of  mercury,  and  acetaldehyde  may  be  ex- 
pelled from  the  liquid  by  other  means  than  by 
heating,  e.g.,  by  vacuum  distillation. — L.  A.  C. 

Chlorinated  hydrocarbons;  Process  for  the  manu- 
facture   of    low-boiling    .     H.     0.     Traun's 

Forschungslaboratorium  G.m.b.H.    G.P.  156,139, 
31.12.20.     Conv.,  8.12.19. 

Low-BorLiNG  chlorinated  hydrocarbons  are  prepared 
by  treating  petroleum  hydrocarbons,  or  tar  or  resin 
oils,  or  the  like,  with  chlorine  or  hydrochloric  acid, 
either  by  passing  a  mixture  of  oil  with  chlorine  or 
hydrogen  chloride  through  a  tube  containing  filling 
material  such  as  quartz  or  porcelain  heated  to 
600° — -1000°  C,  or  over  a  white-hot  platinum  spiral, 
or  by  spraying  a  mixture  of  oil  and  hydrochloric 
acid  into  a  retort  heated  to  600°— 800°  C,  or  by 
heating  a  mixture  of  oil  and  hydrochloric  acid  to 
250° — 400°  C.  under  a  pressure  of  20—100  atm.  in 
an  autoclave,  with  or  without  the  addition  of  metal 
chlorides.  The  products  are  condensed,  neutralised 
with  lime,  and  purified,  e.g.,  by  fractional  dis- 
tillation.— L.  A.  C. 

Urea  from  cyanamides ;  Process  for  producing . 

E.  Lie,  and  A./S.  North- Western  Cyanamide  Co. 

E.P.  170,329,  16.6.20. 
Urea  is  produced  from  cyanamides,   e.g.,  calcium 
cyanamide,    by   treatment   with   neutral   or   basic, 
water-soluble     alkali     or     alkaline-earth     salts     in 
presence  of  water. — H.  R.  D. 

Urea;  Method  for  the  evaporation,  concentration 

and  drying  of  solutions  of  .     A.  L.  Mond. 

From  Metallbank  und  Metallurgische  Ges.  A.-G. 
E.P.  177,056,  17.3.21. 
Solutions  of  urea  prepared,  e.g.,  from  calcium 
cyanamide,  with  or  without  previous  concentration 
in  vacuo,  are  evaporated  by  bringing  a  horizontal 
stream  of  the  solution  atomised,  e.g.,  by  means  of  a 
disc  rotating  at  a  speed  of  10,000  revs,  per  min.,  in 
contact  with  a  current  of  air  at  100°— 170°  C,  in 
such  a  manner  that  the  horizontal  flow  of  the  stream 
is  maintained,  and  the  bulk  of  the  air  can  only  be 
drawn  off  at  the  periphery  of  the  mist  stratum.  A 
granular  product  is  obtained  containing  only  about 
1%  of  water,  and  there  is  no  loss  of  nitrogen. 

— L.  A.  C 

Ethylene  derivatives;  Manufacture  of  [from 

coal    gas~\.     W.    Carpmael.      From    Farbenfabr. 

vorm.F.  Bayer  und  Co.     E.P.  177,362,  23.2.21. 

A  mixture  of  coal  gas  from  which  benzene  and  tar 

have  been  removed,  containing,  e.g.,  2%  by  vol.  of 

ethylene,  and  1  mol.   of  chlorine,  bromine,  or  car- 


392  a 


Cl.  XXI.— photographic  materials  and  processes. 


[May  31,  1922. 


bonyl  chloride  per  1  rnol.  of  ethylene  is  passed 
through  a  tube  containing  charcoal  prepared  a.s 
described  in  E.P.  10,126  of  1914  (J.,  1915,  862). 
The  products  are  separated  from  the  charcoal  by 
distillation,  by  treatment  with  steam,  or  by  extrac- 
tion with  a  solvent,  e.g.,  ligroin.  The  reaction  may 
be  accelerated  by  mixing  the  charcoal  with  a  halo- 
gen carrier  such  as  antimony,  sulphur,  phosphorus, 
zinc,  iron,  or  chromium  halides. — L.  A.  C. 

Acetyl  mono-methyl  aryl  amines;  Process  of  manu- 
facturing — .     H.  T.  Clarke  and  W.  W.  Hart- 
man,    Assrs.    to    Eastman    Kodak    Co.      U.S. P. 
1,411,683,  4.4.22.    Appl.,  8.1.21. 
Acetylmonomethylarylaminf.s  are  prepared  by  the 
action  of  acetyl  chloride  on  dimethylarylamines,  at 
a   temperature  exceeding  the  boiling   point  of   an 
equimolecular  mixture  of  the  two  ingredients. 

— G.  I.  H. 

Glycol  and  formaldehyde;  Process  for  the  manufac- 
ture of .  Plauson's  Forschungsinst.  G.m.b.H. 

G.P.  344,615,  18.2.20. 
A  mixture  of  ethylene,  or  gas  containing  the  same, 
ozonised  air  or  oxygen,  and  steam  or  atomised 
water,  is  led  at  a  temperature  not  much  abovo 
100°  C.  through  towers  packed  with  porous  material 
impregnated  with  water  or  a  solution  of  a  catalyst. 
If  the  tower  contains  a  concentrated  alkaline  solu- 
tion, or  if  a  O'l — 1'0%  solution  of  potassium  per- 
manganate, potassium  perchlorate,  or  other  per- 
salt  is  employed,  a  yield  of  50 — 60%  of  glycol  and 
15—30%  of  formaldehyde  is  obtained,  but  in  the  ab- 
sence of  these  catalysts  about  70 — 80%  of  formalde- 
hyde and  15 — 20%  of  glycol  are  present  in  the  pro- 
duct. The  reaction  may  take  place  under  pressure, 
and  osmic  or  tungstic  oxide  may  also  be  employed 
as  catalyst. — L.  A.  C. 

Colloidal  solutions  of  silver  halides;  Process  of  pro- 
ducing   .     J.  D.  Riedel  A.-G.     G.P.  350,097, 

25.3.19. 

The    silver    halide    is    dispersed    in    a    solution    of 

gelatose. — J.  S.  G.  T. 

Terpin;  Process  for  preparing  hydrate  of  • .     R. 

Marchand.       U.S. P.     1,411,859,     4.4.22.      Appl., 

8.12.20. 
See  E.P.  153,606  of  1920;  J.,  1921,  716  a. 

Finely  divided  sulphur.    E.P.  177,103.    See  VII. 

Fatty  acid  esters.    G.P.  349,011.    See  XII. 

XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Photographic  papers;  Gloss  characteristics  of . 

L.  A.  Jones  and  M.  F.  Fillius.     Comm.  from  Res. 

Lab.  of  Eastman  Kodak  Co.    Brit.  J.  Phot.,  1922, 

69,  216—218,  229—232. 
The  gloss  of  a  paper  is  dependent  upon  the  relation 
between  the  light  which  is  diffusely  and  regularly 
reflected  respectively  from  the  paper  surface.  An 
instrument  termed  a  "  gonio-photometer  "  is  de- 
scribed which  consists  essentially  of  a  standard  light 
source  to  provide  incident  light  (preferably 
parallel),  and  a  photometer  by  means  of  which  the 
intensity  of  light  reflected  at  various  angles  by  the 
paper  can  be  measured.  The  gloss  value  of  the 
paper  is  obtained  by  comparing  the  brightness  of 
the  surface  when  viewed  normally,  and  at  the  angle 
of  specular  reflection  the  incident  light  falling  at 
45°.  With  another  instrument,  the  "  gloss  meter," 
direct  measurement  of  the  relative  brightness  of  the 
surface  viewed  normally  at  the  angle  of  regular 
reflection  is  obtained.  The  illuminating  beam  is 
incident  at  45°,  and  the  light  rays  leaving  the  paper 
surface  normally  and  at  45°  are  brought  to  inter- 
sect at  90°  in  a  photometer  cube.  The  brightness  of 
the  two  images  can  be  varied  by  means  of  neutral 


tint  wedges  and  a  photometric  balance  obtained. 
The  scale  carried  by  one  wedge  is  calibrated  to  read 
the  ratio  of  brightnesses,  or  directly  in  gloss  values. 
The  gloss  value  increases  rapidly  with  increase  in 
density  of  image  on  the  paper,  and  measurements 
should  therefore  be  made  on  fixed,  unexposed  paper. 
Classification  of  papers  according  to  the  numerical 
ranges  of  gloss  value  is  discussed. — W.  C. 

Optical  sensitisation.  III.  Zinc  oxide  as  an  optical 
sensitiser.  C.  Whither.  Z.  wiss.  Phot.,  1922,  21, 
141. 

Many  mixtures,  such  as  red  lead  and  glycerin, 
darken  when  exposed  to  light,  but  only  if  zinc  oxide 
is  also  added.  The  latter  acts  as  an  optical 
sensitiser,  for  it  is  completely  unaltered  during  the 
process.  This  phenomenon,  which  was  investigated 
for  a  large  number  of  different  mixtures,  is  how- 
ever due  to  some  unknown  impurity  in  the  oxide, 
and  has  no  connexion  with  the  visible  luminescence 
of  the  oxide.  A  similar  sensitising  action  on 
cyanino  was  found  with  red  lead  and  litharge. 
Sensitising  occurs  for  a  region  of  the  spectrum 
where  the  sensitiser  shows  in  itself  no  sensitivity, 
but  only  selective  absorption.  The  ultra-violet  ab- 
sorption of  a  number  of  solid  materials  wa6  deter- 
mined by  means  of  luminescence  observations. 
There  was  a  noticeable  potential  difference  between 
illuminated  and  non-illuminated  zinc  electrodes  in 
aqueous  solution. — G.  I.  H. 

Optical  sensitisation.  IV.  Ozone  formation  by 
optical  sensitisation.  C.  Winther.  Z.  wiss. 
Phot.,  1922,  21,  168.    (Cf.  supra.) 

The  conversion  of  oxygen  into  ozone  under  the  in- 
fluence of  ultra-violet  light  does  not  take  place  when 
the  oxygen  is  enclosed  in  a  glass  vessel,  since  only 
light  of  less  than  200  nil  is  effective.  It  was  found 
that  under  these  conditions  certain  sorts  of  zinc 
oxide  promote  the  ozone  production.  This  optical 
sensitisation  by  zinc  oxide  is  prevented  by  mum 
materials  (e.g.,  water,  litharge)  but  many  others 
(e.g.,  silver  nitrate)  are  without  influence. 

— G.  I.  H. 

Optical  sensitisation.     V.     C.   Winther.     Z.  wiss. 

Phot.,  1922,  21,  175.  (Cf.  supra.) 
The  theory  of  optical  sensitisation  is  discussed.  An 
optical  6ensitiser  is  a  selective  absorber,  which  has 
the  same  absorption  as  the  acceptor  (the  substance 
of  which  the  change  is  accelerated)  in  a  different 
spectral  region  from  that  for  which  it  sensitises,  or 
alternatively  it  forms  on  exposure  a  second  system 
which  in  returning  to  its  original  form  emits  a 
radiation  which  is  6trongly  absorbed  by  the 
acceptor.  This  radiation  is,  to  all  appearances, 
ultra-violet.  The  less  sensitive  a  process  is  for  a 
certain  wave-length  the  more  easily  is  it  optically 
sensitised  for  this  wave-length,  and  vice  versa. 

-G.  I.  H. 

Cyanine  dyes.    Mills.    See  IV. 

Patents. 
Photographic    paper;   Means   for   coating   vebs  of 

.    J.  W.  Davies.    E.P.  177,417,  14.4.21. 

Ferroprussiate  and  similar  printing  papers  are 
commonly  coated  by  drawing  the  paper  over  a  roller 
which  dips  into  "the  solution,  the  paper  being 
pressed  against  this  roller  by  a  single  fixed  com- 
panion roller.  The  invention  consists  in  replacing 
this  latter  roller  by  two  adjustable  rollers  held  in 
position  by  springs,  the  tension  of  which  may  be 
regulated,  thus  allowing  the  impregnation  of  the 
paper  to  be  accurately  controlled. — G.  I.  H. 

Photographic  papers;   Mrans  for  the  manufacture 

of  .     J.  W.  Davies.     E.P.   177,073,  L4.4.8L 

(Cf.  supra.) 

The  horizontal  heating  chamber  commonly  used  for 


Vol.  XIX,  Xo.  10]     Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


393  a 


the  rapid  drying  of  ferroprussiate  paper  after  coat- 
ing, is  extended  vertically  at  one  or  both  ends  in 
order  to  economise  floor  space. — G.  I.  H. 

Photographic  bath.  F.  A.  Elliot.  Assr.  to  Eastman 
Kodak  Co.  U.S.P.  1,411.687,  4.4.22.  Appl., 
13.4.21. 

In  an  acid  solution  for  the  treatment  of  photo- 
graphic material,  the  hydrogen  ion  concentration 
is  kept  constant  by  the  dissociation  of  a  suitable 
added  substance. — G.  I.  H. 

[Photographic]  image;  Bleached  and  coloured 

and  process  of  making  the  same.  AV.  V.  D. 
Kellev,  Assr.  to  Prizma,  Inc.  U.S.P.  1,411,968, 
4.4.22.     Appl.,  25.4.18. 

A  photographic  image  consisting  of  developed 
silver  is  converted  into  an  image  capable  of  mor- 
danting a  dye  by  means  of  a  bath  which  converts 
the  silver  into  a  salt  which  cannot  be  re-developed. 

— G.  I.  H. 


XXII.-EXPLOSIVES;  MATCHES. 

mr-Nitrotoluene ;  Nitration  of  — — .     0.  L.  Bradv. 
Chem.  Soc.  Trans.,  1922,  121,  328—331. 

The  author  contests  the  accuracv  of  Giua's  state- 
ment (J.,  1921,  718  a)  that  2.3.&-trinitrotoluene  is 
not  produced  by  the  trinitration  of  m-nitrotoluene. 
7/i-Xitrotoluene  was  nitrated  to  the  mixture  of  2.3-, 
2.5-,  and  3.4-dinitrotoluenes,  and  as  much  of  the 
last-named  as  possible  was  frozen  out.  The  remain- 
ing oil  was  further  nitrated  and  the  mixture  of  tri- 
nitrotoluenes was  washed  with  cold  alcohol,  the 
alcoholic  solution  was  evaporated  and  re-nitrated  to 
ensure  absence  of  dinitrotoluenes,  and  the  product 
was  treated  in  alcoholic  solution  with  hydrazine 
hydrate,  with  which  2.3.4-  and  2.4.5-trinitro- 
toluenes  had  been  shown  to  react  readily  with 
formation  of  dinitrotolylhydrazines,  whilst  2.3.6- 
trinitrotoluene  did  not  so  react.  After  30  mins.  the 
mixture  was  filtered  from  the  red  crystals  of 
dinitrotolylhydrazine.  The  mother  liquor  on  keep- 
ing deposited  yellow  crystals  which  after  recrystal- 
lisation  melted  at  110° — 1110  C,  and  showed  no 
depression  on  mixing  with  svnthetic  2.3.6-trinitro- 
toluene.— G.  F.  M. 

Patents. 

yitrocellulose:  Apparatus  for  making  .     H.  A. 

Kendall.  U.S.P.  1,410,814,  28.3.22.  Appl.,  6.3.19. 

The  apparatus  comprises  a  bath  of  liquid  and  a 
number  of  endless  belts  adapted  to  receive  the 
cotton  between  them  and  arranged  so  that  adjacent 
segments  travel  in  the  same  direction  through  the 
bath  of  liquid.— H.  C.  R. 

Cellulose-ester  products  [smokeless  powder];  Treat- 
ing   .     A.    AV.    Phillips.     U.S.P.    1,411,669, 

4.4.22.    Appl.,  3.1.22. 

The  viscosity  of  smokeless  powder  is  lowered  by 
heating  in  the  presence  of  a  non-solvent  liquid  until 
the  desired  degree  of  viscosity  is  attained. 

— H.  C.  R. 

High  explosive.  AV.  R.  Swint,  Assr.  to  E.  I.  du 
Pont  de  Nemours  and  Co.  U.S.P.  1,411,674, 
4.4.22.    Appl.,  11.8.21. 

An  explosive  composition  comprises  nitroglycerin, 
nitrocellulose,  and  3—15%  of  water.— H.  C."  R. 

Picric  acid;  Pemoval  of from,  waste  water  in 

its  manufacture.  J.  Klemenz.  G.P.  348,058, 
1.3.21.     Addn.  to  347,011  (J.,  1922,  271a). 

The  same  result  as  in  the  main  patent  is  attained 

by  leading  excess  of  gaseous  chlorine  directly  into 

the  water.— H.  C.  R. 


XXIII.-ANALYSIS. 

Phosphoric  oxide  treated  with  ozone;  Use  as  a  dry- 
ing agent  of  .     J.   J.   Manley.     Chem.  Soc. 

Trans.,  1922,  121,  331—337. 

Phosphoric  oxide  for  use  as  a  drying  agent  free 
from  all  substances  having  measurable  vapour 
pressures  and  from  impurities  which  by  interaction 
with  the  reagents  give  rise  to  gaseous  matter,  can 
be  prepared  from  commercial  samples  containing 
phosphorous  oxide  by  treatment  with  ozone  at 
175° — 303°  C.  The  oxide  is  set  up  in  the  drying 
chamber  in  a  small  air  bath  and  treated  with 
powerfully  ozonised  air  in  situ,  the  temperature 
of  the  bath  being  gradually  raised,  until,  when  the 
escaping  gas  is  highly  and  continuously  charged 
with  ozone  at  303°  C,  oxidation  of  the  impurities 
is  complete.  The  purified  oxide  is  obtained  in  a 
loose  powdery  form  very  suitable  for  drying  pur- 
poses. It  is  free  from  phosphorous  oxide,  and  its 
purity  is  6Uch  that  physical  measurements  carried 
out  in  its  presence  are  entirely  unaffected.  High 
chemical  purity  is  not  aimed  at.  Mere  traces  of 
phosphorous  oxide  markedly  affect  the  quality  of 
the  oxide  as  a  drying  agent. — P.  A".  M. 

Molecular  weight;  A  micro-method  for  the  deter- 
mination of  in  a  melting  point  apparatus. 

K.  Rast.     Ber.,  1922,  55,  1051—1054. 

Advantage  is  taken  of  the  unusually  great  depres- 
sion of  the  freezing  point  of  camphor  by  dissolved 
substances.  AVeighed  quantities  of  the  substance 
and  camphor  are  melted  together,  mixed,  and 
allowed  to  solidify.  The  melting  point  of  the  mix- 
ture is  determined  in  the  usual  manner;  it  is  essen- 
tial to  use  a  capillary  with  a  hemispherical  bottom 
into  vhich  the  mixture  is  firmly  pressed  so  that 
the  coiumn  is  not  more  than  1  mm.  high.  The 
temperature  at  which  the  last  trace  of  crystalline 
skeleton  disappears  from  the  cloudy  liquid  is 
recorded  as  the  melting  point.     (Cf.  J.C.S.,  May.) 

— H.  AV. 

Starch-indicator  solution.    TV.  J.  Painter.    Analyst, 

1922,  47,  166—167. 
A  starch  solution  remaining  stable  for  nine 
months  was  prepared  as  follows: — Household 
starch  (rice)  was  boiled  with  an  equal  weight  of 
sodium  carbonate  in  solution,  allowed  to  cool,  and 
treated  with  hydrochloric  acid  till  effervescence 
ceased  and  the  liquid  was  slightly  acid.  Pieces  of 
granulated  zinc  were  added  and  the  liquid  allowed 
to  stand  for  24  hrs.  and  filtered.  Impurities  in  the 
starch  may  impart  a  yellow  tinge  to  the  solution. 

—A.  G.  P. 

Sodium   hydroxide   solution   free   from   carbonate; 

Preparation  of  .     I.  M.  Kolthoff.     Z.  anal. 

Chem.,  1922,  61,  48—51. 
Ordinary  2V/1  sodium  hydroxide  solution  is  treated 
with  about  50  c.c.  of  milk-of-lime  for  each  litre  of 
the  solution ;  the  mixture  is  shaken  occasionally  for 
1  hr.,  allowed  to  settle  during  several  days,  and 
the  clear  solution  then  siphoned  off,  the  usual  pre- 
cautions being  taken  to  prevent  re-contamination 
by  atmospheric  carbon  dioxide.  If  the  solution 
thus  obtained  is  diluted  with  water  free  from 
carbon  dioxide  to  reduce  its  strength  to  2V/10,  it 
will  not  contain  more  than  2  mg.  per  1.  of  calcium, 
a  quantity  which  does  not  interfere  with  the  use  of 
the  solution  in  analysis. — AV.  P.  S. 

Calorimetric  determinations;  Effect  of   bomb   cor- 
rosion on  .     H.  L.  Olin  and  R.  E.  Wilkin. 

Chem.  and  Met.  Eng.,  1922,  26,  694—696. 
The  use  of  a  lining  for  calorimetric  bombs  which  is 
not  sufficiently  resistant  to  corrosion  may  lead  to 


394  a 


Ch.  XXIII.— ANALYSIS. 


[May  31,  1922. 


serious  errors  in  the  determination  of  calorific 
values  of  fuels  owing  to  the  exothermic  effect  of 
oxidation  or  corrosion.  Taking  nickel  as  a  typical 
lining  for  cheap  bombs,  errors  as  high  as  2'5%  are 
possible  when  determining  the  calorific  value  of  a 
coal.— A.  B.  M. 

Sulphurous  acid;  Reaction  between  iodine  and . 

R.  M.  Macaulay.     Chem.  Soc.  Trans.,  1922,  121, 
552—556. 

Sulphurous  acid  is  quantitatively  oxidised  to  sul- 
phuric acid  by  iodine,  the  intermediate  formation 
of  the  yellow  compound,  S02HI,  which  occurs  in 
solutions  of  moderate  concentration  having  no 
influence  on  the  final  result.  It  is  immaterial 
whether  the  iodine  as  run  into  the  sulphurous  acid 
or  vice  versa,  the  low  results  often  obtained  in  the 
former  case  being  due  entirely  to  evaporation  of  the 
sulphur  dioxide  by  exposure  to  the  air,  which  should 
therefore  be  carefully  guarded  against.  Atmo- 
spheric oxidation  is  negligible  with  the  free  acid, 
but  is  an  important  disturbing  factor  with  sodium 
sulphite  solutions.  As  the  reaction  between  iodine 
and  sulphur  dioxide  is  not  reversible  under  the  con- 
ditions obtaining  in  volumetric  analysis,  the 
addition  of  sodium  bicarbonate  to  neutralise  the 
hydriodic  acid  is  unnecessary,  and  since  sulphite 
solutions  are  so  readily  oxidised  it  is  not  necessary 
to  allow  a  time  interval  for  the  oxidation  by  iodine 
to  be  completed. — G.  F.  M. 

Zinc;  Separation  of  [from  other  metals']   by 

ammonium  phosphate.      G.   Luff.      Chem.-Zeit., 
1922,  46,  365—366. 

Magnesium  and  manganese  may  be  precipitated  as 
the  double  ammonium  phosphates  free  from  zinc 
by  treating  a  weakly  acid  solution  containing  the 
metals  with  one-quarter  its  bulk  of  ammonia  (sp. 
gr.  0'923)  followed  by  a  good  excess  of  finely 
powdered  ammonium  phosphate.  The  solution  is 
allowed  to  stand  for  2 — 3  hrs.  in  a  warm  place,  the 
precipitate  is  filtered  off,  washed  with  dilute 
ammonia,  ignited,  and  weighed  as  Mg,P20,  or 
Mn.PjO,.  The  filtrate  is  made  just  neutral  to 
litmus  with  hydrochloric  acid  and  the  precipitated 
zinc  ammonium  phosphate,  after  standing  some 
time,  is  filtered  off,  washed  with  cold  water  and 
ignited  to,  and  weighed  as,  pyrophosphate  (c/.  J., 
1921,  605  a).  In  the  case  of  the  manganese  separa- 
tion the  operation  is  carried  out  in  a  flask  which, 
previous  to  the  addition  of  ammonia,  is  filled  with 
hydrogen  and  afterwards  stoppered  during  the 
period  of  standing.  In  order  to  separate  iron  and 
aluminium  from  zinc  the  slightly  acid  solution  of 
the  metals  is  treated  with  ammonium  chloride, 
sodium  acetate,  and  one-fifth  its  bulk  of  glacial 
acetic  acid.  A  large  excess  of  ammonium  phosphate 
is  then  added  and  the  solution  is  allowed  to  stand 
overnight.  The  precipitate  is  filtered  off  and 
weighed  as  FeP04  or  A1P04,  and  the  solution  is 
neutralised  with  ammonia  to  precipitate  the  zinc 
as  zinc  ammonium  phosphate.- — A.  B.  P. 


Copper;   Volumetric   determination    of   .       S. 

Minovici  and  A.  Jonescu.     Ann.  Chim.  Analyt., 
1922,  4,  99—102. 

The  solution  containing  the  copper  as  sulphate  is 
evaporated  to  a  small  bulk  and  treated  with 
ammonia,  drop  by  drop,  until  the  precipitate  first 
formed  just  re-dissolves  and  the  solution  becomes 
deep  blue.  A  quantity  of  98%  alcohol  equal  to 
eight  times  the  bulk  of  the  solution  is  then  slowly 
added  while  stirring  and  the  precipitate  of  tetr- 
amminecupric  sulphate  [(NH,)4CuSOJ  is  filtered 
off,  well  washed  with  98%  alcohol,  rinsed  back  into 
the  vessel  with  a  little  cold  water,  the  solution 
diluted  to  100  c.c,  3 — 4  drops  of  methyl  red  added 


as  indicator,  and  the  whole  titrated  with  AT/10 
sulphuric  or  oxalic  acid  until  the  precipitate  just 
re-dissolves  and  the  solution  changes  from  a 
greenish  to  a  reddish-violet  colour  (1  c.c.  of  N 1 10 
acid  =  0001589  g.  Cu).— A.  R.  P. 

Copper  and  iron  in  mixtures  of  their  salts;  Rapid 

iodometric    estimation    of    .      I.    W.    Wark 

Chem.  Soc.  Trans.,  1922,  121,  358—363. 

The  copper  is  first  determined  by  Moser's  method 
(J.,  1905,  46),  in  the  presence  of  disodium  phosphate 
and  acetic  acid,  an  accuracy  up  to  0'5 %  of  copper 
being  obtainable.  3  g.  of  potassium  iodide  and 
5  c.c.  of  acetic  acid  should  be  added  for  each  01  g. 
of  total  metal  present,  and  0'2  g.  of  disodium  phos- 
phate for  each  O'l  g.  of  iron.  For  mixtures  con- 
taining less  than  5%  of  copper  double  this  amount 
of  phosphate  must  be  added  and  the  mixture  heated 
to  50°  C.  Standing  for  5 — 10  mins.  before  titration 
with  thiosulphate  is  advisable.  For  the  estimation 
of  the  iron  10  c.c.  of  62V  sulphuric  acid  for  each 
01  g.  of  iron  is  added  to  the  titrated  mixture, 
whereupon  a  quantity  of  iodine  corresponding  with 
the  iron  is  liberated ;  this,  after  standing  for  10 
mins.,  is  titrated  with  thiosulphate.  The  method 
holds  for  moderately  low  concentrations  of  iron. 
The  single  estimation  of  iron  iodometrically  has 
been  examined  and  is  6hown  to  be  accurate  to  0'55£, 
the  accuracy  being  unaffected  by  large  excess  of 
phosphate  if  sufficient  mineral  acid  be  added.  3  g. 
of  potassium  iodide  for  each  O'l  g.  of  iron,  or  double 
this  quantity  for  dilute  solutions,  and  standing  for 
5  mins.,  are  recommended. — P.  V.  M. 

Cyanides;  Electrometric  estimation  of in  the 

presence  of  halides.     E.  Miiller  and  H.  Lauter- 
bach.     Z.  anorg.  Chem.,  1922,  121,  178—192. 

When  silver  nitrate  solution  is  run  into  a 
solution  of  a  cyanide  containing  a  silver  elec- 
trode a  sudden  increase  in  potential  is  observed 
when  CN:Ag  =  2:l  corresponding  to  the  comple- 
tion of  the  reaction  2CN'+Ag-  =  Ag(CN)'1.  This 
sudden  change  is  due  to  the  commencement  of  the 
reaction  Ag(CN)'3+ Ag-  =  2AgCN.  The  authors 
found  another  sharp  change  in  the  potential  when 
the  latter  reaction  is  completed  and  the  concentra- 
tion of  silver  ion  in  the  solution  increases.  This 
second  maximum  is  more  accurate  than  the  first, 
which  gives  a  slightly  low  result,  and  it  is  also  of 
importance  in  the  estimation  of  a  mixture  of 
cvanide  and  halides.  The  solubility  products  of 
the  silver  salts  are  Agl  lO"1",  AgBr  64X10-", 
AgCN  4-8  xlO"12,  AgCl  10"'°.  Saturated  solutions 
of  these  salts  contain  a  higher  concentration  of 
silver  ion  than  a  solution  of  potassium  silver 
cyanide  because  they  are  all  soluble  in  a  solution 
of  potassium  cyanide.  Hence  a  solution  containing 
cyanide  and  halides  would  give  several  sharp 
changes  of  potential  in  an  electrometric  titration. 
which  would  correspond  to  the  end  of  the  several 
precipitations.  The  solubilities  of  the  bromide 
cyanide,  and  chloride  of  silver  are  near  and 
sudden  changes  corresponding  to  these  three  were 
not  expected.  The  results  obtained  were  as 
follows:  With  (I  +  CN),  three  sudden  changes 
giving  iCN,  JCN  +  I,  and  CN+I,  respectively: 
(Br+CN) :  two  sudden  changes  giving  jCN  and 
CN+Br;  (Cl  +  CN) :  two  sudden  changes  for  JCN" 
and  CN  +  C1;  (I+CN+Br  or  CI):  three  sharp 
changes  giving  J-CN,  JCN  +  I,  and  CN  +  I+Br 
(or  CI);  (Br+Cl+CN):  two  sudden  changes  giving 
JCN  and  CN  +  Br  +  Cl  respectively.— W.  T. 

Thallium    compounds;    Studies    on    ft.     I 

Analytical.  A.  J.  Berry.  Chem.  Soc.  Trans., 
1922,   121,  394—399. 

The  reduction  of  thallic  salts  to  the  thallous  condi- 


Vol.  X  LI.,  No.  10.] 


PATENT    LIST. 


395  a 


tion  by  ferrous  sulphate  and  by  sodium  arsenate 
furnishes  convenient  volumetric  methods  for  the 
estimation  of  thallium  in  thallic  compounds.  The 
results  show  a  negative  error  of  1'67%  and  1T4% 
respectively.  The  reduction  of  thallic  salts  by  finely 
divided  copper  gives  results  1'56%  too  low.  Reduc- 
tion is  also  easily  and  quantitatively  effected  by 
hydroxy lamine  in  acid  or  alkaline  solution.  The 
oxidation  of  thallous  salts  by  potassium  ferri- 
cyanide  in  alkaline  solution  is  strictly  quantitative, 
welding  pure  anhydrous  thallic  oxide.  Volumetric 
estimation  of  the  reaction  by  titration  of  the  potas- 
sium ferrocyanide  formed  shows  only  moderate 
agreement  owing  to  the  uncertainty  of  the  end- 
point.  Oxidation  by  permanganate  in  sulphuric  acid 
solution  is  not  possible;  in  hydrochloric  acid  solution 
the  results  are  inaccurate  for  solutions  containing  less 
than  532  g.  of  salt  per  1.,  and  though  correct  values 
are  possible  for  more  concentrated  solutions  the 
results  depend  to  6ome  extent  on  the  rate  of  addi- 
tion of  permanganate  and  on  the  concentration  of 
the  acid.  Hydrochloric  acid  converts  thallic  oxide 
into  thallic  chloride.  Sulphuric  acid,  in  varying 
excess  proportions  of  54  N  acid,  gives  sulphates 
containing     thallium     and     SO/     in     the     ratios 

i:ro55, 1:1-025, 1:1-109, 1:2.— P.  v.  M. 


Solubility  of  one  liquid  in  another;  An  application 

of  the  optical  method  of  determining  the  . 

C.  Cheneveau.  Comptes  rend.,  1922,   174,  1019— 
1021.     (C/.  J.,  1922,  352  a.) 

In  the  case  of  inorganic  and  organic  salts  which  aro 
without  action  on,  and  insoluble  in,  aniline,  when 
their  aqueous  solutions  are  in  contact  with  aniline 
the  ratio  of  the  lowering  of  the  refractive  dndex  of 
the  aniline  to  the  quantity  of  water  dissolved  i6 
constant  and  the  same  for  equimolecular  solutions. 
The  lowering  of  the  refractive  index  by  unit  mole- 
cular mass  is  the  same  for  all  salt6  which  fulfil  the 
above  conditions. — W.  G. 


See  also  pages  (a)  359,   Acidity  of  mine  waters 

(Selvig  and  Ratliff).     366,   Viscosimeter  (Nakano). 

■367,    Cellulose    acetate    (Torii).       369,     Chlorosul- 

phonic   acid    (Weissenberger   and    Zoder) ;    Sodium 

sulphate  in  salt-cake  (Matsui    and  Kimura).     370, 

Aluminium  sulphate   (Zschokke   and  Hiiuseimann). 

576,  Carbon  in  steel  and  iron  (Travers) ;  Carbon  in 

ron  and  steel  (Batta  and  Thyssen);  Manganese  in 

'erromanganese  etc.  (Nicolardot  and  others).     381, 

Lead,    manganese,    and    cobalt    in    varnishes    etc. 

Vollmann).    383,  Rubber  (Utz).    385,  Clarification 

if  solutions  containing  reducing  sugars  (Englis  and 

[sang).      386,   Sulphur  dioxide   in  wines   (Martini 

ind  Nourrisson).     387,  Sour  milk  (Kling  and  Lass- 

eur) ;  Preserved  fish  (Hinard) ;  fi-Naphthol  in  foods 

tc.  (Kinugasa  and  Tatsuno).    388,  Carbon  dioxide 

n  baking  powder  (Robinson  and  Bandemer).     389, 

njurious  acids   in  air   (Lambris).     391,   Esters  in 

favouring  extracts  (Beyer);  Aldehydes  and  ketones 

Bennett  and  Donovan). 

Patent. 

'emperature-measuring  device.  G.  Jensen,  Assr. 
to  Westinghouse  Electric  and  Mfg.  Co.  U.S. P. 
1,411,033,  28.3.22.     Appl.,  8.3.19. 

.  thermo-couple  is  inserted  in  a  TVheafstone 
ridge,  the  voltage  across  which  is  automatically 
laintained  constant.  Opposite  pairs  of  arms  of 
tie  bridge  are  respectively  constituted  of  resistances 
f  high  and  low  temperature  coefficients,  in  order 
3  compensate  for  variations  of  temperature  of 
le  cold  junction  end  of  the  thermo-couple. 

—J.  S.  G.  T. 


Patent  List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given;  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Aldehoff.  Mills  for  grinding  hard  material. 
11,710.    Apr.  26.    (Ger.,  27.4.21.) 

Baker,  Prescott,  and  Baker,  Sons,  and  Perkins. 
CVntrifugal  separators.     12,865.    May  6. 

Blair,  and  Blair,  Campbell,  and  McLean.  Appa- 
ratus for  evaporating,  distilling,  heating,  or  cooling 
fluids.    12,592.    May  4. 

Cheyne.  Mixing  and  grinding  mills.  12,233. 
May  1. 

Coke  Oven  Construction  Co.,  and  Marr.  Con- 
tinuous drying  of  pulverulent  or  granular 
materials.     11,748.     Apr.  26. 

Duckham,  and  Woodall,  Duckham,  and  Jones. 
Heat  insulation.    12,392.    May  2. 

Fuhrmann.  Preventing  corrosion  and  6cale  in 
steam-boilers  etc.     11,621.    Apr.  25. 

Marks.    11,639.    See  X. 

Meldrums,  Ltd.,  and  Wright.  Apparatus  for 
effecting  intimate  contact  of  liquids  and  gases. 
12,024.    Apr.  29. 

Metcalfe  -  Shaw  Corp.  Separating  the  con- 
stituents of  emulsions.  12,184.  May  1.  (U.S., 
2.5.21.) 

Moeller.  Method  of  drying  and  heating.  12,112. 
May  1. 

Neil  and  Neil.    Furnaces.    11,425.    Apr.  24. 

Rees  and  Smith.  Crucibles  and  melting  pots. 
12,110.    May  1. 

Rigby.    Drying  of  materials.     12,526.     May  3. 

Reinhartin-Werk.    11,966.    See  II. 

Schaefer.  Filling-material  for  reaction  chambers, 
towers,  etc.     12,516.     May  3. 

Steen.    Vacuum  drying  systems.  11,719.  Apr.  26. 

Techno-Chemical  Laboratories,  Ltd.,  and  Testrup. 
Spreading  moist  material  on  heat-transmitting  sur- 
faces.   11,491.    Apr.  24. 

Traversari.  Anti-combustible  for  extinguishing 
fires.     12,200.     May  1.     (Ital.,  30.4.21.) 

Complete  Specifications  Accepted. 

32,187  (1920).  Claughton.  Purifying  and  separat- 
ing liquids.    (178,485.)    May  3. 

32,932  and  35,461  (1920).  Slatineanu.  Obtaining 
reactions  between  a  gas  and  another  substance. 
(154,213  and  171,074.)    May  10. 

2120  (1921).    Nielsen.    See  II. 

2382  (1921).    Smith.    See  XIII. 

2531  (1921).  Brown.  Autoclaves  etc.  (178,560.) 
May  3. 

5353  (1921).  Testrup,  and  Techno-Chemical 
Laboratories,  Ltd.  Drying  processes  and  apparatus 
(178,636.)    May  3. 

7770  (1921).  Torrance,  and  Torrance  and  Sons. 
Grinding  or  crushing  mills.    (179,025.)    May  10. 

9098  (1921).  Tesla.  Production  of  high  vacua. 
(179,043.)    May  10. 

9345  (1921).  Hartshorn.  Grinding  and  mixing 
machines.    (178,697.)    May  3. 

11,278  (1921).  Rigby.  Manufacture  of  drying- 
cylinders.  .  (178,717.)    May  3. 

5589  (1922).  Thompson  (Traun's  Forschungs- 
laboratorium).  Apparatus  for  producing  colloidal 
dispersions.    (179,124.)    May  10. 


390  a 


PATENT    LIST. 


[May  31,  1922. 


II —FUEL:      GAS;      MINERAL      OILS      AND 

WAXES;   DESTRUCTIVE  DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Allgem.  Ges.  f.  Chem.  Ind.     12,625.     See  III. 

Beilby.  Carbonisation  of  coal,  shale,  peat,  etc. 
12,288.    May  2. 

Burt,  Boulton,  and  Haywood,  China,  and  Fortes. 
Manufacture  of  decolorising  carbon.  11,753—4. 
Apr.  26. 

Damicns,  Pietti,  and  Loisy.  Recovery  of  ethylene 
in  industrial  gases  for  manufacture  of  alcohol  or 
■ether.     11,457.     Apr.  24.     (Fr.,  2.6.21.) 

Davidson.  Destructive  distillation  of  coal  etc. 
12,201.    May  1. 

Gill  (Sharpies  Specialty  Co.).  Resolving  water- 
in-oil  emulsions.     11,584.     Apr.  25. 

Johnson  and  Johnson.  Coal  briquettes.  12,581. 
May  4. 

Linton.  Apparatus  for  treating  hydrocarbon  oils. 
12,499.    May  3.     (U.S.,  26.5.21.) 

McEwen,  and  Underfeed  Stoker  Co.  Manufac- 
ture of  coal  gas.    11,755.    Apr.  26. 

Razen,  Schaefer  u.  Co.  Vertical  retort  for  dis- 
tilling schists,  bituminous  materials,  brown  coal, 
•etc.    12,177.    Mayl.    (Ger.,  7.12.21.) 

Reinhartin-Werk  Chem.  Fabr.  Cooling-liquids 
for  motors  etc.     11,966.    Apr.  28.     (Ger.,  28.11.21.) 

Sharpies.     Refining  oil.     12,167.     May  1. 

Soc.  de  Fours  a  Coke  et  d' Enterprises  Industri- 
•elles.  Distillation  of  combustibles.  12,521.  May  3. 
<Fr.,  18.5.21.) 

Steen.    Drying  coal.     11,718.    Apr.  26. 

Steen.  Recovering  granular  and  powdered  coal 
from  water.     11,720.    Apr.  26. 

Thornley.  Binders  for  briquetting  fuels  etc. 
12,316.     May  2. 

Thwaites.  Vertical  gas-retorts.  12,743.  May  5. 
(Australia,  5.5.21.) 

Tulloch.    Gas-scrubbers.    11,438.     Apr.  24. 

Complete  Specifications  Accepted. 

29,253  (1920).  Moeller  and  Fonblanque.  Treat- 
ment of  peat.     (178,475.)     May  3. 

29,647  (1920).  Parker  and  Bamber.  Gas  pro- 
ducers or  generators.     (178,869.)     May  10. 

32,338  (1920).  Muchka.  Production  of  protective 
gas  by  means  of  internal-combustion  engines. 
•(153,913.)    May  10. 

34,824  (1920).  Bates.  Apparatus  for  producing 
fuel.     (155,209.)    Mav  3. 

35,447  (1920).  Blake.  Alcohol  fuels.  (178,498.) 
Mav  3. 

36,129  (1920).  Barrs.  Coking  the  discharged 
material  from  low-temperature  distillation  appa- 
ratus.    (178,889.)     May  10. 

296  (1921).  Adam.  Purification  of  coal  gas. 
<178,510.)    May  3. 

1528  (1921).  Rippl.  Continuous  distillation  or 
gasification  of  organic  matter.    (157,808.)    May  3. 

1552  (1921).  American  Coke  and  Chemical  Co. 
Coke-ovens.    (157,827.)    May  3. 

1553  (1921).  American  Coke  and  Chemical  Co. 
By-product  condensers.     (157,828.)     May  3. 

1778  (1921).  Jacobs.  Recovery  of  methane. 
{157,976.)    May  3. 

2120  (1921).  Nielsen.  Distilling  or  roasting 
plant  especially  for  the  medium  or  low-temperature 
distillation  of  carbonaceous  materials.  (178,537.) 
May  3. 

2212  (1921).  Bates.  Production  of  gas.  (159,175.) 
Mav  3. 

3407  (1921).  Wilton.  Combustion  of  fuel  in 
furnaces  with  recovery  of  by-products.  (178,952.) 
Mav  10. 

4187  (1921).  Trent  Process  Corp.  Production  of 
coke.     (159,142.)    May  3. 

4378  (1921).  Szarvasy.  Manufacture  of  pure  re- 
tort carbon.     (158,891.)     May  10. 


5352    (1921).      Beilby.      Carbonisation    of    coal 
shale,  peat,  etc.     (178,994.)     May  10. 

5518  (1921).    Brat.    See  VII. 

10,302  (1921).    Igranic  Electric  Co.    See  XXIII 

10,319  (1921).  Soc.  Franc,  de  Materiel  Agricole 
et  Industriel.  Combustion  process  and  apparatus 
for  use  in  furnaces.     (162,276.)     May  10. 

22,514  (1921).  Carpmael  (Chem.  Fabr.  auf 
Actien,  vorm.  E.  Schering).  Manufacture  of  active 
wood  charcoal.     (179,108.)    May  10. 

23,983  (1921).  Carpmael  (Chem.  Fabr.  auf 
Aktien,  vorm.  E.  Schering).  Manufacture  of  active 
charcoal.     (178,779.)     May  3. 

III.— TAR  AND  TAR  PRODUCTS. 

Applications. 

Allgem.  Ges.  f.  Chem.  Industrie.  Purification  of 
hydrocarbons.     12,625.     May  4.     (Ger.,  21.2.22.) 

Wilton.  Continuous  dehydration  and  distilla- 
tion of  tar  etc.     11,486.     Apr.  24. 

Complete  Specifications  Accepted. 

728  (1921).  Erdmann.  Treatment  of  lignite-tar 
and  shale  tar.     (156,694.)    May  3. 

2998  (1921).  Ab-der-Halden.  Apparatus  for 
distilling  coal  tar  etc.     (158,875.)     May  3. 

17,963  (1921).  Chem.  Fabr.  Worms.  Manufac- 
ture of  anthraquinone.     (169,145.)     May  10. 


IV.— COLOURING  MATTERS  AND  DYES. 

Applications. 

Baddiley,  Tatum,  and  British  Dyestuffs  Corp. 
Dyes  of  the  anthraquinone  series.    11,983.    Apr.  28. 

Carpmael  (Bayer  u.  Co.).  Manufacture  of  sulphur 
dyestuffs.    12,629.    May  4. 

Galbraith,  Lewcock,  and  Tallantyre.  Manufac- 
ture of  condensation  products  from  carbazole  and 
p-nitrosophenol  and  its  derivatives.    12,311.  May  2. 

Galbraith,  Lewcock,  and  Tallantyre.  Manufac- 
ture of  condensation  products  from  N-substituted 
carbazoles  and  p-nitrosophenol  and  its  derivatives. 
12,312.    May  2. 

Gulley  and  Moulder.  Treatment  of  xanthorrhoea 
gums  for  production  of  dyes  and  stains.  11,990 
Apr.  28. 


V.— FIBRES;   TEXTILES;   CELLULOSE; 
PAPER. 

Applications. 

Chem.  Engineering  Co.,  and  Spensley.  12.77.1 
See  XIII. 

Ingham.  Treating  or  waterproofing  papers 
12,257.    May  2. 

MacLennan.  Preparations  for  cleansing  Ml' 
sterilising  textile  fabrics  etc.    12,354.     May  2. 

Complete  Specifications  Accepted. 

31,854  (1920).  Dreaper.  Manufacture  of  artifici; 
silk  etc.    (178,481.)    May  3. 

36,003  (1920).  Claessen.  Manufacture  of  con 
pound  sheet  material  from  nitrocellulose.  (156,096 

Mav  10. 

1566  (1921).     Gierisch.  Krais,  and  Waentlg.    01 
tabling   single  fibres  from  bast-fibre  bundles  in 
condition  for  spinning.     (157,840.)     May  3. 

2588  (1921).  La  Cellophane  Soc.  Anon.  Str.iv 
hair,  etc.  manufactured  from  cellulosic  materia 
(159,868.)     May  10. 

2680  (1921).  Sabner.  Degumming  or  preparn 
textile  fibres.     (178,570.)    May  3. 

3828  (1921).  Bernot  and  Fournier.  Manufactu 
of  paper  pulp.    (178,962.)    May  10. 


Vol.  XLI.,  No.  10.] 


PATENT    LIST. 


397  a 


VI.— BLEACHING ;  DYEING;   PRINTING: 
FINISHING. 

Applications. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Dyeing  artificial  silk.     11,625.     Apr.  25. 

Farrar  and  Whitehead.  Dyeing  machines. 
.1,654.    Apr.  26. 

Complete  Specifications  Accepted. 

3172  (1921).  Whitaker  and  Whitaker.  Machines 
or  dyeing,  scouring,  and  washing  wool  etc. 
178,940.)     May  10. 

3347  (1921).  British  Cellulose  and  Chem.  Manuf. 
}o.,  Briggs,  and  Richardson.  Process  of  dyeing. 
178,946.)    May  10. 

12,259  (1921).  Richard  Freres.  Process  for 
arrotting  hairs.     (163,297.)     May  30. 

25,704  (1921).  Zimmer's  Erben.  Apparatus  for 
olouring  webs  of  fibrous  material  by  spraying. 
169,710.)    May  3. 

VII.— ACIDS ;  ALKALIS  ;  SALTS ;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Jaques,  Tully,  and  West.  Manufacture  of 
ydrogen  or  gases  rich  in  hydrogen.  12,529.  May  3. 
,  Nitrogen  Corp.  Synthesis  of  ammonia.  12,196. 
lay  1.    (U.S.,  17.5.21.) 

Pedenionte.  Manufacture  of  aluminium  sulphate 
rid  pure  alumina.     12,764.     May  5. 

Pettigrew.  Saturator  for  continuous  production 
.:'  neutral  sulphate  of  ammonia.    11,589.    Apr.  25. 

Complete  Specifications  Accepted. 

;  35,008  (1920).    Fabr.  de  Prod.  Chim.  de  Thann  et 

*  Mulkouse.     Manufacture  of  anhydrous  zinc  sul- 

lide.    (155,824.)    May  3. 

352    (1921).      Nitrogen    Products    Co.      Fixing 

.mospheric  nitrogen.    (156,479.)    May  3. 

5518  (1921).     Brat.    Recovery  of  nitrogen  in  the 

rm  of  ammonia  from  peat  etc.    (159,193.)  May  10. 

!  18,334  (1921).     Fairweather  (Air  Reduction  Co.). 

'reduction  of  hydrocyanic  acid.    (179,096.)  May  10. 

'33,783  (1921).    L'Air  Liquide  Soc.  Anon.    Manu- 

(cture  of  hydrogen.     (174,327.)     May  3. 

VIII.— GLASS;  CERAMICS. 

Applications. 
Fletcher.     Colouring  enamelled  metal  ware  etc., 
d  production  of  pigments.     11,854.     Apr.  27. 
Jackson  (Libbey  Owens  Sheet  Glass  Co.).    Draw- 
*  sheet  glass.    11,999.    Apr.  28. 
Roiboul.    Manufacture  of  crucibles  for  fusing  and 
Ming    refractory    minerals.      12,726.      May    5. 
r.,  12.5.21.) 

Complete  Specifications  Accepted. 

W6  (1921).  Rebuff  at.  Manufacture  of  refrac- 
i  y  articles.    (159,865.)    May  3. 

IX.— BUILDING  MATERIALS. 

Application. 

)amman.  Preparation  of  asphalte-like  road- 
c  erings.    11,646.    Apr.  25.    (Ger.,  25.4.21.) 

Complete  Specifications  Accepted. 

904  (1921).  Winkler.  Treatment  of  mortar, 
<  lent,  concrete,  etc.    (170,260.)    May  3. 

199  (1921).  Laube.  Wood-preserving  method. 
(  ',479.)    May  3. 

3,251  (1921).  Whitby.  Imparting  a  highJy- 
g  oed  surface  to  artificial  stone.    (178,736.)  May  3. 


X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).    Making  tungsten  wires.     12,642.     May  4. 

Bruzac  and  Constant.  Production  of  iron  and 
steel.     11,872.     Apr.  27.    (Fr.,  9.5.21.) 

Continuous  Reaction  Co.,  and  Skelley.  Manufac- 
ture of  weatherproof  articles  of  ferrous  alloys. 
12,878-9.     May  6. 

Evans  and  Hamilton.  Manufacture  of  steel  and 
alloy  steels.    12,713.    May  5. 

Gabriel.     Aluminium  alloy.    12,131.    May  1. 

Manganese  Bronze  and  Brass  Co.,  Northover, 
and  Parsons.     Non-ferrous  alloys.     12,857.     May  6. 

Marks  (Merrill  Co.).  Precipitating  metals  or 
materials  from  solution.    11,639.    Apr.  25. 

Muntz.  Protection  of  copper  and  its  alloys  from 
oxidation  or  corrosion.    12,040.    Apr.  29. 

Rees  and  Smith.     12,110.    .See  I. 

Saltrick.     Metals  and  alloys.     11,568.    Apr.  25. 

Saltrick.     Nickel  alloys.     11,569.     Apr.  25. 

White  (Finkl  and  Sons  Co.).  Steel  alloys.  12,365. 
May  2. 

Complete  Specifications  Accepted. 

31,378  (1920).  Soc  Anon,  de  Commeutry  Four- 
chamhault  et  Decazeville.  Alloys.  (159,492.)  May  10. 

2585  (1921).  Cliff.  Treatment  of  scrap  iron. 
(178,564.)    May  3. 

3260  (1921).  Pacz.  Alloys  and  process  of  treating 
same.     (158,827.)    May  10. 

4188  (1921).  Trent  Process  Corp.  Treatment  of 
ore  etc.    (159,143.)    May  10. 

4189  (1921).  Trent  Process  Corp.  Collecting  and 
purifying  minerals.     (161,560.)     May  10. 

11,699  (1921).  South  Metropolitan  Gas  Co.,  and 
Chandler.  Gas  -  fired  metallurgical  furnaces. 
(178,722.)    Mayv3. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

Barclay,  Mellor,  and  Mather  and  Piatt.  Bi- 
polar electrode  electrolyeers.     12,753.     May  5. 

Driscoll.     Electric  furnaces.     11,503.     Apr.  24. 

Smith.  Manufacture  of  electric  conductors. 
11,634.     Apr.  25. 

Smith.     Insulating  material.    12,072.     Apr.  29. 

Complete  Specifications  Accepted. 

33,546  (1920).  Leitner.  Electric  accumulators. 
(178,879).    May  10. 

2911  (1921).  British  Thomson  -  Houston  Co. 
(General  Electric  Co.).  Electrodes  and  method  of 
making  same.    (178,926.)    May  10. 

4247  (1921).  Automatic  Telephone  Manuf.  Co., 
and  Roseby.    Electric  furnaces.    (178,973.)    May  10. 

14,702  (1921).  Rennerfelt.  Electric  furnaces. 
(164,019.)     May  10. 

16,966  (1921).  Svenska  Ackumulator  Akt. 
Jungner.     Electric  batteries.     (165,102.)    May  3. 

XII.— FATS;  OILS;  WAXES. 

Applications. 

Arends.  Process  for  oxidising  fatty  oils  etc. 
12,305.     May  2. 

Cellulose  et  Papiers  Soc.  Extraction  of  oils  or 
fats  from  vegetable  matter.  12,045.  Apr.  29.  (Fr., 
29.4.21.) 

Chemical  Engineering  Co.,  and  Spensley.  Treat- 
ment of  oils  and  fats  for  neutralisation  and  removal 
of  fatty-acid  content.    12,772.    May  5. 

Hood,  and  Oil  Refining  Improvements  Co.  Puri- 
fication of  oils,  waxes,  etc.    12,628.    May  4. 

D 


398  a 


PATENT    LIST. 


[May  S],   1922/ 


Complete  Specification  Accepted. 

35,553  (1920).  Schou.  Manufacture  of  mar- 
garine and  edible  fats.     (178,885.)    May  10. 

XIII.— PAINTS;  PIGMENTS ;  VARNISHES ; 
RESINS. 

Applications. 

Chemical  Engineering  Co.,  and  Spensley.  Rosin 
size.    12,773.    May  5. 

Fletcher.    11,854.    See  VUI. 

Complete  Specifications  Accepted. 

2090  (1921).  Rafsky.  Filler,  loading,  base,  pig- 
ment, etc.     (178,896.)    May  10. 

2382  (1921).  Smith.  Mills  for  grinding  paints, 
enamels,  inks,  etc.    (178,550.)    May  3. 


XIV. 


Fall. 
Jones, 

XV.- 


-LND LA-RUBBER ;   GUTTA-PERCHA. 

Applications. 
Curing  rubber  latex.     11,807.     Apr.  27. 
Treatment  of  rubber.     11,717.     Apr.  26. 


-LEATHER;   BONE;  HORN;  GLUE. 

Applications. 

Moeller.  Manufacture  and  application  of  tan- 
ning agents.    11,876.    Apr.  27. 

New  Zealand  Co-operative  Dairy  Co.  Manufac- 
ture of  casein  glue.  11,899.  Apr.  28.  (New  Zea- 
land, 10.10.21.) 

XVI.— SOILS;   FERTILISERS. 

Applications. 

Daniels  and  Heathcote.     12,677.     See  XIX. 
Krantz    and    Krantz.     Refining  organic    matter 
used  as  manure.    12,228.    May  1.     (Ger.,  2.5.21.) 

XVII— SUGARS;  STARCHES;  GUMS. 

Application. 

Bone.  Purification  of  saccharic  solutions.  12,651. 
May  4. 

Complete  Specification  Accepted. 

34,457  (1920).  Delafond.  Manufacture  of  sugar 
direct  from  the  juice.    (178,488.)    May  3. 

XVIII.— FERMENTATION  INDUSTRIES. 


Applications. 
Treatment  of  publicans'  waste. 


12,548. 


Bailey. 
May  4. 

Fleischmann  Co.  Treating  and  preparing  yeast. 
12,208.    May  1.    (U.S.,  4.6.21.) 

Complete  Specifications  Accepted. 

1593  (1921).  Luers.  Production  of  a  colouring- 
medium  for  beers  etc.    (157,862.)    May  3. 

5385  (1921).  Norman.  Device  for  collection  of 
yeast  and  separation  of  beer  therefrom.  (178,637.) 
May  3. 

6235  (1921).  Kashiwagi.  Preparation  of  diastase 
or  a  solution  of  diastase.    (179,012.)    May  10. 

XIX— FOODS:  WATER  PURIFICATION; 
SANITATION. 

Applications. 

Daniels  and  Heathcote.  Treatment  of  fumes 
produced  in  manufacture  of  fish  meal  etc.  12,677. 
May  5. 


Descombes  and  Tival.     11,618.     See  XX. 

Hancock.  Treatment  of  cereals  etc.  12,177 
May  3. 

Lewis.  Treatment  and  utilisation  of  sewage 
sludge  and  refuse.    12,842.    May  6. 

Meunier  and  Puglia.  Apparatus  for  removing 
chlorides  from  milk.  11,489.  Apr.  24.  (Fr. 
11.5.21.) 

Miiller  Ges.,  and  Ostertag.  Purifying  and  clear- 
ing boiler  feed-water  etc.     11,881.     Apr.  27. 

Miiller  Ges.,  and  Ostertag.  Removing  easily 
soluble  salts  from  boiler  feed-water.  11,882 
Apr.  27. 

Schmidt.  Preparation  of  pure  animal  founda 
tion  substances.  12,178-9.  May  1.  (Ger.,  1.12.2 
and  6.2.22.) 

Spanoghe.    Sterilising  milk  etc.    12,532.    May  3 

Stacey.  Manufacture  of  gaseous  medium  fo 
treating  flour.     11,895  and  11,903.     Apr.  28. 

Complete  Specifications  Accepted. 

35,553  (1920).    Schou.    See  XII. 
3420  (1921).     Trent.     Treatment  of  sewage  an< 
other  waste  liquors.    (178,953.)    May  10. 


XX.— ORGANIC  PRODUCTS;  MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS. 

Applications. 

Damiens  and  others.    11,457.    See  II. 

Descombes  and  Tival.  Treatment  of  organi 
matters.     11,618.     Apr.  25.     (Belg     26.4.21.) 

Soc.  d'Etudes  Chim.  pour  l'Industrie.  Maui 
facture  of  salts  of  urea.  12,492.  May  3.  (Switz 
3.5.21.) 

Complete  Specifications  Accepted. 

8298  (1921).  Verein.  Chininfabr.  Zimmer  u.  Co 
and  Thron.  Manufacture  of  O-alkyl  derivatives  < 
hydrocupreine.     (179,031.)    May  10. 

10,508  (1921).  Meister,  Lucius,  u.  Briinini 
Manufacture  of  a-dialkylaminoethyl  /3-aracylox, 
butyric  acid  esters.     (161,539.)    May  10. 


XXL— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Applications. 

Brandenberger.       Photographic     films.       11,47 
Apr.  24. 

Trist.     Colour  photography.     12,618.     May  4. 

Wade  (Pathe  Exchange,  Inc.).     Manufacture 
photographic  films.     12,612.    May  4. 

Complete  Specifications  Accepted. 

3252    (1921).      Brandenberger.      Production 
sensitive  photographic  films.     (178,942.)    May  1' 

4620     (1921).       Gorsky.       Colour     photograpl 
(178,981.)    May  10. 

XXIL— EXPLOSIVES;  MATCHES. 

Application. 

Moss  (Union  Gonerale  Co-operative).    Explosu 
11,701.    Apr.  26. 


XXIIL— ANALYSIS. 

Complete  Specification  Accepted. 

10,302  (1921).  Igranic  Electric  Co.  (Cut! 
Hammer  Manuf.  Co.).  Measuring  the  calor 
value  of  combustible  gases  or  other  i-hemirn 
reactive  agents.    (179,060).    May  10. 


Vol.  XLI.,  No.  II.] 


ABSTRACTS 


IJune  15.  1922. 


I -GENERAL ;  PLANT  ;    MACHINERY. 

Volatile  substances;  Becovery  of  from   gases 

not  readily  absorbed  [air].  Use  of  cresols.  E. 
Berl  and  W.  Schwebel.  Z.  angew.  Chem.,  1922, 
35,  189—192.     (Cf.  J.,  1921,  567  a.) 

Cresols  form  with  ether,  alcohol,  and  acetone 
phenolates  or  molecular  complexes  in  which  the 
partial  pressure  of  the  volatile  substance  is  less  than 
that  of  the  pure  material  under  similar  tempera- 
ture conditions.  That  this  is  due  to  the  phenolic 
hydrogen  atom  is  evident  from  the  fact  that  with 
anisol  the  partial  pressures  are  actually  higher  than 
those  of  the  pure  substances,  and  consequently  no 
molecular  complexes  are  formed.  With  benzene 
and  carbon  tetrachloride  no  diminution  of  the 
vapour  pressure  occurs  in  admixture  with  cresols, 
and  for  the  recovery,  therefore,  of  hydrocarbons 
and  similar  substances  cresol  is  no  more  suitable 
as  an  absorbent  than  paraffin  oil,  both  being' far 
inferior  to  activated  charcoal  for  this  purpose.  For 
the  recovery  of  alcohol,  ether,  or  acetone,  however, 
cresols,  although  inferior  to  charcoal,  especially  at 
the  low  concentrations  of  the  vapour  usually  met 
with  in  practice,  such  as  5 — 30  g.  per  cb.  m.,  are 
superior  to  paraffin  oil,  and  can  be  employed  with 
advantage  particularly  when  dealing  with  higher 
concentrations  of  the  volatile  substances. — G.  F.  M. 

Patents. 

Purifying   gases  by  electricity;  Process  and  appa- 
ratus   for    .      Siemens-Schuckertwerke    Ges. 

m.b.H.    E.P.  170,575,  12.10.21.    Conv.,  22.10.20. 

The  gas  to  be  purified  is  passed  successively  through 
two  electric  fields.  In  the  one,  the  electrodes  are 
supplied  with  direct  current,  and  solid  particles  are 
separated.  In  the  other  field,  the  electrodes  are 
supplied  with  alternating  current  and  liquid 
particles  are  separated  in  the  form  of  mist.  The 
deposits  are  collected  and  removed  separately. 

—J.  S.  G.  T. 

Precipitator;  Self-cleaning  [electrical'] .    M.  P. 

Laughlin,     Assr.     to     Research     Corp.       U.S. P. 

1,412,248,  11.4.22.  Appl.,  5.6.19. 
Means  normally  disposed  outside  the  operative  part 
of  the  precipitator,  are  provided  to  sweep  over  the 
collecting  electrode,  the  electrical  circuit  of  the  pre- 
cipitator being  automatically  broken  during  the 
sweeping  process. — J.  S.  G.  T. 

Collecting  suspended  material  from  furnace  gases; 

Process  and  apparatus  for .     W.  A.  Schmidt, 

Assr.  to  International  Precipitation  Co.  U.S. P. 
1,413,877,  25.4.22.  Appl.,  9.8.18. 
Suspended  material  is  washed  from  furnace  gases 
by  means  of  water  sprays  and  descending  streams  of 
water.  The  gases  then  pass  through  electrical  fields 
maintained  adjacent  to  the  streams  of  water  so  as 
to  precipitate  fume  into  the  streams,  the  fume 
being  collected  separately  from  that  removed  in  the 
first  part  of  the  process. — J.  S.  G.  T. 

Electrical   separation  of  suspended  particles  from 

gases;  Process  and  apparatus  for  .     S.   H. 

Rhodes,  Assr.  to  International  Precipitation  Co. 

U.S. P.  1,413,993,  25.4.22.     Appl.,  19.6.19. 

jArbon  smoke  is  added  to  the  gas,  and  precipitated 

ogether  with  other  matter  originally  suspended  in 

i  he    gas,     by    the     action    of    an    electrical    field. 

—J.  S.  G.  T. 

Just;  Separation   of  and   other   mechanical 

impurities  from  air  or  gases.  Heenan  and 
Froude,  Ltd.,  and  G.  H.  Walker.  E.P.  178,277, 
5.3.21. 

he  stream  of  air  or  gas  passes  through  a  nozzle 


and  the  high  speed  causes  the  solid  particles  to 
flow  straight  on  into  the  spaces  between  baffles 
which  are  arranged  in  a  collecting  chamber  with 
their  surfaces  in  line  with  the  original  direction 
of  the  gas,  and  are  closed  at  their  further  edges 
with  a  plate  which  is  preferably  hinged  to  dis- 
charge the  collected  dust.  The  gas  itself  for  the 
most  part  does  not  enter  the  spaces  between  the 
baffles,  but  escapes  through  the  annular  space 
between  the  orifice  of  the  nozzle  and  the  mouth 
of  the  collecting  chamber. — B.   M.  V. 

Electrical  purification  of  gases;  Process  of ,  for 

the  removal  of  very  fine  dust  particles.  "  Elga," 
Elektrische  Gasreinigungs-Ges.  m.b.H  G  P 
348,378,   10.12.20. 

The  ionisation  of  the  gas  stream  is  increased  by 
means  of  cathode  rays. — J.  S.  G.  T. 

Conical  mills.  A.  J.  G.  Coppens.  E.P.  174,589, 
10.1.22.     Conv.,  25.1.21. 

In  mills  of  the  type  in  which  a  revolving  cone 
moves  in  contact  or  nearly  in  contact  with  a  fixed 
cone  and  which  are  provided  with  a  fan  for  driving 
air  into  the  pulverising  space,  a  perforated 
diaphragm  is  placed  between  the  fan  and  grinding 
compartments  to  distribute  the  air  evenly,  and  the 
fan  may  be  concentric  with,  but  run  at  a  higher 
speed  than,  the  grinding  shaft. — B.  M.  V. 

Ball  mill  [  •  Outlet  device  for ].    C.  A.  Duncan 

and  A.  Nelson.  U.S. P.  1,412,390,  11.4.22.  Appl., 
6.8.21.  **   ' 

An  open  helix  is  secured  in  the  outlet  trunnion  of 
a  ball  mill,  spaces  being  left  between  the  outside 
of  the  helix  and  the  interior  wall  of  the  trunnion 
as  well  as  both  axiallv  and  transversely  through 
the  helix.  -B.  M.  V. 

Grinding  machine.  G.  B.  Vernon.  U.S. P. 
1,412,725,  11.4.22.     Appl.,  10.7.20. 

A  roller  is  carried  by  a  vertical  shaft  mounted  in 
adjustable  bearings  in  the  upper  and  lower  walls 
of  the  machine  casing,  and  is  enclosed  by  a  curved 
plate  and  one  wall  of  the  casing.  Waste  material, 
falling  to  the  bottom  of  the  casing,  is  withdrawn 
by  suction  through  a  segmental  slot,  the  curvature 
of  which  conforms  to  that  of  the  roller  and  of  the 
curved  sheet.  The  suction  produces  an  air  current 
enveloping  a  segment  of  the  roller  and  moving 
longitudinally  thereof  from  the  bottom  to  the  top. 

— H.  H. 

Mixing  and  grinding  apparatus  eccentrically 
operated.  R.  D.  Maddox.  U.S. P.  1,414,197, 
25.4.22.     Appl.,  11.2.19. 

In  apparatus  in  which  a  number  of  containers  are 
placed  on  and  rotated  by  rollers,  the  rollers  are 
cylindrical  but  have  their  axle  pins  mounted  eccen- 
trically and  are  geared  together  so  that  they 
oscillate   simultaneously. — B.    M.    V. 


Filters;  Botary  disc 
7.12.20. 


H.  Jung.    E.P.  176,495, 


A  number  of  discs  divided  into  segments  are  pro- 
vided with  central  bosses  to  form  spaces  between 
the  discs  and  are  clamped  together  by  a  central 
shaft  in  such  a  way  that  inlet  and  outlet  passages 
which  are  formed  in  the  bosses  are  in  line  and  so 
that  the  discs  are  alternately  distributing  and 
filtering  elements,  the  filter-cake  being  formed  in 
the  spaces  between  the  discs.  A  stationary  divid- 
ing plate  extends  upwards  from  the  bottom  of  the 
fixed  outer  casing  into  each  6pace  up  to  the  boss 
and  forms  a  division  to  keep  apart  the  unfiltered 
material  from  the  finished  cake ;  these  plates  may 
also  serve  to  support  the  6crapers   which   remove 


400  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


(June  15,  1922. 


the  cakes  and  if  made  hollow  and  perforated  may 
be  supplied  with  wash  liquid  to  clean  the  filtering 
surface  after  use.  The  distributing  and  filtering 
discs  may  be  made  of  porous  material,  such  as  fire- 
clay, or  may  be  covered  with  filter  cloth,  and  the 
supply  of  vacuum,  wash  liquor,  compressed  air,  etc., 
is  effected  by  a  distributing  valve  at  one  end  of 
the  shaft.— B.  M.  V. 

Filtering  apparatus  [;  Vacuum. ].     E.  \V.  W. 

Kocne.  E.P.  177,819,  4.10.20. 
A  number  of  frustoconical  filter  leaves  are  mounted 
on  a  hollow  shaft  and  dip  in  a  tank  of  the  pulp  to 
be  filtered,  each  leaf  being  divided  into  segments 
which  communicate  by  means  of  ports  with  appro- 
priate passages  in  the  shaft  so  that  vacuum  for 
filtering  or  pressure  or  water  for  cleaning  may  be 
applied.  Advantages  of  the  conical  filtering  sur- 
faces over  the  drum  type  of  filter  are  the  greater 
length  of  knife  or  scraper  edge  and  greater  filtering 
area  obtainable  for  the  same  floor  space. — B.  M.  V. 

Filter.       J.     H.      Fleetwood.       U.S.P.      1,412,557, 

11.4.22.  Appl.,  29.5.20. 
The  casing  of  tho  filter  unit  encloses  a  number  of 
independent  fibre  elements  to  each  of  which  can  be 
attached  a  discharge  spout  inserted  through  the 
casing.  Means  are  provided  to  exert  tension  upon 
and  retain  each  spout  in  position,  or  to  retain 
similarly  a  plug  proportioned  to  replace  a  removed 
spout. — H.  H. 

Filter.       R.     Winkel,     G.m.b.H.       G.P.     349,343, 

11.5.18. 
A  filter  bed  covers  a  perforated  plate,  the  perfora- 
tions leading  to  a  chamber,  disposed  about  the 
centre  of  the  plate,  and  provided  with  a  drain. 
Grooves  are  provided  on  the  unperforated  parts  of 
the  plate  and  serve  to  deliver  the  filtered  liquid  from 
such  parts  to  the  perforations.  A  large  filtering 
surface  is  thus  provided  without  the  necessity  of 
perforating  the  whole  surface  of  the  plate.  The 
plate  is  easily  manufactured,  offers  more  resistance 
than  one  perforated  throughout  and  occasions  less 
damage  to  the  filter  bed. — J.  S.  G.  T. 

Extraction  of  soluble  matter  from  powdered  or 
crushed  material  or  substances  other  than  tan- 
stuffs;   Method   of  and   apparatus   for   the   . 

W.   A.   Fraymouth,   J.   A.  Reavell,   and  Kestner 
Evaporator    and    Engineering    Co.,    Ltd.      E.P. 
177,820,  5.10.20. 
A    central    main    or    wetting    gas-lift   agitator    is 
surrounded  by  a  number  of  smaller  agitators,  the 
gas-lifts  of  the  main  agitator  being  provided  with 
adjustable   spouts   so   that   while   the   bulk   of   the 
material  is  kept  in  circulation,  a  portion  of  it  can 
be  transferred   from  the  main  to   any   one  of  the 
outer   agitators.     Each   agitator   is  provided   with 
one  or  more  impervious  baffles,  so  that  a  quiescent 
zone   is    formed    from    which   clear    liquor   can    be 
decanted.      In  the  main   agitator  raw  material   is 
added  to  already  obtained  strong  liquor,  and  clear 
liquor  from  the  quiescent  zone  is  removed  for  use. 
The  pulp   when  thoroughly   wetted    is   transferred 
to  an  outer  agitator  which  has  just  been  completely 
discharged   into   a  drain   tunnel   provided   for   the 
purpose.     Water  (or  other  solvent)  is  added  to  the 
agitator  furthest  from  this  one  (actually  the  next 
one  in  position,  as  they  are  arranged  in  a  circle), 
and  clear  liquor  flows  from  the  quiescent  zone  of 
each  agitator  into  the  agitation  zone  of  the  next 
agitator,    so  that   material   as   it    becomes    impov- 
erished meets  weaker  and  weaker  liquor,  until  at 
the  last  stage  it  is  in  practically  clear  water,  and 
may   then   be  discharged   to  the  drain.     The  solid 
material   is   only   transferred   once   in  addition   to 
charging  and  emptying. — B.  M.  V. 


Furnaces;  Rotary  .     F.  L.  Duffield  and  C.  A. 

Longbottom.     E.P.  178,283,  9.3.21. 

A  rotary  tube  lined  with  refractory  material  may 
be  made  of  much  smaller  bore  than  is  possible  by 
the  ordinary  methods  by  ramming  the  refractory 
material  into  the  space  between  an  inner  and  outer 
metal  tube,  the  former  of  which  is  abraded  and 
slagged  away  when  the  tube  is  used. — B.  M.  V. 

Shaft  furnace  for  drying,  calcining,  and  oxidising 
granular  and  powdered  materials.  L.  Stein- 
schneider.     G.P.  346,869,  1.4.16.     Conv.,  19.3.15. 

Material  to  be  treated  is  fed  downwards  through  a 
funnel-shaped  opening  into  the  shaft,  which  is 
surrounded  by  furnace  gases.  At  the  bottom  of  the 
shaft  the  material  passes  in  a  thin  layer  over  a  cone 
the  apex  of  which  projects  upwards  into  the  shaft, 
and  is  delivered  thence  to  the  discharge  opening, 
being  subjected  meanwhile  to  the  influence  of  the 
furnace  gases  and  excess  air  present  in  the  furnace. 
A  number  of  such  shafts  may  be  built  in  a  common 
furnace  chamber. — J.  S.  G.  T. 

Catalysts;  "Regeneration  of  .  W.  D.  Richard- 
son, Assr.  to  Swift  and  Co.  U.S.P.  1,412,219, 
11.4.22.     Appl.,  12.3.18.     Renewed  28.6.20. 

The  spent  catalyst  is  re-surfaced  by  mechanical 
means  whereby  its  activity  is  regenerated. — A.R.  P. 

Evaporating  apparatus.  D.  H.  Kleinschmidt. 
U.S.P.  1,412,531,  11.4.22.     Appl.,  11.6.18. 

A  casino  contains  a  nest  of  vertical  steam  tubes 
which  is  rotated  when  in  use  by  mechanism  below 
the  casing.  When  out  of  use  the  individual  tubes 
can  be  removed  and  replaced  through  two  openings 
in  the  casing. — B.  M.  V. 

Evaporator ;    Vacuum  .     Riitgerswerke   A.-G., 

and  E.  Senger.     G.P.  346,118,  5.11.20. 

The  upper  part  of  the  evaporator  is  surrounded  by 
an  annular  extension  filled  with  a  preparation  melt- 
ing above  100°  C.  and  fitted  with  a  coil  for  heating 
or  cooling.  Into  this  is  socketed  the  cover  of  the 
main  vessel,  which  is  thus  easily  removable. — C.  I. 

Drying  machine.  T.  Allsop  and  W.  W.  Sibson, 
Assrs.  to  The  Philadelphia  Drying  Machinery  Co. 
U.S.P.  (a)  1,412,593,  (b)  1,412,594,  11.4.22.  Appl., 
18.12.19. 
(a)  A  transverse  partition  separates  the  drying 
chamber  from  a  "  neutral  auxiliary  channel " 
within  the  same  enclosure.  The  channel  is  open  at 
one  end  and  communicates  with  the  drying  chamber 
only  at  the  top.  A  fan  revolving  in  a  vertical  plane 
at  the  centre  of  the  chamber  circulates  air  radially 
in  all  directions  from  the  pressure  to  the  suction 
side,  and  a  conves-or  traverses  the  chamber  and  the 
channel,  (b)  The  bottom  of  the  drying  chamber  is 
arranged  as  a  deflecting  surface  close  to  the  centre 
of  which  a  paddle  wheel  revolves.  Heating  devj^ 
are  distributed  about  the  chamber  above  the  paddle 
wheel  and  in  the  path  of  the  air  flow. — H.  H. 

Drying  apparatus.  C.  Rees,  Assr.  to  Rees  Blow 
Pipe  Mfg.  Co.  U.S.P.  1,413,135,  18.4.22.  Appl., 
15.1.20. 
Air  is  guided  in  a  helical  path  through  drying  and 
heating  chambers  so  that  it  passes  between  tnivs 
across  the  drying  chamber  once  in  each  turn  of  the 
helix  but  the  general  movement  is  longitudinal. 
The  number  of  turns  in  the  helix  and  the  amount  ot 
air  admitted  may  be  varied. — B.  M.  V. 

Emulsions;  Process  of  resolving .    J.  B.  Heller, 

Assr.   to  The  De  Laval  Separator   Co.      V.ts.f- 
1,412,738,  11.4.22.     Appl.,  15.8.21. 
The  emulsion  is  subjected  to  centrifugal  action  and 
the   discharge   is    so    regulated  as   to   separate   a 


Vol.  XLI.,  No.  11.1 


Cl.  Ha.— FUEL  :  GAS  :  MINERAL  OILS  AND  WAXES. 


401  A 


substantial  proportion  of  one  constituent  in  a  sub- 
stantially pure  condition.  The  residual  mixture  is 
then  similarly  treated  to  separate  a  substantial  pro- 
portion of  the  second  constituent  in  a  substantially 
pure  condition. — H.  H. 

Chemical  reactions;  Method  of  carrying  on  vigorous 

.     Gewerkschaft    des    Steinkohlen-Bergwerks 

"  Lothringen."     G.P.  349,330,  4.7.17. 

Stjch  reactions  as  the  neutralisation  of  ammonia  or 
caustic  soda  by  mineral  acids  are  carried  out  with 
continuous  circulation  of  the  reaction  products 
and  continuous  or  intermittent  addition  of  the  re- 
agents at  different  parts  of  the  circuit.  Subsidiary 
reactions  are  controlled  by  varying  the  speed  of 
circulation  and  the  pointe  of  addition  of  the  re- 
agents, and  if  the  rate  of  addition  of  the  reagents  is 
suitably  controlled  the  apparatus  may  be  made  of 
material  not  resistant,  except  to  the  products  of  the 
reaction. — 0.  I. 

Power  production  from  water.  H.  Stromeyer. 
G.P.  350,183,  14.8.20. 

Water,  exposed  to  radiation  from  a  radioactive 
source,  is  decomposed  at  a  high  temperature,  and 
the  resulting  hydrogen  burnt  either  alone  or  in 
combination  with  suitable  compounds.  The  energy 
evolved  on  combustion  exceeds  that  necessary  to 
effect  the  decomposition.  It  is  stated  that  no  boiler 
scale  is  deposited  from  water  which  has  been  treated 
by  exposure  to  a  radioactive  source. — J.  S.  G.  T. 

Crystallisation  of  hot  salt  solutions;  Apparatus  for 

the  continuous .   Maschinenbau-A.-G.  Balcke. 

G.P.  350,577,  11.5.21.  Addn.  to  340,022  (J., 
1921,  812  a). 

Any  dead  corners  or  spaces  in  which  the  deposit  of 
salts  might  come  to  rest  are  fitted  with  jets  through 
which  liquor  is  sprayed  continuously  or  inter- 
mittently.—C.  I. 

Feeding,  mixing,  and  proportioning  of  graded  sub- 
stances, including  fuels  and  the  like;  Apparatus 
for .     H.  E.  Smith.     E.P.  177,842,  3.12.20. 

Valves  [;   Water-cooled  ]   for   controlling   the 

delivery  of  hot  gases  from  furnaces  and  other 
sources.  Dvffrvn  Works.  Ltd..  R.  B.  Fisher,  and 
J.  Powell.     E.P.  178,171,  3.1.21. 

Drying  air  or  other  gases  [after  purification  in  wet 

filters]  ;  Apparatus  for .    W.  R.  Herring,  and 

W.  Grice  and  Sons,  Ltd.     E.P.  178,262,  22.2.21. 

Centrifugal  machines  [;  Plough  discharging  device 

for ].     A.  R.  Robertson  and  A.  F.  Dunsmore. 

E.P.  173,380,  25.8.21. 


nA.-FUEL;  GAS  ;  MINERAL  OILS  AND 
WAXES. 

Sulphur  in  coal;  Behaviour  of in  dry  distilla- 
tion.    F.   Foerster   and  W.   Geisler.     Z.    angew. 
Chem.,  1922,  35,  193—198. 
The  form   of  combination   of  the   sulphur   content 
of  an  Oelsnitz   gas-coal   of   a   representative   type, 
and  of  the  coke  resulting  from   its   high   and   low 
,  temperature  carbonisation  was  examined,  with  the 
following   results :  — 


Total  sulphur 
Sulphur  as  pyrites 
Sulphur  as  FeS     . . 
Sulphur  as  sulphate 
Organic  sulphur    . . 


Coal 

(dry). 

% 

.    1-78 

.    0-92 

!  oio 

0-70 


Semi-coke 
(Yield  74-2%). 


Coke 
(Yield  63-5%) 


1-66 

1-58 

0-55 

0-03 

0-05 

0-46 

004 

0-02 

1-02 

107 

The  hydrogen  sulphide  in  coal  gas  thus  originates 
almost  entirely  from  pyrites.     Further  experiments 


with  controlled  heating  of  coal  in  a  current  of 
dry  nitrogen  showed  that  the  first  reaction  is 
FeS3  =  FeS  +  S,  and  that  the  ferrous  sulphide  is 
decomposed  by  the  joint  action  of  hydrogen  and 
steam,  the  latter  being  generated  in  sufficient 
quantity  even  in  "dry"  distillation.  It  is  im- 
practicable to  reduce  the  sulphur  content  of  coke 
by  the  action  of  steam  without  great  loss  of 
carbon,  as  a  temperature  is  necessary  at  which 
the  formation  of  water-gas  also  proceeds.  A 
similar  investigation  with  German  and  Bohemian 
lignites  showed  that  coals  of  more  recent  geological 
age  contain  less  pyrites  sulphur  in  proportion  to 
organic  sulphur.  The  organic  sulphur  of  lignite, 
however,  differs  from  that  of  true  coal  in  being 
largely  converted  into  hydrogen  sulphide  on  cok- 
ing, and  lignite  coke  is  therefore  proportionately 
low  in  sulphur.  If  the  lignite  contains  lime  in 
appreciable  quantities,  however,  a  proportion  of 
the  hydrogen  sulphide  evolved  is  retained  as 
calcium  sulphide.  Such  coke  on  burning  yields 
gases  of  combustion  almost  free  from  sulphur 
dioxide,  99%  of  the  sulphur  being  found  in  the 
ash.— C.  I. 


[Oil]   seepages;  Significance   of  the   interpretation 

of  the  chemical  analyses  of  .     J.  Hackford. 

J.  Inst.  Petrol.  Tech.,  1922,  8,  193—213. 

The  varying  specific  gravity  of  oils  found  in  the 
same  region  is  accounted  for  by  the  absorption  of 
sulphur  in  areas  where  the  oil  is  collected  in 
dolomitic  reservoirs.  The  thicker  the  dolomite 
bed,  the  greater  the  absorption  of  sulphur  and  the 
higher,  consequently,  is  the  specific  gravity  and  the 
asphalt  content  of  the  oil.  In  areas  which  have 
been  faulted  the  oil  has  become  partly  oxidised,  and 
a  case  is  quoted  in  which  the  oil  at  one  well  con- 
tained 1'80%  of  oxygen,  whilst  in  a  well  only  180 
yards  away  tfte  oxygen  content  of  the  oil  amounted 
to  4"32%.  Mexican  oils  have  been  derived  from  sea- 
weed, this  being  borne  out  by  the  high  asphaltum 
and  sulphur  contents  of  oil  from  this  region,  whilst 
the  low  nitrogen  content  is  also  to  be  expected. 
Mexican  oil  is  also  practically  free  from  aromatic 
compounds,  and  since  algae  contain  neither  cellulose 
nor  nitrogen,  aromatic  decomposition  products 
would  not  be  expected  to  occur.  Marine  plants 
have  the  power  of  absorbing  salts  from  sea  water, 
and  the  fact  that  Mexican  oils  contain  silica, 
vanadium,  nickel,  tin,  lead,  calcium,  magnesium, 
iron,  aluminium,  sodium,  titanium,  and  gold  is 
evidence  that  they  are  derived  from  marine  vege- 
table growth.  In  the  formation  of  coal,  the  de- 
composition products  have  been  retained  in  a  matrix 
of  cellulosic  material,  whilst  with  oil  there  has  been 
no  cellulose  present  to  form  such  a  matrix.  Oxy- 
and  thio-asphaltenes  have  been  converted  into  kerq- 
tenes,  and  these  become  less  and  less  soluble  until 
they  are  insoluble  in  pyridine  or  quinoline.  Many 
coals  containing  up  to  13%  of  sulphur  are  probably 
almost  pure  thiokerites  (i.e.,  solid  bitumens  in- 
soluble in  carbon  bisulphide).  Oils  may  be  divided 
into  aliphatic,  aromatic,  naphthenic,  and  naphthyl- 
enic  oils,  and  each  of  the  above  may  contain  either 
oxvgen  or  sulphur  derivatives  of  the  same.  The 
gases  from  aliphatic  oils  should  contain  a  little 
nitrogen,  a  large  proportion  of  methane,  and  some 
hydrogen  sulphide  if  derived  from  marine  vegeta- 
tion containing  a  large  amount  of  sulphur.  The 
gases  from  aromatic  oils  should  be  characterised  by 
the  presence  of  nitrogen  and  paraffin  gases,  though 
not  to  such  an  extent  as  the  aliphatic  oils,  whilst  free 
hydrogen  should  be  absent.  In  the  gases  from 
naphthenic  and  naphthylenic  oils  the  presence  of 
hydrogen  and  nitrogen  would  be  expected.  Solid 
and  liquid  seepages  can  be  similarly  examined  and 
by  their  sulphur  content,  solubility  in  carbon  bi- 
sulphide, and  other  properties  a  good  idea  of  the 

A  2i 


402  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS   AND  WAXES. 


[June  15,  1922. 


nature  and  quality  of  the  oil  occurring  below  the 
seepage  can  be  obtained. — H.  M. 

Oils;  New  method  of  colour  measurement  of  . 

L.  W.  Parsons  and  R.  E.  Wilson.     J.  Ind.  Eng. 
Chem.,  1922,  14,  269—278. 

The  Lovibond  tintometer  method,  which  consists  of 
matching  a  standard  depth  of  oil  against  amber- 
coloured  glasses,  does  not  possess  a  true  scale.  Two 
oils  of  different  Lovibond  numbers,  when  blended  in 
equal  proportions,  do  not  give  a  blend  the  colour  of 
which  is  the  arithmetical  mean  of  the  colours  of  the 
two  components.  A  solution  of  a  dark  oil  and 
kerosene  has  been  made  to  correspond  with  the 
Lovibond  number  50,  and  unknown  oils  are  com- 
pared with  this  standard  by  varying  the  depth  of 
the  two  oils.  Monochromatic  light  is  employed,  the 
process  being  based  on  Beer's  formula,  which  has 
been  confirmed  experimentally.  A  true  scale  is 
obtained,  making  it  possible  to  predict  the  colour  of 
a  blend  from  the  colour  and  proportions  of  the 
components.  A  graph  has  been  prepared  showing 
the  relationship  between  the  Lovibond  numbers  and 
the  true  scale  numbers,  which  indicates  that  the 
Lovibond  scale  as  curved.  By  means  of  this  graph 
it  is  possible  to  predict  the  colour  of  blende  by 
translation  of  the  Lovibond  readings  into  true  scale 
readings,  calculating,  and  then  reconverting  to 
Lovibond  numbers.  The  true  scale  method  is  par- 
ticularly suited  to  research  on  decolorising  agents, 
experimental  graphs  being  shown. — H.  M. 

Petroleum  products;  Iodine  and  bromine  values  of 

.     E.    M.    Johansen.     J.    Ind.    Eng.    Chem., 

1922,  14,  288—291. 

In  determining  the  iodine  values  of  mineral  oils 
the  iodine  reacts  both  by  addition  and  substitution. 
The  proportions  of  iodine  reacting  by  addition  and 
by  substitution  have  been  separately  estimated,  and 
also  the  corresponding  bromine  values  have  been 
obtained.  The  total  iodine  consumed  is  the  addition 
value  plus  twice  the  substitution  value.  A  large 
number  of  results  are  given,  with  details  of  the 
analytical  process. — H.  M. 

Petroleum;     Cracking    .       K.     Smolenski,     S. 

Turowicz,  and  R.  Dobrowlski.  Przemysl  Chem., 
1921,  5,  201—220,  237—254.  Chem.  Zentr.,  1922, 
93,  II.,  899—900. 

Petroleum  from  Krosno  yields  aromatic  hydro- 
carbons in  quantities  approaching  those  obtained 
from  Baku  petroleum.  The  quantity  and  quality  of 
the  products  depend  principally  upon  the  tempera- 
ture of  distillation,  680°— 720°  C.  being  the  opti- 
mum, and,  with  a  given  rate  of  flow,  benzene, 
toluene,  xylene,  naphthalene,  and  anthracene  are 
easily  obtained. — H.  M. 

Hydrocarbon   fuels;   Determination   of   the   vapour 

pressure  of  ,  and  the  estimation  of  dissolved 

air.  H.  T.  Tizard  and  A.  G.  Marshall.  J.  Inst. 
Petrol.  Tech.,  1922,  8,  217—223. 
The  apparatus  used  consisted  of  a  reservoir  of 
about  100  e.c.  capacity,  connected  at  its  upper  end 
through  a  mercury-sealed  tap  with  a  burette,  and 
at  its  lower  end  through  a  U-tube  with  a  mano- 
meter and  means  for  exhausting  or  admitting  air. 
Mercury  was  admitted  to  the  reservoir  through  the 
burette  till  it  stood  at  a  certain  mark,  and  after- 
wards the  liquid  (petrol)  to  be  examined,  the  ex- 
periments being  carried  out  at  a  pressure  below 
atmospheric,  and  the  reservoir  being  kept  at  a 
temperature  of  0°  C.  The  liquid  was  dried  before 
admission  to  the  apparatus.  Graphs  show  the 
pressures  attained  on  the  admission  of  varying 
quantities  of  liquid  for  two  varieties  of  petrol, 
"  national  "  benzol,  and  toluene.  The  pressure  read- 
ing, p,,  is  shown  to  be  equal  to:  p-f  (P„V  +  760vx)/ 
(V-v-fyv) — P„,  when  P„  =  originaI  pressure  of  air 


in  apparatus,  p  =  true  vapour  pressure  of  liquid, 
V  =  volume  of  reservoir,  v  =  volume  of  liquid 
admitted,  x  =  proportion  of  dissolved  air  in  liquid, 
and  y  =  proportion  of  air  required  to  saturate 
the  liquid  at  atmospheric  pressure  and  the  tem- 
perature of  the  experiment.  When  v  is  very  small 
p,  =  p.  The  amount  of  dissolved  air  in  petrol  was 
found    to    be   0'22    vol.,    and    in   benzol    0'15    vol. 

—  H.  M. 

Ethyl  alcoholt  water,  paraffins;  The  systems  

from  +30°  C.  to  -30°  C.  W.  R.  Ormandv  and 
E.  C.  Craven.  J.  Inst.  Petrol.  Tech.,  1922,  8, 
181—193. 

A  research  on  the  miscibility  of  petroleum  pro 
ducts  with  aqueous  alcohol  of  different  concentra- 
tions. Impure  pentane,  isopentane,  hexane,  and 
heptane  were  employed.  Heptane  purified  as  far 
as  possible,  gave  figures  almost  identical  with  those 
for  impure  heptane,  leading  to  the  supposition  that 
all  the  results  were  practically  correct  for  the  pure 
substances.  Numerous  tables  and  graphs  are  given 
showing  the  separation  data  and  solubilities  of  the 
hydrocarbons    and    of    mixtures    of    hydrocarbons. 

— H.  M. 

Flash-point   temperatures;  Physico-chemical   signi- 
ficance   of    .     W.    R.    Ormandy    and    E.    C. 

Craven.    J.  Inst.  Petrol.  Tech.,  1922,  8,  145—172. 

A  special  flash-point  tester  for  determining  flash- 
points at  very  low  temperatures  has  been  devised. 
Cooling    is    effected    by    means    of    liquid    sulphur 
dioxide  under  reduced  pressure,  whilst  ignition  is 
obtained    by    means    of    a    spark    generated    by   a 
magneto.       The      instrument,      whilst      primarily 
designed   for   low   temperature   work,   can    be   also 
used  for  high  temperatures.       With   pure  organic 
substances  the  relation  between  the  flash-point  and 
the  boiling-point  is  a  straight-line  function  which 
intersects    the    axes    when    the    temperatures    aro 
plotted   on  the   absolute   scale.     The  relation  may 
be    roughly    expressed    in    the    form :     flash-point 
°KxR  =  boiling-point  °K,  where  R  is  a  constant.    A 
table   of    flash-points   and   boiling-points   is   given, 
showing  the  value  for  the  constant  in  this  expres- 
sion.    Mixtures    giving    steep    distillation    curves 
give  high  values  for  R,  whereas  certain  substances 
containing  dissolved  gases,  e.g.  hexane,  and  kero- 
sene, give  low  values  for  R.     Two  flash-points  are 
obtainable,  a  lower  and  an  upper,  when  the  fuel- 
air   mixture   reaches  the  lower    and   upper   limits 
of    flame    propagation    respectively.       For    hydro- 
carbons the  average  constant  was  as  follows  :  lower 
flash-point     °K  =0736  x  initial     boiling-point    °K.. 
and    upper    flash-point    °K=0'800x  initial   boiling- 
point  °K.       The  curve  for  the  flash-point  against 
boiling-point  of  the  alcohols  lies  roughly  parallel  to 
the    hydrocarbon    curve,    with    an    approximately 
steady  difference  of  25°  C.  in  flash-point  between  the 
two  curves,  the  constant  R  being  obtained  by  the 
following   expression:     R  =  (Thf  +  25)/Tbp  =  0736+ 
25/Tbp,     where     Thf    is     the    absolute    flash-point 
temperature   of    a    hydrocarbon    having    the   sain ' 
absolute  b.p.  (Tbp)  as  the  alcohol  in  question.     As 
the  boiling-point  of  the  alcohol  rises,  the  constant 
R  more  closely  approaches  that  for  the  hydrocarbon 
series.      Flash-point    determinations    made    in    an 
atmosphere  of  oxygen  gave  much  lower  values  than 
those  made  in  air,  whilst  increase  in  pressure  was 
found  to  affect  the  result  1°  C.  for  each  26  mm.  mer- 
cury   increase   in   pressure,    which   corresponds   to 
1-7°  F.  per  inch  of  mercurv,  the  legal  value  based 
on  the  experiments  of  Abel  being  1'6°  F.     The  flash- 
points of  binary  mixtures  together  with  the  Engler 
distillations   of  these   mixtures   have  been   tested 
At  the  flash-point  all  hydrocarbons  possess  approxi- 
mately the  same  vapour  pressure.     At  atmospheric 
pressure  the  vapour  pressure  is  about  12  mm.  t 
the  lower  flash-point  and  40—50  mm.  for  the  upper 


Vol.  XLI.,  No.  11.1 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


403, 


flash-point.  The  minimum  and  maximum  concen- 
trations for  the  propagation  of  flame  can  be  calcu- 
lated from  the  flash-point  determination  taken  in 
conjunction  with  the  vapour  pressure,  assuming 
Dalton's  law  of  partial  pressures  to  hold.  The 
results  agree  fairly  closely  with  those  of  Eitner 
(Explosionsgrenze  Brennbaren  Gase,  1902).  The 
bearing  of  the  flash-point  of  tho  fuel  for  a  petrol 
engine  upon  the  ease  of  starting  the  engine  is 
discussed. — H.  M. 

Softening  point  of  paraffin  wax  etc.     See  XXIII. 

Patents. 

Coal  yielding  a  low  percentage  of  ash;  Manufacture 

of  [from  peat   or  lignite'].       Chem.    Fabr. 

Griesheim-Elektron.     G.P.  310,191,  4.1.16. 

Peat  or  lignite  containing  little  pyrites  or  silica  is 
treated  with  a  mineral  acid,  e.g.,  with  hydrochloric 
acid  at  90°  C,  preferably  after  a  preliminary 
treatment  with  the  waste  acid  from  a  previous 
extraction.  The  product  is  filtered,  washed,  dried 
and  may  be  carbonised. — L.  A.  C. 

Peat  or  the  like;  Production  of  solid  fuel,  liquid  dis- 
tillntes,  and  vapour  from  wet  in  one  opera- 
tion.    M.  Nuss.     G.P.  347,895,  6.3.20. 

Peat  or  the  like  is  passed  through  a  series  of 
chambers  or  tubes  in  which  it  is  heated  to 
200° — 400°  C.  without  the  generation  of  high  pres- 
sure, and  the  vapours  formed  pass  through  the 
apparatus  in  the  opposite  direction.  The  fresh 
peat  is  thus  dried  and  charged  with  the  less  volatile 
portions  of  the  distillate.  The  process  can  be 
adjusted  to  yield  a  product  containing  sufficient  tar 
to  allow  it  to  be  moulded  into  briquettes,  or  a  hard, 
tar-free  product  which  can  be  powdered  and  burnt 
as  dust. — L.  A.  C. 

Metaldehyde ;  Burner  for  .     Elektrizitatswerk 

Lonza.     E.P.  168,868,  3.8.21.     Conv.,  4.9.20. 

In  a  burner  for  metaldehyde  (cf.  E.P.  144,589; 
J.,  1920,  714  a),  troublesome  emission  of  acetalde- 
hydo  vapours  after  extinction  of  the  flame  (due  to 
depolymerisation  by  prolonged  heating)  is  pre- 
i  vented  by  cooling  the  walls  of  the  burner  surround- 
ing the  metaldehyde  by  means  of  water  or  other 
liquid,  which  may  be  contained  in  a  vessel  forming 
a  support  for  the  body  of  metaldehyde. — A.  R.  M. 

Gas  producers.  G.  Hughes  and  W.  Mitchell.  E.P. 
177,845,  28.7.21. 

In  the  type  of  producer  in  which  gas  is  made  from 
sawdust  and  the  like,  pre-ignition  of  the  gas  in  the 
soot  chamber  is  prevented  by  providing  in  this 
chamber  a  water-spray  or  the  like,  discharging  into 
a  trough  from  which  the  water  and  soot  can  after- 
wards be  removed. — A.  R.  M. 

SGas  producer.  H.  G.  Johnston,  Assr.  to  G.  John- 
ston. U.S.P.  1,412,118,  11.4.22.  Appl.,  16.7.20. 
A  fuel-charging  shoot  depends  centrally  within  the 
producer  shaft,  terminating  above  the  fuel  bed. 
Perforations  throughout  the  area  of  the  shoot  permit 
of  the  free  passage  of  gas  between  its  interior  and 
the  annular  gas-collecting  space  surrounding  it. 
An  outlet  communicates  with  the  gas-collecting 
chamber. — A.  R.  M. 

Gas  producer.  W.  B.  Chapman,  Assr.  to  Chapman 
Engineering  Co.  U.S.P.  1,412,921,  18.4.22. 
Appl.,  18.1.16. 

A  gas  producer  has  means  for  maintaining  aconstant 
depth  of  fuel,  the  upper  part  of  which  is  agitated 
mechanically  so  a»  to  secure  uniform  conditions  of 
combustion.  The  agitator  is  suspended  from  the 
top  of  the  producer;  its  height  can  be  varied  to  suit 
the  thickness  of  the  fuel-bed.  The  ash  is  removed 
mechanically  from  the  lower  part  of  the  producer, 


synchronously  with  the  automatic  supply  of  fresh 
fuel  and  corresponding  with  the  rate  of  gasification. 

—A.  B.  S. 

Distillation  gases  and  producer  gas;  Apparatus  for 

the  separate  production  of .     G.  Mars.     G.P. 

343,814,  4.4.18. 

Fuel  is  fed  through  an  opening  in  the  top  of  the 
upper  of  two  inverted  conical  partitions,  the  space 
between  the  two  forming  the  distillation  chamber. 
The  residual  coke  falls  from  the  annular  space  at 
the  bottom  of  the  two  partitions  on  to  a  sloping 
grate,  and  combustion  gases  containing  carbon 
dioxide  are  drawn  through  the  grate  from  the 
chamber  below  the  lower  inverted  cone;  the  gases 
then  pass  through  the  space  between  the  upper 
cone  and  the  outer  walls  of  the  apparatus  before 
leaving  the  apparatus,  and  thus  serve  to  heat  the 
distillation  chamber. — L.  A.  C. 

Carbonising      and     gasifying      bituminous     fuels; 

Apparatus   for    .     A.-G.    fiir    Brennstoffver- 

gasung.     G.P.  345,817,  27.10.18. 

Two  or  more  carbonising  chambers  are  arranged 
beside  a  gas  producer,  the  floor  of  the  chambers 
being  on  a  level  with  the  top  of  the  charge  in  the 
producer,  i.e.,  about  one  half  of  its  height,  and  con- 
nected therewith  by  openings  through  which  the 
contents  of  the  chambers  can  be  discharged  into  the 
producer  as  required.  A  battery  of  producers  need 
only  be  provided  with  one  carbonising  chamber  in 
excess  of  the  number  of  producers. — L.  A.  C. 

[Producer']    gas;    Production    of    from    wet 

material  [lignite'}  by  drying,  distillation,  and 
combustion.  Deutsche  Gold-  und  Silber-Scheide- 
anstalt  vorin.  Roessler.  G.P.  347,624,  1.9.16. 
Lignite  is  passed  successively  through  a  dryer,  a 
distillation  chamber  in  which  oik  and  tar  are  re- 
moved by  treatment  with  superheated  steam,  and  a 
gas  produce*,.  The  gases  from  the  producer 
chamber  pass  around  and  heat  the  distillation 
chamber  and  the  dryer,  and  superheat  the  steam 
supplied  to  the  distillation  chamber. — L.  A.  0. 

Gas  cooling  and  purifying  apparatus.      J.  W.  B. 
Stokes  and  C.  J.  Waldie.     E.P.  177,855,  31.12.20. 

Producer  gas  is  cleaned  and  purified  by  passing  it 
into  an  apparatus  consisting  of  three  concentric 
metal  shells  which  provide  a  large  condensing  area. 
The  two  inner  shells  form  the  surfaces  of  a  water 
cooling  system  and  the  outer  shell  is  exposed  to 
atmospheric  cooling.  The  cooled  gas  passes  through 
a  blanket  material  cooled  with  tar  of  a  similar 
nature  to  that  it  is  intended  to  remove  from  the 
gas,  and  then  through  a  layer  or  layers  of  sphagnum 
mo6s,  wood  wool,  or  other  absorbent  material  con- 
tained in  removable  tubes  or  elements  placed  in  a 
readily  accessible  position.  Ports  are  provided  for 
cleaning  and  removal  of  tar  etc. — A.  R.  M. 

Producer-gas;  Process  for  the  recovery  of  iron  used 

in  the  purification  of from  sulphur  by  means 

of  highly  heated  iron  or  iron  oxide.     H.  Koppers. 
G.P.  343,94.'),  5.2.18. 
The  iron  or  ferric  oxide  containing  ferrous  sulphide 
is   melted   in   the   producer   itself   and   the   ferrous 
sulphide  reacts  with  the  lime  in  the  hot  clinker  6lag 
in    contact    with   the   incandescent   carbon   of    the 
producer  charge,   yielding   pig-iron.       The  process 
can  be  made  continuous,  the  purifier  being  built  as 
an  extension  of  the  producer. — C.  I. 
Hydrocarbons;   Process   for  extraction  of  unsatu- 
rated   from  hydrocarbon  mixtures  or  carbon- 
aceous   material    [coal,    lignite,    etc.'].       H.    O. 
Traun's  Forschungslaboratorium  G.m.b.H.     E.P. 
156,123,  30.12.20.     Conv.,  23.4.18. 
A  solution  of  sulphur  dioxide  in  acetone  or  higher 
ketones   is   employed   as  a   solvent  of   unsaturated 


404  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[June  15,  1922. 


hydrocarbons  which  occur  in  coals,  lignites,  etc. 
It  can  also  be  used  for  extracting  unsaturated 
compounds  from  liquid  or  gaseous  mixtures  of 
saturated  hydrocarbons,  e.g.,  unsaturated  hydro- 
carbons from  solvent  naphtha  and  butadiene 
hydrocarbons  from  other  hydrocarbons.  The 
operation  may  be  carried  out  at  ordinary  pressure, 
but  better  results  are  obtained  by  using  increased 
pressure.  Temperatures  between  0°  and  15°  C.  are 
convenient. — F.  G.  P.  It. 

Montan  wax;  Process  for  extraction  of  from 

bituminous  coal.  H.  O.  Traun's  Forschungs- 
laboratorium  G.m.b.H.  E.P.  156,138,  31.12.20. 
Conv.,  2.12.18. 
Bituminous  coal  containing  montan  wax,  after  dis- 
integration, is  mixed  with  water,  to  which  small 
quantities  of  an  emulsifying  agent  such  as  alkali 
soaps  and  a  solvent  for  the  wax  may  be  added, 
and  emulsified  by  means  of  a  fast  running  dis- 
integrator (colloid  mill)  kept  warm  by  steam  coils. 
The  emulsified  wax  and  coal  is  then  filtered  from 
sand  by  means  of  a  press  and  coagulated  by  heating 
or  the  addition  of  an  electrolyte.  After  settling 
the  coagulated  mud  may  be  treated  with  a  wax 
solvent  or  distilled  with  superheated  hydrocarbon 
vapours,  with  or  without  the  addition  of  steam,  by 
which  means  the  wax  is  separated  from  the  finely 
divided  coal.— F.   G.   P.  R. 

Paraffin  [wax];  Process  and  apparatus  for  obtain- 
ing        from    paraffin-containing    substances, 

more  particularly  from  lignite  tar  or  shale  tar. 
E.  Erdmann.  E.P.  156,693,  7.1.21.  Conv., 
5.8.18.  Addn.  to  156,594  (J.,  1922,  285  a). 
Paraffin  wax  is  precipitated  from  shale  and  lignite 
tars  by  the  addition  of  acetone.  In  order  to  avoid 
loss  of  solvent  a  completely  closed  system  is  em- 
ployed comprising  a  mixer  cooler,  filter-press,  and 
still.  Means  are  provided  for  washing  the  wax 
in  the  press  with  clean   acetone  and   with   water. 

— F.  G.  P.  R. 

Lubricating    oils;   Manufacture    of  .      H.    O. 

Traun's  Forsehungslaboratorium  G.m.b.H.     E.P. 
156,140,  31.12.20.     Conv,,   12.12.19. 

Cheap  tar  oils  or  pitch  can  be  transformed  into 
good  lubricating  oils  of  high  viscosity  by  being 
passed  rapidly,  with  about  an  equal  weight  of 
superheated  steam  at  300° — 400°  C,  through  a 
tube  with  a  flattened  portion  heated  to  500° — 
900°  C  The  constriction  should  be  1 — 3  mm. 
across  and  the  time  the  oil  is  in  the  heated  area 
not  more  than  half  a  minute.  The  presence  of 
catalysts,  such  as  carbon,  silicic  acid  or  its  com- 
pounds with  heavy  and  alkaline-earth  metals, 
metals  and  their  oxides  or  alloys,  especially  mag- 
nesium compounds,  is  of  assistance  in  the  reaction. 

— F.  G.  P.  R. 

Shale  and  like  materials;  Apparatus  for  recovering 

the  vol-atile  constituents  of .     G.  A.  Bronder 

and  T.  Costigan.     E.P.  176,847,  15.11.20. 

The  apparatus  comprises  a  vertical  cylindrical 
retort  containing  the  charge  of  6hale,  and  a  smaller 
multitubular  cylinder  for  the  purpose  of  heating 
the  retort  gases,  which  are  then  returned  by  means 
of  a  blower  to  the  retort.  The  gases  are  heated  by 
an  auxiliary  gas  burner  and  supply  the  heat  re- 
quired for  distilling  the  shale. — F.  G.  P.  R. 

Hydrocarbon   oils;  Process  for  treating   {lowering 

viscosity  of]  .     R.   H.   Brownlee  and  C.  F. 

de   Ganahl.      E.P.    177,589,    23.12.20. 
By    subjecting    heavy    viscous    oils    to    heat    and 
pressure    and    at    the    same    time    removing    any 
volatile  products  that  may  be  formed,  the  viscosity 
is  lowered  to  a  greater  degree  without  substanti- 


ally affecting  the  specific  gravity  and  with  greater 
ease  than  if  the  volatile  products  are  not  thus  re- 
moved. The  oil  is  passed  through  a  series  of  tube 
stills  heated  to  675°— 825°  F.  (about  360°-^40°  C), 
and  between  successive  stills  is  led  through  dephleg- 
mators  maintained  at  450°— 600°  F.  (about  230°— 
315°  C),  whence  the  volatile  constituents  are  re- 
moved to  condensers  whilst  the  unvolatilised  oil 
passes  on  to  the  next  still.  Instead  of  tube  stills 
revolving  horizontal,  cylindrical  stills  may  be  em- 
ployed containing  nickel,  iron,  or  steel  bodies,  such 
as  balls  or  bars,  which  serve  to  conduct  heat  to  the 
oil   and   keep   the  still   free  from   carbon  deposits. 

— F.   G.   P.   R. 

Low-boiling  hydrocarbons ;  Process  of  making . 

C.    M.    Alexander,    Assr.    to   Gulf   Refining    Co. 
U.S. P.  1,411,255,  4.4.22.     Appl.,  14.3.16. 

Permanent  gases  from  the  distillation  or  cracking 
of  petroleum  oils,  or  natural  petroleum  gases  are 
heated  to  a  temperature  between  500°  and  1000°  C. 
under  a  pressure  of  50 — 200  lb.  per  sq.  in.  On 
cooling  and  condensing,  low-boiling  hydrocarbons 
suitable  for  internal  combustion  motors  are 
obtained.  The  higher  temperatures  and  pressure 
favour  formation  of  aromatic  hydrocarbons.  Dilu- 
tion of  the  gases  with  uncondensable  gas  that  has 
already  been  through  the  process  prevents  forma- 
tion of  hydrogen  by  decomposition  of  hydrocarbons 
and  thus  improves  the  yield. — F.  G.  P.  R. 

OUi;  Process  of  treating  [cracking]  .      C.  P. 

Dubbs,    Assr.    to    Universal    Oil    Products    Co. 

U.S. P.  1,411,961,  4.4.22.  Appl.,  16.4.17. 
A  pressure  tube-still  for  cracking  oils  is  composed 
of  two  lower  headers  and  one  upper  one  connected 
by  two  series  of  vertical  pipes  separated  by  a  brick 
wall  reaching  almost  to  the  upper  header.  Furnace 
gases  pass  upwards  along  one  series  of  tubes,  over 
the  top  of  the  separating  wall  and  down  the  second 
series.  Oil  is  forced  into  the  cooler  of  the  lower 
headers  and  flows  in  counter  current  to  the  furnace 
gases  through  the  system.  Vapour  is  drawn  off 
from  the  upper  header  and  passes  through  a  cold 
oil  heat  exchanger  to  a  water  condenser.  Un- 
vaporised  oil  is  drawn  off  from  the  hotter  of  the 
lower  headers  and  returned  together  with  fresh  oil 
to  the  cooler  end  of  the  still. — F.  G.  P.  R. 

Furl  [;  Motor  ]  and  process  of  making  same. 

C.    Ellis,   Assr.   to  New  Jersev  Testing  Labora- 
tories.  U.S. P.  1,412,233,  11.4.22.   Appl.,  10.5.19. 

"  Still  ga6es  "  are  passed  through  strong  sulphuric 
acid  and  the  mixture  of  hydrocarbons  thus  absorbed 
is  hydrolysed  by  water  to  form  alcohols,  chiefly 
isopropyl  alcohol.  The  aqueous  solution  is  agitated 
with  benzol  to  extract  the  alcohol,  the  water  is 
separated,  and  a  substantial  volume  of  gasoline 
added  to  the  mixture  of  benzol  and  propyl  alcohol. 

— F.  G.  P.  R. 

Desuli)hurising    petroleum    oils;    Process    of   . 

E.  B.  Cobb,  Assr.  to  Standard  Oil  Co.       U.S.P. 

1,413,005,  18.4.22.  Appl.,  13.3.19. 
Elementary  sulphur  is  removed  from  petroleum 
oils  by  means  of  monosulphides  of  alkali  or  alkalinc- 
earth  metals.  When  sufficient  hydrogen  sulphide 
is  present  in  the  oil  it  is  onlv  necessarv  to  agitate 
at  160°— 190°  F.  (71°— 88°  C.)  with  alkali  hydroxide 
whereby  monosulphides  are  formed  which  combine 
with  elementary  sulphur  to  form  polysulphides.  If 
insufficient  hydrogen  sulphide  is  present  it  is 
necessarv  to  add  monosulphide  as  well  as  hydroxide. 

— F.  G.  P.  R. 

Gasoline  or  the  like;  Apparatus  for  manufacture  of 

.    H.  A.  Dreffein.    U.S.P.  1,413,327,  13.4.22. 

Appl.,  11.4.16. 
In  order  to  overcome  the  danger  of  distortion  and 


Vol.  XLI.,  No.  11.)     Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


405  a 


burning  out  of  cracking  apparatus  due  to  intense 
external  heating  and  internal  pressure,  means  are 
provided  for  equalising  the  pressure  inside  and  out- 
side the  cracking  chamber  proper.  Within  a  closed 
steel  vessel  lined  with  firebrick  is  situated  a  conical 
iron  cracking  chamber  having  ports  cut  in  its  lower 
part.  To  the  apex  is  attached  an  oil  feed  pipe, 
while  the  open  base  rests  over  a  tar  sump  from 
which  a  pipe  leads  to  a  condenser  and  pressure- 
regulating  valve.  Gas  and  air  are  fed  through  a 
pipe  into  the  space  between  the  outer  vessel  and 
the  cone,  where  combustion  takes  place  and  pro- 
duces cracking  of  the  oil  fed  into  the  cone.  Owing 
to  the  ports  in  the  latter  the  pressure  in  the  com- 
bustion chamber  and  cracking  chamber  are  equal 
and  the  whole  strain  is  taken  by  the  almost  cold 
outer  vessel.— F.  G.  P.  R. 


Petroleum  oil;  Refining  of  - 
Assr.  to  Standard  Oil  Co. 
22.4.22.     Appl.,  25.4.22. 


-.     E.    M.    Clark, 
U.S. P.    1,413,899, 


Cracked  gasoline  produced  by  means  of  distillation 
under  increased  pressure,  such  as  occurs  in  the 
Burton  type  still,  is  refined  together  with  the 
dissolved  still  gases  in  a  closed  system  under 
pressure  of  the  gases.  The  distillate  from  the  con- 
denser enters  a  closed  receiving  tank  furnished  with 
a  gas  release  valve  controlling  the  pressure  on  the 
still,  and  from  there  is  forced  by  gas  pressure 
through  valved  pipes  into  a  series  of  closed  acid  and 
soda  treating  tanks  of  the  bubble  type  and  thence 
to  a  settling  tower  and  a  storage  tank  for  the 
finished  product.  A  gas  release  valve  is  fitted  on 
either  of  these  last  two  vessels  in  order  that  the 
liquid  may  be  kept  under  a  certain  gas  pressure 
throughout  the  refining  operations.  By  this  means 
gas  is  kept  dissolved  in  liquid  and  both  are  refined 
at  the  same  time.  Owing  to  gradually  decreasing 
pressure  throughout  the  system  evolution  of  gas 
continually  occurs  and  the  effervescence  thus  pro- 
duced materially  assists  in  effecting  agitation  with 
the  refining  liquors. — F.  G.  P.  R. 

Oil;    Apparatus    for    dehydrating    ■ .        S.    A. 

Giebner,     Assr.     to     Electric     Dehvdrating     Co. 
U.S.P.  1,414,079,  25.4.22.     Appl.,  12.5.19. 

For  the  purpose  of  separating  water  from  oil 
emulsions  an  annular  electrode  is  arranged  within 
a  tank  provided  with  a  pipe  for  introducing  the 
emulsion  at  the  bottom  centrally  with  regard  to  the 
electrode.  Another  series  of  disc  electrodes,  spaced 
apart  vertically  from  one  another,  the  lower  ones 
having  serrated  edges,  are  mounted  on  a  shaft 
situated  centrally  within  the  annular  electrode. 
Means  are  provided  for  producing  electrostatic 
fields  of  varying  concentration  between  the  two 
series  of  electrodes  whilst  the  emulsion  flows 
upwards  through  these  fields.  Water  is  continuously 
drawn  off  from  the  bottom  of  the  tank  and  oil 
from  the  top.— F.  G.  P.  R. 

!Fuel;  Treatment  of  solid  for  transportation 
thereof.  L.  W.  Bates.  E.P.  154,605,  30.11.20. 
Conv.,  3.12.19. 

See  U.S.P.  1,390,230  of  1921 ;  J.,  1921,  761  a.  The 
pulverised  coal  or  the  like  is  subjected  to  a  flotation 
or  other  treatment  to  reduce  its  ash  content  before 
being  incorporated  with  liquid  hydrocarbon. 


Fuels;  Production  of  composite  mobile 

Bates.     E.P.   160,754,   29.12.20.     Conv. 


L.  W. 

23.3.20. 


See  U.S.P.  1,390,231  of  1921;  J.,  1921,  761  a. 

Coal;  Plant  for  and  method  of  treating .     C.  H. 

Smith,    Assr.    to     International    Coal     Products 
Corp.     U.S.P.  1,414,223,  25.4.22.     Appl.,  3.4.18. 

See  E.P.  125,379  of  1919;  J.,  1920,  714  a. 


Gasification  of  coal  and  obtaining  of  by-products. 
C.  H.  Smith,  Assr.  to  International  Coal  Pro- 
ducts Corp.  U.S.P.  1,413,799,  25.4.22.  Appl., 
16.2.18. 

See  E.P.  123,738  of  1919;  J.,  1920,  478  a. 

E.P 


157,859, 


Gas  producers.       E.     Dolensky. 
10.1.21.     Conv.,  21.2.17. 

See  G.P.  310,174  of  1917;  J.,  1920,  510  a. 

Gases;  Apparatus  for  purifying  and  treating  . 

H.Hernu.    E.P.  157,287, 10.1.21.    Conv.,  9.12.18. 

See  U.S.P.  1,408,736  of  1922;  J.,  1922,  284  a. 

Coke-oven  gas;  Process  for  the  recovery  of  benzol 

hydrocarbons  from  .       A.  Hartmann.       E.P. 

157,793,  10.1.21.     Conv.,  13.11.13. 

See  G.P.  298,823  of  1913;  J.,  1920,  653  a. 

Petroleum    reduction;    Process    of    .     F.     A. 

Kormann,  Assr.  to  United  Refineries  Co.  Re- 
issue 15,337,  18.4.22,  of  U.S.P.  1,332,849,  2.3.20. 
Appl.,  20.12.20. 

See  J.,  1920,  326   a. 

Petroleum;   Process   of   distilling   crude   and 

product  thereof.  E.  M.  Clark,  Assr.  to  Standard 
Oil  Co.    U.S.P.  1,413,260, 18.4.22.    Appl.,  31.3.19. 

See  E.P.  147,353  of  1919;  J.,  1920,  651a. 

Producer  gas   generators   [;    Combined   grate  and 

water  evaporator  for ].     H.  W.  Bamber  and 

J.   W.   Parker.     E.P.   177,878,  6.1.21. 

[Gas~]  retorts,  producers,  or  the  like;  Charging  de- 
vice   for  .      G.    D.    Hardie,    and   Maclaurin 

Carbonisation,  Ltd.     E.P.  178,309,  8.4.21. 

See  also  pages  (a)  407?  Distillation  of  oils  (G.P. 
340,991).  415,  Itemovmg  cyanides  from  gases 
(U.S.P.  1.41&.762-3).  425,  Oxidising  paraffin  max 
(E.P.  156,141).  426,  Derivatives  of  aryl  ethers 
(G.P.  344,878).  444,  Pipette  for  gas  analysis  (G.P. 
346,910). 


IIb— DESTRUCTIVE  DISTILLATION; 
HEATING;  LIGHTING. 

Electric   discharge;  Disappearance,   of   gas   in   the 

.     Research    Staff   of    the    General    Electric 

Co.,   London    (N.   R.   Campbell   and   H.   Ward). 
Phil.  Mag.,  1922,  43,  914—937. 

A  further  account  of  experiments  on  the  dis- 
appearance of  gas  in  the  filament  electric  lamp  in 
the  presence  of  phosphorus  vapour  (c/.  J.,  1920, 
776  a).  The  decrease  in  pressure  was  measured  by 
use  of  a  lamp  filament  as  the  hot  wire  of  a  Pirani 
gauge  and  by  determining  whether  the  pressure  is 
above  or  below  the  value  at  which  the  glow  potential 
is  equal  to  the  applied  potential.  The  amounts  of 
hydrogen  adsorbed  increase  with  increase  in  the 
phosphorus  introduced.  A  marked  step  in  the 
adsorption,  however,  occurs  for  0'09  to  0'27  mg.  of 
phosphorus.  Sodium  fluoride  and  phosphorus  to- 
gether exert  a  greater  effect  than  either  substance 
singly;  "spluttered"  tungsten  is  also  effective. 
The  adsorption  of  gases  takes  place  in  two  stages, 
the  first  being  practically  instantaneous.  Hydrogen 
and  nitrogen,  on  which  the  experiments  have  been 
conducted,  behave  identically,  and  the  nature  of 
the  discharge  has  little  direct  effect  on  the  amount 
of  gas  adsorbed.  All  kinds  of  glass,  cleaned  or 
etched  by  any  method,  gave  the  same  adsorptive 
power.  Arsenic  appears  to  have  exactly  the  same 
effect  as  phosphorus. — W.  E.  G. 

Decolorising   action   of   charcoals.      Tanner.      See 
XVH. 


400  A 


Cl.  III.— tar  and  tar  products. 


[June  15,  1922. 


Patents. 

Charcoal;     Apparatus     for     making     active     . 

T.     L.     Wheeler.       U.S. P.     1,413,146,     18.4.22. 
Appl.,  20.5.19. 

A  retort  for  the  manufacture  of  active  charcoal 
contains  a  false  bottom  composed  of  firebricks  pro- 
vided with  tubular  channels  which  form  continuous, 
longitudinal  tubes  within  the  false  bottom.  One 
face  of  the  firebrick  is  perforated  to  provide  com- 
munication between  the  channels  and  the  interior 
of  the  retort. — L.  A.  O. 

Wood,  chips  and  the  like;  Vertical  retort  for  the 

carbonisation  of .     Ges.  zur  Verwertung  von 

Stubbenholz  m.b.H.     G.P.  345,625,  11.12.20. 

To  remove  the  products  of  distillation  as  quickly  as 
possible  a  funnel-shaped  member  is  placed  in  the 
retort.  The  lower  part  of  the  retort  is  first 
charged,  then  the  funnel-shaped  section  is  inserted, 
forming  a  partition  between  the  upper  and  lower 
parts  of  the  retort.  The  rest  of  the  material  to  be 
carbonised  is  then  introduced.  The  tarry  products 
collect  on  the  funnel-shaped  section  and  flow  down- 
wards through  the  tube  of  the  funnel  to  the  foot 
of  the  retort. — A.  G. 


III.-TA8  AND  TAD  PDODUCTS. 

Benzene;  Solubility  of in  weak  alcohol.  W.  R. 

Ormandy  and  E.  C.   Craven.       J.   Inst.   Petrol. 
Tech.,  1922,  8,  213—217. 

The  solubility  of  benzene  in  the  lower  strengths  of 
alcohol,  in  which  less  than  10%  by  weight  dissolves, 
was  investigated,  with  a  view  to  the  Excise  require- 
ments for  a  denaturant.  Stirring  of  the  mixtures 
was  effected  by  a  perforated  zinc  disc  attached 
to  the  bottom  of  the  thermometer.  Readings  were 
taken  at  the  point  where  turbidity  was  distinctly 
visible  and  when  the  liquid  became  clear,  and  the 
mean  taken  as  the  equilibrium  point.  Graphs 
showing  the  solubility  are  given.  A  great  reduc- 
tion in  the  solubility  of  benzene  results  from  the 
addition  of  a  small  amount  of  petrol.  The  largest 
amount  of  benzene  can  be  separated  from  an 
alcohol  mixture  containing  17£%  of  alcohol  by 
weight,  or  1  vol.  of  alcohol  diluted  with  4$  vols,  of 
water. — H.  M. 

Aniline;    Catalytic   preparation    of  .      O.    W. 

Brown  and  C.  O.  Henke.     J.  Phys.  Cheni.,  1922, 
26,  272—287.     (Cf.  J.,  1922,  322  a.) 

The  reduction  of  nitrobenzene  to  aniline  by 
hydrogen  in  the  presence  of  cobalt  takes  place  at  a 
lower  temperature  than  with  nickel,  but  the  nickel 
used  in  the  experiments  contained  a  little  cobalt 
and  the  cobalt  a  little  nickel.  Iron  carries  the 
reduction  further  than  copper  but  cannot  be 
used  below  300°  C.,  and  at  this  temperature  its 
action  is  too  vigorous,  the  reduction  being  carried 
too  far.  Silver  is  an  excellent  catalyst,  even  better 
than  copper,  because  it  may  be  used  with  a  much 
higher  rate  of  flow  of  nitrobenzene.  Antimony, 
manganese,  chromium,  and  the  lower  oxides  of 
molybdenum,  vanadium,  uranium,  tungsten,  and 
cerium  also  catalyse  the  reduction  of  nitrobenzene. 
The  activity  of  the  oxides  of  molybdenum  and 
vanadium  is  greater  than  that  of  the  other  oxides 
named.  Alumina  has  a  small  activity  which  is  due 
to  the  dehydrating  effect  of  this  substance.  Com- 
mercial tellurium  and  the  oxides  of  calcium,  barium, 
and  silicon  have  no  appreciable  activity.  In  the 
case  of  iron  and  antimony  a  part  of  the  reduction  is 
due  to  the  direct  action  of  the  metal,  an  oxide  being 
formed.  When  antimony  is  used  at  a  low  tempera- 
ture the  catalyst  loses  its  activity,  which  is  restored 
by  heating  to  450°  C.  in  hydrogen.  When,  how- 
ever, it  is  used  at  320°  C.  it  does  not  lose  its  activity 
with  use. — J.  F.  S. 


Azobenzene  and  aniline;  Catalytic  preparation  of 

.     C.  O.  Henke  and  O.  W.  Brown.     J.  Phys. 

Chem.,  1922,  26,  324—348. 

Lead  acts  catalytically  on  the  reduction  of  nitro- 
benzene by  hydrogen,  azoxybenzene,  azobenzene, 
and  aniline  being  formed;  bismuth  acts  similarly 
but  produces  in  addition  hydrazobenzene.  The 
best  catalyst  for  producing  azobenzene  is  lead  pre- 
pared from  yellow  litharge;  the  reaction  is  carried 
out  in  an  iron  tube  at  290°  C.  and  gives  a  yield  of 
55'4%  of  azobenzene  and  260%  of  aniline  when  the 
tube  is  fed  with  nitrobenzene  at  the  rate  of  4  g. 
per  hr.  and  hydrogen  at  17  1.  per  hr.  Lead  pre- 
pared from  red  lead  by  reduction  in  hydrogen 
at  270°  C.  is  the  best  catalyst  for  the  forma- 
tion of  aniline  when  the  reaction  takes  place 
under  the  above  stated  conditions  at  308°  C,  the 
yield  in  this  case  being  61'1%  of  aniline  and  34'4% 
of  azobenzene.  The  addition  of  0"5%  of  ferric  oxide 
to  the  lead  catalyst  from  heavy  litharge  increases 
the  yield  of  both  azobenzene  and  aniline,  whilst  5% 
of  ferric  oxide  increases  the  yield  of  aniline  at  the 
expense  of  the  azobenzene.  Using  equal  volumes 
of  catalyst,  that  prepared  from  heavy  bismuth  oxide 
is  more  active  than  the  one  prepared  from  the  light 
oxide.  When  the  reaction  is  carried  out  with 
bismuth  prepared  from  the  heavy  oxide  in  an  iron 
tube  which  is  fed  with  nitrobenzene  at  4"2  g.  per 
hr.  and  hydrogen  at  17  1.  per  hr.,  the  yield  at 
230°  C.  is  92%  of  azobenzene  and  4*4%  of  aniline, 
whilst  at  300°  C.  the  yield  is  73'9%  of  aniline  and 
19'3%  of  azobenzene. — J.  F.  S. 

o-Aminophenol ;   Electrolytic   preparation   of  . 

O.  W.  Brown  and  J.  C.  Warner.     Trans.  Amer. 

Electrochem.     Soc.,    1922,    143—156.      [Advance 

copy.] 
o-Nitrophenol  of  m.p.  44° — 45°  C,  in  sodium 
hydroxide  solution,  was  electrolysed  in  the  cathode 
chamber  of  a  cell  comprising  a  beaker  13  cm.  high 
and  9  cm.  in  diam.,  with  a  porous  cup  10'8  cm.  high 
and  50  cm.  diam.  as  anode  chamber,  containing  an 
iron  wire  gauze  anode  of  1'4  sq.  dm.  total  area  and 
100 — 125  c.c.  of  15%  sodium  hydroxide  solution. 
The  cathode  consisted  of  18-mesh  gauze  of  copper 
wire  of  0041  cm.  diam.  having  a  total  area  of  l'O 
sq.  dm.  The  theoretical  quantity  of  current,  i.e., 
5'78  amp.-hrs.  per  5  g.  of  o-nitrophenol,  was  passed 
through  the  cell,  and  the  yield  of  o-aminophenol 
was  estimated  by  titrating  a  portion  of  the  solution 
with  sodium  nitrite  after  acidification.  The  highest 
current  efficiency  and  yield  of  o-aminophenol  were 
obtained  when  using  an  electrolyte  containing  15% 
of  sodium  hydroxide  and  3 — 5%  of  o-nitropnenol. 
With  a  current  density  of  100  amps,  per  sq.  dm. 
or  over,  the  best  results  were  obtained  by  maintain- 
ing the  electrolyte  near  its  b.p. ;  with  current 
densities  of  4"0  amps,  per  sq.  dm.  or  lower,  no 
advantage  was  found  in  maintaining  the  electrolyte 
above  60°  C.  Current  efficiencies  of  100%  were 
obtained  as  long  as  the  concentration  of  o-nitro- 
phenol did  not  fall  below  08  % .  The  conditions  of 
reduction  recommended,  under  which  a  yield  and 
current  efficiency  of  97 — 99%  are  claimed,  are:  A 
cathode  solution  containing  15%  of  sodium  hydr- 
oxide and  3—5%  of  o-nitrophenol  is  electrolysed 
just  below  its  b.p.,  using  a  current  density  of 
10  amps,  per  6q.  dm.  One  half  of  the  original  weight 
of  o-nitrophenol  is  added  when  half  the  o-nitro- 
phenol in  solution  has  been  reduced,  and  the 
weight  is  added  at  the  end  of  a  similar  period. 
When  the  concentration  of  o-nitrophenol  has 
dropped  to  1"5%,  the  current  density  is  lowered  to 
4 — 5  amps,  per  sq.  dm.,  and  the  temperature  to 
60° — 70°  C,  and  when  the  concentration  has  fallen 
to  08%,  the  reduction  is  completed  with  a  current 
density  of  1 — 2  amps,  per  sq.  dm.  A  recovery  of 
90%  of  o-aminophenol  of  97—99"  purity  is  obtained 
from  solutions  containing  10 — 15%  of  sodium  hydr- 


Vol.  XLI.,  No.  11] 


Cl.  IV.— colouring  matters  and  dyes. 


407  a 


oxide  and  3 — 4  %  of  o-aminophenol  by  treatment 
in  the  cold  with  carbon  dioxide;  the  crystalline 
product  which  settles  out  is  separated  by  filtration 
and  washed  with  cold  water. — L.  A.  C. 

Naphthalenesulphonic   acids;    Solubilities   of   some 

a  mi  no-salts  of  .     H.   Wales.     J.   Ind.   Eng. 

Chem.,  1922,  14,  317—318. 
Detailed  determinations  of  the  solubilities  of  the 
"  insoluble  "  salts  formed  by  naphthalenesulphonic 
acids  with  a-  and  /3-naphthylamine,  in  N/100  hydro- 
chloric acid  (in  water  hydrolysis  occurs)  are  de- 
scribed. As  a  general  principle  it  appears  that 
with  salts  of  either  mono-  or  disulphonic  acids,  the 
more  symmetrical  a  compound,  the  lower  is  its 
solubility.  One  or  two  salts  show  evidence  of  allo- 
tropic  change  in  their  solubility  curves. — C.  I. 

Cracking  petroleum.  Smolenski  and  others.  See  ILv. 

Softening  point  of  pitch  etc.    See  XXIII. 

Patents. 

Tars  or  oils;  Continuous  distillation  of  .     E. 

Bliimner.  G.P.  340,991,  19.10.20. 
The  liquid  to  be  distilled  is  injected  at  the  bottom 
of  a  receptacle  containing  molten  metal,  in  which 
Raschig  rings,  or  similar  filling  materials,  are 
placed.  The  filling  material  is  enclosed  in  a  per- 
forated or  gauze  container,  having  a  space  between 
it  and  the  walls  of  the  receptacle,  and  the  rising 
liquid  traverses  only  that  part  of  the  mass  of  metal 
which  is  within  the  container.  The  wall  of  the 
container  is  provided  with  inclined  slits  through 
which  only  descending  liquid  can  flow.  The  molten 
metal  as  it  is  cooled  by  the  liquid  being  distilled 
flows  downwards  through  these  slits  and  through 
the  space  between  the  wall  of  the  container  and 
outer  receptacle,  is  heated  by  contact  with  the 
wall  of  the  outer  receptacle,  and  then  again  enters 
the  inner  container  at  the  bottom  and  rises  therein, 
continuous  circulation  being  thus  obtained. — H.  M. 

Anthraquinone  and  its  derivatives;  Manufacture  of 

.      Chem.     Pabr.    Worms     A.-G.      E.P.    (a) 

156,215,  3.1.21,  (b)  156,538,  5.1.21,  and  (c) 
156,540,  5.1.21.  Conv.,  18.5.18,  1.12.19,  and 
27.12.19. 

(a)  Anthraquinone  or  its  derivatives  are  obtained 
by  treating  anthracene  or  its  derivatives  in  solution 
or  suspension  in  acetic  acid  with  oxygen  in  presence 
of  a  small  proportion  of  an  oxide  of  nitrogen,  with 
or  without  another  oxygen  carrier  as  catalyst.  For 
example,  100  kg.  of  anthracene  mixed  with  500— 
1000  kg.  of  acetic  acid  and  a  small  proportion  of 
fuming  nitric  acid  are  heated  to  80°— 90°  C.  and 
oxygen  is  forced  in  under  pressure.  Absorption  is 
rapid,  and  the  oxidation  is  complete  in  3—5  hxs. 
The  fuming  nitric  acid  may  be  replaced  by  200  g. 
of  cobalt  nitrate,  a  small  percentage  of  nitrous 
gases  being  introduced  with  the  oxygen,  (b)  The 
nitric  acid  used  and  the  water  produced  in  the 
above  process  cause  the  formation  of  impurities 
from  which  the  anthraquinone  can  only  be  freed 
with  difficulty.  The  use  of  nitrous  gases  instead  of 
fuming  nitric  acid  is  simplified  by  adding  a  solid 
nitrite  to  the  reaction  mixture  to  avoid  formation 
if  nitro-products  and  fixing  the  water  formed 
luring  the  oxidation  by  addition  of  water-with- 
Irawing  agents.  Thus  when  100  kg.  of  anthracene 
ind  05 — TO  kg.  of  sodium  nitrite  suspended  in  a 
nixture  of  500  kg.  of  acetic  acid  and  60  kg.  of 
wetic  anhydride  are  treated  at  90°  C.  with  oxygen 
'"der  pressure,  a  95%  yield  of  anthraquinone  of 
)9 — 100%  purity  is  obtained,  (c)  In  the  process 
lescribed  under  (a)  the  acetic  acid  may  be  replaced 
>.V  other  acid  solvents,  e.g.,  propionic  acid,  and  the 
icid  solvent  may  be  mixed  with  another  solvent 
vhich  is  not  in  itself  suitable,  e.g..  water,  nitro- 
tenzene,    or    dichlorobenzene.      Using    acetic    acid 


mixed  with  20%  of  water,  the  yield  of  anthra- 
quinone amounts  to  95 — 98%  of  a  product  of 
92—95%  purity.— G.  F.  M. 

Hydrocarbons;   Process   for   oxidation   of   to 

carbonyl  compounds  or  acids.  A.  Wohl.  E.P. 
156,244,  4.1.21.     Conv.,  22.6.16. 

Hydrocarbons  are  oxidised  to  carbonyl  compounds 
or  to  acids  by  passing  a  gaseous  mixture  of  the 
hydrocarbon  with  oxygen  over  a  suitable  catalyst 
at  temperatures  below  red  heat,  i.e.,  below  580°  C. 
Suitable  catalysts  are  non-volatile  metallic  oxides  of 
an  acidic  character  which,  when  reduced,  are  re- 
oxidised  by  free  oxygen  at  the  temperature  of  the 
reaction,  as  for  example  vanadic  acid.  Example. — 
Air  heated  to  200°  C.  is  passed  over  fused  anthra- 
cene, and  then  over  a  catalyst  of  powdered  pumice 
coated  with  about  10%  of  its  weight  of  vanadic 
acid.  At  250°  O.  a  certain  amount  of  anthra- 
quinone is  formed,  whilst  at  400°  C.  or  higher  pure 
anthraquinone  is  obtained,  but  the  formation  of 
carbon  dioxide  is  increased.  Under  similar  con- 
ditions toluene  yields  benzaldehyde  and  benzoic  acid. 

— G.  F.  M. 

Nitro   compounds  of  aromatic  hydrocarbons;  Pre- 
paration of .    H.  Wolf.    G.P.  310,772,  2.5.16. 

A  mixture  of  nitric  acid,  nitrosylsulphuric  acid,  and 
sulphuric  acid  obtained  by  treating  concentrated 
sulphuric  acid  with  nitrogen  peroxide  or  with  a 
mixture  of  nitric  oxide  and  excess  air,  is  used  for 
nitrating  aromatic  hydrocarbons.  Mononitroben- 
zene  and  mononitrotolucne  are  prepared  by  treat- 
ing benzene  and  toluene  respectively  below  30°  C. 
with  acid  containing  approximately  20%  of  nitric 
acid,  40%  of  nitrosylsulphuric  acid,  and  40%  of 
sulphuric  acid.  On  completion  of  the  nitration,  the 
mixture  is  heated  to  about  50°  C.  to  dissolve 
residual  nitrosylsulphuric  acid,  and  the  nitro- 
compounds are  separated  from  the  acid  liquor, 
and  washed  successively  with  60%  sulphuric  acid, 
water,  and  sodium  carbonate  solution. — L.  A.  C. 

Indene;  Production  of  from  tar  or  benzene 

fractions.  Ges.  fur  Teerverwertung  m.b.H.,  and 
R.  Weissgerber.     G.P.  345,867,  10.3.21. 

Tar  or  heavy  benzene  fractions,  e.g.,  of  b.p.  175° — 
185°  C,  after  separation  of  phenols  and  bases,  are 
heated  with  potassium  hydroxide  above  160°  C, 
e.g.,  for  3  hrs.  at  170°— 180°  C,  in  a  closed  vessel. 
The  potassium-indene  compound  is  separated  from 
oil  and  treated  with  water  to  form  potassium 
hydroxide  and  indene,  and  the  crude  product  is 
purified  by  distillation,  first  with  steam  and  subse- 
quently in  vacuo,  yielding  a  product  of  freezing  pt. 
-25°  C— L.  A.  C. 

Alhylanilines;    Method    of    producing    .       H. 

Rogers,  Assr.  to  E.  I.  du  Pont  de  Nemours  and 
Co.  U.S. P.  1,413,494,  18.4.22.  Appl.,  7.7.17. 
Renewed  27.9.20. 

See  E.P.  145,743  of  1920;  J.,  1921,  806  a. 

Extracting       unsaturated      hydrocarbons.         E.P. 
156,123.    See  Ha. 

Lubricating  oils.    E.P.  156,140.     See  Ha. 

Paraffin  wax  from  lignite   tar  etc.     E.P.   156,693. 
See  Ha. 


IV.— COLOURING  MATTERS  AND  DYES. 

Catechin;  Constitution  of  .     IV.     M.  Nieren- 

stein.     Chem.  Soc.  Trans.,  1922,  121,  604—613. 

Acacatechin  tetramethy!  ether  gives  on  bromina- 
tion  in  glacial  acetic  acid  solution  a  monobromo- 
derivative  forming  colourless  needles,  m.p.  191° — 
192°  C,  fyhich   is  regarded   as   3-bromo-2-hydroxy- 


40Sa 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[June  15,  1922. 


4.6.3'.4'-tetramethoxy-3-phenylchroman,  as  it  re- 
sembles other  o-substituted  bromo-derivatives  in 
giving  the  original  tetramethyl  ether  on  warming 
with  zinc  dust  and  alkali,  and  gives  on  boiling  with 
methyl  alcohol  2-hydroxy-3. 4.6.3'. 4'-pentamethoxy- 
3-phenylchroman,  which  yields  the  same  disintegra- 
tion products  as  acacatechin  tetramethyl  ether 
itself,  thus  proving  that  the  new  methoxyl  group 
has  not  entered  the  phloroglucinol  nucleus,  and 
further,  on  reduction  with  sodium  and  alcohol  and 
subsequent  methylation,  it  gives  3.4.2'.4'.6'-penta- 
methoxy-ao-diphenylpropane.  That  the  substitution 
of  bromine  in  acacatechin  tetramethyl  ether  does 
not  take  place  in  the  2-position  is  proved  by  the 
fact  that  by  reducing  the  hydroxyl  group  of 
the  above-mentioned  hydroxypentamethoxyphenyl- 
chroman  to  hydrogen  3.4.6.3'.4'-pentamethoxy-3- 
phenylchroman  is  obtained,  which  substance  on 
reduction  with  sodium  and  alcohol  and  subsequent 
methylation  also  gives  3.4.2'.4'.6'-pentarnethoxy- 
aa-diphenylpropane. — G.  F.  M. 

Colouring  matter;  Photographic  estimation  of  the 

concentration  of  a .    W.  R.  Hess.    Z.  physiol. 

Chem.,  1922,  119,  172—175. 

The  naked  eye  is  not  very  sensitive  to  yellow 
colour,  a  much  better  differentiation  being  obtained 
on  the  photographic  plate.  The  details  of  a  photo- 
graphic apparatus  suitable  for  such  colorimetric 
estimations  are  given. — S.  S.  Z. 

Patents. 

[Hydr]oxy-    and    sulpho[-hydr]oxy-derivatives    of 

anthraquinone ;      Manufacture      of     .        D. 

Segaller,  D.  H.  Peacock,  and  British  Dyestuffs 
Corp.,  Ltd.  E.P.  176,925,  30.12.20. 
1-Hydroxyanthraquinone  -  4  -  sulphonic  acid  is 
obtained  by  the  condensation  of  phenol-p-sulphonic 
acid  with  phthalic  anhydride  by  means  of  a 
sulphuric  acid  solution  of  boric  acid  at  about 
200°  C.  On  further  treatment  of  this  substance, 
either  after  isolation,  or  in  the  sulphuric  acid 
solution  in  which  it  is  obtained,  at  a  temperature 
of  about  240°— 250°  C,  it  is  converted  into  1.4- 
dihydroxyanthraquinone  (quinizarin).  If  phenol- 
2.4-disulphonic  acid  is  used  as  starting  material, 
the  final  product  consists  essentially  of  1.2.4-tri- 
hydroxyanthraquinone  (purpurin).  Example — ■ 
600  pts.  of  phthalic  anhydride,  94  pts.  of  phenol, 
280  pts.  of  boric  acid,  and  3000  pts.  of  96% 
sulphuric  acid  are  heated  for  3  hrs.  at  180°  C, 
then  for  3  hrs.  at  200°  C.,  and  finally  for  3  hrs.  at 
240°  C.  The  reaction  mixture  is  poured  on  to  ice, 
and  the  precipitated  quinizarin  is  washed  with 
boiling  water.  If  o-  or  m-cresol  is  used  instead  of 
phenol  in  the  above  example,  /3-methylquinizarin 
is  obtained,  whilst  from  p-cresol  l-hydroxy-4- 
methylanthraquinone  is  produced.- — G.  F.  M. 

Dyes;  Process  for  the  manufacture   of   household 

.     A.  Glover  and  G.  Martin.     E.P.  178,179, 

6.1.21. 

A  mixture  of  a  dyestuff,  a  hydrated  salt,  a  binder, 
and  an  anhydrous  salt,  e.g.,  250  pts.  of  a  dyestuff, 
90  pts.  of  Gfauber's  salt,  32  pts.  of  dextrin,  and  1230 
pts.  of  anhydrous  sodium  sulphate,  is  compressed 
into  tablets. — L.  A.  C. 

Dye  combined  with  soap;  Dark  and  process  of 

producing  the  same.  C.  C.  Huffman,  Assr.  to 
Sunbeam' Chemical  Co.  U.S.P.  1,413,026,  18.4.22. 
Appl.,  31.12.17. 

A  dye  soap  capable  of  producing  dark  shades  is 
prepared  by  mixing  oil,  a  saponifying  agent,  the 
required  quantity  of  dye,  and  sufficient  water  to 
allow  the  mixture  to  be  moulded ;  after  reaction  is 
complete,  a  further  quantity  of  water  is  added,  and 
excess  water  is  evaporated  by  heat. — L.  A.  C. 


Dye;    Brown   and   process   of   making   same 

W.    B.    Richardson.      U.S.P.    1,412,707,    11.4.22. 
Appl.,  8.5.20. 

A  dyestuff  yielding  brown  shades  on  unmordanted 
silk  or  wool,  and  greyish-brown  shades  on  tannin- 
mordanted  cotton,  is  prepared  by  treating  a  dihydr- 
oxynaphthalene  with  nitric  acid. — L.  A.  C. 

Dye    and    process    of    making    same.      R.    Arnot. 
U.S.P.  1,414,164,  25.4.22.    Appl.,  31.8.21. 

See  G.P.  337,954  of  1916;  J.,  1921,  620  a. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Bleaching  [of  wood  pulp'];  Alkaline  and  acid  . 

Hottenroth.     Zellstoff  und  Papier,  1922,  2,  6—12. 

In  practice  the  bleaching  of  wood  pulp  is  carried 
out  with  bleaching  powder  solution  in  its  normal 
slightly  alkaline  condition,  the  action  being  accele- 
rated by  heating  to  30° — 35°  C.  Acidification  of  the 
bleach  liquor  does  not,  in  the  case  of  wood  pulp, 
give  the  improved  results  which  might  be  expected 
from  its  influence  in  the  bleaching  of  colouring 
matters.  Using  litmus  paper  as  an  indicator 
during  the  bleaching  operation,  normally  alkaline 
bleach  liquor  bleaches  the  litmus  only  slowly ;  liquor 
acidified  with  mineral  acid  bleaches  it  very  rapidly 
but  reddens  it  first ;  bleach  liquor  saturated  with 
carbon  dioxide  bleaches  litmus  as  rapidly  as  that 
acidified  with  mineral  acid  but  does  not  redden  it. 
When  using  carbon  dioxide  for  the  acidification  of 
bleach  liquor  a  substantial  quantity  of  the  gas  is 
required  and  sufficient  should  be  supplied  to  main- 
tain the  rapidity  of  action  towards  litmus  paper  so 
long  as  active  chlorine  remains  in  the  liquor.  The 
direct  action  of  bleach  liquor  thus  acidified  on  wood 
pulp  in  the  cold  is  equivalent  to  that  of  liquor 
acidified  with  small  quantities  of  mineral  acid.  It 
is  far  inferior,  as  regards  whiteness  per  unit  of 
chlorine  consumed,  to  the  ordinary  alkaline  bleach 
liquor  acting  at  30° — 35°  C.  Moreover,  the  pulp 
bleached  cold  by  acidified  liquors  shows  a  higher 
"  copper  value  "  than  that  bleached  warm  with 
normal  liquor.  A  result  superior  to  either,  how- 
ever, is  obtained  by  a  combined  process,  bleaching 
first  to  the  extent  of  about  two-thirds  with  liquor 
acidified  with  carbon  dioxide,  acting  at  the 
ordinary  temperature,  and  then  finishing  with  one- 
third  of  ordinary  alkaline  bleach  liquor  at  30° — 35° 
C.  This  combined  process  gives  a  higher  degree 
of  whiteness  with  the  consumption  of  less  chlorine 
than  the  ordinary  process.  If  the  order  of  treat- 
ments is  reversed  the  same  satisfactory  result  is 
not  attained.— J.  F.  B. 

Cellulose;  Determination  of  alpha  [alkali-resistant] 

.     P.  Waentig.     Zellstoff  u.  Papier,  1922,  2, 

12—18. 
In  judging  the  value  of  wood  pulp  for  the  manu- 
facture of  viscose,  10  g.  of  the  pulp  is  thoroughly 
macerated  with  50  c.c.  of  17'5%  caustic  soda  solu- 
tion to  a  uniform  paste ;  after  half  an  hour  the 
paste  is  diluted  with  an  equal  volume  of  water  and 
sucked  as  dry  as  possible  on  a  Buchner  funnel.  The 
cake  is  then  washed  with  several  portions  of  50  c.c. 
of  water  each  time,  acidified,  washed  again,  and 
dried  at  100°  C.  The  residue,  which  is  called 
o-cellulose,  does  not  represent  a  purified,  resistant, 
true  cellulose  constituent  of  the  original  wood  pulp 
complex,  but  is  still  itself  a  complex  mixture,  and 
having  been  considerably  modified  by  the  alkali 
treatment  would  suffer  further  losses  when  again 
subjected  to  similar  conditions.  Hence  the  test  is 
entirely  empirical,  adapted  to  the  particular  pur- 
pose of  viscose  manufacture,  and  the  author  shows 


Vol.  XLI.,  No.  11] 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


409  a 


that  the  results  are  subject  to  considerable  varia- 
tions when  any  slight  departure  is  made  from  the 
empirical  conditions  of  manipulation  laid  down. 
Thus,  when  the  ratio  of  soda  lye  to  cellulose  is 
increased  the  quantity  of  cellulose  dissolved  is 
increased;  when  the  temperature  of  maceration  is 
lowered  to  6°  C.  more  cellulose  is  dissolved;  the 
manner  of  dilution  before  filtration  has  an  influence 
such  that  some  of  the  dissolved  cellulose  may  be 
re-deposited  by  high  dilution.  The  mechanical  sub- 
division of  the  pulp  has  a  considerable  influence, 
in  that  finely  ground  fibre  yields  more  soluble 
matter  than  the  original  fibre.  The  conditions  of 
the  test  should  be  most  rigidly  defined  and  the 
author  suggests  that  the  following  changes  in  the 
procedure  would  afford  a  working  method  more  sus- 
ceptible of  control  than  the  original :  3  g.  of  wood 
pulp  to  be  macerated  with  30  g.  of  caustic  soda  lye ; 
the  paste  to  be  diluted  with  five  times  its  weight  of 
water  before  bringing  on  to  the  filter;  a  constant 
temperature,  say  18°  C,  to  be  maintained;  time  of 
maceration  to  be  extended,  say  to  2  hours;  6tate  of 
disintegration  of  the  pulp  before  treatment  to  be 
agreed  upon. — J.  F.  B. 

Wood  cellulose;  The  "  baryta  resistance  "  value  of 

.     C.  G.  Schwalbe  and  H.  Wenzl.     Zellstoff 

u.  Papier,  1922,  2,  75—80. 

The  authors  propose  the  following  analytical 
method  to  express  the  percentage  of  resistant  cellu- 
lose contained  in  commercial  wood  pulps :  3  g.  of 
the  air-dry  cellulose  is  treated  with  200  c.c.  of 
barium  hydroxide  solution  saturated  in  the  cold  and 
the  liquid  is  boiled  under  a  reflux  condenser  for  one 
hour.  The  hot  mass  is  poured  into  a  Gooch 
crucible  with  fine  perforations  (a  filter  is  not  neces- 
sary), washed  with  hot  water,  treated  with  cold 
1%  hydrochloric  acid,  washed  until  free  from 
barium,  and  dried  in  the  oven  for  4  hrs.  at  105°  C. 
A  correction  is  then  made  for  the  ash.  This  method 
is  capable  of  more  exact  control  than  the  usual 
a-cellulose  determination  with  17'5%  caustic  soda 
lye,  but  the  results  are  not  entirely  equivalent  and 
the  "baryta  resistance"  value  is  not  put  forward 
-  as  a  substitute  for  the  a-cellulose  value.  The  pent- 
osans are  dissolved  to  the  extent  of  about  one-third 
by  the  barium  hydroxide,  whereas  two-thirds  are 
removed  by  the  caustic  soda.  Lignin  is  but  little 
affected ;  rather  more  is  removed  from  Mitscherlich 
pulp  than  from  Ritter-Kellner  pulp.  Cupric- 
reducing  substances  are  largely  but  not  entirely 
removed  by  the  baryta  treatment.  Sulphite  pulps 
of  normal  type  show  baryta  resistance  values  dis- 
tinctly lower  than  their  a-cellulose  values.  Soda 
pulps  and  sulphite  pulps  which  have  had  a  separate 
special  alkaline  digestion  show  baryta  values  higher 
than  their  a-cellulose  values.  Specially  purified 
sulphite  pulps  of  the  type  described  as  "  Edelzell- 
stofje  "  show  approximately  equivalent  values  on 
the  two  tests.  Information  is  thus  afforded  con- 
cerning the  previous  history  and  chemical  condition 
of  the  wood-pulp. — J.  F.  B. 

Wood  pidps;   Determination   of   the   chlorine   con- 
sumption value  of  ■.     R.  Sieber.     Zellstoff  u. 

Papier,  1922,  2,  27—29. 
Tables  are  given  showing  that  the  chlorine  con- 
sumption values  of  sulphite  pulps  as  determined 
>y  the  method  previously  described  (J.,  1921,  382  a) 
tand  in  definite  relationship  to  the  percentage  of 
ignin  as  determined  by  Willstatter's  method.  The 
elationship  is  not  one  of  strict  proportionality  but 
s  indicated  by  a  curve.  The  chlorine  consumption 
alue  of  the  pulp  is  approximately  proportional  to 
he  quantity  of  bleaching  powder  required  for 
leaching  the  pulp.  The  connexions  between  the 
bove  characters  will  serve  as  a  basis  for  the 
umerical  classification  of  the  various  types  of  com- 


mercial wood  pulps,  according  to  their  hardness  and 
bleaching  qualities. — J.  F.  B. 

Celloisobiose.     H.   Ost   and   G.   Knoth.     Cellulose- 
chem.,  1922,  3,  25—38. 

Cellulose  was  subjected  to  acetolysis  by  treating 
60  g.  with  210  g.  of  acetic  anhydride,  300  g.  of 
acetic  acid  (99'1%),  and  24  g.  of  concentrated  sul- 
phuric acid  at  30°  C.  for  15—17  days,  the  action 
being  stopped  by  pouring  the  syrup  into  water  as 
soon  as  the  first  separation  of  solid  cellobioseocta- 
acetate  crystals  was  observed.  The  yields  of  crude 
acetates  ranged  between  120  and  137%,  with  m.p. 
130°— 190°  C.j  [a]D=+28-4°;  acetic  acid  70"1%  on 
dry  substance.  The  crude  acetate  was  separated 
by  extraction  into  fractions  readily  and  sparingly 
soluble  in  ether  and  these  again  into  fractions 
readily  and  sparingly  soluble  in  alcohol.  The  por- 
tions insoluble  in  ether  and  in  alcohol  consisted 
mainly  of  cellobioseocta-acetate,  the  portion  soluble 
in  alcohol  contained  largely  the  acetates  of  cellu- 
lose dextrins;  the  acetates  soluble  in  ether  could 
not  be  satisfactorily  differentiated,  but  the  major 
portion  of  the  fraction  soluble  in  alcohol  contained 
the  octa-acetate  of  celloisobiose.  The  further  puri- 
fication of  the  isobiose  was  performed  on  the  syrups 
obtained  by  saponification  of  the  acetate  fractions 
with  a  slight  excess  of  iV/2  barium  hydroxide  solu- 
tion at  25°  C.  for  about  6  hrs.  After  separation  of 
the  barium  these  syrups  were  subjected  to  a  system- 
atic series  of  fractionations  with  aqueous  alcohols 
in  stages  between  80  and  100%  at  a  concentration 
of  20%  solids.  The  products  were  graded  according 
to  their  rotatory  powers  and  then  re-fractionated. 
The  yield  of  pure  crystallised  celloisobiose  amounted 
to  2'5%  of  the  original  cellulose  and  this  sugar  was 
almost  entirely  confined  to  the  fractions  soluble  in 
85%  alcohol  with  rotatory  powers  between  +19"4° 
and  258°.  Celloisobiose  crystallises  in  minute  needles 
with  £H20;  wven  dried  at  105°  C.  the  crystals  fall 
to  powder.  The  m.p.  is  very  indefinite;  the  com- 
pound sinters  between  155°  and  165°  C.  and 
decomposes  at  195°  C.  It  exhibits  slight  multi- 
rotation  falling  to  a  constant  value  of  [a]D20=+24"6'J 
after  six  hours  at  (5 — 8%  concentration.  The 
cupric-reducing  value  is  63'2%  of  that  of  dextrose; 
the  osazone  crystallises  in  needles,  m.p.  165° — 167° 
C.  Celloisobiose  is  unfermentable  by  yeast.  On 
acetylation  it  yields,  in  addition  to  its  own  acetate, 
large  quantities  of  cellobioseocta-acetate  — both  a 
and  /3  modifications  according  to  the  conditions  of 
acetylation.  Thus  celloisobioseocta-acetate  is  spon- 
taneously convertible  into  cellobioseocta-acetate, 
and  this  conversion  is  the  result  of  an  equilibrium 
whereby  the  less  soluble  and  more  stable  cellobiose- 
octa-acetate always  tends  to  be  formed  in  the 
ordinary   processes   of   fractional   crystallisation. 

—J.  F.  B. 

Viscosity  of  cellulose  solutions;  Effect  of  mechanical 

disintegration  of  the   cellulose  on  the  .     P. 

Waentig.  Text.  Forsch.,  1921,  3,  154—157. 
Chem.  Zentr.,  1922,  93,  II.,  99. 
Both  dry  grinding  and  the  wet  beating  process 
produce  a  large  decrease  in  viscosity  of  solutions  of 
the  cellulose  60  treated.  A  similar  lowering  of 
viscosity  is  produced  by  the  ripening  which  occurs 
when  alkali-cellulose  (from  which  the  mercerising 
liquor  has  been  pressed  out)  is  allowed  to  stand 
for  a  long  period.  The  ripening  is  considered  to 
be  a  chemical  process. — A.  J.  H. 

Sulphurous  acid  and  lime;  Estimation  of  in 

the  lyes  of  the  sxdphite-cellulose  industry.  B. 
Deutsch.  Zellstoff  u.  Papier,  1922,  2,  56—60. 
None  of  the  methods  proposed  for  the  determina- 
tion of  sulphurous  acid  (free  and  combined)  and 
lime  in  the  lyes  of  the  sulphite-cellulose  industry 
is  completely  "satisfactory,  and  there  is  a  lack  of 


410a 


Cl.   VI.— BLEACHING ;    DYEING;     PKINTING ;     FINISHING. 


(June  15,  1922. 


agreement  between  the  various  methods.  The 
three  important  lyes  of  the  industry  are  tower  lye, 
digester  lye,  and  waste  lye,  and  of  these  waste  lye 
has  received  the  most  consideration.  Further 
investigation  of  the  digestion  process  is  required. 
Where  only  an  approximate  determination  of  the 
lime  and  sulphurous  acid  is  required,  the  author 
adopts  the  following  method.  In  a  portion  of  the 
lye  the  total  sulphurous  acid  is  estimated  by  titra- 
tion with  iodine ;  in  a  second  portion  the  lime  is 
precipitated  with  ammonia  and  oxalic  acid,  the 
oxalate  dissolved  in  sulphuric  acid,  and  the  solution 
titrated  with  permanganate.  From  the  value  for 
lime  the  combined  sulphurous  acid  is  calculated,  the 
free  sulphurous  acid  being  obtained  by  difference. 
The  result  is  only  approximate,  since  it  does  not 
consider  separately  the  lime  combined  as  sulphate 
or  bisulphite,  nor  the  ligninsulphonic  acid,  but  the 
method  is  quick  and  the  results  are  useful. 

—J.  B.  F. 

Wool     scouring     wastes     for     fertiliser     purposes. 
Veitch.    See  XVI. 

Patents. 

Wool,  hair,  and  feathers;  Process  for  increasing  the 

strength    and    elasticity    of    .      J.    Korselt. 

G.P.  349,179,  7.4.20. 
At  any  stage  in  their  preparation,  such  as  before, 
during,  or  after  washing,  bleaching,  spinning, 
dyeing,  or  finishing,  wool,  hair,  or  feathers  are 
treated  once  or  repeatedly  with  a  neutral,  alkaline, 
or  acid  solution  containing  an  alkaloid  or  alkaloid 
derivative.  Caffeine,  theobromine,  and  their  salts 
are  suitable  substances. — A.  J.  H. 

Celluloid-like  plastic  masses;  Preparation  of  . 

Chem.     Fabr.     vorm.     Weiler-ter     Meer.       G.P. 

343,182,  31.7.19. 
In  the  preparation  of  plastic  masses  formed  by 
treating  nitrocellulose  with  liquid  mixtures  con- 
taining acylated  alkylarylamines  (and  in  some 
instances,  other  crystalline  organic  compounds) 
and  organic  acids,  formic  acid  is  especially  suitable 
6ince  it  retards  the  crystallisation  of  the  amide 
(e.g.,  ethylacetanilide)  within  the  plastic  mass, 
diminishes  the  sensitiveness  of  the  latter  to 
moisture,  prevents  cloudiness  caused  by  the 
addition  of  camphor  and  similar  substances,  and 
reduces  the  quantity  of  the  amide  (ethylacetanilide) 
required  for  the  gelatinisation  of  the  nitrocellulose. 

- — A.  J.  H. 

Cellulose  esters;  Preparation  of  easily  soluble . 

Knoll  und  Co.     G.P.  347,817,  6.9.12.     Addn.  to 

297,504. 
Solutions  of  cellulose  esters  containing  water  are 
heated  at  high  temperatures  until  a  test  portion 
gives  a  clear  solution  in  alcohol  or  a  mixture  of 
alcohol  and  chloroform.  The  stable  liquid  products 
can  be  filtered  and  precipitated  by  the  addition  of 
water. — L.  A.  C. 

Sulphur  dioxide  gas  from  sulphite-cellulose  icaste 

liquor;   Process  for  production  of  .     Eisen- 

werk-Ges.  Maximilianshutte,  and  G.  Leuchs. 
G.P.  350,155,  23.1.21. 

Sulphates,    such    as    kainite,    kieserite,    etc.    are 

heated     with    the    liquid    or    evaporated    sulphite 

liquor. — H.  M. 

Viscose;  Process  for  the   manufacture   of  lustrous 

threads    from    crude  by    means    of    warm 

mineral  acids.  E.  Bronnert,  Assr.  to  The 
Chemical  Foundation,  Inc.  U.S. P.  1,414,070, 
25.4.22.    Appl.,  8.1.14. 

See  F.P.  467,164—5  of  1913;  J.,  1914,  858. 


Spinning  viscous  liquids  in  flowing  feeding  liquids.. 
E  Elsaesser,  Assr.  to  The  Chemical  Foundation, 
Inc.     U.S.P.   1,414,076,  25.4.22.     Appl.,  12.4.17. 

See  E.P.  113,010  of  1917;  J.,  1918,  146  a. 

Paper  making  machines  [;  Controlling  the  water 
content  of  the  pulp  on  the  wires  of  Fourdrinier 

■ ].     R.  B.  Ransford.     From  The  Bagley  and 

Sewall  Co.     E.P.  177,873,  5.1.21. 


Flotation  agent.     U.S.P.  1,412,215.     See  X. 
Purifying  liquids.    E.P.  176,457.     See  XIXb. 


VI.-BLEACHING ;  DYEING;  PRINTING; 
FINISHING. 

Linen;  Bleaching  defects  in  due  to  metallic 

impurities.     W.  Kind.     Textilber.,  1922,  3,  131— 
134. 

The  serious  loss  of  strength  which  linen  yarns  and 
fabrics  sometimes  suffer  during  large-scale  bleach- 
ing can  be  partly  attributed  to  localised  energetic 
bleaching  reactions  caused  by  impurities  within  the 
linen.  The  activity  of  a  bleaching  liquor  is  usually 
considerably  increased  by  the  addition  of  a  metal 
or  metallic  oxide.  Thus  a  feebly  alkaline  bleach 
liquor  (3'6  g.  of  active  chlorine  per  1.)  lost  4'2% 
in  strength  after  standing  for  24  hrs.,  but  the 
corresponding  losses  of  strength  under  similar  con- 
ditions when  equal  quantities  of  copper  oxide, 
copper  powder,  iron  oxide,  and  iron  powder  were 
respectively  added  to  similar  bleach  liquors  were 
79-2%,  18-1%,  29-2%,  and  5"6%  respectively.  These 
losses  were  somewhat  greater  when  the  bleach 
liquor  was  maintained  slightly  acid.  The  same 
substances  had  similar  deteriorating  effects  on 
solutions  containing  sodium  perborate,  although 
their  action  was  very  much  reduced  when  sodium 
silicate  was  also  added.  When  samples  of  cotton 
fabric,  to  some  of  which  pieces  of  iron  and  copper 
gauze  were  attached,  were  immersed  in  a  solution 
of  bleaching  powder,  the  breaking  strains  of  the 
unattached  cotton,  that  attached  to  iron  and  that 
to  copper,  were  620  g.,  404  g.,  and  605  g.  respec- 
tively. Oil  stains  containing  metallic  catalysts 
may  also  cause  losses  of  strength  during  bleaching. 

—A.  J.  H. 

Indigo    dye-vat;    Biochemistry    of    the    indigenous 

.    G.  J.  Fowler  and  M.  Srinivasiah.    J.  Ind. 

Inst.  Sci.,  1921,  4,  205—221. 
Among  organic  reducing  agents  for  the  indigo  dye- 
vat  the  fermenting  germinating  seeds  of  Cassm  ton 
are  employed  in  Bangalore,  about  91b.  of  seed  being 
added  to  the  vat  per  1  lb.  of  indigo  of  50%  indigotin 
content.  These  seeds  carry  bacteria  which  ferment 
the  mucilaginous  content  of  the  seeds  with  evolu- 
tion of  hydrogen  and  carbon  dioxide,  the  former  in 
the  nascent  state  being  the  effective  agent  in  the 
reduction,  which  is  further  assisted  by  the  fact  that 
the  indigo  is  held  in  suspension  by  the  mucilage 
whilst  the  fermentation  is  going  on.  The  seeds  also 
contain  a  bitter  principle  which  exercises  a  select- 
ive antiseptic  effect  on  the  bacteria,  so  that  practi- 
cally only  one  species  is  present,  and  no  special 
technique  is  therefore  needed  to  obtain  a  reasonably 
pure  culture.  It  was  noted  that  organisms  from  a 
medium  in  which  nitrogen  fixation  had  occurred 
were  not  inhibited  by  the  bitter  principle,  and 
possibly  the  bacteria  occurring  in  the  seeds  may 
plav   normally  some  part   in  nitrogen  fixation,  as 

ren  soils,  the  seed 
F.  M. 


although  the'plant  grows  in  barren  soils^the  s 
contains  a  high  percentage  of  nitrogen 


.— G. 


vol.  XLI.,  No.  li]        Gl.  VH.— ACIDS  ;  ALKALIS  ;  SALTS  ;   NON-METALLIC  ELEMENTS. 


411a 


Wool;  Dyeing  of  with  chrome  mordant  dye- 
stuffs.  A.  Ganswindt.  Textilber.,  1922,  3, 
151—153. 

An  historical  review  of  the  development  of  methods 
for  the  chrome  mordanting  and  subsequent  dyeing 
of  wool.  Very  pleasing  and  pure  shades  are 
obtained  by  dyeing  wool  which  has  been  mordanted 
with  chromium  fluoride  and  oxalic  acid.  When 
boiled  in  a  solution  of  chrome  alum,  wool  absorbs 
the  chromium  almost  quantitatively  but  yields 
inferior  shades  when  subsequently  dyed  with  Ali- 
zarin, and  this  supports  Witt's  observation  that  the 
best  dyeing  results  are  obtained  on  wool  in  which 
the  mordanting  metal  (iron  or  chromium)  exists  in 
both  an  oxidised  and  a  reduced  state.  The  after- 
chroming  process  which  became  necessary  on  the 
introduction  of  the  acid  mordant  dyestuffs  involves 
the  formation  of  a  chromium  lake,  but  this  may 
also  be  attended  by  oxidation,  since  the  shades 
obtained  by  afterchroming  are  often  different  from 
the  corresponding  shades  produced  by  first  mor- 
danting and  then  dyeing.  Also  if  afterchroming 
is  effected  by  means  of  chromium  fluoride,  the 
resulting  shades  are  brighter  and  purer  than  those 
produced  by  means  of  the  oxidising  agent  potass- 
ium bichromate.  Both  oxidation  and  lake  forma- 
tion   occur    when    chromotrope   dyeings    (red)    are 

'  changed  to  dark  blue  and  black  by  afterchroming 
with  potassium  bichromate.     The  metachrome  pro- 

'  cess  is  a  special  adaptation  of  the  process  by  which 
such  dyes  as  Anthracene  Red,  Diamond  Flavin, 
Sulphocyanine,  Diamond  Fast  Red  F,  etc.  can  be 
dyed  in  the  presence  of  potassium  bichromate 
without  formation  of  insoluble   lakes   in  the  dve- 

'  bath.— A.  J.  H. 

;  Wool;  Dyeing  of  deaminated .    W.  W.  Paddon. 

J.  Phys.  Chem.,  1922,  26,  384—389. 

]  Experiments  with  wool  deaminated  by  treatment 

with  hydrochloric  acid  and  sodium  nitrite  showed 

I  that  the  amino  groups  of  wool  take  no  pfart  in  the 

'dyeing  of  this  fibre  by  acid  dves  such  as  Orange  II. 

and  Lake  Scarlet  R.— J.  F.  S. 


Dyeing  of  linen,  half-linen,  and  cotton;  Blue  . 

J.  Werner.     Textilber.,   1922,   3,   136—137. 

Indigo  is  expensive  and  yields  dyeings  which  are 
liable  to  rub  and  suffer  a  loss  of  depth  during  wash- 
ing, so  that  for  the  purpose  of  dyeing  workmen's 
garmeuts  blue,  Indigo  is  frequently  partially 
replaced  by  other  dyestuffs.  The  shades  obtained 
by  topping  a  weak  bottom  of  Indigo  with  a  blue 
substantive  dyestuff  are  less  satisfactory  as  regards 
:fastness  to  light  and  washing  than  those  produced 
by  bottoming  fabric  with  a  sulphur  blue  dyestuff 
and  topping  it  with  Indigo  or  vice  versa.  Neither 
of  these  methods  however,  yields  dyeings  equal  in 
fastness  to  those  obtained  with  Indigo  alone. 
Satisfactory  dyeings  can  be  obtained  by  applying 
substantive  dyes  to  an  Indigo  bottom,  if  the  latter 
constitutes  at  least  60%  of  the  total  colour.  For 
distinguishing  between  these  different  Indigo  dye- 
ings, the  usual  spotting  (with  nitric  acid),  sublima- 
tion, and  washing  tests  are  satisfactory. — A.  J.  H. 

'Jhrysaniline  and  Fuchsine;  Effect  of  light  on  fibres 

dyed  with .    W.  W.  Paddon.  J.  Phvs.  Chem., 

1922,  26,  288—291. 

K7ool  fibres  dyed  with  Chrysaniline  or  mixtures  of 
Chrysaniline  and  Fuchsine  in  which  the  Chrys- 
iniline  is  in  excess  fade  much  more  rapidly  in  light 
han  fibres  dyed  with  Fuchsine  or  mixtures  of 
chrysaniline  and  Fuchsine  in  which  the  Fuchsine  is 
n  excess.  Fuchsine,  which  is  itself  relatively  fast 
o  light,  exerts  a  protective  action  against  light  on 
nixtures  of  Fuchsine  and  Chrysaniline. — J.  F.  S. 


Dextrin;    Estimating   the   value   of  for  cloth 

dressing.  H.  Pomeranz.  Monatschr.  Textilind., 
1922,  37,  14—16,  33—35.  Chem.  Zentr.,  1922, 
93,  II.,  815—816. 

In  the  preparation  of  the  dextrin  the  conversion  of 
the  starch  should  be  effected  only  to  such  an  extent 
that  a  solution  of  the  product  on  evaporation  yields 
a  residue  of  the  desired  transparency.  The  dextrin 
should  give  a  red-violet  coloration  with  iodine  solu- 
tion ;  a  hot  solution  of  the  dextrin  should  remain 
clear  on  cooling,  except  for  traces  of  a  flaky 
residue;  the  sugar  content  should  be  3 — 5%  and 
should  never  rise  above  10 — 12%  ;  only  a  slight  tur- 
bidity should  appear  on  the  addition  of  tannin 
solution ;  the  residue  obtained  by  evaporating  a 
solution  should  be  glassy  and  transparent,  and  give 
a  solution  similar  to  the  original  on  redissolving ; 
and  dressed  samples  of  cloth  should  show  only  a 
slight  dampness  in  a  moist  atmosphere. — L.  A.  C. 

Alkaline  and  acid  bleaching.     Hottenroth.     See  V. 

Patents. 

Dyeing;  Method  of  .     A.  Linz,  Assr.  to  The 

Chemical  Foundation,  Inc.  U.S. P.  1,414,029—31, 
25.4.22.  Appl.,  (a)  15.12.21,  (b)  1.9.21,  (c) 
29.9.21. 

(a)  Textiles,  leather,  etc.  are  dyed  in  the  usual 
manner  after  they  have  been  treated  with  a  solu- 
tion containing  a  soluble  compound  of  phosphorus 
and  a  soluble  compound  of  a  difficultly  fusible  metal 
and  an  acid  capable  of  freeing  the  acid  from  such 
compound.  (b)  Textiles,  leather,  etc.,  are  dyed 
with  a  basic  dyestuff  and  then  after-treated  with  a 
solution  containing  soluble  compounds  of  tungsten 
and  phosphorus,  (c)  Leather  and  hides  are  dyed 
with  a  basic  dyestuff  and  then  treated  with  a  com- 
plex acid  containing  phosphorus  and  tungsten. 

—A.  J.  H. 

Textile    fabrics;    Printing    of    .       The    Calico 

Printers'  Assoc.,  Ltd.,  and  G.  Nelson.  E.P. 
177,926,  3.2.21. 

In  producing  white  or  fast  coloured  discharge 
effects  on  fast  coloured  grounds  on  cotton  and  silk 
fabrics,  the  fabrics  are  successively  mordanted  with 
a  chromium  mordant,  dyed  with  dyestuffs  appro- 
priate to  the  chromium  mordant  and  affected  by 
reducing  agents,  such  as  azo,  quinoneoxime,  and 
certain  triphenylmethane  dyestuffs,  printed  with 
discharge  colours  comprising  hydrosulphites  and  a 
salt  or  salts  of  citric  or  tartaric  acid  for  producing 
a  white  discharge,  with  the  addition  of,  e.g.,  vat 
sulphur  dyestuffs  for  producing  a  coloured  dis- 
charge, and  after-treated  by  ageing,  washing,  soap- 
ing, or  the  like.- — L.  A.  C. 

Dyeing  and  padding  or  treating  fabrics  and  such 
like;   [A/eans  for  supporting  and  actuating   the 

padding  roller  in~]  machines  for .     L.  Taylor. 

E.P.  177,969,  8.3.21. 


VII -ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Cast  and  high-silicon  iron;  Failure  of in  fum- 
ing sulphuric  acid.  T.  F.  Banigan.  J.  Ind.  Eng. 
Chem.,  1922,  14,  323. 

Cast  iron  pipes  etc.  and  also  malleable  castings, 
after  long  exposure  to  sulphur  trioxide  frequently 
crack  suddenly,  although  no  corrosion  can  be 
detected.  It  is  shown  experimentally  that  amorph- 
ous silicon  or  silicon  alloyed  with  iron  is  rapidly 
oxidised  by  15%  oleum  but  unaffected  by  96%  sul- 
phuric acid.  Silicon  carbide  is  unaffected  by  oleum. 
These  failures  are  therefore  probably  due  to  oxida- 


412  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.  [June  15, 1922. 


tion  of  silicon  particles  within  the  casting  giving 
rise  to  internal  strains  due  to  the  increased  volume 
occupied  by  the  resulting  6ilica. — C.  I. 

Lead;  Action  on  in  the  concentration  of  sul- 
phuric acid.  A.  Frisak.  Metall  u.  Erz,  1922, 
19,  200—201. 
The  solubility  of  lead  sulphate  in  sulphuric  acid  of 
varying  temperature  and  concentration,  which  is 
assumed  to  be  a  measure  of  the  corrosion  of  a  lead 
pan  under  similar  conditions,  was  estimated  by 
titrating  lead  nitrate  solution  into  the  acid  until  a 
permanent  turbidity  appeared.  The  possible  error 
is  ±10%.  Results  are  depicted  graphically.  The 
corrosion  in  practice  is  estimated  at  65%  of  the 
theoretical  maximum  determined  as  above. — C.   I. 

Nitrogen  oxides;  Analytical  determination  of 

in  gas  mixtures.  C.  L.  Burdick.  J.  Ind.  Eng. 
Chem.,  1922,  14,  308—310. 
The  following  method  has  been  devised  for  the 
estimation  of  nitric  oxide  and  nitrogen  peroxide 
in  gas  mixtures  in  addition  to  nitric  acid  mist  if 
present.  In  the  case  of  a  gas  mixture  above  its 
dew-point  the  reactions  on  absorption  in  alkali  are: 
(I.)  3N02  +  2NaOH  =  2NaNOs  +  NO  +  H20, 
(II.)  NO-rN02+2NaOH  =  2NaN02  +  H20. 
Absorption  in  two  stages  is  therefore  used,  the 
nitric  oxide  liberated  according  to  (I.)  being  col- 
lected in  the  aspirator,  oxidised  with  hydrogen 
peroxide,  and  absorbed  in  excess  of  standard  alkali. 
The  alkaline  solution  in  the  absorbing  vessel 
through  which  the  sample  is  aspirated  is  titrated 
with  methyl  red  in  dilute  alkali  as  indicator.  To  the 
neutralised  solution  a  few  c.c.  of  standard  perman- 
ganate is  added  (which  destroys  the  methyl  red) 
5  c.c.  of  concentrated  sulphuric  acid  is  stirred  in, 
and  excess  of  permanganate  added.  The  solution 
is  then  allowed  to  stand  for  a  few  minutes,  excess 
of  ferrous  sulphate  added,  and  the  excess  titrated. 
The  three  estimations  give  the  data  necessary  for 
determining  the  percentage  oxidation  in  the  gas 
mixture  and  the  calculation  can  be  extended  to  the 
case  in  which  nitric  acid  as  mist  is  present.  A  cor- 
rection for  oxidation  during  the  taking  of  the 
sample  is  added. — C.  I. 

Nitrous  acid;  Decomposition  of .     A.  Klemenc 

and    F.    Pollak.      Z.    physik.   Chem.,    1922,    101, 
150—171. 
The  velocity   of   decomposition  of   nitrous  acid   in 
aqueous  solution,  according  to  the  equation, 

3HN02  =  HNOS+2NO+H20, 
depends  on  the  velocity  with  which  the  nitric  oxide 
is  removed  from  the  solution,  and  also  on  the 
pressure  of  nitric  oxide  above  the  solution.  The 
direct  decomposition  of  nitrous  acid  is  spontaneous 
and  immeasurably  rapid,  its  transitory  existence  in 
aqueous  solution  depending  on  a  mutual  action 
between  it  and  the  solvent.     (Cf.  J.C.S.,  June.) 

—J.  F.  S. 

Nitrogen  pentoxide;  Thermal  decomposition  of 

in  solution.  R.  H.  Lueck.  J.  Arner.  Chem.  Soc., 
1922,  44,  757—769. 
The  velocity  of  decomposition  of  nitrogen  pentoxide 
in  carbon  tetrachloride  and  chloroform  solutions  at 
25°  and  55°  C.  is  about  the  same  as  that  of  the 
gaseous  substance.  The  nitrogen  peroxide  formed 
in  the  decomposition  acts  autocatalytically.  {Cf. 
J.C.S.,  June.)— J.  F.  S. 

Nitrogen   peroxide;  Analysis   of  liquid  .      A. 

Sanfourche.  Bull.  Soc.  Chim.,  1922,  31,  316—319. 
The  sampling  is  done  by  means  of  a  Durand 
washing  bottle,  which  is  kept  immersed  in  ice  and 
the  central  tube  of  which  is  drawn  out  to  a  fine 
orifice.  For  the  estimation  of  nitric  acid  10  c.c. 
of   the  sample  is  measured  into  a  cylindrical  gas 


drying  bottle  which  is  surrounded  with  ice,  and  air 
is  bubbled  through  the  liquid  until  the  whole  of 
the  nitrogen  peroxide  has  been  evaporated.  The 
residual  nitric  acid,  which  should  not  evolve  nitrous 
vapours  when  warmed  with  the  hand,  is  diluted 
with  water  and  titrated  with  N  /l  sodium 
hydroxide.  For  the  estimation  of  nitrogen  peroxide 
and  nitrous  anhydride  a  known  volume  of  the 
sample  is  dissolved  in  20  c.c.  of  concentrated 
sulphuric  acid,  cooled  in  ice,  and  aliquot  portions 
are  titrated  with  IV/10  permanganate  and  analysed 
in  a  Lunge  nitrometer  respectively.  From  these 
results  it  is  possible  to  calculate  the  percentages  of 
the  three  ingredients  in  the  sample  of  nitrogen 
peroxide. — W.  G. 

Nitre-cake;   RecnistaUisation    of  at    12°    C. 

B.    Saxton.      J.    Ind.    Eng.    Chem.,    1922,    14, 

281—285. 
The  equilibria  of  the  system,  Na2SO.  -  H2S04  -  H20 
at  12°  C.  as  determined  by  Foote  (J.,  1919,  573  a) 
are  plotted  graphically-,  and  equations  for  the 
solubility  curves  of  Na2S04 10H,O,  Na2SO„  NaHSO, 
and  Na*HS04,H,0  so  obtained  are  developed.  It 
is  shown  that  a  nitre-cake  containing  up  to  416% 
H2SO.  can  deposit  Glauber's  6alt  at  12°  C,  with  a 
maximum  crystallisation  from  a  solution  of  11"83% 
acidity.  The  double  salt  crystallises  in  the  case  of 
nitre-cake  containing  over  33'4%  H2SO(,  and  the 
acid  salt  if  the  acidity  is  over  52"4%.  The  various 
procedures  possible  for  the  recovery  of  Glauber's 
salt  and  sulphuric  acid  from  nitre-cake  by 
recrystallisation  are  discussed. — C.  I. 

Ammonium  nitrate;  Decomposition  of by  heat. 

H.  L.  Saunders.     Chem.  Soc.  Trans.,   1922,   121, 
698—711. 


Up  to  260°  C.  pure  ammonium  nitrate  decomposes 
to  the  extent  of  98%  into  nitrous  oxide  and  water 
according  to  the  equations : 

NH.NO.^NHj+HNO, ; 

NH4N03->-N,0+2H,0; 

5NH3  +  3HN03->9ri;0+4N2. 
Free  nitrogen  (2%  up  to  260°  C,  and  considerably 
more  at  higher  temperatures),  nitrogen  peroxide, 
and  nitric  oxide  are  present.  Decomposition  below 
200°  C.  is  slow— 20  c.c.  of  gas  from  50  g.  of  nitrate 
per  hr. — but  increases  with  rise  of  temperature  to 
a  steady  rate  at  250°  C.  At  300°  C.  the  reaction 
proceeds  explosively  with  the  formation  of  nitrogen 
peroxide,  nitric  oxide,  nitrogen,  and  water  in  the 
ratio  of  2:4:5:16.  The  liquid  products  of  the  re- 
action contain  nitric  and  nitrous  acids  and  a  small 
quantity  of  ammonium  nitrate.  Impurities  have 
a  marked  influence  on  the  decomposition.  Chlorides 
accelerate  the  rate  of  evolution  of  the  gas,  the 
acceleration  produced  by  1  %  of  chloride  being  equal 
to  that  induced  by  a  rise  of  temperature  of  25°-- 
30°  C.  Chlorine,  proportional  to  the  amount  of 
chloride  and  to  the  temperature,  is  always  present 
in  the  evolved  gas,  but  its  concentration  falls  off 
as  the  decomposition  proceeds,  the  chloride  being 
decomposed  faster  than  the  nitrate.  The  liquid 
products  include  hvdrochloric  acid.  Sulphates  and 
sodium  nitrate  below  250°  C.  have  no  influence. 

— P.  V.  St. 

Magnesium    nitrate—sodium    nitrate— water    and 

magnesium      sulphate  —  magnesium      nitrate  — 

water;   The    25°-isotherms   of   the   systems  -— — • 

D     N     Jackman   and    A.   Browne.      Chem.  Soc. 

Trans.,  1922,  121,  694—697. 

In  the  system  magnesium  nitrate — 6odium  nitrate 

—water,"  the  solid  phase  consists  of  sodium  nitrate 

and   the   hexahydrate  of   magnesium   nitrate,   and 

in    the    system'   magnesium    sulphate— magnesium 

nitrate— water  of   the  hexahydrate   of   magnesium 

nitrate  and  magnesium  sulphate  heptahydrate.    wo 

double  salts  or  solid  solutions  are  found  in  either 

system  at  25°  C— P.  V.  M. 


Vol.  xix,  No.  a.]       Ct.  VII.— ACIDS  ;  ALKALIS;  SALTS;  NON-METALLIC  ELEMENTS.  413  a 


Potash;  Recovery  of  ■  as  a  by-product   in   the 

blast-furnace  industry.     W.   H.  Ross  and  A.  It. 
Merz.     J.  Ind.  Eng.  Chem.,   1922,   14,  302—303. 

The  potash  (K,0)  content  of  iron  ores  smelted  in 
the  United  States  varies  from  005%  to  over  2%,  but 
the  weighted  average  is  no  more  than  019%.  This, 
together  with  the  potash  content  of  the  limestone 
ind  coke,  represents  a  total  of  115,000  tons  K.O 
lost  by  volatilisation  per  annum.  The  possibility 
\i(  recovering  this  depends  on  the  installation  of 
dry  cleaning  systems  in  those  plants  using  the  ores 
richer  in  potash. — C.  1. 

Bromide;    Determination   of   in    brines    and 

mineral    waters.      C.    C.    Meloche    and    H.    H. 
Willard.    J.  Ind.  Eng.  Chem.,  1922,  14,  422—425. 

([f  the  brine  solution  is  free  from  iodide  a  sample 
ontaining  not  more  than  0-3 — 0'5  g.  of  bromine  is 
weighed  into  a  250  c.c.  steam-jacketed  retort  con- 
lected  with  a  10-bulb  tube  charged  with  2  g.  of 
•austic  soda  dissolved  in  80  c.c.  of  water,  0'5 — 1  g. 
pf  potassium  permanganate,  according  to  the 
imount  of  bromine  present,  is  added  to  the  cold 
iquid,  followed  by  sufficient  dilute  hydrochloric 
icid  to  provide  0'3 — 0'6  g.  of  free  hydrogen 
■hloride.  The  solution  is  diluted  to  150  c.c.  and  a 
:urrent  of  air  at  the  rate  of  70  1.  per  hr.  is  passed 
hrough  the  apparatus  after  first  passing  through  a 
lot  dilute  caustic  soda  solution.  The  steam  is  then 
urned  on  and  the  contents  of  the  retort  are  dis- 
illed  for  30 — 45  mins.,  whereby  all  the  bromine  and 
l  little  chlorine  collect  in  the  10-bulb  tube  as  sodium 
lypobromite  and  hypochlorite.  These  6alts  are 
educed  to  the  corresponding  halides  by  means  of  a 
Veighed  excess  of  hydrazine  sulphate  in  the  cold, 
he  solution  is  then  made  about  0'2iV  with  nitric 
cid,  and  the  halides  precipitated  in  the  usual  way 
pith  silver  nitrate.  The  precipitate  is  collected  in 
.  Gooch  crucible,  well  washed,  dried  at  180°  C, 
hen  heated  above  the  fusion  point  for  J  hr.,  and 
.eighed.  The  crucible  is  covered  with  a  Rose  lid 
nd  heated  again  to  the  latter  temperature  for  1 

!r.,  while  a  current  of  chlorine  is  passed  in  to  dis- 
lace  the  bromine.  The  loss  in  weight  during  this 
peration  xl"7976  gives  the  amount  of  bromine 
resent.  If  the  brine  contains  iodide  this  is  first 
xidised  to  iodate  by  rendering  the  solution,  after 

.ransferring  it  to  the  retort,  alkaline  with  0T  g. 
f  caustic  soda  and  adding  sufficient  permanganate 

i  oxidise  the  iodide  to  iodate  and  provide  that 
ecessary  for  the  succeeding  operations.  The  solu- 
ion,  which  must  turn  green,  is  boiled  for  2  min., 
?oled,  acidified  with  an  excess  of  hydrochloric  acid 
3  yield  0'3 — 06  g.  of  free  hydrogen  chloride  and  the 
nalysis  finished  as  described  above. — A.  R.  P. 

ritkianates;   Volumetric   estimation   of  .     A. 

Fischer  and  W.  Classen.     Z.  angew.  Chem.,  1922, 
33,  198—199. 

.he  estimation  of  dithionates,  which  is  of  interest 
:i  regard  to  the  Chance-Claus  process  and  certain 
ethods  for  the  removal  of  hydrogen  sulphide  from 
is  may  be  performed  volumetrically  as  follows, 
he  sample  is  weighed  into  a  flask,  covered  with 
v'drochloric  acid  (1:1)  free  from  chlorine  and  a 
irrent  of  carbon  dioxide  passed  through  the 
iparatus.  The  flask  is  heated,  the  flow  of  carbon 
oxide  being  checked  when  the  evolution  of  sul- 
lur  dioxide  commences.  The  latter  is  absorbed 
!  excess  of  standard  iodine  solution.  Finally  the 
iparatus  is  swept  out  with  carbon  dioxide.  The 
•action  Na„S,Oc  =  Na2S04  +  S02  only  commences  on 
sating,  and  as  most  similar  salts  are  decomposed 
'  cold  acid,  or  may  be  oxidised  to  sulphate  by 
kaline  hydrogen  peroxide,  the  method,  the  results 
which  are  very  accurate,  is  applicable  to  the  esti- 
ation  of  dithionates  in  mixtures.  (C7.  J.C.S., 
ine.)— C.  I. 


Thiosulphuric  and  nitrous  ions;  Reaction  between 
I — i-Q_L'is^alcI°la'     GaZZ'  Chim-  Ital->  1922>  52' 

Treatment  of  sodium  thiosulphate,  even  in  highly 
dilute  solution,  with  dilute  sodium  or  potassium 
nitrite  solution  and  acidification  of  the  liquid  with 
either  an  inorganic  or  organic  acid  or  a  salt,  such 
as  alum,  giving  an  acid  solution,  results  in  effer- 
vescence and  m  a  yellow  coloration  which  may  at 
first  be  greenish  or  orange-brown.  The  reaction  is 
equally  sensitive  in  aqueous-alcoholic  solution  and 
appears  clearly  with  O'OOOIA/  sodium  thiosulphate 
solution,  which  is  too  dilute  readily  to  yield  sulphur 
when  treated  with  a  mineral  acid  or  to  give  a 
coloration  with  ferric  chloride.  When  only  a  trace 
ot  thiosulphate  is  present  along  with  sulphurous 
acid  in  excessive  amount  and  concentration  the 
reaction  may  be  prevented.  This  reaction'  also 
serves  for  the  detection  of  the  nitrous  ion  in 
presence  of  the  nitric  ion. — T.  II.  P. 

Sodium  hypochlorite  solutions;  Red  coloration  of 
■——.  T.  Mario.  Boll.  Chim.  Farm.,  1922,  61, 
16o — 16(3. 

The  red  coloration  which  develops  in  solutions  of 
sodium  hypochlorite  is  caused  by  the  presence  of 
salts  of  permanganic  acid  derived  from  manganese 
contained  in  the  reagents,  and  not  in  the  vessel  used 
in  the  preparation.     (Cf.  J.C.S.,  June.)— T.  H.  P. 

Ammonium  carbamate;  Conditions  of  formation  and 

stability  of .    C.  Matignon  and  M.  Freiacques. 

Bull.  Soc.  Chim.,  1922,  31,  307—316. 
A  more  detailed  account  of  work  already  published 
(Comptes  rend.,  1920,  170,  463;  cf.  J.,  1921,  25  a). 

— W.  G. 

Catalysts  and  chemical  equilibrium.     [Formation  of 
chlorine    from    hydrochloric    acid.']      J.    Clarens 
Bull.  Soc.  Chfta.,  1922,  31,  299—307. 

From  a  study  of  the  inverse  reactions  4HCl+Oa  Zl 
2H,0  +  2C12,  in  the  presence  of  glass  wool  and  cuprlc 
chloride  respectively  as  catalysts,  the  author  con- 
siders that  there  is  no  reason  to  suppose  that  a 
catalyst  modifies  equally  the  velocity  of  two  inverse 
reactions.  For  example,  whilst  cuprous  chloride 
has  hardly  any  effect  on  the  reaction,  2C1,  +  2H„0  = 
4HC1  +  0,,  it  practically  doubles  the  velocity  of"  the 
inverse  reaction,  4HCI+02  =  2Cl2-r2H20.— W.  G. 

Arsenate  of  lead;  Electrolytic  preparation  of . 

H.   V.   Tartar  and  G.   G.   Grant.     J.   Ind.   Eng. 
Chem.,  1922,  14,  311—313. 

A  mixture  of  basic  and  acid  lead  arsenate  can  be 
prepared  electrolytically  from  disodium  arsenate 
or  arsenic  acid.  While  the  use  of  the  former  pro- 
duces a  precipitate  which  adheres  strongly  to  the 
electrode  and  is  unserviceable,  experiments  leading 
to  a  practical  method  of  preparing  lead  hydrogen 
arsenate  from  arsenic  acid  are  described.  A  lead 
anode  and  iron  cathode  are  used  and  as  electrolyte 
a  1 — 2%  solution  of  sodium  chlorate  containing 
0'05%As2O5,  which  is  slowly  circulated  by  blowing 
in  air.  The  distance  between  the  electrodes  is  2-5 
cm.  and  the  current  density  T875  amps,  per 
sq.  dm.  Under  these  conditions  a  non-adherent, 
finely-divided  precipitate  is  obtained  containing 
62%  Pb  with  a  consumption  of  022  kw.-hr.  per  lb. 
at  a  current  efficiency  of  98 — 99%.  The  product  is 
used  as  an  insecticide. — C.   I. 

Titanium     dioxide;     Determination     of     in 

bauxite.     H.  J.  Winch  and  V.  L.  Chandratreya. 
Chem.  News,  1922,  124,  231—232. 

Two  03  g.  samples  are  fused  with  3  g.  of  potassium 
bisulphate,  and  the  melts  dissolved  in  hydrochloric 
acid,  keeping  the  bulk  as  low  as  possible.  One 
solution  is  reduced  with  0'15  g.  of  fine  tin  powder, 


414: 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[June  15,  1922. 


free  from  iron,  and  the  other  with  stannous 
chloride.  The  excess  of  the  latter  is  destroyed  in 
each  case  with  mercuric  chloride,  which  is  not 
reduced  by  titanous  chloride  in  the  cold,  and  the 
solutions  are  titrated  with  bichromate.  To  obtain 
a  sharper  end  point  in  the  first  titration  the 
titanous  chloride  may  be  displaced  by  a  correspond- 
ing amount  of  ferrous  chloride  by  adding  a  3% 
ferric  chloride  solution  to  the  assay  just  before  titra- 
tion. The  difference  between  the  two  titrations 
gives  the  titanium  dioxide  present. — A.  R.  P. 

Phosphoric    oxide      Purification    of .       G.    I. 

Finch  and  R.  H.  K.  Peto.     Chem.  Soc.  Trans., 

1922,  121,  692—693. 
The  purification  of  phosphoric  oxide  is  effected  by 
sublimation  at  bright  red  heat  in  a  current  of  dry 
oxygen,  a  50%  yield  being  obtained.  The  appa- 
ratus consists  of  an  inverted  iron  T-piece,  a  portion 
of  which  is  heated  in  a  furnace.  Dry  oxygen  is 
admitted  at  one  end  of  the  horizontal  portion  of  the 
T-piece,  and  impure  phosphoric  oxide  is  introduced 
in  small  portions  from  a  horizontal  glass  tube,  pro- 
vided with  an  iron-wire  rake,  and  attached  at  right 
angles  to  the  upper  end  of  the  vertical  arm  of  the 
T-piece.  Most  of  the  sublimed  phosphoric  oxide  is 
deposited  in  a  piece  of  combustion  tubing,  4  ft.  long, 
attached  to  the  end  of  the  T-piece  opposite  the 
oxygen  inlet,  a  small  portion  passing  on  into  a 
receiver. — P.  V.  M. 

Carbon  monoxide  ;  Preferential  combustion  of 

in  hydrogen.  A.  B.  Lamb,  C.  C.  Scalione,  and 
G.  Edgar.  J.  Amer.  Chem.  Soc,  1922,  44,  738— 
757. 
By  means  of  a  catalyst  termed  "  hopcalite "  (J., 
1920,  424  a),  carbon  monoxide  can  be  completely 
burnt  and  removed  from  mixtures  of  carbon  dioxide,- 
hydrogen,  and  air  without  any  loss  of  hydrogen,  if 
at  ordinary  temperatures  the  mixture  is  dry  and 
does  not  contain  more  than  0"5%  of  carbon  mon- 
oxide. If  1%  of  carbon  monoxide  is  present, 
too  much  heat  is  liberated  and  oxidation  of  the 
hydrogen  commences,  and  the  catalyst  is  raised  to 
incandescence  and  destroyed.  If  the  gas  is  moist 
higher  temperatures  are  required  :  thus  a  mixture 
of  air  and  0-5%  of  carbon  monoxide  requires  90°  C, 
whilst  under  the  same  conditions  hydrogen  does  not 
commence  to  oxidise  before  a  temperature  of  120° — 
125°  C.  is  reached.  It  is  possible  therefore  to  re- 
move carbon  monoxide  from  the  hydrogen,  required 
in  the  synthesis  of  ammonia,  by  using  such  a  cata- 
lyst and"  burning  the  carbon  monoxide  in  steps,  first 
at  lower  temperatures  and  then  at  higher,  without 
burning  any  of  the  hydrogen.     {Cf.  J.C.S.,  June.) 

— J .  F .  S . 

Colloidal    sulphur:    Physico-chemical    investigation 

of   .      G.    Rossi.       Kolloid-Zeits.,    1922,    30, 

228—230. 
Colloidal  sulphur  lowers  the  conductivity  and 
osmotic  pressure  of  a  solution  of  sulphuric  acid  and 
sodium  sulphate  if  these  substances  are  present 
when  the  colloid  is  prepared,  but  if  they  are  added 
after  the  preparation,  the  colloid  has  no  influence 
on  the  conductivity  and  osmotic  pressure.— J.  F.  S. 

Colloidal  carbon;  Cataphoresis  of  .  S.  Gold- 
berg. Kolloid-Zeits.,  1922,  30,  230—234. 
Colloidal  carbon,  free  from  electrolytes,  migrates 
towards  the  anode  with  a  velocity  about  18-3xl0"° — 
13'5  xlO"5  cm. /sec. -volt.  Dilution  and  filtration 
increase  the  velocity  about  20%.  Acids  and  bases, 
irrespective  of  their  nature,  reduce  the  velocity  by 
about  the  same  amount,  and  at  the  same  time 
change  the  colour  slightly,  but  the  original  colour 
may  be  restored  by  neutralisation.       Of  the  salts 


examined  only  those  of  aluminium  have  any  effect 
on  the  migration  velocity  and  these  cause  an 
increase  to  a  maximum  with  1  /500,000  M  aluminium 
sulphate,  followed  by  a  decrease  on  further  increas- 
ing the  concentration.  Colloidal  ferric  hydroxide 
coagulates  colloidal  carbon,  but  if  a  quantity  so 
small  is  added  that  no  coagulation  takes  place  then 
the  velocity  of  migration  is  reduced  about  20%. 
Dyestuffs,  such  as  Crystal  Violet,  Auramine,  and 
Methylene  Blue,  in  small  concentrations  reduce  the 
velocity  to  zero  and  with  increasing  concentration 
then  increase  it. — J.  F.  S. 

Hydrogen  and  oxygen.    Allan.    See  XI. 

Baryta.    Deguide  and  Baud.     See  XVII. 

Lead  arsenates.    Robinson.    See  XIXb. 

Change    of    properties    of    substances    on    drying. 
Baker.     See  XX. 

Manganites.     Sarkar  and  Dhar.    See  XXIII. 

Patents. 

Sulphuric  anhydride ;  Apparatus  for  the  manufac- 
ture of  by  the  contact  process.  Manufac- 
tures de  Prod.  Chim.  du  Nord  Etabl.  Kuhlmann. 
G.P.  343,792,  19.6.20. 
In  an  apparatus  in  which  the  catalyst  vessel  con- 
tains a  number  of  vertical  pipes  conveying  the 
mixture  of  sulphur  dioxide  and  air  and  having  the 
catalyst  arranged  between  them,  the  lower  part  of 
the  chamber  through  which  the  gas  enters  is  conical 
and  the  pipes  are  provided  at  the  bottom  with 
spiral  stoppers.  The  gas  mixture  passes  upwards 
through  the  pipes  and  then  downwards  through  the 
catalyst.  The  lower  part  of  the  vessel  is  surrounded 
by  a  collecting  pipe  connected  with  it  by  a  number 
of  orifices.  The  whole  apparatus  is  so  proportioned 
that  the  temperature  is  everywhere  the  same. 

— C.  I. 

Sulphuric  acid;  Purification  of  monohydrated  — — 
from  the  distillation  of  oleum.    Rhenauia,  Verein 
Chem.   Fabr.,   A.-G.,   Zweigniederlassung  Mann- 
heim.    G.P.  348,668,  4.4.15. 
Monohydrated  sulphuric  acid  which  is  discoloured 
by  finely-divided  suspended  matter  is  warmed  until 
decolorised,  whereupon  clarification  begins  and  may 
be  completed  either  at  a  moderately  high  tempera- 
ture or  after  cooling. — C.  I. 

Nitrogen;  Process  for  recovering  in  thejorm 

of  ammonia  from  peat.  P.  Brat.  E.P.  157,745, 
10.1.21.  Conv.,  21.10.18. 
Undried  peat  is  heated  with  lime  in  a  closed  vessel 
at  a  pressure  of  6  atm.  and  the  steam  generated 
used  as  a  source  of  power.  The  nitrogen  is  con- 
verted into  ammonia  gas,  which  is  absorbed  in 
water  or  acid.  If  the  moisture  in  the  peat  is 
reduced  to  10—15%,  the  residue  may  be :  mixed I  with 
lignite  tar  pitch  and  the  mixture  heated  to  3Uu  l 
the  hydrocarbons  contained  in  the  peat  being  ins- 
tilled off.— O.  I. 

Sulphate  of  ammonia;  Manufacture   of  .     B. 

Lessing.  E.P.  178,046,  6.10.21. 
The  mixture  of  ammonium  sulphate  crystals  and 
mother  liquor  removed  from  the  saturator  is  placed 
directly  in  a  lagged  draining  vessel  and  allowed  t 
drain  at  elevated  temperature  using  l°w-Pre*?F° 
steam  for  heating  the  vessel,  whereby  the  resulting 
crystals  contain  less  moisture  and  other  impurities 
and  are  in  a  better  condition  for  centrifuging  or 
for  neutralising  and  drying  than  when  an  o.dinarj 
draining  table  is  used. — H.  R.  D. 


vol.  XLI.,  No.  11.]     Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


415; 


Gas  reactions;  Process  and  apparatus  for  produc- 
tion    of     compounds     by    .      [Fixation     of 

nitrogen.]  O.  B.  Jacobs,  Assr.  to  E.  I.  du  Pont 
de  Nemours  and  Co.  U.S.P.  1,376,207,  26.4.21. 
Appl.,  27.9.19. 

One  of  the  gases  being  formed  by  electrolysis  of  a 
liquid,  the  other  gas  is  very  finely  divided  mechanic- 
ally and  mixed  with  the  first  gas  at  the  moment  of 
liberation,  the  combination  being  effected  substan- 
tially independent  of  any  aid  due  to  the  solubility 
of  either  gas  in  the  liquid.  For  example,  by  electro- 
lysing an  aqueous  solution  of  nitric  acid,  sodium 
nitrate,  sodium  hydroxide,  etc.;  in  a  cell  provided 
with  porous  electrodes  (graphitised  petroleum  coke 
or  rammed  steel  wool)  and  passing  in  nitrogen 
through  the  electrodes,  nitric  oxide  is  formed  in  the 
anode  compartment  and  ammonia  in  the  cathode 
compartment  by  combination  of  the  nitrogen  with 
the  oxygen  and  hydrogen  liberated  by  electrolysis. 
It  is  stated  that  atmospheric  nitrogen  can  be  fixed 
in  sufficient  quantity  and  with  sufficiently  high 
current  efficiency  to  make  the  production  of 
nitrogen  compounds  by  the  process  of  commercial 
significance. — B.  M.  V. 

'  Sulphur    dioxide ;    Purification    of    .      C.    M. 

Bullard.  U.S.P.  1,410,535,  21.3.22.  Appl., 
4.12.20.     Renewed  18.2.22. 

Sulphur  dioxide  containing  sulphur  trioxide  as  an 
impurity  is  passed  upward  through  a  falling 
medium  whereby  the  impurity  is  absorbed  with  a 
portion  of  the  sulphur  dioxide.  The  absorbent 
medium  is  collected,  and  any  of  the  sulphur  dioxide 
it  may  have  absorbed  is  removed. — H.  R.  D. 

Sulphur-bearing  gases;  Process  for  the  purification 
of  and  concentration  of  their  sulphur  con- 
tent. M.  F.  Coolbaugh.  U.S.P.  1,412,452, 
11.4.22.    Appl.,  29.4.19. 

i  Gases  containing  oxides  of  sulphur  in  a  diluted 
state  are  passed  over  a  metallic  oxide  at  a  tempera- 
ture suitable  for  the  formation  of  a  sulphate.  The 
latter  is  then  heated  to  decomposition  in  contact 
with  gas  rich  in  oxides  of  sulphur,  the  two  processes 
following  each  other  continuously. — C.  I. 

Sulphur    dioxide;   Method   of   production    of   

from  calcium  sulphide.  Metallbank  und  Metall- 
urgist© Ges.,   A.-G.     G.P.   (a)  349,347   and   (b> 

'  349.436,  1.7.16.  Addns.  to  347,694  (J.,  1922, 
294a). 

(a)  Calcium  sulphide  powder  is  mixed  with  calcium 
sulphate  in  lump  form  and  oxidised,  or  it  is, 
together  with  a  sintering  material,  converted  into 
granular  or  lump  form  and  oxidised,  (b)  Burnt 
gypsum  or  other  sulphur-bearing  material  without 
iction  on  the  sulphide  is  used  as  binder  to  produce 
;he  granular  or  lump  form  in  the  latter. — C.  I. 

Jj/psum  rock   and  the   like;  Method  of  calcining 

.      C.    R.    Birdsey,    Assr.    to   United    States 

Gypsum  Co.  U.S.P.  1,412,203,  11.4.22.  Appl., 
16.7.17. 

jfHE  crushed  raw  material  is  calcined,  the  fine 
uaterial  is  separated  from  the  coarse,  and  the 
atter  ground,  whereby  two  products  of  different 
lygroscopic  nature  are  obtained. — H.  R.  D. 

\lunite;  Process  for  treating  [sulphur-containing] 

ores  of  aluminium,  especially  .     F.  B.  Mac- 

Carthy,  Assr.  to  Mineral  and  Chemical  Co.  of 
Utah.    U.S.P.  1,413,045,  18.4.22.    Appl.,  16.2.20. 

'he  ore  is  heated  with  exclusion  of  air. — C.  I. 

.lumina;    Production    of    ,    from    aluminium 

nitrate  solutions.  T.  Mejdell,  Assr.  to  A./S. 
Labrador.  U.S.P.  1,413,754,  25.4.22.  Appl., 
7.9.20. 


fiTRic  acid  is  distilled  off  from  the  nitrate  solut 


ion, 


water  being  added  to  keep  the  temperature  of  the 
solution  nearly  constant.  Basic  aluminium  nitrate 
is  precipitated  and  is  separated  from  the  solution. 

— H.  R.  D. 

Aluminium    acetate;     Production    of    .       A. 

Wacker,  Ges.  fur  elektrochem.  Ind.  G.P. 
347,606,  1.5.20. 

Aluminium  chloride  and  anhydrous  acetic  acid  are 
heated,  e.g.,  for  10  hrs.,  under  a  reflux  condenser 
until  no  more  hydrogen  chloride  is  evolved,  when 
the  crystalline  product  is  separated  from  adhering 
liquid  by  centrifuging.  The  product,  which  is  very 
slightly  soluble  in  acetic  acid,  contains  less  than 
1%  of  chlorine. — L.  A.  C. 

Cyanides;  Process  for  extracting  from  gases. 

Process  for  extracting  hydrocyanic  acid  from 
gases.  M.  E.  Mueller.  U.S.P.  (a)  1,413,762  and 
(b)  1,413,763,  25.4.22.     Appl.,  23.6.20  and  10.3.21. 

(a)  The  gases  are  brought  into  contact  with  an 
alkaline  solution  containing  a  compound  of  copper 
in  suspension,  (b)  Gases  containing  hydrocyanic 
acid  in  addition  to  hydrogen  sulphide,  carbon 
dioxide  and  ammonia,  are  treated  with  a  solution 
containing  at  least  two  atoms  of  copper  for  each 
molecule  of  hydrogen  sulphide  so  as  to  form  a  double 
cyanide  of  copper.— H.  R.  D. 

Alkaline  hypochlorites;  Method  and  apparatus  for 

producing    .      La    F.    D.    Vorce.      U.S.P. 

1,414,059,  25.4.22.    Appl.,  28.5.20. 

Chlorine  is  brought  in  contact  with  a  caustic 
alkali  solution,  which  is  maintained  at  a  tempera- 
ture below  30°  C,  under  conditions  in  which  the 
chlorine  will  not  be  in  excess. — H.  R.  D. 

Magnesium  hypochlorite ;  Method  of  preparation  of 

basic  .     \E.     Merck,     Chem.     Fabr.       G.P. 

350,575,  12.3.21.  Conv.,  28.12.26.  Addn.  to 
297,874  (c/.  J.,  1918,  467  a). 

Solutions  of  free  hypochlorous  acid  are  neutralised 
with  an  excess  of  magnesium  oxide  or  hydroxide 
greater  than  that  necessary  to  form  the  neutral  salt 
Mg(OCl)..— C.  I. 

Sulphur;  Recovery  of  from  calcium  silicate 

slags,   e.g.,    blast-furnace   slag.     Metallbank   und 
Metallurgist  Ges.  A.-G.     G.P.  350,576,  22.9.18. 
Steam,  especially  superheated  steam,  alone  or  to- 
gether with  air,  is  blown  into  the  molten  slag. 

— C.  I. 

Sulphur;      Concentration      of      ores      containing 

elemental  .     T.   R.   Simpson,    and   Minerals 

Separation,  Ltd.  E.P.  177,839,  2.12.20. 
The  powdered  ore  is  made  into  a  mobile  pulp  with 
water  and  subjected  to  vigorous  agitation  and 
aeration  from  below,  without  the  use  of  any  added 
frothing  agent,  so  as  to  produce  a  froth  containing 
the  sulphur  content  of  the  ore. — H.  R.  D. 

Ammonium  sulphate;  Manufacture  of  .      The 

Koppers  Co.,  Assees.  of  F.  W.  Sperr,  jun.  E.P. 
156,170,  31.12.20.     Conv.,  10.5.18. 

See  U.S.P.  1,310,306  of  1919;  J.,  1919,  629  a. 

Ammonia;  Process  for  the  production  of  — —  from 
nitrogen  or  cyanogen  compounds  of  titanium. 
G.  P.  Guignard.  E.P.  160,454,  14.2.21.  Conv., 
19.3.20. 

See  U.S.P.  1,411,087  of  1922;  J.,  1922,  372  a. 

Furnaces  [for  fixation  of  nitrogen].  Nitrogen  Pro- 
ducts Co.,  Assees.  of  O.  P.  Hidden.  E.P.  156,478, 
5.1.21.     Conv.,  27.1.19 

See  U.S.P.  1,348,175  of  1920;  J.,  1920,  657  a. 


416; 


Cl.  VIII.— GLASS;  CERAMICS. 


[June  15,  1922. 


Nitrogen   oxides;   Method  of  removing   solid  

from  refrigeration  devices.  Norsk  Hydro-Elek- 
trisk  Kvaelstofaktieselskab.  E.P.  156,797,  7.1.21. 
Conv.,  14.10.18. 

See  G.P.  325,636  of  1919;  J.,  1921,  79  a. 

Perborates  and  di-sodium  perphosphates ;  Manufac- 
ture   of    .      S.    Aschkenasi.      E.P.    156,713, 

7.1.21.     Conv.,  27.11.18. 

See  G.P.  318,219  of  1918;  J.,  1920,  406  a. 

Zinc    oxide;    Manufacture    of   .      New    Jersey 

Zinc    Co.,    Assees.    of    W.    L.    Coursen.       EP 
165,767,  14.1.21.     Conv.,  28.6.20. 

See  U.S.P.  1,372,486  of  1921;  J.,  1921,  346  a. 

Alumina  poor  in  iron;  Process  of  producing  . 

V.   M.    Goldschmidt   and   O.    Ravner,    Assrs.    to 
Det   Norske   Aktieselskab   for    Elektrokem.    Ind 
U.S.P.  1,413,720,  25.4.22.     Appl.,  31.3.19. 

See  E.P.  125,578  of  1918;  J., 


Chemical  reactions. 


1920,  108  a. 
G.P.  349,330.    See  I. 


'Crystallisation    of    salt    solutions. 
See  I. 


G.P.    350,577. 


Sulphur     dioxide     from     sulphite-cellulose     waste 
liquor.     G.P.  350,155.     See  V. 


VIII.-GLASS;    CERAMICS. 

Fire  bricks;  Resistance  tests  on under  loads  at 

high  temperatures.  E.  Sieurin,  P.  Oarlsson,  and 
B.  Kjellgren.  J.  Amer.  Ceram.  Soc.,  1922,  5, 
170—180. 

Mixtures  of  kaolin  and  ball  clay  with  various  quan- 
tities of  added  quartz,  alumina,  ferric  oxide,  lime, 
or  magnesia  were  ground  until  they  passed  a  sieve  of 
10,000  meshes  per  sq.  in.  Part  of  each  mixture  was 
burned  at  cone  14,  and  after  crushing  and  screening 
was  used  as  grog  in  the  preparation  of  small  cubes 
from  the  mixture.  After  burning  at  cone  14  the 
cubes  were  heated  in  an  electric  furnace,  and  the 
temperature  necessary  to  produce  a  linear  contrac- 
tion of  0'3%  in  2  hrs.  under  a  load  of  2  kg.  per  sq. 
cm.  was  determined,  as  were  the  ordinary  cone 
melting  points.  The  addition  of  silica  produced  a 
minimum  softening  temperature  under  load  with  a 
silica  content  of  60 — 70%,  although  the  minimum 
cone  melting  point  without  load  occurred  with  a 
90%  silica  content.  The  softening  temperature  in- 
creased continuously  as  the  percentage  of  alumina 
increased,  until  with  about  80%  of  alumina  present 
the  bonding  power  of  the  mixture  failed,  and  there 
was  a  sudden  drop  in  the  deformation  temperature. 
Very  small  increases  in  the  percentage  of  ferric 
oxide,  lime,  and  magnesia  produced  large  decreases 
in  tho  deformation  temperatures,  an  increase  in  the 
percentage  of  magnesia  from  0  to  008%  reducing 
the  softening  temperature  under  load  by  40°  C. 

— H.  S.  H. 

Silica  brick;  Influence  of  grind  and  burn  on  the 

characteristics  of .     R.  M.  Howe  and  W.  R. 

Kerr.     J.  Amer.  Ceram.  Soc.,  1922,  5,  164—169. 

Thb  influence  of  grind  and  the  temperature  of 
burning  on  the  modulus  of  rupture,  specific  gravity, 
porosity,  and  permanent  expansion  of  silica  bricks 
was  investigated.  Fine  grinding  improved  the 
appearance  of  the  bricks  and  increased  their 
strength  slightly.  The  time  of  grinding  did  not 
affect  the  porosity  appreciably.  The  strength  of 
tho  bricks  increased  while  the  permanent  residual 
expansion  and  the  specific  gravity  decreased  as  the 
firing  temperature  was  increased  from  cone  11  to 
cone  19.  A  grinding  period  of  15  to  20  mins. 
seemed  most  suitable. — H.  S.  H. 


Silica  brick;  Testing  of  .     K.  H.  Endell      J 

Amer.  Ceram.  Soc,  1922,  5,  209—219. 
The  specific  gravity,  softening  temperature  under 
a  load  of  1  kg.  per  sq.  cm.,  and  the  permanent 
linear  expansion  after  repeated  heating  to  1600°  C. 
of  silica  bricks  of  German,  American,  English,  and 
Swedish  manufacture  were  determined.  Photo- 
micrographs of  the  bricks  were  examined,  and  the 
percentage  of  quartz  and  cristobalite  determined. 
It  was  concluded  that  the  specific  gravity  of  silica 
bricks  should  not  exceed  238,  and  the  quartz  and 
silicates  present  should  not  be  greater  than  15%. 
The  softening  temperature,  as  determined  by  the 
Steger  lever  press  method,  should  be  at  *  least 
1520°  C,  whilst  the  permanent  linear  expansion, 
after  heating  to  1600°  C.  in  1J  hrs.,  and  maintain- 
ing that  temperature  for  i  hr.,  should  not 
exceed  2 %.— H.  S.  H. 

Carborundum   brick.       M.   F.   Peters.       J.   Amer. 
Ceram.  Soc,  1922,  5,  181—208. 

Carborundum-clay  bricks  should  contain  sufficient 
clay  to  cover  the  carborundum  grains  and  to  fill  up 
the  voids.  The  grain  sizes  of  the  carborundum 
particles  should  be  such  as  to  give  a  maximum 
amount  of  coarse  material  with  a  minimum  of  fines, 
but  sufficient  fine  material  should  be  present  to  fill 
up  the  voids  left  by  the  coarser  sizes.  The  deforma- 
tion under  load  at  1350°  C.  of  carborundum-clay 
bricks  decreases  as  the  percentage  of  carborundum 
increases.  The  tensile  strength  increases  at  first  as 
the  percentage  of  carborundum  increases,  reaches  a 
maximum,  and  then  decreases  with  higher  amounts 
of  carborundum.  Carborundum  resists  the  action 
of  most  slags  better  under  reducing  than  under 
oxidising  conditions.  It  will  not  resist  slags  high 
in  iron,  lead,  or  lime,  but  will  resist  those  high  in 
silica.  The  addition  of  carborundum  to  clay  at  first 
decreases  the  tendency  to  spall,  but  a  point  is 
reached  where  further  increase  in  the  carborundum 
content  increases  the  spalling.  The  tensile  strength, 
coefficient  of  expansion,  and  the  thermal  conduc- 
tivity of  the  clay  affect  the  resistance  to  spalling. 
A  formula  is  proposed  for  the  estimation  of  the  life 
of  carborundum  refractories,  and  a  theoretical 
explanation  of  their  physical  properties  is 
suggested. —  H.  S.  H. 

Glazes;  Spit-out  of  on   passing   through  an 

enamel  kiln.  J.  Miles.  Trans.  Ceram.  Soc, 
1921-2,  21,  208—226. 
Spit-out  is  considered  as  due  to  the  expansion  of 
superheated  steam  generated  in  the  pores  of  the 
body.  It  is  suggested  that  the  defect  may  be 
minimised  by  thorough  sponging  of  the  clay  and 
allowing  the  ware  to  cool  slowly  from  900°  to  800°  C. 
after  firing  in  the  glost  oven.  The  goods  while  in 
the  glost  6tate  must  be  kept  free  from  contact  with 
moisture,  and  great  care  should  be  taken  when 
sponging  off  print9  etc.  The  temperature  of  the 
glost  oven  should  rise  quickly  from  800°  to  900°  C, 
so  as  to  burst  the  glaze  bubbles,  and  then  much 
more  6lowly  to  the  finishing  temperature  to  avoid 
crooked  and  blistered  ware.  In  the  discussion 
B.  Moore  stated  that  if  carbon  occurred  in  the  body 
and  the  atmosphere  of  the  kiln  did  not  Dec°m<5 
oxidising  until  a  high  temperature  was  reached 
"  spit  out  "  would  be  caused. — H.  S.  H. 

Patents. 

Glass;  Method  and  apparatus  for  making  — —  • 
H.  A.  Mvers,  Assr.  to  The  H.  A.  Myers  Co. 
U.S.P.  1,413,766,  25.4.22.  Appl.,  16.12.18. 
Molten  glass  is  contained  in  a  reservoir  provided 
with  a  discharge  opening  or  space  for  shaping  the 
glass,  and  means  whereby  the  sides  of  this  opening 
are  kept  moving  forward  and  are  maintained  at 


[Vol.  XLI.,  No.  11.] 


Cl.  IX.— building  materials. 


417a 


a  sufficiently  high  temperature  to  keep  the  glass 
fluid,  the  sides  remaining  covered  with  molten  glass 
adhering  to  them. — A.  B.  S. 

Glass;   Stirring   molten   in    continuous    tank 

furnaces.  W.  F.  Brown,  Assr.  to  The  Libbey- 
Owens  Sheet  Glass  Co.  U.S. P.  1,414,008,  25.4.22. 
Appl.,  1.11.20. 

A  tank  furnace,  wherein  the  glass  flows  continu- 
ously from  the  melting  end  to  the  discharge  end,  is 
provided  with  a  porcelain  stirring  finger  fitted  to 
a  rod,  which  is  cooled  internally  and  extends  trans- 
versely into  the  tank  above  the  flowing  glass.  The 
rod  is  reciprocated  automatically,  so  that  the  finger 
breaks  up  the  lines  of  flow  in  and  increases  the 
homogeneity  of,  the  glass. — A.  B.  S. 

Porcelain.     F.  H.  Riddle.     E.P.  177,553,  23.9.20. 

Clay  is  mixed  with  an  alkaline  flux  (prepared  for 
example,  by  heating  kaolin,  magnesium  carbonate, 
and  flint)  and  sillimanite,  or  materials  which  inter- 
act to  form  sillimanite.  The  mixture  is  fired  to 
effect  the  formation  of  sillimanite  and  a  glassy 
matrix  in  which  practically  all  the  free  silica  con- 
tained in  the  mixture  is  dissolved  or  combined. 

— H.  S.  H. 

Tunnel  kilns.  Woodall,  Duckham,  and  Jones 
(1920),  Ltd.,  A.  M.  Duckham,  and  A.  T.  Kent. 
E.P.  177,561,  29,10.20. 

A  tunnel  kiln  in  which  the  gases  have  a  horizontal 

zig-zag  path  longitudinally  to  the  tunnel  has  the 

trucks  arranged  so  that  the  length  of  a  truck  is 

j  transverse  to  the  length  of  the  tunnel.     Each  truck 

'   carries  at  one  end  a  vertical  baffle.     Baffles  depend 

I  from  the  roof  of  the  tunnel  at  distances  apart  equal 

|  to  that  between  two  consecutive  baffles  carried  by 

the  trucks,  so  that  when  the  intermittent  movement 

of  the   trucks    is   through   the   same   distance   the 

tunnel   is  subdivided   into  a   number  of  chambers 

j  each  containing  a  truck,  except  during  the  periods 

iof  movement. — H.  S.  H. 
Refractory  article;  Highly .     H.  H.  Buckman 

and   G.   A.    Pritchard,   Assrs.   to   Buckman   and 
Pritchard.  Inc.    U.S.P.  1,412,916,  18.4.22.   Appl., 
28.9.20.     Renewed  7.9.21. 
A  refractory  composition  consists  of  zircon  and  an 
oxygen  compound  of  aluminium. — A.  B.  S. 

Corundum;  Artificial  • and  process  of  making 

fame.  H.  A.  Richmond  and  R.  Macdonald,  jun., 
Assrs.  to  General  Abrasive  Co.  U.S.P.  1,413,785, 
25.4.22.     Appl.,  7.1.21. 

Artificial  corundum  is  made  by  melting  crude 
alumina  containing  not  more  than  0'6%  of 
titanium,  reducing  part  of  the  silica  and  iron  oxide 
without  materially  reducing  the  titanium  oxide, 
and  allowing  the  mass  to  cool. — A.  B.  S. 

Plastic  material  and  process  of  producing  the  same. 
R.  L.  Cawood.  U.S.P.  1,414,254,  25.4.22.  Appl., 
24.12.21. 

A  plastic  material  resembling  potter's  clay  and 
having  the  characteristics  of  a  true  kaolin  is  made 
by  comminuting  a  mixture  of  partially  and  wholly 
kaolinised  felspar  in  water,  removing  the  mica  from 
the  mixture,  and  then  eliminating  the  excess  of 
water  from  the  material. — A.  B.  S. 

Coating  metal  articles;  Process  for  .       Gebr. 

Jacob.     G.P.  347,956,  28.7.14. 

Two  layers  are  applied  separately  to  metal  articles 
by  heat ;  the  first  consists  of  an  enamel  base  of  the 
leeired  colour,  and  the  second  of  a  suspension  of 
inely  divided  metal  and  enamel  composition  in  a 
suitable  oil.  The  final  coating  exhibits  a  metallic 
ippearance  and  has  the  durability  of  enamel. 

— L.  A.  C. 


IX.— BUILDING  MATEfilALS. 

Patents. 
Cement,  mortar,  concrete,  and  the  like;  Process  for 

rendering    suitable    for    use    in    stopping 

incursions  of  water  or  for  waterproofing  or 
hydraulic  or  other  similar  purposes.  K.  Winkler. 
E.P.  168,847,  2.2.21.     Conv.,  30.8.20. 

Cement  etc.  suitable  for  use  in  stopping  incursions 
of  water  should  not  only  be  waterproof  but  should 
6et  and  harden  rapidly  and  have  considerable 
adhering  power.  This  is  attained  by  mixing  the 
cement  etc.  with  potassium  silicate  solution  in  such 
proportion  that  there  are  4 — 20  pts.  of  silica  to  100 
pts.  by  weight  of  dry  cement.  One  or  more  of  the 
following  substances  are  also  added  in  small  pro- 
portions so  as  to  increase  the  speed  of  hardening, 
the  imperviousness,  and  the  adhering  power  of  the 
cement: — calcium  nitrate,  strontium  nitrate, 
antimony  oxide,  potassium  chromate  or  bichromate, 
potassium  ferro-  or  ferri-cyanide,  manganese 
carbonate,  alkali  (particularly  potassium  hydroxide), 
calcium  carbonate,  bauxite,  tar  coke,  sugar. 

— H.  S.  H. 

[Magnesia  cement]  suitable  for  wall-covering, 
glazier's  putty  and  the  like  purposes;  Process 
for  the  manufacture,  with  or  without  the  addition 

of   filling    substances,    of   a   material   .      K. 

Wolf.     E.P.  178,320,  13.4.21. 

Magnesla  cement  which  is  weatherproof,  not 
affected  by  water  and  does  not  swell,  is  made  by 
heating  natural,  heavy  or  dense  magnesite  to  600° — 
700°  C,  cooling,  dry-slaking  and  then  re-calcining 
at  800°  C.  The  product  is  mixed  with  a  solution  of 
magnesium  chloride  made  by  dissolving  crystallised 
magnesium  chloride  in  water  and  boiling  until  the 
solution  has  sp.  gr.  1'33.  It  is  claimed  that 
solutions  of  magnesium  chloride  prepared  in  other 
ways  are  useless,  as  the  magnesium  hydroxide  and 
hydroxy-chloride  must  be  in  the  form  of  a  colloidal 
sol.  Purified  colloidal  substances  may  be  added  as 
fillers;  if  other  fillers  are  used  the  product  is  un- 
satisfactory.— A.  B.  S. 

Wood;  Apparatus  and  process  for  drying .     K. 

Fujmo.    U.S.P.  1,413,018, 18.4.22.    Appl.,  29.8.20. 

Wood  is  dried  by  subjecting  it  to  the  action  of  the 
soluble  and  volatile  products  derived  from  the 
carbonisation  of  green  wood. — A.  B.  S. 

Cement  clinker  and  the  like;  Shaft  furnace  for 
burning .     H.  Koppers.     G.P.  344,366,  1.6.19. 

The  refractory  lining  is  of  silica  brick  and  is 
surrounded  by  a  water  jacket  which  is  connected 
with  a  6team-collecting  vessel.  The  compressed  air 
for  the  combustion  passes  through  a  flue  into  a 
chamber  built  around  the  outlet  in  the  furnace 
bottom,  beneath  which  is  a  bunker  capable  _  of 
holding  a  day's  production.  Damage  to  the  lining 
through  temperature  variations  is  thus  avoided. 

Lime-burning ;  Oral  shaft-kiln  for .     F.  Miiller. 

G.P.  346,565,  7.3.16. 
In  a  gas-fired  shaft-kiln,  the  mixture  of  air  and  gas 
enters  the  shaft  through  a  series  of  controllable 
ducts  in  the  mouths  of  which  the  flame  is  com- 
pletely formed.  Two  such  ducts  are  on  each  of  the 
shorter  6ides  of  the  kiln  and,  by  distributing  the 
remaining  ducts  suitably  along  the  two  longer 
sides,  the  flames  are  distributed  uniformly  through 
the  kiln,  no  matter  how  large  it  may  be,  and  it  is 
impossible  for  incompletely-burned  gas  to  enter  the 
kiln.— A.  B.  S. 

Calcining  gypsum.     U.S.P.  1,412,203.     See  VII. 

b  2 


418  a        Cl.  X.— METALS  ;   METALLUBGY,  INCLUDING  ELECTRO-METALLURGY. 


[June  15,  1922. 


X.-METALS;   METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Alloys;  Comparative  study  of  the  analytical 
methods  applied  to  metallic .  HI.  Estima- 
tion of  phosphorus  in  cast  iron.  F.  Graziani  and 
L.  Losana.  Giorn.  Chim.  Ind.  Appl.,  1922,  4, 
94—99. 

Fob  the  estimation  of  phosphorus  in  cast  iron, 
Blair's  method,  based  on  the  fact  that  in  acetic 
acid  solution  containing  ferrous  and  ferric  salts 
the  phosphorus  is  precipitated  quantitatively  as 
ferric  phosphate  together  with  small  proportions  of 
ferric  hydroxide,  is  of  general  application  and  is 
useful  as  an  exact  control,  although  too  long  for 
general  use.  As  regards  the  molybdate  method  the 
conditions  in  which  the  precipitation  should  be 
effected  are  as  follows :  The  liquid  containing  the 
phosphorus  is  treated  at  the  boiling  point  with 
excess  of  potassium  permanganate  and  kept  boiling 
for  1  min.,  after  which  sufficient  crystallised  ferrous 
sulphate  is  added  to  render  the  liquid  clear.  The 
liquid  is  then  removed  from  the  flame  and  treated 
first  with  25 — 30  c.c.  of  ammonia  solution  (1:1)  and 
afterwards  with  nitric  acid  (1:1)  until  the  ferric 
hydroxide  is  just  dissolved.  A  further  quantity  of 
5  c.c.  of  concentrated  nitric  acid  is  mixed  with  the 
liquid,  which  is  treated  at  about  50° — 60°  C,  with 
30 — 35  c.c.  of  the  molybdic  reagent  (50  c.c.  if  the 
percentage  of  phosphorus  is  less  than  0'2)  and  stirred 
without  the  rod  touching  the  beaker.  After  about 
an  hour  the  precipitation  is  complete. — T.  H.  P. 

Iron-carbon    system ;     Constitutional    diagram    of 

based  on  recent  investigation.      K.  Honda. 

Iron  and  Steel  Inst.,  May,  1922.  [Advance 
proof.]  10  pp. 
Dubing  the  cooling  of  molten  cast  iron,  graphite 
separates  in  the  range  1130°— 1050°  C,  i.e.,  after 
solidification  of  the  melt.  A  theory  is  advanced 
that  graphite  is  not  a  direct  decomposition  product 
of  cementite,  but  is  due  to  a  catalytic  action  of 
carbon  monoxide  and  carbon  dioxide  on  the 
cementite.  The  most  favourable  temperature  for 
graphitisation  is  just  below  the  eutectic  point 
(1130°— 1100°  C).  The  graphite  line  on  the  double 
diagram  should  therefore  be  omitted.  Based  on 
thermo-dynamic  principles  the  lower  portion  of  the 
solidus  is  drawn  slightly  bent  upwards.  The 
critical  point,  A2,  as  determined  thermally  indi- 
cates only  the  commencement  of  the  transforma- 
tion. X-ray  examination  shows  that  iron  has 
always  the  centred  cube  space  lattice  structure 
below  the  A3  point,  and  thus  /3-iron  does  not  exist 
as  an  independent  phase.  The  progressive  change 
in  the  A2  transformation  represents  probably  a 
gradual  change  of  energy  in  atoms  accompanying 
the  increase  in  temperature.  The  Al  line  is 
drawn  horizontally,  and,  as  in  the  author's  view, 
the  transformation  is  austenite  ^martensite  7^ 
pearlite,  the  martensite  line  is  absent,  as  marten- 
site  does  not  actually  come  into  existence  except  in 
quenched  steel.  The  transformation  of  cementite 
(A0)  is  drawn  as  a  dotted  horizontal  line  similar  to 
the  A2  line,  as  the  transformation  is  progressive 
from  tho  lowest  temperaeture  to  215°  C. 

— C.  A.  K. 

Cast  steel;  Microstructure  of  .     A.   Portevin. 

Rev.  Met.,  1922,  19,  227—237. 

The  constitution  of  cast  steel  as  revealed  by 
chemical  analysis  and  micrographical  methods  is 
compared  with  the  equilibrium  diagram.  The 
errors  in  the  determination  of  the  relative  consti- 
tuents are  many  owing  to  the  heterogeneity  of  the 
metal  and  the  number  of  modifications  which  may 
result  from  varying  treatment  of  the  molten  steel. 
Results    of  chemical  analysis   do   not   explain    the 


variation  in  mechanical  properties,  as  these  are 
dependent  also  on  the  structural  formation  of  the 
steel. — C.  A.  K. 

Steel;   X-ray   studies    on   the    crystal   structure   of 

.     A.  Westgren  and  G.  Phragmen.     Iron  and 

Steel   Inst.,   May,   1922.     [Advance   proof.]     22 
pages. 

X-bay  photograms  of  an  iron  wire  heated  to  800°, 
1100°,  and  1425°  C.  have  shown  that  iron  within  the 
so-called  /3-  and  S-ranges  has  a  body-centred  cubic 
lattice  structure  and  within  the  7-range  a  face- 
centred  cubic  lattice.  The  transformation  that 
takes  place  at  900°  C.  (A3)  is  thus  reversed  at 
1400°  C.  (A4).  The  y-iron  lattice  of  austenite  steels 
is  enlarged  by  the  dissolved  carbon.  A  steel  with 
1'98%  of  carbon  has  a  somewhat  larger  lattice  when 
quenched  from  1100°  C.  than  when  quenched  from 
1000°  C.  Further,  the  o-iron  lattice  in  martensite 
seems  to  be  influenced  by  the  carbon  present.  The 
ranges  of  homogeneous  a-iron  lattice  in  martensite 
have  proved  to  be  extremely  small.  A  steel  with 
080%  of  carbon  quenched  in  water  from  760°  C.  is 
on  the  verge  of  being  totally  amorphous.  Photo- 
grams  of  cementite  and  of  crystal  tablets  of  spiegel- 
iron  have  been  found  to  be  identical.  Investiga- 
tions of  an  orientated  rotating  crystal  of  the  latter 
type  indicate  the  crystal  data  of  cementite.  It 
belongs  to  the  orthorhombic  system,  the  ratio  of 
axes  being  0'670:0'755'.l,  and  the  dimensions  of  its 
elementary  parallelepiped  453,  511,  and  6'77  A.U. 
The  base  group  consists  of  four  molecules  of  Fe3C, 
which  correspond  to  a  specific  gravity  of  7"62  for 
the  cementite. — J.  W.  D. 

Steels;  Delayed  crystallisation  in  the  carbon  — — : 
formation  of  pearlite,  troostite,  and  martensite. 
A.  F.  Hallimond.  Iron  and  Steel  Inst.,  May, 
1922.  [Advance  proof.]  20  pages. 
Aftee  summarising  the  recent  researches  on 
delayed  crystallisation  and  inoculation,  the  origin 
of  pearlite,  troostite,  and  martensite  is  discussed. 
The  area  below  the  eutectoid  point,  common  to  the 
metastable  ranges  for  cementite  and  ferrite,  is 
termed  the  eutectoid  area,  and  indicates  those  con- 
ditions under  which  the  growth  of  pearlite  can 
occur.  If  growth  is  slow,  diffusion  operates  to  a 
considerable  distance  and  the  interspace  is  wide, 
but  if  growth  is  rapid  the  crystals  can  approach 
more  nearly  together  and  the  dendritic  structure 
has  a  finer  grain.  Thus  for  each  condition  of  forma- 
tion there  is  a  characteristic  average  spacing,  which 
is  closer  as  the  rate  of  growth  increases.  Marten- 
site is  regarded  as  a  labile  "  shower  "  of  o-ferrite 
and  troostite  as  a  labile  "  shower  "  of  cementite;  in 
the  latter  case  the  appearance  of  the  cementite  is 
quickly  followed  by  the  growth  of  a-ferrite  due  to 
inoculation  by  the  cementite  at  a  relatively  high 
temperature. — J.  W.  D. 

Steel;   The   stepped  Al   transformation  in  carbon 

during  rapid   cooling.     K.    Honda  and  T. 

Kikuta.  Iron  and  Steel  Inst.,  May,  1922. 
[Advance  proof.]  13  pp. 
A  tbansformation  point  is  not  a  single  tempera- 
ture at  which  transformation  can  occur.  As  the 
velocity  of  heating  or  cooling  decreases  the  tempera- 
ture of  transformation  varies,  the  tendency  to  the 
change  being  small  at  first,  increasing  to  a  maxi- 
mum, and  then  falling  away  by  virtue  of  opposing 
influences,  i.e.,  the  internal  viscosity  of  the  6iib 
stance.  Examples  are  given  on  these  lines  101 
chromium-  and  nickel-steels,  as  the  transformation 
can  be  retarded  in  these  alloys.  The  conclusion  11 
arrived  at  that  the  Ar"l  transformation  is  merel; 
the  retarded  Ar'l  (  =  Arl)  transformation  and  not  1 
separate  phenomenon. — C.  A.  K. 


Vol.  XIX,  No.  ll.]     Cu  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       419  a 


Pearlite   grain   [in  steel];  Inner  structure  of  the 

.    N.  T.  Belaiew.    Iron  and  Steel  Inst.,  May, 

1922.     [Advance  proof.]     27  pp. 

During  the  examination  of  a  number  of  specimens 
of  steel  which  had  been  cooled  very  slowly,  it  was 
noted  that  the  distance  between  adjacent  cementite 
lamella?  showed  considerable  variation,  and  that  the 
coarseness  of  the  pearlite  was  dependent  on  the 
position  of  a  secant  plane.  From  actual  observation 
on  a  projection  of  lamella?  on  this  plane  it  was  found 
that  as  the  angle  of  inclination  («)  of  the  secant 
plane  becomes  smaller,  the  distance  between  lamellae 
will  appear  greater.  It  is  probable  that  the  forma- 
tion of  pearlite  during  the  Arl  transformation  is  due 
to  a  crystallographic  re-arrangement  with  a  certain 
linear  velocity  proceeding  from  nuclei.  New  a-iron 
grains  are  built  up  in  this  way.  The  arrangement 
■  of  cementite  lamella?  in  a  pearlite  grain  is  roughly 
parallel  to  the  crystallographic  plane  of  the  grain. 
The  anglo  of  inclination  (<■>)  may  be  computed  from 
;  the  equation :  Cos  «  =  A,/i»,  in  which  A„  is  the 
i  actual  distance  between  lamella?  on  the  secant 
plane,  (o),  and  Aw  the  distance  on  a  section  inclined 
at  an  angle,  u.  These  can  be  measured  on  photo- 
micrographs, and  it  is  suggested  that  the  value, 
A„,  might  be  taken  as  one  of  the  characteristics  of 
steel  indicating  the  thermal  conditions  during  the 
Arl  transformation.  The  more  uniform  the  heat 
conditions  the  more  constant  will  be  the  value  of 
A,.— C.  A.  K. 

Pearlite    [in    steel];    Formation    of    globular  . 

J.  H.  Whiteley.  Iron  and  Steel  Inst.,  May, 
1922.     [Advance  proof.]     15  pp. 

When    iron    is    heated    complete    solution    of    the 
'.  carbide  constituents  of  pearlite  is  effected  only  after 
I   a  period  depending  on  the  temperature  above  the 
'  Al  point,  and  the  size  of  the  pearlite  grain.     On 
I   cooling,   undissolved    particles   form   nuclei   in   the 
1  solid  solution  at  the  transition  point  and  the  pearl- 
ite formed  is  globular.     The  true  transition  point, 
Ae,  may  be  determined  by  observing  the  tempera- 
ture at  which  the  nuclei  commence  to  grow.     If  no 
I  nuclei  are  present  the  Arl  transformation  does  not 
occur,  even  under  slow  cooling  conditions,  until  the 

!  temperature  has  fallen  below  the  true  solubility 
point  Ae,  and  it  would  seem  that  lamellar  pearlite 
will  not  grow  until  a  certain  degree  of  supersatura- 
tion  is  reached.  The  presence  of  globular  pearlite 
induces  an  earlier  growth  of  lamellar  pearlite  in 
adjacent  areas  free  from  nuclei.  The  exclusive 
formation  of  lamellar  pearlite  indicates  the  entire 
absence  of  carbide  nuclei  from  the  solid  solution. 

— C.  A.  K. 

Austenite;  Heat  of  transformation  of to  mar- 

tensite  and  of  martensite  to  pearlite.  N.  Yamada. 
Iron  and  Steel  Inst.,  May,  1922.  [Advance 
proof.]     19  pages. 

The  heat  of  dissolution  of  carbon  in  iron  was 
measured  for  six  kinds  of  carbon  steels  (0'38 — 1"74% 
C),  by  means  of  a  calorimeter  devised  for  measur- 
ing the  heat  evolution  or  absorption  at  tempera- 
tures in  the  vicinity  of  400°  C.  The  heat  of  dissolu- 
tion increases  linearly  with  the  carbon  content  of 
the  steels  and  amounts  to  1130  cals.  per  g.  of  carbon. 
The  sum  of  the  heats  of  transformation  A3,  A2,  and 
of  iaustenite->martensite  was  also  measured  for  the 
6ix  steels  by  the  usual  method  of  mixture  and  from 
the  results  obtained  combined  with  the  results  of 
previous  experiments  the  heat  of  the  allotropic 
transformation  austenite+martensite  was  obtained. 
This  increases  linearly  with  the  carbon,  and 
amounts  to  56  cals.  per  g.  for  eutectoid  steel.  The 
specific  heats  of  troostite,  sorbite,  and  pearlite  have 
the  same  value  within  the  limits  of  experimental 
error.  The  results  of  the  present  investigations 
confirm  the  correctness  of  the  theory  that  the  Al 


transformation  in  carbon  steel  is  a  compound 
transformation,  that  is  austenite  ^martensite  7* 
pearlite.  (C/.  J.,  1919,  821  a.)— J.  W.  D. 

Steels;   Hydrogen  decarburisation  of  carbon  

and  related  phenomena.  C.  R.  Austin.  Iron  and 
Steel  Inst.,  May,  1922.  [Advance  proof.]  50 
pages. 

Experiments  were  made  with  three  plain  carbon 
steels,  containing  respectively  0'40,  0'99,  and  T27% 
C.  With  a  constant  time  factor  the  maximum 
range  of  any  partial  decarburisation  or,  conversely, 
the  depth  from  the  surface  at  which  no  diminution  in 
carbon  content  is  microstructurally  visible,  depends 
on  the  temperature  and  on  the  original  percentage 
of  carbon  in  the  steel.  At  constant  temperature, 
after  an  initial  period,  the  rate  of  removal  of  oarbon 
measured  radially  from  the  edge  is  a  linear  function 
of  the  time.  Study  of  the  crystal  grain  structure 
of  the  carbon-free  periphery  indicates  that  the 
initial  carbon  content  of  the  steel  affects  the  con- 
figuration of  the  crystal  grains  comprising  the 
decarburised  material  when  decarburisation  is 
effected  at  a  subeutectoid  temperature.  The  effect 
of  temperature  on  the  rate  of  diffusion  of  carbon  or 
iron  carbide  in  iron,  using  a  partially  decarburised 
hypereutectoid  steel,  and  decarburisation  with  a 
temperature  gradient  maintained  along  a  steel 
specimen  were  also  investigated  and  decarburisa- 
tion by  pure  dry  hydrogen  was  compared  with 
decarburisation  by  the  moist  commercial  gas.  The 
specific  diffusion  rate  of  carbon  in  iron,  i.e.,  the 
amount  of  carbon  which  will  diffuse  across  unit  area 
under  a  concentration  gradient  of  unity  in  unit 
time,  is  calculated  to  be  0'005  at  650°  C.  and  0'05  at 
850°  C— J.  W.  D. 

Steel;  Influence  of  dissolved  oxides  on  the  carburis- 

ing  and  hardening  qualities  of .    E.  W.  Ehn. 

Iron  and  Steel  Inst.,  May,  1922.  [Advance 
proof.]    34  pp. 

The  lack  of  uniformity  in  hardening  carburised 
steel  parts  is  due  in  many  instances  to  the  presence 
of  dissolved  oxides  in  the  steel  which  is  the  result 
of  imperfect  deoxidation  of  the  molten  metal  (c/. 
J.,  1922,  330  a).  The  present  paper  contains  experi- 
mental evidence  of  this  in  the  case  of  ordinary  mild 
steels.  Before  carburising  a  large  batch  a  test 
sample  should  be  case-hardened  and  examined 
microscopically  for  uniformity  of  structure.  A 
sensitive  test  of  the  degree  of  deoxidation  is 
obtained  by  carburising  high-carbon  steel  so  as  to 
obtain  a  carbon  content  of  1T%  or  more. — C.  A.  K. 

Steel;  Protection  against  the  cementation  of  

by  a  direct  application  of  a  paint  coating.  J. 
Galibourg  and  M.  Ballay.  Rev.  Met.,  1922,  19, 
222—226. 
Paints  containing  copper  powder  were  tried  as  an 
impervious  coating  during  the  carburising  of  steel. 
A  paint  basis  composed  of  resin  and  oil  of  turpen- 
tine was  easily  detached  and  did  not  give  sufficient 
protection.  Sodium  silicate  proved  impervious  but 
was  not  easily  removed  from  the  metal  after  treat- 
ment. The  most  successful  paint  was  a  mixture  of 
2  pts.  of  copper,  1  pt.  of  emery,  and  sufficient 
sodium  silicate  to  give  a  paint  of  suitable  consist- 
ence. Powdered  aluminium  was  not  an  efficient 
substitute  for  copper. — C.  A.  K. 

Iron;  Effect  of  oxidising  gases  at  low  pressures  on 

heated  ■ .     H.    C.   H.   Carpenter   and   C.    F. 

Elam.  Iron  and  Steel  Inst.,  May,  1922. 
[Advance  proof.]  7  pages. 
When  Armco,  electrolytic,  and  Swedish  iron  samples 
are  heated  from  below  900°  C.  to  above  1000°  C.  in 
an  evacuated  quartz  tube  and  slightly  oxidised,  no 
characteristic  crystallographic  features  are  pro- 
duced on  the  surface  of  the  metal.     If  copper  con- 


420  a       Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.         [June  15, 1922. 


taining  the  gases  which  are  ordinarily  present  in 
it,  be  introduced  into  the  tube  with  the  iron,  a 
reaction  sets  in  resulting  in  the  gradual  production 
and  development  of  characteristic  facets  on  the 
surface  of  the  iron.  These  are  due  to  the  produc- 
tion of  magnetic  oxide  (Fe3Oa)  which  subsequently 
changes  to  ferric  oxide  without  change  of  form. 
The  oxide  of  iron  originally  produced  is  isomorph- 
ous  with  o-iron,  and  the  orientation  of  the  oxide 
produced  on  any  given  crystal  of  iron  is  determined 
by  the  orientation  of  the  a-iron  itself.  Once  pro- 
duced the  form  of  the  oxide  is  uninfluenced  by 
heating  the  iron  to  a  temperature  at  which  y-iron 
is  formed.  The  principal  agent  in  the  production 
of  the  facets  of  oxide  is  the  mixture  of  gases  evolved 
by  the  copper  on  heating. — J.  W.  D. 

Vanadium   in   steel;    Determination    of   .      G. 

Misson.       Bull.     Soc.     Chim.     Belg.,     1922,     31, 
123—126. 

One  grm.  of  steel  is  dissolved  in  20  c.c.  of  nitric 
acid  (sp.  gr.  T20),  complete  solution  being  effected 
by  gentle  heating,  10  c.c.  of  potassium  permangan- 
ate solution  (8  g.  per  litre)  is  added  and  the  solution 
boiled  to  destroy  organic  matter.  Any  precipitated 
manganese  oxide  is  re-dissolved  by  addition  of  10 
c.c.  of  a  solution  of  6odium  peroxide  in  dilute  nitric 
acid  (40  g.  in  a  mixture  of  100  c.c.  of  acid  with 
900  c.c.  of  water)  and  subsequent  boiling.  The  solu- 
tion thus  obtained  is  colourless  on  cooling  if  the 
reagents  are  quite  free  from  chlorine.  A  further 
5  c.c.  of  the  sodium  peroxide  solution  is  added,  the 
whole  diluted  to  80  c.c,  and  the  vanadium  esti- 
mated colorimetrically.  It  is  claimed  that  the 
method  is  accurate  to  0"02%  V.  In  the  case  of 
steel  which  contains  tungsten,  chromium,  etc.,  a 
modification  of  the  method  is  necessary.  The  com- 
position of  the  steel  and  its  chromium  and  nickel 
content  must  have  been  previously  determined. 

— H.  J.  E. 

Ferronickel;  Strength  of at  low  temperatures. 

P.  Chevenard.     Rev.  Met.,  1922,  19,  209—214. 

Experiments  were  directed  to  alloys  which  retain 
a  considerable  strength  at  low  temperatures  and 
which  would  be  suitable  for  use  in  the  construction 
of  liquid  air  machines.  Iron  or  any  alloy  rich  in 
iron  became  brittle  below  -100°  C.  Nickel  or 
ferronickel  containing  more  than  40%  Ni  remained 
ductile  at  low  temperatures,  an  alloy  containing 
about  60%  Ni  possessing  tne  greatest  strength. 
Ferronickel  containing  carbon  as  austenite  became 
brittle  at  -79°  to  -190°  C.  in  direct  proportion  to 
the  content  of  iron,  and  the  presence  of  manganese 
stabilised  the  austenite  condition.  The  selection  of 
a  ferronickel  suitable  for  low-temperature  machines 
is  dependent  on  mechanical  considerations  and 
an  alloy  for  this  purpose,  known  commercially 
as  AMF.  alloy,  contains  55—60%  Ni,  1—3%  Mil, 
0-2 — 04%  C.  It  is  resistant  to  oxidation  and  after 
a  suitable  heat  treatment  the  mechanical  properties 
at  the  temperature  of  liquid  air  are: — Elastic  limit 
40  kg.  per  sq.  mm.,  breaking  strain  80  kg.  per  sq. 
mm.,  elongation  40%,  reduction  in  area,  55%. 
(Cf.  J.,  1922,  220  a.)— C.  A.  K. 

Copper  refining  electrolytes;  Conductivity  of . 

E.   F.   Kern  and  M.    Y.   Chang.     Trans.   Amer. 

Electrochem.    Soc.,    1922,    125—142.      [Advance 

copy.] 
From  the  results  obtained  by  determining  the  con- 
ductivity of  solutions  of  sulphuric  acid,  copper  sul- 
phate, and  mixtures  of  these  in  water  at  25°  C, 
40°  C,  and  55°  C,  it  is  shown  that  copper  sulphate 
solutions  are  poor  conductors  and  sulphuric  acid 
solutions  good  conductors  of  electricity,  so  that  the 
addition  of  increasing  amounts  of  sulphuric  acid 
to  copper  electrolytes  greatly  increases  their  con- 


ductivity, especially  if  the  temperature  is  also 
raised.  The  addition  of  copper  sulphate  to  sulph- 
uric acid  solutions  containing  less  than  2  5%  of  free 
acid  increases  the  conductivity  to  an  extent  depend- 
ing on  the  temperature;  in  solutions  containing 
2'5%  of  free  acid  copper  sulphate  has  no  effect, 
while  it  reduces  the  conductivity  of  solutions  con- 
taining more  acid.  The  presence  of  arsenic  slightly, 
and  that  of  iron  and  nickel  greatly,  reduces  the 
conductivity  of  copper  electrolytes  and  increase  of 
temperature  only  slightly  counteracts  this.  The 
authors  recommend  that  the  copper  content  of 
refining  electrolytes  should  be  30 — 35  g.  per  1.,  the 
sulphuric  acid  content  as  high  as  economy  permits 
up  to  175  g.  per  1.,  and  the  temperature  as  high  as 
is  convenient  up  to  55°  C,  while  the  iron  and 
nickel  content  should  be  kept  as  low  as  possible. 

—A.  R.  P. 

Cast  bronze;  Analysis  of  .     G.  E.  F.  Lundell 

and  J.  A.  Scherrer.     J.  Ind.  Eng.  Chem.,  1922, 
14,  426—429. 

For  the  determination  of  tin  and  antimony  3  g.  of 
the  6ample  is  dissolved  in  50  c.c.  of  nitric  acid  (1:1), 
the  solution  is  boiled  to  expel  oxides  of  nitrogen, 
diluted  with  150  c.c.  of  hot  water,  and  digested  for 
3 — 4  hrs.  on  a  steam-bath,  then  filtered  while  still 
boiling.     The  filtrate  is  neutralised  with  ammonia 
and  poured  into  an  excess  of  ammonium  sulphide, 
the  precipitate  is  filtered  off  after  1  hr.,  washed, 
and  rejected,  and  the  filtrate  treated  with  hydro- 
chloric acid  to  recover  the  small  amounts  of  anti- 
mony and  tin.    This  precipitate  is  united  with  that 
obtained  from  the  nitric  acid  treatment  of  the  alloy, 
and  both  are  heated  with  25  c.c.  of  strong  nitric 
acid,  5  g.  of  ammonium  persulphate,  and  15  c.c.  of 
strong  sulphuric  acid  until  the  latter  fumes  strongly 
and  the  solution  is  colourless.     After  cooling,  the 
acid  is  diluted  with  40  c.c.  of  water,  boiled  for  a 
short  time,  a  further  200  c.c.  of  water  and  20  c.c. 
of  strong  hydrochloric  acid  added,  and  the  solution 
cooled  to  10°  C.  and  titrated  with  permanganate  for 
antimony.     The  titrated  solution  is  poured  into  an 
Erlenmeyer   flask  together   with  80  c.c.   of  hydro- 
chloric acid  and  the  tin  is  then  reduced  to  the  stann- 
ous state  by   boiling   for  40   min.    with  lead  in  a 
current  of  carbon  dioxide.  The  solution  is  cooled  and 
titrated  for  tin  with  iodine  in  the  usual  manner. 
A   second    portion   of    5   g.    is    dissolved    in   nitric 
acid   and   the  solution   treated   as  described  above 
except  that  'the  precipitated  metastannic  and  anti- 
monic  acids  are  dissolved  in  sulphuric  acid  and  the 
solution  treated  in  succession  with  10  g.  of  tartaric 
acid,  caustic   potash  until   alkaline,   and  hydrogen 
sulphide,  and  the  precipitate  is  dissolved  in  nitric 
acid  and  added  to  the  main  filtrate  which  then  con- 
tains  all   the  copper,   zinc,   iron,    aluminium,   and 
nickel.     The  solution  is  neutralised  with  ammonia, 
treated  with  1  c.c.  of  strong  nitric  acid  per  100  c.c. 
and  electrolysed  with  a  platinum  gauze  cathode  and 
a  sand-blasted  platinum  gauze  anode,  whereby  the 
copper  is  deposited  on  the  cathode  and  the  lead, 
as  peroxide,  on  the  anode.     The  filtrate  is  evapor- 
ated with  sulphuric   acid  to  expel  completely  the 
nitric  acid,   diluted,   and   the   acidity   adjusted  to 
2V/100;    the    zinc    is   then    precipitated    from   this 
solution  by  means  of  hydrogen  sulphide,   and  the 
precipitate  is  ignited  to,  and  weighed  as  zinc  oxide. 
It  should  be  heated  above  850°  C.  to  decompose  any 
sulphate  but  not  above  900°  C.  or  zinc  may  be  lost. 
The  filtrate  from  the  zinc  is  oxidised,  the  iron  pre- 
cipitated three  times  with  ammonia  and  ammonium 
chloride,  and  the  combined  filtrates  from  the  iron 
treated  for  nickel  by  the  dimethylglyoxime  method 
as    usual.       Numerous    precautions    necessary    for 
obtaining   exact    results    and    alternative    methods 
applicable   when   one  or   other   of   the   above-men- 
tioned constituents  is  absent  or  replaced  by  other 
metals  are  described  in  detail. — A.  R.  P- 


Vol.  XLI..  No.  li]    Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       421  a 


Metals  and  alloys;  Density  determinations  of 

at  high  temperatures.  Investigations  of  the 
systems  copper-tin  and  copper-aluminium.  K. 
Bornemann  and  F.  Sauerwald.  Metall  u.  Erz, 
1922,  14,  145—159. 

The  density  of  copper,  tin,  and  aluminium,  and  of 
copper-tin  and  copper-aluminium  allovs  at  tempera- 
tures between  600°  C.  and  1200°  C.  was  determined 
by  weighing  the  metal  in  air  and  suspended  in  a, 
bath  of  fused  salt  (an  equimolecular  mixture  of 
sodium  and  potassium  chlorides,  m.p.  660°  C.)  the 
density  and  coefficient  of  expansion  of  which  were 
first  determined.  The  results  show  that  in  melting 
copper  expands  4'2%  and  aluminium  6'7%  of  the 
volume  of  the  solid  metal  at  the  melting  point.  In 
the  copper-tin  series  the  temperature  coefficient  of 
the  liquid  alloys  remains  constant  from  the  tin  end 
of  the  series  up  to  the  alloy  containing  62%  Cu, 
corresponding  to  Cu3Sn,  and  then  rises  linearly  to 
that  of  copper,  while  in  the  copper-aluminium  series 
it  falls  uniformly  from  that  of  aluminium  to  a 
minimum  at  a  composition  midway  between  that 
corresponding  to  Cu2Al  and  Cu3Al,  then  rises  to 
that  of  copper.  Tables  are  given  showing  the 
specific  volume  and  relative  density  of  the  two 
series  between  20°  and  1200°  C,  the  specific  volume 
immediately  before  the  beginning  of,  and  just  after 
complete  liquefaction,  and  the  contraction  that 
takes  place  between  1200°  C.  and  the  commence- 
ment of  freezing,  between  1200°  C.  and  20°  C,  and 
during  the  freezing  of  various  alloys  in  each  series. 

—A.  R.  P. 

Zinc   plating    solutions;    "Throwing    power"    and 

current  efficiency  of  .     W.  G.  Horsch  and  T. 

Fuwa.     Trans.    Amer.   Electrochem.   Soc.,    1922, 
211 — 231.     [Advance  copy.] 

Tests  made  to  determine  the  throwing  power 
(i.e.,  the  capacity  of  giving  firmly  adherent 
and  reasonably  smooth  deposits  uniformly  dis- 
tributed even  on  objects  of  irregular  contour) 
of  zinc  plating  solutions  in  which  the  zinc 
was  present  as  the  sulphate,  the  double  ammo- 
nium sulphate,  sodium  zineate,  zinc  fluoborate, 
and  sodium  zinc  cyanide  showed  that  a  modification 
of  the  last-named  solution  was  the  only  one  that 
had  a  throwing  power  of  any  commercial  value. 
This  solution  contained  53'2  g.  of  sodium  cyanide, 
59'2  g.  of  zinc  cyanide,  438  g.  of  sodium  hydroxide, 
9'5  g.  of  sodium  carbonate,  4'7  g.  of  aluminium 
sulphate,  and  1T8  g.  of  "  lignol  "  dissolved  in  1 
litre  of  water.  In  order  to  keep  the  bath  of  con- 
stant composition  for  regular  use  it  was  found 
necessary  to  reduce  the  anode  efficiency  by  employ- 
ing a  composite  anode,  having  30%  of  its  surface 
composed  of  duriron.  The  best  results  were  obtained 
with  a  current  density  of  2  amps,  per  sq.  dm.,  a 
temperature  of  40°  C,  and  moderate  agitation  of 
the  electrolyte.— A.  R.  P. 

Zinc;  Hydrogen  overvoltage  and  current  density  in 

the    elect.rodeposition   of   - .     U.    C.    Tainton. 

Trans.  Amer.  Electrochem.  Soc,  1922,  189—210. 
[Advance  copy.] 

The   production   of   good   zinc   deposits   from  com- 
mercial   sulphate    solutions    is    only    effected    with 
high  current  densities,   e.g.,  100  amp.  per  sq.  ft., 
,    whereby  a  high  hydrogen  overvoltage  is  obtained  60 

(that  it  exceeds  the  zinc  potential  for  all  the  common 
impurities  in  commercial  solutions.  When  the  zinc 
deposit  contains  impurities  the  overvoltage  is  very 
high  as  long  as  the  surface  is  clean  and  growing, 
but  as  soon  as  it  begins  to  be  corroded  the  overvolt- 
age falls  so  that  once  corrosion  begins  it  tends  con- 
tinually to  spread.  The  chief  function  of  colloidal 
I  matter  such  as  glue  or  gelatin  is  to  raise  the  over- 
voltage of  hydrogen ;  at  the  same  time  it  reduces 
the  angle  of  contact  of  the  hydrogen  bubbles  and 
they,  therefore,  become  more  readily  detached,  and 


also  tends  to  restrain  the  development  of  a  crystal- 
line structure  in  the  deposit  and  so  keeps  it  smooth. 
The  optimum  acidity  of  the  electrolyte  is  about 
250—300  g.  of  sulphuric  acid  per  1. — A.  R.  P. 

Lead;   Electro-deposition    of   from   Mathers' 

perchlorate  bath.  Structure  of  the  deposit. 
W.  E.  Hughes.  J.  Phys.  Chem.,  1922,  26, 
316—323. 

Lead  deposited  from  Mathers'  perchlorate  bath 
(U.S. P.  931,944  of  1909;  J.,  1909,  990)  on  etching 
presents  a  worn  cindery  dull  surface  which  is  light 
grey  in  colour  without  crystalline  structure.  Micro- 
scopically it  is  seen  to  consist  of  irregular  cells  with 
lustrous,  slightly  yellow  walls.  The  interior  of  each 
cell  is  made  up  of  a  mosaic  of  bright  and  dark 
particles.  The  deposited  lead  contains  peptone 
from  the  electrolytic  bath. — J.  F.  S. 

Electro-deposited    metal;    Idiomorphic    and    hyp- 

idiomorphic  structures  in  .     W.  E.  Hughes. 

Trans.  Amer.  Electrochem.  Soc,  1922,  35 — 48. 
[Advance  copy.] 

The  author  has  studied  the  structure  of  copper 
deposited  from  a  solution  of  copper  sulphate  in 
dilute  perchloric  acid,  of  zinc  from  a  neutral  sulph- 
ate bath,  and  of  iron  from  an  electrolyte  containing 
ferrous  and  calcium  chlorides,  and  shows  that  there 
is  a  definite  connexion  between  the  macroscopic 
aspect  of  the  deposit  and  its  internal  structure  in 
each  case  and  that  the  nature  of  the  deposit  is 
determined  by  the  conditions  obtaining  when  it  was 
formed,  while  a  particular  kind  of  structure  may 
appear  in  different  metals  as  the  result  of  similar 
conditions  of  deposition.  The  formation  of  idio- 
morphic structures  in  the  case  of  each  of  the  above 
three  metals  takes  place  when  the  concentration  of 
the  available  metal  ions  in  the  neighbourhood  of 
the  cathode  is*,  low,  such  as  very  rapidly  arises  when 
a  high  current  density  is  employed.  Photomicro- 
graphs are  6hown  in  which  the  idiomorphic  and 
hyp-idiomorphic  structure  of  deposits  of  these 
metals  are  clearly  visible.— A.  R.  P. 

Corrosion  by  electrolyte  concentration  cells.     R.  J. 

McKay.     Trans.  Amer.  Electrochem.  Soc,  1922, 

178 — 187.  [Advance  copy.] 
The  tie-rods  of  pickling  tanks  are  usually  made  of 
an  acid-resisting  metal,  such  as  monel  metal. 
Although  the  rods  are  embedded  in  wood  for  the 
greater  part,  some  small  portions  are  exposed  to  the 
action  of  the  pickling  acid  which  creeps  along  their 
length  and  becomes  more  and  more  concentrated 
in  copper,  whereas  the  acid  at  the  point  of  contact 
with  the  main  bath  is  relatively  low  in  copper.  This 
sets  up  an  electrolytic  cell,  the  E.M.F.  of  which  is 
directly  proportional  to  the  logarithm  of  the  ionic 
concentration  ratio  of  copper  in  the  concentrated 
and  dilute  solution,  and  the  anode,  being  the  metal 
in  contact  with  trie  weakest  solution,  is  rapidly 
corroded  at  a  rate  depending  on  the  E.M.F.  of  the 
cell.  Similar  results  may  be  obtained  if  the  acid 
liquor  is  more  violently  agitated  at  one  part  of  the 
tank  than  at  the  other,  the  metal  in  contact  with 
the  more  violently  agitated  liquid  becoming  the 
anode.  Saturation  of  the  bath  with  air  has  also  a 
great  effect  on  the  rate  of  corrosion,  air-free  sulph- 
uric acid  at  82°  C.  dissolving  135 — 150  mg.  per  sq. 
dm.  of  monel  metal  per  day,  while  acid  saturated 
with  air  dissolved  700  mg.  per  sq.  dm.  in  the  same 
time.— A.  R.  P. 

Failure   of   cast   and    high-silicon  iron   in  fuming 
sulphuric  acid.    Banigan.     See  VII. 

Potash   recovery    from    blast    furnaces.      Ross   and 
Merz.    See  VII. 

Detecting  gold  and  silver.    Braly.    See  XXIII. 

Osmium.    Hirsch.    See  XXIII. 


422  A  Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [June  15, 1922. 


Patents. 

Electrolytic   iron;   Art    of   making   .      F.    A. 

Euetis,  C.  R.  Hayward,  H.  M.  Schleicher,  and  D. 
Belcher,  Assrs.  to  P.  A.  Eustis  and  C.  P.  Perin. 
U.S.P.  1,412,174,  11.4.22.    Appl.,  1.12.20. 

A  solution  containing  ferrous  and  ferric  salts  is 
neutralised  with  limestone  and  electrolysed  under 
such  conditions  that  the  iron  deposited  on  the 
cathode  is  unacted  upon  by  the  ferric  salts  in  solu- 
tion.—A.  R.  P. 

Dynamo  iron;  Process  for  the  manufacture  of . 

Deutsch-Luxemburgische  Bergwerks-  und  Hiit- 
ten-A.-G.,  and  A.  Schneider.  G.P.  349,970, 
25.9.20. 

The  charge  of  a  Thomas  converter  is  blown  until 
it  contains  only  traces  of  C,  Si,  Mn,  P,  and  S,  the 
phosphate  slag  is  run  off  as  quickly  as  possible,  the 
remainder  of  the  melt  cooled  somewhat  and  run  out 
into  the  ladle  with  addition  of  a  mixture  of  carbon, 
aluminium,  and  powdered  calcium  hydroxide.  The 
aluminium  burns,  removing  oxygen  and  raising  the 
-temperature,  while  the  lime  removes  sulphur.  The 
necessary  silicon  content  is  obtained  by  addition  of 
ferrosilioon.  A  20-ton  charge  can  be  worked  in  40 
minutes,  or  more  expeditiously  than  in  the  electric 
furnace. — C.  I. 

Sulphide    and   oxidised   ores;   Treatment   of  

H.  J.  E.  Hamilton.  E.P.  152,289,  8.10.20.  Conv.,' 
8.10.19. 

The  ore  is  subjected  to  a  selective  chloridising  roast 
at  a  temperature  below  or  approximating  to  400° 
C.  in  an  open  furnace  to  which  air  has  free  access, 
then  leached  with  a  hot  or  boiling  solution  of  a 
chloride  (or  chlorides)  of  an  alkali  metal,  such  as 
sodium  chloride.  The  lead-silver  values  contained 
in  the  solution,  while  this  is  still  hot  or  boiling,  are 
deposited  in  the  form  of  lead-silver  bullion  on  sheets 
of  galvanised  iron,  aluminium,  zinc,  or  other  suit- 
able metal. — J.  W.  D. 

Metallic  constituents ;  Process  of  recovering  

from  a  mixture  thereof.  H.  B.  Bishop,  Assee  of 
G.  W.  Mullen.  E.P.  157,984,  12.1.21.  Conv., 
14.1.20. 

A  mixture  containing  tin  in  addition  to  other 
metallic  constituents  is  reduced  with  a  bisulphate, 
e.g.,  nitre-cake,  and  a  reducing  agent,  with  the  pro- 
duction of  sulphides  of  the  metal  constituents,  the 
product  is  digested  with  water  and  the  soluble  and 
insoluble  sulphides  thus  separated.  The  soluble 
sulphides  are  either  converted  into  oxides  and  the 
metals  recovered  from  the  latter  by  smelting,  or  an 
electric  current  is  passed  through  the  solution  con- 
taining the  soluble  sulphides,  whereby  antimony, 
for  example,  is  deposited,  and  from  the  remaining 
solution  tin  sulphide  is  precipitated  and  converted 
successively  into  oxide  and  metal. — J.  W.  D. 

Minerals;  [Agent  for  the]  flotation  of .    D.  W. 

Patterson     and     H.     L.     Woolfenden.       U.S  P 
1,412,215,  11.4.22.    Appl.,  9.11.20. 

The  flotation  agent  consists  of  a  small  amount  of 
the  gummy  frothing  material  that  occurs  in  "  black 
liquor." — A.  R.  P. 

Zinc  dust;  Process  and  apparatus  for  treating . 

P.  P.  Lannon,  jun.,  Assr.  to  American  Smelting 
and  Refining  Co.  U.S.P.  1,412,621,  11.4.22 
Appl.,  30.9.20. 
Molten  zinc-bearing  material  is  charged  into  a 
retort  which  is  heated  so  as  to  vaporise  the  zinc. 
Zinc  vapour  is  separated  from  any  liquid  zinc  which 
is  produced  and  is  condensed  in  a  chamber  separate 
trom  the  retort  in  the  form  of  a  fine  powder  which 
acts  as  a  seal  between  the  retort  and  the  outer 
atmosphere. — C.  A.  K. 


Carbonising   compounds;  Process   of  making  

J.    Parrell.     U.S.P.    1,374,642,    12.4.21.     Appl  j 
5.5.20.  ' 

A  material  for  use  in  case-hardening  iron  and  steel 
is  prepared  by  drying  charcoal  or  the  like  with  the 
aid  of  heat  and  a  vacuum  and  then  impregnating  it 
with  an  energising  substance  (lime,  sodium  carbon- 
ate, barium  carbonate,  etc.)  under  a  steam  pressure 
of  50—150  lb.  at  100°— 300°  F.  (about  40°— 150°  C). 

Aluminium  alloy.  F.  C.  Frary,  Assr.  to  Alumin- 
ium Co.  of  America.  U.S.P.  1,412,280,  11.4.22 
Appl.,  29.3.20. 

An  alloy  containing  aluminium,  copper,  magnes- 
ium, and  a  relatively  small  quantity  of  calcium 

— C.  A.  K. 

Zinc  reduction  furnace  with  interchangeable 
muffles.  R.  von  Zelewski.  G.P.  347,746,  27.4  16 
Addn.  to  314,771  (cf.  U.S.P.  1,250,071;  J.,  1918^ 
95  a). 

The  burners  are  arranged  in  the  upper  part  of  one 
muffle  and  the  gases  of  combustion  pass  around  this, 
leave  by  a  flue  near  the  bottom  and  enter  a  second 
muffle  travelling  upwards.  After  a  certain  time  the 
gas  and  air  are  reversed,  so  that  the  current  travels 
in  the  opposite  direction. — C.  I. 

Tin;  Process  of  extracting from  tin-plate  chips. 

C.  Clerc,  Assr.  to  A.  Nihoul.     U.S.P.  1,413,555, 

18.4.22.     Appl.,  26.1.22. 
Tin  scrap  is  treated  with  stannic  chloride  under 
reduced   pressure,   whereby  the    reaction    is   facili- 
tated.    The  tin  is  recovered  from  the  resulting  solu- 
tion by  precipitation  with  a  metal. — D.  F.  T. 

Boasting  furnace;  Shelf  .     W.  Strzoda.     G.P 

343,848,  27.11.20.  Addn.  to  339,506  (J.,  1921, 
739  a). 
The  shelf  plates  are  replaced  by  hollow  bars  of 
rhombic  cross-section  the  inclined  side  walls  of 
which  leave  open  passages  between  them,  down 
which  the  material  is  forced  on  to  the  next  shelf 
below.  This  arrangement  prevents  the  material 
reaching  the  bottom  too  rapidly  and  any  unequal 
distribution  which  would  cause  an  irregular 
draught. — C.  I. 

Ores  and  the  like ;  Method  of  treating .      Moa 

Iron  and  Development  Corp.,  Assees.  of  C.  R. 
Hayward,  H.  M.  Schleicher,  and  F.  O.  Stillman. 
E.P.  155,246,  30.11.20.  Conv.,  8.12.19. 
See  U.S.P.  1,370,646  of  1921;  J.,  1921,  308*. 
Calcium  chloride,  barium  chloride,  or  the  like  is 
used  to  convert  the  sulphates  into  chlorides,  and 
after  removing  the  precipitated  calcium  or  barium 
sulphate,  the  trivalent  metals  present  in  the  solu- 
tion are  precipitated  as  hydroxides  by  a  reagent, 
e.g.,  limestone,  which  does  not  precipitate  the 
divalent  metals. 

Steel  castings;  Process  of  making  .     H.  Hane- 

mann.     E.P.  157,224,  8.1.21.     Conv.,  22.12.19. 
See  G.P.  325,571  of  1919;  J.,  1920,   787a.    Man- 
ganese-steel containing  4 — 8%   Mn  and  0'9%  C  is 
used. 

Iron  or   steel;   Process   of   manufacturing  refined 

directly  from  oxidised  titanic  iron.     J.  J. 

Loke.     E.P.  157,705,  10.1.21.     Conv.,  20.3.19. 

See  G.P.  338,662  of  1919;  J.,  1921,  702  a. 

Tin;  Purification  of  .     Winning  of  tin.     J.  J. 

Collins.      U.S.P.    1,414,257-9,    25.4.22.      Appl., 

1.11.20,  1.11.20,  and  6.4.21. 
See  E.P.  159,659,   159,071,  and  166,695;  J.,  1921, 
307  a,  265  a,  and  663  a. 

Sulphur  from  slag.     G.P.  350,576.     See  VII. 

Coating  metal  articles.     G.P.  347,956.    See  VIII. 


Vol.  XLI.,  No.  11.]      Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


423  a 


XL— ELECTRO-CHEMISTRY. 

Storage    batteries;  Effect   of  impurities   on  . 

H.  C.  Gillette.     Trans.  Amer.  Electrochem.  Soc., 
1922,  55—62.     [Advance  copy.] 

An  investigation  of  the  effect  of  salts  of  antimony, 
arsenic,  cadmium,  iron,  magnesium,  manganese, 
mercury,  nickel,  platinum,  tin,  silver,  and  zinc, 
and  acetic,  hydrochloric,  and  nitric  acids  upon  the 
output,  voltage  characteristics  on  charge  and  dis- 
charge, rate  of  self  discharge  on  standing,  and  the 
life  of  the  active  material  of  lead  storage  batteries. 
Manganese  and  platinum  were  the  only  metals 
which  produced  much  injury  when  present  in 
minute  quantities.  None  of  the  other  impurities 
tested  had  a  lasting  effect  upon  the  cell  voltages  or 
on  the  capacity  of  the  charged  battery.  In  various 
amounts,  certain  of  the  impurities  were  found  to 
increase  the  rate  of  self-discharge  of  the  battery,  or 
to  decrease  the  life  of  the  plates.  Zinc,  nickel,  and 
tin,  present  to  the  extent  of  0'05 — 0'5%  by 
weight  of  the  electrolyte,  were  not  detrimental  to 
any  of  the  electrical  characteristics.  It  is  con- 
cluded that  most  of  the  common  metals  and  acids 
may  be  present  in  appreciable  quantities  in  storage 
batteries  without  causing  serious  injury. 

—J.  S.  G.  T. 

Hydrogen  and  oxygen;  Electrolytic  generation  of 

,  with  special  reference  to  the  utilisation  of 

off-peak    power.     W.    G.    Allan.     Trans.    Amer. 
Electrochem.     Soc.,     1922,     89—123.       [Advance 
copy.] 
'Curves  are  given  indicating  the  costs  of  production 
■  of  hydrogen  and  oxygen  for  widely  varying  con- 
ditions as   to   cost   of    electrical   energy,    rates  of 
.depreciation,  and  current  density  employed  in  the 
electrolysis.     The  utilisation  of  "  off-peak  "  power 
for  the    electrolytic    production    of    hydrogen    and 
, oxygen  in  large  quantities  is  advocated.  A  new  type 
of  cell  adapted  to  operate  under  conditions  of  elec- 
trode current  density  ranging  from  0'5  to  4  amps, 
'per  sq.  in.,  without  too  great  a  decrease  of  energy 
efficiency  is  described,  and  tables  of  comparisons  of 
|the  chief  characteristics  of  this  cell  with  those  of 
3ther  types  are  given.     By  the  use  of  high  current 
'densities  in  the  new  type  of  cell,  during  "  off-peak  " 
periods,  manv  processes  may  become  feasible  com- 
mercially.    The  present  and  future  possible  uses  of 
jche  two  gases  are  given. — J.  S.  G.  T. 

i-Aminophenol.     Brown  and  Warner.     See  III. 

Lead  ursenate.     Tartar  and  Grant.     See  VII. 

Slectrovolumetric  determination  of  lead.   Maclnnes 
and  Townsend.     See  XXIII. 

Patents. 

Electric]  cells;  Beagent  [crude  copper  sulphate]  for 

liquid-battery .     D.  L.  Humphrey  and  C.  L. 

Pittman.  U.S. P.  1,375,513,  19.4.21.  Appl., 
24.4.17. 

St  digesting  copper  ore  with  hot  dilute  sulphuric 
cid  and  then  allowing  the  mixture  to  crystallise,  a 
roduct  is  obtained  composed  of  copper  sulphate 
ontaining  iron  and  mixed  with  calcareous  and 
arthy  granules,  which  product  is  largely  but  not 
ompletely  soluble  in  water  and  forms  an  effective 
nbstitute  for  pure  copper  sulphate  in  battery  cells. 

■lectric  furnace.  O.  A.  Colby,  Assr.  to  Westing- 
house  Electric  and  Manufacturing  Co.  U.S. P. 
(a)  1,412,511  and  (b)  1,412,512,  11.4.22.  Appl., 
(a)  31.3.  and  23.4.20. 

>)  A  crucible  is  disposed  within  a  refractory 
ising,  and  a  resistor  composed  of  solid  blocks  of 
factory,  electrically  conducting  material  is 
laced  adjacent  to  the  crucible.  Terminal  electrodes 
e  provided  in  hoppers  in  the  casing  opposite  the 


ends  of  the  resistor,  and  a  mass  of  conducting 
granular  material  is  interposed  between  these 
electrodes  and  the  resistor.  Means  are  provided 
for  holding  the  resistor  blocks  in  position,  (b)  In 
an  electric  furnace  the  resistor  forms  the  side  wall 
of  the  heating  chamber.  Terminal  members  are 
connected  with  electrodes  engaging  the  ends  of  the 
resistor,  and  masses  of  conducting  granular  material 
likewise  engage  the  ends  of  the  resistor  and  the 
electrodes.— J.  S.  G.  T. 

Electrolyte  [for  electrolytic  condensers,  lightning 
arresters,  rectifiers,  etc.].  J.  Coulson,  Assr.  to 
Westinghouse  Electric  and  Mfg.  Co.  U.S. P. 
(a)  1,412,513  and  (b)  1,412,514,  11.4.22.  Appl., 
19.2.17. 

An  electrolyte  for  use  in  electrolytic  condensers, 
lightning  arresters,  rectifiers,  etc.,  consists  of  (a)  an 
aqueous  solution  containing  less  than  2%  of 
ammonium  carbonate,  or  (b)  an  aqueous  solution  of 
ammonium  malate. — J.  S.  G.  T. 

Manganese-containing     bodies;     Preparing     . 

[Purifying  depolariser  from  used  dry  batteries.] 
A.  A.  Wells,  Assr.  to  National  Carbon  Co.,  Inc. 
U.S. P.  1,412,986,  18.4.22.     Appl.,  27.10.17. 

Spent  depolariser  from  used  dry  batteries  is  purified 
by  separating  insoluble  zinc  compounds  from  the 
depolarising  mass. — J.  S.  G.  T. 

Photo-electric  cells.  T.  W.  Case.  E.P.  178,300-1, 
23.3.21. 

See  U.S.P.  1,376,604—6  of  1921;  J.,  1921,  476  a. 

See  also  pages  (a)  399,  Electrical  purification  of 
gases  (E.P.  170,575.  U.S.P.  1,412,248,  1,413,877, 
and  1,413,993.  G.P.  348,378).  405,  Dehydrating 
oil  (U.S.P.  1,414,079).  415,  Gas  reactions  (U.S.P. 
1,376,207).  432,  Removing  alkaloids  from  lupins 
etc.  (G.P.  348,853).  433,  Purifying  liquids  (E.P. 
176,457).  437,  Acetaldchyde  or  acetic  acid  (E.P. 
156,147).  440,  Glyoxylic  acid  (G.P.  347,605).  444, 
Pipette  for  gas  analysis  (G.P.  346,910). 

XII.-FATS;  OILS;  WAXES. 

Palm  oil;  Refining for  edible  purposes.     M.  F. 

Lauro  and  W.  H.  Dickhart.  Amer.  J.  Pharm., 
1922,  94,  245—249. 

A  good  sample  of  "  Bonny  Old  Calabar  "  with  the 
following  characters  was  used  as  the  crudo  uil. 
Moisture,  2"04%  ;  impurities,  1'27%  ;  free  fatty 
acids,  11-73%  (as  oleic  acid);  sp.  gr.,  99°/ 15-5°  C, 
0'8556;  iodine  value  (Wijs),  543;  saponif.  value, 
198-5;  n30  =  1-4628.  The  oil  was  refined  with  135% 
of  sodium  hydroxide  of  18°  B.  (sp.  gr.  1*142)  with  a 
loss  of  23'5%.  The  colour  was  not  removed  by  this 
process.  The  soap  stock  was  of  a  dirty  orange- 
yellow  colour  and  hard  and  compact  consistence. 
No  free  alkali  was  present.  The  soap  obtained  was 
of  excellent  appearance  and  grain,  lathered  well, 
and  possessed  good  detergent  properties.  The 
colour  was  removed  from  the  refined  oil  by  exposing 
it  to  light  in  shallow  aluminium  dishes  for  several 
days  at  105°— 110°  C.  The  oil  then  had  the  colour 
of  white  arachis  oil  (Lovibond  14  yellow — 1'4  red). 
On  cooling  it  gave  a  fat  with  a  slight  yellow  tint. 
The  oil  was  deodorised  by  the  action  of  live  steam, 
but  a  completely  odourless  oil  was  not  obtained 
owing  to  insufficiency  of  equipment.  It  is  con- 
sidered that,  should  the  conditions  of  cultivation 
and  preparation  be  improved,  palm  oil  would  find 
a  ready  market  as  an  edible  oil. — H.  C.  R. 

Goose-fat;  Glycerides  of  .     A.  Bomer  and  H. 

Merten.     Z.  Unters.  Nahr.  Genussm.,   1922,  43, 

101—137. 
The   acids   present   in   goose   fat   are  stearic   acid 
38%,   palmitic   acid  2P2%    and  oleic   acid  72"3%. 


424  a 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


.June  15,  1922. 


The  margaric  acid  mentioned  by  Kliniont  and 
Mayer  (Monatsh.,  1917,  36,  281)  is  a  eutectic  mixture 
of  stearic  and  palmitic  acids.  The  following 
glycerides  were  found:  /?-palmitodistearin  (m.p. 
635°  C),  in  very  small  quantities,  stearodipalmitin 
(m.p.  57'6°)  about  3 — 4%,  dioleostearin  5%,  dioleo- 
palmitin  30%,  and  triolein  45%.  Other  glycerides 
containing  1  mol.  of  oleic  acid  and  2  mols.  of 
saturated  fatty  acids  are  probably  also  present, 
particularly  oleostearopalmitin  and  oleodipalmitin. 
(Cf.  Ambefger  and  Bromig,  J.,  1921,  740  A.) 

— H.  C.  R. 

Erucic  acid  and  erucic  anhydride.  II.  D.  Holde 
and  C.  Wilke.  Z.  angew.  Chem.,  1922,  35,  ISO- 
IS?.     (C/.  J.,  1922,  260  a.) 

The  authors  give  an  account  of  the  various  attempts 
that  have  been  made  by  other  workers  to  isolate 
erucic  acid  in  a  pure  condition  from  rape  and 
other  oils.— G.  F.  M. 

Lignoeeric  acid  and  its  derivatives.  P.  Brig]  and 
E.  Fuchs.    Z.  physiol.  Chem.,  1922,  119,280—311. 

The  lignoeeric  acid  hitherto  prepared  from  the 
ester  of  beech  wood  consists  of  two  tetraconic  acids 
of  different  melting  points.  The  higher  melting 
acid  was  found  to  be  identical  with  «-tetraconic-l 
acid  by  comparing  the  acids  themselves  and  their 
methyl  and  phenyl  esters.  Beech  wood  tar  also 
contains  a  wax,  lignocerin,  C48H„602,  which  is  the 
lignoeeric  acid  ester  of  lignocerin  alcohol.  The  wax 
acid  is  a  mixture  of  the  two  acid  components ;  the 
lignocerin  alcohol,  C24H.0O,  was  also  found  to 
possess  several  melting  points.  Analytical  data  have 
always  shown  it  to  be  a  tetracosanol.  It  is  con- 
verted into  the  lignoeeric  acid  of  lower  melting  point 
by  treatment  with  potassium  hydroxide.  It  could 
not  be  identified  with  the  synthetic  n-tetracosanol-1. 
A  method  of  synthesis  of  the  waxes  belonging  to  the 
Cla,  C22,  and  C2a  series  is  described. — S.  S.  Z. 

Soap-powder ;  Self-heating  of  .       M.  Wegner. 

Chem.  Umschau,  1922,  29,  119—120,  127—129. 

A  case  of  soap-powder  containing  5  kg.  of  paper 
packets  and  standing  in  a  cellar  was  suddenly 
observed  to  be  giving  off  steam  and  one  of  the 
packets  was  found  to  be  heated  and  the  contents  to 
be  agglomerated  into  a  brown  wax-like  mass.  The 
eoap  had  been  made  from  pure  olive  oil  and  the 
unchanged  packets  gave  the  following  analysis : 
total  fatty  acids,  89-09%  ;  neutral  fat,  T17%  ;  com- 
bined fatty  acids,  87'92%  ;  Na20  and  water,  1091%. 
The  iodine  value  of  the  fatty  acids  was  83'0.  The 
fatty  acids  of  the  heated  soap  had  been  converted 
to  a  considerable  extent  into  lactones.  Experi- 
ments carried  out  on  the  soap  powder  showed  that 
on  heating  to  150°  C.  considerable  self-heating 
occurred,  the  temperature  inside  the  soap  rising  to 
193°  C.  Self-heating,  however,  only  began  when 
the  temperature  of  the  oven  exceeded  100°  C,  so 
that  the  self-heating  of  the  case  in  question 
remains  unexplained. — H.  C.  R. 

Soap  solutions;  Constitution  of .     Solutions  of 

sodium  palmitate,  and  the  effect  of  excess  of 
palmitic  acid  or  sodium  hydroxide.  J.  W. 
McBain,  M.  Taylor,  and  M.  E.  Laing.  Chem. 
Soc.  Trans.,  1922,  121,  621—633. 

The  products  of  hydrolysis  of  sodium  palmitate  are 
colloidal  acid  soaps  and  not  free  palmitic  acid,  a 
concentration  of  0'00003iV  free  hydroxyl  correspond- 
ing to  the  formation  of  the  acid  soap,  NaP.HP,  and 
0'0002JV  free  hydroxyl  to  the  formation  of  the  most 
nearly  neutral  acid  soap,  2NaP,H.P.  From  con- 
ductivity and  osmotic  data  the  amounts  of  crystal- 
loidal  and  colloidal  constituents  in  pure  sodium 
palmitate  at  various  concentrations  can  be  calcu- 
lated to  within  10%  of  the  total  concentration  of 
the  solution.     By  graphic  representation  in  which 


the  percentage  amount  of  each  constituent  present 
is  plotted  against  the  total  concentration  of  the 
solution,  it  is  shown  that  the  amount  of  neutral 
colloid  in  sodium  palmitate  solution  is  inappre- 
ciable, whereas  the  amount  of  ionic  micelle  (pure 
agglomerated  palmitate  ion)  is  about  one-third  that 
of  the  sodium  ion.  Addition  of  an  electrolyte  such 
as  sodium  hydroxide  rapidly  increases  the  amount 
of  neutral  colloid  and  almost  eliminates  crystal- 
loidal  soap,  whilst  still  leaving  an  appreciable 
amount  of  ionic  micelle.  Conductivity  and  dew- 
point  have  been  determined  for  solutions  of  sodium 
palmitate  containing  excess  or  deficit  of  palmitic 
acid.  Osmotic  activity  and  specific  conductivity 
are  rapidly  diminished  by  excess  of  palmitic  acid, 
having  nearly  disappeared  when  the  proportion  of 
palmitate  to  sodium  is  as  5:4. — P.  V.  M. 

Soap  solutions;  Effect  of  electrolytes  on  the  consti- 
tution   of   as   deduced   from   electromotive 

force.     C.  S.  Salmon.     Chem.  Soc.  Trans.,  1922, 
121,  711—715. 

Addition  of  an  electrolyte  to  soap  solutions  with  a 
common  ion  diminishes  the  amount  of  ionic  micelle 
and  the  resulting  solution  consists  largely  of  undis- 
sociated  neutral  colloid.  The  activity  of  the 
chlorine  ion  in  potassium  chloride  solutions  appears 
to  be  unaffected  by  the  addition  of  quite  large 
quantities  of  potassium  laurate  owing  to  the  com- 
pensating effect  of  the  great  enhancement  of  bulk 
caused  by  the  addition  of  the  soap  and  the  removal 
of  an  appreciable  fraction  of  the  solvent  through 
hydration  of  the  soap. — P.  V.  M. 

Colour  of  oils.     Parsons  and  Wilson.     See  IIa. 

Decolorising    action    of    charcoals.     Tanner.      See 
XVII. 

Adulteration  of  lard.     Bomer.     See  XIXa. 

Softening  point  of  waxes  etc.     See  XX III. 

Patents. 

Fatty    acids;    Recovery    of    from    fatty-acid 

mixtures.     Byk-Guldenwerke    Chem.  Fabr.  A.-G. 
E.P.  156,259,  4.1.21.     Conv.,  27.6.16. 

The  fatty  acids  of  high  molecular  weight  are 
separated  from  those  of  low  molecular  weight  before 
distillation,  and  so  saved  from  decomposition,  by 
the  use  of  solvents.  The  whole  of  the  mixture  may 
be  dissolved  and  the  higher  fatty  acids  fractionally 
precipitated  by  adding  some  substance  which 
reduces  their  solubility  in  the  solvent  used.  Alcohol 
may  be  used  as  the  solvent  and  water  added,  or 
highly  chlorinated  hydrocarbons  may  be  used  and 
diluted  with  hydrocarbons  of  a  lower  stage  of 
chlorination  to  reduce  their  solvent  properties. 
High  molecular  hydrocarbons  may  also  be  used  as 
solvents  and  their  solvent  properties  reduced  by  the 
addition  of  hydrocarbons  of  lower  molecular  weight. 

— H.  C.  R. 

Vegetable  and  animal  oils;  Process  for  thickening 

.     H.  and  W.  Baur.     G.P.  349,101,  7.11.17. 

Oil  flows  by  gravity  through  an  air-tight  chamber 
in  which  it  is  heated  by  contact  with  a  series  of 
preheated  vessels,  then  passes  to  an  apparatus  in 
which  it  is  heated  to  a  high  temperature,  and 
returns  through  the  vessels  in  the  preheating 
chamber  in  the  opposite  direction  to  preheat  a  fresh 
supply  of  oil. — L.  A.  C. 

Fats,    especially  waste   fats;  Process  for  refining 

.       Bvk-Guldenwerke     Chem.     Fabr.     A.-G. 

G.P.  349,593,  9.1.13. 
The  fats  are  treated  with  alkali  or  alkaline-earth 
hydroxides  in   a   closed  apparatus,   and  heated  at 
above  150°  C.  for  a  long  time  in  absence  of  air  and 
so    that    the    gases    and    vapours    formed    cannot 


Vol.  XLI.,  No.  ll.]       CL.  XIII.— PAINTS,  &C.     CL.  XIV.— INDIA-RUBBER;  GUTTA-PERCHA.        425  A 


'.  escape.  Sewage-fat  and  herring  oil  are  considerably 
deodorised  and  improved  in  colour,  so  that  they 
can  be  utilised  for  making  household  soaps. 

— H.  C.  R. 

Paraffin   [teax]   or  the   like;   Process  for  oxidising 

and    obtaining    soaps    therefrom.        H.    O. 

Traun's  Forschungslaboratorium  G.ni.b.H.     E.P. 
156,141,  31.12.20.     Conv.,  4.6.19. 

Paraffin  wax,  montan  wax,  ceresin  or  the  like  may 
be  oxidised  to  fatty  acids  by  heating  at  120° — 
150°  C.  under  a  pressure  of  at  least  several  atmo- 
spheres with  air  or  oxygen  in  the  presence  of  an 
alkali.  Catalysts,  such  as  barium  or  lead  peroxide, 
may  be  added.  Air,  purified  from  carbon  dioxide 
etc.,  and  preheated  to  120° — 150°  C,  is  continuously 
blown  into  the  wax  contained  in  a  jacketed  and 
heated  vessel  provided  with  a  valve  set  to  lift  at 
3 — 6  atm.  Superheated  steam  is  then  passed 
through  for  a  time  and  finally  the  mixture  is  boiled 
with  water  to  complete  the  saponification,  which 
varies  from  60 — 90%  of  the  theoretical.  (Reference 
is  directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  12,806  of  1884;  J.,  1885,  679.)— F.  G.  P.  R. 

'.Soap;  Method  of  fabrication  of  .       P.   L.   E. 

■■    Pech.     E.P.  156,591,  3.1.21. 

;A  soap  suitable  for  use  with  sea  water  is  obtained 
by  saponifying  pure  coconut  oil  with  a  mixture  of 
anhydrous  potassium  and  sodium  hydroxides, 
potassium  chlorate  being  added  in  4%  solution  in 
the  proportion  of  4%  of  the  weight  of  coconut  oil. 
The  coconut  oil  used  comprises  about  70%  of  the 
weight  of  the  resulting  soap. — H.  C.  R. 


XIII.-PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Softening  point  of  resins  etc.     See  XXIII. 
Patents. 

Varnish  and  process  of  making  same.  S.  Cabot, 
Assr.  to  S.  Cabot,  Inc.  U.S.P.  1,413,964,  25.4.22. 
Appl.,  1.11.19. 

A.  varnish  product  is  prepared  from  highly  poly- 
merised and  substantially  unoxidised  tung  oil,  a 
loal  tar  distillate  and  a  drier. — D.  F.  T. 

I  Phenol;  Process  of  manufacture  of  products  of 
condensation  from.  .  K.  Kulas  and  C. 
Pauling.  U.S.P.  1,414,139,  25.4.22.  Appl., 
20.12.20. 

Condensation  products  are  formed  by  heating 
ihenol  and  formaldehyde  with  an  acid  condensation 
igent  until  a  resin  is  formed  and  allowing  the 
nass  to  settle  into  layers.  Phenol  and  formalde- 
hyde are  then  added  to  the  hot  mass,  together  with 
iufficient  of  an  alkaline  condensation  agent  to 
Jrovide  an  excess  amounting  to  at  least  10%  of  the 
ictive  phenol  used.  The  mixture  is  again  heated 
intil  the  final  formation  of  resin  has  occurred. 

— D.  F.  T. 

hating  and  impregnating  material;  Manufacture 

of    a    varnish-like    .      Deutsche    Conservier- 

ungsges.  m.b.H.     G.P.  343,161,  19.11.16. 

V  highly  chlorinated  naphthalene  derivative  the 
n.p.  and  sp.  gr.  of  which  have  been  increased  by 
neans  of  distillation  or  crystallisation  from  benzol, 
■enzine  or  similar  solvents  and  which  has  thereby 
>een  decolorised  and  freed  from  acid,  or  one  which 
as  been  heated  above  its  m.p.  for  a  considerable 
'eriod  and  afterwards  purified  with  warm  acetone, 
an  be  used  as  substitute  for  resins  and  waxes  in 
he    manufacture    of    coating    and    impregnating 


materials  and  for  sizing  paper.  A  chloronaphtha- 
lene  prepared  as  described  and  crystallised  from 
acetone,  has  m.p.  140-7°  C,  sp.  gr.  166,  and  is 
soluble  in  benzol,  benzine,  toluol,  tar  oils,  fatty 
oils,  and  carbon  tetrachloride. — A.  J.  H. 

Solvent  for  resins,  especially  artificial  resins.     W. 
Schrauth.     G.P.  349,905,  14.1.19. 

Cyclohexanols,  either  alone  or  mixed  with  hydro- 
carbon derivatives  such  as  benzene,  petroleum 
ether,  chlorohydrocarbons,  or  hydrogenated  naph- 
thalene, are  employed  as  solvents  for  resins,  e.g., 
phenol-formaldehyde  resins.  The  solutions  alone  or 
mixed  with  oils  can  be  used  as  lacquers  or  the  like. 

— L.  A.  C. 

Point  pigment.     L.   R.   Baker.     U.S.P.   1,413,565, 
25.4.22.     Appl.,  28.7.19.     Renewed  27.2.22. 

See  E.P.  161,280  of  1920;  J.,  1921,  399  a. 

Besins;  Method  of  preparing  .     F.  H.  Rhodes 

and   A.   E.   Roberts,   Assrs.   to   The   Barrett   Co. 
U.S.P.  1,413,558,  18.4.22.    Appl.,  30.6.19. 

See  E.P.  166,818  of  1920;  J.,  1921,  708  a. 

Thickening  oils.    G.P.  349,101.    See  XII. 

Polymerisation  products  of  diolefines.   E.P.  156,116. 
See  XX. 

Polymerisation  products  of  vinyl  compounds.    E.P. 
156,117.     See  XX. 


XIV.-INDIA-RUBBER;  GUTTA-PERCHA. 

Bubber  compounded  with  light  magnesium  carbon- 
ate; Some  physical  properties  of  .     H.  W. 

Greider.    J.  Tnd.  Eng.  Chem.,  1922,  14,  385—395. 

The  composition  of  light  magnesium  carbonate  used 
in  the  rubber  industry  agrees  more  closely  with 
the  formula  llMgC03,3Mg(OH)2,llH20  than  with 
the  customarily  accepted  4MgC03,Mg(OH)2,5H20; 
the  substance  undergoes  no  decomposition  below 
265°  C.  (509°  F.).  In  experiments  in  which  various 
proportions  were  added  to  a  standard  mixture  of 
pale  crepe  rubber  100  vols.,  litharge  3  vols.,  and 
sulphur  2J  vols.  (100:30:5  by  weight),  vulcanisation 
being  effected  subsequently  at  143°  C.  for  45 
minutes,  magnesium  carbonate  showed  itself  a 
typical  reinforcing  ingredient.  Up  to  a  proportion 
of  9  vols,  to  100  of  rubber,  the  carbonate  causes  an 
increase  in  the  strength  and  resilient  energy,  while 
the  ultimate  elongation  decreases  almost  linearly 
up  to  40  vols.  Light  magnesium  carbonate 
although  more  effective  than  the  heavy  variety  and 
than  zinc  oxide  in  hardening  rubber,  is  less  effective 
than  gas  black  and  also  imparts  a  high  "  permanent 
set."  If  in  the  above  optimum  mixture  containing 
9  vols,  of  magnesium  carbonate,  this  carbonate  is 
replaced  in  part  or  in  whole  by  an  equivalent  bulk 
of  zinc  oxide,  china  clay,  or  colloidal  barium 
sulphate,  there  is  a  uniform  decrease  in  the  tensile 
strength,  but  if  the  replacements  are  made  with 
gas  black  a  combination  of  6  vols,  of  this  with  3  of 
magnesium  carbonate  imparts  a  considerably  higher 
strength  than  9  vols,  of  either.  Comparison  of  the 
physical  properties  of  the  vulcanised  products  was 
made  not  only  with  freshly  prepared  samples  but 
also  with  samples  which  had  been  exposed  to  a 
summer  atmosphere  for  60  days  and  with  others 
which  had  been  submitted  to  "  accelerated  ageing  " 
for  7  days  at  71°  C— D.  F.  T. 

Patents. 

Bubber  latex;  Preparation  of  preservative  sub- 
stances for .    S.  C.  Davidson.    E.P.  178,337, 

29.4.21. 

Foe    convenience    of     transport    the     "  alkalised 


426  a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[June  15,  1922. 


phenol"  preservative  (E.P.  11,470  of  1912,  13,438 
of  1913,  and  22,138  of  1914;  J.,  1913,  799;  1914, 
758;  1915,  1020)  is  prepared  by  the  interaction  of 
phenol  crystals  (2  pts.)  and  solid  caustic  soda  (1  pt.) 
and  the  resulting  powder  compressed  into  blocks. 
A  3 — 5%  aqueous  solution  is  made  prior  to  introduc- 
tion into  the  latex. — D.  F.  T. 

Vulcanising  rubber  compounds ;  Accelerator  in . 

B.    E.   Lorentz,    Assr.   to  R.    T.    Vanderbilt  Co 
U.S. P.  1,413,172,  18.4.22.     Appl.,  30.3.20. 

Vulcanisation  is  accelerated  by  the  incorporation 
of  a  tetra-alkvlthiuram  disulphide  in  the  rubber 
mixture.— D.  F.  T. 

[Vulcanised]  composition  of  matter  and  process  of 
producing  the  same.  R.  O.  Phillips,  Assr.  to  The 
Barrett  Co.  U.S.P.  1,413,557,  18.4.22.  Appl., 
1.6.20. 

Vulcanised  products  are  obtained  from  raw  rubber 
mixtures  in  which  phenanthrene  has  been  incorpo- 
rated as  a  compounding  ingredient. — D.  F.  T. 

Vulcanisation  of  rubber  and  similar  materials. 
D.  F.  Twiss,  Assr.  to  The  Dunlop  Rubber  Co., 
Ltd.    U.S.P.  1,413,813,  25.4.22.    Appl.,  7.3.19. 

See  E.P.  125,696  of  1918;  J.,  1919,  429a.  The  use 
of  a  solution  of  caustic  alkali  in  an  aromatic 
hydroxy  compound  is  specified. 

Bubber  and  like  materials;  Machines  for  mixing  or 

masticating  .     Farrel  Foundry  and  Machine 

Co.,  Assees.  of  D.  R.  Bowen  and  C.  F.  Schnuck. 
E.P.  157,829,  10.1.21.     Conv.,  14.9.17. 

Polymerisation  products  of  diolefines.  E.P.  156,116. 
See  XX. 

Polymerisation  products  of  vinyl  compounds.  E.P. 
156,117.    See  XX. 


XV.-LEATHEB;  BONE;  H0BN ;  GLUE. 

Hide;  Action  of  halogens  on  .     W.   Moeller. 

Z.  Leder-  u.  Gerb.-Chem.,  1921—2,   1,  146—153. 

From  experiments  with  hide  powder  it  is  shown 
that  the  action  of  aqueous  solutions  of  chlorine  and 
bromine  on  hide  is  partly  a  tanning  action,  but 
chiefly  oxidation  with  considerable  hydrolysis  of  the 
hide  substance  and  formation  of  hydrochloric  and 
hydrobromic  acids.  The  action  of  iodine  is  exclu- 
sively a  tanning  action,  but  there  is  a  partial 
precipitation  from  solution  of  products  of  hydrolysis 
of  the  hide.  The  amount  of  halogen  absorbed  at 
different  concentrations  and  with  different  periods 
of  time  is  about  the  same  for  all  three  halogens. 

— D.  W. 

Hide  substance ;  Action  of  lactic  and  butyric  acids 

on .    W.  Moeller.    Z.  Leder-  u.  Gerb.-Chem., 

1921—2,  1,  153—160. 

Lactic  and  butyric  acids  have  a  strong  swelling 
action  on  hide  substance  without  causing  appreci- 
able hydrolysis.  The  adsorption  of  the  acids  at 
different  concentrations  (AT/1000 — iV/2)  by  the  hide 
substance  did  not  approach  equilibrium  even  after 
4  weeks.— D.  W. 

Hide  powder  for  the  analysis  of  vegetable  tannins; 

Influence   of   preliminary   tannage   of  with 

formaldehyde.       O.     Gerngross    and    H.     Roser. 
Collegium,  1922,  28—30. 

Three  samples  of  hide  powder,  untreated,  feebly 
tanned  with  formaldehyde,  and  strongly  tanned 
with  formaldehyde  were  employed  in  the  analysis 
of  an  extract.  The  results  for  tans  were  19"77, 
18-65,  and  15-02,  and  for  non-tans  884,  996,  and 
13'59  respectively.     The  intensity  of  tannage  and 


the  water-resisting  power  are  inversely  proportional 
to  the  detanuising  power  of  the  hide  powder. 

— D.  W. 

Iron-tanned  leather;  Behaviour  of towards  hot 

water.     W.  Moeller.     Z.  Leder-  u.  Gerb.-Chem 
1921—2,  1,  166—7. 

Weighed  quantities  of  finely-divided  leather  tanned 
by  various  iron  tanning  processes  were  treated  with 
measured  quantities  of  hot  water  and  the  weight 
of  the  air-dry  residue  determined.  Iron-tanned 
leathers  have  a  very  small  water-resistance  figure 
and  the  hide  substance  in  the  leather  is  very  much 
decomposed;  in  two  samples  95%  of  hide  substance 
was  hydrolysed.  One  sample  gave  results  compar- 
ablo  with  those  of  a  leather  tanned  with  synthetic 
tans. — D.  W. 

Glue  and  gelatin;  Use  of  antiseptics  in  the  manu- 
facture of .    G.  J.  Fowler,  K.  C.  Srinivasan, 

and  V.  S.   Chinnaswami.     J.  Indian  Inst.  Sci., 
1921,  4,  107—118. 

The  growth  of  liquefying  bacteria  is  completely 
prevented  when  the  glue-liquor  has  the  following 
normality  of  acid  :  sulphuric  acid  0-4xAT/64,  hydro- 
chloric acid  0'6x.V/32,  sulphurous  acid  003x^/8. 
In  the  case  of  sulphurous  acid  a  concentration  of 
0"03xA716  will  prevent  growth  for  96  hrs.  A 
concentration  of  15  pts.  of  phenol  to  1000  pts.  of 
final  product,  and  l'o  pts.  of  a  40  %  solution  of 
formaldehyde  to  1000  pts.  of  gelatin  are  respectively 
required  to  prevent  growth.  The  use  of  sulphur 
dioxide  is  6trongly  recommended ;  in  addition  to  its 
antiseptic  properties,  it  exerts  a  clarifying  and 
decolorising  effect.  Formaldehyde  and  phenol  are 
more  easily  applied,  but  are  more  expensive  and  aro 
poisons.  Antiseptics  do  not  prevent  the  growth  of 
moulds.  Concentrated  jellies  are  free  from  moulds, 
whereas  on  jellies  of  low  concentration  moulds  grow 
always.  The  critical  concentration  differs  slightly 
for  different  glues  and  gelatins,  but  usually  a  40% 
jelly  (40  g.  of  glue  or  gelatin  in  100  g.  of  jelly)  can 
be  kept  free  from  mould  in  a  moist  atmosphere  at 
temperatures  between  28°  and  32°  C— J.  B.  F. 

Constitution  of  catechin.    Nierenstein.    See  IV. 

Patents. 

Condensation  products  of  aliphatic  aldehydes  and 
di-    or    polyhydroxybenzenes    [tanning    agents]: 

Manufacture  of  water-soluble  .     J.  R.  Zink. 

G.P.  344,033,  11.10.19. 

A  Di-  or  polyhydroxybenzene,  or  a  homologue  or 
substitution  product,  containing  at  least  one  free 
para  position  to  a  hydroxyl  group  (1  mol.)  is  treated 
at  about  100°  C.  with  J  to  1  mol.  of  acetaldehyde 
or  its  polymers  in  the  absence  of  condensing  agents, 
or  with  formaldehyde  or  its  polymers  with  or 
without  the  addition  of  acid  condensing  agents. 
The  syrupy  product  obtained  by  treating  resorcinol 
with  A  mol.  of  formaldehyde  at  about  70°  C. 
dissolves  in  water,  yielding  a  solution  which  is 
capable  of  dissolving  certain  organic  compounds 
insoluble  in  water,  e.g.,  camphor  and  phenol- 
aldehyde  condensation  products,  and  which  forms 
a  white  precipitate  with  gelatin  solution.  The 
products,  a  number  of  which  are  described,  can  be 
used  for  tanning  and  for  therapeutic  purposes. 

— L.  A.  C. 

Aryl  ethers  of  aliphatic  alcohols  of  high  molecular 
weight;  Preparation  of  water-soluble  derivatives 

[tanning    agents    etc.]    of    .      Elektrochem. 

"\Y.-rke  G.m.b.H.,  H.  Bosshard,  and  D.  Strauss. 
G.P.  344,878,  26.5.18. 
Aryl  alkyl  ethers  derived  from  halogenated  ali- 
phatic hydrocarbons  containing  at  least  16  carbon 
atoms  by  treatment  with  phenols  or  naphthols  in 
the  presence  of  alkalis  and  catalysts,  are  sulphoii- 
ated  until  soluble  in  water.  A  monochloroparaflin  ot 


Vol.  XII.,  No.  11.] 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


427  a 


setting  pt.  40° — 35°  C,  prepared  by  the  action  of 
chlorine  on  paraffin,  on  heating  with  phenol, 
potassium  carbonate,  and  finely-divided  copper 
under  a  reflux  condenser,  yields  a  phenoxyparaffin 
of  setting  pt.  60°  C,  which  on  treatment  with 
oleum  at  100°  C.  is  converted  into  a  water-soluble 
product.  Similar  products,  suitable  for  use  as 
tanning  agents,  lubricating  oils,  or  for  greasing 
and  softening  leather,  are  prepared  by  sulphona- 
ting,  e.g.,  o-  or  p-cresolparaffins,  cetylguaiacol,  or 
o-  or  /3-naphthoxyparaffins,  or  phenoxychloro- 
paraffins  derived  from  dichloroparaffins. — L.  A.  C. 

'Condensation   products    [tanning    agents'];   Manu- 
facture  of  soluble  .        A.   Luttringhaus  and 

L.  Blangev,  Assrs.  to  Badische  Anilin  und  Soda 
Fabr.     U.S. P.  1,412,949,  18.4.22.     Appl.,  8.11.20. 
1 1 See  E.P.  173,881  of  1920;  J.,  1922,  225  a. 

Tanning.     W.  H.  Ockleston  and  T.  B.  Carmichael. 
U.S. P.  1,413,488,  18.4.22.     Appl.,  21.1.22. 

|Seb  E.P.  175,362  of  1920;  J.,  1922,  304  a. 

OH  tanning ;  Means  for  greasing  leather  of  aU  kinds 

and  for  .     O.  Rohm,  Assr.  to  The  Chemical 

Foundation,     Inc.       U.S.P.     1,414,044,     25.4.22. 
Appl.,  13.6.17. 

See  E.P.  103,668  of  1917;  J.,  1917,  1141. 

Dyeing  leather  etc.    U.S.P.  1,414,029—31.    See  VI. 


XVI.-S0ILS ;    FEBTILISEBS. 

Soils;  Effect  of  drying  on  the  water-soluble 

constituents.     A.  F.  Gustafson.     Soil  Sci.,  1922, 
13,  172—213. 

Am-rmvixo  at  room  temperature  increased  the 
amount  of  material  removed  from  soils  by  a  1:5 
[water-extraction.  The  increase  was  more  marked 
^fter  oven-drying.  The  water-soluble  material  of 
|Soils  stored  at  ordinary  temperatures  remained 
practically  unaltered  for  nine  weeks  when  the  mois- 
ture content  was  maintained.  If  the  soils  were  satu- 
rated, storage  at  room  temperature  greatly 
increased  the  soluble  constituents  but  complete 
denitrification  occurred.  Loss  of  nitrates  occurred 
'in  oven-dried  soils ;  and  it  was  shown  that  the  heat- 
ing of  potassium  nitrate,  after  evaporation,  in  an 
open  dish  at  105°  C.  for  8  hrs.  produces  a  distinct 
loss.  Potassium  nitrate  added  to  quartz  sand  could 
not  be  removed  completely  by  one  or  even  two  1:5 
water  extractions.  The  importance  of  strict  control 
of  temperature,  moisture,  and  aeration  in  pot 
culture  work  is  noted.  An  extensive  review  of  the 
literature  is  given. — A.  G.  P. 

Oxidation  processes  in  the  soil;  Influence  of  grow- 
ing plants  upon  .     J.  R.  Neller.     Soil  Sci., 

1922,  13,  139—158. 

Plants  were  grown  under  bell-jars  through  which 
air  free  from  carbon  dioxide  was  circulated.  Carbon 
lioxide  evolved  from  the  soil  was  estimated  con- 
tinuously and  taken  as  a  measure  of  the  oxidation 
in  the  soil.  The  proportion  of  the  evolved  carbon 
iioxide  fixed  by  photosynthesis  in  the  plant  was 
letermined  by  an  estimation  of  the  total  carbon 
n  the  plant  itself.  Buckwheat,  barley,  peas,  and 
•oya-beans  considerably  increased  oxidation  in  soils 
md  in  sand  cultures  to  which  organic  matter  had 
ieen  added.  The  increased  oxidation  in  soil  under 
>oya  beans  was  more  pronounced  during  the  second 
rear's  cropping  than  during  the  first  year.  A  sym- 
biotic relationship  between  the  soil-oxidising  organ- 
sms  and  the  growing  plant  is  suggested. — A.  G.  P. 

Sulphur    oxidation    in    "black-alkali"    soils.      W. 
Rudolfs.     Soil  Sci.,  1922,  13,  215—229. 

Slack  alkali  soils  treated  with  inoculated  sulphur 


suffer  considerable  alteration  in  flocculating  power, 
water-holding  capacity,  and  "  apparent  "  specific 
gravity.  Small  additions  of  sulphur  produced  little 
or  no  change  in  pH  values,  but  larger  quantities 
had  considerable  effect.  Leached  soils  were  more 
easily  neutralised  by  sulphur  treatment  than  un- 
reached soils.  A  period  of  18  weeks  was  sufficient 
for  complete  oxidation  of  sulphur  in  practically  all 
cultures.  The  biological  flora  of  soils  treated  with 
sulphur  varied  directly  with  the  change  in  H-ion 
concentration.  Unleached  soil  receiving  sufficient 
sulphur  to  neutralise  the  alkalinity  after  12  weeks 
produced  5  times  the  bacterial  counts  of  untreated 
soils;  leached  soils  similarly  treated  gave  3 — 5  times 
as  many  colonies.  In  leached  soils,  after  sulphur 
treatment  there  were  relatively  few  moulds  and 
actinomycetes,  which  were  predominant  in  un- 
treated soils.  Barley  germinated  well  in  sulphured 
soils,  but  the  young  plants  were  killed  by  the  6alt 
incrustation  at  the  soil  surface. — A.  G.  P. 

Sulphur-oxidising  bacteria;  Preliminary  studies  on 

the    isolation    of    from    sulphur-floats-soil 

composts.      J.    S.    Joffe.      Soil    Sci.,    1922,    13, 
161—170. 

Cultural  methods  of  isolating  the  sulphur-oxidis- 
ing organisms  are  described,  and  one  specific  organ- 
ism was  obtained  in  apparently  pure  culture.  The 
capability  of  certain  fungi  to  oxidise  sulphur  is 
demonstrated  and  the  possibility  of  an  associative 
action  between  fungi  and  bacteria  is  suggested 

—A.  G.  P. 

Organic   matter;   Liberation    of  by  'roots  of 

growing  plants.     T.  L.  Lyon  and  J.  K.  Wilson. 
Cornell  Univ.  Agric.   Exp.  Sta.,  Mem.  40,  1921, 

7—44. 

Maize,  oats,  peas,  and  vetches  were  grown  under 
sterile  conditions  in  sterilised  nutrient  media  and 
both  plant  and  media  were  examined  at  varying 
stages  of  growth.  The  nutrient  solution  contain- 
ing originally  nitrate-nitrogen  only,  was  found  to 
contain  organic  nitrogen  after  a  few  weeks'  growth. 
A  sediment  collected  in  the  culture  flasks  and  was 
found  to  contain  organic  nitrogen,  some  of  it 
derived  from  sloughed-off  cells  from  the  growing 
roots.  Pea  plants  grown  in  solutions  containing  no 
combined  nitrogen  liberated  organic  nitrogen  to  the 
nutrient  solution.  Organic  nitrogen  appeared  in 
the  nutrient  solution  of  maize  seedlings  at  all  stages 
of  growth  but  appeared  to  decrease  as  the  plant 
approached  maturity.  The  total  organic  matter 
produced  in  the  nutrient  solutions  was  large  com- 
pared with  the  nitrogenous  organic  matter  present. 
The  presence  of  reducing  substances  in  solutions  in 
which  plants  had  grown  was  indicated  by  some 
reagents  but  not  by  others.  Nitrates  were  nearly 
always  reduced  in  the  presence  of  an  antiseptic. 
Boiling  the  solution  decreased  the  rate  but  did  not 
stop  the  reduction  of  nitrates.  Peroxidases  were 
always  present  in  solutions  in  which  plants  had 
grown. — A.  G.  P. 

Wool  scouring  wastes  for  fertiliser  purposes.    F.  P. 
Veitch.     J.  Ind.  Eng.  Chem.,  1922,  14,  434. 

Analyses  of  a  large  number  of  samples  of  unscoured 
wool  showed  an  average  content  of  14%  of  grease, 
14%  of  water-soluble  matter,  0'6%  of  nitrogen  other 
than  that  of  the  wool,  and  4%  of  potash  (K,0), 
both  the  latter  being  soluble  in  water.  A  concen- 
trated waste  scouring  liquor  from  this  wool  con- 
tained 14%  K20  and  1*25%  N,  while  the  dried  and 
degreased  waste  contained  24-5%  K,0,  25"5%  N, 
and  0'5%  of  grease.  Fertiliser  material  made  from 
this  waste  by  mixing  it  with  another  waste  material 
was  in  a  good  mechanical  condition  for  further 
handling  and  has  a  dark  colour  and  strong  odour. 

—A.  R.  P. 


428  A 


Cl.  XVII.— SUGARS ;  STARCHES;  GUMS. 


[June  15,  1922. 


Ammonium    citrate    solutions;    Analysis    of    . 

C    S.   Robinson  and   S.   L.   Bandeiner.     J.   Ind. 

Eng.  Cheni.,  1922,  14,  429—432. 
A  numbek  of  proposed  methods  for  determining  the 
ammonia :  citric  acid  ratio  in  solutions  of  ammon- 
ium citrate  for  the  analysis  of  fertilisers  have  been 
tested  and  the  results  are  tabulated.  The  following 
two  methods  were  found  to  give  accurate  results : 

(a)  An  excess  of  neutral  formaldehyde  solution  is 
added  to  the  ammonium  citrate  solution  and  the 
liberated  citric  acid  is  titrated  with  standard  alkali 
to  a  permanent  pink  colour  with  phenolphthalein. 

(b)  A  measured  quantity  of  the  solution  is  boiled 
with  an  excess  of  standard  alkali  until  all  the 
ammonia  is  expelled.  The  solution  is  then  titrated 
with  standard  acid  to  a  decided  red  colour  with 
methyl  red.  Phenolphthalein  is  added  and  the  solu- 
tion boiled,  cooled,  and  titrated  with  the  same 
standard  alkali  to  a  pink  tinge.  The  difference 
between  the  amounts  of  acid  and  alkali  added  is 
calculated  to  citric  acid.     (Cf.  J.C.S.,  June.) 

—A.  R.  P. 

Selenium  and  radium:   Influence   of  on   the 

germination  of  seeds.  J.  Stoklasa.  Comptes 
rend.,  1922,  174,  1075—1077. 
Both  selenites  and  selenates  exert  a  marked  injur- 
ious influence  on  the  germination  of  seeds,  selen- 
ites are  much  more  toxic  than  selenates  and  at  great 
dilutions  the  latter  may  even  exert  a  favourable 
influence.  This  injurious  action  of  selenium  com- 
pounds is  to  a  large  extent  neutralised  by  using 
water  charged  with  radioactive  emanation.  In  the 
absence  of  selenium  compounds  the  germinative 
energy  of  6eeds  is  considerably  increased  by  water 
charged  with  emanation. — W.  G. 

Patents. 

Fertilizer,  and  process  of  making  same.  G.  Edgar, 
Assr.  to  United  States  of  America.  U.S. P. 
1,413,013,  18.4.22.  Appl.,  3.1.20. 
Calcium  cyanamide  is  decomposed  with  a  6trong 
mineral  acid  in  excess  of  the  amount  necessary  to 
combine  with  the  free  and  combined  lime.  A  suffi- 
cient quantity  of  a  neutralising  agent,  including  a 
fertiliser  ingredient,  is  then  added  to  convert  the 
excess  acid  into  a  salt. — H.  R.  D. 

Phosphate  fertilizer  containing  potassium  or  sodium 
and.  process  of  producing  the  same.    A.  L.  Kreiss. 
U.S. P.  1,413,168,  18.4.22.     Appl.,  13.9.21. 
Phosphate  rock  is  fed  into  a  heated  dryer  contain- 
ing a  solution  of  an  alkali  salt. — H.  R.  D. 

Superphosphates ;  Utilisation  of  alunite  ore  in  the 

process  of  making  .     A.  Matheson.     U.S. P. 

1,413,048,  18.4.22.    Appl.,  19.8.20. 

See  E.P.  158,293  of  1919;  J.,  1921,  233  a. 


XVII.-SUGADS ;  STARCHES;  GUMS. 

[Sugar  juice;]  Quantity  of  non-sugars  precipitated 
in  the  defecation,  sulphitation,  and  carbonata- 
tion methods  of  clarification  [of  ].     (1)  W. 

Young.  (2)  F.  Leistra.  Arehief  Suikerind. 
Nederl.-Indie,  1922,  30,  1,  1—3.  Int.  Sugar 
J.,  1922,  24,  212. 
Using  average  figures  obtained  during  the  period 
1915 — 18  from  a  large  number  of  factories  in  Java, 
the  author  (Young)  has  calculated  the  amount  of 
non-sugars  removed  from  the  juice  by  different 
methods  of  clarification  to  be  as  follows  :  defecation, 
12-02;  sulphitation,  8'89 ;  and  carbonatation, 
19-69%  of  the  quantity  originally  present.  Since 
carbonatation,  according  to  these  results,  removes 


the  most  non-sugars,  it  should  give  the  highest 
yield  of  sugar.  Commenting  upon  the  above  figures 
Leistra  points  out  that  it  is  unlikely  that  the  juices 
treated  in  the  factories  operating  defecation, 
sulphitation,  and  carbonatation  were  similar,  6ince 
the  localities  of  the  three  different  types  of 
factories  are  widely  different;  while,  moreover,  it 
does  not  follow  that  the  yield  in  the  carbonatation 
process  should  be  proportional  to  the  non-sugars 
precipitated,  seeing  that  it  is  not  only  the  amount 
but  also  the  nature  of  these  non-sugars  that 
influences  their  power  of  inhibiting  crystallisation. 

—J.  P.  o. 

Beet   sugar  syrups  and  molasses;  Purification  of 

by   simultaneous   liming    and   carbonating. 

K.  Urban.     Z.  Zuckerind.  Czechoslov.,  1922,  46, 
323—331,  344—351. 

Sybup  or  molasses  at  a  density  of  50° — 60°  Brix  is 
heated  to  90°  C,  and  milk  of  lime  or  a  mixture 
of  milk  of  lime  and  molasses  added,  carbon  dioxide 
being  passed  into  the  liquid  at  the  same  time  at 
such  a  rate  that  the  alkalinity  is  maintained 
within  the  limits  of  001  and  0 '10%  CaO.  In  an 
experiment  carried  out  on  the  large  scale,  using 
125%  of  lime,  and  keeping  the  alkalinity  between 
0'05  and  010%,  an  increase  in  the  purity  of  3  7° 
was  observed,  while  the  colour  decreased  64%,  the 
ash  9'7%,  and  the  calcium  salts  413%. — J.  P.  0. 

Baryta;  New  industrial  process  for  the  manufacture 

of for  the  treatment  of  molasses  in  the  sugar 

industry.  C.  Deguide  and  P.  Baud.  Comptes 
rend.,  1922,  174,  1177—1179. 
The  process  recommended  is  to  heat  finely-powdered 
barium  carbonate  with  silica,  and  to  decompose 
the  resulting  silicate  with  water.  The  success  of 
the  operation  depends  on  the  fineness  of  division  of 
the  materials  and  the  temperature  of  the  furnace. 
Using  a  Smidth  rotary  furnace  with  an  alumina 
lining  and  a  charge  of  6000  kg.  of  barium  carbonate 
and  600  kg.  of  silica,  clinkers  were  obtained  which 
yielded  78 — 81%  of  their  weight  as  crystallised 
barium  hydroxide.  After  extraction  of  the  molasses 
with  baryta  and  subsequent  decomposition  of  the 
sucrate  by  carbon  dioxide,  the  barium  carbonate 
recovered  may  be  again  converted  into  hydroxide 
by  the  above  process. — W.  G. 

Adsorptive  charcoals;  Decolorising  action  of  . 

H.   G.   Tanner.     J.   Ind.   Eng.  Chem.,  1922,  14, 

441—443. 
Patterson's  theory  (J.,  1903,  608)  that  the  de- 
colorising action  of  charcoal  is  due  primarily  to 
the  presence  of  an  organic  nitrogen  compound, 
which  may  be  isolated  by  digestion  of  the  charcoal 
with  acid,  is  shown  to  be  erroneous.  As  it  is  prac- 
tically impossible  to  separate  this  substance  from 
the  acid  solution,  its  decolorising  power  was  tested 
in  the  presence  of  varying  amounts  of  acid,  and 
the  author  shows  that  this  acid  itself  is  the 
decolorising  agent.  Moreover  decolorising  charcoals 
have  been  prepared  from  Pacific  Coast  kelp,  which 
are  much  more  efficient  than  bone  charcoal  and  yet 
are  free  from  nitrogenous  constituents.  The  adsorp- 
tion theory  of  dyeing  is  applied  to  the  decolorising 
action  of  charcoal  on  sugar  syrups  and  cottonseed 
oil.— A.  R.  P. 

Lcevoglucosan;  Polymerisation  of  — — .  A.  P>'tet 
and  J.  H.  Ross.  Comptes  rend.,  1922,  V*< 
1113—1114. 
TVhf.m  lsevoglucosan  is  heated  with  a  trace  of  zinc 
chloride  at  140°  C.  polymerisation  occurs  in  a  lew 
minutes,  the  products  having  the  general  formula, 
(C»H,„0,)n,  in  which  the  value  of  n  increases  as  tti<« 
pressure  increases.  Compounds  have  been  isolated 
in  which  n  has  the  values  2,  4,  6,  and  8  respective!}. 
(Cf.  J.C.S.,  June.)— W.  G. 


Vol.  IU„  No.  11.] 


Cl.  xviii.— fermentation  industries. 


429  a 


Artificial    honey;    Determination    of    sucrose    and 

starch-syrup    in   .      A.    Behre.      Z.    Unters. 

Nahr.  Genussm.,  1922,  43,  24—44. 

The  dry  matter  can  be  satisfactorily  determined  by 
means  of  the  refractometer.  Inversion  with 
mineral  or  organic  acids  causes  changes  in  the 
sugars  which  influence  the  results  of  analysis. 
While  dextrose  is  little  changed,  Ia:vuIose  is  partly 
decomposed  into  formic  acid  and  carbon  dioxide. 
i  Condensation  products  of  lsevulose  are  also  formed 
such  as  Isevulosins  or  other  dextrin-like  substances, 
which  affect  the  estimation  of  sugar  by  the  methods 
of  Fehling-AIIihn  and  Meissl,  and  also  the  polarisa- 
tion. For  these  reasons  the  iodine  method  is 
recommended  for  the  determination  of  sucrose. 
The  starch  syrup  can  be  determined  by  means  of 
the  polarimeter  or  by  the  iodine  method.  The 
latter  method  suffers  from  the  disadvantage  that 
the  coloured  products  obtained  from  the  lsevulose 
by  inverting  artificial  honey  for  2$  hrs.  must  be 
removed  by  a  charcoal  which  does  not  absorb 
dextrose.  The  so-called  "  dry  matter  free  from 
BUgar,"  which  comprises  1 — 12%  of  artificial  honey 
probably  only  consists  to  a  small  amount  of  non- 
sugars,  the  high  values  obtained  being  due  to  the 
faulty  methods  of  determining  the  sugars  in 
artificial  honey.  It  is  therefore  not  necessarily  to 
be  assumed  that  the  presence  of  these  substances 
decreases  the  value  of  the  artificial  honey  or  is  in 
any  way  injurious.  Small  quantities  of  formic  acid 
are,  however,  usually  present  in  this  fraction.  The 
polarimetric  method,  coupled  with  a  carefully 
specified  Clerget  inversion,  is  recommended  as  a 
practical  method  of  testing  samples  of  artificial 
honey.  If  these  methods  give  values  above  those 
laid  down  by  law  the  content  of  sucrose  can  be 
determined  by  the  iodine  method.  Methods  for  the 
accurate  determination  of  starch  syrup  have  not 
yet  been  worked  out.  No  results  have  hitherto 
been  obtained  by  the  polarimetric  method  which 
have  not  afterwards  been  confirmed. — H.  C.  R. 

.  Amylocellulose  considered  as  composed  of  silicic 
acid  and  amylose.  G.  Malfitano  and  M.  Catoire. 
Comptes  rend.,  1922,  174,  1128—1130. 

1  Experimental  evidence  is  given  in  support  of  the 
view  that  amylocellulose  is  really  a  complex  com- 
pound of  amylose  with  silicic  acid  of  the  type, 
[SiO,(C?HI0Os)n]H2.  Other  amylaceous  materials 
are  similarly  thought  to  be  complexes  of  silicic  acid, 
phosphoric  acid,  or  even  water  with  the  group 
C,H,0Os,  and  it  is  considered  that  this  view  is  better 
in  accord  with  experimental  facts  than  that  which 
requires  varying  stages  of  polymerisation  and  con- 
densation.— W.  G. 

Mannitol;    Manufacture    of    - .       P.     Fenaroli. 

Giorn.  Chim.  Ind.  Appl.,  1922,  4,  85—89. 
Manna  molasses,  obtained  by  pressing  manna  in 
filter-presses,  contains  usually  5%,  and  often  more, 
3f  mannitol.  Before  pressing,  the  manna  should 
be  allowed  to  mature  in  a  cool  and  not  too  dry 
place,  and  the  proportion  of  water  added  to  melt 
;he  manna  into  the  moulds  should  be  such  as  to 
field  molasses  of  37°— 375°  B.  (sp.  gr.  1-345— 1'351). 
The  method  found  most  advantageous  for  the 
"ecovery  of  the  mannitol  is  based  on  removal  of  the 
>ulk  of  the  sugars  present  by  fermentation.  One 
lart  of  the  molasses  is  dissolved  in  5 — 6  pts.  of 
•rater  containing  1  %  of  sulphuric  acid  of  66°  B. 
psp.  gr.  1"84),  the  liquid  being  heated  to  boiling 
or  1  hr.,  then  neutralised  with  powdered  marble 
ind  filtered  hot.  When  cold  the  solution  is  rendered 
lightly  acid,  and  is  pitched  with  a  selected  race 
if  pure  yeast  and  allowed  to  ferment.  When 
ermentation  is  at  an  end,  the  solution  is  concen- 
rated  and  crystallised,  the  crystalline  mass  being 
mrified  by  the  methods  usually  employed  with 
rude  manna.     None  of   the  various  methods   for 


the  artificial  preparation  of  mannitol  by  reduction 
of  lsevulose  and  mannose  seems  capable  of  practical 
application,  but  the  mannitic  fermentation  of 
inverted  beet  molasses  solutions  containing  5 — 6% 
of  sugars,  together  with  traces  of  phosphates  and 
comparatively  high  proportions  of  nitrogenous 
nutrient  materials,  gives  promising  results,  a  yield 
being  obtained  of  more  than  5%  of  mannitol  calcu- 
lated on  the  weight  of  the  molasses;  the  latter  con- 
tained 4263%  of  sucrose  and  24"66%  of  water,  and 
had  a  quotient  of  purity  of  56"58. — T.  H.  P. 

Starch;  Compounds  of  iodine  with  constituents  of 

• .     H.  von  Euler  and  K.  Myrback.     Annalen, 

1922,  428,  1—24. 

An  examination  of  the  partition  coefficient  of  iodine 
at  various  concentrations  between  benzene  and 
starch  solution  shows  that  two  definite  compounds 
of  iodine  with  the  starch  are  formed.  The  forma- 
tion of  these  substances  is  a  reversible  process  con- 
trolled at  any  temperature  by  a  definite  dissociation 
pressure  for  each  compound.  Above  40°  C.  the 
formation  of  hydriodic  acid  becomes  perceptible. 
(C/.  J.C.S.,  June.)— C.  K.  I. 

Celloisobiose.    Ost  and  Knoth.    See  V. 

Dextrin  for  cloth  dressing.    Ponieranz.    See  VI. 

Bacteria  associated  with  rice  etc.    Fowler  and  Sen 
See  XIXa. 

Patents. 
Decolorising  liquids  [sugar  solutions'];  Process  for 

.     J.  F.  Straatman.     E.P.  172,272,  18.2.21. 

Conv.,  3.12.20. 

An  adsorbent  (as  bone  charcoal  or  other  decoloris- 
ing carbon)  and  a  reducing  agent  (as  sulphur 
dioxide  or  sodium  hydrosulphite)  are  applied  simul- 
taneously or  in  succession  for  the  deoolorisation  of 
liquids,  as  6ugar  solutions. — J.  P.  O. 

Sugar  beet;  Process  for  preserving  extracted  slices 

of   .      H.    Mathis.      G.P.    348,358,    24.5.19. 

Addn.  to  334,652  (J.,  1921,  555  a). 

Extracted  slices  of  sugar  beets  of  selected  origin, 
especially  such  as  are  usually  employed  in  the  manu- 
facture of  6Ugar,  are  preserved  as  described  in  the 
chief  patent. — L.  A.  C. 

Starch  paste;  Manufacture  of .    A.  G.  Bloxam. 

From  J.  Kantorowicz.  E.P.  177,985,  23.3.21. 
Potato  or  cassava  starch  and  certain  other  starches 
usually  give  with  boiling  water  a  lumpy  mass  which 
cannot  be  spread.  By  incorporating  soap  with  such 
starch  before  or  during  its  conversion  into  paste, 
a  thick  paste  may  be  formed  which  readily  spreads 
and  is  suitable  for  adhesive  purposes. — J.  R. 


XVIII— FERMENTATION   INDUSTfilES. 

Starch  hydrolysis ;  Experiments  on  the  conditions  of 
acidity  for  the  growth  of  Bacillus  macerans  and 

on  the  course  of .   H.  von  Euler  and  O.  Svan- 

berg.    Biochem.  Zeits.,  1922,  128,  323—325. 

Bacillus  macerans  grows  best  in  a  medium  with 
pH  68  and  it  does  not  apparently  form  acids  during 
growth.  On  a  starchy  medium  hydrolysis  to  amyl- 
oses  takes  place  almost  quantitatively,  the  forma- 
tion of  reducing  substances  being  very  small. 

— H.  K. 

Starch;  Temperature  coefficients  in  the  degradation 
of  — —  and  the  thermostability  of  malt  diastase 
and  ptyalin.  E.  Ernstrom.  Z.  physiol.  Chem., 
1922,  119,  190—263. 

The  optimal  zone  of  reaction  for  malt  diastase  is 
pK  4 — 6,  and  for  ptyalin  ps  6'5.     Malt  diastase  is 


430  a 


Cl.  XVIII.— FERMENTATION  INDUSTRIES. 


[June  15,  1922. 


not  influenced  by  the  presence  of  6odium  chloride 
in  low  concentrations,  but  higher  concentrations 
have  an  inhibiting  action.  Ptyalin  is  inactive  in 
the  absence  of  sodium  chloride.  Ptyalin  and  malt 
diastase  retain  their  activity  at  0°  C.  The  tempera- 
ture coefficient  of  these  two  enzymes  falls  with 
rising  temperature.  The  highest  stability  of  malt 
diastase  lies  at  p„  59,  that  of  ptyalin  at  pH  6"0 — 
61.  The  presence  of  sodium  chloride  (optimum  con- 
centration N/10  NaCl)  greatly  enhances  the  sta- 
bility of  ptyalin ;  the  stability  of  malt  diastase  is 
not  affected  by  the  presence  of  sodium  chloride. 
The  inactivation  temperature  of  ptyalin  under 
optimal  conditions  is  57'5°  C. ;  in  the  absence  of 
sodium  chloride  it  is  51'5° — 52°  C.  Malt  diastase  is 
entirely  inactivated  on  heating  for  one  hour  at  60° 
C.  The  rate  of  inactivation  of  malt  diastase  and 
ptyalin  is  not  in  accord  with  the  formula  of  a  uni- 
molecular  reaction  but  as  in  the  case  of  saccharase 
it  falls  off  quicker  than  required  by  this  formula. 
The  rate  of  inactivation  at  low  concentrations 
increases  with  decrease  in  the  concentration  of  the 
enzvme.  The  heated  enzymes  could  not  be  regener- 
ated.—S.  S.  Z. 

Zymase  formation  in  yeast.   I.   F.  Hayduck  and  H. 
Haehn.     Biochem.  Zeits.,  1922,  128,  568—605. 

Bottom-fermentation  beer  yeast  contains  free 
zymase  and  zymase  combined  with  protoplasm,  the 
former  alone  being  active  after  treatment  of  yea6t 
by  Lebedeff's  process  or  in  acetone-fixed  yeast  even 
in  presence  of  toluene.  Distillery  yeast,  on  the 
other  hand,  gives  no  active  press  juice  or  active 
zymase  after  acetone  treatment.  It  contains  com- 
bined zymase  only  and  its  activity  is  inhibited  by 
toluene,  owing  to  formation  of  impermeable  emul- 
sions with  the  lipoids  of  the  cell  membranes.  A 
torula  yeast,  poor  in  zymase,  by  cultivation  in  a 
wort  with  deficient  air  supply  developed  an 
increased  content  of  zymase  and  a  parallel  increased 
nucleic  acid  metabolism. — H.  K. 

Ester-forming  yeasts.    TJ.  Weber.    Biochem.  Zeits., 

1922,  129,  20S— 216. 
Experiments  with  four  yeasts  and  two  organisms 
of  the  group  of  fungi  imperfecti,  all  of  w'hich  have 
a  strong  odour  of  esters,  showed  that  in  an  atmo- 
sphere of  carbon  dioxide  vigorous  growth  can  take 
place  without  ester  formation.  A  qualitative 
change  of  the  ester  odour  can  be  effected  by  addition 
of  alcohol  or  of  various  nitrogenous  nutrient  media, 
an  odour  of  amyl  esters  being  observed  after  addi- 
tion of  leucine. — H.  K. 

Protein  enzymes.    R.  Ehrenberg.    Biochem.  Zeits., 

1922,  128,  431—449. 
The  author  revives  a  hypothesis  of  enzyme  action 
similar  to  that  of  Liebig.  The  enzyme  is  not  a  rest- 
ing definable  entity ;  enzyme  action  is  a  process  into 
which  the  substrate  may  be  induced  to  pass  under 
certain  conditions.  The  hypothesis  is  illustrated 
by  reference  to  experiments  on  trypsin  and  pepsin. 

— H.  K. 

Carboligase.  IV.  C.  Neuberg  and  H.  Ohle.  Bio- 
chem. Zeits.,  1922,  128,  610—618. 
Improved  experimental  methods  have  confirmed 
and  amplified  the  previous  work  (J.,  1921,  404  a; 
1922,  153  a,  305  a)  on  the  production  of  Z-phenyl- 
acetvlcarbinol  from  benzaldehyde  during  yeast  fer- 
mentation. This  ketone-alcohol  may  be  estimated 
in  the  crude  oil  by  conversion  into  its^  thiosemi- 
carbazone.  It  occurs  to  the  extent  of  27  % .  In  the 
fractionation  of  the  crude  oil  phenyldiketopropane 
was  identified  in  the  ketone-alcohol  fraction  by  its 
oxime  and  phenylhydrazone. — H.  K. 


cr-Emulsin  (oxynitrilese),  S-emulsin  (oxynitrilase) 
and  carboligase.  L.  Rosenthaler.  Biochem' 
Zeits.,  1922,  128,  606—607. 

In  the  author's  opinion  the  formation  of  cyanhydrin 
is  not  enzymatic,  only  the  production  of  the  optic- 
ally active  cyanhydrins  being  effected  by  emulsin. 
Neuberg's  carboligase  is  not  the  first  enzyme  which 
links  together  carbon  to  carbon,  for  emulsin  does 
the  same. — H.  K. 

Carboligase;  Classification  of  — — .  C.  Neuberg  and 
J.  Hirsch.  Biochem.  Zeits.,  1922,  128,  608—609. 
A  reply  to  Rosenthaler  (cf.  supra).  Carboligase 
differs  from  emulsin  in  that  the  carbon  compound 
produced  is  not  hydrolysed  into  its  components 
again  by  simple  means. — H.  K. 

Arsenious    acid;    Influence    of    on    bacterial 

growth.       R.     Cobet     and     V.     van     der     Reis 
Biochem.  Zeits.,  1922,  129,  73—88. 

No  evidence  was  found  that  arsenious  acid  can 
stimulate  the  growth  of  bacteria. — H.  K. 

Lactic  acid  fermentation;  Influence  of  lactic  acid 

on .    B.  J.  Holwerda.    Biochem.  Zeits.,  1922 

128,  465—481. 

The  dissociation  constant  of  lactic  acid  as  deter- 
mined by  various  methods  is  l-5  X 10"*  at  25°  C. 
Lactic  acid  fermentation  in  a  whey  containing 
peptone  is  inhibited  by  undissociated  lactic  acid. 

— H.  K. 

Wines  of  lees  and  of  lees  of  wine;  Composition  of 

.     L.   Semichon.     Comptes  rend.,  1922,  174, 

1179—1182. 

The  wine  from  the  lees  shows  differences  in  com- 
position from  that  of  the  wine  drawn  off  at  first 
in  several  respects.  There  is  a  diminution  in  the 
alcohol  content  by  nearly  2%,  an  increase  in  the 
dry  extract  by  nearly  one-half,  a  slight  increase  in 
the  ash  with  an  accompanying  diminution  in  the 
soluble  ash,  a  considerable  diminution  in  the  alka- 
linity of  the  ash,  a  diminution  of  the  total  tartaric 
acid  by  nearly  one-half,  an  increase  in  the  phos- 
phoric acid,  which  is  nearly  doubled,  and  finally  a 
marked  diminution  in  the  sum  of  alcohol  and  acid. 
In  the  wine  from  the  lees,  as  compared  with  the 
wine  drawn  off  at  first,  the  potassium  bitartrate 
has  been  replaced  by  a  practically  equivalent 
amount  of  potassium  Diphosphate.  This  change  is 
accompanied  by  a  deposition  of  calcium  bitartrate 
which  thus  passes  into  the  lees. — W.  G. 

Solubility  of  benzene  in  alcohol.  Ormandy  and 
Craven.    See  III. 

Mannitol.    Fenaroli.    See  XVII. 

Bacteria  associated  with  rice  etc.  Fowler  and  Sen. 
See  XIXa. 

Patents. 
Fusel   oil;    Increasing    the    yield   of   during 

fermentation.     8.   Frankel  and  J.   Fischl.     G.P 

303,254,  12.4.16.    Conv.,  28.3.16. 
Serum   or  serum-albumin   is  added  to  fermenting 
mashes  or  worts.- — L.  A.  C. 

Teast;    Preparation    of    material    from    for 

accelerating  alcoholic  fermentation.  J.  D.  Riedel 
A.-G.  G.P.  345,695,  10.8.19.  Addn.  to  297,397. 
A  mixture  of  irreversible  metabolin,  a  yeast  pro- 
duct prepared  as  described  in  the  chief  patent,  and 
metabolin  or  its  transformation  product,  antibolin, 
is  precipitated  from  acid  solution.  For  example, 
a  neutral  2%  solution  of  irreversible  metabolin  is 
added  to  a  2%  solution  of  antibolin  in  acetic  acid, 
or  mixed  with  a  neutral  2%  solution  of  metabohn- 
alkali  and  subsequently  acidified  with  acetic  acid. 


Vol.  XLI.,  No.  11.] 


Cl.  XIXa.— FOODS. 


431  A 


The  precipitate  is  separated  by  filtration,  washed, 
dissolved  in  aqueous  sodium  carbonate,  and  the 
solution  is  evaporated  to  dryness.  Metabolin  is 
prepared  from  the  pancreas  or  from  other  organic 
material,  e.g.,  potatoes  (cf.  G.P.  219,756).— L.  A.  C. 

Colouring  matter  for  beer  or  the  like;  Manufacture 
of  .     H.  Luers.     G.P.  347,891,  18.12.19. 

A  mixture  of  the  sugar  solution  obtained  by 
extracting  kiln-dried  malt  and  an  aqueous  extract 
of  germinating  malt  is  evaporated  to  a  6yrupy 
consistence  and  subsequently  heated  for  several 
hours  at  100°  C.  Alternatively,  brewing  malt  or 
green  malt  may  be  steeped  in  an  aqueous  extract 
of  germinating  malt,  the  sugar  subsequently 
extracted,  and  the  solution  heated  above  100°  C. 
The  sugar  employed  may  also  be  obtained  from 
starch  or  from  other  sources. — L.  A.  C. 

Purifying     alcoholic     liquid.       U.S.P.     1,413,864. 
See  XX. 

Iron-yeast  compound.     G.P.  344,708.     See  XX. 


XIXA.-F00DS. 

Milk;   Volumetric   method   for   determining   added 

water  in  .     F.  Kopatschek.     Milchw.  Zentr., 

1922,  51,  85—87. 

i  The  method  depends  on  the  determination  of 
chlorine  and  lactose,  after  removing  albuminous 
matter  with  urany]  acetate.  20  c.c.  of  milk  is 
shaken  with  30  c.c.  of  uranyl  acetate  (1"57%)  and 
30  c.c.  of  water,  and  immediately  filtered.  Part 
of  the  filtrate  is  used  for  the  estimation  of  lactose 
in  the  polarimeter,  and  the  chlorine  is  estimated  in 
10  c.c.  by  Mohr's  method.  The  colour  change  is 
sharper  if  15  c.c.  of  alcohol  is  added.  In  using  the 
results  for  the  detection  of  added  water  a  mean 
value  is  best  obtained  for  L+44xCl  for  the  district 
where  the  investigations  are  being  carried  out 
(L  =  lactose  and  Cl  =  chlorine  in  pts.  per  1000).  The 
%  added  water  is  then  given  by 

100[M-(L+44C1)]/M, 
where  M  is  the  mean  value  for  L+(44xCI)  for  the 
district.     It  is  claimed  that  this  method  will  show 
water  additions  of  5%. — H.  C.  R. 

Milk ;  Variations  in  bacteria  counts  from  as 

affected  by  media  and  incubation  temperature. 
G.  C.  Supplee,  W.  A.  Whiting,  and  P.  A.  Downs, 
Cornell  Univ.  Agric.  Expt.  Stat.  Memoir,  No.  43, 
1921,  221—247. 

Very  considerable  differences  in  bacterial  counts 
are  produced  by  relatively  small  changes  in  media, 
and  in  the  period  and  temperature  of  incubation. 
Incubation  at  37°  C.  for  48  hrs.  on  plain  agar  media 
is  the  least  satisfactory  method  examined.  The 
use  of  dextrose-  or  lactose-agar  is  better,  but 
counts  with  both,  at  37°  O.  for  48  hrs.,  are  con- 
siderably less  than  those  at  20°  or  30°  C.  for  5  days. 
Dextrose-agar,  at  30°  C.  for  5  days,  gives  larger 
counts  than  any  other  method  discussed ;  and  this 
medium  at  20°  C.  for  5  days  is  preferable  to  lactose- 
agar  at  either  20°  or  30°  C.  Variations  of  tempera- 
ture in  a  stack  of  plates  in  an  incubator  are 
sufficient  to  cause  as  much  as  a  fifty-fold  variation 
with  the  same  sample  of  milk.  This  is  emphasised 
in  the  high  temperature-short  period  incubations. 

—A.  G.  P. 

Bacteria   associated   with    rice    and   other    cereals. 

G.  J.  Fowler  and  D.  L.  Sen.     J.  Ind.  Inst.  Sci., 

1921,  4,  119—147. 
The  chief  source  of  bacterial  infection  during  the 
Manufacture  of  starch  is  in  the  grain  used  as  raw 
naterial.  In  the  manufacture  of  starch,  especially 
rom  grain  which  has  undergone  incipient  germina- 
ion,  fermentation  is  most  likely  to  occur  in  the 
ireliminary    steeping    and    in    the    later    settling 


process.  It  is  difficult  to  sterilise  the  grain  com- 
pletely owing  to  the  presence  of  certain  resistant 
bacteria,  and  ordinary  methods  of  cooking  do  not 
produce  sterility.  The  surviving  bacteria,  isolated 
by  direct  heating  of  paddy  mash  or  by  continuous 
sub-culture  into  hot  sterile  paddy  mash,  are  allied 
to  those  utilised  by  Weizmann  for  the  production  of 
acetone  and  n-butyl  alcohol  from  carbohydrates. 
The  simplest  and  cheapest  method  of  sterilisation 
is  by  means  of  sulphur  dioxide.  Polished  rice 
contains  more  bacteria  than  the  unpolished  grain, 
due  probably  to  the  removal  of  an  antiseptic 
alkaloidal  substance  together  with  the  protective 
epidermis  of  the  grain,  and  experiments  are  in 
progress  to  determine  the  relation  if  any  between 
the  presence  of  selected  bacteria  in  the  grain  and 
the  phenomena  of  germination.  The  observed1 
selective  effect  of  a  natural  antiseptic  secreted  by 
the  grain  on  the  bacteria  present  confirms  observa- 
tions in  the  case  of  the  6ee'ds  of  Cassia  tora,  whiclr 
is  used  as  a  fermenting  agent  in  the  indigenous 
indigo  dye  vat  (cf.  Fowler  and  Srinivasiah,  p  410  a). 

—J.  R. 

Baking    powder;    Determination    of    total    carbon 

dioxide  in  .     C.  S.  Robinson.    J.  Assoc.  Off. 

Agric.  Chem.,  1921,  5,  182—191. 

With  the  two  official  (U.S.A.)  absorption  methods 
accurate  results  can  be  obtained  only  if  the  pre- 
cautions advised  by  Heidenhain  (J.  Amer.  Chem. 
Soc,  1896,  18,  1)  be  taken.  The  much  simpler  gaso- 
metric  method  (cf.  J.,  1920,  687  a)  gives  equally 
good  results  and  is  recommended  by  the  author  for 
adoption  as  an  official  method. 

Lard;  Examination  of  for  adulteration.     A. 

Bomer.      Z.   Unters.   Nahr.   Genussm.,    1922,   43, 

87—99. 
The  methods  of  detecting  adulteration  by  vegetable 
fats  and  oils,  vnd  animal  fats  such  as  tallow,  are 
reviewed,  together  with  the  detection  of  hydro- 
genation.  A  chart  is  given  showing  the  results  of 
melting  point  determinations  on  the  glycerides  and 
separated  fatty  acids  of  a  large  number  of  samples 
of  lard,  beef,  horse,  mutton  and  goat  fats.  In 
every  case  the  lards  gave  values  for  Mp  +  2d  (where 
Mp  is  the  melting  point  of  the  glycerides  and  d  the 
difference  in  melting  point  between  the  glycerides 
and  the  separated  fatty  acids)  which  were  well 
above  71,  while  the  values  for  the  other  fats  were 
well  below  this  figure.  The  direct  hydrogenation  of 
lard  has  the  same  effect  on  the  value  Mp+2d  as 
the  addition  of  beef  fat,  and  can  thus  be  easily 
detected.  A  number  of  cases  are  quoted  in  which 
adulterated  lards  were  certified  pure  by  analysts 
without  the  application  of  any  test  capable  of  show- 
ing adulteration. — H.  C.  R. 

Peptic  digestion;  Role  of  acids  in  .     Wo.  Ost- 

wald  and  A.  Kuhn.  Kolloid  Zeits.,  1922,  30, 
234—243. 
In  small  concentrations  sulphosalicylic  acid  furthers 
the  swelling  of  egg  albumin  and  gelatin,  but  in, 
larger  concentrations  it  retards  the  swelling  of  gela- 
tin and  coagulates  egg  albumin.  Despite  it6  coagu- 
lating power,  sulphosalicylic  acid  does  not  form  an 
exception  to  the  general  rule  that  the  swelling  of 
the  substrate  plays  an  important  part  in  peptic 
digestion,  inasmuch  a6  a  furtherance  of  the  swell- 
ing by  acids  also  brings  about  a  furtherance  of  the 
hydrolytic  process,  for  sulphosalicylic  acid  exerts  a 
swelling  action  at  concentrations  of  the  same  order 
as  those  at  which  the  maximum  peptic  digestion 
occurs. — J.  F.  S. 

Ekratum. 
J.,  Oct.  31,  1921,  p.  746a,  col.  1,  title  of  second 
abstract   under    "Foods,"    for    "Indian   Dept.    of 
Industries,  Bull.  No.  5  "   read  "  Bombay  Dept.  of 
Industries,  Bull.  No.  4." 

0 


432  a 


Cl.  XIXb.— WATER    PURIFICATION;    SANITATION. 


[June  15,  1922. 


Meloche  and  Willard. 


Bromide  in  mineral  waters. 
See  VII. 

Refining  palm  oil.    Lauro  and  Dickhart.     See  XII. 

Patents. 

Synthetic    milk    [/com    soya    beans'].      J.    Domas- 
ehintzky.      E.P.    (a)    157,351    and    (b)    157,352, 

10.1.21.  Conv.,  (a)  26.7.19,  (b)  7.1.20. 

(a)  The  unbroken  beans,  peeled  or  unpeeled,  are 
extracted  with  a  solution  of  acids  or  salts  having  an 
acid  reaction.  Innocuous  oxidising  agents  may  be 
added.  The  beans  are  then  washed  and  treated 
with  a  solution  of  carbonates,  or  salts  having  an 
alkaline  reaction,  so  that  on  crushing  and  extract- 
ing the  beans  in  the  usual  manner  with  weakly 
alkaline  water  the  proteins  are  dissolved,  freed  to 
a  great  extent  from  undesirable  flavouring  and 
colouring  constituents,  (b)  About  0'07%  of  sodium 
nitrite  (on  the  dry  beans)  is  added  to  the  alkaline 
washing  liquid  to  decompose  the  amines  present. 

— H.  C.  R. 

Coconuts  and  the  milk  thereof ;  Process  for  prepar- 
ing foods  from .    L.  M.  Smith.    E.P.  177,927, 

3.2.21. 

The  endosperm  from  coconuts  or  copra  is  reduced 
to  a  finely  divided  state  in  the  presence  of  the  milk, 
the  liquid  content  of  the  endosperm  is  extracted  by 
pressing  the  mixture,  and  the  resulting  liquid  is 
evaporated  at  atmospheric  pressure,  and  not  above 
80°  C.  The  concentrated  coconut  milk  has  a  vis- 
cosity approaching  that  of  starch  paste,  is  an 
emulsion,  and  is  capable  of  being  diluted  with  water 
to  a  cream-  or  milk-like  consistence.  The  sugar 
and  protein  originally  present  in  the  endosperm  are 
contained  in  the  product  substantially  unchanged 
together  with  coconut  oil.  The  thick  paste  contains 
about  70%  of  coconut  oil,  12%  of  protein,  12%  of 
sugar,  and  6%  of  water. — H.  C.  R. 

Meats;  Manufacture  of  cured  or  pickled .     H. 

Wade.      From    Wilson    &    Co.      E.P.    177,988, 
29.3.21. 

In  the  curing  of  meats  by  means  of  salt,  saltpetre, 
and  other  substances  in  the  6olid  condition  or  in 
solution,  the  fresh  pickle  is  inoculated  with  a  pure 
virile  culture  of  a  single  selected  type  of  a  non- 
pathogenic, non-putrefractive,  nitrate  -  reducing 
bacteria  (micrococcus)  whereby  a  dominant  growth 
of  this  bacteria  is  produced  and  the  growth  of  other 
bacterial  flora  is  prevented  or  considerably  in- 
hibited. The  pure  culture  is  isolated  by  plating  and 
selection  from  a  pickling  solution  in  ordinary  beef 
broth  preferably  containing  a  small  amount  of 
nitrate. — J.  R. 

Casein  and  [alkaline-earth']  hydroxide ;  Art  of  pro- 
ducing a  composition  of  .     A.  A.  Dunham, 

Assr.  to  The  Casein  Mfg.  Co.     U.S. P.  1,412,462, 

11.4.22.  Appl.,  5.11.20. 

Solutions  of  an  alkaline-earth  hydroxide  and  casein 
are  mixed  and  the  solutions  quickly  evaporated  to 
dryness  in  a  thin  film  on  a  surface  heated  above 
100°  C.  so  as  to  obtain  a  dry,  porous  scale  or  flake 
which  is  soluble,  the  solution  being  alkaline  and 
having  a  saline  taste.  About  5  pts.  of  calcium 
hydroxide  to  95  pts.  of  casein  (dry  weight)  is  a 
suitable  proportion. — J.  R. 

Casein;    Preparation   of    compounds    of    [for 

baking  powders].  B.  Blever.  G.P.  344,707, 
14.3.20. 
Moist  or  dry  casein  is  treated  with  lactic  acid  and 
an  oxide  or  hydroxide  of  an  alkaline  earth  or  mag- 
nesium. The  mixture  is  dried,  yielding  a  non- 
hygroscopic  powder  suitable  for  use,  e.g.,  as  an  acid 
in  the  manufacture  of  baking  powder. — L.  A.  C. 


Foods   [e.g.,   gelatin];  Process  for  bleaching  . 

I.  Hochstadter.  U.S. P.  1.412,523,  11.4.22.  Appl  , 
6.4.21. 

A  food  product,  e.g.,  gelatin,  is  bleached  by  treat- 
ment with  sulphur  dioxide,  washed  with  water,  and 
subsequently  treated  with  hydrogen  peroxide  in 
sufficient  amounts  to  oxidise  the  remaining  sulphur 
dioxide  and  to  bring  about  a  further  bleaching 
effect.  The  acid  formed  in  the  treatment  is  then 
neutralised,  e.g.,  with  ammonia. — J.  R. 

Fodder;  Manufacture  of by  the  decomposition 

of  finely  divided  straw.  Veredelungsges.  fiir 
Nahrungs-  und  Futtermittel  m.b.H.  G.P.  348,188, 
26.3.18.    Addn.  to  305,641  (J.,  1919,  789  a). 

Finely  divided  straw  is  treated,  without  heating, 
with  milk  of  lime  or  calcium  hydroxide  solution, 
instead  of  with  alkali  hydroxides  as  described  in 
the  chief  patent.  The  reaction  may  be  intensified 
by  the  addition  of  compounds  which  react  with  cal- 
cium hydroxide  to  form  alkali  hydroxides,  e.g., 
sodium  or  potassium  carbonate,  potassium  sulphate, 
or  plant  ashes. — L.  A.  C. 

Alkaloids,  bitter  substances,  and  the  like;  Process 

for  removing  and  obtaining  from  vegetable 

and  animal  products,  especially  lupins.  Elektro- 
Osmose  A.-G.  (Graf  Schwerin  Ges.).  G.P. 
348,853,  25.12.18. 

Lupins,  or  other  vegetable  or  animal  products,  are 
steeped  in  water,  and  subjected  to  electro-osmotic 
action  between  diaphragms,  after  previous  removal, 
if  necessary,  of  a  portion  of  the  alkaloids  etc.  by 
chemical  means. — L.  A.  C. 

Yeast;  Process  for  improving  the  odour,  taste,  and 

digestibility    of    raw    for    the    purpose    of 

employing  it  as  edible  yeast.  H.  O.  Traun's  For- 
sclmngslaboratorium  Ges.  E.P.  156,153,  31.12.20. 
Conv.,  15.3.19. 

See  G.P.  331,348  of  1919;  J.,  1921,  712  a. 

Vegetable    materials;    Conservation    of 
Schweizer.       E.P.     156,173,     31.12.20. 
20.10.19. 

See  U.S.P.  1,404,549  of  1922;  J.,  1922,  229  a. 

Heat-treating  bodies  [canned  foods]  in  a  retort  or 

similar  fluid-tight  vessel;  Process  of .*  N.  H. 

Fooks.     E.P.  177,974,  10.3.21. 

See  U.S.P.  1,366,778  of  1921;  J.,  1921,  171a. 

Meat  extract;  Method  of  preparing  in  a  dry 

state.  A.  Chalas.  U.S.P.  1,414,177,  25.4.22. 
Appl.,  10.7.19. 

See  E.P.  129,639  of  1919;  J.,  1920,  382  a. 


XIXb.-WATEB  PURIFICATION; 
SANITATION. 

Water;  Purification  of by  activated  silt.    G.  J 

Fowler  and  R.  R.  Deo.  J.  Indian  Inst.  Sci., 
1921,  4,  149—157. 
Experiments  were  conducted  on  the  purification  of 
artificially  contaminated  water  by  means  of  aerated 
silt  deposited  from  river  water  in  the  Shanghai, 
Cawnpore,  and  Calcutta  water-works,  with  a  vn« 
to  investigate  the  part  played  by  silt  in  the 
natural  purification  of  river  water.  Silt  (10  g.)  was 
made  to  a  paste  with  water,  600  c.c.  of  a  sewage 
effluent  and  400  c.c.  of  water  were  added,  together 
with  Winogradski  salts  (potassium  hydrogen  phos- 
phate 1  pt.,  manganese  sulphate  0"5  pt.,  sodium 
chloride  2  pts.,  calcium  chloride  traces)  and  suffic- 
ient ammonium  sulphate  to  bring  up  the  amnion- 
ic al  nitrogen  to  lOpts.  perl00,000.  Air  was  bubbled 


Vol.  xli.,  no.  li]         Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


433  a 


■through  the  solution,  and  in  17  days  the  whole  of 
the  ammonia  as  well  a6  the  nitrous  nitrogen  had 
•disappeared.  With  a  solution  containing  O'l  pt.  of 
ammoniacal  nitrogen  per  100,000,  nearly  90%  of 
the  ammonia  was  removed  after  aeration  for  24  hrs. 
Up  to  60%  of  the  oxygen-consuming  power  of  the 
water,  as  indicated  by  the  permanganate  test,  was 
removed  after  treatment  for  6  hrs.,  and  water  of  a 
higher  degree  of  purity  was  obtained  on  treating 
contaminated  water  with  aluminium  sulphate  if 
the  treatment  was  preceded  by  aeration  for  5  hrs. 
in  the  presence  of  silt.  The  addition  of  effluents  to 
suspensions  of  silt  in  water  caused  a  rapid  increase 
in  the  rate  of  settling  of  the  silt,  the  change  being 
■  accelerated  by  aeration  and  accompanied  by  a 
darkening  in  colour  of  the  silt. — L.  A.  C. 

Cresol  soap  solutions;  Determination  of  the  cresol 

content  of  .     L.  Frank.     Chem.-Zeit.,  1922, 

46,  390. 

The  distillation  in  steam  of  the  neutralised  cresol- 
soap  solution,  followed  by  ether  extraction  of  the 
cresol  from  the  distillate,  evaporation  of  the  ether, 
drying  of  the  cresol  at  100°  C.  for  40  mill.,  and 
weighing  tends  to  yield  low  results.  The  following 
method  gives  results  correct  to  +1%  in  solutions 
of  cresol  soaps  which  remain  clear  on  dilution. 
10  g.  of  the  clear  soap  solution  is  shaken  with  1  g. 
of  common  salt  and  60  c.c.  of  ether  in  a  250  c.c. 
■separating  funnel,  30  c.c.  of  water  is  added,  and 
the  whole  again  shaken.  After  standing  for  1  hr., 
the  soap  layer  is  withdrawn,  and  the  ethereal  layer 
is  washed  three  times  with  10  c.c.  of  water.  The 
ether  solution  is  then  filtered,  through  a  paper 
moistened  with  ether  and  containing  5  g.  of  ignited 
sodium  sulphate,  into  a  conical  flask,  into  the 
middle  of  the  base  of  which  has  been  sealed  a 
graduated  tube.  The  filter  is  washed  several  times 
I  with  ether,  and  the  conical  flask  containing  filtrate 
and  washings  is  placed  in  a  water  bath  and  heated 
.gently  to  distil  off  the  ether,  then  heated  to  100°  C. 
for  1  hr.  The  volume  of  cresol  is  read  off  and 
multiplied  by  1'03  to  obtain  the  weight. — A.  R.  P. 


Arsenates  of  lead;  Physical  properties  of  com- 
mercial   •.     R.   H.   Robinson.     J.   Ind.    Eng. 

Chem.,  1922,  14,  313—317. 

Acid  lead  arsenate  is  more  effective  as  an  insecticide 
than  the  basic  salt,  and  it  is  further  desirable  that 
the  material  used  should  be  high  in  total  arsenic 
and  low  in  water-soluble  arsenic.  In  addition  the 
physical  properties  of  the  material  are  important. 
To  adhere  effectively  when  sprayed,  the  particles 
must  be  as  small  as  possible.  The  addition  of  a 
small  quantity  of  a  deflocculant  or  "spreader," 
e.g.,  gum-arabic,  breaks  up  the  aggregates  of  small 
particles  and  is  of  advantage.  A  number  of  com- 
mercial preparations  are  compared  from  this  point 
of  view  by  settling  tests  and  photomicrographs. 

Carbon  monoxide;  Tests  of  an  iodine  pentoxide 
indicator  for .  S.  H.  Katz  and  J.  J.  Bloom- 
field.    J.  Ind.  Eng.  Chem.,  1922,  14,  304—306. 

I  The  indicator  consists  of  a  tube  of  activated  char- 
coal, through  which  gas  is  drawn  by  means  of  a 
bulb,  and  a  tube  filled  with  "  Hoolamite  "  (pumice 
impregnated  with  iodine  pentoxide  and  fuming 
sulphuric  acid),  through  which  the  gas  is  dis- 
charged. Both  tubes  are  provided  with  cotton  wool 
filters.  The  presence  of  carbon  monoxide  of  0'07% 
concentration  and  upwards  in  air  produces  a  colour 
change  on  the  pumice,  and  a  scale  of  colours  allows 
the  concentration  to  be  roughly  estimated.  Details 
of  tests  with  smoke,  flue-gases,  and  in  mines  are 
given.  Carbon  dioxide,  methane,  chlorine,  and  some 
other  gases  do  not  interfere  even  without  the  char- 
coal guard.  The  tubes  may  be  used  for  6 — 8  deter- 
minations before  deterioration  begins. — C.  I. 


Lead  arsenate.    Tartar  and  Grant.    See  VII. 

Dicthylcnedisulphidetetra-iodide,  a  new  antiseptic. 
Baehem.    See  XX. 

Patents. 
Treating   [purifying']  liquids   [e.g.,   water  used  in 

laundries;     Electrolytic']     apparatus     for    . 

A.  D.  Smith..  E.P.  176,457,  26.11.20. 
In  an  electrolytic  apparatus  devised  more  especially 
for  separating  dirt  etc.  from  water  used  in 
laundries  without  loss  of  detergent,  and  for  remov- 
ing minerals  etc.  from  water  derived  from  artesian 
wells,  flat  electrodes  are  arranged  parallel  to  each 
other  and  spaced  so  as  to  permit  circulation  of  the 
electrolytic  fluid.  Reciprocating  scrapers,  operated 
automatically,  remove  from  the  electrodes  all 
deposits  formed  thereon.  The  electrodes  and 
scrapers  are  rotated  about  a  vertical  axis,  and  the 
scrapers  ascend  and  descend  simultaneously  with 
the  rotation  of  the  electrodes,  both  movements 
being  effected  by  the  same  driving  means. 

—J.  S.  G.  T. 

Organisms;  Porcess  and  apparatus  for  destroying 
— .     D.   Crowther.     U.S.P.   1,413,006,   18.4.22. 
Appl.,  20.1.19. 

Material  infected  with  organisms  is  heated  under 
pressure  in  the  presence  of  a  gas,  which  will  have 
no  action  on  the  material  in  question,  until  the 
organisms  become  saturated  therewith.  The  pres- 
sure is  then  suddenly  released,  thereby  causing 
disruption  of  the  organisms.  The  heat  supplied 
should  be  sufficient  to  prevent  appreciable  decrease 
of  temperature  due  to  the  sudden  expansion  of  the 
gas.  The  apparatus  consists  of  a  jacketed  closed 
chamber  containing  a  receptacle  for  the  material. 
Gas  under  pressure  can  be  admitted  either  into  the 
top  of  the  chamber  or  through  a  pipe  leading  to 
the  bottom,  and  means  are  provided  for  suddenly 
releasing  the  pressure. — F.  G.  P.  R. 

"Bacteria:   Process  fur  killing  and  sterilising 

articles.  T.  Freudenberger.  G.P.  349,283,  30.7.18. 

Articles  are  treated  in  the  presence  of  air  with 
leuco-compounds  of  aniline  dyestuffs  free  from  iron 
and  arsenic,  together  with  other  disinfectants,  e.g., 
boric  acid. — L.  A.  C. 

Respirators;  Apparatus  for  use  with  for  the 

detection  of  small  quantities  of  carbon  monoxide. 
L.  A.  Levy,  Assr.  to  R.  H.  Davis.  U.S.P. 
1,414,191,  25.4.22.     Appl.,  5.7.21. 

See  E.P.  170,404  of  1920;  J.,  1921,  901  A. 


XX.-0RGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES;    ESSENTIAL  OILS. 

Opium.      Preparation    of    tincture;    estimation    of 
morphine   in    opium;   substances  which   interfere 
with     its     estimation     and     extraction;     loss     of 
morphine  in  powder  fni  keeping.    A.  C.  Abraham, 
H.    E.    Digby,    and   J.    Rae.      Pharm.    J.,    1922, 
108,  353—357. 
The  B.P.   process  for  the  preparation  of  tincture 
of   opium   is  both  wasteful   and   troublesome,    and 
maceration  of  the  material  in  the  form  of  No.  24 
powder  with  45%   alcohol  for  24  hrs.,   followed  by 
percolation  with  more  alcohol,  is  recommended.    By 
this  means  the  whole  of  the  morphine  is  extracted 
from  the  opium.     In  the  estimation  of  morphine  in 
opium  it  is  suggested  that  powdered  glass  be  added 
when  triturating  with  lime  in  order  to  reduce  the 
opium  to  a  verv  fine  powder,  and  that  the  macera- 
tion be  continued    for     18  hrs.   in  a  closed  vessel. 
After  precipitating  the  alkaloid  in  an  aliquot  por- 
tion of  the  filtered    liquid    in    presence    of    ether- 

c  2 


434  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


[Jnne  15,  1922. 


alcohol,  it  is  set  aside  for  a  further  18  hrs.,  and  the 
supernatant  ethereal  layer  is  then  drawn  off  and 
rejected.  Finally,  the  titration  of  the  filtered, 
washed,  and  dried  morphine  crystals  may  he 
omitted,  as  in  a  properly  conducted  analysis  the 
result  should  be  exactly  the  same  as  the  direct 
weighing.  The  waxes,  etc.,  in  opium  interfere 
with  the  morphine  determination,  and  if  accurate 
results  are  required  they  should  be  first  removed  by 
percolation  with  light  petroleum.  Opium  in 
powder  loses  morphine  on  keeping,  probably  due  to 
enzyme  action  favoured  by  air.  Liquid  prepara- 
tions of  opium  do  not  lose  strength  in  this  way. 

— G.  F.  M. 

Quinine  alkaloids  and  their  salts;  Titration  of . 

N.      Schoorl.      Pharm.      Weekblad,     1922,     59, 

369—374. 
The  free  bases  are  dissolved  in  strong  alcohol  and 
titrated  with  N/10  hydrochloric  acid,  using  first 
methyl  red  (results  1%  high)  and  then  neutral  red 
(results  1%  low)  as  indicators,  and  taking  the 
average  of  the  two  readings.  The  mono-salts  are 
titrated  with  N 1 10  alkali  in  strong  alcoholic  solu- 
tion in  presence  of  phenolphthalein,  and  the 
di-salts  either  back  to  the  mono-salts,  using 
methyl  red  and  neutral  red  as  above,  or  "back  to 
the  free  bases,  using  phenolphthalein.  Where  the 
sulphates  are  being  estimated,  the  end  points  are 
vague,  it  is  necessary  to  stir  with  chloroform 
to  remove  the  free  bases  from  the  solution. 
{Of.  J.C.S.,  June.)— S.  I.  L. 

Quinotoxine  in  quinine  salts.     D.  Ganassini.     Boll. 

Chim.  Farm.,  1922,  61,  193—199. 
The  presence  of  quinotoxine  in  quinine  salts  may 
be  detected  as  follows  :  The  free  base  is  isolated 
from  the  salt  and  part  of  it  carefully  evaporated 
to  dryness  with  a  few  drops  of  nitric  acid;  if 
quinotoxine  is  present  the  residue  is  deep  yellow, 
and  is  turned  intense  brownish-yellow  by  ammonia 
solution.  The  rest  of  the  base  is  dissolved  in  warm, 
very  dilute  acetic  acid.  One  portion  of  the  filtered 
solution  is  shaken  with  a  little  sodium  nitrite,  a 
vellowish  precipitate  being  formed  with  quino- 
toxine. Another  portion  is  shaken  with  phenyl- 
hydrazine,  the  deep  orange-yellow  quinotoxine 
phenvlhvdrazone  being  gradually  deposited. 
Bromophenylhydrazine  gives  a  deep-red  coloration 
with  quinotoxine.  Solutions  of  quinine  salts  which 
become  yellow  when  sterilised  probably  contain 
quinotoxine,  and  should  not  be  used  medicinally. 
iff.  J.C.S.,  June.)— T.  H.  P. 

Belladonna  extracts;  Nature  of  the  alkaloids  con- 
tained in  .     A.   Goris  and  P.   Costy.     Bull. 

Sci  Pharm  1921,  28,  545 — 549.  Chem.  Zentr., 
1922,  93,  II.,  335—836. 
Experiments  with  aqueous  and  alcoholic  extracts 
of  belladonna  leaves  containing  0-55%  of  alkaloids, 
aD=-20°10',  gave  the  following  results,  which  in 
each  case  refer   to   an  extract  containing  20%    of 

water. 

Alkaloid  a 

Procedure.  content.  D. 

1.  Alcoholic  extract  evaporated  in  the 

cold  in  vacuo,  and  freed  from  chloro- 
phyll by  the  addition  of  ether      ..    2-41% 

2.  Alcoholic  extract  concentrated  hot  in 

vacuo,  chlorophyll  removed  by  fil- 
tration, and  evaporation  completed 
in  vacuo  over  quicklime     . .  .  ■    2-34% 

3.  Alcoholic  extract  evaporated  on  the 

water-bath 2-48% 

4.  Extract  concentrated  on  the  water- 

bath,  filtered  and  evaporated        . .    2-43% 

5.  Aqueous  extract  concentrated  on  the 

water-bath,  treated  w,th  95% 
alcohol,  and  evaporated     ..         ..    1-76A 


— 19°S2' 

— 18°26' 

— 14°15' 

— 9°10' 


— 10°64' 

— L.  A.  C. 


Saponin*:  To.rU-  action  and  surface  activity  of . 

L.  Roller.     Biochem.  Zeits.,  1922,  129,  64— 72. 
The  author  has  measured  the  hsemolytic  index,  the 


drop  number,  and  the  "  fish  index  "  (concentration 
of  substance  which  kills  a  roach  O'l  to  0'5  g.  in 
weight  in  1  hr.)  of  eight  saponins.  There  is  no 
parallelism  in  these  properties.  The  order  of  the 
drop  numbers  may  even  change  with  change  of 
concentration.  It  is  considered  essential  that  in 
order  to  trace  the  relation  between  the  surface 
activity  and  the  physiological  action  that  the  con- 
centrations used  in  the  surface  tension  measure- 
ments should  be  those  in  the  physiological 
experiments. — H.  K. 

Metachole.sterol  and  its  by-products.  III.  I. 
Lifschutz.     Biochem.  Zeits.,  1922,  129,  115—127. 

The  author  amplifies  the  description  of  the  pro- 
perties of  metacholesterol  previously  given  (J.,  1920, 
576  a).  It  has  a  molecular  weight  of  369  and 
[a]D=-33'7  in  chloroform. — H.  K. 

Tyramine  (p-hydroxypheniilethylamine)  as  the 
active  principle  of  Semina  cardui,  Maria;.  A. 
Ullmann.     Biochem.  Zeits.,  1922,  128,  402—406. 

An  aqueous  extract  of  the  powdered  drug  was  pre- 
cipitated with  phosphotungstic  acid  and  the  bases 
fractionated  by  Kossel  and  Kutscher's  process. 
The  final  filtrate  had  a  strong  pressor  action  due  to 
the  presence  of  tyramine,  which  was  isolated  by 
extraction  with  amyl  alcohol  and  identified  as  its 
benzoyl  derivative  and  by  colour  reactions. 

— H.  K. 

Dulcin  (p-phenetolurea) ;  Changes  in  the  sweetness 

of    caused    by    chemical    modification    of 

individual  radicles,  or  the  sweetening  power  of 
derivatives        of       p-hydroxyphenylurea.        C. 
Speckan.      Ber.    deuts.    Pharm.    Ges.,    1922,    32, 
83—107. 
Replacement  or  modification  of  the  ethoxyl  group 
of   p-phenetolurea   led   in   every  case   investigated, 
with  the   exception  of  /3-bromo-p-phenetolurea,  to 
the  complete  suppression  of  the  sweet  taste  of  the 
parent  substance.  Aromatic  amino-derrvative6  of  the 
constitution,     NH2CONH^C6H/OCH2CH2-Nrnt, 
prepared  from  the  /3-bromodulcin,   were  all  taste- 
less, whilst  the  complete  replacement  of  the  ethyl 
group       by       such         groups        as        -COOC2Hs, 

-CO.N(C6H5)2,    — CH2-CH-CH2,    or     -COCA, 

\  o/ 

likewise  give  tasteless  substances  in  all  cases  except 
the  benzoyl  derivative,  which  had  an  acid  taste 
with  a  faintly  sweet  after  taste,  which  was,  how- 
ever, completely  removed  by  the  introduction  of  a 
second  benzoyl  group  in  the  urea  residue.  Finally, 
the  replacement  of  ethyl  by  keto  groups  such  as 
acetonyl,  -CH,.CO.CH„  or  acetophcnonyl 
CH„.C'O.C[H5,  was  tried,  but  the  resulting 
p-carbamidophenoxy  acetone 

NH2.CO.NH.C6H4.O.CH2.CO.CH„ 
and  p-carbamidophenoxyacetophenone  were  quite 
tasteless,  although  p-anisolurea,  of  which  they  maj 
be  regarded  as  the  acetyl  and  benzoyl  derivatives 
respectively,  is  somewhat  sweet,  but  not  so  sweet 
as  dulcin.     (C/.  J.C.S.,  June.)— G.  F.  M. 

Dicyanamide.   W.  Madelung  and  E.  Kern.   Annalon, 

1922,  427,  1—34. 
Sodium  dicyanamide,  NNa(CN)2,  isobtained  in  good 
yield  by  treating  an  aqueous  solution  of  disodiuni 
cyananiide   with  cyanogen    bromide.      It   is  easil; 
soluble  in  water  but  less  so  in  alcohol ;  its  aqueous 
solution  is  neutral  to  litmus.     If  the  decompositi 
is  carried  out  in  alcohol  instead  of  water  the  sodium 
salt  of  O-ethvlcyanoisourea   NH  :C(OC2Hs).NHX 
is  formed  as  a  bv-product.  Free  dicyanamide  cannot 
be  isolated  owing  to  the  speed  with  which  it  passf 
into   an   amorphous  polymeride  of   high   molecular 
weight.     Its  salts  are  quite  stable,  however,  and  me 


Vol.  XLI..  No.  li]      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


435  a 


silver,  cuprous,  mercurous,  lead,  cupric,  mercuric, 
ferric,  and  ammonium  salts  are  described.  Di- 
cyanamide  undergoes  additive  reactions  with  water, 
ammonia,  and  ethyl  alcohol,  producing  cyanourea, 
biuret,  cvanoguanidine,  O-ethylcyanoisourea  and 
O-ethylisobiuret,  NHrC(:NH).OC3H5],.  When 
6odium  dicyanamide  is  heated  to  redness  it  is  con- 
verted into  the  sodium  6alt  of  tricyanomelamine, 
several  salts  of  which  are  described.  (fif.  J.C.S., 
May.)— C.  K.  I. 

p-Nitrophenylhydrazine  and  other  aromatic   hydr- 
azines; Preparation  of .    W.  Davies.    Chem. 

Soc.  Trans.,  1922,  121,  715—721. 

By    the    interaction     of    p-nitrobenzenediazonium 
chloride  and  sodium  sulphite  a  comparatively  stable 
p-nitrophenylhydrazine -disulphonate      is      formed 
according  to  the  equation 
N0].C6H,.N„Cl+2Na,SOs  +  H20  = 

N02.C0H<.N2H(SOJNa)2+NaCl+NaOH. 
To  obtain  a  good  yield  of  p-nitrophenylhydrazine 
the  sulphite  solution  must  be  maintained  neutral  or 
alkaline  throughout  the  addition  of  the  diazo  solu- 
tion, otherwise,  or  when  sodium  bisulphite  is  used, 
the  diazo-sulphonate  separates  as  an  unstable  orange 
mass  which  redissolves  to  react  with  more  sodium 
sulphite  with  difficulty,  but  readily  decomposes  with 
formation  of  a  resin.  The  replacement  of  sodium 
sulphite  by  ammonium  sulphite  in  the  preparation 
of  this  and  other  aromatic  hydrazines  is  very 
advantageous,  as  not  only  is  the  bulk  of  the  liquid 
kept  down  but  the  ammonium  hydrazinesulphon- 
ates  formed  as  intermediate  products  are  often  only 
slightly  soluble  in  water.  Thus  for  the  preparation 
■}f  p-nitrophenylhydrazine,  the  diazonium  solution 
prepared  from  10  g.  of  p-nitroaniline  is  added  to 
'lO  c.c.  of  a  saturated  ammonium  sulphite  solution 
arepared  by  neutralising  1  pt.  of  ammonia  (sp.  gr. 
V880)  and  2  pts.  of  ice  with  sulphur  dioxide.  The 
•esulting  sparingly  soluble  ammonium  p-nitro- 
Aenylhydrazinedisulphonate  is  filtered  off  and 
lydrolysed  with  concentrated  hydrochloric  acid  in 
1  he  usual  way.  The  yield  of  the  free  hydrazine  base 
mounts  to  80%  of  the  theoretical. — G.  F.  M. 

Jiethylenedisulphidetetra-iodide.  A  new  antiseptic 
with  a  high  iodine  content.  C.  Bachem.  Biochem. 
Zeits.,  1922,  129,  190—193. 
The  properties  of  diethylenedisulphidetetraiodide, 
iI2:(CH2.CH2),:SI2  containing  81%  of  iodine  have 
■een  examined  with  a  view  to  its  use  as  a  wound 
lisinfectant.  It  is  partly  decomposed  by  water,  but 
?ss  by  proteins  and  completely  by  ether  with  libera- 
ion  of  iodine.  Its  most  striking  property  is  its 
owerful  inhibitory  action  on  bacterial  growth.  It 
i  relatively  non-toxic  to  animals  but  has  a  disagree- 
ble  odour.— H.  K. 

fi'-Dichlorodiethyl    sulphide;    Production   and   re- 
actions of  .     F.  G.  Mann  and  W.  J.  Pope. 

Chem.  Soc.  Trans.,  1922,  121,  594—603. 

'N  treatment  with  chlorine  /3/3'-dichlorodiethyl  sul- 
hide  yields  the  corresponding  tri-,  tetra-,  and 
exa-chlorodiethyl  sulphides,  in  all  of  which  the 
dditional  chlorine  atoms  enter  one  only  of  the 
•vo  ethylene  residues  of  the  molecule,  as  shown 
y  the  fact  that  all  are  oxidised  by  nitric  acid  to 
-chloroethanesulphonic  acid.  By  the  action  of 
ther  sulphur  monochloride  or  sulphur  dichloride 
i  /3/3'-dichlorodiethyl  sulphide,  tri-  and.  tetra- 
llorodiethyl  sulphide  are  also  produced,  both  sub- 
ances    acting    therefore   as    chlorinating    agents. 

Ividence  was  obtained  that  a  certain  proportion  of 
■chloroethylsulphur  chloride  is  also  formed  in  the 
taction  with  sulphur  dichloride,  probably  accord- 
ig  to  the  equation 

(CH2-C1-CH2)2S  +  SC12  =  2CH2C1CH2-SC1. 
hen  ethylene  is  passed  through  sulphur  dichloride 
e  ruby  red  colour  gives  place  to  an  amber  yellow 


long  before  2  niok.  of  ethylene  has  been  absorbed. 
If  the  reaction  is  arrested  at  this  stage  a  product 
is  obtained  from  which  no  /3j8'-dichlorodiethyl  sul- 
phide can  be  obtained,  and  which  consists  of  a 
mixture  of  the  tri-  and  tetra-chloro-  compounds, 
/3-chloroethylsulphur  chloride,  and  sulphur  mono 
chloride.  The  /S/J'-dichlorodiethyl  sulphide  which  is 
obtained  in  about  30%  yield  by  carrying  the  absorp 
tion  of  ethylene  to  completion  is  formed  therefore 
from  the  sulphur  monochloride  produced  during  the 
preliminary  decomposition  of  the  dichloride.  The 
above-mentioned  chloro-compounds  have  the  follow- 
ing characters  :  —  a/3/3'-trichlorodiethyl  sulphide, 
b.p.  106-5°— 108°  C.  at  15  mm.  pressure,  sp.  gr. 
14219;  a/?/3£'-tetrachlorodiethyl  sulphide,  b.p.  123° 
—125°  C.  at  15  mm.,  sp.  gr.  1-5441 ;  aaft3,8/3'-hexa- 
chlorodiethyl  sulphide,  b.p.  160 — 161°  C.  at  15  mm., 
sp.  gr.  1-6944.  The  tri-  and  tetra-chloro-com- 
pounds  on  oxidation  with  alkaline  hypochlorite 
solution  yield  the  corresponding  sulphoxides,  melt- 
ing at  69°  C.  and  121°  C.  respectively.— G.  F.  M. 

Drying;    Change    of   properties   of   substances    on 

.     H.   B.   Baker.     Chem.   Soc.  Trans.,   1922, 

121,  568—574. 

Bromine,  mercury,  hexane,  benzene,  carbon  bisul- 
phide, carbon  tetrachloride,  ether,  methyl  alcohol, 
ethyl  alcohol,  and  propyl  alcohol  in  a  high  state  of 
purity,  after  standing  in  sealed  vessels  containing 
phosphoric  oxide  (where  no  chemical  action  was 
feared  as  in  the  case  of  the  first  six  the  oxide  was 
placed  in  contact  with  the  liquid ;  for  the  remainder 
the  vapour  only  was  exposed  to  the  drying  action), 
for  varying  periods  of  years  showed  a  marked  rise, 
14° — 60°  C,  of  boiling  point  (the  point  at  which 
ebullition  begins).  Preliminary  determinations  of 
the  surface  tensions  of  the  dried  liquids  are  in 
accord  with,  and  lend  support  to,  the  hypothesis 
that  the  phenomenon  is  caused  by  increased  mole- 
cular complexity  favoured  by  absence  of  water 
vapour.  There  is  no  change  in  density  after  drying 
for  one  year.  The  melting  points  of  sulphur  and 
iodine  show  a  slight  rise  after  drying  for  nine  years. 

—P.  V.  M. 

Thymol;  Manufacture  of from  ajowan.     J.  V. 

Lakhani,  J.  J.  Sudborough,  and  H.  E.  Watson. 
J.  Ind.  Inst.  Sci.,  1921,  4,  59—84. 

Experiments  were  made  on  the  steam  distillation 
of  ajowan  seeds  on  a  technical  scale.  The  yield  of 
oil  varied  from  2"5  to  35 % ,  containing  40—45 %  of 
its  weight  of  thymol.  For  the  distillation  of  1  lb. 
of  oil  100 — 130  lb.  of  steam  was  required.  The  first 
fractions  of  oil  distilling  over  contained  the  greater 
part  of  the  by-products,  dipentene  and  cymene,  and 
were  extracted  with  sodium  hydroxide  solution  to 
remove  thymol.  From  the  later  fractions  a  certain 
quantity  of  thymol  was  obtained  by  allowing  to 
crystallise,  and  the  mother  liquors  were  then  ex- 
tracted with  caustic  soda,  and  this  together  with 
the  above-mentioned  extract,  was  acidified  and  the 
crude  thymol  thus  obtained  purified  by  distillation 
in  steam  at  about  130°  C.  The  colourless  distillate 
was  stirred  whilst  cooling,  and  small  crystals  were 
obtained  which,  after  draining,  were  remelted  and 
the  liquid  allowed  to  cool  slowly  without  disturb- 
ance, whereby  large  clear  transparent  crystals  were 
obtained,  in  a  yield  of  about  1%  calculated  on  the 
seed.  A  summary  is  appended  of  the  other  natural 
sources  of  thymol,  of  suggested  syntheses  of  the 
substance,  and  of  its  various  applications. 

— G.  F.  M. 

Piperitone.  II.  Benzylidene-cU-piperitone.  J.  Read 
and  H.  G.  Smith.  Chem.  Soc.  Trans.,  1922,  121, 
574—582. 
Benzylidene-cH-piperitone  exhibits  well  marked  di- 
morphism, each  form  being  obtainable  in  a  state  of 
freedom  from  the  other  with  great  ease  by  seeding 
supercooled  solutions  in  alcohol  with  the  respective 


436  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[June  15,  1922. 


crystalline  form.  a-Benzylidene-rfi-piperitone  forms 
pale  yellow  prisms  belonging  to  the  monoclinic 
system,  melting  at  59° — 61°  C,  and,  after  solidify- 
ing, with  greater  precision  at  59° — 60°  C.  If  re- 
crystallised  from  alcohol  in  the  ordinary  way 
tabular  crystals  of  the  /3-form  are  deposited,  belong- 
ing to  the  rhombic  eystem,  melting  at  63° — 64°  C, 
and  at  59° — 60°  O.  after  resolidifying,  the  variety 
obtained  from  the  molten  substance  being  once 
again  the  a-form. — G.  F.  M. 

Piperitone.  III.  Oximes  of  dl-piperitone.  J.  Read, 
H.  G.  Smith,  and  M.  Bentivoglio.  Chem.  Soc. 
Trans.,  1922,  121,  582—593. 

Two  oximes  of  (H-piperitone  representing  probably 
the  syn-  and  anii-forms,  were  isolated  from  the 
product  of  the  action  on  piperitone  of  hydroxyl- 
amine  hydrochloride  in  hot  aqueous  alcoholic  solu- 
tion. The  less  soluble  a-oxime  crystallised  in  large 
well-developed  prisms,  m.p.  118° — 119°  0.,  whilst 
the  /3-oxime  obtained  from  the  mother  liquors 
formed  monoclinic  prisms,  m.p.  88° — 89°  C.  Both 
oximes  were  remarkably  stable  and  could  be 
recovered  from  acid  solution  unchanged.  The 
a-oxime  formed  a  hydrochloride  with  hydrogen 
chloride  in  absence  of  water,  melting  at  157°  C, 
and  as  the  same  substance  was  obtained  by  warming 
the  /?-oxiine  in  benzene  solution  with  hydrogen 
chloride,  it  appears  that  this  oxime  forms  a  labile 
hydrochloride  which  undergoes  transformation  into 
the  stable  a-isomeride. — G.  P.  M. 

Lignoceric  acid.    Brigl  and  Fuchs.    See  XII. 

Patents. 

Tropinone  monocarboxylic  acid  esters;  Preparation 

of .     E.  Merck  and  O.  Wolfes.     E.P.  153,917, 

16.11.20.    Conv.,  23.8.19. 

Tropinonemonocarboxylic  esters  are  obtained  by 
the  condensation  of  succinic  aldehyde,  methyl- 
amine,  and  acetoacetic  esters,  a  mixture  of  86  pts.  of 
the  aldehyde,  an  alcoholic  solution  containing  10  pts. 
■of  the  amine,  and  13  pts.  of  ethyl  acetoacetate  in 
30  pts.  of  alcohol,  for  example,  being  kept  for  3 
days,  and  the  product  neutralised,  freed  from 
alcohol,  rendered  alkaline  with  aqueous  potassium 
carbonate  solution,  and  extracted  with  chloroform. 
The  tropinonecarboxylic  ester  is  purified  by  trans- 
ference to  dilute  sulphuric  acid  solution,  and  back 
to  chloroform,  and  on  distilling  off  the  latter  the 
base  remains  as  an  oil,  which  gradually  solidifies  on 
keeping. — G.  F.  M. 

Tropinone-mono-carboxylic  acid  esters;  Preparation 

of .     E.  Merck,  O.  Wolfes,  and  H.  Maeder. 

E.P.  164,757,  15.6.21.    Conv.,  16.6.20. 

Tropinonemonocarboxylic  acid  ester  is  obtained 
by  the  hydrolysis  of  one  ester  group,  and  simul- 
taneous elimination  of  carbon  dioxide,  from  diethyl 
tropinonedicarboxylate.  28  pts.  of  the  diethyl  ester 
in  50  pt6.  of  alcohol  is  heated  a  short  time  until 
Boiling  with  22  pts.  of  potassium  hydroxide  solution 
(l'.l).  After  cooling,  ice  is  added  and  the  liquid  is 
acidified  with  sulphuric  acid,  supersaturated  with 
ammonia  and  extracted  with  ether  or  chlorinated 
hydrocarbons.  The  ethyl  tropinonemonocarboxylate 
is  an  oil  forming  a  crystalline  hydrate,  m.p.  63°  C. 

— G.  F.  M. 

Diolefines  andjor  polymerisation  products  thereof; 

Manufacture  of .    H.  O.  Traun's  Forschungs- 

laboratorium  G.m.b.H.     E.P.   156,116,  30.12.20. 
Conv.,  23.4.18. 

Diolefines  are  obtained  by  heating  together  for  a 
suitable  time  under  pressure,  at  a  sufficiently  high 
temperature,  molecular  quantities  of  acetylene  and 
ethylene  hydrocarbons  in  presence  or  absence  of  a 
catalyst,  e.g.,  anhydrous  caustic  alkalis.  If  either 
the  temperature   or   pressure  or  the  time  of   the 


interaction  be  gradually  increased,  polymerides  of 
the  diolefines  previously  formed  may  be  obtained  in 
a  single  operation.  Example:  A  mixture  of 
acetylene  and  propylene  in  approximately  molecular 
proportions  is  forced  into  a  thick-walled  spiral  or 
autoclave  at  3 — 15  atm.  pressure  and  heated  to- 
350° — 450°  C.  The  spiral  is  provided  with  a  non- 
return inlet  valve,  and  an  outlet  valve  which  can 
be  regulated  to  release  the  gases  at  any  desired 
pressure.  The  escaping  gases  are  cooled  and  the 
diolefine  formed  condenses,  unchanged  gas  being 
returned  to  the  apparatus.  By  using  an  indifferent 
gas  as  a  diluent  to  increase  the  pressure  to,  say, 
30  atm.,  the  yield  of  diolefine,  in  this  case  isoprene, 
can  be  increased  to  85%  of  the  theoretical.  When 
the  operation  is  performed  in  an  autoclave,  and 
the  heating  is  continued  for  10 — 15  hrs.  at  55—65 
atm.  pressure  the  diolefine  undergoes  polymerisa- 
tion to  a  rubber-like  substance  together  with  inter- 
mediate polymerisation  products  which  can  be  used 
as  varnish  and  turpentine  substitutes. — G.  F.  M. 

Diolefines  and  derivatives  thereof;  Manufacture  of 

.     H.    O.    Traun's    Forschungslaboratorium 

G.m.b.H.    E.P.  156,122,  30.12.20.  Conv.,  8.12.19 

Halogenated  derivatives  of  diolefines  are  obtained 
by  the  pyrogenic  decomposition  of  hydrocarbons 
such  as  turpentine,  limonene,  or  dipentene  in 
presence  of  halogens  or  halogen  hydrides,  the 
reaction  being  accelerated  by  the  presence  of  cata- 
lysts such  as  silicon  alloys,  silicates,  or  metallic 
platinum.  Similar  diolefine  derivatives  are  also 
produced  by  the  chlorination  of  pentane  or  iso- 
pentane  at  600°— 800°  C.  The  yield  of  compounds 
from  which  diolefines  may  be  obtained  by  splitting 
off  the  elements  of  a  hydrogen  halide  usually 
amounts  to  60 — 80%.  Example:  A  mixture  of 
equal  volumes  of  benzene  and  limonene  vapours  is 
passed  with  half  the  volume  of  hydrogen  chloride 
through  a  ferro-silicon  tube  heated  to  550°— 600°  C, 
or  alternatively  a  mixture  of  1  vol.  of  gasoline 
vapour  (b.p.  40° — 45°  C.)  and  4  vols,  of  chlorine  is 
similarly  treated  at  600°— 800°  C,  and  the  chlori- 
nated products,  consisting  mainly  of  dichloropen- 
tanes,  are  led  into  a  water-cooled  condenser  and 
collected.  They  can  be  easily  transformed  into 
isoprene  and  piperylene  as  required  by  the  elimina- 
tion of  two  mols.  of  hydrogen  chloride. — G.  F.  M. 

Vinyl     compounds     and    polymerisation    products 

thereof;   Manufacture   of  .     H.   O.   Traun's 

Forschungslaboratorium  G.m.b.H.     E.P.  156,117, 
30.12.20.    Conv.,  24.5.18. 

The  addition  of  hydrogen  halides,  methyl  halides, 
or  organic  carboxylic  acids  to  acetylene  hydrocar- 
bons takes  place  smoothly  and  rapidly  at  100° — 
120°  C.  under  a  pressure  of  1 — 2  atm.  By  increasing 
the  pressure  and/or  raising  the  temperature  when 
all  the  acetylene  is  absorbed,  polymerisation  pro- 
ducts of  the  vinyl  esters  are  obtained  without  the 
necessity  of  isolating  the  intermediate  products. 
Although  catalysts  are  not  necessary  in  the 
actions  they  can  be  accelerated  if  desired  by  the 
addition  of  small  amounts  of  certain  metals  or 
metallic  compounds  (other  than  mercury  com- 
pounds, the  use  of  which  is  already  known)  such  as 
magnesium,  tin,  copper,  or  compounds  thereof, 
iodine,  hydriodic  acid,  boron  compounds,  organic 
acid  anhydrides,  or  superoxides.  If  the  acetylene 
is  mixed  with  an  inert  gas,  e.g.,  nitrogen,  or  with 
benzene  or  petroleum  vapours  the  pressure  can  be 
increased  to  10—15  atm.  and  the  reaction  time 
correspondingly  decreased,  without  any  risk  of 
explosion  of  the  acetylene.  Examples:  (1)  40  pts.  o 
allvlene  and  36—38  'pts.  of  drv  hydrogen  chloride 
are  heated  to  120°  C.  at  1—2  atm.  pressure  for 
10—24  hrs.  80—85%  of  ^-chloropropylene  and  10- 
15%  of  another  chloro-derivative  are  formed,  and 
the  former  can  be  completely  polymerised  by  further 


vol.  XLI,  No.  u.j       Cl.  XX.— OBGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &c. 


437  a 


'    heating   at    150° — 200   C.      The    polymerisation    is 

'  accelerated  by  increasing  the  pressure  to,  say,  15 
atm.  by  the  introduction  of  nitrogen.     The  poly- 

1  merisation  product  can  be  employed  for  the 
preparation  of  varnishes,  or  can  be  transformed 
into  rubber-like  sttbstances  by  the  removal  of  the 
halogen  by  the  action,  for  example,  of  sodium, 
magnesium,  or  calcium  in  presence  of  inert  organic 
liquids.     (2)  20 — 28  pts.  of  acetylene  is  gradually 

1  introduced  into  a  mixture  of  50  pts.  of  acetic  acid 
and  1  pt.  of  acetic  anhydride  in  an  autoclave. 
The  mixture  is  heated  to  40° — 60°  C.  and  the  pres- 
sure raised  to  5  atm.  by  the  introduction  of  nitro- 
gen.  The  product  consists  of  75  pts.  of  vinyl  ace- 
tate and  3—  5  pt6.  of  ethylidene  diacetate.  If  the 
temperature  is  then  increased  to  120° — 200°  C.  and 
the  pressure  to  10  atm.  or  more  the  esters  are 
polymerised  to  products  which  vary  from  semi- 
liquids  to  more  or  less  tough  solids  according  to  the 
extent  of  polymerisation. — G.  F.  M. 

Vinyl  halides;  Manufacture  of .    H.  O.  Traun's 

Forschungslaboratorium  G.m.b.H.     E.P.  156,120, 
30.12.20.     Conv.,  9.9.18. 

Vinyl  halides  are  obtained  in   good  yield  by  the 
'  action  of  concentrated  aqueous  hydrogen  halides  on 
I  calcium  carbide  in  the  presence  of  catalysts,  prefer- 
I  ably  a  mixture  of  mercury  and  copper  salts.     The 
j  reaction  occurs  without  catalysts  if  the  pressure  is 
|  increased,  but  some  of  the  vinyl  compound  is  poly- 
I  merised  under  these  conditions.    Exa mple:  Calcium 
carbide    is    gradually    added    to   25 — 30        aqueous 
j  hydrochloric  acid  at  60° — 95°  C.  in  presence  of  mer- 
|  curie    ethylenechlorosulphonate    or    a    mixture    of 
!  mercuric     and    cupric    chlorides.     Vinyl    chloride 
distils  off,   and  the  yield  is  almost  quantitative  if 
a  stream  of  hydrogen   chloride  is   passed  through 
I  the  reaction  mixture  during  the  operation.     Small 
j  quantities   of    zinc,    aluminium,    or    tin    chlorides 
i  accelerate  the  addition  of  hydrogen  chloride  to  the 
nascent   acetylene,    but   ferric   chloride    accelerates 
the    formation    of    dichloroacetaldehyde    which    is 
normally    produced    in    small    amount    as     a    by- 
product.—G.  F.  M. 

Hexamethylenetetramine  and  formaldehyde ;  Manu- 
facture of  .  H.  O.  Traun's  Forschungs- 
laboratorium G.m.b.H.  E.P.  156,136,  31.12.20. 
Conv.,  9.9.19. 

Formaldehyde  is  produced  by  the  contact  oxida- 
tion    of     methane     (or     natural     gas     containing 
methane),  in  a  technically  satisfactory  yield,  if  the 
oxidation    takes    place    in    presence    of    ammonia, 
.  whereby  the  more  stable  hexamethylenetetramine  is 
•  formed  and  the  aldehyde  is  saved  from  destruction. 
I  Example :  6  vols,  of  methane,  12  vols,  of  oxygen  (or 
I  the  corresponding  amount  of  air),   and  4  vols,  of 
ammonia  are  passed  through  a  reaction  tube  pro- 
vided with  a  constriction  which  is  heated  to  300° — 
'500°  C,  or  to  700°  C.  if  the  reaction  is  performed 
under  reduced  pressure.     The  tube  itself  may  serve 
as  the  catalyst,  or  steel  tubes  may  be  used  packed 
at  the  constriction   with   thin    silver,    nickel,    or 
copper  wire.     The  reaction  product  consists  mainly 
of  hexamethylenetetramine  in  about  70%  yield,  and 
formaldehyde    can    be    regenerated    from    this    in 
known    manner.     The    yields     are    favourably    in- 
fluenced by   saturating   the  gases  with   methyl   or 
ethyl  alcohol  vapours  before  introducing  them  into 
the  reaction  tube. — G.  F.  M. 

Hexamethylenetetramine;  Preparation  of  deriva- 
tives of  .     Chem.   Fabr.   auf  Actien  (vorm. 

E.  Schering).    G.P.  344,384,  16.10.15. 

Products  combining  the  therapeutic  properties  of 
formaldehyde  with  those  of  bismuth  and  iodine,  and 
suitable,  e.g.,  for  applying  to  wounds,  are  prepared 
by  adding  hexamethylenetetramine  to  solutions  pre- 


pared by  dissolving  double  bismuth-alkali  iodides 
in  solutions  containing  alkali  iodides  and  weak 
acids,  e.g.,  lactic  acid.  The  yellow  precipitate  is 
separated  from  the  solution  and  dried. — L.  A.  C. 

Acetaldehyde;    Oxidation,   of   to   acetic   acid. 

H.  O.  Traun's  Forschungslaboratorium  G.m.b.H. 
E.P.  156,146,  31.12.20.     Conv.,  5.7.18. 

In  the  oxidation  of  acetaldehyde  to  acetic  acid  by 
means  of  air  or  oxygen  in  presence  of  catalysts, 
the  formation  of  peracetic  acid  can  be  almost 
entirely  prevented  by  using  as  catalyst  a  large 
quantity  of  hydrated  salt  such  as  ferrous  sulphate, 
or  nickel,  cobalt,  manganese,  chromium,  or  copper 
salts,  particularly  their  hydrated  acetates.  The 
reaction  is  catalysed  by  these  substances,  and  at 
the  same  time  the  same  object  is  achieved  by  means 
of  the  water  of  crystallisation  present,  as  by  the 
method  at  present  employed  of  diluting  the  reaction 
mixture  with  water  and  heating.  Further,  the 
attendant  disadvantage  of  diluting  the  acetic  acid 
produced  is  avoided,  and  an  almost  anhydrous  acid 
is  obtained  which  contains  so  little  of  tlie  peracetic 
acid  that  it  can  be  distilled  without  risk  of  explos- 
ion.—G.  F.  M. 

Acetaldehyde  or  acetic  acid;  Manufacture  of . 

H.  0.  Traun's  Forschungslaboratorium  G.m.b.H. 
E.P.  156,147,  31.12.20.     Conv.,  6.9.18. 

Acetaldehyde  is  obtained  in  a  continuous  process 
by  passing  acetylene,  preferably  by  means  of  a 
vacuum,  through  a  porous  conductive  anode  con- 
taining mercury  compounds  which  are  continuously 
regenerated  by  the  application  of  a  current  of  1*5 
to  2  volts.  The  electrolyte  is  preferably  a  25%  solu- 
tion of  phosphoric  acid  and  the  temperature  of 
operation  40°— 60°  C.  The  acetaldehyde  distils  off 
as  it  is  formed,  and,  save  for  the  addition  of  the 
requisite  quantities  of  water,  the  cells  work  regu- 
larly for  months  without  attention.  Acetic  acid 
may  also  be  obtained  continuously  in  one  operation 
from  acetylene  in  the  same  cell  by  using  a  current 
of  3 — 4  volts,  whereby  the  acetaldehyde  first 
formed  undergoes  anodic  oxidation.  In  order  to 
distil  off  the  acid  as  it  is  formed  phosphoric  acid 
of  b.p.  above  130°  C.  must  be  used  as  the  electrolyte, 
and  the  cell  is  worked  under  a  vacuum  at  a  tem- 
perature of  80°— 90°  C.  The  vield  of  acetic  acid 
amounts  to  75—86%,  together  with  10—20%  of 
acetaldehyde. — G.  F.  M. 

Acetaldehyde  or  acetic  acid;  Manufacture  of . 

H.  O.  Traun's  Forschungslaboratorium  G.m.b.H. 
E.P.   156,152,  31.12.20.     Conv.,  28.1.19. 

Acetylene  is  hydrated  to  acetaldehyde  in  a  con- 
tinuous process  by  circulating  it  mixed  with  an 
equal  volume  of  steam  through  a  spiral  tube  heated 
at  250° — 300°  C.  under  a  pressure  of  5 — 10  atm., 
at  a  less  pressure  therefore  than  would  be  generated 
by  heating  the  mixture  of  gas  and  water  together 
to  that  temperature  in  closed  vessels.  The  pres- 
sure in  the  tube  and  the  velocity  of  gases  are  con- 
trolled by  means  of  a  compressor  and  an  outlet 
valve.  The  spiral  is  constructed  of  nickel  steel  and 
is  preferably  coated  internally  with  gold.  The 
yield  of  acetaldehyde  in  a  single  passage  through 
the  tube  can  be  raised  as  high  as  90 — 96%  by  using 
small  quantities  of  hydrating  catalysts,  such  as 
1 — 3%  of  sulphuric  acid,  3 — 5%  of  acetic  acid, 
sulphonic  acids,  or  organic  acid  anhydrides.  If  it 
is  desired  to  transform  the  acetylene  into  acetic 
acid  in  one  operation,  air  or  oxygen  is  introduced 
into  the  middle  of  the  reaction  tube,  and  acetic 
acid  or  acetic  anhydride  is  employed  as  catalyst. 
The  ga6es  pass  out  of  the  reaction  tube  into  an 
expansion  chamber  and  thence  through  a  series  of 
condensers,  unchanged  acetylene  being  returned 
to  the  compressor. — G.  F.   M. 


438  A 


Cl.  XX.— OKGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &C. 


[June  15,  1922. 


Formaldehyde  and  methyl  alcohol;  Manufacture  of 

H.     O.    Traun's    Forschungslaboratorium 

G.m.b.H.  E.P.  156,148,  31.12.20.  Conv.,  9.9.19. 
Formaldehyde  and  methyl  alcohol  are  obtained  by 
the  oxidation  of  methane,  or  natural  gas  contain- 
ing methane,  with  carbon  dioxide  by  rapidly 
passing  the  mixed  gases  through  a  constricted  pipe, 
heated  to  500°— 700°  C.  at  the  constriction,  and 
quickly  cooling  the  gaseous  reaction  products.  The 
tube  may  be  made  of  copper,  silver,  or  nickel,  or 
alloys  of  these  metals  with  one  another  or  with  tin, 
zinc,  aluminium,  etc.,  which  metals  favour  the 
process  catalytically.  If  iron  tubes  are  used  they 
are  advantageously  packed  with  wire  or  turnings 
of  the  above  metals.  The  following  reactions 
apparently  occur  in  the  process: — 2C02  =  2CO  +  20, 
and  CH4  +  20  =  H.CHO+H20.  The  yield  of  formal- 
dehyde under  favourable  conditions  may  amount 
to  56%,  calculated  on  the  methane  employed.  The 
yield  of  methyl  alcohol  is  favoured  by  a  slower 
passage  of  the  gas  and  by  the  presence  of  hydrogen 
in  the  gas  mixture.  Saturation  of  the  gases  with 
alcohol  vapour  at  20° — 30°  C.  favourably  influences 
the  reaction. — G.  F.  M. 

Diethylbarbituric   acid  compound;  Manufacture  of 

a  new  .     Chem.  Fabr.  auf  Aktien  (vorm.  E. 

Schering).    E.P.  158,558,  25.1.21.    Conv.,  26.1.20. 

A  compound  of  diethylbarbituric  acid  and  4-di- 
methylamino-2.3-dimethyl  -  1  -  phenyl-5-pyrazolone 
is  obtained  by  melting  the  two  substances  together 
in  the  proportion  of  1  mol.  of  the  former  to  2  mols. 
of  the  latter,  and  purifying  in  the  usual  manner. 
The  new  compound  is  yellow  in  colour,  melts  at 
95° — 97°  C,  is  soluble  in  warm  water  and  alcohol, 
and  has  strong  analgesic  properties  whilst  the  hyp- 
notic effect  is  repressed. — G.  F.  M. 

Borneol;   Manufacture    of   .      Fabr.    de   Prod. 

Chim.  de  Thann  et  de  Mulhouse.  E.P.  164,302, 
24.12.20.  Conv.,  28.5.20.  Addn.  to  144,604 
(J.,  1921,  369  a). 

In  the  preparation  of  bornyl  tetrachlorophthalate 
from  turpentine  in  presence  of  an  organic  solvent, 
the  secondary  products  obtained  from  previous 
operations,  consisting  of  unchanged  pinene  mixed 
with  dipentene  may  be  used  as  the  diluent.  A 
similar  yield  of  borneol  is  obtained  and  as  the  dipen- 
tene takes  no  part  in  the  reaction  the  amount  pre- 
sent in  the  recovered  hydrocarbon  increases  from 
operation  to  operation  until  the  quantity  is  such 
that  it  may  easily  be  separated  by  fractional  dis- 
tillation from  the  crude  secondary  product. 

— G.  F.  M. 

Alkyl  sulphates;  Manufacture  of .    H.  Dreyfus. 

E.P.  177,189,  29.9.20. 

Diethyl  sulphate  or  its  homologues  are  obtained  by 
heating  alkali  pyrosulphates  or  chlorosulphonates 
with  ethyl  alcohol  or  ether,  or  their  homologues,  and 
distilling  off  the  product,  preferably  in  vacuo.  For 
example  228  pts.  of  sodium  pyrosulphate  is  mixed 
with  92  pts.  of  alcohol  and,  after  standing  for  1 — 2 
hrs.,  the  mixture  is  heated  at  80° — 100°  C.  under  a 
reflux  condenser  for  4 — 5  hrs.  The  diethyl  sulphate 
is  then  distilled  from  the  reaction  mixture  under 
reduced  pressure.  Alternatively  alcohol  vapour  may 
be  passed  over  sodium  pyrosulphate  heated  to  150° 
C.  in  a  vacuum,  the  diethyl  sulphate  together  with 
unchanged  alcohol  distilling  off  as  it  is  formed. 

— G.  F.  M. 

3.3'-Diamino-4A'-dihydroxyarsenobenzene;      Manu- 
facture of  derivatives  of .    Boot's  Pure  Drug 

Co.,  Ltd.,  and  L.  Anderson.  E.P.  177,283,  7.1.21. 
A  neutral,  stable,  water-soluble  compound  of  gluc- 
ose (dextrose)  and  3.3'-diamino-4.4'-dihydroxyar- 
senobenzene  is  prepared  by  dissolving  10  g.  of  the 


base  in  14  c.c.  of  42V  sodium  hydroxide,  adding  100 
c.c.  of  50%  dextrose  solution,  and,  after  keeping  for 
several  hours,  exactly  neutralising  with  concen- 
trated hydrochloric  acid,  and,  if  necessary,  filtering. 
The  solution  may  be  diluted  to  any  desired  extent 
and  is  ready  for  use,  but  the  compound  itself  may, 
if  desired,  be  isolated  by  precipitation  from  the 
solution  with  alcohol  or  acetone.  It  forms  a  light 
yellow  powder,  readily  soluble  in  water,  with  a 
neutral  reaction,  and  differs  essentially  from  pre- 
viously described  mixtures  of  arsenobenzene  salts 
with  dextrose  or  other  reducing  sugars. — G.  F.  M. 

2.i-Diketotetrahydro-oxazoles;  Process  for  the  pre- 
paration of  twice-substituted  .     J.  Altwegg 

and  D.  Ebin.  U.S. P.  1,375,949,  26.4.21.  Appl., 
8.7.20. 

Derivatives  of  2.4-diketotetrahydro-oxazole  di- 
substituted  in  position  5,  possessing  hypnotic,  nar- 
cotic, and  sedative  properties,  are  prepared  by  the 
interaction  of  an  alkyl  ester  of  chloroformic  acid 
and  a  di-substituted  derivative  of  glycollic  acid 
amide.  5.5-Phenylethyl-2.4-diketotetrahydro-oxaz- 
ole,  m.p.  63°  C,  and  5.5-phenylmethyl-2.4-diketo- 
tetrahydro-oxazole,  m.p.  70°  C,  are  obtained  by  the 
interaction  of  ethyl  chloroformate  with  phenylethyl- 
oxyacetamide  and  atrolacetamide  respectively. 

Hydrogenating  carbon  compounds ;  Process  of 

under  high  pressure  and  elevated  temperature. 
F.  Bergius,  Assr.  to  The  Chemical  Foundation, 
Inc.    U.S.P.  1,391,664,  27.9.21.    Appl.,  18.4.16. 

Gases  containing  hydrogen  in  excess  of  that 
required  by  the  reaction  are  circulated  under  pres- 
sure through  the  space  above  the  material  in  a 
reaction  vessel  partly  filled  with  material  under 
treatment,  and  through  an  external  heat  exchange 
medium  to  control  the  temperature  within  the 
vessel. — L.  A.  C. 

Thymol;  Manufacture  of  .     F.  Giinther,  Assr. 

to  Badische  Anilin-  und  Soda-Fabr.  U.S.P. 
1,412,937,  18.4.22.    Appl.,  19.8.21. 

Thymol  is  prepared  by  treating  sulphonated 
m-cresol  with  isopropyl  alcohol  and  strong  sulphurio 
acid,  and  subsequently  splitting  off  the  sulphonyl 
group. — L.  A.  C. 

Silver    alcosols;    Process    for    the    production    of 

organic .    J.  Altwegg,  Assr.  to  Soc.  Chimique 

des  Usines  du  Rhone.  U.S.P.  1,413,151,  18.4.22. 
Appl.,  2.7.21. 

Silver  oxide  is  heated  in  the  presence  of  hydrogen 
with  a  feebly  acid,  alcoholic  solution  of  an  organic 
protective  compound,  and  the  alcosol  obtained  is 
separated. — L.  A.  C. 

Chloropicrin;    Process    of    making    .      0.    H. 

Sweenev,  Assr.  to  N.  D.  Baker.    U.S.P.  1,413,198, 

18.4.22."    Appl.,  11.11.20. 
Chloropicrin  is  prepared  by  bringing  together  sus- 
pensions, in  media  containing  water,  of  a  material 
yielding  chlorine,  and  of  picric  acid  and  an  alkali. 

— L.  A.  C 

Alcoholic   liquid;   Purifying   .      M.   D.    Mann, 

Assr.  to  Standard  Oil  Co.  U.S.P.  1,413,864, 
25.4.22.  Appl.,  15.3.20. 
Small  quantities  of  oil  are  removed  from  alcoholic 
liquid  by  bringing  the  liquid  in  intimate  contact 
with  sawdust,  and  subsequently  separating  the 
liquid  from  the  sawdust. — L.  A.  C. 

2  -  ar  -   Tetrahydron-aphthylquinoline-4-carboxyUc 

acids;   Preparation   of  .      Chem.    Fabr.   auf 

Aktien  (vorm.  E.  Schering),  H.  Emde,  and  E. 
Freund.    G.P.  344,027,  24.7.20. 

(Jc-Acetotetrahydronaphthalene  is  condensed  with 


vol.  xil.  No.  li.]         Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


439  a 


isatin  or  its  derivatives  in  alkaline  solution.  Isatin 
and  6-bromoisatin  yield  respectively  2-ar-tetrahydro- 
napbthyIquinoline-4-carboxylic  acid,  m.p.,  196° — 
197'5°  C,  and  the  corresponding  7-bromo-derivat- 
|  ive,  m.p.  228°— 229-5°  C. ;  the  products  are  of  thera- 
peutic value. — L.  A.  C. 

I  Hydrogenated  N-alkylpyridine-3-carboxylic  acid 
esters;  Preparation  of  .  Preparation  of 
N-alkylpyridinecarboxylic  acid  esters.  Prepara- 
tion of  betaines  of  the  pyridine  series.  E.  Merck, 
Chem.  Fabr.  G.P.  (a)  344,028.  13.4.20,  (b)  344,029 
and  (c)  344,030,  15.5.20. 

(a)  Trigonelline  (pyridine-3-carboxyllc  acid  methyl- 
betaine),  or  its  N-alkyl  homologues,  or  salts  of  the 
same,  are  reduced  in  solution  in  strong  acids  by 
metals  in  the  presence  of  alcohols.  Methyl  N- 
methylhexahydropyridine-3-carboxylate,  an  oil  of 
b.p.  92° — 94°  C.  at  16  mm.,  is  prepared  by  reducing 
trigonelline  chloride  by  means  of  tin  and  hydro- 
chloric acid  in  the  presence  of  methyl  alcohol. 
Ethyltrigonelline  (pyridine-3-carboxylic  acid  ethyl 
betaine)  hydrochloride,  prepared  by  heating  pyrid- 
ine-3-carboxylic  acid  with  ethyl  bromide,  sodium 
.carbonate,  and  water  in  a  closed  vessel  to  100°  C, 
has  m.p.  227°  C.  (decomp.),  and  on  reduction  in 
ethyl  alcohol  solution  yields  ethyl  N-ethylhexa- 
hydropyridine-3-carboxylate,  b.p.  108° — 110°  C.  at 
13  mm.  (b)  Pyridine-betaines  are  converted  into 
esters  by  treatment  with  alcohols  in  the  presence  of 
strong  acids,  e.g.,  methyl  N-methylpyridine-3-carb- 
axylate,  m.p.  about  101°  C,  is  prepared  by  heating 
trigonelline  for  24  hrs.  with  methyl  alcohol  contain- 
ing hydrogen  chloride  in  solution,  (c)  Alkaline 
solutions  of  pyridinecarboxylic  acids  are  treated 
with  methyl  chloride  at  about  100°  C,  e.g.,  pyrid- 
.ine-3-carboxylic  acid  methyl-betaine  is  prepared  by 
'stirring  pyridine-3-carboxylic  acid  with  methyl 
'.'hloride  and  aqueous  sodium  carbonate  in  a  closed 
ressel  at  100°— 120°  C.  Methyl  pyridine-2.3-di- 
^arboxylate,  m.p.  157°  C,  is  prepared  from  quinol- 
nic  acid. — L.  A.  C. 

Ilcid    alkylated,    hydrogenated    N-alkylpyridine-3- 

!    carboxylic    acid     esters;    Preparation     of    . 

!   Preparation   of   hydrogenated   N-alkylpyridine-O- 

carbosylic   acid   esters.     R.    Wolffenstein.      G.P. 

i    (a)  346,461,    20.12.17    and   348,379,   23.10.19,    (b) 

:   346.888,   23.10.19.     Addn.   to  340,873   (J.,    1921, 

903  a) 
a)  Hyrogenated  N-alkylpyridine-3-carboxylic  acid 
asters,  prepared  as  described  in  G.P.  340,873—4, 
jire  treated  with  alkyl  halides  or  other  acid  alkyl- 
tes,  yielding  products  of  therapeutic  value  with 
>roperties  similar  to  arecolin.  The  N-methiodide 
m.p.  185°— 188°  C),  N-methobromide  (m.p.  196° 
J.),  and  ethosulphate  (m.p.  90°— 96°  C.)  of  methyl 
f-methylhexahydropyridine-3-carboxylate  are  pre- 
ared  by  treating  the  base  with  methyl  bromide, 
lethyl  iodide,  and  diethyl  6ulphate  respectively  in 
he  presence  of  methyl  alcohol ;  the  methochloride  is 
btained  in  aqueous  solution  by  treating  an  aqueous 
olution  of  the  meth iodide  with  silver  chloride,  (b) 
•uaternary  ammonium  salts  of  pyridine-3-carb- 
xylic  acid  alkyl  esters  other  than  the  N-alkyl 
alides,  e.g.,  the  methosulphates,  are  used  in  the 
rocess  described  in  the  chief  patent. — L.  A.  C. 

-Alkyl  derivatives  of  hydrocupreine  ;  Preparation 

of .    Vereinigte  Chininfabr.  Zimmer  und  Co. 

G.m.b.H.     G.P.  344,140,  12.9.16. 

'xxdation  of  hydrocupreine  to  the  oxide  previous  to 
Ikylation,  with  subsequent  reduction  to  alkylhydro- 
ipreine,  prevents  the  formation  of  ammonium 
ases  and  thus  gives  better  yields  than  those 
itained  by  direct  alkylation  of  hydrocupreine. 
'ydrocupreine  oxide,  m.p.  199°  C,  prepared  by  the 
I'tion  of  30%  hydrogen  peroxide  on  hydrocupreine 


below  40°  C.  in  the  presence  of  alcohol,  is  treated  in 
alkaline  solution  with  diethyl  sulphate;  the  sulphate 
of  ethylhydrocupreine  oxide  which  separates  is 
reduced  to  ethylhydrocupreine  by  heating  for  3  hrs. 
with  excess  of  sulphur  dioxide  under  pressure  at 
80°  C.  Chloroethylhydrocupreine  is  prepared  by  the 
action  of  ethylene  chloride  and  alcoholic  potassium 
hydroxide  on  hydrocupreine  oxide  for  20  hrs.  under 
pressure  at  105°  C,  with  subsequent  reduction  as 
above. — L.  A.  C. 

Hydrogenated  2-phenylquinoline-i-carboxylic  acids 
and  their  salts;  Preparation  of  substitution  pro- 
ducts  of  .      F.    Zuckmaver.     G.P.   344,501, 

8.11.16.     Addn.  to  342,048  (J.,  1922,  36  a). 

Derivatives  of  2-phenylquinoline-4-carboxylic  acid 
containing  hydroxy,  amino,  or  acetamino  groups  in 
the  quinoline  residue,  are  treated  instead  of  the 
acid  itself  as  described  in  the  chief  patent,  yielding 
products  of  therapeutic  value.  Tetrahydro-7-acet- 
amino-2-phenylquinoline-4-carboxylic  acid,  m.p. 
210°  C,  yields  a  yellow  nitr06O  compound,  and  a 
yellow,  tasteless  potassium  salt  readily  soluble  in 
water ;  the  acid  is  hydrolysed  by  boiling  with  acids 
or  alkalis.  Tetrahydro-6-hydroxy-2-phenylquinoline- 
4-carboxvlic  acid,  a  white,  tasteless  powder  has 
m.p.  248°— 250°  C.  (decomp.).— L.  A.  C. 

Iron   yeast    compound;    Preparation    of   an   . 

A.  Stephan.    G.P.  344,708,  2.8.19. 

A  compound  of  therapeutic  value  is  prepared  by 
treating  yeast  with  solutions  of  iron  salts,  neutralis- 
ing the  acid  liberated  with,  e.g.,  ammonia  solution, 
and  evaporating  the  solution  to  dryness  below  50°  C. 
The  yeast  cells  must  be  killed  before  the  treatment, 
or  the  reaction  must  continue  until  microscopical 
examination  of  the  yeast  in  neutral  methylene  blue 
solution  indicates  that  all  the  cells  are  killed. 

s  — L.  A.  C. 

Calcium  glycerophosphate ;  Preparation  of  solutions 

of capable  of  being  sterilised.    Lecinwerk  E. 

Laves.  G.P.  345,062,  28.7.20. 
Salts  inactive  to  organisms,  such  as  sodium  acetate 
or  sodium  lactate,  with  or  without  soluble  calcium 
salts,  are  added  to  solutions  of  calcium  glycero- 
phosphate previous  to  sterilisation,  e.g.,  by  a 
current  of  steam.  The  precipitate  formed  on  heat- 
ing dissolves  completely  on  cooling. — L.  A.  C. 

Formaldehyde    solutions;    Manufacture    of    solid 

water-soluble    .      R.    Cohn.      G.P.    345,145, 

16.10.20. 
Calcium  lactate  is  dissolved  in  a  35%  solution  of 
formaldehyde  at  about  90°  C,  and  the  syrupy 
solution  solidified  by  cooling.  The  product  contains 
the  formaldehyde  (12 — 14%)  in  non-polymerised 
form  and  liberates  it  completely  on  treatment  with 
water,  especially  on  warming.  Iron  lactate  forms 
a  similar  additive  compound  with  formaldehyde. 

Iodine  pastilles;  Preparation  of containing  a 

high  percentage  of  iodine.  L.  Reichert.  G.P. 
345,602,  10.12.16. 
The  mixture  obtained  by  dissolving  potassium 
iodide  and  iodine  successively  in  melted  dextrose  at 
90°  C,  with  the  subsequent  addition  of  sodium 
chloride,  is  made  into  pastilles  containing  10 — 15% 
of  iodine. — L.  A.  C. 

Chlorinated  derivatives  [o/  acetylene  or  the  like~\; 

Manufacture    of   stable   .      Consortium    fur 

Elektrochem.  Ind.  G.m.b.H.  G.P.  345,868, 
18.11.19. 
In  the  manufacture,  e.g.,  of  trichloroethylene,  the 
chlorine  and  acetylene,  or  the  like,  are  purified 
respectively  before  reaction  to  remove  traces  of 
bromine   and    its   compounds,    and    nitrogen    com- 


440  a 


Cl.  XXI.— photographic  materials  and  processes. 


[June  15,  1922. 


pounds.  The  chlorine  is  prepared  by  the  electrolysis 
of  brine  solutions  which  have  been  treated  with 
chlorine  and  subsequently  blown  with  air  to  remove 
bromine,  and  the  acetylene  is  passed  through  sul- 
phuric acid  to  remove  ammonia.  If  triehloro- 
ethylene,  which  has  been  prepared  by  boiling  with 
milk  of  lime  tetrachloroethane  obtained  by  the 
action  of  chlorine  on  acetylene,  is  boiled  with  water 
for  120  hrs.  in  a  current  of  oxygen,  only  00005  to 
O'OOl  %  of  hydrogen  chloride  is  liberated  df  the  gases 
have  been  purified  as  above,  whereas  0'39  to  045% 
is  evolved  if  the  commercial  gases  have  been  used. 

— L.  A.  C. 

Urea;  [Catalysts  for  use  in  the]  manufacture  of 

.     from    [coZciwm]     cyanamide.       A.-G.    fur 

Stickstoffdiinger.    G.P.  346,066,  22.3.16. 

Catalysts  employed  in  the  conversion  of  calcium 
cyanamide  to  urea  are  generated  in  the  solution  by 
chemical  action,  either  to  produce  fresh  catalyst,  or 
to  revivify  spent  catalyst  already  present.  Manga- 
nese hydroxide  and  ferric  hydroxide  are  prepared 
by  the  action  of  calcium  carbonate  formed  by  treat- 
ing an  aqueous  suspension  of  calcium  cyanamide 
with  carbon  dioxide,  on  potassium  permanganate 
and  ferric  chloride  respectively,  or  spent  manga- 
nese hydroxide  is  revivified  by  treating  the  solution 
with  manganese  chloride  and  calcium  hypochlorite 
solutions. — L.  A.  C. 

Lactic  acid  compounds ;  Preparation  of  solid  ■ . 

E.  Reinfurth.  G.P.  346,521,  28.11.17. 

Non-hygroscopic,  easily  powdered  lactic  acid  com- 
pounds are  prepared  by  treating  more  than  2  mols. 
of  lactic  acid  with  1  mol.  of  a  lactate  of  an  alkaline- 
earth  metal,  lithium,  magnesium,  or  zinc.  Alter- 
natively, lactic  acid  may  be  treated  with  a  sufficient 
quantity  of  a  suitable  base,  e.g.,  calcium  carbonate, 
to  form  a  compound  containing  the  above  pro- 
portion of  free  lactic  acid.  The  solutions  are 
subsequently  evaporated  to  dryness. — L.  A.  C. 

Glyoxylic  acid;  [Electrolytic]  preparation  of  

from  oxalic  acid.  Farbenfabr.  vorm.  F.  Bayer 
und  Co.     G.P.  347,605,  25.1.20. 

In  the  electrolytic  manufacture  of  glyoxylic  acid 
amalgams  of  heavy  metals,  e.g.,  lead  amalgams,  are 
used  as  cathodes,  with  anodes  of  sheet  lead.  The 
electrodes  are  separated  by  an  alumina  diaphragm, 
and  the  cathode  and  anode  chambers  are  charged 
with  5%  sulphuric  acid  containing  60  g.  of  oxalic 
acid  per  1.,   and  25%    sulphuric  acid   respectivelv. 

— L.  A.  C. 

Aurothiophenols;    Manufacture    of    complex    . 

Farbw.  vorm.  Meister,  Lucius,  und  Briining. 
E.P.  157,853,  10.1.21.  Conv.,  22.4.16.  Addn.  to 
157,226. 

See  U.S. P.  1,207,284  of  1916;  J.,  1917,  163. 

Extracting      unsaturated      hydrocarbons.        E.P. 
156,123.    See  IIa. 

Oxidation  of  hydrocarbons.    E.P.  156,244.    See  III. 

Condensation  products.    G.P.  344,033.    See  XV. 

Alkaloids  from  lupins  etc.  G.P.  348,853.  See  XIXa. 


XXL— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Silver   bromide;   Action   of   light   on  .      E.    J. 

Hartung.     Chem.   Soc.   Trans.,    1922,    121,  682— 
691. 

By  means  of  the  microbalance  it  was  shown  that 
thin  films  of  the  bromide,  chloride,  and  iodide  of 
silver  lose  weight  when  exposed  in  air  to  sunlight, 


all  due  precautions  against  disturbing  influences 
being  taken.  This  is  due  to  loss  of  halogen,  and  the 
original  weight  is  almost  completely  restored  by 
re-halogenation.  The  decomposition  is  greatly 
accelerated  in  a  vacuum  and,  in  this  case,  after 
exposure  for  3  days  a  film  of  silver  bromide  lost 
84'2%  of  the  total  bromine,  metallic  silver,  com- 
pletely soluble  in  cold  nitric  acid,  remaining.  As 
it  is  evident  that  neither  oxygen  nor  water  vapour 
is  needed  for  the  reaction,  the  oxybromide  theory  of 
the  darkening  effect  of  light  on  silver  halides  is 
disproved,  as  is  ako  the  sub-bromide  theory.  When 
exposed  to  sunlight  in  presence  of  ozone  the  loss 
in  weight  was  more  rapid  than  in  air  alone, 
exposure  for  six  hours  causing  a  loss  of  22'2%  of 
chlorine  from  a  chloride  film,  and  9"5%  of  bromine 
from  a  bromide  film.  This  acceleration  by  ozone  is 
probably  due  to  oxidation  of  the  silver  as  soon  as  it 
is  formed,  whereby  the  reverse  action  is  hindered. 
The  presence  of  oxidising  agents  is,  however,  by  no 
means  essential  for  the  decomposition. — G.  F.  M. 

Sensitivity  and  stability  [of  photographic  plates]. 
E.  Steuger.    Z.  wise.  Phot.,  1922,  21,  246—253. 

A  comparison  of  the  respective  keeping  qualities  of 
panchromatic  emulsion  plates  and  similar  plates 
bath-sensitised  by  means  of  Isocol,  Ethyl  Red,  and 
Pinachrome.  The  plates  had  been  stored  for  periods 
of  12 — 19  years.  Of  the  14  varieties  of  panchromatic 
emulsion  plates,  examined  by  the  Eder-Hecht  grey 
wedge  sensitometer,  8  were  found  to  show  very  little 
deterioration,  1  was  slightly  affected  but  still  fit 
for  use,  while  5  were  quite  unfit.  All  the  10 
varieties  of  bath-sensitised  plates  were  quite  unfit 
for  use.  The  emulsion  plates  were  found  after 
storage  to  possess  a  colour  sensitiveness  more  uni- 
formly distributed  throughout  the  spectral  region 
400 — 622/ifi  than  was  the  case  prior  to  storage.  The 
stability  of  bath-sensitised  plates  is  increased  by 
treatment  with  solutions  of  bromine  salts,  more 
especially  ammonium  bromide,  but  such  increased 
stability  is  achieved  at  the  expense  of  colour 
sensitiveness.  A  stable  bath-sensitised  plate 
possesses  much  the  same  qualities  as  an  emulsion- 
treated  plate.— J.  S.  G.  T. 

Photographic  products;  'iYashing  of .    K.  C.  D. 

Hickman   and  D.   A.   Spencer.     Phot.   J.,   1922, 
62,  225—235. 

The  calculation  of  the  maximum  quantity  of 
residual  "  hypo  "  permissible  in  a  photographic 
plate  is  discussed.  The  quantity  of  "hypo" 
diffusing  from  gelatin-coated  plates  into  water  is 
an  exponential  function  of  the  time  under  certain 
conditions  of  washing.  The  process  of  washing  was 
investigated  visually  by  means  of  the  dyestuff. 
Tartrazine,  with  which  the  rates  of  diffusion  and  of 
attainment  of  equilibrium  are  much  lower  than  for 
"  hypo,"  although  alteration  in  washing  con- 
ditions affects  both  in  the  same  direction.  The 
water-changing  properties  of  various  washing 
devices  were  compared,  and  it  was  found  that  KB 
efficient  rapid  washing  the  water  must  be  driven 
into  intimate  contact  with  the  plate  by  means  of 
mechanical  agitation.  The  design  of  an  efficient 
washing  device  is  discussed,  based  on  the  results 
of  the  experiments. — W.  C. 

Photogenic  action  of  ultraradiations.    A.  Nodon 

Comptes  rend.,  1922,  174,  1061—1062. 
Experiments  are  described  in  which  it  is  shown  that 
the  sun  emits  radiations  which  possess  the  property, 
after  their  passage  through  elements  such  as  lead  or 
uranium  with  a  high  molecular  weight,  of  ti 
ing  cardboard  and  influencing  photographic  plai< ■ 

— AY.  G. 

Photographic  colorimetric  estimations.    Hess.    See 
IV. 


Vol.  XLI.,  No.  11.] 


Cl.  XXII.— EXPLOSIVES  j  MATCHES. 


441a 


Patents. 

[Photographic^  developing-out  paper;  Process  for 

production  of  platinum  tones  on .    C.  Bark- 

hausen.  G.P.  348,120,  24.10.20. 
Platinum  tones  are  produced  on  bromide  and  gas- 
light papers  by  treatment  of  the  finished  print  with 
a  bath  of  1  pt.  of  potassium  bichromate  and  1  pt.  of 
potassium  bromide  in  100  pts.  of  water,  and  then 
with  alkali  sulphide  solution.  By  varying  the  time 
of  immersion  different  depths  of  tone  may  be 
obtained.  The  bichromate-bromide  bath  keeps  well 
and  may  be  used  repeatedly. — W.  C. 

Photographic  printing  process  and  solution  and 
material  therefor.  Y.  A.  F.  Schwartz.  TJ.S.P. 
1,414,309,  25.4.22.     Appl.,  14.9.21. 

See  E.P.  175,317  of  1920;  J.,  1922,  270  a. 


XXII.-EXPL0SIVES;    MATCHES. 

Picric  acid;  Hygroscopicity  of .    L.  G.  Marsh. 

J.  Ind.  Eng.  Chem.,  1922,  14,  321—322. 

The  hygroscopicity  of  picric  acid  may  affect  its 
value  as  an  industrial  explosive.  •  As  this  property 
is  a  function  of  the  solubility  in  water,  it  is  very 
slight  for  the  pure  substance,  but  is  considerably 
increased  by  impurities  such  as  sulphuric  acid. 
While  pure  picric  acid  maintained  over  water  at 
32°  C.  for  48  hrs.  gained  037%  in  weight,  two  com- 
mercial samples  gained  respectively  1"91%  and 
502%  under  the  same  conditions.  Potassium  per- 
chlorate   gained  1-93%.— C.   I. 


Trim rfhyleneglycol  dinitratc.     F.  Blechta.     Z.  ges. 
Schiess-  u.  Sprengstoffw.,  1922,  17,  57—58. 

!  The    fractionation    of    crude    glycerin    from    the 
fermentation  of  beet-sugar  or  from  waste  fats  gave 
la  fraction   boiling   at    120°— 125°   C.    at   25   mm., 
sp.    gr.    1057,    which    gave   a   yield   of   only   180% 
|  instead  of  215  ::    on  nitration.     This  fraction  con- 
I  sists    of     trimethyleneglycol     formed     during     the 
,  fermentation   of   the   waste   fats   used.      Pure   tri- 
,  methyleneglycol   (b.p.   211°— 212°  C.   at  741   mm., 
I  sp.   gr.    1054  at   15°    C.)    was   nitrated,    the  com- 
i  position  of  the  mixed   acid  being  HN03,   2526%; 
'H.SO,,  6655%;   H,0,  8'19%.     10  g.  of  the  glycol 
!  was  dropped  into  200  g.  of  the  acid  cooled  to  8°  C. 
I  with  violent   agitation.     The  increase  of  tempera- 
1  ture   was   much  greater   than   in  the   nitration  of 
'  glycerol    and    drops   hanging   from   the   funnel   on 
'becoming  splashed  with  the  acid  ignited  regularly. 
I  The  nitrate  obtained  was  washed  with  cold  water 
land  with  2 %  sodium  carbonate  solution,  and  finally 
:  several  times  with  cold  water  and  dried  to  constant 
'  weight  in  vacuo  over  sulphuric  acid.     The  nitrogen 
•.content     was     107 '.     (theoretical     16-87%).       The 
product     was    similar     to    nitroglycerin,    but    less 
viscous;  sp.  gr.  at  15°  C.  T408.     It  is  miscible  in 
all  proportions  with  methyl  alcohol,  ether,  chloro- 
form,   benzene,    and    acetone;    slightly   soluble    in 
carbon  bisulphide;   solubility  in  96%    ethyl  alcohol 
jl:5;  solubility  in  water  at  20°  C.  1:410.     No  signs 
■  of  crystallisation  occurred  on  cooling  for  3  hrs.  at 
-20°  C.     Tested   by  Abel's   method  at  83°   C.   it 
showed   slightly    less    stability    than    nitroglycerin. 
Its  sensitiveness  to  impact  is  the  same  as  that  of 
nitroglycerin.     The  irregularities  shown  by  fermen- 
tation  glycerin   to   nitration    during   the    war   are 
ascribed    to    the    presence    of    trimethvleneglvcol. 
(Cf.  Cocks  and  Salway,  J.,  1918,  123  t.)— H.  C.  R. 

Explosive  power;  Travel's  lead  block   method  for 

determining .    D.  Lodati.    Giorn.  Chim.  Ind. 

Appl.,  1922,  4,  90—91. 

In   tests   of    explosive   power    made   with    Trauzl's 


blocks,  using  no  mould  and  no  iron  plug,  it  was 
found  that  the  volume  of  the  cavity  often  varied 
greatly  (450  c.c.  to  1000  c.c),  and  that  the  water 
introduced  issued  from  the  cylinder  through  in- 
visible fissures.  When  the  blocks  were  cut  through, 
they  showed  diagonal  cracks  dividing  the  block  into 
two  conical  trusta,  with  a  common  imaginary  apex 
at  the  centre  of  the  cavity;  in  some  cases,  indeed, 
the  upper  frustum  was  completely  detached  from 
the  lower.  This  phenomenon  is  due  to  the  fact  that 
the  explosion  tends  to  cause  the  block  to  become 
spherical.  When  the  blocks  are  given  a  spherical 
external  shape  before  use,  the  volumes  of  the 
resulting  cavities  are  far  more  concordant,  and 
further  experiments  will  probably  indicate  that 
spherical  blocks  are  to  be  preferred  to  cylinders. 

— T.  H.  P.    . 

Decomposition    ot   ammonium    nitrate.      Saunders. 
See  VII. 

Patents. 

Explosives  and  primers;  Process  for  manufacture  of 
•.     H.  Rathsburg.     E.P.  177,744,  28.6.21. 

Mixed  crystals  and  crystalline  double  salt  combina- 
tions of  the  potassium  salt  of  dinitrodinitroso- 
benzene  with  difficultly  soluble  salts  of  azoimide,  of 
tetrazole  derivatives  and  mono-  and  polynitro- 
phenols,  such  as,  for  example,  lead  azide,  azo- 
tetrazole  and  tetrazylazoimide  salts,  salts  of 
trinitroresorcinol  and  trinitrophloroglucinol  are 
employed  for  the  loading  of  ammunition  or  as  a  top 
charge.  To  obtain  them,  solutions  of  lead  and 
potassium  acetates  are  precipitated,  for  example, 
with  mixtures  of  solutions  of  sodium  azide  and 
sodium  dinitrodinitrosobenzene.  Homogeneous 
priming  compositions  can  thus  be  obtained. 

— H.  C.  R. 

Blasting    powdtr.      P.    N.    Stankowitsch.      TJ.S.P. 
1,412,319,  11.4.22.    Appl.,  14.7.21. 

A  solution  of  dinitrotoluene  in  nitroglycerin  is 
absorbed  in  a  powdered  substance  containing  sodium 
nitrate,  flour,  "  middlings."  and  sulphur. 

— H.  O.  R. 

Compositions     for     fuses:     Preparation     of    . 

Friederich.     G.P.  341,063,  28.1.20. 

Compositions  for  fuses  which  may  be  used  alone 
or  in  admixture  with  other  explosive  substances, 
contain  crystalline  hydrazine  compounds  of 
chlorates  and  perchlorates  of  the  heavy  metals. 
The  same  hydrazine  compounds,  alone  or  used  in 
conjunction  with  other  fuse  compositions  and  their 
usual  constituents  and  explosive  substances,  are 
employed  as  detonators  for  rifle,  cannon,  and 
similar  percussion  and  friction  fuses. — A.  J.  H. 

Separation    of    nitration    products    of    unsaturated 
gaseous  hydrocarbons  from   mixed  acids;  Process 

for  the .    Chem.  Fabr.  Kalk,  and  H.  Oehme. 

G.P.  349,349,  5.2.19. 
Ammonium  salts,   such  as  the  sulphate  or  nitrate, 
are  dissolved  in  the  mixed  acids. — H.  C.  R. 

Explosives;  Process  for  increasing   the  density  of 

and   gelatinising  .     Carbonit  A.-G.,  and   E. 

Kbhler.  G.P.  349.724,  2.3.19. 
The  gelatinising  liquid  is  produced  by  heating  urea 
with  salts  such  as  strontium  nitrate,  alum  or  a 
mixture  of  alum  and  sodium  nitrate.  The  warm 
liquid  is  added  to  the  mixture  of  explosives,  without 
melting  together  the  constituents.  The  products 
obtained  are  easily  detonated,  plastic,  and 
gelatinous,  and  can  be  easily  worked  up  into 
cartridges,  there  being  no  danger  of  ignition. 

— H.  C.  R, 


442  a 


Cl.  XXIII.— ANALYSIS. 


[June  15,  1922. 


Picric  acid;  Process  of  manufacture  of  from 

dinitrophenol  in  crystal  form  and  elimination 
therefrom  of  the  sulphate  of  lead.  L.  B.  Holliday 
and  L.  G.  Badier,  Assrs.  to  L.  B.  Hollidav  and 
Co.,  Ltd.  U.S. P.  1,413,914,  25.4.22.  Appl., 
30.12.19. 

See  E.P.  124,490  of  1916;  J.,  1919,  390  a. 
Nitro  compounds.    G.P.  310,772.    See  III. 


XXIII.— ANALYSIS. 

Conductometric   methods;  Application   of  to 

precipitation  analysis.  I.  M.  Kolthoff.  Z.  anal. 
Chem.,  1922,  61,  171—180.     (Cf.  J.,  1921,  63  a.) 

4"here  are  three  possible  sources  of  error  in  the 
determination  of  the  end  point  by  conductometric 
methods  in  precipitation  analysis,  viz.,  those  arising 
from  difficulties  in  the  determination  of  the  conduc- 
tivity changes  in  the  solution,  those  due  to  the 
solubility  of  the  precipitate  being  too  great,  and 
those  arising  from  adsorption  or  inconstant  com- 
position of  the  precipitate.  These  are  discussed 
in  detail,  and  it  is  shown  that  good  results  are 
obtained  only  when  the  salts  present  are  strong 
electrolytes,  and  when  the  solubility  of  the  precipi- 
tate expressed  in  terms  of  normality  of  its 
saturated  solution  is  less  than  l-20th  of  that  of  the 
solution  from  which  it  is  precipitated.  (Cf.  J.C.S., 
June.)— A.  R.  P. 

Membrane    filters;    Chemical  analysis    with . 

III.  Application  of  membrane  filters  to  volu- 
metric analysis.  [Determination  of  manganese 
and  chromium.~\  G.  Jander.  Z.  anal.  Chem., 
1922,  61,  145—171.  (Cf.  J.,  1919,  928  a;  1921, 
904.) 

The  use  of  membrane  niters  has  been  found  to  be 
very  satisfactory  for  the  collection  of  manganese 
sulphide  and  lead  chromate,  and  volumetric 
methods  for  the  determination  of  manganese  and 
chromium  based  on  titration  of  these  precipitates 
are  described.  Manganese  is  precipitated  as  the 
green  sulphide  from  boiling  ammoniacal  solutions 
containing  3%  of  ammonium  chloride  by  means  of 
a  large  excess  of  ammonium  sulphide,  and  the 
precipitate  is  collected  on  a  membrane  filter, 
washed  first  with  a  dilute  solution  of  the  precipi- 
tant, then  with  2%  neutral  sodium  sulphate  solu- 
tion till  free  from  ammonia,  and  dissolved  in  excess 
of  N /5  acid.  The  excess  acid  is  titrated  with  N /5 
sodium  carbonate,  using  methyl  orange  as  indicator. 
Chromium,  present  as  chromate  in  alkaline  solu- 
tions containing  other  oxidising  acids,  is  deter- 
mined by  precipitating  lead  chromate  from  the  hot 
solution  after  acidfying  with  acetic  acid  in  the 
usual  way,  dissolving  the  washed  precipitate  in 
hydrochloric  acid,  adding  an  excess  of  standard 
ferrous  sulphate  to  the  solution  and  titrating  the 
excess  with  standard  bichromate.  (Cf.  J.C.S., 
June.)— A.  R.  P. 

Hydrogen  generator;  Simple  ■ ■  for  use  in  mak- 
ing hydrogen  ion  determinations.  P.  H.  Cath- 
ca'rt.    J.  Ind.  Eng.  Chem.,  1922,  14,  278. 

The  hydrogen  is  generated  electrolytically  in  a 
bell-jar  inverted  in  a  cylinder  containing  10% 
6odium  hydroxide  solution.  The  outer  vessel  con- 
sists of  a  large  glass  precipitating  jar,  the  hydrogen 
reservoir  being  a  large  percolator  inverted  and  with 
its  mouth  resting  on  a  support  about  1  inch  from 
the  bottom  of  the  outer  jar.  A  rubber  stopper  in 
the  top  of  the  hydrogen  reservoir  carries  the 
cathode,  which  consists  of  an  iron  disc  suspended 
from  an  iron  wire,  and  a  glass  tube  with  stopcock. 
The  inner  vessel  is  held  down  by  four  rubber-covered 
wires.  The  anode  is  similar  to  the  cathode,  about 
4  6q.  in.  area,  and  so  adjusted  in  the  annular  space 
between  the  two   vessels  that   it  just  touches  the 


solution  when  all  gas  has  been  withdrawn  from  the 
reservoir.  The  cathode  just  projects  below  the  lower 
rim  of  the  reservoir.  A  110-volt  D.C.  circuit  is 
used  for  generating  the  hydrogen,  with  a  switch  so 
arranged  that  the  current  is  automatically  cut  off 
when  the  reservoir  becomes  full. — H.  C.  R. 

Sulphate  ion;  Estimation  of  as  barium  sul- 
phate. K.  P.  Chatterjee.  Z.  anorg.  Chem., 
1922,  121,  123— 134. 

The  author  carried  out  the  precipitation  under 
various  conditions.  The  amount  of  hydrochloric 
acid  added  to  make  the  precipitate  granular  and 
easily  filtered  should  not  exceed  01%  of  the  total 
volume  of  the  liquid.  Excess  of  barium  chloride  is 
not  as  detrimental  as  an  excess  of  hydrochloric  acid 
provided  the  precipitate  is  well  washed.  Rapid 
precipitation  results  in  a  stronger  adsorption  of  the 
mother  liquor  than  slow  precipitation.  Dry  barium 
sulphate  gives  up  the  adsorbed  chloride  more  readily 
than  the  wet  salt.— W.  T. 

Zinc;  Preparation  of  test  papers   containing  lead 

salts  and   observations   on   the   titration   of  

with  sodium   sulphide.      E.   Olivier.      Bull.   Soc. 
Chim.  Belg.,  1922,  31,  102—111. 

In  estimations  of  zinc  by  means  of  sodium  sulphide 
solution,  the  best  end-points  are  given  by  lead 
carbonate  papers,  but  lead  sulphate  papers  may  also 
be  used.  The  author  has  prepared  papers  by 
various  methods  and  finds  that  the  most  suitable  are 
gelatin-coated  paper  and  Bristol  board  impregnated 
with  basic  lead  carbonate  or  a  thinner  paper  with 
lead  sulphate.  Detailed  instructions  for  preparing 
such  papers  are  given,  the  solutions  used  being  lead 
nitrate  with  sodium  carbonate  and  potash  alum 
respectively.  The  alum  is  preferred  to  an  alkali 
sulphate  as  it  has  a  sizing  effect  on  the  paper.  A 
standard  method  of  testing  the  finished  paper  is 
described.  In  titration  of  zinc  with  sodium  sulphide 
it  is  essential  that  free  ammonia  in  the  zinc  solution 
should  be  reduced  to  the  smallest  possible  limit 
owing  to  its  solvent  action  on  the  precipitated  zinc 
sulphide;  further,  any  considerable  proportion  of 
ammonium  salts  renders  the  6tain  on  the  lead  paper 
used  as  indicator  much  less  distinct. — H.  J.  E. 

Phosphorus;   Colorimetric    estimation   of  .     L. 

Losana.      Giorn.    Chim.    Ind.      Appl.,    1922,    4, 

60—62. 
The  method  described  is  based  on  the  observation 
that  addition  of  hot  sodium  thiosulphate  solution  to 
ammonium  phosphomolybdate  yields  a  liquid  having 
an  intense  and  moderately  stable  blue  colour.  The 
optimum  concentration  for  the  thiosulphate  solu 
tion  is  12 — 15%.  To  avoid  deposition  of  sulpnur 
the  precipitate  must  be  washed  until  all  free  acid  is 
removed,  and  the  temperature  is  best  kept  at 
70° — 80°  and  must  never  exceed  90°  C.  The  pro- 
cedure is  as  follows  :  The  precipitate  is  collected  i:i 
a  small  Gooch  crucible  and  washed  once  with  I". 
nitric  acid  and  repeatedly  with  1%  potassium  nitrate 
solution  until  neutral.  The  asbestos  and  precipitate 
are  transferred  to  a  6mall  beaker,  20  c.c.  of  15'i 
sodium  thiosulphate  solution  being  added  and  the 
beaker  immersed  in  a  water-bath  at  80°  C.  for 
10  mins.  The  solution  is  then  filtered  into  a  100  c.c. 
flask,  the  filter  washed  with  hot  water  and  the 
volume  made  up  to  100  c.c.  in  the  cold.  The  colour 
obtained  is  compared  with  those  given  under 
similar  conditions  by  various  known  volumes  of  a 
solution  prepared  by  the  above  method  from 
00618  g.  of  pure  ammonium  phosphomolybdate, 
corresponding  with  0'001  g.  of  phosphorus.  V  hen 
the  actual  solution  tested  contains  not  more  than 
0"4 — 05%  of  phosphorus  the  method  yields  excellent 
results.  A  special  colorimeter  is  described  for  com- 
parison of  the  two  coloured  liquids,  as  well  as  a 
modified  form  applicable  to  solutions  containing  up 
to  5%   of  phosphorus. — T.  H.  P. 


Vol.  XIX,  No.  11.] 


Cl.  xxiii.— analysis. 


443  a 


Tin;   Modified   method  for   the   detection   of  . 

H.  Heller.     Z.  anal.  Chem.,  1922,  57,  180—182. 

One  c.c.  of  the  solution  to  bo  tested  is  treated  with 

0"5  c.c.  of  5%  potassium  iodide  solution,  and  1  c.c. 

;    of  strong  sulphuric  acid   is   introduced,   by  means 

of  a  pipette,  below  the  surface  of  the  liquid  so  as 

to  form   a  second   layer.      If   tin   is   present  small 

characteristic  yellow  crystals  of  tin  iodide  begin  to 

separate  at  the  surface  between  the  two  layers.   The 

precipitate   is   soluble  in   hydrochloric   acid,   which 

■   should  therefore  be  kept  at  a  minimum  in  the  test 

:  solution.     Arsenic  and  antimony  interfere  with  the 

test.— A.  R.  P. 

Xiil.il  and  cobalt;  Detection  and  determination  of 

small   quantities   of  in   silicate    rocks.     O. 

Hackl.     Chem.-Zeit.,  1922,  46,  385—386. 

The  sample  is  digested  with  aqua  regia,  the  nitric 
acid  removed  by  evaporation  with  hydrochloric  acid, 
and  the  insoluble  material  filtered  oft  and  digested 
with  hydrofluoric  and  hydrochloric  acids,  the  excess 
of  the  former  being  expelled  by  evaporation  with 
hydrochloric  acid.  The  solutions  obtained  from 
both  treatments  may  be  tested  separately  or  united. 
Heavy  metals  are  removed  by  hydrogen  sulphide, 
the  filtrate  is  made  ammoniacal,  again  saturated 
with  the  gas,  and  a  large  excess  of  5%  hydrochloric 
acid  added.  After  standing  for  some  time  the 
precipitate  is  filtered  off,  dissolved  in  aqua  regia, 
the  solution  treated  with  ammonia  or  barium  car- 
bonate to  remove  iron,  and  the  filtrate  again 
treated  with  ammonia  and  hydrogen  sulphide.  The 
pure  nickel  and  cobalt  sulphides  are  ignited  to 
oxides,  these  are  reduced  in  hydrogen  to  metal  and 
weighed.  Either  nickel  or  cobalt  is  then  deter- 
mined by  one  of  the  usual  methods,  and  the  other 
metal  is  obtained  by  difference.     (Cf.  J.C.S.,  .June.) 

—A.  R.  P. 

Lead;  Electro-volumetric  method  for  [the  deter- 
mination of]  .     D.  A.  Maclnnes  and  E.  B. 

Townsend.     J.  Ind.  Eng.  Chem.,  1922,   14,  420— 
421. 

A  dilute  nitric  acid  solution  of  lead  nitrate  is 
electrolysed  for  30 — 45  niins.  in  a  9  cm.  platinum 
dish  roughened  on  the  inside.  The  dish  acts  as 
anode,  and  the  cathode  consists  of  a  platinum  disc 
rotated  at  600  r.p.m.  The  anode  deposit,  which 
contains  all  the  lead  as  peroxide,  is  washed,  dis- 
solved in  an  excess  of  oxalic  acid  and  5  c.c.  of 
Istrong  nitric  acid  at  80°  C,  and  the  excess  of  the 
jformer  is  determined  by  titration  with  perman- 
ganate after  addition  of  sulphuric  acid  to  precipi- 
tate the  lead.     (Cf.  J.C.S.,  June.)— A.  R.  P. 

I Manganese ;  Estimation  of by  permanganate, 
and  investigation  of  some  manganites.  P.  B. 
Sarkar  and  N.  R.  Dhar.  Z.  anorg.  Chem.,  1922, 
121,  135—155. 

Manganese  can  be  accurately  estimated  by  per- 
manganate if  one  of  the  following  salts  is  present — 
:magnesium  sulphate,  potassium  nitrate,  potassium 
sulphate,  cadmium  sulphate,  sodium  nitrate, 
potassium  fluoride,  lithium  chloride,  sodium 
chloride,  sodium  acetate,  chlorides  of  barium, 
strontium,  calcium.  With  some  of  these  6alts 
iianganites  are  formed;  others  simply  coagulate  the 
lydrated  manganese  dioxide  formed,  and  thus  make 
oossible  a  sharp  end-point.  Coloured  salts  cannot 
)e  used,  and  such  sparingly  soluble  salts  as  calcium 
ohosphate,  calcium  sulphate,  etc.,  are  not  suitable 
)ecause  the  concentration  of  electrolyte  is  too  small. 
The   preparation,    composition,    and   properties   of 

! Several  manganites  are  described,  and  the  forma- 
tion of  manganites  and  the  position  of  manganeee 
n  the  periodic  system  discussed.  Pure  hydrated 
nanganese  dioxide  can  be  prepared  by  heating  a 
olution  of  manganese  sulphate  and  sodium  nitrate 
•md  gradually  adding  potassium  permanganate  to 


the  well-stirred  solution.  The  precipitated  dioxide 
is  filtered  and  well  washed  with  hot  water. — W.  T. 

Gold  and  silver;  New  method  of  detecting  in 

minerals   by  means  of  the  blowpipe.     A.  Braly 
Comptes  rend.,  1922,  174,  1065. 

The  mineral,  mixed  with  flux  and  lead,  is  placed 
in  a  small  scorifier  having  a  hole  pierced  in  it 
sufficiently  large  to  allow  the  blowpipe  flame  to 
penetrate  and  the  slag  to  flow  out.  The  scorifica- 
tion  is  carried  out  with  an  oxidising  flame  until  a 
button  is  left  the  size  of  a  millet  seed.  The  button 
is  transferred  to  a  plate  of  refractory  material, 
and  the  heating  with  the  blowpipe  is  continued 
until  the  button  of  silver  or  gold  is  obtained,  the 
litharge  being  left  behind  on  the  plate  as  the  button 
rolls  about.— W.  G. 

Osmium;  Detection  of  traces  of  .     M    Hirsch 

Chem.-Zeit.,  1922,  34,  390. 

Tue  metal  to  be  tested  for  osmium  is  fused  with 
caustic  soda  and  potassium  nitrate,  the  melt  is 
dissolved  in  water,  an  excess  of  concentrated  nitric 
acid  is  added,  and  the  osmium  distilled  off  as 
tetroxide.  The  distillate  is  collected  in  cold  water, 
the  solution  is  acidified,  5  c.c.  of  strong  potassium 
thiocyanate  solution  and  3  c.c.  of  ether  or  amyl 
alcohol  are  added,  and  the  whole  shaken.  A  bluo 
ethereal  or  alcoholic  layer  shows  the  presence  of 
osmium.  The  test  is  capable  of  detecting  1  pt.  of 
osmium  in  1,000,000  of  water.— A.  R.  P. 

Paraffins,   waxes,    resins,    pitch,   asphalt,   and    the 
like;  New  apparatus  for  the  examination  of  [the 

softening  point  of]  .     Chem.-Zeit.,  1922,  46, 

386. 

An  apparatus  for  the  examination  of  the  process  of 
softening  of  waxes  and  similar  substances,  termed 
Nashan's  "  Malakograph,"  consists  essentially  of  a 
balance  beam  supported  on  a  knife-edge.  One  end 
of  the  beam  carries  a  metallic  sphere  attached  by  a 
long  thin  wire  and  the  other  end  a  weight  somewhat 
heavier  than  the  sphere  and  connected  with  a  long 
arm  carrying  a  pen  travelling  on  a  revolving  drum. 
The  sphere  rests  in  a  small  cylindrical  vessel  which 
is  filled  with  pieces  of  the  material  to  be  tested. 
This  vessel  stands  in  a  larger  vessel  which  is  used 
as  a  water  bath  and  heated  by  means  of  an  electric 
hot-plate  beneath.  The  sample  is  first  melted  bo 
that  it  completely  covers  the  sphere  and  then 
allowed  to  cool;  the  water  bath  is  filled,  and  the 
temperature  raised  gradually.  At  first  the  pen 
describes  a  straight  line  on  the  cylinder,  but  as 
soon  as  the  material  starts  to  soften  the  excess 
weight  on  this  side  starts  to  draw  the  sphere  up 
through  the  material  so  that  the  pen  then  slowly 
rises  in  the  form  of  a  curve.  The  temperature  is 
measured  by  a  thermometer  in  the  water  bath  and 
must  be  marked  on  the  indicator  as  required. 

—A.  R.  P. 

See  also  pages  (a)  402,  Colour  of  oils  (Parsons 
and  Wilson) ;  Iodine  and  bromine  values  of  petro- 
leum products  (Johansen) ;  Vapour  pressures  of 
hydrocarbon  fuels  (Tizard  and  Marshall).  408, 
Colorimetric  estimations  (Hess);  a-Cellulose  (Waen- 
tig).  409,  Baryta  resistance  value  of  wood  cellulose 
(Schwalbe  and  Wenzl);  Chlorine  consumption  of 
wood  pulps  (Sieber) ;  Sulphite  -  cellulose  lyes 
(Deutsoh).  411,  Dextrin  for  cloth  dressing  (Pome- 
ranz).  412,  Nitrogen  oxides  (Burdick) ;  Nitrogen 
peroxide  (Sanfourche).  413,  Bromide  in  brines  etc. 
(Meloche  and  Willard);  Thiosulphuric  and  nitrous 
ions  (Falciola);  Dithionates  (Fischer  and  Classen); 
Titanium  dioxide  in  bauxite  (Winch  and  Chandra- 
treya).  418,  Phosphorus  in  cast  iron  (Graziani  and 
Losana).  420.  Vanadium,  in  steel  (Misson) ;  Cast 
bronze  (L-undell  and  Scherrer).     426,  Hide  powder 


444 1 


PATENT    LIST. 


[June  15,  1922. 


(Gerngross  and  Roser).  428,  Ammonium  citrate 
solutions  (Robinson  and  Bandemer).  429,  Artificial 
honey  (Behre);  Starch  and  iodine  (Von  Euler  and 
Mvrback).  431,  Added  water  in  milk  (Kopatechek) ; 
Lard  (Bbmer);  Carbon  dioxide  in  baking  powder 
(Robinson).  433,  Cresol  soap  solutions  (Frank); 
i  arbon  monoxide  (Katz  and  Blooinfield) ;  Morphine 
in  opium  (Abraham  and  others).  434,  Quinini  alka- 
[j  iSihoorl);  Quinutoxine  in  quinine  salts 
i  ..niassini). 

Patents. 

Explosion    pipette    [for    gas    analysis'].      Allgem. 

Ycrgasungsges.  in.b.H.  G.P.  346,910,  2.2.21. 
A  pair  of  electrodes  is  inserted  in  the  pipette  and  a 
third  electrode  placed  in  a  separate  vessel  connected 
with  the  pipette  and  containing  the  same  electro- 
lytic solution.  The  battery  circuit  includes  a  key 
so  designed  that  by  means  of  the  pipette  electrodes, 
or  one  pipette  electrode  and  the  electrode  in  the 
.auxiliary  vessel,  hydrogen,  oxygen  or  an  explosive 
mixture  of  these  gases  can  be  produced  in  the 
pipette,  as  desired. — J.  S.  G.  T. 

Indicating   the   presence   of   impurities   in  a   gas; 

Apparatus  for  .     Siemens   u    Halske   A.-G. 

G.P.  348,839,  14.12.20. 
The  temperature  of  a  fine  wire  through  which  an 
-electric  current  flows  and  which  is  surrounded  by 
the  gas  under  investigation,  is  deduced  from  its 
resistance  and  serves  as  a  measure  of  the  conduc- 
tivity of  the  gas.  The  wire  at  normal  temperature 
is  stretched  so  tightly  that  it  does  not  sag  when 
heated  by  the  current.  Alternatively  the  wire  is 
wound  into  a  very  fine  helical  spring,  the  diameter 
and  pitch  of  which  are  small  compared  with  the 
dimensions  of  the  vessel  in  which  it  is  placed. 

—J.  S.  G.  T. 

Concentration  of  one  component  of  a  gaseous  mix- 
ture:    Apparatus    for    determining     the    . 

Siemens  u  Halske  A.-G.  G.P.  349,299,  17.8.19. 
The  gaseous  mixture  flows  through  a  vessel  wherein 
it  is  submitted  to  a  silent  electric  discharge,  and 
the  current  is  increased  preferably  by  means  of  a 
thermo-element  cross.  The  ratio  of  the  distance  of 
discharge  to  the  thickness  of  the  dielectric  forming 
the  walls  of  the  discharge  vessel  is  made  as  much 
larger  than  0-5  as  possible.  Two  such  discharge 
vessels  are  employed  and  are  inserted  in  a  bridge, 
the  one  being  filled  with  the  gas  to  be  investigated 
and  the  other  with  a  standard  gas  for  comparison. 

— J.  S.  G.  T. 

Lubricantsand  bearings;  Apparatus  for  testing 

[under  conditions  simulating  those,  of  actual  prac- 
li,r].  Oelwerke  Stern-Sonneborn  A.-G.  E.P. 
157,322,  10.1.21.     Conv.,  10.3.19. 

Befractometers;     [Mechanical]     improvements     in 
.  W.  Taylor.    E.P    178,290,  17.3.21. 


Patent   List. 

The  dates  given  in  this  list  are,  in  the  oase  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  oase  of 
Complete  Specifications  aocepted,  those  of  the  Official 
Journals  in  whioh  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given ;  they  are  on  sale 
at  Is.  eaoh  at  the  Patent  Office  Sale  Branch.  Quality 
Court,  Chanoery  Lane.  London.  W.C.  2.  16  days  after  the 
date  given. 

I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 
Bligh,  Imison,  Wright,   and  Carmichael  and  Co. 
Mechanical  furnaces.     14,345.     May  22. 


Brackett,  and  Brackett  and  Co.  Screening  or 
filtering  apparatus.     14,045.     May  18. 

Burt,  Boulton,  and  Haywood,  and  China.  Con- 
tinuous pressure  filters.     13,940.     May  17. 

Fairweather  (Air  Reduction  Co.).  Furnace 
tubes,  and  method  of  protecting  them.  13,621. 
May  15. 

Fairweather  (Air  Reduction  Co.).  Retort 
material,  and  method  of  protecting  retorte  against 
action  of  gases.     13,622.     May  15. 

Hardinge.     Grinding-mills.     12,961.     May  8. 

McGinnes.  Pulverising  apparatus.  12,953. 
May  8. 

Major.  Distillation  etc.  of  liquids.  13,572. 
May  13. 

Minton.  Treating  material  in  a  vacuum.  13,791. 
May  16. 

Oliver.     Filtering-apparatus.     13,804.     May  16. 

Pellegrini  and  Poma.  Chemical  reduction  process 
by  means  of  sodium  amalgam.     13,222.     May  10. 

Ridge.    Regenerative  furnaces.    13,570.    May.  13. 

Ver  Mehr.     Mixing-machines.     13,916.     May  17. 

Vernay.  Filtering  apparatus.  14,754.  May  25. 
(Fr.,  8.10.21.) 

Complete  Specifications  Accepted. 

31,575  (1920).  Bateman.  Separators  for  sepa- 
rating liquids  of  different  density.  (179,209.) 
Mav  17. 

31,942  (1920).  Sears  and  Twigg.  Furnaces. 
(179,965.)     May  31. 

3675  (1921).  Paterson.  Filtering-apparatus. 
(179,270.)     May  17. 

3707  (1921).  Newberry.  Rotary  furnaces. 
(179,272.)     May  17. 

3848  (1921).  Berk  and  Co.,  and  Briscoe.  Sepa- 
ration of  solids  by  crystallisation  from  solvents. 
(179,287.)     May  17. 

4271  (1921).  Newton.  Drying  cylinders.  (179,621.) 
May  24. 

5094  (1921).  Hughes  (Deutsche  Evaporator 
A.-G.).     Kilns.     (179,674.)     May  24. 

5115(1921).  Kilner.  Apparatus  for  drying  solid 
substances.     (180,023.)     May  31. 

5127  (1921).  Johnson  (Badische  Anilin-  u.  Soda- 
Fabr.).     Purification  of  gases.     (180,024.)     May  31. 

8150  (1921).  Still  and  Petsch.  Distillation 
columns.     (179,745.)     May  24. 

8966  (1921).  Whitfield.  Drying  apparatus. 
(179,764.)     May  24. 

22,329  (1921).  Miller  Rees  Hutchison  Inc.  ISon- 
corroding  and  non-freezing  liquids.  (170,274) 
May  31. 

24,817  (1921).  Eberts.  Fluid-heated  drying- 
drums.     (179,483.)     May  17. 

5097  (1922).  Keene.  Filtering  -  apparatus. 
(179,494.)     May  17. 

XI—FIEL:      GAS;      MINERAL      OILS       »ND 

WAXES;    DESTRUCTIVE   DISTILLATION; 

HEATING;  LIGHTING. 

Applications. 

Bentall  and  Bingham.  Producer-gas  plant. 
13,174.     May  10. 

Burn.     Gas-producers.     14,759.     May  25. 

Danks.  Retorts  for  recovering  by-products  from 
coal  and  oil  shale  etc.  and  for  cracking  oils.  14,80i. 
May  26.  ,  . 

Galbraith  and  Taplay.  Purification  of  gases  from 
hydrogen  cyanide.     13,083.     May  9. 

Helps.     Gas  manufacture.     14,058.     May  IS. 

Hodgkinson  rnd  Ridge.     11.124-5.    See  XII. 

Hudson  and  Knight.  Manufacture  of  fuel 
briquettes  etc.     13,767.      May   16. 

Hutton.  Production  of  water-soluble  oil.  U,yyy. 
Mav  18.  „        -B-B-TTI 

Igranic  Electric  Co.     13,651-2.     See  XXIII. 


Vol.  XLL,  No.  11.1 


PATENT    LIST. 


445  a 


Koppers.  Coking  and  carbonising.  13,064. 
May  9.     (Ger.,  1.8.21.) 

Lang  and  Nielsen.  Distillation  of  carbonaceous 
etc.  materials.     14,784.     May  25. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Treat- 
ment of  mineral  oils.     14,337.     May  22. 

Shaw.     13,353.     See  III. 

Thornlev.  Recovery  of  coal  from  waste.  13,431. 
May  12. 

Tooley,  and  West's  Gas  Improvement  Co. 
Settings  of  vertical  retorts.     13,221.     May  10. 

Wessels  u.  Wilhelmi.  Oven  for  distilling  peat 
etc.     14,850.     May  26.     (Ger.,  28.5.21.) 

Young.  Obtaining  oils  of  low  sulphur  content 
from  shales  and  non-coking  coals.     13,034.    May  9. 

Complete  Specifications  Accepted. 

30,635  (1920).  Melamid.  Manufacture  of  oil  for 
cores  for  foundry  purposes.     (179,203.)     May  17. 

30,724  (1920).  Black.  Retorts  for  distilling  oil- 
bearing  shales  etc.     (179,964.)     May  31. 

30,792  (1920).  Greenstreet.  Production  of  arti- 
ficial fuel.     (179,567.)     May  24. 

31,634(1920).  Bates.  Raising  the  specific  gravity 
and  flash  points  of  liquid  fuel.     (153,591.)     May  31. 

36,168  (1920).  Bates.  Liquid  fuel.  (161,929.) 
May  31. 

473  (1921).  Summers.  Coke-ovens.  (179,235.) 
May  17. 

4136  (1921).  Demant.  Refining  hydrocarbons. 
(179,610.)     May  24. 

4490  (1921).  Simpson.  Apparatus  for  complete 
gasification  of  carbonaceous  fuel.  (179,643.)  Mav  24. 

4496-7  (1921).  Gartlan  and  Gooderham.  'Dis- 
tilling and  cracking  bvdrocarbon  oils.  (179,644-5.) 
May  24. 

5445  (1921).  Minton.  Lubricants.  (179,344.) 
Mav  17. 

5519  (1921).     Brat.     See  VII. 

6273  (1921).  Seigle.  Distilling  and  gasifying  peat 
etc.     (180,081.)      May  31. 

6286  (1921).  Pierson  and  Pierson.  Gas-generators 
for  generating  low-grade  gas.     (179,716.)     May  24. 

7025  (1921).  Chemical  Fuel  Co.  of  America.  Pre- 
paration of  motor  fuels  containing  alcohol. 
<159.880.)     May  31. 

10,710  (1921).  Fenton.  Treatment  of  oil-bearing 
solids.     (180,157.)     May  31. 

10.834  (1921).  Burnet.  Vertical  retorts  for 
destructive  distillation.     (180,161.)     May  31. 

12.228  (1921).  Soc.  du  Gaz  de  Paris.  Manufac- 
ture of  illuminating  gas.     (164,310.)     Mav  24. 

235  (1922).  Robertson  (Power  Specialty  Co.). 
Effecting  heat  interchange  between  fluids  for  use 
in  distilling  oils.     (179,493.)     May  17. 

III.— TAR   AND    TAR    PRODUCTS. 

Applications. 

Coke  and  Gas  Ovens,  Ltd.  (Still).  Apparatus  for 
dehydrating  tar.     14,407.     May  22. 

Shaw.  Dehydrating  and  /or  partially  distilling 
tars,  mineral  oils,  etc.     13,353.     May  11. 

Complete  Specification  Accepted. 

2554  (1921).  Andrews,  Conover,  John,  and  Ruth. 
Purification  of  naphthalene  etc.    (179,991.)   May  31. 

IV.— COLOURING   MATTERS    AND    DYES. 

Applications. 

Davies,  Thomas,  Thomson,  and  Scottish  Dyes, 
Ltd.  Production  of  colouring-matters.  13,335. 
May  11. 

Imray  (Soc.  Chem.  Ind.  in  Basle).  Manufacture 
of  condensation  products  of  the  anthraquinone 
series.     13,571.     May  13. 

Sokal  (Kalle  u.  Co.).  Production  of  vat  dyestuffs. 
14,726.     May  25. 


V.— FIBRES  ;     TEXTILES ;     CELLULOSE ; 
PAPER. 

Applications. 

Akt.-Ges.  f.  Anilinfabr.  Protecting  animal  fibres 
treated  with  alkaline  liquids.  14,641.  May  24. 
(Ger.,  15.6.21.) 

Balke  and  Leysieffer.  Manufacture  of  articles 
from  cellulose  derivatives.  14,636-7.  May  24. 
(Ger.,  17.6.21.) 

Cross  and  Engelstad.  Treatment  of  wood  etc.  for 
obtaining  lignone.     12,943.     May  8. 

Cross  and  Engelstad.  Manufacture  of  viscose. 
12,944.     May  8. 

Cunningham,  and  Fine  Cotton  Spinners'  and 
Doublers'  Assoc.  Treatment  of  cotton.  13,710. 
May  16. 

Drevfus.  Manufacture  of  cellulose  derivatives. 
14,610.     May  24. 

Glanzfaden  A.-G.  Manufacture  of  cellulose  pro- 
ducts from  viscose  solutions.  14,261-2.  May  20. 
(Ger.,  27.10.  and  3.9.21.) 

Granton  (Blunck).  Removal  of  ink  from  paper 
etc.     14,533.     May  23. 

Haigh.  Carbon  etc.  coated  papers  and  carbon- 
ising papers.     14,973.     May  27. 

McLaurin.  Process  of  coating  paper.  13,792. 
May  16. 

Masterman.  Waterproofing  paper.  14,764.  May 
25. 

Siemens-Schuckertwerke.  Centrifugal  apparatus 
for  spinning  artificial  silk  and  viscose.  14,041. 
May  18.     (Ger.,  13.6.21.) 

Soc.  Anon.  Etabl.  Balsan.     14,166.     See  XII. 

Complete  Specifications  Accepted. 

31,254  (1920).  Dreyfus.  Manufacture  of  plastic 
materials  etc.  with  a  basis  of  cellulose  acetate. 
(179,208.)     May  17. 

276  (1921).  British  Cellulose  and  Chem.  Manuf. 
Co.,  Palmer,  and  Dickie.  Manufacture  of  artificial 
filaments,  threads,  and  films.     (179,234.)     May  17. 

354  (1921).  Sturtevant  Co.  Manufacture  of 
paper.    (156,481.)    May  17. 

754  (1921).  Ehrenthal.  Manufacture  of  cotton 
substitutes.     (156,710.)    May  24. 

1832  (1921).  Kiimpf.  Apparatus  for  use  in  re- 
ducing alkali  cellulose  etc.     (157,982.)    May  31. 

6972  (1921).  Steinhilber.  Manufacture  of  paper 
pulp.     (180,097.)     Mav  31. 

11,169  (1921).  Krantz.  Apparatus  for  drying 
textile  material.     (179,409.)     May  17. 

18,119  (1921).  Escher,  Wyss,  u.  Co.  Boiling 
fibrous  material.     (168,304.)    May  31. 

VI.— BLEACHING ;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Anderson.  Hardening  and  finishing  fabrics  etc. 
13,029.     Mav  9. 

Bochter.  Bleaching  linen.  13,820  and  14,790. 
May  16  and  25.     (Ger.,  23.5.  and  15.10.21.) 

Bochter.  Bleaching  cotton.  14,789.  May  25. 
(Ger.,  4.7.21.) 

Brookfield  Linen  Co.,  and  Kennett.  Jigger  dye- 
ing-machines.    14,926.     May  27. 

Calico  Printers'  Assoc,  and  Fourneaux.  Mer- 
cerising and  finishing  fabrics.    14,771.    May  25. 

Calico  Printers'  Assoc,  and  Fourneaux.  Orna- 
menting textile  fabrics.     14,772.     May  25. 

Schlumpf.  Treatment  of  yarn  etc.  in  hanks  with 
liquid.      14,223.     May   19.      (Switz.,   20.5.21.) 

Soc.  Chim.  Usines  du  Rhone.  Dyeing  cellulose 
acetate.     13,946.     Mav  17.     (Fr..  27.7.21.) 

Tully.     Finishing  cloth.     14,391.     May  22. 
Complete  Specifications  Accepted. 

3198  (1921).  Tate.  Dyeing  and  waterproofing. 
(179,247.)     May  17. 


446  a 


PATENT    LIST. 


(June  15,  1922. 


3487  (1921).     Calico  Printers'  Assoc,  and  Costo- 
badie.    Production  of  ornamental  effects  on  fabrics 
(179,260.)     May  17. 

8648   (1921).      Burgess,    Ledward,    and   Co.,    and 
Harrison.  Dyeing  acetylcellulose.  (179,384.)  May  17. 

VII.— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC  ELEMENTS. 

Applications. 

Andreani  and  Poma.  Synthetic  manufacture  of 
hydrochloric  acid  in  aqueous  solution.  14,208 
May   19. 

Blattner  (Grouchkine).     Manufacture  of  caustic 
soda.     14,913.     May  26. 

Blattner  (Grouchkine).     Manufacture  of  carbon 
dioxide  suitable  for  liquefaction.     14,914.     May  26. 

Casale.  Catalysts  for  synthesis  of  ammonia  etc 
13,835.     May  16. 

Cateret  and  Devaux.  Production  of  oxygen 
compounds  of  titanium.     13,466.     May  12. 

Clayton.     Alkali  silicates.     13,972.     May  18. 

Cocksedge.  Manufacture  of  water-soluble  sodium 
silicates.     14,110.    May  19. 

Coke  and  Gas  Ovens,  Ltd.  (Still).  Apparatus  for 
making  neutral  ammonium  sulphate.  14  408 
May  22.  ' 

Courtaulds,  Ltd.,  and  Jones.     Separating  sodium 
carbonate  from  solutions  containing  caustic  soda 
13,444.     May  12. 

Courtaulds,  Ltd.,  and  Jones.  Manufacture  of 
caustic  soda.     13,807.     May  16. 

Fairweather  (Air  Reduction  Co.).  Manufacture 
of  alkali  cyanides.     13,623.     May  15. 

Hechenbleikner  and  Oliver.  Treatment  of  acids. 
13,567.     May  13. 

New  Jersey  Zinc  Co.  Manufacture  of  zinc  oxide 
14,619.     May  24.     (U.S.,  27.5.21.) 

Smith  (Centro  Tecnico  de  Fumigacion).  Produc- 
tion of  hydrocyanic  acid.     13,194.     May  10. 

Zack.  Obtaining  argon  from  air.  13,290.  May  11 
(Ger.,  11.5.21.)  J 

Complete  Specifications  Accepted. 

884  (1921).  Norsk  Hydro-Elektrisk  Kvaelstofakt. 
Manufacture  of  concentrated  nitrous  o-ases 
(159,799.)     May  24.  & 

885  (1921).  Norsk  Hydro-Elektrisk  Kvaelstofakt, 
Converting  nitrous  gases  into  concentrated  nitric 
acid.     (156,800.)     May  24. 

2104  (1921).  New  Jersey  Zinc  Co.  Manufacture 
of  zinc  oxide.     (161,156.)     May  31. 

2224  (1921).  Delaroziere.  Manufacture  of  sodium 
ferrocyanide.     (179,982.)    May  31. 

4100  (1921).  Wade  (Lindsay  Light  Co.).  Manu- 
facture of  thorium  nitrate.     (179,309.)     May  17. 

4S95  (1921).  Armour  Fertilizer  Works.  Produc- 
tion of  aluminium  chloride.     (160,759.)     May  24. 

5519  (1921).  Brat.  Recovery  of  ammonia  from 
peat  etc.     (159,194.)    May  17. 

6618  (1921).  Kilburn  (Titanium  Pigment  Co.). 
Manufacture  of  composite  titanic  oxide  products 
(180,089.)    May  31. 

6684  (1921).  Hansford.  Apparatus  for  drying 
sulphate  of  ammonia  and  other  salts.  (179  723  ) 
Mav  24. 

7879  and  28,293  (1921).  Kelly  and  Jones.  Pro- 
duction of  sodium  pentaborate  direct  from  boron 
ores.     (180,110.)    May  31. 

8147  (1921).    Deuts.  Gold-  u.  Silber-Scheideanstalt, 
and  Liebknecht.     Generation  of  hydrocyanic  acid 
(180,118.)     May  31. 

8988  (1921).  Chem.  Fabr.  Weissenstein.  Dis- 
tilling sulphuric  acid.     (163,685.)     May  17 

11,717  (1921).  Deuts.  Gold-  u.  Silber-Scheide- 
anstalt. Production  of  sodium  cyanide.  (164  719  ) 
May  24.  ' 

12,157  (1921).  Browning  and  Boorman.    See  XVI. 


12,901  (1921).  Aluminium-Industrie  A.-G.    Manu- 
facture ot  calcium  nitrate.     (163,330.)     Mav  24 
27,209  (1921):    Norsk.  Hydro-El'ektritk  KvLlslof- 

070,840.)°  dMay°ll.        C°nCentrated    nit™     «*»■ 


VIII.— GLASS;    CERAMICS. 
Applications. 
Dean,  Osman,  and  Redfern.     Kilns  for  burnine 
Ma     1<Tlaeotta'   tlIes'   &azed   bricks,   etc.      13,876 

H^&ffi^Ma    ^mposition      resembling     alabaster. 

Jackson  (Libbey  Owens  Sheet  Glass  Co  )      Draw- 
ing continuous  sheet  glass.     13,368.     Mav  11 

lJ«!a"'St<)riieS',  Treatment  of  ceramic  vessels. 
14  624.     May  24.     (Czecho-Slov.,   12.11  21  ) 
Salerni.     Abrading-materials.     13,553.     May   13. 

Complete  Specifications  Accepted. 
33,552  (1920).      Meurer.      Coating  heat-resistine 

aSYe.)  yMaPyrai'7ng    ^    ename'S'    g'3ZeS'    etc 

1449     1452,   and   1453    (1921).      Lohmann-MetaU 

Ces.     Manufacture   of   blocks    etc.    of   tungsten  or 

molybdenum  carbide.       (157,747,  157,749,  157,750.) 


IX.— BUILDING    MATERIALS. 

Applications. 

Bauchere.    Rotary  cement  kiln.    14,222      Mav  19 

Baumgarten.  Production  of  enamel-like  facing 
on  concrete  products.     13,021.     May  9. 

Cannon  and  others.  Manufacture  of  concrete 
products.     14,900.     May  26. 

Gare.  Manufacture  of  bricks,  tiles,  etc  14  780 
May  25. 

Mackay.    Bituminous  emulsions.     13,022.    May  9 

Markwitz  and  Nickel.  Manufacture  of  cement' 
14,740.     May  25. 

Miki.    Heat-insulating  material.   14,582.   May  24. 

Taylor.  Materials  for  paving  and  flooring 
lining  vessels,  etc.     13,462.     May  12. 

Complete  Specifications  Accepted. 

3783  (1921).  Winkler.  Treatment  of  mortar, 
cement,  concrete,  etc.     (167,138.)     May  17. 

4905  (1921).  Dussek.  Compositions  for  making 
roads  etc.     (179,664.)     May  24. 


X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Barron  and  Barron.  Annealing  metals.  14.471. 
May  23. 

Billington.  Alloy  for  ships'  propellers.  13,247. 
May  11. 

Birks  and  others.  Crucible  etc.  furnaces.  14,786. 
May  25. 

Blasi.  Production  of  aluminium.  13,915.  May  17. 
(Spain,  18.5.21.) 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Manufacture  of  alloys.     14,905.     May  26. 

Concentrators,  Ltd.,  and  Dobbie.  Com  filtration 
of  ores.     14,653.     May  24. 

Coulbeaux  and  Thomas.  Refining  etc.  metals. 
14,327.     May  20.     (Belg.,  25.5.21.) 

Davies.  Coating  or  welding  corrodable  iron  and 
steel  with  or  to  non-corrodable  iron  and  steel. 
13,711.     May  16. 

Horion.  Zinc  furnaces.  14,818.  Mav  26  (Belg., 
4.7.21.) 


I »,: 

■met 
Kiiii 


Vol.  XLI.,  No.  11.] 


PATENT  LIST. 


447a 


James  and  Meyer.  Alloys.  14,382.  May  22. 
(U.S.,  23.6.21.) 

Jones,  and  Steel-Nickel  Process  Synd.  Pro- 
ducing metal-covered  steel  ete.     13,060.    May  15. 

McGhie.     Refining  silver.     14,431.     May  22. 

McUhie.     Refining  copper.     14,432.     May  22. 

Maekay.     Roasting  ores.     14,195.     May  19. 

Manganese  Bronze  and  Brass  Co.,  Nurthover,  and 
Parsons.     Non-ferrous  alloys.     14,643.     May  24. 

Ridge.     13,570.     See  1. 

Wieksteed.  Furnaces  for  case-hardening  etc 
13,346.     May  11. 

Complete  Specifications  Accepted. 

30,507  (1920)  and  20,207  (1921).  Dyson  and 
Aitchison.  Purification  of  ores  and  residues  con- 
taining metallic  oxides.     (179,201.)     May  17. 

2592  (1921).  Ballantine.  Manufacture  of  ferro- 
chromium  alloys.     (179,992.)     May  31. 

(1921).  Rheinisch  Nassauische  Bergwerks  u. 
Hutten  A.-G.,  and  Spieker.  Production  of  zinc 
dust.     (171,962.)    May  17. 

3487  (1921).  Iytaka  and  others.  Allovs. 
(179.261.)     May  17. 

4088  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).    Alloys.    (179,306.)    May  17. 

4427  (1921).  Faconeisen  Walzwerk,  and  Bansen. 
Continuous  re-heating  or  annealing  furnaces. 
(179,638.)     May  24. 

5068  and  5899  (1921).  Perkins.  Treatment  of 
oxidised  ores.    (180,031.)    May  31. 

5112  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Electrolytic  deposition  of 
metals.    (179,675.)    May  24. 

5120  (1921).  Stevens.  Reduction  of  ores. 
(160,760.)    May  31. 

5472  (1921).  Rheinisch  Nassauische  Bergwerks 
u.  Hutten  A.-G.  Extraction  of  zinc  from  lead  6lags, 
zinc  retort  residues,  poor  zinc  ores,  etc.  (160,455.) 
Mav  31. 

12,233  (1921).  Akt,  Ferrolegeringar.  Produc- 
tion of  chromium  or  its  alloys.     (163,263.)     May  31. 

12,507  (1921).  Howse.  Treating  or  preserving 
steel  or  iron  work  against  corrosion  and  rusting. 
(179,811.)     Mav  24. 

18,453  (1921).  Penny.  Crucible  furnaces. 
(179,463.)     May  17. 


XI.— ELECTRO-CHEMISTRY. 

.     Applications. 

Barfield  and  Wild.  Electric  furnaces.  14,428. 
May  22. 

Foard.  Electric  accumulators  etc.  14,234. 
May  20. 

Leitner.  Electric  accumulators  etc.  14,059. 
May  18. 

Richards.     Primary  cells.     13,601-3.     May  15. 

Travis.  Electric  melting-furnaces.  14,120.  May  19. 

Complete  Specifications  Accepted. 

33,562  (1920).  Pepper.  Electric  batteries. 
(154,590.)     May  17. 

4377  (1921).  Szarvasv.  Manufacture  of  carbon 
electrodes.     (158,890.)     May  17. 

4420  (1921).  Deutsche  Gold-  u.  Silber-Scheide- 
mstalt.andLiebknecht.  Platinum  anodes.  (179,636.) 
Mav  24. 

5112(1921).  British  Thomson-Houston  Co.  SeeX. 
I  8256(1921).  Darimont.  Primary  cells.  (180,120.) 
May  31. 

XII.— FATS;    OILS;    WAXES. 

Applications 

Cellulose  et  Papiers  Soc.  Extraction  of  oils  or 
lats.     12,952.     May  8.     (Fr.,  12.5.21.) 


Dyke.  Moseley,  and  Lever  Bros.  Treatment  of 
vegetable  nuts.     12,S91.     May  8. 

Dyke,  Moseley.  ami  Lever  ISios.  Extraction  of 
oil  from  nuts  ami  fruits.     12,s!i2.     May  8. 

Hodgkinson  and  Ridge.  Purification  of  oils  etc. 
14,424.     May  22. 

Hodgkinson  and  Ridge.  Treatment  of  oils.  14,425 
May  22. 

Soc.  Anon.  Etabl.  Balsan.  Separating  mud  and 
fatty  matter  from  wool-scouring  liquors  ete  14  166 
May  19.     (Fr.,  27.5.21.) 

Welter.     Soap  manufacture.     14,325.     May  20. 

<  i'Aiplete  Specifications  Accepted. 

2917  (1921).  Conyers,  Reynard,  and  Lanoline 
Extractors,  Ltd.  Treatment  of  crude  cholesterol 
materials  such  as  wool  fat.     (179,241.)     May  17. 

3922  (1921).  Fankhauser.  Separation  of  oils 
and  fats  from  oily  and  fatty  substances.  (158,844.) 
May  17. 

9753  (1921).  Yamamoto  and  Mizusawa  Pro- 
duction of  odourless  and  colourless  oil  and  flour 
from  soya  bean.     (179,776.)     May  24. 

XIII.—  PAINTS;    PIGMENTS;    VARNISHES; 
RESINS. 

Applications. 

Brandenberger.  Paint  etc.  13,646.  May  15 
(Switz.,  14.5.21.) 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Waterproof  compositions.     14,031.     May  18. 

Kur.       Manufacture     of     ultramarine.       1 
May  26. 

Lytton.    Paints,  varnishes,  etc.    13,958.    May  17. 

New  Jersey  Zinc  Co.     14,619.     See  VII. 

Complete  Specifications  Accepted. 

32,485  (1920).  Condensite  Co.  of  America.  Pro- 
duction of  phenol-aldehvde  condensation  products. 
(159,164.)     May  31. 

1588  (1921).  Clerc  and  Nihoul.  Manufacture  of 
zinc  white.     (157,860.)    May  24. 

2104  (1921).     New  Jersey  Zinc  Co.     See  VII. 

XIV.— INDIA-RUBBER;    GUTTA-PERCHA. 
Complete  Specifications  Accepted. 

1561  (1921).  Western  Rubber  Co.  Rubber  sub- 
stitute.    (157,836.)     May  24. 

4306  (1921).  Maguire  and  other  (Davidson). 
Treatment  of  raw  rubber.     (179,622.)     May  24. 

XV.— LEATHER;   BONE;   HORN;   GLUE. 

Applications. 

Lauro.     Tanning  process.     14,575.     May  24. 

Molassine  Co.,  and  Whalley.  Detanmng  leather 
and  obtaining  product  for  preparation  of  fertilisers 
etc.     14,302.     May  20. 

Niven.     Treating  hoof.     14,168.     May  19. 

Complete  Specifications  Accepted. 

32,680  (1920).  McLennan.  Treatment  of  leather 
with  india-rubber.     (179,969.)    Mav  31. 

11,638  (1921).  Pichard  Freres.  process  for  un- 
hairing  hides.     (163,294.)     May  31. 

XVI.— SOILS ;    FERTILISERS. 

Applications. 

Ercole.  Manufacture  of  fertilisers.  13,057. 
May  9.     (Ital.,  14.5.21.) 

Molassine  Co.     14,302.     See  XV. 

Poock.  Fertiliser  and  by-products.  14,082.  May  18. 

D 


448A 


PATENT    LIST. 


[June  15,  1922. 


Soc  Anon.  Prod.  Chim.  et  Engrais.  Fertilisers. 
14,779.     May  25.     (Belg.,  27.4.21.) 

Complete  Specifications  Accepted. 

5195  (1921).  Haege.  Production  of  fertilisers. 
(180,027.)     May  31. 

1l'.1">7  (1921).  Browning  and  Boorman.  .Treat- 
ment of  nitrates  used  for  fertilising  etc.  (180,180.) 
May  31. 

XVII—  SUGARS;     STARCHES;     GUMS. 

Complete  Specification  Accepted. 

8990  (1921).      Bloxam  (Kantorowicz).      Manufac- 
ture of  an  adhesive  from  potato  starch.     (179,765.)    | 
May  24. 

XVIII.— FERMENTATION   INDUSTRIES. 

Applications. 

Ferguson.  Manufacture  of  calcium  lactate  and 
lactic  acid  from  fermentable  sugar  solutions. 
14,592.     May  24.  . 

Jensen  (Fleischmann  Co.).  Dried  yeast  and 
process  of  making  same.     13,197.     May  10. 

Moss.     Yeast.     14,925.     May  27. 

Complete  Specifications  Accepted. 

4634  (1921).  Badische  Anilin  u.  Soda  Fabr. 
Manufacture  of  alcohol.     (158,906.)     May  24. 

5444  and  6107  (1921).  Gilmour.  Manufacture  of 
yeast.     (180,043.)     May  31. 

XIX— FOODS;    WATER    PURD7ICATION ; 
SANITATION. 

Applications. 

Clark,  and  Pearson  and  Co.  Production  of  potent 
preparations  of  vitamin  A.  13,800-1,  14,401, 14,730. 
May  16,  22,  and  25. 

Griffin.       Water-distilling     apparatus.       13,409. 

Hepburn.     Water  filtering  and  softening.   14,438. 

May  22-  ,  t,  io     i 

Mills     and     Ramsbottom.       Evaporating     blood 

albumin  etc.     14,477.     May  23. 

Munton  and  Baker,  and  Townsend.  Food  and 
medicinal  preparations.     13,379.     May  12. 

Munton  and  Baker,  and  Townsend.  Production 
of  cereal  foods.     13,380.     May  12. 

Woodhouse.     Insecticide.     14,916.     May  26. 

Complete  Specifications  Accepted. 

2295  (1921).  Daw.  Treatment  of  sewage  etc. 
(179,986.)    May  31.  . 

5005  (1921).  Dunham.  Production  of  casein 
products.     (180,018.)     May  31. 

5879  (1921).  Spear  and  Spear.  Manufacture  of 
food  products.     (179,705.)     May  24. 

9753  (1921).    Yamamoto  and  Mizusawa.    See  XH. 

13,076  (1921).  Wade  (Sykes).  Dehydrating- 
apparatus  for  foods  etc.     (180,197.)    May  31. 

700  (1922).  Daw.  Treatment  of  sewage  water 
etc.     (180,272.)    May  31. 


XX.— ORGANIC    PRODUCTS;   MEDICINAL 
SUBSTANCES;    ESSENTIAL   OILS. 

Applications. 

Farbw.  vorm.  Meister,  Lucius,  u.  Briining. 
Manufacture  of  sulphonic  acids  of  2.3-oxynaphthoic 
acid  arylidee.     14,537.     May  23.     (Ger.,  19.7.21.) 

Ferguson.     14,592.    See  XVIII. 

Heinemann.  Manufacture  of  formaldehyde. 
13,340.     May  11.     (Ger.,  11.5.21.) 

Iinray  (Meister,  Lucius,  u.  Briining).  Manu- 
facture of  a  complex  amino  aigento-mercapto- 
benzenecarboxylic   acid.      13,821.      May   16. 

Lidholm,  and  Wargons  Akt.  Production  of  a 
solution  of  cyanamide.  13,888.  May  17.  (Sweden, 
1.12.21.) 

Munton  and  Baker,  and  Townsend.  13,371.  See 
XIX. 

Soc.  Chim.  Usines  du  Rhone.  Production  of  batsic 
salicylate  of  alumina.  14,655.  May  24.  (Ger., 
28.6.21.) 

Complete  Specifications  Accepted. 

4980  (1921).  Lush.  Preparation  of  formaldehyde 
or  its  polymers  from  mixtures  of  carbon  monoxide 
and  hydrogen.     (180,016.)     May  31. 

5665  (1921).  Glysyn  Corp.  Manufacture  of 
trichlorhydrin.     (168,576.)     May  17. 

6289  (1921).  Soc.  Chim.  Usines  du  Rhone.  Manu- 
facture of  aromatic  oxyaldehydes  and  their  deriva- 
tives.    (160,765.)     May  31. 

8604  (1921).  Lewcock,  Adam,  Siderfin,  and  Gal- 
braith.  Production  of  aminophenols  or  aromatic 
amino-acids.     (179,753.)     May  24. 

11,771  (1921).  Courtaulds,  Ltd.,  and  Delph. 
Manufacture  of  carbon  bisulphide.  (180,175.) 
May  31. 

XXL— PHOTOGRAPHIC    MATERIALS    AND 
PROCESSES. 

Applications. 

Bawtree.  Photographic  reproduction  in  colour. 
13,386.     May  12. 

Dekker,  Kooistra,  and  Lewis.  Photography. 
13,195.     May  10. 

Complete  Specifications  Accepted. 

3253  (1921)  and  11,473  (1922).  Brandei.berger. 
Photographic  films  with  a  carrier  permeable  to 
water.     (179,250  and  179,500.)     May  17. 

14,549  (1921).  Davies.  Manufacture  of  photo- 
graphic papers.     (179,832.)     May  24. 

XXIIL— ANALYSIS. 

Applications. 

Igranic  Electric  Co.  (Cutler  Hammer  Manuf. 
Co.).    Gas  calorimeters.     13,651-2.     May  15. 

Complete  Specifications  Accepted. 

5654  (1921).  Victoria  Falls  and  Transvaal  Power 
Co.,  and  Andrews.  Means  for  quantitative  detec- 
tion of  carbon  dioxide  and  combustible  gases  con- 
taining carbon.     (179,696.)     May  24. 

6267  (1921).  Secretary  to  the  Board  of  Trade, 
and  Boys.  Recording  and  integrating  gas  calori- 
meters.    (180,080.)     May  31. 


Vol.  XLI..  No.   I2.| 


ABSTRACTS 


IJune  30,  1922. 


I— GENERAL;  PLANT;  MACHINERY. 

Patents. 
Refrigerating     machines.       I.     Lundgaard.       E.P. 
157,261,  10.1.21.     Conv.,  21.9.15. 

The  apparatus  is  of  the  type  in  which  heat  is  trans- 
ferred from  a  "body  to  be  cooled"  to  a  "cooling 
body"  by  means  of  a  "cooling  medium,"  the  last 
of  which  remains  unchanged  in  substance  and  is 
alternately  compressed  and  expanded  on  opposite 
sides  of  a  piston,  losing  heat  on  one  side,  and  on  the 
other  side  gaining  heat  from  the  body  to  be  cooled. 
Two  pistons  are  used  in  the  same  cylinder,  the  outer 
one  (the  one  farthest  away  from  the  crankshaft) 
being  made  very  thick  and  a  non-conductor  (it  may 
be  hollow)  and  in  conjunction  with  a  heat-insulating 
section  in  the  cylinder  walls  serving  to  insulate  very 
thoroughly  the  expansion  from  the  compression 
chamber.  The  outer  piston  is  worked  by  a  cam  gear 
and  the  inner  piston  by  the  usual  crankshaft.  A 
regenerating  substance  or  heat  accumulator  is  in- 
serted in  the  insulating  section  of  the  cylinder  walls, 
through  which  the  cooling  medium  passes  on  its  way 
to  and  from  the  compression  and  expansion  com- 
partments of  the  cylinder. — B.  M.  V. 

Autoclaves  and  the  like  apparatus  f;  Cover  for 
- ].     E.  Brown.     E.P.  178,560,  19.1.21. 

The  top  of  the  vessel  is  flanged  with  an  elliptical 
opening  and  an  elliptical  lid  is  inserted  into  the 
opening  and  secured  by  a  bridge  piece.  A  counter- 
balance weight  may  be  provided  to  support  the  lid 
when  removed. —  B.  M.  V. 

Drying  processes  and  apparatus  therefor.  N. 
Testrup,  and  Teelmo-Chemical  Laboratories,  Ltd. 
E.P.  178,636,  16.2.21. 

When  drying  peat  or  similar  materials  by  such 
means  as  described  in  E.P.  149,055  and  150,068  (J., 
1920,  682  a),  the  layer  of  material  on  the  roller  is 
liable  to  be  non-uniform.  To  remedy  this  the  largo 
heated  drum  may  be  roughened  and  rotated  at  a 
higher  peripheral  speed  than  the  small  spreading 
drum.  The  large  drum  is  heated  internally  by  the 
compressed  vapour  evolved  from  the  material. 

— B.  M.  V. 

Dehydrating  apparatus,  p.  Maus,  Assr.  to  S.  J. 
Spoelstra.  U.S. P.  1,413,924,  25.4.22.  Appl., 
20.1.21. 

A  dehydrating  chamber  and  a  refrigerating  chamber 
are  provided  with  conduits  connecting  the  discharge 
end  of  each  chamber  with  the  receiving  end  of  the 
other  chamber,  and  a  portion  of  the  length  of  one 
conduit  is  enclosed  by  the  other  conduit.  Air  is 
circulated  through  the  chambers  and  conduits  and 
is  heated  at  a  given  point  in  its  circuit. — H.  H. 

Drying  machine.  T.  Allsop  and  W.  W.  Sibson, 
Assrs.  to  The  Philadelphia  Drying  Machinery  Co. 
U.S. P.  1,414,973,  2.5.22.     Appl.,  14.8.20. 

The  material  is  supported  in  horizontal  tiers  within 
i  compartment,  the  top  of  which  is  connected 
lirectly  by  a  passage  with  one  side  of  the  compart- 
nent.  This  side  and  the  top  of  the  compartment, 
ire  each  fitted  with  a  series  of  adjustable  horizontal 
butters  for  directing  and  controlling  the  air 
urrent  circulated  by  a  fan  in  the  passage. — H.  H. 

hying  materials;  Apparatus  for .    H.  H.  Dow, 

Assr.  to  The  Dow  Chemical  Co.  U.S. P.  1,415,160, 
9.5.22.     Appl.,  7.5.19. 

drying  chamber,  capable  of  being  sealed,  is  pro- 
ided  with  openings  for  supply  and  discharge  of  the 
aterials  and  with  valve-controlled  air-supply  and 
icuum   lines. — H.    H. 


Drying  goods;  Method  of .     W.  Atkinson,  Assr. 

to  The  Vacuum  Co.  U.S. P.  1,415,623,  9.5.22. 
Appl.,  12.10. is. 

The  goods  are  dried  in  a  closed  chamber  under  a 
partial  vacuum.  The  air.  while  under  a  pressure 
less  than  atmospheric,  is  alternately  heated  and 
cooled  so  that  moisture  is  alternately  withdrawn 
from  the  goods  and  taken  up  by  heated  air  and  is 
then  condensed. — H.  H. 

Dryer;   Botating  drum .      A.   Liedtke       G  P 

347,455,  8.9.20. 
The  innermost  drum  of  a  dryer  consisting  of  a 
number  of  co-axial  drums  is  provided  with  hooded 
outlets  for  the  hot  gases,  and  the  gas  stream  flows 
in  such  a  manner  that  the  material  is  Drought  in 
contact  with  streams  of  hot  gas  flowing  in  directions 
both  the  same  as  and  opposite  to  the  material. 

— L.  A.  C. 

High  vacua;  Process  of  and  apparatus  for  produc- 
tion of .     N.  Tesla.     E.P.  179,043,  24.3.21. 

Rarefaction  is  produced  by  a  number  of  discs 
rotating  at  very  high  speed  in  a  casing ;  the  fric- 
tional  force  due  to  the  viscosity  of  the  atmosphere 
being  exhausted  is  made  use  of  to  exhaust  the  gas 
and  deliver  it,  preferably  to  a  positively  acting 
pump. — B.  M.  V. 

Colloidal  dispersions;  Apparatus  for  producing . 

W.  P.  Thompson.  From  H.  O.  Traun's  Forschungs- 
laboratorium  G.m.b.H.  E.P.  179,124,  24.12.20. 
A  pair  of  polished  metal  discs,  either  or  both  of 
which  can  be  rotated  to  give  a  relative  velocity  of 
more  than  2000  metres  per  minute,  are  contained  in 
a  casing  which  prevents  the  escape  of  the  liquid 
under  treatment,  and  are  subjected  to  heavy 
pressure. — B.  M.  V. 

Filter-press  and  dryer;    Coinbination  ■ .     J.   J. 

Naugle.  U.S.P.  1,377,022,  3.5.21.  Appl.,  19.10.16. 
The  casing  of  the  press  is  formed  of  a  stationary 
vertical  side  wall  to  which  a  movable  section  is  fixed 
by  means  of  lugs  and  bolts  or  the  like,  a  tight  joint 
being  obtained  by  means  of  a  gasket.  The  filter 
plates  are  formed  with  a  tubular  portion  at  the  end 
next  the  stationary  wall,  the  conical  lower  portions 
of  the  tubes  fitting  in  a  groove  in  a  shoulder  on  the 
lower  portion  of  the  wall  and  the  upper  ends  of  the 
tubes  being  fixed  in  place  by  means  of  set  screws 
passing  through  a  flange  on  the  upper  end  of  the 
wall.  When  the  movable  section  of  the  casing  is 
removed  the  filter-cakes  are  supported  only  by  the 
plates  and  are  discharged  automatically  by  their 
own  weight.  By  circulating  a  heating  medium 
through  the  plates  and /or  subjecting  the  casing  to 
a  vacuum  the  apparatus  may  be  used  as  an  evapo- 
rator or  dryer. 

Filtering ;  Process  of .     B.  W.  Collins,  Assr.  to 

E.  I.  du  Pont  de  Nemours  and  Co.  U.S.P. 
1,413,457,  18.4.22.     Appl.,  12.11.17. 

Solid  particles  are  filtered  from  an  organic  solvent 

immiscible   with   water   by   passage   through  silicic 

acid.— H.  H. 

Fitter   and   filter   press.     G.    C.    Hurrell.     U.S.P. 

1,414,132,  25.4.22.  Appl.,  27.9.21. 
A  separating  device  for  use  in  filtering,  sifting,  or 
screening  is  built  up  on  a  rigid  hollow  drum.  The 
external  wall  of  the  drum  is  formed  with  alternating 
longitudinal  grooves  and  ridges,  and  holes  at  the 
bottom  of  the  grooves  provide  communication  with 
the  interior  of  the  drum.  A  covering  is  added  in 
the  form  of  contiguous  convolutions  of  wire,  the 
wire  of  some  of  the  convolutions  being -shaped  to 
provide  between  adjacent  sides  of  the  convolutions 
passages  communicating  with  the  grooves. — H.  H. 


450  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[June  30, 19i 


Filter  press.  R.  D.  Lucas.  U.S.P.  1,415,461, 
9.5.22.     Appl.,  9.12.20. 

A  rotary  filter  journaled  in  a  casing  communicates 
with  a  combined  inlet  and  outlet  member  fitted  with 
a  valve.  A  valve-controlled  inlet  for  unfiltered 
material,  and  a  valve-controlled  washing  inlet  both 
communicate  with  this  member  between  the  valve 
and  the  filter.  A  valve-controlled  suction  conduit 
and  a  valve-controlled  pressure  conduit,  each  com- 
municating with  the  casing,  are  provided. — H.  H. 

Filter;  [Method  of  applying  material  to  a]  suction 

.      Meguin   A.-G.,    and   H.    Possekel.      G.P. 

348,482,  31.8.19. 

Material  is  applied  to  a  suction  filter  through  a 
number  of  fine  jets  under  a  pressure  of  at  least 
4 — 5  atm.,  the  pressure  and  the  quantity  of  material 
supplied  being  regulated  automatically.  By  impart- 
ing a  tangential  direction  to  the  particles,  the 
material  is  prevented  from  packing  tightly  on  the 
filter.— L.  A.  C. 

Condenser.  S.  G.  Barnstead.  U.S.P.  1,411,150, 
28.3.22.     Appl.,  4.8.20. 

Cooling  fluid  is  circulated  through  the  space 
between  two  concentric  slightly  inclined  cylinders. 
The  vapour  is  delivered  into  the  upper  end  of  the 
inner  cylinder.  An  oblique  baffle  plate  is  attached 
to  the  upper  surface  of  the  inner  cylinder,  its  lower 
end  being  spaced  from  the  lower  surface  of  the 
cylinder  and  disposed  further  from  the  vapour  inlet 
than  its  upper  end. — H.  H. 

Crushing  mill.  F.  O.  Williamson.  U.S.P.  1,413,644, 
25.4.22.     Appl.,  10.6.18. 

A  curved  wedge-shaped  displacement  member  is 
attached  to  the  rotary  barrel  of  a  crushing  mill, 
being  disposed  circumferentially  around  the  interior 
of  the  barrel  and  increasing  in  extent  in  a  direction 
opposed  to  that  of  rotation. — H.  H. 

Distillation  process.  H.  A.  Hills.  U.S.P.  1,414,465, 
2.5.22.     Appl.,  7.5.17. 

The  still  is  provided  with  an  inclined  bottom  against 
which  a  part  of  the  liquid  is  propelled  horizontally 
to  produce  a  circulation  in  a  vertical  plane  to  aid 
the  vaporisation  and  inhibit  foaming. — H.  H. 

Waste  liquors  or  the  like;  Apparatus  for  dry  distilla- 
tion   of    .      Aktiebolaget    Cellulosa.      G.P. 

349,438,  14.6.21.     Conv.,  29.6.20. 

Liquid  flowing  in  a  thin  film  over  a  series  of  hori- 
zontal trays  in  a  distillation  chamber  is  evaporated 
by  contact  with  a  stream  of  gas  which  flows  alter- 
nately between  the  trays  and  through  a  heating 
chamber  attached  to  the  distillation  chamber.  The 
gas  thus  not  only  evaporates  the  liquid  from  one 
tray,  but  simultaneously  heats  the  under  surface  of 
the  tray  immediately  above. — L.  A.  C. 

Centrifugal  apparatus.  E.  Roberts,  Assr.  to  The 
Western  States  Machine  Co.  U.S.P.  1,414,526, 
2.5.22.     Appl.,  19.11.20. 

A  perforated  centrifugal  basket  is  disposed  within 
a  casing  with  an  annular  bottom  for  receiving  the 
expelled  liquid,  and  a  partition  is  provided  to  divide 
the  annular  bottom  into  inner  and  outer  collecting 
troughs.  Deflectors,  pivoted  between  the  partition 
and  the  bottom  of  the  basket,  are  adapted  to  be 
moved  into  position  to  direct  the  expelled  liquid  to 
one  trough  or  the  other. — H.  H. 

Recovering  solid  or  liquid  matter  from  a  solution  or 

semi-solution  containing  same;  Process  for . 

A.    D.    Fest.     U.S.P.    1,414,562,    2.5.22.     Appl., 
9.6.19.  . 

The  solution  is  sprayed  into  a  mixing  chamber  to 
which  air  or  gas  is  continuously  admitted  in  such 


quantity  as  to  absorb  the  moisture  of  the  spray  to 
produce,  after  desiccation,  air  or  gas  saturated  with 
water  vapour  at  a  given  drying  temperature.  The 
mixture  is  delivered  into  a  collecting  chamber  from 
which  the  air  or  gas  and  the  spray  contained 
therein  are  conducted  to  a  second  mixing  chamber 
into  which  are  continuously  admitted  spray  from 
the  solution  and  a  proportionate  quantity  of  air  or 
gas.  The  air  or  gas  and  contained  spray  are  thence 
delivered  to  a  second  collecting  chamber  from  which 
the  moisture-laden  air  or  gas  is  exhausted. — H.  H. 

Extracting,  liquefying,  and  separating  liquefiable 
constituents  of  gases;  Process  of  and  apparatus 

for  .     E.   Schill   and  F.   Woidich,   Assrs.  to 

Continental    Gas    Compressing    Corp.       U.S.P 
1,415,058,  9.5.22.     Appl.,  9.4.17. 

A  gas  containing  liquefiable  vapours  is  compressed 
and  cooled  to  effect  the  separation  of  liquid.  The 
residual  gas  is  expanded  in  a  cylinder  and  caused  to 
cool  a  circulating  liquid  which  in  turn  is  used  for 
cooling  the  compressed  gas  and  vapours. — H.  Hg. 

Evaporator.  J.  C.  Miller,  Assr.  to  The  Evaporating 
and  Drying  Machinery  Co.  U.S.P.  1,415,255, 
9.5.22.     Appl.,  10.5.18. 

Liquid  to  be  evaporated  is  delivered  to  a  rapidly 
rotating  open  cylinder  of  slightly  greater  diameter 
at  one  end  than  at  the  other.  Around  this  cylinder 
and  attached  to  it  is  a  concentric  cylindrical  jacket 
through  which  heating  fluid  is  circulated.  The 
liquid  is  agitated  by  a  fixed  scraper,  and  means  arn 
provided  for  collecting  the  evaporated  liquid  which 
is  delivered  centrifugally  from  the  larger  end  of  the 
cylinder.  A  continuous  current  of  air  is  driven 
through  the  cylinder  by  fan  blades  fixed  across  and 
rotating  with  it. — H.  H. 

Dehydrating   and   recovering    values   from   slimfs: 

Process    of    .      M.     A.     Parmeter.      U.S.P. 

1,415,387,  9.5.22.     Appl.,  24.11.19. 

A  pulverised  resinous  binder  is  mixed  with  a  liquid 

containing  finely  divided  solids  in  suspension,  and 

the  liquid  is  filtered. — H.  H. 

Evaporating     liquid     or     semi-liquid     substances; 

Method  of  and  apparatus  foi .     R.  G.  Brindle 

and  A.  H.  Flint,  Assrs.  to  Corn  Products  Refining 
Co.     U.S.P.  1,415,783,  9.5.22.     Appl.,  3.7.18. 

The  liquid  is  sprayed  upon  a  collecting  surface 
together  with  drying  gas  insufficient  in  quantity  to 
evaporate  all  the  moisture  and  then  the  proportion 
of  liquid  to  gas  is  altered  so  that  the  substance 
collected  upon  the  surface  may  be  dried. — H.  Hg. 

Evaporating  and  concentrating   solutions;  Proeeit 

for  ,    and   for   effecting    chemical   rem 

Process     and     apparatus     for     treating     liquid, 
powdered,  and  gaseous  materials  by  injection  Mo 
a  stream  of  air  or  other  gases.      Metallbank  und 
Metallurgist    Ges.,    A.-G.      G.P.    (a)    34S,333. 
16.6.18,  (b)  347,966,  15.5.20.     (b)  Addn.  to  345,805 
(J.,  1922,  317  a), 
(a)    Evaporation   of    a    liquid   by   treatment  after 
atomisation  with  a  stream  of  hot  gases  is  accelerated 
by  heating  the  liquid  before  atomisation,  whereby 
the  increased  vapour  pressure  of  the  liquid  causes 
the  particles  to  be  still  further  disintegrated,    (b)  A 
revolving  hollow  disc  with  two  or  more  superposed 
series  of  jets  is  employed  for  producing  tho  super- 
posed zones  of  atomised  liquid   in  the  process  de- 
scribed in  the  chief  patent. — L.  A.  C. 

Liquids;    Process   and   apparatus   for   evaporating 

with  subsequent  compression  of  the  vapour 

produced.     A.-G.   Kummler   und   Matter.     G.P 
349,182,  23.6.20.     Conv.,  9.11.18. 
Liquid  is  preheated  before  evaporation  by  P4888^* 
through  the  cooling  jacket  of  the  compressor  used 


Vol.  XLL,  No.  12.] 


Cl.  IIa.— FUEL ;  GAS  :  MINERAL  OILS  AND  WAXES. 


451a 


'or  compressing  the  vapour  generated  during 
jvaporation.  Overheating  of  the  compressor  and 
;orrosion  of  the  piston  are  thereby  prevented. 

— L.  A.  C. 

Liquids;  Method  and  means  for  mixing  with 

dry   material.      T.  B.   Peterson,    Assr.   to  L.   C. 
Sharp.     U.S. P.  1,415,851,  9.5.22.     Appl.,  19.8.21. 

rHE  lower  portion  of  a  revolving,  horizontal  cylinder 
laving  a  smooth  peripheral  surface,  dips  into  a  re- 
>eptacle  containing  a  liquid,  a  scraper  on  the 
iscending  side  of  the  cylinder  removes  excess  liquid 
from  the  surface,  powdered  material  is  applied  to 
the  top  of  the  cylinder,  and  a  scraper  on  the  de- 
scending side  removes  all  material  from  the  surface 
if  the  cylinder. — L.  A.  C. 

Furnace  for  supplying  hot  gases  to  dryers  and  the 
like.  E.  Haag  and  C.  Riemer.  G.P.  348,272, 
2.8.19. 
A  cylindrical  tube  packed  with  refractory  material 
and  heated  internally  by  a  gas  jet  is  surrounded  by 
a  jacket  constructed  of  heat-insulating  material. 
A  stream  of  air  is  drawn  by  suction  through  the 
jacket,  and  after  leaving  it  is  mixed  with  the 
products  of  combustion  from  the  central  tube,  and 
the  combined  gases  are  employed  for  heating  a 
dryer  or  for  other  purposes. — L.  A.  C. 

Gases;  Process  for  washing 61/  means  of  liquid 

condensed  from  the  same.     V.  Pantenburg.    G.P. 
347,600,  14.9.20. 

Moist  gas  enters  the  top  of  a  cylindrical  condenser 
containing  a  co-axial,  rotating,  perforated  drum 
and  a  gas  outlet  pipe  extending  through  the  drum. 
A  number  of  baffle  plates  are  attached  alternately 
to  the  outer  surface  of  the  outlet  tube  and  the 
interior  of  the  drum,  and  thus  the  gas  in  its  passage 
through  the  apparatus  is  brought  into  intimate  con- 
tact with  particles  of  condensed  liquid  as  they  are 
injected  into  the  gas  stream  by  the  motion  of  the 
drum.  The  liquid  drains  to  the  bottom  of  the  outer 
cylinder,  whence  it  is  withdrawn. — L.  A.  C. 

Filling  material  for  cooling  towers,  reaction  towers 
or  the  like.     H.  Wienges.     G.P.  349,442,  26.9.20. 

Towers  are  filled  with  material  constructed  of  a 
number  of  intersecting  plane  surfaces  and  provided 
with  a  central  opening  through  which  the  liquid  and 
;  gases  flowing  through  the  tower  have  free  access  to 
'  each  surf  ace. — L.  A.  C. 

Liquefiable  gases;  Process  for  filling  high-pressure 

vessels  with .    P.  Heylandt.    U.S.P.  1,414,359, 

■2.5.22.     Appl.,  3.1.21. 

'See  E.P.  153,308  of  1920;  J.,  1922,  205  a. 

Muffle  furnace.   J.  R.  C.  August.    U.S.P.  1,414,614, 
2.5.22.     Appl.,  8.5.20.     Renewed  24.1.22. 

See  E.P.  146,673  of  1919;  J.,  1920,  590  a. 

Muffle  furnace.  J.  R,  C.  August.    U.S.P.  1,415,424, 
9.5.22.     Appl.,  8.5.20. 

,3bb  E.P.  149,893  of  1919;  J.,  1920,  696  a. 

Furnace.     L.  O.  Harvey.    U.S.P.  1,416,406,  16.5.22. 
Appl.,  23.8.18. 

;3ee  E.P.  136,213  of  1918 ;  J.,  1920,  117  a. 

Iteam  generators;  Means  for  using  pulverised  fuel 

m  the  furnaces  of .     J.  G.  Robinson.     U.S.P. 

1,416,512,  16.5.22.     Appl.,  26.5.17. 

;ee  E.P.  130,486  of  1918;  J.,  1919,  672  a. 

Distillation  or  evaporation  of  liquids.     J.  L.  Major. 

U.S.P.  1,415,667,  9.5.22.     Appl.,  19.1.18. 
fe«  E.P.  114,353  of  1917;  J.,  1918,  261  a. 


Gases;  Apparatus  for  removing from  liquids. 

H.  Fothergill.     U.S.P.  1,416,632, 16.5.22.     Appl., 
27.12.21. 

See  E.P.  171,757  of  1920;  J.,  1922,  43  a. 

Miring  gases  or  vapours;  Means  foi .   G.  Helps. 

E.P.  179,346,  18.2.21. 


[Crushing]     cokes,     resin, 
Machines  for   breaking 


and 


otlicr     materials; 
W.   Lees  and  B. 


Shore.     E.P.  179,490,  31.10.21. 

Ha.— FUEL;  GAS;  MINERAL  OILS  AND 
WAXES. 

Coke;   Effect   of  some   physical    conditions   during 

carbonisation  of  coal  upon  the  quality  of  the 

produced.  T.  Biddulph-Smith.  Coke  Oven, 
Managers'  Assoc,  21.4.22.  Gas  World,  1922,  76, 
Coking  Sect.,  48—51. 

The  average  porosity  of  coke  prepared  from  rough 
coal  is  the  same  as  that  of  coke  produced  from  finely 
divided  coal,  but  the  latter  coke  is  more  uniform 
and  will  withstand  a  greater  crushing  load.  The 
evaporation  of  water  from  coal  being  coked  obstructs 
the  free  passage  of  gas  from  the  layers  near  the  oven 
wall  to  the  centre  core  during  the  early  stages  of 
carbonisation  and  thereby  impairs  the  quality  of  the 
coke.  The  coking  index  (cf.  Campredon,  J.,  1896, 
186)  of  one  coal  was  reduced  from  21  to  13,  and  that 
of  another  from  10  to  7,  by  the  addition  of  10%  of 
water.  Compression  of  wet  coals  increases  the  cok- 
ing index.  The  adverse  influence  of  water  was 
more  than  counterbalanced  by  compression  in  the 
case  of  a  poor  coking  coal.  It  is  considered  that  the 
use  of  narrower  ovens  would  result  in  the  produc- 
tion of  a  more  oompact  coke,  since  coke  formed  in 
the  centre  of  the  oven  is  always  more  porous  due  to 
the  passage  through  it  of  larger  volumes  of  gas.  The 
rate  of  carbonisation  of  poor  coking  coals  should  be 
greater  than  that  of  good  coals  in  order  to  lengthen 
the  time  between  distillation  and  solidification  of  the 
binding  medium  in  the  case  of  poor  coals,  to  such  an 
extent  that  all  the  binding  medium  is  used  in 
coagulating  particles  of  coal.  This  involves  the  use 
of  higher  temperatures.  The  effect  of  a  too  rapid 
carbonisation  of  good  coals  is  to  set  up  excessive 
internal  pressures  due  to  the  rapid  distillation  of 
the  excess  binding  material :  it  is  shown  that  this 
may  be  overcome  by  mixing  coke  breeze  with  the 
coal.  Coke-oven  practice  in  this  country  is  briefly 
compared  with  American  practice. — H.  Hg. 

Coke-oven  gas  for  town's  use.  T.  Nicholson.  Coke 
Oven  Managers'  Assoc.,  29.4.22.  Gas  World, 
1922,  76,  Coking  Sect.,  52 — 55. 
During  certain  periods  of  the  day  gas  is  taken  from 
Semet-Solvay  waste  heat  ovens  at  Willingfcon  with- 
out anv  separation  into  rich  and  lean  fractions. 
From  the  outlet  of  the  exhauster  the  gas  passes 
through  a  water-tube  condenser,  a  Livesey  washer, 
a  Holmes  scrubber,  a  Maxim  carburettor,  and  four 
iron  oxide  purifiers  in  series.  It  was  found  that  the 
use  of  one  gallon  of  90%  benzol  would  increase  the 
illuminating  power  of  24,100  cub.  ft.  of  gas  by  one 
candle  power,  but  enrichment  has  not  been  neces- 
sary, since  care  was  taken  to  avoid  over-exhausting 
the  retorts.  The  gas  contains  2"00%  CO.,  2"40%  of 
illuminants,  4"80%  CO,  23"68%  CH4,  5395%  H„ 
13-17%  N„  and  10  grains  of  sulphur  per  100  cub.  ft. ; 
its  calorific  value  is  about  476  B.Th.U.  per  cub.  ft. 

— H.  Hg. 

Gas;  Production  of  of  high  calorific  value  by 

treatment  of  distillation  gases  under  pressure 
with  active  carbon.  F.  Fischer,  H.  Schrader,  and 
C.  Zerbe.     Brennstoff-Chem.,  1922,  3,  145—147. 

The  gas  to  be  treated  was  compressed  into  a  steel 


452  a 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[June  30,  1922. 


cylinder  of  40  litres  capacity  under  a  pressure  of 
20  atm.,  whilst  the  active  carbon  (698  g.)  was  placed 
in  a  steel  pressure  cylinder  of  26  litres  capacity, 
provided  with  valves  at  both  ends,  the  cylinder 
being  held  in  a  vertical  position.  The  upper  valve 
was  fully  opened  and  was  connected  with  the 
cylinder  containing  the  crude  gas  by  a  length  of 
copper  pressure  tubing.  The  lower  valve  was  con- 
nected with  a  gas  bell  by  rubber  tubing,  and  a  mano- 
meter was  placed  between  the  crude  gas  vessel  and 
the  vessel  containing  the  carbon.  The  velocity  of 
the  gas  was  controlled  by  the  bottom  valve  to  about 
6  litres  per  minute.  The  gas  was  allowed  to  pass 
until  the  pressure  had  fallen  to  12  atm.,  and  samples 
were  taken  of  the  crude  gas,  the  gas  in  the  carbon 
vessel,  and  the  gas  expelled  from  the  carbon  by 
heating.  The  crude  gas  obtained  by  low-tempera- 
ture carbonisation  of  coal  had  a  calorific  value  of 
7320  cals.  per  cub.  m.,  the  exit  gas  from  the  appara- 
tus (350  1.)  gave  a  figure  of  5450  to  6320  cals.  per 
cub.  m.,  according  to  the  quantity  of  gas  passed 
through,  whilst  on  relieving  the  pressure  the  carbon 
yielded  30  1.  of  gas  with  a  calorific  value  of  6320 — 
9050  cals.  and  on  heating,  a  further  335  1.  of  gas 
of  calorific  value  9050—19,900  cals.,  the  gas  attain- 
ing a  maximum  value  when  the  carbon  was  heated 
to  150°— 200°  C.  With  coke-oven  gas,  the  calorific 
values  of  the  various  samples  was  as  follows:  — 
Crude  gas,  4770;  exit  gas  from  apparatus,  4590; 
gas  from  the  carbon  vessel  on  relieving  pressure, 
5190;  gas  expelled  from  the  carbon  by  heating, 
17  500.  By  means  of  such  a  process  it  will  be 
possible  to  'fill  cylinders  with  gas  of  higher  calorific 
value  than  usual,  and  if  these  are  used  for  train 
lighting,  the  radius  over  which  such  cylinders  can 
be  used  without  refilling  will  be  much  wider.  The 
labour  of  filling  will  also  be  much  reduced.— A.  Or. 

Producer  gas  processes;  Estimation  of  the  decree  of 
the  decomposition  of  water  vapour  in  ——.      R. 
Lant.     Gas-  u.  Wasserfach,  1922,  65,  257-261, 
277—280. 
The    theoretical    and    mathematical    basis    of    an 
instrument  for  measuring  the  amount  of  steam  in 
the  gas  is  discussed.     The  instrument  depends  on 
the  local  reduction  in  pressure  in  a  pipe  caused  by 
a  constriction.     Where  two  constrictions  are  em- 
ployed  and  water  vapour  is  removed  between  them, 
the  additional  loss  of  pressure  is  a  measure  of  the 
volume  of  water  vapour. — W.  P. 

Carbon  monoxide;  Determination  oi t  ——  in  blast 
furnace  gas.  T.  Kaleta.  Chem.-Zeit.,  1922,  46, 
430. 
Carbon  dioxide  is  first  removed  from  the  gas  by 
absorption  in  caustic  soda  and  the  remaining 
volume  of  gas  is  measured  in  a  specially  constructed 
apparatus.  The  gas  is  then  passed  through  a  ]et 
where  it  mixes  with  a  current  of  oxygen  from  a 
second  tube  of  known  volume,  and  the  mixture 
impinges  on  a  red  hot  platinum  wire  in  a  glass 
combustion  chamber,  whereby  it  is  quantitatively 
burnt  with  a  visible  flame  to  carbon  dioxide  and 
water  The  former  is  absorbed  in  caustic  soda  and 
the  residual  oxygen  in  pyrogallol  or  by  means .  ot 
phosphorus.  From  the  contraction  in  volume  alter 
combustion,  after  absorption  of  the  carbon  dioxide, 
and  after  absorption  of  the  oxygen  the  proportions 
of  hydrogen,  carbon  monoxide,  and  methane  in  the 
original  gas  are  calculated.— A.  R.  P. 

Benzol   washing;    Chemical   and   physical    basis   of 

.   K.  Bunte  and  E.  Frei.   Gas-  u.  Wasserfach, 

1922,  65,  273—277. 
The  vapour  pressure  of  benzol  over  its  mixtures 
with  washing  oils  has  been  measured.  Within  the 
limits  of  the  usual  technical  concentrations  the 
vapour  pressure  is  proportional  to  the  benzol  con- 
centration.   The  solubility  of  benzol  in  the  washing 


oils  follows  physical  laws  and  is  dependent  upon  the 
mean  molecular  weight  of  the  washing  oil,  the  acid 
(cresol)  content  of  the  oils  apparently  having  no 
chemical  effect.  Rise  of  temperature  reduces  the 
solubility.— W.  P. 

Shale;  Isolation  of  organic  substance  of  Estlionian 

oil  ,     J.  Narbutt.     Z.  angew.  Chem.,  1922, 

35,  238—239. 
Shale  of  a  light  grey-brown  colour,  containing 
approximately  one  part  of  organic  substance  to  two 
parts  of  inorganic  substance,  was  finely  powdered, 
treated  with  hydrochloric  acid,  and  dried  on  a  water 
bath.  The  resulting  solid  mass  was  extracted  in  a 
Soxhlet  apparatus  with  methyl  alcohol  till  no 
reaction  was  obtained  with  ammonium  sulphide. 
The  dark  brown  residue  was  dried  and  evaporated 
repeatedly  on  a  water  bath  with  hydrofluoric  acid, 
and  then  with  hydrochloric  acid.  The  mixture  was 
washed  with  hot  water,  acidified  with  hydrochloric 
acid,  and  again  extracted  in  a  Soxhlet  apparatu- 
with  methyl  alcohol  as  before.  A  dark  brown 
powder  denser  than  water  was  obtained.  On 
incinerating  this,  2^  %  of  ash  containing  iron  oxide 
was  left.  When  the  organic  substance  w;i- 
heated  to  330°  C.  with  aromatic  hydrocarbon' 
of  high  molecular  weight  it  was  partially  dissolved 
hydrocarbons  were  evolved,  and  a  nearly  black  solu- 
tion formed.  By  heating  the  organic  substance 
alone  to  300° — 350°  C.  a  light  brown  oil.  mobile  at 
ordinary  temperature,  a  black  carbonaceous  residue, 
and  gases  containing  hydrogen  sulphide  wen 
obtained. — H.  M. 

Aliphatic    hydrocarbons;    Oxidation    of    with 

nitrogen  peroxide.  C.  Griinacher  and  P.  Schaufel- 
berger.  Helv.  Chiin.  Acta,  1922,  5,  392—395. 
Neither  palmitic  nor  stearic  acid  could  be  detected 
among  the  acids  obtained  by  oxidation  of  paraffin 
(m.p.  50° — 52°  C>  with  nitrogen  peroxide  (e/.  Berg- 
mann,  J.,  1918,  362  a).  The  main  fraction  consisted 
of  a  saturated  acid,  C22H„02,  m.p.  59°— 60°  C.. 
which  differs  from  behenic  acid  and  hence  contains 
a  branched-chain  structure,  and  it  is  concluded  that 
paraffin  contains  considerable  quantities  of  hydro- 
carbons other  than  normal.  Saturated  liquid 
hydroxy-acids  were  also  isolated  from  the  oxidation 
product  in  the  form  of  their  lithium  salts. 
C14H„.0,Li  and  C,,H2903Li,  and  these  probably  con- 
tain either  a  naphthenic  or  a  branched  chain  struc- 
ture.     (Of.  J.C.S.,  June.)— J.  K. 

Patents. 

Fuel;  Apparatus  for  the  production  of .    L. y>  • 

Bates.  E.P.  155,209,  9.12.20.  Conv.,  10.12.19. 
Coal  and  oil  are  introduced  into  a  mixing  chamber 
provided  with  means  for  regulating  the  admission 
of  coal  and  oil  to  any  predetermined  extent.  Ine 
mixture  is  introduced  into  a  pulveriser,  and  means 
may  be  provided  for  the  addition  of  a  protective 
acent  if  necessary  at  any  predetermined  rate. 

— A.  Or. 


- 


Fuels;  Methods  of  storing  composite  mobile  — — 
L.  W.  Bates.  E.P.  159,173,  5.1.21.  Conv.,  19.2.20 
A  mobile  fuel  comprising  particles  of  solid  carbon 
aceous  matter  and  liquid  hydrocarbons  is.eoole* 
until  it  becomes  a  non-mobile  paste,  and  is  I 
covered  with  water  to  act  as  a  seal  and  mamtaweo 
at  a  low  temperature  until  required.  By  this  mea 
deposition  of  solid  matter  is  prevented.  Before  use 
heat  is  applied  to  restore  the  mobile  condition 

— I* .  G.   Jr.  *»• 

Peat;  Treatment  of .     J.  M°c>'er  and  L"  D" 

Foiiblanque.    E.P.  178,475,  16.10.20. 
Peat  which  has  been  treated  in  a  mixing  .nwchim 
is  formed  into  hollow  cylinders  by  extrusion,  an. 


Vol.  XII.,  No.  12.] 


Cr-.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


453  a 


these  are  then  fed  through  a  revolving  cylinder 
containing  a  screw  conveyor  and  are  transformed 
into  hollow  balls.  The  peat  balls  are  dried  by 
passage  through  a  drying  chamber,  consisting  of 
shelves  over  the  surface  of  which  hot  air  is  blown 
in  countercurrent  to  the  peat. — A.  G. 

Bituminous  coal;  Process  for  the  recovery  of  good 

quality,  non-deliquescent from  fuels  of  lower 

value.     Carbozit   A.-G.      G.P.   350,017,    21.3.20. 
Addn.  to  306,880  (J.,  1918,  616  a). 

The  gases  evolved  from  the  fuel  on  heating  are 
heated  to  300°  C.  by  admixture  with  hot  gases  and 
the  mixture  used  for  heating  further  quantities  of 
the  fuel.  Indifferent  gases,  superheated  steam  or 
other  vapours,  or  waste  flue  gases  may  be  utilised  in 
the  process. — A.  R.  P. 

Lignite  dryers;  Apparatus,  for  separation  of  dust 

from  the   qases   escaping  from  .     G.  Bauer. 

G.P.  350,298,  22.5.17. 

The  dryer  is  connected  with  a  centrifugal  dry  dust 
separator  and  the  latter  with  a  centrifugal  washer. 
The  last-named  acts  as  a  suction  device  and  draws 
the  hot  dust-laden  gases  from  the  dryer  through  a 
vertical  pipe  and  into  the  conical  dry  separator, 
wherein  nearly  all  the  dust  is  separated  from  the 
;?ases.  The  dust  falls  through  a  pipe  back  to  the 
inlet  to  the  dryer.  The  gases  from  the  dry  separator 
pass  on  to  the  washer,  where  the  remainder  of  the 
lust  is  removed.  Risk  of  explosion  as  a  result  of 
formation  of  sparks  is  avoided  because  there  are  no 
movable  parts  in  the  dry  separator  and  the  only 
movable  part  in  the  washer  is  the  fan  wheel,  which 
is  completely  immersed  in  water. 

Coke;  Process  of  producing  .     Trent  Process 

Corp.,  Assees.  of  W.  E.  Trent.  E.P.  159,142, 
4.2.21.    Conv.,  21.2.20. 

Powdered  coal  is  fed  into  a  heated  retort  under 
>ressure  through  a  device  which  impels  it  against 
;he  walls.  The  coal  is  rendered  viscous  by  evolution 
if  the  tarry  components  produced  on  carbonisation 
ind  the  particles  stick  to  the  walls  and  build  up  a 
olid,  dense,  and  compact  coke. — A.  G. 

Jos;  Manufacture    of  [in   horizontal   retorts 

with  steaming].  R.  M.  Brooke  and  W.  Whit- 
worth.    E.P.  178,208,  13.1.21. 

■Steam  is  led  into  the  back  end  of  the  retort,  the 
team  pipe  being  laid  in  a  channel  extending  along 
he  under  side  of  the  retort,  so  that  the  steam  is 
■uperheated  before  it  enters  the  retort.  The  lower 
lalf  of  the  retort  is  first  charged  with  coal  and 
vhen  this  has  been  converted  into  coke  the  charge 
s  pushed  to  the  back  of  the  retort  and  a  fresh 
'harge  of  coal  admitted.  Steam  is  then  blown 
hrough  the  coke  and  over  the  coal. — W.  P. 

7urnace-retort  [for  carbonisation  of  coal],     (a),  (d) 
C.  H.  Smith,  (b)  C.  H.  Smith  and  E.  B.  Edwards, 

(c)  W.  B.  Eddison  and  H.  S.  Owens,  Assrs.  to 
International  Coal  Products  Corp.  U.S. P. 
1,413,801,  1,413,802,  1,413,838  and  1,414,159, 
25.4.22.      Appl.,    (a),    (b)    24.4.19,    (c)    31.5.19, 

(d)  22.11.19. 

a)  A  horizontal  tubular  retort  is  formed  of  car- 
'Orundum  blocks  so  arranged  that  a  row  of  blocks 
xtends  along  each  side  of  the  lower  longitudinal 
(Mitral  portion,  the  rows  being  adjacent  to  each 
ther.  An  expansion  space,  in  which  cardboard  is 
'laced,  is  left  between  the  blocks,  (b)  Revolving 
'addles  are  provided  within  the  retort  for  mixing 
naterial  therein  and  for  conveying  it  along  the 
etort.  The  space  around  the  retort  is  divided  by  a 
orizontal  transverse  partition  into  a  combustion 
hamber  below  and  a  waste  heat  space  above  the 
■artition  and  retort.  Direct  contact  of  the  gases 
n  the  waste  heat  space  with  the  top  of  the  retort 


is  prevented,  (c)  The  combustion  chamber  extends 
underneath  the  retort  and  products  of  combustion 
pass  from  it  through  restricted  passages  into  a 
number  of  transverse  heating  flue6.  (d)  A  tip  of 
hard  metal  is  riveted  to  the  blade  of  each  paddle. 

-H.  Hg. 

Furnace-retort  [for  coal  distillation'].  C.  H.  Smith 
and  E.  B.  Edwards,  Assrs.  to  International  Coal 
Products  Corp.  U.S.P.  1,415,061,  9.5.22.  Appl., 
31.5.19.  ^   ' 

An  externally  heated  vertical  retort,  provided  with 
a  charging  device  at  the  top  and  a  discharging 
device  at  the  bottom,  contains  two  vertical  rotary 
shafts.  A  stirrer  of  screw  formation  is  attached  to 
each  shaft  and  the  two  screws  are  arranged  to 
co-operate.  The  rotation  of  the  shafts  controls  the 
rate  of  passage  of  coal  through  the  retort. — H.  Hg. 

Methane;  Process  for  recovery  of .   K  W  J  H 

Jacobs.  E.P.  157,976,  11.1.21.  Conv.,  12.1.20. 
Methane,  or  a  mixture  consisting  mainly  of 
methane  and  hydrogen,  is  made  by  the  fractional 
destructive  distillation  of  peat,  brown  coal,  wood, 
or  other  vegetable  fuel,  the  gases  evolved  between 
300°  C.  and  600°  C.  being  collected  separately.  The 
heat  of  the  distillation  gases,  and  that  due  to  an 
exothermic  reaction  at  about  300°  C,  may  be 
employed  to  assist  in  carbonising  the  material. 

—A.  R.   M. 

Gas  producer.  F.  M.  E.  Blass,  Assr.  to  The  Chemical 
Foundation,  Inc.  U.S.P.  1,414,109,  25.4.22. 
Appl.,  24.11.15. 

The  fuel  passes  from  the  inlet  through  a  down- 
wardly widening  chamber,  gas  being  led  off  from 
the  space  around  this  chamber,  so  heating  and  dis- 
tilling the  fuel.  Means  are  provided  for  supplying 
steam  and  air  blasts. — W.  P. 

Gas    producer;    Preventing    the    accumulation    of 

sticky  condensed  products  of  a upon  the  fuel 

feeding  mechanism.  C.  C.  Hoffman  and  J. 
McCaslin,  Assrs.  to  Wellman-Seaver-Morgan  Co. 
U.S.P.  1,415,238,  9.5.22.     Appl.,  11.10.19. 

A  substance  which  prevents  the  accumulation  of 
sticky  condensed  products  is  delivered  on  to  the 
moving  surfaces  of  the  fuel-feeding  mechanism. 

—A.  R.  M. 

Gas-producing    furnaces;    Method   of    constructing 

.    R.  Witzeck.    G.P.  350,267,  23.6.21. 

The  vertical  retorts  and  horizontal  heating  flues 
of  the  furnaces  are  made  in  situ  of  plastic  refractory 
material,  which  is  rendered  hard  and  resisting  by 
a  preliminary  firing  of  the  furnace.  The  formation 
of  cracks  or  fissures  during  this  process  is  obviated 
by  providing  the  plastic  mass  at  definite  intervals 
with  grooves  to  allow  of  expansion,  so  arranged 
that  during  the  firing  no  union  of  the  retorts  and 
heating  flues  takes  place. — A.  R.  P. 

Protective   gas;  Production   of  .     J.   Muchka. 

U.S.P.  1,413,285,  18.4.22.    Appl.,  6.1.21. 

A  portion  of  the  exhaust  gases  from  an  internal 
combustion  engine,  during  part  of  the  explosion 
stroke,  is  removed  through  a  pipe  so  long  as  the 
pressure  in  the  cylinder  exceeds  that  existing  in 
the  pipe.  The  remainder  of  the  exhaust  gases  is 
allowed  to  escape  to  the  atmosphere  during  the 
following  exhaust  stroke. — W.  P. 

Exhaust  gases  of  internal  combustion  engines  and 
the  like;  Arrangement  for  purifying  and  render- 
ing odourless  the  .     P.  Wachtel,  Assr.  to  W. 

Schmidding.  U.S.P.  1,415,418,  9.5.22.  Appl., 
10.9.20. 

The   exhaust   gases   from   an    internal  combustion 


454  A 


Cx.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[June  30, 1922. 


engine  pass  through  a  series  of  chambers.  Sus- 
pended oily  matter  is  deposited  in  the  first  chamber, 
which  contains  baffle  plates  serving  to  conduct  the 
gases  in  a  horizontal  zig-zag  path.  The  second 
chamber  contains  porous  matter,  and  the  third 
chamber  contains  spongy  absorbent  matter  and  in 
this  also  the  gases  take  a  zig-zag  path. — A.  B.  M. 

Coal-gas;  Purification  of .    W.  G.  Adam.    E.P. 

178.510,  4.1.21.  Addn.  to  127,431  (J.  1919,  566  a). 
Naphthalene,  carbon  bisulphide,  carbon  oxysulph- 
ide,  and  organic  sulphur  compounds  are  absorbed 
from  coal  gas  by  carbon  in  an  amorphous  condition, 
prepared  from  carbonaceous  materials  other  than 
animal  or  wood  substances  (preferably  from  anthra- 
cite coal  by  destructive  distillation).  If  it  is  desired 
to  retain  ethylene  and  other  hydrocarbons  in  the 
sas.  the  amount  of  carbon  used  is  limited. 
fe    '  —A.  R.  M. 


Coal   gases;   Becovery   of   valuable   products  from 

.     A.  Mittasch,  J.  Jannek,  and  G.  Wietzel, 

Assrs.  to  Badische  Anilin-  und  Soda-Fabrik. 
TJ.S.P.  1,412,954,  18.4.22.  Appl.,  27.8.21. 
The  gas  is  first  freed  from  tar  and  cyanogen  com- 
pounds and  then  passed  through  a  number  of  recep- 
tacles containing  active  charcoal.  Benzene  hydro- 
carbons are  first  removed.  A  gas  containing  oxygen 
is  then  added,  hydrogen  sulphide  being  oxidised 
to  free  sulphur  which  is  precipitated  in  the  follow- 
ing receptacle,  and  finally  ethylene  is  removed.  The 
charcoal  is  revivified  by  extracting  or  driving  out 
the  substances  absorbed  at  required  intervals. 

— W.  P. 

Pulverulent  fuel  and  air;  Means  for  supplying  a 

mixture  of to  furnaces  and  the  like.     W.  E. 

Evans.      From   Allgem.    Elektricitiits-Ges.      E.P.    1 
178,729,  29.4.21. 
In  a  burner  for  the  combustion  of  powdered  fuel, 
the  latter  is  fed  and  spread  in  a  compact  and  thin 
layer    past   the   orifice    through    which    the   air    is 
forced.     A   cone   mounted   upon   a    spindle   is   dis-    j 
posed  centrally  in  the  burner  nozzle  so  as  to  form    j 
between  its  surface  and  the  casing  a   narrow  out-    I 
wardly  flaring  space,  through  which  the  fuel  is  fed, 
and  into  which  compressed  air  is  discharged.     The 
cone  is  also  adapted  to  grind  the  fuel  if  required, 
the  fuel  being  fed  into  the  annular  space  by  means 
of  a  worm  conveyor  which  may  he  operated  either 
independently   of,    or   together   with  the  grinding 
cone. — A.  R.  M. 

Combustion  process  and  apparatus  for  use  in 
furnaces.  Soc.  Franc,  de  Materiel  Agricole  et 
Industriel.  E.P.  162,276,  7.4.21.  Conv.,  26.4.20. 
Powdered  solid  fuel,  or  oil-fuel  is  thoroughly  mixed 
with  the  air  for  combustion  by  mechanical  mixing 
in  the  form  of  convergent  currents,  then  6tirred, 
highly  compressed,  and  heated.  The  mixture  is  fed 
through  the  burners  at  a  speed  higher  than  that  of 
the  flame  propagated  by  the  mixture  of  air  and 
fuel,  so  that  back-firing  is  avoided.  Burners  of 
large  cross-section  can  therefore  be  used,  and  an 
oxidising,  reducing,  or  neutral  flame  can  be  pro- 
duced at  will. — A.  G. 

Fuel;  Process  and  apparatus  for  the  combustion  of 

in  furnaces  with  recovery  of  the  by-products. 

T.  O.  Wilton.  E.P.  178,952,  28.1.21. 
The  boiler  installation  is  provided  with  a  reversible 
mechanical  stoker,  on  which,  at  starting,  the  fuel  is 
fed  so  that  it  travels  forwards  into  the  furnace. 
When  the  latter  has  become  thoroughly  heated,  the 
direction  of  the  stoker  is  reversed,  and  the  raw  coal 
is  then  fed  into  a  vertical  retort  situated  in  the 
heated  space  at  the  back  of  the  boiler.  This  raw 
coal  is  carbonised,  and  the  coke  is  discharged  on  to 


the  stoker  which  carries  it  towards  the  front  of  th» 
furnace,  where  the  ash  is  discharged.  The  by- 
products are  recovered. — A.  G. 

Vapour  for  use  in  engines;  Production  of  vapour, 

specially  applicable  for  production  of .  W.  H. 

Caldwell.  E.P.  178,871,  28.10.20. 
In  order  to  prevent  priming  or  fractionation  of 
liquids  containing  constituents  of  different  boiling 
points,  a  mass  of  porous  or  subdivided  material  of 
low  thermal  conductivity,  e.g.,  stones  or  gravel,  is 
placed  within  a  boiler  or  vaporiser  having  at  its 
upper  part  an  outlet  or  outlets  for  vapour.  Means 
are  provided  for  heating  the  liquid  or  substance  to 
be  vaporised  either  internally  or  externally,  or 
both  internally  and  externally,  in  such  a  manner 
that  the  maximum  heating  effect  is  produced  near 
the  upper  free  surface  of  the  liquid,  which  is  main- 
tained (preferably  by  ah  automatic  constant-level 
device)  at  or  near  the  upper  surface  of  the  inert 
material.  The  bottom  of  the  boiler  may  be  placed 
outside  the  heating  zone.  The  lower  part  of  the 
boiler  may  be  divided  by  transverse  vertical  parti- 
tions into  a  number  of  compartments,  each  filled 
with  the  inert  material. — A.  R.  M. 

Producing  heat;  Method  of  .     W.   S.  Bowen. 

TJ.S.P.  1,415,780—1,  9.5.22.  Appl.,  17.8.20. 
(a)  Fuel  gas  and  air,  in  proportions  which  will  form 
an  explosive  mixture,  are  separately  directed  in 
co-axial  tapering  streams  which  mix  near  the  point 
of  ignition.  A  conical  stream  of  air  is  enveloped 
by  the  burning  mixture  and  subsequently  mixed 
with  the  products  of  combustion,  (b)  An  explosive 
gaseous  mixture  is  conducted  at  a  velocity  exceed- 
ing that  of  the  propagation  of  inflammation,  to  a 
point  where  the  direction  of  flow  is  reversed  into  a 
stream  of  greater  sectional  area,  so  that  the  flow 
velocity  is  reduced  to  that  of  the  propagation  of 
inflammation. — H.  Hg. 

Cracking  hydrocarbons.  Kansas  City  Gasoline  Co., 
Assees.  of  H.  M.  Lasher.  E.P.  162,269,  22.2.21 
Conv.,  23.4.20. 
A  mass  of  carbon  is  suspended  on  a  6helf  within  an 
ordinary  atmospheric  pressure  still  in  such  a 
manner  that  it  is  out  of  contact  with  any  of  the 
heated  walls,  and  yet  is  immersed  in  the  oil.  On 
distillation  taking  place  the  oil  circulates  around 
and  through  the  carbon,  whereby  cracking  is  pro- 
duced.—F.  G.  P.  R. 

Fuel;   Alcohol  .     J.    Penhale.     E.P.   178,373, 

19.7.21. 
Liquid  fuels  for  internal  combustion  engines  consist- 
ing chiefly  of  alcohol  substantially  saturated  with 
a  hydrocarbon  gas  such  as  acetylene  are  given 
increased  power  by  the  addition  of  not  more  than 
1%  of  methyl  or  ethyl  nitrate.— F.  G.  P.  R. 
Alcohol  fuels.  6.  W.  Blake.  E.P.  178,498,  16.12.20. 
A  fuel  for  internal  combustion  engines  is  made  by 
mixing  alcohol  of  96%  strength  (9  gals.),  acetone 
(1  gal.),  and  calcium  carbide  (3—5  lb.)  in  a  closed 
vessel  and  agitating  occasionally  during  a  fortmgnt. 
Dissolved  lime  is  removed  by  agitation  with  a 
flocculating  agent,  such  as  carbon  or  mangancH 
dioxide.  125  vols,  of  acetylene  is  dissolved  by  tw 
mixture  in  this  manner. — F.  G.  P.  R. 


Binding  or  preserving  agents;  Bituminous  composi- 
tions for  use  as and  processes  for  making  tin 

same.  F.  Lamplough,  and  The  Townmead  Con 
struction  Co.,  Ltd.  E.P.  178,558,  18.1.21. 
Bituminous  material  such  as  mineral  pitch  it 
passed  through  a  confined  space,  for  example,  a  coi 
heated  to  200°— 500°  C.  Petroleum  oils  or«w 
mav  be  admitted  with  the  bituminous  material,  in 
resulting  product  does  not  become  brittle  in  coic 


Vol.  xil.,  No.  12]      Cl.  Hb.— DESTRUCTIVE  DISTILLATION;    HEATING;    LIGHTING. 


455  a 


I  or  liquid  in  warm  weather  and  is  therefore 
suitable  for  use  as  a  binder  in  the  manufacture  of 
coal  briquettes.  The  latter  are  improved  in  heat- 
ing value  by  being  mixed  with  lime  water  and  dried 
at  115° — 120°  C,  in  order  to  remove  moisture  and 
some  of  the  ammonia  before  addition  of  the  binder. 
Unsaturated  hydrocarbons  may  be  added  to  the 
bituminous  material  and  the  mixture  passed 
■through  a  cracking  zone  at  600°  C.  in  order  to  pro- 
'duce  a  quick-drying  material  suitable  for  preserva- 
tive coatings  for  building  materials. — F.  G.  P.  R. 

^Paraffin  or  other  liquids;  Apparatus  for  evaporat- 
ing    and  mixing  the  vapours  produced  with 

coal  qas.   F.  S.  Cripps  and  R.  J.  Milbourne.    E.P. 

I    178,734,  9.5.21. 

In  order  to  mix  vapours  of  paraffin  hydrocarbon  or 
of  other  liquids  with  coal  gas  for  the  purpose  of 

jpreventing  deposition  of  naphthalene  in  gas  mains, 
the  liquid  is  made  to  flow  down  a  spiral  or  helical 

,6helf  attached  to  a  vertical  ho'llow  shaft  heated  in- 
ternally by  hot  flue  gases.  The  shaft  is  placed 
centrally  within  a  chamber  of  large  diameter  having 

'horizontal  baffles  so  disposed  that  coal  gas  admitted 
towards   the   bottom   of  the   chamber   ha6   to   pass 

I alternately  next  to  the  shaft  and  sides  of  the 
chamber  on  its  way  to  the  exit  at  the  top.  In  this 
manner  thorough  mixing  of  gas  and  oil  vapours  is 
ensured.  The  spiral  shelf  is  inclined  downwards 
towards  the  shaft  in  order  to  prevent  liquid  drip- 

'ping  off  the  edge  and  to  keep  it  in  contact  with  the 

jhot  flue.— F.  G.  P.  B. 

Paraffin  wax;  Recovery  of  from  petroleum  or 

.  tar-oils.  Deutsche  Erdol-A.-G.  G.P.  350,442, 
26.5.21. 

'The  paraffin-containing  fraction  from  the  press  is 
mixed  with  the  lighter  fractions  of  lignite  creosote, 
the  mixture  filtered,  and  the  residual  purified 
paraffin  washed  with  the  same  liquid,  the  excess  of 
which  is  removed  with  caustic  soda.  The  wax  is 
further  purified  by  means  of  sulphuric  acid  or 
fuller's  earth,  and  the  oil  and  softer  fractions  of 
paraffin  are  recovered  from  the  creosote  by  dietilla- 
jtion  after  a  caustic  soda  treatment. — A.  R.  P. 


! Lubricating  oil  emulsion. 
5.1.21.    Conv.,  9.8.16. 


H.  Langer.  E.P.  156,517, 


Lubricating  oil  emulsions  capable  of  withstanding 
temperatures  up  to  about  360°  C.  without  burning 
or  depositing  carbonaceous  matter  are  made  by 
stirring  heavy  mineral  oils  under  pressure  with  a 
quantity  of  saturated  lime  water  equal  to  30 — 60% 
of  the  total  weight  of  the  mixture. — F.  G.  P.  R. 

Coal;  Plant  for  and  method  of  treating .    C.  H. 

Smith,  Assr.  to  International  Coal  Products 
Corp.     U.S. P.   1,415,202,   9.5.22.     Appl.,  3.4.18. 

See  E.P.  125,379  of  1919;  J.,  1920,  714  a. 

Coal  slimes;   Utilising   .     H.    Brune    and   H. 

Horst,  Assrs.  to  Ges.  fur  Maschinelle  Druckent- 
wasserung  m.b.H.  U.S. P.  1,416,546,  16.5.22. 
Appl.,  30.3.21. 

See  E.P.  146,264  of  1920;  J.,  1921,  501a. 

Coke  ovens.  American  Coke  and  Chemical  Co., 
Assees.  of  A.  Roberts.  E.P.  157,827,  10.1.21. 
Conv.,  22.6.16. 

See  U.S.P.  1,304,907  of  1919;  J.,  1919,  856  a. 

Purnace-retnrt.  C.  H.  Smith,  Assr.  to  Inter- 
national Coal  Products  Corp.  U.S.P.  1,415,201 
and  1,415,846,  9.5.22.     Appl.,  18.2.18  and  9.5.18 

See  E.P.  123,739  and  126,614  of  1919;  J.,  1920, 
650  a,  565  a. 


Gas;   Method  of  producing  - — — .     L.   W.    Bates. 

E.P.  159,175,  15.1.21.     Conv.,  19.2.20. 
See  U.S.P.  1,373,704  of  1921;  J.,  1921,  337  a. 

Gas-generating  plant.  J.  Lowe.  U.S.P.  1,416,042, 
16.5.22.    Appl.,  11.10.19. 

See  E.P.  149,928  of  1919;  J.,  1921,  207  a. 

Protective   gas;  Production  of  by  means  of 

internal  combustion  engines.     J.  Muchka      E  P 
153,913,  16.11.20.     Conv.,  24.9.15. 

See  U.S.P.  1,413,285  of  1922;  preceding. 

By-product  condensers,  and  methods  of  operating 
same.  American  Coke  and  Chemical  Co.,  Assees. 
of  A.  Roberts.  E.P.  157,828,  10.1.21.  Conv., 
17.4.15. 

See  U.S.P.  1,333,631  of  1920;  J.,  1920,  326  a. 

Powdered  fuel;  Method  of  and  apparatus  for  supply- 

">0  to  furnaces.     The  Powdered  Fuel  Plant 

Co.,  Ltd.,  Assees.  of  Soc.  Anon.  La  Combustion 
Rationelle.   E.P.  179,484,  21.9.21.   Conv.,  14.5.21. 


Coke  ovens;  Doors  for  — 
Coke,  Systemes  Lecocq. 
Conv.,  18.11.20. 


.     Soc.  Gen  de  Fours  a 
E.P.   171,675,   6.11.21. 


Gas  producers   \jor  automobiles;   Grates  of  ]. 

J.  W.  Parker  and  H.  W.  Bamber.     E.P.  178  869 
20.10.20.  '       ' 

Suction  or  producer  gas;  Means  of  cooling  

preparatory  to  its  admission  to  internal  combus- 
tion engines.    H.  W.  Bamber  and  J.  W    Parker 
E.P.  179,202,  28.10  and  22.11.20. 

See  also  pages  (a)  451,  Washing  gases  (G.P. 
347,600).  463,  Concent  rating  waste  acid  (U.S.P. 
1,415,443) ;  Hydrogen  (E.P.  174,327).  474,  Refining 
oils  (E.P.  178,183).  484,  Eydrogenating  unsatu- 
rated hydrocarbons  (G.P.  350,429).  485,  Calorific 
value  of  gases  (E.P.  179,060). 

Hb— DESTDUCTIVE  DISTILLATION; 
HEATING;   LIGHTING. 

Patents. 
Low  temperature  coal  distillation  purposes  or  other 
purposes  where  a  like  movement  of  the  material 

is    required;    Rabbles    for   .      Process    and 

apparatus  for  coking  the  discharged  material 
from  low  temperature  distillation  apparatus.  E 
Barrs.  E.P.  (a)  178,504,  20.12.20,  and  (b)  178,889, 
23.12.20. 

(a)  A  reciprocating  rabble  for  use  in  low-tempera- 
ture distillation  retorts  is  composed  of  a  number  of 
vertical  perforated  grids  depending  from  a  frame 
carried  by  rollers.  Upper  and  lower  tracks  are  pro- 
vided for  the  rollers  and  at  the  end  of  the  forward 
movement  of  the  rabble  the  rollers  pass  from  the 
lower  to  the  upper  track  along  a  ramp.  A  shunt 
plate  actuated  by  the  motion  of  the  frame  prevents 
the  return  of  the  rollers  to  the  lower  rack  until 
the  end  of  the  backward  movement,  so  that  the  grids 
are  lifted  above  the  material  being  treated  during 
the  backward  motion.  Bakes  are  fitted  at  the  rear 
end  of  the  frame  to  drag  the  material  from  the  out- 
let of  a  feeding  hopper  into  the  zone  traversed  by 
the  grids,  (b)  The  solid  product  discharged  from 
the  retort  is  conveyed  through  a  closed  chamber 
into  a  briquetting  machine  and,  by  means  of  a  ram, 
the  briquettes  are  forced  in  an  upward  direction 
through  a  tubular  retort  of  such  cross-section  that 
the  briquettes  make  a  sliding  fit  within  it.  Separa- 
tors are  placed  between  the  briquettes  during  the 
ramming  operation.  Annular  heating  chambers  are 
fitted  around  the  retort  and  these  alternate  with 
annular  gas  off-takes,  the  retort  being  perforated  at 
points  where  it  is  surrounded  by  gas  off-takes.    The 


4.">6  A 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING. 


[June  30,  1922. 


coked  briquettes  are  discharged  through  the  upper 
open  end  of  the  retort.  A  similar  tubular  retort 
may  be  used  for  low  temperature  carbonisation,  in 
which  case  it  may  be  placed  vertically,  coal  being 
fed  in  at  the  top  and  controlled  in  its  escape  at  the 
bottom.— H.  Hg. 

Distillation  of  solid  hydrocarbon-containing  mater- 
ials.   N.  V.  S.  Knibbs.    E.P.  178,157,  7.12.20. 

Hydrocarbon  oils  etc.  are  distilled  from  shales,  coal, 
lignite,  and  the  like  by  causing  the  material  to  tra- 
verse an  inclined  rotary  retort  of  the  cement-burn- 
ing type  in  such  a  manner  that  the  non-volatile 
carbonaceous  matter  is  burnt  in  a  regulated  supply 
of  air  in  the  lower  portion  of  the  retort  and  thus 
supplies  hot  gases  to  produce  distillation  of  the 
volatile  constituents  in  the  upper  part.  Combustion 
may  alternatively  take  place  in  a  separate  furnace 
outside  the  retort  and  may  be  assisted  by  the  addi- 
tion of  fixed  gases  from  the  distillation. 

— F.  G.  P.  R. 

Distilling  or  roasting  plant  and  apparatus,  more 
particularly  intended  for  the  medium  and  low 
temperature  distillation  of  carbonaceous  mater- 
ials.   H.  Nielsen.     E.P.  178,537,  14.1.21. 

An  inclined  rotary  cylindrical  retort  carries  within 
it  a  tapering  concentric  tube  attached  to  the  outer 
shell  by  longitudinal  plates  which  may  be  perforated 
or  staggered  relatively  to  one  another.  The  inner 
tube  is  tapered  in  such  a  direction  that  when 
material  is  fed  into  one  end  of  the  annulus  it  will 
travel  to  the  other  end,  and,  being  lifted  by  fixed 
projections  or  buckets  into  the  inner  tube,  will 
return  in  the  opposite  direction.  The  wider  end  of 
the  inner  tube  extends  beyond  the  outer  shell  and 
discharges  the  solid  residue  into  an  annular 
collector.  Hot  producer  gas  is  admitted  to  the 
inner  tube  through  a  central  stuffing-box  and  flows 
in  contrary  direction  to  the  solid,  being  withdrawn 
from  the  outer  shell  together  with  the  volatile  pro- 
ducts through  a  number  of  off-takes  connected  with 
a  central  collecting  pipe  passing  through  a  stuffing- 
box  at  the  end  remote  from  the  gas  inlet.  Helices 
may  be  fitted  to  secure  a  positive  propulsion  of  the 
solid,  and  shelves  may  be  fixed  within  the  inner 
tube  in  order  to  lift  the  solid  and  secure  more  inti- 
mate contact  with  the  heating  gas. — H.  Hg. 

Carbonisation  of  coal,  shale,  peat,  or  other  mater- 
ials.   G.  T.  Beilby.    E.P.  178,994,  16.2.21. 

A  retort  placed  within  a  heating  oven  contains  a 
cage  which  carries  a  number  of  superimposed 
shallow  trays  and  which  is  supported  on  a  rod  pass- 
ing through  a  gas-tight  sleeve-tube  attached  to 
the  roof  of  the  retort.  The  sleeve-tube  passes 
through  a  packing-gland  in  the  roof  of  the  oven. 
The  rod  and  cage  may  be  balanced  by  the  cage  in 
an  adjacent  oven  and  may  be  moved  vertically  so 
as  to  bring  each  tray  in  turn  opposite  an  opening 
in  the  wall  of  the  retort.  This  opening  communi- 
cates through  a  gas-tight  passage  with  an  external 
i  hamber  into  which  each  tray  may  in  turn  be  with- 
drawn by  a  sliding  member  which  engages  with  it 
while  the  cage  is  locked  in  a  suitable  position  by 
bolts  operated  through  the  wall  of  the  retort.  Each 
tray  is  divided  by  partitions  and  while  being 
pushed  into  the  cage  receives  a  charge  of  material 
to  be  carbonised  from  the  mouth  of  a  hopper  under 
which  it  passes.  When  the  tray  is  subsequently 
withdrawn  into  the  external  chamber  either  it  is 
tipped  to  discharge  the  carbonised  material  or  its 
hinged  bottom  is  removed  upon  a  hinged  door 
operated  through  the  wall  of  the  chamber.  If 
necessary  the  material  may  be  pushed  out  of  the 
tray  by  means  of  pushers  depending  from 
a  horizontal  plate  operated  through  the  roof 
of  the  chamber.     Part  of  the  mechanism  may  be 


arranged  in  a  separate  external  chamber  on  the 
opposite  side  of  the  retort. — H.  Hg. 

Destructive  distillation  of  coal  and  other  materiati 

Process  for  the .    P.  Farup.    U.S.P.  1.414,40l' 

2.5.22.     Appl.,  4.11.20. 

The  distillation  is  partially  effected  by  indirect 
radiated  electrical  heating  and  then  continued  by 
direct  heating. — H.  Hg. 

[Low-temperature     coking;']     Bhig-shapcd     platr- 

furnace  for  continuous  working  [e.g.,  for  ] 

L.  Honigmann.     G.P.  346,884,  27.2.20. 

The  furnace  is  divided  into  two  superimposed  gas- 
tight  chambers  by  means  of  a  revolving  plate,  and 
the  upper  chamber  is  provided  with  a  scraper 
between  the  charging  and  discharging  doors,  while 
the  lower  has  a  vertical  partition  between  the  inlet 
and  outlet  for  the  heating  gas. — A.  R.  P. 

Vertical  retort  [for  distillation  of  coal,  shale,  etc.] 
H.  AVulf  and  H.  Herbers.     G.P.  348,765,  9.11.20. 

The  retort  consists  of  a  number  of  cylindrical 
chambers  arranged  one  above  the  other,  with  spacer 
between,  and  connected  together  by  tubes  to  allow 
the  material  being  distilled  to  fall  from  one  to  the 
next  lower  and  so  on.  In  this  way  the  heating 
material,  e.g.,  hot  air,  has  access  to  the  top  and 
bottom  as  well  as  to  the  sides,  so  that  the  heat 
rapidly  penetrates  throughout  the  mass. — A.  R.  P. 

Distillation  of  fuels  of  all  kinds,  and  particularly  o) 

peat;  King  furnace  for  the  .     Wessels  und 

Wilhelmi.     G.P.  350,571,  29.5.21. 

The  distillation  chambers  are  isolated  from  ono 
another  and  operate  entirely  independently  of  one 
another,  but  are  heated  by  a  common  heating  flue. 
Slide  valves  or  dampers  are  provided  whereby  it  is 
possible  to  vary  as  desired  the  position  in  the  heat- 
ing flue  of  the  three  zones,  namely,  the  air-pre- 
heating coke-cooling  zone,  the  carbonisation  zone 
proper,  and  the  flue  gas-cooling  pre-distillation  zone. 
The  temperature  can  be  regulated  to  produce  slow 
distillation  so  that  the  distillation  products  can  be 
completely  recovered  in  separate  fractions. — A.  G. 

Hetort;  Hotary  for  the  distillation  of  bitu- 
minous substances.  Deutsche  Petroleum  A.-G.. 
S.  Kacser,  and  E.  Bauer.     G.P.  350,572,  4.7.20. 

A  rotary  tubular  retort  is  arranged  within  a  casing 
and  around  a  stationary  central  tube  through  which 
the  flames  from  the  fire  pass.  The  apparatus  effects 
an  economic  utilisation  of  the  heat  and  gives  a  high 
yield  of  oil  of  good  quality. — A.  R.  P. 

Charcoal;  Manufacture  of  active  .     W.  Carp- 

mael.     From  Chem.  Fabr.  auf  Action  (vorm.  K. 
Schering).     E.P.  178,779,  8.9.21. 

Peat  or  lignite  is  impregnated  with  caustic  alkali 
or  an  alkali  carbonate  and  is  then  heated  to  about 
1000°  C.  The  alkali  is  removed  by  washing  and  the 
product  is  dried.  Before  impregnation  the  material 
may  be  subjected  to  a  partial  vacuum. — A.  G. 

Charcoal;   Manufacture   of  active   wood  .     W. 

Carpmael.     From  Chem.  Fabr.  auf  Actien  (vorm. 

E.  Schering).  E.P.  179,108,  24.8.21. 
Wood  charcoal  is  subjected  to  a  partial  vacuum, 
then  impregnated  with  caustic  alkali  or  alkali 
carbonate,  heated  to  a  bright  red  heat,  and  the 
alkali  is  lixiviated  from  the  product,  which  is  then 
dried  at  about  80°  C—  A.  G. 

Decolorising   charcoal;  Manufacture  of  .      ^ 

Eberlein.      G.P.    350,260,     27.7.20.      Addn.    to 
307,053  (J.,  1922,  363  a). 

Alkaline  solutions  of  organic  material,  e.g.,  lignite. 

are    carbonised    in    the    presence    of    minerals,    or 


Vol.  XU„  No.  12]    Cl.  III.— TAR  &  TAR  PRODUCTS,     Cx.  IV.— COLOURING  MATTERS  &  DYES.     457a 


mixtures  of  minerals,  which  form  zeolite  or  zeolitic 
compounds,  and  the  products  are  leached  with  solu- 
tions of  soluble  calcium  salts. — L.  A.  C. 

Electric  discharge  tubes.  Naaml.  Vennoots.  Philips' 
Gloeilampenfabrieken.  E.P.  (a)  159,509  and 
(b)  158,510,  20.1.21.     Conv.,  22.1.20. 

(a)  Rake  gases  used  in  electric  discharge  tubes  are 
purified  by  introducing  a  small  quantity  of  phos- 
phorus together  with  the  rare  gas  into  the  tube. 

(b)  Traces  of  foreign  gases  are  removed  from  electric 
discharge  tubes  filled  with  rare  gases  or  from 
vacuum  discharge  tubes  using  alkali  or  alkaline- 
earth  metals,  by  introducing  a  nitrogen  compound, 
such  as  the  azide  or  nitride  of  the  metal,  and  de- 
composing this  compound  by  heat  with  exhaustion 
of  the  liberated  nitrogen. — J.  S.  G.  T. 

Distillation  or  gasification  of  organic  matter  or 
minerals  containing   organic  matter;   Process  of 

and   oven  for   the   continuous   .      F.    Rippl. 

E.P.  157,808,   10.1.21.     Conv.,  25.8.15. 

See  U.S.P.  1,455,268  of  1920;  J.,  1921,  112  a. 
Distillation  of  icaste  liquors.    G.P.  349,438.    See  I. 


III.-TAB  AND  TAB  PRODUCTS. 

Tar;  Preparation  of  road in.  gas-works.     S.  A. 

Wikner.     Gas  J.,  1922,  158,  319—322. 

A  new  type  of  distillation  plant  for  treating  crude 
tar  is  described,  in  which  steam  is  used  for  distilla- 
tion instead  of  coke-  or  gas-firing.  When  steam  is 
used  for  distillation  instead  of  li  cwt.  of  breeze 
being  used,  as  in  the  direct-fired  still,  the  coke  con- 
sumption is  under  40  lb.  per  ton  of  tar.  The  cost 
amounts  to  about  3d.  per  ton  of  tar  dehydrated. 
The  plant  is  very  flexible  in  use  and  can  treat  tars 
of  widely  varying  moisture  content.  The  experi- 
mental plant  has  a  capacity  of  4  tons  per  hour  or 

i  more.  It  has  been  found  possible  to  dehydrate  tar 
containing  15%  of  moisture,  and  some  3  gallons  of 
crude  naphtha  per  ton  of  tar  is  produced.    Analyses 

:  are  given  of  two  road  tars  prepared  on  the  plant. 

—A.  G. 

!  Benzol  washing.     Bunte  and  Frei.     See  IIa. 


Patents. 


-.      E. 

2.9.19. 


Lignite  tar  and  shale  tar;  Treatment  of  — 
Erdmann.  E.P.  156,694,  7.1.21.  Conv 
Addition  to  156,594  (J.,  1922,  285  a). 

Tee  crude  tar  is  first  treated  with  acetone  and  the 
insoluble  paraffin  wax  separated.  Sufficient  water 
is  then  added  to  the  acetone  solution  to  cause  sepa- 
ration of  the  viscous  lubricating  oils,  whilst  creosote 
oils  remain  dissolved  in  the  aqueous  acetone.  By 
this  means  lubricating  oils  are  obtained  free  from 
injurious  phenolic  compounds. — F.  G.  P.  R. 

Distilling  coal  tar  and  like  products;  Apparatus  for 

.     C.  Ab-der-Halden.     E.P.  158,875,  24.1.21. 

Conv.,  9.2.20. 

Tar  is  continuously  distilled  by  the  aid  of  super- 
heated steam  from  a  still  provided  with  a  continuous 
overflow  discharge.  On  the  still  is  mounted  a  de- 
;  phlegmator  connected  at  its  upper  end  with  a  heat- 
exchange  condenser  by  means  of  two  pipes.  Cold 
fresh  tar  passing  through  the  heat  exchanger  is 
deprived  of  its  moisture  and  flowing  through  the 
lower  of  the  two  pipes  into  the  dephlegmator  meets 
the  stream  of  ascending  vapours  from  the  still. 
Moisture  from  the  fresh  tar  passes  into  the  de- 
phlegmator by  the  upper  pipe  and  is  carried  with 
the  distilled  vapours  by  way  of  a  heavy-oil  catch-pot 
to  the  heat-exchange  condenser  and  thence  to  water 
condensers,     (fif.  J.,  1922,  286  a.)— F.  G.  P.  R. 


Distilling  tar:  Plant  and  process  for .  Appa- 
ratus for  distilling  tar.  C.  Schaer.  U.S.P. 
1, 415,056-7,  9.5.22.    Appl.,  (a)  23.4.17,  (b)  27.5.20. 

(a)  A  horizontal  cylindrical  still  is  mounted  in  a 
heating  chamber  and  contains  a  number  of  ladles 
mounted  on  a  rotary  support  so  that  their  discharge 
ends  are  close  to  the  walls  of  the  still.  Tar  is  fed 
into  the  still  and  then  spread  in  a  layer  over  the 
interior  surface  by  means  of  the  ladles.  As  the 
ladles  move  forward  each  advancing  edge  is  pressed 
against  the  wall  of  the  still  to  remove  the  layer  of 
tar  deposited  by  the  preceding  ladle,  (b)  Two  stills 
are  heated  from  one  source  so  that  ammonia  and 
light  oils  are  liberated  in  one  still  and  heavier  oils 
in  the  other  still.  Tar  flows  continuously  through 
the  stills  in  series  and  then  through  a  discharge 
conduit  for  the  pitch.  Each  still  is  connected  with 
a  separate  condenser,  and  means  are  provided  for 
exhausting  and  cooling  the  vapours  liberated  in  the 
discharge  conduit. — H.  Hg. 

Oil  for  cores  for  foundry  purposes;  Manufacture  of 

[from  tar  oils].    M.  Melamid.    E.P.  179,203, 

29.10.20. 

See  G.P.  335,323  of  1919;  J.,  1921,  463  a.  Tar  oils 
of  b.p.  220° — 100°  C,  derived  from  coal  tar,  lignite 
tar,  or  wood  tar,  may  be  used  and  may  be  mixed 
with  fat  pitch,  e.g.,  stearine  pitch,  or  resin  oil, 
resin,  or  resin-like  substances,  such  as  coumarone 
resin. 

Hydrocarbons;    Catalytic    oxidation    of    into 

carbonyl  compounds  or  acids.  A.  AVohl.  E.P. 
156,245,  4.1.21.  Conv.,  18.12.16.  Addn.  to 
156,244  (J.,  1922,  407  a). 

Instead  of  using  non-volatile  metallic  oxides  of  an 
acid  character  as  catalysts,  salts  of  these  oxides  wTith 
heavy  metals  such  as  copper,  silver,  lead,  thallium, 
platinum,  nickel,  cobalt,  etc.,  may  be  advan- 
tageously substituted  as  the  temperature  of  the 
oxidation  can  be  thereby  greatly  decreased.  Thus, 
precipitated  copper  vanadate  distributed  on  pumice 
converts  anthracene  into  anthraquinone  at  180° — 
190°  C.  without  loss.  The  regeneration  of  the 
catalyst  is,  however,  rather  slow  at  this  tempera- 
ture, but  it  is  accelerated  when  the  oxygen  is  passed 
in  a  cycle  under  increased  pressure. — G.  F.  M. 

Pyridine;  Recovery  of  from   ammonium   sul- 

phate  solutions.     F.  W.  Sperr,  jun.,  and  R.  L. 
Brown,     Assrs.     to    The    Koppers    Co.       U.S.P. 
1,414,441,  2.5.22.     Appl.,  5.10.20. 
A  step  in  the  recovery  of  pyridine  from  acid  solu- 
tions   containing   it   consists    in    distilling   off   the 
pyridine  from  the  acid  solution. — L.  A.  C. 

Paraffin  wax.     G.P.  350,442.     See  IIa. 

Refining  tars.     E.P.  178,183.    See  XII. 

IV.-C0L0URING  MATTERS  AND  DYES. 

Eydrosulphites;  Use  of  in  the  estimation  of 

dyestuffs.  E.  Sifferlen.  Bull.  Soc.  Ind.  Mulhouse, 
1922,  88,  80.  Report  by  M.  Bader,  ibid.,  80—83. 
Solutions  containing  sodium  citrate,  sodium  hydro- 
sulphite,  and  dilute  acetic  acid  are  not  decomposed 
with  formation  of  free  sulphur  when  boiled, 
although  oxidation  takes  place  rapidly.  If,  how- 
ever, acetaldehyde  is  also  present,  such  solutions 
can  be  kept  for  several  days  in  an  atmosphere  of 
carbon  dioxide  without  oxidation  occurring  and, 
although  incapable  of  reducing  Safranine  in  the 
cold,  such  solutions  quantitatively  reduce  azo  dye- 
stuffs  in  boiling  solutions.  A  solution  suitable  for 
use  in  the  estimation  of  dyestuffs  is  prepared  by 
adding  5  g.  of  Hydrosulphite  B.A.S.F.  and  10  g.  of 
sodium  bicarbonate  dissolved  in  250  c.c.  of  water  to 


458  a 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[June  30, 1922. 


a  solution  containing  25  g.  of  sodium  citrate,  250  c.c. 
of  water,  and  5  c.c.  of  acetaldehyde  dissolved  in 
10  c.c.  of  alcohol,  diluting  the  mixture  to  1  1.,  and 
then  removing  excess  of  the  aldehyde  by  means  of  a 
current  of  carbon  dioxide.  Benzaldehyde  and  fur- 
fural cannot  be  used  as  substitutes  for  acetaldehyde. 
Bader  confirms  the  suitability  of  these  hydrosulphite 
solutions  for  the  estimation  of  dyestuffs  (especially 
benzidine  dyestuffs)  and  attributes  their  stability  to 
the  formation  of  sodium  acetaldehydesulphoxylate 
and  to  the  power  of  the  sodium  citrate  to  diminish 
the  concentration  of  hydrogen  ions. — A.  J.  H. 

Colorimetry.     Dosne.     See  XXIII. 

Patents. 

Disazo  dye;  Production  of .     W.  M.  Ralph  and 

L.  H.  Flett,  Assrs.  to  National  Aniline  and 
Chemical  Co.  U.S.P.  1,415,704,  9.5.22.  Appl., 
3.1.20. 
The  two  nitro  groups  in  a  dyestuff  having  the 
formula  (4)NO2.C6N4.N2.(7)C10Hs.(8)OH(l)NH.,(4) 
S0aH(2)N,.C,H4.(4)N0,  are  reduced  to  amino 
groups  by  treatment  in  alkaline  solution  with 
sodium  disulphide,  and  the  dyestuff  obtained  is 
isolated  by  the  addition  of  sodium  bisulphite  and 
dilute  hydrochloric  acid. — L.  A.  C. 

Monoaminoacridine    [dyestuff];   Manufacture    of  a 

.     Akt.-Ges.  fur  Anilin-Fabr.     G.P.  350,321, 

19.3.18. 
A  salt,  e.g.,  the  hydrochloride,  of  4-methyl-3-amino- 
diphenylamine  is  heated  with  finely  divided,  an- 
hydrous oxalic  acid  in  the  presence  of  a  diluent, 
such  as  glycerin  or  naphthalene.  The  product  dyes 
yellow  shades  on  leather  and  mordanted  cotton. 

— L.  A.  C. 

Dyestuff ;  Manufacture  of  a  green suitable  for 

the  production  of  colour  lakes.  Badische  Anilin- 
und  Soda-Fabr.  G.P.  350,322,  9.9.19. 
A  solution  of  ferrous  sulphate  and  a  bisulphite  is 
introduced,  through  a  tube  dipping  below  the 
surface,  into  a  well  agitated  solution  of  nitroso-2- 
hydroxynaphthalene-3-carboxylic  acid  (the  nitroso 
derivative  of  /J-hydroxynaphthoic  acid,  m.p.  216°  C.) 
in  aqueous  sodium  hydroxide ;  the  solution  is  heated 
to  80°  C,  and  the  dyestuff  is  precipitated  by  the 
addition  of  sodium  chloride  to  the  solution  after 
filtration.  The  dyestuff  forms  colour  lakes  fast  to 
light  and  to  the  alkali  in  distempers,  and  suitable 
for  use  in  dyeing  wallpapers,  and  in  the  manufac- 
ture of  lithographic  printing  colours  and  oil  colours. 

— L.  A.  C. 

Indigo;  Process  for  obtaining  halogen  derivatives  of 

and  of  its  homologues.     M.  Bouvier,  Assr.  to 

Soc.  Chimique  des  Usines  du  Rhone.  U.S.P. 
1,414,335,  2.5.22.     Appl.,  1.10.18. 

See  E.P.  119,860  of  1918;  J.,  1919,  757  a. 

V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Hemp  (Cannabis  sativa)  and  pseudo-hemp  (Crota- 

laria     juncea);     Differentiation     between     

present  in  fabrics,  ropes,  etc.  M.  Pontio.  Chim. 
et  Ind.,  1922,  7,  664—667. 

Many  varieties  of  so-called  hemp,  e.g.,  Bombay, 
Madras,  Jubulpoore,  Sunn,  etc.  hemps,  are  really 
pseudo-hemps  (Crotalaria  juncea),  and  after  being 
employed  for  manufactured  goods,  it  is  difficult  to 
distinguish  them  from  genuine  hemp  (Cannabis 
sativa).  These  fibres,  however,  differ  in  length, 
structure,  colour  changes  when  treated  with  re- 
agents, and  iron  content  and  colour  of  their  ash. 
Fibres  of  Bombay  and  Sunn  hemps  are  similar  in 
appearance,  and  have  a  maximum  length  of  7 — 8 
mm.,  but  whereas  the  former  have  a  diameter  of 
0"03— 006mm.,  the  latter  sometimes  attain  a  dia- 


meter of  008  mm.  On  treatment  with  iodine  and 
sulphuric  acid,  isolated  fibres  of  Bombay  and  Sunn 
hemps  become  brownish-red  and  bluish  or  yellow 
respectively,  whereas  the  fibres  containing  lignin 
become  brown  and  brownish-yellow  respectively. 
Genuine  hemp  fibres  have  a  diameter  of  0-02 — 005 
mm.,  can  attain  a  length  of  25  mm.,  and  on  treat- 
ment with  iodine  and  sulphuric  acid  they  become 
blue  to  brownish-grey  in  colour.  They  also  have 
transverse  markings  which  are  more  pronounced 
than  those  of  Bombay  and  Sunn  hemps.  The  ends 
of  the  fibres  of  pseudo-hemps  are  more  blunt  than 
those  of  genuine  hemp.  Both  genuine  and  pseudo- 
hemps  contain  similar  honeycomb-like  cells,  but  to 
those  of  pseudo-hemps  are  attached  hairs  of  about 
0"7  mm.  in  length.  The  ash  of  genuine  hemp  is 
usually  grey  or  greyish-yellow  in  colour  and  con- 
tains 2 — 6%  Fe203,  but  that  of  a  pseudo-hemp  is 
always  brown  and  contains  8 — 12%  Fe203.  Sunn 
hemp  contains  more  iron  than   Bombay  hemp 

—A.  J.  H. 

Cellulose;  Alkali-soluble  modification  of  .    E. 

Knoevenagel     and     H.     Busch.       Celluloseehem .,' 
1922,  3,  42—60. 

A  modified  cellulose  or  hydrocellulose  which,  even 
after  drying,  is  completely  soluble  in  cold  8%  sodium 
hydroxide  solution  is  produced  by  hydrolysing 
viscose  cellulose  with  acids.  The  hydrolysis  may  be 
effected  by  Girard's  method:  by  steeping  viscose 
cellulose  in  3%  hydrochloric  acid,  pressing  out  until 
the  weight  of  acid  is  equal  to  that  of  the  cellulose, 
drying  in  the  air,  and  heating  in  a  closed  vessel  at 
70°  C.  for  4  hrs.  It  may  also  be  carried  out  by 
Lederer's  method,  viz.,  heating  air-dry  viscose  cellu- 
lose with  98%  acetic  acid  containing  025%  of  hydro- 
chloric acid.  Probably  the  most  convenient  method 
is  by  the  action  of  dry  hydrogen  chloride  gas  on  air- 
dry  viscose  cellulose  in  a  closed  evacuated  vessel  at 
the  ordinary  temperature.  The  percentage  of  acid 
absorbed  corresponds  with  the  quantity  of  moisture 
in  the  cellulose,  and  by  regulating  the  degree  of 
humidity  and  the  time  and  temperature  of  the  re- 
action, the  conversion  can  be  6o  controlled  that  a 
product  completely  soluble  in  8%  caustic  soda  is 
obtained  which  is  re-precipitated  substantially 
without  loss  on  acidification.  With  viscose  cellulose 
of  normal  humidity  (11%)  the  reaction  at  the  ordi- 
nary temperature  requires  about  12  hrs. ;  with 
lower  humidity  a  longer  time  is  required  and  with 
excessive  moisture  the  hydrolysis  may  proceed  too 
far,  causing  low  yields.  The  conversion  into  alkali- 
soluble  product  does  not  take  place  if  the  cellulose 
is  completely  dried.  Only  cellulose  modified  or 
hydrated  in  certain  ways  is  capable  of  forming  the 
alkali-soluble  product  after  hydrolysis.  Viscose 
cellulose  yields  it  most  readily.  With  cellulose  re- 
generated from  cellulose  acetate  the  solubility  of  the 
product  in  alkali  is  only  about  one-tenth  of  that  of 
the  product  from  viscose  cellulose.  Cellulose  modi- 
fied by  the  extreme  action  of  hot  concentrated 
caustic  soda  yields  it  to  a  partial  extent,  varying 
according  to  the  conditions  of  treatment  with 
caustic  soda.  Sulphite  pulp  heated  for  6  hours  at 
140°  C.  in  an  indifferent  liquid  such  as  xylene 
yielded  after  subsequent  hydrolysis  85%  of  a  product 
of  which  94%  was  soluble  in  cold  8%  caustic  soda. 
The  presence  of  a  small  amount  of  humidity  is 
essential  both  in  the  primary  modification  and  in 
the  subsequent  hydrolysis.  Dry  cellulose  similarly 
heated  in  xylene  did  not  produce  the  desired  result. 
Alkali-soluble  cellulose  has  an  unusually  high 
"copper  value,"  12-5— 14"0%,  which  is  not  sub- 
stantially lowered  by  boiling  with  calcium  hydroxide. 
This  form  of  cellulose  is  exceptionally  amenable  to 
benzoylation,  forming  easily  a  tribenzoate  com- 
pletely soluble  in  chloroform ;  it  is  susceptible  to 
alkylation  but  the  results,  so  far,  have  not  been 
concordant.     (Cf.  J.C.S.,  July.)— J.  F.  B. 


Vol.  XIX.  No.  12.] 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


459  a 


Behaviour  of  artificial  silk  in  dyeing.     Biltz.     See    ! 
VI. 

Patents. 

Waterproof    material;    Manufacture    of   .      C. 

Claessen.     E.P.  155,778,  22.12.20.     Conv.,  1.4.19. 

An  elastic  waterproof  composition  which  can  be 
fixed  to  a  supporting  surface,  e.g.,  fabric,  by  the 
aid  of  heat  and  high  pressure,  is  made  by  mixing 
gelatinised  nitrocellulose,  i.e.,  nitrocellulose  with 
which  has  been  incorporated  an  equal  weight  of, 
e.g.,  a  substituted  urea,  thio  or  halogen  deriva- 
tives of  urea,  tricresyl  phosphate,  etc.,  with  an 
approximately  equal  weight  of  fillers  and  colouring 
agents;  fillers  such  as  finely  ground  wood,  cork,  or 
peat  meal  are  used,  and  the  mixing  is  effected 
between  hot  rollers. — D.  J.  N. 

Textile  materials;  Method  of,  and  apparatus  for 

drying .     H.  Krantz.     E.P.  157,42.5,  10.1.21. 

Conv.,  15.1.17. 

Textile  materials,  such  as  bobbins  or  other  coils  of 
fibre,  or  woven  fabrics,  are  quickly  and  economically 
dried  by  blowing  steam  through  them  and  then  ex- 
posing them,  while  still  hot  from  this  treatment,  to 
a  vacuum.  Various  types  of  apparatus  are  de- 
scribed for  carrying  out  this  process,  e.g.,  the  wet 
bobbin  is  mounted  on  a  hollow  perforated  6pindle 
open  at  one  end,  fitted  in  a  chamber,  which  is  con- 
nected by  valves  both  with  a  steam  boiler  and  an 
exhaust  pump ;  the  open  end  of  the  perforated 
spindle  projects  through  the  bottom  of  the  chamber 
and  forms  an  outlet  for  the  steam  used  in  the  pre- 
liminary drying  operation,  and  an  inlet  for  air  in 
the  final  drying  operation  under  reduced  pressure. 

— D.  J.  N. 

Viscose;  "Recovery  of  carbon  bisulphide  in  the  work- 

inq  up  of  into  artificial  fibres,  films,  and 

similar  products.  A.Kampf.  E.P.  170,817,  8.2.21. 
Conv.,  28.10.20. 

Freshly  precipitated  viscose  products,  such  as 
threads,  films,  and  the  like,  are  brought  into  con- 
tact with  water  at  55° — 60°  C,  in  a  tank,  above 
which,  and  sealed  by  the  water  therein,  is  a  hood, 
connected  with  a  refrigerator.  Carbon  bisulphide, 
volatilised  by  the  hot  water,  passes  into  the  hood 
and  is  recovered  in  the  refrigerator.  The  acidity  of 
the  bath,  due  to  acid  adhering  to  the  freshly  pre- 
cipitated threads,  should  not  be  allowed  to  exceed 
3%.  The  total  immersion  process  described  above 
may  less  advantageously  be  replaced  by  a  sprinkling 
process.— D.  J.  N. 

Viscose  solutions;  Manufacture   of  .      W.   P. 

Dreaper.     E.P.  178,152,  8.11.20. 

Alkali-cellulose  for  subsequent  conversion  into 
xanthate  is  made  by  impregnating  cellulose  with 
caustic  soda  solution  at  temperatures  below  5°  C, 
preferably  about  0°  C.  The  impregnation  is  pre- 
ferably carried  out  in  a  rarefied  atmosphere  of  a 
gas  soluble  in  caustic  soda  solution,  e.g.,  ammonia 
gas,  or  capable  of  reacting  with  it,  e.g.,  sulphur 
dioxide.  It  is  unnecessary  to  maintain  the  alkali 
solution  at  a  reduced  temperature  for  a  protracted 
period  after  it  has  come  into  contact  with  the 
cellulose.  Alkali-cellulose  prepared  by  this  process 
is  uniformly  impregnated  with  alkali,  and,  when 
converted  into  viscose,  gives  a  solution  of  low  vis- 
cosity and  free  from  jellified  particles. — D.  J.  N. 

Viscose    solutions    of    cellulose;    Preparation    and 

preservation  of  for  the  production  of  films, 

threads  and  filaments.  W.  O.  Mitscherling,  Assr. 
to  Atlas  Powder  Co.  U.S.P.  1,415,040,  9.5.22. 
Appl.,  9.2.22. 

Viscose  solutions  are  preserved  from  decomposition 
by  adding  1%  (referred  to  the  cellulose)  of  sodium 
thiosulphate.— B.  M.  V. 


Artificial  filaments,   threads,  and  films;  Manufac- 
ture   of  .       British   Cellulose    and   Chemical 

Mfg.  Co.,  Ltd.,  C.  W.  Palmer,  and  W.  A.  Dickie. 
E.P.  177,868,  4.1.21. 

A  precipitating  bath  for  cellulose  acetate  dissolved 
in  water-soluble  organic  solvents,  such  as  alcohol  or 
acetone,  with  or  without  addition  of  plastifying 
agents,  oonsists  of  an  aqueous  solution  of  ammo- 
nium, sodium,  potassium,  or  calcium  thiocyanates, 
or  mixtures  of  these.  The  slight  solvent  action  of 
thiocyanate  solutions  on  cellulose  acetate  preserves 
the  continuity  of  structure  of  the  newly-formed 
thread,  and  gives  it  increased  strength  and  elas- 
ticity, so  that  cellulose  acetate  solution  spun 
through  relatively  large  apertures  into,  e.g., 
ammonium  thiocyanate  solution  (115 — 120  g.  per  1.), 
can  be  stretched  into  threads  of  1 — 2  deniers. 

— D.  J.  N. 

Cellulose  compositions ;  Apparatus  for  treating 

with  solvent  vapours.  K.  C.  Underwood,  J.  E. 
Crane,  and  J.  M.  Kessler,  Assrs.  to  E.  I.  du  Pont 
de  Nemours  and  Co.  U.S.P.  1,412,762,  11.4.22. 
Appl.,  2.5.19. 

The  material,  e.g.,  nitrocellulose  composition,  in 
sheet  form,  is  fed  between  hot  rollers  into  a  chamber 
filled  with  vapour,  and  passes  between  perforated 
guide  plates  fitted  therein ;  the  solvent  vapour, 
which  is  not  carried  away  with  the  sheet,  is  le- 
covered. — D.  J.  N. 

Cellulose;  Method  and  machine  for  reducing  

to  fibres  and  for  transforming  the  same  into  the 
liquid  state  [for  the  manufacture  of  artificial 
threads'].  O.  Venter.  U.S.P.  1,412,763,  11.4.22. 
Appl.,  20.5.21. 

Cellulose  saturated  with  caustic  soda  is  passed 
through  a  cutting  and  mixing  machine,  pressed,  and 
passed  through  the  machine  again,  this  cycle  of 
operatious  being  repeated  until  the  cellulose  is  com- 
pletely disintegrated  and  uniformly  impregnated 
with  alkali.— D.  J.  N. 

Bristles;    Process    of    treating    .     N.    Singer, 

Assr.  to  E.  I.  du  Pont  de  Nemours  and  Co. 
U.S.P.  1,412,755,  11.4.22.     Appl.,  4.9.18. 

TrfE  bristles  are  treated  first  with  an  oxidising  agent 
containing  hydrogen  peroxide,  and  then  with  a 
reducing  agent  comprising  a  "  hydrosulphite  acid." 

— D.  J.  N. 

Paper  pulp;  Process  of  making  ■  from  wood. 

F  K.  Fish,  jun.>  Assr.  to  Wood  Products  and  By- 
products Corp.  U.S.P.  1,413,716,  25.4.22.  Appl., 
8.2.19.  Renewed  13.9.21. 
AVood  is  heated  under  pressure  first  with  water  to 
remove  water-soluble  constituents,  then  with  a  solu- 
tion capable  of  dissolving  resinous  and  like  con- 
stituents, and  is  finally  washed  with  water  under 
pressure. — D.  J.  N. 

Paper;  Process   for  stiffening   hats  or  .      F. 

Pollak.  E.P.  157,416,  10.1.21.  Conv.,  6.11.19. 
Aqueous  solutions  of  the  condensation  products 
obtained  by  the  action  of  formaldehyde  on  urea  or 
its  derivatives,  including  thiourea,  with  or  without 
addition  of  borax,  are  used  as  stiffening  agents  for 
hats  or  paper;  e.g.,  the  material  is  impregnated 
with  a  5 — 10%  solution  of  the  condensation  product, 
and,  after  exposure  for  J  hr.  to  dry  steam  to  remove 
excess  of  water  and  formaldehyde,  is  ironed.  Photo- 
graphs may  be  stiffened  and  given  a  waterproof 
coating  by  moistening  them  with  an  8%  solution  of 
the  condensation  product,  and  then  passing  them 
between  hot  rollers.  These  solutions  give  trans- 
parent colourless  coatings,  but  colouring  agents  may 
be  added  if  desired. — D.  J.  N. 


460  a 


Cl.    VI.— BLEACHING ;     DYEING  ;     PRINTING ;     FINISHING. 


[June  30, 1922. 


Paper,   cardboard,   and  like  materials;   Treatment 

[impregnation]    of   .     Exportingenieure    fur 

Papier     und     ZellstofFtechnik     G.in.b.H.       E.P. 
169,676,  5.1.21.     Conv.,  28.9.20. 

Materials  such  as  paper  or  cardboard,  which  it  is 
desired  to  impregnate  with  animal  size,  casein, 
varnishes,  cellulose  solutions,  asphalt,  and  the  like, 
are  left  in  the  impregnating  bath,  maintained  at 
about  40°  C,  until  they  are  completely  saturated; 
if  in  the  form  of  a  continuous  web,  the  material, 
supported  by,  e.g.,  felts,  is  reeled  up  in  the  bath. 
The  impregnated  material,  after  removal  of  the 
surplus  impregnating  solution,  is  sprayed,  painted, 
or  otherwise  treated  with  hardening  agents,  e.g., 
formalin,  and  is  then  stacked,  reeled,  or  piled,  so 
that  the  hardening  agent  permeates  and  hardens 
the  whole  of  the  impregnating  material.  The  re- 
sulting product  is  impervious  to  water  and  grease, 
and  resembles  in  its  mechanical  properties  leather 
and  gutta-percha. — D.  J.  N. 

Drying  or  otherwise  treating  sheet  material  [e.g., 

■paper'];  Method  of  and  apparatus  for  .     0. 

Minton.     E.P.  176,614,  1.2.21. 

The  vacuum  drying  chamber  described  in  E.P. 
165,521  (J.,  1921,  578  a)  is  fitted  with  sealing  devices 
of  such  a  type  that  small  quantities,  if  any,  of  the 
sealing  medium  pass  into  the  vacuum  chamber, 
whereby  the  efficiency  of  the  chamber  is  increased, 
and  the  use  of  large  quantities  of  sealing  fluid 
obviated.  In  one  type  of  seal  the  wet  sheet,  pro- 
tected with  waterproof  felts  if  water  is  used  as  the 
sealing  fluid  (c/.  infra),  passes  into  the  vacuum 
chamber  through  a  narrow  passage,  through  which 
the  sealing  fluid  is  forced  under  such  pressure  as 
will  give  it  a  velocity  capable  of  balancing  the 
pressure  of  the  atmosphere.  The  sealing  fluid  may 
he  mercury,  an  amalgam,  water,  or  other  liquid 
having  no  deleterious  effect  on  the  sheet  to  be  dried  ; 
or  it  may  consist  of  a  gaseous  fluid  such  as  air  or 
steam ;  in  the  latter  case  the  waste  steam  may  be 
used  to  heat  the  drying  cylinders.  In  a  second  type 
of  seal  the  sheet  enters  the  vacuum  chamber  through 
a  constricted  opening  which  is  protected  by  the  seal- 
ing fluid,  e.g.,  mercury.  A  certain  amount  of 
mercury  passes  continuously  through  the  seal  into 
the  vacuum  chamber,  and  is  withdrawn  therefrom 
through  a  barometric  seal  from  which  it  is  returned 
by  a  pump  to  the  vacuum  seal. — D.  J.  N. 

Desiccators  [for  paper,  cloth,  etc.].    F.  M.  Vaccaro. 
E.P.  177,307,  19.1.21. 

An  electrically  heated  drying  chamber,  especially 
suitable  for  drying  materials  in  sheet  form,  is 
divided  into  a  lower  and  an  upper  compartment  by 
a  partition,  which  leaves  communicating  passages 
at  each  end  to  permit  free  circulation  of  air  from 
one  compartment  into  the  other.  The  lower  com- 
partment, through  which  the  wet  sheet  travels,  is 
provided  at  the  bottom  with  a  number  of  heating 
elements,  mounted  on  a  heat-reflecting  plate,  and 
so  arranged  that  the  distribution  of  heat  on  to  the 
sheet  can  be  varied  at  will:  the  heating  elements 
are  designed  to  be  used  with  any  type  of  current. 
The  upper  compartment  contains  moisture-absorb- 
ent materials.  Continuous  circulation  of  air  is 
effected  by  raising  that  end  of  the  drying  chamber 
at  which  the  wet  sheet  enters ;  this  causes  the  warm 
air  in  the  lower  compartment  to  flow  in  the  opposite 
direction  to  that  followed  by  the  6heet,  and  then  to 
pass  into  the  upper  compartment,  where  it  is  dried, 
during  which  operation  it  becomes  sufficiently  cooled 
to  flow  through  the  upper  compartment  back  into 
the  lower  one,  thus  making  a  complete  circuit 
through  the  apparatus.  That  part  of  the  air  most 
heavily  charged  with  moisture  remains  close  to  the 
surface  of  the  travelling  sheet  and  passes  with  it 
out  of  the  drying  chamber.     Desiccation   may  be 


immediately  arrested,  if  so  desired,  by  opening  a 
number  of  doors  fitted  in  the  sides  of  the  chamber. 

— D.  J.  N. 

Paper,  fibre-board,  and  similar  materials;  Process 

of     making     .       J.     C.     Peabody.       U.S. P. 

1,376,353,  26.4.21.    Appl.,  23.10.18. 

A  stock  is  prepared  by  adding  alkaline  cellulose 
thiocarbonate,  glue,  casein,  viscose,  or  other  col- 
loidal or  cementitious  substance  to  a  mass  of  fibres 
mixed  with  water,  and  this  stock  is  diluted  with 
water  to  which  has  been  added  such  a  quantity  of 
the  colloidal  substance  that  the  concentration  of  the 
latter  is  maintained  practically  constant.  Sheets 
of  paper  or  board  are  then  formed  from  the  diluted 
pulp  in  the  usual  manner,  e.g.,  on  a  Fourdrinier 
machine. 

Fibres;  Method  of  obtaining  single from  bast- 
fibre  bundles,  in  a  condition  for  spinning. 
J.  O.  W.  Gierisch,  P.  M.  Krais,  and  H.  P. 
Waentig.     E.P.  157,840,  10.1.21.     Conv.,  4.4.19. 

See  G.P.  328,034  of  1919;  J.,  1921,  466  a. 

Paper;  Method  of  and  apparatus  for  making  . 

B.  F.  Sturtevaut  Co.,  Assees.  of  J.  O.  Ross.  E.P. 
156,481,  5.1.21.     Conv.,  11.12.13. 

See  U.S. P.  1,290,360  of  1919;  J.,  1919,  170  a. 

Bleaching  paper.    U.S.P.  1,413,154.    See  VI. 

Resin  soap.    U.S.P.  1,415,363.    See  XIII. 

Alginate  compositions  etc.  U.S.P.  1,415,849 — 50. 
See  XIII. 

Tanning  material.    U.S.P.  1,414,312.    See  XV. 


VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Substantive  dyestuffs;  Dyeing  and  physical  proper- 
ties of .    R.  Haller  and  H.  Russina.    Kolloid- 

Zeits.,  1922,  30,  249—253. 

The  relationships  between  the  disperse  states  of 
substantive  dyestuffs  when  in  solution  and  their 
dyeing  properties  have  been  investigated.  When 
bleached  cotton  was  dyed  under  comparative  condi- 
tions in  solutions  containing  Congorubin,  Congo 
Corinth  G  or  Diamine  Blue  3R,  with  and  without 
the  addition  of  salt,  the  amounts  of  unabsorbed  dye- 
stuff  remaining  in  the  dye  liquors  were  69'2%  and 
49-7%,  63-2%  and  33"2%,  60'5%  and  49"0%  respect- 
ively. After  dialysis  in  an  ordinary  diffusion  shell 
immersed  for  3  days  in  distilled  water  which  was 
frequently  renewed,  similar  dye  solutions  (no  salt 
present)  retained  83'0%,  67-5%,  and  81;5%  of  their 
original  dye  content  respectively,  and  in  each  case 
a  sediment  was  formed  within  the  shell.  After 
filtration  of  similar  dye  solutions  through  a  collodion 
ultra-filter,  the  filtrates  contained  54'5%,  36'5%, 
and  71'8%  respectively  of  their  original  dye  content. 
The  samples  of  Congorubin,  Congo  Corinth  G,  and 
Diamine  Blue  3R  used,  contained  as  the  chief 
impurity  34%,  23%,  and  22%  of  salt  respectively. 
In  all  cases  the  estimations  of  the  dyestuffs  wero 
made  with  titanous  chloride  solution.  Attention  is 
drawn  to  the  fact  that  although  Congorubin  and 
Congo  Corinth  G  are  closely  related  in  composition, 
the  latter  when  in  solution  exists  in  a  much  lower 
state  of  dispersion.  The  degree  of  dispersion  of  a 
dyestuff  when  in  solution  is  probably  dependent  on 
atomic  groupings  within  its  molecule.  From  the 
results  of  dialysis  it  is  concluded  that  salt  plays  the- 
part  of  an  emukifving  and  protective  colloid 
towards    dyestuffs.      In    their    behaviour    during 


Vol.  XIX,  No.  12.]         Cl.  VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIC  ELEMENTS. 


461a 


dialysis,  ultra-filtration,  and  dyeing,  Congo  Corinth 
G  and  Diamine  Blue  3R  are  very  similar. — A.  J.  H. 

Artificial  silk;   Behaviour  of  in  dyeing.     K. 

Biltz.     Text.  Forsch.,  1921,  3,  157—165.     Chem. 
Zentr.,  1922,  93,  II.,  99. 

Treatment  with  sodium  sulphide  causes  a  smaller 
loss  in  weight  with  cuprammonium  silk  than  with 
viscose,  and  the  gain  in  weight  of  the  dyed  cupr- 
ammonium silk  is  greater.  The  tenacity  of  both 
kinds  of  silk  is  increased  after  dyeing,  especially 
from  a  standing  bath.  In  the  case  of  staple  fibre 
yarn  from  viscose  silk  there  is  practically  no  change 
in  tenacity  after  dyeing  but  the  elongation  is  nearly 
doubled.  'With  cuprammonium  staple  fibre  yarn 
there  is  a  distinct  increase  in  tenacity  after  dyeing ; 
here  also  the  elongation  is  nearly  doubled.  Alkaline 
treatment,  for  instance  with  sodium  carbonate, 
increases  the  tenacity  of  the  artificial  silks,  up  to 
about  17%,  and  practicallv  doubles  the  elongation. 

J.  F.  B. 


Coloured  reserves  under  Aniline  Black  (Prud 
'hotntne  style)  by  means  of  tungsten  lakes.  C. 
Sunder.  Bull.  Soe.  Ind.  Mulhouse,  1922,  88, 
78—79. 

Sodium  tungstate  is  an  excellent  substitute  for 
tannic  acid  in  the  preparation  of  reserve  pastes  con- 
taining basic  dyestuffs  for  use  under  Aniline  Black. 
Tungsten  lakes  are  less  affected  by  alkalis  than  the- 
corresponding  tannin  lakes  and  in  the  production  of 
lakes  having  the  same  intensity,  the  amount  of 
sodium  tungstate  required  is  considerably  less  than 
that  of  tannic  acid.  A  satisfactory  yellow  lake  is 
prepared  by  adding  1500  pts.  of  a  20%  solution  of 
sodium  tungstate  to  a  solution  containing  100  pts. 
of  Auramine,  300  pts.  of  50%  acetic  acid,  and  17,000 
pts.  of  water  at  40°  C,  and  then  concentrating  the 
resulting  paste  to  300  pts.  by  filtration  and  drain- 
ing. A  violet  lake  is  prepared  by  adding  a  cold 
22%  solution  of  sodium  tungstate  to  a  solution  con- 
taining 100  pts.  of  Crystal  Violet  5BO,  1000  pts.  of 
water,  and  100  pts.  of  50%  acetic  acid,  and  then 
adding  200  pts.  of  50%  acetic  acid  to  the  resulting 
paste  and  concentrating  it  to  800  pts.  These  tungs- 
ten lakes  can  be  very  satisfactorily  discharged  by 
means  of  hydrosulphites. — A.  J.  H. 

Patents. 

Textile  fabrics;  Process  and  apparatus  for  treat- 
ment of to  remove  grease,  wax,  and  the  like. 

preparatory  to  the  bleaching,  scouring,  or 
finishing  operations.  D.  McKellar.  E.P.  178,206, 
13.1.21. 

The  process  is  conducted  in  a  large  chamber  divided 
by  a  partition  into  a  degreasing  chamber  provided 
at  the  bottom  with  a  number  of  baths  containing 
the  heated  solvent,  e.g.,  benzene,  and  a  drying 
chamber.  The  fabric,  preferably  extended  to  its  full 
width,  is  passed  through  the  degreasing  chamber  in 
6uch  a  way  that  it  is  alternately  exposed  to  the 
action  of  liquid  solvent  and  the  solvent  vapour,  and 
is  then  passed  between  heavy  press  rolls  into  the 
drying  chamber,  where  the  remainder  of  the  solvent 
not  removed  by  the  press  rolls  is  volatilised  by  blow- 
ing live  steam  from  a  number  of  jets  through  the 
fabric.  The  solvent  expelled  by  the  live  steam  is 
recovered. — D.  J.  N. 


Paper  and  fabrics;  Process  for  bleaching .   J.  C. 

Baker,  Assr.  to  Wallace  and  Tiernan  Co.    U.S. P. 

1,413,154,  18.4.22.    Appl.,  18.7.21. 
Fabiucs  and  paper  pulp  are  bleached  by  a  solution 
of  a  base  containing  an  excess  of  chlorine  above  that 
required  to  neutralise  tbi  base. — D.  J.  N. 


Dyeing   material;   Apparatus   for  and   method   of 

.     L.    K.   Biach.     U.S.P.   1,415,513,   9.5.22. 

Appl.,  13.7.20. 

Material  to  be  dyed   is   "  superdried  "   and   then 
subjected  to  the  action  of  the  dye  solution. 

— C.  A.  K. 

Dyeing  and  rvaterproofing ;  Process  for .    A.  O. 

Tate.     E.P.  179,247,  26.1.21. 

See  U.S.P.  1,374,122  of  1921;  J.,  1921,  345  a. 

Dyeing,    scouring    and    washing    wool    and    other 
fibrous  materials;  [Lifting  gear  of]  machines  for 

.   J.  and  R.  Whitaker.    E.P.  178,940,  26.1.21. 

Addn.  to  101,060. 


VH.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphuric  acid;  Packed  cell  process  for .    E.  L. 

Larison.  Chem.  and  Met.  Eng.,  1922,  26,  830— 
837. 

The  packed  cell  plant  consists  essentially  of  a  source 
ot  sulphur  dioxide,  a  Glover  tower,  packed  cells  con- 
sisting of  columns  of  acid-resisting  brick  encased  in 
lead  or  masonry,  in  place  of  the  usual  chambers, 
Gay-Lussac  towers,  acid  coolers,  pumps,  and  fans. 
The  brick  packing  of  the  cells  is  laid  so  that  no 
unreasonable  resistance  is  offered  to  the  passage  of 
the  gases,  but  so  as  to  provide  for  vigorous  mixing 
and  a  large  amount  of  wet  surface  for  cooling  and 
condensation.  The  advantage  derived  is  that  only 
about  1  cub.  ft.  of  gross  packed  volume  per  lb.  of 
sulphur  per  24  hrs.  is  required,  and  hence  the  initial 
cost  of  plant  for  a  given  tonnage  is  only  50 — 60% 
of  that  of  a  chamber  plant.  The  cost  of  operation 
is  no  more,  the  ground  space  required  is  only 
30 — 40%  of  that  required  for  a  chamber  plant,  the 
process  can  be  established  much  more  rapidly,  and 
the  maintenance  cost  is  probably  lower.  A  full  de- 
scription is  given  of  a  25-ton  plant  in  operation  at 
Anaconda,  Mont.,  U.S.A.— G.  F.  M. 

Nitric  acid;  Distillation   of  aqueous  and  of 

mixtures  of  nitric  acid  and  sulphuric  acid.  E. 
Berl  and  O.  Samtleben.  Z.  angew.  Chem.,  1922, 
35,  201—202,  206—211. 

In  connexion  with  the  technical  concentration  of 
synthetic  nitric  acid,  which  as  obtained  by  the 
oxidation  of  atmospheric  nitrogen  is  usually  about 
35%  strength,  or  by  oxidation  of  ammonia  about 
55%,  the  boiling  points  and  composition  of  the  dis- 
tillates for  a  large  number  of  mixtures  of  nitric 
acid  and  water,  and  of  nitric  acid,  sulphuric 
acid,  and  water  have  been  determined,  and 
the  results  are  fully  recorded  in  numerous  curves 
and  tables.  With  the  mixtures  of  nitric  acid 
and  water,  fractionation  being  excluded,  the 
boiling  point  gradually  rises  to  a  maximum  at  121° 
C,  when  the  distillate  and  residue  have  the  same 
composition,  viz.,  68%  HNOv  The  boiling  point 
then  decreases  with  increasing  nitric  acid  content 
of  the  distillate  to  83°  C,  the  b.p.  of  absolute  HN03. 
With  a  fractionating  column,  the  more  nearly  it 
approaches  to  the  ideal,  the  more  closely  does  the 
distillate  approximate  to  pure  water  with  mixtures 
containing  less  than  63%  HN03)  and  to  pure  nitric 
acid  with  mixtures  containing  more  than  68  / 
HNOj.  Technically  this  fractionation  is  employed 
for  a  preliminary  concentration  of  the  aqueous 
acid  to  about  68%  strength,  and  it  is  then 
further  concentrated  by  distillation  with  96% 
sulphuric  acid,  of  which  147  pts.  is  theo- 
retically requisite  to  produce  100  pts.  of  nitric 
acid  m'onohydrate  (92"5%  acid)  from  65%  dilute 
acid.     With  the  addition  of  sulphuric  acid  to  the 


462  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIO  ELEMENTS. 


[June  30, 1922. 


65%  nitric  acid  the  distillation  curves  take  an 
altogether  different  form,  and  hecome  almost 
straight  lines  until  they  hend  sharply  at  the  end 
when  nearly  all  the  nitric  acid  has  passed  over  and 
the  temperature  has  risen  so  high  that  water  com- 
mences to  distil  off  from  the  residual  sulphuric  acid. 
Either  retort  or  column  distillation  is  employed  for 
this  operation  in  technical  practice.  The  advan- 
tages of  column  distillation  are  that  the  nitric  acid 
ia  exposed  for  a  much  shorter  time  to  the  high 
temperature  and  decomposition  is  correspondingly 
less,  that  the  process  is  continuous,  and  that  a 
strong  nitric  acid  of  constant  composition  distils 
over,  and  not  an  increasingly  weaker  acid  as  in  the 
retort  process. — G.  F.  M. 

Nitrogen;   Action  of  on  mixtures  of   barium 

oxide  and  carbon  at  high  temperatures.  P. 
Askenasy  and  F.  Grude.  Z.  Elektrochem.,  1922, 
28,  130—151. 

The  influence  of  temperature,  time  of  heating,  and 
kind  of  carbon  used  on  the  fixation  of  nitrogen  by 
mixtures  of  barium  oxide  and  carbon,  was  studied 
by  passing  a  current  of  purified  nitrogen  over 
pressed  tablets  of  a  mixture  of  carbon  and  barium 
carbonate  heated  in  a  carbon  resistance  furnace, 
and  analysing  the  products.  The  most  favourable 
results,  using  Acheson  graphite,  are  obtained  by 
heating  at  1600°  C.  for  15 — 30  mins.,  the  maximum 
yield  obtained,  calculated  as  per  cent,  of  barium 
present  as  nitrogen  compounds,  being  95'3%.  At 
1100°— 1300°  C,  after  15—30  mins.,  the  product 
contains  considerable  amounts  of  barium  carbide. 
"With  increasing  temperature  and  fixed  time 
of  heating,  formation  of  cyanide  proceeds  at 
first  more  rapidly  than  that  of  cyanamide,  but  at 
higher  temperatures  cyanamide  is  formed  at  an 
increasing  rate,  and  between  1500°  and  1600°  C. 
the  cyanide  may  decrease  whlist  cyanamide  in- 
creases. The  proportion  of  cyanide  to  cyanamide 
in  the  richest  products  is  about  2:1,  and  the  highest 
percentage  of  nitrogen  in  the  product  is  5'3 — 5'5. 
At  higher  temperatures  than  1600°  C.  or  with 
longer  heating,  the  yields  diminish  through  loss  of 
the  product  as  dust  or  through  volatilisation.  Using 
wood  charcoal,  freed  from  potassium  salts,  very 
similar  results  are  obtained,  though  the  charcoal  is 
not  quite  as  reactive  as  graphite.  On  account  of 
the  volatile  constituents  in  the  charcoal,  the  total 
nitrogen  in  the  product  is  greater  than  with 
graphite  and  reaches  a  maximum  of  about  10%. 
Coke  (14-85%  of  ash,  mainly  silica)  gives  much 
lower  yields  than  graphite  or  charcoal,  and  between 
1400°  and  1600°  C.  the  proportion  of  cyanamide 
diminishes  instead  of  increasing,  possibly  on 
account  of  the  formation  of  barium  silicate.  The 
yields  are  much  higher  when  pressed  tablets  of  the 
starting  materials  are  used  than  with  a  loose 
powder,  on  account  of  the  better  contact  secured. 
The  quantity  of  carbon  used  (half  the  weight  of  the 
barium  carbonate)  is  twice  the  proportion  needed 
by  the  equation  BaCOa+40+N.  =  Ba(CN)2+3CO. 
With  less  carbon  mechanical  difficulties  are  en- 
countered and  the  yields  are  low.  The  permissible 
amount  of  carbon  monoxide  in  the  nitrogen 
increases  rapidly  between  1100°  and  1600°  C.  and 
at  the  latter  temperature  nitrogen  compounds  just 
start  to  form  with  93%  CO  in  the  gas.— E.  H.  R. 

Magnesium   cyanide.     F.    Fichter   and    R.    Suter. 
Helv.  Chim.  Acta,  1922,  5,  396—400. 

Solutions  of  magnesium  cyanide,  best  prepared  by 
dissolving  the  metal  in  10 — 15%  aqueous  hydrocyanic 
acid,  gradually  deposit  the  hydroxide,  even  when 
preserved  in  an  atmosphere  of  hydrogen  cyanide. 
The  cyanide  cannot  be  obtained  in  the  crystalline 
condition  by  concentration  of  its  solution.  The 
preparation  of  the  anhydrous  cyanide  by  heating 
magnesium  ferrocyanide  is  unsatisfactory,  not  only 


on  account  of  the  presence  of  iron  carbide  and 
carbon  in  the  product,  but  also  owing  to  simultane- 
ous formation  of  magnesium  nitride.  The  reaction 
leading  to  formation  of  nitride  occurs  to  an  extent 
which  rapidly  increases  with  rise  in  temperature 
above  400°,  and  at  800°  C.  is  the  solo  reaction.  The 
most  favourable  yields  of  cyanide  (4"6 — 5'7%)  were 
obtained  at  450° C.     (Cf.  J.C.S.,  June.)— J.  K. 

Sea  water;  Variations  in  the  chemical  composition 

of and  the  evaluation  of  the  saline  content. 

G.  Bertrand,  Freundler,  and  Menager.    Comptee 
rend.,  1922,  174,  1251—1253. 

The  total  halogen,  calcium,  and  magnesium  con- 
tent of  sea  water  from  the  Altantic  and  the  Medi- 
terranean Sea  have  been  determined  and  the  results 
show  a  difference  in  the  ratios  of  halogen  to  calcium 
and  magnesium  respectively  in  the  water  from  the 
two  sources.  Thus  the  method  of  evaluating  the 
saline  content  of  sea  water  from  the  density  or  the 
halogen  content  by  means  of  Knudsen's  tables  can 
only  be  considered  as,  at  the  best,  an  approxima- 
tion.—W.  G. 

Radium  content  of  carrwtite  ores  and  other  products 
of  low  activity;  New  method  of  determining  the 

.     V.  F.  Hess.     Trans.  Amer.  Electrochem. 

Soc.,  1922,  263—277.    [Advance  copy.] 

When  radioactive  material  is  placed  in  the  space 
between  two  concentric  spheres  the  gamma-ray 
effect  in  the  centre  of  the  inner  sphere  is  a  measure 
of  the  radium  content  of  the  ore.  Owing  to  the 
difficulty  of  making  spherical  apparatus  the  instrUr 
ment  used  consisted  of  two  cubical  wooden  boxes 
one  inside  the  other.  Into  the  inner  box  a  string 
electrometer  is  placed  while  the  space  between  the 
two  is  filled  with  the  powdered  sample  except  on 
one  6ide  where  a  door  is  provided  for  putting  in  or 
removing  the  electrometer.  The  ionisation  observed 
for  a  given  amount  of  ore  is  reduced  to  N.T.P.  and 
multiplied  by  certain  constants  depending  on  the 
instrument  to  obtain  the  amount  of  radium  in  the 
ore.  Tie  method  is  sensitive  to  10"10  g.  of  radium 
per  gram  of  ore.  The  theory  of  the  instrument  is 
discussed  and  formulae  are  given  for  correcting 
certain  errors  and  for  calculating  the  results. 

—A.  R.  P. 

Potassium  ferrocyanide.     Kolthoff.     See  XXIII. 

Patents. 
Sulphuric  acid  manufacture.  G.  F.  Hurt,  Assr.  to 
J.  Hurt.  U.S.P.  1,415,353,9.5.22.  Appl.,  9.5.1*. 
A  method  for  the  manufacture  of  sulphuric  acid 
comprises  passing  gases  from  the  Glover  toner 
through  a  chamber,  and  thence  back  into  an  inter- 
mediate part  of  the  tower  for  re-circulation. 

— L.  A.  C. 

[Waste-]  acid;  Method  of  and  apparatus  for  concen- 

truting    .       I.    Hechenbleikner    and    T.    C. 

Oliver,     Assrs.     to     Chemical    Construction    Co. 
U.S.P.  1,415,443,  9.5.22.    Appl.,  16.9.20. 
A  process  and  apparatus  for  the  concentration  and 
purification  of  sludge  acid  by  subjection  to  increas- 
ing degrees  of  heat  in  stages. — C.  I. 

Arsenic  acid;  Manufacture  of  .     C.   Ellis  and 

V.  T.  Stewart.  U.S.P.  1,415,323,  9.5.22.  Appl., 
21.5.21. 
A  MIXTUHE  of  white  arsenic  and  a  slightly  lesser 
amount  of  water  is  treated  with  chlorine  gas  until 
the  white  arsenic  is  first  dissolved  and  then  com- 
pletely oxidised  to  arsenic  acid. — H.  S.  H. 

Ammonia;  Recovery  of  nitrogen  in  theJ°Xm°Jnr7Z 
from  peat  or  the  like.  P.  Brat.  E.P.  159,193, 
17.2.21.     Conv.  18.2.20. 

In  the  processes  described  in  E.P.  157,745—6  and 


Vol.  XLI.,  No.  12.]       Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


463  A 


159,194  (ef.  J.,  1922,  371  a,  414  a)  for  the  recovery 
of  ammonia  and  hydrocarbons  from  undried  peat 
by  heating  under  pressure  with  an  alkali,  the  alkali, 
e.g.,  lime,  is  converted  into  water-soluble  salts  of 
organic  acids.  These  acids  differ  from  the  humic 
acid  of  peat  in  that  their  salts,  except  the  lead  and 
mercury  salts,  are  soluble  in  water  and  may  be 
recovered  from  the  residual  mixture  by  pressure  or 
by  osmotic  or  electro-osmotic  methods.  They  may 
be  used  as  disinfectants. — O.  I. 

Suits;  Recovery  of from  their  solutions.    T.  G. 

Tulloch.     E.P.  178,263,  22.2.21. 

To  effect  a  differential  precipitation  from  a  solution 
1  containing  a  mixture  of  salts,  a  thin  layer  of  the 
solution  is  caused  to  flow  at  a  predetermined  rate 
down  a  slightly  inclined  surface  broken  by  trans- 
verse baffles,  and  is  simultaneously  subjected  to 
evaporation,  so  that  the  deposited  salts  collect 
behind  the  baffles  in  the  order  of  their  solubilities. 
Two  or  more  evaporating  surfaces  may  be  carried 
by  a  structure  adapted  to  be  turned  to  bring  any 
one  surface  into  operative  position.  Covers  for 
,  collecting  and  condensing  the  water  vapour  may  be 
provided  and  such  covers  may  be  transparent  for 
penetration  by  the  sun's  rays  to  assist  the  evapora- 
tion.—H.  H. 

Potash;   Process  for  recovering .     Process   of 

extracting  potash  from  saline  deposits  and  bnnrs. 
E.  P.  Stevenson,  Assr.  to  General  Bond  and 
Share  Co.  U.S. P.  (a)  1,415,203  and  (b)  1,415,204, 
9.5.22.     Appl.,  7.8.19. 

(a)  The  brine  (Searles  Lake  brine)  is  chilled 
sufficiently  to  precipitate  a  substantial  part  of  the 
salts,  with  the  exception  of  the  chlorides  of  sodium 
and  potassium,  and  then  the  potassium  chloride  is 
separated  from  the  sodium  chloride.  (b)  After 
chilling,  and  separating  the  deposited  salts  as  in 
(a)  the  remaining  brine  is  evaporated  to  dryness, 
and  the  dried  salts  are  mixed  with  a  precipitant  for 
waste  constituents,  and  potash  extracted  from  the 
mixture. — H.  It.  D. 

Borax;  Process  of  extracting  from  saline  de- 
posits and  brines.  E.  P.  Stevenson,  Assr.  to 
General  Bond  and  Share  Co.  U.S.P.  1,415,205, 
9.5.22.     Appl.,  7.8.19. 

The  temperature  of  the  brine  is  reduced  to  a  point 
sufficiently  below  0°  C.  to  cause  crystallisation  of 
I  a  substantial  percentage  of  the  borax  together  with 
other  salts.  The  crystallised  salts  are  separated 
from  the  remaining  brine,  and  treated  to  separate 
the  borax.— H.  R.  D. 

:  Alkaline  brines  and  deposits;  Process  of  recovering 
valuable  constituents  from  .  E.  P.  Steven- 
son, Assr.  to  General  Bond  and  Share  Co.  U.S.P. 
1,415,206,  9.5.22.     Appl.,  8.10.19. 

The  sodium  carbonate  present  in  the  brine  is  con- 
verted into  bicarbonate  by  treatment  with  carbon 
dioxide  and  the  precipitated  bicarbonate  is  filtered 
off  and  treated  to  produce  sodium  carbonate  and 
carbon  dioxide.  To  the  filtrate  is  added  a  material 
to  react  with  the  constituents  contained  in  the 
solution  to  form  a  substance  from  which  a  supply  of 
carbon  dioxide  can  be  obtained  for  use  in  treating 
a  fresh  quantity  of  brine. — H.  R.  D. 

Brine;  Process  for  evaporating  .     E.   Wirth- 

Frey.     G.P.  345,257,  29.9.18. 

Brine  is  evaporated  to  saturation  point  in  a 
heated  chamber,  and  then  passes  into  an  unheated 
chamber  in  which  evaporation  proceeds  under  re- 
duced pressure.  The  salt  which  crystallises  out  in 
the  second  chamber  is  separated,  and  the  mother 
liquor  is  returned  to  the  first  chamber.     The  com- 


bined vapour  from  both  chambers  is  compressed, 
and  then  employed  for  heating  the  first  chamber. 

— L.  A.  C. 

Silicon   and   nitrogen;   Method  for   production   of 

compounds  containing .     F.  von  Bichowsky. 

U.S.P.  1,415,280,  9.5.22.     Appl.,  23.2.21. 
Silica  is  heated  with  a  reactive  mass  consisting  of 
a  metallic  oxide  and  a  metal  of  the  iron  group  with 
an  alkali  metal  salt,  in  the  presence  of  methane  and 
nitrogen. — C.  I. 

Aluminium  sulphate  etc.;  Decomposition  of  

H.  M.  Burkey  and  H.  M.  Schleicher,  Assrs.  to 
American  Metal  Co  Ltd.  U.S.P.  1,415,308, 
9.5.22.     Appl.,  16.2.20.  ' 

A  solution  of  aluminium  sulphate  is  heated  to  a 
nigh  temperature  and  pressure. — H.  R.  D. 

Aluminium  nitride  and  other  substances;  Apparatus 

for  making .   W.  Hoopes,  Assr.  to  Aluminium 

19  9°19      enCa"  1.415,446,  9.5.22.    Appl., 

A  reaction  chamber  is  constructed  with  a  grate  at 
the  bottom  and  is  fed  with  gas  by  pipes  passing 
through  the  lateral  walls  into  the  space  beneath  the 
grate.  The  chamber  is  lined  at  the  sides,  top,  and 
bottom  with  coke,  in  the  top  and  bottom  layers  of 
which  electrodes  are  embedded. — C.  I. 

Manganese  dioxide  and  nitric  acid;  Process  of 
obtaining .  C.  J.  Reed,  Assr.  to  J.  G.  Berry- 
hill.  U.S.P.  1,415,395,  9.5.22.  Appl.,  27.7.21. 
Manganese  sulphate  containing  water  is  heated 
with  a  metallic  nitrate.  Nitric  acid  is  volatilised 
and  manganese  dioxide  is  contained  in  the  residue 

— C.  I. 

Hydrogen;   Manufacture    of   by   the   partial 

liquefaction  of  gas  mixtures  containing  the  same. 
L'Air  Liquide,  Soc.  Anon,  pour  l'Etude  et  1'Ex- 
ploit.  des  Proc.  G.  Claude.  E.P.  174,327,  15.12.21. 
Conv.,  21.1.21. 

If  coke-oven  gas  is  freed  from  constituents  other 
than  hydrogen,  nitrogen,  carbon  monoxide,  and 
methane,  the  three  last-named  can  be  removed  by  a 
gradual  cooling  from  -160°  0.  to  -210°  C.  without 
freezing  occurring,  as  the  liquids  are  largely 
miscible  with  each  other.  Hydrogen  very  free  from 
carbon  monoxide  and  suitable  for  ammonia  syn- 
thesis is  thus  obtained.  Owing  to  the  considerable 
temperature  range  the  cooling  is  best  performed  in 
two  or  three  stages.  The  gas  passes  up  a  nest  of 
tubes,  being  partially  condensed.  The  condensed 
liquid  flows  down  a  series  of  trays  outside  the  tubes, 
thus  producing  an  even  temperature  gradient  in 
the  tubes  and  rectifying  the  liquid.  The  gaseous 
hydrogen  at  -210°  C.  and  under  pressure  liquefies 
another  portion  of  the  entering  gases  in  a  heat  ex- 
changer and  is  then  allowed  to  expand  while 
performing  external  work.  The  very  cold  expanded 
gases  then  circulate  around  the  upper  nest  of  tubes 
and  maintain  the  requisite  low  temperature  in 
them.  Water-gas  may  be  used  instead  of  coke-oven 
gas  if  diluted  with  nitrogen  or  gases  of  combustion. 

— C.  I. 

Nitrogen;    Process    for    fixing    atmospheric    . 

Nitrogen  Products  Co..  Assees.  of  C.  P.  Hidden. 
E.P.  156,479,  5.1.21.     Conv.,  5.7.19. 

See  U.S.P.  1,352,193  of  1920;  J.,  1920,  688  a. 

Hydrocyanic    acid;    Method    of    producing    . 

H.  G.  C.  Fairweather.     From  Air  Reduction  Co. 

E.P.  179,096,  6.7.21. 
See  U.S.P.  1,385,336  of  1921;  J.,  1921,  657  a. 


464  a 


Cl.  VIII.— GLASS;  CERAMICS. 


[.June  SO,  1922. 


Carbon;    Manufacture    of    pure    retort    .      I. 

Szarvasy.     E.P.  158,891,  7.2.21.     Conv.,  28.2.14. 

See  U.S.P.  1,199,220  of  1916;  J.,  1916,  1212. 

Potash    recovery   from    cement    mixtures.      U.S.P. 
1,415,572.     See  IX. 

Potash  recovery.     U.S.P.  1,414,353.     See  X. 

Double  salt  of  aluminium  and  potassium.     U.S.P. 
1,377,081.     See  XX. 


VIII.-GLASS;  CERAMICS. 

Annealing  of  glassicare ;  Apparatus  for  controlling 

■  and  annealing  without  pyrometers.    F.  Twy- 

man.     J.  Soc.  Glass  Tech.,  1922,  6,  45—68. 

A  rod  of  glass  of  the  same  composition  as  that  to 
be  annealed  is  put  under  a  strain  producing  de- 
formation and  is  placed  in  the  annealing  chamber 
alongside  the  other  articles.  In  two  forms  of  the 
apparatus  the  extent  of  the  failure  of  the  rod  to 
recover  its  usual  position  on  removal  is  used  to 
determine  the  extent  of  annealing,  and  in  two  other 
forms  an  additional  small  stress  is  applied  in  such 
a  direction  as  to  tend  to  increase  the  deformation  ; 
the  point  at  which,  strain  having  been  released,  the 
deformation  begins  to  increase  continuously,  is 
taken  as  the  annealing  point.  A  method  of  using 
one  form  for  determination  of  the  actual  annealing 
temperature  is  described.  An  appendix  gives  a 
summary  of  formula  governing  annealing,  e.g., 
variation  of  viscosity  with  temperature. — A.  C. 

Glasses;  Examination  and  extension  of  Zulkowski's 
theory  of  relation  between   the   composition   and 

durability  of .     W.  L.  Baillie.     J.  Soc.  Glass 

Tech.,  1922,  6,  OS— 101. 

Zulkowski  (J.,  1899,  760;  1900,  901^  connected 
the  number  of  molecules  of  simple  silicates 
present  in  a  glass  per  hundred  mols.  of 
double  silicates  with  the  durability  of  the  glass, 
arguing  that  the  simple  silicates  were  the  prime 
causes  of  instability.  This  theory  gave  good  results 
with  the  plain  potash-lead  and  soda-lime  glasses, 
but  samples  containing  appreciable  amounts  of  the 
B,03  oxides  were  not  considered.  The  author  has 
studied  twenty-seven  optical  glasses,  graded  as  un- 
affected, appreciably  affected,  or  seriously  affected 
by  a  filming  test,  by  Zulkowski's  method  and  shows 
that  it  fails  with  the  glasses  containing  R20.,  oxides. 
After  quoting  evidence  in  favour  of  the  combination 
between  Na„0,  Al„Oj,  and  SiO„  and  of  the  beneficial 
effect  of  A1202  and  B.O,  on  the"  durability,  the  R20, 
oxides  are  regarded  as  forming  silicates  of  the  type 
3iMO.RjO3.xSiO;,  and  the  remaining  constituents  as 
forming  simple  and  double  silicates  as  in  the 
original  theory.  These  complex  silicates  are  con- 
sidered to  be  not  inferior  to  the  double  silicates  in 
durability.  The  general  expression  for  the  molecular 
percentage  of  simple  silicates  or  "  reactivity  coeffi- 
cient ' '  is  developed  as  (o^—  d)(c +d  - 3b)  /  (c  +  d),  where 
a,  b,  c,  d,  denote  molar  percentages  of  SiO,,  R20,, 
MO,  and  R,0  respectively,  for  the  usual  conditions 
when  (c+d)>3b.  When  (c  +  d)<3b  complex  sili-. 
cates  with  higher  R202  content  arc  regarded  as 
being  formed,  and  as  being  very  stable,  though 
excessive  amounts  of  R20,  may  give  unfavourable 
results,  tending  to  devitrification  and  ready  attack 
by  alkali,  or  ready  hydration  in  the  case  of  B202. 
The  theory  can  bo  regarded  only  as  a  second 
approximation,  and  while  general  durability  can 
bo  predicted  from  the  composition  of  the  glass,  the 
behaviour  towards  any  particular  reagent  is  un- 
certain. Further  differences  may  be  expected 
among  different  R,0,  oxides  in  cquimolar  propor- 
tions.      Various    tables    of    results    are    given    in 


support  of  the  theory.  Sixty-five  glasses  were 
examined,  and  agreement  in  most  cases  was  good. 
Values  for  "  reactivity  coefficient  "  of  more  than 
10  show  an  altogether  unsuitable  glass,  of  more 
than  5,  unsuitable  for  chemical  ware,  while  the  value 
for  good  chemical  ware  is  less  than  3  and  generally 
below  2.  The  acidity  index  of  the  glass,  a/(c-fd), 
does  not  appear  to  be  connected  with  the  durability. 
Among  the  probable  causes  of  discrepancies  be- 
tween the  calculated  and  observed  results  are 
insufficient  "plaining"  of  the  glass  leading  to 
incomplete  formation  of  the  double  silicates  and  a 
corresponding  excess  of  simple  silicates,  defective 
manufacturing  processes  leading  to  cordiness  and 
inhomogeneity  generally,  and  reliance  on  a  limited 
number  of  tests  to  determine  durability,  and  differ- 
ent methods  of  preparing  test  pieces.  The  desir- 
ability of  a  varied  range  of  tests  for  durability  is 
stressed  and  the  author  in  arriving  at  his  results 
adopted  the  method  of  giving  points  to  the  glasses. 
Thus  a  number  was  allotted  to  each  glass  in  every 
test,  indicative  of  its  order  of  resistance  to  the 
agent  employed.  The  sum  of  these  numbers  for  a 
glass,  divided  by  the  number  of  tests,  gave  its 
average  number  of  "points"  and  these  were  the 
figures  used  in  comparisons,  as  being  the  fairest  and 
most  impersonal. — A.  C. 

Glass;  Critical  examination  of  methods   commonly 

used  in  determining  durability  of .    W.  E   S 

Turner.     J.  Soc.  Glass  Tech.,  1922,  6,  30—45. 

Four  methods  of  test  are  considered.  (1)  Surfaces 
of  glass  vessels.  It  is  not  easy  to  arrange  that  a 
given  volume  of  reagent  always  acts  on  a  definite 
area,  especially  when  the  reagents  are  boiling  or 
agitated.  (2)  The  use  of  plates  or  slabs  of  glass  has 
the  advantage  that  the  area  in  contact  with  the 
reagent  or  its  vapour  is  readily  controlled.  To 
obtain  good  results  the  surfaces  should  be  ground 
and  polished.  (3)  The  use  of  powdered  glass  permits 
results  to  be  obtained  quickly  by  reason  of  the 
increased  surface  exposed,  though  for  comparable 
results  it  was  necessary  to  adopt  a  fixed  grading  of 
grain  size  (e.g.,  20  to  30,  or  40  to  50  mesh  IMM), 
and  to  wash  off  any  fine  dust  with  alcohol  before 
the  determination.  (4)  The  autoclave  test  (Baillie 
and  Wilson,  J.,  1922,  45  t)  with  water  is  not  very 
satisfactory,  since  its  results  are  not  always  in 
harmony  with  those  given  by  water  at  ordinary 
pressures.  The  danger  of  trusting  to  loss  in  weight 
of  a  glass  as  a  measure  of  attack  is  shown  by 
examples  in  which  samples  actually  gained  weight 
owing  to  hydration.  The  determination  of  the 
alkali  extracted  is  stated  to  be  easily  possible  only 
when  water  is  the  corrosive  agent.  The  most  accu- 
rate method,  though  slowest,  is  the  determination  of 
the  total  matter  extracted.  The  need  for  a 
standardised  method  of  test  is  emphasised. — A.  C. 

Glasses;   Effect  of  magnesia   on    the  resistance  of 
glass  to  corroding  agents  and  a  comparison  of  the 

durability     of     lime     and    magnesia    .      ^ 

Dimbleby,   C.  M.   M.   Muirhead,   and   W.   E.   B. 
Turner.     J.  Soc.  Glass  Tech.,  1922,  6,  101—107. 

The    series    tested    ranged    from    2Na,0,6Si0,    to 
Na20,CaO,6Si02    and    2Na20,6Si02    to"  OilXa/O.l, 
MgO,6Si02,  replacement  of  R,0  by  MO  bring  made 
in  each  case  in  ten  successive  steps.    The  resistani  ■ 
to  boiling  water,  constant  boiling  hydrochloric 
"y  sodium  hydroxide,  and  2V  sodium  carbonate, tl  is 
determined.    The  magnesia  glasses  were  superior  1 
lime  glasses  over  the  whole  range  when  water  was  ii' 
corroding  agent,  but  were  distinctly  inferior  to  awe 
glasses  in  resistance  to  sodium  hydroxide  or  sodiun. 
carbonate.     Sodium  carbonate  was  more  corrosive 
to  the  magnesia  glasses  than  was  sodium  hydroxide. 
Lime  glasses  were  superior  to  magnesia  glasses  in 
resistance    to    hydrochloric    acid    above    the    value 
MgO  =  3'5  mols.  per  cent.,  but  below  this  the  substi- 


Vol.  XIX,  Xo.  12.] 


Cl.  IX.— building  materials. 


405  a 


tution  of  MgO  for  Na20  was  more  effective  in 
improving  resistance  than  the  use  of  an  equivalent 
amount  of  CaO. — A.  C 

Glass  ware;  Action  of  various  analytical  reagents  on 

chemical    .      W.    E.    S.    Turner    and    T.    E. 

Wilson.  J.  Soc.  Glass  Tech..  1922,  6,  17—2(1. 
Tests  were  made  on  three  good  types  of  chemical 
glassware  to  determine  resistance  to  solutions  of 
nitric  acid  (sp.  gr.  1"2),  2.V  ammonium  sulphide, 
and  .V  2  and  -V/4  sodium  phosphate.  With  the 
acid  and  sulphide  very  small  losses  were  suffered  by 
the  glasses,  but  both  strengths  of  the  phosphate 
had  a  distinct  though  small  corrosive  action.  The 
grading  of  the  glasses  to  the  alkali  phosphate  was 
the  same  as  to  2X  sodium  carbonate,  but  not  the 
same  as  to  -V    1U  sodium  hvdroxide  or  2.V  ammonia. 

—A.  C. 

Complex  systems  [glass  and  ceramic  icare~\;  Solu- 
bility and  decomposition  in  .     G.  W.  Morev. 

J.  Soc.  Glass  Tech.,  1922,  6.  20—30. 

The    author    discusses    first    the    three-component 

triangular  diagram  HA) — K20 — Cr,03. points  on  the 
sideof  the  triangle  representing  binary  mixtures  and 
points  inside  ternary  mixtures  (<•/.  Schreinemakers. 
Z.  physik.  C  hem.,  1906,  55,  71).  The  diagram  may 
be  used  to  differentiate  between  compounds  soluble 
in  water,  e.g.,  lv.Cr.0;  and  those  decomposed  by  it. 
cl.  K=Cr,O10.  A  similar  diagram  for  H,() — K20 — 
SiO,  at  various  temperatures  up  to  1000°  C.  was  then 
studied.  It  is  stated  that  the  first  action  of  water 
at  ordinary  or  moderate  temperatures  on  glass  or 
ceramic  ware  is  one  of  decomposition,  followed  by 
the  solution  of  more  or  less  of  certain  of  the  decom- 
I  position  products.  Tests  on  the  durability  of  such 
silicates  are  rarely  carried  to  completion  and  are 
thus  really  determinations  of  rates  of  decomposition 

1  under  more  or  less  definite  conditions.  The  effect 
'of  variation  of  conditions  is  dealt  with  and  the 
paramount  importance  of  rigidly  defining  these  is 
-how n.  —  A.  ( '. 

Kaolins,  clays,  bauxites,  etc.  Loss  on  burning  and 
porosity.  A.  Bigot.  Comptes  rend.,  1922,  174, 
1232—  1235. 
Curves  are  given  showing  the  loss  on  burning  at 
different  temperatures  of  specimens  of  bauxite  and 
kaolin  prepared  under  varying  conditions.  An- 
other set  of  curves  shows  the  porosity  of  these 
materials   after   being   fired    at   different   tempera- 

Itures.  Clay-,  bauxites,  and  kaolins  which  contain 
more  than  14 '  of  water  of  combination  lose  the 
excess  of  this  water  at  about  300°  C.  and  before 
600°  C.  is  reached.  Substances  which  are  plastic 
to  varying  extents,  e.g.,  kieselguhr.  harden  at 
about  400°  C,  before  the  normal  dehydration,  if 
they  have  been  previously  agglomerated.  They 
then  no  longer  break  up  in  either  hot  or  cold  water 
or  in  weak  acid  or  alkali. — W.  G. 

Kiln;    Adaptability    of   flic   gas-fired   compartment 

for  the    burning   of  clay   products.      W.    D. 

Richardson.  J.  Amer.  Ceram.  Soc,  1922,  5, 
254—258. 
A  comparison  of  the  results  obtained  on  burning 
bricks  in  a  gas-fired  compartment  (continuous)  kiln 
and  a  direct-fired  periodic  kiln  showed  that  the 
former  had  a  lower  fuel  consumption,  occupied  less 
-pace,  permitted  more  rapid  firing,  and  better  con- 
trol of  burning,  gave  more  uniform  heat  distribu- 
tion, and  cost  less  for  maintenance.  Repairs  were 
asier  to  execute  than  in  a  tunnel  kiln  and  the  capa- 
ity  was  less  limited. — H.  S.  H. 

''"icchiin;   Beryl  as  a   constituent    in   high    tension 

insulator .    R.  Twells.  jun.     J.  Amer.  Ceram. 

Soc..  1922,  5,  228—234. 
I  est  pieces  prepared  from  porcelain  bodies  in  which 
lint  and  felspar  were  partialis'  replaced,  weight  for 


weight,  by  beryl  were  fired  to  cones  8|,  10,  and  lOf. 
The  shrinkage.  transverse  strength,  impact 
strength,  heat  resistance,  porosity,  and  dye  pene- 
tration were  determined.  Beryl  introduced  in 
proper  proportions  increased  the  transverse 
strength,  impact  strength,  heat  resistance,  and 
dielectric  strength.  The  best  results  were  obtained 
with  the  following  limits  of  composition: — Clay 
4s-54  .  felspar  13-31)— 23-9-  .Hint  0-5-3  .  bervl 
21-6-5— 3763     .— H.  S.  H. 

Enamels;  Eelation  of  composition  to  thermal  shock 

in  steel  .     B.   T.  Sweely.     J.   Amer.  C'eram. 

Soc.,  1922,  5,  263—265. 
Enamels  may  fail  owing  to  abrupt  changes  in 
temperature  even  though  the  coefficients  of  expan- 
sion of  the  enamels  and  steel  are  exactly  the  same, 
if  the  enamel  is  applied  in  a  thick  coat  so  that 
temperature  differences  exist  in  different  parts  of 
the  ware.  This  effect  may  be  counteracted  if  the 
coefficient  of  expansion  of  the  cover  enamel  is 
suitably  less  than  that  of  the  ground  enamel. 
Suitable  compositions  for  ground  coat  and  cover 
coats  are  given. — H.  S.  H. 

Enamel;    <  eni    in   electric  smelting  of  glass 

.     E.    E.  Geisinger.     J.  Amer.  Ceram.   So 

1922,  5,  24*—  253. 
A  blue-black  enamel  containing  manganese,  nickel, 
and  cobalt  oxides  was  melted  at  1250°  C.  and  1110° 
C.  in  an  electric  furnace  of  the  combined  arc  an  1 
carbon  resistor  type.  .Microscopical  examination 
revealed  only  slight  evidence  of  reduction  in  the 
enamel,  which  was  applied  to  steel  with  satisfactory 
results,  although  a  slight  surface  porosity  or  pitting 
was  noticed. — II.  S.  H. 

Patents. 
Glass.    W.  C.  Taylor,  Assr.  to  Corning  Glass  Works. 

rj.S.P.  1.414.715.  2.5.22.     Appl.,  15.12.20. 
A  fmsh-coloured  glass  of  high  ultra-violet  absorp- 
tion  and    good    visible   transmission   contains    man- 
ganese dioxide  and  3 — 6%  of  cerium  dioxide. 

— H.  S.  H. 

"Refractory    articles;    Manufacture    of    .      0. 

Rebuffat     fu     Antonio.       E.P.     159,865.     5.1.21. 

Conv..  27.2.20. 
Small  proportions  (about  045  )  of  phosphoric, 
tungstic,  molybdic,  boric,  or  other  acid  stable  at 
high  temperatures  or  of  a  salt  of  such  acid,  aro 
added  to  the  mixture  used  :n  the  manufacture  of 
silica  bricks  and  facilitate  the  conversion  of  the 
quartz  into  tridvmite.  Silica  bricks  prepared  in 
this  way  and  fir^'d  for  about  8  hrs.  at  1300°— 1400° 
C.  do  not  undergo  appreciable  permanent  change 
in  volume  during  use.  (Reference  is  directed,  in 
pursuance  of  Sect.  7.  Sub-sect.  4,  of  the  Patents 
and  Designs  Acts.  1907  and  1919,  to  E.P.  74  and 
3353  of  1906,  113  of  1909,  1925  of  1910,  18,439  of 
1914,  and  108.619.)— H.  S.  H. 

Tunnel  kiln.     G.   H.  Benjamin.     U.S. P.  1.415,011, 

9.5.22.  Appl..  17.5.21. 
A  heating  chamber  is  provided  on  each  side  of  the 
tunnel  but  structurally  independent  of  the  tunnel 
walls.  Each  heating  chamber  consists  of  an  enclos- 
ing structure  and  two  structurally  independent 
combustion  chambers  therein. — J.  R. 


IX.-BUILDING  MATERIALS. 

Wood    preservatives;    Practical    experiences     with 

.     R.  Nowotny.     Z.  angew.  Chem..  1922,  35, 

217—219. 
A  study  extending  over  seven  years  was  made  of 
the  antiseptic  power  and  the  efficiency  of  a  number 
of  wood  preservatives  and  impregnating  materials. 


466  a 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      [June  30. 1922. 


The  efficiency  of  the  various  substances  ran  closely 
parallel  with  their  antiseptic  power  as  measured  by 
the  amount  required  to  render  a  gelatin  broth 
sterile  to  the  mycelium  of  PenicUlium,  provided 
always  that  a  sufficient  quantity  of  the  preservative 
was  introduced  into  the  wood.  Of  all  the  materials 
under  observation  the  must  efficient  was  "  Basil- 
ite,"  a  mixture  oi  88'9  of  sodium  fluoride  and 
111  of  dinitrophenol-aniline,  which  in  quantities 
of  3  kg.  per  cub.  m.  of  wood  kept  the  latter  in 
perfectly  good  condition  as  mine  timbers  for  the 
whole  period  of  seven  years.  Tar  oil  in  large 
quantities  (60  kg.  per  cub.  m.)  was  nearly  a.s  effi- 
cient, whilst  nitrophenols.  ammoniacal  metallic 
(I'n.  Zin  salt  solutions  of  phenols  and  cresols 
('•  viczsaj  ")  also  proved  fairly  efficient,  but  did  not 
completely  inhibit  rottenness  during  the  period. 
Mercury  salt  processes,  such  as  "  cyanising  "  with  a 
mercuric  chloride  impregnating  material,  the  use 
of  nun  uric  silicate,  or  sodium  hydroxy  mercuric 
chlorophenate,  which  have  hitherto  been  regarded 
as  very  efficient  preservatives,  proved  distinctly  in- 
ferior compared  with  liasilite.  and  sodium  silicate, 
or  sodium  silicate  and  lime,  were  practically  value- 
less.—G.  F.  M. 

Patents. 

Wood  preserving  method.   H.  Laube.   E.P.  159.479, 

25.2.21.  Conv.,  28.2.20. 
A  suitable  pasty  inoculating  substance  (e.g.,  80 
pts.  of  a  saturated  solution  of  calcium  chloride. 
15  pts.  of  potassium  ehromate,  and  5  pts.  of  pul- 
verised copper  made  into  a  paste  with  brick  dust, 
infusorial  earth,  etc.)  is  injected  into  the  wood. 
The  inoculating  material  should  consist  of  three 
.substances  having  a  high  osmotic  pressure,  a  high 
antiseptic  power,  and  long  lasting  properties  res- 
pectively.— H.  S.  H. 

Mortar,  cement,  concrete  and  the  like;  Process  for 

imparting    to   complete    imperviousness,    a 

considerably  increased  adhering  power,  and  the 
property  of  setting  extraordinarily  quickly.  K. 
Winkler.  E.P.  170,260,  2.2.21.  Conv..  15.10.20. 
Cement,  concrete,  etc.,  is  made  impervious  to 
water,  its  adhering  power  is  increased,  and  the 
speed  of  setting  considerably  increased  if  potassium 
hydroxide  solution  of  from  10°  to  12°  B.  (sp.  gr. 
1:07— 109)  or  36°— 40°  B.  (sp.  gr.  T33— 138)  is  used 
instead  of  water  for  mixing.  The  adhering  power 
is  increased  by  adding  a  little  sodium  hydroxide 
solution.  Small  quantities  of  tar  coke,  sugar. 
potassium  salts,  and  manganese  dioxide  help  the 
action  of  the  potassium  hydroxide. — H.  S.  H. 

Concrete;    Process   of   rendering   resistant    to 

waters  charged  with  soluble  compounds  and  pro- 
duct thereof.  B.  F.  Erdahl.  U.S.P.  1,415.324, 
9.5.22.     Appl.,  30.9.20. 

The  capillaries  of  the  concrete  are  coated  with  a 

metal  alginate  film. — H.  S.  H. 

Potash;    Process    for   the    recovery    of   - from 

cement  mixtures.  D.  D.  Jackson.  U.S. P. 
1,415,572,  9.5.22.  Appl..  29.6.20. 
In  the  recovery  of  potash  from  cement  mixtures 
containing  potassium  in  insoluble  form,  the  cement 
mixtures  are  subjected  in  a  kiln  to  such  tempera- 
tures as  arc  necessary  to  form  them  into  cement. 
Water  vapour  is  introduced  into  the  kiln  during  the 
operation  to  change  the  potash  constituent  of  such 
mixtures  into  the  hydroxide  and  to  volatilise  it. 

— H.  S.  H. 

Kiln;    Rotating  for   burning   cement   ami   the 

like.  X.  Winqvist.  U.S.P.  1.115.970.  16.5.22. 
Appl.,  30.10.18. 

3i      E.P.  126,230  of  1918;  J.,  1919,  417  a. 

i  agents.    F..P.  178,558.    See  TI.\. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLUBGY. 

Cast  in, n;  Melting  of in  the  Booth  rotating 

electrii  furnace.  H.  M.  Williams  and  T.  B. 
Terry.  Trans.  Amer.  Electrochem.  Soc.,  1922, 
285 — 294.     [Advance  copy.] 

The  furnace  is  lined  with  "  Suprafrax."  a  high- 
alumina  clay,  and  the  lining  lasts  for  over  200 
heats.  The  electrode  consumption  is  about  0'3  kg, 
per  charge  of  114  kg.  and  the  current  is  supplied  at 
90  volts,  the  input  being  60  kw.  per  hr..  and  each 
charge  requiring  about  170  kw.-hrs.  In  charging 
the  furnace  the  materials  required  are  all  added  al 
once  and  no  provision  is  made  for  slagging,  a-  tin- 
construction  of  the  furnace  prevents  the  handling 
of  6lag.  The  metal  losses  average  about  6 — 8  and 
the  final  composition  can  be  controlled  to  within 
0"2  C  and  0T5  Si.  The  furnace  is  used  chiefly 
for  the  melting  and  reclaiming  of  borings  from  the 
machine  shop  and  the  physical  properties  of  the 
metal  produced  compare  very  favourably  with  the-.- 
of  other  cast  irons. — -A.  R.  P. 

Iron;  Blue-brittleness  ami  ageing  *ij .   F.Kdrber 

and  A.  Dreyer.  .Mitt.  Kaiser  Wilhelm  In-t. 
Eisenforsch.  Diisseldorf.  1921.  2,  59— -"7.  Cheoi. 
Zentr.,  1922.  93,  II..  1051. 

In  order  to  test  whether  the  blue-brittleness  of  iron 
has  any  connexion  with  the  changes  the  metal 
undergoes  on  ageing,  a  soft  iron  and  two  samples 
of  Siemens-Martin  iron  from  a  basic  and  acid 
hearth  respectively  were  examined  after  stretching 
111  at  temperatures  between  20°  and  400°  ('.  an  1 
after  the  same  stretching  at  ordinary  temperatures 
followed  by  ageing  between  100°  and  400°  C.  and 
prolonged  ageing  at  ordinary  temperatures  A 
smaller  alteration  in  tensile  properties  was  found  to 
take  place  on  cold-stretching  compared  with  that 
found  after  stretching  at  a  "  blue-heat  "  but  age- 
ing at  ordinary  temperatures  for  sufficient  time 
gave  the  same  results  as  ageing  for  shorter  periods 
at  100°  C.  The  brittleness  (notched  bar  test)  was 
very  much  greater  after  stretching  at  a  "  blue 
heat,"  due  to  the  fact  that  iron  at  this  temperature 
has  a  greater  resistance  to  deformation  so  that  i  i 
a  definite  amount  of  deformation,  the  internal 
stresses  set  up  are  greater  than  those  produced  by 
the  same  work  at  lower  or  higher  temperatures. 
<«"/.  J.,  1922,  16  a.)— A.  R.  P. 

Inm;  Determination  of  gases  in  P.  Ohcrhoffer 

and  E.  Piwowarskv.  Stahl  u.  Eisen,  1922.  4'.', 
801—806. 
The  determination  of  the  occluded  gases  in  iron  and 
steel  by  heating  the  metal  in  vacuo  gives  too  high 
results  for  carbon  monoxide  and  dioxide  owing  to 
the  production  of  these  gases  by  the  interaction  ol 
the  carbon  in  the  metal  with  inclusions  of  iron  ami 
manganese  oxides  or  silicates  (slag).  Tests  carried 
out  by  dissolving  the  iron  in  mercuric  chloride 
tion  or  with  bromine  in  a  vacuum  apparatus  ami 
collection  and  analysis  of  the  evolved  gases 
very  concordant  results,  which,  however,  were  much 
lower  for  the  two  oxides  of  carbon  than  those 
obtained  by  the  heating  process.  The  mercuric 
chloride  process  gives  much  lower  results  lor  hydro- 
gen than  the  bromine  process,  probably  owing  to 
reduction  of  part  of  the  reagent  by  some  of  the 
liberated  hydrogen.  The  bromine  process,  on  the 
other  hand!  gives  too  high  results  for  nitrogen,  a- 
the  apparatus  cannot  be  completely  exhaust. 
air  before  the  reaction  owing  to  the  volatill 
bromine  at  verv  low  pressures  even  at  temper;lt"r'  ~ 
well  below  0°  C.  Analyses  of  the  gases  contained  in 
Martin  steel  l«?fore  and  after  deoxidation  show  very 
little  difference  in  the  quantity  of  oxides  of  carbon 
(about    8—9   c.c.   per   100   g.   of  steel)   but  a  5" 


Vol.  XLl.XoU,       Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       4G7  a 


increase  in  the  hydrogen  content,  while  in  the  case 
of  Thomas  iron  do  change  was  observed  in  any  of 
i  be  gases. — A.  1?.  P. 

Steel;    Penetration     of    hardening    effect    due    tn 

quenching   in   .     G.   Charpy  and  L.   Grenet. 

Comptes  rend.,  1922,  17-1,  1273—1276. 

A  square  bar  of  steel  was  heated  to  the  requisite 
temperature  in  a  furnace  until  its  temperature  was 
uniform.  The  upper  part  of  the  bar  was  then 
wrapped  in  asbestos  and  on  to  the  base  of  the  bar 
a  regulated  stream  of  cold  water  was  directed. 
Winn  the  cooling  was  complete  the  hardness  of  the 
metal  was  determined  on  one  face  at  different  dis- 
tances from  the  base.  The  bar  could  then  be  sub- 
mitted, if  desired,  to  further  thermal  treatments 
and  the  other  three  faces  used  for  subsequent  de- 
terminations of  hardness.  The  results  thus  obtained 
are  in  accord  with  those  obtained  on  a  fragment 
ot  metal  cut  out  from  a  thick  piece  after  quenching. 
With  a  nickel-chrome  steel  quenched  after  heating 
at  800°  C.  the  Brinell  hardness  varied  from  387  at 
a  distance  of  3  mm.  from  the  base  to  180  at  90  mm. 
With  a  self-hardening  steel,  after  quenching  at 
-nil0  C.  the  hardness  was  practically  uniform  along 
the  whole  length  of  the  bar.  The  method  may  be 
;  used  for  metals  which  are  not  homogeneous,  and 
permits  of  a  study  of  the  influence  of  cementation 
mi  thick  plates.  In  this  way  it  was  found  that, 
in  certain  cases,  the  hardness  of  the  part  situated 
behind  the  carburised  region  was  less  than  that 
obtained  with  a  bar  of  the  same  composition, 
quenched  under  the  same  conditions,  but  showing 
no  carburised  region. — W.  G. 

Hypo-eutectoid  steels:  New  process  for  annealing 

.     B.  Kjerrman.     Stabl   u.   Eisen,   1922,   42, 

697—700. 

i  By  determining  the  curve  for  the  electrical  conduct- 
ivity of  steel  in  relation  to  the  temperature,  it  is 
shown  that  in  hypo-eutectoid  steels  the  solution  of 
the  pearlite  (i.e.  the  Acl  point)  does  not  take  place 
at  a  constant  temperature  but  is  spread  over  a 
definite  temperature  interval  depending  on  the 
constitution  of  the  steel  but  independent  of  the 
rapidity  with  which  the  metal  is  heated  through  the 
interval  as  long  as  this  does  not  exceed  a  certain 
critical  rate.  On  these  facts  the  author  bases  a 
new  annealing  process  which  he  calls  "  pearlite 
annealing"  and  which  is  characterised  by  heating 
the  steel  to  a  temperature  within  this  interval  until 
the  pearlite  is  partially  dissolved  and  then  allowing 
tu  cool  slowly  so  that  the  ccmentite  of  the  undis- 
solved and  nodular  cementite  in  the  steel  acts  as 
nuclei  on  which  the  precipitated  pearlite  grows 
'luring  the  cooling,  so  that  the  metal  exhibits  a 
nodular  structure  consisting  of  cementite  grains 
surrounded  by  pearlite.  The  process  considerably 
increases  the  elasticity  and  resistance  to  shock  of 
the  steel  and  is  cheaper  than  the  usual  processes 
especially  in  the  cases  of  special  steels;  it  is,  how- 
ever, inapplicable  to  steels  containing  more  than 
about  0'5%  C  as  the  temperature  interval  in  these 
cases  tends  to  disappear. — A.  R.  P. 

>>'ree!  and  iron;  Determination   of  nitrogen   in 

and  absorption  of  nitrogen  by  steel  ami  iron  in 
melting  processes.  F.  Wiist  and  J.  Duhr.  Mitt. 
Kaiser  Wilhelm  Inst.  Eisenforsch.  Dusseldorf, 
1921,  2,  39—57.  Chem.  Zentr.,  1922.  93,  II., 
1051—1052. 

Nitrogen  is  determined  in  iron  and  steel  as 
follows:  10  g.  of  the  sample  is  dissolved  in  50  c.c. 
>f  hydrochloric  acid  free  from  ammonia, the  solution 
is  diluted  with  50  c.c.  of  ammonia-free  water,  and 
ooured  into  a  distilling  flask  containing  milk  of 
ime,  and  the  contents  of  the  latter  are  distilled, 
vith  the  addition  of  caustic  soda  towards  the  end 


of  the  operation,  until  150  c.c.  of  distillate  has  col- 
lected. This  is  shaken  in  a  stoppered  flask  with 
30  c.c.  of  indicator  solution  and  the  lower,  rose- 
coloured  layer  titrated  till  colourless  with  N /100 
sulphuric  acid.  The  indicator  solution  is  made  by 
dissolving  0T  g.  of  iodo-eosin,  that  has  been  dried 
at  100°  C,  in  1000  c.c.  of  ether  that  has  been 
shaken  twice  with  A'/ 100  caustic  soda  and  once 
with  distilled  water.  For  use,  2  c.c.  of  this  solution 
is  diluted  to  100  c.c.  with  ether.  A  number  of  tests 
were  carried  out  to  determine  the  amount  of  nitro- 
gen absorbed  at  high  temperatures  by  different 
grades  of  iron  and  steel,  ferro  alloys  and  metals 
used  in  making  the  latter.  Chromium,  manganese, 
lerrotitanium,  ferroaluminium,  and  ferrovanadium 
have  a  great  affinity  for  nitrogen,  whereas  ferro- 
chromium  and  ferromanganese  absorb  only  about 
O'Ol  %  and  ferrophosphorus  and  ferrotungsten  none 
at  all.  Pure  electrolytic  iron  in  powder  form 
absorbed  0"0227%  N  in  12  hrs.  at  960°  C.  when 
heated  in  a  stream  of  the  gas.  In  the  puddling 
process  the  nitrogen  content  of  the  metal  increased 
from  the  0'0009— 0'0013  ,  of  the  pig-iron  to  0003— 
0'004  in  the  end  product  according  to  the  dura- 
tion of  the  operation,  while  in  the  Siemeus-Martin 
process  the  nitrogen  content  of  the  metal  at  begin- 
ning and  end  is  between  0'005  and  0'008'  .  and  in 
the  Thomas  process  between  0'006  and  0'026%  but 
very  variable.  It  was  proved  that  the  nitrogen  was 
derived   from   the   air-blast. — A.   R.   P. 

Cobalt   in  steel;  Determination,  of  .     A    Eder 

Chem.-Zeit..   1922,  46,  430. 

Two  grams  of  the  steel  turnings  is  dissolved  in 
Pi  c.c.  of  sulphuric  acid  (1:10)  and  the  ferrous  salts 
oxidised  with  a  minimum  of  nitric  acid.  The  solu- 
tion is  evaporated  to  a  syrupy  consistence,  the  resi- 
due dissolved  in  200  c.c.  of  water,  the  solution 
boiled,  treated  with  zinc  oxide  emulsion,  a  little  at 
a  time,  till  the  precipitate  just  coagulates,  cooled, 
diluted  to  500  c.c.  in  a  graduated  flask,  and  250  c.c. 
tillered  off  through  a  dry  paper  and  evaporated  to 
100  c.c.  after  addition  of  5 — 8  c.c.  of  strong  hydro- 
chloric acid.  The  solution  is  diluted  to  150  c.c, 
heated  to  boiling,  and  treated  with  an  excess  over 
twice  the  theoretical  quantity  of  nitroso-/3-naphthoI 
dissolved  in  50%  acetic  acid.  The  precipitate, 
after  standing  for  2  hrs.,  is  filtered  off,  washed 
successively  with  cold  and  hot  hydrochloric  acid 
(1:5)  and  hot  water,  then  slowly  heated  in  a  crucible 
together  with  a  little  oxalic  acid,  until  all  carbon- 
aceous matter  has  burnt  off,  and  weighed  as  Co,04. 
If  much  nickel  is  present  in  the  sample  the  weighed 
oxide  is  redissolved  and  the  nickel  precipitated  with 
dimethylglyoxime  from  a  slightly  ammoniacal  tar- 
taric acid  solution  and  the  amount  so  found  de- 
ducted from  the  weight  of  cobalt. — A.  R.  P. 

Zinc  developments;  Electroihermic  .     T.   M. 

Bains,    jun.      Chem.    and    Met.    Eng.,    1922,    2G, 

894—895. 
Ix  further  experiments  on  the  electrothermic  dis- 
tillation of  zinc  (<•/.  Fulton,  J.,  1920,  193  a)  better 
results  were  obtained  by  the  use  of  one  size  of 
briquette  for  both  cross-connectors  and  columns  and 
by  employing  a  twelve-column  arrangement  of  these 
briquettes.  By  the  tise  of  six  electrodes  entering 
the  retort  through  the  top  and  connected  with  a 
standard  3-phase  transformer  equipment,  three 
different  connexions,  single  delta,  double  Y,  and 
double  delta,  are  possible.  In  this  way  with  a  2300 
volt  primary  and  a  115/230  volt  secondary  any 
current  from  56  to  133  amp.  may  be  passed 
through  the  briquettes,  assuming  their  resistance  is 
1  ohm.  The  condenser  is  heated  above  418°  C.  by 
means  of  a  resistor  consisting  of  refrax  carbor- 
undum brick,  which  is  the  only  material,  so  far 
tried,  that  successfully  resists  the  action  of  zinc 
vapour. — A.  R.  P. 

b2 


468  a       Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO -METALLURGY. 


[June  30,  192 


Brass  artillery  cartridge  cases;  Testing .    J.  B. 

Read  and  6.  Tour.    Trans.  Amer.  Inst.  Min.  Met. 
Eng.,  March,  1922.     [Advance  copy.]     53  pages. 

Artillery  cartridge  cases  are  cold  drawn  from 
discs  of  rolled  brass  containing  a  minimum  of 
99-88  Cu  +  Zn,  of  which  the  copper  is  68—71%, 
and  a  maximum  of  007  Pb,  0'05%Fe,  and  not 
more  than  traces  of  other  impurities.  The  Brinell 
hardness  varies  from  49  to  69.  The  cases  are 
annealed  after  each  cupping  or  drawing  operation 
at  540° — 650°  C.  Micrographs  are  shown  of  the 
structure  of  a  large  number  of  cases  (made  by  differ- 
ent manufacturers)  at  several  portions  of  the 
case.  The  mercuric  chloride  test  for  liability  to 
season  cracking  combined  with  tensile  strength 
measurements  and  microscopical  examination  of  a 
portion  of  the  case  tested,  are  necessary  for  accurate 
control  of  the  manufacturing  process  and  furnish  a 
sure  indication  of  the  behaviour  of  the  cases  in 
storage.  The  tensile  strength  test  may  be  replaced 
by  a  hardness  test  on  the  Baby  Brinell  machine  with 
equally  good  results  and  a  saving  of  work  and 
material,  while,  to  overcome  any  tendency  to  season 
cracking,  it  is  suggested  that  the  finished  cases 
should,  in  all  cases,  be  subjected  to  a  low-tempera- 
ture anneal. — A.  R.  P. 

Tin;  Treatment  of  pyritic  concentrates  containing 

.     C.   W.   Gudgeon.     Inst.   Min.  Met.,   May, 

1922.     [Advance  proof.]  8  pages. 

The  concentrates  contain  2'59  '  Sn  and  over  90  :: 
of  sulphide  minerals,  chiefly  iron  pyrites.  They 
are  roasted  in  an  automatically  fed  and  rabbled 
furnace  with  a  bed  100  ft.  long,  having  a  slope  of 
2%,  and  the  flue  gases  are  passed  through  a  settling 
chamber  of  12  ft.  cube,  then  into  scrubbing  towers. 
The  furnace  discharge  is  moistened  and  lifted  by 
water  jet  elevators  to  feed  tanks,  from  which  it 
passes  to  concentrating  tables.  The  final  con- 
centrates average  over  65%  Sn,  with  a  recovery  of 
more  than  85%,  at  an  average  cost  of  £25  per  ton 
of  oxide.  The  loss  of  tin  in  the  flue  dust  is  about 
8"5%  and  in  the  tailings  6°; ,  while  the  cost  of  treat- 
ing the  material  is  lis. — 12s.  per  ton. — A.  R.  P. 

Aluminium,  ax  a  coating  metal.     L.  Guillet.     Rev. 
Met.,  1922,  19,  296—297. 

Coating  metallic  articles  with  aluminium  by  heat- 
ing them  to  850°  C.  in  a  rotating  furnace  in  which 
the  articles  are  embedded  in  a  mixture  of  granu- 
lated aluminium,  alumina,  and  ammonium  chloride, 
gives  great  protection  against  oxidation  at  low  and 
high  temperatures,  but  can  only  be  applied  to  small 
articles.  Larger  wares,  such  as  cooking  utensils 
and  fire-bars,  may  be  coated  with  aluminium  by 
means  of  Schoop's  spraying  process  and  the  coated 
articles  then  last  more  than  six  times  as  long  as  the 
uncoated.  Fire-bars  that  normally  lasted  only 
2000  hrs.  in  a  railway  locomotive  showed  no  sign  of 
corrosion  after  a  similar  period,  if  previously 
coated  with  aluminium. — A.  R.  P. 

Aluminium-silicon   atlat/s  and  their   industrial    use. 

L.  Guillet.  Rev.  Met.,  1922,  19,  303—310. 
In  the  aluminium-silicon  series,  alloys  up  to  0'7  Si 
consist  of  solid  solution,  from  0'7  ._  to  13'8  Si  oi 
aluminium  and  eutectic,  and  with  more  than  13'8% 
Si  of  eutectic  and  silicon.  The  eutectic  contains 
13-8%  Si  and  melts  at  570°  C.  Alloys  containing 
11 — 14%  Si  on  cooling  show  a  eutectiferous  struc- 
ture in  which  large  areas  of  silicon  and  aluminium 
occur,  so  that  the  alloy  appears  to  be  heterogeneous. 
If,  however,  the  same  alloy  is  treated,  at  a  tem- 
perature much  above  its  melting  point,  with  a 
mixture  of  certain  alkali  salts  which  arc  intimately 
stirred  into  the  mass  and  then  allowed  to  separate, 


the  fracture  of  the  resulting  ingot  shows  a  homo- 
geneous, fine-grained,  eutectiferous  structure.  The 
tensile  strength  of  this  alloy  is  at  least  19  k^.  pi  i 
si|.  mm.  and  it  gives  an  elongation  of  more  than 
5  ,  while  the  shrinkage  on  solidification  is  11  mm. 
per  metre  compared  with  175  mm.  for  commercial 
aluminium  and  125  mm.  for  an  8  Cu-aluminium 
alloy.  The  density  of  the  13  Si  alloy  is  26.  ninth 
is  about  10%  less  than  that  of  any  other  aluminium 
alloy.     (C/.  Czochralski,  J.,  1922,"  219  a.)— A.  R.  P. 

Aluminium ;  Determination  and  separation  uj 

[in  alloys  rich  in  aluminium].  G.  Jander  and  K. 
Wendehorst.  Z.  angew.  Chem.,  1922,  35,  244— 
247. 

The  direct  determination  of  aluminium  in  com- 
mercial aluminium  alloys  invariably  yields  high 
results  if  the  metal  is  separated  as  usual  from  the 
other  constituents  of  the  alloy  and  weighed  as  oxide 
after  precipitation  with  ammonia,  sodium  thio- 
sulphatc.  potassium  iodate  and  iodide,  or  sodium 
acetate.  By  heating  the  alloy  to  200-  C.  in  a 
stream  of  dry  hydrogen  chloride  all  the  aluminium 
is  sublimed  as  chloride  together  with  small  portions 
of  the  silicon,  magnesium,  and  manganese  present. 
The  sublimate  is  dissolved  in  dilute  hydrochloric- 
acid,  the  solution  evaporated  to  dryness,  the  residue 
dissolved  in  nitric  acid,  and  the  solution  again 
evaporated  to  dryness.  This  is  repeated  until  all 
chlorine  is  expelled,  the  final  residue  is  dissolved  m 
dilute  nitric  acid,  the  silica  filtered  off,  and  the 
filtrate  evaporated  to  dryness  in  a  weighed 
platinum  crucible.  The  residue  is  gently  ignited  to 
obtain  aluminium  oxide  which  is  weighed,  dissolved 
in  fused  bisulphate,  the  melt  leached  with  water, 
and  the  solution  tested  colorimetrieally  for  man- 
ganese and,  by  means  of  ammonia  and  ammonium 
phosphate  in  presence  of  ammonium  tartrate,  for 
magnesium  after  removal  of  manganese,  if  present. 
The  amounts  of  manganese  oxide  and  magnesia  SO 
found  are  deducted  from  that  of  the  alumina  and 
the  remainder  is  calculated  to  aluminium. — A.  R.  P. 

Lead  dross  obtained  j nan    refining  trail:  CompleU 

analysis  of  .     W.  Stahl.     Chem.-Zeit.,   1922 

46,  409—410. 

Lead  dross  and  skimmings  obtained  by  the  purifica- 
tion of  lead,  that  has  been  desilverised  by  means  ol 
zinc,    by   blowing    air    and   steam   through    it   may 
contain  lead  and  silver  and  the  oxides  of  lead,  zinc, 
copper,     bismuth,     cadmium,     iron,     and     nickel, 
together     with     lead     stannate,     antimonate,     and 
arsenate.     1   g.    of   the   finely-divided   substance   is 
dissolved    in    30   c.c.    of    nitric    acid,    the   solution 
evaporated   to  dryness,    and  the  residue  extn 
with  hot  dilute  nitric  acid,  filtered  off,  washed  with 
ammonium  nitrate  solution,  dried,  and  fused  with 
sodium  carbonate  and  sulphur.     The  melt  is  leached 
with   hot    water    and    the    insoluble   sulphide) 
filtered  off.  washed  with  sodium  sulphide  solution, 
and  added  to  the  precipitate  produced  by  hydrogen 
sulphide    in     the    cold,    diluted    filtrate    from    the 
original  nitric  acid  treatment.       This  precipitate, 
containing  all  the  group  II  metals,  is  digested  with 
sodium    sulphide    and    the    solution    added    to    thai 
obtained  by  the  soda-sulphur  fusion,  while  the  pre- 
cipitate is  redissolved  in  nitric  acid,  re-precipitatei 
from  the  cold  dilute  solution  by  means  of  hydl 
sulphide,  and  worked  up  for  lead,  silver.  In- 
copper,  and  cadmium.     The  combined  nitrates  from 
the  sulphides  are   united   and   used  for   the  deter 
mination  of  the  iron,  zinc  and  nickel.    The  sodiuni 
sulphide   solution   is  treated  with  dilute  sulphuric 
acid,    the    precipitate    collected    and    dissolved 
colourless    ammonium    sulphide,    and    the   solution 
evaporated  to  a  small  volume,   treated  with   I 
chloric    acid    and    potassium    chloride.    r  "'"    " ' 
tartaric  acid,  ammonia,  and  magnesium  chloriue  o 


Vol.  XII.,  No.  12.]     Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.         469  a 


precipitate  the  arsenic,  which  is  weighed  as 
Mg^As^O;.  The  solution  is  acidified  and  treated 
with  hydrogen  sulphide,  the  precipitate  is  dissolved 
in  sodium  sulphide,  the  solution  treated  with  sodium 
peroxide  to  transform  the  sulpho  salts  into  sodium 
Btannate  and  antimonate,  and  the  latter  is  pre- 
cipitated by  the  addition  of  alcohol  equal  to  one- 
third  the  hulk  of  the  solution.  The  precipitate  is 
washed  with  a  mixture  of  I  vol.  of  alcohol  and  3  vols, 
of  water,  dissolved  in  hydrochloric  acid,  the  anti- 
mony precipitated  as  sulphide,  and  the  latter 
transformed  to  Sb,04  and  weighed  as  such.  The 
alcoholic  filtrate  is  evaporated  to  expel  alcohol, 
acidified,  and  the  tin  precipitated  as  sulphide, 
which  is  ignited  to,  and  weighed  as  oxide.  The  sum 
of  all  the  constituents  determined  differs  from  100% 
by  the  oxygen  combined  with  the  lead. — A.  R.  P. 

JficTcel  depositing  solutions;  Acidity  of .    M.  R. 

Thompson.        Trans.    Amer.     Electrochem.     Sac, 
1922,  233—258.     [Advance  Copy.] 

The  colorimetric  drop-ratio  method  of  measuring  the 
Bydrogen  ion  concentration  in  nickel  plating  baths 
witli  the  use  of  bromophenol  blue,  methyl  red,  and 
promocresol  purple  for  pH  3'1 — 5"0,  405 — 5'95,  and 
5'3 — 72  respectively  is  described,  and  the  effect  of 
pK  on  the  deposits  discussed.  It  is  concluded  that 
below  pB  4  gas  pits  and  streaks  are  very  pronounced 
and  the  deposits  in  this  range  tend  to  crack  and 
peel  off  but  are  of  very  bright  colour.  From  pK  4 
to  oo  the  metal  is  less  bright  but  the  tendency  to 
pitting  and  cracking  is  less  pronounced  and  between 
pH  5*5  and  6'5  there  is  very  little  likelihood  of  this 
occurring.  Above  pH  63,  however,  in  still  electro- 
lytes, blistering  and  cracking  occur  and  the  metal 
tend-,  to  become  discoloured,  but  good  deposits  may 
be  obtained  from  agitated  electrolytes  up  to  p„  7. 

—A.  R.  P. 

Electrolytic  deposition  of  a  metal;  Relation  between 

the  murium m  velocity  of and  the  hydration 

of  the  metallic  ions.  A.  Gunther-Schulze.  Z. 
Elektrochem.,  1922,  28,  122—126. 
From  the  results  of  experiments  recorded  in  a 
previous  paper  (Z.  Elektrochem.,  1922,  28,  119)  it  is 
shown  that  when  crystals  of  lead  are  deposited 
electrolytically  on  the  cathode,  from  a  solution  of 
lead  nitrate,  the  rates  of  growth  of  the  crystals  in 
three  directions  at  right  angles  are  all  different,  the 
rate  in  the  direction  towards  the  anode  l>eing 
gre.itest  under  the  conditions  of  the  experiments. 
The  rate  of  growth  increases  with  the  current 
strength,  at  a  very  much  greater  rate  than  the 
current  strength,  but  in  each  direction  a  maximum 
rate  of  growth  is  eventually  obtained  which  cannot 
be  exceeded  by  increasing  the  current  strength. 
The  maximum  rate  of  growth  in  the  most  favourable 
direction  is  0'206  cm.  per  sec.  The  time  required 
for  the  precipitation  of  an  ion  is  then  l'5xl0~:  sec 
and  tlie  current  density  in  the  axis  of  the  growing 
crystal  is  220,000  amps,  per  sq.  dm.  The  phenome- 
non is  discussed  in  relation  to  the  hydration  of  the 
ions  and  the  structure  of  the  hvdrated  particles  in 
the  electrolyte.^E.  H.  R. 

Metallic   Indies;   The  substance   between    the   crys- 
tallites of .    G.  Tammann.     Z.  anorg.  Chem., 

1922,  121,  275—280. 

A  piece  of  metal  formed  from  a  regulus  consists  of 
crystallites  surrounded  by  a  film  of  impurities  which 
form  the  residue  when  the  metal  is  dissolved  in  a 
solvent.  To  study  the  structure  of  these  thin  layers 
of  impurities  it  is  necessary  to  employ  a  transparent 
solvent,  and  the  evolution  of  gas  and  convection 
currents  should  be  avoided  as  these  destroy  the 
structure.  A  sheet  of  cadmium  was  dissolved  in 
ammonium  nitrate  and  the  film  was  found  to  have 
a  neWike  structure,  in  the  meshes  of  which  were 
micro-crystals  of  the  metal.     When  the  metal  was 


dissolved  in  hydrochloric  acid,  the  net  structure  was 
destroyed  by  the  evolution  of  gas  and  the  foreign 
substance  was  (eft  as  suspended  particles.  The 
amount  of  impurity  was  very  much  decreased  by  a 
vacuum  distillation.  The  author  points  out  the 
desirability  of  methods  to  render  these  non-metallic 
impurities  visible,  to  estimate  them  quantitatively, 
and  to  ascertain  their  influence  on  the  properties 
of  the  metal.— W.  T. 

Sodium,  potassium,  or  their  alloys;  Preparation  of 
bright  metallic  — .  G.  Bornemami.  Z. 
angew.  Chem.,  1922,  35,  227. 

A  glass  tube  of  15 — 20  mm.  diam.  is  drawn  out  into 
a  short  constricted  portion  of  3 — 4  mm.  diameter 
about  20  cm.  from  one  end  which  is  sealed  up.  A 
fine  wire  gauze  thimble  is  fitted  tightly  into  the 
tube  above  the  constriction  and  the  required  amount 
of  sodium  or  potassium,  or  both,  is  introduced  into 
the  tube  which  is  then  sealed  off  at  the  upper  end. 
The  tube  is  placed  in  a  horizontal  position  and 
the  metal  is  melted  whereby  all  oxygen,  moisture, 
and  carbon  dioxide  are  removed  as  metallic 
hydroxide  or  carbonate,  and  an  atmosphere  of 
nitrogen  remains.  On  then  placing  the  tube  verti- 
cally and  carefully  remelting  the  metal  it  flows 
through  the  gauze  and  the  constriction  into  the 
lower  portion  of  the  tube,  all  impurities  remaining 
on  the  gauze  filter.  The  tube  is  then  drawn  off  and 
sealed  at  the  constriction. — G.  F.  M. 

Carbon  monoxide  in  blast-furnace  gas.  Kaieta. 
See  Ha. 

Patents. 

Iron  and  other  metals  and  alloys;  Process  for  re- 
moving carbon  from  .     H.  0.  Schiitz.     E.P. 

156,548,  5.1.21.     Conv.,  11.1.18. 

OXYGEN  (air)  is  introduced  either  into  a  bath  of 
molten  metal  or  on  to  the  surface  only,  at  a  regu- 
lated rate,  so  that  the  oxides  formed  are  reduced 
simultaneously  by  the  carbon  present  in  the  metal 
without  the  oxidation  of  other  components.  For 
this  purpose  the  bath  is  maintained  at  a  tempera- 
ture only  slightly  above  the  melting  point  of  the 
metal.  A  convenient  method  of  introducing  the 
oxidisintj;  ys  is  by  means  of  a  number  of  flattened 
nozzles  inclined  to  the  surface  of  the  molten  metal. 

— C.  A.  K. 

Cast-iron;  [Process  and  apparatus  for]  tlie  produc- 
tion of  rav)  iron  or from  clippings.    W.  Linn- 

mann.  E.P.  157,295,  10.1.21.  Conv.,  28.4.19. 
The  furnace  consists  of  a  fuel  shaft  and  a  second 
shaft,  in  which  the  charge  of  scrap  iron,  ore,  and 
fluxe.s  is  melted,  parallel  to  the  upper  part  of  the 
first  and  connected  with  it  by  a  passage  terminating 
m  a  projection  so  arranged  as  to  distribute  the 
molten  charge  evenly  through  the  fuel.  The  charge 
is  first  melted  by  combustion  of  the  gases  from  the 
fuel  shaft  in  the  other  shaft  by  means  of  a  current  of 
air  admitted  at  the  base  of  the  latter.  The  molten 
charge  then  runs  down  through  the  communicating 
passage  into  the  incandescent  fuel  where  it  is 
reduced  and  is  tapped  at  the  base  of  the  fuel  shaft. 
The  latter  is  provided  with  a  number  of  superimposed 
tuyeres  in  the  lower  half  for  admitting  air  as 
required. — A.  R.  P. 

Steel;  Process  for  plating  metal  objects  with  . 

H.    Hanemann.      E.P.    157,225,    8.1.21.      Conv., 

22.12.19. 
Cylindrical  metal  objects  are  covered  with  a  layer 
of  self-hardening  steel  bv  drawing  a  sheathing  of 
the  latter,  heated  to  900°— 1100°  C,  on  to  the  cold 
metal.  During  the  cooling  of  the  sheathing  the 
hardening  process  takes  place  without  any  quench- 
ing being  necessary. — A.  J\.  P. 


470  a         Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


[June  30,  1922. 


Iron  or  steel;  Preparation  of for  lend  and  tin 

ting.   J.H.  Maddy.   U.S.P.  1,413.343,  18.4.22. 
Appl.,  11.1.21. 
Iron  or  steel  articles  are  coated  first  with  a  film  of 
copper,  then  with  mercury,  and  finally  with  the  pro- 
tective metal  (lead  or  tin). — C.  A.  K. 

Wrought  iron;  Method  of  making  .     J.  Aston. 

Assr.  to  A.  M.  Bvers  Co.  U.S.P.  (a)  1,412,823 
and  (b)  1,413,513,  18.4.22.  Appl.,  24.4.20. 
(a)  Molten  metal  produced  in  a  steel  furnace  is 
poured  into  a  bath  of  slag  of  suitable  composition, 
and  the  mixed  metal  and  slag  is  formed  into  a 
coherent  mass,  (d)  The  coherent  mass  is  compressed 
within  the  container  in  which  it  is  formed. 

— C.  A.  K. 

Iron    a nd    steel;    Process    and    apparatus    for    de- 

sulph  u  rising  .     H.   Koppers.     G.P.   343,944, 

3.9.18.  Addn.  to  341,637  (ct.  U.S.P.  1,357,781; 
J..  1921,  16  a). 
The  liquid  metal  is  poured  in  a  finely  divided  form 
through  a  layer  of  slag  containing  coke  to  liberate 
calcium,  which  combines  with  the  sulphur  in  the 
iron.  The  slag  is  contained  in  a  refractory-lined 
vessel  provided  with  two  outlets,  for  the  overflow  of 
slag  and  metal  respectively,  and  a  perforated  cover 
through  which  the  metal  is  poured  so  that  it  is 
distributed  in  fine  streams  over  the  surface  of  the 
slag.  The  coke  is  introduced  through  a  side  door 
and  pressed  down  into  the  molten  charge  by  the 
perforated  cover. — A.  R.  P. 

Steel  alloy  containing  chromium,  nickel,  ami  silicon. 

Poldihutte,  Tiegelguss-stahlfabrik.    G.P.  350,111, 

27.3.21.  Conv.,  22.3.16. 
The  steel  contains  02— 08%  C,  1— 25:  Si,  03— 
2-5  Or,  0-4—6%  Ni,  and  035— 1%  Mu.  The 
hardened  alloy  is  characterised  by  a  very  fine- 
grained structure  similar  to  that  of  high-speed 
steels  with  a  high  content  of  tungsten. — A.  R.  P. 

Steel  or  iron;  Process  for  the  production  of  

from  scrap  with,  carburising  material  on  acid 
hearths.  P.  Brandl.  G.P.  350.263,  25.8.20. 
Conv.,  31.7.19. 
On  to  the  furnace  hearth,  which  consists  of,  e.g., 
quartz  sand,  is  charged  first  a  carburising  sub- 
stance, low  in  sulphur  and  phosphorus,  such  as 
petroleum  coke  or  wood  charcoal,  in  large  lumps. 
and  then  in  succession  scrap-iron,  limestone,  and  a 
second  layer  of  scrap-iron.— A.  R.  P. 

Metal  [zinc];  Separation  of from  ores.     Metals 

Extraction  Corp.,  Assees.  of  A.  Schwarz.  E.P 
152,029,  6.10.20.  Conv.,  6.10.19. 
Finely  ground  zinc  ore  is  intimately  mixed  with 
an  excess  of  coal  or  coke  dust  and  a  colloidal 
carbonaceous  substance  such  as  starch  paste  as  a 
binder.  The  mixture  is  agitated  with  coarsely 
crushed  slag  so  as  to  coat  the  lumps  of  the  latter 
and  the  whole  is  heated  in  a  reverberatory  furnace 
with  forced  draught  so  that  the  zinc  mineral  is 
reduced  to  metallic  zinc,  which  is  vaporised,  the 
vapour  being  oxidised  and  condensed  as  zinc  oxide. 
In  this  way,  by  rapid  combustion  of  the  charge  the 
zinc  ui  sulphide  zinc  ores  may  be  converted  directly 
to  zinc  oxide  without  the  formation  of  any  sulphate. 
Reference  is  directed,  in  pursuance  of  Sect.  7, 
Sub-sect.  4,  of  the  Patents  and  Designs  Acts,  1907 
and  1919,  to  E.P.  10,915  of  1900.  29,156  of  1906. 
6888  of  1908.  22.519  of  1913,  and  112.336;  J.,  1901. 
724;    1908,   22;    1909,   481;    1915.   803;    1918.   94a.) 

—A.  R.  P. 

Lead  Alloys  {bearing  metals].    W.  Mathesius.   E.P. 

156. 552,  5.1.21.     Conv.,  7.1.20. 
An  alloy  containing  lead  and  about  3      of  calcium 
and  1 — 2      of  barium  or  about  1       each  of  barium 
and  strontium. — C.  A.   K. 


Alloys;  Manufacture  of  very  hard ,  capable  of 

withstanding  breakages,  for  tools  and  the  like. 
H.  Lohmann.  E.P.  157.774,  10.1.21.  Conv., 
7.12.18. 

Hard  alloys  capable  of  great  resistance  when  used 
as  tools  contain  a  metal,  e.g.,  iron,  tungsten, 
titanium,  chromium,  nickel,  or  molybdenum,  alloyed 
with  substantial  amounts  of  boron  and  silicon,  and 
free  from  carbon  and  oxygen.  The  alloys  may  be 
made  in  a  crucible  lined  with  a  metal  of  high 
melting  point,  any  carbon  contained  being  removed 
subsequently  by  an  annealing  process  under 
oxidising  conditions.  The  density  of  the  metal  may 
be  increased  by  eentrifuging  it  while  molten  or  bj 
subsequent  mechanical  treatment. — C.  A.  K. 

Alloys.  Soc.  Anon,  de  Commentrv.  Fourchambault 
et  Decazeville.  E.P.  159,492,'  5.11.20.  Conv., 
26.2.20.     Addn.    to    140,507    (J.,   1920,    412a). 

The  iron  alloy  described  in  the  principal  specifica- 
tion is  modified  so  that  it  conforms  to  one  of  the 
following  compositions  ; — 20 — 25      Ni,  10 — 15      C'r, 
1— 2'.   Mn,  05—1%   C;  20—25%  Ni,  10—15%   I 
2—5%  Mn,  0-2—0-5%  C;  20—25%  Ni,  10—15%   I 
2 — 5%   Mn.  0"5 — 1%   C.     Additions  may  be  mad. 
0-2—1      Y.  ill— O-.V    Ti.  0-5—5      W. 'iV2— 3":   Mo, 
0—10°'  Co.     (Cf.  E.P.  159,858;  J.,  1922,  378a.) 

— C.  A.  K. 

Alloy.  iSoc.  Anon,  de  Commentrv.  Fourchambault 
et  Decazeville.  E.P.  159,857/5.11.20.  Conv., 
27.2.20.     Addn.  to  140,-508  (J.,  1920,  412 a). 

The  limiting  proportions  of  the  constituents  as 
specified  in  the  chief  patent  are  modified  to  the 
following:— 0-3— 1-0%  C,  1—5  ,  Mn,  8—25  Or, 
50—80%  Ni,  0-5—8%  W,  remainder  iron.  The 
tungsten  may  be  wholly  or  partly  replaced  by  02 — 
5%  Mo,  and  titanium,  vanadium,  and  cobalt  may 
be  added  to  the  modified  alloy  in  the  same  propor- 
tions as  specified  in  the  chief  patent. — A.  R.  P. 

Alloy.  J.  E.  Springer.  U.S.P.  1,413,880,  25.4.22. 
Appl.,  13.8.20. 

A  mixture  of  copper  20%,  nickel  5%,  tungsten  5 
manganese   5     .    iron   2%,   furnace  slag  50%,   and 
humite   x     .   is  melted,  the  resulting  metal  is  < . 
into  moulds,  and  the  ingots  are  annealed. — A.  R.  P. 

Platinum;  Electrolytic  process  and  apparatus  for 
the  separation  of  from  other  metals  con- 
tained in  platiniferous  materials.  E.  Slatine.inu. 
E.P.  157,785,  10.1.21.     Conv.,  19.12.19. 

Electrolysis  of  an  aqua  regia  solution  containing 
the  mixed  metals  is  carried  on  until  a  limit  of  3 
for  gold,  6%   for  platinum,  and  0'5%  for  palladium 
in   the  solution   is   reached,    whereby   only  gold 
precipitated  from  the  solution.    Gold  and  palladium 
are  then  reduced  by  passing  hydrogen,   previously 
submitted  to  ultraviolet  rays,  into  the  solution.     A 
voltaic    couple    may    be    introduced    to    assist   tin- 
reduction.     Platinum   may   be   separated   from  tin 
resulting  solution  by  electrolytic  means,  and  if  the 
anode  is  exposed  to  the  influence  of  ultraviolet  light, 
chlorine  combines  with  the  hydrogen  atoms  of  the 
water   and  the   liberated   oxygen  oxidises  nitrogen 
oxides  to  nitric  acid  and  so  renders  possible  a  com- 
plete cycle  of  operations.     The   apparatus  e 
of  tanks  in  which  the  various  stages  of  the  reactions 
occur,  the  whole  being  connected  to  form  a  clof 
circuit. — C.  A.  K. 

Ores  and  minerals;  Process  for  collecting  and  puri- 
fying     .      Process    of    treating    oris  a 

materials.    Trent  Process  Corp..  Assees 
Trent.     E.P.  (a)  161.560.  and  in)  159,143,   ..-'..'I 
Conv.,  (a)  9.4.20,  (in  21.2.21). 
(a)  Finely  divided  minerals  suspended  in  water  are 
mixed  with   pulverised  coal   and   a   relatively   large 


Vol.  XIX,  No.  12.]     Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.        471a 


quantity  of  mineral  oil,  and  agitated.  Mineral 
matter,  coal  substance,  and  oil  form  an  agglomerate 
and  can  be  separated  from  the  gangue  which 
remains  in  the  water.  The  coal  and  oil  serve  as 
fuel  in  the  subsequent  smelting  of  the  mineral. 
iiO  The  agglomerate  is  heated  in  a  closed  chamber 
and  after  the  volatile  constituents  have  been  ex- 
pelled, oxygen  may  be  admitted  into  the  chamber 
to  cause  combustion  of  the  fuel  in  the  mass.  The 
chamber  may  be  rotated  during  the  smelting  opera- 
tion, and  it  is  advisable  to  leave  a  protective 
sintered  layer  of  material  on  the  wall  of  the 
chamber. — C.  A.  K. 

Sintering    pans   and    the   like;    Grate   for   tiltable 

vessels  such  as  .       (irate  for  sintering  pan. 

3.  E.  Greenawalt.  E.P.  (a)  178,213,  17.1.21,  and 
(is)  178,347,  11.5.21. 
(a)  In  a  sintering  vessel  which  can  be  tilted,  the 
grate  consists  of  bars  shaped  to  form  channels  trans- 
verse to  the  axis  of  tilt,  all  or  any  of  the  bars  being 
capable  of  a  limited  movement,  to  any  desired  ex- 
tent, on  the  vessel  being  tilted,  so  as  to  assist  in 
removing  the  charge  from  the  grate  without  manual 
labour,  (n)  The  grate  is  mounted  on  a  rotary  sup- 
port and  the  bars  are  pivoted  and  so  weighted 
with  respect  to  their  axes  that  on  rotating  the  pan 
a  shearing  action  is  caused  to  take  place  between 
the  bars,  and  the  adhering  sinter  is  broken  off. 

—A.  R.  P. 

wre-concentration  process.  B.  H.  Dosenbach  ;  E.  M. 
Dosenbach,  extrix.  U.S. P.  1,377,189,  10.5.21. 
Appl.,  16.11.17. 

The  ore  pulp  is  treated  with  a  gaseous  modifying 
agent  (pine  oil,  tar  oil,  etc.)  tending  to  cause  flota- 
tion of  all  the  constituents  recoverable  by  notation, 
and  simultaneously  a  gaseous  substance  is  intro- 
duced which  has  a  deterrent  action  on  the  flotation 
of  some  of  the  constituents.  For  example,  by  intro- 
duction of  sulphur  dioxide  with  the  pine  oil  or  the 
like,  the  flotation  of  zinc  blende  may  be  prevented 
whilst  that  of  galena  is  not  affected. 

Matte;   Apparatus  for   treatment   of  .      J.   H. 

Hickev.       U.S. P.     1,413,116,     18.4.22.       Appl., 
9.10.19. 

A  molten  stream  of  matte  is  caused  to  move  towards 
a  crushing  plant  and  a  blast  of  air  is  directed  on 
tc  the  surface  of  the  matte  to  assist  disintegration. 

— C.    A.    K. 

Magnetic  separating  process  and  apparatus.  3.  P. 
Bethke  and  R.  H.  Stearns.  U.S. P.  1,414.170. 
25.4.22.     Appl.,  11.6.19. 

The  material  to  be  separated  is  passed  into  a  mag- 
netic field,  the  energising  current  of  which  is 
periodically  reversed  so  as  to  produce  cycles  of  vary- 
ing magnetic  intensity  and  direction.  The  magne- 
tised material  is  removed  from  the  field  by  mechani- 
cal means  independently  of  the  agitation  due  to 
the  current  reversals. — A.  R.  P. 

Potassium    values    from     [blast-fwnace']     fumes; 

Becovery  of .    J.  Gaylev;  H.  B.  Gaylev  and 

W.    S.    Reed,    exors.      U.S. P.    1,414.353,'   2.5.22. 
Appl.,  1.11.18. 

The  fumes  are  collected  from  blast-furnace  slag  after 
tapping  from  the  furnace  into  a  ladle.  The  slag 
may  be  agitated  to  assist  the  evolution  of  the  fumes. 

— C.  A.  K. 

Metals;  Electrolytic  separation  ejf .    C.  Longer. 

U.S.P.  1,411,123,  2.5.22.    Appl.,  11.4.21. 

A  pervious  cathode  for  use  in  the  deposition  of 
metals  by  electrolysis  (,/.  E.P.  166,049;  J.,  1921, 
628  a)  consists  of  a  perforated  metal  plate  contain- 


ing metal  in  loose  pieces  packed  in  the  apertures 
ami  means  for  retaining  these  pieces  in  position 
while  still  keeping  the  cathode  pervious  to  the  elec- 
trolyte.—A.  R.  P. 

Vanadium;  Process  for  the    treatment  of  ores  of 
— .    A.  Gildemeister.     U.S.P.  1,415,028,  9.5.22. 
Appl.,  22.12.21. 

Ores  containing  vanadium  pentoxide  are  subjected 
to  the  action  of  dry  chlorine  and  a  reducing  agent 
at  a  temperature  above  the  b.  p.  of  vanadyl  tri- 
chloride, but  not  substantially  above  400°  C,  so 
that  vanadyl  chloride  alone  distils  over. — B.  M.  V. 

Platinum    substitute    in    chemical   apparatus   and 
other  uses,  ami  method  of  making  same.     F.  A. 
Fahrenwald,  Assr.  to  The  Rhotanium  Co.    U.S.P. 
1,415,233,  9.5.22.     Appl.,  6.11.16. 
An  alloy  of  a  noble  metal  in  the  periodic  group  con- 
taining gold  with  not  less  than  twenty  atomic  per 
cent,  of  palladium  in  homogeneous  solid  solution. 

—A.  R.  M. 

Metals  etc.;  Method  of  and  apparatus  for  reducing 

.     A.     Bridge.       U.S.P.     1,415,516,     9.5.22. 

Appl.,  29.5.19. 

Materials  to  be  reduced  are  mixed  with  other  sub- 
stances so  that  initial  ignition  of  the  mixture  will 
promote  thermal  action.  The  reaction  takes  place 
in  a  closed  pressure-resisting  chamber,  the  reacting 
material  being  insulated  from  the  walls  of  the 
container. — C.  A.  K. 

Ores;  Process  and  apparatus  for  the  simultaneous 

pre-heating  or  roasting  and  reduction   of  

E.  Fleischer.     G.P.  345,981,  27.10.16. 
The  apparatus  consists  of  a  shaft  furnace  in  the 
6hape    of    four    superimposed    inverted    truncated 
cones    (see    fig.).      Hot    gases    for    the    reduction 
process  are  passed  in  through  the  tubes,  G,  G„  and 


the  greater  part  of  the  exhaust  gas< a  passes  out 
through  the  tube.  A,  and  is  used  for  other  purposes. 
The  remaining  gas  passes  up  through  the  ore 
column  (its  quantity  is  regulated  by  the  damper,  S) 
and  meets  a  regulated  supply  of  air  admitted 
through  the  tube.  L,  and  valve,  V,  and  the  heat 
generated  by  its  combustion  serves  to  preheat  or 
roast  the  ore  before  it  enters  the  reducing  zone. 

—A.  R.  P. 


472  A 


Cl.  XI.— ELECTRO-CHEMISTRY. 


(June  SO,  1922. 


Lead-zinc  sulphide  ores;  Process  of  treating  . 

Process  oj  treating  sine  ores  anil  zinc  -products. 
\  (  .  Christensen.  I'.S.P.  (a)  L,415,796  and  (b) 
1,415,797,  9.5.22.    AppL,  (a)  11.10.19,  (b)  21.2.2U. 

(a)  Finely  divided  ore  or  concentrate  is  treated 
with  hot  concentrated  sulphuric  acid,  and  zinc 
sulphate  is  crystallised  from  the  cooled  solution. 
The  separation  of  lead  and  zinc  is  effected  by 
treating  the  residue  with  a  hot  concentrated 
chloride  solution  containing  acid,  afterwards  pre- 
cipitating tho  metals  from  the  solution,  (n)  Zinc 
may  he  separated  from  zinc-bearing  materials  by 
dissolving  the  zinc  in  relatively  dilute  sulphuric  acid 
and  concentrating  the  solution  so  as  to  cause  pre- 
cipitation of  zinc  sulphate  by  reason  of  the  increased 
concentration    of    sulphuric    acid    in    the    solution. 

— C.  A.  K. 

Flotation    process    '»;/    means    of    electrolytic    gas- 
bubbles;  i'/"iTvi  for  the  recovery  of  minerals  from 

,,,,    mixtures   by  a   .     Maschinenbau-Anstalt 

Humboldt.  G.P.  347,240,  8.3.21. 
The  electrodes,  which  serve  for  the  production  of 
gas  bubbles  in  the  pulp,  consist  partly  of  porous, 
hollow  bodies  through  which  liquids  can  penetrate. 
It  is  thus  possible  to  introduce  liquids  capable  of 
influencing  the  surface  tension  of  the  gas  bubbles 
and  largely  prevent  the  coalescence  of  the  very 
small  bubbles  of  gas. — A.  R.  P. 

Lead  ashes  and  the  like  containing  fin;  Process  for 

the  recovery  of  tin  from  .    Rheinisch-Nassau- 

ische  Bergwerks-  und  Hiitten-A.-G.  zu  Stolberg, 
A.  Wvporek,  and  H.  Goldmami.  G.P.  348,596, 
10.3.2H. 
The  residues  are  smelted  with  a  neutral  alkali  salt, 
such  as  sodium  sulphate  or  silicate,  in  a  reverhera- 
tory  furnace,  whereby  a  readily  fusible  slag,  con- 
taining all  the  tin  and  practically  free  from  lead, 
is  obtained.  This  may  be  readily  smelted  in  the 
blast  furnace  to  metallic  tin. — A.  R.  P. 

Magnesium    and   its   alloys;   Process   for  purifying 

.       Chem.  Fabr.  Griesheim-Elektron.       G.P. 

350,064,  17.8.15. 
The  molten  metal  is  treated  with  steam,  either 
alone  or  mixed  with  inert  gases,  in  such  quantity 
that  not  only  is  any  chloride  present  decomposed 
but  also  all  the  nitride.  Metal  containing  much 
of  the  latter  is  allowed  to  solidify  slowly  so  that  the 
nitride  rises  to  the  surface;  a  current  of  steam  is 
then  passed  over  the  surface  to  decompose  the 
nitride.  In  this  way  very  little  magnesium  is  lost 
by  oxidation. — A.  R.  P. 

Tin  deposits;  Process  for  the  production  of  clectro- 

lytic  .      Langbein  Pfanhauser-Werke,   A.-G. 

G.P.  350,151,  5.12.20. 
Salts  of  copper,  nickel,  or  cobalt,  or  mixtures  of 
the^e   are   added  to  the   tin   bath  in   such   quantity 
that  the  weight  of  added  metal  does  not  exceed  20 
of   that   of   the    tin    in   the    bath.       The   resulting 
deposit*  are  dense,  hard,  and  readily  polished. 

—A.  R.  P. 

Sodium;  Manufacture  of by  the  electrolysis  of 

molten  sodium  hydroxide.  E.  Baur.  G.P. 
350,394,  1.7.20. 
Decomposition  of  sodium  at  the  cathode  by  water 
which  forms  at  the  anode  and  diffuses  through  the 
electrolyte,  is  prevented  by  surrounding  the  cathode 
with  a  mixture  of  sodium  hydroxide  and  a  dehy- 
drating agent  such  as  calcium,  barium,  or  strontium 
oxide. — L.  A.  C. 

Precious  metals;  Process  />■/    recovering  from 

ashes  and  residues.     (.'.   W.  Drais.     G.P.  350,598, 

30.9.19. 

Tin;  residues  are  mixed  with  "  thermit  "  and  fluxes 


and  the  mixture  fired.  The  resulting  alloy  is  treated 
by  chemical  or  electrolytic  methods  for  the  recovery 
of  the  contained  precious  metals.— A.  R.  P. 

Agglomerates  [of  fine  ores  err.]  to  be  sintered  in 

shaft    furnaces;    Process    "I    making    ■ .      C 

Giesecke.     E.P.  156,183,  3.1.21.     Conv.,  20.12.17. 

See  G.P.  327,248  of  1917;  J..  1921,  185  a. 

Alloys    and    process    of    f renting    same.      A.    Pacz. 

E.P.  158,827,  26.1.21.     Conv.,  13.2.20. 
See  U.S. P.  1,387,900  of  1921;  J.,  1921,  777  a. 

Zinc  dust ;  Process  for  producing having  a  high 

percentage  of  metallic  ~inc.  Rheinisch-Nassau- 
ische  Bergwerks-  and  Hiitten-A.-G.,  and  A. 
Spieker.     E.P.  171,962,  28.1.21.    Conv.,  22.11.2(1. 

See  G.P.  344.425  of  1920;  J.,  1922,  180a.  (Refer- 
ence is  directed,  in  pursuance  of  Sect.  7.  Sub-sect.  4. 
of  the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  138,947;  J.,  1920.  372  A.) 

Selenium  and  noble  melids;  Process  for  recovering 

from    electrolytic   slimes   anil    the    lite.      \| 

Chikashige  and  D.  Cno.  I'.S.P.  1,415,526,  9.5.22. 
Appl..  1.10.19. 

See  E.P.  134,536  of  1919;  J..  1921,  223  a. 

lilost-fii rnaee   operations;    Process   for    regulating 

ffme  id  waste  gases  in .    E.  Dicpschlag.    E.P. 

165,766,  11.1.21.     Conv.,  30.6.20. 


XL-ELECTRO-CHEMISTRY. 

Electrode  for  the  production  of  a  hydrogen-oxygen 
mixture.  A.  Giinther-Schulze.  Z.  Elektro- 
ehem.,  1922.  28,  126—12!'. 

When   an   alternating  current   of   frequency  50   is 
passed  through  a  cell  consisting  of  two  equal  alu- 
minium  electrodes  in   a  solution   of  sodium   meta- 
phosphate,     a    mixture    of    hydrogen    and    oxygen 
almost    in    the    proportion    2H,:(),,    with    a    slight 
excess  of  hydrogen,  is  evolved.     There  is  no  appn 
ciable  depolarisation  of  the  products  of  one  | 
by  those  of  the  next,  whereas  when  platinum 
trodes  are  used,  no  gas  is  evolved.     The  diffe 
is   explained    through    the    formation    of    a    poroOE 
layer  of  oxide  on  the  surface  of  the  aluminium,  and 
a  kind  of  valve  action  which  causes  the  gases  to  be 
evolved,  not  at  the  electrode  hut  in  the  electrolyte. 
This   cell   Tvill   be   suitable,    as   a    hydrogen-oxygen 
coulometer,   for  measuring  the  mean  amps,  in  an 
alternating  current. — E.  H.  R. 

Electric  smelling  of  enamel.     Goisinger.    See  VIII. 

Electrolytic  deposition  of  metals.  Giinther-SchuUK. 
See  X. 

Patents. 

Electrical   furnaces.     I.  Rennerfelt.     E.P.  16J.(U'.'. 

26.5.21.  Conv.,  2.6.20. 
Ax  electric  furnace,  more  especially  one  in  which 
heating  is  effected  by  means  of  arc  electrodes  dis- 
posed in  a  substantially  vertical  plane,  is  provided 
with  a  horizontal  or  inclined  surface  extending  al 
right  angles  to  and  on  each  side  of  the  heating 
zone,  for  receiving  objects  to  he  heated.  Heating 
elements  in  the  form  of  coils,  strips,  or  roil 
if  desired,  provided  on  the  side  walls  or  beneath 
the  roof  between  the  heating  zone  and  the  ends 
of  the  furnace.  An  electric  contact  is  provided  in 
the  bed  of  resistance  material  employed  in  ■« 
furnace,  in  order  that  current  may  be  suppl"' 
to  distribute  the  load  on  the  furnace. — I.  S.  G.   1  ■ 


Vol.  XU,  Xo.  12.] 


Cl.  XII.— FATS  ;   OILS  ;  WAXES. 


473  a 


nu- 
K  I' 


Electric  furnaces.  Automatic  Telephone  Ma 
factoring  Co..  Ltd.,  and  P.  N.  Rosebv.  E 
178,973,  5.2.21. 
The  heating  element  is  composed  of  crashed 
anthracite  ivhich  tills  the  space  between  an  inner 
and  an  outer  container  of  heat-resisting  material. 
Terminals  consisting  of  carbon  plates  or  rods  pro- 
ject into  the  anthracite  so  as  to  afford  a  large 
contact  surface. — J.  S.  G.  T. 

Electric  furnace.   A.  Westerberg.   U.S. P.  1,412,764, 
11.4.22.     Appl.,  17.11.15. 

An  electric  furnace  has  in  series  with  it  a  number 
of  choking  coils,  each  having  a  different  number 
of  turns  to  the  others;  these  coils  are  arranged 
on  a  single  iron  core,  which  is  provided  with  an 
unwound  magnetic  shunt. — D.  J.  N. 

Electric    furnace.      A.    Jones.      U.S. P.    1,414,362, 
2.5.22.     Appl..  13.5.20. 

A  number  of  electrodes  are  arranged  angularly 
with  respect  to  one  another  in  the  melting  chamber 
of  the  furnace,  and  means  are  provided  for  rotating 
the  electrodes  during  the  operation  of  the  furnace 
to  maintain  the  form  of  the  electrode  points. 

Separators  for  storage  batteries;  Process  of  treat- 
ma  .     H.  W.  Nordvke.    Asm',  to  Indianapolis 

Mfg.     Co.       U.S. P.     1.113.683.     9.5.22.       Appl.. 
26.4.21. 

Wood  for  storage-battery  separators   is  boiled   in   a 
solution  of  a  sulphate  or  sulphite,  and  volatile  sub-    | 
stances  are  vaporised  and  removed  by  passing  live 
steam  through  the  solution. — J.  S.  G.  T. 

Elect  i  ic  storage  batteries :  Manufactm  e  of  separator* 
foi  .    A.  Isenburg.     G.P.  350,503,  21.5.20. 

Acid-resisting  separators  of  low  electrical  resist- 
ance are  composed  of  small  pieces  of  porous  material, 
such  as  wood  meal  and  /or  pumice  stone,  with 
sodium  silicate  as  the  binding  agent,  formed,  if 
aecessary,  on  or  between  permeable  holders.  The 
porous  material  is  mixed  with  sodium  silicate  solu- 
tion, the  mixture  is  applied  to  the  holders,  and 
dried  in  air  with  the  addition,  if  necessary,  of 
carbon  dioxide. — L.  A.  C. 

Curb*  ii   electrodes;  Manufacture,  of  .     I.  Szar- 

rosy.     E.P.  158,890,  7.2.21.     Conv.,  29.11.17. 

See  U.S. P.  1.392.267  of  1921;  J.,  1921,  81G  a. 

Electrohjser.      R.    Pechkranz.      U.S. P.     1,415,466, 

9.5.22.     Appl.,  1.6.20. 
See  E.P.  146,184  of  1920;  J.,  1921,  309  a. 

ipparatus  for  making  aluminium  nitride.     U.S. P. 
1,415,446.    See  VII. 


XII.-FATS;    OILS;    WAXES. 

lorn  [maize}  oil;  Preparation  of  an  edible  ail  from 

eruae  .     A.   F.   Sievers  and  J.   H.  Shrader. 

U.S.  Dept.  Agric.  Bull.  1010,  3.4.22.     25  pp. 

Che  process  of  preparing  an  edible  oil  from  crude 
aaize  oil  comprises  neutralisation  with  sodium 
ivdroxide,  bleaching  with  fuller's  earth,  and 
leodorising  with  steam.  Two  methods  of  neutralis- 
Qg  are  about  equally  satisfactory.  In  one  method 
large  excess  of  sodium  hydroxide  is  used  to 
arden  the  soap  stock,  while  in  the  second  method 
he   same    result    is    obtained    by    adding    sodium 

iarbonate  after  the  "break."  A  maximum  tempera- 
uro  of  55°  C.  is  recommended.  The  value  of  the 
hemicals  used  and  the  oil  lost  is  0"56 — 063  cent 
er  lb.  of  neutralised  oil  (1919  prices),  of  which 
lore  than  80%    is  represented  by  the  loss  of  oil. 


The  oil  is  bleached  with  fuller's  earth.  Not  less 
than  5%  of  the  earth  must  be  used.  Maize  oil  does 
not  bleach  as  readily  as  some  other  vegetable  oils. 
The  best  results  were  obtained  by  treatment  for 
5  mins.  at  100°  C.  A  considerable  further  improve- 
ment in  colour  occurs  during  deodorising.  The 
cost  of  material  used  and  oil  lost  during  bleaching 
is  about  0-22  cent  per  lb.  of  bleached  oil,  of  which 
about  half  represents  the  value  of  the  oil  lost.  The 
oil  is  deodorised  by  treatment  with  steam  for  1  hr. 
under  reduced  pressure  at  200°  C.  The  general 
arrangement  of  a  refinery  capable  of  handling  two 
batches  of  25,000  lb.  of  oil  a  week  is  described  and 
the  passage  of  the  oil  through  the  several  processes 
is  discussed.  The  cost  of  refining  maize  oil  in  such 
a  plant  is  given  as  1"6  cents  per  lb.,  this  figure 
including  chemicals,  oil  losses,  fuel,  labour,  and 
overhead  charges  (interest  on  plant  and  deprecia- 
tion of  both  plant  and  building).  The  value  of  the 
plant,  exclusive  of  the  building,  is  estimated  at 
$40,000.— H.  C.  R, 

Marine    animal    ails:    Estimation    of    highly    un- 
saturated fatty  acids  present  in .     F.  Gold- 

schmidt  and  G.  Weiss.  Z.  Dents.  Oel-  und 
Fettind.,  1922,  42,  19—22.  Chem.  Zentr.,  1922. 
93.  II.,  1062. 

Soap  prepared  from  hard  fat  from  marine  animal 
oils  emitted  after  standing  for  some  time  an  un- 
pleasant odour,  and  isolation  of  the  fatty  acids 
apparently  liberated  was  attempted  by  Tsujimoto's 
method  (<•/.  J.,  1920,  825  a).  Lithium  salts  soluble 
in  acetone  are  formed  not  only  by  the  highly  un- 
saturated fatty  acids  of  marine  animal  oils,  but 
also  by  the  products,  presumably  polymers,  obtained 
by  heating  these  acids.  Isomers  of  oleic  acid  may 
also  form  acetone-soluble  lithium  salts.  The  lithium 
method  cannot  be  employed  for  the  quantitative 
estimation  of  marine  animal  oils  in  the  presence 
of  products  prepared  from  them  by  heating.  A 
possible  quantitative  test  for  the  products  obtained 
by  heating  the  oils  consists  in  estimating  the  yield 
and  iodine  value  of  the  acetone-solul  le  lithium 
salts;  the  iodine  values  were  found  to  be  higher, 
with  the  exception  of  two  samples  of  cod-liver  oil 
heated  for  8—10  hrs.  at  280°  C.  than  that  of  oleic 
acid.— L.  A.  C. 

Iodine-bromine  value  [of  fat  si;  Estimation  of 

without  using  potassium  iodide.  L.  W.  Winkler. 
Z.  (Inters.  Nahr.  Genussm.,  1922.  43,  201—204. 

The  use  of  potassium  iodide  in  this  estimation  can 
be  avoided  by  treating  the  oil  or  fat  with  excess 
of  bromine,  adding  a  solution  of  arsenious  oxide 
and  titrating  the  excess  of  the  latter  with  potas- 
sium bromate  solution.  A  blank  determination  is 
carried  out.  using  the  same  quantities  of  reagents 
as  for  the  actual  determination  and  allowing  them 
to  react  for  the  same  length  of  time.  The  results 
are  almost  identical  with  those  obtained  from  using 
potassium  iodide  solution  according  to  the  original 
method  (Z.  Unters.  Nahr.  Genussm.,  1916.  32,  358). 

— H.  C.  R. 

Oxidation    of   aliphatic    hydrocarbons.      Granacher 
and  Scha u felberger.     See  IIa. 

Patents. 

Oil  from    rape  seed  and  the   like-;  Apparatus  for 

extracting   .      P.    Schneider.      E.P.    156,722, 

7.1.21.  Conv.,  25.1.19. 
The  apparatus  comprises  a  press  for  extracting 
the  oil  in  vacuo,  the  oil  being  withdrawn  into  a 
storage  chamber  in  which  the  vacuum  can  be  main- 
tained while  the  resulting  cake  is  being  removed 
from  the  press.  A  vacuum  chamber  is  provided 
between  the  vacuum  pump  and  the  press  and  also 
means  for  breaking  the  vacuum  in  the  press  without 
breaking  that  in  the  chamber.    The  press-plate  may 


4  74  a 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[June  00, 1922. 


be  mounted  on  a  sliding  carriage  for  convenience 
of  recharging,  the  compressed  cake  being  held  to 
the  head  of  the  press  until  in  such  a  position  that 
the  release  of  the  vacuum  will  allow  it  to  drop  down 
a   shoot.— H.   C.   R. 

Catalysts  [for  hydrogenating   oils];  Production   of 

metallic  nou-iii/ioplioric  .     C.  and  G.  Miiller 

Speisefettfabr.  A.-G.  E.P.  148,111,  9.7.20. 
Conv.,  7.2.19. 
A  metal  solution  is  precipitated  with  a  solution 
containing  borax  in  addition  to  the  usual  alkaline 
precipitants.  The  best  proportion  is  2  mols.  of 
alkaline  precipitant  to  1  mol.  of  borax.  The 
precipitate  is  reduced  in  a  current  of  hydrogen. 
Catalysts  thus  made  from  nickel  protoehloride  and 
nickel  protoxide  are  highly  efficient  for  the  hydro- 
genation   of  oils   and   are  non-pvrophoric. 

— H.   C.  R. 

Oils,  fols.  mill  tors;  Refining  mid  otherwise  treat- 
ing   .     H.   Plauson   and  J.   A.   Vielle.     E.P. 

178,183,  7.1.21. 
The  oily  material  is  emulsified  with  a  non-solvent 
such  as  water  and  is  separated  from  impurities  by 
ultra-filtration,  preferably  at  high  pressures.  The 
emulsion  may  be  formed  in  the  colloid  mill  (E.P. 
loo, 830;  J..  1922,  357  a)  and  the  filtration  carried 
out  in  an  ultra-filter-press  (E.P.  155,834),  the  pores 
of  the  filter-bed  being  from  O'OOOl  to  0-0005  mm.  in 
diameter.  Basic  heavy  metal  or  earth  compounds, 
such  as  barium  hydroxide,  may  be  added  before 
emulsification.  The  filtered  emulsion  may  be  broken 
by  treatment  with  1 — 5%  of  a  neutral  salt  or 
0-1—1%  of  an  acid  or  by  heating  to  50°— 100°  C. 
A  very  pure  bright  yellow  oil  is  obtained  in  this 
way  from  cottonseed  oil.  The  process  is  applicable 
also  to  mineral  oils  and  tars. — H.  C.  R. 

Soap;  Manufacture  of .     T.  M.  Godfrey,  Assr. 

to    The    N.K.    Fairbank   Co.      U.S. P.    1,414,015, 

25.4.22.  Appl.,  25.1.19. 
•  A  large  number  of  air  bubbles  is  disseminated 
throughout  the  soap  while  the  latter  is  in  a  molten, 
viscous  condition.  The  pressure  is  then  diminished 
so  as  to  cause  the  air  bubbles  to  expand  within  the 
mass  of  soap.  The  ma*s  is  then  allowed  to  cool.  The 
resulting  product  is  instantly  soluble  in  hot  water. 

— H.  C.  P. 

Oils  and  the  like;  Apparatus  for  the  extraction  of 

.      H.     Engel.      U.S. P.     1,415,433,     9.5.22. 

Appl.,  16.12.19. 

See  E.P.  140,513  of  1918;  J.,  1920,  417  a. 

Catalyzer  [for  hydro genating  oils'].  K.  H.  Whinner, 
Assr.  to  Hydrogeiiated  Oil  Co.  U.S. P.  1,416,249, 
16.5.22.    Appl.,  13.2.13. 

See  P.P.  454,501  of  1913;  J.,  1913,  870. 

Sulphoaromatic  substances  for  use  in  the  decom- 
position of  fats;  Process  of  producing  .     A. 

Godal.    U.S. P.  1,416,284,  16.5.22.    Appl..  15.4.19. 

See  E.P.  138,650  of  1920;  J.,  1921.  707  a. 


XIII.-PAINTS ;     PIGMENTS;    VARNISHES; 
RESINS. 

Aliuiitic  acid   [from    shellac]-      C.    Harries   and   W. 
Nagel.    Chem.  ITmsohau,  1922,  29,  135—137. 

The  acid  was  obtained  in  3d  -  yield  by  allowing 
5.Y  potassium  hydroxide  to  ad  on  shellac  in  the 
cold  for  12  hrs.  The  potassium  salt  separates  out 
and  the  acid;  m.ii.  100° — 101°  C,  is  obtained  from 
this  by  decomposing  with  sulphuric  acid  and  two 
ivcrystallisations   from    ethyl    acetate    and    alcohol, 


with  addition  of  animal  charcoal.  The  methyl  ester 
and  triacetyl  derivative  of  the  acid  were  prepared 
and  it  was  reduced  to  palmitic  acid  by  the  action  of 
hydriodic  acid.  It  is  therefore  trihydroxypalmitic 
acid  and  not  dihvdroxvtridecvlic  acid  as  stated  by 
Tschireh  {Die  Earze  ».  Harzebehalter,  II.,  251). 

— H.  C.  R. 

Abietic  mill.     Ruzicka  and   Meyer.     See  XX. 


Patents. 

Zinc  sulphide  [pigment];  Manufacture  of  anhydrous 

.     Fabr.  de  Produits  G'himiques  de  Thann  et 

de  Mulhouse.  E.P.  155,824,  11.12.20.  Conv.. 
16.12.19. 

Zixc  sulphide  is  precipitated  by  treating  an 
excess  of  a  solution  of  a  soluble  zinc  s;,|t. 
e.g.,  zinc  chloride,  with  barium  polysulphidj 
containing  less  than  one  atom  of  excess  sul_ 
phur  per  mol.  of  barium  sulphide.  The  pi 
tate  is  separated  bv  filtration,  washed,  dried  at 
100°— 120°  C,  and  heated  in  a  closed  vessel,  first 
to  300°  C.  until  all  the  zinc  oxide  present  is  con- 
verted by  the  excess  of  sulphur  into  zinc  sulphide, 
and  finally  to  700°  C.  The  heating  may  be  effected 
in  a  current  of  nitrogen  or  other  inert  gas,  and  the 
solution  of  zinc  chloride  may  be  prepared  by  the 
addition  of  barium  chloride  to  a  solution  of  zinc 
sulphate,  the  barium  sulphate  precipitated  being 
subsequently  converted  into  barium  polvsulphide. 

— L.  A.  C. 

Lithopone ;  Manufacture  of  .  J.  A.  Sing- 
master  and  F.  G.  Breyer,  Assrs.  to  The  New 
Jersey  Zinc  Co.  U.S. P.  1.414,793,  2.5.22.  Appl.. 
8.2.22. 

Lithopone  is  calcined  in  a  horizontal  tubular 
furnace  by  passing  over  it  a  current  of  non-reai  tin 
gas,  previously  heated  to  the  temperature  at  which 
it  is  desired  to  effect  the  calcination. — A.  R.  P. 

Antimony  sulphide;  Method  of  making  precipitated 

.    A.  L.  Stark,  Assr.  to  The  Stibium  Products 

Co.  U.S. P.  (a)  1,414,836  and  (b)  1,414,837,  2.5.L'i. 
and  (c)  1,415,127,  9.5.22.  Appl.,  (a)  12.11.19, 
(b)  1.6.20,  and  (c)  17.9.21. 

(a)  Finely  ground  stibnite,  sulphur,  and  quicklime 
are  made  into  a  paste  which  is  heated  with  wal 
an  autoclave  under  pressure.    The  resulting  calcium 
thioantimonate  solution  is  treated  with  acid  to  pre- 
cipitate antimony  pentasulphide.     (b)  The  lime  in 
(a)    is    replaced    by   another   compound    capable   ol 
forming   soluble   thioantimonates,    such   as   barium 
oxide,  and  the  mixture  is  heated  bv  steam  injection 
to   145°— 155°    C.    under   60— so   lb.    pressur< 
Finely-ground  stibnite,   sulphur,   barium  sulphidi 
and   an   oxygen  compound   of  an   alkali   metal  an 
heated  with  water  in  an  autoclave  under  pressure, 
and  the  resulting  solution  is  treated  with  sulphurii 
acid  to  precipitate  a   mixture   of  barium  sul 
and  antimony  pentasulphide. — A.  R.  P. 

Pilhr.   loading,   base,   compounding 

,m  nl  a,   the  like.     H.  R.  Rafskv.     E.P.  K 
11.1.21. 

A  mixture  of  slaked  or  unslaked  calcium  and 
nesitim  oxides,  produced,  e.g.,  by  calcining  dole 
is   treated  in   the  presence  of  water  with  an  alkali 
carbonate,    e.g.,    with    a    slight    excess    ■ 
carbonate  over  that  required  to  convert  the  calcium 
oxide     into     calcium     carbonate.       The     liquor 
agitated  and  boiled,  and  the  product  is  subset 
filtered  and  washed.       The  moist  product   n 
mixed  with  an  adhesive  and  used  for  coating 
hotly  stock,  or  it  may  l>e  dried  and  used  in  thi 
duction  of  lakes  and  pigments,  or  as  a  tiller 
manufacture  of  various  compositions. — L.  A.  C. 


Vol.  XLL,  No.  12.]  Cl.  XIV.— INDIA-RUBBER,  &o.     Cl.  XV.— LEATHER  ;    BONE,  &c. 


470  a 


Besin  soap;  Method  for  the  emulsifieation  of  

in  water.  O.  Kamin,  Assr.  to  American  "Writing 
Paper  Co.  U.S.P.  1,415,363,  9.5.22.  Appl.,  23.4.19. 
Resin  size  containing  free  resin  is  incorporated 
with  water  in  the  proportion  required  to  yield  at 
the  operating  temperature  a  practically  clear  size- 
in-water  emulsion.  The  emulsion  is  stable  at 
approximately  the  boiling-point,  and  can  lie  diluted 
to  any  extent  by  introduction  while  hot  into  addi- 
tional water. — L.  A.  C. 

.1/.  tul  alginates;  Method  of  prod  mint/  gelling  

and  product  derived  therefrom.  Alginate  compo- 
sition and  article.  B.  F.  Erdahl.  U.S.P.  (a) 
1,415,849  and  (b)  1,415,850,  9.5.22.  Appl.,  (a) 
30.9.20,  (b)  5.12.21. 

(a)  A  metal  compound  is  treated  with  sodium 
alginate,  and  after  removing  impurities  from  the 
product,  a  substance  is  added  capable  of  transform- 
ing the  product  into  a  colloidal  alginate-metal  gel, 
all  the  reactions  being  performed  in  the  cold,  (b) 
Cellular  or  pervious  material  is  filled  or  coated  by 
treatment  with  a  colloidal  alginate  gel. — L.  A.  C. 

Paints;   Manufacture   of .      R.    Trails.       G.P. 

350,485,  21.5.20. 

I  Sapropel,   which  occurs   in  considerable  quantities 

I  in  lakes,  after  removal  of  solid  and  fibrous  material, 

j  is  mixed  with  natural  or  artificial  dyesfuffs,   with 

l  the    addition     of     precipitants     such     as     iron     or 

chromium    compounds     if    mordant    dyestuffs    are 

employed,   and   the   product    is   ground   with  water, 

oil.  adhesives,  varnish,  or  the  like. — L.  A.  C. 

Coil, ni,  for  pigmental  ami  other  purposes;  Manu- 
facture  of  .     J.   Nelson.     U.S.P.    1,111  182, 

2.5.22.     Appl.,  7.5.21. 

See  E.P.  172,035  of  1920;  J.,  1922,  65  a. 

J&esinous  phenol  formaldehyde  condensation  pro- 
ducts; Manufacture  of  .      C.   Kulas  and  C. 

Pauling.     E.P.  159,494,  1.12.20.     Com-.,  23.2.20. 

See  U.S.P.  1,414,139  of  1922;  J.,  1922,  425 A. 

Grinding  points,  enamels,  inks,  and  similar  sub- 
stances; [Mechanical]  improvements  in  mills  foi 
.     S.  Smith.     E.P.  178,550,  18.1.21. 

Coating  wire  with  varnish  and  the  like;  Apparatus 

for  .     British   Cellulose   and   Chemical   Mfg. 

Co.,  Ltd.,  and  AY.  A.  Dickie.  E.P.  178,909, 
20.1.21. 

Dyestuff  for  lakes.     G.P.  350,322.     See  IV. 


XIV.-INDIA-BUBBEB ;  GUTTA-PEBCHA. 

Rubber    latex;]    Partial    coagulation    [of    ]. 

H.   P.   Stevens.     Bull.   Rubber  Growers'   Assoc., 
1922,  4,  196—197. 

By  adding  to  latex  one-third  of  the  usual  proportion 
if  acetic  acid  and  subsequently  completing  coagu- 
ation  by  the  addition  of  the  remainder  of  the  acid, 
t  was  possible  to  separate  the  rubber  into  two  frac- 
tions. The  first  fractions,  which  contained  the  bulk 
if  the  rubber,  were  generally  darker  and  showed  a 
greater  tendency  to  "spot  disease";  they  also 
ulcanised  a  little  more  rapidly  and  exhibited 
ppreciably  higher  breaking  strain. — D.  F.  T. 

Rubber]  later;  Coagulation  of with  "  toddy-." 

H.  P.   Stevens.     Bull.   Rubber   Growers'   Assoc, 
1922,  4,  197. 

ilfOKBD  sheet  rubber  which  had  been  prepared  from 
libber  coagulated  by  the  addition  of  600  c.c.  of 
aturally  fermented  "  toddy  "  to  3000  c.c.  of 
tandardised  latex,  vulcanised  at  approximately  the 


same  rate  as  standard  crepe  rubber,  but  in  other 
respects  exhibited  the  normal  properties  of  smoked 
sheet  rubber.— D    F.  T. 

Icevulinic  aldehyde  from   oxidised  rubber.     G.   S. 

Whitby.     Indiarubber  J.,  1922,  63,  712. 
The  substance  responsible  for  the  pyrrole  reaction 
in  tacky  rubber  is  lajvulinic  aldehyde,  which  can  be 
identified  by  its  pyridazinone  (compare  Bruni  and 
Pelizzola,    Indiarubber    J.,    1922,    63,    415-    Have 
ibid.,  535).— D.  F.  T. 

Rubber;  Natural  and  artificial  ageing  of  vulcanised 

.     G.  Bruni.    Indiarubber  J.,  1922,  63,  814. 

Strips  of  vulcanised  rubber  enclosed  in  sealed  glass 
bulbs  containing  oxygen  and  maintained  at  77°  C. 
for- ten  days  gave  a  positive  pyrrole  test  indicative 
of  the  formation  of  laevulinic  aldehyde.  "  Artificial 
ageing,"  therefore,  gives  rise  to  the  same  products 
as  the  natural  process  at  the  ordinary  temperature, 
but  in  Geer  and  Evans'  method  for  the  former  (J., 
1921,  479  a)  the  current  of  air  removes  the  laevulinic 
aldehyde  as  it  is  formed. — D.  F.  T. 

Patents. 

Rubber  cm, pound;  Halogenated  and  method 

of  preparing  the  same.  C.  W.  Bedford  and 
W.  J.  Kelly,  Assi-s.  to  The  Goodyear  Tire  and 
Rubber  Co.  U.S.P.  1.377.152.  3.5.21.  Appl.. 
18.9.19. 

Halogenated  rubber  compounds  containing  com- 
bined sulphur,  and  in  which  the  halogen  has  com- 
bined by  substitution,  are  prepared,  for  example, 
by  dissolving  raw  rubber  in  carbon  tetrachloride, 
adding  sulphur,  and  treating  with  chlorine;  by 
adding  sulphur  chloride  to  a  solution  of  raw  rubber; 
by  treating  a  solution  of  raw  rubber  with  carbon 
bisulphide  and  chlorine;  by  treating  vulcanised 
rubber,  e.g..  scrap,  to  remove  free  sulphur  and  then, 
preferably  after  plasticising  it,  dissolving  it  in 
carbon  tetrachloride  or  the  like,  and  treating  with 
chlorine. 

Rubber-like    substances;    Process  for   manufacture 

of .     H.  Plauson.     U.S.P.  1,415,468,  9.5.22. 

Appl.,  13.1.21. 

See  G.P.  329,593  of  1918;  J.,  1921,  270  a. 


XV.-LEATHEB;  BONE;   H0BN;   GLUE. 

Plumping   of   hides:   Factors    influencing    the 

in  tan   liquors.     W.  R-.  Atkin.     J.  Soc.  Leather 
Trades  Chem.,  1922.  6,  138— 14-1. 

Hide  combines  with  acids  to  form  hide-acid  com- 
pounds, which  can  ionise  and  so  exert  osmotic 
pressure,  thus  tending  to  cause  the  hide  to  swell. 
The  ionised  acid  remaining  in  the  external 
equilibrium  solution  exerts  a  back  osmotic  pressure 
which  reduces  swelling.  If  the  concentration  of 
the  external  acid  is  reduced  there  will  be  more 
hydrolysis  of  the  hide-acid  compound  and  the 
swelling  action  arising  from  the  ionisation  of  the 
hide-acid  compound  will  be  reduced.  The  cohesion 
of  the  hide  tends  to  prevent  swelling.  The  total 
acidity  oif  a  tan  liquor  is  reduced  by  the  neutralisa- 
tion of  lime  in  the  hides.  The  hydrion  concentra- 
tion is  similarly  reduced.  Neutral  salts  cause  a 
back  osmotie  pressure  which  represses  swelling. 
Salts  at  2V/50  concentration  exert  an  appreciable 
repressing  action  on  hide  powder  swollen  by  acid. 
Tannins  are  weaker  acids  than  lactic,  acetic,  etc. 
acids  but  the  production  of  insoluble  hide-tannin 
compounds  favours  combination  thus  reducing  the 
amount  of  hide-acetate  or  hide-lactate  formed,  and 
consequently  reduces  the  amount  of  the  swelling  of 
the  hide  in  the  acid  tan  liquors.  The  more 
astringent  the  tannin  the  more  readily  it  combines 


4  70a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[June  30,  1922. 


with  the  hide  and  the  greater  the  swelling  is 
repressed.  Experiments  are  quoted  to  confirm  the 
sive  effect  of  stronger  tannin  solutions. 
Tanners  should  determine  the  total  acidity,  the 
hydrion  concentration,  and  the  degree  of  swelling 
ot  hide  powder  in  the  tan  liquors  (<•/.  J.,  1921, 
781  a).— D.  W. 

Tannin    solutions;    Colour    measurements   of  • 

Report  of  committee  of  Amer.  Leather  ('hem. 
Assoc.  T.  Blackadder.  .1.  Amer.  Leather  Chem. 
Assoc.,  1922,  17,  206—210. 
The  amount  of  blue  light  transmitted  by  solutions 
of  tanning  extracts  alone  or  mixed  with  small 
quantities  of  iron  or  of  alkali  is  negligible,  hence 
its  measurement  is  unnecessary.  The  visibility  is 
highest  in  the  green  and  yellow  regions  of  the 
spectrum.  The  Hess-Ives  colorimeter  is  compli- 
cated and  a  modification  of  the  immersion  type  of 
colorimeter  is  described,  in  which  the  thickness  of 
the  solution  layer  can  be  altered  by  raising  or 
lowering  a  glass  plunger  in  the  solution  contained 
in  a  cup  with  a  glass  bottom.  Colour  filters  should 
be  employed  to  enable  the  three  regions  of  the 
spectrum  to  be  examined  independently. — D.  W. 

Formaldehyde  tannage.  A.  M.  Hey.  J.  Soc. 
Leather  Trades  Chem.,   1922,  6,   131—136. 

EXPERIMENTS  were  carried  out  with  formaldehyde 
solutions  containing  different  amounts  of  alkali 
or  acid  so  as  to  produce  a  definite  range  of 
/>„  value.-.  Alkali  is  not  necessary  to  tihe  formalde- 
hyde tannage,  but  the  pelt  should  be  on  the 
alkaline  side  of  the  iso-electric  point  of  collagen. 
The  tannage  is  prevented  by  too  high  a  concen- 
tration of  hydroxyl  ions.  The  best  leather  was 
produced  in  a  solution  of  pn  7'2  with  pelt  of  p„  7'8. 

— D.  W. 

Leather;  Sampling  of  -  -  for  chemical  analysis. 
K.  C.  Bowker  and  E.  L.  Wallace.  J.  Amer. 
Leather  Chem.  Assoc,  1922,   17,  217—220. 

Results  obtained  by  averaging  the  results  of 
analyses  of  average  samples  from  each  of  fifteen 
bends  were  compared  witlh  the  calculated  averages 
as  suggested  in  the  report  of  the  committee  of  the 
Amer.  Leather  Chem.  Assoc,  on  the  sampling  of 
leather  and  its  preparation  for  analysis  (cf.  J.,  1921, 
781  a).  The  comparisons  confirm  the  work  of  that 
committee. — D.  W. 

Leather;  Determination  of  water-soluble  [matter] 
in  -  — .  Report  of  Committet  <•]  American 
Leather  Chem.  Assoc.  G.  AY.  Schultz.  J.  Amer. 
Leather  Chem.  Assoc,  1922,   17,  220—242. 

The  present  American  official  method  for  the  de- 
termination of  water-soluble  matter  in  leather  gives 
results  which  have  no  meaning.  Wear  tests  en  sc>]< 
leather  show  that  most  of  the  salts  and  ot  the 
glucose,  but  only  a  small  proportion  of  the  tanning 
material,  are  washed  out  in  the  water-soluble 
matter,  under  conditions  of  wear.  The  amount 
oi  tanning  material  extracted  in  the  official  method 
mi  determining  water-soluble  matter  is  greater  than 
that  present  in  the  leather  through  the  occlusion 
of  tanning  liquor.  The  excess  of  tanning  material 
extracted  from  leather  at  50°  C.  over  that  extracted 
at  2-5°  C.  is  largely  tannin.  The  water-soluble 
matter  should  be  defined  as  that  portion  of  the 
leather  which  is  soluble  in  water  and  which  is  in 
no  way  combined  with  the  hide  or  leather  fibre. 
The  percolation  method  at  25°  C.  and  using  1  1.  of 
water  for  a  30-g.  sample  is  recommended. — D.  W. 

Acid  in  leather;  Determination  of  -  — .  J.  S. 
Rogers.  J.  Amer.  Leather  Ohem.  Assoc,  1922, 
17.  204—206. 

The  author  has  determined   the  free  mineral  acid 


present  in  sole  leather  during  various  stages  of  the 
tanning  process,  and  concludes  that  hides  tanned 
under  normal  conditions  should  not  show  excessive 
content  of  free  acid  by  the  modified  Procter-Searle 
method  (J.  Amer.  Leather  Client.  Assoc.  1919,  14, 
330).  Sulphur  from  the  hide,  sulphides  in  liming 
liquors,  iron  and  alumina  in  the  hides,  limes,  and 
tanning  materials,  and  sulphites  and  bisulphites 
from  bistilphited  extracts  are  not  responsible  for  free 
acid  in  the  finished  leather.  The  use  of  sulphonated 
oils  does  not  increase  the  acid  content.  The 
alkaii  land  acid  bleach  is  the  source  of  the  free  acid 
found  in  some  leathers. — D.  W. 

Patents. 
Tanning  materials;  Manufacture  of ami  pro- 
cess ot  tanning  therewith.  Chem.  Fabr.  Worms 
A.-G.  E.P.  156,749,  7.1.21.  Conv.,  25.10.16. 
Heavy  coal-tar  oil,  tar  phenols,  phenol,  creosote 
oil,  or  the  like,  or  mixtures  of  these  or  any  organic 
compounds  which  can  he  converted  into  tanning 
agents  by  means  of  sulphuric  acid  and  formalde- 
hyde, are  sulphonated  and  condensed  with  formalde- 
hyde, the  product  is  neutralised  with  slaked  lime 
filtered,  decomposed  with  sodium  carbonate, 
filtered,  and  the  filtrate  run  into  a  solution  of 
chromium,  iron,  or  aluminium  chloride  or  other 
salt  containing  2  molecular  proportions  of  the  sail 
for  each  molecular  proportion  of  the  tanning 
material. — D.  W. 

Tannin;  Method  of  ami  apiKiratus  for  tin'    i  i 

tion  nf  frmn   tanstuffs.     W.  A.  Fraymoutli. 

J.    A.     Reavell,     and    Kestner    Evaporator    and 
Engineering  Co.,  Ltd.     E.P.   178,138-9,  5.10.20. 
The  coarser  material  is  leached  in  one  or  mor< 
and  the  liquor  is  pumped  into  another  pit  where  it 
is  agitated  with  the  dust,  fine  particles,  crushed  or 
milled   tanstuffs   by   means   of  gas   "  uplift "  tube- 
or  otherwise.     The  first  pits  may  be  separate,  or 
pits    divided    into    quiescent    and    agitation    zones 
may  be  used.     The  further  introduction  of     liquoi 
from  tihe  leach  pits  or  quiescent  zones  cause 
liquor    in    the    agitation    zone    to    flow     into    the 
quiescent  zone  of  the  next  pit  in  the  series,  and  - 
on   until   finally  a  clear,  strong  liquor   is  obtained 
The    liquor    may    he    heated    in    the    intermediate 
quiescent  zones  of  the  series  before  passing  to  the 
next   agitation  zone. — D.   W. 

Artificial  leather;  Non-cracking  coating  composition 

and made  therewith.    J.  E.  Boogo.  Assi 

E.    I.    du    Pont   de    Nemours    and    Co.      U.S. P. 
1,412,770,  11.4.22.    Appl.,  13.6.18. 

The    composition    consists    of    nitrocellulose    jelly 
blown    cottonseed    oil,    and   a    non-volatile   solvent 
containing   esters   of   the   lower   alcohols   wit! 
mixed  fatty  acids  of  coconut  oil. — D.  J.  X. 

Shark    shins    and    the    like;    Treating    .      A 

Bogei's,  Assr.  to  Ocean  Bond  Co.  Inc.  U.S.P 
1.112,968.18.4.22.  Appl.,  10.6.21.  (Cf.  U.S.P 
1,395,773;  J..  1922,  25  a. 1 

The  dermal  armour  of  shark  skins  and  the  like  i- 
removed    by    treating    the    skins    with    a     stniii_ 
solution    of    nitre-cake    and    subsequently    with 
strong   solution   of   common   salt   to  remove  e*  i  • 
acid— D.  W. 

Tanning.  A.  Rbmer  and  L.  Blangey,  Assrs.  ti 
Chemical  Foundation.  Inc.  U.S.P.  1,414,0*5 
25.4.22.  Appl.,  2.9.16. 
Hides  are  treated  with  a  solution  of  a  sulphoni 
acid  of  an  aromatic  hydrocarbon  containing  two 
aromatic  nuclei  united  by  at  least  one  polyvalent 
atom.—  D.    W. 


Vol.  XLL,  Xo.  12 .]  Cl.  XV7!.— SOILS,  &c.     Cl.  XVII.— SUGARS  ;    STARCHES;    GUMS. 


477  A 


Tanning    material;    Manufacture    of    a    .      C. 

Sorger.        1.8. P.      1,414,312,     2-5.4.22.       Appl., 

25.6.21. 
Thickened  sulphite-cellulose  waste  liquor  is  treated 
with      sufficient      of      an      alkali      bisulphate      to 
precipitate  the  whole  of  the  lignosulphonie  acid  as 
the  alkali  salt.— D.    \V. 

Tanning  liides  and  skins.  E.  W.  Merry,  Asm-,  in 
Pyrotan  Leather  Corp.  V  S.P.  1,415,671,  9.5.22. 
Appl..  11.2.19. 
Leather  resistant  to  heat  and  moisture  is  pro- 
duced by  treating  hides  successively  with  a  solution 
containing  a  soluble  pyrophosphate  and  a  solution 
containing  a  quantity  of  chrome  liquor  varying  from 
]  to  8      of  the  weight  of  the  hides. — L.  A.  ('. 

XVI.-SOILS ;  FERTILISERS. 

So»7s,  Evaporation  from under  natural  con- 
ditions. M.  Helbig  and  O.  Rossler.  Allg.  Forst. 
Jagdzeit..  1921.  201.  Z.  Prianz.  Dtimz.,  1922, 
[A],  1,  95—102. 
The  rate  of  evaporation  of  water  from  soils  under 
natural  conditions  was  studied  by  passing  currents 
of  air  over  the  surface  under  different  conditions  of 
soil  treatment  and  estimating  the  amount  of 
moisture  in  the  air  hygrometrically  before  and  after 
passage.  The  results  obtained  confirm  earlier 
observations  on  the  effect  of  temperature  and 
humidity  on  evaporation.  Changes  in  rate  of 
evaporation,  however,  lag  behind  temperature  and 
humidity  changes.  Evaporation  during  radiation 
from  the  soil  is  proportional  to  the  saturation 
deficit  of  the  air.  'When  the  soil  is  absorbing 
radiation  variations  occur.  From  natural  soils  with 
undisturbed  structure  evaporation  is  less  than  from 
"  artificial  "  soils. — G.  W.  R. 

Nitrogen  assimilation  [by  plants];  Activity  of  roots 

in  the  process  of  .     A.  dc  Dominicis  and  F. 

Gangitano.  Staz.  Sperim.  Agrar.  Ital.,  1921, 
54,  425—436.  Chem.  Zentr..  1922.  93,  I.,  1112— 
1113. 
Horse  beans,  maize,  garden  beans,  wheat,  and 
peas  were  germinated  in  sterile  sand  and  after- 
ward- grown  in  water  cultures.  Comparisons  were 
'made  of  plants  grown  with  no  nitrogen  in  the 
nutrient  medium,  and  with  sodium  nitrate  with 
tnd  without  dextrose,  with  ammonium  sulphate, 
and  with  asparagine.  respectively.  Roots,  stems 
ind  leaves  were  separately  dried  and  determina- 
ions  made  of  total  nitrogen,  protein-nitrogen  and 
irganic  nitrogen.  In  the  cultures  containing 
-odium  nitrate  the  roots  contained  considerably 
nore  nitrogen  than  in  the  water  cultures.  The 
olloidal  nature  of  the  plasma  probably  brings 
ibout  adsorption  which  is  increased  by  the  presence 
>f  dextrose. — A.  G.   P. 

iupins;    Effort    of    nitrogenous    fertilisers    on    the 

alkaloid  content  of  .     Vogel  and  E.  "Weber. 

Z.  PHanz.  Diing.,  1922.  [A],  1,  85—95. 

>lue  and  yellow  lupins  receiving  nitrogen  through 
!he    agency    of    nodule    bacteria     contain     larger 

mounts  of  alkaloids  than  similar  plants  receiving 

itrogen  from  nitrogenous  fertilisers.  Inoculation 
ith  "  azotogen  "  and  "  nitragin  "  gave  satisfac- 
>ry.  "  azoutrin  "  less  satisfactory,  and 
legumin  "  unsatisfactory  results.     A   method  for 

te  estimation  of  alkaloids  in  lupins  is  described. 
7.  Mach  and  Lederle,  J.,  1921,  825  A.)— G.  W.  R. 

line;  Influence   of  on    the   yiehl   from    seeds 

(hiring   the    germination    period.     L.    Maquenne 
and   R.    Cerighelli.      Comptes   rend.,    1922,    174, 
1269—1272. 
>'  general   the   loss  in   weight  of   the   actual   seed 


during  germination  is  greater  for  seeds  germinat- 
ing in  the  presence  of  traces  of  calcium  in  the  form 
of  calcium  sulphate  than  it  is  for  seeds  germinating 
in  pure  water.  The  yield  of  growth,  referred  to 
the  initial  dry  weight  of  the  seed,  is  always  much 
greater  for  germinations  in  the  presence  of  calcium 
than  for  those  in  pure  water,  but  if  referred  to  the 
loss  in  weight  of  the  seed  itself  then  there  is  verv 
little  difference  in  the  yields  under  the  two  sets  of 
conditions. — W.  G. 


XVII.-SUGARS  ;    STARCHES;  GUMS. 

Reducing     sugars;    Determination     of    .       T. 

Bonwetsch.       Centr.       Zuckerind.,      1922,      30. 

495—496. 

After  the  reduction  of  the  Folding's  solution 
following  the  Herafeld  or  other  method,  the 
cuprous  oxide  is  dissolved  from  the  filter-paper,  and 
converted  into  cuprammonium  sulphate.  the 
amount  of  the  latter  compound  being  determined 
colorimetrically. — J.  P.  O. 

Reducing     sugars;     lodometric    determination     of 
— .      E.    Kunz.      Centr.    Zuckerind.,    1922,   30, 
802. 

When  differences  in  parallel  determinations  with 
Bruhns'  method  (J.,  1920,  829  a)  are  observed  thev 
arc  more  likely  to  lie  due  to  irregularities  in  the 
tune  of  heating  than  to  any  difficulty  in  recognising 
the  end-point  in  the  actual  til  ration  of  the  amount 
of  the  copper.  It  is  not  easy  to  judge  the  exact 
moment  at  which  boiling  actually  commences,  and 
an  error  of  10  sec.,  that  is  8  ,  of  the  total  duration, 
can  readily  occur.  The  author  agrees  with  Beyers- 
dorfer  (.1.,  1920,  554  a)  that  the  table  given  by 
Bruhns  for  the  calculation  of  the  percentage  of 
invert  sugar  in  the  presence  of  varying  amounts  of 
sucrose  is  unreliable  so  far  as  the' lowest  amounts 
of  invert  sugar  are  concerned:  and  this  is  due 
mainly  to  the  uncertainty  in  judging  the  time  of 
heating.— J.  P.  0. 

"Caramel"     in     cane     sugar     factory     products; 

Methods    for    the    determination    of    .      M. 

Kauffman.  Archief  Suikerind.  Xederl.  -Indie 
1920,  28,  2027—2042.  Int.  Sugar  J.,  1922,  24, 
266. 

The  method  of  Fradiss  (J.,  1898,  1162),  in  which  the 
molasses  or  other  product  is  dried,  extracted  with 
methyl  alcohol,  and  the  extract  precipitated  with 
ainyl  alcohol  or  chloroform,  gives  results  higher 
than  the  truth,  some  sugars  and  mineral  matter 
being  present  in  the  precipitate  obtained.  More 
reliable  results  are  probably  possible  if  the  molasses 
is  previously  fermented.  On  applying  Ehrlich's 
method  (J.,  1910,  506)  the  samples  of  molasses 
examined  could  not  be  compared  with  the  saccharan 
solution,  owing  to  their  haziness,  while  it  was 
apparent  also  that  substances  other  than  caramel 
contributed  to  the  colour  nt  the  factory  product. 
Vermehren's  method  (Deut.  Zuckerind..  1911.  679), 
in  which  diluted  molasses  is  shaken  with  calcined 
magnesia  to  absorb  caramel  from  solution,  a  com- 
parison with  the  untreated  molasses  of  the  same 
concentration  indicating  the  amount  removed,  was 
found  untrustworthy  in  the  case  of  cane  molasses, 
since  only  a  small  amount  of  caramel  colouring 
matter  was  thus  eliminated. — J.  P.  O. 

Invert  sugar  in   honey;  Detection  of  .     S.  F. 

Sherwood.  J.  Assoc.  Off.  Agric.  Chem.,  1922,  5, 
420—435. 

A  method  (<•/.  Shannon,  Assoc.  Off.  Agric.  Chem.. 
Methods,  1920,  112)  for  the  detection  of  commercial 
invert  sugar  syrup  in  honey  is  actually  a  test  for 


478  a 


Cl.  XVIII.— FERMENTATION  INDUSTRIES.      Cl.  XIXa.— foods. 


[June  30,1922. 


furfural  or  certain  derivatives  and  depends  upon 
the  usual  colour  changes  obtained  with  resorcinol  or 
aniline  hydrochloride  under  standard  conditions.  It 
is  known,  however,  that  solutions  of  lievulose  when 
heated  at  a  high  temperature,  especially  in  presence 
of  acids,  give  some  oxymethylfurfural.  In  view  of 
1 1 1 1  —  fact  an  examination  was  made  of  honey  which 
had  been  heated  to  comparatively  high  tempera- 
tun  -  (98-3°  C.  for  J  hour)  by  the  above  tests.  With 
such  honey  generally  a  negative  reaction  was 
obtained  with  the  reagents  by  different  operators. 
A  positive  result  would  indicate  the  presence  of 
adulteration  by  invert  sugar  or  a  honey  which  had 
excessively  heated. — J.  R. 

Patents. 

Decolor  ising  li<iiiids  [sugar  juices];  Process  for . 

J.  F.  Straatman.     E.P.  174,027,  19.2.21.     Conv., 
13.1.21.     Addn.  to  172. 272  (J..   1922,  429.0. 

Salts  of  foiinaldehydesulphoxylie  acid  soluble  in 
the  liquid  are  used  as  reducing  agents  in  the 
process  described  in  the  chief  patent.  They  are 
stable  both  in  the  solid  and  dissolved  state  and  have 
much  greater  reducing  capacity  than  ordinary 
reducing  agents.  There  is  no  separation  of 
sulphur  in  a  weakly  acid  or  neutral  medium.  The 
formaldehyde  also  has  a  coagulating  effect  mi 
albuminous  and  pectinous  substances  and  so  aids  in 
clarifying  the  juices. — H.  C.  R. 

Sugar;  Manufacture  of direct  from  the  juice. 

E.  Delafond.    E.P.  17^.1^.  6.12.20. 

See  U.S. P.   1,371.997  of  1921;  J.,  1921,  362  a. 


XVIH.-FEfiMENTATION  INDUSTRIES. 

Barley  parasite;  Chemico-therapeutics  of  the  . 

A.  Binz  and  H.  Bausch.     Z.  angew.  Cbem.,  1922, 
35,  241—243. 

The  chemico-therapeutic  index  (i.e.,  curative  dose 
-atoxic  dose)  of  a  number  of  parasiticides  or  barley 
infected  with  Ustilago  hordei  has  been  examined. 
The  curative  dose  was  determined  by  shaking 
small  amounts  of  the  parasiticide  with  solutions 
containing  different  concentrations  of  the  chemical 
under  investigation,  filtering  after  '  hr.,  and 
transferring  the  culture  to  a  0'5  :  solution  of 
calcium  nitrate.  A  test  was  taken  daily  from 
this  solution  and  examined  in  the  usual  nay 
to  find  the  proportion  of  dead  spores.  The  toxic- 
dose  was  determined  by  finding  the  concentration 
of  the  parasiticide  that  just  prevented  the  barley 
grains  from  germinating.  Atoxyl,  salvarsan,  neo- 
salvarsan,  arsenious  acid,  and  3-amino-4-hydroxy- 
phenylarsinoxide  were  found  to  have  an  index 
greater  than  1  and  were  therefore  useless. 
"  Uspulun  "  and  formalin  have  an  index  of  1/4 
and  1/5  ami  kill  the  parasite  in  05%  and  0"1% 
solution  respectively.  A  substance  has  been  found 
with  an  index  of  1  40  which  kills  the  parasite  in 
0'05%  solution,  and  large-scale  tests  are  now  being 
carried  out  with   it. — A.   R.   P. 

Yeast :  Dried .    H.  von  Euler  and  K.  Myrback. 

Z.   physio!.   Chem..  1921,   117.  28 — 41. 

The  fermenting  powers  of  a  dried  top-fermentation 
yeast  (SB  II)  and  of  a  dried  bottom-fermentation 
yeast  (II)  in  a  medium  containing  0'7%  PO,  w„  1*5) 
were  investigated,  tests  being  made  with  sucrose, 
maltose,  invert  sugar,  and  dextrose.  With  the 
bottom-fermentation  yeast  and  sucrose,  the  increase 
in  the  velocity  of  fermentation  with  time  was  con- 
siderably less  with  smaller  quantities  of  yeast  than 
with  larger  quantities.  Under  the  experimental 
conditions  there  was  no  increase  in  the  number 
cl   veast  cells,  hence  the  increase  in  velocity  of  fer- 


mentation must  be  due  to  increased  activity  of  the 
yeast.  The  zymase  from  1  g.  of  dried  yeast,  which 
ha<l  been  heated  to  78°  C.  to  render' the  zymase 
inactive,  was  brought  to  its  maximum  activity  by 
addition  of  the  "activators  "  extracted  from  8  g. 
of  the  same  dried  veast  by  2  phosphate  solution 
(25      c.  to  1  g.)  at  70°— 78°  C— S.  S.  Z. 

Patents. 

Diastase  or  a  solution  of  diastase;  Process  for  the 

production  of .   K.  Kashiwagi.    E.P.  179,012. 

24.2.21.  '      ' 

Dry  germinated  grain  is  crushed  and  then  soaked 
in  water  until  all  soluble  substances  are  extracted 
The  residue  alone,  or  mixed  with  bran  or  corn 
products  from  which  starch  has  been  removed.  ■ 
successively  pressed,  steamed,  and  then  cooled.  A 
small  quantity  of  Aspergillus  oryza  is  then  added 
and  the  mixture  kept  at  a  suitable  temperature 
and  humidity  for  a  given  period.  The  diastase 
formed  is  extracted  by  an  appropriate  solvent 
and  the  solution  filtered.  The  diastase  may  be 
precipitated  from  the  filtrate,  washed  with  alcohol 
or  a  mixture  of  alcohol  and  ether,  and  dried. — J.  R. 

Colouring  medium  for  beers  and.  like  liquors:  Pro- 

cess   for    the.    production    of   a   .      H.    Luers 

E.P.   157,862,  10.1.21.     Conv..   17.12.19. 

See  G.P.  347.891  of  1919;  J.,  1922,  431  a. 

Glycerin;  Process  for  the  continuous  distillation  of 

from   the   weal  glycerinous  liquors  obtained 

in  fermentation  processes.    E.  A.  Barbet.    USP 
1,416,318,  16.5.22.    Appl.,  25.6.19. 

See  E.P.  129.649  of  1919;  J..  1921.  274  a. 

Yeast;  Derice  for  collection  of and  sepai 

of     heir     therefrom.     P.      W.      Norman.     E.P. 
178.637.   16.2.21. 

Alcohol  fuel.    E.P.  178,373.    Sec  IIa. 


XIXa-FOODS. 

Meat    preparations,    especially   meat   with    a   high 

content   of   moisture:   Composition    of  .     K. 

Feder.      Z.    Unters.    Nahr.    Genussm.,    1922.    43. 
193—199. 

Meat  from  very  underfed  or  diseased  cattle  showed 
a  strongly  increased  content  of  water,  increased 
ratio  number  (ratio  of  organic  non-fat  to  water). 
and  very  low  fat  content.  The  saponif.  value  ami 
other  constants  of  the  fat  present  will  give  indica- 
tions of  the  state  of  nourishment  of  the  beast.  In 
cases  of  marked  underfeeding  fat  is  almost  absent 
from  the  whole  body,  but  considerable  quantities 
of  cholesterol  are  found  in  the  ether  extract.  The 
water-soluble  nitrogen  and  nitrogen  remaining  in 
solution  after  treatment  with  trichloroacetic  add 
("  residual  nitrogen  ")  were  determined  in  i 
number  of  meat  samples.  Six  samples  from  sound 
heists  with  a  ratio  number  of  less  than  1  g! 
ratio  of  soluble  to  "residual"  nitrogen  of  more 
than  45  .  In  the  case  of  several  samples  with 
increased  ratio  numbers  the  ratio  of  soluble  to 
"  residual  "  nitrogen  was  :i-  low  as  33'1  .  In  the 
case  of  meat  samples  poor  in  fat  it  is  unreliable 
in  obtain  the  fat-content  by  difference. —  H.  C.  !>• 

Crude  fibre:  Study  of  the  Gephart  method  ' 

determination  of  .     L.   E.   Bopst  and  G.  1. 

Bidwell.     J.   Assoc.   Off.   Agric.   (hem..   1922.   S, 
422—424. 
In  the  Gephart  method  the  material  (()''>  —1  S-^ 
neighed  out  directly  into  a  special  silica  tube,  etbei 
I  to  e.e.t  is  added,  the  mixture  well  stirred  and  then 


Vol.  XII,  Xo.  12.] 


Cl.  XIXa.— FOODS. 


479  a 


centrifuged  for  5  mins.  at  3000  revs,  per  minute. 
The  supernatant  ether  is  poured  oft'  and  the 
operations  repeated.  The  tube  and  contents  are 
then  dried  and  after  40  c.c.  of  boiling  dilute 
sulphuric  acid  (P25  )  has  been  added  the  tube  is 
placed  in  a  water  bath  for  30  mins.  The  tube  is 
again  centrifuged  for  10  mins.,  the  supernatant 
liquid  removed,  and  40  c.e.  of  boiling  water  added, 
followed  by  eentrifuging  and  a  further  washing  with 
hot  water.  The  residue  is  digested  for  30  mins.  at 
,  100°  C.  with  40  c.c.  of  boiling  dilute  sodium 
hydroxide  solution  (P25  ),  again  centrifuged  and 
1  with  water  and  with  40  c.e.  of  a  mixture  of 
equal  parts  of  alcohol  and  ether,  dried  at  105°  C. 
to  constant  weight,  ignited,  and  the  ash  weighed. 
The  difference  between  the  two  weights  i-  taken  as 
crude  fibre.  This  method  was  developed  for  tin- 
determination  of  crude  fibre  in  cocoa.  When  tested 
in  various  feeding  stuffs  it  was  found  to  give  results 
somewhat  higher  than  those  obtained  by  a  modifica- 
tion in  which  the  sample  used  is  mixed  with  asbestos 
and  tin  mixture,  after  the  acid  and  alkali  treat- 
ments,  is  filtered  through  asbestos. — J.  R. 

Lecithin;    Unsaturated    fatty    acids   of    egg    . 

P.   A.   Levene  and  I.   P.  Rolf.     J.   Biol.   Chem., 
I     1922.  51,  507—513. 

On  hydrolysis  eg>_r  lecithin  yields  three  unsaturated 
acids,  namely,  oleic,  linolic.  and  arachidonic  acids. 
,Egg  lecithin  differs  from  liver  lecithin  (cf.  J.,  1922, 
345a)  in  containing  only  a  small  proportion  of 
highly  unsaturated  fatty  acids. — E.  S. 

Vitamin  A;  Belation  of  photosynthesis  to  the  pro- 
duction of — — in  plants.  J.W.Wilson.  J.Biol. 
Chem.,  1922,  51,  455 — 459. 

From  feeding  experiments  on  rats,  in  which  either 
tiol.ited  or  green  wheat  sprouts  furnished  the  sole 
■nunc  of  vitamin  A,  the  conclusion  is  drawn,  con- 
trary to  that  of  Coward  and  Drnmmond  (J.,  1921, 
"46a").  that  vitamin  A  is  produced  in  growing 
'hints  with  or  without  accompanying  photo- 
ivnthesis.— E.  S. 

uffs;     Biological    evaluation     of    .       L. 

|   Berczeller.  Biochem.  Zeits.,  1922.   129,  217—238. 

!ats  live  longer  on  starchy  foods  than  on  proteins, 
nd  on  some  proteins,  for  instance,  yeast,  they  live 
>or  a  shorter  time  than  if  starved.  Moderate 
ddition,  5—20  ,  of  fats  to  starchy  foods  lengthens, 
•  hilst  a  50  addition  shortens  the  life  of  rats.  The 
to  period  is  considerably  shortened  by  replacement 
f  fat  by  paraffin  oil. — II.  K. 

utrition;    Bole    of   protein    specificity    in    . 

L.  Berczeller.  Biochem.  Zeits.,  1922,  129, 
239—250. 

ats  live  longer  on  lentils  than  on  peas  and  longer 
n  peas  than  on  beans.  Rats  fed  on  beans  and  peas 
?ated  to  100°  C.  to  inactivate,  live  relatively 
mger.  but  on  lentils  inactivated  bv  heat  for  a 
lorter  time.— H.   K. 

utrition;    Bole    of   taste    (instinct)    in    .      L. 

Berczeller.  Biochem.  Zeits..  1922,  129,  251—269. 
i  determine  whether  instinct  determines  quality 

food  eaten  whilst  appetite  determines  quantity, 
is  author  allowed  rats  (a  small  number  of  animals 
ly  was  used)  the  choice  of  three  leguminous  feed- 
g  materials,  viz.,  beans,  peas,  and  lentils.  The 
ts  chose  very  little  beans,  consuming  peas  and 
"tils  in  approximately  equal  amount.     The  length 

life  under  such  conditions  was,  however.  ~horter 
an  when  the  rats  were  fed  on  lentils  alone.  The 
me  results  were  obtained  when  the  foodstuffs  were 
ered  in  powdered  form. — II.  K. 


Bread-cereals.      L.    Berczeller.      Biochem.      Zeits., 
1922,  129,  270-   288. 

When  rats  were  allowed  a  choice  of  maize,  wheat, 
and  rye  grains,  over  the  first  period  of  a  month, 
maize  was  consumed  in  largest  quantity  and  rye 
least,  but  in  a  second  period  of  three  months  the 
consumption  of  maize  was  least  and  of  wheat  most. 
When  offered  meal  of  barley,  rye.  or  wheat  three 
periods  were  recognised,  barley-,  rye-,  and  wheat- 
periods. — H.  K. 

Milling-process;   Investigation   of  the   influence  of 

the .     L.  Berczeller.     Biochem.  Zeits.    1922, 

129.  289—312. 

When  rats  are  allowed  the  choice  of  wheat  grains 
or  wheat  meal,  ot  rye  grains  or  rye  meal,  of  wheat 
grains,  wheat  bran,  or  grains  made  artificially  from 
meal,  they  almost  always  consume  the  natural 
grains  in  largest  quantity. — H.  K. 

Soya-meal.     L.  Berczeller.     Biochem.  Zeits.,  1922. 
129.  313—319. 

Rats,  given  the  choice  of  soya  beans,  soya  bean 
meal,  and  a  new  soya  bean  meal  with  almond 
flavouring,  consumed  the  latter  in  largest  amount 
and  the  soya  bean  meal  hardly  at  all.— H.  K. 

Nutrition;    "Biological    correlation    of   protein    ami 

carbohydrate    foodstuffs   in .     L.   Berczeller. 

Biochem.  Zeits.,  1922.  129,320—358. 

A  i.oNG  series  of  experiments  is  described  in  which 
rats  dew  in  number)  were  offered  the  choice  of 
different  types  of  feeding  materials  simultaneously, 
as  for  example,  leguminous  meal  and  maize  meal; 
a  flavoured  soya  meal,  maize  meal,  and  milk,  flesh' 
or  eggs,  with  or  without  addition  of  salts.  Rat> 
choose  flesh  in  preference  to  other  foods  and  often 
choose  unsuitable  combinations  leading  to  earlv 
death.— H.  K. 

Edible  oil  iron,  maize  oil.  Sievers  and  Shradcr. 
See  XII." 

Alkaloid  content  of  lupins.  Vogel  and  Weber.  See 
XVI. 

Patents. 

Feeding  material  for  animals;  Manufacture  of 
.     J.  A.  O'Loughlin.     E. P.  178,201,  12.1.21. 

A  concentrated  solution  containing  soluble  albu- 
minoids obtained  from  waste  animal  refuse  from 
slaughterhouses  and  from  bones  and  fats  is  mixed 
with  molasses  at  a  temperature  near  the  boiling- 
point  of  the  latter,  and  cereals  or  meals  containing 
vitamins  are  mixed  in  while  the  liquid  is  still  hot. 
The  material  thus  obtained  is  dried  so  as  not  to 
contain  more  than  10%  of  water  and  then  ground. 
Food  prepared  by  this  process  is  easily  digested  and 
assimilated  by  the  animal. — H.  C.  R. 

Milk  fat ;  Manufacture  of  -  — .  J.  C.  Baker.  Assr. 
to  A.  W.  Johnston.  U.S. P.  1,413,092,  18.4.22. 
Appl.,   28.12.20. 

The  cream  is  separated  from  whole  milk,  and  heated 
and  agitated  at  a  temperature  sufficient  to  melt  the 
fat.  The  melted  fat  is  then  separated  from  the 
butter-milk  and  other  products,  the  latter  being 
returned  to  the  whole  milk  to  be  separated.  The 
separated  fat  is  purified. — H.  C.  R. 

Caffeine;   Extraction    of  out    of   entire    beans. 

H.   Roselius.     U.S. P.   1  414,096,  25.4.22.     Appl., 

22.4.20. 
The  beans  are  heated  to  a  temperature  slightly  in 
excess   of   that  of   the   "opening'-    steam    (100° — 


480  a 


Cl.  XIXb.— WATER    PURIFICATION;    SANITATION. 


[Juno  00,  1922 


140°  C.)  which  is  then  applied.  The  caffeine  is  then 
extracted  with  a  solvent  such  as  benzene.  The 
treated  beans  are  reheated  to  a  temperature 
slightly  in  excess  of  that  of  the  steam  which  is  after- 
wards applied  for  removing  the  solvent. — H.  C.  R. 

Drying   fruits,    vegetables,   and   other   substances; 

Apparatus  for .     G.  H.   Benjamin.     C.S.P. 

1,415,010,  9.5.22.  Appl.;  10.2.17. 
Tiik  material  is  placed  on  travelling  belts  and  dried 
by  a  current  of  heated  air.  The  apparatus  is  made 
in  two  sections,  with  two  series  of  belts  longitudi- 
nally offset,  one  in  each  section.  The  belts  are 
driven  at  progressively  lower  speeds,  the  speeds 
decreasing  approximately  in  proportion  to  the 
decrease  of  water  in  the  material  as  it  passes  from 
one  belt  to  the  next. — I.  R. 

l,r     manufacture.      R.     Ellis.      U.S. P.     1,415,325. 
9.5.22.     Appl.,  14.2.19. 

Ix  making  artificial  ice  readily  adsorbed  material 
it3  added  to  the  water  to  inhibit  the  freezing  of  ait- 
bubbles  into  the  ire.  and  the  water  so  treated  is 
then  frozen.— H.  S.  H. 

Albumins ;  Process  for  tlie    manufacture   of  decolo- 
rised, odourless,   and   fast/less  from   blood. 

A.  J.  L.  Terwen  and  C.  J.  C.  van  Hongenluivze. 
U.S. P.    1,415,277,   9.5.22.     Appl.,   30.9.18. 

See  E.P.  123,971  of  1918;  J.,  1919,  511  A. 

Yrast;  Process  of  improving  the  odour,  taste,  and 

digestibility  of for  the  purpose  <>i  employing 

it  as  edible  yeast.    H.  Plauson.    U.S. P.  1, 41.3.469, 
9.5.22.     Appl..   13.1.21. 

See  G.P.  331.348  of  1919;  J.,   1921,  712  a. 

Grinding    ami    mixing    machines    [far    chocolate']. 
W.  N.  Hartshorn.     E.P.  178.097,  29.3.21. 


XIXb.-WATER  PURIFICATION;  SANITATION. 

Alum  in  filtered  water;  Residual .  A.  M.  Bus- 
well  and  G.  P.  Edwards.  Chem.  and  Met.  Eng.. 
1922,  26,  826—829. 

An  investigation  was  made  of  the  conditions  for 
the  precipitation  of  aluminium  hydroxide,  with 
particular  reference  to  water  purification  at  various 
filter  plants  in  the  state  of  Illinois.  Data  obtained 
at  the  various  plants  on  the  alkalinity  changes 
during  treatment  do  not  always  agree  with  expei  ted 
changes  as  calculated,  and  deviations  may  be  as- 
cribed to  removal  of  colloidal  iron  or  aluminium 
hydroxides  and  carbonates,  removal  of  alkaline 
turbidity,  or  to  excessively  acid  alum,  all  of  which 
factors  would  decrease  the  alkalinity,  whilst  in- 
crease in  alkalinity  might  be  due  to  the  use  of  basic 
alum,  precipitation  of  basic  aluminium  sulphate 
instead  of  hydroxide,  or  re-solution  of  calcium 
carbonate  previously  deposited  on  the  sand.  In 
general  there  was  less  dissolved  alumina  in  the 
effluent  than  in  the  influent,  the  amount  in  the 
former  not  usually  exceeding  2  mg.  per  litre.  A 
curve  plotted  with  "  residual  alum  "  against  p„ 
values  indicated  a  minimum  at  p„  6.  which  was 
the  lowest  value  reached  in  the  series. — G.  F.  M. 

Xitric  ainl:  Estimation  af in  drinking  water 

In/   Minn  hater's   method.      A.    Reuss.      Z.    Inters. 
Nahr.  Genussm.,  1922.  43,  174 —  ls-:i. 

The  consumption  of  indigo  solution  is  considerably 
increased  in  the  presence  of  sodium  chloride,  the 
reaction  between  small  quantities  of  nitric  acid  and 
the  indigo  being  facilitated  by  this  substance.  If 
only  small  quantities  of  nitric  acid  and  small  quanti- 
ties of  chlorides  are  present  in  the  water,  it  is 
Inst    to  add   sufficient    Sodium  chloride   to  bring  the 


concentration  up  to  1  g.  per  litre.  The  indigo 
solution  must  be  standardised  against  a  solution 
containing  1  g.  of  sodium  chloride  per  1.  Mayr- 
hofer's  tables  can  then  be  used.  The  indigo  solu- 
tion must  not  have  the  slightest  sediment  or  its 
titer  will  be  unreliable.  It  is  best  filtered  through 
iisbcstiis  without  suction  until  no  suspended 
particles  are  visible  with  a  lens.  The  solution 
should  be  added  at  a  rate  of  2—3  drops  per  see., 
the  last  drops  being  added  at  a  slightly  lower  rate. 
Care  must  be  taken  that  the  whole  of  the  •">  c.c.  of 
sulphuric  acid  actually  reaches  the  liquid  in  the 
flask.  The  acid  used  must  be  of  the  same  composi- 
tion as  that  used  tor  standardising  the  indigo  s,,|„. 
tion.  A  method  of  preparing  the  indigo  solution 
which  has  proved  satisfactory  in  practice  is 
described.— H.  C.  It. 

Active   carbonic  acid  ami  hydrogen-ion   concentra- 
tion in  water  analysis.    I.  M.  Kolthoff.   Z.  Unters 
Nahr.    Genussm.,    1922.    43,    184—193.      d'f     J 
1921,  95  a,  90  a,  407  a.  o99a.) 

The  calculated  concentration  of  free  carbonic  acid 
in  equilibrium  with  a  solution  of  calcium  bicar- 
bonate and  calcium  carbonate  agrees  with  the  con- 
centration found  experimentally  by  Tillman 
Hetiblein  up  to  a  bicarbonate  concentration  of  5 
milli-equivalents  per  litre,  assuming  a  solubility- 
product  of  T2xl0~".  At  higher  concentrations  of 
bicarbonate,  values  in  good  agreement  are  obtained, 
assuming  a  solubility-product  of  1-6x10".  Tables 
giving  the  quantity  of  free  carbonic  acid  lor  various 
calcium  and  bicarbonate  concentrations  are 
based  on  the  above  facts.  A  graph  is  also  given 
serving  the  same  purpose.  For  a  saturate, 1  solu- 
tion of  calcium  carbonate  at  14°  C.  pH  =  10-2.  and 
the  solubility  is  16  mg.  per  litre  at  this  tempera 
ture.  Dibromo-o-cresolsulphophthalcin  (bromo- 
cresol  purple)  can  be  used  as  an  indicator  between 
pB  6-8  and  pH  60.— H.  C.  R. 

Antiseptic  action;   Relationships  between  —     ai 
chemical   constitution,    with    special    referent 
compounds  of  the   pyridine,   quinolinr,    acrii 
ami  phenelzine,   series.     C.    H.    Browning.   J.  B. 
Cohen,  R.  Gaunt,  and  R.  Gulbranscn.    Proc 
Soc.,  1922,  B,  93,  329—366. 

Tup.  bactericidal  action  of  derivatives  of  pyridini 
quinoline.  acridine,  and  phenazine  on  Staph  yh 
aureus  and  on  11.  coli  has  been  investigated.    In  the 
pyridine,   quinoline,    and  phenazine  series   no  com- 
pound    has     been     found     possessing    an     activity 
equalling  that   of  certain   diaminoacridine   di 
tives.   particularly   in  presence  of  serum,   which  in- 
hibits their  efficiency.     In  the  acridine  group  the 
introduction    of    amino-groups    enhances    the    anti- 
septic    potency,     and     this     effect     is     in     general 
weakened  again  by  alkylation  or  ncctylation  or  re- 
placement by  hydroxy].     The  methochloride  is  equal 
to  or   better   than   the   hydrochloride   of   the 
base.       Substitution     of     another    radicle    for    the 
methyl  group  is  without  much  effect.     The  carboxyl 
group    seems    to    depress    the    antiseptic    propert) 
The     comparative     efficiencies     for     Staj 
aureus  and  B.  mli  do  not  invariably  run  parallel. 

— W    0    8 

Staphylolysin.     V rail net inn     of     bacterial     t< 
L.  E.  YValbum.     Bioehem.  Zeits..  1922.  129.  387 
4  13. 
Electrometuic  measurements  of  pH  in  broth  procei  '1 
smoothly,  even  in  alkaline  solution,  provided  steri- 
lisation has  not  been  effected  by  heat  with  pi 
tion   of   volatile   substances,    e.g.,    ammonia.     Tb 
colorimetrie  and  electrometiie  measurements 
With  rise  of  temperature  p„  decreases,  the  decrease 
being   greatest    in    the    most    alkaline   media.      The 
optimum  pH  for  growth  of  Staphylococci  \-  6 
optimum   temperature  31c— 36°  C.     The  most  BOit- 


Vol.  XII,  No.  12.]  CL.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &C. 


481  A 


able  pR  for  obtaining  staphylolysin  is  60 — 7'0,  the 
optimum  temperature  40°  C.  During  growth  pH 
is  apt  to  vary  considerably.  The  simplest  medium 
for  growth  of  Staphylococci  and  lysin  formation  is 
a  1%  solution  of  Witte  peptone  with  0'2% 
KaHP04.  Addition  of  magnesium  sulphate  greatly 
favours  lysin  formation,  as  do  salts  of  nickel,  man- 
ganese, gold,  and  platinum,  but  calcium  salts 
,  inhibit. — H.  K. 

Patents. 

Feed    water    of   steam    venerators;    Heating    and 

decanting  apparatus  for  use  in   purifying  . 

P.     Kestner.       E.P.     165,068,     21.1.21.       Conv., 
12.6.20. 

Natural  water  (containing  calcium  and  magnesium 
bicarbonates  and  calcium  sulphate)  and  water  blown 
from  a  boiler  flow  slowly  in  separate  tubular 
passages  arranged  spirally  alongside  each  other 
within  a  vertical  casing,  each  passage  having  an 
outlet  situated  some  distance  above  the  bottom  of 
the  casing.  Substances  precipitated  from  the 
natural  water  on  heating  and  from  the  boiler  water 
on  cooling  are  separated  as  the  waters  decant 
I  through  their  respective  outlets.  The  two  waters 
thus  partly  purified  are  mingled  in  a  decanting 
tank  in  which  further  precipitation  occurs  and 
the  water  is  finally  passed  upwards  through  a 
filtering  medium  into  a  storage  tank. — J.  R. 

Water   and    sewage;    Method    of    sterilising    . 

J.  C.  Baker,  Assr.  to  Wallace  and  Tiernan  Co. 

U.S.P.  1,413,153,  18.4.22.     Appl.,  18.3.21. 
Water  or  sewage  is  sterilised  by  treating  it  with  the 
solution  obtained  by  passing  chlorine  water  through 
a  vessel  containing  crushed  limestone. —  D.  J.  N. 

Sewage   purifier.     J.    P.   Ball.     U.S.P.    1,415,007, 
9.5.22.     Appl.,  29.10.20.    Renewed  8.3.22. 

In  sewage  purifiers  with  an  upper  condensing 
;hamber  and  a  lower  sludge-collecting  chamber,  the 
j.atter  contains  a  number  of  passages  for  the  intro- 
duction of  air  under  pressure,  whereby  a  current  of 
|>ir  laden  with  sludge  is  produced  and  is  caused  to 
)ass  in  contact  with  a  series  of  baffle  screens  in  the 
ondensing  chamber  in  order  to  deposit  the  sludge. 

— J.  R. 


U.S.P.  1,376,153,  26.4.21. 


'nsecticide.    W.  Moore. 
Appl.,  11.12.19. 

V  "  metallic  arsenical,"  e.g.,  an  arsenate  or 
rsenite  of  iron,  aluminium,  chromium,  lead,  zinc, 
aagnesium,  copper,  or  calcium,  containing  an 
dsorbed  metallic  ion,  is  prepared  by  adding,  for 
,  sample,  ferric  hydroxide  to  a  suspension  of  lead 
Arsenate ;  or  is  obtained  directly  by  the  interaction  of 
Ddium  arsenite  or  arsenate  solution  with  a  solution 
f  ferric  chloride,  aluminium  chloride,  chromium 
ilphate,  or  the  like.  Such  preparations  are  com- 
osed  of  suspended  particles  carrying  a  positive 
'lectric  charge  and  adhere  better  to  plants  than  the 
nown  arsenical  insecticides  in  which  the  particles 
re  negatively  charged. — B.  V'.  S. 

'ater  stills.     D.  P.  Moore.     E.P.  157,149,  8.1.21. 
Conv.,  17.2.16. 

as  U.S.P.  1,204,300  of  1916;  J.,  1916,  1270. 

'wage  and  other  waste  liquors;  Treatment  of . 

L.  C.  Trent.    E.P.  178,953,  28.1.21. 

as  U.S.P.  1,394,698  of  1921 ;  J.,  1921,  901  a. 

■Itering    apparatus    [for    wafer]    and    the    like; 

[Regulating   discharge   of  1.     W.    Paterson. 

E.P.  179,270,  31.1.21. 

nmonia  etc.  from  peat.     E.P.  159,193.    See  VII. 


XX.-0RGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

j    Saffron;  Constituents  of  .     7.  Picrocrocin.     E. 

Winterstein  and  J.  Teleezky.     Helv.  Chim.  Acta, 
1922,  5,  376—381. 

By  hydrolysis  of  picrocrocin  with  1%  sulphuric 
acid,  a  mixture  of  54%  of  sugar  (calculated  as 
dextrose)  with  a  ketone,  C10H14O,  is  obtained.  Its 
physical  constants  suggest  that  the  ketone  belongs 
to  the  terpcne  series.  The  specific  rotation  of  the 
sugar  was  that  of  a  mixture  of  8V7%  of  dextrose 
with  18'3%  of  Isevulose,  and  tests  for  laevulose  gave 
a  positive  result.  The  analytical  results  from 
picrocrocin  could  not,  however,  be  reconciled  with 
this  conclusion.  Crocin,  the  colouring  matter  of 
saffron,  does  not  furnish  an  essential  oil  on 
hydrolysis,  but  yields  dextrose  and  a  deep  red 
insoluble  compound,  crocetin  (Decker,  Arch. 
Pharm.,  1914,  252,  139),  from  which  oxalic  acid  and 
a  colourless  unknown  compound  have  been  obtained 
by  oxidation.     (Cf.  J.C.S.,  June.)— J.  K. 

Adrenaline  preparations;  Limits  of  accuracy  of  the 

physiological    method    of    control    of    .      A. 

Richaud.  J.  Pharm.  Chim.,  1922,  25,  369—373. 
The  results  of  a  long  series  of  experiments  indicate 
that  the  mean  error  in  Cushny's  method  of  evaluat- 
ing adrenaline  preparations  is  20 — 30%. — W.  G. 

Eserine  salicylate;  Preparation  and  preservation  of 

colourless  solutions  of  .     L.  Debuequet.     J. 

Pharm.  Chim.,  1922,  25,  373—375. 
Solutions  of  eserine  salicylate  in  distilled  water 
saturated  with  benzoic  acid  remain  colourless  when 
kept  in  the  dark  or  when  freely  exposed  to  light. 
They  only  develop  a  very  slight  coloration  when 
sterilised  by  heat. — W.  G. 

Pyrimidines;  New  syntheses  of .    E.  Cherbuliez 

and  K.  N.  Stavritch.     Helv.  Chim.  Acta,  1922, 
5,  267—284. 

Alkylidene  and  arylidene  derivatives,  prepared  by 
condensing  asparagine  with  aldehydes,  are  oxidised 
by  potassium  permanganate  to  6-hydroxy-2-alkyI- 
(or-aryl)-pyrimidine-4-carboxylic  acids.  If  sodium 
hypobromite  be  employed  the  corresponding  5- 
bromo-compound  is  obtained.     (Cf.  J.C.S.,  June.) 

—J.  K. 

Cholesterol;    Notes    on    .      A.    Windaus.      Z. 

physiol.  Chem.,  1921,  117,  146—158. 

A  description  of  experiments  with  derivatives  of 

cholesterol.— S.  S.  Z. 

Furfural-water ;  The  system  .     G.  H.   Mains. 

Chem.  and  Met,  Eng.,  1922,  26,  779—784,  841— 
843. 

The  corrected  boiling  point  of  pure  furfural  was 
found  to  be  161*7°  C.  at  760  mm.  pressure;  sp.  gr. 
at  20° /4°  C.  1-1598,  at  25° /4°  C.  1-1545,  both  values 
corrected  to  a  vacuum  standard.  The  composition- 
specific  gravity  tables  for  solutions  of  furfural  in 
water  up  to  the  saturation  concentration  were 
determined  at  20°  and  25°  C,  and  were  subse- 
quently used  as  a  method  of  analysis,  accurate  to 
+  0'02%,  in  the  determination  of  the  mutual  solu- 
bility and  boiling  and  condensation  point  curves  for 
the  system  furfural-water.  The  solubility  of 
furfural  in  water  rises  from  8'12%  at  16°  C.  to 
8-72%  at  27°  C,  and  17%  at  92°  C,  whilst  that 
of  water  in  furfural  rises  from  3"5%  at  8°  C.  to 
54%  at  26-6°  C.  and  15"5%  at  96°  C.  The  most 
important  data  emerging  from  the  boiling-point 
curves  of  furfural-water  mixtures  are  as  follows: 
With  increasing  amount  of  furfural  in  the  solution 
the  boiling  point  gradually  falls  from  100°  C.  to  a 
minimum  of  979°  C,  which  is  reached  at  18-4%  of 


482  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &C. 


[June  30, 1922. 


furfural,  at  which  point  the  solution  is  saturated. 
Through  the  whole  of  this  range  the  vapour  phase 
contains  a  much  higher  percentage  of  furfural  than 
the  liquid,  rising  to  35%  at  the  liquid  saturation 
point.  From  this  point  two  layers  are  formed  until 
84  %  of  furfural  is  present  in  the  liquid  phase,  and 
the  boiling  point  and  composition  of  the  vapour 
phase  remain  constant  at  97'9°  C.  and  35%  furfural 
respectively.  The  temperature  then  rises  rapidly 
until  pure  furfural  only  remains  with  b.p.  16T7°  C. 
It  is  therefore  possible,  by  taking  advantage  of  the 
great  divergence  in  the  boiling  point  and  condensa- 
tion point  curves  in  this  system,  to  effect  readily  a 
separation  of  furfural  from  dilute  aqueous  solutions 
by  fractional  distillation,  whereby  a  fraction  con- 
taining furfural  and  water  in  two  layers,  b.p. 
97'9°— 100°  C,  first  distils;  the  aqueous  furfural 
layer  is  separated  and  the  residual  aqueous  layer 
returned  to  the  still.  The  aqueous  furfural  is  then 
dried  by  redistilling,  the  water  passing  over  first 
and  then  pure  furfural  of  constant  boiling  point. 
The  mathematical  relations  for  the  distillation  of 
mixtures,  as  developed  by  Lord  Itayleigh,  are  dis- 
cussed with  reference  to  the  furfural-water  system. 

— G.  F.  M. 

Catalytic  activity  of  copper  [in  dehydrogenation  of 
alcohols'].  W.  G.  Palmer.  Proc.  Roy.  Soc.,  1922, 
A,  101,  175—186. 

The  effect  of  the  addition  of  magnesium  oxide, 
ferric  oxide,  zinc  oxide,  manganous  oxide,  and 
sodium  carbonate  on  the  dehydrogenation  of 
alcohols  by  copper  is  described.  The  activity  of 
copper  is  destroyed  by  the  addition  of  small 
amounts  of  sodium  carbonate  and  reduced  by  the 
addition  of  1%  or  lees  of  pure  oxides.  An  increase 
in  activity  occurs,  however,  with  larger  percent- 
ages of  oxides.  The  increased  activity  is  ascribed 
to  increased  adsorption  of  alcohol  and  to  the  separa- 
tion of  the  components  into  two  phases.  For  zinc 
oxide  with  copper  the  activity  is  lower  throughout 
than  for  pure  copper.  Manganous  oxide  is  a  weak 
promoter,  the  activity  being  unstable.  Magnesium 
oxide  is  a  strong  promoter  at  all  concentrations 
greater  than  1%,  and  ferric  oxide  is  a  promoter 
beyond  35%.— W.  E.  G. 

Cherry-laurel   water;    Characteristics    of    distilled 

.     H.   Pecker.     J.   Pharm.   Chim.,   1922,   25, 

424—429. 

Distilled  cherry-laurel  water,  as  officially  prepared, 
containing  1  g.  of  hydrocyanic  acid  per  litre,  should 
also  contain,  as  a  rule,  above  3  g.  of  benzaldehyde 
per  litre.  Under  such  conditions  the  amount  of  free 
hydrocyanic  acid  does  not  exceed  025  g.  per  litre. 
An  almost  immediate  precipitate  should  be  pro- 
duced in  the  cold  with  Denner's  phenylhydrazine 
reagent  (1  c.c.  of  redistilled  phenylhydrazine  and 
035  c.c.  of  glacial  acetic  acid,  diluted  to  100  c.c. 
with  water  and  treated  with  20  drops  of  sodium 
bisulphite  solution),  and  a  deep  blue  colour  with  a 
solution  of  ammonium  molybdate  in  sulphuric  acid. 

— W.  G. 

Terpene,  compounds;  Higher .   II.   Ahietic  acid. 

L.  Ruzicka  and  J.   Meyer.     Helv.   Chim.   Acta, 
1922,  5,  315—344. 

Abietic  acid  is  best  isolated  (in  50%  yield)  from 
American  colophony  by  distillation  at  200° — 210°  C. 
at  1  mm.  pressure  (bath  255°  C.).  It  forms  tri- 
angular leaflets,  m.p.  158°  C,  when  rapidly  heated. 
On  catalytic  reduction  in  alcoholic  solution  it  yields 
a  mixture  of  dihydro-acids,  presumably  two  in 
number,  whilst  some  tetrahydro-acid  is"  obtained 
if  ethyl  acetate,  or  more  especially  amyl  ether  at 
80°  C.  be  employed  as  solvent.  The  formation  of 
tetrahydro-acid  is  complete  in  glacial  acetic  acid 
solution.  It  is  therefore  concluded  that  abietic  acid 
contains  two  double  bonds.     The  variation  in  pre- 


vious accounts  of  the  acid  arises  from  the  fact  that 
whilst  in  some  cases  the  extraction  was  performed 
by  means  of  alcohol  or  weak  alkali,  and  the  result- 
ing material  approximately  agreed  with  that  now 
described,  in  others  methods  were  employed  which 
caused  isomerisation.  The  melting  point  of  the 
acid  is  raised  by  the  action  of  heat  or  strong  acids 
but  boiling  alcoholic  sodium  hydroxide,  glacial 
acetic  acid,  or  short  treatment  with  alcoholic 
hydrochloric  acid  does  not  affect  the  acid.  It  is 
suggested  that  abietic  acid  represents  the  same 
type  of  natural  product  as  the  terpcnes  and  the 
sesquiterpenes.     (Cf.  J.C.S.,  June.)— J.  K. 

Terpene  corn-pounds;  Higher .  777.  Thenaphtha- 

lene  hydrocarbons,  cadaline  and  eudaline.  Two 
aromatic  fundamental  compounds  of  the  sesqui- 
terpene series.  L.  Ruzicka,  J.  Meyer,  and  M. 
Mingazzini.  Helv.  Chim.  Acta,  1922,  5,  SIS- 
SOS. 

The  method  of  dahydrogenating  cadinene  (Helv. 
Chim.  Acta,  1921,  4,  505)  by  heating  it  with  sulphur 
has  been  applied  to  other  compounds.  Since  limon- 
ene  and  terpinene  are  thus  converted  into 
p-cymene,  it  follows  that  the  reaction  does  not  in- 
volve any  rearrangement  of  the  carbon  atoms  in  a 
compound.  AH  the  sesquiterpene  fractions  of  a 
given  oil  yield  the  same  product,  and  in  no  case 
is  evidence  observed  of  the  formation  of  mixtures. 
Hence,  even  if  the  oil  be  a  mixture  the  same  carbon 
skeleton  is  present  in  each  constituent.  The  hydro- 
carbon from  cadinene,  now  termed  cadaline,  has 
also  been  obtained  from  tetrahydrocadinene,  from 
calamenol  and  its  degradation  product  calamene, 
from  calamenene,  from  isozingiberene,  and  from  the 
sesquiterpene  oil  from  Javanese  citronella  oil.  Its 
smooth  formation  from  the  monocyclic  zingiberenc 
shows  that  the  formation  of  a  naphthalene  deriva- 
tive by  this  reaction  is  to  be  understood  as  evidence 
that  the  compound  under  examination  has  a 
potential,  rather  than  an  actual,  bicyclic  structure. 
Eudesmol  and  selinene  apparently  react  according 
to  the  respective  equations, 

C15H,0O+3S=C14H1,+H,O+2H2S-fCH3SH; 
C15H31+3S  =  CMH16+2H2S-I-'CH3SH, 
the  same  hydrocarbon,   eudaline,  being  formed  in 
each  case.     These  compounds  therefore  contain  a 
methyl  group  which  cannot  survive  the  transition 
into  an  aromatic  compound,  and  the  cadinene  grour 
of  sesquiterpenes  (cf.  Semmler,  J.,  1915,  681)  must 
be    sub-divided    into    the    cadaline    and    eudaline 
classes.     Its  physical  constants  suggest  that  euda 
line  is  a  naphthalene  derivative,  and  cadaline  ha- 
been    shown    by    synthesis    to    be     1 .6-dimethyl-4 
isopropylnaphthalene  (cf.  following  abstract).    Thi 
close  relationship  of  cadinene  to  copaene  and  tin 
loss  of  three  carbon   atoms  from   the   molecule  o 
copaeneketonic     acid    by    oxidation    with    sodiun 
hypobromito  (Semmler  and  Stenzel,  J.,  1915,  681 
indicate    that    one    double    bond    in    cadinene    i 
situated  at  the  carbon  atom  carrying  the  isopropy 
group.      The   relationship   of  the   open-chain  com 
pound  farnesol  (Kerschbaum,  J.,  1913,  711)  to 
line  is  that  of  the  aliphatic  terpenes,  for  example 
ocimene,  to  p-cymene.    Further,  the  close  connexioi 
of  cadaline  with  not  only  bicyclic,  but  also  mono 
cyclic   (zingiberene)  and  tricyclic  (copaene)  sesqui 
terpenes  reveals  the  analogous  structure  of  a  con 
siderable  number  of  sesquiterpenes,  not  only  amon 
themselves  but  also  with  those  of  the  terpenes.  Th 
common  factor  is  the  union  of  isoprene  molecnli 
usually  to  a  p-cymene  configuration.     Probably 
number   of   monocyclic   sesquiterpenes   represent 
transition  from  farnesol  to  cadinene.    The  cadinen 
type  is  intermediate  between  the  simple  terpern 
and    the    diterpenes    (from    which    abietic   acid   i 
derived),    and   caoutchouc,    which   constitutes   th 
highest  member  of  the  terpene  series,  and  is  relatf 
to  the    others    in    being    built    up    from    isopren 


Vol.  XIX,  No.  12.]        Cl.  XX— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


483  a 


molecules.  Santoniue,  as  a  derivative  of  1.4- 
dimethyl-6-isopropylnaphthalene,  is  to  be  included 
in  the  hydronaphthalene  sub-group  of  bicyclic 
sesquiterpenes.     (Cf.  J.C.S.,  June.) — J.  K. 

Terpene  compounds;  Higher .     IV.     Synthesis 

of  cadaline.  L.  Ruzicka  and  C.  F.  Seidel.  Helv. 
Chim.  Acta,  1922,  5,  369—375.     (Cf.  supra.) 

|  1.6- Dimethyl  -  4  -  isopropylnaphthalene  has  been 
synthesised  and  found  to  be  identical  with  cadaline 
derived  from  cadinene.  EthyI-2-cymyl  acetate  was 
reduced  to  /3-2-cymyl  alcohol,  the  bromide  of  which 

I  was  then  condensed  with  ethyl  methylmalonate. 
/?-2-Cymyl-a-methylbutyric  acid,  obtained  in  the 
usual  manner  from  the  condensation  product,  was 

I  converted  through  its  chloride  by  aluminium 
chloride  into  1.6-dimethyl-4-isopropyl-5-ketotetra- 
hydronaphthalcne.  Finally  the  corresponding 
secondary  alcohol  was  dehydrogenated  by  means  of 
sulphur  at  180°— 210°  C.     (Cf.  J.C.S.,  June.) 

—J.  K. 

Essential    oils;    Therapeutic    action    of   .      G. 

Gatti  and  R.  Cavola.  Riv.  Ital.  Essenze  e  Pro- 
fumi,  1922,  4,  16-^23.  Chem.  Zentr.,  1922,  93,  I., 
1035. 

The  following  oils  are  classified  respectively  as  (1) 
highly  active,  (2)  active,  (3)  moderately  active,  and 
(4)  inactive,  as  antiseptics  towards  cultures  of 
Staphylococcus  pyogenes  aureus,  Streptococcus  pyo- 
genes, Penicillium  glaucum,  and  Aspergillus  albus; 
(1)  clove  oil,  wintergreen  oil,  sassafras  oil,  sandal- 
wood oil,  peppermint  oil,  thyme  oil,  cinnamon  oil, 
and  camphor  oil;  (2)  eucalyptus  oil,  lavender  oil, 
sage  oil,  and  violet  oil;  (3)  bergamot  oil,  rose  oil, 
patchouli  oil,  and  verbena  oil;  (4)  neroli  oil, 
geranium  oil,  vetiver  oil,  jasmine  oil,  opoponax  oil, 
origanum  oil,  and  lemon-grass  oil.  The  oils  are  of 
value  in  treating  skin  eruptions  and  the  like. 

— L.  A.  C. 


Metal  hydrosols;  Medicinal  use  of  protected  

and  the  significance  of  their  after-effects.  J. 
Voigt.  Kolloid-Zeits.,  1922,  30,  243—249. 

A  certain  concentration  of  electrolyte  is  necessary 
for  the  stability  of  solutions  of  green  "  dispargen  " 
(a  colloidal  silver  preparation  with  an  acid  protein 
'legradation  product  as  protective  colloid),  and  for 
'iodium  chloride  this  lies  in  the  region  of  the  con- 
entration  of  physiological  salt  solution.  The  time 
luring  which  the  salt  solution  has  acted  is  of 
mportance,  for  it  causes  at  first  an  increase  in  the 
lumber  of  particles,  whilst  after  a  definite  interval 
i  rapid  decrease  in  the  number  takes  place.  A  large 
■  xcess  of  protecting  colloid  is  not  capable  of  com- 
iletely  preventing  coagulation  of  dispargen. 

—J.  F.  S. 

Ueuritic  acid.     Harries  and  Nagel.    See  XIII. 

'gg  lecithin.    Levene  and  Rolf.    See  XIXa. 

Patents. 

,'inyl    sulphuric    acid    and    homologues    thereof, 

Manufacture  of .    II.  O.  Traun's  Forschungs- 

laboratorium  G.m.b.H.  E.P.  156,121,  30.12.20. 
Conv.,  24.5.18. 

old  anhydrous  sulphuric  acid  (96  pts.)  is  gradually 
iturated  with  2G — 28  pts.  of  acetylene  at  2 — 5  atm. 
ressure  and  a  temperature  below  0°  C,  preferably 
i  presence  of  a  catalyst,  such  as  1 — 2  pts.  of 
ercuric  sulphate.  Vinylsulphuric  acid  is  formed 
most  quantitatively   according   to  the   equation: 

CH :  CH+HSS04  =  CH, :  CHSO.OH. 
omologues  of  acetylene  can  be  used  in  a  similar 
iy—  G.  F.  M. 


Alpha-lob  el  in  e ;  Production  of  .     O.  H.  Boeh- 

ringer     Sohn.      E.P.     156,190,     3.1.21.       Conv., 
21.9.16. 

When  the  mixture  of  salts  obtained  by  neutralising 
the  crude  bases  of  Lobelia  inflata  is  fractionally 
decomposed  by  alkalis,  o-lobeline,  being  a  weaker 
base  than  the  other  alkaloids  present,  is  first 
liberated  and  may  be  removed  by  extraction  with 
ether.  The  evaporated  ethereal  solution  leaves 
behind  a  crystalline  mass  of  o-lobeline  with  traces  of 
impurities,  and  by  washing  with  cold  ether  the  pure 
base,  m.p.  127°  C,  is  obtained.  From  the  remain- 
ing alkaloidal  salt  solution  a  further  quantity  of 
o-lobeline  may  be  obtained  by  adding  more  alkali, 
extracting  again  with  ether,  and  fractionally 
neutralising  the  ethereal  extract  with  acid,  whereby 
the  impurities  are  removed  from  the  ether  solution, 
which  is  then  evaporated  and  the  product  washed 
with  cold  ether  as  before. — G.  F.  M. 

Saccharin;  Manufacture  of  .     Soc.  Chim.  des 

Usines  du  Rhone.    E.P.  165,438,  12.2.21.    Conv., 
25.6.20.     Addn.  to  153,520  (J.,  1921,  26  a). 

Considerably  improved  yields  of  saccharin  and  a 
more  complete  utilisation  of  the  available  oxygeii 
are  obtained  by  the  addition  of  iron,  chromium,  or 
manganese  salts  to  the  oxidising  mixture.  Thus 
3  pts.  of  ferric  sulphate  may  be  added  to  a  mixture 
of  30  pts.  of  sodium  bichromate  and  140  pts.  of 
62-5%  sulphuric  acid.  16  pts.  of  o-toluenesulph- 
amide  is  then  added  and  the  mixture  stirred  for 
12  hrs.  at  30°— 60°  C.  Alternatively,  the  acid 
chromium  sulphate  solution  obtained  as  a  by- 
product of  the  oxidation  may  be  emploved. 

— G.  F.  M. 

l-AllyUS.7-dimethylxanlhine ;       Manufacture        of 

.       F.     Hoffmann-La    Roche    &    Co.,    A.-G. 

E.P.  165,446,  13.5.21.     Conv.,  22.6.20. 

1-Allyl-3.7-diaiethylxaxthine  is  obtained  by  the 
action  of  allyl  bromide  on  the  alkali  salt  of  3.7- 
dimethylxanthine  at  temperatures  below  100°  C, 
in  presence  of  a  diluent  such  as  water  or  alcohol, 
but  without  the  use  of  pressure.  Example  :  180  pts. 
of  3.7-dimethylxanthine  is  dissolved  in  1000  pts.  of 
warm  water  with  the  aid  of  a  sufficient  quantity  of 
30%  sodium  hydroxide  solution.  130  pis.  of  allyl 
bromide  is  then  slowly  dropped  into  the  solution 
heated  to  70° — 80°  C.  under  a  reflux  condenser. 
After  heating  for  a  further  hour  unchanged  3.7- 
dimethylxanthine  is  dissolved  with  the  aid  of  alkali 
and  l-aliyl-3.7-dimethylxanthine  is  obtained  from 
the  cooled  solution  and  recrystallised  from  water. 

— G.  F.  M. 

1  -  Allyl  -  3.7  -  dimcthylxanthine ;     Manufacture     of 
easily  and  neutrally  soluble  double  compounds  of 

■ .      F.     Hoffmann-La    Roche    &    Co.,    A.-G. 

E.P.  165,779,  13.5.21.     Conv.,  2.7.20. 

Double  compounds  of  l-allyl-3.7-dimethylxanthine, 
easily  soluble  in  water  to  form  a  neutral  solution, 
are  obtained  by  dissolving  together  in  water  1  mol. 
of  the  xanthine  and  2  mols.  of  an  alkali  benzoate 
or  salicylate.  The  solutions,  after  sterilising,  may 
be  used  for  injections,  or,  if  desired,  the  crystalline 
compound  may  be  isolated  by  evaporating  the  solu- 
tion in  vacuo.  Solutions  of  the  double  salicylate  of 
30%  concentration  may  easily  be  obtained  from  the 
dried  compounds. — G.  F.  M. 

Aluminium   and   potassium;    Double   salt   of  . 

N.   M.   La   Porte,    Assr.    to   Sharp    and   Dohme. 

U.S. P.  1,377,081,  3.5.21.     Appl.,  21.10.20. 
Double     nitrates     of    aluminium     and    potassium, 
having   astringent,    leucocytosic,    and   phagocytosic 
properties,    are   obtained    by   dissolving   375    g.    of 
aluminium  nitrate  and  303  g.  of  potassium  nitrate 


484  a      Cl.  XXI.— PHOTOGRAPHIC  MATERIALS,  &c.     Cl.  XXII.— EXPLOSIVES,  &c.     [June  30, 1022. 


in  hot  concentrated  nitric  acid.  On  cooling, 
crystals  of  AI(NO,)„3KNOs,10H,p  separate,  and 
by  concentrating  the  mother  liquor  and  again 
cooling,  crystals  of  AI(NO,)3,2KN03,xH20  and/ or 
Al(N03)3,KN03,xHaO  can  be  obtained. 

■Acetylene;  Method  of  producing  chemical  com- 
pounds   from    and    hydrohaloijenic    acids. 

W.  Bauer,  Assr.  to  Rohm  und  Haas,  A.-G. 
U.S.P.  1,414,852,  2.5.22.     Appl.,  1.9.21. 

Acetylene  and  hydrogen  halides  yield  addition 
products  on  exposure  to  light. — L.  A.  C. 

Unsaturated  hydrocarbons;  Process  for  hydro- 
genating .  [Preparation  of  ethane  and  ethyl- 
ene from  acetylene.']  Chem.  Fabr.  Griesheim- 
Elektron.     G.P.   350,429,    11.10.13. 

A  mixture  of  the  unsaturated  hydrocarbon  and 
hydrogen,  containing  the  theoretical  or  slightly 
less  than  the  theoretical  quantity  of  the  latter,  is 
diluted  with  a  hydrocarbon  of  the  methane  or 
ethylene  series,  and  the  mixture  is  passed  over  a 
reduced  nickel  catalyst.  In  the  preparation  of 
ethane  from  acetylene,  the  latter  forms  not  more 
than  30%  by  volume  of  the  total  gas  mixture,  and 
ethane  is  used  as  the  diluent.  To  obtain  a  mixture 
of  ethylene  and  ethane  from  acetylene  the  latter 
must  not  exceed  35%  by  volume.  In  all  cases  the 
resulting  gas  is  practically  free  from  hydrogen. 

—A.  R.   P. 

Trichlorhydrin;      Manufacture,     of    .       Glysyn 

Corp.,  Assees.  of  H.  F.  Saunders  and  L.  T. 
Sutherland.  E.P.  168,576,  18.2.21.  Conv., 
31.8.20. 

See  U.S.P.  1,362,355  of  1920;  J.,  1921,  98  a. 

O-Alkyl  derivatives  of  hydrocupreine ;    Process  for 

the  manufacture  of  .     Verein.     Chininfabr. 

Zimmer  und  Co.,  and  H.  Thron.  E.P.  179,031, 
16.3.21. 

See  G.P.  344,140  of  1916;  J.,  1922,  439  a. 

Di-alkyl-amino-ethyl    derivatives    of    theobromine ; 

Process  for  the  preparation  of .     J.  Altwegg, 

Assr.  to  Soc.  Chim.  des  Usines  du  Rhone.  U.S.P. 
1,414,333,  2.5.22.     Appl.,  29.6.20. 

See  E.P.  155,748  of  1920;  J.,  1921,  129  a. 

Borneo!;    Manufacture  of  .     A.  Haller,  Assr. 

to  Fabr.  de  Prod.  Chim.  de  Thann  et  de  Mul- 
house.     U.S.P.  1,415,340,  9.5.22.     Appl.,  30.1.20. 

See  E.P.  144,604  of  1919;  J.,  1921,  369  a. 

l-Allyl-3.7-dimethylxanthine;  Process  for  the  manu- 
facture   of   .      E.    Preiswerk,    Assr.    to    The 

Hoffmann-La  Roche  Chemical  Works.  U.S.P. 
1,415,700,  9.5.22.     Appl.,  9.6.21. 

See  E.P.  165,446  of  1921 ;  preceding. 

Oxidation  of  hydrocarbons.     E.P.  156,245.     See  III. 

Caffeine  from  coffee  beans.  U.S.P.  1,414,096.  See 
XIXa. 


XXI. -PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Photographic  preparations;  Increasing  the  sensi- 
tiveness  of .  F.  Monpillard.  Scaled  note  de- 
posited 17.1.13.  Bull.  Soc.  Franc.  Phot.,  1922, 
9,  90—92. 

A  marked  increase  in  general  sensitiveness  of 
plates  is  observed  if  a  trace  of  nmmoniacal  solution 
ol  silver  chloride  bo  added  to  the  colour-sensitising 
bath,   and    the  sensitiveness   of   autochrome   plates 


can  thus  be  increased  30  times.  This  increased 
sensitiveness  persists  for  at  least  32  hours  without 
producing  fog,  provided  the  plates  are  rapidly 
drained  and  dried. — W.  C. 

Patents. 

Photography.  [Preparation  of  plates  for  photocollo- 
graphic  printing.]  M.  de  Sperati.  E.P. 
170,545,  1.2.21.     Conv.,  16.10.20. 

Celluloid  plates  having  smooth  sufaces  are  coated 
first  with  a  layer  of  a  mixture  containing  gelatin 
and  a  celluloid  solvent.  In  this  way  complete 
adherence  of  subsequent  layers  of  gelatin  to  the 
plates  is  obtained.  Owing  to  the  celluloid  supports 
having  smooth  surfaces,  pictures  are  obtained  which 
are  of  uniform  tone  and  without  grain. — W.  C. 

Sensitive  films  for  photographic  purposes;  Process 

for  production  of  .       J.  E.   Brandenberger. 

E.P.  178,942,  26.1.21. 

Films  of  viscose  or  similar  cellulosic  material  are 
impregnated  with  a  solution  of  either  silver  nitrate 
or  alkali  halide.  Sensitive  silver  bromide  is  then 
produced  within  the  films  by  immersing  the  film 
in  the  complementary  bath.  The  molecular  con- 
centration of  the  first  bath  must  be  equal  to 
or  greater  than  that  of  the  second  bath,  and  the 
excess  of  the  first  solution  must  be  drained  off  before 
immersing  the  film  in  the  second  bath. — W.  C. 

Colour  photography.  S.  M.  Procoudine-Gorsky. 
E.P.  178,981,  9.2.21. 

In  order  to  obtain  a  neutral  grey  tone  in  conjunc- 
tion with  the  blue  element  of  the  picture,  the  blue 
portion  is  intensively  developed  and  the  resulting 
deposit  of  silver  is  partially  converted  into  silver 
ferricyanide ;  then  follows  treatment  with  a  solu- 
tion of  ferrous  salt,  after  which  the  plate  if 
immersed  in  dilute  sodium  bhiosulphate  and  finally 
in  dilute  sulphuric  acid. — AV.  C. 

[Photographic]  film;  Base  for  antistatic  and 

composition  for  making   the  same.     P.  C. 
Assr.  to  Eastman  Kodak  Co.     U.S.P  1,415,059, 
9.5.22.     Appl.,  16.4.21. 

A  flexible  transparent  nitrocellulose  support  for 
sensitive  photographic  coatings  contains  a  sugar,  an 
inert  hygroscopic  organic  compound  of  low  vola- 
tility, and  water. — H.  Hg. 


XXII.-EXPLOSIVES ;  MATCHES 

Erratum.    J.,  May  15,  1922,  p.  351  a,  col.  1,  line 
27  from  bottom,  for  "  1909  "  read  "  1910." 

Patents. 

Propellent  powders;  Process  of  converting into 

detonating   explosives.      J.   H.   Hunter.      U.S.P. 
1,382,287,  21.6.21.     Appl.,  3.9.20. 

Propellent  powders  are  pulverised,  and  separated 

into  fractions  according  to  the  degree  of  fin 
Blasting  explosives  of  varying  degrees  of  power  are 
obtained  according  to  the  degree  of  pulverisation. 

Explosives;  Process  for  the  manufacture  of  ■ 

T.  Hawkins,  Assr.  to  C.  R.  H.  Rex.  U.S.P. 
1,413,532,  18.4.22.  Appl.,  29.10.21. 
Mercury  is  treated  with  a  mixture  of  nitric  and 
sulphuric  acids  and  the  resulting  solution  tr 
with  alcohol.  The  soluble  matter  is  then  separated 
from  the  insoluble,  and  the  latter,  free  from  acid, 
is  dried.— H.  C.  R. 

Perchlorates;  Production  and  utilisation  of  I 

.     Sprengstoff  A.-G.  Carbonit.    G.P.  307,079, 

12.9.17. 

Perchlorates  are  heated  with  urea  or  amines  of 


Vol.  XLI.,  No.  12. 


Cl.  XXIII.— analysis. 


485  a 


aliphatic  carboxylic  acids,  or  mixtures  of  the  same. 
The  easily  fusible,  explosive  products  can  be  used 
in  the  molten  condition,  either  alone  or  mixed  with 
ammonium  nitrate,  carbon  carriers,  nitro-com- 
pounds,  or  the  like,  for  filling  hand-grenades, 
torpedoes,  or  mines,  or  can  be  used  in  the  manufac- 
ture of  light  signals,  torches,  matches,  disinfecting 
pastilles,  etc. — L.  A.  C. 

Nitrocellulose;  Process  and  apparatus  for  the  auto- 
matic and  continuous  production  of .     A.  von 

Vajdafy.     G.P.  350,480,  16.5.18. 

A  horizontal  egg-shaped  nitration  vessel  with  a 
helical  agitator  is  provided  near  the  charging 
funnels  and  the  discharge  end  with  channels  for 
supplying  fresh  acid  and  for  returning  acid  ex- 
pressed from  the  nitrated  product.  A  circular  and 
forward  motion  are  simultaneously  applied  by  the 
agitator  to  the  cotton  or  other  cellulosic  material, 
and  the  large  excess  of  acid  present  at  first  is  con- 
tinually decreased  by  contact  with  the  cellulose, 
while  fresh  acid  is  added  as  required. — L.  A.  C. 


XXIII. -ANALYSIS. 

Colorimetry ;  New  method  of  — — -.  P.  Dosne. 
Sealed  Note  2100,  2.7.11.  Bull.  Soc.  Ind.  Mul- 
house,  1922,  88,  73—77.  Report  by  E.  Banderet, 
ibid.,  77. 

The  strengths  of  colouring  matters  when  dissolved 
in  water,  alcohol,  or  other  solvents,  are  compared 
by  determining  the  heights  of  columns  of  their  solu- 
tions which  just  absorb,  under  standard  conditions, 
transmitted  light  from  any  suitable  source. 
Banderet  reports  that  the  method  is  useful  but  not 
new. — A.  J.  H. 

Adsorbing  powders;  Method  for  the  estimation  of 

the  surface  of .   F.  Paneth.   Z.  Elektrochem., 

1922,  28,  113—115. 

A  method  devised  for  measuring  the  surface  area  of 
lead  sulphate  or  chromate  consists  in  shaking  the 
powder  with  its  own  saturated  aqueous  solution 
containing  a  small  quantity  of  thorium  B,  the  radio- 
active isotope  of  lead,  and  measuring,  through  its 
radioactivity,  the  distribution  of  the  thorium  B 
between  the  solution  and  the  precipitate.  Theo- 
retically, when  equilibrium  is  attained,  the  ratio  of 
thorium  B  adsorbed  to  that  in  solution  should  be 
equal  to  the  ratio  of  the  number  of  mols.  of  lead 
sulphate  on  the  surface  of  the  suspended  lead 
sulpliate  to  the  number  in  solution.  Hence  it  is 
possible  to  calculate  the  ratio  of  surface  lead 
sulphate,  in  grams,  to  total  weight.  The  surface  of 
1  g.  of  a  preparation  of  lead  sulphate  was  found  to 
contain  9x10*  g.  Pb,  and  1  g.  of  lead  chromate, 
70x10-"  g.  Pb.  This  figure  may  be  called  the 
specific  surface  of  the  substance. — E.  H.  R. 


Potassium  ferrocyanide;  Potentiometric  titrations 
of  and  by  means  of .  /.  Titration  of  potas- 
sium ferrocyanide  by  means  of  potassmm  per- 
manganate. I.  M.  Kolthoff.  Rec.  Trav.  Chim., 
1922,  41,  343—352. 

Solutions   of   potassium    ferrocyanide,   even   when 

very  dilute,  may  be  quickly  and  accurately  titrated 

'  potentiometrically    by    means    of    potassium    per- 

j  manganate.     The  concentration  of  the  latter  solu- 

!  tion  should  be  about  N 110.     It  is  necessary  that  the 

'  solution  to  be  titrated  should  contain  a  sufficient 

concentration  of  acid  to  prevent  the  precipitation  of 

potassium  manganous  ferrocyanide,  K,MnFe(CN)„, 

which  is  only  slowly  redissolved  and  oxidised.     The 

change  in  potential  which  marks  the  end-point  is 

.  greater  when  hydrochloric  acid   is  used  instead  of 

'  sulphuric  acid,   although,  according  to  Kelley  and 

:  Bohn  (J.,  1920,  18  a)  the  use  of  the  former  involves 


reduction  of  the  permanganate  with  evolution  of 
chlorine.  This  is  not  confirmed  by  the  author,  who 
has  obtained  good  results  with  either  acid.  A 
known  amount  of  ferricyanide  should  be  added  at 
the  beginning  of  an  estimation  in  order  to  hinder 
atmospheric  oxidation  of  unchanged  ferrocyanide 
during  a  titration.  Details  of  experiments  with 
ferrocyanide  solutions  of  different  concentrations 
and  under  various  conditions  are  given. — H.  J.  E. 

Phosphoric  acid;  Method  for  the  separation  of 

in  qualitative  analysis.     D.  Balarew.     Z.  anorg. 
Ohem.,  1922,  121,  254—256. 

The  precipitate  of  the  ammonium  sulphide  group 
(Group  III.  and  IV.  taken  together)  is  dissolved  in 
hydrochloric  acid  (solution  is  thus  free  from  cobalt 
and  nickel)  and  the  solution  neutralised  with  am- 
monia. A  large  excess  of  lead  nitrate  is  added  and 
then  sodium  acetate  until  the  solution  is  neutral  to 
methyl  orange.  The  phosphoric  acid  is  precipitated 
as  lead  phosphate,  Pbj^POJ.,  mixed  with  lead 
chloride  and  the  phosphates  of  ferric  iron, 
chromium,  and  aluminium.  The  large  excess  of  lead 
ion,  however,  ensures  that  some  ferric,  aluminium, 
and  chromium  ions  remain  in  solution.  The  excess 
of  lead  is  then  removed  by  hydrochloric  acid.  This 
method  is  claimed  to  possess  advantages  in  speed 
and  completeness  over  the  older  methods. — W.  T. 

See  also  pages  (a)  452,  Carbon  monoxide  in  blast- 
furnace  gas  (Kaleta).  457,  Estimation  of  dyestuffs 
(Sifferlen).  458,  Hemp  and  pseudo-hemp  (Pontio). 
462,  Radium  in  ores  (Hess).  465,  Action  of  reagents 
on  glass  (Turner  and  Wilson).  466,  Gases  in  iron 
(Oberhoffer  and  Piwowarski).  467,  Nitrogen  in 
steel  and  iron  (Wtist  and  Duhr) ;  Cobalt  in  steel 
(Eder).  468,  Aluminium  (.lander  and  Wende- 
horst);  Lead  dross  (Stahl).  473,  Marine  animal  oils 
(Goldschmidt  and  Weiss) ;  Iodine-bromine  value  of 
fats  (Winkler).  476,  Colour  of  tannin  solutions 
(Blackadder) ;  Sampling  leather  (Bowker  and 
Wallace) :  Water-soluble  matter  in  leather  (Schultz). 
477,  Reducing  sugars  (Bonwetsch,  also  Kunz) ; 
Caramel  (Kauffman);  Invert  sugar  in  honey  (Sher- 
wood). 478,  Crude  fibre  (Bopst  and  Bidwell).  480, 
Nitric  acid  in  water  (Reuss) ;  Carbonic  acid  and 
hydrogen-ion  concentration  in  water  analysis  (Kolt- 
hoff).    482,  Cherry4aurel  water  (Pecker). 

Patents. 

Calorific  value  of  combustible  gases  or  other  chemi- 
cally reactive  agents;   Apparatus  for  measuring 

[indicating,    and   recording"]    the   .     Igranic 

Electric   Co.,    Ltd.      From    The    Cutler-Hammer 
Mfg.  Co.     E.P.  179,060,  7.4.21. 

In  a  calorimeter  constructed  in  accordance  with 
E.P.  153,817  (J.,  1921,  103  a),  in  order  to  com- 
pensate for  variations  in  the  calorific  value  of  the 
gas,  means  are  provided  for  varying  the  ratio  of  the 
supplied  test  gas  and  air,  in  response  to  variations 
in  the  temperature  rise  of  the  cooling  fluid,  so  that 
such  rise  of  temperature  is  maintained  substan- 
tially constant.  The  values  of  the  variations  so 
effected  in  the  ratio  of  the  two  fluids  constitute  a 
measure  of  the  calorific  value  of  the  test  gas. 
Errors  due  to  temperature  variations  independent 
of  the  combustion  are  eliminated  by  employing  a 
temperature-difference  resistance  in  circuit  with 
certain  of  the  resistance  thermometers  associated 
with  the  inlet  and  outlet  of  the  cooling  fluid,  and 
subjected  to  a  temperature  which  is  independent  of 
the  combustion.  Alternatively,  the  temperature- 
resistance  coefficient  of  one  or  both  of  the  resistance 
thermometers  may  be  modified  so  as  to  effect  the 
necessary  compensating  action  without  the  aid  of 
a  separate  temperature-difference  resistance. 

—J.  S.  G.  T. 


486  a 


PATENT    LIST. 


[June  30, 1922. 


Determining  moisture;  Apparatus  for .     F.  E. 

Greenwood.      U.S.P.    1,415,546,    9.5.22.      Appl., 

10.9.20. 
Apparatus  for  the  determination  of  moisture  con- 
tent comprises  an  extraction  flask,  a  reflux  con- 
denser, a  conduit  from  the  farmer  to  the  upper  p:irt 
of  the  condenser,  a  return  connexion  from  the  lower 
part  of  the  condenser  to  the  extraction  flask,  and 
a  measuring  vessel  connected  with  the  condenser  at 
a  point  below  the  return  connexion. — J.  S.  G.  T. 


Treating     [nitrocellulose     compositions. 
1,412,762.    See  V. 


U.S.P. 


Patent   List. 

The  dates  eiven  in  this  list  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given;  they  are  on  sale 
at  Is.  each  ftt  the  Patent  Office  Sale  Branch,  Quality 
Court,  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I— GENERAL;  PLANT;  MACHINERY. 

Applications. 

August's  MufBe  Furnaces,  Ltd.,  and  Coggon. 
Drying-apparatus.     15,605.     June  6. 

Baker,  Sons,  and  Perkins,  and  Gilderdale.  Grad- 
ing grains  of  material  contained  in  current  of 
fluid.     15,566.     June  2. 

Baker,  Sons,  and  Perkins,  and  Gilderdale.  Dry- 
ing and  crushing  to  a  state  of  fine  subdivision. 
15,673.    June  6. 

Boberg,  Testrup,  and  Techno-Chemical  Labora- 
tories. Evaporating,  concentrating,  drying,  etc. 
15,347.     May  31.  -        .  ■ 

Briicklmayr.  Apparatus  for  cleaning,  cooling, 
and  mixing  gases.     15,134.     May  30. 

Butonia  Gomb  es  Vegyitermekek  Gyara  Reszyeny- 
tarsasag.  Producing  artificial  masses  by  solidify- 
ing colloid  material.  15,570.  June  2.  (Hungary, 
3.6.21.) 

Dufraisse  and  Moureu.  Treatment  of  substances 
liable  to  oxidation  by  air.  15,842.  June  7.  (Fr., 
8.6.21.) 

Elliott.  Separation  of  air  and  dissolved  gases 
from  liquid.     15,082—4.     May  29. 

Gibbons  Bros.,  Ltd.,  and  Masters.  Furnaces 
etc.     16,015.     June  9. 

Gleason  Works.  Furnaces.  15,066  and  15,866. 
May  29  and  June  7.     (U.S.,  5.  and  18.4.22.) 

Mills  and  Ramsbottom.  Drying-machines. 
15,785.     June  7. 

Milo  Machinery  Co.,  and  Wriedt.  Crushing  and 
grinding  mill.     15,010.     May  29. 

Nafilyan.  Separating  components  of  mixtures 
of  different  materials.  15,289.  May  31.  (Switz., 
1.6.21.) 

Orcutt.  Drying-machines.  15,732.  June  6. 
(U.S.,  7.6.21.) 

Schicht   A.-G.,   and   Schnetzer.     Evaporation   of 
solutions.        15,053.        May    29.        (Czecho-Slov., 
27.5.21.) 
"  Thompson  (Bong).     15,631.    See  X. 

Traun's  Forschungslaboratorium  Ges.  Filter- 
presses.     15,388.     June  1.     (Ger.,  5.7.18.) 

Trent  Process  Corp.  Agglomerating  fine 
materials.      15,336.      May    31.      (U.S.,    20.7.21.) 

Wilisch.  Separation  of  solid,  liquid,  and  semi- 
gaseous  matter  from  gases  and  vapours.  15,828. 
Juno  7. 

Wright.  Furnaces  for  heating,  melting,  etc. 
15,454.    June  1. 


Complete  Specifications  Accepted. 

4894  (1921).  Bassler.  Drying  process  and 
apparatus.     (180,394.)     June  8. 

4922  and  4924  (1921).    Diepschlag.    See  X. 

4923  (1921).  Diepschlag.  Feeding  fine  materials 
to  shaft  furnaces,  gas  producers,  etc.  (180,396.) 
June  8. 

5862  (1921).  Barnes  and  Morgan.  Centrifugal 
separators.    (159,217.)    June  8. 

6959  (1921).  Gill  (Sharpies  Specialty  Co.). 
Process  for  resolving  emulsions.    (180,447.)    June  8. 

14,499  (1921).  Brettell  (Soc.  Anon,  des  Ateliers 
Reunis).  Pulverisers  and  crushing  mills.  (180,890.) 
June  14. 

27,347  (1921).  Rigby.  Distilling,  concentrating, 
or  drying  apparatus.     (180,963.)    June  14. 

28,241  (1921).    Siemens-Sehuckertwerke.    See  XL 

II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;   DESTRUCTIVE   DISTILLATION ; 

HEATING;  LIGHTING. 

Applications. 

Bing.  Mixing  and  burning  fuels.   15,860.   June  7. 

Coopey  and  Rideout.  Method  of  screening  coals. 
15,619.     June  6. 

Dingler'sche  Masehinenfabrik.  Preheating  blast- 
furnace etc.  gases  in  dry  gas  purifying  plants. 
15,444.     June  1.     (Ger.,  24.6.21.) 

General  Electric  Co.  Manufacturing  of  metal 
filaments.    15,476.    June  1.    (Ger.,  18.6.21.) 

Goldschmidt  A.-G.  Enriching  gases  and  vapours 
in  gas  mixtures.    16,087.    June  9.    (Ger.,  9.6.21.) 

Humphreys  and  Glasgow  (Searle).  Vertical 
retort  gas-making  apparatus.     15,755.    June  6. 

Mason.  Utilisation  of  blast-furnace  gas.  15,290. 
May  31. 

Moore.     Briquettes.     15,995.     June  9. 

Trent  Process  Corp.  Production  of  water-gas. 
15,335.     May  31.    (U.S.,  21.6.21.) 

Complete  Specifications  Accepted. 

32,391  (1920).    Wilson.    See  III. 

2580  (1921)v  General  Oil  Gas  Corp.  Manufacture 
of  gas.    (167,736.)    June  8. 

3256  (1921).  Davis.  Cracking  hydrocarbons. 
(180,719.)    June  14. 

4923  (1921).    Diepschlag.    See  I. 

6013  (1921).  Kansas  City  Gasoline  Co.  Cracking 
hydrocarbons.    (160,161.)    June  8. 

6313,  6412,  and  6446  (1921).  Christenson  and 
Hedman.     See  VII. 

6645  (1921).  Szarvasy.  Manufacture  of  pure 
retort  carbon.     (159,823.)     June  14. 

16,742  (1921).  Akt.-Ges.  f.  Anilinfabr.  Fuel  for 
internal-combustion  engines.     (169,428.)     June  8. 

28,071  (1921).  Wilson  Bros.'  Bobbin  Co.,  and 
Bone.     Vegetable  charcoal.     (180,611.)     June  8. 

29,420  (1921).  Stettiner  Chamotte-Fabrik  A.-G. 
Gas-heated  ovens  and  retorts.     (174,039.)     June  8. 

III.— TAR  AND   TAR   PRODUCTS. 

Application. 
Soc.   Chem.   Industry  in  Basle.     Manufacture  of 
carbonvl  derivatives  of  o-naphthol.   15,190.   May  30. 
(Switz',  31.5.21.) 

Complete  Specification  Accepted. 
32,391  (1920).     Wilson.     Distillation  of  tar,  oik, 
etc.     (180,347.)     June  8. 

IV.— COLOURING   MATTERS   AND   DYES. 

Applications. 
Adams,   Green,   Saunders,  and  British  Dyestuffs 
Corp.    Manufacture  of  intermediates  for  production 
of  colouring  matters.     15,081.     May  29. 


Vol.  XLI.,  No.  12.] 


PATENT    LIST. 


487  a 


Bloxam  (Chem.  Fabr.  Griesheim-Elektron). 
Manufacture  of  black  azo  dyestuffs.   15,065.   May  29. 

Imray  (Soc.  Chem.  Industry  in  Basle).  Manu- 
facture of  2.3-diaminoanthraquinone.  15,362. 
May  31. 

Complete  Specification  Accepted. 

6036  (1921).  Imray  (Soc.  Chem.  Industry  in 
Basle).  Manufacture  of  mordant  dyeing  dyestuffe 
and  chromium  compounds  thereof.  (180,433.)  June  8. 

V.— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Akt.-Ges  f.  Anilinfabr.  Manufacture  of  thin 
films.     15,847.     June  7.     (Ger.,  20.6.21.) 

Brown.  Digesters,  esparto  grass  boilers,  etc. 
16,154.     June  10. 

Stevenson.  Manufacture  of  artificial  silk  from 
viscose.     16,049.     June  14. 

Complete  Specifications  Accepted. 

7132  (1921).  Wade  (International  Paper  Co.). 
Manufacture  of  paper.     (180,766.)     June  14. 

VI— BLEACHING;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Crosland,  Dixon,  and  Hawley.  Production  of 
lustre  finish  on  cotton  hose  etc.     15,206.     May  30. 

Crosland,  Dixon,  and  Hawley.  Finishing  knitted 
or  woven  hosiery  fabric*.     15,207.     May  30. 

Deuts-  Gold-  u.  Silber-Scheideanstalt,  and  Lieb- 
knecht.  Manufacture  of  detergents  and  bleaching 
agents.     15,760.     June  6. 

Morton  and  Wood.  Treatment  of  animal  and 
vegetable  fibres  in  the  application  of  vat  dyes. 
15,402.     June  1. 

Complete  Specifications  Accepted. 

6353  (1921).  Copley.  Mercerising  yarns  in  hank 
form.     (180,739.)     June  14. 

15,727  (1921).  Bloxam  (Akt.-Ges.  f.  Anilinfabr.). 
Dyeing  furs,  feathers,  hairs,  skins,  etc.  (180,905.) 
June  14. 


VII. 


-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 


Applications. 

Akt.  Norske  Saltverker.  Production  of  anhy- 
drous magnesium  chloride.  16,086.  June  9. 
(Norway,  13.6.21.) 

Beasley  and  Perkins.  Refining  copper  oxide. 
15,597.     June  2. 

Damiens,  Loisy,  and  Piette.  Extracting  sulphur 
from  gases  containing  sulphuretted  hydrogen. 
15,342.     May  31.     (Fr.,  3.6.21.) 

Complete  Specifications  Accepted. 

6313  (1921).  Christenson  and  Hedman.  Pro- 
duction of  ammonium  chloride  in  coking  or  distill- 
ing coal  in  coking  plants  and  gas-works.  (159,817.) 
June  8. 

6412  (1921).  Christenson  and  Hedman.  Produc- 
tion of  ammonium  chloride  in  distilling  alum,  slate, 
or  similar  bituminous  shales.     (161,161.)     June  8. 

6446  (1921).  Christenson  and  Hedman.  Produc- 
tion of  ammonium  chloride  from  coal  shales. 
(169,948.)     June  8. 

8133  (1921).  L'Air  Liquide  Soc.  Anon.  Pro- 
duction of  sodium  bicarbonate  and  ammonium 
Aloride.     (160,172.)     June  14. 

10,205  (1921).  Pike.  Treatment  of  magnesite. 
;i80,837.)     June  14. 


13,210  (1921).  Gaillard.  Manufacture  of  sul- 
phuric^ acid.     (180,546.)     June  8. 

34.250  (1921).  Deguide.  Continuous  manufacture 
of  barium  hydrate.     (174,052.)     June  8. 

34.251  (1921).  Deguide.  Manufacture  of  alkali 
metal  silicates.     (174,581.)     June  8. 

VIII.— GLASS;  CERAMICS. 
Applications. 

Blatchley,  and  Steetley  Lime  Co.     Manufacture 
of  refractory  bricks.     15,581.    June  2. 
Thompson  (Bong).    15,631.    See  X. 

IX.— BUILDING  MATERIALS. 

Applications. 

Ayliffe,  Campbell  and  Porter.  Provision  of 
glazed  surfaces  on  Portland  cement.  16,076  and 
16,098.    June  9. 

Garland.  HeaWnsulating  compositions.  15,666. 
June  6. 

Laurie.  Formation  of  hydrated  silica  cements. 
15,245.     May  31. 

Sperni.  Manufacture  of  magnesian  cement. 
15,154.    May  30. 

X.— METALS ;      METALLURGY,      INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Ashcroft.  Treatment  of  6ulphide  ores  etc. 
15,562.    June  2. 

Billington.  Brass  alloys  rich  in  copper.  16,152. 
June  10. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).    Manufacture  of  alloys.     15,202.     May  30. 

Biihler.  Preliminary  blending  process  for 
cupolas.     15,979.    June  8.    (Switz.,  8.6.21.) 

Duckham,  and  Woodall,  Duckham,  and  Jones. 
Annealing  wire  etc.    15,412.    June  1. 

General  Electric  Co.    15,476.    See  II. 

Marks  (American  Manganese  Steel  Co.).  Heat 
treatment  of  manganese  steel.    15,101.    May  29. 

Mason.    15,290.    See  II. 

Meyer  (Meyer  &  Studeli  Soc.  Anon.).  Alloys. 
16,182.    June  10. 

Naaml.  Vennoots.  Philips'  Gloeilampenfabriek. 
Cleaning  wire.    15,587.    June  2.   (Holland,  10.6.21.) 

Thompson  (Bong).  Forming  refractory  lining  of 
cupolas  etc.     15,631.    June  6. 

Wright.    15,454.    .See  I. 

Yamanouchi.  Manufacture  of  galvanised  6heet 
iron.     15,834.    June  7. 

Complete  Specifications  Accepted. 

3159  (1921).  Frcedman  and  Greetham.  Extrac- 
tion of  metals  from  their  compounds.  (180,384.) 
June  8. 

4922  (1921).  Diepschlag.  Working  of  shaft 
furnaces.     (180,395.)     June  8. 

4924  (1921).  Diepschlag.  Conveying  the  mouth 
dust  and  other  fine  ores  in  blast-furnace  operations. 
(180,397.)     June  8. 

8994  (1921).  Steen.  Granulating  slag  and  sepa- 
rating moisture  therefrom.     (180,479.)     June  8. 

31,740  (1921).  Imray  (Jackson  and  Co.)  Pre- 
paratory treatment  of  ores  or  metallurgical  pro- 
ducts.    (180,968.)     June  14. 

XI.— ELECTRO-CHEMISTRY. 

Applications. 

Nyberg.     Galvanic  cells.     15,744.     June  6. 
Slee.    Primary  electric  batteries.    15,730.   June  6. 
Soc.  Anon.  Le  Carbone.     Dry  batteries.     15,351. 
May  31.     (Fr.,  1.5.22.) 


488  a 


PATENT    LIST. 


[June  30,  1922. 


Complete  Specifications  Accepted. 

6655  (1921).  Chloride  Electrical  Storage  Co. 
(Ford).     Storage  batteries.     (180,747.)     June  14. 

12  703  (1921).  Holmes,  and  Hart  Accumulator 
Co    '  Secondary  batteries.     (180,878.)     June  14 

28  194  (1921)  Norske  Akt.  for  Elektrokem. 
Industri.     Electric  furnaces.     (170,848.)     June  14. 

28  241  (1921).  Siemens-Schuckertwerke.  Appa- 
ratus for  precipitating  dust  from  gases  by  elec- 
tricity.    (170,601.)     June  14. 

XII.— FATS;    OILS;    WAXES. 

Applications. 

Lewis.  Reconditioning  grain,  copra,  etc.  for  oil 
extraction.     15,925.     June  8. 

Maxted.  Manufacture  of  nickel  catalyst  for 
hydrogenation  of  oils  etc.     15,872.     June  7. 

United  Alkali  Co.,  and  Golding.  Manufacture  of 
cleansing  compositions.     15,947.     June  8. 

Young.  Extraction  of  oil  by  solvents  combined 
with  use  of  such  solvents  for  refrigeration.  15,/ 36. 
June  6. 

XIII— PAINTS;    PIGMENTS;    VARNISHES; 
RESINS. 

Application. 
Jackson  (Alchemic  Gold  Co.).    Inks,  and  vehicles 
therefor.     15,230.     May  30. 

Complete  Specification  Accepted. 
3695(1921).     Levy.     Fluorescent  screens   intensi- 
fying screens,  and  self-luminous  surfaces.    (lbO,/Vo.) 
June  14. 
XIV.— INDIA-RUBBER;     GUTTA-PERCHA. 

Applications. 
Stevens.     Accelerators  for  rubber  manufacture. 

.15,169.     May  30.  ,„.,<■  f    „«,„, 

Warren.  Producing  metallised  surfaces  of  rubber 
compounds  containing  sulphur.     15,183.     May  30. 

XV.— LEATHER;    BONE;    HORN;     GLUE. 

Complete  Specifications  Accepted. 

33,436  (1920).  Melamid.  Manufacture  of  arti- 
ficial tanning  substances.     (180,353.)     June  8. 

6798  (1921).  Hell.  Tanning  skins  and  hides. 
(180,758.)    June  14.  " 

15  727  (1921).     Bloxam  (Akt.-Ges.  f.  Anilinfabr.). 

See  VI. 

XVI.-SOILS;     FERTILISERS. 
Complete   Specification   Accepted. 
6646  (1921).     Soc.  Anon.  Brevetti  Beccari.     See 
XIX. 

XVIII.— FERMENTATION     INDUSTRIES. 

Application. 
Holmes.     15,443.    See  XX. 

Complete  Specification  Accepted. 
4005  (1922).     Klein.     Process  of  drying  pressed 
yeast.     (175,623.)     June  14. 

XIX— FOODS;    WATER    PURIFICATION; 

SANITATION. 


Burdick. 
June  7. 


Applications. 
Desiccating      blood 


etc.        15,820. 


Lewis.  Preparing  fish  offal  for  cattle  and  poultry 
food.     15,923.    June  8. 

Lewis.  Re-conditioning  sacks  of  flour  etc. 
15,924.     June  8. 

Lewis.  15,925.     See  XII. 

Complete  Specifications  Accepted. 

6646  (1921).  Soc  Anon.  Brevetti  Beccari.  Plant 
for  the  aerobic  fermentation  of  refuse  and  produc- 
tion of  manure  therefrom.     (175,586.)    June  14. 

8741  (1921).  Rea.  Dehvdrators  for  fruits,  vege- 
tables, and  other  foods.    (180,806.)    June  14. 

9806  (1921).  Dienst.  Sterilising  flour  and  grits 
from  cereals  and  improving  the  baking  quality. 
(180,496.)     June  8. 

9835  (1921).  Rushen  (International  Meat  Smok- 
ing Corp.).  Curing  etc.  of  meat,  fish,  etc.  (180,497.) 
June  14. 


XX— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Applications. 

Galbraith.  Reduction  of  organic  compounds. 
15,585.    June  2. 

Galbraith,  Siderfixi,  and  Tallantyre.  Treatment 
of  organic  compounds  with  nitrous   acid.     15,586. 

June  2.  . 

Haff       Manufacture   of   medicinal   preparations. 

15,133.     May  30. 

Holmes.        Manufacture      of      alcohol.        15,443. 

Jones  (Chem.  Fabr.  Wulfing).  Production  of 
water-soluble  permanent  preparations  containing 
acetylsalicylic  acid.     15,856.     June  7. 

May  and  Baker,  and  Pomaret.  Manufacture  of 
3.3'-diamino-4.4'-dihydroxyarsenobenzene  etc.  bases. 
16,170.    June  10.  . 

Pollak.  Manufacture  of  condensation  products 
from  urea,  thiourea,  or  their  derivatives  and  alde- 
hydes.    15,218.     May  30.     (Austria,  31.5.21.) 

Schindelmeiser.  Production  of  camphor,  borneol, 
and  isoborneol.    15,741.    June  6. 

Complete  Specifications  Accepted. 

7026  (1921).  Chemical  Fuel  Co.  of  America. 
Carrying  out  chemical  processes  involving  gaseous 
or  vaporous  carbon  compounds.    (160,466.)  June  14. 

15,601  (1921).  Darrasse,  Darrasse,  and  Dupont. 
Manufacture  of  synthetic  camphor.  (164,357.) 
June  14. 


XXI  —PHOTOGRAPHIC  MATERIALS  AND 

PROCESSES. 

Applications. 

Coley.  Manufacture  of  photographic  plates  and 
films.    14,997.    May  29. 

Hall.  Sensitised  plates  for  colour  photography. 
16.188.    June  10.  ^     .       , 

Horst  Farbenfilm  Ges.,  and  Horst  Devices  for 
producing  photographs  in  natural  colours,  lb.uou. 
June  9. 

Complete  Specifications  Accepted. 

32,883  (1920).  Hauff  u.  Co.  Photographic  de- 
velopers.    (154,198.)     June  8. 

3695  (1921).     Levy.     See  XIII. 

XXII.— EXPLOSIVES ;     MATCHES. 

Complete  Specification  Accepted. 
23,160     (1921).       Friederich.       Manufacture    of 
priming  compositions.     (180,605.)     June  8. 


Vol.  XLI..  No.  13.] 


ABSTRACTS 


(July  15.  1922. 


I.-GENERAL ;  PLANT  ;    MACHINERY. 

Itefi  iterating  machine  employing  compression 
supplementary  to  high  condenser  pressures;  Test 

of  a  carbon  dioxide  •.     R.  Plank.     Z.   ges. 

Kalteind.,    1921,    28,    157—162.       Chem.    Zentr., 
1922,  93,  II.,  1102. 

The  efficiency  of  compression  refrigerating 
machines  in  which  the  working  fluid  operates  in  the 
neighbourhood  of  the  critical  state  can  be  increased 
by  submitting  the  compressed  and  cooled  vapour, 
or  condensed  fluid,  to  subsequent  compression 
followed  by  further  cooling.  Thus  in  a  test  carried 
out,  not  under  particularly  favourable  conditions, 
an  increased  power  consumption  of  about  7%  for 
the  auxiliary  compression  increased  the  cooling 
efficiency  by  18%.  The  increased  efficiency  is  some- 
what greater  than  anticipated  from  theoretical  con- 
siderations on  account  of  the  efficiency  of  the 
principal  compressor  being  increased  owing  to 
diminished  thermal  losses. — J.  S.  G.  T. 

Adsorption  of  vapours;  Calculation  of at  differ- 
ent temperatures.  L.  Berenyi.  Z.  angew.  Chem., 
1922,  35,  237—238. 

FoRiruLJE  and  tables  are  given  by  means  of  which 
it  is  possible  to  calculate  from  the  x,  (quantity 
adsorbed)  and  p,  (pressure)  values  for  a  measured 
adsorption  isotherm  (at  temperature  T,),  the  cor- 
responding x  and  p  values  for  other  temperatures 
over  a  range  extending,  for  substances  boiling 
between  170°  and  400°  abs.,  from  0'6  to  1'4  times 
the  boiling  point  in  °  abs.  The  method  is  based  on 
Polanvi's  theory  of  adsorption  (Verb.  Deuts.  Phys. 
Ges.,  1914,  16,  1012;  1916,  18,  55;  Z.  Elektrochem., 
1920,  26,  370;  Festsehr.  Kaiser-Wilhelm-Ges.,  171) 
and  applies  only  to  the  reversible,  physical  adsorp- 
tion of  chemically  homogeneous  vapours,  alone,  or 
of  such  vapours  from  admixtures  with  comparatively 
inert  gases.  The  application  of  the  method  to 
published  experimental  data  is  described. — H.  M. 

'  Adsorption  of  solutions;  General  theory  of  the . 

Wo.  Ostwald  and  R.  de  Izaguirre.    Kolloid-Zeits., 
1922,  30,  279—306. 

Evert  adsorption  is  at  first  a  process  of  separation, 
whereby  a  concentrated  solution,  the  adsorbed  solu- 
tion, forms  at  the  surface  of  the  adsorbent,  whilst 
the  equilibrium  solution  remains  behind.  The 
adsorption  of  the  solvent  along  with  the  dissolved 
substance  is  an  important  part  of  every  adsorption. 
(£'/.  J.C.S.,  July.)— J.  F.  S. 

Patents. 

Liquids  of  different  density  [e.g.,   oil  and  water]; 

Separators     employed    for    separation    of    . 

W.  H.  Bateman.     E.P.  179,209,  8.11.20. 

i  "  tail-box  "  for  the  separation  of  oil  and  con- 
densed water  produced  during  the  steam  distilla- 
tion of  oils  is  so  constructed  that  it  may  be  attached 
o  any  form  of  separating  chamber,  and  is  divided 
)y  vertical  partitions  into  four  compartments.  The 
irst  or  water  discharge  compartment  is  connected 
vith  the  bottom  of  the  separating  chamber  and  has 
n  overflow  pipe  of  adjustable  level  so  that  the 
olumn  of  water  therein  is  balanced  by  the  column 
f  oil  and  water  in  the  separating  chamber.  The 
lext  compartment  is  connected  with  the  separator 
ust  below  the  top  level  of  the  oil  therein  and  with 
third  compartment  at  the  same  height  as  the  oil 
svelj  thus  providing  a  liquid  seal  in  the  connexion 
etween  the  second  compartment  and  the  separator 
3  prevent  gas  loss.  The  third  compartment  is 
lrnished  with  an  oil  discharge  pipe.  The  fourth 
impartment  is  a  sight  box  and  has  connexions  in 


its  upper  part  with  the  second  (oil)  compartment 
and  in  its  lower  part  with  the  first  (water)  com- 
partment.— F.  G.  P.  R. 

Separating  solids  by  crystallisation  from  solvents; 

Process   for   .      F.    W.    Berk    and    Co.,    and 

H.  V.  A.  Briscoe.  E.P.  179,287,  1.2.21. 
To  resolve  a  mixture  of  two  substances  into  its 
constituents  a  solution  of  the  mixture  is  brought 
to  conditions  of  concentration  and  temperature  at 
which  one  substance  only  tends  to  crystallise  out  on 
I  cooling,  the  solution  is  cooled,  and  the  crystals  of 
I  the  first  substance  are  separated  before  the  second 
substance  begins  to  crystallise.  The  solution  is 
then  brought  to  conditions  of  concentration  and 
temperature  at  which  the  second  substance  only 
j  tends  to  crystallise  out  on  cooling,  the  solution  is 
cooled,  and  the  crystals  of  the  second  substance  are 
separated  before  the  first  substance  begins  to 
crystallise.  The  solution  is  then  again  brought  to 
conditions  of  concentration  and  temperature  at 
which  either  substance  only  tends  to  crystallise  on 
cooling.  The  application  to  the  separation  of  a 
mixture  of  potassium  nitrate  and  sodium  nitrate  is 
described  in  detail. — H.  H. 

Oils;  Means  of  effecting  heat  interchange  between 
two  fluids,  particularly  applicable  for  use  in  dis- 
tilling     .      T.    E.    Robertson.      From    Power 

Specialty  Co.     E.P.  179,493,  26.11.20. 

In  apparatus  for  heating  fluids,  such  as  pipe  stills 
or  steam  superheaters,  the  pipes  nearer  the  furnace 
receive  more  heat  than  those  more  remote,  with 
consequent  danger  of  over-heating  the  contained 
fluid.  In  order  to  equalise  the  amount  of  heat 
transmitted  to  the  fluid  along  the  whole  system  of 
pipes,  the  latter  are  enclosed  in  corrugated  casings 
on  which  the  depths  of  the  corrugations  vary  more 
or  less  inversely,  whilst  the  thickness  of  the  body 
of  the  casing  varies  directly,  as  the  temperature 
difference  between  the  heating  and  heated  fluids. 

— F.  G.  P.  R. 

^Recuperators  for  use  in  connexion  with  furnaces. 
Faconeisen  Walzwerk  L.  Mannstaedt  und  Co. 
A.-G.,  and  H.  Bansen.     E.P.  179,639,  7.2.21. 

The  recuperators  may  be  considered  as  made  up 
of  a  series  of  units.  Each  unit  consists  of  a  number 
of  horizontal  waste  gas  flues,  of  square  cross-section, 
built  one  above  the  other,  and  connected  at  their 
ends  so  as  to  form  a  continuous  passage  for  the  gas. 
A  number  of  such  units  are  placed  parallel  to  one 
another,  with  spaces  between  them,  and  also 
between  the  outer  walls  and  outer  units.  The  gas 
flues  are  supported  at  the  lower  corners  on  brick- 
work, which  extends  almost  the  whole  length  of 
the  flue,  and  also  bridges  the  gap  between  the  units 
and  forms  a  support  for  the  corresponding  flue  of 
the  next  unit.  In  this  way  there  are  formed  round 
each  gas  flue  four  flues  of  rectangular  section,  two 
horizontal,  one  above  and  one  below  the  gas  flue, 
and  two  lateral  flues  each  extending  the  length  of 
the  gas  flue.  Waste  gas  enters  the  gas  flues  at  the 
top  and  passes  downwards  through  the  plant.  Air 
enters  at  the  bottom  and  flows  to  the  back  of  the 
plant  through  the  horizontal  flue  below  the  lowest 
gas  flue.  Here  there  is  an  opening  between  this 
flue  and  the  lateral  flue  through  which  the  air 
returns  to  the  front  of  the  plant,  where  it  enters 
through  another  opening  the  horizontal  flue  be- 
tween the  two  ga6  flues.  Travelling  to  the  back  by 
the  horizontal  flues  and  to  the  front  of  the  plant 
through  the  lateral  flues,  the  air  gradually  rises  and 
is  discharged  at  the  top  of  the  plant.  When  deal- 
ing with  large  quantities  of  air  several  gas  flues  are 
arranged  to  work  in  parallel.  Among  the  advan- 
tages claimed  for  this  invention  are  even  distribu- 


490  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[July  15,  1922. 


tion  of  air  in  horizontal  and  lateral  flues,  the 
possibility  of  directing  air  through  the  recuperators 
by  any  path,  high  speed  of  air,  simplification  of  con- 
struction and  repairs,  and  minimising  of  stresses 
set  up  in  masonry. — S.  G.  U. 

Kilns.     G.    Hughes.     From   Deutsche  Evaporator 
A.-G.     E.P.  179,674,  14.2.21. 

The  cooling  chamber  of  the  kiln  is  connected  with 
the  heating  chamber  by  a  yielding  member,  so  that 
the  expansion  of  the  heating  chamber  is  not  trans- 
mitted to  the  cooling  chamber.  Two  flat  or  bulged 
plates  with  centres  removed  to  suit  the  cross-section 
of  the  kiln  chambers  have  the  inner  edge  of  the  one 
bolted  to  the  flange  of  the  heating  chamber,  and  the 
inner  edge  of  the  other  to  the  flange  of  the  cold 
chamber.  Gas-tight  joints  are  formed  at  the  outer 
edges  of  the  plates,  and  in  addition  one  of  these 
yielding  members  is  connected  with  one  end  of  a 
plate,  the  other  end  of  which  has  slots  through 
which  pass  studs  screwed  into  the  second  member, 
thus  covering  the  gap  between  the  yielding 
members. — S.  G.  TJ. 


B.  Carstens,  Assr.  to  The 
U.S. P.   1,415,990,  16.5.22. 


Kiln;  Rotary  .     A 

American   Metal  Co. 
Appl.,  8.12.19. 

A  kotahy  kiln  is  provided  in  its  periphery  with 
openings  which  are  kept  closed  while  the  kiln 
rotates,  except  during  the  short  period  when 
material  is  fed  into  the  kiln  through  them. 

—J.  S.  G.  T. 

Distillation  columns.    C.  Still  and  H.  Petsch.    E.P. 

179,745,  15.3.21. 
In  a  continuous  column  apparatus  for  the  distilla- 
tion  of    volatile   constituents   from    a    mixture    of 
liquids  of  high  and  low  boiling  points,  a  preheater 
is    placed    between    the    etill    and    the    rectifying 
column.    The  sides  of  the  preheater  are  in  line  with 
the  sides  of  the  still,  and  the  cover  of  the  still  forms 
the  base  of  the  preheater,  whilst  the  cover  of  the 
preheater  forms  the  base  of  the  rectifying  column. 
Two  channels  pass  through  the  base  plate  of  the 
preheater.     One,  the  downcomer,  projects  through 
the  base  plate  into  a  tray  placed  in  the  top  of  the 
still,  60  as  to  form  a  seal  between  the  preheater  and 
the   still.      The    other   channel,    which   carries   the 
vapour  from  the  still  to  the  top  of  the  preheater, 
v,  hence  it  passes  through  suitable  openings  into  the 
rectifying  column,  is  placed  diametrically  opposite 
and  terminates  at  a  higher  level  than  the  down- 
comer.      Steam   coils    are    fitted    in   the    space   be- 
tween the  channels,   and  the  liquid  to  be  distilled 
is  fed  into  the  preheater  through  a  short  straight 
perforated  pipe  placed  below  the  coils.     The  con- 
densed liquid  on  the  trays  of  the  rectifying  column 
is  also  led  into  the  preheater.     Advantages  claimed 
are  elimination  of  a  separate  preheater,  thus  reduc- 
ing heat  losses;  a  simple  path  for  both  liquid  and 
vapour;  cheapening  of  cost  and  working  of  plant. 

— S.  G.  U. 


Filtering  apparatus   [:  "Rotating   salve  fur 
E.  W.  W.  Keene.     E.P.  179,494,  11.3.21. 


-]• 


In  a  rotating  valve  for  rotary  or  other  continuous 
filters,  the  interior  ported  portion  which  communi- 
cates with  the  various  sectors  of  the  filter  proper 
does  not  co-operate  directly  with  the  stationary 
outer  part  of  the  valve,  but  through  adjustable 
sliding  pieces  working  in  an  annular  groove  be- 
tween the  two  main  portions  of  the  valve.  The 
sliding  pieces  are  adjustable  from  outside  the  cover 
of  the  valve,  and  control  the  ports  by  which  connex- 
ion is  made  with  a  high  vacuum  for  filtration,  a 
low  vacuum  for  washing,  a  supply  of  air  under 
pressure  for  discharging,  and  an  air  exhaust. 

— B.  M.  V. 


Drying    apparatus.      C.    Whitfield.      E.P.   179,764, 
23.3.21. 

The  drying  chamber  consists  of  a  long  chamber 
rectangular  in  section,  having  a  charging  arrange- 
ment at  one  end  and  a  discharging  device  at  the 
other.  The  floor  of  this  chamber  forms  the  roof 
of  two  smaller  chambers;  one,  the  combustion 
chamber,  at  the  outlet  end  of  the  apparatus, 
extends  about  one  third  the  length  of  the  dry- 
ing chamber,  and  is  of  rectangular  section,  whilst 
the  other,  about  two  thirds  the  length  of  the 
drying  chamber,  ia  of  triangular  section  and  has 
two  outlets  at  the  inlet  end  of  the  apparatus, 
one  for  condensed  liquid  and  the  other  for  spent 
gases.  The  drying  chamber  is  fitted  with  a  flue  or 
flues  connected  with  the  inner  end  of  the  combus 
tion  chamber.  The  outlet  of  the  flue  or  flue 
is  turned  downwards,  so  as  to  discharge  the  hot 
gases  on  to  the  material  at  the  inlet  end  of  the  plant. 
The  gases  flow  towards  the  discharging  end  and 
there  enter  two  ducts  embedded  in  the  brickwork 
and  having  their  outlets  in  the  inner  end  of  the 
triangular  chamber,  through  which  the  gases  flow 
to  the  charging  end  of  the  plant.  The  plant  is 
particularly  suitable  for  drying  wet  materials  such 
as  peat,  which  are  unharmed  by  contact  with  the 
hot  gases;  the  fuel  consumption  is  small,  and  it  is 
impossible  for  any  moisture  to  collect  at  any  point 
of  the  drying  chamber.- — S.  G.  U. 

Dryer.      K.    Ladisch.      U.S. P.    1,416,960,    23,5.22. 
Appl.,  15.8.21. 

A  rotary  perforated  heating  drum  is  provided  with 
an  inner  concentric  distributing  tube  spaced  from 
the  drum  and  composed  of  a  number  of  spaced 
sections.  Means  are  provided  to  adjust  the  sections 
in  order  to  vary  the  width  of  the  spaces  and  to  fix 
them  in  place.— H.  R.  D. 

Separating    fine    material;    Apparatus    for    . 

G.    A.    Mower    and    A.    Ogilvie.     E.P.    179,867, 
16.8.21. 

Mounted  on  a  vertical  spindle  are  a  fan  and  a  series 
of  discs  and  perforated  conical  plates.  The  spindle 
is  coaxial  with  two  concentric  cylinders,  the  outer 
of  which  terminates  at  its  lower  end  in  an  inverted 
cone.  The  inner  cylinder  terminates  at  its  lower 
end  in  an  annular  grid  valve  used  to  regulate  the 
air  and  operated  from  the  outside  of  the  machine. 
An  inverted  conical  receiver  is  attached  to  the 
inner  edge  of  this  valve,  the  bottom  of  the  receiver 
being  coupled  to  a  pipe  which  passes  through  the 
outer  cone.  The  material  to  be  separated  is  fed  on 
to  the  discs  and  perforated  cones,  from  which  it  is 
discharged  by  centrifugal  force  against  outer 
cylindrical  and  conical  plates.  The  heavier  par- 
ticles ultimately  fall  into  the  inner  cone  and  are 
discharged.  The  fan  situated  at  the  top  of  the 
machine  draws  a  current  of  air  through  the  spaces 
between  the  rotating  discs  and  cones  and  the  outer 
cylinders  etc.,  and  discharges  into  the  annulus 
formed  by  concentric  cylinders,  the  dust-laden 
air  descending  into  the  space  between  the  inner  and 
outer  cones.  The  dust  settles  out  and  is  collected  a! 
the  bottom  of  the  outer  cone,  the  air  being  drawn 
again  through  the  grid  valve. — S.  G.  U. 

Vapours;  Method  of  dissipating  heat  in  proa 

extracting  from  gaseous  mixtures.     G.  A. 

Burrell,  C.  L.  Voress,  and  V.  C.  Canter,  Assrs.  to 
Gasoline  Recovery  Corp.  U.S. P.  1,382 
28.6.21.  Appl.,  24.1.21. 
In  the  recovery  of  volatile  substances  (gasoline, 
benzol,  alcohol,  etc.)  by  absorption  in  active  char- 
coal, silica  gel,  etc.,  considerable  heat  is  developed 
during  absorption,  and  also  the  expulsion  of  the 
absorbed  substance  from  the  absorbent  by  BUPej" 
heated  steam  leaves  the  absorbent  considerably 
warmer  than  is  consistent  with  efficient  absorption. 


Vol.  XIX,  Xo.   13.] 


Cl.  11a.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


491a 


It  is  customary  to  use  three  absorbers  in  such  a  way 
that  one  is  always  being  cooled  by  gas  which  has 
been  treated  in  a  previous  passage.  In  order  to 
render  the  process  more  efficient,  it  is  proposed  to 
increase  the  heat-absorbing  capacity  of  the  gaseous 
mixture  under  treatment  by  mixing  with  it  a  gas 
or  gaseous  mixture  containing  only  a  small  propor- 
tion of  recoverable  vapour,  or  free  from  6uch 
vapour. 

Eigh-velocity  classifier;  Electric  [_for  grading 

particles  removed  from  gases].  C.  W.  J.  Hed- 
berg,  Assr.  to  Research  Corp.  TJ.S.P.  1,416,089, 
16.5.22.    Appl.,  26.11.19. 

The  gas  is  passed  at  a  high  velocity  through  an 
electric  field,  so  that  the  finer  particles  only  are 
precipitated  therein,  the  larger  particles  passing  on 
and  being  separately  collected.— J.  S.  G.  T. 

Separation  of  suspended  material  from  gases;  Pro- 
cess and   apparatus  for  .     E.   R.   Wolcott, 

Assr.  to  International  Precipitation  Co.  U.S. P. 
1,416,769,  23.5.22.     Appl.,  30.6.19. 

Gas  to  be  treated  is  moistened  and  cooled,  so  that 
moisture  condenses  on  the  particles  of  suspended 
.material,  which  are  subsequently  agglomerated  and 
.precipitated  by  subjecting  the  gas  to  the  action  of 
an  alternating  electric  field. — J.  S.  G.  T. 

\Separation  of  solid  or  liquid  matter  held  in  sus- 
pension  in    gases,    employing    high-tension    elec- 

■    tricity;  Process  of  .     Metallbank  u  Metall- 

urgische  Ges.  A.-G.     G.P.  348,377,  8.12.19. 

'Discharge  electrodes  in  the  form  of  smooth  rods  are 
disposed  at  such  a  distance  from  the  collecting 
•dectrodes  that  the  potential  of  the  uniform  brush 
lischarge  from  the  former  when  no  deposition  has 
iccurred  upon  them,  is  higher  than  the  sparking 
>otential  between  the  electrodes  on  either  side.  In 
operation  the  discharge  electrodes  are  maintained 
|o  covered  with  deposit  that  the  discharge  potential 
lecessary  to  produce  a  uniform  brush  discharge  is 
less  than  the  spark  potential.  By  thus  utilising  the 
'eposited  dust  to  lower  the  discharge  potential  it 
iecomes  possible  to  use  smooth  rods  of  considerable 
toss-section  as  discharge  electrodes. — J.  S.  G.  T. 

ftases;  Disintegrator  for  use  in  the  wet  process  for 

1  separating  dust  from .    E.  Wurmbach.    G.P. 

j  346,873,  23.12.19. 

he  amount  of  surface  for  the  deposition  of  dust  in 
n  apparatus  for  separating  dust  from  gases  by  the 
et  process  is  increased  by  the  provision  of  a 
umber  of  partitions  parallel  with  the  outer  wall  of 
le  spiral  separating  chamber,  whereby  the  chamber 
divided  into  a  number  of  channels  for  the  pass- 

Iie  of  the  gas. — L.  A.  C. 
vaporatiun  of  stored  liquids;  Prevention  of  . 

■  Prevention  of  evaporation,     (a)   F.   A.   Howard, 

:  C.  I.  Robinson,   and  J.  M.   Jennings,   (b)  F.  A. 

Howard  and  J.  M.  Jennings,  Assrs.  to  Standard 

Oil  Co.   U.S.P.  1,415,361-2, 9.51.22.   Appl.,  12.4.20. 

3LAT1XE  liquids  stored  in  the  usual  type  of  tank 
container  are  guarded  against  loss  by  evapora- 

>n  by  means  of  a  layer  of  foam,  over  the  surface 
the  liquids.    Two  systems  of  pipes  and  apparatus 

r  supplying  the  foam  are  described. — F.  G.  P.  R. 

ntrifugal  oil  purifier.  M.  Leitcb,  Assr.  to  The 
De    Laval     Separator    Co.        U.S.P.     1,415,881, 

16.5.22.    Appl.,  22.4.20. 
centrifugal  machine  having  a  compound  bowl 

■imposed  of  two  concentric  members,  of  which  the 
ler  one  alone  has  a  perforated  periphery,  is 
nished  with  means  for  rotating  the  latter  either 

dependency   or    in   conjunction    with   the    outer 

:  mber.— F.  G.  P.  R. 


Separator    and    dryer.       C.     J.     Wood.       U  S  P 

1,416,922,  23.5.22.  Appl.,  4.6.19. 
Granular  material  is  introduced  into  a  separating 
chamber  below  which  is  arranged  a.  valve  casing  for 
admitting  air  to  the  separator  through  an  inlet 
port.  An  outlet  port  is  disposed  in  the  lower  part  of 
the  casing,  and  the  ports  are  controlled  by  a  valve 
so  that  the  separator  will  discharge  through  the 
valve  casing  and  outlet  port,  when  the  inlet  port  in 
the  casing  is  closed. — J.  S.  G.  T. 

Centrifugal  separator.     C.  H.   Holmgren.     U  S  P 
1,417,064,  23.5.22.     Appl.,  25.2.21. 

The  bowl  of  a  centrifugal  separator  is  provided 
with  a  number  of  baffles  fitting  snugly  against  the 
outer  wall  of  the  bowl  but  leaving  spaces  at  or  near 
the  axis  for  the  passage  of  liquid,  these  spaces 
decreasing  in  size  from  the  inlet  to  the  outlet  end 
of  the  bowl.— B.  M.  V. 

Extractive     matters;    Pioccs.<    of    separating 

from   solutions   of   mixtures   of   solvents   and   of 
Bering    the    latter.      H.    Bollmann.      U.S.P. 
1,417,477,  23.5.22.    Appl.,  13.1.22. 

Mixtures  of  water  and  volatile  organic  liquids 
which  are  of  constant  boiling  point  and  contain 
extractive  matters  are  separated  by  distilling  the 
solution  so  as  to  obtain  a  distillate  containing  the 
greater  part  of  the  water  and  a  part  of  the  solvent 
mixture,  this  distillate  being  separated  into  two 
portions  of  different  specific  gravity.  The  remain- 
der of  the  original  mixture  is  then  further  distilled, 
and  the  distillate  mixed  with  the  lighter  of  the  two 
fractions  from  the  first  distillation. — B.  M.  V. 

Lubricant.     E.P.  179,344.     See  V. 

Filters.     E.P.  179,355.     .See  XIXb. 


Ha.-FUEL;  GAS  ;  MINERAL  OILS 
WAXES. 


AND 


Lignin,  natural  humus  material  and  coal;  Autoxida- 

tion  of and  the  effect  of  alkali  thereon.     H. 

Schrader.     Brennstoff-Chem.,  1922,  3,  161—167. 

Lignin  in  the  presence  of  5N  caustic  soda  is 
gradually  oxidised  at  the  atmospheric  temperature. 
In  presence  of  oxygen  pure  lignin  lost  9'4%  of  its 
weight  in  46  hrs.,  in  absence  of  oxygen  2'6_%.  The 
oxidation  products  recovered  from  the  alkaline  solu- 
tion consisted  for  the  most  part  of  humic  acids, 
together  with  smaller  quantities  of  succinic  and 
oxalic  acids,  isophthalic  acid  (?),  pyromellitic 
or  benzenepentacarboxylic  acid,  and  unidentified 
non-volatile  acids  soluble  in  alcohol.  Considerable 
quantities  of  volatile  products  (acetic  and  formic 
acids,  water,  and  carbon  dioxide)  were  also  formed 
during  the  oxidation.  The  oxidation  in  8  months 
proceeded  to  the  extent  of  about  50%  of  the  original 
pure  lignin.  Comparative  tests  made  of  the  volume 
of  oxygen  absorbed  in  1000  hrs.  by  1  g.  of  lignin, 
pine  sawdust,  lignite,  cellulose  (filter-paper),  and 
coal,  each  in  contact  with  52V  caustic  soda,  gave 
results  varying  from  82  c.c.  of  oxygen  for  lignin 
down  to  6'7  c.c.  with  coal,  the  absorptions  being  in 
the  order  mentioned.  The  bearing  of  these  observa- 
tions on  the  theory  of  the  author  and  F.  Fischer 
that  the  humic  portion  of  coal  is  a  decomposition 
product  of  lignin  is  discussed,  and  it  is  suggested 
that  the  action  of  the  caustic  soda  in  the  experi- 
ments is  equivalent  to  that  of  lime,  ammonia,  or 
bacteria  in  nature.     (Cf.  J.C.S.,  July.)— C.  I. 

Carbonisation  of  coal;  Studies    in   the   — — ;    i/te 

mechanism  of  coal  carbonisation.     J.  J.  Morgan 

and  R.  P.   Soule.     Chern.   and  Met.  Eng.,  1922, 

26,  1025—1030. 

The     origin     of     the     aromatic     hydrocarbons     of 

ordinary  coal  tar  has  been  variously  attributed  to 

a  2 


492  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[July  15,   1922. 


the   decomposition   of   low-temperature   distillation 
products  into  simple  compounds  which  subsequently 
undergo    pyrogenic    syntheses,    to    the    hydrogena- 
tion   and  dealkylation   of  phenols,   and  to  the  de- 
hvdrogenation     and    dealkylation    of    unsaturated 
hydrocarbons.  A  detailed  examination  of  a  commer- 
cial low-temperature  tar  in  comparison  with  high- 
temperature  tars  (cf.  page  495  a)  shows  that  pyro- 
gemc  syntheses  are  of  secondary  importance.     The 
average  molecular  weights  of  the  liquid  products  of 
carbonisation  steadily  decrease  as  the  temperature 
of  carbonisation  rises.    The  reactions  of  the  phenols 
are    particularly    important    when    distilling   coals 
with  an  oxygen  content  equal  to  that  of  those  used 
in  commercial  carbonisation.    During  the  first  stage 
of  the  decomposition   of  the  primary   phenols  the 
side  chains  of  the  higher  homologues  are  eliminated, 
methyl   and   ethyl   groups  probably  being  replaced 
by  hydrogen.   Monocyclic  aromatic  hydrocarbons  are 
mainly  derived  from  phenols  and  then  may  be  hydro- 
genated    themselves    or    may    participate    in   pyro- 
genic syntheses.     The  quinoline  which  preponder- 
ates  among  the  bases   of   high-temperature  tar   is 
derived  from  dihydroquinoline.     The  hydrocarbons 
in  the  tars  examined  result  from  the  dehydrogena- 
tion  of  the  naphthenes  primarily  formed  in  carbon- 
isation.     The    formation    of    di-    and    tetra-hydro- 
derivatives  constitutes  a  stable  stage  in  the  process 
as  shown  by  the  examination  of  the  tar  formed  at 
600°  C.    Naphthalene  may  be  formed  by  hydrogena- 
tion    of    the    naphthol    derivatives    found    in    low- 
temperature    tar,    but,   together   with  other    poly- 
nuclear  aromatic  hydrocarbons,  mainly  results  from 
the    decomposition    of    the    polycyclic    unsaturated 
compounds.     In  view  of  the  preponderance  of  six- 
membered  ring  compounds  in  low-temperature  tar 
and  of  the  stability  of  the  ring  itself,  it  is  suggested 
that  the  constitution  of  the  coal  substance  may  be 
pictured  as  an  aggregate  of  ring  formations.    Some 
of  these  contain  oxygen  and  possess  the  character- 
istics   of    cellulose   degradation    products    but    are 
regarded  as  polymerised  phenols.     Other  rings  may 
.  be    held    together    by    paraffinoid    groupings,    the 
detachment  of  which  explains  the  presence  of  open- 
chain  hydrocarbons  in  low-temperature  tar.    Nitro- 
gen and  sulphur  compounds  may  appear  in  analog- 
ous configurations. — H.  Hg. 

Carbonisation;  Low  versus  high  temperature  

for  the  production  of  smokeless  fuel.  E.  R.  Sut- 
cliffe  and  E.  C.  Evans.  S.  Wales  Inst.  Eng.  Gas 
J.,  1922,  158,  631—632. 
The  combustibility  of  a  coke  is  not  entirely  depend- 
ent upon  the  temperature  at  which  it  has  been  pre- 
pared but  is  largely  determined  by  its  structure 
(cf.  J.,  1922,  196  t).  Free-burning  coke  can  be  pre- 
pared at  high  temperatures  from  coals  which  contain 
little  resinous  matter  and  which  do  not  fuse  or  swell 
during  carbonisation,  or  from  coals  which  have  been 
briquetted  without  a  binder  prior  to  carbonisation. 
Such  cokes  resemble  charcoal  rather  than  gas  coke 
in  structure.  The  choice  between  high  and  low 
temperature  systems  will  therefore  be  governed  by 
economic  factors  rather  than  by  technical  difficul- 
ties. The  increased  yield  of  coke  obtained  at  lower 
temperatures  is  more  than  counterbalanced  by  the 
decreased  value  of  the  volatile  products.  It  is 
possible  to  obtain  high  yields  of  tar  and  yet  carbon- 
ise at  high  temperatures  if  the  temperature  is 
raised  slowly. — H.  Hg. 

Lignites;  Comparative  researches  on  the  carbonisa- 
tion of  on  a  technical  and  laboratory  scale. 

K  Bunte  and  F.  Schwarzkopf.  Gas  u.  Wasser- 
fach,  1922,  65,  322—325,  340—343,  355—357. 
An  earthly  lignite  from  Luckenau  was  carbonised  on 
a  technical  scale  in  retorts  and  also  tested  on  a 
laboratory  scale,  viz.,  by  carbonisation  of  about 
1  kg.  in  a  muffle,  by  Strache's  method  of  carbonisa- 


tion in  a   tube   (J.,   1911,   1245),   using   only  0T — 
0'2  g.,  and  by  Groppel's  tube  method  of  carbonisa- 
tion using  1  g.  of  lignite.     The  figures  obtained  by 
the  various  methods  were: — coke:    technical  scale, 
20-0%;    muffle   method,    238%  ;    Strache's   method, 
28'6%  ;   Groppel's   method,   27'7%  ;   condensed   pro- 
ducts:     technical    scale,     35'3%  ;     muffle     method, 
54'3%;     Strache's     method,     47T5%  ;     Groppel's 
method,     603%;     gas    and    loss:     technical    scale, 
44-7%:   muffle   method,   2T9%  ;    Strache's    method, 
24-25%  ;  and  Groppel's  method,  12"0%.    The  results 
obtained  by   Strache's  method,   in  which   air-dried 
coal  is  used,  and  by  Groppel's  method,  in  which  the 
coal  is  previously  dried  at  105°  C.  in  a  current  of 
nitrogen,  are  corrected  to  make  them  comparable 
with  those  obtained  by  the  muffle  test  and  on  the 
technical  scale,  where  the  raw  lignite  is  used.   There 
is   some  uncertainty,   however,   since  some  of   the 
moisture    undoubtedly    leads   to    the    formation   of 
water-gas  during  carbonisation.     In  the  muffle  pro- 
cess, various  temperatures  were  used  but  in  no  case 
did  the  results  correspond  with  those  obtained  on  a 
technical  scale.     By  carbonisation  in  a  small  tube 
it  was  attempted  to  maintain  an  even  temperature, 
but  by  the  nature  of  the  process  this  is  not  possible, 
and  in  consequence  the  results  in  different  tests  are 
very  discordant.     The  most  concordant  results  are 
those  obtained  by  the  method  of  Grbppel.    All  three 
methods,    however,    gave    results    differing    widely 
from  those  obtained  by  carbonisation  on  a  technical 
scale,  and  no  satisfactory  conclusion  can  therefore 
be  drawn  from  the  results  obtained  by  such  methods 
as  regards  the  usefulness  of  lignites  when  carbon- 
ised   at  the   usual   temperatures   attained   in   gas- 
works.— A.  G. 

Water-gas  generator  fuel;  Coal  and  cotce  mixtures 

as  .     W.  W.  Odell.     U.S.  Bureau  of  Mines. 

Tech.  Paper  284,  1921.  31  pages. 
A  decided  benefit  may  be  realised  by  the  use  of  mix- 
tures of  coal  and  coke  when  operating  with  a  long 
lay-over  period.  When  the  plant  is  working  less  than 
eight  hours  per  day  the  gas-making  capacity  is  :i- 
great  as  when  using  coke  alone.  The  fuel  consump- 
tion per  1000  cub.  ft.  when  employing  the  blow-run 
method  is  less  with  mixed  fuel  than  w-hen  coal  alum- 
is  used,  and  gas  of  a  more  uniform  quality  can  be 
obtained.  The  tar  produced  from  a  carburetted 
water-gas  plant  using  coal  or  mixtures  of  coal  and 
coke  is  less  troublesome  than  that  from  coke  alone  as 
it  does  not  emulsify.  The  conditions  for  best  results 
must  be  worked  out  for  each  coal  or  mixture  used, 
as  they  vary  considerably  with  the  fuel.  Special 
attention  is  drawn  to  the  necessity  of  keeping  care- 
ful watch  on  the  gauges  and  meters,  so  that  blow- 
holes or  "  flues "  in  the  fuel  may  be  quickly 
detected.  The  liability  to  form  such  is  great  when 
mixtures  containing  over  70%  of  coal  arc  used  and 
is  accentuated  by  high  blast  pressure.  Trouble  may 
thus  be  encountered  with  fuel  being  blown  over  int<i 
the  chequer  brickwork.  Owing  to  the  tendency  ol 
high  blast  pressures  to  form  blow-holes  the  amount 
of  air  per  minute  which  can  be  supplied  is  limit.  1 
The  use  of  a  fuel  spreader  is  recommended  to 
minimise  this  tendency.  More  benefit  is  derived 
from  an  air-purge  when  coal  is  used  than  in  t 
case  of  coke  alone  owing  to  the  increase  in  t 
methane  and  illuminants  during  the  progress  of  tin? 
run  Attention  is  drawn  to  the  danger  of  damag- 
ing the  hot  valve  and  generator  lid  by  working  with 
a  low  fuel  bed.  It  is  important  to  choose  the  t..p 
of  oil-sprav  best  adapted  for  the  conditions  pre- 
valent. The  nozzles  should  be  tested  with  oil  under 
the  conditions  of  pressure  obtaining  in  actual  use. 

— A.  R.  M. 

Sulphur  and  solid  paraffins;  Probability  of  react'or 

hHween    m    otl-bearmg    strata.      M.    •& 

Rakusin.     Petroleum,  1922,  18,  581—582. 

Paraffin    wax    of    m.p.    56°    C.   was   heated   in  a 


Vol.  XLI.,  Xo.  13.J 


Cl.  IIa.— FUEL;  GAS;  MINERAL  OILS  AND  WAXES. 


493  a 


glass  retort  with  sulphur  to  190°— 205°  C.  for  IS 
hrs.  The  escaping  vapours  were  passed  through  two 
D-tubes  containing  pumice  moistened  with  am- 
monia and  a  tube  containing  calcium  chloride.  In 
the  first  two  tubes  ammonium  sulphide  and  poly- 
sulphides  were  formed,  and  the  latter  were  decom- 
posed with  hydrochloric  acid  and  the  separated 
sulphur  collected.  It  was  found  that  the  amount  of 
sulphur  which  entered  into  reaction  with  the  paraffin 
was  about  3%  of  the  weight  of  the  latter.  It  is 
concluded  that  in  oil  fields  which  produce  both  oil 
free  from  paraffin  wax  and  oil  containing  paraffin 
wax,  the  oil  free  from  wax  should  have  a  smaller 
sulphur  content  than  the  oil  containing  wax,  and 
this  was  found  to  be  the  case  in  the  Roumanian 
fields,  the  respective  percentages  being  0'042%  and 
0'112%,  and  in  the  Grozny  field,  where  the  per- 
centages were  0'212%  and  0'782%.     For  the  forma- 

'  tion  of  oil  free  from  paraffin  wax  from  crude  oil  a 
temperature  of  200°  C.  would  be  necessary,  which 
would  only  be  reached  at  corresponding  depths.    In 

■  the  higher  and  cooler  strata  the  paraffin  wax  is  not 
attacked  by  sulphur. — H.  M. 

.  Petroleum  spirit;  Detection  of  benzene  in .    P. 

Schwarz.     Chem.-Zeit.,  1922,  46,  401. 

Five  c.c  of  the  sample  is  added  to  2  c.c.  of  a  mix- 
ture of  equal  vols,  of  aniline  and  95%  alcohol;  if  the 
petroleum  spirit  is  free  from  benzene,  the  aniline 
separates  as  a  layer,  but  the  presence  of  as  little 
as  5  of  benzene  keeps  the  aniline  in  solution  and 
the  mixture  remains  clear.  The  sample  may  be 
[fractionally  distilled,  if  desired,  and  the  test  applied 
to  the  fraction  having  b.p.  80°— 110°  C— W.  P.  S. 

Low-temperature    carbonisation   of   coal.      Morgan 
and  Soule.     Sec  III. 

Pyroplioric  blast-furnace  flue-dust.     Gilles.     S'ceX. 

Absorption  meter  for  gas  analysis.     3Ioser.     See 
XXIII. 


Patents. 


A.  France. 


Coal  and  the  like;  Washing  of  — 
E.P.  179,630,  7.2.21. 

Minerals  consisting  of  fine  particles,  either  alone 
or  mixed  with  larger  particles,  are  separated  into 
'lonstituents  of  different  specific  gravities  by  means 
')f  a  stream  of  water  in  a  sloping  launder,  the 
leavier  material  which  collects  in  the  lower  layers 
)eing  further  sorted  by  treatment  with  a  liquid  of 
jiigh  specific  gravity  in  static  columns.  The  latter 
■iquid  may  consist  of  water  containing  in  suspension 
!'ery  fine  mineral  particles  forming  the  mud  which 
follects  in  the  launder,  or  may  consist  of  a  solution 
f  a  solid  in  water. — A.  R.  31. 

Mificial  fuel;  Method  of  producing  - .     C.  J. 

Greenstreet.     E.P.  179,567,  1.11.20. 

olid  fuel,  such  as  coal,  peat,  lignite,  etc.,  is  mixed 
a  a  finely  powdered  state  with  coal  tar,  fuel  oil, 
r  mineral  oil,  tlr'ekened  by  means  of  oleates, 
fcearates,  pahnitates,  or  paraffin  wax  or  the  like, 
he  mixture  can  be  transported  .through  pipes. 

—A.  R.  31. 

'ombustible    material;    Process    of    making    . 

H.   S.   3Iork   and  G.  J.   Esselen,  jun.,   Assrs.   to 

A.    D.    Little,    Inc.  U.S. P.    1,416,493,    16.5.22. 
Appl.,  10.9.19. 

x  infusible  solidified  liquid  fuel  is  prepared  by 
issolving pyroxylin  in  a  volatile  combustible  solvent 
mtaining  a  carbonyl  group,  coagulating  this 
ilution  in  a  volatile  combustible  non-solvent  and 
axing  it  with  another  solution  of  pyroxylin  which 
close  to  the  point  of  coagulation  so  that  the  mix- 
ire  is  solidified.— H.  Hg. 


Burning  pulverised  fuel  in  furnaces;  Method  and 

apparatus   for   .      V.    Z.    Caracristi.      E.P. 

179,662,  11.2.21. 

Pulverised  fuel  is  allowed  to  fall  into  a  furnace 
from  burners  passing  through  the  furnace  roof. 
Sufficient  air  for  ignition  of  the  fuel  is  admitted 
through  the  burners.  Additional  unheated  air  is 
admitted  through  a  number  of  ports  at  different 
levels  in  the  front  wall  of  the  furnace,  with  the 
object  of  preventing  intense  combustion  near  the 
burners  and  coalescence  of  the  fuel  or  ash. — H.  Hg. 

Co/ce  ovens.    L.  L.  Summers.    E.P.  179,235,  5.1.21. 

An  oven  with  a  reciprocating  horizontal  floor  such 
as  is  described  in  E.P.  6504  of  1910  (J.,  1911,  L'74 ; 
1910,  934)  is  built  so  that  its  height  is  greater  than 
its  width.  In  order  to  ensure  that  the  frictional 
resistance  between  the  floor  and  the  material  being 
carbonised  is  greater  than  that  between  the 
material  and  the  side  walls,  a  vertical  longitudinal 
fin,  which  may  carry  lateral  flanges,  is  attached  to 
the  floor.  Heating  flues  are  provided  in  the  side 
walls.  The  material  to  be  coked  may  be  partially 
distilled  and  converted  into  a  plastic  state  in  a 
vertical  chamber  placed  above  the  charging  end  of 
the  oven. — H.  Hg. 

Coking  retort  oven.  J.  Becker,  Assr.  to  The 
Koppers  Co.  U.S. P.  1,416,322,  16.5.22.  Appl., 
23.4.20. 

A  return*  waste  gas  main  is  connected  with  the 
regenerators  so  that  if  desired  waste  gas  may  bo 
directed  into  some  of  the  in-flow  regenerators. 

— H.  Hg. 

Furnace  retort.  C.  H.  Smith  and  E.  B.  Edwards, 
Assrs.  to  International  Coal  Products  Corp. 
U.S. P.  1,417,113,  23.5.22.    Appl.,  10.6.19. 

A  number  of  combustion  chambers  are  arranged 
along  both  sides  of  a  horizontal  retort,  each 
chamber  extending  below  the  retort.  A  longi- 
tudinal waste  gas  flue  is  placed  above  the  retort  and 
the  combustion  chambers.  The  connexions  are  such 
that  gas  may  be  burnt  in  alternate  combustion 
chambers  by  means  of  air  preheated  in  one  portion 
of  a  regenerator  situated  underneath  the  furnace ; 
the  waste  £ases  may  pass  through  the  remaining 
chambers  and  the  waste  gas  flue  to  the  other  por- 
tion of  the  regenerator;  and  the  direction  of  flow 
may  be  successively  reversed. — H.  Hg. 

Complete  gasification  of  carbonaceous  fuel;  Appara- 
tus for  .     J.    F.    Simpson.      E.P.    179,643. 

8.2.21. 
The  apparatus,  which  may  be  used  either  for  the 
production  of  water-gas  from  fuel  containing  no 
volatile  matter,  or  for  the  complete  gasification  of 
bituminous  fuel,  consists  of  a  water-gas  generator 
in  combination  with  two  regenerators,  so  arranged 
that  an  air  blast  may  be  directed  through  the 
system  in  either  direction.  The  regenerators  re- 
ceive their  heat  in  two  ways,  first  from  the  sensible 
heat  of  the  gases  leaving  the  generator,  and, 
secondly,  from  the  heat  of  combustion  of  a  part  of 
the  gases  which  are  caused  to  burn  by  the  admission 
of  the  required  amount  of  secondary  air.  Super- 
imposed upon  the  generator  is  a  carbonising 
chamber  or  retort,  which  may  contain  bituminous  or 
non-bituminous  fuel.  During  the  period  of  gas- 
making,  steam  is  admitted  by  way  of  the  heated  re- 
generator, through  the  bed  of  fuel  in  the  producer, 
the  water-gas  thus  formed  passing  up  the  retort 
and,  in  the  case  of  a  bituminous  fuel,  expelling  the 
contained  volatile  matter.  Liquid  fuel  may,  if 
desired,  be  admitted  into  the  retort  during  the 
"  run."  The  retort  is  of  such  construction  and  of 
sufficient  length  that  the  gas  leaving  the  top  is 
comparatively  cool. — A.  R.  31. 


494A 


Cl.  IIa.— FUEL;  GAS;  MINERAL  OILS  AND  WAXES. 


[July  15,  1922. 


Gas  generators  for  generating  low  grade  gas.  J. 
and  0.  G.  Pierson.     E.P.  179,716,  24.2.21. 

In  a  gas  producer  with  an  open  hearth  a  mixture 
of  steam  and  air  is  supplied  both  below  the  grid 
and  to  the  fuel  cone  above  the  grid.  The  steam  is 
mixed  with  the  air  just  before  entering  the  fuel 
bed.— H.  Hg. 

Gas  producer.     H.  Koppers.     G.P.  341,351,  5.12.16. 

Gases  from  a  producer  shaft  enter  an  adjacent 
shaft  containing  fuel  through  an  opening  at 
the  bottom  of  the  partition  wall  between  the 
shafts  and  pass  upwards  through  the  shaft. 
Non-combustible  gases  present  in  the  producer 
gas,  together  with  n  mixture  of  steam  and 
carbon  dioxide  fed  into  the  6tream  of  gases  through 
openings  at  the  bottom  of  the  partition  wall,  are 
converted  into  combustible  gases  during  passage 
through  the  second  shaft.  The  lower  ends  of  both 
shafts  slope  towards  the  partition  wall,  and  means 
are  provided  below  the  opening  connecting  the  two 
shafts  for  drawing  off  the  molten  slag. — L.  A.  C. 

Gas  producer  in  which  the  fuel  is  dried  by  means 
of  superheated  steam.  A.-G.  fiir  Brennstoffver- 
gasung.  G.P.  345,490,  28.1.19.  Addn.  to 
313,048  (J.,  1922,  167  a). 

In  the  apparatus  described  in  the  chief  patent,  the 
connexions  between  the  superheater  and  drying 
chamber  are  connected  by  pipes  provided  with 
valves  to  the  pipe  supplying  a  mixture  of  steam 
and  air  to  the  producer,  so  that  the  proportions  of 
super-heated  and  saturated  steam  in  the  mixture  of 
steam  and  air  can  be  adjusted  as  desired. — L.  A.  C. 

Gas  producer  with  separate  discharges  for  the  dis- 
tillation  gases   and   the    tar-free   producer   gas; 

Recovery  of  by-products  [ammonia~\  from .  J. 

Pintsch,  A.-G.     G.P.  350,568,  6.10.18. 

Tin-:  distillation  gases,  cooled  to  a  temperature  above 
that  at  which  moisture  is  deposited,  and  the 
producer  gas  are  scrubbed  separately  to  recover 
ammonia,  and  the  liquors  are  united  and  treated 
with  acid  to  convert  the  ammonia  into  ammonium 
sulphate. — L.  A.  C. 

Illuminating-gas;    Manufacture    [purification]     of 

.       Soc.    du    Gaz   de    Paris.       E.P.    164,310, 

28.4.21.     Conv.,  4.6.20. 

Crude  gas  is  washed  with  a  mixture  of  a  solution  of 
a  ferrous  salt  and  milk  of  lime,  whereby  hydrocyanic 
acid  is  removed  as  soluble  iron-cyanogen  compounds 
and  part  of  the  hydrogen  sulphide  is  converted  into 
insoluble  iron  sulphide.  The  mixture  is  then 
filtered,  and  the  solid  material  after  being  exposed 
to  air,  is  mixed  with  sawdust,  and  used  for  the 
removal  of  the  hydrogen  sulphide  remaining  in  the 
gas  issuing  from  the  washer. — H.  Ilg. 

Gasoline,  naphtha,  and  the  like;  Process  and  appa- 
ratus for  recovering  and  recondensing .  G.  A. 

Burrell,  C.  L.  Voress,  and  V.  C.  Canter,  Assrs.  to 
Gasoline  Recovery  Corp.  U.S.P.  1,382,890, 
28.6.21     Appl.,  24.1.21. 

Gasoline,  naphtha,  or  the  like  which  has  been 
absorbed  by  active  charcoal,  silica  gel,  or  the  like, 
is  recovered  by  treating  the  latter  with  superheated 
steam  under  pressure,  the  steam  and  evolved 
vapours  being  also  condensed  under  pressure. 

Oils:  Process  of  dehydrating   henry  .     F.   W. 

Harris,  Assr.  to  Petroleum  Rectifving  Co.  U.S.P. 
1,410,673,  28.3.22.     Appl.,  31.5.21. 

The  oil  is  mixed  with  a  solvent  to  reduce  its 
viscosity  and  specific  gravity,  then  treated  to 
remove  water,  and  subsequently  freed  from  the 
solvent. 


[Petroleum,   oils;]  Pressure   distillation   [of  ]. 

E.  M.  Clark,  Assr.  to  Standard  Oil  Co.     U.S.P. 
1,410,797,  28.3.22.     Appl.,  21.4.19. 

A  consideraule  body  of  the  oil  is  heated  under 
pressure  to  produce  lighter  products,  and  portions 
of  the  oil  are  withdrawn  continuously  and  relieved 
of  pressure  in  order  to  distil  off  the  lighter  frac- 
tions, which  are  condensed  and  returned  to  the  main 
body  of  oil  to  undergo  further  decomposition. 

Hydrocarbon  oils;  Process  for  treating .    T). 

Day.    U.S.P.  1,411,237,  28.3.22.    Appl.,  11.12.19. 

Hydrocarbon  oils  are  freed  from  nitrogenous  im- 
purities by  treatment  with  "  sludge  acid,"  which  is 
obtained  by  treating  hydrocarbon  oils  with  acid, 
removing  the  acid  sludge  formed,  and  treating  it 
with  steam  to  separate  it  into  sludge  acid  and  acid 
tar. 

Cracking  oils  under  pressure.  C.  Ellis,  Assr.  to 
Standard  Oil  Co.  U.S.P.  1,415,232,  9.5.22.  Appl., 
26.11.20. 

Oil  is  passed  through  a  series  of  narrow  tubes 
heated  to  400°— 600°  C.  and  from  there  is  led  into 
a  tube  or  chamber  of  large  diameter  where  exactly 
the  same  temperature  is  maintained.  The  gaseous 
products  are  then  led  to  dephlegmators  and  frac- 
tionally condensed.  Superatmospheric  pressure  is 
maintained  throughout  the  system,  and  water,  in 
the  form  of  steam,  up  to  20—50%  by  volume  of  the 
oil  may  be  fed  into  the  cracking  tubes  with  the  oil. 
Secondary  decomposition  is  6aid  to  take  place  in  the 
large  chamber  which  could  not  occur  in  the  smaller 
tubes.— F.  G.  P.  R. 

Petroleum-refining    apparatus;    Continuous    . 

C.  A.  Jouett.     U.S.P.  1,415,876,  16.5.22.     Appl., 
23.9.18. 

Preheated  oil  is  sprayed  into  the  top  of  a  vertical 
cylinder,  divided  horizontally  into  a  number  of 
chambers,  and  is  heated  by  means  of  a  concentric 
flue  attached  to  a  furnace  stack  provided  with 
adjustable  ports  opposite  each  chamber.  Annular 
traps  are  provided  at  the  bottom  of  each  chamber 
to  allow  unvaporised  oil  to  flow  into  the  top  of  the 
next  lower  and  hotter  chamber.  Vapour  pipes  lead 
from  each  chamber  to  superposed  dephlegmators 
provided  with  run-back  pipes  to  the  next  lower 
chamber,  and  thence  through  a  similar  de- 
phlegmator  system  packed  with  a  solid  filtering 
medium  to  condensers.  Fully  refined  products  are 
thus  produced  continuously. — F.  G.  P.  R. 

Lubricating  oils;  Method  of  producing  .  G.  D. 

Harper.    U.S.P.  1,414,695,  2.5.22.    Appl.,  11.5.18. 

Lubricating  oils  ready  for  use  without  purification 
by  acid  and  alkali  may  be  produced  by  concentration 
of  a  crude  naphthene  base  petroleum  oil,  such  as 
Franklin  heavy  oil,  to  approximately  70%  of  its 
original  volume  and  filtration  of  the  residuum. 

— F.  G.  P.  B. 

Motor  fuel.  E.  W.  Stevens,  Assr.  to  Chemical  Fuel 
Co.  of  America.  'U.S.P.  1,414,759,  2.5.22.  Appl., 
9.3.20. 
A  liquid  fuel  for  internal  combustion  engines,  of  the 
same  general  character  as  petrol,  is  composed  of  a 
mixture  of  a  light  distillate  from  petroleum  oil. 
alcohol,  a  hydrocarbon  blending  agent,  and  a  small 
amount  of  a  readily  volatile  ester  of  formic  acid. 

-F.  G.  P.  R. 

See  also  pages  (a)  489,  Separating  liquids  of  differ- 
ent density  (E.P.  179,209);  Distilling  oils  (E.P. 
179,493).  491,  Preventing  evaporation  (U.S.r. 
1,415,351—2);  Oil  purifier  (U.S.P.  1.415,881). 


vol.  XIX,  No.  13.]        Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &o.         Cl.   III.— TAR,  &o. 


495  a 


Distillation  of  oils  (G.P.  338,846).  501,  Ammonia 
etc.  from  peat  (E.P.  159,194).  502,  Sulphur  from 
gases  (G.P.  350,271 — 2);  Hydrogen  sulphide  from 
gases  (G.P.  350,325).  510.  Lubricating  oil  substitute 
(G.P.  349,926). 

IIb.— DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Wood-distillation  process;  Application  of  electrical 

precipitation   to    the   .     L.    F.   Hawluy    and 

H.  M.  Pier.  Cliem.  and  Met.  Eng.,  1922,  26, 
1031—1033. 

A  Cottrell  precipitator  was  installed  between  an 
experimental  wood-distillation  retort  and  a  con- 
denser with  the  object  of  separating  the  pitch 
which  normally  contaminates  the  pyroligneous  acid. 
The  precipitator  was  heated  to  give  an  outlet  gas 
temperature  of  about  100°  C,  under  which  con- 
ditions the  precipitated  pitch  and  tar  flowed  away 
as  a  liquid.  At  higher  temperatures  a  solid  pitch 
was  deposited  and  caused  short-circuiting.  The  out- 
let vapours  were  condensed  and  gave  an  acid  con- 
taining 3'3%  of  soluble  tar,  whereas  the  acid 
normally  contained  12 — 15%  of  tar.  By  direct 
neutralisation  of  the  acid  a  calcium  acetate  of 
77'8%  purity  was  obtained.  Some  of  the  tar  was 
probably  formed  by  polymerisation  after  the  vapours 
left  the   precipitator   (c/.   Klason,    J.,    1915,   707). 

— H.  Hg. 

Patents. 

Oil   containing    sulphur;   Production   of   and 

water-glass  [from  bituminous  kieselguhr].  R. 
Illig.    G.P.  346,237,  3.1.19. 

Bituminous  kieselguhr,  either  alone  or  mixed  with 
alkalis  or  alkali  salts,  is  subjected  to  dry  distillation 
and  heated  to  fusion  point.     A  mixture  of  bitumin- 
ous kieselguhr  and  sodium  sulphate  on  heating  in 
I  vertical  retorts  yields  a  distillate  comprising  tar, 
an  aqueous  liquid,  and  crude  ichthyol  oil;  the  fused 
residue  in  the  retort  can  be  treated  for  the  produc- 
I  tion   of   water-glass.      If   bituminous   kieselguhr   is 
!  heated  alone,  crude  ichthyol  oil  is  present  in  the 
i  distillate,  and  the  residue  consists  of  an  intimate 
■  mixture  of  carbon  and  silica  suitable  for  use  as  an 
absorbent  for  nitroglycerin,  as  a  decolorising  agent, 
or  as  a  dyestuff  carrier  in  the  production  of,  e.g., 
black  pigments. — L.  A.  C. 

Incandescent     lamp.       W.     A.     Darrah.       U.S. P. 
1,385,608,  26.7.21.     Appl.,  23.11.14. 

The  electrical  conductor,  e.g.,  tungsten,  in  the  form 
of  a  filament  or  the  like,  is  suported  and  embedded 
in  boron  nitride,  or  other  infusible,  inert  insulat- 
ing material  which  remains  unchanged  at  tempera- 
tures near  the  boiling  point  of  carbon.  The  outer 
surface  of  the  boron  nitride  or  the  like  may  be 
:oated  with  a  substance  exhibiting  selective  radia- 
cion,  e.g.,  tungsten  or  the  materials  used  in  the 
Nernst  glower,  and  the  lamp  may  be  filled  with  an 
inert  gas. 

Seat;  Production  of  and  its  application  for 

heating  liquids  and  other  purposes.  D.  La  Cour 
and  C.  V.  Schou.  U.S.P.  1,417,075,  23.5.22. 
Appl.,  30.9.15. 

<ee  E.P.  1745  of  1915;  J.,  1916,  105. 

III.-TAR  AND  TAR  PRODUCTS. 

Agnite    tar    industry;    Distillation   under   a    high 

vacuum  in   the   .     E.    Graefe.     Brennstoff- 

Chem.,  1922,  3,  167—171. 

'he   usual    practice   in    the   distillation   of    lignite 
ar  has  been  to  commence  with  a  pressure  of  10  cm. 


of  mercury  below  atmospheric  and  finish  at  -40  cm. 
While  this  reduction  of  pressure  carries  with  it  the 
advantages  of  reduced  loss  from  cracking,  saving 
of  time  and  fuel  economy,  there  is  no  reason  why  a 
higher  vacuum  should  not  be  used  with  even  greater 
advantage.  This  is  done  in  the  Briinn-Konigsfeld 
continuous  distillation  plant  designed  during  the 
war  to  treat  producer-tar.  The  small  stills  used  in 
the  lignite  tar  industry  are  replaced  by  a  series  of 
8  horizontal  boiler  stills  of  40  cb.  m.  capacity,  each 
connected  with  a  preheater.  The  tar  flows  through 
the  whole  series  of  16  units  and  the  greater  part  of 
its  water  content  settles  out  and  is  drawn  off  as 
liquid  in  the  preheaters.  Behind  each  preheater  is 
a  condenser  so  that  the  distillate  may  be  collected 
in  16  fractions  if  desired.  The  whole  is  maintained 
at  a  vacuum  of  68  cm.  and  the  temperatures  of  the 
stills  range  from  200°  C.  to  320°  O.  The  distillation 
is  completed  up  to  coke  in  5-ton  cast  iron  discon- 
tinuous stills,  and  the  oil  produced  by  the  latter 
fractionated  in  another  series  of  continuous  stills. 
In  consequence  of  the  low  temperature  of  the  dis- 
tillation the  lubricating  oil  obtained  is  of  high 
quality. — C.  I. 

Carbonisation    of    coal;    Studies    in    the    : 

characteristics  of  low-temperature  coal  tar.  3.  J. 
Morgan  and  R.  P.  Soule.  Chem.  and  Met.  Eng., 
1922,  26,  923— 92S,  977—981. 

The  tar  produced  during  the  carbonisation  of  a 
bituminous  coal  containing  353%  of  volatile  matter 
in  the  primary  retorts  of  the  "  Carbocoal  "  process 
(c/.  Thurston,  J.,  1921,  51  t)  was  examined  in 
detail.  The  temperature  in  the  retort  shell  was 
730°  C.  and  the  volatile  products  leaving  the  coal 
came  in  contact  with  surfaces  at  600°  C.  The  crude 
tar  was  dehydrated  by  distilling  up  to  200°  C,  the 
light  oils  being  separated  from  the  condensed  liquid 
and  returned  to  the  tar.  Fractional  distilla- 
tion of  the  dry  tar  gave  results  similar  to  those 
obtained  during  parallel  distillations  of  coke-oven 
and  gas  works  tars,  although  the  sp.  gr.  was  only 
T0676  and  the  free  carbon  content  only  0"71  %  .  The 
pitch  obtained  was  less  brittle  than  that  obtained 
from  high-temperature  tars.  Analysis  of  the  dis- 
tillates obtained  showed  that  the  dry  tar  yielded 
13'7%  of  phenols,  0'624%  of  nitrogenous  bases, 
13"4%  of  unsaturated  hydrocarbons,  2"8%  of  naph- 
thenes,  and  1'6%  of  paraffins.  The  high  proportion 
of  phenols  is  characteristic  of  all  low-temperature 
tars,  and  from  a  consideration  of  the  acid  content 
of  the  fractions  of  high  boiling-point  it  is  concluded 
that  the  pitch  also  contained  a  large  quantity  of 
tar  acids.  The  acids  were  separated  from  the  dis- 
tillates by  extraction  with  caustic  soda  solution  and, 
after  purification  by  benzene  extraction  and  steam 
distillation,  were  liberated  by  the  addition  of 
sulphuric  acid.  'Carboxylic  acids,  if  present,  were 
negligible ;  methoxyl  and  ethoxyl  groups  were 
absent.  The  mixture  of  phenols  had  sp.  gr.  T036, 
while  mixed  phenols  from  coke-oven  and  gas  works 
tars  had  sp.  gr.  T044.  Phenols  from  both  low-  and 
high-temperature  tars  were  fractionally  distilled ; 
there  was  a  smaller  yield  of  low-boiling  distillates 
from  the  low-temperature  phenols,  but  from  the  sp. 
gr.  of  the  distillates  it  is  concluded  that  the  compon- 
ents were  similar.  Naphthol  derivatives  were  found 
in  the  fractions  of  higher  boiling-point  of  the  low- 
temperature  tar  phenols.  Repeated  fractionations 
followed  by  nitration  and  determinations  of  sp.  gr. 
and  freezing  point  showed  that  the  low-temperature 
tar  phenols  contained  4'2%  of  phenol,  33'4%  of 
cresols,  19'0%  of  xylenol  fraction,  34"8%  of  higher 
homologues,  and  8'6%  of  pitch.  After  separation  of 
acids  from  the  tar  distillates  determinations  were 
made  of  the  bases  present.  The  results  indicated 
that  the  pitch  probably  contained  more  bases  than 
did  the  distillates.  The  mixed  bases  contained  no 
primary,  but  about  20%   of  secondary  and  80%   of 


496  a 


Cl.  III.— TAR  AND  TAR  PRODUCTS. 


[July  15,  192 


tertiary  bases.  The  sp.  gr.  of  the  mixture  was 
0'993,  while  that  of  the  bases  from  high-temperature 
tar  was  T060.  Bases  from  both  low-  and  high- 
temperature  tars  were  fractionally  distilled ;  deter- 
minations of  the  sp.  gr.  and  molecular  weights  of 
the  distillates  indicated,  in  the  case  of  the  low- 
temperature  bases,  a  greater  degree  of  hydrogena- 
tion  of  the  nucleus,  the  presence  of  aliphatic  side- 
chains  of  higher  molecular  weight,  or  both.  After 
the  removal  of  the  bases  the  remaining  oils  were 
found  to  contain  no  alcohols.  Hydrogen  sulphide 
was  present  but  carbon  bisulphide  was  absent. 
Upon  exposure  there  was  evidence  of  polymerisation 
or  oxidation  of  the  hydrocarbons.  The  sp.  gr.  of 
the  mixed  hydrocarbons  was  0'S91  while  that  of  the 
hydrocarbons  from  high-temperature  tar  was  T028. 
The  paraffins  and  naphthenes  were  separated  from 
the  unsaturated  and  aromatic  hydrocarbons  by 
means  of  sulphuric  acid,  and  the  relative  pro- 
portions present  in  the  different  fractions  were 
estimated  by  sp.  gr.  determinations.  There  was  a 
close  similarity  to  the  saturated  hydrocarbons 
obtained  in  a  similar  manner  from  petroleum. 
Unsaturated  and  aromatic  hydrocarbons  were 
recovered  by  extraction  of  the  total  neutral  oil 
with  sulphiiT  dioxide.  The  oils  recovered  from  the 
sulphur  dioxide  were  washed  with  alkali  and  dis- 
tilled. From  determinations  of  the  sp.  gr.  and 
refractive  index  of  each  fraction  obtained  it  was 
6hown  that  there  are  practically  no  aromatic  hydro- 
carbons in  low-temperature  tar  and  that  the 
unsaturated  hydrocarbons  are  cyclic  in  character. 

— H.  Hg. 

Phenols;  Speed  of  sulpltonaiion  of  .     I.  Effect 

of  temperature  and  the  methyl  group.  A.  F. 
Campbell.  Chem.  Soc.  Trans.,  1922,  121,  847— 
857. 

The  speed  of  sulphonation  of  phenols  is  strongly 
influenced  by  temperature  but  is  independent  of 
the  time  of  reaction  and  of  the  concentration. 
In  the  experiments  the  time  varied  from  1  to  6 
hrs.  and  the  quantity  of  sulphuric  acid  (96%) 
from  35  to  65%  of  the  weight  of  the  phenols. 
The  influence  of  introduction  of  the  methyl  group 
into  the  phenol  molecule  on  the  velocity  of  sul- 
phonation varies  with  the  relative  position  of  the 
hydroxyl  group  and  to  a  certain  extent  with  the 
temperature.  In  the  ortho  or  para  position  to  the 
hydroxyl  the  methyl  group  retards  the  speed  of 
sulphonation  at  all  temperatures  from  20°  to  80°  C. 
The  retarding  influence  of  the  ortho  group  is  one- 
third  that  of  the  para  at  20°  C,  but  diminishes 
rapidly  up  to  a  constant  value  at  60°  C.  At  40° 
C.  the  velocity  of  sulphonation  of  o-cresol  is  0'859 
of  the  velocity  of  sulphonation  of  phenol.  A  m- 
methyl  group  has  a  maximum  effect  on  the  speed 
of  sulphonation  at  low  temperatures,  the  accelera- 
tion gradually  diminishing  until  at  temperatures 
above  65°  C.  the  m-methyl  group  has  a  retarding 
influence.  A  point  of  equilibrium  between  the 
respective  effects  of  the  ortho  and  meta  groups  and 
of  the  meta  and  para  groups  is  reached  at  70°  C. 
and  100°  C.  respectively,  at  which  temperatures 
sulphonation  of  the  two  isomerides  proceeds  at  the 
same  rate.  Above  70°  C.  the  speed  of  sulphonation 
of  o-cresol  is  the  higher.  The  p-methyl  group 
exerts  the  greatest  relative  effect,  approximately 
3'75  times  that  of  the  ortho,  at  low  temperature. 
Phenol  is  sulphonated  at  a  higher  rate  than  either 
o-  or  p-cresol  at  all  temperatures  from  20°  to  80°  C, 
and  at  a  lower  rate  than  m-cresol  at  temperatures 
up  to  about  65°  C.  At  20°  C.  the  order  of  rate  of  sul- 
phonation (decreasing)  is  m-cresol,  phenol,  o-cresol, 
p-cresol.  The  influence  of  a  second  methyl  group 
ortho  to  hydroxyl  in  p-cresol  is  further  to  retard 
the  velocity  of  sulphonation.  A  second  m-methyl 
group  has  a  great  influence  than  an  o-methyl 
group  but  in  the  reverse  direction,  hence  p-xylenol 


is  sulphonated  at  a  higher  rate  than  phenol  at 
40°  C— P.  V.  M. 

Peat    and    shale    tars;    Composition    of   .      J. 

Marcusson  and  M.  Picard.     Petroleum,  1922,  18, 
637—638. 

Peat  tar  on  digesting  with  ether  gave  3%  of  black 
insoluble  residue  consisting  of  oxyacids  and  their 
esters  and  salts  of  iron  and  calcium.  The  ether 
solution  was  freed  from  bases  by  treatment  with 
hydrochloric  acid,  saponified  with  alcoholic  potash 
solution,  and  separated  by  Spitz  and  Honig's 
method  (J.,  1891,  1039).  The  unsaponifiable  portion 
contained  8%  (on  the  tar)  of  solids,  which  were 
separated  by  acetone  at  -20°  C.  and  had  an  iodine 
value  of  26'3  and  an  acetyl  value  of  31.  The 
saponified  solution,  when  treated  with  hydro- 
chloric acid,  deposited  24'5%  of  acid  substances, 
and  when  these  were  digested  with  ether  3%  of 
oxyacids  remained  undissolved.  The  evaporated 
ether  extract  when  treated  with  hot  benzine  left 
8%  of  insoluble  oxyacids  of  lower  m.p.  than  those 
insoluble  in  ether;  the  1T5%  of  matter  soluble  in 
benzine  consisted  of  fatty  acids  of  high  molecular 
weight  together  with  phenols.  Shale  tars  tested  by 
a  similar  method  gave,  as  did  peat  tars,  16 — 22%  of 
fatty  and  oxyacids  including  those  present  in  the 
form  of  calcium  salts,  and  5%   of  basic  substances. 

— H.  M. 

Patents. 

Tars  or  oils;  Process  for  the  continuous  distillation 
of .     E.  Bliimner.    G.P.  338,846,  23.4.20. 

Tar  or  the  like  is  projected  in  a  finely  divided 
form  on  to  the  bottom  of  a  vessel  containing  a 
molten  metal  having  a  boiling  point  below  the 
temperature    to    which    the    tar    is    to    be    heated. 

— L.  A.  C. 


Dehydration.  Dehydration  of  pyridine.  W.  J. 
Huff,  Assr.  to  The  Koppers  Co.  U.S. P.  (a) 
1.416,205  and  (b)  1,416,206,  16.5.22.  Appl.,  27.1.21. 

(a)  Pyridine  containing  water  is  dehydrated  by 
distilling  off  a  fraction,  which  serves  as  a  vehicle 
to  carry  off  water,  removing  water  from  the  dis- 
tillate, returning  the  pyridine  distillate  to  the 
still,  and  repeating  these  operations  until  the 
desired  degree  of  delrydration  is  attained,  (d)  A 
liquid  of  low  boiling  point  is  added  to  pyridine  con- 
taining water  in  less  amount  than  that  required  to 
form  a  binary  mixture  of  constant  boiling  point, 
and  serves  as  a  vehicle  to  carry  off  the  water.  The 
mixture  is  distilled  and  more  of  the  liquid  added 
till  the  desired  degree  of  dehydration  is  attained. 

— H.  M. 

Anthraquinone;     Manufacture     of    .       Chem. 

Fabr.  Worms  A.-G.  E.P.  169,145,  1.7.21.  Com-., 
13.9.20.  (C/.  E.P.  156,215,  156,538,  and  156,540; 
J.,  1922,  407  a.) 

In  the  oxidation  of  anthracene  to  anthraquinone 
by  means  of  air  or  oxygen  in  presence  of  oxides  of 
nitrogen,  if  the  operation  is  conducted  in  presence 
also  of  a  readily  soluble  reagent  which  fixes  nitric 
acid,  e.g.,  s,odium  acetate,  no  dehydrating  agent, 
such  as  acetic  anhydride,  is  necessary,  nor  need  an 
anhydrous  solvent  be  employed.  The  oxides  of 
nitrogen  may  be  introduced  in  the  form  of  sodium 
nitrite,  in  which  case  if  acetic  acid  is  used  as  the 
solvent  the  requisite  sodium  acetate  will  be  formed 
during  the  reaction,  or  they  may  be  introduced  as 
fuming  nitric  acid.  The  yields  of  anthraquinone 
amount  to  about  95%  of  the  theoretical,  and  the 
product  has  a  purity  of  97 — 98%. — G.  F.  M. 


Vbl.  XLI.,  No.  13.]        Cl.  IV.— COLOURING  MATTERS,  &c.       Cl.  V.— FIBRES  ;  TEXTILES,  &c.        497  a 


Hydrogenated  anthraquinone  derivatives ;  Prepara- 
tion of .    Tetralin  Ges.m.b.H.    G.P.  346,673, 

21.7.18. 
Tetrahydronaphthalene,    or    a    substitution   pro- 
duct,   is   treated    at   moderate    temperatures   with 
aromatic     o-dicarboxylic     acid     anhydrides,     e.g., 
phthalic  anhydride,   in  the  presence  of  aluminium 
chloride  and   a  diluent  such   as  benzene,   and  the 
I    y-ketonecarboxylic    acids    obtained    are    converted 
into    hydrogenated    anthraquinone    derivatives    by 
treatment  with  condensing  agents,  such  as  fuming 
sulphuric        acid.       Tetrahydronaphthalene        and 
phthalic  anhydride  in  the  presence  of  benzene  and 
aluminium   chloride  at   60° — 70°   O.    yield   /3-tetra- 
hydronaphthoyl-o-benzoic  acid,  m.p.  153° — 155°  C, 
which  on  dissolving  in  cooled  fuming  sulphuric  acid 
containing   25%    of   sulphur   trioxide,    with    subse- 
quent  heating   for   10   mins.   to   100°   C,   yields   a 
mixture   of    a-    and    /3-tetrahydronaphthanthraqtii- 
none   of   m.p.    135°   C.    and   211°   C.    respectively. 
The  isomers  are  separated  by  fractional  crystallisa- 
I   tion,  first  from  benzene  and  then  from  acetic  acid, 
in  both  of   which   solvents   the  a-derivative   is  the 
|  more  soluble.       ar-2-Methyltetrahydronaphthalene, 
I  b.p.  219° — 220°  C,  prepared  by  the  hydrogenation 
I  of    /8-methylnaphthaIene     in     the     presence    of     a 
I  catalyst,    on    treatment   as   above   yields   3-methyl- 
'   tetrahydro-2.1-naphthanthraquinone,   m.p.   119°  C. 
The  compounds  serve  for  the  manufacture  of  dye- 
stuffs  and  drugs. — L.  A.  C. 

IV.-C0L0UBING  MATTERS  AND  DYES. 

2-Uydroxybenzanthrone;      Derivatives      of      ■ . 

G.  G.  Bradshaw  and  A.  G.  Perkin.     Cheat.  Soc. 
Trans.,  1922,  121,  911—922. 

2-Hydroxybenzanthrone  or  the  corresponding 
3-hvdroxy  derivative,  when  heated  under  pressure 
for' 8  hrs.  at  170°— 180°  O.  in  the  form  of  a  32% 
paste  with  aqueous  sodium  hydroxide  and  dextrose, 
glycerol,  mannitol,  tevulose  or  erythritol  (the 
last-named  being  especially  effective),  yields  a  fluor- 
escent mixtureconsisting  mainly  of  a  brown  amorph- 
ous substance  together  with  small  quantities  of 
kydroxybenzanthronecarboxylie  acid  which  readily 
passes  into  the  lactone  on  heating.  The  dimethyl 
derivative  of  the  lactone  on  oxidation  with 
chromic  acid  yields  methyl-2-methoxyanthraquin- 
one-1-glyoxylate,  which  passes  by  hydrolysis  and 
elimination  of  carbon  dioxide  into  2-methoxy- 
anthraquinone-1-carboxylic  acid.  Small  amounts 
of  2.2-dihydroxydianthraquinone  and  of  two  com- 
pounds, C2BHM0,  and  C2?H18Oj,  the  nature  of 
which  is  as  yet  uncertain,  axe  simultaneously 
produced. — P.  V.  M. 

Bed    dyestuff ;    New    from    quinoline.       M. 

Giua.     Gazz.  China.  Ital.,  1922,  52,  I.,  349—351. 

Condensation  of  quinoline  with  either  epichlor- 
hydrin  or  a-dichlorhydrin  in  presence  of  alkali 
hydroxide  yields  a  dark  red  oily  mass  from  which 
alcohol  extracts  a  brownish-red  compound,  C21H10N2, 
having  basic  properties.     {Cf.  J.C.S.,  Julv.) 

— T."H.  P. 

2-p-Dimethylaminostyrylpyridine  methiodide.    Mills 
and  Pope.     See  XXI. 

Patents. 

Trisazo   dyes;   Manufacture   of   diazotisable    . 

J.    Dedichen,    Assr.    to   A.-G.    fur    Anilin-Fabr. 
U.S.P.  1,416,621,  16.5.22.     Appl.,  15.8.21. 

Trisazo  dyestuffs  having  the  probable  formula  : 
<JSp^.CJH4.N2(l).CIOH„.(4)N2(l).C10Hs. 
(6)SO3H.(4)N2(2).C10HJ.(l)OH.(3)S03H.(7)NH2 
are  prepared  from  metanilic  acid,  1-naphthylamine, 
;l-naphthylamine-6-(or      7)-sulphonic      acid,      and 
2-amino-8-naphthol-6-sulphonic  acid.     The  products 
dye  cotton  reddish-blue  shades,  which  after  diazoti- 


sation  and  coupling  with  /3-naphthol  or  m-toluylene- 
diamine  are  changed  to  bluish-grey  shades. 

— L.  A.  C. 

Brown  colouring  matter;  Production  of  for 

adding    to    margarine.     A.   L.    Mohr,    G.m.b.H. 
G.P.  350,802,  30.5.17. 

A  brown  colouring  matter  containing  butyrin  and 
over  10%  of  lecithin  is  prepared  by  extracting  dry 
casein  with  hot  ehhyl  and /or  methyl  alcohol,  and 
separating  the  solvent  from  the  extract. 

— L.  A.  O. 

Gold    compounds    of    Methylene    Blue    etc.      G.P. 
347,376.     See  XX. 

V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Cotton  fabrics;  Detection  and  estimation  of  acidity 

and  alkalinity  in .     H.  F.  Coward  and  G.  M. 

Wigley.  J.  Textile  Inst.  (Trans.),  1922,  13, 
121—126. 
Neutral  cloth  was  prepared  by  exhaustively  wash- 
ing two  samples  of  pure  bleached  cotton  fabric,  one 
acid  and  the  other  alkaline,  until  neither  fabric  was 
further  removed  from  neutrality  than  0'005%  of 
alkali  or  acid  respectively,  and  it  was  then  shown 
that  fabric  which,  after  de-sizing  and  washing  in 
water,  reacts  neutral  to  methyl  red  is  neutral 
within  0'005%  HC1  or  its  equivalent.  Acid  is  more 
quickly  removed  from  a  fabric  by  washing  it  with  a 
solution  of  common  salt  than  by  means  of  pure 
water.  The  method  of  the  British  Engineering 
Standards  Association  used  for  testing  aeroplane 
fabric  is  not  suitable  for  estimating  the  absolute 
amount  of  acid  or  alkali  contained  by  a  fabric,  since 
after  washing,  cotton  fabric  can  retain  0"05%  of  its 
weight  of  sulphuric  acid,  and  may  also  react  strongly 
acid  to  several  indicators.  In  estimating  the 
acidity  or  alkalinity  of  a  fabric  by  direct  titration 
at  the  boiling  temperature  in  the  presence  of  the 
fabric,  using  phenolpthalein  as  indicator,  results 
correct  within  0'02%  can  be  obtained.  When  the 
acidity  is  determined  by  the  standard  method  of 
acidimetry  in  which  potassium  iodide  and  iodate 
are  used,  less  accurate  though  satisfactory  results 
are  obtained.  Coloured  indicators  of  suitable 
strength  can  be  used  for  the  approximate  estima- 
tion of  the  acidity  and  alkalinity  of  fabric  by 
"  spotting  "  on  the  fabric.  Approximate  figures 
for  the  changes  of  various  coloured  indicators  are 
tabulated.— A.  J.  H. 

Animal    fibres;    New    protective    agent    [against 

alkalis]  for .     A.  Edge.     J.  Soc.  Dvers  and 

Col.,  1922,  38,  136—138. 

"  Protectol  A.G.F.A."  is  a  brown,  syrupy  liquid 
of  neutral  reaction,  perfectly  soluble  in  water  and 
available  in  two  forms — No.  1,  which  is  precipitated 
by  alkali  carbonates,  and  is  intended  for  use  in  the 
presence  of  alkali  hydroxides,  and  No.  2,  which  is 
not  precipitated  by  carbonates  or  sulphides.  These 
liquids,  when  used  in  the  proportions  of  J  to  11  oz. 
per  gall.,  protect  animal  tissues,  such  as  fibres, 
wool,  silk,  hair,  fur,  skin,  and  leather,  from  the 
destructive  action  of  alkaline  baths.  After  the 
addition  of  Proteotol,  wool,  union  goods,  silk,  and 
fur  can  be  subjected  to  the  action  of  alkaline  dye- 
baths  without  injury  to  the  animal  fibre.  Protectol 
can  also  be  employed  in  the  degumming  of  silk  with 
caustic  soda  and  in  the  "  liming  "  of  skins  with 
sodium  sulphide. — J.  F.  B. 

Cellulose;  Behaviour  of  oxidised  .     E.  Knecht 

and  F.   P.  Thompson.     J.  Soc.  Dyers  and  Col., 
1922,  38,  132—136. 
Cotton  yarn  was  treated  in  the  presence  of  7'5% 
sulphuric  acid  in  the  cold,  with  increasing  quanti- 
ties of  permanganate  up  to  1  atomic  equivalent  of 


498  a 


Cl.  V.— FIBRES  ;   TEXTILES  ;   CELLULOSE  ;   PAPER. 


[July  15,  1922. 


active  oxygen.  The  "  copper  values  "  of  the 
oxidised  celluloses  were  determined,  and  it  was 
found  that  with  the  consumption  of  small  propor- 
tions of  oxygen,  up  to  i  atom,  the  increase  of  the 
"copper  value"  was  almost  proportional  to  the 
oxygen  consumed ;  beyond  that  the  increase  in 
"  copper  value  "  was  far  less  rapid.  The  consump- 
tion of  i  atom  of  oxygen  gave  a  product  with  copper 
value  of  12'7,  and  this  only  rose  to  140  with  the 
further  consumption  of  £  atom.  Thus  it  appears  that 
the  initial  action  of  the  oxidising  agent  results 
mainly  in  the  formation  of  aldehydic  or  ketunic 
groups,  while  the  later  action  is  complicated,  pos- 
sibly by  the  production  of  carhoxylic  groups.  In 
order  to  determine  whether  the  oxidation  had  taken 
place  at  the  expense  of  the  hydroxyl  groups  of  the 
cellulose,  esters  were  prepared  under  identical  con- 
ditions from  the  original  and  oxidised  celluloses. 
The  results  of  acetylation  were  inconclusive,  both 
celluloses  being  esterified  to  approximately  the  same 
extent  when  sufficient  time  was  allowed.  The 
oxidised  cellulose,  however,  was  acetylated  rather 
more  slowly  than  the  original,  and  was  consider- 
ably hydrolysed  to  products  soluble  in  water.  On 
nitration  the  oxidised  cellulose  showed  a  very  dis- 
tinct suppression  of  the  hydroxyl  activity,  yielding 
nitrates  containing  only  11'5%  of  nitrogen  with  acid 
mixtures  which  gave  nitrates  with  13'4%  of  nitrogen 
from  the  original  cotton.— J.  F.  B. 

Thiosulphates   and   polythionates  in   acid   calcium 
bisulphite  solution.    Sieber.    See  VII. 

Ultra-violet  light  in  analysis.  Kitching.  See  XXIII. 

Patents. 

Cotton     substitutes;    Manufacture     of    .       B. 

Possanner  von  Ehrenthal.     E.P.  156,710,  7.1.21. 
Conv.,  24.11.19. 

Cotton  substitutes  suitable  for  the  manufacture  of 
paper,  nitrocellulose,  etc.,  and  having  a  uniform 
strength  and  staple  so  that  they  can  be  spun  by 
the  usual  methods,  are  obtained  from  various  plants 
and  waste  such  as  linseed  and  hemp  seed,  straw, 
jute,  reeds,  nettles,  potato  haulm,  willow  bark, 
agave,  and  the  like  by  the  following  method  : — The 
fibrous  material  is  steeped  for  3 — 6  days  in  water  at 
30° — 50°  C.  and  allowed  to  ferment  until  incrust- 
ing  substances  are  partially  decomposed.  It  is 
then  thoroughly  washed  in  water,  hydrolysed  by 
treatment  for  several  hours  with  dilute  solutions 
containing  free  mineral  or  organic  acids  or  their 
acid  salts  at  temperatures  not  exceeding  40°  C, 
washed  free  from  acid,  and  afterwards  treated  with 
dilute  solutions  of  alkalis,  such  as  caustic  soda, 
sodium  carbonate,  ammonium  compounds,  lime, 
etc.,  at  temperatures  not  exceeding  50°  C.  for  one 
or  several  days,  whereby  the  fibrous  material  is 
"  opened  up  "  into  flexible  single  fibres  which  are 
then  thoroughly  washed  and  dried  at  a  low  tempera- 
ture. The  fibrous  material  is  more  satisfactorily 
purified  if  it  is  subjected,  between  the  operations 
of  hydrolysis  and  opening-up,  to  the  action  of 
organic  solvents,  such  as  ether,  benzol,  alcohols, 
carbon  bisulphide,  acetone,  etc. — A.  J.  H. 

Lubricant  [for  yarns  and  weaving  machines'].       L. 
Minton.     E.P.  179,344,  17.2.21. 

A  lubricant  for  yarns  and  fibrous  material,  as 
well  as  for  machines  employed  for  weaving  such 
materials,  is  composed  of  a  mixture  of  powdered 
mica  and  one  or  more  metals,  in  the  form  of  powder, 
having  lubricating  properties  similar  to  those  of 
aluminium  (c/.  E.P.  140,170;  J.,  1920,  360  a),  such 
as  tin,  zinc,  copper,  silver,  and  platinum.  Suitable 
proportions  are  equal  parts  of  mica  and  metal.  The 
mixture  may  be  used  dry  or  combined  with  an 
oleaginous  base  such  as  tallow,  soap  or  the  like  to 
form  a  paste. — F.  G.  P.  R. 


Fibrous  material;  Process  of  retting  .     Aktie- 

bolaget  Cellulosa.     G.P.  342,121,  26.6.18.    Conv., 
10.5.17. 

Fibrous  material  is  steeped,  at  a  temperature  above 
90°  C,  in  a  liquor  of  sp.  gr.  1074 — 1"100,  prepared 
by  adding  fresh  alkali  hydroxide  to  waste  liquor 
from  a  previous  treatment  of  similar  material.  The 
fibres  retain  their  durability  and  do  not  darken 
in  colour. — L.  A.  C. 

Fibrous  material;  Production  of from  plants. 

X,  ,sel-Anbau-G.m.b.H.      G.P.    343,173,    11.6.16. 
Addn.  to  312,331  (J.,  1920,  13  a). 

After  treating  plant  material  by  the  process 
described  in  the  chief  patent,  the  liquor  is  removed 
from  the_  vessel,  and  the  material  is  covered  with 
an  oil  em'ulsiou  and  boiled  for  4  to  24  hrs.,  whereby 
the  whole  of  the  fibrous  content  is  disintegrated 
into  the  elementary  fibres. — L.  A.  C. 

Textile  fibres;  Production  of from  the  stems  of 

nettles  and  other  plants.  J.  Elster.  G.P.  343,256, 
1.4.19.     Addn.  to  305,049  (J.,  1921,  689  a). 

Plant  stems,  after  treatment  with  sodium  carbon- 
ate solution  and  previous  to  subsequent  treatment 
as  described  in  the  chief  patent,  are  steeped  in  hot 
sodium  hvdroxide  solution  and  then  rinsed  in  water. 

— L.  A.  C. 

Textile    fibres;    Production    of    from    typha, 

rushes,  and  the  like.  Faserwerke,  G.m.b.H.  G.P. 
343,340,  21.11.19. 
Typha,  rushes,  and  similar  plants  are  successively 
boiled  with  dilute  aqueous  sodium  hydroxide  to 
loosen  the  fibres,  and  treated  with  a  hot,  strong 
solution  of  an  alkali  hydroxide. — L.  A.  O. 

Textile    fibres    and    half-stuff    suitable    for    paper 

manufacture;   Simultaneous   production    of 

from  reeds  and  the  like.  L.  B.  von  Ordodv,  and 
B.  Schottik  und  Co.  G.P.  345,401,  14.7.18.  Addn. 
to  285,539  (J.,  1915,  1138). 
Reeds  and  similar  plants  are  cut  up  into  lengths 
of  about  1  m.,  and  the  leaves  are  removed  and 
bound  together  with  the  stems  into  bundles,  and 
steeped  for  21  to  30  days.  After  drying  and  again 
steeping  they  are  bruised,  treated  for  1 — li  hrs. 
with  au  alkali  hydroxide  solution  of  1"0 — 0'6°  B. 
(sp.  gr.  1*007— 1"005)  under  a  pressure  of  3 — 4  atm., 
treated  with  dilute  acid,  boiled  with  water,  washed 
with  cold  water,  and  subsequently  treated  as 
described  in  the  chief  patent. — L.  A.  C. 

Sulphite-cellulose   icaste  liquors  and  similar  solu- 
tions;    Apparatus     for     evaporating     .     F. 

Paschke.  G.P.  345,192,  17.1.20. 
A  chamber  provided  with  a  chimney  contains  a 
screw  conveyor  or  several  superposed  screw  con- 
veyors iu  closed  casings  for  transferring  the  liquor 
from  one  part  to  another.  The  top  casing  is  pro- 
vided with  an  outlet  for  gases  and  vapour,  and 
the  lowest  discharges  into  a  receiver  provided  with 
an  inlet  for  the  hot  gases. — L.  A.  C. 

Drying  webs  of  paper,  fabric,  or  the  like;  Appa- 
ratus for .     B.  F.  Sturtevant  Co.,  Assees.  of 

J.  0.  Ross.    E.P.  156,480,  5.1.21.    Conv.,  8.12.13. 

Drying   cylinders   [for  fabrics]    and   the   like.     A. 
Newton.    E.P.  179,621,  5.2.21. 

Muting  road  surfaces.     E.P.  179,480.    See  IX. 

Lacguers  from  nitrocellulose.     G.P.  350,973.     See 
X11I. 

Lacquers  from  cellulose  esters.    G.P.  351,228.    See 
XIII. 


Vol.  XLI.,  Xo.  13]      Cl.  VI.— BLEACHING  ;    DYEING,  &c.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.       499  a 


VI.-BLEACHING ;  DYEING;   PRINTING; 
FINISHING. 

Protective  agent  for  animal  fibres.     Edge.    See  V. 

Patent. 

Silk,   to   be  dyed   black;  Process  of  weighting   or 

charging  - .    A.  W.  Schmid.    U.S. P.  1,417,206, 

23.5.22.    Appl,  18.2.22. 

Silk  is  weighted  by  the  usual  tin-phosphate  process, 
and  then  treated  in  a  boiling  foam  bath  containing 
hsematein,  to  which  chrysalides  boiled  up  in  water 
have  been  added. — A.  J.  H. 

VII— ACIDS;  ALKALIS;  SALTS;   NON- 
METALLIC  ELEMENTS. 

Potash  brines ;  Evaporation  of at  Deep  Springs 

Valley,  California.     L.  A.   Palmer.     Chem.  and 
Met.  Eng.,  1922,  26,  1034—1037. 

A  natural  brine  with  sp.  gr.  T2S96  and  containing 
7-27  KC1.  11-.J3=:  NaCl,  8-88%  Na,S04,  536% 
Xa _C03,  and  0'70  .  Na,B40,  is  pumped  into  vat; 
and  cooled  to  10°  C.  in  order  to  effect  the  crystallisa- 
tion of  the  greater  part  of  the  sodium  sulphate  and 
some  of  the  sodium  carbonate.  The  remaining  brine 
is  mixed  with  mother  liquor  from  a  final  crystallisa- 
tion and  treated  in  a  single-effect  evaporator  heated 
by  steam.  The  production  of  foam  during  distilla- 
tion is  prevented  by  the  introduction  of  "  slop 
distillate  "  in  order  to  increase  the  surface  tension 
of  the  liquor,  and  by  strips  of  sheet  lead  suspended 
from  the  steel-work  of  the  evaporator,  whereby  oxy- 
chlorides  are  formed  by  electrochemical  action  and 
oxidise  the  organic  matter  which  causes  foaming. 
Sodium  chloride,  sulphate,  and  carbonate  crystallise 
in  the  evaporator  and  are  removed.  The  enriched 
liquor  containing  22%  KC1  is  passed  through  a 
screen  into  crystallising  tanks.  As  the  solution 
cools  potassium  chloride  and  borax  crystallise 
together  and  are  removed  from  the  mother  liquor 
before  carbonates  and  sulphates  are  deposited. 
I  The  crystals  are  heated  by  steam  so  that  the  borax 

I  dissolves  in  the  entrained  liquor  and  its  own  water 
of  crystallisation.     The  potassium  chloride  crystals 
are  then  separated  in  a  centrifuge  and  washed  with 
j  a  jet  of  wet  steam. — H.  Hg. 

jeneous  equilibria.  The  ternary  system 
sodium  sulphate  —  sodium  carbonate  —  water. 
A.  E.  Dawkins.  Chem.  Soc.  Trans.,  1922,  12!, 
776 — 781. 

I  The  isothermal   equilibria  of  the  ternary  system 

!  sodium  sulphate,  sodium  carbonate,  water  at 
19T°  C.  are  represented  on  the  triangular  co- 
ordinate system  by  two  liquidus  curves  inter- 
jsecting  at  an  invariant  point  determined  by  the 
j  presence  of  two  6eries  of  solid  solutions  in  equili- 
brium with  the  solutions  represented  by  the  liquidus 
curves.  The  composition  of  the  limiting  solid  solu- 
tions in  mutual  equilibrium  at  the  invariant  point 
is  sodium  carbonate  2'0%  and  sodium  sulphare 
1"'  by  weight.  The  isothermal  diagram  at  50°  C. 
consists  of  a  three-branched  liquidus  curve  inter- 
secting in  two  invariant  points,  and  three  solidus 
curves  representing  three  corresponding  solid  solu- 
tions. The  compositions  of  the  invariant  solutions 
ire: — Sodium  sulphate  23'10%,  sodium  carbonate 
10"21%,  and  sodium  sulphate  5'87%,  sodium 
carbonate  28-52%  by  weight.— P.  V.  M. 

Thiosulphates    and    polythionates;    Occurrence    of 

in  sulphite-liquor  {acid  calcium   bisulphite 

solution].     R.  Sieber.     Zellstoff  u.  Papier,  1922, 
2,  51—56,  106—114. 

W  hen-  sulphite  solution  is  prepared  by  the  use  of 
Ijases    obtained    by    the    complete    combustion    of 


sulphur  or  pyrites,  it  invariably  contains  small 
quantities  of  thiosulphate.  If  the  gases  are  care- 
fully filtered  before  passing  into  the  solution,  then 
the  whole  of  the  sulphur  can  be  accounted  for  as 
sulphite  and  Bulphate,  no  thiosulphate  being  pro- 
duced. Hence  the  presence  of  thiosulphate  is 
attributed  to  the  presence  of  traces  of  free  sulphur 
which  has  sublimed  and  is  carried  over  by  the  gases. 
The  results  are  similar  whether  the  gases  are 
absorbed  by  lime  or  by  calcium  carbonate.  When 
sulphur  dioxide  containing  free  sulphur  is  passed 
into  milk  of  lime,  thiosulphate  is  produced,  which 
in  presence  of  excess  of  sulphur  dioxide  gives  rise 
to  polythionates.  Of  the  calcium  polythionates, 
only  the  trithionate  is  stable.  Gases  obtained  by 
the  roasting  of  pyrites  may  contain  small  amounts 
of  arsenious  oxide  and  selenium  dioxide,  and 
experiments  show  that  arsenious  oxide  in  presence 
of  sublimed  sulphur  does  not  prevent  the  formation 
of  thiosulphate  and  polythionates.  When  sublimed 
sulphur  is  entirely  absent,  arsenious  oxide  only 
gives  rise  to  small  traces  of  thiosulphate  and  poly- 
thionates. In  the  case  of  selenium  dioxide,  both 
thiosulphate  and  polythionates  are  produced,  even 
in  the  absence  of  sublimed  sulphur,  whilst  in  the 
presence  of  sublimed  sulphur  the  amount  of  poly- 
thionate  increases,  the  thiosulphate  only  changing 
slightly.  A  method  is  suggested  for  the  estimation 
of  thiosulphate  and  polythionates  in  which  the 
thionates  are  reduced  by  aluminium  and  hydro- 
chloric acid  in  an  atmosphere  of  carbon  dioxide, 
the  sulphur  being  evolved  as  hydrogen  sulphide, 
and  estimated  by  passing  through  standard  iodine 
solution.  The  results  obtained  are  compared  with 
those  obtained  by  a  modification  of  Sander's 
method  (c/.  J.,  1918,  731  a  ;  1919,  412  a).— J.  B.  F. 

Polythionates;^   Analysis  of  .     A.  Kurtenacker 

and    A.    Fritsch.      Z.    anorg.    Chem.,    1922,    121, 
335—343. 

Tetrathionates  in  neutral  solution  react  quantita- 
tively with  a  cyanide  to  form  thiosulphates  (J., 
1921,  622  a),  and  trithionates  react  quantitatively 
with  cyanides  in  hot  alkaline  solutions  to  form 
sulphites  (cf.  Raschig,  J.,  1920,  18  a).  The  latter  re- 
action is  incomplete  in  neutral  solutions,  and 
tetrathionates  in  alkaline  solutions  give  sulphites  as 
well  as  thiosulphates,  hence  treatment  with  cyanide 
is  unsuitable  for  the  estimation  of  a  mixture  of  the 
two  polythionates.  The  estimation  of  a  mixture  of 
polythionates  by  means  of  a  sulphite  as  recom- 
mended by  Raschig  was  found  to  be  unsatisfactorv. 
The  method  of  Riesenfeld  and  Feld  (J.,  1922,  55  a) 
was  also  tested.  In  the  absence  of  other  polythion- 
ates the  trithionate  reacts  quantitatively  with 
copper  sulphate,  but  the  estimation  is  not  applicable 
to  mixtures.  A  tetrathionate  boiled  for  \  hour  with 
copper  sulphate  gave  a  precipitate  of  copper  sul- 
phide and  sulphur  in  proportions  corresponding  to 
the  decomposition  of  the  tetrathionate  as  follows, 
S,06"  =  S3Os"  +  S.  The  authors  found,  contrary  to 
the  results  of  Riesenfeld  and  Feld,  that  tetra- 
thionates are  quite  stable.  A  solution  showed  no 
decomposition  after  standing  for  14  days,  the 
instability  reported  being  due  to  impurities. 

— W.  T. 

Mother-of-pearl;    Attempts   at    a    synthetic   manu- 
facture of  — —  by  production  of  chemical  tracery. 
Clement  and  Riviere.     Comptes  rend.,  1922,  174, 
1353—1356. 
If  calcium  carbonate  is  precipitated  in  the  presence 
of  colloidal   protein   material,   such   as   gelatin,   in 
thin  layers,  a  deposit  is  obtained  having  a  nacreous 
structure.      The   deposit   becomes   opaque   on   pro- 
longed drying  at  50°  C.  just  as  pearl  or  mother-of- 
pearl  ';  dies''  when  strongly  dried.     These  experi- 
ments support  the  accepted  views  as  to  the  physical 


500  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIO  ELEMENTS. 


[July  15,  1922. 


and  chemical  composition  of  mother-of-pearl  and 
fine  pearl. — W.  G. 

Phosphorescent     zinc     sulphide.       A.     A.     Guntz. 

Comptes  rend.,  1922,  174,  1356—1358. 
The  wurtzite  and  sphalerite  forms  of  zinc  sulphide 
prepared  by  heating  the  precipitated  sulphide  are 
both  phosphorescent.  The  phosphorescence  of  the 
wurtzite  form  is  the  more  persistent,  but  in  both 
cases  the  decrease  of  luminous  intensity  is 
extremely  rapid.  Under  the  influence  of  heat  and 
shock  the  two  varieties  are  very  thermoluminescent 
and  triboluminescent. — W.  G. 

Minerals;  Attach  of  by   bacteria.     Oxidation 

of  blende.  A.  Helbronner  and  W.  Rudolfs. 
Comptes  rend.,  1922,  174,  1378—1380. 
Certain  bacteria  (c/.  Lipman  and  others,  J.,  1922, 
187  a;  E.P.  161,553;  J.,  1922,  112  a)  have  been  found 
which  are  capable  of  converting  blende  into  zinc 
sulphate,  and  the  zinc  rendered  soluble  in  this 
manner  does  not  prevent  the  further  action  of  the 
bacteria.  The  oxidation  is  favoured  by  the  presence 
of  sulphur,  and  under  such  conditions  the  bacteria 
are  able  to  convert  natural  zinc  silicate  or  carbonate 
into  sulphate.  In  minerals  containing  both  zinc  and 
lead  as  sulphides  the  zinc  is  converted  into  sulphate 
to  the  exclusion  of  the  lead,  and  hence  this 
furnishes  a  means  of  separating  these  two  metals. 

— W.  G. 

Vanadic   acid   solutions;    Reduction    of   with, 

mercury.  L.  W.  McCay  and  W.  T.  Anderson, 
inn.  J.  Amer.  Chem.  Soc,  1922,  44,  1018—1021. 
(C/.  J.,  1922,  140  a.) 
When  vanadic  acid  in  the  presence  of  sulphuric  or 
hydrochloric  acid  is  vigorously  shaken  with 
mercury  it  is  reduced  according  to  the  equation 
2HVO,  +  2Hg+3HISO,=2yOS04  +  Hg2Sq4+4H?0. 
If  the  solution  before  shaking  is  mixed  with  a  little 
more  sodium  chloride  than  is  equivalent  to  the 
merenrous  sulphate  formed  the  whole  of  the 
mercury  is  precipitated  as  mercurous  chloride  and  a 
blue  solution  left  which  may  be  quantitatively 
titrated  with  permanganate  according  to  the 
equation,  10VOSO,  +  2KMnO4  +  12H,O  =  10HVO,+ 
K3S01  +  2MnSO,  +  7H2S01.  The  following  method, 
based  on  the  above  reactions,  is  described  for  the 
estimation  of  vanadic  acid.  The  solution  of  vanadic 
acid  containing  sulphuric  acid  and  the  requisite 
amount  of  sodium  chloride  (0'3  g.  for  each  50  c.c.  of 
N J10  permanganate  used)  is  diluted  to  100  c.c, 
and  vigorously  shaken  in  a  stoppered  bottle 
with  20  c.c.  of  mercury  for  5  mins.  The  liquid 
above  the  grey  mercury  mixture  is  decanted  into  a 
small  beaker  and  poured  through  a  suction  filter. 
The  residue  in  the  bottle  is  washed  four  times  by  de- 
cantation,  20  c.c.  of  water  being  used  for  each  wash- 
ing, and  the  washings  are  severally  decanted  into 
the  beaker  and  then  through  the  filter.  The  total 
filtrate  is  diluted  to  250  c.c,  heated  to  80°— 90°  C, 
and  titrated  with  permanganate  to  the  faintest 
pink.  The  whole  process  may  be  completed  in 
30  mins. ;  it  gives  results  which  are  identical  with 
those  obtained  by  the  sulphur  dioxide  method,  and 
since  uranic  and  arsenic  acids  are  not  reduced  by 
mercury  it  may  be  employed  in  the  presence  of 
these  acids. — J.  F.  S. 

Colloidal  ferric  hydroxide,  aluminium  hydroxide, 
and  silicic  acid;  Centrifugal  method  for  prepar- 
ing   .     R.  Bradfield.     J.  Amer.  Chem.  Soc, 

1922,  44,  965—974. 

Colloidal  ferric  hydroxide,  aluminium  hydroxide, 
and  silicic  acid  may  be  prepared  from  the  freshly 
formed  precipitates  by  removing  the  excess  of  pre- 
cipitating agent  by  a  very  thorough  washing, 
which  is  achieved  by  means  of  a  centrifuge  rotat- 
ing  at   32,500   revs,    per   min.      This    method    has 


many  advantages  over  the  older  methods.  The 
removal  of  the  electrolytes  formed  on  precipitation 
is  more  complete;  the  addition  of  a  peptising  agent 
and  its  subsequent  incomplete  removal  by  either 
prolonged  boiling  or  dialysis  is  unnecessary;  sols 
of  a  more  uniform  degree  of  dispersion  can  be 
prepared,  since  particles  of  similar  size  and  of 
similar  degrees  of  hydration  are  deposited  in  the 
same  zone  of  the  centrifuge  bowl ;  sols  of  any 
desired  concentration  from  a  semi-gel  to  the  merest 
trace  can  be  prepared  by  the  addition  of  water  to 
the  more  concentrated  form,,  and  all  concentrations 
are  very  stable.  Aluminium  hydroxide  precipi- 
tated by  ammonia  in  the  presence  of  an  excess  of 
sulphate   ions  is  not  irreversible. — J.   F.    S. 

Seduction  of  oxides  by  hydrogen.  E.  Berger. 
Comptes  rend.,  1922,  174,  1341—1343.  (Cf.  J., 
1914,  752;  Sabatier  and  Espil,  J.,  1914,  351.) 

From  a  repetition  of  previous  work,  using  samples 
of  nickel  oxides  prepared  in  different  ways,  it  is 
shown  that  the  discontinuity  in  the  velocity  curves 
occurs  at  different  stages  in  the  reduction,  varying 
with  the  sample  of  oxide  used.  This  discontinuity 
cannot,  therefore,  as  was  previously  thought,  bo 
explained  on  the  basis  of  the  formation  of  an 
intermediate  oxide,  and  doubt  is  accordingly  ex- 
pressed as  to  the  existence  of  suboxides  of  nickel. 

— W.  G. 

Scandium;    Extraction    and    purification     of  

from  thorveitite  from  Madagascar.     P.   and   G. 
Urbain.     Comptes   rend.,   1922,    174,   1310—1313. 

The  mineral  is  fused  with  sodium  hydroxide  and 
the  residue  left  after  extracting  the  melt  with 
water  is  dissolved  in  the  smallest  possible  quantity  of 
sulphuric  acid.  From  this  solution  the  rare  earths 
are  precipitated  as  fluorides  by  the  addition  of  an 
excess  of  hydrofluoric  acid.  The  fluorides  are  de- 
composed by  sulphuric  acid,  and  scandium  bi- 
sulphate  crystallises  out  on  concentrating  the 
solution.  The  sulphates  are  converted  into  nitrates 
by  way  of  the  hydroxides  and  the  solution 
of  nitrates  is  concentrated  on  a  water  bath  until 
it  is  free  from  excess  acid.  To  the  concentrated 
solution  an  excess  of  powdered  potassium  sulphate 
is  added  until  the  solution  is  saturated  with  this 
salt.  After  three  days  the  double  scandium  potas- 
sium sulphate  is  filtered  off  and  washed  with  a 
saturated  solution  of  potassium  sulphate.  Any 
scandium  remaining  in  the  mother  liquors  is  re- 
precipitated  as  hydroxide  and  passed  through  the 
same  process.  The  double  sulphate  may  be  dis- 
solved in  aqueous  ammonium  carbonate  and  from 
the  solution,  on  warming,  scandium  hydroxycar- 
bonate  is  precipitated.  The  residue  of  the  scandium 
in  the  mother  liquors  may  be  recovered  by  con- 
version into  its  acetylacetonate,  which  is  soluble 
in  chloroform  and  sublimes  when  heated  in  a 
vacuum  at  200°  C— W.  G. 

Platinum;    Mode    of    action    of    ■ ■    in    o:r 

hydrogen  catalysis  and  the  application  of 
titanium  sulphate  for  the  control  of  the  course 
of  the  change.  K.  A.  Hofmann.  Ber.,  1922, 
55,  1265—1274. 

Sensible  quantities  of  hydrogen  peroxide  are  pro- 
duced in  the  surrounding  acid  during  the  cai 
of  dissolved  molecular  oxygen  and  activated 
hydrogen  af,  platinum  surfaces  only  when  the  r>  - 
ducing  power  of  the  hydrogen-platinum  electrode 
is  abnormally  reduced,  when  the  liquid  surround- 
ing the  pole  contains  large  amounts  of  dissolved 
oxygen,  and  when  the  pole  is  as  free  as  possible 
from  oxides  of  platinum.  It  is  highly  probable 
that  the  hydrogen-oxygen  catalysis  proceeds  nor- 
mally in  two  stages  0,'+2H  =  H;!02  and  H20,  +  2H  = 
2HaO.      The   velocity   of   the   second    action   at  an 


Vol.  X1.I ,  Xo.  13.]       Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


501  A 


active  platinum  surface  is,  however,  so  great  that 
hydrogen  peroxide  does  not  escape  into  the 
surrounding  liquid.  A  specific  reducing  action 
towards  a  third  substance  of  hydrogen  peroxide, 
which  is  liberated  at  the  best  only  in  minute  traces, 
is  not  to  be  expected  under  any  circumstances. 
Further,  the  reduction  potential  of  hydrogen 
peroxide  is  much  less  than  the  potential  of 
hydrogen  activated  at  a  platinum  surface.  In 
preparative  or  other  work  in  which  reductions  are 
to  be  effected  with  activated  hydrogen,  the  use  of 
acid  titanium  sulphate  is  recommended  for  in- 
dicating the  conditions  favourable  to  maximum 
reduction  or  for  controlling  the  course  of  the 
change,  since  the  activity  of  the  system  is  readily 
shown  by  the  formation  of  the  characteristic  violet- 
brown  solutions  of  the  sulphate  of  trivalent 
titanium.  In  addition,  it  is  to  be  expected  that 
the  reduced  titanium  will  both  accelerate  and 
regulate  the  reducing  action,  since  reduced 
titanium  solutions  have  been  frequently  successfully 
utilised  as  reducing  agents. — H.  W. 

Patents. 

Sulphuric  acid;  Process  for  distilling  .     Chem. 

Fabr.  AVeissenstein  Ges.  E.P.  163,685,23.3.21. 
Conv.,  21.5.20. 

Pure  sulphuric  acid  is  obtained  by  distillation  of 
technical  sulphuric  acid  by  using  as  heating  bodies 
electrical  resistances  disposed  above  the  surface  of 
the  acid  in  a  cylindrical  stoneware  pot.  The  top 
layer  of  the  acid  is  thus  heated  by  radiation  so  that 
evaporation  proceeds  only  on  the  surface,  and  it  is 
not  necessary  to  heat  to  boiling  temperature  the 
whole  of  the  acid  contained  in  the  pot.  In  addition 
to  platinum,  the  resistances  may  be  made  of 
materials  which  are  not  acid-proof,  e.g.,  nickelin  or 
iron,  without  any  formation  of  sulphur  dioxide  by 
decomposition  of  the  sulphuric  acid  vapour. 

— H.  R.  D. 

Hydrochloric  acid;  Method  of  making  .     C.  P. 

Townsend,  Assr.  to  Hooker  Electrochemical  Co. 
TT.S.P.  1,414,762,  2.5.22.     Appl.,  1.3.20. 

A  body  of  hydrogen  is  confined  in  a  closed  system  to 
which  chlorine  is  suplied  at  a  substantially  constant 
rate.  Combination  of  the  two  gases  is  effected  and 
the  resulting  hydrochloric  acid  withdrawn  from  the 
system.  The  desired  pressure  within  the  apparatus 
is  maintained  bv  regulating  the  supply  of  hydrogen. 

— F.  G.  P.P. 

Ammonia;  Recovery  of from  peat  and  the  like. 

P.  Brat.  E.P.  159,194,  17.2.21.  Conv.,  1S.2.20. 
(Cf.  E.P.  157,745-6  and  159,193;  J.,  1922,  371  a. 

462  a.) 

The  material  is  subjected  to  a  pressure  of  at  least 
6  atm.  at  a  temperature  of  170° — 200°  C,  in  the 
presence  of  water  and  one  or  other  of  the  following 
basic  substances: — barium,  strontium,  or  mag- 
nesium oxide,  alumina,  or  alkali  aluminate.  A 
"hydrocarbon  "  having  a  high  boiling  point,  such  as 
pitch,  is  added  to  the  residue  and  after  vaporising 
the  water  the  hvdrocarbon  contained  in  the  peat  is 
recovered  by  distillation  at  200°— 700°  C. — H.  R.  D. 

Ammonia;  Process  for  separation  of from  the 

gaseous  nurture  obtained  in  the  synthetic  pro- 
duction of  ammonia  from  nitrogen  and  hydrogen. 
Metallbank  und  Metallurgische  Ges.  A.-G.  G.P. 
343,320,  15.8.14 

The  ammonia  is  obtained  in  the  form  of  a  mist  or 
fog,  e.g.,  by  conversion  into  an  ammonium  salt,  and 
is  then  separated  by  electrical  precipitation. 

— H.  R.  D. 


Ammonium  sulphate  and  other  salts;  Apparatus  for 

drying .  J.B.Hansford.  E.P.  179,723, 1.3.21. 

The  material  to  be  dried  is  alternately  spread  bv 
centrifugal  force  over  a  heated  tray  rotating  on  a 
vertical  shaft,  and  turned  over  and  piled  into  heaps 
by  the  action  of  plough-shaped  scrapers.  By  means 
of  rollers,  the  load  on  which  can  be  varied,  the 
crystals  are  subjected  to  a  crushing  action.  The 
dried  material  is  ejected  from  the  tray  by  increasing 
its  speed,  thus  causing  the  material  to  fall  over  the 
edge  of  the  tray  into  an  annular  receptacle  below. 

— H.  R.  D. 

Ammonium   chloride;   Process   of  recovering   

from  solution.  N.  T.  Bacon,  Assr.  to  The  Solvay 
Process  Co.  U.S.P.  1,416,772,  23.5.22.  Appl" 
27.12.19. 

Solutions  of  ammonium  chloride  are  evaporated  so 
as  to  precipitate  ammonium  chloride,  free  ammonia 
being  maintained  in  the  solution. — J.  S.  G.  T. 

Calcium  nitrate;  Process  for  manufacture  of  . 

Aluminium-Industrie  A.-G.  E.P.  163,330,  5.5.21. 
Conv.,  19.5.20. 

Nitric  acid  obtained  from  the  nitrogen  of  the  air 
is  concentrated  to  a  strength  of  90 — 95%  mono- 
hydrate  and  mixed  continuously  with  powdered 
limestone,  e.g.,  13  pts.  by  weight  of  acid  with  11 — 12 
pts.  of  limestone,  according  to  the  purity  of  the 
latter.  By  maintaining  the  temperature  at  60° — 80° 
C.  the  product  obtained  leaves  the  apparatus  in  a 
pasty  form  and  hardens  on  cooling;  it  contains 
75 — 80%  of  pure  calcium  nitrate. — H.  R.  D. 

Sodium,   cyanide;  Process  for  production   of  . 

Deutsche  Gold-  und  Silber-Scheide-Anstalt,  vorm. 
Rossler.     E.P.  164,719,   22.4.21.     Conv.,   10.6.20. 

Solutions  containing  sodium  cyanide  and  sodium 
chloride,  as  obtained,  for  example,  in  the  produc- 
tion of  sodium  cyanide  from  calcium  cyanamide, 
are  cocentrated,  with  or  without  the  addition  of 
more  sodium  cyanide,  until  saturated  with  cyanide, 
whereupon  the  bulk  of  the  sodium  chloride  is 
deposited  leaving  a  solution  which  can  he  used  as 
such  or  treated  for  the  recovery  of  solid  sodium 
cyanide. — H.  R.  D. 

Slate;  Treatment  of [for  recovery  of  potassium 

and  aluminium  salts'].  C.  R.  Hayward  and  H.  M. 
Schleicher,  Assrs.  to  The  American  Metal  Co., 
Ltd.  U.S.P.  1,415,346,  9.5.22.  Appl.,  4.3.20. 
Potassiferous  slate  is  treated  with  sulphuric  acid 
at  an  elevated  temperature,  the  soluble  sulphates 
thus  formed  are  leached  out  with  water,  and 
potassium  alum  recovered  from  the  solution  bv 
crystallisation.— F.  G.  P.  R. 

Sulphur  dioxide;  Process  for  enriching  metallur- 
gical   gases    containing    .     G.    C.    Howard, 

Assr.  to  American  Smelting  and  Refining  Co. 
U.S.P.  1,417,066,  23.5.22.     Appl.,  29.11.18. 

Furnace  gases  containing  a  relatively  low  propor- 
tion of  sulphur  dioxide  are  mixed  with  sulphur 
dioxide  expelled  from  an  aqueous  solution. 

— B.  M.  V. 

Sulphur  dioxide;  Process  for  recovering  from 

waste  metallurgical  gases.  G.  C.  Howard,  Assr. 
to  American  Smelting  and  Refining  Co.  U.S.P. 
1,417,067,  23.5.22.     Appl.,  6.3.19. 

A  solution  containing  sulphur  dioxide  is  passed 
counter  current  through  a  mixture  of  sulphur 
dioxide  gas  and  water  vapour,  and  the  sulphur 
dioxide  subsequently  recovered  from  the  solution. 

— B.   M.   V. 


502  a 


Cl.  VIII.— GLASS;  CERAMICS. 


[July  15.  M22. 


Sodium  carbonate  sulphate;  Process  of  recovering 

from     saline     waters.     G.     B.     Burnham. 

U.S. P.  1,417,139,  23.5.22.     Appl.,  30.6.19. 
Searles    Lake    brine    is    slowly    evaporated    until 
saturated  with  sodium  carbonate  sulphate,   which 
crystallises  out  on  continuing  the  evaporation. 

— H.  R.  D. 


■  from  gases  [containing 

H.  Frischer.    G.P.  350,271, 


Sulphur;  Recovery  of 

hudroyen  sulphide']. 

26.11.19. 

Gases  containing  hydrogen  sulphide,  either  alone 
or  mixed  with  oxygen,  are  passed  through  strongly 
acid  solutions  of  cupric  salts  capable  of  reduction 
by  hydrogen  sulphide.  The  formation  of  sulphur 
may  be  accelerated  by  the  addition  of  salts,  e.g., 
alkaline-earth  salts,  which  are  not  attacked  by 
hydrogen  sulphide. — L.  A.  C. 

Sulphur;   Recovery    of   from    gases.     Hinsel- 

mann,  Koksofenbauges.  m.b.H.  G.P.  350,272, 
17.9.20. 
Material  for  removing  sulphur  from  gases  is  kept 
in  inotion  and  in  suspension  in  the  gas  during  the 
process  and  during  subsequent  regeneration  by 
treatment  with  air. — L.  A.  C. 

Hydrogen  sulphide;  Removal  of  from   gases. 

Ges.    fur    Kohlentechnik  m.b.H.      G.P.  350,325, 

25.3.20. 
Gases  are  scrubbed  with  ammoniacal  solutions  of 
copper  salts,  and  the  sulphides  produced  in  the 
liquor  are  oxidised  at  normal  temperature  to  sul- 
phates by  treatment  under  pressure  with  gases 
containing  oxygen. — L.  A.  C. 

Percarbonates  and  perborates;  Electrolytic  process 

of  manufacture  of  from,  solutions  of  alkali 

carbonates  and  borates.  Deutsche  Gold-  u. 
Silber-Scheide-Anstalt,  vorm.  Rossler.  G.P. 
350,986,  25.3.19. 

Substances,     such    as    fluorides    or    perchlorates, 

which  increase  the  anode  potential,  are  added  to 

the  electrolyte.— J.  S.  G.  T. 

Potassium  salts;  Process  and  apparatus  for  manu- 
facturing   ■  of  varying  grain  size  by  cooling 

hot  liquors  in  vacuo.  Maschinenbau  A.-G. 
Balcke.  G.P.  351,281,  25.2.19. 
Hot  stagnant  liquor  is  cooled  in  shallow  vessels, 
and  the  pressure  in  the  cooling  chamber  is  gradu- 
ally reduced  to  the  highest  vacuum  attained.  The 
period  taken  in  reducing  to  the  highest  vacuum  is 
controlled  by  a  throttle  valve  or  similar  device 
disposed  between  the  cooling  chamber  and  the  con- 
denser employed,  and  is  determined  according  to 
the  size  of  crystal  to  be  produced. — J.  S.  G.  T. 

Xitrous  gases;  Manufacture  of  concentrated . 

Norsk  Hvdro-Elektrisk  Kvaelstofaktieselskab. 
E.P.  156,799,  7.1.21.     Conv.,  6.10.15. 

See  U.S. P.  1.291.909  of  1919;  J.,  1919,  285  a. 

Xitric  acid ;  Process  of  converting  nitrous  gases  into 
entrated      .        Norsk      Hvdro-Elektrisk 

Kvaelstofaktieselskab.       E.P.     156.800,     7.1.21. 

Cum-.,  22.5.15. 
See  U.S. P.  1,197,295  of  1916;  J.,  1916.  1260. 

Aluminium  chloride;  Production  of .     Armour 

Fertilizer  Works.  Assees.  of  E.  C.  Baum  and 
D.  O.  Jones.  E.P.  160.759.  11.2.21.  Conv.. 
24.3.20. 

See  U.S. P.  1.372,332  of  1921;  J.,  1921,  346  a. 


Sulphur;   Process   for   making   from   sulphur 

dioxide.  G.  C.  Howard,  Assr.  to  The  American 
Smelting  and  Refining  Co.  U.S. P.  1,417,068, 
23.5.22.     Appl.,  9.9.18.     Renewed  28.11.21. 

See  E.P.  144,306  of  1920;  J.,  1921,  735  a. 

Separating  solids  t/y  crystallisation.     E.P.  179,287i 
See  I. 

Water-glass.    G.P.  346,237.    See  Hb. 

Lime  kiln.    U.S. P.  1,416,657.    See  IX. 


VIII.- GLASS;    CERAMICS. 

Patents. 
Glass  composition.  H.  T.  Bellamy  and  B.  T.  Sweelv 
Assrs.  to  Western  Electric  Co.    U.S. P.  1,415,980, 
16.5.22.     Appl.,  20.3.20. 

A  binder  for  compositions  of  high  resistance  is 
made  of  a  non-electrolytic  glass  composed  of  barium 
and  calcium  silicates  and  borates. — A.  B.  S. 


Silica  bricks;  Manufacture  of 
G.P.  345,949,  17.4.20. 


H.  Koppers. 


Impure  quartzite  rock  and  "  crater  cement  "  are 
finely  ground  with  water,  and  the  mixture  made 
into  brick*  which  have  a  high  silica  content. 

—A.  R,  P. 

Bauxite;  Manufacture  of  objects  of  dense  structure 

from   .      Dynamidon-Werke    Engelhorn    unci 

Co.     G.P.  346,944,  24.10.15. 

Burnt  bauxite  in  a  finely-ground  condition  is 
moulded  into  the  desired  shape  and  the  object 
burnt  in  a  reducing  atmosphere.  A  portion  of  the 
burnt  bauxite  may  be  replaced  by  finely-ground 
raw  bauxite. 

Enamels,  glazes  and  like  substances ;  Coating  heat- 
resisting    articles    by   spraying    with   .      X. 

Meurer.     E.P.  179,216,  27.11.20. 

Articles  are  glazed  or  enamelled  by  spraying  them 
with  a  powdered  material,  which  is  forced  by  means 
of  gases  under  pressure  through  a  flame  which  melts 
the  powder  and  raises  the  temperature  of  that  part 
of  the  article  on  to  which  the  spray  impinges  to  the 
melting  point  of  the  enamel  or  glaze.  The  spray- 
ing device  consists  of  a  container  for  the  powder, 
an  arrangement  resembling  a  blowpipe,  and  pipes 
which  deliver  compressed  oxygen  or  air  into  the 
container,  stirring  up  the  powder  and  then  carry- 
ing  it  downward  through  other  tubes  to  the  flame 
extending  from  the  nozzle  of  the  blowpipe,  ami  so 
on  to  the  articles  to  be  coated. — A.  B.  S. 

Enamel  for  coating  the  surfaces  of  steam-eng  < 
liable  to  corrosion.  H.  Willmer.  G.P.  3.'>H  77" 
27.10.20. 

An  enamel  which  is  not  decomposed  by  steam  con- 
tains either  no  alkalis,  or  only  such  as  arc  intro- 
duced by  the  felspar  or  cryolite  used.— L.  A.  C. 

Tungsten    'a-    molybdenum    carbide;    Proces 
making   blocks  of  any  form  or  desired  size  from 

or  from   a   mixture  of  this  carbide  far  tools 

and  articles  of  all  kinds.  Process  for  the  manu- 
facture of  pieces  of  tungsten  or  molybdi 
carbide  of  any  desired  size.  Lohmann-Motall 
G. m.b.H..  formerly  Voigtlander  und  Lohmann 
Metall  Fabrikations  Ges.  E.P.  157.747  ami 
157.750,  10.1.21.     Conv..  2.1.14  and  16.4.14. 

See  G.E.  289,066  and  286,184;  J.,  1916.  423;  1915, 

1250. 


VW.  XIX,  No.  13.]     Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  j    METALLURGY,  &c.     503  a 


IX.— BUILDING  MATERIALS. 

Patents. 

Mortar,  cement,  concrete  and  tlic  like;  Process  for 

rendering  suitable  for  the  execution,   in  a 

durable  and  reliable  manner,  of  waterproofing, 
hydraulic  and  like  work,  such  as  preventing  watei 
from  percolating  through  walls  and  the  like. 
K.  Winkler.   E.P.  167,138,  1.2.21.  Conv.,  26.7.20. 

Mortar,  cement,  or  concrete  is  gauged  with  a 
solution  of  calcium  chloride  of  26°  B.  (sp.  gr.  1'22) 
instead  of  with  water.  A  small  proportion  of  one  or 
more  of  the  following  may  also  be  added  :  strontium, 
potassium,  and  manganous  chlorides,  calcium, 
strontium,  and  magnesium  nitrates,  manganese 
dioxide,  barium  peroxide,  chromic  oxide,  antimony 
oxide,  butter  of  antimony,  manganese  borate, 
sugar,  coal,  cinders,  calcspar,  felspar,  bauxite, 
fluorspar.  A  cement  so  treated  begins  to  set  in 
2 — 5  mins.,  and  is  hard  within  half  an  hour.  Its 
resistance  to  compression  after  3  days  is  equal  to 
that  of  ordinary  cement  after  20  days  and  con- 
tinues to  increase.  Its  resistance  to  bending  is 
about  double  that  of  ordinary  cement.  Its  con- 
stancy of  volume  is  exceptional,  and  it  is  completely 
waterproof. — A.  B.  8. 

Rotary     [cement]     furnaces.       S.     B.     Newberrv. 
E.P.  179.272,  31.1.21. 

A  rotary  kiln  is  provided  with  an  inner  cylinder  of 
refractory  material,  which  is  attached  to  and 
rotates  with  the  outer  cylinder.  The  inner 
cylinder  may  extend  about  half-way  along  the  outer 
cylinder,  and  beyond  it  through  a  chamber  at  the 
base  of  the  chimney.  The  material  to  be  heated 
passes  through  the  inner  cylinder,  and  the  hot  kiln 
gases  pass  through  the  annular  space  between  tin 
cylinders  so  as  to  preheat  the  contents  of  the  inner 
:ylinder.  The  gases  and  volatile  matter  in  the  inner 
cylinder  are  drawn  out  by  means  of  a  fan,  and  any 
useful  products  in  them  may  be  recovered.  The 
object  of  the  device  is  to  enable  a  mixture  of  fuel 
ind  cement  material  or  fireclay  to  be  burned  in  a 
notary  kiln,  and  to  recover  any  condensable  pro- 
ducts, particularly  oil  and  ammonia.  A  supple- 
mentary supply  of  fuel  can  be  used  at  the  discharge 
•;nd  of  the  kiln.— A.  B.  S. 


Kme]    kiln.      R.    K.   Meade. 
16.5.22.     Appl.,  23.6.21. 


U.S.P.   1,416,657, 


k  shaft  kiln  for  burning  lime  or  the  like  is  provided 
rith  a  stoking  grate  having  rocking  sections,  a  drop 
'iar  for  operating  them,  and  a  hopper  for  supplying 
•uel  to  the  grate.  The  furnace  is  closed  normally 
'ind  during  stoking  to  prevent  the  admission  of  an 
xcess  of  air. — A.  B.  S. 

Road  surfaces :  Process  for  making .     A.  Miller. 

E.P.  179,480,  3.9.21. 
Ioads  are  spraved  with  sulphite-cellulose  waste 
iquor  of  60°— 70°  Balling  (sp.  gr.  T29— 151),  and 
llowed  to  dry ;  a  thin  layer  of  tar  is  then  applied 
nd  rolled  in.  The  process  may  be  repeated  several 
imes. — A.  B.  S. 

'lag;   Method   of   obtaining    granular  .       W. 

;   Schumacher.     U.S.P.   1,416.069,    16.5.22.     Appl.. 
!  29.3.12. 

k.  granular  slag  substantially  free  from  water  is 
Hide  by  applying  water  to  the  surface  of  the  slag 

>s  it  issues  from  the  furnace,  and  separating  the 
ater  from  the  slag  before  the  latter  becomes  cool 
nough  to  permit  the  water  to  exist  in  liquid  form 

;djacent  to  its  surface.  The  hot  slag  is  then  passed 
lto  a  receptacle  and  cooled. — A.  B.  S. 


Wood;  Process  for  seasoning  .       A.  0.   C'rail. 

U.S.P.  1,416,269,  16.5.22.     Appl.,  26.11.20. 
The  wood  is  boiled  in  a  5%  solution  of  common  salt 
for  6  hrs.   and  then  transferred  immediately  to  a 
kiln    where    it    is   heated    for    42    hrs.    at   250°    F. 
(120°  C.).— A.  R.  P. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Iron-carbon-oseygen     and     iron  -  hydrogen  -  oxygen; 

Equilibria    in    the    systems   and    the    free 

energies  of  the  oxides  of  iron.     E.  D.  Eastman. 
J.  Amer.  Chem.  Soc.,  1922,  44,  975—998. 

Ferric  oxide  and  ferrosoferric  oxide  at  1100°  C.  and 
above  form  a  continuous  series  of  solid  solutions, 
though  there  are  indications  that  below  1000°  C. 
they  may  not  be  soluble  in  each  other  in  all  propor- 
tions. Ferrosoferric  oxide  and  ferrous  oxide  up  to 
1100°  C.,  at  least,  do  not  form  a  series  of  solid  solu- 
tions though  they  do  dissolve  in  each  other  to  a 
limited  extent.  Ferrous  oxide  appears  to  be  soluble 
in  iron  to  the  extent  of  20—25  niol.  %  (6—8%  of 
oxygen),  though  metallic  iron  is  not  appreciably 
soluble  in  the  oxide.  Ferrous  oxide  is  unstable  with 
respect  to  ferrosoferric  oxide  and  iron  below  about 
565°  C,  and  ferrosoferric  oxide  shows  an  inversion 
point  in  the  same  region.  When  carbon  monoxide 
reacts  with  pure  iron  in  a  closed  tube  above  500°  C, 
carbon  is  not  ordinarily  deposited  as  a  separate 
phase.  At  temperatures  above  800°  C.  a  trivariant 
equilibrium  with  iron  containing  dissolved  carbon 
or  carbide  as  the  solid  phase  may  be  established,  or 
one  in  which  the  solid  phase  contains  dissolved 
oxygen  as  well  as  carbon,  and  the  gas  is  richer  in 
carbon  dioxide  than  in  the  former  case.  With  a 
stream  of  carbon  monoxide  acting  on  iron  in  the 
vicinity  of  650°  0.  separate  phases  consisting  of 
carbon,  ferrous  oxide,  and  iron  containing  dissolved 

:  oxygen  and  carbon  (or  carbide)  are  probably  formed. 
At    higher    temperatures    the   oxide   and    separate 

i  carbon  phases  do  not  appear,  and  the  amount  of 
dissolved  carbon  decreases.  Carbon  dioxide  acting 
on  iron  in  a  closed  tube  probably  produces  a  tri- 
variant system.  At  temperatures  near  600°  C.  and 
lower,  carbon  is  present  in  the  solid  phase,  decreas- 
ing in  amount  as  the  temperature  is  increased. 

—J.  F.  S. 

Cast  iron:  Estimation  of  phosphorus  in  .       F. 

Graziani    mid    L.    Losana.       Giorn.    Chim.    Ind. 
Appl..  1922,  4,  148—153. 

The  most  exact  method  of  estimating  phosphorus  in 
cast  iron  consists  in  weighing  it  as  magnesium  pyro- 
phosphate and  this  should  always  be  used  for  the 
purposes  of  accurate  control.  For  ordinary  routine 
work,  use  may  be  made  of  the  lead  molybdate 
method,  which  is  accurate  and  rapid;  good  results 
are  obtainable  also  by  either  weighing  as  ammonium 
phosphomolybdate  or  converting  the  latter  into 
phosphomolybdic  anhydride  by  calcining  at  a  tem- 
perature not  exceeding  500°  C.  The  alkalimetric 
method,  which  is  based  on  titration  of  ammonium 
phosphomolybdate,  with  sodium  hydroxide  solution, 
is  applicable  to  cast  irons  of  all  types  and  is  rapid 
and  yields  satisfactory  results.  When  the  per- 
centage of  phosphorus  in  the  metal  is  less  than  0'5, 
use  may  be  made  of  the  eolorimetric  method  of 
Xamias  based  on  the  stable  blue  coloration  obtained 
when  ammonium  phosphomolybdate  is  treated  with 
hot  sodium  thiosulphate  solution.  If  a  high  degree 
of  accuracy  is  not  desired  and  if  the  proportion  of 
phosphorus  present  does  not  exceed  0"25%, 
Jiiptner's  method  of  centrifuging  the  liquid  con- 
taining the  precipitated  ammonium  phospho- 
molybdate in  a  suitable  tube  and  measuring  the 
volume  of  the  precipitate  may  be  used. — T.  H.  P. 


504  a       Cl.  X.— METAL8  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


[July  13,  1922 


Chromium  and  nickel  in  steel;  Proposed  method  of 

determining  the .     F.  Simion.     Chem.-Zeit., 

1922,  46,  504. 

The  following  method  is  suggested  for  separating 
the  chromium  and  nickel  from  a  nickel-chromium 
steel.  2  g.  of  the  turnings  is  dissolved  in  aqua 
regia,  and  the  solution  is  neutralised  and  poured 
into  an  excess  of  caustic  soda  solution  containing 
hydrogen  peroxide  or  sodium  peroxide.  After  boil- 
ing to  convert  the  chromium  salts  into  chromate  and 
destroy  excess  of  peroxide,  the  precipitate  is 
collected  on  a  suction  filter,  well  washed,  rinsed 
back  into  the  original  beaker,  and  digested  with 
ammonia  and  ammonium  carbonate  to  dissolve  the 
nickel  leaving  the  iron  insoluble.  The  chromate  in 
the  first  and  the  nickel  in  the  second  filtrate  are 
determined  by  any  convenient  method. — A.  R.  P. 


Chromium-steel ;  Heat  treatment   of  special  steels, 

especially .   E.  Maurer  and  R.  Hohage.   Mitt. 

Kaiser  AVilhelm-Inst.  Eisenforsch.  Dtisseldorf, 
1921,  2,  91—105.  Chem.  Zentr.,  1922,  93,  II., 
1129—1130. 

In  the  heat  treatment  of  chromium  steels,  for  a 
given  rate  of  cooling,  the  ageing  temperature  is 
lower  the  higher  the  quenching  temperature.  Tests 
carried  out  on  steels  containing  1 — 3%  Cr  and 
0'25 — 0"52%  C  show  that  the  tensile  strength  of 
the  alloy  quenched  from  850°  C.  depends  to  a 
greater  extent  on  the  carbon  than  on  the  chromium 
content.  The  proportion  of  pearlite  increases  with 
the  percentage  of  carbon,  whilst  chromium  causes 
the  larger  ferrite  and  pearlite  complexes  to  coalesce 
and  the  metal  then  has  a  uniform  fine-grained 
structure  which,  however,  does  not  always  result 
in  high  elastic  limit  and  resistance  to  shock  com- 
pared with  the  tensile  strength,  owing  to  either  too 
low  a  temperature,  or  total  lack,  of  ageing.  Deter- 
mination of  the  change  point  and  the  effect  of 
hardening  at  different  temperatures  on  the  struc- 
ture and  properties  showed  that  quenching  from  an 
excessively  high  temperature  did  not  have  the  same 
deleterious  effect  on  chromium-steels  as  on  other 
tool  steels.  The  bad  effect  of  too  high  a  temperature 
of  forging  on  the  latter  may  be  overcome  by  a 
second  hardening  operation,  whereas  the  structure 
of  a  constructional  steel,  especially  if  its  tensile 
strength  is  high,  is  ruined  by  forging  at  too  high  a 
temperature.  The  most  useful  steel  in  the  above 
range  is  that  containing  0'4%  C  and  T8%  Cr.  In 
the  notched  bar  impact  tests  it  was  found  that  with 
a  definite  amount  of  carbon  an  increase  of  chromium 
reduces  the  toughness  of  the  metal  and  rice  versa. 
Temper-brittleness  is  due  to  the  state  of  the  carbide 
present,  material  quenched  from  above  650°  C. 
showing  a  higher  maximum  magnetic  permeability 
than  that  subsequently  annealed  at  550°  C,  and  it 
is  therefore  suggested  that  there  are  two  forms  of 
the  carbide,  one  stable  above  650°  C,  which  is  con- 
verted into  the  other  normal  form  by  prolonged 
annealing  at  500° — 550°  C.  No  difference  in  the 
two  structures  could  be  discerned,  but  the  grain 
boundaries  of  slowly  cooled  alloys  developed  more 
rapidly  on  deep  etching  than  those  of  quenched 
alloys  —  A.  R.  P. 


Zinc:  Electrolytic  extraction  of  .      L.  Cambi. 

Giorn.  Chim.  Ind.  Appl.,  1922,  4,  133—147. 

Descriptions  are  given  of  the  various  processes  for 
the  electrolytic  extraction  of  zinc  and  of  the  plants 
erected,  especially  in  America,  for  working  them, 
the  results  obtained  being  compared  with  those  of 
the  ordinary  smelting  method.  Works  experience 
gained  in  Italy  shows  that  most  of  the  Italian  zinc 
ores  are  suitable  for  electrolytic  treatment,  the 
sulphate  process  giving  the  best  results. — T.  H.  P. 


[Copper   and   brass;]    Relation    betireen    the    com- 
pression force  and  redaction  in  height  [of ] 

F.  Doerinckel.  Z.  Metallk.,  1922,  14,  189—194. 
The  relation  between  the  compression  force  and 
the  reduction  in  height  of  test-pieces  of  copper  and 
various  brasses  has  been  determined  for  tempera- 
tures between  0°  and  700°  C,  and  the  results 
plotted.  In  every  case  up  to  a  reduction  of  60% 
in  the  height  the  curve  is  a  straight  line;  after 
this  it  becomes  curved  convex  to  the  axis  of  height 
reduction.  The  author  discusses  the  subject  from 
a  theoretical  point  of  view  and  evolves  a  formula 
for  calculating  the  pressure  required  to  produce 
any  reduction  in  height,  which  gives  sufficient* 
close  results  for  practical   work. — A.  R.  P. 

Aluminium    alloys;    Use    of    molybdenum    for    im- 
proving  the  properties  of  .     H.   Reimann 

Z.  Metallk.,  1922,  14,  195—204. 
In  continuation  of  earlier  work  (J.,  1922,  331  .0  the 
author  has  investigated  the  effect  of  small  additions 
of  molybdenum  to  commercial  aluminium  alloys 
containing  copper,  zinc,  magnesium,  or  nickel. 
Up  to  1%  Mo  has  very  little  effect  on  the  hardness 
of  alloys  with  the  last  three  metals,  but  in  the  case 
of  copper-aluminium  alloys  containing  up  to  3°; 
Cu  the  addition  of  molybdenum  increases  the  hard- 
ness up  to  0'7%  Mo,  then  decreases  it.  The  effect 
of  molybdenum  on  the  resistance  to  shock  is  not 
very  marked  and  depends  to  a  great  extent  on  the 
nature  and  quantity  of  the  other  alloying  metal, 
while  no  appreciable  improvement  was  made  in  the 
tensile  strength  or  ductility  of  any  of  the  alloys 
by  up  to  1%  Mo.  In  all  cases  the  microstructure 
of  the  alloys  revealed  characteristic  needles  of  the 
peritectic  Al-Mo  crystals  more  or  less  finely  dis- 
seminated throughout  the  alloy.  Molybdenum  does 
not  reduce  the  temperature  range  of  solidification, 
the  amount  of  piping,  or  the  tendency  of  flic 
third  constituent  to  segregate,  and,  in  general,  the 
results  obtained  by  the  addition  of  molybdenum  to 
aluminium  alloys  do  not  seem  to  justify  the  extra 
cost.— A.  R.  P. 

Nickel;  Analysis  of  technical .     K.  Breisch  and 

K.   Chalupny.     Chem.-Zeit.,    1922,   40,   4*1—  482. 
10  g.  of  the  metal  is  dissolved  in  nitric  acid,  the 
solution   evaporated    repeatedly    with    hydrochloru 
acid    to    dryness    on   the    water    bath,  *  the    Bilica 
filtered  off,   ignited,  and  weighed,   and  the  filtrate 
diluted     to    750     c.c.     and    treated     with    barium 
chloride  for  the  determination  of  the  sulphur.     A 
second  10  g.  of  the  metal  is  dissolved  in  nitric  acid 
and  the  solution  electrolysed  at  4 — 4"5  volts  for  1" 
mins.   with  rotating  electrodes,   whereby  copper  is 
obtained  on  the  cathode  and  lead  as  peroxide  on 
the  anode.     Iron  and  manganese  are  determined  bv 
dissolving  5  g.   of  the   sample   in   nitric  acid  anil 
treating  the  solution  with  ammonia  and  bromine. 
The      precipitate,      which      contains      appreciable 
amounts    of    nickel,    is   dissolved    in    hydrochloric 
acid,      the      solution      exactly      neutralised      with 
ammonium  carbonate,  treated  with  10  c.c.  of  10 c 
ammonium   formate  solution,    diluted   to  300 — 40< 
c.c.,  and  boiled  for  15  mins.     The  precipitate  con- 
tains  all  the  iron,   which  is  determined  as  usual. 
Hydrogen  sulphide  is  passed  through  the  solution 
to  remove  the  nickel,  and  the  filtrate  is  treated  with 
bromine    in    excess,    then    with    ammonia   to   pre- 
cipitate manganese.     Oxygen  is  determined  by  tin 
loss  in  weight  on  ignition  in  hydrogen,  arsenic 
antimony    by   distillation,    and    zinc   as   described 
prevously  (J.,  1922,  256  a).— A.  R.   P. 

Silver  amalgam  of  the  composition,  Hg,Ag,;  Pre- 
paration of  a  — 61/  precipitation  from  a  solu- 
tion of  silver  nitrate  in  pyridine.  R.  Miiller  and 
R.  Honig.     Z.  anorg.  Chem.,  1922,  121,  344—346. 

Metallic  needles  of  HgjAg,  were  formed  by  keep- 


Vol.  XIX,  No.  is.]     Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      505  a 


ing  a  drop  of  mercury  in  contact  with  a  solution 
of  silver  nitrate  and  cuprous  iodide  in  anhydrous 
pyridine.  Using  silver  nitrate  solution  alone, 
crystals  of  mercurous  nitrate  were  deposited  and 
a  liquid  amalgam  formed.  For  the  formation  of 
the  crystals  the  addition  of  an  approximately  equal 
amount  of  cuprous  iodide  (1:1)  is  necessary.  The 
addition  of  a  much  smaller  amount  (1:10)  causes 
the  precipitation  of  finely  divided  black  silver, 
whilst  with  too  large  amounts  of  cuprous  iodide 
(5:1)  the  drop  of  mercury  changes  into  a  granular 
powder.  Cuprous  iodide  can  be  replaced  by  cerous 
chloride,  the  separation  of  crystals  being,  however, 
much  slower. — AY.  T. 

Flue-dust;     Pyrophoric     [from     iron     blast 

furnaces].     J.  W.   Gilles.     Stahl  u.  Eisen,   1922, 
42,  8S4— 889. 

•  The  very  finely-divided  flue-dust  from  the  dry  gas- 
purifying  chambers  from  iron-smelting  furnaces,  if 
exposed  to  the  air  while  warm,  commences  to  glow 
and  changes  colour  from  light  grey  to  red-brown,  at 
the  same  time  emitting  vapour  consisting  of  a  mix- 
ture of  ammonia,  carbon  dioxide,  and  cyanogen  com- 
pounds havjng  a  very  objectionable  odour.  The 
dust  is  not  pyrophoric  when  quite  cold,  but  is 
easily  ignited  with  a  glowing  piece  of  charcoal,  a 
temperature  of  167° — 220°C.  only  being  required  to 
initiate  glowing,  while  the  highest  temperature 
reached  in  the  combustion  is  about  600°  C,  each 
gram  of  dust  emitting  400 — 500  cals.  A  number  of 
samples  of  pyrophoric  and  non-pyrophoric  dust 
|i  from  various  works  were  analysed  in  order  to  ascer- 
tain the  cause  of  the  phenomenon,  but  no  con- 
■  cordant     results     were    obtained.  It,     however, 

I  appears  highly  probable  that  the  cause  is  the 
presence  of  a  large  amount  of  manganese  oxide 
f  (MnO)  which  in  the  finely  divided  form  glows  when 
I  heated  above  180°  C.  in  air,  forming  the  oxide 
Mn304.  The  glowing  is  increased  by  the  combus- 
tion of  other  substances,  e.g.,  carbon  and  sulphides 
of  iron  or  zinc,  when  the  temperature  rises  high 
enough. ■ — A.  R.  P. 

Attach  of  minerals  by  bacteria.     Helbronner   and 
Rudolfs.     See  VII. 

Patents. 
[Iron  ;]   Electrolytic  methods  of  depositing  metals 

[especially ].    The  British  Thomson-Houston 

Co.,    Ltd.      From    General    Electric    Co.      E.P. 
179,675,  14.2.21. 

Sound  homogeneous  ribbons  of  electrolytic  iron,  as 
thin  as  0'00025  in.,  may  be  obtained  by  electro- 
deposition  from  a  bath  of  ferrous  chloride  or  other 
salt  by  the  use  of  an  iron  anode  and  a  cathode 
consisting  essentially  of  a  revolving  wheel  partly 
immersed  in  the  electrolyte,  the  rim  of  the  wheel, 
on  which  the  iron  is  deposited,  being  formed  of  a 
narrow  band  of  tungsten  or  molybdenum  or  of  an 
alloy  of  these  elements  with  one  another,  or  with 
other  elements.  The  deposit  does  not  adhere  to 
the  cathode,  and  is  readily  stripped  therefrom  as  it 
leaves  the  bath.— A.  R.  P. 

Iron  and  steel;  Method  of  pickling  in  acid 

baths.    O.  Vogel.    G.P.  a50,771,  31.3.20.    Addn. 
to  309,264  (J.,  1921,  853  a). 

I  In  the  process  described  in  the  chief  patent,  organic 
compounds  containing  the  quinoline  nucleus  are 
added  to  the  pickling  bath.— L.  A.  C. 


Crucible    furnaces    [for    melting    metals"].      F.    G. 
Penny.     E.P.  179,463,  7.7.21. 

^  number  of  melting  pits,  each  provided  with  a 
jlast  pipe,  are  connected  with  a  corresponding 
lumber  of  preheating  pits  by  flues  which  gradually 
xpand  from  the  tops  of  the  former  to  the  bottoms 


of  the  latter.  The  final  outlet  flues  from  the  top 
of  the  latter  are  provided  with  ejector  jets  connected 
with  the  main  blast. — B.  M.  V. 

Furnace  [;  Crucible  ].     J.  A.  Gaskill.  U.S. P. 

1,417.478,   23.5.22.     Appl.,   28.5.20. 
The    refractory    body    of   the   furnace   which   con- 

.  tains  the  crucible  is  mounted  on  trunnions  and 
provided  with  a  jacket  in  which  the  air  for  com- 
bustion is  preheated.  The  air  is  aumitted  tan- 
&entially  at  the   bottom  of  the  jacket  and  passes 

i  from  the  top  to  a  pair  of  mixing  chambers  situated 
on  the  trunnion  shafts  outside  the  bearings,  where 

!  it  is  mixed  with  fuel.  The  mixture  then  passes 
through  the  hollow  trunnions  to  burner  jets  and 
enters  the  interior  of  the  furnace  tangentfally. 

— B.  M.  V. 

Furnaces;    Continuous    re-heating     or    annealing 

.     Faconeisen-Walzwerk  L.  Maimstaedt  und 

Co.,  A.-G.,  and  H.  Bansen.    E.P.  179,638,  7.2.21. 

In  continuous  annealing  furnaces,  where  the  waste 
gases  are  removed  through  a  recess  in  the  roof 
and  down  through  side  passages,  the  hearth  is 
extended  beyond  the  recess  so  as  to  form  a  pre- 
heating zone,  the  roof  of  which  is  progressively 
lower   from   the   recess   to  the  charging   door. 

— B.  M.  V. 

Composite  metal  articles.  British  Thomson- 
Houston  Co.,  Ltd.,  Assees.  of  C.  Steenstrup. 
E.P.  158,565,  26.1.21.  Conv.,  26.1.20. 
Two  metal  parts  (e.g.,  high-speed  steel  and  carbon 
steel)  are  joined  by  a  more  fusible  metal  (e.g.. 
copper).  The  parts  are  heated  in  a  reducing 
atmosphere  and  maintained  in  such  close  contact 
that  the  joining  metal,  applied,  for  example,  in 
the  form  of  wire  or  ribbon,  is  practically  all  used 
up  in  forming  an  alloy  with  the  surfaces  to  be 
joined.  The  parts  may  be  held  together  under 
great  mechanical  pressure  and  temporarily  locally 
welded,  so  that  the  pressure  will  be  maintained 
on  removal  of  the  clamp,  before  being  perma- 
nently joined  by  means  of  the  alloying  metal.  Com- 
posite articles  constructed  in  this  manner  can  be 
subjected  to  mechanical  working  and  heat  treat- 
ment as  a  whole. — B.  M.   V. 

Metallic     ores     aid    residues     containing     metallic 

oxides;  Purification  of  .     W.  H.  Dyson  and 

L.  Aitchison.    E.P.  179,201,  28.10.20  and  27.7.21. 

The  process  described  in  E.P.  176,428  and  176,729 
(J.,  1922,  332  a)  is  extended  to  cover  the  recovery 
of  cobalt,  manganese,  copper,  lead,  zinc,  etc.,  from 
their  ores.  Details  of  the  temperatures  necessary 
in  these  cases  are  given. — A.   R.   P. 

[Copper-aluminium]  alloys.  I.  Iytaka,  and  Mit- 
subishi Zosen  Kaisha,  Ltd.  E.P.  179,261,  28.1.21. 
Non-oxidisable  alloys  that  retain  their  lustre  up 
to  500°  C.  and  do  not  corrode  in  air  or  sea  water 
consist  of  77—97%  Cu,  2— 11%  Al,  and  3—12%  Sn, 
or  1 — 12%  Zn,  the  zinc  or  tin  being  present  in 
approximately  the  same  proportion  as  the 
aluminium. — A.  R.  P. 

[Iron-aluminium]  alloys.  The  British  Thomson- 
Houston  Co.,  Ltd.  From  General  Electric  Co. 
E.P.  179,306,  3.2.21. 
An  alloy  that  will  withstand  temperatures  of 
1200° — 1500°  C.  for  long  periods  without  oxida- 
tion or  scaling  consists  of  10 — 15%  Al  and  at  least 
35%  Fe  and  30%  Ni.  Addition  of  chromium  up 
to  a  maximum  of  5%  reduces  the  grain  size  and 
renders  the  metal  harder  and  tougher. — A.  R.  P. 

Osmium   alloys.     "W.   C.   Heraeus  G.m.b.H.     G.P. 

350,703,  22.6.19. 
Hard   alloys   highly    resistant   to    chemical   action, 

D 


506  a 


Cl.  XI.— ELECTRO-CHEMISTRY. 


[JuJy  15,  1922. 


and  suitable  for  the  manufacture  of  the  points  of 
gold  pens,  compasses,  and  prisms,  contain  at  least 
70%  of  osmium,  another  metal  of  the  platinum 
group,  especially  iridium,  platinum,  or  palladium, 
together  with  1 — 10%  of  a  third  metal  of  the 
platinum  group,  especially  rhodium  or  ruthenium. 

— L.  A.  C. 
Zinc  alloy.    J.  Zufall.     G.P.  350,704,  4.4.19. 

An  alloy  suitable  for  use  as  bearing  metal  and  for 
the  manufacture  of  ornaments,  containing  84"1% 
Zn,  1-8%  Cu,  1-0%  AI,  4-9%  Sn,  and  8'2%  Pb,  is 
prepared  by  melting  together  1  pt.  of  an  alloy  con- 
taining 11  pts.  of  zinc  and  3  pts.  of  copper,  0'6  pt. 
of  an  alloy  containing  8  pts.  of  zinc  and  2  pts.  of 
aluminium,  9  pts.  of  zinc,  0'6  pt.  of  tin,  and  1  pt. 
of  lead.— L.  A.  C. 

Sulphide   ores;  Method  of   treating   .        C.   J. 

Reed.     U.S. P.  1,415,897,  16.5.22.     Appl.,  9.6.20. 

The  ore  is  heated  under  nonoxidising  conditions  to 
volatilise  sulphur,  then  leached  with  sulphuric 
acid,  and  the  metallic  sulphate  formed  is  finally 
converted  into  metal  oxide  and  sulphur  trioxide. 

— B.  M.  V. 

Ores;  Method  of  concentrating  [by  flotation] 

Concentration  of  ores.  R.  Luckenbach,  Assr.  to 
Luckenbach  Processes,  Inc.  U.S. P.  1,417,261 — 3, 
23.5.22.  Appl.,  (a)  31.12.19,  (b)  3.1.21,  and  (c) 
13.1.21. 

The  pulp  of  finely  divided  ore  and  water  is  agitated 
with  (a)  the  product  of  the  reaction  between  a 
bitumen  and  an  alkali  and  sufficient  acid  to  render 
the  pulp  neutral,  (b)  the  product  of  the  reaction  I 
between  an  alkali  and  lac,  or  (c)  an  alkali  and  a 
liquid,  normally  unsaponifiable  resin ;  and  the 
resulting  froth  is  separated. — A.  R.  P. 

Aluminium;  Composition  of  matter  for  and  method 

of  soldering  and  welding  .     P.  de  Clamecv, 

Assr.  to  B.  P.  Sturtevant  Co.  U.S. P.  1,415,925, 
16.5.22.     Appl.,  8.7.19. 

The  solder  consists  of  aluminium,  tin,  silver 
nitrate,  and  silver  chloride. — B.  M.  V. 

Aluminium;  Soldering  composition  for .     F.  A. 

Albertus,  Assr.  to  C.  S.  Flint.  U.S.P.  1,416,924, 
23.5.22.     Appl.,  3.12.19. 

A  solder  for  aluminium  consists  of  relatively  large 
proportions  of  tin  and  zinc,  and  relatively  small 
proportions  of  aluminium,  antimony,  and  phosphor- 
tin,  the  proportions  of  antimony  and  phosphor-tin 
being  less  than  the  proportion  of  alumiauim. 

—J.  S.  Cl    I 

Copper;  Method  of  and  apparatus  for  recovering 

[from  solutions  of  copper  sulphate].     11.  M. 

Wilcox,  Assr.  to  F.  C.  L.  D'Aix.  U.S.P. 
1,416,147,  16.5.22.    Appl.,  14.7.17. 

Strong  copper  sulphate  solution  is  continuously 
admitted  to  the  bottom,  and  spent  liquor  removed 
from  the  top,  of  a  precipitating  tank,  the  precipi- 
tated copper  being  withdrawn  from  the  bottom 
without  stopping  the  operation. — B.  M.  V. 

Copper;  Process  ami  apparatus  for  extracting 

from  slag  in  reverberating  furnaces.  P.  P. 
Butler  and  H.  H.  Stout,  Assrs.  to  Phelps  Dodge 
Corp.     U.S.P.  1,416,262,  16.5.22.     Appl.,  7.7.19. 

The  slag  is  tapped  from  the  smelting  chamber  of  a 
reverberatory  furnace  into  a  second  chamber  where 
it  is  heated  to  a  much  higher  temperature  after 
addition  of  a  "  washing  ore."- — A.  R.  P. 

Diamagnetic  minerals;  Process  and  apparatus  for 

tlie  concentration  and  separation  of .     W.  C. 

Hall.     U.S.P.  1,416,634,  16.5.22.     Appl.,  4.8.21. 

The  ground  ore   is   passed   through   an   intensified 


magnetic  field  formed  between  the  pole  of  a  station- 
ary electromagnet  and  a  movable  magnetic  roller, 
whereby  the  diamagnetic  material  in  the  ore  is 
attracted  and  becomes  attached  to  the  roller. 

—A.  R,  P. 

Metal  or  metals  and  other  material  [especially 
graphite];  Production   of  a   mixture  'containing 

a .     G.  Ising  and  H.  Borofski.     G.P.  351,022 

2.6.20. 

Material  which  does  not  form  alloys  with  metals, 
e.g.,  graphite,  is  added  to  a  metal  or  mixture  of 
metals  in  a  semi-liquid,  pasty  condition,  and  the 
mixture  is  stirred  or  beaten  until  the  metal  content 
assumes  a  fine,  granular  condition,  the  temperature 
of  the  mixture  being  simultaneously  lowered  to  a 
point  at  which  the  pasty  condition  is  still  main- 
tained, but  the  metallic  particles  are  harder  than 
the  added  material.  The  mixture  maintains  its 
structure  on  subsequent  treatment  in  presses  or  the 
like.— L.  A.  C. 

Copper-plating  metal  parts;  Process  of  manufactur- 
ing  a   solution  for  .     W.   Narr,   sen.     G.P. 

351,251,  22.3.21. 

A  mass  of  pure  copper  or  copper  scrap  is  treated 
for  12 — 14  days  with  a  solution  containing  1J  pt.  of 
hydrochloric  acid  to  8|  pts.  of  water.  The  result- 
ing solution  is  especially  suitable  for  copper-plating 
iron  and  steel  goods,  and  the  coating  is  more 
quickly  produced  and  is  more  adherent  than  that 
afforded  bv  the  use  of  a  copper  sulphate  solution. 

—J.  S.  G.  T. 

Electrolytic  apparatus  a.nd  method  [for  production 
of  lamince  of  electrolytic  iron].  C.  Dantsizen, 
Assr.  to  General  Electric  Co.  U.S.P.  1,416,692, 
23.5.22.     Appl.,  21.5.20. 

Pee  E.P.  179,675  of  1921;  preceding. 

Metallic  surfaces;  Coloration  of .     T.  Rondelli 

rnd     Q.     Scstini,     Assrs.     to     Sestron    (Foreign 
Patents),      Ltd.  U.S.P.      1,417,413,      23.5.22. 

Appl.,  30.6.20. 

See  E.P.  164,127  of  1920;    J.,  1921,  516  a. 

See  also  pages  (a)  501,  Gases  containing  sulphur 
dioxide  (U.S.P.  1,417,066—7).  503,  Granular  slag 
(U.S.P.  1,416,069).  507,  Electrolysis  (U.S.P. 
1.416,929);  Preserving  electric  furnace  liningt 
(U.S.P.  1,416,584);  Electrical  heating  element 
(U.S.P.  1,416,436). 


XI.-ELECTBO-CHEMISTfiY. 

Electrical     precipitation      in      wood     distillation. 
Hawley  and  Pier.    See  IIb. 

Patents. 

Electric    conductors;   Method    of   insulating    . 

The   British   Thomson-Houston   Co.,   Ltd.     From 
The  General  Electric  Co.     E.P.  179,460,  1.7.21. 

Electrical  conductors  covered  with  insulating 
fibrous  material,  e.g.  cotton,  are  passed  through 
a  bath  of  insulating  liquid,  e.g.  molten  asphalt, 
maintained  at  a  temperature  sufficiently  high  to 
eliminate  air  and  moisture  from  the  covering,  and 
then  passed  through  a  coagulable  oil,  preferably 
China  wood  (tung)  oil,  at  a  temperature  high 
enough  to  coagulate  the  oil.  The  coated  wire  is 
finally  passed  through  a  finely -divided  mineral 
material,  e.g.  powdered  talc,  and  if  desired  through 
a  die.  Conductors  so  treated  are  substantially 
non-combustible  under  operating  conditions. 

:-J.  S.  G.  T. 


Vol.  XII.,  Xo.  13.] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


507  a 


insulating  metal  particles;  Method  of .     G.  W. 

Elmen,  Assr.  to  Western  Electric  Co.  U.S. P. 
1,383,703,  5.7.21.    Appl.,  21.1.20. 

Iron  particles  to  be  used  in  the  manufacture  of 
magnet  cores  are  mixed  with  sufficient  of  an  oxidis- 
ing agent,  such  as  water  or  a  weak  solution  of 
hydrogen  peroxide,  to  produce  a  black  oxide  on  the 
surface,  but  not  enough  to  convert  the  particles  com- 
pletely into  oxide  or  to  produce  a  coating  of  red 
oxide.  The  mixture  is  then  heated  and  agitated  in 
a  container  at  a  temperature  below  that  at  which 
the  magnetic  properties  of  the  metal  change,  until 
the  desired  surface  oxidation  is  effected.  The  pro- 
cess may  also  be  applied  to  cobalt,  nickel,  and 
alloys. 

Platinum  anodes  [/or  electrolysis'].  Deutsche  Gold 
u.  Silber-Scheide-Anstalt  vorm.  Rossler,  and 
0.  Liebknecht.     E.P.  179,636,  7.2.21. 

In  electrolytic  processes  in  which  active  oxygen  is 
evolved  at  the  anode,  zinc  is  used  as  a  stiffening 
and  current-conducting  support  for  the  platinum 
anodes  employed.  Thus,  platinum  net  or  foil  may 
be  clamped  in  a  zinc  frame  or  bv  zinc  bars. 

—J.  S.  G.  T. 

Elect, -oh/sis;  Art  of  .     W.  E.  Bailey.     U.S.P. 

1,416,929,  23.5.22.     Appl.,  7.11.21. 

The  electrolyte  flows  past  one  electrode  and  im- 
pinges through  a  movable  nozzle  as  a  jet  upon  an 
article  forming  a  second  electrode  of  an  electrolytic 
cell,  the  electrodes  being  connected  with  the  appro- 
priate poles  of  a  source  of  current.  Electrolytic 
action  thus  occurs  at  and  near  the  point  of  impinge- 
ment of  the  jet.  The  method  is  applicable  to  the 
I  electrodeposition  of  metals  to  form  patterns  or 
designs.— J.  S.  G.  T. 

Batteries;  Depolariser  for  [alkaline]  primary . 

R.  C.  Benner  and  H.  F.  French,  Assrs.  to 
National  Carbon  Co.  U.S.P.  1,415,860,  16.5.22. 
Appl.,  22.8.18. 

A.  DEroLAitisEit  for  alkaline  cells  consists  of  a  mix- 
ture of  cuprous  oxide  and  sulphur. — J.  S.  G.  T. 

Storaeie  battery;  [Mixture  for  use  in]  electric  ■ . 

E.  Hacking,  Assr.  to  Electrol  Mfg.  Co.  U.S.P. 
1,416,195,  16.5.22.     Appl.,  30.4.18. 

A  mixture  for  use  in  storage  batteries  provided 
'with  lead  plates,  consists  of  sodium  silicate,  sul- 
phuric acid  solution,  and  a  smaller  proportion  of  a 
liquid  hydrocarbon  miseible  with  the  other  constitu- 
ents and  not  oxidised  by  the  acid. — J.  S.  G.  T. 

Battery  construction.  [Electrolyte,  for  alkaline  bat- 
tery.] A.  L.  Muren.  U.S.P.  1,416,738,  23.5.22. 
Appl.,  11.1.19. 

An  alkaline  battery  electrolyte  contains  an  alkali 
tungstate.— J.  S.  G.  T. 

•Storage-battery  sepai'ator.  G.  Steerup,  Assr.  to 
U.S.  Light  and  Heat  Corp.  U.S.P.  1,416,761, 
23.5.22.     Appl.,  11.8.19. 

Electric  current  is  passed  through  a  mass  of  con- 
lucting  material  interspersed  with  non-conducting 
naterial  and  containing  a  substance  which  gasifies 
ihen  the  current  passes,  the  whole  mass  being 
used  into  a  coherent  block. — J.  S.  G.  T. 

'aste  [spongy  lead  for  storage  batteries];  Method 

of  preparing  .       C.   C.   Carpenter,  As6r.   to 

U.S.  Light  and  Heat  Corp.  U.S.P.  1,416,787, 
23.5.22.     Appl.,  19.4.20. 

pongt  lead  is  ground  to  a  definite  fineness  and 
reated  with  sulphuric  acid  in  definite  proportion 
o  control  the  proportions  of  spongy  lead  and  lead 
ulphate  in  the  resulting  product. — J.  S.  G.  T. 


Electric  storage  batteries;  Process  of  making  . 

H.  M.  Williams,  Assr.  to  Electrol  Mfg.  Co. 
U.S.P.  1,417,007,  23.5.22.     Appl.,  19.8.20. 

Lead  plates  used  in  storage  batteries  employing 
sulphuric  acid  in  a  solid  filling  medium  as  electro- 
lyte are  charged  and  disoharged  in  a  solution  of 
sulphuric  acid  of  customary  specific  gravity  until 
the  specific  gravity  of  the  acid  in  the  pores  of  the 
plates  is  approximately  1"200.  The  free  electrolyte 
is  then  replaced  by  a  mixture  containing,  by  volume, 
1  pt.  of  liquid  sodium  silicate,  3  pts.  of  water,  and 
5  pts.  of  sulphuric  acid  of  sp.  gr.  1'400.  The  re- 
sulting electrolyte  consists  of  sulphuric  acid  of 
sp.  gr.  approximately  1'200  contained  in  a  gela- 
tinous mass  of  colloidal  silica. — J.  S.  G.  T. 

Crucible     furnace;     Three-phase      [electric]     . 

C.  H.  Carpenter,  Assr.  to  Westinghouse  Electric 
and  Mfg.  Co.  U.S.P.  1,415,989,  16.5.22.  Appl., 
22.5.20. 

The  furnace  chamber  is  surrounded  by  a  resistor, 
and  terminal  electrodes  are  provided  in  a  number 
of  wells  placed  symmetrically  around  the  chamber, 
and  containing  granular  conducting  material  in 
contact  with  the  resistor. — J.  S.  G.  T. 

Electric-furnace  linings;  Methoel  of  preserving . 

H.  C.  Sicard,  Assr.  to  United  States  Ferro  Alloys 
Corp.     U.S.P.  1,416,584,  16.5.22.    Appl.,  12.2.20. 

A  mixture  of  titaniferous  and  metallic  ores  is 
smelted  in  a  furnace  provided  with  a  titanic  oxide 
lining.— J.  S.  G.  T. 

Heating  element;  Electrical  .  P.  A.  E.  Arm- 
strong. U.S.P.  1,416,436,  16.5.22.  Appl.,  1.5.19. 
Renewed  1.10.21. 

An  electrical  heating  element  contains  over  4%  of 
chromium  and  over  0'1%  of  carbon,  the  remainder 
being  principally  iron. — J.  S.  G.  T. 

Ozone;  Apparatus  for  producing .     H.  E.  Ellis. 

U.S.P.  1,417,046,  23.5.22.  Appl.,  10.12.20. 
An  auxiliary  vessel  filled  with  water  is  disposed 
within  an  outer  vessel  by  means  of  a  flange  engag- 
ing a  flange  on  the  latter.  An  electrode  is  disposed 
within  the  inner  vessel,  being  suspended  from  a 
member  extending  across  its  upper  end,  this  mem- 
ber also  securing  the  two  vessels  together.  An 
electrode  is  likewise  provided  in  the  space  between 
the  two  vessels  near  the  lower  end  thereof.  Air 
to  be  ozonised  is  forced  through  the  outer  vessel. 

—J.  S.  G.  T. 

Electric  furnace.     H.   de  Nolly,   Assr.   to  La  Soc. 

Metallurgique    du     Frayol.      U.S.P.     1,417,303, 

23.5.22.     Appl.,  8.4.20. 
See  E.P.  157,051  of  1920;  J.,  1921,  225  a. 

Electric  furnace  regulators.  British  Thomson- 
Houston  Co.,  Ltd.  From  General  Electric  Co. 
E.P.  179,595,  31.1.21. 

See  also  pages  (a)  491,  Electric  classifier  (U.S.P. 
1,416,089);  Electriced  separation  of  suspended 
material  (U.S.P.  1,416,769  and  G.P.  348,377).  502, 
Percarbonates  and  perborates  (G.P.  350,986).  516, 
Fodder  from  straw  (G.P.  351,051). 


XII.-FATS;  OILS;  WAXES. 

Corn  (maize)  oils,  obtained  by  expression  and  benzol 

extraction  methods;  Comparison  of  .     A.  F. 

Sievers.     Bull.  No.   1054,   U.S.   Dept.  of  Agric, 
11.3.22.     20  pp. 

A  review  of  previous  investigations  on  maize  oil  is 
given,  with  a  table  of  physical  and  chemical  con- 
stants.      The    material    used    was    obtained    from 

d2 


508  a 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


[July  15,   1922. 


typical  plants  making  hominy  and  glucose,  the 
former  producing  dry-process  germs  and  the  latter 
wet-process  germs.  The  extraction  of  both  germs 
and  oil  cake  was  undertaken.  The  benzol  extrac- 
tion was  carried  out  by  treating  501b.  of  ground 
germs  or  oil  cake  in  a  galvanised  iron  can  with  a 
false  bottom.  The  benzol  used  distilled  completely 
at  85°  C.  90%  of  the  benzol  was  removed  by  heat- 
ing on  a  steam  bath  under  a  partial  vacuum,  the 
last  portions  by  passing  a  current  of  dry  steam  into 
the  mixture  under  reduced  pressure.  Considerable 
difficulty  was  caused  by  the  foaming  of  the  oil  dur- 
ing the  removal  of  the  solvent.  This  was  most 
troublesome  in  the  case  of  the  dry-process  germs, 
and  is  ascribed  to  the  presence  of  starchy  matter. 
The  oils  from  the  dry-process  material  were  some- 
what lighter  in  colour  than  the  other  oils,  and 
uniformly  lower  in  free  fatty  acids.  There  was  no 
difference  between  the  free  fatty  acidity  of  the  ex- 
tracted oil  and  expressed  oil  from  the  dry-process 
germs.  In  the  case  of  the  oils  from  the  wet^process 
germs  the  extracted  oils  contained  more  free  fatty 
acids  than  the  expressed  oil.  All  the  oils  were  re- 
fined in  the  same  manner  with  the  exception  of  the 
extracted  oil  from  the  dry-process  germ-cake,  which 
required  a  greater  quantity  of  sodium  hydroxide 
owing  to  sediment,  and  all  were  deodorised  by  treat- 
ment with  steam  at  225°  C.  for  2  hrs.,  under  25  in. 
vacuum.  The  expressed  oils  showed  the  lowest  re- 
fining loss.  There  were  no  striking  differences  in 
the  physical  and  chemical  constants  of  the  oils 
from  the  two  types  of  germs  by  the  two  different 
methods  of  extraction.  No  material  difference 
could  be  noted  in  the  finished  oils  from  the  germs 
immediately  after  their  preparation,  but  upon 
standing  some  deterioration  took  place,  and  this 
was  more  noticeable  in  the  extracted  oils  than  in 
the  expressed  oils.  All  oils  were  sufficiently  light 
in  colour  for  use  as  salad  oils  and  for  cooking  pur- 
poses. The  oils  obtained  by  benzol  extraction  of  the 
two  types  of  oil-cake  were  inferior  in  all  respects  to 
the  oils  from  the  germs,  that  from  the  cake  from 
the  wet-process  germs  being  the  poorer  of  the  two. 

— H.  C.  R. 

Liver  oil  of  the  tope.     A.  C.  Chapman.     Analyst, 

1922,  47,  203—204. 
Oil  obtained  from  the  livers  of  tope  (Galeus  galeus) 
has  the  following  characters  :  Sp.  gr.  at  15°/15°  C, 
09249;  iodine  value  (Wijs),  1522;  saponif.  value, 
1851;  nDls  =1-4803;  unsaponif.  matter,  1"14%; 
brominated  glycerides  insoluble  in  ether,  42-5%. 
The  oil  has  a  pale  yellow  colour  and  is  used  for  the 
dressing   of   leather    and    for    medicinal    purposes. 

— W.  P.  S. 

Food    [/«f]    analysis;    Use    of    semi-microchemical 

and  microchcmical  methods  in  .     H.  Luhrig. 

Pharm.  Zentralh.,  1922,  63,  218—221,  227—232. 
Mkthods  are  described  for  determining  various 
analytical  constants  of  fats  and  oils,  very  small 
quantities  of  the  substance  being  used  for  the  pur- 
pose;  e.g.,  the  Reich'ert-Meissl  value  is  determined 
on  0"5  g.  of  fat,  the  saponif.  value  on  01  g.,  and 
the  iodine  value  on  0'03  g.  The  Polenske  value  is 
obtained  on  the  quantity  of  fat  used  for  the 
li  either  WVleissl  value. — W.  P.  S. 

Fatty  acids  of  rape  oil.     E.  Raymond.     Bull.  Soc. 

Chim.,  1922,  31,  414—419. 
In  the  mixture  of  fatty  acids  obtained  by  the 
saponification  of  a  sample  of  Indian  rape  oil  the 
author  has  identified  the  following  fatty  acids: 
erucic  acid,  linolic  or  linolenic  acids  giving  soluble 
bromides,  palmitic,  oleic,  and  stearic  acids,  and 
small  amounts  of  linolic  or  linolenic  acids  giving 
insoluble  bromides. — W.   (■. 


Sativic    acid.     E.    Reinger.     Ber.    deuts.     Pharm. 

Ges.,  1922,  32,  124—131. 
The  progressive  elimination  of  hydroxyl  groups 
from  sativic  acid  (tetrahydroxystearic  acid)  pre- 
pared by  the  oxidation  of  linolic  acid  was  effected 
by  heating  the  acid  with  60%  sulphuric  acid,  where- 
by 1  mol.  of  water  was  eliminated,  the  unsaturated 
acid  C„H„05  produced  being  then  converted  by 
hydrogenation  into  a  trihydroxystearic  acid.  By 
repeating  the  operation  with  this  acid  a  dihydroxy 
unsaturated  acid,  CiaIlstO*>  and  finally  a  di- 
hydroxystearic  acid  were  obtained  from  which  a 
monohydroxy  unsaturated  acid  and  finally  12- 
monohydroxystearic  acid  were  prepared.  The  con- 
stitution of  each  of  the  unsaturated  acids  was 
determined  by  an  examination  of  their  oxidation 
products,  and  that  assigned  by  Eckert  (J.,  1917, 
892),  to  the  original  sativic  acid  was  confirmed, 
namely,  CH3.(CH2),.  [CH(OH)L.CH2.[CH(OH)],. 
(CHa),.CO.,H.  The  position  of  the  double  bonds  in 
linolic  acid  follows  accordingly.  (Cf.  J.C.S.,  1922, 
i.,  623.)  — G.  F.  M. 

Soaps;  Spontaneous  heating  of  .     A.  Welter. 

Chem.  Umschau,  1922,  29,  151—152. 

Powdered  or  flaked  soaps  with  a  low  water  content 
prepared  wholly  or  partly  from  drying  or  semi- 
drying  oils,  show  a  tendency  to  rise  in  temperature. 
Differences  in  temperature  of  20° — 30°  C.  have  been 
observed  between  the  exterior  and  interior  of 
quantities  of  soap  flakes  stored  in  wooden  chests 
after  passage  through  the  drying  machines  in  the 
case  of  soaps  prepared  from  unsaturated  fatty 
acids,  whereas  there  is  no  difference  in  temperature 
when  saturated  fatty  acids  have  Been  employed. 
The  zinc  oxide  often  added  to  the  soap  to  render  it 
opaque  and  to  improve  its  appearance  exerts  an 
anti-catalytic  action,  and  diminishes  the  rise  in 
temperature.  Pure  olive  oil  yields  soaps  with  no 
tendency  to  rise  in  temperature,  but  cottonseed  oil 
and  other  semi-drying  oils  often  used  to  adulterate 
olive  oil  have  the  effect  of  inducing  this  tendency 
in  soap  prepared  from  adulterated  oil.  The  author 
cites  a  case  in  which  a  pile  of  500 — 600  kg.  of  cold. 
dry  powdered  soap  prepared  from  cottonseed  oil 
developed  such  a  rapid  rise  in  temperature  that  in 
I  hr.  it  was  reduced  to  a  black  coke-like  mass. 

— L.  A.  C. 

Enzymic  synthesis  of  fat.    Spiegel.     See  XVIII. 
Patents. 

Oils    and    fats    from    oily    and    fatty    substances; 

Process  of  squeezing  and  device  for  working 

such  process.  C.  A.  Fajikhauser.  E.P.  158,844, 
2.2.21.  Conv.,  3.2.20. 
The  substance,  a  fluid  mass  of,  e.g.,  cocoa,  is  fed 
continuously  under  high  hydraulic  pressure  into  one 
end  of  a  filter  chamber,  the  oil  or  fat  is  expelled 
through  the  filter,  and  the  spent  material  i= 
expelled  from  the  other  eud  of  the  chamber  by  the 
same  hydraulic  pressure.  The  filter  is  formed  c 
small  wooden  blocks,  with  the  fibres  disposed  radi- 
allv.  mounted  around  a  hollow  piston  provided  witl 
radial  holes,  the  inner  surface  of  the  blocks  being 
formed  with  annular  and  longitudinal  grooves. 
The  piston  is  moved  to  close  the  outlet  end  of  the 
chamber  during  the  expulsion  of  the  oil  etc.,  and 
to  open  the  outlet  for  the  expulsion  of  the  spent 
material. — H.  H. 

Cholesterol  materials,  such  as  wool-fat;  Treatment 

of  cn«le  .     P.  G.  Conyers,  O.  Reynard,  and 

Lanolino  Extractors,  Ltd.  E.P.  179,241.  22.1.21. 
The  crude  material  is  agitated  in  direct_ contact 
with  nitric  acid,  e.g.,  of  sp.  gr.  120— T50,  at  a 
temperature  of,  e.g..  60°  to  120°  C,  until  no  fur- 
their   reaction  occurs  and   all   the   water  has  been 


Vol.   XLI  .   Xo.   13.] 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VAKNISHES  ;    RESINS. 


509  a 


expelled,  and  the  product  is  washed  and  cooled. 
The  products  are  neutral,  and  vary  in  character 
from  a  hard  wax-like  substance  to  a  highly  viscous 
elastic  substance.  They  may  be  used  for  leather- 
dressing,  waterproofing,  etc. — H.  H. 

Soya   bean;  Process  for  preparing   odourless   and 

urless  oil  and  flour  from  .     Y.  Yamamoto 

and  I.  Mizusawa.     E.P.  179,776,  1.4.21. 

The  raw  bean,  coarsely  broken  and  deprived  of  its 
bran,  it  steeped  in  a  weak  solution  of  an  organic 
acid,  such  as  acetic  acid,  to  remove  the  substances 
to  which  the  odour  and  colour  are  due.  The  beans 
bran,  is  steeped  in  a  weak  solution  of  an  organic 
are  then  washed  free  from  acid  and  dried,  the  oil 
is  extracted,  and  flour  is  manufactured  from  the 
residue.  The  acid  solution  may  be  warmed  slightly, 
j  and  the  washed  beans  may  be  treated  with  a  dilue 
solution  of  sodium  bicarbonate  to  neutralise  any 
remaining  acid.  The  pulverised  bean,  after  the  oil 
has  been  extracted,  may  be  warmed  with  steam  to 
a  temperature  below  the  coagulating  temperature  of 
the  albumin  contained  in  it. — H.  C.  R. 

Edible  fatty  product  from,  fixed  oils  and  fats  and 
process  of  manufacturing  same.  E.  Klein. 
U.S.P.  1,381,564.  14.6.21.     Appl.,  5.11.18. 

Crude  cottonseed  oil,  maize  oil,  or  the  like,  after 
treatment  with  steam  and  heated  air  to  remove 
volatile  impurities  and  destroy  enzymes,  is  treated 
(with  sodium  bisulphite  and  hydrosulphite  together 
iwith  steam  and  sterilised  air,  then  treated  with 
.alkali,  decanted,  filtered,  and  treated  with  cold 
.sterilised  air  to  separate  higher-melting  fat  and 
obtain  a  "  winter  oil,"  or  until  the  mass  forms  an 
edible  fat  of  solidif.  pt.-10°  to  15°  C.  The  pro- 
duct should  give  no  blue  colour  when  10  g.  of  the 
melted  fat  is  shaken  with  4 — 5  drops  of  a  3' 
solution  of  haemoglobin,  10  drops  of  guaiacum  tinc- 
ture, and  10  c.c.  of  saturated  salt  solution. 

fats  and  oils;  Process  for  separating  fatty  acids, 
resins,   bitter  and  mucilaginous  substances  from 

I   .     H.     Bollmann.     G.P.     350,698,     31.8.20. 

■  Addn.  to  345,350  <cf.  E.P.  164,115;  J.,  1921, 
519  a). 

''at  or  oil  is  fed  into  one  side  of  a  vessel  provided 
rith  division  plates  and  packed  with,  e.g.,  Raschig 
ings,  and  is  treated  therein  with  a  counter-current 
f  a  purifying  liquid,  such  as  a  mixture  of  water 
'ith  methyl,  ethyl,  or  amyl  alcohol,  or  acetone,  or 
thyl  acetate,  which  enters  the  apparatus  at  the 
:pposite  side.  One  half  of  the  vessel  thus  contains 
high  proportion  of  the  solvent,  and  the  other  of 
'be  fat,  while  the  intimate  contact  effected  between 
he  fat  and  solvent  causes  complete  removal  of 
'npurities  without  emulsification. — L.  A.  C. 

ntah/sts  for   hydrogenation.     G.P.   346,949.      See 
XX. 


XIII.-PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Mimed    white    lead;    Graphic    analysis    of    . 

B.  Paxton.     Chem.  and  Met.  Eng.,  1922,  26,  989. 

inc  oxide  is  determined  by  boiling  1  g.  of  the  pig- 
ent  with  6  c.c.  of  hydrochloric  acid,  5  g.  of 
amonium  chloride,  and  30  c.c.  of  water,  diluting 
e  solution  to  250  c.c.  with  hot  water,  adding  a 
tie  sodium  sulphite,  and  titrating  with  ferro- 
anide,  using  ammonium  molybdate  as  outside 
dicator.  Lead  is  determined  by  boiling  1  g.  of 
e  pigment  with  acid  ammonium  acetate,  diluting 
e  solution  to  200  c.c,  and  titrating  with 
nmonium  molybdate.  A  chart  is  constructed,  by 
uch,    from    the   percentages    of    zinc   oxide    and 


metallic  lead,  the  content  of  lead  sulphate  and  lead 
oxide  may  be  ascertained  without  determining  the 
sulphur  trioxide  present,  assuming  that  the  sum  of 
the  zinc  oxide,  lead  oxide,  and  lead  sulphate  is 
99-7%.— A.  R,  P. 

Besins;     Constituents    of    .     VIII.     Amyrins 

from  elemi  resin.  II.  a-Amyrin.  A.  Zinke, 
A.  Friedricb,  O.  Johannsen,  and  R.  Richter. 
Monatsh.,  1921,  42,  439—445.  (fif.  J.,  1921, 
19  A.) 

o-Amyrin  benzoate  when  distilled  gives  a  hydrocar- 
bon, a-amyrene,  C30H48,  which  forms  a  crystalline 
dibromide,  m.p.  259°— 260°  C.  When  oxidised 
with  chromic  acid,  a-amyrin  forms  a  ketone, 
C30H48O,  which  with  benzoyl  chloride  forms  the 
benzoate  of  the  corresponding  enolic  compound, 
ct-amvrenol.  Bromo-o-amvrin  behaves  in  a  similar 
manner.    (C/.  J.C.S.,  1922,  i.,  667.)— E.  H.  R. 

Besins;  Constituents  of  .  IX.  Decomposi- 
tion of  d-siaresinolic  acid  and  lubanyl  benzoate. 
A.  Zinke,  F.  Hanselmayer,  and  W.  Ehmer. 
Monatsh.,  1921,  42,  447—132. 

By  oxidation  of  rf-siaresinolic  acid  (cf.  J.,  1919, 
187  a)  or  of  its  decomposition  product,  7-prabangic 
acid,  C^H^O,,  a  new  crystalline  dibasic  acid, 
C21H30O5,  was  obtained,  m.p.  285°— 286°  C. 
(deconip.).  The  formula  suggested  for  lubanyl 
benzoate  by  Zinke  and  Dzrimal  (J..  1921,  153  a) 
has  been  confirmed  by  fusion  of  the  benzoate  with 
potassium  hvdroxide,  when  protocatechuic  acid  is 
formed.— E.  H.  R. 

Patents. 

Zinc   white   [zinc  sulphide};  Manufacture  of  . 

C.  Clerc  and  A.  Nihoul.  E.P.  157,860,  10.1.21. 
Conv.,  15.11.19. 

Precipitated  zinc  carbonate  or  zinc  oxide  obtained 
from  it  by  treatment  with  a  caustic  alkali  is  sus- 
pended in  a  solution  of  a  zinc  salt  or  of  a  small 
proportion  of  acid,  e.g.,  hydrochloric  acid.  Hydro- 
gen sulphide  is  introduced  and  converts  the  dis- 
solved zinc  salt  into  zinc  sulphide;  the  liberated 
acid  continuously  forms  a  further  quantity  of 
dissolved  salt  until  conversion  into  sulphide  is  com- 
plete. The  product  is  free  from  polvsulphide  and 
oxysulphide.— D.  F.  T. 

Carbon,  [black]  and  similar  materials;  Process  for 

solidifying  .       C.  J.  Randall,   Assr.  to  The 

Goodvear's  Metallic  Rubber  Shoe  Co.  U.S.P. 
1,384,089,  12.7.21.     Appl.,  30.7.20. 

Carbon  black  or  other  very  finely  divided  material 
is  placed  in  a  bag  of  pervious  material,  the  bag  is 
immersed  in  water  in  a  closed  container,  air  is 
exhausted  from  the  container,  and  then  gas  under 
pressure  is  admitted  to  compact  the  carbon,  thus 
making  it  more  suitable  for  transportation  and 
handling. 

Carbon    [lampblack'};    Process    for    refining    crude 

.     C.     F.     C.     Herting.     U.S.P.     1,416,955, 

23.5.22.     Appl.,  4.10.21. 

Crude  lampblack  is  boiled  in  an  alkaline  liquid,  and 
the  product  heated  with  sulphuric  acid  until  it 
thickens  to  a  paste,  when  it  is  added  to  a  saline 
solution. — H.  R.  D. 

Plastic     materials;     Manufacture     of     .     W. 

Petersen  and  E.  V.  Clark.      E.P.  179,586, 11.1.21. 

The  initial  liquid  condensation  product  of  phenol 
and  formaldehyde  is  mixed  with  commercial  lactic 
acid  of  50 — 60%  concentration,  e.g.,  in  the  propor- 
tions 80:45  by  weight,  and  heated  at  100°— 110°  C. 
until  condensation  has  proceeded  so  far  that  the 
product  no  longer  adheres  firmly  to  a  clean  metallic 
surface.  In  this  condition  at  16°  C.  it  forms  a  very 
viscous   syrup   and   with   filling   materials   such   as 


510a 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTAPERCHA. 


[July   15,   1022. 


asbestos,  wood  flour,  or  china  clay,  gives  mixtures 
suitable  for  the  production  of  moulded  articles 
which  can  be  hardened  subsequently  by  baking. 

— D.  F.  T. 

'  nsation  products  of  benzene  derivatives  halo- 
genated  in  the  side  chain  and  aromatic  hydroxy 

compounds;  Preparation  of .     Kalle  und  Co. 

A.-G.  G.P.  346,384,  10.5.17. 
Oily  products,  suitable  for  softening  leather  and 
for  the  preparation  of  wood  stains,  or  hard  resin- 
ous products,  suitable  for  use  as  substitutes  for 
natural  acid  resins,  e.fir.,  in  sizing  paper,  are 
prepared  by  treating  benzene  derivatives  halogen- 
ated  in  the  side  chain  with  phenols,  naphthols,  or 
Their  derivatives,  in  the  absence  of  catalysts,  until 
evolution  of  hydrogen  chloride  ceases.  Benzyl 
chloride  yields  oily  products  with  phenol  and  a-  and 
/j-naphthol,  while  benzyl  chloride  or  xylyl  chloride 
and  salicylic  acid  yield  viscous  products  which 
harden  on  standing. — L.  A.  C. 

Coumarone    resin    and    process    of   making    same. 

L.  Rabinovitz,  Assr.  to  Ellis-Foster  Co.     U.S.P. 

1,416,062,  16.5.22.  Appl.,  12.8.19. 
A  hakd  coumarone  resin  with  an  iodine  value  below 
50  is  made  by  polymerising  the  coumarone  con- 
tained in  solvent  naphtha  by  sulphuric  acid  of 
66°  B.  (sp.  gr.  T84)  in  the  absence  of  substantial 
quantities  of  more  dilute  acid,  agitating  the  mass 
thoroughly  and  then  hardening  the  resin  by  heat- 
ing it  to  about  180°  C.  in  a  high  vacuum. — A.  B.  S. 

Inks,  printing  colours,  and  the  like;  Manufacture 

of  a   binding   agent   for  from   solutions   of 

glycerin  pitch.  Chem.  Fabr.  Plagwitz-Zerbst, 
G.m.b.H.,  and  J.  von  Bosse.  G.P.  315,141, 
30.5.20. 
Impurities  such  as  dissolved  colloidal  substances 
are  precipitated  from  solutions  of  glycerin  pitch  by 
the  addition  of  salts  of  heavy  metals  and /or  com- 
pounds of  the  alkaline-earth  metals. — L.  A.  C. 

Lime;    Production   of   adherent   for    paints. 

O.  Mielcke  G.P.  346,825,  17.4.20. 
Quicklime  is  slaked  by  treatment  with  an  alkaline 
solution,  e.g.,  waste  liquor  containing  alkali 
hydroxide  from  the  manufacture  of  soda-cellulose, 
and  after  or  during  the  slaking,  alum  or  sodium 
chloride,  and  pigments  are  added. — L.  A.  C. 

Paint;    Manufacture    of   ■   for    ships'    bottoms. 

E.  Arie.     G.P.  346,898,  18.2.16. 

About  5%  of  the  alkali  salts  of  coconut  oil  fatty 
acids,  or  other  saturated  monobasic  fatty  acids  of 
the  series  C„  to  C,,,  is  added,  e.g.,  to  melted  colo- 
phonium. — L.  A.  C. 

Paint;  Water-resistant  .       Manufacture  of  a 

binder  for  coloured  carbolineum   paint.     Plbnnis 

und    Co.     G.P.     (a)    347.707,     11.8.20,    and    (b) 

348,166,  29.5.21.     (a)  Addn.  to  301,783  (J.,  1921, 

311  a). 

(a)  The  stability  and  covering  power  of  the  paint 

described  in  the  chief  patent  are  improved  by  the 

addition  of  sulphite-cellulose  waste   liquor,     (b)  A 

mixture  of  carbolineum  with  alkalis  and  water-glass 

(potassium  or  sodium  silicate,  or  double  water-glass) 

is  employed  as  a  paint,   either  alone  or  after  the 

addition  of  dry  colours  or  other  materials. 

— L.  A.  C. 

Drying  oils,  lacquers,  varnishes,  anti-rust  coatings, 
lubricating  oils,  etc.;  Production  of  a  substitute 
for  — .  W.  O.  F.  Schilsky.  G.P.  349,926, 
14.7.17.     Addn.  to  348,087  (J.,'  1922,  382a). 

Furfural,  or  a  derivative  or  homologue,  is  heated 


under   pressure  with  metal  compounds  capable  of 
yielding  oxygen. — L.  A.  C. 

Lacquers;  Manufacture  of  flexible  - from  nitro- 
cellulose. L.  Bing  and  A.  Hildesheimer.  G.P. 
350,973,  17.1.19. 
Mono-  or  diglyceryl  esters  of  non-drying  oils,  such 
as  the  monoglyceryl  esters  of  castor  oil  or  rape  oil 
fatty  acids,  or  the  diglyceryl  esters  of  the  fatty 
acids  of  marine  animal  oils,  are  added  to  solutions 
of  nitrocellulose  for  use  as  lacquers. — L.  A.  C. 

Lacquers;  Production  of  flexible. from  cellulose 

esters.     F.  Medicus.     G.P.  351,228,  14.12.17. 
Cinnamic    acid   esters,    e.g.,    the    amyl   ester,    are 
added  to  cellulose  esters  either  before  or  after  solu- 
tion, yielding  flexible,  elastic  lacquers. — L.  A.  C. 

Resin  oils;  Preparation  of  products  resembling  — . 

F.    Sichel,    Komm.-Ges.,    and    E.    Stern.      G.P. 

351,003,  5.4.21. 
Anhydrous  zinc  chloride  is  added  to  resin  before  or 
during  distillation,  or  2 — 6%  of  zinc  chloride  is 
added  to  molten  resin  at  a  temperature  of  at  least 
180°  C.  The  oily  products  obtained  have  a  saponif. 
value  of  50 — 40,  and  are  suitable  for  use  in 
the  manufacture  of  printing  colours,  lubricating 
oils,  and  substitutes  for  linseed  oil. — L.  A.  C. 

Pigment;    White   .     H.   R.    Rafsky.       U.S.P. 

1,415,391,9.5.22.    Appl.,  29.3.16.    Renewed 2.6.21. 

See  E.P.  178,896  of  1921 ;  J.,  1922,  474  a. 

Sulphurs  and  vermilions  of  antimony;  Manufactvn 

of   gold-coloured   .     P.    Chaillaux.        U.S.P. 

1,417,033,  23.5.22.     Appl.,  23.6.20. 

See  E.P.  151,422  of  1919;  J.,  1920,  756  a. 


XIV.-  INDIA-RUBBER ;  GUTTA-PERCHA. 

[Rubber;']    Sodium   silicofluoride   as  a  mould 

ventive    [for   ].         H.    P.    Stevens.        Bull. 

Rubber  Growers'  Assoc,  1922,  4,  227—228. 

The  addition  of  0'06%  of  sodium  silicofluoride  to 
standardised  latex  should  be  sufficient  to  inhibit 
mould  growth  in  the  finished  smoked  sheet  rubber. 
Samples  produced  in  this  way  were  satisfactory,  the 
tensile  strength  after  vulcanisation  being  good  and 
the  rate  of  vulcanisation  slightly  less  than  the 
average  for  smoked  sheet  rubber. — D.  F.  T. 

[Rubber']  manufacture;  Use  of  [sodium]  bisulphite 

in   sheet   .      H.    P.    Stevens.      Bull.   Rubber 

Growers'  Assoc,  1922,  4,  22S— 229. 
Latex  treated  with  a  small  quantity  of  sodium 
bisulphite  yields  sheet  rubber  with  an  attractive 
glossy  appearance;  otherwise  bisulphite  is  unneces- 
sary and  indeed  the  resulting  sheet  rubber  may  dry 
exceptionally  slowly.  With  the  addition  of  0  1, 
and  0'2%  of  sodium  bisulphite  to  latex,  the  result- 
ing sheets  needed  smoking  for  18  days ;  the  rate  of 
vulcanisation  was  somewhat  reduced,  hut  the  ten- 
sile strength  of  the  vulcanised  product  was  satis- 
factory.—D.  F.  T. 


Patents. 


S.  C.  Davidson. 


Rubber;  Treatment  of  raw  — 

E.P.  179,622,  5.2.21. 
Rubber  coagulum  is  freed  from  much  of  its  water 
by  kneading  between  three  rolls.  It  is  then  further 
dehydrated  by  wrapping  the  block  of  rubber  tightly, 
whilst  it  is  still  in  position  between  the  rolls,  in  a 
piece  of  webbing.  This  prevents  the  retraction  of 
the  rubber  and  causes  the  remaining  water  to  ooze 
out  slowly.— D.  F.  T. 


Vol.  XLI.,  No.  13.]    Cl.  XV.— LEATHER  ;    BONE,  &c.     Cl.  XVI.— SOILS  ;    FERTILISERS. 


511a 


Rubber  substitute,  and  process  for  producing  same. 
Western  Rubber  Co.,  Assees.  of  H.  H.  Hazeltine 
and  M.  Gregory.     E.P.  157,836,  10.1.21.     Com- 
16.3.18. 

See  U.S.P.  1,360,744  of  1920;  J.,  1921,  52  a. 


XV.-LEATHER;  BONE;   HORN;  GLUE. 

Chrome  tanning.  IX.  Relation  between  the  pro- 
perties  uf  chrome  liquors  and  the  leather  they 
produce.  D.  Burton.  J.  Soc.  Leather  Trades 
Chem.,  1922,  6,  157—180. 

The  effect  of  the  nature  of  the  chrome  liquor  on  the 
properties  of  the  leather  produced  is  complicated  by 
several  factors.  The  time  elapsing  between  flaying 
and  soaking  of  the  hide  should  not  be  prolonged. 
The  preparation  of  the  pelt  for  the  tanning  liquor 
influences  the  feel  of  the  resulting  leather.  The 
initial  basicity  figure,  age,  temperature,  rate  of 
increase  in  strength,  and  the  rate  of  neutralisation 
of  the  liquor  are  important  in  chrome  tanning.  The 
basicity  does  not  always  indicate  the  hydrion  con- 
centration of  the  liquor,  which  should  be  controlled. 
The  acidity  of  the  liquor  affects  the  boiling  test  of 
the  leather  and  is  altered  by  the  presence  of  neutral 
salts.  The  leather  is  improved  by  "  ageing."  It 
should  not  be  over-neutralised.  The  feel  rather  than 
the  absence  of  shrinkage  of  the  neutralised  leather 
under  the  boiling  test  should  be  used  as  the  cri- 
terion of  complete  tannage.  The  properties  of  any 
sample  of  leather  depend  on  the  condition  of  the 
fibre  at  the  moment  of  fixation  by  the  chromium, 
the  nature  of  the  salt  on  the  fibre  and  the  kind  of 
combination  with  the  pelt,  and  the  mechanical 
treatment  used  for  softening  the  leather.  There 
are  probably  three  reactions  taking  place  during 
chrome  tanning,  viz.,  absorption  of  the  liquor  by 
the  pelt;  chemical  combination  of  the  pelt  with  the 
free  acid ;  the  removal  of  free  acid  leads  to  further 
hydrolysis,  so  that  the  basic  chromium  salt  becomes 
insoluble  in  water  and  is  deposited  on  the  fibres. 
If  the  chromium  compound  is  negatively  charged, 
due  to  the  adsorption  of  SO,  ions  which  are  in  excess 
in  the  liquor  between  the  fibres,  there  will  be  co- 
precipitation  with  the  positively  charged  pelt,  and 
chrome  tanning  will  be  subject  to  the  same  laws 
as  those  governing  the  process  of  vegetable  tanning. 
i  A  complete  bibliography  of  chrome  tanning  is 
appended. — D.  W. 

Protective  agent  for  animal  fibres.     Edge.     See  V. 

Ultra-violet  light  in  analysis.   Kitching.  See  XXIII. 

Patent. 

Rides;    Process    of    deliming    .      W.    Savage 

U.S.P.  1,382,124,  21.6.21.  Appl.,  26.4.19. 
Depilated  hides  are  subjected  to  the  action  of  a 
paste  made  from  an  earth  capable  of  adsorbing 
bases,  preferably  fuller's  earth.  Zeolites  may  be 
used  in  place  of  fuller's  earth,  but  in  that  case, 
after  removing  the  paste,  the  hides  must  be  washed 
I  to  remove  soluble  alkali  soaps  formed  by  base 
exchange  with  the  zeolite. 


XVI.-SOILS ;    FERTILISERS. 

Soils;     Classification     of    on     the     basis     of 

mechanical  analysis.     C.  L.  Whittles.     J.  Agric. 
Sci.,  1922,  12,  166—181. 

A  discussion  of  various  methods  of  classifying  soils 
on  the  basis  of  their  mechanical  composition.  The 
author  proposes  a  graphical  method  of  classification 
by  means  of  triangular  co-ordinates  in  which  the 
three  variables  are  the  fine  gravel  +  coarse  sand,  the 


fine  sand  +  silt,  and  the  fine  silt  +  clay.  The  appli- 
cation of  this  method  to  the  correlation  of 
mechanical  composition  and  agricultural  properties 
is  shown  by  actual  examples.  A  very  full  biblio- 
graphy of  the  subject  of  soil  classification  is 
appended. — G.  W.  R. 

Sulphates  in  soil;  Factors  influencing  the  deter- 
mination of .    C.  T.  Hirst  and  J.  E.  Greaves. 

Soil  Sci.,  1922,  13,  231—249. 

The  chromate  volumetric  method  of  estimating 
sulphates  was  compared  with  the  gravimetric 
barium  sulphate  method,  and  was  shown  to  be  far 
less  inaccurate  than  is  generally  supposed.  The 
average  recovery  of  sulphates  by  the  chromate 
method  was  found  to  be  97%  of  that  by  the  gravi- 
metric method,  and  where  very  small  quantities 
were  to  be  estimated  the  former  was  found  to  be 
the  better  method.  The  whole  of  the  sulphate  was 
removed  from  soil  by  a  1:5  water  extraction  after 
shaking  for  40  nuns.,  except  where  excessive 
amounts  of  gypsum  were  present.  The  extracts 
should  be  cleared  by  means  of  a  Pasteur-Chamber- 
land  filter  or  by  centrifuging.  The  sulphates  were 
precipitated  by  excess  of  a  hydrochloric  acid  solution 
of  barium  chromate.  The  solution  was  maintained 
practically  at  boiling  temperature  for  30  mins., 
whereupon  the  excess  of  barium  chromate  was  pre- 
cipitated by  the  addition  of  ammonia.  After  cool- 
ing the  liquid  was  made  up  to  standard  volume,  and 
allowed  to  settle  and  a  portion  withdrawn  for  the- 
volumetric  determination  of  the  remaining  chrom- 
ate. The  presence  of  nitrates  and  of  salts  of  iron 
and  aluminium  if  in  considerable  quantity  tends  tu 
produce   irregular   results. — A.   G.   P. 

Sfil:  Influence  uf  moisture  and  soluble  salts  on  the 

bacterial  activities  of  the .    J.  E.  Greaves  and 

E.  G.  Carter.    Soil  Sci.,  1922,  13,  251—270. 

Soil  was  treated  with  various  salts  and  the  relation- 
al iips  between  moisture  content  and  ammonifying 
and  nitrifying  powers  were  determined.  The  moisture 
content  corresponding  to  maximum  ammonifying 
power  varied  with  the  nature  of  the  salt  used.  The 
relative  toxicity  of  sodium  chloride,  and  of  the  car- 
bonates of  sodium,  potassium,  and  calcium  decreased 
as  the  water  content  increased.  With  all  other  salts 
used  the  reverse  was  the  case,  indicating  that  with 
the  latter,  other  factors  than  osmotic  pressure 
governed  the  toxicity.  The  toxicity  of  salts  towards 
nitrifying  organisms  decreased  with  increasing 
water  content.  Optimum  moisture  content  for 
nitrification  was  in  general  a  little  lower  than  that 
for  ammonification.     (Cf.  J.,  1921,  20  A.)— A.  G.  P. 

Bacteriological  activities  in  soil;  Effect  of  tree  pro- 
ducts on .  7.  Ammonification  and  nitrifica- 
tion. W.  M.  Gibbs  and  C.  H.  Workman.  Soil 
Sci.,  1922,  13,  303—322. 

Soils  were  treated  with  ground  sawdust,  pine  cones 
and  needles,  etc.,  and  the  effects  on  ammonification 
and  nitrification  studied.  All  substances  examined 
were  injurious  to  the  organisms  concerned.  The 
addition  of  chalk  did  not  destroy  the  toxicity, 
although  it  improved  nitrification.  Cedar  saw- 
dust, followed  by  maple,  larch,  ash,  and  red  fir, 
proved  the  most  inhibitive  materials.  The  miscel- 
laneous debris  forming  the  "  forest  floor  "  also  re- 
duced formation  of  ammonia  and  nitrate  in  soils. 
The  depression  of  nitrate  accumulation  was  due  to- 
actual  toxicity  towards  the  organisms  concerned, 
and  was  not  the  result  of  increased  denitrification. 

—A.  G.  P. 

Nodule  formation  of  soya-beans ;  Effect  of  different 

reactions  on  the  growth  and .     O.  C.  Brvan. 

-Soil  Sci.,  1922,  13,  271—302. 
Soya-bean  plants  were  grown  in  sand  and  solution 
cultures  which  were  adjusted  to  various  hydrogen 


512A 


Cl.  XVII.— SUGARS  ;  STARCHES;  GUMS 


[July  15,  1922. 


ion  concentrations  and  inoculated  with  suspensions 
of  nodule  bacteria.  Shive's  solution  (Physiol.  Res., 
1,  327)  was  suitable  for  sand  but  not  for  solution 
cultures.  Crone's  nutrient  solution  (12  g.  of  a 
mixture  of  KC1  100,  CaSO.^H.O  25,  MgS04,7H20 
25,  Ca3(PO,)2  25,  and  FePO,  25  pts.  to  8  1.  of  water) 
wa6  the  more  favourable  for  both  sets  of  experi- 
ments. The  most  favourable  reaction  for  growth  and 
inoculation  of  soya-beans  was  pK  65.  The  limits 
for  inoculation  were  pB  4'6 — 8,  and  for  the  growth 
of  the  plants  pH  3'9 — 96.  Injurious  pH  values  were 
within  those  of  very  acid  soils.  Different  strains 
of  soya-bean  bacteria  showed  small  differences  in 
critical  H-ion  concentration.  The  reaction  of 
nutrient  solutions  in  contact  with  growing  plants 
did  not  remain  constant  except  when  they  were 
initially  at  the  optimum  figure.  The  rate  of  change 
of  reaction  was  greater  in  the  alkaline  range  than 
in  the  acid  range,  and  was  influenced  by  the  rate 
of  growth  of  the  plant.  Maize  tolerated  greater 
extremes  of  reaction  than  the  soya-bean  or  cowpea, 
while  the  last-named  showed  a  greater  range  of 
reaction  at  which  nodules  formed  than  the  soya- 
bean. The  reaction  of  plant  juices  varied  with 
that  of  the  nutrient  medium,  except  the  juice  of 
maize  leaves,  which  showed  little  variation.  Root 
juices  followed  changes  in  the  nutrient  solution 
reaction  more  closely  than  did  leaf  juices. 

—A.   G.    P. 

Phosphates;  Citric  solubility  of  mineral .  J.  P. 

Tocher.     J.  Agric.  Sci.,  1922,  12,  125—143. 

The  citric  solubility  of  mineral  phosphates  and 
slags  is  dependent  on  the  relative  amount  of  slag 
or  phosphate  used,  the  amount  of  citric  acid  used, 
and  the  volume  of  extracting  liquid.  As  a  test  of 
the  agricultural  value  of  a  phosphatic  material, 
citric  solubility  is  unreliable,  and  the  only 
standard  tests  to  be  accepted  are  total  phosphate, 
fineness  of  grinding,  and  freedom  from  injurious 
substances.     (Cf.  JTC.S.,  July.)— G.  W.  R. 

Selenium,  sulphur,  and  tellurium  salts;  Action  of 

on  plants.       B.  Turina.       Biochem.   Zeits., 

1922,   129,  507—533. 

The  author  has  examined  the  action  of  selenites, 
selenates,  sulphites,  sulphates,  tellurites,  and  tell- 
urates  on  the  germination  of  plants  and  on  the 
mature  plant.  From  the  deposition  of  selenium 
and  tellurium  by  reduction  in  the  tissues  it  is  con- 
cluded that  neither  selenium  nor  tellurium  salts 
enter  the  system  in  appreciable  quantity,  via  the 
root  hairs,  but  that  the  root  cap  plays  the  im- 
portant function  of  point  of  entry  and  of  filtration 
of  nutritive  salts. — H.  K. 

Patents. 

Mixed    fertiliser;    Preparation    of    a    stable    . 

Badische  Anilin-  und  Soda-Fabrik.    G.P.  351,130, 
27.3.17. 

Superphosphate  is  mixed  with  ammonium  nitrate 
and  a  basic  substance,  such  as  ammonium  carbon- 
ate. The  mixture  is  a  fine  powder  which  is  not 
hygroscopic. — A.  R.  P. 

Fertiliser  ilryer.  P.  J.  Hamler.  Reissue  15,362, 
23.5.22,  of  U.S. P.  1.321,628,  11.11.19.  Appl.. 
14.2.21. 

See  E.P.  143,846  of  1920;  J.,  1921,  190  a. 
Fungicide.    G.P.  319,870—1.    See  XIXb. 

XVII.    SUGARS;   STARCHES;  GUMS. 

Xipa-sugar     manufacture;    Recent    improvements 

in    .      A.     H.     Wells    and     G.    A.    Perkins. 

Philippine  J.  Sci.,  1922,  20,  45—56. 

The    rapid    disappearance    of   crystallisable   sugar 


from  the  juice  or  tuba  of  the  nipa  palm  is  due  in 
part  to  enzymes,  but  without  the  help  of  micro- 
organisms they  are  not  very  effective.  This  fer- 
mentation can  be  largely  checked  if  the  tuba  is 
collected  in  clean  receptacles  which  have  been  dis- 
infected with  lime.  This,  however,  does  not  retard 
the  conversion  of  the  sugar  by  inversion  into  a 
non-crystallisable  mixture  of  dextrose  and  leevulose. 
Preservation  of  the  syrup  with  toluene  was  tried 
on  a  small  scale,  and  also  found  to  be  effective. 
A  very  heavy  liming  of  the  receptacles  with  milk 
of  lime  containing  600  g.  per  litre  was  found  very 
effective  in  preventing  both  fermentation  and  in- 
version, but  was;  however,  not  practicable  owing 
to  the  accumulation  of  lime  on  the  receptacles,  the 
formation  of  calcium  saccharate,  and  other  reasons. 
[f  only  a  thin  lime  cream  is  used  the  top  layers 
of  tuba  become  acid  and  ferment,  but  this  diffi- 
culty can  be  overcome  by  leading  the  juice,  as  it 
drips  from  the  tree,  to  the  bottom  of  the  recep- 
tacle by  means  of  a  funnel,  and  the  lime  required 
is  thereby  reduced  to  a  verv  small  amount. 

— G.  F.  M. 

Starch;  Determination  of  the  technically  recover- 
able  in  starch-pulp.    E.  Parow.    Z.  Spiritus- 

ind.,  1922,  45,  149. 

Estimations  of  the  technically  recoverable  starch 
in  twelve  samples  of  starch-pulp  gave  very  variable 
results  by  the  methods  usually  employed  for  the 
purpose,  i.e.,  Klopf's  method,  the  usual  washing 
method,  washing  with  air  agitation,  total  starch 
by  Reinke's  method,  polarisation,  and  washing 
with  ammonia.  The  moisture  in  -six  samples  each 
of  moist  and  dry  pulp  varied  from  431  to  53'4% 
and  from  1348  to  15"29%  respectively.  Polari- 
metric  estimations  gave  the  most  consistent 
results  compared  with  the  total  starch  in  the  dried 
samples,  as  estimated  by  the  Marcker-Delbriick 
method,  except  in  the  case  of  three  dark-coloured 
samples  in  which  a  preliminary  decolorisation  by 
treatment  with  charcoal  was  necessary  before 
polarimetric  readings  could  be  taken.  None  of  the 
methods  gives  consistently  reliable  results. 

— L.  A.  C. 

Starch;  Dakamballi .    J.  A.  Goodson.    Analyst, 

1922,   47,  205—206. 

This  starch  is  prepared  in  British  Guiana  from 
the  fruit  of  the  tree  Aldina  insignis.  The  powder 
has  a  pale  brown  colour,  and  consists  of  granules 
varying  from  11  to  42  /<  in  diameter.  The  small 
granules  are  mostly  circular  and  the  larger  roughly 
ovate  in  form;  the  hilum  is  at  the  larger  end,  and 
the  concentric  rings  are  well  marked. — W.  P.  S. 

Starch.  V.  Methyl  and  acetyl  derivatives  of  the 
"  polyamyloses."  H.  Pringsheim  and  W.  Persch. 
Ber.,   1922,   55,  1425—1433. 

Octamethyltetra-aiiylose,  in  which  the  third 
hydroxy  group  is  highly  resistant  towards  methyls* 
tion,  is  converted  by  acetic  anhydride  and  pyri- 
dine into  octamethyltetra-amylose  tetra-aci 
[B]D2»  = +118-62°  in  ethyl  alcohol.  Diamylose  re- 
sembles tetra-amylose  in  that  it  is  transformed  by 
successive  treatment  with  methyl  sulphate  ami 
sodium  hydroxide  and  with  methyl  iodide  and 
silver  oxide  into  tetramethyldiamylose,  [<»]D2°  = 
143' 71°  in  ethyl  alcoholic  solution.  Attempts  to 
methylate  the  third  hydroxy  group  were  un- 
successful. The  behaviour  of  the  polyamylo 
the  /3-series  towards  methylation  is  peculiar.  A\  ith 
hexa-amylose,  reducing  action  towards  Fehling  s 
solution  is  observed  after  a  single  treatment  with 
sodium  hydroxide  and  methyl  sulphate.  With 
triamylose  the  phenomenon  is  noticeable  only  after 
the  first  treatment  with  methyl  iodide  and  silver 
oxide,  and  becomes  more  marked  after  a  6econd 
treatment  with  the  same  reagents.    If  the  "  slime 


Vol.  XLI.,  No.  13.] 


Cl.  XVIII.— fermentation  industries. 


513a 


obtained  by  the  degradation  of  starch  with 
B.  macerans  be  treated  with  pyridine  and  acetic 
anhydride,  dodeka-o-acetylhexa-amylose,  [a]D:°  =  + 
9577°  in  glacial  acetic  acid  solution,  is  obtained. 
It  is  reconverted  by  alcoholic  potassium  hydroxide 
solution  into  the  initial  material,  which  is  thus 
characterised  as  a-hexa-amvlose.  (Cf.  J.C.S.,  1922, 
i.,  632.)— H.  W. 

Starch.  VI.  Polyamyloses.  H.  Pringsheim  and 
D.  Dernikos.     Ber.,  1922,  55,  1433—1445. 

k-Tetra-amylose  is  converted  by  acetic  anhydride 
and  pvridine  into  a-tetra-amylose  dodeka-acetate, 
[C.H762(OC2H10)J1,[a]D,,= +115-8°  in  glacial  acetic 
acid  solution,  which  is  re-converted  by  alcoholic 
potassium  hydroxide  solution  into  a-tetra-amylose. 
Possibly  by  reason  of  necessarily  more  drastic  ex- 
perimental conditions,  /3-hexa-amylose  is  depoly- 
merised  by  acetic  anhydride  and  pyridine  and 
converted  into  the  same  triamylose  monoacetate  as 
is  obtained  by  acetylation  in  the  presence  of  zinc 
chloride.  Arguments  are  brought  forward  against 
Karrer's  view  of  the  identitv  of  triamylose  and 
0-hexa-amvlose  (J.,  1922,  304  a).  (Cf.  J.C.S.,  1922, 
i.,  632.)— H.  W. 

Starch.  VII.  Relationship  of  the  o-  and  p-poly- 
substance  of  the  starch  granule.  H.  Pringsheim 
and  K.  Goldstein.     Ber.,  1922,  55,  1446—1449. 

It  has  been  shown   by   Samec  and  his  co-workers 
(J.,  1921,   272  a)  that  starch  can  be  separated  by 
electrodialysis  into  erythroamyloses  and  amyloamyl- 
j  OSes.     The  close  relationship  of  these  substances  to 
I  the    P-    and    o-polyamyloses    is    illustrated    by    the 
,  colorations   which   they   give   with   iodine   and   the 
,  readiness  with  which  additive  compounds  are  pro- 
duced  with   this   halogen,   by   the   relative   specific 
.rotations,  and  by  the  ratio  of  the  molecular  weights. 
In    the     fermentation    of    the    amylopectins     and 
amyloses     by     B.     macerans     /3-polyamyloses     are 
obtained    in   larger   yield   from    the   erythro-,    and 
jo-polyamvloses     from     the     amylo-amyloses.       (Cf. 
J.C.S.,  1922,  i.,  633.)— H.  W. 

Inulin.  II.  Inulin  and  glycogen.  H.  Pringsheim 
and  M.  Lassmann.     Ber.,  1922,  55,  1409—1414. 

Re-determinations  of  the  molecular  weight  of 
inulin  acetate  dissolved  in  glacial  acetic  acid  by  the 
imethod  of  Barger  (Trans.  Chem.  Soc,  1904,  85, 
286)  as  modified  by  Rast  (Ber.,  1921,  54,  1979)  have 
confirmed  previous  measurements  (cf.  J.,  1921, 
523  a),  but  the  process  cannot  be  applied  in  the 
;ases  of  the  acetates  of  glycogen  or  soluble  starch. 
■  The  method  does  not  appear  to  be  practicable  for 
/he  determination  of  molecular  weights  exceeding 
1^000.  Glycogen  is  transformed  by  acetic  anhydride 
!n  the  presence  of  pyridine  into  its  acetate, 
312H160,,  m.p.  (indefinite)  165°  C,  [a]D'»= +159-6° 
vhen  dissolved  in  pyridine.  Soluble  starch  like- 
wise yields  an  acetate,  which  differs  from  that  of 
glycogen,  whereas  the  substances  give  the  same 
iroduct  when  methylated  (Karrer,  J.,  1922,  27  a). 

Idle  possibility  that  the  differing  behaviour  of 
glycogen  and  starch  towards  iodine  is  attributable 
o  the  presence  of  impurities  (loc.  cit.)  is  greatly 
•  liscounted  by  the  observation  that  the  substances 
btained  by  the  de-acetylation  of  glycogen  and 
tarch  acetates  give  the  same  colorations  as  the 
nitial  materials. — H.  W. 

nulin.     HI.     H.   Pringsheim   and  A.   Aronowsky. 
Ber.,  1922,  55,  1414—1425. 

ttempts  to  confirm  the  identity  of  inulin  re- 
enera ted  from  its  acetate  with  natural  inulin  by 
^rmentative  hydrolyses  with  Penicillium  glaucum 
low  that  the  behaviour  of  the  ferment  depends 
reatly  on  its  mode  of  culture.  A  specimen 
:ourished   witli   glucose   did   not   hydrolyse   inulin, 


whereas  a  similar  specimen  nourished  with  inulin 
was  active  towards  the  latter  only  and  one 
nourished  with  de-acetylated  inulin  acetate  hydro- 
lysed  natural  and  artificial  inulins.  Inulin  (1  pt.) 
is  converted  by  glacial  acetic  acid  (2  pts.)  and  acetic 
anhydride  (2  pts.)  into  an  inulin  acetate  which 
could  not  be  caused  to  solidify  but  was  transformed 
by  sodium  ethoxide  in  the  presence  of  absolute 
alcohol  into  trifructose-sodium,  (C6H10Os)3,NaOH. 
Tri  fructose  could  not  be  isolated  in  substance,  nor 
could  other  derivatives  of  it  be  prepared.  It  appears 
therefore  that  inulin  in  the  solid  condition  and  in 
its  colloidal  solution  is  the  product  of  a  trebly 
polymerised  anhydrotrifructose.  Inulin-sodium  has 
the  composition  (C0H10O5)3,NaOH,  whether  obtained 
by  precipitating  a  solution  of  inulin  in  sodium 
hydroxide  (10%)  by  alcohol  or  by  the  hydrolysis  of 
inulin  acetate  with  sodium  ethoxide.  It  is,  how- 
ever, pointed  out  that  the  first  method  for  the 
preparation  of  the  additive  compounds  of  poly- 
saccharide and  sodium  hydroxide  is  unreliable; 
the  sodium  content  depends  entirely  on  the  con- 
centration of  the  sodium  hydroxide  solution  from 
which  they  are  precipitated  by  alcohol,  or  on  the 
quantity  of  water  with  which  they  are  treated  for 
the  removal  of  adherent  sodium  hydroxide.  ((?/. 
J.C.S.,  1922,  i.,  635.)— H.  W. 

Patent. 

Corn    [maize]    starch;    Manufacture  of   and 

products  therefrom.  A.  W.  H.  Lenders,  Assrs. 
to  Penick  and  Ford,  Ltd.  U.S. P.  1,417,467, 
23.5.22.    Appl.,  18.11.18. 

See  E.P.  149,374  of  1919;  J.,  1920,  700  a. 


XVIII.-FERMENTATI0N    INDUSTRIES. 

Saccharomyces  Marxianus  and  top-fermentation 
yeasts.  R.  H.  von  Euler  and  K.  Josephson.  Z. 
physiol.  Chem.,  1922,  120,  42—60. 
Saccharomyces  Marxianus  failed  to  ferment 
maltose  even  on  the  addition  of  an  excess  of  co- 
enzyme. It  also  does  not  ferment  this  sugar  at  a 
higher  temperature,  namely,  40°C.  Its  fermenting 
capacity  is  diminished:  on  drying  and  increases 
again  as  the  cells  imbibe.  It  ferments  sucrose  and 
dextrose  with  the  same  velocity.  The  development 
of  the  yeast  in  dextrose  and  in  maltose  solutions  is 
of  approximately  the  same  order  and  follows  the 
ordinary  exponential  law.  Its  inverting  capacity 
is  about  100  times  lower  than  that  of  culture  yeasts. 
In  the  case  of  the  top-fermentation  yeast  R  both 
treatment  with  alcohol  and  drying  diminish  its 
activity.  The  inverting  capacity  of  yeast  R  is 
greater  than  that  of  the  top-fermentation  yeast 
S  B.— S.  S.  Z. 

Fat;  Enzymic  synthesis  of  .     L.   Spiegel.     Z. 

physiol.  Chem.,  1922,  120,  103—109. 

On  incubating  cellulose,  dextrose,  and  starch  with 
enzyme  preparations  from  certain  oil-bearing  seeds 
a  small  production  of  fatty  substances  was  observed. 

— S.  S.  Z. 

Diastase;  Regeneration  of and  its  dependence 

on  oxygen.  W.  Biedermann.  Biochem.  Zeits., 
1922,  129,  582—593. 
If  active  filtered  saliva  be  heated  just  to  100°  C.  it 
becomes  turbid.  The  diastatic  activity  of  the 
solution  is  small,  but  is  regenerated  to  a  consider- 
able extent  by  vigorous  shaking  with  air.  If,  how- 
ever, the  heated  saliva  be  again  filtered  the  filtrate, 
free  from  oxygen,  is  practically  inactive,  but  is 
slightly  activated  by  shaking  with  air.  This 
activation  is  attributed  to  oxygen,  although  the 
finely  divided  coagulated  protein  plays  a  part. 

— H.  K. 


514  a 


Ci>  XIXa.— FOODS. 


[July  15,  1922. 


Oxalic  acid  and  ammonia;  Formation   of  in 

cultures  of  Aspergillus  niger  on  peptone.  W. 
Butkewitsch.  Biochem.  Zeits.,  1922,  129,  445— 
454. 

The  proportion  of  ammonia  and  oxalic  acid  formed 
from  cultures  of  Aspergillus  niger  on  peptone 
corresponds  to  ammonium  oxalate  with  about  10% 
excess  of  ammonia.  Of  the  ammonia  formed  over 
a  period  of  40  days  90%  appeared  in  the  first  10 
days  during  the  vigorous  growth  of  the  mould. 

— H.    K. 

Peptone  as  source  of  carbon  for  species  of  Citro- 
myces.  W.  Butkewitsch.  Biochem.  Zeits.,  1922, 
129,  455-463. 

Citromyces  glaber  and  citricus  grown  on  peptone 
media  produce  ammonia  and  oxalic  acid  (not  citric 
acid),  the  proportion  of  ammonia  being  12  to  20% 
greater  than  that  required  for  ammonium  oxalate. 
As  in  the  case  of  Aspergillus  niger  (cf.  supra),  the 
major  portion  of  the  ammonia  is  produced  in  the 
first  period  of  growth,  and  the  ratio  of  the  yield  of 
mould  to  ammonia  nitrogen  falls  off  with  the  age  of 
the  cultures. — H.  K. 

Oxalic  acid;  Formation  and  accumulation  of  

in  cultures  of  Citromyces  on  salts  of  organic  acids. 
W.  Butkewitsch.  Biochem.  Zeits.,  1922,  129, 
464—476. 

Salts  of  organic  acids  are  utilised  by  species  of 
Citromyces  with  production  of  oxalic  acid,  the 
sodium  salts  being  more  conducive  to  growth  than 
the  ammonium  salts.  Aspergillus  niger  converts 
tartaric  acid  rapidly  into  oxalic  acid;  Citromyces 
are  unable  to  do  this,  but  on  salts  of  citric,  succinic, 
and  quinic  acids  there  is  considerable  formation  of 
oxalic  acid. — H.  K. 

Wine;   Estimation   of    the   various   acids   in   . 

T.  von  Fellenberg.  Z.  Unters.  Nahr.  Genussm., 
1922,  43,  217—255. 

The  scheme  of  analysis  described  permits  of  the 
estimation  in  wine  of  the  separate  proportions  of 
weak  organic  acids  (tannic  acids),  tartaric,  malic, 
succinic,  and  lactic  acids.  The  most  important 
feature  in  the  scheme  consists  in  the  means  adopted 
to  estimate  the  last  four  acids.  These  acids  arc 
converted  into  their  silver  salts,  silver  lactate  re- 
maining in  solution,  whilst  the  other  three  silver 
salts  arc  precipitated.  The  tartaric  acid  is  esti- 
mated by  the  official  Swiss  method,  so  that  the  sum 
of  the  malic  and  succinic  acids  may  be  calculated. 
The  aqueous  solution  containing  these  two  acids  is 
shaken  with  ether,  the  proportions  of  the  separate 
acids  being  determined  from  their  distribtition  be- 
tween the  water  and  ether  and  the  known  values  of 
the  separate  distribution  coefficients.  Full  details 
cf  the  procedure  are  given. — T.  H.  P. 

Attack  of  minerals  by  bacteria.  Helbronner  and 
Rudolfs.    See  VII. 

Ultra-violet  light  in  analysis.  Hitching.  See 
XXIII. 

Patents. 

Glycerin;    Production    of   from   sugar.      Ver- 

einigte  Chem.  Werke,  A.-G.  G.P.  343,321,  14.2.17. 

In  the  production  of  glycerin  from  sugar,  the 
fermentation  is  carried  out  in  the  presence  of  salts 
with  an  acid  or  neutral  reaction,  e.g.,  ferrous  sul- 
phate, aluminium  sulphate,  ammonium  chloride,  or 
calcium  chloride,  as  well  as  a  considerable  excess  of 
nutrient  salts  such  as  ammonium  sulphate,  sodium 
phosphate,  potassium  sulphate,  and  magnesium 
phosphate.  Fermentation  is  allowed  to  proceed 
until  the  whole  of  the  sugar  has  been  decomposed. 

— L.  A.  C. 


Alcoholic    fermentation;    Production    of    material 

from   pancreas   or   yeast    for   accelerating    . 

J.  D.  Jtiedel,  A.-G.     G.P.  350,640,  5.11.20. 

Pancreas  or  yeast  powder  is  triturated  with  liquor 
fori  sesquichlorati,  dried  below  105°  C,  washed 
until  no  more  iron  salts  dissolve,  boiled  from  i  to 
i  hr.  with  a  2%  alkali  solution,  and  filtered.  The 
solution  may  be  treated  with  acids  to  precipitate 
metabolin,  or  may  be  used  direct  for  the  prepara- 
tion of  the  products  described  in  G.P.  345,695 
(J.,  1922,  430a).— L.  A.  O. 

Products  from  lupins.     G.P.  350,100.     See  XIXa. 


XIXa.— FOODS. 

Dairy  practice;  Significance  of  surface  tension  for 

.     0.  Rahn.     Kolloid-Zeits.,  1922,  30,  341— 

346.    {Cf.  J.,  1921,  746  a,  866  a;  1922,  114  a.) 

The  foam  which  forms  when  skim  milk  flows  from 
the  cream  separator  is  due  to  a  reduction  of  the 
surface  tension  caused  by  the  accumulation  in  the 
surface  of  an  albuminous  substance  which  passes 
into  the  walls  of  the  foam  cells.  On  standing  the 
walls  of  the  foam  cells  contain  a  solid  substance  and 
the  drying  of  such  material  is  similar  to  the  drying 
of  many  albuminous  substances  in  the  sense  that  it 
is  irreversible.  It  is  probable  that  this  solid  albu- 
minous substance  is  the  main  constituent  of  the 
skin  which  forms  on  the  surface  of  milk  that  has 
been  heated  to  60°  C.  or  above.  The  formation  of 
whipped  cream  is  explained  as  follows: — On  whip- 
ping the  cream  a  network  of  foam  is  produced,  which 
is  stiffened  by  the  solidified  fat  so  that  it  does  not 
fall  like  the  foam  but  retains  its  form.  Whipped 
cream  consists  of  a  solid  structure  of  albumin  pene- 
trated by  layers  of  solid  fat,  which  has  the  same 
form  as  the  foam.  On  warming  whipped  cream 
above  the  melting  point  of  the  fat  the  structure 
collapses  but  remains  somewhat  frothy  because  the 
solid  albumin  cannot  melt.  Butter  formation  is 
explained  as  follows: — Cream  contains  much  of  the 
foam-prcducing  albumin  ;  this  surrounds  the  par- 
ticles of  fat  and  on  churning  a  large  volume  of  air 
is  entrapped  by  the  cream  so  that  the  surface  is 
very  much  enlarged.  The  albumin  passes  into  the 
walls  of  the  foam  and  takes  the  fat  with  it,  so  that 
a  foam  rich  in  fat  stands  above  a  liquid  poor  in  fat 
(buttermilk).  The  fat  particles  lie  very  close 
together  in  the  foam  walls  and  are  compressed  into 
conglomerates  by  the  surface  pressure.  This  causes 
the  albumin  in  the  walls  to  solidify,  and  further 
churning  breaks  up  the  foam  and  mixes  the  fat  con- 
glomerates with  the  solid  albumin  to  form  lumps  of 
butter.— J.  F.  S. 

Butter;  Formation  of .  Pt.  II.  Effect  of  tem- 
perature on  butter  formation.  O.  Rahn.  Forsch. 
Geb.  Milchwirtsch.  und  Molkereiw.,  1922,  2. 
76—94.  Chem.  Zentr.,  1922,  93,  II.,  1147. 
The  explanation  of  the  process  of  butter  formation 
advanced  previously  (cf.  J.,  1922,  114  a)  according 
to  which  butter  can  be  produced  at  any  tempera- 
ture, is  fundamentally  different  from  Soxlilet's 
coagulation  theory,  which  states  that  the  butter  fat 
must  solidify  before  it  can  cohere  into  lumps. 
Tabulated  data,  collected  by  the  author  and 
Hittcher,  are  given  showing  the  effect  of  tempera- 
ture and  duration  on  the  process  of  butter  forma- 
tion. Butter  can  be  produced  as  long  as  the  liquid 
froths,  even  if  the  fat  is  liquid  in  the  cream 
particles,  but  under  these  conditions  the  agglo- 
merates of  liquid  fat  break  again,  owing  to  the 
agitation,  and  hence  the  yield  of  butter  is  small. 
The  time  necessary  for  the  formation  of  butter 
decreases  with  increasing  temperature;  between 
25°  and  30°  C.  it  is  only  35  mins.,  at  lower  tempera- 
tures   a    longer    time   is    required,    and    at   5°   C. 


Vol.  XLI.,  No.  13.] 


Cl.  XIXa.— FOODS. 


515a 


probably  no  butter  is  formed.  In  the  case  of  cream 
from  animals  fed  on  pasturage,  the  solidified  fat 
particles  begin  to  soften  at  about  11°  C,  and  the 
softer  they  are,  the  more  rapidly  can  the  agglomer- 
ates of  particles  coalesce  into  lumps.  When  the 
animals  have  been  fed  on  roots,  the  particles  are 
unable  to  coalesce  below  about  15° — 17°  C.  The  fat 
content  of  buttermilk  rises  gradually  with  increas- 
ing temperature  up  to  about  14° — 16°  C,  and 
rapidly  above  that  temperature,  and  is  usually  a 
minimum  if  the  duration  of  the  process  of  butter 
formation  is  30 — 45  mins. — L.  A.  C. 

Milk;  Effect  on  the  percentage  composition  of 

of  variations  in  the  daily  volume  and  variations 
in  the  nature  of  the  diet.  W.  Tavlor  and 
A.  D.  Husband.  J.  Agric.  Sci.,  1922,  12, 111—124. 

The  percentage  composition  of  milk  is  apparently 
determined  by  the  rate  of  secretion  and  not  by  diet, 
i  except  in  the  case  of  non-protein  nitrogen,  which 
I  is  not  a  product  of  the  mammary  gland.     The  per- 
(  centages  of  protein,  fat,  and  ash  vary  inversely  and 
,  the    percentage    of    lactose    directly    as    the    daily 
i  volume.     It  is  suggested  that  the  quantity  of  lac- 
tose elaborated  by  the  mammary  gland  controls  the 
rate  of  milk  secretion. — G.  W.  R. 

Milk;  Relation  of  fat  to  total  solids  not  fat  in  . 

F.  Reiss.    Milchw.  Zentr.,  1922,  51,  121—124. 

Froji  the  statistical  study  of  a  number  of  data  as 
to  the  composition  of  milk,  it  is  concluded  that  there 
lis  no  strict  proportionality  between  ihe  content  of 
fat  and  of  solids-not-fat. — G.  W.  R. 

Animal    bodies;    Chemical    composition    of    . 

J.  A.  Murray.    J.  Agric.  Sci.,  1922,  12,  103—110. 

A  statistical  examination  of  the  relationships 
between  water  and  the  non-fatty  matter  of  animal 
[bodies.  From  existing  data  an  empirical  formula 
'■is  derived  connecting  the  percentage  of  water  in  the 
|fat-free  empty  weight  and  the  fat-free  empty 
iweight.  (The  "  empty  weight "  is  tho  "  live 
(weight  "  minus  the  weight  of  the  contents  of  the 
stomach,  intestines,  and  urinary  bladder.)  The 
formula  is  applicable  to  cattle  and  pigs,  and,  with 
Ulight  modification,  to  sheep.  The  ratio  of  protein 
;to  ash  is  the  same  in  sheep  and  cattle,  but  higher 
;iu  pigs.  It  is  not  altered  with  age,  but  may  be 
iffected  by  food.— G.  AY.  R. 

Monoamino-acids  [in  proteins]  ;  Detection  and  esti- 

]    motion  of .    R.  Engeland.    Z.  physiol.  Chem., 

1922,  120,  130—140. 

The  author  estimated  proline  in  glutin  and  elastin 
oy  means  of  his  betaine  method.  The  former  pro- 
em showed  a  content  of  10'9%  and  the  latter  of 
]t'3%  of  proline.  The  same  method  was  applied  in 
:he  case  of  ascitic  fluid.  Six  and  a  half  litres  of 
ascitic  fluid  yielded  0'06  g.  of  the  chloroaurate  of 
",he  betaine  of  leucine  and  0'025  g.  of  the  chloro- 
lurate  of   the   betaine   of   lysine   by   this   method. 

— S.  S.  Z. 

'^roteins;   Colloid   chemistry   of  .      A.    Fodor. 

Kolloid-Zeits.,  1922,  30,  313—336. 
'he  dehydration  of  protein  gels  leads,  exactly  as 

ith  a  large  number  of  inorganic  gels,  to  the  forma- 
ion  of  new  and  more  stable  molecular  structures 
hich  are  characterised  by  a  reduced  tendency  to 
nter  into  reactions,  whilst  peptisation  of  such 
tructures  gives,  owing  to  combination  with  water, 
eactive  disperse  particles.  The  larger  or  smaller 
articles  obtained  by  precipitating  proteins  are  not 
n  be  regarded  as  accidental,  but  as  structures  con- 
lining  different  amounts  of  water  and  of  different 
^activity.     (Cf.  J.C.S.,  July.)— J.  F.  S. 


Foods;  Examination  of  for  the  presence  of 

sulphites.     A.   C.  Chapman.     Analyst,   1922,  47, 

204—205. 

Foods  containing  onions  or  mustard  yield  appreci- 
able quantities  of  sulphuric  acid  when  they  are  dis- 
tilled with  phosphoric  acid  and  the  distillate  is 
oxidised  with  bromine ;  if,  however,  hydrogen  per- 
oxide is  used  in  place  of  bromine,  the  volatile 
sulphur  compounds  derived  from  the  onions  etc.  are 
not  oxidised  and  any  sulphuric  acid  then  found  is 
due  to  the  oxidation  of  sulphur  dioxide  derived  from 
sulphites  contained  in  the  food. — W.  P.  S. 

Allyl  mustard  oil  [allyl  i  sothiocyanat  e~] ;  Method  of 

estimating   in  mustard.     E.   Luce   and    A. 

Doucet.    J.  Pharm.  Chini.,  1922,  25,  458—464. 

In  estimating  allyl  mustard  oil  in  mustard  by 
Dieterich's  method  (Pharm.  Zeit.,  1900,  767)  the 
time  of  maceration  of  mustard  with  water  should  be 
reduced  to  1  hr.,  and  the  time  of  contact  with  the 
ammoniacal  silver  nitrate  should  be  6  hrs.  in  the 
cold  or  1  hr.  at  80° — 85°  C.  under  a  reflux  con- 
denser. The  time  of  contact  and  the  temperature 
of  maceration  are  of  importance,  as  rise  in  tempera- 
ture or  an  extension  of  the  maceration  beyond  one 
hour  results  in  a  secondary  reaction  occurring  with 
consequent  loss  of  allyl  mustard  oil. — W.  G. 

Patents. 
Hice;  Parboiling,  gelatinising,  and  similarly  treat- 
ing   and  apparatus  therefor.  H.  Simon,  Ltd., 

C.  Raeburn,  and  A.  G.  Simpson.  E.P.  179,206, 
2.11.20. 
Soaked  rice  is  heated  under  atmospheric  pressure 
by  contact  with,  and  the  radiation  of  heat  from,  the 
walls  of  externally  heated  containers  through  which 
the  rice  descends  under  gravity,  and  the  discharge 
is  controlled,  e.g.,  by  a  reciprocating  grid,  to  regu- 
late the  duration  of  heating.  Air  may  be  passed 
upwards  through  the  rice  to  carry  off  the  moisture. 
A  number  of  such  containers  of  small  cross-section 
may  be  combined  in  parallel  in  one  apparatus,  and 
e  ich  container  may  be  in  the  form  of  a  corrugated 
or  indented  tube. — H.  H. 

Milk  and  cream;  Process  of  extracting  butter  fat  or 

oil  from  .     C.  E.  North.     U.S.P.  1,416,053, 

16.5.22.     Appl.,  4.9.20. 
Cream  is  agitated  to  agglomerate  the  fat  particles 
and  then  mixed  with  water  at  such  a  temperature 
that  the  agglomerated  particles  are  liquefied,  and  in 
such  amount  that  the  fat  rises  as  an  oily  layer. 

— H.  H. 

Nut  kernels;  Process  of  treating  to  produce 

food  ingredients.  H.  R.  and  L.  E.  Scott.  U.S.P. 
1,416,128,  16.5.22.  Appl.,  1.7.20. 
Prune,  peach  and  apricot  kernels  are  subjected  to 
tlie  action  of  the  enzyme  emulsin  existing  therein, 
in  the  presence  of  water,  to  decompose  the  amyg- 
dalin.  The  aqueous  solution  is  separated  by  filtra- 
tion and  distilled  to  recover  benzaldehyde  and 
hydrocyanic  acid  products,  while  the  meal  is  washed 
to  remove  remaining  soluble  constituents. — L.  A.  C. 

Fibrous  vegetable  material,  especially  wood;  Pro- 
cess for  decomposing  ,  e.g.,  for  the  produc- 
tion    of     fodder.     P.     AVaentig.     G.P.     349,842, 
19.9.17. 
Moist  vegetable  material  cut  up  into  small  pieces 
is   treated   with   chlorine,    washed,    treated   at   the 
ordinary  temperature  with  a  dilute  alkaline  solu- 
tion free  from  sulphur,  and  again  washed. — L.  A.  C. 

Fodder;   Manufacture   of  from   straw.       J. 

Paechtner.  G.P.  351,051,  1.10.20.  Conv., 
4.10.19.    Addn.  to  338,920  (J.,  1921,  714  a). 

By-products  obtained  in  the  utilisation  of  agricul- 


516  a     Cl.  XIXb.— WATER  PURIFICATION,  &c.     Cl.  XX.— ORGANIC  PRODUCTS,  &c.    [July  is.  1922. 


tural  products,  such  as  molasses,  vinasse,  beet  slices, 
and  the  like,  and  which  contain  electrolytes,  are 
added  to  finely  divided  straw  previous  to  electro- 
lysis as  described  in  the  chief  patent.  The  straw 
can  also  be  treated  with  a  direct  current  in  th<- 
presence  of  water  without  the  addition  of  electro- 
lytes.—L.  A.  C. 

Lupins;  Preparation  of  products  containing 
albumin  and  free  from  bitter  constituents  from 

.        0.      F.      Hildebrandt.        G.P.     350.100. 

11.12.17. 
Lupins  are  ground  with  water  after  removal  of  the 
husks,  and  after  separation  of  the  aqueous  extract, 
the  residue,  which  contains  the  greater  part  of 
the  albuminous  constituents,  is  washed  until  free 
from  all  bitter  substances.  The  albumins  in  the 
aqueous  extract  are  precipitated  and  separated 
from  the  solution,  which  can  then  be  employed  for 
the  production  of  alcohol  and  yeast. — L.  A.  C. 

Lupins;  Removal  of  bitter  substances  from by 

means  of  hot  water  and  sodium  chloride  solution. 
P.  Bergell.  G.P.  350,956,  18.121.  Addn.  to 
335,646  (J.,  1921,  599  a). 

Extraction  of  bitter  substances  from  lupins  by  the 
process  described  in  the  chief  patent  is  accelerated 
and  rendered  more  complete  by  carrying  out  the 
extractions  with  water  at  60°  C.  under  pressure, 
and  with  salt  solution  at  40°  C.  under  reduced 
pressure. — L.  A.  C. 

Potatoes,  onions,  tomatoes,  apples,  or  the  like; 
Preparation  of  dried  products  from  — — .  M. 
Mann.  G.P.  350,470,  20.1.20.  Addn.  to  318,980 
(J.,  1920,  464  a). 

Vegetables  and  fruits  in  small  pieces  are  dipped 
in  hot  vegetable  mucilage,  heated  to  about  100°  C. 
to  evaporate  the  water  in  the  coating,  and  sub- 
sequently dried  at  progressively  lower  temperar 
tures. — L.  A.  C. 

Soya  bean  flour.     E.P.  179,776.     See  XII. 

Edible  fatty  product.     U.S.P.  1,381,564.     See  XII. 


XIXb.-WATEH   PURIFICATION ; 
SANITATION. 


Bock   dust    in  air. 
XXIII. 


Fieldner   and   others.       See 

Patents. 
Filters   [for   boiler-feed  water'].       J.   F.   Crawford 

and  W.  J.  Kelly.  E.P.  179,355,  24.2.21. 
A  gravity  filter  for  boiler-feed  water,  or  for  other 
liquids  in  large  quantity  compared  with  the  solid 
matter,  is  formed  of  a  series  of  hollow  perforated 
discs  or  grids  covered  with  filtering  medium  and 
forming  a  hollow  vertical  column,  down  the  centre 
of  which  the  filtrate  flows  by  gravity  to  a  tank  at 
a  somewhat  lower  level  than  the  filtering  tank, 
which  is  in  turn  rather  lower  than  a  tank  in  which 
settling  may  take  place  previous  to  filtration. 

— B.  M.  V. 

Fungicide  and  insecticide.  Farbenfabr.  vorm.  F. 
Bayer  und  Co.  G.P.  349,870—1,  28.2  and 
19.3.15. 

A  fungicide  and  insecticide  consists  of  a  saturated 
monocytic  ketone,  such  as  cyclohexanone  or  cyclo- 
pentanone  or  one  of  their  homologues.  The  sub- 
stance can  be  used  in  the  form  of  vapour,  in 
chemical  combination  with  other  substances,  such 
as  sodium  bisulphite,  or  in  mechanical  admixture 
with  soaps,  powders,  and  the  like,  absorbed  in 
porous  substances  or  dissolved  in  any  suitable 
solvent.— A.  R.  P. 


Animal  membranes;  Process  for  removing  poisonous 

material  from  .     H.   Braun.     G.P.  350,275, 

28.8.20. 

Animal  membranes  are  treated  with  a  halogen  in 
the  presence  of  a  weak  acid.  The  use  of  e.g.,  a 
5 — 10%  aqueous  solution  of  an  acid  causes  the  mem- 
brane to  swell  considerably,  and  this  accelerates 
the  action  of  the  halogen. — L.  A.  C. 


XX.— ORGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES;    ESSENTIAL  OILS. 

Morphine.     E.  Speyer  and  G.  Becker.     Ber.,  1922, 
55,  1329—1339. 

The  conversion  of  morphine  oxide  by  acetic  anhy 
dride  and  sulphuric  acid  into  morphinehydratc- 
oxidesulphonic  acid  and  reduction  of  the  latter  by 
sulphurous  acid  to  morpliinehydratesulphonic  acid 
has  been  described  previously.  Since,  however, 
the  latter  substance  loses  a  molecular  proportion 
of  water  without  suffering  further  decomposition 
at  170°— 180°  C.  and  is  catalytically  reduced  to 
o-dihydromorphinesulphonic  acid  it  is  established 
that  the  water  is  present  as  solvent  of  crystallisa- 
tion and  the  nomenclature  must  accordingly  be 
modified  to  bimolecular  morphineoxidesulphonic 
acid  and  morphinesulphonic  acid  respectively.  (Cf. 
J.C.S.,  1922,  i.,  675.)— H.  W. 

Cinchona  alkaloids;  Action  of  hydrogen  peroxide 

on  .     E.   Speyer   and   A.   G.   Becker.     Ber.. 

1922,  55,  1321—1329. 

Quinine  is  converted  by  hydrogen  peroxide  (30  I 
into  an  amine-oxide  which  ie  characterised  by  lis 
ability  to  liberate  iodine  from  acidified  potassium 
iodide  solution  and  its  re-conversion  into  quinine 
by  the  action  of  sulphurous  acid.  Since  pyridine 
and  analogous  bases  do  not  react  with  hydrogen 
peroxide  in  this  manner,  the  oxygen  atom  in  the 
oxide  is  probably  attached  to  the  trivalent  nitrogt  n 
atom  of  the  piperidine  complex.  Similar  oxiik- 
are  obtained  from  dihydroquinine,  quinidine, 
dihvdrocupreine.  and  ethyldihvdrocupreine.  but 
not*  from  cinchonine.     (Cf.  J.C.S.,  1922,  i.,  674.) 

— H.  W. 

Cinchona    scries;    Syntheses    in    the   .     VII. 

5.8-Diaminodihydroquinine     and     5.S-diamino-6- 
methocyquinoline  and  their  conversion  into  the 
corresponding      aminohydroxy      and     dihy 
bases.     W.     A.    Jacobs    and    M.     Heidelberger. 
J.  Amer.  Chem.  Soc,  1922,  44,  1073—1079. 

Like  the  amino  groups  in  the  aminoazo  dyestuffs 
derived  from  5-aminodihydroquinine  and  5-amino- 
6-methoxyquinoline,  those  in  the  5.8-diamino  com- 
pounds obtained  from  the  dyestuffs  by  reduction 
are  easily  replaceable  by  hydroxyl  groups  (cf.  J-. 
1921,  96  a).  There  is  evidence' that  the  amino 
group  in  position  5  is  more  labile  than  that  in 
position  8,  and  that  the  substitution  of  a  methoxy! 
group  in  position  6  is  a.  determining  factor  ns 
regards  the  lability  of  the  amino  groups,  t  i 
of  the  intermediate  and  end  products  of  this 
transformation  are  described.  (Cf.  J.C.S.,  1922.  i  . 
671.)— W.  G. 

Cinchona    scries;    Syntheses    in    the 1  "I 

Hydrogenation  of  dihydrocinchoninc.  cinchonine, 
and    dihydroquinine.     W.    A.     Jacobs    and    M 
Heidelberger.     J.   Amer.   Chem.   Soc,   1922,  41. 
1079—1090. 
Dihydrocinchonine,  when  reduced  with  sodium  in 
amyl  alcohol,  yielded  a  mixture  of  hexahydrocin- 
chonine   and   two   epimeric   hexahydrocinchoE 
in  the  last  of  which  the  alcohol  group  as  well  t 
quinoline  ring  had  suffered  reduction.  The  relation- 


Vol.  XIX,  No.  13.]       CL.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &C. 


517a 


ship  of  these  compounds  to  the  products  obtained 
by  reduction  with  zinc  and  hydrochloric  acid  and 
by  the  reduction  of  cinchonine  lias  been  eluci- 
dated.   (Cf.  J.C.S.,  1922,  L,  672.)— W.  G. 

Cinchona    series;    Syntheses    in    the    .      7A". 

Certain  quinicine  and  benzoylcinchona  salts, 
crystalline  ethyldihydrocupreine  (optochin)  base 
and  other  derivatives.  M.  Heidelberger  and 
W.  A.  Jacobs.  J.  Amer.  Chem.  Soc,  1922,  44, 
1091— 109S. 

A  number  of  miscellaneous  crystalline  cinchona 
derivatives  are  described,  many  of  which  were  used 
as  initial  materials  for  various  researches.  (Cf. 
J.C.S.,  1922,  i.,  673.)— W.  G. 

Cinchona  series;  Syntheses  in  the .    X.    Dihy- 

drocinchonicinol  and  the  dihydroquinicinols.  M. 
Heidelberger  and  W.  A.  Jacobs.  J.  Amer.  Chem. 
Soc.,  1922,  44,  1098—1107. 

It  has  been  found  possible  to  reduce  the  ketonic 
group  in  cinchona  alkaloids  of  the  type  of  oinchoni- 
cine  and  quinicine  by  means  of  palladium  and 
hydrogen,  the  products  being  mixtures  of  stereo- 
isomers of  a  new  type  of  alkaloids  to  which  the 
luthors  have  assigned  the  names  dihydrocinchoni- 
/inols  and  dihydroquinicinols.  In  general  the 
d-forms  proved  easier  to  isolate,  and  a  number  of  d- 
\  bases,  one  of  the  J-bases,  and  numerous  salts  of 
the  d-  and  (-forms  are  described.  (Cf.  J.C.S., 
1922,  i.,  673.)— W.  G. 

Alkaloids;  Methods  for  the  quantitative  estimation 
I     of  .     P.   Herzig.     Arch.   Pharm..  1922,  259, 

|    249—308. 

The  author  gives  a  comprehensive,  critical  survey 

of  all  the  known  methods — gravimetric,  volumetric, 

;olorimetric,     refractometric,     and     polarinietric — 

[for  the  estimation   of  alkaloids.     Direct  weighing 

Idas  many  obvious  advantages,   but  also  the  great 

iisadvantage    that    it    is   difficult    without   loss    to 

|solate   the   alkaloid   in   a   sufficiently   pure   condi- 

ion.     Of  all  the  methods  suggested  for  weighing  as 

Insoluble  salts  or  as  double  salts,  only  precipitation 

by  picric  acid,  phospho-  or  silico-tungstic  acid,  or 

i)icrolonic      acid      (dinitrophenylniethylpyrazolone) 

lave  any  practical  value.     Of  these  only  the  last- 

lamed  is  considered  to  be  at  all  useful,  and  even 

lere  comparative  estimations  made  on  nux  vomica 

eeds  and  extracts  showed  that  the  results  obtained 

rere     always     2'5 — 5%     low.     Of    the     volumetric 

aethods,  titration  with  standard  acid  is  the  most 

;enerally    employed.      Iodometric    estimations    are 

iot  recommended,  but  iodometric  estimation  with 

>dide-iodate   of  the   excess   of   acid   uuneutralised 

>y  the   alkaloid   gives   good   results   except   in   the 

ase   of   feeble   bases,    the   sulphates   of   which   are 

i inch  dissociated,  e.g.,  nareotine,  pilocarpine,  and 

urine  derivatives,  and  it  is  particularly  useful  if 

inch    colouring    matter    is    present.     Volumetric 

recipitation     methods     using     Mayer's     reagent, 

hosphoniolybdic  acid,   potassium  ferrocyanide,   or 

icric    acid,    are    regarded    as    inexact    except    in 

leeial  cases   such  as  ferrocyanide   for   strychnine 

j  |i   presence    of   brucine,    and   picric   acid   for   the 

nchona  alkaloids.     Quantitative  colorimetric  and 

itieal   methods   all   demand   the   isolation   of   the 

kaloid    in    a    colourless    condition,    and    are    in 

Mineral  of  little  practical  value. — G.  F.  M. 

-     rocellin,   a   diketopiperazine   derivative   from 

liocrrlhi  fiiciformis;  Constitution,  of .     M.  O. 

Forster  and  W.  B.  Saville.  Chem.  Soc.  Trans., 
il922,   121,  816—827. 

heating   at    the    melting   point,    or   treatment 

th     aqueous     sodium     hydroxide,     picrorocellin, 

,H,.0,>.\,  is  converted  into  anhydropicrorocellin, 

'I.Hs.OjNj,    while   more   protracted    heating   gives 

rocellin,    C1,H100.,'N\,,    by   loss   of   water   and 


methyl  alcohol.  Methylxanthorocellin,  which  has 
been  prepared  from  diketopiperazine,  is  shown  to 
be  2.5-diketo-3.6-dibenzylidene-1.4-dimethylpiper- 
azine.  Xanthorocellin  is  therefore  2.5-diketo-3.6-di- 
benzylidcne-1-methylpiperazine,  which  is  in  accord 
with  the  production  of  benzaldehyde  and  tetraketo- 
1-methylpiperazine  from  it  on  oxidation  with  nitric 
acid.  Polarinietric  evidence  lends  further  support 
to  the  formula 
C„H5.CH(OCH3).CH.N(CH3).CO. 

CO  — NH  — CH.CH(OH).C6Hs 
for  picrorocellin,  which,  however,  remains  indeter- 
minate   regarding    the    position    (1    or    4),    of    the 
N-methyl  group. — P.  V.  M. 

Melanipyritol  and  aucubin;  Presence  of in  the 

foliated  stems  of  Melampyrum  arvense.  M. 
Bridel  and  M.  Braecke.  J.  Pharm.  Chim.,  1922, 
25,  449—457.     (Cf.  J.,  1921,  674  a.) 

The  glucoside,  aucubin,  and  the  hexahydric 
alcohol  melanipyritol  (dulcitol)  have  been  isolated 
from  the  entire  plant  of  Melampyrum  arvense. 
More  than  2%  of  the  glucoside  was  found  in  a 
specimen  of  the  plant  collected  after  it  had  com- 
pleted its  life  cycle  and  when  the  stem  was  devoid 
of  leaves.— W.  G. 

Sensitiveness  of  cells  to  poisons  as  a  function  of 
their  colloid-chemical  condition.  H.  Handovsky. 
Kolloid-Zeits.,   1922,   30,  336—341. 

The  sensitiveness  of  cells  to  poisons  is  closely  con- 
nected with  the  stability  and  variability  of  the 
colloid-chemical  condition  of  the  protoplasm 
colloids.  The  difference  of  the  sensitiveness  of  red 
blood  corpuscles  to  poisoning  in  solutions  of  sucrose 
and  in  solutions  of  salts  is  explained  as  follows  :  — 
The  sucrose  brings  about,  in  the  continuously 
changing  sol  ~Z.  gel  system  of  the  protoplasm  a 
more  gelatinised  condition,  which  is  accompanied 
by  a  decrease  in  the  degree  of  dispersion,  and  this 
makes  the  blood  corpuscles  less  sensitive  to  surface 
active  poisons.  Solutions  of  salts  act  in  the 
opposite  sense ;  they  make  the  blood  corpuscles  in 
sucrose  solution  sensitive  again,  and  in  those  cases 
where  the  salt  has  no  hemolytic  action  of  its  own 
it  increases  the  sensitiveness  according  to  the  laws 
which  govern  the  increase  in  adsorption  brought 
about  by  salts. — J.  F.  S. 

Ambergris;   Identification    of   .    H.    I.    Cole. 

Philippine  J.  Sci.,  1922,  20,  105—109. 
A  carefttl  microscopical  examination  often  proves 
of  greater  value  in  the  identification  of  substances 
suspected  of  being  ambergris  than  the  ordinary 
physical  or  chemical  methods.  Genuine  ambergris 
will  be  found  to  contain  embedded  in  it  thin,  dark 
brown,  opaque,  finely  striated  pieces  of  chitinous 
material  varying  from  004 — 0'1  mm.  in  thickness, 
derived  from  the  internal  shell  or  gladius  of  the 
cuttle  fish.  Samples  of  supposed  ambergris, 
resembling  in  all  physical  appearances  the  genuine 
article,  were  examined  and  found  to  be  of  vegetable 
origin.  Instead  of  the  horny  material  above- 
mentioned,  fragments  of  moss,  leaves,  and  bark 
were  found  occluded,  and  both  in  this  respect  and 
also  in  m.p.  (100°— 120°  C.)  and  the  character  of 
the  ether  extract  the  material  closely  resembled  the 
latex  of  Artfrnrpiis  elastira.  True  ambergris  melts 
at  about  65°  C,  and  the  ether  extract  (ambrein)  at 
i  82°— 88°  C— G.  F.  M. 

Xanthosterol.     H.  Dieterle.     Arch.  Pharm.,  1922, 

259,  244—245. 
The  phvtosterol,  xanthosterol,  isolated  from  the 
bark  of  Xanthovyltm  Jiudrunria  (J.,  1920,  81  a)  is, 
apparently,  not  identical  with  the  lupeol  isolated 
by  Goodsoti  (Biochem.  J.,  1921,  15,  123)  from 
X.  mac mpliyll um .  for  the  m.  pts.  of  xanthosterol, 
its  benzoate,  and  monobromide  are  below  those  of 


518a 


Cl.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &C. 


[July  13,   11122. 


lupeol  and  its  corresponding  derivatives  and  mix- 
tures of  xanthosterol  and  lupeol  give  melting  points 
lower  than  that  of  xanthosterol. — G.  P.   M. 

Arsphenamine    [salvarsan]    solution;    Stability    of 

.     P.  Masucci.     Amer.  J.  Pharm.,  1922,  94, 

338—311. 
TnF.oxidation  and  increase  of  toxicity  of  solutions  of 
salvarsan  in  JV/1  sodium  hydroxide  solution  (1  mol : 
4  mols.)  were  followed  quantitatively  by  titration 
with  iodine  and  by  injections  into  white  rats.  The 
solutions  were  prepared  in  an  atmosphere  of 
nitrogen  and  kept  in  ampoules  filled  with  that  gas. 
For  control  purposes  solutions  of  similar  concentra- 
tion in  contact  with  air  were  also  kept.  The 
solutions  kept  under  nitrogen  at  0°  C.  showed  no 
noticeable  change  of  colour,  increase  in  oxidation 
or  toxicity  after  four  months.  Solutions  kept  at 
ordinary  room  temperature  began  to  change  in 
colour  from  yellow  to  a  reddish  tinge  in  about  two 
weeks,  and  after  eight  weeks  10%  had  been  oxidised 
with  a  marked  increase  in  toxicity.  The  tempera- 
ture at  which  the  solutions  are  kept  is  therefore  a 
very  important  factor. — G.  F.  M, 

Neoarsphenamine  [neosalvarsan]  ;  Toxicity  of . 

M    C.  Hart  and  W.  B.  Payne.     J.  Amer.  Chem. 

Soe.,  1922,  44,  1150—1160. 
The  toxicity  of  commercial  samples  of  neosalvarsan 
was  found  to  range  from  200  to  360  mg.  per  kg. 
body  weight  for  rats.  In  making  such  tests  the 
variability  of  the  test  rats  is  of  importance,  as  it 
was  found  that,  in  some  Cases,  40 — 100  mg.  per  kg. 
difference  was  obtained  by  the  same  test  made  on 
different  rats.  An  apparatus  is  described  for  pre- 
paring standard  solutions  of  neosalvarsan  and  it 
is  suggested  that  the  selection  of  test  rats  should 
be  controlled  by  tests  against  such  a  standard.  The 
toxicity  of  the  salvarsan  is  shown  to  have  only  a 
negligible  effect  on  the  toxicity  of  the  neosalvarsan 
prepared  from  it.  In  the  condensation  of  salvarsan 
to  neosalvarsan  the  influence  of  solvents,  dilution, 
time  and  temperature  on  the  toxicity  and  the 
introduction  of  the  methylene-sulphinie  group  and 
sulphur  distribution  has  been  examined.  A  curve 
is  given  showing  the  lethal  activity  of  a  freshly  pre- 
pared solution  of  neosalvarsan.  The  introduction 
of  a  methylene-sulphinie  acid  group  in  the  salvarsan 
molecule  increases  the  tolerated  dose  of  the  material 
from  110  to  320  mg.  per  kg.  (20%  As),  but  the  intro- 
duction of  the  second  group  was  complicated  by  side 
reactions  giving  a   higher  toxicity. — W.   G. 

Mercuration  in  the  aromatic  series.  I.  Acetates 
and  hydroxides  of  mercvryplienol  and  their 
derivatives.  E.  Mameli.  Gazz.  Chim.  Ital.,  1922, 
52,  I.,  352—368. 

Descriptions  are  given  of  the  preparation  and 
properties  of  various  ortho-  and  para-mercuryphenol 
salts  of  the  form,  HO.Cr.Hj.HgX,  where  X  repre- 
sents an  acid  radicle.     (Cf.  J.C.S.,  Julv.) 

— t.   H.   P. 

Nitroguanidine;  Action  of  sulphuric  acid  on  . 

T.   L.    Davis.     J.    Amer.   Cbem.    Soc,    1922,    44, 

868—872. 

Nitroguanidine  is  decomposed  quantitatively  by 
hot  concentrated  sulphuric  acid,  half  of  the 
nitrogen  being  liberated  as  ammonia  and  the  whole 
of  the  carbon  as  carbon  dioxide.  Solubility  curves 
are  given  for  nitroguanidine  in  varying  strengths  of 
sulphuric  acid  at  0°  0.  and  25°  C— W.  G. 

Aminoalcohols.  Homologues  of  novocaine.  E. 
Fourneau  and  J.  Puyal.  Bull.  Soc.  Chim.,  1922, 
31,  424—435. 

Hydrocarbons  of  the  ethylene  series  may  be 
prepared  by  passing  the  vapours  of  the  correspond- 


ing alcohols  over  infusorial  earth  at  400°  C.  The 
hydrocarbons  may  be  converted  into  their  bromo- 
hydrins  by  the  action  of  bromine  water,  and  these 
in  turn  by  the  action  of  dimethyl-  or  diethylamine 
give  the  substituted  aminoalcohols,  from  which 
certain  benzoyl  derivatives  have  been  prepared.  A 
commercial  sample  of  amylene,  sold  under  the  name 
of  "  Pental,"  was  found  to  contain  at  the  most  20% 
of  /3-methyl-Aa-butylene.  The  hydrochlorides  of 
aminobenzoyldiethylaminopropanol  (methylnovo- 
caine)  and  of  aminobenzoyldiethylaminobutanol 
have  a  more  pronounced  anaesthetic  action  than 
novocaine.  The  hydrochloride  of  p-aminobenzoyl- 
dimethylaminodimethylethylearbinol  (aminost* 

vaine)  has  a  very  intense  anaesthetic  action.  (Cf. 
J.C.S.,  1922,  i.,  639.)— W.  G. 

Mononitrophenols,     mononitrobenzoic     acids,     and 
mononitrocinnamic    acids;    Application    of    the 

Kjeldahl  method  to .     B.  M.  Margosches  and 

E.  Vogel.     Ber.,  1922,  55,  1380—1389. 

A  continuation  of  previous  work  (J.,  1920,  82  a) 
in  which  it  was  shown  that  the  Kjeldahl-Gunuing 
method  gives  accurate  results  only  for  tho  ortho 
derivatives  when  applied  to  the  mononitrophenols 
and  mononitrobenzoic  acids.  Decomposition  of 
mononitrophenols  and  mononitrobenzoic  acids  by 
sulphuric  acid  without  addition  of  potassium 
sulphate  gives  correct  values  for  the  ortho,  low 
values  for  the  meta  and  para  compounds;  the 
latter  are  considerably  higher  than  those  obtained 
by  the  Kjeldahl-Gunning  method.  Decomposition 
in  stages  according  to  the  Kjeldahl-Gunning 
method  shows  that  in  the  cases  of  o-nitrophenol  and 
o-nitrobenzoic  acid  the  greater  part  of  the  nitrogen 
is  converted  into  ammonia  at  the  period  of  initial 
darkening  and  that  the  conversion  is  practically 
quantitative  at  the  point  of  most  violent  action. 
With  p-nitrobenzoic  acid  at  the  corresponding 
stages  but  little  conversion  has  occurred,  and  during 
the  course  of  the  action  the  nitrogen  gradually 
undergoes  such  change  that  it  can  no  longer  be  con- 
verted into  ammonia  after  addition  of  phenol.  In 
the  case  of  p-nitrobenzoic  acid,  the  replacement  of 
potassium  sulphate  in  the  Kjeldahl  process  by 
copper  oxide  or  mercuric  oxide  leads  to  analytical 
results  which  are  in  harmony  with  the  calculated 
values.  The  activity  of  copper  oxide  is  not 
affected  by  the  presence  of  potassium  sulphate, 
whereas  that  of  mercuric  oxideis  depressed  greatly. 
The  activity  of  sodium  sulphate  is  inferior  to  that 
of  potassium  sulphate  and  approximately  equal  to 
that  of  lithium  sulphate.  During  the'  Kjeldahl- 
Gunning  process  p-nitrobenzoic  acid  yields  a  vola- 
tile nitrogenous  compound,  the  nitrogen  of  which 
can  be  converted  into  ammonia  by  sulphuric  acid, 
phenol,  and  copper  oxide,  whereas  p-nitropheno! 
undergoes  far  more  complex  decomposition  with  the 
formation  of  products  which  do  not  yield  ammonia 
under  the  described  conditions.  In  striking  con- 
trast to  tho  nitrobenzoic  acids,  the  three  nitrocin- 
namic  acids  yield  almost  the  whole  of  their  nitrogen 
as  ammonia  when  treated  w'ith  sulphuric  acid  and 
potassium  sulphate.  Satisfactory  results  arc  also 
obtained  with  sulphuric  acid  alone  or  mixed  with 
copper  oxide. — H.  W. 

Alkylbenzylbarbituric  acids.     A.    W.   Dox   and  L. 
Yoder.     J.   Amer.   Chem.   Soc,   1922,  44,   11-11 
1145. 

A  series  of  ethyl  alkylbenzylmalonates  have  befn 
prepared  either  by  alkylating  the  monobenzyl 
malonic  esters  or  by  benzylating  the  monoalkyl- 
malonic  esters.  From  these  esters  the  correspond- 
ing alkylbenzylbarbituric  acids  have  been  obtained 
by  the  veronal  synthesis  with  urea  and  sodium 
ethoxide.  In  this  series  of  substituted  barbituric 
acids  ethylbenzylbarbituric  acid  was  found  to  have 
the  strongest  physiological  action,  but,  contrary  to 


Vol.  XIX,  No.  13]       Cu  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &c.  519a 


expectations,  the  hypnotic  effect  was  accompanied 
by  symptoms  of  tetanus  instead  of  the  antispas- 
modic effect  commonly  attributed  to  the  benzyl 
group.     (Cf.  J.C.S.,  July.)— W.    G. 

Acetylsalicylic    acid    [aspirin];    Commercial    . 

M.  V.  del  Rosario  and  P.  Valenzuela.  Philip- 
pine J.  Sci.,  1922,  20,  15—22. 
The  methods  adopted  for  the  examination  of  a 
number  of  samples  of  aspirin  were  titration  in 
alcoholic  solution  with  N  jo  sodium  hydroxide  using 
phenolphthalein  as  indicator ;  addition  of  excess  of 
N/5  sodium  hydroxide  to  the  neutralised  solution, 
hydrolysis  by  boiling  for  30  minutes,  and  estimation 
of  the  excess  of  alkali  by  titration;  determination  of 
the  bromine  value  of  the  hydrolysed  solution  (1  mol. 
=  3  atoms  Br);  estimation  of  free  acetic  acid  by 
washing  1  g.  on  a  filter  with  25  c.c.  of  cold  water 
and  titration  of  the  filtrate ;  estimation  of  free 
salicylic  acid  colorimetrically  with  ferric  chloride, 
01  g.  of  the  sample  being  dissolved  in  5  c.c.  of 
alcohol  and  subsequently  diluted  to  25  c.c.  with 
water.  The  authors  consider  that  the  require- 
ments of  purity  should  be  modified  to  suit  the 
■special  climatic  conditions  of  the  Philippines,  as 
very  few  of  the  samples  examined  would  otherwise 
[conform  to  them. — G.  F.  M. 

Simmonium  carbamate;  Transformation  of  
[into  urea"].  C.  Matignon  and  M.  Frejacques. 
Bull.  Soc.  Chim.,  1922,  31,  394—412. 

!A  resume  of  work  already  published  (cf.  Comptes 
rend.,  1920,  170,  462;  J.,  1921,  25  a;  1922,  231  a1. 

— W.  G. 


Malic   acid;   Formation  of  .        [Detection   of 

!    maleic  acid  in  ad  mixture  with  fumaric  and  malic 
acids.]     J.  II.  Weiss  and  C.  R.  Downs.     J.  Amer. 
}   Chem.  Soc,  1922,  44,  1118—1125. 

V  preliminary  study  of  the  equilibrium  of  maleic, 
|Himaric,and  malic  acids  in  aqueous  solution  over  the 
emperature   range,    140° — 200°   C.     At   the   lower 
'emperature,   in  aqueous  solution,   an  equilibrium 
Exists  among  the   three   acids,   but   at   the   higher 
•emperature   maleic   acid    substantially    disappears 
nd  the  equilibrium  is  between  fumaric  and  malic 
'.cids.     Further,  at  the  higher  temperature  approxi- 
mately the  same  end-point  is  reached  whether  one 
tarts  with  maleic,  fumaric,  i-malic,  or  i-malie  acid, 
ly  simple   boiling   at   atmospheric   pressure   malic 
cid  solutions  are  practically  unchanged.     For  the 
etection  of  small  amounts  of  maleic  acid  in  mix- 
ures  with  fumaric  and  malic  acids,  the  solution  is 
lturated  with  respect  to  fumaric  acid   at  25°  C, 
nd  then  the  maleic  acid  is  converted  into  fumaric 
e:d  by  the  addition  of  a  little  bromine  and   the 
stion  of  the  light  from  a  mercury  vapour  quartz 
'.mp.     The  solution  is  again  brought  to  25°  C.  and 
ell  stirred,  and  the  amount  of  fumaric  acid  which 
parates  out  is  estimated. — W.  G. 

cetic  anhydride;  Analysis  of  .     A.  Reclaire. 

Perf.  Essent.  Oil  Bee,  1922,  13,  148—149. 
en  grams  of  acetic  anhydride  is  diluted  with 
■  c.c.  of  water  free  from  carbon  dioxide,  heated 
r  15  mine,  under  a  reflux  condenser  on  a  water 
■th,  diluted  to  500  c.c.  with  more  water  free 
ee  from  carbon  dioxide,  and  50  c.c.  titrated  with 
|  /2  potassium  hydroxide.  The  percentage  of  acetic 
hydride  present  is — 

(17-144XC.C.  2V/2  KOH  used)-570-45. 
le  necessity  for  using  water  free  from  carbon 
ixide  and  potassium  hydroxide  solution  free  from 
rbonate  is  emphasized'.  The  latter  is  readily  ob- 
ined  by  mixing  1  1.  of  potassium  hydroxide  solu- 
>n  with  50  c.c.  of  milk  of  lime  and  allowing  to 
md  for  one  or  more  days. — G.  F.  M. 


Etliyl  ether;  Autoxidation  of .    A.  M.  Clover. 

J.  Amer.  Chem.  Soc,  1922,  44,  1107—1118. 
Ether  absorbs  oxygen  from  the  air  slowly  at  first 
n-ith  the  formation  of  a  peroxide  by  direct  addition. 
The  rate  of  peroxidation  becomes  much  greater  in 
time,  however,  owing  to  the  catalytic  influence  cf 
the  acetaldehyde,  which  is  formed  by  the  spon- 
taneous decomposition  of  the  peroxide.  The  peroxide 
is  acidic  in  character,  is  volatile,  and  is  slowly  de- 
composed under  the  influence  of  light,  giving  carbon 
dioxide,  methane,  acetaldenyde,  and  alcohol. 
Hydrogen  peroxide  is  not  the  primary  product 
of  the  oxidation  of  ether,  but  is  formed  quanti- 
tatively by  the  decomposition  of  the  peroxide  by 
acidified  water.  To  the  peroxide  the  author  assigns 
the  constitution  C,HsO.CH(CH,).O.OH.— W.  G. 

Gelatin  as  a  protective  colloid.  Colloidal  silver. 
A.  Gutbier,  J.  Huber,  and  A.  Zweigle.  Kolloid- 
Zeits.,  1922,  30,  306—316. 

Chloroform,  toluene,  acetone-chloroform,  and 
ethyl  acetate  are  exceedingly  good  stabilisers  for 
gelatin  solutions.  The  stability  of  colloidal  silver 
obtained  by  reduction  with  hydrazine  is  increased 
by  the  addition  of  small  concentrations  of  gelatin, 
but  an  excess  of  gelatin  has  a  disturbing  effect  on 
the  stability  of  the  silver  sol.  An  exceedingly 
stable  and  concentrated  silver  sol  was  prepared  by 
reducing  with  hydrazine  10  pts.  of  Nj  10  silver 
nitrate  in  30  pts.  of  0'42%  gelatin  solution  and 
immediately  dialysing  for  6  hrs.  This  sol  was  red- 
dish-brown by  transmitted  light  and  olive  by 
reflected  light;  after  dialysing  for  10  days  the 
preparation  contained  4045%  of  silver  and  was 
stable  for  three-quarters  of  a  year.  Colloidal  silver 
prepared  by  reduction  with  sodium  hydrosulphite 
was  much  less  stable  than  that  prepared  with 
hydrazine.  The  protected  silver  sols  were  rapidly 
coagulated  by  chlorides  (hydrogen,  sodium,  barium, 
and  magnesium  chlorides),  N  /l  sulphuric  acid 
coagulated  the  sols  slowly,  but  the  action  was  incom- 
plete in  5  days,  sodium  thiosulphate  caused  slow 
sedimentation,  whilst  sodium  hydroxide  and  sodium 
carbonate  in  N  /l  solutions  were  without  coagulating 
action.— J.  F.  S. 

Ointments;  Examination  of  B.P.  .     N.  Evers 

and  G.  D.  Elsdon.     Analyst,  1922,  47,  197—201. 

Cantharidin  ointment.  Thirty  g.  is  dissolved  in  a 
mixture  of  equal  parts  of  ether  and  chloroform, 
and  the  solution  is  extracted  three  times  with  5% 
sodium  carbonate  solution ;  the  alkaline  solution 
h  acidified  with  sulphuric  acid,  extracted  three 
times  with  chloroform,  the  extract  is  evaporated 
to  dryness,  the  residue  washed  with  a  small 
quantity  of  a  mixture  of  equal  parts  of  petroleum 
spirit  and  absolute  alcohol  saturated  previously 
with  cantharidin,  then  dissolved  in  chloroform,  the 
solution  filtered  through  cotton  wool,  the  filtrate 
evaporated,  and  the  residue  dried  over  sulphuric 
acid,  and  weighed.  Calomel  ointment.  Five  g.  of 
the  sample  is  dissolved  in  ether,  filtered,  the  insolu- 
ble portion  washed  with  ether  until  free  from  fat, 
then  dissolved  in  an  excess  of  standard  iodine  solu- 
tion, and  the  excess  of  iodine  titrated.  Creosote 
ointment  and  eucalyptus  ointment.  The  loss  in 
weight  when  the  sample  is  heated  at  100°  C.  until 
practically  free  from  odour  gives  the  content  of 
creosote  or  eucalyptus  oil  respectively.  Gall  oint- 
ment. The  amount  of  powdered  galls  present  is 
represented  by  the  portion  of  the  sample  which  is 
insoluble  in  petroleum  spirit.  Iodine  ointment. 
The  sample  is  dissolved  in  chloroform,  water  is 
added,  and  the  free  iodine  is  titrated  with  thio- 
sulphate solution.  Iodoform  ointment.  Five  g.  of 
the  ointment  is  boiled  under  a  reflux  condenser  for 
2  hrs.  with  50  c.c.  of  2V/10  silver  nitrate  solution. 
the  mixture  then  diluted  to  110  c.c,  filtered,  and 


520  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o.         [July  15,  192 


],D0  c.c.  of  the  filtrate  is  titrated  with  thiocyanate 
solution.  The  loss  in  weight  when  the  sample  is 
heated  at  100°  C.  also  gives  the  iodoform  content. 
Mercury  ointment.  Three  g.  of  the  sample  is 
heated  with  20  c.c.  of  concentrated  nitric  acid,  the 
mixture  then  diluted,  and  the  aqueous  liquid 
separated  from  the  fat;  the  latter  is  washed  with 
water,  and  the  united  aqueous  liquids  are  oxidised 
with  potassium  permanganate  solution.  Excess 
of  the  latter  is  destroyed  by  the  addition  of  dilute 
ferrous  sulphate  solution  and  the  mercury  is  then 
titrated  in  an  aliquot  portion  of  the  solution  by 
means  of  thiocyanate  solution.  Compound  mercury 
ointment.  The  mercury  is  determined  as  described 
under  mercury  ointment;  the  camphor  content  is 
determined  by  heating  the  sample  for  2  hrs.  at 
100°  C.  Resin  ointment.  The  resin  content  may 
be  calculated  approximately  from  the  formula  (a — 
5-9)xl00/167,  where  a  is  the  acid  value  of  the 
sample.  Sulphur  ointment.  The  sulphur  is  deter- 
mined by  oxidising  a  portion  of  the  sample  with 
nitric  acid  and  bromine,  separating  residual  fat 
with  ether,  and  precipitating  the  sulphuric  acid 
with  barium  chloride.  Except  in  a  few  cases,  the 
refractive  index  does  not  give  much  indication  as 
to  the  amount  of  active  constituent  in  an  ointment. 

— W.  P.  s. 

Pollen   grain   of  Pinus   silvestris;   Constituents   of 

the  .      A.  Kiesel.      Z.  physiol.  Chem.,  1922, 

120,  85—90. 
The  ripe  pollen  contains  potassium  0'59%,  oalcium 
012%,  trace  of  guanine,  adenine  0'002%,  little 
histidine,  arginine  0'52%,  choline  0'021  %,_  little 
colamine,  and  sucrose.  The  unripe  pollen  yielded 
very  little  in  the  nuclein  bases  fraction,  traces  of 
histidine,  some  arginine  and  choline. — S.  S.  Z. 

Blumea  Malcomii;  Essential  oil  from  .     J.  L. 

Simonsen  and  M.  G.  Rau.     Chem.  Soc.  Trans., 

1922,  121,  876—883. 
The  essential  oil  from  Blumea  Malcomii,  from 
India,  hassp.  gr.  0"9296  at  30°/30°  C,  n„30  =  l-4749, 
[a]D*"=  +46'76°,  acid  value  011,  saponification  value 
2293,  saponification  value  after  acetylation  60'63. 
It  consists  mainly  of  two  ketones,  d-carvotanace- 
tone  (A8-menthen-2-one),  82%,  and  1-tetrahydro- 
carvone  (p-menthen-2-one),  16%,  which  are  readily 
separated  by  means  of  normal  sodium  sulphite  with 
which  the  former  ketone  alone  reacts.  The 
sparingly  soluble  semicarbazone  of  1-tetrahydro- 
carvone  is  suitable  for  the  separation  of  this  com- 
pound from  the  residual  liquors.  A  trace  of  yellow 
oil  boiling  between  160°  and  180°  C.  at  100  mm. 
remains  after  removal  of  the  ketones.  The  oil 
contains  small  quantities  of  butyric  or  isobutyric 
and  n-octoic  acids,  and  about  0'1%  of  a  phenol. 

—P.  V.  M. 

Agastache  pallidi flora ;  Oil  of  .     J.  F.  Couch. 

Amer.   J.   Pharm.,   1922,  94,  341—343. 

The  flowers  of  the  giant  hyssop,  Agastache  palli'Ii- 
flora,  contain  02 — 0'3%  of  a  volatile  oil  having  an 
odour  recalling  a  mixture  of  thyme  and  pepper- 
mint, whilst  the  leaves  contain  a  lesser  amount  of 
the  same  or  a  similar  oil,  which  has  an  odour  of 
thyme  only.  The  oil  isolated  by  steam  distillation 
of  the  flowers  had  the  following  characters :  — 
Sp.  gr.  at  20°=O-91924,[a]D35=  -8'60°,  nD"  =  i-486S 
On  cooling  to  -10°  C.  no  crystals  separated,  hence 
the  amount  of  free  menthol,  if  present,  cannot  be 
very  large.  Phenols,  pulegone  and  other  ketones 
were  not  present  in  the  oil. — G.  F.  M. 


Ultra-violet    light    in    analysis. 
XXIII. 


Kitching.      Sec 


Patents. 

a-Dialkylaminoethyl-f3-aracyl-\hydr~\oxyoutyric   acid 

esters;    Manufacture    of    .      Farbw.    vorm. 

Meister,   Lucius,    und  Briining.      E.P.    161,539, 
9.4.21.    Conv.,  10.4.20.     ■ 

Dialkylaminoethyl  halides  are  caused  to  react 
with  sodio-ethyl  acetoacetate,  and  the  resulting 
ketonic  acid  esters  are  reduced,  e.g.,  by  means  of 
sodium  amalgam,  to  a-dialkylaminoethyl-/?-hydroxy- 
butyric  acid  esters  of  the  general  formula, 

CH3.CH(OH).CH(COOR').CH2.CHs.NR2, 
where  R  is  an  alkyl  group  and  R'  an  alkyl  or  aryl 
group.  Ethylo  -diethylaminoethyl-/?-hydroxybutyr- 
ate  obtained  in  this  way,  is  a  colourless  liquid, 
b.p.  135° — 136°  C.  at  10  mm.,  soluble  in  water  to  an 
alkaline  solution.  When  this  ester  is  treated  with  an 
aromatic  acid  chloride,  e.g.,  benzoyl  chloride,  the 
desired  ethyl  a-diethylaminoethyl-/3-benzoxybutyrate 
is  produced.  It  is  a  nearly  colourless  oil  forming  a 
crystalline  hydrochloride,  m.p.  130°— 131°  C, 
readily  soluble  in  water,  and  possessing  valuable 
local  anaesthetic  properties. — G.  F.  M. 

Photochemical  apparatus.    W.  O.  Snelling.    U.S. P. 
1,382,252,  21.6.21.     Appl.,  6.3.17. 

A  transparent  dome  rests  upon  a  shallow  tray 
which  is  provided  with  an  inlet  and  outlet  for  gases, 
one  of  such  conduits  being  provided  with  a  tube  of 
larger  diameter  surrounding  and  extending  beyond 
it.  'The  apparatus  is  suitable  for  the  chlorination 
of  methane,  which  together  with  chlorine  enters  the 
dome  at  one  side,  the  other  side  of  the  dome  being 
exposed  to  an  external  light  source.  The  reaction 
products  leave  the  dome  at  the  side  nearer  the  light 
source,  and  hence  the  light  has  to  traverse  partially 
combined  gases  before  meeting  the  entering  gases, 
whereby  the  actinic  rays  are  partially  absorbed, 
thus  diminishing  the  reaction  velocity  and  avoiding 
danger  of  explosions. — B.  M.  V. 

\_Allyl']    ether   of    ethenylparadi\hydr~\oxydiphenyl- 

amidine;  Unsaturated .     J.  Schuler,  Assr.  to 

Soc.  of  Chem.   Ind.  in  Basle.     U.S. P.  1,384,637, 
12.7.21.     Appl.,  9.3.21. 

ETHENYL-p-diallyloxydiphenylamidine,  m.p.  85° — 
86°  C,  readily  soluble  in  alcohol  and  ether,  in- 
soluble  in  water,  and  of  value  as  a  local  anaesthetic, 
especially  for  ophthalmologkal  practice,  is  obtained 
by  condensing  p-aminophenyl  ally]  ether  with  acet- 
p-aminophenyl  allyl  ether  in  presence  of  phosphorus 
halides,  phosphorus  oxyhalides,  or  phosphorus 
pentoxide,  and  if  desired  with  addition  of  a  solvent 
or  diluent.  The  hydrochloride  of  the  new  ether 
melts  at  152° — 153°  C,  is  readily  soluble  in  alcohol. 
less  soluble  in  water,   and  insoluble  In  ether. 

Hexamethylenetetramine ;   Chlorine   derivatives  of 

.     R.    Buratti.     U.S. P.    1,416,606,    16.5.22. 

Appl.,  18.6.18. 

A  solution  of  hexamethylenetetramine  is  added  to 
a  solution  of  a  hypochlorite  of  a  metal  classified  in 
the  first  two  metal  groups,  which  has  previously 
been  neutralised  bv  the  addition  of  an  acid. 

— L.  A.  C. 

Hexamethylenetetramine;  Preparation   of  deriv- 

fives  of  .     Preparation  of  addition  products 

of  hexamethylenetetramine  with  monohalogen- 
fatty  acid  esters.  J.  D.  Riedel,  A.-G.  G.P.  (*) 
346,383,  14.8.19,  and  (b)  346,462,  22.7.19. 
(a)  Non-hygroscopio  compounds  of  therapeutic 
value  and  resembling  choline  are  prepared  by  the 
action  of  ethylenehalogenhydrins  on  hexamethylene- 
tetramine at  temperatures  above  normal  in  tin 
presence  or  absence  of  solvents.  The  addition 
products  of  hexamethylenetetramine  with  ethylene- 
chlorohydrin  and  ethyleneiodohydrin  have  m.p 
135°  C.'and  149°  C.  respectively;  the  product  fron 


Vol.  xli .,  So.  13]     Cl.  XX.— ORGANIC  PRODUCTS  i    MEDICINAL  SUBSTANCES,  &o. 


521  a 


the  latter  contains  40'7%  of  iodine,  and  is  pre- 
pared by  reaction  between  the  constituents  in 
aqueous  solution,  or  by  the  addition  of  sodium 
iodide  to  a  concentrated  aqueous  solution  of  the 
corresponding  chlorine  compound.  (b)  Addition 
products  are  formed  by  reaction  between  hexa- 
methylenetetramine  and  esters  of  monobromoacetic 
acid  with  alcohols  or  phenols  which  are  insoluble  or 
only  slightly  soluble  in  water,  e.g.,  borneol  and 
thymol.  Aqueous  solutions  of  the  compounds 
hydrolyse  slowly  on  heating,  and  thus  on  injection 
into  the  body  liberate  the  phenol  and  the  addition 
product  of  hexamethylenetetramine  with  mono- 
bromoacetic acid,  which  has  valuable  antiseptic 
properties. — L.  A.  C. 

Benzyl  alcohol;  Process  of  producing  .     R.  E. 

Montonna,    Assr.   to  Semet-Solvay   Co.      U.S. P. 
1,416,859,  23.5.22.     Appl.,  18.5.21. 

Benzyl  alcohol  free  from  chlorine  is  prepared  by 
combining  crude  benzyl  alcohol  with  calcium 
|cbJoride  and  subsequently  decomposing  the  com- 
pound and  separating  benzyl  alcohol  from  the 
residue. — L.  A.  C. 

Nitro phenols;  Mercury  nitrate  as  a  reagent  for  the 

preparation  of .    Process  for  the  preparation 

of  (juanidine.    T.  L.  Davis.     U.S. P.  (a)  1,417,368 
and  (b)  1,417,369,  23.5.22.     Appl.,  16.4.21. 

;.0  Ax  aromatic  compound  is  treated  with  nitric 
lacid  and  mercury  nitrate  to  produce  a  complex 
bompound,  which  is  subsequently  decomposed  to 
Initrophenol  by  treatment  with  nitric  acid,  (b) 
lAmmonia  is  used  as  a  hydrolytic  agent  in  the 
preparation  of  guanidine  from  dicvanodiamide. 

— L.  A.  C. 

rrca ;    Production    of   from.   \_calcium~\    cyan- 

amide.     Farbw.     vorm.     Meister,     Lucius,     und 
'    Briining.     G.P.  301,278,   17.3.16. 

iron  oxide  sludge  containing  about  83%  Fe304, 
iibtained  in  the  reduction  of  organic  nitro  com- 
hounds  by  iron,  is  added  to  solutions  of  calcium 
lyanamide  in,  e.g.,  sulphuric  acid,  at  about  80°  C. 
Conversion  to  urea  is  complete  after  agitation  for 
.bout  an  hour.  The  use  of  ferrosoferric  oxide  as 
latalyst  prevents  formation  of  dicvanodiamide, 
nd  a  smaller  quantity  of  the  catalyst  is  required 
han  if  ferric  oxide  or  hydroxide  is  emploved. 

— L.  A.  C. 

)iethylbarbituric   acid   and   its    homologues;   Pre- 
paration   of   water-soluble    compounds   of   . 

J.  A.  Wulfing.  G.P.  345,361,  10.10.20. 
OLTjtions  of  diethylbarbituric  acid  or  its  homo- 
igues,  e.g..  phenylethylbarbituric  acid,  are  heated 
ith  the  calculated  quantity  of  calcium  hydroxide, 
lagnesium  hydroxide,  or  freshly  precipitated 
lagnesium  carbonate.  The  solutions  obtained  are 
iltered  and  evaporated  to  dryness  in  vacuo.  The 
xoducts  are  of  therapeutic  value,  and  yield  stable 
ixtures  with  the  alkaline-earth  salts  of  acetyl- 
.licylic  acid. — L.   A.   C. 

itty   acid   esters;    Preparation   of    enolic    alkali 

metal  compounds  of  simple  .     W.  Scheibler. 

G.P.  346,698,  16.12.19. 

simple  fatty  acid  ester  is  added  to  an  alkali 
etal  covered  with  an  inactive  solvent,  such  as 
i  her,  benzene,  or  the  like,  at  a  temperature  such 
|  at  the  reaction  product  does  not  form  condensa- 
3n  products,  but  the  hydrogen  liberated  by  the 
action  escapes  immediately. — L.  A.  G. 

ninoacetic   acid  arylides;   Preparation   of . 

Chem.    Fabr.    auf   Aktien   (vorm.    E.    Schering), 
and  H.   Emde.     G.P.  346,809,   1.11.19. 
jUNOACETic  aoid  arylides,  e.g.,  aminoacetanilide, 
aminoacetyl-p-phenetidine,    and    N-aminoaoetyl- 


p-toluidine,  m.p.  94°  C.,  are  prepared  by 
treating  the  corresponding  isonitrosoacetarylides, 
Ar.NH.CO.CHlN.OH,  with  a  reducing  agent,  such 
as  stannous  chloride  and  acetic  acid,  in  the  pre- 
sence of  a  stream  of  dry  hydrogen  chloride,  or  with 
tin  and  dilute  acetic  or  formic  acid. — L.  A.  C. 

Sulphonamides;   Preparation   of  mono-substituted 

.    Farbenfabr.  vorm.  F.  Baver  und  Co.    G.P. 

346,810,  17.2.20. 

Compounds  of  the  general  formula,  R'.S02.NH.R", 
are  prepared  without  simultaneous  formation  of 
di-substituted  products  by  treating  sulphonamides 
with  alkylating  agents  and  arylating  agents  in  tho 
presence  of  metal  carbonates.  The  N-ethvlamide 
and  N-benzylamide  (m.p.  115°— 117°  C.)  of 
p-toluenesulphonic  acid  are  prepared  respectively 
from  p-toluenesulphonamide  by  heating  with 
sodium  carbonate  and  sodium  ethylsulphate  to 
170°— 200°  C,  and  by  gently  boiling  with  sodium 
or  calcium  carbonate  and  benzyl  chloride. — L.  A.  C. 

Cinchona  alkaloids;  Preparation  of  mixed  carbonic 

acid  esters  of .     Farbenfabr.  vorm.  F.  Bayer 

und  Co.     G.P.  346,889,  6.2.20. 

Quinine  alkaloids  are  either  added  to  acetone- 
glycerolchlorocarbonic  acid  esters,  or  acetone- 
glycerol  is  added  to  chlorocarbonic  acid  esters  of 
quinine  alkaloids,  yielding  tasteless  compounds 
which  are  readily  hydrolysed  and  are  nearly  equal 
in  value  to  quinine  as  febrifuges.  A  solution  of 
carbonyl  chloride  in  benzene  on  addition  to  a 
solution  of  acetoneglycerol  in  dimethylaniline  yields 
acetoneglycerolchlorocarbonic  ester,  an  oil  of  b.p. 
95°— 97°  C.  at  8  mm.,  which  on  treatment  with  a 
solution  of  quinine  in  carbon  tetrachloride  yields 
acetoneglvcerolquininecarbonic  acid  ester,  m.p. 
125°— 126°  C.  Solutions  of  the  ester  in  dilute  acid 
hydrolyse  completely  into  quinine,  acetone,  and 
glycerol.  The  corresponding  ester  from  cinchonine 
is  an  oil. — L.  A.  C. 

Citric  acid,  tartaric  acid,  and  other  organic  acids 
which  form  calcium  salts  soluble   with   difficulty 

in  water;  Preparation  of .    F.  Mack  and  P. 

Lederle.  G.P.  346,946,  9.1.20. 
Aqueous  solutions  containing  the  theoretical  weight 
of  oxalic  acid  are  added  to  cold  suspensions  of 
calcium  citrate,  tartrate,  or  the  like,  the  mixture  is 
stirred  and  calcium  oxalate  is  separated  by 
filtration.  Pure  citric  or  tartaric  acid  crystallises 
out  after  evaporation  of  the  solution,  preferably 
in  vacuo.  Slight  excess  of  oxalic  acid  or  calcium 
hydroxide  in  the  solution  may  be  neutralised  by  the 
addition  of  calcium  hydroxide  or  oxalic  acid 
respectively.  The  ammoniacal  residues  from  the 
estimation  of  phosphoric  acid  by  the  citric  acid 
method  are  treated  with  magnesium  sulphate  or 
chloride  to  precipitate  phosphoric  acid,  and  with 
hydrogen  sulphide  to  precipitate  iron  ;  hydrochloric 
acid  is  added  to  the  solution,  and  calcium  citrate 
is  precipitated  by  the  addition  of  concentrated 
calcium  chloride  solution.  The  precipitate  is  con- 
verted into  citric  acid  by  treatment  as  above. 

— L.  A.  C. 

Santonin;  Preparation  of  — —  from  indigenous 
species  of  Artemisia.  Soteria  G.m.b.H.,  Chem. 
pharmazeutische  Fabr.  G.P.  346,947,  21.9.20. 
In  extracting  santonin  from  Artemisia  maritima 
the  whole  plant  is  finely  divided,  ground  for  a  pro- 
longed period  with  milk-of-lime,  and  calcium  san- 
toninate  is  extracted  with  water  or  dilute  alcohol. 
The  solution  is  evaporated  to  dryness,  and  the 
residue  is  acidified  and  ex+raeted  with  chloroform ; 
after  removing  resinous  compounds  by  agitation 
with  dilute  ammonia,  a  syrupy  residue  of  santonin 
is  obtained  by  evaporating  the  chloroform. 

— L.  A.  C. 


522  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  Ac. 


[July  15,  1922. 


a-Ketotetrahydronaphthalene;  Preparation  of . 

G.  Schroeter.  G.P.  346,948,  21.1.20. 
A  solution  of  chromium  trioxide  in  dilute  acetic 
acid  is  added  to  a  cooled  solution  of  tetrahydro- 
naphthalene  in  acetic  acid.  When  the  solution, 
which  is  at  first  brown,  has  changed  to  a  clear 
green,  the  acetic  acid  is  separated  by  distillation, 
and  a-ketotetrahydronaphthalene  (o-tetralone)  is 
separated   from    the   residue   bv    distillation    in    a 

/CHjCH, 
current  of   steam.      The   product,   CCH4    \co  -CFT 

is  a  colourless  liquid  with  an  aromatic  odour,  sp.  gr. 
at  17°  C.  1-095,  nD"  =  T570,  b.p.  257°  C.  at  760 
mm.  and  132° — 134°  C.  at  15  mm.;  it  condenses 
with  aldehydes  in  the  presence  of  alkalis  yielding 
alkylidene-tetralones,  e.g.,  benzylidene-tetralone  of 
m.p.  105°  C. ;  and  on  reduction  with  sodium  and 
aqueous  or  absolute  alcohol  yields  a?-a-tetrahydro- 
naphthol,  b.p.  83° — 85°  C.  in  vacuo,  which  decom- 
poses on  distillation  under  normal  or  slightly  re- 
duced pressure  into  water  and  A'-dihydronaphtha- 
lene.  a-Tetralone  can  be  used  for  the  preparation 
of  drugs  and  perfumes,  and  mixed  with  tetra-' 
hydronaphthalene  as  a  solvent  for  lacquers. 

— L.  A.  C. 

Sulphinides;    Preparation    of    metal    [gold']    com- 
pounds   of   .      Farbenfabr.    vorm.    F.    Bayer 

und  Co.  G.P.  (a)  347,139,  20.5.19,  and  (b) 
348,070,  24.6.19. 
Alkali  metal  compounds  of  benzoic  acid  sul- 
phinides or  their  derivatives  are  treated  with 
(a)  gold  hydroxide  or  (b)  gold  halides,  yielding 
products  of  therapeutic  value.  An  aqueous 
solution  of  sodium  benzoic  acid  sulphinide  is 
heated  to  100°  C.  with  moist  gold  hydroxide 
in  the  absence  of  light  until  nearly  the  whole 
of  the  gold  hydroxide  has  dissolved,  and  the 
solution  is  evaporated  in  vacuo  in  the  absence  of 
light  at  40°  C.  Unchanged  benzoic  acid  sulphinide 
is  separated  from  the  residue  by  solution  in  warm 
acetic  acid ;  on  cooling  the  benzoic  acid  sulphinide 
crystallises  out,  and  after  separating  the  crystals, 
gold  benzoic  acid  sulphinide  is  precipitated  by  the 
addition  of  ether.  The  product  contains  26'91  % 
Au.       Gold    sulphoaminobenzoic     acid    sulphinide, 

(NH2S02-C6H,<g3  >  N)3Au,   contains   20"5%    Au. 

— L.  A.  C. 

Substances  containing  a  low  percentage  of  hydro- 
gen; Production  of  organic,  compounds  from . 

[Catalysts  for  use  in  reducing  and  hydrogenat- 
ing  organic  compounds.']  C.  Paal  and  C. 
Amberger.     G.P.  346,949,   10.10.19. 

Organic  compounds  are  hydrogenated  in  the  pre- 
sence of  a  catalyst  consisting  of  an  organosol  of 
platinum  or  palladium,  or  their  hydroxides,  with 
wool  fat  or  its  constituents,  i.e.,  cholesterol  or 
isocholesterol,  or  their  derivatives.  Compounds 
which  are  insoluble  in  water  or  in  mixtures  of  water 
and  organic  solvents  can  be  reduced  in  the  presence 
of  these  catalysts.  Reduction  can  be  effected  in 
the  presence  of  all  solvents  in  which  wool  fat  is 
soluble,  and  is  promoted  by  the  presence  of  water 
or  mixtures  of  water  and  organic  solvents.  Organic 
solvents  not  miscible  with  water  or  aqueous  sol- 
vents, such  as  aliphatic  or  aromatic  hydrocarbons, 
other,  solid  and  liquid  fats,  olefinic  and  true  ter- 
penes,  or  their  derivatives,  may  also  be  employed, 
but  liquids  with  an  anti-catalytic  action,  such  as 
sulphur  compounds,  are  unsuitable  for  use  as  sol- 
vents. Reduction  readily  takes  place  at  room 
temperature  and  under  normal  or  reduced  pressure, 
and  is  accelerated  by  increased  temperature  or 
pressure.  Ethylene  and  acetylene  groups,  Schiff's 
bases,  hydrazones,  osazones,  nitrites,  azoxy-,  azo-, 
nitroso-,    and   nitro    groups    are   capable    of    direct 


reduction  by  hydrogen  in  the  presence  of  these 
catalysts.  Examples  are  given  of  the  hydrogena- 
tion  of  oils  6Uch  as  castor  oil,  linseed  oil,  and 
cottonseed  oil;  the  hydrogenation  of  geraniol  in 
stages  to  citronellol  (dihydrogeraniol)  and  to  tetra- 
hydrogeraniol ;  the  preparation  of  the  dihydro- 
derivatives  of  cinchona  alkaloids,  such  as  quinine, 
cinchonine,  and  quinidine,  by  treating  the  alka- 
loids dissolved  in  freshly  distilled  amyl  acetate 
with  hydrogen  at  50° — 60°  C.  under  an  excess 
pressure  of  2 — 4  atm.  in  the  presence  of  platinum 
or  palladium  hydroxide  wool  fat  organosols;  of  the 
conversion  of  morphine,  diacetylmorphine,  and 
codeine  in  solution  in  freshly  distilled  amyl  acetate 
and  acetic  acid,  or  of  phenetol,  to  their  dihydro 
derivatives;  and  of  the  reduction  of  benzylidene- 
aniline  to  benzylaniline,  benzylidenephenylhydr- 
azine  to  benzylphenylhydrazine,  and  m-dinitro- 
benzene  to  ?n-nitraniline  and  m-phenylenediamine, 
with  the  use  of  amyl  acetate  or  ethyl  caprate  as 
solvent. — L.  A.  C. 

Acetic  acid;  Recovery  of  chemically  pure  — —  from 
acetic  acid  containing  mercury,  e.g.,  synthetic 
acetic  acid  prepared  with  mercury  as  catalyst. 
Chem.  Fabr.  Griesheim-Elektron,  and  N.  Grtin- 
stein.     G.  P.  347,190,  17.4.15. 

Acetic  acid  containing  small  quantities  of  mercury 
is  heated  with  material  capable  of  reacting  with 
the  mercury,  e.g.,  reducing  or  oxidising  agents, 
strong  acids,  salts,  etc.  The  acetic  acid  may  Be 
boiled  for  a  prolonged  period  with  small  quantities 
of  organic  material,  such  as  cork  or  rubber,  and 
purified  by  distillation,  after  separation  of  the 
mercury  deposited.  Separation  of  the  mercury  is 
more  rapid  if  the  acid  is  heated  with  concentrated 
sulphuric  or  phosphoric  acid,  or  alkali,  heavy 
metal,  or  aluminium  sulphates,  or  with  perman- 
ganates, bichromates,  or  persulphates,  or  reducing 
agents  such  as  formic  acid.  If  strong  oxidising 
agents  are  employed,  such  as  mixtures  of  sulphuric 
acid  with  bichromates,  chromates,  or  perman- 
ganates, the  acetic  acid  is  purified  by  removal  of 
impurities  such  as  acetaldehyde,  and  the  mercury 
is  partially  converted  into  salts,  which  are 
separated  from  the  acetic  acid  by  distillation  in 
vacuo. — L.  A.  C. 

3-Nitroquinoline  and  its  derivatives;  Preparation 

of .     Badische  Anilin-  und  Soda-Fabr.    G.P. 

347,375,  8.2.20.  Addn.  to  335,197  (J.,  1921,  463  a). 

/3-NlTROETHTLIDENEARYLAMTNO-O-CARBOXYLIO       acids, 

or  their  derivatives,  prepared  by  treating  o-amino- 
arylcarboxylic  acids,  or  their  derivatives,  with 
methazonic  acid,  are  treated  with  condensing 
agents.  2-/3-Nitroethylideneaminobenzene-l-carb- 
oxylic  acid,  m.p.  196°— 197°  C,  2-0-nitroethylidene- 
amino-5-bromobenzene-l-carboxylic  acid,  m.p.  182°C. 
(decomp.),  and  2-/3  -  nitroethylideneaminoiiaph: 
thalene-3-carboxylic  acid,  prepared  by  the  action  of 
methazonic  acid  on  anthranilic  acid,  5-bromo-2- 
nminobenzene-3-carboxylic  acid,  and  2-aminonaph- 
thalene-3-carboxylic  acid  respectively,  on  heating 
with  acetic  anhydride  and  anhydrous  sodium  ace- 
tate yield  respectively  3-nitro-4-hydroxyquinohne. 
m  p.  above  300°  C,  3-nitro-4-hydroxy-(i-bromo- 
quinoline,  m.p.  above  300°  C,  and  3-nitrc-4- 
hvdroxv-o-anthrapyridine,  m.p.  above  300°  C. 

— L.  A.  C. 

Gold   compounds    of    the    Methylene    Blue    group: 

Preparation  of .  Farbenfabr.  vorm.  F.  Bayer 

und  Co.     G.P.  347,376,  20.5.19. 
Compounds  of  the  Methylene  Blue  group,  such  u 
Methvlene    Blue,    dimethyldietbyl-,    or    tetraetlivl- 
diaminophenazthionium,      combine      in      alconohr 
solution   with  gold  compounds,   e.g.,  gold  chloride 


Vol.  XLt,  No.  13]    Cl.   XX.— ORGANIC  PRODUCTS;  MEDICINAL  SUBSTANCES,  &c. 


523  a 


ar  nitrate,  yielding  compounds  with  a  strong 
iintiseptic  action  against  Bacillus  pyocyaneus  and 
ronococci,  Spirochaete.  and  tubercle  bacilli. 

— L.  A.  C. 

Amino-alcohols;  Preparation  of  .     P.   Karrer. 

G.P.  347,377,  24.8.20. 
Amino-alcohols  are  prepared  by  the  reduction  of 
tf-acyl  derivatives  of  aminocarboxylic  acid  esters, 
or  mixtures  of  the  same,  with  sodium  and  ethyl 
alcohol.  A  mixture  of  acetylleucine  with  absolute 
ethyl  alcohol  is  added  slowly  to  sodium,  the  mixture 
is  heated  gently,  and  finally  boiled  for  3  hrs.  The 
solution  is  diluted  with  water,  alcohol  is  separated 
by  distillation  with  simultaneous  hydrolysis  of  the 
acetyl  group,  and  l-isobutvlethvl-l-aminoalcohol-2, 
(CH;)...CH.CH2.CH(NH2).C'H:.0H,  is  extracted  by 
shaking  with  ether,  the  solvent  being  subsequently 
removed  by  distillation,  vielding  a  colourless, 
strongly  basic  oil  of  b.p.  194°— 200°  C.  Optically 
active  ieucine  (natural  leucine)  yields  lsevorotatory 
isobutylethylamino-aleohol.  Acetylphenylalanine 
ethyl  ester  yields  l-benzyl-l-aminoethyl-alcohol-2, 
b.p.,  in  vacuo,  150°— 160°  C.  The  mixture  of 
acetylaminocarboxylic  acid  esters  obtained  from 
casein  by  hydrolysis  and  subsequent  esterification 
and  acetylation  yields  a  mixture  of  products  which 
can  be  separated  by  distillation  in  vacuo  into 
fractions  as  follows :  b.p.  up  to  175°  C.  containing 
colamine  and  alaninol;  b.p.  105°— 190°  C.  at  16 
mm.,  containing  valine  alcohol,  leucine  alcohol,  and 
phenylalanine  alcohol;  b.p.  190°— 235°  C.  at  16  mm. 
The  products  are  of  therapeutic  value. — L.  A.  C. 

Ointments;  Preparation   of  which   leave   no 

greasy  appearance  on  the  skin.  Erdol-  und 
Kohle-Verwertung  A.-G.,  and  F.  Zernik.  G.P. 
347,399,  12.4.19. 
Colloidal  hydrogels  of  inorganic  bases  containing 
a  high  percentage  of  water,  e.g.,  colloidal 
aluminium  hydroxide  containing  90%  of  water,  are 
mixed  with  oils  or  fats,  e.g.,  vaseline.  The  pro- 
ducts serve  as  cooling  ointments. — L.   A.   C. 

Chloroform;  Production  of from  ace'tahlehyde. 

Consortium    fur    Elektrochem.     Ind.,    G.m.b.H. 

G.P.  347,460,  3.3.14.    Addn.  to  339,914  (J.,  1921, 
'    828  a). 

,[n  the  process  described  in  the  chief  patent 
dkaline-earth  hypochlorites  are  preferably  em- 
)loyed,  and  the  mixture  is  heated  during  the  re- 
iction.  A  20%  aqueous  solution  of  acetaldehyde 
s  added  gradually  to  a  stirred  solution  of  calcium 
,iypochlorite  at  45°  C.  containing  93  g.  of  active 
Itnlorine  per  I.,  and  after  stirring  for  a  short  time 
t  the  same  temperature,  and  subsequently 
leutralising  the  calcium  hydroxide  with  hydro- 
.hlorie  acid,  chloroform  is  separated  by  distillation. 
K  yield  of  80%,  of  chloroform  is  claimed. — L.  A.  C. 

■  iola  extract;  Preparation  of  a .    A.  Stephan. 

1 1  G.P.  347,482,  2.8.19. 

,'oarsely-ground,  well  washed  kola  nuts,  free  from 
ust,  are  covered  with  water  and  treated  with 
trbon  dioxide  under  slight  pressure.  The  mixture 
I  allowed  to  stand  for  eight  days  with  occasional 
laking,  and  is  then  filtered  and  either  con- 
mtrated  by  evaporation  or  added  to  mineral 
aters  or  pharmaceutical  preparations.  The 
resence  of  carbon  dioxide  during  the  extraction 
ihibits  the  formation  of  mould. — L.  A.  C. 

rylides     of     aromatic     hydroxycarboxylic     acids; 

Preparation   of  .      Chem.    Fabr.    Griesheim- 

Elektron.     G.P.  347,607,  6.9.17. 
Romatic    hydroxycarboxylic    acids    on    treatment 
th  the  aluminium  or  magnesium  compounds  of 
oniatie    amines    react    as    follows:     R'.C02H  + 


R.NH.M  =  R'.CO.NH.R+M(OH),  (R'=hydroxy- 
aryl,  R  =  aryl,  M  =  metal).  Examples  are  given  of 
the  preparation  of  2.3-  and  1.2-hydroxynaphthoic 
acid  anilides,  m.p.  of  the  1.2-derivative,  145°  C. 
(154°  C.  on  recrystallisation  from  ether),  and 
salicylic  acid  anilide,  m.p  134°  C. — L.  A.  C. 


Bromodialkylacetylureas; 
Farhenfabr.  vorm.  F. 
347,609,  27.11.15. 


Preparation     of 
Bayer    und    Co. 


G.P. 


Dialktlmalonukio  acids  of  the  general  formula, 
.Vt'(COOH).CO.NH.CO.NH2(X  =  alkyl),  are  treated 
with  bromine  at  100°  C,  in  the  presence  or  absence 
of  solvents,  diluents,  or  bromine-carriers,  such  as 
aluminium  chloride,  until  evolution  of  hydrogen 
bromide  and  carbon  dioxide  ceases.  After  removal 
of  excess  bromine,  the  products  are  stirred  with 
water,  neutralised  with  sodium  bicarbonate, 
washed,  and  recrystallised  from  dilute  alcohol. 
Diethylbromoacetvlurea    has    m.p.    118° — 120°    C. 

— L.   A.   C. 

fi-Nitropropenijl  compounds;  Preparation  of  . 

Preparation  of  ethers  of  aromatic  nitro-alcohols. 
(a)  E.  Schmidt  and  A.  Wagner,  (b)  E.  Schmidt 
and  W.  Bajen.  G.P.  (a)  347,818,  26.2.20,  and  (b) 
348,382,  12.3.20. 

(a)  Aromatic  propenyl  compounds  are  treated  with 
tetranitromethane  or  hexanitroethane  in  the  pre- 
sence of  compounds  with  an  alkaline  reaction,  e.g., 
tetranitromethane  is  added,  drop  by  drop,  to  an 
ice-cooled  solution  of  isosafrol  in  acetone  and  pyri- 
dine. When  the  smell  of  tetranitromethane  has 
disappeared  the  solution  is  shaken  with  water  and 
extracted  with  ether.  The  ether  extract  is  washed 
successively  with  potassium  hydroxide  and  dilute 
acid,  dried  over  anhydrous  sodium  sulphate,  and 
the  ether  is  separated  by  distillation,  yielding 
/S-nitroisosafro^CH.lO^CH^.CHXCNO^.CH^m.p. 
98°  C  The  corresponding  nitro  compounds  of 
anethol,  isoeugenol,  asaron,  and  isoapiol  are 
obtained  by  a  similar  method.  The  compounds 
readily  split  off  the  elements  of  water,  yielding 
nitro-alcohols  which  on  reduction  form  amino- 
alcohols  of  therapeutic  value,  (b)  If  the  reaction 
described  in  (a)  is  carried  out  in  the  presence  of 
an  alcohol  instead  of  a  compound  with  an  alkaline 
reaction,  such  as  pyridine,  the  unsaturated  com- 
pounds formed  thereby  simultaneously  form  addi- 
tion products  with  the  alcohol,  yielding  ethers  of 
nitro-alcohols.  Thus,  anethod  on  treatment  with 
tetranitromethane  in  the  presence  of  methyl  or 
ethyl  alcohol  yields  respectively  the  methyl  ether 
or  ethyl  ether  of  3-p-methoxyphenyl-2-nitropro- 
panol.  The  methyl  ether  has  m.p.  50°— 51°  C. 
Similar  ethers  can  be  prepared  fro  o-propenylanisol 
and  isosafrol. — L.  A.  C. 

Urea    melts    from    carbonic    acid    compounds    of 

ammonia;  Treatment  of  .     Badische  Anilin- 

und  Soda-Fabr.  G.P.  350,051,  31.8.20. 
Undecomposed  ammonium  salts  present  in  urea 
melts  are  removed  by  heating  the  melts  under  pres- 
sure for  a  short  time  to  such  a  temperature,  e.g., 
200°  C,  that  practically  the  whole  of  the  ammonium 
salts  are  volatilised,  after,  if  desired,  removal  of 
a  portion  of  the  salts  by  heating  to  a  lower  tempera- 
ture, e.g.,  120°  C,  under  pressure. — L.  A.  C. 

Alcohol;  Manufacture  of  .      Badische  Anilin- 

und  Soda-Fabr.  E.P.  158,906,  9.2.21.  Conv., 
9.2.20. 

See  U.S.P.  1,410,223  of  1922;  J.,  1922,  317  a. 

Aralkyl  ester  of  2-phenylquinoline-4rCarboxylic  acid. 

A.  Gams  and  O.  Kaiser,  Assrs.  to  Soc.  of  Chem. 

Ind.  in  Basle.     U.S.P.  1,378,343,  17.5.21.     Appl., 

23.6.20. 
See  E.P.  167,066  of  1920;  .1.,  1921,  717  a. 


524  a     Cl.  XXI.— PHOTOGRAPHIC  MATERIALS,  &o.     Cl.  XXII.— EXPLOSIVES,  &o.     [July  15,  1922. 


Silver  Salts  of  a-a  mi  no-acids;  Complex  — — .  M. 
Guggenheim,  Asar.  to  The  Hoffmann-La  Roche 
Chemical  Works.  U.S.P.  1,417,167,  23.5.22. 
Appl.,  30.9.19. 

See  G.P.  339,036  of  1919;  J.,  1921,  717  a. 

Urea;  Process  of  producing from  lime  nitrogen 

[calcium  cyanamide].  O.  Nydegger  and  H. 
Schellenberg.  U.S.P.  1,417,277,  23.5.22.  Appl., 
6.11.20. 

See  E.P.  153,574  of  1920;  J.,  1922,  157  a. 


XXI.-PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

2-p-Dimethylaminostyrylpyridine  methiodide,  a  neiB 
photographic  sensitizer.  W.  H.  Mills  and  W.  J. 
Pope.  Chem.  Soc.  Trans.,  1922,  121,  946—947. 
By  the  condensation  by  boiling  of  p-dimethylaminq- 
benzaldehyde  with  a-picoline  methiodide  and  piperi- 
dine  in  alcohol,  2-p-dimethyIaminostyrylpyridine 
methiodide,  C10H„N2I,  bright  red  prisms  with  a 
blue  reflex,  m.p.  275°  C,  is  produced.  Aqueous 
solutions  dye  silk  a  bright  orange-yellow,  not  fast  to 
light.  Such  solutions  are  decolorised,  but  to  a  less 
extent  than  are  the  isocyanines,  by  mineral  acids. 
Alcoholic  solutions  show  absorption  bands  in  the 
blue  and  green  with  obscurely  marked  maxima  at 
about  A4750  and  A4600.  The  new  substance  is  the 
most  powerful  sensitiser  for  green  light  yet  known 
for  gelatin-silver  bromide  photographic  plates, 
which,  after  bathing  in  aqueous  solutions  containing 
1  pt.  of  the  dyestuff  in  30,000  or  40,000  pts.  of 
solution,  show  almost  uniform  sensitiveness  to  light 
of  all  wave-lengths  from  the  blue  to  about  A5600  ;  the 
photo-sensitiveness  then  falls  off  rapidly  until  it 
ends  at  about  A6200.  A  number  of  sensitising  dye- 
stuffs  of  this  type  may  be  prepared  by  replacing  the 
o-picoline  by  its  derivatives. — P.  V.  M. 

Capillary  attraction,  diffusion  and  displacement  [  ; 

Application    of    to    washing    photographic 

plates,  etc.'].  L.  Lumiere.  Bull.  Soc.  Franc. 
Phot.,  1922,  9,  125—130. 
"When  a  band  of  fabric  is  suspended  vertically  so 
that  its  upper  end  dips  into  water  or  other  liquid 
capable  of  wetting  it,  a  slow  stream  passes  down  the 
band,  which  acts  as  a  kind  of  capillary  siphon.  The 
rate  of  flow  depends  on  the  nature  of  the  material 
and,  up  to  a  certain  point,  on  the  difference  in  level 
between  the  upper  and  lower  ends  of  the  band ;  after 
a  certain  value,  any  increase  in  this  difference  pro- 
duces no  difference  in  the  rate  of  flow.  This  pheno- 
menon is  applied  in  an  apparatus  for  washing  photo- 
graphic plates.  In  this  the  plates  are  gently  pressed 
against  a  band  of  cotton  fabric  carrying  a  stream 
of  water  in  the  manner  described.  Further  appli- 
cations given  are  the  washing  of  precipitates  when 
only  very  small  quantities  of  wash  water  may  be 
allowed,  and  the  extraction  of  soluble  contents  of 
powdered  materials. — W.  C. 

Patents. 

Photographic  films  with  a  carrier  permeable  to 
water.  J.  E.  Brandenberger.  E.P.  179,250, 
26.1.21. 

In  order  to  produce  a  layer  of  photo-sensitive 
material  on  one  surface  only  of  cellulose  films  perme- 
able to  water,  the  films  are  first  soaked  in  a  solution 
of  one  of  the  reacting  salts,  then  doubled  and  bathed 
in  a  solution  of  the  other  reacting  salt.  As  a  result 
of  the  doubling  only  one  surface  of  the  film  is  ex- 
posed to  the  second  bath. — W.  G. 


Light  rays,  cathode  rays,  Hbntgen  rays  or  the  like; 

Process  of  and  apparatus  for  treating .      R. 

Bengough.     E.P.  165,790,  13.9.21. 

When  a  beam  of  light  passes  through  another  beam, 
the  second  set  of  rays  acts  like  a  filter,  influencing 
the  complementary  colour  in  the  first.  By  means 
of  a  tube  having  side  windows,  all  kinds  of  rays  can 
be  treated.— W.  C. 

Photographic  films  with  a  carrier  permeable  to 
water.  J.  E.  Brandenberger.  E.P.  179,500, 
26.1.21. 

Films  of  viscose  or  the  like  which  are  permeable  to 
water  are  first  thoroughly  moistened  with  water. 
Ordinary  photographic  emulsions  with  a  gelatin 
base  can  then  be  coated  very  uniformly  on  the  films. 

— w.  c. 

Photographic  papers;  Means  [drying  apparatus']  for 

use  in  manufacture  of .    J.  W.  Davies.   E.P. 

179,832,  25.5.21. 
The  paper,  after  being  chemically  treated  on  one 
side  only,  passes  through  a  drying  chamber  without 
being  touched  on  its  coated  side.  The  chamber  is 
of  approximately  cylindrical  shape  and  is  hi 
from  the  inside;  the  paper  enters  from  the  coating 
machine  and  passes  round  the  chamber,  and  emerges 
again  close  to  the  entrance.  The  apparatus  is 
specially  suitable  for  ferro-prussiate  paper. — W.  C. 


XXII -EXPLOSIVES;    MATCHES. 

Detonating  and  priming  mixtures;  Analysis  of . 

C.    A.    Taylor    and    W.    H.    Rinkenbach.      U.S. 
Bureau  of  Mines  Tech.  Paper  282,  1922,  33  pp. 

Lists  of  inorganic  and  organic  materials  used  in 
detonating  compositions  are  given  and  methods  of 
removing  the  charges  from  detonators.  Details  are 
given  of  the  analysis  of  mixtures  of  mercury  fulmin- 
ate and  potassium  chlorate,  and  of  the  analysis  of 
mixtures  containing  trinitrotoluene,  tetryl,  nitro- 
mannitol  and  nitrocellulose.  Methods  are  also 
for  the  analysis  of  priming  compositions  containing 
chlorate  and  picric  acid,  lead  azide  and  tetryl,  ana 
lead  azide  and  trinitrotoluene.  Lists  are  given  oi 
inorganic  and  organic  materials  used  in  primer 
compositions  and  methods  are  given  for  the  analysis 
of  single  primers  and  typical  priming  mixtures, 
including  complex  non-corrosive  mixtures. 

-H.  C.  R. 

Patents. 

Explosive.  J.  R.  Mardick,  Assr.  to  Acheson 
Graphite  Co.  U.S.P.  1,415,889,  16.5.22.  Appl., 
29.7.21. 
Black  blasting  powder  is  provided  with  a  uniform 
glaze  of  finely-divided,  amorphous  graphite  pro- 
duced by  electrical  means  whereby  a  product  char- 
acterised by  improved  covering  and  moisture-resist- 
ing qualities,  uniformity  of  carbon  and  minora! 
content,  increased  sensitiveness,  uniform  progress- 
ion of  burning  and  velocity  of  explosion  is  obtained. 

— L.  A.  C. 

Viimer  for  small-arms  ammunition.     H.  T. 

Assr.    to    The    Peters    Cartridge    Co. 

(a)   1,416,121,    (b)    1,416,122,    and    (c)   1,416,133 

16.5.22.    Appl.,  20.7.21. 
A  touting  composition  contains  trinitroresorcinol, 
a    thiocyanate,    and    (a)    potassium    chlorate   a 
normal    lead    trinitroresorcinol,    (b)    an    oxidising 
agent  and  diplumbic  trinitroresorcinol.  and  (o)  an 
oxidising  agent  and  mercury  fulminate. — L.  A.  C. 


tti.  XLI.,  No.  13.] 


Ci>.  XXIII.— ANALYSIS. 


525  a 


XXIII.— ANALYSIS. 

Gasometer  for  providing  a  continuous  current  of 
gas.     R.  Schloipen.     Chem.-Zeit.,   1922,  46,  406. 

Two  bottle-shaped  reservoirs  are  connected  at  the 
bottom  by  a  short  tube  and  at  the  top  by  a  single 
neck  which  is  provided  with  a  four-way  tap.  The 
bores  of  the  latter  are  so  arranged  that  a  supply  of 
gas  from  a  cylinder  or  other  source  of  supply  enters 
one  reservoir,  which  is  filled  previously  with  water 
or  other  liquid ;  the  water  passes  through  the 
tubulure  into  the  other  reservoir,  discharging  gas 
from  this  through  the  other  bore  of  the  tap  to  the 
place  where  it  is  required.  As  soon  as  all  the  water 
has  been  forced  into  the  second  reservoir,  the  tap  is 
turned  so  that  the  operation  proceeds  in  the  reverse 
manner.  The  water  or  other  liquid  simply  passes 
from  one  reservoir  to  the  other,  alternately,  and 
when  once  it  has  been  saturated  with  the  gas,  solu- 
bility of  the  latter  in  the  water  does  not  affect  the 
measurement  of  the  gas. — W.  P.  S. 

Gas  analysis;  The  absorption  meter,  an  apparatus 

for .    L.  Moser.     Z.  anorg.  Chem.,  1922,  121, 

313—315. 

A  simplified  form  of  the  apparatus  previously  em- 
ployed for  the  gravimetric  estimation  of  hydrogen 
phosphide  (J.,  1922,  327  a)  is  described.  The  appa- 
ratus has  been  tested  and  gives  good  results  in  the 
estimation  of  sulphur  dioxide,  cyanogen,  hydrogen 
cyanide,  silicon  fluoride,  the  hydrides  of  arsenic 
and  antin.-ony,  ozone,  and  chlorine.  It  is  unsuit- 
able for  gases  which  require  an  absorption  liquid 
affected  by  the  air,  e.g.,  for  the  absorption  of  carbon 
dioxide  by  baryta  water. — \V.  T. 

Calorimetry ;  Maintenance  of  the  adiabatic  condi- 
tion in  .     F.  Barry.     J.  Amer.  Chem.  Soc., 

1922,  44,  899—937. 

A  closed  calorimeter  is  described  which  may  be 
used  for  the  determination  of  heat  changes  which 
accompany  slow  chemical  reactions.  The  calori- 
meter is  used  in  a  thermostat  and  all  conducting 
parts  which  are  in  contact  with  the  surrounding  air 
are  surrounded  by  air  gaps.  The  accuracy  with 
which  the  heat  content  of  the  calorimeter  can  be 
maintained  is  ±0-5  cal.  in  ten  hours.  (Of.  J.C.S., 
July.)— J.  P.  S. 

Surface  tension;  Determination  of  from  the 

maximum  pressure  in  bubbles.    S.  Sugden.  Chem. 
Soc.  Trans.,  1922,  121,  858— 86G. 

A  simple  form  of  apparatus  for  the  measurement  of 
surface  tension  by  the  method  of  maximum  pressure 
in  bubbles  consists  of  a  narrow  cylindrical  vessel 
immersed  in  a  thermostat  and  fitted  with  a  rubber 
stopper  carrying  two  tubes,  one  3  mm.  in  diameter 
with  a  sharp  inner  edge,  the  other  drawn  out  to  a 
fine  capillary.  A  side  branch  connects  this  vessel 
with  a  water  pressure  gauge  and  a  mercury  suction 
bulb  the  capillary  of  which  regulates  the  rate  of 
formation  of  bubbles  in  either  of  the  open  tubes  in 
the  cylindrical  vessel.  Measurements  of  the  surface 
tension  of  water  and  benzene  made  by  this  means 
show  close  agreement  with  values  obtained  by  the 
method  of  capillary  rise. — P.  V.  M. 

Indicator;  Use  of  a  universal  .    P.  H.  Carr. 

Analyst,  1922,  47,  196—197. 

Tee  indicator  consists  of  a  mixed  solution  of  methyl 
red,  naphtholphthalein,  and  phenolphthalein,  to 
which  are  added  bromothymol  blue  or  thymolphthal- 
jin  and  cresolphthalein  or  cresol  red  ;  such  a  mixture 
exhibits  a  series  of  colour  changes  over  a  range  of 
pa  from  3  to  11.— W.  P.  S. 

Jltra-violet  light;  Use  of  ■ in  analysis.     A.  F. 

Kitching.     Analyst,  1922,  47,  206—207. 

The  fluorescent  effects  produced  by    the   action  of 


ultra-violet  light  may  be  used  to  distinguish  one 
substance  from  another;  for  instance,  cotton  is 
readily  distinguished  from  wool  or  silk,  casein  from 
gelatin,  certain  kinds  of  paper  from  others,  etc. 
Acetone  can  be  detected  in  alcohol,  1%  giving  a 
distinct  effect.  With  quinine,  1  in  one  hundred 
million  parts  of  water,  with  uranine,  1  in  one 
thousand  million,  and  with  sesculin,  1  in  ten 
thousand  million,  distinct  fluoresence  is  shown 
under  favourable  conditions. — W.  P.  S. 

Arsenic,      antimony,      and      bismuth;      Invisible 

"  mirrors "     [in    the    detection}    of    .      H. 

Scheucher.     Monatsh.,  1921,  42,  411—420. 

Bettendoupp's  reaction  provides  an  extremely  deli- 
cate microchemical  test  for  arsenic.  Into  a  fine 
capillary  tube  are  introduced  about  2  cub.  mm.  of 
the  solution  to  be  tested  and  four  times  as  much  of 
a  solution  of  1  pt.  of  stannous  chloride  in  2  pts.  of 
fuming  hydrochloric  acid.  One  end  of  the  tube  is 
sealed  to  a  point  and  it  is  then  heated  for  a  short 
time  in  a  bath  of  boiling  amyl  alcohol.  The  tube  is 
centrifuged  and  the  arsenic  appears  in  the  point 
of  the  tube  as  a  brown  precipitate.  In  this  way 
O'Oly  of  arsenic  (7  =  0001  mg.)  can  be  detected  at  a 
dilution  of  1  in  250,000.  The  test  is  not  interfered 
with  by  antimony,  tin,  lead,  copper,  or  cadmium. 
The  magnesium  ammonium  arsenate  test,  applied 
microchemically,  is  only  sensitive  to  01y.  The 
Marsh  test,  using  Lockemann's  method  (Z.  angew. 
Chem.,  1905,  18,  416)  is  sensitive  to  OTy  of  arsenic. 
With  less  arsenic  the  "  mirror  "  becomes  invisible 
but  if  the  tube  which  should  contain  the  mirror  is 
treated  with  bromine  vapour  to  oxidise  the  arsenic 
and  then  subjected  to  the  above  test,  much  smaller 
quantities  of  arsenic  can  be  detected.  Invisible 
mirrors  of  antimony  can  also  be  detected  by  apply- 
ing the  flame  test  described  by  Paneth  (Ber.,  1918, 
51,  1739).  The  supposed  mirror  is  dissolved  with  a 
drop  of  nitric  acid  which  is  then  transferred  to  a 
piece  of  pure  ignited  calcium  carbonate  held  in  a 
platinum  loop.  When  this  is  then  placed  in  the 
edge  of  a  hydrogen  flame,  a  sky-blue  colour  shows 
the  presence  of  antimony.  This  reaction  is  sensitive 
to  0001y.  The  reaction  can  also  be  applied  to  a 
bismuth  mirror  prepared  from  bismuth  hydride  as 
described  by  Paneth  (loc.  eit.).  Bismuth  gives  a 
cornflower  blue  luminescence  in  the  hydrogen  flame. 
(0/.  J.C.S.,  July.)— E.  H.  R. 

Microanalysis;  Pregl's .    F.  Holtz.    Ber.,  1922, 

55,  1496—1497. 
The  use  of  a  bomb  furnace  in  the  estimation  of 
halogen  and  sulphur  is  avoided  by  placing  the  bomb 
tubes  in  brass  tubes,  closed  at  one  end  and  stop- 
pered at  the  other,  which  are  heated  in  the  vapour 
of  boiling  diphenylmethylamine,  b.p.  205°  C.  The 
estimation  of  nitrogen  in  difficultly  combustible  sub- 
stances is  effected  in  silica  tubes  which  are  filled  in 
the  following  order :  asbestos  plug,  oxidised  copper 
wire  (7  cm.),  reduced  copper  wire  (11  cm.),  asbestos 
plug,  copper  oxide  powder  mixed  with  the  sub- 
stance and  a  little  potassium  chlorate  (4  cm.), 
oxidised  copper  wire  (5  cm.).  The  tube  is  sup- 
ported at  either  end  on  gutters  lined  with  asbestos 
in  such  a  manner  that  the  portion  of  it  which  con- 
tains the  reduced  copper  is  exposed  to  the  direct 
heat  of  the  burner.  This  part  of  the  tube  is  doubly 
protected  on  its  upper  side.  After  displacement  of 
the  air  by  carbon  dioxide,  the  reduced  copper  is 
raised  to  a  white  heat  and,  after  a  second  passage 
of  carbon  dioxide,  the  heating  of  the  remainder  of 
the  tube  is  effected  very  gradually  in  the  direction 
towards  the  reduced  copper.  In  this  manner,  the 
decomposition  of  oxides  of  nitrogen  is  effected  with 
certainty.  Substances  may  be  dried  conveniently 
in  a  hollow  copper  cube  the  walls  of  which  are  1  cm. 
thick  and  65  cm.  long  internally. — H.  W. 


52GA 


Ol.'  XXIII.— ANALYSIS. 


[July  15,  1922. 


( topper  and  iron ;  Estimation  of in  the  presence 

af  one  another  by  means  of  trivalent  titanium. 
W.  M.  Thornton,  jun.  J.  Anier.  Cheni.  Soc., 
1922,  44,  998—1001.     (C/.  J.,  1921,  281  A.) 

A  MIXTURE  of  cupric  and  ferric  sulphates  in  less 
than  100  c.c.  of  water  is  acidified  with  10  c.c.  of 
sulphuric  acid  (l.'l),  cooled  to  15°  C,  and  treated 
with  a  quantity  of  10%  ammonium  thiocyanate 
solution  (2'5 — 50  c.c.)  depending  on  the  amount  of 
copper  anticipated.  The  solution  is  titrated  with  a 
standard  solution  of  titanium  trisulphate  until  the 
pink  colour  just  vanishes.  The  titre  gives  the  sum 
of  the  copper  and  iron  present.  The  whole  is 
heated  to  incipient  ebullition  to  coagulate  the 
cuprous  thiocyanate,  cooled  and  filtered.  The 
precipitate  is  thoroughly  washed  with  cold  water, 
and  the  filtrate  and  washings  cooled  to  15°  C.  The 
solution  has  by  this  time  probably  become  pink 
again  due  to  air  oxidation.  If  so,  the  colour  is 
bleached  by  the  careful  addition  of  titanium  tri- 
sulphate and  sufficient  silver  nitrate  (2'5 — 5'0  c.c. 
of  25%  solution)  is  added  to  precipitate  the  whole 
of  the  thiocyanate.  The  ferrous  iron  is  then 
titrated  with  a  standard  solution  of  potassium  per- 
manganate. The  method  is  accurate  and  trust- 
worthy, but  the  precaution  of  testing  the  titanium 
solution  for  iron  must  be  taken  and  if  such  is  found 
the  permanganate  titre  corrected  for  this  amount. 

—J.  F.  S. 

Arsenic;   Qualitative  reactions  for  .       I.   M. 

Kolthoff.   Pharm.  Weekblad,   1922,   59,  334—350. 

The  reaction  of  Mayencon  and  Bergeret  (J.  Chem. 
Soc.,  1874,  1008;  reduction  to  arsine  and  detection 
with  mercuric  chloride  paper),  under  suitable 
conditions  will  detect  C'001  mg.  arsenic  in 
1  c.c.  That  of  Bougault  (reduction  to  free  arsenic 
by  means  of  hvpophosphite)  will  detect  0"002  mg. 
(67.  J.C.S.,  1922,  ii.,  455.)^S.  I.  L. 

Arsenic     reaction;      Aluminium      for     the     . 

(!.  Homijn.    Chem.  Weekblad,  1922,  19,  177—179. 

In  the  Mayencon  and  Bergeret  reaction  (cf.  Kolt- 
hoff,  supra)  aluminium  is  more  suitable  than  zinc. 
(Cf.  J.C.S.,  1922,  ii.,  455.)^S.  I.  L. 

Antimony;    Detection    of   in   analysis.        T. 

Sabalitschka  and  H.  Schmidt.  Ber.  deuts. 
Pharm.  Ges.,  1922,  32,  132—135. 

To  obviate  the  necessity  of  using  platinum,  anti- 
mony may  be  detected  in  the  solution  of  the  sul- 
phides of  antimony  and  tin  in  concentrated 
hydrochloric  acid  as  ordinarily  obtained  in  the 
course  of  analysis,  by  diluting  a  portion  of  this 
solution  with  an  equal  volume  of  water,  adding  a 
piece  of  arsenic-free  zinc  to  the  cooled  liquid,  in  a 
test  tube,  and  testing  tho  issuing  gases  with  a 
piece  of  filter  paper  freshly  moistened  with  a  10% 
solution  of  silver  nitrate.  In  presence  of  consider- 
able amounts  of  antimony  the  paper  immediately 
becomes  black  on  the  under  side,  or  within  2  mins. 
with  only  minute  amounts.  A  slight  brownish 
coloration  is  not  to  be  taken  into  account;  and  it 
is  important  that  the  silver  nitrate  solution  is  not 
too  concentrated,  otherwise  small  amounts  of 
antimony  hydride  may  cause  only  a  brownish- 
yellow  coloration  instead  of  black  as  is  obtained  with 
dilute  silver  solutions.— G.  P.  M. 

Hock  dust  in  air;  The  sugar-tube  method  of  deter- 
mining — .  A.  C.  Fieldner,  S.  It.  Katz,  and 
K.  S.  Longfellow.  U.S.  Bureau  of  Mines, 
Tech.  Paper  278,  1921.    40  pages. 

A  DETERMINATION  of  the  dependence  of  the  efficiency 
of  sugar  niters  for  very  fine  particles  in  air  upon 
such  factors  as  the  size  of  filter  tube,  depth  of  sugar 
layer,  size  ol  sugar  granules,  and  presence  of  mois- 


ture. Two  methods  of  testing  were  employed.  In 
one  a  suspension  of  tobacco  smoke  or  silica  dust  was 
passed  through  the  filter  and  the  amount  of  smoke 
or  dust  present  in  the  stream  prior  to  and  after 
passing  the  filter  ascertained  optically  by  means  of 
the  Tyndall  effect.  In  the  other  method,  the  filter- 
ing efficiency  was  determined  gravimetrically.  The 
following  results  were  obtained.  The  filtering 
efficiency  of  sugar  tubes  increases  with  the  diameter 
of  the  tubes,  and  decreases  with  increasing  velocity 
of  air.  Sugar  wetted  with  water  or  35%  alcohol  and 
tested  as  regards  filtering  efficiency  with  silica  dust, 
showed  an  average  increase  of  4%  for  water  and 
5%  for  the  alcohol  by  the  optical  method.  The 
filtering  efficiency  of  the  sugar  increased  with 
increasing  fineness.  The  efficiency  of  a  layer  of 
granulated  sugar  1  inch  deep,  tested  by  means  of 
tobacco  smoke  was  14  % ,  while  the  efficiency  of  a 
layer  4  inches  deep  was  38%.  Tests  by  the  gravi- 
metric method  with  silica  dust  showed  higher 
efficiencies  than  tests  by  the  optical  method.  For 
determining  the  filtering  efficiencies  of  sugars, 
blank  tests  must  be  run  for  every  lot.  Tests  by  the 
gravimetric  method  showed  filtering  efficiencies 
ranging  from  70%  to  95%.  A  tube  containing  65  g. 
of  pulverised  sugar,  48-  to  150-me6h  size,  possessed 
an  efficiency  greater  than  92%  against  tobacco 
smoke  for  15  minutes. — J.  S.  G.  T. 

Ammoniacal  nitrogen  in  nitrogenous  organic  sub- 
stances; Determination  of  and  particularly 

in  proteins  and  their  products  of  hydrolysis.  J. 
Froidevaux.  Comptes  rend.,  1922,  174,  1238— 
1240. 

To  15  c.c.  of  the  solution  under  examination  35  c.c. 
of  60%  aqueous  sodium  hydroxide  is  added,  and  air, 
carefully  freed  from  ammonia,  is  bubbled  through 
at  the  ordinary  temperature  at  the  rate  of  150 — 200 
bubbles  per  minute.  The  issuing  air  is  passed 
through  a  known  volume  of  standard  acid,  which  is 
renewed  from  time  to  time.  The  acid  is  titrated 
and  the  amount  of  ammonia  absorbed  is  plotted 
against  the  time.  The  resulting  curve  consists  of  a 
line  sharply  inclined  to  the  time  axis  and  one 
slightly  inclined  to  this  axis,  the  two  being  joined 
by  a  curved  portion.  The  first  line  corresponds  to 
ammoniacal  nitrogen  and  the  second  to  ammoniacal 
nitrogen  coming  from  the  slow  decomposition  of 
protein  or  amino-acids,  the  curved  portion  being  a 
combination  of  the  two.  The  two  straight  lines  are 
produced  and  their  junction  represents  the  total 
ammoniacal  nitrogen  originally  present  as  such  in 
the  sample. — W.  G. 

Tyrosine,    tryptophan,    and    cystine;    Colorimctric 

methods  for  the  separate   estimation  of  in 

proteins.  O.  Folin  and  J.  M.  Looney.  J.  Biol. 
Chem.,  1922,  51,  421—434. 

Certain  defects  in  the  method  of  Folin  and  Denis 
(J.  Biol.  Chem.,  1912,  12,  239)  for  the  estimation  of 
tyrosine  are  remedied,  and  an  extension  is  made  to 
include  the  separate  estimation  of  tryptophan  and 
cystine.  When  tryptophan  is  to  be  estimated,  the 
protein  is  hydrolysed  by  means  of  barium  hydroxide 
to  avoid  loss  due  to  huniin  formation.  In  the  cl 
of  cystine,  which  is  decomposed  by  boiling  alkalis. 
acid  hydrolysis  is  used.  For  tho  estimation  of 
tyrosine  and  tryptophan,  the  hydrolysato,  which 
must  contain  between  35%  and  7'5%  of  sulphuric 
acid,  is  filtered  from  barium  sulphate,  and 
tryptophan  is  precipitated  from  an  aliquot  i>:irt  ol 
the  filtrate  by  the  addition  of  Hopkins  and  Cole's 
mercuric  sulphate  reagent  (a  solution  containing 
10%  of  mercuric  sulphate  and  5%  of  sulphuric  acid). 
After  separation  by  centrifuging,  tyrosine  w 
estimated  colorimetrically  in  the  supernatant  liquid 
by  means  of  Folin  and  Denis's  phenol  reagent  in  the 
presence  of  sodium  carbonate  and  sodium  cyanide. 


Vol.  XLI.,  No.  13] 


PATENT    LIST. 


527  a 


The  estimation  of  tryptophan  is  made  similarly  in 
the  solution  obtained  by  dissolving  the  mercuric 
sulphate  precipitate  in  sodium  cyanide.  In  the  case 
of  cystine,  sodium  carbonate  is  added  to  the 
hydrolysate,  and  the  cystine  is  reduced  by  means  of 
sodium  sulphite.  The  colour  produced  on  addition 
of  the  uric  acid  reagent  is  then  compared  with  a 
standard.  Results  of  the  application  of  the  method 
to  a  number  of  proteins  are  given.  (The  phenol 
reagent  is  prepared  by  boiling  15  g.  of  molybdic 
oxide  and  10  g.  of  sodium  hydroxide  in  200  c.c.  of 
water,  adding  100  g.  of  sodium  tnugstate,  50  c.c. 
of  85%  phosphoric  acid,  100  c.c.  of  concentrated 
hydrochloric  acid,  and  enough  water  to  bring  the 
volume  to  800  c.c,  boiling  the  mixture  for  10  hrs.  in 
a  flask  fitted  with  a  reflux  condenser,  then  removing 
the  condenser,  adding  a  few  drops  of  bromine  to 
decolorise  the  solution,  boiling  off  the  excess  of 
bromine,  cooling,  filtering,  and  diluting  to  1  litre.) 

-E.  S. 

See  also  pages  (a)  493,  Benzene  in  petroleum 
spirit  (Schwarz).  497,  Acidity  and  alkalinity  in 
cotton  fabrics  (Coward  and  Wigley).  499,  Thio- 
sulphates  and  polythionates  (Sieber) ;  Polythionates 
(Kurtenacker  and  Fritsch).  500,  Vanadic  acid 
(McCay  and  Anderson).  503,  Phosphorus  in  iron 
(Graziani  and  Losana).  504,  Chromium  and  nickel 
in  steel  (Simion) ;  Technical  nickel  (Breisch  and 
Chalupny).  508,  Microchemical  fat  analysis 
(Liihrig).  509,  Sublimed  white  lead  (Paxton).  511, 
Sulphates  in  soil  (Hirst  and  Greaves).  512,  Starch 
in  starch  pulp  (Parow).  514,  Acids  in  wine  (Von 
Fellenberg).  515,  Sulphites  in  foods  (Chapman) ; 
Allyl  mustard  oil  (Luce).  517?  Alkaloids  (Herzig) ; 
Ambergris  (Cole).  518,  Mononitrophenols  etc.  (Mar- 
gosches  and  Vogel).  519,  Maleic  acid  (Weiss  and 
Downs);  Acetic  anhydride  (Reclaire) ;  Ointments 
(Evers  and  Elsdon).  524,  Application  of  capillary 
attraction  (Lumiere) ;  Detonating  and  priming 
mixtures  (Taylor  and  Rinkenbach). 

Patent. 

Carbon  dioxide  and   combustible   gases  containing 

carbon;  Means  for  quantitative  detection  of . 

Victoria   Falls  and  Transvaal   Power   Co.,   Ltd., 
and  W.  O.  Andrews.     E.P.  179,696,  18.2.21. 

Carbon  dioxide  present  in  gaseous  mixtures  or  pro- 
duced by  combustion  of  the  latter  is  determined  by 
absorption  in  an  aqueous  solution  containing  a 
coloured  indicator  and  subsequent  comparison  of 
the  colour  with  standard  tints. 


Patent  List. 

.  The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application  and  in  the  case  of 
Complete,  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given :  they  are  on 
lale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
late  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Boberg,  Testrup,  and  Techno-Chemical  Labora- 
tories.   Drying  moist  materials.     16,818.     June  17. 

British  Thoni6on-Houston  Co.  (General  Electric 
--o).  Obtaining  visible  temperature  records.  17,014. 
Tune  20. 


Dickson  and  Mann,  Ltd.,  and  Thornton. 
Apparatus  for  wet  separation  of  granular  materials. 
16,859.     June  19. 

Dunlop  (Reid).     Furnaces.     16,637.     Juno  15. 

Hase.     Pyrometers.      17,461.     June  24. 

Knowles.     Hydro-extractors.     17,194.     June  22. 

Mauclore.  Plant  for  manipulating  liquids.  16,945. 
June  19.    (Fr.,  20.6.21.) 

Morison.  De-aerating  or  degasifyine  liquids. 
16,479.     June  14. 

Nordstrom.     Drying-plants.     17,179.     June  21. 

Powdered  Fuel  Plant  Co.  Pulverising  or  grind- 
ing apparatus.     17,125.    Juno  21.     (Fr.,  8.3.22.) 

Power  Specialty  Co.  Furnaces  for  oil  stills, 
superheaters,  etc.    16,740.    June  16.    (U.S.,  2.7.21.) 

Prior.  Agitators  and  mixing-devices.  16,552. 
June  15. 

Smith.     Furnaces.     17,008.    Juno  20. 

Sweetland.     Distillators.     16,943.     June  19. 

Complete  Specifications  Accepted. 

34,919  (1920).  Bohrmann.  Evaporation  of 
liquids.     (181,406.)     June  28. 

167  (1921).  Chenard.  Apparatus  for  fractional 
distillation.     (156,218.)    June  21. 

662  (1921).  Bramwell.  Filtration  of  liquids. 
(181,044.)     June  21. 

3965  (1921).  Thoresell  and  Troell.  Agglomerating 
pulverous  material.     (181,413.)     June  28. 

6863  (1921).  Brown  and  Coldrey.  Drying-appara- 
tus.   (181,082.)    June  21. 

7115  (1921).  Dunlop  Rubber  Co.  (Lewis  and 
Green).  Apparatus  for  drying  materials  carrying 
a  volatile  inflammable  solvent  and  recovering  the 
solvent.     (181,100.)     June  21. 

7457  (1921).  Mauss.  Vacuum  filtration  of 
colloidal  matter  from  liquid  mixtures.  (181,123.) 
June  21. 

7818(1921).  HeylandtGes.,  and  Uuruh.  Cooling 
and  liquefying  air  and  other  gases.  (167,144.) 
June  21. 

8019  (1921).  Metallbank  u.  Metallurgist  Ges., 
and  Gensecke.  Operation  of  evaporating  plants 
heated  with  compressed  vapours.  (181,482.)  June  28. 

8296  (1921).  _  Merz  and  McLellan,  Weeks,  and 
Baker.     Heat  interchangere.     (181,501.)     June  28. 

8303(1921).  Steigner.   Kilns.  (181,502.)  June  28. 

11,860  (1921).  Reynolds,  Dickin,  and  Kenyon. 
Separation  or  grading  of  powdered  materials  and 
treatment  thereof  by  air  or  other  gases  or  vapours. 
(181,560.)    June  28. 

25,247  (1921).     Lodge  Fume  Co.    See  XI. 

27,841  (1921).  Powdered  Fuel  Plant  Co.  Pul- 
verising or  grinding  apparatus.    (181,290.)  June  21. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE   DISTILLATION; 

HEATING;    LIGHTING 

Applications. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).  Filaments  for  electric  incandescent  lamps. 
17,358.    June  23. 

Brown.    Retorting  shale  oil.     16,524.     June  14. 

Browne.  Carbonisation  and  distillation  of  coal 
etc    16,816.    June  17. 

Elektrizitatswerk  Lonza.  Purification  of  acetylene. 
16,389.    June  13.    (Switz.,  18.8.21.) 

Gas  Research  Co.  Gas-producer  system.  17,372. 
June  23.    (U.S.,  30.7.21.) 

General  Electric  Co.  Manufacture  of  filaments 
for  electric  incandescent  lamps.  17,161.  June  21. 
(Ger.,  13.7.21.) 

General  Motors  Research  Corp.  Fuels.  17,373. 
June  23.     (U.S.,  15.4.22.) 

Higginbotham.  Production  of  nydrocarbons. 
16,364.     Juno  13. 


628  a 


PATENT   LIST. 


[July  15,  1922. 


Munn,  and  Whitehall  Petroleum  Corp.  Apparatus 
for  chemically  treating  mineral  oil  products.  17,158. 
June  21. 

Power  Specialty  Co.     16,740.     See  I. 

Tooley  and  Tooley.  Retorts  for  distilling  coal 
etc.     16,621.     June  15. 

Whitehall  Petroleum  Corp.  (Greenspan).  Purifi- 
cation of  hydrocarbons.     17,273.     June  22. 

Complete  Specifications  Accepted. 

34,419  (1920).  Persch.  Treatment  of  petroleum 
and  other  hydrocarbon  oils.     (181,034.)    June  21. 

34,473  and  36,183  (1920)  and  2372  (1921).  Rigby. 
Drying  peat  etc.    (181,035.)    June  21. 

34,874-5  (1920).  Helps.  Uas  manufacture. 
(181,403-4.)     June  28. 

1510  (1921).  Jackson.  Improvement  of  inferior 
brown  coals  etc.     (157,794.)     Juno  21. 

1511  (1921).  Jackson.  Production  of  a  fuel  for 
use  as  a  gas-coal  substitute.     (157,795.)     June  21. 

2978  (1921).  Haddan  (Torfverwertungs-ges  Pohl 
u.  Von  Dewitz).  Dry  distillation  and  coking  of 
raw  peat  etc.     (158,513.)    June  28. 

4642  (1921).  Cumberland  Coal  and  Chemicals, 
Ltd.,  and  others.    See  VII. 

7139  (1921).  Tulloch  and  Smith.  Treatment  of 
gas.     (181,102.)    June  21. 

7557  (1921).  Ginet.  Treatment  of  bituminous 
shales.     (181,126).     June  21. 

10,828  (1921).     Trent  Process  Corp.     See  XII. 

13,180  (1921).  Booer,  and  District  Chemical  Co. 
Materials  for  purifying  acetylene.  (181,571.) 
June  28. 

14,058  (1922).  Helps.  Gas  manufacture. 
(181,665.)    June  28. 


III.— TAR  AND  TAR  PRODUCTS. 

Applications. 
Ellis,  Goskar,  Kissock,  and  Vivian.     Treatment 
of  tar  etc.     16,704.     June  16. 
Higginbotham.     16,364.     See  II. 

IV.— COLOURING   MATTERS   AND   DYES. 

Applications. 

Bloxam  (Chem.  Fabr.  Griesheim-Elektron). 
Manufacture  of  azo  dyestuffs.     17,272.     June  22. 

Ransford  (Cassella  u.  Co.).  Production  of  dye- 
stuffs  containing  sulphur.      16,927.     June   19. 

Complete  Specification  Accepted. 
14,161  (1921).    Johnson.    See  XIII. 


V.— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Briggs,  Yorke,  and  British  Cellulose  and  Chem. 
Manuf.  Co.  Apparatus  for  producing  textile 
products.     16,597.     June  15. 

Dreaper.  Apparatus  for  filtering  solutions  for 
making  artificial  silk  etc.     17,186.     June  22. 

Erikson.  Soda  recovery  process  in  sulphate 
paper-pulp   manufacture.      16,687.      June   16. 

Haigh.  Carbon  etc.  coated  papers.  17,456. 
Juno  24. 

Lilienfeld.  Manufacture  of  cellulose  derivatives. 
16,307,  16,308,  16,310.    June  12.    (Austria,  13.6.21.) 

Lilienfeld.  Manufacture  of  artificial  threads  and 
textiles.     16,309.     June  12.     (Austria,  13.6.21.) 

Marriott.  Manufacture  of  artificial  6ilk.  16,406. 
June  13. 

Ott.  Composition  for  coating  celluloid  films  etc. 
17,173.     June  21. 


Roberts, 
fabrics  etc. 


Steam-heated     drying     cylinders     for 
16,967.     June  20. 


Complete  Specifications  Accepted. 

852  (1921).  Harnist.  Treatment  of  crude  cellu- 
lose.    (156,777.)     June  28. 

8282  (1921).  Carpmael  (Bagley  and  Sewell  Co.). 
Manufacture  of  paper.     (181,140.)    June  21. 

27,245  (1921).  Tomlinson-Haas,  Ltd.,  and  Smith. 
Apparatus  for  drying  textile  materials.  (181,286.) 
June  21". 


VI— BLEACHING;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Auchinachie.  Waterproofing  fabrics.  17,338. 
June  23. 

Dunnachie.  Washing,  bleaching,  and  /or  dyeing. 
16,843.     June  19. 

Halter.    Dyeing  machines  etc.    16,295.    June  12. 

Kent  and  Tither.  Mercerising,  bleaching,  dye- 
ing, or  finishing  cloth.     17,333.     June  23. 

Lilienfeld.  Dyeing  alkylcelluloses.  16,306. 
June  12.     (Austria,  13.6.21.) 

Wallis.  Calico-printing  machines.  17,086. 
June  21. 

Complete  Specifications  Accepted. 

8591  (1921).  Lee  and  Sons,  and  Pinder.  Machines 
for  dyeing  hanks  of  yarn  etc.     (181,506.)     June  8. 

11,272  (1921).  thornber  and  Henshilwood. 
Machines  for  bleaching,  dyeing,  finishing,  etc. 
fabrics.     (181,552.)     June  28. 


VII— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC    ELEMENTS. 

Applications. 

Baumgartner.  Manufacture  of  chromate  of  soda. 
16,651.     June  15. 

Chem.  Fabr.  Griesheim  Elektron.  Production  of 
basic  magnesium  carbonate.  16,271.  June  12. 
(Switz.,  11.6.21.) 

Chem.     Fabr.     Weissenstein.       Manufacture    of 
hydrogen   peroxide.     17,381.     June  23.     (Austria, 
3*8  21  ) 
'  Erikson.    16,681.    See  V. 

Hurter.  Manufacture  of  alumina  from  aluminium 
sulphate.     16,640.     June  15. 

Jacobson.  Process  of  making  anhydrous  metallic 
chlorides.     16,197.     June  12.     (U.S.,  10.6.21.) 

Johnson  (Badische  Anilin  u.  Soda  Fabr.)  Produc- 
tion of  formic  acid  derivatives.     17,032.     June  20. 

Jones.     16,528.     See  XIII. 

Robinson.  Purification  or  refining  of  sulphur. 
16,289.     June.     12. 

Complete  Specifications  Accepted. 

4419  (1921).  Deuts.  Gold-  u.  Silber-Scheidcanstal  . 
and  Liebknecht.  Manufacture  of  prussic  acid. 
(181,058.)    June  21. 

4642  (1921).  Cumberland  Coal  Power  and 
Chemicals,  Ltd.,  West,  and  Jaques.  Production 
of  hydrogen.     (181,062.)     June   21. 

7898  (1921).  Stubbs.  Bleaching  stained  earthy 
minerals.      (181,132.)      June   21. 

8090  (1921).  Cederberg  and  Backstrom.  Catalytic 
oxidation  of  ammonia.     (181,486.)     June  28. 

9025  (1921).  Chem.  Fabr.  Griesheim-Elektron, 
and  Reitz.  Rendering  calcium  hypochlorite  stable. 
(181,153.)     June  21. 

10,189  (1921).  L'Air  Lie,uide.  Synthesis  of 
ammonia.     (161,195.)     June  21. 

19,142  (1921).  Kelly.  Production  of  phosphoric 
acid.     (181,255.)     June  21. 


Vol.   XLI.,  Ko.  13.] 


PATENT  LIST. 


529  a 


VIII.— GLASS;    CERAMICS. 
Application-. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Coating  glass  surfaces.     17,165.     June  21. 

Complete  Specification  Accepted. 

7149  (1921).  Haihvood.  Glass  manufacture. 
(181,434.)    June  28. 

IX.— BUILDING    MATERIALS. 

Applications. 

Brereton.  Manufacture  of  compositions  for 
paving,  roofing,  etc.     17,249.     June  22. 

Claxton.  Manufacture  of  road  paving  material. 
17,354.    June  23. 

X— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Clerc  and  Nihoul.  Extraction  of  tin.  16,636. 
June   15.     (Fr.,   15.6.21.) 

Ellsworth.  Recoverv  of  zinc  from  complex  ores. 
17,159.     June  21.     (U.S.,  12.7.21.) 

Fertigguss  Ges.  Zinc  allov  for  casting  in  dies  or 
frills.     17,244.     June  22.     ('Ger.,  25.6.21.1 

General  Electric  Co.     17,161.     See  II. 

General  Electric  Co.  Transformation  of  crystal 
structure  of  drawn  wires  of  tungsten  etc.  17,162. 
June  21.     (Ger.,  13.7.21.) 

General  Electric  Co.  Manufacture  of  tungsten 
etc.     17,163.    June  21.     (Ger.,  13.7.21.) 

Hadneld.   Manufacture  of  steel.   16,948.  June  19. 

Herman.  Coating  and  treating  materials  having 
an  iron  base.     17,260.    June  22. 

Markham,  and  Staveley  Coal  and  Iron  Co.  Blast- 
furnace slag.     16,291.     June  12. 

Marks  (Electro  Metallurgical  Co.).  Zirconium 
Hoys.     17,261.     June  22. 

Metzl.  Treatment  of  gold-  and  silver-bearing 
intimony  ores.     16,695.     June  16. 

Mitsubishi  Zosen  Kabushiki  Kaisha.  Allov  for 
urbinc  blades.    17,263.    June  22.    (Japan,  28.7.21.) 

Saltrick.     Alloy  castings.     17,019.     June  20. 

Wild  and  Wild.     Manufacture  of  allov  steels  and 
Irons.    17,125.    June  21. 
'  Wood  and  Wood.     Cupolas.     17,413.     June  24. 

Complete  Specifications  Accepted. 

34,102  (1920).  Andrews.  Rustproofing  articles 
f  iron  and  steel.     (181,399.)     June  28. 

34,707   (1920).      White    (Valley    Holding   Corp.). 
(anufacture  of  magnetic  allov  sheets.     (181,401  ) 
llune  28. 

4230  (1921).     Rosthorn.     Manufacture  of  copper 

loys.     (158,882.)     June  21. 

7482  (1921).  Stockport  Furnaces,  Ltd..  Duek- 
,)rth,  and  Mead.     Gas-  or  oil-heated  furnaces  of 

e  crucible  type.     (181,452.)     June  28. 

7906  (1921).     Ampere  Ges.,   Rothe,   and   Diefen- 

'aler.      Manufacture    of    molybdenum     or     iron- 

ilyhdenum   alloys.     (160,143.)     June  28. 

16,163  (1921).     Elmore,  and  Chemical  and  Metal- 
■'•gical  Corp.     Treatment  of  lead-bearing  mattes 
<U1,239.)     June  21. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

■"uller,  and  Fuller's  United  Electric  Works.  Gal- 
vnc  batteries.     17,150.     June  21. 

ones.     Electric  furnace.     16,351.     June  13. 

Jyberg.  Galvanic  cells.  16,301.  June  12. 
v;eden,  28.3.22.) 

tephens  (Grundy).    Ozonisers.    16,925.    June  19. 


Complete  Specifications  Accepted. 

20,059  (1921).  Cheney.  Storage  battery  electro- 
lyte.    (181,630.)     June  28. 

25,247  (1921).  Lodge  Fume  Co.  (Metallbank  u. 
Metallurgische  Ges.).  Insulator  for  electrodes  of 
electrical   gas   purifiers.      (181,284.)     June  21. 

XII.— FATS;    OILS;    WAXES. 

Applications. 

Eppenberger.  Rendering  fat-containing  granular 
products  impalpable.  16,623.  June  15.  (Ger., 
19.4.22.) 

Glabau  and  Travis.  Emulsions  and  method  of 
preparing  same.    17,369.    June  23.    (U.S.,  17.3.22.) 

Levey.  Continuous  deodorisation  of  edible  oils 
and  fats.     16,213.     June  12. 

Rooke.  Extraction  of  tallow,  grease,  oil,  etc. 
from  bones,  fish,  skins,  etc.     17,458.     June  24. 

Rooke.  Digesters,  retorts,  and  drying-apparatus 
for  extracting  fat.     17,459.     June  24. 

Complete  Specifications  Accepted. 

1322  (1921).  Du  Pont  de  Nemours  and  Co.  De- 
odorising blown  or  polvmerised  vegetable  or  animal 
oils.     (157,401.)     June'  28. 

6787  (1921).  Douglas  and  Sons,  and  Nicol. 
Treatment  of  edible  fats.     (181,077.)     June  21. 

890S  (1921).  Gleitz.  Removing  free  acids  from 
glvcerides.     (181,509.)     June  28. 

10,828  (1921).  '  Trent  Process  Corp.  Separation 
of  oils.     (167,738.)     June  21. 

XIII— PAINTS;    PIGMENTS;    VARNISHES; 
RESINS. 

Applications. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Plastic  compositions.     17,015.     June  20. 

Consort,  f.  Elektrochem.  Ind.  Improving  arti- 
ficial resins.     17,380.     June  23.     (Ger.,  29.6.21.) 

Delcleve  and  Dessemond.  Manufacture  of 
Prussian  blue.     16,603.     June  15.     (Fr.,  16.6.21.) 

Exlev,  McGregor,  and  Rimmer.  Paint  etc. 
16,200.'    June  12. 

Jones.  Manufacture  of  a  zinc-oxide  substance. 
16,528.     June  14. 

Moosman  and  Trevor.  Manufacture  of  paints. 
16.270.     June  12. 

•  Hi.  Waterproofing  composition.  17,174.  June  21. 

Complete  Specifications  Accepted. 

13.172  (1921).  Dreyfus.  Manufacture  of  arti- 
ficial resin  products.     (181,575.)     June  28. 

14,161  (1921).  Johnson  (Badische  Anilin  u.  Soda 
Fabr.).  Manufacture  of  pigment-colours.  (181,584.) 
June  28. 


XIV.— INDIA-RUBBER ;    GUTTA-PERCHA. 

Application. 

Carpmael  (Baver  u.  Co.).  Treatment  of  caout- 
chouc etc.     16,926.     June  19. 

Fall.     Curing  rubber  latex.     17,027.     June  20. 

Lennard.  Incorporating  rubber  with  tar.  17,046. 
June  20. 

Marter.  Treatment  of  indiarubber  etc.  17,038. 
June  30. 

XV.— LEATHER;    BONE;     HORN;    GLUE. 

Applications. 
Hell.    Tanning  skins  and  hides.    17,396.    June  23. 
Moeller.     Bating  and   liming  hides  etc.     16,516. 
June  14. 

Rooke.     17,453.     See  XII. 


530  a 


PATENT    LIST. 


[July  15,  1922. 


Complete  Specifications  Accepted. 

288  (1921)  Chem.  Fabr.  u.  Asphaltwerke. 
Tanning  materials.     (156,254.)     June  21. 

626  (1921).  Niessen.  Extraction  of  glue  by 
means  of  water.     (156,645.)     June  28. 

6221  (1921).  Carmichael  and  Ockleston.  Tanning. 
(181,067.)     June  21. 

XVI.— SOILS ;    FERTILISERS. 

Complete  Specifications  Accepted. 

6434  (1921).  Lo  Monaco.  Fertilisers.  159,481. 
June  21. 

18,582  (1921).  Niedenzu.  Manufacture  of  arti- 
ficial nitrogenous  fertilisers.  (166,887.)     June  28. 

XVII.— SUGARS ;    STARCHES;    GUMS. 

Complete  Specifications  Accepted. 

11,767  (1921).  Courtaulds,  Ltd.,  and  Stokes. 
Manufacture  of  compounds  or  mixtures  of  starch 
and  starchy  matter  and  sulphuric  acid.  (181,197.) 
June  21. 

11,772  (1921).  Courtaulds,  Ltd.,  and  Lloyd. 
Manufacture  of  compounds  or  mixtures  of  starch 
and  sulphuric  acid.     (181,198.)     June  21. 

XVIII.— FERMENTATION   INDUSTRIES. 

Complete  Specifications  Accepted. 

6636  and  28,355  (1921).     Jensen  (Corby).     Treat- 
ing and  preparing  yeast 
Juno  21. 


(181,076  and  181,293.) 


XIX— FOODS;  WATER  PURIFICATION; 
SANITATION. 

Applications. 

Brettell  (Lepetit).  Manufacture  of  pectin  sub- 
stances for  food  preparations.  16,515  and  17,076. 
June  14  and  21. 

Glabau  and  Travis.  Baking  compounds.  17,370. 
June  23.     (U.S.,  24.3.22.) 

Glabau  and  Travis.  Vitamin-bearing  products. 
17,371.     June  23.     (U.S.,  25.3.22.) 

Hepburn.     Softening  water.     17,057.     June  20. 

Loring.     Manufacture  of  flour.     16,960.   June  20. 

Martin.     Food  products.     16,405.     June  13. 

Torley.  Filtering-material  for  water  etc.  16,251. 
June  12. 


Complete  Specifications  Accepted. 

12,260  (1920).  Watson,  Jones,  and  Woodlands, 
Ltd.     Manufacture  of  bread.      (181,397.)     June  28. 

6474  (1921).  Waite  and  Boldy.  Apparatus  for 
separating  the  solid  matter  from  trade  effluent  etc. 
(181,071.)     June  21. 


XX—  ORGANIC   PRODUCTS;    MEDICINAL 
'SUBSTANCES;    ESSENTIAL   OILS. 

Applications. 

Best  and  Collip.  Preparation  of  extracts  of 
pancreas.     16,360.     June  13. 

Blagden,  and  Howards  and  Sons.  Manufacture 
of  thymol.     16,632.     June  15. 

Consort,  f.  Elektrochem.  Ind.  Manufacture  of 
esters  and  ethers  of  etlrylideneglvcol  and  vinyl  alco- 
hol.    16,898.     June  19.     (Ger.,  23.6.21.) 

Corbett  and  Habershon.  Preparation  of  vaccines. 
16,932.     June  19. 

Complete  Specification  Accepted. 

17,799  (1921).  Napp  (Hoffmann  -  La  Roche  & 
Co.).  Manufacture  of  CC-isopropylallylbarbituric 
acid.     (181,247.)     June  21. 


XXL— PHOTOGRAPHIC   MATERIALS   AND 
PROCESSES. 

Application. 

Dehn  (Pvrocolour  Corp.).  Colour  photography. 
16,242.     June  12. 

Complete  Specifications  Accepted. 

6901  (1921).  Luboshey.  Sensitive  plates  and 
films  for  X-ray  photography.     (181,087.  June  21. 

7646  (1921).  Hall.  Machines  for  sensitising 
papers  and  other  fabrics.     (181,460.)     June  28. 

XXIIL— ANALYSIS. 

Applications. 

Newman.  Means  for  detecting  and  indicating 
presence  of  choke-damp  and  fire-damp  in  mines  etc. 
17,178.     June  21. 

Sandy  and  Turquand.  Apparatus  for  detecting 
presence  of  inflammable  etc.  gases.   16,231.  June  12. 

Turquand.  Means  for  indicating  the  presence  of 
gas  or  of  acid  or  alkaline  properties  in  air,  water, 
etc.     17,357.     June  23. 


Vol.  XLI.,  No.  14.] 


ABSTRACTS 


[July  31,  1922. 


I.— GENERAL;  PLANT;  MACHINERY. 

Membrane  filters.    Jander.    See  XXIII. 

Patents. 

Chemical  and  physical   operations ;   Apparatus  for 

use  in  connection  with  .     A.  T.  Stuart  and 

G.  N.  Middleton,  Assrs.  to  The  Toronto  Power 
Co.,  Ltd.  U.S.P.  1,417,585,  30.5.22.  Appl., 
5.7.17.    Renewed  27.12.20. 

An  apparatus  for  carrying  out  reactions  at  high 
temperatures  and  pressures  is  constructed  as  a 
closed  chamber  heated  by  electric  currents  in  the 
walls,  which  are  of  high  electrical  resistance  and 
prevented  from  bursting  by  pressure-resisting 
means  surrounding  them. — B.  M.  V. 

Dryer.    F.  A.  Martoccio.    U.S.P.  1,418,010,  30.5.22. 

Appl.,  2.8.20. 

A  casing  is  divided  by  vertical  partitions  into  a 
number  of  drying  chambers  to  which  air  is  delivered 
by  a  fan  mounted  in  a  chamber  at  one  end  of  the 
casing.  The  partitions  adjacent  to  the  fan  chamber 
are  spaced  from  the  top  and  bottom  of  the  casing 
to  form  air-circulating  passages,  and  the  drying 
chamber  remote  from  the  fan  chamber  is  formed 
with  a  passage  between  a  partition  and  the  end  wall 
of  the  casing.  The  upper  air  passage  is  fitted  with 
a  baffle  which  compels  the  air  to  pass  downwards  in 
the  drying  chamber  remote  from  the  fan,  and  the 
wall  of  this  chamber  is  provided  with  exhaust  ports. 

— H.  H. 

Dehydrating  material;  Method  of  and  apparatus  for 

.     F.  Mans,  Assr.  to  S.  J.  Spoelstra.     U.S.P. 

1,418,386,  6.6.22.     Appl.,  3.2.21. 

'  The  apparatus  consists  of  an  air-cooling  chamber, 

I  a  dehydrating  chamber,   and  connecting  conduits, 

and  means  for  circulating  air  through  the  system. 

—A.  de  W. 

Separation   of  liquids  from  solids  [drying   solids}; 

Process  and  apparatus  for .     H.  Terrisse  and 

M.Levy.     G. P.  351,216,  27.4.20.    Conv.,  25.3.20. 

The  material  to  be  dried  is  heated  in  a  container 
by  means  of  a  stream  of  air  or  gas  that  has 
pieviously  been  heated  to  a  temperature  just  suffi- 
cient to  distil  off  the  liquid  without  having  any 
injurious  effect  on  the  solid.  Means  are  provided 
for  recovering  the  liquid  evaporated. — A.  R.  P. 


— .    J.  F.  W. 
Co.      U.S.P. 


Fractional  condensation;  Process  of  - 
Schulze,     Assr.     to     The     Barrett 
I    1,418,835,  6.6.22.     Appl.,  21.6.19. 

A  fraction  of  a  mixed  vapour  is  condensed  and  is 
concentrated  by  heat  interchange  and  dephlegma- 
tion  with  the  vapours  generated  from  the  fraction 
by  reheating  it  to  a  higher  temperature  than  that 
it  which  it  was  in  equilibrium  with  the  mixed 
'.apour.  The  heat  is  transferred  from  the  mixed 
I'apour  to  the  fraction  without  contact  between  the 
wo.— H.  H. 

ras-fired  shaft  furnace.     F.  and  K.  Meiser.     G.P. 
(a)  351,195,  8.2.21,  and  (b)  351,196,  22.2.21. 

a)  The  furnace  is  provided  with  hot  air  flues  lead- 
ng  from  the  cooling  shaft  to  the  burners.  Hot  air 
3  sucked  from  the  shaft  by  injecting  compressed  air, 
hat  has  previously  been  heated  by  the  waste  gases 
ram  the  furnace,  into  these  flues,  and  this  air  is 
ised  for  the  combustion  of  the  gas  used  in  firing  the 
urnace.  The  gas  also  may  be  preheated  by  the 
■  aste  furnace  gases,  and  by  preheating  both  air 
nd  gas,  limestone  may  be  calcined  with  low-grade 
roducer  gas.  (b)  The  gas  used  in  the  furnace  is 
asBed  through  an  iron  recuperator  built  in  the  pre- 


heating zone  of  the  furnace  and  heated  by  the 
waste  gases,  and  the  issuing  hot  gas  is  burnt  by 
means  of  the  hot  air  drawn  out  of  the  shaft  as  in 
(a).  If  necessary  the  fuel  gas  may  be  supplied  under 
pressure,  which  is  not  possible  with  a  masonry 
recuperator. — A.  R.  1'. 

Calcining  furnace  with  indirect  heating  C.  Rosch- 
mann.  G.P.  351,314,  10.5.21.  Addn.  to  344,363 
(J.,  1922,  164  a). 

The  combustion  chambers  and  air-circulating  flues 
of  the  furnace  are  constructed  of  a  series  of  ribbed 
plates  one  abo^-e  the  other,  the  edges  of  which  are 
provided  with  raised  ribs  to  keep  them  apart.  To 
increase  further  the  working  surface  the  combustion 
chambers  and  flues  are  filled  with  hollow  permeable 
bodies  through  which  the  heating  gases  and  air 
pass. — A.  R.  P. 

Liquids;  Non-corrodiitg  a7\d  non-freezing  — — . 
Miller  Reese  Hutchison,  Inc.,  Assees.  of  A.  Z. 
Pedersen.   E.P.  170,274,  23.8.21.   Conv.,  13.10.20. 

See  U.S.P.  1,405,320  of  1922;  J.,  1922,  206a 

Drying    materials;    Process   of   and   apparatus   for 
— .     E.  M.  Bassler.     E.P.  180,394,  11.2.21. 

See  U.S.P.  1,374,874  of  1921 ;  J.,  1921,  376  a. 

Separating  aqueous  and  other  vapours  from,  fluids 

and  solids;  Process  for  and  for  preparing 

dilate  sulphuric  acid.  O.  Maass.  U.S.P.  1,417,618, 
30.5.22.    Appl.,  15.4.18. 

See  E.P.  159,054  of  1919;  J.,  1921,  248  a. 

Liquids:  Process  for  evaporating  .     E.    Mox- 

terud.   U.S.P.  1,418,197,  30.5.22.   Appl.,  15.10.18. 

See  E.P.  120,205  of  1918;  J.,  1919,  853  a. 


Heat-exchanging  apparatus. 
Ges.,  and  F.  Miinzinger. 


Allgem.  Elektrizitats- 
E.P.  180,025,  14.2.21. 


Furnaces;  Oil-fired  ■ 
23.4.21. 


L.  Krause.   E.P.  180,176, 


Ha.— FUEL;  GAS;  MINERAL  OILS  AND 

WAXES. 

Coal;    Separation    of    the    constituents    of    banded 

bituminous .     A.  E.  Findlev  and  R.  Wiggin- 

ton.  Fuel,  1922,  1,  106—107. 
Bf  employing  a  combined  method  of  sifting  and 
classification  according  to  density,  a  sample  of  coal 
from  the  Kirkby  Top  Hards  seam  was  separated 
into  three  main  fractions,  viz.,  il)  coal  with  density 
less  than  1'3,  passing  through  a  30-mesh  sieve 
but  being  caught  on  a  60-mesh  sieve,  and  containing 
1-55%  of  ash;  (2)  coal  of  density  greater  than  14, 
passing  through  a  sieve  of  30-mesh  and  being  caught 
on  a  60-mesh  sieve,  and  having  an  ash  content  of 
30'0%  ;  and  (3)  coal  of  density  greater  than  T4  and 
passing  through  a  90-meeh  sieve,  and  containing 
15"3%  of  ash.  Fraction  1  seemed  to  be  a  mixture 
of  clarain  and  vitrain,  fraction  2  seemed  to  be 
durain,  whilst  fraction  3  apparently  consisted  of  a 
sort  of  cannel,  known  locally  as  "  Jacks."  Fraction 
1  exhibited  the  phenomenon  of  attraction  under  the 
influence  of  an  electric  charge,  whilst  the  particles 
of  fraction  2  exhibited  mutual  repulsion.  A  partial 
separation  of  the  two  fractions  from  a  mixture  could 
be  brought  about  by  such  means.  The  phenomenon 
seems  to  be  connected  with  the  tendency  of  the 
bright  coal  to  adhere  to  a  polished  surface.  Thus, 
when  a  mixture  of  fractions  1  and  2  was  sprinkled 
over  a  glazed  tile  and  the  tile  was  tilted  and  tapped, 
the  "adhering  portion"  contained  14'21%  of  ash, 
whilst  the  "scattered  portion"  contained  18'57% 


532  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


IJuly  SI,  1922. 


of  ash.     Repulsion  of  the  particles  is  dependent  on 
their  acquiring  a  like  charge  to  that  of  the  support    \ 
or  conductor,  and  if  the  particles  be  non-conduct- 
ing,  the  acquirement  of  a  charge  depends  on  the 
presence  of  a  surface  film  of  moisture. — A.  G. 

Coal;   Froth  flotation   tests   on   bituminous  coking 

•.     O.  C.  Ralston  and  G.  Yamada.    Chem.  and 

Met.  Eng.,  1922,  26,  1081—1086. 
Tests  carried  out  on  a  coking  coal  from  the 
Wilkeson  mine  (Wash.,  U.S.A.),  No.  3  bed,  showed 
that  selective  flotation  could  be  successfully  accom- 
plished, the  clean  coal  being  first  removed,  followed 
by  the  "  bone  "  portion,  and  finally  by  the  ash.  The 
tine  coal  will  float  to  a  certain  extent  without  the 
addition  of  a  frothing  agent,  and  in  any  case  this 
fine  portion  is  most  easily  floated,  very  "  thin  "  oils 
or  soluble  frothing  agents  giving  the  best  results. 
If  sufficient  oil  be  added  to  float  the  larger  sizes  of 
coal,  the  fine  concentrate  tends  to  be  dirty,  since 
the  fines,  which  are  easily  floated,  consist  of  a 
mixture  of  fine  coal  and  fine  ash.  It  is  therefore 
necessary  to  carry  out  a  rough  separation,  the  tail- 
ings and  the  concentrates  from  this  process  both 
being  treated  separately,  and  the  tailings  from  this 
second  flotation  being  rejected.  In  the  cleaning  of 
the  concentrate  portion,  the  middlings  are  re- 
treated with  the  original  feed,  and  the  final 
middlings  product  consists  almost  entirely  of 
"  bone  "  coal  which  may  find  a  market  as  a  separate 
product.  The  "  float-and-sink  "  method  of  analysis 
cannot  be  used  for  control  of  the  process  as  regards 
the  fine  portion  of  the  coal. — A.  G. 

Carbonisation  [of  coal];  Increasing  the  rate  of . 

G.  Wevman.     Inst.  Gas  Eng.,  June,  1922.     Gas 
J.,  1922,  158,  864—868. 

In  continuation  of  previous  work  (J.,  1920,  168  T; 
I!  121,  300 t),  an  investigation  has  been  made  of  the 
relation  between  the  properties  of  various  coals  and 
the  rate  of  carbonisation,  the  experiments  being 
conducted  in  a  nickel-chrome-steel  crucible  holding 
0'001  ton.  The  principal  conclusions  reached 
include  the  following:  An  increase  in  the  rate  of 
carbonisation  caused  by  the  alteration  of  chemical 
and  physical  conditions  is  accompanied  by  improve- 
ment in  the  calorific  value  of  the  gas,  and  of  the 
thermal  and  volume  yields  per  ton  of  coal.  The 
rate  of  carbonisation  can  be  very  considerably 
increased  by  selection  of  suitable  coals.  When  an 
increase  in  the  rate  of  carbonisation  is  effected  by 
increasing  the  carbonising  temperature,  for  a 
certain  time,  the  calorific  value  of  the  gas  obtained 
at  higher  temperature  is  smaller  than  that  of  the 
gas  obtained  at  lower  temperature,  but  volume  for 
volume,  there  is  a  slight  balance  in  favour  of  the 
former.  Volume  for  volume  the  calorific  value  of 
the  gas  obtained  at  higher  temperatures  falls  off  at 
a  slightly  greater  rate  than  that  of  the  gas  obtained 
at  lower  temperatures. — J.  S.  G.  T. 

Coking  processes;  Cliemistry  of .    Production  of 

bituminous  substances  of  high  melting  point  and 
their  application  to  the  production  of  metall- 
urgical coke  from  non-caking  coal.  F.  Lierg.  Z. 
angew.  Chem.,  1922,  35,  264—268. 
Coal  tar  pitch  coked  by  itself  gives  hard,  smooth 
coke.  Non-coking  coal  ("sinter  coal")  requires 
20  , — 30%  of  pitch  admixed  to  make  a  good  coke, 
Inn  if  the  pitch  bi?  dissolved  in  tar  oil,  7% — 8% 
suffices.  This  coking  effect  observed  in  small-scale 
tests  is  not  obtained  in  large-scale  working  owing 
to  the  long  time  required  for  coking  and  the  low 
melting  point  of  the  pitch.  The  coking  effect  is  best 
attained  on  the  large  scale  by  the  use  of  bitumen 
of  high  melting  point,  say,  400°  C.  By  extracting 
finely  powdered  coking  coal  with  hot  pyridine 
in  a  Soxhlet  apparatus,  and  mixing  the  solution 
with   water,  a   precipitate  which  dried  to   a  dark- 


brown  powder  was  obtained,  amounting  to  20'9% 
of  the  coal  used.  This  substance  did  not  melt  when 
heated  in  carbon  dioxide,  but  gave  a  swollen  coke. 
The  extraction  residue  had  lost  its  coking  proper- 
ties, and  re-addition  of  the  extract  to  it  did  not 
restore  them,  but  when  the  extract  was  dissolved  in 
a  solvent  and  added,  the  coking  property  was 
restored.  A  residue  coking  at  300°  C.  was  made 
from  coal-tar  pitch  by  extracting  with  benzol  and 
xylol.  Further  treatment  with  light  coal  tar  oil 
gave  a  residue  (pitch  carbon)  which  was  unaffected 
by  heating  to  redness  in  a  sealed  tube,  but  gave  off 
gas  and  coked  when  heated  in  a  crucible,  showing 
it  to  be  a  mixture  of  organic  compounds  of  high 
molecular  weight.  The  extracts  of  high  melting 
point  prepared  as  described  above  by  means  of 
pyridine  still  melted  at  the  same  temperature,  after 
being  mixed  with  an  inert  substance  (soot),  but 
showed  reduced  degrees  of  swelling.  The  pitch- 
carbon  was  somewhat  soluble  in  hot  pyridine,  but 
the  dissolved  portion  was  mostly  deposited  again  on 
cooling.  Anthracene  oil  and  heavier  oils  dissolved 
the  pitch-carbon  almost  entirely  and  retained  it  in 
solution  on  cooling.  The  addition  of  such  solutions 
enables  a  hard  coke  to  be  made  from  non  caking 
coals  and  even  from  lignite. — H.  M. 

Nitrogen;  Liberation  of from  coal  and  coke  as 

ammonia.  A.  C.  Monkhouse  and  J.  W.  Cobb. 
Inst,  of  Gas  Eng.,  June,  1922.  Gas.  J.,  1922 
158,  828—833.     (.Cf.  J.,  1921,  760  a.) 

When  a  coke  prepared  at  500°  C.  is  heated  in 
hydrogen  the  proportion  of  nitrogen  liberated 
uncombined  is  less  than  in  an  inert  atmosphere. 
Hydrogen  thus  may  both  retard  dissociation  of 
ammonia  and  promote  its  formation  from  the  coke. 
This  coke,  after  being  heated  in  hydrogen  in  stages 
to  1000°  C,  contained  only  1T2%  of  the  original 
nitrogen,  while  682%  had  been  recovered  as 
ammonia.  When  heated  in  steam,  the  coke  wa.« 
completely  gasified,  the  whole  of  the  nitrogen  being 
recovered  as  ammonia,  and  above  600°  C.  more 
rapidly  than  in  hydrogen.  A  coke  prepared  at 
1100°  C.  behaved  similarly  in  steam,  but  the  libera- 
tion of  nitrogen  was  slower.  Up  to  1000°  C.  the 
cokes,  heated  in  nitrogen  evolved  but  little  sulphur, 
though  in  hydrogen  nearly  all  was  set  free  as  hydro- 
gen sulphide.  The  coke  prepared  at  500°  C.  gave 
up  63-4%  of  its  sulphur  up  to  800°  C.  and  93S'  op 
to  1000°  C.  No  dissociation  of  hydrogen  sulphide 
was  observed.  The  liberation  of  sulphur  by  steam 
at  800°  C,  if  not  more  rapid  was  more  far-reaching 
than  that  by  hydrogen  at  the  same  temperature. 
The  effect  of  steam  was  evident  from  its  action  on 
the  coke  prepared  at  1100°  C.,  sulphur  bein^ 
liberated  at  800°  C,  at  which  temperatures  the 
nitrogen  and  carbon  were  but  little  attacked. 

— H.  J.  H. 

;    Carburctted  water-gas  plant  with  waste  heat  hoiln : 

Thermal  efficiency  of  a  .     Seventh  Report  of 

Research  Sub-Committee  of  Gas  Investigation 
Committee  of  Institution  of  Gas  Engineers.  Gas 
J.,  1922,  158,  800—823.  'Cf.  J.,  1921,  649  a.) 
The  tests  reported  were  made  on  two  carburctted 
water-gas  sets,  installed  at  the  Windsor  Street  Gas 
Works,  Birmingham,  each  set  having  a  rated  daily 
capacity  of  1,500,000  cub.  ft.  The  sets  were  working 
under  normal  conditions  for  the  production  of  a  gw 
of  calorific  value  485  B.Th.U.  per  cub.  ft.,  and  thrc 
'  tests  were  made,  two  being  over  5-day  periods  ot 
continuous  operation.  The  results  obtained  are 
detailed  in  22  tables  which  include  weight  and 
thermal  balances.  The  overall  thermal  efficiency 
of  the  plant,  taking  into  account  the  steam  raued 
from  the  "  blow  gases  "  by  the  boiler  and  thai 
expended  on  auxiliary  machines,  averaged  68/>- 
the  necessary  steain  had  been  independently 
generated  with  an  efficiency  of  70%,  the  efficiency 


Vol.  XL!.,  No.  14.] 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


533  a 


would  have  been  only  59'5%.  The  efficiency  of  the 
blue  water-gas  generator  alone,  without"  taking 
account  of  the  steam  required  or  raised,  was  only 
53%  (cf.  the  corresponding  figure  56%  of  the  Sixth 
Jjeport,  loe.  tit.).  The  increased  thermal  efficiency 
of  the  carburetted  water-gas  process  is  due  to  the 
high  efficiency  of  the  oil-gas  production,  in  these 
test  leaching  90%.  The  efficiency,  therefore, 
increases  with  the  amount  of  oil  gasified  per  1000 
cub.  ft.— in  this  case  about  V8  galls.  The  coke  con- 
sumption was  about  355  lb.  per  1000  cub.  ft.  of 
carburetted  water-gas.  The  waste-heat  boiler 
generated  about  64  lb.  of  steam  per  1000  cub.  ft. 
of  carburetted  water-gas,  with  a  thermal  efficiency 
of  about  45%.  Though  this  was  sufficient  to  operate 
the  plant,  more  might  probably  be  obtained  from 
the  "  blow"  gases  by  modification  in  design.  The 
intermittent  operation  of  the  plant  involves  diffi- 
culty in  the  sampling  and  measurement  of  tempera- 
ture of  the  gases.  A  sampling  device  was  con- 
structed, and  automatically  operated  by  the  valve 
gear,  so  that  either  "  blow"  or  "  run"  gas  could 
be  separately  collected  over  long  periods.  Special 
attention  was  given  to  the  measurement  o<f  the 
temperature  of  "blow"  gases  entering  the  waste 
heat  boil?r  and  the  elimination  of  errors  due  to  lag 
in  the  pyrometers.  The  accumulation  of  silicious 
dust  noted  in  the  Sixth  Report  on  a  blue  water-gas 
plant  was  not  observed,  presumably  because  the 
dust  was  removed  in  the  tar. — H.  J.  H. 

Gas  nu  ters;  Life  of .  Report  of  Joint  Committee 

of  Institution  of  Gas  Engineers  and  Society  of 
British  Gas  Industries.  Gas  J.,  1922,  158,  834— 
836.     (Cf.  J.,  1921,  616 a.) 

The  changes  in  modern  gas  practice  which  have  con-    I 
duced  to  an  increase  in  the  corrosion  of  distributors 
systems   are  discussed.     Substitution   of   oxide  for 
lime  purification    has   brought   an    increase   in   the 
content  of  carbon  dioxide,    hydrocyanic   acid,   and 
carbon  bisulphide;  these  are  all  agents  of  corrosion 
in  presence  of  moisture,   and   carbon  bisulphide  is 
active  also  in  presence  of  ammonia.     Higher  carbon-    ! 
ising  temperatures  cause  an  increased  production  of 
corrosive    agents    and    destruction    of    the    hydro- 
carbons   which    produce    the    protective    oily    film 
inside   mains   etc.      This    latter,    however,    can   be 
restored  by  the  use  of  carburetted  water-gas.    Depo-    j 
5ition  of  water  in  mains  favours  corrosion  and  is 
best    avoided    by    a    preliminary  over-compression,    I 
and,   after  separation  of  precipitated  water,  rare- 
faction to  the  normal  distributing  pressure.       In- 
crease  in  the  proportion  of  oxygen  in  the  gas  has    | 
followed    excessive     "  pull  "    on     the    retorts    and    j 
additions   of   air   at   the   purifier  boxes.      Sulphur    ' 
dioxide    is   sometimes   present    in    blue    water-gas. 
Scrubbing  the  gas  with  solid  chalk  or  washing  with 
a  cream  of  chalk  (Taplay's  process)  is  recommended 
to   remove    hydrocyanic    acid    as    ammonium    thio- 
cyanate.     To   protect    meters    from    corrosion,    the 
vaporisation  into  the  gas  of  petroleum  oils  has  been 
practised.     Some  oils  exert  a  solvent  action  on  the 
grease  of  stuffing-boxes. — H.  J.  H. 


Gas  calorimeter;  A  recording  and  integrating . 

C.  V.  Boys.     Inst.  Gas.  Eng.,  June,  1922.     Gas 
J.,  1922,  158,  882—887. 

The  author  describes  the  construction  and  operation 
of  a  gas  calorimeter  designed  more  especially  to 
meet  the  requirements  of  the  Gas  Regulation  Act. 
1920.  in  the  matter  of  continuously  recording  the 
calorific  value  of  town's  gas,  but  immediately 
applicable  to  anv  gas.  The  calorimeter  (see  E.P. 
180,080,  page  569  a)  is  of  the  water-flow  type,  the 
water  employed  being  continuously  circulated 
through  the  apparatus  and  cooled  to  atmospheric 
temperature  bv  a  hot-air  engine  and  cooling  coil 
respectively.  Water  and  gas  are  supplied  at  the 
correct  respective  rates,  and  the  correction  of  the 


gas  volume  as   affected  by  temperature,   pressure, 
and  humidity  is  also  effected  by  a  positive  opera- 
tion.    The  rate  of  water  flow  in  the  calorimeter  is 
determined  by  the  tipping,  emptying,  and  draining 
at  half-minute  dntervaJs  of  a  celluloid  bucket,  thS 
quantity  of  water  discharged  being  adjusted  so  that 
if  the  gas  is  of  the  "declared  "  calorific  value,  the 
rise  of  temperature  of  the  water  in  the  calorimeter 
is  exactly  10°  C.     The  water  supply  likewise  drives 
a  small  overshot  celluloid  water  wheel  which  drives 
through  an  elastic  connexion  the  escapement  of  a 
pendulum     clock,     and     through     an     intervening 
mechanism— termed  the  "thinking"  machine— the 
axle  of  the  gas  meter.     The  gas  meter  drum  is  of 
celluloid  and  is  of  such  construction  that  the  volume 
trapped  is  dependent  only  to  a  very  slight  degree 
upon    the   water   level,    which   can   be   maintained 
nearly  exactly   constant.       The   meter   drum   rests 
loosely  on  a  screwed  axle.     Correction  of  gas  volume 
for   temperature   and   pressure   is    effected   by   the 
intervention  of  the  "  thinking  "  machine  consisting 
of   a    ball-disc-cylinder    integrator,    in    which    the 
position  of  the  ball  is  determined  by  the  volume  of 
the    air    contained    in    a    bell    over    mercury    and 
water.      Rotation   of   the    ball    is   accompanied    by 
rotation  of  the  cylinder,  resulting  in  endlong  motion 
of  the  meter  drum,   whereby  the  gas  inlet  to  the 
meter  drum  is  closed  or  opened  as  required.      The 
corrections    effected    are    automatically    recorded. 
The  occurrence  of  accidents  should  the'  gas  supply 
be  temporarily  cut  off  and  resumed,  or  should  the 
water  supply  cease,  is  prevented.     The  calorimeter 
proper  comprises  a  lead  heat  interchanger  and  hot 
and  cold  water  chambers.     The  burner  is  of  silica 
and  is  surmounted  by  a  silica  dome.     The  operative 
thermometers    are    of    brass    and    are    sealed    full 
of    amy]    alcohol.      A    lever   system    magnifies    the 
nett     deformation    of    the     corrugated    covers    of 
the  thermometers  and  the  difference  of  temperature 
of  the  thermometers  is  recorded  on  a  roll  of  paper 
kept  in  motion  by  a  clock.     Parallel  lines  are  ruled 
on     the     paper     to     indicate     definite     percentage 
departures  of  the   actual   measured  calorific  value 
from  the  declared  calorific  value.     An  integrating 
device,    operating    after    the    manner    of    Amsler's 
planimeter,  averages  the  departures  of  the  calorific 
value  of  the  gas  from  the  declared  calorific  value 
since  the  indicator  was  last  set. — J.  S.  G.  T. 

Paraffin  hydrocarbons;  Analysis  of  mixtures  of 
hydrogen  with  the  -  — .  J.  G.  King.  Fuel, 
1922,  1,  103—106. 

The  gases  evolved  in  the  low-temperature 
carbonisation  of  coal  contain  a  large  percentage  of 
paraffins,  varying  considerably  in  composition  and 
containing  the  higher  members  of  the  series.  After 
determination  of  oxygen  and  carbon  dioxide  by 
absorption  with  caustic  potash  and  alkaline  pyro- 
gallol  solutions  in  the  usual  way,  the  gas  is  intro- 
duced into  a  special  silica  tube,  containing  copper 
oxide  and  heated  to  280°  C.  The  hydrogen  and 
carbon  monoxide  are  burnt  to  water  and  carbon 
dioxide  respectively,  and  the  gas  is  then  returned  to 
the  main  apparatus  (that  of  Bone  and  Wheeler). 
The  carbon  dioxide  is  absorbed  by  caustic  potash, 
and  from  this  the  percentage  of  carbon  monoxide  in 
the  original  gas  can  be  calculated,  whilst  the 
paraffins  are  then  exploded  with  excess  air.  The 
reductions  in  pressure  after  explosion,  after  absorp- 
tion by  potash,  and  after  absorption  by  alkaline 
pyrogallol  are  noted.  From  the  first  of  these  two 
figures,  the  amount  of  hydrocarbons  present  can  be 
calculated,  and  also  the  value  for  n  in  the  expres- 
sion CnH..n+.,  which  gives  the  mean  composition 
of  the  hydrocarbons  present.  From  the  third 
observation,  the  amount  of  oxygen  used  in  the 
explosion  can  be  calculated,  and  this  should  agree 
to  within  0-3%  of  the  amount  theoretically  required 
for   the  combustion   of  the   hydrocarbons   as  deter- 

a2 


534  a 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


[July  31,  1922. 


mined  from  the  first  two  observations.  The  silica 
tube  may  be  heated  by  gas  or  may  be  wound  with 
nichrome  wire  of  26  S.W.G.,  a  consumption  of  50 
watts  giving  a  temperature  of  about  300°  C.  This 
can  be  reduced  to  280°  C.  by  the  inclusion  of  a 
suitable  external  resistance. — A.  G. 

Shale;  Recent  processes  for  treatment  of  oil  . 

A.  E.  von  Groeling.  Petroleum,  1922,  18,  487— 
493,  539—545. 

After  a  critical  review  of  the  Scottish  method  of 
shale  distillation  and  of  other  retort  processes,  the 
author  describes  the  American  "  digesting  process." 
The  6hale  passes  through  a  series  of  pulverisers  and 
is  mixed  with  a  stream  of  preheated  heavy  oil, 
passes  through  a  mixing  cylinder,  and  into  a  still] 
or  digester,  where  the  shale  undergoes  the  first  part 
of  the  distillation  in  a  series  of  four  horizontal 
cylindrical  or  rectangular  chambers,  from  the 
lowest  of  which  it  is  transferred  to  the  upper 
chambers  seriatim,  by  a  screw  mechanism.  Thence 
it  is  transferred  to  a  separate  chamber  to  undergo 
the  final  distillation.  The  apparatus  is  directly 
fired,  the  combustion  gases  circulating  contrary  to 
the  movement  of  the  shale.  The  products  of 
distillation  are  drawn  upwards  through  the 
chambers  and  pass  to  a  preheater  for  the  digestion 
oil.  The  shale  from  the  first  operation  is  freed  from 
oil  by  centrifuging  before  the  final  destructive  dis- 
tillation. Colorado  shale  gave  a  yield  of  87  Amer. 
galls,  of  oil  per  ton,  in  place  of  51  galls,  in  Scottish 
retorts.  The  oils  obtained  by  first  and  final  distilla- 
tions are  respectively  of  0-807  and  0'798  sp.  gr.  and 
have  a  content  of  unsaturated  hydrocarbons  of  24%. 
No  permanent  gas  is  evolved.  The  temperature  of 
the  first  stage  is  650°  P.  (about  340°  C.)  and  of  the 
final  stage  1500°  F.  (about  820°  C).  Some  kinds  of 
shale  have  given  a  yield  of  30%  of  paraffin  wax  from 
the  oil.  It  is  suggested  that  still  better  results 
would  be  obtained  by  the  use  of  superheated  steam 

— H.  M. 

Gasoline;  Production  of  by  cracking  heavier 

oils.  E.  W.  Dean  and  W.  A.  Jacobs.  U.S. 
Bureau  of  Mines,  Tech.  Paper  258,  1922.  56 
pages. 

Cracking  was  conducted  under  varying  conditions. 
The  apparatus  consisted  of  a  drip-feed  lubricator 
delivering  oil  into  the  upper  end  of  an  electrically 
heated  vertical  iron  tube,  to  the  lower  end  of  which 
was  attached  condensing  and  receiving  apparatus. 
The  tube  contained  a  chain  filling,  a  considerable 
length  of  the  chain  being  packed  under  its  own 
weight  on  a  support  arranged  at  the  middle  of  the 
height  of  the  tube.  A  thermocouple  pyrometer 
measured  the  temperature  of  the  tube  wall  midway 
of  its  height,  and  temperature  was  regulated  by  a 
rheostat.  Experiments  were  made  using  Pennsyl- 
vanian  distillate  of  gas  oil  type,  Mid-Continental 
residuum  fuel  oil,  Pennsylvanian  kerosene  distillate 
from  which  the  fractions  boiling  below  175°  C.  had 
been  removed,  and  a  kerosene  distillate  from  which 
constituents  boiling  below  200°  C.  had  been  removed. 
Increase  in  the  rate  of  feed  produced  a  decrease  iri 
the  degree  of  cracking  when  the  temperature  was 
kept  constant.  Cracking  seemed  to  occur  mainly 
where  the  oil  was  in  contact  with  the  surface  at 
which  heat  was  supplied.  Other  conditions  being 
constant,  the  yield  of  cracked  products  decreased 
as  the  temperature  increased,  the  loss  varying  from 
6%  to  40%.  The  conditions  which  would  produce 
commercial  yields  of  gasoline  were  accompanied  by 
losses  of  over  10%.  The  sp.  gr.  of  the  cracked 
product  fell  with  increase  in  temperature  up  to 
558°  C,  after  which  increase  in  temperature  pro- 
duced increased  specific  gravity  of  the  product; 
at  high  temperatures  the  sp.  gr.  of  the  product  may 
be  greater  than  that  of  the  raw  material.  With 
increased    temperature    the    quantity    of    gasoline 


formed  increased  but  the  loss  also  increased.      The 
sp.  gr.  of  the  recovered  gasoline  fraction  was  raised 
with   increase  of  temperature,    probably   owing  to 
formation  of  aromatic  hydrocarbons.     At  pressures 
of  50  lb.  and  over  the  degree  of  unsaturation  of  the 
gasoline    fraction    decreased    as    the    temperature 
increased,    presumably   owing   to  the  formation   of 
aromatic  compounds.     The  ratio  of  gasoline  forma- 
tion to  recovery  loss,  of  importance  in  commercial 
working,     is    tabulated.      Other    conditions    bring 
constant   the  percentage   of   cracked  oil   recovered 
generally    decreased    as    the     pressure     increased. 
At  a  temperature  of  570°  C.  the  sp.  gr.  reached 
a     minimum     value     when     using     a     pressure    of 
50  lb.    per  sq.   inch.      The   percentage  of  gasoline 
formed     generally     increased      with      increase     of 
pressure.      The    sp.    gr.    of    the    gasoline    fraction 
generally    increased     as    pressure    increased,    pre- 
sumably    owing    to    the     formation     of     aromatic 
hydrocarbons.       The    degree    of    unsaturation    of 
the     gasoline      fraction     decreased      as      pie-sure 
increased.       The  pressure  favourable  to  minimum 
ratio  of  gasoline  formation  to  recovery  loss  varied 
between  the  limits  50  and  150  lb.,  depending  upon 
the   temperature.      Increase    in   the   rate    of   feed, 
which  is  equivalent  to  shortening  the  time  of  re- 
action,   increased    the    percentage    of   cracked   oil 
recovered.       The    sp.     gr.     of    the     recovered    oil 
generally    decreased    with   increased   rate   of   feed. 
The  effect  of  change  of  rate  of  feed  on  the  quantity 
of  gasoline  formed  was  irregular.     Increase  in  the 
rate  of  feed  tended  to  decrease  the  sp.  gr.  of  the 
gasoline  fraction  when  the  degree  of  cracking  was 
considerable.     The   degree   of   unsaturation   of  the 
gasoline  tended  to  increase  with  increased  rate  of 
feed.     Gasoline  can  be  produced  more  economically 
at  high  furnace  temperatures  and  at  a  high  rate  of 
feed  than  by  using  lower  temperatures  and  rates. 
A  much  larger  amount  of  carbon  was  formed  when 
using  a   residual  oil  as  raw  material  than  with  a 
distillate.     A  series  of  graphs  show  the  difference  in 
behaviour    between    Mid-Continental    residual    and 
paraffin  base  distillate.     Comparing  kerosene  with 
gas  oil  as  a  raw  material  for  cracking,   with  the 
kerosene   the    recovery    was    greater,    the   yield    of 
gasoline  less,   its  sp.   gr.   lower  and  degree  of  un- 
saturation  less.      Kerosene  and  gas  oil   are  about 
equally    suitable    for   cracking,    the    gas    oil    being 
slightly    easier    to    transform,    but    giving    rather 
heavier   losses   in    recovery.      Naphthene   base  oils 
iequired   a  higher  temperature   for  cracking  than 
paraffin  base  oils.     It  is  not  economical  to  crack  oil 
containing   naphtha   fractions.     It   would  be  more 
economical  to  separate  the   naphtha   in   a  topping 
plant,  and  treat  the  residue  in  a  cracking  plant,  tile 
naphtha  being  added  to  the  cracked  product,  as  by 
this  method  a  greater  yield   of  gasoline  would  be 
obtained.    The  residuum  obtained  after  the  removal 
of    gasoline    from    a    cracked    product,    when     re- 
cracked,    yields   less   favourable   results   as   regard? 
cracked  oil  recovery  and  percentage  of  gasoline  pro- 
duction than  a  fresh  oil,  and  yields  a  larger  deposit 
of   carbon.     The   volume  of    gas   formed   is  closely 
related  to  the  loss  of  oil  during  cracking. — H.  M. 


Paraffin    wax;    Effect    of    on    viscosity    of 

petroleum  oils.     E.  W.  Dean  and  M.  B.  Cooke 
J.  Ind.  Eng.  Chem.,  1922,  14,  410—411. 

Commercial  paraffin  wax  was  added  to  sample*  of 
water-white  kerosene,  transformer  oil,  spindle  oil, 
medium  "auto  oil,"  "Liberty  aero  oil,"  and  dis- 
tillates prepared  from  crude  oil  in  the  laboratory. 
All  those  products  had  been  prepared  from 
Pennsylvanian  oils.  The  addition  of  wax  to  kero- 
sene increased  its  viscosity.  The  effect  on  the 
distillates  was  negligible,  while  the  other  oils 
suffered  a  decrease  in  viscosity.  The  removal  of 
wax  from  the  distillates  produced   no  appreciable 


Vol.  XLI.,  No.  14.) 


Cl.  IIa.— FUEL ;  GAS  ;  MINERAL  OILS  AND  WAXES. 


535  a 


change  in  their  viscosities.  The  wax  could  be 
separated  into  constituents  of  different  physical 
properties  by  dissolving  in  benzene  and  cooling. 
When  dissolved  in  oil,  paraffin  wax  behaved  like  an 
oil  of  low  viscosity  at  temperatures  below  its  melt- 
ing point. — H.  M. 

Petroleum  oils;  Iodine   values  of  .     S.  Kawai. 

Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan  , 
1922,  25,  406—419. 

The  author  has  studied  the  influence  of  concentra- 
tion, temperature,  and  time  of  absorption  on  the 
iodine  value  of  some  petroleum  oils,  using  three 
iodine  solutions,  viz.,  those  of  Wijs,  Hiibl,  and 
Hanus.  The  iodine  value  decreases  with  increase 
in  the  concentration,  and  increases  with  increase  of 
temperature  and  time  of  absorption.  The  three 
different  solutions,  Wijs,  Hanus,  and  Hiibl,  give 
iodine  values  in  descending  order. — K.  K. 

Transformer   and    turbine    oils;    Determination    of 

sludge  values  of .     F.  Schwarz  and  J.  Mar- 

cusson.     Petroleum,  1922,  18,  741—742. 

50  G.  of  oil  is  heated  to  120°  C.  for  50  hrs.  in  a 
;  200  c.c.  Erienmeyer  flask.  The  oil  is  then  heated 
i'or  15  mins.  to  80°  C.  under  a  dephlegmator  with  a 
mixture  of  50  c.c.  each  of  50%  (by  weight)  alcohol 
and  a  47c  solution  of  caustic  soda,  and  afterwards 
strongly  agitated  for  5  min.  The  mixture  is  then 
allowed  to  stand  over-night  in  a  separating  funnel. 
}  As  much  as  possible  of  the  mixture  is  filtered  into 
a  measuring  cylinder  and  extracted  with  30  c.c.  of 
light  petroleum  spirit.  The  resulting  extract  is 
treated  with  10  c.c.  of  50%  alcohol  with  the  addition 
of  a  few  drops  of  caustic  soda.  The  alcoholic  layer 
is  mixed  with  the  tar  soap  solution,  and  acidified 
with  dilute  hydrochloric  acid.  After  shaking  up 
two  or  three  times  successively  with  50  c.c.  of 
b  nzene,  the  benzene  extract  is  washed  with  distilled 
water  till  free  from  mineral  acid,  evaporated,  and 
dried  at  105°  C.  The  amount  of  tarry  matter 
I  obtained  from  the  amount  of  fluid  mixture  taken 
gives,  by  calculation,  the  proportionate  amount  for 
the  oil  taken. — H.  M. 

Iodine  value.     Holde  and  others.     See  XII. 

Patents. 

Fin!   [a,al    :    Melht'tl   <>i   hnrning  in    furnaces. 

W.    H.    Nield  and   W.    Melland.     E.P.    180,401, 
16.2.21. 

Coal  is  caused  to  travel  along  a  horizontal  tube  in 
the  upper  part  of  the  furnace,  so  that  it  becomes 
i coked  on  its  passage,  and  the  coke  falls  from  the 
open  end  of  the  retort-tube  on  to  grate  bars  and  is 
Iburnt.  The  coal  gas  etc.  is  drawn  out  by  a  fan 
backwards  from  the  retort  and  passed  through  con- 
densers where  by-products  are  collected,  and  the 
residual  gas  is  burnt  in  the  furnace  at  a  point  below 
(the  retort  but  above  the  fire-bars. — B.  M.  V. 

'  las-heated  ovens  and  retorts.  Stettiner  Chamotte- 
Fabr.  A.-G.  vorm.  Didier.  E.P.  174.039,  4.11.21. 
Conv.,  12.1.21. 
[n  an  installation  comprising  a  number  of  oven 
mits  heated  independently,  each  unit  is  provided 
vith  an  auxiliary  gas  producer  which  is  not  used 
or  normal  working,  but,  as  a  rule,  serves  only  for 
teating  the  unit  up  to  working  temperature. 
formally,  a  main  gas  producer  serves  to  supply  the 
lecessary  heat  for  working  all  the  units.  The 
uxiliary  producers  can  be  cut  off  from  their  respec- 
ive  oven  units,  and  communicate  with  each  other 
y  means  of  conduits  provided  with  valves.  Above 
he  auxiliary  producer,  which  is  directly  connected 
'ith  the  oven,  there  is  a  recuperator  which  is  heated 
y  the  waste  gases  from  the  oven  and  through  which 
he  gas  from  the  main  gas  producer  passes. 

—A.  R.  M. 


Betort  for  yas-producing  apparatus.  S.  F.  Sworski 
and  F.  F.  Ratajezak.  U.S.P.  1,418,745,  6.6.22. 
Appl.,  18.7.21. 

A  gas-generating  receptacle,  the  walls  of  which  at 
the  bottom  and  lower  part  are  thicker  than  at  the 
upper  part,  is  suspended  in  the  upper  part  of  a 
furnace.  A  bucket  fits  snugly  into  the  lower  part 
of  the  receptacle. — A.  R.  M. 

i  7  amber  oven  for  the  manufacture  of  gas  and  coke 

H.  Koppers.  G.P.  350,483,  3.6.14.  " 
In  chamber  ovens  utilising  rich  gas  and  low-grade 
gas,  it  is  the  practice  to  dilute  the  rich  gas  with 
flue  gas  to  the  same  calorific  value  as  the  low-grade 
gas.  On  the  other  hand,  in  plants  using  the  rich 
gas  alone,  the  regenerator  is  combined  with  collect- 
ing mains  running  on  either  side  of  the  battery 
which  serve  as  reversal  mains,  conveying  alternately 
air  for  combustion  and  flue  gases.  By  the  inven- 
tion it  will  be  possible  in  an  installation  of  the 
latter  type  to  heat  one  part  with  rich  gas  diluted 
with  flue  gas,  and  another  part  with  low-grade  gas. 
The  collecting  reversing  mains  serve  as  flue  gas 
mains  and  as  conduits  for  air  diluted  with  flue  gas, 
and  are  combined  with  connecting  pieces  which  have 
connexions  with  these,  mains,  with  the  conduit  for 
low-grade  gas  and  with  the  open  air,  and  can  be 
closed  as  desired. — A.  G. 

Furnace  for  ihe  continuous  production  of  gas  and 
coke.     E.  Riepe.     G.P.  350,509,  31.5.21. 

The  furnace  contains  two  vertical  retorts  which  are 
connected  at  their  lower  open  ends  by  a  square 
main,  through  which  the  coke  is  discharged.  If  it 
is  desired  to  produce  a  specially  good  gas,  lignite 
and  coal  may  be  carbonised  simultaneously  in  the 
two  retorts.  The  upper  end  of  the  retort  filled  with 
lignite  is  closed  and  the  gases  from  the  lignite  are 
withdrawn  and  passed  through  the  charge  of  coal, 
acting  as  an  internal  heating  medium.  The  poor 
gas  reacts  with  the  coal  yielding  a  richer  gas  which 
is  mixed  with  the  gas  evolved  by  carbonisation  of 
the  coal. — A.  G. 

[Oil]  gas;  Process  and  apparatus  for  making  . 

General  Oil  Gas  Corp.,  Assees.  of  W.  C.  Davton. 
E.P.  167,736,  19.1.21.    Conv.,  9.8.20. 

Gas  of  constant  composition  and  of  a  calorific  value 
of  200—600  B.Th.U.  per  cub.  ft.  or  over,  is  made 
by  mixing  a  hydrocarbon  oil  with  a  stream  of  pre- 
heated air,  heating  the  mixture  by  means  of  heat 
interchange  with  hot  gas  leaving  the  generator,  and 
passing  the  heated  mixture  into  a  gasifying 
chamber  which  is  maintained  at  a  temperature  of 
1350°— 1750°  F.  (730°— 955°  C).  Heat  is  supplied 
by  combustion  of  the  oil  with  a  quantity  of  air 
insufficient  for  complete  combustion.  In  ordinary 
working,  external  heat  is  not  applied,  but  a  pilot 
burner  is  provided  for  heating  the  chamber  when 
it  is  desired  to  make  rich  gas,  or  when  the  appara- 
tus is  first  put  in  operation. — A.  R.  M. 

Gas  making;  Using  heavy  oil  in .    O.  B.  Evans 

and  H.  G.  Terziam,  Assrs.  to  The  United  Gas 
Improvement  Co.  U.S.P.  1,418,782,  6.6.22. 
Appl.,  2.7.20. 
Gas  oil  is  gasified  by  introducing  it  into  a  chamber 
containing  preheated  checkerbrick.  A  deposit  of 
carbon  is  formed  on  the  checkerbrick  and  is  removed 
by  blowing  with  preheated  air. — T.  A.  S. 

Constant   heat   value;   Apparatus  for  maintaining 

[gas  at  o]  .     H.  F.  Smith,  Assr.  to  The  Gas 

Research  Co.     U.S.P.  1,417,635,  30.5.22.     Appl., 

11.3.18. 

A  portion  of  the  gas  which  is  to  be  maintained  at  a 

constant  calorific  value  by  dilution  is  burnt  (after 

dilution)  at  a  constant  rate,  and  the  heat  produced 


.036  A 


Cl.  IIa.— FUEL  ;  GAS  ;  MINERAL  OILS  ANt)  WAXES. 


[July  Si,  nej 


is  utilised  to  regulate  an  electrical  device  which  in 
turn  regulates  a  valve  for  a  fluid  under  pressure. 
The  latter  operates  the  valve  through  which  the 
diluent  is  supplied. — B.  M.  V. 

[Gas  producers;']  Method  of  preveniimj  wall  action 

|  in 1.   H.  F.  Smith,  Assr.  to  The  Gas  Research 

Go.    U.S. P.  1,417,1 


24.5.18. 


Go.    U.S.P.  1,417,636,  30.5.22.    Appl. 

In  addition  to  the  active  fluid  (air  or  steam)  which 
is  blown  into  a  gas  producer  so  as  to  pass  mainly  up 
the  central  zone,  a  comparatively  inert  fluid  is 
passed  up  through  the  fuel  near  the  walls. 

— B.  M.  V. 

[Gas  producers;]  Method  of  fuel  agitation  [in  -  — ]. 
H.  F.  Smith,  Assr.  to  The  Gas  Research  Go. 
U.S.P.  1,417,637,  30.5.22.    Appl.,  1.8.18. 

An  explosion  is  caused  in  a  vessel  outside  the  pro- 
ducer, and  the  high-pressure  gases  thus  produced 
are  admitted  to  the  under  side  of  the  ash  zone  of 
the  fuel.— B.  M.  V. 

Ammonium  chloride  ;  Method  of  producing from 

coal  or  shales.  O.  L.  Christenson  and  B.  A. 
Hedman;  Hedman,  Assee.  of  K.  I.  M.  Gisiko. 
E.P.  169,948,  25.2.21.  Conv.,  6.10.20.  Addn.  to 
159,817  (c/.  U.S.P.  1,397,264;  J.,  1922,  4  a). 

In  the  method  for  recovery  of  ammonium  chloride 
by  impregnating  coal  or  shale  before  distillation 
with  an  alkali  chloride,  silica,  and  water,  free 
hydrochloric  acid  is  added  as  well.  The  propor- 
tions may  be  32  pts.  of  30%  hydrochloric  acid,  2'5 
pts.  of  silica,  and  4  pts.  of  common  salt  to  100  pts. 
of  coal.  The  acid  combines  with  ammonia  liberated 
at  temperatures  below  the  decomposition  tempera- 
ture of  the  salt. — 0.  I. 

Acetylene;  Storage   receptacles  for  .      W.    J. 

Mellersh-Jaekson.  From  Air  Reduction  Go. 
E.P.  180,273,  24.1.22. 

A  tank  or  cylinder  oontains  a  solvent  for  the 
acetylene,  disseminated  through  a  body  of  finely- 
divided  wood  of  the  ochroma  family,  e.g.,  Ochroma 
lagopus  (balsa).  The  wood,  which  is  of  a  light, 
porous,  and  elastic  nature,  is  introduced  into  the 
containing  vessel  and  compressed  therein.  If 
desired,  a  binder  or  inert  porous  matter  may  be 
added  to  the  wood  filling. — A.  R.  M. 

Hydrocarbons;   Cracking  .     The  Kansas  Gity 

Gasoline  Co.,  Assees.  of  H.  M.  Lasher.  E.P. 
160,161,  22.2.21.     Conv.,  12.3.20. 

High-boiling  hydrocarbons  are  mixed  with  a 
relatively  small  quantity  of  carboniferous  material, 
e.g.,  bituminous  coal,  and  heated  with  agitation  in 
a  still  or  retort.  Arrangements  are  made  for  pass- 
ing forward  light  distillate  and  the  return  of  heavy 
distillate  for  further  cracking.  Fresh  high-boiling 
hydrocarbon  is  added  to  the  carboniferous  material 
to  replace  that  distilled  off.  The  distillation  is 
carried  on  at  atmospheric  pressure  out  of  contact 
with  the  air.  In  an  example  given  the  cracking 
temperature  was  600°— 1000°  F.  (about  315°— 540° 
C.).— T.  A.  S. 

Petroleum  oils;  Process  and  apparatus  for  the  dis- 
tillation and  cracking  of .    S.  L.  Gartlan  and 

A.  E.  Gooderham.     E.P.  179,644—5,  8.2.21. 

A  mixture  of  steam  and  petroleum  oil  is  fed  into 
a  retort,  and  the  vapours  are  drawn  off  by  a  com- 
pressor and  condensed  under  pressure,  which  is 
varied  according  to  the  final  product  desired.  The 
retort  is  heated  by  a  step-by-step  process,  the  liquid 
volatile  at  each  temperature  being  drawn  off  at  that 
temperature  and  the  pressure  in  the  retort  being 
maintained  at  about  that  of  t'.»t  atmosphere.  As 
the  temperature  of  distillation  rises,  steam  super- 
heated  to    that    temperature    is    admitted    to    the 


retort.  It  is  stated  that  75%  of  the  petroleum  oil 
can  be  converted  into  low-boiling  naphtha. 

— T.   A.   S. 

Petroleum;  Method  of  refining  .    Refining  oil. 

P.    T.    Sharpies.      U.S.P.    1,416,890-1,    23.5.22. 
Appl.,  (a)  12.3.20,  (b)  6.4.22. 

(a)  The  residue,  obtained  after  distilling  off  gas, 
naphtha,  and  burning  oils  from  crude  petroleum 
with  the  avoidance  of  substantial  cracking,  is  chilled 
to  precipitate  the  wax.  The  chilled  residue  is  sub- 
mitted to  centrifugal  treatment  under  such  condi- 
tions that  the  wax  and  residue  free  from  wax  are 
continuously  discharged,  (b)  The  residue,  obtained 
by  the  removal  of  the  lower-boiling  constituents 
from  crude  petroleum  without  substantial  cracking, 
is  treated  to  cause  the  precipitation  of  the  wax 
whilst  maintaining  the  fluidity  of  the  oil,  so  that 
they  may  be  separated  by  centrifugal  force ;  the 
wax  and  oil  free  from  wax  are  discharged  con- 
tinuously.— T.  A.  S. 

Mineral  oil  and  carbohydrogen  [hydrocarbon]  gas 
extracting  process.  G.  Schneiders,  Assr.  to  A.-G. 
"  Eos."  U.S.P.  1,418,097—8,  30.5.22.  Appl., 
(a)  2.9.19,  (b)  15.8.21. 

(a)  A  passage  driven  into  a  bituminous  deposit  is 
protected  by  means  of  an  air-dam  which  prevents 
the  leakage  of  gas  and  oil  into  the  passage.  The 
gas  and  oil  are  removed  from  the  deposit  by  means 
arranged  in  the  passage.  The  air-dam  is  moved 
along  into  the  deposit  a6  gas  and  oil  are  removed. 

(b)  Oil-bearing  sand  is  removed  from  a  deposit  and 
simultaneously  subjected  to  separating  treatment. 
The  process  consists  in  dislodging  the  sand  by  a  jet 
of  fluid  so  that  by  the  action  of  the  jet  and  friction 
of  the  grains  the  adherent  bitumen  is  removed. 

— T.  A.  S. 

Petroleum   vapour;   Apparatus   for    treating   . 

D.  W.  Hoge,  Assr.  to  Izash  Oil  and  Refining  Co, 
U.S.P.  1,418,375,  6.6.22.    Appl.,  14.6.17. 

Petroleum  vapour  is  converted  into  gasoline  by 
passing  it  through  a  continuous  conduit  built  up 
of  straight  sections  and  heated  in  a  bath  of  molten 
metal.  The  conduit  system  is  bodily  removable  from 
the  bath.— T.  A.  8. 

('racking  oils;  Process  of  and  apparatus  fur  . 

G.  L.   Hoxie.     U.S.P.   1,418,713,  6.6.22.     Appl, 

D.8.18. 

The  process  consists  in  heating  a  small  portion  ol 
the  oil  to  cracking  temperature  and  immediate]; 
mixing  it  with  a  large  volume  of  oil  at  a  substan- 
tially lower  temperature,  the  low-boiling  products 
being  distilled  off  from  the  large  volume  of  oil. 
Several  forms  of  apparatus  are  proposed  for  work- 
ing the  process. — T.  A.  S. 

Emulsion;    Process    of    making    .     Process    of 

making  waterproof  composition.  Coloured  bitu- 
minous compositions  and  j>rocess  of  making 
same.  Waterproof  product.  Process  of  treating 
saturated  fibrous  compositions.  Process  of 
saturating  felt.  L.  Kirschbraun.  U.S.P.  1,41' 
and  1,417,837—41,  30.5.22.  Appl.,  (a)  (d)  1.2.19, 
(n)  15.7.20,  (c)  16.3.18,  (e)  10.9.19,  (f)  21.11.10. 
Renewed  (c,  d,  e)  28.10.21,  (f)  7.11.21. 

(a)  A  bulk  supply  of  emulsion  is  formed  by  making 
a  mixture  of  w-ater  and  colloidal  clay,  adding  a 
waterproof  adhesive  binder,  and  thoroughly  mixing 
into  an  emulsion  in  which  the  binder  forms  the  in- 
ternal phase  and  the  water  and  emulsifying  agent 
the  external  phase.  Further  quantities  of  s 
and  colloidal  clay  and  of  binder  are  separately  fed 
into  the  bulk  supply,  the  latter  being  agitated 
whilst  forming  the  emulsion,  (b)  A  stock  is  made 
consisting  of  bitumen  in  a  discrete  form  in  an 
aqueous  vehicle  and  containing  an  oxidising  agent. 


Vol.  XLl.,  No.  H.j     Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING;    LIGHTING. 


537  a 


ffi)    A    bituminous    product   consists   essentially    of 

solid  residue  remaining  after  steam  distillation  of 

wax  tailings.     The  product  is  yellowish  brown  and 

pitchy,   and  has  a  conchoidal   fracture   when  cold. 

(d)  Mottled  waterproof  sheet  is  prepared  by  making 

a    coloured,     emulsified,     bituminous    matrix    and 

mixing  this  with  a   fibre  of  different  colom-  from 

■  the  matrix.     The  mixture  is  formed  into  a   sheet 

l  so  that  an  uneven  surface  distribution  of  the  binder 

is  caused,   thus   producing   a   mottled   appearance. 

,  (e)    The    fibrous    and    bituminous    constituents    of 

I  waste   saturated   felt   are   recovered   for   re-use   by 

mechanically   disintegrating   the   fibres   with   their 

contained   bitumen    in    the    presence    of    a    heated 

!  emulsifying  agent,     (p)  A  hot  bituminous  liquid  is 

1  applied  to  one  face  of  hot. dry  felt,  at  or  adjacent 

to  the  point  where  it  is  being  wound  up. — T.  A.  S. 

1  Petroleum  oil  sludges;  Separatio/i  of  ■ .     S.  H. 

Diggs,  Assr.  to  Standard  Oil  Co.  U.S. P.  1,118,731, 
0.6.22.    Appl.,  23.12.18. 

I  The    acid    sludge    obtained    in    the    treatment    of 
:  petroleum  oils  with  sulphuric   acid   is  mixed  with 
|  sludge  obtained  by  treating  oils  with  fuming  acid 
i  and  with  gas  oil.     The  whole  is  mixed  with  water 
I  and  steamed,    when   separation   of  the   acid  takes 
place.      The  operations   are   repeated  until   practi- 
cally  all   the   acid   is   removed.      The    residues   are 
suitable  for  the  manufacture  of  commercial  asphalt. 

— T.  A.  S. 

Gas  generator.  S.  Moure.  U.S. P.  1,418,158.  30.5.22. 
Appl.,  7.12.21. 

See  E.P.  168,951  of  1920;  J.,  1921,  762  a. 

\  Ammonium  chloride;  Process  of  producing  £n 

coking  or  distilling  coal  in  coking  plants  and  gas- 
works. O.  L.  Christenson  and  B.  A.  Hedman  ; 
Hedman  Assee.  of  K.  I.  M.  Gisiko.  E.P.  159,817, 
24.2.21.     Conv.,  3.3.20. 

See  U.S. P.  1,397,264  of  1921;  J.,  1922,  4  a. 

Ammonium  chloride;  Method  of  producing in 

combusting  or  distilling  alum  slaic  or  similar 
bituminous  shales.  O.  L.  Christenson  and  B.  A. 
I  Hedman ;  Hedman  Assee.  of  K.  I.  M.  Gisiko. 
E.P.  161,161,  25.2.21.  Conv.,  27.3.20.  Addn.  to 
159,817. 
See  U.S. P.  1,397,264  of  1921;  J.,  1922,  4  a. 

Liquid  fuel;  Method  of  raising  the  specific  gravity 

and  flash  points  of  .     L.   W.   Bates.     E.P. 

153,591,   9.11.20.     Conv.,   10.11.19. 
See    U.S. P.    1,390,229    of    1921;    J.,    1921,    761a. 
(Reference  is  directed,  in  pursuance  of  Sect.  8.  Sub- 
ject. 2,  of  the  Patents  and  Designs  Acts,  1907  and 
11919,  to  E.P.  149,306;  J.,  1921,  571a.) 

Liquid  furl  and  method  "I  manufacturing  it. 
;  L.  W.  Bates.  K.l\  161,929,  24.12.20.  Conv., 
|    12.4.20.     Addn.  to  149,306. 

See  U.S. P.  1,390,232  of  1921;  J.,  1921,  761a. 

Motor  furls  containing  alcohol;  Process  for  pre- 
paring     .      Chemical    Fuel    Co.    of    America, 

|    Assees.  of  E.  W.  Stevens.     E.P.  159,880,  3.3.21. 

Conv.,  9.3.20. 
>ee  U.S. P.  1.372. 165  of  1921;  J.,  1921,  338  a. 

Oil-hearing     soliils;     Process     and    apparatus    for 

treating .  J.  T.  Fenton.  E.P.  180,157,  12.4.21. 

■See  U.S.P.  1,396,173  of  1921;  J.,  1922,  5  a. 

'HI  heater  for  lopping  stills.  J.  15.  Bell,  Assr.  to 
Power  Specialty  Co.  U.S.P.  1,418,272,  6.6.22. 
Appl.,  10.6.20. 

>ee  E.P.  176,099  of  1920; 


Gas  retorts;  Apparatus  for  discharging  .    J.  Y. 

•     Johnson.     From  Soc.  "  Entreprises  et  Materiel." 
E.P.  180,856,  20.4.21. 


Joke  oven  doors  and  doorways 
180,373,  19.1.21. 


1922,  284  i. 
L.  Wilputte. 


E.P. 


K.  Roller.     E.P. 


Gas  producers;  Grates  for  — 
165,047,  17.6.21.     Conv.,  24.4.20. 

Gas  purifiers,   scrubbers   and   the    like:   Grids  for 
.    H.  S.  Sadler.     E.P.  180,734,  23.2.21. 

See  also  pages  (a)  538,  Distillation  of  oils  (E.P. 
180,347).  539,  Lubricating  oils  (G.P.  350,801  and 
351,201);  Condenser  for  vacuum  distillation  oj 
petroleum  (G.P.  351,004).  546,  Purifying  gases 
(E.P.  180,024);  Bemoving  hydrogen  sulphide  from 
gases  (G.P.  350,591).  555,  Seducing  gases  (G.P. 
350,647).  566,  Formaldehyde  (E.P.  180,016).  567. 
Oxidising  olefines  (U.S.P.  1,418,368).  569,  Gas 
calorimeters  (E.P.  180,080). 

Hb— DESTRUCTIVE  DISTILLATION; 
HEATING;   LIGHTING. 

Burners ;  Some  gas and  a  moral.   C.  Carpenter. 

Inst.  Gas  Eng.,  June,  1922.     Gas  J.,  1922,  158, 

853-861. 
The  development  of  modern  gas  lighting  burners 
is  briefly  reviewed,  and  it  is  pointed  out  that  con- 
ditions governing  the  manufacture  of  these  appli- 
ances are  nowadays  such  as  to  facilitate  the  manu- 
facture and  use  of  shoddy  burners — faulty  in  con- 
struction and  inefficient  in  use.  Curves  are  given 
comparing  the  lighting  efficiencies  of  samples  of 
such  burners  with  that  of  the  "  Metro  "  burner 
introduced  by  the  author.  Thus,  while  the  light- 
ing efficiency  of  the  "  Metro  "  burner  is  3930  mean 
radial  candle-hours  per  therm,  the  efficiencies  of 
various  shoddy  burners  range  from  920  to  2940  mean 
radial  candle-hours  per  therm.  A  plea  is  urged  that 
gas  supply  undertakings  should  formulate  certain 
standards  to  which  gas  fittings,  burners,  glassware, 
mantles,  etc.,  should  conform.  Reference  is  made 
to  certain  scientific  principles  concerning  gas 
burner  design,  more  especially  to  the  deposition  of 
dust  upon  the  injector  orifices,  and  to  the  pheno- 
mena of  ajr-entrainment  by  the  issuing  jet  as  con- 
ditioned by  the  size  and  disposition  of  the  orifices. 
The  orifice  dimensions,  and  their  disposition  in  the 
case  of  multiple-hole  injectors,  may  be  such  as  to 
produce  inherent  instability  and  unsteadiness  of  the 
flame  of  the  burner. — J.  S.  G.  T. 

Methane;  Purification  of  gases  [for  incandescence 

lamps]  from .     G.  R.  Fonda  and  H.  N.  van 

Aernem.  J.  Ind.  Eng.  Chem.,  1922,  14,  539—540. 
In  the  usual  method  for  the  removal  of  methane 
from  nitrogen  or  argon  for  gas-lilled  lamps,  by  the 
action  of  heated  copper  oxide,  an  inconveniently 
high  temperature  is  necessary.  The  decomposition 
of  methane,  CH<  =  C  +  2H,,  with  a  nickel  catalyst, 
for  which  Mayer  and  Altmayer  (Ber.,  1907,  40, 
2134)  have  determined  the  equilibrium  constant,  is 
facilitated  by  a  low  partial  pressure  of  methane, 
and  is  therefore  suitable.  Investigations  with  a 
mixture  of  nitrogen  with  about  2%  of  methane  have 
substantially  confirmed  Mayer  and  Altmayer's 
figure.  A  series  of  equilibrium  curves  for  different 
temperatures  is  given,  showing  for  example  that 
at  500°  C.  this  treatment  reduced  the  methane 
content  of  a  gas  from  P5%  to  0'24%.  The  gas  must 
afterwards  be  passed  over  copper  oxide  to  remove 
the  hydrogen  liberated. — C.  I. 

Patents. 
Betorts  for  the  distillation  of  oil-bearing  shales  or 

other  like  materials.    J.  S.  Black.    E.P.  179,964, 

29.7.21. 
The  contents  of  the  vertical  retort  are  supported 
on   a    platform,    above   which   iB    a   member   which 


538  j 


Cl.  III.— tar  and  tab  products. 


[July  81,  1922. 


oscillates  angularly  so  as  to  break  up  and  discharge 
the  spent  shale.  The  products  of  distillation  are 
drawn  oft'  at  various  heights  from  the  sides  of  the 
.  with  a  view  of  effecting  a  separation  of  the 
distillates— T.  A.  S. 

Peai  and  like  substances;  Method  of  distilling  and 

gasifying    [and    production    of    cemcnf\. 

A.  A.  F.  M.  Seigle.     E.P.  180,081,  24.2.21. 

Agglomerates  are  prepared  by  mixing  peat  or  tin- 
like  with  calcium  carbonate,  calcium  chloride,  and 
silicious  matter  or  cement,  and  are  hardened  by 
treatment  with  saturated  steam  under  pressure  in 
a  digester  so  as  to  cause  formation  of  calcium 
hydrosilicate.  The  agglomerates  are  distilled  at  a 
comparatively  low  temperature,  say  550° — 580°  C, 
in  order  to  obtain  condensable  hydrocarbons, 
ammonia,  methyl  alcohol,  aliphatic  compounds, 
etc.,  and  afterwards  heated  to  a  higher  tempera- 
ture, whereby  complete  gasification  of  the  fixed 
carbon  is  effected  with  the  formation  of,  mainly, 
carbon  monoxide  and  other  permanent  gases.  A 
residue  of  hydraulic  lime  is  obtained  by  heating  to 
a  temperature  of  1100°— 1200°  C,  while  if  the 
temperature  is  raised  to  1500°  C.  the  residue  con- 
sists of  hydraulic  cement. — A.  R.  M. 

Retorts  for  destructive  distillation;  Vertical  . 

E.  Burnet.    E.P.  180,161,  13.4.21. 

Vertical  retorts  of  narrow  rectangular  cross- 
section,  particularly  adapted  for  the  distillation  of 
shale,  are  provided  at  various  heights  in  their  side 
walls  with  horizontal  slots  of  such  dimensions  and 
having  their  lower  surfaces  so  inclined  that  the 
column  of  descending  material  can  spread  out  at 
these  positions  without  coming  to  rest.  Distillation 
products  are  withdrawn  through  these  openings  and 
hence  do  not  have  to  pass  through  the  whole  column 
of  material  in  the  retort.  The  retorts  may  be  made 
with  special  sections  formed  as  described  above, 
interposed  between  the  sections  of  the  usual  shape, 
and  the  heating  flues  are  also  divided  into  sections 
so  that  the  temperature  of  the  special  sections  of 
the  retort  can  be  maintained  at  a  temperature 
independent  of  that  of  the  ordinary  sections. 

—A.  R.  M. 

Carbonisation;  Apparatus  for with  endless  belt, 

for  the    material   to   be   carbonised  and   internal 
heating.    F.  Caspari.    G.P.  351,279,  31.12.20. 

The  gas  offtake  is  situated  immediately  below  the 
trough  of  the  perforated  endless  belt,  which  is 
loaded  with  the  raw  material.  The  gases  evolved  are 
therefore  immediately  removed  from  the  hot  zone 
of  the  furnace  and  are  not  subjected  to  overheating. 
Decomposition  of  the  tar  is  also  prevented. — A.  G. 

Charcoal;    Vegetable    .      Wilson    Bros.    Bobbin 

Co.,  Ltd.,  and  S.  C.  Bone.  E.P.  180,611,  22.10.21. 

Vegetable  charcoal  which  is  free  from  liability  to 
spontaneous  ignition,  is  prepared  by  passing 
ordinary  vegetable  charcoal,  preferably  direct  from 
the  retort  in  which  it  has  been  made,  through 
chambers  containing  an  inert  gas,  preferably  a  gas 
containing  free  nitrogen,  whereby  the  charcoal 
becomes  impregnated  with  the  gas. — A.  R.  M. 

Thermionic  cathodes  [for  vacuum  t)ibes~\  and  method 
of  making  the  same.  Western  Electric  Co.,  Ltd. 
From  Western  Electric  Co.,  Inc.  E.P.  180,090, 
28.2.21. 

An  electron-emitting  cathode  consists  of  a  core, 
formed  of  an  alloy  of  Pt  95%  and  Ni  5%,  coated 
wilh  a  thcrmionically  active  material.  The  latter 
is  prepared  by  coating  the  core  with  alkaline-earth 
carbonate,  e.g..  barium  or  strontium  carbonate,  and 
he. i ting  for  5 — 20  mins.  in  an  atmosphere  of  oxygen 
at  1200°  C,  and  subsequently  in  vacuo  or  in  a 
non-oxidising    atmosphere  for   several    minutes    at 


1000°  C.  Palladium,  osmium,  rhodium,  iridium, 
or  ruthenium  may  replace  the  platinum  in  the 
core,  and  the  nickel  may  be  replaced  by  cobalt. 

— j.  S.  G.  T. 


III.— TAR  AND  TAB  PRODUCTS. 

Coal  tar;  Stoppage  of  condenser  in  distillation   of 

.      W.    Spalteholz.      Chem.-Zeit.,    1922,    46, 

544. 

In  distilling  a  tar  with  a  high  content  of  water, 
after  driving  off  the  water,  light  oil,  and  part  of  the 
creosote  oil  and  naphthalene,  crust-like  formations 
were  noticed  at  the  condenser  outlet,  and  the  flow 
of  oil  almost  ceased.  There  followed  an  explosive 
ejection  of  oil  mixed  with  crystalline  masses  of 
ammonium  chloride,  which  was  formed  to  the 
amount  of  about  5 — 10  kg.  per  15,000  kg.  of  tar. 
The  large  quantity  of  ammonium  chloride  is  attri- 
buted to  the  use  of  coal  which  had  been  in  contact 
with  sea  water  during  transport. — H.  M. 

Benzene,   toluene,  and  m-xylene;  Distillation  of  a 

mixture  of  .     L.  Gay.     Chim.  et  Ind.,  1922, 

7,  851—854. 
The  distillation  takes  place  in  two  successive  de 
phlegmating  columns.  The  process  may  be  con- 
ducted so  as  (1)  to  separate  practically  pure 
m-xylene  at  the  base  of  the  first  column,  and  to 
separate  the  mixed  benzene  and  toluene  in  the 
second  column,  or  (2)  to  extract  benzene  from  the 
top  of  the  first  column,  and  to  separate  the  liquid 
mixture  of  toluene  and  m-xylene  by  further  distilla- 
tion. A  series  of  triangular  graphs  show  the  rate 
of  exchange  of  heat  units,  and  under  what  circum- 
stances the  first,  and  when  the  second  process  i- 
preferable.  If  the  triangular  diagram  be  divided 
into  two  portions  by  a  line  extending  from  I 
toluene  corner  to  a  point  on  the  benzene-m-xylenc 
side  corresponding  to  72%  of  benzene,  for  liquid 
mixtures,  or  by  a  line  extending  from  a  point  on  the 
benzene-toluene  side  corresponding  to  85%  of 
benzene  to  a  point  on  the  benzene-m-xylene  side 
corresponding  to  51%  of  benzene,  for  gaseous  mix- 
tures, then  those  mixtures  falling  in  the  lower  por- 
tion of  the  triangle  are  best  separated  by  method  (1) 
and  those  falling  in  the  upper  portion  by  method  (2), 

'    — H.  M. 

Tetralin  (tetrahydronaphthalene)  and  delcalin 
(decahydronaphthalenc) ;  Physico-chemical  inves- 
tigation  of   .      W.    Herz   and   P.    Schuftan. 

Z.  physik.  Chera.,  1922,  101,  269—285. 
Tetralin  and  dekaiin  are  useful  solvents,  and  have 
possibilities  as  combustibles  and  sources  of  power, 
and  are  also  of  value  for  lubrication.  They  have 
the  following  phvsical  constants — b.p.,  2073°  C. 
and  191-7°  C. ;  heat  of  vaporisation,  79"32  cals./g., 
71-01  cals./g. ;  m.p.,  -  35-0° +  05°  C,  -124°  +  2°C; 
sp.  gr.  at  temperature  t,  0-9843(1  -763 x  lfr'f). 
0-8975  (1-818x10  °t);  surface  tension  at  the  boiling 
point,  17'46  dynes/cm.,  15'71  dynes/cm.  respec- 
tively.    (Cf.  J.C.S.,  July.)— J.  F.  S. 

Patents. 

Distillation   of   liquids,    such,    tor   example,   as  tar 

and  oils.    J.  L.  Wilson.     E.P.  180,317,  17.11.20. 

The  oil  is  distilled  in  a  continuous  still,  inert  gas 
being  passed  through  the  distilling  liquid.  Separa- 
tion of  the  distillates  is  effected  by  fractional  con- 
densation. Heat  is  conserved  by  using  the  con- 
densers and  the  coolers  for  the  still  residue  as  pre- 
heaters  for  the  incoming  oil.  The  arrangement  of 
tlie  still-head  prevents  the  return  of  any  cond 
liquid  to  the  still.  Vapours  from  the  preheaters 
and  those  not  condensed  by  condensers  in  the  pre- 
heaters are  passed  through  water-cooled  condensers. 

— T.  A.  S. 


vol.  xli.,  No.  14.]         Cl.  IV.— COLOUKIKG  MATTERS,  &c.      Cl.  V.— FIBRES  ;  TEXTILES,  &c.        539  a 


Condenser  for  vacuum  distillation  of  petroleum. 
tar,  etc.  L.  Steinschneider.  G.P.  351,004,  6.3.20. 
Conv.,  13.8.18. 

Between  each  outlet  tube  and  the  common  main, 
serving  as  conduit  for  all  vapours  from  the  dis- 
tillation units  to  the  condenser,  there  is  a  catch- 
tube,  provided  with  a  waste  pipe.  If  the  contents  of 
11  froth  over  they  pas6  through  the  catch-tube 
.iii.L  the  wast-e  pipe  to  a  catch  pot  situated  under- 
neath, and  cannot  pass  through  the  common  main  to 
the  condenser.  The  operation  of  the  other  stills  is 
thus  not  interfered  with.  Entrained  oil  can  be 
separated  from  the'  vapour  in  the  catch-tubes  by 
means  of  baffles,  and  can  be  recovered,  whilst  tin- 
vapour  passes  on  to  the  central  condenser. — A.  G. 

Hydrocarbons;    Processes    for    refining    .     J. 

Demant.     E.P.  179,610,  4.2.21. 

The  acid  treatment  of  hydrocarbons  for  the  removal 
I  of  impurities  is  varied  so  that  instead  of  the  foreign 
matters  being  lost  in  solution  in  concentrated  acid 
I  they  are  polymerised  and  recovered  as  high-boiling 
[oils  from  the  hydrocarbons  by  subsequent  distilla- 
Ition.     To  this  end  the  hydrocarbon  is  treated  with 
relatively  dilute  acid  at  suitable  temperatures.    The 
action  is  catalytic;  the  acid  is  unchanged,  and  may 
Ije  used  repeatedly.     By  treating  90%   benzol  with 
10%  of  its  weight  of  sulphuric  acid  of  46°  B.  (sp.  gr. 
1-468)  at  about  65°— 70°  C.  for  5—6  hrs..  and  subse- 
quent treatment  with  soda   and  distillation,   pure 
benzol   is  recovered,   and  on  distilling  the   residue 
with    -team,    oil   and   a   varnish-like    material   are 
obtained.     In  the  case  of  coal  tar  naphtha  treat- 
ment with  acid  of  46°— 48°  B.  (sp.  gr.  1468— T498) 
at  110°  C.   for  5 — 6  hrs.  converts  the  indene  and 
counurone  into  a  viscous  oil  of  high  value,  having 
a  freezing  point  of  -10°  to  -15°  C— T.  A.  S. 

Naphthalene  and  other  volatile  solid  organic  I 

Purification  of .    C.  E.  Andrews,  C.  Conover, 

K.   B.    John,    and   C.    E.    Ruth.     E.P.    179,991, 
19.1.21. 

Ceude  naphthalene,  or  other  volatile  solid  organic 

.material,  is  heated  to  its  melting  point,  e.g.,  about 

110° — 12lP    C,    in    a    vessel    provided    with    coils 

'through  which  hot  oil  is  circulated.     Heavy  impuri- 

jties  in  the  naphthalene  sink  into  a  space  below  the 

,:oils,  while  an  outlet  pipe  attached  to  the  end  of 

:he  vessel  at  a  point  above  the  bottom  conveys  the 

liquid  material  to  the  middle  of  a  series  of  three 

yaporisers   arranged   in   steps.      Each   vaporiser   is 

leated   by  coils   containing  hot  oil,   the   lowest   of 

Jbe  series  to  140°— 150°  C.,  the  middle  one  to  120°— 

130°  C,  and  the  uppermost  to  110°— 120°  C.  Vapour 

rom  the  middle  vessel  passes  into  the  uppermost 

'essel,  in  which  a  portion  condenses  and  returns  as 

iquid   to   the   middle  vessel,   while   the   remainder 

lasses  to  a  series  of  condensing  chambers.     Liquid 

rom  the  middle  vessel  flows  into  the  lowest  vessel, 

rhence  the  vapour   returns   to  the   middle  vessel, 

ind  the  residual  liquid  is  withdrawn.     Air  or  other 

;as  is  blown  through  the  liquid  in  the  bottom  vessel, 

nd  each  vessel  is  provided  with  baffles  alternately 

ttached   to  and  clear  of  the  lid.     A  quantity  of 

odium  hydroxide  or  the  like,  amounting  to  0'5  to 

,  %  of  the  weight  of  the  naphthalene  charged  intc 

he  apparatus,  is  added,  e.g.,  as  a  5%  aqueous  solu- 

ion,  to  one  or  more  of  the  vaporisers. — L.  A.  C. 

.ubricating  oils;  Process  for  the  production  of 

of  high  viscosity  from  coal  tar  oils.  Chem.  Fabr. 
Worms  A.-G.  G.P.  350,801,  13.9.17. 
he  oils  are  treated  at  ordinary,  or  higher,  tempera- 
ires  with  an  acid  condensing  agent  other  than 
llphuric  or  waste  acid.  Suitable  condensing 
gents  are  sulphuryl  and  thionyl  chlorides,  phos- 
horus  chlorides,  phosphorus  oxychloride,  alu- 
minium chloride,  phosphorus  pent-oxide,  and  sul- 
hur  dichloride.     Anthracene  oil,  with  a  flash-point 


of  140°  C.  and  a  viscosity  of  46°  Engler  at  40°  C. 
gives,  on  treatment  with  sulphuryl  chloride  and 
removal  of  the  hydrochloric  acid  produced,  a 
lubricating  oil  with  a  flash-point  of  172°  C.  and  a 
viscosity  of  40°  Engler  at  40°  C— A.  G. 


G.     Schultz.      G.P. 


Lubricating     oil    substitute. 
351,201,   15.5.17. 

The  residue  from  the  preparation  of  anthracene 
from  anthracene  oil,  which  is  rich  in  phenanthrene. 
is  dissolved  in  petroleum  or  solvent  naphtha  and 
is  treated  with  sodium.  Alcohol  is  then  added 
gradually  until  all  the  sodium  has  been  combined, 
the  liquid  is  diluted  with  water,  the  aqueous  solu- 
tion separated,  and  the  oil  distilled.  The  lubri- 
cating oil  is  produced  from  the  fraction  boiling 
above  300°  C.  Instead  of  nascent  hydrogen  (sodium 
and  alcohol)  molecular  hydrogen  may  be  used  in  the 
presence  of  a  catalyst. — A.  G. 

[Tar']  distillation  process  and  product  thereof.  J.  M. 
Weiss,  Assr.  to  The  Barrett  Co.  U.S. P.  1,418,893, 
6.6.22.     Appl.,  7.2.20. 

See  E.P.  158,852  of  1920;  J.,  1921,  575  a. 


IV.-C0L0UBING  MATTERS  AND  DYES. 

Electrochemical  study  of  the  reversible  reduction 
of  organic  c.07npounds.  J.  B.  Conant,  H.  M. 
Kahn.  L.  F.  Fieser.  and  S.  S.  Kurtz,  jun.  J. 
Amer.  Chem.  Soc.,   1922,  44,   1382—1396. 

The  reduction-oxidation  potentials  of  six  anthra- 
quinonesulphonic  acids  have  been  measured  by  a 
titration  method,  using  titanous  chloride  and 
sodium  hydrosulphite,  and  the  results  obtained  over 
a  wide  range  of  hydrogen-ion  concentration  have 
been  found  to  be  in  accord  with  a  general  equation 
established  for  expressing  the  reduction-oxidation 
potentials  of  compounds  of  the  type  of  quinone, 
e.g.,  vat  dyestuffs,  in  both  acid  and  alkaline  solu- 
tions. The  validity  of  the  method  is  shown  by 
determinations  of  the  potentials  of  mixtures  of  the 
reduced  and  oxidised  compounds. — W.   G. 

Patent. 

Mordant  dyeing  dyestuffs  aytd  chromium  compounds 

thereof;  Manufacture  of .     0.  Imray.     From 

Soc.  of  Chem.  Ind.  in  Basle.  E.P.  180,433,  22.2.21. 

See  U.S. P.  1,402,350  of  1922;  J.,  1922,  137  a. 


V.-FIBBES;  TEXTILES;  CELLULOSE; 
PAPER. 

Cotton;   Effect   of   fire  proofing    solutions   on   • . 

G.  Durst.    Textilber.,  1922,  3,  228—229. 

The  work  of  Sibley  (J.,  1921,  806  a)  is  adversely 
criticised,  mainly  on  the  ground  that  the  tests 
were  not  carried  out  under  conditions  which  would 
apply  to  the  large-scale  fireproofing  of  cotton 
fabrics. — A.  J.  H. 

Silk-fibroin;  Composition  of and  its  structure. 

E.   Abderhalden.     Z.   phvsiol.   Chem.,    1922,   120, 

207—213. 
|  100  G.  of  silk-fibroin  (free  from  ash)  yielded  25  g. 
of  d-alanine,  2o  g.  of  Weucine,  1"5  g.  of  phenyl- 
alanine, 1'8  g.  of  Z-serine,  and  1  g.  of  (-proline. 
Altogether  S6"4%  of  the  amino-acids  were  accounted 
for.  The  examination  of  the  products  of  hydro- 
lysis in  the  intermediate  stages  of  hydrolysis 
showed  the  presence  of  considerable  quantities  of 
<7-alanylglycine-anhydride,  m.p  240° — 247°  C, 
[o]D=  -5"02°,  small  quantities  of  glycyl-!-tyrosine- 
anhydride,  and  a  compound  containing  serine, 
d-afanine,  and  glycine. — S.  S.  Z. 


.;40A 


Ul.  V— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[July  31,  1922. 


Wood  and  other  raw  materials;  Determination  of 

cellulose  in by  the  action  of  chlorine  dissolved 

in  carbon  tetrachloride.  E.  Heuser  and  H. 
Casseus.  Papierfabr.,  1922,  20,  Fest-  u.  Auslands- 
heft,  80-  93. 

The  determination  of  cellulose  in  wood  by  Cross  and 
Bevan's     chlorination     method     is    simplified     and 
brought  more  under  control  by  treating  the  ground 
material  with  a  solution  of  chlorine  in  carbon  tetra- 
chloride.    A  solution  saturated  by  passing  chlorine 
gas  through  carbon  tetrachloride   at  the  ordinary 
temperature  contained  8T0  g.  of  chlorine  per  100  g. 
of  solvent   and   was   practically   stable   for   several 
weeks.     The  wood  should  be  ground  to  a  meal  of 
medium  fineness;  too  coarse  particles  are  attacked 
unevenly  and  too  fine  particles  present  some  diffi- 
culty in  the  subsequent  nitrations.     It  is  not  neces- 
sary to  remove  the  fat  and   resin  by   preliminary 
extraction.     The  chlorination  proceeds  too  slowly  if 
the  wood  is  treated  in  the  dry  state  and  the  best 
procedure,  in  the  case  of  wood  meal  of  medium  fine- 
ness, is  to  moisten  the  material  in  a  Gooch  crucible 
and  allow  it  to  drain  without  suction  before  proceed- 
ing to  the  first  chlorination.     For  the  second  and 
third  chlorinations  the  quantity  of  moisture  must 
be  greatly  reduced  and  a  current  of  air  is  sucked 
through  the  cake  of  material  in  the  Gooch  crucible 
for  a  considerable  time.     A  special  apparatus  used 
by  the  authors  for  the  treatment  of  the  wood  with 
chlorine  consists  of  a  short  wide  cylindrical  shaking- 
funnel  fitted  with  a  ground  stopper  and  a  tap  at 
the  lower  end.     The  lower  part  of  this  funnel  is 
ground  to   fit   into  the  upper  part  of  the   Gooch 
crucible,  which  is  detached  for  the  shaking  treat- 
ment and  attached  for  the  filtration  and  extraction 
treatments.     About  1*5  g.  of  wood  meal  is  treated 
in  the  funnel  with  50  g.  of  the  chlorine  solution,  the 
stopper  is  tied  down,  and  the  mixture  is  shaken  in 
a  shaking  machine.    With  the  right  degrees  of  mois- 
ture, the  times  of  chlorination  may  be  reduced  to 
30  mins.  for  the  first,  20  mins.  for  the  second,  and 
15  for  the  third.     After  each  treatment  the  funnel 
is  fitted  to  the  Gooch  crucible,  the  tap  is  opened, 
aud    the    contents    are    transferred    to    the    filter 
chamber.     The  carbon   tetrachloride  is   filtered   off 
and  the  cake  is  washed  first  with  alcohol  and  then 
with    water.      Treatment    with    hot    2%     sodium 
sulphite  solution  in  the  Gooch  crucible  then  follows, 
and  the  purified  residue  is  transferred  again  to  the 
funnel  for  the  next  chlorination.    The  consumption 
of   chlorine    may    be    determined    by    shaking   the 
carbon  tetrachloride  filtrate  with  potassium  iodide 
solution    and    titrating;    a    train    of    gas-washing 
vessels     containing     potassium     iodide     should     be 
inserted  between  the  filter  flask  and  the  pump.    The 
results  are  extremely  concordant,  showing  59'7%  of 
cellulose,  containing  pentosan,   in  wood  meal;  the 
cellulose   is   free   from   lignin   and   the   absence   of 
destructive  oxidation  is  shown  by  the  low  "  copper 
value"  of  the  final  product,  i.e.,  0"8 — 0"9,  as  com- 
pared with  32   for  the  cellulose  prepared   by   the 
chlorine  gas  method. — J.  F.  B. 


Sulphite  pulps;  Determination  of  the  chlorine  con- 
sumption value  of ■.    R.  Sieber.     Zellstoff  u. 

Papier,  1921,  1,  181—184.  Pulp  and  Paper  Mag., 
1922,  20,  425—427.  (C/.  J.,  1921,  382  a;  1922, 
409  a.) 
The  results  of  the  test  originally  described  are 
greatly  influenced  by  the  degree  of  alkalinity  of  the 
bleach  liquor  and  the  temperature  at  which  it  acts. 
The  prescription,  therefore,  is  modified  by  specify- 
ing an  alkalinity  equivalent  to  10  c.c.  of  JV/10 
caustic  soda  in  the  quantity  of  bleach  liquor  taken, 
and  a  standard  temperature  of  20°  C.  The  quantity 
of  active  chlorine  taken  for  5  g.  of  dry  pulp  is  03  g. 
and  the  necessary  conditions  are  best  established  by 
mixing    calculated     quantities     of     two    bleaching 


powder  solutions  of  different  known  strengths  and 
alkalinities.  The  following  formula  is  useful  for 
calculating  the  necessary  quantities  of  the  two 
solutions:  x  =  (422ir — 220q) / (u'p — vq)  and  i/  =  (250ji 
— i'22w)  I (wp — vq),  in  which  p  and  q  are  c.c.  of 
1V/10  As.03,  required  for  5  c.c.  of  the  stronger 
and  weaker  solutions  respectively,  and  v  and 
in  are  c.c.  of  iV/10  acid  equivalent  to  25  c.c. 
of  the  respective  solutions.  Then  x  +  y  c.c.  of 
the  mixed  solutions  contains  0'3  g.  of  active 
chlorine  and  an  alkalinity  equivalent  to  10  c.c.  of 
X 1 10  caustic  soda.  One  solution  is  made  up  with 
30  g.  of  bleaching  powder  per  litre  and  the  other 
with  80 — 90  g.  Both  are  filtered  and  preserved  in 
brown  glass  bottles  under  a  layer  of  paraffin  oil. 
The  two  solutions  are  standardised  every  time  before 
mixing,  and  sufficient  of  the  mixed  solution  may  be 
prepared  to  last  a  week;  this  is  also  kept  in  a  brown 
bottle  under  paraffin,  the  bottle  being  connected 
with  the  burette  for  the  test. — J.  F.  B. 


Artificial  silk  industry;  Progress  in  the  .     E. 

Bronnert.    J.  Soc.  Dyers  and  Col.,  1922,  38,  153— 
162. 
In  the  manufacture  of  collodion  silks  the  recovery 
of  the  organic  solvent  is  one  of  the  major  economic 
problems.     When  spinning  into  aqueous  baths,  the 
author  succeeded  in  eliminating  the  use  of  ether  by 
dissolving    the    dinitrocellulose    in    a    mixture    of 
alcohol  and  calcium  chloride.     Cuprammonium  solu- 
tions  of  cellulose   are  obtained   economically   in   a 
sufficiently  concentrated  form  by  suitable  pre-treat- 
ment  of  the  cellulose  and  the  judicious  use  of  low 
temperatures.    Fine  silk  of  good  quality  is  obtained 
by  spinning  with  dilute  acid,  but  the  caustic  soda 
coagulating  baths  are  more  generally  employed  and 
are  moreover  essential  for  spinning  thick  filaments 
(horsehair).     Temperatures  up  to  60° — 70°  C.  are 
employed.      The   addition   of  sugar   to  the  caustic 
soda   bath   is  necessary   in  order   to  preserve   the 
lustre ;  the  sugar  prevents  the  formation  of  coarse 
precipitates  of  cupric  hydroxide  in  the  thread  and 
holds  it  in  the  form  of  a  clear  solid  solution.     The 
recovery  of  the  copper  and  ammonia  from  the  spent 
baths  presents  no  serious  difficulty.     The  resistance 
to   water   of   cuprammonium    silk   is   stated  to  be 
superior  to  that  of  other  artificial  silks,  and  this  is 
one  of  the  reasons  which  justify  the  survival  of  the 
process.     By  the  so-called   "stretch  spinning"  of 
Thiele-Bemberg,  filaments  of  a  fineness  down  to  2 
deniers   are   obtainable   with  cuprammonium  solu- 
tions from  relatively  large  orifices.    Such  fine  counts 
had  not,  up  to  now,  been  possible  with  viscose.    Th« 
influence  of  the  composition  of  the  coagulating  bath 
on  the  shape  of  the  cross-6ections  of  viscose  silk  has 
been  studied,  and  the  author  showed  in  1913  that 
when   spinning   filaments    of    about  8   deniers  the 
quantity  of  sodium  sulphate  in  the  bath  must  1 
definitely   in   excess  of   the  equivalent  required  ti 
produce  sodium  bisulphate  with  the  acid.     A  study 
of  the  effect  of   varying  the  concentration  of  the 
acid  in  the  coagulating  bath  has  now  revealed  the 
fact  that  the  fineness  of  the  filaments  which  can  bo 
spun  is  a  function  of  the  concentration  of  the  acid. 
With  a  given  viscose  and  a  given  size  of  jet  orifice 
the  minimum  concentration  of  acid  which  must 
present  in  the  bath  increases  inversely  as  the  square 
root   of   the   denier   required.     More   concentrated 
viscose  solutions  require  either  smaller  orifices  or 
higher  concentrations  of  acid  to  give  filaments  ol 
the  same  degree  of  fineness,  and  with  the  same  vis- 
cose smaller  orifices   require   lower   minimum  con- 
centrations of  acid  than  larger  orifices.     Hence  a 
series  of  inter-related  spinning  conditions  has  beer, 
established  which  enable  filaments  of  any  degree  o 
fineness    down    to    075    denier    to    be    spun    wi"> 
accuracy. — J.  F.  B. 


Vol.  XLl  .  No.  it; 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPEIi. 


541  a 


Cellulose  complexes;  Transformations  of during 

ihc   manufacture  of  artificial  silk.     W.  Vieweg. 
Zellstoff  und  Papier,  1922,  2,  18—19. 

The  insoluble  residue  obtained  by  grinding  cellulose 
F  with  sodium  hydroxide  solution  is  the  sodium  alkyl- 
•  oxide  of  a-eellulose,  and  reacts  as  such  with  carbon 
! bisulphide,  benzoyl  chloride,  and  the  like.  Alkali- 
Icellulose  having  the  formula,  (CcH,0O5)j,NaOH,  is 
; prepared    by    steeping    cellulose    in    18%     sodium 

hydroxide  solution  and  pressing  the  product ;  this 

product  is  unaffected  by  air  or  other  oxidising 
!  agents.    The  cellulose  xanthates  capable  of  spinning 

contain  the  complexes  (CsH^Oj),  and  (C„Hl0O5)<. 

— L.  A.  C. 

Cellulose  acetates;  Detection  and  determination  of 

j     free  sulphuric  acid  and  sulphoacetates  in  . 

M.  Entat  and  E.  Vulquin.     Ann.  Chim.  Analvt. , 
1922,  4,  131—135. 

Feee  sulphuric  acid  is  determined  by  digesting  10  g. 
of  the  cellulose  acetate  with  200  c.c.  of  water  at 
[15°  C.  for  30  mins.,  filtering  the  mixture,  and 
.titrating  the  nitrate  with  standardised  barium 
'hydroxide  solution,  the  end-point  being  determined 
electrometrically ;  the  titration  curve  shows  a  sharp 
break  when  the  free  sulphuric  acid  is  neutralised. 
■Samples  of  normal  cellulose  acetate  examined  did 
(not  contain  free  sulphuric  acid,  and  alkali  and 
alkaline-earth  sulphates  have  been  mistaken  for 
sulphuric  acid  by  other  observers.  To  determine 
sulphoacetates,  5  g.  of  the  sample  is  heated  with 
50  c.c.  of  water  for  5  hrs.  in  an  autoclave  at  125°  C, 
,and  the  sulphuric  acid  resulting  from  the  hydrolysis 
pi  the  sulphoacetate  is  then  titrated  as  described 
(above.  All  cellulose  acetates  prepared  by  methods 
in  which  sulphuric  acid  or  its  derivatives  are  used  as 
catalysts  contain  sulphoacetic  acid  combined  with 
•the  cellulose  ester;  the  quantity  of  sulphuric  acid 
present  as  sulphoacetic  acid  does  not  exceed  0'03% 
'in  the  case  of  cellulose  acetates  of  good  manufac- 
ture —  W.  P.  S. 

Patents. 

Textile    materials;    Method  of   and  apparatus  for 

,    drying  .     H.  Krantz.     E.P.  179,409,  18.4.21. 

1    Addn.  to  157,420  (J..  1922,  459a). 

The  process  described  in  the  original  patent  is  modi- 
fied in  that  the  final  drying  operation  is  effected  by 
olowing  warm  air  through  the  material  after 
partially  drying  with  steam.  Suitable  alterations 
,ire  made  in  the  various  forms  of  apparatus 
previously  described. — D.  J.  N. 

textile  fibres;  Manufacture  of  from  stems  of 

i  plants,  especially  nettles.  J.  Elster.  G. P.  309,234, 
I    22.2.18.    Addn.  to  305,409  (J.,  1921,  689  a). 

The  fibres  obtained  as  described  in  the  chief  patent 
ire  boiled  with  dilute  caustic  soda  solution  for  about 
'!  hrs.  in  an  open  vessel  or  for  a  short  time  in  a 
;  losed  vessel  under  pressure,  then  washed  with  warm 
rater,  treated  with  soap  solution  to  remove  vege- 
able  glue  and  other  impurities  which  would  inter- 
ere  with  the  spinning  of  the  fibres,  washed  succes- 
lively  with  hot  water  and  cold  water,  and  dried. 

Wool,  fur,  hair,   and  other  materials;  1'rocess  for 

!  protecting  ■  from  moths.     Farbenfabr.  vonn. 

F.  Bayer  und  Co.     G.P.  (a)  347,723,  25.9.19,  and 
(b)  347,849,  13.7.20.     Addns.  to  G.P.  346,598. 

0  Wool  and  other  materials  which  have  been 
lade  resistant  to  moth  by  treatment  with  hydrogen 
ilicotluoride,  other  complex  acids  or  their  salts 
.:/.  E.P.  173,536;  J.,  1922,  138  a),  are  after-treated 
■ith  metallic  salts  capable  of  forming  insoluble  com- 
ounds  with  these  complex  inorganic  acids,  so  that 
me  treated  material  retains  its  moth-resisting 
roperties  even  after  the  usual  processes  of  washing, 
llling,  hot  pressing,  treatment  with  acids,  etc.    (b) 


Wool,  fur,  hair,  and  the  like  are  rendered  resistant 
to  moths  by  treatment  even  with  a  cold  liquor  con- 
taining a  complex  inorganic  acid,  such  as  hydrogen 
silico fluoride,  phosphotungstic  acid,  titanium-hydro- 
fluoric acid,  or  hydrofluoric  acid  or  one  of  its  sails 
or  double  salts,  if  to  the  liquor  is  also  added  an 
assistant  such  as  sodium  sulphate,  sodium  chloride, 
an  acid  such  as  sulphuric  or  formic  acid,  or  a 
metallic  mordant  such  as  a  salt  of  chromium,  alu- 
minium, tin,  zinc,  or  antimony. — A.  J.  TI. 

Wool,   hair,   and  feathers;  Process  for  increasing 

the  strength  and  elasticity  of  .     J.  Korselt. 

G.P.  350,803,  18.4.20.  Addn.  to  349,179  (J.,  1922, 
410  a). 
Neutral,  alkaline,  or  acid  solutions  of  decomposi- 
tion products  of  alkaloids,  e.g.,  derivatives  of  pyri- 
dine, piperidine,  pyrrolidine,  quinoline,  isoquino- 
line,  phenanthrene,  morpholine,  or  purine  can  be 
employed,  either  under  normal  or  increased  pres- 
sure, for  treating  wool,  hair,  or  feathers  as 
described  in  the  chief  patent. — L.  A.  C. 

Carotting   hairs;  Process  for  .     Soc.    Pichard 

Freres.     E.P.  163,297,  28.4.21.    Conv.,  15.5.20. 

The  skins  "  in  the  hair"  are  moistened  with  pure 
water,  or  water  containing  an  antiseptic,  such  as 
formaldehyde,  stacked  hair  against  hair  for  several 
hours,  and  then  exposed  to  sufficient  cold  by,  e.g., 
immersing  them  for  a  few  seconds  in  liquid  oxygen, 
nitrogen,  or  air,  to  freeze  the  water  which  has 
penetrated  into  the  medullary  ducts  of  the  hairs. 
This  causes  the  hairs  to  burst,  and  thereby  improves 
their  felting  qualities.  The  process  may  also  be 
applied  to  hairs  which  have  been  removed  from 
the  skin.— D.  J.  N. 

Fibrous  materials;  Process  for  boiling  and  a 

device,  for  carrying  out  the  process.  A.-G.  dtr 
Maschinenfabr.  Escher,  Wysa  und  Co.  E.P. 
168,304,  4.7.21.     Conv.,  21.8.20. 

Fibrous  material  is  treated  with  a  hot  liquor  within 
an  upright  boiler,  provided  with  a  supply  pipe  at 
the  top,  a  discharge  pipe  connected  with  an 
annular  space  at  a  level  below  the  top,  and  a  pipe 
at  the  bottom  which  may  serve  either  as  a  supply 
pipe  or  discharge  pipe.  The  two  upper  pipes  are 
provided  with  non-return  valves,  and  by  means  of 
a  single  cross-over  device  the  valves  can  be  so 
operated  that  the  liquor  is  introduced  at  the  top, 
flows  downwards,  and  is  discharged  at  the  bottom 
or  is  introduced  at  the  bottom,  flows  upwards,  and 
is  discharged  through  the  pipe  connected  with  the 
annular  space.  The  direction  of  flow  of  the  liquor 
in  the  preheater  connected  with  the  boiler  remains 
always  the  same. — A.  J.  H. 

Fibrous  pulp  material;  Process  of  preparing  . 

C.  and  J.  Bache-Wiig.     U.S.P.  1,418,353,  6.6.22. 

Appl.,  21.8.20. 
In  the  preparation  of  paper  pulp,  straw-like  sub- 
stances containing  ligneous  matter  are  chemically 
softened,  subjected  to  treatment  id  a  kollergang 
(edge-runner),  digested  with  a  liquor  containing  a 
mixture  of  acid  and  alkaline  compounds,  and  then 
further  subjected  to  a  second  treatment  in  an  edge- 
runner. — A.  J.  H. 

Thin  bands  [cellulose  film']  to  be  used  in  the  manu- 
facture  of   cigaratte   mouthpieces;  Manufacture 

of .     Chem.  Fabr.  von  Heyden  A.-G.     E.P. 

157,126,  8.1.21.  Conv.,  5.3.14. 
A  mixture  containing  1  pt.  of  cellulose  acetate, 
5 — 15  pts.  of  bronze  powder,  and  40  pts.  of  acetone 
is  6prayed  in  a  uniform  thin  layer  over  a  steel 
cylinder,  heated  slightly  internally,  which  slowly 
revolves  so  that  the  coagulated  film  can  be  con- 
tinuously removed.     Films  having  a  thickness  of 


542  a 


Cl.  V.— FIBRES  ;  TEXTILES  ;  CELLULOSE  ;  PAPER. 


[July  31,  1922. 


less  than  005  mm.  can  be  obtained,  and  they  do  not 
easily  tear  when  used  as  a  substitute  for  metallic 
foil  in  cigarette  machines. — A.  J.  H. 

Nitrocellulose;    Manufacture    of    compound    sheet 

material  from  .     C.  Claessen.     E.P.  156,096, 

22.12.20.     Conv.,  3.9.19.     Addn.  to  155,778  (J. 
1922,  459  a).  ' 

A  non-inflammable  nitrocellulose  composition  suit- 
able for  use  as  a  binding  material  for  balata  driving 
belts  or  as  a  floor  covering  is  obtained  by  dissolving 
nitrocellulose  in  the  liquid  non-volatile  tricresyl 
esters  of  phosphoric  or  thiophosphoric  acid  or  their 
halogen  substitution  products,  and  adding  suitable 
filling  materials.  A  satisfactory  composition  con- 
tains 20—25%  of  nitrocellulose,  28—35%  of  tri- 
cresyl phosphate,  15—20%  of  chalk  or  the  like, 
2—5%  of  English  red,  and  35—15%  of  finely  ground 
sawdust. — D.  J.  N. 

Alkali  cellulose  and  the  like;  Apparatus  for  use  in 

reducing  .     A.   Kampf,   Assr.   to   Die   Koln- 

Rottweil  Akt.-Ges.    E.P.  157,982,  12.1.21.    Conv 
13.1.20. 

A  machine  suitable  for  reducing  alkali-cellulose  to 
a  loose  flocculent  state  before  treatment  with  carbon 
bisulphide,  for  conversion  into  viscose,  consists  of  a 
saddle-shaped  trough  having  teeth  or  projections 
on  the-  bottom,  and  within  which  beaters  or 
paddles  rotate.  Each  beater  has  on  its  periphery  a 
continuous  row  of  teeth  which  work  between  the 
teeth  on  the  bottom  of  the  trough,  so  that  fibrous 
material  placed  therein  is  subjected  to  a  shearing 
action.  The  shearing  action  is  increased  bv  the 
addition  of  grooves  or  channels  across  the  toothed 
portion  of  the  trough. — A.  J.  H. 

Viscose;    Bemoval    of    sulphur     compounds     from 
coagulating  baths  and  waste  gases  produced  in  the 

manufacture  of .    E.  Schiilke.    G.P.  346,829, 

29.3.20. 

The  liquors  used  for  coagulation  and  the  waste  gases 
are  treated  with  hydrochloric  acid  containing  free 
chlorine,  whereby  sulphur  is  precipitated  in  a  form 
which  can  be  easily  separated  by  filtration. 

—A.  J.  H. 

Cellulose  acetate;  Manufacture  of  plastic  materials 

or  articles  having  a  basis  of  .     H.  Dreyfus. 

E.P.   179,208,  4.11.20. 

Cellulose  acetate  in  a  dry  or  air-dry  condition  is 
kneaded  or  mixed  with  not  more  than  50%  of  its 
weight  of  a  plastifying  agent,  which  is  not  saponi- 
fied by  water,  the  temperature  during  the  mixing 
operation  being  kept  at  100° — 150°  C.  or  higher. 
Fillers  or  colouring  agents  may  be  added  if  desired, 
together  with  substances  capable  of  neutralising 
traces  of  acid,  e.g.,  urea,  methylurea,  etc.  The 
molten  mixture  is  run  into  moulds,  or  worked  up 
by  any  of  the  usual  processes.  Suitable  plastifying 
agents  are  the  xylene-alkyl-sulphonamides  described 
in  E.P.  132,283' (J.,  1919,  896  a),  in  admixture,  if 
desired,  with  triphenyl  or  tricresyl  phosphate.  This 
process,  in  which  no  volatile  solvents  are  used,  gives 
strong  celluloid-like  masses  which  require  no  season- 
ing.—D.  J.  N. 

Artificial  filaments,  threads  and  films;  Manufacture 

of .    British  Cellulose  and  Chemical  Mfg.  Co., 

Ltd.,  C.   W.   Palmer,   and  W.   A.   Dickie.     E.P. 
179,234,  4.1.21. 

Other  substances  such  as  acetone,  diacetone- 
alcohol,  alcohol,  acetic  acid,  formic  acid,  aqueous 
solutions  of  zinc  chloride,  or  mixtures  of  these, 
which  are  soluble  in  water,  and  have  a  solvent 
action  on  cellulose  acetate,  may  be  used  in  place  of 
thiocyanates  in  the  coagulating  bath  for  cellulose 
acetate  dissolved  in  water-soluble  organic  solvents 


(cf.  E.P.  177,868;  J.,  1922,  459a).  Suitable  con- 
centrations of  these  substances  per  100  pts.  of  water 
are  acetone  10 — 50  pts.,  alcohol  100  pts.,  diacetone- 
alcohol  or  acetic  acid  5  pts. — D.  J.  N. 

Cellulose  ethers;  Process  of  making  .     ,T.  II. 

Donohue,  Assr.  to  Eastman  Kodak  Co.     U.S  P 
1,415,023,  9.5.22.     Appl.,  9.6.21. 

Cellulose  is  soaked  in  caustic  soda  solution  until 
mercerised,  and  is  then  mixed  with  powdered  alkali. 
Excess  of  liquor  is  removed  by  pressure,  and  tho 
cellulose  in  the  resulting  mixture  etherified  in  the 
usual  way. — D.  J.  N. 

Cellulose-ether  solvent  and  composition.  W.  H 
Webb,  Assr.  to  Eastman  Kodak  Co.  U.S.P 
1,418,413,  6.6.22.    Appl.,  10.1.21. 

A  cellulose  ether  is  dissolved  in  a  mixture  of 
carbon  tetrachloride  And  a  monohydroxy  aliphatic 
alcohol  with  less  than  3  carbon  atoms  in  the  mole- 
cule, to  form  a  fluid  film-forming  composition. 

— W.  C. 

Plastic  masses.  Ges.  fur  Verwertung  Chem. 
Produkte  m.b.H.     G.P.  351,103,  27.11.19. 

Plastic  masses  are  prepared  from  a  mixture  of  a 
cellulose  ester  (especially  nitrocellulose)  and  a 
naphthenic  acid.  The  properties  are  largely  depen- 
dent on  their  content  of  naphthenic  acid.  Such 
masses  are  suitable  for  use  in  the  preparation  of 
films  and  medical  bandages,  etc. — A.  J.  H. 

Friction  composition  and  process  for  making  same. 
W.  Achtmeyer.  U.S.P.  1,418,607,  6.6.22.  Appl.. 
10.3.21. 

A  brake  friction  composition  consists  of  asbestos 
impregnated  with  a  condensation  product  of  phenol 
and  methylenediphenyldiamine. — A.  J.  H. 

Paper;  Bleaching  of  "  stuff  "  or  fibres  in  the  manu- 
facture of  and  apparatus  therefor.     W.  H. 

Salmon.     E.P.  178,209,  14.1.21. 

The  removal  of  liquor  from  bleached  paper  pulp  is 
accelerated  and  pulp  of  a  more  uniform  colour 
obtained  by  subjecting  the  underside  of  the  partially 
drained  "  stuff  "  to  the  action  of  a  vacuum.  The 
drainage  bins  are  fitted  with  a  tiled  draining  floor, 
and  means  are  provided  for  exhausting  the  air 
from  the  space  between  this  draining  floor  and  the 
main  floor  of  the  bin.  Provision  is  also  made  for 
removing  the  drainage  liquor. — D.  J.  N. 

Paper  pulp;  Method  for  the   manufacture  of  

and  apparatus  therefor.     V.   Bernot  and  P.  R 
Fournier.     E.P.  178,962,  1.2.21. 

A  process  is  described  for  the  manufacture  of  paper 
pulp  from  rags  and  other  fibrous  material,  in  which 
the  raw  material  and  digestion  liquor  are  fed  con- 
tinuously into  a  horizontal  digestion  cylinder,  suit- 
ably heated  and  fitted  internally  with  a  screw  con- 
veyor, the  pitch  and  rotation  of  which  determine 
the  duration  of  the  digestion  treatment ;  the 
cylinder  wall  is  recessed  to  accommodate  a  wheel 
provided  with  teeth  of  such  a  shape  that  thev 
engage  with  the  thread  of  the  screw  conveyor  and 
force  the  material  under  treatment  to  go  forwaid 
as  the  screw  rotates.  The  apparatus  for  separating 
the  fibres  consists  of  a  cylinder  adjacent  to  and  in 
alinement  with  the  digestion  cylinder,  and  is  fitted 
internally  with  a  revolving  knife  cutter  and  a 
number  of  vertical  partitions  provided  with  open- 
ings decreasing  in  width  from  the  first  partition  to 
the  last,  e.g.,  the  first  partition  may  have  opening* 
several  cm.  wide,  while  the  last  has  slits  of  such  a 
width  as  to  permit  only  of  the  passage  of  single 
fibres.     Between  these  partitions  and  clearing  them 


Vol  XIX,  No.  14.)       Cl.   VI.— BLEACHING ;    DYEING ;    PRINTING  ;    FINISHING. 


543  a 


V  about  2  mm.  are  rotating  stirring  members  to 
isintegrate  the  fibrous  material;  the  pulp  and 
quor  leaving  the  apparatus  are  separated  in  a 
Iter  press ;  the  pulp  is  washed,  while  the  liquor 
isses  back  into  the  digestion  cylinder. — D.  J.  N. 

aper    and    paper    containers;    Rendering     

I  greaseproof.  W.  L.  Wright,  Assr.  to  Seabright 
Co..  Inc.  U.S. P.  1,417,708,  30.5.22.  Appl.,  11.7.18. 

apeh  material,  is  coated  by  means  of  a  nearly 
turated  aqueous  solution  of  sugar  containing  a 
luble  adhesive. — A.  J.  H. 


Uphit el-cellulose]  liquor;   Continuous  process  for 

discomposing    waste .      K.    Morcli.      U.S. P. 

1.415,843,  9.5.22.     Appl.,  10.5.20. 

ilphitk-oellulose  waste  liquor  is  continuously 
ssed  through  a  chamber  in  which  the  temperature 
d  pressure  are  so  regulated  as  to  cause  the  liquor 
decompose. — T>.  J.  N. 

■Iphite-celluiose   waste   liquor;   Utilisation   of   the 
[free    sulphurous    acid    and    that    combined    with 

lignin  present  in .    E.  Miirbe.    G.P.  347,658, 

121.4.14.     Addn.  to  344,955  (J.,  1922,  290  a). 

•;  entering  the  separator,  as  described  in  the  chief 
tent,  the  sulphite-cellulose  waste  liquor  is  mixed 
(!i  i  substance  such  as  sodium  bisulphate,  in  a 
>■!>  divided  form,  which  assists  the  liberation  of 
phur  dioxide.  Suction  is  applied  to  the  con- 
user  attached  to  the  separator  so  as  to  avoid 
:k  pressure.  Nearly  30%  of  the  sulphur  present 
the  original  sulphite  liquor  can  thus  be  recovered 
a  useful  form.  Almost  perfect  separation  is 
:aincd    of    free    and    loosely    combined    sulphur 

j>xidc  and  also  of  that  combined  with  lime.  All 
•  calcium  present  is  recovered  as  calcium  sul- 
ite  in  a  finelv  divided  state. — A.  J.  H. 


.scose    solutions;    Manufacture   of  . 

Dreaper.       U.S. P.     1,418,135,     30.5.22. 

1.11.21. 

;  E.P.   1  >.IV_>  of  1920;  J.,  1922,  459a. 


W.    P. 

Appl., 


reads    or    filaments;    Manufacture    of    artificial 

.    W.  P.  Dreaper.    U.S. P.  1,418,136,  30.5.22. 

Vppl.,  15.11.21. 

\i  E.P.  171,719  of  1920;  J.,  1922,  52  a. 

i  pressing  liquid  from  fibrous  substances,  such  as 
riechanical  pulp  or   cellulose;   Rotary  apparatus 

■or    .       Aktiebolaget    Karlstads    Mekaniska 

'erkstad.     E.P.  159,204,  19.2.21.    Conv.,  25.2.20. 


Iper-pulp;  [Mechanical]  process  for  manufacture 
f .    H.  Steinhilber.    E.P.  180,097,  3.3.21. 


1  oer    making    machines;    Fourdrinier    .      S. 

lilne.     E.P.  180,504,  7.4.21.     Addn.  to  128,425. 

1  oer;  Process  of  [and  means  for  feeding  the  pulp 
o  the  forming  wire  in]  apparatus  for  manufac- 

uring    .      H.    Wade.      From    International 

'aper  Co.     E.P.  180,766,  4.3.21. 

ee  also  pages  (a)  536,  Bituminous  products,  felt, 

tl'.S. P.  1,417,835    and    1,417,837—41).      543, 

'  '.in<l   fabrics   containing   cellulose   acetate   (E.P. 

1  ,946) ;   Dyeing   cellulose   acetate   (E.P.   179,384). 

1  himinium   compounds  for   sizing   paper   etc. 

('P.  345,315).    548,  Protectively  treating  materials 

S.P.  1,418,609—10). 


VI.— BLEACHING;  DYEING;  PHINTING; 
FINISHING. 

Hypochlorite  bleaching  solutions.  Royer.  See  VII. 
Patents. 

Dyeing  [union  fabrics  containing  cellulose  acetate 

fibres];   Process   of  .     British   Cellulose  and 

Chemical  Mfg.  Co.,  Ltd.,  J.  F.  Briggs,  and  L.  G. 
Richardson.     E.P.  178,946,-27.1.21. 

The  superficial  saponification  of  cellulose  acetate 
silk  previous  to  or  during  the  dyeing  operation 
(E.P.  169,741,  175,485,  and  175,486;  J.,  1921,  808  a; 
1922,  289  a)  is  applied  in  the  production  of  level 
shades  of  colour  on  textile  fabrics  containing  mix- 
tures of  celluloso  acetate  silk  with  cotton  or  other 
ifllulose  fibres,  natural  or  artificial.  The  union 
fabric  is  worked  in  a  dye-bath,  preferably  contain- 
ing small  quantities  of  soap  and/or  soda  ash,  at  a 
temperature  not  exceeding  50°  C.  until  the  cotton 
or  other  cellulose  fibre  has  become  fully  dyed,  leav- 
ing the  cellulose  acetate  threads  but  slightly 
coloured.  The  temperature  of  the  bath  is  then 
raised  to  75° — 80°  C.  and  a  quantity  of  alkali,  e.g., 
up  to  10%  NaOH  on  the  weight  of  the  cellulose 
acetate,  added.  As  saponification  of  the  cellulose 
acetate  proceeds,  the  colour  bleeds  from  the  cotton 
on  to  the  cellulose  acetate  threads,  and,  by  controll- 
ing the  reaction,  level  shades  of  colour  may  be 
obtained,  or  any  desired  difference  in  shade  on  the 
cellulose  acetate  and  cotton.  Any  of  the  saponify- 
ing agents  described  in  the  above  patents  may  be 
employed. — D.  J.  N. 

Acetyl  cellulose  [cellulose  acetate];  Process  for  dye- 
ing   .     Burgess,  Ledward,  and  Co.,  Ltd.,  and 

W.   Harrison.     E.P.   179,384,  21.3.21. 

Cellulose  acetate  may  be  dyed  with  dyestuffs,  for 
which,  in  the  ordinary  way,  it  has  little  or  no 
affinity,  by  employing  them  in  colloidal  solution, 
obtained  by  adding  a  colloid,  e.g.,  gelatin,  casein, 
saponin,  or  their  hydrolytic  products,  to  the  dye- 
bath,  followed  by  a  precipitant  (other  than  a 
metallic  chloride),  preferably  one  which  is  itself 
absorbed  by  cellulose  acetate.  -Suitable  precipitants 
for  basic  colours  are  molybdates,  tungstates,  stann- 
ates,  tannic  acid,  salts  of  phenols,  etc.,  and  for  acid 
colours,  direct  cotton  colours,  sulphur  and  vat 
colours,  an  organic  compound  containing  basic 
groups,  e.g.,  a  salt  of  aniline,  benzidine,  dianisid- 
ine,  etc.  The  method  of  procedure  is,  for  example, 
as  follows :  100  g.  of  cellulose  acetate  silk  is  worked 
for  5  mins.  in  a  bath  containing  2  g.  of  indigo,  8  g. 
of  caustic  soda,  5  g.  of  sodium  hydrosulphite,  2  g. 
of  glue,  2000  c.c.  of  water  at  60°— 70°  C. ;  a  solution 
of  0'5  g.  of  dianisidine  in  4  c.c.  of  glacial  acetic  acid 
and  200  c.c.  of  water  is  then  added  in  successive 
small  quantities.  The  dyed  silk  is  taken  out  of  the 
bath,  allowed  to  oxidise  in  the  air,  and  is  then 
unshed  and  dried.  This  process  is  particularly  use- 
ful for  sulphur  and  vat  colours,  but  is  less  satis- 
factory with  direct  cotton  colours,  as  the  dyeings 
with  this  latter  group  of  colours  are  not  fast  to  soap 
or  alkaline  liquors. — D.  J.  N. 

Dyeing  skins,  hairs,  and  the  like;  Process  for . 

O.  Kaltwasser  and  H.  Oehrn,  Assrs.  to  A.-G.  fur 

Anilin-Fabr.     U.S.P.   1,416,646,  16.5.22.     Appl., 

7.12.21. 

The  material  is  treated  in  the  presence  of  a  suitable 

oxidising  agent  with  a  solution  containing  a  5-nitro- 

2-amino-l-hydroxy  derivative  of  the  benzene  series. 

— D.  J.  N. 

Dueing  machine.    E.  S.  Halter.    U.S.P.  1,417,825, 

'30.5.22.    Appl.,  5.2.21. 
A  machine  suitable  for  dyeing  material  in  the  form 
of  skeins  consists  of  a  vat  over  which  are  arranged 


544  a 


Cr..  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIO  ELEMENTS. 


[July  31,  1022. 


skein  carriers  which  also  oscillate  between  limits 
of  movement  approximately  equidistant  from  the 
surface  of  the  liquor  contained  in  the  vat.  The 
skeins  are  suspended  on  reels  which  revolve  on  the 
carriers. — A.  J.  H. 

Dyeing;  Process  of .     H.  Toepfer,  Assr.  to  The 

Grasselli  Chemical  Co.  U.S.P.  1,417,869,  30.5.22. 
Appl.,  4.8.21. 

Animal  fibres  are  dyed  by  means  of  cobalt  salts  in 
conjunction  with  azo  dyestuffs  derived  from  nitro-o- 
aminophenols. — A.  J.  H. 

VII.- ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitric  oxide ;  Peroxidation  of and  the  recovery 

of  oxides  of  nitrogen  from  mixtures  with  air. 
E.  Briner,  S.  Niewiazski,  and  J.  Wiswald.  j. 
Chim.  Phys.,  1922,   19,  290—309. 

The  authors'  experiments  confirm  the  views  of 
Raschig  and  of  Le  Blanc  (J.,  1905,  923;  1906,  869) 
that  the  formation  of  nitrite  from  a  mixture  of  gases 
containing  nitric  oxide  and  nitrogen  peroxide  by 
alkali  occurs  through  nitrous  anhydride.  The  oxi- 
dation of  nitric  oxide  at  low  temperatures  takes 
place  directly  to  nitrogen  peroxide  without  the 
intermediate  formation  of  nitrous  anhydride.  The 
best  means  of  effecting  a  complete  recovery  of  oxides 
of  nitrogen  from  dilute  gaseous  mixtures  such  as 
are  obtained  in  the  electric  arc  process  of  nitrogen 
fixation,  consists  in  submitting  the  gas  to  a  very 
low  temperature,  provided  that  the  technical  diffi- 
culties can  be  overcome;  without  such  a  low  tem- 
perature very  large  oxidation  chambers  will  be 
necessary.     (Pf.  J.C.S.,  Aug.)— J.  F.  S. 

Phosphoric   acid;    [Determination    of]    composition 

of  commercial .     W.  H.  Ross,  C.  B.  Durgin, 

and  R.  M.  Jones.  J.  Ind.  Eng.  Chem.,  1922,  14, 
533—535. 

The  methods  of  analysis  suitable  for  the  determina- 
tion of  impurities  in  phosphate  rock  are  not  satis- 
factory in  the  case  of  phosphoric  acid.  A  series  of 
tests  have  therefore  been  devised  which  are  applied 
after  the  impurity  has  been  concentrated  by  the 
removal  of  the  free  acid  by  volatilisation  or  precipi- 
tation of  the  impurity,  which  may  be  Ca,  Fe,  Al, 
Mn,  Pb.  As,  S,  CI,  F.  For  the  determination  of 
the  alkali  metals  it  is,  however,  necessary  to  precipi- 
tate  the  phosphoric  acid.  Calcium  is  precipitated 
as  sulphate  by  excess  of  95%  ethyl  alcohol  and  con- 
verted into  oxalate.  Aluminium  is  weighed  as 
phosphate,  being  precipitated  by  a  slight  excess  of 
calcium  chloride  over  that  required  to  form  the 
soluble  calcium  diphosphate.  Colorimetric  tests  are 
given  for  manganese  and  lead.  The  results  of  a 
series  of  analyses  by  these  methods  are  tabulated. 

— C.  I. 

Ammonia;    Production    of    ■ by     the.    sodium 

Cyanide  method.  F.  F.  Bartell.  J.  Ind.  Eng. 
Chem.,  1922,  14,  516—521. 

The  briquettes  prepared  by  the  Burlier  process,  in 
which  nitrogen  is  passed  through  a  heated  mixture 
of  coke,  soda  ash,  and  iron,  contain  sodium  cyanide 
with  some  cyanate.  The  cyanide  and  cyanate  are 
converted  into  ammonia  by  the  action  of  steam.  By 
hydrolysis  at  a  low  temperature  (100° — 200°  C.) 
sodium  formate  is  formed,  with  evolution  of  heat. 
At  temperatures  above  200°  C.  the  sodium  6alt 
obtained  is  oxalate,  and  above  400°  C,  carbonate. 
It  is  best  to  effect  the  conversion  into  carbonate, 
as  the  briquettes,  after  steaming,  can  then  be 
returned  to  the  cyanising  apparatus.  Tn  order  to 
avoid  the  formation  of  ferrocyanide,  superheated 
steam    must    be    used.      The    temperature    at    the 


beginning  of  steaming  should  be  260°  C.  About 
50%  excess  steam  over  the  theoretical  should  bo 
used.  If  the  steam  is  admitted  too  slowly  ferro- 
cyanide will  be  formed,  if  too  rapidly,  ammonium 
carbonate.  The  temperature  should  not  reach 
650°  C,  at  which  point  ammonia  begins  to  decom- 
pose. (Sodium  ferrocyanide  is  decomposed  at 
475°  C.)  Trials  with  retorts  holding  from  190  lb. 
up  to  610  lb.  of  briquettes  showed  that  with  proper 
temperature  regulation  on  these  lines  85—100% 
ammonia  recovery  could  be  obtained.  A  horizontal 
continuous  steamer  with  screw  conveyor  gave 
promise  of  satisfactory  results. — C.  I. 

Ammonium  nitrate;  Preparation  of  .     AVurm- 

ser.  Comptes  rend.,  1922,  174,  1466—1468. 
Le  Chatelier  (J.,  1921,  214a)  has  previously 
given  a  square  diagram  showing  the  states  of 
equilibrium  between  the  four  salts,  ammonium 
chloride,  sodium  nitrate,  ammonium  nitrate,  and 
sodium  chloride  in  solution  and  the  solid  salts  at 
16°  C.  A  similar  diagram  is  now  given  for  a  tem- 
perature of  100°  C,  the  curves  being  of  similar 
shape.  From  them  it  is  possible  to  determine  tin- 
best  experimental  conditions  for  obtaining  the 
maximum  yield  of  ammonium  nitrate  from  a 
solution  of  the  four  salts. — W.  G. 

Hypochlorite    bleaching    solutions;   Determit 

of   the    availahle    chlorine    in   - .      J.    Royer 

Ann.  Falsif.,  1922,  15,  146—148. 
Fob  the  estimation  of  available  chlorine  in  bleach- 
ing solutions  the  method  of  Poncius  is  recom- 
mended as  being  rapid  and  exact.  It  consists  in 
titration  with  a  solution  of  potassium  iodide  after 
the  addition  of  sodium  bicarbonate.  At  first  the 
iodide  is  oxidised  to  iodate  by  the  free  chlorine, 
but  as  soon  as  this  reaction  is  completed  the  next 
drop  of  iodide  solution  reacts  with,  the  iodate 
and  iodine  is  liberated  and  detected  by  means  of 
starch  paste. — W.  G. 

[Sodiuni]   bisulphite;  Method   for   the  determina- 
tion of .     F.  Kiihl.     J.  Soc.  Leather  Trades 

Chem.,  1922,  6,  199—200. 
Two  grams  of  the  bisulphite  is  dissolved  in  water 
and  titrated  with  iV/1  sodium  hydroxide 
(a  c.c).  10  c.e.  of  neutral  40%  formaldehyde 
solution  is  added  and  the  sodium  hydroxide 
liberated  is  titrated  with  2V/1  hydrochloric  acid 
(6  c.c).  If  ti=6  the  impurities  are  neutral.  If 
a>b  the  difference  is  calculated  as  NaHSO<  and 
when   l/>a,   b-a  is  calculated   as  Na»SO,. 

— D.  W. 

Calcium   carbide;   Calculation   of  power  consump- 
tion in  the  manufacture  of  .     H.  Furusaki. 

Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan i, 
1922,  25,  24—36. 
In    commercial    operation    the    quantities    of   raw 
materials  used  per  metric  ton  of  carbide  of  7T4' 
purity  are  510  kg.  of  charcoal,  200  kg.  of  anthra- 
cite, "980  kg.  of  quicklime,  and  70  kg.  of  electrode 
carbon.      There    is    a    loss    of    450    kg.,    and    tie- 
quantity   of   heat    to    be    supplied   by   the   el 
power     is     2,350,000     kg.-cals.,     correspondin 
2733   kw.h.     Of  a   total   1054  kw.   supplied   to  tli  ■ 
furnace    3365    kw.    was    used    to    cover    losses    bj 
radiation,  conduction,  etc.,  of  the  furnace,  by  Hie 
resistance  in  the  conductors  and  electrodes,  etc.,  a. id 
717'5    kw.    was    consumed     lor    the    production    el 
carbide.     The  heat  efficiency  of  the  electric  power 
supplied  to  the  furnace  is,   therefore,  68T%,  and 
the  power  necessary  for  the  production  of  a  raetrn 
ton  of  7T4'     commercial  carbide  is  4013  ku-.h.    A 
further   consumption    of   825T    kw.    occurs   at    the 
upper  surface  of  the  charge,  and  the  actual  hc.ti 
efficiency   of  the   furnace   is   therefore  40'5% 

-K.  K 


Vol 


XII.,  No.  14.]       Cl.  VTL—  ACIDS  ;   ALKALIS  ;   SALTS;   NON-METALLIC  ELEMENTS. 


545  A 


Carbon  dioxide;  Velocity  of  absorption  of  by 

alkaline   solutions.      P.    Riou.     Comptes   rend., 
1922,  174,  1463—1466. 

The  velocity  of  absorption  of  carbon  dioxide  from 
air  by  solutions  of  potassium  carbonate  increases 
with  the  concentration  of  the  solution  at  first  very 
rapidly  to  a  maximum  and  then  slowly  decreases. 
The  presence  of  potassium  bicarbonate  causes  a 
very  marked  diminution  in  the  velocity  of  absorp- 
tion, but  the  effect  of  potassium  chloride  is  less 
marked.  In  every  case  rise  in  temperature  is 
I  accompanied  by  an  increase  in  the  velocity  of 
absorption.  Other  factors  being  equal7  the  velocity 
of  absorption  is  practically  proportional  to  the 
concentration  of  the  carbon  dioxide  in  the  air 
mixture. — W.  G. 

Calcium    carbonate;    Inadequacy    of    "  A.B."    test 
'     for    alkalis    in    — — .       W.     Singleton     and    H. 
■Williams.     Analyst,   1922,  47,  252—254. 

JOnly  about  50%  of  the  total  extractable  sodium 
carbonate  is  washed  out  on  boiling  5  g.  of  calcium 
carbonate  with  50  c.c.  of  water  for  10  mins.  The 
alkalis  present  in  5  g.  of  "  A.R."  calcium  carbon- 
'ate  were  therefore  determined  by  the  Lawrence 
Smith  method  (Amer.  J.  Sci.,  1871,  SO,  269),  and 
•the  amount  of  sodium  carbonate  obtained  was  over 
Iten  times  that  obtained  by  the  "  A.R."  method. 
The  method  was  checked  by  decomposing  5  g.  of 
'the  calcium  carbonate  with  hydrochloric  acid  and 
precipitating  the  calcium  twice  with  ammonium 
•carbonate  and  ammonium  oxalate.  Substantially 
(the  same  result  was  obtained.  It  therefore  appears 
j;hat  only  about  10%  of  the  alkali  carbonates 
iresent  in  the  calcium  carbonate  is  removed  by 
|>ne  extraction  with  water. — H.  C.  R. 

ibiminium  salts;   licactions  of  sodium   hydroxide 

with .    E.  Grobet.    J.  Chim.  Plus.,  1922,  19, 

331—335. 

;)n  addition  of  sodium  hydroxide  to  dilute  solutions 
jif  aluminium  nitrate,  aluminium  hydroxide,  sodium 
Inetaluminate,  and  sodium  ortho-aluminate  are 
mccessively  formed.  When  dilute  solutions  of 
iluminium  sulphate  or  chloride  or  potash  alum  are 
jised,  aluminium  hydroxide,  basic  sodium  aluminate, 
VI(0.\;i).,.A](OH)j,  and  sodium  ortho-aluminate  ;.re 
jormed  successively.  Concentrated  solutions  of 
ihiminium  chloride,  nitrate,  or  sulphate  produce 
mder  the  same  treatment  a  basic  salt  of  the  type, 
UX,,A1(0H)3,  which  is  followed  by  the  hydroxide, 
letaluminate,  and  ortho-aluminate.    Concentrated 

iolutions  of  potash  alum  yield  a  basic  salt, 
d2(S()4)3,2Al(OH),,  aluminium  hvdroxide,  a  basic 
ruminate,  Al(ONa),,Al(OH)3,  and  the  ortho- 
mminate. — J.  F.  S. 

Commercial   copper   sulphate;']   Determination   of 

copper  and  iron    [in  ]    iodometrically.      A. 

J  Wober.    Z.  angew.  Chem.,  1922,  35,  336—337. 

'ive  g.  of  the  sample  is  dissolved  in  water  and  the 
ilution  is  diluted  to  100  c.c.  in  a  graduated  flask. 

;'en  c.c.  is  pipetted  into  a  stoppered  conical  flask, 
iluted  to  50  c.c,  heated  to  70°  C,  and  treated  with 

!;— 5  c.c.  of  ammonia  (sp.  gr.  0'944).  A  current  of 
ir  is  passed  through  the  solution  for  15  mins.  to 
■ddiso  tho  iron  and  copper  to  the  cupric  and  ferric 
ates,  the  ammonia  is  boiled  off,  and  the  solution 
eated  with  hydrochloric  acid  and  potassium  iodide 
i  an  atmosphere  of  carbon  dioxide.  After  stand- 
ig  for  20  mins.,  the  liberated  iodine  is  titrated 
ith  thiosulphate  to  obtain  the  sum  of  the  copper 
id  iron.  Copper  alone  is  determined  in  a  second 
)rtion  which  is  treated  as  above  except  that  the 
on  is  removed  by  filtration,  before  acidifying  the 
lution  after  the  air  treatment.  Re-precipitation 
the  iron  is  necessary  to  obtain  all  the  copper  in 
e  filtrate —A.  R.  P. 


Lead  acetate;  Solubility  of 6>/  the  floating  equi- 
librium method.  M.  L.  Dundon  and  W.  E.  Hen- 
derson. J.  Amer.  Chem.  Soc,  1922,  44,  1196— 
1203. 

A  new  method  of  determining  solubility  is  described, 
which  consists  in  placing  a  float,  calibrated  so  that 
it  will  just  sink  in  a  solution  of  known  composition 
of  the  substance  under  investigation,  into  a  weighed 
quantity  of  the  saturated  solution  and  adding  the 
solvent  until  the  float  just  sinks.  The  quantity  of 
solvent  added  is  noted,  and  from  this  the  weight  of 
solution  taken,  and  the  calibration  constant  of  the 
float  the  solubility  is  readily  calculated.  This 
method  has  been  applied  to  the  determination  of 
the  solubility  of  lead  acetate  in  water  at  tempera- 
tures from  0°  C.  to  50°  C.  The  following  values  in 
g.  of  lead  acetate  per  100  g.  of  water  are  recorded : 
0°  C,  19-7;  5°  C,  23-7;  10°  C,  29-3;  15°  C,  35-6; 
20°  C,  44-3;  25°  C,  55'2  ;  30°  C,  697;  35°  C,  88"9; 
40°  C.,  1160;  45°  C,  1530;  50°  C,  22P0.  The 
method  is  capable  of  considerable  speed  and  of  great 
accuracy. — J.  F.  S. 

Carbon;  Preparation  of from  carbon  monoxide 

by  means  of  a  catalyst.    J.  P.  Wibaut.    Rec.  Trav. 
Chim.,  1922,  41,  400—401. 

Carbon  prepared  by  passing  carbon  monoxide  over 
iron  oxide  in  a  porcelain  tube  heated  to  450° — 170° 
C,  gave  about  half  its  weight  of  iron  oxide  on 
ignition.  During  the  reaction,  the  catalyst  appears 
to  distribute  itself  fairly  uniformly  throughout  the 
carbon  which  is  formed,  and  all  attempts  to  free 
the  product  from  metallic  oxide  were  unsuccessful. 

— H.  J.  E. 

Liberation  of  nitrogen  from  coal  and  coke  as 
ammonia.     Monkhouse  and  Cobb.     See  Ha. 

New  method,  of  volumetric  analysis.     Dutoit  and 

Grobet.    See  XXUI. 
Suspended  impurities  in  gases.    Scott.    See  XXIII 

Patents. 

Nitric  acid.;  Process  for  production  of  concentrated 

.     Norsk  Hydro-Elektrisk  Kvaelstofaktiesel- 

skab.  E.P.  170',840,  13.10.21.  Conv.,  27.10.20. 
In  the  usual  process  for  the  production  of  concen- 
trated nitric  acid  from  liquid  oxides  of  nitrogen 
with  oxygen  and  water,  the  first-named  being  in 
excess,  two  layers  of  liquid  are  formed,  the  upper 
non-aqueous  layer  containing  nitric  acid  and  excess 
of  oxides  of  nitrogen  and  the  lower  layer  being  80 — 
90%  nitric  acid.  Whilst  hitherto  the  former  has 
been  used  for  the  production  of  acid,  and  the  latter 
returned  to  the  process,  the  reverse  procedure  is  now 
claimed  to  be  preferable,  the  cost  of  concentrating 
the  aqueous  acid  being  more  than  offset  by  the 
nitrogen  loss  involved  in  the  former  practice.  A 
little  of  the  aqueous  layer  may  be  returned  to  the 
reaction  tower  along  with  the  upper  layer.— C.  1. 

Barium,  hydrate   [hydroxide'];   Continuous  process 

for  the  manufacture  of .     C.  Degnide.     E.P. 

174,052,  20.12.21.  Conv.,  13.1.21. 
In  the  production  of  barium  hydroxide  by  the  pro- 
cess described  in  E.P.  110,537  (J.,  1918,  30  a)  a 
better  yield  of  the  hydroxide  is  obtained  by  alter- 
nately forming  and  decomposing  tribarium  silicate, 
SiO,,3BaO  or  silicate  intermediate  between  the  tri- 
and'di-barium  compounds  than  by  the  use  of  the 
dibarium  silicate  as  described  earliei  (loc.  "/•)■ 

— H.  R.  D. 

Sodium  ferrocyanide;  Manufacture  of .     F.  F. 

Delaroziere.     E.P.  179,982,  17.1.21. 
In  the  manufacture  of  the  sodium  salt  from  calcium 
ferrocyanide     by     double     decomposition,     sodium 
sulphate  is  substituted  for  sodium  carbonate.      The 


546  a 


Cl.  VIII.— GLASS;  CERAMICS. 


[July  31,   1922. 


resulting  precipitate  is  more  easily  washed.  Slightly 
lees  sulphate  than  the  equivalent  of  the  calcium 
ferrocyanide  is  used,  and,  after  filtration,  the  de- 
composition is  completed  with  sodium  carbonate  in 
order  to  render  the  liquor  alkaline.  Salt  may  be 
added  to  the  liquor  to  reduce  the  solubility  of  the 
sodium  ferrocyanide,  or  impure  salt-cake  may  be 
used  for  the  decomposition. — C.  I. 

Gases  [e.ij.,  hydrogen'];  Process  for  purifying  . 

J.  Y.  Johnson.  From  Badische  Anilin  unci  Soda 
Fabrik.    E.P.  180,024,  14.2.21. 

To  remove  carbon  oxysulphide  and  allied  substances 
from  gas  which  has  already  been  freed  from 
hydrogen  6ulphide,  the  gas  is  treated  with  activated 
charcoal  made  alkaline  with,  for  example,  ammonia. 
Oxygen  may  be  introduced  into  the  gas  stream  in 
order  to  assist  in  the  oxidation  of  the  sulphur  com- 
pounds. The  process  is  specially  applicable  to  the 
purification  of  hydrogen  to  be  used  in  the  synthesis 
of  ammonia. — A.  R.  P. 

Hydrogen     and     nitrogen;     Process     to     produce 

mixtures  of .   E.  Szarvasy.    U.S. P.  1,417,952, 

30.5.22.     Appl.,  12.2.15. 

A  mixtuhe  of  nitrogen  and  methane  is  heated  in  a 
decomposing  chamber  containing  glowing  carbon 
from  a  previous  decomposition.  The  gases  are  so 
proportioned  that  the  mixture  produced  contains 
hydrogen  and  nitrogen  in  the  ratio  necessary  for 
ammonia  synthesis. — C.  I. 

Ammonium  sulphate;  Process  of  obtaining  by 

the  interaction  of  ammonium  carbonate  and 
calcium  sulphate.  Soc.  Ind.  de  Prod.  Chim.  G.P. 
345,256,  29.12.20.     Conv.,  22.7.20. 

Calcium  sulphate  is  added  to  ammonium  carbonate 
solution  which  has  been  previously  warmed  to  a 
temperature  above  30°  C,  and  the  mixture  is  kept 
at  about  70°  C.  until  the  reaction  is  complete. 

Sodium  pentaborate;  Process  for  production  of 

direct  from  boron  ores,  A.  A.  Kelly  and  B.  D. 
Jones.     E.P.  180,110,  12.3  and  25.10.21. 

Sulphur  dioxide  is  introduced  into  a  mixture  of  100 
pts.  of  boronatrocalcite  (40%  B,03),  and  400  pts.  of 
water.  When  the  separation  of  boric  acid  accord- 
ing to  the  equation,  Na20  +  2CaO+5B203+3S02  = 
2CaiSO.,  +  Na,S03  +  5B,03,  is  complete,  the  supply  of 
sulphur  dioxide  is  stopped,  the  calculated  amount 
of  boronatrocalcite  is  added  to  the  reaction  mixture, 
and  the  latter  heated  to  boiling,  whereby  sodium 
pentaborate  is  formed  according  to  the  equation, 
2(Na2S03  +  5B,0,)  +  Na„0  +  2CaO  +  5BnO,= 

2CaS03+3(Na20+5B,0.,), 
and  may  be  recovered  by  crystallisation. — H.  R.  D. 

Carbon   bisulphide ;   Manufacture   of  .     Court- 

aulds,  Ltd.,  and  A.  E.  Delph.  E.P.  180,175, 
23.4.21. 

Retorts  and  other  parts  of  the  plant  made  of  iron, 
or  steel,  are  protected  against  the  action  of  sulphur 
or  sulphur  compounds  by  a  thin  coating  of  alu- 
minium.— H.  R.  D. 

Cyanides;    Process    of    producing    .      F.    von 

Bichowsky  and  J.  Harthan.  U.S. P.  1,417,702, 
30.5.22.     Appl.,  25.10.20. 

Titanium  nitrides  are  heated  with  an  alkali  salt  in 

presence   of   a   carbide   of   iron,    but   without    free 

carbon. — C.  I. 

Potassium  salts;  Process  for  obtaining  from 

natural  potassium  compounds.  D.  D.  Jackson. 
I'.S.P.  1,417,919,  30.5.22.     Appl.,  29.6.20. 

The  material  is  mixed  with  lime  and  a  haloid  salt, 
and  heated  at  a  temperature  below  the  clinkering 
temperature  of  the  mixture,   but  high  enough  to 


cause  rapid  volatilisation  of  the  potassium  halidt 
formed.— H.  R.  D. 

Beryllium  [glucinum]  compounds;  Production  of 
.  Process  for  production  of  zirconium  com- 
pounds. L.  Burgess.  U.S. P.  (a)  1,418,527  and 
(b)  1,418,528,  6.6.22.     Appl.,  16.8.21. 

An  oxidised  ore  of  (a)  glucinum  or  (b)  zirconium  ii 
heated  with  carbon  and  the  compound  produced  if 
then  treated  with  gaseous  hydrochloric  acid  to 
obtain  glucinum  or  zirconium  chloride. — H.  R.  D. 

Aluminium  compounds  for  sizing  paper  and  othei 

purposes;  Preparation  of .     G.  Muth.     G  P 

345,315,  4.12.19.  Addn.  to  319,420  (J.,  1920,  517  a). 
The  treatment  of  aluminium  compounds  as  de 
scribed  in  the  chief  patent  is  more  expeditious!} 
carried  out  in  closed  vessels  under  a  high  tempera- 
ture and  pressure. — A.  J.  H. 

Hydrogen  sulphide;  Process  for  the  removal  of 

from    gases.       Ges.    fiir    Kohlentechnik    m.b.H 
G.P.  350,591,  26.10.19. 

The  gas  is  washed  with  a  solution  of  a  copper  salt, 
and  the  resulting  copper  sulphide  is  treated  ir 
suspension  with  a  gas  containing  oxygen,  undei 
pressure,  and  with  the  aid  of  heat  to  oxidise  it  t< 
copper  sulphate.  Other  metallic  salts  can  be  used 
e.g.,  zinc  salts,  the  metallic  sulphide  being  treated 
with  copper  sulphate  solution,  and  converted  intc 
the  sulphate,  whilst  the  copper  sulphide  produced 
is  converted  in  sulphate  as  outlined  above. — A.  G 

Sulphuric    acid;    Manufacture    of    .       E     A 

Gaillard.     E.P.  180,546,  10.5.21. 

See  G.P.  346,121  of  1921;  J.,  1922,  215  a. 

Sulphuric    acid;   Process   for  distilling  .      G 

R.iura,   Assr.  to  Chem.   Fabr.   Weissenstein  Ges 
m.b.H.     U.S.P.  1,419,008,  6.6.22.    Appl.,  11.6.21. 

See  E.P.  163,685  of  1921;  J.,  1922,  501a. 

Zinc  oxide;  Manufacture  of .   New  Jersey  Zim 

Co.,  Assses.  of  J.  A.  Singmaster.     E.P.  161,156. 
14.1.21.     Conv.,  31.3.20. 

See  U.S.P.  1,372,462  of  1921;  J.,  1921,  346 A. 

Alkali-metal  silicates;  Process  for  the  manufuctvr. 

of   .     C.    Deguide.     E.P.    174,581,    20.12.3] 

Conv.,  22.1.21. 

See  G.P.  345.669  of  1921;  J.,  1922,  216   a. 

Bocks;  Process  for  obtaining  in  soluble  stale  soiik 

of  the  constituents  of  complex .    F.  Jourdan, 

U.S.P.  1,417,831,  30.5.22.     Appl.,  22.12.20. 

See  E.P.  175,348  of  1920;  J.,  1922,  293  a. 

Potassium  sulphate  and  hydrochloric  acid;  Manu- 
facture   of   .        P.    Comment,    Assr.    to  Soc. 

Fabr.  de  Prod.  Chim.  de  Thann  et  de  Mulhouse. 
U.S.P.  1.417,887,  30.5.22.     Appl.,  4.11.20. 

See  E.P.  151,111  of  1920;  J.,  1921,  44a. 

Ammonium  chloride  from  coal  or  shales.  E.P. 
169,948.     See  Ha. 


VIII.-GLASS;  CERAMICS. 

Clays;  Use  of  electrolytes  in  the  purification  ami 
preparation  of  -  — .  H.  G.  Schurecht.  0.8. 
Bureau  of  Mines,  Tech.  Paper  281,  1922.  Pp.47. 
Sill's  were  prepared  from  clay,  water,  and  electro- 
lytes in  varying  proportions  and  their  viscosities 
measured   by  determining  the  time  necessary  for 


Vol.  XLI.,  No.  14.] 


Cl.  Vm.— GLASS;  CERAMICS. 


547a 


250  c.c.  of  slip  to  pass  through  an  orifice  of  ^r  in. 
In  order  to  maintain  minimum  viscosity  in  clay 
slips  in  which  the  clay  and  water  contents  varied, 
but  in  which  the  water  content  exceeded  50%,  it 
was  much  more  important  to  keep  the  ratio  of 
electrolyte  to  clay  constant  than  to  keep  the  ratio 
of  electrolyte  to  water  constant.  When  6odium 
hydroxide  was  added  in  small  quantities  to  Georgia 
kaolin  the  decrease  in  viscosity  was  gradual 
up  to  a  certain  point,  but  on  further  addition 
of  the  electrolyte  there  was  a  sudden  drop  to  mini- 
mum viscosity.  The  limits  within  which  sodium 
hydroxide  produced  minimum  viscosity  were  small, 
but  the  limits  within  which  sodium  silicate  and 
sodium  carbonate  produced  minimum  viscosity 
were  relatively  large.  In  presence  of  sufficient 
alkali  to  produce  minimum  viscosity,  slip  of  a 
given  viscosity  contained  50 — 58%  more  clay  per 
unit  quantity  of  slip  than  when  no  alkalis  were 
added,  but  this  result  should  be  checked  by  large- 
scale  clay  washing  tests.  The  effect  of  completely 
or  partly  neutralising  with  sulphuric  acid  a  clay 
slip  containing  sodium  hydroxide  as  the  defloccu- 
lating  agent  was  studied.  The  viscosity  of  Florida 
and  N.  Carolina  kaolins  was  increased  when  the 
slip  was  neutralised  with  sulphuric  acid  equivalent 
to  the  sodium  hydroxide  first  added,  the  increase 
in  plasticity  that  sometimes  has  caused  trouble  to 
kaolin  refiners  being  due  to  this  increase  in  vis- 
cosity. In  some  cases  black  discoloration  of  the 
dry  kaolin  is  caused  by  adding  an  excess  of  sulphuric 
acid.  Both  these  defects  are  reduced  by  adding 
less  sulphuric  acid  than  the  equivalent  of  the  6odium 
hydroxide  used,  the  amount  required  varying  with 
different  clays.  With  Florida  and  Georgia  kaolins 
the  sedimentation  was  much  slower  after  the  slips 
had  been  treated  with  sodium  hydroxide  and 
sulphuric  acid  than  it  was  before  treatment.  The 
deflocculated  kaolin  could  not  be  filtered  success- 
fully, as  the  fine  particles  either  passed  through  or 
clogged  the  filter.  Ready  filtration  was  possible 
after  partially  neutralising  the  alkalinity  of  the 
kaolin  by  adding  sulphuric  acid.  The  rate  of  dis- 
integration in  water  of  cubes  containing  equivalent 
parts  of  filtered  kaolin  and  flint  was  slower  than 
when  untreated  kaolin  was  used.  Care  should  be 
taken  to  have  the  proper  ratio  of  acid  to  alkalis  in 
the  kaolin  slip,  because  any  variation  of  acid  causes 
the  kaolin  to  act  differently  towards  subsequent 
alkali  treatment,  those  slips  which  have  received  the 
larger  additions  of  acid  requiring  more  alkali  to 
produce  the  same  degree  of  dispersion  upon  again 
defloeculating.  Electrolytes  added  to  the  clays  in 
the  plastic  state  increased  the  dry  strength,  the 
order  of  effectiveness  being  sodium  hydroxide, 
sodium  silicate,  sodium  carbonate,  tannic  acid,  and 
calcium  hydroxide.  Alkalis  lowered  the  percentage 
of  water  of  plasticity  of  ball  clays.  Acids  at  first 
increased,  but  when  in  excess  decreased,  the  water 
necessary  to  work  the  bodies.  Calcium  hydroxide 
increased  the  water  of  plasticity.  The  drying 
shrinkage  of  mixtures  of  equal  parts  of  clay  and 
flint  was  decreased  for  all  the  clays  examined 
(except  Georgia  kaolin  and  Kentucky  ball  clay)  by 
adding  1  or  2%  of  alkalis.  Sulphuric  acid  in  small 
percentages  increased,  and  in  larger  percentages 
!  decreased  the  drying  shrinkage.  Tannic  acid 
and  calcium  hydroxide  increased  the  drying 
',  shrinkage.  The  shrinkage  on  firing  to  cone 
01  was  lowered  when  small  percentages  of 
caustic  soda  were  added,  and  increased  when 
larger  quantities  were  used.  The  porosity  after 
firing  was  decreased  and  the  density  increased 
when  sodium  hydroxide  was  used.  The  strength 
after  firing  to  cone  8  was  increased  by  adding  the 
following  electrolytes  (arranged  in  order  of  decreas- 
ing effectiveness)  to  the  bodies  in  the  plastic  state  : 
sodium  hydroxide,  sodium  silicate,  sodium  carbon- 
ate, tannic  acid.  The  dry  strength  of  a  clay  was 
■5?.  t5£--=«.  . ■* 


increased  by  wet  grinding  for  two  hours,  by  adding 
1%  sodium  hydroxide  when  grinding,  removing  the 
coarse  material  by  screening  through  150-mesh 
sieve,  and  by  adding  1%  of  dextrin.  The  plasticity 
of  all  clays  was  increased  bv  wet  grinding,  screen- 
ing, and  adding  1%  of  dextrin.  The  addition  of 
1%  of  sodium  hydroxide  caused  the  clay  to  become 
tougher  in  the  plastic  condition  and  somewhat  more 
difficult  to  mould.  No  scumming  was  caused  by  the 
soda  if  1%  of  dextrin  was  added.  The  drying 
shrinkage  and  water  of  plasticity  were  increased, 
and  the  density  was  decreased,  by  wet  grinding. 
The  strength  of  the  clays  after  firing  to  cone  2  was 
increased  considerablv  by  these  treatments. 

— H.  S.  H. 

After-cunt raction  test  [of  fire-bricks};  Standardisa- 
tion of   the    .       D.    A.   Jones.      Report   of 

the  Refractory  Materials  Research  Committee  of 
the  Institution  of  Gas  Eng.,  June,  1922.  Gas  J., 
1922,  158,  840—844. 

Discordant  results  are  obtained  for  the  after- 
contraction  of  a  firebrick  when  the  tests  are  made 
according  to  the  standard  specification  method. 
The  errors  are  not  eliminated  by  using  whole  bricks 
for  the  test,  the  chief  source  of  error  being  the 
dislocation  of  the  surface  of  the  brick  after  firing. 
Scratches  were  made  on  the  specimen  to  be  tested 
and  the  distance  between  them  measured  with  a 
travelling  microscope  before  and  after  heating  the 
brick  for  two  hours  at  the  specified  temperature. 
Owing  to  the  more  equal  firing  in  the  laboratory 
furnace  small  test  pieces  give  more  concordant 
results  than  the  whole  bricks,  and  are  recommended 
for  use  in  carrying  out  the  test.  Different  bricks 
from  the  same  batch  exhibit  differences  in  after- 
contraction  due  to  uneven  firing  in  the  kiln  during 
manufacture. — H.  S.  H. 

Refractory  materials;  Thermal  conductivity  of 

at  high  temperatures.  A.  T.  Green.  Report  of 
the  Refractory  Materials  Research  Committee  of 
the  Inst,  of  Gas  Eng.,  June,  1922.  Gas  J., 
1922,  158.  844—852. 

A  critical  review  of  previous  experimental  work  on 
the  thermal  conductivity  of  refractories  is  given. 
Nine  bricks,  placed  with  their  lengths  along  the 
direction  of  the  flow  of  heat,  were  built  to  form  a 
wall,  which  was  heated  by  a  bauxitic  plate  heated 
by  a  carbon  resistance  furnace,  the  central  brick 
being  used  as  the  test  piece.  The  temperatures  of 
the  hot  face  and  of  the  interior  of  the  brick  at  two 
known  depths  were  measured  with  thermocouples 
after  the  hot  face  had  been  maintained  for  about 
9  hours  at  its  final  temperature.  The  diffusivity  of 
the  material  was  obtained  from  the  formula 


% 


■2 


1 


2tte_Bs 


dB  where  B  =  — = ,  k  = 
2  v/M 


the 


diffusivity,  0O  =  temperature  of  hot  face,  S  =  tempera- 
ture after  t  sees,  of  an  isothermal  plane  at  a  dis- 
tance, x,  from  the  hot  face.  The  conductivity  was 
obtained  by  multiplying  the  diffusivity  by  the  pro- 
duct of  the  specific  heat  and  the  apparent  specific 
gravity  of  the  material.  The  results  obtained  were 
much  lower  (about  one-half)  than  those  obtained  by 
calorimetric  methods.  The  thermal  conductivity  of 
silica  and  fireclay  materials  increased  with  rise  of 
temperature.  The  conductivity  of  magnesite  was 
greater  than  that  of  firebricks  at  temperatures 
below  1000°  C,  but  it  decreased  with  rise  of 
temperature.  The  variation  of  diffusivity  with 
temperature  is  shown,  i>nd  it  is  suggested  that  in 
the  carbonising  industries  the  diffusivity  is  the  best 
guide  to  the  thermal  efficiency  of  the  material, 
while  thermal  conductivity  is  the  important  factor 
where  insulating  properties  are  desired. — H.  S.  H. 


548 1 


Cl.  IX.— BUILDING  MATERIALS. 


[July  31,  1922. 


Patents. 

Opal   glass;    Composition   for  .      A.   L.    Duval 

d'Adrian.  U.S. P.  1,419,032,  6.6.22.  Appl., 
27.6.21. 

A  composition  to  be  added  to  the  usual  glass  mix- 
ture comprises  a  complex  fluoride  of  an  amphoteric 
element  with  an  alkaline-earth  fluoride. — H.  S.  H. 

Tungsten,  or  molybdenum  carbide  or  a  mixture  of 
their    carbides;    Manufacture    of   pieces    of    any 

desired  size  or  shape  of for  tools  and  articles 

af  all  hinds.  Lohmann-Metall,  G.m.b.H.  E.P. 
157,749,  10.1.21.  Conv.,  29.1.14.  Addn.  to 
157,747  (c/.  G.P.  289,066;  J.,  1916,  423). 

The  moulded  articles  are  produced  from  the 
powdered  carbides  by  pressing  in  iron  matrices, 
and  after  removal  from  these  are  heated  in  a 
reducing  atmosphere  to  very  near  the  melting 
point  of  the  carbides. — H.  S.  H. 

Refractory    material  and  process   of   making    the 

same.      C.    A.    French,    Assr.    to    International 

Harvester  Co.     U.S. P.  1,418,372,  6.6.22.     Appl., 

14.6.20. 

A  refractory  compound  is  formed  essentially  from 

zirconium  oxide  and  steatite. — T.  A.  S. 

"Refractory  material  and  process  of  making  same. 

R.   W.   Hull.     U.S. P.   1,418,648,  6.6.22.     Appl., 

9.4.21. 
A  refractory  material  for  surfaces  subjected  to 
intense  heat  comprises  waste  material  left  after 
concentrating  disseminated  chrome  ore  containing 
a  mixture  of  silica,  serpentine,  and  olivine,  and 
united  by  a  binder. — H.  S.  H. 

Furnace;    Heat-treating    and    method    [for 

earthenware].  C.  J.  Kirk.  U.S.P.  1,418,446, 
6.6.22.  Appl.,  10.2.20. 
The  earthenware  is  fired  while  traversing  a  firing 
chamber  heated  from  several  separate  heat-sources 
regulated  independently  and  creating  well  defined 
zones  of  heat. — H.  S.  H. 

Tunnel  kiln.     E.  P.  Ogden,  Assr.  to  J.  B.  Owens. 

U.S.P.  1,418,669,  6.6.22.  Appl.,  5.11.20. 
A  tttnnel  kiln  is  provided  with  an  auxiliary 
chimney  stack  or  fan,  in  addition  to  the  main 
one.  Vapours  which  have  been  introduced  for 
special  purposes  are  removed  from  the  kiln  by 
means  of  the  auxiliary  stack  or  fan  without  inter- 
fering with  the  main  draught. — A.  B.  S. 

Kiln  for  burning  refractory  bricks,  especially  lime- 
bonded  silica  or  Dinas  bricks,  and  other  ceramic 
ware.  H.  Koppers.  G.P.  (a)  347,672,  9.3.18, 
(b)  347,673,  20.6.18,  (c)  347,674,  20.6.18,  and 
(d)  347,675,  7.1.19. 
(a)  Several  separate  intermittent  kilns  are  so 
arranged  that  cars  carrying  the  goods  to  be  burned 
can  be  passed  into  them  from  a  preheating  chamber, 
and  after  the  firing  is  completed  transferred  to  a 
cooling  chamber.  For  each  preheating  chamber 
there  are  two  cooling  chambers,  in  order  that  the 
goods  may  be  cooled  sufficiently  slowly.  The  firing 
chamber  is  divided  into  two  compartments  by  a 
longitudinal  partition;  one  compartment  is  heated 
by  gas  and  air  on  the  down-draught  principle,  and 
the  hot  gases  pass  through  openings  in  the  partition 
and  then  upwards  through  the  other  compartment 
to  the  regenerators.  On  changing  the  dampers  in 
the  regenerators  the  direction  of  the  gases  is 
reversed,  (b)  The  bricks  or  other  ware  are  burned 
on  cars  in  a  twin  kiln,  to  which  cold  air  and  gas  are 
first  admitted  direct,  whilst  the  waste  gases  are 
passed  through  a  regenerator.  Afterwards,  first 
the  air  only  and  then  both  air  and  gas  are  pre- 


heated regeneratively.  The  cooling  is  effected  and 
controlled  by  shutting  off  the  gas  and  admitting  air 
through  the  regenerator  last  heated  by  waste  gases, 
so  that  this  air  is  strongly  heated  before  it  conies  in 
contact  with  the  goods,  and  cools  them  gradually. 
The  air  is  then  passed  into  the  regenerator  of 
another  kiln.  When  one  regenerator  can  no  longer 
supply  air  at  a  temperature  suitable  for  cooling  the 
goods  it  is  replaced  by  another  regenerator,  so  that 
the  cooling  is  effected  at  any  desired  rate  without 
the  goods  being  in  contact  with  cold  air.  (c)  In  the 
plant  described  under  (a)  the  regenerators  are 
placed  parallel  to  and  alongside  the  burning 
chambers  and  are  connected  with  the  latter  at  the 
top.  The  gas  to  be  preheated  thus  flows  upward 
through  the  regenerator,  then  downward  through 
one  compartment  of  the  burning  chamber,  upward 
through  the  other,  and  finally  downwards  through 
the  regenerator  on  the  other  side,  (d)  The  con- 
struction of  the  kiln  is  modified  so  as  to  convert  it 
from  an  intermittent  to  a  continuous  tunnel  kiln, 
and  regenerators  are  provided  in  the  cooling  zone 
at  each  side  of  the  kiln,  so  as  alternately  to  pre- 
heat the  cold  air  required  for  combustion  and  with- 
draw heat  from  the  cooling  goods.  These  re- 
generators prevent  the  hot  goods  from  coming  in 
contact  with  cold  air,  and  the  goods  are  cooled  to 
such  a  degree  by  the  time  they  reach  the  exit  end 
of  the  kiln  that  they  can  pass  out  without  risk  of 
damage. — A.  B.  S. 

Ceramic  wares;  Burning and  apparatus  there- 
for. Burning  ceramic  wares.  T.  G.  McDougal, 
Assr.  to  Champion  Ignition  Co.  U.S.P.  (a) 
1,416,726  and  (b)  1,416,727,  23.5.22.  Appl.,  18 
and  28.7.21. 

(a)  The  goods  are  passed  continuously  through  a  kiln 
having  a  preheating  zone,  a  high-temperature  zone, 
and  a  cooling  zone,  and  are  maintained  exposed  to 
radiation  from  the  under  surface  of  the  roof  of  the 
kiln  in  the  high-temperature  zone  sufficiently  long 
to  ensure  thorough  burning.  The  under  surface  of 
the  roof  is  intensely  heated  by  combustion  in  the 
space  between  it  and  the  goods,  (b)  A  continuous 
kiln  has  a  thin  highly  refractory  carrier  forming 
the  support  for  the  ware,  and  supporting  means  on 
which  the  carrier  travels  through  the  kiln,  the 
space  between  these  supports  and  the  lower  side 
of  the  carrier  being  filled  with  heat-insulating 
material.  The  supporting  means  include  a  highly 
refractory  element  projecting  through  the  floor  of 
the  kiln  on  which  the  carrier  rests  directly  and 
with  reference  to  which  it  is  movable. — H.  S.  H. 

Enamel;  Process  of  removing  from  enamelled 

metal  articles.     W.  E.  Patch.     U.S.P.  1,416,865, 
23.5.22.     Appl.,  28.7.21. 

The  enamel  is  removed  by  heating  the  ware  in  a 
closed  oven  to  a  temperature  above  the  original 
baking  temperature. — H.   S.   H. 

Glass;   Apparatus   for   feeding    7>wlten  .      F 

O'Neill.     E.P.  179,977,  12.1  and  26.5.21. 

Pug  mills  [for  clay  mixtures].  T.  C.  Fawcett,  Ltd  . 
J.  W.  Bottonilev,  and  D.  L.  Fawcett.  E.P. 
180,035,  16.2.21.  * 


IX.— BUILDING  MATERIALS. 

Patents. 

Wood  and   the    like;   Protectively    treating   • 

Protectively  treating  materials.  A.  Arent,  Assr. 
to  A.  Arent  Laboratories,  Inc.  U.S.P.  W 
1,418,609  and  (b)  1,418,610,  6.6.22.  Appl, 
14.11.19  and  9.6.20. 
(a)  "Woody  materials  are  treated  with  a  tarry  solu- 
tion containing   a   toxic   and   fire-retarding   metal 


Vol.  XIX,  No.  H.]     Cu  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY. 


549  a 


compound  which  is  capable  of  hydrolysis  to  yield  a 
compound  of  the  metal  insoluble  in  water,  (b) 
Material  is  treated  with  a  solution  of  antimony  tri- 
chloride in  benzene. — A.  J.  H. 

i  Wood;  Preservation  of  .     Impregnating  wood 

1[wiih  oil~\.  Ostpreussische  Impragnierwerke 
G.m.b.H.  G.P.  (a)  347,631,  21.5.14,  and  (b) 
347,632,  1.9.15.    Addns.  to  345,704  (J.,  1922,  296  a). 

(a)  Wood,  such  as  pine,  oak,  and  beech,  which  does 
not  readily  absorb  liquid  material,  is  subjected  to  a 

1  high  vacuum  before  steeping  in  tar  oil  in  the  process 
described  in  the  chief  patent.  For  example,  pine 
wood  is  maintained  for  1  hr.  under  vacuum  in  a 
suitable  vessel,  and  hot  oil  is  admitted  into  the 
vessel  while  still  under  vacuum.  After  increasing 
the  pressure  to  normal,  the  residual  oil  is  removed, 
and  the  wood  is  treated  with  steam  for  J  hr.  at 
2  atm.  pressure,  then  with  hot  oil  at  10  atm.,  and 
is  finally   subjected    to   a   high   vacuum   for   1   hr. 

(b)  Wood  is  impregnated  with  oil  by  treatment  with 
oil  vapour  or  atomised  oil  mixed  with  steam  or  air 
which  is  charged  under  pressure  into  a  vessel  con- 
taining the  wood. — L.  A.  C. 

[Magnesium,    oxychloride]    material;    Process    for 

'    manufacturing   suitable   for   wall   covering, 

putty,  or  the  like.  K.  Wolf,  Assr.  to  Elektro- 
'  Osmose  A.-G.  U.S. P.  1,418,896,  6.6.22.  Appl., 
:    1.8.21. 

See  E.P.  178,320  of  1921;  J.,  1922,  417  a. 

'las-fired  shaft  furnaces.     G.P.  351,195-6.     See  I. 

Bituminous  products,  felt     etc.     U.S. P.   1,417,835 
and  1,417,837-41.     See  IIa. 

Distilling  peat  and  the  like.    E.P. 180,081.    See  IIb. 

rranulating  slag.     E.P.  180,479.     See  X. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

ron  ores;   Sintering   of  .     K.   Endell.      Mitt. 

Kaiser  Wilhelm-Inst.  Eisenforsch.  Dusseldorf, 
1921,  3,  37—43.  Chem.  Zentr.,  1922,  93,  II., 
1164. 

'o  determine  the  sintering  temperature  of  iron 
res,  the  physical  properties  of  five  ores  were 
xamined  after  grinding  them  to  pass  through  a 
ieve  of  4900  holes  per  sq.  cm.  and  heating  test 
Portions  for  2  hrs.  at  600°,  800°,  900°,  and  1100°  C. 
>ensity  determinations  showed  that  only  limonite 

[aat  contained  considerable  quantities  of  gels 
nderwent  any  appreciable  shrinkage  and  diminut- 
ion of  density.  Direct  observation  of  the  sintering 
rocess  by  means  of  the  "  heating  microscope  " 
•/.  J.,  1921,  394  a)  gave  the  best  results  with  partly 
illoidal  ores,   but  was   useless  with   others,   while 

Iieasurements  of  the  contraction  and  porosity  as 
pplied  to  ceramic  ware,  were  generally  applicable, 
!  immediately  sintering  commenced  a  sharp 
lange  was  noticed  in  these  properties.  The  coni- 
encement  of  the  reaction  between  ferric  oxide, 
lica,  and  lime  was  determined  by  solubility 
easurements ;  calcium  ferrite  begins  to  form,  in 
ie  absence  of  silica,  at  600°  C. ;  when  the  latter  is 
esent,  however,  it  appears  to  have  a  greater 
Unity  for  lime  than  has  ferric  oxide. — A.  R.  P. 

ig    iron;    Comparison    of    shaft    and    open    top 

furnaces  in  the  manufacture  of  electrically 

.from  iron  ore.  R.  C.  Gosrow.  Trans.  Amer. 
lElectrochem.  Soc,  1922,  63—74.  [Advance  copy.] 
ie  principal  disadvantages  of  the  stack  type  of 


furnace  are  that  the  stacks  may  freeze  up;  the 
charge  is  subject  to  "  hang-ups  "  and  slips  and 
segregation  of  the  constituents ;  the  pressure  at  the 
base  of  a  stack  crushes  the  fuel  and  interferes  with 
the  conductance;  the  charge  is  subject  to  bridging; 
no  direct  indication  of  the  conditions  inside  the 
furnace  is  obtained.  The  contention  that  reduction 
is  accelerated  by  the  use  of  stacks  is  not  proved. 
In  the  open-top  furnace  there  is  greater  freedom 
of  working  and  more  accurate  control.  The  charge 
travels  a  shorter  distance,  and  the  feed  is  through 
an  overhung  trolley  provided  with  a  hopper  and 
spout.  Continuous  small  charges  are  properly 
placed  and  distributed  and  no  packing  occurs.  The 
gases  leave  the  top  of  the  furnace  at  low  pressure, 
the  combustibles  burning  with  a  short  flame.  The 
rectangular  shape  of  furnace  seems  better  than  the 
circular  for  smelting,  the  heat  being  concentrated 
at  or  near  the  centre.  In  the  open-top  furnace  the 
refractories  last  longer,  and  with  proper  feeding 
of  the  charge  the  loss  of  carbon  is  small.  Open-top 
furnaces  of  7000 — 10,000  kw.  capacity  are  advo- 
cated. A  comparison  of  carbon  and  graphite  elec- 
trodes shows  several  advantages  in  favour  of  the 
latter.  The  average  production  cost  per  ton  of  iron 
is  estimated  on  1920  conditions  as  $39'66  for  a  plant 
with  a  capacity  of  20,000  tons  per  year. — T.  H.  Bu. 

Cast    iron;    Carburisation   in   the   manufacture   of 

synthetic .     C.  E.  Williams  and  C.  E.  Sims. 

Trans.  Amer.  Electrochem.  Soc,  1922,  157—176. 
[Advance  copy.] 

The  carburising  action  of  different  forms  of  carbon 
increases  with  the  density  of  the  carbon  and 
decreases  as  the  ash  content  increases.  Graphite 
gave  the  best  results  of  all  forms  tried.  The  pre- 
sence of  slag  decreases  the  rate  of  carburisation, 
the  action  being  more  effective  as  the  acidity  of  the 
slag  increases.  Lime  slags  counteract  the  deleter- 
ious effect  of  high  ash  content.  Silicon  carbide  in 
the  inexpensive  form  of  firesand  is  an  excellent 
medium  for  adding  both  carbon  and  silicon  to  iron, 
but  is  generally  used  with  coke  to  prevent  the 
introduction  of  too  high  a  percentage  of  silicon. 
Silicon  and  phosphorus  have  no  effect  on  the  rate 
or  degree  of  carburisation,  but  may  slightly 
decrease  the  total  carbon  content  of  the  pig  iron. 
Manganese  increases  the  rate  and  degree  of  car- 
burisation, but  the  effect  is  small  for  ordinary 
contents  of  manganese  in  iron.  Sulphur  probably 
decreases  the  rate  and  degree  of  carburisation.  No 
noticeable  effect  on  carburisation  was  observed  on 
increasing  the  temperature  from  1350°  to  1450°  C. 

— T.  H.  Bu. 

Carbon   in   metals;   Diffusion   of   and   mixed 

crystals  of  iron.  G.  Tammann  and  K.  Schonert. 
Stahl  u.  Eisen,  1922,  42,  654—659. 
Cvrves  indicating  the  depths  of  the  cementitic, 
pearlitic,  and  hypo-eutectoid  layers  when  iron  is 
carburised  for  2  hrs.  at  different  temperatures  in  a 
mixture  of  hydrogen  and  hexane  vapour  werefound 
to  be  continuous.  The  coefficient  of  diffusion  of 
carbon  in  iron  as  determined  by  different  observers 
varies  considerably  and  is  dependent  on  factors  not 
brought  out  in  the  analysis  of  the  iron.  The  author 
attributes  the  differences  to  the  influence  of  thin 
films  of  material  between  the  crystallites  of  iron. 
On  dissolving  iron  these  intercrystalline  films  are 
destroyed,  but  in  the  case  of  cadmium  and  zinc 
the  network  of  intercrystalline  material  may  be 
isolated.  The  addition  to  iron  of  molybdenum, 
tungsten,  nickel,  cobalt,  and  manganese  first 
increases  and  afterwards  diminishes  the  depth  of 
penetration  of  carbon;  vanadium  and  antimony 
have  no  appreciable  effect,  and  silicon  and  alu- 
minium diminish  the  penetration  of  carbon. 

— T.  H.  Bu. 
b2 


550. 


Cl.  X.— METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [July  31,  1922. 


[Steel]  furnace  practice;  British  Siemens .     F. 

Clements.      Iron    and    Steel    Inst.,    May,    1922. 

[Advance  proof.] 
The  balance  of  the  chemical  operations  in  a  60-ton 
Siemens  furnace  hearth  was  investigated,  a  notable 
feature  being  the  relatively  large  extent  to  which 
carbon,  silicon,  phosphorus,  and  manganese  are 
eliminated  during  the  melting  period.  The  heat 
balance  was  deduced  from  the  chemical  balance. 
The  overall  thermal  efficiency  amounts  to  16'93%. 
The  heat  losses  due  to  radiation  from  bath  and  port 
ends  (44-2%),  from  regenerators  (15o%),  and  from 
flues  (4T%),  and  heat  lost  with  the  gases  to  the 
chimney  (36'2%),  were  estimated,  and  the  heat  dis- 
tribution throughout  the  system  was  determined  for 
a  selected  half  hour  during  the  working  period  of 
a  heat.  A  higher  average  temperature  in  the 
furnace  hearth  is  desirable  and  this  will  be  best 
attained  by  reducing  the  quantity  of  air  admitted. 
The  efficiency  of  the  system  of  regeneration  is 
critically  discussed.  The  mean  temperature  varia- 
tion in  the  chequers  should  only  be  about  100°  C. 
The  deductions  made  are  confirmed  by  the  data 
obtained  from  detailed  schedules  of  British  Siemens 
furnace  practice.  A  design  for  a  100-ton  furnace  is 
suggested.  The  usual  positions  of  gas  and  air 
uptakes  are  reversed.  The  gas  reverse  valves  are 
as  near  the  regenerators  as  possible  and  shut  off  the 
supply  to  the  furnace  while  reversal  takes  place. 
The  air  reverse  valves  are  water-sealed.  A  strong 
case  may  be  made  out  for  automatic  reversal.  The 
fuel  consumption  used  in  the  calculations  was 
3  cwt.  per  ton  of  steel,  but  if  radiant  heat  losses 
were  prevented  as  suggested  it  is  probable  that 
the  consumption  would  not  be  greater  than  2  cwt. 
per  ton  of  metal. — T.  H.  Bu. 

Martin  [open-hearth  steel]  process;  Influence  of  the 
difference  in  height  of,  and  distance  between,  the 

producer  and  furnace   in   the  .     E.   Maurer 

and  R.  Schrodter.  Mitt.  Kaiser  Wilhelm-Inst. 
Eisenforsch.  Diisseldorf,  1921,  3,  21—36.  Chem. 
Zentr.,  1922,  93,  II.,  1165. 

A  decrease  in  gas  pressure  between  the  producer 
and  the  furnace  is  avoided  and  the  lowest  pressure 
obtained  in  the  producer  if  the  gas-mains  are  of 
uniform  cross-section  and  have  no  bends  and  the 
producer  is  only  sufficiently  high  to  avoid  ground 
water  and  transport  difficulties.  Except  for  the 
effect  of  the  additional  friction,  the  length  of  the 
mains  has  no  influence  on  the  pressure,  if  they  are 
straight,  but  to  overcome  any  trouble  likely  to  be 
caused  by  occasional  pressure  changes  the  furnace 
should  be  provided  with  a  pressure-equalising 
chamber.  The  heat  losses  in  the  mains  may  be 
reduced  by  reducing  the  surface  in  contact  with  the 
gas,  e.g.,  by  shortening  the  mains,  or  by  covering 
them  with  a  good  heat-insulating  material,  but 
heat  losses  caused  by  settling  of  dust  and  soot, 
chiefly  behind  the  dampers  and  in  places  where  the 
cross-section  or  direction  of  the  mains  change,  are 
unavoidable  and  are  influenced  by  the  nature  of  the 
coal.  The  energy  content  and  significance  of  the 
physical  and  chemical  properties  of  producer  gas 
for  regenerative  heating  are  discussed. — A.  R.  P. 

Austenitic  steel;  Arrangement  of  the  iron  atoms  in 

.      F.   Wever.    Mitt.    Kaiser  Wilhelm-Inst. 

Eisenforsch.  Diisseldorf,  1921,  3,  45—56.  Chem. 
Zentr.,  1922,  93,  II.,  1357. 
The  X-ray  spectrum  of  o-iron  shows  it  to  possess  a 
space-centred  cubic  lattice,  the  side  of  the  elemen- 
tary cube  being  2'85xl0"8  cm.,  while  the  y-iron  in 
homogeneous  austenite  has  a  cubical  face-centred 
lattice,  the  length  of  the  edge  of  the  elementary 
unit  of  which  varies  between  3'56xl0"8  and  3'60x 
10"'  cm.,  according  to  the  nature  and  quantity  of 
the  alloying  elements  in  the  steel.  Cooling  in  liquid 
air  causes  the  austenite  to  be  transformed  partially 


into  martensite  with  simultaneous  diminution  in 
the  grain-size  of  the  remaining  y-iron.  Martensite 
contains  a-iron,  and  the  cause  of  austenitic  steel 
becoming  magnetic  on  cold  deformation  is  shown  to 
be  the  partial  transformation  of  -y-iron  into 
a-iron,  the  grain-size  being  probably  less  than 
10"*  cm.  The  transformation  of  a  steel  containing 
1'9%  C  and  2T  %  Mn  into  troostite  by  annealing 
above  300°  C.  is  due  to  the  alteration  of  the 
y-lattice  into  the  a-lattice  in  the  very  fine-grained 
metal.— A.  R.  P. 

Case-carburising ;  Selective .    W.  P.  Wood  and 

O.  W.  McMullan.     Chem.  and  Met.  Eng.,  1922, 
26,  1077—1080. 

The  protective  action  against  case  carburisation  of 
a  large  number  of  non-metallic  coatings  was  tried. 
The  protective  coatings  consisted  chiefly  of  a  solu- 
tion of  sodium  silicate  mixed  with  clay,  flint, 
asbestos,  etc.  A  mixture  of  powdered  asbestos  and 
sodium  silicate  was  found  to  give  the  best  results, 
and  after  treatment  may  be  removed  by  quenching 
in  water,  or  by  immersion  in  molten  sodium 
hydroxide.  The  use  of  non-metallic  protective  coat- 
ings is  not  so  generally  applicable  as  an  electro- 
lytic deposit  of  copper.  A  deposit  of  copper  by 
simple  immersion,  owing  to  its  porosity,  does  not 
afford  satisfactory  protection  against  case-harden- 
ing.—C.  A  .K. 

Steel;   Effect   of   sxdphur   on    rivet   .     E.   E. 

Thum.     Chem.  and  Met.  Eng.,  1922,  26,  1019— 
1024. 

The  author  gives  a  resume  of  a  preliminary  report 
of  a  joint  committee  of  the  American  Society  for 
Testing  Materials  and  the  U.S.  Bureau  of  Stan- 
dards on  the  effects  of  phosphorus  and  sulphur  in 
steel.  Steels  containing  about  0T1%  C,  0-43%  Mn, 
0-01%  P,  and  from  0'028  to  0T7%  S  were  made  into 
rivets  and  the  latter  were  subjected  to  the  usual 
forge  and  mechanical  tests.  The  presence  of 
sulphur  up  to  0T0%  did  not  affect  the  hot  or  cold 
shortness  and  had  no  appreciable  influence  on  the 
hardness.  The  tensile  strength  was  decreased 
200  lb.  per  sq.  in.  for  each  additional  0'01%  S  up 
to  010%.  The  maximum  sulphur  content  non- 
allowed  in  structural  steel  rivets  (0'045%)  is  at 
least  001%  below  the  point  at  which  sulphur  will 
prove  harmful  to  the  strength  of  a  well-made  rivet 
steel.— C.  A.  K. 

Slag;  Estimation  of  in  steel.     F.  Wiist  and 

N.  Kirpach.  Mitt.  Kaiser  Wilhelm-Inst.  Eisen- 
forsch. Diisseldorf,  1920,  1,  31—38.  Chem. 
Zentr.,  1922,  93,  II.,  1070—1071. 
A  solution  of  bromine  in  aqueous  potassium 
bromide  was  found  to  be  the  most  efficient  solvent 
for  the  iron  in  the  determination  of  slag  in  steel, 
but  the  addition  of  oxalic  acid  to  prevent  the  pre- 
cipitation of  basic  salts  caused  solution  of  a  portion 
of  the  silica,  thus  yielding  low  results.  The  method 
adopted  was  as  follows :  Steel  filings  (5  g.)  wfro 
heated  to  70°— 80°  C.  for  4  hrs.,  with  intermittent 
shaking,  with  200  c.c.  of  a  solution  of  200  g.  of 
bromine  and  400  g.  of  potassium  bromide  in  1  1 
of  water.  The  solution  was  filtered  and  the  residue, 
after  washing  with  a  solution  containing  100  c.c.  «l 
water,  5  c.c.  of  sulphuric  acid,  and  1  g.  of  P°t&*~ 
sium  bichromate,  was  dried,  ignited,  and  weigheu. 
Application  of  the  method  to  the  various  structural 
constituents  of  steel  showed  that  iron  carbide, 
phosphide,  and  sulphide,  and  manganese  in  t 
amounts  usuallv  present  dissolve  under  these  con 
ditions ;  nickel  is  partially  oxidised.  The  presence 
of  carbon,  silicon,  manganese,  and  chromium  *anse 
erroneous  results,  and  needles  of  iron  nitride  are 
undissolved.  The  method  is  thus  not  applicable  in 
all  cases. — L.  A.  C. 


vol.  xli.,  No.  u .]     Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.        551a 


Steels;  Magnetic  researches  of  nitrogenised  . 

K.  Kido.     Sci.  Rep.   Tohoku  Imp.   Univ..  1922, 
10,  471—478. 

Ten  samples  of  steel  containing  from  0084  to  3'02% 
of  carbon  were  pulverised  and  then  nitrogenised  by 
heating  in  a  current  of  dry  ammonia  gas  at  650°  C. 
for  periods  varying  from  5  mins.  to  15  hrs.  After 
treatment  the  surface  of  the  steel  varied  in  colour 
from  silver  grey  to  dark  grey,  according  to  the 
duration  of  nitrogenation.  The  samples  were  then 
submitted  to  magnetic  analysis.  It  was  observed 
from  the  change  of  intensity  of  magnetisation  with 
temperature  that  four  transformations  were  possible 
at  250°,  350°,  470°  and  620°  C,  respectively,  the 
actual  number  of  these  transformations  taking 
place  in  any  given  sample  depending  upon  the  com- 
position. The  magnetic  transformation  at  250°  C. 
is  due  to  the  compound,  Fe2N,  that  at  470°  C.  to 
Fe12N,  whilst  the  transformations  at  350°  C.  and 
620°  C.  are  attributed  to  two  double  carbides  of 
iron  and  nitrogen  termed  o  and  /3,  respectively. 
On  heating  to  700°  C.  the  nitrides  of  iron  are 
rapidly  decomposed  into  nitrogen  and  ferrite,  the 
gaseous  nitrogen  escaping. — J.  B.  F. 


Brazed  joints;   Dip-brazing   with   80:20   brass  and 

the    heat-treatment    of    .      E.    V.     Schaal 

Chem.  and  Met.  Eng.,  1922,  26,  1121—1125. 

Preheating  to  a  dull  red  heat  just  before  brazing 
is  desirable,  but  a  higher  temperature  or  continued 
heating  should  be  avoided  on  account  of  oxidation 
Df  the  surfaces  to  be  brazed.  The  parts  to  be  brazed 
should  be  coated  with  a  paste  made  of  borax  and 
joric  acid  to  prevent  oxidation  during  preheating. 
Borax  gives  the  best  joints  when  brazing  with 
50:20  brass,  but  should  be  used  in  conjunction  with 
i  cooling  flux,  preferably  of  boric  acid,  in  order  to 
Drevent  surface  oxidation.  The  proper  brazing 
emperature  is  1850°  F.  (1000°  C).  The  best  joints 
ire  obtained  when  the  surfaces  to  be  brazed  are 
astened  close  together  without  the  use  of  shims 
ir  spacers.  The  strength  in  pure  tension  of  joints 
aade  with  carbon  steel  untreated  is  approximately 
qual  to  the  strength  of  the  brass  in  tension;  that 
f  nickel  steel  joints  heat-treated  is  nearly  twice 
he  strength  of  the  brass.  The  strength  of  the 
Dints  in  pure  shear  is  also  approximately  equal  to 
he  tensile  strength  of  the  brass.  Nickel  steel  joints 
ested  in  shear  give  approximately  the  same 
esults  as  carbon  steel  joints.  lieat  treatment  of 
razed  parts  was  found  to  deteriorate  certain  types 
f  joints  brazed  with  80:20  brass,  and  no  explanation 
f  this  could  be  found.  Metallographic  study  of 
razed  joints  reveals  an  intermediate  constituent 
etween  the  brass  and  the  steel,  which  serves  to 
old  the  brass  and  steel  together  in  the  joint. 

— H.  C.  R. 

•on    and    steel    [galvanised}    sheets;    Method    of 

determining  the  spelter  coating  on  .     D.  M. 

Strickland.  Amer.  Soc.  for  Testing  Materials, 
June,  1922.     [Advance  copy.]    6  pp. 

method,  which  may  be  used  as  a  field  method,  of 
stermining  the  weight  of  zinc  on  galvanised 
tides  depends  on  the  increase  in  temperature  of 
e  solution  when  the  zinc  coating  is  dissolved  in  a 
lown  quantity  of  hydrochloric  acid.     The  volume 

acid  used  (100—300  c.c.)  regulates  the  conversion 
ctor,  i.e.,  the  value  in  grams  for  each  0T°  C. 
crease  in  temperature.     Solution  of  the  zinc  is 

rapid  that  the  maximum  temperature  of  the 
lution  is  reached  in  30 — 40  sees.,  consequently 
diation  does  not  interfere  with  the  accuracy  of 
termination.  Addition  of  antimony  trichloride  to 
e  acid  is  not  necessary,  as  the  base  metal  may  be 
tacked  slightly  without   appreciable  error.      The 


apparatus  required  is  simple  and  consists  only  of  a 
glass  container  and  a  sensitive  short-range  thermo- 
meter.— C.  A.  K. 

Copper-zinc  alloys;  Cold-rolling  and  annealing  of 
— — .     F.  Korber  and  P.  J.  H.  Wieland.     Mitt. 
kaiser    Wilhelm-Inst.    Eisenforsch.      Diisseldorf 
1921,   3,    57—87.      Chem.    Zentr.,    1922,    93,    II 
1166—1167.  ' 

The  effect  of  cold-rolling  and  annealing  on  the 
■  mechanical  properties  of  copper-zinc  alloys  contain- 
ing 28,  37,  and  40%  Zn  has  been  studied.  After 
I  cold-rolling  all  three  alloys  showed  an  increase  in 
j  hardness,  tensile  strength,  and  elastic  limit  and  a 
;  decrease  in  ductility  and  resistance  to  impact,  to  an 
extent  depending  directly  on  the  amount  of  work 
done  in  the  rolling.  The  tensile  strength  increased 
proportionally  to  the  degree  of  rolling,  and  the 
ductility  was  especially  decreased  after  rolling  to 
reduce  the  thickness  30 — 50%,  while  the  Brinell  and 
scleroscope  hardness  increased  rapidly  at  first,  then 
more  slowly,  and  the  scratching  hardness  was  un- 
affected. The  relative  alteration  in  tensile  strength 
and  hardness  decreased  with  an  increase  in  the 
zinc  content  of  the  alloys.  The  direction  of  rolling 
has  a  great  influence  on  the  ductility  and  resistance 
to  shock,  the  metal  being  much  more  brittle  perpen- 
dicular to  this  direction  than  parallel  with  it. 
Annealing  at  200°  C.  improves  the  elastic  and  tensile 
properties  of  the  28%  and  37%  Zn  alloys  after 
severe  rolling,  but  has  the  reverse  effect  on  the  40% 
Zn  alloy.  Between  250°  and  400°  C.  the  tensile 
strength  and  elastic  limit  decrease  rapidly  and 
above  450°  C.  there  is  still  a  slight  decrease.  The 
test-pieces  that  had  the  most  severe  rolling  had  tho 
highest  tensile  strength  after  annealing,  and  even 
after  the  most  complete  annealing  the  effect  of  the 
previous  cold-rolling  was  noticeable.  A  fall  in 
tensile  strength  on  annealing  corresponded  with 
increase  in  ductility  and  a  relatively  greater 
decrease  in  hardness  and  brittleness.  There  was  no 
change  in  the  structure  of  the  metal  after  anneal- 
ing at  200°  C,  but  at  higher  temperatures 
recrystallisation,  characterised  by  the  disappearance 
of  slip  bands  and  grain  boundaries,  commenced. 
The  temperature  at  which  this  change  occurred  was 
lower  the  greater  the  degree  of  rolling  undergone 
by  the  alloy,  and  was  below  that  at  which  any 
change  in  the  mechanical  properties  took  place. 

—A.   R.   P. 

Brass;  Physical  properties  of  cartridge  .     C. 

Upthegrove  and  W.  C.  Harbert.  Trans.  Amer. 
Inst.  Min.  and  Met.,  June,  1922.  Min.  and  Met., 
May,  1922.     [Advance  copy.]     10  pp. 

Cast  brass  containing  approximately  68'42%  Cu, 
31-53%  Zn,  0"03%  Pb,  and  002%  Fe,  was  annealed 
and  reduced  in  area,  and  then  annealed  at  different 
temperatures  (570°,  650°,  and  750°  C.)  previous  to 
the  final  reduction.  The  hardness  was  found  to  be 
influenced  by  both  the  temperature  of  annealing  and 
the  degree  of  reduction.  Differences  in  hardness 
due  to  reduction  disappeared  when  the  metal  was 
annealed  at  600° — 650°  C,  and  also  when  the 
degree  of  reduction  was  increased.  When  annealed 
at  650°  C.  or  above,  after  reduction  in  area  by 
rolling,  the  hardness,  tensile  strength,  and  elonga- 
tion were  independent  of  the  anneal,  previous  to 
rolling. — C.  A.  K. 

[Brasses,     bronzes,     and    white     metals;'}     Bapid 

electro-analysis  [of  ].     Kling  and  Lassieur. 

Ann.  Chim.  Analyt.,  1922,  4,  171—177. 

Suitable  electrolytes  from  which  to  deposit  copper, 
lead,  zinc,  tin,  and  antimony  by  rapid  electrolysis 
are  given,  and  the  following  methods  for  the  analysis 
of  alloys  containing  these  metals  are  recommended. 
Analysis  of  brass.    1  g.  is  dissolved  in  5  c.c.  of  nitric 


552  A         Ol.  X.— METALS  ;    METALLURGY,  INCLUDING  ELECTRO-METALLURGY.        [July  31,  1922. 


acid  (sp.  gr.  1*3),  the  solution  diluted  to  85  c.c,  and 
electrolysed  for  20  mins.  with  5  amp.,  using  a 
rotating  silver  cathode  and  an  iridio-platinum 
anode;  copper  is  deposited  on  the  former  and  lead 
peroxide  on  the  latter.  The  residual  liquid  is  boiled 
with  5  g.  of  sodium  hypophosphite,  and  15  c.c.  of 
hydrochloric  acid  is  added,  a  little  at  a  time;  boil- 
ing is  continued  for  10  mins.  to  remove  completely 
the  nitric  acid.  Caustic  soda  solution  is  added  till 
the  precipitate  first  formed  just  re-dissolves,  then 
20  c.c.  of  ammonia,  and  the  cold  liquid  is  electro- 
lysed with  5  amp.  for  20  mins.,  using  the  coppered 
cathode  previously  obtained.  The  zinc  deposit  is 
re-dissolved  by  spraying  the  washed  cathode  with 
10  c.c.  of  25%  sulphuric  acid,  the  solution  is  treated 
with  caustic  soda  till  the  precipitate  re-dissolves, 
then  with  an  excess  of  5  c.c.  of  acetic  acid,  and 
electrolysed  as  before,  the  zinc  deposit  being 
weighed  this  time.  Analysis  of  bronze.  1  g.  of 
alloy  is  dissolved  in  nitric  acid  containing  3  g.  of 
crystallised  aluminium  nitrate,  the  solution  is 
evaporated  to  dryness,  and  the  residue  heated  for 
some  time  at  110°  C,  then  digested  with  warm 
water  and  a  little  nitric  acid.  After  addition  of 
2  g.  of  sodium  nitrate  the  liquor  is  electrolysed  as 
described  above  for  copper  and  lead.  The  spent 
electrolyte  is  treated  with  20  c.c.  of  strong  hydro- 
chloric acid,  4  g.  of  hydroxylamine  hydrochloride, 
and  10  g.  of  ammonium  oxalate,  and  electrolysed  foi- 
ls mins.  with  5  amp.  to  deposit  tin.  Analysis  of 
white  metal  (copper,  lead,  tin,  antimony  alloys). 
1  g.  is  dissolved  in  hydrochloric  acid  and  potassium 
chlorate,  the  solution  is  diluted  to  100  c.c,  made 
neutral  to  methyl  orange  with  caustic  soda,  treated 
with  4 — 5  g.  of  tartaric  acid,  cooled,  and  transferred 
to  a  waxed  conical  flask.  10  c.c.  of  hydrofluoric 
acid  is  added  and,  after  30  min.  10  g.  of  sodium 
acetate  crystals.  The  solution  is  diluted  to  300  c.c. 
and  saturated  with  hydrogen  sulphide,  and  the 
precipitated  lead,  antimony,  and  copper  sulphides 
are  collected,  washed,  and  digested  with  80  c.c.  of 
sodium  sulphide  solution  (sp.  gr.  1T4).  The 
solution  is  filtered,  the  filtrate  diluted  to  150  c.c, 
treated  with  4  g.  of  potassium  cyanide,  and  electro- 
lysed for  20  min.  with  a  current  of  3 — 4  amp.  to 
deposit  the  antimony.  The  insoluble  sulphides  are 
dissolved  in  nitric  acid,  and  the  solution  electrolysed 
for  copper  and  lead  as  described  above.  The  hydro- 
fluoric acid  solution  containing  the  tin  is  treated 
with  10 — 15  g.  of  boric  acid,  transferred  to  an  un- 
waxed  beaker  and  boiled  to  expel  hydrogen  sul- 
phide. The  separated  tin  sulphide  is  dissolved, 
without  filtering,  by  addition  of  hydrogen  peroxide, 
the  solution  is  cooled,  treated  with  20  c.c.  of  hydro- 
chloric acid  and  4  g.  of  hydroxylamine  hydro- 
chloride, and  electrolysed  for  tin. — A.  R.  P. 

Manganese-bronze ;  Occurrence  of  blue  constituent 

in  hiijh-strength  .     E.  H.  Dix,  jun.     Trans. 

Amer.  Inst.  Min.  Met.  Eng.,  May,  1922. 
[Advance  copy.]  16  pages. 
In  the  manufacture  of  manganese-bronze,  a  third 
constituent,  having  a  characteristic  clear  blue 
colour,  appears  in  the  a-fi  complex  when  sufficient 
hardening  elements  (aluminium,  tin,  iron,  mangan- 
ese) are  added  to  produce  a  bronze  of  high  tensile 
strength.  The  separation  of  this  constituent  is 
strongly  influenced  by  the  presence  of  iron,  and  it 
is  precipitated  from  a  copper-rich  solid  solution  by 
the  addition  of  zinc;  it  is  therefore  probably  a 
solid  solution  of  iron  and  copper,  possibly  contain- 
ing also  some  tin,  aluminium,  or  manganese.  In 
the  microstructure  of  manganese-bronzes  this  con- 
stituent appears,  in  unetched  specimens,  to  be  of 
a  deeper  blue  colour  than  either  the  8-constituent 
of  the  copper-tin  6eries  or  the  ^-constituent  of  the 
copper-zinc  series,  but  the  latter  is  rapidly  dis- 
solved by  ammoniacal  hydrogen  peroxide,  whereas 
the    new    constituent    is    hardly    attacked.       The 


presence  of  this  constituent  in  reasonable  amounts 
does  not  cause  brittleness,  nor  does  it  reduce  the 
elongation  or  tensile  strength,  although  it  is  much 
harder  than  the  a-fi  matrix.  It  cannot  be  dissolved 
by  annealing  for  8  hrs.  at  850°  C,  followed  by 
quenching  or  slow  cooling. — A.  R.  P. 

Nickel  and   monel   Imetal]   wires;   Some   electrical 

properties  of .    M.  A.  Hunter,  F.  M.  Sebast, 

and  A.  Jones.  Trans.  Amer.  Inst.  Min.  and  Met 
Eng.,  June,  1922.  Min.  and  Met.,  May,  1922. 
[Advance  copy.]     6  pp. 

Two  samples  of  nickel  wire  obtained  by  the  direct 
rolling  of  electrolytic  nickel  without  melting  the 
metal  had  specific  resistance  7'55  and  7"60  respec- 
tively. Metal  which  had  been  melted  and  subse- 
quently drawn  into  wire  in  no  case  gave  so  low  a 
value.  The  addition  of  1  %  of  cobalt,  iron,  or  man- 
ganese raised  the  specific  resistance  to  8'38,  8"82, 
and  9'41  for  the  respective  elements.  In  order  to 
obtain  a  nickel  wire  with  the  highest  possible  tem- 
perature coefficient  of  electrical  resistance,  the 
nickel  must  be  the  finest  available,  the  addition  of 
manganese  must  be  as  small  as  is  compatible  with 
good  forging  qualities,  and  the  molten  metal  should 
be  exposed  to  the  effect  of  the  furnace  gases  for  as 
short  a  period  as  possible.  The  values  for  the 
specific  resistance  (ohms  per  mil. -ft.)  at  20°  C.  of 
commercial  metals  examined  are:  Nickel  grade  A 
64,  grade  C  84,  grade  D  117 ;  monel  metal  268. 

— C.  A.  K. 

Alloys  of  aluminium  and  zinc.  T.  Hemmi.  Kogyo- 
Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan),  1922, 
25,  511—524. 
The  author  studied  the  equilibrium  diagram  of 
aluminium-zinc  alloys,  especially  of  alloys  rich 
in  aluminium.  Thermal  and  microscopical  ex- 
amination of  the  alloys  rich  in  aluminium 
gave  no  decisive  data,  but  measurement  of  the 
electrical  resistance  of  quenched  specimens  re- 
vealed fairly  well  the  field  boundaries  in  the 
diagram.  Mechanical  tests  were  made  on  chill  and 
sand  castings  of  alloys  containing  up  to  50%  Zn. 
Aluminium  dissolves  zinc  up  to  a  concentration  of 
30%  at  ordinary  temperature,  forming  a  stable 
solid  solution  y.  The  range  42 — 78%  Zn  is  a  solid 
solution  8,  which  is  unstable  below  256°  C,  and 
easily  decomposes  into  two  different  phases,  y  and  o. 
A  field  of  the  mixture  (7+8)  exists  between  the 
regions  of  y  and  8  above  256°  C.  When  annealed 
below  256°  C,  the  compound,  Al,Zn3,  which 
assumes  a  dendritic  structure  in  casting,  decom- 
poses into  a  duplex  structure  of  a  and  -, .  The 
presence  of  silicon,  contained  in  aluminium  as  an 
impurity,  causes  a  series  of  arrests  in  cooling  alloys 
containing  up  to  70%  Zn.  The  results  of  the 
mechanical  tests  show  that  the  upper  limit  for 
addition  of  zinc  to  pure  aluminium  for  light  cast- 
ings is  25%,  the  limit  being  within  the  ran 
solid  solution  y.  The  density  and  hardness  increase 
linearly  with  the  zinc  content,  some  examples  being 
as  follows  : 

Elastic    Tensile    Elong.      Red. 
Zinc       limit,    strength,     on  of       Brincll      Sp. 

%        kg.  per    kg.  per  50-8  mm.    area    hardness,  gr. 
sq.  mm.  sq.  mm.       %  % 

1 10-36        10-48       13-66       14  20-5         69 

Chill  cast    19-42        16-59       23-40  6-5        11-8         81 

I  36-67         18-48        2900  2-0        5-07  80 

I   9-97        12-60        14-7    ■       8-2       100         86 
Sand  cast    19-53       17-37       19-86         1-8         3-7         61 

(33-96        18-26        25-8  1-6  1-7  74  3*0 

-K.  K. 

Aluminium;  The  hydrochloric  acid  test  [for  resist- 
ance  to    corrosion]    for  .       F.    Mylius.      I- 

Metallk.,  1922,  14,  233—244. 
The  test  is  carried  out  by  observing  the  time  taken 
to  reach  the  maximum  temperature  when  a  strip  ot 
the  metal  is  placed  in  20  c.c  of  hydrochloric  acid 


vol.  xli.,  No.  u.j     Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       553  a 


(containing  exactly  100  g.  HC1  per  1.)  at  20°  C. 
The  increase  in  temperature  divided  by  the  time 
taken  to  reach  the  maximum  is  called  the  "  reaction 
number  "  of  the  metal.  The  metal  surface  must  be 
clean  and  should  be  scrubbed  with  soap  and  dried 
before  carrying  out  a  test;  even  after  this  treat- 
ment a  different  result  is  obtained  in  two  successive 
tests  on  the  same  specimen,  due  to  tho  surface 
covering  being  in  a  different  physical  state  to  tho 
body  of  the  metal.  Cast  or  annealed  metal  has  a 
higher  reactivity  than  metal  that  has  been  cold- 
drawn  or  rolled.  Commercial  aluminium  alloys  may 
be  divided  into  four  classes,  those,  e.g.,  aluminium 
free  from  iron,  which  have  a  reaction  number  lower 
than  4;  those  for  which  the  number  is  between  4 
and  10,  e.g.,  technically  pure  aluminium,  aludur, 
and  duralumin ;  those  for  which  the  reaction 
number  is  between  10  and  20,  e.g.,  alloys  containing 
1 — 3%  of  iron  and  silicon,  and  those  with  a  number 
higher  than  20.  Electrolytic  oxidation  of  alumin- 
ium in  saturated  boric  acid  and  borax  solutions 
and,  more  especially,  in  fused  potassium  nitrate, 
lowers  the  reactivity  of  the  metal  very  consider- 
ably; thus  a  specimen  treated  by  the  latter  method 
had  a  reaction  number  of  only  O'Ol. — A.  R.  P. 

Metals  and  alloys;  Density  determinations  on  

at  high  temperatures.  II.  The  systems  copper- 
antimony,  copper-zinc,  and  zinc-aluminium.  K. 
Bornemann  and  F.  Sauerwald.  Z.  Metallk., 
1922,  14,  254—258.     (fif.  J.,  1922,  421  a.) 

The  density  and  specific  volume  together  with  data 
on  tho  contraction  on  cooling  of  alloys  of  the 
systems  copper-antimony,  copper-zinc,  and  zinc- 
aluminium  have  been  determined  and  tabulated. 
The  temperature  coefficient  of  expansion  of  liquid 

I  alloys  in  the  first-named  system  falls  from  the 
antimony  end  to  a  point  corresponding  to  the  com- 

■  pound,  CiijSb,  after  which  it  rises  more  sharply. 
In  the  copper-zinc  system  there  is  an  inflexion  in 

i  the  curve   at   a   point  corresponding   to   the   com- 

•  pound,  Cu,Znj.  The  specific  volume  of  the  alloys 
of  zinc  and  aluminium  in  the  liquid  state  may  be 
calculated  by  the  rule  of  mixtures. — A.  R.  P. 

Aluminium  alloys,    especially   duralumin ;   Analysis 

of .     F.  M.  da  Costa-Vet.     Chem.  Weekblad, 

1922,  19,  249—251. 
Duralumin  contains,  besides  aluminium,  copper 
3'5 — 4'5;  manganese  0  5 — TO,  and  magnesium  0'5%. 
In  precipitating  iron,  aluminium,  and  manganese 
in  the  usual  way,  care  must  be  taken  to  keep  the 
'  magnesium  in  solution ;  the  precipitation  is 
.  repeated,  and  filtration  must  be  rapid  each  time. 
Some  manganese  left  in  solution  is  weighed  with 
the  magnesium  as  pyrophosphate,  and  afterwards 
estimated  by  re-dissolving  the  phosphates  and 
titrating  with  permanganate.     (Cf.  J.C.S.,   July.) 

— S.  I.  L. 

Binary  alloys  [of  lead,  tin,  and  bismuth']:  Volume 

changes  of .     K.  Gilbert.     Z.  Metallk.,  1922, 

14,  245—253. 

The  coefficient  of  thermal  expansion  of  tin-lead 
alloys  remains  constant  with  rising  temperature  up 
to  about  170°  C,  then  increases  rapidly  to  a  maxi- 
mum at  the  melting  point  of  the  eutectic,  and  falls 
rapidly  to  a  minimum  at  about  200°  C,  rising 
again  to  a  second  maximum,  which  is  less  than  the 
irst,  between  220°  and  230°  C.  corresponding  with 
she  melting  of  the  excess  of  tin  or  lead  oyer  the 
;utectic  ratio.  In  the  tin-bismuth  series  the 
coefficient  of  expansion  decreases  steadily  to  a 
ninimum  at  the  melting  point  of  the  eutectic 
139'8°  C),  then  increases  a  little,  but  almost 
mmediately  decreases  very  rapidly.  Alloys  in 
vhich  tin  is  in  excess  have  a  negative  coefficient 
ibove  100°  C,  i.e.,  they  expand  on  further  heating, 
fin-bismuth  alloys  undergo  a  contraction  h  volume 


when  maintained  at  a  constant  temperature  for  any 
time.  This  contraction  is  greater  and  more  rapid 
the  higher  the  temperature,  but  it  takes  place  even 
at  room  temperature.  The  same  phenomenon  is 
observed  in  the  case  of  the  tin-lead-bismuth 
eutectic.  This  alloy,  on  heating,  has  a  constant 
coefficient  of  expansion  up  to  80°  C,  after  which 
the  coefficient  falls  to  a  minimum  at  94'9°  C,  then 
rises  to  a  maximum  at  112'8°  C,  and  again  falls  to 
a  constant  value  somewhat  higher  than  the  first, 
at  140°  C— A.  R.  P. 

Magnesium-cadmium    alloys.       L.     Guillet.       Rev. 
Met.,  1922,  19,  359—365. 

Magnesium  and  cadmium  form  a  continuous  series 
of  solid  solutions  and  one  compound,  CdMg,  melting 
at  427°  C.  and  soluble  in  all  proportions  in  either 
metal.  The  solidus  is  very  close  to  the  liquidus  and 
hence  the  alloys  are  very  uniform  in  character, 
although  at  ordinary  temperatures  there  are 
several  different  solid  solutions  characterised  by 
different  electrical  conductivities  and  hardness. 
No  change  in  the  latter  property  is  produced  by 
quenching  or  by  quenching  and  ageing  at  any  tem- 
perature, and  the  magnesium-rich  solid  solutions 
are  malleable  either  hot  or  cold,  but  alloys  contain- 
ing about  6 — 42%  Mg  are  brittle  at  ordinary  tem- 
peratures although  they  are  capable  of  being  forged 
at  300°  C.  Small  quantities  of  cadmium  increase 
the  Brinell  hardness  of  magnesium  from  32  to  60 — 
65.— A.  R.  P. 

Xon-ferrous  metals;  Gas  absorption  and  oxidation 

of .     B.  Woyski  and  J.  \V.  Broeck.     Trans. 

Amer.   Inst.   Min.   and  Met.   Eng.,  June,   1922. 

Min.    and   Met.,    May,    1922.     [Advance   copy.] 

8  pp. 
The  discoloured  fracture  of  a  non-ferrous  alloy, 
usually  considered  to  be  due  to  oxidation,  is 
believed  to  be  rather  the  result  of  a  reducing 
atmosphere.  Castings  produced  from  a  sealed 
Detroit  arc  furnace  always  showed  a  discoloured 
fracture,  but  a  normal  casting  was  obtained  from 
a  ventilated  Detroit  furnace,  or  from  the  Baily 
furnace,  which  is  not  air-tight.  Discoloration  has 
also  been  observed  in  bearings  poured  from  open 
flame  furnaces  with  decidedly  reducing  flames. 
Aluminium-bronze  is  very  susceptible  to  gassing, 
but  by  using  oxidising  conditions  in  oil  furnaces 
gassing  can  be  prevented  entirely.  An  oxidising 
condition  in  the  furnace  is  less  troublesome  than 
a  reducing  atmosphere,  provided  that  the  metal  is 
protected  by  a  thin  layer  of  mineral  flux.  The  loss 
of  metal  is  not  appreciably  greater  and  there  is  a 
saving  in  time  and  fuel.  The  one  condition  of 
success  is  that  the  metal  must  be  stirred  to  bring 
the  oxides  in  contact  with  the  flux,  because  the 
specific  gravity  of  some  oxides  is  greater  than  that 
of  the  metal. — C.  A.  K. 

Tungsten  ores  of  Boulder  County,  Colo.;  Treatment 

of    the    .      [Analysis    of   ferrotungsten   and 

tungsten  powder.]  J.  P.  Bonardi  and  J.  C. 
Williams.  Bull.  187,  U.S.  Bureau  of  Mines, 
1921.  79  pp. 
The  tungsten  ores  of  Boulder  consist  chiefly  of 
fairly  well  crystallised  ferberite  in  a  quartzose 
gangue.  The  ore  is  crushed  and  concentrated  on 
jigs  and  tables  in  the  usual  way,  and  the  concen- 
trates, if  tin  or  other  objectionable  impurity  is 
present,  are  treated  electromagnetically  for  the 
production  of  a  ferberite  concentrate  containing 
65 — 70%  W03.  Full  details  and  flow  sheets  of  the 
methods  used  at  different  mines  are  given,  as  well 
as  descriptions  of  the  methods  used  in  working  up 
the  concentrates  into  ferrotungsten,  tungsten 
powder  and  tungstic  acid.  The  ferrotungsten 
produced  assays  70—80%   W,   <1%C,  <0'5%    Mn, 


554  A       Cl.  X.— METALS  j   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.         [July  31,  1922. 


<1%  Si,  and  not  more  than  Tl%  S  and  P  together. 
The  following  method  is  recommended  for  assaying 
ferrotungsten  and  tungsten  powder,  which  should 
first  he  ground  to  pass  a  200-rnesh  screen.  1  g.  of 
the  sample  is  fused  for  5 — 7  mins.  at  800°  C.  with 
5  g.  of  sodium  peroxide  in  a  nickel  crucible,  the 
cold  melt  is  leached  with  water,  and  the  solution 
treated  with  an  excess  of  hydrochloric  acid  and 
boiled.  40  c.c.  of  cinchonine  solution  (50  g.  of 
alkaloid  and  150  c.c.  of  hydrochloric  acid  in  2  1.  of 
water)  is  added  and,  after  standing  over-night, 
the  precipitate  is  collected  on  a  filter,  washed  with 
weak  cinchonine  solution,  ignited,  treated  with 
hydrofluoric  and  sulphuric  acids,  again  ignited, 
and  weighed  as  W03.  Carbon  is  determined  by 
combustion  in  oxygen,  the  evolved  gases  being 
passed  through  barium  hydroxide  solution  and  the 
barium  carbonate  produced  weighed.  The  whole 
of  the  sulphur  in  the  sample  is  evolved  as  hydrogen 
sulphide  on  treating  it  with  hydrochloric  acid ; 
this  gas  is  collected  in  cadmium  chloride  solution 
and  the  precipitate  is  titrated  with  iodine. 
Phosphorus  is  determined  by  fusing  1  g.  with 
peroxide  as  for  tungsten.  The  solution  of  the  melt  j 
is  partly  neutralised  with  hydrochloric  acid,  the 
ferric-  hydroxide  filtered  off,  the  filtrate  acidified 
with  30  c.c.  of  40%  acetic  acid,  treated  with  2  c.c.  j 
of  5%  uranium  acetate  solution,  a  slight  excess  of  1 
ammonia,  and  a  further  2  c.c.  of  uranium  acetate, 
and  the  precipitate  is  filtered  off,  washed  with  hot 
water,  and  dissolved,  together  with  the  ferric  I 
hydroxide  precipitate,  in  25  c.c.  of  strong  nitric 
acid  and  30  c.c.  of  water.  The  clear  solution  is 
nearly  neutralised  with  45  c.c.  of  ammonia  (1:1) 
and  treated  with  50  c.c.  of  molybdate  solution. 
After  15  mins.  the  precipitate  is  filtered  off,  washed 
with  acid  ammonium  sulphate  solution,  dissolved 
in  ammonia,  the  solution  filtered,  and  the  filtrate 
acidified  with  sulphuric  acid  and  passed  through  a 
Jones  "  reduetor."  The  reduced  solution  is 
titrated  with  permanganate;  the  iron  factor 
multiplied  by  00163  gives  the  phosphorus  factor. 

—A.  R.  P. 

Metals;  Acceleration  of  solution  of in  acids  by 

reducible    compounds.     H.   J.   Prins.      Proc.    K. 
Acad.  Wetensch.,  1922,  23,  1449—1454. 

The  velocity  of  solution  of  a  metal  in  an  acid  may 
be  enhanced  by  the  presence  of  a  reducible  sub- 
stance. Nitrobenzene  and  benzaldehyde  accelerate 
the  rate  of  solution  of  iron,  zinc,  lead,  tin,  copper, 
nickel,  aluminium,  and  silver  in  a  large  number 
of  acids.  In  the  presence  of  nitrobenzene  the  rate 
of  solution  is  increased  up  to  1000  times.  The 
increase  in  the  action  of  the  acid  on  the  metal  is 
accompanied  frequently  by  an  increased  evolution 
of  hydrogen.  Benzaldehyde  is  selective  in  its 
action.  Benzophenone  retards  the  rate  of  solution 
of  the  metal  and  the  rate  of  generation  of  hydrogen 
from  zinc  and  acid. — W.  E.  G. 


Metallic  substances;  Constitution  of  .     C.  A. 

Kraus.        J.     Amer.      Chem.      Soc,      1922,      44, 

1216—1239. 
Metals  and  intermetallic  compounds  are  salt-like 
in  character  and  in  liquid  ammonia  solution  the 
more  electronegative  metal  functions  as  anion,  and 
on  electrolysis  is  deposited  on  the  anode.  The 
multiplicity  of  compounds  derivable  from  a  given 
pair  of  metals  is  explained  by  the  fact  that  in  their 
compounds  the  more  electronegative  elements  form 
complex  anions.  The  energy  effect  accompanying 
the  formation  of  metallic  compounds  is  of  the 
same  order  of  magnitude  as  that  accompanying 
the  formation  of  ordinary  salts,  and  as  in  the  case 
of  salts,  the  energy  change  is  the  greater  the  more 
electronegative  one  element  is  with  regard  to  the 


other.  The  property  of  "  metallicity "  is  not  an 
atomic  one;  it  may  be  imparted  to  non-metallic 
elements  by  combination  with  other  non-metallic 
elements  and  is  due  to  the  presence  of  uncombined 
negative  electrons.  The  electrons  which  impart 
metallic  properties  to  an  element  are  those  to  which 
the  chemical  reactions  of  this  element  with  other 
elements  are  due.  The  reaction  between  strongly 
electropositive  and  strongly  electronegative  ele- 
ments or  groups  of  elements  consists  essentially  in 
a  combination  of  the  negative  electrons  of  the 
electropositive  constituent  with  the  atoms  of  the 
electronegative  constituent.     (C/.  J.C.S.,  August.) 

—J.  F.  S. 

Patents. 

Steel  or  iron  work;  Materials  for  and  method  of 

treating,    or    preserving   against    corrosion 

ami  rusting.    G.  H.  Howse.   E.P'.  179,811,  2.5.21. 

Iron  or  steel  is  coated  with  a  mixture  of  an  oxy- 
acid  of  phosphorus,  e.g.,  phosphoric  acid,  and 
chromium  oxide  or  hydroxide,  dissolved  in  a  suit- 
able solvent,  e.g.,  acetone,  alcohol ;  oxide,  hy- 
droxide, or  chromate  of  manganese,  lead,  or  nickel 
may  also  be  added.  The  metal  may  be  painted 
subsequently.  The  process  is  intended  to  be  applied 
where  corrosion  has  already  taken  place,  the  active 
iron  oxide  being  converted  into  an  inactive  condi- 
tion by  application  of  the  mixture. — C.  A.  K. 

Cast  iron;  Purifying  and  eliminating  objec- 
tionable gases  and  oxides.  J.  R.  Billings,  Assr. 
to  J.  R.  Billings  Iron  and  Steel  Co.  U.S.P. 
1,412,077,  11.4.22.  Appl.,  25.5.16.  Renewed 
25.8.21.  • 

Reagents  capable  of  eliminating  hydrogen  and 
phosphorus  are  added  to  the  molten  iron,  and  finely 
divided  carbon  is  then  introduced  gradually  into 
the  body  of  the  molten  metal. — T.  H.  Bu. 

[Iron]  castings;  Method  of  controlling  the  condi- 
tion   of    [i.e.,    rendering    malleable]    .     0. 

Sowers.    U.S.P.  1,417,638,  30.5.22.    Appl.,  6.4.21. 

An  electric  current  is  passed  through  the  casting 
which  is  heated  by  resistance  only,  the  electrodes 
or  contact  pieces  being  so  shaped  as  to  cause  more 
current  to  pass  through  the  thicker  portions  of  the 
casting,  thus  obtaining  uniform  heating  (for 
several  hours)  to  a  temperature  near  that  at  which 
combined  carbon  changes  to  temper  and  free 
carbon. — B.  M.  V. 

F  erro-chromium     alloys;     Manufacture     of    . 

W.  B.  Ballantine.     E.P.  179,992,  19.1.21. 

High  carbon  ferro-chromium  is  subjected  to  the 
action  of  an  oxidising  blast  while  maintained  well 
above  its  melting  point  in  an  electric  furnace.  The 
necessary  flux  is  carried  to  the  metal  by  means  of 
the  blast,  which  may  impinge  directly  on,  or  at 
an  angle  to,  the  surface  of  the  bath.  The  carbon 
content  in  a  trial  was  reduced  from  5'65%  to 
0'25%  in  40  mins.  when  using  an  air  blast  at  a 
pressure  of  8  lb.  per  sq.  in. — C.  A.  K. 

Blast  furnaces;  Method  of  operating  smelting  and 

reducing  furnaces,  more  particularly  .     H. 

Koppers.  E.P.  156,765,  7.1.21.  Conv.,  23.10J8. 
A  portion  of  the  hot  gas  evolved  in  the  blast 
furnace  is  withdrawn  from  above  the  blast  inlet 
level  at  a  temperature  of  about  1400°  C,  and^the 
whole  or  part  of  this  gas  is  cooled  to  about  800°  C. 
and  then  introduced  again  into  the  furnace  at  a 
somewhat  higher  level.  The  temperature  zone  in 
which  carbon  dioxide  has  an  oxidising  effect  is  thus 
eliminated,  and  a  shorter  shaft  can  be  used,  thus 
reducing  the  resistance  of  the  charge  and  c°n9e~ 
quently  reducing  the  power  required  for  the  blast. 


Vol  XLI.No.  14]      Cl.  X.— METALS  ;    METALLURGY,  INCLUDING  ELECTRO-METALLUKGY.      555  A 


The  sensible  heat  taken  from  the  withdrawn  gas 
is  utilised  for  preheating  or  drying  the  charge. 

— T.  H.  Bu. 

Zinc;  Method  of  extracting  from  lead-slags, 

zinc-retort  residues,  poor  zinc  ores  or  the  like. 
Rheinisch-Nassauische  Bergwerks-  und  Hutten- 
A.-G.,  and  A.  Spieker.  E.P.  160,455,  17.2.21. 
Conv.,  17.3.20. 

TnE  finely  ground  residues  are  briquetted  with 
lime  or  silica  in  such  a  proportion  that  the  resulting 
slag  is  either  very  basic  or  very  acid  and  of  a  high 
melting  point.  The  resulting  briquettes  are 
smelted  in  a  shaft  furnace,  whereby  the  zinc  is 
reduced  and  volatilised  only  when  the  briquettes 
reach  the  hottest  zone,  and  a  slag  is  obtained  con- 
taining less  than  0"5%   Zn. — A.  R.  P. 

Zinc    ashes    or    zinc    oxide    containing    chlorides; 

}[>'thod    of   working   [for   the    recovery    of 

zinc~\.  Oberschlesische  Zinkhutten  A.-G.  G.P. 
350,702,  14.4.21. 

The  ashes  or  other  material  containing  zinc  oxide 
and  chloride  are  mixed  intimately  with  calcined 
limestone  or  dolomite  dust  and  water  before  reduc- 
tion. The  calcium  chloride  so  formed  is  only  de- 
composed at  a  very  high  temperature  and  does  not 
interfere  in  the  subsequent  reduction. — A.  R.  P. 

[Aluminium;]   Process  for  the  reduction  of  [ 

from  its!  ores-  C.  A.  Stevens,  Assee.  of  C.  G. 
Collins.     E.P.   160,760,  14.2.21.     Conv.,  26.3.20. 

The  ore,  ground  to  pass  a  20-  to  40-mesh  screen,  is 
mixed  with  about  5%  of  its  weight  of  carbon,  3% 
of  sodium  chloride,  and  2%  of  sawdust  impregnated 
with  alkali,  and  the  mixture  is  heated  in  a  closed 
furnace  to  about  1400°  F.  (760°  C).  The  sawdust 
,may  be  replaced  by  oxalates. — A.  R.  P. 

Chromium  or  alloys  of  chromium;  Method  for  pro- 
ducing      .        Aktiebolaget      Ferrolegeringar. 

E.P.  163,263,  23.4.21.    Conv..  12.5.20.    Addn.  to 

;    135,187  (J.,  1921,  86  a). 

At  the  end  of  the  bessemerising  process  for  the 
production  of  chromium  alloys,  the  slag  becomes 
relatively  rich  in  chromium.  This  slag  is  retained 
in  the  furnace  during  the  early  part  of  the  working 
if  the  following  charge  and  when  the  removal  of 
silicon  has  proceeded  to  the  stage  at  which  the 
content  of  chromium  in  the  slag  is  at  a  minimum, 
the  highly  silicious,  low-chromium  slag  is  tapped 
iff.  The  oxidation  of  silicon  is  then  completed  in 
:he  furnace,  with  the  addition  of  basic  materials 
f  necessary,  and  the  smaller  quantity  of  high- 
:hromium  slag  formed  is  used  in  the  working  of 
;he  following  charge. — C.  A.  K. 

Topper    [nickel,    and    lead!    ores;    Treatment    of 

oxidised  .     W.  G.  Perkins.     E.P.  1S0.021,  14 

and  21.2.21. 

i  magnetic  product  is  obtained  by  heating  the  ore 
rith  sulphur  or  iron  sulphide  (pyrites)  in  a  non- 
>xidising  atmosphere,  and  is  concentrated  by  mag- 
letic  separation.  The  ore  is  preferably  heated  in 
i  reducing  atmosphere  before  admixture  with  the 
lyrites  — C.  A.  K. 

■  'dag;  Process  of  granulating  and  separating 

moisture  therefrom.  T.  Steen.  E.P.  180,479, 
23.3.21. 

>lag,  granulated  by  quenching  in  water,  is  spread 
n  a  thin  layer  over  a  floor  of  large  area,  and  the 
'ater  is  drawn  off  rapidly,  preferably  by  means  of 
suction  apparatus.  The  hot  slag  may  be  allowed 
o  dry  naturally,  or  it  may  be  dried  by  heat  (e.g., 
y  the  exhaust  gases  from  a  gas-engine)  and  then 
ooled  rapidly  by  a  current  of  air  or  water,  this 
ap'd  cooling  causing  further  granulation. 

—A.  B.  S. 


Alloy.  A.  W.  Randall.  U.S. P.  1,417,348,  23.5.22. 
Appl.,  29.11.20. 

An   alloy   containing   80—87   (e.g.,   84)%    Zn   and 
20—13  (e.g.  16)%  Al.-C.  A.  K. 

[Tungsten!  alloy  for  contact  bodies  and  ignition 
points.  C.  A.  Laise.  U.S. P.  1,418,081,  30.5.22. 
Appl.,  2.5.21. 

The  alloy  contains  87—97%  W,  10—3%  Mo,  and  a 
substantial  amount  of  vanadium  not  exceeding  1%. 

—A.  R.  P. 

Soldering  composition.  A.  Traliot.  U.S.P.  1,417,428, 
23.5.22.     Appl.,  2.4.21. 

A  solder  containing  aluminium,  sulphur,  and  a 
number  of  metals  of  low  melting  point. — C.  A.  K. 

0-res  and  the  like;  Process  for  chlorinating  in 

mechanical  roasting  furnaces.       Metallbank  und 
Metallurgist-he  Ges.  A.-G.    G.P.  350,645,  10.4.14. 

The  heat  necessary  for  the  chlorination  process  is 
supplied  by  radiation  from  above  to  the  upper 
chlorinating  chamber,  and  the  hot  flue  gases  from 
this  source  of  heat  are  led  into  the  same  chamber 
and  pass  out  with  the  chlorinating  gases.  In  this 
way  the  ore  never  comes  in  contact  with  hot  sur- 
faces, and  is  therefore  not  overheated,  and  the 
temperature  of  the  top  hearth  of  the  furnace  can 
be  accurately  controlled. — A.  R.  P. 

Reducing  gases;  Process  for  the  preparation  of 

for  metallurgical  purposes.  A/S.  Norsk  Staal. 
G.P.  350,647,  25.2.19.     Conv.,  4.9.15. 

A  fuel  containing  carbon  monoxide  is  subjected, 
together  with  waste  gases  (containing  carbon 
dioxide  and /or  steam)  from  metallurgical  opera- 
tions, to  the  action  of  a  high-tension  electric  dis- 
charge, in  a  manner  similar  to  that  used  in  the 
combustion  of  nitrogen.  The  following  reactions 
take  place: — CmHn+mCO.,  +  41,700m  cals.= 
2mCO+n/2H2,  and  CmH„  +  mH,O+31,000ni  cals.= 
mCO+(m  +  n/2)H2.— A.  R.  P. 

Burnt  pyrites  and  the  like;  Process  for  removing 

zinc  from .     F.  W.  Neuhaus.     G.P.  350,649, 

20.11.20. 

Desulphurised  material,  such  as  burnt  pyrites,  is 
heated  to  1000°— 1100°  C.  in  an  atmosphere  of  a 
reducing  gas  such  as  blast-furnace  gas,  whereby 
the  zinc  is  reduced  and  volatilised,  and  the  residue 
is  obtained  as  an  agglomerate  of  partially  reduced 
iron,  which  may  be  smelted  in  the  blast  furnace. 
Addition  of  solid  carbon  is  unnecessary. — A.  R.  P. 

Iron  and  alloys  of  iron;  Electrodeposition  of  metals 

upon  .     R.    J.    Fletcher,    Assr.   to   Fletcher 

Electro  Salvage  Co.,  Ltd.  U.S.P.  1,417,896, 
30.5.22.     Appl,  17.1.21. 

See  E.P.  162,391  of  1920;  J.,  1921,  436  a. 

Copper-nickel  matte;  Treatment  of .     G.  Hag- 

lund.     E.  P.  158,887,  7.2.21.     Conv.,  10.2.20. 
See  G.P.  343,079  of  1921;  J.,  1922,  379  a. 

Lead;    Refining    of    .      H.    Harris.      U.S.P. 

1,418,148,  30.5.22.     Appl.,  29.1.20. 
See  E.P.  142,398  of  1919;  J.,  1920,  456  a. 

Aluminium  alloy.    H.  C.  Hall,  Assr.  to  Rolls-Royce, 

Ltd.     U.S.P.  1,418,303,  6.6.22.     Appl.,  18.2.21. 
See  E.P.  153,514  of  1920;  J.,  1921,  15  a. 

Ores;    Apparatus    for    grinding,    classifying,    and 

decanting .  J.  R.  Broadley.  U.S.P.  1,418,523, 

6.6.22.     Appl.,  30.9.20. 

See  E.P.  154,434  of  1919;  J.,  1921,  70  a. 

Removing  enamel  from  metal.     U.S.P.    1,416,865 
See  VIII. 


556  A 


Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS  ;  OILS  ;  WAXES.      [July  31,  1922. 


XL— ELECTBO-CHEMISTBY. 

Colloids;  Electrical  precipitation  of  .       C.  H. 

Hall,     jun.     J.     Amer.    Chem.     Soc.,     1922,    44, 
1246—1249. 

Colloidal  suspensions  in  non-conducting  liquids 
are  not  precipitated  bv  either  direct  or  alternating 
current  of  voltage  from  10"  to  2xl05.— J.  F.  S. 

Reversible      reduction      of      organic      compounds. 
Conant  and  others.     See  TV. 

Power  consumption  in  manufacture  of  calcium  car- 
bide.   Furusaki.    See  VII. 

Electro-cunalysis  of  bi'asses  etc.    Kling  and  Lassieur. 
See  X. 

Sapid  electrolysis.  Edgar  and  Purdum.  See  XXIII. 

Patents. 

Electric  primary  cells.    L.  Darimont.    E.P.  180,120, 
16.3.21. 

In  primary  cells  employing  a  zinc  electrode  im- 
mersed in  an  exciting  solution  of  a  chloride,  such 
as  sodium  chloride,  and  a  carbon  electrode  immersed 
in  iron  perchloride,  powdered  chalk  or  other  anti- 
acid  material  is  added  to  the  former  solution,  and 
an  agglutinant  such  as  starch  is  added  to  retain 
the  chalk  in  suspension.  The  chalk  reacts  with  iron 
perchloride  diffusing  through  the  wall  of  the  porous 
cell,  and  a  semi-pervious  layer  is  formed,  which  is 
prevented  from  becoming  too  thick  by  the  addition 
of  a  mixture  of  chromic  acid  or  chromium  salts  and 
hydrochloric  acid  to  the  depolarising  fluid,  to  which 
sodium  or  potassium  chloride  is  similarly  added  to 
regulate  the  osmotic  pressure  and  precipitate 
hydroxides  and  oxides  of  iron,  which  would  other- 
wise form  insulating  deposits  on  the  carbon.  To 
prevent  creeping  of  iron  perchloride  on  the  wall  of 
the  porous  vessel,  that  portion  which  is  above  the 
paste  is  made  impervious  by  prolonged  immersion 
in  molten  lead  oleate  or  similar  substance,  with  or 
without  the  addition  of  other  metallic  soaps,  such 
as  soaps  of  iron  or  manganese.  The  head  of  the 
carbon  electrode  is  similarly  treated.  The  bottom 
of  the  porous  vessel  is  entirely  or  partially  convex 
externally.  The  upper  portion  of  the  porous  vessel 
is  closed  by  wax,  pitch,  etc.,  through  which  passes 
a  tube  having  a  widened  neck  closed  by  a  stopper 
provided  with  a  slot  or  groove  for  the  escape  of 
gases.  The  zinc  electrode  need  not  be  amalgamated. 
The  cell  is  provided  with  a  closing  ring  of  cork  or 
other  compressible  material. — J.  S.  G.  T. 

J>ry  batteries;  Process  for  the  preparation  of 

with  manganese  dioxide-graphite  electrodes.     H. 
Riesenfeld.     G.P.  350,248,  10.2.20. 

The  pressed  electrodes  of  manganese  dioxide  and 
graphite  are  dipped  into  a  colloidal  solution  so  as 
to  give  them  a  coating  of  a  colloidal  material, 
which  prevents  the  formation  of  cracks  and  the 
loss  of  small  particles,  and  gives  the  cell  a  better 
conductivity  and  a  smaller  internal  resistance,  and, 
therefore,  greater  capacity. — A.  R.  P. 

Electric  cell.    A.-G.  Mix  und  Genest  Telephon-  und 
Telegraphen-Werke.     G.P.  350,925,  1.10.20. 

The  cell  is  of  the  type  in  which  zinc,  carbon,  and 
manganese  dioxide  are  used,  and  the  electrodes  are 
separated  by  a  temi-permeable  diaphragm.  An 
electrolyte  of  the  usual  kind  is  employed  on  the 
zinc  side  of  the  diaphragm,  whilst  on  the  other 
side  a  soluble  substance  with  powerful  oxidising 
properties,  e.g.,  a  hypochlorite,  is  used,  for  the 
purpose  of  intensifying  the  depolarising  action  of, 
and  revivifying,  the  manganese  dioxide. 


Eh,  fnc  furnace.  F.  W.  Sperr,  jun.,  and  H.  J. 
Rose,  Assrs.  to  The  Koppers  Co.  U.S.P.  1,418,984, 
6.6.22.     Appl.,  14.3.21. 

A  relatively  long  and  narrow  heating  chamber  is 
formed  by  means  of  a  series  of  juxtaposed  heating 
units.  A  testing  tube  placed  inside  the  heating 
chamber  is  heated  progressively  by  connecting  the 
unite  in  circuit  from  one  end  to  the  other. 

—J.  S.  G.  T. 

Electric  furnace.  H.  G.  Weidenthal,  Assr.  to 
Westinghouse  Electric  and  Mfg.  Co.  Reissue 
15,378,  6.6.22,  of  U.S.P.  1.304,425,  20.5.19. 
Appl.,' 25.3.20. 

See  J.,  1919.  543  a. 

Furnace;  Electrically  heated  .     C.  \V.  Speirs, 

Assr.    to    Morgan     Crucible    Co.,    Ltd.     U.S.P. 
1,418,030,  30.5.22.     Appl.,  9.3.20. 

See  E.P.  144,802  of  1919;  J.,  1920,  575  a. 
Alloy  for  contact  bodies.  U.S.P.  1,418,081.  See  X. 
Reducing  gases.     G.P.  350,647.     See  X. 
Treating  meat,  fish,  etc.  E.P.  180,497.  See  XIXa. 


XII.-FATS;    OILS;    WAXES. 

Olive  oils  and  the  ViUavecchia  reaction.    J.  Prax. 
Ann.  Falsif.,   1922,   15,  159—161. 

The  formation  of  a  red  coloration  with  Villa- 
vecchia's  reagent  by  abnormal  olive  oils  (cf.  J., 
1921,  778  a)  is  prevented  by  treatment  with  alco- 
holic ammonia,  and  this  is  now  shown  to  be  due 
to  the  action  of  the  ammonia. — W.  G. 

Head  oil  of  the  sea  animals  of  the  family  Delphin- 
idce.    S.  Nakatogawa  and  S.  Kobayashi.     K 
Kwagaku   Zasshi   (J.   Chem.   Ind.,   Japan),   1922, 
25,  lo^lLW. 

The  authors  have  examined  the  jaw,  head,  and 
inner  head  oils  of  the  following  sea  animals : 
"  Ma-iruka  :'  (Delphinus  lonyirostris,  Gray), 
"  Kama-iruka  "  (Lagenorhynchus  acutus,  Gray), 
"  Nezumi-iruka  "  (Phocoena  communis,  Less), 
"Sunameri"  (yeomeris  phocoenoides,  Gray) 
"  Nuribo,"  and  "  Gondo-kujira  "  (Globiocephalus 
sieboldii,  Gray).  The  oils  contained  highly  unsatu- 
rated fatty  acids,  as  shown  by  the  formation  of 
polybromides,  and  notable  proportions  of  lower 
fatty  acids.  The  head  oils  and  more  especially  the 
inner  head  oils  (except  Xeomeris  oil)  contained  more 
unsaponifiable  matter  than  the  jaw  oils.  The  head 
and  jaw  oils  were  soluble  in  hot  absolute  alcohol, 
whereas  the  inner  head  oils  were  soluble  in  cold 
absolute  alcohol.  The  solidifying  points  of  the  oils 
were  far  lower  than  those  of  other  marine  animal 
oils. — K.  K. 

Fatty  oils;  Mechanism  of  alkali   refining  of  • 

S.  Ueno.  Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind. 
Japan),  1922,  25,  573—583. 
Metallic  and  alkali  soaps  and  oxidised  acids  are 
removed  to  a  notable  extent  by  alkali  refining. 
Similar  effects  are  observed  on  treating  the  oils 
with  soap  solution,  but  the  action  is  slower.  Sub- 
stances acting  as  anti-catalysts  in  the  hydrogena- 
tion  of  the  oils  are  removed  by  using  a  very  sniaU 
quantity  of  alkali  solution  (about  25  c.c.  of  20 ,i 
sodium  hydroxide  solution  for  50  g.  of  oil),  and  fish 
oils  thus  refined  can  be  hardened  smoothly,  not- 
withstanding the  oil  has  still  an  acid  value  of  3'2— 
10.  Alkali  refining  is  considered  to  be  due  to  the 
adsorption  of  impurities  by  the  emulsoid-like  com- 
pounds formed  by  the  addition  of  alkali  to  oils. 
whilst    refining   with    acid-clay   is   ascribed   to  the 


Vol.  XII,  No.  14  l  Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS.  557  A 


adsorptive  action  of  su6pensoid-like  compounds. 
Poisonous  matters  present  in  oils  can  easily  be 
removed  by  alkali  refining.  In  the  hardening  pro- 
cess, the  hardened  oil  is  electrically  charged;  the 
phenomenon  is  especially  distinct  in  highly  hardened 
samples. — K.  K. 

Vegetable  oils;  Decolorisation  of .     M.  J.  van 

Tussenbroek.     Chem.    Weekblad,   1922,   19,  266— 
2G7. 

Generally  Norit  was  found  to  have  the  best  de- 
colorising action  on  unwashed  oils,  and  fuller's 
earth  on  oils  washed  free  from  acid.  A  carefully 
refined  colourless  sample  of  coconut  oil,  with  an 
acid  value  of  0'08%,  was  coloured  with  1%  of 
aminoazobenzene,  and  heated  to  90°  C.  for  one  hour 
with  1%  of  Norit,  with  the  addition  of  quantities 
of  "  Ijsazijn  "  varying  from  0'2 — 2'0%.  The  best 
jpsults  were  obtained  with  V4 — 1*6  _  of  "  Ijsazijn." 
The  efficiency  of  an  adsorptive  decolorising  agent 
may  be  determined  by  tests  with  a  substance  easily 
solublo  in  oil  and  capable  of  being  titrated,  such  as 
aniline  or  /3-naphthol. — H.  M. 

Dihydroxysteai ric    acid:     Oxidation    of    .       Y. 

Asahina    and    Y.    Ishida.      Yakugakuzasshi    (J. 
Pharm.  Soc.  Japan),  1922,  [481],  171—179. 

Dihydroxystearic  acid  (504  g.)  is  easily  oxidised 
to  azelaic  acid  (202'5  g.)  and  pelargonic  acid  (130 
g.),  by  treating  with  a  mixture  of  sodium  bichro- 
mate and  sulphuric  acid  whilst  introducing  steam  at 
110° — 120°  C.  By  the  same  treatment,  trihydroxy- 
stearic  acid  (480  g.)  is  oxidised  to  azelaic  acid 
(89  g.)  and  cenanthylic  acid  (4T5  g.).  {Cf.  J.C.S., 
July.)— K.  K. 

Indian  beeswax;  Constants  of .     O.  D.  Roberts 

and  H.  T.  Islip.     Analyst,  1922,  47,  246—251. 

Tables  are  given  of  the  constants  of  23  samples  of 
honeycomb  and  wax  collected  under  the  supervision 
of  District  Officers  in  Bengal,  Eastern  Bengal,  and 
Assam.  The  following  are  the  minimum,  maximum, 
and  average  values  obtained  respectively.  Sp.  gr. 
0-9555,  0-9733,  09652;  m.p.  60-4°,  66'4°,  61-4°  C; 
acid  value,  3"7,  7'6,  5'8;  ester  value,  87'4,  96-0,  92'1 ; 
ratio  of  ester  value  to  acid  value,  12'2,  26'0,  16'7  ; 
iodine  value,  4'5,  7'7,  5"6;  Salamon  and  Seaber's 
test  (J.,  1915,  461),  52,  62,  57-6;  hydrocarbons,  6"9, 

I  12"9,  9'8%.  The  low  acid  values  obtained  are  remark- 
able, being  in  many  cases  lower  than  6,  the  figure 

i  hitherto  accepted  as  the  lowest  representing 
unadulterated  Indian  beeswax.  Both  Weinwurm's 
test  (Lewkowitsch,  Chem.  Technol.  Anal,  of  Oils, 
Fats  and  Waxes,  1914  Ed..  Vol.  2,  921)  and  Salamon 
and  Seaber's  test  are  shown  to  be  untrustworthy. 

— H.  C.  R'. 

Iodine  value  of  aliphatic  and  aromatic  unsaturated 

compounds;     Determination     of     tlie     .     D. 

Holde,  P.  Werner,  I.  Tacke.  and  C.  Wilke.  Chem. 
Umsohau,  1922,  29,  185—188. 

The  determination  of  the  iodine  value  is  a  valuable 
criterion  of  the  purity  of  higher  unsaturated  fatty 
acids  and  their  derivatives  when  other  methods  such 
as  molecular  weight  determinations  and  melting 
points  fail,  and  has  been  used  by  Holde  and  Wilke 
in  the  case  of  erucic  acid  (J.,  1922,  260  a).  In  these 
instances  the  Hanus  reagent  is  preferred  (10  g.  of 
iodine  monobromide  in  500  c.c.  of  glacial  acetic 
acid),  as  it  gives  results  in  close  agreement  with 
Hiibl's  reagent,  and  is  more  easily  prepared,  more 
stable,  and  more  rapid  in  action,  standing  for 
15  mins.  with  about  50%  excess  of  the  reagent  being 
sufficient  to  complete  the  reaction.  Accurate 
results  are  also  obtained  with  aromatic  unsaturated 
compounds,  e.g.,  tafrole,  under  similar  conditions. 
Anomalous  results  are  given  by  the  Hiibl-Waller 
solution  and  by  Wijs'  solution  for  both  cholesterol 
ind  phytosterol,  the  former  reagent  giving  abnor- 


mally low  and  the  latter  abnormally  high  results. 
,    With    the    original    Hiibl    solution,    however,    con- 
|   sistent   though   slightly   high  results   (73 — 77   com- 
pared  with   65'7    theoretical)    were   obtained   with 
cholesterol,    but    with    phytosterol    values    varying 
from  41  to  76  were  obtained  according  to  the  dura- 
tion of  the  reaction  and  the  excess  of  Hiibl  solution 
employed.     With  both  alcohols  Wijs'  solution  gave 
values   of   135,    that    is   approximately   double   the 
theoretical.     A  similar  difference  in  the  results  with 
Waller's  and  Wijs'  solutions  has  been  observed  with 
thick  mineral  lubricating  oils  and  with  naphthenic 
;   acids,  which  may  indicate  the  presence  of  cholesterol 
derivatives  in  these  natural  products. — G.  F.  M. 

Patents. 

Oil  and  like   extractor.     K.    F.   Wilhelm.     U.S.P. 
1,418,503,  0.6.22.     Appl.,  11.11.13. 

!   A  double-walled  hollow  cylinder  is  supported  on 

hollow  shafts   so  that   it  can   be   rotated  about   a 

horizontal   axis.     Transverse   filtering   pipes   which 

!   can  be  detached  are  arranged  within  the  cylinder, 

i    and  a  discharge  pipe  carried  along  the  outside  of 

!   the  cylinder  communicates  with  the  filtering  pipes 

j    through  apertures  made  in  the  cylinder  wall,  and 

also  with  the  hollow  shaft,   so  that  liquid   can  be 

discharged    during   the    rotation    of    the   cylinder. 

Solvent  can  be  introduced  into  the  cylinder  through 

one   of    the    shafts    and    steam    can    be   circulated 

through  the  space  between  the  cylinder  walls.     A 

second  discharge   pipe  is   connected   with  the  end 

wall   of   the  cylinder   near   the  circumference   and 

affords  communication  between  the  cylinder  and  the 

hollow  shaft,  so  that  liquid  can  be  drawn  off  from 

various  altitudes  within  the  cylinder. — H.  C.  R. 

Oils  ami  fats ;  Neutralisation  of .   E.  R.  Bolton 

and  E.  J.  Lush,  Assrs.  to  Technical  Research 
Works,  Ltd.  U.S.P.  1,419,109,  6.6.22.  Appl., 
21.2.21. 

See  E.P.  159,587  of  1919;  J.,   1921,  310  a. 


XIII.-PAINTS ;     PIGMENTS  ;     VARNISHES 
RESINS. 

Bed  lead;  Volumetric  estimation  of  lead  dioxide  in 
.    A.  Bonis.    Ann.  Falsif.,  1922,  15,  157—159. 

The  following  modified  procedure  for  estimating 
lead  peroxide  by  Diehl's  method  is  advocated. 
0'5  g.  of  the  sample  is  macerated  with  25  c.c.  of 
nitric  acid  (sp.  gr.  1'08)  and  the  mixture  is  washed 
into  a  conical  flask  with  25  c.c.  of  a  saturated  solu- 
tion of  sodium  acetate.  To  the  suspension  10  c.c. 
of  a  12%  solution  of  potassium  iodide  in  saturated 
sodium  acetate  is  added,  the  whole  is  well  shaken, 
and  the  iodine  liberated  is  titrated  with  2V/10  thio- 
gulphate  solution.  If  the  sample  of  red  lead 
contains  iron  oxide,  instead  of  titrating  the  free 
iodine,  an  excess  of  the  standard  thiosulphate  is 
added,  and  the  whole  is  made  up  to  100  c.c.  with  the 
j  saturated  sodium  acetate  solution.  After  filtering, 
'  an  aliquot  portion  of  the  filtrate  is  titrated  back 
j    with  AT/10  iodine  solution. — W.  G. 

Whitewashes  and  aqueous  lime  paints;  Investiga- 
tion of .     G.  J.  Fink.     J.  Ind.  Eng.  Chem., 

1922,  14,  503—511. 

|  Trials  of  175  different  aqueous  paints  prepared 
with  milk  of  lime  as  basis  were  made,  including 
exposure  tests  for  3  and  6  months  respectively.  Of 
the  common  ingredients  of  a  non-binding  nature 
added  to  the  simple  limewash,  common  salt  proved 
of  decided  value,  other  inorganic  substances,  e.g., 
sodium  phosphate,  fluoride,  borate,  and  carbonate, 

I  whiting,  calcium  sulphate,  asbestine,  copperas, 
alum,  or  zinc  oxide  showing  no  effect  or  at  most  a 


558  a 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;   RESINS. 


(July  31.  1022. 


doubtful  improvement.  Magnesium,  calcium,  and 
zino  chlorides  proved  of  some  slight  value  in 
enhancing  durability.  Of  the  binders  or  "  sicca- 
tives," which  comprised  casein,  glue,  flour,  sodium 
silicate,  and  soap,  the  first-named  showed  outstand- 
ing merit  as  an  ingredient  of  limewash,  the  working 
qualities  and  durability  on  exposure  being  particu- 
larly marked  when  the  composition  also  contained 
trisodium  phosphate  for  accelerating  the  solution  of 
the  casein,  and  formaldehyde  for  rendering  the 
casein  film  insoluble.  Both  glue  and  sodium  silicate 
have  a  tendency  to  cause  scaling  of  the  film,  but 
limewash  containing  both  glue  and  trisodium  phos- 
phate gives  satisfactory  results  in  interior  decora- 
tion, and  if  formaldehyde  also  be  added,  the  dried 
film  is  resistant  to  soap  and  water.  The  benefit 
attendant  on  the  use  of  drying  oils  as  ingredients 
of  whitewash  is  greatly  discounted  by  their  effect 
in  diminishing  the  opacity  of  the  lime  pigment. 

—A.  de  W. 

Varnishes;    Testing  .       777.      Hardness    tests. 

H.  Wolff.  Farben-Zeit.,  1922,  27,  2555—2556. 
An  apparatus  for  testing  the  hardness  of  varnish 
films  consists  of  a  triangle  formed  by  three  wooden 
strips,  the  base  of  which  is  hinged  to  the  face  of  a 
baseboard.  At  the  apex  of  the  triangle  is  fitted  a 
blunt  knife  edge  directed  towards  the  face  of  the 
baseboard.  Pressure  is  exerted  on  the  knife  edge 
by  means  of  a  small  loaded  dish  set  on  the  apex  of 
the  triangle  directly  over  the  knife  edge  and 
arranged  to  be  counterpoised  to  zero  load  by  a  lever 
carrying  a  sliding  weight  and  set  at  right  angles 
into  the  hinged  base  of  the  triangle  in  a  direction 
away  from  the  apex.  The  varnished  test  plate  is 
fixed  to  two  6trips  which  slide  in  guide  rails 
fastened  to  the  baseboard,  and  is  moved  at  a  defi- 
nite rate,  so  that  the  film  comes  in  contact  with  the 
knife  edge.  By  means  of  a  paper  scale  attached 
to  the  test-piece  a  number  of  "  cuts  "  can  be  made 
at  varying  loads  and  compared.  By  substituting  a 
strip  of  tinned  iron  in  place  of  the  knife  edge  and 
taking  observations  at  loads  slightly  above  zero,  the 
progress  of  drying  of  a  varnished  surface  can  be 
observed  by  the  adhesion  or  otherwise  of  the  testing 
edge. — A.  de  W. 

Phenol-aldehyde  condensation  products;  Compara- 
tive examination  of  ■ as  substitutes  for  shellac 

in  spirit  varnishes  and  polishes.     E.  Fonrobert. 
Chem.-Zeit.,  1922,  46,  513—514. 

Ten  phenol-aldehyde  condensation  products  from 
different  sources  were  submitted  to  tests  with  a  view 
to  their  evaluation  as  substitutes  for  shellac  in 
spirit  varnishes  and  polishes.  The  melting-points 
(incipient  sintering  to  complete  fusion)  ranged  from 
40°-^6°  C.  to  97°— 105°  C. ;  one  sample,  showing 
an  incipient  melting-point  of  80°  C,  failed  to  melt 
completely  and,  moreover,  was  the  only  one  not 
completely  soluble  in  alcohol.  The  ash  content  in 
no  case  exceeded  0'6 %.  The  acid  values  of  eight 
samples  ranged  from  1"1  to  90,  another  sample 
showing  a  value  of  426.  Paleness  of  colour  was  in 
most  cases  accompanied  by  a  strong  odour  of  cresol, 
the  samples  possessing  strong  odours  furthermore 
usually  deepening  in  tint  when  the  films  from  the 
alcohol  solutions  were  maintained  at  100°  C.  for 
24  hrs.  Only  two  of  the  samples  were  free  from 
smell  of  cresol  at  ordinary  temperatures,  and  some 
of  them  contained  a  proportion  of  cresol  sufficient 
to  produce  unpleasant  effects  as  a  result  of  contact 
of  the  skin  of  the  hand  with  the  varnished  surface. 
Elasticity  of  the  film,  due  to  the  presence  of  free 
cresol,  was  only  transient,  as  was  shown  by  observa- 
tion of  the  films  after  submission  to  a  rapid  ageing 
test  (exposure  at  100°  C.  for  24  hrs.).  All  the 
samples  were  much  inferior  to  shellac  in  regard  to 
hardness  and  elasticity.  The  films  from  the 
varnishes  varied  from  a  condition  of  sensitiveness 


to  hand-warmth  in  the  early  stages,  to  brittleness 
after  stoving  at  100°  C.  for  24  hrs.,  two  samples, 
however,  giving  films  which  were  fairly  elastic  after 
stoving.  Phenol-aldehyde  condensation  products 
must  be  regarded  as  poor  substitutes  for  natural 
shellac. — A.  de  W. 

Abietic  acid  and  certain  metal  abietates.  L.  L. 
Steele.  J.  Amer.  Chem.  Soc,  1922,  44,  1333— 
1341. 

Abietic  acid  may  readily  be  prepared  by  boiling 
white  rosin  with  98%  acetic  acid  for  2  hrs.  under  a 
reflux  condenser  and  then,  after  filtering  the 
mixture,  leaving  it  to  cool  overnight.  The  acid  is 
best  recrystallised  from  98%  acetic  acid.  The 
abietates  of  lead,  manganese,  cobalt,  nickel,  chro- 
mium, and  iron  were  prepared  by  pouring  a  neutral 
solution  of  sodium  abietate  into  an  excess  of  an 
aqueous  solution  of  one  of  the  salts  of  the  corre- 
sponding metal.     {Cf.  J. OS.,  Aug.)— W.  G. 

Patents. 

Carbon  black,  lampblack  and  hydrogen;  Method  of 

manufacturing .  H.  J.  Masson,  Assr.  to  J.  M. 

Gerard.    U.S.P.  1,418,385,  6.6.22.    Appl., 17.7.20. 

A  substance  containing  carbon  is  decomposed  by 
passing  it  through  a  body  of  molten  catalytic 
material,  the  temperature  of  which  is  sufficiently 
high  to  decompose  the  substance  into  minute 
particles  of  carbon  and  hydrogen,  the  carbon  thus 
formed  being  removed  from  the  molten  catalyst  with 
sufficient  rapidity  to  maintain  the  black  colour  and 
softness  of  the  carbon  produced. — A.  de  W. 

Lampblack;  Preparation  of  .       \V.  K.  Lewis, 

Assr.    to    The   Goodyear    Tire    and   Rubber   Co. 
U.S.P.  1,418,811,  6.6.22.     Appl.,  13.8.18. 

Imperfect  combustion  of  natural  gas  for  the  pro- 
duction of  lampblack  is  effected  by  burning  the  gas 
in  the  presence  of  approximately  15 — 20  vols,  of 
combustion  gas. — A.  de  W. 

Phenol-aldehyde  condensation  products.  Con- 
densite  Co.  of  America,  Assees.  of  D.  S.  Kendall. 
E.P.  159,164,  17.11.20.     Conv.,  19.2.20. 

A  phenolic  condensation  product,  permanently 
fusible  below  218°  C,  is  obtained  by  heating 
together  in  a  closed  digester  at  200°— 220°  F.  (93°— 
104°  C),  a  phenol  and  acetaldehyde  or  a  polymer 
thereof  in  the  presence  of  a  quantity  of  an  inorganio 
acid  condensing  agent,  e.g.,  hydrochloric  or 
sulphuric  acid,  not  exceeding  0'5%  of  the  phenol 
used,  until  the  acetaldehyde  has  substantially  all 
reacted  with  the  phenol.  During  the  reaction 
external  heating  is  stopped  and  a  cooling  medium 
applied  to  the  digester  to  maintain  the  tempera- 
ture within  the  specified  limits.  Excess  of  phenol 
and  water  are  removed  from  the  product,  e.g.,  by 
distillation,  and  the  acid  condensing  agent  is 
also  removed,  or  neutralised  and  separated. 
The  fusible  resin  thus  obtained  may  be  treated 
with  methylene-containing  substances,  e.g.,  hex** 
methylenetetramine,  so  as  to  form  an  infusible 
substance  on  the  application  of  heat.  (Reference  is 
directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of  the 
Patents  and  Designs  Acts,  1907  and  1919,  to  E.P. 
18,258  of  1913;  J.,  1914,  841.)— A.  de  W. 

Phenolic  condensation  product;  Process  of  making 

a  .     D.  S.  Kendall,  Assr.  to  Condensite  Co. 

of  America,  U.S.P.  1,418,718,  6.6.22.  Appl., 
10.5.20. 
A  liquid  mixture  of  phenol,  formaldehyde,  and 
water  containing  dissolved  hexamethylenetetrannne 
in  which  the  formaldehyde  is  present  in  sufficient 
quantity  to  react  with  the  phenol  to  form  a  fusible 
resin,  and  the  hexamethylenetetramine  sufficient  to 
react  with  the  resin  to  form  an  infusible  product,  is 


Vol.  xil.,  Xo.  14]         Cl.  XTV. — INDIA-RUBBER,  &o.     Cl.  XV.— LEATHER  ;    BONE,  &o. 


559  a 


heated  to  cause  reactions  between  the  phenol,  form- 
aldehyde, and  hexamethylenetetramine  and  obtain 
a  fusible  resin  containing  hexamethylenetetramine 
in  solution  but  substantially  no  uncombined  formal- 
dehyde.—A.  de  W. 

Printing  inks;  Process  for  the  manufacture  of  black 

.     Rutgerswerke  A.-G.,   and  H.  Teichmann. 

E.P.  163,117,  15.6.21.     Conv.,  8.7.20. 

Solutions  obtained  as  described  in  E.P.  131,588 
and  160.467  (<•/.  G.P.  320,056;  J.,  1920,  622a) 
by  treating  coal  and  other  organic  material, 
such  as  wood,  peat,  straw,  cotton,  and  the  like, 
with  tar  oils  at,  e.g.,  300°  C.,  or  resinous,  bitumin- 
ous residues  obtained  in  distilling  such  solutions, 
are  suitable  for  use  in  the  manufacture  of  printing 
inks.  For  example,  58  pts.  of  coal  extract  resin 
oil  produced  as  described  in  E.P.  131,538,  is  ground 
with  12  pts.  of  lampblack  and  30  pts  of  straw- 
extract  oil.  Other  materials,  such  as  petroleum 
pitch,  asphalt,  coumarone  resin,  or  oils,  such  as 
boiled  linseed  oil,  resin  oils,  or  the  like,  as  well  as 
colouring  matter  to  modify  the  shade,  mav  also  be 
added.— L.  A.  C. 


Paints,    varnishes,    etc.;    Removal    of    .       TV. 

Tiddv,  Assr.  to  Rainev-Wood  Coke  Co.  U.S. P. 
1,417,955,  30.5.22.     Appl.,   19.5.21. 

Heavy  coal-tar  bases,  substantially  free  from  pyri- 
dine, are  used  to  remove  paints,  varnishes,  etc. 

— C.  I. 

Preservation  of  wood,  pasteboard,  masonry,  leather, 

sheet  iron,  etc.;  Coating  for  the  .     E.  Reck, 

Assr.  to  Freeses  Patent  Eisenchutz  und  Schraub- 
enwellenbekleidung  fur  Schiffe  G.m.b.H.  U.S. P. 
1,418,172,  30.5.22.     Appl.,  6.1.21. 

See  E.P.  153,293  of  1920;  J.,  1922,  65  a. 


XIV.— INDIA-fiUBBER ;  GUTTA-PERCHA. 

'.Rubber;  State  of  in  its  solutions.      P.  Bary. 

Caoutchouc   et   Gutta-Percha,    1922,    19,    11393— 
11395. 

Binstein's  formula  for  the  viscosity  of  suspensions 
i  if  applied  to  the  viscosity  of  very  dilute  solutions  of 
,  rubber,   and   Hatschek's  formula   for   emulsoids   at 
slightly  higher  concentrations,   both   indicate  that 
•  rubber,  when  dissolved  in  benzene,  enters  into  com- 
bination with  more  than   100  times   its  weight  of 
.the  solvent.     Solutions  of  rubber   in  benzene  con- 
taining above  1%  of  the  dry  material  are  regarded 
I  as  more  or  less  fluid  jellies.     Maximum  swelling  of 
|  the  rubber  occurs  at  a  concentration  of  about  0"3%. 
Below   this    concentration    the   jelly    probably   dis- 
integrates   in    the    solvent    with   simultaneous   re- 
duction in  the  degree  of  swelling  of  the  rubber. 
The  position  of  maximum  swelling  is  influenced  by 
the  quality  of  the  rubber  and  also  by  the  nature  of 
the  solvent.— D.  F.  T. 

Patents. 

Vulcanisation  of  rubber  employing  amines  and 
open-chain  aldehydes  and  similar  substances  and 
products  obtained  thereby.  S.  M.  Cadwell,  Assr. 
to  Naugatuck  Chemical  Co.  U.S.P.  1,417,970, 
30.5.22.     Appl.,  28.5.21. 

Rubber  is  vulcanised  after  being  mixed  with  a 
vulcanising  agent  and  a  product  obtained  by  the 
interaction  of  an  aliphatic  aldehyde  and  an  amine. 

— D.  F.  T. 

Rubber;  Treatment  of .    TV.  A.  Beatty.    U.S.P. 

1,418,271,  6.6.22.     Appl.,  6.6.18. 

A.  base  for  chewing  gum  is  prepared  from  raw 
rubber  by  treating  the  latter  with  a  solvent  for  the 


nitrogenous  substances  present  therein,  separating 
the  resulting  solution,  and  subjecting  the  residual 


rubber  to  the  action  of  heat  and  an 
remove  volatile  substances. 


inert  gas  to 


Accelerator  [of  vulcanisation].  Vulcanising  rubber 
R,  B.  Xaylor,  Assr.  to  Fisk  Rubber  Co.  U.S.P. 
(a)  1,418,824  and  (b)  1,418,825,  6.6.22.  Appl., 
26.8.  and  21.10.20. 

The  vulcanisation  of  rubber  with  sulphur  is  assisted 
by  (a)  a  condensation  product  of  formaldehvde  and 
p-toluidine  or  (b)  phenylhydrazine. — D.  F.  T. 

Rubber  and  other  like  substances;  Vulcanisation  of 

.      B.    D.    Porritt,    Assr.    to   North   British 

Rubber  Co.  U.S.P.  1,418,166,  30.5.22.  Appl., 
7.3.19. 

See  E.P.  129,798  of  1918;  J.,  1919,  688  a. 

Caoutchouc;  Art  of  vulcanising .    C.  TV.  Bedford 

and  R.  L.  Sibley,  Assrs.  to  Goodyear  Tire  and 
Rubber  Co.  U.S.P.  1,418,771,  6.6.22.  Appl., 
24.11.19. 

See  E.P.  173,545  of  1920;  J.,  1922,  149  a. 

Caoutchouc;  Art  of  vulcanising .  C.  W.  Bedford, 

Assr.  to  Goodvear  Tire  and  Rubber  Co.  U.S.P 
1,418,772,  6.6.22.     Appl.,  24.11.19. 

See  E.P.  130,857  of  1918;  J.,  1919,  731a. 

Caoutchouc  and  caoutchouc-like  prodw.t ;  Manufac- 
ture of  .     P.  Schidrowitz,  Assr.  to  Catalpo, 

Ltd.     U.S.P.  1,418,976,  6.6.22.     Appl.,  19.7.21. 

See  E.P.  170,632  of  1920;  J.,  1921,  898  a. 

Puller,  caoutchouc,  balata,  guttapercha  and 
similar  substances;  Machines  for  washing,  milling, 

macerating,   and   cleaning  .      H.  Berry  and 

Co.,  Ltd.,  and  P.  G.  Bradford.  E.P.  180,831, 
6.4.21. 


Treating  leather  with  rubber. 
XV. 


E.P.  179,969.     See 


XV.-LEATHEfi;   BONE;    HORN;   GLUE. 

Tannins;  The  "  hormone  "  theory  of  the  formation 

of .     W.  Moeller.     Z.  Leder- u.  Gerb.-Chem., 

1921—2,    1,  64—67,  73—80,   107—114,   143—145, 

171—183. 

Sugars  are  capable  of  yielding  polyphenols,  which 
are  vegetable  "  hormones."  The  polyphenols  are 
oxidised  to  the  insoluble  peptising  substances  which 
function  largely  in  the  production  of  leather.  These 
insoluble  tannins  are  present  in  plants  in  the  form 
of  glucosides  and  are  thus  rendered  soluble. 
Humic  acid  contains  a  peptising  system,  and  only 
those  phenols  which  can  pass  through  an  inter- 
mediate quinone  state  can  be  oxidised  to  humio 
acid.  The  evidence  of  other  research  workers  is 
adduced  in  support  of  the  author's  peptisation 
theory.— D.  W. 

Synthetic    tannins;    Properties    of    the    sidphonic 

group  in  77.     TV.   Moeller.      Z.   Leder-  u. 

Gerb.-Chem.,  1921-2,  1,  203—210. 

Various  synthetic  tannins  in  which  the  sulphonie 
group  is  combined  with  bases  such  as  aluminium, 
chromium,  or  iron  do  not  hydrolyse  pelt  to  the 
same  extent  as  does  Neradol,  in  which  the  sul- 
phonie group  is  free;  and  hence  leathers  tanned 
with  these  materials  are  more  resistant  to  the  hot- 
water  test. — D.  TV. 

Lime   liquors   used  in   the   tannery;   Chemistry   of 

.       TV.  R.  Atkin.       J.  Soc.  Leather  Trades 

Chem.,  1922,  6,  200—206. 

The    theories   of    Procter    and    Wilson    (J.,    1916, 


560  a 


Cl.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


[July  31,  1922. 


156,  645)  and  of  Loeb  (J.  Gen.  Physiol.,  1918—1920) 
are  extended  to  the  alkaline  swelling  of  hide  in 
lime  liquors.  "  Sharpening  "  agents,  such  as 
sodium  sulphide  and  sodium  carbonate,  produce 
greater  swelling  because  the  osmotic  pressure  of 
sodium  collagenate  is  greater  than  that  of  calcium 
collagenate  at  the  same  hydrion  concentration. 
The  smooth  grain  of  skins  unhaired  with  arsenic 
sulphide  is  due  to  the  fact  that  only  calcium  colla- 
genate is  formed.  The  addition  of  salt  to  collagen, 
swollen  by  means  of  alkali,  causes  a  repression  of 
swelling  exactly  as  in  the  case  of  pickling.  A  mix- 
ture of  barium  hydroxide  and  sodium  chloride  pro- 
duces more  swelling  than  barium  hydroxide  alone 
because  of  the  interaction  of  the  barium  collagenate 
with  the  sodium  chloride  producing  sodium  colla- 
genate, which  has  a  greater  swelling  effect.  There 
is  no  need  to  remove  all  the  salt  from  salted  hides 
before  liming.  The  swelling  properties  of  lime 
liquors  should  be  determined  by  experiments  on  hide 
powder.  The  swelling  should  be  compared  with  the 
pH  value,  and  graphical  records  preserved  for 
successive  liquors. — D.  W. 

Chrome  tanning;  A  possible  theory  of .     F.  C. 

Thompson   and  W.  R.   Atkin.     J.   Soc.   Leather 

Trades  Chem.,  1922,  6,  207—209. 
The  existence  of  a  negatively  charged  colloidal  com- 
plex in  chrome  tanning  solutions  is  indicated  by  the 
precipitate  obtained  when  chromic  chloride  solu- 
tions are  shaken  with  an  amy!  acetate  solution  of 
benzidine.  Bassett  and  Pauli  have  both  shown  the 
probable  existence  of  negatively  charged  colloidal 
chromium  complexes.  It  seems  possible  that  chrome 
tanning  is  effected  by  a  negatively  charged  anion 
or  colloidal  particle  containing  chromium,  which  is 
produced  from  the  green  form  of  chromium  sulphate. 

— D.  W. 

[Gelatin;]    Belation   between,   hydrolysis    [of]    o?id 

adsorption  [by ].    T'.    W.  Moeller.    Z.  Leder- 

u.  Gerb.-Chem.,  1921-2,  1,  160—165,  183—188. 

Dry  gelatin  powder  was  soaked  in  water  and  vari- 
ous acids  at  TV/10,  ZV/20  and  N  j  100  concentrations 
for  from  1  hr.  to  5  days  and  the  amount  of  dissolved 
gelatin  determined.  The  effect  of  some  of  the  acid 
solutions,  notably  butyric  acid,  was  to  cause  a 
diminution  in  the  amount  of  hydrolysed  gelatin.  In 
most  oases  there  was  a  re-adsorption  of  the  hydro- 
lysed gelatin  after  5  days  in  2V/ 10  solutions  of 
organic  acids,  and  in  IV / 100  solutions  of  lactic  and 
butyric  acids.  These  results  confirm  the  views  of 
Kuhn  (J.,  1922,  111  a)  that  the  swelling  and  hydro- 
lytic  effects  of  mineral  acids  differ  from  those  of 
organic  aoids,  but  they  also  show  that  the  action 
of  acetic  acid  differs  from  that  of  lactic  and  butyric 
acids,  the  latter  being  the  most  suitable  for  tanning 
since  they  provide  the  necessary  swelling  with  the 
least  possible  loss  of  hide  substance. — D.  W. 

{Leather   chemistry ;]   Researches    in    the    proteins 

[connected  with] .    AV.  Moeller.    Z.  Leder-  u. 

Gerb.-Chem.,  1921-2,  1,  188—203. 

Blood  fibrin  as  a  typical  true  protein  is  less  re- 
sistant to  the  action  of  alkalis,  adsorbs  very  little 
vegetable  tannin,  is  much  hydrolysed  by  chrome 
liquors,  and  combines  with  a  large  amount  of 
formaldehyde.  Hide  pelt  which  contains  large 
amounts  of  true  proteins,  e.g.  elastin  and  muscle 
protein,  will  tan  differently  to  pelt  from  which  these 
have  been  removed  by  strong  liming  or  bating. 
True  proteins  readily  adsorb  chromium  compounds, 
and  their  presence  is  disadvantageous  for  chrome- 
tanned  upper  leathers,  as  the  excessive  adsorption 
of  chromium  renders  the  leather  hard  and  brittle. 
The  true  proteins  are  of  value  in  sole  leather,  im- 
parting firmness  and  resilience  to  the  product,  but 
they  should  be  removed  from  pelts  for  vegetable- 
tanned  upper  leathers. — D.  W. 


Leathers;  Resistance  of  different to  the  action 

of  acids.    W.  Moeller.    Z.  Leder-  u.  Gerb.-Chem., 
1921-2,  1,  217—224. 

Hydrochloric  acid  has  the  greatest  destructive 
action  on  leather;  sulphuric  acid  is  less  detrimental, 
and  acetic  acid  has  very  little  effect.  Leathers 
tanned  with  quebracho  and  chestnut  are  equally 
affected  by  the  action  of  acids,  but  leather  tanned 
with  quebracho  extracts  free  from  sulphite  is  much 
less  resistant  towards  acetic  acid.  Sulphuric  acid 
added  during  tannage  up  to  a  certain  concentration 
is  not  absorbed  by  the  pelt,  but  the  same  concen- 
tration of  hydrochloric  acid  causes  considerable 
hydrolysis.  The  addition  of  acetic  acid  during 
the  tanning  process  produces  a  leather  with  a 
greater  resistance  to  water. — D.  W. 

Protein  systems  [aelatin];  Sol-gel  equilibrium  in 
— .  R.  H.  Bogue.  J.  Amer.  Chem.  Soc.,  1922, 
44,  1313—1322. 
Viscosity-plasticity  measurements  made  on  gelatin 
solutions  of  various  concentrations  over  a  tempera- 
ture range,  25° — 60°  C,  with  a  MacMichael  torsional 
viscosimeter,  indicate  that  gelatin  in  aqueous  solu- 
tion follows  the  law  of  viscous  flow  at  the  higher 
temperatures,  whilst  at  lower  temperatures  it 
exhibits  plastic  flow.  The  transition  between  the 
sol  and  gel  form  does  not  take  place  at  any  definite 
temperature,  but  extends  throughout  a  rather  in- 
definite period  of  temperature.  At  a  given  tempera- 
ture the  increase  or  decrease  in  viscosity  with  time 
is  dependent  on  the  hydrogen-ion  concentration,  the 
nature  of  the  inorganic  ions  present,  and  the 
amount  of  hydrolysed  protein  in  the  system.  It  is 
considered  that  the  viscosity  of  pure  gelatin  at  any 
given  hydrogen-ion  concentration  is  inversely  pro- 
portional to  some  function  of  the  temperature. 

— W.  G. 

Elastic  gels  [gelatin];  Structure  of  .      R.  H. 

Bogue.       J.     Amer.     Chem.     Soc,     1922,     44, 
1343—1356. 

The  author  re-states  and  amplifies  his  theory  as  to 
the  catenary  or  fibrillar  structure  of  gelatin-water 
systems  (cf.  J.,  1920,  605  a),  and  in  support  quotes 
results  on  the  influence  of  the  electrolytes,  of  vary- 
ing hydrogen-ion  concentration,  and  of  the  valency 
of  the  combining  ion  on  several  of  the  characteristic 
properties  of  gelatin,  namely,  swelling,  viscosity, 
jelly  consistency,  foam,  turbidity,  and  alcohol  num- 
ber. Smith's  data  on  mutarotation  (J.,  1919, 
228  a)  and  Loeb's  occlusion  theory  (J.  Gen.  Physiol., 
1921,  3,  827;  1921—22,  4,  73,  97^  351)  are  shown  to 
be  in  accord  with  the  author's  theorv.  (Cf.  J.  C.  S., 
Aug.)— W.  G. 

Patents, 
i    Hides;  Process  for  unhairing  — — .     Soc.  Pichard 
Freres.     E.P.  163,294,  22.4.21.     Conv.,  12.5.20. 

Well-dried  hides  are  immersed  in  liquid  air  or 
other  cold  medium  below  -100°  C.  to  render  the 
hairs  brittle,  allowed  to  drain,  and  the  hair  removed 
by  any  suitable  means. — D.  \V. 

Tanning  substances;  Manufacture  of  artificial . 

M.  Melamid.     E.P.  180,353,  26.11.20.     Addn.  to 

163,679  (J.,  1922,  261  a). 
Cresols,  higher  phenols  derived  from  anthracene 
oil,  or  naphthalene,  together  with  sulphuric  acid  in 
sufficient  quantity  to  yield  the  sulphonated  product, 
or  the  sulphonated  products  of  these  substances,  are 
treated  with  acetylene  in  presence  of  mercury  com- 
pounds. The  product  is  dissolved  in  water, 
neutralised  if  necessary,  and  insoluble  mercury 
compounds  are  filtered  off. — D.  W. 

India  rubber;  Process  for  the  treatment  of  leather 

with .    A.  McLennan.   E.P.  179,969,  19.11.20. 

Leather,  afier  treatment  with  a  mixture  of  carbon 


Vol.  XIX,  No.  14.] 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


561a 


bisulphide  or  carbon  tetrachloride  with  acetone, 
ether,  benzene,  paraffin,  or  petrol  and  sulphur,  for 
the  removal  of  grease,  is  buffed  on  the  flesh  side  and 
is  then  soaked  for  24—48  hrs.  in  a  solution  of  rubber 
in  a  mixture  of  ooal  tar  and  petroleum  solvents. 
It  is  then  removed  and  worked  by  hand,  after  which 
ithe  soaking  and  working  are  repeated.  The  leather 
is  afterwards  soaked  in  a  rubber  solution  to  which 
Lit  intervals  are  added  solutions  containing  gutta- 
percha, balata,  gum  mastic  and  dammar,  and  lastly 
a  solution  of  sulphur  chloride. — D.  F.  T. 

'Gelatin  or  similar  material;  Process  and  apparatus 
\    for  producing   uniform   colorations  of   the   exact 
shade  required  on  .     [Preparation  of  photo- 
meter  scales.']      O.    Bornhauser.      G.P.    351,243, 
31.8.20. 

Layers  of  gelatin  or  the  like  impregnated  with  a 
;uitable  precipitant  are  covered  with  an  aqueous 
solution  of  a  material  which  reacts  with  the  precipi- 
:ant  to  form  a  coloured,  transparent  precipitate  in 
'.he  gelatin  layer.  For  example,  gelatin  is  steeped  in 
brnialdehyde  solution  and  then  covered  with  am- 
Inoniacal  silver  solution,  whereby  a  uniform  dark 
irown  precipitate  of  silver  is  formed  in  the  gelatin. 
|[f  permanganates  are  used  as  colouring  agents, 
!;he  gelatin  requires  no  previous  treatment.  Graded 
photometer  scales  are  prepared  by  pressing  a  frame 
separated  into  a  number  of  compartments  by  parti- 
ions  on  to  a  layer  of  gelatin,  and  then  pouring 
different  quantities  of  the  colouring  solution  into 
,'ach  compartment. — L.  A.  C. 


XVI.-SOILS ;  FERTILISERS. 

'alcimn  content  of  some  virgin  and  cultivated  soils 
of  Kentucky;  Comparison  of  the  by  an  im- 
proved method  for  the  estimation  of  this  element. 
0.  M.  Shedd.  Kentuckv  Agr.  Exp.  Stat.  Bull. 
236,  Oct.,  1921,  30.5—330. 

Examination  of  certain  soils  indicates  that  cultiva- 
lon  has  lowered  the  calcium  content  sufficiently  to 
ecessitate  consideration  of  a  possible  deficiency  of 
alcium  as  a  plant  food.  The  best  types  of  soil 
sually  contain  the  largest  amounts  of  calcium, 
hosphorus,  sulphur  and  iron.  Determinations  of 
easily  soluble"  calcium  by  extraction  with  N/5 
itric  acid  and  with  carbonated  water,  indicate  that 
Jie  relative  solubility  of  this  element  varies  con- 
'.derably  in  different  soils.  The  method  of  esti- 
lating  total  calcium  in  soils  has  been  improved. 
Uf.  J.C.S.,  July.)— A.  G.  P. 

oil;  Micro-organism s  concerned  in  the  oxidation  of 

'■  sulpli  ur  in .  777.   Media  used  for  the  isolation 

of  sulphur  bacteria  in  the  soil.  S.  A.  Waksnian. 
;  Soil  Sci.,  1922,  13,  329—336. 

he  classification  of  sulphur-oxidising  organisms 
l  physiological  and  morphological  grounds  is  pre- 
•rred  to  one  determined  by  the  type  of  oxidation 
"  by  the  optimum  reaction  at  which  the  organism 
pts'.  A  review  of  the  literature  and  of  the  media 
;ed  by  various  investigators  is  given. — A.  G.  P. 

ineral  plant  food  [from  soils'];  Removal  of  

by  drainage  waters.  J.  S.  McHargue  and  A.  M. 
Peter.  Kentuckv  Agr.  Exp.  Stat.  Bull.  No.  237, 
Nov.,  1921,  333—362. 

naitses  of  numbers  of  samples  of  water  from 
vers,  streams,  etc.,  are  recorded.  The  largest 
lantities  of  mineral  matter  were  found  in  waters 
om  limestone  areas  and  the  least  in  waters  from 
ndstone  areas,  although  the  latter  contained  more 
itash  than  the  former.  The  phosphate  content  of 
',  ainage  waters  varies  with  the  amount  present  in 
|e  soil.  High  phosphate  contents  were  always  ac- 
mpanied  by  high  nitrate  content.     Waters  con- 


taining most  nitrates  did  not  contain  the  greatest 
quantities  of  mineral  matter.  The  leaching  out  of 
plant  nutrients  by  drainage  waters  can  be  minim- 
ised by  growth  of  clover  crops  on  land  which  would 
normally  be  fallowed. — A.  G.  P. 

Soil;   Effect   of   limes   containing   magnesium  and 

calcium  on  the  chemical  composition  of  the  

and  upon  plant  behaviour.       W.  Mather.       Soil 
Sci.,  1922,  13,  337—354. 

Soils  treated  with  various  types  of  lime  and  lime- 
stone were  cropped  for  a  number  of  years  and 
periodical  examinations  of  the  soils  are*  reported. 
Hydrated  magnesian  and  calcic  limestones  produced 
practically  the  same  crop  yields.  The  effects  of 
magnesium  and  calcium  in  limes  and  limestones  on 
soil  reaction  are  practically  the  same  if  the 
materials  are  applied  in  equivalent  quantities.  In 
limes  both  render  the  aluminium  of  the  soil  rela- 
tively insoluble.  The  calcium: magnesium  ratio  of 
soils  treated  with  magnesian  limestones  was  similar 
to  that  of  unlimed  soils.  Variations  of  this  ratio 
produced  no  apparent  effect  on  plants.  Magnesian 
limestones  tend  to  increase  the  total  nitrogen  con- 
tent of  soils.  Hydrated  lime  and  magnesium  oxide 
did  not  reduce  the  nitrogen  content  of  the  soil  but 
slightly  increased  the  amount  of  organic  matter. 

—A.  G.  P. 

Phosphates  of  aluminium,  iron,  and  calcium;  Com- 
parative agricultural  value  of  insoluble  mineral 

.     J.  S.  Marais.     Soil  Sci.,  1922.   13,  355— 

409. 

Comparison  was  made  of  the  value  of  various 
mineral  phosphates  in  pot-cultures  and  with  various 
crops.  The  phosphates  of  aluminium  and  iron  in 
some  cases  are  superior  to  calcium  phosphate  but 
in  others  are  inferior.  With  all  the  phosphates 
assimilation  is  assisted  by  the  rapid  nitrification  of 
urea.  The  chemically  pure  phosphates  of  the  three 
metals  are  all  equally  available  to  plants,  but  the 
mineral  phosphates  of  aluminium  and  iron  in  the 
form  of  basic  hydrated  phosphates  are  less  available. 
This  can  be  remedied  by  ignition.  Lime  improves 
the  availability  of  pure  and  mineral  aluminium 
phosphates,  is  without  effect  on  iron  phosphates, 
and  tends  to  decrease  the  solubility  of  calcium 
phosphates.  The  effect  on  aluminium  phosphates  is 
explained  by  the  removal  of  aluminium  as  insoluble 
calcium  ahiminate,  and  that  on  calcium  phosphate 
by  a  disturbance  of  the  equilibrium  between  the  tri- 
and  di-phosphates  and  carbonic  acid.  An  alkaline 
soil  solution  tends  to  dissolve  aluminium  phosphate 
and  thus  aids  its  assimilation  by  the  plant.  Inti- 
mate contact  between  the  plant  roots  and  mineral 
phosphates  is  an  important  factor  in  their  assimila- 
tion.—A.  G.  P. 

Phosphates ;  'Regularity  of  the  assimilation  of 

by  plants.      M.  von  Wrangell.      Landw.  Jahrb., 
1922,  57,  1—78.     Chem.  Zentr.,  1922,  93,  I.,  1387. 

The  conception  that  the  assimilation  of  natural 
phosphates  by  plants  is  greater  in  those  plants 
having  a  high  CaO:P2Os  ratio  (c/.  J.,  1921,  54  a)  is 
confirmed.  The  ratio  CaO:P,05  for  any  particular 
plant  varies  with  the  reaction  of  the  soil  in  which 
it  grows.  The  assimilation  of  phosphate  is  lessened 
by  the  presence  of  calcium  salts.  There  is  a  stoichio- 
metric relationship  between  the  amounts  of  lime 
and  phosphoric  acid  taken  up  by  a  particular  plant. 
The  basic  constituent  of  phospbatic  fertilisers  is  im- 
portant. The  utility  of  calcium,  iron,  aluminium, 
and  magnesium  phosphates  varies  with  the  nature 
of  the  plant,  and  the  non-utilisable  constituents 
may  be  harmful.  Thus  cereals  feeding  on  calcium 
phosphate  leave  residues  of  free  lime  and  mustard 
treated  with  magnesium  phosphates  tends  to 
liberate  alkaline  magnesium  oxide. — A.  G.  P. 


562  a 


Cl.  XVII.— SUGARS,  &c.     Cl.  XVIII.— FERMENTATION  INDUSTRIES.       Uuly  31,  192 


Patents. 

Nitrates;    Treatment    of   ,    particularly    those 

used  for  fertiliser  purposes.  R.  G.  Browning 
and  H.  G.  T.  Boorman.  E.P.  180,180,  27.4.21. 
The  hygroscopicity  of  commercial  calcium  and 
sodium' nitrates  is  largely  prevented  by  the  admix- 
ture of  a  non-deliquescent,  non-hygroscopic  base, 
e  g.,  carbonates  of  sodium,  calcium,  magnesium, 
etc.— A.  G.  P. 

Suit  mixture  for  a  forced  growing  of  potatoes  and 
method  for  its  manufacture.  J.  Husson. 
U.S.P.  1,417,248,  23.5.22.  Appl.,  28.12.20. 
Sand  is  mixed  with  fertilisers  containing  nitrogen, 
phosphorus,  and  potash  in  the  proportions  2 — 3% 
of  nitrogen,  3-— 4%  of  water-soluble  phosphoric  acid, 
and  1—2%  of  potash.— A.  G.  P. 

Potassium  compounds ;  Treatment  of  leucitic  rocks 

for    the    purpose    of   rendering    available. 

G.  A.  Blanc  and  F.  Jourdan.     U.S.P.  1,418,356, 
6.6.22.     Appl.,  21.10.20. 

The  rock  i9  calcined,  reduced  to  an  impalpable 
powder,   and  tireated  with  an  organic  acid. 

—A.  G.  P. 

Fertilisers  containing  phosphoric  acid  and  potash; 

Process  for  the  production  of  - .       T.  Haege. 

E.P.  180,027,  15.2.21. 

See  U.S.P.  1,411,696  of  1922;  J.,  1922,  385  a. 

Insecticides.  U.S.P.  1,417,232  and  1,418,848.  See 
XIXb. 

XVII.-SUGARS  ;    STARCHES;  GUMS. 

Beet  juices  treated  with  magnesium  bicarbonate; 

Simultaneous   saturation   applied   to   .        K. 

Andrlik  and  W.  Kohn.      Z.   Zuckerind.   Czeeho- 
slov.,  1922,  46,  404—410,  411—415. 

Beet  juices,,  syrups,  and  molasses  were  treated  in 
the  laboratory  with  sufficient  lime  to  impart  an 
alkalinity  of  about  0T  %,  filtered,  mixed  with  a  solu- 
tion of  magnesium  bicarbonate,  and  submitted  to 
the  process  of  simultaneous  saturation  previously 
described  (Urban,  J.,  1922,  428  a).  A  considerable 
diminution  of  the  colour  and  an  appreciable  in- 
crease in  the  purity  of  the  product  thus  clarified 
resulted.  Magnesium  bicarbonate  was  prepared 
for  this  purpose  from  dolomitic  lime  by  dissolving 
out  the  calcium  hydroxide  with  a  solution  of 
sucrose  and  carbonating  the  residue. — J.  P.  O. 

[Beei]  juice;  Distillation  of  ammonia  from  limed 
and  carbonated and  its  influence  on  the  com- 
position of  this  juice.  W.  Kohn.  Z.  Zuckerind. 
Czechoslov.,  1922,  46,  431^38. 

In  laboratory  experiments  limed  beet  juice  when 
distilled  in  an  apparatus  provided  with  a  dephlcg- 
mator  yielded  only  001  and  0016%  NH3  when  the 
volume  of  the  distillates  was  6  and  14%  respectively. 
Juice  which  had  been  both  limed  and  carbonated 
yielded  0008  and  0'012%  respectively.  Generally 
juice  which  had  been  thus  distilled  was  lower  in 
purity,  darker  in  colour,  and  higher  in  calcium  con- 
tent than  that  obtained  according  to  the  ordinary 
routine. — J.  P.  O. 

Lactose;   Action   of   ozone    on   solutions    of  . 

0.   W.   Schonebaum.       Rec.   Trav.   Chim.,   1922, 
41,  422—424. 

Ozone  of  low  concentration  does  not  decompose 
neutral  or  acid  solution  of  lactose,  even  when 
ozonisation  proceeds  for  3  hrs.  at  70°  C.  In  alkaline 
solution  the  ultimate  products  are  carbon  dioxide 
and  water,  formic  acid  occurring  as  an  intermediate 
product.— H.  J.  E. 


Patents. 

Adhesive;  Manufacture  of  an  from  potato- 
starch.  A.  G.  Bloxam.  From  J.  Kantorowicz. 
E.P.  179,765,  23.3.21. 

Potato  flour  is  treated,  without  making  a  milky 
mixture,  and  in  a  medium  containing  no  caustic 
alkali,  with  a  peroxide  or  per-salt  having  an 
alkaline  reaction,  or  with  a  neutral  peroxide  or  per- 
salt  in  an  alkaline  medium.  The  proportions  are 
such  that  complete  transformation  into  soluble 
starch  is  avoided,  e.g.,  100  kg.  of  flour  is  mixed  with 
2'5  kg.  of  ammonium  persulphate  and  1  kg.  of 
ammonia  solution  (22°  B.).  After  standing  for  at 
least  1  day,  the  product  gives,  when  mixed  with  ten 
times  its  weight  of  water,  a  paste  approximately 
equal  in  viscosity  and  softness  to  wheat  starch 
paste. — A.  G.  P. 

Dextrin   substitute;  Process  for  the  production  of 

a  from  extracted  beet  residues.     F.   Sichel, 

Chem.   Fabr.    "  Liminer,"    and   E.    Stern.     G.P. 
351,002,  10.4.19. 

Extracted  beet  slices  are  systematically  leached 
with  water  at  70° — 100°  C.  Leaching  is  6topped 
when  the  slices  begin  to  pulp.  Solutions  thus 
obtained  are  easier  to  work  up  than  those  from  the 
acid  and  pressure  processes,  and  the  residues  are 
of  value  as  a  cattle  food. — A.  G.  P. 

Edible  product  obtained  from  the  sugar  juices  of 
beets  and  process  of  obtaining  it.  P.  Kcstncr. 
U.S.P.  1,419,057,  6.6.22.     Appl.,  30.6.20. 

See  E.P.  135,235  of  1918;  J.,  1920,  76  a. 


XVIII— FERMENTATION  INDUSTRIES. 

Zymase;  Problem  of  the  formation  of  - in  yeast. 

F.  Havduck  and  H.  Haehn.  Woch.  Brau.,  1922, 
39,  97—100.  105—107,  110—113,  118—119,  122— 
123,  128—130. 

The  authors  discuss  the  different  theories  which 
have  been  advanced  to  explain  why  certain  yeasts 
capable  of  inducing  active  fermentation,  such  as 
those  produced  by  the  aeration  process,  are  quite 
unsuitable  for  the  preparation  of  active  zymase  or 
permanent  yeast,  the  yeasts  employed  in  Buchner'e 
work  being  almost  exclusively  of  the  bottom  fer- 
menting brewery  type.  The  experimental  results 
obtained  support  the  view  that  zymase  exists  in  the 
yeast  cell  both  in  the  free  state  and  also  in  com- 
bination with  the  protoplasm  as  so-called  plasma 
zymase,  the  zymase  being  largely  in  the  uncom- 
bined  condition  in  bottom  brewery  yeasts,  but  almost 
entirely  combined  in  the  yeast  prepared  by  the 
aeration  process.  At  the  present  time,  however, 
many  of  the  brewery  yeasts  in  use  in  Germany  are 
practically  devoid  of  free  zymase,  the  amount  of  the 
latter  formed  being  apparently  small  owing  to  the 
deficient  nutrition  of  the  yea6t  resulting  from  the 
prevailing  economic  conditions;  further,  this  small 
amount  of  enzyme  and  also  the  corresponding  co- 
enzyme are  destroyed  by  the  action  of  the  endo- 
tryptase  and  lipase  respectively.  By  prevention  of 
the  action  of  the  endotryptase  during  the  macera- 
tion of  the  yeast  by  suitable  alteration  of  the 
hydrogen-ion  concentration,  an  extract  is  obtained 
which  brings  about  active  fermentation  of  sucrose  in 
presence  of  added  co-enzyme.  On  the  other  hand  ex- 
periments made  with  yeast  rendered  permanent  by 
treatment  with  acetone  or  by  Lebedew's  method 
show  that  German  bottom-fermentation  brewery 
yeasts  yield  amounts  of  free  zymase  similar  to  those 
observed  under  pre-war  conditions.  As  regards  the 
influence  of  toluene  in  restricting  fermentation  by 
living  yeast  cells,  the  results  obtained  support  the 
view  that  a  protecting  layer  of  emulsion  is  formed, 


Vol.  XLI.,  No.  14.] 


Cl.  XIXa.— FOODS. 


563  a 


this  preventing  access  of  the  sugar  to  the  zymase. 
The  authors  have  carried  out  a  number  of  series  of 
experiments  with  the  Torula  largely  grown  in  Ger- 
many during  the  war  for  use  as  fodder  and  known 
as  "  mineral  yeast."  This  organism  is  poor  in 
zymase  but  rich  in  catalase,  whereas  with  brewery 
yeast  the  reverse  is  the  case.  If,  however,  the 
torula  is  grown,  in  absence  of  air,  in  molasses  solu- 
tion containing  nutrient  salts,  its  content  of  zymase 
is  considerably  increased  and  that  of  catalase 
markedly  decreased,  but  no  relation  can  be  traced 
between  the  fermentative  power  and  the  proportion 
of  nitrogen  present  in  the  organism.  When  re- 
peatedly grown  under  anaerobic  conditions,  the  cells 
of  the  torula  assume  a  more  spherical  shape  than 
they  originally  possess,  but  they  continue  to  exhibit 
the  high  content  of  free  nucleic  acids  characteristic 
of  true  torulse ;  at  the  same  time  the  baking  value 
becomes  at  least  equal  to  that  of  commercial  yeast 
prepared  by  the  aeration  process,  although  the  yield 
is  decidedly  less  than  that  obtained  with  aeration. 
Close  parallelism  exists  between  the  formation  of 
zymase  and  that  of  nucleic  acids  in  this  organism, 
and  a  good  idea  of  the  fermentative  activity  may 
be  obtained  by  the  extent  of  the  green  spots  formed 
when  the  cells  are  fixed  by  heating  and  then  treated 
successively  with  Carbol-Methylene  Blue,  water,  and 
diaminophenylacridine.— T.  H.  P. 

Yeast ;  Capacity  of to  decompose  acid  amides. 

W.  Dieter.     Z.  physiol.   Chem.,  1922,  120,  281— 

291. 
Experiments  with  a  top-fermentation  pure  culture 
yeast  show  that,  when  the  conditions  are  such  that 
the  yeast  ferments  but  does  not  grow,  it  does  not 
remove  the  amide  nitrogen  from  asparagine  and 
other  acid  amides. — S.  S.  Z. 

Determining  sugars  by  fermentation.     Costantino. 
See  XVII. 

Yeast  nucleic  acid.    Steudel  and  Peiser.    See  XX. 


Patents. 


R.  Gilmour.     E.P. 


Yeast:  Manufacture  of  

180,043,   17.   and  23.2.21. 

Diluted  molasses  is  acidified  and  boiled  with  bone 
charcoal  and  clarified  by  the  addition  of  malt  comb- 
ings or  other  albuminoid  material,  and  filtered. 
Suitable  yeast  foods,  e.g.,  ammonium  salts,  phos- 
phates, etc.  are  added  to  the  mixture,  which  is 
neutralised,  if  necessary,  with  ammonia.  After 
filtration  the  liquor  is  seeded  with  yeast  and  allowed 
to  ferment.  Neutrality  is  maintained  by  periodic 
additions  of  potassium,  calcium,  or  magnesium 
carbonates.  Towards  the  end  of  the  fermentation 
lactic  acid  is  added.  After  a  further  few  hours  the 
yeast  is  separated  and  pressed.  The  initial  treat- 
ment with  bone  charcoal  and  with  malt  combings 
may  be  carried  out  in  two  separate  stages. — A.  G.  P. 

Colouring  matter  for  beer;  Process  of  manufactur- 
ing a .     H.  Liiers.     U.S. P.  1,418,945,  6.6.22. 

Appl.,   18.2.21. 

See  G.P.  347,891    of  1919 ;  J.,  1922,  431  a. 
Leavening   bacteria.     G.P.   350,874.     See   XIXa. 

Hygienic  food.     U.S.P.  1,417,412.     See  XX. 


XIXa.-F00DS. 

Fat  obtained  from  the  milk  of  Egyptian  aoats.     A. 
Azadian.     Bull.  Soc.  Chim.  Beig.,  1922,  31,  171. 

In  order  to  fix  a  standard,  104  samples  were  ex- 
amined. The  maximum,  minimum,  and  mean 
values  were  :  for  total  solids,  16-55,  1065,  12'54;  for 


fat,  7-35,  2-45,  4-04;  and  for  solids-not-fat,  995, 
7  6,  and  8'50%  respectively.  Six  samples  of  goats' 
milk  butter  were  also  examined  and  the  detailed 
results  are  given. — H.  J.  E. 

Potato  flour ;  Estimation  of  moisture  in .    E.  H. 

Vogelenzang.        Chem.      Weekblad,      1922,      19, 
251—253. 

Though  this  determination  is  of  considerable  com- 
mercial importance,  the  methods  usually  employed 
for  it  are  unsatisfactory,  and  lead  to  inaccurate  and 
varying  results.  It  is  desirable  that  a  standard 
method  should  be  adopted ;  drying  should  not  be 
carried  out  in  the  air,  unless  specially  dried  air  is 
used,  and  precautions  should  be  taken  to  prevent 
the  dried  flour  taking  up  moisture  whilst  cooling 
in    the   desiccator,    since    it    is    very   hygroscopic. 

— S.  I.  L. 

Vitamins;    The    testing    of    foodstuffs    for    . 

J.   C.  Drummond  and  A.  F.   Watson.     Analyst, 
1922,  47,  235—246. 

Details  are  given  of  the  method  of  carrying  out 
physiological  tests  on  rats  for  the  presence  of  the 
three  vitamins  in  foodstuffs.  Young,  healthy  rats 
of  not  more  than  50  g.  body-weight  are  fed  on  a 
ration  of  purified  foodstuffs  from  which  all  traces 
of  the  vitamin  to  be  tested  for  have  been  removed. 
These  rations  are  specified  for  each  of  the  three 
vitamins.  When  the  rats  have  shown  no  further 
increment  of  weight  for  14  days,  the  substance  to 
be  tested  is  administered  in  a  daily  ration  of 
known  weight.  A  curve  is  given,  showing  the  6harp 
recovery  which  follows  the  administration  of 
005  g.  daily  of  cod-liver  oil,  and  a  series  of  curves 
showing  the  loss  of  growth-promoting  power  in  a 
sample  of  coal-fish  liver  oil  during  aeration  at 
100°  C.  The  method  has  been  used  to  show  that 
samples  of  butter  vary  very  considerably  in  the 
amount  of  vitamin  they  contain.  Oleo  oil  also 
shows  marked  variations,  which  appear  to  be 
seasonal  and  dependent  on  the  state  of  the  pas- 
turage. The  amount  of  vitamin  B  in  milk  depends 
entirely  on  the  food  of  the  cow.  Many  commercial 
yeast  extracts  are  almost  the  richest  sources  of  this 
vitamin  available  as  foodstuffs.  The  monkey  is 
the  best  animal  for  testing  for  vitamin  C,  but  the 
guinea-pig  is  generally  used.  Testing  is  rendered 
more  difficult  by  the  fact  that  the  guinea-pig  is 
entirely  herbivorous.  The  potency  of  the  food 
supplement  added  is  judged  from  the  "  dosage  " 
necessary  to  prevent  the  onset  of,  or  to  cure  estab- 
lished 6curvy.  The  antiscorbutic  value  of  milk  is 
dependent  on  the  diet  of  the  animals.  Lemon-juice 
possesses  a  very  much  higher  antiscorbutic  potency 
than  lime  juice.— H.  C.  R. 

Vitamins.  S.  Frankel.  Pharm.  Monatsh.,  1922, 
3,  17—18.  Chem.  Zentr.,  1922,  93,  II.,  1225— 
1226. 
The  action  of  substances  rich  in  vitamins  in 
accelerating  the  rate  of  yeast  fermentation  was 
determined.  The  amount  of  carbon  dioxide 
liberated  in  a  given  period  of  time  was  propor- 
tional to  the  vitamin  content.  The  vitamin  was 
prepared  as  follows :  The  material  was  exhausted 
with  nearly  boiling  90%  alcohol,  and  then  heated 
with  water.  The  aqueous  extract  was  concentrated 
in  vacuo,  alcohol  was  added,  and,  after  filtering, 
the  alcoholic  filtrate  was  added  to  the  initial 
alcoholic  extract.  The  whole  was  concentrated  and 
extracted  with  ether  to  remove  fats  etc.  The 
residual  liquor  was  treated  with  basic  lead 
acetate,  filtered,  and  excess  of  lead  was  removed 
with  hydrogen  sulphide.  The  purified  solution 
contained  unaltered  vitamin,  and  was  further 
treated  with  mercuric  chloride,  excess  of  which  was 
I  removed  with  hydrogen  sulphide,  and  the  hydro- 
chloric   acid   removed   with   lead   and   with  silver. 


564  a 


Cl.  XIXa.— FOODS. 


[July  31,  1922. 


Other  inactive  material  was  removed  with  picro- 
lonic  acid,  and  finally  the  active  suhstance  was 
precipitated  with  phosphotungstic  acid;  99"8%  of 
the  inactive  substances  was  thus  removed.  Most 
animal  organs  were  poor  in  vitamins;  more  was 
found  in  the  nerve-system,  and  most  in  the  grey 
outer  layer  of  the  cerebellum.  Among  plant  foods 
leeks  showed  the  greatest  activity.  Roasted  coffee 
is  considerably  more  active  than  unroasted.  The 
acceleration  of  fermentation  by  these  substances 
was  apparent  with  yeast  juice  as  well  as  with  the 
yeast  itself.  Choline  and  /3-amino  ethyl  alcohol 
retarded  fermentation.  Vitamins  have  basic 
characteristics.  The  accelerating  action  of 
vitamins  on  the  action  of  extra-cellular  enzymes 
such  as  pepsin,  trypsin,  diastase,  and  catalase 
was  very  small. — A.  G.  P. 

\'itamins;  Distribution  of  fat-soluble  ■ in  marine 

animals  and  plants.     J.  Hjort.     Proc.  Roy.  Soc, 
1922,  B  93,  440—449. 

Rats  which  had  been  previously  kept  on  a  diet 
deficient  in  fat-soluble  vitamin  showed  a  marked  in- 
crease in  growth  on  administration  of  dried  green 
algse  and  dried  cod's  roe,  also  of  extracts  of  these 
substances  prepared  with  fat-solvents.  It  is  sug- 
gested that  the  fat-soluble  vitamins  in  the  sea 
originate  in  plants  and  that  their  distribution  may 
have  important  bearings  on  the  periodicity  in  the 
growth  of  fishes. — C.  R.  H. 

Carbohydrate  content  of  navy  beans.  M.  Eichel- 
berger.  J.  Amer.  Chem.  Soc,  1922,  44,  1407— 
1408. 
The  author  draws  attention  to  results  obtained  by 
herself  in  1919  which  are  in  fairly  close  accord  with 
those  of  Peterson  and  Churchill  (J.,  1921,  525  a) 
on  the  composition  of  navy  beans  (Fliascolus  vul- 
garis). — W.  6. 

Protamines.    R.  E.  Gross.    Z.  physiol.  Chem.,  1922, 
120,  167—184. 

When  clupeine  is  heated  for  80  mins.  with  4%  (by 
vol.)  sulphuric  acid  at  160°  C.  it  loses  the  property 
of  giving  the  biuret  reaction.  The  hydrolysed  pro- 
duct contains  arginine,  monoamino  acids,  and  a 
compound  similar  to  a  dipeptide  consisting  of  a 
combination  of  at  least  two  molecules  of  arginine. 
By  precipitating  with  phosphotungstic  acid  in 
alcoholic  solution  it  is  possible  to  separate  free 
arginine  from  the  arginine  peptide.  The  authors 
confirm  Nelson  and  Gerhardt's  observations  that  in 
clupeine  the  monoamino  acids  are  linked  together. 

— S.  S.  Z. 

Saponins   [in  lemonade   etc.];   Differentiation  and 

quantitative  determination  of  .     L.  Kofler. 

Z.  Unters.  Nahr.  Genussm.,  1922,  43,  278—287. 

By  employing  the  usual  methods  it  is  impossible  to 
determine  the  identity  of  a  saponin  when  it  is  not 
available  in  the  pure  state  or  must  be  isolated  from 
a  substance  such  as  lemonade.  In  addition  to  the 
hasmolytic  action  of  saponins  the  author  makes 
use  of  their  foaming  power,  the  "foam  number" 
being  obtained  by  shaking  10  c.c.  of  a  series  of 
solutions  of  the  saponin  of  different  concentrations 
in  test  tubes  16.  mm.  wide  for  15  sees.  The  foam 
number  is  given  by  the  dilution  in  that  tube  in 
which  the  foam  stands  1  cm.  higb  after  15  mins. 
The  hsemolytic  index  is  determined  in  the  usual 
way.  If  the  hemolytic  index  is  divided  by  the 
foam  number  a  quotient  is  obtained  which  is 
independent  of  the  state  of  purity  of  the  saponin. 
This  quotient  varies  very  markedly  in  the  case  of 
the  six  different  saponins  investigated,  and  has  a 
characteristic  value  for  each  of  them  varying  from 
zero  in  the  case  of  glycyrrhizin  to  10  in  the  case  of 
Merck's     digitonin.       By     this     means     saponins 


separated  from  artificial  lemonades  by  methods  of 
Brunner  and  Ruble  (J.,  1908,  954;  Z.  Unters.  Nahr 
Genussm.,  1912,  23,  566;  1914,  27,  192)  can  be  readily 
identified  and  quantitatively  determined  by  com- 
paring the  hamiolytic  index  and  foam  value 
obtained  with  those  tabulated  for  the  saponin  in 
question.  It  should  be  possible  to  specify  a  maxi- 
mum value  for  the  "  poison /foam  "  quotient,  which 
should  not  be  exceeded  by  saponins  used  in  food- 
stuffs.   The  figure  1  or  0'5  is  suggested. — H.  C.  R. 

Synthetic  sweetening  agents.    Beyer.    See  XX. 

Patents. 

Food  products;  Manufacture   of  from  meatt 

and  vegetable  substances.     W.  and  C.  O.  Spear 
E.P.  179,705,  21.2.21. 

Meats,  vegetables,  etc.,  are  cleaned  with  warm 
water  with  or  without  antiseptics,  pulped,  dried, 
and  if  necessary  smoked  by  the  means  described  in 
E.P.  166,698  (J.,  1921,  673  a).— A.  G.  P. 

Casein  products;  Production  of .     H.  V.  Dun- 
ham.   E.P.  180,018,  12.2.21. 

An  alkali  casein  solution  is  treated  with  sufficient 
acid  material  containing  citric  acid  to  render  the 
liquid  acid  to  litmus  and  produce  a  suspension  of 
finely  divided  or  deflocculated  casein,  the  operation 
being  conducted  at  a  temperature  which  is  higher 
or  lower  according  to  the  higher  or  lower  concen- 
tration of  the  solutions  used.  The  product  is  dried 
for  use  as  a  substitute  for  skim-milk  powder.  The 
dried  product  produces  with  water  a  colloidal  sus- 
pension of  casein  free  from  substantial  quantities  of 
fatty  material. — H.  H. 

Meat,   fish,   and  like   edible   substances;   Treating 

for  curing  and  like  purposes.    P.  C.  Rushen. 

From   International  Meat  Smoking  Corp.     E.P. 
180,497,  2.4.21. 

The  meat  etc.  is  electrified,  and  while  in  that  con- 
dition is  subjected  to  the  action  of  a  gas  or  smoke. 
A  pulsating  direct  current  of  a  voltage  sufficient  to 
produce  8-in.  sparks  in  air  may  be  used.  The  meat 
may  be  suspended  within  the  treating  chamber 
from  one  electrode  between  two  electrodes  of  the 
opposite  polarity,  or  may  be  suspended  from  con- 
veyor chains  which  are  connected  with  one  elec- 
trode and  move  through  the  chamber  between 
electrodes  of  the  opposite  polarity. — H.  H. 

Food  substances;  licducing  semi-fluid  to  dry 

powdered  form.  J.  C.  MacLachlan.  U.S. P. 
1,417,083,  23.5.22.  Appl.,  9.4.21. 
Cooked  oatmeal,  in  a  6emi-fluid  condition,  is  dis- 
charged centrifugally  into  a  chamber  and  meets 
blasts  of  hot  dry  steam  and  heated  air.  The 
product  is  a  dry,  coarse  powder. — A.  G.  1'. 

Edible  product  and  process  of  making  same.      C. 
Ellis.    U.S. P.  1,417,893,  30.5.22.     Appl.,  16.12.18. 

A  composition  comprising  medicinal  petroleum  oil, 
hydrogenated  oil,  butyric  glyceride,  and  water,  and 
having  a  consistency  from  that  of  butter-fat  to  that 
of  lard.— H.  H. 

Evaporating  pan   [for  mill:   etc.'].     C.   E.  Rogers. 

U.S. P.  1,117,943,  30.5.22.  Appl.,  25.1.19. 
The  pan  is  fitted  with  a  series  of  superposed  steam 
heating  units,  each  independently  connected  with 
the  steam  main.  Each  unit  is  in  the  form  of  an 
inner  and  an  outer  coil  connected  together  at 
adjacent  ends  with  a  common  inlet  and  a  common 
outlet.  The  spaces  between  the  coil  ends  of  ad- 
jacent  units  are  on  opposite  sides  of  the  pan. 

— H.  H. 


Yol.XLI.,No.«.]      Cl.  XIXb.—  WATER  PURIFICATION,  &c.     Cl.  XX.— ORGANIC  PRODUCTS,  &o.    565  a 


Bacteria  capable  of  forming  lactic  and  acetic  acids; 
Process  of  producing  and  utilising  pure  cultures 

of  leavening  .     E.   Beccard.     G.P.   350,874, 

21.2.20. 

Aqueous  extracts  of  flour,  after  sterilisation  by  a 
cold  process,  are  added  at  the  lowest  possible  tem- 
perature to  a  concentrated  solution  of  gelatin  or 
agar,  so  that  the  solution  solidifies  in  the  cold.  The 
leavening  bacteria,  isolated  by  means  of  cultures  on 
the  nutrient  medium  prepared  as  described,  aro 
added  together  with  yeast  to  dough. — L.  A.   C. 

Mineral    waters    and    beverages;    Preparation    of 

artificial   containing    silicic    acid.      Lecin- 

werk  E.  Laves.     G.P.  350,247,  9.4.19.     Addn.  to 
337,796  (J.,  1921,  637  a). 

Artificial  mineral  waters  containing  a  higher 
percentage  of  silicic  acid  than  naturally  occurring 
waters  are  prepared  with  the  use  of  stable  solu- 
tions of  colloidal  silicic  acid  prepared  as  described 
in  the  chief  patent.  A  solution  of  an  alkali  silicate 
is  mixed  with  a  solution  containing  an  excess  of 
an  inorganic  or  organic  acid,  with  or  without  the 
addition  of  compounds  which  evolve  carbon  di- 
oxide, salts  with  a  therapeutic  action,  vegetable 
extracts,  flavouring  essences,  and  sweetening 
agents.  The  constituents  of  the  two  solutions  may 
be  prepared  beforehand  in  the  form  of  powders, 
granules,  or  tablets. — L.   A.   C. 

Flour  and  grits  from  cereals;  Method  of  sterilising 

whilst    at    the    same    time    improving    the 

baking  quality.    K.  Dienst.    E.P.  180,496,  2.4.21. 

See  G.P.  335,406  of  1917;  J.,  1922,  30  a. 

Organic   matters  and  particularly  meat  and  fish; 
Process    for    preserving    in    the    fresh    condition 

.    L.  A.  C.  Cholet.    U.S.P.  1,418,233,  30.5.22. 

Appl.,  10.1.21. 

See  E.P.  171,637  of  1921;  J.,  1922,  30  a. 
Hygienic  food.     U.S.P.   1,417,412.     See  XX. 


XIXb.-WATER  PURIFICATION;  SANITATION. 

Formaldehyde;  Lamp  for  producing .  E.Berger. 

Comptes  rend.,  1922,   174,  1471—1474. 

A  modified  form  of  Tollens'  lamp  (J.,  1895,  592) 
is  described,  in  which  two  types  of  catalyst  are 
used,  namely  compressed  lampblack  containing 
20%  of  copper  oxide,  and,  secondly,  silvered 
asbestos  board.  The  heat  from  the  compressed 
catalyst  in  the  first  case  or  from  the  gauze  container 
of  the  catalyst  in  the  second  case  is  used  to  vaporise 
the  methyl  alcohol  as  it  is  brought  up  from  the 
container  by  a  cottonwool  wick.  The  lamp  uses 
about  100  g.  of  methyl  alcohol  per  hour,  and  the 
yield  with  the  first  typo  of  catalyst  is  30%  and 
with  the  second  type  35 — 40%  (in  one  case  a  yield  of 
45%  was  obtained).  The  second  type  of  catalyst 
needs  to  be  heated  to  a  red  heat  in  an  external 
flame  before  use,  but  it  gives  the  best  result,  and 
has  been  adopted  for  use  in  disinfecting  surfaces. 

— W.  G. 

Patents. 

Water  purifiers.     J.  B.  Gail  and  N.  Adam.     E.P. 
180,420,  21.2.21. 

An  automatic  apparatus  for  clarifying  water  by 
treatment  with  lime  water  and  another  reagent, 
e.g.,  sodium  carbonate.  Lime  water  is  added 
mechanically  in  controlled  amounts  to  the  main 
flow.  Means  are  provided  for  thorough  mixing  of 
the  reagents  with  the  water  before  filtering. 

—A.  G.  P. 


Water;  Process  of  purifying  and  decolorising  . 

M.  P.  Newman,  Assr.  to  W.  B.  Scaife  and  Sons 
Co.  U.S.P.  1,418,013,  30.5.22.  Appl.,  5.9.19. 
Water  contaminated  with  soil  acids,  vegetable 
extracts,  etc.,  is  clarified  and  decolorised  by  treat- 
ing it  successively  with  an  alkali  in  association 
with  a  bleaching  agent,  a  coagulant,  and  a  reagent 
for  removing  excess  of  bleaching  agent. — H.  H. 

Sewage  and  the  like;  Treatment  of  .  Treat- 
ment of  sewage,  water  and  the  like.  H.  Daw. 
E.P.  (a)  179,896  and  (a)  180,272,  17.1.21. 
(a)  Sewaoe  etc.  is  aerated  by  aUowing  it  to  fall 
through  the  air,  a  portion  being  withdrawn  for  this 
purpose  from  the  sewage  on  its  way  from  the 
storage  chamber  to  the  sedimentation  chamber  and 
allowed  to  fall  as  fine  spray  back  into  the  storage 
chamber,  (b)  A  sewage  treatment  plant  consists 
of  a  sedimentation  chamber  and  a  sludge  chamber, 
the  former  being  at  a  higher  level  than  the  latter 
and  provided  with  passages  to  the  latter  at  the 
lowest  point  of  its  sloping  side.  The  sedimentation 
chamber  has  also  longitudinal  baffles  for  assisting 
in  settling  and  directing  any  gas  that  may  be 
evolved  to  the  open  air. — B.  M.  V. 

Hydrocyanic    acid;    Method    of    generating    

[for  fumigating].  Deutsche  Gold-  und  Silber- 
Scheideanstalt  vorm.  Roessler,  and  O.  Lieb- 
knecht.  E.P.  180,118,  15.3.21. 
Alkali  cyanides  are  mixed  with  partially  dehydrated 
salts  of  metals  forming  unstable  cyanides,  e.g., 
magnesium  or  aluminium  sulphates.  The  heat 
necessary  to  drive  off  hydrocyanic  acid  from  the 
moistened  mixture  is  supplied  by  the  heat  of 
hydration  of  the  salts  themselves  or  of  other  salts 
added  for  that  purpose. — A.  G.  P. 

Insecticides;  Method  of  making .    H.  H.  Dow, 

Assr.  to  The  Dow  Chemical  Co.    U.S.P.  1,417,232, 
23.5.22.     Appl.,  6.2.19.     Renewed  24.10.21. 
A  suitable  lead  compound  is  treated  with  excess  of 
arsenic  acid,  and  the  residual  acid  neutralised  with 
excess  of  an  alkaline-earth  hydroxide. — A.  G.  P. 


of    making    ■ . 

1,418,848,    6.6.22. 


Arsenate    insecticides;    Process 

W.    H.     Swenarton.      U.S.P. 

Appl.,  10.12.19. 
An  alkali  salt  is  mixed  with  sufficient  arsenic  acid  to 
convert  the  major  portion  of  the  salt  into  a  soluble 
arsenate,  and  to  this  mixture  is  added  a  salt  of  a 
metal  forming  an  insoluble  hydroxide.  The  in- 
soluble arsenate  is  filtered  off  and  the  cycle  of 
operations  repeated,  utilising  the  above  filtrate. 

—A.  G.  P. 

Water,  sewage,  or  the  like;  Process  for  automati- 
cally regulating  the  addition  of  a  treating  agent 
to .     J.  S.  Simsohn.     E.P.  180,586,  8.7.21. 

See  U.S.P.  1,388,613  of  1921;  J.,  1921,  788  a. 

XX.-ORGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Yeast  nucleic  acid.    III.    H.  Steudel  and  E.  Peiser. 

Z.  physiol.  Chern.,  1922,  120,  292—295.     (C/.  J., 

1921,  60  a;  1922,  153  a.) 
Guanylic  acid  can  be  obtained  from  yeast  nucleic 
acid  when  the  sodium  salt  of  the  latter  is  treated 
in  alkaline  solution.  The  guanylic  acid  portion  of 
the  molecule  can  in  this  way  be  completely  removed 
if  the  reaction  takes  place  at  ordinary  tempera- 
ture. No  guanylic  acid  is  removed  by  similar 
treatment  at  0°  C— S.  S.  Z. 

Sweetening    agents;    Synthetic    .     O.     Beyer. 

Z.  angew.  Chem.,  1922,  35,  271—272. 
The  methods  given  for  the  quantitative  separation 


566  a 


CL.  XX.— ORGANIC  PRODUCTS ;    MEDICINAL  SUBSTANCES,  &c. 


[July  31,  1922. 


of  o-  and  p-toluenesulphonamide  and  of  saccharin 
and  /i-sulphaminobenzoic  acid  by  the  author  in  his 
book  Kontrolle  und  Herstellung  von  Saccharin 
were  never  put  forward  by  him  as  being  either 
reliable  or  accurate,  but  only  recorded  to  show  on 
what  lines  experiments  had  been  made  by  others. 

— G.  F.  M. 

Vanillin  glyceride.  F.  D.  Dodge.  J.  Amer.  Chem. 
Soc.,  1922,  44,  1405—1407. 

A  crystalline  deposit  formed  in  a  flavouring  mix- 
ture of  alcohol,  glycerol,  and  vanillin  on  standing 
was  shown  to  be  vanillin  glyceride,  m.p.  160° — 
162°  C,  formed  by  the  condensation  of  1  mol.  of 
each  compound.  The  reaction  between  these  two 
compounds  is  much  accelerated  by  the  presence  of 
mineral  acids,  but,  on  the  other  hand,  the  resulting 
glyceride  is  readily  hydrolysed  by  acids. — W.  G. 

Reduction  of  organic  compounds;  Use  of  the  oxides 

of  platinum  for  the  catalytic .     /.     V.  Voor- 

hees  and  R.  Adams.    J.  Amer.  Chem.  Soc,  1922, 
44,  1397—1405. 

When  chloroplatinic  acid  is  fused  with  sodium 
nitrate  at  about  450°  C.  a  brown  oxide  of  platinum 
is  obtained  which  is  an  excellent  catalyst  for  the 
reduction  of  various  types  of  organic  compounds 
(vanillin,  ethyl  methyl  ketone,  phenol,  salicylalde- 
hyde,  nicotinic  acid).  The  speed  of  reduction  with 
this  catalyst  is  greater  than  when  ordinary  platinum 
black  is  used.  The  most  satisfactory  conditions  for 
preparing  this  oxide  in  its  most  active  form  have 
yet  to  be  worked  out. — W.  G. 

Catalysis.  II.  Dehydration  and  addition  re- 
actions of  ethyl  alcohol:  the  formation  of  acetal 
and  mercaptans.  F.  A.  Gilfillan.  J.  Amer. 
Chem.  Soc..  1922,  44,  1323—1333. 

Ethyl  alcohol  vapour  alone  or  in  the  presence  of 
carbon  dioxide  is  not  decomposed  when  passed  over 
pumice  at  500°  C.  Thorium  oxide  does  not  act 
exclusively  as  a  dehydrating  catalyst  for  this 
alcohol,  as,  under  certain  conditions,  a  consider- 
able amount  of  acetaldehyde  is  produced  by 
dehydrogenation.  In  the  presence  of  carbon 
dioxide  a  quantity  of  acetal  is  obtained  with 
thorium  oxide  as  catalyst.  The  oxide  is  in- 
activated as  a  dehydrating  catalyst  if  it  is  strongly 
calcined  or  heated  for  a  long  time  at  a  low  tem- 
perature before  use.  Up  to  about  340°  C.  the  blue 
oxide  of  tungsten  is  a  more  effective  dehydrating 
agent  than  is  thorium  oxide,  but  at  higher  tem- 
peratures the  two  oxides  are  of  practically  equal 
efficiency.  Titanium  oxide  has  no  dehydrating 
action  up  to  355°  C.  In  no  case  was  any  ether 
produced  from  the  alcohol.  Using  any  of  the  three 
metallic  oxides  as  catalysts  at  300° — 400°  C,  a 
mixture  of  absolute  alcohol  and  carbon  bisulphide 
gave  considerable  quantities  of  ethyl  mercaptan, 
titanium  oxide  being  the  most  active  catalyst  for 
this  reaction.  Pure  dry  carbon  bisulphide  is  not 
decomposed  when  vaporised  over  pumice  or  the 
blue  oxide  of  tungsten  at  400°  C,  but  in  the 
presence  of  a  trace  of  moisture  hydrogen  sulphide 
is  obtained. — W.  G. 

Acetone;    Source    of    error    in    the     colorimefric 

detection  of .    A.  Troise.   Ann.  Chim.  Analyt., 

1922,  4,  177—178. 

Istycin  (1.8-dihydroxyanthraquinone)  gives  a 
violet  coloration  with  Lieben's  reagent  (sodium 
nitroprusside  in  acetic  acid  and  ammonia)  similar 
to  that  produced  by  acetone.     {Of.  J.C.S.,  August.) 

—A.  R.  P. 

Iodine  value.     Holde  and  others.     See  XII. 

Saponins.     Kofler.     See  XIXa. 


Patents. 
Aromatic    [hydrjoxyaldehydes    and    their    deriva- 
tives;   Manufacture    of   ■ .      Soc.    Chim.    des 

Usines  du  Rhone.     E.P.  160,705,  24.2.21.    Conv., 
24.3.20. 

Aromatic  hydroxyaldehydes  are  obtained,  in  most 
cases  in  pure  condition  and  in  good  yield,  by  con- 
densing a  phenol  with  an  ester  or  ether  of  the 
hypothetical  methylene  glycol,  CH2(OH)„,  by 
means  of  an  acid  condensing  agent  in  presence  of 
a  nitroso-compound.  Example.  A  mixture  of 
40  pts.  of  guaiacol,  100  pts.  of  methylal,  and  the 
nitrosodimethylaniline  obtained  from  80  pts.  of 
dimethylaniline  is  heated  on  a  water  bath  for  1 — 
2  hrs.  in  500  pts.  of  methyl  alcohol,  whilst  gaseous 
hydrogen  chloride  is  continuously  bubbled  through. 
The  product  is  then  cooled,  diluted  with  water,  and 
freed  from  alcohol  by  steam  distillation.  Vanillin 
is  extracted  from  the  resulting  aqueous  solution 
with  ether  or  benzene.  Instead  of  methylal, 
methylene  chloride,  methylene  diacetato,  or 
methylene  sulphate  may  be  used  with  similar 
results.— G.  F.  M. 

Amino-phenols   or   aromatic  amino-acids;   Produc- 
tion of .     W.  Lewcock,  W.  G.  Adam,  N.  E. 

Siderfin,  and  W.  L.  Galbraith.  E.P.  179,753, 
19.3.21. 
Aminophenols  or  aromatic  amino-acids  may  be 
obtained  by  the  reduction  of  nitro-  or  azo-phenols 
or  aromatic  acids  with  hydrogen  sulphide  in 
presence  of  an  alkali  carbonate.  The  compound  to 
be  reduced  may  be  dissolved  wholly  or  in  part  in 
a  solution  of  the  alkali  carbonate,  or  the  latter 
may  be  added  to  an  already  prepared  solution  of 
the  alkali  phenoxide  or  salt.  The  hydrogen 
sulphide  need  not  be  pure,  but  may  be  employed, 
for  example,  in  the  form  of  the  waste  gases  from 
the  ammonia  scrubbers  of  gasworks,  containing 
only  about  15%  H,S  and  a  large  proportion  of 
carbon  dioxide.  Example.  50  pts.  of  benzeneazo- 
salicylic  acid  is  added  to  44  pts.  of  sodium  carbon- 
ate dissolved  in  ten  times  its  weight  of  water,  and 
the  mixture  is  treated  in  a  still  at  about  100°  C. 
with  a  waste  gas  until  no  more  hydrogen  sulphide 
is  absorbed  and  no  more  aniline  passes  over.  The 
solution  is  allowed  to  cool  in  an  atmosphere  of  the 
gas,  and  sulphur  and  aminosalicylic  acid  are 
fractionally  precipitated  bv  the  cautious  addition 
of  acid,     the  yield  is  85— 90%.— G.  F.  M. 

Formaldehyde  or  its  polymers;  Preparation  of 

from  mixtures  of  carbon  monoxide  and  hydrogen. 
E.  J.  Lush.  E.P.  180,016,  12.2.21. 
When  mixtures  of  carbon  monoxide  and  hydrogen 
in  suitable  proportions,  such  as  may  be  obtained 
by  the  purification  of  "  suction  "  or  water-gas,  arc 
passed  rapidly  over  catalysts  prepared  preferably 
from  a  mixture  of  4  pts.  of  nickel,  1  pt.  of  copper, 
and  5  pts.  of  alumina,  large  quantities  of 
formaldehyde  or  its  polymerisation  products  are 
formed,  and  the  residual  gas  consists  mainly  of 
methane  and  hydrogen.  The  gas  is  preferably 
forced  through  the  catalvst  at  an  initial  tempera- 
ture of  300°— 400°  C.  and  under  10  atm.  pressure, 
and  as  rapidly  as  will  ensure  that  the  temperature 
does  not  fall  below  160°— 180°  C.  on  leaving  the 
catalyst.  To  promote  rapid  cooling  thereafter  the 
high-pressure  gas  is  allowed  to  issue  from  a  small 
constriction  and  is  then  led  into  water  scrubbers 
to  remove  the  formaldehyde.  In  order  to  restore 
the  activity  of  the  catalyst,  steam  is  blown  through 
periodically,  or,  preferably,  is  mixed  with  the 
gaseous  mixture. — G.  F.  M. 

Formaldehyde;  Production  of  from  ethylene. 

R.  Willstatter.     G.P.  350,922,  9.4.18. 
A  mixture  of  ethylene  and  a  large  excess  of  oxygen 


Vol.  XLI., No.  14.1    Cl.  XXL— PHOTOGRAPHIC  MATERIALS,  &o.     Cl.  XXII.— EXPLOSIVES,  &a.      567  a 


over  that  required  to  oxidise  the  ethylene  to 
formaldehyde,  maintained  under  reduced  pres- 
sure and  /or  mixed  with  an  inactive  gas  as 
diluent,  is  heated  for  a  short  time  above  500°  C, 
and  the  formaldehyde  produced  is  rapidly  separ- 
ated from  the  mixed  gases. — L.  A.  C. 

Medicine  and  hygienic  food.  J.  C.  Richard. 
U.S. P.  1,417,412,  23.5.22.     Appl.,  14.3.14. 

Fruit  juice  mixed  with  a  non-toxic  neutralising 
agent  is  subjected  to  lactic  acid  fermentation  with 
B.  bulgaricus. — A.  G.  P. 

Olefines,  etc.;  Process  of  oxidising  - .     C.  Ellis, 

Assr.  to  S.  B.  Hunt.  U.S. P.  1,418,368,  6.6.22. 
Appl.,  17.5.18. 
Ketones  and  fatty  acids  are  obtained  from  the 
acid  extract  of  olefines  from  cracked  petroleum  by 
diluting  the  acid  extract  and  treating  it  with 
dilute  nitric  acid. — T.  A.  S. 

Acetylene;   Method   for   the    chlorination   of  . 

K.   Roka,   Assr.    to   Holzverkohlungs-Ind.    A.-G. 

U.S. P.   1,418,882,   6.6.22.     Appl.,  3.2.22. 
Chlorine  and  acetylene  are  caused  to  interact  at 
high  temperature  with  the  aid  of  steam. — H.  H. 

Iodine-malt   preparations;   Manufacture   of  . 

Gehe  und  Co.  A.-G.  G.P.  348,412,  22.2.21. 
An  aqueous  solution  of  malt  extract  is  evaporated 
in  vacuo  with  such  a  quantity  of  an  alcoholic  solu- 
tion of  iodine  that  the  dry  product  contains  0'1%  I. 
Instead  of  an  alcoholic  solution  of  iodine,  an 
aqueous  solution  of  sodium  iodide  and  iodate 
together  with  hydrochloric  acid  may  be  used.  The 
product,  which  is  of  therapeutic  value,  does  not 
give  a  blue  colour  with  starch  test-paper. 

Butyric   aldehyde;  Manufacture   of  .     D.    A. 

Legg,  Assr.  to  M.  A.  Adam.     U.S.P.  1,418,448, 
6.6.22.     Appl.,  22.11.21. 

Bee  E.P.  173,004  of  1920;  J.,  1922,  197  a. 

Mono-  and  di-/3-[hydr~)oxyethylaminobenzoic  esters; 

Process  for  the  manufacture  of .    J.  Altwegg 

and  J.  Landrivon,  Assrs.  to  Soc.  Chim.  Usines  du 
Rhone.    U.S.P.  1,418,900,  6.6.22.    Appl.,  13.6.19. 

See  E.P.  128,552  of  1919;  J.,  1920,  280  a. 

[Eydr]oxyaldehydes;  Process  for  the  manufacture 

of  aromatic .    F.  Bidaud,  Assr.  to  Soc.  Chim. 

Usines    du    Rhone.      U.S.P.     1,418,904,    6.6.22. 
Appl.,  26.2.21. 

See  E.P.  160,765  of  1921 ;  preceding. 

Iropinone  monocarboxylic-acid  esters  and  prepara- 
tion of  the  same.  R.  Willstatter,  O.  Wolfes,  and 
H.  Maeder.  U.S.P.  1,419,091,  6.6.22.  Appl., 
26.8.21. 

See  G.P.  344,031  of  1919;  J.,  1922,  270  a. 

Tropinone  monocarboxylic-acid  esters;  Preparation 

of  .      O.    Wolfes   and   H.    Maeder.      U.S.P. 

1,419,092,  6.6.22.     Appl.,  26.8.21. 

See  E.P.  153,917  of  1920;  J.,  1922,  436  a. 


Purifying  organic  substances. 
III. 


E.P.  179,991.     See 


XXI.-PH0T0GRAPHIC  MATERIALS  AND 
PROCESSES. 

[Photographic']    desensitisers;    2Veu>   .      R.    E. 

Crowther.     Brit.  J.   Phot.,   1922,  69,  351—353. 

Two  new  desensitisers,  "  Pinakryptol  "  and  "  Pina- 
kryptol Green,"   were   investigated   and  compared 


with  Phenosafranin.  As  regards  desensitising 
efficiency,  "  Pinakryptol  "  is  equal  to  Phenosafra- 
nin, and  "  Pinakryptol  Green  "  is  more  efficient. 
The  new  dyes,  moreover,  are  practically  non- 
staining,  a  maximum  of  ten  minutes'  washing 
sufficing  to  remove  all  signs.  The  effects  of  the  dyes 
on  development  were  investigated  for  several  deve- 
lopers, and  the  results  are  tabulated.  "  Pinakryp- 
tol "  causes  a  pronounced  retardation  of  develop- 
ment. The  dyes  do  not  interfere  with  the  "  speed  " 
of  a  given  plate. — W.  C. 

Patents. 

Photographic  dry  plates  or  films;  Method  of  treat- 
ing     .     J.     D.    Bagley.     U.S.P.     1,417,791, 

30.5.22.  Appl.,  7.2.21. 

Photographic  dry  plates  or  films  are  treated  with 
alcohol  after  exposure  and  before  development  and 
subjected  to  the  action  of  a  photographic  developer 
while  still  wet  with  alcohol. — W.  C. 

Photographic  film;  Antistatic  .     A.  F.  Sulzer, 

Assr.  to  Eastman  Kodak  Co.     U.S.P.  1,418,405, 
6.6.22.     Appl.,  25.4.21. 

The  support  for  the  sensitive  coating  of  an  anti- 
static photographic  film  comprises  sufficient  nitro- 
cellulose to  produce,  if  alone,  static  markings  in 
the  coating,  and  sufficient  of  a  cellulose  ether  to 
prevent  the  static  markings  being  formed. — W.  C. 

Photographic     film.       E.     Wolff.       G.P.     345,734, 
15.8.20. 

On  the  actual  film  support  a  number  of  films  each 
sensitised  for  a  certain  colour  are  arranged  in 
suitable  order.  Colour  selection  is  thereby  ren- 
dered possible  for  visible  and  invisible  rays  without 
the  use  of  filters.  In  addition  to  these,  sensitisers, 
such  as  Dicyanin  for  red,  and  Erythrosin  for 
green,  an  absorbing  dye  for  blue  rays,  e.g.,  Filter 
Yellow  K,  may  be  added  to  the  emulsion.  The 
different  sensitiveness  of  the  constituent  emulsions 
can  be  equalised  in  this  way.  The  exposure  required 
is  considerably  shorter  than  with  filters,  and  no 
diffuseness  is  obtained.  The  sequence  red,  green, 
blue  is  best  for  cinematograph  films,  but  in  colour 
photography  other  arrangements  are  better. 

— W.  C. 

Photographic  developers.     J.  Hauff  und  Co.     E.P. 
154,198,  22.11.20.     Conv.  23.10.18. 

See  G.P.  327,111  of  1918;  J.,  1921,  371  a.  (Refer- 
ence is  directed,  in  pursuance  of  Sect.  7,  Sub-sect. 
4,  of  the  Patents  and  Designs  Acts,  1907  and  1919, 
to  E.P.  1736  of  1891;  J.,  1893,  374.) 

Photometer  scales.     G.P.  351,243.     See  XV. 


XXII.— EXPLOSIVES ;  MATCHES. 

Detonators;  The  lead-plate  test  as  applied  to  com- 
mercial     .     B.     Grotta.     Chem.     and    Met. 

Eng.,    1922,    26,   1126—1132. 

The  test  is  described  and  two  simple  forms  of 
apparatus  are  illustrated.  A  series  of  six  standard 
markings  on  the  lead  plates  are  illustrated.  These 
were  obtained  by  tests  with  No.  6  commercial 
detonators  and  give  the  effect  of  detonators  of 
various  qualities  down  to  complete  ineffectiveness 
on  the  plates.  Comparative  tests  carried  out  on 
samples  of  commercial  dynamite  indicate  that 
detonators  giving  plates  corresponding  to  the  first 
three  standard  plates  are  suitable  for  use  in 
blasting  operations.  The  influence  of  the  size  of 
the  charge,  moisture,  potassium  chlorate  content, 
indentation  of  shells,  and  hardness  of  shells  on  the 
detonation,  as  indicated  by  the  lead-plate  test,  is 
dealt  with.— H.  C.  R. 


568  a 


Cl.  XXIII.— ANALYSIS. 


[July  31,  1922. 


Nitrotoluenes.     Binary   systems   of  m-nitrotoluene 

with  another  nitrotoluene.    J.  M.  Bell  and  J.  L. 

McEwen.       J.     Ind.     Eng.     Chem.,     1922,      14, 

536—537. 

The   binary    system,    m-nitrotoluene-o-nitrotoluene 

forma  a,  stable  eutectic   at    -3165°   C.    containing 

48%  of  the  m-eonstituent  and  a  metastable  eutectic 

containing  46%  of  the  same  constituent  at  -39°C. 

The     system     m-nitrotoluene-p-nitrotoluene     forms 

an  eutectic  at   -2'8°  C.  containing  37%  of  the  p- 

constituent. — J.  F.  S. 


Patents. 


W. 


Priming  compositions;  Manufacture  of  — 
Friederich.     E.P.  180,605,  31.8.21. 

Combinations  of  explosive  and  non-explosive  com- 
pounds with  azides  of  heavy  metals,  such  as  lead 
azide,  are  obtained  in  the  form  of  mixed  crystals  by 
gradually  mixing  solutions  of  readily  soluble  salts 
of  the  particular  compounds  and  readily  soluble 
azides  with  solutions  of  metallic  salts.  Alterna- 
tively, crystals  serving  as  core  crystals  may  be 
levigated  in  one  of  the  solutions  to  be  precipitated 
so  that  on  subsequent  precipitation  crystals  are 
obtained  covered  with  layers  of  different  compounds 
used  in  priming  compositions.  The  elongation  of 
tho  crystals  of  lead  azide  is  thus  overcome  and  the 
explosive  obtained  in  a  form  more  suitable  for 
loading.  Basic  lead  azide,  lead  carbonate,  basic 
chlorides  and  sulphates,  neutral  and  basic  salts  of 
nitrated  phenols  and  other  nitro  compounds  may 
thus  be  associated  with  lead  azide. — H.  C.  R. 

Hiah  explosive  and  process  of  preparing  the  same. 

T.  L.   Davis.     U.S. P.   1,419,027,   6.6.22.     Appl., 

16:4.21. 
A   high   explosive  consists   of   pentanitronaphthol. 

— H.  C.  R. 

Priming     composition.       Rheinisch  -  Westfalische 
Sprengstoff  A.-G.     G.P.  309,210,  1.5.18. 

Lead  trinitroresorcinate  is  used  alone  or  in 
admixture  with  other  explosives,  with  the  excep- 
tion of  mercury  fulminate.  Normal  lead  trinitro- 
resorcinate explodes  successfully  if  heavily  tamped. 
Fuses  can  be  made  with  the  aid  of  a  damping 
material,  and  these  are  cheaper  than  those  pro- 
duced from  mercury  fulminate  and  are  insensitive 
to  hammering,  cutting  or  crushing.  They  burn 
easily  with  little  deflagration,  without  detonation, 
and  are  not  injured  by  treatment  in  water  and 
will  explode  an  explosive  without  the  use  of  a 
detonator.  The  velocity  of  detonation  is  somewhat 
higher  than  that  of  mercury  fulminate  fuses  and 
varies  from  6000  to  7000  m.  per  second  according 
to  the  kind  of  damping  agent  employed. — A.  G. 


XXIII.-ANALYSIS. 


G.  Jander. 


Membrane  filters;  Treatment  of  — 
Z.  angew.  Chem.,  1922,  35,  269. 

To  restore  a  smooth  glazed  surface  to  membrane 
filters  which  have  become  rough,  the  membrane  is 
heated  in  distilled  water  for  about  £  hr.  at  75° — 
80°  C,  and  then  clamped  tightly  between  two 
plate  glass  surfaces,  care  being  taken  that  no  air 
bubbles  are  enclosed.  The  whole  is  then  heated 
again  for  1  hr.  in  distilled  water  in  a  porcelain 
dish  at  the  same  temperature,  the  clamps  being 
tightened  up  from  time  to  time.  After  cooling 
the  glass  plates  are  undamped  and  the  membrane, 
which  now  has  the  desired  glossy  surface,  is 
removed.  The  pores  of  the  membrane  will  have 
been  to  a  certain  extent  closed  by  this  treatment 
and  filtration  will  be  somewhat  slower.  To  pre- 
serve   the    membrane    filter    in    good    condition    it 


should  always  be  kept  under  water  in  closed  vessels, 
and  for  preventing  the  growth  of  moulds  a  bright 
piece  of  copper  foil  placed  in  the  bottom  of  the 
vessel  is  quite  effective. — G.  F.  M. 

Electrometric    titration;   Simple   method    of  

in  acidimetry  and  alkalimetry.  P.  F.  Sharp 
and  F.  H.  MacDougall.  J.  Amer.  Chem.  Soc, 
1922,  44,  1193—1196. 

A  number  of  constant  and  reproducible  electrodes 
have  been  prepared  which  are  electrometrically 
equivalent  to  hydrogen  electrodes  dipping  in 
solutions  of  various  known  hydrogen  ion  concen- 
trations. Such  electrodes  are  extremely  useful 
in  cases  where  it  is  necessary  to  titrate  a  solution 
of  an  acid  to  an  end  point  corresponding  to  a 
definite  hydrogen  ion  concentration.  In  such  a 
case  the  half  cell  containing  a  hydrogen  electrode 
and  the  solution  to  be  titrated  is  connected  with 
the  electrode  which  has  the  same  PD  as  the 
hydrogen  electrode  will  have  when  the  titration  is 
completed.  A  solution  of  alkali  is  then  run  into 
the  acid  until  a  galvanometer  indicates  that  the 
whole  cell,  comparison  electrode/KCl  (sat) /titra- 
tion liquid  /H2Pt,  has  a  zero  EMF.  The  following 
are  the  comparison  electrodes  together  with  the 
potentials  against  a  normal  calomel  electrode,  and 
the  equivalent   hydrogen   ion   concentrations. 

Cadmium  amalgam  with  12-12-5%  Cd — 

0-52  c.c.  KI  in  100  c.c.  sol.  EJIF,  0-5195  volt  =  H- 10"  >tf 

2-90  c.c.  KI  „        „  „  „      0-5609     „  =  H-  llT'-'.Y 

0-11  c.c.  ICI ,  „       0-5786    „  =  11"  10~'N 

67-50  c.c.  Kt  „        „  „  „       0-6378    „  =  H'  10"** 

Lead  amalgam  with  12-12-5%  Pb,  and  lead  iodide — • 

100  c.c.  CdSO,+  0-20  c.c.  KI..  EMF,  0-6967  volt  =  H- 10-'* 
10  c.c.  CdSO,  +  10  c.c.  KI  in 

100  c.c.  sol I         „  0-7560      „      =  H-  W-'H 

100  c.c.  CdSO,  +  26-40  C.c.  KI  „  0-8151      „      =  H-  Hr**' 

2  c.c.  CdSO,  +  48-7  c.c.  KI 

In  100  c.c.  sol 0-8743      „     =  H'  10~".V 

The  numbers  of  c.c.  of  potassium  iodide  and 
cadmium  sulphate  refer,  respectively,  to  W  and 
0-52V   solutions.— J.   F.    S. 

Volumetric  analysis;  New  physicochemical  method 

of  ,  applied   to  some  problems  of  inorganic 

chemistry.  P.  Dutoit  and  E.  Grobet.  J.  Phys. 
Chini.,  1922,  19,  324—327. 

A  method  is  described  by  which  solutions  of  acids 
may  be  titrated  with  bases  using  a  thermometer 
graduated  in  001°  C.  as  indicator.  The  solution 
to  be  titrated  is  placed  in  a  small  Dewar  vessel, 
which  stands  in  a  larger  Dewar  vessel;  a  mech- 
anical stirrer  is  placed  in  the  solution  and  the 
alkali  added  at  regular  intervals  in  amounts  which 
cause  the  temperature  to  increase  by  not  more 
than  002°  C.  The  burette  is  wrapped  in  asbestos 
paper  and  the  stopcock  operated  by  a  long  pair  of 
pincers.  The  number  of  c.c.  of  alkali  added  is 
plotted  as  abscissa?  and  the  temperatures  after 
successive  additions  as  ordinates.  The  end  point 
is  marked  by  a  decided  change  of  direction  of  the 
curve.  Not  only  is  this  point  fixed  by  the  curve 
but  all  other  points  at  which  a  change  in  the 
nature  of  the  reaction  occurs  are  fixed.  Thus  with 
sulphuric  acid  the  points  corresponding  with  the 
completion  of  the  formation  of  the  bisulphate  ami 
the  normal  sulphate  are  both  accurately  shown. 
In  the  titration  of  phosphoric  acid  with  sodium 
hydroxide  the  points  where  the  formation  of 
NaH,PO„  Na,HPO„  and  Na3PO,,  respectively,  i* 
complete  are  well  marked.  In  the  titration  of 
normal  sodium  phosphate  with  nitric  acid  the 
points  where  the  formation  of  NaH,PO,,  Na,HPO,, 
and  H3PO,  is  complete  are  clearly  marked.  The 
titration  of  the  nitrates  of  zinc,  lead,  and  mag- 
nesium with  alkali  by  this  method  indicates  the 
completion  of  the  formation  of  definite  basic  salts 
and  in  the  case  of  the  two  first-named  metals,  of 


Vol.  XII.,  No.  11.] 


PATENT   LIST. 


5G9a 


zincates  and  plumbites,  respectively.  Titration 
of  salts  of  cobalt,  copper,  and  nickel  with  ammonia 
in  the  same  way  indicates  the  formation  of  the 
various  ammonia  complexes.  This  method  yields 
identical  results  with  those  obtained  by  electro- 
metric  and  conductivity  titrations,  and  in  addition 
it  also  indicates  the  formation  of  derivatives 
which  these  methods  do  not. — J.  F.  S. 

Resorcinol;  Application  of  in  qualitative  in- 
organic analysis.  Lavoye.  J.  Pharm.  Belg., 
1921,  3,  889-^890.  Chem.  Zentr.,  1922,  93,  II., 
1154. 
Characteristic  colours  are  produced  by  mixing 
1  c.c.  of  very  dilute  solutions  of  the  following  metals 
with  1  c.c.  of  10%  resorcinol  solution  and  2  c.c.  of 
10%  ammonia  solution,  heating  for  a  short  time, 
and  allowing  the  mixture  to  stand :  Zinc,  yellow- 
green,  then  dark  blue ;  cadmium,  a  less  intense 
blue;  manganese  in  presence  of  ammonium  salts, 
blue-green;  nickel,  blue-green;  cobalt,  red-violet, 
then  blue-violet;  copper,  blue;  platinum,  garnet 
red;  mercury,  no  colour  but  crystalline  precipitate 
on  evaporation.     Acids  turn  all  the  solutions  red. 

—A.  ft.  P. 

Uranium;  Estimation  of  in  presence  of  phos- 
phoric acid.  A.  Schoep  and  W.  Steinkuhler. 
Bull.  Soc.  Chim.  Belg.,  1922,  31,  156—159. 

Previous  methods  having  proved  unsatisfactory, 
the  following  is  recommended :  Silica  and  the 
elements  which  are  precipitated  in  acid  solution  by 
hydrogen  sulphide  are  first  separated.  The  filtrate 
is  freed  from  hydrogen  sulphide  by  boiling  and 
uranium  oxidised  by  a  few  drops  of  nitric  acid. 
The  phosphoric  acid  is  then  precipitated  by  molyb- 
date  solution,  and,  in  the  absence  of  chlorides  etc., 
this  serves  as  a  means  of  estimating  phosphate. 
Ammonia  is  then  added  in  slight  exces9  and  the 
solution  gently  heated,  but  not  allowed  to  boil, 
after  which  ammonium  sulphide  is  added  until  the 
liquid  turns  blood-red.  After  20  mins.  on  the  water 
bath  a  brown  precipitate  of  uranium  sulphide  is 
produced,  and  when  this  has  become  black  and 
granular  heating  is  stopped.  The  precipitate  is 
washed  with  warm  dilute  ammonium  sulphide  to 
which  a  few  drops  of  ammonia  have  been  added, 
the  washing  being  continued  until  the  washings 
no  longer  give  a  molybdenum  reaction.  If  the 
operation  has  been  carried  out  properly  there  is 
no  need  to  dissolve  and  re-precipitate  the  uranium 
sulphide.— H.  J.  E. 

Water;  Estimation  of  by  the   apparatus  of 

Meihuizen.  K.  Mohs.  Woch.  Brau.,  1922,  39, 
139—141. 
Tests  with  Meihuizen's  drying  apparatus  (E.P. 
114,620;  J.,  1918,  357  a)  are  described.  Using 
steam  heat  and  maintaining  a  temperature  of 
99°  C. ,  the  moisture-content  of  flours,  starches, 
etc.,  may  be  determined  by  heating  for  50 — 60 
mins.  If  xylol  is  used  in  place  of  water  a  drying 
temperature  of  139°  C.  can  be  maintained  and  heat- 
ing for  15 — 25  mins.  is  sufficient. — A.  G.  P. 

See  also  pages  (a)  533,  Gas  calorimeter  (Boys) ; 
Mixtures  of  paraffin  hydrocarbons  and  hydrogen 
(King).  535,  Iodine  values  of  petroleum  oils 
<Kawai) ;  Sludge  values  of  transformer  and  turbine 
oils  (Sehwarz  and  Marcusson).  540,  Cellulose  in 
wood  etc.  (Heuser  and  Casseus) ;  Chlorine  consump- 
tion value  of  sulphite  pulps  (Sieber).  541,  Cellulose 
acetates  (Entat  and  Vulquin).  544,  Phosphoric  acid 
.(Ross  and  others) ;  Hypochlorite  bleaching  solutions 
(Royer) ;  Sodium  bisulphites  (Kiihl).  545,  Alkalis 
in  calcium  carbonate  (Singleton  and  Williams) ; 
Copper  and  iron  in  copper  sulphate  (Wober).  550, 
Slag  in  steel  (Wiist  and  Kirpach).  551,  Spelter 
coating  on  galvanised  sheets  (Strickland);  Electro- 
jnalysis  of  brasses  etc.  (Kling  and  Lassieur).     552, 


Resistance  of  aluminium  to  corrosion  (Mylius).  553, 
Aluminium  alloys  (Costa- Vet);  Ferrotungsten  and 
tungsten  powder  (Bonardi  and  Williams).  556, 
Olive  oils  (Prax).  557,  Iodine  value  (Holde  and 
others) ;  Lead  dioxide  in  red  lead  (Bonis).  558, 
Hardness  test  for  varnishes  (Wolff).  563,  Moisture 
in  potato  flour  (Vogelenzang) ;  Testing  foodstuffs 
for  vitamins  (Drummond  and  Watson).  564, 
Saponins  (Kofler).     566,  Acetone  (Troise). 

Patents. 
Gas  calorimeters;  Recording  and  integrating  . 

The  Secretary  of  the  Board  of  Trade,  and  C.  V. 

Boys.  E.P.  180,080,  24.2.21. 
In  a  recording  gas  calorimeter  of  the  water-flow 
type  the  rate  of  flow  of  water  is  adjusted  accurately 
to  a  predetermined  value  by  trapping  a  stream 
of  water  in  a  vessel  which  is  tipped  and  drained  at 
regular  intervals,  the  tipping  being  effected  by 
the  trapped  water.  AVhile  the  vessel  is  tipped  the 
stream  of  incoming  water  is  delivered  to  a  water- 
wheel  or  similar  device  driving  the  gas-controlling 
mechanism.  The  gas  is  delivered  to  a  wet  gas 
meter  of  which  the  drum  is  rotated  on  a  screwed 
spindle  by  gas  pressure  independently  of  the 
driven  spindle,  so  that  longitudinal  movement  of 
the  drum  is  produced  by  relative  rotation  of  the 
drum  and  spindle,  and  this  longitudinal  move- 
ment operates  a  control  for  the  gas  inlet.  The 
rate  of  gas  delivery  to  the  burner  of  the  calori- 
meter is  maintained  at  a  constant  value  (measured 
under  standard  conditions  of  temperature  and 
pressure)  irrespective  of  changes  of  temperature 
and  pressure  by  automatic  variation  of  the  liquid 
level  in  the  meter  in  accordance  with  changes  of 
temperature  and  pressure.  The  gas  is  saturated 
with  water  vapour.  The  calorimeter  proper  com- 
prises a  combustion  circuit  and  heat  interchanger, 
each  of  which  is  readily  removable  and  replaceable. 
It  includes  a  hot  operative  thermometer  chamber 
and  a  cold  operative  thermometer  chamber.  An 
operating  lever  co-operates  with  both  chambers  so 
as  to  magnify  the  differential  movement  of  the 
chambers  in  an  inverse  ratio  to  the  relative  linear 
movements  of  the  individual  chambers,  with  com- 
mon temperature  rise  but  in  opposite  directions. 
A  recording  arm  is  supported  upon  a  lantern 
capable  of  rocking  about  a  vertical  axis,  and 
mechanism  is  provided  for  integrating  the  depar- 
ture of  the  recording  arm  from  a  predetermined 
position. — J.  S.  G.  T. 

Distilling     apparatus     [;     Laboratory  1.      P. 

Anders  and  P.  M.  Ginnings.     U.S. P.  1,418,691, 
6.6.22.     Appl.,  25.2.21. 

The  upper  end  of  the  main  column  of  a  distilling 
head  is  closed  by  a  stopper,  and  the  side  outlet 
tube  projects  inwards  approximately  to  the  centre 
of  the  column,  the  end  of  the  projecting  part  being 
provided  with  a  circular  lip. — J.  S.  G.  T. 


Patent   List. 

Tn"e  dates  eiven  in  thia  list  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  oase  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  aa  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given;  they  are  on  flale 
at  Is.  each  at  the  Patent  Office  Sale  Branoh,  Quality 
Court,  Chancery  Lane,  London.  W.C.  2.  15  days  after  the 
date  given. 

I— GENERAL;  PLANT;  MACHINERY. 
Applications. 
Baron   (Signal   Ges.).      Apparatus   for   removing 
gases  from  liquids.     18,695.     July  7. 

Ikeda,  Isobe,  and  Okazawa.  Extraction  of 
volatile  oils  from  gases.    17,708.    June  27. 


670A 


PATENT    LIST. 


[July  31,  1922. 


Johns-Manville, 
materials.     18,682. 

Johns-Manville, 
apparatus.     18,683. 

Lodge-Cottrell, 
See  XI. 


Inc.       and     Walsh.        Drying 
July  7. 

Inc.,      and     Walsh.        Drying 
July  7. 
Ltd.        (Anderson).  18,028. 


Lyall 

Major. 
July  8. 

Mauss. 
June  26. 

Rigby. 

Tyler. 


17,963.    June  30. 
of    liquids.      18,807. 


Centrifugal     separators     etc.       17,587. 


Grinding-machines. 
Distillation    etc. 


Drying.     17,498.     June  26. 
Apparatus  for  disintegrating  and  screen- 
ingpulverulent  material.     18,131.    July  1. 
Wake.     Mixing-machines.     17,950.     June  29. 


Complete  Specifications  Accepted. 

36,169  (1920).  Traun'e  Forschungslaboratorium 
Ges.     Filter  presses.     (155,834.)    July  12. 

3373  (1921).  Barbet  et  Fils  et  Cie.  Evaporating 
apparatus.    (158,569.)    July  12. 

5890  (1921).  Soc.  Gen.  d'Evaporation.  Process 
and  apparatus  for  crystallising.    (159,815.)    July  5. 

8274  (1921)  and  3623  (1922).  Petzel.  Bodies  for 
filling  columns,  towers,  etc.  through  which  gas  is 
passed  in  an  opposite  direction  to  liquid.  (160,180 
and  175,273.)    July  5. 

10,095  (1921).  Mclntyre.  Mixing,  reducing,  or 
grinding  and  like  machines.      (181,877.)     July  5. 

10,177  (1921).  Vallez.  Rotary  filters.  (181,879.) 
July  5. 

11,642  (1921).  Chapman.  Magnetic  separators 
for  removing  solids  from  liquids.    (181,898.)    July  5. 

19,804  (1921).     Fabry,    See  II. 

9361  (1922).    Wade  (Schneible).    See  XVIII. 

15,388  (1922).  Traun's  Forschungslaboratorium 
Ges.    Filter  presses.    (181,023.)    July  12. 

II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE    DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Avebene  Soc.  Anon.  Fuel  briquettes.  17,909. 
June  29.     (Fr.,  19.5.22.) 

Brown.     Retort  setting.     17,786.     June  28. 

Chemical  Research  Synd.  Motor  fuels.  18,605. 
July  6.     (U.S.,  27.10.21.)  _ 

Combustions  Economica  e  Impianti  Elettrici  Soc. 
Anon.  Combustion  of  pulverised  solid  fuels. 
17,721.     June  27.     (Fr.,   1.7.21.) 

Coote,  and  Spencer  Chapman  and  Messel.  Treat- 
ment of  waste  acids  from  mineral-oil  refiners. 
18,716.     July  7. 

Danks.  Retorts  for  recovering  by-products  from 
coal  etc.     18,165.     July  3. 

Davidson,     Retorts.     18,457.     July  5. 

Ges.  f.  Kohlentechnik.  Separation  of  ammonia 
and  benzol  hydrocarbons  from  gas.  18,489.  July  5. 
(Ger.,  7.7.21.) 

Hodgkinson  and  Ridge.     17,585.     See  XII. 

Koppers.  Coking  or  carbonising.  17,834.  June  28. 

Lynch  and  Mahan.  Cracking  oils.  17,600.  June  26. 

Morgan.  Fuel  for  internal-combustion  engines. 
18,240.     July  3. 

Riedel  A*.-G.  Fuel  for  internal-combustion 
engines.     18,594.     July  6.     (Ger.,  15.8.21.) 

Salerni.  Retorts  for  distilling  or  heat-treating 
carbonaceous  etc.  material.     18,390.     July  4. 

Complete  Specifications  Accepted. 

98(1921).  Rigby.  Treatment  of  peat.  (182,149.) 
July  12. 

6004  (1921).  Haddan  (Torfverwertungsges.  Pohl 
u.  von  Dewitz).  Dry  distillation  and  coking  of  raw 
peat  etc.     (159,464.1     July  12. 

6343  (1921).  Rigbv.  Drying  peat  etc.  (182/157.) 
July  12. 


8144  (1921).     Alexander.     Apparatus  or  kilns 
drying     and     distilling     carbonaceous     substance 
(181,794.)     July  12. 

11,222   (1921).     Low-Temperature  Carbonisation, 
Ltd.,  and  Davidson.     Retorts.     (181,894.)     July  5. 

11,438  (1921).     Marks  (Shell  Co.).     Still  for  frac- 
tionating petroleum  oils.     (182,247.)     July  12. 

12,670     (1921).       Kratochwill.       Artificial     fuel. 
(182,262.)     July  12. 

12,975(1921).     Bismarckhutte.     Coking-chambers 
ior  gas-producers.     (163,012.)     Julv  12. 

17,818  (1921).       Collin  A.-G.       Vertical  retorts. 
(165,744.)     July  12. 

19,804     (1921).       Fabrv.       Centrifugal     drying- 
machine  for  coal  etc.     (182,006.)     July  5. 

30,941  (1921).    Dowson  and  Mason  Gas  Plant  Co., 
and  Wilson.     Gas-producers.     (182,053.)     July  5. 

III.— TAR    AND    TAR    PRODUCTS. 
Application. 
Ges.  f.  Kohlentechnik.     18,489.     See  II. 

IV.— COLOURING   MATTERS   AND   DYES. 


Applications 
Duraud  &   Huguenin  Soc.   Anon 


Manufacture 
of  mordant-dyeing  colouring  matters.  17,699. 
June  27.     (Fr.,  15.7.21.) 

Scottish  Dyes,  Ltd.,  and  Thomas.  Manufacture 
of  dyestuff  intermediates.     18,804.     July  8. 

Complete  Specifications  Accepted. 

35,647  (1920)  and  21,708  (1921).  Green,  Saunders, 
and  British  Dyestuffs  Corp.  Manufacture  of  soluble 
acid  colouring  matters  and  intermediate  com- 
pounds.    (181,750.)     July  5. 

16,368  (1921).  Durand  &  Huguenin  A.-G. 
Manufacture  of  halogen  derivatives  of  basic  acri- 
dine  dyestuffs.     (165,721.)     July  5. 

22,991  (1921).  British  Dyestuffs  Corp.,  Green. 
Saunders,  and  Adams.  Manufacture  of  colouring- 
matters.     (182,031.)    July  5. 


V.— FIBRES;   TEXTILES;   CELLULOSE; 
PAPER. 

Applications. 

Dreaper.  Manufacture  of  artificial  silk  etc. 
18,174.    July  3. 

Dreyfus.  Manufacture  of  artificial  tcxtik 
products.     18,560.    July  6. 

Johns-Manville,  Inc.,  and  Walsh.  Drying  and 
carbonising  fabrics.     18,684.     July  7. 

Nitrogen  Corp.  Cellulose  solutions.  18,149  and 
18.150.    Julv  1.     (U.S.,  2.7  and  21.11.21.) 

Nitrogen  Corp.  Method  of  making  cellulose 
compounds.     18,151.     July  1.     (U.S.,  23.12.21.) 

Rheinisch  Westfiilische  Sprengstoff  A.-G.,  and 
Seyfferth.  Manufacture  of  radioactive  plastic  cam- 
positions  from  cellon,  celluloid,  etc.  17,823. 
June  28. 

Complete  Specifications  Accepted. 

2598  (1921).  Dreaper.  Manufacture  of  artificial 
silk  etc.    (181,758.)    July  5. 

8685  (1921).  Dreyfus.  Manufacture  of  artificial 
silk  etc.     (182,166.)    July  12. 

11,766  (1921).  Courtaulds,  Ltd.,  and  Calhmacni. 
Manufacture  of  threads,  filaments,  strips,  or  filim 
of  cellulose.    (181,900.)    July  0. 

11.769  (1921).  Courtaulds,  Ltd.,  and  Hegan 
Manufacture  of  threads,  films,  etc.  of  cellulose 
(181,901.)    July  5. 

11.770  (1921).  Courtaulds,  Ltd.,  and  Wilson 
Manufacture  of  coloured  threads,  filaments,  strips 
or  films  of  cellulose.     (181,902.)     July  5. 


Vol.  XLI.,  No.  14.] 


PATENT    LIST. 


571  A 


30,466  (1921).  Jentgen.  Production  of  artificial 
threads,  films,  etc.  from  viscose.  (171,691.) 
Julv  5. 

1036  (1922).  Claessen.  Manufacture  of  water- 
proof material.     (174,588.)    July  12. 

VI.— BLEACHING  ;  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Blicquv  and  Callebaut.  Dyeing-machines. 
18,187.    July  3. 

British  Alizaran  Co.,  Dawson,  Harley,  and 
Nichol.  Discharging  agents  and  processes  employ- 
ing same.    18,522.    July  12. 

Geigy  Soc.  Anon.,  and  Liittin.  Solutions  for 
dyeing  and  printing  fabrics  etc.     18,696.    July  7. 

Geigy  Soc.  Anon.  Process  of  dveing  or  printing 
fabrics   etc.     18,697.     July   7.     (Ger.,    29.7.21.) 

VH— ACIDS;   ALKALIS;   SALTS;   NON- 
METALLIC  ELEMENTS. 

Applications. 

Coote  and  others.     18,716.    See  II. 

Freeth  and  Munro.  Production  of  ammonium 
chloride  and  sodium  carbonate.    18,758.    July  8. 

Ges.  f.  Kohlentechnik.    18,489.    See  II. 

Guggenheim  Bros.  Leaching  caliche  and  recover- 
ing nitrate.    18,460.    July  5.    (U.S.,  7.11.21.) 

Soc.  d'Etudes  Chimiques  pour  l'Industrie. 
Employing  residues  from,  decomposition  of  calcium 
cyanamide  by  acid.  17,544.  June  26.  (Switz., 
25.6.21.) 

Teillard.  Purification  of  sulphate  of  baryta  etc. 
18,576.     July  6.     (Fr.,  18.7.21.) 

Threlfall.  Manufacture  of  phosphorus  pentoxide. 
18,589.    July  6. 

See  XIII. 

Manufacture     of     pure     sodium 

June  28. 


Topp.     18,732. 

Westermann. 

chloride.     17,760. 


Complete  Specifications  Accepted. 

35,720  (1920).  Nitrogen  Corp.  Synthesis  of 
ammonia.     (155,592.)     July  5. 

36,516  (1920).  Aluminum  Co.  of  America.  Manu- 
facture of  aluminium  chloride.     (163,975.)    July  12. 

5626  (1921).  Dutt  and  Dutt.  Preparation  of 
titanium  dioxide  from  bauxite.     (181,775.)    July  5. 

10,482  (1921).  Ebbw  Vale  Steel,  Iron,  and  Coal 
I  Co.,  and  Thickins.  Manufacture  of  dry  neutral 
sulphate  of  ammonia.     (181, 8S4.)     July  5. 

13,812  (1921).  Nitrogen  Corp.  Preparation  of 
hydrogen  and  ammonia.     (163,323.)     July  5. 

17,574  (1921).  Hunt.  Recovery  of  sulphur, 
sulphides,  etc.  from  a  condition  of  emulsion, 
i  (181,984.)     July  5. 

13,444      (1921).        Courtaulds,  Ltd.,  and  Jones. 

,  Separation   of   sodium   carbonate   from    liquors    or 

solutions  containing  caustic  soda.  (182,411.)  July  12. 

(VHL— GLASS;    CERAMICS. 
Applications. 
Deutsch  -  Englische     Quarzsehmelze     Ges.,     and 
Hirschberg.     Manufacture   of    quartz  etc.    articles 
impervious  to  gases.  17,576.  June  26.   (Ger.,  7.7.21.) 
Rowart.     Manufacture   of  sheet   glass.     18,491. 
July  5.     (Belg.,  11.7.21.) 

Soissan.  Enamelling  metals,  wires,  etc.  18,189. 
|  July  3.     (Fr.,  5.7.21.) 

Complete  Specification  Accepted. 

24,531  (1921).  Westinghouse  Lamp  Co.  Manu- 
facture of  glass.     (170,563.)     July  12. 

IX.— BUILDING    MATERIALS. 

Applications. 

Cuckow.  Treatment  of  building  materials. 
'18,137.     July  1. 


Gunn.  Preserving  and  colouring  brick,  stone, 
etc.     17,993.     June  30. 

Riedel.  Manufacture  of  hydraulic  binding 
agents.     18,717.     July  1. 

Wray.  Composition  for  making  bricks.  18,541. 
July  6. 

Complete  Specifications  Accepted. 

8408  (1921).  Merz  and  McLellan,  and  Weeks. 
Cement  manufacture.     (181,811.)     July  5. 

9482  (1921).  Schneider.  Coating  natural  and 
artificial  stone.     (182,213.)     July  12. 


X.— METALS ;     METALLURGY,     INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Adam  and  Davies.  Detinning  tinned  iron  scrap. 
18,496.     July  5. 

Angell  and  Williams.  Coating  iron,  steel,  etc. 
with  non-corrosive  surface.     17,676.     June  27. 

Baker  and  Crawford.  Composition  for  silver- 
plating  metal.     18,771.     July  8. 

Chem.  Fabr.  Griesheim-Elektron.  Casting 
oxidisable  metals.    1S,503.    July  5.    (Ger.,  27.10.21.) 

Dony  and  Spirlet.  Concentrating  iron  ores. 
17,849.     June  28. 

Gillespie,  and  Metallisation,  Ltd.  Protecting 
metal  articles  subjected  to  high  temperatures. 
17,649.     June  27. 

Jones,  and  Steel-Nickel  Process  Synd.  Coating 
metals.     18,146.     July  1. 

Jones.  Deposition  of  metals  and  alloys.  18,545. 
July  6. 

Kubo.  Manufacture  of  malleable  cast  iron. 
17,632.     June  27. 

Kuehnrich.   Manufacture  of  steel.   18,105.  July  1. 

Levoz.  Cupola  furnaces.  17,715.  June  27. 
(Belg.,  18.10.21.) 

Saltrick.     Iron  and  steel.    18,008.     June  30. 

Saltrick.     Alloys.     18,009  and  18,010.     June  30. 

Ziegler.  Operating  melting  and  reducing 
furnaces.     18,464.     July  5.     (Austria,  5.7.21.) 

Complete  Specifications  Accepted. 

5759  (1921).  Jackson  (Leadizing  Co.).  Coating 
iron  or  steel  articles  with  lead.     (181,781.)     July  5. 

8529  (1921).  Pacz.  Production  of  alloys.  (160,426.) 
July  5. 

8705  (1921).  Gillespie  and  Buckley.  Manufac- 
ture of  metallic  powders.     (181,831.)     July  5. 

8858  (1921).  Pearson,  Craig,  and  Durelco,  Ltd. 
Reduction  of  oxides  of  tungsten  and  molybdenum. 
(181,837.)     July  5. 

9734  (1921).  Wellman-Smith-Owen  Eng.  Corp., 
and  Kemp.  Furnaces  for  metallurgical  etc. 
purposes.     (181,863.)     July  5. 

9909  (1921).  A.-G.  Brown,  Boveri  u.  Co.  Elec- 
trically-heated muffle  furnaces.     (181,875.)     July  5. 

12,391(1921).  Hibbard.  Metallurgical  furnaces. 
(162,624.)      July  5. 

32  866  (1921).  Miami  Metals  Co.  Open-hearth 
furnaces.     (182,399.)     July  12. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Armstrong.    Electrically-heated  furnaces.    18,278. 

July  4. 

Baum,  and  Chem.  Fabr.  Weissenstem.  Anodes 
for  forming  per-compounds.     18,740.     July   7. 

John.     Electrolytic  apparatus.     17,684.     June  27. 

Kuehnrich.     Electric  furnaces.     18,106.     July  1. 

Lodge-Cottrell,  Ltd.  (Anderson).  Electrical  pre- 
cipitation of  suspended  particles  from  gases. 
18,028.     June  30. 


572  a 


PATENT    LIST. 


[July  31,  1022. 


Oldham  and  Oldham.   Galvanic  batteries.   17,734. 
June  27. 

Complete  Specifications  Accepted. 

9131-2  (1921).  Plauson.  Carrying  out  electro- 
chemical reactions.     (181,848-9.)     July  5 

9322  (1921).  Aron.  Electric  dry  battery  cells. 
(160,807.)     July  12.  .       „      T 

9909  (1921).    A. -6.  Brown,  Boven  u.  Co.    bee  A. 

XII.— FATS;    OILS;    WAXES. 
Applications. 
Hodgkinson    and    Ridge.       Purifying    oils    etc. 
17,585.     June  26.  .  ... 

Macllwaine.  Extraction  of  oil  by  volatile 
solvents.     18,595.     July  6. 

Complete  Specifications  Accepted. 
8881    (1921).       Schueler.       Oil   or    like    presses. 

13  114  (1921).  Pineger.  Detergent.  (181,923.) 
July  5. 

XIIL— PAINTS ;  PIGMENTS;  VARNISHES; 
RESINS. 

Applications. 

Consort,  f.  Elektrochem.  Ind.  Improving  arti- 
ficial resins.     18,479.     July  5.     (Ger.,  12.8.21.) 

Jackson  (American  Cotton  Oil  Co.).  Pigments 
and  pigment  compositions.     17,728.     June  27. 

Petroff.  Production  of  phenol-aldehyde  con- 
densation products.     18,712-3.     July  7. 

Smith.  Mills  for  grinding  paints,  inks,  etc. 
18,333.     July  4. 

Topp.  Production  of  lead  compounds  and  manu- 
facture of  paints  etc.     18,732.     July  7. 

Wuyts.  Preparation  of  artificial  resins  and  oleo- 
resins.     17,956.     June  29. 

XIV.— INDIA-RUBBER;    GUTTA-PERCHA. 

Applications. 

Dunlop  Rubber  Co.,  Thomas,  and  Twiss.  Vulcan- 
isation of  rubber  etc.     17,995.     June  30. 

Jackson  (Morgan  and  Wright).  Manufacture  of 
vulcanised  rubber  etc.     17,959.     June  29. 

Stevens  (Firestone  Tire  and  Rubber  Co.).  Dry- 
ing rubber.     17,923.     June  29. 

Complete  Specification  Accepted. 
8313  (1921).     Wheatley,  and  Victoria  Rubber  Co. 
Heat-vulcanisation  of  rubber.     (181,802.)    July  5. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Complete  Specifications  Accepted. 

9762  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).    Manufacture  of  glue.    (181,865.)    July  5. 

10,775  (1921).  Richter.  Depilation  of  hides  and 
skins.     (182,240.)     July  12. 

14,654  (1921).  Glover  and  Martin.  Preparation 
of  a  tanning  agent  for  chrome  tanning.  (182,289.) 
July  12. 

XVI.— SOILS;    FERTILISERS. 

Application. 

Brewer.  Fertilisers  and  production  thereof. 
18,204.     July  3. 

XVIII.— FERMENTATION     INDUSTRIES. 

Applications. 

Guthrie,  and  McEwan  and  Co.  Treatment  of 
beer,  stout,  and  liquid  by-products  from  manufac- 
ture thereof.     18,136.     July  1. 

Harris.     Production  of  alcohol.     18,482.     July  5. 


Complete  Specification  Accepted. 
9361  (1922).     Wade  (Schneible).     Distilling  aleo- 
holio  and  other  liquids.     (182,069.)     July  5. 

XIX.— FOODS;    WATER    PURIFICATION; 
SANITATION. 


Applications. 


Pre- 


Plauson's   (Parent    Co.),    Ltd.    (Plauson). 
serving  foods  etc.     17,757.     June  28. 

Treble  (Vakil).  Manufacture  of  substitute  for 
butter  or  ghee.     18,591.     July  6. 

Complete  Specifications  Accepted. 

6624,  7576,  and  9086  (1920).  Watson,  Jones,  and 
Woodlands,  Ltd.  Manufacture  of  bread.  (182,140.) 
July  12. 

9485  (1921).  Pique,  and  Imperial  Trust.  Cool- 
ing and  freezing  fish  etc.    (182,214.)    July  12. 

XX.— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Applications. 

Bloxam  (Chem.  Fabr.  Griesheim  -  Elektron). 
Manufacture  of  aryl  esters  of  phosphoric  acid. 
17,720.     June  27. 

Eckert.  Oxidising  aromatic  compounds.  18,075. 
June  30.     (Ger.,  2.7.2.1.) 

Imray  (Soc.  Chem.  Ind.  in  Basle).  Manufacture 
of  aryloxynaphthylketones.     18,074.     June  30. 

Johnson  (Elektrizitatewerk  Lonza).  Manufac- 
ture of  metaldehyde.     17,806.     June  28. 

Complete  Specifications  Accepted. 

8825  (1921).  Bloxam  (Chem.  Fabr.  Griesheim- 
Elektron).  Manufacture  of  liquid  esters  of  phos- 
phoric acid.     (181,835.)     July  5. 

18,731  (1921).  Johnson  (Badische  Anilin  u.  Soda 
Fabr.).     Manufacture  of  urea.     (182,331.)  July  12. 

21,455  (1921).  Soc.  Chim.  de  la  Grande-Paroisse. 
Preparation  of  aromatic  aminonitro-compounds. 
(169,688.)     July  12. 

XXI.— PHOTOGRAHIO  MATERIALS  AND 
PROCESSES. 

Applications. 

Cohen.  Transferring  photographs  to  fabrics, 
paper,  etc.     17,682.     June  27. 

Diernhofer.  Production  of  transparencies  for  pro- 
jecting photographs  in  natural  colours.  17,730. 
June  27.     (Ger.,  28.6.21.) 

Hochstetter.  Photographic  mediums.  17,851—2. 
June  28. 

Landau  and  Landau.  Photographic  processes. 
18,311.     July  4. 

Complete  Specifications  Accepted. 
8695  (1921).    Obergassner.    Production  of  opaque 
photographs       in       natural       colours.       (182,167.) 
July  12. 

XXII— EXPLOSIVES;   MATCHES. 

Applications. 

Bash.    Matches.    18,259.    July  4. 

Rathsburg.  Initial  priming-compositions  and 
their  manufacture.  17,952.  June  29.  (Ger., 
4.11.21.) 

Rathsburg.  Manufacture  of  pnming-composi- 
tions.     18,060.     Juno  30. 

XXIII.— ANALYSIS. 

Application. 
Slater.       Estimation  of  small  quantities  of  sub- 
stances in  gases  ox  liqu ids.     18,523.     July  6. 


Vol.  XLL,  No.  15.] 


ABSTRACTS 


[Aug.  15,  1922. 


I.-GENEBAL ;  PLANT  ;    MACHINEBY. 

Molal  entropy  of  vaporisation  as  a  means  of  deter- 
mination of  heats  of  vaporisation.  W.  K.  Lewis 
and  H.  C.  Weber.  J.  Ind.  Eng.  Chem.,  1922, 
14,  485 — 486. 
Using  Hildebrand's  statement  (J.  Amer.  Chem. 
Soc.,  1915,  37,  970)  that  the  molal  entropies  of 
vaporisation  of  all  liquids  are  nearly  the  same  when 
compared  at  identical  values  of  vapour  concentra- 
tion, the  authors  have  devised  a  method  of  graphing 
which  they  consider  more  useful  than  the  original 
method.  In  this  method  the  ratio  of  the  molal  heat 
of  vaporisation  to  the  absolute  temperature  at 
which  vaporisation  takes  place  is  plotted  as  the 
ordinate  of  the  curve,  whilst  the  abscissa  is  the 
pressure  in  atmospheres  at  which  vaporisation  takes 
place  multiplied  by  1000  and  divided  by  the  abso- 
lute temperature.  The  data  include  a  list  of  sub- 
stances of  boiling  point  ranging  from  that  of  liquid 
hydrogen  to  that  of  boiling  cadmium  and  zinc,  but 
the  authors  have  limited  the  pressures  to  one  atmo- 
sphere or  less,  since  the  heats  of  vaporisation  at 
greater  pressures  are  seldom  required. — S.  G.  U. 

'Rectifying  columns  for  binary  mixtures;  Efficiency 

and  design  of .    W.  K.  Lewis.    J.  Ind.  Eng. 

Chem.,  1922,  14,  492—497. 

On  the  assumptions  (1)  that  the  column  is  so  large 
that  its  surface  is  small  compared  with  the  amount 
of  vapour  passing  through  it,  or  that  the  column  is 
80  lagged  that  the  heat  lost  through  the  sides  is 
negligible  compared  with  the  heat  passing  through 
the  column,  (2)  that  the  condensation  of  a  mole  of 
the  constituent  of  higher  boiling  point  from  the 
vapour  evolves  sufficient  heat  to  evaporate  one  mole 
of  the  constituent  of  lower  boiling  point  from  the 
liquid,  the  following  basic  equations  of  general 
applicability  have  been  derived  :  — 

dx/d»i=yn— xu— Vc  (t/c— yu),On+1 

The  integration  of  this  equation  will  give  the 
number  of  plates  required  with  perfect  rectification 
to  enrich  from  x1  to  x2,  i.e., 


An 


-r 


Ax 


In  a  similar  manner  the  number  of  plates  below 
the  feed  plate  for  perfect  rectification  is  given  by 


Am 


ym— 


dx 


*m-(Of-Vc)  (jfai-*w)/(Of  +  On+1) 


where  dn/dx  =  rate  of  increase  of  concentration  of 

liquid  per  plate;   ya  =mole  fraction  of  more  volatile 

component  in  the  vapour  Vn  ;  Vn=vapour  passing 

from  plate  n  to  plate  n  +  1;  2n=mole  fraction  of 

more  volatile  constituent  in  plate  n;  Vc  =moles  of 

distillate  produced  per  unit  time;  0n +i   =  moles  of 

overflow  from  plate  n+1 ;  yc  =mole  fraction  of  more 

rolatile  component  in  distillate  produced;  2/n  =  mole 

fraction  of  more  volatile  component  in  vapour  Vp ; 

tw=  mole  fraction  of  more  volatile  component  in 

*"aste   liquor;    Of  =  moles    of    mixture   fed    to   the 

olumn     per     unit     time.       By     means     of     these 

•quations,     when     the     terminal     conditions     and 

he    amount    of    overflow    are    known,    it    is    pos- 

ible   to   calculate    the    theoretical    rate    of    recti- 

ication    within     the    column.     As,    however,     the 

ibove   assumptions    do   not   hold    in    practice,    the 

ctual  number  of  plates  will  differ  from  the  theo- 

etical  number  calculated  from  the  above  formula?. 

he  ratio  of  the  actual   number  of  plates   to  the 

heoretical   number  of  plates   is  termed  the  plate 


efficiency  of  the  column.  This  efficiency  will  depend 
upon  type  of  plate  and  rate  of  flow  of  vapour  and  of 
reflux.  If,  therefore,  the  influence  of  these  factors 
upon  the  plate  efficiency  is  experimentally  deter- 
mined, the  above  equations  can  be  safely  used  in 
problems  of  column  design.  An  example  is  given 
showing  how  the  formulae  can  be  used  in  the  design 
of  a  column  to  determine  the  minimum  overflow, 
the  best  practical  overflow,  the  number  of  plates 
required,  and  the  point  of  introduction  of  the  feed. 

— S.  G.  U. 

Heats  of  vaporisation ;  Determination  of from 

vapour  pressure  data.  W.  K.  Lewis  and  H.  C. 
Weber.  J.  Ind.  Eng.  Chem.,  1922,  14,  486—487. 
Owing  to  the  great  curvature  of  vapour-pressure 
curves,  difficulty  arises  in  accurate  interpolation 
when  only  a  few  points  are  known.  This  difficulty 
is  overcome  bv  adopting  a  method,  developed  by 
Johnston  (Z.  physikal.  Chem.,  1908,  62,  336),  of 
plotting  a  temperature/temperature  graph  instead 
of  atemperature/vapour  pressure  graph.  The  second 
temperature  is  the  temperature  of  another  liquid, 
termed  the  reference  liquid,  when  its  vapour  pres- 
sure equals  the  vapour  pressure  of  the  first  liquid. 
The  resulting  curve  is  very  flat,  often  sufficiently  so 
to  be  considered  as  a  straight  line  over  a  wide  range 
of  temperature.  Assuming  that  both  vapours  obey 
the  gas  laws,  Clausius'  equation  is  now  applied, 
which  gives  dp/pdT  =  L/RT2  for  the  original  liquid, 
and  dpw/pwdTw  =  Lw/RTw:l  for  the  reference  liquid. 
Since  p  =  pw  and  dp=dpw,  these  on  division  give 
dTw/dT  =  L/L„.  x  (Tw/T)s,  from  which  L  can  be 
found,  since  dTw/dT  can  be  easily  determined,  since 
it  is  the  slope  of  the  Tw/T  graph,  which  is  practi- 
cally a  straight  line.  As  this  method  depends  upon 
the  vapour  pressures  obeying  the  gas  laws,  it  is 
only  applicable  with  pressures  at  or  below  one  atmo- 
sphere. (Note:  p  =  vapour  pressure  of  liquid  under 
discussion;  L  =  molal  heat  of  vaporisation;  T  is  the 
gas  constant;  and  R  the  absolute  temperature  in 
°  C.)— S.  G.  U. 

Plate   efficiency   of  alcohol   stiU.     Robinson.     See 
XVIII. 

Patents. 

Distillation;      Apparatus      for      fractional      . 

E.  A.  R.  Chenard.    E.P.  156,218,  3.1.21.     Conv., 
3.1.20. 

The  column  constituted  by  concentric  pipes  in  the 
apparatus  of  E.P.  130,992  (J.,  1920,  92  a)  is  replaced 
by  a  rectifying  column,  and  a  large  purifier  is  pro- 
vided between  the  still  and  the  column  or  between 
the  distilling  and  the  rectifying  columns,  according 
as  the  apparatus  is  discontinuous  or  continuous. 
Around  each  drip  pipe  in  the  rectifying  column  is 
provided  a  cylinder,  open  above  and  below,  and  so 
adjusted  as  to  admit  liquid,  from  below  only,  into 
the  6pace  between  the  cylinder,  the  bottom  wall, 
and  the  level  discharge  pipe.  The  semi-adiabatio 
condenser  is  combined  with  the  column  in  such  a 
manner  that  the  condensed  products  are  systematic- 
ally returned  to  the  column  compartments,  the 
richer  the  condensed  liquid  the  higher  being  the 
compartment  to  which  it  is  returned.  A  filter  or 
steam-trap  formed  of  wire  gauze  strip,  tightly 
rolled  into  a  spiral  around  a  closed  tube,  is  provided 
at  the  outlet  of  each  compartment  of  the  rectifying 
column  to  retain  liquid  carried  over  by  the 
vapours. — H.  H. 

Distilling,  concentrating,  or  drying  apparatus.     T. 
Rigby.     E.P.  180,963,  24.12.20  and  26.5.21. 

Upright  rotary  drums,  heated  internally  by  vapour, 
are  so  grouped  within  a  casing  as  to  leave  a  central 
passage  for  the  flow  of  vapour  generated  from  the 
material.     A  liquid  to  be  distilled  or  concentrated 


574  a 


Cl.    I.— GENERAL;    PLANT;    MACHINERY. 


[Aug.  15,  1922. 


is  caused  to  flow  down  the  outer  surfaces  of  the 
drums.  Material  to  be  dried  is  fed  to  the  gaps 
between  pairs  of  adjacent  drums  and  is  thus  spread 
as  a  film  on  the  drum  surfaces.  Above  and  below 
the  drums  vapour  spaces  partitioned  off  within  the 
casing  communicate  with  the  interiors  of  the  drums 
through  hollow  spindles  each  mounted  in  a  vapour- 
tight  gland  in  the  partition,  and  the  driving- 
mechanism  is  enclosed  in  the  lower  vapour  space. 
Incrustration  or  scale  or  dried  material  is  removed 
from  the  drums  by  scrapers.  Each  partition  is 
connected  with  the  adjacent  upper  or  lower  end  of 
the  casing  by  a  duct  into  which  passes  the  evolved 
vapour  or  the  dried  or  concentrated  material.  The 
apparatus  is  applicable  for  carrying  out  the  process 
described  in  E.P.  181,035  (c/.  infra),  and  when 
constituting  a  unit  of  a  multiple-effect  dryer,  its 
heating  vapour  inlet  is  fitted  with  an  automatio 
throttle  for  ensuring  predetermined  temperature 
differences  between  the  unite.  The  material  may 
be  spread  on  the  drums  by  the  coaction  with  each 
drum  surface  of  a  second  rotary  member  of 
different  radius  of  curvature  and /or  different  peri- 
pheral speed. — H.  H. 

Drying    of   peat    or   similar    material.      T.    Rigby. 

E.P.  181,035,  7.12.20,  24.12.20,  and  18.1.21. 
Peat  or  the  like  is  dried,  or  a  solution  or 
suspension  of  solid  matter  in  a  liquid  evaporated 
to  dryness,  by  feeding  it  in  thin  films  on  to  the 
external  surfaces  of  vertical  rotary  drying  drums 
grouped  together  in  the  vapour  spaces  of  drying 
units  arranged  in  multiple  effect.  The  material  is 
fed  into  the  bite  of  pairs  of  such  drums  revolving  in 
opposite  directions,  the  dried  product  being  continu- 
ously scraped  off.  The  material  may  be  subjected 
to  preliminary  filtration  or  settling  before  treat- 
ment in  the  evaporator.  The  water  of  condensation 
from  the  heating  surface  of  one  effect  passes  to 
another  effect  at  a  lower  pressure,  under  such 
control  ae  to  allow  of  the  flashing  off  of  steam, 
which  is  added  to  the  vapour  evolved  from  the 
material  and  is  passed  therewith  into  the  heating 
vapour  space  of  the  next  effect.  The  dried  material 
may  be  cooled  recuperatively  by  placing  it  in 
communication  with  a  heating  vapour  space  where 
a  lower  pressure  prevails  than  that  in  the  space 
where  the  material  was  dried.  The  rates,  and 
extent  of  drying  in  each  separate  effect  are 
controlled  independently,  and  the  products  from 
the  separate  chambers  may  be  either  mixed  or 
removed  separately.  The  sensible  heat  of  the  non- 
condensable  ga6es  is  recovered  and  added  to  that 
of  the  heating  medium  in  subsequent  stages. 
Undue  fluctuations  in  temperature  difference  in  the 
series  of  effects  are  avoided  by  an  automatic  vapour 
control  throttle.— A.  R.  M. 

Evaporating  liquids;  Process  for  .     L.  H.  A. 

Bohrmann.  E.P.  181,406,  10.12.20. 
The  liquid  mixture  to  be  evaporated  is  sprayed  or 
atomised  on  to  or  under  another  liquid  maintained 
at  a  temperature  much  above  the  boiling  point  of 
the  constituent  which  is  to  be  evaporated.  The 
two  liquids  may  either  mix  completely  (e.g.,  weak 
caustic  soda  may  be  sprayed  into  strong  caustio 
soda)  or  form  an  emulsion  (e.g.,  an  aqueous  solu- 
tion of  salt  may  be  sprayed  into  hot  oil). — B.  M.  V. 

Evaporating  apparatus;  Means  for  controlling  the 

level  of  liquids  in  .     W.   H.   P.   Creighton. 

U.S.P.  1,419,824,  13.6.22.  Appl.,  31.12.20. 
The  level  of  the  liquid  within  a  vessel  under  steam 
pressure  is  maintained  by  an  overflow  device  such 
as  an  inverted  U-tube  which  is  also  connected  with 
the  steam  space  so  as  to  be  under  the  same  steam 
pressure  as  the  interior  of  the  vessel,  its  height 
being  adjusted  by  rocking  or  rotating  it  in  a 
vertical  plane. — B.  M.  V. 


Still.      S.    E.    Oliver.      U.S.P.    1,419,894,    13.6.22. 

Appl.,  6.5.20. 
A  dome-shaped  cover,  fitted  with  an  internal  and 
an  external  gutter  which  completely  encircle  the 
cover  at  its  lowest  point,  is  fixed  to  the  top  flange 
of  the  still.  The  cooling  medium  is  sprayed  over 
the  upper  part  of  the  dome,  runs  down  the  outer 
surface  and  is  collected  in  the  outer  gutter.  The 
vapour  from  the  still  condensed  on  the  inner  surface 
of  the  cover  is  collected  in  the  internal  gutter, 
which  is  connected  by  a  pipe  with  a  receiver  to 
which  the  distillate  passes. — S.   G.   U. 

Drying  solid  substances ;  Apparatus  for  use  in . 

N.  S.  Kilner.  E.P.  180,023,  14.2.21. 
Attached  to  the  inner  surface  of  a  vertical  cylin- 
drical casing  are  several  layers  of  horizontal  shelves, 
one  edge  of  each  shelf  being  inclined  downwards  at 
an  angle  of  30° — 45°  so  as  to  act  as  a  guide  to  the 
rising  currents  of  hot  air.  Each  layer  consists  of 
a  number  of  shelves,  so  arranged  that  the  dis- 
charging edge  of  each  shelf  is  directly  over  the 
horizontal  portion  of  a  corresponding  shelf  on  the 
layer  underneath.  Above  the  top  layer  of  shelves 
are  a  number  of  bars  performing  the  double 
function  of  distributing  the  material  on  to  the 
shelves  and  supporting  a  central  boss,  in  which 
rotates  a  shaft  carrying  a  number  of  radial  arms 
which  scrape  the  material  off  the  shelves,  thus 
causing  it  to  fall  through  a  current  of  air  on  to  the 
shelves  below.  Bolted  to  the  upper  flange  of  the 
cylinder  is  a  conical  casing  provided  at  the  top 
with  a  ventilator  for  the  removal  of  the  air.  Coaxial 
with  the  casing  is  a  small  vertical  shaft  carrjing 
a  disc  and  a  series  of  arms  which  rotate  inside  an 
inverted  conical  hopper.  A  horizontal  shaft  fitted 
as  a  screw  conveyor,  working  in  a  trough,  drives 
through  bevel  gearing  this  small  vertical  shaft  and 
conveys  the  material  into  the  conical  hopper  from 
which  it  passes  to  the  rotating  plate;  it  is  thrown 
outwards  from  the  plate  on  to  the  fixed  arms  and 
thence  drops  on  to  the  first  layer  of  shelves. 

— S.  G.  U. 

Drying  apparatus.  D.  J.  Watrous,  Assr.  to 
Airdry  Corp.  U.S.P.  1,419,707,  13.6.22.  Appl., 
21.7.20. 
A  series  of  nozzles  are  so  arranged  that  they  can 
be  individually  rotated  so  that  their  axes  point  in 
any  direction  within  a  limiting  angle  of  about  180°. 
Each  of  these  nozzles  is  connected  through  its  own 
valve  with  a  compressed  air  supply  pipe,  and  is 
fitted  with  an  electric  heating  coil  to  warm  the 
air  as  it  passes  through  the  nozzle.  The  valves  are 
operated  by  spindles  attached  to  hand-operated 
levers  held  in  the  open  position  by  means  of  pins, 
upon  the  removal  of  which  the  valves  are  auto- 
matically closed  by  springs.  The  spindles  also 
carry  a  device  for  operating  an  electric  switch,  so 
arranged  that  on  opening  the  valve  the  switch  is 
closed  and  a  current  flows  through  the  heating  coil 
of  that  particular  nozzle,  but  on  closing  the  valve 
this  switch  is  opened  and  the  current  cut  off  from 
the  heating  ooil. — S.  G.  U. 

Drying  machine.  J.  G.  Bassette,  Assr  to  Airdry 
Corp.  U.S.P.  1,419,712,  13.6.22.  Appl.,  21.7.20. 
The  casing  of  a  fan  is  supported  by  two  large 
trunnion  bearings  in  one  of  which  the  motor  required 
for  driving  the  impeller  is  housed.  The  other 
trunnion  acts  as  the  suction  pipe  of  the  fan  and  li 
fitted  with  an  electric  heater.  The  fan  casing  is 
provided  with  a  nozzle  through  which  the  heated  air 
is  discharged,  and  a  rib  which  extends  partly  round 
the  casing,  forming  a  friction  surface  concentric 
with  the  axis  of  rotation  of  the  casing,  and  upon 
which  a  shoe  is  pressed  by  a  spring.  This  rib 
terminates  in  a  cam  at  one  end  and  a  shoulder  stop 
at  the  other.— S.  G.  U. 


Vol.  XLI„  No.  15.] 


Cl.    I.— GENERAL;    PLANT;    MACHINERY. 


575  a 


Desiccator  [for  liquids].  H.  B.  Faber  and  \V.  H. 
Harding,  jun.,  Assrs.  to  Atomized  Products  Corp. 
U.S. P.  1,419,664,  13.6.22.     Appl.,  26.3.17. 

The  liquid  to  be  desiccated  is  sprayed  into  a 
current  of  heated  air  in  a  tower  and  the  moist  hot 
air  and  entrained  solids  are  passed  through  two 
"condensers,"  the  first  of  which  condenses  some 
moisture  upon  the  entrained  solid  particles  and 
delivers  both  to  the  supply  tank ;  the  second 
condenser  contains  a  coil  through  which  the  liquid 
from  the  supply  tank  is  circulated  and  is  pre- 
heated by  the  heat  in  the  saturated  air  after  it  has 
been  freed  from  solids. — B.  M.  V. 

Drying  apparatus.  C.  H.  Brown  and  A.  A.  Coldrey. 
E.P.  181,082,  2.3.21. 

The  patent  relates  to  mechanical  improvements  in 
apparatus  of  the  type  in  which  articles  to  be  dried 
are  carried  through  a  drying  chamber  by  a  con- 
veyor. 

Scrubber.  W.  G.  Laird,  Assr.  to  H.  L.  Doherty. 
U.S. P.  1,419,867,  13.6.22.     Appl.,  6.9.16. 

The  scrubber  is  made  up  of  a  number  of  flanged 
sections  bolted  together,  the  bottom  section  being 
provided  with  a  gas  inlet  and  liquor  outlet,  whilst 
the  top  section  is  fitted  with  a  liquor  inlet  and  a 
gas  outlet.  Each  of  the  intermediate  sections  is 
fitted  internally  with  a  channel  which  increases  in 
depth  towards  one  end.  Sloping  perforated  trays 
having  holes  sufficiently  small  to  prevent  the 
downward  passage  of  the  liquid  whilst  gas  is  passing 
upwards  through  the  perforations,  cover  the  space 
bounded  by  the  inner  edges  of  these  channels.  The 
vertical  edges  of  these  trays  dip  into  the  channels, 
thus  forming  a  seal  preventing  the  passage  of  the 
gas  between  the  edges  of  the  trays  and  the  sides  of 
the  apparatus.  The  trays  slope  alternately  from 
left  to  right  and  right  to  left  and  a  weir  is  pro- 
vided for  the  overflow  from  the  channel  at  the 
deepest  section  of  the  channel.  This  overflow  is 
directed  on  to  the  highest  point  of  the  tray 
beneath,  down  which  it  flows  to  the  deepest  portion 
of  the  channel  immediately  below  this  tray.  During 
its  passage  across  the  tray  gas  is  bubbled  through 
the  liquid.  The  slope  of  these  trays  can  be 
adjusted  from  outside  whilst  the  plant  is  in  opera- 
tion.—S.  G.  U. 

Separation  or  grading  of  powdered  materials  and 
the  treatment  thereof  by  air  or  other  gases  or 

vapours;  Effecting  the  ■ and  apparatus  to  be 

employed  therein.  W.  H.  Reynolds,  W.  W. 
Dickin,  and  G.  L.  T.  Kenyon.  E.P.  181,560, 
25.4.21. 

The  powdered  material  is  sprinkled  into  the  top  of 
a  tower  and  the  finer  or  lighter  material  drawn  off 
by  an  air  current  from  about  the  middle  of  the 
tower,   preferably   by   means   of   an  internal    axial 

ipipe  with  slits  or  perforations  in  its  circumference. 
— B.  M.  V. 

Centrifugal  separators.  G.  C.  Barnes  and  J.  R. 
Morgan.     E.P.  159,217,  21.2.21.     Conv.,  19.2.20. 

A.  conical  frame  is  formed  of  two  unequal  discs 
joined  by  a  series  of  screwed  rods  passing  through 
holes  drilled  near  their  outer  edges.  To  these  rods 
are  fixed  blades  so  as  to  form  a  helix  or  spiral  to 
assist  in  carrying  the  material  from  the  narrow  to 
the  wide  end.  Another  and  slightly  larger  conical 
rrame  is  made  in  the  same  manner,  but  using 
T-bars  instead  of  screwed  rods.  Frames  fitted  with 
nre  gauze  are  bolted  between  these  bars,  thus 
orming  a  conical  wire  gauze  cage.  To  permit  of 
he  discharge  of  material  too  coarse  to  pass  through 
•he  gauze,  this  does  not  extend  up  to  the  larger 
disc.  These  frames,  placed  one  within  the  other, 
ire  mounted  on  ball  bearings;  those  carrying  the 


smaller  frame  run  on  a  fixed  horizontal  shaft,  whilst 
the  second  pair  or  ball  bearings,  running  on  sleeves 
projecting  from  the  outer  surfaces  of  the  smaller 
pair  of  discs,  support  the  discs  used  in  the  larger 
cage.  The  sleeve  of  the  larger  disc  of  the  smaller 
frame  is  extended  to  carry  the  driving  pulley;  an 
extra  ball  bearing  between  the  shaft  and  sleeve  is 
fitted  at  the  outer  end.  Rotation  of  the  outer 
frame  is  effected  through  a  train  of  spur  wheels, 
worm  and  screw  gear,  and  bevel  wheels  arranged  at 
the  driving  end  of  the  machine.  The  shaft  round 
which  these  frames  rotate  is  hollow  and  divided 
into  two  portions.  At  the  end  of  this  shaft,  near 
the  smaller  end  of  the  frames,  a  hopper  with  worm 
gear  is  fitted,  the  feed  taking  place  through  the 
hollow  shaft  which  is  cut  away  underneath  for  this 
purpose.  The  point  of  distribution  of  the  feed  is 
regulated  by  a  sliding  plate  operated  by  a  rack  and 
pinion.  Two  pipes  enter  the  other  portion  of  the 
hollow  shaft  from  the  driving  end,  and  are  used 
for  the  supply  of  media  to  wash  or  dry  the  material 
during  its  passage  through  the  machine.  The 
frames  rotate  within  a  housing  so  arranged  that 
the  material  which  passes  through  the  gauze  is 
discharged  at  the  one  end,  whilst  the  coarse 
material  is  withdrawn  at  the  other. — S.  G.  U. 

Furnaces     of     steam     boilers    and    other     similar 

furnaces;  Heating  method  applicable  to  the . 

C.    Magnee    and    E.    Demeure.     E.P.    163,270, 
11.5.21.     Conv.,  12.5.20. 

The  advantages  resulting  from  the  decomposition 
of  carbon  dioxide  on  contact  with  the  coal  in  igni- 
tion are  utilised.  To  obtain  for  this  purpose  a 
mixture  in  regulated  proportions  of  air  and  inert 
products  at  the  desired  temperature,  without  using 
a  superheater,  a  portion  of  the  combustion  products 
is  sucked  from  the  furnace  by  air  under  pressure. 
The  air  is  injected  into  a  mixing  tube,  connected  at 
its  upper  part  directly  with  the  furnace  and  at  its 
lower  part  with  the  ash-pit,  and  provided  with 
means  for  regulating  the  supply  of  air  and  of  the 
products  recovered  from  the  furnace. — H.  H. 

Furnaces.     S.  A.  Sears  and  W.  R.  Twigg.     E.P. 
179,965,  11.11.20. 

In  a  furnace  with  a  double  set  of  preheating 
chambers  the  lower  portion  of  the  preheater  casing 
is  divided  into  two  by  a  central  brick  partition 
extending  the  full  depth  of  the  furnace.  Horizontal 
tiles  are  built  between  the  outer  walls,  and  the 
partition  thus  sub-divides  each  half  into  a  series  of 
parallel  chambers  of  rectangular  cross-section  ex- 
tending the  full  depth  of  the  furnace.  The  tiles 
have  a  series  of  holes  near  their  edges  into  which 
are  fitted  a  number  of  tubes  in  such  a  manner  that 
the  air  entering  the  lowest  chamber,  No.  1,  is  led 
through  one  set  of  tubes  past  chamber  No.  2  imme- 
diately overhead,  and  discharged  into  chamber 
No.  3,  from  which  it  passes  through  chambers 
Nos.  5  and  7,  etc.,  to  the  preheater  chamber.  The 
gas  enters  chamber  No.  2,  flows  past  chamber  No.  3 
into  chamber  No.  4  and  through  No.  6  to  the  pre- 
heater chamber.  Each  of  these  chambers  is  fitted 
with  tiles  which  cause  the  gas  or  air  to  flow  across 
the  chamber  and  back  again  before  reaching  the 
outlet  tube.  If  the  furnace  is  designed  for  regenera- 
tive working,  each  set  of  chambers  terminates  in  a 
preheating  chamber,  half  the  breadth  of  the  hearth, 
where  the  gas  and  air  mix  and  then  flow  through 
ports  on  to  the  hearth.  In  the  recuperative  design 
of  furnace  two  preheating  chambers,  placed  one 
above  the  other  and  extending  the  full  breadth  of 
the  hearth,  are  used,  each  chamber  being  connected 
with  the  hearth  through  its  own  set  of  ports.  When 
working  regeneratively  the  hot  spent  gases  pass 
downwards  through  one  6et  of  chambers,  while  the 
gas  and  air  travel  upwards  through  the  other  set 
in  the  manner  indicated  above.     The  flow  of  spent 

a2 


576  a 


Cl.    I.— GENERAL;    PLANT;    MACHINERY. 


[Aug.  15,  1922. 


gases,  air,  and  gas  can  be  directed  and  controlled 
by  change-over  valves.  When  working  as  a  re- 
cuperative furnace  the  hot  spent  gases  pa6s  down- 
ward through  the  6th,  4th,  and  2nd  chambers  of 
one  section,  and  the  7th,  5th,  3rd,  and  1st  chambers 
of  the  other  section,  the  gas  passing  up  the  remain- 
ing chambers  of  the  one  section  and  the  air  up  the 
remaining  chambers  of  the  other.  By  a  different 
arrangement  of  piping  the  furnace  can  be  adapted 
for  regenerative  and  recuperative  working.  The 
furnace  can  also  be  built  as  a  furnace  with  a  single 
set  of  preheating  chambers,  and  can  be  arranged 
for  either  regenerative  or  recuperative  working.  In 
this  design  only  the  air  is  heated,  the  gas  being 
blown  directly  on  to  the  hearth. — S.  G.  U. 

Annealing  kilns.  B.  Wallis.  E.P.  180,944,  20.8.21. 
In  an  annealing  kiln  the  fire-grate  is  placed  at  the 
middle  of  the  back  wall  and  the  entrance  door  at 
the  front  of  the  kiln  or  at  the  side  of  the  main  flue, 
so  as  to  provide  a  stronger  roof.  Four  short  down- 
casts in  the  floor  of  the  kiln  are  connected  with 
the  main  flue  at  a  central  point. — A.  B.  S. 

Cooling  and  liquefying  air  and  other  gases;  Process 

and  device  for  .     Heylandt  Ges.  fur  Appa- 

ratebau  m.b.H.,  and  M.  von  Unruh.  E.P.  167,144, 
11.3.21.     Conv.,  28.7.20. 

The  patent  relates  to  a  process  for  liquefying  air 
and  other  gases  of  the  type  in  which  high-pressure 
gas  is  divided  into  two  portions,  which  are  expanded 
with  and  without  doing  work  respectively,  and  in 
which  the  exhaust  from  the  expansion  engine, 
together  with  any  unliquefied  gas  remaining  from 
the  portion  which  is  expanded  without  doing  work, 
are  used  to  cool  the  latter  portion  of  the  gas,  before 
expansion,  in  a  heat  interchanger.  The  inter- 
changer  is  provided  with  an  extension  in  which  the 
combined  exhaust  gases  cool  further  both  the  in- 
coming streams  of  high-pressure  gas.  The  inlet 
valve  of  the  expanding  engine  is  entirely  within 
the  high-pressure  conduit  of  the  engine,  thus  avoid- 
ing leaks  to  the  external  air.  It  is  opened  by  the 
piston  just  before  the  latter  reaches  dead  centre, 
and  is  closed  by  the  high-pressure  air  behind  it  as 
soon  as  the  piston  has  moved  far  enough  on  the 
expansion  stroke  to  permit  this.  To  keep  the  clear- 
ance low  the  piston  head  and  cylinder  head  are 
made  frusto-conical.- — B.  M.  V. 

Precipitating  dust  from,  gases  by  electricity. 
Siemens-SchuckertwerkeGes.m.b.H.  E.P.  170,601, 
24.10.21.     Conv.,  22.10.20. 

In  a  plant  for  precipitating  dust  from  gases  by 
the  action  of  a  rotary  field,  the  brush-discharging 
electrodes  are  preferably  of  smaller  superficial  area 
than  the  others,  and  are  composed  of  a  number  of 
rods  surrounded  by  a  separating  electrode  of  large 
superficial  area.  The  former  are  connected  with 
the  individual  phases  of  a  polyphase  source  of 
current  of  such  high  voltage  that  substantial 
quantities  of  electricity  flow  from  the  charged  to 
the  separating  electrodes,  the  discharge  producing 
a  rotary  field.— J.  8.  G.  T. 

Insulator  for  electrodes  of  electrical  gas  purifiers. 
The  Lodge  Fume  Co.,  Ltd.  From  Metallbank  u. 
Metallurgische  Ges.  A.-G.    E.P.  181,284,  23.9.21. 

An  insulator  for  the  electrodes  of  electrical  gas 
purifiers  is  disposed  in  an  arch  or  recess  in  the  gas 
main,  preferably  in  the  gas  intake,  the  opening  of 
the  recess  being  turned  away  from  the  gas  current. 
The  interior  of  the  recess  is  accessible  from  outside 
through  doors,  and  the  gas-distributing  surfaces 
form  a  casing  for  the  insulators. — J.  8.  G.  T. 

neat-transferring  systems.   T.  Sugden  and  A.  Hall. 

E.P.  179,258,  28.1.21. 
A  con,  arranged  as  a  superheater  is  coupled  directly 


to  the  working  coil,  situated  in  the  chamber  or 
vessel  to  be  heated.  The  outlet  of  the  latter  coil 
is  connected  to  the  inlet  of  a  separator,  the  outlet 
of  which  is  coupled  to  the  suction  of  a  centrifugal 
pump  by  means  of  which  the  working  fluid  is 
returned  to  the  superheater  coil.  The  working  fluid 
can  thus  be  circulated  in  a  cycle  a  number  of 
times,  any  condensed  liquid  being  removed  from 
the  circuit  through  the  separator.  If  steam  is  used 
the  loss  due  to  condensation  is  made  up  by  con- 
necting the  plant  through  a  reducing  valve  with 
a  boiler.— S.  G.  U. 

Pulverisers   and   crushing    mills.      F.    G.   Brettell. 

From   Soc.   Anon.   Leg   Ateliers   Reunis.      E.   P. 

180,890,  25.5.21. 
A  series  of  hammers  are  arranged  around  the  peri- 
phery of  a  rotating  disc  within  a  casing,  the 
working  faces  of  the  hammers  being  of  larger  area 
than  the  rear  ones.  Radial  vanes  are  provided  on 
the  side  of  the  disc  remote  from  the  feed  in  order 
to  assist  in  the  pulverising  and  create  a  draught 
through  the  machine.- — B.  M.  V. 

Pulverising  or  grinding  apparatus.  The  Powdered 
Fuel  Plant  Co.,  Ltd.,  Assees.  of  Soc.  Anon.  La 
Combustion  Rationelle.  E.P.  181,290,  20.10.21. 
Conv.,  27.6.21. 

The  apparatus  is  constructed  with  a  number  of  rings 
of  closely  spaced  blades,  similar  to  a  steam  turbine, 
except  that  the  broader  working  faces  of  the  blades 
are  parallel  to  the  shaft,  the  material  being  caused 
to  travel  longitudinally  by  a  draught  provided  by  a 
fan  separate  from  or  contained  in  the  machine.  A 
preliminary  crushing  device  of  known  disintegrator 
type  may  be  incorporated,  and  the  "  turbine " 
vanes  may  be  so  shaped  as  to  be  set  in  motion  by 
air  under  pressure,  which  air  will  also  convey  the 
material  through  the  machine. — B.  M.  V. 

Ch-inding;  Fine  -.     H.   M.   Plaisted,   Assr.  to 

Williams  Patent  Crusher  and  Pulverizer  Co. 
U.S.P.  1,418,735,  6.6.22.  Appl.,  21.3.19. 
A  series  of  hammers,  the  heads  of  which  have 
convex  inner  and  outer  surfaces,  are  pivoted  on  a 
rotor  which  revolves  inside  a  cylindrical  chamber, 
the  hammer  heads  being  substantially  tangential  to 
the  inner  surface  of  the  casing.  The  material  to  be 
ground  is  fed  into  the  machine  from  a  hopper  placed 
so  that  its  discharge  is  tangential  to  the  chamber 
at  a  point  on  a  level  with  the  axis  of  the  rotor.  The 
finely  ground  material  is  discharged  through  a  pipe 
placed  well  above,  and  on  one  side  of  the  rotor,  and 
having  its  axis  parallel  with  the  axis  of  the  rotor. 
Provision  is  made  for  retaining  the  larger  paitul. .- 
within  the  casing  of  the  machine  and  returning 
them  through  passages  formed  by  guide  plates  to 
the  rotor  chamber. — S.  G.  U. 

Filter  for  wines,  sugar  liquors  and  the  like.  L. 
Tottereau.     E.P.  180,935,  21.7.21. 

The  filter  consists  of  a  number  of  pockets  of  filtei 
cloth  attached  by  nipples  to  a  collector  formed  by 
the  double  walls  of  the  containing  cylinder.  The 
pockets  are  maintained  in  an  expanded  condition 
by  means  of  woven  cord.  The  liquor  is  filtered  by 
passing  from  the  outside  to  the  inside  of  the 
pockete,  which  are  washed  by  circulating  a  water 
current  in  the  opposite  direction. — A.  G.  P. 

Filtration  of  colloidal  matter  from  liquid  mixtures; 

Vacuum .     W.  Mauss.     E.P.  181,123,  8.3.21. 

Colloidal  deposit  is  detached  from  the  surface  of  a 
vacuum  filter  leaf  by  a  thin  continuous  sheet  of 
water  impinging  at  a  slight  inclination  to  the  leaf 
surface  at  a  very  high  velocity  while  the  leaf  and 
the  nozzle  through  which  the  water  is  delivered  are 
moved  past  one  another.     Slight  air  pressure  may 


Vol.  XLI.,  No.  15.] 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


577  a 


be  set  up  during  stripping  to  cause  rucking  of  the 
filter  fabric  at  the  point  of  impact  of  the  water. 
The  leaves  may  be  oscillated  between  a  filter  tank 
and  a  stripping  tank,  and  means  actuated  from  the 
oscillating  shaft  may  be  provided  to  bring  the 
nozzles  into  operation  as  the  leaves  are  being  with- 
drawn from  the  stripping  tank. — H.  H. 

Evaporator.  H.  W.  Paulus,  Assr.  to  Royal  Baking 
Powder  Co.  U.S.P.  1,418,878,  6.6.22.  Appl., 
26.7.20. 

The  evaporator  consists  of  a  tank  containing  the 
liquor  to  be  evaporated  and  a  series  of  U-tubes 
immersed  in  the  liquor.  Means  are  provided  for 
supporting  the  U-tubes. — T   A.  S. 

Catalytic  processes  involving  gaseous  or  vapourous 

carbon     compounds;     Carrying     out     of     . 

Chemical  Fuel  Co.  of  America,  Assees.  of  E.  W. 
Stevens.    E.P.  160,466,  3.3.21.    Conv.,  18.3.20. 

See  U.S.P.  1,374,119  of  1921;  J.,  1921,  339  a.  The 
process  is  applicable  to  the  production  of  hydrogen 
from  water-gas  and  steam  and  to  the  cracking  of 
hydrocarbon  oils  in  presence  of  a  catalyst.  The 
sparking  is  produced  by  placing  the  catalyst  in 
circuit  with  a  source  of  high-potential,  rapidly 
oscillating  alternating  current. 

Centrifugal  decantation.  W.  Mauss,  Assr.  to  Con- 
tinuous Centrifugal  Separators,  Ltd.  U.S.P. 
1,419,285,  13.6.22.     Appl.,  19.2.20. 

See  E.P.  164,418  of  1920;  J.,  1921,  535  a. 

Vacuum  filter.  W.  Mauss,  Assr.  to  Continuous 
Centrifugals,  Ltd.  U.S.P.  1,419,286,  13.6.22. 
Appl.,  3.9.20. 

See  E.P.  176,395  of  1920;  J.,  1922,  315  a. 

Eeat  interchangers.  [Air  heaters.']  Merz  and 
■McLellan,  E.  G.  Weeks,  and  H.  H.  Baker.  E.P. 
181,501,   16.3.21. 

Filtration  of  liquids.     E.P.  181,044.     See  XIXb. 


Ha-FUEL;    GAS;    MINEBAL  OILS  AND 
WAXES. 

Coal;  Fundamental   study   of  Japanese   .      C. 

Iwasaki.     Tech.  Rep.  Tohoku  Imp.  Univ.,  1921, 
2,  235—275. 

In  continuation  of  his  previous  work  (J.,  1920, 
620  a),  the  author  has  investigated  the  physical 
properties  of  the  South  Sakhalin  coals.  The  results 
of  his  analyses  have  been  plotted  on  triangular 
diagrams,  and  it  is  shown  that  the  moisture  content 
of  the  coals  is  a  good  indication  of  their  caking 
or  non-caking  character.  Most  of  the  coals  are  of 
low  grade,  but  the  author  describes  a  cannel 
coal  of  a  caking  character,  although  the  volatile 
matter  is  very  high  for  a  coal  of  this  nature.  The 
coals  highest  in  moisture  are  the  non-caking  coals. 
Most  of  the  Sakhalin  coal  consists  of  fundamental 
matter,  and  it  belongs  to  the  sapropelic  species, 
whilst  charcoal  of  a  bulky  variety  occurs,  which  the 
author  describes  as  differing  entirely  from  the  fusain 
of  Stopes.  This  charcoal  is  supposed  to  have  been 
produced  by  forest  fires  during  the  process  of  drift 
formation,  and  occurs  mainly  in  the  coal  of  the 
Noborippo  group,  in  which  the  ash  is  very  low.  In 
general  the  ash  content  is  inversely  proportional  to 
:he  moisture  content,  from  which  the  author  con- 
:Iudes  that  the  water  is  an  essential  constituent 
>f  the  "  woody  "  matter.  The  original  vegetation 
if  the  region  differed  from  the  present  vegetation, 
ince  dicotyledon  fossils  have  been  found  in  the 
oai,  whilst  the  present  vegetation  is  coniferous. 

—A.  G. 


Coal;  The  oxidisobility  of and  the  determina- 
tion of  moisture.  E.  Mertens.  Bull.  Fed.  Ind. 
Chim.  Belg.,  1922,  361—364. 

A  sample  of  fat  coal  weighing  3  g.,  ground  to  pass 
through  a  sieve  of  4900  holes  per  sq.  cm.,  was  spread 
over  the  bottom  of  a  dish  of  4  cm.  diameter  and 
placed  in  a  drying  oven  heated  to  105°  C.  The  dish 
was  suspended  by  a  fine  non-oxidisable  metal  wire 
to  the  beam  of  a  balance,  the  wire  passing  through 
the  top  of  the  drying  oven  so  that  the  6ample  could 
be  weighed  without  removal  from  the  oven,  and  the 
oven  was  sufficiently  remote  from  the  balance  to 
prevent  any  error  due  to  heat.  The  coal  sample 
was  heated  for  a  period  of  1400  hours,  and  the 
results  were  plotted  against  time.  Two  curves  are 
reproduced,  one  showing  the  total  time  of  heating 
and  the  other  being  plotted  for  the  first  seven 
hours.  The  loss  in  weight  occurred  during  the 
first  quarter  of  an  hour,  after  which  period  the 
sample  steadily  gained  in  weight,  indicating  that 
oxidation  was  taking  place.  Distillation  with  xylol 
gave  approximately  the  same  figure  as  heating  for 
15  minutes  at  105°  C.  After  heating  for  about  36 
hours  the  weight  of  the  sample  was  the  same  as  at 
the  beginning,  the  loss  in  weight  of  1%  due  to 
evaporation  of  moisture  having  been  counter- 
balanced by  oxidation  to  this  extent.  At  the  end 
of  1400  hours  there  was  an  increase  in  weight  of 
5'97%  on  the  original  weight.  The  author  recom- 
mends the  determination  of  the  moisture  content 
of  coals  by  the  xylol  distillation  method,  using  a 
large  quantity  of  coal,  e.g.,  50  g.,  thus  eliminating 
the  error  due  to  oxidation. — A.  G. 

Combustion;    Temperatures    of   .     J.    Bronn. 

Z.  angew.  Chem.,  1922,  35,  328. 

The  value  of  the  temperature  of  combustion  for 
hydrogen  in  pure  oxygen  given  in  the  "  Chemiker- 
Kalender,"  viz.,  6670°  C,  corresponds  to  a  value 
of  0'4S5  for  the  specific  heat  of  steam,  but  this 
value  for  the  specific  heat  is  valid  only  for  steam  at 
a  temperature  of  800°  C.  If  the  value  0'85  be  used 
for  the  specific  heat  at  4000°  C.  of  steam  (this  value 
was  obtained  by  extrapolation  from  published  data 
for  temperatures  up  to  3000°  C),  the  calculated 
temperature  of  combustion  of  hydrogen  in  oxygen  is 
3900°  C.  Other  temperatures  of  combustion  calcu- 
lated in  a  similar  manner  are  5000°  C.  for  carbon 
monoxide,  4400°  C.  for  methane,  and  6200°  O.  for 
acetylene,  in  oxygen;  and  2260°  C.  for  hydrogen, 
2400°  C.  for  carbon  monoxide,  2070°  C.  for  methane, 
and  2670°  C.  for  acetylene,  in  air.  Methane  may  be 
used  with  advantage  for  welding  as  it  supplies  a 
large  amount  of  heat,  whilst  its  temperature  of 
combustion  is  not  so  high  as  to  injure  the  metals 
operated  on.  The  flame  temperatures  of  gases  are 
greatly  influenced  by  the  velocities  of  flame  propa- 
gation. The  velocities  of  flame  propagation  of 
ethylene,  acetylene,  and  benzene  differ. — H.  M. 

Benzene;    Determination    of   in    gases.     A. 

Krieger.     Chem.-Zeit.,   1922,  46,  468—469. 

The  method  of  determining  benzene  in  distillation 
gases  by  absorption  with  activated  charcoal  (c/. 
Berl,  J.,  1921,  567  a)  possesses  many  advantages 
over  the  petroleum  oil  absorption  method,  and  is 
recommended  for  works'  control.  The  petroleum 
method  is,  however,  quite  trustworthy;  it  is  the 
more  suitable  for  the  determination  of  benzene  when 
only  a  few  litres  of  gas  are  available,  and  may  be 
used  for  checking  the  accuracy  of  the  charcoal 
method.— W.  P.  S. 

Carbon  monoxide  and  small  quantities  of  combus- 
tible gases  [hydrogen  and  methane];  Determina- 
tion of .     G.  Wollers.     Stahl  u.  Eisen,  1922, 

42,  1050—1053. 
Caruon  monoxide  is  only  absorbed  completely  after 
at  least  two  treatments  with  ammoniacal  cuprous 


578  A 


Cl.   11a.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Aug.  15,  1922. 


chloride,  followed  by  a  third  treatment  with  a  fresh 
solution.  The  absorption  capacity  of  the  solution 
is  influenced  by  the  presence  of  hydrogen,  methane 
and  other  hydrocarbons;  nitrogen  has  the  least 
effect.  Hence  in  the  determination  of  carbon 
monoxide  in,  say,  producer  gas,  it  is  desirable  to 
remove  the  hydrocarbons  as  completely  as  possible. 
The  author's  method  is  first  to  dry  the  gas  over 
calcium  chloride  and  phosphorus  pentoxide,  con- 
dense out  the  hydrocarbons  by  cooling  to  -35°  C, 
and  finally  cool  to  -190°  C.  The  gas  thus  obtained 
is  essentially  carbon  monoxide,  nitrogen,  and 
hydrogen.  The  absorption  capacity  of  the  ammo- 
niacal  cuprous  chloride  solution  is  also  materially 
affected  by  the  concentration  of  the  carbon  mon- 
oxide in  the  gas.  In  calculating  the  calorific  value 
of  producer  gas,  coke-oven  gas,  or  coal  gas  from  an 
analysis  of  the  gas,  results  of  sufficient  accuracy 
are  obtained  by  assuming  that  the  heavy  hydro- 
carbons are  composed  of  J  benzol,  j}  ethylene,  and 
J  propylene,  and  a  mixture  of  such  composition  has 
a  calorific  value  of  approximately  18,500  cals.  per 
cub.  m.  For  the  determination  of  hydrogen  and 
methane  combustion  with  copper  oxide  or  combus- 
tion in  a  platinum  capillary  or  by  platinum  wire  in 
a  quartz  capillary  gives  more  accurate  results  than 
the  explosion  method.  A  method  of  determining 
hydrogen  by  means  of  palladium  black  is  also 
described.— J.  B.  F. 

Bitumen;  Attempted  isolation  of in  its  original 

form  from  bituminous  rocks.  E.  Hentze.  Z. 
angew.  Chem.,  1922,  35,  330—331. 
Instead  of  the  process  of  Narbutt  (cf.  J.,  1922, 
452  a),  which  consists  in  extracting  the  bitumen 
from  the  rock,  the  procedure  used  by  the  author 
consisted  in  dissolving  the  rock  from  the  bitumen. 
Green  kieselguhr  and  Esthonian  oil  shale  or  "  kuk- 
kersite  "  were  tested,  the  respective  contents  of 
bitumen  being  about  4%  and  28%.  Two  kg.  of 
each  sample  was  repeatedly  treated  with  dilute 
hydrochloric  acid  in  the  cold  and  washed  with  warm 
water  for  a  period  of  14  days  to  dissolve  calcium 
and  iron  compounds.  The  kieselguhr  was  then 
treated  for  four  weeks  and  the  kukkersite  for  14 
days,  first  with  dilute  and  then  with  40%  hydro- 
fluoric acid  to  remove  silica  and  clay.  The  residues 
were  still  not  free  from  ash,  and  they  were  extracted 
with  chloroform  to  obtain  the  bitumen  free  from 
inorganic  matter.  To  compare  the  extracted  bitu- 
men with  that  present  in  the  rock  the  extracts 
were  mixed  with  clay  and  calcium  carbonate  to 
represent  the  composition  of  the  original  rock  and 
distilled  in  a  glass  retort,  as  also  were  the  original 
rocks.  Isolated  bitumen  from  kieselguhr  gave  1% 
less,  and  the  bitumen  from  kukkersite  5%  less 
volatile  products  than  the  original  bituminous 
rock,  but  the  quantities  of  light-boiling  products  in 
the  resulting  tar  were  much  higher  in  the  isolated 
bitumens,  and  the  cokes  produced  by  the  latter 
were  richer  in  carbon.  Polymerisation  seems  to 
have  occurred  in  the  extracted  bitumens,  followed 
by  cracking  on  distillation.  It  is  proposed  to 
attempt  the  isolation  of  bitumens  in  an  unchanged 
state  by  electro-osmotic  separation  from  a  colloidal 
suspension. — H.  M. 

Alcohol-petrol;    Limit    of    inflammability    of    the 

vapours   of   the    system   and    of   a   ternary 

si/stcm  with  a  basis  of  alcohol  and  petrol.     R.  G. 
Boussu.     Comptes  rend.,  1922,  175,  30—32. 

A  study  of  the  variation  of  the  lower  limit  of  inflam- 
mability of  the  binary  system  alcohol-petrol  and  of 
the  ternary  system  petrol-alcohol-ether,  using  the 
method  of  Le  Chatelier  and  Boudouard  (cf.  J., 
1898,  651,  652).  The  results  verify  the  formula 
n/N  +  n'/N'  =  l,  where  N  and  N'  are  the  limits  of 
inflammability  of  'each  of  the  two  vapours  and  n 


and  n'  the  proportions  of  each  present  in  the 
mixture  under  examination. — W.  G. 

Hydrocarbons ;  Detonation  characteristics  of  blends 

of  aromatic  and  paraffin .     T.  Midgley,  jun., 

and  T.  A.  Boyd.     J.  Ind.  Eng.  Chem.,  1922,  14, 
589—593. 

The  effect  of  the  addition  of  varying  percentages 
of  benzene,  toluene,  and  xylene  on  the  detonating 
or  "  knocking  "  tendencies  of  paraffin  hydro- 
carbons when  used  as  hfol  in  automobile  engines 
was  investigated,  using  as  a  standard  of  comparison 
paraffin  fuels  containing  small  amounts  of  xylidine, 
which  in  common  with  other  aromatic  amines  exerts 
a  powerful  suppressing  action  on  detonation.  The 
relative  intensities  of  different  detonations  were 
measured  by  means  of  a  bouncing  pin  combined 
with  the  standard  pressure  element  of  the  Midgley 
Indicator  which  is  screwed  into  the  combustion 
chamber  of  the  engine.  When  detonation  occurs 
the  pin  jumps  upwards,  and  the  fluctuations  of  the 
pin  over  a  period  of  time  were  integrated  by  means 
of  contact  points  in  a  circuit  enclosing  a  sulphuric 
acid  voltameter.  The  bouncing  of  the  pin  closed 
the  points  and  the  amount  of  gas  evolved  was 
measured  and  compared  with  that  evolved  by  a 
fuel  of  similar  "  knocking "  characteristics  run 
immediately  before  and  after  it.  The  results  are 
recorded  in  tables  and  curves,  from  which  it 
appears  that  xylene  is  more  effective  than  toluene, 
and  toluene  than  benzene  in  suppressing  detona- 
tion. The  addition  of  a  small  percentage  of 
aromatic  hydrocarbon  to  the  paraffin  fuel  has  only 
a  slight  effect,  but  with  20%  or  more  the  effect 
increases  rapidly,  and  if  the  concentration  of  the 
aromatic  hydrocarbon  is  expressed  as  a  molecular 
percentage,  the  effectiveness  for  suppressing 
detonation  varies  directly  as  the  square  of  the 
concentration  up  to  concentrations  of  70%. 

— G.  F.  M. 

Floridin;  The  limits  of  the  adsorptive  receptivity 
of  .     M.  A.  Rakusin.     Petroleum,  1922,  19, 

797—798. 

A  1%  solution  of  Grozny  petroleum  free  from 
paraffin  was  decolorised  by  standing  with  5%  of 
floridin  (aluminium-magnesium  hydrosilicate)  for 
24  hours,  and  formed  a  polarimetrically  clear 
solution.  A  further  addition  of  floridin  did  not 
improve  the  result.  The  same  result  was  attained 
by  the  action  of  1  %  of  floridin  for  96  hours.  It  is 
suggested  that  much  smaller  quantities  of  floridin 
would  have  the  same  effect  if  the  time  of  contact 
were  prolonged,  and  that  its  action  resembles  that 
of  catalysts,  or  of  the  trypsins  in  digestion,  in 
which  the  quantity  of  enzyme  multiplied  by  the 
time  of  action  is  a  constant. — H.  M. 

Solubility  of  hydrocarbons  in  liquid  sulphur  dioxide. 
Zerner  and  others.    See  III. 


Patents. 

Brown  coals  and  peat;  Process  for  improvement  of 

inferior   .      K.    W.    J.    H.    Jacobs.      E.P. 

157,794,  10.1.21.    Conv.,  28.7.19. 

The  material  is  freed  from  water  and  the  bulk  of 
carbon  dioxide  by  distillation.  Heat  is  supplied  to 
the  material  until  the  temperature  reaches  250° 
— 270°  C,  when  an  exothermic  reaction  begins,  by 
the  heat  of  which  the  distillation  is  continued. 
By  this  means,  and  the  further  application  ot 
heat,  low-temperature  tar  is  distilled  off  until  a 
maximum  temperature  of  about  350°  C.  is  attained. 
The  resulting  residue  is  said  to  be  a  valuable  long- 
flame  fuel.  Superheated  steam  not  exceeding  about 
10%  of  the  weight  of  the  fuel  may  be  admitted  into 
the  distillation  vessel. — A.  R.  M. 


Vol.  XII.,  No.  15.] 


Cl.    IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


579  a 


Gas-coal  substitute;  Process  for  the  production  of 

a    fuel     capable     of     application    as     a     . 

K.  W.  J.  H.  Jacobs.  E.P.  157,795,  10.1.21. 
Conv.,  28.7.19. 
Brown  coal,  lignite,  peat,  or  the  like,  after  partial 
drying,  is  heated  in  a  vessel  capable  of  being  closed, 
the  heating  being  carried  out  with  the  outlet  open 
until  traces  of  low-temperature  tar  are  carried  over, 
whereupon  the  oultet  is  completely  or  nearly 
closed,  so  that  the  material  is  subjected  to  further 
external  or  spontaneous  exothermio  heating  under 
pressure.  The  resulting  product  is  a  good  quality 
semi-coke  which  may  be  used  as  a  substitute  for  gas- 
coal. — A.  R.  M. 

Combustion  of  gaseous  fuel  in  furnaces;  Means  for 

effecting    the   .      Soc.   Anon.    d'Exploit.   des 

Brevets    Cousin    dite    le    Chauffage    Industriel. 
E.P.  165,745,  30.6.21.    Conv.,  1.7.20. 

A  chamber  packed  with  refractory  chequerwork  is 
interposed  between  the  combustion  space  and  the 
working  space  of  a  furnace.  This  chamber  is  of  such 
depth  that  solid  particles  cannot  fall  into  the  work- 
ing space,  and  its  floor  extends  beyond  the  pile  of 
chequerwork  so  that  particles  cannot  fall  into  the 
combustion  space.  Doors  are  provided  to  facilitate 
replacement  or  re-arrangement  of  the  chequerwork. 
Porous  material  may  be  added  to  secure  surface 
oombustion  in  the  upper  part  of  the  chequerwork. 

— H.  Hg. 

Gas  manufacture.      G.    Helps.      E.P.    (a)   181,403, 
(b)  181,404,  and  (c)  181,665,  10.12.20. 

(a)  Coal  is  treated  in  a  combined  gas-producer  and 
retort  to  produce  a  rich  gas,  which  is  withdrawn 
from  the  top  of  the  retort,  and  producer-gas 
■  which  rises  in  an  annular  space  around  the  retort 
j  and  is  then  burnt  in  the  top  of  a  chamber  surround- 
ing an  independent  vertical  retort.  The  products 
of  combustion  pass  upwards  through  a  similar 
chamber  surrounding  a  retort  containing  coal  at 
a  lower  temperature.  The  chambers  are  so  inter- 
i  connected  that  the  producer-gas  may  be  burnt 
alternately  in  either  chamber  according  to  which 
retort  was  last  charged  with  coal.  The  volatile 
products  from  the  low-temperature  retort  are  passed 
into  the  retort  around  which  producer-gas  is  burn 
ing  at  a  point  about  one-third  of  ite  height  fron 
the  top;  all  the  products  thus  pass  through  the 
hottest  zone  before  they  are  finally  withdrawn 
from  the  retorts.  A  number  of  retorts  may  be 
arranged  in  conjunction  with  one  producer  and 
worked  either  in  series  or  in  parallel.  Part  of  the 
producer-gas  or  some  other  hot,  low-grade  gas  may 
be  passed  into  the  retorts  and  mixed  with  the  coal- 
gas,  (b)  Producer-gas  is  passed  intermittently 
through  a  vessel  containing  coke,  which  is  heated 
to  incandescence  by  the  alternate  admission  of  air. 
The  heated  gas  then  passes  downwards  through  a 
vertical  retort  containing  coal  undergoing  partial 
carbonisation  and  is  thereby  enriched.  The  waste 
gases  produced  by  blowing  air  through  the  coke  are 
passed  through  a  chamber  surrounding  the  retort, 
or  the  retort  may  be  placed  in  the  centre  of  the 
chamber  containing  the  incandescent  coke,  in  which 
case  the  waste  gases  pass  direct  to  a  chimney,  (c)  A 
number  of  retorts,  each  of  which  is  in  turn  heated 
by  the  combustion  of  producer-gas,  and  the  re- 
mainder of  which  are  heated  by  waste  gases  as 
described  above,  are  arranged  Ln  series. — H.  Hg. 

Gas  producer;  Convertible  heating  stove  and  . 

H.  C.  L.  Holden,  T.  G.  Tulloch,  and  D.  J.  Smith. 
E.P.  181,450,  8.3.21. 

An  anthracite  stove  of  the  slow-combustion  type 
is  provided  with  a  branch  pipe  fitted  with  two 
throttle  valves,  so  that  when  being  used  as  a  heat- 
ing stove  the   products  of  combustion   are  passed 


up  the  chimney  to  waste,  whilst  when  in  use  as  a 
producer  the  producer-gas  generated  is  deflected 
through  another  pipe  to  an  internal-combustion 
engine,  furnace,  or  the  like.  The  grate  is  provided 
with  an  annulus  containing  water,  the  level  of 
which  can  be  adjusted  externally,  and  which  pro- 
vides the  steam  for  use  in  generating  producer- 
gas.  The  grate  can  be  rocked  by  a  protruding  arm, 
which  effects  removal  of  the  ash  and  also  stirs  the 
fuel  bed  to  produce  better  gasification.  An  annular 
boiler  can  be  fitted  as  desired  to  utilise  the  heat  of 
combustion  of  the  anthracite. — A.  G. 

Hydrogen;  Methods  and  apparatus  for  production 

of [Ml  coal  carbonisation].    Cumberland  Coal 

Power    and   Chemicals,    Ltd.,   J.    H.    West,    and 
A.  Jaques.     E.P.  181,062,  9.2.21. 

The  gases  evolved  during  the  initial  stages  of  the 
carbonisation  of  coal  are  passed  together  with 
steam  over  partially  carbonised  coal  or  coke  at  a 
temperature  between  1000°  C.  and  1100°  C,  the 
carbonisation  being  effected  at  a  rate  sufficiently 
slow  to  allow  of  the  decomposition  of  nearly  all  the 
hydrocarbon  products  in  contact  with  the  hot  coke. 
Not  only  are  the  tarry  vapours  of  condensable 
hydrocarbons  decomposed,  but  also  a  high  percent- 
age of  the  so-called  non-condensable  gases,  e.g., 
ethylene  and  methane,  whereby  largely  increased 
yields  of  hydrogen  are  obtained.  The  appa- 
ratus consists  of  a  bank  of  six  ovens  arranged  to 
work  in  pairs,  the  individual  ovens  of  each  pair 
being  connected  by  means  of  detachable  pipes 
(provided  with  steam  jets)  secured  to  the  doors  of 
the  ovens  so  that  the  gases  can  pass  from  one  oven 
through  the  other  of  the  pair  before  passing  into 
a  common  delivery  conduit. — H.  R.  D. 

Gas;  Treatment  \_cleansing  and  enriching]  of . 

T.  G.  Tulloch  and  D.  J.  Smith.     E.P.  181,102, 
4.3.21. 

Gas  from  a  producer  is  freed  from  suspended 
particles  and  simultaneously  enriched  by  causing  it 
to  pass  through  a  wall  or  screen  of  absorbent 
material,  preferably  arranged  as  a  cylindrical  wick 
which  provides  an  enclosed  chamber,  closed  at  the 
bottom  by  a  seal  of  oil  or  other  enriching  medium 
and  at  the  top  by  a  gas-tight  casing,  the  inlet  to 
the  chamber  being  within  it  and  the  outlet  from 
the  apparatus  being  on  the  other  side  of  the  screen. 
A  by-pass  connexion,  which  may  be  wholly  or  partly 
closed  by  a  valve,  connects  the  inlet  with  the  outlet 
outside  the  cleansing  chamber.  A  constant  oil  level 
is  provided  by  means  of  a  float-feed  chamber,  and 
a  sludge-cock  or  similar  device  provides  means  for 
running  off  the  oil  or  deposited  refuse  from  the 
inclined  surfaces  of  the  bottom  of  the  apparatus. 

—A.  R.  M. 

Acetylene  gas;  Materials  for  purifying  — — .    J.  R. 

Booer,     and    The    District    Chemical    Co.,    Ltd. 

E.P.  181,571,  9.5.21. 
A  basic  purifying  material  is  made  by  incorporating 
kieselguhr  with  a  mixture  of  ferric  chloride  and 
ferric  oxide,  either  dry  or  hydrated,  and  not  more 
than  005%  of  mercuric  chloride  is  added.  After 
mixing,  the  material  is  left  to  stand  for  2 — 12 
months. — A.  G. 

Coal;  Coking .    F.  Puening.    U.S.P.  1,419,908, 

13.6.22.     Appl.,  30.11.17. 
A  layer  of  the  coal  to  be  coked  is  placed  between 
two  hollow  boxes,  which  are  then  heated  internally. 

—A.  G. 

Separating  oils  [from  emulsions];  Process  of . 

Trent   Process   Corp.,   Assees.    of   W.    E.    Trent. 

E.P.  167,738,  13.4.21.     Conv.,  11.8.20. 
The  process  is  designed  to  deal  with  such  emulsions 
as   "base  sediment,"   refining  acids,   and  sludges. 


580  a 


Cl.  Kb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING.        [Aug.  15,  1922. 


When  such  emulsions  are  agitated  with  comminuted 
carbon,  the  oil  and  carbon  unite,  forming  an 
agglomerate  from  which  the  water  and  the  other 
substances  separate.  The  carbon  used  is  fine  enough 
to  pass  through  a  100-  to  200-mesh  sieve,  and  the 
quantity  used  is  2  lb.  of  carbon  to  1  lb.  of  oil  in  the 
mixture.  The  oil-carbon  mixture  sinks  in  still 
water,  and  may  be  used  direct  aB  fuel  or  distilled 
to  recover  the  oil. — T.  A.  S. 

Fuel  for  internal  combustion  engines.  A.-G.  fur 
Anilin-Fabr.  E.P.  169,428,  17.6.21.  Conv., 
20.9.20. 
The  fuel  consists  of  a  mixture  of  hydronaphthalenes 
with  suitable  cyclohexanes,  e.g.,  a  mixture  of  50 — 
70%  of  methylcyclohexane  and  50 — 30%  of  tetra- 
hydronaphthalene. — T.  A.  S. 

Petroleum  or  other  hydrocarbon  oils;  Process  and 

apparatus  for  treating .    J.  P.  Persch.    E.P. 

181,034,  6.12.20. 
The  oil  is  treated  with  a  hot  gaseous  fluid,  prefer- 
ably air,  in  an  apparatus  so  arranged  that  an 
injector  effect  is  obtained,  the  oil  being  drawn  from 
bulk,  passed  through  tubes,  mixed  with  the  air,  and 
returned  to  the  bulk.  In  an  example  given,  oil 
of  38°  B.  (sp.  gr.  0833)  was  treated  for  30  mins. 
with  compressed  air  at  390°  P.  (200°  C).  The 
temperature  of  the  oil  did  not  exceed  152°  F. 
(67°  0.).  After  treatment,  the  oil  yielded  60%  of 
gasoline,  7%  of  lubricating  oil,  and  3%  of  heavy 
lubricating  oil.  The  gasoline  yield  from  the  original 
oil  was  25%.  An  oil  of  11°— 15°  B.  (sp.  gr.  0993— 
0966),  after  treatment  for  30  mins.,  was  much  less 
viscous  and  retained  this  property  indefinitely. 

— T.  A.  S. 

Hydrocarbon    material;    Process    of    making    un- 
saturated  .    A.  A.  Wells,  Assr.  to  S.  B.  Hunt. 

U.S. P.  1,418,414,  6.6.22.    Appl.,  9.10.16. 

Hydrocarbon  oils  are  cracked  under  high  pressure 
until  "  still  bottoms  "  of  a  tarry  consistency  are 
formed.  These  "  still  bottoms  "  are  distilled,  and 
the  distillate  cracked  again,  under  a  pressure  lower 
by  at  least  one  atmosphere  than  the  original  crack- 
ing pressure.  By  this  process  hydrocarbon  material 
is  obtained  rich  in  unsaturated  hydrocarbons,  which 
can  be  extracted  with  sulphuric  acid  without  undue 
rise  in  temperature. — T.  A.  8. 

Petroleum ;  Apparatus  for  treating .    L.  Clark. 

U.S.P.  1,418,621,  6.6.22.    Appl.,  14.3.18. 

On,  is  fractionated  or  cracked  by  heating  in  the 
presence  of  a  heated  fluid,  e.g.,  flue-gases.  The 
heated  gases  cause  circulation  of  the  oil  and  carry 
away  the  vapour.  The  apparatus  consists  of  a 
shell  suspended  in  a  chamber  to  provide  an  annular 
passageway.  The  bottom  of  the  shell  is  an  open 
cone.  A  central  pipe  conducts  the  heated  gas  down 
the  shell  and  discharges  it  at  the  bottom  of  the 
cone,  whence  it  rises  in  the  annular  space  and 
produces  a  circulation  of  the  oil  upwards  in  the 
annular  space  and  downwards  in  the  shell.  The 
apparatus  is  arranged  so  that  any  temperatures 
and  pressures  may  fee  used. — T.  A.  8. 

Gasoline;    Apparatus    for  recovery    of   from 

casing-head  gas.  W.  R.  McGinnis,  Assr.  to 
Pilsbry-Becker  Engineering  and  Supply  Co. 
U.S.P.  1,418,876,  6.6.22.    Appl.,  23.8.19. 

Two  scrubbers  are  used,  each  provided  with  baffles, 
refrigeration  apparatus,  and  a  sprinkling  head. 
Means  are  provided  for  passing  the  gas  down  one 
scrubber  and  up  the  other,  and  also  for  reversing 
the  direction  of  the  gas. — T.  A.  S. 

Oil  separator.    J.  C.  Pool.    U.S.P.  1,418,970,  6.6.22. 

Appl.,  18.2.20. 
An  apparatus  for  distilling  oil  from  rock  consists 
of  a  long  vertical  tube  divided   into  preheating, 


distilling,  and  cooling  sections.  Arrangements  are 
provided  for  drawing  off  the  volatile  oils  from  the 
distilling  sections,  for  conveying  heat  from  the  dis- 
tilling and  cooling  sections  to  the  preheating 
section,  and  for  the  discharge  of  the  residue  from 
the  bottom  of  the  tubes. — T.  A.  S. 

Emulsions;    Process    for    resolving    .      H.    A. 

Gill.      From   The  Sharpies  Specialty  Co.      E.P. 
180,447,  1.6.22. 

Emulsions  are  resolved  by  adding  to  them  col- 
loidal solutions  soluble  in  the  continuous  phase  and 
which  tend  to  reverse  the  emulsion.  Soap  may  be 
added  to  a  water-in-oil  emulsion  by  preparing  a 
reagent  soluble  in  oil  and  yet  containing  soap. 
Such  a  reagent  containing  25%  of  sodium  soap,  10% 
of  water,  and  65%  of  oleic  acid  may  be  prepared  by 
adding  excess  of  oleic  acid  to  a  solution  of  caustio 
soda  of  30°  B.  The  addition  of  1%  of  a  reagent 
containing  40%  of  water,  35%  of  resin,  and  25% 
of  resin  soap,  with  stirring,  to  a  viscous  oil 
emulsion,  followed  by  centrifuging,  resulted  in  a 
separation  of  water  from  the  emulsion. — T.  A.  S. 

Hydrocarbons ;  Process  of  separating  and  topping 

from   a   water    mixture.      W.    A.    Brown. 

U.S.P.  1,419,610,  13.6.22.     Appl.,  24.2.19. 

The  mixture  is  heated  under  a  pressure  sufficient 
to  prevent  the  vaporisation  of  the  water,  thereby 
inducing  the  separation  of  the  water  from  the  oil. 
The  hydrocarbons  are  then  heated  without  heating 
the  water,  pressure  being  still  maintained,  and  ou 
vapours  are  withdrawn. — T.  A.  S. 

Low-boiling    hydrocarbons;    Process   for    the    con- 
tinuous production  of  from  petroleum  oils. 

R.  W.  Hanna,  Assr.  to  Standard  Oil  Co.  of  Cali- 
fornia.  U.S.P.  1,419,378,  13.6.22.   Appl.,  19.1.20. 

The  oil  is  distilled  under  reduced  pressure  so  as 
to  prevent  cracking,  the  heavy  oils  being  preferably 
withdrawn  continuously.  The  high-boiling  dis- 
tillates to  be  cracked  are  carried  forward  to  an 
apparatus  kept  at  a  pressure  higher  than  atmos- 
pheric and  a  temperature  sufficient  for  cracking. 
The  addition  of  a  solvent  oil  to  the  oil  to  be  cracked 
prevents  the  formation  of  deposits  in  the  system. 
The  cracked  products  and  residues  are  continuously 
removed. — T.  A.  S. 


J.   Metzger,   Assr. 
U.S.P.  1,419,746, 


Acetylene  [storage]   tank.     F. 
to  Air  Reduction  Co.,   Inc. 
13.6.22.     Appl.,  19.11.20. 

See  E.P.  180,273  of  1922;  J.,  1922,  536  a. 

Explosive   gases   [acetylene"]    dissolved  in  liquids; 
Porous  charge  for  containers  serving  for  storage 

of  .     E.  Klebert,   Assr.  to  J.  Pintsch  A.-G. 

U.S.P.  1,419,862,  13.6.22.     Appl.,  3.1.20. 

See  E.P.  135,511  of  1919;  J.,  1920,  684  a. 

Bituminous  shales;   Treating  .     J.   H.   Ginet. 

E.P.  181,126,  9.3.21. 

See  U.S.P.  1,371,160  of  1921;  J.,  1921,  291  a. 

Drying  peat.     E.P.  181,035.     See  I. 

Feeding    fine    materials    to    gas   producers.     E.P. 
180,396.     See  X. 


Hb—  DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Retort;  The  "  fusion  "  patent  rotary .      0.  J. 

Goodwin.      South    Wales    Inst.    Eng.,    20.4.22. 

[Reprint.]     12  pages. 
The  retort  is  designed  for  the  recovery  of  oils  from 
coal,  shale,  etc.     It  consists  of  an  inner  tube  18  in. 


Vol.  XLI.,  Xo.  15.] 


Cl.  III.— tar  and  tar  products. 


581a 


in  diam.,  in  which  is  situated  eccentrically  a  four- 
or  six-winged  breaker  or  scraper,  which  is  partially 
carried  round  by  the  rotation  of  the  tube  and  then 
falls  back,  striking  a  glancing  blow,  and  so  keeping 
the  heated  surfaces  free  from  scale,  breaking  up 
the  material  and  preventing  caking,  deposition  of 
carbon,  and  "  cracking."  This  tube  is  surrounded 
by  an  outer  rotating  tube,  about  2  ft.  6  in.  in 
diam.,  which  is  directly  heated  by  the  combustion 
of  gases  in  a  chamber.  The  material  under  treat- 
ment is  fed  into  the  inner  tube,  and  passing  the 
length  of  that  tube  returns  through  the  outer  tube, 
from  which  it  is  discharged.  The  vapours  evolved 
pass  the  length  of  the  outer  tube,  return  through 
the  inner  tube,  and  are  thence  discharged.  A 
rubbing  joint  made  of  flexible  steel  and  asbestos 
prevents  the  escape  of  vapours  at  the  junction  of 
the  two  tubes.  The  coke  produced  is  in  a  finely 
divided  state,  and  would  require  briquetting  for 
most  industrial  purposes.  73"6  galls,  of  oil  was 
obtained  from  Esthonian  shale,  51'8  galls,  from 
Nova  Scotia  torbanite,  131'7  galls,  from  Australian 
torbanite,  and  52'5  galls,  from  Kimmeridge  shale 
per  ton  of  material.  The  carbon  content  of  the 
residue  varied  from  9"50%  to  26%.  There  was 
practically  no  "  cracking  "  of  the  distillation 
products. — H.  M. 

Patents. 

Thermionically-active    substance    [filament'].       W. 

Wilson,   Assr.  to  Western  Electric  Co.,   Incorp. 

U.S. P.  1,419,530,  13.6.22.  Appl.,  12.8.18. 
A  thermionically-active  filament  consists  of  a  core 
of  a  ductile  metal  of  the  iron  group  coated  with 
strontium  and  barium  oxides.  The  activity  is 
comparable  with  that  of  a  platinum  filament 
similarly  treated.— J.  S.  G.  T. 

Peat  and  the  like;  Process  for  the  distillation  and 

coking  of  raw  .       A.  J.  H  Haddan.       From 

Torfverwertungsges.  Pohl  und  Von  Dewitz.    E.P. 
158,513,  24.1.21. 

Seb  G.P.  337,097  of  1920;  J.,  1921,  618  a. 

Electric  lamp  bulbs  or  the  like;  Evacuation  of . 

Patent-Treuhand-Ges.      fur      Elektrische     Gliih- 
lampen.     E.P.  165,406,  22.6.21.     Conv.,  22.6.20. 

See  U.S. P.  1,410,665  of  1922;  J.,  1922,  363  a. 


III.— TAR  AND  TAD  PD0DUCTS. 

Hydrocarbons  and  fats;  Solubility  of in  liquid 

sulphur  dioxide.     E.  Zerner,  H.  Weiss,  and  H. 
Opalski.    Z.  angew.  Chem.,  1922,  35,  253—256. 

Weighed  quantities  of  the  oils  under  investigation 
and  liquid  sulphur  dioxide  were  heated  in  sealed 
hard  glass  tubes,  placed  in  a  bath,  and  the  tempera- 
ture at  which  turbidity  was  produced  was  observed. 
The  commercial  sulphur  dioxide  used  contained 
98'85%  of  sulphur  dioxide,  056%  of  water,  and 
0"67%  of  oily  residue.  Toluol,  n-tetradecane, 
n-pentatriacontane,  decahydronaphthalene,  tetra- 
hydronaphthalene,  and  American  kerosene  were 
tested,  also  castor,  rape,  olive,  and  linseed  oils  and 
bone  fat.  The  graphs  in  all  cases  show  a  maximum. 
Paraffins  are  the  least  soluble,  naphthenes  more  so, 
and  aromatic  and  unsaturated  compounds  are  easily 
soluble.  The  solubility  decreases  with  increase  in 
molecular  weight.  Sulphur  dioxide  shows  great 
solubility  in  hydrocarbons. — H.  M. 

Catalytic  hydrogenations  under  pressure  in  the 
presence  of  nickel  salts.  I.  Indene  and 
acenaphthene.  J.  von  Braun  and  G.  Kirschbaum. 
Ber.,  1922,  55,  1680—1686. 

The  method  is  essentially  that  due  to  Schroeter 
(J.,     1922,     133  a),    hydrogenation    being    effected 


under  a  pressure  of  10 — 15  atm.  at  a  suitable  tem- 
perature in  an  autoclave  provided  with  stirring 
gear  and  in  the  presence  of  a  nickel  catalyst.  At 
200°  C.  indene  is  very  readily  transformed  into 
hydrindene,  b.p.  176°  O.,  the  yields  being  theo- 
retical. At  210°  O.  technical  acenaphthene, 
purified  by  a  single  crystallisation  from  alcohol,  is 
rapidly  and  quantitatively  reduced  to  tetrahydro- 
acenaphthene  (tetraphthene),  b.p.  115°  O.  (12 
mm.).  The  latter  is  distinguished  from  hydrin- 
dene and  tetrahydronaphthalene  by  its  ready 
susceptibility  to  oxidising  agents.  It  is  stable 
when  preserved  in  closed  vessels  and  becomes 
coloured  merely  pale  yellow  when  exposed  to  air, 
but  behaves  towards  permanganate  as  an  un- 
saturated compound.     (Cf.  J.C.S.,  August.) 

— H.  W. 

Isoquinoline  and  the  Isoquinoline  Beds.  J.  E.  G. 
Harris  and  W.  J.  Pope.  Chem.  Soc.  Trans.,  1922, 
121,  1029—1033. 

Isoquinoline  was  extracted  from  the  fraction  of 
commercial  coal-tar  quinoline  boiling  at  230° — 
255°  C.  by  taking  advantage  of  its  more  powerful 
basic  properties.  387  g.  of  the  mixed  bases  was 
shaken  with  600  c.c.  of  4  2V  sulphuric  acid,  which 
left  about  20%  undissolved.  The  sulphuric  acid 
solution  was  then  treated  with  successive  quantities 
of  4  TV  ammonia  in  sufficient  amount  to  liberate 
about  20%  of  its  content  in  base,  which  was  re- 
moved by  extraction  with  benzene.  After  eleven 
treatments  about  6'9%  of  the  original  base  remained 
in  sulphuric  acid  solution,  containing  20 — 30%  of 
isoquinoline.  This  was  then  liberated  with 
ammonia  and  purified  by  recrystallisation  of  the 
acid  sulphate  from  alcohol.  Pure  isoquinoline 
hydrogen  sulphate  melts  at  2065°,  and  the  pure 
base  liberated  therefrom  boils  at  242'5°  C,  some- 
what higher  than  previously  recorded  in  the  litera- 
ture. Isoquinoline  Red  was  obtained  in  70%  yield 
and  free  from  inorganic  matter  by  heating  isoquino- 
line, quinaldine,  and  benzotrichloride  with  alu- 
minium chloride  as  condensing  agent.  It  was 
purified  by  recrystallisation  from  boiling  water. 
By  substituting  p-toluquinaldine  or  6-ethylquin- 
aldine  for  quinaldine  in  the  above  preparation 
6'Methylisoquinoline  Red,  or  6'-Ethylisoquinoline 
Red  was  obtained.— G.  P.  M. 

Patents. 

Anthracene ;  Process  of  producing  high-percentage 

pure  .     L.  Weil.     U.S.P.  1,419,186,  13.6.22. 

Appl.,  21.12.21. 
Crude  anthracene  is  distilled  with  petroleum  hydro- 
carbons of  b.p.  about  300°  C,  and  the  anthracene 
which  crystallises  from  the  distillate  is  separated 
from  the  residual  oil. — L.  A.  C. 

m-Hydroxybenzaldehyde ;  Production  of .    J.  B. 

iSlimm,  Assr.  to  National  Aniline  and  Chemical 
Co.,  Inc.  U.S.P.  1,419,695,  13.6.22.  Appl.,  6.1.21. 
A  solution  of  a  m-aminobenzaldehyde-bisulphite 
addition  product  is  diazotised,  and  the  solution  of 
the  diazonium  compound  is  heated  to  remove 
nitrogen  and  sulphur  dioxide  simultaneously. 

— L.  A.  C. 

Phenylglycine    bodies;    Method    of    making    . 

L.    E.    H.    Cone,    Assr.    to    Dow    Chemical    Co. 

U.S.P.  1,419,720,  13.6.22.  Appl.,  22.3.18. 
A  salt  of  chloroacetic  acid  is  dissolved  in  a  cold 
aqueous  solution  of  aniline,  and  the  solution  added 
to  a  hot  aqueous  solution  of  aniline  to  form  the 
aniline  salt  of  phenylglycine.  The  freshly  precipi- 
tated phenylglycine  is  washed  with  a  cold  aqueous 
solution  of  aniline. — L.  A.  C. 


582  a 


Cl.  IV.— colouring  matters  and  dyes. 


[Aug.  15,  1922. 


IV.-C0L0U8ING  MATTERS  AND  DYES. 

Indigoid    dyes    of    the    phenanthrene    and    indene 
series.     P.  Friedlander,  W.  Herzog,  and  G.  von 
Voss.     Ber.,  1922,  55,  1591—1596. 
2-Thionaphthene-9'-phenanthreneindigo   (annexed 
formula),    dark    violet,    almost    black    crystals, 


C.H, 


/CO\ 


oc 


/\. 


\ 


\/ 


is  readily  prepared  by  the  addition  of  a  few  drops 
of  concentrated  hydrochloric  acid  to  a  boiling  solu- 
tion of  3-hydroxythionaphthene  and  phenanthra- 
quinone  in  acetic  acid;  it  gives  dull  violet  shades  on 
the  textile  fibres  from  a  yellow  vat.  It  is  remark- 
able for  its  resistance  towards  solutions  of  alkali 
hydroxides,  being  far  more  stable  in  this  respect 
than  thionaphtheneacenaphtheneindigo  (Thio- 
indigo  Scarlet  2  G).  /?-Ketohydrindene  condenses 
with  one  proportion  of  isatin  chloride  giving 
2-indoIe-l'-indaneindigo,  which  is  also  produced 
from  /3-ketohydrindene  and  o-isatinanilide  in  the 
presence  of  acetic  anhydride.  The  dyestuff  is  de- 
composed with  great  difficulty  by  solutions  of  alkali 
hydroxides;  it  gives  very  intense,  dark  bordeaux 
shades  on  wool  from  a  pale  yellow  hydrosulphite 
vat.  The  similar  dyestuff  from  /3-ketohydrindene 
and  dibromoisatin  chloride  is  described.  Thio- 
naphthenequinone-2-anil  and  /3-ketohydrindene  give 
2-thionaphthene-l'-indaneindigo, 

C,H4<  C°  >C :  C<  CC°  >  CH* 

reddish  violet  needles,  which  dyes  textile  fibres  from 
a  yellow  vat  in  redder  shades  than  the  correspond- 
ing indole  dyestuff.  Similarly,  thionaphthene- 
quinone-2-anil  and  ay-indanedione  yield  2-thio- 
naphthene-2'-indoneindigo, 

C„H4<  Cg°  >C :  C<  g°  >C6H, 

6lender,  reddish-violet  needles.  (fif.  J.C.S., 
August.)— H.  W. 

NN'-Diphenylindigotin.      P.    Friedlander    and    K. 
Kunz.     Ber.,  1922,  55,  1597—1607. 

N-Phenylanthkanmo  acid  is  converted  by  hot 
formaldehyde  solution  (30%)  into  the  so-called 
formalide, 

CeH.<CO ° 

6    *    N(C,HB).CHa 

m.p.  89°  C,  which  is  transformed  by  cold  concen- 
trated potassium  cyanide  solution  into  the  nitrile, 
C03H.C6H,.N(CcH5).CH3CN,  m.p.  133°— 134°  C. 
The  latter  is  hydrolysed  to  N-diphenylglycine-o- 
carboxylic  acid,  C62H.CBH4.N(CcH5).CH2.COaH, 
m.p.  160° — 163°  C.  (decomp.),  which  is  transformed 
by  sodium  acetate  and  acetic  anhydride  or  by 
sodium  hydroxide  at  190° — 200°  C.  into  phenylin- 
doxyl.  This  could  not  be  caused  to  crystallise.  It 
is  oxidised  by  potassium  ferricyanide  in  faintly 
alkaline  solution  to  diphenylindigotin,  almost  black, 
lustrous  plates,  in  which  the  presence  of  the  phenyl 
groups  attached  to  the  nitrogen  atoms  so  lessens 
the  stability  of  the  molecule  that  the  substance  has 
no  value  as  a  vat  dyestuff.  The  shade  is  displaced 
markedly  towards  green  but  not  to  so  great  an 
extent  as  with  the  methyl  derivative.  The  corre- 
sponding di-4-chlorophenylindigotin  is  scarcely  dis- 
tinguishable in  shade  and  properties  from  the 
chlorine-free   dyestuff.     (Cf.   J.C.S.,    August.) 

— H.  W. 


Isohwmatein;  Synthesis  of  .    Synthesis  of  iso- 

brazilein  and  certain  related  anhydropyranol 
scdts.  II.  H.  G.  Crabtree  and  R.  Robinson. 
Chem.  Soc.  Trans.,  1922,  121,  1033—1041. 

Isohwmatein  was  synthesised  from  veratrylidene- 
gallacetophenone  dimethyl  ether  by  hydrogenation 
of  this  to  its  dihydro  derivative,  and  boiling  the 
latter  with  formic  acid  and  anhydrous  zinc  chloride, 
whereby  an  isohsematein  tetramethyl  ether  salt  was 
obtained,  and  isolated  as  its  ferrichloride  which 
was  found  to  be  identical  with  the  ferrichloride 
obtained  from  hsematein  through  pentamethyldi- 
hydrohaemateinol.  The  salt  forms  haematite-red 
needles  with  a  green  reflex,  m.p.  191°  C.  (with 
decomp.).  On  demethylation  by  warming  with 
concentrated  sulphuric  acid,  and  converting  the 
sulphate  into  hydrochloride,  isohsematein  hydro- 
chloride was  obtained  as  orange  needles.  The 
brownish-red.  shades  given  by  the  synthetic  sub- 
stance and  that  obtained  from  haematoxylin  on 
aluminium-mordanted  cloth  were  identical  and 
behaved  in  the  same  way  on  soaping  and  on  treat- 
ment with  sodium  hypochlorite  solution. — G.  F.  M. 

Dyes-tuffs  from  Purpura  aperta  and  P.  lapillus.    P. 
Friedlander.     Ber.,  1922,  55,  1655—1658. 

The  dyestuff  obtained  from  Purpura  aperta  appears 
to  be  identical  with  6.6'-dibromoindigotin  as  far  as 
elementary  analysis,  solubility,  tinctorial  pro- 
perties, and  absorption  spectrum  allow  a  judgment 
to  be  formed.  The  dyestuff  from  P.  lapillus  is  pro- 
bably also  a  dibromoindigotin.— H.   W. 

Anthocyanidins ;     Distribution     of     in     the 

coloured  organs  of  plants.  St.  Jonesco.  Comptes 
rend.,  1922,  174,  1635—1637. 

The  anthocyanidins,  either  as  a  coloured  pigment 
or  in  the  free  state,  do  not  exist  in  all  coloured 
tissues  which  contain  anthocyan.  They  appear  to 
be  characteristic  of  pure  red  organs,  but  are  re- 
placed by  a  very  intense  yellow  pigment  in  the  blue, 
violet,  or  reddish-purple  organs,  in  which  the  antho- 
cyanidins are  entirely  absent.  This  yellow  pigment 
is  not  coloured  by  warming  with  20%  hydrochloric 
acid.  Its  presence  has  been  detected  in  the  violet- 
red  leaves  of  beetroot,  the  violet  flowers  of  Gladiolus 
and  Cobcea  scandens,  the  reddish-purple  flowers  of 
Canna  and  of  a  cultivated  rose,  and  the  blue  flowers 
of  Centaur ea  cyanus. — W.  G. 

Isoquinoline  Beds.    Harris  and  Pope.    See  III. 

Stereoisomeric  catechins.     Freudenberg  and  others. 
See  XV. 

Seduction  of  flavanone. 
See  XV. 


Freudenberg  and  Orthner. 


Patents. 
Colouring  matter  of  the  anthracene  series;  Produc- 
tion of  a .    A.  H.  Davies,  R.  F.  Thomson,  J. 

Thomas,  and  Scottish  Dyes,  Ltd.  E.P.  181,304, 
27.11.20. 
A  vat  dyestuff  which  dyes  cotton  brilliant  greenish- 
blue  shades  of  excellent  fastness  to  chlorine,  acids, 
and  alkalis,  is  obtained  by  treatment  of  tho  oxida- 
tion product  of  dibenzanthrone  with  dimethyl 
sulphate.  Example:  10  pts.  of  anhydrous  sodium 
carbonate  and  10  pts.  of  dimethyl  sulphate  are 
added  to  10  pts.  of  the  dried  oxidation  product  of 
dibenzanthrone  suspended  in  100  pts.  of  nitro- 
benzene, and  the  mixture  is  boiled  for  3  hrs.,  after- 
wards cooled,  then  10  pts.  of  sodium  carbonate  dis- 
solved in  200  pts.  of  water  is  added  and  the  nitro- 
benzene removed  by  steam  distillation.  The  product 
is  then  filtered,  wdiereby  a  bluish-green  paste  of  the 
dyestuff  is  obtained.  The  dyestuff  crystallised  from 
nitrobenzene  has  the  composition  CjtH,,Oj(0(  II  ] 
and  dissolves  in  sulphuric  acid  with  a  reddish-violet 


Vol.  XII.,  No.  15.] 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


5SS 


colour.  It  forms  a  brown  amorphous  compound 
when  treated  with  sulphuric  acid  of  about  80%. 

—A.  J.  H. 

o-Hydroxyazo  dyes.  [Vat]  dyes,  (a)  R.  Haugwitz, 
(b)  W.  Herzberg  and  G.  Hoppe,  Assrs.  to 
Akt.-Ges.  fur  Anilin-Fabr.  U.S.P.  (a)  1,419,500 
and  (b)  1,419,502,  13.6.22.  Appl.,  (a)  30.8.21  and 
(b)  7.12.21. 

(a)  Sulphonic  acids  of  the  azo  dyes  derived  from 
diazotised  aromatic  o-hydroxyamino  compounds 
and  a  monohydroxy  derivative  of  quinoline  yield 
bordeaux  to  vioLeM>rown  shades  on  chrome 
mordanted  wool,  (b)  The  condensation  products 
obtained  by  heating  a  1.4-quinonoid  compound 
halogenated  in  the  quinonoid  nucleus  with  an 
oxazine  yield  vats  which  dye  fibrous  material  yellow 
to  orange  shades  fast  to  chlorine  and  washing. 

— L.  A.  C. 

Ortho\hydr~\oxyazo  dyes.  W.  Herzberg  and  O. 
Scharfenberg,  Assrs.  to  A.-G.  fur  Anilinfabr. 
U.S.P.  1,419,501,  13.6.22.    Appl.,  30.8.21. 

See  E.P.  168,681  of  1920;  J.,  1921,  731  a. 


V.-FIBBES;  TEXTILES;  CELLULOSE; 
PAPER. 

Oxycellulose.     E.  Heuser  and  F.  Stockigt.     Cellu- 
lose-Chem.,  1922,  3,  61—74. 

The  aldehyde  character  of  oxycellulose  has  been 
well  established  for  a  long  time.  Of  the  other 
characteristics  the  property  of  yielding  furfural 
has  also  been  previously  recorded.  The  yield  of 
furfural,  however,  is  not  large  and  only  becomes 
eubstantial  in  oxycellulose  residues  which  have 
suffered  large  losses  in  the  course  of  their  prepara- 
tion. Raw  cotton  had  a  furfural  value  of  0'9%, 
and  this  was  reduced  to  0'5%,  and  even  down  to 
0'3%,  by  digestion  under  pressure  with  water  or 
dilute  sodium  hydroxide.  Oxycellulose  preparations 
generally  gave  furfural  values  below  1  %  ;  a  pre- 
paration made  with  bromine  and  calcium  carbonate 
showed  over  2%  and  the  maximum  values,  ranging 
from  2T2%  to  3'89%  in  a  very  extremely  oxidised 
residue  were  afforded  by  oxycelluloses  prepared  by 
means  of  chromic  acid.  No  formation  of  methyl- 
furfural  groups  was  detected  as  the  result  of  oxida- 
tion. A  further  characteristic  of  oxycellulose, 
definitely  established  by  the  authors,  is  the  pro- 
duction of  carbon  dioxide  on  distillation  with  12% 
hydrochloric  acid;  this  was  determined  by  Lefevre's 
method  (cf.  Meyer,  Analyse  u.  Konstitution  org. 
Verb.,  III.,  587)  for  the  estimation  of  glucuronic 
acid.  The  quantities  of  carbon  dioxide  obtained 
rarely  exceeded  1  % .  Here  again,  the  maximum 
value  of  1"32%  was  afforded  by  the  highly  oxidised 
oxycellulose  prepared  by  means  of  chromic  acid, 
while  oxycellulose  prepared  by  Knecht's  perman- 
ganate method  yielded  1'04%  .  As  a  qualitative  test 
for  oxycellulose,  Tollens'  /3-naphthoresoreinol  test 
for  glucuronic  acid  (J.,  1908,  716)  may  be 
utilised.  By  digestion  under  pressure  with  1% 
sulphuric  acid,  the  major  portion  of  the  substance 
which  yields  furfural  and  carbon  dioxide  is  6plit 
off  by  hydrolysis,  and  a  barium  salt  was  obtained 
which  showed  many  of  the  reactions  of  glucuronic 
acid  but  was  not  identical  with  barium  glucuronate. 
This  substance  is  regarded  as  the  "pure"  oxy- 
cellulose which  occurs  only  in  small  quantities  in 
combination  with  a  portion  of  the  cellulose  in  the 
oxycellulose  preparations.  It  is  an  aldehyde- 
carboxylic  acid  presumably  formed  by  the  oxidation 
of  a  terminal  alcoholic  group  of  a  cellobiose  residue 


or  of  an  aldehyde  group  liberated  by  simultaneous 
hydrolysis. — J.  F.  B. 

Paper  pulp;  Instrument  for  measuring  the  degree 

of  beating  of .    E.  W.  L.  Skark.    Papierfabr., 

1922,20,845—852.     (Cf.  J.,  1922,  9  a.) 

An  instrument  called  a  "  stuff -spindle  "  has  been 
devised  for  testing  numerically  the  degree  of  beat- 
ing of  paper  pulp  during  its  treatment  in  the 
hollander.  It  consists  of  a  hollow  metal  cylinder 
terminating  at  the  top  in  a  slender  open  tube  and 
carrying  at  the  bottom  a  wire  sieve  of  plain  No.  50 
mesh  with  an  area  of  3T4  sq.  cm.  (2  cm.  diam.). 
The  sieve  is  easily  removable  and  must  be 
thoroughly  cleaned  after  each  operation ;  it  is 
situated  in  a  recessed  chamber  of  sufficient  size  to 
accommodate  the  cake  of  thickened  pulp  which 
collects  on  the  surface  of  the  sieve.  When  the 
instrument  is  immersed,  sieve  downwards,  in  a  glass 
cylinder  containing  diluted  pulp,  water  enters  the 
cylinder  through  the  sieve  at  a  rate  depending  on 
the  degree  of  beating  of  the  pulp  and  the  time  is 
noted  during  which  the  instrument  sinks  to  a  mark 
on  the  tubular  stem  owing  to  the  percolation  of 
water  into  the  body.  In  another  form  of  instru- 
ment the  stem  is  graduated  and  the  rate  of  sinking 
is  measured  in  terms  of  c.c.  of  water  passing  into 
the  float-body  in  one  minute.  The  pulp  is  taken 
from  the  hollander  in  a  tin  measuring  vessel,  the 
dry  contents  of  which  are  determined,  and  is 
diluted  with  sufficient  water  to  give  a  concentra- 
tion of  5  g.  of  fibre  substance  per  4  litres.  If  the 
pulp  is  loaded  an  allowance  is  made  for  the  mineral 
matter  so  as  to  preserve  the  fibre-concentration 
constant.  The  instrument  is  immersed  in  the 
diluted  pulp,  previously  adjusted  to  15°  C. ;  the 
influence  of  temperature  is  very  important.  The 
instrument  is  calibrated  by  substituting  for  the 
sieve  a  thin  metal  plate,  immersing  the  cylinder  in 
water  and  running  in  water  from  a  burette  through 
the  tubular  6tem  until  the  spindle  floats  at  the 
mark ;  a  volume  of  60  c.c.  of  water  is  a  useful 
standard  for  research  purposes.  For  practical 
purposes  the  sinking  equivalent  to  60  c.c.  may  take 
too  long.  The  graduated  spindle  is  used  in  such 
cases  and  the  distance  from  the  zero  point  is  noted 
after  one  minute.  The  "  6tuff  degree"  is  defined 
as  the  number  of  c.c.  of  water  passing  through  the 
sieve  of  3'14  sq.  cm.  area  in  one  minute  at  standard 
fibre-concentration  and  temperature. — J.  F.  B. 


Sulphite  process  [for  the  production  of  wood  pulp~\; 

Chemistry  of  the .     R.  N.  Miller  and  W.  H. 

Swanson.     Paper,  Apr.  19,  1922,  96—104. 

The  changes  that  take  place  during  the  cooking  of 
sulphite  pulp  and  their  relation  to  the  character  of 
the  pulp  produced  have  been  investigated  in  a  series 
of  experimental  cooks  conducted  under  the  same 
conditions  of  acid  strength,  temperature,  and 
pressure,  and  blown  at  9,  10,  11,  111,  12,  12},  and 
13i  hrs.  respectively.  An  examination  of  the  pulp 
and  acid  liquor  at  these  intervals  indicates  that,  to 
obtain  the  best  pulp  under  given  conditions  of 
temperature,  pressure,  and  acid  strength,  the 
digester  should  be  blown  when  a  sample  of  the  acid 
liquor  shows  a  maximum  value  for  loosely  combined 
SO,  (cf.  J.,  1919,  38  a)  and  a  low  value  for  combined 
SO..  The  Sander  reaction  (J.,  1915,  225;  1921, 
256"  a)  is  employed  in  the  analysis  of  the  acid  liquor  ; 
2  c.c.  of  the  sample  is  diluted  and  titrated  with 
N IS  sodium  hydroxide  using  methyl  orange  as 
indicator,  excess  of  saturated  mercuric  chloride 
solution  is  added  and  the  solution  again  titrated 
to  neutrality  with  iV/8  alkali.  The  second  titration 
is  a  measure  of  the  total  S02 ;  the  difference  between 
the  second  and  first  is  a  measure  of  the  com- 
bined S02,  as  shown  in  the  following  equations:  — 


584A 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


[Aug.  15,  1922. 


(i)  HaSOa  +  NaOH  =  NaHSOa  +  HaO,  (ii)  Ca(HSOa)a  + 
NaHSO,  +  3HgCla  =  Ca(HgClSOa)a  +  NaHgClSOa  + 
3HC1.  The  difference  between  the  figure  for  total  S0a 
determined  as  above  and  that  obtained  by  titration 
with  iodine  gives  an  approximate  value  for  loosely 
combined  SOa,  sufficiently  accurate,  however,  for  the 
control  of  the  cook.  Determinations  of  the  lignin 
content  of  the  pulps  show  that  the  removal  of  lignin 
commences  at  temperatures  little  above  100°  C  and 
proceeds  with  vigour  through  all  intermediate 
temperatures  up  to  the  maximum  attained. 

— D.  J.  N. 

Sulphite  acid;  Analysis  of  reclaimed  .     G.  P. 

Genberg.     Paper,  Apr.  19,  1922,  122—123. 

The  following  scheme  is  suggested  for  the  analysis 
of  reclaimed  sulphite  acid  :  — Total  SO, :  20  c.c  of 
the  acid,  withdrawn  under  pressure,  is  diluted  to 
500  c.c.  and  run  from  a  burette  into  a  known  volume 
of  N/16  iodine  solution  until  in  slight  excess,  more 
iodine  solution  is  added  to  restore  the  yellow  colour, 
and  the  end-point  finally  adjusted  after  addition  of 
starch.  Sulphur  trioxide  :  50  c.c.  of  acid  is  evapo- 
rated to  dryness  with  an  equal  volume  of  hydro- 
chloric acid  and  the  residue  boiled  with  5  c.c.  of 
hydrochloric  acid  and  100  c.c.  of  water,  filtered  hot, 
and  precipitated  with  barium  chloride.  Calcium 
sulphite  :  to  50  c.c.  of  sulphite  acid,  15  c.c.  of  20% 
ammonia  is  added,  drop  by  drop,  with  constant 
stirring,  and,  after  standing  for  10  niins.,  the  pre- 
cipitated calcium  sulphite  is  filtered  off  and  washed 
with  three  25  c.c.  lots  of  14%  ammonia;  the  pre- 
cipitate is  then  washed  into  a  500  c.c.  flask  and, 
after  addition  of  5  c.c.  of  hydrochloric  acid,  is  made 
up  to  the  mark  and  titrated  against  N  /16  iodine 
solution  as  described  above.  Total  lime  may  be 
estimated  as  oxalate  on  20  c.c.  of  the  acid  liquor 
after  diluting  and  boiling  with  hydrochloric  acid 
until  free  from  sulphur  dioxide.  The  lime  thus 
obtained  should  agree  within  2  %  with  that  required 
for  the  SO,  and  combined  SOa  determined  above. 

— D.  J.  N. 

Sulphite  pulp;  Use  of  rotten  and  stained  wood  in 

the  manufacture  of .     E.  Sutermeister.   Pulp 

and  Paper  Mag.,  1922,  20,  513—514. 

Comparative  boils  using  sound  wood,  wood  thor- 
oughly permeated  with  the  threads  of  dry  rot,  but 
still  quite  hard  and  firm,  and  wood  stained  a 
greyish-brown  colour  (often  found  in  6pruce  logs 
which  have  been  stored  in  a  very  wet  condition  with 
the  bark  on),  indicate  that,  if  a  high  grade  of  pulp 
is  required,  wood  affected  by  dry  rot,  or  stained 
wood,  should  not  be  used,  even  in  admixture  with 
sound  wood.  The  pulp  from  the  rotten  wood  was 
found  to  be  weak,  poor  in  colour,  and  practically 
impossible  to  bleach ;  that  from  the  stained  wood 
was  also  poor  in  colour  and  required  15'5  %  of  bleach 
as  against  86%  for  best  selected  wood ;  in  both  cases 
the  unbleached  pulp  was  full  of  dark  brown  shives. 
Figures  for  yield  show  that,  whereas  rotten  wood 
gives  a  lower  yield  of  air-dry  pulp  per  cord  than 
does  sound  wood,  staining  does  not  materially  affect 
the  yield— D.  J.  N. 

Copper  oxide-ammine-cellulose  solutions.     Traube. 
See  VII. 

Patents. 

Textile  fibres;  Degumming  or  preparatory  treat- 
ment of .    M.  Sabner.    E.P.  178,570,  20.1.21. 

A  continuous  process  is  described  for  degumming 
textile  fibres  such  as  jute,  ramie,  flax,  and  the  like. 
The  apparatus  consists  of  a  series  of  hollow, 
disc-like  chesta  arranged  around,  and  in  internal 
communication  with,  a  central  supply  pipe.  These 
chests  are  perforated  on  the  underside  so  that  liquid 


supplied  through  the  central  pipe  is  sprayed  on  to 
the  fibres,  which  are  laid  in  an  open  and  straight 
condition  in  trays  between  the  chest6 ;  the  trays  are 
provided  with  perforated  bottoms  and  imperforate 
sides,  so  that  the  treating  liquid  continuously 
passes  through  the  fibres.  The  whole  apparatus  is 
slipped  into  a  digester,  and  the  supply  pipe  con- 
nected by  a  flexible  joint  to  an  inlet  pipe  passing 
through  the  side  of  the  digester ;  the  fibres  are  then 
treated  with  the  necessary  degumming  chemicals, 
supplied  under  pressure,  steamed  and  washed  with- 
out further  handling.  Liquid  is  drawn  off  at  the 
bottom  of  the  digester  as  required. — D.  J.  N. 

Fibres;  Method  of  protecting  animal from  the 

injurious  effect  of  alkaline  liquids.  P.  Goldberg, 
P.  Onnertz,  and  A.  Peters,  Assrs.  to  Akt.-Ges.  f. 
Anilin  Fabr.  U.S. P.  1,419,497,  13.6.22.  Appl., 
15.8.21. 

The  addition  of  6ulphite-cellulose  waste  liquors  to 
alkaline  liquids  inhibits  the  injurious  effect  of  the 
liquids  on  animal  fibres. — L.  A.  C. 

Paper;   Method   of   manufacturing   [at    high 

speeds].  W.  P.  Carpmael.  From  The  Bagley  and 
Sewall  Co.    E.P.  181,140,  16.3.21. 

A  strong  and  satisfactory  web  of  paper  may  be 
made  at  high  speeds,  e.g.  1000  ft.  per  min.,  on  a 
Fourdrinier  or  similar  type  machine,  by  feeding  the 
water  and  6tock  on  to  the  machine  under  pressure, 
and  providing  means  whereby  the  stock,  after  pass- 
ing under  the  slice,  accumulates  in  a  pool,  through 
which  the  rate  of  flow  of  the  stuff  is  approximately 
equal  to  the  speed  of  the  wire.  The  desired  velocity 
is  imparted  to  the  stock  by  using  more  water  than 
is  usual,  and  suitably  adjusting  the  pressure  head 
in  the  flow  box.  The  pool  may  be  formed  by  extend- 
ing the  apron  over  the  machine  wire  for  a  short  dis- 
tance or  by  placing  the  slice  behind  the  axis  of  the 
breast  roll.  Difficulty  may  be  experienced  when 
running  at  high  speeds  in  removing  the  water  from 
the  web;  in  such  cases  the  suction  box  end  of  the 
wire  should  be  raised  to  give  the  water  more 
opportunity  of  draining  away.  The  main  feature  of 
this  process  is  that  by  maintaining  a  pool  of  stock 
above  the  wire  the  fibres  become  well  mixed  and 
give  a  well  felted  sheet. — D.  J.  N. 

Cellulose;  Treatment  of  crude  .     C.  Harnist. 

E.P.  156,777,  7.1.21.    Conv.,  6.7.14. 

See  F.P.  477,895  of  1914;  J.,  1917,  132.  By  using 
potash,  or  the  potassium  salt  of  a  weak  acid,  such 
as  carbonic  or  sulphurous  acid,  in  the  alkaline 
digestion  treatment,  residual  lyes  containing 
potash,  suitable  for  use  as  a  fertiliser,  are  obtained. 

Viscose  silk;  Manufacture  of  .     E.  Bronnert. 

U.S.P.  1,419,714,  13.6.22.     Appl.,  30.8.20. 

See  E.P.  170,024  of  1920;  J.,  1921,  843  a. 


Carroting  hairs;  Process  for 
Assr.  to  Pichard  Freres. 
13.6.22.     Appl.,  3.5.21. 

See  E.P.  163,297  of  1921;  J.,  1922,  541  a 


.      C.    Pichard, 

U.S.P.    1,419,754, 


Spinning  artificial  threads;  Rotary  pumps  [of  the 

gear  type]  for  use  in  apparatus  foi .    British 

Cellulose    and    Chemical    Mfg.    Co.,    Ltd.,    and 
H.  R.  A.  Mallock.    E.P.  181,085,  2.3.21. 

Paper  stock;  Hollanders  or  similar  machinery  for 

cleaning .    H.  W.  Southworth.    E.P.  181,220, 

13.5.21. 


Mixtures    of    starch    and    sulphuric    acid. 
181,197-8.    See  XVII. 


E.P. 


Vol.  XLI.,  No.  15.]      Cl.  VI.— BLEACHING  ;    DYEING,  &o.     Cl.  VII.— ACIDS  ;    ALKALIS,  &o.      585  A 


VI.-BLEACHING ;  DYEING;  PRINTING; 
FINISHING. 

Patents. 

Mercerisation  of  yarns  in  hank  form  [;  Machine  for 

].    F.  J.  Copley.    E.P.  180,739,  25.2.21. 

Hanks  of  yarn  are  extended  between  bobbins  per- 
manently attached  to  a  chain  which  passes  con- 
tinuously through  tanks  containing  the  mercerising 
and  washing  liquors.  Arrangements  are  provided 
whereby  the  bobbins  are  rotated  and  the  hanks  are 
subjected  to  tension. — A.  J.  H. 

Furs,  feathers,  hairs,  skins,  and  the  like  material; 

Process  for  dyeing  .     A.  G.  Bloxani.     From 

Akt.-Ges.  f.  Anilin-Fabr.    E.P.  180,905,  7.6.21. 

Fuks  and  the  like  are  dyed  brown  shades  by  treat- 
ment with  a  neutral  or  feebly  alkaline  solution  of 
1.4-diamino-2-chlorobenzene  in  the  presence  of 
oxidising  agents.  Skins,  either  unmordanted  or 
prepared  with  chromium  or  iron  mordants,  on 
treatment  at  ordinary  temperatures  in  a  bath  con- 
taining, e.g.,  2  g.  of  1.4-diamino-2-chlorobenzene, 
1  g.  of  ammonia,  and  30  g.  of  hydrogen  peroxide 
per  1.,  are  dyed  reddish-brown  shades;  while  skins 
prepared  with  a  copper  mordant  are  dyed  an  olive 
tint  on  similar  treatment. — L.  A.  C. 

Bleaching,  dyeing,  finishing  and  otherxrise  treating 

fabrics;  Machines  for .   J.  Thornber  and  A.  B. 

Henshilwood.  E.P.  181,552,  19.4.21.  Addn.  to 
122,241. 
The  patent  relates  to  a  removable  framework 
having  guiding  surfaces  for  the  coiled  fabrics,  for 
use  in  connexion  with  machines  of  the  type  claimed 
in  the  chief  patent  (J.,  1919,  132  a). 

Dyeing  hanks  of  yarn  and  the  like;  [Bearings  for 

agitator  spindles  o/]  machines  for .     G.  Lee 

and  Sons,  Ltd.,   and  G.  Pinder.     E.P.   181,506, 
19.3.21. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphuric  acid;  Modem  methods  of  concentrating 

.     P.  S.  Gilchrist.     Chem.  and  Met.  Eng., 

1922,  26,  1159—1162. 
A  plant  consisting  of  a  combination  of  an  over-heat 
pan  and  packed  tower,  of  which  two  50-ton  units 
have  been  in  operation  since  1916,  is  described. 
The  weak  acid  is  fed  into  a  tower  packed  with 
checkered  brickwork  or  quartz  and  flows  thence  into 
a  long  horizontal  bath,  about  9  in.  deep,  contained 
in  the  fire  flue  from  an  oil  burner.  A  scrubbing 
tower  packed  with  rings  or  quartz,  and  an  electrical 
precipitator  are  also  used.  Owing  to  the  effect  of 
surface  evaporation  the  acid  leaves  the  apparatus  at 
50°  F.  (28°  C.)  below  its  boiling  point,  which  in  the 
case  of  sludge  acid  containing  carbonaceous  matter 
reduces  the  loss  of  acid  by  reduction,  while  the 
moderate  tower  temperature  increases  the  life  of  the 
packing.  The  fuel  consumption  is  11  galls,  of  oil 
per  ton  of  acid  of  66°  B.  (sp.  gr.  1"84)  concentrated 
from  54°  B.  (sp.  gr.  1-598).  The  outer  walls  of  the 
towers  are  built  of  acid-proof  shale  brick  and 
silicate  cement,  lined  on  the  inside  with  several 
layers  of  1-in.  tiles.  A  variation  of  this  apparatus 
specially  intended  for  concentrating  sludge  acid  has 
as  its  feature  the  blowing  of  flue  gases  at  1200°  F. 
(650°  C.)  through  the  acid  instead  of  simple  concen- 
tration by  top  heat.  The  preheated  acid  is  con- 
tained in  a  lead  pan  lined  with  acid-proof  brick 
and  the  gases  are  blown  in  through  acid-resisting 
iron  pipes.     The  foaming  which  occurs  through  the 


decomposition  of  hydrocarbons  when  the  density 
reaches  about  55°  B.  is  avoided  by  effecting  the 
concentration  in  two  stages  in  duplicate  units.  A 
series  of  cost  estimates  for  different  methods  is 
given. — C.  I. 

Hydrocyanic  acid;  Formation  of from  nitrogen 

and  hydrocarbons  in  the  electric  arc.  A.  Koenig 
and  AV.  Hubbuch.  Z.  Elektrochem.,  1922,  28, 
202—223. 

When  nitrogen  mixed  with  acetylene,  ethylene,  or 
methane  is  passed  through  an  arc  rotating  in  an 
electro-magnetic  field,  hydrocyanic  acid  is  produced. 
With  a  relatively  slow  rate  of  flow  methane  gives 
the  largest  yield  of  hydrocyanic  acid,  40%,  irrespec- 
tive of  its  concentration  within  the  limits  2 — 11%. 
With  methane  there  is  no  deposition  of  carbon. 
Ethylene  and  acetylene  mixed  with  hydrogen  and 
nitrogen  show  definite  maxima  in  the  yields  at  the 
point  where  the  deposition  of  carbon  commences. 
Mixtures  of  acetylene  and  nitrogen  give  a  maximum 
yield  in  the  region  where  there  is  a  heavy  deposi- 
tion of  carbon.  With  more  rapid  rates  of  flow  the 
best  yields  are  obtained  with  acetylene.  Very  good 
utilisation  of  energy  and  yield  of  material  are 
obtained  when  a  mixture  of  30%  of  hydrogen 
and  70%  of  nitrogen  is  mixed  with  7 — 8%  of 
acetylene  and  passed  at  the  rate  of  20  litres  per 
hour  through  the  arc,  and  there  is  no  deposition 
of  carbon.  With  a  rate  of  flow  up  to  100  litres 
per  hour  the  yield  from  mixtures  of  nitrogen, 
hydrogen,  and  acetylene  containing  a  large  excess 
of  nitrogen  reaches  a  maximum  of  10 — 11  g.  HCN 
per  kw.-hr.     (Cf.  J.C.S.,  July.)— J.  F.  S. 

Phosphoric    acid;    Manufacture    of    in    the 

electric  furnace  by  the  condensation  and  electric 
precipitation  method.  T.  Swann.  J.  Ind.  Eng 
Chem.,  1922,  14,  630—631. 

Phosphatio  rock,  coke,  sand,  and  iron  borings  are 
smelted  in  an  electric  furnace.  A  certain  portion  of 
the  phosphorus  which  is  liberated  is  absorbed  by  the 
iron  and  is  tapped  from  the  furnace  as  ferro- 
phosphorus  containing  24 — 25%  P.  The  lime  and 
sand  also  leave  the  furnace  in  combination 
as  a  slag,  and  the  remainder  of  the  phosphorus 
passes  through  the  charge  with  the  furnace  gases, 
which  are  oxidised  by  air  and  drawn  out  of  the 
furnace  into  a  condensing  and  precipitating  appa- 
ratus. The  acid  as  collected  is  light  brown 
in  colour  and  contains  90—95%  H3P04;  it  is 
treated  for  the  removal  of  certain  impurities.  An 
exceptionally  pure  acid  may  be  obtained  by 
crystallisation.  A  high-grade  concentrated  acid 
and  ferro-phosphorus  are  thus  produced  directly  by 
the  electric  furnace  process  at  a  cost  comparable 
with  that  of  present  methods. — G.  F.  M. 

Nitric    acid;    Economic    production    of    oxidation 

reactions  in  factories  where  is  synthesised. 

Applications.  C.  Matignon.  Bull.  Soc.  Chim., 
1922,  31,  555—561. 
It  is  proposed  to  use  the  dilute  nitric  acid,  such  as 
is  obtained  in  the  fixation  of  atmospheric  nitrogen 
or  in  the  oxidation  of  ammonia,  for  processes  in 
which  the  acid  can  be  used  as  an  oxidising  agent, 
providing  the  consequent  reduction  of  the  nitrio 
acid  does  not  proceed  beyond  the  stage  of  nitric 
oxide.  The  oxides  of  nitrogen  can  be  reconverted 
into  nitric  acid  by  atmospheric  oxygen  and  again 
absorbed  in  the  towers.  In  this  way  there  is  prac- 
tically no  loss  of  nitric  acid,  and  thus  the  expense 
of  the  oxidation  process  is  very  small.  Suggested 
applications  are  the  preparation  of  copper  sulphate 
from  copper  by  the  combined  action  of  sulphuric  and 
nitric  acids,  and  the  oxidation  of  sugar  or  molasses 
to  oxalic  acid  by  the  action  of  nitric  acid.  This 
latter  process  was  satisfactorily  carried  through 
with  a  cargo  of  sugar  damaged  by  sea  water. — W.  G. 


580  a 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.         [Aug.  15,  1922. 


Ammonia  oxidation;  Some  economic  aspects  of . 

G.  B.  Taylor.     Chem.   and  Met.  Eng.,  1922,  26, 

1217—1219. 
The  economic  possibility  of  the  oxidation  of  am- 
monia for  the  large-scale  manufacture  of  concen- 
trated nitric  acid  is  discussed,  and  it  is  shown  that 
if  the  costs  of  nitrogen  in  the  forms  of  ammonia  and 
of  sodium  nitrate  are  on  a  parity  the  use  of  the 
former  is  uneconomical,  as  the  high  cost  of  concen- 
trating the  relatively  weak  nitric  acid  produced 
offsets  other  savings.  In  this  calculation  the  over- 
all efficiency  of  ammonia  oxidation  is  taken  as  90  % . 
In  the  case  of  processes  requiring  weak  nitric  iicid, 
or  merely  oxides  of  nitrogen  as  in  the  lead  chamber 
sulphuric  acid  process,  the  ammonia  process  has  the 
advantage. — C.  I. 

Soda  and  hydrogen  sulphide;  Manufacture  of 

from   sodium   sulphate    and   coal.      J.    Michler. 
Chem.-Zeit.,  1922,  46,  633—634. 

Finely  ground  sodium  sulphate  is  mixed  with  finely 
ground  coal  and  the  mixture  briquetted.  The 
briquettes  are  charged  into  a  gas-tight  furnace  and 
heated  with  a  mixture  of  producer-gas  with  a  slight 
deficiency  of  air.  The  charge  is  kept  at  a  bright 
red  heat  until  a  test  shows  that  less  than  1%  of 
sodium  sulphate  remains  undecomposed.  The  charge 
is  allowed  to  cool  to  a  dull  red  and  a  mixture  of  steam 
and  carbon  dioxide  is  passed  in,  whereby  the  sodium 
sulphide  formed  in  the  first  stage  is  decomposed  into 
carbonate  with  the  evolution  of  hydrogen  sulphide. 
The  issuing  gases  contain  about  30 — 40  vols.  %  of 
hydrogen  sulphide  and  may  be  utilised  for  the  pro- 
duction of  sulphur  by  the  Chance  process.  The 
residue  contains  less  than  0T%  of  sodium  sulphide, 
and  after  leaching  the  solution  contains  96% 
Na2C03  calculated  on  the  total  solids.  The  process 
is  preferably  carried  out  in  a  series  of  furnaces,  the 
spent  gases  from  the  first  6tage  (which  contain  6ome 
hydrogen  sulphide)  being  used  in  the  second  stage, 
so  that  by  suitable  working  an  economical  recovery 
of  sulphur  is  obtained  in  gases  containing  at  least 
30%  of  hydrogen  sulphide,  e.g.,  by  passing  the  car- 
bon dioxide  mixture  through  the  series  in  such  a 
manner  that  it  first  comes  in  contact  with  material 
poor  in  sulphur.  The  briquettes  emerge  from  the 
process  in  the  same  shape  as  they  went  in  and  are 
conveniently  porous  for  leaching. — A.  R.  P. 

Chlorine  and  hypochlorous  acid;  Determination  of 

in  concentrated  salt  solutions.    M.  C.  Taylor 

and  C.  A.  Gammal.     J.  Ind.  Eng.  Chem.,  1922, 
14,  632—635. 

The  determination  of  free  chlorine  and  hypochlor- 
ous acid  in  concentrated  salt  solutions  which  may 
contain  either  sodium  hypochlorite  or  hypochlorous 
acid,  is  usually  carried  out  by  a  determination  of 
total  "available"  chlorine,  and  then  of  free 
chlorine  by  an  aeration  process.  The  latter,  how- 
ever, is  inaccurate  owing  to  decomposition  of  hypo- 
chlorous acid  or  of  hypochlorite  during  aeration. 
It  is  now  shown  that  the  rate  of  the  removal  of  the 
free  chlorine  is  a  linear  function  of  the  amount 
present  at  any  moment,  whilst  when  all  free  chlorine 
has  been  removed  the  rate  of  removal  varies  directly 
as  the  square  of  the  hypochlorous  acid  present.  The 
curves  obtained,  therefore,  by  plotting  the  rate  of 
the  removal  of  chlorine  against  the  total  amount 
removed  as  measured  by  absorption  in  potassium 
iodide  and  titration  with  thiosulphate  will  be  two 
lines  having  a  point  of  intersection  from  which  a 
vertical  line  to  the  horizontal  axis  shows  the  initial 
amount  of  free  chlorine  present.  As  the  actual  loss 
of  available  chlorine  during  aeration,  due  for 
example  to  the  decomposition  HOCr+HCI+O, 
is  equal  to  the  increase  in  acidity  measured  in  terms 
of  thiosulphate  by  means  of  potassium  iodide-iodate 
solution,    a   calculation   can    also    be   made   of   the 


amount  of  chlorine  initially  present  as  hypochlorite 
or  as  hypochlorous  acid  and  hydrochloric  acid. 

— G.  F.  M. 

Ammonia;  Reactivity  of .     E.  O.  O.  Baly  and 

H.   M.   Duncan.     Chem.  Soc.   Trans.,   1922,   121, 
1008—1014. 

The  decomposition  of  ammonia  by  means  of  a 
heated  platinum  wire  gives  constant  values  for  the 
same  amount  of  energy  with  an  active  form  of  the 
gas  derived  either  by  slow  evaporation  from  a 
cylinder  of  compressed  gas,  or  by  gently  heating 
the  concentrated  aqueous  solution,  the  gas  being 
dried  by  quicklime,  or  by  evaporating  isothermally 
at  the  boiling  point  the  gas  obtained  by  either  of 
these  methods.  A  second  "  inactive "  type, 
obtained  by  rapid  evaporation  of  the  liquefied  gas, 
gives  much  smaller  decomposition  values  under  the 
same  conditions.  On  standing  in  contact  with  the 
liquefied  gas,  or  by  heating  to  200°  C.  with  a 
platinum  wire,  this  type  slowly  becomes  active. 
The  ratio  of  the  decomposition  values  obtained  by  a 
first  and  second  exposure  of  the  gas  to  the  heated 
wire  differs  markedly  in  the  two  forms.  Addition  of 
water  vapour  increases  the  reactivity  of  ammonia 
proportionally  to  the  amount  of  water  present,  an 
increase  which  is  lost  on  drying  with  quicklime. 
Hence  two  different  molecular  phases  of  ammonia 
exist  possessing  different  energy  content  and  re- 
activities, that  of  lower  energy  content  being 
identical  with  completely  dry  ammonia.  The 
active  and  inactive  forms  of  ammonia  described 
differ  in  the  relative  amounts  of  these  two  phases 
which  they  contain.  In  order  to  observe  these 
phenomena  the  platinum  wire  must  be  activated  as 
for  the  Ostwald  process  for  the  catalytic  oxidation 
of  ammonia  in  air  to  nitric  acid. — P.  V.  M. 

Sulphur yl  chloride;  Researches  on  .      //.      A 

new  chlorinating  agent.  Preparation  of  poly- 
chloro-derivatives  of  benzene.  O.  Silberrad. 
Chem.  Soc.  Trans.,  1922,  121,  1015—1022. 

A  solution  of  sulphur  monochloride  in  sulphuryl 
chloride  in  contact  with  aluminium  chloride  is  a 
vigorous  chlorinating  agent,  capable  of  bringing 
about  any  degree  of  chlorination.  For  purposes 
of  chlorination  250  pts.  of  sulphur  monochloride  is 
run  into  excess  of  sulphuryl  chloride;  68'2  pts.  of 
this  mixture  contains  1  g.-equiv.  of  active  chlorine 
or  05  g.-mol.  of  sulphuryl  chloride.  The  compound 
to  be  chlorinated,  1  to  2  mols.,  plus  5  to  10  g.  of 
finely-ground  anhydrous  aluminium  chloride,  is 
treated  with  5  to  10%  excess  of  the  chlorinating 
mixture  in  a  vessel  provided  with  an  efficient  reflux 
condenser,  the  upper  end  of  which  is  connected 
with  a  second  condenser  loosely  packed  with 
asbestos;  the  two  condensers  are  arranged  so  that 
the  gases  pass  up  the  former  and  down  the  latter, 
the  condensate  from  the  second  being  returned 
through  a  trap  to  the  reaction  vessel,  while  the 
gases  evolved  are  conducted  through  a  valve  to  a 
vessel  containing  water.  The  reaction  mixture  is 
cooled  or  warmed  according  to  the  vigour  of  the 
reaction,  which  is  completed  by  warming  for  a 
short  time.  The  product  is  washed  with  water  and 
purified  by  suitable  means.  The  preparation  of 
the  polychloro-derivatives  of  benzene  is  described. 

—P.  V.  M. 

Specific  heat  of  gases  for  calculations  concerned 
with  technical  heating.  Sulphur  dioxide.  B. 
Neumann.     Z.  angew.  Chem.,  1922,  35,  367. 

The  figures  previously  given  (J.,  1919;  618  a)  fpr 
the  true  specific  heat  of  sulphur  dioxide  at  tem- 
peratures between  0°  and  3000°  C.  and  the  moan 
specific  heat  between  0°  and  t°  C.  (calculated  for 
1  kg.  of  gas)  are  inaccurate.  The  heading  to  the 
second  column  on  the  above  page  of  this  Journal 
should  be  amended  by  deleting  "  S03  "  and  a  new 


Vol.  XLI.,  No.  15.]     Ct.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


587A 


column  added  giving  the  specific  heat  of  sulphur 
dioxide  at  constant  pressure  calculated  for  1  kg.  of 
gas  as  follows : 

t°  C.  0°      100°    200°    300°    400°    500°   1000° 

Sp.  heat  0T39  0148  0158  0-168  0'177  0184   0204 

1500°    2000°    2500°   3000° 

0-2125    0-219    0-225    0-231. 

—A.  R.  P. 

Ammonium     nitrate;     Properties     of    ■ .       II. 

Ammonium  nitrate  and  water.  I.  L.  Millican, 
A.  F.  Joseph,  and  T.  M.  Lowry.  Chem.  Soc. 
Trans.,  1922,  121,  959—963.    (Cf.  J.,  1920,  105a.) 

The  depression  of  the  freezing  point  of  ammonium 
nitrate  by  water  has  been  determined  from  170°  to 
6°  C,  from  which,  together  with  earlier  data,  the 
complete  equilibrium  diagram  from  0  to  100% 
ammonium  nitrate  has  been  plotted.  There  is  a 
sharp  break  in  the  curve  at  125°  C,  but  none  at 
84°  C.,  indicating  identical  solubilities  and  tempera- 
ture coefficients  of  the  a  and  8  forms  of  the  salt.  The 
extension  of  the  curve  below  the  normal  transition 
point,  32°  C,  through  which  the  curve  passes  with 
only  a  very  slight  break,  represents  the  freezing 
points  of  its  metastable  phase. — P.  V.  M. 

Ammonium    nitrate ;    Properties    of    .      ///. 

Ammonium  nitrate  and  sodium  nitrate.  R.  G. 
Early  and  T.  M.  Lowry.  Chem.  Soc.  Trans., 
1922,  121,  963—969. 

The  freezing  point  curve  of  ammonium  nitrate  and 
sodium  nitrate  from  9  to  49%  of  sodium  nitrate 
consists  of  three  rectilinear  sections  corresponding 
with  the  separation  of  the  e  and  B  forms  of 
ammonium  nitrate  and  one  form  of  sodium  nitrate. 
The  crystallisation  curve  of  ammonium  nitrate  pro- 
longed backwards  cuts  the  temperature  axis  at 
156°  C,  a  similar  value  being  obtained  from  the 
freezing  point  curve  of  ammonium  nitrate  and 
silver  nitrate,  indicating  that  temperature  as  the 
melting  point  of  the  metastable  S-ammonium 
nitrate.  The  eutectic  point  for  ammonium  nitrate 
and  sodium  nitrate  lies  at  120'8°  C,  corresponding 
to  20"5%  of  sodium  nitrate.  No  evidence  of  iso- 
morphism has  been  observed. — P.  V.  M. 

Gypsum;     Conversion    of    into     ammonium 

sulphate.  C.  Matignon  and  M.  Frejacques. 
Comptes  rend.,  1922,  175,  33—35. 

The  authors  obtained  a  96%  yield  of  ammonium 
sulphate  in  the  interaction  of  a  commercial 
sample  of  gypsum  with  ammonium  carbonate  (cf. 
Neumann,  J.,  1921,  692  a).  The  curves  giving  the 
velocity  of  the  reaction  snow  the  existence  of  two 
distinct  phases,  during  the  first  of  which  the  velocity 
is  lower  than  in  the  second.  The  presence  of 
ammonium  sulphate  in  the  original  solution  causes 
a  diminution  in  the  velocity  of  the  reaction,  but  in 
all  cases  equilibrium  is  reached  at  the  end  of 
2J  hours.— W.  G. 

Potash  felspar;  Melting  of .    G.  W.  Morey  and 

N.  L.  Bowen.  Amer.  J.  Sci.,  1922,  4,  1—21. 
Pure  synthetic  crystals  of  potash  felspar,  prepared 
by  crystallising  a  glass  of  the  composition  KAlSi308 
in  a  bomb  with  water  vapour,  when  rapidly  heated 
appear  to  melt  to  a  clear  glass  at  about  1200°  C. 
If  kept  at  this  temperature  for  some  days,  however, 
microscopical  examination  reveals  the  presence  of 
a  crystalline  framework  of  leucite  (KAlSiaO?), 
which,  at  higher  temperatures,  becomes  more  dis- 
tinct, eventually  melting  at  about  1530°  C.  The 
first  appearance  of  this  decomposition  was  noticed 
at  1170°  C.  Similar  results  are  obtained  with 
natural  potash  felspars,  but  the  temperatures  at 
which  melting  begins  and  finishes  are  modified  by 
the  presence  of  impurities.  The  petrogenic  signifi- 
cance of  the  results  is  discussed  with  reference  to 


the  formation  of  the  leucite-granite  porphyry  of 
Brazil  and  the  syenite  laccolith  at  Loch  Borolan 
in  Scotland. — A.  R.  P. 

Sodium  perborate;  Electrolytic  preparation  of . 

K.    Arndt    and   E.    Hantge.      Z.    Elektrochem., 
1922,  28,  263—273. 

Sodium  perborate  is  best  prepared  by  the  electro- 
lysis of  a  solution  of  120  g.  of  anhydrous  sodium 
carbonate  and  30  g.  of  borax  per  litre  at  14° — 
16°  C,  using  an  anodic  current  density  of  10 — 
20  amp.  per  sq.  dm.  The  yield  is  increased  by  the 
addition  of  05  g.  of  sodium  chromate  and  one  drop 
of  Turkey-red  oil  per  litre.  These  substances 
eliminate  cathodic  reduction  of  the  perborate.  A 
bright  platinum  anode  is  used,  and  the  cathode 
is  a  length  of  water-cooled  tin  tubing.  The  solution 
must  be  kept  free  from  platinum  or  iron  com- 
pounds, for  these  substances  reduce  the  yield. 
Increase  in  temperature  also  decreases  the  yield. 
During  the  electrolysis  there  is  a  loss  of  carbon 
dioxide,  and  if  this  is  not  replaced  the  current  yield 
becomes  very  poor.     (Cf.  J.C.S.,  Aug.) — J.  F.  S. 

Chlorites;  Oxidation  and  reduction  reactions  with 

.    G.  R.  Levi.     Atti  R.  Accad.  Lincei,  1922, 

31,  I.,  370—373. 

Ik  most  of  its  reactions  sodium  chlorite  exhibits 
oxidising  properties,  but  towards  ozone  it  acts  as  a 
reducing  agent.     (Cf.  J.C.S.,  Aug.)— T.  H.  P. 

Permutite;  Dependence  of  the  equilibrium  of  bases 

in  OTi  the  concentration  of  the  surrounding 

solution.  A.  Giinther^Schulze.  Z.  Elektrochem., 
1922,  28,  85—89. 
The  equilibrium  between  the  solid  permutite  and 
the  bases  in  the  solution  for  the  cases  of  silver- 
ammonium,  copper-ammonium,  and  lanthanum- 
ammonium  at  22°  C  is  in  all  probability  in  keeping 
with  the  law  of  mass  action. — J.  F.  S. 

Copper  salts;  Determination  of  complex  formation 
in  aqueous  solutions  of by  means  of  permu- 
tite. A.  Giinther-Schulze.  Z.  Elektrochem., 
1922,  28,  89—99. 

The  formation  of  complexes  in  solutions  of  copper 
chloride,  acetate,  formate,  sulphate,  chlorate, 
nitrate,  and  bromide  has  been  investigated  by 
shaking  known  concentrations  of  the  salts  with  pure 
potassium-permutite.  The  complex  cation  CuR  is 
present  in  practically  all  the  solutions  of  copper 
salts  examined  even  at  the  greatest  dilution.  The 
complex  Cu3R,  is  present  only  in  the  chloride  and 
bromide  solutions,  whilst  with  the  other  salts 
probably  a  higher  complex  is  formed,  though  not  in 
great  amount.  The  complexity  of  copper  salt  solu- 
tions increases  at  constant  concentration  with  the 
strength  of  the  acid  and  is  greater  with  the  salts  of 
the  halogen  acids  than  with  the  salts  of  oxygen 
acids  of  equal  strengths. — J.  F.  S. 

Alkaline  copper  oxide  solutions  and  copper  oxide- 
ammine-cellulose  solutions.  II.  W.  Traube. 
Ber.,  1922,  55,  1899—1912.    (Cf.  J.,  1922,  97  a.) 

The  reaction  between  copper  ethylenediamine- 
hydroxide  and  glycerol  probably  takes  place  in 
accordance  with  the  following  equation,  where 
en  =ethylenediamine :  — 

2CH2(OH)CH(OH)-CH2(OH)  +  2[Cu(en),](OH)2  = 
[Cu(en)2](OCH2-CH(OH)-CH20)2Cu+4HaO-r2(en). 
The  isolation  of  the  compound, 

[Cu(en)2](OCH2CH(OH)-CH20)2Cu, 
in  an  almost  homogeneous  condition  is  described. 
The  conclusions  thus  reached   in  the  studies  with 
glycerol  can  be  extended  to  other  polyhydroxy  sub- 
stances,  notably   cellulose.      The   ability  of   copper 


588  a 


Cl.  Vn.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.     [Aug.  15,  1922. 


oxide-ethylenediamine-cellulose  solutions  to  dissolve 
further  quantities  of  copper  oxide  depends  on  the 
liberation  of  the  ethylenediamine ;  the  behaviour  of 
Schweizer's  solution  may  be  explained  similarly. 
The  difference  between  the  behaviour  towards  poly- 
hydroxy  compounds  of  the  copper  bases  and  those 
of  the  metals,  silver,  cobalt,  nickel,  zinc,  and 
cadminum  is  accounted  for,  since  only  the  former  is 
able  to  form  complexes  in  which  the  metallic  atom 
is  fixed  directly  to  the  hydroxy  group  of  the 
polyhydroxy  compound.  An  uncertainty  appears 
to  exist  in  the  case  of  cobalt,  according  to  the 
literature,  the  precipitation  of  this  metal  from  its 
solutions  as  hydroxide  by  means  of  alkali  is 
hindered  by  the  presence  of  glycerol  in  the  same 
manner  as  is  the  precipitation  of  copper  hydroxide 
from  copper  solutions ;  the  exception  is  only 
apparent,  however,  since  the  cobalt  hydroxide  is 
present  in  the  colloidal  state  (and  not  as  the 
glycerate)  and  can  be  precipitated  completely  by 
barium  sulphate. — H.  W. 


Copper  sulphide;  Structural  formula  for .    W. 

Gluud.    Ber.,  1922,  55,  1760—1761.    (fif.  J.,  1922, 

370  a.) 
If  hydrogen  sulphide  is  passed  into  a  1'5%  solution 
of  copper  sulphate  in  ammonia  (10%)  until  only  a 
faint  blue  colour  remains,  a  variety  of  copper  sul- 
phide is  precipitated  which  yields  elementary 
sulphur  on  immediate  oxidation  with  air,  whereas 
after  preservation  for  4 — 5  hrs.  it  is  oxidised  to 
copper  sulphate  or  thiosulphate.  It  is  suggested 
that  the  formulae,  Cu:S  and  Cu2S:S,  are  to  be 
assigned  to  the  two  modifications.  This  conception 
is  in  harmony  with  the  known  tendency  of  copper 
sulphide  to  pass  into  cuprous  sulphide.  The  modi- 
fication which  yields  free  sulphur  does  not  give 
potassium  thiocyanate  when  treated  with  potassium 
cyanide ;  this  reaction  is  shown  strongly  by  the  other 
variety.  The  changes  may  be  expressed  as  follows: 
(1)  2CuS  +  10KCN  =  K6Cu2C8N8+2K2S+C2N2,  and 
C2N„  +  H20  =  HON+HCNO.  (2)  Cu2S2+8KCN  = 
K.Cu2C8N8+K2S2  and  K2Sa+KCN  =  K,S+KCNS. 

— H.  W. 


[Chromic}   oxides;  Hydrous  .     H.   B.  Weiser. 

J.   Phys.    Chem.,    1922,    26,   401^34.      (Cf.   J., 
1920,  781  A.) 

From  a  study  of  various  hydrous  chromic  oxides 
prepared  in  different  ways,  it  is  concluded  that  no 
definite  hydrates  of  chromic  oxide  are  formed  by 
precipitating  a  chromic  salt  with  alkali.  The 
evidence  that  Guignet's  green  is  a  definite  hydrate 
is  inconclusive.  The  respective  properties  of  posi- 
tively and  negatively  charged  colloidal  suspensions 
of  hydrous  chromous  oxides,  more  especially  the 
precipitating  and  peptising  action  of  alkali  salts, 
are  discussed.     (Cf.  J.C.S.,  Aug.)— J.  S.  G.  T. 

Lead  oxides;  Effect  of  grinding  upon  the  apparent 

de7isity  of .    O.  W.  Brown,  S.  V.  Cook,  and 

J.  C.  Warner.     J.  Phvs.  Chem.,  1922,  26,  477— 
480. 

The  apparent  density  of  heavy  crystalline  lead 
oxide  is  diminished  initially  by  grinding,  the  mini- 
mum value  being  attained  by  grinding  for  about 
10  hrs.  in  a  pebble  mill  making  50  revs,  per  min. 
Thereafter  the  apparent  density  increases,  rapidly 
at  first,  to  a  constant  value  greater  than  the  initial 
value.  The  initial  decrease  of  apparent  density  is 
not  shown  by  a  light  amorphous  lead  oxide.  By  fine 
grinding,  oxides  suitable  for  the  manufacture  of 
storage  battery  plates  can  be  produced  from  oxides 
which  in  their  original  state  are  worthless  for  this 
purpose.— J.  S.  G.  T. 


Banded  structures.  Synthesis  of  banded  minerals. 
S.  S.  Bhatnagar  and  K.  K.  Mathur.  Kolloid- 
Zeits.,  1922,  30,  368—371. 

Banded  structures  in  agates,  sandstone,  pisolithic 
and  oolithic  structures  are  produced  in  the  same 
manner  as  the  Liesegang  rings  in  gels.  Artificial 
agates  may  be  prepared  as  follows  :  125  g.  of  sodium 
silicate  in  100  c.c.  of  water  is  treated  with  a  10% 
solution  of  ammonium  acetate;  within  10  sees,  a 
transparent  gel  is  produced.  Before  the  addition 
of  the  acetate,  the  silicate  solution  is  mixed  with 
hydrogen  sulphide,  sodium  phosphate,  potassium 
ferrocyanide,  or  potassium  iodide,  depending  on 
the  colour  of  the  bands  desired.  After  the  gel  is 
formed  a  solution  of  ferric  chloride  or  mercuric 
chloride  is  added  and  left  to  diffuse  into  the  gel, 
when  the  banded  structure  is  produced.  The  gel  is 
then  dehydrated  by  pressure  and  gentle  heating 
and  eventually  reaches  a  hardness  of  5,  and  is  in 
every  way  similar  to  natural  agate.  Banded  sand- 
stone is  produced  by  adding  10  c.c.  of  2'27Af  sodium 
silicate  solution  and  vigorously  centrifuging  the 
mixture.  A  weak  solution  of  sodium  carbonate  and 
a  10%  solution  of  ammonium  acetate  are  added,  and 
after  12  hrs.  the  sand  ha6  become  cemented  by  the 
silicic  acid  gel.  The  mass  is  then  placed  in  a  10% 
solution  of  cobalt  nitrate  and  left  for  some  time, 
when  bands  of  cobalt  carbonate  are  produced 
throughout  the  mass. — J.  F.  S. 

Platinum;  Recovery  of from  used  contact  mass 

at  the  Old  Hickory  Powder  Plant.     A.  L.  Kibler. 
J.  Ind.  Eng.  Chem.,  1922,  14,  636—641. 

The  contact  mass  consisted  of  fused  grained 
magnesium  sulphate  impregnated  with  platinum. 
It  was  first  treated  with  hot  water  to  dissolve  out 
the  soluble  portions,  and  after  allowing  to  settle, 
the  insoluble  sludge,  consisting  of  platinum  together 
with  iron  rust,  insoluble  magnesium  salts,  sand, 
gelatinous  silicic  acid,  etc.,  was  separated  by  means 
of  a  Sharpies  supercentrifuge.  The  sludge  was  then 
concentrated  by  digestion  with  weak  hydrochloric 
acid  and  again  centrifuged,  and  the  concentrated 
sludge  extracted  with  aqua  regia  and  the  extract 
evaporated  to  dryness  two  or  three  times  with 
hydrochloric  acid.  The  platinic  chloride  formed  was 
dissolved  out  of  the  dry  residue  by  two  or  three 
treatments  with  dilute  hydrochloric  acid,  and  the 
platinum  was  precipitated  from  the  clear  solution 
as  ammonium  chloroplatinate.  The  mother  liquor 
was  siphoned  off,  the  precipitate  washed  several 
times  with  alcohol,  and  finally  centrifuged  and 
dried.  The  dry  salt  was  then  converted,  by  roasting 
in  crucibles  in  a  muffle  furnace  to  a  temperature 
of  1300°  F.  (700°  C),  into  platinum  sponge.  The 
platinum  from  the  waste  acid  and  alcohol  liquors 
was  recovered  by  precipitation  with  zinc,  solution  in 
aqua  regia,  and  subsequent  purification  as  above. 
In  all  8812  oz.  troy  of  platinum  sponge  of  about 
94%  purity  was  recovered  from  343,241  lb.  of 
contact  mass. — G.  F.  M. 

Amorphous  precipitates   and  crystalline   sols.     F. 

Haber.  Ber.,  1922,  55,  1717—1733. 
Crystalline  or  amorphous  solid  masses  are  obtained 
by  supersaturation  processes  which  may  be  con- 
sidered to  occur  in  two  distinct  phases,  the  forma- 
tion of  aggregates  and  the  re-arrangement  of  such 
aggregates,  with  loss  of  free  energy,  into  ordered 
lattice  formations.  These  considerations,  if  applied 
to  the  production  of  very  sparingly  soluble  sub- 
stances, show  that  if  the  rate  of  aggregation  is 
high  and  as  far  as  possible  in  excess  of  that  of 
arrangement,  amorphous  precipitates  are  to  be 
expected  which  gradually,  particularly  on  w.-.rm- 
ing,  pass  into  the  crystalline  condition.  If,  how- 
ever, the  rate  of  aggregation  is  depressed  by  only 
slightly  exceeding  the  solubility  limit,  the  rate  of 


Vol.  XLI.,  No.  15.]      Cl.  vn.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


589  a 


arrangement  may  be  sufficiently  high  to  cause  the 
orderly  formation  of  crystals  before  visible  particles 
have  separated.  This,  however,  involves  an  altera- 
tion in  the  rate  of  aggregation  due  to  electrical 
phenomena  at  the  boundary  of  the  molecules  and 
liquid,  the  net  result  of  which  is  that  the  growth 
of  the  aggregates  is  greatly  impeded  and  sola  are 
produced.  These  theoretical  predictions  are  con- 
firmed by  the  behaviour  of  the  precipitates  and  sols 
of  aluminium  and  ferric  hydroxides,  which,  how- 
ever, are  to  be  regarded  as  furnishing  the  ideal  case 
from  which  deviations  may  be  expected  in  two 
directions.  If  the  rate  of  arrangement  is  greater, 
it  will  not  be  possible  to  obtain  the  precipitates  in 
the  amorphous  condition  and  to  retain  the  latter 
during  the  Rbntgen  exposure.  The  rate  of  arrange- 
ment may  be  expected  to  be  at  its  maximum  in 
binary,  heteropolar  compounds  in  which  the  dipolar 
character  is  most  marked  (illustrated  by  the  cases 
of  the  silver  halides  and  the  sulphides  of  mercury, 
zinc  and  cadmium).  On  the  other  hand,  with 
molecules  in  which  the  dipolar  character  is  not 
strongly  accentuated,  the  tendency  towards  the 
formation  of  amorphous  sols  and  precipitates  must 
be  more  marked ;  this  is  illustrated  experimentally 
by  the  cases  of  the  hydroxides  of  zirconium  and 
thorium  and  of  arsenic  sulphide. — H.  W. 

Hydrogen  desorbed  from  platinum  and  palladium; 

Some  properties  of  .     P.  Anderson.     Chem. 

Soc.  Trans.,  1922,  121,  1153—1161. 

Experiments  were  undertaken  with  a  view  of  deter- 
mining whether  activated  hydrogen  instantaneously 
lost  its  activity  on  desorption  or  whether  it  had  a 
finite  period  of  decay.  It  was  found  that  the  tem- 
perature of  incipient  reduction  of  both  copper  oxide 
and  sulphur  was  distinctly  lower  with  highly 
purified  hydrogen  which  had  passed  through  a 
catalytic  mass  of  palladium  previous  to  coming  into 
contact  with  the  material,  than  with  the  same 
hydrogen  which  had  not  traversed  the  palladium. 
The  first  formation  of  water  from  the  oxide  was 
,  detected  by  means  of  the  fall  in  resistance  of  a 
granule  of  calcium  chloride  placed  in  the  unknown 
gap  of  a  AYheatstono  bridge,  and  occurred  at  tem- 
peratures between  103°  and  115°  C.  with  several 
runs  with  ordinary  hydrogen,  and  at  81° — 87°  C. 
with  activated  hydrogen.  Similarly  the  first  forma- 
tion of  hydrogen  sulphide  occurred  at  112° — 118°  C. 
in  the  former  case  and  80° — 83°  C.  in  the  latter. 
The  freshly  desorbed  gas  was  also  found  to  be 
ionised  to  some  extent,  as  it  accelerated  the  rate  of 
discharge  of  a  gold  leaf  electroscope.  It  is  im- 
probable that  the  slight  ionisation  can  be  the  cause 
of  the  increased  activity  of  the  element,  and  theories 
of  atomic  hydrogen  or  triatomic  hydrogen  are  also 
rejected  on  experimental  grounds.  The  author 
inclines  to  the  view  that  the  activation  is  due  to 
an  increase  in  the  internal  energy  of  the  hydrogen 
molecules  themselves. — G.  F.  M. 


Potassium  sulphate,  aluminium  sulphate,  water  at 

25°   C;    The    system   .      H.    T.    S.    Britton. 

Chem.  Soc.  Trans.,  1922,  121,  982—986. 

The  isothermal  diagram  of  the  system  potassium 
sulphate,  aluminium  sulphate,  water  6hows  three 
branches,  each  branch  representing  saturated  solu- 
tions in  equilibrium  with  potassium  sulphate,  alum, 
and  hydrated  aluminium  sulphate  respectively. 
The  range  of  composition  of  solutes  of  saturated 
solutions  in  equilibrium  with  alum  diminishes  con- 
siderably with  rise  of  temperature. — P.  V.  M. 

Sulphite  acid.    Genberg.     See  V. 

Adsorption  of  iron  by  manganese  dioxide.     Geloso. 
See  XXIII. 


Patents. 

Phosphoric   acid;   Production   of  .      A.    Kelly. 

E.P.  181,255,  15.7.21. 

Mineral  phosphate  is  pulverised  and  roasted  at 
such  a  temperature  that  all  the  organic  matter  con- 
tained therein  is  destroyed,  and  active  decolorising 
carbon  remains  evenly  distributed  through  the  ma6s. 
On  withdrawal  from  the  furnace  the  product  is 
reduced  to  powder  and  then  treated  in  the  known 
manner  with  sulphuric  acid  for  the  direct  produc- 
tion of  colourless  phosphoric  acid. — H.  R.  D. 

Prussic  [hydrocyanic]   acid;  Manufacture  of  . 

Deutsche   Gold-   u.    Silber-Scheide-Anstalt  verm. 
Roessler,  and  O.  Liebknecht.  E.P.  181,058,7.2.21. 

A  gas  mixture  containing  carbon,  nitrogen,  and 
hydrogen,  e.g.,  a  mixture  of  5%  of  carbon  monoxide, 
18%  of  methane,  34%  of  hydrogen,  and  43%  of 
nitrogen,  is  heated  in  a  high-tension  arc  at  pres- 
sures above  atmospheric,  whereby  an  increased 
yield  of  hydrocyanic  acid  is  obtained. — C.  I. 

Pulverous  material  [e.g.,  for  fixing  nitrogen"];  Pro- 
cess for  agglomerating .     C.  T.  Thorssell  and 

O.  Troell.  E.P.  181,413,  2.2.21. 
A  mixture  which  is  required  in  a  granular  form, 
e.g.,  the  mixture  of  alkali  carbonate  and  carbon  for 
the  synthesis  of  cyanide  from  atmospheric  nitrogen, 
is  wetted  and  then  passed  through  three  series  of 
rotating  cylinders.  In  the  first  it  is  dried  by  fire 
gases  to  a  moisture  content  necessary  for  agglom- 
eration, emerging  as  soft  irregular  masses;  in  the 
second  the  granulation  is  completed,  the  moisture 
being  kept  constant  by  admission  of  steam;  in  the 
last  the  granules  are  dried.  The  steam  and  dust 
from  the  last-mentioned  apparatus  are  returned  to 
the  one  before.  The  fire  gases  travel  in  the  same 
direction  as  the  material  in  order  to  avoid  com- 
bustion of  the  carbon. — C.  I. 

Ammonia-  Method  for  the   catalytic   oxidation  of 

With  oxygen.     I.  W.  Oederberg  and  H.  M. 

Biickstrom.  E.P.  181,486,  15.3.21. 
The  oxidation  of  ammonia  gas  by  oxygen  in  mix- 
tures containing  up  to  35 — 40%  of  ammonia  is 
carried  out  without  overheating  or  risk  of  explosion 
by  the  use  of  a  series  of  catalytic  masses  in  which 
the  concentration  of  the  catalyst  (e.g.,  platinum) 
successively  increases.  These  masses,  e.g.,  plates  of 
pumice,  are  separated  from  each  other  by  nettings 
of  nickel  or  other  inactive  material  held  within 
nickel  rings,  which  serve  to  dissipate  the  heat  of 
reaction. — C.  I. 

Bicarbonate  of  soda  and  ammonium  chloride;  Pro- 
cesses for  production  of .   L'Air  Liquide,  Soc. 

Anon,  pour  l'Etude  et  l'Exploit.  des.  Proc.  G. 
Claude.  E.P.  160,172,  15.3.21.  Conv.,  17.3.20. 
The  object  of  this  invention  is  to  avoid  certain 
drawbacks  of  the  processes  described  in  E.P. 
131,870  (J.,  1920,  266  a).  The  process  now 
described,  which  is  characterised  by  the  pre- 
sence of  ammonium  carbonate  in  excess  in  the 
liquids  throughout  the  series  of  operations, 
comprises  the  following  successive  steps :  The 
mother  liquor,  from  which  sodium  bicarbonate 
has  been  precipitated,  and  containing  ammonium 
carbonate  in  excess,  is  cooled  to  5°  C.  to  remove 
ammonium  chloride.  Sodium  chloride  and  gaseous 
ammonia  are  then  added  to  the  liquor  in 
quantities  corresponding  to  the  amount  of  sodium 
bicarbonate  it  is  desired  to  produce  and  precipitate. 
Sufficient  carbon  dioxide  is  passed  into  the  solution 
to  transform  the  sodium  chloride  and  free  ammonia 
into  equivalent  amounts  of  ammonium  chloride  and 
sodium  bicarbonate.     The  bicarbonate  is  separated, 


590  a 


Cl.  VIII.— GLASS;  CERAMICS. 


[Aug    15,  1922. 


thus  leaving  a  mother  liquor  which  is  cooled  to 
5°  C.  for  the  removal  of  ammonium  chloride.  The 
cycle  of  operations  is  then  repeated. — H.  R.  D. 

Ammonia;  Synthesis  of  .     L'Air  Liquide,  Soc. 

Anon,  pour  l'Etude  et  1'Exploit.  des.  Proc.  G. 
Claude.     E.P.  161,195,  6.4.21.     Conv.,  7.4.20. 

When  catalyst  tubes  for  ammonia  synthesis  are 
cooled,  e.g.,  by  a  bath  of  molten  lead  as  described 
in  E.P.  155,302  (J.,  1922,  371  a),  they  are  liable  to 
burst  owing  to  the  internal  strains  set  up.  It  is 
proposed  therefore  to  insulate  the  tubes,  e.g.,  by 
asbestos  or  enamel,  in  such  a  way  as  to  maintain  the 
walls  at  a  uniform  temperature,  and  this  end  is 
further  secured  by  an  electrical  heating  resistance 
in  the  insulation.  Progressive  mixing  of  cold  gases 
with  the  hot  gases  from  a  heat  exchanger  takes 
place  in  the  catalyst  chamber,  or  the  entering  gases 
are  allowed  to  circulate  around  the  insulated 
catalyst  tube,  in  such  a  way  that  the  walls  of  the 
chamber  are  kept  as  cool  as  possible  and  the  gases 
reach  the  tube  at  the  minimum  reaction  tempera- 
ture. The  gases  leave  the  catalyst  tube  at  a 
temperature  which  may  exceed  400°  C.  and  the 
reaction  can  thus  be  maintained  almost  up  to  the 
end  of  the  column. — C.  I. 

Caustic  alkali;  Eliminating  colour  from  .    T.  C. 

Meadows  and  H.  D.  Ruhm,  Assrs.  to  Eastern 
Potash  Corp.  U.S. P.  1,415,186,  9.5.22.  Appl., 
25.1.19. 

Fluid  concentrated  caustic  alkali  is  subjected  to  the 
bleaching  action  of  an  electric  current. — T.  H.  Bu. 

Earthy  minerals  that  in  native  deposits  are  stained 
by  colouring  matters  that  render  them  useless  for 

industrial  purposes;  Process  for  bleaching  

A.  J.  Stubbs.     E.P.  181,132,  12.3.21. 

The  finely  divided  mineral,  e.g.,  kaolin,  barytes, 
felspar,  bauxite,  is  placed  in  a  vessel  filled  with 
water,  together  with  pieces  of  iron,  platinum,  or, 
preferably,  zinc,  and  the  water  is  then  saturated 
with  sulphur  dioxide.  The  sulphurous  acid  is 
reduced  to  "  hyposulphurous  acid,"  with  liberation 
of  oxygen  which  alters  the  degree  of  oxidation  of 
the  colouring  substances  and  renders  them  soluble, 
leaving  the  mineral  of  a  pure  white  colour. 

— H.  R.  D. 

Calcium  hypochlorite ;  Process  for  rendering  

stable.  Chem.  Fabr.  Griesheim-Elektron,  and 
H.  Reitz.     E.P.  181,153,  23.3.21. 

CALcrusi  hypochlorite  is  mixed  with  purified  6odium 
chloride,  free  from  magnesium  chloride,  both  sub- 
stances being  in  a  dry,  finely  ground  state,  and  the 
proportions  being  such  that  100  pts.  of  the  mixture 
contains  at  least  10  pts.  of  active  chlorine.  The 
mixture  can  be  moulded  by  slight  pressure  and  made 
into  permanent  preparations. — H.  R.  D. 

Carbon;  Manufacture  of  pure  retort .     I.  Szar- 

vasy.     E.P.  159,823,  28.2.21.     Conv.,  29.1.18. 

See  U.S. P.  1,392,266  of  1921;  J.,  1921,  816  a. 
Hydrogen.     E.P.  181,062.     See  IIa. 


VIII.-CLASS;  CERAMICS. 

Clays;  Influence  of  small  additions  of  electrolytes  on 
the  stability  of  clay  suspensions,  and  the  use  of 

these    in    the    purification    of    .      H.    Kohl 

Ber.  Deuts.  Keram.  Ges.,  1922,  3,  64—77. 

To  Zettlitz  kaolin,  freed  from  salts  by  washing,  and 
suspended  in  water,  was  added  2V/10  sodium 
carbonate  or  AT/10  sodium  silicate,  and  the  whole 
well  mixed  by  shaking.  Photographs  of  the  suspen- 
sions, after  3  weeks,  showed  that,  with  increasing 


amounts  of  electrolyte,  the  amount  of  suspended 
material  increased  up  to  a  definite  maximum,  after 
which  further  additions  of  electrolyte  caused 
clarification.  Very  small  percentages  of  calcium 
sulphate  in  the  clay  reduce  the  stability  of  the 
suspension.  Sodium  silicate  is  more  efficient  than 
sodium  carbonate,  and  an  excess  of  it  is  less 
harmful.  The  presence  of  soluble  or  colloidal  6ilica 
is  unnecessary  when  the  clay  contains  a  protective 
colloid  such  as  humic  acid.  Clays  containing 
soluble  salts — particularly  those  of  magnesium  and 
calcium — are  not  suitable  for  purification  by  the 
addition  of  electrolytes  unless  these  salts  are  first 
removed  or  rendered  insoluble.  Any  clay,  provided 
it  does  not  contain  too  much  soluble  salts,  shows  an 
optimum  degree  of  suspension,  with  a  definite 
electrolyte  at  a  definite  concentration.  Whether 
the  separation  of  the  particles  of  clay  from  the 
water  in  which  they  are  suspended  should  be 
effected  by  means  of  electro-osmosis  or  by  filtration 
or  other  means  is  a  purely  economic  matter ;  it  does 
not  in  any  way  affect  the  quality  of  the  product. 
Quartz  particles  are  usually  too  large  to  remain  in 
suspension,  but  the  smallest  ones  are  capable  of 
being  suspended  with  the  aid  of  an  electrolyte,  the 
optimum  results  being  obtained  with  0'208% 
Na2COj  or  0-5%Na,SiO3.  Hence,  the  finest  particles 
of  quartz  are  electro-negative,  and  behave  like  clay. 
A  cataphoresis  test  showed  that  these  particles  pas* 
to  the  anode,  like  clay,  and  cannot  be  separated 
from  it  by  osmosis.  Felspar  behaves  in  a  similar 
manner.  Mica,  when  sufficiently  finely  divided, 
behaves  with  electrolytes  like  clay.  A  mixture  of 
70%  of  kaolin  and  30%  of  mica,  when  treated  with 
the  optimum  proportion  of  sodium  carbonate,  pro- 
duced a  suspension  containing  80%  of  kaolin  and 
20%  of  mica,  showing  that  most  of  the  mica  is 
retained  in  suspension  with  the  clay.  A  cataphoresis 
test  showed  that  finely  divided  mica  passed  wholly 
to  the  anode,  precisely  like  clay,  so  that  the  finest 
particles  of  mica  cannot  be  separated  from  clay, 
either  by  sedimentation  or  by  electro-osmosis. 
Pyrite  can,  to  a  large  extent,  be  separated  from 
clay  by  elutriation  or  washing.  Extremely  minute 
particles  of  pyrite  which  remained  in  suspension  in 
distilled  water  for  1J  days  were  flocculated  by 
sodium  carbonate  and  silicate,  and  also  by  sulphuric 
acid.  A  mixture  of  kaolin  and  these  fine  particles 
of  pyrite  settled  in  2  hrs.,  and  a  suspension  of 
kaolin,  to  which  0'5  g.  of  pure  ferrous  sulphate  wis 
added,  in  solution,  flocculated  and  settled  in  6  hrs. 
A  cataphoresis  test  of  a  mixture  of  80  g.  of  kaolin 
and  7  g.  of  pyrite  effected  no  separation.  It 
appears  to  be  impossible  to  separate  the  most  finely 
divided  pyrite  from  clay.  The  occurrence  of  such 
finely  divided  pyrite  is,  however,  improbable ;  it 
would  rapidly  be  oxidised  to  sulphate.  Ferric 
oxide,  when  sufficiently  finely  divided,  is  completely 
absorbed  by  the  clay  suspension,  and,  on  electro- 
osmosis,  it  is  deposited,  along  with  the  clay,  on  the 
anode.  Only  relatively  coarse  particles  of  silica, 
mica,  and  iron  compounds  can  be  separated  from 
clay.  No  electrolyte  is  necessary  for  this  separa- 
tion, but  its  use  is  convenient,  as  it  facilitates  the 
suspension  of  the  clay,  and  so  makes  the  subsequent 
treatment  easier.  In  the  so-called  purification  of 
clay  by  electro-osmosis,  the  whole  of  the  "  purifica- 
tion "  occurs  in  the  preliminary  settling  tanks 
The  electrical  treatment  does  not  effect  any  further 
purification.  At  the  same  time,  the  smaller  amount 
of  space  and  water  required  when  an  osmosis 
machine  is  used  (as  compared  with  a  filter-press)  is 
noteworthy. — A.  B.  S. 

Bational  analysis  \_of  ceramic  materials]  as  a  methyl 

of  works  control.     R.  Rieke.     Ber.  Deuts.  Keram. 

Ges.,  1922,  3,  24—30. 

Although  the  rational  analysis  of  ceramic  material'* 

is    not    suitable    for    scientific    investigations    on 


Vol.  XLI ,  No.  15.] 


Cl.  VIII.— GLASS;  CERAMICS. 


591  A 


account  of  its  uncertainty,  it  is  useful  as  a  means 
of  control  of  manufacturing  processes.  Some  of  the 
published  methods  of  estimating  the  "clay  sub- 
stance "  are  critically  reviewed.  Clay  substance  is 
decomposed  by  heating  it  to  575°  C,  with  evolution 
of  water,  forming  free  silica  and  alumina.  The 
latter  is  readily  soluble  in  hydrochloric  acid  if  the 
calcining  temperature  has  not  exceeded  800°  C.  The 
amount  of  clay  may  be  estimated  from  the  water 
evolved  on  ignition  or  from  the  amount  of  soluble 
alumina  formed.  This  method  assumes  that  "clay 
substance  "  from  all  sources  corresponds  exactly  to 
AljOj,2SiO,,2HjO,  which  is  not  strictly  the  case, 
though  the  results  of  determinations  of  loss  on 
ignition  made  on  samples  dried  at  110°  C.  are  suffi- 
ciently accurate  for  technical  purposes,  especially 
if  checked  by  a  determination  of  the  alumina  soluble 
in  acid.  The  only  source  of  error  is  the  presence  of 
organic  matter,  which  is  included  in  the  loss  on 
(ignition.  For  repeated  tests  on  clay  from  the 
same  source,  this  error  is  practically  constant ;  it  is 
not  affected  by  an  estimation  of  the  clay  substance 
from  the  soluble  alumina.  As  a  rapid  method,  the 
author  recommends  Kallauner  and  Matejka's 
method :  2  g.  of  the  sample  is  ignited  for  one  hour 
at  750°  C.  in  an  electric  furnace,  and  the  product  is 
heated  in  a  water  bath  with  100 — 150  c.c.  of  sul- 
phuric acid  (111)  for  3  hrs.  So  little  of  the  silica 
enters  into  solution  that  it  may  be  neglected  and 
the  alumina  and  traces  of  iron  oxide  are  precipi- 
tated with  ammonia,  filtered  off,  ignited,  and 
weighed.  If  a  properly  dried  sample  is  available, 
an  estimation  can  be  completed  in  6 — 7  hrs.  Cal- 
culations of  the  clay  substance  based  on  (a)  loss  on 
ignition,  (b)  silica  in  ignited  material  soluble  in 
5%  caustic  soda  solution,  and  (c)  alumina  in  ignited 
material  soluble  in  acid,  showed  that  (o)  and  (c) 
agreed  well,  but  (b)  gave  only  about  half  the 
quantity,  from  which  the  author  concludes  that  only 
one  molecule  of  silica  is  liberated  on  ignition,  and 
that,  possiblv,  the  clay  substance  is  decomposed  into 
AL03,Si02  +  Si02.— A.  B.  S. 

Firebricks;     Determination     of     the     compressive 

strength    of    at    high    temperatures.        E. 

Sieurin,    F.   Carlsson,   and    B.    Kjellgren.      Ber. 
Deuts.  Keram.  Ges.,  1922,  3,  53—64. 

An  ordinary  refractoriness  test  and  chemical 
analysis  are  not  sufficient  to  determine  the  value  of 
firebricks,  particularly  those  made  largely  of  grog. 
A  normal  mixture  of  1  pt.  of  blue  clay  and  4  pts.  of 
fireclay  was  ground  with  water  in  a  ball  mill  until 
it  passed  completely  through  a  250-mesh  sieve.  Part 
of  the  powder  was  burned  at  cone  14,  crushed,  and 
separated  into  grog  between  4-  and  20-mesh, 
and  grog  finer  than  7-mesh.  Equal  parts  of 
grog  and  the  fine  raw  clay  were  mixed,  made 
into  cubes  of  30  mm.  side,  and  fired  at 
cone  14.  The  cubes  were  ground  accurately  to 
shape,  and  the  "  refractoriness  under  load  "  deter- 
mined. This  was  defined  as  the  temperature  at 
which  the  cube  contracted  0'3%  after  heating  for 
2  hrs.  under  a  pressure  of  2  kg.  per  sq.  cm.  (28  lb. 
per  sq.  in.).  Similar  cubes,  but  containing  varying 
percentages  of  silica,  alumina,  ferric  oxide,  lime, 
and  magnesia,  were  also  examined.  On  increasing 
the  silica  the  minimum  refractoriness  under  load 
occurred  with  60 — 70%  of  silica,  whereas  the 
minimum  refractoriness  without  load  occurred  with 
90%  of  silica.  On  increasing  the  alumina  the 
refractoriness  under  load  increased  steadily  up  to 
80%  of  alumina,  when  the  test-pieces  failed  sud- 
denly, probably  because  there  was  not  sufficient 
binding  clay  present.  An  increase  of  only  0'64% 
in  the  iron  oxide  (original  content  of  Fe203  089%) 
reduced  the  refractoriness  under  load  by  50°  C. ; 
with  further  increase  of  iron  oxide  the  refractori- 
ness diminished  more  slowly  and  remained  almost 


constant  between  6  and  12%  of  iron  oxide,  after 
which  a  further  increase  caused  a  further  rapid 
loss  of  refractoriness.  An  increase  in  the  lime- 
content  showed  a  steady  and  rather  rapid  loss  of 
refractoriness  under  load,  an  increase  of  only 
0-11%  of  lime  (original  content  of  CaO  0"68%) 
reducing  this  refractoriness  by  25°  C.  The  effect  is 
less  noticeable  with  coarse  grog.  Magnesia  behaves 
similarly  to  lime,  but  the  effect  of  very  small  per- 
centages of  magnesia  is  greater. — A.  B.  S. 

Befractory  materials-  Determination  of  the  soften- 
ing temperature  of ■  under  load.    W.  Steger. 

Ber.   Deuts.   Keram.  Ges.,  1922,   3,  1 — 4. 

The  test-piece,  in  the  form  of  a  small  cylinder,  is 
supported  on  a  refractory  cylinder  of  electrode 
carbon,  6  cm.  diam.,  and  heated  in  a  vertical 
cylindrical  electric  resistance  furnace,  8  cm.  diam., 
internally,  with  an  e.m.f.  of  100 — 120  volts.  A 
second  (hollow)  carbon  cylinder  stands  on  the  test- 
piece  and  is  provided  at  its  upper  end  with  a  plate 
to  which  the  pressure  from  a  scale-pan  carrying 
weights  of  20—100  kg.  is  transmitted  through  a 
simple  system  of  levers.  The  small  movement  of  the 
last  lever  in  the  series  is  marked  on  a  rotating  drum 
by  means  of  a  light  index,  about  1  m.  in  length, 
which  magnifies  it  20  times.  The  hollow  carbon 
cylinder  enables  the  top  of  the  test-piece  to  be  in- 
spected and  its  temperature  to  be  measured  by  an 
optical  pyrometer  or  a  thermo-electric  couple. 

—A.  B.  S. 

Porcelain;  Testing  of .    R.  Rieke  and  M.  Gary. 

Ber.  Deuts.  Keram.  Ges.,  1922,  3,  5—23. 

A  consideration  of  the  various  methods  of  deter- 
mining the  compressive,  tensile,  and  transverse 
strengths  of  materials  showed  that  the  following 
modifications  are  desirable  in  applying  them  to 
porcelain :  Tensile  strength. — Instead  of  the  usual 
flat  8-shaped  test-piece,  a  circular  one,  3  in. 
(7-5  cm.)  long  and  20  mm.  diam.  at  the  middle, 
corresponding  to  a  cross-sectional  area  of  3  sq.  cm. 
at  the  breaking  point,  is  used.  The  test-pieces  are 
roughly  moulded  and  dried  to  a  black-hard  con- 
dition, after  which  they  are  turned  accurately  to 
shape,  and  burned.  They  are  tested  in  an  ordinary 
tensile  test  machine,  but  the  clips  are  placed  at 
right-angles  to  each  other  and  are  lined  with  thin 
copper  plates  to  allow  for  any  irregularities  in  the 
test-piece  and  to  ensure  its  breaking  at  the  centre. 
Compressive  strength  is  determined  in  a  Gary  press 
in  which  a  disc  10  cm.  diam.  and  1  cm.  thick  is 
supported  on  a  steel  ball,  317  mm.  diam.,  and 
pressure  applied  to  it  through  a  second  similar  ball. 
The  results  are  calculated  to  correspond  to  a  disc 
1  mm.  thick.  Transverse  strength  is  determined  on 
a  cylindrical  test-piece,  120  mm.  long  and  16  mm. 
diam.,  made  by  extrusion,  burnt  whilst  hanging  in 
a  vertical  position,  and  afterwards  sawn  to  the 
correct  length.  The  test  is  made  in  a  Fruhling- 
Michaelis  apparatus,  the  test-piece  being  supported 
on  steel  knife  edges  exactly  10  cm.  apart,  and 
loaded  centrally.  The  load  is  increased  at  the  rate 
of  1  kg.  per  sec.  Brittleness  or  resistance  to  shock 
is  determined  in  Rudeloff's  apparatus,  fitted  with 
a  Schopper's  pendulum  impact  device,  consisting  of 
a  pendulum  mounted  on  ball  bearings  and  fitted  at 
its  upper  end  with  an  indicator  to  show  the  angle 
through  which  it  rotates  before  its  lower  end 
strikes  the  test-piece.  The  latter  is  a  rod  120  mm. 
in  length  and  16  mm.  in  diam.  The  pendulum  is 
raised  to  a  pre-arranged  height,  and,  in  falling,  it 
breaks  the  test-piece  and  swings  forward.  The 
tensile  and  compressive  tests  show  the  most  char- 
acteristic results,  the  latter  giving  figures  pro- 
portional to,  but  much  larger,  than  the  transverse 
and  brittleness  tests.  For  the  determination  of 
porosity  an  aqueous  solution  of  Brilliant  Green  is 

b  2 


592  a 


Cl.  VIII.— GLASS;  CERAMICS. 


[Aug.  15,  1922.    ! 


recommended.  The  sealed  pores  are  estimated  by 
comparing  the  apparent  density  of  the  pieces 
weighing  about  20  g.  and  the  sp.  gr.  of  the  finely 
powdered  material.  This  method  ignores  the 
microscopic  sealed  pores  in  the  minute  particles  of 
powder.  No  relationship  between  the  percentage  of 
sealed  pores  and  the  results  of  other  tests  could  be 
established.  Microscopical  examination  is  used  to 
detect  variations  in  the  proportion  of  unaltered 
quartz,  in  the  size  of  the  quartz  grains  and  of  the 
pores.  The  relationship  of  micro-structure  and 
physical  properties  needs  further  investigation, 
and  possibly  a  microscopical  examination  may 
render  the  other  and  more  tedious  tests  unnecessary. 
The  results  of  tests  on  eight  samples  of  German 
porcelain   (composition   not   stated)   are   tabulated 

—A.   B.   S. 

Porcelain;  Translucency  of .     W    Steger     Ber 

Deuts.  Keram.  Ges.,  1922,  3,  50^53. 

Hard  porcelains  of  normal  composition,  made  of 
^)S */ \lals  jof  normaI  fineness,  with  low  clay-content 
(40%),  and  burned  at  a  high  temperature  (cone  15) 
vary  greatly  in  translucency,  as  measured  by  a 
photometer.  Those  containing  Norwegian  quartz 
are  three  times  as  translucent  as  those1  with  quartz 
sand  or  Taunus  geyserite.  With  a  rather  higher 
clay-content  (50%)  the  porcelains  containing  Nor- 
wegian sand  are  twice  as  translucent  as  those  with 
quartz  sand,  and  four  times  as  translucent  as  those 
with  launus  geyserite. — A.  B.  S. 

Ceramic  tiles;  Cold  glazes  [on  cement]  and  com- 
parison of  Kerament  slabs  with  .     C    Tost- 

mann.     Ber.  Deuts.  Keram.  Ges.,  1922,  3,  31 41. 

Kerament  slabs  are  composed  of  concrete  covered 
™„a  ?la?®  V  Friedrich's  process  (G.P 
298,3/8;  cf  E.P  154,236;  J.,  1919,  47  a).  Com! 
SwiSli  Pureliased  slabs  of  Kerament  (each 
14-sl^r^  Wltl\  "h«t  earthenware  tiles  (each 
ItJ  Ail  ?!  T0  Wlth  a  transparent  glaze, 
showed  that  the  glaze  on  the  tiles  was  much  harder 
&,£■  Kf?mint  ''glaze";  the  latter  could 
easily  be  scratched  with  a  finger-nail.  The  porosity 
after  soaking  in  boiling  water  was  6"7%  for  Kera- 
ment slabs,  and  0-08%  for  tiles.  The  samples 
Wf  /     t--oW^  7atf>   were   exP°sed    15   times   to 

,Pr,V,  fF0  f°r  t  hrs-  and  raised  t0  ™°™  tem- 

perature   after    each    exposure.     All    the    samples 

Strength  5  tf*  ^rSec^:  ,Th.e  averaee  transverse 
strength  of  the  Kerament  slabs  was  50  kg.,  that  of 

moed,fh,rt  ef"Ware+  tiles£117  kg-  equivalent  to  a 
modulus    of    rupture   of   65    and    187    respectively 

o  '  n^TP  T  were'aid  °"  a  bed  of  sand  and  a  weight 
of  0  5  kg.  dropped  on  them  from  various  heights  up 
to  dO  cm. ;  the  average  resistance  was  0"14  m  -kg   for 

The  tTV'?^  and  °'09  m-kg-  for  the  tiles, 
i cl k    nnH  SlabS  wfre,only  feebly  resistant  to 

•acids  and  were  completely  destroyed  by  dilute 
mineral  acids,  and  attacked  by  dilute  acetic  add 
and  hence  would  not  be  weather-proof  The  Kera- 
ment glaze  "  was  too  soft  to  resist  any  ordinary 
nb  !Ti  al?,d  the  sI,rfaee  ™s  not  only  rS 
enough  to  allow  any  kind  of  writing  upon  it  but 
such     writing    could     be     removed. &    The     glazed 

wr.tteer0nre   tll6S;   °n   *>  .COntrar>'>   C0"Id   »       be 
written  on,  except  in  a  few  instances,  and   in  these 
the  writing  was  easily  obliterated.     The    urface  of 
the  Kerament  slabs  could  easily  be  removed  bv  an 
•■.re^tir*  Scrubbi"g  brush,  'whilst  thj  en then 
KerLi,  n't  sr.r",  "na^Ctpd    ^    Bwh    treatment. 


may  form  a  substitute  for  paint,  but  they  cannot  in 
any  way  replace  the  glaze  on  ceramic  wares 

—A.  B.  S. 

[Opaque]  glazes;  Zirconium  fluoride .  F.  Kraze. 

Ber.  Deuts.  Keram.  Ges.,  1922,  3,  157—161. 

Low-temperature  glazes,  free  from  lead  and  boron, 
rendered  opaque  by  zirconium  fluoride,  are  particu- 
larly suitable  for  fireclays  and  other  porous  bodies 
low  in  lime.  Zirconium  compounds  do  not  produce 
a  good  opaque  white  glaze  in  the  absence  of 
fluorides,  except  at  inconveniently  high  tempera- 
tures. The  glaze  recommended  is  made  from  a 
mixture  of  sodium  silicofluoride,  cryolite,  soda  ash, 
orthoclase,  felspar,  quartz,  barium  peroxide,  and 
zircon,  in  proportions  corresponding  to  the  follow- 
ing formula  :— (0323  Na,0,  0412  Na.F,,  0214  K,0 
0051  BaO)  0412SiF4,  0234  Al2Oa,  (3029  Sib,, 
0'184  Zr02).  In  the  formula  the  maximum  per- 
missible proportion  of  zircon  is  used;  part  of 
this  may  be  replaced  by  cryolite,  if  desired.  Id 
each  case,  a  portion  of  the  kaolin  (002  mol.) 
is  added  after  the  other  materials  have  been  fritted 
and  ground.  The  fritting  must  be  continued  until 
no  more  gas  is  evolved,  after  which  the  frit  is  run 
into  a  tank,  and  allowed  to  cool  slowly;  it  is  then 
mixed  with  the  reserved  amount  of  clay  and  ground 
in  a  ball-mill.  The  glazed  ware  must  be  placed  in 
the  kiln  in  such  a  manner  that  any  vapours  evolved 
may  readily  escape,  or  the  glaze  will  be  soluble  in 
water.  The  optimum  glazing  temperature  is  cone 
05a  (1000°  C).  As  enamels  on  iron,  these  zircon 
fluoride  glazes  are  particularly  useful,  on  account 
of  their  great  elasticity  and  the  rapidity  with  which 
they  may  be  fired  and  cooled. — A.  B.  S. 

Ceramic   colours;   Constitution    of   some   .     R. 

Rieke  and  W.  Paetsch.  Ber.  Deuts.  Keram  Ges., 
1922,  3,  147—156. 

Mixtures  of  various  metallic  oxides,  in  the  propor- 
tions IROllR'.O,  to  4RO:lR'aO„  were  heated  for 
an  hour  to  600°,  700°,  800°  and  1350°  C,  respec- 
tively. The  unaltered  oxides  were  separated,  and 
the  residual  products  analysed.  It  was  found  that 
in  each  case  definite  compounds  of  the  formula 
RO,  R'jO,  were  formed,  many  of  them  having  a 
characteristic  colour,  and  being  very  suitable  for 
use  as  under-glaze  colours.  Chromites  are  very 
stable  under  glaze,  but  aluminates  and  ferrites  are 
dissolved  by  the  molten  glaze.  With  the  chromi'te 
colours,  a  glaze  with  a  high  alumina  content  is 
advantageous,  but  a  high  lead  content  is  harmful, 
causing  a  partial  formation  of  chromate. — A.  B.  S. 

Patents. 

Eilns  for  clayware ;  Appliance  for  the  regular  and 
certain  firing  of  top-fired  continuous  and  chamber 

by   mechanical  means.      J.   Procter.      E.P. 

181,090,  3.3.21. 

Small  coal  is  fed  into  the  kiln  through  two  or  more 
feed-holes  at  a  time  from  a  central  hopper  provider 
with  the  requisite  number  of  pipes,  each  pipe  con- 
taining a  screw-conveyor.  The  hopper  is  proridul 
with  two  vertical  screw-conveyors,  which  propel  the 
coal  downward  through  apertures  controlled  by 
slides.  The  rate  at  which  the  coal  enters  the  kiln 
is  regulated  by  adjusting  the  slides.— A.  B.  S. 

Glass  tubes,  rods  or  like  bodies;  Continuous  manu- 
facture of [by  imparting  a  rotary  mov< 

to  the  glass  during  its  flou>~\.  Naaml.  Vennoots. 
Philips'  Gloeilampenfabrieken.  E.P.  172,289, 
9.11.21.     Conv.,  2.12.20. 

Glass  manufacture  [;  Press  moulding  machines  for 
].     E.  A.  Hailwood.     E.P.  181,434,  5.3.21. 

Bleaching  earthy  minerals.    E.P.  181,132.    See  VII. 


Vol.  XLI.,  No.  15.]    Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;  METALLURGY,  &c.     593  A 


IX.— BUILDING  MATEBIALS. 

Concrete    pavements;   Use    of   pit-run  gravel   and 

excess  sand  in  .     R.  W.  Crum.  Amer.  Soc. 

Testing     Materials,     June,     1922.  [Preprint.] 
10  pp. 

Tables  of  sieving  results  and  graphical  representa- 
tions of  numerous  tests  (compression,  transverse 
and  "  wear  ")  show  that  concrete  made  from  pit- 
run  gravel  gives  results  which  on  the  average  are 
closely  comparable  with  those  for  concrete  of  the 
less  varied  proportions  arbitrarily  used.  As  advan- 
tages for  pit-run  mixtures  it  is  claimed  that  (1)  the 
use  of  certain  coarse  aggregates,  otherwise  unsuit- 
able, is  possible;  (2)  By  basing  cement  required  on 
maximum  sand  content  a  factor  of  safety  is  provided 
when  sand  content  drops.  Sieve  analyses  show  that 
lack  of  uniformity  in  concrete  is  no  worse  with  pit- 
run  than  with  screened  aggregates. — J.  B.  P. 

Patent. 

Magnesite ;  Method  of  treating  [for  manufac- 
ture of  oxychloride  cements].  R.  D.  Pike.  E.P. 
180,837,  6.4.21. 

The  free  or  water-soluble  lime  in  magnesite  is 
reduced  to  3%  or  less  bv  calcining  the  magnesite, 
preferably  in  a  rotary  kiln,  at  800°— 950°  C,  then 
passing  it  into  a  cooler,  in  which  its  temperature  is 
reduced  to  500°.  The  product  is  then  treated  with 
a  gas  (such  as  lime-kiln  gas  or  flue  gases)  contain- 
ing carbon  dioxide  and  a  little  moisture,  which  re- 
carbonates  the  lime,  and  renders  it  insoluble.  By 
this  means,  a  magnesite  which  would  be  useless  for 
the  production  of  oxychloride  cements  (as  free  lime 
is  injurious)  is  made  capable  of  producing  such 
cements  of  first-class  quality. — A.  B.  S. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTfiO-METALLUBGY. 

Blast   furnace    practice;    Little    known    difficulties 

occurring    through    "sulphur-misery"    in   . 

A.  Killing.     Stahl  u.  Eisen,  1921,  42,  968—971. 

A  furnace  yielding  an  iron  with  0'02%  of  sulphnr 
suddenly  began  giving  an  iron  with  0'2%.  Tough 
masses  of  material  appeared  in  front  of  the  tuyeres, 
but  were  worked  away  with  the  aid  of  bars.  After 
a  large  number  of  such  difficulties  occurring  and 
after  changing  the  tuyeres  and  blowing  in  sand 
with  the  blast  and  finally  removing  all  deleterious 
materials  such  as  briquettes,  cinders,  etc.  from  the 
charge,  the  furnace  hearth  became  clear.  Two 
samples  of  the  slag  which  had  worked  into  the 
tuyeres  gave  5' 14%  and  4'76%  sulphur  respectively 
■  on  analysis.  Other  tests  showed  4 — 5%  of  sulphur 
and  the  slag  remained  infusible  until  the  sulphur 
was  lowered  below  3%.  It  is  therefore  stated  that 
the  highest  sulphur  content  permissible  in  the  slag 
should  be  2'5 — 2'8%.  The  sulphur  in  the  charge 
should  not  exceed  4%.— J.  W.  D. 

Blast  furnaces;   Processes   in   gas   producers   and 

.    H.  von  Jiiptner.    Z.  phvsik.  Chem.,  1922, 

100,  231—237. 

The  direct  reduction  of  iron  oxide  by  carbon  in  the 
blast  furnace  is  advantageous,  for  it  involves  a 
reduction  in  the  amount  of  fuel  used,  but  the  pro- 
cess is  slow.  In  the  electric  blast  furnace  better 
results  are  obtained  with  porous  wood  charcoal  than 
with  the  denser  coke,  and  also  the  fluid  condition  of 
the  charge  accelerates  the  reduction. — J.   F.  S. 

.Cementite;  Transformation  of  at  210°  C.     G. 

Tammann.     Stahl  u.  Eisen,  1922,  42,  772—775. 

The  lines  representing  the  heat  content,  electrical 


resistance,  and  coercivity  of  steel  with  different  per- 
centages of  carbon  show  a  change  in  direction  at 
the  eutectic  point.  This  might  be  due  either  to 
differences  in  crystal  type  between  pearlitic  and 
primary  cementite  or  differences  in  grain  size.  As 
the  magnetic  transformation  of  cementite  always 
takes  place  at  210°  C.  and  the  magnitude  of  the 
change  increases  linearly  with  the  carbon  content, 
the  former  explanation  cannot  be  the  true  one. 
The  differences  in  heat  content  of  pearlitic  and 
primary  cementite  can  only  be  explained  by  differ- 
ences in  grain  size.  Compressing  cementite  in- 
creased the  magnitude  of  the  change  on  loss  of 
magnetisation.  On  cooling  cementite  through  210° 
C.  no  heat  of  transformation  was  detected  but  a 
diminution  of  volume  of  0071  cub.  mm.  for  1  g.  of 
material.  Hence  at  ordinary  temperatures  cemen- 
tite does  not  interlock  closely  with  the  ferrite 
groundmass.  It  is  possible  that  by  suitable 
additions  the  change  point  could  be  depressed  below 
ordinary  temperature  and  close  interlocking  thus 
produced. — T.  H.  Bu. 

Steels;    High- temperature    tests    on    special . 

H.  Edert.     Stahl  u.  Eisen,  1922,  42,  961—968. 

The  tests  were  carried  out  on  two  nickel-chrome 
steels  containing,  respectively,  C  0'31%,  Ni  1'90%, 
Cr  1-53%,  and  C  021%,  Ni  4-03%,  Cr  T69%,  a 
nickel-chrome  vanadium  steel  containing  C  4'37%, 
Cr  2'38%,  V  0"58%,  and  two  nickel-chrome  steels 
containing  C  0T2%,  Ni  T49%,  Cr  15"8%  and 
C  0-28%,  Ni  5-76%,  Cr  20"6%  respectively.  The 
first  three  were  oil-hardened  and  tempered,  the 
fourth  oil-hardened  from  900°  C.  and  oil-tempered 
from  650°  C,  and  the  fifth  oil-hardened  from 
1200°  C.  before  testing.  Tensile  tests  were  carried 
out  up  to  700°  C,  Brinell  hardness  tests  to  300°  C, 
bending  tests  to  800°  C,  and  notched  bar  tests  to 
700°  C.  The  product  of  tensile  strength  and  elon- 
gation gave  high  values  for  all  the  steels.  The 
increased  tensile  strength  observed  in  carbon  steels 
between  200°  and  300°  C.  was  not  noted  in  these 
steels.  A  rapid  falling  off  in  strength  occurred  in 
the  first  three  steels  (pearlitic  steels)  between  300° 
and  500°  C.  but  in  the  higher  chromium  steels  only 
above  500°  C.  The  higher  chromium  steels  were  still 
bright  but  slightly  yellow  after  the  testing  at 
700°  C.  The  first  three  steels  possessed  a  consider- 
able resistance  to  continued  reversal  of  stress 
(bending  tests)  and  also  to  single  heavy  blows 
(notched  bar  tests) ;  they  worked  easily,  especially 
the  first  two,  and  could  be  used  up  to  500°  C, 
especially  in  high-speed  machine  parts  where  light- 
ness is  essential.  The  properties  of  the  fourth  steel 
were  very  similar,  and  this  steel  also  had  great 
resistance  to  oxidation  and  chemical  action.  It 
could  be  used  at  temperatures  up  to  600°  C.  The 
fifth  steel  possessed  the  above  properties  to  a  lesser 
degree,  was  easily  polished,  and  resisted  wear  well. 
At  a  bright  red  heat  it  could  be  worked  similarly 
to  a  tool  steel  and  in  the  cold  it  could  be  pressed  and 
drawn  fairly  well. — J.  W.  D. 

Iron  and  steel;  Influence  of  molecular  concentra- 
tion on  immersion  tests  on  the  corrosion  of . 

D.  M.  Strickland.     Chem.  and  Met.  Eng.,  1922, 
26,  1165—1169. 

In  actual  service  conditions  the  corroding  medium 
is  generally  in  excess  of  the  ferrous  metal  and  the 
molecular  concentration  remains  more  uniform  than 
in  long  period  experimental  tests.  Experiment 
shows  that  in  a  long  period  test  the  corrosion  of  a 
comparatively  resistant  metal  may  approach 
equality  with  that  of  a  less  resistant  metal,  owing 
to  the  exhaustion  of  the  attacking  medium  by  the 
latter.  Figures  are  given  showing  the  corrosion 
rates  of  iron  and  steel  in  various  solutions,  the 
solutions  being  renewed  at  varying  periods.     The 


594a       Cx.   X.— METALS;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     [Ang.  15,  1922. 


weight  losses  were  found  to  be  absolutely  dependent 
on  the  solution  strength,  and  in  conducting 
corrosion  experiments  it  is  recommended  that  all 
the  test-pieces  be  immersed  in  one  tank  of  ample 
capacity,  so  that  the  reacting  chemical  will  be 
present  in  excess  of  the  ferrous  metals.  Circulation 
of  the  liquor  should  be  provided  for,  and  the 
results  obtained  from  short  period  immersions  are 
considered  more  in  line  with  actual  service  con- 
ditions than  are  the  results  from  more  protracted 
experiments.  Although  the  experiments  primarily 
show  the  effect  of  molecular  concentration  of  the 
corroding  solution,  commercially  pure  iron  appears 
more  resistant  to  corrosion  than  steel  or  coppered 
steel.— 0.  A.  K. 

Vanadium;    Analytical    chemistry    of    with 

special  reference  to  the  investigation  of  steel 
works  materials.  H.  Briefs.  Stahl  u.  Eisen, 
1922,  42,  775—778. 

A  process  for  the  separation  of  chromates  and 
vanadates  is  described,  consisting  in  the  precipita- 
tion of  vanadium  from  a  boiling  solution  by  means 
of  zinc  oxide,  the  chromate  in  solution  not  being 
affected.  The  best  results  were  obtained  by  a  double 
precipitation  with  zinc  oxide.  The  determination 
of  chromium  and  vanadium  takes  1J  hr.  The 
method  of  precipitating  quinquevalent  vanadium 
with  cupferron  (nitrosophenylhydroxylamineammo- 
nium)  was  carefully  investigated  and  accurate 
determinations  of  vanadium  were  made.  Cupferron 
was  applied  to  the  analysis  of  ferrovanadium,  and 
is  specially  suitable  for  the  separation  of  quinque- 
valent vanadium  from  chromic  salts,  only  one 
precipitation  being  necessary.  The  procedure  for 
the  analysis  of  a  chrome-vanadium-tungsten  steel 
is  given,  involving  the  use  of  either  the  ether  process 
or  the  barium  carbonate  process  and  subsequently 
separating  the  chromium  and  vanadium  either  by 
zinc  oxide  or  cupferron. — T.  H.  Bu. 

Chromium  in  steels;    Determination  of  .     L. 

Losana  and  E.  Carozzi.  Giorn.  Chim.  Ind. 
Appl.,  1922,  4,  197—200. 

For  the  determination  of  chromium  in  steels  good 
results  are  obtained  by  gravimetric  methods,  but 
these  are  too  lengthy  for  industrial  use ;  the  employ- 
ment of  colorimetric  methods  is  not  recommended. 
Satisfactory  results  are  yielded  by  Stead's  volu- 
metric method,  if  certain  precautions  are  taken. 
In  this  method  the  metal  is  attacked  with  dilute 
sulphuric  acid  (not  exceeding  30%  in  strength)  and 
the  solution  oxidised  with  a  little  nitric  acid,  boiled 
until  red  vapour  disappears,  diluted  to  about 
500  c.c  and  boiled  for  20  minutes  with  a  large 
excess  of  potassium  permanganate,  the  excess  of 
the  latter  being  reduced  by  addition  of  a  few  pieces 
of  filter  paper;  the  paper  is  found  to  exert  no 
reducing  action  on  the  chromic  acid.  The  liquid  is 
filtered  through  either  asbestos  or  an  alundum 
crucible  under  pressure  and  the  chromic  acid 
treated  with  ferrous  sulphate,  the  excess  of  the 
latter  being  titrated  with  permanganate.  The 
following  modification  of  the  ammonium  persulphate 
method  renders  it  exact  and  very  rapid.  The  metal 
is  dissolved  in  nitric  acid  of  sp.  gr.  T2,  or,  if  the 
content  of  chromium  is  high,  in  20%  sulphuric  acid, 
and  the  solution  diluted  and  oxidised  by  means  of 
20  c.c.  of  6%  ammonium  persulphate  solution  in 
presence  of  silver  nitrate,  the  liquid  being  boiled 
until  it  becomes  yellow;  if  this  operation  is  slow  it 
may  be  hastened  by  introduction  of  a  few  pieces  of 
filter  paper  into  the  liquid.  The  cold  solution  is 
mixed  with  25  c.c.  of  concentrated  nitric  acid  and 
excess  of  standard  arsenite  solution,  the  excess  of 
arsenite  being  then  estimated  by  titration  with 
permanganate  solution. — T.  H.  P.* 


Vanadium  in  steel;  Colorimetric  determination  of 

.     A.   Kropf.     Z.   angew.   Chem.,   1922,   35, 

366—367. 

A  solution  of  0'2  g.  of  a  steel  containing  less  than 
0'5%  V,  or  0T  g.  of  one  containing  more,  in  3 — 
5  c.c.  of  a  mixture  of  9  vols,  of  sulphuric  acid 
(1:5)  and  1  vol.  of  phosphoric  acid  (sp.  gr.  1"2),  is 
oxidised  with  1  c.c.  of  nitric  acid  (111),  boiled, 
cooled,  boiled  again  after  addition  of  1  c.c.  of  10% 
ammonium  persulphate  solution,  cooled  once  more, 
and  transferred  to  a  Nessler  tube.  1  c.c.  of  3% 
hydrogen  peroxide  solution  is  added  and  the  liquid 
diluted  to  20  c.c.  The  colour  is  compared  with 
that  obtained  by  adding  known  amounts  of 
standard  vanadium  solution  to  a  synthetic  Bte 
solution  of  approximately  the  same  content  in 
chromium  and  nickel  as  the  test,  and  made  by  dis- 
solving 0'2  or  O'l  g.  of  plain  carbon  steel  in  the 
above  manner  and  adding  the  requisite  amounts  of 
standard  chromium  and  nickel  sulphate  solutions. 
The  vanadium  standard  is  made  by  dissolving  the 
commercial  oxide  in  caustic  potash,  acidifying  with 
sulphuric  acid,  determining  the  vanadium  content 
of  the  solution  volumetrically  and  diluting  it  until 
1  c.c.  =000005  g.  V.— A.  R.  P. 

Dephosphorisation  slags;  The  accessory  elements  of 

.     A.   Demolon.     Comptes   rend.,   1922,    174, 

1703—1706. 

Determinations  have  been  made  on  a  number  of 
slags  of  the  amounts  of  calcium  soluble  in  different 
solvents.  The  solvents  used  were  distilled  water,  5% 
sugar  solution  before  and  after  calcining  the  slag, 
2%  phenol,  a  neutral  solution  of  ammonium 
humate,  cold  solutions  of  ammonium  chloride  of 
different  strengths,  a  saturated  solution  of  carbon 
dioxide,  and  mineral  acids.  The  amount  of  free 
lime  in  the  slags  was  small,  varying  from  1  to  3%. 
In  all  the  solvents  the  amount  of  calcium  going  into 
solution  increased  at  first  very  rapidly  with  the 
time  of  shaking  and  then  only  very  slowly  over  a 
long  period  of  time.  This  is  considered  to  be  due  to 
the  presence  of  calcium  silicates  which  react  slowly 
with  the  solvents.  The  amount  of  magnesium  oxide 
present  in  the  slags  varied  from  3  to  15%,  with  an 
average  of  8'9%.  The  amount  of  manganese  was 
fairly  constant  at  about  4 — 5  % ,  which  was  easily 
soluble  in  2%  citric  acid. — W.  G. 

Coppcr-silicon-aluminium     alloys;     Physical     pro- 
perties of  some when  sand-cast.     E.  H.  Dix, 

jun.,     and    A.    J.    Lyon.      Amer.    Soc.    Testing 
Materials,  June,   1922.      [Preprint.]     17  pp. 

Tensile  tests  and  micrographic  examination  were 
made  on  a  series  of  aluminium  alloys  containing 
2,  4,  and  6%  Cu,  together  with  3,  6,  and  9%  Si,  and 
also  on  alloys  containing  1%  Mn,  2%  Cu,  and  3.  6, 
and  9%  Si,  and  the  results  are  reproduced  in  a 
series  of  graphs  and  photomicrographs.  The  best 
physical  condition  is  obtained  if  the  alloys  contain 
from  3  to  5%  each  of  copper  and  silicon;  the  loner 
the  copper  between  these  limits  the  better  is  the 
elongation,  while  if  the  copper  is  near  5%  and  the 
silicon  about  3%  the  machining  qualities  are 
improved.  Manganese  increases  the  tensile  strength 
but  reduces  the  elongation,  without  increasing  the 
tensile  strength  at  high  temperatures;  with  the 
plain  copper-silicon-aluminium  alloys  the  tensile 
strength  decreases  very  little  up  to  600°  F. 
(315°  C).  The  microstructures  of  these  alloys  show 
eutectics  of  CuAlj  and  aluminium  and  of  aluminium 
and  silicon.  The  iron  impurity  appears  to  be 
present  in  two  forms,  as  light  grey  needles  of  FeAl, 
and  as  irregular  grey  masses  of  the  so-called  "  X  ' 
constituent.  A  6ixth  constituent  consisting  of 
bluish-grey  cubes  has  also  been  noticed  in  these 
alloys.— A.  R,  P. 


Vol.xix.Jfo.is.)    Cl.  X.— METALS  ;    METALLURGY,   INCLUDING  ELECTRO-METALLURGY. 


595  a 


Lead;  Determination  of  in  metallic  lead  by 

the  permanganate  method.  Y.  Odajima. 
Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan), 
1922,  25,  270—271. 

The  sample  (2o  g.)  is  dissolved  in  20  c.c.  of  dilute 
nitric  acid  (1:4);  silver,  if  present,  is  removed  by 
adding  dilute  ammonium  chloride.  The  solution 
is  diluted  to  200  c.c,  filtered,  and  made  up  to 
500  c.c,  to  50  c.c.  of  which  20  c.c.  of  saturated 
oxalic  acid  or  ammonium  oxalate  solution  is  added, 
and  then  10  c.c.  of  acetic  acid,  with  vigorous 
shaking.  After  a  few  hours  the  lead  oxalate  is 
filtered  off,  washed,  and  decomposed  with  dilute 
sulphuric  acid  (1:4),  the  solution  diluted  to  about 
200  c.c,  heated  to  70°— 80°  C,  and  the  liberated 
oxalic  acid  titrated  with  standard  permanganate 
solution. — K.  K. 

Metals;    Effect    of    temperature    on   some    of    the 

properties    of    .      F.    C.    Lea.      Inst.    Mech. 

Eng.,  15.6.22.     Engineering,  1922,  113,  829—832. 

In  view  of  the  extended  use  of  metals  under  con- 
ditions where  they  are  exposed  to  high  tempera- 
tures, e.g.,  in  high-pressure  boilers  and  internal 
combustion  engines,  the.  effect  of  this  treatment  on 
the  physical  properties  of  some  important  metals 
and  allovs  has  been  determined.  In  the  case  of 
"Armco"  iron  (002%  C,  0013%,  P,  0-043%  Mn, 
and  0-03%  S)  the  ultimate  strength  falls  from  24 
tons  per  sq.  in.  at  -40°  C.  to  a  minimum  of  19  tons 
at  0°,  then  rises  in  a  straight  line  to  a  maximum 
of  39  tons  at  220°  C,  after  which  it  falls  to  below 
2  tons  at  850°  C.  and  rises  again  to  3  tons  at 
950°  C.  The  elongation  decreases  from  27%  at 
-50°  C.  to  13%  between  100°  and  220°  C,  then 
rises  to  maxima  at  400°,  675°,  and  800°  C, 
falling  to  minima  at  600°,  730°,  and  900°  C,  at 
which  latter  points  the  metal  is  very  brittle.  It  is 
important,  therefore,  to  forge  this  material  at  as 
near  800°  C.  as  possible.  The  critical  points  of 
the  metal  are  at  767°  C.  and  between  880°  and 
900°  C,  corresponding  with  increased  brittleness. 
The  elastic  limit  remains  constant  to  200°  C,  then 
rapidly  falls  to  about  one-third  of  its  former  value, 
while  the  modulus  of  elasticity  decreases  regularly 
with  increasing  temperature.  Carbon  steels  con- 
taining up  to  1  %  C  show  a  similar  increase  in 
tensile  strength  up  to  a  maximum  between  220° 
and  300°  C,  depending  on  the  carbon  content. 
Similar  tests  on  various  steel  alloys  show  that 
temperatures  below  250°  C.  have  no  deleterious 
effects  on  their  tensile  properties,  but  above  350°  C. 
a  serious  falling  off  in  the  elastic  properties  takes 
place.  Copper-aluminium  alloys,  on  the  other 
hand,  while  nearly  as  strong  as  steel  at  ordinary 
temperatures,   are  considerably  less  so  at  250°  C. 

—A.  R.   P. 

Metals;  Preparation  of  some  special  by  Gold- 

schmidt's  aluminothermic  process.  I.  T.  Fuji- 
bayashi.  Kogvo-Kwagaku  Zasshi  (J.  Chem. 
Ind.,  Japan),  1922,   25,  499—511. 

An  intimate  mixture  of  dried  trimanganic 
;etroxide  with  15 — 20%  of  its  weight  of  man- 
ganese dioxide  or  sesquioxide,  and  90%  of  the 
heoretical  amount  of  powdered  aluminium 
ras  used  for  the  preparation  of  pure  carbon-free 
uanganese.  A  yield  of  85 — 90%  or  more  of  the 
heoretical  was  obtained  of  a  purity  of  95 — 97%, 
he  remainder  being  aluminium,  iron,  and  silicon, 
'or  the  preparation  of  pure  carbon-free  chromium 
mixture  of  chromium  sesquioxide  with  10 — 15% 
f  its  weight  of  calcium  chromate,  and  90%  of  the 
heoretical  amount  of  powdered  aluminium  was 
eated  at  300°— 400°  C.  and  reduced  as  usual, 
"he  yield  was  85 — 92%  and  the  purity  of  the  pro- 
uct  95 — 97%,  the  remainder  being  aluminium, 
'errochromium  containing  about  60%  Cr  was  pre- 


pared froma  mixture  of  green  chromium  oxide 
with  10—15%  of  its  weight  of  calcium  chromate,  the 
theoretical  quantity  of  black  iron  oxide,  and  8.5 — 
90%  of  the  theoretical  weight  of  powdered 
aluminium.  The  yield  was  85—90%  of  the  theo- 
retical, and  the  product  contained  5—8%  Al.  All 
the  materials  for  the  process  should  be  dried  at 
200°— 300°  C.j  used  while  still  hot,  and  thoroughly 
mixed. — K.  K. 

Metals;  Phenomena  of  diffusion  of  solid  and 

cementation       of      non-ferrous      metals.  II. 

Cementation  of  copper  by  means  of  chromoman- 
ganese.  G.  Sirovieh  and  A.  Cartoceti.  Gazz. 
Chim.  Ital.,  1922,  52,  I.,  436—442. 

The  cementation  of  copper  by  chromomanganese 
containing  30'4%  Cr  and  638%  Mn  has  been 
studied  by  means  of  the  arrangement  previously 
used  (cf.  J.,  1922,  17  a).  The  chromium  does  not 
penetrate  the  copper,  but  it  influences  the  migra- 
tion of  the  manganese  to  a  much  greater  extent 
than  the  iron  of  ferromanganese  does.  (Of  JCS 
August.)— T.  H.  P. 

Tellurium-lead  and  tellurium-antimony-lead  alloys. 
M.  Dreifuss.  Z.  Elektrochem.,  1922,  28,  100 — 
101,  224. 

When  lead  is  added  to  molten  tellurium  in  small 
quantities,  a  little  of  the  tellurium  alloys  with  the 
lead,  but  a  large  portion  forms  a  slag  containing 
both  elements.  Tellurium  has  a  deoxidising  action 
on  lead,  so  that  the  alloy  may  be  heated  to  redness 
without  the  surface  losing  its  brightness.  Tel- 
lurium and  antimony  form  a  continuous  series  of 
mixed  crystals,  and  alloys  containing  tellurium 
and  lead  may  be  prepared  by  mixing  tellurium  with 
molten  antimony,  and  adding  to  the  molten  alloy 
thus  obtained  first  small  quantities  of  antimony-lead 
alloy  and  eventually  pure  lead.  A  stiff  pasty  mass 
is  obtained  which  on  heating  to  700°  C.  melts  and 
does  not  readily  lose  its  bright  surface.  In  the 
same  way  small  quantities  of  tin  and  copper  alloy 
with  the  antimony-tellurium  alloy.  The  addition 
of  2%  of  tellurium  to  lead-antimony  alloys  has  no 
marked  effect  on  the  hardness.  The  addition  of 
5 — 6%  of  tin  to  antimony-lead  alloys  produces 
much  more  desirable  properties  than  does  tel- 
lurium.— J.   F.   S. 

Uranium;  Qualitative  test  for  .    H.  D.  Buell. 

J.  Ind.  Eng.  Chem.,  1922,  14,  593. 

Uranium  may  be  detected  in  slags  or  ores  by  prepar- 
ing a  nitric  acid  solution  of  the  material,  too  great 
an  excess  being  avoided,  and  adding  an  excess  of 
granulated  zinc.  When  the  reaction  with  the  acid 
has  subsided  a  yellow  deposit  will  appear  on  tho 
zinc  if  uranium  is  present.  Gold,  platinum, 
thorium,  lead,  tungsten,  titanium,  chromium,  mer- 
cury, and  copper  do  not  interfere  with  the  test. 
Iron  and  vanadium  interfere  only  when  present 
in  largo  quantities,  and  in  that  case  the  spent 
liquid  is  removed  and  the  zinc  and  the  deposit  are 
again  treated  with  nitric  acid.  The  deposit  dis- 
solves, but  reappears  when  the  acid  is  again 
exhausted,  and  vanadium  and  iron  remain  in 
solution.  The  test  is  not  applicable  in  the  presence 
of  sulphuric  or  hydrochloric  acids.  The  yellow 
deposit  is  apparently  the  hydrated  trioxide 
V03,2H„0.— G.  F.  M. 

Bismuth  and  cadmium;  Solubility  in  the  solid  state 

of  in  lead.     C.  Di  Capua.     Atti  R.  Accad. 

Lincei,  1922,  31,  I.,   1C2— 164. 

The  solid  solubility  of  lead  in  bismuth  is  4%  and 
that  of  bismuth  in  lead  34  %  .  For  lead  in  cadmium 
or  cadmium  in  lead  the  solid  solubility  is  practically 
zero.— T.  H.  P. 


596  A  Cl.  X.— METALS  ;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     (Aug.  15,  ,1922. 


Minerals;  Heavy  liquids  for  the  separation  of . 

E.  Clerici.    Atti  R.   Accad.  Lincei,   1922,  31,  I., 

116—118. 
For  the  mechanical  separation  of  minerals  of  differ- 
ent densities,  the  following  colourless  liquids,  which 
may  be  diluted  and  are  recoverable,  are  recom- 
mended :  Aqueous  barium  bromomercurate  solution, 
sp.  gr.  311  at  11°  C,  3"  14  at  18°  C;  saturated 
aqueous  thallium  formate  solution,  sp.  gr.  3'31, 
3-40,  and  4'10  at  10°.  20°,  and  50°  C.  respectively ; 
aqueous  solution  of  thallium  formate  and  thallium 
malonate  in  equal  proportions,  sp.  gr.  4'0,  4'7,  and 
above  5  at  10°,  50°,  and  about  100°  C,  respectively. 
Fused  thallium  formate,  either  alone  or  mixed  with 
fused  thallium  malonate,  may  also  be  used.  A 
solution  of  powdered  thallium  carbonate  in  fused 
thallium  formate  has  sp.  gr.  above  5. — T.  H.  P. 

Patents. 

Copper    alloys;    Process    of   manufacture    of   . 

O.    von    Rosthorn,    Assee.    of    A.    Heller.     E.P. 

158,882,  4.2.21.  Conv.,  4.2.20. 
A  more  uniform  quality  of  bronze  for  electrical  pur- 
poses is  produced  by  the  use  of  an  intermediate 
alloy  containing  about  1  pt.  of  tin,  3  pts.  of  cad- 
mium, and  2  pts.  of  copper.  Final  adjustment  of 
the  composition  is  obtained  by  the  addition  of  an 
auxiliary  alloy  consisting  of  equal  parts  of  tin  and 
aluminium,  or  of  tin  and  magnesium  (or  cadmium). 

— C.  A.  K. 

Non-ferrous  metal  articles  having  an  electrically 
insulating  and  mechanically  adhesive  coating. 
Producing  an  electrically  insulating  and  mechani- 
cally adherent  coating  on  -metal  articles.  F. 
Krupp  A.-G.  E.P.  (a)  168,592,  11.8.21,  and  (b) 
172,620,  25.11.21.     Conv.,  (a)  3.9.20,  (b)  13.12.20. 

(a)  Non-ferrotjs  metal  articles  are  pickled  by 
treatment  with  a  5 — 10%  solution  of  mineral  acid 
or  10%  solution  of  iron  chloride,  and  then  immersed 
in  a  bath,  heated  to  80°— 100°  C.,  composed  of  an 
aqueous  solution  of  potassium  permanganate 
acidified  with  sulphuric  acid,  and  containing  in 
addition  a  small  amount  of  iron,  lead,  silver,  or 
similar  metallic  salts.  These  latter  may  likewise 
be  added  to  the  pickling  solution,  (b)  In  the 
production  of  the  adherent  coating  in  accordance 
with  (a),  the  loose  layer  simultaneously  produced 
is  not  removed,  but  saturated  with  a  drying  oil, 
e.g.,  linseed  oil  or  resin  solutions.  If  desired,  the 
thickness  of  the  loose  layer  deposited  may  be 
increased  by  adding  a  soluble  organic  compound, 
e.g.,  sugar,  to  the  pickling  solution. — J.  S.  G.  T. 

Magnetic  separators.     H.  H.  Thompson  and  A.  E. 

Davies.  E.P.  178,587,  27.1.21. 
One  or  more  arcuate  or  segmental  stationary 
armature  pieces  are  arranged  partially  to  surround 
a  drum  or  ring  and  concentric  therewith.  The 
armature  pieces  can  be  adjusted  radially  so  as  to 
vary  the  air  gap  formed  with  the  drum  or  ring,  and 
also  adjusted  circumferentially  according  to  the 
material  under  treatment.  The  material  may  be 
fed  on  to  the  separating  drum  or  ring  through 
slots  in  the  armature  pieces. — T.  H.  Bu. 

Metallurgical    furnaces;     Gas-fired    .       South 

Metropolitan  Gas  Co.,    and  D.   Chandler.     E.P. 
178,722,  22.4.21. 

The  furnace  is  of  the  reverberatory  type,  the 
products  of  combustion  being  led  in  through 
the  roof  and  tangentially  to  the  hearth.  After 
flowing  over  the  hearth  in  one  direction  they  flow 
back  in  the  opposite  direction  over  a  sloping  floor 
leading  to  the  hearth  and  thence  to  a  flue  passing 
beneath  the  floor,  but  stopping  short  of  the 
hearth.— T.  H.  Bu. 


Shaft  furnaces,  especially  blast  furnaces;  Process 

for  the  working  of  .     E.   Diepschlag.     E.P. 

180,395,  11.2.21. 
Dust-like  fuel,  ores,  mouth-dust  and  the  like,  are 
supplied  to  the  smelting  zone  of  the  furnace 
through  drop-feed  pipes  leading  to  the  air  nozzles. 
The  height  of  the  column  of  material  in  the  feed 
pipes  is  such  that  the  pressure  exceeds  that  in  the 
furnace.  The  operation  of  the  furnace  can  be 
simply  controlled  by  variation  of  the  air  supply 
and  adjustment  of  slide-valves  or  the  like  in  the 
feed  pipes. — J.  W.  D. 

Shaft-furnaces,  gas  producers,  and  the  like;  Feed- 
ing   of  fine   materials   to  .      E.    Diepschlag. 

E.P.  180,396,  11.2.21. 
Fine  substances,  e.g.,  fuel,  or  ore  and  fuel,  are 
introduced  into  the  mouth  of  the  furnace  as  part 
of  a  charge  and  are  carried  away  by  the  furnace 
gases  to  a  collector,  where  they  are  dried  by  the 
heat  of  the  furnace  or  by  heat  from  an  outside 
source  such  as  a  hot  current  of  waste  gases  from 
metallurgical  furnaces  or  gas  engines.  The  dryer, 
in  the  form  of  a  tube  with  a  revolving  screw  con- 
veyor, or  a  revolving  drum,  may  be  inserted  in 
the  waste  ga6  flue  of  the  furnace. — J.  W.  D. 

Blast    furnace    operations;    Process    for   conveying 

the  mouth-dust  and  other  fine  ores  in  .     E. 

Diepschlag.  E.P.  180,397,  11.2.21. 
Ara  or  gas  under  pressure  is  used  to  transport  the 
materials,  which  are  of  such  a  degree  of  fineness 
that  the  gas  forces  a  passage  through  and  loosens 
the  mass,  and  carries  the  material  forward.  The 
apparatus  consists  of  a  closed  receptacle,  a  delivery 
pipe  having  an  inlet  adjacent  to  the  bottom  of  the 
receptacle,  and  an  outlet  at  the  point  of  discharge, 
and  means  for  introducing  a  gas  under  pressure 
into  the  receptacle.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents 
and  Designs  Acts,  1907  and  1919,  to  E.P.  132,523 
and  135,842.)— J.  W.  D. 

Open-hearth  furnace  device.     A.   Arthur.     U.S. P. 

1,414,451,  2.5.22.  Appl.,  7.2.21. 
A  gas  slag  pocket  and  an  air  slag  pocket  are 
separated  by  a  partition  provided  with  a  series  of 
tortuous  paths,  from  which  an  air  passage  leads  to 
openings  on  each  side  of  a  gas  port.  The  paths 
may  be  used  alternately. — T.  H.  Bu. 

Metals  from  their  compounds;  Methods  of  extrac- 
tion of  .     P.   Freedman   and  E.   Greetham. 

E.P.  180,384,  26.1.21. 
The  compounds  are  fused  and  reduced  in  a  direct 
current  arc  furnace  in  an  atmosphere  of  inert  gas 
or  gases,  such  as  argon  or  helium.  The  furnace  :s 
so  constructed  that  it  can  be  exhausted  to  a  high 
degree  of  vacuum  before  introducing  the  inert  gas. 
The  compound  to  be  reduced,  e.g.,  the  oxide  of 
zirconium,  cerium,  uranium,  or  other  rare  metal, 
is  contained  in  a  crucible  of  refractory  conducting 
material,  e.g.,  tungsten,  which  serves  as  anode, 
and  the  compound  under  treatment  is  rendered 
conductive  by  being  heated  in  an  arc  formed  be- 
tween the  wall  of  the  crucible  and  the  cathode  (a 
rod  or  block  of  tungsten  or  other  suitable 
material),  or  between  an  auxiliary  anode  and  the 
cathode.  The  inert  gaseous  atmosphere  in  the 
furnace  is  continually  changed,  the  gases  being 
drawn  out  of  the  furnace  into  an  external 
reservoir  and  returned  to  the  furnace  after  passing 
through  purifying  devices  to  remove  active  gaseous 
impurities. — J.  W.  D. 

Ores  or  metallurgical  products;  Preparatory  treat- 
ment of .    O.  Imrav.     From  Jackson  and  Co. 

E.P.  1S0,96S,  27.4.21.  Addn.  to  172,356  (J.,  19». 
107  a). 

After  the  nitrate  roast,  as  described  in  the  chief 


Vol.  XLI.,  No.  15.] 


Cl.  XL— ELECTRO-CHEMISTRY. 


597  a 


patent,  the  hot  ore  is  sprayed  with  a  solution  of, 
or  mixed  with,  a  solid,  metal  halide,  e.g.,  sodium 
chloride,  and  the  roasting  is  continued  for  a 
further  short  period. — A.  R.   P. 

Lead-bearing   mattes  and  the   like;   Treatment  of 

.    F.    E.    Elmore,     and    The    Chemical    and 

Metallurgical  Corp.,  Ltd.     E.P.  181,239,  11.6.21. 

Lead-bearing  mattes  or  products  consisting 
essentially  of  metallic  sulphides  are  pulverised  and 
treated  with  a  hot  concentrated  chloride  solution 
(e.g.,  sodium  chloride),  which  has  been  acidified 
with  hydrochloric  or  sulphuric  acid,  or  with  an 
alkali  bisulphate.  The  filtered  solution  contains  all 
the  lead  and  a  proportion  of  the  silver  present, 
which  are  recovered  by  known  methods.  The 
method  is  particularly  applicable  to  "  leadv-copper 
mattes."— C.  A.  K. 

Metallic    values    from    slag;    Recovery    of    . 

H.  V.   Welch,  Assr.  to   International  Precipita- 
tion Co.    U.S.P.  1,414,491,  2.5.22.    Appl.,  7.9.20. 

The  slag  is  brought  into  contact  with  a  halidising 
agent  in  the  presence  of  an  oxidising  atmosphere  at 
a  sufficiently  high  temperature  to  cause  the  metals 
in  the  slag  to  vaporise  in  the  form  of  halide  com- 
pounds.—T.  H.  Bu. 

[Zinc]     ore     briquette.      D.     B.     Jones.       U.S.P. 
1,415,094,  9.5.22.     Appl.,  3.6.18. 

The  briquette  is  composed  of  zinc  ore,  a  reducing 
agent,  and  bauxite  as  binder. — T.  H.  Bu. 

Metallurgical      apparatus.        J.      Lund.        U.S.P. 
1,415,183,  9.5.22.     Appl.,  8.8.18. 

A  molten  bath  of  metal  is  maintained  in  a  chamber 
to  which  heat  can  be  applied  both  from  above  and 
below.  Solid  material  and  molten  slag  are  fed 
simultaneously  into  the  chamber,  and  the  pro- 
tective coating  of  molten  slag  may  be  supplied, 
maintained,  or  withdrawn  as  desired. — T.  H.   Bu. 

Metal   scavenging    alloy;    Process   of   making    and 

using  .     H.  G.  C.  Thofehrn  (D.  H.  McLean, 

administrator),      Assr.     to     Light     Metals     Co. 
U.S.P.   1,415,733,  9.5.22.    Appl'.,  2.2.20. 

Ferro-urantum  and  aluminium  are  melted  to- 
gether, and  the  molten  material  separated  from 
the  slag  and  allowed  to  cool. — T.  H.  Bu. 

Iron  and  steel;  Process  for  rust-proofing   articles 
of .     E.  P.  Andrews.     E.P.  181,399,  2.12.20. 

See  U.S.P.  1,362,213  of  1920;  J.,  1921,  88a. 
(Reference  is  directed,  in  pursuance  of  Sect.  7, 
Sub-sect.  4,  of  the  Patents  and  Designs  Acts,  1907 
and  1919,  to  E.P.  862  of  1876,  94  of  1897,  15,852  of 
1912,  and  129,831.) 

Iron   or   steel;    Process    of   making    — — .      L.    P. 
Basset.    U.S.P.  1,419,801,  13.6.22.    Appl.,  4.6.19. 
See  E.P.  130,610  of  1918;  J.,  1921,  588  a. 

Molybdenum    metal    or    iron    molybdenum   alloys; 

Process  for   the   manufacture   of  .     Anipere- 

Ges.m.b.H.,  F.  Rothe  and  O.  Diefenthaler.    E.P. 
160,143,  12.3.21.    Corn-.,  12.3.20. 

See  G.P.  337,961  of  1920;  J.,  1921,  663  a. 
Electric  furnaces.     E.P.  170,848.     See  XI. 

XL-ELECTRO-CHEMISTRY. 

Graphite;    Electrical    conductivity    of    compressed 

.     E.  Ryschkewitsch.     Z.   Elektrochem.,   1922, 

28,  289—298. 

Bavarian  graphite  has  the  highest  electrical  con- 
ductivity of  all  varieties  of  graphite.     The  specific 


conductivity  of  graphite  increases  with  increasing 
pressure  according  to  a  hyperbolic  law.  All 
varieties  of  graphite  approach  a  common  value  of 
0'0075  ohm  for  the  specific  resistance  with  increas- 
ing pressure.  The  relation  between  the  specific 
resistance,  y,  and  the  pressure,  x,  is  expressed  by 
the  formula,  i/  =  a/x+0'0075,  where  a  is  a  constant. 

—J.   F.  S. 

Alkali  chloride;  Jk'odel  apparatus  for  the  electro- 
lysis   of   with    mercury    cathodes.      A.    von 

Antropoff.     Z.  Elektrochem.,  1922,  28,  298—300. 

A  glass  apparatus,  for  demonstrating  the  electro- 
lysis of  solutions  of  alkali  chlorides,   is  described. 

—J.   F.   S. 

Carbon,  monoxide-oxygen  cell  xrith  glass  as  electro- 
lute.  H.  Kallmann.  Z.  Elektrochem.,  1922,  28, 
81—85. 

The  emf  of  cells  containing  various  mixtures  of 
carbon  monoxide,  carbon  dioxide,  and  oxygen  on 
one  side  o.  glass  wall  and  air  on  the  other,  have 
been  determined  at  717°  C.  and  under  pressures  of 
800 — 920  mm.  The  values  obtained  agree  to  O'O 
with  the  theoretical  values  calculated  from  the 
equation  j 

E  =  l"118-0'0707  log  Pmjpco-Po, 

—J.    F.    S. 

Electrochemical  oxidation  of  organic  compounds. 
E.  Miiller.     Z.  Elektrochem.,  1922,  28,  101—106. 

The  assertion  of  Fichter  (J.,  1922,  20  a)  that  his 
views  on  electrochemical  oxidation  and  those  of  the 
author  are  in  agreement  is  not  true.  Whilst  the  _ 
author  assumes  the  discharge  of  anions,  Fichter 
supports  the  primary  formation  of  oxygen  and  the 
accompanying  purely  chemical  oxidation.  He  also 
assumes  the  intermediate  formation  of  peroxides  or 
per-acids,  but  does  not  explain  how  they  are 
formed  and  decomposed.  Such  per-compounds  may 
be  prepared  chemically,  but  their  decomposition  is 
to  some  extent  different  from  what  would  be 
expected  if  they  are  formed  at  the  anode  and  form 
the  products  of  electrolysis.  The  author  accepts 
the  formation,  by  tho  discharge  of  anions,  of  inter- 
mediate hydroxy-compounds,  which  decompose  in 
a  manner  in  keeping  with  facts,  and  which  present 
a  mechanism  for  both  chemical  and  electro-chemical 
oxidation. — J.  F.  S. 

Phosphoric  acid.     Swann.     See  VII. 

Sodium  perborate.     Arndt  and  Hantge.     See  VII. 

Hydrocyanic  acid.    Koenig  and  Hubbuch.    See  VII. 

Lead  oxides.    Brown  and  others.    See  VII. 

Rapid  electrolysis.  Edgar  and  Purdum.  See  XXIII. 

Patents. 

Electric  furnaces.  Det  Norske  Aktieselskab  for 
Elektrokem.  Ind.  Norsk  Ind.-Hvpotekbank. 
E.P.  170,848,  24.10.21.  Conv.,  1.11.20. 
An  electric  furnace  is  provided  with  a  continuous 
electrode,  either  hollow  or  channelled  longitudin- 
ally, manufactured  according  to  E.P.  116,853  and 
137,811  (J.,  1918,  429  a;  1920,  374  a).  Conducting 
material  is  fed  into  the  furnace  through  the 
electrode,  and  current  passing  between  the  material 
and  the  electrode  is  employed  to  bake  the  electrode. 
The  internal  cross-sectional  dimensions  of  the  fur- 
nace aro  small  compared  with  the  diameter  of  the 
hollow  electrode.  The  funnel  or  crater  at  the 
lower  end  of  the  electrode  forms  a  roof  over  the 
region  of  great  heat  development.  Coke,  or 
similar  material,  and  ore  to  be  treated  are  charged 
round  the  electrode,  and  air  or  other  oxidising  gas 
blown   into   tho  charge   at   a   suitable   height,   the 


598  a 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


[Aug.  15,  1922. 


resulting  carbon   monoxide  being  used  to  preheat 
a  further  charge. — J.  S.  G.  T. 

Electrolyte;    Storage     battery    .     F.     de    W. 

Cheney.     E.P.  181,630,  26.7.21. 
An    electrolyte    for    use    in    storage    batteries    is 
prepared  by  dissolving  4  oz.  of  sodium  phosphate  in 
1  quart  of  water,  and  adding  1  quart  of  chemically 
pure  sulphuric  acid. — J.  S.  G.  T. 

See  also  pages  (a)  576,  Electrical  precipitation 
(E.P.  170,601);  Electrical  gas  purifiers  (E.P. 
181,284).  589,  Hydrocyanic  acid  (E.P.  181,058). 
590,  Eliminating  colour  from  caustic  alkali  (U.S. P. 
1,415,186).  596,  Insulating  coatings  on  metals 
(E.P.  168,592  and  172,620). 


XII.-FATS;  OILS;  WAXES. 

Alligator  and  crocodile  oils.  S.  Kobayashi.  Kogyo- 
Kwagaku  Zasshi  (J.  Cheni.  Ind.,  Japan),  1922, 
25,  691—703. 
The  oil  obtained  from  a  north  African  alligator 
(Alligator  mississipiencis)  by  boiling  was  a  light 
yellow  liquid  having  a  peculiar  fishy  odour  and 
deposited  a  large  quantity  of  stearine  on  standing. 
Its  characters  were:  Sp.  gr.  (15°/4°  C.)  0-9285; 
iodine  value  (Wijs)  1591 ;  acid  value  1"2;  saponifica- 
tionvalue  189-2;  n30  =  1-4795;  unsaponifiable  matter 
0'73%.  The  fatty  acid  bromide  from  the  saponified 
oil  yielded  20%  of  solid  acid  on  distillation  by  Griin 
and  Janko's  method;  25'1%  of  highly  unsaturated 
acid  (iodine  value  367'6)  was  obtained  by 
•Tsujimoto's  lithium  salt  acetone  method.  The 
debrominated  acid  from  the  ether-insoluble  poly- 
bromide  (12%)  appeared  to  consist  of  a  mixture 
of  arachidonic  and  clupanodonic  acids.  The  debrom- 
inated acid  (iodine  value  308'0,  neutral,  value 
165-7,  n20  1'4888)  from  the  petroleum  ether-insoluble 
bromide  (7%)  had  the  composition  C^H^O,,  and 
gave  on  hydrogenation  an  acid  of '  m.p.  76° — 
76'5°  C.  and  neutral,  value  1651.  The  lower  un- 
saturated acids  consist  mainly  of  oleic  and 
palmitic  acids  with  small  quantity  of  lower  fatty 
acids.  The  unsaponifiable  matter  (0'7%)  is  mainly 
cholesterol.  Crocodile  oil  from  an  African  crocodile 
(Crocodilus  niloticus)  was  a  solid  fat  at  room  tem- 
perature, having  sp.  gr.  (40°/4°  C.)  0-8989;  m.p. 
30° — 33°  C. ;  acid  value  2'1 ;  saponification  value 
195-4;  iodine  value  603;  n"  P4602;  and  unsaponi- 
fiable matter  0"97%.  The  lead  salt  ether  method 
yielded  about  equal  quantities  of  a  liquid  acid 
(iodine  value  92"6)  and  a  solid  acid  (m.p. 
52-5° — 53°  0.,  iodine  value  6'1),  the  former  consist- 
ing mainly  of  oleic  acid  and  the  latter  of  palmitic 
and  stearic  acids.  A  small  quantity  of  highly 
unsaturated  acid  was  also  present. — K.  K. 

Shark,  ray,  and  chimaras  liver  oils.     M.  Tsujimoto. 

Kogyo-Kwagaku  Zasshi  (J.  Cheni.  Ind.,  japan), 

1922,  25,  252—270. 
The  specific  gravities  (15° /4°  C),  saponification, 
iodine  (Wijs),  and  acid  values,  refractive  indices  at 
20°  C,  quantity  of  unsaponifiable  matter,  melting 
points  of  fatty  acids,  quantity  of  fatty  acid  poly- 
bromides,  and  bromine  contents  of  polybromides 
have  been  determined  on  the  liver  oils  from  the 
following  sharks,  rays,  and  chimaeras.  Sharks: 
Tobi-mizuwani,  Carcharias  owstoni  (Garman);  Kiku- 
zame,  Echinorhinus  briicus  (Bonnaterre) ;  Koma- 
mizuwani,  Carcharias  ferox  (Risso);  Itachi-zame, 
Galeocerao  ligrinus  (M.  and  H.) ;  Mojiro-zame,  Car- 
chwrias  gangeticus  (M.  and  H.)?;  a  shark  the  name 
of  which  has  not  yet  been  determined,  probably  a 
species  of  Abura-zame;  Shimaneko-zame  (striped 
cat-shark),  Heterodontus  zebra  (Gray);  Tsumari- 
ts\mo-za,me, Squalus  mitsukurii  (Jordan  and  Snyder); 
Shiro-zame,  Cynias  griseus  (Pietschmann) ;'  Kir- 
moto-buka,  Orectolobus  japonicus  (Regan) ;  Eiraku- 


buka,  Galeorhinus  japonicus  (M.  and  H.);  TJshimi- 
zuwani,  Carcharias  taurus  (Rafinesque) ;  and  Koro- 
zame,  Squatma  nebulosa  (Regan).  Bays:  Yamato- 
shibire-ei  (great  torpedo-fish),  Narcacion  tokionis 
(Tanaka);  Nitan-ei,  a  species  (?)  of  DasyatU; 
Komon-sakata-zame,  Ehinibatus  polyphthcdmus 
(Bleeker);  and  Tongari,  Ehyncobatus  djiddensis 
(Forskal).  Chimmra:  Owston-ginzame,  Chimcsra 
owstoni  (Tanaka).  Squalene  was  detected  in  Tobi- 
mizuwani  (65-9%),  Kiku-zame  (53'5%),  and  Koma 
mizuwani  (35-6%),  but  not  in  the  other  oils 

— K.  K. 
Arachis  oil;  Catalytic  decomposition  of  A 

Mailhe.  Bull.  Soc.  Chim.,  1922,  31,  567—570. 
When  arachis  oil  is  passed  over  an  alumina-copper 
catalyst  at  600°  C.  and  the  product  freed  from  acids 
and  then  hydrogenated  over  nickel  at  180° — 200°  C. 
hydrocarbons  of  the  methane  and  benzene  series  are 
obtained.  Amongst  the  aromatic  hydrocarbons 
benzene,  toluene,  and  m-xylene  were  identified 

— W.  G. 
Erucic  acid  and  its  anhydride.    III.    D.  Holde  and 

C.  Wilke.     Z.  angew.  Cheni.,  1922,  35,  289—291 

(Cf.  J.,  1922,  260  a.) 
A  detailed  account  is  given  of  the  methods  tried 
and  that  finally  adopted  for  the  preparation  of  pure 
erucic  acid  from  rape  oil.  The  fractional  distilla- 
tion of  the  esters  obtained  by  the  methylation  of  the 
oil  gave  a  methyl  erucate  from  which  an  erucic  acid 
was  prepared  having  the  correct  m.p.,  34°  C,  and 
the  correct  molecular  weight  by  titration,  but  an 
iodine  value  of  71 — 72,  indicating  the  presence  of 
about  5%  of  saturated  acids.  Attempts  to  separate 
these  saturated  acids  by  extraction  of  the  lead  salt 
with  ether,  light  petroleum,  or  chloroform  failed, 
the  whole  of  the  salt  passing  into  solution.  Neither 
could  the  iodine  value  of  the  impure  erucic  acid  be 
raised  by  fractional  precipitation  of  a  preparation 
(previously  partially  purified  through  the  methyl 
ester  and  crystallisation  from  alcohol)  with  lead  or 
magnesium  acetate.  The  pure  acid  with  an  iodine 
value  of  75  was  eventually  obtained  by  recrystailis- 
ing  crude  erucic  acid  from  alcohol,  first  at  tempera- 
tures below  0°  C.  to  remove  the  liquid  unsaturated 
acids,  and  then  above  0°  C.  to  remove  the  greater 
part  of  the  saturated  acids,  and  finally  fractionally 
precipitating  this  product  with  a  saturated  alco- 
holic solution  of  lithium  acetate,  whereby  the 
saturated  acids  were  precipitated  first.  The  pure 
acid  had  m.p.  33"5°  C.  Erucic  anhydride  was  pre- 
pared by  heating  the  acid  with  acetic  anhydride  at 
170°  C.  under  pressure  for  7  hrs.  After  purification 
it  formed  a  white  crystalline  substance  m.p.  46°  C. 
It  is  decomposed  by  boiling  water,  boiling  alcohol, 
and  cold  alcoholic  alkali  hydroxide  solution,  but  is 
stable  towards  cold  aqueous  alkali  and  dilute  hydro- 
chloric acid. — G.  F.  M. 

Pine   needles;  A   variety   of   wax   from  and 

certain  abietic  esters.  H.  P.  Kaufmann  and  M. 
Friedebach.  Ber.,  1922,  55,  1508—1517. 
The  dried  residue  left  after  the  distillation  of  pine 
needles  with  steam  is  extracted  with  ether,  benzene, 
and  carbon  bisulphide,  thereby  giving  a  dark  green 
viscous  mass,  the  weight  of  which  does  not  exceed 
S3 — 10%  of  that  of  the  crude  material  and  varies 
greatly  with  the  season  of  the  year.  This  residue 
is  extracted  with  cold  acetone  in  which  the  wax  does 
not  dissolve :  the  undissolved  portion  is  distilled 
under  diminished  pressure  and  the  distillate  is 
crystallised  repeatedly  from  alcohol  or  acetic  acid. 
The  chief  components  of  the  wax  (m.p.  64° — 65°  C.) 
thus  isolated  are  cetyl,  ceryl,  and  myricyl  alcohols, 
which  are  mainly  esterified  with  stearic  and 
palmitic  acids;  in  addition,  the  presence  of  hydroxy- 
palmitic  and  abietic  acids  has  been  established,  the 
latter  being  in  the  form  of  an  ester.  The  fat-like 
product    which    is   dissolved    by    cold   acetone   (see 


Vol.  XIX,  No.  15.)  Cl.  XIII.— PAINTS  ;    PIGMENTS  ;   VARNISHES  ;    RESINS. 


599  a 


above)  contains  mainly  phytosterol  and  oleic  acid. 
Oetyl  abietate  is  a  wax-like  substance,  m.p.  40°  C, 
whereas  myricyl  abietate  is  a  dark  brown,  brittle 
product  closely  resembling  shellac.  The  difficulties 
involved  in  the  separation  and  the  small  yields  of 
the  wax  render  the  technical  utilisation  of  pine 
needle  residues  in  this  manner  unpromising. 

— H.  W. 

Soap  solutions;  Studies  of  the  constitution  of . 

Sodium,  behenate  and  sodium,  nonoate.  O.  J. 
Flecker  and  M.  Tavlor.  Cliem.  Soc.  Trans., 
1922,  121,  1101—1109; 

Sodium  behenate  solutions  exhibit  the  same  type  of 
dissociation  as  the  palmitate  and  stearate  (cf. 
McBain,  Laing,  and  Taylor,  J.,  1922,  424  a). 
Although  in  very  high  concentrations  of  any  of  the 
soaps  there  is  but  little  difference  in  the  amounts 
of  neutral  colloid  and  ionic  micelle,  which  constitute 
almost  the  whole  of  the  solution,  these  persist  in 
much  more  dilute  solutions  in  the  case  of  the 
behenate.  The  nonoate,  as  typical  of  fatty  acids 
with  an  uneven  number  of  carbon  atoms,  exhibits 
properties  intermediate  between  those  of  the 
adjacent  members  with  an  even  number  of  carbon 
atoms.— G.  F.  M. 

Water-in-oil  type  emulsion;  Formation  of  a  

by  the  concentration  of  the  oil  phase.  R.  P. 
Sanyal  and  S.  S.  Joshi.  J.  Phys.  Chem.,  1922, 
26,  481—486. 
The  authors  have  confirmed  the  result  that  emul- 
sions of  the  water-in-oil  type  can  be  formed  by 
shaking  large  quantities  of  a  viscous  oil  (olive  oil, 
castor  oil)  with  soap  solutions.  When  the  concen- 
tration of  the  emulsifying  agent  exceeds  about 
1%  oil-in-water  emulsions  only  are  stable.  In  the 
case  of  light  oils  (kerosene,  benzene)  the  water-in- 
oil  type  emulsion  is  unstable. — J.  S.  G.  T. 

Solubility     of    fats     in     liquid     sulphur     dioxide. 
Zerner  and  others.    See  III. 

Sugars    etc.    as    emulsifying    agents.      Clark    and 
Mann.     See  XVII. 

Fat  formation  by  yeast.    Maclean.  See  XVIII. 

Volatile    fatty    acids.     Wiegner    and    Magasanik. 
See  XIXa. 

Patents. 

Oil  presses    and    the    like.     Utrechtsche   Machine- 

fabriek  opgericht  door  F.  Smulders.    E.P.  156,593, 

6.1.21.  Conv.,  8.4.19. 
A  cage  press  having  a  floating  press  chamber  is 
provided  with  a  filling  drum  and  a  pressing  block, 
these  being  adapted  to  be  alternately  moved 
laterally  into  the  space  between  the  piston  and  the 
press  chamber.  The  press  has  a  telescopic  outer 
piston  transmitting  its  pressure  to  the  inner  piston. 
The  pressing  block,  which  has  a  smaller  cross- 
sectional  area  than  the  inner  space  of  the  press 
chamber,  is  placed  on  the  inner  piston,  and  the 
tilling  drum  fits  between  the  press  chamber  and  the 
niter  piston,  the  length  of  stroke  and  the  diameter 
>f  the  latter  being  such  that  after  the  removal  of 
:he  filling  drum  the  outer  piston  can  rise  until  it 
tbuts  against  the  press  chamber.  One  or  more 
emovable  distance  pieces  fit  between  the  wall  of  the 
iress  chamber  and  the  head  of  the  press,  and  there 
s  an  independently  removable  counter-pressure 
'lock.— H.  C.  R. 

>ils;    Process    or    method    of    refining    .      M. 

Reynolds.      U.S. P.     1,419,760,     13.6.22.      Appl., 

4.3.20. 

hscoiorjRED  oils  are  brought  to  a  desired  standard 
f  colour  by  alternately  refining,  by  a  process 
lcluding  saponification,  and  bleaching  the  oil. 

— L.  A.  C. 


Detergent  compound  and  method  of  making  the 
same.  F.  H.  Guernsey,  A6Sr.  to  The  Electric 
Smelting  and  Aluminum  Co.  U.S. P.  1,419,625, 
13.6.22.    Appl.,  18.2.21. 

A  htdeated  detergent  contains  1  mol.  of  alumina, 
x  mols.  of  silica,  and  x-1  mols.  of  an  alkali  metal 
oxide  (where  x  is  greater  than  7),  together  with  an 
alkali  metal  salt  of  a  weak  acid,  an  emulsifying 
agent,  and  a  further  quantity  of  an  alkali  metal 
oxide  sufficient  to  replace  that  consumed  during  the 
cleaning  process,  but  small  enough  to  enable  the 
product  to  remain  solid  at  summer  temperatures. 

— L.  A.  C. 

Oils;  Method  for  deodorising  blown  or  polymerised 

vegetable   or  animal  .     E.    I.   du   Pont  de 

Nemours  and  Co.,  Assees.  of  J.  E.  Booge.     E.P. 
157,401,  10.1.21.    Conv.,  13.6.18. 

See  U.S. P.  1,337,339  of  1920;  J.,  1920,  459  a. 

Glycerides;  Process  for  removing  free  acids  from 

.     W.  Gleitz.     E.P.  181,509,  23.3.21. 

See  U.S.P.  1,408,804  of  1922;  J.,  1922,  334  a. 

Oil    presses;     Cage     forming    and    cage    loading 

mechanism  for .     The  Murray  Co.,  Assees.  of 

N.    B.    Henry.      E.P.    164,015,   31.5.21.     Conv., 
1.6.20. 

Edible  fats.    E.P.  181,077.    See  XIXa. 


XIII.-PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Yield  value  and  mobility  of  paints;   Relation   of 

to  their  so-called  consistency.    J.  E.  Booge, 

E.  C.  Bingham,  and  H.  D.   Bruce.     Amer.  Soc. 
Testing  Materials,  June,  1922.  [Preprint.]  40  pp. 

Fifty-two  samples  of  13  commercial  paints  were 
examined  in  the  plastometer  designed  by  Bingham 
and  Green  (J.,  1920,  495  a),  and  the  results  com- 
pared with  the  average  values  awarded  by  a  com- 
mittee of  seven  paint  experts  acting  as  five  inde- 
pendent observers,  in  an  empirical  notation  of  units 
of  consistency,  i.e.,  "  consistencies  "  on  the  thick 
side  being  represented  by  the  units  1,  2,  3,  etc., 
and  on  the  thin  side  by  -1,  -2,  -3,  etc.,  the  best 
painting  consistency  being  designated  as  zero.  The 
plastometer  used  differed  from  that  described  in  the 
later  papers  of  Bingham  and  his  collaborators  in  the 
use  of  a  simpler  pressure  stabiliser,  and  in  the 
direct  weighing  of  the  material  exuded  from  the 
capillary,  in  place  of  either  the  drop  counting 
method  or  the  flowmeter  reading.  The  accuracy  of 
the  plastometer  in  furnishing  reproducible  results 
is  confirmed,  and  the  non-dependence  of  yield  value 
on  the  dimensions  of  the  capillary  used  is  noted. 
Comparison  of  the  average  of  the  "consistency" 
values  with  the  two  factors  of  mobility  (reciprocal 
of  viscosity  in  dynes  per  cm.),  and  yield  value 
(expressed  in  g.  per  sq.  cm.)  showed  no  simple 
relationship,  but  complete  correlation  was  shown  in 
the  two  sets  of  figures  except  in  one  case.  The 
clearest  and  most  simple  relationship,  however,  was 
obtained  by  plotting  the  ratio  of  the  quotient  of 
mobility  into  yield  value  (f  j n)  against  consistency, 
when  12  out  of  the  13  paints  examined  lay  fairly 
close  to  a  smooth  curve,  the  exceptional  case  being 
represented  by  an  enamel  containing  a  vehicle  with 
abnormally  low  fluidity. — A.  de  W. 

Paints;  Physical  properties  of .     P.  H.  Walker 

and  J.  G.  Thompson.  Amer.  Soc.  for  Testing 
Materials,  June,  1922.  [Preprint.]  19  pp. 
Uniform  films  for  tests  are  obtained  by  flowing  an 
excess  of  the  paint  under  examination  on  to  the 
centre  of  the  finely-ground  face  of  a  circular  glass 
plate  25  cm.   in  diam.   and  1  cm.  thick,   mounted 


600A 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[Aug.  15,  1922. 


horizontally  on  a  vertical  spindle  rotating  at  e.g., 
300  r.p.m.  Distribution  is  complete,  and  all  excess 
thrown  off  the  plates  after  3  minutes'  rotation,  a 
film  of  practically  uniform  thickness  being  obtained 
excepting  for  a  small  pyramid  in  the  centre  in  the 
case  of  paints  or  enamels.  This  procedure  permits 
of  paint  mixtures  being  made  and  so  diluted  with 
volatile  solvents,  that  films  of  uniform  and  similar 
thickness  are  obtainable  by  the  usual  methods  of 
brushing  etc.,  it  being  assumed  that  mixtures 
which  give  films  of  similar  thickness  when  whirled 
as  described  will  also  give  similar  films  when 
brushed  on  test  panels.  The  mobility  of  mixtures 
of  linseed  oil  and  turpentine  wa6  found  not  to  be 
a  linear  function  of  the  composition,  and  this  result 
was  confirmed  by  experimental  determinations  of 
viscosities  of  mixtures  of  linseed  oil  and  turpentine 
in  varying  proportions,  a  hyperbolic  curve  being 
obtained.  On  application  oi  a  paint  obtained  by 
freshly  mixing  new  or  old  white  lead  ground  in 
oil  with  raw  linseed  oil,  spots  or  pits  consisting  of 
small  areas  from  which  pigment  is  repelled  appear 
on  the  surface.  The  trouble  is  obviated  by  storage 
for  a  period  of  24  hours  before  use,  by  substitution 
of  boiled  linseed  oil  in  place  of  raw  oil,  or  by  the 
use  as  a  thinner  of  a  raw  linseed  oil  previously 
treated  with  white  lead.  The  trouble  does  not  occur 
when  other  pigments  are  substituted  for  white  lead 
or  when  other  oils  are  used  for  thinning;  it  is  not 
due  to  faulty  incorporation,  presence  or  absence  of 
driers  or  th.Aners,  presence  of  free  fatty  or  mineral 
acids  or  water,  and  the  authors  assume  that  the 
governing  factor  consists  in  a  reaction  between 
basic  carbonate  white  lead  and  some  unidentified 
portion  of  the  oil. — A.  de  W. 

Paints;   Accelerated  weathering    of  on  wood 

and  metal  surfaces.  H.  A.  Nelson.  Amer.  Soc. 
for  Testing  Materials,  June,  1922.  [Preprint.] 
15  pp. 

Accelerated  weathering  tests  for  paint  films  have 
been  carried  out  in  a  wooden  exposure  tank  sur- 
rounded by  an  insulated  air  space  and  lined  with 
galvanised  iron.  Effects  of  sunlight,  rain,  and  mist 
have  been  simulated  by  a  quartz  mercury  arc  lamp 
of  30  in.  effective  lighting  length,  a  revolving  spray, 
and  a  water  atomiser  respectively,  a  variable  speed 
electric  fan  serving  to  cool  the  arc  and  maintain  a 
uniform  temperature.  A  cycle  of  exposure  for  24 
hours  to  the  rays  of  the  arc  at  a  temperature  of 
50° — 60°  C,  followed  by  cooling  and  exposure  to 
the  water  spray  for  a  further  24  hrs.  at  5° — 10°  C. 
was  chosen  as  representing  actual  service  con- 
ditions. Exposures  were  made  at  a  distance  of  28  in. 
from  the  source  of  the  rays,  investigation  proving 
that  the  useful  rays  of  destructive  effect  had  a 
wave-length  in  the  neighbourhood  of  3000  A.U. 
On  an  average,  comparable  results  were  obtained  in 
a6  many  days  in  the  apparatus  as  in  months  under 
service  conditions.  The  following  results  were 
obtained  on  a  series  of  paints,  the  figures  referring 
to  the  number  of  days  necessary  for  the  complete 
loss  of  gloss,  and  initial  chalking,  respectively : 
100%  lead-free  zinc  oxide,  14,  16;  100%  leaded  (35%) 
zinc  oxide,  9,  12;  100%  light-resistant  lithopone, 
4,  6;  100%  basic  lead  carbonate,  3  5;  100% 
"  Titanox,"  2,  4;  40%  zinc  oxide,  40%  lithopone, 
20%  whiting,  9,  11.  The  effect  of  periodic  satura- 
tion and  maintenance  of  a  saturated  atmosphere 
during  exposure  is  to  accelerate  both  complete  loss 
of  gloss  and  initial  chalking  by  50%,  a  fact 
attributed  to  the  activity  of  dissolved  oxygen  in  an 
ionised  condition.  Freezing  of  a  saturated  film 
materially  promotes  the  formation  of  removable 
"  chalk,"  most  probably  due  to  the  formation  of  ice 
within  the  film.  Neither  flaking  nor  "checking" 
has  been  reproduced  in  any  of  the  tests.  Crack- 
ing, rapidly  followed  by  scaling  and  peeling,  is 
produced   by    periodic    exposures    to   temperatures 


considerably  below  freezing-point,  and  is  repro- 
ducible by  exposures  of  equal  alternate  intervals 
to  light,  low  temperature,  and  water-spray  for  a 
period  of  100  days,  equivalent  to  14 — 15  months' 
exposure  to  the  weather.  Lack  of  adherence  is  a 
fault  more  strictly  connected  with  the  method  of 
application  of  the  paint,  but  can  be  reproduced  by 
exposure  at  50° — 60°  C.  to  the  mercury  arc.  Of 
commercial  paints  intended  for  use  as  protective 
coatings  for  iron,  both  the  combination  of  83% 
Fe203  with  15%  ZnO,  and  a  100%  red  lead  paint 
showed  outstanding  merit  in  maintaining  gloss  and 
inhibiting  the  formation  of  rust  as  compared  both 
with  iron  oxide  paints  reduced  with  various  fillers, 
and  a  reduced  ZnO /sublimed  lead  paint.  Whilst  a 
certain  light-resistant  lithopone  maintained  its 
whiteness  over  a  period  of  3  years  on  exterior  ex- 
posure, the  effect  of  the  ultra-violet  radiations  was 
to  discolour  both  this  product  and  white  lead  in  a 
short  time. — A.  de  W. 

White  pigments;  Determination  of  tinting  strength 

of by  the  Pfund  colorimeter.     J.  H.  Calbeck 

and  C.  P.  Olander.    Amer.  Soc.  Testing  Materials. 
June,  1922.     [Preprint.]     8  pp. 

A  given  amount  of  lampblack  is  ground  with  a 
definite  quantity  of  white  pigment,  glycerin  being 
used  as  a  medium,  and  the  resulting  loss  in  bright- 
ness is  measured  on  a  Pfund  or  other  colorimeter. 
The  reading  obtained  is  then  referred  to  that 
amount  of  stainer  necessary  to  produce  the  same 
brightness  with  the  standard  white  pigment,  such 
readings  being  previously  plotted  on  a  chart  corre- 
lating decreasing  brightness  of  the  standard  with 
increasing  additions  of  stainer.  The  true  strength 
measurement,  however,  is  obtained  by  a  modified 
treatment  wherein  a  correction  for  the  differing 
initial  brightness  of  the  sample  is  allowed  for  by 
similar  reference  to  the  standard  strength  curve. 
Since  the  standard  strength  curve  is  not  a  straight 
line  but  indicates  that  the  greatest  loss  in  brightness 
takes  place  with  the  initial  additions  of  stainer,  the 
maximum  sensitiveness  of  the  determination  will 
be  obtained  by  the  addition  of  relatively  small  pro- 
portions of  stainer. — A.  de  W. 

Wax  from  pine  needles,  and  abietic  esters.    Kauf- 
mann  and  Friedebach.     See  XII. 

Patents. 

Lead  sulphate  water  paste;  Conversion  of into 

oil  paste.    D.  Whyte.     U.S.P.  1,419,655,  13.6.22. 
Appl.,  27.6.21. 

Lead  sulphate  water  pastes  are  dried  to  express  the 
"  free  water  "  and  then  churned  with  oil  in  just 
sufficient  amount  to  "  break  out  the  waters  of 
crystallisation"  from  the  lead  sulphate  particles 
and  to  be  taken  up  by  these  particles  to  form  a  stiff 
paste. — A.  de  W. 

Pigment    colours   [green   lakes'];    Manufacture   of 

.    J.  Y.  Johnson.    From  Badische  Anilin  und 

Soda  Fabrik.  E.P.  181,584,  20.5.21. 
Nitroso-/3-naphthol,  preferably  in  the  form  of  the 
bisulphite  compound,  is  caused  to  react  with  ferric 
or  ferrous  salts,  in  which  latter  case  (with  the  ex- 
ception of  pyroligneous  iron  liquor)  the  iron  is 
employed  in  less  than  the  theoretical  amount  of 
two  mols.  of  nitroso-/3-naphthol  to  each  atom  of 
iron.  The  reaction  is  preferably  carried  out  in  the 
presence  of  Turkey-red  oil  or  similarly  acting  sub- 
stance, e.g.,  sodium  di-isopropylnaphthaleuesul- 
phonate,  and  the  mixture  should  be  kept  alkaline 
either  from  the  beginning  or  at  the  end  of  the 
reaction. — A.  de  W. 

Artificial  resin  products;  Manufacture  of .    H. 

Dreyfus.     E.P.   181,575,  12.5.21. 
Cyclohexanone  or  one  of   its  homologues  is  con- 


Vol.  XIX,  No.  15.]        Cl.  XIV.— INDIA-RUBBER,  &c.     Cl.  XV.— LEATHER  ;    BONE,  &c. 


601a 


densed  with  acetaldehyde  in  the  presence  of  either 
alkaline  or  acid  condensing  agents.     The  ratio  of 
acetaldehyde  to  cyclohexanone  may  vary  from  one 
to  several  mols.,  whilst  the  temperature  of  reaction 
and  dilution  by  means  of  solvents  may  also  vary 
within  wide  limits;  e.g.,  100  pts.  by  weight  of  cyclo- 
hexanone   is   diluted   with    100   pts.    by   weight   of 
alcohol,  and  1  pt.  by  wt.  of  caustic  soda  as  a  50% 
solution    added    whilst   cooling.      The    mixture    is 
heated  to  80°— 90°  C,  about  250  pts.  by  wt.  of  25% 
1     acetaldehyde   added,    and   the   mixture   heated   for 
I    3 — 1  hrs."     The    alcohol   is   then   distilled   off,    the 
I    residue  washed  with  water  and  allowed  to  solidify 
by  standing. — A.  de  W. 

'    Bleaching  earthy  minerals.  E.P.  181,132.  See  VII. 


XIV.-INDIA-RUBBER;  GUTTA-PERCHA. 

Rubber;  Tests  on  plantation  with  zinc  oxide 

and   litharge    mixings.      H.    P.    Stevens.      Bull. 
Rubber  Growers'  Assoc,  1922,  4,  275—281. 

Samples  of  rubber  prepared  in  slab  form  using 
varying  proportions  of  acetic  acid,  sulphuric  acid, 
and  alum  as  coagulants,  were  vulcanised  for  3  hrs. 
at  138°  C.  with  sulphur  alone  (proportions  90:10) 
or  with  the  additional  presence  of  zinc  oxide  (pro- 
portions 90:10:5)  or  of  litharge  (proportions 
100:6:7).  For  each  sample  of  rubber  the  elongation 
measured  at  0'6  kg.  per  sq.  mm.  for  the  simple 
mixture  stood  in  an  approximately  constant  ratio 
to  that  of  the  mixture  with  zinc  oxide  but  not  to 
that  of  the  litharge  mixture ;  constant  relationship, 
however,  did  not  extend  to  the  corresponding 
vulcanisation  coefficients,  the  zinc  oxide  and 
litharge  mixtures  exhibiting  relatively  higher 
values  for  the  more  slowly  vulcanising  rubbers. 

— D.  F.  T. 

Accelerating  effect  of  dimethyldithiocarbamate  of 
dimethylamine  and  of  diethyl  dithio  carbarn  ate  of 
diethylamine ;  Note  on  the  comparative  — ■ — . 
P.  Schidrowitz,  J.  M.  S.  de  Gouvea,  and  F.  G. 
Osborne.     Indiarubber  J.,  1922,  64,  75—77. 

The  vulcanisation  of  mixtures  of  rubber  (100)  and 
sulphur  (8)  with  and  without  the  addition  of  zinc 
oxide  (10)  at  286°  F.  (141°  C.)  showed  that  di- 
methylamine dithiocarbamate  (0'25)  and  its  diethyl- 
amine  analogue  are  of  comparable  effectiveness  in 
the  absence  of  zinc  oxide.  In  the  presence  of  zinc 
oxide  the  dimethylamine  compound  is  distinctly  the 
more  active.  An  iodine  derivative  of  the  dimethyl- 
amine compound  proved  distinctly  less  active  than 
either.  (Cf.  Twiss,  Brazier,  and  Thomas,  J.,  1922, 
;  81  t.)— D.  F.  T. 

Rubber   goods;  Accelerated  ageing  tests  on  . 

W.   W.   Evans.     Amer.   Soc.   Testing  Materials, 
June,  1922.     [Preprint.]    10  pp. 

In  accelerated  ageing  tests  at  160°  F.  (91°  C.)  in 
circulating  fresh  air  the  samples  do  not  harden  as 
in  natural  ageing  but  become  definitely  weaker;  the 
stress-strain  curves  undergo  little  alteration  in 
form  but  become  shortened  and  also  gradually  fall 
lower  on  account  of  increasing  resistance  to  exten- 
sion. Sulphur  changes  are  noticeable  but  are 
unimportant.  The  results  are  best  interpreted  by 
comparison  of  the  curves  showing  the  progress  of 
the  ageing  effect  in  samples  of  similar  type.  The 
curves  for  the  accelerated  and  natural  life  tests 
are  not  exactly  parallel,  the  former  test  being  some- 
what the  more  severe,  even  when  interpreted  on  the 
basis  that  one  day  of  accelerated  ageing  is  equiva- 
lent to  six  months'  natural  life.  In  the  vast 
majority  of  cases  too  rapid  deterioration  is  due  to 
over-  or  under-vulcanisation,  chiefly  the  former. 
(Cf.  Geer  and  Evans,  J.,  1921,  479  A.)— D.  F.  T. 


Vulcanisation;    Mercaptothiazoles    as    accelerators 

of  .      G.   Bruni   and   E.   Romaui.      Atti  R. 

Accad.  Lincei,  1922,  31,  I.,  86—88.  (Cf.  J.,  1921, 
553  a.) 
When  added  to  a  mixture  of  rubber  and  sulphur 
containing  oxide  of  zinc,  lead,  magnesium,  cal- 
cium, mercury,  etc.,  1 — 3%  of  5-methyl-2-mercapto- 
thiazole  greatly  accelerates  vulcanisation,  which  is 
effected  in  5  minutes  at  120°  C.  The  cadmium, 
lead,  mercuric,  and  especially  the  zinc  salts  of  the 
thiazole  exhibit  similar  accelerating  action. 

— T.   H.    P. 


XV.-LEATHER;  BONE;  HORN;  GLUE. 

Tannins  and  similar  compounds.  IX.  Stereoiso- 
meric  catechins.  II.  K.  Freudenberg,  O.  Bohme, 
and  L.  Purrmann.    Ber.,  1922,  55,  1734—1747. 

A  further  step  in  the  elucidation  of  the  constitu- 
tion of  the  catechins  (cf.  J.,  1921,  520  a,  781  a)  has 
been  made  through  the  observation  that  r-catechin 
is  transformed  into  r-epicatechin  under  conditions 
which  causes  the  racemisation  of  Z-catechin.  It 
follows  that  catechin  must  contain  two  asym- 
metric carbon  atoms,  which  is  possible  only  if  the 
unlocated  hydroxy  group  replaces  the  hydrogen  of 
a  methylene  group.  Acacia  (Pegu)  catechu  con- 
tains a  mixture  of  r-  and  Z-catechins  and  r-  and  l- 
epicatechins.  The  catechin  from  Chinese  rhubarb 
is  pure  d-catechin ;  that  from  mahogany  contains 
r-  and  d-catechins  and  probably  also  d-epioatechin, 
but  only  steamed  wood  in  which  the  original  cate- 
chins had  suffered  alteration  was  available  for  the 
examination;  the  catechin  from  PauUinia  cupana 
is  similar  to  that  from  mahogany.  (Cf.  J.C.S., 
August.)— H.  W. 

Flavanone;   Reduction   of  .      K.    Freudenberg 

and  L.  Orthner.  Ber.,  1922,  55,  1748—1751. 
Fiayanol  (4-hydroxyflavan),  a  possible  parent 
substance  of  catechin  (Freudenberg,  Bohme  and 
Purrmann,  cf.  supra),  has  been  prepared  by  the 
reduction  of  flavanone  with  aluminium  amalgam  in 
neutral  alcoholic  solution.  It  gives  a  decided  reddish- 
violet  coloration  with  concentrated  sulphuric  acid ; 
this  is  much  more  intense  than  the  yellowish-red 
shade  given  by  tetramethylcatechin  which,  how- 
ever, gradually  becomes  darker  when  the  mixture 
is  preserved.    '(Cf.  J.C.S.,  August.)— H.  W. 

Catechin.  K.  Freudenberg.  Ber.,  1922,  55,  1938 
—1942.  (Cf.  Nierenstein,  J.,  1922,  184  a,  407  a.) 
The  author  maintains  his  contention  that  the 
tannins  are  condensation  products  of  catechin-like 
substances.  Attempts  to  prepare  catechincarb- 
oxylic  acid  according  to  Nierenstein's  directions 
were  unsuccessful,  the  catechin  appearing  to  be 
decomposed  completely  during  the  action.  Similar 
observations  were  made  with  hydroxycatechin. 
The  catechincarboxylic  acid  from  PauUinia  tannin 
is  optically  active  and  resolvable ;  its  conversion  by 
loss  of  carbon  dioxide  into  d-catechin  (gambier 
catechin)  is  therefore  inexplicable.  Demethylation 
of  tetramethylcatechin  cannot  be  effected  by  acetic 
anhydride  and  acetyl  chloride,  whilst  penta-acetyl- 
catechin  cannot  be  hydrolysed  by  sulphuric  acid  to 
catechin  as  claimed  by  Nierenstein.  The  identity 
of  the  methylated  reduction  product  of  catechin, 
m.p.  87°— 88°  C.,  with  pentarnethoxy-aY-diphenyl- 
propane  has  been  confirmed;  Nierenstein's  syn- 
thesis of  acacatechin  is  therefore  difficult  to  under- 
stand, since  his  compounds  belong  to  the  oo-di- 
phenylpropane  group. — H.   W. 

Glue;  Action  of  alum  on  animal .     A.  Gutbier, 

E.  Sauer,  and  F.  Schelling.  Kolloid-Zeits.,  1922, 
30,  376—395. 

Alum  strongly  increases  the  viscosity  of  glue  and  at 


G02a 


Cl.  XVI.— SOILS;  FERTILISERS. 


[Aug.  15,  1922. 


higher  temperatures,  in  slightly  acid  solutions, 
causes  precipitation.  The  addition  of  alum  to  both 
bone  and  leather  glue  immediately  reduces  the 
colour.  The  sensitiveness  of  glue  to  alum  varies 
with  the  different  varieties;  thus  the  viscosity  of 
leather  glue  is  increased  by  very  small  concentra- 
tions of  alum,  whilst  very  large  concentrations  are 
necessary  to  give  a  noteworthy  increase  of  viscosity 
with  bone  glue.  At  higher  temperatures,  in  the 
case  of  leather  glue,  there  is  a  continuous  decrease 
in  the  viscosity  depending  on  the  concentration  of 
the  alum  and  the  time  during  which  the  two  sub- 
stances have  been  in  contact.  Bone  glue  is  much 
more  stable  than  leather  glue  to  alum  and  to  high 
temperatures.  When  glue  jellies  mixed  with  alum 
are  dialysed  the  aluminium  is  retained  quantita- 
tively, but  the  other  constituents  of  the  alum 
are  removed.  The  precipitates  produced  during 
the  clarification  of  glue  by  alum  and  phosphoric 
acid  contain  both  glue  and  aluminium  in  varying 
proportions  and  are  adsorption  compounds;  they 
have  a  considerable  surface  energy  and  consequently 
possess  a  great  clarifying  power.  The  more  rapidly 
the  precipitate  forms  the  greater  is  the  clarifying 
power.  After  proper  clarification  the  glue  contains 
only  small  quantities  of  aluminium,  but  it  contains 
the  whole  of  the  acid  added.  The  clarification  of 
glue  is  always  accompanied  by  a  deterioration,  as 
shown  by  the  decrease  in  viscosity.  This  is  not  due 
directly  to  the  clarification  process  but  to  secondary 
reactions.  The  acid  added  and  the  prolonged  heat- 
ing bring  about  hydrolysis  which  yields  substances 
that  are  not  glue-like.  Leather  glue  is  more 
sensitive  than  bone  glue  in  this  respect. — J.  F.  S. 

Patents. 

Tanning  materials;  Manufacture  of  new  and 

process  of  tanning  therewith.     Chem.  Fabr.  und 

AsphaltwerkeA.-G.    E.P.  156,254,  4.1.21.    Conv., 

1.9.16. 

Tanning  materials  prepared  by  condensing  organic 

compounds  with  formaldehyde  are  neutralised  with 

compounds  of  aluminium  or  chromium,  or  both. 

— D.  W, 

Tanning  of  skins  and  hides.    J.  Hell.    E.P.  180,758, 

1.3.21. 
Hides  are  unhaired  and  then  treated  with  soluble 
magnesium  salts  and  soluble  carbonic  acid  salts  of 
other  bases  in  the  presence  of  water,  which  may 
be  followed  by  a  treatment  with  other  tanning 
materials. — D.  W. 

Tanning.     T.  B.  Carmichael  and  W.  H.  Ockleston. 

E.P.  181,067,  24.2.21. 
Hides  are  treated  with  an  acidified  green  chrome 
liquor  and  then  with  a  vegetable  tanning  liquor,  or 
they  are  treated  with  a  combined  tanning  liquor 
consisting  of  equal  parts  of  an  acidified  green 
chrome  liquor  of  about  20°  Bkr.  and  a  vegetable 
tanning  liquor  of  about  30°— 40°  Bkr.,  which  may 
be  followed  by  further  treatment  in  vegetable  tan 
liquors.  The  acidified  green  chrome  liquor  is  pro- 
pared  by  adding  acetic  acid  to  a  commercial  chrome 
tanning  liquor. — D.  W. 

Glue;  Process  of,    and  apparatus  for,    extracting 

from  glue-yielding  raw  materials  by  means 

of  water.  K.  Niessen.  E.P.  156,645,  6.1.21.  Conv., 
8.12.19. 
The  raw  material  is  heated  with  water  under 
reduced  pressure  in  a  series  of  extractors,  which 
are  charged  in  turn.  The  water  freshly  introduced 
into  an  extractor  passes  through  all  but  one  of  the 
extractors  in  series  in  such  an  order  that  the  liquor 
is  enriched  and  concentrated  in  each  by  contact 
with  fresher  material  and  by  partial  evaporation 
of  the   water.     The   water   in   regular  circulation 


passes  from  the  bottom  of  one  extractor  to  the  top 
of  the  next  vessel,  wherein  it  is  preferably  dis- 
charged through  a  sprinkler.  Each  extractor  is 
provided  with  automatic  va'lve  controlling  gear  by 
means  of  which  the  passage  of  liquor  through  the 
system  is  controlled. — J.  R. 

Casein;  Manufacture  of  plastic  material  from . 

E.  Krause  and  H.  Blucher.  E.P.  162,657,  29.4.21. 
Conv.,  3.5.20. 

Casein,  which  may  be  ground  to  pass  a  2000-mesh 
sieve,  is  treated  with  formaldehyde,  dried  so  as  to 
remove  any  free  formaldehyde,  and  compressed  hot 
into  the  desired  shape. — D.  \Y. 


XVI.-S0ILS ;    FERTILISERS. 

Nitrogenous     metabolism    of     the    higher    plants; 

Investigations  on  the  .     II.     Distribution  of 

nitrogen  in  the  leaves  of  the  runner  bean.  A.  C. 
Chibnall.     Biochem.  J.,  1922,  16,  344—362. 

Numerous  determinations  have  been  made  of  the 
nitrogen  content  of  the  leaves  of  the  runner  bean, 
particularly  to  determine  seasonal  and  diurnal 
variations  and  the  results  of  starvation.  The 
results  indicate  the  synthesis  of  protein  from  nitric- 
nitrogen  through  monoamino-nitrogen,  and  then 
the  degradation  of  protein  to  non-protein  nitrogen, 
followed  by  translocation  from  the  leaf. — W.  O.  K. 

Fungi;  Chemistry  of  the  higher .  XV.  Chemical 

relations  between  the  higher  fungi  and  their  sub- 
stratum. II.  R.  Hasenohrl  and  J.  Zellner. 
Monatsh.,  1922,  43,  21—41. 

The  physical  and  chemical  characteristics  of  the 
higher  fungi  resemble  closely  those  of  the  hetero- 
tropic  phanerogams  (cf.  Monatsh.,  1919,  40,  311). 
They  contain  a  considerably  higher  proportion  of 
water  than  green  plants,  and  more  water  than  the 
host  on  which  they  are  parasitic.  The  composition 
of  the  mineral  matter  in  the  fleshy  fungi  resembles 
that  in  phanerogams,  potassium  and  phosphorus 
being  high  and  calcium  low.  In  some  of  the  more 
woody  or  leathery  fungi,  however,  calcium  sulphate 
is  exceptionally  high.  In  general  the  fungi  con- 
tain a  high  proportion  of  soluble  salts,  which  are 
necessary  to  maintain  the  high  osmotic  pressure 
required  in  plants  of  such  high  water  content.  The 
osmotic  pressure  in  the  fungus  is  shown  experi- 
mentally to  be  higher  than  in  the  substratum. 
Attempts  to  detect  cellulose-  and  lignin-splitting 
enzymes  in  a  number  of  fungi  were  unsuccessful. 
A  specimen  of  oak  on  which  Polyporus  igniarius  had 
been  parasitic  was  found  to  have  lost  74%  of  its 
weight,  the  sp.  gr.  being  reduced  from  0740  to 
0'191.  Its  analysis,  however,  showed  little  differ- 
ence in  composition  from  that  of  healthy  oak, 
except  that  starch,  tannin,  and  sugar  had  dis- 
appeared. The  material  of  the  wood  appears,  there- 
fore, to  be  absorbed  equally  by  the  fungus.  (Cf. 
J.C.S.,  August.)— E,  H.  R. 

Catalase  of  seeds.  J.  de  Vilmorin  and  Cazaubon. 
Comptes  rend.,  1922,  175,  50—51.  (Cf.  Nemec 
and  Duchon,  J.,  1921,  899  a;  1922,  264  a.) 
In  the  case  of  the  seeds  of  pines  and  larches  the 
authors  find  no  correlation  between  the  amount 
of  catalase  present  and  the  vitality  of  the  seed 
as  shown  by  its  germinative  capacity. — W.  G. 

Patents. 
Fertilisers;   Manufacture   of   artificial  nitrogenous 

.  K.  Niedenzu.  E.P.  166,887,  9.7.21.  Conv., 

23.7.20. 
A  mixture  of  calcium  sulphate  and  carbonaceous 
material   is  heated  at  1000°— 1300°  C,   and  gases 
containing  nitrogen  (producer-gas  etc.)  are  passed 


Vol.  XLI.,  No.  15.] 


Cl.  XVII.— SUGARS;  STARCHES;  GUMS. 


603  a. 


through  the  mixture.  Calcium  cyanide  and  cyan- 
amide  are  formed,  and  the  product  is  ground  to  a 
powder.  Halogen  compounds,  oxides,  carbonates, 
and  salts  of  the  alkaline-earth  metals  containing 
oxygen  may  be  added  as  accelerators. — A.  G.  P. 

Befuse;  Plant  for  the  aerobic  fermentation  of 

and  the  production  of  manure  therefrom.  Soc. 
Anon.  Brevetti  Beccari.  E.P.  175,586,  28.2.21. 
Conv.,  16.2.21. 
Putrescible  refuse  is  stacked  on  the  perforated 
floor  of  a  chamber  through  which  a  current  of  air 
is  drawn.  Volatile  products  are  trapped  by 
bubbling  the  escaping  air  through  water.  The 
period  of  treatment  is  30 — 35  days. — A.  G.  P. 

Fertiliser;   Method  of  conditioning   .     C.    A. 

Butt.     U.S. P.  1,418,618,  6.6.22.     Appl.,  17.6.21. 

Nascent  hydrogen  is  generated  in  a  fertiliser 
material  containing  a  nitrogen  compound  capable  of 
reacting  with  nascent  hydrogen  to  produce 
ammonia.  The  ammonia  formed  combines  with 
any  free  acid  present. 

Fertilisers.    D.  Lo  Monaco.     E.P.  159,481,  25.2.21. 
Conv.,  26.2.20. 

See  U.S.P.  1,402,368  of  1922;  J.,  1922,  151  a.  The 
process  is  intended  more  particularly  for  the 
treatment  of  humus. 


XVII.-SUGABS ;  STARCHES;  GUMS. 

Sucrose;  Inversion  of in  alkaline  copper  solu- 
tion.    E.   Canals.      Bull.   Soc.   Chim.,    1922,   31, 

583—588. 

Results  indicate  that  sucrose  is  slowly  hydrolysed 
during  the  estimation  of  reducing  sugars  in  its 
presence  by  means  of  Fehling's  solution.  The 
actual  amount  of  sucrose  hydrolysed  increases  with 
the  concentration  of  the  sucrose,  with  the  time  of 
heating,  and  with  the  temperature  at  which  the 
liquid  is  kept.  It  is  essential,  therefore,  to  make 
a  blank  estimation,  and  it  is  advisable  to  heat  by 
immersion  in  a  water-bath. — W.  G. 


Svcrose  lost  in  the  carbonatation  scums  of  the  beet 

sugar  factory;  Determination  of   the   .     H. 

Claassen.     Centr.  Zuckerind.,  1922,  30,  703. 

In  factories  in  which  the  carbonatation  scums  are 
not  dried  but  are  washed  into  a  6crew  conveyor 
and  pumped  away  to  waste,  the  loss  of  sugar  may 
be  determined  by  taking  an  average  sample  from 
the  mixing  tank  placed  before  the  pump,  calcu- 
lating the  weight  from  the  volume  and  density, 
and  determining  the  sucrose  in  a  portion  in  the 
usual  manner.  The  results  given  by  this  method, 
owing  to  the  greater  accuracy  in  sampling  which 
it  permits,  are  nearer  the  truth  than  those  found 
by  the  procedure  generally  followed,  in  which  the 
weight  is  found  directly  by  weighing  and  the  sugar 
determined  in  a  portion  abstracted  from  the  cakes 
by  means  of  a  trier. — J.  P.  O. 

Sucrose;  Spectral  study  of  the  triboluminescence  of 

.     H.  Longchambon.     Comptes  rend.,   1922, 

174,  1633—1634. 

["he  spectrum  of  triboluminescence  of  sucrose  shows 
ilmost  all  the  constituents  of  the  second  positive 
land  spectrum  of  nitrogen  and  no  others.  The 
riboluminescence  of  sugar  is,  therefore,  due  to  a 
lischarge  in  the  air  between  two  solid  particles 
rhich  have  been  suddenly  separated  and  are  elec- 
rically  charged. — W.  G. 


Artificial  honey;  Determination  of  the  dry  matter 

in by  means  of  the  ref Tactometer.     F.  Auer- 

bach  and  G.  Borres.  Z.  Unters.  Nahr.  Genussm., 
1922,  43,  297—311. 

The  Abbe  refractometer  was  used.  The  artificial 
honey  was  warmed  until  all  crystals  had  melted 
and  thoroughly  mixed  before  drops  were  removed 
for  testing.  Preliminary  experiments  carried  out 
to  determine  the  variation  of  refractive  index  with 
temperature  gave  000025  as  the  mean  fall  per 
degree  rise  in  temperature  between  20°  and  50°  C. 
Readings  were  taken  after  the  temperature  had 
remained  constant  for  5  mins.  in  the  neighbourhood 
of  40°  C.  and  corrected  to  that  temperature.  The 
results  obtained  for  a  large  number  of  samples  were 
compared  with  the  percentage  of  dry  matter  as 
obtained  by  density  determinations.  The  refractive 
index  increases  as  a  linear  function  of  the  per- 
centage of  dry  matter.  The  maximum  variation 
in  the  percentage  as  given  by  the  refractometer  as 
compared  with  that  given  by  density  determinations 
is  ±0'2%,  except  for  artificial  honeys  prepared  with 
starch  syrup,  where  the  variation  reached  0'3%. 
Pure  starch  syrups  showed  variations  up  to  2'36%. 

— H.  C.  R. 

Adsorption  in  solution  and  at  interfaces  of  sugars, 
dextrin,   starch,   gum  arabic,  and  egg   albumin; 

Quantitative  study  of  the and  the  mechanism 

of  their  action  as  emulsifying  agents.  G.  L. 
Clark  and  W.  A.  Mann.  J.  Biol.  Chem.,  1922, 
52,  157—182. 

Measurements  were  made  of  the  surface  tension 
and  viscosity  of  solutions  of  the  above  substances 
for  a  laige  number  of  concentrations  both  with  and 
without  the  addition  of  electrolytes.  The  inter- 
facial  tension  between  each  solution  and  benzene 
was  also  measured,  and  the  efficiency  of  the 
emulsifying  agent  with  respect  to  both  benzene  and 
kerosene  estimated.  The  factors  of  predominating 
importance  in  an  emulsifying  agent  appear  to  be 
viscosity  and  ability  to  lower  interfacial  tension. 
In  the  case  of  sugar,  viscosity  is  the  more  impor- 
tant, whilst  with  egg  albumin,  which  gave  the  best 
emulsions,  film  formation  is  of  primary  importance. 
Two  types  of  agglomeration  are  distinguished, 
namely,  that  accompanied  by  an  increase  in 
viscosity,  in  which  coalescence  of  the  particles  is 
accompanied  by  enclosure  of  water,  and  that  pro- 
ducing a  decrease  in  viscosity,  in  which  there  is  a 
decrease  both  in  surface  and  amount  of  bound 
water.  Dextrin  and  starch,  considered  separately, 
provide  examples  of  the  former  type.  When  these 
substances  are  considered  in  relation  to  one 
another,  however,  it  is  found  that  the  viscosity 
curves  run  parallel,  thus  resembling  the  viscosity 
curves  of  sulphur  sols  of  different  degrees  of  dis- 
persion (Z.  physik.  Chem.,  1912,  80,  709).  This  is 
considered  to  be  evidence  that  starch  and  dextrin 
differ  merely  in  the  degree  of  agglomeration 
(second  type)  of  the  particles,  and  thus  to  furnish 
experimental  proof  of  the  view  put  forward  by 
Herzfeld  and  Klinger  (J.,   1921,   784a).— E.   S. 

Inulin.  Constitution  of  polysaccharides.  IV. 
J.  C.  Irvine  E.  S.  Steele  and  M.  I.  Shannon. 
Chem.  Soc.  trans.,  1922,   121,  1060—1078. 

The  formation  of  dimethylinulin  as  the  main  pro- 
duct of  the  methylation  of  inulin  with  methyl 
sulphate  and  sodium  hydroxide  was  confirmed.  The 
varying  solubility  in  ether  of  the  compound  from 
different  preparations  is  ascribed  to  partial  depoly- 
merisation.  The  physical  properties  of  trimethyl- 
inulin  also  vary  in  marked  degree  according  to  the 
experimental  procedure  adopted  in  preparing  the 
compound,  the  physical  state  varying  from  an 
amorphous  solid  to  an  extremely  viscous  syrup,  the 
latter  being  dextro-  and  the  former  lsevo-rotatory. 


604  a 


Cl.  XVIII.— FERMENTATION    INDUSTRIES. 


[Aug.  15,  1922. 


All  forms,  however,  have  the  same  composition  and 
on  hydrolysis  give  the  same  form  of  triniethyl-y- 
fructose,  the  hevo-varieties  only  undergoing  a 
change  of  sign  during  hydrolysis.  The  occurrence 
of  these  varieties  of  trimethylinulin  can  only  be 
ascribed  to  variations  in  molecular  magnitude,  the 
cause  of  which  it  is  at  present  impossible  definitely 
to  determine.  Dimethylinulin,  which  has  always 
been  obtained  as  a  tevo-rotatory  compound,  shows 
a  change  of  sign  on  hydrolysis,  giving  d-dimethyl- 
■y-fructose,  which  is  valuable  confirmatory  evidence 
of  the  form  of  fructose  of  which  inulin  is  a 
derivative. — G.  F.  M. 

Digestibility  of  starches.     Langworthy  and  Deuel, 
jun.     See  XIXa. 

Patents. 

Syrups  and  molasses  in  storage;  Preservation  of 

W.  L.  Owen,  Assr.  to  Penick  and  Ford, 

Ltd.  U.S.P.  1,418,457,  6.6.22.  Appl.,  31.7.19. 
The  syrup  or  molasses  is  subjected  to  carbon  dioxide 
under  pressure  in  suitable  reservoirs  in  order  sub- 
stantially to  displace  the  surrounding  and  entrained 
air,  and  is  then  stored  in  an  atmosphere  of 
carbon  dioxide  under  a  pressure  of  at  least  45  lb. 
per  sq.  in.- — J.  P.  O. 

Starch   and   starchy   matter   and   sulphuric   acid; 

Manufacture  of  compounds  or  mixtures  of  

If  or  use  in  the  manufacture  of  viscose  silk,  etc.]. 
Courtaulds,  Ltd.,  and  (a)  W.  H.  Stokes,  (b)  J.  A. 
Lloyd.     E.P.  (a)  181,197,  (b)  181,198,  23.4.21. 

(a)  Homogeneous  mixtures  of  starch  and  60% 
sulphuric  acid  are  made  by  mixing  finely-divided 
starch  or  starchy  material  with  water,  or  prefer- 
ably dilute  sulphuric  acid,  and  adding  rapidly, 
with  stirring  and  cooling,  to  the  paste  so  obtained 
sufficient  concentrated  acid  to  bring  the  mixture  to 
the  desired  concentration  :  e.g.,  14  pts.  of  starch  is 
made  into  a  paste  with  15  pts.  of  28%  sulphuric 
acid  at  about  28°— 30°  C. ;  14  pts.  of  77%  sulphuric 
acid  is  then  added  rapidly,  with  continuous  stirring 
and  cooling,  until  after  a  few  hours  a  clear,  homo- 
geneous liquid  is  obtained,  which  may  be  used  in 
the   preparation   of   setting  baths   for   viscose   etc. 

(b)  Starch  or  starchy  material,  e.g.  ground  rice  or 
tapioca,  not  necessarily  in  a  finely-divided  state,  is 
added  in  successive  small  quantities  to  50 — 65% 
sulphuric  acid  at  temperatures  of  35° — 75°  C.  (the 
higher  the  temperature  the  darker  will  be  the 
colour  of  the  resulting  liquid)  :  e.g.,  56  pts  of  maize 
starch  is  added  over  a  period  of  about  3J  hrs.  to 
116  pts.  of  52%  sulphuric  acid,  maintained  at 
40°  C.  The  liquid  is  stirred  for  another  2  hrs., 
keeping  the  temperature  at  40°  C,  when  a  light- 
coloured,  mobile  liquid  is  obtained. — D.  J.  N. 

Starch  products;  Method  of  making  soluble  . 

A.  W.  H.  Lenders  and  H.  F.  Bauer,  Assrs.  to 
Penick  and  Ford,  Ltd.  U.S.P.  1,418,311,  6.6.22. 
Appl.,  2.7.17. 
An  aqueous  solution  of  modified  or  thin  boiling 
starch,  made  by  the  usual  process  of  acid  hydrolysis, 
is  subjected  without  the  addition  of  any  reagent  to 
a  temperature  which  instantaneously  evaporates 
the  water  and  further  modifies  the  starch. — J.  P.  O. 

Fitter  for  sugar  liquors.     E.P.  180,935.     See  I. 


XVIII.-FEBMENTATION    INDUSTRIES. 

Yeast;  Nitrogen  nutrition  of .    F.  K.  Swoboda. 

J.  Biol.  Chem.,  1922,  52,  91—109. 
The  effect  of   various  substances  on   the   nitrogen 
nutrition  of  yeast  was  studied,  the  special  feature 
of  the  experiments  being  the  addition  to  the  syn- 


thetic media  employed  of  a  constant  quantity  of 
growth-promoting  vitamin  ("bios").  In  media 
containing  asparagine,  succinamide,  succinimide, 
or  aspartic  acid,  the  growth  is  better  in  the  presence 
than  in  the  absence  of  ammonium  sulphate.  Of  the 
nitrogen  contained  in  asparagine,  the  a-amino 
group  appears  to  stimulate  nitrogen  assimilation ; 
the  amide  group,  however,  in  the  presence  of 
ammonium  sulphate,  also  stimulates  cell  repro- 
duction. The  nutrient  value  of  edestin  is  increased 
by  mild  acid  hydrolysis,  but  is  decreased  by  con- 
tinued acid  hydrolysis  and  by  alkaline  hydrolysis. 
In  the  latter  case  subsequent  acid  hydrolysis  again 
improves  the  nutrient  value.  The  effect  of  various 
amino-acids,  both  in  the  presence  and  absence  of 
hydrolysed  edestin,  was  also  studied. — E.  S. 

Wines;  [Detection  of~\  depiquage  of  [addition  of  a 

neutralising    agent    to]    sour    .      L     Ferre 

Ann.  Falsif.,  1922,  15,  139—146. 

For  the  detection  of  the  addition  to  sour  wines  of 
a  substance  capable  of  improving  their  taste,  the 
author  recommends  the  estimation  of  the  free  and 
combined  volatile  acids  by  the  following  procedure: 
10  c.c.  of  the  wine  is  extracted  with  three  successive 
10  c.c.  portions  of  ether.  The  ether  extracts  the 
free  volatile  acids  together  with  a  certain  amount 
of  the  free  fixed  acids.  The  ether  is  distilled  off 
at  a  low  temperature,  and  the  volatile  acids  in  the 
residue  are  estimated  by  Mathieu's  method  of 
successive  distillations.  The  wine  left  after  the 
extraction  is  used  for  the  estimation  of  the  com- 
bined volatile  acids  by  a  similar  method  after 
acidification  with  0"5  c.c.  of  sulphuric  acid.  In  the 
case  of  a  wine  containing  a  considerable  amount  of 
free  tartaric  acid  it  is  almost  impossible  to  discover 
the  addition  of  a  neutralising  agent,  unless  some 
of  the  untreated  wine  is  available  for  comparison. 
In  the  case  of  a  wine  containing  little  or  no  free 
tartaric  acid,  however,  it  is  possible  not  only  to 
detect  the  addition  of  a  neutralising  agent,"  but 
also  to  ascertain  the  nature  of  the  substance  added. 

— W.  G. 

Yeast ;  Flocculation  of .    H.  Liiers  and  K.  Geys. 

Kolloid-Zeits.,  1922,  30,  372—376. 

Yeast  is  normally  positively  charged  or  amphoteric, 
but  in  the  process  of  fermentation  a  negative  charge 
appears  when  vigorous  budding  sets  in.  Towards 
the  end  of  the  fermentation  the  charge  again 
becomes  positive  at  the  same  time  a6  flocculation 
commences.  These  changes  are  very  indistinct 
with  powdery  yeast.  The  change  from  yeast  ex- 
hibiting a  good  "  break  "  to  powdery  yeast  often 
obsorved  in  practice  is  due  to  hunger,  degradation 
of  albumin,  and  reduction  of  the  hydrogen  ion  con- 
centration.— J.  F.  S. 

Fat;  Conditions  influencing  the  formation  of 

by  the  yeast  cell.  I.  S.  Maclean.  Biochem.  J., 
1922,  16,  370—379. 
Ether  extracts  considerably  more  fat  from  yeas'; 
if  the  latter  be  first  boiled'with  N/1  hydrochloric 
acid  for  two  hours.  This  is  because  a  large  part 
of  the  fat  is  in  some  form  of  combination  in  the 
plasma  of  the  cell.  Yeast  grown  under  unfavour- 
able conditions  shows  a  large  increase  in  fat  con- 
tent (up  to  9%).  Aeration,  and  a  non-nitrogenous 
medium  rich  in  carbohydrate,  likewise  cause  en 
increased  fat  content,  the  increase  being  in  the 
combined  fat.- — W.  O.  K. 

Amylase  of  Aspergillus  niger;  Influence  of  hydrogen 

ion  concentration  on  the  action  of  .      G.  L. 

Funke.      Proc.    K.    Akad.    Wetensch.,    1922,    25, 

6—8. 

The    maximum    hydrolytic   action    of   the   amylase 

from  Aspergillus  niger  is  observed  at  a  hydrogen 

ion   concentration   pa   35 — 5-5,    and   from   this   it 


Vol.  XLI.,  No.  15.] 


Ch.   XIXa.— FOODS. 


605  a 


follows  that  the  enzyme  is  to  be  regarded  as  an 
ampholyte  of  which  k  =6-3x10-'  and  kb  =  2"884X 
10~'2.  Malt  amylase  has  the  values  Aa  =  6'3xl0-'  and 
fcb  =5'7fiXlO"u,  where  kA  and  kb  are  the  dissocia- 
tion constants  of  the  acid  and  base  respectively. 
(Cf.  J.C.S.,  Aug.)— J.  F.  S. 

Cider-making;    Microbiology    of   .     B.    T.    P. 

Barker.  J.  Inst.  Brew.,  1922,  28,  517—534. 
The  freshly  expressed  apple  juice  used  for  cider- 
making  is  invariably  charged  not  only  with  a 
variety  of  naturally  occurring  wild  yeasts  and 
toruke,  but  also  with  a  heterogeneous  collection  of 
undesirable  fungi  and  bacteria.  The  three  possible 
general  methods  of  fermenting  this  crude  juice  are 
spontaneous  or  natural  fermentation  (still  the  most 
important  industrial  process),  by  dominant  fer- 
mentation, to  attain  which  the  addition  of  a  culture 
of  selected  yeast  to  freshly  expressed  juice  is  neces- 
sary, and  by  pure  fermentation,  which  involves 
preliminary  sterilisation,  followed  by  the  addition 
of  a  pure  yeast  culture.  For  pure  fermentations 
the  juice  may  be  either  pasteurised  by  heating  to 
140°— 160°  F.  (60°— 71°  C.)  or  sterilised  by  chemical 
or  physical  means,  and  then  fermented.  Sulphur 
dioxide,  ozone,  and  ultra-violet  rays  have  been  sug- 
gested for  sterilising  the  juice  but  have  not 
met  with  any  great  practical  success.  Another 
reagent  which  offers  more  promise  of  success 
(although  experiments  are  only  in  the  preliminary 
stage)  is  formaldehyde.  There  is  naturally  present 
in  apple  juice  a  substance  or  a  group  of  related 
substances  which  slowly  combine  with  formaldehyde 
in  the  cold  to  produce  an  insoluble  compound,  so 
that  sterilisation  of  the  juice  can  be  combined  with 
the  automatic  removal  of  the  excess  formaldehyde. 
Pasteurisation  sometimes  affects  the  flavour  of 
the  cider.  During  cider  making  there  is  a  con- 
tinuous struggle  in  progress  between  the  yeast 
capable  of  producing  a  sound  type  of  alcoholic 
fermentation  and  undesirable  yeasts  and  bacteria. 
Provided  there  is  sufficient  good  yeast  active  to  keep 
the  liquor  nearly  saturated  with  carbon  dioxide, 
the  risk  of  serious  deterioration  from  bacterial 
development  is  not  great.  Other  factors,  however, 
besides  the  presence  of  carbon  dioxide  are  involved 
in  the  preservative  action,  so  far  at  least  as  some  of 
the  bacterial  disorders  are  concerned  (e.g.,  cider 
sickness).  This  disorder  is  characterised  by  the 
sudden  decomposition  of  the  residual  sugar,  alcohol 
being  formed  in  addition  to  various  aldehydes,  in- 
cluding formaldehyde. — J.  R. 

Alcohol  still;  Plate  efficiency  of  a  continuous . 

C.  S.  Robinson.     J.  Ind.  Eng.  Chem.,  1922,   14, 

480—481. 
Three  tests  were  carried  out  on  a  modern  Barbet 
plant  using  mixtures  of  ethyl  alcohol  and  water, 
with  a  view  to  determine  the  plate  efficiency  of  the 
plant.  Observations  were  made  of  the  alcohol  fed, 
water  fed,  cooling  water  used,  water  in  distillate, 
and  temperature  rise  in  the  various  condensers. 
From  the  data  the  plate  efficiencies  were  calculated, 
using  the  formula?  given  by  W.  K.  Lewis  (cf. 
p.  573  a).  When  the  reflux  ratio  (ratio  of 
reflux  to  product)  was  406  a  plate  efficiency  of 
40%  was  found;  with  a  reflux  ratio  of  304  the  plate 
efficiency  was  24%,  and  a  plate  efficiency  of  56% 
was  obtained  when  the  reflux  ratio  was  2'75.  In 
each  case  it  was  assumed  that  the  alcohol  present  in 
the  waste  liquor  wasO'0001.  Another  test  by  another 
experimenter  on  the  same  plant  gave  a  plate 
efficiency  of  70%,  and,  applying  this  result  to  the 
first  of  the  above  tests,  it  is  found  that  waste 
should  be  0'000002  mol.  fraction  of  alcohol  instead 
of  00001  as  assumed.  It  is  pointed  out  that  for 
an  accurate  determination  of  plate  efficiency  it 
would  be  necessary  to  obtain  samples  of  liquid 
containing  a  measurable  amount  of  alcohol. 

— S.  G.  U. 


Pressed  yeast ;  Regulation  of  the  nutrient  liquid  for 

the   manufacture    of   ■ ■   on  a   chemical   basis. 

F.  Wendel.  Z.  Spiritusind.,  1922,  45,  160,  166— 
167,  171—172. 

The  food  requirements  of  yeast  made  by  the  aera- 
tion process  as  regards  sugar,  nitrogen,  and  phos- 
phoric acid  are  considered,  and  the  proportions  of 
different  cereals  and  inorganic  materials  which  must 
be  used  to  satisfy  these  requirements  and  yield 
yeast  of  good  baking  and  keeping  qualities 
estimated.— T.  H.  P. 

Polypeptidases,  carbohydrases,  and  esterases;  In- 
fluence of  substances  obtained  from  yeast  cells 
and  organs  on  the  time  course  of  the  fission  of 
substrates  by  — ■ — .  E.  Abderhalden  and  E. 
Wertheimer.     Fermentforsch.,  1922,  6,  1—26. 

Substances  extracted  from  yeast  in  various  ways, 
and  also  certain  optones,  accelerate  the  fission  of 
dipeptides  by  pancreas  extract,  but  diastatic  action 
is  not  appreciably  affected  by  this  means.  The 
action  of  sucrase  (invertase)  is  retarded  by  the  sub- 
stances extracted  from  yeast  by  treatment  with, 
alcohol.     (Cf.  J.C.S.,  Aug.)— T.  H.  P. 

Bacteria;  Culture  of on  media  with  a  basis  of 

pyruvic  acid.  Degradation  of  pyruvic  acid.  R. 
Cambier  and  E.  Aubel.  Comptes  rend.,  1922, 
175,  71—73. 

The  authors  have  found  it  possible  to  grow 
B.  pyocyaneus,  B.  fluorescens  and  B.  coli  on  a 
mineral  medium  containing  sodium  pyruvate  as  its 
sole  source  of  carbon.  Among  the  products  of 
degradation  of  the  pyruvic  acid  they  have  identified 
acetic,  glycollic,  and  lactic  acids. — W.  G. 

Trypsin.     Kai.     See  XXIII. 

Patents. 

Yeast;  Process  of  drying  pressed  .     E.  Klein. 

E.P.  175,623,  10.2.22.     Conv.,  15.2.21. 

Yeast  is  dried  by  air  currents  until  the  water 
content  is  reduced  to  50 — 60%.  Starch  or  flour  is 
then  added  to  bring  down  the  percentage  of  water 
to  30%,  followed  by  substances  protecting  the  fer- 
mentative activity  of  the  yeast,  e.g.,  potassium 
phosphate,  sugar,  etc.  Common  salt  is  added 
during  the  drying  process  to  facilitate  the  removal 
of   water   from  the  yeast  cells. — A.   G.    P. 

Yeast;   Method  for  treating    and  preparing  . 

C.    A.    Jensen.      From   R.    L.    Corby.      E.P.    (a) 

181,076  and  (b)  181,293,  28.2.21. 
(a)  Pressed  yeast  is  frozen  at  about  -4°  C,  to 
remove  water  from  the  cells,  and  then  allowed  to 
regain  normal  temperature.  Corn  (maize)  meal  is 
added  and  /or  a  suitable  oil,  and  the  whole 
thoroughly  mixed.  A  small  amount  of  water,  e.g., 
35%,  is  added,  and  the  whole  desiccated,  e.g.,  in  a 
current  of  air.  (b)  Previous  to  drying,  yeast  is 
treated  with  a  solution  of  sugar  (40—100  lb.), 
ammonium  tartrate  (1 — 3  lb.),  calcium  phosphate 
($ — 2  lb.),  and  lactic  acid  (i  lb.),  in  water  (200  gal- 
lons). This  quantity  is  suitable  for  treating  100  lb. 
of  yeast.— A.  G.  P. 

Filter  for  wines.     E.P.  180,935.     See  I. 


XIXa.-FOODS. 

Milk   as  a  source   of  water-soluble   vitamin.     HI. 

T.  B.  Osborne  and  L.  B.  Mendel.     Biochem.  J., 

1922,  16,  363—367. 
Cow's  milk  shows  great  variations  in  its  content 
of  vitamin  B,  apparently  scarcely  to  be  accounted 
for  by  differences  in  the  diet  of  the  cows,  and  in 
no  case  has  a  sample  been  found  with  a  content 

c 


606  a 


Cr..   XIXa.— FOODS. 


[Aug.  15,  1922 


of  vitamin  B  approaching  that  found  hy  Hopkins 
in  his  original  experiments.  Human  milk  is  not 
essentially  richer  than  cow's  milk  in  this  vitamin. 

— W.  O.  K. 

Meats;    Pickling    of    in     brines    containing 

potassium  nitrate  and  sodium  nitrite.  L.  Pollak. 
Z.  angew.  Chem.,  1922,  35,  229—232. 
When  potassium  nitrate  is  used  in  the  pickling 
solution  the  process  proceeds  irregularly,  and  con- 
siderable quantities  of  nitrite  are  formed,  whilst 
when  sodium  nitrite  is  added  to  the  solution  the 
pickling  process  progresses  regularly,  the  nitrite 
content  of  the  eolution  decreases  gradually,  and 
only  small  quantities  are  present  at  the  end  of  the 
operation.  Meat  pickled  with  nitrite  never  con- 
tained more  than  15  mg.  of  sodium  nitrite  per 
100  g.,  hut  this  quantity  was  usually  exceeded 
when  nitrate  had  been  used. — W.  P.  S. 

Meat;  Use  of  potassium   nitrate  mid  sodivAn  nitrite 

in  the  pickling  <>f .  F.  Auerbach  and  G.  Ricss. 

Z.  angew.  Chem.,  1922,  35,  232—233. 
The  authors  consider  that  the  formation  of  nitrite 
when  nitrate  is  used  in  pickling  meat,  as  recorded 
by  Pollak  (preceding  abstract),  is  due  to  the  tem- 
perature having  been  too  high  during  Pollak's 
experiments.  They  find  that  at  4°  C.  the  quantity 
of  nitrite  formed  is  very  small.  Further,  when 
nitrite  is  employed,  the  quantity  found  in  the 
finished  meat  varies  proportionately  with  the 
amount  in  the  brine  solution. — W.  P.  S. 

Lupin   seeds;   Removal   of    bitter   substances   from 

.      [Determination    of   the   efficiency   of    the 

treatment].  E.  Beckmann  and  F.  Lehmann. 
Chem.-Zeit.,  1922,  46,  473—474. 
Five  g.  of  the  crushed  seeds  is  digested  for  20  mins. 
with  50  c.c.  of  water  at  60°  C. ;  the  liquid  is  filtered, 
the  filtrate  cooled,  and  a  small  quantity  treated 
with  a  few  drops  of  iodine  solution.  If  the  seeds 
are  free  from  bitter  substances  the  mixture  remains 
perfectly  clear.  The  aqueous  extract  from  un- 
treated lupin  seeds,  or  that  from  seeds  from  which 
the  bitter  substances  have  not  been  removed  com- 
pletely, gives  a  precipitate  or  turbidity  when  tested 
with  iodine  solution.- — W.  P.  S. 

Fat-soluble  factor;  Relation  of to  rickets  and 

growth  in  pigs.  II.  J.  Golding,  S.  S.  Zilva, 
J.  C.  Drummond,  and  K.  H.  Coward.  Biochem. 
J.,  1922,  16,  394—402. 
Pigs  fed  on  a  diet  deficient  in  vitamin  A,  or  in 
calcium,  or  in  both,  show  no  definite  picture  of 
rickets,  though  thev  exhibit  6igns  of  diminished 
vitality.— W.  O.  K. 

Antiscorbutic  vitamin.     I.     A  study  of  its  solubility 
from  desiccated  orange  juice.     E.   B.   Hart,   H. 
Steenbock,   and  S.   Lepkovsky.     J.   Biol.   Chem., 
1922,  52,  241—250. 
The  antiscorbutic  vitamin  is  soluble  in  80%,  95%, 
and   absolute  alcohol,   and  also  in  methyl  alcohol, 
but  is   insoluble  in  butyl  alcohol,   benzene,    petro- 
leum ether,   acetone,   ether,  chloroform,   and  ethyl 
acetate.     Its  solubility  is  greater  in  dilute  than  in 
absolute  alcohol. — E.  S. 

Muscle;  Effect  of  cold  storage  on  the  carnosine  con- 
tent   of    .     W.    M.    Clifford.     Biochem.    J., 

1922,  16,  341—343. 
Using  the  colorimetric  method  previously  described 
(J.,  1921,  672  a),  it  has  been  found  that  the  carno- 
sine content  of  meat  decreases  during  cold  storage. 

— W.  O.  K. 


Coconut  oil  meal;  Relative  growth-promoting  value 

of  the  protein  of and  of  combinations  of  it 

with  protein  from  various  other  feeding  stuffs. 
L.  A.  Maynard  and  F.  M.  Fronda.  Cornell 
Univ.  Agr.  Exp.  Stat.  Mem.  50,  Dec,  1921, 
621—633. 
White  rats  were  fed  on  a  diet,  containing  coconut 
oil  meal,  so  arranged  that  the  total  amount  of  pro- 
tein present  was  insufficient  for  normal  growth, 
even  when  the  diet  was  fed  ad  libitum.  Com- 
parison was  made  of  various  diets  on  the  basis  of 
gain  per  gram  of  protein  eaten.  The  protein  of 
coconut  oil  meal  was  superior  to  that  of  corn 
(maize)  meal.  Rice  bran  and  wheat  middlings 
were  found  to  be  efficient,  supplements  to  coconut 
oil  meal.  Results  were  not  very  satisfactory  when 
coconut  oil  meal  was  supplemented  with  alfalfa 
(lucerne),  and  the  addition  of  kaffir  corn  resulted 
in  no  improvement  in  the  quality  of  the  protein. 

— A.  G.  P. 

Volatile  fatty  acids  [in  silage~\;  Estimation  of . 

G      Wie^ner    and    J.    Magasanik.      Mitt.    Geb. 

Lebensmittelunters.     Hyg.,   1919,    10,   156—174. 

Biedermann's  Zentr.,  1922,  51,  140—145. 
From  an  equation  showing  the  relationship  between 
the  relative  amounts  of  water  and  acid  in  a  distilla- 
tion residue  at  the  beginning  and  end  of  a  dis- 
tillation interval,  a  method  is  developed  for  the 
estimation  of  volatile  fatty  acids  in  aqueous 
extracts  of  silage.    (C/.  J.C.S.,  July.)— G.  W.  R. 

Starches;    Digestibility    of    raw    rice,    arrowroot, 

canna,  cassava,  taro,  tree-fern,  and  potato . 

C.  F.  Langworthy  and  H.  J.  Deuel,  jun.  J. 
Biol.  Chem.,  1922,  52,  251—261. 
The  digestibility  of  raw  starches  eaten,  in  some 
cases,  in  amounts  as  large  as  250  g.  a  day  was 
studied.  Cassava,  rice,  and  taro  root  starches  were 
digested  completely,  tree-fern  and  arrowroot 
(Maranta  arundinacea)  starches  nearly  completely, 
and  commercial  arrowroot  (Zamia  floridana), 
potato,  and  canna  starches  incompletely.  There 
appears  to  be  a  direct  relationship  between  the  size 
of  the  starch  granules  and  its  digestibility,  the 
smaller  granules  being  more  readily  digested. 

— E.  S. 

Egg  albumin,   sugars,   etc.,  as   emulsifying  agents. 
Clark  and  Mann.     See  XVII. 

Trypsin.    Kai.    See  XXIII. 

Patents. 
Dehydrators  for  fruits,  vegetables  and  other  foods. 

R.  Rea.  E.P.  180,806,  21.3.21. 
The  material  is  conveyed  in  a  series  of  trays  on 
rollers  through  a  drying  tunnel,  through  which  hot 
air  is  drawn  by  means  of  fans.  Temperature  Mid 
air  supply  are  controlled  by  means  of  dampers. 
Trays  are  introduced  at  the  cool  end  of  the  tunnel 
and' withdrawn  at  the  hot  end.  If  necessary  a  pan 
of  sulphur  is  placed  at  the  air  inlet  to  minimise 
oxidation  and  blackening  of  the  material  during 
drying. — A.   G.  P. 

Fats;  Treatment  of  edible  .     W.  Douglas  and 

Sons,  Ltd.,  and  J.  S.  Nicol.  E.P.  181,077,  1.3.21. 
The  colour,  grain,  and  texture  of  lard  or  lard  com- 
pounds are  improved  by  forcing  the  fat  in  a  tortu- 
ous path  through  a  series  of  perforations  and 
grooves  in  and  spaces  between  two  or  more  con- 
centric hollow  cylinders  from  the  exterior  of  the 
outermost  cvlinder  to  the  interior  of  the  innermost 
rvlinder,  or  vice  versa.  One  of  the  cylinders  may 
be  rotated  to  increase  the  rubbing  effect  on  the  tat. 
The  cylinders  may  be  provided  with  circumferential 
grooves,  with  which  some  of  the  perforations  com- 


Vol.  XII.,  No.  15.]    Cl.  XIXb.—  WATER  PURIFICATION,  &c.     Cl.  XX.— ORGANIC  PRODUCTS,  &c.      607  a 


municate,  and  the  edges  of  some  of  the  grooves  may 
be  serrated.  The  apparatus  is  provided  with  a  by- 
pass controlled  by  a  cock  in  such  a  way  that  when 
the  fat  is  not  being  collected  it  is  returned  to  the 
pump  from  the  casing  enclosing  the  cylinders  with- 
out passing  through  the  latter. — H.  C.  R. 

Bread;  Manufacture  of  .     W.  Watson,  D.  W. 

Kent-Jones,  and  Woodlands,  Ltd.     E.P.  181,397, 
3.5.20. 

A  small  quantity  of  a  harmless  hypochlorite  or 
"  chloro-hypochlorite "  such  as  the  sodium  salt 
(e.g.,  0-005  to  0'01  pt.  per  100  pts.  of  flour)  or  the 
calcium  salt  (e.g.,  0045  pt.  of  bleaching  powder 
per  100  pts.  of  flour)  is  incorporated  with  flour,  and 
the  treated  flour  made  into  a  dough,  which  is  baked. 

— J.  R. 

Yeast.     E.P.    175,623,    181,076,    and   181,293.     See 
XVIII. 


XIXb.-WATER  PURIFICATION ; 
SANITATION. 

Equilibrium    of    bases    in    permutite.      Giinther- 
Schulze.    See  VII. 

Patents. 

Filtration  of  liquids.     [Sand  filters.]    B.  Bramwell. 

E.P.  181,044,  6.1.21. 
The  sand  is  removed  layer  by  layer  from  a  foul 
filter  bed,  cleansed,  and  re-deposited  in  a  neigh- 
bouring bed  by  means  of  a  suction  apparatus  which 
automatically  travels  in  both  horizontal  directions. 
A  reverse  current  wash  may  be  applied  to  the  foul 
bed  while  this  is  being  discharged. — B.   M.   V. 

Garbage  reducer  and  distilJator.     P.  L.  Goodman. 
U.S.P.  1,419,135,  13.6.22.     Appl.,  6.11.20. 

Refuse  is  distilled  in  a  series  of  detachable  retorts, 
having  removable  dome-shaped  heads,  from  which 
the  distillate  is  carried  away  to  condensers.  The 
carbonaceous  residues  can  be  used  as  fuel  in  the 
furnace. — A.  G.  P. 


Metaldehyde ;    Burner    for    burning    .      Elek- 

trizitatswerk     Lonza,     and     A.     Busch.       E.P. 
181,512,  23.3.21. 

Metaldehyde  moulded  into  the  form  of  a  candle  is 
placed  in  a  vertical  cylindrical  container  and  fed 
upwards  as  it  burns  by  means  of  a  spring  under 
compression  at  the  bottom  of  the  holder.  A  guard 
is  placed  over  the  top  of  the  material  to  prevent  its 
ejection  from  the  burner,  and  the  top  of  the  holder 

I  is  manufactured  from  non-conducting  material. 
—A.  G. 

Trade  effluent  and  the  like;  Apparatus  for  separat- 
ing the  solid  matter  from  .     T.  Waite  and 

T.  Boldy.     E.P.  181,071,  26.2.21. 


XX.-ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

poads;  Poisonous  substance  of  .     H.  Wieland 

and  R.  Alles.  Ber.,   1922,  55,   1789—1798. 

I  Further  attempts  to  isolate  the  poisonous  material 
rora  the  skin  of  the  toad  have  led  to  an  unexpected 
esult,  since  a  more  careful  repetition  of  methods 


that  were  previously  successful  (Wieland  and 
Weil,  Ber.,  1913,  46,  3315)  did  not  lead  to  the 
isolation  of  bufotalin.  It  appears  that  this  is 
not  present  as  such  but  is  a  product  of  the 
decomposition  of  the  actual  poison,  bufotoxin, 
C10H6„0„N4,  m.p.  204°— 205°  C.  The  isolation  of 
the  latter  from  the  extract  of  the  skins  and  the 
secretions  of  the  glands  is  described  in  detail. 
Bufotoxin  is  hydrolysed  by  dilute  acids  to  bufo- 
talein,  C21HJ0Os,  and  subervlarginine.  (Cf.  J.C.S., 
August.)— H.  W. 

Secale  cornutum  and  so-called  ergot  substitutes. 
A.  Tschirch.  Schweiz.  Apoth.  Zeit.,  1922,  60, 
1—6.     Chem.  Zentr.,  1922,  93,  I.,  1341. 

The  action  of  ergot  substitutes,  such  as  Capsella,  16 
attributable  to  protein  decomposition  products. 
Since  proteinogenous  amines  can  be  expected  par- 
ticularly in  the  extracts  of  fungi  which  are  rich  in 
protein,  it  is  very  probable  that  Capsella  which  has 
been  attacked  by  the  fungus  Cyclopus  candidus 
would  be  particularly  active.  Until,  however,  the 
conditions  for  the  inception  and  course  of  the  pro- 
tein decomposition  can  be  controlled,  the  extracts 
of  all  ergot  substitutes  are  at  best  uncertain  in 
their  action  and  sometimes  quite  inert.  The  colour- 
ing matters  of  Secale  cornutum,  scleroxanthin  and 
scelerythrin,  have  spectroscopically  a  certain 
relationship  with  red  bacterial  colouring  matters, 
and  in  addition  a  third  colouring  matter  is  present 
which  after  extraction  of  the  surface  layer  with 
alcoholic  hydrogen  chloride,  alcoholic  ammonia,  and 
alcoholic  sodium  hydroxide  is  dissolved  by  concen- 
trated sulphuric  acid  to  a  red  solution,  which 
shows  a  broad,  faint  band  between  A  =  540  and 
A  =  570.  The  solution  in  alcohol  is  yellow  and  shows 
only  end  absorption. — G.  F.  M. 


Capsularin,  a  glucoside  from  jute  leaf.  H.  Saha 
and  K.  N.  Choudhury.  Chem.  Soc.  Trans.,  1922, 
121,  1044—1046. 

Matured  leaves  of  Corchorus  capsularis  were  ex- 
tracted with  boiling  water,  the  extract  clarified 
with  lead  acetate  and  concentrated  to  a  small 
bulk.  The  glucoside  was  precipitated  with  tannic 
acid,  and  after  liberation  with  barium  hydroxide 
and  recrystallisation  it  formed  needle-shaped 
crystals,  m.p.  175° — 176°  C.  This  glucoside,  cap- 
sularin, is  not  identical  with  corchorin  isolated  by 
Robert  from  the  seeds  of  the  same  plant.  It  has 
the  molecular  formula  Cj2H,608,  [a]„= -23'6°,  and 
its  penta-acetyl  derivative  melts  at  194°  C.  It  is 
very  bitter  to  the  taste,  develops  a  red  coloration 
with  sulphuric  acid,  and  on  hydrolysis  gives  a  mix- 
ture of  d-  and  J-glucose.  The  second  product  of 
hydrolysis  forms  small  needles,  m.p.  185°,  and  gives 
with  acetic  anhydride,  chloroform,  and  sulphuric 
acid  a  violet  colour  changing  to  green,  a  reaction 
characteristic  of  the  alcohols  of  the  CnH2n_8Oj 
series. — G.  F.  M. 


Castelin,  a  new  glucoside  from  Castela  Nicholsoni. 
lb.  P.  Bosnian.  Chem.  Soc.  Trans.,  1922,  121, 
969—972. 

The  active  principle  of  Castela  Nicholsoni  (N.O. 
Simarubacece)  is  a  hygroscopic,  optically  active 
glucoside,  castelin,  C15H,,Oa.3H20,  associated  with 
a  bitter  principle,  castelmarin.  Castelin,  white 
needles  from  water,  m.p.  205°  C.  (anhydrous), 
[a]D  =  +62'9  in  aqueous  solution,  is  soluble  in  water 
(1  in  85  pts.  at  room  temperature,  1  in  25  pts.  at 
100°  C),  ethyl  alcohol,  and  cold  concentrated 
hydrochloric  acid,  and  gives  a  violet  coloration  with 
concentrated  sulphuric  acid.  Castelagenin,  C,HlsOj, 
its  product  of  hydrolysis,  m.p.  240° — 241°  C, 
[a]D=+59°  C,  gives  no  coloration  with  sulphuric 

c2 


G08a 


Ol.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &c. 


(Aug.  15,  1922. 


acid,  and  is  lactonic  in  nature.  The  osazone  of  the 
sugar  constituent  is  identical  in  appearance  with 
glucosazone,  and  melts  at  207°— 209°  C— P.  V.  M. 

Olucosides;  New  .     R.  de  Fazi.     Gazz.  Chim. 

Ital.,  1922,  52,  I.,  429—431. 

The  glucosides  of  2-hydroxybenzylideneindene,  2- 
bvdroxybenzylidenefluorene,  and  2-hydroxybenzyl- 
ideneacenaphthenone,  prepared  by  condensation  of 
helicin  with  indene,  tluorene,  and  acenaphthenone, 
respectively,  in  presence  of  sodium  ethoxide,  are 
described.     (Of.  J.C.S.,  Aug.)— T.  H.   P. 

Amyrols;    Isomeric    .      V.    Paolini.      Atti    R. 

Accad.  Lincei,  1922,  31,  I.,  374—377.     (<7/.  von 

Soden,  J.,  1900,  464;  1901,  64.) 
Amyrol,  the  alcoholic  terpene  compound  occurring 
in  the  essential  oil  of  Amyris  balsamifera,  may  be 
separated  into  d-amyrol,  b.p.  302°,  sp.  gr.  0'982 
at  15°  C,  [a]D  =  +74°16',  and  J-amyrol,  b.p.  295°, 
sp.  gr.  0980  at  15°  C,  [o]D=-l°59'.  Both  com- 
pounds are  dense,  oily  liquids  of  unpleasant  odour. 
(fif.  J.C.S.,   Aug.)— T.   H.  P. 

Sulphonimides    of    the    naphthoic    acids;    Isomeric 

:  a  contribution  to  the  theory  of  dvlcigenic 

groups.  H.  P.  Kaufmann  and  H.  Zobel.  Ber., 
1922,  55,  1499—1508. 
The  preparation  of  2-naphthoic  acid  1-sulphon- 
imide,  1-naphthoic  acid  2-sulphonimide,  2-naphthoic 
acid  3-sulphonimide  and  1-naphthoic  acid  8-sulph- 
onimide  is  described.  The  constitution  of  these 
compounds  is  closely  analagous  to  that  of  saccharin 
from  which  they  differ  by  having  the  benzene 
nucleus  of  the  latter  replaced  by  naphthalene.  In 
their  chemical  characteristics  they  are  very  nearly 
allied  to  saccharin,  whereas  they  are  distinguished 
physiologically  by  having  a  pronouncedly  bitter 
taste,  which  is  still  more  marked  in  their  freely 
soluble  sodium  salts. — H.  W. 

Constitution  and  pharmacological  action;  Relation- 
ship   between  in   the   case  of  benzoic   and 

tropic  esters  of  alkylamines.     J.   von  Braun,  O. 
Braunsdorf,     and     K.     Rath.       Ber.,     1922,     55, 
1666—1680. 
A.  series  of  alkylamines  of  the  types, 

R2N[CH2]2OH,  R,N[CH,],OH, 
R:N[CH..]2OH  and  R:N[CH2]sOH 
have  been  prepared  and  the  hydrogen  atom  of  the 
hydroxy  group  has  been  replaced  by  the  benzoyl  and 
tropoyl  residues.  The  benzoates  of  the  y-alkyl- 
amines  are  generally  more  active  physiologically 
than  those  of  the  (8-hydroxy  bases,  whereas  the 
reverse  is  the  case  with  the  tropates.  With  regard 
to  the  influence  of  the  number  of  the  members  of 
the  nitrogen  ring,  it  is  shown  that  the  six- 
membered  ring  is  the  most  active  both  with  respect 
to  the  anaesthetising  action  of  the  benzoates  and 
the  mydriatic  and  cardiac  action  of  the  tropates. 
The  linking  of  carbon  chains  to  the  nitrogen 
ring  increases  the  physiological  action  but  only  to 
i  remarkably  slight  degree.  The  union  of  an 
aromatic  ring  with  the  monocyclic  nitrogen  ring 
diminishes  the  physiological  action  but  an  exact 
■comparison  is  difficult  in  these  cases  and  the  effect 
is  not  very  marked.     (0/.  J.C.S.,  August.) — H.  W. 

Cholesterol;   Some   new   colour  reactions   of  . 

L.     Kahlenberg.       J.     Biol.     Chem.,     1922,     52, 
217—225. 

Cholesterol  dissolves  in  arsenic  trichloride  to  a 
pink  solution  changing  to  cherry-red  ;  isocholesterol 
yields  a  cobalt-blue  solution  changing  through 
violet,  purple,  and  dark  red  to  dark  green; 
phytosterol,     however,     dissolves     to     a    colourless 


solution.  The  colours  are  discharged  by  the 
addition  of  solvents  such  as  benzene,  toluene,  and 
chloroform.  The  colour  reactions  are  also  obtained 
with  hot  solutions  of  arsenious  oxide  in  concen- 
trated hydrochloric  acid,  but  are  not  so  permanent 
as  with  the  anhydrous  chloride.  Coloured  solutions, 
which  are  not,  however,  sufficiently  characteristic 
to  be  used  for  distinguishing  between  the  sterols, 
are  also  obtained  with  certain  other  acid  chlorides. 

— E.  S. 

Proteins;    The    natural    .     I.     Behaviour    of 

chlorine  dioxide  towards  organic  substances.  E 
Schmidt  and  K.  Braunsdorf.  Ber.,  1922,  55, 
1529—1534. 

The  behaviour  of  substances  closely  allied  to  the 
natural  proteins  towards  chlorine  dioxide  has  been 
investigated  by  the  method  described  previously 
(J.,  1921,  764  a),  except  that  the  final  addition  of 
reagents  to  the  solution  under  investigation  is  made 
in  the  sequence,  22V  sulphuric  acid  (3  c.c),  22V 
aqueous  potassium  iodide  solution  (I'd  c.c),  water 
(2 — 3  c.c).  The  substances  are  considered  as  stable 
towards  the  reagent  when  the  chlorine  dioxide  con- 
tent of  the  solution  is  not  diminished  by  more  than 
2%  after  periods  of  24,  48,  or  72  hours  in  the 
different  instances.  The  following  are  stable:  — 
Amino-acids  and  their  derivatives  (urethane. 
glycine,  glycine  hydrochloride,  ethyl  aminoacetate 
hydrochloride,  aminoaeetonitrile  sulphate,  glycine- 
amide  hydrochloride,  phenylaminoacetic  acid,  hip- 
puric  acid,  betaine,  creatine,  alanine,  phenyl- 
alanine, valine,  leucine,  aspartic  acid,  asparagine, 
glutamic  acid,  serine,  hydroxyproline,  taurine, 
glycylglycine  hydrochloride,  leucylglycine.  trigly- 
cine) ;  amines  and  their  derivatives  (tetra-  and 
penta-methylenediamine  hydrochlorides,  a-amino- 
propane-/3-ol  oxalate,  guanidine  hydrochloride, 
tetrametbylammonium  chloride,  choline  hydro- 
chloride); amides  and  their  derivatives  (acetamide, 
chloroacetamide,  propionamide,  phenylacetamide, 
S-dimethyloxamide,  urea,  biuret,  hydantoin);  imides 
(glutarimide,  phthalimide) ;  polyhydroxy  alcohols 
(glycol,  glycerol,  mannitol,  carbohydrates,  inositol); 
mono-  and  poly-basic  acids  (acetic,  chloroacetic, 
stearic,  benzoic,  oxalic,  and  adipic  acids,  trilaurin. 
tristearin,  a-crotonic  acid,  maleic  acid  and  its 
anhydride,  fumaric  acid) ;  hydroxyacids,  esters 
(ethyl  lactate,  tartaric,  citric,  and  quinic  acids); 
nitriles  (acetonitrile,  benzonitrile,  ethylene  di- 
cyanide) ;  cyclic  compounds  (benzene,  naphthalene, 
cyclohexane,  pyridine  sulphate,  quinoline  hydro- 
chloride, piperidine  hydrochloride,  /3-nitroanethol). 
The  following  substances  are  attacked  by  chlorine 
dioxide  :  — Amino-acids  and  their  derivatives  (tyro- 
sine, N-benzoyltyrosine,  3.4-dihydroxyphenylalan- 
ine,  tryptophan,  histidine  hydrochloride,  cystine); 
mono-  and  poly-hydroxyphenols ;  unsaturated  car- 
bon compounds  (cyclohexene,  allyl  alcohol,  anethol. 
cinnamyl  alcohol,  cinnamaldehyde,  oleic  acid,  tri- 
olein, uric  acid,  furfural,  indole,  /3-methylindole) ; 
carbon  sulphur  compounds  (mercaptans,  dialkyl 
disulphides,  compounds  such  as  thiourea).  Histo- 
logically, a  solution  of  chlorine  dioxide  in  acetic 
acid  is  very  useful  for  the  removal  of  stains  due  to 
melanins  from  tissues,  without  in  the  least  affecting 
their  anatomical  features.- — H.  W. 

Neoarsphenamine    [neosalvarsan] ;    Estimation    of 

sulphate    in   .     E.    Elvove.        J.    Ind.    Eng. 

Chem.,  1922,  14,  624—626. 
About  200  c.c.  of  distilled  water  is  boiled  down  to 
about  150  c.c.  and  to  the  hot  solution  02  g.  of  the 
sample  is  added,  followed  immediately  by  10  c.c.  or 
2V/1  hydrochloric  acid,  or  sufficient  completely  to 
dissolve  the  precipitate  which  first  forms  The 
liquid  is  then  boiled  down  to  50  c.c,  diluted  with 
water  to  150  c.c,  heated  to  boiling,  and  the 
sulphate  precipitated  by  the  addition  of  15  ■ 


Vol.  XLI.,  No.  15.]      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


609  a 


0"0o  molar  barium  chloride.  The  results  obtained 
by  this  direct  method  are  lower  than  the  amounts 
found  by  the  method  of  Raiziss  and  Falkov  (J., 
1921,  320  a),  but  it  is  considered  that  the  latter  are 
too  high  owing  to  oxidation  occurring  during  the 
precipitation  and  filtration  of  the  formaldehyde- 
sulphoxylic  acid  derivative  which  is  involved  in  this 
method.  The  amounts  of  sulphate  found  calculated 
as  Xn,S04  varied,  in  34  samples  from  10  different 
manufacturers,  from  1'4  to  17'6".  averaging  1'76 
to  5-82%  for  each  series.— G.  F.  M. 

Alcohol  for  use  in  the  preparation  of  perfumes  and 
cosmetics;  Substances  for  denaturing  — — . 
Reichsmonopolamt  fur  Branntwein.  Chem.- 
Zeit.,  1922,  46,  476. 

The  use  of  the  following  substances  is  allowed  for 
the  purpose  of  denaturing  alcohol :   diethyl  phthal- 
2  I.,  turpentine  oil,  1  1.,  or  thymol,  1  kg.,  per 
100  1.  of  alcohol— W.  P.  S. 

Allyl  alcohol.  Conversion  to  glyceryl  chloro-  and 
bromo-hydrins.  J.  Read  and  E.  Hurst.  Chem. 
Soc.  Trans.,  1922,  121,  989—999. 

Gltcerti-/3-monohai.ogeno-       and       /3-dihalogeno- 
hydrins,  the  former  in  predominating  amount,  are 
formed   by  the  action   of  cold   chlorine   water  and 
bromine   water  respectively  on   allyl   alcohol.     The 
monobromo-derivative  is  obtained  in  60%  yield  by 
passing  a  current  of  air  laden  with  bromine  vapour 
into  a  mechanically  stirred  solution  of  allyl  alcohol 
in    water,    neutralising   the    product    with    sodium 
carbonate,     saturating     with     anhydrous     sodium 
sulphate,     and    extracting    with    ether.       The    /3- 
dibromohydrin    is    isolated    simultaneously,    repre- 
senting about  44%  of  the  final  product,  and  is  only 
separated  by  prolonged  fractional   distillation.     A 
|  preferential  formation  of  dibromohydrin  amounting 
I  to  72"9  %   of  a  mixture  representing  88  %   of  total 
J  bromhydrin  obtainable,  is  produced  by  treating  allyl 
I  alcohol    in    its    own    weight   of    water    with    liquid 
bromine   under   the   same   conditions.      The   action 
J  between   allyl   alcohol   and  chlorine  water  is  much 
more  vigorous  and  hence  more  difficult  to  control. 
Only  112  and  10S%   of  mono-  and  dichlorohydrins 
i  respectively  can  be  isolated. — P.  V.  M. 

Tertian/  ethylenic  alcohols  (linalool  type);  Conver- 
sion   of    into    primary    ethylenic    alcohols 

(geraniol  type).     R.   Locquin   and   S.   Wouseng. 
Comptes  rend.,  1922,  174,  1711—1713. 

DiALKYi.viNYLCAEBrNOLS  of  the  general  type, 
HO.CRR'.CH:CH,,  readily  undergo  isomerisation 
when  heated  with  glacial  acetic  acid  at  100° — 115°  C. 
.for  15  hours,  giving  -yy-dialkvlallyl  alcohols  of  the 
type,  CRR':CH.CH,OH,  which  by  controlled  oxida- 
tion give  the  corresponding  /3/3-dialkylacraldehydes 
and  on  further  oxidation  the  ketones  R.CO.R'. 
(Cf.  J.C.S.,  Aug.)— W.  G. 

\Lactic  acid;   Method  for   the   estimation   of  small 

I     amounts    of    .      S.    TV.    Clausen.      J.    Biol. 

Chem.,  1922,  52,  263—280. 

The  method  of  Von  Fiirth  and  Charnass  (J.,  1910, 
903)  is  slightly  modified.  Lactic  acid  is  decom- 
posed either  by  acid  permanganate  at  95°  C.  or  by 
j50%  sulphuric  acid  at  140°  C,  the  aldehyde  pro- 
duced being  carried  by  a  current  of  air  into  excess 
3f  sodium  bisulphite.  The  excess  bisulphite  is 
removed  by  addition  of  iodine,  the  end-point  being 
adjusted  to  a  definite  blue  to  starch.  Saturated 
sodium  bicarbonate  is  then  added  until  the  blue 
:oloration  is  just  discharged,  and  the  sulphite  of 
-he  aldehyde-bisulphite  compound  titrated  with 
saturated  iodine,  the  end-point  being  determined 
3y  a  blank  control.  The  errors  which  arise  when 
:h«  method  is  applied  to  blood  or  urine  may  be 
"educed,     but    not    entirely    eliminated,    by    first 


extracting  the  lactic  acid  from  the  protein-free 
filtrate  bv  ether,  using  a  special  extraction  appa- 
ratus.—E.  S. 

Oxalic  acid;  Oxidation  of  - [61/  permanganate] 

in   the  absence  of  other  acids.     J.   C.  Witt.     J. 
Phys.  Chem.,  1922,  26,  435 — 146. 

Oxalic   acid  may   be  titrated   with  potassium  per- 
manganate without  the  addition  of  another   acid, 
the  oxalic  acid  functioning  both  as  reducing  agent 
and  acid, 
2K.Mn01+8H„C,0,->- 

KXA+2MnCA-r8H2O+10CO:. 
The  end-point  is  marked  by  the  appearance  of  a 
turbidity,  followed  by  a  slight  permanent  precipi- 
tate, and  is  affected  by  the  temperature  of  titra- 
tion, the  concentration,  and  the  presence  of 
electrolytes.     (Cf.  J.C.S.,  Aug.)— J.  S.  G.  T. 

Acetic  anliydride ;  Analysis  of  .     C.   E.   Sago. 

Perf.  Essent.  Oil  Rec,  1922,  13,  172. 

In  the  method  described  by  Reclaire  (J.,  1922,  519  a) 
for  the  estimation  of  acetic  anhydride  the  phenol- 
phthalein  used  as  indicator  seems  with  certain 
samples  to  be  peculiarly  insensitive.  The  actual 
cause  of  this  is  obscure,  but  the  peculiarity  seems 
to  run  parallel  with  the  development  of  the 
iodoform  reaction  when  the  sample  in  question  is 
tested  with  sodium  hydroxide  and  iodine.  The  un- 
known impurity  giving  this  reaction  may  be  traced 
back  to  the  original  acetic  acid  from  which  the 
anhydride  was  prepared,  and  it  seems  to  be  asso- 
ciated with  faults  in  odour  which  sometimes  develop 
in  products  prepared  from  the  anhydride,  e.g., 
aspirin  and  synthetic  "  acetyl  "  perfumes.  This 
insensitiveness  of  phenolphthalein  may  be  overcome 
and  a  sharp  end-point  obtained  if  the  titration  is 
made  by  adding  an  excess  of  N/2  potassium 
hydroxide,  allowing  to  stand  for  some  time  in  the 
cold,  until  hydrolysis  is  complete,  then  adding  a 
;  known  quantity  of  JV/2  acid  and  finishing  off  the 
titration  with  more  AT/2  potassium  hydroxide.  By 
this  procedure  errors  due  to  heating  under  a  reflux 
condenser  will  also  be  eliminated. — G.  F.  M. 

1  Photo  catalysis.  II.  Photosynthesis  of  nitrogen 
compounds  from  nitrates  and  carbon  dioxide. 
E.  O.  C.  Baly,  I.  M.  Heilbron  and  D.  P.  Hudson. 
Chem.  Soc.  Trans.,  1922,  121,  1078—1088. 

Activated  formaldehyde,  such  as  is  photosynthctic- 
ally  produced  from  carbon  dioxide  and  water  under 
the  influence  of  ultraviolet  light  or  visible  light  in 
presence  of  a  photocatalyst,  reacts  rapidly  with 
nitrites  with  the  formation  of  formhydroxamic  acid, 
the  reaction  taking  precedence  to  the  polymerisa- 
tion of  the  formaldehyde  to  reducing  sugars.  Photo- 
'  chemically  activated  formaldehyde  possibly  has  the 
I  constitution  H.C.OH,  and  its  union  with  potassium 
nitrite  would  take  place  as  follows :  — 

HCOH       HCOH 
HCOH  +  0:N-OK  =      [|  ->      ||         -f-O 

0:NOK  X-OK 

I    Formhydroxamic    acid    marks    the    first    step    in 
j   synthesis  of  the  nitrogen  compounds  found  in  the 
plant,  and  it  reacts  further  in  various  ways  with 
1    activated  formaldehyde  to  give  a-amino  acids  and 
nitrogen  bases,  these  condensations  taking  second 
order  of  preference,  all  excess  of  activated  formalde- 
hyde polymerising  to  hexoses.     The  photosynthesis 
of  the  nitrogenous  compounds  from  formhydroxamic 
1    acid   is   extraordinarily    rapid   and   soon    goes    far 
\   beyond   the   formation    of    simple   compounds,    the 
amino  acids,  pyrrol  and  pyridine  derivatives  con- 
densing further  to  xanthine  bases  and  substances 
of   an  "alkaloidal  nature.      Two   different   alkaloids 
were  isolated   in  this  way,  one  a  volatile  oil  with 
an    odour    resembling    tobacco,    and    the    other    a 
solid  of  low  melting  point  and  an  odour  of  burnt 


610A 


Cl.  XXI.— photographic  materials  and  processes. 


[Aug.  15,  1922. 


feathers.  Both  formed  crystalline  salts  and  gave 
positive  tests  with  alkaloidal  reagents.  Positive 
evidence  was  also  obtained  of  the  formation  of  at 
least  one  substituted  amino  acid  resembling 
histidine  in  its  reactions.  The  photosynthesis  of 
proteins  would  represent  one  stage  further  in  the 
process,  although  positive  evidence  of  their  forma- 
tion in  vitro  has  not  been  obtained. — G.  F.  M. 

Urea;  Synthesis  of from  ammonia  and  carbon 

dioxide.     N.   W.    Krase   and  V.    L.    Gaddy.     J. 
Ind.  Eng.  Chem.,  1922,  14,  611—616. 

Experiments  were  made  on  the  synthesis  of  urea 
from  ammonia  and  carbon  dioxide  using  a  6mall 
experimental  plant.  The  process  finally  developed 
consisted  in  preparing  an  initial  charge  of 
ammonium  carbamate  by  condensing  a  mixture  of 
ammonia,  carbon  dioxide,  and  about  1  %  of  water 
vapour  in  a  condenser  maintained  at  about  25°  C. 
and  provided  with  a  rotating  scraping  blade.  The 
carbamate  charge  is  formed  by  pressure  into 
briquettes  of  6uch  size  as  to  fit  easily  into  the  auto- 
clave, which  is  kept  continuously  at  150°  C.  The 
deusity  of  packing  of  the  charge  in  the  autoclave 
was  found  to  influence  greatly  the  percentage  con- 
version into  urea,  a  density  of  0'3— 0'5  g.  per  c.c. 
being  suitable.  High  temperatures  also  favourably 
influence  the  yield,  but  the  great  pressure 
generated  sets  a  limit  to  the  temperature  which 
can  in  practice  be  employed;  150°  C.  involving 
pressures  of  1200 — 1800  lb.  per  sq.  inch,  is 
therefore  as  high  as  can  conveniently  be  utilised. 
Heating  is  continued  for  4  hours.  The  liquid  con- 
verted charge  containing  about  40%  of  urea  is 
slowly  released  into  a  still,  and  the  unconverted 
ammonium  carbamate  distilled  off  at  about  55°  C. 
in  a  current  of  carbon  dioxide,  and  recondensed  to- 
gether with  additional  ammonia  to  form  a  new 
charge  of  carbamate. — G.  F.  M. 

Water,  alcohol,  and  ether;  Specific  gravities  and 

refractive  indices  at  15°  C.  of  mixtures  of  . 

A.    Sanfourche   and   A.    M.    Boutin.      Bull.    Soc. 
Chim.,  1922,  31,  546—551. 

The  specific  gravities  and  refractive  indices  at 
15°  0.  of  a  large_  number  of  mixtures  of  water, 
alcohol,  and  ether  in  varying  proportions  are 
tabulated  and  the  results  are  also  shown  in  tri- 
angular diagrams. — W.  G. 

Spirit  of  camphor;  The  system  camphor-alcohol- 
water  in  relation  to   the   titration  of  .     K. 

Scheringa.     Pharm.    Weekblad,    1922,    59,    389— 
395. 

From  the  results  of  teste  in  which  solutions  of 
camphor  in  alcohol  were  treated  with  water  until 
a  permanent  separation  occurred,  and  the  increase 
of  weight  determined,  it  is  shown  that  many  differ- 
ent mixtures  can  be  prepared  to  satisfy  the  require- 
ments of  the  Dutch  Pharmacopoeia ,  and  that  in 
analysing  camphor  spirit  as  recommended  by  titra- 
tion with  water,  the  temperature  must  be  kept 
between  20°  and  25°  0.,  and  the  amount  of  camphor 
which  can  be  added  and  held  in  solution  at  15°  C. 
should  be  specified. — S.  I.  L. 

Essential  oil  of  Myrica  Gale.  M.  Schoofs.  J. 
Pharm.  Belg.,  1921,  3,  769—773.  Chem.  Zentr., 
1922,  93,  I.,  1340—1341. 

Two  essential  oils  were  isolated  from  Myrica  Gale 
by  steam  distillation.  The  one  which  was  insoluble 
in  the  aqueous  distillate  had  the  following  con- 
stants: sp.  gr.  09068  at  15°  C,  0]D=-8°  46', 
nD25  =  l-4820,  acid  value  1"5,  saponif.  value  L7"8, 
iodine  value  168"84,  combined  alcohols  (C10HIBO) 
4"4%,  linalyl  acetate  5"6%,  free  alcohols  11*1%. 
The  other  oil  was  extracted  from  the  distillate  and 
had  the  following  constants  :  sp.  gr.  0'8956  at  15°  C-, 
[o]d=-5-9°,   nD"  =  1-4656,   acid   value   P8,   saponif. 


value  18'19,  combined  alcohols  4'5%,  linalyl  acetate 
5'73%,  free  alcohols  7'06%,  iodine  value  56'70. 

— G.  F.  M. 

Lantana   Camara;   Essential   oil   of   .      K.   L. 

Moudgill  and  P.  N.  Vridhachalam.    Perf.  Essent. 
Oil  Rec.,  1922,  13,  173—174. 

Tue  essential  oil  of  Lantana  Camara,  a  wild  shrub 
growing  on  waste  lands  in  Southern  India,  was 
isolated  by  steam  distillation,  with  a  yield  of  about 
0'2%.  It  is  a  greenish-yellow,  slightly  fluorescent 
oil,  having  an  odour  recalling  that  of  sago.  It  is 
soluble  in  5  vols,  of  97%  alcohol,  and  has  the 
following  characters  :  — Sp.  gr.  0'8842  at  30° /4°  C, 
[a]„so  =  +14-7°,  n  =  l"4899,  acid  value  16,  saponif. 
value  4'6,  acetyl  value  23'4,  aldehyde  content  24 
On  repeated  fractionation  three  fractions  were 
finally  obtained:  55°— 75°  C.  at  12  mm.,  12%  by 
volume;  75°— 125°  C,  8%;  and  125°— 130°  C.  at 
12  mm.,  74%.  The  first  fraction  proved  to  be 
J-a-phellandrene.  The  second  fraction  contained  the 
odoriferous  principles  of  the  oil,  and  from  the 
constants  these  appear  to  be  mainly  an  aldehyde 
and  an  alcohol.  The  third  fraction  was  mainly  a 
bicyclic  sesquiterpene  closely  resembling  caryo- 
phyllene,  although  the  solid  caryophyllenic  alcohol 
could  not  be  obtained.  On  distilling  this  fraction 
under  ordinary  pressure  the  distillate  differed  con- 
siderably, particularly  in  rotation,  from  the 
original.  The  change  does  not  appear  to  be  simply 
a  racemisation. — G.  F.  M. 

Patents. 

Synthetic  camphor;  Manufacture  of  .     L.  and 

E.  Darrasse  and  L.  Dupont.  E.P.  164,357,  6.6.21. 
Conv.,  9.6.20. 
A  solvent  such  as  chlorinated  hydrocarbon,  turpen- 
tine, and  anhydrous  oxalic  acid  are  heated  together 
to  the  boiling  point  of  the  mixture,  whereby  bornyl 
oxalate  is  produced,  the  reaction  taking  place 
rapidly  in  the  absence  of  inorganic  chlorides.  The 
bornyl  oxalate  is  rapidly  saponified  by  an  aqueous 
solution  of  soda.  It  can  be  separated  from  the 
small  quantity  of  uncombined  turpentine  by  dis- 
tilling off  the  latter.  The  reaction  takes  place  most 
rapidly  in  tetrachloroethane  solution. — H.  C.  R. 

Medicinal    compound     [reduced    araroba    extract] 

and  method  of  producing  the  same.    J.  F.  Scham- 

berg  and  G.  W.  Raiziss,  Assrs.  to  Dermatological 

Research  Laboratories.    U.S. P.  1,417,771,  30.5.88 

Appl.,  21.4.20. 

The    amorphous    powdered    extract   of    araroba   is 

dissolved  in  acetic  acid  and  treated  at  the  boiling 

point  with  metallic  tin  and  hydrogen  chloride.    The 

reaction  being  completed,  the  solution  is  filtered  and 

cooled,  after  removal  of  the  acetic  acid.  The  product 

separates    out    in    minute    yellow    crystal-,     in. p. 

190°  C. ;  it  is  slightly  soluble  in  ether  and  methyl 

alcohol,    more    soluble   in    acetic   acid,   chloroform. 

benzene,  and  ethyl  alcohol. — G.  F.  M. 

Urea;  Producing  from  cyanamide.      E.  Lie. 

U.S. P.  1,419,157,  13.6.22.  Appl.,  10.6.20. 

See  E.P.  170,329  of  1920;  J.,  1922,  391  a. 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Light  sensitivity;  Interpretation  of in  1 

graphy.    T.  Svedberg.     Phot.  J.,  1922,  62,  310— 
320. 
The   author  discusses  the  application  of   Bin 
law    of    the    photochemical    equivalent    to   various 
photochemical  reactions,  and  to  the  particulai 
of  the  photographic  process.     He  draws  a  d'stim- 


Vol.  XLI.,   No.  15.]     Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


611a 


tion  between  plate-sensitiveness,  grain-sensitive- 
ness, and  sensitiveness  of  the  silver  halide  material 
of  the  grain.  A  description  follows  of  some  of  his 
previous  statistical  work  on  the  occurrence  and 
distribution  of  developable  centres  in  the  grains, 
and  of  experiments  which  prove  that  in  the  case 
of  the  small  spherical  grains  of  a  slow  emulsion 
these  centres  are  distributed  on  the  surface. — W.  C. 

[Photographic]    reduction    with    ammonium    per- 
sulphate; Action  of  soluble  chlorides  and  bromides 

on   .     S.   E.   Sheppard.     Phot.  J.,   1922,   62, 

321—333. 
The  characteristic  differential  reducing  action  of 
ammonium  persulphate  is  not  necessarily  due  to 
the  presence  of  chloride  ions.  The  presence  of  low 
concentration  of  silver  ions  and  of  acid  reduce  the 
maximum  rate  of  reduction,  but  do  not  eliminate 
the  differential  action  of  low  densities.  Bromide 
has  no  greater  effect  than  chloride.  The  experi- 
mental evidence  seems  to  favour  the  "  dispeisoid  " 
theory  of  Liippo-Cramer  rather  than  the  "  cata- 
lytic "  theory.  The  results  obtained  on  reduction 
with  ammonium  persulphate  are  compared  with 
those  obtained  by  Higson  (J.,  1922,  234  a)  with 
potassium  persulphate.  The  effect  of  acid  concen- 
tration on  the  reaction  velocity  is  discussed,  to- 
gether with  the  actual  mechanism  of  the  reaction. 

— W.  C. 

Patents. 
[Photographic]   negatives;  Process  for  the   manu- 
facture of  from  opaque  originals.     M.  Ull- 

mann.     E.P.  156,691,  7.1.21.     Conv.,  7.1.20. 

In  the  manufacture  of  negatives  for  photo- 
lithography from  originals  that  do  not  allow  light 
to  pass  through  them,  the  chromate  colloid  coating 
is  rendered  insoluble  in  and  impervious  to  water, 
by  treatment  with  salts  or  basic  or  acid  dyestuffs, 
e.g.,  by  dyeing  in  a  dilute  solution  of  pentamethyl- 
p-rosaniline  and  then  bathing  in  a  dilute  aqueous 
solution  of  diaminostilbene-disulpho  acid  diphenol. 

— W.  C. 

Gelatin  printing  plates;  Process  for  the  production 

of     .     H.     Renck.     E.P.     168,578,     1.3.21. 

Conv.,  2.9.20. 

A  pkinting  relief  surface  is  produced  by  exposing  a 
bichromated  gelatin  plate  behind  a  negative,  thus 
causing  the  exposed  parts  to  become  hardened  or 
insoluble,  then  treating  with  water  to  swell  the  un- 
exposed parts,  and  subsequently  exposing  to  dry 
heat  to  evaporate  the  water  absorbed  by  the 
unexposed  parts,  thus  causing  these  parts  to  sink 
lower  than  the  hardened  exposed  parts. — W.  C. 

Sensitive  plates  and  films  for  X-ray  photography. 
N.  E.  Luboshey.     E.P.  181,087,  2.3.21. 

A  layer  of  intensifying  screen  material  (e.g., 
'  calcium  tungstate)  is  enclosed  between  the  sensitive 
>  emulsion  and  the  glass  or  film  support,  and  forms 
a  permanent  part  of  the  photographic  plate  or  film. 
The  material  may  be  of  the  "  single  "  or  "  duplex  " 
form.  In  the  former  the  glass  or  film  support  is 
coated  on  one  side  with  intensifying  screen 
material,  and  on  this  the  sensitive  emulsion  is  laid. 
In  the  "  duplex  "  form  each  surface  of  the  support 
is  coated  with  an  intensifying  screen  coating,  and 
to  each  of  these  coatings  is  applied  a  layer  of  sensi- 
tive emulsion.  The  X-ray  plates  or  films  thus  pre- 
pared may  be  enclosed  within  light-proof  envelopes 
of  opaque  material  coated  with  intensifying  screen 
material  on  one  or  both  sides  of  one  or  both  sheets 
of  the  envelope,  the  envelopes  being  removed  before 
development.  X-ray  plates  or  films  as  described 
may  have  an  additional  screen  or  screens  affixed  to 
the  actual  emulsion  surface  or  surfaces  by  means  of 
adhesive  substances  which  allow  of  the  removal  of 
the  screen  or  screens  without  wetting.     (Reference 


is  directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  2243  of  1915,  and  125,490,  and  in  pursuance  of 
Sect.  8,  Sub-sect.  2,  to  E.P.  163,903:  J.,  1916,  386: 
1919,  3S9  a.)— W.  C. 

Sensitising      [photographic]      papers     and     other 

fabrics;  Machines  for  .     B.  J.  Hall.     E.P. 

181,460,   10.3.21. 

The  floor  space  occupied  by  the  drying  apparatus 
for  sensitive  papers  and  other  fabrics  after  coating 
is  reduced  to  a  minimum  by  passing  the  paper  after 
sensitising  over  a  stationary  heated  body  termed 
the  radiator,  the  uncoated  side  of  the  paper  being 
in  direct  contact  with  the  heated  radiator  surface. 
In  the  event  of  sensitisers  being  used  which  would 
be  injured  or  prevented  from  sliding  by  direct 
contact  of  the  paper  with  the  radiator,  an  endless 
revolving  band  of  canvas  or  other  material  is  inter- 
posed between  the  radiator  and  the  paper. — W.  C. 


XXII.-EXPLOSIVES;  MATCHES. 

Nitrocellulose ;  Behaviour  of  on  heating   with 

water  under  pressure.  A.  Logothetis  and  G. 
Gregoropoulos.  Z.  ges.  Schiess- u.  Sprengstoffw., 
1922,   17,  89—90. 

The  stability  of  nitrocellulose  can  be  increased  by 
heating  it  in  an  autoclave  with  water.  The 
maximum  stability  is  usually  reached  after  one  or 
two  treatments  for  2  hrs.  The  pressure  should  not 
exceed  2  atm.,  or  decomposition  of  the  fibrous 
structure  may  result,  together  with  loss  of  nitrogen 
and  a  lowering  of  the  temperature  of  explosion. 

— H.  C.  R. 


XXIII.-ANALYSIS. 


Dialyser;  A  rapid 

W.  Schieber.     Ber. 


A.  Gutbier,  J.  Huber,  and 
1922,  55,  1518—1523. 

The  apparatus  consists  of  a  wooden  disc  supporting 
a  framework  composed  of  glass  rods  in  the  form  of 
a  hollow  cylinder.  The  membrane  is  passed  over  the 
framework  and  secured  in  its  natural  folds  to  the 
wooden  disc.  A  stirrer  is  placed  within  the  vessel, 
which  is  mounted  in  such  a  manner  that  the  frame 
and  stirrer  can  be  rotated  in  opposite  directions. 
The  apparatus  is  placed  in  an  inverted,  tubulated 
bell-jar,  through  the  tubulus  of  which  water  is 
admitted;  the  water  can  be  heated  or  cooled  by  coils 
placed  in  the  jar,  and  the  level  of  the  water  and 
its  discharge  are  governed  by  a  lever  arrangement. 
Comparative  experiments  show  the  dialyser  to  be 
much  more  rapid  in  its  action  than  those  of  Graham 
or  Zsigmondy  and  Heyer  (J.,  1910, 1249).  In  addition 
to  rapidity  of  action,  the  following  advantages  are 
claimed  :  exclusion  of  external  air  from  the  internal 
liquid,  from  which,  however,  samples  may  be  readily 
taken ;  small  liability  to  change  in  volume,  particu- 
larly to  dilution  of  the  internal  liquid;  great  safety 
in  action,  since  only  a  single  piece  of  parchment 
is  used;  simple  method  of  securing  a  continuous 
change  of  the  external  water;  the  possibility  of 
dialysis  at  raised  or  lowered  temperatures  without 
complicated  arrangements. — H.  W. 

Sampling   horn:  Kellogg' s  .     J.  W.   Kellogg. 

J.  Ind.  Eng.  Chem.,  1922,  14,  631. 
A  new  type  of  horn  for  obtaining  official  samples  of 
foodstuffs,  fertilisers,  etc.,  for  analysis  consists  of 
a  brass  tube  31 '5  inches  long  and  liV  inches  internal 
diameter,  which  can  be  disjointed  in  the  middle  60 
as  to  be  less  cumbersome  to  carry  about.  The  upper 
section  has  a  four-inch  handle,  and  the  threaded 
end  is  protected  with  a  screw-cap.  The  lower  sec- 
tion has   a  bevelled,   sharpened,   knife-edge   point, 


<;12a 


Cl.  xxiii.— analysis. 


[Aug.  15,  1922. 


which  is  protected  with  a  cap.  Slots  run  longitudin- 
ally down  the  tube,  one  edge  of  which  is  sharpened, 
which  aids  in  forcing  the  sample  into  the  horn.  Tho 
slots  are  i  inch  in  width,  and  are  designed  especially 
to  facilitate  the  removal  of  the  sample  with  a 
spatula.— G.  F.  M. 

Micro-analysis ;  Furnace  and  burner  for  use  in . 

E.  Diepolder.  Chem.-Zeit.,  1922,  46,  455. 
A  burner  for  use  in  micro-chemical  combustions 
consists  of  a  T-shaped  tube;  the  gas  is  admitted 
through  the  vertical  stem,  which  is  provided  with 
an  air  inlet  and  regulator,  whilst  the  horizontal 
arm  is  perforated  and  constitutes  the  burner.  The 
perforations  may  be  closed  separately  so  that  the 
number  of  flames  may  be  regulated  at  will. 

— W.  P.  S. 

Pycnometry.     It.     Saar.     Chem.-Zeit.,     1922,     46, 

433^35. 
Tables    and    formulae    are    given    for    calculating 
specific   gravities   determined   at   one   temperature 
into  similar  values  at  another  temperature. 

— W.  P.  S. 

Soxhlet  apparatus;  Extraction  of  small  quantifies 

of  liquids   in  a  .     H.   Handorf.     Z.   angew. 

Chem.,  1922,  35,  257—258. 
The  liquid  to  be  extracted  is  placed  in  the  inner 
tube  (see  Figs.).     If  the  liquid  is  extracted  by  a 
solvent   lighter  than   itself,   the  condensed  solvent 


Fig.  1. 


v> 


Fig.  2. 


drops  into  the  funnel  (Fig.l)  and  rises  in  drops  from 
the  rose  through  the  liquid.  If  the  liquid  is  extracted 
by  a  solvent  heavier  than  itself,  a  short  funnel  end- 
ing in  a  capillary  rests  on  the  top  of  tho  tube 
(Fig.  2),  and  the  condensed  solvent  falls  through 
the  liquid  and  rises  in  the  inner  tube.  The 
apparatus  is  suited  for  the  extraction  of  liquids 
containing  colloidal  substances. — H.  M. 

Aluminium  and  iron;  Separation  of oy  means 

of  o-phenetidine.     K.  Chalupny  and  K.  Breisch. 
Z.  angew.  Chem.,  1922,  35,  233—234. 

Ferrous  salts  aro  not  affected  by  o-phenetidine, 
whilst  aluminium  salts  are  precipitated  completely 
by  tins  reagent.  To  ensure  reduction  of  any  ferric 
salt  present,  tho  solution  containing  iron  and 
aluminium  salts  is  acidified  slightly  with  hydro- 
chloric acid  and  treated  for  10  mins.  with  a  current 
of  hydrogen  sulphide;  carbon  dioxide  is  then  passed 
through  tho  solution  until  all  excess  of  hydrogen 
sulphide  has  been  expelled.  Ammonium  carbonate 
is  added  until  a  precipitate  forms;  this  is  dissolved 
by  adding  a  small  quantity  of  dilute  hydrochloric 


acid,  and  the  mixture  is  treated  with  an  excess  of 
5%  alcoholic  o-phenetidine  solution.  The  flask  is 
closed,  the  mixture  heated  at  60°  C,  and  the  pre- 
cipitate collected,  ignited,  and  weighed  as  Al.,0,. 
To  determine  aluminium  in  the  presence  of  copper 
and  other  metals,  the  copper  must  be  separated 
electrolytically,  the  iron  and  aluminium  then  pre- 
cipitated as  basic  acetates,  the  latter  dissolved  in 
dilute  hydrochloric  acid,  and  the  aluminium  preci- 
pitated from  this  solution  as  described. — W.  P.  S. 

Manganese;     Determination     of     .       L.     W. 

Winkler.     Z.  angew.  Chem.,  1922,  35,  234—235. 

The  method  described  previously  (J.,  1921,  607  a, 
751  a)  for  tho  determination  of  cadmium  as  phos- 
phate may  be  applied  to  the  determination  of  man- 
ganese; 1  mg.  is  deducted  from  the  weight  of  the 
precipitate  obtained  when  the  latter  weighs  from 
0'2  to  03  g.  Sodium  chloride  must  not  be  present  in 
tho  solution,  but  potassium  chloride  does  not 
interfere.— W.  P.  S. 


Magnesium;   Colorimetric   method   for  the   estima- 
tion of  small  amounts  of  .     F.  S.  Hanimett 

and   E.   T.   Adams.        J.   Biol.    Chem.,    1922,   .52, 
211—215. 

The  method  is  designed  for  application  to  urine, 
blood,  and  tissue  extracts,  and  is  a  modification  of 
Kramer  and  Tisdall's  method  (J.  Biol.  Chem.,  1921, 
48,  223).  The  precipitate  of  ammonium  magnesium 
phosphate  obtained  in  the  latter  method  is  dis- 
solved in  N 1 100  hydrochloric  acid  and  the  phos- 
phorus estimated  colorimetricallv  by  Bell  and 
Doisy's  method  (J.  Biol.  Chem.,  1920,  44,  55).  The 
amount  of  magnesium  is  then  calculated  from  this 
result.— E.  S. 

Potassium  ferrocyanide ;  Potentiometric  titrations 

by  means  of .     77.     Potentiometric  titration 

of  zinc.    I.  M.  Kolthoff.    Rec.  Trav.  Chim.,  1922, 
41,  425—437. 

The  results  obtained  in  potentiometric  titration  of 
zinc  by  means  of  potassium  ferrocyanide  solution 
are  reliable,  and  the  method  is  convenient  in 
practice.  Although  the  method  is  applicable  at 
ordinary  temperatures,  it  is  quicker  at  70°  C,  and 
at  the  higher  temperature  the  change  in  potential 
is  more  marked.  As  previously  mentioned  (J.,  1922, 
485  a),  ferricyanide  should  be  added  to  the  ferro- 
cyanide solution;  the  quantity  recommended  is  1  g. 
per  litre.  The  molecular  concentration  of  the  ferro- 
cyanide used  was  J$.  The  best  results  are  obtained 
in  weak  acid  solution;  1  or  2  c.c.  of  4N  sulphuric 
acid  is  sufficient,  and  excess  should  be  avoid,  d,  as 
the  solubility  of  the  precipitate  of  potassium  zinc 
ferrocyanide  is  thereby  increased,  and  this  causes  a 
decrease  in  the  change  of  potential  when  the  end- 
point  is  reached.  Kesults  obtained  in  neutrnl  solu- 
tion aro  from  1%  to  1"5%  too  low.  At  ordinary 
temperatures  the  presence  of  a  quantity  of  potas- 
sium sulphate  or  ammonium  sulphate  gives  results 
which  are  usually  about  0'5%  too  high.  The 
salt  at  70°  C.  introduces  error  in  the  opposite 
direction,  as  does  ammonium  chloride  at  ordinary 
temperatures.  The  titration  of  ferrocyanide  by 
means  of  zinc  may  also  be  carried  out  with  speed 
and  accuracy  by  the  potentiometric  method. 

— H.  J.  E. 

Arsenic;    Colorimetric   determination   of  by 

means  of  quinine  mohjbdate.  D.  Chouchak.  Ann. 
Chim.  Analyt.,  1922,  4,  138—142. 
Quantities  of  arsenic  as  small  as  000002  mg.  yield 
a  turbidity  with  quinine  molybdate  reagent.  The 
arsenic  solution  under  examination  is  treated  with 
nitric  acid,  evaporated  to  dryness,  and  the  residue 
treated  with  0'5  c.c.  of  17'5%  nitric  acid,  45  c.c.  of 


Vol.  XLI.,  No.  15.J 


(l.  XXIII.— ANALYSIS. 


613a 


water,  and  20  c.c.  of  quinine  molybdate  reagent. 
The  turbidity  or  opalescence  produced  is  compared 
with  that  given  by  a  known  quantity  of  arsenic 
under  similar  conditions.  The  reagent,  which  is 
saturated  with  quinine  arsenomolybdate,  is  pre- 
pared by  dissolving  0'5  g.  of  quinine  hydrochloride 
in  10  c.c.  of  water,  adding  5  c.c.  of  arsenic  acid 
solution  (containing  O'Ol  mg.  of  arsenic  per  c.c), 
10  c.c.  of  17"5%  nitric  acid,  and  1  c.c.  of  sodium 
molybdate  solution  (3'5  g.  of  sodium  carbonate  and 
9"5  g.  of  molybdic  acid  per  100  c.c).  After  a  few 
minutes  the  mixture  is  diluted  to  120  c.c.  and 
filtered  through  a  filter-paper  washed  previously 
with  dilute  nitric  acid  and  hot  water.  In  the 
presence  of  heavy  metals  a  preliminary  separation 
of  the  arsenic  by  distillation  with  hydrochloric 
acid,  potassium  bromide,  and  hydrazine  sulphate 
is  necessary.  The  distillate  is  then  oxidised  with 
nitric  acid,  evaporated  to  dryness,  and  the  test 
applied  to  the  residue. — W.  P.  S. 

Electrolysis;  Bapid  withovt  rotating  elec- 
trodes. G.  Edgar  and  R.  B.  Purdum.  J. 
Amer.  Chem.  Soc,  1922,  44,  1267—1270. 

Rapid  electrolysis  may  be  carried  out  without  the 
use  of  rotating  electrodes  if  the  solution  is  stirred 
by  means  of  a  current  of  air.  An  apparatus  is 
described  for  such  analysis.  The  cathode  is  a 
platinum  gauze  cylinder  in  the  centre  of  which  is 
a  spiral  platinum  electrode.  The  electrodes  are 
contained  in  a  glass  tube,  31  mm.  diam.,  to  which 
are  sealed  three  glass  "  air  lifts  "  connected  in  a 
single  tube  at  the  bottom  and  entering  symmetri- 
cally about  halfway  up  the  wide  tube,  the  seals 
being  made  tangentially.  When  air  is  forced  into 
the  apparatus  half  filled  with  liquid,  both  vertical 
and  rotational  stirring  is  effected.  Experiments  on 
the  electrolytic  determination  of  copper,  zinc,  iron, 
and  nickel  are  described  which  show  that  the  results 
obtained  with  this  apparatus  are  equally  as  good  as 
those  obtained  with  rotating  electrodes. — J.  P.  S. 

Adsorption  of  iron  by  precipitates  of  manganese 
din  ride.  M.  Geloso.  Comptes  rend.,  1922,  174, 
1629—1631.  (Cf.  Nicolardot  and  others,  J., 
1920,  351  a.) 

When  manganese  is  precipitated  as  its  dioxide  by 
the  addition  of  ammonium  persulphate  to  an  acid 
solution  of  manganese  sulphate  containing  some 
iron  salt,  the  amount  of  iron  adsorbed  by  the  pre- 
cipitate varies  directly  as  the  concentrations  of  the 
iron  and  manganese  and  inversely  as  the  acidity  of 
the  solution.  The  presence  of  ammonium  sulphate 
does  not  affect  the  results.  The  iron  adsorbed  is 
mostly  in  the  form  of  hydroxide. — W.  G. 

Permanganate ;  Oxidation  of  manganese  to  in 

alkaline  solution.      J.  Heslinga.      Chem.  Week- 
blad,  1922,  19,  274. 

As  little  as  O'OOo  mg.  of  manganese  may  be  detected 
by  oxidising  to  permanganate  in  boiling  solution  in 
presence  of  bromine  water,  potassium  hydroxide, 
and  excess  of  copper  sulphate.  The  coloration 
develops  immediately.  The  reaction  is  not  suitable 
for  the  colorimetric  estimation  of  manganese.  (Cf. 
J.C.S.,  August.)— S.  I.  L. 

Badium;  Direct  determination  of  small  quantities 

of  by   the   penetrating   rays.       B.   Szilard. 

Comptes  rend.,  1922,  174,  1695—1698. 
The  electrometer  previously  described  (ibid.,  1922, 
174,  1618)  has  been  modified  so  as  to  provide  a  port- 
able instrument  working  without  either  a  high- 
tension  battery  or  a  projection  mirror.  By  means 
of  it  rapid  measurements  can  be  made  of  the 
penetrating  rays.  The  sensitiveness  of  the  instru- 
ment corresponds  to  10"*  U.E.S.  Working  with 
500  g.  of  material  containing  10"°  g.  of  radium  per 
g.  the  results  were  accurate  to  within  2'5%. — W.  G. 


Cyanogen-  Determination  of .    H.  Yanagisawa. 

Yakugakuzasshi   (J.    Pharm.   Soc.    Japan),    1922, 
No.  483,  369—377. 

The  cyanogen  compound  is  heated  with  dilute  sul- 
phuric acid  in  a  sealed  tube  at  200°  C.  for  4  hours, 
whereby  cyanogen  is  converted  into  ammonia. 
After  cooling  the  resulting  mixture  is  rendered 
alkaline  with  caustic  soda,  distilled  into  2V/4  sul- 
phuric acid,  and  the  excess  of  acid  titrated  with 
IV /4  ammonia  as  usual. — K.  K. 

Precipitates;  Carrying  down  [of  soluble  salts']   by 

.     P.  Dutoit  and  E.  Grobet.    J.  Chim.  Phys., 

1922,  19,  328—330. 
The  carrying  down  of  soluble  salts  by  precipitates 
is  explained  as  due  to  the  adsorption  of  these  sub- 
stances on  the  surface  of  the  precipitate,  whereby 
the  soluble  substance  locally  attains  a  value  which 
exceeds  its  solubility  product.  This  is  prevented 
by  stirring  the  solution  very  rapidly  during  the 
addition  of  the  reagent,  and  in  this  way  very  good 
quantitative  results  may  be  obtained.  (Cf.  J.  C.  S., 
Aug.)— J.  P.  S. 

Gases;  Determination  of  suspended  impurities  in 

.     W.  W.  Scott.     J.  Ind.  Eng.  Chem.,  1922, 

14,  432-^33. 

Dust  particles  or  liquid  mist  in  gases  can  be 
detected  by  their  visibility  in  a  beam  of  solar  or  arc 
light.  The  observation  is  best  made  in  a  direction 
towards  the  source  of  light.  A  filter  of  loose  dry 
asbestos,  2  in.  thick,  effectually  removes  liquid  or 
solid  matter.  The  estimation  of  liquid  suspended 
in  gases,  for  instance,  sulphuric  acid  in  contact 
process  gases,  may  be  carried  out  by  aspirating  the 
gas  through  a  filter  of  blue  Cape  asbestos,  extract- 
ing the  asbestos  with  water,  and  titrating  the 
solution  with  standard  alkali ;  the  gas  is  measured 
by  a  dry  gas  meter. — H.  M. 

Pyrogallol  solutions  for  gas  analysis;  Oxygen 
absorption  and  concentration  of  .  P.  Hoff- 
mann.    Z.  angew.  Chem.,  1922,  35,  325—328. 

Experiments  to  determine  the  absorptive  powers 
for  oxygen  of  solutions  prepared  with  different  pro- 
portions of  pyrogallol  and  caustic  potash  were  made 
by  introducing  successive  quantities  of  60  c.c  of 
air  into  a  pipette  containing  0'5  c.c.  of  the  solution 
under  test,  the  results  being  added  together  and 
tabulated  in  a  Gibbs  triangular  diagram  for  the 
ternary  system  pyrogallol,  caustic  potash,  and 
water.  A  line  of  maximum  absorptions  was  found 
corresponding  to  mixtures  containing  pyrogallol 
and  caustic  potash  in  the  proportion  of  3  to  2.  In 
the  field  to  one  side  of  this  line,  corresponding  to  a 
smaller  proportion  of  caustic  potash,  the  absorptive 
power  falls  sharply.  From  practical  considerations 
the  optimum  proportion  is  stated  as  20  pts.  of  pyro- 
gallol, 20  pts.  of  potash,  and  60  pts.  of  water,  or 
40  g.  of  pyrogallol  in  90  c.c.  of  water  with  70  g.  of 
concentrated  potash  solution  of  sp.  gr.  1"55. — H.  M. 

Oxygen;    Method    for    the    estimation    of    minute 

amounts  of and  its  application  to  respiratory 

air.  H.  M.  Sheaff.  J.  Biol.  Chem.,  1922,  52, 
35—50. 
The  method  is  intended  mainly  for  use  in  following 
the  oxygen  consumption  of  plant  and  animal  tissue 
under  different  conditions.  By  means  of  the  appa- 
ratus, which  is  described  and  illustrated,  it  is  stated 
that  oxygen  can  he  estimated  in  amounts  as  small 
as  1  x  10"'  g.  The  method  depends  upon  the  con- 
version of  the  oxygen,  in  the  presence  of  nitric  oxide 
and  sodium  hydroxide,  into  sodium  nitrite,  and  the 
estimation  of  the  latter  colorimetrically  by  means  of 
sulphanilic  acid  and  a-naphthylamine. — E.  S. 


014  a 


PATENT   LIST. 


[Aug.  15,  1922. 


Organic  compounds;  Determination  of  chlorine  in 

.     J.  Klimont.     Chem.-Zeit.,  1922,  46,  521— 

522. 
When  monochloroacetic  acid  is  neutralised,  then 
boiled  under  a  reflux  condenser  with  alcoholic 
potassium  hydroxide  solution  and  the  excess  of  the 
latter  titrated  subsequently,  the  saponification 
value  thus  obtained  i6  a  measure  of  the  chlorine  in 
the  molecule,  the  substance  being  converted  quanti- 
tatively into  potassium  acetate  and  potassium 
chloride.  The  method,  however,  yields  unsatis- 
factory results  when  applied  to  the  determination 
of  chlorine  in  acetylene  dichloride,  mono- 
chlorohydrin,  monochloroacetone,  dichloroacetone, 
a-chloronaphthalene,  bornyl  chloride,  pinene  hydro- 
chloride, trichloroethane,  acetylene  tetrachloride, 
and  a-dibromohydrin,  either  because  the  molecule  of 
the  substance  is  incompletely  hydrolysed  or  because 
secondary  reactions  occur. — W.  P.  S. 

Trypsin;  Method  for  the  quantitative  determina- 
tion of  .     A  modification  of  Oross'  method. 

S.  Kai.  J.  Biol.  Chem.,  1922,  52,  133—136. 
The  relative  strengths  of  trypsin  preparations  are 
estimated  by  measuring  the  time  taken  by  equal 
amounts  of  each  to  digest  25  c.c.  of  a  casein  solution, 
the  time  of  digestion  being  inversely  proportional 
to  the  concentration  of  the  trypsin.  The  end  point 
of  digestion  is  determined  by  adding  a  solution  of 
sodium  acetate  and  acetic  acid  to  test  portions  with- 
drawn from  time  to  time,  no  precipitate  being  pro- 
duced when  digestion   is  complete. — E.   S. 

Sulphur ;  Bapid  estimation  of .     7.     L.  Losana. 

Giorn.  Chim.  Ind.  Applic,  1922,  4,  204—206. 

When  a  sulphur  compound  is  heated  with  powdered 
iron  out  of  contact  with  the  air  and  the  mass  thus 
obtained  then  treated  with  hydrochloric  acid,  the 
whole  of  the  sulphur  is  liberated  as  hydrogen  sul- 
phide. The  latter  may  be  absorbed  by  zinc  acetate 
solution  and  the  sulphide  so  formed  titrated  with 
standard  iodine  solution.  The  amount  of  the  sub- 
stance taken  for  analysis  is  1  g.,  0'5  g.,  or  O'l  g., 
according  as  the  percentage  of  sulphur  present  is 
0 — 5,  5 — 10,  or  more  than  10.  A  mixture  of  the 
substance  with  2  g.  of  pure  powdered  iron  and 
0'5  g.  of  sodium  hydrogen  carbonate  is  introduced 
into  a  hard  glass  tube,  covered  with  a  layer  of  the  iron 
several  mm.  in  depth,  and  heated  to  incandescence 
for  a  few  minutes.  The  treatment  of  the  mass  with 
acid  is  carried  out  in  a  small  round-bottomed  flask 
with  a  ground  stopper  sealed  to  the  tube  of  a  reflux 
condenser,  the  upper  end  of  the  tube  being  bent 
over  to  pass  through  the  cork  of  a  bulbed  absorption 
tube  charged  with  about  150  c.c.  of  25%  zinc 
acetate  solution  acidified  slightly  by  acetic  acid.  A 
gas  delivery  tube  dipping  into  a  little  water  in  the 
flask  is  sealed  horizontally  through  the  head  of  the 
ground  stopper,  and  ends  in  a  vertical  cross-piece 
to  form  a  T-piece.  The  top  of  the  latter  is  con- 
nected with  a  source  of  carbon  dioxide  and  the 
bottom  with  a  rather  long  rubber  tube  joined  to  a 
tapped  funnel.  The  hard  glass  tube  containing  the 
heated  mixture  is  allowed  to  cool  somewhat,  and  is 
dropped  while  still  hot  into  the  flask  and  thus 
broken  by  the  cold  water.  A  rapid  current  of 
carbon  dioxide,  washed  by  permanganate  solution 
and  then  by  water,  is  passed  through  the  flask,  and 
hydrochloric  acid  introduced  through  the  funnel. 
When  the  reaction  slackens  the  flask  is  heated 
gently,  and  when  evolution  of  gas  ceases  carbon 
dioxido  is  passed  briskly  through  the  apparatus  for 
about  five  minutes.  The  liquid  from  the  absorption 
bulbs  is  transferred  to  a  beaker,  diluted  to  300—400 
c.c,  mixed  with  a  known  volume  in  excess  of  stan- 
dard iodine  solution,  allowed  to  settle,  and  titrated 
with  thiosulphate  solution,  the  sulphur  being  calcu- 
lated from  the  equation,  ZnS  +  Ia  =  ZnI.-f-S.  The 
content  of  sulphur  in  the  reagents  used  is  deter- 


mined by  a  blank  experiment.  Tests  made  on 
flowers  of  sulphur  and  on  copper,  lead,  barium,  and 
cobalt  sulphates  gave  virtually  theoretical  results. 
The  estimation  may  be  completed  in  about  40 
minutes.  When  the  estimation  is  to  be  made  on 
an  organic  compound,  this  is  first  mixed  with 
copper  oxide  or  lead  chromate  and  the  mixture 
heated  in  a  porcelain  crucible,  or,  if  the  compound 
is  volatile,  in  a  narrow  glass  tube  in  which  it  is 
covered  with  a  deep  layer  of  the  oxidising  material 

— T.  H.  P. 

Oxidation  by  means  of  sulphuric  acid  and 
chromates.  L.  J.  Simon.  Comptes  rend.,  1922, 
174.  1706—1708. 

For  the  wet  combustion  of  organic  compounds  by 
means  of  chromic  acid  the  most  satisfactory  results 
are  obtained  by  the  use  of  a  mixture  of  concen- 
trated sulphuric  acid  and  silver  chromate,  using 
about  15  c.c.  of  the  acid  and  12  g.  of  the  chromate 
for  about  O'l  g.  of  substance.  This  oxidising  mix- 
ture completely  oxidises  acetates  or  acetyl  com- 
pounds, whereas  chromic  anhydride  and  sulphuric 
acid  together  do  not. — W.  G. 

See  also  pages  (a)  577,  Benzene  in  gases  (Krieger); 
Carbon  monoxide,  hydrogen,  and  methane  (Wallers). 
583,  Degree  of  beating  of  paper  pulp  (Skark).  584, 
Sulphite  acid  (Genberg).  586,  Chlorine  and  hypo- 
chlorous  acid  (Taylor  and  Gammal).  590,  Bational 
analysis  of  ceramic  materials  (Rieke).  591,  Soften- 
ing temperature  of  refractory  materials  (Steger^; 
Testing  porcelain  (Rieke  and  Gary).  594,  Vanadium 
in  steel  works  materials  (Briefs)  ;  Chromium  in  steels 
(Losana  and  Carozzi) :  Vanadium  in  steel  (Kropf). 
595,  Lead  (Odajima) ;  Uranium  (Buell).  603, 
Sucrose  (Canals) ;  Artificial  honey  (Auerbach  and 
Borries).  604,  Wine  (Ferre).  606,  Volatile  fatty 
acids  (Wiegner  and  Magasanik).  608.  Cholesterol 
(Kahlenberg) ;  Action  of  chlorine  dioxide  on  organic 
substances  (Schmidt  and  Braundsdorf) ;  Sulphate  in 
neoarsphenamine  (Elvove).  609,  Lactic  acid 
(Clausen);  Oxalic  acid  (Witt);  Acetic  anhydride 
(Sage).     610,  Spirit  of  camphor  (Scheringa). 

Patent. 

Gas  analysing   apparatus;  Begistering  devices  for 

■  [for  recording  two  or  more  series  of  analyses 

on  a  single  charf].     Svenska  Aktiebolaget  Mono. 
E.P.  157,895,  4.1.21.     Conv..  16.1.20. 


Patent  List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  PatentB.  those  of  application  and  in  the  case  ol 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  eiven :  they  are  on 
sale  at  Is.  each  at  the  Patent  Office,  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.^GENERAL;     PLANT;     MACHINERY. 

Applications. 

Bechhold.     Filters.     19,640.     Jnly  17. 

Bollmann.    Distilling  apparatus.  19,031.  July  11. 

Boulton,  Ltd.,  and  Johnson.     19,535.    See  VIIL 

Brackett,  and  Brackett  and  Co.  Rotary  filters 
etc.    18,896.    July  10. 

Brinjes  and  Goodwin,  Ltd.,  and  Seaman.  -Mix- 
ing, emulsifying,  etc.  machines.     19,412.     July  H- 


Vol.  XLI.,  No.  15.] 


PATENT   LIST. 


615  a 


Hall.  Centrifugal  separators.  19,192.  July  12. 
(U.S.,  15.7.21.) 

Hunt,  and  Hunt  and  Co.  Grinding  and  crush- 
ing mill.     19,638.     July  17. 

McGinness.     Grinding-mill.     20,137.     July  22. 

Mackey.  Apparatus  for  clarifying  liquids  con- 
taining nnelv-divided  matter  in  suspension.  19,986. 
July  21. 

N.  V.  Philips'  Gloeilampenfabr.  Separating 
gases  from  a  mixture  thereof.  19,860.  July  19. 
(Holland,  19.4.22.) 

Podszus.  Obtaining  powders  of  great  fineness. 
19,202.     July  12.     (Ger.,  12.7.21.) 

Rule.     Chemical  process.     19,563.     July  17. 

Russell.   Recovery  of  waste  heat.  19,231.  July  13. 

Shaw.  Separating  matter  suspended  in  fluid. 
19,845.     July  19. 

Soc.  l'Air  Liquide.  Separating  constituents  of 
air  etc.     20,130.     July  22.     (Fr.,   12.8.21.) 

Soc.  l'Air  Liquide.  Purification  of  gases  bv 
cooling.     20,135.     July  22.     (Fr.,  13.8.21.) 

Vautin.  Apparatus  for  removing  gases  from 
substances.     19,260.     July  13. 

Complete  Specifications  Accepted. 

35,975  (1920).  Brutzkus.  Effecting  chemical 
reaction  in  the  interior  of  compressors.  (155,776.) 
July  19. 

786  (1921).  Lilienfeld.  Manufacture  of  ool- 
loidally  soluble  substances  and  suspensions  or 
emulsions.     (156,725.)     Julv  26. 

2003  (1921).     Wade  (Sch'neible).     See  XVIII. 

6746  (1921).  Gardner.  Mixing  and /or  disin- 
tegrating machines.     (182,850.)     July  26. 

9677  (1921).  Dine  and  Sieff.  Preparation  for 
removing  scale  from  boilers  and  preventing  its 
formation.     (182,545.)     July  19. 

12,600  and  14,501  (1921).  Heenan  and  Froude, 
and  Walker.  Concentration  of  brine  etc.  used  as 
circulating  medium  in  refrigerating  apparatus. 
(182,982.)    July  26. 

19,114  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Preparation  of  colloids  and  colloidal 
solutions.     (182,696.)     Julv  19. 

6090  (1922).  Marx.  Dehydrating  plastic  and 
other  materials.     (183,097.)     July  26. 


II.— FUEL;      GAS;      MINERAL      OILS       AND 

WAXES;    DESTRUCTIVE    DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Auld.     19,974.     See  III. 

Batchelor.  Production  of  artificial  light.  19,505. 
July  15. 

Bitumen  Products,  Ltd.,  and  Illemann.  Solid 
oil  fuel.     19,074.     July  12. 

Burls.  Treatment  of  carbonaceous  substances. 
19,978.    July  20. 

Calder  and  Lennox.  Inflammable  vaporisable 
iquid  fuels.     20,068.     July  21. 

Calder  and  Lennox.  Gas-producing  plant. 
M.069.    July  21. 

Carbic,  Ltd.,  and  Them.     20,060.     See  VII. 

Chown.  Carbonising  and  distilling  carbonaceous 
naterial.    18,925.    July  10. 

Coppee  et  Cie.  Concentrating  etc.  carbonaceous 
limes.     19,730.     July  18.     (Belg.,  19.7.21.) 

Duffield.     Pulverising  coal  etc.     19,410.     July  14. 

Fabry.     Coke  manufacture.     19,346.     July  14. 

Harris  and  Rose.     Gaseous  fuel.    19,161.   July  12. 

Hood,  and  Oil  Refining  Improvements  Co.    Puri- 

I cation  of  oils.     20,129.     July  22. 
Kern.     Obtaining  mineral  oils  from  bituminous 
ocks.    20,024.     July  21.     (Ger.,  27.7.21.) 
Ormandy.       Manufacture     of     fuel     briquettes. 
J,046.     July  21. 


Quinan.  Pyrolytic  distillation.  20,052.  July  21. 
(S.  Africa,  6.8.21.) 

Remfry.  Treatment  of  hydrocarbons.  20,151. 
July  22. 

Remfry.  Treatment  of  cracked  spirit.  20,152. 
July  22. 

Simon-Carves,  Ltd.  Treating  coal  etc.  slimes. 
19,877.     July  20. 

Walker  and  White.  Gas  generators.  19,248. 
July  13. 

Complete  Specifications  Accepted. 

365  (1921).  Frevn,  Brassert,  et  Cie.  Apparatus 
for  washing  gas.     (156,490.)    July  19. 

1230  (1921).  Polysius.  Low-temperature  carbon- 
isation.    (157,318.)     July  26. 

1785-6  (1921).  Mather.  Distillation  of  crude  oil 
and  other  liquids.     (182,827-8.)    July  26. 

7160  (1921).  Plauson  and  Viclle.  Manufacture 
of  hydrocarbons  from  coal  etc.  or  its  distillation 
products.     (182,852.)     July  26. 

7407  (1921).  McDonald.  Process  for  making  gas. 
(159,886.)    July  26. 

9646  (1921).  Bonnard.  Carbonising  furnaces  and 
retorts.    (182,542.)    July  19. 

10,303  (1921).     Igranic  Electric  Co.    See  XXIII. 

10,409  (1921)-  Bowen.  Production  of  artificial 
fuel.     (182,578.)     July  19. 

11,041  (1921).  Wood.  Gas  retorts.  (161,918.) 
July  26. 

11,838  (1921).  Salerni.  Apparatus  for  distilling 
carbonaceous  materials.     (182,601.)     July  19. 

15,203  (1921).  Maclaurin.  Enriched  water-gas 
plant.     (182,648.)    July  19. 

19,402  and  19,994  (1921).  Warden.  Coking- 
retort  ovens.     (182,697  and  182,702.)     July  19. 

22,878  (1921).  Holland.  Recovery  of  coal  from 
water  etc.     (171,670.)     Julv  26. 

34,654  (1921).     L'Air  Liquide.     See  VII. 

10,079  (1922).  Polysius.  Low-temperature  car- 
bonisation.    (178,126.)    July  26. 


ni.— TAR    AND    TAR    PRODUCTS. 

Applications. 

Auld.  Treatment,  of  hydrocarbons.  19,974. 
July  20. 

Insulators,  Ltd.,  and  Winfield.  Treatment  of 
tar,  pitch,  etc.     19,257.     July  13. 

Murphy.     19,041.     See  IX. 

Remfry.     20,151.    See  II. 

Complete  Specifications  Accepted. 

4557  (1921).  Atack.  Oxidation  of  hvdrocarbons. 
(182,843.)    July  26. 

9361  (1921).  Blumner.  Distillation  of  tars  or 
oils.     (182,868.)    July  26. 

10,603  (1921).  Koppers  Co.  Purification  of 
phenol-contaminated  liquors.     (161,976.)     July  26. 

12,974  (1921).  Bismarckhiitte.  Separation  of 
water  from  coal  tar.     (163,011.)     July  19. 

20,417  (1921).  British  Dyestuffs  Corp.,  Green, 
and  Green.  Manufacture  of  phthalimide.  (183,044.) 
July  26. 

30,471  (1921).  Barrett  Co.  Purification  of 
naphthalene.     (172,937.)     July  19. 


IV.— COLOURING    MATTERS   AND   DYES. 

Complete  Specifications  Accepted. 

688  (1921).     Plauson  and  Vielle.     See  XIH. 

13,624  (1921).  Bayer  u.  Co.  Manufacture  of 
copper  compounds  of  substantive  azo  dyestuffs. 
(165,083.)     July  19. 


616  a 


PATENT   LIST. 


[Aug.  15,  1922. 


V— FIBRES:     TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Briggs,  Palmer,  and  British  Cellulose  and  Chem. 
Manuf.  Co.  Manufacture  or  treatment  of  artificial 
silk,  films,  etc.  19,488.     July  15. 

Caldecott,  Horrocks,  Rushworth,  and  Rushworth 
and  Co.  Treatment  of  fibres  for  brooms  etc. 
20,007.    July  21. 

Cook,  and  Cook  and  Co.  Treatment  of  cotton 
etc.     19,647.     July  18. 

Dreyfus.  Manufacture  of  compositions  with 
cellulose  derivatives.    19,255-6.    July  13. 

Kampf.  Manufacture  of  artificial  threads  etc. 
of  viscose.     20,003-4.     July  21.     (Ger.,  6.8.21.) 

Little  Inc.  Cellulose  derivative  and  process  of 
preparing  same.    18,934.    July  10.    (U.S.,  10.4.20.) 

N.  V.  Hollandsche  Kunstzijde  Ind.  Manufac- 
ture of  artificial  eiik  threads  etc.  from  viscose. 
19,953.     July  20.     (Ger.,  20.7.21.) 

Wickel.  Manufacture  of  metal-coated  paper. 
19,589.  July  17.     (Ger.,  15.7.21.) 

Complete  Specifications  Accepted. 

36,001  (1920).  Koln-Rottweil  A.-G.  Manufac- 
ture of  cellulose  material.     (156,095.)     July  19. 

753  (1921).  Ehrenthal.  Manufacture  of  cotton 
substitutes.     (156,709.)     July  19. 

1911  and  22,980  (1921).  Clavel.  Treatment  of 
cellulose  acetate  or  products  made  therewith. 
(182,830.)    July  26. 

20,703  (1921).  Granton  (Niessen).  Manufacture 
of  bristles  for  brooms,  brushes,  etc.  from  bamboo, 
madagascar,  pepper,  and  similar  reeds.  (183,049.) 
July  26. 


VI —BLEACHING ;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Bleachers'  Absoc.,  Ltd.,  and  Kenworthy.  Bleach- 
ing etc.  kiers.     19,541.    July  17.  , 

Farrar,  Lepine,  and  Whitehead.  Dyeing- 
machines.     19,455.    July  15. 

Complete  Specifications  Accepted. 

4638  and  29,734  (1921).  Clavel.  Treatment  of 
union  or  mixed  fabrics.     (182,844.)     July  26. 

10,331  (1921).  Brandwood,  Brandwood,  and 
Brandwood.  Dveing,  bleaching,  etc.  of  textile 
fibres.     (182,575.)    July  19. 

28  921  (1921).  Bloxam  (A.-G.  f.  Anilinfabr.). 
Dyeing  skins,  hairs,  etc.     (183,078.)     July  26. 


VII.-^ACLDS ;     ALKALIS;     SALTS;     NON- 
METALLIC  ELEMENTS. 

Applications. 

Ashworth.  Apparatus  for  producing  bisulphites 
etc.     19,661.     July  18. 

Backstrom  and  Cederberg.  Apparatus  for 
catalytic  oxidation  of  ammonia.     19,405.     July  14. 

Blattner  (Grouchkine).  Manufacture  of  caustic 
alkali.    19,615  and  20,663.    July  17  and  21. 

Blumenfeld  and  Weizmann.  Titanium  com- 
pounds.    19,154-6.     July  12. 

British  Oxvgen  Co.,  and  Houseman.  Manufac- 
ture of  sulphur  dioxide.     19,820-1.     July  19. 

Carbic,  Ltd.,  and  Them.  Manufacture  of  calcium 
carbide  cakes.     20,060.     July  21. 

Charlesworth  and  Johnson.  Machine  for  drying 
and  neutralising  sulphate  of  ammonia  etc.  19,546. 
July  17. 


Cochran  and  Marsh.     19,738.    See  X. 

Farrell.  Caustic  soda  recovery  apparatus.  20,100. 
July  22. 

Mond  (Chem.  Fabr.  Griesheim-Elektron).  Manu- 
facture of  alumina.     19,700.     July  18. 

Soc.  l'Air  Liquide.    20,130.    See  I. 

Complete  Specifications  Accepted. 

1911  (1921).  Helbronner  and  Pipereaut.  Manu- 
facture of  sulphuric  acid.     (157,281.)    Julv  26. 

6801  (1921).  Norsk  Hydro-Elektrisk  Kvaelstof- 
aktieselskab.  Manufacture  of  ammonia.  (159,878.) 
Julv  19. 

7533  and  23,759  (1921).  Broadbridge,  Edser,  and 
Sellers.     Treatment  of  caliche.     (182,859.)    July  26. 

7597  (1921).  Goldschmidt.  Manufacture  of  mag- 
nesium chloride.     (161,165.)     July  26. 

9832  (1921).  L'Air  Liquide.  Synthesis  of 
ammonia.     (160,811.)    July  19. 

10,771  (1921).  Chem.  Fabr.  Griesheim-Elektron. 
Production  of  stable  compounds  of  calcium  hypo- 
chlorite.    (182,927.)     July  26. 

16,164  (1921).  Courtaulds,  Ltd.,  and  Jones. 
Manufacture  of  caustic  soda.     (182,661.)     July  19. 

32,216  (1921).  Weyman.  Neutralising  and  dry- 
ing sulphate  of  ammonia.     (183,089.)     July  26. 

34  654  (1921).  L'Air  Liquide.  Manufacture  of 
hydrogen.     (175,005.)     July  19. 

VIII.— GLASS;    CERAMICS. 
Applications. 

Boulton,  Ltd.,  and  Johnson.  Cloth  for  filter 
presses  for  treating  potters'  clay  etc.  19,535. 
July  17. 

Bundy.     Glass  etching.     19,783.     July  19. 

Damard  Lacquer  Co.,  Lloyd,  Potter,  and 
Robinson.     Pottery  etc.     19,366.     July  14. 

Complete  Specifications  Accepted. 

9749  (1921).  Mathys  (Bicheroux,  Lambotte  et 
Cie.).  Manufacture  of  raw  plate  glass.  (182,551.) 
July  19. 

10  168  (1921).  Clark.  Electro-fining  glass 
furnace.     (161.192.)     July  19. 

19,329  (1921).  Ges.  f.  Tuff-  u.  Ton-Technik. 
Production  of  ceramic  materials,  glass,  and 
glazings.     (166,558.)     July  19. 


IX.— BUILDING     MATERIALS. 

Applications. 

Biihler.  Manufacture  of  Portland  cement.  20,005. 
July  21.     (Switz.,  15.10.21.) 

Davies.     Oxychloride  cement  coverings.     19,553. 

Lanhoffer.  Roasting  or  calcining  cement.  19,149. 
Julv  12.     (Fr.,  3.4.22.) 

Murphy.  Soluble  tar,  bituminous  etc.  compound 
for  roads  etc.     19,041.     July  11. 

Samuel.     19,174.    See  XI. 

Complete  Specification  Accepted. 

3950  (1921).  Lyon.  Artificial  maturing  or 
seasoning  of  wood.     (182,504.)    July  19. 

X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Ashcroft.  Treatment  of  sulphide  orns  etc 
19,422.    July  14. 

Ashcroft.  Recovering  tin  from  tinplates,  alloys, 
etc.     19,483.    July  15. 


Vol.  XXI.,  No.  15.1 


PATENT  LIST. 


617  a 


Ashcroft.  Separating  metals  from  fused  melts 
of  zinc  and /or  lead  chloride.     19,616.     July  17. 

Beardniore  and  Co.,  and  Neilson.  Cleaning  out 
open-hearth  furnaces.     18,849.     July  10. 

Cochran  and  Marsh.  Reclaiming  spent  pickling 
solution.     19,738.     July  18.     (U.S.,  3.8.21.) 

Craig,  Pearson,  and  Durelco,  Ltd.  Manufacture 
of  tungsten.     19,197.     July  12. 

Hansgirg.     18,928.     See  XI. 

Imray  (Dietzsch  and  Prain).  Treatment  of 
copper  ores.     18,897.     July  10. 

Levoz.  Side-blast  converter  furnaces.  19,051. 
July  11.     (Fr.,  9.8.21.) 

Mavnard.  Vanning-table  for  concentrating  gold, 
silver",  tin,  etc.     20,105.     July  22. 

N.  V.  Philips'  Gloeilampenfabr.  Manufacture  of 
tungsten  powder.  19,430.  July  14.  (Holland, 
29.7.21.) 

Rodriguez.  Production  of  alloys.   19,054.   July  11. 

Complete  Specifications  Accepted. 

64  (1921).  Parr,  Mawer,  and  Painton.  Anneal- 
ing and  hardening  high  and  low  carbon  steels  etc. 
(182,825.)    July  26. 

9163  (1921).  Goskar  and  Hitch.  Composition 
for  case-hardening  iron  and  steel.  (182,527.) 
July  19. 

11X166  (1921).  Chem.  Fabr.  Griesheim-Elektron, 
and  Beielstein.  Recovery  of  light  metals  from  scrap. 
(182,948.)    July  26. 

12,129  (1921).  Burgess.  Reduction  of  aluminium 
oxide.     (182,609.)     July  19. 

12,260  (1921).  Usines  Metallurgiques  de  la  Basse- 
Loire.     Production  of  basic  steel.  (163,693.)  July  26. 

13,235  (1921).  Brunskill.  Treatment  to  obviate 
rusting  or  oxidation  of  iron  or  steel  surfaces. 
(182,988.)     July  26. 

19,474  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Manufacture  of  bodies  of 
tungsten  alloys.     (182,699.)     July  19. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Casale.  Apparatus  for  electrolysis  of  water. 
19,617.    July  17. 

David  and  Dutt.  Primary  batteries.  19,979. 
July  20. 

David  and  Dutt.  Storage  batteries.  20,023. 
July  21. 

F.  I.  A.  T.  Electric  furnaces.  19,344.  July  14. 
(Ital.,  23.12.21.) 

Felten  u.  Guilleaume  Carlswerk.  19,739.  See  XIII. 

Hansgirg.  Electrolysis  of  zinciferous  materials. 
18,928.     July  10. 

Reichenstein.  Stabilising  detector  and  reinforc- 
ing effect  of  electrolytic  cells.  19,581.  July  17. 
(Ger.,  19.7.21.) 

Samuel.  Electrical  and  thermal  insulator. 
19,174.     July  12.     (Fr.,  1.8.21.) 

Complete  Specifications  Accepted. 

14,571  (1921).  Heap,  and  Chloride  Electrical 
Storage  Co.  Secondary  batteries.  (183,012.)  July  26. 

19.744  (1921).  Hooker  Electrochemical  Co. 
Electrolysis  of  solutions.     (167,469.)     July  26. 

1253  (1922).  Frick.  Electric-induction  furnaces. 
(174,084.)     July  19. 


XII.— FATS;     OILS;     WAXES. 

Applications. 

Benson.  Obtaining  oil  products.    19,039.  July  11. 

Zipser.  Extraction  of  fatty  etc.  matters  by 
means  of  volatile  solvents.  20,059.  July  21. 
(Austria,  27.7.21.) 


Complete  Specification  Accepted. 

9434  (1921).  Webster.  Treating  the  vapours  and 
gases  formed  by  heating  fatty  oils,  gums,  resins, 
ete.     (182,869.)     July  26. 


XIIL— PAINTS ;      PIGMENTS;      VARNISHES: 

RESINS. 

Applications. 

Baggaley.  Manufacture  of  invisible  pencils, 
printers'  and  writing  inks,  ete.     19,803.     July  19. 

Felten  u.  Guilleaume  Carlswerk.  Protective 
covering  for  submarine  cables.  19,739.  July  18. 
(Ger.,  18.7.21.) 

Fletcher,  West,  and  Titanine,  Ltd.  Manufacture 
of  dopes,  varnishes,  or  paints.    20,142.     July  22. 

Complete  Specifications  Accepted. 

688  (1921).  Plauson  and  Vielle.  Manufacture  of 
resins  and  oil-soluble  dyestuffs.     (182,497.)    July  19. 

9434  (1921).     Webster.     See  XII. 

10,214  (1921).  Dehn  (Satow).  Manufacture  of 
insoluble  condensation  products  from  phenol  and 
formaldehyde.     (182,886.)     July  26. 

18,949  (1921).  Hetherington  and  Allsebrook. 
Manufacture  of  lead  chromate  pigments.  (182,693.) 
July  19. 

XIV.— INDIA-RUBBER;    GUTTA-PERCHA. 

Applications. 

Barnes  (Miller  Rubber  Co.).  Manufacture  of 
hard  rubber  articles.     19,071.     July  12. 

Barnes  (Miller  Rubber  Co.).  Manufacture  of 
vulcanised  rubber  articles.     19,481-2.     July  15. 

Draemann.  Manufacture  of  rubber  filaments  or 
threads.     19,744-5.     July  18. 

Naugatuck  Chemical  Co.  Vulcanising  rubber. 
19,203.     July  12.     (U.S.,  15.5.22.) 

Complete  Specifications  Accepted. 

1769  and  1782  (1921).  Hopkinson.  Treatment 
of  rubber  containing  latex.  (157,975  and  157,978.) 
July  19  and  26. 

4950  (1922).  Hug.  Improving  and  regenerating 
indiarubber.     (177,495.)     July  26. 


XV.— LEATHER;    BONE;    HORN;    GLUE. 

Application. 

Ampt  and  Lansdown.  Utilising  cork,  leather, 
etc.  for  manufacture  of  leather  substitute.  19,015. 
July  11. 

Complete  Specifications  Accepted. 

54  (1921).  Croad,  Knowles,  and  McArthur  and 
Co.  Manufacture  of  tanning  agents.  (182,823.) 
July  26. 

55  (1921).  Croad,  and  McArthur  and  Co.  Manu- 
facture of  tanning  agents.     (182,824.)     July  26. 

666  (1921).  Chem.  Fabr.  Worms.  Process  for 
tanning  hides.     (156,670.)     July  26. 

1595  (1921).  Reubig.  Treating  and  finishing 
leathers.     (157,864.)     July  26. 


XVI.— SOILS ;     FERTILISERS. 

Application. 

Kreiss.    Phosphatic  fertilisers.    19,747.    July  18. 
(U.S.  13.9.21.) 

D 


618  a 


PATENT   LIST. 


[Aug.  16,  1922. 


Complete  Specification  Accepted. 

15,694  (1921).     Desmond  and  Tisdall.    Fertilisers. 
(182,654.)     July  19. 


XVII.— SUGARS ;    STARCHES;    GUMS. 
Application. 

Soc.  Anon  Etabl.  Olier.  Apparatus  for  extract- 
ing sugar  from  raw  materials.  20,056.  July  21. 
(Fr.,  6.8.21.) 

Complete  Specifications  Accepted. 

1800  (1921).  Campbell.  Manufacture  of  starch. 
(182,829.)     July  26. 

7024  (1921).  Corn  Products  Refining  Co.  Sepa- 
ration of  gluten  from  starch.     (159,838.)     July  26. 

7456  (1921).  Mauss.  Treatment  of  sugar  juice. 
(182,855.)     July  26. 


XVIII.— FERMENTATION    INDUSTRIES. 

Applications. 

Distillers  Co.,  and  Meyer.     Treatment  of  yeast. 
19,633.     July  17. 
Guthrie,  and  McEwan  and  Co.    19,069.    See  XIX. 

Complete  Specification  Accepted. 

2003  (1921).     Wade  (Schneible).     Distilling  alco- 
holic and  other  liquids.     (182,832.)     July  26. 


XIX.— FOODS;     WATER    PURIFICATION; 
SANITATION. 

Applications. 

Elektrizitatswerk  Lonza.     19,703.     See  XX. 

Guthrie,  and  McEwan  and  Co.  Manufacture  of 
food  products  from  yeast.     19,069.     July  12. 

Jackson  (Deuts.  Ges.  f.  Schadlingebekampfung). 
Insecticides.     20,026.     July  21. 

Maclachlan  Reduction  Process  Co.  Treatment  of 
sewage  sludge.     19,185.     July  12.     (U.S      12.4.22.) 

Marks  (Royal  Baking  Powder  Co.).  Effervescent 
mixtures.     19,048.     July  11. 

Morison.  Degassing  boiler  feed  water.  19,386. 
July  14. 

Silver  Springs  Bleaching  and  Dyeing  Co.  Treat- 
ing waste  liquors.     20,000.     July  21. 


Complete  Specifications  Accepted. 

7024  (1921).     Corn  Products  Refining  Co. 
XVII. 


See 


10,603  (1921).     Koppers  Co.     See  III. 

12,189  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Dissolving  dried  or  concentrated  milk 
(182,612.)     July  19. 


XX.— ORGANIC     SUBSTANCES ;     MEDICINAL 
SUBSTANCES;    ESSENTIAL    OILS. 

Applications. 

Boehringer  u.  Sohne.  Preparation  of  anthranilic 
acid  derivatives.    19,511.    July  15.    (Ger.,  20.7.21.) 

Elektrizitatswerk  Lonza,  and  Johnson.  Produc- 
tion of  metaldehyde  and  obtaining  combustible  sub- 
stances therefrom.    19,703.    July  18.    (Ger.,  9.3.22.) 

Complete  Specifications  Accepted. 

1627  (1921).  Elektrochem.  Werke,  Bosshard,  and 
Strauss.  Production  of  sulphonated  condensation 
products.     (158,512.)     July  26. 

1628  (1921).  Elektrochem.  Werke,  Bosshard,  and 
Strauss.  Production  of  a  condensation  product  for 
naphthalene  and  glycollic  acid.    (171,956.)  July  26. 

13,004  (1921).  Howards  and  Sons,  Blagden,  and 
Nierenstein.  Manufacture  of  amino  derivatives  of 
hydrogenated  cinchona  alkaloids  and  their  deriva- 
tives.    (182,986.)     July  26. 

389  (1922).  Lowe.  Manufacture  of  saccharin. 
(174,913.)     July  26. 


XXL— PHOTOGRAPHIC     MATERIALS     AND 
PROCESSES. 

Complete  Specification  Accepted. 

7788  (1921).    Kelley.    Treating  and  dyeing  photo- 
graphic images.     (160,137.)     July  26. 


XXII— EXPLOSIVES ;     MATCHES. 
Application. 

Friederich  and  Rathsburg.  Manufacture  of 
priming  compositions.  19,428.  July  14.  (Ger., 
27.3.22.) 

XXIIL— ANALYSIS. 

Complete  Specifications  Accepted. 

7162  (1921).  Kbnig.  Method  and  apparatus  f«r 
measuring  the  density  of  gases.    (159,845.)   Julv  26. 

10,303  (1921).  Igranic  Electric  Co.  (Cutler- 
Hammer  Manuf.  Co.).  Combustion  of  proportioned 
quantities  of  fluid  for  measuring  the  calorific  value. 
(182,573.)    July  19. 


Vol.  XLI..  No.  16.] 


ABSTRACTS 


[Aug  31,  1922. 


I.-GENERAL;  PLANT;  MACHINERY. 

Fractionating  columns;  Efficiency  and  capacity  of 

.     W.  A.  Peters,  jun.     J.  Ind.  Eng.  Chem., 

1922,  14,  47(3—479. 

Using  the  definition  given  by  Lewis  of  a  theoreti- 
cally perfect  plate,  the  following  formula  showing 
the  relation   existing  between  the  composition   of 
the  vapour  rising  from  one  plate,  the  liquid  flow- 
ing   back    from    the    plate    above,    and    the    heat 
balance   in   the   theoretical  column   is   given,   viz., 
Xn+1=Yn— Yt(l-fi)  I  p,  where  Xn+i  is  the  equivalent 
latent  heat  fraction  of  low  boiling  point  material  in 
the  liquid  on  the  (n  +  l)th  plate;  Yu  is  the  equiva- 
lent latent  heat  fraction  of  the  low  boiling  point 
material  vaporising  from  the  ?ith  plate ;  Ye   is  the 
equivalent  latent  heat  fraction  of  low  boiling  point 
material  in  the  distillate ;  and  />  is  the  ratio  of  heat 
required    to    volatilise    the    reflux    liquid    divided 
by    the   total    latent    heat    in    vapour    passing    up 
through  any  horizontal  cross  section  of  the  column. 
Knowing  p,  Y„,  and  Yc,  Xu+i  can  be  found,  and  thus 
the  composition  of  the  liquid  and  vapour  at  every 
point  in  the  theoretical  column  can  be  fixed.     In 
practice  p,  Yn,  and  Yc,   are  measured  experimentally 
from   columns   working   on   known    mixtures,    and 
then  the  number  of  plates  in  a  theoretical  column 
which   will  give   similar   values   is  calculated.     By 
dividing  the   calculated   number   of   plates   by   the 
actual    number   of    plates    employed    the   efficiency 
factor,  K,  is  found.     With  filled  columns  a  measure 
of  the  elficiency  can  be  obtained  by   dividing  the 
calculated    number    of    plates    in    the    theoretical 
column  by  the  height  of  the  filled  column  in  any 
chosen  units.     The  reciprocal  of  this  efficiency  the 
author   terms  the   height   of   the   equivalent  theo- 
retical plates.     Testing  a  sieve-type  column,  using 
a  mixture   of   acetic   acid   and   water,   the   author 
obtained   values   of   K   from   0'538  to  0"500,   when 
I  p  varied   from   0'82   to   0'87,    and    found   that   for 
acetic    acid    and    water   mixtures   in    this   type   of 
column,  with   1   in.   of  liquid  on  the  plates,   K  is 
independent    of    p    within    the   limits    0"8   to    l'O. 
Another   series    cf    tests    was    made    on    a    Badger 
bubbler  cap  plate  column,  using  alcohol  and  water 
mixtures,    and   it   was   found   that   with    mixtures 
containing    less    than    90%     by    weight   of    alcohol 
K=0'70,  but  with  mixtures  richer  in  alcohol  K  had 
a  smaller  value.    To  determine  whether  the  different 
values    of    K    obtained    from    these    two    sets    of 
experiments  were  due   to  the  type  of  column,   or 
to  the  difference  in  behaviour  of  the  two  mixtures, 
tests   were   made   on   a    bubbler  cap    plate   column 
ising   both    mixtures    under    exactly    similar   con- 
litions.      The    results    indicated   that   there   is   no 
lifference  in  the  efficiency  between  plate  columns  of 
;he  sieve  type  and  those  of  the  bubbler  type,  provided 
hat  the  immersion  and  diameter  of  perforations  are 
•omparable,  but  that  there  is  a  marked  difference  in 
■fficiency  of  the  same  column  for  different  mixtures, 
t  is  predicted  that  K  will  be  less  for  materials  of 
ugh  molecular  weight,   and  that  for  materials  of 
qual  molecular  weight  those  mixtures  in  which  there 
s  less  attraction  between  the  unlike  than  between 
he  like  molecules  will  show  a  higher  value  of  K. 
Vitb  packed  columns  it  was  found  that  the  recipro- 
al  of  the  efficiency  varies  nearly  directly  with  the 
lean  diameter  of  the  filling  pieces,  and  hence,  to 
'ffect    a    given    separation,     columns    may    be    of 
'ery    short    length    when    filled    with    very    small 
ieces.     The  relative  costs  of  the   plate  and  filled 
ilumns   are   discussed,   and   it   is   concluded   that 
ith   fillings   0'25    in.    in    diam.,    casting    $30   per 
ibic  foot,  the  filled  column  would  be  the  cheaper. 

— S.  G.  U. 


Wood  as  a  chemical  engineering  material.  C.  S. 
Robinson.  J.  Ind.  Eng.  Chem.,  1922,  14,  607—010. 

Tub  advantages  and  disadvantages  of  chemical 
plant  made  of  wood  are  discussed  and  the  action 
of  common  chemicals  on  eleven  usual  kinds  of 
wood  given.  The  extent  of  the  contamination  of 
liquids  with  colouring  matter  from  the  wood  is  also 
given.  The  order  of  the  popularity  of  woods  for 
chemical  work  is  as  follows: — Cypress,  yellow  or 
hard  pine,  Californian  redwood,  white  pine,  Douglas 
fir,  hard  maple,  yellow  poplar,  white  oak,  tamarack, 
spruce,  Norway  pine.  The  methods  of  construction 
of  wooden  tanks  and  pipes  are  illustrated. 

— H.  C.  It. 

Patents. 

Filter  presses.  H.  O.  Traun's  Forschungslabora- 
torium,  Ges.  m.  b.  H.  E.P.  (a)  155,834  and  (b) 
181,023,  24.12.20.    Conv.,  5.7.18. 

(a)  A  fit/ter  press  for  working  at  pressures  of  100 
atm.  or  more  consists  of  a  cylinder  fitted  internally 
with  three  equidistant  ribs  to  keep  the  filtering 
medium  in  position.  The  recesses  thus  formed  act 
as  passages  for  the  filtrate,  which  is  discharged 
through  a  valve  mounted  on  the  side  of  the  cylinder 
at  the  lowest  point.  The  filtering  medium  may  be 
made  of  annuli  of  wire  gauze,  perforated  cores 
wound  round  with  wire  of  suitable  thickness,  or 
thin  perforated  concentric  cylinders.  The  wire 
gauze  annuli  can  be  pressed  together  by  screwing 
up  the  nut  which  forms  the  upper  end  of  the  con- 
taining cylinder.  Inside  the  filtering  medium 
revolves  a  worm,  the  lower  end  of  which  rotates 
in  a  boss  formed  in  the  base  of  the  cylindrical 
casing.  The  upper  end  of  the  worm  passes  into 
another  cylinder  which  is  screwed  into  the  nut 
forming  the  cover  of  the  casing.  On  the  top  of 
this  cylinder  is  a  stuffing-box  and  gland  through 
which  passes  the  spindle  for  driving  the  worm.  The 
material  to  be  filtered  is  forced  into  the  press 
through  a  valve  mounted  on  the  side  of  this  worm 
cylinder.  The  liquid  flows  radially  outwards  through 
the  filtering  medium,  and  the  worm  forces  the  solid 
matter  deposited  on  the  inner  surface  of  the  filter- 
ing medium  down  to  the  base  of  the  press  and  out 
through  a  valve  mounted  on  the  bottom  of  the  con- 
taining cylinder  directly  in  line  with  the  worm. 
In  another  type  of  press  the  worm  and  filtering 
medium  are  housed  in  a  telescopic  casing.  The 
worm  at  its  lower  end  works  inside  a  conical  dis- 
charge pipe  fitted  in  a  flange  through  which  pressure 
can  be  applied  to  the  filtering  medium.  Special 
provision  is  made  for  taking  up  the  end  thrust  in 
the  worm  shaft  and  to  prevent  leakage  at  the 
stuffing-box  on  the  worm  shaft.  The  outlet  of  this 
press  is  fitted  with  a  plug  valve  held  in  position 
by  a  lever  with  weight  or  spring  control  to  regulate 
the  pressure  of  discharge.  Sometimes  a  thin  per- 
forated metal  cylinder  is  fitted  in  the  press  to 
prevent  the  nets  or  coils  becoming  too  closely  com- 
pressed and  fouling  the  worm,  (b)  In  a  press  of 
the  type  described  above,  to  be  used  to  filter  col- 
loidal precipitates,  the  coarser  meshes  of  the  filter- 
ing medium  are  filled  with  a  permeable  medium  such 
a3  gypsum  or  cement  paste.  This  is  done  by  filter- 
ing a  suspension  of  the  substance,  and,  after  the 
filter  bed  has  been  properly  permeated,  allowing 
the  cement  or  the  like  to  set  before  the  filtration 
of  the  colloid  is  undertaken. — S.  G.  U. 

Filters;  Eotary .    H.  A.  Vallez.    E.P.  181,879, 

6.4.21. 
In  a  non-continuous  rotary  vacuum  filter,   with   a 
discharge  channel  for  the  filter-cake  in  the  bottom 
of  the  casing,  the  outlet  for  the  cake  is  midway  of 
the  length  of  the  filter,  and  a  worm  conveyor  leads 

A 


620  a 


Cl.  I.— GENERAL  ;      PLANT;    MACHINERY. 


(Aug.  31,  1922. 


thereto  from  each  end.  The  filtrate  is  removed  by 
means  of  a  hollow  shaft,  which  may  also  bo  used 
to  admit  pressure  water  or  air  for  discharging,  and 
which  may  work  in  conjunction  with  external 
sluicing  jets.  Means  are  provided  whereby  the 
thickness  of  the  cake  is  shown  on  an  indicator  out- 
side the  casing.— B.  M.  V. 


E 


vaporating  apparatus,     E.  Barbet  et  Fils  et  Cie. 

E.P.  158,509,  27.1.21.  Conv.,  27.1.20. 
The  liquid  is  discharged  from  a  tubular  heater  into 
a  separator  at  a  level  not  higher  than  the  level  of 
liquid  maintained  in  the  separator,  and  a  pump 
receiving  liquid  from  the  separator  delivers  it  to 
the  heater.  A  diaphragm  with  a  restricted  orifice 
is  arranged  in  the  path  of  the  liquid  passing  from 
the  heater  to  the  separator  to  secure  a  higher 
pressure  in  the  heater  than  in  the  separator,  thus 
ensuring  superheating  in  the  heater  and  vaporisa- 
tion in  the  separator.  A  regulator  is  provided  for 
maintaining  a  constant  level  of  liquid  in  the  heater 
and  a  valve  for  controlling  the  flow  of  liquid  from 
the  separator  to  the  heater.  The  tubes  may  be 
closely  arranged  in  the  heater,  a  fan  being  used 
to  increase  the  speed  of  circulation  of  the  heating 
steam.  Liquids  readily  deteriorated  by  heat,  e.g., 
milk,  grape  juice,  gelatin,  etc.,  are  heated  by  cir- 
culation of  hot  water,  which  is  heated  by  steam. 
For  saline  solutions  the  lower  part  of  the  separator 
in  which  the  salts  precipitate  is  conical.. — H.  H. 

(a)  Evaporation;  Method  of  .     (b)  Centrifugal 

separator  and  evaporator,     (c)  Process  of  treat- 
ing   liquid   substances   to    change    the    condition 
thereof  by-  cvaj>oration.     (d)  and  (r)  Art  of  treat- 
ing liquid  substances,     (e)  Evaporating  appara- 
tus,    (a)  Apparatus  for  treating  substances,     (h) 
Multiple-effect    apparatus.       (i)  Device    for    the 
evaporation  of  liquids  and  in  the  drying  of  sub- 
stances,    (k)  Centrifugal  dryer.     C.   R.   Mabee. 
U.S. P.  1,420,641-50,  27.6.22.     Appl.,  (a)  18.2.19, 
(b)  31.8.12,  (c)  23.12.12,  (d)  24.10.13,  (b)  9.12.13, 
(f>  19.7.15,  (g)  12.2.16,  (h)  23.10.15,  (j)  15.12.13, 
(k)  15.12.13.     Renewed  (d)  12.7.16,   (j)   18.3.20, 
and  (k)  1.3.19. 
The  liquid  to  be  evaporated,   condensed,  or  dried 
to  a  powder,  is  spread  circumferentially  in  a  thin 
layer   on   the   inside   of   a    heated   cylindrical  con- 
tainer and  at  the  same  time  moved  from  end  to  end 
either   by   slow   speed   spreaders  or  by  centrifugal 
force.     Either  a  portion  or  the  whole  of  the  con- 
tainer surface  may  be  heated;   in  the  former  case 
the  material  is  fed  to  the  unheated  portion,  allowed 
to   form   the  thin   layer,    and  then   passed   to   the 
heated    portion.       A    large    free  space    is   left    for 
vapours  along  the  axis  of  the  machine,  and  these 
are  removed  by  a  vacuum,  or  a  fan,  or  merely  by 
their   own   slight   pressure.     In   the   multiple-effect 
apparatus  claimed  in  (h),  the  container  has  several 
compartments,  the  vapour  from  one  section  heating 
the  next.       The  apparatus  described  in  (j)   has  a 
vertical  axis,   the   material  being  retained  on   the 
cylindrical  walls   by    ridges   or   fins ;    in  the   other 
cases  the  axis  of  the  apparatus  is  horizontal. 

— B.  M.  V. 

Crystallisation*   Process    of   and    apparatus 

therefor.  Soc.  Gen.  d'Evaporation  Proc.  Prache 
et  Bouillon.  E.P.  159,815,  21.2.21.  Conv., 
5.3.20. 
The  solution  is  circulated  between  a  reservoir  and 
the  tubes  of  an  evaporator  at  such  a  speed  that  the 
crystals  in  suspension  scratch  the  surfaces  of  the 
tubes  and  thus  prevent  the  adhesion  thereto  of 
crystals  in  formation  and  remove  any  deposit 
formed.  Crystals  not  circulated  accumulate  in  the 
conical  bottom  of  the  reservoir. — H.  H. 


Filling  columns,  touers,  etc.,  or  the  like  through 
which  gas  is  passed  in  an  opposite  direction  to 

liquid;  Bodies  for  .       G.  Petzel.       E.P.   (a) 

160,180  and  (b)  175,273,  16.3.21.  Conv.,  17.3.20. 
(a)  The  packing  is  made  by  bending  rectangular 
strips  of  sheet  metal  to  form  pieces  having  the  shapes 
shown  in  cross-section  in  Fig.  1.     The  object  of  the 


Fig.  1 


Fig.  2. 


invention  is  to  provide  a  cheaply  constructed  filling 
having  great  contact  area  and  which  does  not 
greatly  reduce  the  passage-way.  Perforated  or  non- 
perforated  plates  may  be  used  in  the  construction 
of  either  type  of  packing,  (b)  The  packing  is  made 
of  any  suitable  material  such  as  iron,  porcelain, 
glass,  terra-cotta,  or  unglazed  brick,  and  is  of  the 
shapes  shown  in  cross-section  in  Fig.  2.  It  is 
claimed  that  these  packings  provide  a  largo  number 
of  battling  and  contact  surfaces  which  promote 
intimate  contact  between  the  gas  and  liquid. 

— S.  G.  U. 

Waste  heat;  Utilisation  of  .       Metallbank  u. 

Metallurgische    Ges.    A.-G.,    and    W.    Gensecke. 

E.P.  181,787,  12.3.21. 
The  heat  of  waste  steam,  vapours,  etc.  from 
technical  processes,  such  as  drying  processes  or  the 
chilling  or  granulating  of  hot  slag  in  water,  is  used 
for  generating  steam.  The  heat  is  transferred  by 
direct  contact  to  a  liquid  medium,  such  as  water, 
which  is  then  separated  from  the  waste  steam,  etc. 
and  allowed  partially  to  evaporate  to  generate 
steam  for  power  or  heating.  The  partial  evapora- 
tion may  be  effected  by  injecting  the  liquid  in  a 
finely  divided  state  into  a  vessel  provided  with  an 
outlet  for  the  steam  generated.  In  the  application 
to  the  chilling  of  slag,  the  water  retained  by  the 
granulated  slag  may  be  continuously  replac 
condensed  water  from  a  turbine  or  like  plant. 
Drying  apparatus  may  be  heated  by  the  waste 
steam  from  the  high-pressure  stage  of  a  reaction 
engine  of  which  the  low-pressure  stage  is  operated 
by  the  steam  generated  in  the  evaporator  by  the 
heat  of  the  waste  steam  or  vapour  produced  in  the 
drying  process. — H.  H. 

Mixing,  reducing,  or  grinding  and  like  machints. 

J.  Mclntyre.  E.P.  181,877,  6.4.21. 
A  number  of  flexible  blades  are  mounted  on  the 
rotating  part  of  the  machine  so  that  their  flat  sur- 
faces exert  a  rubbing  action  against  the  fixed  outer 
part  of  the  machine.  Alternatively  the  blades  may 
be  fixed  and  the  casiug  of  the  machine  rotated. 

— B.  M.  V. 

Mixing   machines.     F.    E.   and  G.   H.   Adams  and 

T.  D.  M.  Linkie.  E.P.  181,920,  7.5.21. 
Fixed  blades  co-operute  with  rotating  blades  within 
a  container  adapted  to  be  tilted.  The  upper  por- 
tion of  the  container  is  divided  longitudinally  into 
two  parts,  each  hinged  to  tho  lower  portion,  and 
means  are  provided  for  retaining  the  two  parts  .n 
the  closed  position. — H.  H. 

Disintegrators.  J.  K.  Blum.  E.P.  181,974,  20.6.21. 
The  aim  of  the  invention  is  to  provide  a  simple 
means  of  disintegrating  the  material,  and  separat- 
ing particles  of  the  desired  fineness  from  the 
coarser  particles.  Disintegration  is  effected  by 
means    of   a    hammer    cylinder    rotating    inside    a 


Vol.  XLI.,  No.  16] 


Cl.    I.— GENERAL;    PLANT;    MACHESTERY. 


C21  A 


;asing.  The  inlet  and  discbarge  openings  of  the 
machine  are  both  situated  in  the  top  portion  of  the 
casing  and  on  the  same  side  of  the  vertical  centre 
line  of  the  machine.  These  openings  are  separated 
inside  the  casing  by  a  breaker  plate,  which  projects 
to  a  point  in  substantial  proximity  to  the  path  of 
the  rotor,  thus  preventing  the  short-circuiting  of 
the  air  current  between  the  intake  and  the  dis- 
charge pipe.  The  under  surface  of  this  plate  acts 
as  the  roof  of  the  separating  chamber,  and  is 
designed  to  give  a  swirling  motion  to  the  un- 
discharged from  the  rotor  before  the  air  enters  the 
discharge  pipe.  The  rotor,  by  centrifugal  action, 
throws  the  crushed  material  across  the  separating 
chamber  in  such  a  manner  that  it  impinges  on  the 
breaker  plate.  The  air  currents  are  thus  able  to 
take  up  the  fines  in  suspension  and  carry  them 
away  to  the  discharge  pipe,  whilst  the  coarse 
material  drops  back  into  the  rotor  chamber.  The 
upper  surface  of  the  breaker  plate  is  arranged  so 
as  to  deliver  the  material  fed  to  the  machine  tan- 
gentially  to  the  rotor  which  also  functions  as  a 
centrifugal  blower.  An  auxiliary  fan  or  blower 
may  be  used  to  provide  a  supplementary  means  of 
regulating  the  strength  of  the  air  current. 

— S.  G.  U. 

Gfusher  and  pulveriser.  M.  F.  Williams,  Assr. 
to  Williams'  Patent  Crusher  and  Pulveriser  Co. 
U.S. P.    1,420,354,   20.6.22.     Appl.,   28.10.21. 

The  casing  of  the  machine  contains  a  series  of 
segmental  plates,  each  having  a  number  of  ridges, 
gradually  diminishing  in  depth  and  parallel  to  the 
axis  of  the  rotor.  The  bottoms  of  these  ridges  are 
rounded  so  as  to  form  a  continuous  surface  between 
the  short  face  of  one  ridge  and  the  long  face  of  the 
ridge  immediately  above.  The  shorter  face  of  each 
ridge  is  normal  to  the  cylindrical  surface  swept  out 
by  the  rotor  arms  at  the  point  where  its  projection 
I  would  intersect  this  surface.  Provision  is  made  for 
,  adjusting  the  distance  between  the  rotor  and  the 
two  upper  segments,  and  the  axis  of  the  rotor  is 
placed  relatively  to  that  of  the  casing,  so  as  to 
provide  a  gradually  diminishing  space  between  the 
rotor  and  the  plates.  The  machine  is  fed  from  the 
top,  the  feed  hopper  being  placed  on  the  side  of 
the  vertical  centre  line  near  the  greatest  opening 
i between  rotor  and  pates. — S.  G.  U. 

Drying  machine  for  coal  or  other  granular  material  ; 

•    Centrifugal .    R.  F.  F.  Fabry.    E.P.  182,006, 

'    23.7.21. 

Ihe  machine  consists  of  a  conical  shell,  at  or  near 
:he  smaller  end  of  which  the  material  to  be  dried 
s  continuously  delivered  by  an  inclined  shoot, 
fastened  to  the  larger  end  of  the  shell,  but 
eparated  from  it  by  a  continuous  annular  slit,  is 
short  cylindrical  extension.  Sludge  or  water 
.'hich  has  been  removed  escapes  through  this  slit. 
•  hile  the  dried  material  travels  outward  to  the 
irger  end  and  into  a  receiver.  A  jet  of  compressed 
ir  may  be  employed  to  prevent  clogging  of  the 
lit  by  the  granular  material. — A.  R.  M. 

hying  kiln.  R.  Thelen.  U.S. P.  1,420,296,  20.6.22. 
Appl.,  2.3.21. 

.  deytng  chamber  is  fitted  with  doors  at  either  end 
ad  with  a  set  of  rails  raised  above  the  floor.  The 
.aterial  to  be  dried  is  stacked  on  trucks  which 
m  on  the  rails.  The  drying  medium  is  admitted 
the  base  of  the  chamber  near  the  exit  end  for 
le  material,  and  is  so  baffled  that  it  passes  up- 
ards  through  the  material  on  the  truck  nearest 
te  exit  door,  downwards  through  the  material  on 
e  next  truck,  and  so  on  until  on  rising  through 
e  material  on  the  truck  nearest  the  inlet  door  it 
discharged  by  a  fan  placed  on  the  roof  of  the 
amber  at  the  charging  end.  After  every  down- 
ird  pass  through  the  material  the  drying  medium 


is  reconditioned  by  suitable  appliances  mounted  on 
the  floor  of  the  chamber. — S.  G.  U. 

Dehydrating ;    Process    and    apparatus    for    . 

0.  Q.  Beckworth  and  O.  J.  Hobson,  Assrs.  to 
Anhydrous  Food  Products  Co.  U.S.P.  1,420,679, 
27.6^22.     Appl.,  27.1.19. 

The  plant  consists  of  two  chambers  placed  back  to 
back  and  suitably  fitted  internally  to  hold  the 
articles  to  be  dried.  Along  the  back  wall  of  each 
chamber  is  a  radiator  to  supply  radiant  heat  to 
the  articles  in  the  chamber.  The  front  walls  of 
each  chamber  are  hollow  and  contain  radiators  to 
condition  the  medium,  which  is  circulated  through 
the  chamber.  In  starting  the  process  a  vapour  of 
high  density  and  temperature  enters  the  apparatus 
at  the  bottom,  and  passing  upwards  and  across  the 
goods  to  be  dried,  leaves  the  chamber  through  a 
valve  placed  in  the  roof.  This  medium  is  used  to 
warm  and  moisten  the  goods,  and  suitable  valves 
and  piping  are  provided  whereby  this  medium  can 
be  reheated  and  returned  to  the  chamber.  When 
the  warming  and  moistening  of  the  goods  is  com- 
pleted this  medium  can  be  drawn  off  and  replaced 
by  a  less  dense  medium,  also  at  a  high  temperature, 
which  can  also  be  circulated  through  the  recon- 
ditioner  and  chamber.  Means  are  provided  for 
circulating  vapour  and  air  through  the  chamber 
and  for  cooling  the  goods  after  dehydration  has  been 
completed. — S.  G.  U. 

Drying  machine.  G.  Stone,  Assr.  to  M.  T.  Stevens 
and  Sons  Co.  U.S.P.  1,421,856,  4.7.22.  Appl., 
15.12.21. 

Superposed  horizontal  rows  of  conveying  rollers 
conduct  the  material  in  a  sinuous  course  through 
the  machine,  the  rollers  of  each  row  being  separated 
by  air  spaces.  Heated  air  is  delivered  beneath  each 
row  through  independent  conduits,  and  is  exhausted 
and  discharged  upwards  through  the  spaces  between 
the  rollers,  thus  serving  both  to  dry  and  to  lift  the 
material  in  transit  on  the  rolls. — H.  H. 

Air,  gas,  or  vapour;  Apparatus  for  purifying  . 

P.  Graefe.     E.P.  182,201,  29.3.21. 

The  gas  or  air  under  treatment  is  passed  between 
a  series  of  parallel  units  which  are  built  up  as 
follows: — Each  unit  consists  of  two  parallel  plates, 
namely,  the  back  plate  and  the  scale  plate,  which 
are  joined  together  round  the  edges  to  form  a 
narrow  chamber.  This  chamber  is  sub-divided  into 
a  number  of  parallel  chambers  by  distance  strips  or 
similar  contrivances,  which  slope  at  such  an  angle 
that  any  liquid  or  dust  immediately  slides  down 
and  is  deposited  at  the  bottom  of  the  unit.  The 
scale  plate  of  each  unit  has  a  series  of  openings 
round  which  are  scales  or  wedge-shaped  projections 
which  are  placed  in  rows  and  so  arranged  that  the 
gas  flowing  from  one  row  will  impinge  on  the  pro- 
jections of  the  next  row  at  right  angles  to  the 
projecting  surfaces.  Any  foreign  matter  travelling 
with  the  gas  is  thus  deposited  on  the  projections, 
and  falls  therefrom  into  the  space  between  the  plateB 
and  so  to  the  bottom  of  the  unit.  In  forming  a 
plant  the  units  may  be  placed  with  the  back  plate 
of  No.  2  unit  touching  the  scale  tips  of  No.  1  unit ; 
or  with  the  tips  of  the  scales  of  No.  2  unit 
touching  the  scale  plate  of  No.  1  unit  and  the 
tips  of  the  scales  of  No.  1  unit  touching  the 
scale  plate  of  No.  2  and  the  back  plate  of  No.  2 
touching  the  back  plate  of  No.  3  unit ;  or  with  the 
tips  of  the  scales  of  No.  1  touching  the  tips  of  the 
.scales  of  No.  2  and  the  back  plate  of  No.  2  touch- 
ing the  back  plate  of  No.  3  unit.  The  gas  after 
passing  through  the  spaces  between  the  unit6  is 
discharged  into  a  separate  chamber  from  that  con- 
nected with  the  spaces  between  the  plates  forming 
the  units.  Plants  can  be  designed  for  working  with 
either  a  horizontal  or  vertical  gas  flow. — S.  G.  U. 

a2 


022  a 


Cl.   IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Aug.  31,  1922. 


Removing  suspended  matter  from  gases;  Apparatus 

for .  J.  P.  Fisher,  Assr.  to  Dohertv  Research 

Co.  U.S.P.  1,420,986,  27.6.22.  Appl.,'29.8.19. 
The  gases  pass  from  end  to  end  of  a  separating 
chamber  fitted  near  the  inlet  with  a  fan  adapted  to 
throw  materia]  centrifugally  to  the  walls  of  the 
chamber,  and  near  the  outlet  with  a  second  fan 
adapted  to  create  a  smaller  centrifugal  effect  than 
the  inlet  fan.  The  outlet  fan  is  arranged  to  cause 
gases  to  pass  directly  through  it  to  the  outlet.  The 
length  of  the  chamber  is  made  substantially  greater 
than  the  combined  width  of  the  fans  in  order  to 
enable  the  suspended  matter  to  settle  out  of  the 
gases  whilst  they  are  passing  from  one  fan  to  the 
other.— H.  H. 

Removing    a    liquid    from    the    surface    of    molten 

metal;  Method  of .     Thermal  Industrial  and 

Chemical  (T.I.C.)  Research  Co.,  Ltd.,  and  J.  S 
Morgan.  E.P.  182,302,  7.6.21. 
In  the  distillation  of  liquids  or  similar  processes  of 
heat  treatment  by  means  of  a  bath  of  molten  metal, 
the  residual  liquid  is  removed  from  the  surface  of 
the  molten  metal,  e.g.,  lead,  by  means  of  a  disc  or 
drum  dipping  into  the  metal  and  a  scraper  which 
removes  the  liquid  from  the  drum.  The  drum  or 
disc  has  a  surface  of  non-metallic  material,  prefer- 
ably silica. — B.  M.  V. 

Catalyser  and  method  of  producing  the  same.  W.  D. 

Richardson,     Assr.     to    Swift    and    Co.     U  S  P 

1,419,986,  20.6.22.     Appl.,  9.3.20. 
A    catalyst    is    produced    by    abrading   a    suitable 
metal  in  the  presence  of  water. — B.  M.  V. 

Volatilising,     distilling,     or     separating     absorbed 

vapours;  Method  of .  C.  L.  Voress  and  V.  C. 

Canter,  Assrs.  to  Gasoline  Recovery  Corp.  U.S.P. 
1,420,613,  20.6.22.  Appl.,  9.12.21. 
Vapour  mixtures  are  recovered  or  removed  from 
gas  mixtures  by  absorption  in  a  solid  absorbent, 
from  which  they  are  subsequently  distilled  bv  heated 
distillation  vapours.  The  distillation  vapours  are 
passed  into  intimate  contact  with  the  charged 
absorbent  for  a  time  sufficient  only  to  volatilise  the 
major  portion  of  the  absorbed  vapours,  and  sub- 
stantially denuded  gas  is  then  passed  through  the 
absorbent  for  the  displacement  of  condensed  pro- 
ducts from  the  distillation  vapours. — H.  H. 

Roasting,     calcining,     etc.     materials     containing 

oxygen  or  carbon  dioxide;  Process  of  A 

Helfenstein.  G.P.  352,241,  24.4.21. 
The  material,  previously  dried  as  far  as  possible, 
and  reduced  to  a  finely  granular  or  powdered  con- 
dition, is  fed  downwards  in  a  thin  layer  along  the 
heated  walls  of  a  shaft  furnace,  the  material  col- 
lecting at  the  bottom  of  the  shaft  being  then  raised 
to  a  higher  temperature,  and,  if  desired,  sintered, 
by  heat  radiated  from  the  walls  of  the  shaft.  The 
material  collecting  at  the  bottom  of  the  shaft  may 
also  be  submitted  to  the  action  of  a  gaseous  cooling 
medium,  which  is  subsequently  employed  to  pre- 
heat or  dry  the  material  to  be  roasted."  The  shaft 
tapers  from  the  top  downwards  for  about  two-thirds 
of  its  length  and  then  becomes  wider  again.  It 
is  closed  at  the  lower  end  by  hollow  crushing  rollers 
in  which  a  gaseous  cooling  medium  circulates 

—J.  S.  G.  T. 
Air  or  other  gaseous  mixtures;  Process  of  recover- 
ing  constituents  of  .     R.  Wucherer  and  F 

Pollitzer,  Assrs.  to  The  Linde  Air  Products  Co 
U.S.P.  1,420,802,  27.6.22.     Appl.,  24  8  17 
See  G.P.  319,992  of  1916;  J.,  1920,  545  a. 

Treating  substances  in  a  finely-divided  condition- 

n??a™tus  ,or •    P-  Poore-    U.S.P.  1,420,944, 

2/. 6.22.     Appl.,   13.4.20. 

See  E.P.  162,769  of  1920;  J.,  1921,  461  a. 


Filters  and  method  of  producing  same  R 
Zsigmondy  and  W.  Bachmann.  U.S  P  1  421  <U1 
27.6.22.     Appl.,  23.7.19.  '  l'*">OM> 

See  G.P.  329,117  of  1916;  J.,  1921,  203  a. 

Separators  employed  for  the  separation  of  liquids 
of  different  density.  W.  H.  Bateman.  U  S  P 
1,421,658,  4.7.22.     Appl.,  17.1.22. 

See  E.P.  179,209  of  1920;  J.,  1922,  489  a. 

Kneading,  mixing,  stirring,  and  beating  machines- 
Apparatus    for    actuating    .      A.    Zehnder' 

E.P.  175,975,  17.2.22.     Conv.,  25.2.21. 

Separators ;  Magnetic for  removing  solids  from 

liquids.     E.  B.  Chapman.     E.P.  181,898,  22.4.21. 

Refrigerating  and  ice-making  apparatus.  R  J 
Mott.     E.P.  181,992,  7.7.21. 

Ice  manufacturing  apparatus.  R.  E.  Clough  E  P 
182,324,  5.7.21. 

Furnaces  adapted  to  burn  various  kinds  of  fuel 
K.  Petersen.     E.P.  182,034,  2.9.21. 

Heat  exchanging  apparatus  or  recuperators.  Stein 
and  Atkinson,  Ltd.,  Assees.  of  Soc.  Anon,  des 
Appareils  de  Manutention  et  Fours  Stein  E  P 
182,075,  26.8.21.     Conv.,  23.6.21. 

Grinding    mills    [o/    the    pan    type']     and    other 

machines;  Bearings  for  vertical  shafts  of  . 

T.  C.  Fawcett,  Ltd.,  D.  L.  Fawcett,  and  A.  E. 
Bottomly.    E.P.  182,669,  18.6.21. 

Apparatus  for  chemical  reactions.  U.S  P. 
1,420,210-2.     See  VII. 

Distilling  liquids.    E.P.  182,069.    See  XVIII. 


Ha.— FUEL;  GAS;  MINEfiAL  OILS  AND 
WAXES. 

Gases;    Ignition    of   ■ ■   61/    sudden    compression. 

H.  T.  Tizard  and  D.  R.  Pye.     Phil.  Mag.,  1922, 
44,  79—121. 

The  tendency  to  detonation  in  internal  combustion 
engines  is  closely  related  to  the  delay  which  occurs 
in  the  ignition  of  mixtures  of  combustible  gases 
and  air  by  compression.  This  delay  in  ignition  i9 
dependent  on  (1)  the  compression  temperature,  (2) 
the  temperature  coefficient  of  the  reaction,  and 
(3)  the  rate  of  loss  of  heat  to  the  walls.  The 
relationships  among  these  three  factors  have  been 
examined  theoretically  and  experimentally  for  mix- 
tures of  heptane,  ether,  and  carbon  bisulphide  with 
air.  The  apparatus  designed  by  Ricardo  was 
employed  in  the  experimental  work.  The  rise  in 
absolute  temperature  which  is  necessary  to  treble 
the  reaction  velocity  is  4%  in  the  case  of  carbon 
bisulphide  and  7%  in  the  case  of  ether  and  heptane. 
This  is  in  agreement  with  the  relative  tendencies 
of  these  substances  to  detonate  in  an  intern:!, 
combustion  engine.  Carbon  bisulphide  has  much 
less  tendency  to  detonate  than  heptane,  although 
its  ignition  temperature  is  considerably  lower.  The 
rate  of  reaction  on  sudden  compression  appears 
within  wide  limits  to  be  independent  of  tin 
centration  of  the  combustible  gas,  and  depends  only 
on  the  amount  of  oxygen  present.  The  effect  of 
turbulence  is  studied. — W.  E.  G. 

Carburettor  adjustments   bu   gas  analysis.     A.   C. 

Fiddlier  and  G.  W.  Jones.     J.  Ind.  Eng.  Cheni., 

1922,  14,  594—600. 
The  proportion  of  carbon   dioxide  in  the  exhaust 
gases    bears    a    direct    relationship    to    the    com- 
pletenees    of    combustion    and    the    air-fuel   ratio. 


Vol.  XLI.,  No.  16.] 


Cl.    IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


G23A 


The  air-fuel  ratio  for  motor  spirit  as  used 
at  the  present  time,  for  maximum  power  at 
full  load,  extends  from  about  11:1  to  15:1.  The 
relative  mileage  which  may  be  obtained  from  a 
given  quantity  of  fuel  is  measured  by  its  thermal 
efficiency.  Maximum  thermal  efficiency  is  obtained 
at  an  air:fuel  ratio  of  165  to  17'5:1.  Power  must 
be  sacrificed  to  some  degree  to  secure  the  greatest 
mileage.  The  relation  of  the  air-fuel  ratio  to  the 
percentage  of  carbon  dioxide  in  the  exhaust  gases 
is  shown  by  a  curve  obtained  from  laboratory  teste, 
and  another  obtained  from  road  tests  on  101 
different  motor  vehicles  using  different  brands  of 
spirit  agrees  closely  with  it.  To  adjust  a  car- 
burettor by  gjas  analysis,  tests  should  be  made 
on  the  road  under  the  different  conditions  under 
which  the  machine  is  to  be  driven.  The  machine 
is  run  until  thoroughly  warmed  up  and  then 
tested  at  a  given  speed  on  the  level  by  taking 
samples  of  the  exhaust  gases  and  analysing  for 
carbon  dioxide  content.  The  air-fuel  ratio  can  then 
be  read  off  from  the  curve  given.  Should  the  per- 
centage of  carbon  dioxide  be  low  the  carburettor 
is  given  a  slightly  "  leaner  "  adjustment  and  again 
tested,  and  a  record  kept  of  the  carbon  dioxide 
content  and  carburettor  adjustment  for  each  test. 
When  the  highest  carbon  dioxide  percentage  con- 
sistent with  flexible  working  has  been  obtained,  the 
machine  is  tested  at  other  speeds.  Then,  by  plotting 
the  carbon  dioxide  percentages  at  the  different 
speeds,  the  carburettor  setting  giving  the  highest 
average  carbon  dioxide  percentage  at  the  different 
speeds,  and  also  flexible  working,  should  be  chosen 
as  the  best  adjustment.  A  carbon  dioxide  indicator 
for  adjusting  carburettors  on  the  road  is  described 
and  illustrated.  Two  min.  is  required  to  sample 
and  analyse  the  gas.  The  indicator  is  accurate  to 
0'2%  with  carbon  dioxide  contents  of  14%.  Tables 
are  given  showing  the  gain  in  mileage  which  can 
be  obtained  by  proper  carburettor  adjustment. 

— H.  C.  R. 

Flue-gas  analyses;  General  graphical  evaluation  of 
.     Y.  Kauko.  Chem.-Zeit.,  1922,  46,  657—659. 

A  theoretical  and  mathematical  paper  in  which 
the  fuel  economy  is  represented  graphically  from 
considerations  based  on  the  chemical  analysis  of 
the  flue  gases. — A.  R.  P. 

Petroleum :  Surface  tension  of .     C.  K.  Francis 

and  H.  T.  Bennett.  J.  Ind.  Eng.  Chem.,  1922, 
14,  626—628. 
The  surface  tension  of  petroleum  from  various 
parts  of  the  United  States  was  determined,  and 
was  found  to  increase  with  the  specific  gravity.  The 
small  quantity  of  fatty  acids  and  wax  commonly 
found  in  petroleum  products  does  not  appear  to 
influence  the  surface  tension.  The  presence  of  high- 
boiling  fractions  and  products  of  high  viscosity 
tends  to  raise  the  surface  tension  of  the  lighter 
petroleum  products.  The  surface  tension  decreases 
with  rise  in  temperature  by  about  005  dyne  per 
sq.  cm.  per  1°  F.  The  connexion  between  viscosity 
and  surface  tension  appears  to  be  very  slight,  as 
an  increase  in  Saybolt  viscosity  from  51  to  1160  is 
inly  accompanied  bv  an  increase  in  surface  teusion 
from  34"4  to  373.— H.  C.  R. 

Drying  oils  from  petroleum.    Gardner  and  Bielouss. 
See  XIII. 

Carbon  dioxide  indicator.    MacMullin.    See  XXIII. 

Patents. 
irtificial  fuel.     R.  A.  Kratochwill.     E.P.  182,262, 

3.5.21. 
V  briquette  is  made  from  14  oz.  of  coal  dust  and  a 
linder  composed  of  30  grains  of  gum  arabic  and  IS 
trams  of  water,  and  is  varnished  in  order  to  water- 
>roof  it. — A.  G. 


Carbonaceous  product  and  method  of  making  the 
same.  H.  Rodman,  Assr.  to  Rodman  Chemical 
Co.  U.S.P.  1,420,754,  27.6.22  Appl.,  7.9.17. 
"  Rotted  "  coal  is  dissolved  in  an  alkaline  reagent, 
e.g.,  an  aqueous  solution  of  ammonia,  and  the 
resulting  plastic  mass  dried. — A.  R.  M. 

Coking    chambers    for   gas    generators.     Bismarck- 

hiitte.  E.P.  163,012,  6.5.21.  Conv.,  6.5.20. 
A  coking  chamber  for  use  in  conjunction  with  a  gas 
producer  is  provided  with  a  horizontal  plate,  spaced 
below  the  open  end  of  the  chamber  so  as  to  provide 
a  peripheral  discharge  opening  for  the  coked 
materia],  and  forming  a  support  for  the  material 
being  coked.  At  the  top  of  the  chamber  there  is  a 
concentric  rotary  feed  hopper  into  which  coal  is 
continuously  fed  from  bunkers  and  from  which  it 
passes  into  the  chamber  through  openings  at  the 
lower  end.  The  hopper  extends  downwards  into 
the  chamber  so  as  to  form  an  annular  gas-collecting 
space,  into  which  dust  cannot  readily  pass,  at  the 
top  of  the  chamber.  Attached  to  the  bottom  of  the 
hopper  there  is  a  vertical  shaft  carrying  a  stirrer 
and  an  ejector  spaced  just  above  the  horizontal 
plate.— H.  Hg. 

Vertical  [gas]  retorts.  F.  J.  Collin,  A.-G.  zur 
Verwertung  von  Brennstoffen  und  Metallen. 
E.P.  165,744,  30.6.21.    Conv.,  2.7.20. 

A  perforated  pipe  is  laid  in  a  channel  cut  in  the 
base  of  the  wall  of  a  vertical  retort  provided  with 
a  water-seal,  and  is  used  alternatively  for  supply- 
ing water  to  the  seal  and  steam  to  the  retort  for 
the  generation  of  water-gas. — H.  Hg. 

[Gas]  retorts.  Low  Temperature  Carbonisation, 
Ltd.,  and  T.  M.  Davidson.  E.P.  181,894, 
18.4.21. 

Vertical  retorts  suitable  for  low-temperature  car- 
bonisation are  constructed  of  cast  iron  or  other 
metal,  and  the  inner  and  outer  surfaces  are  pro- 
tected by  firebrick  slabs.  The  retorts  are  provided 
with  external  horizontal  and  internal  vertical  ribs 
of  a  dovetail  shape  in  order  to  secure  the  slabs  to 
the  retort  surfaces. — H.  Hg. 

[Coal]  gas;  Method  of  and  apparatus  for  manufac- 
turing     .     A.    F.    Kersting,    Assr.    to   L.    C. 

Hamlink.     U.S.P.      1,420,041,      20.6.22.     Appl., 
2.5.19. 

A  nujider  of  retorts  are  charged  in  sequence  with 
coal  and,  by  means  of  suitable  gas  connexions 
between  the  retorts,  the  gas  from  a  freshly  charged 
retort  is,  during  the  earlier  stage  of  carbonisation, 
passed  through  a  retort  containing  more  com- 
pletely carbonised  coal  to  an  off-take. — H.  Hg. 

Gas  producers  [;  Stirrer  and  fuel-feeding  device  for 

].     Dowson  and  Mason  Gas  Plant  Co.,  Ltd., 

and  E.  Wilson.     E.P.  182,053,  19.11.21. 

In  a  producer  of  the  type  provided  with  mechanical 
stirrers  and  automatic  fuel  feed,  horizontal  arms  are 
supported  in  such  a  manner  as  to  be  capable  of 
rocking  on  their  axes.  Fingers  or  stirrers  depend 
from  the  arms  and  sink  into  the  fuel  to  an  extent 
regulated  by  the  resistance  offered  by  the  fuel  bed. 
Varying  leverage  may  be  exerted  on  the  arms  by 
means  of  weighted  box-castings  on  the  ends  of  the 
arms,  and  the  depth  of  the  fingers  in  the  fuel  bed 
thus  varied.  Each  arm  with  its  depending  fingers 
may  be  made  to  act  independently  so  far  as  its 
oscillatory  movement  is  concerned.  Means  are  pro- 
vided for  obtaining  relative  rotary  movement  be- 
tween the  fuel  bed  and  the  oscillating  stirrer  arms, 
and  for  providing  water  cooling  for  the  latter  and 
the  depending  fingers.  The  drive  and  means  for 
feeding  and  distributing  the  coal  are  controlled 
from  the  stirrer  arms,  which,  by  acting  as  the  spokes 
of  a  wheel,  may  transmit  the  drive  from  a  circum- 


024. 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING.  [Aug.  si,  1922. 


ferential  rack.  The  coal  or  other  fuel  is  fed  from 
a  revolving  drum  into  a  continuously  revolving 
spreader  and  thence  distributed  evenly  over  the  area 
of  the  producer,  both  the  drum  and  the  spreader 
working  in  unison  from  the  same  drive. — A.  R.  M. 

Petroleum  oils;  Still  for  fractionally  distilling . 

E.  C.  R.  Marks.     From  Shell  Co.     E.P.  182,247, 

20.4.21. 
The  still  is  particularly  designed  for  the  re-frac- 
tionation  of  gasoline-kerosene  fractions.  The  frac- 
tion is  heated  by  means  of  the  hot  residues  from 
which  it  was  originally  distilled.  A  long  horizontal 
still  is  divided  by  vertical  partitions  and  heated  by 
tubes  through  which  the  residuum  flows.  The 
gasoline-kerosene  fractions  flow  along  this  still  and 
steam  is  admitted  into  each  portion.  Each  section 
is  provided  with  its  own  vapour  exit. — T.  A.  S. 

Liquid  fuel.  A.  A.  Backhaus,  Assr.  to  U.S.  Indus- 
trial Alcohol  Co.  U.S.P.  1,419,910,  20.6.22. 
Appl.,  12.10.17. 

A  mixture  of  a  petroleum  distillate,  an  alcohol,  and 
an  aromatic  hydrocarbon  is  blended  with  a  phenol. 

— A.  G. 

Fuel  for  internal  combustion  engines.  M.  C. 
Whitaker,  Assr.  to  U.S.  Industrial  Alcohol  Co. 
U.S.P.  (a)  1,420,006  and  (b)  1,420,007,  20.6.22. 
Appl.,  12.11.19. 

The  fuel  is  composed  of  (a)  a  light  hydrocarbon,  an 
alcohol,  a  diethyl  ketone,  and  an  ester,  or  (b)  35 — 
50%  of  an  alcohol,  25 — 35%  of  an  aromatic  hydro- 
carbon, and  20 — 40%  of  an  ester.— A.  G. 

Oils;   Process  for   cracking   .     R.    D.    George. 

U.S.P.  1,420,832,  27.6.22.  Appl.,  14.9.21. 
The  process  consists  in  heating  to  cracking  tem- 
perature heavy  hydrocarbon  oils  in  continuous  flow 
through  an  upright  still.  The  heated  oil  i6  deli- 
vered from  the  top  of  the  still  to  a  separating  cham- 
ber wherein  is  maintained  a  pool  of  hot  oil  above 
the  level  of  the  still.  In  the  separator  the  volatile 
portions  are  removed  and  condensed.  The  residual 
oil  is  freed  from  carbon  in  a  separator  and  returned 
to  the  bottom  of  the  still.  The  amount  of  free 
carbon  in  the  cleaned  oil  is  kept  below  1  % . — T.  A.  S. 

Oil-bearing    shale;    Apparatus   for    treating   . 

G.    A.    Heimbucher.     U.S.P.    1,421,228,    27.6.22. 
Appl.,  3.9.18. 

An  apparatus  for  treating  oil-bearing  shale  consists 
of  a  furnace,  in  which  several  vertical  retorts  are 
arranged  above  a  combustion  chamber ;  a  wall 
having  helical  flues  surrounds  the  lower  end  of  each 
retort,  and  is  spaced  from  the  outer  wall  of  the 
furnace,  and  segmental  walls  meeting  at  their 
ends,  and  spaced  from  the  outer  wall  of  the  furnace, 
partly  surround  the  upper  portion  of  each  of  the 
retorts,  the  6pace  enclosed  by  these  segmental  walls 
forming  a  heating  chamber,  connected  with  the 
combustion  chamber  by  the  helical  flues,  and  also 
with  a  chimney  stack.  Each  retort  may  be  fitted 
with  a  mechanically  operated  rotating  grate  and 
with  a  tapered  perforated  pipe,  which  projects 
upwards  from  the  centre  of  each  grate.  Outside 
each  pipe  is  a  device  for  agitating  the  shale  in  the 
retort  when  the  grate  is  rotated. — A.  B.  S. 

Hydrocarbon  oils;   Treatment  of .     D.T.Day. 

U.S.P.  1,422,038,  4.7.22.  Appl.,  17.6.19. 
Hydrocarbon  oils  of  low  boiling  point  are  pro- 
duced from  those  of  high  boiling  point  by  vaporis- 
ing part  of  the  oil  to  be  treated  and  compressing 
the  vapour  immediately  in  a  cylinder  by  means  of  a 
piston,  which  moves  "  substantially  instanta- 
neously "  to  generate  sufficient  heat  and  pressure 
to  convert  the  vapour  into  the  desired  product. 

—A.  B.  S. 


Coal;  Method  of  cleaning  .     Process  of  purify. 

ing  materials;  [coal].  W.  E.  Trent,  Assr  to 
Trent  Process  Corp.  U.S.P.  1,420,163  and 
1,420,165,  20.6.22.     Appl.,  9.7.19  and  25.2.20. 

See   E.P.   146,931   and  159,497  of  1920:  J.,   1921 
616  a ;  1922,  243  a.  '  ' 

Peat  and  the  like;  Process  for  the  dry  distillation 

and    coking    of   raw  .      A.   J.    H.    Haddan. 

From  Torfverwertungsges.  Pohl  und  von  Dowitz' 
E.P.  159,464,  22.2.21.    Addn.  to  158,513. 

See  G.P.  340,634  of  1920;  J.,  1922,  6  a. 


Coal;  Coking  of  — 
1,422,269,  11.7.22 


Eetort    [coke   oven~\. 
1,422,634,  11.7.22. 


S.  R.  Illingworth.    U  S  P 
Appl.,  1.3.21. 

See  E.P.  164,104  of  1920;  J.,  1921,  501  a. 

L.  L.   Summers.       U.S.P 
Appl.,  12.8.20. 

See  E.P.  179,235  of  1921;  J.,  1922,  493  a. 

Gas     producer.       L.     Fornas.       U.S.P.     1,422,093 
11.7.22.     Appl.,  1.2.19. 

See  E.P.  123,323  of  1919;  J.,  1920,  260  a. 

Coal  gas;  Method  of  stripping  the  illuminants  from 

and   of    purifying    ■    by    means    of    charcoal. 

Apparatus  for   purifying    coal  gas.  "     F.   Soddy 
U.S.P.  1,422,007—8,  4.7.22. 

See  E.P.  125,253  of  1918;  J.,  1919,  352  a. 

Oil    shales;    Method    for    working    .      W.    \V 

Hoover    and    T.    E.    Brown.     U.S.P.    1,422,204 
11.7.22.     Appl.,  19.12.19. 

See  E.P.  156,396  of  1919;  J.,  1921,  537  a. 

Coke;   Plant   for    quenching   and   conveying   . 

H.  A.  Frankel.     E.P.  182,357,  19.8.21. 

Discharging    coke    or   residues   from   retorts,    pro- 
ducers, and  the  like;  Means  for  .      G.   D. 

Hardie,  and  Maclaurin  Carbonisation,  Ltd.    E.P. 
182,576,  8.4.21. 

Burning  of  pulverised  fuel;  Means  or  apparatus  for 

use   in  the  -.       R.   N.   Buell.     E.P.  182,413, 

25.2.21. 

Gas  retort  mouthpieces.     A.  E.  Burton  and  A.  H. 
Jackson.     E.P.  182,216,  30.3.21. 

Gas  producers  and  other  furnaces;  Botary  grates 

for    .     L.     Trefois.     E.P.     182,343,    2.8.21. 

Addn.  to  153,163. 

Drying  coal  etc.    E.P.  182,006.    See  I. 

Sludge  acids.     U.S.P.  1,421,688.     See  VII. 

Cement    manufacture    and    low-temperature    car- 
bonisation.    E.P.  181,811.     See  IX. 

Electrochemical  reactions.    E.P.  181,848-9.  See  XL 


IIb— DESTRUCTIVE  DISTILLATION; 
HEATING;    LIGHTING. 

Patents. 
Carbonaceous   substances;   Apparatus   or   kilns  for 

the  drying  and  distillation  of .  H.  Alexander. 

E.P.   181,794,   15.3.21. 

The  retorts  are  surrounded  by  an  annular  space 
into  which  fuel  is  charged,  this  fuel  being  subjected 
intermittently  to  the  action  of  an  air  bla6t  to  pro- 
vide heat  for  carbonising  the  fuel  in  the  retorts 
During  such  "  blowing  period  "  the  hot  products 
can  be  passed  upwards  into  a  superposed  dryer,  to 
assist  in  drying  the  raw  material,  which  then  falls 
from  the  dryer  into  the  retorts.      The  carbonised 


Vol.  XIX,  No.  16.]  Cl.  III.— TAR  &  TAR  PRODUCTS,     Cu  IV.— COLOURING  MATTERS  &  DYES.   625  A 


residue  is  withdrawn  from  the  retorts  and  is  used 
for  the  manufacture  of  briquette  or  other  fuel.  The 
walla  of  the  retorts  are  perforated  so  that  the  hot 
gases  from  the  surrounding  heating  chamber  can 
be  passed  through  the  charge. — A.  G. 

Retort  furnace.  T.  R.  Blanchard  and  E.  B. 
Kenefic.  U.S. P.  1,420,958,  27.6.22.  Appl.,  17.11.21. 
A  horizontal  retort  is  placed  over  a  heating 
chamber,  and  pairs  of  upwardly  converging  flues 
extend  from  the  chamber  through  the  retort  into 
a  horizontal  flue  above  the  retort.  Dampers  are 
placed  in  the  horizontal  flue  between  the  openings 
of  successive  pairs  of  flues. — H.  Hg. 

Alloy  for  filaments.     U.S. P.  1,422,019.     See  X. 

Errata. — This  Journal,  July  15,  1922,  p.  497, 
col.  1  :  lines  35  to  36  from  the  top,  for  "  2-Hydroxy- 
benzanthrone  or  the  corresponding  3-hydroxy 
derivative,"  read  "  2-Hydroxyanthraquinone  or 
3-hydroxyanthranol  " ;  line  32  from  bottom,  after 
"  hydroxybenzanthronecarboxylic  acid,"  insert 
"  (yield  about  26%  of  the  weight  of  hydroxyantlna- 
quinone)";  the  sentence  "Small  amounts  .  .  . 
simultaneously  produced,"  lines  22—26  from 
bottom,  should  come  after  the  word  "  heating  "  on 
line  31  from  bottom. 


III.-TAB  AND  TAR  PRODUCTS. 

Patents. 

Anthraquinone ;  Purification  of ■.    H.  F.  Lewis, 

Assr.  to  National  Aniline  and  Chemical  Co.,  Inc. 
U.S. P.  1,420,198,  20.6.22.     Appl.,  29.3.20. 

Crude  anthraquinone  is  treated  with  a  halogenated 
hydrocarbon  solvent,  and  the  solution,  which  con- 
tains the  impurities,  is  separated  from  the  purified 
anthraquinone. — L.  A.  C. 

Sludge  acids.     U.S.P.  1,421,688.     See  VII. 

Electrochemical  reactions.  E.P.  181,848 — 9.  See  XI. 

IV.-C0L0URING  .MATTERS  AND  DYES. 

2.3.2'. S'-Naphthindigo.     H.  E.  Fierz  and  R.  Tobler. 
Helv.  Chim.  Acta,  1922,  5,  557—560. 

The  conversion  of  2.3-hydroxynaphthoic  acid  into 
2.3-aminonaphthoic  acid  is  effected  by  heating  with 
ammonium  chloride  and  ammoniacal  zinc  chloride  in 
a  current  of  ammonia  at  180°— 190°  C.  for  36  hours. 
The  yield  is  68 — 70%  when  zinc  chloride  of  good 
quality  is  used,  and  the  unchanged  2.3-hydroxy- 
naphthoic acid  can  be  recovered.  The  presence  of 
zinc  oxychloride  causes  side  reactions  with  the 
formation  of  /3-naphthylamine  and  dinaphthacri- 
done.  Condensation  of  the  2.3-aminonaphthoic  acid 
with  chloroacetic  acid  is  quantitative,  with  the 
formation  of  2.3-naphthylglycinecarboxylic  acid, 
crystallising  from  alcohol  in  yellow  needles,  m.p. 
240°  C.  The  conversion  of  the  glycine  into  2.3.2'.3'- 
naphthindigo  gives  very  poor  yields  by  any  of  the 
usual  methods.  The  pure  dye  crystallises  from  nitro- 
benzene in  nearly  black  tablets.  It  dyes  greenish- 
blue  shades  from  the  hydrosulphite  vat;  the 
brominated  dye  is  green.  The  dye  takes  up  three 
atoms  of  bromine,  but  is  not  thereby  rendered  fast 
to  chlorine.  The  shade  is  purer  than  that  of  Ciba 
Green  G,  however,  and  it  is  equally  fast  to  light. 

— E.  H.  R. 

ven-Naphthindigo ;  Attempts  to  prepare  and 

the  behaviour  of  azo  dyes  from  naphthylglycines. 
H.  E.  Fierz  and  R.  Sallmann.  Helv.  Chim.  Acta, 
1922,  5,  560—566. 

Attempts  to  prepare  peri-naphthindigo  from  1.8- 
,iaphthylglycinecarboxylic  acid  failed,  owing  to  the 


unstable  character  of  the  naphthylglycine.  The 
maximum  yield  of  napllthostyril  obtained  by 
oxidation  of  naphthalimide  with  sodium  hypo- 
chlorite was  50%.  By  condensing  napllthostyril 
with  chloroacetic  acid,  naphthostyrylacetic  acid, 
m.p.  256°  C,  was  obtained,  which,  by  boiling  with 
sodium  ethoxide,  gave  disodium  1.8-naphthylglycine- 
carboxylate,  a  white  powder.  The  following  naph- 
thylglycinesulphonic  acids  were  prepared  by  con- 
densing the  corresponding  naphthylaminesulphonic 
acids  with  chloroacetic  acid: — 1.8-acid,  colourless 
needles  containing  1H20 ;  1.4-acid,  yellow  Crystals 
with  1ILO,  having  a  strong  blue  fluorescence  in 
alkaline  solution;  1.5-acid,  anhydrous  colourless 
leaflets  or  needles,  with  green  fluorescence  in  alka- 
line solution  ;  2.1-acid,  colourless  fan-shaped  needle 
aggregates,  with  2H20.  The  azo  dyes  from  all  these 
naphthylglycinesulphonic  acids  are  decomposed  by 
boiling  water.  Azo  dyes  were  made  by  coupling 
diazobenzene  and  p-nitrodiazobenzene  with  /3-naph- 
thylglycine  ethyl  ester;  the  m.ps.  were  135°  and 
156°  C.  (deconip.)  respectively.  The  latter  dye, 
when  decomposed  with  boiliug  acetic  acid,  gave  as 
identifiable  products  a/3-naphthyl-(p-nitrophenyl)- 
dihydrotriazinecarboxvlic  ester,  naphthimidazole, 
and  p-nitraniline.     (Of.  J.C.S.,  Sept.)— E.  H.  R. 

Patents. 
Acridine  dyestuffs;    Manufacture    of   new  halogen 

derivatives  of  basic  .     Durand  &  Huguenin 

A.-G.     E.P.  165,721,  14.6.21.     Appl.,  30.6.20. 

Halogenated  dyestuffs  containing  several  halogen 
atoms  in  the  molecule  are  obtained  by  direct  treat- 
ment of  basic  acridine  dyestuffs  or  their  leuco- 
derivatives  with  halogen,  or  with  an  agent  capable 
of  liberating  halogen.  These  products  will  dye  red- 
orange  to  pure  red  shades  on  leather  and  on  tannin- 
mordanted  cotton,  and  can  also  be  applied  to  dye- 
ing natural  or  artificial  silk.  They  are  fast  against 
the  action  of  chlorine.  Example:  20  pts.  of  Acri- 
dine Orange  sulphate  and  36  pt6.  of  sodium  bromide 
are  slowly  stirred  into  400  pts.  of  concentrated 
sulphuric  acid  at  0°  C.  After  some  hours  the  tem- 
perature is  slowly  raised  to  50°  C.  until  a  sample 
dissolves  in  water  with  a  vivid  red  colour.  The 
product  is  then  poured  on  to  ice,  salted  out,  filtered, 
washed  with  brine,  and  dried  at  60°  C.  The  sub- 
stance is  a  dibromo-derivative,  and  dyes  pure  red 
shades  on  tannin-mordanted  cotton. — G.  F.  M. 

Soluble  acid  colouring  matters;  Manufacture  of  a 

new  series  of and  of  intermediate  compounds 

for  the  manufacture  thereof.  A.  G.  Green,  K.  H. 
Saunders,  and  British  Dyestuffs  Corp.,  Ltd. 
E.P.  181,750,  18.12.20  and  16.8.21. 
A  new  6eries  of  dyestuffs  of  the  benzene  and  naph- 
thalene series  is  described  which  dye  wool  and 
silk  from  an  acid  bath,  and  which  owe  their  solu- 
bility and  acid  character  to  the  presence  of  an 
alcoholic  sulphuric  acid  group,  -CH2.O.S03H, 
attached  to  nitrogen.  This  -S04H  group  is  termed 
a  sulphato  group,  and  it  may  be  introduced  in  a 
variety  of  ways  either  into  the  structure  of  dye- 
stuffs  or  into  their  intermediates.  For  example, 
an  N-oxyalkyl  derivative  may  be  prepared  from 
either  an  intermediate  or  a  dyestuff  by  the  action 
of  ethylenechlorohydrin,  and  this,  on  treatment 
with  concentrated  sulphuric  acid,  or  fuming  sul- 
phuric acid,  chlorosulphonic  acid,  etc.,  under  such 
conditions  as  would  normally  convert  ethyl  alcohol 
into  the  hydrogen  sulphate,  yields  the  sulphato 
compound.  Another  method  consists  in  reacting 
in  neutral  or  alkaline  solution  with  chloroethyl 
hydrogen  sulphate,  prepared  by  dissolving  ethylene- 
chlorohydrin in  sulphuric  acid,  on  a  dyestuff  or  its 
component  or  intermediate,  containing  a  primary 
or  secondary  amino  group.  In  this  way  the  ethyl 
sulphato  group  is  introduced  at  one  6tep.  The 
method  is  not  limited  to  the  ethyl  group,  as  propyl- 


C23A 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


[Aug.  31,  1922. 


ene,  butylene,  or  glycerol  chlorohydrins  may  be 
used  in  the  same  way  as  ethylenechlorohydrin.  A 
large  number  of  examples  are  given  of  the  prepara- 
tion ofsulphato  acids  of  intermediates  and  of  azo 
dyestuffs,  triarylnietkane  dyestuffs,  and  of  oxazine, 
azine,  and  thiazine  colouring  matters  of  the  ben- 
zene and  naphthalene  series. — G.  F.  M. 

Colouring  matters  [liydroxyethyl,  hydroxypropyl, 
etc.  derivatives  of  oxazine,  azine,  and  thiazine 
dyestuffs];  Manufacture  of  .  British  Dye- 
stuffs  Corp.,  Ltd.,  A.  G.  Green,  K.  H.  Saunders, 
and  E.  B.  Adams.  E.P.  182,031,  30.8.21. 
Dyestutfs  possessing  a  quinoneimide  structure, 
and  containing  one  or  more  hydroxyalkyl  groups 
attached  to  nitrogen,  are  obtained  by  applying  the 
standard  reactions  for  the  preparation  of  oxazines, 
azines,  or  thiazines  to  intermediates  containing 
such  hydroxyalkyl  groups.  Thus  oxazine  dyestuffs 
are  obtained  by  condensing  a  nitroso  derivative  of 
a  hydroxyalkylarylamine  with  a  phenolic  com- 
pound. For  example,  violet  to  blue  dyestuffs  of 
the  gallocyanine  type  are  obtained  by  using  gallic 
acid,  gallamide,  etc.  in  the  above  reaction.  If  a 
nitroso  derivative  of  a  m-hydroxyoxyalkylarylamine 
is  condensed  with  an  alkvlarylamine  or  an  oxy- 
alkylarylamine, oxazine  dyestuffs  are  also  pro- 
duced, whilst  if  the  arylamine  is  naphthylamine  or 
its  derivatives  blue  dyestuffs  of  the  Nile  Blue  type, 
but  of  greatly  increased  solubility  are  obtained. 
Oxyalkylthiazine  dyestuffs  are  produced  by  convert- 
ing a  nitroso  derivative  of  an  oxyalkylarylamine 
into  the  corresponding  p-diaminethiosulphonic  acid 
by  treatment  with  thiosulphate,  or  by  converting  a 
p-nitroso-alkylarylamine  into  the  p-diaminethiosul- 
phonic  acid,  and  oxidising  this  together  with  an 
oxyalkylarylamine.  In  the  preparation  of  azine 
dyestuffs  a  nitroso  derivative  of  an  oxyalkylaryl- 
amine may  be  condensed  with  an  oxyalkyl-  or  other 
N-substitiited  m-diamine,  or  a  nitroso-derivative  of 
an  alkvlarylamine  may  be  condensed  with  an 
oxyalkyl-m-diamine.  In  each  case  the  intermediate 
indamine  is  converted  into  the  azine  in  the  usual 
way.  Azine  dyestuffs  of  this  class  may  also  be 
obtained  by  the  oxidation  of  a  mixture  of  a 
p-diamine  with  two  arylamines,  one  of  which  is 
primary,  whilst  oxyalkyl  groups  may  replace  one  or 
more  hydrogen  atoms  in  the  amino  groups  of  the 
second  arylamine  or  of  the  p-diamine.  Lastly,  the 
oxyalkyl  group  may  be  introduced  into  oxazine  dye- 
6tuffs,  particularly  those  of  the  gallocyanine  type, 
by  subsequent  condensation  with  components  such 
as  oxyalkyldiamines  which  contain  this  group 
attached  to  one  nitrogen,  whilst  the  other  amino 
group  is  unsubstituted. — G.  F.  M. 


V—  FIBBES;  TEXTILES;  CELLULOSE; 
PAPER. 

[TFooJ]  fleece  of  the  Blackface  lamb;  Micrologicol 

study  of  the  .     F.  A.  E.  Crew  and  J.  S.  S. 

Blyth.  J.  Text.  Inst.,  1922,  13,  149—156. 
In  the  examination  of  the  fleeces  of  Blackface 
lambs  which  were  either  still-born  or  had  died 
shortly  after  birth,  three  types  of  fibres  were  found. 
One,  in  its  proximal  portion,  had  the  characters  of 
typical  hair,  at  its  tip  the  characters  of  typical 
wool,  and  the  middle  portion  had  a  structure  inter- 
mediate between  hair  and  wool.  The  second  type 
of  fibre  had  the  structure  of  wool  near  its  tip,  but 
its  proximal  portion  resembled  the  middle  portion 
of  the  first  type.  The  third  type  of  fibre  resembled 
wool  from  root  to  tip.  Those  fibres  which  resembled 
wool  constituted  more  than  half  of  the  fleece  and 
compared  very  favourably  with  wool  of  recognised 
commercial  value. — A.  J.  H. 


Wool;  Sorption   of  neutral   soap   by  and   :({ 

bearing  on  scouring  and  milling  processes. 
British  Research  Assoc,  for  the  Woollen  and 
Worsted  Ind.    J.  Text.  Inst.,  1922,  13,  127—142. 

The  wool  used  in  the  experiments  was  purified  by 
scouring  it  with  potash-olive  oil  soap  and  sodium 
carbonate,  and  afterwards  extracting  it  three  times 
with  absolute  alcohol.  The  soap  was  prepared  from 
sodium  carbonate  and  pure  oleic  acid  and  was  after- 
wards purified  by  extraction  with  hot  alcohol;  it 
filially  contained  a  slight  excess  of  fatty  acid.  The 
wool  was  immersed  in  a  soap  solution  for  a  definite 
time  at  a  definite  temperature  and  the  loss  of  alkali 
and  fatty  acid  by  the  soap  solution  was  then  deter- 
mined. The  alkali  portion  of  soap  is  sorbed  much 
more  than  the  fatty  acid,  so  that  the  soap  solution 
becomes  charged  with  an  excess  of  fatty  acid.  The 
loss  of  fatty  acid  by  the  soap  solution  is  due  to 
sorption  of  actual  soap  and  to  precipitation  on 
the  wool  fibre  of  6ome  of  the  fatty  acid  liberated  as 
the  result  of  the  preferential  sorption  of  caustic 
soda.  In  the  case  of  dilute  solutions,  this  pre- 
cipitation is  the  main  cause  of  the  loss  of  fatty 
acid  by  the  solution.  This  precipitaton  of  fatty 
acid  decreases  with  increase  of  concentration  of 
the  soap  solution  owing  to  the  "  protective  colloid  " 
action  of  the  soap,  so  that  with  strong  solutions  the 
loss  of  fatty  acid  is  chiefly  due  to  sorption  of  actual 
soap.  The  sorption  of  soap  by  wool  proceeds  for 
several  hours  without  sign  of  equilibrium,  and  is 
greatly  accelerated  by  rise  of  temperature.  During 
the  initial  stages  of  the  contact  between  wool  and  a 
soap  solution  the  rate  of  loss  of  alkali  is  very  much 
greater  than  the  rate  of  loss  of  fatty  acid,  but  this 
difference  lessens  with  time,  and  after  prolonged 
contact  the  two  rates  become  roughly  equal.  With 
mixtures  of  soaps  of  oleic  and  palmitic  acids  there 
is  a  preferential  sorption  of  the  oleic  acid  by  wool, 
but  potassium  and  sodium  oleates  do  not  differ 
essentially  with  respect  to  the  absorption  of  either 
alkali  or  fatty  acid.  The  sorption  of  alkali  by 
wool  from  a  chemically  neutral  soap  solution  is 
equal  to  that  from  a  solution  of  caustic  alkali  of 
very  much  smaller  concentration,  and  this  suggests 
a  method  of  measuring  the  "  effective  alkalinity  " 
of  neutral  soaps  and  other  salts  such  as  sodium 
carbonate  and  borax  which  are  alkaline  in  aqueous 
solution.  Comparison  of  the  alkali  absorption  by 
wool  from  caustic  soda  solutions  and  from  soap 
solutions  under  identical  conditions  showed  that 
the  ratio  of  the  concentration  of  caustic  soda  to 
that  of  the  6oap  solution  giving  equal  sorption, 
increases  with  increase  of  dilution.  In  the  treat- 
ment of  wool  with  alkaline  soap  liquors,  the  known 
advantage  of  having  free  alkali  (carbonate)  present 
may  be  due  to  its  physical  action  in  increasing 
emulsification,  and  also  to  its  action  in  opposing 
the  liberation  of  fatty  acid.  In  6oap-milling  pro- 
cesses it  is  probable  that  the  alkali  of  the  soap  is 
the  real  milling  agent  and  that  the  liberated  fatty 
acid  exerts  only  secondary  functions  in  controlling 
the  extent  of  the  sorption  of  caustic  soda  from  the 
soap,  in  preserving  the  handle  of  the  wool,  and  in 
acting  as  a  lubricant. — A.  J.  H. 

Wool;  Standard  method  for  the  estimation  of  soap 

in .     British  Research  Assoc,  for  the  Woollen 

Worsted  Ind.     J.  Text.  Inst.,  1922,  13,  143—149. 

The  sample  of  wool  is  extracted  twelve  times  (this 
is  usually  sufficient)  with  absolute  alcohol  in  ft 
Soxhlet  extractor  lagged  with  asbestos  tape  or  cord 
and  having  ground-in  joints  (corks  are  not  satis- 
factory). The  hot  solution  is  then  filtered  through 
thin  Swedish  filter  paper  No.  1  F,  the  bulk  of  the 
alcohol  is  evaporated,  the  residue  is  evaporated  to 
dryness  in  a  wide-necked  glass  flask  on  a  water- 
bath,  and  is  afterwards  dried  first  in  a  water  oven 
and  then  to  constant  weight  in  vacuo.  The  dried 
residue   is   boiled   with   a   known   excess  of  N/W 


Vol.  XII.,  Xo.  16.] 


Cl.    V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


(■27 


sulphuric  acid,  allowed  to  cool,  6haken  out  three 
times  with  neutral  ether,  and  the  ethereal  layer 
then  separated  and  washed  with  water,  the  wash- 
ings beiug  added  to  the  aqueous  layer.  The 
residue  containing  total  oil  and  fatty  acid,  obtained 
by  evaporating  the  ethereal  extract,  is  dissolved  in 
absolute  alcohol  and  titrated  with  iv'/lO  caustic 
soda  or  potash  and  phenolphthalein,  whereby  the 
fatty  acid  content  is  determined.  The  soap  is 
determined  by  back  titration  of  the  aqueous  extract 
with  JV/ 10  caustic  potash,  the  difference  between 
the  acid  originally  added  and  that  remaining  being 
calculated  to  sodium  oleate.  This  method  of  back 
titration  is  necessary,  since  the  whole  of  the  soap 
is  decomposed  only  on  boiling  with  excess  of  acid. 
The  calcium  soaps  extracted  may  be  determined  by 
estimating  calcium  by  the  usual  methods  in  the 
above  aqueous  extract,  which  has  been  titrated  for 
soap.  It  frequently  happens  that  a  persistent 
emulsion  forms  when  shaking  out  with  ether,  and  it 
is  then  advisable  to  separate  as  much  ether  as 
possible,  evaporate  the  acid  liquor  to  dryness,  and 
wash  the  residue  with  ether  to  remove  fatty  acid 
or  oil.  The  amount  of  fatty  matter  in  such  an 
emulsion  may  amount  to  0'03%  on  the  weight  of  the 
wool.  Although  alcohol  is  a  satisfactory  solvent 
for  soap,  it  is  not  possible  to  recover  from  wool  the 
same  amount  of  soap  as  is  placed  in  it,  since  there 
is  distinct  evidence  that  some  of  the  alkali 
of  the  soap  combines  with  or  becomes  absorbed  by 
the  wool  substance  itself,  leaving  free  fatty  acid  on 
the  fibre.  Atmospheric  carbon  dioxide  is  able  to 
decompose  6oap  into  an  "  acid  soap  "  and  an  alkali 
l    carbonate,  and  this  affects  the  process  of  analysis. 

—A.  J.  H. 

Lignin  of  fir  wood;  Constitution  of  the .     P. 

Klason.     Svensk  Kem.  Tidskr.,  1922,   34,  4—17. 
Chem.  Zentr.,  1922,  93,  III.,  55—56. 

The  calcium  6alt  of  a-ligninsulphonic  acid  was 
prepared  by  treating  sulphite-cellulose  waste 
liquors  with  calcium  chloride.  Waste  liquor  was 
also  precipitated  in  three  separate  fractions  with 
sodium  chloride  and  the  /3-naphthylamine  salts  were 
prepared  from  the  three  fractions  and  from  the 
.  residual  liquor.  All  these  preparations  were  sub- 
stantial^ identical,  corresponding  with  the  formula 
C10H2oO6  +  H2SO,  +  C!oH;NH,;  hence  it  is  inferred 
that  a-ligninsulphonic  acid  is  a  uniform  sub- 
stance. /3-Naphthylamine  salts  have  been  prepared 
from  several  derivatives  of  the  calcium  a-ligninsul- 
phonate,  e.g.,  from  compounds  with  hydroxylamine, 
semicarbazide  and  ammonia,  also  from  the  product 
of  acetylation  with  acetic  anhydride  at  50° — 100°  C. 
for  twelve  days.  o-Xaphthylamine  salts  of  the 
a-lignosulphonic  acid  itself,  of  its  methylated 
derivative,  and  of  the  carboxylic  acid  formed  by 
oxidation  with  hydrogen  peroxide  at  the  ordinary 
temperature  for  forty-five  days  are  also  described. 
It  is  concluded  that  a-Iignin  is  a  definite  uniform 
substance  containing  a  coniferyl  aldehyde  nucleus, 
the  presence  of  which  throws  light  on  the  chemistry 
of  the  bisulphite  process ;  it  also  contains  a  flavone 
or  coumarone  ring,  whereby  it  is  related  to  the 
eatecbins,  flavones,  etc.  but  differs  from  them  in 
that  it  is  characterised  by  an  acrolein  complex 
which  is  combined  like  an  acetal  with  the  carbo- 
hydrates of  the  wood. — J.  F.  B. 

Patents. 
Textile  and  other  fabrics,    thread,   yarn,   and  the 

like;  Process  of  treating [to  remove  starches, 

gums,  and  other  impurities'].  J.  Takamine  and 
J.  Takamine,  jun.  U.S. P.  1,421,613,  4.7.22. 
Appl.,  8.10.20. 
Textiles,  threads,  yarns  and  the  like  are  treated 
in  a  bath  containing  proteolytic  and  diastatic 
enzymes,  to  dissolve  and  remove  starchy  matter, 
gums,  and  other  impurities,,  and  are  then  washed 
with  water. — D.  J.  N. 


[Nitrocellulose  composition;'}  Compound  sheet 
material  [from  ].  Manufacture  of  water- 
proof material.  C.  Claessen.  E.P.  (a)  174.317, 
8.7.21,  and  (b)  174,588,  12.1.22.  Conv.,  21.1.21, 
28.1.21.     Addns.  to  155,778  (J.,  1922,  459  a). 

(a)  A  compound  sheet  material  resembling  wax  cloth 
is  made  by  interposing  a  supporting  fabric  between 
two  thin  skins  of  the  nitrocellulose  composition 
described  in  the  original  patent,  and  uniting  the 
three  layers  by  pressing  or  rolling,  (b)  A  strong 
waterproof  material,  suitable  for  packing  joints, 
for  chair  seats  and  other  purposes,  is  made  by 
cementing  together,  by  heat  and  pressure,  alter- 
nate layers  of  the  nitrocellulose  composition  and 
fibrous  materials  such  as  vulcanised  fibre,  card- 
board, or  paper,  and  allowing  the  mass  to  cool 
under  pressure. — D.  J.  N. 

Artificial  silk  and  the  like;  Manufacture  of  . 

W.  P.  Dreaper.  E.P.  181,758,  19.1.21. 
Skelns  of  artificial  silk,  during  the  final  drying 
process,  are  supported  in  a  drying  chamber  in  such 
a  manner  that  they  occupy  the  major  portion  of  the 
cross-section  of  the  chamber,  and  a  blast  of  heated 
air,  travelling  at  the  rate  of  3—5  m.  per  sec.,  is 
driven  along  the  chamber  through  the  skeins  to 
keep  the  individual  filaments  in  relative  movement 
to  ono  another  during  the  dr3*ing  process,  the 
arrangement  of  the  skeins  being  such  that  en- 
tanglement is  prevented.  This  method  of  drying 
prevents  the  cohesion  of  the  filaments  and  gives  a 
bulky  thread  of  high  covering  power. — J.  F.  B. 

Cellulose      [viscose] ;     Manufacture     of     threads, 

filaments,  strips  or  films  of  .       Courtaulds, 

Ltd.,    and    M.    T.    Callimachi.      E.P.    181,900, 
23.4.21. 

Starch  is  dried  at  a  moderate  temperature,  prefer- 
ably under  reduced  pressure,  until  it  contains  not 
more  than  5%  of  moisture.  58  pts.  of  the  dried 
starch  is  added  rapidly,  with  continuous  stirring,  to 
100  pts.  of  62%  sulphuric  acid  cooled  below  0°  C. 
When  a  homogeneous  paste  is  obtained  the  mixture 
is  allowed  to  warm  up  spontaneously,  whilst  the 
starch  goes  into  solution.  The  resulting  liquid  is 
diluted  with  540  pts.  of  water,  and  is  used  for  the 
preparation  of  acid  saline  coagulating  baths  for  the 
spinning  of  viscose  threads  etc. — J.  F.  B. 

Cellulose      [viscose"];      Manufacture      of      threads, 

filaments    and    the    like    of    .      Courtaulds, 

Ltd.,  and  H.  J.  Hegan.     E.P.  181,901,  23.4.21. 

The  tendency  for  filaments  to  break  at  the  jet  orifice 
during  spinning  is  counteracted  by  the  addition  to 
the  viscose  of  a  substance  capable  of  lowering  the 
surface  tension  of  the  viscose  relatively  to  the 
coagulating  bath.  For  viscose  prepared  from 
cotton  the  addition  of  2  pts.  of  sodium  oleate  per 
10,000  pts.  of  viscose  is  suitable. — J.  F.  B. 

Cellulose  [viscose];  Manufacture  of  coloured 
threads,  filament  strips  or  films  of  .  Cour- 
taulds, Ltd.,  and  L.  J.  Wilson  (legal  representa- 
tive of  L.  P.  Wilson).     E.P.  181,902,  23.4.21. 

Coloured  filaments  etc.  are  produced  from  viscose 
by  incorporating  with  the  viscose  a  leuco-compound 
of  a  vat  or  sulphur  dyestuff,  and  spinning  and 
coagulating  the  coloured  viscose  in  the  usual 
manner.  The  alkaline  solution  of  the  dyestuff,  re- 
duced by  sodium  hydrosulphite,  is  either  added 
directly  "to  the  viscose  or  is  mixed  with  the  caustic 
soda  solution  employed  for  dissolving  the  cellulose 
xanthate.— J.  F.  B." 

Cellulose  derivatives;  Manufacture  of  artificial  silk 

and    the   like   from  .        H.   Drevfus.        E.P. 

182,166,  21.3.21. 

In  spinning  artificial  6ilk  by  the  dry  method  of 
projecting  solutions  of  cellulose  esters  or  the  like  in 


G28A 


Cl.  VI.— BLEACHING  ;    DYEING,  &o.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.      [Aug.  31,  1922. 


volatile  organic  solvents  into  heated  air,  the  rate  of 
solidification  is  controlled  by  the  addition  of  limited 
quantities  of  solvents  of  high  boiling  point  to  the 
cellulose  solution,  thereby  enabling  it  to  bo  drawn 
down  to  extremely  fine  filaments  before  solidifica- 
tion. For  example :  100  pts.  of  cellulose  acetate  is 
dissolved  in  400  pts.  of  acetone,  and  25 — 50  pts.  of 
diacetonealcohol  (b.p.  163°— 165°  O.)  is  added  to 
control  solidification.  Other  suitable  solvents  of 
high  boiling  point  are :  acetonealcohol  (acetyl- 
carbinol),  acetylacetone,  cyclopentanone. — J.  F.  B. 

Cellulose  ester  products  [and  artificial  silk  of 
standardised  dyeing  speed'];  Method  of  prepar- 
ing   .     H.   S.   Mork  and  C.   F.   Coffin,   jun., 

Assrs.  to  The  Lustron  Co.  U.S.P.  (a)  1,421,288, 
(b)  1,421,289,  and  (c)  1,421,290,  27.6.22.  Appl., 
(a)  12.3.21,  (b,  c)  16.11.21. 
Cellulose  ester  products  of  standardised  dyeing 
speed  are  made  by :  (a)  blending  together  in 
presence  of  a  solvent  such  quantities  of  several  pre- 
viously prepared  batches  of  ester  as  will  give  a 
homogeneous  product  having  the  desired  dyeing 
speed;  or  (b)  equalising  the  dyeing  speeds  of  a  num- 
ber of  batches  of  the  ester  by  suitably  treating  those 
batches  which  have  the  slower  dyeing  speed,  and 
subsequently  uniting  all  the  batches  in  a  solvent, 
(o)  Several  lots  of  artificial  silk  are  prepared,  and 
their  dyeing  speeds  are  substantially  equalised  by 
suitably  treating  those  lots  which  show  the  slower 
dyeing  speed.— D.  J.  N. 

Paper  product  and  process  of  making  the  same. 
E.  G.  Acheson.  U.S.P.  1,419,951,  20.6.22.  Appl., 
15.7.20. 

In  a  process  of  making  filled  papers,  a  step  consists 
in  incorporating  with  the  pulp  a  filling  material  in 
a  deflocculated  state. — L.  A.  C. 

Paper;  Method  of  removing  ink  from  printed . 

H.  R.  Eyrich  and  J.  A.  Schreiber,  Assrs.  to  The 
Paper  De-Inking  Co.  U.S.P.  1,421,195,  27.6.22. 
Appl.,  27.4.21. 

Ink  is  removed  from  paper  by  applying  an  alkaline 
solution  of  bentonite. — A.  B.  S. 

Cotton    substitutes;     Manufacture     of    .       B. 

Possanner  von  Ehrenthal.  E.P.  156,709,  7.1.21. 
Conv.,  7.8.19. 

See  G.P.  331,802  of  1919;  J.,  1921,  343  a. 

Artificial  threads,  films  and  the  like;  Process  for  the 

production   of  from   viscose.     H.   Jentgen. 

E.P.  171,691,  15.11.21.     Conv.,  15.11.20. 

See  G.P.  340,289  of  1920;  J.,  1921,  808  a. 

[Viscose]  artificial  silk;  Manufacture  of  .     E. 

Bronnert.  U.S.P.  1,422,412, 11.7.22.  Appl., 31.8.20. 

See  E.P.  170,874  of  1920;  J.,  1921,  886  a. 

Pulp  for  paper,  cardboard,  artificial  leather,  and 
the  like  from  peat;  Process  for  the  manufacture 

of .    A.  L.  Burlin.  U.S.P.    1,420,303,  20.6.22. 

Appl.,  30.7.20. 

See  E.P.  168,355  of  1920;  J.,  1921,  732  a. 

Paper-making  machines.  F.  J.  Brougham.  From 
J.  M.  Voith.     E.P.  181,793,  15.3.21. 

Paper-making  machines.  W.  P.  Carpmael.  From 
The  Bagley  and  Sewall  Co.    E.P.  181,809,  17.3.21. 

Glue  from  cellulose  waste  liquors.  G.P.  352,138. 
See  XV. 


VI.— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Modified  steam  oven  [for  lecture  experiments  on 
steaming  of  cotton  fabrics'].  A.  G.  Perkin.  J. 
Soc.  Dyers  and  Col.,  1922,  38,  186—187. 

An  adaptation  of  the  ordinary  laboratory  water 
oven  suitable  for  the  development  of  colour  on 
cotton  fabrics  by  steaming  in  lecture  experiments. 
A  short  upright  pipe  terminating  in  a  funnel- 
shaped  opening  for  the  purpose  of  charging  the 
oven  with  water  and  having  a  tap  fixed  just  below 
the  funnel,  is  fixed  to  the  usual  steam  exit.  To 
this  tube  at  a  point  just  below  the  tap  is  connected 
another  metal  pipe  which  also  has  a  tap  and  which 
is  led  into  the  interior  of  the  oven  through  the 
usual  central  thermometer  opening  which  is  closed 
with  a  perforated  cap.  A  small  tube  having  a  tan 
is  connected  to  the  steam  jacket  of  the  oven  and 
serves  as  a  safety  device.  The  oven  can  thus  be 
used  in  the  usual  manner  or  the  steam  generated 
in  the  jacket  can  be  directed  into  the  interior  of 
the  oven  and  escape  through  the  perforated  cap. 
The  door  of  the  oven  may  be  provided  with  a  jacket 
filled  with  asbestos  powder  so  that  the  steam  within 
the  oven  remains  dry.  A  hollow  saddle  through 
which  hot  water  circulates  and  on  which  fabrics  may 
be  dried  is  also  attached  to  the  water  jacket  of  the 
oven.     The  oven  is  provided  with  hinged  supports. 

—A.  J.  H. 


VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Sulphuric  acid  concentration;   Thermal   considera- 
tions in .     F.  C.  Zeisberg.     Chem.  and  Met. 

Eug.,  1922,  27,  22—26. 

The  data  available  as  to  the  specific  heat,  boiling 
point,  partial  pressure,  heat  of  dilution,  and  heat 
of  vaporisation  of  solutions  of  sulphuric  acid  in 
water  are  summarised.  When  a  solution  of  sul- 
phuric acid  has  been  raised  to  its  boiling  point 
the  heat  necessary  to  carry  on  concentration  is  the 
sum  of  the  heat  of  vaporisation  of  water  (added 
to  that  of  sulphuric  acid  if  the  latter  is  not 
negligible),  the  heat  of  dehydration  (equivalent  to 
the  heat  of  dilution),  and  the  heat  necessary  to 
maintain  ebullition  or  the  summation  of  the  incre- 
ments of  heat  necessary  to  raiso  the  temperature 
of  the  acid  to  new  and  continually  higher  boiling 
points.  These  quantities  are  calculated  and  shown 
graphically.  The  curve  of  the  total  heat  necessary 
is  almost  a  straight  line  from  65%  to  98%  H,S04 
and  over  this  range  there  is  less  than  2%  error  in 
assuming  that  23'3  B.Th.U.  is  required  per  lb.  of 
H,S0'1  per  1  %  difference.  From  these  curves  the 
thermal  efficiencies  of  concentrators  can  be  calcu- 
lated, that  of  the  Gilchrist  surface  evaporator  (J., 
1922,  585  a)  on  the  data  given,  being  86'3%.— C.  I. 

Sulphur    trioxide;    Physical    properties    of    ■ 

A.  Berthoud.  Helv.  Chim.  Acta,  1922,  5,  513— 
532. 
Sri.i'iirr.  trioxide  is  supposed  to  exist  in  two  solid 
modifications,  o  and  /3.  Experiments  show  that  the 
silky  form,  /3,  is  probably  a  hydrated  form;  it  owes 
its  formation  to  the  presence  of  water,  but  cannot 
contain  more  than  1  mol.  of  water  per  1000  mols. 
of  sulphur  trioxide.  The  following  constants  of 
sulphur  trioxide  were  measured  with  the  gri 
care:  m.p.  16-85°  C. ;  b.p.  4452°  C.  (760  mm.); 
critical  temp.,  2183°  C. ;  critical  pressure,  83'8 
atm. ;  critical  density,  0'633;  molecular  heat  of 
vaporisation,  10,300  cals.  ;  van  der  Waals'  con- 
stants, a  =  001629,  o  =  0002684.    (67-  J.C.S.,  Sept.) 

— E.  H.  It. 


Vol.  XLI.,  Xo.  16.]      Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


629  a 


Hydrofluoric  acid;  Apparatus  of  transparent  hake- 
lite  for  measuring .    L.  J.  Curtman.    J.  Ind. 

Eng.  Chem.,  1922,  14,  610. 
Htdrofluomo  acid  (4S%)  is  without  appreciable 
action  on  transparent  bakelite,  and  10  c.c.  graduated 
vessels  made  from  this  material  have  been  success- 
fully used  in  analytical  work.  They  were  made 
slightly  conical  in  shape  to  facilitate  pouring  from 
the  wax  containers.  They  are  less  brittle  than 
glass,  non-inflammable,  do  not  soften  or  become 
distorted,  and  can  be  readily  cleaned  with  hot 
water.  A  medicine  dropper  of  the  same  material 
can  be  used   with  advantage  in   testing  for  silica. 

— H.  C.  R. 

[Ammonium  nitrate;  Preparation  of  ].     The 

equilibrium  of  double  decomposition  between 
soluble  salts  and  sorne  of  its  applications.  II.  E. 
Rengade.    Chim.  et  Ind.,  1922,  7,  1090—1098. 

The  preparation  of  ammonium  nitrate  by  double 
decomposition  between  sodium  nitrate  and  am- 
monium chloride  is  not  possible  by  methods  similar 
to  those  by  which  potassium  nitrate  is  obtained,  as 
ammonium  nitrate  is  at  all  temperatures  the  most 
soluble  of  the  salts  in  equilibrium.  The  amount  of 
nitrate  and  ammonium  ions,  expressed  arbitrarily 
as  ammonium  nitrate  left  in  the  solution,  after  the 
crystallisation  of  sodium  chloride,  is  63'6%  of  the 
total  salts  at  80°_  C,  and  81%  at  108°  C.  From 
this  mixture  it  is  possible  to  obtain  only  small 
quantities  of  pure  ammonium  nitrate  by  extraction 
of  the  sodium  chloride  with  cold  water,  e.g.,  9'7% 
at  0°  C,  and  the  process  is  therefore  useless  tech- 
nically. The  principal  points  of  the  equilibrium 
diagram  of  the  system  at  20°  C.  were  determined. 
The  double  decomposition  between  6odium  nitrate 
and  ammonium  sulphate  in  presence  of  alcohol  gave 
more  promising  results,  and  in  fact,  if  the  mixed 
salts,  containing  an  excess  of  sodium  nitrate  just 
sufficient  always  to  maintain  some  of  this  salt  in 
the  solid  phase,  are  treated  with  alcohol  the  de- 
composition will  be  complete.  The  excess  of  nitrate 
required  will  be  equal  to  the  amount  dissolving  in 
the  alcohol.  To  prevent  the  formation  of  two  layers 
the  alcoholic  strength  must  be  at  least  97%  at  the 
boiling  temperature,  or  78%  if  the  operation  is 
conducted  at  ordinary  temperatures  (25°  C).  It 
is  therefore  preferable  to  work  at  25°  C,  and  a 
rapid  equilibrium  is  attained  by  the  following 
procedure:  Sufficient  92%  alcohol  and  water 
to  make  360  pts.  of  78%  alcohol  are  taken, 
102'5  pts.  of  sodium  nitrate  is  dissolved  in 
the  water,  with  the  aid  of  heat,  66  pts.  of 
ammonium  sulphate  added,  and  then  the  92% 
alcohol,  and  the  whole  is  allowed  to  cool.  The  solu- 
tion strained  off  from  the  insoluble  sodium  sul- 
phate contains  22'2%  of  ammonium  nitrate  and 
4'8%  of  sodium  nitrate.  The  alcohol  is  recovered 
and  rectified  up  to  92%  for  re-use,  and  the  crude 
salt  is  freed  from  sodium  salts  by  extraction  with 
6'7  parts  of  cold  water  for  every  4'8  parts  of  sodium 
nitrate  it  contains.  This  will  also  dissolve  11"0  pts. 
of  ammonium  nitrate,  leaving  a  net  yield  of  pure 
J  salt  of  51  % .  The  solution  is  returned  to  the 
process,  and  the  total  yield  is  therefore  100% 
theoretically.— G.  F.  M. 

Ammonium   chloride;  Preparation  of  at  low 

temperatures.  P.  Mondain-Monval.  Comptes 
rend.,  1922,  175,  162—164. 
The  conditions  governing  the  crystallisation  of 
ammonium  chloride,  at  0°  C,  from  solutions  con- 
taining in  addition  one  or  more  of  the  salts,  sodium 
chloride,  sodium  carbonate,  and  ammonium  carbon- 
ate, were  studied  in  a  similar  manner  to  that  pre- 
viously described  for  15°  C.  (J.,  1922,  369  a),  and  a 
Le  Chatelier  diagram  is  given  showing  the  surfaces 
of  saturation.    The  zone  of  crystallisation  of  sodium 


carbonate  shows  two  distinct  areas,  one  correspond- 
ing to  the  crystallisation  of  Na3CO3,10H2O,  and  the 
other  to  that  of  a  hydrate  of  the  formula, 
2Na2CO,,5H20,  the  existence  of  which,  although 
disputed  by  Wegscheider  (J.,  1912,  69),  is  now 
confirmed. — G.  F.  M. 

Aluminium  nitride;  Beat  of  formation  of .    P. 

Pichter  and  E.  Jenny.  Helv.  Chim.  Acta,  1922, 
5,  448—454. 

Aluminium  nitride  prepared  from  aluminium 
bronze  contained  about  91%  A1N  and  0'5%  Si,  the 
remainder  being  alumina.  The  heat  of  combustion 
as  measured  in  a  bomb  calorimeter,  the  nitride 
ibeing  mixed  with  a  proportion  of  benzoic  acid  to 
facilitate  combustion,  was 

2AlN+30  =  A!20„+Na+258-2  Cals. 
Subtracting  this  from  2A1+30  =  AI20., +380-2  Cals. 
the  heat  of  formation  of  aluminium  nitride  is 
Al  +  N  =  AlN+61-0  Cals.  If  the  silicon  present  in 
the  nitride  is  in  the  elementary  form,  a  correction 
is  necessary  and  the  final  result  is  62'7  Cals. 

— E.  H.  R. 

Boron  nitride;  Beaction  between  and  various 

■metallic  oxides  with  production  of  nitric  oxide. 
U.  Sborgi  and  A.  6.  Nasini.  Gazz.  Chim.  Ital., 
1922,  52,  I.,  369—387. 

Measurements  have  been  made  of  the  yields  of 
nitric  oxide  obtained  when  air  is  passed  over 
mixtures  of  boron  nitride  with  various  metallic 
oxides  heated  at  different  temperatures.  The 
highest  yields  of  nitric  oxide  were  obtained  with 
ferric  oxide  (66'57 — 7T86%  of  the  theoretical 
quantity,  at  850°— 970°  C),  nickel  oxide  ,  Ni„0, 
6366— 65-86%,  at  800°— 880°  C),  cobalt  oxide, 
Co2Os  (60-26—72-08%,  at  820°— 920°  C),  man- 
ganese dioxide  (59-88— 71'60%,  at  800°— 840°  C), 
and  manganese  oxide,  MiijOj  (50"85 — 71'72%,  at 
700°— 790°  C).  The  residue,  after  the  reaction, 
contains  *  considerable  proportion  of  the  oxide  un- 
combined  and  can  be  used  for  decomposing  further 
quantities  of  boron  nitride.  The  reactivity  of  the 
boron  nitride  diminishes  on  keeping;  the  above 
results  were  obtained  with  a  nitride  (85'84%  BN) 
prepared  from  boron  trioxide  and  ammonia  at  about 
1100°  C,  and  preserved  in  vacuo. — T.  H.  P. 

Sodium    sulphide-    Analysis    of    commercial    . 

Committee  on  hmei/ard  control.  V.  W.  R.  Atkin. 
J.  Soc.  Leather  Trades'  Chem.,  1922,  6,  239—243. 

8 — 10  G.  of  the  sample  is  dissolved  in  distilled  water 
to  make  1  litre,  and  50  c.c.  of  the  solution  titrated 
in  a  comparator  to  pH  =  10,  using  phenolphthalein 
or  thymolphthalein  as  indicator.  10  c.c.  of  neutral 
formaldehyde  is  added  and  the  mixture  titrated 
with  iV/li)  hydrochloric  acid  to  neutrality.  The 
second  titration  measures  the  amount  of  sulphide. 
1  c.c.  2V/10  HCU00078  g.  of  Na2S.— D.  W. 

Beagents  free  from  arsenic;  Preparation  of  . 

G.     Lockemann.      Z.    angew.     Chem.,  1922,    35, 

357—360. 
The  preparation  of  arsenic-free  reagents  for,  e.g., 
determinations  of  small  traces  of  arsenic  for  toxico- 
logical  purposes  may  be  conveniently  divided  into 
three  groups :  (1)  neutral  salts,  alkalis  and 
ammonia,  (2)  acids,  and  (3)  hydrogen.  The  purifi- 
cation of  reagents  comprised  in  the  first  class  is 
based  on  the  adsorption  of  arsenic  by  freshly- 
precipitated  ferric  hydroxide,  prepared  as  fol- 
lows:— Ferric  ammonium  sulphate  is  freed  from 
arsenic  by  repeated  crystallisation  and  the  puri- 
fied salt  is  dissolved  in  water  to  a  concentration 
of  225  g.p.l.  (corresponding  to  50  g.p.l.  of  ferric 
hydroxide  or  P404  N) ;  the  freedom  from  arsenic  of 
this  solution  is  checked  by  testing  20  c.c,  acidified 
with  20%  sulphuric  acid,  in  a  Marsh's  apparatus. 


630  a 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Aug.  31,  1922. 


The  ammonia  solution  used  for  precipitation  of  the 
ferric  hydroxide  is  prepared  by  diluting  240  c.c.  of 
a  10%  solution  of  ammonia  to  I  litre,  and  adjusting 
its  strength,  by  titration,  until  equivalent  in 
normality  to  the  iron  solution ;  a  portion  is  tested, 
after  acidification,  in  a  Marsh's  apparatus,  and  the 
solution  freed  from  arsenic,  if  present,  by  treat- 
ment with  freshly-precipitated  ferric  hydroxide. 
For  this  purpose  i00  c.c.  of  the  ammonia  solution 
is  mixed  with  100  c.c.  of  the  purified  ferric 
ammonium  sulphate  solution,  and  after  6tirring 
well,  the  ferric  hydroxide  is  filtered  off,  washed  with 
cold  water,  transferred  to  a  litre  flask,  shaken  up 
with  the  bulk  of  the  ammonia  solution  to  he  puri- 
fied, the  residue  allowed  to  subside  and  the  super- 
natant layer,  after  its  freedom  from  arsenic  has 
been  ascertained,  adjusted  to  the  before-mentioned 
strength.  The  two  solutions  described  are  employed 
for  freeing  from  arsensic,  all  neutral  water-soluble 
reagents  which  do  not  react  with  either  iron 
or  ammonia.  For  this  purpose  the  reagent  in 
question  is  dissolved  to  about  a  litre  volume 
of  solution  not  quite  saturated  at  0°  C,  cooled 
with  ice,  and  10  c.c.  of  iron  solution  added. 
3  c.c.  of  the  ammonia  solution  is  next  added,  and 
the  mixture  stirred,  allowed  to  stand  for  15  mins., 
treated  with  a  further  7  c.c.  of  ammonia  solution 
to  precipitate  the  iron  completely,  allowed  to  stand 
for  4  hrs.,  and  filtered.  The  author  claims  a  more 
complete  adsorption  by  such  fractional  precipita- 
tion. 10  c.c.  of  the  iron  solution  corresponds 
to  0"5  g.  of  Fe(OH),,  and  this  quantity  is  sufficient 
to  remove  the  following  quantities  of  arsenic 
from  a  litre  of  solution:  at  0°  C.  40  mg.,  20°  C. 
30  mg.,  40°  O.  about  15  mg.,  and  80°  C.  about 
9  mg.  The  accompanying  adsorption  of  non- 
arsenical  salts  must  be  taken  into  consideration 
when  calculating  the  quantity  of  iron  adsorbent 
necessary  for  purification.  The  effectiveness  of  the 
adsorption  of  arsenic  and  the  quantity  adsorbed  are 
tested  by  thoroughly  washing  the  ferric  hydroxide 
precipitate  with  cold  water  until  free  from  the 
reagent  originally  to  be  purified,  dissolving  in 
42V  sulphuric  acid  and  testing  in  a  Marsh's 
apparatus.  By  a  second  trial  adsorption  of  the 
purified  solution  with  3  c.c.  of  iron  solution  and 
1+2  c.c.  of  ammonia  solution,  and  testing  of  the 
precipitate,  the  completeness  of  the  first  adsorption 
is  determined.  The  ammonium  sulphate  formed  as 
a  secondary  product  of  the  ferric  hydroxide 
precipitation  may  be  removed  by  recrystallisa- 
tion,  or  its  presence  avoided  by  adsorbing  the 
arsenic  on  to  previously  precipitated  ferric  hydr- 
oxide, but  owing  to  the  lower  efficiency  in  such 
cases  a  much  larger  amount,  e.g.,  10 — 25  g.,  of 
ferric  hydroxide  per  litre  must  be  employed. 
Arsenic-free  nitric  and  hydrochloric  acids  are  pre- 
pared by  the  interaction  of  arsenic-free  sulphuric 
acid  and  alkali  nitrate  and  chloride  respectively, 
freed  from  arsenic  by  the  treatment  with  ferric 
hydroxide  already  described.  Arsenic-free  sulphuric 
acid  is  prepared  by  leading  a  current  of  hydro- 
chloric and  hydrobromic  acid  gases,  obtained  by  the 
action  of  sulphuric  acid  on  a  solution  of  3  g.  of 
potassium  bromide  in  10  c.c.  of  water  to  which  has 
been  added  50  g.  of  potassium  chloride,  through 
600  c.c.  of  sulphuric  acid  maintained  at  150°  C, 
the  reduced  and  volatilised  arsenious  chloride  being 
distilled  over  and  the  last  traces  removed  by  raising 
the  temperature  of  the  sulphuric  acid  to  200°  C. 
and  displacing  the  arsenious  chloride  by  carbon 
dioxide.  Any  accompanying  sulphurous  acid  must 
be  removed  by  subsequently  oxidising  with  potas- 
sium permanganate  and  distilling  in  a  porcelain 
retort.  The  original  paper  contains  details  of  the 
apparatus  and  its  manipulation  by  which  it  is 
claimed  that  600  c.c.  of  acid  may  be  freed  from 
arsenic  in  2J  hrs.  Arsenic-free  hydrogen  is  most 
conveniently  generated  by  the  action  of  arsenic-free 
hydrochloric  acid  on  an  alloy  consisting  of  9  pts.  of 


zinc  to  1  pt.  of  copper,  which  retains  the  whole  of 
the  arsenic,  unlike  zinc  of  low  copper  content  (0T — 
0'2%),  which  evolves  its  arsenic  along  with  the 
hydrogen. — A.  de  W. 

Arsenic   and   antimony ;  Volatilisation   of  by 

methyl  alcohol.  L.  Duparc  and  L.  Ramadier. 
Helv.  Chim.  Acta,  1922,  S,  552—556. 
By  passing  a  current  of  air  through  a  solution  of 
arsenious  or  antimonious  oxide  in  concentrated 
hydrochloric  acid  containing  a  suitable  proportion 
of  methyl  alcohol,  the  whole  of  the  arsenic  can  bo 
carried  over  into  an  absorbing  solution.  In  this 
way  01  g.  of  As,Oa  dissolved  in  concentrated  hydro- 
chloric acid  can  be  volatilised  in  1  hr.  at  55°  C.  after 
addition  of  45  c.c.  of  methyl  alcohol  saturated  with 
dry  hydrogen  chloride.  In  the  case  of  Sb.03  not 
more  than  59%  can  be  volatilised  under  similar 
conditions,  and  volatilisation  can  be  entirely  pre- 
vented by  diluting  the  hydrochloric  acid  with  an 
equal  volume  of  water.  The  method  may  be  applic- 
able for  separating  arsenic  and  antimony  from 
other  metals  or  from  each  other. — E.  H.  It. 

Positive  rays;  Analysis  by of  the  heavier  con- 
stituents of  the  atmosphere,  of  the  gases  in  a 
vessel  in  which  radium  chloride  had  been  stored 
for  13  years,  and  of  gases  given  off  by  deflagrated 
metals.  J.  J.  Thomson.  Proc.  Roy.  Soc.,  1922, 
A  101,  290—299. 
The  residues  from  many  thousands  of  tons  of  liquid 
air  have  been  examined  by  the  positive  ray  method 
of  analysis  for  the  presence  of  molecules  heavier 
than  krypton  and  xenon.  Two  new  constituents  of 
the  atmosphere  were  found  with  molecular  weights 
163  and  260.  The  lighter  of  these  is  the  more 
abundant,  but  the  quantity  in  the  air  is  very  small 
compared  with  xenon.  No  place  in  the  periodic 
table  can  be  found  for  a  new  element  with  atomic 
weight  163,  and  it  is  possible  that  the  two  new 
substances  are  diatomic  molecules  of  krypton  and 
xenon.  The  gases  from  radium  stored  in  an 
evacuated  vessel  for  about  13  years,  showed  the 
presence  of  helium  and  hydrogen,  but  no  xenon  nor 
H3  was  found.  Evidence  was  obtained  of  the  exist- 
ence of  a  compound  of  hydrogen  and  helium.  The 
gases  from  the  deflagration  of  fine  wires  of 
tungsten,  gold,  or  copper  by  powerful  electric 
currents  did  not  yield  any  helium,  although  H,  was 
detected.  In  gases  which  had  stood  over  radium 
for  a  considerable  time  the  presence  of  doubly, 
triply  and  quadruply  charged  atoms  of  oxygen  and 
nitrogen,  and  doubly  and  triply  charged  carbon 
atoms  was  indicated  by  the  positive  ray  method  of 
analysis.  A  compound  OH,,  carrying  a  double 
charge,  was  also  noted. — W.  E.  G. 

Urea  from,  ammonia.       Matignon  and  Frejacques. 

See  XX. 

Patents. 
Sulphuric  acid  manufacture;  Kecoveri/  of  oxides  of 

nitrogenin .   A.  M.  Fairlie.   U.S.P.  1,420,477, 

20.6.22.     Appl.,  19.5.20. 
The  normal  quantity  of  sulphur  dioxide  contained 
in  the  exit  gases  is  removed,   the   lower  nitrogen 
oxides  are  oxidised  to  higher  oxides,  and  these  are 
absorbed.— H.  R.  D. 

Sulphur  burner.    A.  G.  Hinzke.    U.S.P.  1,421,232, 

27.6.22.  Appl.,  17.6.21. 
A  sulphur  burner  comprises  a  shell,  on  the  top  of 
which  is  a  melting  vessel,  with  feed  supply  orifices 
and  valve-controlled  means  for  regulating  the  flow 
of  molten  sulphur  into  the  shell;  a  central  duct 
extends  through  the  melting  vessel  and  shell,  and 
has  a  discharge  pipe  at  its  upper  end.  Means  are 
provided  for  causing  the  molten  sulphur  to  follow  a 
serpentine  course  to  the  lower  end  of  the  central 
duct,  up  which  the  resulting  hot  gases  pass. 

—A.  B.  S. 


Vol.  XIX,  No.  16.]       Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


(331a 


[Sludge]    acids;    Method    of    treating    .       I. 

Hechenbleikner    and    T.    C.    Oliver,  Assrs.     to 

Chemical  Construction  Co.  U.S.P.  1,421,688, 
4.7.22.     Appl.,  16.6.21. 

Sludge  acid  is  concentrated  in  two  stages,  the  first 
being  checked  before  the  charring  point  is  reached. 

— C.  I. 

(a)  Hydrochloric  acid  and  carbon  monoxide;  Process 

of  manufacturing  .       (n)  Apparatus  for  use 

in  effecting  chemical  reactions,  (c)  Apparatus 
for  effecting  chemical  reactions  [by  means  of 
amalgams],  (d)  Method  of  and  apparatus  for 
electrolytic  reduction  and  oxidation,  (e)  Manu- 
facture of  [metal]  oxalate.  H.  W.  Paulus.  Assr. 
to  Royal  Baking  Powder  Co.  U.S.P.  1,420,209 
—13,  20.6.22.     Appl.,  (a)  19.7.20,  (b— e)  26.7.20. 

(a)  A  mixture  of  hydrochloric  acid  and  carbon 
monoxide  is  prepared  by  passing  a  mixture  of 
chlorine  and  steam  in  the  correct  proportions 
through  an  incandescent  mass  of  carbon  contained 
in  a  vessel  sealed  from  the  atmosphere,  sufficient 
air  being  introduced  with  the  mixed  gases  to  main- 
tain the  carbon  at  the  temperature  necessary  to 
effect  the  desired  chemical  reactions.  (b)  An 
apparatus  for  use  in  effecting  chemical  reactions 
comprises  a  horizontal,  jacketed,  cylindrical  drum 
provided  with  a  shaft  supported  in  jacketed  heads 
at  the  ends  of  the  drum.  Spiders  are  mounted  on 
the  shaft  at  each  end  of  the  drum,  and  adjustable 
scrapers,  supported  in  staggered  relation  from  the 
spiders,  are  provided  to  keep  the  interior  surface 
of  the  drum  clean.  A  relatively  large  inlet  is  pro- 
vided for  admitting  gases  into  the  drum,  while 
waste  gases  are  withdrawn  through  a  number  of 
relatively  small  outlets.  Means  are  also  provided 
for  heating  or  cooling  the  drum,  to  maintain  the 
contents  at  a  desired  temperature,  (c)  An  appa- 
ratus for  effecting  chemical  reactions  by  means  of 
amalgams  comprises  an  electrolytic  cell  in  which 
the  amalgam  is  formed,  a  reaction  chamber,  and 
a  cooling  trough  between  the  cell  and  the  chamber. 
The  electrolytic  cell  is  divided  into  a  series  of 
longitudinal  channels  to  facilitate  the  passage  of 
mercury  through  the  apparatus,  while  the  bottom 
of  the  cooling  trough  is  provided  with  a  series  of 
transverse  depressions  for  the  same  purpose.  The 
reaction  chamber  is  divided  into  a  series  of  chan- 
nels, some  of  which  receive  mercury  from  the 
trough,  while  the  mercury  in  others  passes  back  to 
the  cell,  the  mercury  in  the  channels  being  im- 
pelled in  one  or  the  other  direction  by  two  sets  of 
paddles.  Means  are  provided  for  returning  the 
mercury  from  the  chamber  to  the  cell,  (d)  An 
apparatus  for  electrolytic  reduction  and  oxidation 
comprises  a  cell  for  containing  the  electrolyte,  a 
stationary  plate  electrode  in  the  cell,  and  means 
for  imparting  a  rotary  motion,  relative  to  the  sur- 
face of  the  electrode,  to  the  electrolyte  admitted  to 
the  coll.  (e)  Metal  oxalates  are  prepared  by  drop- 
ping finely  divided,  dry  metal  formates  into  a 
descending  stream  of  inert  gases  maintained  at 
360°— 440°  C— L.  A.  C. 

Halogen  compounds  [hydrochloric  arid  and,  methyl 

chloride];  Preparation  of  .     W.  O.  Snelling. 

U.S.P.  1,421,733,  4.7.22.     Appl.,  4.6.20. 

Methane  and  chlorine  are  allowed  to  interact,  and 
'.  the  gas  mixture  scrubbed  successively  with  solvents 
for  methyl  chloride  and  for  hydrogen  chloride. 

— C.  I. 

Hydrogen  and  ammonia;  Preparation  of .    The 

Nitrogen  Corp.,  Assees.  of  J.  C.  Clancv.  E.P. 
163,323,  17.5.21.     Conv.  14.5.20. 

|  Sulphur  vapour  is  subjected  to  direct  contact  with 
superheated  steam,  at  about  800°  C,  in  a  refractory 
tube  furnace.     The  exit  gases,  consisting  chiefly  of 

:  sulphur   dioxide,    hydrogen,    and   excess   of   steam, 


may  be  separated  in  various  ways.  Hydrogen  may 
be  used  for  the  synthesis  of  ammonia,  and  the  latter 
used  for  absorbing  the  sulphur  dioxide,  whereby 
ammonium  sulphite  is  formed  and  can  be  oxidised  to 
ammonium  sulphate. — H.  R.  D. 

Ammonia;  Oxidation  of  .  Catalyst.  Manu- 
facture of  sulphuric  acid,  (a)  C.  H.  MacDowell, 
H.  H.  Meyers,  and  W.  B.  Pattison,  (b,  c)  C.  H. 
MacDowell  and  H.  H.  Meyers,  Assrs.  to  Armour 
Fertiliser  Works.  U.S.P.  (a)  1,420,201,  (b) 
1,420,203,  and  (c)  1,420,202,  20.6.22.  Appl.,  (a) 
3.12.18,  (b,  c)  20.1.19. 

(a)  A  mixture  of  ammonia  and  an  oxidising  gas  is 
brought,  at  a  high  temperature,  in  contact  with  a 
composite  catalyst  composed  of  vanadium  oxide  and 
porous  alumina  made  from  alunite.  (b)  A  compo- 
site catalyst  comprises  a  compound  of  vanadium  and 
a  compound  of  aluminium  in  which  each  compound 
contributes  to  the  catalytic  activity,  (c)  A  mixture 
of  gases  containing  sulphur  dioxide  and  oxygen,  at 
a  temperature  suitable  for  the  catalytic  production 
of  sulphur  trioxide,  is  brought  in  contact  with  the 
composite  catalyst  described  in  (b). — L.  A.  C. 

Sulphate  of  ammonia;  Manufacture  of  dry  neutral 

.     Ebbw  Vale  Steel,  Iron  and  Coal  Co.,  Ltd., 

and  D.  Thickins.     E.P.  181,884,  9.4.21. 

The  process  of  neutralisation  and  drying  is  carried 
out  in  a  form  of  tower  by  an  ascending  current  of 
hot  air  and  ammonia  gas.  The  tower  is  provided 
with  a  central  rotating  shaft  fitted  in  the  upper 
part  with  brush  arms  which  sweep  the  salt  across 
sieves,  and  in  the  lower  part  with  scrapers  which 
work  over  slotted  or  perforated  plates.  The  exit 
gases  are  passed  into  an  absorbent  for  pyridine. 

— C.  I. 

Aluminium    chloride;    Method    of    manufacturing 

.     Aluminium    Co.    of    America,    Assees.    of 

F.  C.  Frary.  E.P.  163,975,  30.12.20.  Conv., 
26.5.20. 

See  U.S.P.  1,354,818  of  1920;  J.,  1920,  749  a.     A 

mixture  of  alumina   and   metallic  aluminium  may 

be  used  in  place  of  aluminium  dross. 

Titanium  dioxide  from  bauxite;  Process  for  prepara- 
tion of  .      E.   E.    and  P.    C.    Dutt.      E.P. 

181,775,  18.2.21. 
One  pt.  of  finely  powdered  bauxite  (containing 
7 — io%  Ti02)  is  mixed  with  5  pts.  of  ammonium 
sulphate,  and  the  mixture  heated  to  about  350° — 
400°  C.  After  the  reaction  is  complete,  the  product 
is  treated  with  water.  The  double  sulphates  of 
alumina  and  iron  with  ammonia  pass  into  solu- 
tion, whilst  titanium  dioxide  remains  in  the  liquid 
in  the  form  of  a  very  fine  suspension,  which  can  be 
decanted  off  from  any  residue.  The  titanium  di- 
oxide is  then  separated  by  filtration,  washed,  and 
dried.— H.  R.  D. 

Sulphur,  metallic  sulphides  and  the  like;  Becovery 
of from  a  condition  of  emulsion  without  fil- 
tration or  evaporation.    B.  Hunt.     E.P.  181,984, 
16.3.22. 
An  emulsion  of  sulphur   and   gangue  in   water  is 
heated  above  the  melting  point  of  sulphur  in   an 
autoclave,     with    agitation.      The    earthy    matte- 
remains  in  suspension,   while  liquid   sulphur   may 
bo  run  off  from  the  bottom.     Certain  metallic  sul- 
phides if  mixed  with  sulphur  and  treated  as  above 
are  removed  with  the  molten  sulphur. — C.  I. 

Sodium  carbonate;  Separation  of ,  from  liquors 

or  solutions  containing  caustic  soda.    Courtaulds, 

Ltd.,  and  R.  0.  Jones.     E.P.  182,411,  11.6.21. 

100  pts.  of  liquor  containing  about  19%  of  caustic 

soda  and   7%   of  sodium   carbonate,   is   trcated_  at 

20° — 30°  C,  with  10  pts.  of  finely  divided  calcium 


632  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.      [Ang.  31,  1922. 


carbonate,  and  allowed  to  stand,  stirring  at 
intervals,  whereupon  the  double  carbonate  of 
calcium  and  sodium  is  precipitated. — H.  R.  D. 

Sodium  carbonate  and  the  like;  Process  of  purify- 
ing  ■ .      F.    H.    Merrill.      U.S. P.    1,419,463, 

13.6.22.     Appl.,  30.4.21. 

Sodium  carbonate  is  freed  from  carbonaceous 
matter  by  heating  with  sodium  riitrate. — J.  B.  F. 

Sodium  carbonate  from  common  salt;  Electrolytic 
process  of  manufacture  of ,  employing  a  dia- 
phragm cell.  Chem.  Fabrik  Griesheim-Elektron. 
G.P.  352,002,  19.8.19. 

A  solution  of  potassium  bicarbonate,  potassium 
chloride,  and  sodium  chloride  is  used  in  the  cathode 
compartment  of  the  cell  and  is  electrolysed  until 
the  bicarbonate  is  neutralised.  The  supply  of 
sodium  chloride  is  then  replenished  and  the  solution 
treated  with  carbon  dioxide. — J.  S.  G.  T. 

Vanadium  solutions;  Process  of  removing  phos- 
phorus  from    .      A.    N.    Erickson,    Assr.    to 

Union  Carbide  and  Carbon  Research  Labora- 
tories, Inc.  U.S. P.  1,421,191,  27.6.22.  Appl., 
5.10.21. 

Phosphorus  is  removed  from  vanadium  solutions 
by  adjusting  the  hydrogen  ion  concentration  to 
about  that  of  very  dilute  acetic  acid,  and  then  pre- 
cipitating the  phosphorus  as  phosphate. — A.  B.  S. 

Bleaching  powder.  E.  T.  Ladd  and  E.  C.  Speiden, 
Assrs.  to  Isoo  Chemical  Co.,  Inc.  U  S  P 
1,421,503,  4.7.22.     Appl.,  7.2.22. 

The  claim  is  for  screened  chlorinated  calcium 
hydroxide,  from  which  a  substantial  proportion  of 
the  smaller  sized  particles  has  been  removed  before 
chlorination. — H.  R.  D. 

Alumina,;  Process  of  obtaining  .     R.  S.  Sher- 

win,  Assr.  to  Aluminium  Co.  of  America.  U.S  P 
1,422,004,4.7.22.  Appl.,  16.1.14.  Renewed  3.4.19. 
A  sintered  unfused  alumina-silica-lime-soda  mixture 
is  heated  with  an  alkaline  solution  of  a  sodium 
compound  to  a  temperature  not  above  200°  F. 
(93°  C.)  preparatory  to  leaching. — H.  R.  D. 

Arsenic  trichloride ;  Process  of  making .   L.  H. 

Mulligan,  Assr.  to  N.  D.  Baker.  U.S.P.  1,421  978' 
4.7.22.     Appl.,  12.6.20. 

A  process  of  making  arsenic  trichloride  comprises 
heating  an  arsenic  compound  with  chlorine  and  a 
reducing  agent. — H.  S.  H. 

Lead  oxide;  Apparatus  for  production  of  by 

oxidising  molten  lead.  L.  Ktibler.  G.P.  351,328 
16.11.20. 

The  molten  lead  is  contained  in  a  large  tall  vessel 
preferably  provided  with  a  heat-insulating  jacket. 
Two  oppositely  directed  pipes  for  admission  of  com- 
pressed air  are  provided  in  the  lower  part  of  the 
vessel,  and  another  similar  pipe  below  a  perforated 
false  floor  in  the  vessel. — J.  S.  G.  T. 

Colloidal  iron  solution  having  a  neutral  or  feebly 

alkaline  reaction;  Production  of .    H   Timne 

G.P.  351,384,  23.12.20. 

A  very  dilute  solution  of  a  ferric  salt  is  added  in 
equivalent  proportion  to  a  solution  of  an  alkaline 
pyrophosphate  of  definite  strength.  The  ferric 
pyrophosphate  produced  is  filtered  off,  purified, 
mixed  with  water,  and  treated  with  the  equivalent 
quantity  of  a  solution  of  an  alkali  carbonate ;  a  pro- 
tective colloid  may  be  added  to  the  resulting 
colloidal  solution.— J.  S    G    T 


Continuous  process  of  lixirating  salts,  more 
especially  crude  potassium  salts.  Fellner  ii 
Ziegler,  and  M.  Konig.  G.P.  351,533,  25.7.19. 
The  material  is  supplied  to  a  casing  in  which  it  is 
mixed  with  leaching  fluid  by  stirring  gear  rotating 
within  the  casing  and  provided  with  heating  tubes. 
The  material  is  carried  through  the  upper  layers  of 
the  leaching  fluid  on  lifts  disposed  on  the  circum- 
ference of  the  stirring  gear  and  then  falls  back  into 
the  trough  of  the  apparatus.  Adjustable  sliding 
plates  are  disposed  along  the  circumferential  walls 
of  the  stirring  chamber,  and  may  be  inclined 
so  that  material  falling  upon  them  from  the  walls 
of  the  chamber  moves  either  in  a  forward  or  back- 
ward direction,  and  the  transportation  of  the 
material  through  the  apparatus  is  thus  either 
accelerated  or  retarded. — J.  S.  G.  T. 

Sodium  sulphide,  sodium  bisulphate,  etc.;  Process 

of  atomising  fused  masses  of  .       V    Zieren 

G.P.  351,581,  11.3.19. 

The  fused  mass  is  atomised  and  simultaneously 
cooled  by  currents  of  air  impinging  at  an  angle  so 
as  to  produce  turbulence.  For  example,  three  air 
streams,  one  incident  upon  the  fused  mass  from 
below,  the  others  impinging  upon  the  sides,  may  be 
used.— J.  S.  G.  T. 

Sulphate;  Manufacture  of  by  the  Bargreaves 

process.      F.    Siemens.       G.P.    352,115,    20.3  20 
Addn.  to  339,818. 

In  a  process  carried  out  in  accordance  with  G.P. 
339,818  (J.,  1921,  813  a),  sulphur  compounds,  such 
as  kieserite  or  sulphur  ores,  are  mixed  with  the 
charge.  When  reduced  substances  decomposed 
with  difficulty,  e.g.,  calcium  sulphide,  are  formed, 
they  are  decomposed  with  carbon  dioxide,  acid, 
or  steam,  and  made  available  for  further  use. 
Oxy-salts,  such  as  gypsum,  which  are  difficult  to 
decompose,  are  mixed  prior  to  the  briquotting 
process,  with  easily  decomposed  chlorine  com- 
pounds, e.g.,  waste  lyes  from  the  potash  industry. 
Coal  rich  in  sulphur  may  be  used  for  the  purpose 
of  recovering  their  sulphur  in  the  form  of  sulphates 
by  the  Hargreaves  process. — J.  S.  G.  T. 

Calcium  bisulphite  lye  and  sulphur;  Process  for  the 

simultaneous    production     of     .       Rhenania 

Verein  Chem.  Fabr.  A.-G.,  Zweigniederlassung 
Mannheim.  G.P.  352,126,  11.6.20. 
Calcium  sulphide  is  added  to  a  solution  of  calcium 
bisulphite  into  which  sulphur  dioxide  is  passed. 
Alternatively,  a  concentrated  aqueous  solution  of 
sulphur  dioxide  into  which  sulphur  dioxide  is 
constantly  passed  is  treated  with  calcium  sulphide. 

—J.  S.  G.  T. 

Graphite;  Process  of  producing .     T.  F.  Baily. 

U.S.P.  1,420,512,  20.6.22.     Appl.,  31.1.22. 

A  bath  of  superheated  molten  iron  is  saturated  with 
carbon,  and  poured  into  a  closed  cooling  chamber 
wherein  it  is  cooled  sufficiently  to  cause  trie  separa- 
tion of  the  surplus  carbon  in  the  form  of  graphite. 

— H.  R.  D. 

Air;  Liquefaction  of  .     H.  N.  Davis,  Assr.  to 

Research     Corp.       U.S.P.     1,420,625,     27.6.22. 
Appl.,  24.4.20. 

In  a  process  for  effecting  heat  exchange  in  the  lique- 
faction of  air,  one  gaseous  stream  flows  in  counter- 
current  heat-exchanging  relation  with  a  second 
colder  gaseous  stream,  and  in  order  to  equalise,  as 
far  as  possible,  the  effective  heat-transferring 
capacities  of  the  two  streams,  a  portion  of  the  gas 
is  withdrawn  from  the  warmer  stream,  cooled,  ami 
then  returned  to  counter-current  heat-exehai 
relation  with  the  colder  stream  at  a  point  colder 
than  its  point  of  withdrawal. — H.  H. 


Vol.  XLI..  No.  10.] 


Cl.  VIII.— GLASS  ;  CERAMICS. 


633  a 


Sulphur;  Contact  furnace  for  producing  from 

\ydroc/eti  sulphide  or  gases  containing  it.  Rhen- 
ania  Verein  Chem.  Fabr.  A.-G.,  and  F.  Projahn. 
G.P.  352, 17S,  18.10.18.     Addn.  to  298,844. 

In  a  process  operated  in  accordance  with  the  earlier 
patent  (J.,  1920,  749  a)  the  gas  is  supplied  through 
a  number  of  nozzles,  and  a  number  of  tubes  closed 
below  to  serve  as  pockets  for  thermometers  are 
arranged  in  the  furnace  between  the  door  and  the 
grate.  The  furnace  is  suitable  for  carrying  out  the 
Claus  process.— J.  S.  G.  T. 


— .      Nitrogen    Corp., 
E.P.  155,592,  20.12.20. 


Ammonia;  Synthesis  of 
Assees.  of  J.  C.  Clancv 
Conv.,  20.12.19. 

See  U.S.P.  1,363,392  of  1920;  J.,  1921,  469  a. 

Chromic  oxide  and  sodium  sulphide;  Process  for  the 

manufacture  of from  sodium  chromate.   C.  J. 

Head.    U.S.P.  1,422,703,  11.7.22.    Appl.,  14.1.21. 

See  E.P.  166,289  of  1920;  J.,  1921,  623  a. 

Electrochemical  reactions.   E.P.  181,848-9.  See  XI. 


VIII.-GLASS;  CERAMICS. 

Lamination  [in  clay};  Discussion  of  cause  and  cure 

of .    J.  J.  F.  Brand.     J.  Amer.  Ceram.  Soc, 

1922,  5,  355—375. 

Laminations  are  divided  into  two  classes,  viz., 
I  differential  lamination  caused  by  the  differential 
I  flow  of  the  clay  through  the  die  etc.,  and  inter- 
.  facial  lamination  due  to  the  imperfect  union  of 
|  formed  masses  of  clay.  Neither  the  character  of 
I  the  clays  studied  nor  the  kind  of  machines  used 
I  accounted  for  the  difficulties  attending  the  mould- 
|  ing  and  drying  of  the  clay  wares.  The  effect  of 
|   pugging  and  of  working  upon  the  character  of  the 

clays  was  studied,  and  it  is  concluded  that  the 
I   presence  of  air  in  the  clay  caused  the  difficulties 

in  moulding.  It  is  suggested  that  the  air  should 
I  be  removed  from  the  clays  prior  to  and  during  the 

tempering  and  pugging  process. — H.   S.   H. 

Clay  briquettes;  Simplified  method  of  determining 

the   dry   volume   of  .     J.   L.   Crawford.     J. 

Amer.  Ceram.  Soc,  1922,  5,  394—396. 
The  dry  volume  of  a  clay  briquette  is  obtained  by 
dividing  its  dry  weight  by  its  bulk  specific  gravity, 
determined  on  a  separate  test-piece.  This  method 
eliminates  the  drying  of  oil-saturated  test-pieres 
when  determining  the  change  of  volume  of  a  clay 
briquette  after  various  heat  treatments. — H.  S.  H. 

Ceramic  products;  Firing in  electrically  heated 

furnaces.    A.  Granger.    Comptes  rend.,  1922,  175, 
98—100. 

A  comparison  of  the  different  types  of  porcelain 
obtained  by  firing  in  electrically  heated  furnaces 
as  compared  with  the  same  materials  fired  in 
industrial  furnaces.  The  results  with  the  electri- 
cally heated  furnaces  are  quite  satisfactory,  and 
it  is  shown  that  the  reducing  action  in  furnaces 
may  be  due  to  carbon  in  the  form  of  carbon 
monoxide,  which  is  oxidised  to  carbon  dioxide  and 
deposits  carbon,  and  not  necessarily  to  flames  too 
rich  in  carbon. — W.  G. 

Terra-coita;    Firecracking    of    .      E.    C.    Hill 

J.  Amer.  Ceram.  Soc.,  1922,  5,  299—310. 
Labsb  pieces  of  terra-cotta  made  from  various 
elays  and  grogs  were  fired  and  cooled  at  different 
rates.  The  absorption,  porosity,  and  transverse 
strength  of  the  various  bodies  were  determined 
and  their  tendency  to  firecrack  after  weathering 
was  noted.  All  bodies  similar  to  those  used  in 
practice    showed    a    tendency    to    firecrack    when 


cooled  rapidly  and  all  were  free  from  cracks  when 
cooled  slowly,  the  rate  of  cooling  having  a  much 
greater  effect  on  the  tendency  to  firecrack  than 
the  composition  or  physical  properties  of  the  body. 
Owing  to  the  difference  in  the  expansion  of  sand 
and  clay,  sandy  clays  were  more  liable  to  produce 
firecracks  than  non-sandy,  vitrifying  clays.  The 
tendency  of  a  body  to  develop  firecracks  depended 
much  more  upon  the  character  of  the  clay  itself, 
regardless  of  the  impurities  it  contained,  than  upon 
the  absorption,  porosity,  or  transverse  strength  of 
the  body.  No  relation  was  found  to  exist  between 
the  porosity  and  transverse  strength  of  a  body  and 
its  tendency  to  firecrack.  The  greatest  tendency 
to  firecracking  was  found  in  a  body  with  all  gTog 
finer  than  40-mesh,  but  a  body  with  all  the  grog 
coarser  than  40-mesh  did  not  appear  to  have  much 
less  tendency  to  firecrack.  Increase  of  grog  re- 
duced the  tendency  to  firecrack.  The  kind  of  grog 
used  had  less  effect  on  the  tendency  to  firecrack 
than  the  size  and  the  amount,  the  kind  of  grog 
being  of  much  less  importance  than  the  kind  of 
j    clay  used. — H.  S.  H. 

;    Porcelain;  Tensile  strength  of .     F.  H.  Riddle 

and  J.  S.  Laird.     J.  Amer.  Ceram.  Soc.,  1922,  5, 
385—393. 

I  The  tensile  strength  of  porcelain  test-pieces  was 
;  determined  in  a  small  tensile  testing  machine  as 
|  used  in  the  testing  of  Portland  cement.  Different 
strengths  were  shown  by  specimens  prepared  in 
different  ways.  Good  triaxial  porcelain  had  a 
strength  of  3000  to  6000  lb.  per  eq.  in.,  while 
special  high  -  temperature  porcelains  showed 
strengths  up  to  10,000  to  12,000  lb.  per  sq.  in. 
The  ratio  of  tensile  to  compressive  strength  was 
5"9  for  the  special  porcelains  studied,  and  for 
triaxial  porcelains  had  an  average  of  7'6.  The 
tensile  strength  tests  showed  a  little  more  varia- 
tion than  the  compressive  strength  tests.  The 
tensile  strength  gave  more  reliable  indications  of 
the  impact  resistance  of  porcelain  than  did  the 
compressive  strength. — H.  S.  H. 

Glazes;     The    field    of    porcelain    maturing 

between  cones  17  and  20.  R.  Twells,  jun.  J. 
Amer.  Ceram.  Soc.  1922,  5,  430 — 439. 
Porcelain  glazes  were  prepared  based  on  the 
formula  (0-3K2O,0-7CuO),xALO3,ySiO2,  where  RO 
was  kept  constant,  x  varied  between  0'8  and 
1'6,  and  y  varied  from  6"0  to  1"6.  The  glazes 
were  applied  on  green  porcelain  discs  which  were 
air-dried  but  which  were  dipped  in  water  before 
dipping  in  the  glaze.  The  body  chosen  was 
vitreous  from  cone  17 — 19,  but  was  overfired  at 
cone  20  if  the  firing  period  was  long.  The  test- 
pieces  were  fired  in  commercial  kilns  to  cones  17|, 
18,  19,  and  20.  It  was  found  that  fine  crazing  due 
to  a  relatively  high  flint  content  could  be  corrected 
by  firing  to  a  higher  temperature,  though  it  was 
better  to  deerease  the  flint  content.  Coarse  craz- 
ing in  glazes  of  high  flux  content  seemed  to  be 
caused  or  accelerated  by  an  increased  firing  tem- 
perature and  could  be  remedied  by  increasing  both 
the  flint  and  clay  content,  the  latter  to  a  lesser 
extent  than  the  former.  The  best  glazes  for  tem- 
peratures between  cones  17  and  20  have  ranges  of 
composition  as  follows: — clay  21'9  to  27'2%,  flint 
40-8  to  51-8%,  felspar  172  to'23'6%,  whiting  72  to 
10-0%.— H.  S.  H. 

Enamel  reactions;  Microscopic  study  of  ground  coat 

mid  cover  coat .     E.  E.  Geisinger.     J.  Amer. 

Ceram.  Soc.,  1922,  5,  322—337. 

Ground  coat  and  cover  coat  enamels  were  applied 
to  steel  pieces  and  the  cross-sections  of  the  enamel 
examined  under  the  microscope  after  correct  firing 
in  an  oxidising  atmosphere  and  also  after  over- 
firing  and  after  firing  in   a   reducing  atmosphere. 


634  a 


Cl.  IX.— BUILDING  MATERIALS. 


[Aug.  31,  1922. 


Excessive  intermingling  of  ground  coat  and  cover 
coat  was  observed  due  to  their  flowing  temperatures 
being  too  close  to  one  another,  and  also  to  the  inter- 
action between  ingredients.  The  formation  of 
large  hubbies,  with  a  resulting  weak  structure, 
was  noted  with  enamels  of  high  viscosity  which 
did  not  allow  the  ready  escape  of  occluded  air  and 
gases.  Enamels  of  low  viscosity  formed  a  dense 
glass-like  structure.  The  tendency  to  excessive 
gasification  in  the  enamel  on  the  ware  at  high 
temperatures  could  be  seen.  An  enamel  which  was 
heterogeneous,  showing  some  unmelted  matrix,  did 
not  exhibit  fish-scaling  or  shivering  as  did  a  dense 
glass-like  enamel.  An  enamel  showing  excessive 
bubbling  would  often  shiver,  but  one  which  con- 
tained "small,  uniformly  dispersed  bubbles  was 
trenerallv  free  from  shivering  and  fish-scaling. 
b  — H.  S.  H. 

Glaze  and  enamel  calculations ;  A  modification  of  the 

empirical  formula   in  .     J.   E.   Hansen.     J. 

Amer.  Ceram.  Soc,  1922,  5,  338—345. 
The  disadvantages  of  the  usual  type  of  molecular 
formula  for  enamels  and  glazes  are  reviewed  and  it  is 
shown  by  calculation  back  to  the  batch  mixture  how 
the  molecular  formula  may  be  misinterpreted.  The 
following  type  of  empirical  formula  is  proposed:  — 
<Na30,  Na2F2,  K,0,  CaO,  CaP„  BaO,  ZnO,  PbO), 
(Al2b3,  ALF6),  SiO„  SiF4,  B20,,  Sb20,)-  It  is 
claimed  that  this  formula  presents  its  data  in  a 
simple  and  graphic  manner,  and  indicates  the 
mineralogical  and  physical  condition  in  which  most 
of  the  important  constituents  are  introduced  into 
the  batch.  There  is  little  danger  of  obtaining  the 
wrong  batch  mixture  upon  calculating  back  to  the 
raw  materials,  and  the  conclusions  to  be  drawn  from 
the  formula  are  fixed  and  definite. — H.  S.  H. 

Patents. 
Glass;  Manufacture  of  .     Westinghouse  Lamp 

Co  ,  Assees.  of  A.  H.  Compton.       E.P.  1^0,563, 

15.9.21.  Conv.,  16.10.20. 
A  glass  resistant  to  the  chemical  action  of  vapours 
of  the  metals  of  the  sodium  group  contains  no  silica 
and  is  made  by  fusing  at  least  50%  of  boron  oxide 
with  one  or  more  of  the  oxides  (or  substances  which 
yield  the  oxide)  of  sodium,  potassium,  lithium, 
rubidium,  cresium,  aluminium,  calcium,  barium, 
strontium,  and  magnesium.  If  the  glass  contains 
only  boron  oxide  and  one  or  more  of  the  alkali 
metals  it  is  soluble  in  water,  but  this  can  be  avoided 
by  adding  one  or  more  of  the  oxides  of  aluminium, 
calcium,  barium,  strontium,  and  magnesium. 

— H.  fa.  11. 

Glass;  Gathering  of .    H.  Blanc.    E.P.  182,011, 

27.7.21. 
A  helical  coil  of  piping  through  which  cold  water 
is  flowing  is  lowered  into  the  molten  glass  in  the 
furnace.  Within  this  coil  is  placed  a  similar  but 
smaller  coil  which  constitutes  the  gatherer.  The 
local  chilling  of  the  glass  produces  a  crust  of  glass 
between  the  convolutions  of  the  gathering  coil. 
The  gathering  coil  is  then  raised  and  the  glass  re- 
moved is  dropped  into  a  receptacle  placed  at  a 
higher  point  within  the  furnace  and  subjected  to  the 
hot  furnace  gases.  The  reheated  glass  is  allowed  to 
flow  from  this  receptacle  as  required.— H.  S.  H. 

Glass;  Method  and  apparatus  for  the  manufacture 

of  .     Manufacture  of  glass.     R.  Good,  Assr. 

to  Hazel  Atlas  Glass  Co.  U.S.P.  (a)  1,421,210 
and  (b)  1,421,211,  27.6.22.  Appl.,  1.12.19. 
(a)  The  batch  is  fed  vertically  downward  into  the 
glass-meltiii"  tank  through  one  or  more  tapering 
pipes,  wherein,  by  reason  of  the  lessening  diameter, 
the  material  is  subjected  to  a  progressively  increas- 
ing temperature  until  fusion  is  effected  and  the 
material   flows    into   the   tank.       (b)   The   batch   is 


heated  in  a  vertical  conical  receptacle  until  it 
becomes  semi-molten  and  flows  into  a  tank,  in  which 
it  is  further  heated  by  a  heating  medium  out  of 
contact  with  the  batch  until  it  is  thoroughly  molten 
and  refined,  and  provides  a  continuous  supply  of 
glass  ready  for  use. — A.  B.  S. 

Glass;  Method  of  producing  non-shatterable  . 

O.    S.    Marckworth.       U.S.P.    1,421,974,   4.7.22. 
Appl.,  26.3.19. 

A  MF.TnoD  of  producing  non-shatterablo  glass  com- 
prises immersing  the  assembled  glass  and  celluloid 
laminae  in  a  solution  of  fusel  oil,  camphor,  and 
methyl  salicylate  at  a  temperature  of  24° — 35°  C. 
and  subsequently  raising  the  temperature  of  the 
solution,  applying  pressure  to  the  lamina?,  and 
subjecting  the  parts  to  a  progressively  increasing 
temperature,  during  the  application  of  pressure. 

— H.  S.  H. 

Sheet  glass;  Method  and  apparatus  for  producing 

.     J.  P.  Crowley  and  C.  A.  Rowley,  Assrs.  to 

The     Libbey-Owens     Sheet     Glass     Co.       U.S.P. 
1,422,036,  4.7.22.     Appl.,  17.1.21. 

Sheet  glass  is  produced  continuously  by  allowing  a 
stream  of  molten  glass  to  flow  downward  into  a  space 
between  a  pair  of  horizontal  cylindrical  metallic 
rollers,  having  their  faces  tinned.  The  rollers  are 
cooled  internally  and  are  rotated  in  opposite  direc- 
tions in  a  heated  chamber,  the  lower  portions  of  the 
rollers  dipping  into  receptacles  containing  molten 
tin.  The  thickness  of  the  sheet  of  glass  is  regulated 
by  varying  the  distance  between  the  rollers.  The 
sheet  of  glass  is  cooled  as  it  emerges  from  the  heated 
chamber  enclosing  the  rollers. — A.  B.  S. 

Kilns    [for    burning    ceramic    wares}.      W.    G.   de 

Steigner.  E.P.  181,502,  16.3.21. 
A  continuous  kiln  consisting  of  a  heating  chamber 
having  a  horizontal  middle  portion  and  downwardly 
inclined  end  portions  is  so  heated  as  to  be  pro- 
gressively cooler  from  the  middle  portion  to  the 
ends.  Means  are  provided  for  moving  a  series  of 
articles  step  by  step  through  the  kiln.  The  articles 
are  maintained  in  an  upright  position  throughout 
their  passage  through  the  heating  chamber,  the 
carriers  being  moved  horizontally  and  vertically 
step  by  step. — H.  S.  H. 

Clay;  Process  for  weatherproofing  .     W.   H. 

Allen.     U.S.P.  1,421,888,  4.7.22.     Appl.,  6.9.21. 
A  coating  of  a  weather-resisting  medium  is  applied 
after  calcium  silicate  has  been  deposited  by  chemical 
action   in  the  surface  pores  of  the  unbaked  clay. 

— H.  S.  H. 

Glass;  Apparatus  for  forming  window  by  the 

lifting    process.      W.    G.    Clark.      E.P.   160,806, 
29.3.21.     Conv.,  29.3.20. 

Glass;  Manufacture  of  raw  plate  and  method 

and  apparatus  for  use  therein.     A.  W.  Mathys. 

From  Bicheroux  Lambot'te  et  Cie.     E.P.  182, 5ol, 

1.4.21. 
Befractory  silica  brick  and  process  of  manufacture. 

O   Rebuffat,  Assr.  to  Pomilio  Bros.  Corp.    U.b.r. 

1,420,284,  20.6.22.     Appl.,  5.12.21. 
See  E.P.  159,865  of  1921;  J.,  1922,  464  a. 


IX.-BUILDING  MATERIALS. 

Stucco      and     flooring;     New      developments     tn 

oxychloride  .     J.  B.  Shaw  and  G.  A.  Bole. 

J.  Amer.  Ceram.  Soc.,  1922,  5,  311-321. 

•V  Calii  oknian  magnesite  was  calcined  at  1000°  C. 

and  a  dolomitic  limestone  at  650°-700°  C  and  at 

77QO—8000  C,  about  18%  of  frco  limo  being  present 


Vol.  XLL,  No.  16.]     Cl  X.— METALS  ;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     633  A 


after  the  latter  calcination.  Cements  were  pre- 
pared from  these  substances  with  calcium  or  mag- 
nesium chloride  solutions,  sawdust  being  used  as  a 
filler.  The  time  of  setting,  shrinkage  and  ten- 
dency to  crack  on  drying,  specific  gravity,  and 
tensile  strength  were  determined.  It  was  found 
that  magnesite  must  be  diluted  with  some  coarse 
aggregate  to  give  a  satisfactory  cement  with  mag- 
nesium chloride.  Cements  made  from  dolomite 
were  as  satisfactory  as  those  made  from  magnesite 
with  an  equal  magnesia  content,  but  free  lime  re- 
sulting from  overburning  the  dolomite  was  injuri- 
ous. Both  dolomite  and  magnesite  gave  cements 
of  higher  tensile  strength  than  Portland  cement. 
Calcium  chloride  can  be  substituted  for  magnesium 
chloride  only  under  special  conditions,  e.g.,  the 
solution  should  be  more  dilute  and  less  filler  should 
be  used.  Mixtures  of  the  two  chlorides  did  not 
give  as  good  cements  as  either  separately.  The 
effect  of  fineness  of  grinding,  temperature  and 
humidity  of  the  atmosphere  during  setting, 
strength  of  the  chloride  solution,  the  addition  of 
different  kinds  of  coarse  aggregate,  expansion,  and 
weathering  on  cements  prepared  from  various 
dolomites  was  examined. — H.  S.  H. 

Cement;  Effect  of  loio  temperatures  on  the  harden- 
ing of .    H.  Kreuger.    Beton  u.  Eisen,  1922, 

21,  7-1—73.  Chem.  Zentr.,  1922,  93,  IV.,  32. 
The  objectionable  action  of  frost  on  the  setting  of 
cement  is  prevented  if  the  temperature  is  kept  at 
4 — 6°  C.  for  2  days  before  exposure  to  frost.  Moist 
cement-mortar  and  concrete  when  exposed  alter- 
nately to  heat  and  frost  attain  a  lower  strength 
than  under  normal  conditions.  On  keeping  cement 
in  air  at  temperatures  between  0°  and  16°  C,  the 
hardening  proceeds  more  slowly  the  lower  the  tem- 
perature, but  considerable  hardening  takes  place 
even  at  2°  0.— A.  B.  S. 

Yellow  pine  crude  oil;  Toxicity  of  Western  to 

Lenzites  Saepiaria,  Fries.  Studies  in  wood 
decay.  H.  Schmitz.  J.  Ind.  Eng.  Chem.,  1922, 
14,  617—618.  (Cf.  J.,  1921,  660  a.) 
The  low  toxicity  and  high  rate  of  evaporation  of 
tho  crude  oil  from  the  distillation  of  Western  yellow 
pine  make  it  of  little  value  as  a  general  wood  pre- 
servative. It  may,  however,  be  adapted  to  special 
uses,  as  in  the  manufacture  of  shingle  stains  and 
preservative  paints.  The  toxicity  was  determined 
with  sawdust  from  three  species  of  wood  as  culture 
media.  The  toxicity  point  varies  slightly  with  the 
species  of  wood  used.  It  is  suggested  that  an  ideal 
way  to  determine  the  toxicity  of  wood  preservatives 
to  wood-destroying  fungi  would  be  to  set  up  such  a 
culture  series  as  was  used  in  this  work,  and  to 
determine  the  actual  decomposition  of  the  wood  as 
indicated  by  the  loss  in  weight  of  the  flasks.  The 
disadvantage  would  be  that  at  least  three  months 
would  be  necessary,  during  which  a  volatile  preserva- 
tive would  evaporate  considerably.  The  Petri  dish 
method  was  also  used  in  this  investigation. 

— H.  C.  R. 
Patents. 
Cement    manufacture    land    low-temperature    car- 
bonisation.']     Merz  and   McLellan,    and  E.    G. 
Weeks.     E.P.  181,811,  17.3.21. 
A  (t.mi:xt  kiln  is  worked  in  conjunction  with  a  low- 
temperature   carbonisation   plant   in  such   manner 
that  the  coke  residue  from  the  latter,  with  or  with- 
out other  fuel,  is  used  to  heat  the  kiln,  and  the 
exhaust  gases  from  the  kiln  (with  or  without  the 
sensible  heat  and/or  heat  of  combustion  of  gas  from 
the  carbonisation  plant)  are  used  to  raise  steam  for 
use  in  the  carbonisation  process. — A.  B.  S. 

Stone;  Process  and  composition  for  coating  natural 

and  artificial .    W.Schneider.    E.P.  182,213, 

30.3.21. 

Natural  or  artificial  stone  is  coated  with  a  mixture 


of  a  cementitious  material  (15  kg.  of  sulphur,  4  kg. 
of  graphite  or  sandstone,  and  1  kg.  of  small  shot, 
melted  together  and  afterwards  ground  and  mixed 
with  about  half  its  weight  of  Portland  cement  or 
plaster  of  Paris),  and  a  metal  or  metals,  such  as 
tin  or  lead,  or  an  alloy  melting  at  a  low  tempera- 
ture. A  hot  iron  is  subsequently  passed  over  the 
material  to  produce  a  smooth,  continuous  metal 
surface.  A  sheet  of  metal  may  be  applied  to  the 
coating,  whilst  the  metallic  portions  thereof  are  in 
a  molten  condition,  and  a  portion  of  the  coating 
may  be  cut  away,  so  as  to  leave  a  raised  design 
or  inscription  in  metal. — A.  B.  S. 

Insulating  cement  or  mortar.  A.  S.  Elsenbast  and 
W.  L.  Jordan.  U.S. P.  1,421,192,  27.6.22.  Appl., 
19.3.21. 

Ax  insulating  cement  is  made  of  powdered  diatom- 
aceous  earth,  clay,  and  starch. — A.  B.  S. 

Cement  kilns:  Method  of  utilising  waste-heat  gases 

of  .     J.   E.   Bell.     U.S.P.   1,421,386,   4.7.22. 

Appl.,  26.9.19. 

A  plant  comprising  a  cement  kiln,  a  waste-heat 
flue  leading  therefrom,  and  an  element  for  utilis- 
ing the  heat  of  the  gases  in  the  flue  is  so  operated 
that  the  waste  gases  in  the  flue  contain  a  con- 
siderable amount  of  free  oxygen.  The  temperature 
and  heat  efficiency  of  the  gases  in  the  waste-heat 
flue  and  heat-utilising  element  are  increased  by 
feeding  finely  divided  fuel  into  the  flue  in  such 
quantity  that  it  combines  with  the  free  oxygen  in 
the  waste  gases  and  raises  the  temperature  of  the 
whole  body  of  gas.— H.  S.  H. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTBO-METALLUBGY. 

Boiler  plates;  Strength   and   elasticity  of  at 

elevated  temperatures.  H.  J.  French.  Chem. 
and  Met.  Eng.,  1922,  26,  1207—1209. 
In  all  grades  of  plates  the  tensile  strength  de- 
creased at  a  temperature  of  about  95°  C,  increased 
to  a  maximum  at  about  290°  C,  and  at  400°  C. 
again  approximated  to  the  value  at  atmospheric 
temperature.  The  limit  of  proportionality  in- 
creased to  a  maximum  at  about  150°  C,  fire- 
box plate  showing  a  more  distinct  change  than  the 
marine  grade.  Variation  in  the  value  of  the 
proportional  limit  was  not  so  marked  at  the  higher 
temperatures.  Elongation  showed  only  a  slight 
decrease  until  95°  C.  was  exceeded,  after  which  a 
maximum  value  was  obtained  at  245°  C,  which 
temperature  also  marked  a  minimum  value  for  the 
reduction  in  area.  The  maximum  tensile  strength 
did  not  coincide  with  the  minimum  value  for  the 
reduction  in  area  or  the  maximum  proportional 
limit.— C.  A.  K. 

Manganese  in  steels,  alloys,  and  ores;  Calorimctric 

estimation  of  .     J.  Heslinga.     Chem.  Week- 

blad,  1922,  19,  302—303. 

Oxidation  to  manganate  or  permanganate  is  not 
suitable  for  colorimetric  estimation  if  iron  be  pre- 
sent. The  compound,  H2Mn03,  gives  a  brown 
colour  in  alkaline  solution  very  suitable  for  the 
estimation.  Trivalent  metals  and  copper  are  pre- 
cipitated from  the  solution  of  the  sample  by  shaking 
for  a  few  minutes  with  powdered  zinc  oxide. 
The  filtered  solution  is  added  to  a  mixture  of  3% 
hydrogen  peroxide  and  10%  potassium  hydroxide, 
,;nci  the  colour  produced  compared  with  that  given 
by  a  standard  manganese  solution.  Lead  does  not 
interfere  if  excess  of  alkali  be  used ;  if  nickel  or 
cobalt  be  present  potassium  cyanide  is  added. 
0'02  mg.  of  manganese  is  easily  detected, — S.  I.  L. 

u 


633  A  Cl.  X.— METALS  ;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     [Aug.  31, 1922. 


Nickel;  Structure  of  electrolytically  deposited . 

V    Kohlschutter  and  H.  Schodl.       Helv.   Chim. 

Acta,  1922,  5,  490—512. 
It  was  shown  by  Kohlschutter  and  Vuillemier  (Z. 
Elektrochem.,  1918,  24,  300)  that,  according  to  the 
conditions  under  which  it  is  deposited,  electrolytic 
nickel  shows  a  linear  contraction  to  a  greater  or 
less  extent,  and  a  method  was  devised  for  measur- 
ing this  contraction.  It  was  later  found  by  Stager 
(J°,  1920,  7S7  a)  that  this  contraction  could  be  more 
or  less  eliminated  by  the  use  of  depolarisers  or  by 
superposing  on  the  direct  current  an  alternating 
current.  Comparisons  have  now  been  made  of  the 
micro-structures  of  different  deposits,  some  of 
which  showed  contraction  on  deposition  and  some  of 
which  did  not.  Although  the  surfaces  of  the 
deposits  differed  in  appearance  their  internal  struc- 
tures were  practically  indistinguishable.  It  is  con- 
cluded that  the  phenomenon  is  purely  a  surface  one 
involving  aggregation  of  particles  originally 
deposited  in  a  highly  disperse  form.  Deposits 
obtained  with  direct  current  were  brittle,  those 
obtained  with  a  superposed  alternating  current 
were  more  flexible.  There  is  no  apparent  relation 
between  brittleness  and  the  contraction  effect.  The 
brittleness  is  probably  due  to  the  presence  of 
hvdrogeu  in  the  metal.     (C/.  J.C.S.,  Sept.) 

— E.  H.  R. 

Nickel;  Influence  of  superposed  alternating  current 

on  the  deposition  and  solution  potential  of  . 

V.   Kohlschutter  and  H.   Schodl.       Helv.  Chim. 
Acta,  1922,  5,  593—609. 

In  this  paper  are  recorded  potential  measurements 
made  in  the  course  of  the  investigation  previously 
described  (cf.  supra).  The  superposition  of  an  alter- 
nating current  causes  a  lowering  of  the  cathode 
potential  more  or  less  parallel  with  the  lessening  of 
the  contraction  effect  in  the  metallic  deposit.  The 
relation,  however,  between  the  structure  and  ■con- 
traction of  the  metal  on  the  one  hand,  and  the 
deposition  potential  on  the  other,  may  not  be  so 
close  as  at  first  appears  to  be  the  case.  It  is  impos- 
sible to  observe  the  structure  of  the  deposit  formed 
at  an  abnormally  high  cathode  potential,  since  con- 
traction, probably  accompanied  by  a  modification  of 
structure,  is  almost  instantaneous.  Undoubtedly 
hydrogen  is  the  dominant  factor  in  these  pheno- 
mena.— E.  H.  R. 

Metals;   Apparatus  for  the  deposition  of  on 

large  surfaces  by  cathodic  projection.  P.  Lam- 
bert and  A.  Andant.  Comptes  rend.,  1922,  175, 
154—156. 
The  apparatus  consists  of  two  large  concentric 
glass  bell  jars.  The  outer  stands  on  a  glass  or 
enamelled  plate,  the  joint  being  made  by  means 
of  a  rubber  ring.  The  inner  jar  stands  in  a  slot, 
cut  in  the  plate,  and  filled  with  mercury.  The 
vacuum  is  made  by  means  of  a  Gaede  mercury 
pump,  combined  with  a  preparatory  pump.  The 
inner  jar  and  the  annular  space  between  it  and 
the  outer  jar  are  simultaneously  exhausted,  the 
former  through  an  iron  pipe  passing  through  the 
plate  and  forming  at  the  same  time  the  anode, 
and  the  latter  through  the  neck  which  is  provided 
with  a  ground-in  stopper.  The  slight  difference 
in  pressure  between  the  inner  and  outer  bell  jars 
does  not  cause  the  mercury  in  the  slot  to  rise 
more  than  1 — 2  cm.  When  the  desired  vacuum 
has  been  reached  in  the  inner  jar  it  is  automatically 
cut  off  from  the  pump  by  a  small  mercury  mano- 
meter, whilst  the  connexion  is  still  maintained  for 
the  lower  vacuum  in  the  outer  jar.  The  cathode 
is  carried  by  an  iron  rod  joined  to  a  platinum  wire 
which  passes  through  the  stoppers  of  the  two  bell 
jars.  The  cathode  itself  consists  of  an  iron  disc 
to  which  is  attached  a  thin  leaf  of  the  metal  to 
be  projected. — G.  P.  M. 


Liquid  metals;  Precipitation  [segregatioix]  in . 

W.  Kroll.     Metall  u.  Erz,  1922,   19,  317—324. 

In  the  liquation  of  metallic  residues  containing 
large  proportions  of  tin,  lead,  and  copper  with 
smaller  amounts  of  arsenic  and  antimony  and  a 
little  iron,  nickel,  bismuth,  and  precious  metals, 
the  first  runnings  consist  of  the  tin-lead  eutectic 
containing  most  of  the  precious  metals,  whilst  the 
iron  and  about  half  the  arsenic,  antimony,  and 
copper  remain  in  the  portion  still  solid  at  800°  C. 
The  remainder  of  the  copper  and  antimony  is  dis- 
tributed throughout  the  several  fractions  that  have 
liquated  at  different  temperatures.  Addition  of 
zinc  or  cadmium  to  the  metal  before  liquating 
causes  the  antimony  to  go  into  the  tin  fractions 
and  the  copper  to  remain  in  the  residue.  Alumi- 
nium, on  the  other  hand,  holds  the  antimony, 
arsenic,  and  copper  with  itself  in  the  residue. 
Experiments  on  the  purification  of  lead,  tin,  and 
copper  containing  other  metal  impurities  showed 
that  antimony,  arsenic,  bismuth,  sulphur,  selenium, 
and  tellurium  may  be  precipitated,  or  caused  to 
segregate,  from  the  molten  metal  by  addition  of 
alkali  or  alkaline-earth  metals,  such  as  6odium  or 
calcium,  which  form  difficultly  fusible  compounds 
with  these  elements  and  in  most  cases  do  not 
remain  themselves  in  the  metal  undergoing  puri- 
fication. Zinc,  cadmium,  and  the  precious  metals 
are  not  affected  by  this  treatment.  Results  of  a 
number  of  tests  carried  out  on  antimonial  lead, 
lead-bismuth,  copper-antimony,  and  tin-antimony 
alloys  are  tabulated. — A.  R.  P. 

Alloys;  Analysis  of  — —  by  the  aid  of  specific  heats. 

K.   Zahlbruckner.     Chem.-Zeit.,   1922,   46,   637— 

638. 
The  proportion  of  two  metals,  of  known  specific 
heat,  in  an  alloy  may  be  found  by  determining 
the  specific  heat  of  the  alloy  by  means  of  the  usual 
water  calorimeter,  the  value  found  being  equal  to 
the  sum  of  the  products  of  the  percentage  of  each 
constituent  present  and  its  specific  heat.  In  the 
case  of  a  ternary  alloy  the  proportion  of  one  con- 
stituent must  be  found  by  chemical  analysis,  or, 
assuming  that  the  specific  gravity  of  the  con- 
stituents is  also  known,  by  determining  the  specific 
gravity  of  the  alloy  and  plotting  two  equations. 
In  order  to  obtain  results  to  1%  by  this  method 
the  temperature  measurements  must  be  made  in 
hundredths  of  a  degree.  Examples  and  graphs 
showing  the  application  of  the  method  are  given. 

—A.  R.  P. 

Gases  from  deflagrated  metals.   Thomson.   See  VII. 

Patents. 

Magnetic  alloy  sheets;  Manufacture  of .     A.  E. 

White.     From  The  Valley  Holding  Corp.     E.P. 

181,401,  8.12.20. 
In  order  to  control  the  grain  size  of  the  metal  the 
pressuro  and  temperature  are  carefully  regulated 
during  the  final  rolling.  Tho  ingot  is  reduced  in 
stages  by  heating  the  metal  slowly  to  1200°  F. 
(650°  C),  and  then  raising  the  temperature  and 
rolling  into  sheets.  The  temperature  of  the  metal 
before  the  final  pass  under  controlled  pressure  is 
such  that  the  finished  sheet  leaves  the  rolls  at  about 
the  recalescence  point  of  the  metal.  The  heating 
processes  are  conducted  so  that  the  sheets  are  kept 
out  of  contact  with  tho  flame. — C.  A.  K. 

Iron  or  steel  articles;  Process  for  coating with 

lead  with  or  without  other  metals.  W.  J- 
Mellcrsh-Jackson.  From  Leadizing  Co.  E.P. 
181,781,  19.2.21. 
See  U.S.P.  1,405,167  of  1922;  J.,  1922,  221  a.  The 
solution  may  contain  40 — 50  %  by  wt.  of  lead  acetate 
and  5%  or  more  of  acetic  acid;  it  is  used  at  a  tem- 
perature of  about  70°— 80°  C. 


Vol.  xli.  No.  16.]   Cl.   X.— METALS;    METALLURGY,    INCLUDING   ELECTRO-METALLURGY.     637  a 


Alloy  steel;  Process  of  making .     J.  McConnell, 

Assr.  to  Interstate  Iron  and  Steel  Co.       U.S. P. 
1,420,328,  20.6.22.     Appl.,  5.6.20. 
A  charge  of  crushed  alloying  metal  and  aluminium 
shot  is  added  to  molten  open-hearth  steel  as  it  flows 
from  the  furnace  into  the  ladle. — C  A.  K. 

Alloy  steel.     C.  M.  Johnson.     U.S. P.  1,420,707-8, 

27.6.22.    Appl.,  (a)  6.8.20,  (b)  28.3.21. 
The  steel  contains  (a)  10—20%  Cr,  9—25%  Ni,  and 
1—10%    Si,    or   (b)   6—18%    Cr,   12—36%    Ni   (the 
nickel  being  at  least  double  the  chromium  content), 
1—10%  Si,  and  at  least  50%  Fe  —  A.  R.  P. 

Internal  members   of   the   human   bodtj ;  Material 

[steel]     for    artificial    .       F.     Hauptmeyer. 

U.S. P.  1,421,776,  4.7.22.    Appl.,  3.9.20. 
Chromium-nickel    steel    containing    18 — 23%    Cr, 
5—10%  Ni,  and  OT— 0"4%  C  is  used  for  the  manu- 
facture of  artificial  internal  members  for  the  human 
body.^C.  A.  K. 

Ferromanganese;  Melting  .     J.  H.   Hall  and 

R.  D.  Jordan,  Assrs.  to  Taylor-Wharton  Iron  and 
Steel  Co.  U.S. P.  1,421,218,  27.6.22.  Appl., 
15.7.20. 
Successive  layers  of  ferromanganese  and  coke  are 
charged  into  a  cupola,  together  with  a  substance 
capable  of  neutralising  the  oxides  produced  during 
melting.  The  cupola  is  worked  at  its  full  capacity, 
and  the  molten  ferromanganese  is  tapped  off  at 
frequent  intervals. — C.  A.  K. 

Alloys   [e.g.    aluminium-silicon   alloy];   Method    of 

producing .    A.  Paez.    E.P.  160,426,  18.3.21. 

Conv.,  18.3.20. 

A  mixture  of  sodium  silicofluoride  and  the  requisite 
amount  of  aluminium  powder  to  liberate  the  con- 
tained silicon  is  pressed  into  any  suitable  shape  and 
introduced  into  a  bath  of  molten  aluminium  at  a 
temperature  just  a/bove  its  melting  point.    The  heat 
of  the  reaction  may  be  utilised  to  introduce  further 
quantities  of  silicon  or  other  metal  into  the  alloy, 
by  adding  the  powdered  metal  to  the  mixture  from 
which  the  briquette  is  made.    A  similar  process  may 
be  used  for  alloying  a  metal  of  high  melting  point 
;  with  one  of  a  lower  melting  point,  e.g.  a  mixture 
l  of  aluminium  and  sodium  zirconofluoride  is  added  to 
.  molten   iron,    whereby    an  iron-zirconium    alloy   is 
obtained. — A.  R.  P. 

Furnaces  of  the  crucible  type;  Gas  or  oil  heated 
.  The  Stockport  Furnaces,  Ltd.,  E.  Duck- 
worth, and  A.  Mead.    E.P.  181,452,  9.3.21. 

Cold  gases  for  combustion  are  conveyed  upwards 
i  through  a  spiral  pipe  fitted  in  an  annular  chamber 
I  in  the  walls  of  a  crucible  furnace  and  then  down- 
:  wards  through   a  pipe  to  the   burner.     The  spiral 

piping  is  of  such  a  diameter  as  to  extend  from  side 
>  to  side  of  the   annular   chamber,   and   so  forms   a 

spiral  flue  for  the  products  of  combustion,  which 
'escape  through  an  exit  in  the  lower  part  of  the  wall 

of  the  furnace. — C.  A.  K. 

Furnace  for  metallurgical  and  analogous  purposes. 
Wellman  Smith  Owen  Engineering  Corp.,  Ltd., 
I  and  A.  V.  Kemp.  E.P.  181,863,  1.4.21. 
In  furnaces  having  superimposed  arches  or  crowns, 
leaving  a  passage  in  which  the  air  required  for 
combustion  is  preheated,  and  a  passage  above  for 
the  waste  gases  from  the  furnace,  the  arch  bricks 
are  allowed  to  project  into  the  passage-ways  so  as 
to  provide  a  baffle  arrangement. — C.  A.  K. 


Milting  furnace.     A.  J 
Fuel  Equipment  Co. 
'    Appl.,  3.3.22. 

.Combustion  of  pulverised  fuel  is  effected  in  a  com- 


Grindle,  Assr.  to  Grindle 
U.S. P.  1,420.312,  20.6.22. 


bastion  chamber  at  one  end  of  a  furnace,  the  floor 
of  the  combustion  chamber  being  at  a  higher  level 
than,  and  draining  into,  the  hearth  of  the  melting 
chamber. — C.  A.  K. 

Metallic  poieders;  Manufacture  of  .       W.  M. 

Gillespie  and  P.  Buckley.  E.P.  181,831,  21.3.21. 
A  solution  of  the  required  metal  is  electrolysed 
between  an  anode,  consisting  preferably  of  scrap 
metal,  and  a  suitable  cathode,  the  current  density 
at  the  latter  being  such  that  the  metal  is  deposited 
on  it  as  a  loose  non-coherent  powder  which  is  con- 
tinually removed  by  passing  the  electrolyte  rapidly 
between  the  electrodes.  The  electrolyte  is  circu- 
lated through  the  cells  by  means  of  a  pump,  and  the 
suspended  metal  is  filtered  off  before  the  liquid  is 
returned  to  the  pump. — A.  R.  P. 

Oxides  of  tungsten  or  molybdenum ;  Process  for  the 

reduction,  of  .     R.  E.  Pearson,  E.  N.  Craig, 

and  Durelco,  Ltd.     E.P.  181,837,  22.3.21. 

Moist  molybdenum  or  tungsten  oxide  or  hydrated 
oxide  is  mixed  to  a  paste  with  sulphuric  acid,  and 
the  mixture  is  introduced  into  a  porous  pot  sur- 
rounding a  cathode  consisting  of  a  bundle  of  nickel- 
chromium  alloy  rods.  The  anode  of  the  cell  consists 
of  a  lead  plate  embedded  in  a  mass  of  scrap 
molybdenum  (or  other  easily  oxidisable  material) 
contained  in  a  porous  pot.  On  passing  a  direct 
current  through  the  cell  and  agitating  the  paste 
surrounding  the  cathode,  the  oxide  contained  there- 
in is  reduced  to  a  lower  oxide  from  which,  by  suit- 
able washing,  impurities  such  as  iron,  calcium,  and 
sodium  salts  may  be  more  readily  removed  than 
from  the  original  trioxide.  At  the  same  time  the 
waste  metal  surrounding  the  anode  is  oxidised  to 
trioxide,  which  is  used  to  make  further  quantities 
of  the  reduced  oxide.  The  latter,  after  washing 
and  drying,  is  reduced  to  a  metallic  powder  by 
heating  in  a  current  of  hydrogen  in  known  manner. 

—A.  R.  P. 

Ores;  Method  of  and  apparatus  for  smelting  . 

V.     P.     Y.     Sacio.     U.S.P.     1,419,764,     13.6.22. 

Appl.,  26.4.19. 
The  bottom  of  a  blast  furnace  discharges  into  a  con- 
tainer of  crucible  shape  detached  from  the  furnace. 
The  crucible  is  contained  in  an  enclosed  chamber, 
and  an  outlet  allows  the  slag  to  fall  down  a  vertical 
granulating  column  in  which  it  preheats  the  air 
For  the  blast  furnace. — C.  A.  K. 

Tempering    and    annealing;    Apparatus    for    . 

D.  S.  Lavaud,  B.   F.  Clark,  and  C.  W.  Barnes, 

Assrs     to  The  Metallurgical  Plant  Construction 

Co.,    Ltd.      U.S.P.    1,420,379,    20.6.22.      Appl., 

2.3.22. 

After  treatment  in  a  heating  chamber,  the  heated 

articles   are   transferred  to   a   cooling   chamber   in 

which  a  steam  generator  takes  up  the  heat  evolved 

from  the  heated  material. — C.  A.  K. 

Alloy  of  refractory  metals  [for  filaments']  and  pro- 
cess of  forming  same.  J.  A.  Yunck.  U.S.P. 
1,422,019,  4.7.22.  Appl.,  17.1.13.  Renewed  14.7.21. 

An   alloy   suitable    for   the   manufacture    of   metal 

filaments  consists  of  at  least  95%  of  tungsten  and 

the  rest  pure  thorium. — A.  R.  P. 

Metallurgical    furnaces.      H.    D.    Hibbard.      E.P. 

162.624,  29.4.21. 
See  U.S.P.  1,362,532  of  1920;  J.,  1921,  87  a. 


Muffle  furnaces;   Electrically  heated  . 

Brown,  Boveri  &  Cie.  E.P.  181,875, 
(Addn.  to  159,195;  J.,  1921,  476  a.) 

See  G.P.  342,912  of  1920;  J.,  1922,  109  a. 


A.-G. 

4.4.21. 


638  j 


Cl.   XI.— ELECTRO-CHEMISTRY.        Cl.  XII.— FATS  ;   OILS  ;   WAXES.       [Aug.  31,  1922. 


Aluminium  alloy.  F.  C.  Frary,  Assr.  to  Aluminium 
Co  of  America.  Reissue  15,407,  11.7.22,  of 
U.S. P.  1,412,280,  11.4.22.    Appl.,  27.5.22. 

See  J.,  1922,  422  a. 

Zinc  alloy.     H.  Goldsehmidt  and  K.  Miiller,  Assrs. 

to     The     Chemical     Foundation,     Inc.       U.S. P. 

1,421,686,  4.7.22.     Appl.,  19.4.17. 
Seb  G.P.  301,784  of  1916;  J.,  1919,  869  a. 

Alloy  containing  iron,  nickel,  chromium.  P.  Girin, 
Assr.  to  Soc.  Anon,  de  Commentry,  Fourcham- 
bault,  et  Decazeville.  U.S. P.  1,422,096,  11.7.22. 
Appl.,  9.12.18. 

See  E.P.  140,507  of  1918;  J.,  1920,  412  a. 

Minerals  Containing  iron,  titanium,  and  vanadium; 

Process  of    treating  .      B.  P.  F.  Kjellberg. 

U.S.P.  1,419,971,  20.6.22.     Appl.,  3.11.19. 

See  G.P.  324,581  of  1919;  J.,  1920,  783  a. 

Zinc  sulphide  ores  or  the  like;  Roasting   complex: 

.    F.  W.  Harbord.    U.S.P.  1,422,701,  11.7.22. 

Appl.,  13.2.19. 

See  E.P.  124,266  of  1919;  J.,  1919,  372  a. 

Reheating  furnaces.  Stein  and  Atkinson,  Ltd., 
Assees.  of  La  Soc.  Anon,  des  Appareils  de  Manu- 
tentiou  et  Fours  Stein.  E.P.  181,670,  16.8.21. 
Conv.,  16.6.21. 

Electro  galvanising  machine.  F.  H.  Rogers.  From 
Meaker  Galvanizing  Co.     E.P.  181,756,  4.1.21. 


XI.-ELECTfiO-CHEMISTBY. 

Nickel.     Kohlschiitter  and  Schodl.     See  X. 

Patents. 

Electrochemical  reactions  [oxidation  of  hydro- 
carbons to  fatty  acids,  production  of  nitrates, 
hydrogenation,  etc.];  Processes  for  carrying  out 

and  apparatus  for  use  therein.     G.  Plauson. 

E.P.  (a)  181,848  and  (b)  181,849,  24.3.21. 

(a)  Electrochemical  reactions  are  carried  out  in  an 
electrolytic  cell  provided  with  an  anode,  the  super- 
ficial area  of  which  is  very  small  compared  with  that 
of  the  cathode,  and  which  is  heated  to  a  high 
temperature  by  the  current.  The  electrolytes  em- 
ployed contain  substances  to  be  acted  upon  by 
nascent  oxygen  or  its  equivalent  evolved  at  the 
anode,  or  if  desired  such  substances  are  brought  into 
the  reaction  zone  at  the  anode  in  the  form  of  solu- 
tions in  organic  solvents  or  as  gases.  Thus  the 
substance  may  be  introduced  into  the  anode  region 
through  a  tube,  the  end  of  which,  projecting  into 
the  electrolyte,  forms  the  anode.  The  gas  evolved 
at  the  anode  momentarily  interrupts  the  current,  so 
that  the  action  is  intermittent,  whereby  the  break- 
ing up  of  products  formed  during  the  electrolysis  is 
hindered  or  prevented.  The  process  is  applicable  to 
the  production  of  substances  of  the  nature  of  fatty 
acids,  by  the  electrolysis  of  a  solution  of  an  alkali 
bisulphate  with  or  without  persulphate,  and  con- 
taining a  hydrocarbon  oil  preferably  in  the  form  of 
an  emulsion.  Nitrates  may  be  produced  by  the 
electrolysis  of  a  salt  of  aluminium,  magnesium, 
calcium,  etc,  while  air  or  nitrogen  is  introduced  at 
the  anode,  (b)  The  area  of  the  cathode  of  an 
electrolytic  cell  is  small  compared  with  that  of  the 
anode  and  the  electrolyte  employed  is  such  that  an 
alkali  metal  is  liberated  at  the  cathode.  The 
current  density  of  the  cathode  is  adjusted  so  that 
the  temperature  of  the  cathode  exceeds  120°  C. 
Substances  such  as  oils,  hydrocarbons,  etc.  are 
introduced  into  the  immediate  region  of  the  cathode 
and  undergo  cracking,  hydrogenation,  polymerisa- 


tion, etc.  By  suitable  control  of  the  temperature 
of  the  cathode,  hydrogen  and  the  alkali  metal  are 
produced,  the  former  effecting  hydrogenation  of 
the  added  organic  substance  under  the  catalytic 
action  of  the  alkali  metal.  If  desired,  salts  of 
platinum,  palladium,  nickel,  etc.  may  be  added  to 
the  electrolyte,  the  catalytic  action  being  acceler- 
ated by  the  liberation  of  these  metals  at  the 
cathode.— J.  S.  G.  T. 

Electric  furnace.  K.  Leander,  Assr.  to  Ludlum 
Electric  Furnace  Corp.  U.S.P.  1,420,561,  20.6.22 
Appl.,  19.5.20. 

The  furnace  roof  is  supported  in  a  frame  so  that  it 
can  be  adjusted  vertically,  and  the  independent 
furnace  body  is  moved  into  and  out  of  position 
beneath  the  roof.  Electrodes  supported  by  the 
frame  pass  through  the  roof  to  the  furnace,  and 
means  are  provided  for  tilting  the  frame,  furnace 
bodv,  roof,  and  electrodes  in  order  to  discharge  the 
furnace.— J.   S.  G.   T. 

Electric  furnace.  S.  N.  Castle.  U.S.P.  1,420,687, 
27.6.22.     Appl.,  13.8.18. 

The  walls  of  the  crucible  of  an  electric  induction 
furnace  are  inclined  to  the  vertical  at  an  angle  not 
less  than  15°,  and  the  bath  contained  in  the  crucible 
is  interlinked  with  the  core  of  the  furnace.  Wind- 
ings supported  at  a  higher  level  than  the  bath  are 
likewise  interlinked  with  the  core. — J.  S.  G.  T. 

[Electrolyte  for]  electric  storage  battery.  E. 
Hacking.  U.S.P.  1,421,217,  27.6.22.  Appl., 
11.5.22. 

An  electrolyte  for  electric  storage  batteries  consists 
of  a  gelatinous  mass  of  sulphuric  acid,  sodium 
silicate,  and  mercury  bisulphate,  impregnated  with 
mineral  oil. — A.  B.  S. 

Electrolytic  cell.  J.  Harris,  Assr.  to  Carbo-Oxygen 
Co.     U.S.P.  1,420,037,  20.6.22.     Appl.,  4.8.19. 

See  E.P.  175,672  of  1920;  J.,  1921,  299  a. 

Electrical  resistance  material;  Process  of  manufac- 
turing   .      F.   Eichenberger,    Assr.    to  S.-A. 

Kummler  u.  Matter.     U.S.P.  1,420,980,  27.6.22. 
Appl.,  6.11.20. 

See  E.P.  153,602  of  1920;  J.,  1921,  740  a. 

Electrostatic   separation  of  finely-divided  discrete 

material;  Process  and  apparatus  for .    G.  R. 

Brown,    Assr.    to   Electrostatic    Separation    Co., 
Ltd.     U.S.P.  1,422,026,  4.7.22.     Appl.,  7.1.20. 

See  E.P.  168,479  of  1920;  J.,  1921,  739  a. 

See  also  pages  (a)  631,  Apparatus  for  effecting 
reactions  by  means  of  amalgams.  Electrolytic  re- 
duction and  oxidation  (U.S.P.  1,420,211-2).  632, 
Sodium  carbonate  (G.P.  350,002).  635,  Insulating 
cement  (U.S.P.  1,421,192).  637,  Metallic  powders 
(E.P.  181,831);  Reduction  of  oxides  of  tungsten  or 
molybdenum  (E.P.  181,837). 


XII.-FATS;    OILS;    WAXES. 

China  wood  oil  [tung  oil].  K.  H.  Bauer  and  K. 
Herberts.  Chem.  Umschau,  1922,  29,  229—232. 
China  wood  oil  contains  practically  no  saturated 
fatty  acid  and  very  little  oleic  acid,  elaeostearic 
acid,  C18H;,02,  being  the  characteristic  acid.  Both 
the  glyceride  and  the  fatty  acid  (o-acid)  derived 
from  it  change  to  isomeric  (j8)  forms  of  higher  m.p. 
by  exposure  to  light  or  by  the  influence  of  catalysts 
such  as  iodine  or  sulphur.  The  oil  obtained  by 
extraction  of  the  seed  with  a  solvent  containing 
sulphur,     e.g.,     carbon     bisulphide,     contains    the 


Vol.  XLI.,  No.  16.] 


Cl.  Xin.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


G39A 


glyeeride  of  the  /3-acid.  The  bromo-derivative  of 
o-elseostearic  acid,  although  having  a  m.p.  very 
close  to  that  of  the  bromo-derivative  of  linolic 
acid  (114°  and  114'5°  C.  respectively)  is  not 
identical  with  the  latter,  as  a  mixture  of  the 
two  bromo-derivatives  has  a  lower  m.p.  On 
denomination  of  the  bromo-derivative  of  o-elseo- 
stearic  acid,  neither  linolic  acid  nor  a-elaeostearic 
acid  (m.p.  48°  C.)  is  obtained,  but  /3-elseostearic 
acid  (m.p.  68° — 70°  C).  On  esterification  of  a-elseo- 
stearic  acid  with  methyl  alcohol  and  sulphuric  acid 
and  subsequent  separation  of  the  fatty  acid,  /3-elseo- 
stearic  acid  is  obtained,  a  result  attributed  not  to 
the  action  of  alkali,  but  to  that  of  the  acid  used  for 
esterification.  However,  on  saponification  of  o-elseo- 
stearic  acid  anhydride  and  liberation  of  the  acid, 
the  a-form  remains  unchanged.  (Cf.  Morrell,  J., 
1918,  181  t).— A.  de  W. 

Oil  of  grape  seeds.  The  solid  fatty  acids.  Method 
of  separation  of  stearic  and  palmitic  acids.  E. 
Andre.  Comptes  rend.,  1922,  175,  107—109.  (Cf. 
J.,  1921,  477  a,  518  a.) 

From  the  solid  fatty  acids,  obtained  from  the  oil 
of  grape  seeds,  the  author  has  isolated  stearic, 
palmitic,  and  melissic  acids.  The  last-named  acid 
probably  comes  from  the  waxy  layer  on  the  outer 
covering  of  the  seeds.  Palmitic  and  stearic  acids 
may  readily  be  separated  for  identification  by 
fractional  precipitation  of  their  lithium  salts  from 
a  solution  of  the  mixed  acids  in  95%  alcohol. — W.  G. 

Lemon  seeds;  Oil  of  .     A.  H.  Bennett.     Perf. 

Essent.  Oil  Rec.,  1922,  13,  260. 
Dried  lemon  seeds  contain  about  31%  of  their 
weight  of  an  oil,  which  after  either  hot  or  cold 
expression,  had  the  following  analytical  charac- 
ters:— acidity  11*6%  (as  oleic  acid),  saponif.  value 
189,  iodine  value  109,  sp.  gr.  09227,  titre  of  fatty 
acids  31-9°  C,  mol.  wt.  of  fatty  acids  281.  The  oil 
had  a  bitter  flavour,  and  was  of  a  clear  orange  colour 
when  obtained  by  cold  extraction,  but  much  darker 
when  prepared  by  hot  extraction. — G.  F.  M. 

Fermentation  of  glycerol.  Miiller  and  Miiller.  See 
XVIH. 


Samuela    carnerosana    fruit. 
See  XX. 


Black    and    Kelly. 


Patents. 

Soap  composition  and  process  of  making  the  same. 
E.  G.  Acheson.  U.S.P.  1,419,952,  20.6.22. 
Appl.,  5.10.20. 

Clay  is  subjected  to  a  deflocculating  process, 
whereby  it  is  partially  transformed  to  the  colloidal 
state,  and  the  colloidal  clay  is  subsequently  re-floc- 
culated in  the  presence  of  the  residual  fine  material. 
The  product  is  incorporated  with  soap-stock. 

— L.  A.  C. 

Oil  or  like  presses  or  expressing  apparatus  of  the 
worm  screw  type.  G.  R.  Schueler.  E.P.  182,171, 
23.3.21. 

Electrochemical  reactions.   E.P.  181,848-9.  See  XI. 


XIII.— PAINTS ;     PIGMENTS;    VABNISHES; 
RESINS. 

Boiled   oil  substitutes   as  protective   compositions; 

Examination   of  ■   with   special  reference   to 

their     rust-inhibiting     properties.       Maass     and 
Junk.    Z.  angew.  Chem.,  1922,  35,  353,  360—363. 

An  investigation  was  undertaken  during  the  war  by 
the  Beichsausschuss  fur  Metallschutz  to  determine 
how  far  linseed  oil  could  be  replaced  by  materials 
entirely  obtainable  within  the  Central  Empires  for 


making  products  for  use  by  the  railway  and 
postal  services  as  rust-preventing  and  other  pro- 
tective coatings.  Since  the  substances  commonly 
used  as  paint  oil  substitutes,  i.e.,  calcium  and  zinc 
rosinates,  coumarone  resin,  and  phenol-aldehyde 
condensation  resins,  in  coail-tar  solvents,  either 
furnished  unsuitable  films  or  were  too  scarce  at 
the  time,  attention  was  directed  to  products 
from  coniferous  wood  tar,  dissolved  in  a  volatile 
solvent,  particularly  as  tar  fractions  had  from 
previous  experience  shown  favourable  results  in 
rust  inhibition.  The  tests  applied  comprised 
behaviour  on  application  to  non-absorbent  (glass, 
iron)  and  absorbent  surfaces  (plaster,  pasteboard, 
wood),  spreading  power  as  determined  by  absorp- 
tion on  porous  surfaces,  elasticity  and  adhesion  of 
the  dried  film  (bending  tests),  weather-resistance, 
resistance  to  changes  of  temperature,  resistance  to 
water  vapour  at  80°  C,  water  absorption  and 
impermeability  to  water,  and  rust-inhibiting  pro- 
perties. On  the  whole  the  products  examined 
(excepting  one  which  contained  30%  of  linseed  oil) 
compared  unfavourably  with  boiled  linseed  oil 
excepting  in  so  far  as  impermeability  and  rust- 
inhibition  were  concerned.  It  was  concluded  that 
linseed  oil  could  be  partly  replaced  in  protective 
coatings  if  results  up  to  a  certain  limit  of  efficacy 
only  were  desired. — A.  de  W. 

Drying  oils  from  petroleum  and  other  products, 
produced  by  chlorination  and  dechlorination. 
H.  A.  Gardner  and  E.  Bielouss.  J.  Ind.  Eng. 
Chem.,  1922,  14,  619—621. 

A  non-viscous  "neutral"  mineral  oil  consisting 
chiefly  of  hydrocarbons  from  C,,H36  to  C26H51  was 
successfully  chlorinated  without  the  use  of  any 
catalyst.  The  amount  of  chlorine  fixed  was  sufficient 
to  form  tri-  and  tetra-chlorides.  The  dechlorina- 
tion was  carried  out,  without  the  use  of  any  catalyst 
or  absorbing  agent  for  the  hydrochloric  acid  pro- 
duced, by  heating  the  chlorinated  compounds  to 
250°  C.  A  partial  saturation  of  the  ethylenic  link- 
ages primarily  formed  takes  place  owing  to  the 
formation  of  cyclic  hydrocarbons.  The  iodine  values 
of  the  products  usually  varied  between  70  and  130. 
Semi-drying  oils  such  as  soya-bean  and  cottonseed 
oils  were  also  treated  in  the  same  way  and  their 
drying  properties  were  greatly  improved. — H.  C.  R. 

Patents. 

Pigment  and  methods  of  producing  the  same.     P. 

Fireman,  Assr.  to  Magnetic  Pigment  Co.    U.S.P. 

1,420,985,  27.6.22.     Appl.,  8.4.21. 
Ferrous  hydroxide  is  precipitated  from  a  solution 
of  a  ferrous  salt  and  the  liquid  and  precipitate  are 
heated  and  subjected  to  the   action  of  air  for  10 — 15 
hrs.,  whereby  a  dark  brown  pigment  is  obtained. 

— J.  R. 

Pigments;  Method  of  making  binders  for [for 

printing    ink].     H.    A.   Buck,    Assr.    G.    Moore. 
U.S.P.  1,421,125,  27.6.22.    Appl.,  21.6.20. 
A  non-inflammable  printing  ink  consists  of  a  pig- 
ment thoroughly  incorporated  in  a  non-inflammable 
binder  containing  shellac,  borax,   and  water. 

— D.  W. 

Paint  and  process  of  making  same.     C.  A.  Ward. 

U.S.P.  1,421,625,  4.7.22.     Appl.,  11.2.20. 
A    mixture    of    aluminium    and    zinc    stearates    is 
intimately  mixed  with  a  pigment  and  suspended  in 
a  vehicle. — D.  W. 

Besinous  condensation  products  from  phenolic  acids 

and    aldehydes;     Process    for    preparing    . 

Farbw.    vorm.    Meister,    Lucius,    und    Bruning. 
G.P.  339,495,  16.11.19. 
Aromatic  hydroxyearboxylic  acids  are  heated  with 
aldehydes  or  substances  producing  aldehydes.   Small 

c2 


640  a 


Cl.  XIV.— INDIA-RUBBER,  &o.     Cl.  XV.— LEATHER  ;    BONE,  &c. 


[Aug.  31,  19J 


quantities  of  acid  or  basic  condensing  agents  and 
solvents  may  be  present.  For  example,  salicylic  acid 
may  be  beated  with  30%  formaldehyde  and  water 
for  20  hrs.  and  the  whitish  precipitate  produced 
separated,  freed  from  excess  of  water  and  further 
heated  until  a  sample  sets  to  a  clear  glass-like  sub- 
stance. The  duration  of  treatment  may  be 
shortened  by  adding  a  catalyst  such  as  hydrochloric 
acid.  The  resin  obtained  is  hard  and  of  high  melt- 
ing point  and  is  soluble  in  alcohol  and  acetone,  in 
weak  alkalis  such  as  sodium  carbonate,  borax,  and 
ammonia  solution,  and  in  paraldehyde.  It  is  suit- 
able for  leather-finishing  and  for  treating  felts  in 
the  manufacture  of  hats.  Similar  resins  are 
obtained  from  hexamethylenetetramine  and  mix- 
tures of  o-  and  p-hydroxybenzoic  acids;  from  1.3.4- 
hydroxytoluic  acid  and  paraformaldehyde  in  the 
presence  of  ammonium  acetate ;  and  from  salicylic 
acid  and  benzaldehyde  in  the  presence  of  ammonia. 
These  products  are  of  yellow  to  yellowish-red  colour 
and  in  consequence  of  their  solubility  in  weak 
alkalis  can  be  used  as  substitutes  for  shellac. 

— H.  C.  R. 

[Besinous]     condensation     products     from     hydro- 
carbons;   Process    for    the    production    of  . 

Farbenfabr.    vorm.    F.    Bayer    und    Co.      G.P. 
349,741,  12.7.18. 

The  hydrocarbon  is  treated  with  formaldehyde  or 
substances  yielding  formaldehyde  in  the  presence  of 
sulphuric  acid  of  concentration  below  60%.  For 
example  if  naphthalene  is  heated  to  110° — 115°  C. 
with  40%  formaldehyde  and  sulphuric  acid  (66°  B., 
sp.  gr.  1*84)  a  white  resin  is  obtained  which  is 
soluble  in  acetone,  benzene,  solvent  naphtha,  carbon 
tetrachloride  and  carbon  bisulphide.  Phenanthrene 
gives  under  the  same  conditions  a  brownish-yellow, 
brittle  resin  soluble  in  benzene  and  xylene,  anthra- 
cene a  yellow  resin  soluble  in  benzene.  Benzene 
heated  under  pressure  to  118° — 125°  C.  with  40% 
formaldehyde  and  96%  sulphuric  acid  gives  a  soft 
brown  resinous  mass  soluble  in  benzene.  Toluene 
gives  a  clear  liquid  soluble  in  ether,  acetone, 
benzene,  chloroform,  and  carbon  tetrachloride. 
Xylene  heated  for  six  hrs.  with  40%  formaldehyde 
and  96%  sulphuric  acid  gives  a  brown  resin  soluble 
in  acetone,  benzene,  carbon  tetrachloride,  and 
solvent  naphtha.  The  products  melting  below 
100°  C.  are  of  value  in  the  varnish  industry. 

— H.  C.  R. 

Oils  suitable  for   impregnating  films   and  keeping 

them  soft;  Process  for  manufacturing .  Petri 

und  Stark,  Ges.  m.  b.  H.    G.P.  349,088,  22.3.19. 

Benzyl  alcohol  is  treated  with  50 — 80%  sulphuric 
acid  at  a  low  temperature  and  for  a  short  time  so 
that  no  formation  of  resin  occurs.  A  pale  yellow 
or  brownish  viscous  oil  is  obtained  which  is 
practically  free  from  odour,  has  a  much  higher  boil- 
ing point  than  benzyl  ether,  and  is  easily  taken  up 
by  tissue  and  animal  membranes  and  firmly  retained 
by  them.— H.  C.  R. 

Dye  for  documents ;  Method  of  making  an  indes- 
tructible    black    stamp    .       J.     Schiffmann. 

TJ.S.P.  1,421,728,  4.7.22.     Appl.,  8.8.21. 

See  E.P.  172,588  of  1921 ;  J.,  1922,  66  a. 


XIV.-INDIA-RUBBER;  GUTTA-PERCHA. 

Vulcanisation    of   rubber   in    solution.      F.    Boirv. 
Oomptes  rend.,  1922,  175,  102—104. 

If  rubber,  in  solution  in  an  organic  solvent,  is 
heated  with  sulphur  at  about  120°  C.  the  nature  of 
the  product  depends  on  the  concentration  of  the 
solution  and  the  solvent  used.  With  dilute  solutions 
(1 — 2%)  and  with    solvents  such    as   nitrobenzene, 


petrol,  phenetol,  etc.,  a  gelatinous  deposit  is 
obtained  which,  when  dried,  is  a  hard  elastic  mass 
with  a  black  fracture.  After  extraction  with 
acetone  it  contains  15 — 30%  of  "combined" 
sulphur,  depending  on  the  conditions.  With  solv- 
ents such  as  aniline,  xylene,  thymol,  etc.  no  pre- 
cipitate is  obtained  even  after  boiling  for  several 
weeks.  With  10%  solutions,  in  solvents  of  the  first 
group,  the  viscosity  of  the  solution  at  first  dimin- 
ishes on  heating,  until  it  reaches  a  minimum,  after 
which  it  rises  first  slowly  and  then  rapidly  until  the 
liquid  forms  a  gel.  These  gels  show  the  phenomenon 
of  syneresis.  The  sulphur  content  of  the  products 
obtained  after  extracting  these  gels  with  acetone 
is  20— 30%.— W.  G. 

Patent. 

Rubber ;  Process  for  heat  vulcanisation  of .    R. 

Wheatley,    and   The   Victoria   Rubber    Co.,   Ltd 
E.P.  181,802,  17.3.21. 

Cylinders,  presses,  jacketed  autoclaves,  and  dry 
heat  chambers  for  vulcanising  are  heated  by  means 
of  one  or  more  substances  (other  than  a  solution) 
having  a  boiling  point  higher  than  water,  so  that 
high  temperatures  can  be  obtained  at  low  pressure. 
The  substance  or  substances,  e.g.  aniline  oil,  are 
circulated  between  the  source  of  heat  and  the 
vulcaniser. — D.  W. 


XV. -LEATHER;  BONE;   HORN;   GLUE. 

Hide;   Bacteriology   of    fresh   steer  .      G.   D. 

McLaughlin    and    G.    E.    Rockwell.      J.    Amer. 
Leather  Chem.  Assoc.,  1922,  17,  325—340. 

The  authors  have  isolated  and  studied  a  number  of 
bacteria  from  fresh  hide.  Experiments  on  pieces  of 
hide  show  that  the  presence  of  proteolytic  bacteria, 
protein  matter  such  as  blood,  a  slightly  alkaline 
medium,  a  moderately  high  temperature,  the 
presence  of  oxygen  and  small  traces  of  carbon 
dioxide  favour  bacterial  decomposition  of  the  hide, 
whilst  the  absence  of  proteolytic  bacteria,  acidity, 
the  presence  of  fermentable  carbohydrates,  a  large 
excess  of  carbon  dioxide,  the  absence  of  oxygen,  and 
a  low  temperature  tend  to  prevent  it. — D.  W. 

Chrome  tanning.  X.  Modem  problems  in  chrome 
tanning.  D.  Burton.  J.  Soc.  Leather  Trades' 
Chem.,  1922,  6,  226—234. 

The  swelling  power  of  a  chrome  liquor  is  dependent 
on  the  free  acidity,  the  neutral  salt  content,  the 
relative  rates  of  absorption  of  acid  and  further 
hydrolysis  of  the  chromium  salt,  and  the  relative 
rates  of  absorption  of  acid  and  fixation  of  the  grain 
by  the  chromium  compound.  Organic  substances  in 
the  chrome  liquor  exert  a  favourable  influence.  If 
sulphuric  acid  is  replaced  by  a  weaker  acid,  the 
chrome  liquor  will  have  a  lower  hydrogen  ion  con- 
centration, produce  less  swelling  and  therefore  give 
a  softer  leather.  The  procedure  in  tanning,  the 
completion  of  the  tannage,  and  ageing  are  alsq 
discussed. — D.  W. 

Chrome  tanning.     Equilibria  between  tetrachrome- 
collagen  and  chrome  liquors.     Formation  of  octa- 
chrome-collagen.      A.    W.    Thomas    and    M.    W. 
Kelly.     J.  Lid.  Eng.  Chem.,  1922,  14,  621—623. 
Measurement    of    the   fixation  of  chrome  by  hide 
substance  after  contact  for  8J  months  with  chronic 
liquors     of     various    concentrations     showed    that 
maximum  fixation  occurred  in  a  liquor  containing 
1-5  g.  Cr,03  per  100  c.c.     The  chrome-collagen  com- 
pound formed  in  this  liquor  proved  to  be  an  octa- 
chrome-collagen,     showing     that     the     combining 
weight  of  collagen  is  as  low  as  94.     The  changes 
taking     place     when     tetrachrome-collagen     is    m 
contact  with  chrome   liquors   over  a   similar  time 


Vol.  XLL,  No.  16.] 


Cl.  XVI.— SOILS;  FERTILISERS. 


641  A 


interval  have  been  measured  and  show  that  the 
formation  of  tetrachrome-collagen  is  not  strictly 
reversible.  This  supports  the  view  that  the  absorp- 
tion of  chrome  from  chrome  liquors  by  collagen 
is  a  chemical  reaction. — H.  C.  R. 

Chrome    leather  analysis.     A    modified   method   of 

determining  the  amount  of  alkali  salts  in  chrome 

leather.    D.  Woodroffe  and  R.  E.  Green.    J.  Soc. 

Leather  Trades'  Chem.,  1922,  6,  222—223. 

The  leather  is  ashed,  the  ash  treated  with  strong 

sulphuric  acid,  the  excess  of  which  is  evaporated  off, 

the  residue  ignited,  the  soluble  sulphates  extracted 

with    boiling    water,    and    estimated    with    barium 

chloride. — D.  W. 

Tannin  analysis;  A  contribution  to  the  method  of 

.    J.  Schneider,  jun.    J.  Soc.  Leather  Trades' 

Chem.,  1922,  6,  234—239. 
For  the  purpose  of  determining  total  soluble 
matter,  total  solids,  and  non-tans,  aliquot  weighed 
portions  should  be  employed  instead  of  measured 
portions,  as  more  accurate  results  are  obtained. 
Drv  chromed  hide  powder  gives  good  results. 

— D.  W. 

Tannin-analysis;  Note  on  the  Wilson-Kern  method 

of .    G.  W.  Schultz.   J.  Amer.  Leather  Chem. 

Assoc.,  1922,  17,  348—352. 

Recent  work  by  Thomas  and  Kelly  (cf.  J.,  1922, 

;    383  a)    is    quoted    to    controvert    the    Wilson-Kern 

method    of    analysis.      A    portion    of    the    tannin 

absorbed  by  the  hide  powder  in  shake  experiments 

is  removed  by  washing.    In  strong  tannin  solutions, 

the  surface  of  the  hide  particles  is  so  completely 

1  tanned    as  to   prevent  further   penetration   of  the 

!  tannin.     The  introduction  of  air-dry   powder   into 

j  tannin  solutions  does  not  parallel  tannery  practice. 

— D.  W. 

I  Gelatin  swelling;  Note  on  the  lyotrope-adsorption 

theory  of .    H.  G.  Bennett.     J.  Soc.  Leather 

Trades'  Chem.,  1922,  6,  223—226. 

A  criticism  of  the  Procter-Wilson  theory  of  gelatin 

swelling  and  of  a  recent  paper  by  Atkin   (cf.   J., 

1922,  475  a).     The  author  affirms  that  the  swelling 

I  -of  gelatin  is  caused  by  the  adsorption  of  ions  modi- 

1  fied  by  the  lyotrope  effects  of  the  dissolved  salts. 

— D.  W. 

,  Sodium  sulphide.     Atkin.     See  VII. 

Patents. 
Hides  and  skins;  Depilation  of  .     O.  Richter. 

E.P.  182,240,  13.4.21.    Addn.  to  175,314  (J.,  1922, 

304  a). 
The  hides  or  skins  are  degreased  prior  to,  or  during 
the  early  stages  of  depilation,  and  protected  on  the 
flesh  side  against  penetration  by  ammonia  by 
suitable  coatings  or  by  being  placed  flesh  to  flesh. 
Warmed  concentrated  ammonia  is  used  in  place  of 
steam  to  maintain  the  requisite  degree  of  moisture. 
The  hides  or  skins  may  be  kept  in  motion,  or  the 
vapours  may  be  circulated.  The  unconsumed 
ammonia  is  expelled  from  the  chamber  by  warm  air 
or  other  gases  which  do  not  react  with  the  ammonia, 
and  the  latter  is  recovered. — D.  W. 

Tanning  agent  for  the  chrome  tannage  of  leather; 

Preparation  of  a .    A.  Glover  and  G.  Martin. 

E.P.  182,289,  26.5.21. 
Aqueous  solutions  of  6odiuru  or  potassium  bichrom- 
ate and  sulphuric  acid  are  reduced  with  dried  whey 
powder. — D.  W. 

Tanning    hides;   Process   for   .      Chem.    Fabr. 

vorm.   Weiler-ter   Meer.     G.P.   349,363,   30.9.17. 
Addn.  to  334,004  (J.,  1921,  400  a). 
.  Ferric  salts  dissolved  in  solutions  containing  formic 


acid,  with  or  without  the  addition  of  other  tanning 
agents  or  accelerators,  are  used  as  tanning  agents. 
For  example,  pickled  pelts  are  treated  with  a  liquor 
containing  anhydrous  ferric  sulphate,  sodium  form- 
ate, and  formic  acid,  with  or  without  the  addition 
of  30%  formaldehyde  and  sulphite-cellulose  extract. 
When  the  ferric  salt  has  penetrated  uniformly 
throughout  the  skin,  an  aqueous  solution  of  sodium 
carbonate  is  added,  and  the  skin  is  treated  for 
several  hours  more  in  the  solution.  The  use  of 
formic  acid  reduces  the  time  of  the  tanning  process. 

— L.  A.  C. 

Glue,    gelatin,  and    the    like;    Apparatus   for    the 

extraction    of    .      F.    H.    Tunnell.     U.S. P. 

1,421,620,  4.7.22.     Appl.,  10.12.20. 

The  apparatus  comprises  an  open  tank  having  a 
perforated  false  floor  spaced  from  the  bottom  and 
sides,  a  standpipe  extending  from  the  floor  to  a 
point  above  the  top  of  the  tank  and  having  open- 
ings and  a  deflector  adjacent  its  upper  end,  means 
for  withdrawing  liquid  from  the  tank,  heating 
means  below  the  false  floor,  a  screen  disposed 
around  the  peripheral  edge  of  the  false  floor  and 
inwardly  inclined  to  it,  and  means  adjacent  the 
bottom  of  the  standpipe  to  direct  a  column  of  fluid 
upwards  therein. — D.  W. 

Glue  from  the  waste  liguors  from  cellulose  manufac- 
ture.;  Process  for   manufacturing    .     H.    P. 

Kaufmann.     G.P.  352,138,  19.3.18. 

The  liquors  are  evaporated  to  a  thick  paste  or  a  dry 
powder  and  this  is  mixed  with  casein  and  lime  or 
casein,  lime,  and  a  salt  of  an  alkali  metal.  The 
product  is  characterised  by  greater  strength  and 
waterproof  qualities  than  other  glues  made  from 
cellulose  liquors. — H.  C.  R. 

Tanning  with  aluminium  salts;  Process  for  . 

O.  Rohm,  Assr.  to  The  Chemical  Foundation,  Inc. 
U.S. P.  1,421,723,  4.7.22.    Appl.,  6.12.17. 

See  E.P.  110,750  of  1917;  J.,  1918,  217  a. 

Glue;    Manufacture    of   .      Plauson's    (Parent 

Co.),    Ltd.     From    H.    Plauson.      E.P.    181,865, 
2.4.21. 

See  G.P.  344,238  of  1921;  J.,  1922,  186  a. 


XVI.-S0ILS ;  FERTILISERS. 

Soil;  Presence  of  cobalt  and  nickel  in  arable  . 

G.   Bertrand  and  Mokragnatz.     Comptes  rend., 
1922,  175,  112—114. 

In  a  very  fertile,  arable  soil  from  near  Belgrade  the 
authors  have  found  0-00028%  of  cobalt  and  0-00136% 
of  nickel  and  in  a  garden  soil  0'00037  %  of  cobalt  and 
000174%  of  nickel.— W.  G. 

Humus;  Determination  of  by  oxidation  with 

chromic  acid.  A.  Gehring.  Z.  anal.  Chem.,  1922, 
61,  273—278. 
To  determine  humus  in  soil  a  sample  is  treated  in 
a  flask  with  dilute  sulphuric  acid  to  decompose 
carbonates,  a  current  of  air  being  passed  through 
the  flask  to  remove  the  carbon  dioxide.  Potassium 
bichromate  is  then  added  and  the  mixture  heated 
while  the  current  of  air  is  continued;  the  gases 
resulting  from  the  oxidation  of  the  organic  matter 
are  passed  through  a  heated  tube  containing  copper 
oxide  and  lead  chromate,  and  the  carbon  dioxide  is 
then  collected  in  a  potash  bulb  and  weighed. 

— W.  P.  S. 

Urea.    Matignon  and  Frejacques.    See  XX. 

Patent. 
Insecticide.    U.S.P.  1,420,978.    See  XIXb. 


642  a 


Cl.  XVII.— SUGARS,  &c.     Cl.  XVIII.— FERMENTATION  INDUSTRIES.       [Aug.  31, 1922. 


XVII.-SUGARS  ;    STABCHES;  GUMS. 

Beet  raw  sugars;  Loss  of  sucrose  in  the  refinery  in 

the  working  of .     J.  E.  Duschsky  and  P.  G. 

Galabutsky.  Z.  Ver.  deuts.  Zuckerind.,  1922, 
401—416. 
During  the  re-melting  of  sound  "sand  sugar"  it 
is  unnecessary  to  add  lime  or  other  alkali,  since, 
whether  a  coil  or  direct  steam  be  the  means  of  heat- 
ing, the  amount  of  inversion  that  occurs  can  hardly 
be  detected.  On  the  other  hand,  when  working  with 
deteriorated  sand  sugar,  which  contains  invert 
sugar,  and  has  become  more  or  less  acid,  alkali 
must  be  added,  but  the  amount  should  be  little  more 
than  that  required  for  neutralisation,  viz.,  an 
alkalinity  of  O'OOl  %  CaO.  It  is  held  that  a  greater 
excess  of  alkali  is  irrational,  since  it  causes  the 
darkening  of  the  liquors,  and  leads  to  an  increase 
of  the  salt  content  of  the  syrup  and  consequently  to 
a  greater  amount  of  final  molasses.  During  the 
re-melting  of  deteriorated  sand  sugar,  solution  must 
be  effected  as  rapidly  as  possible,  and  direct  steam 
should  be  used  for  heating.  Any  unnecessary  delay 
before  discharging  the  syrup  from  the  pans  should 
likewise  be  avoided. — J.  P.  0. 

Suyars;  Insoluble  matter  content  of  direct  consump- 
tion    .  J.  P.  Ogilvie.     Int.  Sugar  J.,  1922, 

24,  368—369. 
In  Demerara  and  Trinidad  yellow  crystals  the  total 
insoluble  matter  was  found  to  vary  between  10  and 
48  mg.  per  100  g.  of  sample,  and  in  plantation  white 
sugars  between  13  and  25  mg.,  of  which  about  half 
consisted  of  inorganic  matter. — J.  P.  O. 

[Sugar]    cane    juice;    Determination    of    the    Biix 

degree  of  raw .    W.  D.  Helderman.    Archief, 

1921,  29,  1708—1713.  Int.  Sugar  J.,  1922,  24, 
381. 
If  raw  cane  juice,  which  refuses  readily  to  subside 
and  de-aerate,  be  heated  with  about  2%  of  kiesel- 
guhr  rapidly  to  boiling  point  in  a  flask  fitted  with  a 
reflux  condenser,  cooled,  and  filtered,  a  clear  liquor 
practically  free  from  air,  serving  well  for  the  Brix 
degree  determination  is  obtained,  the  reading 
found  agreeing  closely  with  that  given  by  the  same 
juice  which  has  been  allowed  to  subside  during  one 
hour.  Juice  thus  treated  with  kieselguhr  should 
not,  however,  be  used  also  for  the  determination  of 
the  sucrose  and  reducing  sugars  content,  since 
during  the  process  of  heating  some  inversion 
generally  occurs. — J.  P.  O. 

Carbohydrates;  Sublimation  experiments  with . 

P.   Karrer  and  J.   O.   Rosenberg.      Helv.   Chim. 
Acta,  1922,  5,  575—576. 

Pictet  and  Sarasin  (J.,  1918,  49  a)  have  shown  that 
lsevoglucosan  is  formed  when  starch  is  distilled  at  a 
low  pressure.  The  same  product  has  now  been 
obtained  as  a  sublimate  by  heating  potato  starch 
at  about  220°  C.  in  a  very  thin  layer,  having  a  cold 
condensing  surface  within  2  mm.  of  the  heated 
starch,  at  atmospheric  pressure.  From  o-tetramyl- 
ose  the  same  product  was  obtained,  but  by  heating 
rhamnose  at  120°  C.  (12  mm.)  the  sugar  itself  was 
sublimed.— E.  H.  R. 

Galactosan.    A.  Pictet  and  H.  Vernet.   Helv.  Chim. 

Acta,  1922,  5,  444—448. 
When  galactose  is  dehydrated  at  180°  C.  (15  mm.) 
the  molecular  weight  of  the  product  corresponds 
with  (CsHl0O5), ;  at  135°  C.  (2  mm.)  a  mixture  of 
galactosan,  C6fi1(,05,  and  its  dimeride  is  formed. 
The  galactosan  can  be  partially  purified  by  extrac- 
tion with  boiling  alcohol.  Chemically  it  behaves 
like  glucosan  and  is  therefore  an  anhydride  of  the 
o-series.  In  cold  hydrochloric  acid  it  forms 
o-galactosyl  chloride,   which  condenses  in  alcoholic 


solution  with  glucose  and  sodium  to  form  a  new 
disaccharide,  glucose-o-galactoside.  The  osazone  of 
this  new  sugar  has  ni.p.  158°  C.     (C/.  J.C.S.,  Sept.) 

— E.  H.  R. 

Decolorising  carbon;  Capacity  of for  absorbing 

water.    A.  Scholz.     Chem.-Zeit.,  1922,  46,  652. 

A  good  decolorising  carbon  such  as  that  used  in 
the  sugar  industry  can  absorb  up  to  45%  of  its 
weight  of  water  without  appearing  at  all  moist. 
With  an  equal  weight  of  water  it  forms  a  moist 
powder  which  ju6t  balls  together,  while  with  1J 
times  its  weight  of  water  it  first  assumes  the  charac- 
teristics of       damp  slime. — A.  R.  P. 

Samuela  carnerosana  fruit.    Black  and  Kellv.    See 
XX. 


XVIII -FERMENTATION  INDUSTRIES. 

Grain;  Method  of  utilising  the  component  sub- 
stances of  for  the  maximum  production  of 

material  useful  as  food  or  in  industry.     A.  Sorel. 
Bull.  Assoc.  Chim.  Sucr.,  1922,  39,  358—362. 

The  grain  is  ground  to  flour  and  digested  with 
malt  at  60° — 62°  C.  to  saccharify  the  starch.  Lactic 
fermentation  is  allowed  to  proceed  for  a  brief 
period  in  order  to  render  soluble  mineral  matter 
ultimately  to  be  used  as  a  yeast  food.  Excessive 
production  of  lactic  acid  is  checked  by  the  addition 
of  vinasse,  previously  concentrated  under  reduced 
pressure  below  65°  C.  Yeast  is  added  and  allowed 
to  act  for  some  hours.  Alcohol  is  distilled  off  at 
atmospheric  pressure.  The  yields  of  alcohol  and 
of  yeast  were  36%  and  24%  respectively  by  the 
Viennese  yeast  process;  and  25%  and  35%  respec- 
tively by  the  aero-yeast  method. — A.  G.  P. 

Glycerol;  Fermentation  of  in  presence  of  sul- 
phur. H.  and  L.  Miiller.  Helv.  Chim.  Acta, 
1922,  5,  628—629. 

In  presence  of  sulphur,  glycerol  is  attacked  by 
yeast  with  the  formation  of  carbon  dioxide  and 
hydrogen  sulphide.  The  sulphur  probably  oxidises 
or  dehydrogenates  the  glycerol  into  a  fermentable 
compound,  according  to  the  equation  CjHsOa  +  S  = 
C3H603  +  H3S.     (Of.  J.C.S.,  Sept.)— E.  H.  R. 

Formaldehyde;  "Alcoholic  fermentation  "  of  . 

H.  Miiller.    Helv.  Chim.  Acta,  1922,  5,  627—628. 

The  reaction  involved  in  the  "  alcoholic  fermenta- 
tion "  of  formaldehyde  in  presence  of  osmium  (J., 
1922,  118  a),  3CH20+H20  =  2CHS0H  +  C02,  can  be 
accounted  for  by  Cannizzaro's  reaction.  Assuming 
4  mols.  of  formaldehyde  to  give  2  mols.  each  of 
methyl  alcohol  and  formic  acid,  the  latter  can 
behave  as  an  aldehyde  and  by  the  same  reaction 
give,  from  2  mols.  of  formic  acid,  1  mol.  of  formal- 
dehyde and  1  mol.  of  carbon  dioxide.  The  net 
result  corresponds  with  the  above  equation. 

— E.  H.  R. 

Lactic  acid;  Destruction  of by  yeast  cells.      F. 

Lieben.     Oesterr.  Chem.-Zeit.,  1922,  25,  87—90. 

Lactic  acid  being  one  of  the  products  of  the  de- 
gradation of  carbohydrates  in  muscle,  experiments 
were  made  in  vitro  to  determine  the  ultimate  fate 
of  this  substance  under  the  influence  of  the 
enzymes  of  the  yeast  cell,  which  appear  to  be 
similar,  at  least,  to  the  muscle  enzymes,  li 
found  that  lactic  acid  disappeared  to  within  3 — 5% 
in  7 — 8  hours,  under  suitable  conditions,  and  that 
about  two-thirds  of  its  carbon  content  appeared  in 
the  products  as  carbon  dioxide,  either  liberated  as 
such,  or  remaining  combined  with  soda ;  the  re- 
mainder of  the  carbon  was  represented  by  an  in- 
crease in  weight  of  the  yeast  substance,  and  if 
calculated    as    C6HI005    practically    accounted,    to- 


Vol.  XLI.,  Xo.  16.] 


Cl.   XIXa.— FOODS. 


643  a 


gether  with  the  carbon  dioxide,  for  the  whole  of  the 
lactic  acid  which  had  disappeared.  It  appears, 
therefore,  that  both  synthesis  and  degradation  had 
occurred  simultaneously.  No  other  degradation 
products  than  carbon  dioxide  could  be  detected. 
Similar  experiments  were  made  with  vegetable 
acids  and  with  amino-acids :  the  former  were  not 
attacked ;  the  latter  were  in  part  consumed  by  the 
yeast,  but  no  degradation  to  carbon  dioxide  could 
be  detected.— G.  F.  M. 

Brandy;   Critical   study   and   new   contribution    to 
the  analysis  of .    G.  Bonifazi.     Mitt.  Lebens- 

mittelunters.  u.  Hvg.,  1922,  13,  69—95.  Chem. 
Zentr.,  1922,  93,  IV.,  62—63. 
The  characteristics  of  the  different  kinds  of  brandy, 
including  artificial  brandies,  are  enumerated  and 
the  methods  in  use  for  differentiating  between 
them  are  described.  The  Micko  process  for  the 
fractional  distillation  of  the  esters  after  saponifica- 
tion is  described  in  the  original,  and  the  results  of 
its  application  to  a  number  of  samples  of  brandy 
are  given.  This  method  is  a  very  valuable  one  for 
the  analysis  of  brandies.  It  allows  of  organoleptic 
tests  on  the  different  fractions  and  also  of  carrying 
out  other  determinations  which  are  necessary  for 
judging  the  sample.  Among  these,  the  appearance 
of  a  maximum  ester  value  in  the  fourth  or  fifth 
fraction  is  of  importance,  as  it  appears  to  be  pro- 
portional to  the  ester  value.  This  maximum  value 
only  occurs  in  the  case  of  natural  and  adulterated 
brandies,  and  not  in  the  case  of  artificial 
brandies.  The  ratio  ester  value /maximum  value 
varies  within  narrow  limits  for  natural  brandies. 
The  higher  this  ratio  the  more  doubtful  is  the 
quality  of  the  brandy. — H.  C.  R. 
Brandy;   Detection  and   estimation   of   vanillin   in 

.      T.   von   Fellenberg.      Mitt.    Lebensmittel- 

unters.  u.  Hyg.,  1922,  13,  98—110.  Chem.  Zentr., 
1922,  93,  IV.,  63. 
'  100  c.c.  of  the  brandy  is  distilled,  using  a  fraction- 
,  ating  column  of  glass  balls,  until  only  10  c.c.  is  left 
behind.  The  residue  is  shaken  300  times  with 
10  c.c.  of  ether  and  the  aqueous  solution  discarded. 
Any  emulsion  that  forms  is  broken  by  centrifuging. 
I  The  ether  solution  is  shaken  twice  with  2  c.c.  of 
j  water,  giving  100  shakes  each  time,  and  then 
i  treated  with  3  c.c.  of  saturated  (40%)  sodium 
bisulphite  solution  and  shaken  for  5  min.  The 
aqueous  layer  is  washed  twice  with  2  c.c.  of  ether, 
shaking  100  times  at  each  washing,  and  transferred 
to  a  beaker  with  3  c.c.  of  sulphuric  acid  solution 
(Itl)  and  1  c.c.  of  water,  heated  to  boiling,  and, 
after  cooling,  shaken  with  its  own  volume  of  ether. 
The  ethereal  solution  is  washed  with  water,  dried 
over  calcium  chloride,  and  evaporated  to  1  c.c. 
This  is  transferred  to  a  clock  glass  which  is  covered 
)  by  another  one  cooled  with  ice.  The  ether  is 
evaporated  off  and  the  residue  sublimed  by  heating 
it  over  a.  spirit  lamp  about  15  cm.  away.  After 
10 — 15  min.  the  top  glass  is  changed  and  tested  by 
odour  and  microscopical  examination  for  vanillin. 
If  a  visible  sublimate  is  obtained  the  clock  glass 
condenser  is  changed  every  10  min.  until  a  sub- 
limate and  the  odour  of  vanillin  are  no  longer 
obtained.  The  sublimates  are  dissolved  in  ether, 
united  in  a  test-tube,  and  after  evaporating  the 
other,  tested  colorimetrically  by  adding  bromine 
water  (O'l — 03  c.c.)  until  a  permanent  odour  of 
bromine  is  obtained,  removing  the  excess  by  blow- 
ing in  air,  and  adding  1%  ferrous  sulphate  solution, 
drop  by  drop.  The  presence  of  vanillin  is  indicated 
by  a  bluish-green  coloration.  The  quantity  may 
be  estimated  by  comparison  with  solutions  of 
vanillin  of  known  concentrations.  Quantities  of 
vanillin  up  to  O'l  mg.  per  litre  may  come  from  the 
wood  of  barrels.  The  addition  of  vanillin  is  not 
indicated  if  less  than  0'2 — 0'5  mg.  per  litre  is  found. 

— H.  C.  R. 


Samvela  carnerosana  fruit.  Black  and  Kelly. 
See  XX. 

Papain.    Brill  and  Brown.    See  XX. 

Patents. 
Distilling   alcoholic   and   other   liquids;   Process   of 

and  apparatus   for  .     H.   Wade.     From  J. 

Schneible.     E.P.  182,069,  13.1.21. 

In  a  sectional  column  still  for  the  distillation  of 
alcoholic  and  other  liquors,  baffle  rings  and  discs, 
preferably  inclined  downwards  towards  their  free 
edges,  arearranged  alternately,  and  between  the 
rings  and  discs  are  sets  of  vertical  guide  vanes,  each 
guide  vane  being  set  at  an  angle  to  the  radius  of 
the  still.  The  guide  vanes  impart  a  whirling  move- 
ment to  the  rising  vapours  and  descending  liquid 
in  the  column  and  thus  prevent  channelling  and 
promote  intimate  mixing  of  the  vapours  and  dis- 
tillate. Preferably  the  baffle  rings  and  discs  are 
connected  together  by  means  of  the  guide  vanes, 
and  each  section  of  the  still  contains  a  baffle  ring 
and  disc  and  a  set  of  guide  vanes.  The  still  may 
be  provided  with  a  removable  cut-off  section 
adapted  to  intercept  liquid  descending  in  the  still 
and  to  permit  its  being  drawn  off  if  necessary. 

—J.  R. 

Yeast;  Process  for  drying .     E.  Klein.    U.S. P. 

1,420,558,  20.6.22.     Appl.,  24.3.22. 

Coarsely  subdivided  yeast  is  dried  by  a  current 
of  an  innocuous  gas  at  such  a  low  temperature  as 
not  to  destroy  the  vitality  of  the  yeast,  and  is 
simultaneously  subjected  to  a  pulverising  action  so 
that  the  particles  of  pulverised  yeast  are  carried  off 
in  the  gas  current,  from  which  the  yeast  is  subse- 
quently separated. — J.  R. 

Dried  yeast  and  method  of  making  the  same.  A.  W. 
Hixson.  U.S. P.  1,420,630,  27.6.22.  Appl., 
20.12.20 

Compressed  yeast  is  subjected  to  slow  gradual 
drying  for  a  protracted  period  until  a  product  is 
obtained  containing  substantially  10%  of  moisture. 

—J.  R. 

Yeast;  Process  of  preparing  dried .     E.  Klein. 

U.S.P.  1,420,557,  20.6.22.     Appl.,  24.3.22. 

See  E.P.  175,623  of  1922;  J.,  1922,  605  a. 


XIXa. -FOODS. 


z. 


Ash  of  foodstuffs;  Alkalinity  of .     B.  Pfyl. 

Unters.  Nahr.  Genussm.,  1922,  43,  313—339'. 

The  most  useful  values  to  be  determined  are  the 
intrinsic  alkalinity,  the  methyl-orange  alkalinity, 
and  the  total  phosphate  of  the  ash.  The  first  may 
be  defined  as  the  excess,  expressed  in  milli- 
equivalents,  of  Na',K',Ca",Mg",  which,  after  com- 
bination with  PO."',SO/,Cl',  remains  for  O"  and 
the  weakly  acid  anions,  C03",SiO/,B02',Mn03", 
MnO/,A102".  If  the  anions  are  in  excess  the  differ- 
ence is  expressed  as  intrinsic  acidity.  The  methyl 
orange  alkalinity  is  the  excess,  expressed  in  niilli- 
equivalents,  of  the  same  four  cations  which,  after 
combination  with  the  anions,  H^PO^SO/.d', 
remains  for  0"  and  the  above  enumerated  weakly 
acid  anions.  Excess  of  anions  is  indicated  as 
methyl-orange  acidity.  The  total  phosphates  is  ex- 
pressed in  milli-equivalents  of  PO/'.  These  three 
values  can  be  obtained  by  titration  first  with  methyl 
orange  and  then  with  phenolphthalein  as  indicator. 
Full  details  of  simple  methods  of  carrying  out  the 
above  determinations,  based  on  many  years'  ex- 
perience, are  given.  Modifications  necessary  in 
special  cases  and  precautions  and  corrections  to  be 
applied  where  special  accuracy  is  needed  are  also 
indicated.     The  above  three  values  are  usually  cal- 


044  a 


Cl.  XIXb.— WATER    PURIFICATION;     SANITATION. 


[Aug.  31,  1922. 


dilated  to  100  g.  of  dry  foodstuff  or  1  litre  of  liquid, 
but  occasionally  to  1  g.  of  ash  or  of  ash  soluble  in 
hydrochloric  acid.  In  cases  of  adulteration  one  or 
other  of  these  values  is  affected. — H.  C.  R. 

Benzoic  acid;  Determination  of in  margarine. 

O    Kbpke  and  E.  Bodliinder.     Z.  Unters.  Nahr. 

Genussm.,  1922,  43,  345—350. 
50  G.  of  margarine  and  100  c.c.  of  N/10  sodium 
bicarbonate  solution  are  heated  to  60°  C.  on  a  water 
bath  in  a  stoppered  flask  and  shaken  for  about 
2  min.  After  cooling,  75  c.c.  of  the  aqueous  layer 
is  poured  off  through  a  filter  into  a  100  c.c.  measur- 
ing flask  containing  about  30  g.  of  pure  ammonium 
sulphate  and  when  the  latter  has  dissolved,  the 
solution  is  made  up  to  the  mark  and  again  filtered. 
80  c.c.  of  the  filtrate  is  acidified  with  3  c.c.  of  dilute 
sulphuric  acid  and  extracted  five  times  with  40  c.c. 
of  a  mixture  of  equal  volumes  of  ether  and  of 
petroleum  ether  boiling  under  60°  C.  The  ethereal 
extract  is  washed  three  times  with  5  c.c.  of  water  to 
remove  traces  of  sulphuric  acid  and  the  solvent 
evaporated  off  slowly  on  a  water  bath,  the  last 
fraction  being  removed  at  room  temperature  in  a 
current  of  air.  The  residue  is  dissolved  in  water 
and  titrated  boiling  with  N /10  sodium  hydroxide, 
using  phenolphthalein  as  indicator ;  preferably  a 
slight  excess  of  2V/10  sodium  hydroxide  is  first  added 
to  prevent  loss  of  benzoic  acid  and  the  solution 
titrated  first  with  JV/10  acid  till  the  red  colour 
disappears  and  then  with  N  /TO  alkali.  The  object 
of  the  addition  of  ammonium  sulphate  is  to  remove 
albuminous  and  other  matter  which  would  otherwise 
lead  to  the  formation  of  emulsions.  The  percentage 
of  benzoic  acid  is  given  by  ax0'012208x(100+w/2)/3O 
where  a  is  the  number  of  c.c.  of  ,2V  / 10  sodium 
hydroxide  used  and  w  the  percentage  of  water  in 
the  margarine.  The  reliability  of  this  method  was 
tested  on  a  number  of  samples  of  margarine  to  which 
known  amounts  of  benzoic  acid  had  been  added. 

— H.  C.  R. 

Carbolic  acid  [phenol];  Formation  of  during 

putrefaction.  J.  S.  Maclaurin.  Analyst,  1922, 
47,  294—295. 
Sheep's  kidneys,  both  when  inoculated  with  various 
cultures  of  organisms  causing  putrefaction  and  when 
untreated,  developed  phenol  in  amounts  up  to 
0'028  g.  per  100  g.  after  standing  for  periods  of  from 
47  to  94  days  at  the  ordinary  summer  temperature. 

— H.  C.  R. 

Utilisation  of  grain.     Sorel.     .See  XVIII. 

Patents. 

Bread;  Manufacture  of  .     W.  Watson,  D.  W. 

Kent-Jones,  and  Woodlands,  Ltd.     E.P.  182,140, 
4.3.,  13.3.  and  29.3.20. 

Flour  or  dough  before  baking  is  incorporated  with 
a  small  quantity  of  ammonium  hydrogen  sulphate 
and  a  small  proportion  of  one  or  more  "chlorine- 
carriers  "  such  as  chlorine,  hydrochloric  acid,  am- 
monium chloride,  magnesium  chloride,  the  double 
chloride  of  ammonium  and  magnesium,  a  chlorate, 
perchlorate,  or  hypochlorite,  with  or  without  the 
addition  of  a  pyrosulphate  or  persulphate.  Ad- 
vantages claimed  are  that  a  tough  and  resilient 
dough  is  more  readily  secured,  and  there  is  a  con- 
siderable improvement  in  the  baking  qualities  of  the 
flour  and  in  the  colour  of  the  resulting  bread. — J.  R. 

Comestibles;   Method  of    preserving    .     P.  W. 

Petersen.     U.S. P.  (a)  1,420,739  and  (b)  1,420,740, 
27.6.22.     Appl.,  (a)  28.2.21,  (b)  6.10.21. 

(a)  Meat  or  other  comestible  is  subjected  to  the 
direct  action  of  a  pre-cooling  liquid  substantially  of 


the  same  osmotic  pressure  as  the  initial  liquid 
content  of  the  comestible,  and  is  then  subjected  to  a 
refrigerating  operation,  (b)  The  pre-cooling  bath 
may  be  a  mixture  of  glycerin  and  water  or  a  solution 
of  a  crystalloid  6olute  of  the  proper  osmotic 
pressure. — J.  R. 

Vegetables;  Process  of  treating in  preparation 

for  canning.     W.  W.  Willison,  Assr.  to  Thernio- 
kept  Products  Corp.      U.S.P.   1,421,750,   4.7.22. 
Appl.,  30.8.20. 
The  vegetables  are  subjected  to  the  action  of  warm 
water   under   a   partial   vacuum    subsequently  sud- 
denly released. — J.  R. 

Flour;  Process  for  ageing  wheaten to  improve 

its  baking  qualities.  R.  Hutchinson.  U.S.P. 
1,422,102,  11.7.22.     Appl.,  19.3.21. 

See  E.P.  164,557  of  1920;  J.,  1921,  558  a. 

Fish   and   the    like;   Apparatus     for    cooling   and 

freezing  .     AV.   B.   Hardy  and  J.  J.  Pique. 

U.S.P.  1,422,570,  11.7.22.     Appl.,  12.10.20. 

See  E.P.  154,669  of  1919;  J.,  1921,  95  a. 

Animal  substances;  Process  of,  and  apparatus  or 

plant  for,  chilling  and  freezing .    J.  C.  Shaw. 

U.S.P.  1,422,627-8,  11.7.22.  Appl.,  5.9.18,  and 
11.3.20. 

See  E.P.  130,346  of  1917;  J.,  1919,  736  a. 

Cooling  and  freezing  fish  and  the  like  [;  Apparatus 

for  ].     J.  J.  Pique,  and  Imperial  Trust  for 

the  Encouragement  of  Scientific  and  Industrial 
Research.  E.P.  182,214,  30.3.21.  Addn.  to 
154,250  (J.,  1921,  94  a). 


XIXb.-WATER  PURIFICATION;  SANITATION. 

Water;  Precision  in  the  determination  of  the  hard- 
ness   of  ,    and   aqueous   preparation   of  the 

standard  soap  solution.  E.  Justin-Mueller.  J. 
Pharm.  Chim.,  1922,  26,  18—21. 
Clark's  method  as  modified  by  Boutron  and 
Boudet,  is  recommended,  but  a  standard  soap  solu- 
tion of  onlv  one-tenth  the  strength  is  used.  It  is 
prepared  by  disolving  35  g.  of  white  Marseilles 
soap  in  200  c.c.  of  boiling  water  and  then  making 
the  volume  up  to  900  c.c.  This  solution  is  then 
diluted,  if  necessary,  until  24  c.c.  just  corresponds 
to  40  c.c.  of  a  0025%  solution  of  calcium  chloride 
or  of  a  0'059%  solution  of  barium  nitrate.— W.  G. 

Formation      of      phenol      during      putrefaction. 
Maclaurin.    See  XIXa. 

Patents. 
Sewage   disposal.     W.    Gavett.     U.S.P.   1,420,250, 

20.6.22.     Appl.,  11.10.21. 
The  sewage  during  digestion   is   subjected  to  the 
pressure  of  gas  generated  by  digestion  in  such  ■■<■ 
manner  that  the  pressure  removes  the  supernatant 
liquid  from  the  sludge. — J.  R. 

Insecticide  and  method  of  making.  H.  H.  Dow, 
Assr.  to  the  Dow  Chemical  Co.  U.S.P.  1,420,9.  <\ 
27.6.22.  Appl.,  27.1.19. 
An  insecticidal  mixture,  prepared  by  the  inter- 
action of  arsenic  acid  and  excess  of  magnesium 
hydroxide,  consists  of  a  dry  powder  composed  ot 
di-magnesium  ortho-arsenate  admixed  with  about 
approximately  one-fifth  the  amount  of  magnesium 
hydroxide. — J.  R. 


vol.  XIX,  No.  16.]      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


045  a 


XX.-ORGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Strophanthus  extracts;  Stability  of  .      C.   A. 

Pomerov   and   F.   W.    Heyl.     Amer.   J.    Pharm., 
1922,  94,  479 — 486. 

The  decrease  in  potency  of  strophanthus  extracts 
was  studied  using  the  American  official  one-hour 
frog  test.  Whilst  the  seeds  themselves  vary  widely 
in  strength,  tinctures  prepared  from  them  retain 
their  original  therapeutic  activity  after  long 
periods,  and  no  appreciable  decline  was  noticed 
after  4  or  5  years.  Dilute  aqueous  galenical  solu- 
tions prepared  for  hypodermic  injection,  contain- 
ing both  the  crystalline  and  amorphous  strophan- 
thin  deteriorate  slowly  and  should  be  discarded 
after  1  year,  when  about  70%  of  the  original 
activity  is  retained.  Alkalinity  or  acidity  of  the 
solutions  was  not  a  factor  in  these  results,  as  was 
suggested  by  Levy  and  Cullen  (J.  Exp.  Med.,  1920. 
31,  267).  Comparative  tests  were  made  on  a  0T% 
solution  of  ouabain  in  physiological  salt  solution, 
rendered  neutral  with  buffer  solutions  of  potassium 
acid  phosphate  and  disodium  hydrogen  phosphate. 
It  deteriorated  to  the  extent  of  86%  of  its  original 
activity  in  12  months. — G.  F.  M. 

Alkaloidal  mercuric  iodides;  Preparation  of  ■ 

in   a    crystalline    condition.      M.    Francois    and 
L.  G.  Blanc.    Comptes  rend.,  1922,  175,  169—171. 

The  amorphous  precipitate  obtained  by  adding 
potassium  mercuric  iodide  to  a  solution  of  an 
alkaloidal  salt  can  be  brought  into  solution  by 
warming  it  whilst  suspended  in  the  mother  liquor 
with  a  large  excess  of  hydrochloric  acid  ;  on  then 
allowing  to  cool  slowly  it  is  usually  re-deposited 
in  a  crystalline  form.  In  the  actual  preparation 
of  these  crystals,  the  initial  precipitation  may  be 
avoided  by  slowly  mixing  equal  volumes  of  warm 
solutions  of  the  alkaloidal  salt  containing  a  large 
amount  of  hydrochloric  acid,  and  of  potassium 
mercuric  iodide,  of  suitable  concentrations.  A 
clear  solution  will  be  thus  obtained  from  which 
the  alkaloidal  mercuric  iodide  is  deposited  in 
crystals  on  slowly  cooling.  In  this  way  the  mer- 
curic iodides  of  caffeine,  theobromine,  quinine, 
morphine,  codeine,  cocaine,  strychnine,  pilocarpine, 
and  sparteine,  and  also  of  quinoline,  were  prepared. 
They  form  brilliant  yellow  crystals,  containing  no 
chlorine  and  no  water  of  crystallisation.  They  show 
a  tendency,  well  marked  in  the  case  of  the  caffeine 
compound,  but  scarcely  perceptible  with  the  less 
soluble  compounds,  such  as  that  of  quinine,  to  be 
decomposed  by  water  into  mercuric  iodide  and  the 
alkaloidal  hydriodide. — G.  F.  M. 

Samuela  carnerosana,  Trelease;  Examination  of  the 

fruit  of  .     O.   F.   Black  and   J.  W.  Kelly. 

Amer.  J.  Pharm.,  1922,  94,  477—479. 

The  dried  fruits  of  Samuela  carnerosana,  a  tree 
closely  related  to  the  yuccas,  and  growing  freely 
in  parts  of  Mexico,  consisted  of  about  30%  of  seeds 
and  70%  of  pods.  From  the  ground  seeds  about 
20%  of  their  weight  of  a  light  yellow  oil  was 
obtained  by  extraction  with  ether.  It  had  the 
following  characters: — sp.  gr.  at  22°  C,  0'9265; 
iodine  value,  1256;  acid  value,  513;  n  =  l'4710; 
ester  value,  187'7.  A  white  amorphous  saponin  was 
obtained  by  extraction  of  the  seeds  with  alcohol.  It 
formed  10%  of  .the  seeds  and  was  not  highly  toxin. 
The  pods  contained  4"3%  of  starch,  62'2%  of  reduc- 
ing sugars  (as  dextrose),  and  3'8%  of  non-reducing 
sugars  (as  sucrose).  The  reducing  sugars  appear  to 
consist  largely  of  lsvulose.  As  about  50%  of  the 
dried  fruit  consists  of  fermentable  sugars,  it  might 
be  of  value  for  the  production  of  alcohol. — G.  F.  M. 


Papain;  Digestive  properties  of  Philippine  . 

H.  C.  Brill  and  R.  E.  Brown.    Philippine  J.  Sci., 
1922,  20,  185—193. 

Autolysis  of  papain  takes  place  in  the  course  of 
a  few  hours  at  temperatures  as  low  as  0°  C.  when 
the  enzymo  is  kept  in  water  solution  with  toluene 
as  an  antiseptic,  and  attempts  to  dialyse  papain 
solutions  in  the  hope  of  separating  papain  from 
any  co-enzyme  that  might  be  present  were  un- 
successful. Air-dried  samples  of  the  enzyme  in 
sealed  glass  containers  had  lost  their  activity  at 
the  end  of  seven  years.  The  effect  of  mineral  salts 
and  certain  acids  on  the  digestive  activity  of 
papain  on  solutions  of  skimmed  milk  powder  was 
studied.  Sodium  chloride  showed  first  a  slight 
activating  effect,  followed  by  an  inhibiting  effect 
in  more  concentrated  solutions.  Sodium  carbonate 
and  bicarbonate,  calcium  chloride,  magnesium  sul- 
phate, and  boric  acid  had  no  marked  influence. 
Potassium  chloride  and  scdium  citrate  showed 
marked  activating  influence,  whilst  acetic  acid  and 
lactic  acid  strongly  inhibited  the  proteolytic 
activity. — G.   F.  M. 

Autoxidation.  Anti-oxygens,  and  various  phe- 
nomena, related  to  anti-oxidising  effects.  C. 
Moureu  and  O.  Dufraisse.  Comptes  rend.,  1922, 
175,  127—132.    {Of.  J.,  1922,  195  a.) 

As  previously  recorded  the  auto-oxidation  of  many 
substances  is  checked  by  the  presence  of  traces  of 
certain  compounds,  notably  phenols,  to  which  the 
name  anti-oxygens  was  given.  Quantitative  ex- 
periments with  acrolein  have  now  been  made  to 
compare  the  inhibitive  effect  of  proportions  varying 
from  1  in  10  to  1  in  1,000,000  of  various  phenols 
on  the  rate  of  oxygen  absorption.  The  measure- 
ments were  made  by  observing  the  rate  of  ascension 
of  the  mercury  column  in  barometer  tubes,  charged 
with  the  reagents,  and  comparing  with  a  "  blank  " 
containing  only  acrolein  and  oxygen.  Quinol  was 
the  most  effective  in  suppressing  auto-oxidation, 
as  little  as  1  in  100,000  having  a  very  marked  effect. 
Slightly  less  active  were  pyrogallol  and  catechol, 
followed  by  resorcinol  and  1.3.4-trihydroxybenzene. 
At  a  concentration  of  1  in  400  phloroglucinol  has 
a  maximum  retarding  effect,  but  at  certain  concen- 
trations it  actually  accelerates  oxidation.  Atten- 
tion is  called  to  various  well-known  phenomena 
which  may  be  attributed  to  anti-oxygens,  e.g.,  the 
action  of  sulphurous  gases  in  preventing  the  lumin- 
escence of  phosphorus  in  dilute  oxygen,  the  action 
of  benzyl  alcohol,  glycerol,  phenol,  etc.  in  retarding 
the  oxidation  of  sulphite  solutions,  the  prevention 
of  the  oxidation  of  synthetic  caoutchouc  by  phenols, 
the  improved  keeping  quality  of  essential  oils  in  their 
natural  condition,  compared  with  that  of  the  auto- 
oxidisable  substances  they  contain  when  in  a  pure 
condition,  etc. — G.  F.  M. 

Saccharic  and  muck  acids;  Methylation  of  . 

P.    Karrer    and   J.    Pever.      Helv.    Chim.    Acta, 

1922,  5,  577—581. 
Saccharic  and  mucic  acids  were  methylated  by 
treating  with  dimethyl  sulphate  in  alkaline  solu- 
tion, freeing  the  incompletely  methylated  product 
from  inorganic  salts,  and  completing  the  methyla- 
tion by  boiling  with  methyl  iodide  in  presence  of 
silver  oxide.  Tetramethylsaccharic  acid  dimethyl 
ester  crystallises  from  ether  in  stout  needles  or 
plates,  m.p.  68°  C,  [a]D18  =  +8-88°  to  10-26°.  Tetra- 
methylmucic  acid  dimethyl  ester  forms  monoclinic 
or  rhombic  tables,  m.p.  103°.  An  incompletely 
methylated  mucate,  m.p.  165° — 166°,  was  isolated, 
probably  trimethylmucic  dimethyl  ester.  Tetra- 
methylsaccharic diamide  forms  rhombic  plates,  m.p. 
237°;'  [a]D18  = +  12-22;  tetramethylmucic  diamide, 
small  tabular  crystals,  m.p.  276°.  The  barium  and 
silver  salts  of  tetramethylsaccharic  acid  are  very 
soluble  in  water. — E.  H.  R. 


646  a 


Ol.  XX.— ORGANIC  PRODUCTS;   MEDICINAL  SUBSTANCES,  &o. 


[Aug.  31,  1922. 


Methylenecitric    acid;    Preparation    of    .      C. 

Gastaldi.    Boll.  Chim.  Farm.,  1922,  61,  353—357. 

A  yield  of  methylenecitric  acid  equal  to  74%  of 
the  theoretical  amount  is  obtained  when  40  grams  of 
crystallised  citric  acid  and  6  grams  of  paraformalde- 
hyde are  heated  together  at  145°  C.  in  a  sealed  tube 
of  90  c.c.  capacity;  with  a  larger  tube  the  yield  is 
diminished.— T.  H.  P. 

Urea;  Industrial  conversion  of  ammonia  into  . 

Fertiliser  of  high  concentration.  C.  Matignon 
and  M.  Frejacques.  Chim.  et  Ind.,  1922,  7, 
1057—1070.     (Cf.  J.,  1922,  231  a.) 

Ammonium  carbamate  is  first  prepared  either  by 
leading  carbon  dioxide  into  liquid  ammonia,  or  by 
combining  the  two  components,  in  the  gaseous 
condition,  in  a  special  condenser  with  a  suitable 
cooling  device  and  scrapers.  The  dehydration  to 
urea  is  effected  in  autoclaves  at  145° — 150°  C, 
and  an  equilibrium  is  eventually  attained  as  the 
result  of  the  five  reactions  CO(NH„)ONH<->- 
CO(NH.),  +  H20 ;  CO(NH„)ONH1-t-CO;+2NHJ ; 

CO  (NHjONH,  +  H„0-v(NH,)2"COa ;  (NH4),CO,+ 
NH4HC03  +  NH, ;  "NH4HC03->C03  +  H20  +  NH3. 
Urea  formation  is  favoured  by  making  the  gas 
volume  as  small  as  possible,  and  the  attainment  of 
equilibrium  is  more  rapid  the  higher  the  tempera- 
ture, but  the  pressure  rapidly  rises,  the  maximum 
at  135°  C.  being  3314  atm.,  at  150°  C.  55/10  atm. 
The  equilibrium  percentages  of  urea  at  various  tem- 
peratures were  determined  :  130°  C.  after  39  hrs., 
39-2%  ;  134°  C,  after  40  hrs.,  39-92%  ;  140°  C,  after 
40  hrs.,  41-3%  ;  145°  C,  after  4  hrs.,  41-0%;  after 
24  hrs.,  43'3%.  The  higher  temperature,  therefore, 
increases  also  the  actual  yield,  as  a  consequence  of 
the  endothermic  nature  of  the  reaction.  The  in- 
fluence of  catalysts  was  also  studied.  At  the  lower 
temperatures  silica,  aluminium  silicate,  and 
alumina  considerably  augment  the  velocity  of  the 
reaction,  but  at  145°  C.  their  influence  is  negligible. 
The  effect  of  dehydrating  agents  was  unsatisfac- 
tory, as  none  could  be  found  which  did  not  also 
react  with  other  substances  in  the  equilibrium. 
From  the  reaction  product,  which  is  fluid  at  high 
temperatures,  and  solidifies  at  70° — 85°  C,  the 
urea  was  isolated  in  a  pure  state  by  simple  volatili- 
sation of  the  carbamate  etc.  present,  and  if,  on  a 
technical  scale,  the  autoclave  is  allowed  to  cool  to 
60° — 100°  C,  and  the  gases  arising  from  the  disso- 
ciation of  the  unchanged  carbamate  are  then  re- 
leased, only  urea  remains  in  the  vessel,  or 
alternatively  the  operations  may  be  made  continu- 
ous by  maintaining  the  autoclave  at  the  desired 
reaction  temperature,  forcing  in  the  requisite  pro- 
portions of  carbon  dioxide  and  ammonia,  at  say 
60  atm.,  into  an  annular  compartment,  and  draw- 
ing off  the  fluid  reaction  product,  after  treating 
for  the  necessary  period  of  time,  through  the 
central  compartment  into  a  second  vessel  where  the 
unchanged  carbamate  volatilises. — G.  F.  M. 

Nessler's  reagent;  New  analytical  applications  of 

.     Characterisation  of  ketones;  estimation  of 

aldehydes.    J.  Bougault  and  R.  Gros.     J.  Pharm. 
Chim.,  1922,  26,  5—11. 

Certain  ketones,  such  as  acetone,  methyl  ethyl 
ketone,  cyclobexanone,  trimethylcyclohexenone, 
aeetophenone,  and  p-methoxyacetophenone,  give 
with  cold  Nessler's  reagent  a  yellowish-white 
precipitate,  which  dissolves  in  acid,  or  on  the 
addition  of  potassium  cyanide,  with  liberation  of 
the  ketone.  This  reaction  may  be  used  for  the 
detection  of  acetone  in  urine,  by  suspending  a 
small  capsule,  containing  10  c.c.  of  Nessler's 
reagent,  over  200  c.c.  of  urine,  previously  acidified, 
the  whole  being  covered  by  a  bell  jar.  The  time 
required  for  the  formation  of  a  precipitate  varies 
inversely  as  the  concentration  of  the  acetone  in  the 


urine.     Certain  aldehydes  react  quantitatively  with 
Nessler's  reagent  according  to  the  equation, 

R.CHq+H20  +  2I  =  2HI+R.CO!H, 
the  iodine  coming  from  the  mercuric  iodide.  For 
the  estimation,  to  a  known  volume  of  the  aldehyde 
solution,  corresponding  to  O'Ol — 0'05  g.  of  aldehyde, 
is  added  an  excess  (about  30  c.c.)  of  Nessler's 
reagent  and  10  c.c.  of  sodium  hydroxide  solution. 
The  mixture  is  well  shaken  and  after  some  time  is 
neutralised  with  hydrochloric  acid.  A  known 
volume  of  standard  iodine  solution  is  added  and 
then  the  excess  iodine  is  titrated  with  standard 
thiosulphate.  It  is  necessary  to  make  a  blank 
estimation  on  the  sodium  hydroxide.  Accurate 
results  were  obtained  with  formaldehyde,  benzakle- 
hyde,  furfural,  and  piperonal,  but  the  method  was 
not  satisfactory  for  vanillin  or  acrolein. — W.  G. 

Acetic  acid;  Oxidation  by  chromic  acid  of  the  homo- 

logues  of  .     L.   J.    Simon.     Comptes  rend., 

1922,  175,  167—169. 
Whilst  within  certain  limits  of  temperature  acetic 
acid  is  unattacked  by  a  mixture  of  sulphuric  and 
chromic  acids,  it  is  completely  converted  into  carbon 
dioxide  by  silver  chromate  under  the  same  condi- 
tions. The  homologues  of  acetic  acid  are  likewise 
completely  oxidised  by  silver  chromate,  but  the 
chromic  acid  mixture  leaves  a  non-oxidised  residue, 
which  for  the  homologues  up  to  C8  corresponds 
approximately  to  1  C  atom,  and  which  increases 
slightly  with  the  higher  members  but  never  reaches 
2.  This  result  is  interpreted  by  supposing  that  the 
acids  are  oxidised  atom  by  atom  commencing  with 
the  carboxyl  group,  and  the  oxidation  ceases  when 
acetic  acid  is  reached,  thus:  — 

R.CH2.C02H-*R.CO.C02H>R.C02H  +  C03etc. 
Confirmation  of  this  hypothesis  is  found  in  the 
oxidation  of  acetyl  compounds  and  acyclic  acids  by 
lead  chromate  and  sulphuric  acid,  where  the  evolu- 
tion of  gas  accompanying  the  oxidation  occurs  in 
two  well-defined  stages,  viz.,  at  a  lower  temperature 
corresponding  to  the  more  readily  oxidisable  part 
of  the  molecule,  and  at  about  100°  C.  the  tempera- 
ture at  which  acetic  'acid  is  oxidised  by  lead 
chromate.  Methanesulphonic  acid  is  not  an  inter- 
mediate product  of  chromic  oxidation,  as  it  is  not 
oxidised  even  by  silver  chromate. — G.  F.  M. 

Terpene  compounds ;  Higher  .     V.  Conversion 

of  abietic  acid  into  methylretene.  L.  Ruzicka 
and  J.  Meyer.  Helv.  Chim.  Acta,  1922,  5,  581— 
593. 
Abietic  acid,  C20H30O2,  when  heated  with  6iilphur 
is  converted  into  retene,  l-methyl-7-isopropylphen- 
anthrene.  The  methyl  ester,  dihydroabietic  acid, 
and  the  corresponding  alcohol,  abietinol, 

CI8H2,(CH,)CH2OH, 
also  give  retene  when  similarly  treated.  When 
abietinol  is  dehydrated  with  phosphorus  penta- 
chloride  it  gives  a  new  hydrocarbon,  methylabietin, 
C20H10,  which,  when  heated  with  6ulphur,  gives 
methylretene,  m.p.  79°  C.  When  oxidised  with 
chromic  acid,  this  gives  methylretenequinone,  m.p. 
147°,  giving  with  o-phenylenediamine  a  quinoxa- 
line,  m.p.  165°.  Abietic  acid  is  a  methyldecahydro- 
retenecarboxylic  acid,  but  the  orientation  of  the 
methyl  and  carboxyl  groups  is  uncertain.  Retene 
styplinate  has  m.p.  142°.     (Cf.  J.C.S.,  Sept.) 

— E.  H.  E. 

Essential  oil  from  the  leaves  of  Abies  Tindrov, 
Spach.  J.  L.  Simonsen.  Indian  Forest  Rec, 
1922,  8,  368—372. 

The  essential  oil  was  produced  in  2"5%  yield  by  the 
steam  distillation  of  the  leaves  of  Abies  Pindrow, 
a  silver  fir  growing  in  the  AVestern  Himalayas.  It 
is  a  colourless  oil  with  a  strong  odour  of  turpentine, 
and  has  the  following  characters: — sp.  gr.  at 
30°/30°    O     0-8558,     nDa°  =  1-4667,     [o]Dsu=- 10-38, 


Vol.  XLI.,  No.  IB.] 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


647 


saponif.  value  5'3,  saponif.  value  after  acetylation 
15"44,  acid  value  0'3.  It  gave  on  distillation  under 
100  mm.  pressure  90%  up  to  120°  C,  and  on  frac- 
tionation of  this  at  699  mm.  pressure  the  following 
fractions  were  isolated:  154° — 158°  C.  55"9%,  con- 
sisting of  d-a-pinene,  158°— 160°  C.  11'9%,  consist- 
ing of  a  mixture  of  a-  and  /3-pinene,  160° — 164°  C. 
6'8%,  consisting  of  a  similar  mixture,  164°- — 167°  C. 
4-2%,  containing  J-0-pinene,  167°— 180°  C,  10'3%, 
containing  Wimouene,  and  possiblv  dipentene,  and 
above  180°  C.  10-6  % ,  from  which,  together  with  the 
fraction  boiling  above  120°  C.  at  100  mm.,  Z-ter- 
pineol,  Z-terpinyl  nonylate,  and  two  isomeric 
sesquiterpene  alcohols,  C15H2d0,  were  isolated. 

— G.  F.  M. 

Sandalwood  oil;  Abnormal  solubility  of  West  Aus- 
tralian   in  alcohol.     J.  L.  Somervillc.     Perf. 

Essent.  Oil  Rec,   1922,   13,  261—264. 

West  Australian  sandalwood  oil  shows  an  abnormal 
type  of  miscibility  with  alcohol-water  mixtures : 
when  a  concentrated  solution  of  oil  is  diluted  with 
the  solvent,  oil  separates  again  after  the  dilution 
has  passed  a  certain  limit.  The  solubility  of  the 
oil  is  expressed  by  means  of  a  curve  for  each 
strength  of  alcohol  (68 — 72%),  the  transition  points 
being  plotted  against  temperature  and  percentage 
of  oil.  A  series  of  similar  U-shaped  curves  is  thus 
obtained,  the  apex  of  each  occurring  at  approxi- 
mately 165%  of  oil.  A  more  fundamental  graphing 
was  made  by  calculating  the  data  into  percentages 
by  weight  of  the  three  constituents,  oil,  alcohol, 
and  water,  and  plotting  the  transition  points  for 
'  a  given  temperature.  No  explanation  can  be  given 
i  of  the  abnormal  behaviour,  but  it  follows  from  the 
latter  graph  that  a  simple  statement  of  the  facts 
is  that,  at  a  constant  temperature,  in  a  series  of 
mixtures  which  are  just  miscible,  if  the  amount  of 
oil  is  lowered  the  proportion  of  water  to  alcohol 
'  present  will  need  to  rise  at  first  until  a  turning 
point  is  reached,  and  then  it  will  need  to  fall 
with    further    decrease    in    the    proportion    of    oil. 

— G.  F.  M. 

Doryphora   sassafras   (Endlicher);   Essential   oil   of 

the  leaves  of .    A.  R.  Peufold.    Perf.  Essent. 

Oil  Rec,  1922,  13,  273—275. 

The  leaves  of  Doryphora  sassafras,  the  New  South 
Wales  variety  of  the  sassafras  tree,  yield  according 
to  season  0"1 — 1'05%  of  essential  oil,  the  former 
quantity  being  obtained  in  May  and  the  latter  in 
November.  The  oil  varies  considerably  in  composi- 
tion according  to  the  districts  from  which  it  is 
obtained.  Leaves  from  the  Monga  district  gave  an 
oil  having  the  characters :  sp.  gr.  1"01 — 102, 
n=l'506 — 1'509,  ester  value  4'6,  ester  value  after 
acetylation  32-97,  solubility  in  70%  alcohol  1  in  8. 
The  principal  constituents  so  far  identified  are 
safrole  60 — 65%,  camphor  10 — 15%,  d-a-pinene  10%, 
sesquiterpenes  10%,  eugenol  1%.  Another  sample 
of  oil  from  the  Currowan  district  was  lighter  than 
water  (sp.  gr.  0'9808),  and  only  contained  about 
30 %  of  safrole,  together  with  a  considerable  quan- 
tity of  a  substance  which  was  apparently  eugenol 
methyl  ether,  but  which  has  not  yet  been  satisfac- 
torily separated  from  admixed  sesquiterpenes  and 
alcoholic  compounds.  The  proportion  of  camphor 
in  this  oil  was  also  greater,  amounting  to  about 
30%.— G.  F.  M. 

Volatile  oil  of  Mentha  aquatica,  Linne,  and  a  note 
on  the  occurrence  of  pulenone.  R.  E.  Kremers. 
J.  Biol.  Chem.,  1922,  52,  439 — 143. 

The  distilled  oil  of  Mentha  aquatica,  Linne,  has 
sp.  gr.  0-916  at  24°  C,  n24  =  T4582,  [a]D"  =  -7-48°, 
acid  value  7'84,  ester  value  210'93,  ester  value  after 
acetylation  224'0,  and  contains  73'82%  of  esters, 
61-6%  of  total  alcohols,  3'6%  of  free  alcohols.  The 
esters  consist  mainly  of  linalyl  acetate.     There  are 


also  present  small  quantities  of  another  ester,  free 
linalool,  a  free  acid,  and  an  unstable  aldehyde. 
Pulegone  is  a  constituent  of  the  cohobated  oil  of 
peppermint  (cf.  J.,  1922,  269  a).— E.  S. 

Patents. 

Amino-nitro-compounds;   Preparation   of  aromatic 

.     Soc.  Chim.  de  la  Grande  Paroisse.     E.P. 

169,658,  12.8.21.     Conv.,  30.9.2O. 

Instead  of  using  alcoholic  ammonia  and  operating 
in  an  autoclave,  the  replacement  of  chlorine  atoms 
by  the  amino  group  in  chloro-nitro-derivatives  may 
be  effected  at  125°— 130°  C.  in  open  vessels  by 
treating  with  ammonium  acetate.  This  process  is 
applicable  to  all  aromatic  chloro-nitro-compounds  in 
which  the  chlorine  is  capable  of  being  acted  on  by 
ammonia.  Example:  120  kg.  of  80—95%  acetic 
acid  is  saturated  with  ammonia  ga6.  The  tempera- 
ture rises  to  125°— 130°  C.  and  100  kg.  of  1-chloro- 
2.4-dinitrobenzene  is  gradually  added,  ammonia 
being  continuously  passed  through  to  replace  that 
which  has  entered  into  the  reaction.  After  some 
hours  the  product  is  filtered  and  pressed,  the  liquid 
being  returned  to  the  process.  Quantitative  yields 
are  obtained  and  the  product  is  purified  by  simple 
washing. — G.  F.  M. 

Phosphoric  acid;   Manufacture   of  liquid   esters  of 

.     A.  G.  Bloxam.     From  Chem.  Fabr.  Gries- 

heim-Elektron.     E.P.  181,835,  22.3.21. 

Liquid  esters  of  phosphoric  acid  are  made  by  form- 
ing mixed  esters  from  phenol  and  its  homologues,  or 
from  its  homologues  alone,  the  parent  materials 
used  being  either  artificial  mixtures  of  phenols,  con- 
taining at  least  25 — 30%  of  o-  or  ni-cresol,  or  the  tar 
acids,  either  as  a  whole,  or  fractions  therefrom, 
containing  mixed  monohydric  phenols  with  at  least 
25%  of  o-  or  m-cresol,  obtained  from  coke-oven,  gas 
works,  or  other  tars.  The  esters  are  obtained  by 
heating  the  mixed  phenols  with  phosphorus  oxy- 
chloride,  or  phosphoric  anhydride,  or  alternatively 
the  phosphoric  di-  or  mono-chlorides  may  be  pre- 
pared from  single  phenols,  and  then  converted  into 
neutral  esters  with  another  phenol  or  mixture  of 
phenols.  Examples  are  given  of  the  preparation  of 
a  large  variety  of  these  mixed  esters,  and  also  of 
certain  individual  mixed  esters,  prepared  by  the 
latter  of  the  above  described  methods,  as  for 
example  p-cresyl-di-m-cresyl  phosphate,  a  fluor- 
escent oil,  b.p.  287°— 289°  C.  at  21  mm.,  and  o- 
cresyl-diphenyl  phosphate,  b.p.  290°— 293°  C.  at 
55  mm.— G.  F.  M. 

Urea;  Manufacture  of .    J.  Y.  Johnson.    From 

Badische  Anilin-  und  Soda-Fabrik.    E.P.  182,331, 
11.7.21. 

In  the  manufacture  of  urea  by  heating  ammonia 
and  carbon  dioxide  (or  ammonium  carbamate)  under 
pressure,  the  use  of  pumps  etc.  for  compressing  the 
gases  may  be  avoided  by  bringing  either  the 
ammonia  or  carbon  dioxide  or  both  to  the  pressure 
required  for  the  reaction,  either  separately  or 
simultaneously,  by  expelling  either  or  both  of 
them  under  pressure  from  suitable  solutions  by 
means  of  heat.  For  example  a  highly  concentrated 
solution  of  ammonium  carbonate  or  carbamate  is 
heated  by  steam  at  180  lb.  pressure  in  a  column, 
whereby  a  gas  mixture  comprising  ammonia,  carbon 
dioxide,  and  some  water  vapour  is  obtained  under 
pressure  and  is  passed  through  a  cooler  kept  at  a 
temperature  (110° — 150°  C.)  high  enough  to  allow 
condensation  of  a  melt  of  ammonium  carbonate 
but  no  solidification.  The  melt  is  then  run  into  the 
autoclave  for  conversion  into  urea,  and  the  mix- 
ture of  ammonia  and  carbon  dioxide  remaining 
unchanged  after  equilibrium  has  been  attained  is 
used  for  the  re-saturation  of  the  exhausted  liquid 
running  from  the  column.     Instead  of  generating 


648  a 


Cl.  XXI.— photographic  materials  and  processes. 


[Aug.  31,  1922. 


ammonia  and  carbon  dioxide  together,  they  may 
l>e  distilled  separately,  for  example  by  heating  in 
separate  columns  aqueous  ammonia  and  sodium 
bicarbonate  solutions,  or,  if  desired,  one  of  the  two 
gases  may  be  forced  into  the  autoclave  by  means  of 
a  compressor. — G.  F.   M. 

Acetyl  isoborneol;  Process  of  making  .     R.  L. 

Andreau,  Assr.  to  E.  I.  du  Pont  de  Nemours  and 
Co.     U.S.P.  1,420,399,  20.6.22.     Appl.,  7.7.17. 

Acetylisobohneol  is  obtained  by  heating  camphene 
with  acetic  acid  in  presence  of  concentrated  sul- 
phuric acid  at  55° — -66°  C,  until  the  reaction  is 
practically  completed.  The  sulphuric  acid  is  then 
neutralised  with  anhydrous  sodium  acetate,  the 
resulting  acetic  acid  is  distilled  off  under  reduced 
pressure,  and  the  sodium  sulphate  formed  by  the 
neutralisation     filtered     off     from     the     residue. 

— G.  F.  M. 

Esters;  Manufacture  of .    J.  A.  Steffens,  Assr. 

to  U.S.  Industrial  Alcohol  Co.  U.S.P.  (a) 
1,421,604  and  (b)  1,421,605,  4.7.22.    Appl.,  5.4.21. 

(a)  Esters  are  produced  by  heating  together  an 
alcohol  and  an  acid,  without  a  catalyst,  but  in 
presence  of  a  third  liquid,  miscible  with  the  alcohol, 
but  immiscible  with  water,  the  vapours  of  water, 
the  alcohol,  and  the  third  liquid  being  distilled 
from  the  reaction  mixture  and  rectified,  and  the 
distillate  separated  into  two  layers  containing 
respectively  high  and  low  percentages  of  the  third 
liquid.  The  latter  is  washed  to  remove  the  third 
liquid,  and  the  remainder  containing  water  and  the 
alcohol  is  rectified,  (b)  The  process  is  similar  to 
the  above,  except  that  a  catalyst  is  used  in  addi- 
tion to  the  third  liquid. — G.  F!  M. 

Ethylene;    Process    of    producing    .      M.    C. 

Whitaker  and  A.  A.  Backhaus,  Assrs.  to  U.S. 
Industrial  Alcohol  Co.  U.S.P.  1,421,640,  4.7.22. 
Appl.,  11.7.19. 

Alcohol  is  preheated  to  a  temperature  of 
300° — 500°  C,  and  the  resulting  vapours  are  passed 
through  a  catalyst  maintained  at  a  similar  tempera- 
ture in  order  to  form  ethylene. — G.  F.  M. 

Hydrorjuinone  [quinol];  Process  of  making  . 

H.  Von  Bramer,  Assr.  to  Eastman  Kodak  Co. 
U.S.P.  1,421,869,  4.7.22.     Appl.,  28.6.20. 

In  the  manufacture  of  quinol  a  p-dihalogenbenzene- 
sulphonate  is  treated  with  a  metal  hydroxide,  pro- 
ducing the  quinol  salt  of  the  metal,  and  quinol  is 
recovered  from  the  reaction  mixture. — W.  C. 

Dichlor ethylene ;  Manufacture  of .    F.  Kaufler, 

Assr.  to  A.  Wacker.  Ges.  f.  Elektrochem.  Ind. 
m.b.H.    U.S.P.  1,419,969,  20.6.22.   Appl.,  18.7.21 

See  E.P.  156,080  of  1920;  J.,  1921,  411  a. 

Tropinone-monocarboxylic-acid  esters  and  process  of 
preparing  the  same.  O.  Wolfes  and  H.  Maeder. 
U.S.P.  1,420,900,  27.6.22.     Appl.,  26.8.21. 

See  E.P.  164,757  of  1921;  J.,  1922,  436  a.  _ 

Diphenylamine;    Method    of   manufacturing    . 

A.  P.  Tanberg,  Assr.  to  E.  1.  du  Pont  de  Nemours 
and  Co.  U.S.P.  1,422,494,  11.7.22.  Appl.,  31.5.17. 

See  E.P.  138,372  of  1917;  J.,  1920,  280  a. 

Apparatus  for  effecting  reactions  by  means  of 
amalgams.  Electrolytic  reduction  and  o.ridation. 
Manufacture  of  oxalate.  U.S.P.  1,420,211—3. 
See  VII. 

Methyl  chloride.     U.S.P.  1,421,733.     See  VII. 

Electrochemical  reactions.  E.P.  181,848 — 9.  See  XI. 


XXI —PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Colour-sensitising  [of  photographic  plates']  by 
bathing.  F.  M.  Walters,  jun.,  and  R.  Davis. 
Brit.  J.  Phot.,  1922,  69,  416—419  and  430—433. 

An  investigation  of  the  methods  of  sensitising  ordi- 
nary photographic  plates  by  bathing  shows  that 
certain  presautions  must  be  taken  with  some  of  the 
modern  photo-sensitising  dyes  and  not  with  others. 
Dicyanine  gives  much  greater  sensitiveness,  and  its 
influence  extends  farther  into  the  infra-red  when 
used  in  dilute  alcoholic  solution  with  ammonia  than 
when  used  with  water  alone.  Pinacyanol  gives 
good  results  in  dilute  alcoholic  solution  with 
ammonia,  but  plates  bathed  in  water  and  stock 
solution  are  almost  as  sensitive  and  keep  much 
better,  provided  the  plates  are  thoroughly  washed 
before  sensitising,  as  the  soluble  salts  contained  in 
the  emulsion  prevent  the  sensitising  action  by 
flocculating  the  dye.  Washing  has  a  favourable 
action  on  the  colour  sensitiveness  of  panchromatic 
plates,  and,  while  not  so  marked  as  the  action  of 
dilute  ammonia,  it  gives  no  fog,  which  always 
follows  the  use  of  ammonia.  Pinachrome,  Pinaver- 
dol,  Homocol,  and  Orthochrome  T  are  much  less 
sensitive  to  electrolytes  than  are  Pinacyanol  and 
Dicyanine.  Ammonia  may  be  added  to  a  staining 
bath  of  water  and  stock  solution  only,  but  does  not 
increase  the  sensitising  action  appreciably  except 
in  the  case  of  Homocol.  Certain  brands  of  ortho- 
chromatic  plates  were  found  to  be  superior  to 
plates  bathed  in  Erythrosin.  As  a  general  rule 
panchromatic  plates  compare  unfavourably  with 
plates  bathed  in  Pinacyanol. — W.  C. 

[Photographic]  toning  with  tin  salts.  J.  G.  F. 
Druce.     Brit.  J.  Phot.,  1922,  69,  433—434. 

Bromide  prints  may  be  toned  to  a  warm  brown  tint 
by  first  bleaching  them  in  a  solution  of  ferricyanide, 
and  then  treating  them  in  a  bath  of  sodium 
hydrogen  stannite  made  up  by  adding  a  10%  solu- 
tion of  sodium  hydroxide  to  a  10%  solution  of 
stannous  chloride  crystals  until  the  precipitate  first 
formed  is  redissolved.  The  resulting  solution  is 
then  diluted  with  rather  less  than  an  equal  quantity 
of  water.  The  toned  image  is  stated  to  consist  of 
silver. — W.  O. 

Photographic  plates;  Bemoval  of  the  film  from . 

F.  Limmer.     Chem.-Zeit.,  1922,  46,  651—652. 

The  gelatin  film  may  be  removed  from  photographic 
plates  by  immersing  them  for  a  few  seconds  in  a 
1 — 2%  solution  of  ammonium  birluoride.  The  film 
readily  peels  away,  and  may  be  removed  from  the 
solution  intact  and  dried,  while  the  glass  plate, 
after  washing  and  drying,  may  be  used  again. 
200  c.c.  of  the  stripping  solution  is  sufficient  for  at 
least  150  plates,  9  cm.  x  12  cm.  The  method  is  not 
suitable  for  films. — A.  R.  P. 

Patents. 
Photographs;  Process  for  producing  opaque in 

natural  colours.    M.  Obergassner.     E.P.  182,167, 

21.3.21. 
A  colloidal  three-colour  screen  is  employed  con- 
taining in  part  dyes  which  become  colourless  on 
treatment  with  acids  or  alkalis,  or  by  neutralisa- 
tion, oxidation,  or  reduction,  and  in  part  colourless 
substances  which  become  coloured  by  such  treat- 
ment. The  colloid  used  for  producing  the  colour 
screens  may  be  mixed  with  a  substance,  e.g.,  barium 
chloride,  which  is  precipitated  to  form  an  insoluble 
combination  with  the  dye  in  order  to  increase  the 
vigour  of  the  colours.  A  modified  screen  may  be 
used  which  consists  of  a  colloid  medium  containing 
colourless  diazo-  or  nitroso-salts  which  are  converted 
into  dyes  by  suitable  treatment,  which  renders 
colourless  the  original  screen  colours. — W.  C. 


Vol.  XLI.,  No.  16]       Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


649  a 


Light-diffusing  medium  and  method  of  making  the 
same.  L.  W.  Eberlin  and  S.  E.  Sheppard,  Assrs. 
to  Eastman  Kodak  Co.  U.S. P.  1,421,924,  4.7.22. 
Appl.,  13.12.20. 

The  composition  consists  of  a  mixture  of  a  water- 
soluble  silicate  and  amylaceous  particles. — W.  C. 


XXII.-EXPLOSIVES;    MATCHES. 

Patents. 

Explosive  composition.  L.  O.  Bryan,  Assr.  to  E.  I. 
du  Pont  de  Nemours  and  Co.  U.S.P.  1,420,364, 
20.6.22.     Appl.,  6.1.22. 

An  explosive  composition  consists  of  more  than  25% 
of  nitrocellulose,  1 — 10%  of  a  liquid  explosive,  and 
0'3 — 5%  of  powdered  aluminium. — J.  R. 

High-explosive  containers:  Method  of  filling  . 

J.  P.  Madden  and  L.  Fisher,  Assrs.  to  Bethlehem 
Steel  Co.   U.S.P.  1,420,637,  27.6.22.   Appl.,  3.6.21. 

A  quantity  (e.g.,  3  pts.)  of  trinitrotoluene  is  melted 
and  mixed  with  a  quantity  {e.g.,  7  pts.)  of  dry  tri- 
nitrotoluene sufficient  to  form  a  plastic  mass,  which 
is  packed  in  the  shell  or  container. — J.  R. 

Perchlorate  explosives:  Manufacture  of  .      C. 

Bunge.    G.P.  350,563,  31.12.19.    Addn.  to  303,289 
(J.,  1920,  208  a). 

Mixed  crystals  containing  potassium  chlorate,  am- 
monium chlorate,  and  potassium  permanganate,  or 
ammonium  chlorate  and  potassium  chlorate,  or 
ammonium  chlorate  and  potassium  permanganate, 
are  added  to  perchlorate  explosives  instead  of  the 
mixed  crystals  described  in  the  chief  patent. 

— L.  A.  C. 


XXIII.— ANALYSIS. 

Buffer  values;  Measurement  of  and  the  rela- 
tionship of  buffer  value  to  the  dissociation  constant 
of  the  buffer  and  the  concentration  and  reaction  of 
the  buffer  solution.  D.  D.  Van  Slyke.  J.  Biol. 
Chem.,  1922,  52,  525—570. 

A  theoretical  paper,  the  object  of  which  is  to  give 

1  quantitative  expression  to  buffer  effects.     For  this 

purpose,  the  buffer  value,  /J,  of  a  solution  is  defined 

as  the  number  of  g. -equivalents  of  strong  alkali  or 

,  acid  which  must  be  added  (strictly  without  change 

of  volume)  to  one  litre  to  produce  unit  change  in 

pH.      Formulated   mathematically,    /J=dB/dpH    (cf. 

Koppel  and  Spiro,  Biochem.  Zeits.,  1914,  65,  409, 

who  have  given  a  somewhat  similar  definition).    An 

j  increment  of  strong  acid  is  regarded  as  a  negative 

■  increment  of  strong  base;  hence  the  value  of  j3  is 

II  always   positive.     Starting  from  the  laws  of   ionic 

mass  reaction,   the  following  general  equation  for 

buffer  value  has  been  deduced : 

jS  =  2-S{(K'[H-]C)/(K'+[H-])'+[H-]  +  [OH']}^ 
in  which  K'  represents  either  Ka/7S  or  Kwy6/KD 
according  as  the  buffer  is  a  weak  acid  or  a  weak 
|  base,  and  C=the  molecular  concentration  of  buffer 
,  acid  (or  base).  When  the  pH  is  between  3  and  11 
and  C  is  not  much  less  than  0T  N,  [H1]  and  [OH'] 
may  be  neglected  and  the  equation  simplifies  to 
/3=2-3K'[H-]C/(K'+[H-])2,  an  expression  which  has 
also  been  deduced  directly  from  Henderson's  equa- 
tion:  Ka=[H-]y,[Ba]/[Ha]  (Amer.  J.  Physiol., 
1908,  21,  169;  Ergbn.  Physiol.,  1909,  8,  254).  Under 
these  conditions 

/5/C(  =  ftf)=2-3K'[H-]/(K'+[H-])2, 
/?m    being  termed  the  molecular  buffer  value  of  the 
buffer  acid  or  base.     By  differentiation  of  the  last 
equation  it  is  shown  that  the  maximum  value  of 


/Sm  occurs  when  [H]  =  K',  and  it  follows  that  at  this 
point  /3M  =  23/4=0-575  for  all  buffers.  Further, 
when  K'  =  [H'],  [Ha]  =  [Ba]  ;  hence  at  the  maximum 
molecular  buffer  value  half  the  buffer  acid  (or  base) 
is  present  in  the  free  state  and  half  in  the  form  of 
salt.  The  above  methods  have  been  extended  to  the 
calculation  of  /8  for  solutions  of  polyvalent,  ampho- 
teric, and  mixed  buffers. — E.  S. 

Coloritnetric  and  electrometric  determinations  of 
hydrogen  ion  concentrations  in  solutions  contain- 
ing carbon   dioxide;  Comparison  of  .     G.   E. 

Cullen   and  A.    B.    Hastings.       J.    Biol.   Chem., 
1922,  52,  517—520. 

Contrary  to  the  results  obtained  by  Evans  (J. 
Physiol.,  1921,  54,  353),  the  colorimet'ric  and  elec- 
trometric methods  for  the  estimation  of  the  hydro- 
gen-ion concentration  of  solutions  containing 
carbon  dioxide  yield  identical  results  provided  pre- 
cautions are  taken  to  prevent  the  loss  of  carbon 
dioxide. — E.  S. 

Modification  of  the  Clark  hydrogen  electrode  vessel 
to  permit  accurate  temperature  control.  G.  E. 
Cullen.    J.  Biol.  Chem.,  1922,  52,  521—524. 

The  Clark  electrode  vessel  (J.  Biol.  Chem.,  1915, 
23,  475)  is  provided  with  an  additional  opening  by 
means  of  which  a  thermometer  may  be  inserted  in 
the  solution. — E.  S. 

Estimation  of  potassium  in.  the  presence  of  sodium, 
magnesium,  sulphates  and  phosphates;  Investi- 
gation of  Atkinson' s  process  for  the  .     S.  J. 

Watson.     Analyst,  1922,  47,  2S5— 288. 

The  process  (J.,  1921,  751  a)  is  considered  unsatis- 
factory because  the  compensating  errors  necessary 
to  overcome  the  loss  due  to  the  solution  of  some 
potassium  perchlorate  do  not  occur  to  an  extent 
sufficient  to  balance  this  loss,  and  the  quantity  of 
methyl  alcohol  and  perchloric  acid  used  is  too  large 
to  make  the  process  economical.  Keeping  the  con- 
tents of  the  beaker  at  the  boiling  point  for  an  hour, 
whilst  perhaps  necessary  to  ensure  complete  solu- 
tion of  undesirable  substances,  must  also  favour  the 
solution  of  potassium  perchlorate  itself. — H.  C.  R. 

Magnesium;  Colorimctric  method  for  the  determin- 
ation of  small  amounts  of  .     A.  P.   Briggs. 

J.  Biol.  Chem.,  1922,  52,  349—355. 

The  method  described  is  similar  to  that  of  Hammett 
and  Adams  (c/.  J.,  1922,  612  a).— E.  S. 

Electrometric  titrations  with  s'dver  nitrate.    Deter- 
mination   of    chlorides,    iodides,    and    bromides, 
and  of  iodides  in  the,  presence  of  chlorides  and 
bromides.    I.  M.  Kolthoff.    Z.  anal.  Chem.,  1922, 
61,  229—240. 
In  the  titration  of  chlorides,  iodides,  and  bromides 
with  silver  nitrate  solution  the  end-point  may  be 
determined   electrometrically ;    the   method   is   par- 
ticularly useful  in   the  case  of  coloured   and  very 
dilute  solutions.     In  ammoniacal   solution,   iodides 
may  be  titrated  in  the  presence  of  large  quantities 
of  chlorides  and  small  amounts  of  bromides.     The 
method  is   also  trustworthy  for  the  determination 
of  ferricyanides,    thiocyanates,   cyanides,   oxalates, 
chromates,    tartrates,    succinates,    and    salicylates, 
but    not     of     ferrocyanides     and     pyrophosphates. 

— W.  P.  S. 

Oxalic  acid;  Detection  and  determination  of  

and   its  use   in  standardising   iodine   and   silver 

solutions.    L.  Rosenthaler.    Z.  anal.  Chem.,  1922, 

61,  219—222. 

When  potassium  iodate  solution  is  heated  with  the 

addition  of  a  small  quantity  of  oxalic  acid,  iodine 

is   liberated;   the   reaction   may   be   obtained   with 


6jOa 


Ol.  xxiii.— analysis. 


[Aug.  31,  1922. 


as  little  as  3  mg.  of  oxalic  acid.  Tartaric  and  malic 
acids  also  liberate  iodine  from  potassium  iodate, 
but  so  slowly  that  their  presence  does  not  interfere 
with  the  reaction  obtained  with  oxalic  acid.  The 
reaction  serves  for  the  determination  of  oxalic  acid 
and  oxalates ;  a  portion  of  the  sample  is  heated  with 
a  known  amount  in  excess  of  potassium  iodate 
solution  in  the  presence  of  dilute  sulphuric  acid 
until  all  liberated  iodine  has  been  expelled.  The 
mixture  is  then  cooled,  potassium  iodide  is  added, 
and  the  iodine  liberated  from  the  excess  of  iodate 
used  is  titrated  with  thiosulphate  solution.  Pure 
sodium  oxalate  may  be  used  in  the  standardisation 
of  iodine  solution  and  silver  nitrate  solution ;  for 
the  latter,  a  known  quantity  of  the  oxalate  is 
treated  with  a  slight  excess  of  the  silver  nitrate 
solution,  the  mixture  is  diluted  to  a  definite  volume, 
filtered,  and  the  excess  of  silver  in  the  filtrate 
titrated  with  thiocyanate  solution. — W.  P.  S. 

Arsenic  and  antimony  sulphides;  lodometric  deter- 
mination of  .     F.  Nikolai.     Z.  anal.  Chem., 

1922,  61,  257—272. 
The  method  proposed  consists  in  dissolving  the 
arsenic  trisulphide,  or  antimony  trisulphide,  in 
sodium  hydroxide  solution,  adding  this  solution  to 
an  excess  of  standard  iodine  solution  containing 
dilute  acetic  acid  and  sodium  acetate,  and  then 
titrating  the  excess  of  iodine  in  the  acid  solution 
with  thiosulphate  solution.  Oxidation  of  the 
alkaline  sulphide  solution  by  atmospheric  oxygen 
may  be  prevented  or  retarded  considerably  by  the 
addition  of  a  small  quantity  of  gelatin.  The  use  of 
iodine  solution  containing  acetic  acid  and  sodium 
acetate  is  also  recommended  for  the  determination 
of  arsenites  and  the  corresponding  antimony  com- 
pounds; the  arsenite  solution  is  added  to  an  excess 
of  the  iodine  solution  and  the  excess  then  titrated 
with  thiosulphate  solution. — W.  P.  S. 

Arsenic   acid;   Determination   of  .     L.   Rosen- 
thaler.     Z.  anal.  Chem.,  1922,  61,  222—229. 

In  the  iodometric  determination  of  arsenic  acid 
atmospheric  oxygen  is  liable  to  react  with  the 
hydriodic  acid  formed  and  yield  further  quantities 
of  iodine,  but  this  may  be  prevented  by  adding 
sodium  bicarbonate  (to  furnish  an  atmosphere  of 
carbon  dioxide)  before  the  potassium  iodide  is 
introduced.  At  least  16%  of  hydrochloric  acid  or 
333%  of  sulphuric  acid  should  be  present  in  the 
solution  to  be  titrated,  otherwise  the  reaction  is 
not  quantitative.  When  sulphuric  acid  is  used, 
the  solution,  after  the  addition  of  the  requisite 
quantity  of  the  acid,  is  cooled,  5  g.  of  sodium 
bicarbonate  is  added,  followed  by  concentrated 
potassium  iodide  solution,  and  the  mixture  is 
then  titrated  with  thiosulphate  solution.  A  pre- 
cipitate, consisting  mainly  of  arsenic  tri-iodide, 
may  form  on  the  addition  of  the  iodide ;  this  pre- 
cipitate should  be  dissolved  by  adding  a  small 
quantity  of  water  before  the  titration  is  com- 
menced.— W.  P.  S. 

Carbon  dioxide  indicator  for  flue  gases;  Automatic 

.     R.   B.   MacMullin.     J.   Ind.   Eng.   Chem., 

1922,  14,  628—629. 
A  simple  apparatus  that  can  be  made  with  bottles 
and  glass  tubing  and  contained  in  a  wooden  case, 
8"x20"x20",  is  described  and  illustrated.  By  means 
of  it  the  continuous  automatic  analysis  of  flue  gas 
for  carbon  dioxide  can  be  carried  out  to  an  accuracy 
of  0'2%.  The  apparatus  depends  on  the  difference 
in  rate  of  flow  of  the  gas  through  a  capillary  tube 
according  to  the  percentage  of  carbon  dioxide  it 
contains,  the  pressure  drop  and  rate  of  flow  of  the 
gases,  after  absorption  of  carbon  dioxide,  through 
another  capillary  tube  being  kept  constant. 

— H.  C.  R. 


Methane;    Determination    of    small    quantities    of 

.     [Absorption  of  carbon  dioxide.]     E.  Mur- 

mann.  Oesterr.  Chem.-Zeit.,  1922,  25,  90. 
The  complete  absorption  in  baryta  solution  of  small 
quantities  of  carbon  dioxide,  obtained  for  example 
in  the  determination  of  traces  of  methane  by 
combustion  has  hitherto  required  two  or  three 
absorption  flasks  in  series,  owing  to  the  short 
time  the  bubbles  are  in  contact  with  the  liquid. 
One  ordinary  Erlenmeyer  flask  is  sufficient,  how- 
ever, if  the  gas  is  led  into  the  baryta  solution 
through  a  capillary  tube,  and  05 — 10  c.c.  of  1% 
gelatin  solution  is  added  to  the  liquid  so  as  to  pro- 
duce a  foam  on  the  surface  which  increases  the 
duration  of  contact  of  the  gas  and  liquid  to  at 
least  30  sees.,  and  thereby  renders  absorption  com- 
plete. The  capillary  tube  may  conveniently  be 
fixed  into  the  flask  through  the  straight  arm  of  a 
T-piece,  fitted  into  the  neck  of  the  flask  with  a 
rubber  stopper,  and  the  connexion  made  gas-tight 
with  a  short  piece  of  rubber  tube.  The  device  may 
also   be   useful   in   other   cases   of   gas   absorption 

— G.  P.  M. 

Nitrate    nitrogen    in    urine    etc.;    Detection    and 

determination    of    .      0.    Nolte.      Z.    anal. 

Chem.,  1922,  61,  278—282. 

Nitrates  may  be  detected  in  urine  etc.  by  means 
of  the  diphenylamine  test  and  the  less  sensitive 
ferrous  sulphate  test;  attention  is  directed  to  the 
fact  that  the  diphenylamine  test  is  not  charac- 
teristic of  nitrates,  since  the  reaction  is  also  given 
by  other  oxidising  substances.  The  Schlosing- 
Grandeau  gasometric  method  is  the  most  trust- 
worthy for  the  determination  of  the  nitrate,  but 
the  actual  nitric  oxide  content  of  the  gas  evolved 
must  be  determined,  since  6mall  quantities  of 
nitrogen  are  sometimes  present. — W.   P.    S. 

See  also  pages  (a)  622,  Carburettor  adjustments 
by  gas  analysis  (Fieldner  and  Jones).  626,  Soap 
in  wool.  628,  Steam  oven.  629,  Bakelite  apparatus 
for  measuring  hydrofluoric  acid  (Curtman) ;  Sodium 
sulphide  (Atkin) ;  Arsenic-free  reagents  (Locke- 
mann).  630,  Arsenic  and  antimony  (Duparc  and 
Ramadier).  633,  Dry  volume  of  clay  briquettes 
(Crawford).  635,  Manganese  in  steels  etc. 
(Heslinga).  636,  Alloys  (Zahlbruckner).  639, 
Separating  stearic  and  palmitic  acids  (Andre). 
6~41,  Chrome  leather  analysis  (Woodroffe  and 
Green);  Tannin  analysis  (Schneider)  (Schultz); 
Humus  in  soil  (Gehring).  642,  Sugar  cane  juice 
(Helderman).  643,  Brandy  (Bonifazi) ;  Vanillin  in 
brandy  (Von  Fellenberg) ;  Alkalinity  of  ash  of 
foodstuffs  (Pfyl).  644,  Benzoic  acid  in  margartM 
(Kopke  and  Bodlander) ;  Hardness  of  water  (Justin 
Mueller).  646,  Ketones  and  aldehydes  (Bougault 
and  Gros). 

Patents. 

Gas;  Method  of,  and  apparatus  for  detecting  the 

presence   of   one   in  another.      C.    H.   M. 

Roberts.  U.S. P.  1,421,720,  4.7.22.  Appl.,  3.6.20. 
The  presence  of  one  gas  in  another  is  detected  by 
passing  the  mixture  to  be  tested  between  opposed 
spaced  electrodes  connected  with  a  suitable  source 
of  low  voltage  direct  current  electricity.  The 
amount  of  current  passing  across  the  gap  is 
measured  by  suitable  means,  and  it  varies  with  the 
amount  of  the  gas  to  be  detected  which  is  present  ir. 
the  mixture. — G.  F.  M. 

Gas-analysing  apparatus.  O.  Rodhe,  Assr.  to 
Aktiebolaget  Ingeniorsfirma  F.  Egnell.  Reissue 
15,409,  11.7.22.  of  U.S. P.  1,302,224,  29.4.19. 
Appl.,  3.3.22. 

See  E.P.  103,812  of  1916;  J.,  1918,  447  a. 


Vol.  XLI.,  Xo.  16.] 


PATENT   LIST. 


651a 


Patent    List 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Offioe  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given:  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court.  Chancery  Lane,  London,  W  C.  2,  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Aktiebolaget  Ljungstroms  Angturbin.  Air-cooled 
condensers.     20,604.     July  27.     (Sweden,  Apr.  22.) 

Aktiebolaget  Ljungstroms  Angturbin.  Regenera- 
tive air-preheaters.  20,605.  July  27.  (Sweden, 
May  8.) 

Aktiebolaget  Separator.  Cleaning  bowls  of  centri- 
fugal separators.  21,028.  Aug.  1.  (Sweden, 
22.9.21.) 

Babcock  and  Wilcox,  Ltd.  (Deutsche  Babcock  & 
|  Wilcox      Dampfkessel-Werke      A.-G.)        Furnaces. 
21,507.     Aug.  8. 

Bailey.  Apparatus  for  metering  granular 
material.     20,377.     July  25.     (U.S.,  23.9.21.) 

Barnes  and  Fleming.  Grinding-mills.  20,523. 
July  27. 

Bicknell  and  Honeysett.     Means  for  mixing  and 
.treating  liquids.     20,696.     July  28. 

Brandon.     Dephlegmators.     21,042.     Aug.   1. 

Brandon.  Apparatus  for  preheating  or  vapor- 
ising liquids.     21,043.     Aug.  1. 

Brims.  Combination  dry  and  steam  heating 
apparatus.     21,589.     Aug.  8. 

Broquier  y  Gautier.  Refrigerating-apparatus. 
.21,345.     Aug.  4.     (Spain,  5.8.21.) 

Bullock,  and  Sandycroft,  Ltd.  Crushing- 
machines.     21,148.     Aug.  2. 

i  Christiani.  Method  for  accumulation  of  heat  by 
'means  of  disintegrated  masses.  21,545.  Aug.  8. 
(Germany,  9.8.21.) 

i     Coppee  et  Cie.     Combined  washing  and  sorting 
'apparatus.     20,898.    July  31.     (Belgium,  1.8.21.) 
i     De  Fonblanque    and   Moeller.     Method   for   pro- 
'ducing  superheated  steam,  gases,  or  air.       21,063. 
Aug.  2. 

1  Duckham,  and  Woodall,  Duckham  and  Jones 
(1920),  Ltd.     Heating  materials.     20,723.     July  28. 

Grange  Iron  Co.,  Ltd.,  and  Hoyle.  Centrifugal 
'separators.     21,600.     Aug.  8. 

Griffin.     20,289.     See  II. 

Hamble.     Filter.     21,080.     Aug.  2. 

Hesselman.  Liquid-filters.  21,710.  Aug.  9. 
'Sweden,  31.8.21.) 

Hider.     21,128.     See  XIX. 

Humble.     Filtering-device.     21,934.     Aug.  12. 

Jerrard.       Refrigerating-machines   and  condens- 
ng  apparatus.     21,663.     Aug.  9. 
i    Lake  (Tate).     Delivering  liquids  in  gaseous  coa- 
lition.    20,248.     July  24. 

Lea.  Apparatus  for  measuring  granular  etc. 
naterials.     20,656.     20,665.     July  28. 

Lehmann  Co.,  Inc.  Apparatus  for  treating  finely- 
livided  material.    21,696.     Aug.  9.    (U.S.,  June  14.) 

Lodge-Cottrell,  Ltd.,  and  Lodge.   21,588.   See  XI. 

Mcintosh  and  Viccars.  Refrigerating-apparatus. 
'0,646.     July  28. 

Mangiameli.  Obtaining  mixture  of  gases  in  any 
iesired  volumetric  proportions.  20,302.  July  25. 
]Germany,  25.7.21.) 

Marcotte.  Process  for  utilisation  of  luminescent 
nd  catalytic  substances.  21,824.  Aug.  10. 
France,  13.8.21.) 


Marks  (Bock  Bearing  Co.).  Grinding-machineB. 
20,355.     July  25. 

Metropolitan-Vickers  Electrical  Co.,  Ltd.  (West- 
mghouse  Electric  and  Mfg.  Co.).  Steam-condens- 
ing plant.    21,355.    21,356.    Aug.  4. 

Portas.     Grinding  etc.  mills.     21,000.     Aug.  1. 

Reid.   Steam  heating-apparatus.  20,245.  July  24. 

Sainsbury.  Means  for  removing  moisture  from 
materials  in  grinding  and  sifting  machines.  20,220. 
July  24. 

Sauer.  Process  for  treating  liquids.  20,168, 
July  24.  21,645,  Aug.  9.     (Germany,  23.7.21,  9.8.21.) 

Vulkan-Werk  Reinshagen  &  Co.  Furnaces. 
21,720.     Aug.  9.     (Germany,  9.8.21.) 

Weight.  Method  of  refrigeration.  20,510.  July  27. 

Complete  Specifications  Accepted. 

6309  and  13,151  (1921).  Reid.  Furnaces.  (183,508.) 
Aug.  10. 

10,197  (1921).  Barrs.  Cooling-,  condensing-,  or 
heating-apparatus.     (183,195.)     Aug.  2. 

10,963(1921).  Leubli.  Grinding-mills.  (183,215.) 
Aug.  2. 

11,057  (1921).  Morison.  Heating  and  deaerating 
of  liquids.     (183,534.)     Aug.  10. 

11,321  (1921).  Chaudifere.  Shaft  furnaces  and 
the  like.     (161,971.)     Aug.  2. 

11,466  (1921).  Case.  Method  of  and  means  for 
treating  air.     (183,544.)     Aug.  10. 

11,554  (1921).  Aktiebolaget  Ljungstroms  Ang- 
turbin. Apparatus  for  effecting  the  transfer  of 
heat  between  liquids  and  gases.    (162,250.)   Aug.  10. 

11,597  (1921).  Lamplough.  Generating  and 
superheating  of  steam.     (183,261.)     Aug.  2. 

12,139  (1921).  Fothergill.  Steam-condensing 
plant,     (183,271.)     Aug.  2. 

12,315  and  16,997  (1921).  Cooke  and  Croxon. 
Apparatus  for  superheating  or  preheating  fluids. 
(183,918.)     Aug.  16. 

16,401  (1921).  Erickson.  Furnaces.  (183,666.) 
Aug.  10. 

19,498  (1921).  Webster.  Retorts  or  furnaces. 
(184,040.)     Aug.  16. 

19,960  (1921).  Perrett.  Means  for  adding  re- 
agents to  liquids.     (183,357.)     Aug.  2. 

20,062  (1921).  Fletcher.  Means  for  separating 
solids  of  different  specific  gravities.  (184,049.) 
Aug.  16. 

21,816  (1921).  Rigbv.  Scale-removing  composi- 
tion '  for   boilers.     (183,371.)     Aug.  2. 

25,713  (1921).  Hoogbruin,  and  Naaml.  Vennoots. 
Fabriek  van  Stoom-en  andere  Werktuigen  Jonker 
&  Zoon.  Boilers  for  heating  liquids  and  generat- 
ing 6team  or  vapour.     (184,092.)     Aug.  16. 

30,625  (1921).  Lodge  Fume  Co.,  Ltd.  (Mbller). 
See  XI. 

33,202  (1921).  Mclntyre.  Grinding,  refining, 
and  mixing  machines.     (183,399.)     Aug.  2. 

3770  (1922).  Beth.  Filter-bag  cleaning-devices 
for  air-filters.     (175,281.)     Aug.  16. 

11,787  (1922).   Accioly.  Filters.  (183,784.)  Aug.  9. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE  DISTILLATION; 

HEATING;  LIGHTING. 

Applications. 

Babin.  Gas-generators.  20,803.  July  29. 
(France,  30.7.21.) 

Brandes.  Production  of  coke  from  inferior  fuel. 
21,154.     Aug.  2. 

Brandes.    Utilisation  of  peat  etc.   21,015.   Aug.  1. 

Byrnes.  Manufacture  of  liquid  fuel.  21,046. 
Aug.  1. 

Chilowsky.  Atomising  and  gasifying  heavy  com- 
bustibles for  internal-combustion  engines,  furnaces, 
etc.     20,231.     July  24.     (France,  27.7.21.) 


652  a 


PATENT   LIST. 


[Aug.  31,  1922. 


Consortium  fur  Elektrochem.  Ind.  Ges.  Process 
for  purifying  acetylene.  21,051.  Aug.  1.  (Ger- 
many, 1.8.21.). 

Davidson.     20,384.     See  XXIII. 

De  Fonblanque  and  Moeller.  Method  of  treating 
peat  etc.     21,062.     Aug.  2. 

De  Fonblanque  and  Moeller.  Treatment  of  peat. 
21,462.     Aug.  5. 

Duckham,  and  Woodall,  Duckham  and  Jones 
(1920),  Ltd.  Method  of  briquetting  fuel.  20,827. 
July  29. 

Erdbl-  und  Kohle-Yerwertung  A.-G.,  and  Erlen- 
bach.  Process  for  catalytic  cracking  of  hydro- 
carbon oils,  tare,  etc.     21,048.     Aug.  1. 

Esling.  Sweating  paraffin  etc.  waxes.  20,465. 
July  26. 

Gibson  and  Nicoll.  Apparatus  for  charging 
furnaces  of  gas  retorts  etc.     21,317.     Aug.  4. 

Griffin.  Machine  for  pulverising  coal  etc. 
20,289.     July  25. 

Hav.  Separating  water  from  coal.  21,871. 
Aug. '11. 

Hiller.    Production  of  charcoal.    21,280.    Aug.  3. 

Illingworth.  Treatment  of  shale,  coal,  etc.  for 
removal  of  sulphur.     21,011.     Aug.  1. 

Kilburn  (Sulzer  Freres).  Cooling  incandescent 
coke.     21,099.     Aug  2. 

Macdonald.     20,990.     See  XXIII. 

Perry.  Apparatus  for  distilling  carbonaceous 
material.     21,010.     Aug.  1. 

Rigby.    Treatment  of  peat  etc.    20,561.    July  27. 

Ritte.  Production  of  producer  gas  for  propelling 
vehicles.     20,482.     July  26. 

White.  Low-temperature  carbonisation  of  coal 
etc.     21,582.     Aug.  8. 

Complete  Specifications  Accepted. 

2510  (1921).  Davies.  Apparatus  for  use  in  cool- 
ing, cleansing,  or  scrubbing  gases  in  connection  with 
all  types  of  gas  producers.     (183,160.)     Aug.  2. 

5967  (1921).  Jones,  and  Minerals  Separation, 
Ltd.     Concentration  of  coal.     (183,504.)     Aug.   10. 

7712  (1921).  Optische  Anstalt  Goerz  A.-G.,  and 
Gehlhoff.     Electric  arc  lamps.     (183,179.)     Aug.  2. 

7883  (1921).  Thermal  Industrial  and  Chemical 
(T.I.C.)  Research  Co.,  Ltd.,  and  Morgan.  Treat- 
ment of  peat  and  the  like.     (183,180.)     Aug.  2. 

7897  (1921).  Marks  (Stephens  Engineering  Co.). 
Combustion  of  fuel.     (183,512.)     Aug  10. 

8883  (1921).  Colebrooke  and  Williams.  Re- 
newal of  the  filaments  in  metal-filament  electric 
lamps.     (183,523.)     Aug.   10. 

9157  and  16,387  (1921).  Nesfield.  Means  for  de- 
sulphurising oils.     (183,527.)     Aug.  10. 

10,831  (1921).  Trent  Process  Corp.  Distillation 
of  oils.     (171,075.)     Aug.  2. 

10,919  (1921).  Glawe.  Method  of  mixing 
briquette-forming  materials  with  a  fluid  binding- 
agent.     (183,212.)     Aug.  2. 

11,065  (1921).  Ferolite,  Ltd.,  and  Clapp.  Gas- 
producers,  electric  furnaces,  crucible  furnaces,  and 
the  like.     (183,219.)     Aug.  2. 

11,134  (1921).  Burton.  Gas-retort  mouthpieces. 
(183,225.)     Aug.  2. 

11,712  (1921).     Kobayashi.     See  XII. 

11.828  (1921).  Clewlow.  Method  of  and  appara- 
tus for  disintegrating,  dehydrating,  and  otherwise 
treating  peat  for  fuel  or  distillation  purposes. 
(183,566.)     Aug.  10. 

11,953  (1921).  Ricardo.  Fuel  for  use  in  internal- 
combustion  engines.     (183,577.)     Aug.  10. 

12,277  (1921).     Tabarv.     See  IX. 

12,398  (1921).  Gemavel.  Burners  for  liquid 
combustibles.     (168,853.)     Aug.  10. 

12,491  (1921).  Key.  Apparatus  connected  with 
an  internal-combustion  or  an  oil  engine  for  convert- 
ing crude  oil  into  fuel.     (183,600.)     Aug.  10. 


16,698  (1921).  Burdon,  Burdon,  and  Burdons, 
Ltd.  Preheating  of  liquid  fuel  for  liquid-fuel-fired 
furnaces.     (183,673.)     Aug.  10. 

17,701  (1921).  Adler.  Process  for  the  manufac- 
ture of  decolorising-charcoal  of  high  activity 
(165,788.)     Aug.  10. 

17,775  (1921).     Yeadon.     See  III. 

18,379  (1921).     Withers  (Lanphier).     See  XXIII 

21,103  (1921).  Florin.  Gas-washers.  (184,060.) 
Aug.  16. 

27,512  (1921).  Naaml.  Vennoots.  Metaaldraad- 
lampenfabriek  "  Holland."  Electric  incandescent 
lamps  and  other  electric  apparatus  in  which  an 
incandescent  filament  requires  to  be  kept  stretched. 
(183,389.)     Aug.  2. 

13,651-2  (1922).  Igranic  Electric  Co.,  Ltd. 
(Cutler-Hammer  Mfg.  Co.).     See  XXIII. 


Ill— TAR    AND    TAR    PRODUCTS. 

Applications. 

Erdbl-  und  Kohle-Verwertung  A.-G.,  and  Erlen- 
bach.     21,048.     See  II. 

Thompson  (Atack).  Process  of  manufacturing 
carbazol  derivatives.     21,318.     Aug.  4. 

Thompson  (Atack).  Process  of  purifying  anthra- 
quinone  or  its  derivatives.     21,319.     Aug.  4. 

Verein  fur  Chem.  u.  Metallurgische  Produktion. 
Continuously-working  apparatus  for  distillation  of 
tar  etc.     20,364.     July  25.     (Czecho-Slov.,  5.8.21.) 

Complete  Specification  Accepted. 

17,775  (1921).  Yeadon.  Stills  for  continuous 
distillation  of  coal  tar,  mineral  oils,  and  the  like. 
(183,682.)     Aug.  10. 


IV.— COLOURING    MATTERS    AND    DYES. 

Applications. 

Anderson  and  others.     20,829.     See  VI. 

Badische  Anilin-  und  Soda-Fabrik.  Process  for 
production  of  a  blue  vat  dve-stuff  of  the  anthracene 
series.     21.366.     Aug.  4.    "(Germany,  4.8.21.) 

British  Dyestuffs  Corp.,  Ltd.,  and  Hodgson. 
Manufacture  of  new  intermediate  compounds  for 
production  of  colouring  matters.     20,830.    July  29. 

Davies,  Scottish  Dyes,  Ltd.,  Thomas,  and  Thom- 
son. Production  of  colouring  matters.  21,27t>. 
Aug.  3. 

Complete  Specification  Accepted. 

18,892  (1921).  British  Dyestuffs  Corp.,  Ltd., 
Perkin,  and  Spencer.  Manufacture  of  benz- 
anthrone  derivatives.     (183,351.)     Aug.  2. 


V— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 

Anderson  and  others.     20,829.     See  VI. 

Bacon  and  Hvndman.  Treatment  of  animal  and 
vegetable  fibres.     21,262.     Aug.  3. 

Barrett,  Coward,  and  Tootal  Broadhurst  Lee  Co.. 
Ltd.  Cellulosic  material  and  manufacture  thereof. 
21.889.     Aug.  11. 

Billwiller.  Method  of  manufacturing  fibres  etc. 
21,398.     Aug.  4. 

Brandwood  and  Brandwood.  Drying  yarns. 
21.207.     Aug.  3. 

Brifco,  Ltd.,  and  Macwalter.  Method  of  render- 
ing textile  fabrics  gas  and  water  tight.  21,998. 
Aug.  12. 


Vol.  XLI.,  No.  16.] 


PATENT    LIST. 


G53a 


Chivel.  Treatment  of  cellulose  derivatives. 
20,713.     July  28. 

Dehn  (International  Takamine  Ferment  Co.). 
Process  of  treating  textile  etc.  fabrics,  thread, 
yarn,  etc.     20,206.     July  24. 

Dreyfus.  Manufacture  or  treatment  of  artificial 
silk,  films,  etc.     20,556.     July  27. 

Dreyfus.  Manufacture  of  cellulose  derivatives. 
20,557.     July  27. 

Dreyfus.  Manufacture  of  products  from  cellulose 
derivatives.     21,915.     Aug.  11. 

Gruner  &  Reinhardt  Ges.  Method  of  produc- 
tion of  tracing-cloth.  20,438.  July  26.  (Germany, 
2.8.21.) 

Hawkins.  Drying-machines  for  wool  etc.  20,918. 
July  31. 

Mcintosh  and  Mcintosh.  Processes  for  treatment 
of  textile  fibres.     20,167.     July  24. 

Mcintosh  and  Mcintosh.  Processes  for  drying 
textile  fibres.     20,262.     July  25. 

Mcintosh  and  Mcintosh.  Treatment  of  textile 
fibres.     21,435.     Aug.  5. 

Moeller.  Waterproofing  cellulose  or  carbo- 
hydrates of  the  cellulose  group.  21,049.  Aug.  1. 
(Germany,  12.8.21.) 

Moisio  and  Olander.  Manufacture  of  paper. 
20,299.    July  25. 

Nishina.  Method  of  solidifying  fibrous  sub- 
stances.    21,400.     Aug.  4.     (Japan,  1.9.21.) 

Raitt.  Extracting  cellulose  or  paper-pulp  from 
fibrous  vegetable  materials.    21,690.     Aug.  9. 

Shaw.  Fabric  or  material,  and  manufacture 
thereof.     21,955.     Aug.  12. 

Ubbelohde.  Process  of  manufacturing  spinning 
fibres.     21,282.     Aug.  3.     (Germany,  Feb.  16.) 

Underwood,  and  Underwood,  Ltd.  Processes  for 
treatment  of  fabrics,  and  fabrics  obtained  thereby. 
21,936.     Aug.  11. 

Zust.  Manufacture  of  cotton  fabrics.  21,162. 
Aug.  2.     (Switz.,  May  18.) 

Complete  Specifications  Accepted. 

3320  (1921).  Sutcliffe.  Preparation  of  vulcanised 
fibre.     (183,497.)     Aug.  10. 

,    3377    (1921).      Bloxam.      (Akt.-Ges.    fur   Anilin- 
Fabr.)    See  VI. 

4639  (1921).  Drevfus.  Manufacture  of  cellulose 
derivatives.     (183,882.)    Aug.  16. 

6515(1921).  Trostel.  Process  for  treating  animal 
fibre  to  improve  the  spinning  and  felting  properties 
thereof.     (183,885.)     Aug.  16. 

8395  (1921).  Carpmael  (Bagley  and  Sewa'II  Co.). 
Paper-making  machines.     (183,185.)     Aug.  2. 

11,461  and  12,115  (1921).  Bloxam  (Technochemia 
A..-G.).  Manufacture  of  new  textile  products  de- 
rived from  animal  fibres.  (183,249  and  183,270.) 
Aug.  2. 

12,190  (1921).  Plausons  (Parent  Co.),  Ltd. 
[Plauson).  Process  for  the  manufacture  of  cellulose 
x>mpounds.    (183,908.)    Aug.  16. 

14,275  (1921).  Arent.  Fireproofing  and /or 
waterproofing  treatment  of  materials.  (164,730.) 
\ug.  2. 

15,249  (1921).     Classen.     See  XVII. 

15,709  (1921).  Smith  and  Co.  (London,  E.),  Ltd., 
ind  Ellis.  Process  and  apparatus  for  coating 
abrics.     (183,319.)     Aug.  2. 

17,813  (1921).  British  Thomson-Houston  Co., 
jtd.  (General  Electric  Co.).  Gas-impervious  ma- 
erials.    (184,012.)    Aug.  16. 

VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Anderson,  Baddiley,  British  Dyestuffs  Corp., 
>td.,  and  Hill.  Process  for  obtaining  new  shades 
>n  acetyl  silk  and  new  dyestuffs  for  use  therein. 
10,829.     July  29. 


Brandwood  and  Brandwood.  Apparatus  for  con- 
tinuous dyeing  etc.  of  textile  fibres  in  loose  state. 

21.962.  Aug.  12. 

De   Blicquy   and   Callebaut.        Dyeing-machines. 

21.963.  Aug.  12. 

Lomax.  Treatment  of  yarns  or  threads.  21,642. 
Aug.  9. 

Mcintosh  and  Mcintosh.  Processes  for  bleaching 
etc.  textile  fibres.     20,263.     July  25. 

Society  of  Chem.  Ind.  in  Basle.  Method  of  pre- 
venting bleeding  in  degumming  raw  silk  in  presence 
of  silk  dyed  with  vat  dye-stuffs.  20,229.  July  24. 
(Germany,  13.8.21.) 

Talbot.  Drying  and  bleaching  machine  with 
sieve  combined.     20,425.     July  26. 

White  (Surpass  Chemical  Co.,  Inc.).  Process  of 
bleaching  and  dyeing  fibre.     20,468.     July  26. 

Complete  Specifications  Accepted. 

3337  (1921).  Bloxam  (Akt.-Ges.  fur  Anilin- 
Fabr.).  Process  for  protecting  animal  fibres  in 
treating  them  with  alkaline  liquids.  (183,868.) 
Aug.  16. 

9040  (1921).  Jackson  and  Bro.,  Ltd.,  Gass, 
Hammond,  and  Fish.  Dyeing  -  apparatus. 
(183,526.)     Aug.  10. 

16,491  (1921).  Farbw.  vorm.  Meister,  Lucius, 
und  Briining.  Manufacture  of  stable,  dry,  and 
readily-soluble  vat  preparations  for  dyeing. 
(171,078.)     Aug.  2. 


VII.— ACIDS;   ALKALIS;   SALTS;    NON- 
METALLIC  ELEMENTS. 

Applications. 

Calder,  Chance  and  Hunt,  Ltd.,  and  Palmer. 
Process  for  condensing  acid  fumes  evolved  during 
concentration  of  sulphuric  acid.     21,012.     Aug.   1. 

Cocksedge.  Process  for  manufacture  of  a  sodium 
compound  etc.     20,492.     July  27. 

Codd.  Production  of  alkali  silicate  solutions. 
21,436.     Aug.  5. 

Ephraim.       Method  of  producing  sulphides  and 
hydrosulphides     of     the     alkali     metals.       21  997 
Aug.  12.     (Germany,  20.8.21.) 

Guggenheim  Bros.  Manufacture  of  sodium 
nitrate.     20,192.     July  24.     (U.S.,  Jan.  19.) 

Humphries.  Ammonia  distillation.  20,684. 
July  28. 

Legeler.  Process  for  manufacture  of  sulphur 
proto-chloride.  21,401.  Aug.  4.  (Germany, 
29.12.21.) 

Scott.  Manufacture  of  hydrogen  and  oxygen. 
20,353.     July  25. 

Texas  Gulf  Sulphur  Co.,  Inc.  Burning  sulphur. 
21,261.      Aug.    3.     (U.S.,    Jan.    21.) 

Complete  Specifications  Accepted. 

10,792  (1921).  Minat  and  Pipereaut.  Manufac- 
ture of  sulphuric  acid.     (163,030.)     Aug  2. 

11,358  (1921).  Plowman  and  Feldenheimer.  Pro- 
cess for  the  grading  of  alkaline-earth  carbonates. 
(183,243.)     Aug.  2. 

15,814  (1921).     Tvrer.     See  XIII. 

16,636  (1921).  Wilderman.  Process  for  the  pro- 
duction of  hypochlorites  and  chlorates,  and 
apparatus  therefor.     (183,671.)     Aug.  10. 

18,333  (1921).  Fairweather  (Air  Reduction  Co., 
Inc.).  Method  of  producing  hydrocyanic  acid. 
(183,348.)     Aug.  2. 

20,708  (1921).     Priest.     See  IX. 

29,835  (1921).  Chem.  Fabr.  Griesheim-Elektron. 
Process  and  apparatus  for  the  production  of  carbon 
disulphide  from  its  elements.     (174,040.)     Aug.   2. 

34,252  (1921).  Deguide.  Continuous  process  for 
the  manufacture  of  caustic  soda  or  caustic  potash. 
(176,321.)    Aug.  16. 


054 1 


PATENT    LIST. 


[Aug.  31,  1922. 


4981  (1922).  Farbenfabr.  vorm.  F.  Bayer  und 
Co.  Process  for  the  manufacture  of  hyposulphites. 
(176,311.)     Aug.  16. 

VIII.— GLASS;  CERAMICS. 

Application. 

Jackson  (Libbey-Owens  Sheet  Glass  Co.).  Means 
for  controlling  flow  of  molten  glass.  20,573. 
July  27. 

Complete  Specifications  Accepted. 

11,093  (1921).  Rigby.  Treatment  of  china  clay 
or  like  clays.     (183,535.)    Aug.  10. 

11,894  (1921).  Stafford.  Glass  and  other  fur- 
naces.   (183,572.)    Aug.  10. 

12,020  (1921).  Frink.  Metallic  moulds  for  form- 
ing glass  articles.     (183,582.)     Aug.  10. 

19,812  (1921).  Bailey.  Tunnel  ovens  or  kilns  for 
firing  pottery,  tiles,  and  the  like.  (183,708.) 
Aug.  10. 

20,318  (1921).  Mellersh-Jackson  (Libbey-Owens 
Sheet  Glass  Co.).  Method  of  and  apparatus  for 
drawing  sheet-glass.     (184,053.)     Aug.  16. 

22,692  (1921).  Atkinson,  and  Stein  and  Atkinson, 
Ltd.    Glass  furnaces.    (183,373.)    Aug.  2. 

25,597  (1921).  British  Thomson-Houston  Co., 
Ltd.  (General  Electric  Co.).  Porcelain.  (184,090.) 
Aug.  16. 


IX.— BUILDING  MATERIALS. 

Applications. 

Abbott.  Non-conducting  linings  etc.  of  heat- 
retaining  etc.   chambers.     21,450.     Aug.  5. 

Chandler  and  Wilkins.  Composition  for  facing 
walls  etc.    21,375.     Aug.  4. 

Fraser.  Manufacture  of  artificial  stone  or 
marble.     21,337.     Aug.  4. 

Harris.  Composition  to  be  applied  to  cement 
work  before  painting.     20,333.     July  25. 

Jaques.  Manufacture  of  Portland  cement 
mortars.     20,904.     July  31.     (Australia,  5.12.21.) 

Kleinlogel.  Waterproof  and  dustless  concrete 
compound.     21,290.     Aug.  3.     (Germany,  18.10.21.) 

Kontzler.  Production  of  hydraulic  cement. 
21,007.     Aug.  1.     (France,  Feb.  20.) 

Complete  Specifications  Accepted. 

10,448  (1921).  Griffiths.  Roof  and  the  like 
coverings.     (183,530.)     Aug.  10. 

12,277  (1921).  Tabary.  Manufacture  of  bitu- 
minous compositions  suitable  for  buildings  and  for 
forming  road  or  like  surfaces.     (183,914.)    Aug.  16. 

14,275  (1921).     Arent.    See  V. 

15,934  (1921).  Ammon.  Process  of  treating  wood. 
(165,784.)     Aug.  2. 

20,708  (1921).  Priest.  Vertical  gas-fired  kilns 
for  burning  limestone  or  the  like.  (184,057.) 
Aug.  16. 

26,803  (1921).  Frankfurter  and  Jansen.  Process 
for  the  manufacture  of  coverings  for  floors  and 
walls.     (183,753.)     Aug.  10. 


X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Barron,  Halliwell,  and  Hindley.  Process  of  con- 
verting finished  articles  of  iron  etc.  into  stainless 
steel.     21,467.     Aug.  5. 

Barron,  Halliwell,  and  Hindley.  Method  of 
manufacture  of  stainless  steel.     21,468.     Aug.  5. 

Commin  and  Snook.  Case-hardening  of  metal. 
21,166.     Aug.  3. 


Field  and  Petersson.  Treatment  of  sulphide  ores 
and  minerals.     20,623.     July  27. 

Hansgirg.     21,738.     See  XI. 

Lysaght,  and  Lysaght,  Ltd.  Manufacture  of 
galvanised  iron.     21,362.     Aug.  4. 

Minerals  Separation,  Ltd.,  and  Tullis.  Con- 
centration and  preparation  for  smelting  of  iron 
ores.     21,265.     Aug.  3. 

Western  Electric  Co.,  Ltd.  (Western  Electric  Co., 
Inc.).  Treatment  of  magnetic  materials.  20,818 
July  29. 

Complete  Specifications  Accepted. 

6277  (1921).  Basset.  Process  for  the  direct 
manufacture  of  iron  and  steel.     (159,475.)     Aug.  10. 

6299  (1921).  White  (American  Smelting  and  Re- 
fining Co.).  Treatment  of  tin.  (183,507.)  Aug. 
10. 

8525  (1921).  Maurer.  Joining  together  of 
precious  and  other  metals.     (183,188.)     Aug.  2. 

8530  (1921).  Pacz.  Method  of  producing  high 
temperatures  and  the  use  thereof  for  reducing  re- 
fractory oxides.     (160,427.)     Aug.  10. 

10,182  (1921).  Herkenrath.  Apparatus  for 
atomising  fusible  metals.     (161,194.)     Aug.  2. 

10,830  (1921).  Trent  Process  Corp.  Process  of 
reducing  ores.     (169,950.)     Aug.  2. 

11,049  (1921).  British  Thomson-Houston  Co., 
Ltd.  (General  Electric  Co.).  Methods  of  refining 
silicon  steel  and  metals  and  alloys.  (183,217.) 
Aug.  2. 

11,065  (1921).    Ferolite,  Ltd.,  and  Clapp.    See  II. 

11,437  (1921).  Danforth,  jun.  Open-hearth 
furnaces.     (183,247.)     Aug.  2. 

12,205  (1921).  Blei-  und  Silberhutte  Braubach 
A.-G.  Process  for  the  metallurgical  treatment  of 
materials  containing  precious  metals.  (167,741.) 
Aug.  16. 

12,244  (1921).  Koppers.  Process  of  desulphuris- 
ing iron  and  steel.     (162,618.)     Aug.  10. 

19,363  (1921).  Waldo.  Reduction  of  magnesium 
compounds.     (167,164.)    Aug.  10. 

19,538  (1921).  Nevill  and  Soanes.  Process  for 
the  extraction  of  copper  from  its  ores.  (172,926.) 
Aug.  16. 

26,684  (1921).  Sahlin.  Automatically-charged 
blast-furnaces.     (184,094.)     Aug.  16. 

30,605  (1921).  Teisen.  Gas-heated  crucible 
furnaces.    (183,394.)    Aug.  2. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

Autonoff.     Electric  batteries.     21,536.     Aug.  8. 

British  Thomson-Houston  Co.  (General  Electric 
Co.).     Electric  heating-units.     20,209.     Julv  24. 

Chloride  Electrical  Storage  Co.,  Ltd.  (Ford). 
Electric  storage  batteries.     21,837.     Aug.  10. 

David  and  Dutt.  Electric  batteries.  21,520. 
Aug.  8. 

David  and  Dutt.  Electric  primary  batten . 
21,635.    Aug.  9. 

David  and  Dutt,    Electric  cells.    21,636.    Aug.  9. 

Hansgirg.  Electrolysis  of  zinkiferous  materials. 
21,738.    Aug.  9.    (Austria,  30.9.21.) 

Lodge-Cottrell,  Ltd.,  and  Lodge.  Safety  device 
for  electric  precipitation  apparatus.  21,588.  Aug.  8. 

Revnard.  Manufacture  of  plates  of  electric  stor- 
age  batteries  etc.    20.185.    July  26. 

Rickets.      Electrically   inducing  chemical  action 
21.173.    Aug.  3. 

Scott  Electrodes  and  method  of  manufacturing 
same.     20,350.     20.351.     July  25. 

Scott,     Electrolytic  cells.    20,352.    July  25. 

Btailey,  and  Van  Raden  &  Co.  Electric  storage 
cells.     21,481.     Aug  5. 

Tapping  and  Thornley.  Manufacture  of  plates  ot 
electric  storage  batteries  etc.    20,485.    July  26. 


Vol.  XLI.,  Xo.  16.] 


PATENT   LIST. 


655  A 


Complete  Specifications  Accepted. 

11,065  (1921).    Ferolite,  Ltd.,  and  Clapp.    See  II. 

13,661-2  (1921).  Burgess  Battery  Co.  Dry  cell  and 
method  of  manufacturing  the  same.  (163,317-S.) 
Aug.  10. 

16,221  (1921).  Genese.  Electric  storage  batteries 
or  accumulators.     (183,329.)     Aug.  2. 

30,625  (1921).  Lodge  Fume  Co.,  Ltd.  (Mbller). 
Method  and  device  for  separating  suspended 
particles  from  electrically-insulating  fluids,  espe- 
cially gases.     (183,768.)     Aug.  10. 


XII.— FATS;    OILS;    WAXES. 
Applications. 

Golding,  and  United  Alkali  Co.,  Ltd.  Manufac- 
ture of  cleaning-compositions.     20,730.     July  28. 

Lever  Bros.,  Ltd.,  and  Thomas.  Hydrogenation 
of  oils  and  fats.     21,585.     Aug.  8. 

Masted.  Distillation  of  fatty  acids  etc.  20,386. 
July  26. 

Vijdam.  Manufacture  of  soap.  20,484.  July  26. 
(Holland,  1.8.21.) 

Zipser.  Extraction  of  fatty  etc  matters  by 
volatile  solvents.  20,622.  July  27.  (Austria,  10.9.21.) 

Complete  Specifications  Accepted. 

8409  (1921).      Schicht  A.-G.,  and  Grim.      Manu- 
facture of  svnthetic  waxes.     (193,186.)     Aug.  2. 
10,831  (1921).     Trent  Process  Corp.     See  II. 
11,712  (1921).     Kobayashi.     Process  of  manufac- 
,  turing  liquid  hydrocarbons  from  fish  oils.    (170,264.) 
Aug.  2. 

17,116-7     (1921).       Goslings.       Process    for    the 
!  purification  of  oils  and  fate.     (167,462-3.)    Aug.  16. 


f  XIII. —PAINTS;      PIGMENTS;      VARNISHES; 
RESINS. 

Applications. 

Alexander  (Stokes).  Synthetic  resins,  and  process 
of  making  same.     21,914.     Aug.  11. 

Dewey  and  Almy  Chemical  Co.,  and  General 
Rubber  Co.  Sealing-compositions.  21,823.  Aug.  10. 
'(U.S.,  Apr.  28.) 

Edbrook  and  Edwards.  Lacquers  for  shoe  heels 
etc.     20,445.     July  26. 

Flurecheim.  Plastic  compositions.  21,664.   Aug.  9. 

Harris.     20,333.     See  IX. 

Rimmer.     Paint  etc.     21,307.     21,308.     Aug.  4. 

Roberts  and  Schultz.  Patent  leather  imitation 
paint.     21,416.     Aug.  5. 

Rosenbaum.  Method  of  rendering  coats  of  dis- 
temper and  mineral  colours  washable.  20,334. 
luly  25. 

Shawinigan  Laboratories,  Ltd.  Phenolic  con- 
densation products,  and  manufacture  thereof. 
!0,265.     July  25.     (U.S.,  25.7.21.) 

Weller.  Waterproof  distempers  and  water 
mints.     21,832.     Aug.  10. 

Williams.  Compositions  for  coating  and  decorat- 
ng  plaster,  wood,  iron,  etc.     20,305.     July  25. 

Complete  Specifications  Accepted. 

;  5257  (1921).  Bakelite-Ges.,  and  Hessen.  Manu- 
acture  of  condensation  products  from  phenols  and 
Idehvdes.  (159.461.)  Aug.  2. 
7286  (1921).  Giinter.  Oil  and  varnish  colours 
liscible  with  water.  (183,177.)  Aug.  2. 
8608  (1921).  De  Waele.  Inks  and  other  pig- 
enting  and  like  compositions.    (183,513.)  Aug.  10. 

8   13,256  (1921).     Marks  (Ideal  Coated  Paper  Co.). 
Method  of  and  means  for  coating  an  article  with 
aterproof  adhesive.     (183,617.)     Aug.  10. 
13,744   (1921).     Anderson    and   Maclaurin.      Pre- 
iration  of  synthetic  resins.     (183,629.)    Aug.  10. 


15,814  (1921).  Tyrer.  Manufacture  of  red  oxide 
of  iron.     (183,323.)     Aug.  2. 

13,467  (1922).  Carteret  and  Devaux.  Process  of 
preparing  pigments  from  titanium  compounds  con- 
taminated with  sulphuric  acid     (184,132.)    Aug.  10. 

XIV.— INDIA-RUBBER ;     GUTTA-PERCHA. 

Applications. 

Dewey  and  Almy  Chemical  Co.,  and  General 
Rubber  Co.    21,823.    See  XIII 

Steinman-Bezencenet.  Deposition  of  rubber. 
21,693.     Aug.  9. 

Complete  Specifications  Accepted. 

11,515  (1921).  Jaggi-Zumbuhl.  Process  and 
apparatus  for  vulcanising.     (183,254.)     Aug.  2. 

12,132  (1921).  Lambert.  Vulcanisation  of  rubber 
and  apparatus  for  use  therein.     (183,590.)    Aug.  10. 

12,419  (1921).  Frood  and  Alger.  Fire-proofing 
natural  and  artificial  caoutchouc  and  caoutchouc- 
like substances  and  compounds  thereof,  or  composi- 
tions comprising  same.     (183,922.)    Aug.  16. 


XV.— LEATHER;  BONE;   HORN;  GLUE. 
Application. 
Roberts  and  Schultz.    21,416.    See  XIII. 
Completb  Specifications  Accepted. 

1640  (1921).  Burger.  Process  for  the  impregna- 
tion and  currying  of  leather.     (157,929.)     Aug.  2. 

5860  (1921).  Beretta.  Tanning-arrangement  for 
hides  and  skins.     (159,215.)     Aug.  10. 

14,948  (1921).  Abrey.  Plastic  material  made 
from  caseine.    (183,972.)    Aug.  16. 

XVII.— SUGARS;    STARCHES;    GUMS. 
Complete  Specifications  Accepted. 

15,249  (1921).  Classen.  Process  for  the  manu- 
facture of  sugar  from  wood  and  other  cellulose-con- 
taining substances.    (164,329.)    Aug.  10. 

17,701  (1921).    Adler.     See  II. 

18,148  (1921).  Rak.  Diffusion  apparatus  for  the 
extraction  of  sugar  from  beet  and  like  purposes. 
(166,527.)    Aug.  10. 

XVIII.— FERMENTATION  INDUSTRIES. 


Application. 


Distillers  Co 
strong  alcohol. 


,  Ltd., 
21,940. 


and  Meyer. 

Aug.  11. 


Production  of 


Complete  Specifications  Accepted. 

15,249  (1921).     Classen.    See  XVII. 

19,177  (1921).  Van  Ruvmbeke.  Dehydration  of 
alcohol.    (184,036.)    Aug.  16. 

4004  (1922).  Klein.  Process  of  drying  yeast. 
(175,622.)    Aug.  10. 

4006  (1922).  Klein.  Apparatus  for  drying  veast. 
(176,340.)    Aug.  16. 

8367  (1922).  Van  Ruymbeke.  Dehydration  of 
alcohol.     (184,129.)    Aug.  16. 


XIX  —FOODS  ;  WATER  PURIFICATION ; 
SANITATION. 

Applications. 

Ardern  and  Huebner.     Treatment  of  sewage  etc. 
sludges.     20,417.     July  26. 

Bolton  and  Mills.     Apparatus  for  aerating  and 
circulating  sewage  etc.     21,500.    Aug.  8. 

u 


650  A 


PATENT   LIST. 


[Aug.  31,  1922. 


Dehn  ( International  Takamine  Ferment  Co.). 
Bread-making.     20,207.     July  24. 

Endo.  Process  of  manufacturing  foodstuffs  from 
fish.     21,027.     Aug.  1. 

England  and  Oldham.    Sewage  filtering  and  puri- 
fying plant.     20,537.    July  27. 
*  Golding.    Treatment  of  whey.    21,786.    Aug.  10. 

Hider.  Feed-water  heater  and  purifier  for  steam- 
boilers  etc.    21,128.  Aug.  2. 

Lecomte.  Purification  of  water.  20,996.  Aug.  1. 
(Belgium,  July  5.) 

Melhuish.     Food  for  poultry.     20,807.     July  29. 

Melhuish.  Compressed  milk-like  food  for  cattle. 
20,806.     July  29. 

Navarre  and  Pointe.  Manufacture  of  paste  or 
dough  from  grain  or  fruit.  20,749.  July  28. 
(France,   12.12.21.) 

Nishina.  Method  of  drying  and  solidifying 
articles  of  food.     21,406.     Aug.  4.     (Japan,  3.9.21.) 

O'Donnell.  Volatile  disinfectants,  deodorants, 
etc.     20,915.     July  31. 

Quine.    Antiseptics.     20,223.     July  24. 

Sauer.     20,168.     See  I. 

Schoen.  Process  for  manufacture  of  alimentary 
flours.     21,843.     Aug.  10.     (France,  15.9.21.) 

Segal.  Preservation  of  perishables.  21.704. 
21,725.     Aug.  9. 

Segal.  Means  for  preservation  of  matter.  21,722. 
Aug.  9. 

Segal.  Means  for  preserving  cereals  etc.  in 
storage  receptacles.     21,730.     Aug.  9. 

Thomas.     Food  for  infants.     20,902.     July  31. 

Willey.  Process  for  preparing  food.  21,949. 
Aug.  12. 

Complete  Specifications  Accepted. 

11,057  (1921).     Morison.     See  I. 

12,791  (1921).  King.  Apparatus  for  separating 
iron  and  other  magnetically  permeable  metals  from 
flour,  grain,  and  the  like.     (183,940.)     Aug.  16. 

21,039  (1921).  Lamy.  Apparatus  for  the  treat- 
ment of  sewage  water.     (167,504.)     Aug.  2. 

•23,583  (1921).  Beylik  and  Schwartzlose.  Process 
of  making  pectin-containing  material  and  resulting 
product.     (181,081.)    Aug.  16. 


XX.— ORGANIC   PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Applications. 

Barr,  and  British  Oxygen  Co.,  Ltd.  Capsules  or 
containers  for  compressed  or  liquefied  gas  im- 
pregnated with  emanations  from  radio-active  sub- 
stances.    20,210.     July  24. 

Boehringer  Sohn,  and  Wieland.  Method  of  pre- 
paring acetylene  for  anaesthetising.  20,241.  July  24. 

British  Dyestuffs  Corp.,  Ltd.,  and  Hodgson. 
Process  for  manufacture  of  dichlorfluorane.  20,831. 
July  29. 

Distillers  Co.,  Ltd.,  and  Meyer.  21,940. 
See  XVIII. 

Farbw.  vorm.  Meister,  Lucius,  und  Bruning. 
Manufacture  of  thiohvdrins.  21,717.  Aug.  9. 
(Germany,  27.8.21.) 

Imray  (Farbw.  vorm.  Meister,  Lucius,  u. 
Bruning).  Manufacture  of  alkylated  acids  and 
derivatives  thereof.     22,006.     Aug.  12. 


Ramage.  Hydrocarbon  peroxide  and  process  of 
producing  same.     21,734.     Aug.  9. 

Complete  Specifications  Accepted. 

8302  (1921).  Barrett  Co.  Manufacture  of 
formaldehyde.     (163,980.)     Aug.  2. 

9927  (1921).  Haddan  (Zollinger-Jenny).  Process 
of  converting  organic  acids  into  esters.  (183,897  ) 
Aug.  16. 

12,867  and  29.S96  (1921).  Fitzgerald.  Process 
for  preserving  the  fluidity  of  blood.  (183,943 ) 
Aug.  16. 

17,710  (1921).  Hoffmann-La  Roche  &  Co.,  A.-G. 
Process  for  the  manufacture  of  allyl-arsinic  acid. 
(167,157.)     Aug.  10. 

19,177  (1921)  and  8367  (1922).  Van  Ruymbeke. 
See  XVIII. 

23,391  (1921).  Soc.  Chini.  Usines  du  Rhone. 
Process  for  the  production  of  silver  alcosols  with 
the  aid  of  organic  bodies.     (173,733.)     Aug.  10. 

29,872  (1921).  Stockholms  Superfosfat  Fabriks 
Aktiebolag.  Method  of  manufacturing  acetone 
from  acetic  acid.     (171,391.)     Aug.  16. 


XXL— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Applications. 

Dewey.  Kinematographic  etc.  screens.  20,851. 
July  31. 

Edbrook  and  Edwards.  Manufacture  of  non- 
inflammable  films  for  kinematographs  etc.  20,444. 
July  26. 

Miller.     Photographic  films.     20,373.     July  25. 

Complete  Specifications  Accepted. 

8590  (1921).  Lage.  Method  of  producing  photo- 
graphic plates  for  indirect  tri-colour  photography. 
(183,189.)     Aug.  2. 

13,524  (1921).  Christensen.  Multi-colour  screens 
for  photography.     (163,311.)    Aug.  2. 


XXII.— EXPLOSIVES;     MATCHES. 

Applications. 

Du  Pont  de  Nemours  and  Co.  High  explosives. 
21,946.     Aug.  11.     (U.S.,  11.8.21.) 

Eschbach.  Process  for  manufacture  of  blasting 
detonators.     20,249.     July  24. 

XXIII.— ANALYSIS. 
Applications. 

Davidson.  Means  of  regulating  gas  flow  to  gas 
calorimeters.     20,384.     July  26. 

Macdonald.  Apparatus  for  analysis  of  coal  gas 
etc.    20,991.    Aug.  1. 

Complete  Specifications  Accepted. 

18,379  (1921).  Withers  (Lanphicr).  Method  of 
and  apparatus  for  measuring  the  calorific  value  of 
gas.     (184,025.)     Aug.  16. 

13,651-2  (1922).  Igranic  Electric  Co.,  Ltd. 
(Cutler-Hammer  Mfg.  Co.).  Gas-calorimeters. 
(183,408-9.)    Aug.  2. 


Vol.  XLI..  No.  17.] 


ABSTRACTS 


[Sept.  15,  1922. 


I  -GENERAL ;  PLANT  ;    MACHINERY. 

Patents. 

Liquids   under   gaseous   pressure;   Devices   for   the 

withdrawal  of  .     L'Air  Liquide,   Soc.  Anon. 

pour  l'Etude  et  l'Exploit.  des  Proc.     G.  Claude. 
E.P.  175,958,  21.12.21.     Conv.,  23.2.21. 

The  conduit  by  which  a  liquid  is  withdrawn  from 
a  high-pressure  storage  cylinder  is  provided  with 
two  separate  means  of  choking  to  create  the  neces- 
sary loss  of  pressure,  a  pressure  gauge  being 
provided  between  the  two  devices.  The  first 
throttle  may  be  an  adjustable  valve  and  the  second 
a  pipe  coil  of  narrow  bore  and  great  length. 

— B.  M.  V. 

Grinding   mills;    Method  of   grinding,   and  attach- 
ment for  .     H.  F.  Window.     E.P.  182,730, 

24.10.21. 

In  a  series  of  rolls  grinding  viscous  material,  the 
coarser  material  has  a  tendency  to  work  towards 
the  ends  of  the  rolls.  One  of  the  later  rolls  is 
therefore  provided  on  the  circumference,  near  its 
ends  only,  with  a  pair  of  scraping  devices  which 
return  the  material  to  the  middle  portion  of  an 
earlier  pair  of  rolls. — B.  M.  V. 

Mixing    and  for    disintegrating    machines.      C.    E. 
Gardner.     E.P.  182,850,  1.3.21. 

An  inner  and  outer  set  of  helical  blades  rotate  in 
opposite  directions  in  a  casing,  the  adjacent  edges 
of  each  set  of  blades  being  serrated.  The  blades  of 
the  inner  set  run  at  a  higher  peripheral  speed  but 
have  a  smaller  pitch  than  those  of  the  outer  set, 
and  the  former  alone  are  stopped  during  discharge 
of  a  batch.  The  inner  blades  may  be  provided  only 
near  the  outlet,  or  they  may  extend  nearly  the 
full  length  of  the  machine.  For  continuous  work 
the  outlet  may  be  at  one  end  of  the  casing  and 
above  the  level  of  the  axis,  and  the  radial  arms  of 
the  blades  may  be  arranged  to  scrape  the  ends  of 
the  casing  to  diminish  the  pressure  thereon  and 
may  be  provided  with  wings  to  deflect  the  material 
to  the  outlet.  Alternatively  the  outlet  may  be  in 
the  bottom  of  the  casing  at  about  the  middle  of 
its  length ;  in  this  case  the  helical  blades  are  of 
rk'ht-hand  pitch  on  the  side  of  the  outlet  and  of 
left-hand  pitch  on  the  other  side. — B.  M.  V. 

Eefrigerating   apparatus;   Concentration   of   brine 
and    similar    solutions    used    as    the    circulating 

medium  in  .     Heenan  and  Froude,  Ltd.,  and 

G.  H.  Walker.     E.P.  182,982,  3.5.21  and  25.5.21. 

Brine  that  is  used  as  the  circulating  medium  in 
refrigerators  becomes  gradually  diluted.  To  rectify 
this  it  is  heated  (in  a  heat  interchanger)  by  means 
of  the  hot  high-pressure  gas  from  the  compressor 
of  the  plant  and  concentrated  by  exposing  it  to  air 
in  a  device  such  as  a  spray  cooling  tower  or  while 
still  flowing  over  the  heating  coils. — B.  M.  V. 

Heating    and    boiling    liquids;    Means    for    . 

W.  B.  Briggs  and  S.  H.  Buxton.     E.P.  183,039, 
19.7.21. 

A  steam  heater  for  placing  in  tanks,  such  as  wort- 
coppers,  is  constructed  of  a  horizontal  ring  pipe, 
with  inlet  and  outlet  for  steam  and  condensed 
water  at  about  opposite  ends  of  a  diameter ;  the 
ring  may  be  shaped  as  a  hexagon  and  may  be  built 
up  of  six  straight  pieces  each  with  a  120°  bend 
iear  one  end.  Upstanding  from  the  ring  pipe  are 
i  number  of  vertical  pipes  with  closed  upper  ends, 
;he  steam  being  diverted  into  and  out  of  the 
lpright  pipes  by  means  of  diaphragms  partly 
obstructing  the  ring  pipe  and  extending  some 
listance  up  the  vertical  pipes. — B.  M,  V. 


Dry  kiln.  N.  H.  and  H.  L.  Henderson.  TJ.S.P. 
1,422,202,  11.7.22.    Appl.,  14.5.21. 

A  drying  room  is  situated  above  a  heating 
chamber  and  circulating  chambers,  the  latter 
communicating  with  the  bottom  of  the  drying 
room  and,  through  automatic  pressure-operated 
dampers,  with  the  heating  chamber.  Chimneys 
provided  with  dampers  can  draw  air  from  the 
circulating  chambers,  and  a  steam  injector  tan 
supply  air  to  the  heating  chamber  from  either  the 
external  atmosphere  or  from  the  circulating 
chambers. — B.  M.  V. 

Drying  kiln  and  process.  M.  L.  Mueller,  Assr.  to 
Northwest  Blower  Kiln  Co.  U.S. P.  1,423,136, 
18.7.22.     Appl.,  20.7.21. 

A  steam  engine  drives  a  fan  which  circulates  air 
through  the  kiln,  and  the  exhaust  steam  from  the 
engine  is  delivered  in  advance  of  the  fan  to  the 
air  currents  thus  circulated. — H.  H. 

D<  hydrator  or  dryer.    D.  P.  Power,  Assr.  to  E.  P. 

Babcock     and    F.     Delano.       U.S. P.     1,422,620, 

11.7.22.  Appl.,  21.6.21. 
Ante-chambers,  arranged  one  at  each  end  of  the 
drying  chamber,  each  communicate  on  one  side 
with  the  exterior  of  the  drying  chamber  and  on 
the  other  with  the  outer  air  through  ports  provided 
with  controlling  gates.  Fans  cause  heated  air 
currents  to  traverse  the  ante-chambers  and  the 
drying  chamber.  Automatic  devices  are  provided 
to  operate  the  gates  and  to  control  synchronously 
the  action  of  the  devices  for  effecting  the  movement 
of  the  air  through  the  drying  chamber.  The  move- 
ment of  the  air  is  reversed  at  predetermined 
intervals. — H.  H. 

Dehydrator.  W.  O.  Cardin,  Assr.  to  J.  W.  Free- 
man. U.S. P.  1,423,188,  18.7.22.  Appl.,  23.11.20. 
Renewed  21.12.21. 
A  casing  containing  means  for  supporting  the 
material  to  be  dried  is  situated  above  and  com- 
municates with  a  heating  chamber.  The  latter 
comprises  a  flue  leading  from  the  source  of  heat, 
an  air  intake,  a  number  of  staggered  baffles,  and 
above  these  a  pair  of  plates,  the  lower  one  with 
relatively  large  holes  and  the  upper  one  with 
relatively  small  holes,  to  distribute  the  heated  air. 

— B.  M.  V. 

Dryer.  E.  B.  Ayres  and  T.  H.  Rhoads,  Assrs.  to 
Proctor  and  Schwartz,  Inc.  U.S. P.  1,423,298, 
18.7.22.  Appl.,  1.7.21. 
A  casing  is  divided  into  three  longitudinal 
chambers  in  each  of  which  is  a  conveyor  for  the 
material  to  be  dried.  Heating  pipes  are  provided 
in  the  upper  part  of  the  casing,  and  in  the  upper 
part  of  the  central  chamber  is  a  row  of  fans  which 
circulate  the  air  up  the  central  and  down  the  two 
outer  chambers. — B.  M.   \  . 

Drying  process  and  apparatus.  C.  Field,  Assr.  to 
Chemical  Machinery  Corp.  U.S. P.  1,423,928, 
25.7.22.  Appl.,  21.1.19. 
A  heated  drying  medium  is  supplied  to  a  conduit 
into  which  the  material  to  be  dried  is  sprayed.  A 
primary  collector  for  the  dried  material  is  disposed 
in  the  conduit,  and  a  secondary  collector,  connected 
with  the  conduit,  is  spaced  from  the  primary 
collector.  Means  are  provided  for  re-circulating 
the  drying  medium  through  the  conduit  and 
the  primary  collector  or  alternatively  directing  it 
through  the  secondary  collector. — H.  H. 

Centrifugal  machine.  S.  H.  Hall,  Assr.  to  De 
Laval  Separator  Co.  U.S.P.  1,422,852,  18.7.22. 
Appl.,  6.8.21. 

A  top  disc  is  arranged  above  the  separating  space 

A 


C58A 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


[Sept.  16,  1922. 


t>f  the  bowl  of  a  convertible  centrifuge,  and  alter- 
native means  are  provided,  the  one  affording  a 
free  flow  for  heavy  liquid  from  the  peripheral  part 
of  the  separating  space  to  the  space  above  the  disc, 
and  the  other  obstructing  the  flow  to  that  space. 

— H.  H. 

Centrifugal  machine.  C.  H.  Hapgood,  Assr.  to  De 
Laval  Separator  Co.  U.S.P.  1,422,856,  18.7.22. 
Appl.,  5.5.21. 

A  liner  within  the  bowl  of  a  convertible  centrifuge 
is  formed  of  a  series  of  discs  for  dividing  the  liquid 
into  layers,  and  openings  are  provided  for  the 
escape  of  liquid  constituents  of  different  specific 
gravities.  A  removable  annular  gasket  when 
inserted  in  the  bowl  is  confined  in  non-adjustable 
position  between  a  removable  bowrl  cover  and  the 
liner  so  as  to  Mock  the  escape  of  liquid  through  one 
of  the  openings. — H.  H. 

Heat  exchanger  or  condenser.  P.  St.  Clair,  jun., 
Assr.  to  The  Nitrogen  Corp.  U.S.P.  1,423,695, 
25.7.22.     Appl.,  9.10.19. 

A  heat  exchanger  comprises  a  number  of  units 
connected  in  series,  each  unit  having  a  spiral 
ribbon  both  inside  and  out  and  surrounded  by  a 
larger  tube,  so  that  two  helical  passages  are 
formed,  one  for  each  fluid. — B.  M.  V 

Catalysing  material;  Process  of  preparing .   E. 

Weintraub,     Assr.     to     General      Electric     Co. 
U.S.P.  1,423,978,  25.7.22.     Appl.,  26.3.18. 

Fibrous  material  is  impregnated  with  gaseous 
nickel-carbonyl  at  a  pressure  less  than  atmospheric, 
and  the  nickel-carbonyl  is  subsequently  decom- 
posed by  heat. — L.  A.  C. 

.Filter   beds;  Process  and  apparatus  for  continu- 
ously  washing  • .      H.   Jung.      G.P.   348,197, 

2.4.19.  Addn.  to  340,183. 
In  a  process  carried  out  in  accordance  with  the 
previous  patent  'cf.  E.P.  176,495;  J.,  1922,  399  a), 
the  washing  fluid  passes  through  the  filter  plates 
into  the  washing  region,  and  in  the  washing 
process  flows  in  the  direction  of  rotation  of  the 
filtering  elements  into  the  pressure  chambers  where 
it  is  filtered.  A  rotary  or  oscillating  brush, 
pendulum,  or  strip  is  disposed  in  the  washing 
region,  in  order  to  obtain  a  high  velocity  of  the 
washing  fluid  in  that  region. — J.  S.  G.  T„ 

Introducing  solid  matter  at  the  foot  of  a  tall 
column    of    liquid,    without    occasioning    loss    of 

liquid;  Apparatus  for  .     J.    Fahrni.     G.P. 

349,084,  9.12.19. 
Solid  matter  is  introduced  through  one  side  into 
a  chamber  not  containing  liquid,  disposed  at  the 
foot  of  the  column,  and  is  then  pushed  from  below 
by  a  piston  through  the  upper  part  of  the  chamber 
into  the  liquid.  Normally  the  chamber  is  closed 
above  by  a  sliding  cover.  The  device  may  be 
applied  to  introduce  material  for  removing  boiler 
scale,  without  interrupting  the  working  of  the 
boilers  etc.— J.  S.  G.  T. 

Betorts;  Apparatus  for  charging  and  discharging 

.     W.    D.    Scott-Moncrieff.      E.P.    182,888, 

18.8.21. 

Centrifugal  machines;  Apparatus  [plough]  for 
removing   accumulation   of   sugar   or   cake   from 

the    filtering    v>alls    of    .      E.    Daniels,    G. 

McKinlay,  and  E.  Kopke.    E.P.  183,028,  23.6.21. 

Dehydrating  plastic  materials.  E.P.  183,097. 
See  V. 


IIa.-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

Carbonisation;     Is     the     of     coking     coals 

endothermic?       K.     Sieben.       Brennstoff-Chem 
1922,  3,  209—211. 

Widely  differing  results  have  been  obtained  by 
various  investigators  as  to  the  heat  requirements 
of  the  coking  process.  The  work  of  Otto,  Mahler, 
Wilczek,  Simmersbach,  Euchene,  and  Hollings  and 
Cobb  is  reviewed.  Rau  (unpublished  communica- 
tion), as  the  result  of  a  critical  survey  of  the 
available  literature,  states  that  the  heat  required 
for  the  decomposition  of  cellulose  is  14%,  for  wood. 
12  % ,  for  peat,  8  %  ,  for  lignite,  3 — 7  % ,  and  for  coal', 
0—3%  of  the  heat  of  combustion,  and  that  the 
average  distribution  of  the  heat  units  available  in 
the  original  coal  is  divided  between  the  coke,  tar 
and  gas  in  the  following  proportions  :  — Coal  with 
60%  coke  yield:  coke,  60%,  gas,  27%,  tar,  9%,  and 
4%  evolved  exothermically ;  coal  with  85%  coke 
yield:  coke,  80%,  gas,  16%,  tar,  3%,  and  1% 
evolved;  peat:  coke,  63%,  gas,  19%,  tar,  12%,  and 
6%  evolved;  wood:  charcoal,  61%,  gas,  6%,  tar. 
20%,  and  13%  evolved.  The  heat  losses  in  actual 
practice  can  be  set  down  as  follows:  loss  due  to 
radiation  and  conduction,  40  cals. /kg,,  loss  due  to 
evaporation  of  moisture  in  the  coal  and  super- 
heating of  the  resulting  steam,  100  cals. /kg.  (for 
10%  moisture),  loss  due  to  quenching  coke,  270 
cals. /kg.,  loss  in  gases  of  distillation,  75  cals. /kg,, 
chimney  losses,  145  cals. /kg.,  making  a  total  of  630 
cals. /kg.  These  results  are  theoretical  losses,  and 
could  not  be  reproduced  in  practice.  In  spite  of  this, 
coke-oven  firms  are  giving  guarantees  of  about  600 
cals. /kg.  for  the  heat  losses  on  their  ovens,  and 
values  of  630  cals. /kg.  have  been  recorded  in 
practice.  If  the  reactions  involved  in  coking  were 
endothermic,  this  would  not  be  possible,  but  an 
exothermic  reaction  will  account  for  the  partial 
balance  of  such  losses. — A.  G. 


Lignite  coke;    Ignition  temperature  of  .     F. 

Plenz.    Gas-  u.  Wasserfach,  1922,  65,  478. 

Lignite  coke  was  placed  in  one  arm  of  an  iron 
U-tube,  the  other  arm  of  which  was  heated  and  was 
filled  with  aluminium  foil,  which  served  to  heat  a 
current  of  air  passing  through  the  U-tube.  Slow 
oxidation  takes  place  at  low  temperatures,  and  this 
increases  in  amount  as  the  temperature  rises.  This 
increase  in  oxidation  can  be  measured  by  the  per- 
centage of  carbon  dioxide  given  off  per  unit  of 
time  with  a  constant  current  of  air.  The  U-tube 
was  heated  in  a  metal  bath  which  was  kept  in 
constant  agitation.  The  carbon  dioxide  evolved 
increased  from  0"6%  at  204°  C.  to  17'4%  at  248°  C, 
and  increased  quite  suddenly  from  2'0%  at  239°  C. 
to  17-6%  at  246°  C.  Cokes  prepared  at  a  low 
temperature  ignited  at  a  lower  temperature  than 
those  prepared  at  higher  temperatures. — A.  G. 


Tar  recovery  from  by-product  coke-oven  gas:  Vis 

tribution  of  .     F.  M.  Washburn  and  G.  £. 

Muns.    Chem.  and  Met.  Eng.,  1922,  27,  119—120. 

An  investigation  was  made  of  the  proportion  and 
composition  of  tar  condensed  at  different  points  in 
the  circuit  of  a  by-product  recovery  plant.  It  was 
found  that  over  90%  of  the  tar  (anhydrous)  was 
condensed  in  the  suction  main  and  primary  coolers, 
2%  in  the  exhausters,  and  only  7%  in  the  tar 
extractors.  The  successive  condensates  show  a  fall 
in  sp.  gr.  and  increase  in  the  content  of  more 
volatile  constituents,  corresponding  to  the  fall  in 
temperature  along  the  circuit. — C.  I. 


Vol.  XL!.,  No.  17.] 


Cl.   IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


659  a 


Benzene;    Recovery  of from  illuminating  gas 

by  means  of  active  carbon.  A.  Engelhardt.  Gas-  u. 
Wasserfach,  1922,  65,  473—477. 

The  carbon  used  for  the  absorption  of  benzene  from 
gas  should  take  up  at  least  25%  of  its  weight  of 
benzene  from  air  containing  25  g.  per  cub.  in.  at 
20°  C.  The  crude  gas  is  passed  into  a  main  leading 
to  two  filter-boxes  containing  the  active  carbon 
and  arranged  in  parallel,  so  that  whilst  one  is 
being  used  for  the  remoal  of  benzene,  the  other 
may  be  subjected  to  a  current  of  superheated  steam 
which  vaporises  the  benzene,  the  steam  and 
benzene  vapour  being  passed  through  a  condenser, 
from  which  the  benzene  is  withdrawn  on  separa- 
tion. The  first  box  is  connected  at  its  outlet  with 
a  gas  cooler,  in  which  the  residual  steam  is  con- 
densed, and  the  water  withdrawn  through  a  siphon. 
The  boxes  have  a  capacity  of  10  cub.  m.  and  con- 
tain about  195  kg.  of  active  carbon.  Each  filter 
will  yield,  on  treatment  with  steam,  about  35  kg. 
of  benzene.  By  arranging  the  boxes  in  series,  the 
first  box  can  be  made  to  yield  up  to  50  kg.  per 
charge,  and  the  heavier  hydrocarbons  then  also 
condense  in  the  first  box,  and  this  leads  to  increased 
absorption  of  benzene.  The  carbon  should  not 
break  down  on  steaming  and  should  not  be  brittle, 
otherwise  clogging  of  the  boxes  is  liable  to  occur. 
The  average  figure  obtained  was  an  absorption  of 
37  g.  of  crude  benzol  per  cub.  m.  of  gas,  the 
smallest  weight  being  30  g.  and  the  highest  being 
42  g.  The  crude  benzol  recovered  had  sp.  gr. 
0'885  at  15°  C,  as  against  a  product  of  sp.  gr. 
0'900 — 0930  at  the  same  temperature,  obtained 
with  the  use  of  scrubbing  oil.  It  contained  only 
about  2%  of  constituents  boiling  above  140°  C, 
whilst  with  oil-scrubbing  of  the  same  gas,  the 
product  contained  29%  boiling  above  180°  C.  A 
thermal  balance  is  given  for  the  process. — A.  G. 

Montan  wax;  The  acids  of  .     H.  Tropsch  and 

A.  Kreutzer.   Brennstoff-Chem.,  1922,  3,  177—180, 
193—198,  212—215. 

When  lignite  is  treated  with  benzene  or  benzene- 
alcohol  mixtures,  crude  humic  acids  are  exti  acted, 
from  which  three  acids  were  isolated.  The  crude 
acid  was  esterified  with  methyl  alcohol,  and  the 
ester  distilled  at  5  mm.  pressure.  An  acid 
C,,Hsl02,  was  isolated  from  the  fraction  boiling  at 
265° — 267"5°  C.  This  acid,  named  carboceric  acid, 
has  m.p.  82°  C,  and  is  probably  identical  with 
an  acid  extracted  from  Chinese  wax  by  Gascard 
(cf.  J.,  1920,  495  a).  It  crystallises  from  alcohol  in 
dendritic  needles.  Montanic  acid  was  prepared 
and  the  formula,  C2,H5S02,  was  confirmed.  Another 
acid,  of  formula,  C2sH5002,  occurred  in  small 
amounts.     (Cf.  J.C.S.,  Sept.) — A.  G. 

Montan  wax;  The  colouring  constituents  of  — ; — . 

J.    Marcusson    and    H.    Smelkus.      Chem.-Zeit., 

1922,  46,  701—702. 
The  portion  of  montan  wax  soluble  in  ether  con- 
tains a  waxy  substance  of  low  melting-point  and  a 
dark  brown  resin  which  yields  insoluble  compounds 
with  nitric  acid  and  sulphuric  acid.  It  has  an 
acid  value  of  16,  iodine  value  51,  and  saponification 
ralue  68.  The  ether-insoluble  portion  of  the  original 
.vax  contains  a  brownish-black  unsaponifiable  sub- 
stance, soluble  in  benzene,  and  a  mixture  of  esters 
)f  hydroxy  acids.  The  acids  themselves  form  a 
lark-coloured,  friable  powder  which  yields  about 
'0%  of  saturated  fatty  acids  on  reduction.  It  con- 
tains 3'1%  of  sulphur  and  is  soluble  in  benzene, 
•hloroform,  and  amyl  alcohol,  but  not  in  alcohol, 
■ther,  or  acetic  anhydride.     {Cf.  J.C.S.,  Sept.) 

— A.  R.  P. 

yiscosimeters;   Fuel   oil  .      W.    H.   Herschel. 

1   Chem.  and  Met.  Eng.,  1922,  26,  1175. 
'he  Saybdlt  "  Furol "   viscosimeter   has  been  de- 


signed for  the  testing  of  bunker  fuel  oils,  for  which 
purpose  the  Saybolt  "  Universal  "  instrument  is 
unsuited.  The  dimensions  are  similar  to  those  of 
the  "Universal"  instrument,  except  for  the 
internal  and  external  diameters  of  the  outlet  tube. 
The  relationship  between  c.g.s.  units  and  "  Furol" 
time  in  seconds  is,  kinematic  viscosity  =  0'022t- 
2'03/t,  whilst  the  corresponding  relationship  for  the 
Redwood  No.  2  (Admiralty)  viscosimeter  is,  kinema- 
tic viscosity  =  0'0293t-0'403/t.  Tables  giving  con- 
version factors  for  the  Universal,  Furol,  and 
Admiralty  (Redwood)  instruments  are  given. 

— H.  M. 

Effluent    liquors    from    distillation    of    ammoniacal 
liquor.     See  XIXb. 

Patents. 

Peat  and  similar  material;  Process  and  apparatus 

for    pressing    .      K.    Maus.      E.P.    182,503, 

1.2.21. 

Wet  peat  is  slowly  subjected  to  pressure  within  a 
chamber  the  walls  of  which  are  provided  with  wire 
netting  or  other  metallic  filtering  medium.  Movable 
transverse  partitions,  also  provided  with  a  per- 
meable covering,  tare  arranged  within  the  chamber. 
The  pressing  faces  of  the  piston,  the  partitions, 
and  the  bottom  of  the  chamber  are  so  shaped  that 
the  resulting  pressed  blocks  are  thinner  in  the 
middle  than  at  the  edges. — H.  Hg. 

Peat;  Plant  for  the  continuous  decomposition  and 

dehydration  of  .     E.   Luaser   and  C.   Birk. 

G.P.  348,472,  21.5.20. 

The  raw  peat  is  fed  into  one  arm  of  a  V-shaped 
tube,  in  which  it  is  preheated  by  waste  heat,  and 
is  continuously  forced  forward  and  upward  into 
the  other  arm  of  the  apparatus,  where  it  is  heated 
in  a  special  heater ;  the  water  which  separates 
drains  through  the  mass  and  is  withdrawn  at  the 
lowest  part  of  the  tube.  The  resulting  pulp  is  fed 
through  a  valve  into  a  dryer  operated  at  reduced 
pressure,  the  vapour  evolved  being  compressed  and 
utilised  for  heating  the  dryer.— A.  G. 

Artificial  fuel;  Process  and  apparatus  for  the  pro- 
duction   of .      R.    Bowen.      E.P.    182,578, 

8.4.21. 
A  mixture  for  producing  a  laminated  fuel  such  as 
is  described  in  E.P.  109,995  (J.,  1917,  1173)  is 
delivered  from  a  hopper  on  to  an  inclined  oscillat- 
ing plate  and  thence  into  a  mould.  The  bottom 
plate  of  the  mould  is  oscillated  vertically  by  means 
of  adjustable  rotating  cams.  After  the  mould  is 
filled,  continuous  pressure  is  applied  from  the  top 
by  means  of  a  weighted  plunger  or  other  device, 
while  the  material  is  consolidated  by  the  oscilla- 
tions of  the  bottom  plate.  Vertical  knives,  capable 
of  being  oscillated  by  the  bottom  plate,  may  be 
placed  in  the  mould  whilst  it  is  being  filled. 

— H.  Hg. 

Fuel;   Means   for   continuous   predrying    of  . 

O.  Nordstrom  and  A.  Morck.     U.S.P.  1,423,728, 

25.7.22.  Appl.,  10.11.20. 
A  tower-shaped  trellis  work  is  arranged  centrally 
within  a  vertical  tower  with  perforated  walls, 
which  is  surrrounded  by  a  gas-tight  casing.  The 
fuel  is  fed  in  at  the  top  of  the  tower,  and  hot 
gases  are  introduced  at  the  base  of  the  trellis 
work.  The  conical  base  of  the  tower  rotates,  and 
is  provided  with  ribs  arranged  spirally,  to  facilitate 
the  continuous  discharge  of  the  dried  fuel. 

— A.  G. 

Burners  for  burning  metaldehyde.  Elektrizitats- 
werk  Lonza.  and  A.  Busch.  E.P.  182,582,  11.4.21. 
Addn.  to  181,512  (J.,  1922,  607  a). 

A  retainer  is  provided  for  the  block  of  metaldehyde 

a  2 


600  a 


Cl.   IIa.— FUEL ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Sept.  15,  1922. 


and  is  adjustable  relative  to  the  outer  sheath.  A 
perforated  cup-shaped  carrier  for  supplementary 
supplies  of  metaldehyde  is  attached  to  the  sheath 
and  is  thermally  insulated  therefrom.- — H.  Hg. 

Coking  retort  ovens.  Coking  retort  oven  heating 
flues.  E.  H.  Warden.  E.P.  (a)  182,697,  19.7.21, 
and  (b)  182,702,  26.7.21. 

(a)  In  connexion  with  coke  ovens  having  two  series 
of  vertical  triangular  heating  flues  between  each 
pair  of  ovens  (c/.  E.P.  155,316;  J.,  1921,  112  a  ; 
1919,  710  a),  a  separately  controlled  gas  supply  is 
provided  either  for  each  series  of  flues  or  for  the 
two  series  of  flues  which  are  nearest  each  oven, 
in  order  that  the  temperature  of  each  oven  may 
be  independently  regulated,  (b)  The  interior  par- 
titions forming  the  triangular  flues  are  disposed 
alternately  normal  to  both  walls  and  as  diagonals, 
which  may  or  may  not  be  parallel  to  one  another, 
of  the  spaces  formed  by  the  normal  partitions. 
Parts  of  the  diagonal  partitions  are  integral  with 
bricks  forming  part  of  a  normal  partition,  and  all 
the  bricks  are  laid  so  that  they  break  joint  in 
adjacent  courses. — H.   Hg. 

Coke;  Process  and  apparatus  for  cooling  with 

inert  gases  on  the  counter-current  principle,  with 
simultaneous  recovery  of  the  sensible  heat.  Zeche 
de  Wendel,  and  H.  Schwenke.  G.P.  348,654, 
29.3.19. 

The  separate  charges  of  a  battery  of  coke  ovens 
are  introduced  into  separate  cooling  units,  so  that 
the  new  hot  charge  is  placed  at  the  end  of  the  cool- 
ing installation,  where  the  cooling  medium  leaves 
the  plant,  whilst  the  cooling  gas  is  introduced  where 
the  coke  is  withdrawn.  The  cooling  chambers  are 
so  connected  that  while  gas  is  being  drawn  through 
some  of  them,  one  is  being  filled  with  a  fresh  charge 
and  another  is  being  emptied. — A.  G. 

Water-gas  plant;   Enriched  .     R.    Maclaurin. 

E.P.  182,648,  1.6.21. 
A  generator,  and  combustion  chamber  are  placed 
alongside  of  each  other  and  are  so  operated  that 
during  the  blow  the  primary  air  always  enters  the 
generator  below  the  level  of  the  fresh  coal,  and 
passes  downwards  before  entering  the  combusion 
chamber.  During  the  run,  the  steam,  or  mixture 
of  steam  and  oil,  enters  at  the  top  of  the  com- 
bustion chamber  and  passes  down  through  highly 
heated  material  before  entering  the  ash  zone  of  the 
generator  chamber.  The  resulting  gases  leave 
through  the  fresh  fuel  at  the  top,  and  the  dis- 
tillation gases  thus  produced  mix  with  the  water- 
gas. — A.  G. 

Coking  chamber  for  [gas]  generators.    P.  Jaworski. 

U.S. P.  1,422,206,  11.7.22.  Appl.,  26.8.21. 
A  casing  is  provided  with  an  internal  feed  hopper 
and  is  supported  some  distance  above  a  bottom 
plate  so  as  to  leave  an  unrestricted  annular  space 
serving  as  an  inlet  for  the  generator  gases  and 
outlet  for  the  coke. — B.  M.  V. 

Gas  and  ammonia  yield  in  carbonisation  of   coal; 
Process  for  increasing  the  with  the  intro- 
duction of  protecting  gases  in  the  carbonisation 
chamber.     Bunzlauer  Werke  Lengersdorff  u.  Co. 
G.P.  349,908,  23.4.19. 
The    protective    gases    to   be    passed    through    the 
charge,  e.g.,  coal  gas,  carbon  monoxide,  water-gas, 
or  the  like,   are  first  moistened  by  passing   them 
through    a   bath   of    boiling   water,    the  supply   of 
heat  to  which  is  carefully  controlled.    Dry  gas  may 
be    also    used    in    conjunction    with    steam.      The 
ammonia   yield    increased   from    2'08%    (calculated 
as  sulphate)  with  dry  gas  to  3'08%  with  moistened 
gases.     Cracking  of  the  tar  is  also  reduced. — A.  G. 


Gas;  Production  of  a  of  high  calorific  value, 

similar  to  water-gas,  with  recovery  of  tarry  by- 
products.    Dellwik-Fleischer  Wassergas  Ges    m 
b.  H.     G.P.  350,443,   14.2.20. 

The  products  of  the  blow  are  taken  off  through 
a  central  pipe  extending  halfway  down  the  shaft 
of  the  producer,  whilst  the  products  of  the  run 
are  separately  withdrawn  through  a  port,  high  up 
in  the  side  of  the  producer.  It  is  claimed  that  the 
presence  of  cores  of  raw  fuel  in  the  lower  part  of 
the  producer  is  thus  avoided,  and  the  tar  yield 
is  increased. — A.  G. 

Gas;  Apparatus  for  and  process  of  purifying  . 

A.  L.  Stevens.  U.S. P.  1,423,696,  25.7.22.  Appl ' 
22.9.19. 

A  reservoir  containing  a  purifying  liquid  is  pro- 
vided with  a  by-pass  between  the  top  and  bottom 
and  with  a  grate  supporting  a  packing  material 
which  provides  voids  for  subdividing  the  gas  into 
minute  currents.  The  gas  is  supplied  by  a  conduit 
below  the  grate  and  taken  away  by  another  con- 
duit above  the  cleansing  zone. — B.   M.   V. 

Montan   wax;   Production    of    solid    colloids    from 

crude  .     E.   Last,   and  H.   T.   Bohme  A.-G. 

G.P.  350,622,  23.10.17. 

Crude  montan  wax  is  treated  at  high  temperature, 
and  if  necessary,  under  pressure,  with  a  small 
quantity  of  concentrated  caustic  alkali  solution 
until  the  product  is  completely  miscible  with 
liquid  hydrocarbons  to  form  a  colloidal  solution. 
In  place  of  caustic  alkalis,  alkaline-earth  hydroxides 
may  be  used  or  compounds  of  the  type  of  sodium 
aluminate.  In  contrast  to  the  original  material, 
the  product  is  miscible  with  water  to  give  a  homo- 
geneous emulsion  or  colloidal  solution,  which  can 
be  precipitated  by  acids,  salts  of  heavy  metals,  and 
acid  salts.  By  using  only  a  small  quantity  of 
water,  a  stiff  paste  is  obtained,  which  can  be 
diluted  with  water.  With  solutions  of  the  crude 
wax  in  hydrocarbons  viscous  oils  to  semi-solid 
pastes  are  obtained  by  the  process. — A.  G. 

Montan,   wax;   Production   of   solid   colloids  from 

crude  .     H.  T.  Bohme  A.-G.,  Chem.  Fabr., 

and  E.  Last.  G.P.  352,506,  17.4.18.  Addn.  to 
350,622. 

Solid  alkalis  are  used  in  the  process  described  in 
G.P.  350,622  (cf.  supra),  avoiding  excess  over  what 
is   required   for   combination. — A.    G. 

Montan    wax;    Production    of   from    lignite. 

A.  Riebeck'sche  Montanwerke  A.-G.  G.P.  352,902, 
15.5.19.     Addn.  to  325,165  (J.  1920,  814  a). 

Toluene  is  used  instead  of  benzene  in  the  process 

described  (loc.  cit.) — A.  G. 

Lubricating  oils;  Production  of of  low  setting 

point.  Galizi6che  Naphtha  A.-G.  "  Galicia,"  and 
H.  Burstin.     G.P.  352,010,  15.7.19. 

The  fraction  obtained  between  the  lamp  oil  and 
lubricating  oil  fractions  in  the  distillation  of  crude 
petroleum  is  passed  through  a  tube  heated  to  red- 
ness. The  vapours  are  condensed  and  the  light 
fraction  removed  by  distillation,  the  amount  re- 
moved varying  according  to  the  character  of  the 
lubricating  oil  desired. — A.  G. 

Lubricants;  Production  of  of  high   viscosity 

or  consistency.  E.  Last,  and  H.  T.  Bohme  A.-G. 
G.P.  352,727,  25.10.17. 
One  of  the  solid  colloidal  products  described  in 
G.P.  350,622  {cf.  supra)  is  dissolved  in  ordinary 
lubricating  oils,  preferably  at  high  temperatures. 
An  addition  of  0"5%  of  colloid  to  a  mineral  oil  ot 
sp.  gr.  0'9  increases  the  viscosity  at  50°  C.  to  twice 
the  figure   for  the  oil  alone,  and   addition  of  I A 


Vol.  xxr.,  No.  17.]      Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &c.     Cl.  III.— TAR,  &o. 


661a 


gives  a  figure  4  times  that  of  the  original  viscosity, 
whilst  2%  of  added  colloid  gives  a  viscosity  10  times 
as  great  as  that  of  the  lubricating  oil  alone.  By 
the  addition  of  still  greater  quantities  of  colloid, 
lubricants  of  high  viscosity  can  be  produced. 

—A.  G. 

Paraffin;  Process  for  the  direct  production  of 

from    bituminous    earths.      W.    Scheffer    and    S. 
Herzberg.     G.P.  352,919,  20.11.17. 

The  earth  is  placed  at  the  head  of  a  slightly  inclined 
bench,  and  is  then  strongly  heated,  so  that  the 
paraffin  is  liquated  from  the  earth  and  runs  down 
the  hot  inclined  plane,  at  the  foot  of  which  it  is 
collected.  The  paraffin  obtained  is  almost  white 
in  colour  and  is  free  from  earthy  matter. — A.  G. 

Petroleum-like  products.  Production  of  .     F. 

Leibbraudt.     G.P.   353,286,    10.5.19. 

Acetone  and  dihalogen  compounds  of  ethylene  are 
heated  at  high  temperatures  with  zinc  dust  in  a 
closed  vessel.  Aluminium  or  magnesium  may  be 
used  instead  of  zinc.  For  example,  acetone, 
ethylene  dibromide,  and  zinc  dust  may  be  heated 
for  3  hrs.  in  a  closed  vessel  to  150°  C.  The  clear 
yellow,  strongly  fluorescent  product  of  the  reaction 
is  filtered  from  excess  zinc  dust,  shaken  with  dilute 
caustic  soda  solution,  so  that  zinc  bromide  goes 
into  solution,  and  the  oily  portion  is  separated 
and  dried.  The  final  product,  free  from  halogen 
and  oxygen,  is  very  similar  to  the  higher  boiling 
.fractions  of  Russian  petroleum.  Small  quantities 
of  terpenes  are  produced  as  by-products.  The 
refined  products  can  be  used  for  the  same  technical 
purposes  as  the  higher  boiling  fractions  of  mineral 
oil,  e.g.,  as  lubricating  oils. — A.  G. 

^Gas;  Process  for  making  .     J.  U.  McDonald. 

E.P.  159,886,  8.3.21.     Conv.,  10.3.20. 

{See  U.S. P.  1,367,321  of  1921;    J.,  1921,  207  a. 

Hydrogen.     E.P.  175,605.     See  VII. 

Increasing  the  decolorising  power  of  silicates.  G.P. 
■    339;919.     See  XII. 

■Hydrocarbon  mixtures.  U.S.P.  1,422,182-4.  See  XX. 

Calorific  value  of  gas.    E.P.  182,573.    See  XXIII. 


Hb-DESTBUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Patents. 

Carbonising  furnaces  or  retorts.     L.  H.   Bonnard. 

E.P.  182,542,  31.3.21. 
'he  retort  consists  of  ia  horizontal  stationary 
ylinder,  along  the  axis  of  which  revolves  a  shaft, 
earing  spiders  at  right  angles  to  its  length,  the 
piders  being  attached  to  scrapers  parallel  with 
he  sides  of  the  retort  and  almost  touching  the 
iside  of  the  chamber.  The  gases  of  combustion 
rom  a  furnace  are  caused  to  pass  spirally  round 
be  exterior  of  the  retort,  and  the  products  of  dis- 
:llation  or  carbonisation  are  withdrawn  midway 
long  the  retort  through  an  orifice  in  the  crown  of 
'ie  cylinder.  Arrangements  are  made  for  the 
:mperature  at  the  outlet  end  to  be  limited  to  any 
esired  temperature  by  the  disposition  of  the 
urners.  (Reference  is  directed,  in  pursuance  of 
ect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
cts,  1907  and  1919,  to  E.P.  9550  of  1886,  19,310 
'  1896,  106,084  and  106,636;  J.,  1897,  750;  1917, 
S3;  1918,  84  a.)— A.  G. 


Distillation  of  carbonaceous  materials;    Apparatus 

for   the   ■ .      P.    M.    Salerni.     E.P.    182,601, 

25.4.21.  ' 

The  material  is  distilled  at  a  low  or  moderate 
temperature  in  a  stationary  horizontal  cylinder, 
which  is  externally  fired,  and  within  which  is  a 
rotating  horizontal  shaft.  The  shaft  bears  spiders 
or  arms,  which  carry  scrapers  at  their  extremity, 
the  scrapers  being  arranged  so  as  to  agitate  the 
the  mass  without  propelling  it  through  the  retort. 
The  depth  of  the  charge  in  the  retort  is  regulated 
by  means  of  a  baffle-plate  placed  at  or  near  the 
end  of  the  retort.  The  products  of  carbonisation 
are  withdrawn  through  a  number  of  openings  in 
the  crown  of  the  retort. — A.  G. 

Distilling    coal;    Method   of   and   means   for   . 

A.  W.  Helmholtz,  Assr.  to  Continuous  Process 
Coke  Co.  U.S.P.  1,422,706,  11.7.22.  Appl., 
18.9.19. 

A  charge  of  coal  is  heated,  with  evolution  of  by- 
products, until  it  becomes  plastic,  then  oil  is  added 
to  control  the  content  of  volatile  matter  and  the 
mass  heated  to  a  higher  temperature  and  finally 
compressed  to  form  a  firm  coke. — B.  M.  V. 

1  in /iridescence  mantle   bodies;  Process  for  making 

strong,  impregnated .     R.  and  E.  Siissmann. 

G.P.  352,652,  10.11.16. 

In  order  to  prevent  the  "  running"  of  the  salts 
used  for  strengthening  the  fabric,  the  mantles  are 
exposed  to  ammoniacal  vapours  without  subsequent 
washing.  The  excess  ammonia  can  be  transferred 
to  untreated  mantles,  or  to  mantles  not  yet 
saturated  with  ammonia. — A.  G. 

Arc  lamp;  Inclosed  and  method  of  starting 

the  same.  E.  Friederich,  Assr.  to  General  Electric 
Co.  U.S.P.  1,422,553,  11.7.22.  Appl.,  28.1.16. 
Renewed   7.12.21. 

Refractory  metal  electrodes  which  remain  sub- 
stantially intact  when  supporting  an  arc  discharge 
are  arranged  within  a  sealed  envelope,  and  colour 
is  imparted  to  the  arc  by  the  vaporisation  of  a 
halogen  salt.— J.  S.  G.  T. 

Distillation;  Low-temperature  .     A.  C.  Michie 

and  E.  G.  Weeks,  Assrs.  to  C.  H.  Merz  and  W. 
McLellan.  U.S.P.  1,423,134,  18.7.22.  Appl., 
12.11.19. 

See  E.P.  136,868  of  1918;  J.,  1920,  150  a. 
Tungsten  alloy  filaments.    E.P.  182,699.    See  X. 


III.-TAB  AND  TAR  PRODUCTS. 

Cresols;    Separation  of  m-  and  p from  coal 

tar  crude  carbolic  acid.    A.  F.  Campbell.    J.  Ind. 
Eng.  Chem.,  922,  14,  732—737. 

By  the  fractional  distillation  of  crude  cresylic  acid, 
a  fraction  consisting  of  approximately  60%  of 
m-cresol  and  40%  of  p-cresol  can  be  obtained.  The 
isomers  may  be  separated  by  partial  sulphonation 
at  40°  C,  at  which  temperature  the  m-compound 
is  sulphonated  three  times  as  quickly  as  the  p-coni- 
pound.  37"5  g.  of  96%  sulphuric  acid  is  added  to 
100  g.  of  the  mixed  cresols  and  warmed  at  40°  C. 
for  6  hrs.  The  product  is  poured  into  water,  the 
non-sulphonated  cresols  extracted  with  benzene, 
the  sulphonic  acid  (containing  80%  of  the  m-com- 
pound) converted  into  its  ammonium  salt  and  the 
latter  fractionally  crystallised  (the  solubility  of  the 
p-salt  is  1917  and  that  of  the  m-salt  10-84  g.  per 
100  g.  of  water  at  20°  C).  The  crystalline  salt  is 
decomposed  with  half  its  weight  of  sulphuric  acid 
and    the    m-cresolsulphonic    acid    decomposed    by 


662  a 


Cl.  III.— TAB  AND  TAR  PRODUCTS. 


[Sept,  15, 1922. 


steam,  yielding  98 — 100%  m-cresol.  The  residue 
from  the  first  sulphonation  is  re-sulphonated  with 
its  own  weight  of  96%  sulphuric  acid,  yielding  in 
the  sulphonated  portion  a  mixture  similar  to  the 
original  one,  and  in  the  residue  an  80%  p-cresol 
from  which  hydrocarbons  are  removed  and  the 
p-cresol  frozen  out  in  vacuo. — C.  I. 

Cresols;  Formation  of  addition  products  between 

on  the  one  hand  and  ether,  alcohol,  acetone, 

benzene,  etc.  on  the  other.  C.  and  W.  von 
Rechenberg.  Z.  angew.  Chem.,  1922,  35,  397—398. 
As  mixtures  of  cresols  with  ether,  alcohol,  acetone, 
benzene,  etc.  give  viscosity  curves  which  are 
perfectly  smooth  and  show  no  maximum,  and  the 
vapour  pressure  curves  likewise  show  no  minimum, 
the  authors  conclude  that,  contrary  to  the  opinion 
of  Bed  and  Schwebel  (J.,  1922,  399  a),  no  molecular 
addition  compounds  can  be  formed  between  these 
substances. — G.  F.  M. 

Cresols;  Formation  of  addition  products  of  

with  ether,  alcohol,  acetone,  benzene,  etc.  E. 
Berl  and  W.  Schwebel.  Z.  angew.  Chem.,  1922, 
35,  398.     (Cf.  supra.) 

The  authors  maintain  their  view  that  molecular 
compounds  are  actually  formed  between  cresols  and 
alcohol,  ether,  etc.  In  the  first  place  the  vapour 
pressure  of  the  more  volatile  substance  in  the 
mixtures  is  notably  less  than  theoretically  required, 
and,  if  dissociation  occurs  at  all,  a  vapour  pressure 
minimum  is  not  necessarily  to  be  expected  when 
molecular  compounds  are  formed.  Further,  in 
regard  to  viscosity,  the  formation  of  molecular 
compounds  does  not  necessarily  cause  a  maximum 
in  the  viscosity  curve,  as  the  viscosity  of  the  com- 
pound may  be  less  than  that  of  its  components, 
and  lastly  the  substitution  of  anisole  for  cresols 
in  the  above  mixtures,  removed  the  abnormality 
in  behaviour  of  the  latter. — G..  F.  M. 

1.6-Dimethylnaphthalene ;  Hydrogenation  of  — — . 

F.  Mayer  and  T.  Schulte.     Ber.,  1922,  55,  2164 

—2167. 
1.6-Dimethylnaphthalene  is  reduced  by  sodium 
and  boiling  amyl  alcohol  to  A"-5.8-dihydro-1.6- 
dimethylnaphthalene,  b.p.  118°  C.  at  10  mm.,  sp. 
gr.  0-9700  at  16°  C.  If  the  dihydro  compound  is 
reduced  with  hydrogen  in  aqueous  alcoholic  solu- 
tion in  the  presence  of  palladium,  5.6.7.8.-tetra- 
hydro-1.6-dimethylnaphthalene,  a  colourless  liquid, 
b.p.  110°— 111°  C.  at  10  mm.,  sp.  gr.  09487  at  16°  C, 
is  obtained,  which  is  stable  towards  bromine  and  is 
oxidised  by  nitric  acid  to  benzene-1.2.3-tricarb- 
oxylic  acid.  On  the  other  hand,  if  1.6-dimethyl- 
naphthalene  is  reduced  at  240°  C.  and  20—25  atm. 
pressure  in  the  presence  of  a  nickel  catalyst  it  gives 
a  mixture  of  1.2.3.4- tetrahydro  -  1.6 -dimethyl- 
naphthalene  and  5.6.7.8-tetrahydro-1.6-dimethyl- 
naphthalene,  which  is  oxidised  by  nitric  acid  to  a 
mixture  of  benzene-1.2.3-  and  1.2.4-tricarboxylic 
acids. — H.  W. 

1.5-Dihydroxynaphthalenedicarboxylic      acid.        F. 
Hemmelmayr.    Monatsh.,  1922,  43,  61—65. 

The  dicarboxylic  acid  which  is  formed  when  1.5- 
dihydroxynaphthalene  is  heated  with  potassium 
bicarbonate  under  pressure  is  probably  the  2.6-di- 
carboxylic  acid,  since  it  gives  a  dinitro-derivative 
from  which  the  carboxyl-groups  are  easily  displaced 
by  reagents.     (Cf.   J.C.S.,   September.)— C.   K.   I. 

Calcium  sulphate;  Solubility  of  in  presence  of 

calcium  benzenesulphonate.  E.  Mameti.  Giorn. 
Chim.  Ind.  Appl.,  1922,  4,  293—296. 

When  milk  of  lime  or  chalk  or  marble  is  used  as  a 
means  of  separating  sulphonated  products  from  the 
sulphonating  mixture  the  products  are  sometimes 


contaminated  with  calcium  sulphate  to  a  greater 
extent  than  would  be  expected.  Experiments 
showed  that  in  presence  of  increasing  quantities  of 
calcium  or  sodium  benzenesulphonate  the  solubility 
of  calcium  sulphate  in  water  increases  up  to  a 
certain  point,  beyond  which  no  further  change  is 
produced.  Thus,  in  this  direction,  calcium  ben- 
zenesulphonate behaves  in  the  same  way  as  salts 
having  no  ion  in  common  with  calcium  sulphate. 
This  behaviour  may  be  explained  by  assuming  that 
calcium  benzenesulphonate  undergoes  dissociation 
into  intermediate  ions,  such  as  C,H5SO,Ca  +  and 
C6HsS03",  both  different  from  those  of  the  sul- 
phate. The  solubility  of  pure  calcium  benzenesul- 
phonate in  water  in  g.  pe>  100  c.c.  of  solution  is 
1-766  at  0°,  2001  at  10°,  1968  at  15°,  1844  at  20° 
1211  at  30°,  and  0-410  at  40°  C— T.  H.  P. 

Benzol  recovery.     Engelhardt.     See  IIa. 

Phenols  from  low-temperature   tar  for  wood  pre- 
servation.   Peters.    See  IX. 

Phenol  in  trade  liquors.     See  XIXb. 

Nitration    of    aromatic    substances.      Davis.     See 
XXII. 

Patents. 

Coal  tar;  Method  of  and  apparatus  for  separating 

water  from  - .     Bismarckhiitte.     E.P.  163,011 

6.5.21.     Conv.,  6.5.20. 

A  vertical  cylinder  of  greater  length  than  diameter 
is  provided  with  a  conical  bottom  having  an  outlet 
valve  at  its  apex,  and  contains  in  the  lower  portion 
a  cylindrical  tar  container  spaced  from  the  outer 
vessel  and  provided  with  conical  ends.  The  apex 
of  the  bottom  cone  opens  directly  into  the  outc 
vessel,  and  the  apex  of  the  top  cone  is  connected 
with  a  short,  upright  open  tube.  The  tar  in  the 
container  is  heated  by  a  heating  coil,  and  is  forced 
thereby  through  the  tube  at  the  top  and  projected 
against  a  plate,  inclined  slightly  to  the  horizontal, 
at  the  top  of  the  outer  vessel.  Water  present  in 
the  tar  creeps  up  the  plate,  flows  over  the  higher 
edge,  which  is  spaced  from  the  wall  of  the  outer 
vessel,  and  drains  out  of  the  apparatus,  while  the 
tar  flows  down  the  walls  of  the  vessel  and  returns 
to  the  container  through  the  opening  at  the  bottom. 
After  heating  tar  in  the  apparatus  for  20 — 24  hrs. 
at  50° — 65°  C,  the  water  content  is  reduced  to 
about  3—4%.— L.  A.  C. 

Naphthalene;  Process  for  the  purification  of . 

The  Barrett  Co.,  Assees.  of  D.  F.  Gould.     E.P. 

172,937,  15.11.21.  Conv.,  15.12.20. 
Crude  naphthalene  is  agitated  at  about  85°  C.  with 
water  or  other  immiscible  liquid  until  an  intimate 
mixture  is  obtained,  and  the  mixture  is  then 
agitated  slowly,  with  gradual  cooling,  e.g.,  by  the 
addition  of  cold  water  or  other  means,  to  about 
65°  C,  whereupon  the  water  and  oily  impurities 
are  removed  by  filtration. — L.  A.  C. 

[Aromatic]  hydrocarbons ;  Oxidation  of .  F.  W. 

Atack.     E.P.  182,843,  9.2.21. 

Catalysts  consisting  of  or  containing  titanium 
compounds,  e.g.,  the  oxide,  are  used  in  the  oxida- 
tion of  aromatic  compounds,  e.g.,  of  naphthalene 
to  phthalic  acid,  and  of  anthracene  to  anthra- 
quinone.  A  mixture  of  the  hydrocarbon  vapour 
and  a  large  excess  of  oxygen,  or  gases  containing 
it,  is  passed  over  the  catalyst  at  400° — 500 
The  addition  of,  e.g.,  2%  of  oxides  of  nitropen.  to 
the  gases  promotes  oxidation,  while  the  addition 
of  up  to  20%  of  steam  diminishes  charring  and 
facilitates  the  regulation  of  the  supply  of  the 
hydrocarbon. — L.  A.   C. 


Vol.  XLT.,  No.  17.] 


Cl.  IV — COLOURING  MATTERS  AND  DYES. 


663  a 


Phthalimide;  Manufacture  of  .  British  Dye- 
stuffs  Corp.,  Ltd.,  A.  G.  and  S.  J.  Green.  E*P 
183,044,  29.7.21. 

a-NiTRONAPHTHALENE  is  directly  oxidised  by  air  or 
oxygen  in  the  presence  of  a  suitable  catalyst,  such 
as  pumice  impregnated  with  an  oxide  of  vanadium 
or  molybdenum,  and  heated  to  300° — 400°  C.,  the 
main  product  of  the  oxidation  being  phthalimide 
in  a  yield  upwards  of  50^  of  that  theoretically 
possible.  The  operation  may  be  conducted  by  pass- 
ing hot  air  over  nitronaphthalene  heated  at  120° — 
130°  C,  and  thence  through  an  iron  tube  contain- 

I  ing  the  catalyst.  Phthalimide  is  condensed  in  small 
colourless  needles   in   a   large   well-cooled    receiver, 

I  and  a  small  quantity  of  phthalic  anhydride  which 
is  also  formed,  being  more  volatile,  may  be  collected 
in  a  second  receiver. — G.  F.  M. 

Sulphonating  carbon  compounds;  Process  for . 

A.  R.  Grob  and  C.  C.  Adams,  Assrs.  to  E.  I.  du 
Pont  de  Nemours  and  Co.  U.S. P.  1,422,564, 
11.7.22.     Appl.,  30.6.20. 

,   Oegantc  compounds  are  sulphonated  by  treatment 
j   with  sulphur  trioxide  in  a  medium  of  liquid  sulphur 
dioxide. — L.  A.  C. 

9.1Q-l)iIitilogenanthracene  -  fi  -  monosidphonic   acid : 

Manufacture  of .     K.  Schirmacher,  Assr.  to 

H.  A.  Metz.  U.S. P.  1,422,889,  18.7.22.  Appl., 
23.10.20. 

|    9.10-DlHALOGENANTHRACENE-,3-MONOSTJLPHONIO      acids 

are  prepared  by  treating  a  9.10-dihalogenanthra- 
oene  with  fuming  sulphuric  acid  in  the  presence  of 
au  indifferent  agent. — L.  A.  C. 


Thionaphthene;  Production  of  fr 

Ges.    f.    Teerverwertung   ni.b.H.      G 
8.7.19. 
Naphthalene    obtained    from    coal-tar 
with    sodamide,    with    sodium   in   the 
ammonia,   or  with  sodium  alone,   and 
compound    of    thionaphthene    formed 
•  separated    from    naphthalene    and    hy 
i  treatment  with  water. — L.  A.  C. 


oni  coal-tar. 
.P.    350,737, 

is    treated 

presence    of 

the  sodium 

thereby    is 

irolysed    by 


sym.-Octohydroanthracene;    Preparation    of   . 

Preparation  of  sym.-octohydroplienanthrene. 
G.  Schroeter,  and  Tetralin  G.m.b.H.  G.P. 
(a)  352,721,  (b)  352,719,  5.9.20. 

(a)  Pfbe  anthracene  in  the  form  of  colourless 
crystals  of  m.p.  214  C,  prepared  by  twice  re- 
crystallising  commercial  anthracene  from  solvents, 
such  as  tetra-  or  decahydronaphthalene,  cyclo- 
hexanol,  or  isopropyl  alcohol,  which  have  been 
'  treated  to  remove  catalyst  poisons,  and  sub- 
sequently washing  the  crystals  with  alcohol,  is 
treated,  either  molteu  or  in  solution,  with  hydrogen 
in  the  presence  of  a  catalyst.  For  example,  a 
solution  of  pure  anthracene  in  tetrahydronaphtha- 
lene  is  treated  with  hydrogen,  with  agitation,  at 
1 180°— 200°  C.  under  a  pressure  of  10—15  atm.,  in 
the  presence  of  a  small  quantity  of  reduced  nickel 
precipitated  on  fuller's  earth,  until  4  mols.  of 
hydrogen  has  been  absorbed.  After  separation  of 
the  catalyst,  sy/n.-octohydroanthracene,  m.p.  72° — 
'73°  C,  b.p.  160°— 162°  C.  at  11  mm.,  is  separated 
Jfrom  the  solvent  by  distillation  under  reduced 
jpressure.  (b)  Commercial  phenanthrene  is  purified 
jby  agitation  for  1—2  hrs.  at  180°— 190°  C.  with 
finely  divided  or  low-melting  metals  or  metal  com- 
pounds, such  as  sodium,  potassium,  copper  filings, 
pyrophoric  iron  or  nickel  (prepared  by  reducing 
the  corresponding  oxides  in  a  current  of  hydrogen), 
sodamide,  or  calcium  carbide,  with  subsequent  dis- 
;illation  in  vacuo.  It  is  then  converted  into 
iym.-octohydrophenanthrene  by  treatment  with 
vydrogen  in  the  presence  of  reduced  nickel  as 
:atalyst  at  180°— 220°  C.  under  a  pressure  of  15—20 


atm.  until  4  mols.  has  been  absorbed.  The  product 
is  purified  by  sulphonation,  recrystallisation  of 
salts  of  the  sulphonic  acid  produced,  and  sub- 
sequent decomposition  of  the  sulphonic  acid  by 
heating  with  dilute  hydrochloric  acid.  sym.'- 
Octohydrophenanthrene,  m.p.  167°  C,  b.p. 
167'5°  C.  at  13  mm.,  and  sp.  gr.  at  20°  C.'  r026J 
can  b.e  used  for  the  preparation  of  morphine 
alkaloids  and  similar  compounds. — L.  A.  C. 

Tars  or  oils;  Process  and  apparatus  for  the  distilla- 
tion of .    E.  Blumner.    E.P.  182,868,  29.3.21. 

See  G.P.  340,991  of  1920;  J.,  1922,  407  a.  (Reference 
is  directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  8336  of  1909,  116,  304,  and  141,223.) 

Catalysts  for  hydrogenation:  G.P.  352,439.  See  XX. 

IV —COLOURING  MATTERS  AND  DYES. 

Coupling     reactions;    Mechanism     of    .       7/. 

l.8-Naphthosultam  and  its  N-methyl  derivative 
as  azo  components.  TV.  Konig  and  K.  Kohler. 
Ber.,  1922,  55,  2139—2149. 
The  power  of  aromatic  acylamines  to  couple  with 
reactive  diazo  compounds  with  the  formation  of 
normal  azo  compounds  has  been  attributed  to  their 
ability  to  react  in  the  enolic  form,  Ar.N:C(OH)R 
and  Ar.N:SR(:0).OH  (<•/.  J.;  1921,  428a).  This 
hypothesis  is  now  abandoned  since  the  methyl  ether 

.SO, 


of     1.8-naphthosultam,  C10H6 


;\  |  couples    with 

\N(CH3) 


diazo  compounds  in  much  the  same  manner  as 
1.8-naphthosultam.    (Cf.  J.C.S.,  Sept.)— H.  TV. 

l.S-Naphthosultam-4-sulphonic  acid  and  certain  of 
its  derivatives.  TV.  Konig  and  J.  Keil.  Ber.. 
1922,  55,  2149—2155. 

1.8-Naphthosultah-4-stjlphonio  acid,  prepared  by 
the  action  of  phosphoryl  chloride  on  potassium 
a-naphthylamine-4.8-disulphonate  at  145°  C.  or 
from  sulphuric  acid  monohydrate  and  naphtho- 
sultam  alone  or  in  the  presence  of  glacial  acetic 
acid,  is  much  less  reactive  towards  diazo  compounds 
than  the  unsubstituted  naphthosultam  or  o- 
naphthol-4-sulphonic  acid.  The  tendency  towards 
the  formation  of  o-sulphamino  dyes  is  considerably 
less  than  towards  the  formation  of  the  analogous 
p-derivatives  and  very  much  less  than  towards  the 
production  of  o-hydroxyazo  dyes.  (fif.  J.C.S.,  Sept.) 

— H.  TV. 

Pyrazoleanthrone  Yellow;  Constitution  of .    F. 

Mayer  and  R.  Heil.     Ber.,  1922,  55,  2155—2164. 

Analyses  of  Pyrazoleanthrone  Yellow  (G.P.  255,641 ; 
J.,  1913,  356),  which  is  obtained  conveniently  in  an 
ash-free  condition  by  the  hydrolysis  of  its  dibenzoyl 
derivative  with  sulphuric  acid,  agree  with  the 
forniula,  C2aHl;,02N4  or  C^H^OjN,,  according  to 
which  two  molecules  of  pyrazoleanthrone  are  united 
with  loss  of  four  or  two  atoms  of  hydrogen.  The 
formation  of  a  potassium  salt,  of  mono-  and  di- 
benzyl  (or  substituted  benzyl)  derivatives  and  of 
a  dibenzoyl  compound  proves  that  the  replaceable 
hydrogen  atoms  of  pyrazoleanthrone  are  retained  in 
the  new  dye.  The  latter  is  extraordinarily  resistant 
towards  oxidation  and  only  yields  anthracene  when 
distilled  with  zinc  dust.  Substituted  pyrazolean- 
thrones  can  be  converted  into  derivatives  of 
Pyrazoleanthrone  Yellow  if  substituents  are  present 
in  positions  2  or  4,  but  when  the  substituent  is 
present  in  position  8  either  a  dye  is  not  produced 
or  the  substituent  is  removed  during  the  process. 
The  tinctorial  properties  of  the  dye  indicate  that 
it  is  allied  to  Flavanthrene.     {Cf.  J.C.S.,  Sept.) 

— H.  TV 


664  a 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


[Sept.  13,  1922. 


[Anthraquinone  scries;]  Double  decomposition   [in 

the ]  catalysed  by  copper.    E.  Kopetschni  and 

H.  Wiesler.     Monatsh.,  1922,  43,  89—92. 

When  l-chIoro-2-aminoanthraquinone  is  boiled  with 
an  excess  of  dimethylaniline  with  the  addition  of  a 
small  amount  of  copper  powder  or  cupric  acetate, 
a  good  yield  of  2-aminoanthraquinone  is  produced, 
but,  if  potassium  carbonate  be  added  in  addition  to 
the  copper  powder  or  cupric  acetate,  or,  if  the 
dimethylaniline  be  replaced  by  monomethylaniline, 
2-aminoanthraquinone  is  not  obtained,  "although 
indanthrene  and  flavanthrene  can  be  recognised 
amongst  the  products.     (Cf.  J.C.S.,  Sept.) 

— C.  K.  I. 

Thiazole   derivatives  of   the   anthraquinone   scries; 

New  mode  of  formation  of .     E.  Kopetschni 

and  H.  Wiesler.    Monatsh.,  1922,  43,  81—87. 

Both  2-amino-l-mercaptoanthraquinone  and  2.2'- 
diaminodianthr.iquinone-l.l'-disulphidej  on  heating 
with  aqueous  or  alcoholic  ammonia,  give  2^amino° 
anthraquino-1-thiazole,  which  does  not  give  a  vat 
with  hydrosulphite.  Anthraquino-1-thiazole  and 
3-chloro-2-aminoanthraquino-l-thiazole  were  pre- 
pared in  a  similar  way. — C.  K.  I. 

Thiazoles.  2-p-Tolylbenzothiazolc,  dchydrothio-p- 
toluidine,  and  some  related  compounds.  M.  T. 
Bogert  and  M.  Meyer.  J.  Amer.  Chem.  Soc, 
1922,  44,  156S— 1572. 

2-p-ToLYLBENZOTHIAZOLE,    CjH^  >CC6H4(CH3) 

m.p.  85°  C,  is  obtained  by  fusing  p-tolanilide  with 
sulphur  or  (preferably)  by  the  oxidation  of  thio-p- 
tolanilide  in  alkaline  solution  with  potassium  ferri- 
cyanide.  In  contrast  to  the  phenyl  derivative,  it  is 
practically  odourless  when  dry.  The  corresponding 
nitro  and  amino  compounds  are  described,  as  well 
as  various  azo  dyes  from  the  latter.  Dehydrothio- 
p-toluidine  readily  yields  a  benzylidene  derivative, 
m.p.  193°  C.  (corr.);  it  is  converted  by  Skraup's 
reaction  into  6-methylbenzothiazo]yl-2.6-quinoline, 
m.p.  147°  C.  (corr.).  Diazotised  Primuline  couples 
on  the  fibre  with  benzoyleneurea  (2.4-dihydroxy- 
quinazoline),  giving  on  unmordanted  cotton 
yellowish-brown  shades  of  good  fastness  to  acids, 
alkalis,  or  bleach,  but  quite  fugitive  in  daylight. 
(Cf.  J.C.S.,  Sept.)— H.  W. 

Patents. 

Azo  dyestuffs;  Manufacture  of  new  copper  com- 
pounds of  substantive  .     Farbenfabr.  vorm 

F.  Bayer  und  Co.     E.P.  165,083,  13.5.21.     Com- 
14.6.20. 

The  dyestuffs  described  in  E.P.  144,310  (J.,  1921, 
CSS  a)  formed  by  combining  1  mol.  of  5.5'-dihydroxy- 
2.2'-dinaplithylamine-7.7'-disulphoiiic  acid  with  1  or 
2  mols.  of  o-aminobenzoic  acid  or  its  derivatives, 
such  as  4-chloro-2-aminobenzoic  acid,  are  treated 
with  compounds  of  copper,  whereby  new  substantive 
dyestuffs  having  a  greater  affinity  for  cotton,  and 
giving  clearer  shades,  of  excellent  fastness  to  light 
and  ironing  are  obtained.  For  example,  757  pts. 
of  the  dye-stuff  obtained  from  2  mols.  of  2-amino- 
benzoic  acid  and  1  mdl.  of  5.5'-dihydroxy-2.2'- 
dinaphthylamine-7.7'-disuIphonic  acid  is  dissolved 
in  hot  water  and  treated  with  a  hot  solution  con- 
taining 499'4  pts.  of  copper  sulphate,  and  after 
neutralising  with  sodium  carbonate,  the  copper  lake 
formed  is  separated  and  dried.  It  yields  red-violet 
shades  on  cotton. — A.  J.  H. 

Disazo   dyestuffs;  Manufacture  of  secondary  . 

Kalle  und  Co.,  A.-G.    G.P.  352,354,  12.6.14. 
Compounds    prepared    by    the    action   of    aromatic 


hydrazines  and  sulphites  on  p-aminoazo-  or  p-hydr- 
oxyazo  compounds  are  treated  with  alkalis  and  then 
with  oxidising  agents,  whereby  the  hvdrazo  groups 
are  oxidised,  yielding  dyestuffs  containing  at  least 
2  azo  groups,  R.N;.Ar.NH.NH.R '-►R.N2.Ar.N,.R' 
(R  and  R'  =  the  residue  of  a  diazo  compound  and 
an  aromatic  hydrazine  respectively,  and  Ar  =  an 
aryl  group).  Oxidation,  by  treatment  with  the 
calculated  quantity  of  a  persulphate  or  hypochlorite 
can  be  effected  on  the  fibre,  oxidation  being  finished 
when  spotting  with  acids  has  no  effect  on  the  shade 

— L.  A.  C 

Cotton   dyes.     H.   Jordan,    Assr.   to  The  Grasselli 
Chemical  Co.     U.S. P.  1,422,866,  18.7.22     AddI 
27.9.19.  lp" 

See  G.P.  339,183  of  1915;  J.,  1921,  731  a. 
Oil-soluble  dyestuffs.     E.P.  182,497.    See  XIII. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Wood  cellulose  and  cotton  cellulose;  Comparison  of 

.     S.  A.  Mahood  and  D.  E.  Cable.     J.  lad 

Eng.  Chem.,  1922,  14,  727—731. 

A  large  number  of  samples  of  wood  cellulose  and 
cotton  cellulose,  varying  from  the  raw  material  to 
severely  cooked  and  highly  bleached  pulps,  were 
tested  for  matter  soluble  in  water  and  in  alkali, 
acetic  acid  by  hydrolysis,  ether-soluble  matter,  pen- 
tosans, furfural,  lignin,  a-,  /J-,  and  -/-cellulose,  etc. 
It  was  found  that  the  wood-cellulose  most  nearly 
approaching  cotton-cellulose  is  obtained  by  re-cook- 
ing "  easy  bleaching  "  sulphite  pulp  with  soda,  and 
bleaching  with  2%  of  bleach.  Such  treatment,  how- 
ever, is  uneconomic  owing  to  the  low  yield.  To 
prepare  wood  cellulose  suitable  for  esterification  it 
seems  probable  that  acid  cooking  is  preferable  to 
alkali  cooking,  and  that  bleaching  is  a  very  efficient 
method  of  removing  non-cellulose  material.  It  is 
questionable  whether  wood  cellulose  for  this  purpose 
should  be  expected  to  conform  to  specifications  for 
cotton  cellulose  in  view  of  radical  differences  in 
chemical  composition. — C.  I. 

Jute   half-stuff  and   beaten  pulp;   Changes  during 

storage  of .     E.  W.  L.  Skark.     Papierfabr., 

1922,  20,  881—886,  917—922,  957—962. 
The  colour  and  character  of  jute  half-stuffs  differ 
considerably  according  to  whether  the  bagging  has 
been  boiled  with  lime  or  with  caustic  soda  and 
according  to  the  degree  of  digestion.  Bagging 
boiled  with  lime  bleaches  to  a  bright  yellow  colour, 
whereas  that  boiled  with  caustic  soda  has  a  dull 
brownish-yellow  colour  unless  the  degree  of  diges- 
tion has  been  so  complete  that  a  full  white  is 
obtained.  The  behaviour  of  the  different  types  of 
half-stuff  in  the  beating  operation  may  be  influenced 
by  the  length  of  time  the  material  has  remained  in 
the  drainer  chests.  This  influence  has  been  studied 
by  determination  of  the  rates  of  draining  of  the 
beaten  stuff  by  the  author's  method  (J.,  1913.  1103; 
1922,  9  a).  Taking  half-stuffs  prepared  by  boiling 
with  lime,  whether  boiled  for  a  6hort  time  with  a 
little  lime  or  a  long  time  with  a  large  quantity, 
little  or  no  difference  could  be  detected  in  the  be- 
haviour of  the  pulps  in  beating,  and  prolonged 
storage  in  the  drainers  had  little  influence.  In  the 
case  of  half-stuff  lightly  boiled  with  caustic  6oda, 
the  colour  of  the  bleached  pulp,  already  duller  than 
that  of  the  jute  boiled  with  lime,  tended  to  become 
still  duller  during  storage.  In  this  case  the 
influence  of  prolonged  storage  on  the  beating  was 
perceptible.  With  jute  boiled  for  a  longer  time  and 
with  a  more  concentrated  caustic  soda  solution,  the 


Vol.  XLT.,  No.  17.] 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


665  a 


influence  of  storage  on  the  beating  qualities  was 
pronounced,  in  that  the  half-stuff  became  more 
"  mellow  "  and  worked  much  "  softer  "  in  the  beat- 
ing. This  beneficial  influence  of  storage,  however, 
reaches  a  maximum  after  2 — 3  weeks,  and  no 
further  mellowing  is  obtained  by  more  prolonged 
storage.  Jute  boiled  with  caustic  soda  with  the 
addition  of  sodium  sulphide  is  capable  of  being 
bleached  to  a  full  white;  the  mellowing  influence  of 
storage  is  observed  also  in  this  case.  Storage  of  the 
fully  beaten  pulps  in  the  stuff-chest  in  the  presence 
of  a  large  excess  of  water  was  also  found  to  have  a 
powerful  "softening"  influence,  such  that  the 
pulps  became  progressively  slower  in  draining  on 
the  wire  until  destructive  putrefaction  set  in.  This 
change  was  more  rapid  the  greater  the  original 
degree  of  beating. — J.  F.  B. 

Bushes  as  material  for  board  making.  C.  Uhlemann. 
Papierfabr.,  1922,  20,  962—965. 

Bulrushes  (Typha)  and  common  reeds  (Phrag- 
mites)  in  the  mixed  condition,  as  harvested,  are 
being  utilised  at  Freiberg,  Saxony,  as  raw  material 
for  millboards  and  various  types  of  cardboards. 
Photomicrographs  of  the  pulps  show  that  the  diges- 
tion and  separation  of  the  ultimate  fibres  and 
vessels  are  complete,  and  with  a  yield  of  over  30% 
of  useful  pulp  the  economic  conditions  are  stated 
to  be  favourable.  The  manufacture  of  white  print- 
ing papers  has  not  yet  been  undertaken,  but  the 
possibilities  are  promising. — J.  F.  B. 

Liijnin  and  lignosulphonic  acid;  Oxidation  of  methyl 

ethers   of  .      E.    Heuser   and   S.    Samuelsen. 

|    Cellulosechem.,  1922,  3,  78—83. 

By  repeated  treatments  with  methyl  sulphate  and 
110%  sodium  hydroxide  at  65° — 70°  C.  the  methoxyl 
ealue  of  lignosulphonic  acid  was  raised  from  1307 
to  25'43%  and  that  of  lignin  isolated  by  Willstatter 
jnd  Zechmeister's  method  (cf.  J.,  1913,  822)  from 
UT5  to  2605%.  These  methoxylated  products  were 
Dxidised  by  alkaline  permanganate  cold  and  at  90° 
,[!.,  also  by  alkali  peroxide  at  45°  C,  in  the  hope  of 
ibtaining  some  oxidation  product  having  a  consti- 
tutional relationship  to  the  original  lignin.  Nothing 
■haracteristic,  however,  could  be  isolated.  In  the 
>xidation  of  methyl-lignin  by  alkaline  permangan- 
ite,  only  55'65%  of  the  original  carbon  could  be 
iccounted  for,  44"76%  in  the  form  of  carbon  dioxide 
ind  10'69%  in  the  form  of  oxalic  acid.  Volatile 
icids  calculated  as  acetic  acid  amounted  only  to 
)'9%  of  the  material  taken.     {Cf.  J.C.S.,  Sept.) 

—J.  F.  B. 

'Jnfermcntrd  sugars  in  spent  washes  from  sacchari- 
fied wood.    Pringsheim.    See  XVIII. 

Patents. 

lapoh   and    other  fibres;  Method   to  render  

incombustible.     R.   C.   Vails.     U.S. P.   1,422,242, 
11.7.22.     Appl.,  1.6.20. 

Capok  and  other  fibres  having  an  impermeable 
uter  cuticle  are  rendered  permeable  by  treatment 
rith  a  volatile  solvent  of  low  boiling  point,  such  as 
lcohol,  and  are  then  rendered  fireproof  by  treat- 
lent  with  ammonium  phosphate. — A.  J.  H. 

'ellulose    material    [plastic    masses~\;   Manufacture 

of    .      Koln-Rottweil    A.-G.      E.P.    156,095, 

22.12.20.     Conv.,  30.12.19. 

riTEocELLULosE  is  mixed  with  tri-orthocresyl  ester 
ihosphate)  and  p-toluenesulphonic  acid  amy] 
>ter,  with  the  addition  of  materials,  such  as  cork, 
iwdust,  peat  and  suitable  colouring  or  filling 
ibstances,  and  the  whole  is  pressed  or  rolled  while 
ot  into  an  integral  mass  which  can  be  used  for 
oor  covering  etc.  (Reference  is  directed,  under 
iect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
cts,  1907  and  1919,  to  E.P.  154,157.)— J.  F.  B. 


Bast  fibres;  Retting  process  for  .     A.  Herzog 

and  P.  Krais.     G.P.  346,828,  22.1.21. 

In  a  warm  water  retting  process  with  slow  circula- 
tion of  the  retting  water,  alkali  carbonate  or  bi- 
carbonate or  a  mixture  of  the  two  is  added  to  the 
retting  water  so  that  this  is  kept  neutral  or  faintly 
alkaline.— H.  C.  R. 

Artificial  threads,  films,  and  plastic  material;  Pro- 
cess   for    manufacturing    .       R.     J.     Loffler. 

G.P.  346,832,  16.10.19. 

The  lignoproteins  obtained  from  proteins  and 
sulphite-cellulose  waste  lye  are  added  to  solu- 
tions of  cellulose  compounds  and  the  mixture  6pun 
or  moulded,  precipitated,  and  hardened.  Alter- 
natively, one  component  of  the  lignoprotein  may 
be  added  to  the  cellulose  solution  and  the  other  to 
the  precipitating  bath.  Fats,  oils,  dehydrating 
agents,  or  filling  materials  may  be  incorporated 
with  the  lignoproteins.  To  obtain  a  patent  leather 
finish  by  means  of  the  lignoproteins  they  are  dis- 
solved in  ammonia  and  if  necessary  coloured. 

— H.  C.  R. 

Millboard  and  similar  substances;  Manufacture  of 

[using  tanyard  refuse].     A.  T.  Masterman. 

E.P.  182,884,  6.4.21. 

Waste  wattle  bark  or  other  tanyard  refuse  is 
crushed  for  20  to  30  mins.  in  an  edge  runner  in  the 
presence  of  a  solution  of  sodium  carbonate  or  other 
alkali,  and  then,  after  admixture  with  about  20 — 
30%  of  waste  paper  pulp,  is  beaten  for  about  2  hrs. 
with  water  at  45° — 50°  C.  Engine  size  and  alum,  or 
gelatin  alone,  are  added  to  the  pulp  during  the 
beating  process,  and  after  leaving  the  beater  the 
pulp  is  manufactured  into  board  by  hand  or  in 
machines.  (Reference  is  directed,  in  pursuance  of 
Sect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
Acts,  1907  and  1919,  to  E.P.  1994  of  1871,  2619  of 
1872,  2672  of  1881,  1004  of  1883,  and  9571  of  1900.) 

— L.  A.  C. 

Dehydrating    plastic    and    other    materials    [e.g., 

paper];   Method    of  .     R.   J.    Marx.     E.P. 

183,097,  1.3.22. 
A  sheet  of  the  material,  e.g.,  paper,  is  passed  over 
a  series  of  suction  boxes,  each  providing  a  different 
degree  of  suction  and  together  comprising  a  con- 
tinuous zone  of  uninterrupted  suction.  The  amount 
of  suction  is  sufficiently  low  to  avoid  the  formation 
of  any  moisture-impeding  layer  in  the  material, 
and  preferably  increases  in  successive  boxes,  so  that 
superposed  layers  of  the  material  are  successively 
dehydrated. — H.  H. 

Paper;  Process  for  sizing  in  the  hollander. 

G.  Muth.  G.P.  349,595,  15.10.14. 
Coumarone-  and  indene-resins  or  similar  products 
are  emulsified  with  alkali  resin  soaps,  or  are  melted 
with  natural  resins  and  the  mixture  emulsified  with 
alkali.  For  example,  1  pt.  of  colophony  is  melted 
with  10  pts.  of  coumarone-resin  and  heated  until 
foaming  ceases.  The  mixture  is  emulsified  with 
alkali,  ammonia,  or  sodium  silicate  solution  to  form 
a  resin-size.  The  resin  soap  obtained  is  consider- 
ably purer  than  one  obtained  direct  from  pine  resin, 
and  is  so  readily  soluble  in  water  that  it  can  bo 
introduced  into  the  hollander  without  being  lir.st 
dissolved.— H.  C.  R. 

Sulphite-cellulose  waste  liquor;  Process  for  treat- 
ment of .    F.  Gossel.    G.P.  352,624,  25.4.20. 

The  neutralised  and  clarified  liquor  is  evaporated 
under  reduced  pressure,  with  simultaneous  oxida- 
tion, objectionable  constituents  of  the  lye  being 
thus  rendered  harmless.  The  process  may  be 
applied  to  the  residue  obtained  after  treatment  of 
the  lye  for  the  production  of  alcohol,  and  the  pro- 
duct is  suitable  for  use  as  fodder. — A.  G. 


666  a 


Ci»  VI.— BLEACHING  ;    DYEING,  &o.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.      [Sept.  15, 1922. 


Fibrous    substances    [paper    pulp]    and    the    like; 

Apparatus  for  pressing  liquid  out  of .    Aktie- 

bolaget    Karlstads    Mekaniska    Verkstad.      E.P. 
162,648,  8.4.21.     Conv.,  30.4.20. 

Dyeing  cellulose  acetate.  E.P.  182,830  and  182,844. 
See  VI. 

Bleaching,     G.P.  352,845.     See  VI. 

Fermentable  sugar  from  wood.  G.P.  351,681  and 
352,773.     See  XVIII. 

VI.-BLEACHING ;  DYEING;   PBINTING; 
FINISHING. 

Mordants.     Alumina.     W.  D.  Bancroft.     J.  Phys. 

Chem.,  1922,  26,  501—536. 
From  a  critical  review  of  the  literature,  the  follow- 
ing conclusions  are  drawn: — The  actual  hydrolysis 
of  aluminium  salts  is  greater  with  salts  of  weak 
acids,  but  the  apparent  hydrolysis  may  be  abnor- 
mally large  in  sulphate  solutions  owing  to  the 
coagulating  effect  of  the  sulphate  ion  on  the 
colloidal  alumina.  Different  fibres  adsorb  alumina 
to  different  degrees,  wool  having  a  much  greater 
adsorbing  power  than  cotton,  and  silk  being  slightly 
inferior  to  wool.  Owing  to  this  difference  in 
specific  adsorption,  wool  decomposes  aluminium 
salt  solutions  which  are  distinctly  acid,  whilst 
cotton  is  effective  only  in  more  basic  solutions. 
The  substance  adsorbed  and  held  firmly  is  colloidal 
alumina.  Coagulated  alumina  may  be  adsorbed 
to  some  extent,  but  it  easily  rubs  off  the  material. 
It  is  probable  that  in  all  cases  alumina  is  adsorbed 
and  not  a  basic  salt.  The  phenomena  may  be 
complicated  by  the  fact  that  the  alumina  itself 
will  adsorb  some  sulphuric  acid,  for  example,  and 
that  the  wool  also  adsorbs  sulphuric  acid.  If  to 
cotton  is  added  some  substance,  such  as  tannin, 
which  adsorbs  alumina  strongly,  then  the  mor- 
danted cotton  is  able  to  take  alumina  from  solu- 
tions of  aluminium  salts  which  are  not  decomposed 
by  cotton  alone.  The  increase  in  the  adsorbing 
power  of  mercerised  cotton  is  due  to  a  structural 
difference  of  the  cotton  fibre.  There  is  no  evidence 
of  the  formation  of  any  definite  compound  between 
alumina  and  silk,  cotton,  or  wool. — J.  F.   S. 

Textile  fibres;  Colour  absorption  from  dye  liquors 

by .    R.  Auerbach.    Kolloid-Zeits.,  1922,  31, 

37—40. 
In  view  of  the  difference  between  the  states  of 
dispersion  of  a  dyestuff  when  in  aqueous  solution 
and  when  deposited  within  a  textile  fibre,  the 
colour  of  the  dye  liquor  and  that  of  cotton  or  wool 
fabric  dyed  by  means  of  it,  have  been  compared 
in  the  case  of  about  sixty  basic,  acid  wool,  and 
direct  cotton  dyestuffs.  The  determination  of  the 
shade  of  the  dyed  fabric  was  carried  out  after 
drying,  but  it  was  shown  that  the  wet  dyed  fabric 
could  have  been  used  with  but  small  error.  In 
nearly  all  cases,  the  fibre  had  a  bathochromic  in- 
fluence, but  in  the  case  of  Chicago  Blue  R  W  and 
Wool   Blue  5   B,    its   influence   was   hypsochromic. 

—A.  J.  H. 

Patents. 

Bleaching  fibres,  textiles,  and  the  like  with  hypo- 
chlorites;    Process     for     .        Zellstoff-fabr. 

Waldhof.     G.P.  352,845,  11.5.18. 

FiuRorjs  material,  e.g.,  sulphite-cellulose,  is  bleached 

by  treatment,  first  with  acid  and  then  with  alkaline, 

solutions  of  hypochlorites. — L.  A.  C. 

Dyeing,    bleaching    and    analogous    treatment    of 

textile  fibres;  Process  of  and  apparatus  for . 

J.,  T.,  and  J.  Brandwood.     E.P.  182,575,  8.4.21. 

Textlle   material   in   the  loose   form   is   conveyed 


through  the  machine  between  two  open-woven  or 
meshed,  endless  travelling  belts,  which  may  con- 
sist of  brattice  cloth  strengthened  by  transverse 
flat  stiffening  rods.  On  entering  the  machine,  the 
conveyor  passes  around  two  cylinders  having  per- 
forated surfaces  and  arranged  within  a  tank  con- 
taining dye-liquor.  By  means  of  pumps,  the 
liquor  is  drawn  inward  through  the  textile  material 
at  one  cylinder  and  forced  outward  through  the 
material  at  the  other  cylinder.  The  conveyor  then 
carries  the  material  over  the  perforated  top  of 
another  tank,  where  it  is  subjected  to  a  current 
of  air  or  suitable  liquor  passing  in  either  direc- 
tion, and  then  into  a  third  tank  where  it  passes 
over  the  perforated  surfaces  of  two  chambers,  and 
is  further  subjected  to  a  current  of  wash  water 
in  either  direction.  Beyond  this  tank,  the  two  belts 
diverge  and  the  treated  textile  material  is  removed 
by  means  of  rotary  brushes.  This  machine  is 
suitable  for  dyeing  with  sulphur,  oxidation,  azo, 
or  basic  dyestuffs. — A.   J.   H. 

Cellulose    acetate    or    products    made    therewith- 

Treatment  [dyeing]  of .    Treatment  [dyeing] 

of  union  or  mixed  fabrics  [containing  cellulose 
acetate].  R.  Clavel.  E.P.  (a)  182,830,  12.1.  and 
30.8.21,  (b)  182,844,  9.2.  and  8.11.21. 

(a)  Dyestuffs  of  any  class  containing  hydroxyl, 
amino,  imino,  imido,  nitro,  nitroso,  isonitroso, 
acidylamino,  or  azo  groups,  and  either  no  sul- 
phonjd  groups,  or  not  more  than  one  sulphonyl 
group  together  with  two  or  more  of  the  above 
groups,  are  suitable  for  the  direct  dyeing  of 
cellulose  acetate  products,  such  as  artificial  silk, 
films,  and  the  like,  which  have  been  prepared 
by  processes  in  which  depolymerisation  of  the 
cellulose  molecule  has  been  avoided  as  far  as 
possible.  In  dyeing  with  basic  dyestuffs,  the 
addition  to  the  dye-bath  of  salts  such  as  mag- 
nesium chloride,  stannous  chloride,  or  zinc  chloride, 
which  are  capable  of  forming  double  salts  with 
the  dyestuffs,  or  the  use  of  the  dyestuffs  in  the 
form  of  these  double  salts,  gives  even  dyeings  fast 
to  light  and  washing.  Dyestuffs  insoluble  in  water, 
such  as  water-insoluble  Induline,  can  be  applied  in 
aqueous  suspension,  e.g.,  in  an  aqueous  foam  bath 
prepared  as  described  in  E.P.  102,310  (J.,  1917, 
80).  After  dyeing,  the  material  is  treated  in 
a  bath  containing  formic  acid  or  acetic  acid  and  an 
oil  emulsion  consisting  of  olive  oil  and  olive  oil  soap. 
(Reference  is  directed,  in  pursuance  of  Sect.  8.  Sub- 
sect.  2,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  176,535;  J.,  1922,  325  a.)  (b)  The 
cellulose  acetate  present  in  mixed  fabrics  contain- 
ing cellulose  acetate  fibres  and  other  natural  or 
artificial  fibres  is  dyed  as  described  in  (a),  and  if 
the  dyestuffs  employed  are  not  appropriate  for  the 
other  fibres  present,  the  fabric  is  also  dyed  with 
another  dyestuff  appropriate  for  the  other  fibres. 
The  two  dyestuffs  may  be  applied  in  separate  baths, 
or  both  may  be  present  in  the  one  bath. — L.  A.  C. 

Dyeing  skins,  hairs,  and  the  like;  Process  for . 

A.  G.  Bloxam.     From  Akt.-Ges.  fur  Anilin-Fabr. 

E.P.  183,078,  31.10.21. 
See  U.S. P.  1,416,646  of  1922;   J.,  1922,  543  a. 

VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitric    acid;    Manufacture    of    .      The    US. 

Government  explosives  plant  C,  Nitro,  II  est 
Virginia.  M.  F.  Chase.  J.  Ind.  Eng.  Chem., 
1922.  14,  677—681. 
This  plant,  erected  in  1918,  comprised  96  3-ton 
retorts  for  the  decomposition  of  sodium  nitrate. 
The  nitre  was  mechanically  handled  throughout 
and    was   dried,    before   use,    in   gas-fired   rotating 


Vol.  XLI.,  No.  17.]      Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIO  ELEMENTS. 


667  a 


steel  cylinders.  "  Bleach  pots  "  packed  with  rings 
were  interposed  between  the  pots  and  condensers, 
in  which  the  condensed  acid  met  the  ascending 
vapours,  these  and  all  the  condensers  and  con- 
nexions being  made  of  acid-resisting  iron.  The 
condensers  consisted  of  a  series  of  return  bends 
cooled  with  sprays.  To  each  set  of  24  retorts  was 
connected  a  series  of  18  stoneware  towers,  15  ft. 
high  and  30  in.  diam.,  fed  with  water  for  absorbing 
the  uncondensed  gases.  The  time  of  working  off 
one  charge  was  12  hrs.,  the  maximum  temperature 
obtained  in  the  retorts  250°  C,  and  the  mean 
overall  efficiency  92%. — C.  I. 

Nitric  acid  solutions;  Concentrating  dilute  . 

C.  D.  Carpenter  and  J.  Babor.    Chem.  and  Met. 
Eng.,  1922,  27,  121—124. 

A  detailed  series  of  determinations  of  the  com- 
position of  a  boiling  nitric  acid  solution  and  of  the 
distillate  therefrom  during  concentration  from 
5%  HNOj  to  68%  HN03  in  an  apparatus  from  which 
any  fractionation  is  excluded,  is  given.  The  quan- 
tity of  acid  passing  over  into  the  distillate  on 
simple  distillation  from  20%  up  to  55%  concen- 
tration is  33"3%  of  the  quantity  originally  present, 
but  on  further  distillation  up  to  65%  concentration, 
69%  of  the  acid  passes  over.  While  two  distillations 
tu  55  ,  give  a  recovery  of  90%  of  the  acid,  two  dis- 
tillations up  to  65,;  give  a  recovery  of  only  52%. 
It  is  therefore  concluded  that  in  the  pre-concen- 
tration  of  nitric  acid  by  fractionation  it  is  not 
advisable  to  go  above  55 — 60%  concentration,  the 
extra  fractionation  required  to  reach  65%  being 
out  of  all  proportion  to  the  gain.  From  the  curves 
which  summarise  the  above-mentioned  data  the 
composition  of  the  vapour  above  a  boiling  nitric 
acid  solution  of  any  strength  is  deduced.  Results 
so  obtained  are  compared  with  those  of  Pascal  (J., 
1921,  506a)  and  of  Berl  and  Samtleben  (J.,  1922, 
461  a),  and  the  apparatus  and  methods  of  calcula- 
tion of  these  observers  are  criticised. — C.  I. 

Barium  sulphuric  acid  and  barium  selenic  acid. 
J.  Meyer  and  W.  Friedrich.  Z.  physik.  Chem., 
1922,  101,  498—503. 

Sulphitric  acid  of  97'86%  concentration  dissolves 
14'91  g.  of  barium  sulphate  per  100  c.c.  at  25°  C, 
and  from  the  solution  crystals  of  barium  sulphuric 
acid,  H2[Ba(S04),],  separate.  Similarly  a  concen- 
trated solution  of  selenic  acid  dissolves  barium 
selenate  and  deposits  crystals  of  barium  selenic 
acid,  H2[Ba(SeO«)2].     (67.  J.C.S.,  Sept.)— J.  F.  S. 

Nitrogen  fixation  by  the  cyanide  process.  F.  E. 
Bartell.    J.  Ind.  Eng.  Chem.,  1922,  14,  699—704. 

Investigations  on  cyanide  synthesis  by  the  Bucher 
process  were  carried  out  with  4-in.  retorts  holding 
8  lb.  of  briquettes  and  with  10  ft.  by  8  in.  con- 
tinuous retorts  capable  of  making  7—8  lb.  of 
cyanide  per  hr.  It  was  shown  that  Bucher's  claim 
that  serious  chemical  difficulties  did  not  exist  and 
that  the  precise  nature  of  the  coke  used  made  little 
difference  was  justified.  Producer  gas  is,  however, 
inadmissible  as  a  source  of  nitrogen,  owing  to  the 
harmful  effect  of  carbon  monoxide.  The  difficulty 
consists  in  the  close  correlation  of  the  mechanical 
treatment  with  the  progress  of  reactions  which 
are  easily  reversible.  A  temperature  of  1050°  C. 
is  best  in  the  retort.  The  formation  of  cyanide  is 
most  active  in  the  lower  portion  of  the  retort, 
but  it  gradually  distils  upwards,  while  in  the  upper 
part  the  carbon  monoxide  generated  tends  to  re- 
verse the  reaction.  For  success  it  is  therefore 
necessary  to  maintain  such  a  supply  of  nitrogen 
that  the  partial  pressure  of  carbon  monoxide  is  as 
low  as  possible.  The  mixture  briquetted  consisted 
of  50%  of  petroleum  coke,  38%  of  sodium  carbonate, 
and  12%  of  iron,  previous  to  the  oxidation  of  the 
last.     The  nitrogen  used  was  obtained  bv  the  slow 


combustion  of  coke  and  removal  of  carbon  dioxide 
from  the  combustion  products.  A  series  of  cost 
estimates  based  on  U.S.  prices  in  1918  give  the 
cost  per  lb.  of  NH3  by  this  process  at  27—37  cents. 

— C.  I. 

Sodium    bicarbonate;    Preparation    of    .      E. 

Toporescu.  Comptes  rend.,  1922,  175,  268^270! 
A  study  similar  to  that  originally  made  at  15°  C. 
(J.,  1922,  325  a)  of  the  equilibrium  of  the  four 
salts,  sodium  chloride,  sodium  bicarbonate,  ammo- 
nium chloride,  and  ammonium  bicarbonate,  with 
their  saturated  solutions  has  been  made  at  35°  C. 
and  50°  C.  The  geometrical  representation  of  the 
results  obtained  by  means  of  a  Le  Chatelier 
diagram  enables  a  calculation  to  be  made  of  the 
theoretical  yield,  that  is  to  say,  the  proportion  of 
sodium  chloride  transformable  into  bicarbonate  for 

I  a  solution  of  any  given  initial  composition.  The 
course  of  the  industrial  preparation  of  sodium  bicar- 
bonate does  not  run  parallel  with  this  owing  to  the 
varying  temperature  of  the  salt  solutions,  but  never- 
theless the  results  will  indicate  whether  it  is  neces- 

|  sary  to  add  water  to  the  original  sodium  chloride 
solution  in  order  to  avoid  precipitation  of  ammo- 
nium bicarbonate,  or  whether  more  solid  salt  must 
be  added  in  order  to  obtain  the  theoretical  yield. 

— G.  F.  M. 

Calcium     cyanamide;    Formation    of    from 

calcium  ferrocyanide.     H.  Pincass.     Chem.-Zeit., 
1922,  46,  661. 

!  On  heating  hydrated  calcium  ferrocyanide  steadily 
for  an  hour  to  a  maximum  temperature  of  690° — 
700°  C,  a  black,  magnetic,  friable  mass  is  obtained 
which  contains  no  ferrocyanide  but  about  80—90% 
of  the  theoretical  quantity  of  calcium  cyanamide 
that  should  be  formed  according  to  the  equation  • 
Ca2Fe(CN),  =  N2  +  FeC2  +  2CaCN2+2C.    With  higher 

j  temperatures  and  longer  heating  the  yield  is  greatly 
reduced.  No  calcium  cyanamide  is  formed  by  heat- 
ing an  intimate  mixture  of  1  molecule  of  potassium 

|  ferrocyanide  and  1  molecule  of  lime  at  temperatures 
up  to  1000°  C. ;  the  reaction  product  contains,  in 
this  case,  only  cyanide. — A.  R.  P. 

Calcium;  Determination  of  in  natural  phos- 
phates.   R.  Meurice.    Ann.  Chim.  Analvt.,  1922 
4,  198. 

The  phosphate  is  treated  with  mineral  acid,   the 
silica  is  removed  and  the  iron  and  aluminium  are 
;    separated  by  precipitation  as  phosphates  in  acetic 
i    acid  solution.     The  filtrate  is  then  neutralised  with 
ammonia,  treated  with  20  c.c.  of  20%  hydrochloric 
j    acid  and  30  c.c.  of  4%  ammonium  oxalate,  warmed, 
i    and   10%    ammonium   acetate   added   at   a   rate   of 
;    about  30  drops  per  minute.    A  granular  precipitate 
of    calcium   oxalate   is   thus    obtained    and    this    is 
|    collected,     washed    and    ignited    as    usual.       Test 
I    analyses  carried  out  on  known  quantities  of  calcium 
in  the  presence  of  phosphates  and  magnesium  sul- 
phate in  large  excess  gave  very  accurate   results. 

— H.  C.  R. 

i    Calcium  arsenate  manufacture.    H.  W.  Ambruster. 
Chem.  and  Met.  Eng.,  1922,  27,  159—160. 

In  all  plants  in  the  United  States  at  present  mak- 
ing calcium  arsenate,  and  in  those  likely  to  be 
erected  in  the  immediate  future,  the  process  used 
consists  in  oxidising  arsenic  trioxide  with  nitric  acid 
and  neutralising  with  lime.  Earlier  plants  working 
with  small  units  employed  earthenware  pots  with 
hand    agitation    and    en    earthenware    absorption 

j  tower  for  absorbing  nitrous  fumes.  The  more 
modern    plants    have    large    silicon-iron    nitrating 

I  vessels  with  mechanical  feed  of  arsenic  and 
mechanical  stirrers,  and  acid-proof  brick  absorp- 
tion towers.     The  earlier  filter-press  and  oven  for 


. 


008  A 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.       [Sept.  15, 1922. 


drying  the  arsenate  are  replaced  by  a  rotary  drum 
dryer  which  saves  much  labour  while  using  no  more 
steam. — C.  I. 

Solubility   of  oases  in  liquids.     B.   S.   Neuhausen. 

J.  Phys.  Chem.,  1922,  26,  553—557.    (67.  J.,  1922, 

249  a.) 
The  solubility  of  ammonia,  carbon  dioxide,  sulphur 
dioxide,  and  hydrogen  chloride  in  methyl  alcohol 
and  ethyl  alcohol  as  well  as  in  water  can  be  repre- 
sented by  the  formula  V  =  K(Po-/P0)"",  where  V 
is  the  volume  of  liquefied  gas  dissolved  per  gram 
of  water,  P  the  equilibrium  pressure,  o-  the  surface 
tension,  and  Pn  the  vapour  tension  of  the  liquefied 
gas  at  the  temperature  of  measurement.  The  values 
of  K  for  the  three  solvents  water,  methyl  alcohol, 
ethyl  alcohol  are:  NH„  0'49,  0-205,  0-108;  HC1, 
1-05,  1-23,  0979;  S02,  0012,  0-04,  0-04;  C02,  0006, 
C'0126,  00103;  and  the  corresponding  values  for 
1/n  are:  NH„  069,  069,  071;  HC1,  012,  0-062, 
0-065;  SO,,  091,  1-20,  1-00;  CO.,  0-33,  0-07,  0055. 

—J.  F.  S. 

Sodium    silicate    solutions;    Electrolysis    of    . 

J.   F.   Spencer   and  K.   Proud.     Kolloid   Zeits., 

1922,  31,  36—37. 
Orthosilicic  acid  may  be  prepared  by  the  electro- 
lysis of  a  50%  solution  of  sodium  silicate  in  a 
divided  cell  using  a  heavy  anode  current  density. 
The  cathode  employed  was  a  platinum  dish  of  7'5 
cm.  diam.  and  this  contained  a  small  porous  pot 
which  held  the  anode,  a  coil  of  platinum  wire  of 
180  sq.  cm.  surface.  A  current  of  9  amps,  was  used 
and  this  fell  rapidly  until  no  current  passed,  due 
to  the  formation  of  an  insulating  layer  of  ortho- 
silicic  acid  on  the  anode.  On  bending  the  wire 
the  deposit  fell  away  and  the  current  again  passed. 
The  product  is  glass-like  in  appearance,  entirely- 
insoluble  in  water,  and  stable  in  the  air.— J.  F.  S. 

Beactions  in  fused  salt  media.    Solvolysis.    J.  F.  G. 

Hicks  and  W.  A.  Craig.     J.  Phys.  Chem.,  1922, 

26,  563—576. 
Lead,  silver,  and  barium  chromates  and  lead  oxide 
when  dissolved  in  molten  sodium  chloride  or  an 
equimolecular  mixture  of  sodium  and  potassium 
nitrates,  undergo  solvolysis  in  the  same  way  that 
lead  chromate  undergoes  hydrolysis  in  water.  In 
the  nitrate  fusion  the  solvolysis  of  lead  chromate 
occurs  to  the  greatest  extent  and  that  of  silver 
chromate  to  the  least.  The  6olvolysis  of  lead  oxide 
in  fused  sodium  chloride  is  practically  complete  at 
850° — 870°  C. ;  that  of  silver  chromate  is  complete 
at  this  temperature  and  proceeds  more  rapidly. 
(Cf.  J.C.S.  Sept.)— J.  F.  S. 

Selenium  dioxide;  Preparation  of .     J.  Meyer. 

Ber.,  1922,  55,  2082—2084. 
Selenium  in  quantities  of  60 — 75  g.  is  heated  to 
its  melting  point  in  a  porcelain  boat  placed  in  a 
wide  hard  glass  tube ;  a  very  rapid  current  of 
oxygen  which  has  been  passed  through  fuming 
nitric  acid  is  led  over  it,  causing  tbe  molten 
selenium  to  burn  with  a  brilliant  blue  flame  and 
to  give  a  sublimate  of  selenium  dioxide,  the  purity 
of  which  increases  with  increasing  rate  of  flow  of 
oxygen.  The  product,  which  contains  small  quan- 
tities of  oxides  of  nitrogen,  is  purified  by  being  sub- 
limed in  the  same  tube  in  a  current  of  pure 
oxygen.  To  avoid  loss  of  material,  the  tube  is 
connected  with  a  doubly  tubulated  vessel  of  two 
litres  capacity  in  which  the  final  traces  of  the 
dioxide  are  deposited.  The  combustion  of  60 — 70  g. 
of  selenium  can  be  effected  in  about  1J  hours. 
(Cf.  J.C.S. ,  Sept.)— H.  W. 

Carbon  suboxide;  Preparation  of  on  a  larger 

scale  and  the  properties  of  pure  carbon  suboxide. 
E.  Ott  and  K.  Schmidt.  Ber.,  1922,  55,  2126 
—2130. 

Carbon  suboxide  is  prepared  in  41%  yield  by  lead- 


ing the  vapours  of  diacetyltartaric  anhydride,  boil- 
ing under  diminished  pressure,  over  a  platinum 
wire  heated  to  bright  redness.  Thb  apparatus, 
which  permits  the  manipulation  of  a  charge  of 
250  g.  of  the  anhydride  in  6 — 8  hrs.,  is  fully 
figured  and  described.  As  regards  yield  and 
cost  of  material  the  process  is  superior  to  that 
of  Stock  and  Stoltzenberg  (J.,  1917,  645)  and  has 
the  further  advantage  that  the  carbon  suboxide 
so  prepared  can  be  preserved  for  long  periods 
without  change  in  sealed  tubes,  whereas  the  pro- 
duct obtained  with  the  help  of  phosphorus  pentoxide 
rapidly  polymerises,  probably  owing  to  the  presi  Q< 
of  traces  of  phosphorus  oxide.     (Cf.  J.C.S.,  Sept.) 

— H.  \\  . 

Ozone.      E.    H.    Riesenfeld    and    G.    M.    Schwab. 
Ber.,  1922,  55,  2088—2099. 

By  the  use  of  micro-methods  the  isolation  of  pure 
ozone  has  been  effected  by  condensing  ozonised 
oxygen  in  small  glass  bulbs  surrounded  by  liquid 
air  and  subsequent  fractionation  of  the  dark  blue 
condensed  liquid  (which  contains  initially  about 
30%of  oxygen).  It  has  m.p.  -250°  C,  b.p.  -112-3° 
C,  critical  temperature  -5°  C,  density  T784  at 
-182°  C.  Liquid  ozone  is  not  completely  miscible 
with  liquid  oxygen  at  all  temperatures,  the  critical 
temperature  of  solubility  being  -158°  C.  The  ex- 
plosive decomposition  of  ozone  is  extremely  sensi- 
tive to  catalytic  influences,  but  if  these  are  excluded 
it  is  unexpectedly  stable.  According  to  War- 
burg's calculation,  the  half-life  period  of  pure  ozone 
at  16°  C.  is  167  hrs.,  whereas  it  is  found  that  under 
certain  conditions  a  period  of  several  weeks  elapsed 
before  decomposition  has  proceeded  to  this  extent. 
No  evidence  of  the  existence  of  Harries'  oxozone 
has  been  obtained.    (Cf.  J.C.S.,  Sept.)— H.  W. 

Patents. 

Sulphuric  acid;  Method  of  and  apparatus  for  the 

manufacture    of  .      A.    Helbronner    and  P. 

Pipereaut.    E. P.  157,281,  10.1.21.    Conv.,  29.4.18. 

The  cooling  action  of  the  chamber  walls  in  the  usual 
lead  chamber  process  is  essential  for  the  normal 
reaction  in  this  process,  which  consists  of  the  forma- 
tion and  decomposition  of  nitrosylsulphuric  acid. 
Intensive  working,  however,  involves  the  formation 
of  nitrogen  peroxide  and  nitric  acid  and  for  the 
reaction  with  these  compounds  as  oxygen-carriers 
cooling  is  not  required.  An  apparatus  designed 
for  intensive  working  consists  of  a  series  of  cells 
of  volvic  lava  arranged  in  an  ascending  cascade, 
with  the  hot  burner  gases  entering  at  the  bottom. 
The  lower  ones  serve  simply  as  a  concentrator. 
Nitric  acid  is  introduced  into  the  sixth,  and  nitrous 
vitriol,  dilute  acid  and  water  into  the  eighth  cell. 
After  passing  through  22  cells  the  gases  pass  up 
water-cooled  vertical  lead  pipes  to  a  series  of  6 
towers  of  small  diameter  in  which  condensation  is 
completed  and  thence  to  a  Gay  Lussac  tower. — C.  I. 

Chlorosulphonic    acid;    Method    of    making    . 

T.   L.    Briggs   (I.    M.   Briggs,  extrix.),   Assr.   to 

General  Chemical  Co.     U.S.P.  1,422,335,  11.7.22. 
Appl.,  4.10.21. 

Controlled  volumes  of  hydrochloric  acid  and  "  con- 
tact gas  "  (gas  from  the  contact  process  of  making 
sulphuric  acid)  are  passed  through  a  mixing 
chamber  and  thence  through  a  long  passage  of 
restricted  diameter.  The  liquid  chlorosulphonic 
acid  is  withdrawn. — A.  G.  P. 

Phosphoric  acid;  Process  of  producing .    E.  W  . 

Guernsey  and  J.  Y.  Yee.  U.S.P.  1,422,699,  U.7.88. 

Appl.,   28.6.21. 
Phosphate    rock,    silicious    material,    and   carbon- 
aceous material  are  intimately  mixed  in  such  pro- 
portions that  the  molecular  ratio  of  the  combined 


Vol.  xli.,  No.  17]     Cl.  VH.— ACIDS  ;  ALKALIS  ;  SALTS  ;   NON-METALLIC  ELEMENTS. 


G69a 


calcium  oxide  to  the  silica  will  be  1:1.  The  mixture 
is  made  into  briquettes  and  heated  at  a  tempera- 
ture not  exceeding  that  of  incipient  clinkering 
until  all  the  phosphorus  has  been  expelled.  The 
phosphorus  is  recovered  in  the  form  of  oxides 

— H.  R.'  D. 

[Hydrochloric  acid ;  Manufacture  of in  process 

for  the]  extraction  of  potassium  compounds.  W. 
Glaeser,  Assr.  to  Potash  Extraction  Corp.  U  S  P 
1,422,848,  18.7.22.    Appl.,  7.6.18. 

Calcium    chloride   is   heated    with    alunite    in   the 

presence  of  steam,  and  the  hydrochloric  acid  evolved 

is  collected. — L.  A.  C. 

Nitrogen  oxides;  Recovery  of .     Farbw.  vorm. 

Meister,    Lucius,    und    Briining.      G.P.    298  845 

22.9.15. 
Nitrogen  oxides  are  recovered  from  the  gases  pro- 
duced  by  the   catalytic  oxidation  of   ammonia  by 
passing  the  gases  through  coolers;  the  gases  pass 
through  the  coolers  in  less  than  1  second. — A.  B.  S. 

Ammonia;  Process  for  manufacture  of .   Norsk. 

Hydro-Elektrisk      Kvaelstofaktieselskab.        E  P 
159,878,  1.3.21.     Conv.,  9.3.20. 

In  the  synthesis  of  ammonia,  using  iron,  nickel, 
•|  cobalt,  chromium,  or  manganese,  as  contact  sub- 
l|  stances,  alkali  cyanides  are  employed  as  activators. 

— H.  R.  D. 

il  Ammonia;  Synthesis  of  .     L'Air  Liquide,  Soc. 

Anon,  pour  l'Etude  et  l'Exploit.  des  Proc.     G. 

Claude.  E.P.  160,811,  29.3.21.  Conv.,  30.3.20. 
The  reacting  gases  are  preheated  by  contact  with 
the  wall  of  the  chamber  containing  the  catalyst,  the 
thermal  conductivity  of  the  wall  being  of  'such 
value  that  under  normal  working  conditions  the 
gases  reach  the  catalyst  at  the  lowest  temperature 
J  permitting  of  the  normal  maintenance  of  the 
reaction.  To  attain  the  desired  object  the  tube 
containing  the  catalyst  is  made  of  material  of  low 
thermal  conductivity  or  of  steel  covered  with  heat- 
insulating  material.  The  process  is  especially 
applicable  when  very  high  pressures  are  used. 

— H.  R.  D. 

Magnesium  chloride ;  Manufacture  of .    V    M 

Goldschmidt.       E.P.     161,165,     9.3.21.       'Conv., 

29.3.20. 

Magnesium  oxide  is  chlorinated  in  the  presence  of 

sulphur  or  sulphur  chlorides  free   from  oxygen  at 

200° — 500°  C,  according  to  the  following  equation : 

2MgO+2CL+S  =  2MgCl2+S02. 

— "H.  R.  D. 

Aluminium  oxide;  Process  of  reducing [to  form 

I    carbide  or  aluminium  alloys].    L.  Burgess.    E.P. 
,    182,609,  27.4.21. 

Aluminium  oxide  or  material  containing  it,  e.g., 
bauxite,  is  intimately  mixed  with  a  pasty  carbon- 
aceous material,  such  as  pitch  or  tar,  with  or  with- 
out the  addition  of  further  solid  carbonaceous 
iiatter,  and  the  mixture  is  coked,  whereby  finely 
iiyided  aluminium  oxide  is  obtained  intimately 
nixed  with  carbon.  This  matrix  is  broken  up  and 
Jacked  around  carbon  electrodes  between  which  an 
ire  is  produced,  whereby  aluminium  carbide  is 
ormed.  Products  containing  varying  percentages 
>i  metallic  aluminium  or  aluminium  alloys  or  car- 
bides of  other  metals  may  be  obtained  by  varying 
he  quantity  of  carbon  and  adding  other  oxides  to 
he  original   mixture. — A.   R.    P. 

'austic  soda;    Manufacture  of  .     Courtaulds, 

Ltd.,  and  R.  O.  Jones.     E.P.  182,661,  11.6.21. 
Jausticising  is  effected  in  two  stages  according  to 
jhe  equations, 

Ca(OH)2+Na2CO,Zl2NaOH  +  CaC03,    and 
Ca(OH)2+2NasCO,+xHaO±? 

2NaOH+Na,C02,CaC03,xH20 


In  the  first  stage  the  concentrations  are  so  chosen 
that  little  or  no  double  carbonate  is  formed,  and 
alter  completion  of  this  stage  the  liquor  is 
separated,  preparatory  to  the  second  stage,  when 
more  sodium  carbonate  and  lime  are  added  to  the 
liquor  and  a  further  conversion  to  caustic  soda 
takes  place.  In  this  manner  a  liquor  is  readily 
obtained  containing  about  20%  of  caustic  soda 
and  6%  of  sodium  carbonate. — H.  R.  D. 

Alkali  hydroxides-  Production  of  from  alkali 

sulphates.  K.  Kaiser.  G.P.  352,714,  20.4.20. 
Alkali  hydroxides  are  produced  by  passing  a 
mixture  of  hydrogen  and  steam  over  heated  alkali 
sulphate.  A  substance,  such  as  calcium  hydroxide, 
which  evolves  water  on  heating,  or  a  metallic  oxide, 
such  as  ferric  oxide,  which  is  reduced  by  hydrogen 
may  be  added  to  the  sulphate.  Alkali  carbonate 
may  be  produced  in  a  similar  manner  by  adding 
carbon  monoxide  to  the  mixture  of  hydrogen  and 
steam. — A.  B.  S. 

Ammonia-soda  process;  Method  of  conducting  the 
— -•  E  E.  Arnold,  and  P.  St.  Clair,  jun.,  Assrs. 
to  The  Nitrogen  Corp.  U.S. P.  1,423,510,  25.7.22 
Appl.,  11.3.20. 

A  compressed  gas  is  expanded  in  proximity  to,  but 
separated  from,  a  body  of  ammoniated  brine,  to 
absorb  the  heat  generated  by  the  reactions  in  the 
ammonia-soda  process. — H.   R.   D. 

Caliche;    Treatment    of    [for    extraction    of 

sodium   nitrate'].       \V.    Broadbridge,    E.    Edser 
and  W.  G.  Sellers.    E.P.  182,859,  9.3.  and  6.9.21. 
In   existing   methods   of  extraction   of   caliche    an 
incomplete    yield    is    obtained    because   it   is    only 
possible    to     crush    the    crude    material    coarsely, 
otherwise   slimes   are   produced   which   can   neither 
be  settled   nor   filtered.      If,   however,   such   slimes 
are  agitated  with  aeration,  especially  with  addition 
of  a  flocculating  agent,  they  are  capable  of  filtra- 
tion.    Suitable  flocculating  agents  are  fatty  acids, 
soap,  wood  tar,  glue,  and  sodium  silicate  or  alumi- 
nate,  and  the  quantity  required  may  be  no  more 
than  1£  lb.  per  ton   of  finished  nitrate.     The  hot 
liquor    passes    down    through    a    mass    of    caliche, 
crushed  as  finely   as  desired,   resting  on  the  false 
bottom     of    the   extraction    vessel,    then    upwards 
through  the  adjacent  stirring  vessel,  to  which  the 
flocculating  agent  is  added,  and  then  back  to  the 
extractor.     The  circulation  is  continued  until  the 
bottom  liquor  is  clear,  the  caliche  itself  acting  as 
filter.     A  number  of  such  pairs  of  apparatus   are 
combined  in  a  set  in  the  usual  way.     The  residues 
may  be  washed  as  desired  if  the  surplus  water  in- 
troduced  is   afterwards   evaporated. — C.    I. 

Sulphate  of  ammonia;  Neutralisation  and  drying 

of  .     G.  Weyman.     E.P.  183,089,  1.12.21. 

Powdered  dry  ammonium  carbonate  is  fed  mechani- 
cally into  the  centrifuge  during  the  drying  of  the 
acid  salt,  after  the  bulk  of  the  mother  liquor  is 
removed.  The  greater  part  of  the  free  acid  is  to 
be  found  on  the  inner  surface  of  the  mass  of 
crystals  and  distribution  of  the  neutralising  agent 
is  assisted  by  the  carbon  dioxide  evolved,  which 
also  dries  the  hot  crystals.  To  avoid  corrosion  of 
the  basket  the  salt  should  be  discharged  before 
neutralisation  is  complete,  and  neutralisation  com- 
pleted during  discharge.  By  this  process  a  neutral 
salt  containing  over  25'50%  NH,  can  be  made 
without  special  drying. — C.  I. 

Calcium  hypochlorite;  Process  for  production  of 
stable  compounds  of  — — •.  Chem.  Fabr. 
Greisheim-Elektron,  H.  S.  Schultze,  G.  Pistor, 
and  H.  Reitz.     E.P.  182,927,  13.4.21. 

Calcium  hypochlorite  compounds  produced  by 
chlorinating     calcium     hydroxide     in     water     are 


670  a 


Cl.  VIII.— GLASS  ;    CERAMICS.     Cl.  IX.— BUILDING  MATERIALS.        [Sept.  15, 1922. 


stabilised  by  removing  the  calcium  chloride  from 
the  crystals  of  basic  calcium  hypochlorites  or  mixed 
basic  and  neutral  calcium  hypochlorites,  and  dry- 
ing the  crystals  at  a  temperature  up  to  110°  C. 
either  in  vacuo  or  at  ordinary  pressure.  The  crys- 
talline products  thus  formed  contain  over  40%  of 
available  chlorine. — H.  R.  D. 

Calcium  carbide;  Method  of  manufacturing  . 

W.  B.  Rogatz,  Assr.  to  Farmers  Standard  Car- 
bide Co.    U.S. P.  1,422,135,  11.7.22.   Appl.,  5.5.21. 

The  material  is  fed  through  the  wall  of  the  fur- 
nace and  the  side  crust,  above  the  already  molten 
material,  but  below  the  top  crust.- — H.  R.  D. 

Sulphur  dioxide;  Process   of  gassing   liquors  with 

.     F.   M.   Allen,  Assr.   to  General   Chemical 

Co.     U.S. P.   1,422,327,   11.7.22.     Appl.,   29.4.20. 

Am  is  introduced  under  a  pressure  not  much 
greater  than  that  of  the  atmosphere  into  a  relatively 
small  chamber  containing  molten  sulphur.  By 
controlling  the  velocity  of  the  inflowing  air  the 
temperature  of  the  mixed  gases  leaving  the 
chamber  is  maintained  at  about  550°  F.  (287°  C), 
and  these  gases  are  led  into  a  body  of  liquid,  the 
dimensions  of  the  chamber,  plus  all  the  air  and 
gas  conduits,  being  such  that  the  gases  from  the 
chamber  are  propelled  with  sufficient  force  to  enable 
them  to  overcome  the  resistance  of  the  liquid  into 
which  they  are  introduced. — H.  R.  D. 

Oxysali  composition.  C.  Catlett.  U.S. P.  1,422,337, 
11.7.22.     Appl.,  3.8.21. 

Solid  lime  and  solid  calcium  chloride,  both  in  a 
finely  divided  condition,  are  mixed  together  "  under 
reacting  conditions." 

Aluminium  chloride;  Process  of  making .   H.  D. 

Gibbs,  Assr.  to  E.  I.  du  Pont  de  Nemours  and 
Co.     U.S.P.   1,422,560,   11.7.22.     Appl.,    19.5.21. 
Aluminium  chloride  is  prepared  by  treating  alumi- 
nium with  chlorine  below  0°  C. — L.  A.  C. 

Aluminium  chloride;  Manufacture  of .    F.  W. 

Hall,  Assr.  to  The  Texas  Co.  U.S.P.  1,422,568, 
11.7.22.    Appl.,  20.9.21. 

Chlorine,  sulphur,  and  powdered  alumina  are 
caused  to  react  under  conditions  suitable  for  the 
production  of  aluminium  chloride. — L.  A.  C. 

Potassium  salts;    Method  of  extracting  from 

bitterns.  I.  F.  Harlow,  Assr.  to  The  Dow 
Chemical  Co.  U.S.P.  1,422,571,  11.7.22.  Appl., 
27.11.16. 

A  bittern,  containing  potassium  carbonate,  other 
potassium  salts,  and  sodium  salts,  is  concentrated 
approximately  to  saturation  point,  and  a  quantity 
of  calcium  chloride  chemically  equivalent  to  the 
potassium  present  is  added.  The  solution  is  heated 
to  about  95°  C,  whereby  calcium  carbonate  is 
precipitated  and  the  potassium  salts  are  converted 
into  chloride.  The  residual  solution  is  concentrated 
to  about  i  of  its  former  volume,  whereupon  the 
sodium  salts  crystallise  out  while  the  solution  is 
still  hot,  and  are  separated  from  the  mother  liquor. 
The  liquor  is  then  cooled  to  about  20°  C,  and  prac- 
tically pure  potassium  chloride  crystallises  out  from 
the  solution. — L.  A.  C. 

Hetori  [for  production  of  alkali  cyanide].  F.  G. 
Metzger,  Assr.  to  Air  Reduction  Co.  U.S.P. 
1,422,878,  18.7.22.     Appl.,  11.10.17. 

An  iron  retort  suitable  for  the  manufacture  of 
alkali  cyanides  is  protected  from  the  effect  of 
oxidising  gases  at  high  temperature  by  an  external 
skin  coating  of  a  "  base  metal  alloy."- — C.  I. 


H.  Koppers. 


Alkali  cyanides;  Production  of  — 

G.P.  350,628,  3.1.18. 
In  the  production  of  alkali  cyanides  by  heating  a 
mixture  of  carbon,  alkali  salts  (chlorides),  slag- 
forming  material,  and  iron  or  manganese  com- 
pounds, by  means  of  hot  air  in  a  gas  producer,  the 
decomposition  zone  is  heated  above  the  b.p.  of  the 
alkali  cyanide.  A  portion  of  the  gases  is  drawn 
off  from  this  zone,  and  treated  for  the  recovery  of 
alkali  cyanide,  while  the  remainder  of  the  gas, 
which  contains  hydrogen  chloride,  is  drawn  off  from 
the  top  of  the  producer. — L.  A.  C. 

Hydrogen;  Manufacture  of  by  partial  lique- 
faction of  mixtures  of  gases  containing  the  same. 
L'Air  Liquide,  Soc.  Anon,  pour  1' Etude  et 
l'Exploit.  des  Proc.  G.  Claude.  E.P.  175,605, 
23.12.21.     Conv.,  17.2.21. 

Water-gas  illuminating  gas,  coke-oven  gas,  or  like 
gases  may  be  treated  by  the  process.  The  fraction 
of  the  compressed  gas  utilised  for  feeding  the 
liquefier  is  withdrawn  from  the  heat  interchanger 
at  a  point  situated  at  a  distance  from  the  cold  end 
of  the  interchanger,  so  that  the  temperature 
attained  by  the  hydrogen  immediately  before  sub- 
jecting it  to  expansion  is  raised  to  the  maximum 
degree  compatible  with  the  attainment  of  the  low 
temperature,  after  expansion,  necessary  to  ensure 
purity  of  the  hydrogen,  and  at  the  same  time  the 
temperature  of  the  main  portion  of  the  gases  to 
be  treated,  admitted  to  the  separating  column,  is 
considerably  lowered.  If  the  presence  of  nitrogen 
is  not  undesirable,  a  certain  proportion  of  cold 
compressed  nitrogen  may  be  added  to  the  com- 
pressed hydrogen  in  the  expansion  chamber. 
Hydrocarbon  gases  may  alse  be  added,  provided 
they  do  not  solidify  at  the  temperature  obtaining  in 
the  expander. — A.  G. 

Carbon;  Method  of  purifying .    V.  Leuher  and 

F.    M.    Dorsey,   Assrs.    to   General    Electric   Co. 
U.S.P.  1,423,231,  18.7.22.    Appl.,  18.9.20. 

Carbonised  material  is  subjected  to  the  action  of 
selenium  oxychloride,  then  washed  with  carbon 
tetrachloride,  and  the  remaining  carbon  tetra- 
chloride evaporated. — H.  C.  R. 

Arsenical  compounds ;  Manufacture  of .  K.  B. 

Edwards.        U.S.P.      1,422,945,      18.7.22,      and 
1,424,006,  25.7.22.     Appl.,  22.10.21. 

See  E.P.  162,747  of  1920;  J.,  1921,  470  a. 


VIII.— GLASS;  CERAMICS. 

Patent. 

Kiln;  (las-fired  pottery .     A.  McD.  Duckham. 

U.S.F.  1,423,408,  18.7.22.    Appl.,  29.12.21. 

See  E.P.  176,419  of  1920;   J.,  1922,  328  a. 


IX.— BUILDING  MATERIALS. 

Cement    mortars;    Relations    between    voids    and 

plasticity    of    at    different    relative    watt! 

contents.    F.  E.  Richart  and  E.  E.  Bauer.  Amer. 

Soc.  Testing  Materials,  June,  1922.     [Preprint.] 

20  pp. 
Minimum  voids  in  a  mortar  are  determined  by 
taking  known  volumes  of  sand  and  cement  (tin' 
sp.  gr.  of  both  being  known),  mixing  with  varying 
increments  of  water,  and  tamping  into  a  counter- 
poised mould  of  known  volume.  The  weight  of  the 
same  volume  of  mortar  for  varying  amounts  or 
Hater  is  thus  found,  and  from  the  greatest  weight 


Vol.  XLI.,  No.  17.]  Cl.   X.— METALS;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.    671a 


the  minimum  voids  can  be  calculated  by  a  formula 
((■/.  Talbot,  Proc.  Amer.  Soc.  Testing  Materials, 
1921,  21,  944).  About  the  same  number  of  deter- 
minations are  required  as  for  the  Vicat  test.  Tables 
and  curves  of  Vicat  and  mortar-void  tests  on  neat 
cement  show  an  approximation  of  basic  water  con- 
tent (amount  of  water  producing  minimum  voids) 
and  water  of  normal  consistency.     From  results  of 

!  a  number  of  tests  on  sand  mortars  and  neat 
cements,  basic  water  content  appears  to  coincide 
in  general  with  water  content  giving  maximum 
strength  (compression  and  tensile).  Basic  water 
content  is  suggested  as  a  standard  for  comparative 
strength  tests  on  mortars.  Curves  are  plotted 
showing  the  close  relation  between  water  values 
obtained  from  a  basic  water-content  curve  and  from 
Feret's  and  Taylor's  formula?  for  normal  consist- 
encies. Under  certain  conditions  the  values  from 
the  first  appear  to  be  more  applicable  than  those 
from  the  older  formulae.     The  results  of  "  slump  " 

land  "flow  "  tests  (i.e.,  workability)  in  relation  to 
minimum  void  are  also  shown  graphically. — J.  B.  P. 

Plaster;  Dispersoid  chemistry  of  .  Investiga- 
tion on  anhydrite.  H.  Neugebauer.  Kolloid- 
Zeits.,  1922,  31,  40—15. 

The  dehydration  of  the  various  hydrates  of  calcium 
sulphate  was  never  complete  at  115°  C.  or  slightly 
above,  and  in  no  case  could  the  water  of  crystal- 
lisation be  reduced  below  4%.  The  common  di- 
hydrate  loses  its  water  of  crystallisation  at  102°  C. 
considerably  more  slowly  and  less  completely  than 
tthe  other  forms,  probably  because  of  the  size  of 
the  crystals.  The  commercial  product,  anhydrasite, 
prepared  by  the  hydration  of  natural  anhydrite 
exhibits  on  dehydration,  a  behaviour  analogous  to 
that  shown  by  van't  Hoff's  plaster  (Z.  physik. 
iChem.,  1903,  45,  3),  prepared  in  the  form  of  fine 
needles,  by  hydration  of  plaster  of  Paris  with  about 
■20  times  its  weight  of  water,  with  occasional  agita- 
tion, and  it  is  affected  in  the  same  way  as  plaster 
■>i  Paris  by  the  addition  of  alum.  A  further 
technical  product,  leucolith,  from  its  viscosity 
measurements  shows  no  combination  with  water. 
The  behaviour  in  this  case  is  analogous  to  that  of 
Scoring  plaster,  the  setting  of  which  is  due  to  the 
presence  of  free  lime.    (Cf.  J.C.S.,  Sept.) — J.  F.  S. 

Phenols  from  low-temperature   tar;  Utilisation  of 

for  wood  preservation.    F.  Peters.     Brenn- 

stoff-Chem.,  1922,  3,  198. 

["he  phenols  from  low-temperature  tar  consist  for 
he  most  part  of  xylenols  and  higher  homologues. 
V  low-temperature  tar  was  freed  from  constituents 
loiling  below  210°  C.  by  distillation,  and  the  residue 
fas  mixed  with  an  equal  quantity  of  neutral 
mpregnating  oil  prepared  from  ordinary  coal  tar. 
'ine  wood  chips  were  then  soaked  in  a  solution  of 
his  mixture  in  acetone.  Varying  concentrations 
■  ere  used  and  after  evaporation  of  the  acetone  the 
hips  were  exposed  to  the  action  of  Coniophora 
.erebella  in  suitable  glass  vessels  under  conditions 
avourable  to  putrefaction.  Similar  experiments 
ere  carried  out  with  the  impregnating  oil 
lone,  free  from  tar  acids.  After  several  months 
he  chips  were  removed  from  the  vessel  and 
xamined  for  decay.  A  mixture  of  1  pt.  of  low- 
pmperature  phenols  and  1  pt.  of  impregnating  oil 
ad  the  same  fungicidal  action  as  the  impregnating 
il  alone. — A.  G. 

Patent. 

ementing    and    protecting    composition.      L.    E. 
'.  Barringer,  Assr.  to  General  Electric  Co.     U.S. P. 
1,423,985,  25.7.22.     Appl.,  18.11.19. 

ee  E.P.  159,421  of  1920;  J.,  1921,  266  a. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Chromium.;   Rapid  method  for   the   determination 

°f  in   nickel-chromium   steels.      W.    Hild 

Chem.-Zeit.,   1922,  46,  702—703. 

The  steel  is  dissolved  in  nitric  acid  and  the  solution 
evaporated  with  sulphuric  acid.  The  chromic 
sulphate  is  oxidised  to  chromic  acid  with  an  excess 
of  potassium  permanganate,  and  the  excess  is 
destroyed  by  heating  with  manganese  sulphate. 
The  filtered  solution  is  treated  with  an  excess  of 
standard  ferrous  sulphate  and  eventually  titrated 
with  permanganate.  As  a  control  the  iron  may  be 
removed  from  a-  chloride  solution  by  means  of  ether, 
the  chromium  precipitated  with  ammonia,  the 
precipitate  dissolved  in  sulphuric  acid,  and  the 
assay  finished  as  above. — A.  R.  P. 

Ferrotungsten;  Rapid  analysis  of .     L.  Losana 

and  E.  Carozzi.     Giorn.  Cbim.  Ind.  Appl.,  1922, 
4,  299—301.  v*  ' 

The  following  method,  occupying  less  than  two 
hours,  gives  accurate  results,  and  is  especially  suit- 
able for  the  rapid  industrial  control  of  the  propor- 
tion of  tungsten  in  iron  alloys  and  tool  steels.  The 
alloy  is  powdered  and  05  g.  heated  carefully  in  a 
platinum  dish  with  10  c.c.  of  nitric  acid  (sp.  gr.  12) 
and  about  2  c.c.  of  hydrofluoric  acid  until  solution 
is  complete,  5  c.c.  of  concentrated  sulphuric  acid 
being  then  cautiously  added  and  the  dish  heated  on 
asbestos  card  until  dense  white  fumes  have  been 
evolved  for  some  minutes.  The  hydrofluoric  acid 
having  been  removed  in  this  way,  the  liquid  and 
the  adherent  precipitate  are  transferred  to  a  porce- 
lain basin  and  there  boiled  briskly  for  10  mins.  with 
15  c.c.  of  concentrated  hydrochloric  acid.  After 
filtration,  the  precipitate  is  washed  with  hot  5% 
hydrochloric  acid  solution  until  the  filtrate  ceases 
to  contain  iron,  the  wet  filter  paper  and  precipitate 
being  then  calcined  in  a  platinum  crucible  and  the 
residual  WO,  weighed.  Alternatively  the  latter 
may  be  washed  with  potassium  chloride  solution 
until  neutral  and  then  titrated  with  alkali  solution. 
The  filtrate  may  be  used  for  the  estimation  of  the 
iron,  manganese,  phosphorus,  calcium,  aluminium, 
etc.,  in  the  usual  way. — T.  H.  P. 

Molybdenum    in    tungsten;    Estimation    of    small 

amounts   of  - .      D.    Hall.      J.    Amer.    Chem. 

Soc,  1922,  44,  1462—1465. 

Shall  amounts  of  molybdenum  in  tungsten  may 
be  determined  as  follows :  One  gram  of  the  alloy 
is  dissolved  in  a  mixture  of  nitric  acid  and  hydro- 
fluoric acids  and  the  solution  evaporated  with 
sulphuric  acid.  The  yellow  oxides  are  dissolved  in 
sodium  hydroxide  and  the  solution  transferred  to 
a  200  c.c.  separating  funnel,  acidified  with  sul- 
phuric acid,  and  diluted  so  that  1  c.c.  contains 
about  0'1  mg.  of  molybdenum.  The  volume  is  made 
up  to  150  c.c,  0"5  g.  of  solid  potassium  xanthate 
and  a  few  drops  of  1:3  sulphuric  acid  added,  and 
the  mixture  shaken  thoroughly.  About  10  c.c.  of 
chloroform  is  added  and  the  whole  shaken  for 
several  minutes.  The  highly  coloured  chloroform 
layer  settles  at  the  bottom  and  is  run  into  a  second 
funnel  for  washing.  The  original  solution  is 
repeatedly  treated  with  potassium  xanthate,  acid, 
and  chloroform  until  the  chloroform  layer  is  colour- 
less, each  portion  of  the  chloroform  solution  being 
added  to  the  first.  The  chloroform  solution  of 
molybdenum  xanthate  is  washed  several  times  with 
water,  run  into  a  150  c.c.  beaker,  and  evaporated 
to  dryness.  The  residue  is  heated  and  converted 
into  a  mixture  of  oxide  and  sulphide.  This  is  dis- 
solved in  nitric  acid,  evaporated  with  sulphuric  acid 
and  molybdenum  sulphide  precipitated  by  passing 
hydrogen    sulphide    into    the    hot    solution,    made 


672  a 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Sept.  15, 1922. 


alkaline  with  sodium  hydroxide.  The  solution  is 
then  slowly  acidified  with  dilute  sulphuric  acid,  the 
precipitate  filtered  off,  washed  with  hot  water,  and 
ignited  to  trioxide.  The  method  is  extremely  good 
for  small  quantities  of  molybdenum. — J.  F.  S. 

Chromium;  Determination  0}  in  metals.     W. 

LSffelbein.     Chem.-Zeit.,  1922,  46,  679. 

Small  quantities  of  chromium,  such  as  remain  in 
the  alloy  after  deoxidising  nickel  bronzes,  may  be 
accurately  determined  as  follows :  —  3 — 5  g.  of  the 
turnings  is  dissolved  in  aqua  regia,  the  solution  is 
evaporated  to  dryness,  the  residue  treated  with 
dilute  hydrochloric  acid,  and  the  liquid  saturated 
with  hydrogen  sulphide  and  filtered.  The  filtrate 
is  boiled,  oxidised  with  bromine,  and  treated  with 
a  slight  excess  of  ammonia.  The  precipitate  is 
collected,  ignited,  and  fused  with  sodium  peroxide. 
The  melt  is  leached  with  water  and  the  chromium 
determined  iodometrically  in  the  solution  after 
filtration.— A.  R.  P. 

Osmiridium;  Notes  on  .     J.  R.   Thurlow.     J. 

Cheni.  Met.  Soc.  S.  Afr.,  1922,  22,  209—210. 

Osmieidium  occurs  in  the  gold  ores  of  the  Eastern 
Hand  (Transvaal)  to  the  extent  of  1  oz.  to  5000— 
15,000  tons,  and  during  treatment  of  the  ores  it 
accumulates  in  the  "  black  sands,"  which  consist 
chiefly  of  pyritic  minerals  with  some  ilmenite  and 
chromite.  These  concentrates  are  treated  on  a 
hatea  to  obtain  a  product  containing  about  40%  of 
osmiridium,  which  is  further  concentrated  to  90 — 
■95%  by  careful  hand-panning-  All  the  tailings  are 
further  treated  on  small  canvas  tables,  and  the 
concentrates  are  finally  cleaned  by  treatment 
with  acids.  Analyses  of  a  number  of  concentrates 
and  of  a  typical  "  black  sand  "  are  given. — A.  R.  P. 

Copper-zinc  alloys;  Electrolytic  separation  of . 

P.  Weise.  Z.  Elektrochem.,  1922,  28,  327—341. 
CorPER  may  be  prepared  from  bronze,  containing 
up  to  20%  of  tin,  by  electrolysing,  at  75°  C,  a 
solution  of  15%  of  copper  sulphate  in  5% 
sulphuric  acid,  using  a  copper  cathode,  34x34  cm., 
between  two  bronze  anodes,  36x36  cm.,  and 
a,  direct  current  of  150  amps,  per  sq.  m.  The 
copper  is  deposited  quite  pure  and  the  tin  falls 
as  a  powder  to  the  bottom  of  the  cell,  but  still 
contains  some  copper.  This  is  recovered  by  heating 
the  sludge  with  copper  oxide  and  some  of  the 
electrolyte  from  the  cell  and  eventually  concen- 
trating to  the  point  of  crystallisation.  After 
copper  sulphate  has  separated  the  mother  liquor  is 
poured  off  and  discarded,  the  copper  sulphate  is 
extracted  with  water  and  used  in  the  electrolysis. 

—J.  F.  S. 

[Tin-]    Primary    and    secondary    recrystallisation 

[of     ].        G.      Masing.        Wiss.     Verbffentl. 

Siemens-Konzern,  1922,  1,  [3],  31—34. 
In  the  case  of  tin,  the  author  shows  experimentally 
that  the  secondary  crystallisation  following  a 
secondary  deformation  is  characteristic  of  that 
deformation  and  does  not  take  place  if  the  metal, 
after  casting,  is  subjected  to  a  similar  deformation 
without  being  subjected  to  a  primary  deformation 
(c/.  J.,  1922,  256  a).  Thus,  a  sheet  of  tin  which 
after  being  cast,  was  pierced,  and  then  subjected 
to  recrystallisation  showed  a  ring  of  comparatively 
small  crystals  around  the  hole,  whereas  a  similar 
sheet  that  had  been  rolled  before  piercing,  showed, 
after  recrystallisation  at  the  same  temperature, 
extremely  large  secondary  crystals  spread  evenly 
around  the  hole  and  gradually  merging  into  the 
original  primary  crystals. — A.  R.  P. 

Calcium      amalgam;       Electrolytic       preparation 

of  .      B.    S.    Ncuhausen.      J.    Amer.    Chem. 

Soc,  1922,  44,  1445—1417. 

Calcium  amalgam  is  best  prepared  by  electrolysing 


a  1*75  N  solution  of  calcium  chloride  in  a  crystal- 
lising dish  (25  cm.  diam.)  between  a  thin  layer  oi 
mercury  which  just  covers  the  bottom  of  the  dish 
and  serves  as  cathode  and  a  platinum  plate 
(2x4  cm.)  placed  parallel  to  the  surface  of  the 
mercury  and  at  a  distance  of  4  cm.  A  current  of 
3'5  amps,  at  4 — 6  volts  is  passed  for  30  mins.  This 
arrangement  prevents  heating,  foaming,  and  the 
formation  of  a  black  deposit.  The  amalgam  is 
washed  by  pouring  into  2  litres  of  distilled  water 
in  a  fine  stream  and  stored  in  a  bottle  filled  with 
carbon  dioxide.     It  contains  0'069 — 0'075%  Ca. 

—J.  F.  S. 

Corrosion  of  metals   by  water  in  a  closed  system; 

Prevention   of   .      P.    West.      J.   Ind.    Eng. 

Chem.,  1922,  14,  601—607. 
Metals  rust  to  an  appreciable  degree  only  when  in 
contact  with  both  water  and  free  oxygen.  AVhere 
water  is  confined  in  a  closed  system  the  dissolved 
oxygen  in  it  is  the  principal  cause  of  corrosion. 
The  removal  of  this  will  practically  stop  corrosion  in 
most  cases  and  materially  reduce  it  in  others.  Free 
carbon  dioxide  promotes  corrosion  in  the  presence 
of  oxygen  but  is  practically  inactive  in  its  absence, 
except  at  extremely  high  temperatures.  Other  acids, 
such  as  nitric,  hydrochloric  or  sulphuric  acid,  also, 
when  present  in  a  highly  diluted  condition,  have 
little  corrosive  action  except  in  the  presence  of  dis- 
solved oxygen.  Calcium  and  magnesium  carbonates 
may  retard  corrosion  by  depositing  a  protective 
coating  on  the  metal.  At  very  high  temperatures 
these  carbonates  may  give  off  carbon  dioxide  or 
give  rise  to  alkaline  solutions,  thereby  promoting 
corrosion,  especially  in  the  presence  of  free  oxygen. 
Some  chlorides,  especially  magnesium  chloride,  are 
hydrolysed  with  formation  of  free  acids,  which  are 
highly  corrosive  in  the  presence  of  free  oxygen,  but 
not  otherwise  except  in  high  concentration.  Car- 
bonates and  chlorides  are  both  scale-forming  and 
therefore  provide  some  protection  against  their 
own  corrosive  action.  This,  however,  does  not 
prevent  pitting.  Sulphates  and  nitrates  are  rathe- 
scale-forming  than  corrosive.  Commercial  processes 
for  the  elimination  of  dissolved  oxygen  depend  on 
two  principles.  In  the  de-oxidising  method  the  hot 
water  is  brought  into  contact  with  thin  sheets  of 
specially  prepared  metal  in  a  de-activating  tank. 
The  water  exerts  its  corrosive  activity  on  the  cheap 
and  easily  replaced  metal  rather  than  on  the  piping 
system.  In  the  de-aerating  process  the  water  is 
sprayed  over  baffles  in  a  de-activator  and  the  free 
dissolved  gases  are  removed  by  heating,  by  vacuum, 
or  by  a  combination  of  the  two.  The  latter  process 
removes  nitrogen,  carbon  dioxide,  etc.,  as  well  as 
oxygen.  By  the  use  of  gas-free  water  the  scoring 
of  engines,  turbines,  etc.  is  prevented  as  a  result 
of  elimination  of  the  "dirt  "  due  to  corrosion.  It 
also  increases  condenser  efficiency  20 — 25%  by 
eliminating  the  air  blanket  round  the  tubes.  Thy 
prevention  of  corrosion  by  the  removal  of  dissolved 
oxygen  applies  to  brass  as  well  as  to  iron  and  steel. 
The  plant  used  for  these  processes  is  illustrated  by 
diagrams. — H.  C.  R. 

Tellurium-  poisoning.    Adolphi.    See  XIXb. 

Patents. 

Case-hardening  iron  and  steel;  Composition  for  — 
and  method  of  and  apparatus  for  manufam 
such  composition  or  the  like.    T.  A.  Goskar  and 
H.  B.  Hitch.     E.P.  182,527,  24.3.21. 
Pevt  in  a  moist  condition  is  reduced  to  a  homo- 
geneous mass  by  grinding  or  pugging  and  formed 
into    granules,    which    are    dried    and    carbonised. 
The   peat  may   be   pulped   in   a    pug-mill   or  in   a 
"  Werner-Pfleiderer  "  mixer,  and  powdered  leather 
wood,  or  barium  carbonate  may  be  incorporated  at 
this  stage.     A  convenient  method  of  granulating 


Vol.  XL  I 


.  No.  17.]     Cl.  X.— METALS  ;    METALLURGY,  INCLUDING   ELECTRO-METALLURGY.     673  a 


the  plastic  mass  is  to  force  it  through  a  die-plate 
and  cut  off  the  extruded  material  in  short  lengths. 

— C.  A.  K. 

Iran  and  steel;  Method  of  producing  .     \V.  E. 

F.   Bradlev.      U.S. P.   1,422,733,   11.7.22.     Appl., 
17.7.18. 

A  mixture  of  finely  powdered  ore  and  flux  is  passed 
through  a  rotary  drum  furnace  into  an  electric 
furnace  and  a  current  of  a  reducing  gas  is  passed 
through  the  two  furnaces  in  the  opposite  direction. 

— C.  A.  K. 

Carbonising  method  [for  ferrous  metals'].  W. 
Bonsor,  Assr.  to  W.  C.  Steenburg.  U.S. P. 
1.422,530,  11.7.22.     Appl.,  6.3.22. 

"  Humus  soil  "  containing  less  than  15%  of  mois- 
ture, and  when  dried,  more  than  30%  of  carbon, 
more  than  3%  of  nitrogen,  and  not  less  than  4'4% 
of  lime,  is  used  as  a  carbonising  agent  for  ferrous 
metals.— C.  A.  K. 

Annealing    malleable    cast    iron;    Process    of   . 

C.     T.     Holcroft.       U.S. P.     1,422,710,     11.7.22. 
Appl.,  20.1.21. 

The  metal  is  heated  at  a  rate  proportional  to  its 
thermal  conductivity  to  a  predetermined  point  of 
reaction,  maintained  at  that  temperature  for  a 
predetermined  time,  and  then  cooled  to  a  point 
where  sudden  cooling  will  no  longer  injuriouslv 
affect  it.— B.  M.  V. 

[Metal]  tools  and  the  like;  Manufacture  of  very 
hard,  but  ductile  adapted  to  resist  mech- 
anical stresses.  H.  Lohmann.  E.P.  157,769, 
10.1.21.     Conv.,  7.12.18. 

Metal,  such  as  tungsten,  titanium,  molybdenum, 
chromium,  or  iron,  is  cast,  then,  in  order  to  break 
up  its  coarsely  crystalline  structure,  thoroughly 
worked  by  intensive  rolling,  hammering,  forging, 
or  pressing,  until  a  fibrous  structure  is  obtained;  it 
is  then  case-hardened  by  any  suitable  method. 

—A.  R.  P. 

Electric  induction  furnaces  [for  melting  and  refin- 
ing steel,  etc.].  O.  Frick.  E.P.  174.084,  14.1.22. 
Conv.,  15.1.21. 

The  effect  of  corrosion  of  the  walls  of  the  melting 
channel  in  electric  induction  furnaces  having  a 
ring-shaped  hearth  is  reduced  by  inclining  the  inner 
side  wall  of  the  channel  at  a  smaller  angle  to  the 
horizontal  than  the  angle  of  repose  of  magnesite, 
so  that  this  repairing  material  can  be  applied  to  and 
sintered  on  corroded  parts  of  the  wall  during  work- 
ing.—J.  S.  G.  T. 

Smelting     furnace;     Vertical    .       F.     Fiechtl. 

U.S.P.  1,422,684,  11.7.22.  Appl.,  28.1.21. 
Vertical  retorts  extend  through  a  furnace  chamber 
and  are  provided  at  both  ends  with  removable 
covers,  the  lower  covers  being  operated  mechanic- 
ally. Arrangements  are  made  to  introduce  air 
under  pressure  into  the  furnace  around  the  retorts. 

— C.    A.   K. 

Magnetic  separator.  S.  Percival.  From  L.  B. 
Woodworth,  S.  T.  Tregaskis,  The  Central  Mining 
and  Investment  Corp.  Ltd.,  and  The  Transvaal 
Consolidated  Land  and  Exploration  Co.,  Ltd. 
E.P.  182,539,  31.3.21. 

In  a  magnetic  separator  of  the  Wetherill  type, 
having  one  or  two  pairs  of  poles,  an  auxiliary  pole 
is  provided  attached  to  one  of  the  main  poles  but, 
preferably,  having  its  own  energising  coil  and 
means  for  independent  adjustment.  Tapping 
levices  are  located  between  the  sets  of  poles  to 
;ause  rearrangement  of  the  particlen  of  ore  before 
the  latter  passes  between  the  next  set  of  magnets. 

—A.  R.   P. 


Tungsten  alloys;  Methods  of  manufacturing  bodies 

°f [«-3-,  filaments  for  incandescence  electric 

lamps,  discharge  tubes,  etc.].  British  Thomson- 
Houston  Co.,  Ltd.  From  General  Electric  Co. 
E.P.  182,699,  19.7.21. 

A  tungsten-  body  of  desired  shape,  e.g.,  filament, 
wire,  sheet,  etc.,  is  heated  to  1000°— 1300°  C.  in  a 
protective  atmosphere  and  coated  with  the  alloying 
metal,  e.g.,  iron,  electrolytically  or  otherwise. 
Excess  of  electrolyte  is  removed  and  the  composite 
body  heated  to  at  least  1600°  C,  whereby  a  homo- 
geneous alloy  is  produced. — J.  S.  G.  T. 

Alloy  for  medical  and  dental  purposes.    Metallwerk 

M.  Brose  und  Co.    G.P.  352,028,  19.10.20. 
An  alloy  which  is  chemically  resistant  and  is  easilv 
worked  consists  of  75  pts.  of  copper,  9  pts.  of  nickel, 
10  pts.  of  silver,  and  6  pts.  of  aluminium. — A.  G. 

Gases;  Process  of  discharging   smelter  [into 

the  atmosphere].  W.  H.  Howard,  Assr.  to 
American  Smelting  and  Refining  Co.  U.S.P. 
1,422,575,  11.7.22.  Appl.,  8.3.21. 
Fvrnace  gases  which  are  obnoxious  or  harmful  to 
vegetation  or  animal  life  are  discharged  into  a 
high  chimney  simultaneously  with  an  unobjection- 
able gas  having  a  temperature  higher  than  that  of 
the  atmosphere.  The  second  gas  is  added  in  such  a 
manner  that  it  mixes  thoroughly  with  the 
obnoxious  gases,  and  in  such  volume  that  the  mix- 
ture formed  readily  diffuses  into  the  atmosphere, 
whereby  before  the  mixture  comes  in  contact  with 
the  vegetation  in  the  neighbourhood  the  objection- 
able properties  are  reduced  owing  to  the  extreme 
dilution  of  the  obnoxious  gases. — L.  A.  C. 

Metallurgical  process.  W.  E.  F.  Bradley.  U  S  P 
1,422,734,  11.7.22.  Appl.,  4.9.18.  Renewed  5.12.21. 
In  a  process  in  which  ores  are  reduced  by  means  of 
a  hydrocarbon  gas,  a  metallic  oxide  and  free  carbon 
are  added  to  the  molten  reduced  charge. — C.  A.  K. 

Electrotinning  [;  Electrolyte  for ].    L.  Schulte 

U.S.P.  1,423,686,  25.7.22.  Appl.,  12.7.20. 
Dilute  hydrofluoric  acid  is  added  to  an  aqueous 
solution  of  caustic  potash  until  an  acid  reaction  is 
obtained,  the  solution  is  further  diluted  and 
metallic  tin  dissolved  in  it  with  the  aid  of  an 
electric  current. — B.  M.  V. 

Electroplating    process.      N.    V.     Park.      U.S.P. 
1.123,815,  25.7.22.    Appl.,  6.7.21. 

Bt  means  of  a  nozzle  with  openings  of  various 
diameters  air  currents  of  different  pressures  are 
directed  downwards  into  an  electrolytic  cell  pro- 
vided with  anode  and  cathode  elements.  The  air 
currents  agitate  the  electrolyte  and  effect  a  con- 
tinuous washing  of  metal  from  the  anode  for 
transfer  to  the  cathode. — H.  H. 

Iron    and    manganese    oxides;    Treatment    of    ores 

containing ,  or  sludges  containing  such  ores. 

O.  Johl.    G.P.  349,067,  10.7.20. 

The  finely  divided  particles  of  iron  and  manganese 
oxides  in  sludges  containing  the  same  are  caused  to 
coagulate  into  large  particles,  capable  of  being 
easily  separated,  by  the  addition  of  salts  of 
aliphatic  or  aromatic  acid  esters,  such  as  salts  of 
amyl-  or  ethyl-sulphonic  acids,  or  of  benzene-, 
naphthalene-,  or  terpene-sulphonic  acids,  with  or 
without  the  addition  of  saturated  or  unsaturated 
fatty  acids,  fatty  sulphonic  acids,  picric  acid, 
sulphanilic  acid,  or  the  like,  or  salts  of  these  acids. 

— L.  A.  C. 

Metals;   Separation    of  from    their   solutions. 

H.  Bardt.     G.P.  352,783,  22.1.20. 

Solutions  of  metallic  salts  are  treated  with  sub- 


674  a 


Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS  ;  OILS  ;  WAXES.      [Sept.  is,  1922. 


stances  containing  polysaccharides,  especially  saw- 
dust, under  pressure  at  a  high  temperature. 

—A.  B.  8. 

Metals;  Process  for  precipitating  from  solu- 
tions. H.  Bardt,  Assr.  to  Soc.  Hidro-Metalurgica. 
U.S. P.  1,423,070,  18.7.22.     Appl.,  17.9.21. 

See  G.P.  352,783  of  1920 ;  preceding. 

Seducing  aluminium  oxide.  E.P.  182,609.  See  VII. 


XI— ELECTBO-CHEMISTBY. 

Electrochemistry  of  non-aqueous  solutions.  I. 
Measurement  of  current  density  and  potential 
difference  in  the  electrolysis  of  metallic  salts  in 
pyridine.  R.  Midler.  Monatsh.,  1922,  43, 
67—74. 

A  form  of  electrolytic  cell  suitable  for  the  measure- 
ments in  question  has  been  devised,  and  the 
preparation  of  an  appropriate  standard  electrode 
investigated.  The  element,  Ag/2V/10  AgNO,  in 
pyridine,  has  a  potential  (measured  with  reference 
to  the  calomel  electrode)  of  +0'28  volt  (hydrogen  = 
0),  and  the  element,  Ag/A7/10  AgNO,  in  pyridine 
/NH^NOj  saturated  solution  in  pyridine,  has 
+0-26  volt  (hydrogen  =  0).— C.  K.  I. 

Electrochemistry  of  non-aqueous  solutions.  II. 
Decomposition  potential  and  electrode  potentials 
of  silver  nitrate  in  pyridine  and  the  potential 
of  silver  in  these  solutions.  R.  Miiller  and  A. 
Duschek.  Monatsh.,  1922,  43,  75—80.  (Cf. 
supra.) 

The  decomposition  potentials  are:  N/10,  AgNO,, 
2-15  volts;  N/1  AgNO,,  2'05  volts;  saturated  AgNO, 
solution,  1'95  volts;  and  the  silver  potentials 
(invariant  with  current  density)  are:  Ag/iV/10 
AgNO,,  +0-24  volt;  Ag/JV/1  AgNO,,  +0'33  volt; 
Ag/saturated  AgNO,  solution,  +0'33  volt  (hydro- 
gen =0).  The  anodic  potential  differences  are 
functions  of  the  current  density. — C.  K.  I. 

Electrolytic,  dissociation;  Selation  between  adsorp- 
tion and  ■ .     M.  A.  Rakusin.     Biochem.  Zeits., 

1922,  130,  282—285. 

When  a  porous  pot  is  immersed  in  solutions  of 
sucrose  or  common  salt,  the  concentration  of  the 
solution  increases  owing  to  adsorption  of  water  (so- 
called  negative  adsorption).  The  author  ascribes 
this  to  the  adsorption  of  colloids  and  the  non- 
adsorption  of  electrolytes. — H.  K. 

Electrolysis  of  sodium  silicate  solutions.  Spencer 
and  Proud.     See  VII. 

Actinometer.    Athanasiu.    See  XXI. 


Patents. 


W. 


Storage  batteries;  [Electrolyte  for]  dry  — 
Gardiner.     E.P.  182,865,  15.3.21. 

A  mixture  of  powdered  glass  with  five  parts  of  an 
acid  solution,  e.g.,  sulphuric  acid,  and  one  part  of 
a.  soluble  silicate,  e.g.,  sodium  silicate,  is  poured 
into  the  battery  and  allowed  to  set.  Alternatively, 
the  mixture  may  be  allowed  to  set  prior  to  being 
introduced  into  the  battery,  and  is  then  added  in 
powdered  form,  and  liquid  electrolyte  added  to  fill 
lip  interstices.  A  layer  of  absorbent  paper,  e.g., 
Swedish  filter  paper,  is  placed  on  top  of  the  electro- 
lyte  and  is  covered  with  a  perforated  rubber  plate. 

—J.  S.  G.  T. 

Insulating    and    resistant    articles    and    products 

thereof;  Method  of  manufacturing  .    F.  T. 

Laliey.  U.S.P.  1,422,720,  11.7.22.  Appl.,  11.3.21. 
Vegetable  fibre  is  treated  with  a  dilute  alkali 
solution,   a  vulcanisable  oil,  and  rubber  at  a  tem- 


perature such  that  the  fibrous  structure  is  not 
destroyed.  A  vulcanising  agent  is  added,  and  the 
mixture  heated  so  that  oil  is  precipitated  within 
the  structure  of  the  fibre  and  the  material  is 
vulcanised.— J.  S.  G.  T. 

Solutions;  Electrolysis  of ■  and  apparatus  there- 
for.        Hooker    Electrochemical   Co.,    Assees     of 
A.  H.  Hooker.       E.P.  167,469,  22.7.21.      Conv 
5.8.20. 

Seh  U.S.P.  1,388,466  of  1921;  J.,  1921,  740  a. 

Electrodes;   Process   for   manufacturing   .     H. 

Bardt,  Assr.  to  Soc.  Hidro-Metalurgica.     U  S  P 
1,423,071,  18.7.22.     Appl.,  17.9.21. 

See  G.P.  325,154  of  1919;  J.,  1920,  824  a. 
Seducing  aluminium  oxide.   E.P.  182,609.  Sec  VII. 
Electric  furnace.     E.P.  174,084.     See  X. 
Saccharin.     E.P.  174,913.     See  XX. 
Betaine  etc.     G.P.  348,380—1.    See  XX. 


XII.-FATS;  OILS;  WAXES. 

Olive    oil;    Extraction    of    from    olives.    H. 

Mastbaum.     Chem.-Zeit.,  1922,  46,  669—672. 

Current  methods  of  oil-pressing  in  Spain  arc 
described.  They  are  for  the  most  part  very  crude 
and  the  oil  is  the  only  part  of  the  olives  which  is 
utilised.  As  a  result  of  considerable  experimental 
work,  J.  M.  Luque  (Primer  Congreso  Nacional  de 
Ingenieria  (Madrid),  1919,  Tomo  III.,  p.  21)  has 
suggested  the  following  improvements  in  the 
industry.  The  olive  pressing  should  be  concen- 
trated in  large  factories.  The  olives  should  be 
ground  when  fully  ripe,  but  as  fresh  as  possible. 
The  kernels  should  be  broken  but  not  pulverised. 
Rolls  would  be  more  suitable  for  this  purpose  than 
the  edge-runners  used  at  present.  The  mixing  of 
the  olease  of  the  seed  with  the  oil  would  thus  be 
reduced  and  the  shells  of  the  kernels  would  be  lift 
in  the  form  of  fragments  of  sufficient  size  to  permit 
of  easy  separation  from  the  pulp.  Only  one  1 
ing  is  advocated,  and  that  cold.  The  pulp  should 
be  dried  and  extracted  with  a  solvent  as  soon  as 
possible.  If  storage  of  the  pulp  is  necessary,  sul- 
phur dioxide  may  be  used  as  a  preservative.  The 
extracted  oil  will  then  be  low  in  free  fatty  acids 
and  easy  to  refine,  and  an  edible  oil  can  be 
obtained  from  it.  The  stearine  separated  from  it 
can  be  used  for  soap-making.  The  extracted  pulp 
should  be  dried  and  freed  from  the  shells  of  the 
kernels.  The  aqueous  fluid  is  concentrated,  and 
may  lie  mixed  with  the  dry  pulp  and  other  ground 
vegetable  matter  to  form  feeding  stuffs,  or  it  may 
be  treated  for  the  recovery  of  potash  by  calcination, 
or  used  as  a  binding  material  for  making  briquettes. 
The  shells  of  the  kernels  give  a  betteT  yield  of  tar, 
wood  spirit,  and  acetic  acid  than  the  best  hard 
woods.  The  high  potassium  content  of  all  parts  of 
the  olive  tree  points  to  the  need  for  a  large  appli- 
cation of  potash  fertilisers  in  its  cultivation. 

— H.  C.  R. 

Arachis   oil;    Chemical   constitution   of   .     A. 

Heiduschka    and    S.    Felser.      Z.    Unters.    Naln. 

Genussm.,  1922,  43,  381—382. 
The  differences  in  the  proportions  of  the  various 
fatty  acids  contained  in  two  samples  of  arachis  oil 
of  Spanish  and  Virginian  origin  respectively, 
examined  by  Jamieson  and  his  collaborators  (J.. 
1921.  740  a)  are  as  great  as  the  corresponding 
differences  between  either  of  them  and  the  com- 
mercial oil  examined  by  the  authors  (J.,  1920, 
272  a).     Considerable  differences  occur  in  the  per- 


Vo\.  XLI.,  No.  IV.] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


675  a 


centages  of  saturated  and  unsaturated  acids  and 
also  in  the  percentage  of  linolic  acid  in  the  latter 
fraction.  The  constitution  of  the  saturated  acids 
seems,  however,   to  be  fairly  constant. 

— H.  C.  R. 

Fats  (glycerides) ;  Synthesis  of .     C.  Amberger 

and    K.    Broniig.     Biochem.    Zeits.,    1922,    130, 
252—266. 

The  use  of  high  temperatures  is  inadmissible  for 
tile  preparation  of  mixed  glycerides  of  known  con- 
stitution. The  authors  have  applied  Fischer's 
methods  (J.,'  1920,  790  a).  a-Stearo-/?y-dipalmitin, 
m.p.  63'5°  C,  occurs  in  goose  fat  and  was  prepared 
from  a-monostearin  and  palmitic  acid  chloride. 
3-Stearo-ay-dipalmitin,  m.p.  59'1°  C,  was  prepared 
from  ay-dipalmitin,  m.p.  69p5°  C.  The  latter  was 
prepared  from  /Jy-dipalmitin-<z-iodohydrin,  m.p. 
46'2°  C.  by  the  action  of  silver  nitrite.  a-Palmito- 
fly-distearin,  m.p.  63"2°  C,  was  prepared  from 
n-monopalmitin  and  stearyl  chloride.  The  iso- 
meride,  /J-palmito-ay-distearin,  m.p.  67'9°  C,  was 
prepared  from  oy-distearin.  a-Palmito-/3y-diolein, 
prepared  from  o-palmitin  and  oleic  acid  chloride, 
was  an  oil.  From  o-olein,  a  pale  yellow  oil,  a-oleo- 
/Jy-distearin,  m.p.  42°  C,  was  prepared. — H.  K. 

Lipase;    Influence    of    various    antiseptics   on   the 

activity  of .     L.  S.  Palmer.     J.  Amer.  Chem. 

Soc.,  1922,  44,  1527—1538. 

Data  are  presented  on  the  influence  of  various  con- 
■entrations  of  several  antiseptics  on  the  hydrolysis 
;)f  emulsions  of  milk  fat  in  gum  acacia  solutions, 
ising  commercial  steapsin  as  the  source  of  lipase. 
Formaldehyde  up  to  concentrations  of  1  pt.  in  250 
lad  no  detrimental  effect  on  the  activity  of  the 
ipase,  1%  solutions  being  required  to  produce  a 
•etardation  of  the  enzyme  action.  Chloroform  in 
oncentrations  from  1*5  to  2'5%  retarded  the  lipase 
ictivity  20 — 60%.  Acetone  in  concentrations  of 
(>  %,  and  12%  retarded  the  lipolysis  12 — 25%.  A 
reshly  prepared  3%  solution  of  iodoform  in  acetone 
idded  so  as  to  give  a  concentration  of  0'3%  retarded 
he  lipase  activity  25 — 40  % .  When  using  a 
iniilar  solution  of  iodoform  which  had  stood  for 
ome  time,  practically  complete  inhibition  was 
btained  with  this  and  even  smaller  concentrations 
f  iodoform.  Iodoform  alone  retarded  lipolysis  in 
irect  proportion  to  the  concentration  of  the  anti- 
eptic  present,  the  effect  varying  from  a  15% 
etardation  with  0"03%  concentration  of  iodoform  to 
35  ;  retardation  with  0'5%  concentration  of  anti- 
eptic.  Old  solutions  of  iodoform  in  acetone  contain 
ree  iodine,  which  has  a  marked  effect  on  lipase 
ctivity.  Iodine  in  concentrations  of  0'045%  or 
lore  inhibited  lipolysis  entirely.  Results  similar  to 
hose  with  iodine  were  obtained  by  the  use  of 
romine  water.  Higher  concentrations  of  bromine 
ere  found  necessary  to  inhibit  the  lipase  com- 
letely,  however,  a  concentration  of  0'25%  retarding 
le  enzyme  activity  only  93 — 91%.  Mercuric 
lloride  inhibited  lipase  activity  completely  in  0'1, 
2  and  0'3%  concentration.  Chloral  hydrate  not 
Uy  retarded  the  lipase  action,  but  also  failed  as  a 
ermicide  when  using  cow's  milk  as  substrate,  (fif. 
..C.S.,  Sept.)— H.  W. 

italytic  addition  of  hydrogen.  Influence  of 
oxygen  on  the  catalyst.  W.  Normann.  Ber., 
1922,  55,  2193—2197. 

orkevg  under  conditions  which  are  considered  to 
chide  the  presence  of  oxygen  and  with  hydrogen 
hich  is  free  from  any  trace  of  the  latter,  the 
irdening  of  cottonseed  oil  has  been  effected  in  the 
esence  of  reduced  nickel  (from  the  cyanide  or 
loride),  nickel  powder,  or  palladised  "kieselguhr. 
appears  therefore  that  Wi'llstatter's  assumption 
the  necessity  for  the  presence  of  oxygen  is 
ijustified.— H."  W. 


.4«d  value  of  fatty  acids  and  fats;  Electrometric 

determination  of  the  .     R.  Kremann  and  F. 

iSchopfer.  Seife,  1922,  7,  612—614,  656 — 659 
Chem.  Zentr.,  1922,  93,  II.,  1246—1247,  IV.,  72— 
73.    (Cf.  J.,  1921,  896  a.) 

The  electrometric  titration  of  fats  and  fatty  acids 
in  alcoholic  solution  is  possible,  but  in  the  case  of 
palmitic  acid  the  titration  curve  is  not  of  a  form 
agreeing  with  theoretical  considerations,  and  in  the 
titration  of  caprylic  and  capric  acids  it  is  impossible 
to  obtain  a  titration  curve  owing  to  the  contamina- 
tion   of     the     platinum     electrode     surfaces     with 
precipitated    soap.      Mechanical    cleaning    of    the 
electrodes   appears  to  be   impossible  owing  to   the 
damage  to  the  platinised  surfaces  caused  thereby. 
The  platinised  hydrogen  electrodes  were  therefore 
replaced  by  smooth  ones,  which  were  arranged  half 
in  air  and  half  in  the  liquid  to  be  titrated,  and  by 
this  means  it  was  possible  to  titrate  fatty  acids. 
The  liquid  was  titrated  with  A7/ 10  alcoholic  alkali 
at  room  temperature.     The  results  were  as  satis- 
factory as  those  obtained  using  phenolphthalein  as 
indicator    or    by    conductivity   measurements,    and 
the  method  has  a  greater  range  of  application  than 
the   latter    method.      The    use    of    AT/10    aqueous 
solutions  for  the  electrometric  titration  is  prefer- 
able to  that  of  alcoholic  solutions  in  special  cases, 
such  as  that  of  sunflower  seed  oil,  and  is  useful  as 
a  secondary  method  in  cases  where  with  the  use  of 
alcoholic  solutions  the  bend  in  the  potential-volume 
curve  is  not  sufficiently  well  marked.      Titrations 
with  N/2  aqueous  solutions  are  not  to  be  recom- 
mended  in   consequence  of  the   more   marked   dis- 
turbance   due    to    the    separation    of    soap,    which 
interferes    with    the    equilibrium    of    the    solution. 
The     chief     condition     for    obtaining    satisfactory 
potential  curves  is  to  wait  for  a  steady  potential 
to  be  reached  after  each  addition  of  alkali.     Dis- 
turbances  due   to   the   separation   of   soap   on   the 
electrode  can  be  overcome  by  scraping  the  smooth 
electrodes. — H.  C.  R. 

&i-T>ec\jlenic  acid;  Synthesis  of .     A.  Griin  and 

T.  Wirth.     Ber.,  1922,  55,  2206—2218. 

Ethyl  undecvlenate  is  reduced  by  sodium  and 
ethyl  alcohol  to  undecenol,  CrLlCH.fCILL.CH.OH, 
b.p.  250°  C.  at  atmospheric  pressure,  122°  C.  at 
3  mm.,  m.p.  -7°  C,  which  is  converted  by  chloro- 
sulphonic  acid  in  dry  ethereal  solution  into  un- 
decenyl  hydrogen  sulphate.  The  ester  (or  the 
corresponding  acetate)  is  oxidised  by  chromic  acid 
or  preferably  by  permanganate  to  i-hydroxvcapric 
acid,  CH2(OH)'.[CH2]a.C02H,  m.p.  75°  C.  The 
methyl  ester  of  the  latter  is  converted  by  stearyl 
chloride  into  methyl-stearoxycaprate,  m.p.  43°  C, 
which  decomposes  readily  when  distilled  under 
atmospheric  pressure  into  stearic  acid  and 
methyl  ©i-decylenate;  the  latter  is  hydrolysed  to 
Gi-decvlenic  acid,  b.p.  143°  C.  at  6  mm.,  identical 
with  the  acid  obtained  from  butter  fat  (see  page 
680  a).  Alternatively,  i-hydroxycapric  acid  is  pre- 
pared by  the  reduction  of  potassium  ethyl  sebacate 
in  ethyl  alcoholic  suspension  by  sodium.  The 
iodine  and  acid  values  of  Oi-decylenic  acid  sink 
gradually  when  the  substance  is  preserved,  prob- 
ably owing  to  the  formation  of  a  lactone.  Deca- 
lactone,  b.p.  153°  C.  at  15  mm.,  prepared  by  the 
action  of  sulphuric  acid  (80%)  on  the  acid  at  90°  C. 
is  saturated  and  neutral;  it  is  converted  by  hydro- 
lysis into  a  hydroxy  acid,  m.p.  44°  C.  The  com- 
pounds are  regarded  provisionally  as  y-decalactone 
and  y-hydroxydeeoic  acid.     (Cf.  J.C.S.,  Sept.) 

— H.  W. 


&t-Decylenic  acid.     Griin  and   Wirth.     See   XIXa. 

Sodium  chaulmoograte.     Gardner.     See  XX. 

b2 


J 


676  a 


Cl.  Xin.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[Sept.  15,  1922. 


Patents. 

Decolorising  power  of  silicates  for  fatty  and  mineral 

oils,  etc.;  Process  for  increasing  the  .     Pfir- 

schinger  Mineralwerke  Gebr.  Wildhagen  und 
Falk.     G.P.  339,919,  21.11.19. 

Natural  silicates,  such  as  clay  and  kaolin,  are 
decomposed,  for  example,  with  hydrochloric  acid  of 
the  required  concentration,  so  that  they  are  wholly 
or   partially   converted   into   hvdrated   silicic   acid. 

— H.  C.  R. 

S  id  phonic   acids   from   petroleum ;    Purification   of 

.      Oelwerke    Stern-Sonneborn    A.-G.      G.P. 

350,299,  26.2.15. 

The  crude  acids,  separated  from  their  salts,  are 
washed  with  dilute  mineral  acids,  e.g.,  with  40 — 
50%  sulphuric  acid  at  about  60°  C.  The  practically 
ash-free  sulphonic  acids  thus  obtained  are  specially 
suitable  for  the  hydrolysis  of  fats ;  products  con- 
taining salts  of  the  acids  hydrolyse  fats  only  in- 
completely and  slowly,  and  the  ash  content  of  the 
glycerol  produced  is  undesirably  high. — A.  G. 

Oils  and  fats;  Process  for  retarding  occurrence  of 

rancidity  in  .     Gebr.  Schubert  Chem.  Fabr. 

G.P.  351,566,  4.1.19. 

Silica  or  silicates  are  added  to  the  oil  or  fat,  and 
if  necessary  it  is  treated  with  an  indifferent  gas, 
e.g.,  nitrogen. — A.  G. 

Catalyst;    Production    of    a  for   the    hydro- 

genation  of  unsaturated  organic  compounds.  C. 
und  G.  Midler,  Speisefettfabr.  A.-G.  G.P. 
352,431,  27.3.18. 

Nickel  salts  of  boric  acid  are  precipitated  on  an 
inert  base,  e.g.,  kieselguhr,  and  are  then  heated  in 
hydrogen.  The  catalyst  is  insensitive  to  the  action 
of  air. — A.  G. 

Alcohols;   Process  for   the,   production   of  wax-like 

from  wool-fat.    W.  Schrauth.     G.P.  353,048, 

26.9.15. 
Wool-fat      is      hydrogenated,      the      product      is 
saponified,  and  the  soap  is  treated  with  an  extrac- 
tion   medium,     insoluble    in    water,     e.g.,     carbon 
tetrachloride,  benzene,  benzine,  etc. — A.  G. 

Catalysts  for  hydrogenation.  G.P.  352,439.  See  XX. 


XIII.-PAINTS;  PIGMENTS;    VARNISHES; 
BESINS. 

Scammony  resin.    Deane  and  Edmonton.     See  XX. 

Patents. 

Lead   chromate    •pigments;   Manufacture    of   ■ . 

H.   Hetherington  and  W.   A.  Allsebrook.      E.P. 
182,693,   13.7.21. 

Lead  sulphate  paste,  e.g.,  606  pts.  by  weight  of 
freshly  precipitated,  well-washed  50%  paste,  is 
agitated  and  a  solution  of  a  normal  alkali  or 
ammonium  chromate,  e.g.,  a  10%  solution  of  sodium 
chromate,  is  slowly  added  to  the  mass  at  such  a  rate 
that  a  clear  liquor  is  obtained  before  any  further 
addition  of  the  solution  is  made.  If  1  mol.  of 
sodium  chromate  is  added  per  mol.  of  lead  sulphate 
a  deep  yellow  pigment  is  obtained,  and  by  reducing 
the  quantity  of  sodium  chromate  a  paler  product  of 
any  desired  shade  can  be  produced.  The  product 
is  washed  until  free  from  sodium  sulphate,  and  is 
then  pressed  and  dried. — L.  A.  C. 

llesins    and   oil-soluble   dyestuffs;   Manufacture   of 

novel  .     H.  Plauson  and  J.  A.  Vielle.     E.P. 

182,497,  7.1.21. 

Coloured,  oil-soluble  "  azo  resins  "  are  prepared 
by  incorporating  a  diazo  compound  with  a  phenol- 


formaldehyde  or  ketone-formaldehyde  condensation 
product,  preferably  before  condensation  is  com- 
plete. For  example,  94  pts.  of  phenol  is  melted 
with  7$  pts.  of  hexamethylenetetramine,  and  15  pts. 
of  diazotised  p-nitraniline  is  added  to  the  product, 
with  agitation.  On  cooling,  a  solid  metallic-green 
or  orange  coloured  azo  resin  is  obtained,  which  dis- 
solves in  oils  and  fats  to  form  an  orange-coloured 
solution. — L.  A.  C. 

Vapours  and  gases  formed  by  heating  fatty  oils, 
gums,     resins     and     other     organic     materials: 

Processes  and  apparatus  for  treating  the  

P.  W.  Webster.     E.P.  182,869,  30.3.21. 

Air  is  admitted  in  regulated  quantity  to  the  vessel 
containing  the  material  during  the  production  of 
the  fumes,  and  the  fumes  evolved  are  collected  by 
surface  condensation,  scrubbing  with  water,  and 
treating  the  uncondensed  fumes  with  an  alkaline 
solution.  The  apparatus  comprises  a  receptacle 
having  a  means  for  controlling  the  amount  of  air 
admitted,  to  which  is  connected  a  fume  condenser, 
a  water  scrubbing  device,  and  a  chemical  treatment 
apparatus,  connected  together  in  series,  together 
with  a  means  for  positively  passing  fumes  through 
the  apparatus.  The  receptacle  can  be  quickly  and 
easily  disconnected  from  the  fume-collecting  appara- 
tus by  removing  the  lid,  which  is  connected  with  the 
fume-collecting  apparatus  by  a  flue  having  a  teles- 
copic and  a  swivel  joint.  To  prevent  flame  passing 
through  the  apparatus  a  container  having  fine  mesh 
screens  in  it  is  provided. — H.  C.  R. 

Condensation  products  from  phenol  and  formalde- 
hyde; Process  for  the  manufacture  of  insoluble 
— — .  F.  B.  Dehn.  From  S.  Satow.  E.P. 
182,886,  6.4.21. 

Products  which  can  be  manufactured  without  the 
use  of  high  pressure,  and  possessing  properties 
which  render  them  capable  of  being  turned,  sawn, 
and  polished,  are  prepared  by  trie  addition  of 
organic  compounds  containing  the  CHaOH  or 
CHOH  group,  for  instance,  hydroxy-fatty  acids 
such  as  glycollic  acid,  lactic  acid,  and  malic  acid. 
or  alcohols  such  as  glycerin,  butyl  alcohol,  and 
cholesterol,  or  hexoses  and  the  like,  to  the  oily  pro- 
duct obtained  by  reaction  between  equimolecular 
weights  of  phenol  and  formaldehyde.  The  products 
may  be  heated  for  several  hours  at  90°— 130°  C,  or 
may  be  diluted  with  alcohol,  acetone  or  the  like, 
and  the  solutions  used  for  impregnating  paper  or 
other  porous  material.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents 
and  Designs  Acts,  1907  and  1919,  to  E.P.  27,096  of 
1908,  129,993,  and  148,264;  J.,  1909,  843.)— L.  A.  C. 

Condensation    product   from   naphthalene  and  ghj- 

collie  acid;  Method  for  the  production  of  a . 

Elektrochem.  Werke  G.m.b.H.,  H.  Bosshard,  and 
D.  Strauss.  E.P.  171,956,  10.1.21.  Conv.,  4.7.19. 
A  mixture  of  129  pts.  of  naphthalene,  40  pts.  of 
glycollic  acid  (or  30  pts.  of  glycolide),  and  10  pts. 
of  phosphorus  pentoxide,  is  heated  under  pressure 
for  about  15  hrs.  at  130°— 170°  C.  with  agitation. 
Carbon  dioxide  is  allowed  to  escape  from  the 
apparatus  from  time  to  time.  The  product, 
separation  of  unchanged  naphthalene  by  steam  dis- 
tillation, is  a  yellow  resin  resembling  shellac  ami 
fusing  at  80°—' 85°  C.— L.  A.  C. 

Basin ;  Polyglyccrol  .     L.  Weisberg  and  R.  S. 

Potter,     Assrs.     to     The     Barrett     Co.      U.S. P. 

1,424,137,  25.7.22.     Appl.,  19.2.21. 
A  mixture  of  a  polyglycerol  and  a  polybasic  aro- 
matic acid  is  heated  until  a  water-resisting  product 
is  obtained. — L.  A.  C. 


Vol.  XLI.,  No.  17.]     Cl.  XIV.— INDIA-RUBBER.     Cl.  XV.— LEATHER.     Cl.  XVI.— soils. 


677  a 


Paint.    A.  C.  Holzapfel.    U.S. P.  1.422,711,  11.7.22 
Appl.,  2.3.22. 

Paints  containing  residual  pitch  derived  from  oils 
and  fats  are  deodorised  by  addition  of  1 — 5%  of 
acetone. — B.  M.  V. 

Invisible  ink.  C.  F.  Morse,  Assr.  to  The  Invisible 
Process  Co.  U.S.P.  1,423,246,  18.7.22.  Appl  , 
14.11.21. 

An  invisible  ink  is  composed  of  a  solution  contain- 
ing basic  ferric  sulphate,  mixed  with  25 — 75  £  of  its 
weight  of  phosphoric  acid. — L.  A.  C. 

Besins,    especially    artificial    resins;    Solvents    for 

.      AV.     Schrauth.      G.P.    351, 688,    25.3.19. 

Addn.  to  349,905  (J.,  1922,  425  a). 

Ctclohexanol  esters  and  homologues  of  the  same, 
either  alone  or  mixed  with  other  solvents,  are  used 
as  solvents  for  resins  instead  of  cyclohexanol  as 
described  in  the  chief  patent. — L.  A.  C. 

Wood;  Process  for  facilitating  the  cleavage  of , 

particularly    for    lead    pencil    manufacture.      E 
Beutel   and    K.    Suchv.      G.P.    349,813,   20.3.19. 
'    Conv.,  1.3.19. 

iThe  wood  is  treated  with  alkalis  or  mineral  acids, 
and  if  necessary  with  the  addition  of  compounds 
easily  dissociated,  e.g.,  ammonium  compounds,  in 
a  pressure  vessel  at  a  temperature  of  about  200°  C. 
Ammonium  salts  may  also  be  used  alone.  The 
treated  wood  is  subjected  to  the  usual  paraffin  bath, 
using  oils  boiling  above  200°  C,  such  as  paraffin,  lin- 
seed oil,  stearic  acid,  etc.,  dyestuffs  soluble  in  the 
oil  being  added  as  required. — A.  G. 


XIV.-INDIA-RUBBER;  GUTTA-PERCHA. 

Patents. 

Latex;  Products   obtained  from   rubber-containing 

I   •      E.    Hopkinson.      E.P.    157,975,    11.1.21. 

Conv.,  16.1.20. 

'Rubber  products  in  increased  yield  and  having  a 
i.ensile  strength  about  20%  higher  than  those 
ibtained  by  the  visual  methods,  are  obtained  by 
igitating  rubber-containing  latex  with  a  preserva- 
|.ive  material  to  prevent  coagulation,  and  delivering 
J  he  mixture  through  an  atomiser  into  a  chamber  in 
vhich  it  is  dried  bv  contact  with  a  stream  of  air 
ir  other  gases  heated  to  about  200°  P.  (93°  C). 
Coagulation  is  prevented  by  the  addition  of  0'1% 
&  ammonia  if  the  latex  is  treated  alone,  or  by  the 
ddition  of  0T%  of  saponin,  or  other  substances, 
uch  as  glue  or  glycerin,  if  vulcanising  agents  or 
ompounding  ingredients  are  mixed  with  the  latex 
•efore  treatment.  The  dried  product  is  deposited 
y  passing  the  gases  carrying  it  through  a  winding 
hannel  and  spiraJl  collectors,  and  the  spongy  pro- 
uct  obtained  thereby  is  formed  into  a  compact 
lass  by  compression  in  a  hydraulic  press  or  between 
oilers.— L.  A.  C. 

,'pongc  rubber;  Manufacture  of .  A.  J.  Ostberg 

and  A.  Kenny,  Assrs.  to  The  Standard  Rubber 
Works     Proprietarv,     Ltd.       U.S.P.     1,422,884, 

,  18.7.22.     Appl.,  18.8.20. 

ee  E.P.  172,398  of  1920;  J.,  1922,  67  a. 
\nsulating  products.    U.S.P.  1,422,720.    See  XL 

XV.-LEATHER;  BONE;  HORN;  GLUE. 

Patents. 

kins  and  hides;  Mixture  for  depilating  .     W. 

Ulke.    G.P.  348,413,  31.12.20. 

extrin  is  added  to  a  depilating  mixture  contain- 

ig  alkali  or  alkaline-earth  sulphides  and  covering 


material,  a  suitable  mixture  containing,  e.g.,  stron- 
tium sulphide,  maize  starch  powder,  talc,  dextrin, 
essential  oils,  and  "  nerolin."  The  dextrin  protects 
the  skin  and  hair  papilla?  from  the  action  of  the 
sulphide,  and  also  prevents  liberation  of  hydrogen 
sulphide. — L.  A.  C. 

Millboard.    E.P.  182,884.    See  V. 

XVI.-S0ILS ;    FERTILISERS. 

Plant  indicators  of  sod  types.  A.  P.  Kelley.  Soil 
Sci.,  1922,  13,  411—424. 

The  acidity  of  a  number  of  soils  was  determined  by 
colorimetric  methods  and  the  characteristic  flora 
examined,  with  a  view  to  correlate  particular  plants 
with  definite  ranges  of  soil  acidity.  A  number  of 
plants  were  found  to  be  indicative  of  definite 
degrees  of  acidity.  The  acidity  of  any  soil  type  is 
influenced  by  such  factors  as  arrested  leaf  decay, 
physiographical  features  and  degree  of  slope,  eleva- 
tion, and  season.  Variation  in  some  species  of 
plants  may  be  induced  by  changes  in  soil  acidity. 
The  carbon  dioxide  in  the  soil  solutions  did  not 
affect  pH  values  determined  by  the  colorimetric 
method.— A.  G.  P. 

Acid  soil  studies.  111.  Influence  of  calcium  carbon- 
ate, calcium  oxide,  and  calcium  sulphate  on  the 
sol  ible  soil  nutrients  id  and  soils.  R.  H.  Robinson 
and  D.  E.  BuMis.    Soil  Sci.,  1922,  13,  449—460. 

Five  acid  soils  were  treated  with  varying  quantities 
of  the  carbonate,  oxide,  and  sulphate  of  calcium, 
and  stored  with  a  maintained  optimum  water 
content.  Periodical  analyses  were  made  of  the 
soluble  salts  obtained  by  a  1:5  water  extraction. 
The  amounts  of  calcium  added  were  sufficient  to 
satisfy  the  lime-requirement  determined  by  the 
A'eitch  method.  In  field  trials  the  soils  showed 
widely  different  results  on  treatment  with  lime- 
stone. The  chief  difference  brought  out  by  analysis 
of  the  water  extracts  of  the  limed  soils,  was  the 
rapid  production  of  nitrates  in  those  soils  which 
had  responded  to  lime  in  the  field.  The  content  of 
water-soluble  phosphates  and  sulphates  was  not 
appreciably  altered  by  any  of  the  treatments.  The 
soluble  potash  and  magnesium  in  all  soils  was 
increased  by  treatment  with  calcium  sulphate.  In 
pot  experiments,  addition  of  monocalcium  phos- 
phate, with  or  without  lime,  increased  the  nitrate 
production  of  those  soils  which  did  not  respond  to 
lime  alone ;  but  field  trials  did  not  confirm  this. 

—A.  G.  P. 

Soil   acidity;    Effects    of    lime,    leaching,    form    of 

phosphate  and  nitrogen  salt  on  plant  and  

and  the  relation  of  these  to  the  feeding  power  of 
the  plant.  F.  C.  Bauer  and  A.  R.  C.  Haas. 
Soil  Sci.,  1922,  13,  461—480. 

The  actual  acidity  of  plant  juices  usually  varied 
with  that  of  the  nutrient  medium  and  was  in  most 
cases  closely  related  to  the  growth  and  feeding 
power  of  the  plant.  Liming  reduced,  and  leaching 
increased  the  acidity  of  both  nutrient  medium  and 
plant  juices.  Acid  phosphate  (superphosphate)  in- 
creased the  acidity  more  than  rock  phosphates. 
Increased  soil  acidity  improved  the  availability  of 
rock  phosphates.  Ammonium  nitrate  produced 
greater  acidity  in  the  soil  and  juices  of  maize  tops 
than  did  sodium  nitrate.     (Cf.  J.C.S.,  Sept.) 

—A.  G.  P. 

Soils;  Further  studies  on  the  soluble  salt  content 

of  field  .     C.  E.  Millar.     Soil  Sci.,  1922,  13, 

433—448. 
The  soluble  salt  content  of  a  number  of  soils  was 
determined  at  various  depths  and  seasons  by  the 
freezing   point    method.      In    uncropped    soils    the 


G7S  A 


Cl.  XVII.— SUGARS  ;  STARCHES;  GUMS. 


[Sept.  15,  1922. 


soluble  salt  content  of  the  top  6  in.  was  low  in  early 
spring  and  late  autumn,  but  rose  during  the 
summer.  In  samples  from  depths  of  6—12  ins.  the 
salt  content  was  low  and  showed  no  tendency  to 
reach  a  maximum  in  summer.  Soluble  salts  tended 
to  accumulate  in  the  surface  i  in.  of  uncropped 
soils,  particularly  in  dry  seasons,  but  the  growth  of 
plants  to  a  large  extent  prevented  this,  and  also 
influenced  the  amount  of  soluble  salts  in  the 
samples  from  a  depth  of  i — 6  ins.  Rainfall  is  an 
important  factor  in  the  distribution  of  soluble  salts 
in  soils.  The  hoeing  in  of  organic  matter  did  not 
affect  the  rate  of  solution  of  virgin  soils. — A.  G.  P. 

Azoification    in   soil;    Influence    of   salts   on   . 

J.  E.  Greaves,  E.  G.  Carter,  and  Y.  Lund.     Soil 
Sci.,  1922,  13,  481—499. 

The  effects  of  salts  of  sodium,  potassium,  calcium, 
magnesium,  manganese,  and  iron  on  nitrogen  fixa- 
tion in  soils  are  recorded.  The  toxicity  of  the 
individual  salts  is  specific  and  is  not  governed  by 
the  negative  ion.  The  salts  examined  have  a  less 
toxic  action  on  nitrogen-fixing  bacteria  than  on 
ammonifying  or  nitrifving  bacteria.  (Cf.  J.C.S., 
Sept.)— A.  G.  P. 

Displaceable   potash  in  soils;  Significance  of  

in  plant  nutrition.     A.  von  Nostitz.     J.  Landw., 
1922,  70,  45—72. 

Soils,  packed  in  tubes,  were  leached  with  5% 
ammonium  nitrate  solution  and  the  extracts 
examined  for  other  bases.  Calcium,  magnesium, 
potassium,  and  sodium  appeared  in  considerable 
quantities,  and  the  rate  of  extraction  by  successive 
amounts  of  ammonium  nitrate  solution  was  in  the 
order  named.  In  no  case  could  the  total  amount  of 
a  base  present  in  the  soil  be  removed  by  this  pro- 
cess. A  similar  basic  exchange  was  shown  to  occur 
with  mica  and  felspar.  Comparison  was  made  in 
pot  experiments  between  plants  grown  in  the 
original  soil  and  in  that  leached  with  ammonium 
nitrate  solution,  to  which  was  added  respectively 
the  amounts  of  calcium  and  magnesium,  or  of 
calcium,  magnesium,  and  potassium  removed  by 
the  leaching.  Suitable  adjustments  were  made  for 
the  increased  nitrogen-content  of  the  leached  soil. 
Plants  grown  in  the  leached  soil  with  addition  of 
calcium,  magnesium,  and  potassium  were  only 
slightly  inferior  to  those  in  the  original  soil,  but 
those  grown  in  leached  soil  with  addition  of  only 
calcium  and  magnesium  showed  every  sign  of 
potash-starvation.  A  second  crop  on  the  same  soils 
gave  similar  results.  The  germination  of  seeds  in 
the  soil  lacking  potash  was  slow  and  the  growth  of 
plants  poor  from  the  first.  Sand  cultures  showed 
that  germination  of  seeds  increased  with  the  pro- 
portion of  potash  in  the  culture  solution,  as  also 
did  the  rate  of  growth  of  the  seedlings,  but  the 
optimum  potash  content  depended  on  the  amounts 
of  calcium  and  magnesium  present.  In  estimating 
the  fertiliser  requirements  of  soils  the  amount  of 
potash  which  can  be  liberated  by  a  process  of  base- 
interchange  should  be  taken  into  consideration. 

—A.  G.  P. 

Manganese   in  plants;   Bole  of  - .     J.    S.    Mc- 

Hargue.     J.  Amer.  Chem.  Soc,  1922,  44,  1592— 
1598. 

Radisii,  Alaska  garden  pea,  Canada  field  pea,  cow- 
peas,  lettuce,  tomatoes,  spinach,  carrote,  onions, 
garden  beans,  cabbage,  wheat,  oats,  clover,  and 
velvet  beans  when  grown  in  a  medium  which  con- 
tained no  manganese  made  a  normal  growth  for 
6 — 8  weeks,  but  thereafter  developed  a  chlorotic 
condition  and  failed  to  make  further  growth  of  any 
consequence.  The  normal  condition  of  the  plants 
during  the  first  few  weeks  of  growth  is  accounted 
for  by  assuming  that  the  manganese  which  the  seed 
contains   is  sufficient  to  maintain  a   normal  meta- 


bolic process  during  this  part  of  the  plant's  growth 
and  that  the  chlorotic  condition  is  a  result  of  the 
lack  of  a  further  supply  of  available  manganese. 
Non-leguminous  plants  appear  to  be  less  sensitive 
than  legumes  to  lack  of  manganese,  thus  suggest- 
ing that  manganese  is  concerned  in  nitrogen 
assimilation  and  the  synthesis  of  proteins. 
Apparently  manganese  plays  the  role  of  a  necessary 
catalyst  in  plant  metabolism  and  together  with 
iron  functions  in  the  synthesis  of  chlorophyll. 

— H.  W. 

Superphosphates ;    Analysis    of   .      C.    Tibaldi 

Giorn.  Chim.  Ind.  Appl.,  1922,  4,  303. 

The  official  (Italian)  method  of  estimating  the  pro- 
portion of  phosphoric  anhydride  soluble  in  water 
and  in  ammonium  citrate  solution  may  be  shortened 
by  omitting  the  digestion  with  water.  Five 
grams  of  the  material  is  ground  three  times  with 
water,  in  a  basin,  transferred  to  a  500  e.c.  flask, 
digested  for  1  hr.  with  100  c.c.  of  ammonium  citrate 
solution  at  45° — 50°  C,  and  made  up  to  volume, 
100  c.c.  being  taken  for  the  precipitation  in  the 
ordinary  way. — T.  H.  P. 

Calcium  in  natural  phosphates.    Meurice.    See  VII. 

rotash.    Hazen.    See  XXIII. 

Patents. 

Manure;  Method  of  extracting  fertiliser  elements 

from   .      C.    E.    Gardan.      U.S. P.    1,422.434. 

11.7.22.    Appl.,  1.6.22. 

Manure,  in  aqueous  suspension,  is  heated  and  then 
submitted  to  pressure. — A.  G.  P. 

Lime-sulphur  compositions.     U.S. P.  1,422,977  and 
1,423,605.     See  XLXb. 


XVII.-SUGAHS ;  STARCHES;  GUMS. 

Acetol.  I.  A  new  test  for  carbohydrates.  0. 
Baudisch  and  H.  J.  Deuel.  J.  Amer.  Chem.  Soc.. 
1922,  44,  1585—1587. 

The  test  depends  on  the  production  of  acetol  from 
carbohydrates.  An  aqueous  solution  of  the  carbo- 
hydrate (0'1  g.  in  100  c.c.)  is  treated  with  solid 
sodium  bicarbonate  (5  g.),  and  distilled  nearly  to 
dryness.  With  the  carbohydrates  which  are  more 
readily  attacked,  the  solution  in  the  distilling  flask 
very  quickly  turns  brown  and  the  distillate 
sweet  odour.  The  residue  in  the  flask,  after  dis- 
tillation, has  a  strong  typical  caramel  odour.  The 
distillate  is  treated  with  o-aminobenzaldehyde  (30 
mg.)  and  enough  potassium  hydroxide  solution  to 
give  a  decidedly  alkaline  reaction  ;  after  addition 
of  a  piece  of  porous  plate,  it  is  evaporated  over  a 
free  flame  to  i  of  its  volume,  cooled,  and  acidified 
with  hydrochloric  acid.  Solid  sodium  bicarbonate 
is  added  till  the  solution  is  alkaline  to  litmus.  The 
presence  of  acetol  is  shown  by  a  strong  bluish 
fluorescence  which  can  be  seen  in  daylight  but  more 
readily  in  light  of  short  wave  length  6uch  as  that 
yielded  by  the  iron  arc.  To  confirm  the  test,  the 
3-hydroxyquinaldine  is  extracted  by  shaking  the 
solution  several  times  with  ether  free  from  alcohol; 
the  extract  is  dried  over  sodium  sulphate  and  the 
solvent  is  removed.  The  colourless,  needle-like 
crystals  of  3-hydroxyquinaldine  which  remain  dis- 
solve readily  in  a  little  alcohol,  and  the  fluorescence 
shows  up  strongly  after  addition  of  water  to  the 
alcoholic  solution.  The  sensitiveness  of  the  reaction 
has  not  been  determined  except  for  dextrose,  with 
which  quantities  as  small  as  5  mg.  give  a  positive 
result.  The  test  is  shown  by  arabinose,  xylose, 
ribose,  lyxose,  dextrose,  lsevulose,  mannose,  - 
ose,  glucosamine,  lactose,  sucrose,  maltose,  and 
dextrin,     but    not    by    acetoacetic    acid,    glycerol, 


Vol.  XLI.,  No.  17.] 


Cl.  xviii.— fermentation  industries. 


679  a 


/J-hydroxybutyric  acid,  lactic  acid,  starch,  or  glyco- 
gen. The  formation  of  3-hydroxyquinaldine  on 
treatment  with  o-aminobenzaldehyde  and  potassium 
hydroxide  appears  to  be  a  specific  reaction  of 
|  aeetol ;  it  is  not  given  by  pure  methylglyoxal,  aldol, 
acetone,  acetaldehyde,  ethyl  acetoacetate,  croton- 
aldehyde,  or  ethyl  alcohol. — H.  W. 

Xylan;  Methyl  ethers  of .     E.  Heuser  and  W. 

Ruppel.     Ber.,  1922,  55,  2084— 2088. 

Although  xylan  is  very  readily  soluble  in  solutions 

of    alkali    hydroxides    it   cannot    be    converted    by 

methyl   sulphate   in   these    media    into    methylated 

products    containing    more    than    1 — 1'5    methoxy 

groups   for   each   C5H80<    complex.      The   products 

thus  obtained  are  freely  soluble  in  cold  water,  but 

|  the  solutions  become  turbid  when  they  are  heated 

j  owing  to  the  separation  of  methyloxylan.     Better 

I  results  are  obtained  with  methyl  iodide  and  silver 

|  oxide.     Xylan,    pre-methylated   with  sodium  hydr- 

j  oxide   and   methyl  sulphate,    is    almost  completely 

methylated  by  these  reagents  boiling  under  slightly 

increased  pressure  and  is  completely  converted  into 

j  dime  thy  lxy  Ian,    softening    at    65° — 70°    C,    when 

I  similarly  heated  under  pressure  at  100°  C. — H.  W. 

■  Wheat  starch.    Wallis.     See  XIXa. 


Patents. 

Brape  sugar;  Manufacture  of  .     P.  W.  Allen, 

Assr.  to  Penick  and  Ford,  Ltd.    U.S. P.  1,422,328, 
11.7.22.    Appl.,  17.2.19. 

In  the  preparation  of  glucose  from  starch,  the  sugar 
i  liquor,  freed  from  protein  impurities,  is  heated  to 
about  145°  F.  (63°  C.)  at  a  density  of  42°  B.  (sp.  gr. 
1'41),  and  subjected  to  a  beating  operation  in  the 
j  air,  thus  giving  the  mass  a  frothy  porous  consis- 
tency, and  is  then  allowed  to  stand  until  crystal- 
lised.—A.  G.  P. 


Fermentable  sugar  from  wood.     G.P.   351,681   and 
352,773.     See  XVHI. 


XVIII.— FERMENTATION    INDUSTRIES. 

Yeast  cells;  Action  of  saponin-substances  on  . 

F.  Boas.    Ber.  Deuts.  Bot.  Ges.,  1922,  40,  32—38. 
Chem.  Zentr.,  1922,  93,  III.,  64. 

■  There  is  a  great  similarity  between  the  action  of 

'saponins  on  blood  corpuscles  and  that  on  yeast  cells. 

t  Digitonin  and  smilacin  are  very  active,  and 
guaiacum  saponin  very  inactive  toward  blood  cor- 
puscles in  the  Robert  test.     Digitonin  and  smilacin 

.inhibit  fermentation  by  yeast,  whereas  other 
saponins  examined  accelerate  fermentation,  in  solu- 
tions containing  little  or  no  dissolved  salts,  by  in- 
creasing the  permeability  of  the  cell  without  injury. 

—A.  G.  P. 

Feast;   Action   of   mercuric   chloride,   phenol,   and 

quinine    on   .      G.    Joachimoglu.      Biochem. 

Zeits.,  1922,  130,  239—248. 

Feoji  measurements  of  the  loss  of  weight  due  to 
carbon  dioxide  evolved,  it  is  found  that  the  growth 
'of  yeast  is  inhibited  by  mercuric  chloride  over  the 
!range  of  dilutions,  1  in  66,000  to  1  in  1,200,000; 
by  quinine  hydrochloride  between  1  in  360  and 
1  in  675,  but  not  at  higher  dilutions;  by  phenol  at 
1  in  1000,  but  not  at  1  in  10,000.  The  so-called 
Arndt-Schulz  law,  that  small  quantities  of  a  poison 
;act  in  an  opposite  sense  to  large  quantities  is 
invalid.— H.  K. 


Lactic  fermentation ;  Action  of  acids  on  the  course 

of  .     E.  Bachrach  and  H.  Cardot.     Comptes 

rend.    Soc.    Biol.,    1922,    86,    583—586.      Chem. 
Zentr.,  1922,  93,  I.,  1414. 

Initial  acidification  of  the  substrate  only  affects  the 
rate  of  propagation  of  the  bacillus  during  the  first 
hour  of  the  fermentation.  Initial  acidity,  pro- 
duced by  hydrochloric,  nitric,  sulphuric,  and  acetic 
acids,  had  no  effect  on  the  amount  of  acid  produced 
by  fermentation.  Phosphoric  acid  alone  had  an 
unfavourable  effect  on  fermentation. — A.  G.  P. 

Aspergillus  niger;  Utilisation  of  the  ternary  sub- 
stances in  the  growth  of  .     E.  F.  Terroine 

and    R.    Wurmser.      Comptes    rend.,    1922,    175, 
228—230. 

The  ratio  of  the  dry  weight  of  the  mycelium  formed 
to  the  weight  of  the  nutrient  which  disappeared 
during  its  growth,  was  determined  under  various 
conditions.  The  results  indicate  that  the  fungus 
exhibits  complete  indifference  towards  the  compo- 
sition or  structure  of  the  various  sugars  (dextrose, 
laevulose,  sucrose,  maltose,  arabinose,  and  xylose) 
used  as  sources  of  carbon,  development  proceeding 
at  about  the  same  rate  in  all  cases.  The  concen- 
tration of  the  nitrogenous  nutrient  material  had 
likewise  no  influence  on  the  ratio  of  utilisation. 
The  nature  of  the  source  of  nitrogen  had  a  distinct 
influence,  and  two  well-defined  groups  were  found, 
the  first,  comprising  ammonium  sulphate,  guani- 
dine,  urea,  ammonium  nitrate,  and  nitric  acid, 
giving  a  ratio  of  about  0'42,  and  the  second  group, 
comprising  sodium  and  aluminium  nitrates,  giving 
a  lower  ratio  of  0'34 — 035.  The  energy  of  synthesis, 
i.e.,  the  energy  required  for  the  development  of 
the  mycelium,  does  not  depend  on  either  the  com- 
position or  structure  of  the  sugar,  but  it  is  greater 
when  the  nitrogen  is  presented  as  nitrates  than 
when  ammoniacal  nitrogen,  urea  or  nitric  acid  is  the 
starting  point. — G.  F.   M. 

Spent   washes  from   saccharified   wood;    Detection 

of  unfermented  sugar  in  .     H.  Pringsheim. 

CeOulosechem.,  1922,  3,  77—78. 

The  presence  of  unfermented  hexoses  in  the  spent 
washes  obtained  by  the  fermentation  of  liquors 
from  saccharified  wood  is  detected  by  the  difference 
in  solubility  of  glucosazone  and  pentosazone  in  hot 
water.  25  c.c.  of  the  spent  wash  is  neutralised, 
faintly  acidified  with  acetic  acid,  treated  with. 
2  c.c.  of  50%  acetic  acid  and  then  with  a  2%  solu- 
tion of  potassium  permanganate,  added  slowiy  from 
a  burette  until  the  supernatant  liquid  is  practically 
colourless.  Two  portions  of  75  c.c.  of  the  spent 
wash  are  then  treated  exactly  alike ;  they  are 
neutralised,  slightly  acidified,  and  treated  slowly 
with  the  previously  ascertained  quantity  of  per- 
manganate in  the  presence  of  34  c.c.  of  50%  acetic 
acid  for  every  50  c.c.  of  permanganate  used.  After 
standing  all  night  the  manganese  dioxide  is 
collected  on  a  small  layer  of  kieselguhr  spread 
on  paper  on  a  Buchner  funnel,  and  washed.  The 
filtrates  are  united  and  concentrated  in  vacuo 
at  50°  C.  to  a  volume  of  50 — 25  c.c.  according  to  the 
quantity  of  sugar.  Ten  c.c.  of  this  solution  is 
made  alkaline  with  sodium  carbonate,  filtered,  very 
slightly  acidified  with  acetic  acid,  and  heated  in 
a  boiling  water-bath  with  0'2  g.  of  phenylhydrazine 
hydrochloride  and  0'3  g.  of  sodium  acetate  for  half 
an  hour.  The  absence  of  dextrose  is  indicated  by 
the  absence  of  a  precipitate  in  the  hot  liquid.  If 
the  result  is  doubtful,  the  liquid  is  cooled,  the 
osazones  are  allowed  to  separate  out,  and  their 
solubility  is  again  tested  by  heating.  All  the 
pentosazone  is  re-dissolved  but  the  glucosazone, 
once  precipitated,  does  not  go  into  solution  on 
heating.  The  limit  of  sensitiveness  is  0"032%  of 
dextrose  in  the  wort. — J.  F.  B. 


680  a 


Cl.   XIXa.— FOODS. 


[Sept.  15,  1922. 


Lipase.     Palmer.     See  XII. 

Patents. 

Distilling  alcoholic  and  other  liquids;    Process  of 

.  H.  Wade.  From  J.  Schneible.  E.P.  182,832, 

13.1.21. 

The  liquid  is  distilled  in  a  column  still,  comprising 
a  heater  surmounted  by  cooled  and  uncooled 
dephlegmating  plates,  the  heat  supply  to  the  heater 
being  controlled  to  produce  a  constant  temperature 
in  the  column  above  the  heater  and  the  supply  of 
cooling  medium  to  the  cooled  plates  being  controlled 
to  produce  a  constant  temperature  at  a  fixed  point 
in  the  column,  whereby  a  uniform  temperature 
gradient  through  the  column  is  produced.  The 
design  of  the  plates  is  such  as  to  maintain  the 
interior  of  the  still  free  from  accumulations  of 
reflux  liquid,  and  baffles  are  introduced  to  impart 
a  whirling  or  spiral  movement  to  the  mixed  vapours 
and  condensed  liquid  within  the  column.  The  fresh 
liquid  is  preheated  and  fed  into  the  column  at  a 
point  where  the  temperature  and  composition  of 
the  condensed  liquid  in  the  still  is  substantially  the 
same  as  that  of  the  preheated  fresh  liquid.  The 
liquid  is  withdrawn  from  the  still  substantially  at 
its  boiling  point. — H.  C.  R. 

Sugar;    Production  of  from  wood  and  other 

material  containing  cellulose.  Production  of 
readily  fermentable  sugar  solutions  from  material 
containing  cellulose.  A.  Classen.  G.P.  (a)  351,681, 
24.5.17,  (b)  352,773,  23.3.18. 

(a)  The  yield  of  fermentable  sugar  obtained  from 
wood  or  other  material  containing  cellulose  by 
heating  with  sufficient  hydrochloric  acid  or  sul- 
phuric acid  to  decompose  the  cellulose  is  increased 
by  the  addition  of  a  small  quantity  of  a  catalyst 
consisting  of  another  acid,  or  mixture  of  acids, 
or  acid  salts.  Thus,  if  sulphuric  acid  or  hydro- 
chloric acid  is  used  for  decomposing  the  material, 
small  quantities  of  hydrochloric  acid  and /or 
sulphur  dioxide,  or  sulphuric  acid  and /or  sulphur 
dioxide,  respectively,  are  also  added  to  the  charge. 

(b)  Wood  or  other  material  containing  cellulose  is 
heated  with  acids  under  pressure,  steam  being 
admitted  into  the  apparatus  until  conversion  begins^ 
i.e.,  at  130° — 140°  C.,  corresponding  to  a  pressure 
of  3  atm.,  after  which  the  supply  of  steam  is 
regulated  so  that  the  pressure  rises  to  about  7  atm. 
in  20 — 50  mins.,  this  pressure  then  being  main- 
tained for  a  short  time.  A  good  yield  of  fermentable 
sugar  is  obtained  by  this  procedure. — L.  A.  C. 


XIXA.-F00DS. 

^Yh  rat     starch;     Some     characteristics     of     . 

T.  E.  Wallis.    Brit.  Pharm.  Conf.,  July.    Pharm. 
J.,  1922,  109,  82—83. 

Wheat  starch  can  bo  quite  definitely  recognised  in 
barley  starch  by  the  presence  of  a  number  of  grains 
measuring  40  microns  and  over.  Starches  consist- 
ing of  large  and  small  grains  intermixed  cannot, 
however,  be  characterised  by  the  number  of  grains 
per  mg.,  nor  by  the  number  of  grains  exceeding  a 
certain  size,  unless  they  have  been  prepared  by  a 
standard  process.  In  attempting  the  quantitative 
analysis  of  mixed  flours  microscopically,  the  pure 
starches  must  be  prepared  by  a  standardised 
process,  which  must  also  be  used'for  the  separation 
of  6tarch  from  the  mixed  flour.  For  example,  if 
the  examination  of  the  crude  fibre  of  a  flour  has 
established  the  presence  of  barley  in  admixture 
with  wheat,  the  amount  of  each  present  can  be 
ascertained  fairly  accurately  by  preparing  speci- 
mens of  pure  wheat  starch  and  of  starch  from  the 
mixed  flour,  by  the  standard  process,  and  then 
making  counts  of  the  numbers  of  starch  grains  of 


40  microns  and  over  in  the  two  samples.  The 
result  may  then  be  checked  by  the  examination  of 
a  mixture  of  genuine  flours  in  the  proportions 
found. — G.  F.  M. 

Phosphates  in  milk;   Volumetric  determination  of 

and   application   to    the   judging   of   milk 

W.  Miiller.  Mitt.  Lebensmittelunters.  u  Hve 
1922,  13,  52—63.  Chem.  Zentr.,  1922,  93,  IV.,  69! 
Neubauer's  modification  of  Leconte's  uranvl 
nitrate  method  (Anleitung  zur  Harnanalyse,  *5 
Aufl.,  152)  was  used.  Different  results  were 
obtained  by  determining  the  phosphates  in  the 
milk  serum  (inorganic  phosphates),  to  those 
obtained  by  incinerating  the  milk  and  determin- 
ing the  phosphates  in  the  ash  (total  phosphates). 
The  serum  was  obtained  by  Ambiihl  and  Wei?s' 
method  (J.,  1920,  464  a).  The  uranyl  nitrate 
method  was  found  to  be  simple  and  rapid  and  to 
give  accurate  results,  especially  with  milk-serum. 
It  can  be  of  great  use  in  judging  milk,  as  the  phos- 
phate content  of  milk  is  lowered  to  a  greater  extent 
than  the  content  of  lactose  by  abnormalities  of 
secretion,  and  forms  by  itself  a'clear  indication  of 
pathological  changes  in  the  milk. — H.  C.  R. 

Milk;  [Determination  of~\  moisture  content  oi  < 

.     G.  E.  Holm.     J.  Assoc.  Off.  Agr.  Chem 

1922,  5,  509—511. 

Accurate  and  concordant  moisture  determinations 
can  be  made  on  dried  milk  only  if  precautions  are 
taken  to  guard  the  samples  from  contact  with 
moisture  whilst  they  are  being  handled.  The 
samples  should  be  stored  in  tightly  sealed  glass  jars 
or  metal  containers,  and  weighed  out  in  stoppered 
weighing  bottles.  For  complete  dehydration,  drving 
for  at  least  1  hr.  at  100°  C.  in  a  vacuum  of  about  25 
in.  is  required. — G.  F.  M. 

Milk    foods;   Analysis    of  .      R.    H.    Crichton. 

lint.    Pharm.    Conf.,    July.     Pharm.    J.,    IDl'l' 
109,  94. 

A  simple  and  rapid  method  for  the  analysis  of  milk 
foods  is  described.  5  c.c.  of  the  milk  absorbed  iu 
absorbent  paper,  or  an  equivalent  quantity  of  the 
solid  food  is  dried  in  a  steam-oven  to  determine  the 
water  and  total  solids,  and  the  residue  is  exhausted 
in  a  Soxhlet  apparatus  to  obtain  the  amount  of  fat 
and  of  solids  not  fat.  To  obtain  the  protein  and 
carbohydrate  content,  10  c.c.  of  the  milk  is  mixed 
with  water,  and  dialysed  solution  of  iron  (Liq.  Fcm 
Dial.)  is  added  until  the  supernatant  liquid  is  quite 
clear.  The  volume  is  made  up  to  200  c.c,  the 
precipitate  filtered  off,  its  nitrogen  content  deter- 
mined by  the  Kjeldahl  process,  and  the  protein 
calculated.  The  filtrate  contains  the  lactose  which 
is  estimated  by  means  of  Pavy's  or  Benedict's 
solution.  Starch  and  cellulose  interfere  with  the 
analysis  by  preventing  the  complete  precipitation 
of  the  casein  by  the  colloidal  iron. — G.  F.  U. 

6i-Dccylenic  acid,  a  previously  unknown  acid  from 
butter.  A.  Griin  and  T.  Wirth.  Ber.,  1922,  55, 
2197—2205. 

Butter  fat  is  treated  with  methyl  alcoholic 
hydrogen  chloride  (l-5%)  and  the  methyl  esters  are 
submitted  to  fractional  distillation  whereby  a 
portion,  b.p.  100°— 140°  C.  at  15  mm.,  iodine  value 
9'8,  is  obtained.  The  fraction  is  hydrolysed  and  a 
partial  separation  of  the  saturated  and  un- 
saturated acids  is  effected  by  prolonged  treatment 
of  the  corresponding  lead  salts  in  the  usual  maimer. 
A  mixture  of  approximately  equal  amounts  of 
decylenic  and  capric  acids  is  thus  produced,  which 
cannot  be  separated  more  completely  by  any  of  the 
ordinary  methods.  It  is,  therefore,  esterified  and 
the  methyl  esters  are  brominated  in  dry  chloroform 
solution.  The  products  are  readily  separated  from 
one     another     by     distillation     under     diminished 


Vol.  Xll.,  No.  17.] 


Cl.   XIXa.— FOODS. 


081  a 


pressure,  whereby  methyl  dihromocaprate,  b.p. 
185°— 186°  C.  at  7  mm.,  is"  obtained.  Treatment  of 
the  latter  with  52V  methyl  alcoholic  hydrogen 
chloride  and  zinc  yields  methyl  ft-decylenate, 
b.p.  115° — 116°  at  12  mm.,  which  is  hvdrolysed  to 
«i-decylenic  acid,  CH2:CH[CH2],.C02H,  a  colour- 
':  less,  fairly  mobile  liquid,  b.p.  142°  C.  at  4  mm., 
m.p.  below  0°  C.  The  constitution  of  the  acid  is 
deduced  from  its  conversion  by  ozone  into  azelaic 
acid  and  formaldehyde.  This  is  the  first  instance 
on  record  of  the  isolation  of  an  unsaturated  acid 
of  such  low  molecular  weight  or  of  one  containing 
a  terminal  double  bond  from  a  natural  fat. — H.  W. 

Soya   bean    milk.      E.    Remv.      Z.    Unters.    Xahr. 
Genussm.,  1922,  43,  380—381. 

A    sample   of    soya-bean    milk,    yellowish-white    in 

colour  and  having  a  sickly  sweet  taste  and  a  faintly 

acid     reaction,     gave     the     following     results     on 

analysis:     Water,    88-93%;    dry    matter,    11-07%; 

fat,  3-06%  ;  non-fatty  solids,  8-01%  ;  protein,  2"96%  ; 

starch,    0'57%;    glucose,    2"48%  ;    mineral    matter, 

0-63%;   alkalinity   of   ash,    6'44   c.c.   of  N/1   acid; 

j  germs  per  c.c,  4000.     The  gross  energy  content  was 

54  Cals.    (cow's  milk  70   Cals.).     Content  of  food- 

;  units,   27  (cow's  milk  34).     The  price  of  the  soya 

I  bean  milk  at  the  time  of  the  investigation  was  the 

same  as  that  of  cow's  milk.     It  cannot  therefore  be 

considered  to  be  an  economical  substitute  for  cow's 

milk— H.  C.  E. 

.Chlorides  in  foodstuffs;  Determination  of .    M. 

Bornand.  Mitt.  Lebensmittelunters.  u.  Hvg., 
1922,  13,  67—68.  Chem.  Zentr.,  1922,  93,  IV., 
66—67. 

The  organic  matter  is  destroyed  with  persulphate 
and  nitric  acid.  2 — 5  g.  or  10  c.c.  of  the  sample  is 
.treated  with  20 — 30  c.c.  of  water,  5 — 20  c.c.  of  con- 
centrated nitric  acid,  and  20  c.c.  of  ZV/10  silver 
nitrate  solution.  The  mixture  is  gently  heated, 
and  1 — 5  g.  of  potassium  persulphate  is  added  in 
small  portions  until  after  boiling  for  5 — 15  mins. 
the  liquid  is  quite  clear.  If  the  sample  is  very  rich 
in  fat  the  whole  of  the  fat  and  protein  is  not 
destroyed.  The  residue,  however,  remains  in 
jsuspension  and  does  not  interfere  with  the 
titration.  A  small  quantity  of  iron  alum  solution 
'is  added  to  the  solution,  which  is  diluted  with 
ilOO  c.c.  of  water  and  titrated  with  TV/ 10  thio- 
.cyanate.  In  order  to  prevent  the  oxidation  of  the 
chloride  to  chlorate  5  c.c.  of  formaldehyde  or 
acetaldehyde  is  added  towards  the  end  of  the  re- 
action. This  method  is  suitable  for  the  analysis  of 
urine,  bread,  milk,  wine,  meat  extract,  soup-cubes, 
and  cheese.    It  is  not  suitable  for  butter. — H.  C.  R. 

Phytin  content  of  foodstuffs;  Determination  of . 

!    E.  Arbenz.     Mitt.  Lebensmittelunters.   u.  Hyg., 
1922,  13,  45—52.    Chem.  Zentr.,  1922,  93,  IV.,  67. 

1?he  volumetric  method  of  Heubner  and  Stadler 
J.,  1914,  713)  was  employed.  The  sample  to  be 
inalysed  was  dried  at  36°  C.  if  necessary,  finely 
ground,  and  freed  from  fat.  A  weighed  quantity 
vas  then  treated  with  a  known  volume  of  0'6% 
lydrochloric  acid,  shaken,  and  filtered  after  stand- 
ng  for  some  hours.  The  residue  was  again  ex- 
racted  with  hydrochloric  acid  and  the  extraction 
epeated  until  the  filtrate  was  free  from  phytin. 
ror  each  20  c.c.  of  filtrate  10  c.c.  of  3%  ammonium 
hiocyanate  was  added,  the  volume  made  up  to 
00  c.c.  with  0'6%  hydrochloric  acid,  and  the 
olution  titrated  with  a  standard  solution  of  ferric 
hloride  (0'05 — 2%  Fe) ;  1  mg.  Fe  is  equivalent  to 
19  mg.  of  phosphorus  in  the  form  of  phytin.  A 
irge  number  of  extractions  are  necessary  to 
amove  all  the  phytin  from  foodstuffs  and  the 
ltrations  are  tedious.  The  percentage  of  phytin, 
eckoned  as  anhydrous  phytic  acid,  in  the  dry 
latter   of   various  foodstuffs   is   given   as   follows : 


Rice  bran,  4"232;  rice  flour,  0'216 ;  wheat  bran, 
5-073;  whole  meal,  0572;  wheat  flour,  0-208;  maize 
flour,  0857;  lentils,  0326;  peas,  0'561;  oatmeal, 
0506;  cocoa,  2230.  No  phytin  was  found  in 
carrots,  turnips,  cauliflower,  brussels  sprouts, 
cabbage,  spinach,  asparagus,  apples,  pears,  or  figs. 

— H.   C.  R. 

Cocoa;  Torrefaction  of .    R.  Lecoq.    J.  Pliarm. 

Chim.,   1922,  26,  96—101. 

The  torrefaction  of  cocoa  is  accompanied  by  a  loss 
in  weight  of  5 — 8%  according  to  the  duration  of 
the  operation.  This  loss  is  not  due  to  a  simple 
elimination  of  water,  which  in  itself  accounts  for 
little  more  than  half,  or  even  less,  of  the  total 
loss.  Chemicall}7,  torrefaction  involves  a  series  of 
complex  changes,  which  are  manifested  by  an  im- 
provement in  the  aroma  and  taste,  due  to  changes 
in  the  essential  oils,  and  the  destruction  or  modi- 
fication of  the  acids  of  fermentation,  and  the 
tannins,  by  alterations  in  the  colour  resulting  from 
the  action  of  heat  on  the  "cocoa  red,"  and  by  the 
gelatinisation  of  the  starch.  A  variation  in  the 
proportion  of  cacao  butter  as  torrefaction  pro- 
ceeded was  observed  with  certain  varieties.  At 
first  owing  to  loss  of  water  the  percentage  of  fat 
rises,  but  falls  again  as  the  constituents  of  the 
cocoa  are  attacked.  Finally  a  considerable  rise 
again  occurs  indicating  a  selective  destruction  of 
constituents  other  than  fat.  Torrefaction  is  also 
accompanied  by  a  notable  increase  in  the  propor- 
tion of  substances  soluble  in  water.  The  per- 
j  centages  of  xanthine  bases  remain  sensibly  un- 
I  altered  unless  the  heating  is  somewhat  severe  and 
|    prolonged.— G.  F.  M. 

'    Proteins  and  derivatives;  Precognition  of  by 

colour   reactions.      M.    A.    Rakusin.      Biochem. 
Zeits.,   1922,    130,   268—281. 

>  The  author  has  examined  a  large  number  of  vege- 
table and  animal  proteins,  enzymes,  and  toxins, 
in  respect  of  their  behaviour  to  eight  colour  re- 
actions, viz.,  the  biuret,  Millon,  xanthoproteic 
j  Liebermann,  Adamkiewitsch,  Molisch,  Pettenkofer, 
j  and  Ostromyslenski  reactions;  and  the  behaviour 
toward  the  sulphur  reactions  of  Vohl  and  Rakusin. 
Each  protein  corresponds  to  a  definite  complex  of 
reactions. — H.  K. 

Leucosin;  Isoelectric  point  of  the  vegetable  albumin 

.     H.  Liters  and  M.  Landauer.     Z.  Elektro- 

chem.,  1922,  28,  341—347. 
The  isoelectric  point  of  lencosin  was  determined 
by  five  different  methods,  with  the  following 
results:  from  the  maximum  of  coagulation, 
2'6xl0*5;  from  cataphoresis,  2'8xl0"s;  from  the 
maximum  of  alcohol  precipitation,  2'7xl0~5;  from 
the  minimum  of  the  internal  friction,  2-3xl0~s; 
and  from  the  maximum  of  the  surface  tension, 
2'2xl0"5.  The  isoelectric  point  of  serum-,  vege- 
table-, and  yeast-albumin  is  therefore  the  same, 
as  also  is  the  chemical  composition ;  only  in  the 
biological  properties  is  a  marked  difference  to  be 
found— J.  F.  S. 

Synthesis  of  9i-decylenic  acid.     Grim   and  Wirth. 
See  XII. 

Arsenic  content  of  marine  algce.    Jones.     See  XX. 

Patents. 
Milk :  Process  of  dissolving  dried  or  concentrated 

.     Plauson's   (Parent   Co.),   Ltd.     From   H. 

Plauson.  E.P.  182,612,  28.4.21. 
Dried  milk  is  treated  with  6 — 7  times  its  weight 
of  water  in  a  colloid  mill  (E.P.  155,836;  J.,  1922, 
357  a).  Oatmeal  or  other  nutrient  substances  may 
be  mixed  with  the  milk  previous  to  dispersing  in 
the  mill.— A.  G.  P. 


682  a 


Cl.  XIXb— WATER    PURIFICATION;     SANITATION. 


[Sept.  15,  1922. 


Milk  product;  Method  of  producing  a  condensed- 

.     H.   S.  Mellott,  Assr.  to  The  By-Products 

Recovery  Co.     U.S. P.  1,423,810,  25.7.22".     Appl., 
11.4.16. 

Milk  is  subjected  for  a  short  time  to  a  "disrupt- 
ing temperature,"  the  vapours  generated  being 
permitted  to  escape.  The  hot  product  is  then 
subjected  to  the  action  of  a  cooling  agent. — H.  H. 

Sulphite-cellulose     waste     liquor.       G.P.     352,624. 
Sec  V. 


XIXb.-WATEB  PURIFICATION ; 
SANITATION. 

Water  purification;  Investigation,  by  means  of  the 
hydrogen  electrode,  of  the  chemical  reactions  in- 
volved in .  R.  E.  Greenfield  and  A.  M.  Bus- 
well.  J.  Amer.  Chem.  Soc,  1922,  44,  1435—1412. 
The  shape  and  position  of  the  neutralisation  curves 
of  the  carbonates  of  sodium,  magnesium,  and  cal- 
cium, using  a  strong  acid,  is  unaffected  by  the 
metallic  ion,  but  the  inflection  point  occurs  at  a 
slightly  higher  pH  value  in  dilute  solutions  than 
in  more  concentrated  solutions.  The  precipitation 
of  magnesium  as  hydroxide  commences  at  pH  90 
and  is  complete  at  ps  10'6.  Calcium  carbonate  is 
completely  precipitated  at  pH  95.  Aluminium 
hydroxide  commences  to  precipitate  at  pa  4'0  and 
precipitation  is  complete  at  ps  6'5- — 7'5 ;  the  pre- 
cipitate commences  to  re-dissolve  at  p„  8"0  and 
solution  is  complete  at  pH  100—110.  \Cf.  J.C.S., 
Sept.)— J.   F.   S. 

Water;  Volumetric  determination  of  sulphates  in 

.    J.  Kuhlmann  and  J.  Grossfeld.    Z.  Unters. 

Nahr.  Genussm.,  1922,  43,  377—381. 

This  determination  is  best  carried  out  by  precipi- 
tating the  sulphates  with  a  known  quantity  of 
barium  chloride,  precipitating  the  excess  of  barium 
with  a  known  quantity  of  potassium  chromate, 
and  titrating  the  excess  of  chromate  iodometri- 
cally.  Only  one  filtration  is  necessary,  as  the 
chromate  has  no  action  on  the  precipitated  barium 
sulphate.  All  precipitations  are  carried  out  in 
cold  solutions  and  the  precipitates  are  retained 
on  special  "  kieselguhr  filter  papers,"  which  admit 
of  rapid  filtering.  The  method,  which  is  described 
in  detail,  is  easy  to  carrv  out,  rapid,  and  accurate. 

— H.  C.  R. 

Bacteria  fermenting  lactose,  and  their  significance 
in  water  analysis.  M.  Levine.  Iowa  State  Coll. 
Agric,  1921,  20  [31].     Bull.  62,  127  pages. 

The  whole  of  the  colon  group  of  organisms  are 
characterised  by  the  following  reactions :  forma- 
tion of  acid  and  of  gas  from  monosaccharoses  and 
from  lactose;  reduction  of  nitrates;  production  of 
acidity  in,  and  clotting  of,  milk.  All  other  tests 
vary  with  varieties  of  organisms.  There  is  striking 
correlation  in  the  results  from  the  following  tests  :  — 
(1)  Gas  ratio,  (2)  acidity  to  methyl  red,  (3)  Vosges- 
Proskauer  reaction,  (4)  growth  in  uric  acid  media, 
(5)  appearance  on  agar  media.  These  five  tests 
serve  to  distinguish  between  members  of  colon 
organisms  of  the  type  B.  coli  and  those  of  the 
aerogenes  group.  Tests  (2)  or,  preferably,  (3)  may 
be  used  for  the  routine  separation  of  the  two  sub- 
sections. A  more  detailed  scheme  is  given  for  the 
differentiation  of  B.  coli,  acidi-lactici,  communior 
ncapolitanum,  coscoroba,  aerogenes,  and  cloacae. 
The  aerogenes  group  are  less  indicative  of  recent 
pollution  than  B.  coli,  since  they  are  more  common 
in  soil  than  in  faeces  and  more  persistent  in  water. 
Spore-forming  lactose-fermenting  organisms  such 
as  Gl.  rn.elch.ii  and  Cl.  enteritidis  sporoge.nes  are 
considered  to  be  of  no  value  in  detecting  pollution 
of  water  supplies. — A.  G.  P. 


Cresol   in   cresol  soap  solutions;  Determination  of 

.      O.    Schmatolla.      Chem.-Zeit.,    1922,    46, 

661 — 662. 

The  method  previously  described  by  Prank  (J., 
1922,  433  a)  yields  erroneous  results,  as  no  provision 
is  made  for  neutralising  the  soap  solution,  which, 
if  it  contains  free  fatty  acid,  yields  a  portion  of 
this  to  the  ether,  and  if  alkaline  retains  part  of 
the  cresol.  Again,  the  cresol  obtained  cannot  be 
freed  from  ether  by  evaporation  of  the  latter  at 
100°  C,  or  even  at  150°  C.  Accurate  results  may 
be  obtained  by  the  following  method :  the  soap 
solution  is  made  slightly  acid  with  sulphuric  acid 
and  distilled  up  to  250°  C.  or  in  a  current  of  steam. 
The  distillate  is  treated  with  a  large  excess  of 
caustic  potash,  concentrated,  and  the  cresol  pre- 
cipitated by  acidifying  the  solution  with  hydro- 
chloric acid  and  saturating  it  with  salt  in  a 
graduated  tube.  The  volume  of  cresol  is  then  read 
off;  it  contains  6%  of  water. — A.  R.  P. 

Hypochlorite  solution;  The  effect  of  Dakin's  

on  certain  organic  substances.     N.  O.   Engfeldt 
Z.  physiol.  Chem.,  1922,  121,  18—61. 

The  action  of  Dakin's  hypochlorite  solution  on 
carbohydrates,  fats,  soaps  and  glycerol,  proteins, 
amino-acids,  ammonia,  and  aldehydes  has  been 
investigated.  Fats,  soaps,  and  glycerol  react  only 
to  a  small  extent;  most  of  the  other  substances 
investigated  react  much  more  completely  and 
rapidly. — \V.  O.  K. 

Effluent  spent  liquors  from  the  distillation  of 
ammoniacal  liquor;  Treatment  of  .  Fifty- 
eighth  Annuall  Report  on  Alkali,  etc.  Works, 
1921,  9—20. 

Effluent  spent  liquor  from  an  ammonia  still  was 
'  passed  through  the  usual  settling  pits  and  then 
while  still  hot  was  passed  down  a  scrubber,  18  ins. 
high  and  5  ins.  diameter,  packed  with  coke.  Waste 
furnace  gases  containing  the  equivalent  of  1  grain 
H,S04  per  cub.  ft.  were  passed  up  the  scrubber, 
and  it  was  found  that,  with  a  liquor  feed  of  160  c.c. 
per  min.,  85%  of  the  phenols  in  the  liquor  could  be 
volatilised  and  that  the  liquor  could  be  decolorised 
as  a  result  of  the  neutralisation  of  the  alkali.  In 
preliminary  trials  with  a  working  scale  plant, 
during  which  the  supply  of  waste  gases  was  in- 
adequate, 56%  of  the  phenols  and  7"5%  of  the 
thiocyanate  were  removed,  while  the  amount  of 
oxvgen  required  for  the  complete  oxidation  of  the 
liquor  was  reduced  bv  315%.  (Cf.  J.,  1922,  316  B; 
also  cf.  Skirrow,  1908,  58;  Fowler  and  others.  1911, 
174;  Frankland  and  Silvester,  1907,  231.)— H.  Hg. 

Phenol  in  trade  liquors;  Estimation  of .    Fifty- 
eighth    Annual   Report    on    Alkali,    etc.   Works. 
1921,  22—28. 
When  phenol  is  distilled  from  effluent  spent  liquors 
from  ammonia  distillation  plants  as  in  the  method 
described  by  Skirrow  (J.,  1908,  58),  the  passage  of 
the  vapours  through  a  flask  containing  a  solution 
of  sodium  carbonate  and  lead  carbonate  maintained 
at   the   boiling   point   prevents  the  necessity  of  a 
second  distillation,  but  leads  to  low  results  owing 
to  the  retention  of  phenol  by  the  sodium  carl" 
solution.     Tho  catch  flask  may  be  omitted  if  35  g. 
of  salt  and  a  slight  excess  of  lead  acetate  solutioi 
are  added  to  100  c.c.  of  the  liquor,  rendered  slightly 
acid     if     necessary,     prior     to     tho     distillation 
Volatilisation  of  acid  is  prevented  by  the  addition 
of    precipitated   chalk.      Liquors   containing   basic 
organic     compounds     must     bo     evaporated     with 
caustic  soda  prior  to  tho  distillation. — H.  Hg. 

Tellurium    poisoning;    A    rare    case   of   .     ^ 

Adolphi.    Chem.-Zeit.,  1922,  46,  722. 
Three  cases  of  acute  poisoning  by  tellurous  acid 


Vol.  XLI.,  Xo.  17.]     Ci»  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


683  a 


occurred  during  the  smelting  of  some  platinum  mud 
which  had  been  obtained  as  a  by-product  from 
Siberian  gold  ores  containing  as  impurities 
tellurides  of  gold  and  silver.  During  the  melting, 
the  tellurous  acid  volatilised  with  the  accompani- 
ment of  a  white  fume  and  a  greenish  flame.  The 
symptoms  observed  in  the  victims  were  weakness, 
dizziness,  greatly  accelerated  frequency  of  breath- 
ing and  of  the  pulse,  and  a  foul  garlic-like  odour 
of  the  breath,  and  in  one  case  lasted  8 — 10  weeks. 

— G.  F.  M. 

Corrosion  of  metals  by  water.    West.    See  X. 

Patents. 

Feed  water  of  steam  generators;  Heating  and 
decanting    apparatus   for    use    in   purifying    the 

.     P.  Kestner.     E.P.  167.142.  7.3.21.     Com., 

27.7.20. 

Steam  from  a  continuous  blow-off  from  a  boiler 
enters  the  upper  part  of  a  cylindrical  settling 
tank  (in  which  condensed  water  collects)  and 
passes  thence  to  a  decanting  tank  where  it  heats 
incoming  natural  water.  The  heated  water  from 
the  decanting  and  settling  tanks  is  mixed  in  an 
outer  vessel  below  a  filter,  through  which  the  mixed 
waters  pass  in  an  upward  direction  to  the  outlet. 

—A.  G.  P. 

Lime  and  sulphur;  Compound  of  — —  stabilised 
with  an  aromatic  compound.  M.  S.  Hopkins. 
U.S. P.     1.422,977,  18.7.22.     AppL,  8.7.21. 

A  composition  is  prepared  including  a  calcium  poly- 
sulphide,  and  containing  1 — 10%  of  the  calcium 
salt  of  an  aromatic  sulphonic  acid,  e.g.,  calcium 
naphthalenesulphonate. — A.  G.  P. 

Lime-sulphur  composition;  Method  of  making  dry 

soluble  .     E.  H.  French.     U.S. P.  1,423,605, 

25.7.22.     Appl.,  11.8.19. 

A  lime-sulphur  solution  is  evaporated  in  an  atmos- 
phere of  non-oxidising  gas. — A.  G.  P. 

Water  for  softening,  sterilising  and  like  purposes; 

Treatment    of  .      H.    J.    Magrath.     U.S.P. 

1,423,132,  18.7.22.     Appl.,  31.8.21. 

See  E.P.  158,498  of  1920;  J.,  1921,  366  a. 


XX— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Quinine  and  strychnine,;  Extraction  of  — ■ —  from 
solutions  of  varying  hydrogen  ion  concentration; 
a  method  for  the  separation  of  strychnine  from 
quinine.  N.  Evers.  Brit.  Pharm.  Conf.,  Julv. 
Pharm.  J.,  1922,  109,  90—91. 

In  order  to  ensure  complete  extraction  of  strychnine 
as  alkaloid  from  aqueous  solution  by  chloroform. 
pB  must  not  be  allowed  to  fall  below  7,  i.e.,  the 
solution  must  be  alkaline.  Strychnine  hydrochloride 
is  dissolved  to  a  considerable  extent  from  acid 
solution  by  chloroform,  the  amount  rising  with 
increasing  acidity,  and  1  %  of  strychnine  hydro- 
chloride in  2JV  hydrochloric  acid  can  be  completely 
removed  by  five  extractions  with  chloioform.  In 
the  case  of  quinine  the  amount  of  hydrochloride 
extracted  is  diminishingly  small  with  increasing 
acidity  above  pB  3  and  in  2X  hydrochloric  acid  is 
practically  nil,  and  hence  the  two  alkaloids  may 
be  quantitatively  separated  by  extracting  the 
strychnine  as  hydrochloride  from  2AT  hydrochloric 
acid  solution,  and  then  the  quinine  as  alkaloid  after 
rendering  alkaline.  For  the  complete  extraction 
:  of  quinine  as  alkaloid  pa  must  not  be  less  than  8 ; 
with  pB  6 — 7  the  whole  of  the  quinine  is  extracted 
by  chloroform,  but  partially  as  hydrochloride.     At 


a  greater  acidity  than  pH  4  there  is  a  sudden  reduc- 
tion in  the  amount  of  hydrochloride  dissolved, 
corresponding  with  the  formation  of  the  acid  hydro- 
chloride, and  the  quantity  extracted  rapidly 
becomes  negligible.  The  above  method  of  separa- 
tion applied  to  the  estimation  of  strychnine  and 
quinine  in  Easton's  syrup  and  iron  quinine  and 
strychnine  citrates  gives  results  which,  although 
tending  to  be  somewhat  on  the  low  side,  are  suffi- 
ciently accurate  for  ordinary  purposes,  and  prob- 
ably quite  as  accurate  as  those  obtained  by  other 
more  elaborate  and  tedious  methods. — G.  F.  M. 

Quinine  salts;  Rapid  estimation  of  ■ in  tablets. 

S.  G.  Liversedge  and  F.  W.  Audrews.  Brit. 
Pharm.  Conf.,  Julv.  Pharm.  J.,  1922,  109, 
92—93. 

Quinine  in  quinine  salts  or  in  tablets  can  be 
rapidly  estimated  by  dissolving  or  extracting  the 
alkaloidal  salt  with  20  c.c.  of  A7/5  sulphuric  acid, 
adding  a  known  excess  of  AT/2  sodium  hydroxide, 
removing  the  liberated  quinine  with  ether  saturated 
with  water,  and  subsequently  titrating  the  excess 
of  alkali  with  AT/5  sulphuric  acid,  using  phenol- 
phthalein  as  indicator.  If  boric  acid  is  present 
liBeniatoxylin  is  used  as  indicator.  Sugar,  starch, 
gum,  and  tale,  which  may  be  present  in  quinine 
tablets,  do  not  affect  the  accuracy  of  the  deter- 
mination.— G.  F.  M. 

Scopoline.  VI.  Constitution  of  scopolamine  and 
scopoline.  The  Hofmann  degradation  of  scopoline. 
K.  Hess  and  O.  Wahl.  Ber.,  1922,  55,  1979— 
2025. 

(//-Scopoline  can  be  esterified  quantitatively  with 
c-desoxytropic  (o-phenylpropioiiR-)  acid  with  the 
formation  of  two  racemic  desoxytropylscopoleins, 
neither  of  which  is  identical  with  the  single  racemic 
compound  (desoxyscopolamine)  prepared  by  con- 
verting scopolamine  by  loss  of  water  into  aposco- 
polamine  and  reduction  of  the  latter.  The  authors 
therefore  consider  that   King's  conception  of  the 

,  partially  racemic  nature  of  /-scopolamine  is  no 
longer  tenable  (<'/.  Chem.  Soc.  Trans.,  1919,  115, 
476,  974) ;  that  scopoline  is  not  present  as  such  in 
the  alcoholic  component  of  /-scopolamine  but  is 
formed  therefrom  by  structural  change  during 
hydrolysis,  and  that  since  desoxyscopolamine  exists 
in  only  a  single  racemic  form  it  contains  only  one 
asymmetric  carbon  atom  and,  as  this  is  present  in 
the   tropyl   group,    it   follows  that   the  basic  com- 

!  ponent  is  itself  symmetrical  in  structure.  Formula? 
are  proposed  for  scopolamine  and  scopoline  respec- 
tively.    (Cf.  J.C.S.,  Sept.)— H.  W. 

Anhalonium  alkaloids.  IV.  Synthesis  of  anhal- 
amine.  E.  Spiith  and  H.  Rbder.  Monatsh., 
1922,  43,  93—111. 

6  -  HYBROXY  -  7.8 - DIMETHOXT-1 .2.3 .4-TETRAHYDROISO - 

i  qijinoline  has  been  prepared  synthetically  and 
shown  to  be  identical  with  anhalamine  from  the 
Echinocactus  Lewinii.     {Cf.  J.C.S.,  Sept.) 

— C.  K.  I. 

Alkaloids;    Report  on  .     A.  R.  Bliss,  jun.     J. 

Assoc.  Off.  Agr.  Chem.,  1922,  5,  564—573. 

In  the  assay  of  strychnine  in  tablets  or  in  liquids 
<    the   volumetric   check   obtained   by   dissolving   the 

isolated  alkaloid  in  alcohol,  adding  excess  of  N 1 10 

sulphuric  acid  and  titrating  back  with  AT/50 
|  potassium  hydroxide,  with  methyl  red  as  indicator, 
t  gave  results  in  satisfactory  agreement  with  the 
j  gravimetric  determination.  The  method  already 
;  published  for  the  separation  of  quinine  and  strych- 
;    nine  (J.  Assoc.  Off.  Agr.  Chem.,  1921,  4,  416)  was 

tested  and  gave  much  more  accurate  results  than 
!    either     the     oxalate,     tartrate,     or     ferrocyanide 

methods.  The  method  for  the  determination  of 
|    alkaloids  in  physostigma  preparations  already  pub- 


G84A 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


[Sept.  15,  1922 


lished  (loc.  cit.)  gives  more  accurate  results  than 
the  U.S. P.  method.  A  modification  of  the  official 
method  for  the  assay  of  fluid  extract  of  hyoscyamus, 
in  which  at  least  30  c.c.  of  water  and  5 — 10  c.c.  of 
Liq.  Ammonia  Fortior.  were  used,  and  before 
titrating,  the  residue  was  treated  twice  with  5  c.c. 
of  ether,  evaporating  to  dryness  each  time,  gave 
satisfactory  results,  higher  than  those  obtained  by 
the  (J.S.P.  method.  A  preliminary  report  is  made 
on  the  determination  of  the  alkaloids  of  ipeca- 
cuanha, and  attention  is  particularly  drawn  to  the 
necessity  of  avoiding  overheating  in  evaporating 
the  ethereal  extracts,  otherwise  decomposition  of 
the  alkaloids,  notably  of  cephaeline,  will  cause  a 
great  discrepancy  between  the  gravimetric  and 
volumetric  results.  The  last  portions  of  ether 
should  be  evaporated  spontaneously  without  heat, 
and  the  residue  dried  at  a  temperature  not  exceed- 
ing 60°  C— G.  F.  M. 

Alkaloidal  bismuthic  iodides;   Method  for  the  pre- 
paration  of   in   a   crystalline    form.      M. 

Francois  and  L.  G.  Blanc.  Comptes  rend.,  1922, 
175,  273—274. 
Crystalline  bismuthic  iodides  of  caffeine,  theo- 
bromine, morphine,  codeine,  quinine,  atropine, 
arecoline,  pilocarpine,  sparteine,  nicotine,  aniline, 
pyridine,  and  crinoline  were  prepared  from  potas- 
sium bismuthic  iodide  and  acid  solutions  of  the 
hydrochlorides  of  the  bases  by  methods  precisely 
analogous  to  those  employed  for  the  preparation  of 
the  double  mercuric  iodides  (J.,  1922,  645  a).  These 
compounds  form  extremely  well-defined  microscopic 
crystals,  and  in  the  bulk  are  considerably  darker 
in  colour  than  the  corresponding  amorphous  sub- 
stances. They  contain  no  water  of  crystallisation, 
and  have  the  general  formula  (Bil3)  x(Alk.HI)  y. 
They  appear  to  be  adapted  for  the  microchemieal 
characterisation  of  the  alkaloids. — G.  F.  M. 

Mwrosublirnation  of  plant  products.     A.  Viehoever. 

J.  Assoc.  Off.  Agr.  Chem.,  1922,  5,  557—559. 
The  sublimation  is  conducted  in  a  small  beaker- 
like  container  with  a  small  cup,  about  lxl  cm., 
extending  from  the  bottom.  The  cup  containing 
the  plant  material,  is  heated  in  a  cottonseed-oil 
bath  to  the  desired  temperature,  and  a  small  glass 
placed  over  the  opening  serves  as  a  receiver  for  the 
sublimate.  In  this  way  santonin  was  obtained  in 
characteristic  crystalline  form  from  Artemisia  etna 
and  .4.  neo-mcxicana,  and  was  identified  further 
by  the  blue  coloration  with  alcoholic  furfural  solu- 
tion and  sulphuric  acid,  and  by  the  greenish  pre- 
cipitate with  hydriodic  acid— iodine.  Caffeine  was 
obtained  from  the  leaves  of  llex-cassine,  Michx.,  and 
was  identified  by  the  characteristic  crystals  pro- 
duced under  the  micriscope  on  addition  of  mercuric 
chloride  solution.  From  Piper  cubeba  needle- 
shaped  crystals  of  cubebin  were  obtained,  and  iden- 
tified by  the  blood-red  coloration  with  sulphuric 
acid.  Crystals  of  hydrastine  were  obtained  from 
Hydrastis  canadensis. — G.  F.  M. 

Digitonin  and  its  derivatives.    A.  Windaus  and  K. 

Weil.  Z.  physidl.  Chem,  1922,  121,  62—79. 
The  following  formulae  are  ascribed  to  the  com- 
pounds previously  investigated  by  Kiliani :  — 
Digitonin,  C„H9p62!1;  digitogenin,  C2,H4,05 ;  digi- 
togenic  acid,  /3-digitogenic  acid,  and  digitoic  acid, 
C20H3807;  oxydigitogenic  acid,  C26H3B0, ;  digitic 
acid/b/6H3sC-:0.  \cf   J.C.S.,  Sept.).-W.  O.  K. 

Santonin;  Occurrence  of .    H.  G.  Greenish  and 

C.  E.  Pearson.  Brit.  Pharm.  Conf.,  July.   Pharm. 
J.,  1922,  109,  85. 
The  leaves  of  Artemisia  brevifolia  gave  on  extrac- 
tion with  chloroform  T09%  of  santonin  calculated 
on  the  material  dried  at  100°  C     From  A.  mexicana 


and  .1.  redolens,  species  occurring  widely  distributed 
in  North  and  South  Mexico,  no  santonin  could  be 
obtained  by  extraction  of  either  the  leaves  or  the 
sterna,  although  Viehoever  and  Oapen  have  reported 
its  presence  in  these  species  (Amer.  J.  Pharm., 
1922,  94,  446).  The  leaves  of  A.  Abrotanum  and  A. 
vulgaris  were  also  examined  for  santonin  but  with- 
out positive  results. — G.  F.  M. 

Arsenic  content  of  some  of  the  marine  algce.    A.  J. 

Jones.     Brit.   Pharm.   Conf.,   July.     Pharm.  J., 

1922,  109,  86—87. 
Seaweeds  generally  contain  small  proportions  of 
arsenic,  varying  from  about  0"01 %  in  the  coarser 
varieties,  such  as  Laminaria  and  Fucus  sp.,  to  as 
little  as  0'0005%  in  the  so-called  edible  seaweeds, 
such  as  Chondrus  crispus,  or  Irish  moss,  and 
Gigartina  mammillosa,  the  above  percentages  being 
calculated  on  the  air-dried  weed.  These  algae 
readily  yield  a  large  proportion  of  their  arsenic 
content  to  cold  water,  and  in  one  case  nearly  one- 
sixth  of  the  total  amount  was  removed  by  contact 
with  distilled  water  for  15  mins. — G.  F.  M. 

Adrenaline;   The   comparative   activity   of   racemie 

ana   l-adrenaline    in    increasing   the    blood- 

pressure.  A.  Richaud.  J.  Pharm.  Chim.,  1922, 
26,  81—86. 
r-ADKENALiNE  employed  in  very  small  doses  of  the 
order  of  0'01  mg.  increases  the  blood-pressure  to  a 
somewhat  lesser  degree  than  (-adrenaline,  but  the 
difference  in  activity  is  not  by  any  means  so  great 
as  has  been  supposed.  It  is  not  constant,  but 
rarely  exceeds  10 — 15%,  with  25 — 30%  as  a 
maximum  difference.  As  the  dose  is  increased  to 
0-04 — 0"05  mg.  the  difference  in  activity  disappears 
entirely,  and  as  the  usual  therapeutic  dose  is  from 
004  to  01  mg.  there  is  no  disadvantage  attendant 
on  the  use  of  the  racemie  compound,  and  the 
resolution  of  the  synthetic  substance  into  its  optical 
isomerides  is  therefore  quite  unnecessary. 

— G.  F.  M. 

Thymine;  Detection    of  in    the    presence   of 

sugar.  H.  J.  Deuel  and  O.  Baudisch.  J.  Amor. 
Chem.  Soc,  1922,  44,  1581—1584. 
Thymine  is  precipitated  in  the  form  of  its  mercury 
salt,  from  a  solution  which  also  contains  sugar, 
by  the  addition  of  saturated  mercuric  chloride 
solution  (10  c.c.)  and  sufficient  sodium  hydroxide 
solution  to  make  the  mixture  decidedly  alkaline. 
The  precipitate  is  separated  by  centrifuging,  and, 
after  pouring  off  the  supernatant  liquid,  is 
thoroughly  mixed  with  distilled  water  (100  c.c.) 
and  again  centrifuged.  It  is  then  suspended  in 
water  (100  c.c.)  and  decomposed  with  hydrogen 
sulphide;  the  precipitated  mercuric  sulphide  is 
filtered  off  and  excess  of  hydrogen  sulphide  is  re- 
moved by  boiling  the  filtrate.  The  remaining 
liquid  is  cooled  and  made  up  to  100  c.c.  Oxidation 
of  the  thymine  is  effected  as  described  by  BaudisQB 
(Ber.,  1921,  54,  406),  and  the  test  is  completed  by 
the  method  of  Johnson  and  Baudisch  (J.,  1!'22. 
194  a).  Thymine  in  quantities  of  10—15  mg.  may 
readily  be  detected  in  the  daylight,  whilst  quanti- 
ties as  small  as  1  mg.  may  be  detected  by  the  use 
of  the  iron  arc  light. — H.  W. 

Scammony    resin;    Ether-solubility    of    .      H. 

Dcane     and   W.    E.    Edmonton.      Brit.    Pharm. 

Conf..  July.  Pharm.  J.,  1922,  1C9,  82. 
For  the  determination  of  the  solubility  of  soam- 
mony  resin  in  ether,  extraction  in  a  Soxhlet 
apparatus  has  been  suggested,  but  to  obtain  con- 
cordant results  by  this  method  it  is  necessary  to 
have  the  conditions  of  working  very  closely  defined. 
Variations  in  the  size  of  the  extractor  and  the  fre- 
quency of  siphoning  may  lead  to  discordant  results 
Values   varying   from   76"7   to  97%    were  obtained 


vol.  XII.,  No.  17.]       d-  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  Ac. 


685  a 


with  the  same  sample  of  resin  extracted  with  ether 
under  different  conditions  in  Soxhlet  extractors. 

— G.  F.  BE. 

Butiilethylmalonylurea,  a  new  hypnotic  of  the  bar- 
bituric acid  series.  P.  Carnot  and  M.  Tiffeneau. 
Comptes  rend.,  1922,  175,  241—244. 
A  pharmacodynamic.!!,  and  clinical  study  was  made 
of  a  new  series  of  unsymnietrically  disubstituted 
malonylureas.  The  hypnotic  powers  referred  to 
that  of  diethylmalonylurea  (veronal)  as  10,  were  as 
follows: — Ethylmethylmalonylurea  5,  ethylpropyl- 
malonylurea  20,  ethylbutylmalonylurea  30,  ethyliso- 
butylmalonylurea  30,  ethylisoamylmalonylurea  30, 
ethylheptylmalonylurea  25.  As  in  the  symmetri- 
cally disubstituted  series  the  members  containing 
10  and  11  C  atoms  are  the  most  active,  and  the 
ethvlhutyl-derirative  appears  to  be  particularly 
suitable  for  therapeutic  use  on  account  of  its 
greater  solubility  in  water,  which  renders  it  rapid 
in  action  and  quickly  eliminated.  The  toxicity  of 
this  derivative  is  proportional  to  its  hypnotic 
activity,  18  eg.  per  kg.  weight  of  animal  being  a 
lethal  dose  for  a  mouse,  compared  with  54  eg.  of 
veronal.  The  normal  dose  of  the  ethylbutyl- 
derivative  for  a  human  being  is  5 — 10  eg.  subcu- 
taneously.  and  10 — 20  eg.  per  os. — G.  F.  M. 

Pint iinun  black;  Catalysis  by .    G.  Vavon  and 

A.  Husson.     Comptes  rend.,  1922,  175,  277 — 279. 

A  platinum  black  catalyst  which  has  become 
poisoned  and  inactive  in  the  hydrogenation  of  a 
particular  substance  is  not  necessarily  inactive 
towards  another  substance,  and  experiments  were 
undertaken  to  determine  the  point  at  which  absorp- 
tion of  hydrogen  ceased  with  various  unsaturated 
substances  when  the  catalyst  was  progressively 
poisoned  by  the  gradual  addition  of  small  quan- 
tities of  carbon  bisulphide.  This  limiting  point 
was  found  to  vary  with  the  nature  of  the  substance, 
with  the  nature  of  the  solvent,  with  the  quality  of 
the  platinum,  and  with  the  amount  of  the  catalyst 
used,  but  to  be  independent  of  the  concentration 
of  the  solution.  In  one  instance  using  5'5  g.  of 
substance,  50  c.c.  of  alcohol,  and  0'2  g.  of  platinum, 
the  amount  of  carbon  bisulphide  required  to  inhibit 
hydrogenation  was  11  mg.  for  cyclohexene,  08  mg. 
for  nitrobenzene,  0'5  mg.  for  cinnamic  acid,  and 
0"4  mg.  for  acetophenone,  so  that  a  catalyst  which 
was  inactive  towards  acetophenone  would  still 
hvdrogenate  nitrobenzene  or  cvclohexene. 

— G.  F.  M. 

Furfural;  Estimation  of  small  quantities  of  

colorimetrically.  P.  Fleury  and  G.  Poirot.  J. 
Pharm.  Chim.,  1922,  26,  87—96. 
Small  quantities  of  furfural  may  be  determined 
colorimetrically  with  an  accuracy  of  about  ±1%, 
by  means  of  the  blue  coloration  which  is  formed  in 
an  acidic  medium  with  orcinol  in  a  suitable  solvent, 
preferably  acetic  acid.  The  reagents  required  are 
hydrochloric  acid  (sp.  gr.  1'19)  containing  0"02  c.c. 
of  solution  of  ferric  chloride  per  litre ;  glacial  acetic 
acid  containing  1  g.  of  orcinol  in  1600  c.c.  and  a 
standard  solution  of  furfural  containing  1  g.  in 
10  1.  of  1%  acetic  acid.  1  c.c.  of  the  standard 
solution  or  of  the  solution  under  examination  is 
mixed  with  4  c.c.  of  the  acetic  acid-orcinol  solution 
and  5  c.c.  of  the  ferro-hydrochloric  acid  solution 
and  warmed  in  a  water  bath  for  1  minute.  After 
keeping  for  30  mins.  the  maximum  coloration  is 
developed,  and  comparison  is  made  with  the 
standard  in  a  Duboscq  colorimeter.     The  reaction 

I  has  a  sensitiveness  of  about  4  mg.  of  furfural  per 

!  litre— G.  F.  M. 

Urea;  Direct  synthesis  of staiting  from  carbon 

dioxide  and  ammonia.  K.  C.  Bailev.  Comptes 
rend.,  1922,  175,  279—281. 

A  yield  of  14';  of  urea  calculated  on  carbon  dioxide 


was  obtained  by  passing  this  gas  with  an  excess  of 
ammonia  through  a  quartz  tube,  heated  to  redness, 
and  traversed  by  a  concentric  glass  tube  through 
which  cold  water  was  circulated.  The  urea  was 
deposited  on  the  cool  walls  of  the  latter,  and  by 
using  thoria  or  alumina  as  catalysts  the  yield  was 
increased  to  19%.  By  re-circulation  of  the  unused 
carbon  dioxide  the  yield  was  raised  to  50%  or  more. 
Above  500°  C.  no  urea  was  formed,  and  at  450°  C. 
in  presence  of  thoria,  only  a  small  quantity.  As 
the  experiments  were  conducted  at  atmospheric 
pressure  and  the  product  was  always  accompanied 
by  a  small  amount  of  ammonium  cyanate,  ammonium 
carbamate  cannot  be  considered  to  be  an  interme- 
diate product,  and  it  seems  probable  that  the 
reactions  occurring  are  represented  by  the  equa- 
tions :  — C02+NH3  =  H20+HO.C  =  N ;  H0.CN±7 
H.N:CO;  H.N:CO+NH3  =  CO(NH,)3;  HO.CN+ 
NH^NH.O.CX.— G.  F.  M. 

Sodium   chaulmoograte    or   gynocardate;    Prepara- 
tion of .    H.  C.  T.  Gardner.  Pharm.  J.,  1922, 

109,  154—155. 

Genuine  Taraktogenos  Kurzii  (chaulmoogra)  oil 
(80  pts.)  is  saponified  with  sodium  hydroxide  (14 
pts.)  by  boiling  for  6  hrs.  with  lye  of  26°  B.  (sp. 
gr.  T22).  After  cooling  salt  is  added  and  the 
precipitated  soap  is  removed,  dissolved  in  cold 
water,  and  decomposed  by  the  addition  of  31  pts. 
of  sulphuric  acid  (sp.  gr.  T530).  The  liberated 
fatty  acids  are  dissolved  in  80 — 90  pts.  of  alcohol, 
and  the  solution  cooled  to  8° — 12°  C.  for  some  hours. 
The  acids  which  separate  are  removed  and  the 
alcohol  is  distilled  from  the  residue  under  reduced 
pressure.  The  dry  fatty  acids  remaining  should 
melt  at  32° — 34°  C,  otherwise  the  operation  must 
be  repeated  until  this  in. p.  is  attained.  The  sodium 
salts  prepared  by  exactly  neutralising  (to 
phenolphthalein)  the  alcoholic  solution  of  these 
acids  of  m.p.  32° — 34°  C.  with  sodium  hydroxide  are 
satisfactory  for  tlierapeutic  use,  and  are  soluble  in 
water.  The  dry  salt  is  isolated  by  distilling  off  the 
alcohol  in  vacuo  at  a  temperature  not  exceeding  80° 
C,  and  preferably  lower,  to  prevent  darkening. 
The  drv  salt  should  be  stored  in  air-tight  containers. 

— G.  F.  M. 

Potassium  acetate;  Oxidation  of to  potassium 

oxalate.        W.     L.     Evans     and    P.     R.     Hines. 
J.   Amor.   Chem.   Soc.,   1922,  44,  1543— 154G. 

Potassium  acetate  may  be  oxidised  to  potassium 
oxalate  with  alkaline  permanganate  under  certain 
definite  conditions.  The  yield  of  oxalic  acid  is  a 
function  of  the  concentration  of  the  reacting 
materials,  the  temperature,  and  the  duration  of  the 
experiment. — H.  W. 

Peppermint   oils;  Differentiation   of  Japanese  and 

American   .      E.   O.   Eaton.      J.   Assoc.   Off. 

Agr.  Chem.,  1922,  5,  597—599. 

Japanese  peppermint  oil  derived  from  Mentha 
arvensis  may  be  quickly  differentiated  from  the  oil 
of  Mentha  piperita  by  the  following  colour  reac- 
tion: 5  drops  of  the  oil  and  1  c.c.  of  glacial  acetic 
acid  are  heated  with  1  drop  of  nitric  acid  in  a 
water  bath  to  about  60°  C  for  about  2  mins.  A 
violet  or  bluish  colour  develops  in  M.  piperita  oil 
in  a  few  minutes  when  observed  by  transmitted 
light,  and  a  copper-coloured  fluorescence  by  re- 
flected light.  Japanese  oils  usually  show  a  straw 
colour  or  sometimes  a  very  faint  blue  colour,  but  no 
copper-coloured  fluorescence.  The  method  of 
storage  of  .1/.  piperita  oils  has  some  effect  on  the 
reaction,  oils  stored  in  open  vessels  in  sunlight 
giving  a  negative  result  after  a  few  months,  but  m 
every  case  oils  which  had  lost  their  ability  to  give 
the  reaction  recovered  the  property  on  being  treated 
with  nascent  hydrogen  and  subsequently  steam 
distilled.     Japanese  oils  treated  in  the  same  way 


G8GA. 


Cl.   XX.— ORGANIC  PRODUCTS;  MEDICINAL  SUBSTANCES,  &o. 


[Sept.  15,  1922. 


still  gave  a  negative  test.  The  refractive  index 
and  the  sp.  gr.  of  Japanese  oils  are  lower  than  those 
of  M.  piperita  oik,  and  the  odour  and  taste  are  also 
inferior. — G.  F.  M. 

Aceiol.     Baudisch  and  Deuel.     See  XVII. 

Yeast   cells  and   saponin    substances.      Boas.      See 
XVIII. 

Magnesium      compound      of      8-hydroxyquinoline. 
jVIbrner.     See  XXIII. 

Patents. 

C'olloidally  soluble  substances  and  of  suspensions  or 

emulsions;  Process  for  the  manufacture  of  . 

L.     Lilienfeld.      E.P.     156,725,    7.1.21.      Conv., 
1.8.19. 

Water-soluble  alkyl  or  aryl  ethers  of  poly- 
saccharides of  the  empirical  formula  (C„H1(,Os)  „ 
such  as  cellulose  or  its  conversion  products  or  de- 
rivatives, starch,  dextrin,  inulin,  lichenin,  or  the 
like,  or  mixtures  of  these  ethers,  with  or  without 
the  addition  of  other  protective  colloids,  are  used 
as  protective  colloids  in  the  preparation  of  colloidal 
solutions,  suspensions,  or  emulsions,  especially  for 
therapeutic  purposes.  For  example,  200  pts.  by 
weight  of  a  5 — 10%  solution  of  an  ethyl-  or  methyl- 
cellulose,  or  ethyl-  or  methyl-starch,  is  mixed  with 
a  solution  of  5 — 7  pts.  of  silver  nitrate  in  5 — 7  pts. 
of  water,  and  250  pts.  of  10%  ammonia  and 
200 — 250  pts.  of  6 — 8%  ammonium  formate  solu- 
tion are  added.  The  mixture  is  heated  for  some 
time,  cooled,  dialysed,  and  either  evaporated  in 
vacuo  or  precipitated  by  the  addition  of  alcohol  or 
the  like,  and  the  precipitate  is  separated  and  dried. 

— L.  A.  C. 

Colloids  and  colloidal   solutions;  Process  for  pre- 

paring    .       Hanson's     (Parent    Co.),     Ltd. 

From  H.  Plauson.     E.P.  182,696,  15.7.21. 

Colloidal  solutions  of  elements  such  as  silver,  gold, 
mercury,  platinum,  palladium,  lead,  sulphur, 
selenium,  arsenic,  and  the  like,  are  prepared  by  a 
process  of  combined  precipitation  and  dispersion 
in  a  colloid  mill  as  described  in  E.P.  155,836 
(J.,  1922,  357  a).  For  example,  a  mixture  of 
169  pts.  of  a  1%  silver  nitrate  solution  and  3'4  pts. 
of  10%  ammonia  is  treated  in  a  colloid  mill  in  the 
presence  of  3  pts.  of  agar-agar  and  30  pts.  of  1% 
formaldehyde,  the  constituents  being  added  drop 
by  drop.  Dissolved  salts,  such  as  ammonium 
nitrate,  are  removed,  and  a  more  permanent  and 
concentrated  solution  is  obtained  by  subjecting  the 
solution  to  ultra-filtration  at  high  pressure  as 
described  in  E.P.  155,834  (J.,  1922,  619  a).— L.  A.  C. 

Saccharin;  Manufacture  of  .     H.  Lowe.     E.P. 

174,913,  5.1.22.     Conv.,  31.1.21. 

Saccharin  is  obtained  in  a  yield  largely  exceeding 
75%,  when  o-toluenesulphamide  suspended  in  a  '2N 
solution  of  sodium  carbonate  or  bicarbonate  is  sub- 
jected to  anodic  oxidation  with  a  current  of  12  volts 
and  a  density  of  004  amp.  per  sq.  cm.  If  desired 
lead,  cerium,  or  manganese  compounds  or  ammonia 
may  be  added  to  the  electrolytic  bath. — G.  F.  M. 

CC-Isopropylalhjlburbituric   acid;   Manufacture   of 

.      H.    R.    Napp.      From    F.    Hoffmann-La 

Roche  &  Co.     E.P.  181,247,  30.6.21. 

Isopropylallylbarbituric  acid  is  obtained  in  80% 
yield  by  the  action  of  allyl  bromide  (130  pts.)  on 
a  solution  of  isopropylbarbituric  acid  (170  pts.)  in 
•500  pts.  of  water  and  135  pts.  of  30%  sodium 
hydroxide  at  25°  C.  for  12  hrs.  The  product  is 
filtered  off  and  crystallised  from  dilute  alcohol.  It 
is  sparingly  soluble  in  water,  readily  soluble  in 
alcohol  and  ether,  and  melts  at  137°— 138°  C. 

— G.  F.  M. 


Cinchona  alkaloids  and  their  derivatives;  Prepara- 
tion of  amino-derivatives  of  hydrogenated  . 

Howards  and  Sons,  Ltd.,  J.  W.  Blagden,  and 
M.  Nierenstein.  E.P.  182,986,  6.5.21. 
Good  yields  of  the  amino-derivatives  of  hydro- 
genated cinchona  alkaloids  are  obtained  by  re- 
ducing the  nitro-derivatives  in  neutral  or  nearly 
neutral  solution  with  suitable  reducing  agents, 
such  as  zinc  or  iron,  in  conjunction  with  a  neutral 
salt.  Thus  nitrohydroquinine,  dissolved  in  alcohol, 
or  in  water  in  the  form  of  a  salt,  is  heated  to  50° 
or  more,  and  zinc  dust  and  aqueous  ammonium 
sulphate  solution  are  added.  After  stirring  for 
some  hours  at  this  temperature  the  filtered  solution 
is  concentrated  in  vacuo  to  crystallise  the  product. 

— G.  F.  M. 

Hydrocarbon    mixtures;    Treating    gaseous    . 

Process  of  treating  gaseous  mixtures.  Process  of 
separating  ethylene  and  other  components  from 
gaseous  mixtures  containing  the  same.  f».  O. 
Curme,  jun.,  Assr.  to  Union  Carbide  Co.  U.S. P. 
(a)  1,422,182,  (b)  1,422,183,  and  (c)  1,422,184, 
11.7.22.  Appl.,  (a)  5.6.19,  (b)  4.5.20,  (c)  20.4.17. 
(c)  Renewed  1.12.20. 

(a,  b)  A  relatively  soluble  component  is  separated 
from  a  mixture  of  hydrocarbons  or  other  gases  by 
compressing  the  mixture  and  bringing  it  in  con- 
tact with  a  suitable  solvent  liquid  at  a  temperature 
below  that  of  the  atmosphere.  Residual  gavs  are 
withdrawn,  and  the  solvent  power  of  the  liquid  is 
progressively  reduced  to  liberate  the  less  soluble 
gases  from  solution,  the  gases  liberated  being 
brought  in  contact  with  portions  of  the  liquid 
having  progressively  higher  solvent  power,  and 
finally  returned  to  the  absorption  apparatus.  The 
relatively  soluble  component  is  separated  from  the 
solvent  by  reducing  the  pressure  on  the  solution, 
(c)  Ethylene  is  separated  from  gaseous  mixtures 
containing  it  by  the  process  described  under  (a,  b). 

— L.  A.  C. 

Diphenylguanidine;  Process  of  making .  M.  L. 

Weiss,  Assr.  to  Dovan  Chemical  Corp.  U.S.P. 
1,422,506,  11.7.22.    Appl.,  2.7.21. 

Diphenylguanidine  containing  carbodiphenylimide 
as  an  impurity  is  dissolved  in  hot  toluene,  the  solu- 
tion is  cooled,  and  the  crystals  are  separated, 
washed  with  pure  toluene,  and  dried. — L.  A.  C. 

Secondary  alcohols;     Process   of  purifying   higher 

.     R.    B.   Lebo,   Assr.    to   Standard   Oil  Co. 

U.S.P.  1,422,583,  11.7.22.  Appl.,  16.2.21. 
Isopropyl  alcohol  is  separated  from  mixtures  con- 
taining it,  and  higher  secondary  alcohols  by  adding 
at  least  sufficient  benzene  to  the  mixture  to  form  a 
low-boiling  mixture  with  the  isopropyl  alcohol,  and 
subsequently  separating  the  low-boiling  mixture  by 
fractional  distillation. — L.  A.  C. 

Hydrocarbons;  Process  of  chlorinating  gaseous 

and     recovering     products     therefrom.       G.     0. 
Curiae,     jun.,    Assr.    to    Carbide    and    Carboa 
Chemicals     Corp.       U.S.P.     1,422,838,     18.7.22. 
Appl.,  7.7.20. 
A   mixture  of   a  halogen  gas  and   an  excess  of  a 
hydrocarbon  gas  is  caused  to  react  with  the  libera- 
tion of  a  gaseous  halogen  acid,  and  reaction  pro- 
ducts of  higher  boiling  point  than  the  hydrocarbon 
are  separated  by  anhydrous  liquefaction  from  the 
mixture    of    gases     obtained.      The    residual    un- 
changed    hydrocarbon     is     returned     for     further 
treatment. — L.  A.  C. 

Dicyanodiamide ;   Method  of  making  .     H.  C. 

Hetheriugton     and     J.     M.     Brahani.       U.S.P. 

1,423,799,  25.7.22.     Appl.,  28.6.21. 
Calcium  cyanamide  is  extracted  with  water,  and 
the   solution   is  filtered.      Sufficient   sulphuric   acid 


Vol.  XLI.,  No.  17.]       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &C. 


687  a 


is  added  to  the  solution  to  combine  with  one-half 
of  the  calcium  present,  the  calcium  sulphate  formed 
is  separated,  more  sulphuric  acid  is  added,  in 
finely-divided  streams,  calcium  sulphate  is  again 
removed,  and  dicvanodiamide  is  recovered. 

— L.  A.  C. 


\Dicarboxylie    acids;   Production    of    

Williams,    Assr.    to    The    Barrett    Co. 


A.    G. 
U.S.P. 

1,423,980,  25.7.22.    Appl.,  22.3.21. 

An  aromatic  compound  containing  a  diketone 
group  forming  part  of  a  earbocyclic  ring  structure 
is  dissolved  in  an  alkaline  reducing  solution,  and 
the  solution  is  oxidised. — L.  A.  C. 

"Xlaleic  acid-]  Purification  of  substances  \_e.g.  ] 

by  distillation  with  a  solvent.  G.  C.  Bailey, 
C.  W.  Fischer,  and  J.  F.  W.  Schulze,  Assrs.  to 
The  Barrett  Co.  U.S.P.  1,424,138,  25.7.22. 
Appl.,  9.2.21. 

Maleic  acid  containing  benzoquinone  as  impurity 
is  purified  by  distillation  in  the  presence  of  xylene. 

— L.  A.  C. 

Jldorinated    nitronaphthalenes;    Preparation     of 
.    O.  Matter.    G.P.  348,069,  14.1.19. 

The  products  obtained  by  treating  chlorine  addi- 
tion products  of  naphthalene  with  nitric  acid  are 
pleated  with  ammonia  or  mixtures  which  liberate 
immonia.  Dry  ammonia  gas  is  led  into  a  solution 
if  nitronaphthalenetetrachloride  in  methyl  alcohol, 
|>r  a  mixture  of  ammonium  chloride  and  calcium 
aydroxide  is  added  to  the  solution.  The  product  is 
eparated  by  filtration,  washed  with  water,  and 
(urified  by  distillation  under  reduced  pressure  and 
.rystallisation  from  methyl  alcohol,  yielding 
.8-dichloro-l-nitronaphthaleue,  m.p.  94°  C. 

— L.  A.  C. 

Maine  and  other  organic   bases;    Production  of 

pure .  Akt.-Ges.  f.  Anilin-Fabr.  G.P.  348,380, 

I  18.4.17,  and  348,381,  14.6.17. 

10LUTIONS  of  betaine  or  other  organic  bases  which 
'Dntain  an  excess  of  base  or  acid  are  treated  in  the 
.ithode  chamber  of  an  electrolytic  cell  until  the 
inions  of  the  acid  are  completely  removed.  The 
Slution  of  betaine  obtained  thereby  is  either  used 
irect,  or  the  betaine  is  separated  or  converted  into 
||ilts.  The  process  is  not  applicable  for  purifying 
roiig  bases,  such  as  tetra-alkylammonium  bases. 

— L.  A.  C. 

osic  aluminium  salts  containing  tilicic  acid:  Pre- 
paration  of   solutions   of  .     Preparation   of 

solid  mixtures  containing  basir  oh/minium 
acetate  or  aluminium  salts  containing  silicic 
acid.  Lecinwerk  E.  Laves.  G.P.  (a)  348,411, 
19.9.20,  349.984,  16.11.20,  and  351,732,  24.12.20, 
(b)  351,731,  7.12.20. 

.)  Colloidal  aluminium  silicate,  prepared  by  the 

Idition    of    aluminium    sulphate    to    solutions   of 

luble  silicates,  is  dissolved  in  a  mixture  of  dilute 

'drochloric  or  sulphuric  acid  and  acetic  acid  or 

her   organic    acids,    such    as   lactic   acid,    formic 

id,    tartaric    acid,    aldehydesulphurous    acid,    or 

ixtures   of    these    acids    with    acetic   acid,    more 

uminium    sulphate    and    calcium    carbonate    are 

ded   to   the    solution,    and    calcium    sulphate    is 

Jarated  by  filtration.     For  example,  water-glass 

(luted  with  water  is  added  to  a  mixture  of  dilute 

drochloric  acid  and  96%  acetic  acid;  aluminium 

Iphate  and  calcium  carbonate  are  added  to  the 

"  ution,  which  is  then  stirred  tor  several  hours  and 

"  .ered.     The  clear   solution   contains  about   1"5% 

1    colloidal    silicic    acid    and    8%    of    aluminium 

-  ?tate,     i.e.,     1     mol.     of     Bi02     to     2    mols.     of 

- ;',OH)(CH3CO,)2,  does  not  gelatinise  on  standing 

I '  1  year,  and  possesses  the  properties  of  colloidal 

I  cic    acid    in    stimulating    leucoevtosis    and    the 


formation  of  connective  tissue.  The  sodium 
chloride  present  in  the  solution  has  usually  no 
harmful  effect,  but  can  be  separated  by  dialysis 
after  the  addition  of  a  little  acetic  acid,  or  solu- 
tions containing  no  alkali  salts  can  be  prepared 
without  dialysis  by  adding  aluminium  sulphate  to 
solutions  of  water-glass  diluted  with  distilled  water, 
the  precipitate  formed  after  filtration  and  washing 
with  water,  being  dissolved  in  a  mixture  of  dilute 
sulphuric  acid  and  96%  acetic  acid,  and  sub- 
sequently treated  as  described  above,  (b)  Starch, 
amylodextrin,  vegetable  mucilage,  the  extracts  of 
quince  seeds,  linseed,  and  the  like,  or  other  pro- 
tective colloids,  with  or  without  the  addition  of 
inactive  substances,  such  as  talc  or  lyeopodium, 
are  added  to  solutions  prepared  as  described  in  (a), 
and  the  mixtures  are  dried  at  low  temperatures 
in  vacuo.  The  products  can  be  used  in  the  form 
of  powder  or  may  be  added  to  ointments,  and  on 
account  of  the  ready  solubility  of  the  active  con- 
stituents, possess  the  same  therapeutic  properties 
us  the  solutions. — L.  A.  C. 

Aromatic    selenium    compounds;     Preparation    of 

.       Farbw.     vorm.     Meister,     Lucius,     und 

Briining.     G.P.    348.906,    26.1.19,    and    350,376, 
18.2.19.     Addns.  to  299,510. 

Aromatic  compounds  are  treated  with  selenic  acid, 
instead  of  with  selenium  or  selenium  dioxide  as 
described  in  the  chief  patent,  in  the  presence  of 
concentrated  sulphuric  acid  or  other  suitable 
solvents.  A  product  containing  16%  Se  is  prepared 
by  treating  o-nitrophenol  with  selenic  acid  in  the 
presence  of  sulphuric  acid ;  antipyrine  on  similar 
treatment  yields  a  product,  m.p.  about  238°  C, 
containing  17  %  Se.  The  compound  diantipyril- 
selenide  described  in  the  chief  patent  can  be  pre- 
pared by  treating  an  aqueous  solution  of  antipyrine 
or  the  base  itself  with  selenious  acid  or  with  67  { 
aqueous  selenic  acid.  Solutions  of  p-nitroanti- 
pyrine  in  formic  acid  and  p-tolylantipyrine  in  ethyl 
alcohol  on  heating  with  solutions  of  selenium 
dioxide  in  the  same  solvents  yield  respectively 
di-^)-nitroantipyrilselenide,  m.p.  about  260°  C. 
(deconip.),  and  di-p-tolvlantipvrilselenide, 

(C12H, JON.,)2  Se,  m.p.  about  255°  C.  (decomp.)- 

■ — L.  A.  C. 

Carbonic  acid  esters  of  monohydric  ulcohols;    Pre- 
paration of  .    C.  F.  Boehringer  und  Soehne 

G.m.b.H.    G.P.  349,010,  29.1.21. 

One  mol.  of  carbonyl  chloride  is  added  to  2  mols. 
of  a  monohydric  alcohol,  or  a  mixture  of  mono- 
hydric alcohols,  in  the  presence  of  dialkylaniline, 
and  the  mixture  is  allowed  to  stand  for  several 
hours.  The  desired  neutral  ester  is  obtained  iu 
almost  quantitative  yield.  The  process  can  be 
employed  for  the  production  of  neutral  esters  of 
aliphatic,  aromatic,  or  hydroaromatic  alcohols, 
e.g.,  benzyl  alcohol  and  menthol.  An  example  is 
given  describing  the  preparation  of  diethyl  car- 
bonate by  the  action  of  carbonyl  chloride  on  ethyl 
alcohol  below  30° — 40°  C.  in  the  presence  of 
dimethylaniline  and  benzene. — L.  A.  C. 

Di- and  polyhalogen  substitution  iwoducts  of  mono- 
hydric phenols;  Preparation  of  .     Akt.-Ges. 

f.  Anilin-Fabr.  G.P.  349,794,  29.7.14.  Addn. 
to  281,175  (J.,  1915,  543). 
Tri-  or  polyhalogen  substitution  products  of 
aromatic  hydrocarbons  are  heated  under  pressure 
with  alkali  hydroxides  and  methyl  alcohol,  or  its 
homologues,  with  or  without  the  addition  of  other 
solvents.  1.2.4.5-Tetrachlorobenzene  on  heating 
under  pressure  to  160°  C.  for  7  hrs.  with  sodium 
hydroxide  and  methyl  alcohol,  with  or  without  the 
addition  of  pyridine,  or  to  200°  C.  for  10  hrs.  with 
potassium  hydroxide  and  ethyl  alcohol,  or  to  200°  C. 
for   16   hrs.    with   potassium   hydroxide   and   amyl 


. 


688  a 


Cl.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &o. 


ISept.  15.  1922. 


alcohol,  yields  2.4.5-trichlorophenol,  m.p.  64° — 
65°  C.  The  corresponding  tribromo  compound  has 
m.p.  80°  C.  1.2.4-Trichlorobenzene  on  heating 
under  pressure  for  4  hrs.  at  180° — 190°  C.  with 
sodium  hydroxide  and  methyl  alcohol  yields  2.5-di- 
chlorophenol,  b.p.  211°  C,  m.p.  58°  C.  The  product 
obtained  by  treating  60  pts.  of  naphthalene  with 
320  pts.  of  bromine  at  100°  C,  on  heating  at  150°  C. 
under  pressure  for  6  hrs.  with  sodium  hydroxide 
and  methyl  alcohol,  yields  a  resinous  mixture  of 
polybromohydroxynaphthalenes.  The  products  are 
of  value  as  germicides. — L.  A.  C. 

Serums,     vaccines,     and     the     like;     Process     for 

sterilising   .      Farbenfabr.    vorm.    F.    Haver 

und  Co.     G.P.  349,806,  11.9.18. 

Complex  organic  mercury  compounds  which  are 
soluble  in  water  and  which  have  no  chemical  action 
on  proteins,  e.g.,  complex  aliphatic  or  aromatic 
mercuryearboxylic  acids,  or  oxymercurycarboxylic 
acids,  or  their  anhydrides  or  salts,  or  derivatives  of 
these  compounds,  such  as  sodium  oxymercury- 
salicylic  acid,  sodium  oxymercuryacetic  acid,  salts 
of  mercury  fatty  acids,  and  mercuriated  aryloxy 
fatty  acids,  are  suitable  for  sterilising  serums, 
vaccines,  and  the  like.  Such  compounds  are 
superior  to  mercuric  chloride  for  sterilising  pur- 
poses, and  have  no  injurious  effect  on  the  serums 
and  vaccines. — L.  A.  C 

2-Pltenylquinoline-4^carboxylic    acid;    Process    for 
manufacture   of   derivatives   of   a    hydrogenated 

.      Chem.     Werke    Grenzach    A.-G.       G.P. 

351,464,  18.12.17. 

The  derivatives  are  produced  by  electrolytic  reduc- 
tion of  2-phenylquinolinecarboxylic  acid  in  alkaline 
solution,  or  by  the  use  of  an  alkaline  reducing 
agent,  the  resulting  hydrogenated  acid  being  con- 
verted by  the  usual  methods  into  esters,  or  into 
N-alkyl  or  N-acidyl  derivatives  and  the  latter  into 
esters.  The  crystals  of  the  hydrogenated  acid  pro- 
duced by  cathodic  reduction  of  2-phenylquinoline- 
4-carboxylic  acid  have  m.p.  167°  C.,  and  give,  on 
esterification  with  alcohol  and  concentrated  sul- 
phuric acid,  the  ethyl  ester  as  white  needles,  m.p. 
83°  C,  soluble  in  the  usual  organic  solvents,  but 
insoluble  in  dilute  alkaline  solutions.  The  methyl 
ester  of  hydro-2-phenylquinoline-4-carboxylic  acid 
crystallises  from  methyl  alcohol  in  colourless 
needles,  m.p.  99°  C.  If  the  hydrogenated  acid  is 
heated  with  acetic  anhydride  and  several  drops  of 
concentrated  sulphuric  acid  under  a  reflux  con 
denser,  it  is  converted  into  the  N-aeetyl-hydro- 
2-phenylquinoline-4-carboxylic  acid,  m.p.  209°  C. 
The  acetyl  derivative  is  soluble  in  the  usual  organic 
solvents  and  in  dilute  alkaline  solutions.  These 
compounds  stimulate  reflex  action  and  are  therefore 
of  use  for  treating  diseases  of  the  nervous  system. 

—A.   G. 

Cells,   parasites,   tissues,  and  organs;    Process  for 

decomposition  and  extraction  of  .     Tetralin 

Ges.m.b.H.     G.P.  349,807,  20.2.21. 

The  organs  are  treated  with  hydronaphthalenes, 
either  alone  or  in  admixture  with  other  substances. 
The  substances  are  treated  with  a  quantity  of  hydro- 
naphthalene  (or  its  derivatives)  insufficient  for 
complete  solution,  and  the  insoluble  matter  is 
separated.  The  bacilli  of  tuberculosis  and  typhoid 
bacteria  are  rendered  soluble  by  the  action  of  hydro- 
naphthalene,  whilst  large  organs,  e.g.,  the  brain, 
can  also  be  made  to  dissolve,  yielding  clear 
solutions.  If  more  than  4  mg.  of  tubercle  bacilli  are 
treated  with  1  c.c.  of  tetrahydronaphthalene,  the 
insoluble  residue,  after  separation  from  the 
solution,  yields  a  new,  easily  resorbable  product, 
which  is  highly  serviceable  for  diagnosis,  inocula- 
tion and  therapeutic  purposes. — A.  G. 


Grotonaldehyde ;  Preparation  of .     Consortium 

fvir  elektrochem.    Ind.    G.m.b.H.     G.P.  349  915 
30.11.19.  '       ' 

Acetaldehyde  vapour,  at  a  temperature  below 
300°  C,  is  led  through  a  contact  chamber  contain- 
ing heated  metal  oxides,  such  as  wood  charcoal 
coated  with  titanium  oxide,  or  blocks  of  aluminium 
oxide  or  hydroxide,  beryllium  oxide,  calcium 
hydroxide,  bog  iron  ore,  cement,  or  mixtures  of 
these,  at  such  a  velocity  that  the  acetaldehyde  is 
only  partially  converted  into  crotonaldehyde.  The 
unchanged  acetaldehyde  is  separated  from  the 
product,  e.g.,  by  fractional  distillation  or  blowing, 
and  is  then  mixed  with  the  vapour  admitted  to  the 
chamber. — L.  A.  C. 

Drugs;  Production  of  extracts  of .   Farbenfabr 

vorm.     F.  Bayer  und  Co.     G.P.  350,122,  4.4.20. 

Acetamide  or  formamide  is  used  as  the  extracting 
medium,  either  in  the  molten  state  or  in  solution. 
The  extracted  products  have  a  better  taste  than 
those  extracted  with  aqueous  or  alcoholic  solutions, 
and  in  many  cases  contain  a  larger  proportion  of 
active  substance.  They  are  quite  stable  and  are 
not  liable  to  take  fire.  Extracts  produced  with  the 
aid  of  acetamide  can  be  concentrated,  and  con- 
verted into  pulverulent  or  tabloid  form,  whilst 
formamide  is  used  for  the  production  of  liquid 
extracts.  Solutions  of  the  drugs  can  be  made  with 
greater  facility  in  aqueous  solutions  of  formamide 
or  acetamide  than  in  diluted  alcohol  of  the  same 
concentration. — A.  G. 

Dialkylamides  of  pyridine-3-carboxylic  acid  (nico- 
tinic acid);  Preparation  of .     Ges.  f.  Chem. 

Ind.  in  Basel.    G.P.  351,085,  14.9.20. 

Pyridine-3-carboxylic  acid  dialkylamides,  which 
are  of  therapeutic  value  owing  to  their  property 
of  raising  the  blood  pressure  and  regulating  the 
central  nervous  system,  are  prepared  by  treating 
compounds  containing  the  pyridine-3-carboxylic 
acid  nucleus,  e.g.,  the  acid  halides,  with  secondary 
aliphatic  amines,  such  as  diethylamine,  dipropyl- 
amine,  diamylamine,  or  piperidine.  Pyridine-3- 
carboxylic  acid  dipropylamide,  diamylaniide,  and 
piperidide  have  b.p.  184°  C.  under  17  mm.,  210°  C. 
under  20  mm.,  and  310°  C.  respectively. — L.  A.  C. 

Bile    acid;   Preparation    of   an   unsaturated  . 

J.  D.  Riedel  A.-G.    G.P.  352,129,  24.3.17. 

The  acid  prepared  as  described  in  G.P.  334,553  (J., 
1921,  529  a),  is  treated  with  bromine,  and  the 
product  is  treated  with  alkalis.  For  example, 
bromine  is  added,  drop  by  drop,  to  a  cooled 
solution  of  the  acetic  acid  compound  of  apocholir 
acid  in  acetic  acid  or  methyl  alcohol,  the  oily 
dibromide  produced  is  heated  with  a  dilute  alkaline 
solution  until  dissolved,  and  an  unsaturated  bile 
acid,  m.p.  245° — 247°  C.  after  recrystallisation 
from  acetic  acid,  is  precipitated  by  the  addition  of 
dilute  hydrochloric  acid  to  the  solution.  The 
product  has  a  strong  antiseptic  action  and  is  or 
therapeutic  value. — L.  A.  C. 

Medicinal  solutions;  Production  of  oily .     Byk- 

Guldenwerke  Chem.  Fabr.  A.-G.  G.P.  352,364, 
27.9.17. 
For  compounding  non-oily  substances  such  as 
iodoform,  salicylic  acid,  phenol,  iodine,  camphor, 
naphthalene,  menthol,  soaps,  etc.,  esters  of  the 
higher  fatty  acids,  which  are  fluid  at  normal  tem- 
peratures, are  used  as  solvent.  The  ethyl,  methyl, 
and  propyl  esters  of  ilinolic  acid  and  the  alkyl 
esters  of  oleic  acid  and  palmitic  acid  are  better 
solvents  for  solid  medicinal  substances  than  the 
natural  glycerides.  The  solutions  made  with  the 
alkyl  esters  are  easily  absorbed  and  can  therefore  DO 
used  for   injection  purposes.       Substances  such  as 


Vol.  XLI.,  No.  17.J         Cl.  XXI.— photographic  materials  and  processes. 


C89a 


mercuric  chloride  and  alkaline  earth  and  heavy 
metal  soaps,  which  are  quite  insoluble  in  linseed  oil, 
are  soluble  in  the  alkyl  esters. — A.  G. 

Sydratcd   magnetic   oxide   of  iron;  Production  of 
finest .     H.  Spude.     G.P.  352,365,  27.11.19. 

Precipitated  and  elutriated  ferrosoferric  oxide  is 
!  stirred  with  gum  arabic  and  water  without  previous 
drying,  and  disintegrated  (atomised)  under 
pressure.  After  settling  of  the  coarser  material 
the  suspension  of  the  finest  particles  is  concentrated 
by  draining  off  the  liquid  with  the  aid  of  suction. 
The  product  mixed  with  water  is  used  for  injections 
for  the  treatment  of  cancerous  affections. — A.  G. 

Carbon  compounds;  Process  [catalysts']  for  hydro- 

genation  and  dehydrog enation  of .     Badische 

Anilin-  u.  Soda-Fabrik.     G.P.  352,439,   16.11.13. 
Addn.  to  307,580. 

Combined  silica  or  an  alkali  silicate  is  used  as 
activating  substance.  The  catalyst  is  highly  insen- 
sitive to  catalyst  poisons,  has  a  long  life,  and 
possesses  a  high  reaction  efficiency.  Pumice  is 
made  into  a  paste  with  nickel  carbonate  and  a 
solution  of  water-glass.     After  drying,  the  mass  is 

!  reduced  with  hydrogen  at  300°— 450°  O.  With  the 
aid  of  this  catalyst,  phenol  can  be  converted  con- 
tinuously at  100° — 120°  C.  into  cyclohexanol,  with- 
out the  formation  of  by-products.  In  place  of  nickel, 
copper  or  mixtures  of  nickel  and  aluminium  may  be 
used.  The  catalyst  can  also  be  used  for  the  produc- 
tion    of    methylcyclohexanone     from     methylcyclo- 

'hexanol,  aniline  from  nitrobenzene,  and  for  the 
hydrogenation  of  oils. — A.  G. 

,Carhoxylic  acids  of  the  purine  series;  Preparation 

of .     E.  Merck,  O.  Wolfes,  and  E.  Kornick. 

!    G.P.  352,980,  25.4.20. 

Salts  of  mono-  or  dialkylated  xanthine  are  treated 
!nith  salts  of  monohalogenated  aliphatic  carboxylic 
acids,  yielding  N-alkylcarboxylic  acids  of  mono-  and 
'dialkylated  xanthine  which  are  of  therapeutic 
Value.  For  example,  sodium-theobromine  and 
theophylline  on  heating  with  monochloroacetic  acid 
'  n  aqueous  alkaline  solution  yield  respectively  theo- 
!bromine-l-acetic  acid,  m.p.  260°.,  and  theophylline- 
f-acetic  acid  m.p.  266°  C,  and  sodium  3-methyl- 
tanthine  on  heating  with  /J-iodopropionic  acid,  first 
:o  100°  O.  and  then  to  105°  0.,  yields  3-methyl- 
canthinepropionic  acid,  m.p.  308° — 309°  C.  (de- 
:omp.). — L.  A.  C. 

Vonohydroxyethyl     catechol     ether;     Process     for 

■   manufacture    of   .     Chem.    Werke    Grenzach 

I  A.-G.  G.P.  352,983,  27.7.19. 
Either  ethylene-halogenhydrin  is  allowed  to  react 
nth  the  acii  alkali  salts  of  catechol,  or  ethylene 
xide  is  treated  with  free  catechol.  For  example, 
.  solution  of  catechol  in  40%  caustic  soda  is  heated 
nth  ethylene-chlorhydrin  to  100°  C.,  or  catechol 
9  heated  with  ethylene-oxide  under  pressure  to 
40°— 150°  C.  The  ether,  C„H4(OH)(O.CH,.CH2OH) 
rystallises  from  water  or  benzene,  has  m.p.  99° — 
00°  C,  and  gives  with  a  drop  of  ferric  chloride  a 
Bmporary  violet  colour  which  changes  almost 
;istantaneously  to  yellowish-red. — A.  G. 

'sters  of  dioxydie.thylsulphide  and  process  of 
n><il;ing  same.  G.  Kranzlein  and  M.  Corell, 
Assrs.  to  Farbw.  vorm.  Meister,  Lucius,  und 
Briining.    U.S.P.  1,422,869, 18.7.22.    Appt.,  2.7.21. 

[be  E.P.  154,907  of  1920;  J.,  1922,  309  a. 

im-Octohydro-anthracene  and  -phenanthrenc. 
G.P.  352,721  and  £52,719.     See  III. 

italyst  for  hydrogenation.    G.P-  352,431.    See  XII. 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

[Photographic]  sensitisers  for  the  deep  red;  New 

■.     C.  E.  K.  Mees  and  G.  Gutekunst.     Brit. 

J.  Phot.,  1922,  69,  474—475. 

The  methods  of  preparation  and  properties  of  three 
sensitising  dyes,  Naphthacyanole,  Acetamino- 
cyanole,  and  Kryptocyanine  are  described. 
Naphthacyanole  shows  a  maximum  at  690^/i,  and  a 
sensitising  power  for  green  less  than  Pinacyanol;  it 
can  be  added  to  the  emulsion  or  used  as  a  bath  for 
plates.  Acetaminocyanole,  when  added  to  the 
emulsion  gives  a  maximum  at  730/</<,  but  when  used 
in  solution  for  bathing  plates,  entirely  different 
results  are  obtained.  Kryptocyanine  is  the  most 
powerful  sensitiser  known  and  gives  a  maximum  at 
760/^.  It  is  useless  for  infra-red  work  at  wave- 
lengths above  900/i/i,  and  confers  no  green  sensi- 
tiveness.— W.  C. 

Latent  [photographic]  image;  Conductivity  of  the 

.     A.  G.  Rabinovich.     J.  Phys.  Chem.,  1922, 

26,  577—590. 

The  electrical  conductivity  of  a  dry  "  Premo  " 
photographic  film,  5x10  mm.  is  10""  ohm"1  /cm.  at 
18° — 20°  C.  and  has  a  temperature  coefficient  of 
10%  per  degree,  whilst  the  specific  conductivity  of 
a  silver  bromide  gelatin  emulsion  is  8'OxlO"1  ohm"' 
at  22°  and  the  temperature  coefficient  is  3%  per 
degree.  These  values  are  unchanged  by  exposing 
the  films  or  emulsions. — J.  F.  S. 

[Photographic]    development;    Grain   structure    v. 

light  quanta  in  the  theory  of  .     W.   Clark. 

Brit.  J.  Phot.,  1922,  69,  462. 

"  Reduction  centres  "  from  which  development  of 
the  silver  halide  grains  of  an  emulsion  proceeds  may 
be  rendered  visible  by  treatment  with  10%  sodium 
arsenite  solution  and  partial  development  with 
ordinary  developers,  in  absence  of  light.  The 
centres  thus  shown  follow  the  same  laws  of  distribu- 
tion among  the  grains  as  those  made  visible  by  the 
action  of  light  and  X-rays.  This  indicates  that  the 
centres  are  an  essential  part  of  the  grain  structure 
and  that  light  action  is  not  necessary  for  their 
formation. — W.  C. 

Actinometer  with  electrodes  of  mercury  halides  or 
sulphides.  G.  Athanasiu.  Comptes  rend.,  1922, 
175,  214—217. 
Mercury  covered  with  very  thin  layers  of  mer- 
curous  halide  or  mercuric  sulphide  can  be  used  in 
the  same  way  as  silver  salts  as  electrodes  in  an 
electro-actinometer,  and  measurements  were  made 
of  the  E.M.F.  generated  by  the  illumination  of  one 
electrode  of  such  an  actinometer  by  the  light  of  a 
mercury  vapour  lamp.  The  results  for  the  various 
salts  in  different  electrolytes  are  given,  from  which 
it  appears  that  the  light  increases  the  potential  of 
the  halogenated  electrodes,  and  diminishes  that  of 
the  mercuric  sulphide  electrode.  The  most  sensitive 
films  were  those  of  mercuric  iodide  prepared  by 
treating  mercury  with  a  dilute  alcoholic  solution  of 
iodine.  Perfectly  pure  mercury  is  insensitive  to 
light— G.  F.  M. 

Patents. 

X-ray  photography  [;  Intensifying  screen  for  use  in 

— -].  N.  E.  Luboshez.  E.P.  182,496,  5.1.21. 
An  intensifying  screen  consisting  of  a  sheet  of 
opaque  material  coated  with  calcium  tungstate  or 
similar  material  is  caused  to  adhere  to  the  back  of 
the  emulsion-bearing  base  of  an  X-ray  photographic 
film  or  plate  by  means  of  rubber,  or  various  resins 
or    waxes,    so    that    the    screen    may    be    readily 


, 


600  a 


Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


[Sept.  15,  1022. 


separated  when  desired  without  being  wetted.  If 
desired,  an  intensifying  6creen  may  be  likewise 
applied  to  the  emulsion  surface. — J.  S.  G.  T. 

X-ray  plates;  Preparation  of  — — .  Kranseder  und 
Co.  G.m.b.H.,  and  Liippo  Cramer.  G.P.  348,661, 
30.12.20. 

In  X-ray  plates  having  a  film  of  silver  bromide,  this 
film  is  treated  with  desensitising  agents  which 
reduce  its  sensitiveness  to  light  rays  but  have  no 
influence  on  ite  sensitiveness  to  X-rays.  Suitable 
desensitisers  are  aminophenols,  diamines,  and  dye- 
stuffs  containing  amino  groups,  or  substituted 
amino  groups,  such  as  phenylenediamine,  N-di- 
methyl  -  p  -  phenylenediamine,  oarbazoleleucoindo- 
phenolsulphonic  acid,  p-amino-p-hydroxydiphenyl- 
amine,  Safranines,  Brilliant  Rhoduline  Red, 
Methylene  Blue,  Auramine,  Brilliant  Green,  Chry- 
soidine,  and  Vesuvine.  The  desensitising  effect  of 
dyestuffs  is  purely  chemical,  and  is  independent  of 
the  shade.  Methylene  Blue  possesses  the  strongest 
desensitising  action,  but  red  and  yellow  dyestuffs 
which  dye  yellow  and  red  shades  appearing  bright 
in  the  light  of  the  dark  room  give  the  best  results. 
The  desensitising  agent  may  either  be  added  to  the 
silver  bromide-gelatin  emulsion  before  coating  the 
plates,  or  the  coated  plates  may  be  steeped  in  a 
solution  of  the  desensitiser. — L.  A.  C. 

Photographs;  Production  of  coloured .    P.  von 

Ditmar.     G.P.  350,005,  13.1.21. 

An  alcoholic  solution  containing  an  aniline  dyestuff 
with  a  metallic  lustre  and  a  substance  which  causes 
the  dyestuff  to  remain  amorphous  on  drying  the 
.solution,  is  poured  on  to  a  hot  sheet  of  glass  or  the 
like.  When  dry,  the  plate  is  placed  under  a 
negative  or  diapositive,  exposed  to  light,  and  subse- 
quently treated  successively  with  a  bath  containing 
chlorides  or  sulphates,  potassium  carbonate  solu- 
tion, and  a  solution  of  calcium  hypochlorite  or  is 
exposed  to  the  action  of  chlorine  gas.  For  example, 
thymol,  pyrogallol,  or  pyridine,  is  added  to  an 
alcoholic  solution  of  Fuchsine,  and  the  solution  is 
poured  over  heated  glass  or  paper  into  which  the 
colour  cannot  penetrate.  On  exposure  to  light,  the 
colour  begins  to  crystallise,  and  after  exposure,  the 
plate  is  rapidly  developed  by  treatment  in  the  solu- 
tions described  above.  If  treatment  with  potassium 
carbonate  is  omitted,  silver  images  on  a  dark 
ground  are  obtained. — L.  A.  C. 

Developing  paper;  Process  for  the  manufacture  of 

photographic    ■ .      O.    Mente.      G.P.    351,322, 

11.1.21. 

Between  the  paper  and  the  sensitive  film  a  layer 
of  colour  is  interposed,  which  absorbs  chemically 
active  rays,  but  is  inert  to  the  silver  halide 
layer,  and  which  can  be  subsequently  destroyed  or 
washed  out.  Certain  red  colouring  matters,  potas- 
sium permanganate,  and  manganese  dioxide  can  be 
used  for  this  purpose. — A.  G. 

Composition  for  coating  metals  for  the  purpose  of 
permitting  electric  currents  to  operate  by  the 
action  of  light.  H.  L.  Falk,  Assr.  to  L.  D.  Wood. 
U.S.P.  1,424,088,  25.7.22.     Appl.,  10.12.21. 

A  mixture  of  crystals  of  platinum-barium-cyanide 
of  potassium,  crude  sulphur,  sodium  tungstate, 
calcium  chloride,  and  selenium  crystals  forms  a 
composition  for  coating  surfaces  for  the  purpose  of 
permitting  electric  currents  to  operate  by  light 
action.— W.  C. 

Photographic  images;  Process  for  treating  and  dye- 
ing   and  products  obtained  thereby.    W.  Van 

D.  Kelley.     E.P.  160,137,  11.3.21. 

See  U.S.P.  1,411,968  of  1922;  J.,  1922,  393  a. 


Photographic  materials;  High-temperature  develop- 
ment of .     A.  J.  Agnew  and  F.  F.  Renwick 

Assrs.  to  Uford,  Ltd.     U.S.P.  1,424,062,  25.7  22* 
Appl.,  28.2.19. 

See  E.P.  128,337  of  1918;  J.,  1919,  602  a. 

XXH.-EXPL0SIVES;  MATCHES. 

Nitration  of  aromatic  substances ;  Pole  of  mercuric 

nitrate  in  the   "catalysed"  .     Nitration  of 

naphthalene.    T.  L.  Davis.    J.  Amer.  Chem.  Soc 
1922,  44,  1588—1591. 

Concentrated  nitric  acid,  even  in  the  presence  of 
mercuric  nitrate,  converts  naphthalene  into  nitro- 
naphthalenee,  the  amount  of  nitronaphthols  formed 
being  exceedingly  small.  The  best  conditions  for 
the  direct  production  of  the  latter  from  naphtha- 
lene consist  in  the  use  of  moderately  dilute  acid  and 
moderately  low  temperature;  in  addition  to  nitro- 
naphthalenes,  2.4-dinitro-a-naphthol  and  probably 
2-nitro-o-naphthol  are  obtained.  The  unexpected 
formation  of  substituted  a-naphthols  renders  the 
interpretation  of  the  course  of  the  action  a  matter 
of  considerable  difficulty. — H.  W. 

Patents. 

Explosive.  C.  J.  S.  Lundsgaard  and  K.  T.  Herbst. 
U.S.P.  1,423,233,  18.7.22.     Appl.,  14.9.21. 

A  perchlorate  of  a  methyl-substituted  ammonium 
compound  is  used  as  an  explosive. — H.  C.  R. 

Pyrotechnic  composition.  W.  T.  Scheele,  Assr.  to 
Government  of  the  United  States.  U.S.P. 
1,423,264,  18.7.22.    Appl.,  9.12.19. 

The  composition  comprises  hexamethylenetetramine 
and  strontium  nitrate  in  the  form  of  a  double  salt, 
to  which  a  finely  powdered  metal  is  added. 

— H.  C.  R. 


XXIII— ANALYSIS. 

Befractive  indices  of  liquids;  Simple  instrument  for 

taking  .    R.  Fouracre.    Brit.  Pharm.  Conf., 

July.     Pharm.  J.,  1922,  109,  88—89. 

A  parallel  beam  of  light  from  a  small  electric  lamp 
placed  at  the  focus  of  a  convex  lens,  is  projected 
through  another  convex  lens  laid  on  a  glass  plate 
with  the  liquid  to  be  examined  between  the  two, 
and  brought  to  a  focus  on  a  plane  surface.  The 
focal  length  of  the  lens  used  in  the  combination 
divided  by  the  distance  between  the  surface  of  the 
liquid  and  the  image,  and  the  result  subtracted 
from  2,  will  give  the  refractive  index  of  the  liquid. 

— G.  F.  M. 

Diphenylguanidine;  Symmetrical as  a  standard 

in  acidimctry  and  alkalimetry.     C.   A.   Carlton. 
J.  Amer.  Chem.  Soc.,  1922,  44,  1469—1474. 

Diphenylguanidine  is  the  only  basic  substance, 
proposed  as  a  standard,  which  fulfils  all  the  require- 
ments of  an  ideal  standard.  It  can  easily  be  puri- 
fied by  three  recrystallisations  of  the  crude  material 
from  toluene,  it  is  stable  in  air,  and  soluble  in 
alcohol.  It  may  be  titrated  directly  in  cold  solution 
with  either  an  alcoholic  or  an  aqueous  solution  of 
hydrochloric  acid,  using  either  bromophenol  blue  or 
methyl  red  as  indicator.  The  results  are  compar- 
able with  those  obtained  with  sodium  carbonate  or 
silver  chloride,  and  diphenylguanidine  is  more  con- 
venient to  use. — J.  F.  S. 

Fluorine;    Detection    of   .      B.    Fetkenheuer. 

Wiss.  Veroffentl.    Siemens-Konzern,  1922,  1,  [3], 

177. 
The  substance  to  be  tested  for  fluorine  is  heated 
with  sand  and  a  few  c.c.  of  strong  sulphuric  acid  to 


Vol.  XXI.,  Xo.  17.] 


Ol.  xxiii.— analysis. 


691  a 


90°  C.  in  a  test-tube.  On  shaking,  the  acid  runs  off 
the  glass  like  water  off  an  oily  surface  if  fluorine 
is  present.  With  2  g.  of  substance  0'01%  F  is 
easily  detected  after  heating  for  1  minute.  Fluor- 
ides which  are  only  attacked  with  difficulty  by 
sulphuric  acid,  e.g.,  ignited  aluminium  fluoride, 
must  first  be  fused  with  a  little  sodium  carbonate 
and  sand  and  the  melt  treated  as  above  with 
sulphuric  acid. — A.  It.  P. 

Magnesium  compound  of  8-hydroxyguinoline.  [De- 
fectum of  magnesium."]  C.  T.  Morner.  Pharm. 
Zentralh.,  1922,  63,  399—102. 

Magnesium  hydroxide  in  suspension,  magnesia  mix- 
ture, or  magnesium  salts  in  alkaline  solution  give  a 
yellow  microcrystalline  precipitate  with  aqueous 
solutions  of  8-hydroxyquinoline  sulphate.  The  re- 
action is  very  sensitive  for  magnesium.  The 
precipitate  approximates  to  the  composition 
(C'.,HsNt))3Ig,4H.O.     (Cf.  J.C.S.,  Sept.) 

— G.  W.  R. 

Putash;  Determination  of  small  amounts  of by 

the    Lindo-Gladding    method.       W.    Hazen.       J. 
Assoc".  Off.  Agr.  Chem.,  1922,  5,  456—460. 

In  the  determination  of   potassium  by  the  Lindo- 
Gladding  method  the  use  of  90%  alcohol  for  wash- 
ing gives  better  results  than  that  of  80%    alcohol, 
and  when  working   with  small  amounts  of   potash 
and  high  accuracy  is  desired,  it  is  advisable  to  use 
the     stronger     alcohol     for     washing     after     the 
ammonium    chloride     treatment     as     well     as     for 
|  the    first    washing.       The    lower    results    obtained 
by     using     the     weaker     alcohol     do     not     appear 
to  be    due    to    the    sodium    salts   which     may   be 
present,  as  has  been  suggested,  as  equally  low  re- 
sults are  obtained  in  the  absence  of  sodium  salts. 
As,  however,  it  takes  a  longer  time  to  wash  out  the 
J  ammonium  salts  with  90%  alcohol,  it  is  preferable 
to  use  80%    alcohol   for    the    second     washing    in 
!  ordinary  work  with  fertilisers,  where  the  percentage 
|  error  arising  from  this  will  not  be  very  serious,  as 
I  the     samples     generally     contain     relatively     high 
j  amounts  of  potash. — G.  F.  M. 


I  Sulphur;   Itapid    estimation   of  .      L.    Losana. 

Giom.  Chim.  Ind.  Appl.,  1922,  4,  297—299. 

I  Application  of  the  method  previously  described  (J., 
I  1922,  614  a)  to  the  estimation  of  sulphur  in  pyrites, 
I  copper  pyrites  and  other  mineral  sulphides,  ultra- 
I  marine,  adulterated  white  lead,  cement,  various 
I  rocks,  sulphates  of  copper,  sodium,  etc.  shows  that 
I  the  method  serves  generally  with  inorganic  sulphur 
|  compounds.  With  fuels  such  as  petroleum,  anthra- 
;  cite  and  coke,  results  are  obtained  agreeing  per- 
I  fectly  with  those  furnished  by  Eschka's  method, 
I  which  takes  a  considerably  longer  time.  With 
ichthyol,  saccharin,  ebonite,  and  rubber,  the  method 
,  also  gives  excellent  results. — T.  H.  P. 

1  Uranium ;    Electromttrie    titration    of    with 

potassium     per  manga  note     and     potassium     bi- 
chromate.     D.    T.    Ewing   and    E.    F.    Eldridge. 
J.  Amer.  Chem.  Soc,  1922,  44,  1484—1489. 
[When  solutions  of  uranyl  sulphate,   reduced  with 
'   zinc,    are   titrated   electrometrically   with   perman- 
Iganate,   or   when   solutions    of     uranium  chlorides 
1  similarly  reduced   are  titrated  with  bichromate,   a 
change  in  the  oxidation  potential  occurs  when  the 
trivalent  uranium    is   all  oxidised   to  quadrivalent 
I  uranium,   and   a   second    change    occurs   when  the 
.latter  is  aill  oxidised   to  the  hexavalent  condition, 
i  Thus  the  total  amount  of  uranium  may  be  calcu- 
|  latcd.     A  third  change  of  potential  is  observed  when 


iron  is  present,  and  this  is  the  stage  at  which  all 
the   ferrous  iron   is   oxidised   to  ferric   iron.      The 
determination  is  carried  out  with  apparatus  of  the 
usual   type   except   in    the   form   of   the    titration 
vessel.      Since  it  is  necessary  to  prevent  the  free 
access  of  air;  the  titration    cell    is    a    glass  vessel 
closed  by  a  tightly  fitting  cover  which  has  six  holes 
bored  through  it.     Through  the  holes  pass  a  tube 
for  leading  in  carbon  dioxide,  a  platinum  electrode, 
the  connecting  tube  of  a  calomel  electrode,  a  stirrer 
fitted  with  a  mercury  seal,   the  tip  of  a  burette, 
and  the   mouth  of  a  Jones   "  reductor."      All  the 
tubes  are  tightly  fitted.     The  method  of  procedure 
is  as   follows:    Estimation   of  uranium   with   per- 
manganate.    Ten  c.c.   of  a  solution  of  uranyl  sul- 
phate, containing  about  0013  g.  U308  per  c.c.   is 
added  to  40  c.c.  of  sulphuric  acid  A  (2  c.c.  of  con- 
centrated acid  to  88  of  water)  and  warmed  to  80° — 
90°  C.     Carbon  dioxide  is  passed  through  the  titra- 
tion cell  to  remove  the  air,  and  the  uranium  solution 
slowly  passed  through  the  Jones  "  reductor  "  into 
the  cell,  the  "reductor  "  being  finally  rinsed  with 
50  c.c.  of  sulphuric  acid  .4.     At  this  stage  the  solu- 
tion is  brown  in  colour,  has  a  volume  of  100  c.c,  and 
contains  2  c.c.  of  concentrated  sulphuric  acid.     The 
stirrer  is  set  in  motion  and  the  permanganate  slowly 
added.      The   EMF   rises  slowly   at   first   and  then 
jumps  to  a  steady  value,  which  is  the  point  where 
all  the  trivalent  uranium  has  passed  into  the  quadri- 
valent condition  and  the  solution  has  become  green. 
Continued  addition  of  permanganate  does  not  affect 
the  EMF  markedly  until  the  second  change  point 
is  reached,  and  here  the  EMF  jumps  rapidly.     At 
this  point  the  whole  of  the  quadrivalent  uranium 
has   passed   into  the   hexavalent    condition.       The 
volume  of  permanganate  used  between  the  first  and 
second  end  points  represents  the  theoretical  amount 
cf  oxidising  agent  required  to  oxidise  uranium  from 
the  quadrivalent  to  the  hexavalent  state.     Hence 
from  this  quantity  the  total   amount  of  uranium 
present,  no  matter  what  its  state  of  oxidation  pro- 
vided that  none  is  hexavalent,  can  be  calculated. 
Estimation   of  uranium  and     iron    with    perman- 
ganate.    The  process  is  carried  out  as  above,  the 
first  and  second  change  points  giving  the  amount  of 
uranium.     After  the  uranium  has  all  been  oxidised 
to  the  hexavalent  condition  the  oxidation  of   the 
ferrous  iron  commences,  and  is  complete  when  the 
third  change  point  is  observed.     Hence  the  amount 
of  permanganate  required  to  carry  the  EMF  from 
the  second  to  the  third  change  point  is  equivalent 
to    the    amount    of    iron    present.      Estimation    of 
uranium   by   bichromate.     The  two   change   points 
observed  have  the  same  significance  as  in  the  other 
cases.     All  the  methods  yield  excellent  results. 

—J.  F.  S. 


Carbon   and   hydrogen;    Volumetric    estimation    of 

in  organic  compounds.     J.  Lindner.     Ber., 

1922,  55,  2025—2031. 

The  substance  is  burnt  in  the  usual  manner  and  the 
products  of  its  combustion  are  passed  over  a  sub- 
stance which  by  its  hydrolysis  gives  hydrogen 
chloride,  and  thence  into  a  known  volume  of  stan- 
dard barium  hydroxide  solution.  This  is  titrated 
with  IV/10  hydrochloric  acid  in  the  presence 
of  phendlphthalein;  the  carbon  dioxide  is  re- 
moved subsequently  after  addition  of  an  excess  of 
hydrochloric  acid  and  the  resulting  solution  is  again 
titrated  with  barium  hydroxide.  The  most  suitable 
substance  for  hydrolysis  is  chloronaphthyloxy- 
chlorophosphine,  prepared  by  passing  chlorine  into 
molten  naphthyldiehlorophosphine. — H.  W. 

Micro  incineration.     A.   Schoeller.     Ber.,  1922,  55, 

2191—2192. 
The  substance  under  investigation  is  spread  evenly 


692  a 


PATENT   LIST. 


[Sept,  15, 1922. 


over  a  thin  strip  of  glass  (5 — 6  mm.  wide),  which  is 
placed  in  a  horizontal  hard  glass  tube  about  10  mm. 
in  di;im.  and  12  cm.  long.  The  tube  is  heated  very 
gently  until  all  volatile  matter  is  expelled.  The 
residue  is  allowed  to  cool  and  is  subsequently  heated 
rather  more  strongly  in  a  current  of  moist  oxygen ; 
ill  most  cases  the  carbon  disappears  rapidly  without 
at  any  time  glowing.  With  difficultly  combustible 
substances  it  is  advisable  to  interrupt  the  heating 
again.  Too  powerful  ignition  is  to  be  avoided.  The 
minutest  trace  of  ash  is  readily  visible  under  the 
microscope.  The  method  is  particularly  suitable 
lor  the  incineration  of  sections  of  plant  tissue,  since 
the  original  structure  is  better  preserved  than 
when  they  are  heated  over  a  free  flame. — H.  W. 

Filtration  of  vegetable  juices.  G.  Andre.  Comptes 
rend.,  1922,  175,  286—289. 

The  passage  of  the  expressed  juice  of  potatoes,  clari- 
fied by  centrifuging,  through  a  collodion  membrane 
impoverishes  the  liquid  in  nitrogen  and  phosphorus, 
the  results  in  a  typical  instance  showing  a  reduction 
from  0'385%  to  0T67%  of  the  former,  and  from 
0044%  to  0-019%  of  the  latter.  The  phosphorus 
traversing  the  membrane  is  practically  all  mineral 
phosphate.  Coagulation  of  the  juice  at  100°  C.  pro- 
duces a  similar  effect  as  far  as  the  nitrogen  is  con- 
cerned, but  the  reduction  of  the  phosphorus  in 
solution  is,  in  general,  not  nearly  so  great,  0'033% 
being  non-coagulable  in  the  juice  above  cited, 
against  only  0'019%  traversing  the  membrane. 
Instances  were  not  lacking,  however,  where  the 
fraction  of  the  phosphorus  traversing  the  collodion 
approached  that  remaining  in  the  non-coagulable 
liquid.— G.  F.  M. 

See  also  pages  (a)  659,  Fuel  oil  viscosimeters 
(Herschel).  667,  Calcium  in  natural  phosphates 
(Meurice).  671,  Chromium  in  nickel-chromium 
steels  (Hild) ;  Ferrotungsten  (Losana  and  Carozzi) ; 
Molybdenum  in  tungsten  (Hall).  672,  Chromium 
(Loffelbein).  675,  Acid  value  of  fats  (Kremann  and 
Schopfer).  678,  Superphosphate  (Tibaldi) ;  Acetol. 
Carbohydrates  (Baudisch  and  Deuel).  679,  Un- 
fermented  sugar  in  spent  washes  from  sacchari- 
fied wood  (Pringsheim).  680,  Wheat  starch 
(Wallis);  Phosphates  in  milk  (Miiller);  Moisture 
in  dried  milk  (Holm);  Milk  foods  (Crichton).  681, 
Chlorides  in  foodstuffs  (Bornand) ;  Phytin  in 
foodstuffs  (Arbenz) ;  Proteins  and  colour  reactions 
(Rakusin).  682,  Sulphates  in  water  (Kuhlmann 
and  Grossfeld) ;  Bacteria  fermenting  lactose  in 
irater  analysis  (Levine) ;  Cresol  in  cresol-soap  solu- 
tions (Schmatolla) ;  Phenol  in  trade  liquors.  683, 
Strychnine  and  quinine  (Evers);  Quinine  salts  in 
tablets  (Liversedge  and  Andrews);  Alkaloids  (Bliss). 
684,  Alkaloidal  bisrnuthic  iodides  (Francois  and 
Blanc);  Microsublimation  (Viehoever) ;  Thymine 
(Deuel  and  Baudisch);  Scammony  resin  (Deane  and 
Fidmonton).  685,  Furfural  (Fleury  and  Poirot) ; 
Peppermint  oil  (Eaton). 

Patents. 

Calorific  value  of  fluids  [gas];  Method  of  and 
apparatus  for  carrying  on  the  combustion  of  pro- 
portioned quantities  of  fluid  for  the  purpose  of 

measuring  the  .     Igranic  Electric  Co.,  Ltd. 

From  Cutler-Hammer  Mfg.   Co.     E.P.   182,573, 
7.4.21. 

In  a  gas  calorimeter,  "  firing  back  "  at  the  burner 
i<s  prevented  by  mixing  the  combustible  gas,  prior  to 
combustion,  with  less  than  the  total  requisite  pro- 
portion of  the  other  constituent  of  the  combustible 
mixture  and  supplying  the  remainder  at  or  near 
the  point  of  combustion. — J.  S.  G.  T. 

Cases;  Method  of  and  apparatus  for  measuring  the 

density  of .    G.  Konig.    E.P.  159,845,  5.3.21. 

Com-    5.3.20. 


Patent  List. 

The  dates  given  in  this  list  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised,  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given;  they  are  on 
sale  at  Is.  each  at  the  Patent  Office,  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
dale  given. 


I.— GENERAL;  PLANT;  MACHINERY. 
Applications. 

Alexander.  Separating  liquids  of  different  specific 
gravity.     22,172.     Aug.  18. 

Altenkirch,  and  Siemens-Schuckertwerke  Ges. 
Refrigerating-apparatus  of  the  absorption  type. 
22,571.     Aug.  18. 

Bloomfie'ld,  and  Boake,  Roberts  and  Co.  Distill- 
ing and  fractionating  apparatus.    22,781.    Aug.  22. 

Broadbridge,  Minerals  Separation,  Ltd.,  and 
Williams.  Filtration  and  conveying  of  granular 
etc.  material.    22,576.    Aug.  18. 

Burt,  Boulton,  and  Havwood,  Ltd.,  and  China. 
Grinding-miUls.     23,132.     Aug.  25. 

Collins.     Mixing-machines.     23,181.     Aug.  26. 

Crosfield  and  Sons,  Ltd.,  Hilditeh,  and  Wheaton. 
Manufacture  of  porous  or  absorbent  material. 
22,093.    Aug.  14. 

Dried  Milk  Dairy  Products,  Ltd.,  and  Sierra. 
Separation  of  solids  from  gases.     22,748.     Aug.  21. 

Dried  Milk  Dairy  Products,  Ltd.,  and  Gluckstein. 
Collection  and  separation  of  solids  from  gases. 
22,749.     Aug.  21. 

Fowler.     Grinding-mills.     22,332.     Aug.  16. 

Hurrell.     Pressure  filters.     22,261.    Aug.  16. 

Hurrell.  Continuous  pressure  filter.  22,282. 
Aug.  16. 

Kirchhoff  &  Co.,  and  Oppen.     22,591.     .See  XI. 

Lambert.     Mixing-machines.     23,056.     Aug.  24. 

Lawrence  Patent  Water  Softener  and  Sterilizer 
Co.,  Ltd.,  and  Warden-Stevens.  Proportioning, 
mixing,  and  dividing  liquids  and  dissolving  solids 
etc.    23,213.    Aug.  26. 

Loke.  Furnace  linings,  crucibles,  etc.  22,519. 
Aug.  18. 

Paterson.  Apparatus  for  treating  liquids  by 
chemical  reagents.     23,063.     Aug.  24. 

Pehrson.  Rotary  furnaces.  22,543.  Aug.  18. 
(Sweden,  20.8.21.) 

Richards  and  Sopwith.  Refrigeration.  22,070. 
Aug.  14. 

Shores,  and  United  Alkali  Co.,  Ltd.  Manufac- 
ture of  ice.     22,096.     Aug.  14. 

Stuart.  Heat  exchangers.  22,826.  Aug.  22. 
(U.S.,  22.8.21.) 

Stuart.  Filter  screens.  22,827.  Aug.  22.  (U.S., 
22.8.21.) 

Thomas.  Apparatus  for  mixing  gases  automatic- 
ally.   23,110.     Aug.  25. 

Thomson.  Disintegrating  solids.     23,155.  Aug 

Tunnadine.  Means  for  filtering  liquids.  22,605. 
Aug.  19. 

Yardlev.  Apparatus  for  purifving  etc.  air  etc. 
23,146.    Aug.  25. 

Complete  Specifications  Accepted. 

4898  (1921).  Baibet  et  Fils  et  Cie.  Process  and 
apparatus  for  continuous  rectification  of  liquid  air. 
(159,131.)     Aug.  30. 

10,024  (1921).  Mather.  Condensers,  preheaters, 
heat-exchangers,  and  the  like.    (184,222.)    Aug.  23. 

10,889  (1921).     Twigg.    ,S"ee  VIII. 

12,395  (1921).  Schloemann  and  Dobbelstein. 
Process  and  apparatus  for  the  conveyance  of  'loose 
materials.     (184,237.)     Aug.  23. 


Vol.  XLI.,  No.  17.] 


PATENT  LIST. 


693  a 


12,524  (1921).  GIossop,  Bradlev,  and  Willsdon. 
See  III. 

12,981  (1921).  Pcssi.  Method  of  preventing 
incrustation  in  steam-boilers.     (163,013.)     Aug.  23. 

13,379  (1921).  Sturtevant  Engineering  Co.,  Ltd., 
and  Powell.  Treatment  of  material  and  substances 
with  jets  of  fluid.     (184,557.)     Aug.  30. 

14,848  (1921).  Burden.  Machines  or  apparatus 
for  reducing  or  disintegrating  minerals  and  similar 
materials.     (184,609.)     Aug.  30. 

18,336  (1921).  Sehull.  Process  and  apparatus 
for  purifying  and  condensing  exhaust  steam  and 
for  purifying  the  condensate.     (184,342.)     Aug.  23. 

34,962  (1921).  Von  Wurstemberger.  Prevention 
of  selective  corrosion  in  machines  or  apparatus  of 
metallic  parts  made  of  copper  and  copper-contain- 
ing alloys  and  subject  to  the  corrosive  action  of 
water  containing  ions.     (174,059.)    Aug.  30. 

17,391  (1922).  Gardner.  Mixing  and /or  dis- 
integrating machines.     (184,433.)     Aug.  23. 


II.— FUEL;     GAS;     MINERAL    OILS    AND 

WAXES;    DESTRUCTIVE    DISTILLATION, 

HEATING;    LIGHTING. 

Applications. 

Allan,  Burmah  Oil  Co.,  Ltd.,  and  Moore.  22,168. 
See  XII. 

Broadhead.  Manufacture  of  combustible  gases. 
28,884.    Aug.  22. 

Burmah  Oil  Co.,  Ltd.,  and  Moore.  22,167. 
See  XII. 

Burn.     Gas-producers.     23,160.     Aug.  25. 

Davidson.      Destructive  distillation   of   coal   etc. 
22,198.    Aug.  15. 
;    Ges.  fur  Kohlentechnik.    22,127.    See  VII. 

Hudson  and  Hudson.  Complete  coal  gasification 
plant.       22,475-6.     Aug.  18. 

'    Lelarge.      Apparatus    for    separating    coke    etc. 
from  ashes  etc.    22,562.     Aug.  18. 

Leopold,  and  Meguin  A.-G.  Magnetic  separating 
orocess  for  treatment  of  residues  of  fuel.  22,751. 
Aug.  21.     (Ger.,  21.8.21.) 

Pautriero.     Electric  lamps.     22,839.     Aug.  22. 
j    Pedersen    and    Prass.      Manufacture   of  electric- 
ncandescent  lamps.     22,456.     Aug.  17. 

Pickard.  Production  of  combustible  gases.  22,280. 
Vug.  16. 

Poukon.     22,606.     See  XII. 

Complete  Specifications  Accepted. 
4996  (1921).     Roberts.    Process  and  apparatus  for 

ecovering      by-products      from     distillate      gases. 

184,507.)     Aug.  30. 
7317     (1921).       Withers     (Deutsche     Evaporator 

..-G.).     Method  and  means  for  utilising  the  heat 

Mitained  in  the  fuel  residues  of  furnaces.  (184,211.) 
ug.  23. 

8636  (1921).  Hird.  Apparatus  for  the  earbonisa- 
on  of  coal,  shale,  peat,  lignite,  and  the  like. 
84,525.)    Aug.  30. 

12,406  (1921).  Thompson  (Ver.  Gliihlampen-  und 
lektrizitiits  A.-G.).  Sealing  of  leading-in  wires 
>r  electric  incandescent  lamps  and  for  similar  pur- 
)ses.    (184,238.)    Aug.  23. 

12,700  (1921).    BIyth.    Process  for  the  combustion 
pulverised  fuel.     (184,250.)     Aug.  23. 
12,911  (1921).     Jacobs.     Drying  of  lignite,   peat. 

j.rf,  and  the  like.     (163,719.)     Aug.  23. 
13,010  (1921).     Patent  Treuhand  Ges.  fur  Elek- 
ische  Gliihlampen.     See  X. 

13,277  (1921).  Haddan  (Torfverwertungsges.  Pohl 
id  von  Dewitz).  Process  of  drving  and  compress- 
g  raw  peat. and  the  like.  (165,445.)  Aug.  30. 
13,278(1921).  Haddan  (Torfverwertungsges.  Pohl 
d  von  Dewitz).  Process  of  dry  distillation  and 
king  of  raw  peat  and  the  like.  (169,952.)  Aug.  30. 
13.(47(1921).     Dale.     See  XXIII. 


13.514  (1921).  Quarzlampen-Ges.  Quartz  mer- 
cury-vapour lamps.     (165,081.)     Aug.  23. 

13.515  (1921).  Dunstan.  Refining  of  liquid 
hydrocarbons.     (184,281.)     Aug.  23. 

14,144  (1921).  Oberlander  and  Le  Marechal. 
Incandescent  electric  lamps  and  the  like.  (184,291  ) 
Aug.  23. 

14,188  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).     See  XX. 

14,781  (1921).  Hawes.  Alcohol  fuel.  (184,607.) 
Aug.  30. 

14,918  (1921).  Woosnam.  Electric  glow  lamps. 
(184,302.)    Aug.  23. 

15,248(1921).  Courbeyeur  and  Clabaul.  Appar- 
atus for  generating  combustion-products  under 
pressure.     (164,693.)     Aug.  30. 

16,469  (1921).  Climie.  Gas-producers.  (184,323.) 
Aug.  23. 

29,429  (1921).  Ges.  fiir  Drahtlose  Telegraphic 
See  XX 111. 

34,948  (1921).  Schulz.  Regenerators  for  heating 
air  or  gas  for  combustion.     (184,744.)    Aug   30 

2401  (1922).  British  Thomson-Houston  Co.,  Ltd. 
(General  Electric  Co.).  Electric  incandescent  lamps. 
(184,748.)    Aug.  30. 

15,444  (1921).  Dingler'sche  Maschinenlabrik 
A.-G.  Process  for  pre-heating  blast-furnace  and 
like  gases  in  dry-gas  purifying-plants.  (182,102.) 
Aug.  30. 


III.— TAR  AND  TAR  PRODUCTS. 
Complete  Specifications  Accepted. 
12,524   (1921).     GIossop,   Bradley,    and  Willsdon. 
Process  and  apparatus  for  distilling  tar  and  other 
liquids.     (184,242.)    Aug.  23. 

13,515  (1921).     Dunstan.     See  II. 
15,726   and    34,279    (1921).      Thermal    Industrial 
and  Chemical  (T.I.C.)  Research  Co.,  Ltd.,  Morgan, 
and  Rider.     Distillation  of  tar.    (184,624.)   Aug.  30. 

IV— COLOURING  MATTERS  AND  DYES. 

Applications. 
Bailey.     22,979.     See  VI. 

Sokal  (Kalle  und  Co.,  A.-G.).    Process  for  produc- 
ing vat  colouring-matters.     23,033.     Aug.  24. 

Complete  Specification  Accepted. 
8254  (1921).    Farbw.  vorm.    Meister,  Lucius,  und 
Briining.    See  VI. 


V.— FIBRES ; 


TEXTILES; 
PAPER. 

Applications. 


CELLULOSE; 


Cope  (Pfarrius).  Method  of  treating  fibrous 
material.     22,067.     Aug.  14. 

Dawber.  Utilisation  of  waste  refuse  from  paper- 
making.    22,151.    Aug.  15. 

Perry.     22,211.     See  XVIII. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Treat- 
ment of  cellulose  etc.     22,687.     Aug.  21. 

Complete  Specifications  Accepted. 

3742(1921).  Duclaux.  Process  for  utilising  cellu- 
lose esters.     (184,197.)     Aug.  23. 

7570  (1921).  Little,  Inc.  Process  of  preparing 
cellulose  butyrate.     (167,143.)     Aug.  23. 

10,615  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Manufacture  and  treatment  of  viscose. 
(184,533.)     Aug.  30. 

13,592  (1921).  SehiiUke.  Method  of  and  apparatus 
for  producing  artificial  threads,  more  particularly 
multiple-filament  threads,  from  cellulose  solution. 
(163,312.)     Aug.  23. 

14,852   (1921).      Budde.      Manufacture   of   hydra- 


694  a 


PATENT   LIST. 


[Sept.  15,  1922. 


oxy-cellulose  and  a  xanthogenated  compound 
obtained  therefrom  and  a  solid  compact  material 
obtained  by  coagulation  of  the  latter.  (184  610  ) 
Aug.  30. 

19,531  (1921).  Dreyfus.  Manufacture  of  solu- 
tions, compositions,  preparations  or  articles  made 
with  cellulose  derivatives.     (184,671.)     Aug.  30. 

VI.— BLEACHING;  DYEING;  PRINTING  • 
FINISHING. 

Applications. 

Bailey.  Apparatus  for  ascertaining  fastness  of 
dyes  to  milling  etc.  and  /or  effect  of  such  operations 
on  fabrics.     22,979.     Aug.  24. 

Lord.  Sizing,  dyeing,  bleaching,  etc.  machines 
for  hanks.    22,923.    Aug.  23. 

Wolfenden.     D3'eing-apparatus.    22,978.  Aug.  24. 

Complete  Specifications  Accepted. 

20,033  (1921).     Burton  and  Glover.     See  XV. 

8254  (1922.)  Farbw.  vorm.  Meister,  Lucius,  and 
Briinmg.  Manufacture  of  stable  dry  and  soluble 
vat-preparations  for  dyeing.     (177,52*6.)     Aug.  30. 

VII.— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Casale.  Apparatus  for  catalytic  synthesis  of 
ammonia.     23,072.     Aug.  24. 

Clayton,  and  Salt  Union,  Ltd.  Manufacture  of 
hydrogen  peroxide.    22,045.    Aug.  14. 

Crosfield  and  Sons,  Ltd.,  Hilditch,  and  "Wheaton. 
Manufacture  of  base-exchanging  compounds 
22,091-2.     Aug.  14. 

Crosfield  and  Sons,  Ltd.,  Hilditch,  and  "Wheaton 
22,095.    See  XIX. 

Douglas.     Manufacture  of  sulphate  of  ammonia 
.  22,347.    Aug.  17. 

Fairlie.  Acid  plant  equipment.     23,083.  Aug.  25. 

Gardner  and  Taverner.  Extraction  of  iron  and 
titanium  compounds  from  titanium  ores.  22,728 
Aug.  21. 

Ges.  fur  Kohlentechnik.  Process  of  removing 
sulphuretted  hydrogen  from  gases.  22,127.  Aug  14° 
(Ger.,  20.9.21.)  ' 

Reynard,  Tapping,  and  Thornley.  Process  for 
utilisation  of  seaweed.     22,644.     Aug.  19. 

Sim  and  Smith.  Manufacture  of  lead  carbonate 
22,455.     Aug.  17. 

Soc.  Gamichon  Freres.  Process  of  manufacture 
ol  lead  oxides.     22,103.     Aug.  14.     (Fr.,  19.8.21.) 

Complete  Specifications  Accepted. 

4672  (1921).  "Williams.  Process  of  manufactur- 
ing soluble  phosphates.     (184,206.)    Aug.  23 

4898  (1921).    Barbet  et  Fils  et  Cie.    See  I. 

9617  (1921).  Dossett.  Process  of  and  apparatus 
for  crystallising  copper  sulphate.  (184,527.) 
Aug.  30. 

12,573  (1921).  Chem.  Fabr.  Griesheim-Elektron, 
and  Suchy.  Process  for  the  electrolytic  production 
of  potassium  bicarbonate  from  potassium  chloride 
solutions.     (184,244.)     Aug.   23. 

13,290  (1921).  Minami  Manshu  Tetsudo  Kabu- 
shiki  Kaisha.  Process  of  manufacturing  anhydrous 
chlorides  of  alkaline  earth  metals.  (163,304.) 
Aug.  23.  ' 

,  22,404  (1921).  Von  Faber.  Process  for  recover- 
ing iodine.    (168,324.)    Aug.  23. 

VIII.— GLASS;  CERAMICS. 

Applications. 
Grace.     Means  for  separating  fine  micaceous  and 
BWiceoua  particles  from  china  clay.    22,444.  Aug.  17. 


King.  Production  of  colour  effects  in  glass 
crystal,  etc.     22,514.     Aug.  18.  ' 

Loke.     22,519.     See  I. 

Mellersh-Jackson  (Libbev-Owens  Sheet  Glass  Co  ) 
Apparatus  for  drawing  sheet  glass.  23,074   Au<*   24 

Mellor.    22,149.    See  X.  ' 

iSpangenberg.  Abrassive  and  cleansing  etc. 
material,  and  method  of  producing  same.  22  436 
Aug.  17. 

Unwin.     Enamel  kilns  etc     22,904.     Aug.  23. 

Complete  Specifications  Accepted. 

10,889  (1921).  Twigg.  Method  and  means  of 
utilising  waste  heat  for  effecting  the  drying  of 
bricks  or  such  like.     (184,540.)     Aug.  30. 

13,172  (1921).  Feldenheimer  and  Plowman 
Treatment  of  clay.     (184,271.)     Aug.  23. 

24,874  (1921).  Bailey.  Kilns  for  firing  potterv 
and  other  ware.     (184,716.)     Aug.  30. 

26,797  (1921).  Scheid,  and  Schomburg  und  Sonne 
A.-G.  Manufacture  of  pottery  particularly  adapted 
to  electric  insulators.     (184,725.)     Aug.  30. 


IX.— BUILDING  MATERIALS. 

Applications. 

Andrews.  Manufacture  of  Portland  cement 
22,982.     Aug.  24. 

Newton.  Cement  or  adhesive  composition 
22,341.    Aug.  17. 

Complete  Specification  Accepted. 
13,504  (1921).     Hildyard.     Production  of  imita- 
tion wood.     (184,565.)    Aug.  30. 


X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Anderson  and  Thornhill.  Process  for  production 
of  sponge  iron  etc.     22,059 — 60.     Aug.  14. 

Barter  Trading  Corp.,  Ltd.,  and  Watson.  Ferro- 
silicon  blocks.    22,409.     Aug.  17. 

Bengough  and  Stuart.  Method  of  preserving 
aluminium  and  its  alloys  from  corrosion.  22,625. 
Aug.  19. 

British  Thomson-Houston  Co.,  Ltd.  (General 
Electric  Co.).  Composite  metal  articles,  and 
methods  of  manufacturing  same.     22,63S.    Aug.  19. 

Davies  and  Thompson.  Magnetic  separators. 
22,620.     Aug.  19. 

Drysdale  and  Evans.  Protection  of  metals  from 
corrosion.     22,353.     Aug.  17. 

Grogan  and  Rosenhain.  Process  of  improving 
commercial  aluminium.     22,454.     Aug.  17. 

Leggo.     Roasting-furnaces.     22,460.     Aug.  17. 

Lloyd.  Furnace  for  manufacture  of  liquid  steel. 
23,199.     Aug.  26. 

Mathesius  and  Mathesius.  Process  for  producing 
lead  alloys  containing  strontium.  23,048.  Aug.  24 
(Ger.,  24.8.21.) 

Mellor.  Manufacture  of  clay  crucibles,  stoppers. 
etc.  for  steel  melting  etc.     22,149.     Aug.  15. 

Mond  (International  Process  and  Engineering 
Corp.).  Chloridising  roasting  of  ores  etc.  22,843. 
Aug.  15. 

Nobel.  Manufacture  of  ferro-chromium.  22,951. 
Aug.  23. 

Nobel.  Production  of  ferro  alloys.  22,952. 
Aug.  23. 

Poulson.     Blast  furnaces.     22,352.    Aug.  17. 

Complete  Specifications  Accepted. 
47S2  (1921).     Mellersh-Jackson  (Soc  Metalurgica 
Ohilena    "  Cuprum  ").      Process   for  treating  ores. 
(184,501.)     Aug.  30. 


Vol.  XI.I.,  No.  17.1 


PATENT   LIST. 


695  a 


4892  (1921).  Marks  (Valley  Mould  and  Iron 
Corp.).  Method  of  casting  steel-ingots  and  mould 
for  use  therewith.     (184,505.)     Aug.  30. 

7797  (1921).  Malmberg  and  Holstrom.  Apparatus 
for  the  determination  of  the  percentage  of  carbon 
in  iron  and  steel.     (184,215.)     Aug.  23. 

12,793  (1921).  Faconeisen-Walzwerk  L.  Mann- 
staedt  una  Co.  A.-G.,  and  Bansen.  Hearth-smelt- 
ing or  heating  furnaces.     (184,252.)    Aug.  23. 

13,010  (1921).  Patent  Treuhand  Ges.  fur  Elek- 
trische  Gluhlampen.  Manufacture  of  drawn  tungs- 
ten wires.    (163,014.)    Aug.  23. 

13.622  (1921).  Soc.  d'Electro-Chimie  et  d'Electro- 
Metallurgie.  Process  for  obtaining  metallic  elect  ro- 
lvtic  deposits  easily  detachable  from  the  cathode. 
(165,082.)    Aug.  30'. 

15,815  (1921).  Elmore,  and  Chemical  and  Metall- 
urgical Corp.,  Ltd.  Treatment  of  argentiferous 
lead-zinc  sulphide  ores.     (184,628.)     Aug.  30. 

16,871  (1921).  Harris.  Apparatus  for  refining 
metals.    (184,639.)    Aug.  30. 

26,787  (1921).  Bardt.  Process  for  dissolving-out 
I  or  recovering  the  metal  constituents  of  metallifer- 
ous materials.     (184,402.)    Aug.  23. 

34,962  (1921).    Von  Wurstemberger.    See  I. 

15,444  (1922).  Dingler'sche  Maschinenfabr.  A.-G. 
See  II. 

XL— ELECTRO  CHEMISTRY. 

Applications. 

Crosfield  and  Sons,  Ltd.,  Hilditch,  and  Wheaton. 
[Electric  battery.     22,094.     Aug.  14. 

Hartman.     Ozone-generator.     22,104.     Aug.  14. 

Kirchhoff  und  Co.,  and  Oppen.  Electric  gas- 
purifiers.     22,591.     Aug.  19.     (Belg.,  16.9.21.) 

Nickum.  Electrolytic  apparatus,  and  method  of 
idepolarising  same.     22,859.     Aug.  22. 

Complete  Specifications  Accepted. 

7973  (1921).  Elektrizitats  A.-G.  vorm.  Schuckert 
und  Co.     Electrolytic  cell.     (165,071.)     Aug.  30. 

12,573  (1921).  Chem.  Fabr.  Griesheim-Elektron, 
land  Suchy.    See  VII. 

13,622  (1921).  Soc.  d'Electro-Chimie  et  d'Eleetro- 
'Metallurgie.    See  X. 

|    17,765  (1921).    Smith.     Secondary  cells,  or  batter- 
•ies  for  electricity  storage.     (184,649.)     Aug.  30. 

17.784  (1921).  De  Vos.  Electric  accumulators. 
184,336.)     Aug.  23. 

18,589  (1921).  Dinin.  Electric  accumulators. 
'.184,658.)    Aug.  30. 

'    26,797    (1921).      Scheid,     and     Schomberg    und 
3dhne  A.-G.    See  VIII. 

XII.— FATS;  OILS;  WAXES. 

Applications. 

Allan,  Burinah  Oil  Co.,  Ltd.,  and  Moore.  Stoves 
or  manufacture  of  waxes.     22,168.     Aug.  15. 

Burmah  Oi'l  Co.,  Ltd.,  and  Moore.  Apparatus  for 
ooling  oil  etc.     22,167.     Aug.  15. 

North.     22,242.    See  XIX. 

Poulson.      Process    of    clarifying    oils.      22,606. 
lug.  19. 
;   Spangenberg.    22,436.    See  VIII. 

Villain.  Manufacture  of  transparent  soaps  etc. 
(-2,833.     Aug.  22. 

Complete  Specifications  Accepted. 

10,616  (1921).  Plauson's  (Parent  Co.),  Ltd. 
Plauson).  Manufacture  of  compositions  of  oils  or 
ther  organic  substances.     (184,534.)     Aug.  30. 

10,940(1921).  Eppenberger.  Process  for  render- 
ng  fat-containing  granular  products  impalpable. 
176,305.)    Aug.  30. 

12,628  (1921).  Chamberlin.  Detergent  with  dis- 
nfecting  properties.     (184,248.)     Aug.  23. 


15,448  (1921).  MelUersh-Jackson  (Murray  Co.). 
Art  of  forming  and  wrapping  oil-bearing  material 
prior  to  the  expression  of  oil  therefrom.  (184,621.) 
Aug.  30. 


XIII.— PAINTS;      PIGMENTS;      VARNISHES; 
RESINS. 

Applications. 

Consortium  fur  Elektrochemische  Industrie  Ges. 
Manufacture  of  resins  resembling  shellac.  22,222. 
Aug.  15.     (Ger.,  27.8.21.) 

Freegard.  Composition  of  matter  for  removal  of 
paint  etc.     22,554.     Aug.  18. 

Gardner.     Paints  etc.     22,727.     Aug.  21. 

Pouter.  Preparation  for  removing  paint  etc. 
23,153.     Aug.  25. 

Sim  and  Smith.     22,455.    See  VII. 

Soc.  Gamichon  Freres.     22,103.     See  VII. 


XIV—  INDIA-RUBBER;   GUTTA-PERCHA. 

Applications. 

Gould.  Rublicr  composition  for  roads  etc.  22,550. 
Aug.  18. 

Mead.  India-rubber  manufacture.  22,513. 
Aug.  18. 

Warmund.  Process  for  production  of  compound 
for  sealing  pneumatic  etc.  tyres  and  for  preserving 
rubber.    22,822.    Aug.  22.    (Ger.,  22.8.21.) 

Complete  Specifications  Accepted. 

13,871  (1921).  Britton,  and  Griffiths  Bros,  and 
Co.,  London,  Ltd.  Preparation  of  rubberised  fabric 
and  rubber  goods.     (184,578.)     Aug.  30. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Complete  Specifications  Accepted. 

13,500  (1921).  Devonshire  and  Foord.  Composi- 
tion for  use  in  the  manufacture  of  buttons  and  other 
articles.    (184,563.)    Aug.  30. 

20,033  (1921).  Burton  and  Glover.  Preparation 
of  a  tanning-agent  for  the  chrome  tannage  or  dye- 
ing of  Heather.    (184,360.)    Aug.  23. 

XVI.—  SOILS ;    FERTILISERS. 

Applications. 

Beer.    22,438.    See  XIX. 

Gradl.  Manufacture  of  artificial  manures.  22,217, 
Aug.  15.  22,888,  Aug.  22.  23,067,  Aug.  24.  (Ger., 
15.8,  3.9,  and  22.11.21.) 

Complete  Specification  Accepted. 
4672.     Williams.     See  VII. 

XVII.— SUGARS;  STARCHES;  GUMS. 

Applications. 

Perry.     22,211.     Sec  XVIII. 
Rigby.    Utilisation  of  exhausted  sugar-beet  slices, 
waste  brewery  grains,  etc.    22,179-80.     Aug.  15. 

XVIII.— FERMENTATION  INDUSTRIES. 

Applications. 

Johansson.  Process  for  denaturing  alcohol  etc. 
23,143.     Aug.  25.     (Sweden,  26.8.21.) 

Perry.  Process  for  treating  cellulose  etc.  for 
obtaining  fermentable  sugars  etc.    22,211.    Aug.  15. 

Rigby.    22,179-80.    See  XVII. 


600  a 


PATENT   LIST. 


[Sept.  15,  1922. 


Complete  Specifications  Accepted. 

14,781(1921).    Hawes.    See  II. 

22,079  (1921).  Vydra.  Process  of  producing  a 
malt  preparation  for  brewing  purposes.  (184,381.) 
Aug.  23. 

XIX.— FOODS;  WATER  PURIFICATION; 
SANITATION. 

Applications. 

Abbott,  Cork,  McNeill,  Macredie,  and  Remus. 
Process  for  preparation  of  meat  powders.  22,159. 
Aug.  17.     (New  Zealand    27.8.21.) 

Adeane,  Harding,  and  Whetham.  Treatment  of 
whey  etc.     23,121.     23,123.     Aug.  25. 

Adeans,  Hopkins,  Stewart,  and  Whetham.  Treat- 
ment of  whey  etc.     23,127.     Aug.  25. 

Beer.  Fungicides  for  plants  or  seeds.  22,438. 
Aug.  17. 

Crosfield  and  Sons,  Ltd.,  Hilditch,  and  Wheaton. 
22,091-2.     See  VII. 

Crosfield  and  Son6;  Ltd.,  Hilditch,  and  Wheaton. 
Process  of  regenerating  base-exchanging  compounds 
after  use.     22,095.     Aug.  14. 

Enefer.  Meal  for  bread-making.    22,807.  Aug.  22. 

Lawrence  Patent  Water  Softener  and  Sterilizer 
Co.,  Ltd.,  and  Warden-Stevens.     23,213.     See  I. 

Leo.  Food  products,  and  method  of  making  same. 
22,852.     Aug.  22. 

Luft.  Food  products,  and  process  of  preparing 
same.     22,246.     Aug.  15. 

Luft.     Food  products.     22,435.     Aug.  17. 

Marks  (Wayne  Tank  and  Pump  Co.).  Continuous 
softening  of  water.     22,320.     Aug.  16. 

Melhuish.  Manufacture  of  milk.    22,693.  Aug.  21. 

North.  Process  of  producing  milk  artificially. 
22,240.    Aug.  15. 

North.  Process  of  making  butter  from  artificial 
cream.     22,241.     Aug.  15. 

North.  Process  of  obtaining  oil  from  milk. 
22,242.     Aug.  15. 

O'Connor  and  O'Connor.  Manufacture  of  bread 
etc.     22,349.     Aug.  17. 

O'Connor  and  O'Connor.  Manufacture  of  butter 
etc.     22,350.     Aug.  17. 

Paterson.     23,063.     See  I. 

Roggers.  Treatment  of  sewage  etc.  22,115. 
Aug.  14. 

Yardley.     23,146.     See  I. 

Complete  Specifications  Accepted. 

4208  (1921).  International  Dry  Milk  Co.,  and 
Dick.     Dehvdrated  milk.     (184,203.)     Aug.  23. 

10,940  (1921).     Eppenberger.    See  XH. 

12,628  (1921).     Chamberlin.     See  XII. 

29,429  (1921).  Ges.  fur  Drahtlose  Telegraphic. 
Se<   XXIII. 

31,124  (1921).  Imhoff.  Treatment  of  sewage  in 
undrained  settling  basins.     (184,742.)     Aug.  30. 

XX.— ORGANIC   PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Application. 

Etabl.  Poulenc  Frercs.  Process  for  preparation 
of  aminophenvlarsinic  acids.  22,140.  Aug.  17. 
(fr..    7.9.21.) 


Complete  Specifications  Accepted. 

10,616  (1921).  Plauson's  (Parent  Co.),  Ltd 
(Plauson).     See  XII.  ' 

13,664  (1921).  Galbraith,  Shannan,  Adam,  and 
Siderfin.  Manufacture  of  amines  from  phenolic 
compounds.     (184,284.)     Aug.  23. 

14,049  (1921).  Soc.  Anon  de  Prod.  Chim.  Etabl. 
Ma'letra.  Process  for  the  production  of  acetaldu- 
hyde  from  acetylene.     (165.0S5.)     Aug.  30. 

14,188  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Manufacture  of  iehthvol  oil  and  ich- 
thyol  preparations  and  the  like.  (184,292.)  Aug.  23 

15,730  (1921).  Imray  (Soc.  of  Chem.  Ind.  in 
Basle).  Manufacture  of  dialkvlamides  of  nicotinic 
acid.     (1S4,625.)     Aug.  30. 

15,732(1921).  Johnson  (Badische  Anilin  and 
Soda  Fabrik).  Manufacture  and  production  of 
oxalic  acid.     (184,627.)     Aug.  30. 

34,532  (1921).  Lilienfeld.  Manufacture  of  a 
remedy  for  malignant  tumor.     (173,507.)     Aug.  23. 


XXI—  PHOTOGRAPHIC      MATERIALS       AM) 
PROCESSES. 

Applications. 

Dunning  and  Kclley.  Motion-picture  films. 
22,711.     Aug.  21. 

Lucoque,  Pilgrim,  and  Rudkin.  Photographic 
films.     22,388.     Aug.  17. 

Lucoque,  Pilgrim,  and  Rudkin.  Photographic 
developing-solutions.     22,389.     Aug.   17. 

Lucoque,  Pilgrim,  and  Rudkin.  Production  of 
direct    photographic  positives.     22,390.     Aug.  17. 

Complete  Specifications  Accepted. 

3233  (1921).  Ott.  Process  for  coating  the  sur- 
face of  cinematograph  films.     (184,495.)     Aug.  30. 

4437  (1921).  Stewart  and  Killick.  Method  for 
producing  kinematograph  pictures  in  natural 
colours.     (184,205.)     Aug.  23. 

6902  (1921).  Luboshey.  Sensitive  film-supports 
for  X-ray  photography.  "  (184,519.)     Aug.  30. 

10,954  (1921).  Lepine.  Picture  films.  (184,541.) 
Aug.  30. 


XXII.— EXPLOSIVES;   MATCHES. 
Application. 

Nobel  Industries,  Ltd.,  and  Weir.  Manufacture 
of  detonators.     22,214.     Aug.   15. 

XXIII.— ANALYSIS. 

Complete  Specifications  Accepted. 

7797  (1921).     Malmberg  and  Holstrom.     So    \ 
13,447  (1921).     Dale.     Apparatus  for  the  analysis 
and  recording  of  gases.     (184,279.)     Aug.  23. 

29,429  (1921).  Ges.  fiir  Drahtlose  Telegraphic. 
Means  for  indicating  the  presence  of  noxious  gases 
such  as  fire-damp.     (171,988.)     Aug.  30. 


Vol.  XLI..  No.  18.J 


ABSTRACTS 


[Sept.  30.  1922. 


I.-GENEBAL;  PLANT;  MACHINEBY. 

Steam-pipe  coverings;  [Determination  of]  efficiency 

of   at    high    temperatures.      C.    Jakeman 

Engineering.  1922,  114,  155. 

The  covering  to  be  tested  is  put  on  a  steel  pipe 
4  in.  internal  diameter,  the  pipe  ends  being  closed 
with  blind  flanges.  Correction  for  loss  by  radiation 
from  the  blank  ends  is  obtained  by  dividing  the 
experimental  pipe  into  two  unequal  lengths,  2  ft. 
and  13J  ft.,  so  that  the  loss  is  eliminated  by  dif- 
ference; the  difference  between  the  amounts  of  heat 
lost  by  the  two  lengths  corresponds  to  the  heat  lost 
in  a  pipe  of  differential  length,  11^  ft  An  electric 
heater  in  which  the  wires  -are  arranged  in  six  con- 
centric rings,  each  ring  being  controlled  by  a 
separate  switch,  runs  through  the  interior  of  "the 
pipe.     When   all   wires   are   used   it  is   possible  to 

,  raise  the  bare  pipe  to  1000°  F.  (about  540°  C).  A 
pipe   fitted    with   a    good   covering   requires    from 

i  i  to  !T5  of  the  heat  energy  required  for  the  bare 
pipe.  The  apparatus  and  method  of  calibration 
are  described  in  detail. — J.  B.  F. 

Adsorption:  its  bearing  on  catalysis.    M    Guichard 

Bull.  Soc.  Chim.,  1922,  33,  647—653. 
The  adsorption  of  a  vapour  by  a  catalyst  is  con- 
ditioned by  the  equilibrium  pressure  and  tempera- 
ture at  which  the  action  takes  place  and  is  re- 
versible. On  the  other  hand,  increase  in  tempera- 
ture of  preparation  or  in  duration  of  preliminary 
'heating  of  the  catalyst  decreases  the  quantity 
adsorbed  and  the  action  is,  in  this  case,  irre- 
versible. These  conclusions  are  drawn  from  a  study 
'of  the  adsorption  of  water  vapour  by  precipitated 
silica,  quartz  sand,  and  reduced  nickel,  and  of 
■iodine  vapour  by  some  natural  silicates,  alumina, 
'and  glucina.  The  author  maintains  that  the  pre- 
liminary heating  of  the  catalyst  results  in  diminu- 
tion of  active  surface  and  cites  facts  which  tend 
:o  support  this  view. — H.  J.  E. 

Patents. 

Separating  suspended  particles  from  electrically 
miniating  fluids,   especially  gases;    Method  and 

device    for   .      The   Lodge    Fume    Co..    Ltd. 

From  E.  Moller.     E.P.  183,768,  16.11.21. 

xsulatixg  fluids,  more  especially  gases,  containing 
ine  suspended  particles  are  submitted  to  the  action 
fa  single-  or  multi-stage  bilateral  electric  held 
rior  to  treatment  by  a  unilateral  electric  discharge 
a  accordance  with  E.P.  17,840  of  1912  (F.P. 
19,337;  J.,  1913,  495),  and  E.P.  19,733  of  1913. 
he  finer  particles  are  thereby  more  readily  floccu- 
ited,  and.  if  desired,  the  effect  is  increased  by  the 
se  of  a  number  of  flocculation  chambers  arranged 
l  series  and  not  provided  with  electrodes. 

—J.  S.  G.  T. 

istilling  column.  F.  E.  Lichtenthaeler,  Assr.  to 
W.  E.  Lummus  Co.  U.S. P.  1,424,173,  1.8.22. 
Appl.,  8.5.18. 

!ie  column  is  divided  into  compartments  by  trans- 
rse  partitions.  Means  are  provided  for  support- 
g  one  of  the  partitions  and  for  supporting  the 
her  partitions  from  this  one. — H.  H. 

•ecipitation  of  solid  or  liquid  suspended  matter 
from  gases  by  high-tension  electricity;  Process  of 

.       Metallbank  u.  Metallurgische  Ges.  A.-G. 

G.P.  350,259,  10.9.20.    Addn.  to  348,377. 

an  installation   such   as  that   described   in  the 

svious    patent    (J.,    1922,    491a)    the    discharge 

1  ctrodes  are  composed  of  non-conducting  material 

1  are  coated  with  non-conducting  material.     Thus 


■covery  of  solid  matter  from  liquids  by  evapora- 
tion; Process  ../  and  apparatus  for  .     G.  A. 


filaments   or    rods   of   quartz,    glass,    porcelain,    or 
similar   acid-resisting   material   may  be   emploved 
lhe  device   is  particularly  suitable  for  use  where 
acids,  e.g.,  hydrochloric  acid,  are  precipitated  from 
the  gas.— J.  S.  G.  T. 

Stable    foam    for   preventing    the    evaporation    of 
store,!     liquids.       J.     M.     Jennings,     Assr.     to 
Standard  Oil  Co.       U.S. P.  1,423,719-21    25  7  22 
Appl.,  (a)  22.11.20,  (b)  24.5.21,  (c)  26.10.21. 
The  foams  are  formed  from  (a)  an  aqueous  solution 
containing  25  ,    of  glue,    10%    of  glvcerin,    2%    of 
ferrous  sulphate,  and  a  minute  proportion  of  pre- 
servative; (b)  a  liquid  consisting  of  less  than  15% 
of  water,   glycerin,  and   a   bodv-forming  material; 
(c)  a  liquid  containing  40—81%  of  glucose,  6 — 12% 
oi  water,  5 — 10%   of  glue,  and  a  small  proportion 
of  a  setting  agent.     (67.  U.S. P.   1,415,351-2;    J., 
1922,  491  a.)— T.  A.  S. 

Evaporator.  P..  Mellor,  Assr.  to  Kestner  Evapo- 
rator Co.  U.S.P.  1,424,254,  1.8.22.  Appl.,  9,8.20. 
A  counter-current  evaporator  is  formed  of  a 
vertical  series  of  horizontal  liquor  tubes  each  pro- 
vided with  a  heating  jacket.  Heating  vapour  flows 
through  the  series  of  jackets  from  an  inlet  on  the 
uppermost  jacket  to  an  outlet  for  vapour  and  con- 
densed liquid  on  the  lowermost  jacket.  Trapped  by- 
pass connexions  intercept  condensed  liquid  at 
intervals  and  direct  it  to  the  outlet. — H.  H. 

Becovei 

tin 

Kiause  u.   Co.' A.-G.  *G.P.   (a) '347,07:^'    L4.17! 

(b)  349,183,  5.1.18.  (b)  Addn.  to  347,138. 
(a)  A  vertical  axial  tube  is  supported  upon  the 
floor  of  a  vertical  hollow  cylinder  serving  as  evapora- 
tion vessel.  The  tube,  which  extends  some  distance 
within  the  cylinder,  is  provided  with  a  number  of 
horizontal  openings  in  its  circumference  at  one  or 
more  transverse  sections  of  the  tube  and  at  the  same 
height  as  corresponding  horizontal  openings  in  the 
cylinder.  Above  the  openings,  within  the  chamber, 
is  a  high-speed  centrifuge  which  discharges  atomised 
liquid  into  the  chamber,  this  liquid  then  falling 
through  a  gaseous  evaporating  medium  which  passes 
practically  horizontally  between  the  respective 
openings  in  the  tube  and  chamber,  (b)  In  a  process 
carried  out  in  accordance  with  G.P.  347,138  (J., 
1922,  316  a),  in  place  of  openings  in  the  wall  or  floor 
of  the  evaporating  chamber,  a  disc  is  mounted  in 
the  chamber  so  that  there  is  an  annular  6pace 
between  the  edge  of  the  disc  and  the  casing.  The 
stream  of  evaporating  medium  flows  between  the 
annular  opening  and  the  central  opening  provided 
for  the  supply  of  air.— J.  S.  G.  T. 

[Filter  2>ress  sack']  fabrics;  Process  of  producing  a 

repair  in  .     A.  O.  Austin,  Assr.  to  The  Ohio 

Brass  Co.  U.S.P.  1,424,332, 1.8.22.  Appl.,  12.5.20. 

Wlcanisable  material  is  inserted  in  the  portion  of 
the  fabric  to  be  repaired,  and  is  cured  to  cause  it  to 
adhere  to  the  fabric  and  form  a  continuation 
thereof.— H.  H. 

Extracting  apparatus;  Rotary  .  J.  W.  Bod- 
man,  Assr.  to  W.  Garrigue  and  Co.  U.S.P. 
1,424,335,  1.8.22.     Appl.,  13.1.21. 

A  horizontal  jacketed  rotary  drum  is  provided  at 
one  end  with  a  head  enclosing  a  pocket  connected 
by  a  pipe  with  the  jacket.  A  valve  at  the  inner 
side  of  the  head  is  formed  by  a  rotary  member  and 
a  stationary  member,  and  is  provided  with  an 
interior  space.  Within  the  drum  are  secured  spaced 
steam-delivery  pipes  connected  with  the  valve  so 
that  they  open  into  the  valve  space  only  when  they 
occupy  the  lower  portion  of  the  drum  during  the 


098  A 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


[Sept.  30, 1922. 


rotation.  A  pipe  leads  axially  through  the  outer 
portion  of  the  head  into  the  pocket,  and  a  pipe  of 
smaller  diameter  extends  through  this  pipe  into  the 
valve  space.— H.  H. 

Fractionation    of    volatile,    and    more    especially 

easily  volatile  liquid  mixtures;  Process  of  . 

"  Metan  "    Spolka    z    ograniczona    odp.       G.P. 
351,082,  13.6.18.     Conv.,  27.3.17. 

The  mixture  is  supplied  continuously  under  pres- 
sure to  the  top  of  a  vertical  dephlegmator,  and  the 
several  fractions  are  withdrawn  from  the  column 
at  various  heights  according  to  the  respective  boil- 
ing points  of  the  fractions.  Owing  to  the  higher 
boiling  points  due  to  the  pressure  in  the  column,  a 
better  separation  of  the  several  fractions  is  obtained 
than  hitherto.— J.  S.  G.  T. 

Drying  coal  or  other  material;  Apparatus  for . 

f.  A.  Goskar.     U.S. P.  1,424,565,  1.8.22.     Appl., 
29.10.21. 

See  E.P.  175,674  of  1920;  J.,  1922,  282  a. 

Liquors;    Method   of  evaporating   .     E.   Josse 

and    W.    Gensecke.       U.S. P.    1,425,020,    8.8.22. 
Appil.,  27.4.20. 

See  E.P.  138,871  of  1920;  J.,  1921,  455  a. 

Air  pumps;  Mercury  vapour  ejector  .      A.-G. 

Brown,  Boveri,  &  Co.       E.P.  173,500,  19.12.21. 
Conv.,  31.12.20.     Addn.  to  165,400. 

Air  filters;   Filter  bag   cleaning   device   for  . 

AV.  F.  L.  Beth.       E.P.  175,281,  9.2.22.       Conv., 
12.2.21.     Addn.  to  132,513. 

Grinding  mills  [;  Means  for  exerting  elastic  pressure 

on  rollers  in  ].     C.  F.  Leubli.     E.P.  183,215, 

14.4.21. 

Gas  and  air  valves  [of  gas-heated  furnaces]  and  tlie 
like;  Means  for  actuating  .  South  Metro- 
politan Gas  Co.,  D.  Chandler,  and  J.  J.  Cooke. 
E.P.  183,862,  15.4.21. 

Solids    of   different    specific    gravities;    Means   for 

separating  .     J.  A.  Fletcher.     E.P.  184,049, 

26.7.21. 


Ha.— FUEL;  GAS;  MINERAL  OILS  AND 
WAXES. 

Coal  seams;  Method  of  representing  the  structure 

of ,  and  the  proportion  and  properties  of  the 

four  constituents  (vitrain,  clarain,  durain,  and 
fusain)  contained  in  certain  seams.  I.  F.  S. 
Sinnatt.  Trans.  Inst.  Min.  Eng.,  1922,  63, 
307—317. 

A  method  of  estimating  the  percentages  of  the  vari- 
ous constituents  in  a  seam  is  described.  These  per- 
centages were,  for  Arley  coal,  vitrain  14"6%,  clarain 
liV'.i  ,  durain  18'1%,  and  fusain  1'4%  ;  for  the 
Queen  Mine,  vitrain  13%,  clarain  987%,  durain 
nil,  and  fusain  nil;  for  the  Wigan  Yard,  vitrain 
25"1%,  clarain  51"9%  durain  202%,  and  fusain 
1-0%,  with  1-8%  of  foreign  matter.  The  lowest 
proportion  of  durain  (5'6%)  occurs  in  the  Trencher- 
bone  Bottoms,  and  the  highest  (35'5%)  in  the 
Trencherbone  Tops.  The  fusain  content  ranges 
from  nil  in  the  Queen  Mine  to  20%  in  the 
Trencherbone  Bottoms,  whilst  the  clarain  varies 
between  51'9%  in  the  AVigan  Yard  to  98'7%  in  the 
Queen  Mine.  The  analysis  of  any  particular  con- 
stituent is  by  no  means  constant  when  deter- 
mined on  samples  from  different  seams.  A'itrain 
apparently  contains  the  highest  percentage  of 
moisture  and  the  lowest  percentage  of  ash;  clarain 
evolves  the  highest  percentage  of  volatile  matter 


less  moisture,  and  contains  only  a  slightly  higher 
percentage  of  ash  than  vitrain.  Durain  contains 
the  lowest  percentage  of  moisture  and  the  greatest 
percentage  of  ash ;  the  volatile  matter  evolved  is 
less  than  that  from  either  vitrain  or  clarain,  and 
the  percentage  of  ash  is  not  so  high  as  that  found 
by  AVheeler  and  Tideswell  for  the  Hamstead  Thick 
Seam.  Fusain  contains  a  high  percentage  of  ash 
and  a  considerably  lower  percentage  of  volatile 
matter.  The  agglutinating  values  of  the  con- 
stituents, determined  with  electrode  carbon  of 
60 — 90  mesh  (I.M.M.  standard  sieves)  were  as 
follows  :  — Arley  coal :  coal  15,  vitrain  9,  clarain  17, 
durain  6,  fusain  nil;  AVigan  Five  Feet:  coal  4, 
vitrain  3,  clarain  7,  durain  5,  fusain  nil.  Contrary 
to  the  observation  made  by  Lessing  on  the  Ham- 
stead  Thick  Seam,  the  durain  possesses  marked 
caking  properties,  and  in  the  case,  of  the  AVigan 
Five  Feet  Seam  the  agglutinating  power  of  the 
durain  is  higher  than  that  of  the  vitrain. — A.  G. 

Volatile    matter    in    coal;    Determination    of    the 

.  E.  St.-Claire  Deville.     Soc.  Tech.  Ind.  du 

Gaz  en  France,   June,   1922.     Gas   AVorld,   1922, 
77,  112. 

Tiie  sample  of  coal,  2'5  g.,  is  placed  in  a  thick 
platinum  crucible  with  an  ovoid  bottom  and 
covered  with  a  lid  provided  with  a  chimney  of 
5  mm.  bore.  The  crucible  is  placed  over  a  Meker 
burner  in  a  small  furnace  the  effect  of  which  is 
to  eliminate  errors  due  to  the  different  amounts 
of  heat  radiated  from  different  crucibles.  The 
crucible  is  heated  gently  for  about  2  mins.  until 
the  flame  at  the  tip  of  the  chimney  become  non- 
luminous,  then  a  perforated  lid  is  placed  on  the 
furnace,  and  the  temperature  is  raised  for  about 
1  min.  until  the  hydrogen  flame  dies  down  into  the 
chimney.  The  crucible  is  removed  to  an  iron  frame 
and,  when  cold,  the  coke  is  taken  out  and  weighed, 
the  deposit  upon  the  crucible  lid  being  discarded. 

-H.  Hg. 

Coal  ash;    Recovery  of  combustible  material  from 

.     H.  Nitzsche.     Z.  angew.  Cheni.,  1922.  35, 

458—460. 
A  description  of  the  Krupp  magnetic  process  for 
the  recovery  of  combustible  material  from  coal  ash 
is  given.  Ash  is  fed  on  to  the  surface  of  a  brass 
drum  rotating  about  a  horizontal  axis  and  is  there 
submitted  to  the  action  of  a  stationary  magnetic 
field,  the  strength  of  which  increases  from  the  top 
of  the  cylinder  to  where  the  surface  of  the  cylinder 
becomes  vertical,  thereafter  decreasing  to  its  least 
value  in  the  lower  quadrant  of  the  cylinder. 
Particles  of  clinker,  owing  to  their  content  of  iron 
oxides,  formed  during  the  combustion  of  the  original 
coal,  are  retained  for  a  longer  period  on  the  drum 
than  the  non-magnetic  combustible  constituents  of 
the  ash.  The  power  necessary  varies  from  06  to  24 
kw.h.  per  ton  of  ash  treated.  Particulars  are  given 
of  tests  carried  out  with  various  samples  of  ash. 

—J.  S.  G.  T. 

Gas-producers;  Contribution  to  the  theory  of  — — 
and  its  application  to  blast-furnace  pro 
A.  Korevaar.  Chim.  et  Ind.,  1922,  8,  12—25. 
The  state  of  equilibrium  in  a  gas-producer  in  full 
working  order,  i.e.,  its  temperature,  and  the  com- 
position and  temperature  of  the  issuing  gases,  is 
governed  by  its  dimensions,  the  heat-insulatiat; 
properties  of  its  walls,  the  porosity,  size,  and 
activity  of  the  fuel  with  which  it  is  charged,  ami 
the  velocity  and  temperature  of,  and  proportion  o) 
oxygen  and  water  vapour  in,  the  current  of  air 
through  it.  A  series  of  equations  connecting  these 
variables  and  the  volume  of  the  zone  of  combustion 
in  an  ideal  gas-producer  is  developed,  and  it  is 
shown  that  for  a  minimum  zone  of  complete  com- 
bustion,  i.e.,  to  carbon  dioxide,  there  is  a  defiuite 


Vol.  XII.,  No.  IS.] 


Cl.   Ha.— FUEL;    GAS;    MINERAL  OILS   AND   WAXES. 


699  a 


critical  value  for  the  velocity  of  the  air  in  order 
to  maintain  the  maximum  temperature  in  the  zone. 
If  the  air  is  preheated  its  critical  velocity  is  in- 
creased with  a  corresponding  increase  in  the  maxi- 
mum temperature  and  decrease  in  the  size  of  the 
zone  of  complete  combustion.  The  more  finely 
divided,  more  porous,  and  more  "active"  the 
carbon,  the  higher  is  the  maximum  temperature 
and  the  smaller  the  zone  of  complete  combustion. 
The  theory  may  be  applied  to  the  study  of  the 
economical  working  of  blast  furnaces  by  assuming 
that  they  are  gas-producers  working  at  a  very 
high  temperature  and  having  a  comparatively 
short  zone  of  combustion  in  the  neighbourhood  of 
the  tuyeres.  In  this  way  it  is  shown  that  less  fuel 
is  needed  the  more  "  active  "  it  is,  and  an  explana- 
tion is  possible  of  the  fact  that  less  fuel  is  re- 
quired with  a  preheated  than  with  a  cold  blast  and 
with  a  slow  air  current  than  with  a  more  rapid  one, 
v.'hich  simply  serves  to  extend  the  zone  of  com- 
bustion.—A.  R.  P. 

Gum-  and  resin-forming  constituents  in  manufac- 
tured [carburettedl  gas.  R.  L.  Brown.  Anier. 
Gas  Assoc.  "  Monthly."     Gas  J.,  1922,  159,  327. 

Resinous  substances  deposited  in  gas  meters  and 
service  pipes  are  formed  from  unsaturated  hydro- 
carbons in  the  gas;  the  presence  of  indene  has  been 
established  in  several  samples  of  condensate  ex- 
amined. The  gum-forming  constituents  are  derived 
'■  from  the  gas  oil  used  and  their  occurrence  depends 
upon  the  nature  of  the  oil  used  and  the  methods  of 
carburetting  and  purifying  the  gas. — H.  Hg. 

[Gas  retorts;]  Thin  metal  ascension  pipes  [for ]. 

N.  G.  Caputi.     Gas  World,  1922,  77,  105. 
Ascension  pipes  were  made  of  12-gauge  steel  with 
welded  joints ;  the  cross-section   of   the   pipes  was 
12  in.  square  between  the  bridge  cap  and  the  top  of 

;the  retort,  tapering  to  8  in.  square  at  the  points 
between   the  mouthpieces   and   the   buckstays,    and 

|to  a  9  in.  diam.  spigot  fitting  the  off-take  of  the 
mouthpiece.     The   bridge  pipes  were   of  the  same 

■  materi.il  and  general  design.  Due  to  the  decreased 
thickness  and  increased  area  of  the  pipes  there  was 

.more  condensation  within  the  pipes,  and  as  the 
interior  surfaces  of  the  pipes  were  comparatively 
;smooth  there  was  less  tendency  for  adherence  of 
pitch  deposits.  Comparative  tests  showed  that  the 
average  reduction  of  gas  temperature  within  the 
steel  pipes  was  866°  F.  (480°  C.)  and  within  cast  iron 
pipes  559°  F.  (310°  C.).— H.  Hg. 

Blue  water-gas  in  conjunction  with  coal  gas;  Plant 

,    for  the  manufacture  of .     J.  Lowe.     Gas  J., 

1922,  159,  324—326. 
The  plant  described  in  E.P.  149,928  (J.,  1921,  207  a) 
las  given  the  following  working  results: — 16,290 
:ub.  ft.  of  mixed  gas  containing  21'6  '  of  water-gas 
md  with  a  calorific  value  of  526  B.Th.U.  per  cub.  ft. 
ras  made  per  ton  of  coal  carbonised ;  the  calorific 
'alue  of  the  water-gas  was  326  B.Th.U.  per  cub.  ft., 
he  blow  gas  contained  1525%  C02,  9"5%  0„  and 
0-5%  CO,  and  was  used  for  heating  the  retorts; 
fter  allowing  for  the  coke  thus  saved  in  the  retort 
urnaces  the  efficiency  of  water-gas  manufacture 
;as  91'6%.  In  computing  this  efficiency  figure 
llowance  was  made  for  the  total  heat  of  the  steam 
sed  but  not  for  the  power  required  for  blowing, 
"urther  thermal  economy  can  be  secured  by  passing 
ho  hot  water-gas  into  vertioal  retorts  used  for  coal 
as  manufacture.  The  period  of  blowing  the  pro- 
ucer  is  equal  to  the  period  of  gas  making,  there 
eing  no  loss  due  to  over-blowing  when  the  blow  gas 
i  used  in  the  retort  settings. — H.  Hg. 

■as;  New  controller  for  quality  of .    A.  Grebel. 

Soc.  Tech.  Ind.  dn  Gaz  en  France,  June,  1922. 

Gas  World,  1922,  77,  110—111. 
as  is  supplied  through  a  delicate  pressure  regu- 


lator to  two  Bunsen  burners  with  adjustable 
primary  air  supplies.  One  burner  is  adjusted  to 
give  a  sharp  blue  inner  cone  and  the  other  to  give 
a  distinct  luminous  tip  on  the  inner  cone.  The 
respective  heights  of  the  cones  are  noted  when  burn- 
ing a  standard  coal  gas.  The  heights  of  the  cones 
increase  or  decrease  as  richer  or  poorer  gas  is 
supplied  to  the  burners. — H..  Hg. 

Flame;    Limits    for   the    propagation   of   in 

vapour-air  mixtures.  Mixtures  of  air  and  one 
vapour  at  the  ordinary  temperature  and  pressure. 
A.  G.  White.  Chem.  Soc.  Trans.,  1922,  121, 
1244—1270. 

Limits  for  upward,  horizontal,  and  downward  pro- 
pagation of  ilame  for  vapours  of  twelve  organic 
solvents  (ether,  alcohol,  acetone,  methyl  ethyl 
ketone,  benzene,  toluene,  methyl  alcohol,  ethyl 
acetate,  acetaldehyde,  ethyl  nitrite,  pyridine,  carbon 
bisulphide)  mixed  with  air  were  determined  at  room 
temperature  (17°  to  18°  +  3°)  in  tubes  of  internal 
diameter  varying  from  25  cm.  to  7P5  cm.  By  vary- 
ing the  means  of  ignition  the  type  of  flame  started 
was  controlled,  and  the  type  of  flame  determined 
whether  the  flame  was  extinguished  in  or  traversed 
certain  vapour-air  mixtures.  The  lower  limits  did 
not  differ  greatly  with  the  direction  of  propaga- 
tion: the  upper  limits  for  upward  propagation  were 
approximately  one  and  a  half  times  those  for  down- 
ward propagation,  except  for  cases  in  which  a 
"cool  flame"  appeared,  in  which  case  the  ratio 
was  much  greater.  Where  a  cool  flame  appears 
two  ranges  exist,  one  for  the  cool  flame  and  one  for 
the  ordinary  flame ;  the  cool  flame  was  not  generally 
propagated  downwards.  With  one  exception  (carbon 
bisulphide)  the  lower  limit  for  propagation  down- 
wards was  approximately  proportional  to  the  net 
calorific  value  of  the  vapour  used ;  the  upper  limit 
was  about  three  and  a  half  times  the  lower.  The 
velocity  of  the  uniform  movement  of  flame  down- 
wards was  with  one  exception  almost  the  same  in  the 
lower-limit  mixtures.  The  ratio  of  the  amount  of 
available  oxvgen  in  the  limit  mixture  for  the  com- 
bustion of  the  vapour  to  the  amount  required  for 
the  perfect  combustion  of  one  molecule  of  the 
vapour  was  nearly  constant. — J.  B.  F. 

Petroleum;  Era  potation  loss  of  in  the  Mid- 
Continent  field.  J.  H.  Wiggins.  U.S.  Bureau 
Mines  Bull.  200,  1922,  115  pages. 
Large  losses  are  caused  by  evaporation  during 
storage  and  handling  of  crude  petroleum  between 
the  well  and  the  refinery,  but  from  two-thirds  to 
four-fifths  of  this  loss  may  be  prevented  by  pro- 
tecting the  oil  from  free  contact  with  air.  Labora- 
tory tests  showed  that  gasoline  present  in  light 
crude  oil  will  evaporate  about  one-half  as  rapidly 
as  when  stored  in  the  pure  state  after  distillation. 
Blending  the  separated  gasoline  with  a  very  heavy, 
viscous,  high-flash  oil  will  greatly  reduce  its  rate  of 
evaporation  (by  nearly  two-thirds  in  the  tests 
described),  but  blending  with  heavier  gasoline  or 
mineral  seal  oil  does  not  materially  reduce  the  rate 
of  evaporation.  Californian  gasolines  evaporate 
approximately  twice  as  fast  as  those  of  the  same 
gravity  from' the  other  U.S.  oilfields.— H.  M. 

OxU:   Determination  of  volatility  of  .     A.  R. 

Matthis.     Bull.  Fed.  Ind.  Chim.  Belg.,  1922,  1, 

397 — 105. 
Some  precautions  that  should  be  taken  in  measur- 
ing the  evaporation  of  oils  on  being  heated  are 
frequently  omitted  and  thus  contradictory  results 
are  obtained.  In  addition  to  the  quantity  of  oil 
used  for  the  test  and  the  temperature  and  duration 
of  heating,  the  area  of  exposed  surface  and  the  pro- 
jection of  the  vessel  above  the  surface  of  the  oil 
should  be  taken  into  account  as  these  have  a  definite 
bearing  on  the  rate  of  evaporation.     The  author, 


700  a 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND  WAXES. 


[Sept.  30, 1922. 


using  vessels  of  different  shape  and  different  quanti- 
ties of  oil,  shows  that  in  extreme  cases  loss  of  weight 
may  vary  by  228%  under  otherwise  identical  condi- 
tions of  heating.  Details  of  a  number  of  experi- 
ments are  given  and  suggestions  for  the  standardisa- 
tion of  the  tests  are  put  forward. — H.  J.  E. 

See  also  pages  (a)  709,  Reversible  expansion  of 
silica  (Houldsworth  and  Cobb).  719,  Oxidation  of 
paraffin  hydrocarbons  (Salway  and  Williams).  722, 
Ammonium  bicarbonate  (Gluud).  731,  Phosphorus 
in  coal  ash  (Misson) ;  Hydrogen  in  presence  of 
gaseous  paraffins  (Muller  and  Foix). 

Patents. 

Concentration  of  coal.     F.  B.  Jones,  and  Minerals 
Separation,  Ltd.     E.P.  183,504,  22.2.21. 

Coal  particles  of  linear  dimensions  between  01  and 
05  in.  are  separated  from  impurities  by  film  flota- 
tion or  by  sub-aeration,  after  the  crude  coa'l  has 
been  coated  with  oil  or  tar  either  by  immersion  or 
by  agitation  of  an  aqueous  pulp  of  the  coal  with 
the  oil.  The  quantity  of  oil  required  is  2  lb.  per 
ton  of  crude  coal.  Suitable  apparatus  for  the  film 
flotation  process  is  described  in  E.P.  25,204, 
25,204  a,  25,858  and  29,374  of  1904  (J.,  1906,  112; 
1905,  1238,  893).  Apparatus  of  the  tvpe  described 
in  E.P.  10,929  of  1910,  21,6.50  of  1913  or  10,312  of 
1914  (J.,  1911,  369;  1914,  1160;  1915,  620)  may  be 
used  for  the  sub-aeration  process,  a  trap  being  pro- 
vided below  the  surface  of  the  pulp  to  retain  the 
large  particles  of  coal  discharged  by  the  bubbles 
near  the  surface.  The  crude  coal' may  also  be 
treated  by  froth  flotation  in  the  apparatus  des- 
cribed in  E.P.  23,949  of  1910  (J.,  1912,  31),  in  which 
case  previous  removal  of  the  particles  below  01  in. 
in  size  is  unnecessary,  so  that  fine  coal  is  recovered 
in  the  froth  and  larger  particles  in  the  trap.  Sea 
water  may  be  used  for  the  flotation  of  the  larger 
particles. — H.  Hg. 

Teat  and  the  like  [e.g.,  sewage  sludge];  Treatment 

of     .       Thermal     Industrial     and     Chemical 

(T.I.C.)  Research  Co.,  Ltd.,  and  J.   S.   Morgan. 
E.P.  183,180,  12.3.21. 

Peat  pulp  or  sewage  sludge  is  pumped  through  two 
preheaters  into  an  autoclave  where,  by  means  of  a 
stirrer,  it  is  exposed  to  the  action  of  live  steam. 
The  pulp  then  flows  over  a  weir  in  the  autoclave 
and  comes  in  contact  with  a  rotary  drum  filter. 
Water  and  steam  are  withdrawn  from  the  drum 
into  a  separator,  whence  the  water  is  pumped 
through  the  first  preheater  and  the  steam  is  drawn 
through  the  second  preheater.  The  partially  dried 
material  is  removed  from  the  drum  by  a  scraper  and 
passed  into  a  bath  of  molten  metal  where  it  may  be 
treated  as  described  in  E.P.  174,974  (J.,  1922, 
239  a).  After  the  water  content  has  been  thus 
reduced  to  15%,  the  material  is  forced  through  a 
pipe,  having  a  choke  to  prevent  loss  of  steam,  into 
a  bunker  from  which,  in  the  case  of  peat,  it  is 
delivered  to  a  briquetting  machine.  The  vessel  con- 
taining the  molten  metal  is  fitted  with  a  steam  valve 
loaded  to  ensure  a  temperature  of  160°  C.  for  the 
steam  evolved  from  the  material.  This  steam  passes 
into  the  autoclave  and  dries  the  material  on  the 
filter ;  any  excess  which  passes  the  loaded  valve  may 
be  used  for  external  purposes.  The  hot  waste  gas 
from  the  furnace  surrounding  the  metal  bath  may 
be  used  to  expel  further  moisture  from  the  material 
leaving  the  metal  bath. — H.  Hg. 

Peat   for  fuel   or  distillation   purposes;   Method   of 
anil   apparatus  for   disintegrating,   dehydrating, 

and  otherwise  treating  .     C.  W.  G.  Clewlow. 

E.P.  183,566,  25.4.21." 

Peat  pulp  of  the  consistencv  of  cream  is  heated  to 
a  temperature  of  about  300°  F.  (149°  C.)  under  a 
pressure  of   120 — 130   lb.   per  sq.    in.,   and   is  then 


passed  through  a  loaded  relief  valve  so  that  the 
pressure  is  suddenly  released.  The  outlet  of  the 
valve  is  connected  with  two  pulp  receivers  and  also 
in  an  upward  direction,  with  a  chamber  having  a 
flue  and  a  perforated  conical  base  surrounded  bv 
a  drainage  space  for  the  retention  of  any  Met 
carried  away  by  the  steam. — H.  Hg. 

Peat;   Process   for   drying   .     K.   von  Haken 

G.P.  353,033,  2.10.19.     Addn.  to  341,179. 

In  the  treatment  of  peat  either  continuously  or 
intermittently  in  several  stages  as  described  ni  the 
chief  patent  (J.,  1922,  130  a),  each  drying  space  is 
connected  with  two  heat  accumulators  to  form  one 
stage  or  unit,  and  the  unsaturated  mixture  of  air 
or  gas  and  vapour  is  circulated  between  the 
more  highly  heated  heat  accumulator  of  that  par- 
ticular stage  and  the  material  in  the  drying  space 
of  the  stage  concerned.  The  circulationof  the  air 
or  gas-vapour  mixture  is  necessary  to  transfer  the 
necessary  quantity  of  heat  to  the  material  to  be 
dried,  without  using  excess  of  air. — A.  G. 

Gas  retorts.      H.   Wood.      E.P.    161,918,   15  4  21 
Conv.,  15.4.20. 

A  tapered  vertical  retort  of  rectangular  i 
section  is  superimposed  on  a  gas  producer  and 
surrounded  by  a  series  of  superimposed  heating 
chambers  through  which  gas  may  pass  in  a  zi 
path.  The  bottom  chamber  communicates  with  the 
producer  through  a  passage  formed  by  a  midfeather 
wall  within  the  latter.  Each  chamber  is  provided 
with  an  external  opening  fitted  with  a  gas-tight 
door  for  cleaning  purposes.  The  blow  gases  from 
the  producer  may  be  passed  through  the  chambers 
or,  after  the  preliminary  heating  of  the  retort, 
heating  gas  may  be  supplied  to  burners  projecting 
into  the  chambers,  in  which  case  the  passage 
between  the  producer  and  the  bottom  chamber  is 
closed  by  a  damper. — H.  Hg. 

Gas  producer  and  process.     E.   M.  Braxton.  A- 
to  M.  R.  Spellman.       U.S. P.  1,424,077,  25 
Appl.,  18.11.21. 

A  bed  of  lignite,  conical  on  its  underside,  is  rotated 
during  gasification,  and  the  gas  is  superheated  at  a 
point  near  the  apex  of  the  cone  prior  to  being 
cleaned,  cooled,  and  dried. — H.  Hg. 

Tar;  Process  for  increasing   the  yield  and  quality 

of by  carbonisation  and  gasification  of  soliJ 

fuels.     Allgem.   Elektrizitats-Ges.,   and  F.  Miin- 
zinger.     G.P.  349,685,  2.7.18. 

Horizontal  cooling  sections  are  built  in  the 
chamber  at  one  or  several  different  heights  so  that 
the  material  to  be  treated  can  be  cooled  over  the 
whole  cross-sectional  area  of  the  chamber  to  a 
uniform  degree  in  layers  as  desired.  The  cooling 
sections  are  so  arranged  that  the  gases  from  th( 
lower  strata  can  be  cooled,  either  wholly  or  in  part. 
before  they  reach  the  higher  strata.  "The  cooling 
sections  regulate  the  temperature  of  the  column  of 
fuel  continuously  by  transference  of  heat  from  the 
hot  fuel  to  the  cooling  sections,  and  intermittently 
in  that  as  a  result  of  the  cooling  and/or  parti.il 
withdrawal  of  gas  entering  a  highly  heated  zone, 
little  heat  is  carried  upwards. — A.  G. 

Gas  producer  with  means  for  separately  producinu 
mid.  removing  the  distillation  and  producer  gates. 
A.  H.  Nass.  G.P.  350,220,  27.10.20. 
Fuel  is  distilled  in  an  annular  chamber  rotating 
around  the  outer  wall  of  a  gas  producer  provided 
with  a  rotating  hearth.  During  the  rotation  of  the 
chamber,  the  fuel  is  discharged  into  the  producer 
through  openings  in  the  walls  of  the  latter.  Outlets 
are  provided  at  the  top  of  the  chamber  and  the 
producer  for  drawing  off  the  distillation  and 
producer  gases  respectively. — L.  A.  C. 


Vol.  XII.,  No.  18.] 


Cx.  IIa.— FUEL  ;    GAS  ;    MINERAL  OILS  AND  WAXES. 


701a 


Coals  and  other  tar-yielding  materials;  Coking  of 

by  means  of  the  continuous  action  of  hot 

combustible  gases.  H.  Pape.  G.P.  350,678, 
28.11.19. 
The  gas  to  be  used  for  coking  is  preheated  first  in  a 
preheater,  preferably  of  iron,  heated  externally, 
and  then  by  mixing  with  the  gases  of  combustion 
of  a  heating  flame,  burning  in  the  stream  of  gas. 

—A.   G. 

Coke  and  gas;  Process  for  preheating  air  and.   if 
necessary,    gas    in    chamber   ovens   rcith    vertical 

hinting   conduits   for   the    manufacture   of  

0.  Wolff.     G.P.  353,058,  13.7.21. 

A  portion  of  the  waste  heat  is  utilised  to  heat  the 
waste  heat  conduit,  lying  between  the  waste  gas 
collecting  flues  of  the  heating  walls  and  the 
generator  or  recuperator-chamber,  and  the  mains 
through  which  the  gas  and  air  pass  to  the  burners 
in  the  same  direction.  In  consequence  of  the  avoid- 
ance of  cooling  losses  the  air  and  gas,  or  the  air 
alone,  are  preheated  to  a  higher  degree  than  usual. 

—A.  G. 

7.  cleansing  or  scrubbing  gases  in  connection 
with  all  types  of  gas  producers ;  Apparatus  for 
use  in .    O.  B.  Davies.    E.P.  183,160,  19.1.21. 

3as  passes  downwards  through  an  annular  space 
formed  by  two  concentric  cylinders  and  then 
lpwards  through  the  inner  cylinder.  A  helical 
plate  is  fixed  within  the  annulus  in  order  to 
increase  the  gas  velocity  and  separate  the  impuri- 
ties by  centrifugal  force.  The  impurities  collect  in 
i  space  below  the  open  end  of  the  inner  cylinder 
ind  may  be  withdrawn  by  removing  the  base  of  the 
Miter  cylinder.  A  baffle  having  the  form  of 
propeller  blades  may  bo  placed  within  this  space, 
temovable  filters  may  be  placed  within  the  inner 
ylinder.  The  outer  cylinder  is  provided  with 
ooling  gills  or  flanges  or  is  surrounded  by  a  cooling 
acket  or  by  air  cooling  pipes. — H.  Hg. 

'lydrocarbons;    Process    of    manufacturing    liquid 

t  from    fish     oils.       K.     Kobavashi.       E.P. 

170.204,  22.4.21.     Conv.,  13.10.20. 

'ish  oils,  e.g..  herring,  salmon,  or  sardine  oils,  are 
ecomposed  by  heating  with  Japanese  acid  clay  to 
temperature  not  lower  than  500°  C.  Glycerin 
nd  fatty  acids  are  formed  and  are  subsequently 
roken  down  forming  liquid  hydrocarbons  from 
hich  light  oil,  illuminating  oil,  and  other  fractions 
ay  be  separated  bv  distillation.  (Cf.  J.,  1921, 
50  a  ;  1922,  242  a.)— T.  A.  S. 

'istilbition  of  [hydrocarbon]  oils.  Trent  Process 
Corp.  Assees.  of  W.  E.  Trent.  E.P.  171,075, 
13.4.21.     Conv.,  4.11.20. 

EL  is  mixed  with  finely  divided  fuel  of  relatively 
gh  volatile  content,  e.g.,  coal,  anthracite, 
tuminous  coal,  or  lignite,  and  distilled  in  a  retort 
i  a  temperature  approximating  to  350°  C.  It  is 
limed  that  considerable  cracking  takes  place, 
creasing  the  yield  of  gasoline  and  light  oil  from 
e  oil.  Any  carbon  residue  is  obtained  as  a  dry 
ist.  During  distillation  the  mixture  is  agitated 
rabbles.  The  mixture  consists  of  1  part  of  oil 
id  2  parts  of  coal  by  weight. — T.  A.  S. 

lstiUation  of  crude  oil;  Fractional .  Appara- 
tus for  distilling  crude  oil  and  other  liquids. 
P.  Mather.     E.P.  182,827—8,  11.1.21. 

iude  oil,  before  delivery  to  a  continuous  still,  is 
eheated  both  by  the  hot  residue  and  the  still 
pours.  The  oil  is  sprayed  or  dropped  on  to  coils 
•  ltaining  the  residues  or  vapours  and  provision  is 
ide  for  the  partial  evaporation  of  the  crude  oil 
the  heat-exchangers  and  the  admission  of  steam, 
series  of  heat  exchangers  is  provided  to  ensure 


the  economical  use  of  the  heat,  and  the  quantity  of 
hot  residue  passing  through  the  heat  exchangers  is 
controlled  by  a  valve  on  the  hot  residue  main  and 
a  valve  admitting  hot  residue  to  the  heat 
exchanger,  both  operated  by  a  worm.  The 
apparatus  operates  in  conjunction  with  a  vertical 
still  so  arranged  that  vapours  may  be  drawn  off  at 
different  levels  and  consequently  at  different 
temperatures. — T.  A.  S. 

Desulphurising    oils    [e.g.,    shale    oil];   Means    for 

.     A.   C.   Nesfield.     E.P.   183,527,  24.3.   and 

14.6.21. 

The  oil  is  treated  in  a  thin  film  with  chlorine  gas. 
The  treatment  takes  place  in  a  tower  down  which 
the  oil  descends  and  is  caused  to  form  films  by  flow- 
ing over  cones.  The  chlorine  is  circulated,  but  has 
to  be  replaced  in  time  owing  to  loss  of  efficiency. 
The  sulphur  is  precipitated  in  flocculent  form  aiid 
is  separated  from  the  oil  by  filtration,  centrifugal 
treatment,  or  by  means  of  water.  The  reaction  is 
expedited  by  the  addition  of  quicklime  and  by 
preheating  the  oil  to  a  suitable  temperature — for 
certain  oils  100° — 120°  0.  The  precipitate  consists 
of  sulphur  compounds  in  addition  to  sulphur  and 
may  contain  bituminous  matter. — T.  A.  S. 

Desulphurising  [mineral']  oil;  Process  of .  Pro- 
cess for  obtaining  sulphur  compounds  from 
mineral  oils  and  the  like.  Method  of  desulphuris- 
ing oil.  J.  C.  Clancy,  Assr.  to  The  Nitrogen 
Corp.  U.S. P.  (a)  1,423,710,  (is)  1,423,711,  and 
(c)  1.423,712,  2-3.7.22.  Appl.,  8.7.,  14.7.  and 
17.7.20. 

(a)  The  oil  is  treated  with  liquid  anhydrous 
ammonia  to  cause  the  formation  of  an  ammonia- 
sulphur  compound  which  is  then  separated.  A 
catalyst  may  be  used  to  facilitate  the  formation  of 
the  ammonia-sulphur  compound,  (u)  The  sulphur 
compounds,  separated  from  the  oil  as  ammonia- 
sulphur  compounds  through  the  agency  of  liquid 
ammonia,  are  recovered,  (c)  Mineral  oil  is  de- 
sulphurised by  heating  it  with  ammonia  vapour  and 
steam.— T.  A.  S. 

Fuel  for  use  in  internal  combustion  engines.    H.  R. 

Ricardo.  E.P.  183,577,  26.4.21. 
The  introduction  of  water  into  the  cylinder  of  an 
internal  combustion  engine,  with  the  object  of 
reducing  the  temperature  at  which  the  engine 
works,  cooling  the  piston,  inlet  and  exhaust  valves, 
is  attained  by  using  mixtures  of  benzol,  acetone, 
and  water  with  or  without  the  addition  of  ethyl  or 
methyl  alcohol.  At  least  8%  of  water  is  required. 
A  suitable  fuel  consists  of  60%  of  ethyl  alcohol,  20% 
of  acetone,  10 %  of  benzol,  and  10%  of  water. 

— T.  A.  S. 

Fuel.     Fuel   of   liquid   type.     Liquid  fuel.     B.   R. 

Tunison,    Assr.    to    U.S.    Industrial    Alcohol    Co. 

U.S.P.     (a)    1,423,048,     (b)    1,423,049,     and    (c) 

1,423,050,  18.7.22.  Appl.,  12.4.20. 
(a)  A  liquid  fuel  denser  than  kerosene  consists  of 
a  relatively  heavy  aliphatic  hydrocarbon  and  alco- 
hol, (b)  A  liquid  fuel  consists  of  a  petroleum  dis- 
tillate heavier  than  kerosene,  an  ester  of  an  organic 
acid,  and  a  monohydric  alcohol,  the  heavy  oil  term- 
ing three-quarters  of  the  mixture,  (c)  A  liquid  fuel 
consists  of  a  petroleum  distillate  heavier  than  kero- 
sene and  an  aromatic  hydrocarbon. — T.  A.  S. 

Fuel  for  use  in  internal  combustion  engines.    M.  C. 

Whitaker,   Assr.   to  U.S.   Industrial   Alcohol  Co. 

U.S.P.  1,423,058,  18.7.22.     Appl.,  12.11.19. 
The   fuel  consists   of   benzol   17—35   pts.,    gasoline 
20—50  pts.,  ethyl  acetate  5  to  20  pts.,  and  alcohol 
more  than  20  pts.  by  volume. — T.  A.  S. 


702  a 


Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;   HEATING  ;   LIGHTING.  iSept.  80, 1922. 


Fuel:  Product  ion  of  liquid  - from  oils  contain- 
ing creosote.  Maschinenfabr.  Augsburg-Niirn- 
berg  A.-G.    G.P.  351,817,  5.12.20. 

Coal-tar   oil   containing   phenols   is   added    to  oils 

containing  creosote  to  prevent  formation  of  pitch 

and  asphaltic  deposits. — L.  A.  C. 

Crude  oil;  Apparatus  connected  w it h  an   internal 

combustion  or  oil  engine  for  converting info 

fuel.  T.  D.  Key.  E.P.  183,600,  2.5.21. 
The  removal  of  impurities  from  crude  oil  is  facili- 
tated by  heating  it  by  means  of  the  exhaust  gases 
from  the  engine.  The  apparatus  is  so  arranged  that 
a  thermo-siphon  is  set  up.  The  oil  passes  through 
filters  to  remove  suspended  matter,  and  sumps  are 
provided  for  the  removal  of  water  and  asphalt. 

— T.  A.  S. 

Transmission  and  motor  oil.    W.  K.  Boileau,  Assr. 

to     Pittsburgh     Oil     Refining     Corp.       U.S. P. 

1.423,512,  25.7.22.  Appl.,  5.6.22. 
An  oil  for  the  lubrication  of  cylinders,  bearings  and 
transmission  of  internal  combustion  engines  and 
the  fabric  lining  of  transmission  and  brake  parts 
consists  of  petroleum  oil  of  the  ordinary  consistency 
used  in  the  cylinders  of  internal  combustion  engines 
combined  with  2 — 12'     of  neutral  wool-fat. 

— T.  A.  S. 

Gasoline  and  the  like;  Process  for  producing  . 

J.  C.  Clancy,  Assr.  to  The  Nitrogen  Corp.   U.S.P. 

1,423,709,  25.7.22.     Appl.,  31.7.19. 
The  vapour  of  hydrocarbon  oil  is  cracked  by  sub- 
mitting   it    to    the    catalytic    action    of    mercury 
vapour. — T.  A.  S. 


Shale;  Process  of  distilling 
U.S.P.  1,423,716,  25.7.22. 
newed  8.4.22. 


.     E.   E.  Hedges. 

Appl.,   13.6.21.     Re- 


Briquette    forming    materials;    Method    of    mixing 

u-ith  a  fluid  binding  agent.    W.  Glawe.   E.P. 

183,212,  14.4.21. 

Stoking  apparatus  for  furnaces  [for  pulverised 
fuel}.  H.  Simon,  Ltd.,  and  H.  Walder.  E.P. 
183,496,  27.1.21. 

Liquid  fuel ;  Preheating  of for  liquid  fuel  fired 

furnaces  [of  the  Burdon  type].  W.  M.  and 
M.  M.  Burdon,  and  Burdons,  Ltd.  E.P.  183,673, 
17.6.21. 


Oil-bearing  shale  is  distilled  in  an  elongated  retort 
with  constant  agitation.  The  shale  is  moved  along 
the  retort,  which  is  heated  at  one  end  to  a  tempera- 
ture necessary  to  drive  off  the  most  volatile  consti- 
tuents and  at  the  other  end  to  a  temperature 
sufficiently  high  to  decompose  water  in  the  presence 
of  carbon.  The  discharged  gases  pass  backwards 
through  the  progressively  cooler  portions  of  the 
retort.  Steam  is  admitted  at  the  hotter  end  of  the 
retort,  from  which  the  spent  shale  is  removed. 

— T.  A.  S. 

Sludge     acids    [from     refining     of    mineral     oils']: 

Method  of  treating  .     I.  Hechenbleikner  nnd 

T  C  Oliver,  Assrs.  to  Chemical  Construction  Co. 
U.S.P.  1,423,766-7,  25.7.22.  Appl.,  25.1.22. 
The  method  consists  in  heating  a  weak  sludge  acid 
with  agitation  to  concentrate  it  to  an  intermediate 
strength  and  then  further  concentrating  the  acid 
without  agitation. — T.  A.  S. 

Fuel;  Combustion  of .    E.  C.  R.  Marks.    From 

Stephens  Engineering  Co.    E.P.  183,512,  12.3.21. 

See  U.S.P.  1,369,200  of  1921;  J.,  1921,  251a. 

Hydrogen  in  coal  gas;  Method  and  apparatus  for 

increasing  the  yield  of  - .     J.  H.  West  and  A. 

Jaques.    U.S.P.  1,424,749,  1.8.22.    Appl.,  13.5.22. 

See  E.P.  181,062  of  1921;  J.,  1922,  579  a. 

[Petroleum]     oils;     Process    of    converting    . 

A.  M.  McAfee,  Assr.  to  Gulf  Refining  Co.    U.S.P. 
1,424,574,  1.8.22.    Appl.,  30.9.13. 

See  E.P.  22,243  of  1914;  J.,  1916,  298. 


A.    E.    Burton.      E.P 


Gas    retort    mouthpieces. 
183,225,  16.4.21. 

See  also  pages  (a)  697,  Foams  for  preventing 
evaporation  (U.S.P.  1,423.719-21).  703,  Distilla- 
tion of  mineral  oils  (E.P.  183,682).  708,  Bemoving 
hydrogen  sulphide  from  gases  (G.P.  355,408);  Be- 
moving carbon  dioxide  from  gases  (G.P.  352,800). 
711,  Befractory  lining  for  gas  producers  (E.P. 
183,219).  719,  Synthetic  waxes  (E.P.  183,136). 
726,  Phenol-contaminated  liquors  (E.P.  161,976). 
728,  Fatty  acids  from  hydrocarbons  (G.P.  350,621). 
731,  Gas  calorimeters  (E.P.  183,408-9). 


IIb  — DESTRUCTIVE  DISTILLATION; 
HEATING;    LIGHTING. 

Patents. 
Decolouring    charcoal    of   high   activity    [from   sul- 
phite-cellulose   waste    liquor];    Process    for    the 

manufacture  of  .     R.  Adler.     E.P.   165,788, 

29.6.21.     Conv.,  5.7.20. 

Sulphite-cellulose  waste  liquor,  or  the  residue 
left  after  the  manufacture  of  alcohol  therefrom,  is 
heated  under  a  pressure  of  several  atmospheres  with 
an  alkaline-earth  hydroxide  or  with  a  neutral  salt 
in  order  to  precipitate  the  organic  matter.  The 
precipitate  is  pressed  and  dissolved  in  an  alkaline 
solution.  The  solution  is  filtered  if  necessary  and 
the  filtrate  is  dried  aud  carbonised.  The  product  is 
suspended  in  water  and  carbon  dioxide  is  passed 
into  the  suspension  to  convert  the  sulphides  present 
into  carbonates.  The  resulting  alkali  carbonate 
solution  is  separated  from  the  charcoal  for  further 
use.  Alternatively  the  charcoal  may  be  washed  with 
water  before  the  conversion  of  sulphides  into 
carbonates. — H.  Hg. 

Lou-  temperature  carbonisation  of  materials;  Pro- 
cess of  and   apparatus  for  .     G.    Polysius. 

E.P.    (a)    157,318,    10.1.21.      Conv.,    1.2.18.   (in 
178,126,  10.1.21. 

(a)  Coal  gravitates  from  a  hopper  on  to  a  spiral 
conveyor  which  delivers  it  through  gas-tight  con- 
nexions into  a  horizontal  rotary  retort  heated 
externally.  The  outlet  end  of  the  retort  is  fitted 
with  an  adjustable  coke  delivery  which  determines 
the  amount  of  coal  retained  in  the  retort  and  which 
discharges  through  a  gas-tight  connexion  into  the 
upper  part  of  a  vertical  coke  shaft.  The  gas  evolved 
from  the  retort  passes  through  a  condenser  and  then 
part  of  it  enters  the  base  of  the  coke  shaft  so  as  to 
carry  the  sensible  heat  of  the  coke  into  the  retort. 

(b)  the  upper  part  of  the  coke  shaft  is  fitted  wit.i  a 
funnel  which  prevents  direct  passage  of  gas  from 
the  shaft  to  the  retort.  The  gas  leaving  the  shaft, 
before  it  enters  the  retort,  passes  through  a  re- 
generator where  it  is  further  heated  by  the  com- 
bustion of  part  of  the  gas  leaving  the  condenser. 
The  products  of  combustion  leaving  the  regenerato 
are  used  for  heating  the  retort  externally. — H.  Hg. 

Conductors   for    making    electrical    connexion   with 
mercury.     E.P.  183,683.     See  XI. 


Vol.  XLI.,  No.  18.]    Cl.  III.— TAR  &  TAR  PRODUCTS.     Cl.  IV.— COLOURING  MATTERS  &  DYES.    703  a 


III— TAB  AND  TAB  PBODUCTS. 

Thiophen  series;  Studies  in  the .    XIII.  Action 

of  acetylene   on   pyrites.     W.   Steinkopf   and  J. 
Herold.     Annalon,  1922,  428,  123—153. 

The  product  of  the  action  of  acetylene  on  finely 
divided  pyrites  at  300°  C.  contains  the  following 
substances:  carbon,  hydrogen,  hydrogen  sulphide, 
methane,  butadiene,  acetaldehyde,  carbon  bi- 
sulphide, acetone,  benzene,  thiophene  (about  40%), 
2-thiotolene,  3-thiotolene,  2.3-thioxine,  2-ethyl- 
thiophene,  and  3-ethylthiophene,  and  probably,  in 
addition,  butane,  ethylacetylene,  toluene,  xylene, 
and  higher  homologues  of  acetylene.  (C/.  J.C.S., 
Sept.)— C.  K.  I. 

Patents. 

Distillation  of  coal  tar,  mineral  oils,  and  ihe  like; 

Stills  for  continuous  .     J.  A.  Yeadon.     E.P. 

183,682,  30.6.21. 
A  series  of  shallow  oblong  stills  is  used,  through 

I  which  the  coal-tar  or  oil  flows  in  succession  by 
gravity.     The  bottoms  of  the  stills  are  corrugated 

I  transversely  thereby  adding  to  the  strength  and 
heating  surface  of  the  stills.  The  stills  are  set  at  a 
slight  inclination,  and  oil  flows  from  one  still  to  the 
next  by  means  of  .i  U-tube,  so  that  the  passage  of 

1  vapour  is  prevented.     Each  still  is  fitted  with  its 

,  own  condenser.— T.  A.  S. 

Tar:  Plant  for  the  continuous  distillation  of  . 

C.  Schaer.     G.P.  349,437,  16.3.16. 

I A  fan,  and  an  ejector  supplied  with  air  under  pres- 
isure  by  the  fan,  are  so  arranged  that  the  mouth  of 
I  the  suction  tube  of  the  ejector  is  located  in  the 
.  pitch  delivery  section  of  the  plant.  The  conveyor 
tube  of  the  ejector  serves  to  condense  the  vapours 
passing  through  the  tube,  the  condensed  liquid 
ijbeing  returned  to  the  oil-collecting  receptacle.  One 
lor  more  further  ejectors  may  be  used  to  provide  the 
Inecessary  draught  for  heating  the  still. — A.  G. 

'Plmml;  Production  of  pure  free  from  homo- 
logues, from  coal-tar  oils.     R.  E.  Ghislain.     G.P. 
355,388,  14.4.20. 
I  A  coal-tar  fraction  boiling  between  175°  and  200° 
C,  and  from  which  naphthalene  has  been  separated 
'by  crystallisation,   is  treated   with   highly   concen- 
trated caustic   soda  solution,   then  with   sulphuric 
acid    of    66°    B.    (sp.    gr.    184),    avoiding    rise   of 
temperature  above   80°— 85°   C.      The   black   oil   is 
[separated,  the  remaining  Liquor  decanted  from  the 
sodium  sulphate  solution,  and  the  aqueous  liquid  is 
distilled.     The  process  yields  colourless,   pure   and 
crystalline  phenol  in  quantitative  yield. — A.  G. 

U-Ketohydronaphthalenes;  Process  for  the  prepara- 

■    tion  of .   G.  Schroeter,  and  Tetralin  G.ni.b.H. 

G.P.  352,720,  5.9.20. 
,i-Naphthol    or   iso-    or    heteronuclear    substituted 
'derivatives    of    a-naphthol    are   treated,    either    in 
jsolution  or  after  fusion,  with  hydrogen  under  pres- 
sure until  the  amount  absorbed  corresponds  to  less 
:han  two  molecules  of  the  gas  for  each  molecule  of 
|:he    substance.      As    a    catalyst    a    finely    divided 
precious  metal  or  a  metal,  such  as  nickel,  on  some 
.uitable   carrier   such   as   kieselguhr   is   used.     For 
■sample,  carefully  purified  a-naphthol  is  dissolved 
I  n     tetrahydronaphthalene     and     the     solution     is 
(ie>ated  in  an  autoclave  with  stirring  under  10 — 20 
Utm.  pressure  of  hydrogen  to  120° — 180°  C,  in  the 
presence   of  kieselguhr  coated   with   finely   divided 
educed  nickel.     When  1'5  mols.  of  hydrogen  has 
jieen  absorbed  the   process  is  interrupted  and  the 
olution,    after   cooling,    filtered    and    subjected   to 
ractional  distillation  under  reduced  pressure.     At 
4  mm.  tetrahvdronaphthalene  distils   at  100°  C, 
ihe  temperature  then   rises  to  130° — 137°  C,   and 
!  -ketotetrahydronaphthafene  (b.p.  134°— 135°  C.  at 
4  mm.)  distils  over.     The  higher  boiling  fractions 


consist  of  unused  a-naphthol  and  ar-tetrahydro- 
naphthalene  and  are  used  again  in  the  process. 
/J-Naphthol  yields  no  keto-compound  under  similar 
conditions,  the  chief  product  of  the  reaction  being 
ac-tetrahydro-^-naphthol.  1.5-Dihydroxynaphthal- 
ene  yields  l-ketotetrahydro-ar-5-hydroxynaphthal- 
ene  in  colourless  crystals,  m.p.  156°— 157°  C,  while 
1.8-dihydroxynaphthailene  gives  1-ketotetrahydro- 
oi-8-hydroxynaphthalene,  and  l-hydroxy-5-acet- 
aminonaphthalene  gives  l-ketotetrahydro-ar-5-acet- 
aminonaphthalene. — A.  R.  P. 

Liquid  fuel.    G.P.  351,817.    See  IIa. 

Sludge  arid*.     U.S. P.  1,423,766-7.     See  IIa. 

Hardening  pitch.     G.P.  352,521.     See  XIII. 

Phenol-contaminated  liquors.     E.P.   161,976      See 
XIXu. 


IV.— C0L0UBING  MATTEBS  AND  DYES. 

Fluorescein;    Formation    and    properties    of . 

O.  Fischer  and  M.  Bollmann.     J.  prakt.  Chem., 
1922,  104,  123—131. 

In  Fluorescein  as  ordinarily  prepared  there  is  at 
most  only  traces  of  monoresorcinolphthalein,  a  fact 
no  doubt  due  to  the  instability  of  this  compound  at 
the  temperature  of  the  reaction.  In  presence  of 
boric  acid,  however,  the  more  stable  boric  ester  is 
formed,  and  fair  yields  of  monoresorcinolphthalein, 
m.p.  208°— 209°  C.,  are  obtained.  Oxonium  salts  of 
the  methvl  ethers  of  Fluorescein  are  described.  (C/. 
J.C.S.,  Sept.)— W.  O.  K. 

o-Aminoazo      compounds;      Constitution      of      the 

prroducts  arising  from  the  condensation  of  

with   aldehydes.     O.   Fischer.     J.   prakt.  Chem., 
1922,  104,  102—122. 

The  colourless  bases  obtained  by  Goldschmidt  by 
the  action  of  aldehydes  on  o-aminoazo  compounds 
and  considered  by  him  to  be  triazines,  are  shown 
to  be  derivatives  of  N-aminobenziminazole,  as  they 
are  decomposed  by  hydrogen  iodide  into  a  deriva- 
tive of  benziminazole  and  an  amine,  and  they  can  be 
synthesised  from  such  a  benziminazole  derivative 
by  heating  the  chloroimine,  obtained  from  it  on 
treatment  with  hypochlorite,  with  a  base.  (Cf. 
J.C.S.,  Sept.)— W.  O.  K. 

Camphoric    anhydride;   Byes    derived   from   . 

A.  C.  Sircar  and  S.  Dutt.     Chem.   Soc.   Trans., 
1922,  121,  1283—1286. 

Dyestuits  of  the  phthalein  type  were  prepared  by 
the  condensation  of  camphoric  anhydride  with 
phenols  and  amines  by  means  of  zinc  chloride.  The 
depth  of  colour  and  intensity  of  fluorescence  of 
these  dyestuffs  were  similar  to,  if  not  more  marked 
than,  those  of  the  corresponding  compounds  from 
phthalic  anhydride,  but  their  isolation  was  very 
tedious  and  difficult  on  account  of  the  large  propor- 
tion of  tarry  by-products  which  was  produced. 
Resorcinolcamphorein  is  a  reddish-brown  powder, 
and  its  sodium  salt  dyes  wool  brick-red  shades.  Its 
tetrabromo  derivative  dyes  wool  and  tannin-mor- 
danted cotton  brilliant  pink  shades.  m-Dimethyl- 
aminophenolcamphorein  hydrochloride  forms 
glistening  green  prisms,  m.p.  125° — 126°  C. ;  its 
solutions  exhibit  an  orange  fluorescence,  and  dye 
pink  shades  on  wool,  and  reddish-violet  on  tannin- 
mordanted  cotton.  Phloroglucinolcamphorein 
forms  orange-red  needles,  and  dyes  orange  shades. 
m-Aminophenolcamphorein  is  a  brown  powder 
exhibiting  in  solution  a  dark  green  fluorescence. 
wi-Phenylenediamine-camphorein  crystallises  in 
brownish-yellow  prisms,  m.p.  234°  O.  (with 
decomp.).     Its  solutions  show  a  green  fluorescence. 

— G.  F.  M. 


704A 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


[Sept.  30,  1922. 


Camphoreins.    Studies  in  optically  active  dyes.    1. 

B.   K.  Singh,  R.  Rai,  and  R.  Lai.     Chem.  Soc. 

Trans.,  1921,  121,  1421—1430. 
A  series  of  camphoreins  was  prepared  by  condens- 
ing camphoric  anhydride  with  phenol,  o-cresol, 
quinol,  catechol,  phloroglucinol,  and  pyrogallol. 
The  condensation  was  best  effected  by  means  of 
stannic  chloride  in  the  first  three  cases;  zinc 
chloride  was  used  for  catechol,  and  a  few  drops  of 
sulphuric  acid  in  the  case  of  phloroglucinol  and 
pyrogallol.  Optical  rotation  was  observed  and 
measured  in  the  case  of  o-cresolcamphorein, 
[o]D  =  +93°,  but  in  other  cases  the  deep  colour  of  the 
solutions  prevented  observation.  Some  of  the  dye- 
stuffs  diffuse  easily  through  animal  membranes,  and 
have  staining  properties  for  animal  and  vegetable 
tissues,  and  it  is  suggested  that,  being  optically 
active,  they  might  have  special  value  as  selective 
histological  stains.  Phenolcamphorein  dyes  wool 
and  silk  yellow  from  a  bath  containing  sodium 
sulphate  and  excess  of  sulphuric  acid  with  chrome 
and  iron  mordants.  The  cresol-  and  quinol-cam- 
phoreins  have  poor  dyeing  properties.  Catechol- 
camphorein  exhibits  a  green  fluorescence  in 
sulphuric  acid  solution.  Pyrogallolcamphorein  dyes 
wool  deep  brown  shades  on  chrome,  aluminium,  tin, 
and  iron  mordants.  Tetrabromoresorcinolcam- 
jjhorein  was  obtained  as  a  reddish-yellow  powder, 
m.p.  133°— 135°  C.  The  position  of  the  absorption 
bands  of  the  above  compounds  was  determined. 

— G.  P.  M. 

Anthracene  series;  Studies  in  the .  II.   E.  de  B. 

Barnett  and   J.   W.    Cook.     Chem.    Soc.    Trans., 
1922,  121,  1376—1391. 

Monohydroxyanthraquinones  and  dihydroxy- 
anthraquinones  which  do  not  contain  two  hydroxyl 
groups  in  the  ortho-  or  para-positions  with  reference 
to  one  another,  when  treated  with  bromine  in 
presence  of  a  large  excess  of  pyridine  do  not  give 
pyridinium  salts,  but  are  merely  brominated. 
Quinizarin,  on  the  other  hand,  is  not  brominated, 
but  is  converted  into  quinizarin-2.3-dipyridinium 
dibromide,  probably  through  the  intermediate 
formation  of  a  diquinone,  which  forms  a  dibromide. 
This  then  unites  with  two  mols.  of  pyridine  with 
simultaneous  enolisation.  A  similar  reaction 
occurs  with  hystazarin.  In  the  case  of  alizarin, 
3-bromo-alizarin  is  produced  if  only  1  mol.  of 
bromine  is  used  with  2  mols.  of  bromine,  or  on 
further  treatment  of  3-bromoalizarin,  3-bromo- 
alizarinpyridinium  bromide  is  formed,  whilst  3 
mols.  of  bromine  converts  alizarin  into  alizarin- 
dipyridinium  dibromide.  Similar  compounds  are 
obtained  from  3-nitro-  and  4-nitroalizarin.  All 
these  pyridinium  salts  pass  with  varying  ease  into 
betaine-like  compounds  by  loss  of  hydrogen  bromide, 
either  spontaneously,  or  when  reerystallised  from 
alcohol  and  ether.  The  betaine  formation  probably 
occurs  between  a  /3-hydroxyl  group  and  the 
pyridinium  group  in  the  ortho-position  to  it. 
During  the  course  of  the  research  it  was  found 
incidentally  that  the  nitration  of  3-bromoalizarin 
yields  3-nitroalizarin,  and  conversely  bromination 
converts  3-nitroalizarin  into  3-bromoalizarin, 
contrary  to  what  would  have  been  expected  from  the 
behaviour  of  the  corresponding  chloro-derivative. 

— G.  F.  M. 


V.-FIBBES;  TEXTILES;  CELLULOSE; 
PAPER. 

Cellulose;  Preparation  of by  means  of  chlorine 

gas.    U.  Pomilio.    Chim.  et  Ind.,  1922,  8,  41—45. 

The  De  Vains  process  for  the  preparation  of 
cellulose  by  means  of  a  solution  of  chlorine  under 
pressure   as   described   by    De    Perdiguier    (c/.    J., 


1922,  288  a)  is  compared  with  that  of  Cataldi,  who 
employs  gaseous  chlorine,  and  is  adversely  criticised 
in  that  it  requires  more  caustic  soda  and  fuel  and 
less  chlorine,  which  is  the  cheapest  reagent,  than 
the  latter  process,  the  yield  by  which  is  higher  than 
that  of  any  process  yet  known.  In  the  Cataldi 
process  the  greater  part  of  the  chlorine  (sometimes 
as  much  as  80%)  is  eliminated  during  the  chlorina- 
tion  as  hydrochloric  acid,  which  is  readily  removed 
from  the  apparatus  without  neutralising  or  raising 
the  temperature.  The  cellulose  produced  from 
poplar  averages  74%  of  o-cellulose  and  21%  of  the 
/3  and  y  varieties,  and  contains  1'7%  of  ash.  The 
average  length  of  the  fibres  is  IT  mm.  and  their 
mean  diameter  0026  mm.  The  process  is  operating 
successfully  at  Naples. — A.  R.  P. 

Patents. 

Artificial   silk;   Composition  for   the   treatment  of 

.     C.  A.  Snyder.     U.S.P.  1,423,041,  18.7.22. 

Appl.,  3.9.21. 

Artificial  silk  thread  is  finished  with  a  composi- 
tion consisting  of  olive  oil  soap  dissolved  in  water 
to  which  olive  oil  is  added. — T.  A.  S. 

Artificial  fabrics  containing  nitrocellulose;  Process 

for  increasing  the  softness  and  elasticity  of . 

Chem.  Fabr.  vorm.  Weiler-ter  Meer.  G.P.  (a) 
353,233,  4.4.20,  and  (b)  353,234,  13.4.20. 

(a)  The  nitrocellulose  is  worked  up  with  the  addi- 
tion of  acetals  of  fatty-aromatic  alcohols.  Benzyl- 
aeetal,  from  acetaldehyde  and  benzyl  alcohol,  an 
oil  boiling  at  198°  C.  at  20  mm.,  and  xylylacetata 
boiling  about  12°  higher,  are  superior  to  the  soften- 
ing media  previously  used  on  account  of  their  great 
stability,  (b)  The  nitrocellulose  is  treated  with  ali- 
phatic-aromatic ethers  of  polyhydric  alcohols,  e.g., 
the  dibenzyl,  dixylyl,  or  dichlorobenzyl  ethers  of 
glycol,  or  the  tribenzyl  or  dibenzyl  ether  of  glycerol. 
Films  are  obtained  of  great  flexibility,  strength, 
and  elasticity. — A.  G. 

Wood  pulp;  Process  for   making   .     L.   Enge. 

G.P.  353,105,  16.7.21. 

The  wood  is  treated  with  a  bleaching  agent 
immediately  after  boiling  or  steaming  and  before 
grinding.  The  bleaching  is  carried  out  either  in  the 
boiler  or  in  another  closed  vessel.  The  wood  is  com- 
pletely saturated  with  the  bleaching  liquid  by  keep- 
ing it  for  some  time  in  an  evacuated  vessel  and  then 
treating  it  either  with  an  aqueous  solution  of  the 
bleach  under  pressure  or  with  "  warm  air  almost 
completely  saturated  with  this  solution."  Gaseous 
bleaching  agents  may  also  be  used.  If  solutions  of 
bisulphites,  such  as  sodium  bisulphite,  are  used  as 
bleaching  agents,  the  wood  must  be  allowed  to  lie 
for  several  days  after  treatment  before  it  is 
separated  into  fibres.  The  incrustation  is  thereby 
also  softened,  so  that  a  very  tough  fibrous  pulp  can 
be  obtained  from  the  bleached  raw  wood. — H.  C.  R. 

Sizing    paper;    Process   for    .      L.    Ubbelohde. 

G.P.  303,324,  18.7.16,  305,006—305,010  dated 
14.11.16,  31.12.16,  31.12.16,  9.2.17,  31.12.16,  res- 
pectively, and  307,098,  9.2.17. 

Materials  composed  mainly  of  humic  acid  ami  it* 
salts  are  employed  for  sizing  paper  and  finished 
pieces  and  products  made  of  paper.  Humic  acid  is 
soluble  in  water  and  in  dilute  alkalis,  but  whei 
dried  into  the  paper  it  behaves  as  an  irreversible 
colloid  and  is  no  longer  soluble  in  water.  Humic 
acid  can  be  obtained  from  substances  containing  it 
or  from  peat.  The  solution  obtained  by  treating 
peat  or  lignite  with  alkalis  can  be  used  directly  for 
sizing  paper  or  for  impregnating  paper  or  paper 
goods.  This  solution,  equally  with  humic  acid  solu- 
tion, can  be  precipitated  with  acids  or  metallic 
salts.  Humous,  bituminous  or  similar  material, 
such  as  peat  and  lignite,  can  also  be  fractionally 


Vol.  XLL,  Xo.  18.]  Cl.  VI.— BLEACHING  ;   DYEING  ;   PRINTING  ;   FINISHING. 


705  a 


dissolved  by  treatment  with  various  alkalis  or 
alkaline  solutions  and  the  fractions,  either  alone  or 
mixed  together,  can  be  used  for  sizing.  The  liquids 
obtained  are  more  or  less  cloudy  colloidal  solutions 
or  suspensions.  The  solutions  obtained  by  bleaching 
humic  acid  solutions,  crude  humic  acid,  or  the  frac- 
tions obtained  from  these  acids  with  chlorine  can 
also  be  used  for  sizing  paper  and  for  impregnating 
paper  and  paper  goods.  In  order  to  improve  the 
sizing  action  of  these  materials,  small  quantities  of 
other  materials,  such  as  water  glass,  beech  wood  tar 
size,  coumarone  resin  emulsions,  vegetable  mucilage 
or  sizes,  such  as  are  used  as  substitutes  for  rosin- 
size  in  the  sizing  of  paper,  may  be  added.  The 
addition  of  these  substances  is  also  of  advantage  in 
the  impregnation  of  paper  goods.  A  better  in- 
corporation of  the  bituminous  matter  is  also 
obtained  by  the  use  of  other  known  sizing  materials 
such  as  rosin  size  or  animal  size  at  the  same  time. 
Ferric  sulphate  forms  a  valuable  substitute  for  the 
commonly  used  precipitating  agents  in  the  sizing 
of  material  with  solutions  of  humic  acid. — H.  C.  R. 

Paper;  Method  for  sizing  with  animal  glue  or 

proteins.  Badische  Anilin-  und  Soda-Fabr.  G.P. 
349,881,  23.1.17.  Addn.  to  331,350  (J.,  1921, 
384  a). 

Artificially  prepared,  organic  glue  precipitants 
other  than  the  sulphonic  acids  described  in  the 
chief  patent,  preferably  in  the  presence  of  resin 
size,  resin  soap,  or  resin  emulsions,  are  used  for 
sizing  paper  with  animal  glue  or  proteins.  For 
example,  solutions  containing  0'25%  of  resin  size, 
2%  of  animal  glue,  4%  of  the  condensation  product 
from  cresolsulphonic  acid  and  formaldehyde 
("  Xeradol  D  "),  and  1 — 2;{  of  aluminium  sulphate, 
the  weights  being  reckoned  on  the  weight  of  the  dry 
material,  are  added  to  the  material  in  the  hollander, 
and  the  material  is  subsequently  worked  up  in  the 
usual  manner. — L.  A.  C. 

Adhesive;  Preparation  of  an  from  xvaste  cellu- 
lose liquors.  H.  P.  Kaufmann.  G.P.  353,570, 
30.7.19.     Addn.  to  352,138  (J.,  1922,  641  a). 

In  place  of  calcium  oxide  equivalent  quantities  of 
other  alkaline  earths  or  of  magnesia  or  magnesium 
hydroxide  are  used,  and  ammonium  salts  may  be 
used  instead  of  salts  of  the  alkalis.  For  example, 
the  mixture  may  consist  of  5  pts.  of  cellulose  pitch, 

|2'5  pts.  of  casein,  1'9  pts.  of  magnesia,  and  1  pt.  of 

l  sodium  fluoride. — A.  R.  P. 

^Textile  products  derived  from  animal  fibres;  31anu- 

facture  of  .     A.  G.  Bloxam.     From  Techno- 

chemia  A.-G.  E.P.  183,249,  21.4.21,  and  183,270, 
27.4.21. 

See  U.S.P.  1,389,274-5  of  1921;  J.,  1921,  765  a. 

Animal  fibre;  Process  for  treating  to  improve 

the    spinning    and    felting    properties    thereof. 
.    A.  O.  Trostel.     E.P.  183,885,  26.2.21. 

See  U.S.P.  1,371,951  of  1921;  J..  1922,__  10  a. 
[Reference  is  directed,  in  pursuance  of  Sect.  7,  Sub- 
ject. 4,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  4144  of  1879.) 

^clhdose    acetate    products;    Treatment    of    . 

.  J.  F.  Briggs,  Assr.  to  American  Cellulose  and 
Chemical  Mfg.  Co.,  Ltd.  U.S.P.  1,425.364, 
j   8.8.22.     Appl.,  16.4.21. 

!ee  E.P  169,741  of  1920;  J,  1921,  808  a. 

^aper-making  machines.  W.  P.  Carpmael.  From 
Bagley  and  Sewall  Co.     E.P.  183,185,  17.3.21. 

'aper-pulp  strainers,  paper-  and  rag-dusters  and 
simitar  machines.  The  Watford  Engineering 
Works,  Ltd.,  and  J.  Paramor.  E.P.  183,901, 
22.4.  and  27.7.21. 


See  also  pages  (a)  702,  Decolorising  charcoal  (E.P. 
165,788).  705,  Prints  on  paper  (G.P.  303,372).  720, 
Pesms  from  cellulosic  materials  (G.P.  353.380).  724, 
Starch  (G.P.  351,370).  725,  Sugar  from  wood 
(E.P.  164,329).  728,  Salts  of  condensation  products 
of  formaldehyde  on,]  phenols  (G.P.  350,043).  730, 
Dissolving  nitrocellulose  (G.P.  352,905). 

VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Tannin,  Tamol  and  Katanol  [;  Comparison  of 

as   mordants   for   basic   dyestuffs].     H.   Wagner. 

Farben-Zeit.,  1922,  27,  3015—3016. 
The  mordanting  properties  of  tannin  and  its  sub- 
stitutes, Tamol  (a  formaldehyde  compound  of  a 
naphthalenesulphonic  acid)  and  Katanol  (a  thio- 
phenol),  have  been  compared  in  the  case  of  Aur- 
amine,  Safranine  T,  Rhodamine  B,  Methyl  Violet  B, 
Methylene  Blue  BG,  and  Brilliant  Green.  Dyeings 
obtained  by  means  of  Tamol  and  Katanol,  though 
slightly  inferior  in  fastness  to  light,  have  a  greater 
fastness  to  lime  than  dyeings  obtained  by  means  of 
tannin.  On  the  whole,  Tamol  and  Katanol  are 
superior  to  tannin  as  mordants  for  basic  dyestuffs, 
since  thev  are  cheaper  and  vield  purer  shades. 

—A.  J.  H. 
Patents. 
Soluble  vat-preparations  for  dyeing;  Manufacture 

of  stable,   dry  and  readily  .     Farbw.   vorm. 

Meister,   Lucius,    und   Briining.       E.P.    171,078, 

15.6.21.  Conv.,  1.11.20. 
Stable,  dry  and  readily-soluble  vat-preparations, 
particularly  those  containing  a  sulphurised  or  non- 
sulphurised  quinone  vat  dyestuff  capable  of  dyeing 
wool,  are  prepared  by  evaporation  to  dryness,  pre- 
ferably in  raruo.  of  a  mixture  containing  about 
equal  amounts  of  an  alkali  leuco-salt  of  the  vat 
dyestuff  and  an  alkali  leuco-sa'lt  of  Indigo,  together 
with  an  agglutinating  or  diluting  agent  when 
necessary. — A.  J.  H. 

Paper  or  fabric  surfaces  that  have  been  treated  with 
proteins;  Process  for  producing  water-  and  fric- 
tion-resisting print  or  colourings  on  .     Ex- 

portingenieure  fiir  Papier-  und  Zellstofftechnik 
G.m.b.H.  G.P.  303,372,  29.9.15. 
The  printing  ink  or  colour  contains  the  same  or  a 
similar  protein  to  that  used  in  producing  the  surface 
on  the  paper  or  fabric,  and  after  printing,  the  whole 
mass  is  subjected  to  treatment  with  a  hardening 
material  which  renders  all  the  protein  present  in- 
soluble in  water.  For  example,  if  animal  glue  or 
casein  is  used  as  the  protein,  the  finished  print  is 
sprayed  with  a  solution  containing  tannic  acid  or 
chromium  compounds  and  set  aside  until  the  surface 
hardens.  To  increase  the  capacity  of  the  prepared 
paper  to  absorb  water  and  to  obtain  sharp  prints, 
an  extract  of  horse-chestnuts  is  added  to  the  ink, 
and  to  increase  the  resistance  of  the  finished  print 
to  water  it  is  coated  with  a  protein  solution  and 
again  subjected  to  hardening.  The  paper  may  also 
be  treated  with  a  hardening  agent  before  printing. 

—A.  R.  P. 

Animal  fibres;  Process  for  protecting  in  treat- 
in,  i  them  with  alkaline  liquids.  A.  G.  Bloxam. 
From  Act.-Ges.  fiir  Anilinfabrikatiou.  E.P. 
183,868,  27.1.21. 

See    U.S.P.    1,419,497    of    1922;    J.,    1922,    584  a. 

Instead  of  sulphite-cellulose  waste  liquor,  an  active 

constituent    of    the    liquor,     e.g.,     sodium    lignin- 

sulphonate    or   "cell  pitch,"    or   a    sugar  may  be 

used. 

Dyeing  apparatus.  Jackson  and  Bro.,  Ltd.,  G.  P. 
Gass.  R.  Hammond,  and  J.  R.  Fish.  E.P. 
183,526,  24.3.21. 

Starch.    G.P.  351,370.    See  XVII. 


706  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIO  ELEMENTS.       [Sept.  so,  1922. 


VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Hydrochloric  acid;  A  new  vessel  for  the  absorption 

of  .     S.  L.   Tyler.     Chem.   and   Met.   Eng., 

1922,  27,  223—225. 

Hydrochloric  acid  is  absorbed  by  water  in  a  series 
of  broad  vessels  made  of  fused  silica,  connected  to 
form  a  number  of  S-bends,  and  constituting  a 
single  conduit  through  which  the  gases  and  water 
flow.  Liquid  is  retained  in  each  vessel  by  means 
of  a  weir.  The  roof  of  each  vessel  slopes  downwards 
on  each  side  towards  the  middle,  where  there  is  a 
depression  from  which  condensed  liquid  drips, 
forming  a  curtain  through  which  the  gases  pass. 
Packed  towers  may  be  arranged  between  the  absorp- 
tion vessels.  Absorption  systems  suitable  for  use 
with  the  gases  from  the  pan  and  muffle  sides  respec- 
tively of  a  hydrochloric  acid  plant  arc  described. 

—J.  8.  G.  T. 

Potash;  Elimination  of  borates  from  American . 

W.   H.   Ross  and  W.   Hazen.     Chem.   and  Met. 
Eng.,  1922,  27,  167—170. 

Potassium  chloride  produced  from  the  brine  of 
Searles  Lake  may  contain  as  much  as  about  25% 
of  borax.  Serious  injury  to  crops  results  from  the 
use  of  such  potassium  chloride  as  a  fertiliser.  By 
rapid  cooling  of  the  mother  liquors  containing  the 
potassium  salts  a  high-grade  potassium  chloride 
containing  less  than  0'5%  of  anhydrous  borax  is 
now  being  prepared  from  the  brine.  The  product 
meets  the  requirement  of  the  U.S.  Department  of 
Agriculture  limiting  the  borate  content  of  potas- 
sium salts  used  as  fertilisers  to  a  maximum  of  0'5 — 
1%  of  anhydrous  borax. — J.  S.  G.  T. 

Potassium  iodide;  Adulteration  of  ■ with  ■potas- 
sium bromide.  J.  Grossmann.  Pharm.  Zeit., 
1922,  67,  689. 

Attention  is  drawn  to  the  occurrence  of  potassium 
iodide  adulterated  with  considerable  proportions 
(up  to  25 — 30%)  of  potassium  bromide,  and  to  the 
inadequacy  of  the  usual  test  for  bromide,  owing 
to  the  sparing  solubility  of  silver  bromide  in 
ammonia.  It  is  recommended  that  in  all  cases 
attention  should  be  paid  to  the  colour  of  the  silver 
iodide  precipitate  (darkening  on  exposure  to  light 
occurs  more  rapidly  when  bromide  is  present)  and 
that  in  doubtful  cases  the  precipitate  should  be 
tested  for  bromide  by  distillation  with  ferric 
chloride.— H.  R.  D. 

Iodates;     Detection   of  in  potassium  iodide 

according  to  the  French  Codex,  1908.    Lachartre. 
J.  Pharm.  Chim.,  1922,  26,  134—138. 

The  test  for  iodates  in  potassium  iodide  described 
in  the  Codex  lacks  precision,  and  takes  no  account 
of  the  influence  of  such  factors  as  the  strength  of 
the  iodide  solution,  the  amount  of  acid  added,  the 
duration  of  the  reaction,  etc.  The  following  method 
is  suggested:  A  10%  solution  of  iodide  in  distilled 
water  is  prepared,  and  to  10  c.c.  3  c.c.  of  chloro- 
form and  5  drops  of  glacial  acetic  acid  are  added. 
After  shaking  for  30  sees,  the  chloroform,  examined 
immediately  after  separation,  should  not  be 
coloured.  Performed  in  this  way  the  limit  of 
sensitiveness  of  the  test  is  0'08  pt.  per  1000.  The 
presence  of  small  quantities  of  copper,  e.g., 
0-0015  pt.  per  1000,  has  no  effect  on  the  reaction 
with  a  perfectly  pure  iodide,  but  appreciably 
accelerates  the  development  of  the  iodine  coloration 
when  traces  of  iodate  are  present.  The  amount 
of  copper  in  ordinary  distilled  water  is,  however, 
too  small  to  have  any  effect  on  the  reaction  in 
either  case. — G.  F.  $L 


Sulphites;     Oxidation    of    in     concentrated 

solutions.     J.  Milbauer  and  J.  Pazourek      Bull 
Soc.  Chim.,  1922,  33,  676—678. 

A  study  of  the  oxidation  of  sodium  sulphite  solu- 
tions of  different  concentrations.  The  rate  of 
oxidation  increases  with  dilution,  but  is  con- 
siderably decreased  by  the  presence  of  carbonic  and 
sulphurous  acids.  Feebly  alkaline  solutions  are 
more  rapidly  oxidised  than  neutral  solutions,  but 
when  strongly  alkaline  the  rate  of  oxidation,  even 
in  the  presence  of  catalysts,  is  diminished.  In 
neutral  solutions  of  all  concentrations  salts  of 
cobalt  are  good  catalysts,  whilst  copper  salts  only 
function  in  dilute  solutions  of  high  purity.  In 
concentrated  solution,  sulphites  of  sodium,  potas- 
sium, and  ammonium  behave  similarly,  both  with 
and  without  catalysts;  in  each  case,  especially  with 
ammonium  sulphite,  impurities  retard  oxidation 

— H.  J.  E. 

Sulphides;  Estimation  of  — —  by  oxidation  with 
ferric  iidphate.  P.  P.  Budnikow  and  K.  E. 
Krause.  Ber.  Polyt.  Iwanowo  Wosniessensk, 
1921,  [4],  157—159.  Chem.  Zentr.,  1922,  93, 
IV.,  106—107. 

Sodium  sulphide  solution  to  which  a  small  quantity 
of  sodium  carbonate  is  added  is  treated  slowly  witii 
a  40%  solution  of  ferric  sulphate,  boiled  for  10 — 15 
mins.  to  oxidise  any  ferrous  sulphide  to  ferrous 
sulphate,  acidified  with  sulphuric  acid,  and  then 
titrated  with  potassium  permanganate.  At  first 
it  is  necessary  to  keep  the  solution  alkaline  to 
prevent  interaction  between  the  ferrous  sulphate 
and  sodium  sulphide.  The  method  is  only  applicable 
to  sulphides  soluble  in  water  and  acids,  such  as 
those  of  sodium,  calcium,  zinc,  etc. — J.  B.  F. 

Phosphates;  Estimation  of  iron  and  aluminium  in 

natural .    O.  Nydegger  and  A.  Schaus.    Bull. 

Fed.  Ind.  Chim.  Belg.,  1922,  1,  405—407. 

Von  Grueber's  method  (Prost,  Manuel  d'anal. 
Chim.,  105)  consists  in  neutralising  the  solution 
of  the  phosphate  in  hydrochloric  acid  with  20% 
caustic  soda,  adding  excess  of  the  latter,  boiling 
the  solution  to  convert  aluminium  phosphate  into 
aluniinate,  filtering,  acidifying  the  solution,  and 
precipitating  the  aluminium  as  phosphate  by 
means  of  ammonia.  The  iron  is  estimated  by  titra- 
tion with  permanganate.  The  authors  show  that 
this  method  is  not  accurate,  the  aluminium  not 
being  precipitated  quantitatively  as  phosphate,  as 
the  preliminary  preparation  of  the  solution  removes 
phosphoric  acid,  so  that  insufficient  remains  for 
the  purpose.  The  error  is  obviated  by  the  following 
procedure :  125  g.  of  the  phosphate  is  dissolved  in 
hydrochloric  acid  and  the  solution  evaporated  to 
dryness  to  render  the  silica  insoluble.  After  again 
dissolving  in  hydrochloric  acid,  the  solution  is 
diluted,  boiled,  and  made  up  to  250  c.c.  Of  this, 
100  c.c.  is  used  for  estimation  of  iron  and  a  further 
100  c.c.  for  aluminium.  To  the  latter  10—20  c.c. 
of  a  10%  solution  of  sodium  phosphate  is  added, 
the  whole  neutralised  with  caustic  soda,  a  further 
20  c.c.  of  sodium  phosphate  added,  and  the  mixture 
boiled  for  5  mins.,  or  until  the  precipitate  is  of  a 
brick-red  colour.  After  cooling,  the  solution  is 
diluted  to  250  c.c,  filtered,  100  c.c.  of  the  filtrato 
(equivalent  to  2  g.  of  phosphate)  acidified  with 
hydrochloric  acid  and  the  aluminium  precipitated 
as  phosphate  with  ammonia,  care  being  taken  to 
avoid  an  excess  of  the  latter.  Control  experiments 
show  this  modification  of  the  method  to  be  trust- 
worthy.— H.  J.  E. 

Silica  and  sodium  chloride;    Interaction  of  • 

F.  H.  Clews  and  H.  V.  Thompson.     Chem.  Sot. 
Trans.,  1922,  121,  1442—1448. 
Silica  and  sodium  chloride  when  strongly  heated 
interact  to  give,   in  dry   air,   sodium  silicate  and 


Vol.  XIX,  No.  18.]     Cl.  VII— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIC  ELEMENTS. 


707  a 


chlorine;  in  moist  air  sodium  silicate,  hydrochloric 
acid,  and  a  small  quantity  of  chlorine;  in  moist 
nitrogen,  sodium  silicate  and  hydrochloric  acid. 
The  lower  temperature  limit  of  the  reaction  is 
about  600°  C,  and  the  extent  of  the  reaction  is  still 
very  small  at  1000°  C.  Rise  in  temperature  and 
presence  of  moisture  increase  the  velocity  of  the 
reaction  to  a  considerable  extent.  The  results 
obtained  by  varying  the  proportions  of  sodium 
chloride  and  silica  indicate  that  the  area  of 
contact  is  more  important  than  the  composition 
of  the  mixture,  unless  the  proportion  of  salt  falls 
much  below  50  % .  When  quartz  is  heated  with 
sodium  chloride  at  1000°  C.  it  is  converted  into 
tridymite.  The  conversion  is  probably  the  result  of 
recrystallisation  from  a  solution  of  quartz  in  the 
molten  chloride.  At  1000°  C.  quartz  is  more  reactive 
than  precipitated  silica  or  tridvmite  to  sodium 
chloride.— J.  B.  F. 

Monazite;  Attack  and  analysis  of .    P.  Wenger 

and  P.   Christin.     Ann.  Chim.  Analvt.,  1922,04, 
231—232. 

The  hitherto  published  methods  for  the  attack  of 
monazite  are  either  tedious  or  else  leave  large 
quantities  of  the  rare  earths  undissolved  By  the 
following  method  the  whole  of  the  mineral  can 
readily  be  brought  into  solution.  About  1  g.  of 
the  finely  ground  material  is  heated  for  5  hrs.  with 
5  c.c.  of  sulphuric  acid  (sp.  gr.  1-84)  at  230°  C. 
The  resulting  pasty  mass  is  gradually  poured  into 
iced  water,  when  all  but  a  small  residue  passes  into 
solution.  This  is  filtered  off  and  again  heated  with 
sulphuric  acid,  a  little  hydrofluoric  acid  being 
added  to  volatilise  the  silica.  The  residue  is  then 
melted  with  6  pts.  of  sodium  carbonate.  On  treat- 
ment with  water  the  tantalum  passes  into  solution, 
and  any  slight  residue  still  remaining  will  be 
zirconia  and  may  be  brought  into  solution  by 
fusion  with  potassium  bisulphate.  In  the  subse- 
quent analysis  the  rare  earths  should  be  precipi- 
tated by  oxalic  acid  at  55°  C.  in  a  solution  con- 
taining 0T5 — 0'75%  of  sulphuric  acid  and  with  an 
excess  of  3%  of  oxalic  acid.  At  this  temperature 
precipitation  may  be  considered  quantitative  for 
yttrium,  thorium,  cerium,  and  didymium.  Lan- 
thanum oxalate,  being  the  most  soluble,  is  not  com- 
pletely precipitated,  and  50  c.c.  of  the  solution 
under  the  above  conditions  would  retain  0"011  g. 
in  solution. — G.  F.  51. 

Fcrrosilicon;  Formation  of in  carbide  works. 

O.  Hackl.    Chem.-Zeit.,  1922,  46,  740. 

Ln  the  manufacture  of  calcium  carbide  at  Austrian 
and  Bavarian  works  a  number  of  brittle  metallic 
reguli  were  obtained  which  proved  to  be  ferrosilicon 
containing  a  high  percentage  of  silicon. — A.  R.  P. 

Catalysts:  Behaviour  of  certain  metals  as  .     7. 

C.  Sandonnini.     Gazz.   Chim.   Ital.,  1922.  52,  I., 
394—403. 

Experiments  have  been  made  on  the  changes 
occurring,  under  the  influence  of  various  metallic 
catalysts,  in  systems  containing  detonating  mix- 
tures of  hydrogen  and  oxygen  together  with  a  com- 
pound capable  of  ready  oxidation  or  hydrogenation, 
such  as  ethylene,  phenanthrene,  nitrobenzene,  and 
allyl  alcohol.  The  velocity  of  the  formation  of 
water  from  hydrogen  and  oxygen  in  presence  of 
finely  divided  nickel  is  very  greatly  diminished  by 
addition  of  ethylene,  although  at  the  ordinary  tem- 
perature it  is  the  only  reaction  which  proceeds  to 
an  appreciable  extent.  When  the  temperature  is 
raised  the  hydrogenation  of  ethane  proceeds  with 
increased  velocity  and  oxidation  of  ethvlene  also 
becomes  appreciable.  At  225°  C.  most  of 'the  ethyl- 
ene is  hydrogenated  to  ethane.  When  copper  is 
used  as  catalyst  it  is  markedly  oxidised,  and  this 
favours    oxidation    phenomena.       In    mixtures    of 


hydrogen,  oxygen,  and  nitrobenzene,  the  reduction 
of  the  last-named  in  presence  of  nickel  is  more  rapid 
than  the  formation  of  water  from  the  hydrogen  and 
oxygen.     (Cf.  J.C.S.,  1922,  ii.,  557.)— T.  H.  P. 

Detonating  gas;  Combination  in  in  presence 

of  colloidal  palladium  solution.  C.  Sandonnini 
and  A.  Quaglia.  Gazz.  Chim.  Ital.,  1922,  52,  I., 
409 — 116-  (Cf.  preceding  abstract.) 
Experiments  with  mixtures  of  hydrogen  and 
oxygen  in  different  proportions  in  presence  of 
colloidal  palladium  solution  showed  that  the 
velocity  of  combination  is  proportional  to  the  con- 
centration of  detonating  gas  (2H2  +  02)  in  the  mix- 
ture. With  mixtures  having  the  same  concentra- 
tion of  detonating  gas  the  reaction  velocity  is 
greater  when  excess  of  hydrogen  is  present  than  in 
presence  of  excess  of  oxygen.  When  the  gas  mix- 
ture contains  reducible  compounds  (ethylene,  allyl 
alcohol,  nitrobenzene,  sodium  phenylpropiolate),  in 
addition  to  hydrogen  and  oxygen,  hydrogenation  re- 
actions may  occur  as  well  as  formation  of  water, 
and  it  is  concluded  that  the  reactions  are  due  to 
"ctiye  or  atomic  hydrogen.  (Cf.  J.C.S.,  1922,  ii., 
ooo.) — 1.  H.  P. 

Sulphvr;    Solubility    of    in    certain    organic 

liquids.     R.  Delaplace.     J.  Pharm.  Chim.,  1922 
26,  139—140. 

The  solubility  of  sulphur  in  chloroform,  carbon 
tetrachloride,  benzene,  toluene,  and  ether  was 
determined  at  various  temperatures  ranging  from 
13°  C.  to  24°  C.  The  divergence  of  the  results 
from  those  obtained  by  earlier  workers  is  attributed 
in  some  cases  to  the  slowness  of  saturation,  con- 
tinuous agitation  for  12  hrs.  being  required  to 
obtain  saturated  solutions  in  benzene  and  toluene 
for  example.  From  the  results,  which  are  given  in 
tabular  form,  the  following  figures  for  the  weights 
of  sulphur  dissolved  in  100  g.  of  solvent  are 
abstracted:— In  chloroform  at  15°  C,  0'874  g. ;  in 
carbon  tetrachloride  at  15'5°  C,  0723  g. ;  in 
toluene  at  20°  C,  1-857  g. ;  in  benzene  at  15°  C, 
1-582  g.,  and  in  anhydrous  ether  at  13°  C,  0-188  g 

— G.  F.  M. 

Sodium  in  alumina.    Geith.    .See  X. 

Ammonium  bicarbonate.    Gluud.    See  XVI. 

Oxidation   of  carbon  by  nitric  acid.     Philippi  and 
Rie.    See  XX. 

Oxidation    of   carbon   by  sulphuric  acid.     Philippi 
and  Thelen.     See  XX. 

Patents. 

Sulphuric   acid;   Manufacture   of  .     G.    Mirat 

and  P.  Pipereaut.  E.P.  163,030,  13.4.21.  Conv., 
6.5.20. 

The  apparatus  consists  of  ten  small  lead  chambers 
of  280  cub.  m.  capacity,  arranged  in  series  with 
inlets  at  the  top  and  outlets  near  the  bottom.  The 
long  connecting  pipes  are  rectangular  in  section 
and  are  fitted  with  superimposed  troughs  down 
which  a  current  of  water  flows.  The  usual  Glover 
tower  is  provided,  but  between  the  last  chamber 
and  the  Gay  Lussac  tower  is  interposed  a  series  of 
ten  stoneware  collectors  of  1000  1.  capacity,  of  which 
the  first  four  contain  water  and  the  others  strong 
sulphuric  acid.  "  From  this  apparatus  the  gases 
enter  the  coke  tower  deprived  of  NO.,,  which  is  not 
soluble  in  the  sulphuric  acid  and  would  not  be  de- 
composed within  the  coke  tower." — C.  I. 

Ammonia;  Synthesis  of from  its  elements  and 

catalyst  therefor.  The  Nitrogen  Corp.  Assees.  of 
J.  C.  Clancy.   E.P.  156,698,  7.1.21.   Oonv.,  7.1.20. 

A  catalyst  for  ammonia  synthesis,  consisting  of  a 


708  a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[Sept.  30, 1922. 


double  cyanide  of  an  alkali  or  alkaline-earth  metal 
(preferably  potassium  or  calcium)  and  iron,  manga- 
nese, or  chromium,  containing  at  least  2  mols.  of 
alkali  cyanide  to  1  mol.  of  iron  cyanide,  is  prepared 
by  evaporating  a  concentrated  solution  of  the  salts 
in  water  with  pumice  granules  in  an  atmosphere  of 
hydrogen  and  nitrogen.  The  impregnated  pumice 
is  then  slowly  heated  in  an  atmosphere  of  ammonia 
gas  to  400°  C.  The  material  is  ejected  while  still 
hot  from  the  autoclave  in  which  it  is  prepared  to 
the  autoclave  in  which  ammonia  is  synthesised,  by 
means  of  a  jet  of  the  gases  to  be  used  for  the 
synthesis.  The  catalyst  prepared  as  described  is 
more  stable,  has  a  longer  working  life  (40  days),  and 
is  capable  of  a  greater  space-time  vield  than  that 
made  as  described  in  E.P.  155,592  (U.S.P.  1,363,392 
of  1920;  J.,  1921,  469  a).— C.  I. 

Carbon  disulphide;  Process  and  apparatus  for  the 

production   of    from    its    elements.      Chem. 

Fabr.  Griesheim-Elektron.  E.P.  174,040,  9.11.21. 
Conv.,  14.1.21. 

As  the  velocity  of  formation  of  carbon  bisulphide 
increases  rapidly  with  the  temperature,  the  output 
of  an  electrical  shaft  furnace  is  considerably  in- 
creased by  using  the  whole  of  the  shaft  as  a  heating 
zone  by  employing  a  movable  electrode  suspended 
vertically  in  the  shaft  and  embedded  in  charcoal, 
lignite,  coke,  etc.,  which  has  been  fed  in  while  in- 
candescent. The  shaft  is  constricted  near  the 
bottom,  causing  a  local  increase  in  temperature,  and 
molten  sulphur  fed  in  near  this  point  is  instantly 
volatilised. — C.  I. 

Alkaline-earth     carbonates;    Process    for    grading 

[purifying]    .      W.    W.    Plowman    and    W. 

Feldenheimer.  E.P.  183,243,  19.4.21. 
The  salts  in  a  pulverised  form  are  mixed  with  a 
dilute  solution  of  an  alkali  silicate.  After  standing 
for  some  time  the  solution  containing  the  alkaline- 
earth  carbonate  in  suspension  is  drawn  off  from  the 
settled  impurities,  and  treated  with  a  suitable 
flocculating  agent,  e.g.,  alum  or  gelatin,  whereby 
the  alkaline-earth  carbonate  is  separated  and  is  re- 
covered, bv  settling,  in  a  verv  finely-divided  condi- 
tion.—H.  R.  D. 

Phosphorus  oxychloride ;  Process  for  making  . 

T.  L.  Bartleson,  Assr.  to  E.  I.  du  Pont  de 
Nemours  and  Co.  U.S.P.  1,424,193,  1.8.22. 
Appl.,  21.10.20. 

Phosgene  is  brought  into  contact  with  a  metal  phos- 
phate at  a  high  temperature. — H.  R.  D. 

Salts;    Recovery     of    from     hot     solutions. 

Maschinenbau-A.-G.  Balcke.  G.P.  352,575, 
13.11.20.     Addn.  to  340,022  (J.,  1921,  812  a). 

In  carrying  out  the  process  described  in  the  chief 
patent,  the  cooling  of  the  hot  solution  is  progres- 
sively retarded  from  the  air-inlet  end  to  the  liquor- 
inlet  end  of  the  apparatus.  This  may  be  achieved 
by  reducing  progressively  in  the  direction  of  the 
liquor  inlet  the  quantity  of  air  supplied  to  the 
cooler  or  by  using  fewer  discs  in  the  cells  near  the 
liquor  inlet,  so  that  the  quantity  of  liquor  brought 
into  intimate  contact  with  the  air  by  the  discs 
is  smaller  at  this  end. — A.  B.  S. 

Carbon   dioxide;   Process    of  removing    from 

gases.  Zellstoff-fabrik  W'aldhof.  G.P.  352,800, 
9.3.19. 

Carbon  dioxide  is  absorbed  by  organic  hydroxy-  or 
amino-compounds,  e.g.,  methyl  or  ethyl  alcohol, 
glycerin,  glycocoll,  leucine,  asparagine,  peptones, 
etc.,  in  the  presence  of  bases  such  as  lime  or 
magnesia. — J.  S.  G.  T. 


Hydrogen    sulphide;    Process    for    the    removal    of 

from  gases.    Ges.  fur  Kohlentechnik  m.b.H. 

G.P.    355,408,    30.6.20.      Addn.    to   350,325    (J., 
1922,  502  a). 

The  gases  are  washed  with  an  ammoniacal  solution 
of  metallic  salts  other  than  those  of  copper,  the 
metallic  sulphide  being  converted  into  copper  sul- 
phide by  treatment  of  the  liquor  with  a  copper 
salt  solution.  The  copper  sulphide  is  then  con- 
verted into  copper  sulphate  for  use  again  in  the 
process. — A.  G. 

Hydrocyanic    acid-    Method     of     producing    . 

H.   G.   Fairweather.      From   Air  Reduction   Co., 
Inc.     E.P.  183,348,  6.7.21. 

See  U.S.P.  1,385,335  of  1921;  J.,  1921,  657  a. 

Caustic  soda  or  caustic  potash;  Continuous  process 

for  the  manufacture  of .     C.  Deguide.     E.P. 

176,321,  20.12.21.     Conv.,   26.2.21. 

See  G.P.  346,808  of  1921;  J.,  1922,  216  a. 


VIIL-GLASS;  CERAMICS. 

Glass;  Use  of  selenium   in  production  of  colourless 

.     A.  Cousen  and  W.  E.  S.  Turner.     J.  Soc. 

Glass  Tech.,  1920,  6,  168—180. 

Numerous  small  meltings  carried  out  at  1380°  C. 
and  1440°  C.  in  fireclay  pots  showed  that  the  maxi- 
mum percentage  of  iron  oxide  in  a  glass  which  could 
be  decolorised  by  selenium  or  sodium  selenite  was 
0'09.  The  effect  of  replacing  soda  ash  by  salt-cake 
was  to  increase  the  amount  of  selenium  necessary  to 
decolorise  the  glass.  This  was  due  to  the  greater 
corrosive  action  of  the  salt-cake  batch  on  the  pot 
and  the  action  of  sodium  sulphate  on  selenium  at 
high  temperatures.  Experimental  evidence  for  the 
latter  view  is  given.  Sodium  selenite  was  much 
more  effective  than  selenium  in  the  plain  soda  ash 
batch.  Reheating  the  glasses  only  changed  the  tints 
of  those  to  which  excess  of  selenium  over  the  amount 
required  for  decolorising  had  been  added,  and  this 
was  most  marked  between  525°  and  550°  C. — A.  C. 

Glass;   Effect  of  absorbed  gas   on  conductivity  of 

.     V.  Bush  and  L.  H.  Connell.     J.  Franklin 

Inst.,  1922,  194,  230—240. 

The  conductivity  of  glass,  quartz,  and  porcelain 
tubes  was  measured  by  applying  potential  differ- 
ences ranging  from  690  to  20,940  volts  per  cm. 
between  their  inner  and  outer  copper-plated  sur- 
faces. This  was  done  first  on  the  test  piece  as 
received,  then  after  heating  to  350°  C.  in  vacuo, 
sealing,  and  cooling  to  the  same  constant  tempera- 
ture (25°  C.  ±0'05°)  as  before,  again  after  breaking 
the  seal,  and  finally  after  the  lapse  of  some  days. 
Both  Corning  G.702  and  Pyrex  glasses  were  ex- 
amined. It  was  found  that  in  the  case  of  the 
former  glass,  the  removal  of  water  vapour  and  other 
gases  by  the  heating  in  vacuo  brought  about  a  mx- 
fold  increase  in  the  resistivity  observed.  While 
some  of  this  was  due  to  an  alteration  of  surface 
conductivity,  only  a  relatively  small  amount  could 
be  so  accounted  for.  Subsequent  exposure  to  the 
atmosphere  caused  a  slow  decrease  in  resistivity. 
but  the  value  did  not  return  to  that  observed 
originally.  With  quartz  owing  to  the  higher 
resistivity  the  results  were  less  accurate,  but  the 
resistivity  after  the  re-admission  of  air  following 
exhaustion  did  not  decrease  very  much— even 
over  a  period  of  two  months.  The  authors  believe 
their  measurements  to  prove  that  gases  penetrate 
throughout  the  volume  of  glass  and  quartz  and  thus 
affect  its  electrical  properties  and  that  some  pene- 
tration of  gases  from  the  atmosphere  into  the  body 
of  glass  occurs  at  the  ordinary  temperature.— A.  C. 


Vol.  XLI..  Xo.  18.] 


Cl.  VIII.— GLASS  ;  CERAMICS. 


709  a 


Soda-lime  glasses;  Disintegration  of in  water 

A.  E.  Williams.     J.  Amer.  Ceram.  Soc,  1922    5, 
504 — 517. 

Soda-lime  glasses  were  heated  in  water  at  tempera- 
tures below  the  boiling  point,  at  the  boiling  point, 
and  up  to  25  lb.  pressure  in  an  autoclave.  The 
effects  produced  are  illustrated  with  photographs 
and  show  that  glass  disintegrates  when  heated  at 
any  temperature  used.  The  rate  of  disintegration 
depends  upon  the  time  and  temperature  of  the 
water  and  the  composition  and  heat  treatment  of 
the  glass  surface  during  its  formation,  the  latter 
factor  affecting  considerably  the  tendency  to  spall 
or  chip.  Spalling  always  appeared  on  the  exterior 
only  of  pressed  or  blown  ware.  In  glasses  of  com- 
paratively resistant  composition,  softening  or  re- 
heating the  surfaces  seems  to  be  the  only  treatment 
necessary  to  prevent  spalling,  but  glasses  haviag  a 
low  resistance  to  solution  and  disintegration  are  not 
made  immune  to  spalling  or  chipping  by  reheating'. 
Treating  glass  in  hot  water  with"  increasing 
pressures  does  not  seem  to  give  greatly  increased 
disintegration  as  the  temperature  and  pressure  rise. 
The  tests  to  which  the  glasses  were  submitted  con- 
form in  many  ways  to  the  treatment  glass  receives 
when  used  for  packing  or  serving  food.  A  good 
quality  glass  article  should  stand  at  least  six  hours 
in  boiling  water  without  apparent  disintegration  or 
chipping. — H.  S.  H. 

Silica;  Tlie  reversible   thermal  expansion  of  . 

H.    S.   Houldsworth    and    J.    W.    Cobb.      Trans. 
Ceram.  Soc,  1921-22,  21,  227—276. 

The  reversible  thermal  expansions  from  15°  to 
1000°  C.  of  commercial  silica  bricks  both  before 
and  after  use  in  coke  ovens  and  steel  furnaces 
were  measured  as  well  as  those  of  amorphous  silica, 
silica  glass,  ganister  (both  with  and  without  a  lime 
bond),  quartzite,  and  flint  after  preliminary  burn- 
ings to  known  temperatures.  The  permanent 
changes  produced  in  their  porosities,  specific  gravi- 
ties, and  refractive  indices  were  determined.  Pure 
amorphous  precipitated  silica  underwent  no  change 
at  700°  C.  even  on  prolonged  heating,  but  after 
firing  at  1170°  C.  or  cone  14  it  showed  the  large 
reversible  expansion  between  200°  and  300°  C. 
characteristic  of  the  inversion  of  a-  to  /?-cristo- 
balite.  Precipitated  silica  containing  5%  of  soda 
gave  this  large  expansion  after  heating  at  700°  C, 
but  after  burning  at  1170°  C.  or  cone  14  it  Ma- 
converted  into  tridvmite  with  some  cristobalite 
and  showed  the  smaller  (tridvmite)  reversible  ex- 
pansion between  100°  and  170°  C.  Silica  glass 
(vitreosil)  gave  very  little  thermal  expansion,  but 
its  refractive  index  indicated  the  formation  of 
tridvmite  to  a  small  extent  at  cone  14  and  to  a 
considerable  extent  at  cone  20.  Quartz  was  not 
formed  from  amorphous  silica  in  any  of  the 
experiments  described.  Meanwood  ganister  showed 
the  large  reversible  expansion  due  to  the  a- 
to  /8-quartz  inversion  at  575°  C.  after  a  works 
burn  to  cone  9,  but  a  little  cristobalite  was  present 
with  the  quartz  after  a  laboratory  firing  at  cone  14. 
After  firing  at  cone  19  it  gave  a  large  reversible 
expansion  between  100°  and  250°  C.  and  only  a 
small  reversible  expansion  between  550°  and  600° 
C.  indicating  the  conversion  of  the  quartz  into 
cristobalite  and  tridymite  as  the  firing  temperature 
was  raised.  Welsh  quartzite  with  a  lime  bond 
transformed  more  easily,  giving  a  little  cristobalite 
along  with  the  quartz  after  a  works  burn  at  cone  9, 
more  after  a  laboratory  burn  at  cone  14,  while  all 
the  quartz  had  been  converted  into  cristobalite  at 
cone  20.  Flint  with  a  lime  bond  transformed  still 
more  readily.  It  gave  some  cristobalite  after  firing 
at  cone  9  and  was  almost  wholly  cristobalite  after 
burning  at  cone  14.  None  of  these  three  raw 
materials  gave  tridvmite  in  any  quantity.     All  of 


them  showed  permanent  linear  expansions  after 
heating  in  the  lower  temperature  ranges  and  before 
any  conversion  of  the  quartz  occurred.  The  true 
specific  gravity  and  the  refractive  index  were  not 
altered  thereby,  but  the  porositv  was  increased 
The  amount  of  the  change  differed  in  the  three 
materials  and  it  was  probablv  important  as  deter- 
mining largely  the  toughness  of  the  fired  quartz 
particles  and  their  liability  to  crumble  or  break 
after  firing.  Commercial  silica  bricks  before  use 
consisted  of  cristobalite  and  quartz  with  almost 
negligible  amounts  of  tridvmite.  They  gave  lar°-e 
reversible  expansions  from  200°  to  300°  C.  and  500° 
to  600°  C,  with  very  little  expansion  from  600° 
to  1000°  C.  The  reversible  thermal  expansion  from 
15°  to  1000°  C.  of  the  bricks  examined  varied  from 
IT  to  1-3  % .  nearly  three-quarters  of  which  occurred 
from  15°  to  300°  C.  After  use  in  a  coke  oven  the 
innermost  exposed  layer  of  the  brick  was  an  impure 
glass  which  gave  a  steady  expansion,  but  only  half 
as  large  between  15°  and  1000°  C.  as  that  of  the 
layers  behind,  a  factor  which  will  cause  shellino- 
away.  The  rest  of  the  brick  was  all  cristobalite 
with  very  little  quartz  or  tridymite.  After  use  in 
the  roof  of  a  steel  furnace  silica  bricks  were  divided 
into  four  layers.  The  layer  of  the  silica  brick 
exposed  to  the  furnace  heat  was  practically  all 
cristobalite  and  silicates;  the  next  layer  was  very 
similar,  but  the  third  layer  showed  some  a-  t'o 
/J-quartz  expansion  at  550°— 600°  C.  as  well  as  the 
a-  to  ^-cristobalite  expansion  at  220° — 280°  C. 
The  layer  exposed  to  the  air  was  similar  to  the 
brick  before  use.  In  these  bricks  the  exposure  to 
high  temperatures  had  evidently  completed  the 
change  from  quartz  to  cristobalite  which  had  been 
largely   effected   in   the   kiln  during   manufacture 

— H.  S.  H. 

Plasticity;    Mechanism    of   from    the    colloid 

standpoint.     G.  A.  Bole.     J.  Amer.  Ceram.  Soc, 
1922,  5,  469—177. 

Plasticity  is  caused  by  the  film  of  colloidal 
material  surrounding  the  clay  grains,  the  film  being 
of  opposite  polarity  to  the  clay  grain  itself.  The 
addition  of  an  electrolyte  acting  as  a  deflocculant 
causes  the  outer  layer  of  the  film  to  be  attracted 
to  an  ion  of  the  same  polarity  as  the  clay  particle, 
thus  diminishing  the  effective  diameters  of  the 
particles  and  so  reducing  friction.  At  the  same  time 
the  electrically  neutral  bodies,  composed  of  the  clay 
grain  and  its  film,  are  replaced  by  the  negatively 
charged  clay  grains  which  repel  each  other. 
Both  these  factors  cause  the  viscosity  to  decrease. 
A  flocculating  ion  acts  in  the  opposite  way,  causing 
an  increase  in  depth  of  the  colloid  film,  and  thus 
increases  the  viscosity.  The  flocculating  and  de- 
flocculating  effects  of  ions  depend  not  only  upon 
their  polarity  and  concentration,  but  also  upon 
their  transport  numbers,  the  speedier  ions  having 
the  greater  effect.  The  touch  method  of  comparing 
the  plasticity  of  clays  is  shown  to  be  unreliable, 
and  the  necessity  for  a  unit  of  measurement  is 
emphasised. — H.  S.  H. 

Clay     wares;     Soluble     salts     and     .     C.     W. 

Parmelee.     J.     Amer.     Ceram.     Soc,     1922,     5, 
53S— 553. 

A  review  is  given  of  the  literature  on  the  causes  of 
scum  and  efflorescence.  It  is  suggested  that  the 
term  "  efflorescence  "  should  be  restricted  to  the 
surface  deposits  due  to  the  presence  of  soluble  salts 
in  the  clays  or  burned  wares,  and  that  "  scum  " 
should  refer  to  the  salts  formed  by  the  action  of 
gases  upon  the  wares  during  the  drying  or  burning 
operations.  A  surface  scum  is  frequently  noticed 
soon  after  the  ware  is  removed  from  the  kiln,  and 
can  be  readily  and  permanently  removed  with 
water.  This  scum  consists  of  sodium  sulphate  and 
sodium  chloride,  and  is  probably  due  to  the  volatili- 


710a 


Cl.  VIII.— GLASS;  CERAMICS. 


[Sept.  30, 1922. 


sation  of  salt  from  the  fuel  and  its  subsequent 
deposition  on  the  burned  ware  where  it  is  changed 
partly  to  the  sulphate  by  the  action  of  the  oxides 
of  sulphur  evolved  by  the  fuel. — H.  S.  H. 

Terra-cotta;  Shivering  of .     J.  L.  Carruthers. 

J.  Amer.  Ceram.  Soc.,  1922,  5,  518—526. 
A  white  matt  glaze  which  had  shivered  badly  in 
use  was  applied  to  bodies  prepared  from  six  terra- 
cotta clays,  one  non-shivering  clay,  and  one  badly 
shivering  clay,  and  fired  to  cone  3.  Shivering  was 
caused  by  the  presence  of  finely-divided  silica  in 
the  body  due  to  the  use  of  highly  silicious  clays  or 
finely-ground  grog  of  a  silicious  nature,  the 
presence  of  soluble  salts  in  the  clay,  grog,  or 
tempering  water,  or  from  too  long  a  firing  period. 
It  was  eliminated  by  using  a  flux  such  as  felspar, 
felsite,  or  similar  rock  to  overcome  the  action  of 
the  finely-divided  silica,  by  using  a  coarse  grog  or 
sand  so  as  to  give  an  open  structure,  and  by  using 
barium  carbonate  to  overcome  the  effects  of  the 
soluble  salts.— H.  S.  H. 

Zinc  oxide  [ceramic']  bodies;  Some  properties  of 
— — .  E.  E.  Libman.  J.  Amer.  Ceram.  Soc, 
1922,  5,  488—491. 

Pure  zinc  oxide  was  moistened  with  20%  of  water 
and  pressed  into  small  cylinders  which  were  heated 
for  several  hours  in  a  closed  platinum  box  in  a 
platinum  resistance  furnace  at  1400°  C.  After  cool- 
ing the  cylinders  had  a  sparkling  coarsely 
crystalline  structure,  and  were  probably  identical 
with  the  mineral  zincite.  The  melting  point  was 
above  1800°  C.  The  shrinkage  and  porosity  of  the 
cvlinders  were  determined  after  heating  at  tempera- 
tures differing  by  100°  C.  from  1000°  C.  to  1600°  C. 
The  shrinkage  increased  uniformly  with  rise  of 
temperature,  but  the  porosity  decreased  gradually 
to  a  minimum  at  1350°  C.  and  then  increased  as  the 
temperature  was  raised,  a  result  due  to  the  gradual 
growth  of  large  crystals  at  the  high  temperatures. 
In  the  discussion  E.  W.  Washburn  pointed  out  the 
possible  advantages  of  incorporating  zinc  oxide  in 
a  zinc  retort  body. — H.  S.  H. 

Porosity  of  highly  vitrified  [ceramic]  bodies;  Deter- 
mination  of  the  .        E.   W.   Washburn   and 

E.  N.  Bunting.  J.  Amer.  Ceram.  Soc,  1922,  5, 
527—537. 
The  limits  of  accuracy  of  the  general  laboratory 
research  type  of  porosimeter  (J.,  1922,  176  a,  217  a, 
253  a)  are  discussed  and  the  principles  of  design 
indicated.  A  new  type  of  porosimeter  is  described 
with  which  the  pore  volume  of  any  test  piece  may 
lie  determined  directly  within  001 — 002  c.c.  Tests 
of  eight  pieces  of  electrical  porcelain  gave  porosities 
of  ±0"01%,  results  which  were  confirmed  by  dye- 
penetration  tests.  A  simple  apparatus  for  rapidly 
measuring  the  porosity  of  a  full  size  brick  is  de- 
scribed—H.  S.  H. 

Tunnel  kiln;  The  Harrop .     W.  E.  Cramer.     J. 

Amer.  Ceram.  Soc,  1922,  5,  492—499. 

The  Harrop  car  tunnel  kiln  has  been  used  success- 
fully for  the  firing  of  electrical  porcelains  placed  in 
saggars.  The  kiln  was  operated  at  cones  10,  11,  and 
12,  depending  upon  the  ware  being  fired.  Natural 
gas  was  used  as  fuel,  but  the  kiln  can  also  be  fired 
with  oil  or  coal.  Ware  has  been  fired  through  the 
kiln  in  48  hours.  The  kiln  produces  a  very  uni- 
formly fired  product,  while  the  fuel  and  labour 
charges  and  the  capital  cost  are  considerably  less 
than  for  periodic  kilns  of  the  same  capacity. 

— H.  S.  H. 

Finance;  Xe.ic  type  of  gas-fired  vitreous  enamelling 

■ -.    H.  H.  Clark.    J.  Amer.  Ceram.  Soc,  1922, 

5,  478—487. 

The  furnace  has  a  working  chamber  4  ft.  wide,  3  ft. 


high,  and  10  ft.  long,  and  is  heated  by  5  gas  burners 
on  each  side  supplied  with  town  gas.  It  can  be 
brought  to  the  working  temperature  in  less  than 
an  hour,  and  in  addition  to  being  very  economical 
in  fuel,  labour,  initial  cost,  and  repairs,  it  produces 
ware  with  a  very  high  gloss.— H.  S.  H. 

Silicates;  Adsorption  and  dissolution  of  gases  by 

.    ("  Spit-out.")  B.  Moore  and  J.  W.  Mellor 

Trans.  Ceram.  Soc,  1921-22,  21,  289—316. 

"  Spit-out  "  results  from  the  production  and  burst- 
ing of  bubbles  in  glazes  on  firing  in  the  enamel  kiln 
at  700°— 900°  C.  It  may  be  caused  by  the  sulphur 
dioxide  and  oxygen  set  free  as  a  result  of  the 
diminution  in  the  solubility  of  sulphates  by  an 
increase  in  the  acidity  of  the  glaze  brought  about 
by  dissolution  of  silica  from  the  body  by  the  glaze, 
by  the  volatilisation  of  "  lead  "  from  the  glaze,  or 
by  the  absorption  of  "  lead  "  by  the  body  from  the 
glaze.  A  similar  result  is  produced  by  the  reduction 
of  stable  sulphates  to  unstable  sulphites.  Micro- 
scopical examination  of  numerous  glazes  showed 
that  few  cases  of  "  spit-out  "  were  caused  by  the 
bursting  of  bubbles  which  were  imprisoned  in  the 
glaze  during  glost  firing.  The  absorption  of  hydro- 
carbon gases  by  glazes  when  cooling  in  an  atmo- 
sphere of  coal  gas  was  shown  experimentally.  Large 
amounts  of  hydrocarbon  vapours  are  generated  in 
the  earlier  stages  of  firing  muffles  containing 
ground  laid  ware,  ware  decorated  with  oils,  and 
lithographed  ware.  The  glaze  may  then  become 
charged  with  combustible  gases  which  on  heating 
in  an  oxidising  atmosphere  may  burn  below  the 
surface  of  the  glaze  forming  steam  and  carbon 
dioxide  and  giving  rise  to  local  heating,  which  wili 
soften  the  glaze  locally  and  facilitate  "  spitting." 
A  certain  amount  of  solid  carbon  may  enter  the 
glaze  and  if  its  subsequent  combustion  is  rapid, 
"  spitting  "  will  result.  The  glaze  may  take  up 
abnormal  amounts  of  gas  when  hard  fired  and 
reject  it  in  the  form  of  "  spits  "  in  cooling,  a  result 
which  is  frequently  accompanied  by  devitrification. 
Silicious  glazes  or  glazes  on  highly  silicious  bodies, 
calcareous  glazes,  and  all  glazes  having  a  tendency 
to  devitrification  in  the  enamel  kiln  are  liable  to 
this  defect,  which  is  corrected  by  the  addition  of 
alumina.  It  is  important  that  enamel  kilns  should 
be  well  ventilated,  so  that  oils  distilled  from  the  hot 
ware  are  not  condensed  on  cooler  ware,  but  are 
carried  out  of  the  kiln.  The  inside  of  hollow-ware 
is  frequently  "  spitted  "  when  the  outside  is  good, 
owing  to  the  difficulty  of  renewing  the  atmosphere 
inside  the  ware.  If  organic  matter  in  the  body  has 
been  imperfectly  oxidised  in  the  biscuit  oven,  the 
entry  of  air  into  the  body  in  any  subsequent  firing 
causes  the  combustion  of  the  organic  matter,  and 
the  resulting  products  of  combustion,  heated  by  the 
reaction,  are  forced  through  the  glaze,  causing 
"spitting."  Bad  ventilation  of  the  oven  permits 
hydrocarbons  and  moisture  to  collect  round  the  ware 
and  so  prevent  the  ingress  of  oxygen  until  a  high 
temperature  is  reached,  when  the  carbonaceous 
material  burns  with  violence  and  damages  the  glaze. 
Carbonaceous  matter  may  also  be  absorbed  by  the 
body  in  the  ovens  or  kiln  and  burned  out  at  a  higher 
temperature.  The  rapid  evolution  of  moisture 
absorbed  by  the  body  is  a  frequent  cause  of  "spit- 
ting" and  the  authors  consider  that  the  presence 
of  moisture  or  organic  matter  in  the  body  causes 
80%  of  the  "spitting"  which  occurs  in  the  manu- 
facture of  pottery.  Any  cause  which  favours 
absorption  of  moisture  by  the  biscuit  or  glaze,  and 
abrupt  rises  of  temperature  favouring  an  explosive 
evolution  of  steam  etc.  should  be  avoided. — H.  S.  H. 

Glaze-fit;  Control  of  by  means  of  tensile  test 

specimens.  F.  H.  Riddle  and  J.  S.  Laird.  J- 
Amer.  Ceram.  Soc,  1922,  5,  500—503. 

The  selection  of  a  suitable  glaze  for  a  particular 


Vol.  XLI.,  No.  18.] 


Cl.  vni.— GLASS  ;    CERAMICS. 


illA 


body  by  the  usual  inspection  of  a  field  of  gfaze  trials 
is  not  sufficiently  precise  and  gives  no  indication  of 
slow  crazing  tendencies.  The  effect  of  glazes  on  the 
tensile  strengths  of  electrical  porcelain  test  pieces 
was  determined,  and  it  was  found  that  the  best 
fitting  glazes  increase  the  strength,  while  the  poorer 
ones  decrease  it.  Glazes  which  craze  weaken  the 
specimens  very  markedly  owing  to  the  production 
of  strains  in  the  surface  layer  of  the  porcelain. 

— H.  S.  II. 

Patents. 

Glass  furnace;  Electro-fining  .     TV.  G.  Clark. 

E.P.  161,192,  6.4.21.     Conv.,  6.4.20. 

The  glass  is  maintained  in  the  molten  state  in  a 
vessel  heated  directly  by  gas  or  other  suitable  fuel, 
and  at  the  same  time  an  electric  current  is  passed 
through  the  molten  mass  for  fining  the  glass.  The 
distance  between  the  electrodes  immersed  in  the 
molten  glass  is  gradually  increased  as  the  tempera- 
ture rises,  so  as  to  maintain  a  constant  electrical 
resistance  between  them.  Direct  current  or  alter- 
nating current  of  low  frequency  is  unsuitable  owing 
to  the  tendency  to  decompose  the  oxides  of  the  glass. 
No  such  decomposition  occurs  if  the  frequency  of 
the  alternating  current  is  greater  than  60  cycles. 

— H.  S.  H. 

Glass  furnaces.     J.    S.   Atkinson,   and    Stein   and 
Atkinson,  Ltd.     E.P.   183,373,  26.8.21. 

In  tank  furnaces  fired  by  means  of  horseshoe  or 
side  firing  and  which  may  be  arranged  so  that  the 
flames  have  reverberatory  effect,  the  recuperator, 
fixed  under  the  tank,  is  made  of  special  heat- 
exchanging  blocks  (E.P.  182,075)  which  are  pro- 
vided with  ribbed  internal  passages  increasing  the 

I  area  exposed.  These  blocks  are  built  up  so  that 
the  internal  passages  are  vertical  throughout  the 
length,  and  the  secondary  air  is  drawn  up  through 

,     these  passages.     The  producer  is  built  right  up  to 

;  the  furnace.  The  heat-exchanging  blocks  in  the 
recuperator  are  set  so  as  to  provide  ample  room 
between  them  for  the  passage  of  waste  gases.  In 
the  case  of  the  transversely  fired  type,   the   recu- 

■  perator  is  in  two  parts,  one  under  each  side  of 
the  tank.— A.  C. 

Furnaces;  Glass  and  other  .     C.  S.   Stafford. 

E.P.  183,572,  25.4.21. 
A  waterproofing  material  is  applied  to  the  outer 
face  of  the  furnace  blocks  to  enable  water  cooling 
to  be  applied  without  injury  to  the  blocks  or 
causing  devitrification  of  the  glass  by  penetration 
to  the  inner  surface  of  the  block.  Molten,  metal, 
e.g.,  brass,  or  a  vitreous  enamel  may  be  sprayed 
on  by  any  known  apparatus.  If  necessary  the 
block  may  be  coated  prior  to  assembly  and  the 
joints  faced  over.  An  oxyhydrogen  burner  rather 
than  an  oxyacetylene  one  should  be  used  with  metal, 
as  the  surface  is  then  less  porous.  Means  for  apply- 
ing the  water  and  removing  the  drainage  are 
!  indicated.  A  cement  to  be  applied  before  spraying 
and  which  is  non-shrinking  and  less  porous  than 
the  blocks  is  composed  of  60%  of  grog,  38%  of  fire- 
clay, and  2%  of  sodium  silicate,  ground  very  fine 
and  thoroughly  mixed. — A.  C. 

Moulds;  Metallic  for  forming  glass  articles. 

R.  L.  Frink.     E.P.  183,582,  26.4.21. 

Moulds  with  vascular  or  finely  pitted  surfaces  are 
iwed  which,  when  dipped  in  water  or  other  fluid, 
Tetain  sufficient  to  provide  a  vapour  cushion  when 
the  hot  glass  is  blown  in,  thus  preventing  actual 
contact  of  the  glass  with  the  mould,  resulting  in  a 
finer  polish  on  the  glass  and  less  wear  on  the  mould. 

(Mineral  oil  or  tallow  may  be  used  as  lubricant  under 
special  conditions.       Suitable  alloys  for  the  whole 


mould  or  the  inner  lining  to  provide  the  necessary 
vascular  condition  of  the  surface  are  those  of  copper 
or  aluminium  with  alkaline-earth  metals  or  magne- 
sium, e.g.,  aluminium  alloyed  with  4%  of  calcium 
and  1%  of  barium.  The  pitted  surface  of  the  neces- 
sary character  for  the  particular  type  of  ware  is 
produced  by  treating  with  alkali  hydroxides  for  a 
suitable  period,  and  sometimes  by  "additional  heat 
treatment.  A  "  master  alloy  "  which  can  be  mixed 
with  aluminium  to  give  the  required  properties  is 
given  as  75%  of  aluminium  and  25%  of  barium  or 
calcium.  The  temperature  to  which  it  is  heated 
before  casting  has  a  great  effect  on  the  character- 
istics of  the  product. — A.  C. 

Ceramic  materials,  glass  and  glazing;  Production  of 
— .  Ges.  fiir  Tuff-  und  Ton-Technik  m.b.H. 
E.P.  166,558,  18.7.21.  Conv.,  20.7.20. 
Pumice  tuff  which  has  previously  been  freed 
mechanically  or  chemically  from  extraneous  sub- 
stances is  employed  in  the  production  of  ceramic 
materials,  glass,  and  glazes. — H.  S.  H. 

Gas  producers,  electric  furnaces,  crucible  furnaces, 

and    the    like    [;    Refractory    linings   for   ■ ]. 

Ferolite,  Ltd.,  and  H.  B.  Clapp.     E.P.  183,219, 
15.4.21. 

A  material  suitable  for  resisting  the  action  of  heat 
and  fuel  ash  in  furnaces  is  prepared  by  mixing  1  pt. 
of  chromite  crushed  to  pass  through  a  £  in.  mesh 
with  1  pt.  crushed  to  pass  through  a  ^  in.  mesh. 
About  5%  of  finely  ground  ferrosilicon  containing 
about  70%  Si  is  suspended  in  about  10%  of  a  sodium 
silicate  solution  -and  incorporated  with  this  mixture 
to  give  a  plastic  mass  which  may  be  made  into  bricks 
or  tamped  around  a  core. — H.  Hg. 

Synthetic  jewel  bearing.     T.  G.  McDougal  and  S.  J. 

McDowell,     Assrs.     to     Champion     Ignition     Co. 

U.S.P.  1,422,216,  11.7.22.  Appl.,  14.1.20. 
A  process  of  manufacturing  a  synthetic  jewel  bear- 
ing consists  in  mixing  two  batches  of  ingredients 
which  when  fused  form  glasses  of  high  viscosity,  one 
of  the  batches  having  a  higher  fusing  point  than  the 
other.  A  body  for  the  bearing  is  compressed  from 
the  batch  of  higher  fusion  point,  additional  material 
from  the  other  batch  being  compressed  with  it  to 
form  a  facing.  The  bearing  is  then  fused  while 
supported  on  powdered  material  to  which  it  will  not 
adhere  when  fused,  and  is  subsequently  annealed. 

— H.  S.  H. 

Zinc  retorts  and  other  refractory  shapes;  Making 

of .    W.  F.  Rossman,  Assr.  to  American  Zinc, 

Lead,  and  Smelting  Co.  U.S.P.  1,424,120,  25.7.22. 
Appl.,  16.5.21. 

A  refractory  material  for  zinc  retorts  and  the  like 
consists  of  plastic  clay  mixed  with  finely  ground 
silica  and  ground  grog  in  about  equal  proportions. 

—A.  R.  P. 

Kiln;  Continuous  chamber for  burning  ceramic 

wares,  lime,  dolomite,  etc.     H.  Koppers.     G.P. 

349,951,  22.8.19. 

A  continuous  chamber  kiln  is  provided  with  flues 
leading  from  the  top  of  one  chamber  to  the  sole 
of  the  next,  to  supply  cold  air,  with  trace  holes 
through  which  the  hot  gases  pass  from  the  sole  of 
one  chamber  to  that  of  another,  and  with  sand 
ducts  for  sealing  the  trace  holes  with  sand.  Any 
surplus  hot  air  gives  up  its  heat  to  a  regenerator, 
which  is  then  used  for  warming  the  gases  which 
have  been  previously  cooled  to  facilitate  purifica- 
tion. In  burning  lime,  dolomite,  etc.,  the  waste 
gases  are  used  to  preheat  the  freshly-set  chambers 
and  the  incoming  heating  gases,  the  air  supply 
being  preheated  bv  the  hot  calcined  material. 

—A.  B.  S. 


712  a 


Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS  ;  METALLURGY,  &c.     fScpt.  30, 1922 


Kiln;    Continuous    down-draught     chamber    . 

A.  W.  F.  Weyers.     G.P.  349,952,  22.4.20. 

A  continuous  down-draught  chamber  kiln  has  a 
series  of  gas  producers  in  each  of  the  partition 
walls  between  the  chambers  and  the  air  or  mixture 
of  air  and  hot  gases  is  supplied  in  part  to  the  grate 
of  the  producer,  and  in  part  upwards  around  the 
walls  of  the  producers.  The  gas-producers  and  air- 
flues  are  arranged  alternately  across  the  kiln.  In 
the  lower  part  of  each  producer  are  poke  holes, 
so  that  air  may  be  freely  admitted  through  these 
holes,  or  the  production  of  gas  may  be  regulated 
by  closing  the  holes  with  ashes ;  this  arrangement 
permits  adequate  regulation  of  the  temperature 
without  the  use  of  dampers. — A.  B.  S. 

Sheet  glass;  Method,  of  and  apparatus  (or  drawing 

■ .       W.     J.     Mellersh-Jackson.       From     The 

Libbey    Owens    Sheet    Glass    Co.      E.P.   184,053, 
28.7.21. 

Kiln;  Tunnel .     A.  McD.  Duckham  and  A.  T 

Kent.     U.S. P.  1,424,560,  1.8.22.     Appl.,  27.2.22. 
See  E.P.  177,561  of  1920;  J.,  1922,  417  a. 


IX.-BUILDING  MATEBIALS. 

Patents. 
Wood;  Process  for  the  artificial  maturing  or  season- 
ing of .     G.  F.  Lyon.     E.P.  182,504,  2.2.21. 

The  wood  is  first  subjected  to  a  pressure  a  little 
lower  than  atmospheric  in  an  autoclave  and  is 
subsequently  treated  with  dry  ozonised  air  for  a 
suitable  period,  the  process  being  repeated  until  the 
required  effect  is  obtained. — H.  S.  H. 

Fire-proofing  and/or  waterproofing  treatment  of 
materials  [wood  etc.].  A.  Arent.  E.P.  164,730, 
23.5.21.     Conv.,  9.6.20.     Addn.  to  132,813. 

See  U.S. P.  1,418,610  of  1922;  J.,  1922,  548  a. 
Waterproofing  agents,  such  as  rubber,  varnish 
gums,  drying  oils,  and  the  like,  may  be  added  to 
the  solution  of  antimony  trichloride  in  benzol. 

Kiln.     G.P.  349,951.    See  VIII. 

Calcining  marble  etc.    G.P.  351,352.     See  X. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Blast-furnace  practice;  The  bases  of  modern  . 

A.  K.  Reese.     Iron  and  Steel  Inst.,  Sept.,  1922, 
[Advance  proof.]     35  pages. 

A  description  of  the  bases  of  modern  blast-furnace 
practice  under  the  headings:  preparation  of 
materials ;  furnace  design ;  auxiliary  equipment ; 
method  of  operation.  An  essential  feature  of  the 
modern  method  of  operation  is  the  supply  of  a 
uniform  volume  of  blast  irrespective  of  furnace 
pressure  or  resistance. 

Cast  iron;    Growth,  of  grey during  repeated 

heatings  and   coolings.      T.   Kikuta.      Sci.    Rep. 
Tohoku  Imp.  Univ.,  1922,  11,  1—17. 

The  rate  of  leakage  of  air  into  a  hollow  cylinder  of 
grey  cast  iron  heated  repeatedly  to  a  temperature 
of  910°— 960°  C,  increased  up  to  60  heatings  and 
afterwards  decreased.  For  less  than  20  heatings 
the  leakage  rate  was  nearly  constant  with  rising 
temperature  up  to  900°  0. ;  with  more  than  34 
heatings  the  rate  first  decreased  and  afterwards 
increased  with  rising  temperature.    It  is  improbable 


that  growth  during  repeated  heating  and  cooling 
through  the  Al  range  is  caused  by  the  pressure  of 
occluded  gases,  though  at  higher  temperatures  this 
may  be  the  cause.  From  measurements  of  the 
density  of  specimens  after  different  heat  treatments 
and  of  thermal  dilatation  during  continuous  heat- 
ings and  coolings,  the  following  explanation  of  the 
growth  of  grey  cast  iron  is  given.  During  the  first 
heating  through  700°— 800°  C,  growth  is  partly 
due  to  the  decomposition  of  cementite.  During 
repeated  heating  and  cooling  through  the  Al  range 
in  vacuo,  growth  ensues  from  the  formation  of 
numerous  fissures  in  the  neighbourhood  of  graphite 
flakes,  due  to  differential  expansion  of  different 
micro-portions  of  the  metal.  Under  oxidising  con- 
ditions oxides  are  formed  and  fill  the  fissures  during 
the  Arl  transformation,  thus  accelerating  the 
growth.  The  effect  of  the  oxidation  is  therefore 
only  indirect.  The  growth  of  white  cast  iron  is 
almost  completed  during  the  first  heating  to  S00°  C, 
being  due  to  the  extent  of  about  one-third  to  the 
decomposition  of  cementite  and  to  the  extent  of 
about  two-thirds  to  the  minute  fissures  caused  by 
irreversible  expansion  of  different  micro-portions. 

— T.  H.  Bu. 

Cast  iron;  Influence  of  cross-sectional  area  of  the 
test-piece  on  [the  results  obtained  for]  the.  tensilt 

and  bending  strength  of .     P.  Oberhoffer  and 

W.   Poensgen.     Stahl  u.   Eisen,  1922,  42,  1189— 
1192. 

Determinations  of  the  bending  and  tensile 
strengths  of  test-pieces  of  cast-iron  of  different 
diameters  cut  from  the  same  casting  gave  figures 
that  increased  rapidly  to  a  constant  value  when  the 
diameter  of  the  test-piece  exceeded  20 — 25  mm. 
The  results  are  discussed  from  the  point  of  view  of 
the  distribution  of  the  graphite  inclusions  and  the 
phosphide  network  in  the  structure  of  the  metal. 

—A.  R.  P. 

Boiler  plate  after  cold  work  or  work  at  blue  heat. 
H.  J.  French.  Chem.  and  Met,  Eng.,  1921,  24, 
211—216. 

Mechanical  tests  on  fire-box  plate  which  had  been 
reduced  6'25%  and  12'5%  respectively  by  light 
rolling  at  295°  C.  showed  that  the  increase  in 
strength  of  the  metal  was  about  twice  that  produced 
by  similar  cold  reduction.  Above  this  temperature 
the  increase  due  to  blue  deformation  was  somewhat 
less  than  from  cold  rolling.  The  maximum  strength 
of  the  steel  subjected  to  6'25%  reduction  was 
obtained  at  295°  C,  the  strength-temperature  curve 
being  similar  to  that  of  cold-worked  steel.  The  pro- 
portional limit  resulting  from  blue  strain  (6'25jj 
reduction)  was  greater  than  that  obtained  from  a 
cold  reduction  twice  as  great.  Elongation  and  re- 
duction in  area  decreased  to  a  minimum  at  about 
200°  C,  and  increased  to  high  values  at  460°  C, 
with  a  marked  increase  between  295°  and  410°  C. 
Annealing  for  30  mins.  at  700°  C.  completely  re- 
moved the  effect  of  blue  deformation.  The  general 
form  of  curves  showing  tensile  strength  in  a  trans- 
verse direction  was  similar  to  those  for  longitudinal 
tests,  but  the  limit  of  proportionality  did  not 
increase  with  the  first  rise  in  temperature  in  the 
transverse  test  specimens.  Repeated  overstrain  at 
blue  heat  whether  at  constant  or  increasing  load;, 
raised  the  apparent  limit  of  proportionality,  which 
in  one  case  increased  from  15,000  to  56,000  lb.  per 
sq.  in.  Such  deformation  did  not,  however,  appear 
to  modify  other  mechanical  properties  when  the 
specimen  was  broken  finally.  Heating  steel  over- 
strained at  blue  heat,  to  above  the  Acl  point,  or 
allowing  a  period  of  rest,  restored  the  apparent 
elasticity  of  the  metal  at  ordinary  temperature. 
The  increased  strength  of  steel  due  to  blue  deforma- 
tion was  not  a  skin  or  surface  effect. — C.  A.  K. 


VoL  m,  No.  18.]   Cl.  X.— METALS ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.        713  a 


Carbon     tool    steels;    Black     fractures    in    . 

A.   W.  F.   Green.     Chem.   and  Met.   Eng.,  1922, 
27,  25&— 267. 

Certain  ingots  of  a  hyper-eutectoid  tool  steel  made 
by  the  crucible  process  to  the  following  composition, 
1-16%  C,  0;30%  Mn,  0-024%  P,  and  0'25%  Si,  showed 
on  fracturing  a  considerable  black  area  usually  con- 
centric with  the  contour  of  the  ingot  and  contain- 
ing a  small  white  area  of  the  same  shape  in  the 
middle.  These  formations  were  noticed  only  after 
the  steel  had  been  annealed  to  cause  the  cementite 
to  assume  a  spheroidal  form,  i.e.,  at  a  temperature 
just  below  the  Ac  1,  2,  3,  range.  Chemical  analysis 
of  black  and  white  parts  gave  identical  figures,  but 
the  Brinell  hardness  of  the  black  part  was  only  95 
as  compared  with  170  for  the  white  part.  Further 
annealing  of  the  material  at  a  low  temperature 
caused  the  formation  of  further  black  areas,  while 
quenching  from  770°  C.  had  the  same  hardening 
effect  in  both  black  and  white  areas.  Photomicro- 
graphs and  a  heating  and  cooling  curve  are  given. 

—A.  R.  P. 

Chromium  steels;  Resistance  to  corrosion  of  various 

types    of    .      H.     S.     Rawdon    and    A.    I. 

Krynitsky.  Chem.  and  Met.  Eng.,  1922,  27, 
171—173. 
Details  are  given  of  the  corrosion  effects  produced 
in  samples  of  chromium-  and  nickel-steels  when 
exposed  to  the  action  of  dilute  hydrochloric  acid, 
and  when  submitted  to  a  weathering  test  consisting 
in  immersing  the  steel  in  distilled  water  just  below 
the  surface  and  exposing  to  the  atmosphere. 
Pure  iron  and  steels  of  low  chromium  content  were 
much  more  resistant  to  hydrochloric  acid  than  those 
of  high  chromium  content.  In  the  weathering  test 
the  general  order  of  resistance  to  corrosion  was 
reversed.  Hardened  samples  were  considerably 
more  resistant  to  acid  attack  and  to  weathering 
than  annealed  samples.  Steels  containing  consider- 
able nickel  were  most  resistant  to  acid  attack. 
Steels  of  high  chromium  content  showed  the  least 
corrosion  effects  in  the  weathering  test,  while  steels 
of  low  chromium  content  were  more  resistant  than 
carbon  steel  or  pure  iron.  Adhering  patches  of 
oxide  had  a  marked  effect  in  accelerating  the  cor- 
rosion due  to  weathering.  A  steel  containing  a 
!  high  nickel  and  chromium  content  (20' 12%  Ni, 
I  7*68%  Cr)  was  least  attacked  by  acid  and  was  very 
resistant  to  atmospheric  corrosion.— J.  S.  G.  T. 

Gold  precipitation  by  zinc  dust  in  conjunction  with 
de-aeration  of  solution  at  Modderfontein  B 
[Transvaal'].  S.  Newton  and  L.  L.  Fewster. 
J.  Chem.  Met.  Soc.  S.  Afr.,  1922,  22,  249—257. 

The  cyanide  solution  from  the  leaching  tanks  is 
passed  through  three  clarifiers  in  parallel  and  the 
clear  liquid  is  then  pumped  into  precipitating  tanks 
where  a  uniform  feed  of  90-mesh  zinc  dust  is 
mechanically  sprinkled  into  the  solution.  The 
;  whdle  is  then  pumped  through  precipitation  presses 
where  the  whole  of  the  solution  at  some  period 
comes  into  contact  with  layers  of  fine-grained  pre- 
cipitant, thus  ensuring  complete  removal  of  the  gold. 
The  effluent  from  the  presses,  containing  0'02  dwt. 
of  gold  per  ton,  is  used  for  washing  the  sands  after 
'  leaching.  The  press-cake  is  cleaned  with  acid, 
smelted  in  Tavener  furnaces  and  the  product  is 
cupelled.  To  obtain  the  best  results  in  the  precipi- 
tation process  with  the  minimum  zinc  consumption 
'it  was  found  necessary  to  de-aerate  the  solution  by 
passing  it  through  a  vessel  where  it  is  subjected 
to  a  vacuum  of  22  in.  In  this  case  the  zinc  con- 
sumption is  so  reduced  that  the  gold  is  precipitated 
!in  a  slimy  state,  so  that  it  was  found  necessary  to 
add  a  filtering  medium  such  as  coke,  sawdust,  or 
kieselguhr,  whereby  a  sufficiently  "  dry  "  cake  for 
handling  was  obtained.  Lead  nitrate  solution  is 
added  to  the  liquor  from  the  clarifiers  to  assist  in 


collecting  the  gold ;  added  in  this  way  less  zinc  is 
required  than  by  the  older  method  of  allowing  lead 
nitrate  solution  to  drip  continuously  into  the  pre- 
cipitating tank. — A.  R.  P. 

Silver;  Density  of  molten  .     R.  Hoffmann  and 

W.  Stahl.  Metall  u.  Erz,  1922,  19,  357—358. 
The  average  coefficient  of  expansion  of  silver  be- 
tween t,°  C.  and  t2°  C,  the  latter  temperature 
being  above  the  melting  point,  is  given  by  the  equa- 
tion K  =  (V2-V1)/(V1t,-V2t1)  where  V,  and  V2  are 
the  volumes  of  the  same  mass  of  silver  at  t,0  and 
t2°  C.  respectively.  Using  this  relation  and  repre- 
senting the  specific  gravity  of  silver  at  t,°  and  t2° 
C.  respectively  by  S!  and  S2,  the  specific  gravity  of 
molten  silver  at  any  temperature  may  be  calculated 
by  means  of  the  equation  S,  =  S,(l-f Kt,)/(1+Kt,). 
The  values  as  obtained  for  1000°,  1025°,  and  1050° 
C.  are  9-653,  9633,  and  9-613  respectively. 

—A.  R.  P. 

Ferro-tita nium;  Rapid  [method  for  the]  complete 

analysis  of .     C.  Grandjean.     Chim.  et  Ind., 

1922,  8,  46. 

One  gram  of  the  powdered  alloy  is  roasted  for  15 
min.  and  the  product  is  fused  with  25 — 30  g.  of 
sodium  carbonate  in  a  nickel  crucible.  The  melt  is 
extracted  with  water,  the  insoluble  residue  collected 
on  a  filter  and  well  washed  with  dilute  sodium 
carbonate  solution.  The  filtrate  is  used  for  the 
determination  of  silicon  and  aluminium,  and  the 
residue  is  dissolved  in  hydrochloric  acid.  The  solu- 
tion is  treated  with  ammonia  until  a  small  white 
precipitate  just  fails  to  redissolve,  then  boiled  with 
50  c.c.  of  sulphur  dioxide  solution  for  15  min.  to 
precipitate  the  titania,  which  is  filtered  off,  ignited, 
and  weighed  at  TiO,.  It  must  be  tested  for  iron 
by  ammonium  sulphide  in  ammoniacal  tartrate 
solution  and  a  correction  applied  corresponding  to 
the  amount  of  iron  found.  The  filtrate  from  the 
titania  is  used  for  the  determination  of  iron,  man- 
ganese, calcium,  and  magnesium  by  the  usual 
methods. — A.  R.  P. 

Copper;  Study  of  the  "  hydrogen  sickness  "  of . 

O.  Bauer  and  Vollenbruck.     Z.   Metallk.,   1922, 
14,  296—299. 

In  rolling  cast  copper  bars  into  sheets  it  is  usual  to 
heat  them  to  the  rolling  temperature  by  causing  a 
gas  flame  to  play  on  the  upper  surface  of  the  bar. 
In  the  case  of  bars  containing  cuprous  oxide  cracks 
and  fissures  often  develop  during  the  subsequent 
rolling  and  it  is  shown  that  the  cause  of  these 
cracks  is  most  probably  the  reduction  of  the  cuprous 
oxide  to  metallic  copper  by  the  hydrogen  in  the  ga6 
with  the  simultaneous  formation  of  steam  in  the 
metal  under  considerable  pressure,  this  steam  forc- 
ing its  way  out  and  producing  a  crack.  During  the 
rolling  this  crack  becomes  filled  with  fresh  quanti- 
ties of  cuprous  oxide  and  further  failure  of  the 
metal  results.  It  was  found  that  if  the  metal  was 
annealed  in  an  atmosphere  free  from  hydrogen 
before  rolling,  no  trouble  was  experienced  in  work- 
ing it.— A.  R.  P. 

Copper;  Corrosion  of  by  salt  solutions.     W. 

Miiller.  Z.  Metallk.,  1922,  14,  286—295. 
The  corrosive  action  of  sea  water  and  of  its  con- 
tained salts,  sodium  chloride,  magnesium  sulphate, 
magnesium  chloride,  and  calcium  sulphate,  on 
annealed  copper  and  on  copper  that  has  been 
subjected  to  different  degrees  of  rolling,  was  studied 
over  considerable  periods  and  with  differing 
strengths  of  solution,  and  the  results  are  reproduced 
in  a  series  of  tables  and  graphs.  The  general  effect 
of  the  chlorides  is  much  more  marked  than  that  of 
the  sulphates;  sodium  chloride  is  the  most  active 
corroding  agent,  causing  after  48  hrs.   a  consider- 


714  a  Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       [Sept.  30, 1922. 


able  deposit  of  basic  copper  chloride  which  is  readily 
detached  and  so  does  not  protect  the  metal  from 
further  attack.  The  resistance  to  corrosion  by 
sodium  chloride  is  decreased  by  rolling  the  metal, 
but  rolling  increases  the  resistance  towards  sea 
water,  magnesium  sulphate,  and  magnesium  chlor- 
ide.—A.  R.  P. 

■lluminium;     Solubility     of     gases     in    ■ .       J. 

Czochralski.     Z.  Metallk.,  1922,  14,  277—285. 

Molten  aluminium  does  not  begin  to  dissolve  any 
of  the  common  gases  until  about  900°  C,  but  at 
higher  temperatures  considerable  amounts  may  be 
dissolved,  and  retained  in  the  form  of  minute  blow- 
holes in  the  solid  metal.  The  following  table  shows 
the  amount  of  gas,  in  volumes  per  cent.,  dissolved 
at  the  high  temperature  and  retained  by  the  solid 
metal  at  ordinary  temperatures  :  — 


1*0      N2 

Os 

Air 

CO 

C02 

802 

H, 

Town  gas 

1200     0-4 

2-5 

1-3 

1-3 

2-5 

6-4 

6-5 

5-5 

[1500     3 

12 

6 

8 

12 

7 

15 

12-5 

In  the  case  of  the  first  six  gases  very  small  amounts 
of  the  absorbed  gases  combine  with  the  metal  with 
formation  of  aluminium  nitride  (A1N),  oxide, 
carbide  (A13C4)  or  sulphide,  and  the  metal  structure 
shows  characteristic  inclusions  of  these  constituents. 
The  mechanical  properties  of  the  metal  after  treat- 
ment with  any  of  the  above  gases  showed  practically 
no  change,  but  in  all  cases  blisters  and  splitting  of 
the  edges  occurred  during  rolling.  The  most  suit- 
able temperature  for  rolling  metal  containing  many 
gas-pores  was  found  to  be  between  300°  and  350°  C. 

—A.  R.  P. 

Aluminium  and  alumina;   Determination  of  small 

quantities  of  sodium  in .    R.  Geith.    Chem.- 

Zeit.,  1922,  46,  745. 

Aluminium  cannot  be  separated  completely  from 
sodium  salts  by  precipitation  with  ammonia,  as  a 
little  alumina  invariably  remains  dissolved,  pro- 
bably in  a  colloidal  form.  The  following  electrolytic 
method  gives  good  results :  2  g.  of  the  metal  is  dis- 
solved in  a  minimum  of  hydrochloric  acid  and  any 
silica  and  copper  removed  by  nitration.  The  clear 
liquor  is  transferred  to  a  bottomless  cylindrical 
vessel  floating  in  a  tray  of  mercury  at  the  bottom 
of  a  glass  trough  which  is  filled  with  dilute,  neutrail 
sodium  chloride  solution  to  about  3  of  the  height  of 
the  vessel  containing  the  assay.  A  carbon  anode  is 
suspended  in  the  assay  solution  and  a  current  of 
015  amp.  at  3'5  volts  is  passed  between  the  carbon 
and  the  mercury  for  2—3  hrs.,  whereby  all  the 
sodium  is  deposited  in  the  mercury  as  amalgam  and 
passes  out  of  the  cell,  the  sodium  dissolving  in  the 
weak  salt  liquor  as  sodium  hydroxide  which  may  be 
determined  volumetrically.  Four  nickel  wires  are 
suspended  in  the  mercury  outside  the  cell,  forming 
a  couple,  which  ensures  rapid  solution  of  the  sodium 
in  the  chloride  liquor,  and  the  gases  evolved  from 
the  electrolysis  are  removed  by  suction  as  fast  as 
they  are  formed.  The  determination  of  sodium  salts 
in  alumina,  such  as  that  prepared  for  the  manufac- 
ture of  aluminium,  is  effected  by  evaporating  1  g. 
of  the  material  2  or  3  times  to  dryness  with  sul- 
phuric acid,  extracting  the  residue  with  water  and 
electrolysing  the  filtered  extract  with  0'2 — 0'3  amp. 
at  4 — 5  volts,  using  a  platinum  anode. — A.  R.  P. 

Tin  ;  Simple  and  rapid  estimation  of in  bearing 

metal   and  like   alloys.     J.   Nagel.     Chem.-Zeit., 
1922,  46,  698. 

From  0"5  to  TO  g.  of  the  alloy  is  introduced  as 
filings  into  a  300  c.c.  titration  flask  covered  with  a 
watch-glass,  together  with  23  g.  of  potassium 
chlorate  aud  100 — 150  c.c.  of  concentrated  hydro- 
chloric acid,  and  heated  as  long  as  chlorine  is 
evolved.  The  solution  is  then  diluted  with  30  c.c. 
of  distilled  water,   and  5 — 7  e.  of  sodium  chloride 


added  to  raise  the  boiling  point.  A  nickel  plate 
about  3  mm.  thick  and  10  sq.  cm.  area,  bent  into  the 
form  of  a  ring,  is  then  placed  in  the  liquid  and  the 
flask  heated  for  about  1  hr.  Stannic  chloride  is 
reduced  to  stannous  chloride,  whilst  antimony  is  pre- 
cipitated in  flakes  upon  the  nickel.  The  liquid  is 
then  boiled  to  expel  air  and  a  current  of  carbon 
dioxide  passed  through  it  while  cooling.  The 
stannous  chloride  is  then  titrated  with  iodine.  The 
method  is  accurate  in  presence  of  antimony,  copper, 
and  lead. — C.  I. 

Strontium-lead   alloys:    Constitutional   diagram   of 

.      E.    Piwowarsky.      Z.    Metallk.,    1922,    14, 

300—301. 

Lead  and  strontium  are  practically  immiscible  in 
the  solid  state.  The  compound,  PbsSr,  containing 
12"35%  Sr  melts  at  676°  C,  and  alloys  containing 
less  strontium  begin  to  deposit  crystals  of  this  com- 
pound at  progressively  lower  temperatures  situated 
on  a  parabolic  curve  convex  to  the  axis  of  tempera- 
ture. In  all  the  alloys  a  break  occurs  in  the  cooling 
curve  at  327°  C,  indicating  the  presence  of  a 
eutectic.  Alloys  containing  less  than  12'35%  Sr 
show  dendritic  masses  of  cubo-oetahedral  crystals  of 
the  compound  disseminated  throughout  a  ground 
mass  of  pure  lead. — A.  R.  P. 

Metals;   Determination   of   gases  in  .     H.  L. 

Simons.     Chem.   and  Met.  Eng.,  1922,  27,  248— 
249. 

The  metal  is  dissolved  in  mercury  and  the  evolved 
gases  are  collected  first  in  a  Geissler  tube  for  spec- 
troscopic examination,  then  in  the  usual  gas 
apparatus  for  quantitative  analysis.  The  apparatus 
consists  of  a  dissolving  flask  connected  with  a 
Liebig  condenser  by  means  of  a  ground  glass 
stopper,  the  upper  end  of  the  condenser  being  bent 
at  right  angles  and  closed  with  a  stopcock.  Be- 
tween this  and  the  Toepler  pump  a  three-way  stop- 
cock is  introduced  connecting  also  with  a  source  of 
pure  dry  oxygen.  Between  the  two  stopcocks  a 
T-tube  connects  with  the  Geissler  apparatus  and 
between  the  condenser  and  the  dissolving  flask  a 
second  T-tube  connects  with  the  mercury  reservoir. 
The  apparatus  is  first  exhausted,  then  filled  with 
oxygen  and  again  exhausted.  Oxygen  is  once  more 
admitted,  the  sample  placed  in  the  flask  and  all  the 
joints  closed  with  mercury  seals.  After  again  ex- 
hausting till  a  spark  refuses  to  pass  in  the  Geissler 
tube,  the  mercury  is  allowed  to  run  on  to  the  metal 
and  heated  until  the  sample  dissolves.  After  cool- 
ing, the  stopcock  above  the  condenser  is  opened  and 
the  evolved  gas  examined  in  the  Geissler  tube,  then 
transferred  to  the  ordinary  gas-analysis  apparatus. 

—A.  R.  P. 

Gas  producers  and  blast-furnace  practice.     Kore- 
vaar.     See  Ha. 

Ferrosilicon  formation   in   carbide  works.      Hackl. 
See  VII. 

Eeversible  expansion  of  silica.     Houldsworth  and 
Cobb.    See  VIII. 

Patents. 

Steel;  Process  for  the   production   of   basic  — — . 

Usines    Metallurgiques    de    la    Basse-Loire    (Soc. 

Anon.).  E.P.  163,693,  2S.4.21.  Conv.,  18.5.20. 
Pig  iron  containing  more  than  the  normal  quantity 
of  silicon  is  introduced  into  a  converter  which 
already  contains  a  highly  oxidised  ferruginous  Blag 
together  with  all  the  lime  required  for  the  final 
operation.  The  slag  bath  oxidises  the  silicon 
immediately  the  molten  iron  is  added,  and  undue 
projection  during  blowing  is  prevented. — C.  A.  K. 


Vol.  XLI.,  No.  18.)     Cl.  X.— METALS;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       715  a 


[Zron]  ores;  Process  of  reducing  .     Trent  Pro- 
cess Corp.    Assees.  of  W.  E.  Trent.    E.P.  169,950 
13.4.21.    Conv.,  4.10.20.  ' 

Ikon-  ore  is  ground  with  coal  and  the  mixture  heated 
to  300° — 400°  C.  to  obtain  the  maximum  vield  of 
oils  and  partially  reduce  the  iron  oxide  to*  a  com- 
pound which  ifi  magnetic  or  to  metal.  The  material 
is  then  subjected  to  magnetic  separation  to  remove 
the  iron-bearing  material  in  substantially  pure 
form.  The  non-magnetic  portion  is  mixed  with 
water  and  part  of  the  oil  obtained  in  the  first  step 
to  separate  the  carbonaceous  material  from  the 
gangue  constituents  of  the  ore,  and  the  resulting 
oily  mass  of  carbon  is  mixed  with  the  magnetic 
material  and  the  mixture  is  smelted  to  give  pure 
iron  or,  if  desired,  steeil. — A.  R.  P. 

Steels  and  the  like;  Annealing  and  liardening  high 

and  low  carbon .    F.  J.  Parr.  J.  Mawer,  and 

AY.  Painton.     E.P.  1S2,825,  3.1.21. 
Steel  is.  embedded  in  a  material  which  is  produced 
by  artificially  drying  plants  of  the   pea   and  bean 
varieties,    and    adding    powdered   charcoal,    and    is 
then  annealed  or  hardened  as  usual. — C.  A.  K. 

Iron  or  steel  surfaces:  Treatment  for  obviating  the 

rusting  or  oxidation   of .     W.   B.  Brunskill. 

E.P.  182,988,  10.5.21. 
Iron  or  steel  is  treated  with  a  boiling  solution  of 
zinc  di-hydrogen  orthophosphate  (about  1%),  the 
article  being  in  contact  with  metallic  zinc  and 
placed  on  a  zinc  support.  Zinc  dust  may  be  added 
to  the  solution  to  give  many  points  of  contact.     A 

I  hard  grey  coating  of  zinc  is  deposited  on  the  metal 
with  a  minimum  quantity  of  iron  phosphate,  and 
the  colour  of  the  coating  is  not  altered  when  the 
deposit  is  permeated  by  oil.  The  preparation  of 
the  solution  is  described  in  E.P.  169,884  (J.,  1921, 

,    854  a).— C.  A.  K. 

|    (a)  Iron;  Treating  ore  to  produce  pure .     (b,  c) 

Process   of   extracting    iron  from   its   ores.        (d) 
Process    of    extracting    >n<  hih    from    their    ores. 
A.   J.    Moxham.     U.S. P.    1.420,127—30,    20.6.22. 
Appl.,  (a)  8.1.19,  (b,  c)  5.4.19,   (d)  2.11.18.     (d) 
Renewed  13.12.21. 
I    (a)  Oxide  of  iron  present  in  the  ore  is  reduced  and 
I   the    iron     is    purified     by    electrolysis    while    the 
j   reduced  material  is  in  the  form  of  fine  particles  in 
I   good  conductive  contact  with   each  other,     (b)  An 
j   iron  solution  is  subjected  to  electrolysis  to  separate 
I   the  iron,  the  acid  set  free  being  caused  to  combine 
I   with    a    base    other    than    iron,    by    which    means 
re-solution   of   the   iron   is   prevented,     (c)  Iron   is 
dissolved    from    its    ore    with    hydrochloric    acid. 
Sulphuric    acid    is    added,    setting   free   the   hydro- 
chloric acid  for  re-use  and  forming  iron  sulpnate, 
from  which   the   iron   is   separated  by   electrolysis. 
(n)  A  metallic  constituent  (iron)  is  dissolved  from 
ore  and  the  gangue  separated  from  the  solution, 
which   is  subjected  to  electrolysis   to  separate  the 
>  pure  metal.— T.  H.  Bu. 

St,il;  Manufacture    of  open-hearth   .     H.   C. 

Rvding   and    A.    W.    Allen.        U.S. P.    1,423,031, 

18.7.22.  Appl.,  6.7.17. 
A  complete  charge  of  molten  blown  metal  is  intro- 
duced into  a  bath  of  highly  heated  complete 
oxidising  slag  containing  lime  in  an  open-hearth 
furnace.  An  entirely  new  slag  is  used  for  each 
i  heat  of  metal. — C.  A.  K. 

SUicon-manganese-chrome  steel:  Method  of  produc- 
ing   .     G.  Gufstafson,  A.  A.  Jungmarker,  and 

K.  A.  Casperssou.  U.S. P.  1,423,847,  25.7.22. 
Appl.,  17.3.21. 
A  charge  of  molten  basic  open-hearth  steel  is 
treated  successively  with  ferromanganese  and  a 
previously  melted  decarburised  allov  of  ferrochrome 
and  ferrosilicon.— C.  A.  K. 


[Zron.;]  Process  and  apparatus  for  the  operation  of 

cupola  furnaces  [for  smelting "1.    H.  Koppers 

G.P.  348,384,  29.3.19.  Addn.  to  341.637.  (Cf 
U.S.P.  1,357,781;  J.,  1921,  16  a,  and  G.P. 
343,944;  J.,  1922,470  a.) 
The  molten  iron  and  slag  are  allowed  to  flow  away 
slowly  from  the  furnace  so  that  the  surface  of  the 
slag  is  maintained  in  the  neighbourhood  of  the 
tuyeres,  w-hereby  the  carbon  that  is  dipping  in  the 
slag  attains  a  very  high  temperature,  rapidly 
reduces  the  oxides  therein  and  causes  the  sulphur 
to  combine  readily  with  the  lime  to  form  calcium 
sulphide;  owing  to  the  low  wind  pressure  in  the 
cupola,  the  slag  readily  flows  away  while  a  simul- 
taneous evolution  of  a  part  of  the  contained  gases 
takes  place.  The  collecting  tank  furnace  for  the 
molten  iron  is  provided  with  a  regenerator  whicl 
is  heated  by  means  of  the  gases  evolved  through 
the  slag  overflow.  In  this  way  the  metal  is  raised 
to  such  a  temperature  as  to  allow  of  the  necessary 
additions  of  alloying  elements  according  to  the  use 
to  which  the  metal  is  to  be  put. — A.  R.  P. 

Iron:    Process   for    making   capable    of   being 

hardened.  R.  Walter.  G.P.  353,623,  6.11.18. 
Soft  or  cast  iron  is  rendered  capable  of  being 
hardened  by  the  addition  of  small  quantities  of 
boron;  the  effect  is  noticeable  with  0001%  B. 
Boron  increases  the  mechanical  strength  and  causes 
a  decrease  in  the  grain  size  of  the  metal. — A.  R.  P. 

Refractory    oxides;    Method    of    producing     high 

temperatures  for  reducing  .    A.  Pacz.     E.P. 

160,427,  18.3.21.     Conv.,  19.3.20. 

An  alloy  of  the  rare  earth  elements  and  aluminium 
is  produced  by  reducing  the  double  sodium  fluoride 
of  the  rare  earth  element  with  aluminium  over  a 
bath  of  molten  aluminium  according  to  E.P 
160,426  (J.,  1922,  637  a).  The  resulting  alloys  are 
broken  up  and  used  instead  of  aluminium  in  the 
alumino-thermic  reduction  of  refractory  oxides, 
such  as  those  of  zirconium  or  boron.  The  tempera- 
ture of  the  reaction  is  much  greater  than  when 
aluminium  alone  is  used  and  good  yields  of  alloys 
with  a  high  content  of  the  refractory  element  are 
obtained. — A.  R.  P. 

Furnace;    Open    hearth   .      Miami   Metals   Co. 

Assees.  of  G.  L.  Danforth.    E.P.  182,399.  7.12.21. 
Conv.,  26.9.21. 

Ix  a  reversible  open-hearth  furnace  dampers  are 
introduced  between  the  air  and  fuel  ports  and  the 
iurnace  chamber  which  enable  the  effective  passage 
area  between  the  ports  and  the  melting  chamber 
to  be  varied.  The  air  ports  are  situated  on  each 
side  of  the  fuel  port,  so  that  the  air  streams  are 
directed  by  the  dampers  towards  the  central  fuel 
stream.  The  dampers  are  removable  from  the  out- 
going end  of  the  furnace,  and  may  be  introduced 
through  the  furnace  roof  or  laterally  from  each 
side.— T.  H.  Bu. 

Blast    furnaces   and    the    like;   Process  for   sealing 

cracks    in    the    linings    of    .     T.     Kennan. 

U.S.P.  1,423,332,  18.7.22.     Appl.,  14.1.22. 

The  stock  level  in  the  furnace  is  raised  above  the 
level  of  the  crack  and  a  flow  of  air  is  concentrated 
in  the  material  adjacent  to  the  crack  so  that  flux- 
ing occurs  and  molten  material  enters  and  fills  the 
crevice. — C.  A.  K. 

Light     metals    [e.g.     magnesium    and    aluminium 

alloys];  Process  for  recovering  from  scrap. 

Chem.   Fabr.   Griesheim-Elektron,   and  A.   Beiel 
stein.    E.P.  182,948,  15.4.21. 

Magnesium  or  aluminium  or  their  alloys,  in  the 
form  of  scrap  mixed  with  non-metallic  impurities, 
such  as  oxides  of  the  metals,  sand,  or  graphite,  are 

u 


716  a 


Cl.  X.— METALS ;  METALLURGY,  INCLUDING  ELECTRO -METALLURGY.    [Sept.  30, 1922. 


introduced  into  a  heated  pot  fitted  with  a  stirrer 
carrying  a  number  of  arms.  As  the  metal  melts 
down  a  quantity  of  anhydrous  magnesium  chloride, 
approximately  equal  in  weight  to  the  impurities 
present,  is  slowly  stirred  in,  and  stirring  is 
continned  until  the  liquid  chloride  has  disappeared 
from  the  surface  of  the  metal  and  the  impurities 
have  agglomerated  into  nodules  which  absorb  the 
chloride.  At  this  stage  stirring  is  stopped  and  the 
agglomerated  masses  of  impurity  sink  to  the  bottom 
of  the  pot  carrying  with  them  all  the  magnesium 
chloride  added.  The  temperature  is  then  raised  to 
that  required  for  pouring  and  the  purified  metal  is 
poured  away  from  the  impurities.  Magnesium 
chloride  may  be  replaced  by  earnallite  or  may  be 
made  in  situ  bv  passing  chlorine  into  the  melting 
metal.— A.  R.  P. 

Mineral  particles  of  different  degrees  of  specific 

gravity;   Separating    mixed   .     Differential 

flotation  separator.  W.  H.  Peck.  U.S. P.  (a) 
1,420,138  and  (b)  1,420,139,  20.6.22.  Appl., 
20.7.21. 
(a)  The  materials  are  subjected  to  the  floating 
action  of  an  aerated  emulsion  of  water,  oil,  and  a 
flotation  reagent,  and  to  the  action  of  centrifugal 
force  of  such  intensity  that  the  heavier  particles  are 
precipitated  through  the  emulsion  while  the  lighter 
particles  are  floated  by  the  emulsion,  (b)  A  vessel 
containing  a  liquid  flotation  medium  is  rotated  and 
is  so  arranged  that  during  operation  the  flotation 
medium  presents  a  substantially  unobstructed 
flotation  surface  facing  the  direction  of  the  axis  of 
rotation.  On  feeding  in  particles  of  different 
specific  gravities,  the  energy  of  the  flotation 
medium  and  the  centrifugal  energy  of  the  particles 
act  in  opposite  directions.  Means  are  provided  to 
supply  pneumatic  agitating  currents  from  the 
bottom  of  the  vessel  at  the  periphery. — T.  H.  Bu. 

Pulverulent     material;     Concentrating    .       P. 

Ondra,    Assr.    to    Concentrators,    Ltd.      U.S. P. 

1,421,984,  4.7.22.  Appl.,  28.1.20. 
The  material  is  mixed  with  a  fluid  under  pressure 
and  projected  in  a  stream  inclined  at  an  angle  to 
the  vertical.  The  particles  are  collected  in  pre- 
determined zones  as  they  fall  due  to  their  weight. 
Fractions  of  gangue  and  mineral  particles  of  the 
same  weight,  but  varying  as  to  size,  are  thus 
obtained,  and  are  subsequently  separated  according 
to  size  of  particles. — T.  H.  Bu. 

[Lead  and  iron  sulphide']  ores;  Concentration  of 

by  flotation.  G.  E.  Sheridan  and  G.  G.  Griswold. 
U.S.P.  1,421,585,  4.7.22.  Appl.,  13.1.21. 
The  ore  is  treated  with  a  cyanide  and  an  alkaline 
salt  and  subjected  to  a  flotation  operation.  Lead 
sulphide  is  recovered  in  large  part  in  the  resulting 
froth,  the  flotation  of  iron  sulphide  being  largely 
inhibited.— T.  H.  Bu. 

Metals   [e.g.    copper'];   Process  for  recovering   or 

dissolving  .     H.    Bardt,   Assr.   to   Sociedad 

Hidro-Metalurgica.  U.S.P.  1,423,069,  18.7.22. 
Appl.,  17.9.21. 
An  ore,  matte,  alloy  or  cupriferous  waste  is  dissolved 
in  a  mixture  of  sulphuric  and  nitric  acids,  in  the 
presence  of  a  catalyst,  under  a  pressure  produced  by 
electrolysing  the  solution  in  a  closed  vessel. 

—A.  R.  P. 

Alloy  and  method  of  producing  same.  C.  A.  Laise, 
Assr.  to  General  Electric  Co.  U.S.P.  1,423,338, 
13.7.22.     Appl.,  13.9.20. 

An    alloy   containing   a   predominating   amount   of 

tungsten,   together   with   gold   and    about  0'1%    of 

vanadium  is  claimed. — A.  R.  P. 


Arc  welding;  Electrical .   J.  Churchward,  Assr. 

to    Wilson    Welder    and    Metals    Co.      U.S.P. 
1,423,914,25.7.22.  Appl.,  14.1.20.  Renewed 3.2.22, 

An  electrode  made  of  tungsten  is  used  for  electric 
arc  welding. — C.  A.  K. 

Autogenous  cutting  and  welding;  Process  for . 

Rheinisch-Westfalische  Kupferwerke  A.-G.  G.P. 
353,597,  18.8.20. 

An  extremely  hot  flame  is  obtained  by  introducing 
in  a  finely  divided  form  into  the  oxygen  stream 
solid  or  liquid  substances,  such  as  manganese, 
calcium,  aluminium  or  wood  charcoal,  which  have 
a  high  heat  of  combustion.  The  process  is  suitable 
for  removing  sows  from  blast-furnaces  by  intro- 
ducing into  the  taphole  a  mass  of  finely  divided 
wood-charcoal  and  playing  a  stream  of  oxygen  on 
to  it,  whereby  the  sow  is  rapidly  melted  away. 

—A.  R.  P. 

Brass;  Process  for  the  manufacture  of  ■ — ■ — .  P. 
Dutoit,  Assr.  to  A.  Boever.  U.S.P.  1,423,922, 
25.7.22.     Appl.,  10.9.19. 

Zinc  and  copper  are  introduced,  a  little  at  a  time, 
into  a  bath  of  a  molten  salt  the  sp.  gr.  of  which  is 
intermediate  between  that  of  the  alloy  and  that  of 
any  slag  formed,  so  that  the  latter  rises  to  the 
surface  and  may  be  readily  removed. — A.  R.  P. 

Zinc;  Process  for  the   j>reparation   of  pure  

from  crude  zinc.    Metallbank  und  Metallurgische 
Ges.  A.-G.    G.P.  301,727,  16.10.14. 

Crude  zinc  is  slowly  redistilled  from  a  retort  the 
depth  of  which  is  several  times  as  great  as  the 
diameter  at  the  surface  of  the  metal,  e.g.,  the  Kipp 
retort  in  which  rich  zinc  skimmings  are  usually 
distilled.  The  retort  is  charged  with  metal  up  to 
its  narrow  upper  part  and  heated  just  above  the 
distillation  temperature,  fresh  zinc  being  added  as 
the  purified  metal  distils  off,  while  the  lead-rich 
alloy,  containing  any  silver  present,  sinks  to  the 
bottom  and  is  removed  from  time  to  time.  The 
process  is  more  efficient  the  smaller  the  surface  from 
which  the  zinc  distils. — A.  R.  P. 

Zinc    and    other    volatile    metals;    Process    and 

apparatus    for    recovering    from    ores    etc. 

Process  for  the  reduction  of  [ores  of]  zinc  and 
other  volatile  metals  and  for  calcining  marble, 
dolomite,  magnesite  and  the  like.  H.  Koppers. 
G.P.  (a)  350,521,  17.4.18,  and  (b)  351,352,  29.5.18. 
(a)  The  distillation  is  carried  out  in  two  stages;  in 
the  first  the  more  volatile  impurities  are  removed 
by  distillation  and  in  the  second  comparatively 
pure  zinc.  The  process  is  carried  out  in  retorts 
each  separated  from  the  others  by  double  heating- 
walls  and  each  connected  with  its  own  re- 
generator so  that  each  is  a  separate  unit.  Each 
retort  is  provided  with  two  gas-collecting  flues 
arranged  in  such  a  manner  that  one  may  be  used 
for  the  gases  evolved  in  the  first  stage  (steam, 
carbon  dioxide,  carbon  monoxide,  and  cadmium 
vapour)  and  the  other  for  collecting  the  zinc.  The 
mixture  of  zinc  vapour  and  carbon  monoxide 
from  the  latter  is  passed  up  a  long  column  with 
a  cooler  at  the  upper  end  so  that  liquid  zinc  falls 
down  through  the  column  of  rising  vapours,  and  a 
product  is  obtained  which  consists  of  zinc  in  the 
purest  possible  form.  In  order  to  obtain  gooJ 
results  the  vapour  must  pass  into  the  rectifier  at 
the  highest  possible  temperature;  the  column  is 
therefore  built  directly  above  the  furnace,  (b)  The 
ore  charge  is  made  into  large  prismatic  briquettes 
which  are  packed  into  the  centre  of  the  furnace 
chamber  and  the  space  between  the  walls  and  the 
charge  is  filled  with  carbon  bricks  so  that  the  whole 
charge  is  enveloped  in  carbonaceous  reducing  agent, 
thereby  protecting  the  walls  of  the  furnace  from  any 
fluxing  action  by  the  constituents  of  the  charge. 


Vol.  XLI.,  No.  18.]    Cl.  X.— METALS  ;    METALLURGY,  INCLUDING   ELECTRO-METALLURGY        717  a 


For  calcining  marble,  magnesite,  and  the  like, 
the  material  is  charged  into  a  brick  container  of  the 
same  shape  as  the  furnace  and  this  is  pushed  into 
the  latter,  heated  as  desired  and  withdrawn  with 
the  residue  at  the  end  of  the  operation. — A.  R.  P. 

Zinc,   calcium,   aluminium,   silicon   and   the    like; 

Process  for  the  electrothermic  recovery  of  . 

W.  Neumann.    G.P.  351,411,  2.10.20. 

Elements  such  as  zinc,  calcium,  and  the  like 
having  boiling  points  near  to  the  temperature  at 
which  their  oxides  are  reduced,  are  obtained  by 
smelting  the  ore  mixture  in  an  electric  furnace  and 
removing  the  gases  from  the  top  of  the  furnace  and 
introducing  them  again  at  the  bottom  while 
the  ore  charge  falls  obliquely  through  the  furnace. 
In  this  way  a  constant  gas  pressure  is  obtained,  and 
the  gases  are  forced  through  the  charge,  facilitating 
reduction  and,  in  the  case  of  zinc,  reducing 
appreciably  the  amount  of  zinc  dust  formed. 

—A.  R.  P. 


Zinc;  Apparatus  for  the  electrolytic  production  of 
.    E.  Langguth.    G.P.  352,735,  3.11.20. 

Zinc  sulphate  is  electrolysed  in  a  cell  with  a  lead 
anode  separated  from  the  cathode  by  a  porous 
partition  which  does  not  reach  to  the  bottom  of 
the  cell.  The  anode  or  the  cathode,  or  both,  may  be 
surrounded  by  porous  pots  having  openings  at  the 
bottom.  With  this  arrangement  any  solid  particles 
that  fall  from  the  anode  fall  to  the  bottom  of  the 
cell  and  may  easily  be  removed. — A.  R.  P. 


Electrolytic  cell  for  the  electrolytic  treatment  of 
metals  and  ores.     A.  Barth.    G.P.  351,408,  5.5.21. 

A  number  of  metal  plates,  inclined  at  a  moderate 
angle,  are  arranged  in  a  vessel  upon  a  frame  which 
lis  easily  removable.  The  lowest  plate  serves  as 
[anode,  the  current  passing  to  the  material  placed 
on  the  plate.  The  lower  side  of  the  next  plate  in 
Ithe  series  acts  as  cathode,  and  the  upper  side, 
jcovered  with  material  to  be  treated,  acts  as  anode, 
jthis  sequence  being  continued  throughout  the  series 
|0f  plates,  the  last  of  which  serves  as  cathode. 
jMetals  or  ores  can  in  this  manner  be  treated  with 
(the  minimum  of  electrolyte  in  the  smallest 
.practicable  vessel.  Gaseous  by-products  and  the 
'.concentrated  solution  are  recovered  automatically 
.in  a  manner  which  prevents  the  gases  liberated 
Interfering  with  the  process  of  solution,  and  secures 
j;hat  the  solution  when  formed  is  not  subjected  to 
;he  further  action  of  the  current. — J.  S.  G.  T. 


rold,  silver,  copper,  etc.;  Process  and  apparatus  for 

'  the  electrolytic  separation  of  from  alloys. 

;  B.  Waeser.     G.P.  351,410,  17.3.21. 

lLloys  containing  chiefly  gold,  silver,  and  copper, 

ogether   with    smaller    amounts   of   the   platinum 

letals,    lead,    tin,    iron,    and    other   base    metals, 

re    electrolysed    in    a    concentrated    solution    of 

jpper  sulphate   and   nitrate   containing   a   small 

licess  of  acid.     The  electrolysis  is  carried  out  in  a 

jivided  cell  in  which  the  electrodes  are  arranged 

rtically.     The  reaction  products  from  the  anode 

impartment   are   continuously    removed   together 

ith  suspended  anode  slime  and  replaced  continu- 

isly  by  a  stream  of  the  catholyte.      The  solution 

moved  from  the  anode  chamber  is  filtered  into  a 

urn-shaped  precipitating  tank,  where  it  is  treated 

th  copper  to  remove  silver  and  less  electro-positive 

etals,  which  by  vigorous  agitation  are  detached 

am  the  copper  and  separated  from  the  solution. 

le  anode  may  consist  of  the  original  alloy  in  the 

rm  of  plate,  sheet,  rods,  turnings,  or  other  scrap. 

—A.  R,  P. 


Aluminium    alloys;    Manufacture     of    .       S. 

Henlein  and  E.  Motkenlin.  G.P.  351,739,  30.3.21. 
Addn.  to  314,999  (J.,  1920,  270  a). 

The  tin  content  of  the  alloys  specified  in  the  chief 
patent  is  kept  within  the  limits  2  and  4%.  The 
resulting  alloys  may  be  worked  cold  or  hot  and 
rolled  or  drawn  into  wire. — A.  R.  P. 

Cerium  and  its  alloys;  Process  for  coating with 

other  metals.  E.  Merck,  Chem.  Fabr.  G.P. 
351,750,  23.8.21. 

Cerium  or  one  of  its  alloys  is  coated  with  alu- 
minium, magnesium,  or  zinc  by  heating  it  to  a 
temperature  below  its  melting  point  and  then 
applying  the  coating  metal,  preferably  in  a  finely 
powdered  form,  either  alone  or  mixed  with  carbon, 
sand,  or  the  like,  and  continuing  the  treatment  for 
a  considerable  time. — A.  R.  P. 

Galvanised  or  tinned  metal;  Production  of  coloured 

coatinqs  on  .     R.   Kirchhoff.     G.P.  351,981, 

31.8.18. 

The  articles  are  treated  with  a  paste  made  from  a 
solution  in  dilute  acids  of  ferric  oxide,  or  minerals 
containing  it,  mixed  with  sufficient  specular  iron 
ore,  stibnite,  or  zinc  white  to  give  the  articles  the 
shade  of  colour  desired.  Graphite  may,  if  desired, 
be  incorporated  in  the  coating  mixture.  The 
coatings  obtained  are  resistant  to  weathering  and 
dirt  does  not  adhere  to  them. — A.  R.  P. 

Alloys  of  lead  with  light  metals  and  cadmium.  W. 
Stockmeyer  and  H.  Hanemann.  G.P.  352,471, 
8.2.16. 

Small  quantities  of  cadmium,  not  exceeding  5%, 
reduce  the  brittleness  without  deleteriously  affect- 
ing the  chemical  resistance  of  lead  alloys  containing 
sodium,  magnesium,  calcium,  and  the  like.  Small 
quantities  of  copper  may  be  added  to  increase  the 
hardness. — A.  R.  P. 

Copper  containing  bismuth;  Process  of  rendering 

suitable  for  technical  use.     K.  L.  Meissner. 

G.P.  352,685,  6.3.21. 

Molten  copper  containing  bismuth  is  treated  with 
a  small  quantity  of  a  metal  of  the  alkali,  alkaline- 
earth  or  rare  earth  group  together  with  at  least  3% 
of  manganese  or  nickel.  The  added  metals  form 
compounds  with  bismuth  which  do  not  segregate 
round  the  copper  crystals  and  cause  red-shortness 
as  bismuth  alone  does. — A.  R.  P. 

Magnesium   compounds;    Reduction    of  .     L. 

Waldo.    E.P.  167,164,  18.7.21.    Conv.,  31.7.20. 

See  U.S.P.  1,379,886  of  1921;  J.,  1921,  548  a. 

Tin;    Treatment   of .     A.    E.    White.      From 

American  Smelting  and  Refining  Co.  E.P. 
183,507,  24.2.21. 

See  U.S.P.  1,397,222  of  1921;  J.,  1922,  20  a. 

Electric  heating  appliances;  Alloy  for  use  in . 

G.   H.   Lofts.     U.S.P.   1,425,111,   8.8.22.     Appl., 

21.9.20. 
See  E.P.  171,019  of  1920;  J.,  1921,  895  a. 

Atomising    fusible    metals;    Apparatus    for    . 

F.  G.  Herkenrath.  E.P.  161,194,  6.4.21.  Conv., 
6.4.20. 

Refractory    lining    for    crucible     furnaces.     E.P. 
183,219.    See  VIII. 

Metallic  moulds  for  glass  articles.     E.P.    183,582. 
See  VIII. 


Zinc  retorts.     U.S.P.  1,424,120.     See  VIII. 


o2 


718A 


Cl.  XI.— ELECTRO-CHEMISTRY.       Cl.  XII.— FATS;  OILS;  WAXES.       [Sept.  30, 1922. 


XI.-ELECTBO-CHEMISTBY. 

Carbon-electrode  industry;  Technology  of  the  . 

C.  L.  Mantell.     Chem.  and  Met.  Eng.,  1922,  27, 
161—164,  205—210. 

The  characteristics  of  the  raw  materials  entering 
into  the  manufacture  of  carbon  electrodes  are 
briefly  reviewed,  and  the  calcination  process 
discussed  critically,  various  forms  of  electric  and 
gas  heated  calciners  being  described.  In  general, 
a  denser  coke  or  calcined  product  is  produced  in 
electric  calciners.  Gas-fired  units  have  lower 
operating  costs.  In  electric  calciners,  there  is  a 
tendency  to  graphitise  some  of  the  charge,  so  that  a 
calcined  product  of  lower  resistivity  is  produced 
than  is  possible  with  gas  retorts. — J.  S.  G.  T. 

Carbon-electrode  industry;  Technology  of  the  . 

IV.     Grinding,  mixing,  moulding,  and  extrusion. 

0.  L.  Mantell.     Chem.  and  Met.  Eng.,  1922,  27, 

258—264. 
The  calcined  materials,  coal,  coke  and  petroleum 
coke,  as  discharged  from  the  calciner  are  ground 
from  3  in.  down  to  1  in.  size  by  means  of  corrugated 
rolls  equipped  with  reciprocating  plate  feeders  and 
then  further  ground  in  roller  pulverisers  and  the 
fines  separated  by  air  levigation.  The  product  is 
then  graded  and  a  mixture  of  the  desired  sizes  of 
particles  is  made  into  a  stiff  paste  with  the 
necessary  binder,  tar  or  pitch,  in  a  steam-heated, 
mechanically  stirred  mixing  vessel.  The  mass  is 
discharged  from  the  mixers  into  presses  where  it  is 
either  pressed  or  extruded  into  the  desired  shape, 
the  latter  method  being  used  for  small  electrodes. 
A  description  of  several  presses  and  of  a  typical 
installation  is  given,  and  the  factors  governing  the 
production  of  good  quality  electrodes  and  reasons 
for  obtaining  faulty  carbons  are  discussed. 

—A.  li.  P. 

Graphite;  Researches  on  natural  and  artificial . 

K.    Arndt   and  P.    Korner.      Z.    angew.    Chem., 
1922,  35,  440—443. 

The  specific  resistance  of  rods  pressed  from 
different  varieties  of  natural  and  artificial  graphite 
lias  been  determined.  The  results  show  that  the 
specific  electrical  resistance  of  graphite  depends 
principally  on  the  grain-size  and  ash  content, 
while  the  shape  of  the  grains  has  also  a  slight 
influence.  The  resistance  increases  with  increasing 
ash  content  and  decreases  with  increasing  size  of 
the  grains.  In  the  case  of  graphitised  electrodes 
the  resistance  depends  chiefly  on  the  volume  of  the 
pores  and  on  the  actual  graphite  content,  a  decrease 
in  the  former  and  an  increase  in  the  latter  reducing 
the  resistance.  A  curve  has  been  constructed  for 
the  specific  resistance  of  mixtures  of  graphitised 
and  ungraphitised  gas  carbon  compressed  into 
rods,  from  which,  by  observing  the  resistance  of  a 
graphitised  anode  of  unknown  composition,  a 
rough  idea  of  the  amount  of  contained  graphite 
may  be  obtained.  The  resistance  of  a  number  of 
mixtures  of  graphite  and  powdered  manganese 
dioxide,  such  as  are  used  in  battery  anodes,  is 
represented  graphically;  the  addition  of  the 
manganese  dioxide  very  slightly  increases  the 
resistance  up  to  a  content  of  50 — 60%,  after  which 
an  exceedingly  rapid  increase  is  observed. 

—A.  R.  P. 

Platinum  film  electrodes;  Preparation  and  applica- 
tions   of   .     A.    Eilert.     Z.    angew.    Chem., 

1922,  35,  445—446,  452—455. 

Details  are  given  of  the  preparation  of  platinum 
film  electrodes  suitable  for  use  in  electro-analysis, 
conductivity  measurements,  and  titration  pro- 
cesses, and  for  use  as  hydrogen  electrodes.  The 
films  are  deposited  upon  the  external  surface  of 
glass  tubes  by  heating  a  solution  of  "  Glanzplatin 


th  which  the  tubes  are 
indt  a  "  Glanzplatin  " 
g.  of  platinum  chloride 
lute  alcohol  and  treated 


la  "   (Koehler,  Leipzig)  with  which  the  tubes  are 
coated.     (According   to   Kui 
solution  is  composed  of  3  g. 
dissolved  in  10  c.c.  of  absolute 

with  30  c.c.  of  a  concentrated  alcoholic  solution  of 
boric  acid  and  twice  the  quantity  of  a  mixture  of 
Venetian  turpentine  and  lavender  oil.)  Only  iu 
the  case  of  film  electrodes  used  in  the  electro- 
analysis  of  metals  do  the  films  require  periodical 
renewal.  A  simplified  method  of  electrometric 
titration  of  solutions  of  salts  of  weak  acids  is 
described— J.  S.  G.  T. 

Conductivity    of    glass.     Bush    and    Connell.     See 
VIII. 

Patents. 

Conductors  for  making   electrical   connection    with 

mercury.      The    British    Thomson-Houston    Co., 

Ltd.     From  General  Electric  Co.     E.P.  183,683, 

30.6.21. 

A     wire     of     oxidisablo     refractory     metal,     e.g., 

tungsten,  molybdenum,  etc.  is  tipped  with  iron  or 

nickel  or  other  metal,  the  oxide  of  which  may  be 

reduced  by   hydrogen.     The   wire   is  sealed   into 

glass    envelope    and    the   tip    makes    contact    wit 

mercury. — J.  S.  G.  T. 

0;one     generator.     H.     B.     Hartman,     Assr. 
Electric  Water  Sterilizer  and  Ozone  Co.     U.S.] 
1,423,658,  25.7.22.     Appl.,  24.1.20. 

An  ozone  generator  comprises  a  casing  consisting 
of  separable  sections  provided  with  vertical  radin' 
ribs  and  central  chamber-forming  members,  and  a 
generating  unit  consisting  of  spaced  dielectric 
members  together  with  an  intermediate  electrode 
disposed  between  the  members  and  the  separable 
sections.  A  terminal  plug  is  arranged  in  one  of 
the  chambers,  and  electrical  connexion  is  made  at 
the  central  part  of  the  electrode  of  the  generating 
unit,— J.  S.  G.  T. 

Electric  storage  battery.     H.  Bardt,  Assr.  to  Soe. 

Hidro-Metalurgica.       U.S. P.     1,425,163,     8.8.22. 

Appl.,  17.9.21. 
See  G.P.  329,787  of  1919;  J.,  1921,  267  a. 

See  also  pages  (a)  697,  Electrical  precipitation 
(E.P.  183,768;  G.P.  350,259).  708,  Carbon  bisul- 
phide (E.P.  174,040).  711,  Electro-fining  glass 
furnace  (E.P.  161,192);  Itefractory  lining  for 
electric  furnaces  (E.P.  183,219).  716,  Arc  adding 
(U.S. P.  1,423,914).  717,  Electrolytic  cell  (G.P. 
351,408). 

XII.-FATS;    OILS;    WAXES. 

Liver  oils;  The  sulphuric  acid  reaction  for  . 

J.  C.   Drummond  and  A.   F.   Watson.     Analyst, 

1922,  47,  341—348. 
The  substance  present  in  liver  oils  which  is  respon- 
sible for  the  well-known  purple  coloration  with 
sulphuric  acid  was  found  in  the  following  species: 
man,  horse,  ox,  pig,  cat,  monkey,  xabbit,  guinea 
pig,  chicken,  duck,  pigeon,  rat,  mouse,  frog,  shark, 
cod,  haddock,  ling,  coal  fish,  dog  fish,  sprat,  and 
skate.  The  substance  appears  to  be  a  normal  con- 
stituent of  the  liver  and  is  not  derived  from  the 
bile  or  from  products  of  autolysis  or  putrefaction. 
Evidence  is  presented  to  show  that  it  is  probably 
derived  from  the  food.  The  chemical  nature  of  the 
substance  has  not  been  ascertained.  It  forms  a  low 
proportion  of  the  unsaponifiable  fraction,  is  not 
cholesterol  and  probably  not  a  member  of  the 
lipochromo  pigments.  It  is  thermostable  in  the 
absence  of  air  or  oxvgen,  but  is  rapidly  destroyed 
by  oxidation.  The  few  properties  of  the  substance 
which  are  known,  as  well  as  the  available  data 
regarding  its  distribution  in  natural  products,  show 
certain    resemblances    to    the    unidentified    dietary 


Vol.  XLI.,  No.  18.) 


Cl.  XII.— FATS  j   OILS  ;  WAXES. 


719a 


unit  known  as  vitamin  A.  The  colour  test  cannot 
be  regarded  as  specific  for  liver  fats  although  they 
usually  give  the  most  intense  reactions.  The  body- 
fat ,  and  fat  from  other  organs  of  animals, 
especially  if  they  have  been  fed  on  liver  oils,  may 
give  the  reaction. — H.  C.  R. 

Perilla  oil.     K.  H.  Bauer.     Farben-Zeit.,  1922,  27, 

2756—2757. 
The  fatty  acids  of  a  sample  of  perilla  oil  were 
investigated.  The  oil  had  the  following  characters  • 
Sp.  gr.,  09280  at  20°  C. ;  nD2°  =  T4830 ;  saponif. 
value,  187-4 ;  iodine  value  (Hanus),  2043 ;  hexa- 
bromide  value,  50'8.  The  mixed  fatty  acids 
separated  by  the  lead  salt-ether  method  gave  12 
of  saturated  acids  and  88%  of  unsaturated  acids. 
The  saturated  portion  consisted  mainly  of  palmitic 
acid.  The  unsaturated  acids  were  oxidised  by 
Hazura's  method  and  gave  a  hexahydroxystearic 
acid  (m.p.  165°  C).  A  tetrahvdroxvstearic  acid  of 
m.p.  135°^140°  C.  was  also  found.  The  fatty  acids 
of  perilla  oil  would  therefore  seem  to  consist  of  a 
j    mixture  of  palmitic  acid,  a  linolic  acid,  and  several 

■  geometrically  isomeric  linolenic  acids. — H.  C.  R. 

I  Xaphthalencsulphonic  acids  as  agents  for  hydrolys- 
ing  fats.  K.  Trepka.  Przemvsl  Chem.,  1022.  6, 
49—56.     Chem.   Zentr.,   1022.   93.   IV..   i'    ,     ■_>,;,; 

The  a-  and  /J-naphthalenesulphonie  acids  and  1.5-. 

1  2.7-,     1.6- ,     and     2.6-naphthalenedisuIphonic     acids 

■  were  tried  as  fat-hydrolysing  agents.  The  position 
[j  and  number  of  sulphonic  groups  have  no  influence 
I  on  the  course  of  the  reaction  and  the  presence  of 
I  these  naphthalene.sulphonic  acids  does  not  accele- 
I  rate  the  hydrolysis  of  fats  unless  other  compounds 

I  are   present,    which   form  complexes   with   the   sul- 
phonic acids.     For  instance  the  presence  of  Turkey- 

[|  red  oil  considerably  increases  their  fat-hydrolysing 
properties. — H.  C.  R. 

Clupanodonic   acid.       M.   Tsujimoto.      Chem.    T'm- 
schau,  1922,  29,  261—262. 

H  The  highly  unsaturated  acid,  clupanodonic  acid,  to 

II  which  the  peculiar  odour  of  fish  oils  is  probably  due 
•    has    the     formula    C,2HJ402     and    not     ClsH.aO,, 

although   a   small   quantity  of  an  acid  having  the 

I  latter  formula  occurs  in  Japanese  sardine  oil  (c/. 

1 1  Schmidt-Nielsen,    J.,    1922,    300.0.       .Majima    and 

Okada  (J.,  1914,  362)  found  that  the  acids  obtained 

by  the  debromination  of  the  ether-insoluble  brom- 

.  I  ides  from  Japanese  sardine  oil  gave  mainly  behenic 

I  acid  on  bydrogenation.    Clupanodonic  acid  has  been 

[  obtained  almost  pure  by  fractionating  the  methyl 

.esters  obtained  from  the  highly  unsaturated  acids 

from  Japanese  sardine  oil  by  the  lithium-salt- 
I  acetone  method.  It  has  the  following  properties:  — 
I A  pale  vellow  liquid  not  solidifving  at  -50°  C, 
,  thick  like  vaseline  at  -78°  C. ;  sp.  gr.  0-9398  at 
-15°/4°  C. ;  neutralisation  value,  1725;  iodine  value 
j(Wijs)  390  (theoretically  3S4'3) ;  nDls  =  r5040.  Clu- 
■  panodonic  acid  is  one  of  the  most  widely  distributed 

compounds  in  nature,  occurring  in  the  oils  of  all 
'fresh  and  salt  water  fish,  reptiles,  and  amphibious 

animals.— H.  C.  R. 

Paraffin    hydrocarbons   and   fatty   acids;    Catalytic 
oxidation  of  saturated  .     A.  H.  Salway  and 

;    P.  N.  Williams.     Chem.  Soc.  Trans.,  1922,   121, 

I    1343—1348. 

The  catalytic  oxidation  of  hexadecane  and  stearic 
icid  by  means  of  oxygen  in  presence  of  2%  of 
manganese  stearate  at  120° — 130°  C.  gives  rise  to  a 
complex  mixture  of  substances,  including  mono- 
:arboxylic  acids  of  the  fatty  series,  dioarboxyflic 
icids  of  the  malonic  series,  together  with  lactones, 
actonic  acids,  formic  acid,  and  carbon  dioxide. 
The  paraffin  hydrocarbon  is  probably  first  converted 
nto  a  fatty  acid,  which  is  then  further  attacked  at 
several  points  in  the  carbon  chain  with  the  forma- 


tion of  hydroxy-acids  and  lactones  and  these,  in 
turn,  are  further  oxidised  and  degraded.  In  the 
oxidation  of  stearic  acid  the  volatile  products 
amounted  to  about  5%  of  the  original  acid,  the 
acids  soluble  in  water  to  8%,  and  the  insoluble 
portion,  containing  only  very  small  quantities  of 
true  fatty  acids  of  lower  mol.  wt.,  to  86% — G.  F.  M. 

Oils  and  fats;   Bate   of  saponification   of  by 

a-queous  alkali  tinder  various  conditions.  M.  H. 
Xorris  and  J.  W.  McBain.  Chem.  Soc.  Trans., 
1922,  121,  1362—1375. 

When  neutral  oils  are  boiled  with  alkali,  the  rate 
of  saponification  follows  no  simple  formula  but  is 
greatly  influenced  by  stirring,  eraulsification,  and 
by  the  manner  and  degree  of  the  salting-out  of  the 
soap.  The  rate  is  at  first  exceedingly  slow,  then 
rapid,  and  in  the  final  stage  again  very  slow,  pre- 
sumably due  to  the  highly  viscous  nature  of  the 
medium  towards  the  end  of  the  reaction.  The  re- 
action depends  largely  on  the  surface  of  the  oil 
exposed,  and  vigorous  stirring  Increases  the  initial 
rate  nearly  twenty  times.  When  once  the  oil  is 
emulsified  and  sufficient  soap  has  been  produced  to 
stabilise  the  emulsion,  the  reaction  proceeds  quite 
as  quickly  without  stirring.  Increase  of  the  con- 
centration of  the  alkali,  insufficient  to  cause  salting- 
out,  increases  the  rate  of  saponification.  Salting- 
out  greatly  reduces  the  rate,  but  further  addition 
of  alkali  increases  the  rate  almost  in  the  proportion 
of  the  amount  added ;  hence  a  large  increase  in  con- 
centration of  alkali  gives  the  highest  rate.  It  is 
possible  to  saponify  an  oil  to  the  extent  of  99'8% 
within  a  few  hours. — J.  B.  F. 

Soap;  Effect  of  an  electrolyte  on  solutions  of  pure 

.     Phase-rule  equilibria  in  the  system  sodium 

laurate.  sodium  chloride,  water.  J.  W.  McBain 
and  A.  J.  Burnett.  Chem.  Soc.  Trans.,  1922,  121, 
1320—1333. 

A  soap  solution,  from  the  phase-rule  standpoint, 
may  be  regarded  as  a  single  phase  when  considering 
its  equilibria  with  other  solutions  or  solids.  Soap 
solutions,  such  as  solutions  of  sodium  laurate,  to 
which  salt  has  been  added  may  be  regarded  as 
three-component  systems,  involving  water,  sodium 
laurate,  and  sodium  chloride.  Three  liquid  layers 
may  exist  in  equilibrium  under  suitable  conditions, 
viz.,  concentrated  liquid  known  as  "  neat "  or 
"fitted"  soap;  liquid  of  moderate  concentration 
known  as  "  nigre  " :  liquid  containing  very  little 
soap,  known  as  '"  lye."  The  concentrations  in  these 
three  layers  are: — -Sodium  laurate  10N«,  0'5 — 
TOXw,  and  0'OIX... ;  sodium  chloride  1— 2No,  2'5 — 
3Nw,  and  2,5— 6Ni»  respectively.  Salt  added  to 
solutions  of  sodium  laurate  reduces  the  solubility  of 
the  soap  in  a  regular  manner  highly  dependent  on 
temperature  and  concentration.  All  soap  systems 
can  be  brought  into  the  form  of  one  homogeneous 
liquid  at  sufficiently  high  temperatures  if  decompo- 
sition is  prevented.  If  the  concentration  of  the 
sodium  chloride  is  above  2Nu>,  on  cooling,  a 
temperature  will  be  reached  at  which  two  liquid 
layers  are  formed,  but  if  the  concentration  of  the 
soap,  and  particularly  of  the  salt,  is  high  enough, 
the  ultimate  result  is  the  formation  of  a  curd  float- 
ing on  a  lye  containing  only  traces  of  sodium 
laurate.  Portions  of  the  equilibrium  diagram  have 
been  worked  out  for  the  system  sodium  laurate, 
sodium  chloride,  water. — J.  B.  F. 

Patents. 

Synthetic  waxes;  Manufacture  of .     G.  Schicht 

A.-G.,  and  A.  Griin.    E.P.  183,186,  17.3.21. 
Aliphatic   hydrocarbons  of  high  molecular  weight 
are  oxidised  by  means  of  an  excess  of  oxygen  or 
gases  containing   oxygen   at   a   temperature   of   at 
least  150°  C.    The  products  of  oxidation  are  divided 


720  a 


Cl.  Xin.— PAINTS  ;    PIGMENTS  ;   VARNISHES  ;   RESINS. 


[Sept.  30, 1922. 


into  a  solid  and  a  semi-solid  portion  by  pressing  or 
by  means  of  organic  solvents.  For  example,  a 
paraffin  melting  at  52°  C.  gave  a  synthetic  wax 
having  the  following  characters:  acid  value,  21; 
saponif.  value,  75'6;  iodine  value,  4'7.  The  syn- 
thetic waxes  closely  resemble  beeswax. — H.  C.  R. 

Soapt;    Process   for   making    odourless from 

marine  animal  oils.  F.  Fischer.  G.P.  353,571, 
14.3.19. 
The  soaps  are  dissolved  in  water,  treated  with 
alkali,  and  gases  containing  oxygen  are  then  passed 
through  the  solution  under  increased  pressure.  For 
instance,  compressed  air  at  30  atm.  is  passed  into 
the  aqueous  soap  solution  at  170°  C.  in  an  auto- 
clave. The  air  is  afterwards  found  to  be  poor  in 
oxygen  and  rich  in  carbon  dioxide.  In  a  compara- 
tively short  time  odourless  soaps  are  obtained,  hav- 
ing great  lathering  power. — H.  C.  R. 

Hydrocarbons  from  fish  oils.  E.P.  170,264.   See  IIa. 

Fatty    acids    from    hydrocarbons.      G.P.    350,621. 
>S'ee  XX. 


XIII.-PAINTS  ;     PIGMENTS;    VARNISHES; 
RESINS. 

Naphthalene-formaldehyde  condensation  products; 
Preparation  of  — —  and  their  suitability  for  the 
varnish  industry.  P.  Folchi.  Chem.-Zeit., 
1922,  46,  714—715. 
Condensation  products  of  naphthalene  with 
formaldehyde,  suitable  for  use  in  the  lacquer  or 
varnish  industry,  are  prepared  as  follows :  100  g. 
of  naphthalene  is  added  to  80  c.c.  of  30%  formalde- 
hyde, 100  c.c.  of  sulphuric  acid  (66°  B.,  sp.  gr. 
1"84)  gradually  added,  and  the  mixture  heated 
under  a  reflux  condenser  on  a  water  bath  at  80°  C. 
for  1J — 2  hrs.  with  agitation.  The  contents  of  the 
flask  are  poured  into  water  at  80° — 90°  C.  and  the 
melted  condensation  product  washed  with  water, 
dilute  alkali,  and  water  again.  The  mass  is  then 
dried  at  80°  C.  for  4 — 5  hrs.  For  use  as  lacquer 
the  material  is  melted  with  a  small  quantity  of 
turpentine  and  mixed  with  refined  tar.  By  strict 
attention  to  the  above  reaction  conditions  a  yield 
of  100—110%  of  the  naphthalene  used  may  be 
obtained.  The  hardness  of  the  product  varies  with 
the  temperature  of  formation.  If  the  condensation 
product  is  granular  this  can  be  rectified  by  melting 
with  turpentine  and  then  washing  with  water.  If 
the  acid  is  not  completely  removed  the  mass  will 
not  dry  satisfactorily.  An  alternative  method  is 
to  use  100  g.  of  naphthalene,  80  g.  of  40%  formal- 
dehyde, and  120  g.  of  sulphuric  acid,  heating  for 
3  hrs.  at  90° — 95°  C. ;  in  this  case  the  yield  is 
80 — 90%.  It  appears  to  be  a  rule  that  formalde- 
hyde condensation  of  unsaturated  aliphatic  hydro- 
carbons produces  substances  resembling  caoutchouc, 
that  of  aromatic  hydrocarbons  materials  of  the 
bakelite  type.— C.  I. 

Patents. 

Carbon  black  and  method  of  producing  same.  A.  S. 
Cooper.  U.S. P.  1,423,193,  18.7.22.  Appl.,  19.1.22. 

Brown  bitumen-bearing  sand  is  powdered,  and  the 
finely  divided  bitumen  is  removed  by  a  blast  of  air 
and  heated  to  obtain  carbon  black. — D.  F.  T. 

Paint  vehicle.  Paint  composition.  Pigmetit  com- 
position for  points.  Oil.  W.  N.  Blnkeman. 
U.S. P.  (a)  1,423,389,  (u)  1,423,390,  (c)  1,423,391, 
and  (d)  1,423,392,  18.7.22.  Appl.,  (a)  16.4.21, 
(d,  c,  d)  5.10.21. 

An  oil  mixture  (n)  is  obtained  by  blending  tung 
oil    and    coconut    oil.     By    mixing    this    with    an 


anhydrous  pigment  a  paste  (o)  is  formed,  which, 
by  the  further  addition  of  a  fatty  oil  and  a  mineral 
oil,  yields  a  paint  composition  (b).  A  paint  vehicle 
(a)  is  made  by  adding  a  mineral  oil  to  the  mixture 
of  coconut  oil  and  tung  oil.— D.  F.  T. 

Coating    or   sealing    composition.     M.    J.    Strauss. 

U.S.P.  1,423,821,  25.7.22.  Appl.,  31.1.21. 
The  precipitate  obtained  on  adding  sulphuric  acid 
to  a  solution  of  shellac  in  aqueous  sodium  hydroxide 
is  dissolved  in  alcohol.  This  solution  when  mixed 
with  inorganic  fibrous  material  yields  permanently 
flexible  coatings. — D.  F.  T. 

Resinous  masses;  Process  for  the  production  of . 

Wenjacit  Ges.m.b.H.     G.P.  351,104,  17.8.15. 

A  small  amount  of  benzoic,  salicylic,  or  other 
easily  fusible  acid  is  stirred  into  a  mixture  of 
phenols,  soaps,  and  aldehydes  that  has  been  heated 
until  it  has  become  a  viscous  mass,  whereby  poly- 
merisation is  arrested  at  the  gummy  stage.  The 
mass  is  cast  into  moulds  and  then  subjected  to  a 
known  hardening  process.  For  example,  2 — 3%  of 
salicylic  acid  is  added  to  the  gummy  mass  obtained 
by  heating  100  pts.  of  crude  carbolic  acid,  50  pts. 
of  soft  soap,  and  100  pts.  of  formalin,  and  the 
product  is  cast  into  moulds.  The  resulting  mass 
remains  soft  for  more  than  six  months,  and  may  be 
used  as  a  substitute  for  vulcanite. — A.  R.  P. 

Artificial  resin;  Preparation  of  a  white  insoluble 

.       Plauson's     Forschungsinstitut     G.m.b.H. 

G.P.  351,349,  20.10.20. 

A  mixture  of  1  mol.  of  a  ketone  and  6  mols.  of 
formaldehyde  in  aqueous  solution,  or  the  equiva- 
lent amount  of  one  of  its  polymers,  e.g.,  para- 
formaldehyde, or  of  one  of  its  condensation  pro- 
ducts, e.g.,  hexamethylenetetramine,  is  condensed 
in  the  presence  of  alkalis.  Acetone  and  formalde- 
hyde in  this  way  yield  a  white  powder,  CQH1204, 
which  is  tasteless,  odourless,  infusible,  insoluble  in 
organic  solvents,  and  unattached  by  acids  and 
alkalis.  It  is  also  difficultly  combustible,  and  is 
a  good  electrical  insulator. — A.  R.  P. 

Resins,  pitch,  and  the  like;  Process  of  hardening 

.      Plauson's    Forschungsinstitut     G.m.b.H. 

G.P.  352,521,  4.5.20. 

Soft  resins  or  pitches  are  heated,  in  the  presence 
of  mineral  or  organic  acids,  with  furfural  or  its 
homologues,  or  with  materials  which  form  these 
compounds,  under  a  reflux  condenser  or  under 
pressure,  and  the  resulting  product  is  washed, 
dried,  and  melted,  or  recovered  by  extraction  pro- 
cesses. The  melting  point  of  the  hardened  resin 
may  be  raised  by  melting  it  in  a  vacuum  or  by 
blowing  air  through  it  at  180°— 350°  C— A.  R.  P. 

Resins  and  resinous  substances ;  Production  of 

from   cellulosie   materials.      Zellstoff-fabr.    Wald- 
hof,  and  V.  Hottenroth.     G.P.  353,380,  25.12.19. 

Material  containing  cellulose,  in  addition  to  resins 
and  the  like,  is  treated  with  moderately  concen- 
trated sulphuric  or  hydrochloric  acid,  or  mixtures 
of  the  same,  and  the  solution  is  subsequently  diluted 
with  water  and  boiled,  the  cellulose  being  converted 
thereby  into  soluble  dextrins  and  sugars.  After 
filtration  the  residue,  which  contains  resinous  con- 
stituents together  with  lignin,  is  washed,  dried, 
and  extracted  with  resin  solvents  at  normal 
or  moderately  high  temperatures.  The  final  residue 
may  be  distilled  to  obtain  decolorising  charcoal, 
methyl  alcohol,  and  other  products. — L.  A.  C. 

Pigments;  Process  of  making  .     L.  R.  Baker. 

U.S.P.   1,425,436—7,  8.8.22.     Appl.,  16.7.19  and 
13.8.20. 

See  E.P.  161,280  of  1920;  J.,  1921,  399  a. 


Vol.  XIX,  No.  18.]      Cl.  XIV.— INDIA-RUBBER,  &c.     Cl.  XV.— LEATHER  ;    BONE,  &c. 


721a 


Coatings    on    galvanised    or   tinned    metal.     G.P. 
351,981.    See  X. 

Linseed  oil  substitute.    G.P.  352,003.    See  XX. 

XIV.— INDIA-RUBBER;  GUTTA-PERCHA. 

Smoked  sheet  [rubber];  Effect  of  mould  on  quality 

of H.  P.  Steven?.     Bull.  Rubber  Growers' 

Assoc,  1922,  4,  330—331. 

Although  the  grey-green,  moss-like  type  of  mould 
which  develops  normally  in  daylight  has  a  retard- 
ing effect  on  the  rate  of  vulcanisation,  the  blacl' 
and  yellow  pin-head  type  which  develops  in  the  <*  £ 
has  an  accelerating  effect.  With  a  slight  '  Jfilrli 
mould  the  effect  is  inappreciable.— D.  ^     ^urrace 

[.Rubber p    Additional    test»    wjfh    sodlum    m 

fluoride  las  a  mould  yreverir\ve  ior -,  p 

Steven^     £un,  Rubber  Growers'  Assoc     1922    4 
331-333. 

The  addition  of  sodium  silicofluoride  (cf.  J.,  1922, 
510  a)  to  latex  for  the  prevention  of  mould  in  the 
finished  rubber,  causes  a  reduction  of  10 — 15%  in 
the  rate  of  vulcanisation  of  a  simple  mixture  with 
■sulphur  (90:10);  the  physical  properties  of  the 
■vulcanised  rubber  are  unaffected.  The  effectiveness 
of  sodium  silicofluoride,  however,  is  limited,  and 
rubber  which  was  packed  wet  arrived  in  a  mouldy 
condition,  whatever  the  proportion  of  sodium  silico- 
fluoride used.— D.  F.  T. 

Patents. 

Rubber-containing  latex;  Process  for  treating . 

E.    Hopkinson.      E.P.   157,978,   11.1.21.      Conv., 
16.1.20. 

In   order    to    prevent    premature   coagulation    the 
rubber  latex  is  treated  with  0'1%   of  ammonia,  or 
if  vulcanising  agents  or  compounding  ingredients 
are  also  added,  with  0'1%  of  saponin,  glycerin,  or 
glue.    The  latex  is  then  atomised  by  being  delivered 
in  a  uniform  stream  against  an  air  jet,  the  spray 
meeting  a  second  stream  of  air  heated  to  200°  F. 
(93°  C);  the  evaporation  reduces  this  temperature 
almost  immediately  to  about  130°  F.  (54°  C).    The 
air  carrying  particles  of  rubber  in  suspension  is  led 
i  along   a   tortuous   path,    whereupon   the   rubber   is 
deposited  as  a  porous  mass  with  as  little  as  0'6% 
flf    moisture;    it   can    be   compacted    by    hydraulic 
pressure.    On  account  of  the  retention  of  the  whole 
I  of  the  serum  solids  the  yield  of  rubber  is  increased 
jby  approximately  10%   (calculated  on  the  rubber). 
jThe  composition  is  roughly  as  follows,  the  bracketed 
.figures  giving  the  corresponding  values  for  rubber 
prepared  in  the  ordinarv  manner :  Acetone  extract, 
5'2%     (3-0%);    ash,    P5%     (0"4%);    water    extract, 
.  7-2%    (0-3%);    protein,    4"2%    (2"0%);    acidity   ex- 
pressed as   acetic   acid,   0'10%    (0'02%).     The  new 
type  of  rubber  on  vulcanisation  shows  an  increase 
bf   about   20%    over    the    usual    values   for    tensile 
,  strength  and  resistance  to  abrasion ;  the  advantage 
■an  be  still   further   increased  by   introducing  the 
sulphur   and   other   compounding   ingredients    into 
he  latex  before  evaporation,  thereby  obviating  the 
nechanical  kneading  involved  in  the  ordinary  mix- 
ing operation. — D.  F.  T. 

ndiarubber;    Improvement    and   regeneration    of 

.     E.   Hug.     E.P.   177,495,   20.2.22.     Conv., 

21.3.21. 

tuBBER  articles,  such  as  motor  covers  and  inner 
ubes,  are  improved  by  successive  immersion  for 
alf-houf  periods,  with  24-hour  intervals,  in  an 
lfusion  of  Roman  camomile  in  castor  oil  at  in- 
reasing  temperatures,  viz.,  50°,  70°,  and  80°  C. 

— D.  F.  T. 


XV.-LEATHER;  BONE;   HORN;   GLUE. 

Gelatin;  Dissolution  of  .     F.  Fairbrother  and 

E.  Swan.     Chem.  Soc.  Trans.,  1922,  121,  1237— 
1244. 
Gelatin  exists  in  solution  in  the  liquid  gp- 
ing  the  gel,  when  the  jelly  is  in  *><■>'-"         ..rround- 
water,  dilute  acid,  or  alkali.    T1  ^ainbrium  with 

in  distilled  water  at  15°  _ae  solubility  of  gelatin 

A  similarity  exis+    '  — 170  fj.  is  0'05  g.  in  100  c.c. 

the  curves   t         ..,  between  the  solubility  curves  and 
of  g^'";  ior  the   swelling  and   osmotic  pressure 

p'"  sJtah.  The  experiments  indicate  a  minimum 
nubility  of  0'01  g.  and  0'03  g.  per  100  c.c.  for  a 
concentration  of  1  millimol.  per  litre  of  hydro- 
chloric and  sulphuric  acid  respectively,  i.e.,  less 
than  for  pure  water.  In  general,  however,  gelatin 
dissolves  to  a  greater  extent  in  dilute  acids  or 
alkali  than  in  water,  whilst  neutral  salts  decrease 
the  solubility.  The  gelatin  was  estimated  by  pre- 
cipitation with  tannic  acid.  The  acid  and  alkali 
solutions  were  first  neutralised  with  potassium 
hydroxide  or  hydrochloric  acid  respectively.  Wheih 
electrolytes  were  absent,  1  c.c.  of  2V/20  potassium 
chloride  was  added  to  20  c.c.  of  the  solution,  since 
it  was  found  that  in  the  presence  of  salts  the  precipi- 
tate was  coagulated,  less  gelatinous,  and  was  more 
easily  filtered.  It  was  found  that  the  ratio  of 
gelatin  to  tannin  was  not  constant,  but  varied  with 
the  concentration. — J.  B.  F. 

Gelatin    solutions;    Gel-strength    and    viscosity    of 

.     E.   T.    Oakes  and   C.   E.   Davis.     J.    Ind. 

Eng.  Chem.,  1922,  14,  706—710. 

Gel-strength  is  measured  by  a  "  plunger  " 
method.  A  plunger  is  attached  to  the  under-side  of 
a  balance-scale  pan,  611  which  is  placed  a  beaker. 
The  whole  is  counterpoised  and  water  added  to  the 
beaker  until  the  plunger  is  forced  into  a  gel,  placed 
below,  to  an  arbitrary  depth  indicated  by  the 
deflection  needle  of  the  balance.  The  effect  of  the 
pa  value  on  gel-strength  was  determined,  and  also 
the  relationship  of  gel-strength  to  viscosity.  The 
molecular  weight  of  gelatin  was  determined  by 
acid  titration  over  a  definite  pH  range.  The  figure 
varied  very  considerably  between  IOOO  and  2000.  The 
form  of  the  gel-strength-pH  curve  was  the  same  for 
different  concentrations.  The  maximum  gel-strength 
coincided  in  pH  value  with  the  maximum  increase 
in  viscosity  for  ageing  solutions.  Additional  data 
were  obtained  in  favour  of  the  gelatin-acid  com- 
bination theory. — A.  G.  P. 


Patents. 


P.   Ringbauer. 
to   321,343    (J., 


Tanning  skins;  Process  for  -. 

G.P.    344,325,    16.11.20.     Addn. 
1920,  666  a). 

The  pressure  of  the  air  in  the  tanning  vessel  before 
the  introduction  of  the  tanning  liquid  is  not 
reduced  to  so  great  a  degree  as  specified  in  the 
main  patent,  nor  for  as  long  a  period  of  time. 
During  the  tanning  process,  on  the  other  hand,  the 
pressure  is  further  reduced  and  for  a  longer  period. 
The  skins  are  by  this  means  more  thoroughly  and 
rapidly  tanned  and  after  the  subsequent  stretching 
on  frames  the  permanent  extension  of  the  fibres  of 
the  skin  is  more  regular  than  that  obtained 
according  to  the  main  patent. — H.  C.  R. 

Skins  and  hides;  Process  for  bating  .     C.  H. 

Boehringer  Sohn.    G.P.  351,015,  13.4.17. 

Pure  or  crude  saponified  bile  acids  or  their  salts, 
of  mixtures  of  them,  alone  or  in  combination  with 
other  bating  materials  not  containing  bacteria 
or  enzymes,  are  used  as  bating  materials.  Saponi- 
fied bile  acids,  such  as  cholic,  choleic,  or  desoxy- 
cholic  acids,  possess  the  advantages  as  bating 
agents  that  they  contain  neither  undesirable  im- 
purities such  as  calcium  salts  of  fatty   acids   and 


722  a 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


[Sept.  30,  1922. 


proteolytic  enzymes,  nor  useless  filling  materials, 
such  as  dissolved  or  emulsified  fats,  fatty  acids,  or 
cholesterol.  They  are  without  odour,  and  can  be 
accurately  analysed.  Saponified  desoxycholic  acid 
-  has  the  property  of  forming  with  fats,  fatty 
also  ~r\     cholesterol     crystalline     compounds, 

acids,      »u>-  - 'iich   are  easily   soluble   in  water, 

alkali  salts  ot   «-        i  -luco-desoxycholic  acids  lack 
The  natural  tauro-  ana  „         ,„ce    of   bacteria   and 
these   properties.      The    prest.         ,..•       process.   The 
enzymes  is  not  necessary  in  the  Daw.      -    f(}T  Temoy 
presence  of  other  bating  agents  suitable  .  Qo 

ing  lime,  such  as  sodium  lactate,  is,  however,  ^. 
times  desirable. — H.  C.  It. 

Skins;    Process    for    tanning    .       Gerb-    und 

Farbstoffwerke  H.  Renner  und  Co.  A.-G.  G.P. 
353,076,  23.8.16. 
Chloranil  is  mixed  with  such  quantities  of  organic 
or  inorganic  dispersing  media,  e.g.,  phenols, 
alkali  or  alkaline-earth  hydroxides,  as  to  produce 
a  colloidal  solution  in  which  the  skins  aTe  steeped. 
The  chloranil  may  be  produced  from  trichlorophenol 
by  treating  it  with  oxidising  agents,  such  as 
bichromates,  and  the  impure  chloranil  used  without 
further  treatment.  Any  excess  of  phenols  is  to  be 
avoided,  as  otherwise  the  colloidal  solution  is  con- 
verted into  a  true  solution  having  no  tanning 
action.  If  hydroxides  of  alkali  or  alkaline-earth 
metals  are  used  as  dispersing  medium,  part  of 
the  chloranil  is  converted  into  alkali  or  alkaline- 
earth  salts  of  chloranilic  acid.  These  salts  are 
soluble  and  havo  a  peptising  action  on  the  unaltered 
chloranil.  To  make  up  such  a  tanning  solution 
finely  divided  chloranil  is  shaken  with  200  times 
its  weight  of  water  in  the  tanning  vessel  and  a 
quantity  of  phenol,  amounting  to  one-tenth  of  the 
chloranil  used,  is  added.  The  concentration  of  the 
liquor  can  be  varied.  The  tanning  action  of 
chloranil  solutions  is  considerably  greater  than  that 
of  solutions  of  quinone  and  its  substitution 
products.  If  the  chloranil  is  produced  by  the 
oxidation  of  trichlorophenol  with  bichromate,  the 
tanning  action  of  the  chromium  compounds  is 
available  also.  Colloidal  chloranil  solutions '  can 
also  be  used  in  conjunction  with  all  known  natural 
or  artificial  tanning  agents. — H.  C.  R. 

Chrome    leather;    Process    for    neutralising    . 

O.  Rohm.  G.P.  352,285,  18.11.16. 
Sodium  carbonate  or  other  alkali  or  alkaline-earth 
carbonate  is  used  in  conjunction  with  formaldehyde 
or  alkali  or  alkaline-earth  salts  of  the  lower  fatty 
acids  or  oxyacids.  The  formaldehyde  prevents  the 
basic  chromium  ss.lt  becoming  too  strongly  attached 
to  the  grain  of  the  leather,  with  resulting  ropiness 
and  brittleness  of  the  latter.  Chromium  salts  of 
the  lower  fatty  acids  are  produced  and  these  are 
more  strongly  basic  and  consequently  better  foT 
tanning  than  chromium  salts  of  mineral  acids.  Wet 
chrome-leather  is  neutralised,  for  example,  by 
treating  it  with  aqueous  sodium  carbonate  and 
formaldehyde,  or  with  water,  calcium  carbonate, 
and  sodium  formate  in  the  fulling-mill.  Acetates 
or  lactates  of  alkali  or  alkaline-earth  metals  can  be 
used  instead  of  the  formates. — H.  C.  R. 

Fish  refuse  and  the  like;  Production  of  a  plastic 

mass  from  .       Plauson's  Forschungsinstitut 

G.m.b.H.     G.P.  352,534,  30.6.20. 

Fish  meal,  fish  guano,  etc.  is  treated  with  acids, 
separated  from  large  foreign  particles  and  is 
re-precipitated  by  the  addition  of  a  large  quantity 
of  water  or  of  a  calculated  quantity  of  alkali,  the 
precipitate  being  rendered  insoluble  either  by  heat- 
ing to  100° — 180°  C,  or  by  warming  with  an  alde- 
hyde (formaldehyde  or  furfural)  or  with  tanning 
materials,  and  then  mixed  with  fibrous  or  pulveru- 
lent materials,  such  as  wood  meal,  cellulose, 
asbestos,   and   the   like.        During   the   process   for 


rendering  the  precipitate  insoluble,  it  may  be 
mixed  with  a  small  quantity  of  a  ketone,  or  phenol, 
or  tar  oils,  pitch,  wax,  resin,  rubber,  colouring 
matter,  etc.  Unless  powdered  material  is  added 
the  material  has  no  appreciable  resistance  to 
breakage. — A.  G. 

Material    resembling    horn;    Production    of    

Ges.  f.  Technik  m.b.H.  G.P.  352,594,  3.9.15. 
Phenols  and  aldehydes  are  heated  together  in  the 
presence  of  sodium  benzoate  or  salicylate  until  a 
product  is  formed  having  the  consistency  of  castor 
oil,  and  the  p-roduct  is  hardened  by  heating  in 
jjosed  moulds  to  120°— 140°  C— L.  A.  C. 

Leather  '  Process  for  the  impregnation  and  curry- 
ing of—-*-  H-  Burger.  E.P.  157,929,  10.1.21. 
Conv,,  14.5.14- 

See  G.P.  303,204  o.c  1914;  J.,  1921,  442  a. 

Oxalic  acid  from  leached  tan-bark.  G.P,  352,576. 
See  XX. 


XVI.-S0ILS ;  FERTILISERS. 

Ammonium  bicarbonate ;  Manufacture  and  employ- 

ment  of as  a  fertiliser.    W.  Gluud.    Chem.- 

Zeit.,  1922,  4G,  693—697,  715—717. 

The  present  economic  situation  in  Germany  and  in 
particular  the  dearness  and  scarcity  of  sulphuric 
acid  have  directed  attention  to  the  possibility  of 
replacing  ammonium  sulphate  for  fertiliser 
purposes  by  ammonium  bicarbonate.  A  series  of 
field  trials  carried  out  in  the  summer  of  1921  with 
equivalent  quantities  of  the  two  compounds  applied 
to  rye,  oats,  potatoes,  roots,  and  meadow,  gave  the 
general  result  that  the  bicarbonate  approached  the 
sulphate  in  value  and  in  some  cases  equalled  it. 
No  serious  loss  from  volatilisation  seems  to  have 
occurred,  at  any  rate  when  the  manure  was  raked 
or  harrowed  in.  The  bicarbonate  does  not  render 
the  soil  acid,  and  in  view  of  recent  work  on  the 
fertilising  value  of  carbon  dioxide  its  content  of 
the  latter  should  bo  beneficial.  The  6alt  can  be 
prepared  in  a  condition  suitable  for  sowing  and 
does  not  cake.  The  main  difficulty  has  always  been 
its  volatility,  but  while  some  loss  always  occurs  it 
is  believed  to  be  mainly  carbon  dioxide,  a  sesqui- 
carbonato  being  first  formed.  Packed  in  second- 
hand casks  the  salt  lost  2'75%  of  its  weight  in  30 
days.  In  paper  bags  treated  externally  with 
soluble  coumarone-resin  the  loss  in  the  same  period 
was  0'5%.  The  material  may  be  advantageously 
compounded  with  superphosphate.  Gasworks  and 
coke  ovens  working  the  indirect  or  semi-direct 
ammonia  recovery  process  can  be  easily  adapted  to 
manufacture  bicarbonate.  20%  ammonia  liquor  is 
run  into  a  water-jacketed  horizontal  cylinder  fitted 
with  an  agitator,  and  a  current  of  carbon  dioxide 
derived  by  distillation  from  the  dilute  crude  liquor 
from  the  washer  is  blown  through  for  10 — 12  hours. 
Traces  of  ammonia  carried  forward  are  absorbed  in 
acid,  and  at  the  end  of  that  time  the  contents  are 
run  off  and  the  separated  salt  is  centrifuged. 
This  process  is  not  readily  applied  to  those  coke- 
ovens  working  the  Otto  direct  recovery  method,  and 
such  will  probably  continue  to  make  sulphate.  Cost 
figures  show  a  saving  by  the  production  of  bicar- 
bonate, after  allowing  for  a  5%  loss  in  storage. 
compared  with  the  process  at  present  in  use.  While 
there  is  not  such  an  inducement  to  the  synthetic 
nitrogen  industry  to  manufacture  bicarbonate  on 
account  of  the  existence  of  plants  deriving 
sulphuric  acid  from  gypsum  and  the  great  advan 
tages  of  urea,  yet  even  in  such  cases  the  bicarbon 
ate  will  be  the  cheapest  form  of  nitrogen  compound 
to  produce. — C.  I. 


Vol.  XLI.,  No.  18.] 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


723  a 


Kitrogen     losses    from    dung     and    urine     during 

storage;    Studies    in   methods    to    prevent   . 

N.  V.  Joshi.    Agric.  J.  India,  1922,  17,  367—374. 

Fresh  samples  of  dung  and  of  urine  were  collected 
and  stored  in  jars,  some  of  which  were  sealed  and 
others  left  open  to  the  air.  The  nitrogen  content 
of  the  samples  was  determined  at  intervals.  The 
nitrogen  losses  from  dung,  under  both  aerobic  and 
anaerobic  conditions  were  small;  whilst  urine  lost 
considerable  amounts  of  nitrogen  when  stored 
aerobically.  By  storage  under  anaerobic  condi- 
tions, e.g.,  by  covering  with  paraffin  or  other  oils, 
nitrogen  losses  were  prevented.  The  addition  of 
sulphuric  acid,  superphosphate  and  formalin 
prevents  loss  of  nitrogen  from  stored  urine,  but  the 
cost  is  excessive.  Very  great  losses  were  observed 
when  urine  was  absorbed  in  soil  beds  or  in  straw. 
It  is  advisable  to  store  animal  dung  and  urine  in 
separate  pits. — A.  G.  P. 

Azotobacter  chrbococcum;  Influence  of  humus  on  the 

sensitiveness  of  ■  towards  boron.     J.   Voicu. 

Comptes  rend.,  1922,  175,  317—319. 

Cultures  of  the  organisms  were  treated  with  boric 
acid  in  varying  quantity,  and  measurements  were 
made  of  the  rate  of  nitrogen  fixation  in  the 
presence  of  humus.  In  the  absence  of  humus  the 
action  of  boric  acid  on  the  rate  of  nitrogen  fixation 
is  insignificant,  but  the  addition  of  humus  increases 
both  the  amount  of  nitrogen  fixed  and  the  toxicity 
of  the  boric  acid. — A.  G.  P. 

Elimination    of    borates    from    American    potash. 
Ross  and  Hazen.     See  VII. 

Iron  and  aluminium  in  phosphates.     Nydegger  and 
Schaus.     Sec  VII. 

Patents. 

Plants;  Prevention  of  damage  to ,  especially  by 

nematodes.       H.     Stoltzenberg.       G.P.     351,300, 
21.7.20.     Addn.  to  316,503  (J.,  1920,  290  a). 

A  product  suitable  for  preventing  the  growth  of 
nematodes  is  obtained  by  subjecting  saturation 
scum  from  sugar  refining  to  destructive  distillation, 
and  mixing  the  distillate,  which  contains  hydro- 
cyanic acid,  with  the  retort  residue.  The  percen- 
tage of  hydrocyanic  acid  in  the  distillate  can  be 
increased  by  adding  molasses  or  vinasses  to  the 
saturation  scum  prior  to  distillation. — A.  B.  S. 

Dibasic  calcium  phosphate;  Means  for  reducing  the 
amount   of  acid  required  in   the   production    of 

.     Bayerische  A.-G.  fiir  chem.  und  landwirt- 

schaftl.  chem.  Fabrikate,  and  H.  Hackl.  G.P. 
352,782,  12.2.20. 
The  amount  of  acid  usually  required  is  reduced  by 
adding  finely  ground  bone-meal  and  water  to  the 
monobasic  calcium  phosphate  produced  in  the 
customary  manner. — A.  B.  S. 

Fertiliser;  Production  of  a  .      C.  Kroseberg. 

G.P.  353,371,  8.6.21. 
A  solution  of  magnesium  chloride,  e.g.,  waste 
liquor  from  the  potash  industry,  is  heated  with  an 
excess  of  aqueous  ammonia  in  a  closed  vessel  under 
pressure.  The  product  is  filtered,  and  the  filtrate, 
after  addition,  if  necessary  of  the  requisite  quantity 
of  sulphuric  acid  or  ammonium  sulphate  to  react 
with  any  undecomposed  magnesium  chloride  still 
present,  is  evaporated  to  dryness. — A.  B.  S. 

XVII.-SUGABS ;    STABCHES;  GUMS. 

Moisture  absorptive  power  of  different  sugars  and 
carbohydrates,  under  varying  conditions  of 
atmospheric  humidity.  C.  A.  Browne.  J.  Ind. 
Eng.  Chem.,  1922,  14,  712—714. 

Various   carbohydrates   were   exposed   to   a  moist 


atmosphere  at  various  temperatures  and  degrees  of 
saturation  and  the  rate  of  absorption  of  water 
measured.  At  20°  C.  and  60%  humidity,  starch  was 
the  most  absorptive,  followed  by  cellulose  and  agar. 
Laevulose  was  relatively  low  in  the  series,  and 
dextrose,  mannitol,  and  sucrose  were  the  least 
absorptive.  In  a  saturated  atmosphere  lrevulose 
showed  the  greatest  absorptive  power.  When 
allowed  to  stand  under  ordinary  atmospheric 
conditions,  after  exposure  to  a  saturated  atmos- 
phere, all  substances  lost  moisture  except  lactose 
and  raffinose,  which  continued  to  gain  for  many 
months.  Where  water  was  absorbed  in  excess  of 
the  amount  required  to  form  a  monohydrate  the 
excess  was  lost  on  exposure  to  a  drier  atmosphere. 
No  definite  relationship  between  percentage  of 
humidity  and  absorptive  power  was  found. — A.  G.  P. 

2.3.6-Trimethylglucosc.      J.    C.    Irvine   and   E.    L. 
Hirst.     Chem.  Soe.  Trans.,  1922,  121,  1213—1223. 

The  isolation  and  physical  properties  of  2.3.6-tri- 
methylglucose,  one  of  the  hydrolysis  products 
obtained  from  trimethylcellulose,  and  indirectly 
from  lactose  and  cellobiose,  has  been  further 
studied.  As  no  crystalline  derivatives  of  the  sugar 
could  be  obtained,  its  identification  depends 
primarily  on  its  isolation  in  a  pure  crystalline 
condition  from  the  mixed  hydrolysis  products.  Of 
all  the  methods  examined  the  most  satisfactory 
consisted  in  separation  of  most  of  the  sparingly 
soluble  alkylated  galactose  by  fractional  crystallisa- 
tion of  the  anilides,  regeneration  of  the  sugar  from 
the  more  soluble  anilides,  conversion  into  the 
corresponding  methylglucosides,  and  fractionation 
of  these  in  a  high  vacuum.  The  middle  fraction 
consists  mainly  of  trimethyl-methylglucoside,  and 
after  hydrolysis  and  crystallisation  from  ether  the 
pure  substance  is  obtained  in  well-formed  needles, 
m.p.  122° — 123°  C.  A  dimorphic  form  crystallising 
in  short  prisms,  m.p.  92° — 93°  C,  was  also 
obtained.  This  did  not  consist  of  the  /J-form  of  the 
sugar.  Other  constants  observed  were  jid  =  1-4743 
(of  the  svrup),  [o]D  in  methyl  alcohol  =  +117-70->88"6° 
(no  catalyst),  [a]D  in  water= +90-2°+70-5°  (no 
catalyst).  The  final  optical  value  in  aqueous 
solution  agrees  with  that  obtained  on  hydrolysis  of 
the  methylglucoside,  which  latter  is  a  colourless 
mobile  svrup,  b.p.  150°  C.  at  0"07  mm.  The  con- 
stitution of  2.3.6-trimethylglucose  was  further 
confirmed  by  its  oxidation  with  nitric  acid  to  a 
dimethylsaecharic  acid. — G.  F.  M. 

Dextrin;  Specific  heat  and  heat,  of  wetting  of . 

Sprockhoff.  Z.  Spiritusind.,  1922,  45,  217. 
The  specific  heat  was  determined  calorimetrically 
by  mixing  with  petroleum.  The  average  figure  was 
0355  for  anhydrous  yellow  dextrin  and  0363  for  the 
white  variety.  The  "  heat  of  wetting  "  w;as 
obtained  by  moistening  the  dextrin  directly  with 
water  or  by  adding  water  to  a  petroleum  suspension 
of  dextrin.  An  average  figure  of  165  cals.  per  g. 
was  found.  Experiments  with  starch  showed  that 
the  greatest  heat  evolution  occurred  on  the 
addition  of  the  first  1%  of  water.— A.  G.  P. 

Patents. 

Sugar;  Process  for  refining  without  producing 

molasses.  A.  A.  Holland.  G.P.  351,376,  27.9.18. 
Addn.  to  348,064  (J.,  1922,  386  a). 
The  sugar  is  dissolved  in  water,  the  solution 
filtered,  and  the  filtrate  dried  by  means  of  hot  air. 
A  product  of  high  quality  is  obtained  and  the  whole 
of  the  sugar  is  recovered.  The  clear  solution  may 
be  sprayed  from  nozzles  or  atomised  by  centrifugal 
methods,  while  being  subjected  to  the  action  of  the 
hot  air.— H.  C.  R. 


724  a 


Cl.  xviii.— fermentation  industries. 


[Sept.  30,  1922. 


Starch;  Process  for  making  a  which  forms  a 

paste  with  cold  water.  F.  Supf.  G.P.  351,370, 
24.10.19. 
The  starch  is  treated  with  concentrated  alkali 
hydroxide  below  0°  C,  so  that  no  paste  is  formed, 
and  the  quantity  of  alkali  hydroxide  is  so  regulated 
that  on  allowing  the  temperature  to  rise  the 
reaction  which  takes  place  causes  tho  disruption  of 
the  starch  granules  without  gelatinisation.  It  is 
not  necessary  to  suspend  the  starch  in  water- 
repelling  liquids  before  treating  it  with  the  alkali 
hydroxide.  The  product  can  be  used  with 
advantage  in  the  textile  industry  for  finishing,  as 
a  thickening  agent  in  calico  printing,  as  a  size,  or 
for  wall-papering. — H.  C.  B. 


Preventing   growth   of   nematodes. 
See  XVI. 


G.P.   351,300, 


Sugar  from  wood,    E.P,  164,329,    See  XVIII. 


XVIII.— FERMENTATION  INDUSTRIES. 

Saccharomyces  Odessa,  nov.  spec.  H.  Schnegg  and 
F.  Oehlkers.  Z.  ges.  Brauw.,  1922,  45,  92—96, 
106—107,  111—113. 

This  yeast,  isolated  from  the  beer  of  an  Odessa 
brewery,  consists  normally  of  almost  round  or 
slightly  oviform  cells  and  on  8 — 10%  beer  wort  forms 
a  slight  film  and  a  ring  growth  which  gradually 
extends  to  the  rim  of  the  culture  vessel.  Both  the 
film  and  the  ring  contain  many  long,  sausage- 
shaped  cells  and  occasional  giant  cells.  The  organ- 
ism readily  forms  from  1  to  3  spores  per  cell,  these 
being  obtained  better  on  filter  paper  than  on 
plaster  blocks  and  in  greater  abundance  if  the 
yeast  is  previously  grown  in  a  strong  rather  than  in 
a  weak  wort.  The  giant  colonies  formed  on  wort- 
gelatin  closely  resemble  those  obtained  with  Froh- 
berg  yeast.  The  degree  of  fermentation  obtained 
with  7'9%  wort  is  about  62%,  and  the  yeast  fer- 
ments sucrose,  dextrose,  Isevulose,  maltose  and  man- 
nose  readily,  galactose  and  ramnose  slightly,  and 
lactose,  mannitol,  dextrin,  glycerol  amygdalin  and 
inulin  not  at  all.  The  organism  is  distinctly  thermo- 
philic and  reproduces  most  rapidly  at  32°  C.  The 
spores  exhibit  extremely  high  refraetivity,  and 
under  suitable  conditions  some  of  the  mother  cells 
containing  spores  are  capable  of  germination 
without  the  spores  themselves  undergoing  altera- 
tion.—T.  H.  P. 

Fermentation  accelerators.  Inouye.  Woch.  Brau., 
1922,  39,  191—193. 

The  author  has  repeated  with  Japanese  bottom 
fermentation  brewery  yeast,  both  fresh  and  dried, 
and  with  the  pressed  juice  prepared  therefrom,  the 
experiments  of  Neuberg  and  his  collaborators  on 
the  effect  of  certain  aldehydes,  ketones,  diketones, 
disulphides,  etc.  on  the  velocity  of  the  fermenta- 
tion. The  stimulating  action  observed  is  most 
marked  with  the  pressed  juice  and  least  marked 
with  the  dried  yeast.  Contrary  to  Neuberg's 
result,  vanillin  is  found  to  have  a  distinct,  although 
slight,  accelerating  action  on  fermentation  by  yeast 
juice.  With  juglone,  fenchone,  and  irone  the  effect 
is  more  pronounced.  Neutral  organic  salts  exert 
no  action,  although  Von  Euler  and  Casel  observed 
activation  by  such  compounds.  Shikimic.  abietic 
and  cholic  acids  cause  slight  activation.  The  fact 
'that  acetaldehyde  effects  permanent  acceleration  of 
fermentation  supports  Neuberg's  scheme  for  the 
mechanism  of  fermentation.  Xylose  and  uric  acid 
also  accelerate  fermentation. — T.  H.  P. 


Yeast;  Development  and  nutrition  of .    A.  Tait 

and  L.  Fletcher.    J.  Inst.  Brew.,  1922,  28,  597— 
613. 

Fermentation  experiments  have  been  carried  out  at 
65°  F.  and  under  varying  conditions  as  regards 
amounts  of  seed  yeast,  nitrogenous  nutrients,  etc. 
Confirmation  is  obtained  of  A.  J.  Brown's  observa- 
tion that  the  quantity  of  new  yeast  formed  is  prac- 
tically independent  of  the  proportion  of  seed  yeast 
used.  The  shape  of  the  vessel  employed  exercises  a 
marked  influence  in  laboratory  fermentations.  As 
regards  nitrogenous  nutrition,  the  results  obtained 
by  Stern  (J.,  1899,  933)  with  artificial  nutrients  are 
so  much  at  variance  with  everyday  practical 
observations  that  they  must  be  regarded  as  ab- 
normal and  as  controlled  by  a  dominant  factor  other 
than  those  specified.  Similar  abnormality  has  been 
encountered  by  the  authors  in  experiments  in  which 
the  nitrogenous  pabulum  of  the  yeast  consisted  of 
asparagine,  and  it  is  found  that  growing  yeast,  in 
its  search  for  nitrogenous  food,  breaks  down  aspara- 
gine. with  final  production  of  malic  acid,  which  acts 
as  a  poison  and  inhibits  reproduction  when  its  con- 
centration attains  a  certain  value.  When,  however, 
asparagine  is  used  in  conjunction  with  other  ampho- 
teric substances,  it  is  possible  for  yeast  to  assimilate 
a  greater  proportion  of  nitrogen.  The  favourable 
influence  exerted  on  the  assimilation  of  nitrogen 
and  the  development  of  yeast  by  addition  of  calciunj 
carbonate  to  an  asparagine  medium  is  only  slight 
and  less  than  was  expected;  the  cause  of  this  lies 
partly  in  a  mechanical  clogging  of  the  yeast  by  the 
particles  of  carbonate  with  consequent  diminution 
of  the  diffusion  surface.  Certain  other  substances, 
such  as  barium  sulphate  and  kaolin,  exhibit  a 
similar  effect.  The  fact  that  asparagine  is  not  a 
suitable  food  for  Saccliarornyces  cerevisire  furnishes 
an  explanation  of  the  formation  of  thin,  unstable 
beer  of  poor  flavour  when  the  use  of  slack  or  forced 
malt  gives  rise  to  an  excessive  proportion  of  amino- 
acids  in  the  wort.  Yeasts  grown  in  presence  of 
widely  different  proportions  of  nitrogenous  com- 
pounds vary  considerably  in  nitrogen  content  and 
the  fermentative  power  varies  approximately 
linearly  with  the  nitrogen  content.  If,  then,  two 
portions  of  the  same  wort  are  pitched  with  equal 
quantities  of  two  yeasts  of  the  same  species,  one 
of  high  and  the  other  of  'low  fermentative  power, 
the  resulting  crops  exhibit  to  a  considerable  degree 
the  parental  fermentative  characteristics;  this 
apparent  heredity  is,  however,  observable  only  when 
the  number  of  generations  of  veast  produced  is  very 
small.— T-  H.  P, 


Enzy mo-chemical  observations.  I.  Action  of  foreign 
enzymes  on  yeast  invertase.  II.  Bole  of  phos- 
phates in  the  degradation  of  carbohydrates.  H. 
von  Euler  and  K.  Mvroack.  Arkiv  Kemi,  Still. 
Geol.,  1921,  8,  No.  17,' 1—15.  Chem.  Zentr,,  1922, 
93,  III.,  524. 

Treatment  of  invertase  for  some  days  with  a 
culture  of  either  Bacillus  macerans  or  Aspergillus 
oryzee  or  with  the  digestion  juice  of  Bielix  Pomatia 
results  in  the  removal  of  part  of  the  impurities  of 
high  molecular  weight  but  leaves  the  invertase  un- 
weakened.  In  the  esterification  of  dextrose  and 
maltose  under  similar  conditions,  approximately 
double  as  much  phosphate  remains  non-esterified  in 
the  latter  as  in  the  former  case.  As  regards  the 
course  of  fermentation  in  presence  of  toluene, 
sucrose  and  maltose  exhibit  the  same  behaviour, 
the  toluene  retarding  the  liberation  of  carbon  di- 
oxide only  at  the  commencement  of  the  reaction. 
In  germinating  and  ripening  seeds,  extensive  iso- 
merisation  of  the  carbohydrates  takes  place, 
dextrose  being  transformed  into  lseyo-rotatory 
sugar    and   partially    re-formed;    in    this    process, 


Vol.  XLI.,  No.  18.] 


Cl.   XIXa.— FOODS. 


725  a 


which  is  intimately  connected  with  the  combination 
of  phosphate,  a  part  is  probably  played  by  a  sugar- 
isomerising  enzyme. — T.  H.  P. 

Starch;     Estimation     of     unsaccharified    ■ in 

brewers'  grains.    H.  Weiss.    Z.  ges.  Brauw.,  1922, 
45,  122—124. 

The  following  sedimetric  method  for  the  estimation 
of  unsaccharified  starch  in  brewers'  grains  yields 
accurate  results  in  far  less  time  than  saceharifica- 
tion  by  means  of  diastase  or  malt  extract  and  I 
subsequent  determination  of  the  quantity  of  extract 
thus  removed  from  the  grains ;  10  g.  of  the  wet 
grains  is  well  triturated  with  10  c.c.  of  water  in  a 
porcelain  casserole  and  then  heated  carefully  to  boil- 
ing during  10  minutes  with  80  c.c.  of  calcium 
chloride  solution  (1  part  of  the  anhydrous  chloride 
and  1  part  of  water) ;  if  alkaline  to  phenolphthalein, 
the  calcium  chloride  solution  must  be  neutralised  by 
addition  of  acetic  acid  before  use.  The  contents  of 
the  casserole  are  transferred  quantitatively  by  | 
means  of  hot  water  to  a  100  c.c.  flask,  cooled,  made 
up  to  volume,  mixed,  and  filtered  through  a  dry  [ 
pleated  filter  paper.  A  starch  solution  is  also  pre-  I 
pared  by  heating  1  g.  of  barley  (or  wheat)  starch, 
dried  at  100°  C,  with  10  c.c.  of  water  and  50  c.c. 
of  the  calcium  chloride  solution  in  a  100  c.c.  flask 
and  afterwards  treating  in  the  same  way  as  the 
wet  grains.  Of  the  two  solutions  thus  obtained  10 
c.c.  is  mixed  with  1  c.c.  of  N 12  iodine  solution  in 
two  sedimentation  tubes  having  the  narrowed 
bottom  portion  graduated.  After  a  short  time  the 
starch  iodide  should  separate  out  and  the  super- 
natant  liquid  should  be,  not  colourless  or  blue,  but 
distinctly  yellow.  The  tubes  are  then  centrifuged 
for  10  minutes  at  not  less  than  1200 — 1400  revs,  per 
minute,  and  the  percentage  of  unsaccharified  starch 
in  the  grains  calculated  from  the  volumes  occupied 
by  the  starch  iodide  in  the  two  cases.  Where  no 
suitable  centrifuge  is  available,  10  c.c.  of  the  starch 
solution  from  the  grains  is  diluted  in  a  200  c.c. 
cylinder  with  100  c.c.  of  water  and  the  liquid 
treated  with  very  dilute  iodine  solution  until  the 
maximum  blue  coloration  is  attained.  The  solution 
of  pure  starch  is  treated  similarly  and  the  coloration 
of  the  one  or  the  other  liquid  adjusted  by  dilution 
to  equality  with  that  of  the  other.— T.  H.  P. 

Patents. 

:    Sugar;  Process  for  the  manufacture  of  [ferment- 
able']   from  wood  and  other  cellulose-contain- 
ing substances.    A.  Classen.    E.P.  164,329,  1.6.21. 
Conv.,   4.6.20.     Addn.   to  142,480   (c/.   J.,   1921, 
405  a). 
The  wood  is  converted  into  sugar  by  means  of  a 
mixture  of  hydrochloric  acid  and  sulphuric  acid  (the 
former    acid    preferably    predominating    and    the 
mixture  being  sufficient  for  the  conversion),  with 
the   addition   of   a   catalyst   consisting   of    a  small 
amount  of  an  acid  or  an  acid  salt  or  a  mixture  of 
both.      Protective    substances,    such    as   metals  or 
metallic  oxides,  may  also  be  added. — J.  R. 

Yeast;  Process  of  drying  .      E.  Klein.      E.P. 

175,622,  10.2.22.     Conv.,  15.2.21. 

Whilst  moist  yeast  is  being  reduced  by  mechanical 
i  means  to  the  greatest  possible  fineness,  warm  air  is 
1  circulated   through    it.     The   dry   yeast   powder    is 

carried  away  by  the  warm  air  current  and  deposited 
j  in  a  separate  vessel. — J.  R. 

Glycerin;  Process  of  recovering  [from  fer- 
mentation products"].  J.  A.  Steffens,  Assr.  to 
U.S.  Industrial  Alcohol  Co.  U.S. P.  1,423,042, 
18.7.22.     Appl.,  19.11.19. 

Glycerin  is  recovered  from  materials  subjected  to 
•alcoholic  fermentation  by  precipitating  the  organic 

materials   with   an   acid,    distilling  off  the   water, 


leaching  with  a  liquid,  and  recovering  the  glycerin 
from  the  liquid  by  distillation. — T.  A.  S. 

Beer  containing  lecithin;  Process  for  brewing . 

W.  Schmitz.     G.P.  353,734,  22.6.13. 

Lecithin  is  rendered  soluble  in  water  and  largely 
freed  from  its  fatty  acid  components  by  treatment 
with  alcoholic  potassium  hydroxide,  and  is  added  to 
the  mash  together  with  the  usual  albuminous 
residue.  The  addition  of  the  lecithin  during  the 
brewing  causes  the  formation  of  lecithin-albumin 
and  lecithin-peptone,  which  remain  in  solution  in 
the  beer.—  H.  C.  R. 


XIXa-FOODS. 

Milk  analysis  by  semi-microchemical  methods. 
H.  Ltihrig.  Milchw.  Zentr.,  1922,  SI,  157—159, 
169—172. 

Slight  modifications  of  existing  methods  of  milk 
analysis  are  given,  whereby  only  1  g.  or  less  of  milk 
is  required  for  each  determination.  The  following 
determinations  are  dealt  with: — Sp.  gr.,  fat,  dry 
matter,  sp.  gr.  of  milk  serum,  ash  of  milk  serum, 
qualitative  test  for  nitric  acid,  acid  value,  total 
nitrogen,  lactose. — H.  O.  R. 

Condensed  milk;  Analytical  investigations  on  the 

ageing    of    .      G.    Viale    and    A.    Rabbeno. 

Biochem.     Terap.    Sperim.,    1921,    8,    325—352. 
Chem.  Zentr.,  1922,  93,  IV.,  263. 

Condensed  milk  was  examined  after  keeping  for 
periods  of  from  i  to  8  years.  The  sp.  gr.,  dry  matter, 
and  conductivity  showed  no  constant  changes  with 
time.  The  viscosity  increased  with  the  age  of  the 
sample.  The  total  acidity  in  most  cases  showed  an 
increase  in  the  older  samples,  but  was  subject  to 
considerable  variations.  No  oxidases  or  reductases 
were  found  in  the  condensed  milk.  The  time  of 
coagulation  with  rennet  was  considerably  greater 
with  condensed  than  with  fresh  milk.  The  total 
nitrogen  corresponded  to  an  average  albumin  con- 
tent of  8'65%,  which  indicates  a  concentration  of 
1:3.  The  mean  content  of  casein  was  8'35%  and 
this  was  not  altered  by  time.  The  very  low  con- 
tent of  non-albuminous  nitrogen  in  fresh  milk  is 
more  than  doubled  by  condensing  and  still  further 
increased  by  keeping  the  condensed  milk.  The 
amino-acids  are  decreased  and  only  amount  to 
00068 — 0-021%.  Polypeptides,  absent  in  fresh 
milk,  show  a  marked  increase  on  keeping  condensed 
milk.  In  old  samples  tyrosine  can  be  detected. 
The  increased  acidity  causes  a  slow  hydrolysis  of 
the  proteins.  The  samples  analysed  contained 
6—13-7%  of  lactose  and  32—40%  of  sucrose.  The 
older  samples  showed  a  decrease  of  lactose  to  half 
the  original  figure  and  a  decrease  in  sucrose  to 
about  15%.  A  partial  inversion  of  disaccharides  took 
place.  This  can  be  ascribed  to  the  increase  in 
acidity.  The  fat  content  in  fresh  samples  was 
8"6%,  and  fell  after  keeping  for  several  years  to 
3"43%.  The  free  fatty  acids  increased  slightly, 
while  the  volatile  fatty  acids  slightly  decreased. 
The  relation  between  saturated  and  unsaturated 
fatty  acids  showed  no  constant  change,  nor  did  the 
quantity  of  cholesterol  present,  which  was  about 
0024 — 012%.  The  milk  loses  sweetness  and 
becomes  brown  after  storage  for  several  years  owing 
to  the  oxidation  of  amino-acids  (tyrosine)  or  to 
decomposition  of  the  sugars. — H.  C.  R. 

Nitral;  Biological  action  of and  its  bearing  on 

the  hygiene  of  nutrition.     H.  Bart.     Arch.  Hyg., 
1922,  91,  1—40.    Chem.  Zentr.,  1922,  93,  IV.,  259. 

Nitral  is  purified  moist  nitrous  oxide.  Although 
this  gas  in  the  dry  state  possesses  no  bactericidal 
action,  the  moist  gas  at  increased  pressures  kills  all 


720  a 


Cr„  XIXb.— WATER   PURIFICATION;    SANITATION. 


[Sept.  30,  1922. 


vegetative  forms  of  bacteria,  but  not  spores  and 
conidia.  Fresh  milk  treated  with  nitral  at  30 — 35 
atm.  can  be  preserved  so  as  to  keep  for  at  least  a 
month  without  special  cooling  or  precautions  even 
at  18° — 37°  C.  Living  pathogenic  germs  other 
than  B.  tuberculosus  horn,  and  bov.,  suspended  in 
milk,  when  treated  with  nitral  at  48  atm.  and 
37°  C.,  after  5  days  treatment  were  weakened  to 
such  an  extent  that  they  no  longer  gave  a  reaction 
on  a  medium  of  lactose,  litmus  and  nutritive 
agar.  For  tubercle  bacilli  a  nitral  concentration 
corresponding  to  a  pressure  of  50  atm.  at  37°  C. 
was  necessary.  After  8  days  treatment  guinea 
pigs  could  no  longer  be  infected  with  the  cultures. 
The  original  properties  of  the  milk  are  fully  re- 
tained after  treatment  with  nitral.  Meat  can  also 
be  preserved  in  the  same  way  as  milk.  Meats  of 
the  most  varied  kinds  after  treatment  with  nitral 
at  38  atm.  pressure,  all  kept  for  at  least  a  month 
at  18°  C— H.  O.  R. 

Jams;  Detection  of  apple  juice  in  .       C.   F. 

Muttelet.     Ann.  Falsif.,  1922,  15,  196—200. 

The  acidity  of  red  and  black  currants,  raspberries 
and  strawberries  is  due  to  the  presence  of  citric 
acid,  that  of  apples  and  pears  to  malic  acid; 
cherries  also  contain  malic  acid.  It  is  proposed  to 
base  the  detection  of  apple  juice  in  jams  made  with 
the  first-mentioned  fruits  on  the  determination  of 
the.  quantity  of  malic  acid  in  the  mixture.  One 
hundred  g.  of  the  sample  is  warmed  with  50  c.c. 
of  water,  cooled,  treated  with  150  c.c.  of  alcohol, 
then  diluted  with  water  to  300  c.c,  and  filtered 
after  some  hours;  if  the  filtrate  is  highly  coloured 
it  must  be  decolorised  with  well-washed  charcoal. 
The  total  acidity  is  titrated  in  a  portion  of  the 
filtrate;  another  portion  of  100  c.c.  is  mixed  with 
200  c.c.  of  95%  alcohol,  neutralised  by  the  addition 
of  the  required  quantity  of  N  /l  potassium 
hydroxide  solution,  and  30  c.c.  of  5%  barium 
bromide  solution  (in  85%  alcohol)  is  added.  After 
a. few  hours  the  precipitate  of  barium  citrate  and 
malate  is  collected  on  a  filter  and  washed  with  80% 
alcohol  until  free  from  soluble  barium  salts.  It  is 
then  washed  with  water  into  a  flask,  the  volume 
made  up  to  100  c.c.  the  mixture  heated  at  100°  C. 
for  1  hr.,  cooled,  filtered,  and  the  filtrate  treated 
with  50  c.c.  of  95%  alcohol;  barium  citrate  is  pre- 
cipitated and  is  collected  on  a  filter.  The  filtrate 
from  this  precipitate  is  evaporated  to  50  c.c, 
cooled,  and  treated  with  25  c.c.  of  alcohol ;  the  last 
traces  of  barium  citrate  are  thus  precipitated  and 
are  collected.  The  filtrate  is  then  evaporated  to 
25  c.c,  cooled,  and  50  c.c  of  95%  alcohol  is  added; 
the  precipitated  barium  malate  is  collected,  washed 
with  66%  alcohol,  then  dissolved  in  water  and  the 
barium  precipitated  and  weighed  as  barium  sul- 
phate. Barium  sulphate  x  0'574  =  malic  acid. 
Apple  and  quince  jellies  examined  bv  this  method 
yielded  0172— 0310%  of  malic  acid,  but  the 
presence  of  this  acid  was  not  detected  in  currant 
and  raspberry  jams. — W.  P.  S. 

Pectin;  Study  of  the  relation  of  and  acidity 

in    jelly     makinq.     L.     Singh.     J.     Ind.     Eng. 
Chem.,  1922,  14,  710—711. 

The  effect  of  acid  concentration  on  the  amount  of 
sugar  required  to  produce  the  "  jellying  "  of  fruit 
juice  is  considerable,  an  increase  from  0"05  to 
2'05%  of  acid  reducing  the  sugar  required  by  over 
30%.  If  jelly  is  prepared  below  65%  sugar  con- 
centration the  product  and  container  must  he 
pasteurised.  Within  certain  limits  the  higher  the 
amount  of  pectin  in  the  juice  the  lower  is  the 
quantity  of  sugar  needed  to  produce  a  jelly.  If 
much  more  than  2%  of  pectin  be  used  the  excess 
separates  and  remains  inactive  on  the  surface. 
Waste  lemon  peels  from  citric  acid  factories  were 
found  to  be  extremely  rich  in  pectin. — A.  G.  P. 


Patent. 

Iron    and   other    magnetically    permeable    metals; 

Apparatus  for  separating  from  flour,  grain, 

and  the  like.    F.  King.     E.P.  183,940,  4.5.21. 


XIXb.-WATEB  PURIFICATION;  SANITATION. 

Tubercle    bacillus;    Action   of    tribromoxr/lenol    on 

.      T.    Duboc.      Comptes    rend.,    1922,     175, 

326—328. 

Trihromoxylenol,  added  to  emulsions  of  tubercle 
bacilli,  caused  the  separation  of  the  organisms  in 
a  layer- at  the  surface  of  the  liquid,  and  their 
gradual  disappearance,  leaving  the  liquid  perfectly 
clear.  Bovine,  avian,  and  human  organisms  were 
examined,  and  the  time  of  final  disappearance  was 
found  to  vary  with  the  strain,  and  previous 
treatment.      (Cf.   J.C.S.,   Sept.)— A.   G.   P. 

Patents. 
JJeaerating  of  liquids  [boiler-feed  wctir~\;  Heating 
and .    D.  B.  Morison.    E.P.  183,534,  15.4.21. 

In  a  method  of  deaerating  liquids  by  heat  treat- 
ment (cf.  E.P.  173,524;  J.,  1922,  193  a),  the 
deaeration  effect  is  enhanced  by  re-circulating  the 
warm  deaerated  liquid  after  mixing  it  with  the 
inflowing  liquid  of  lower  temperature  and  higher 
aeration. — J.  R. 

Sewage    xcater;    Apparatus   for    the    treatment   of 

.     V.  Lamy.     E.P.  167,504,  8.8.21.     Conv., 

7.8.20. 

The  sewage  is  fed  to  the  bottom  of  a  tank  through 
a  "  trompe-blowing  "  device  (water-jet  pump), 
and,  together  with  the  entrained  air,  rises  in  a 
tube  surrounding  the  fall  tube  of  the  pump,  and 
overflows  into  a  space  enclosed  by  a  cylindro- 
conical  baffle  concentric  with  the  tubes.  After 
flowing  under  the  lower  edge  of  the  baffle,  the 
liquid  rises  in  the  space  between  the  baffle  and 
the  wall  of  the  tank  and  is  discharged.  The  tank 
is  provided  at  the  bottom  with  an  outlet  for  settled 
sludge.  In  its  passage  through  the  apparatus  the 
sewage  is  strongly  aerated  and  agitated  in  the 
presence  of  the  fine  particles  of  sludge,  whereby  the 
major  portion  of  the  colloidal  substances  present 
is  precipitated.  The  space  between  the  tube  and 
baffle  is  of  such  size  that  the  time  of  circulation 
of  the  sewage  corresponds  to  the  time  necessary 
for  fermentation  to  be  completed. — J.  R. 

Purification      of     [phenol-']contan>.inated     liquors. 

The  Koppers  Co.,  Assees.  of  R.  L.  Brown.     E.P. 

161,976,  11.4.21.  Conv.,  30.4.20. 
The  waste  liquor  from  ammonia  stills,  or  other 
liquor  containing  phenol,  is  passed  through  a 
settling  tank  and  a  filter  containing  iron  oxide. 
A  suitable  filtering  medium  is  spent  blast-furnace 
slag  resulting  from  the  treatment  of  mine  water 
by  the  Heckman  process.  The  still  waste  may  be 
also  treated  for  the  removal  of  cyanogen  com- 
pounds. It  is  then  slowly  passed  through  a  filter 
composed  of  peat  or  other  humus  material  mixed 
with  coke  so  as  to  permit  of  free  access  of  air  and 
containing  aerobic  bacteria  which  oxidise  the 
phenols  and  thiocyanates.  In  starting  a  filter  the 
aerobic  bacteria  are  supplied  by  means  of  activated 
sewage  sludge  or  farmyard  manure.  About  85/ 
of  the  filtrate  is  returned,  so  as  to  reduce  the  phenol 
concentration  in  the  filter  to  1—2  parts  per  10.000. 

— H.  Hg. 

Arsenical  dust;  Production  of  .     J.  D.  Riedel 

A.-G.  G.P.  301,686,  3.7.15,  302,406,  8.9.15,  and 
302,407  17.7.15. 

A  mixture  of  arsenic  oxides  with  aluminium,  or  a 


Vol.  xli.,  No.  18]       CL.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &C. 


727  a 


mixture  of  aluminium  with  metallic  oxides  and 
substances  containing  arsenic,  is  ignited,  and  burns 
like  thermite,  with  production  of  free  arsenic, 
which  is  immediately  oxidised,  and  forms  a  dense 
heavy  fog,  which  rapidly  settles.  The  mixture  may 
be  used  for  killing  wild  rabbits  etc.,  its  poisonous 
nature  being  increased  by  the  addition  of  highly 
calcined  alkali  sulphide,  as  when  this  is  present, 
and  the  mixture  is  ignited,  arsenites  are  formed, 
which  are  much  more  poisonous  than  the  oxide. 
The  addition  of  ammonium  chloride  also  increases 
the  poisonous  nature  of  the  material,  as  arsenic 
chloride  and  hydride  are  then  formed. — A.  B.  S. 

Disinfectants;  Manufacture  of .     Chem.  Fabr. 

Griesheim-Elektron.     G.P.   354,593,   14.12.20. 

A  tar  oil  phenol  or  mixture  of  phenols,  pure  or 
mixed  with  neutral  tar  oil,  is  mixed  with  carbon 
tetrachloride  and  soap  in  such  proportions  that  a 
fluid  or  semi-solid  product  is  obtained,  from  which 
on  treat.nent  with  water  neither  the  carbon  tetra- 
chloride nor  the  phenol  or  phenol  and  tar  oil  will 
separate.  Glycerin  or  similar  substances  may  also 
be  added.  The  products,  unlike  lysol,  are  stable  in 
presence  of  water  containing  lime. 

Treatment  of  sewage  sludge.  E.P.  183,180.  See  Ha. 


XX.-OBGANIC  PRODUCTS;    MEDICINAL 
SUBSTANCES ;  ESSENTIAL  OILS. 

Aucubin  and  sucrose;  Presence  of in  the  seeds 

of  Melampyrum  arvense,   Linn.     M.  Bridel  and 
M.  Braecke.   J.  Pharm.  Chim.,  1922,  26,  129—134. 

The  seeds  of  Melampyrum  arvense  contain  in  addi- 
tion to  the  glucoside,  aucubin,  which  has  previously 
been  found  in  the  leaves  and  stems  of  this  plant, 
and  which  is  hydrolysed  by  emulsin  but  not  by 
invertase,  a  considerable  quantity  of  a  disaccharide, 
hydrolysable  by  invertase  and  giving  polarisation 
figures  closely  corresponding  to  those  of  sucrose. 
Aucubin,  isolated  from  the  alcoholic  extract,  was 
obtained  in  colourless  needles,  m.p.  181°  C,  a,,= 
-  1 74'85°.  When  hydrolysed  by  emulsin  or  sulphuric 
acid  a  black  insoluble  product  is  formed,  which  is 
characteristic  of  this  glucoside,  and  also  of  rhin- 
anthin,  a  glucoside  occurring  in  Ithinanthus  Cii.<t<<- 
Halli.  Linn.,  and  it  is  possible  that  the  two  sub- 
stances mav  be   identical. — G.   F.   31. 


— .   F.Mauthner. 
-136. 


Isoferulic  acid ;  Xetr  si/n theses  of — 
J.  prakt.  Chem.,  1922,  104,  132- 

Isoferulic  acid  (3-hydroxy-4-rnethoxycinnamic  acid) 
has  been  synthesised  by  reducing  4-methoxy- 
3-nitrocinnamic  acid  to  4-methoxy-3-aminocinnamic 
acid,  m.p.  179° — 180°  C,  and  then  replacing  the 
amino  group  by  hydroxyl.  Another  synthesis  is 
from  isovanillin.  prepared  by  partial  methylation 
of  protocatechuic  aldehyde,  by  condensation  with 
malonic  acid  in  acetic  acid  solution.  Carbon  di- 
ll oxide  is  lost  spontaneouslv,  and  isoferulic  acid  is 
I  formed.     (Cf.  J.C.S.,  Sept.)— W.  O.  K. 

i   Mellitic  acid,  pyromellitic  acid,  and  their  produc- 

Ition  from  carbon  by  oxidation.  E.  Philippi. 
Annalen,  1922,  42S,  286— 2S7. 
An  introduction  to  the  accompanving  papers  (cf. 
infra).— C.  K.  I. 
Mellitic  acid,  pyromellitic  acid,  and  their  produc- 
tion from  carbon  by  oxidation.  I.  Oxidation  of 
carbon  bu  nitric  acid.  E.  Philippi  and  G.  Rie. 
Annalen,"  1922,  428,  287—295. 

The    purification    of    the    crude    product    of    this 

I  reaction  is  a  difficult  matter,  and  the  chief  value  of 

the  process  lies  in  the  fact  that  pyromellitic  acid 


can  be  obtained  in  30%  yield  from  the  crude  pro- 
duct by  heating  with  sulphuric  acid  and  bisulphate. 

— C.  K.  I. 

Mellitic  acid,  pyromellitic  acid,  and  their  produc- 
tion from  carbon  by  oxidation.  II.  Oxidation  of 
carbon  by  sulphuric  acid.  E.  Philippi  and  R. 
Thelen.     Annalen,  1922,  428,  296—300. 

For  the  preparation  of  pyromellitic  acid,  finely 
powdered  wood  charcoal  (100  g.),  commercial  sul- 
phuric acid  (1200  g.,  6p.  gr.  1"76 — 1"80),  and  one 
globule  of  mercurv,  are  heated  during  3  hours  to 
250°  C,  during  a  further  half-hour  to  295°  C,  and 
then  gradually  to  315°  C,  at  which  temperature  the 
mass  is  maintained  until  frothing  ceases.  The 
product  is  then  distilled  from  a  retort  with  the 
addition  of  30 — 40  g.  of  potassium  bisulphate,  the 
pyromellitic  anhydride  being  collected  in  water. 
The  yield  of  pyromellitic  acid  is  6 — 7  g.  (Cf.  J.C.S., 
Sept.)— C.  K.  I. 

Mellitic  acid,  pyromellitic  acid,  and  their  produc- 
tion from  carbon  by  oxidation.  III.  Synthesis  of 
pyromellitic  acid  from  commercial  xylene.  E. 
Philippi,  R.  Seka,  and  N.  Froeschl.  Annalen, 
1922,  428,  300—306. 

Commercial  xylene  is  converted  by  means  of  acetyl 
chloride  and  aluminium  chloride  into  a  mixture  of 
acetylxylenes,  which  are  reduced  to  ethylxylenes. 
These  are  re-acetylated  in  the  same  manner,  and  the 
mixture  of  acetylethylxylenes  reduced  to  diethyl- 
xvlenes,  which  on  oxidation  by  nitric  acid  give 
pyromellitic  acid.     (Cf.  J.C.S.,  Sept.)— C.  K.  I. 

[Fatty']   acids   of  low  molecular   weight;   Catalytic 

decomposition  of  .      A.  Mailhe.      Bull.  Soc. 

Chim.,  1922,  33,  681— 6S7. 

Acetic,  isobutyric,  butyric,  isovaleric,  and  pelar- 
gonic  acids  were  heated  to  about  600°  C.  in  contact 
with  copper-aluminium  and  the  resulting  products 
examined.  Carbon  monoxide,  carbon  dioxide, 
methane,  and  hydrogen  were  produced  in  different 
proportions  in  each  case.  With  the  exception  of 
acetic  acid,  each  substance  also  yielded  some  other 
paraffins  and  some  olefines.  With  the  acids  of  higher 
molecular  weight,  liquid  products  were  also  ob- 
tained ;  this  was  most  marked  in  the  case  of  pelar- 
gonic  acid.  It  is  shown  that  in  each  case 
the  corresponding  ketone  (acetone,  isobutyrone, 
butyrone,  isovalerone,  nonylone)  is  an  intermediate 
product  and  by  its  decomposition  forms  certain  of 
the  end  products. — H.  J.  E. 

Trimethylene  isomerism.  Velocity  of  ring  fission 
in  gases.  M.  Trautz  and  K.  Winkler.  J.  prakt. 
Chem.,  1922,  104,  53—79. 
Measurements  have  been  made  of  the  reversible 
reaction,  propylene^trimethylene.  The  mixture 
obtained  bv  passing  pure  trimethylene  or  propylene 
through  a  "tube  at  a  definite  temperature  of  about 
600°  or  700°  C.  was  analysed  by  finding  the  density 
of  the  product  in  the  liquid  state  at  -79°  (cf. 
supra).  The  result  had  to  be  corrected  for  the 
polvmerised  material  also  formed.  The  equilibrium 
mixture  consists  very  largely  of  propylene.  The 
isomerism  of  trimethylene  to  propylene  is  uni- 
molecular,  and  its  speed  is  influenced  by  the  shape 
of  the  containing  vessel  and  the  material  of  which 
it  is  made,  though  these  effects  decrease  in  magni- 
tude with  rise  of  temperature.  The  heat  of  the 
reaction  at  550°— 650°  C.  is  calculated  to  be 
63900  cals.  At  higher  temperatures  the  reaction 
proceeds  further,  and  carbon,  methane,  and 
hydrogen  are  formed  from  propylene. — W.  O.  K. 

Terpin;     Identification     of     in-     a     complex 

mixture  Deniges.  Bull.  Soc.  Pharm.  Bordeaux, 
1922,  [2].    Ann.  Chim.  Analyt.,  1922,  4,  239—241. 

The  presence  of  terpin  in  a  complex  powder  was 


728  a 


Cfc.  XX.— ORGANIC  PRODUCTS ;  MEDICINAL  SUBSTANCES,  &o.  [Sept.  so,  1922. 


established  microchemically  as  follows :  The  powder 
was  moistened  with  a  drop  of  85%  alcohol  on  a 
microscope  slide,  and  the  liquid  flowing  beyond 
the  limits  of  the  powder  and  evaporating  left 
characteristic  tufts  of  prismatic  needles  of  terpin 
hydrate.  Characteristic  needles  of  anhydrous 
terpin  were  obtained  by  micro-sublimation  of  the 
powder  on  to  a  drop  of  water  hanging  on  the  under 
side  of  a  cover  glass.  The  ni.p.  of  the  crystals  was 
determined  by  floating  a  cover  glass,  on  which  was  a 
sublimate  of  the  terpin,  on  a  bath  of  mercury  which 
was  gradually  heated,  and  observing  the  tempera- 
ture at  which  the  initially  white  sublimate  became 
transparent.  The  terpin  was  further  identified 
by  the  carmine  red  colour  which  was  developed 
when  one  or  two  drops  of  a  1%  solution  of  sucrose 
or  laevulose  in  25%  alcohol  was  added  to  a  mixture 
of  an  alcoholic  extract  of  the  powder  and  concen- 
trated sulphuric  acid. — G.  F.  M. 

Terpenes,  phytosterols,  and  resins.  I.  Amyrin; 
Extraction  of  amyrin.  K.  A.  Vesterberg. 
Annalen,  1922,  428,  243—246. 

A  bibliographical  and  historical  note. — C.  K.  I. 

Terpenes,  phytosterols,  and  resins.    II.    Separation 

of  a-  and  fS-amyrin;  Preparation  of  a-amyrilene. 

K.  A.  Vesterberg  and  S.  Westerlind.     Annalen, 

1922,  428,  247—251. 

Details   are   given  for   the  preparation   of  crude 

amyrin.  C,„H49OH,  for  its  separation  into  a-  and 

/3-aniyrin     by     fractional     crystallisation     of     the 

benzoates,  and  for  the  preparation  of  a-amyrilene, 

C30H4a,  by  the  action  of  phosphorus  pentachloride 

on  a-anvyrin.- — C.  K.  I. 

Odour;  Belationship  of to  molecular  structure. 

R.  Delange.    Bull.  Soc.  Chim.,  1922,  33,  589—630. 

A  general  survey  of  the  subject  dealing  with  vari- 
ous theories  which  have  been  put  forward  and 
attempts  to  apply  methods  of  quantitative 
measurement.     A  bibliography  is  given. — H.  J.  E. 

Anthracene  series.     Barnett  and  Cook.     See  IV. 

Patents. 

Condensation  products  of  formaldehyde  and 
phenols;  Process  for  the  preparation  of  water- 
soluble  alkali  salts  of .     H.  Bucherer.     G.P. 

350,043,  12.9.18. 
The  resinous  condensation  products  of  phenols 
and  formaldehyde  are  dissolved  in  less  than  the 
equivalent  quantity  of  alkali,  the  amount  depend- 
ing on  the  use  to  which  the  salts  are  to  be  put, 
and  the  solid  alkali  salts  are  salted  out  as  a  solid 
or  soap-like  mass  by  known  methods.  With  the 
equivalent  or  greater  quantities  of  alkali  a  solid 
salt  cannot  be  salted  out.  The  compounds  are 
soluble  in  water,  but  the  solutions  are  decomposed 
by  carbon  dioxide,  or,  on  heating,  with  partial  pre- 
cipitation of  the  condensation  product.  The  salts 
find  application  in  the  textile  industry.— A.  R.  P. 

Acetyl  chloride  and  its  homologues;  Process  for  the 

preparation  of .     Chem.  Fabr.  vorni.  Weiler- 

ter  Meer.  G.P.  350,050,  3.2.20. 
Acetic  acid,  its  anhydride,  or  an  anhydrous 
acetate,  or  homologues  of  these  substances  are 
heated  with  benzoyl  chloride  to  a  temperature 
above  the  boiling  point  of  the  required  aliphatic 
acid  chloride.  As  by-products,  benzoic  acid  or 
benzoic  anhydride,  together  with  hydrochloric  acid 
or  sodium  chloride,  are  produced. — A.  R.  P. 

Fatty  acids;  Process  for  the  preparation  of  

from  hydrocarbons.    W.  Mathesius.    G.P.  350,621, 
11.3.16. 

Hydrocarbons  are  heated  to  a  high  temperature 
under   pressure   with   water   and   oxygen   or   gases 


containing  oxygen,  preferably  in  the  presence  of 
alkalis  or  alkali  carbonates  to  prevent  further 
oxidation  of  the  fatty  acids.  Catalysts  may  be 
used  to  increase  the  yield  which,  under  favourable 
conditions,  is  about  60%. — A.  R.  P. 

Diethyl  sulphate;  Process  for  the   preparation  of 

.     A.  Wohl.     G.P.  350,808,  31.3.18. 

Ethylsulfhuric  acid  is  distilled  under  a  high 
vacuum,  and  the  more  volatile  by-products,  e.g., 
alcohol,  ether,  and  water,  are  condensed  by  cooling 
to  -80°  C,  or  by  absorption  in  films  of  cold  con- 
centrated sulphuric  acid.  Diethyl  sulphate,  under 
these  conditions,  distils  at  about  110°  C.,  even  from 
ethylsulphuric  acid  containing  an  excess  of  sul- 
phuric acid,  without  the  formation  of  substitution 
or  oxidation  products. — A.  R.  P. 

a-ChlorocrotonaJdehyde ;  Process  for  the  preparation 

of  .      Chem.   Fabr.   vorm.   AVeiler-ter  Meer. 

G.P.  351,137,  18.12.20. 

Crotonaldehtde  is  treated  with  chlorine  and  the 
o/i-dichlorobutyraldehyde  produced  is  treated  with 
water,  the  solution  neutralised  with  lime,  and  the 
a-chlorocrotonaldehyde  formed  is  distilled  in  steam, 
dried,  and  rectified.  It  is  a  colourless  liquid  boiling 
at  147° — 149°  C.  and  may  be  used  for  the  prepara- 
tion of  butyrochloral  hydrate. — A.  R.  P. 

Ethers  of  homologues  of  hydroxybenzyl  alcohols  con- 
taining methyl  groups  attached  to  the  nucleus 

[linseed  oil  substitutes'];  Process  of  making  ■ . 

M.  Melamid.     G.P.  352,003,  28.4.20. 

Solutions  in  20%  caustic  soda  of  the  hydroxy 
alcohols  made  from  m-  or  p-cresol  or  technical  cresol 
mixtures  and  formaldehyde  are  heated  to  100°  C. 
with  allyl  or  vinyl  bromide.  The  product  is  diluted 
with  water  and  the  solution  extracted  with  ether  or 
acetone.  After  distillation  of  the  latter  a  viscous, 
light  brown  liquid  is  obtained  which  rapidly  dries 
in  the  air  and  may  be  used  as  a  substitute  for 
linseed  oil. — A.  R.  P. 

Oxalic  acid;  Process  for  the  preparation  of  

from  leached  tan  bark.  A.  Wipfler.  G.P.  352,576, 
2.10.20. 
The  residue  from  extracting  pine  bark  for  tanning 
purposes  is  transferred  while  still  hot  from  the 
extraction  apparatus  and  allowed  to  absorb  as  much 
of  a  hot  mixture  of  potassium  and  sodium  hydr- 
oxides as  possible.  The  resulting  mass  is  dried 
while  vigorously  stirring  and  slowly  heated  for  1  hr. 
to  220°  C,  then  for  J  hr.  to  240°  C.  The  cold  mass 
is  leached  and  the  oxalic  acid  present  extracted  by 
known  methods.  The  yield  is  about  70 — 90%  of  the 
dry  bark  after  extracting  the  tannin.— A.  R.  P. 

Colloidal  silver  halides;  Production  of  solid  . 

J.  D.  Riedel  A.-G.     G.P.  352,656,  16.5.19.   Addn. 

to  350,097. 
Colloidal  silver  halides,  prepared  as  described  in 
G.P.  350,097  (J.,   1922,  392  a),   are  converted  into 
the    solid    state    by    precipitation    with    organic 
solvents — A.  B.  S. 

Arylsulphonic  acid  esters  of  halogenated  aliphatic 

alcohols;  Process  for  the  preparation  of .    <*. 

von  Kereszty  and  E.  Wolf.  G.P.  353,195, 
29.5.19.  Conv.,  24.3.19. 
Into  a  cold  solution  of  the  arylsulphonic  acid 
chloride  in  the  halogenated  alcohol  a  concentrated 
solution  of  caustic  alkali  is  stirred,  drop  by  drop, 
until,  after  vigorous  shaking,  the  alkaline  reaction 
still  persists.  Benzenesulphonyl  chloride  and 
glvcolchlorhydrin  when  treated  in  this  manner 
vieUd  chloroethyl  benzenesulphonate,  b.p.  1*1  ^-  « 
8—11  mm.— A.  R.  P. 


Vol.  XLI.,  No.  18.] 


Cl.  XXI.— photographic  materials  and  processes. 


729  a 


Formaldehyde;  Manufacture  of .     The  Barrett 

Co.,  Assees.  of  G.  C.  Bailey  and  A.  E.  Craver. 
E.P.  163,980,  16.3.21.     Conv.,  26.5.20. 

See  U.S.P.  1,383,059  of  1921 ;  J.,  1921,  637  a. 

Silver  alcosols;  Process  for  production  of with 

aid  of  organic  bodies.  Soc.  Chim.  Usines  du 
Rhone.     E.P.  173,733,  2.9.21.     Conv.,  5.1.21. 

See  U.S.P.  1,413,151  of  1922;  J.,  1922,  438  a. 

Vinyl  halides;  Manufacture  of  .     H.  Plauson. 

U.S.P.  1,425,130  8.8.22.     Appl.,  13.1.21. 

See  E.P.  156,117  of  1920;  J.,  1922,  436  a. 

Phosphoric  esters;  New  liquid and  processes  of 

making  same.  New  mixed  phosphoric  esters  and 
processes  of  making  same.  A.  L.  Laska  and 
H.  H.  C.  Prillwitz,  Assrs.  to  Chem.  Fabr.  Gries- 
heim-Elektron.  U.S.P.  1,425,392-3,  8.8.22. 
Appl.,  12.4.21. 

See  E.P.  181,835  of  1921;  J.,  1922,  647  a. 


XXI.— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Patents. 

Photography ;  Multicolour  screens  for .     J.  H. 

Chnstensen.  E.P.  163,311, 12.5.21.  Conv.,  15.5.20. 

Decrease  in  brilliancy  and  clearness  on  mordanting 
the  dyes  of  a  multicolour  screen  is  avoided  by 
comminuting  (e.g.,  emulsifying)  liquids  containing 
dye  and  mordant  in  such  a  form  that  precipitation 
does  not  take  place,  so  that  mordanting  occurs  only 
after  the  particles  of  liquid  have  been  applied  to 
the  underlayer  and  dried.  The  underlayer  consists 
of  a  basic  cellulose  derivative,  such  as  collodion 
containing  a  little  soap. — W.  C. 

Colour  kinematography.     R.  O.  P.  Humpherv  and 
C.  H.  Friese-Greene.     E.P.   183,150,  4.11.21. 

Different  sections  of  panchromatic  or  colour- 
sensitive  film  are  exposed  alternately  through  a 
special  moving  shutter  to  white  light  with  a  colour 
phase  on  the  blue  side  of  the  spectrum  and  to 
coloured  light  on  the  red  side  of  the  spectrum. 
The  area  of  the  colour  phase  is  less  than  that  of 
the  white  light,  and  the  density  of  the  red  colour 
filter  should  preferably  diminish  from  one  end  of 
I  the  filter  to  the  other.— W.  C. 

1  Tricolour     photography;     Method     of     producing 

photographic   plates   for   indirect   .      E.    A. 

Lage.     E.P.  183,189,  19.3.21. 

Three  silver  halide  emulsion  films,  each  sensitised 
for  different  spectrum  colours,  are  superimposed 
directly  upon  each  other  and  brought  into  optical 
contact  by  expressing  the  intervening  air  from 
■between  the  films  by  the  pressure  of  spring- 
actuated  or  yielding  rollers. — W.  C. 

Photographic   plates;   Process   for   preparation   of 
.     H.   Schreiber.     G.P.   350,658,  24.5.21. 

Plates  which  can  be  developed  in  fairly  bright 
light  without  treatment  with  an  aqueous  solution 
of  desensitiser  are  prepared  by  treating  the  dry, 
exposed  plate,  before  development,  with  an  alcoltolic 
jsolution  of  Phenosafranine.  On  drying,  a  thin 
51m  of  desensitiser  forms  on  the  surface,  and  on 
contact  with  water  it  reacts  with  the  silver  bromide 
in  the  film.  The  sensitiveness  of  the  plate  is  so 
reduced  that  further  treatment  can  be  carried  out 
n  moderately  bright  light. — W.  C. 

Photographic  material  for  production  of  positives. 

'    H.  Schreiber.     G.P.  350,659,  24.5.21. 

A    silver-emulsion    layer,    the    sensitiveness    of 


which  is  lowered  by  addition  of  desensitisers  is 
placed  on  a  suitable  support  (glass,  celluloid,  or 
paper).  On  this  coating  is  placed  a  transferable 
emulsion  coating  of  high  sensitiveness.  The  com- 
bination is  exposed  and  the  upper  film  can  be 
developed  without  the  lower  layer  being  affected. 
From  the  negative  so  obtained,  a  positive  is  pro- 
duced in  the  lower  coating  by  a  second  exposure, 
and  the  two  films  are  then  separated. — W.  C. 

Multicoloured  screen-plates ;  Process  for  the  prepa- 
ration  of   .      F.    W.    May.      G.P.    351,763, 

22.3.21.  '       ' 

To  a  film  support  covered  with  a  gelatin  layer  a 
coating  is  applied  warm,  in  the  form  of  lines.  The 
film  is  hardened  and  coloured  in  the  free  spaces, 
the  surface  is  treated  with  formalin,  ferric  chloride 
or  aluminium  acetate;  the  cover  film  is  then  washed 
off  and  the  process  repeated  for  the  other  colours. 
Printing-oil  colours,  removable  by  benzene,  are 
used  for  the  cover  layer.  The  screen  on  a  celluloid 
base  is  coated  with  a  colour-sensitive  emulsion, 
and  is  then  ready  for  use. — W.  C. 

[Photographic]  transfer  films.     Farbenfabr.  vorm. 

F.  Bayer  und  Co.  G.P.  351,904,  13.8.20. 
Paper  is  coated  with  hardened  gelatin  or  other 
colloid  (glue,  fish-glue,  casein),  and  a  rubber  film, 
and  then  with  a  photographic  emulsion,  so  that 
the  microscopic  projecting  fibres  of  the  paper 
cause  the  transferable  film  to  adhere  in  the 
developing,  fixing  and  washing  baths.  The  paper 
is  exposed,  fixed  and  washed  like  an  ordinary 
plate.  After  drying,  the  negative  is  cut  round  the 
edges  and  one  corner  is  cracked,  after  which  it 
becomes  detached  from  its  support,  and  can  be 
easily  removed.  For  hardening  the  gelatin, 
formalin  or  potash  alum  can  be  used  in  addition 
to  chrome  alum. — W.  C. 

[Photographic]  brown-tone  printing-out  emulsions. 
Farbenfabr.  vorm.  F.  Bayer  und  Co.  G.P. 
351,905,  8.3.21. 

Brown  tones  are  obtained  by  adding  an  element  of 
the  sulphur  group  to  the  prepared  emulsion  and 
fixing  in  an  ordinary  acid  fixing  bath.  In  the  case 
of  collodion  emulsions  a  solution  of  sulphur  in 
carbon  tetrachloride  is  added;  to  gelatin  P.O. P. 
emulsions  is  added  a  solution  of  sulphur  in  carbon 
tetrachloride  together  with  an  oil.  Selenium  and 
tellurium  have  the  same  action. — W.  C. 

Tungstic  acid;  Production  of  non-phosphorescent, 

highly  fluorescent  compounds  of [for  X-ray 

photography'].    E.  Tiede.     G.P.  353,075,  14.5.20. 

Non-phosphorescent,  highly  fluorescent  compounds 
of  tungstic  acid,  particularly  alkaline-earth  com- 
pounds, are  prepared  by  using  tungstic  acid  of 
high  purity,  made  by  repeatedly  crystallising 
ammonium  paratungstate,  and  precipitating  with 
pure  nitric  acid.  By  the  use  of  non-phosphorescent 
compounds  intensifying  screens  are  obtained  which 
are  superior  to  those  ordinarily  used  both  for  visual 
examination  and  for  the  production  of  radiographs. 

—A.  B.  S. 

[Photographic]  transfer  films;  Process  for  prepara- 
tion of .  Mimosa  A.-G.  G.P.  354,294,  21.9.20. 

On  a  temporary  support  is  laid  a  collodion  film  con- 
taining rubber  or  resins,  to  which  the  sensitive 
emulsion  is  applied  either  directly  or  with  a  rein- 
forcing layer.  By  this  method  gelatin,  baryta, 
cellulose-ester  film,  etc.  can  be  used  as  substrata 
instead  of  rough  paper. — W.  C. 

[Photographic]  fixing-bath ;  Regeneration  of  . 

P.  Orywall.     G.P.  354,295,  29.4.19. 

Molecular  quantities  of  alkaline-earth  sulphides 
and   anhydrous   sodium   carbonate,    together   with 


73'JA 


Cl.  XXII.— EXPLOSIVES  ;    MATCHES.      Cl.  XXIII.— ANALYSIS. 


[Sept.  30,  1922. 


2 5°/  of  paraformaldehyde  are  added  to  the  fixing- 

bath  "in  amount  corresponding  to  the  silver  content 
of  the  latter.  The  silver  is  precipitated  and  the 
hath  regenerated.  This  method  has  advantages 
over  the  use  of  sodium  sulphide. — W.  C. 
Colour-i>hotoqraphy  ■  Process  for  atomising  colloids, 
with  exception  of  soaps,   free  from  bubbles,   for 

,, repartition  of  colour  screens  for  use  in .    M. 

Obergassner.    G.P.  354,389,  7.5.14. 
Colloid  solutions  are  atomised  by  means  of  such 
gases  or  vapours  as  are  soluble  in  the  colloid  or 
colloid  solution. — W.  C. 


Photographic  plates. 
15.2.21. 


K.  Wiebking.    G.P.  354,432, 


To  the  glass  side  of  plates  is  applied  a  coating  con- 
taining a  desensitiser,  such  as  Safranine,  the  coat- 
ing being  soluble  in  cold  water,  or  capable  of 
yielding  up  the  desensitiser  to  water.  "When  the 
Safranme  has  dissolved  the  exposed  plates  can  be 
developed  in  bright  yellow  light. — \V.  C. 

XXII.-EXPLOSIVES ;    MATCHES. 

Patents. 
Cellulosic    colloids;    Method    of    controlling    the 

stabiliser  content  of  .     G.  Rocker,  Assr    to 

E  I  du  Pont  de  Nemours  and  Co.  U.h.i'. 
1,424,212,  1.8.22.  Appl.,  17.12.20. 
The  colloid  is  washed  with  a  solution  containing 
the  stabiliser  and  afterwards  with  a  liquid  in 
which  the  stabiliser  is  insoluble,  but  which  is 
miscible  with  the  solvent  in  which  the  staoiliser 
is  dissolved. — H.  C.  R. 

Cartridge  for  blasting  with  liquid  air  and  process 
for  producing  the  same.     A.  Kowastch.      U.b.P. 
1,424,488,  1.8.22.     Appl.,  19.7.20. 
Peat  is  combined  with  the  usual  components  of  a 
cartridge  for  blasting  with  a  liquefied  gas. 

— H.  C  lv. 

Solvents;  Recovery  of  from,  the  raw  material 

for  smokeless  powder  etc.  Westfalisch-Anhalt- 
ische  Sprengstoff  A.-G.  G.P.  307,077,  26.9.17. 
The  material  is  stored  with  charcoal.  The  volatile 
solvents  are  absorbed  by  the  charcoal  and  can  be 
recovered  from  it  by  known  distillation  processes. 
The  process  has  the  advantage  of  great  simplicity. 

— H.  C.  R. 

Nitrocellulose;  Process  for  dissolving  .     Koln- 

Rottweil  A.-G.  G.P.  352,905,  27.11.18. 
Mixtures  of  benzene  with  methyl  alcohol,  to  which 
in  certain  cases  small  quantities  of  gelatinising 
agents,  such  as  acetone,  amyl  acetate,  pyridine  and 
nitrobenzene,  are  added,  are  used  instead  of  the 
customary  benzene-alcohol  mixture.  The  above 
gelatinising  agents  may  also  be  added  to  mixtures 
of  benzene  and  ethyl  alcohol,  after  which  nitro- 
cellulose can  bo  completely  dissolved  in  the  mix- 
tures. These  solvents  are  of  value  in  the  manu- 
facture of  powders  and  of  artificial  silk.— H.  C.  R. 

Detonating  caps  for  mining  and  military  purposes; 

Process     for     the.     manufacture     of  .       W. 

Friederich.       U.S.P.    1,424,462,    1.8.22.       Appl., 

15.12.20. 
See  E.P.  138,083  of  1920;  J.,  1921,  100  a. 

XXIII.— ANALYSIS. 

Nephelcctromcter;   The  .       I.   N.   Kugehnass. 

Comptes  rend.,  1922,  175,  343—345. 
Changes  in  the  degree  of  aggregation  of  a  colloidal 
solution  may  be  observed  by  determining  the  varia- 


tions in  its  degree  of  transparency.  The  apparatus 
consists  essentially  of  three  parts — an  electric 
lamp,  a  vessel  to  contain  the  solution,  and  a  thermo- 
pile. The  lamp,  which  gives  weak  but  constant 
illumination,  is  placed  in  a  metal  box,  the  interior 
of  which  is  blackened,  and  when  coloured  solutions 
are  being  examined  the  light  is  filtered  to  render  it 
monochromatic.  A  lens  is  interposed  between 
lamp  and  solution  to  obtain  a  parallel  beam.  The 
vessel  containing  the  solution  has  parallel  sides 
which  are  provided  with  circular  transparent  areas 
through  which  the  light  may  pass.  An  aperture 
furnished  with  a  ground  stopper  serves  for  the  in- 
troduction of  the  solution  to  be  examined.  The 
diameter  of  the  sensitive  portion  of  the  thermo- 
electric cell  is  of  the  same  size  as  the  transparent 
portion  of  the  vessel.  The  apparatus  is  stan- 
dardised by  filling  the  vessel  with  distilled  water 
and  determining  the  number  of  seconds  required 
to  obtain  a  deviation  of  the  needle  of  a  millivolt- 
meter  through  100  divisions.  The  colloidal  solution 
is  then  placed  in  the  vessel,  and  the  deviation  of 
the  needle  for  the  same  number  of  seconds  is  noted. 
The  variation  in  transparency  can  thus  be 
measured  quantitatively. — H.  J.  E. 

Ex-traction   medium   [e.g.,    ether];   Recovery   of  a 

volatile    in    laboratory    practice.      A.    B. 

Pichler.    Chem.-Zeit.,  1922,  46,  698. 

If  a  large  bulk  of  material  has  to  be  extracted  with 
ether,  or  other  expensive  solvent,  an  economy  is 
obtained  by  placing  a  thimble  with  its  contents, 
after  extraction,  in  a  boiling  tube  and  substituting 
this  for  the  flask  of  a  Soxhlet  containing  a  fresh 
thimble.  After  boiling  for  10  mins.  in  a  water 
bath  the  ether  contained  in  the  residue  has  all 
passed  up  into  the  fresh  material  and  the  extracted 
thimble  can  be  removed  and  dried. — C.  I. 

Titration   of   acids   and   bases.     J.   L.   Lizius  aid 
N.  Evers.     Analyst,  1922,  47,  331—341. 

The  theory  of  titration  is  outlined  and  the  depend- 
ence of  the  hydrogen  ion  concentration  of  the  c.ul 
product  on  the  nature  of  the  salt  formed  is  ex- 
plained. A  list  of  newer  indicators  with  their 
colour  changes  and  the  pB  range  over  which  ll.ey 
are  applicable  is  given,  and  four  mixed  indio '.;ors 
are  suggested.  A  table  of  common  titrations 
showing  the  hydrogen  ion  concentrations  at  the 
end-points,  suitable  indicators,  and  the  colours  ob- 
tained at  the  end-points  is  also  given.  By 
titrating  to  a  definite  shade  of  colour  instead  of 
to  the  colour-change  of  the  indicator,  an  increase 
in  the  accuracy  of  titration  results,  and  certain 
titrations  are  made  possible  which  are  imprac- 
ticable by  ordinary  methods. — H.  C.  R. 

Electrometric  titrations  with  mercuric  perchlorate. 

I.  M.  Kolthoff.     Z.  anal.  Chem.,  1922,  61,  332- 

343. 
Electrometric  titration  with  mercuric  perchlorata 
solution  affords  a  trustworthy  ineans  of  deter- 
mining chlorides,  iodides,  bromides,  thiocyanates. 
cyanides,  ferrocyanides,  formates,  acetates,  niono- 
chloroaeetates,  lactates,  benzoates,  and  salicylates; 
in  the  cases  of  chlorides,  iodides,  and  bromidi 
end-point  is  very  sharp,  even  in  very  dilute  solu- 
tion, but  the  method  is  not  applicable  to  mixtures 
of  these  salts.  The  method  cannot  be  used  lor  the 
determination  of  trichloroacetates,  owing  to  the 
ready  hydrolysis  of  the  mercury  compound  formed, 
nor  is  it  applicable  to  the  salts  of  polybasic  aliphatic 
acids.  The  mercury  perchlorate  solution  used  \> 
prepared  by  neutralising  perchloric  arid  with  pure 
mercuric  oxide ;  when  all  the  perchloric  acid  has 
been  neutralised  the  solution  on  treatment  with  an 
excess  of  sodium  chloride  is  neutral  towards  di- 
methyl-yellow (dimethylamiuoazobenzene). 


Vol.  XXI.,  No.  18.1 


PATENT  LIST. 


731  A 


Gold;  Estimation  of  small  quantities  of  ,   as 

colloidal  gold,  by  the  colorimetric  method.  J.  A. 
Muller  and  A.  Foix.  Bull.  Soc.  Chim.,  1922,  33, 
717—720. 

The  gold  to  be  estimated  should  have  been  pre- 
viously separated  from  other  metals;  a  brief  account 
of  the  methods  of  separation  used  by  the  authors  is 
given.  It  is  then  dissolved  in  aqua  regia,  the  excess 
of  the  reagent  evaporated,  the  solution  diluted  to 
a  concentration  not  exceeding  1/40  mg.  per  c.c.  and 
reduced  by  formaldehyde  in  presence  of  alkali.  It 
is  essential  that  the  particles  in  the  two  solutions 
to  be  compared  should  be  of  the  same  size;  this  con- 
dition is  satisfied  if  reduction  is  carried  out  in 
identical  circumstances.  The  authors'  results  are 
reliable  in  the  case  of  gold  separated  from  arsenic, 
antimony,  tin,  molybdenum,  and  tungsten,  but  not 
in  that  of  gold  separated  from  vanadium. — H.  J.  E. 

Phosphorus  in  minerals  and  colce  ash;  Colorimetric 

estimation  of .    G.  Misson.    Bull.  Soc.  Chim. 

Belg.,  1922,  31,  222—225. 

One  g.  of  the  mineral  is  dissolved  in  10  c.c.  of 
nitric  acid  and  30  c.c.  of  hydrochloric  acid,  the 
solution  is  evaporated  to  dryness,  the  residue  dis- 
solved in  concentrated  hydrochloric  acid  and 
treated  with  successive  quantities  of  pure  nitric 
acid  until  free  from  all  traces  of  chlorine.  The 
residue  is  finally  dissolved  in  25  c.c.  of  nitric  acid 
(sp.  gr.  1'20),  and  the  solution  treated  with  10  c.c. 
of  permanganate  solution  (8  g.  per  litre)  and  boiled 
for  2  mins.  Any  precipitated  manganese  oxide  is 
dissolved  by  adding  10  c.c.  of  a  solution  of  sodium 
peroxide  in  nitric  acid  (40  g.  of  peroxide  in  1  litre 
of  1:9  acid),  10  c.c.  of  ammonium  vanadate  solution 
is  added  and,  after  boiling,  10  c.c.  of  ammonium 
molybdate.  The  colour  produced  is  compared  with 
a  standard.  Modifications  of  the  method  are 
used  for  minerals  having  a  phosphorus  content 
above  0"2%  and  also  for  coke  ash.  Comparison 
of  the  results  with  those  obtained  by  gravimetric 
methods  shows  that  the  colorimetric  method  is 
reasonably  accurate,  especially  in  the  case  of  small 
percentages. — H.  J.  E. 

'Hydrogen;  Estimation  of  and  its  separation 

from   gaseous  paraffins   by  means  of  palladious 

chloride.  J.  A.  Muller  and  A.  Foix.  Bull.  Soc. 
Chim,  1922,  33,  713—717. 

.IIhe  gaseous  mixture  containing  hydrogen  is  placed 
fjin  a  small  flask  over  water  and  brought  into  con- 
jtact  with  138  mg.  of  palladious  chloride  dissolved 
in  1  c.c.  of  water  for  each  15  c.c.  of  hydrogen  pre- 
sumed present.    The  whole  is  heated  to  50° — 60°  C. 
rntil  absorption  of  the  hydrogen  is  complete,  the 
j/essel  being  shaken  from  time  to  time  in  order  to 
jlislodge   the    particles    of   precipitated    palladium 
•Tom  the  surface  of  the  liquid.     Heating  is  con- 
tinued   until    no   further   deposition   of   palladium 
|>ccurs ;  the  time  required  for  complete  absorption 
s  about  a  week.     The   palladium   is  collected  and 
H'eighed ;  a  correction  for  occluded  hydrogen  must 
jie  made,  and  it  is  stated  that  0'24  c.c.  of  hydrogen 
t  0°  C.  and  760  mm.  pressure  corresponds  to  1  mg. 
,f  precipitated  palladium.     Experimental  data  are 
•  ;iven  for  pure  hydrogen  and  mixtures  of  hydrogen 
/ith  methane  and  ethane  respectively. — H.  J.  E. 

See  also  pages  (a)  697,  Efficiency  of  steam-pipe 

\overings  (Jakeman).     698,  Volatile  matter  in  coal 

}Deville).     699,   Volatility  of  oils  (Matthis).     706, 

)tromide  in  potassium  iodide  (Grossniann) ;  Iodates 

(•»  potassium   iodide   (Lachartre) ;   Sulphides  (Bud- 

ikow     and     Krause) ;     Iron     and     aluminium     in 

hosphates  (Nydegger  and  Schaus).    707,  Monazite 

vVenger     and     Christin).        713,      Ferro-titanium 

irandjean).       714,     Sodium     in    aluminium    and 

lumina  (Geith^ ;  Tin  in  alloys  (Nagel) ;    Gases  in 

etals  (Simons).  718,  Sulphuric  acid  reaction  for 


liver  oils  (Drummond  and  Watson).  725,  Starch  in 
brewers'  grains  (Weiss) ;  Milk  analysis  (Liihrig). 
726,  Apple  juice  in  jams  (Muttelet).  727,  Terpin 
(Deniges). 

Patents. 
Gas  calorimeters.    Igranic  Electric  Co.,  Ltd.    From 
The  Cutler-Hammer  Mfg.  Co.     E.P.   (a)  183,408 
and  (b)  183,409,  7.4.21. 

(a)  In  gas  calorimeters  in  which  a  stream  of  a  test 
gas  is  burned  in  heat-exchanging  relation  with  a 
stream  of  cooling  fluid,  error  due  to  loss  of  heat 
during  the  heat  exchange  is  eliminated  by  causing 
the  stream  of  cooling  fluid  after  it  has  absorbed  heat 
liberated  by  the  combustion  of  the  test  gas  to  flow 
in  heat-exchanging  relation  with  the  incoming 
stream  of  cooling  fluid  before  or  during  such  absorp- 
tion  of    heat,    whereby   the    stream    is    preheated. 

(b)  In  gas  calorimeters  in  which  electrical  resistance 
thermometers  are  subjected  to  temperatures  the 
difference  between  which  varies  according  to  the 
heating  value  of  the  combustible  gas  employed,  the 
temperature  coefficients  of  resistance  of  the  ther- 
mometers are  adapted  to  vary  according  to  the 
respective  temperatures  so  that  a  constant  relation, 
independent  of  the  temperature  at  which  the  test  is 
carried  out,  is  maintained  between  the  resistancea 
of  the  thermometers,  for  a  constant  heating  value 
of  the  combustible  gas.  Thus  the  resistance  ther- 
mometers may  be  constructed  of  suitably  propor- 
tioned sections  of  nickel  and  copper  wires. 

—J.  S.  G.  T. 

Gas  blowpipe  burners  [for  use  in  laboratories,  etc."]. 
H.  G.  Becker.     E.P.  183,563,  23.4.21. 


Patent  List. 

The  dates  given  in  this  list  are,  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given :  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Bader,  and  British  Cellulose  and  Chem.  Manuf. 
Co.  Separation  of  liquids  from  mixtures.  24,128. 
Sep.  6. 

Buckley  and  Harvey.  Centrifugal  drying- 
machines.     23,946.     Sep.  4. 

Duckham,  and  Woodall,  Duckham,  and  Jones. 
Annular  muffle  furnaces  or  ovens.     24,045.     Sep.  5. 

Fraser.     24,318.     See  II. 

Hansen.     23,441.     See  VII. 

Ionides.     Mixing  machines.     24,423.     Sep.  8. 

Jamieson.  Apparatus  for  emulsifying  liquids  etc. 
23,282.     Aug.  28. 

Lambert  and  Reed.  Mixing  machine.  23,758. 
Sep.  1. 

Marks  (Raymond  Bros.  Impact  Pulverizer  Co.). 
Pulverising  apparatus.     23,451.     Aug.  29. 

Millikeu.  Apparatus  for  extracting  dust  and 
fume  from  gases.     24,179.     Sep.  6.     (U.S.,  6.9.21.) 

Povey.  Machines  for  disintegrating  and  emulsi- 
fying.    23,921.     Sep.  4 

Renault.  Centrifuges.  23,462.  Aug.  29.  (Fr., 
7.3.22.) 

Rigby.  Heating  liquids  or  admixed  solids  and 
liquids  in  evaporative  treatment.     23,911.     Sep.  4. 

Salerni.  Apparatus  for  purifying  gases  etc. 
23,581.     Aug.  30. 


732  a 


PATENT   LIST. 


(Sept.  30,  1922. 


Salerni.  Distilling,  heating,  codling,  drying, 
evaporating  etc.  liquids.     23,583.     Aug.  30. 

Cohtc.ete  Specifications  Accepted. 

14.078  (1921).  Welford.  Cleansing  and/or 
humidifying  apparatus  for  air  or  other  gases. 
(184,871.)     Sep.  6. 

14,152  (1921).  Wade  (Union  Trust  Co.).  Re- 
generative furnaces.     (184,877.)     Sep.  6. 

22,785  (1921).  Oehm.  Furnaces.  (185,320.) 
Sep.  13. 

23,575  (1921).  Faber  and  Briscoe.  Rotary  kilns. 
(185,327.)     Sep.  13. 

26,584  (1921).  Zynkara  Co.,  and  Cross.  Compo- 
sitions for  preventing  corrosion  and  removing  in- 
crustations in  boilers  etc.     (185,035.)     Sep.  6. 

26,717  (1921).  Clark,  Dawson,  and  Dawson. 
Apparatus  for  pulverising,  mixing,  and  grading. 
(185,037.)     Sep.  6. 

20,130  (1922).     L'Air  Liquide.     See  VII. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE   DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Alexander  (U.S.  Gasoline  Manuf.  Corp.).  Pro- 
ducing hydrocarbon  compounds.     23,289.     Aug.  28. 

Alexander.  Motor  spirit  for  internal-combustion 
engines.     24,340.     Sep.  8. 

Barker,  Broadhead,  and  Hunt.  Manufacture  of 
combustible  gases.     23,761.     Sep.  1. 

Barrett  Co.  Manufacture  of  coke.  23,963. 
Sep.  4.     (U.S.,  2.11.21.) 

Beasley.     23,620.     See  XXIII. 

Diamond.     Motor  spirit.     24,286.     Sep.  7. 

Engel  and  Masson.  Clarifying  and  refining 
crude  oils.     23,529.     Aug.  30. 

Farbenfabr.  vorm.  F.  Bayer  u.  Co.  Absorbing 
ethylene  and  its  homologues.  24,410.  Sep.  8. 
(Ger.,  9.9.21.) 

Farbw.  vorm.  Meister,  Lucius,  u.  Briining.  Manu- 
facture of  methane.  23,561  and  23,674.  Aug.  30 
and  31.     (Ger.,  4.10.21.) 

Fraser.     Gas-washing  apparatus.    24,318.     Sep.  8. 

Hackford.  Manufacture  of  gas  from  oil  and 
utilising  resulting  gas.     23,572.     Aug.  30. 

Laing  and  Nielsen.  Distillation  of  carbonaceous 
etc.  materials.     23,796.     Sep.  1. 

Meade.     Gasification  of  coal.     23,398.     Aug.  29. 

Neath.  Manufacture  of  gas  from  coal  and  oil. 
32.869.     Sep.  2. 

Tinker.    Production  of  petrol  etc.    24,062.    Sep.  5. 


Complete  Specifications  Accepted 


and 


6010     (1921).      Reid.      Production     of     gas 
carbonaceous  materials.     (185,135.)     Sep.  13. 

6274  (1921).  Seigle.  Apparatus  for  cracking 
hydrocarbon  or  other  oils.     (185,140.)     Sep.  13. 

14,276  (1921).  Umpleby  and  Powers.  Gas 
generators  and /or  retorts.     (184,887.)     Sep.  6. 

15,066  (1921).  Stenning,  Beasley,  and  Minerals 
Separation,  Ltd.  Production  of  coal  briquettes. 
(185,216.)     Sep.  13. 

19,158  (1921).  Lenta.  Oven  for  semi-coking  of 
fuels.     (166,544.)     Sep.  13. 

20,374  (1921).  Ehlers.  Refining  mineral  oils 
obtained  from  earth  oil.     (184,991.)     Sep.  6. 


Ill— TAR    AND    TAR    PRODUCTS. 

Applications. 

Thompson  (Klipstein  and  Sons  Co.).  Manufac- 
ture of  derivatives  of  carbazols.     23,361.     Aug.  29. 

Thompson  (Klipstein  and  Sons  Co.).  Manufac- 
ture of  p-dichlorbenzene.     23,362.     Aug.  29. 


IV.— COLOURING    MATTERS    AND    DYES. 

Applications. 

Thompson  (Atack).  Manufacture  of  azines  and 
hydroazines  of  the  anthraquinone  series.  23  809 
Sep.  2. 

Thompson  (Klipstein  and  Sons  Co.).  Manufac- 
ture of  sulphide  dyestuffs  and  processes  of  dyeing 
therewith.     24,002.     Sep.  5. 

Complete  Specification  Accepted. 

6063  (1921).  Aback  and  Soutar.  Anthraquinone 
dyestuffs.     (185,137.)     Sep.  13. 

V.— FIBRES;    TEXTILES;    CELLULOSE; 
PAPER. 

Applications. 


Manufacture     of     viscose.       23,657. 


Transforming  vegetable 
23,671.     Aug.  31.     (Fr., 


Delahaye. 
Aug.  31.  * 

Mourlaque  and  Parent, 
matter  into  paper  pulp. 
1.9.21.) 

Perrv.  Treatment  of  materials  containing  cellu- 
lose.    23,295.     Aug.  28. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Treat- 
ment of  cellulose  etc.     23,808.     Sep.  2. 

Reynard,  Tapping,  and  Thornlev.  Manufacture 
of  cellulose.     23,421.     Aug.  29. 

Ros,  and  Volos  Manufacture.  Treatment  of 
fibrous  material.     24,281.     Sep.  7. 

Rvberg  and  Schaanning.  Grinding  paper  pulp. 
24,321.     Sep.  8.     (Ger.,  7.3.21.) 

Soc.  de  Stearinerie  et  Savonnerie  de  Lyon. 
Manufacture  of  cellulose  ether  salts.  24,153. 
Sep.  6.     (Fr.,  29.7.22.) 

Vielle.    Rendering  materials  waterproof. 


Sep.  7. 

Vielle. 
24,207. 


24,206. 


Manufacture  of   tarpaulins,   ropes,   etc. 
Sep.  7. 


Complete  Specifications  Accepted. 

14,033  (1921).  Schulke.  Production  of  wool- 
like yarns  from  artificial  threads.    (167,458.)    Sep.  6. 

18,462  (1921).  Soc.  du  Feutre.  Carrotting  fur 
and  hair.     (167,748.)     Sep.  13. 

19.951  (1921).  Zellstoff-fabr.  Waldhof,  Hang- 
leiter,  and  Clemm.  Recovery  of  sulphurous  acid 
and  heat  from  the  waste  gases  from  pulp  boilers. 
(167,171.)     Sep.  13. 

VI.— BLEACHING ;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Dyeing  artificial  silk  etc.     23,543.     Aug.  30. 

Calico  Printers'  Assoc.,  and  Fourneaux.  Mercer- 
ising and  finishing  fabrics.     23,328.     Aug.  28. 

Thompson  (Klipstein  and  Sons  Co.).  24,002. 
See  IV. 

Complete  Specifications  Accepted. 

14,441  (1921).  Silbereisen.  Apparatus  for  scour- 
ing, dyeing,  etc.  fabrics  in  the  piece  in  continuous 
process.     (176,306.)     Sep.  6. 

21,557  (1921).  Calico  Printers'  Assoc.,  and 
Nelson.    Printing  textile  fabrics.    (185,007.)    Sep.  6. 

VII.— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC   ELEMENTS. 

Applications. 

Belton  and  Dempster.  Effluent  value  for  ammoBM 
liquor  etc.  plant.     23,264.     Aug.  28. 

Carpmael  (BuckmanV  Titanium  complexes  ana 
method  of  producing  sam;.     23,427.     Aug.  29. 


i 


Vol.  XLI.,  No.  18.] 


PATENT   LIST. 


733  a 


Germot.  Manufacture  of  oxide  of  antimony. 
24,362.     Sep.  8. 

Goodwin.  Manufacture  of  oxides  of  nitrogen  and 
nitric  acid.     24,008.     Sep.  5. 

Hansen.  Treatment  of  containers  etc.  of  iron  for 
manufacture  of  sodium  peroxide.    23,441.     Aug.  29. 

Jacob.son.  Manufacture  of  anhydrous  metal 
chlorides.     23,473.     Aug.   30.     (U.S.,   31.5.22.) 

Price.     Chemical  compound.     21,315.     Sep.  8. 

Rawson.  Treatment  of  hydromagnesite.  23,419. 
Aug.  29. 

Complete  Specifications  Accepted. 

5615  (1921).  Amer.  Zeolite  Corp.  Preparation 
of  artificial  base-exchanging  bodies.  (159,196.) 
Sep.  6. 

14,0*5  (1921).  Soc.  Anon,  de  Produits  Chim. 
Etabl.  Maletra.  Continuous  production  of 
sulphates:    (163,706.)     Sep.  6. 

14,459  (1921).  Casale  and  Leprestre.  Apparatus 
for  the  catalytic  synthesis  of  ammonia.  (185,179.) 
Sep.  13. 

16,619  (1921).  Wilderman.  Processes  and  cells 
for  electrolytic  decomposition  of  alkali  salts. 
(184,938.)     S~ep.  6. 

18,805  (1921).  Schmdedel.  Manufacture  of 
sulphuric  acid.     (184,966.)     Sep.  6. 

4435  (1922).  Blanc.  Separation  of  chlorides  of 
aluminium  and  potassium  present  in  solutions 
obtained  in  treating  leucite.     (176,770.)     Sep.  13. 

13,466  (1922).  Carteret  and  Devaux.  Production 
of  crystalline  titanium  oxide.     (185.374.)     Sep.  13. 

20,130  (1922).  L'Air  Liquide.  Separating  the 
elementary  constituents  of  air  or  other  gaseous 
mixtures.     (184,454.)     Sep.  13. 

VIII.— GLASS;    CERAMICS. 

Application. 

Grace.  Separation  of  micaceous  etc.  material 
from  china  clay.     23,318.     Aug.  28. 

Complete  Specification  Accepted. 
14,189     (1921).       Plauson's     (Parent    Co.),    Ltd. 


(Plauson).     Refining    clay, 
(184,880.)     Sep.  6. 


especially    china    clay. 


IX.— BUILDING  MATERLaLS. 
Applications. 


Pre- 


Burt,   Boulton,  and  Haywood,  and  China, 
servation  of  timber.     23,560.     Aug.  30. 

Dyson.    Concrete  for  flooring  etc.    24.113.    Sep.  6. 

Munro.   Manufacture  of  cement.    23,810.    Sep.  2. 

Wallace.  Bituminous  paving-material.  23,319. 
Aug.  28. 

Complete  Specification  Accepted. 

19,446  (1921).  Soc.  de  Recherches  et  de  Perfect. 
Indus.    Impregnation  of  wood.    (168,045.)    Sep.  13. 

X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Cadby  and  Sons,  and  Willing.  Iridescent  heat 
bronzing  on  metals.     23,495.     Aug.  30. 

Crawshaw.  Apparatus  for  hardening  and 
tempering  steel  etc.     24,195.     Sep.  7. 

Elektrizitatswerk  Lonza.  Iron  alloys.  24,176. 
Sep.  6.    (Switz.,  10.9.21.) 

Elektrizitatswerk  Lonza.    24,271.    See  XI. 

Evans  and  Lewis.  Recovery  of  tin  from  tin-pot 
skimmings.     24,433.     Sep.  9. 

France.     Mineral  washing.     23,775.     Sep.  1. 

Germot.  Direct  obtainment  of  antimony.  24,361. 
Sep.  8. 

Geyer.  Aluminium  allovs.  23,429,  23,430. 
Aug.  29.     (Fr.,  30.12.21,  2.5.22.) 


Golby  (Nelson).  Soldering  metals.  23,522. 
Aug.  30. 

Hansen.    23,441.    See  VII. 

Heenan.  Electrolytic  systems  for  preventing  in- 
crustation and  corrosion  of  metals.  23,684.  Aug.  31. 

Herbert.  Testing  hardness  of  metals  etc.  24,200. 
Sep.  7. 

Leggo.  Furnaces  etc.  for  ore  roasting  etc. 
24,059.     Sep.  5.     (Australia,  19.12.21.) 

Saltrick.     Alloys.     24,119.     Sep.  6. 

Saltrick.     Metals  and  alloys.     24,120.     Sep.  6. 

Vautin.     Production  of  copper.     24,28S.     Sep.  7. 

Vivian.  Treatment  of  ores  etc.  by  flotation. 
23,784.     Sep.  1. 

Complete  Specifications  Accepted. 

11.310  (1921).  Rogers  (Calorizing  Corp.  of 
America).  Furnace  particularly  for  calorizing 
metals.     (184,839.)     Sep.  6. 

11.311  (1921).  Rogers  (Calorizing  Corp.  of 
America).     Metallic  alloys.     (184,840.)     Sep.  6. 

11,786  (1921).  Skelley,  Merson,  and  Continuous 
Reaction  Co.  Manufacture  of  ferrotungsten  and 
ferromolybdenum.     (184,843.)    Sep.  6. 

11,7^7  (1921).  Skelley,  Smith,  and  Continuous 
Reaction  Co.     Ferrous  alloys.     (184,844.)     Sep.  6. 

15,179  (1921).  Turner.  Manufacture  of  carbon- 
free  ferromolvbdenum.     (184,912.)     Sep.  6. 

15,655  (1921).  Cammell,  Laird  and  Co.,  Allan, 
Hague,  and  Middleton.  Cementation  of  iron,  steel, 
and  ferrous  allovs.     (184,920.)     Sep.  6. 

15,96S,  19,249,  20,938,  and  33,100  (1921).  Sul- 
man,  Tapling,  Perkins,  and  Picard.  Treatment  of 
ores  containing  copper  silicate.    (185,242.)    Sep.  13. 

17,499  (1921).  Carteret  and  Devaux.  Treatment 
of  titanium  ores  containing  iron.   (184,948.)   Sep.  6. 

18,034  (1921).  Usines  Metallurgiques  de  la  Basse- 
Loire.    Production  of  basic  steel.    (184,957.)  Sep.  6. 

18,533  (1921).  Barron  and  Barron.  Annealing 
and/or  other  heat  treatment  of  metals.  (185,277.) 
Sep.  13. 

21,662  (1921).  Rushen  (A.-G.  Felder-Clement). 
Manufacture  of  tungsten  carbides  without  free 
carbon  for  use  as  tools  etc.     (185,313.)     Sep.  13. 

22,216  (1921).  Mulligan.  Readily  fusible  alloys. 
(185,012.)    Sep.  6. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

Buffard.  Recuperative  electrolytic  cell.  23,931. 
Sep.  4.     (Fr.,  15.9.21.) 

David  and  Dutt.    Dry  batteries.    24,294.    Sep.  7. 

Elektrizitatswerk  Lonza.  Applying  alloys  of 
silicon  and  calcium  in  electrolytic  processes.  24,271. 
Sep.  7.     (Switz.,  10.9.21.) 

Foulds  and  Leblanc.  Copper  oxide  cells.  24,279. 
Sep.  7.     (Fr.,  8.9.21.) 

Freeth  and  Munro.  Electric  batteries.  23,824. 
Sep.  2. 

Genese,  Minchin,  and  others.  Electric  storage 
batteries.     23,646.     Aug.  31. 

Heenan.     23,684.     .S'ee  X. 

Oldham,  and  Oldham  and  Son.  Galvanic 
batteries.     24,274.     Sep.  7. 

Plews.  Manufacture  of  storage-battery  plates. 
23.447.     Aug.  29. 

Powell.     Primary  batteries.     23,490.     Aug.  30. 

Scott.  Electrolytic  gas-generating  systems. 
23,977.     Sep.  4. 

Complete  Specifications  Accepted. 

6011  (1921).  Reid.  Electric  furnaces.  (185,136.) 
Sep.  13. 

9024  (1921).  Wade  (Hazelett  Storage  Battery  Co.). 
Manufacture  of  storage  batteries.  (185,148.) 
Sep.  13. 

9494  (1921).  Smith.  Storage  batteries.  (160,821.) 
Sep.  13. 

D 


734  a 


PATENT   LIST. 


[Sept.  30,  1922. 


11,375  (1921).  Warnon.  Electric  battery. 
(184841.)     Sep.  *6. 

11  890  (1921).  Pehrson.  Furnaces  ior  electric 
heating.     (162,285.)     Sep.  6. 

16,619(1921).     AVilderman.     See  VII. 

18  126  (1921).  Lodge  Fume  Co.  (Metallbank  u. 
Metallurg  Ges.).  Cleaning  discharge  electrodes  in 
apparatus  for  precipitating  suspended  particles 
from  gases.     (184,959.)     Sep.  6.  . 

23  241  (1921).  Fuller's  United  Electric  Works, 
and  '  Beswick.  Manufacture  of  storage  battery 
electrodes.     (185,023.)     Sep.  6. 

29,117  (1921).  Hansen.  Electric  furnaces. 
(171,096.)     Sep.  13. 

XII.— FATS;  OILS;  WAXES. 

Application  . 

Dubuis.     23,693.     See  XX. 

Complete  Specifications  Accepted. 

14,413  (1921).  Bolton  and  Lush.  Regeneration 
of  fuller's  earth,  charcoal,  and  like  purifiers  of 
fats  and  oils  and  of  catalysts  used  in  hydrogenating 
fats  and  oils.    (185,174.)    'Sep.  13. 

15,856  (1921)  and  580  (1922).  Maypole  Margarine 
Works,  and  Michelsen.     See  XIX. 

16,239  (1921).  Feenv  (Title  Guarantee  and  lrust 
Co  ).'  Treatment  of  fish  and  other  oils.  (185,247.) 
Sep.  13. 

XIII  —PAINTS ;      PIGMENTS ;      VARNISHES  ; 
RESINS. 

Applications. 

Girv»an.  Heat  resisting  paints  etc.  24,043. 
Sep.  5. 

Gundlach.  Paint  etc.  kneading  and  mixing 
machines.     24,370.     Sep.  8. 

Holzapfel.  Manufacture  of  coating-composition, 
paints,  or  varnishes.    23,673.     Aug.  31. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Manu- 
facture of  oil  colours  and  printers'  inks.  23,262. 
Aug.  28. 


Complete  Specifications  Accepted. 
18,479      (1921)         Lorival      Manuf.      Co., 


and 


Drununond^  Condensation  of  phenolic  bodies  with 
aldehydic  compounds.     (184,961.)     Sep.  6. 

20,170  (1921).  Heinemann.  Production  of 
artificial  resins.    (184,984.)    Sep.  6. 

21  133  (1921).  Ormiston.  Metallic  paint  or 
coating.     (184,999.)    Sep.  6. 

XIV.— INDIA-RUBBER ;   GUTTA-PERCHA. 

Application. 
Love   and  Robertson.     Substitute   for   vulcanite 
etc.     23,877.     Sep.  2. 

XV.—  LEATHER;  BONE;  HORN;  GLUE. 

Application. 
Roth.      Manufacture    of   sheets    of   gelatin   etc. 
24.213.     Sep.  7. 

Complete  Specifications  Accepted. 
13,091   (1921).     Minton.      Imitation   leather   etc. 
(184,845.)    Sep.  6. 

17  826   (1921).     Margotton.      Tanning  hides   and 
skins.    (184,955.)    Sep.  6. 

XVI.— SOILS;   FERTILISERS. 

Complete  Specification  Accepted. 
10.315  (1921).     Monaco.     Manufacture  of  nitro- 
genous manures. 


'(184,833.)    Sep.  6. 


23,542.    Aug.  30. 


Beaslfv. 
Aug.  31. 


XXIII— ANALYSIS. 

Application. 
Recording    gas   calorimeters. 


XVII.— SUGARS;  STARCHES;  GUMS. 
Application. 
Geveke.   Treatment  of  sugar  cane.   23,695.  Sep.  1. 

Complete  Specification  Accepted. 
7962   (1921).     Young.     Production    of   ethers  of 
carbohydrates.     (184,825.)     Sep.  6. 

XVIII.— FERMENTATION  INDUSTRIES. 

Application. 
Wooldridge.     Brewing  beer.    23,426.    Aug.  29. 

Complete  Specification  Accepted. 
13,924    (1921).      Bryant.      Aeration    of    brewers' 
wort  etc.     (184,860.)     Sep.  6. 


XIX  —FOODS  ;  WATER  PURIFICATION ; 
SANITATION. 

Applications. 

Clark,  and  Pearson  and  Co.  Production  of  a 
potent  preparation  of  vitamin  A.    23,944.    Sep.  4. 

Gamble.   Purification  of  sewage.    23,405.   Aug.  29. 

Herrero.     Purification  of  water.    23,753.    Sep.  1. 

Koch  and  Scheib.  Production  of  preserving- 
means,  and  preservation  of  meat,  vegetables,  etc. 
24,129.     Sep.  6. 

Loring.     Manufacture  of  flour.     23,999.     Sep.  5. 

Moss  Compound  for  use  in  making  bread. 
23,505.    Aug.  30. 

Complete  Specifications  Accepted. 

5615  (1921).    Amer.  Zeolite  Corp.    See  VII. 

15,136  (1921).  Nielsen.  Sterilising  milk. 
(185,221.)     Sep.  13. 

15,514  (1921).  Torrance.  Manufacture  of  choco- 
late or  cocoa  products.     (185,237.)     Sep.  13. 

15,856  (1921)  and  580  (1922).  Maypole  Margarine 
Works,  and  Michelsen.  Manufacture  of  margarine. 
(185,241.)     Sep.  13. 

XX.— ORGANIC    SUBSTANCES;     MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS 

Applications. 

Arima  Production  of  preparation  from  tubercle 
bacillus.     23,243.     Aug.  28. 

Calvert  Manufacture  of  substances  containing 
a  methvl  radicle.    23,571.    Aug.  30. 

Dubuis.  Manufacture  of  solvent  for  perfumery, 
oils,  etc.    23,693.    Sep.  1. 

Marks  (Parke,  Davis  and  Co.).  Compounds  of 
silver  iodide  and  protein  substances.  23,448. 
Aug.  29. 

XXI  —PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 
Applications. 
Gevaert   Photo-Producten.      Photographic    films. 
23,360.    Aug.  29.    (Belg.,  29.8.21  ) 

Roth.     Colour  photography.     24,214.     hep.  /. 

XXII.— EXPLOSIVES ;   MATCHES. 

Applications. 
Brown.     Matches.     23,379^    Aug.  29. 

Segay.    Explosives. 


• 


23,620. 


Vol.  XLI.,  No.  19.J 


ABSTRACTS 


[Oct.  16,  1922. 


I.-GENEBAL;   PLANT;    MACHINERY. 

Pure  gases;  Preparation  of by  the  application 

of  the  principle  of  the  hydraulic  compressor.  C. 
Heirich.  Z.  kompr.  u.  fl.  Gase,  1922,  22,  3 — 7 
21—22,  43—44.  Chem.  Zeutr.,  1922,  93,  IV.,  305! 
Where  water  power  is  available  highly  compressed 
gases  can  be  most  cheaply  obtained  by'allowing  the 
water  to  tall  down  a  long  vertical  pipe,  300 — 400  m. 
high.  Air  or  other  gas  is  entrained  with  the  water, 
separated  at  the  bottom  in  a  closed  receiver  under 
a  pressure  equal  to  the  head  of  water,  and  the 
water  allowed  to  pass  away  by  an  ascension  pipe. 
By  the  use  of  flue  gases  in  place  of  air  the 
gases  may  be  separated  into  carbon  dioxide  and 
nitrogen  in  this  apparatus.  It  can  also  be  applied 
to  the  puriiieation  of  sulphur  dioxide,  ammonia, 
hydrogen,  and  oxygen,  also  of  producer-gas  and  the 
like. — C.  I. 

Thermal   conductivity   of   liquids,   insulators,   and 

metals;  Measurement  of  the .    M.  Jakob.   Z 

Ver.  Deutsch.  Ing.,  1922,  66,  688—693.       Chem 
Zentr.,  1922,  93,  IV.,  606. 

A  mass   of  the   material  under   investigation   was 
heated    above   electrically    and   cooled    below   by    a 
liquid.     Heat  losses  were  reduced  by  employing  a 
vacuum  jacket.    The  axial  gradient  of  temperature 
I  in  the   slab   was    measured   by   means   of   thermo- 
l  couples.     The  thermal  conductivity  of  toluene  was 
[0-000443  c.g.s.  unit.     The  temperature  coefficient  of 
the  thermal  conductivity  of  a  transformer  oil  was 
found    to    be    3%.      The    thermal    conductivity    of 
aluminium  containing  1T3%  of  impurities  is  given 
!  in  terms  of  the  temperature  by  the  relation  A.=0"447 
l(l+0-0012jt).     The  corresponding  result  for  nickel 
steel  containing  304%  Ni,  084%  Mn,  0'26%  C,  and 
n-14      Si  is  A  =  0-0277  (l-f000178f),  and  this  relation 
|was  unaltered  by  heating  to  about  700°  C.  or  cool- 
ing to   -30°  C.   or    -78°  C.     The  value  of  A  was 
increased  about  2  to  4  %  by  cooling  to  - 185°  C. 

—J.  S.  G.  T. 

[Boundary    lubrication.      Hardy     and    Doubledav. 
See  Ha. 

Suspended  matter  in  gases.     Katz  and  Smith.     See 
XXIII. 

Patents. 

.'hemical  reaction;  Process  for  effecting  in  the 

interior    of    lair]    compressors.       M.    Brutzkus. 
E.P.  155,776,  22.12.20.     Conv.,  22.12.19. 

The  process  consists  of  using  a  compressor,  or 
i'acuum  pump,  to  control  the  pressure  and  tempera- 
tire  of  reacting  substances,  so  that  the  reaction  will 
ake  place  under  the  most  economical  conditions. 
Vith  this  object  in  view,  as  the  reaction  proceeds, 
he  piston  should  be  moved  so  as  to  keep  the  pressure 
s  uniform  as  possible.  A  gradual  admission  of  one 
r  more  of  the  reacting  substances  is  sometimes 
esirable,  and  sometimes  also  the  addition  or  with- 
rawal  of  heat  is  required  if  the  above  conditions 
re  insufficient.  Details  are  given  showing  how  the 
rocess  can  be  applied  to  exothermic  and  endo- 
herniic  reactions  in  which  the  number  of  molecules 
sniains  constant  or  is  either  reduced  or  increased. 
xamples  are  given  showing  how  it  may  be  used  in 
le  synthetic  production  of  ammonia,  in  cracking 
ils,  and  in  hydrogenation. — S.  G.  U. 

team  boilers;  Method  of  preventing   incrustation 

in .     A.  Pessi.     E.P.  163,013,  6.5.21.     Conv., 

6.5.20. 

he  disincrustant  is  a  mixture  of  crude  pyroligneous 
':id  (20 — 40 ;;),  acetates  or  pyrolignites  of  alkalis 
•alkaline-earths  (3 — 6%),  sodium  carbonate  (10 — 
•°{),  and  arsenious  anhydride  (0"5 — 1*5%). — H.  H. 


Boilers  and  the  like;  Preparation  for  removal  of 

scale  from and  for  preventing  its  formation. 

J.  H.  Dine  and  S.  H.  Sieff.  E.P.  182,545,  1.4.21. 
Linseed  is  immersed  in  water  and  the  temperature 
raised  to  a  little  below  the  boiling  point.  A  viscous 
liquid  is  produced  which  can  be  added  to  the  boiler 
feed  water,  the  quantity  recommended  being  1  gall, 
for  every  1000  sq.  ft.  of  heating  surface  every  eight 
hours.  It  is  claimed  that  this  preparation,  in 
addition  to  preventing  the  formation  of  scale,  causes 
any  scale  present  in  the  boiler  to  fall  to  the  bottom 
and  break  up  into  a  fine  mud  which  can  be  easily 
blown  off.— S.  G.  TJ. 


Cooling,    condensing,    or   heating   apparatus.      E. 
Barrs.    E.P.  183,195,  6.4.21. 

Mounted  on  a  flange  on  the  top  cover  of  a 
cylindrical  vessel,  provided  at  the  top  with  a  side 
inlet  and  at  the  bottom  with  a  central  opening  for 
removal  of  the  condensed  material,  is  a  vertical 
cylindrical  cooling  chamber.  This  chamber  is  fitted 
with  a  number  of  loose-fitting  perforated  plates 
which  are  kept  at  suitable  distances  apart  by  a 
series  of  vertical  baffle  plates  the  breadth  of  which 
is  about  three-quarters  of  the  diameter  of  the  con- 
taining cylinder.  These  baffles  are  so  arranged 
that  they  cause  the  ascending  material  to  follow 
a  spiral  or  alternating  path  through  the  cooler. 
One  quadrant  of  each  of  the  partitioning  plates 
is  perforated  by  large  holes,  whilst  the  remaining 
quadrants  are  perforated  with  smaller  holes.  Long 
rods,  screwed  at  either  end.  pass  through  these 
perforations  from  the  top  to  the  bottom  plates,  and 
are  kept  in  position  by  nuts  binding  on  the  top  and 
bottom  plates.  A  side  outlet  is  provided  at  the  top 
of  the  cooler,  and  the  arrangement  of  partition 
plates,  baffles,  etc.,  is  supported  on  a  ridge  at  the 
lower  end  of  the  cooler  casing.  Tubes  may  be  used 
instead  of  rods,  and  arrangements  may  be  made  for 
flooding  these  tubes  internally  with  water. 

— S.  G.  U. 

Cooling  a  gas;  Means  for  .     E.  Jordan,  Assr. 

to  Soc.  L'Air  Liquide.     U.S. P.  1,425,019,  8.8.22. 
Appl.,  17.4.22. 

The  gas  is  passed  through  tubes  extending  through 
the  shell  of  a  heat-exchanging  apparatus  from  an 
inlet  chamber  to  an  outlet  chamber,  and  the  shell 
is  provided  with  an  inlet  and  an  outlet  for  the 
cooling  gas.  Superposed  trays  within  the  shell  are 
provided  with  openings  of  slightly  larger  diameter 
than  the  tubes.  These  openings  receive  the  tubes, 
and  liquid  is  delivered  to  the  uppermost  tray  and 
withdrawn  from  below  the  lowermost  tray. — H.  H. 


Cooling  vapours  expelled  from  a  solution   in  a  dis 

tilling  plant;  Apparatus  for .    Akt.-Ges.  der 

Maschinenfabriken  Escher,  AVvss  u.  Co.  G.P. 
350,913,  27.6.19. 
The  fluid  to  be  cooled  is  supplied  to  a  heat  inter- 
changer,  the  walls  of  which  are  for  the  most  part 
covered  with  cooling  fluid.  By  means  of  a  com- 
pressor, vapour  is  withdrawn  from  the  inter- 
changer  so  that  the  saturation  temperature  of  the 
cooling  fluid  is  sufficiently  low  to  permit  inter- 
change of  heat  to  occur.  This  vapour  is  then  com- 
pressed and  further  heat  interchange  effected 
between  the  compressed  vapour  and  the  fluid  to 
be  distilled.  In  order  to  secure  brisk  circulation  of 
the  cooling  medium  in  the  heat  interchanger,  if 
desired,  a  tube  may  be  arranged  external  to  the 
interchanger  so  as  to  permit  circulation  of  that  part 
of  the  cooling  fluid  not  converted  into  vapour. 

—J.  S.  G.  T. 


736  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[Oct..  16,  1922. 


Absorption  tower  and  cooler;  Combined [e.g., 

for  hydrochloric  add].  Deutsche  Ton-  u. 
Steinzeugwerke  A.-G.,  and  F.  Plinke.  G.P. 
353,553,  8.5.20. 
In  a  combined  absorption  and  cooling  tower,  the 
walls  of  the  tubes  suspended  in  the  tower  and 
supplying  cooling  water  thereto  are  wholly  or  in 
part  permeable  to  water.  The  device  is  applicable 
to  all  processes  of  absorption  in  which  heat  is 
liberated,  e.g.,  the  absorption  of  hydrochloric  acid 
gas.  The  acid  is  rapidly  absorbed  by  the  water 
on  the  external  surface  of  the  tubes  and  the  heat 
liberated  carried  away  by  the  water  flowing  inside 
the  tube?.  The  hydrochloric  acid  solution  collects 
in  the  tower  and  is  withdrawn  at  intervals. 

—J.  S.  G.  T. 

Mixing   and /or   disintegrating   machines.     C.   E. 
Gardner.     E.P.  184,433,  1.3.21. 

Ixner  and  outer  helical  blades  rotate  concen- 
trically in  opposite  directions  within  a  trough  or 
casing;  the  outer  edges  of  the  outer  blades  are 
serrated.  The  trough  is  provided  with  one  or  more 
fixed  serrated  bars  of  which  the  teeth  register  with 
the  spaces  between  the  teeth  on  the  blades,  and 
such  bars  may  be  adjustably  or  removably  secured 
at  each  side  of  a  cleaning  opening  in  the  bottom 
of  the  trough  normally  closed  by  a  hinged  door. 
The  inner  blades  rotate  at  a  higher  peripheral 
speed  than  the  outer  blades,  and  may  be  de-clutched 
during  discharge  of  the  material.  The  discharge 
outlet  miay  be  at  one  end  or  in  the  bottom  of  the 
trough  and  an  outlet  for  continuous  discharge  may 
be  provided  in  one  end  of  the  trough  above  the  axis 
of  the  blades.  Radial  arms  on  the  shaft  of  the 
blades  may  carry  scrapers  to  remove  material  from 
the  end  walls  of  the  trough  and  wings  to  sweep  the 
material  back  to  the  outlet. — H.  H. 

Mixing  solid  materials  with  liquids;  Method  and 

apparatus  for .     O.  D.  Cunningham,  Aesr.  to 

National     Aniline    and     Chemical    Co.       U.S. P. 
1.422,421,  11.7.22.     Appl.,  21.8.20. 

A  jacketed  chamber,  fitted  with  coils  to  regulate 
the  temperature,  is  connected  at  its  base  with  a 
centrifugal  pump.  A  second  opening  on  the  6ide  of 
the  chamber  communicates  with  the  top  of  a  small 
jacketed  mixing  chamber  which  is  fitted  with  an 
agitator.  The  bottom  of  this  mixer  is  coupled  to 
the  suction  side  of  the  centrifugal  pump.  Solid 
material  is  fed  into  the  mixer,  and  the  reaction 
products  are  forced  by  means  of  the  pump  into  the 
cooling  chamber,  from  which  they  can  flow  by 
gravity  back  to  the  mixing  chamber.  When  the 
reaction  or  mixing  is  completed  the  products  can 
be  delivered  from  the  pump  direct  to  a  receptacle. 

— S.  G.  U. 

Mixing  solid  materials  and  treating  the  same  with 

gases:    Apparatus    for    ■ .       [Boasting    zinc 

blende.']    H.  Reinhard.    G.P.  352,657,  21.2.20. 

The  substance  is  treated  with  gases,  e.g.,  air,  in 
a  rotary  drum  divided  longitudinally  by  partitions 
into  a  number  of  compartments.  Commencing  at 
the  charging  end  of  the  drum  the  number  of  com- 
partments is  increased  in  a  series  of  steps  and  then 
diminished  in  steps  towards  the  discharging  end. 
The  device  permits  the  use  of  air  at  a  lower 
temperature  than  is  customarv  in  roasting  zinc 
blende  with  heated  air.— J.  S.  G.  T. 

]>r</in<i  method  and  means.     E.  F.  White.     U.S. P. 
1,424,969,  8.8.22.    Appl.,  24.1.21. 

A  long  passageway,  open  at  both  ends,  is  provided 
with  means  for  drawing  in  air  near  one  end  and 
for  discharging  the  air  near  the  other  end.  Means 
are  also  provided  for  regulating  the  temperature 
of  the   air   and,   near  the  point   of   induction,   for 


adjusting  the  flow  of  air  and  determining  the 
direction  of  flow  in  the  passagewav  and  at  the  ends 

— H.  H. 

Desiccation  apparatus;  Spray .    H.  J.  Zimmer- 

mann,  Assr.  to  R.  Stutzke  Co.    U.S.P.  1.426.030, 
15.8.22.    Appl.,  25.10.18. 

A  centrifugal  fan,  with  its  axis  vertical,  is 
mounted  below  a  vertical  drying  chamber,  the 
central  axial  inlet  of  the  fan  forming  the  bottom  of 
the  chamber.  A  vertical  cyclone  dust  collector  is 
mounted  in  proximity  to  the  fan  and  a  duct  affords 
communication  between  the  tangential  outlet  of 
the  fan  and  the  tangential  inlet  of  the  dust 
collector. — G.  P.  JV1. 

Drying,  evaporating,  etc.  substances  containing  or 

yielding  free  alkali  or  acid;  Process  of .    J. 

Rudolf.     G.P.  352,343,  18.4.19. 

The  substances  are  treated  in  a  rotating  tube  the 
inner  surface  of  which  is  provided  with  an  adherent 
coating  of  material  resistant  to  the  action  of  alkali 
or  acid.  Thus  potash  or  soda  lyes  may  be 
regenerated  or  calcium  chloride  lyes  calcined  in  a 
rotating  tube  which  has  been  provided  with  a  lining 
of  nickel  or  bronze  by  the  Schoop  spraying  process. 
A  lead  lining  similarly  produced  is  suitable  for 
drying  sodium  bisulphate  and  for  evaporating 
sulphite  and  aluminium  sulphate  lyes.  An 
aluminium  lining  is  suitable  for  drying  vegetables, 
fruits,  foods,  and  condiments. — J.  S.  G.  T. 

Evaporator.  W.  H.  P.  Creighton.  U.S.P. 
1,424,992,  8.8.22.    Appl.,  30.12.20. 

A  vacuum  pan  i3  heated  by  a  steam  belt  dispose! 
between  transverse  tube-plates  connected  by  tubes 
for  passage  of  the  liquid.  The  steam  space  is 
divided  by  radial  plates  into  chambers,  each  con- 
taining a  group  of  tubes.  Steam  is  supplied  to  the 
outer  portions  of  these  chambers,  and  withdrawn 
from  the  contracted  inner  portions. — H.  H. 

Evaporating  liquors;  Method  of and  apparatut 

therefor.       W.      Gensecke.        U.S.P.      1,425.005, 
8.8.22.    Appl.,  27.4.20. 

A  container  for  the  liquid  is  arranged  in  heat- 
exchanging  relation  with  a  chamber  for  the  heating 
medium,  and  is  provided  with  a  pipe  for  withdrawal 
of  the  vapour.  Mixed  vapour  and  condensed  liquid 
are  withdrawn  from  the  chamber  and  are  separated 
by  a  trap  which  is  connected  with  the  vapour  pipe 
of  the  container  by  a  passage  of  adjustable  section. 
The  vapours  from  the  chamber  and  the  container 
meet  in  this  passage  and  are  together  compressed 
and  conveyed  to  the  heating  chamber. — H.  H. 

Evaporating   liquids;   Apparatus    for  .     A.-G. 

Kummler  u.  Matter.     G.P.  352,849,  21.12.20. 

Liquid  to  be  concentrated  enters  from  below  into  » 
chamber  arranged  at  the  bottom  of  the  apparatus 
and  passes  thence  through  a  series  of  vertical 
annular  channels  through  which  it  flows  in  ziz-zag 
fashion,  passing  over  and  being  heated  by  a  number 
of  cylindrical  heating  devices  in  the  annular  spaces. 
The  concentrated  liquid  then  passes  into  a  central 
chamber  and  out  through  the  bottom  of  the 
apparatus.— J.  S.  G.  T. 

Atomising  process  for  separating  mid  drying  sub- 
stances in  solution.  W.  Salge  u.  Co.,  TechnNch-. 
Ges.m.b.H.    G.P.  352,781,  3.6.20. 

Atomisatiox  is  effected  by  a  stream  of  hot  air  or 
gas  passing  upwards  through  a  vertical  tube,  which 
is  connected  through  an  intervening  shock-absorb- 
ing device  with  a  fall  tube,  in  which  separated 
material  descends  and  is  dried  and  cooled  by  the 
ii  of  gas  likewise  flowing  in  a  downward  direc- 
tion.    The  process  is  more  especially  suitable  for 


Vol.  XLI.,  No.  19.] 


Cl.    I.— GENERAL  ;    PLANT  ;    MACHINERY. 


737  a 


use  with  substances  which  can  be  exposed  to  a  high 
temperature  for  a  short  time  only,  and  which 
besides  must  be  cooled  gradually. — J*.  8.  G.  T. 

Evaporating   (concentrating)   liquids   without    em- 
ploying   a    vacuum;    Apparatus    for    .      A 

Wurm.  G.P.  354,860,  23.11.18. 
Bucket  wheels  rotate  within  the  vessel  containing 
the  liquid  to  be  evaporated,  the  vessel  being  pre- 
ferably double-walled  and  heated  by  steam  or  a 
water-bath.  The  buckets  are  so  constructed  and 
follow  one  another  in  such  manner  that  the  liquid 
which  is  lifted  up  by  the  scoop  of  one  bucket  flows 
back  into  the  vessel  over  the  back  of  the  opposite 
scoop,  whereby  a  large  surface  of  liquid  is  exposed 
to  the  atmosphere. — J.  S.  G.  T. 

Catalyst  and  method  of  preparing  the  same.  J.  C. 
Clancy,  Assr.  to  The  Nitrogen  Corp.  U.8.P 
1,425,570,  15.8.22.     Appl.,  8.5.20. 

The  product  of  thermal  decomposition  under 
oxidising  conditions  of  the  cyanamides  of  a  number 
of  metals  of  the  type  of  silver  and  copper  is  used  as 
a  catalyst. — H.  H. 

Discharge  electrodes  for  precipitating  systems. 
O.  H.  Eschholz,  Assr.  to  Westinghouse  Electric 
and  Manuf.  Co.  U.S. P.  1,425,637,  15.8.22.  Appl., 
15.2.19. 

I.v  a  precipitating  system,  a  portion  of  the  discharge 
electrode  extends  beyond  the  collecting  electrode 
and  is  tapered.  The  discharge  electrode  is  arranged 
so  that  its  narrowest  part  is  at  a  greater  distance 
than  any  other  part  from  the  collecting  electrode. 
Pre-ionising  means  are  integrally  associated  with 
the  projecting  part  of  the  electrode. — J.  S.  G.  T. 

Electrical  precipitation  of  suspended  matter  from 
electrically    insulating    fluids,    especially    gases; 

Process   and    apparatus    for    .      E.    Moller. 

G.P.  349,737,  20.7.20.     Addn.  to  277,091  (c/.  F.P. 
449,337;  J.,  1913,  495). 

The  protective  medium  used  to  envelop  and  clean 
the  discharge  electrodes  is  supplied  in  the  direction 
of  the  length  of  the  electrodes.  This  may  be  effected 
by  means  of  nozzles  disposed  at  either  one  or  both 
ends  of  the  discharge  electrodes.  In  the  latter  case, 
the  two  oppositely  directed  streams  of  air  impinge 
upon  one  another  and  are  very  effective  in  removing 
any  deposited  dust  from  the  discharge  electrodes. 

—J.  S.  G.  T. 

Electrical  purification  of  gases,  employing  precipi- 
tating electrodes  of  the  plate  form.  Metallbank 
u.  Metallurgist  Ges.  A.-G.  G.P.  352,901, 18.7.20. 

The  gas  flows  in  the  direction  of  the  length  lof  the 
discharge  electrodes,  and  the  precipitating  elec- 
trodes, arranged  transversely  to  the  stream  in  step 
formation,  are  disposed  so  that  gas  is  uniformly 
distributed  over  the  slots  between  the  plates.  The 
corners  of  the  plates  swept  by  the  gas  stream  are 
reduced  or  bevelled,  and  the  slots  are  divided  up 
into  cells  by  means  of  partitions.  The  precipitating 
surface  is  thus  increased,  and  the  structure  both 
in  form  and  operation  resembles  the  customary 
tubular  apparatus,  but  effects  a  more  uniform 
distribution  of  the  gas  to  be  treated. — J.  S.  G.  T. 

Electrical    precipitating    plants;    Arrangement    of 

insulators     in     .        Siemens-Schuekertwerke 

G.m.b.H.       G.P.     354,783,     12.2.20.       Addn.    to 
332,805  (c/.  E.P.  164,686;  J.,  1921,  550 a). 

In  an  electrical  precipitating  plant,  operated 
according  to  the  original  patent,  a  jacket  extending 
into  the  high-tension  field  surrounds  the  insulator, 
and  the  bottom  of  this  jacket  projects  into  a  wider 
J  conducting  jacket  extending  to  the  other  pole,  or 
(earthed.  Discharge  between  the  two  jackets  is 
prevented   by   suitable   choice   of    their    respective 


diameters  and  by  avoiding  the  presence  of  any  sharp 
edges  and  corners  on  the  surfaces  of  the  jackets. 

—J.  S.  G.  T. 

Washing   insoluble  powders;   Apparatus  for  . 

P.  W.  Prutzman,  Assr.  to  General  Petroleum 
Corp.  U.S. P.  1,426,099,  15.8.22.  Appl.,  20.8.21. 
A  solvent  is  circulated  upwards  through  a  mass 
of  the  powder  contained  in  a  shell,  and  means  are 
provided  for  carrying  off  the  overflow  solvent  from 
the  shell.— H.  H. 

Charcoal;  Process  of  producing  vacua  by  means  of 

- .     Verein  Chem.  Fabr.  in  Mannheim.     G.P 

326,385,  15.11.17. 

Charcoal  used  in  the  production  of  vacua  is  pre- 
pared from  wood  or  similar  material,  which  prior  to 
carbonisation  is  impregnated  with  salts  or  like 
substances.— J.  S.  G.  T. 

Treating  liquid,  powdered,   or  gaseous  materials; 

liotaiing  hollow  disc  for  use  in by  atomising 

in  a  stream,  of  air  or  gas.  Metallbank  u.  Metal- 
lurgische  Ges.  A.-G.  G.P.  349,844,  17.7.20. 
The  interior  of  the  hollow  rotating  disc  for  treat- 
ment of  material  in  accordance  with  G.P.  345,805 
(J.,  1922,  317a)  is  divided  into  a  number  of  separate 
compartments  corresponding  to  the  number  of  rings 
of  jets  employed.  In  this  manner  a  number  of  sub- 
stances, if  necessary  together  with  gases  or  vapours, 
I  may  be  centrifuged,  without  any  mixing  of  the 
various  substances  occurring  within  the  interior 
of  the  rotating  disc.  Separate  delivery  of  material 
to  the  various  rings  of  jets  disposed  one  above 
another  is,  in  many  cases,  necessary  and  advan- 
tageous, as  when  a  gas  or  vapour  is  to  be  centri- 
iuged  between  atomised  strata  of  liquids  or 
powders. — J.  S.  G.  T. 

"Molecular  filters";    Process  of  preparing  

G.  Alefeld.     G.P.  351,084,  24.1.20. 

Thin  coatings  of  precious  metals,  oxides,  acids  or 
combinations  of  these,  permeable  only  to  certain 
molecules,  are  deposited  upon  a  permeable  support. 
For  example,  a  silver  mirror  may  be  produced  on 
the  support  or  coatings  may  be  produced  according 
to  the  process  practised  in  the  ceramic  industry 
for  the  production  of  lustres.  Filters  so  prepared 
may  be  used  as  dialysers,  or,  if  the  support  is  an 
earthenware  cylinder,  may  be  used  in  centrifugal 
machines  for  separating  chemical  compounds  or 
mixtures.  Solutions  of  cuprammonium  artificial 
silk,  e.g.,  may  be  freed  from  copper  compounds,  the 
latter  passing  through  the  filter,  and  then  yield 
filaments  which  are  stronger  than  those  from  which 
copper  has  been  removed  bv  a  chemical  process 

—J.  S.  G.  T. 

Drum,    filters;     Process     of    and    apparatus     for 

operating .  G.  Polysius.  G.P.  353,135,  24.7.20. 

Part  of  the  sludge  in  the  filter  trough  is  periodically 
or  continuously  removed  and  distributed  over  a 
part  of  the  filtering  surface  which  is  not  immersed 
in  the  sludge.  The  sludge  overflows  or  is  run  off 
or  sucked  from  the  trough  and  is  delivered  to  a 
compressed  air  siphon,  or  alternatively  the  siphon 
itself  may  open  into  the  trough. — J.  S.  G.  T. 

Crystals;    Continuous  process  for  producing  well- 
formed,  uniform from  solutions.    A.-G.  der 

Chem.  Produkten-Fabr.  Pommerensdorf,  and  R. 
Siegler.     G.P.  351,947,  26.7.19. 

The  solution  to  be  crystallised  flows  through  a  long 
rotating  tube  of  relatively  small  diameter  sur- 
rounded by  a  heat-insulating  jacket.  The  solution 
is  cooled  by  a  counter  current  of  air,  preferably 
introduced  tangentially.  Adherence  of  crystals  to 
the  walls  of  the  tube  is  prevented  by  supplying  heat 
to  the  bottom  part  of  the  space  between  the  tube 

a2 


73  8  a 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


[Oct.  16,  10:2. 


and  the  jacket.  The  size  of  crystals  is  determined 
by  the  temperature,  speed  of  rotation  of  the  tube, 
initial  concentration  of  the  solution,  depth  of 
liquid  in  the  tube  and  direction  of  travel. 

—J.  S.  G.  T. 

Heating,  evaporating,  or  distilling  liquids  or 
molten  substances:  Process  of  atomising  and 
.    A.  Keller.    G.P.  352,296,  9.12.20. 

The  apparatus  consists  of  a  heated  vessel  which 
contains  only  a  small  quantity  of  the  material  and 
is  provided  with  a  removable  turbine  device,  the 
jacket  of  which  is  perforated  or  slotted.  This 
turbine  device  sucks  the  material  from  the  bottom 
of  the  vessel  and  then  projects  it  in  a  finely 
atomised  condition  against  the  walls,  so  that  the 
whole  heated  surface  of  the  vessel  is  continuously 
covered  with  a  layer  of  liquid.  On  account  of  the 
brisk  circulation  of  liquid  the  thermal  efficiency  of 
the  process  is  high,  and  the  process  more  economical 
than  those  utilising  a  normal  filling  of  the  vessel. 

—J.  S.  G.  T. 

Chemical    reactions:     Process     of     carrying     out 

vigorous  .     Gewerkschaft   des   Steinkohlen- 

Bergwerks  "  Lothringen."    G.P.  353,423,  25.7.17. 
Addn.  to  349,330. 

In  a  process  for  carrying  out  vigorous  chemical 
reactions,  and  more  especially  for  the  production 
of  salts  from  gases  and  liquids,  e.g.,  the  production 
of  ammonium  salts  from  ammoniacal  gases  and  acid 
liquids  in  accordance  with  G.P.  349,330  (J.,  1922, 
401  a),  a  portion  of  the  liquor  in  the  weakly 
alkaline  section  of  the  circuit  is  tapped  off  and 
completely  neutralised  by  a  fresh  supply  of  acid. 
The  temperature  of  the  circulating  liquor  to  be 
charged  with  gas  is  regulated  in  order  to  control 
the  degree  of  saturation  of  the  liquor  with  gas. 

—J.  S.  G.  T. 

icid-resisting  lining  for  vessels.     V.  Zieren.     G.P. 

355,374,  30.6.20. 
The  lining  is  built  up  of  a  number  of  layers  of  acid- 
resisting  material  of  various  thicknesses,  that  im- 
mediately in  contact  with  the  wall  of  the  vessel 
being  impervious  to  liquid,  while  the  inner  ones  are 
porous  and  take  up  the  expansion  occurring  on 
heating.  In  this  manner  the  outermost  layer  is 
better  able  to  withstand  the  effects  of  variations  of 
temperature. — J.  S.  G.  T. 

Kiln  with  heating  chambers  and  cooling  chambers. 
V  Gelpke,  Assr.  to  Deutsche  Evaporator-Akt.- 
Ges.     U.S.P.  1,426,287,  15.8.22.     Appl.,  16.3.21. 

See  E.P.  179,674  of  1921;  J.,  1922,  490  a. 

Condensers,  preheaters,  heat-exchangers  and  the 
like.     P.  Mather.     E.P.  184,222,  5.5.21. 

Exhaust  steam;  Process  and  apparatus  for  purify- 
ing and   condensing  ■ and  for  purifying   the 

condensate.     M.  Schull.     E.P.  184,342,  6.7.21. 


Ha-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

Coal;  Short    method  for  the   ■ultimate   analysis  of 

.     S.  W.  Parr.     J.   Ind.  Eng.  Chem.,  1922, 

14,  681. 
The  sulphur  and  carbon  are  determined  by  com- 
bustion of  the  coal  with  sodium  peroxide  in  a  calori- 
metric  bomb,  the  carbonate  formed  being  decom- 
posed in  a  calcimeter  and  the  carbon  dioxide 
liberated  measured.  The  heat  evolved  from  the 
oxidation  of  the  sulphur  and  the  carbon  is  calcu- 
lated, and  when  deducted  from  the  total  heat 
evolved  in  the  combustion  gives  the  heat  liberated 


by  the  available  hydrogen.  This  value,  divided  by 
34,450,  gives  the  weight  of  available  hydrogen.  The 
nitrogen  is  assumed  to  be  constant  for  all  coals  at 
1"25%,  and  by  adding  this  to  the  quantities  of 
hydrogen,  sulphur,  carbon,  and  ash  (as  determined 
by  combustion)  and  subtracting  from  the  total 
weight,  the  weight  of  oxygen  plus  combined 
hydrogen  is  obtained.  The  total  oxygen  is  8/9,  and 
the  combined  hydrogen  is  1/9  of  this  value. 
The  total  hydrogen  may  then  be  found  and  all  the 
constituents  of  the  coal  can  thus  be  determined 
without  the  usual  ultimate  analysis  being  carried 
out. — A.  G. 

Coal  ash;  Comparison  of  the  standard  gas  furnace 
and  micropyrometer  methods  for  determining  the 

fusibility  of .     A    C.  Fieldner,  W.  A.  Selvig, 

and  W.  L.  Parker.     J.   Ind.   Eng.  Chem.,   1922, 
14,  695—698. 

The  American  Society  for  Testing  Materials  has 
tentatively  defined  the  softening  temperature  of 
coal  ash  as  the  temperature  at  which  a  triangular 
pyramid,  0'75  in.  high  and  0'25  in.  at  each  side  of 
base,  mounted  vertically,  has  fused  down  to  a 
spherical  lump  when  heated  in  the  reducing  atmo- 
sphere of  a  gas  furnace  under  definitely  prescribed 
conditions  (Proc.  Amer.  Soc.  Test.  Materials, 
1920,  20,  796).  Fulweiler  has  applied  the  micro- 
pyrometric  method,  using  a  heating  element  con- 
sisting of  a  platinum  strip,  4  cm.  long  by  0'5  cm. 
wide  and  0008  cm.  thick,  held  between  iron  rods 
which  are  connected  through  a  spiral  nichrome  coil 
with  four  storage  battery  cells  connected  in  series. 
Coal  ashes  showing  a  softening  temperature  below 
2600°  F.  (1427°  C.)  by  the  gas  furnace  method  will, 
in  the  majority  of  cases,  give  results  agreeing  within 
100°  F.  (55°  C.)  by  the  micropyrometric  method  if 
fused  in  a  reducing  atmosphere  of  combustion  gases 
similar  to  that  used  in  the  furnace  method.  Some 
ashes  show  considerable  differences,  however,  between 
the  results  obtained  with  the  two  methods.  Very 
refractory  ashes,  having  a  softening  temperature 
above  2800°  F.  (1537°  C.)  as  determined  by  the  gas 
furnace  method,  tend  to  give  considerably  lower 
results  by  the  micropyrometric  method.  In  general, 
the  micropyrometric  method  shows  a  point  in  the 
fusion  process  at  which  the  particles  become  rounded 
and  coalesce.  This  point  agrees  fairly  well  with  the 
"  down  point  "  of  the  cones  in  the  other  method  for 
ashes  of  low  and  medium  fusibility  (up  to  2600°  F., 
i.e.,  1427°  C),  since  such  ashes  form  a  fairly  fusible 
slag  of  short  softening  range.  Refractory  ashes 
form  viscous  slags  with  long  softening  intervals  and 
the  "  down  point  "  of  the  cone  may  be  100°— 500°  F. 
higher  than  the  fusing  point  as  shown  on  the 
platinum  6trip.  The  micropyrometric  method  is 
much  quicker  than  the  gas  furnace  method;  and  it 
obviates  the  special  incineration  of  a  considerable 
quantity  of  coal.  It  is  also  much  more  comfortable 
for  the  operator.  Owing  to  the  discrepancies  men- 
tioned, however,  it  is  not  safe  to  accept  this  method 
as  an  alternative  one  for  the  gas  furnace  method 
in  every  case. — A.  G. 

Complete    gasification   [of   coal]   and    carbuKit  ion ; 

llincher  processes   of  .      P.    Gregory.     Soc. 

Tech.  Ind.  du  Ghz  en  France,  June,  1922.     Gas 

J.,  1922,  159,  473—474. 
A  pair  of  generators  are  connected  together  so  that 
the  direction  of  gas  flow  may  be  periodically  re- 
versed for  the  manufacture  of  water-gas.  AVhen 
making  carburetted  water-gas  a  secondary  air 
supply  is  admitted  near  the  top  of  the  generawa 
receiving  air  during  the  blow,  in  order  to  raise  the 
temperature  near  the  dome  of  the  generator. 
During  the  subsequent  run  oil  is  admitted  at  the 
top  of  the  second  generator.  By  connecting  the 
tops  of  the  generators  with  their  respective  waste 
flues  the  plant  may  be  used  for  the  complete  gasinca- 


Vol.  XIX.,  No.  19.] 


Cl.  IIa.— FUEL  ;    GAS  ;    MINERAL  OILS  AND  WAXES. 


739  a 


tion  of  coal  as  originally  devised  by  Rincker  (J.. 
1921,  73  a).  The  waste  blow  gases  can  be  utilised 
for  steam  raising. — H.  Hg. 

Coal  gas  enrichment;  Catalytic  products  for  . 

P.  Mallet.  Soc.  Tech.  Ind.  du  Gaz  en  France, 
June,  1922.  Gas  World,  1922,  77,  126.  Gas  J., 
1922,  159,  475—476. 
Finely  divided  copper  is  mixed  with  heavy  petro- 
leum oil  and  the  mixture  heated  at  600°  C. ;  or 
the  oil  is  passed  through  a  heated  retort  the  inner 
surface  of  which  is  coated  with  finely  divided  copper  ; 
the  copper  is  alloyed  with  magnesium  to  make  it 
more  permeable.  1000  kg.  of  the  oil  yields 
420  cub.  m.  of  gas  suitable  for  enrichment  purposes, 
having  sp.  gr.  1 — T2  and  calorific  value  15,000 
cals.  (1685  B.Th.U.  per  cub.  ft.).  The  gas  contains 
about  40%  _C2H1  and  practically  no  sulphur.  The 
yield  of  spirit  is  275  I.,  which  gives  the  following 
results  on  distillation:  — 

Temp.  °C.       70°        80°  90°      100°  110°  120'  130=  140° 

Yield     ..    3-6%     9-3%  18-1%  27-0%  38-0%  48-6%  584%  67-0% 

Temp.  °C.      150°       160°  17llJ       180°  190°  200°  210°  220' 

Yield     . .  75-1%  81-1%  86-5%  91-1%  94-6%  96-5%  98-3%  100"o 

The  tar  amounts  to  184  kg.;  undecomposed  oil  is 
separated  from  this  by  distillation  for  further  use. 

-H.  Hg. 

Gas    producer;    Marconnet    ash-fusion    for 

gasification  of  cole  breeze.  G.  Riviere.  Soc. 
Tech.  Ind.  du  Gaz  en  France,  June,  1922.  Gas 
J.,  1922,  159,  424—425. 
The  producer  is  rectangular  in  plan  and  is  provided 
with  slag  holes  at  the  base.  The  lower  portion  of 
the  vertical  walls  is  water-jacketed  and  provided 
with  openings  for  poking  the  charge  and  for  the 
admission  of  air  and  steam.  A  number  of  weighted 
rods  pass  through  the  crown  of  the  producer ;  these 
are  lowered  by  gravity  and  raised  by  mechanical 
means  in  order  to  agitate  the  mass  of  fuel.  During 
a  test  coke  breeze  containing  from  14"8  to  34'3%  of 
ash  was  mixed  with  limestone  and  iron  ore  and 
gasified  at  the  rate  of  405  kg.  per  sq.  m.  (83  lb.  per 
sq.  ft.)  grate  area  per  hour.  The  slag  con- 
tained about  40%  of  silica,  21%  of  alumina,  34% 
of  lime  and  1 — 2"4%  of  iron.  The  gas  contained 
CO,  1-5%,  CO  29%,  and  H,  T8%,  and  its  heating 
value  was  7T4%  of  that  of  "the  coke  charged. 

-H.  Hg. 

\Iron~]    oxides   for   gas    -purification;    Valuation    of 

.     G.    H.    Gemmell.      N.    Brit.    Assoc.    Gas 

Managers,  7.9.22.  Gas  J.,  1922,  159,  471—473. 
The  quantity  of  sulphur  which  an  oxide  of  iron  will 
absorb  after  repeated  foldings  and  oxidations  is 
determined  by  placing  100  g.  of  the  oxide  in  a  glass 
tower  up  which  passes  a  mixture  of  1  pt.  of  air, 
2  pts.  of  washed  hydrogen  sulphide,  and  7  pts.  of 
coal  gas.  The  mixed  gases  are  washed  with  water 
or  dilute  ammonia  solution  before  entering  the 
tower.  When  hydrogen  sulphide  escapes  freely 
from  the  tower  the  oxide  is  removed,  exposed  to  the 
atmosphere,  and  re-sulphided.  After  five  foldings 
the  weight  and  proximate  composition  of  the  spent 
oxide  are  determined.  Results  obtained  with 
different  natural  bog  ores  and  artificial  oxides  are 
given  in  detail.  Tests  with  air-dried  precipitated 
ferric  hydroxide  and  with  the  same  material  heated 
to  100°  C,  150°  C,  and  a  red  heat  showed  that  a 
high  degree  of  hydration  of  the  oxide  is  not 
essential  for  the  absorption  of  sulphur.  Exposure 
1  of  a  larger  surface  by  mixing  the  oxide  with  sawdust 
did  not  increase  the  amount  of  sulphur  absorbed. 

— H.  Hg. 

Pyridine;  llecovery  of  from,  coke  ovens.     W. 

Gluud  and  G.  Schneider.  Rer.  Ges.  Kohlentechn., 
1921,  [2],  93—111.  Chem.  Zentr.,  1922,  93,  IV., 
389,  513. 

Pyridine   suitable   for   denaturing   alcohol  can   be 


obtained  from  crude  benzol  recovered  in  coke-oven 
works,  by  extraction  of  the  first  runnings  with 
sulphuric  acid.  The  pyridine-sulphuric  acid  should 
contain  at  least  20%  of  pyridine  bases  boiling  under 
160°  C,  and  be  practically  free  from  resins  and  oils, 
free  from  other  acids  and  salts,  such  as  hydrochloric 
acid  and  sulphates,  and  practically  free'  from  iron 
salts.  The  analysis  of  the  pyridine-sulphuric  acid 
is  carried  out  by  evaporating  500—1000  g.  for  half 
an  hour  on  the  water  bath,  cooling,  and  making 
alkaline  with  25%  ammonia.  The  crude  bases  are 
separated  and  distilled  up  to  170°  C.  The  dis- 
tillate is  dried  with  solid  sodium  hvdroxide, 
separated,  and  re-distilled.  The  weight' of  bases 
passing  over   below   160°   C.    is   determined. 

— H.  C.  R. 

Boundary  lubrication;  Temperature  coefficient  [_of 

].     W.  B.   Hardy  and  I.  Doubledav.     Proc. 

Roy.  Soc,  1922,  A  101,  487—492. 

The  method  previously  described  (J.,  1922,  242  a) 
has  been  employed  to'  measure  the  static  friction 
between  various  clean  and  lubricated  faces  at 
temperatures  ranging  from  15°  to  110°  C.  The 
physical  state  of  the  surface  of  glass  is  much  altered 
by  a  relatively  small  rise  of  temperature.  The  fric- 
tion of  a  face  of  quartz,  steel,  or  bismuth, 
thoroughly  freed  from  adherent  films,  is  practically 
independent  of  temperature.  The  coefficient  of  fric- 
tion of  clean  quartz  is  less  than  that  of  glass.  In 
the  cases  of  steel  or  quartz  faces  flooded  with 
various  lubricants,  the  friction  was  found  to  be 
independent  of  temperature.  When  the  lubricant 
was  solid  over  part  of  the  range  of  temperature 
employed,  the  friction  decreased  with  rise  of 
temperature,  becoming  zero  at  the  melting  point. 
When  the  lubricant  was  completely  melted,  the  fric- 
tion suddenly  attained  a  higher  value  than  any 
previous  value,  and  on  the  temperature  being  in- 
creased remained  constant.  When  the  temperature 
fell  again,  the  friction  remained  constant  until  the 
melting  point  was  reached,  when  the  friction  sud- 
denly fell,  but  not  to  zero.  Below  the  melting  point 
the  friction  measured  is  that  of  the  lubricant  on 
itself,  while  above  the  melting  point,  the  friction  is 
that  of  solid  faces  modified  by  a  primary  film  of  the 
lubricant.  When  films  of  insensible  thickness  were 
deposited  on  the  surfaces,  the  discontinuity  of  the 
friction  at  the  melting  point  disappeared,  the  fric- 
tion becoming  constant  over  the  whole  range  of 
temperature,  whence  it  is  concluded  that  the  fric- 
tion of  quartz  and  of  steel  lubricated  with  various 
normal  paraffins  and  the  related  normal  acids  and 
alcohols  is  sensibly  independent  of  temperature. 
The  results  obtained  in  the  neighbourhood  of  the 
melting  points  of  the  lubricants  confirm  the  view 
that  solid  friction  changes  suddenly  to  fluid  friction 
at  a  certain  critical  thickness  of  lubricating  film. 
When  lubricant  is  present  in  excess,  an  increase  of 
friction  may  arise  as  the  effect  of  surface  tension, 

—J.  S.  G.  T. 

Pure  gases.    Heirich.    See  I. 

Carbon  black.     Neal  and  Perrott.     See  XIII. 

Suspended  matter  in  gases.  Katz  and  Smith.  See 
XXIII. 

Patents. 

Drying  of  lignite,  peat.  turf,  and  the  like. 
K.  W.  J.  H.  Jacobs.  E.P.  163,719,  5.5.21.  Cunv., 
27.5.20. 

The  material  is  passed  downwards  through  a  closed 
chamber  provided  with  a  number  of  hot-air  channels 
so  arranged  that  the  drying  is  effected  slowly  in 
the  upper  zone  and  more  rapidly  in  the  lower  zone. 
The  speed  of  drying  may  be  controlled  by  varying 
either  the  quantity  or  the  temperature  of  the  air. 


740  a 


Cl.   IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Oct.  10,  1922. 


The  air  is  forced  through  the  channels  and  the 
material  either  under  suction  or  under  pressure. 
The  dried  product  is  suitable  for  coking. — H.  Hg. 

Coal;  Art  of  treating [to  obtain  a  smokeless 

fuel].  F.  J.  Root.  U.8.P.  1,426,012,  15.8.22. 
Appl.,  7.4.19. 
Coal  particles  are  compressed  into  blocks  by  a 
pressure  of  at  least  3  tons  per  sq.  in.,  applied  in 
one  direction  only,  and  are  meanwhile  heated  to 
450°  C.  by  surrounding  retorts  placed  transversely 
to  the  direction  of  pressure. — A.  G.  P. 

Peat,  lignite,  and  other  carbonaceous  substances; 
Process   and  apparatus    for    the    conversion   of 

into  artificial  coal.     O.   A.   Ford,   Assr.   to 

M.    J.    Thompson.      U.S. P.    1,426,723,    22.8.22. 
Appl.,  23.9.16.     Renewed  4.11.21. 

The  material  is  passed  through  a  dryer,  a  pul- 
veriser, a  second  dryer,  and  a  final  pulveriser,  all 
enclosed  within  a  kiln  body.  A  controlled  mixture 
of  air  and  hot  products  of  combustion  is  passed 
through  the  dryers. — H.  Hg. 

Carbon;  Production  of  .     W.  E.  F.   Bradley. 

U.S. P.  1,426,144, 15.8.22.  Appl.,  4.9.18.  Renewed 
15.6.22. 

A  hydhocabbon  gas  is  passed,  with  exclusion  of 
air,  over  iron  oxide  heated  to  800° — 1000°  C,  and 
the  oxide  is  removed  from  the  resulting  mixture. 

—A.  R.  P. 

Coal  briquettes ;  Process  for  producing  - without 

the  addition  of  a  binding  material.     O.  Dobbel- 
stein.     G.P.  353,551,  23.2.21.     Addn.  to  346,242. 

Coal  is  heated  to  a  temperature  at  which  evolu- 
tion of  volatile  matter  commences,  and  is  then  sub- 
jected to  a  high  pressure.  Even  poor  coals  and 
mixtures  of  any  kind  of  coal  with  fine-grained  ore 
or.  furnace  dust  can  be  treated  in  this  way. 

— H.  C.  R. 

i  'ombustion  of  pulverised  fuel;  Process  for  the . 

C.  E.  Blyth.     E.P.  184,250,  3.5.21. 

An  inflammable  liquid  such  as  paraffin,  insufficient 
in  quantity  to  prevent  the  subsequent  diffusion  of 
the  product  with  air,  is  mixed  with  coal  before 
treatment  in  the  apparatus  described  in  E.P. 
17.3.:S01  (J.,  1922,  243  a),  or  before  or  during  pul- 
verisation in  other  apparatus. — H.  Hg. 

Heat  contained  in  the  fuel  residues  of  furnaces; 

Method  and  means  for  utilising  the .    J.  S. 

Withers.       From     Deutsche     Evaporator-A.-G. 
E.P.  184,211,  7.3.21. 

Fuel  is  partly  burnt  on  a  primary  grate  with  a 
mechanical  feed  and  the  residue  is  discharged  on 
to  a  secondary  grate  arranged  below  the  primary 
grate.  Air  is  supplied  under  the  secondary  grate 
and,  together  with  products  of  combustion  from 
that  grate,  passes  to  the  under  side  of  the  primary 
grate.  All  or  part  of  the  air  may  pass  through 
flues  in  the  side  walls  of  the  furnace  immediately 
before  entering  the  primary  grate.  In  order  to  pre- 
vent passage  of  air  to  the  upper  side  of  the  primary 
grate  a  horizontal  wall  is  provided  and  so  spaced 
as  to  permit  the  passage  of  fuel  only  from  one  grate 
to  the  other.  The  primary  grate  may  be  inclined 
and  may  deliver  fuel  to  the  secondary  grate  through 
an  auxiliary  grate  which  can  be  rocked  and  which 
lias  an  adjustable  ash  passage.  The  air  may  be 
admitted  to  the  grates  through  louvres  or  lateral 
sluices.  The  secondary  grate  may  be  so  mounted 
that  it  can  be  oscillated.  Part  of  the  air  required 
for  combustion  may  be  supplied  direct  to  the 
primary  grate. — H.  Hg. 


Gas  producers.  W.  Climie.  E.P.  184,323,  15.6.21. 
The  rotary  air-blast  cone  of  a  water-sealed  pro- 
ducer is  composed  of  a  number  of  superposed  rings 
of  double-angled  cross-section  spaced  upon  a  conical 
framework  so  that  slots  are  formed  for  the  passage 
of  air  into  the  fuel  bed.  Each  ring  has  projecting 
flanges  such  that  when  the  rings  are  assembled 
the  outer  surface  of  the  cone  is  provided  with  two 
or  more  continuous  spiral  ribs.  The  base  of  the 
cone  is  separated  from  the  annular  ash-pan  by  a 
water  seal  and  the  two  may  be  rotated  in  the  same 
or  in  opposite  directions.  An  upwardly  projecting 
blade  may  be  fitted  to  the  ash-pan  so  as  to  prevent 
formation  of  clinker  belf.veen  the  lower  edge  of 
the  cone  and  the  inner  wall  of  the  generator.  The 
cone  is  rotated  in  combination  with  a  rake  acting 
upon  the  upper  surface  of  the  fuel  in  the  generator. 

— H.  Hg. 

Vertical-retort  gas-making  apparatus.  R.  M. 
Searle,  Assr.  to  The  U.G.I.  Contracting  Co. 
U.S.P.  1,427,078,  22.8.22.     Appl.,  23.9.19. 

A  number  of  vertical  retorts,  each  of  which  is  sur- 
rounded by  an  independent  heating  chamber  con- 
taining horizontal  baffles,  are  arranged  in  a  circle 
around  a  vertical  flue  which  conducts  the  waste 
gases  downwards  to  a  regenerator.  The  combustion 
chamber  is  subdivided  into  a  number  of  combus- 
tion chambers  connected  with  the  heating  chambers. 

-H.  Hg. 

Gas  mixture;  Continuous  process  for  producing  a 

from  u-atcr-gas  and  the  volatile  matter  from 

coal.    H.  Strache.    G.P.  353,649,  9.2.21.     Conv., 
9.2.20. 

The  gases  produced  by  the  hot  blast  are  led  off  from 
the  middle  of  the  gas  producer  through  an  open 
tube,  whereas  the  hot-water  gas  is  led  through 
the  annular  space  between  this  inner  tube  and 
the  walls  of  the  gas  producer,  which  is  filled 
with  fuel.  When  fuel  of  high  water  content, 
such  as  lignite,  is  being  used  the  hot  blast 
gases  may  be  burnt  in  the  inside  of  the  producer 
by  passing  air  through  a  suitably  arranged  pipe. 
The  hot  blast  gases  are  then  passed  either  to  the 
chimney  or  to  a  steam  superheater.  The  water-gas 
passes  through  the  annular  space  containing  the 
fuel,  carrying  away  the  volatile  matter  with  it 
through  the  top  of  the  gas-producer  to  the 
gasometer. — H.  C.  R. 

Gas  washers.    A.  Florin.    E.P.  184,060,  9.8.21. 

The  washing  liquid  is  contained  in  a  horizontal 
rotary  casing  mounted  on  the  ends  of  two  pipes 
forming  gas  inlet  and  outlet  respectively,  and  flows 
in  contrary  direction  to  the  gas.  Two  concentric 
perforated  cylinders  are  fixed  within  the  casing  and 
rotate  with  it;  the  annular  space  between  the 
cylinders  is  packed  with  washing  bodies  so  as  to 
present  a  large  surface  to  the  gas.  Partitions 
parallel  to  the  ends  of  the  casing  are  provided  with 
openings  alternately  at  the  circumference  and  at 
the  centre  so  as  to  direct  the  gas  along  a  zigzag 
path.— H.  Hg. 

Sulphur;  Process  for  obtaining  pure from  gas- 
purifying  materials.  L.  Hoffmann.  G.P.  355,867, 
26.2.21. 

The  contents  of  the  scrubbers  are  extracted  with 
a  volatile  solvent  such  as  carbon  bisulphide,  the 
solution  is  mixed  with  a  liquid  which  does  not  dis- 
solve sulphur  or  tar  and  is  not  acted  upon  by  the 
carbon  bisulphide,  and  the  latter  is  distilled  off. 
An  aqueous  solution  of  a  salt  having  no  action  on 
the  substances  named,  and  of  a  sp.  gr.  lying 
between  that  of  the  tar  and  that  of  the  sulphur 
{e.g.,  a  solution  of  aluminium  sulphate  of  sp.  gr. 
about   1"3)    is  used.     After   the   solvent   has   been 


Vol.  XLI ,  No.  19.] 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


741  a 


distilled  off,  the  sulphur  sinks  to  the  bottom  of 
the  vessel  and  the  liquid  can  be  decanted  off 

— H.  C.  R. 

Hydrocarbons;   Refining    of    liquid   A     E 

Dunstan.     E.P.  184,281,  12.5.21. 

To  remove  sulphur  compounds,  liquid  hydrocarbon 
oils  are  subjected  to  a  preliminary  treatment  with 
liquid  alkali,  then  agitated  with  an  alkali  hypo- 
chlorite solution,  such  as  sodium  hypochlorite,  con- 
taining free  alkali,  and  finally  treated  again  with 
liquid  alkali.  The  preliminary  alkaline  treatment 
removes  some  sulphur  compounds  and  acidic  com- 
pounds which  would  decompose  the  hypochlorite, 
whilst  the  final  treatment  eliminates  the  greater 
part  of  the  sulphur  compounds  oxidised  by  the 
hypochlorite  and  not  removed  by  it. — P.  G.  P.  R. 

Distilling  [oils];  Process  and  apparatus  for  

J.  T.  Feuton.  U.S. P.  1,424,998,  8.8.22.  Appl., 
29.3.21. 

A  still  for  use  in  topping  oils  is  constructed  with 
a  bottom  in  the  form  of  descending  steps  down 
which  the  oil  flows  in  a  thin  stream.  A  weir  at 
the  top  of  the  st<?ps,  having  a  vertically  movable 
gate  over  which  the  oil  flows,  forms  a  preheating 
reservoir,  whilst  at  the  bottom  is  situated  a  well  in 
which  the  depth  and  temperature  of  the  oil  are 
made  to  regulate  valves  on  the  oil  inflow  pipes 
leading  into  the  preheating  reservoir. — F.  G.  P.  R. 

Retort  furnace  and  condensing  apparatus  for  the 
eduction  of  oil  and  fuel  gas  from  oil  shales  and 
sands.  C.  L.  Buckingham.  U.S. P.  1,425,074, 
8.8.22.    Appl.,  1.2.21. 

A  horizontal  retort  of  U-shaped  cross-section  is 
provided  along  its  sides  with  longitudinal  flanges 
which  rest  on  brickwork  walls  composing  the  flue. 
A  cover  to  the  retort  is  provided  with  a  number 
of  gas  domes  with  outlet  pipes  to  condensers.  The 
shale  or  sand  is  fed  in  at  one  end  of  the  retort 
and  continuously  moved  along  to  the  other  end  by 
suitable  means,  such  as  a  screw  conveyor. 

— F.  G.  P.  R. 

Motor  fuel.  F.  W.  Rohrs.  U.S.P.  1,425,135,  8.8.22. 
Appl.,  23.2.21. 

A  liquid  fuel  for  internal-combustion  motors  is 
composed  of  88%  of  a  light  petroleum  distillate,  9% 
of  benzol,  and  3%  of  acetone  to  act  as  an  oxygen 
carrier. — F.  G.  P.  R. 

Transformer     oil;     Process      of     purifying      and 

dehydrating .     C.  H.  Hapgood,  Assr.  to  The 

De  Laval  Separator  Co.  U.S.P.  1,425,645, 
15.8.22.    Appl.,  3.5.21. 

Transformer  and  similar  oils  containing  only  a 
very  small  proportion  of  water  are  practically 
completely  dehydrated  by  being  subjected  to  centri- 
fugal force  whereby  the  water  is  carried  to  the 
periphery  of  the  machine  and  there  held  as  a 
surrounding  film.  The  oil  floats  on  the  watery 
envelope  thus  formed  and  is  drawn  of  at  a  point 
closer  to  the  axis  of  rotation  than  the  inner  wall  of 
the  water  film.— F.  G.  P.  R. 

Petroleum;   Distilling   under   high  pressure. 

C.  E.  Stockford,  Assr.  to  Standard  Oil  Co.  of 
New  York.  U.S.P.  1,425,712,  15.8.22.  Appl., 
8.5.15. 

The  fire  chamber  and  flue  beneath  a  horizontal, 
high-pressure  still  are  so  arranged  that  the  whole 
length  of  the  still  bottom  is  exposed  to  direct 
flame  and  fire  gases.  The  distance  between  the 
bottom  of  fhe  still  and  the  top  of  the  furnace 
bridge  wall  should  be  more  than  one  third  of  the 
diameter  of  the  still.— F.  G.  P.  R. 


Hydrocarbon     oils;     Process     of     treating     . 

Mineral-oil  derivatives.     H.  T.  Maitland,  Assr. 

to  Sun  Co.  U.S.P.  1,425,882-5,  15.8.22.     Appl., 
15.4.19. 

(a)  An  organic  acid  insoluble  in  water  and  capable 
of  being  saponified  is  made  from  petroleum  oil  by 
subjecting  a  heavy  distillate,  such  as  lubricating 
oil  stock,  to  treatment  with  sulphuric  acid  and 
separating  the  acid  sludge.  The  remaining  oil  is 
treated  with  alkali  and  the  latter  run  off  and 
acidified  with  a  relatively  weak  acid  whereby  the 
alkali  soaps  are  decomposed  and  insoluble  organic 
acids  liberated,  (b)  Acid  sludge  is  agitated  with  a 
continuous  supply  of  fresh  hot  water  until  the  free 
acid  content  of  the  sludge  is  sufficiently  reduced  to 
leave  the  water-insoluble  saponifiable  oil  described 
in  (a),  (c,  d)  The  insoluble  saponifiable  organic 
acids  described  in  (a)  and  (b)  are  claimed  as 
new  compounds,  one  being  liquid  and  the  other 
solid  at  ordinary  temperatures.  They  are  insoluble 
in  water,  practically  odourless,  do  not  become 
rancid  and  contain  less  than  1%  of  sulphur.  They 
are  readily  saponifiable  to  substances  soluble  in 
water  in  all  proportions  and  in  mineral  oils  totally 
and  partially  respectively,  and  as  such  have  the 
characteristics  of  soaps  derived  from  animal  and 
vegetable  oils. — F.  G.  P.  R. 

Hydrocarbons;   Process   of   producing    light    . 

C.    R.    Burke,    Assr.    to   L.    P.    Burke.      U.S.P. 
1,426,149,   15.8.22.     Appl.,  16.1.12. 

Heavy  oil  is  distilled  under  atmospheric  pressure 
and  the  vapours  led  into  a  compressor  where  they 
are  subjected  to  a  pressure  sufficient  to  raise  their 
temperature  to  that  at  which  cracking  takes  place. 
By  varying  the  pressure  the  degree  of  cracking  can 
be  regulated  and  a  product  of  any  desired  specific 
gravity  and  character  can  be  obtained  at  will. 

— F.  G.  P.  R. 

Hydrocarbons;  Process  for  the  production  of  low 

boiling     point    .       J.     C.     Black.       U.S.P. 

1,426,813,  22.8.22.     Appl.,  12.12.19. 

Oil  is  heated  in  a  tube  still  to  cracking  temperature 
and  under  a  pressure  of  not  less  than  35  atm. 
whereby  vaporisation  is  prevented.  The  heated 
oil  is  then  passed  into  a  larger  chamber,  kept 
completely  filled  with  oil  and  under  the  same 
pressure  as  the  still,  wherein  carbon  is  deposited, 
and  thence  passes  to  an  atmospheric-pressure  still 
where  the  light  portions  vaporise  and  are  led  to 
condensers.  The  heavier  unvaporised  portions  are 
returned,  together  with  fresh  oil,  to  the  cracking 
still.— F.  G.  P.  R. 

"Bath-oil" ;  Method  for  the  recovery  of  in 

the  production  of  oils  from  peat.     Hochofenwerk 
Ltibeck  A.-G.    G.P.  353,206,  25.5.21. 

After  distilling  off  the  peat  oils,  the  residue  is 
mixed  with  tar  and  distilled  to  pitch.  "  Bath-oil  " 
and  anthracene  oil  distil  over,  and  are  subsequently 
separated  by  distillation.  After  drawing  off  the 
pitch,  the  anthracene  oil  together  with  the  bath-oil 
may  be  run  into  the  distillation  vessel  before  charg- 
ing it  with  peat,  and  the  anthracene  oil  distilled  off. 
On  account  of  the  recovery  of  the  bath-oil  only  a 
small  addition  of  foreign  high-boiling  oil  is 
required  in  the  process.  The  pitch  produced  is  of 
good  quality. — J.  B.  F. 

Aluminium  chloride;  Separating  from  heavy 

hydrocarbons.  C.  O.  Hoover,  Assr.  to  The  Hoover 
Co.  U.S.P.  1,426,081,  15.8.22.  Appl.,  3.4.22. 
To  recover  aluminium  chloride  from  heavy  hydro- 
carbon oils,  e.g.,  after  it  has  been  used  as  a 
catalytic  agent  in  cracking,  the  product  is  dissolved 
in  a  suitable  solvent  and  the  mixture  subjected  to 
sublimation.— F.  G.  P.  R. 


742  a 


Cl.  IIb— DESTRUCTIVE  DISTILLATION  j    HEATING  ;    LIGHTING. 


[Oct.  16,  1922. 


Emulsifying  agent  for  liquids  insoluble  in  water. 
K  Daimler,  and  Farbw.  vorm.  Meister,  Lucius, 
unci  Briining.  G.P.  352,860,  21.11.20. 
The  oxidation  products  obtained  by  treating  fossil 
minerals  of  vegetable  origin,  such  as  coal  or  lignite, 
with  nitric  acid  and  air  are  treated  with  alkalis, 
ammonia,  or  sodium  carbonate  so  as  to  form  5%— 
30%  pastes  and  then  stirred  with  the  material  to 
be  emulsified,  for  example,  paraffin  oil,  lubricating 
oil,  castor  oil,  linseed  oil,  tar,  or  creosote.  The 
emulsions  obtained  can  be  diluted  and  used  as 
lubricants,  water-soluble  boring  oils,  disinfecting 
or  other  paints  or  adhesives. — H.  C.  R. 

Fuel  supplied  to  furnaces  or  the  like;  Drying  • . 

W.  R.  Wood.     U.S.P.  1,427,045,  22.8.22.    Appl., 

25.3.19. 
See  E.P.  124,314  of  1918;  J.,  1919,  312  a. 

Combustible  gas;  Process  of  producing  and 

for  carbonising  coal.     H.   L.   Dohertv.     U.S.P. 
1,426,159,  15.8.22.    Appl.,  7.9.18. 

See  E.P.  132,488  of  1919;  J.,  1920,  684  a. 


— .     J.  Primrose, 
U.S.P.  1,425,896, 


0;7  stills;  Damper  control  for 
Assr.  to  Power  Specialty  Co 
15.8.22.    Appl.,  16.9.20. 

See  E.P.  176,100  of  1920;  J.,  1922,  284  a. 

See  also  pages  (a)  743,  Dehydrating  emulsions 
(G.P.  354,202).  747,  Fire-extinguishing  etc.  (G.P. 
335,107).  786,  Ichthyol  oil  (E.P.  184,292).  791, 
Calorific  value  of  gas  (E.P.  184,025);  Gas  analysis 
apparatus  (E.P.  184,279). 


IIb.— DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Patents. 

Retorts    or    furnaces    {for    distilling    shale    etc.]. 
J.  P.  B.  AVebstcr.     E.P.  184,040,  20.7.21. 

The  shale  etc.  is  fed,  e.g.,  by  a  valved  hopper,  to 
the  trays,  buckets,  or  the  like  of  an  endless  con- 
veyor which  travels  through  a  long  casing  open  at 
the  ends  and  heated  throughout  its  length.  The 
casing  is  sealed,  e.g.,  by  water  seals,  at  each  end 
to  prevent  ingress  of  air  and  escape  of  vapours, 
and  may  be  heated  by  flues  above  and  bellow  it, 
through  which  pass  gases  from  a  combustion 
chamber  communicating  with  the  lower  flue  through 
openings  fitted  with  adjustable  dampers.  Spaced 
diaphragms,  extending  close  to  the  trays  etc.,  may 
be  provided  to  divide  the  casing  into  compartments, 
some  or  all  of  which  may  be  fitted  with  pipes  leading 
to  condensers. — H.  H. 

Wood  products;  Method  and  apparatus  for  obtain- 
ing          [6y     destructive     distillation],       E. 

Berthelon.  U.S.P.  1,426,346,  22.8.22.  App'l., 
31.12.19. 
The  gases  arising  from  the  destructive  distillation 
of  wood  are,  while  still  hot,  passed  into  a  receiver, 
from  which  the  air  has  been  removed,  where  they 
meet  a  stream  of  water,  whereby  they  are  cooled 
and  the  condensable  products  are  collected.  The 
gases  are  then  passed  through  a  second  vessel  where 
the  acidic  constituents  are  extracted  by  means  of 
alkalis;  they  then  pass  upwards  through  a  column 
where  they  are  again  washed  by  a  stream  of 
descending  water. — A.  R.  P. 

Absorbent  charcoal  for  gas  masks;  Method  of  pre- 
paration of .   Chem.  Werke  Carbon  G.m.b.H. 

G.P.  310,021,  15.1.18. 

Coal,  anthracite,  or  lignite  in  small  pieces  is 
t  reated  at  a  red  heat  with  slightly  superheated 
steam,   extracted   with   mineral   acid,   washed   with 


water,  dried,  and  heated  strongly.  The  steam  treat- 
ment may  be  discontinued  before  the  end  of  the 
first  heating,  and  there  may  also  be  a  preliminary 
heating  at  a  lower  temperature,  e.g.,  400°  C,  with 
or  without  steam. — C.  I. 

Charcoal;  Process  of  manufacturing  highly  absorb- 
ent   .     Chem.  Werke  Carbon  G.m.b.H.    G.P. 

310,022,  16.1.18. 

Charcoal,  more  especially  for  use  in  gas  masks,  is 
prepared  by  heating  coal  in  from  three  to  ten  times 
its  quantity  of  molten  caustic  alkali,  with  or 
without  addition  of  sodium  chloride  or  other  flux ; 
the  melt  is  washed  thoroughly  and  the  residue 
roasted  for  a  long  period. — J.  S.  G.  T. 

Decolorising    carbon;    Process    of    manufacturing 

.      Chem.    Werke    Carbon    G.m.b.H.      G.P. 

310,622,  4.5.18. 

Any  kind  of  carbonaceous  matter  or  coal  is  mixed 
with  an  alkaline-earth  sulphate  and  the  mass  cal- 
cined and  then  elutriated,  the  deposited  carbon 
being  extracted  with  acid.  If  desired  the  process  is 
repeated.  The  alkaline-earth  sulphate  may  be  pre- 
cipitated upon  the  coal  employed. — J.  S.  G.  T. 

Mercury  vapour  lamp;  Quartz .    Quarzlampen- 

Ges.  m.b.H.  E.P.  165,081,  12.5.21.  Conv.,  17.6.20. 
In  a  quartz  mercury  vapour  lamp,  the  duration  of 
the  initial  ignition  period  is  reduced  to  5 — 8 
minutes  by  reducing  the  quantity  of  mercury  em- 
ployed in  the  lamp.  This  is  effected  as  regards  the 
cathode  vessel  by  allowing  the  mercury  to  extend 
in  a  thin  layer  between  the  internal  surfaces  of  the 
vessel  and  the  surface  of  a  quartz  tube  fused  into 
the  front  wall  of  the  vessel  or  inserted  loosely  and 
stayed  against  the  inner  wall  of  the  vessel  by  studs 
or  similar  projections.  In  the  anode  vessel,  adja- 
cent to  the  point  where  the  light-emitting  tube  is 
connected,  a  small  cavity  to  contain  exactly  the 
quantity  of  mercurv  to  effect  ignition  bv  tilting  is 
formed.— J.  S.  G.  T. 

Electric  lamps  and  the  like;  IDrawn  wire  filament 

for']    incandescence    ■ .      O.    Oberlander    and 

W.  H.  le  Marechal.    E.P.  184,291,  20.5.21. 

Uranium  oxide,  or  a  substance  which  on  subsequent 
treatment  yields  uranium  oxide,  is  incorporated 
with  the  material  used  for  the  production  of  drawn 
tungsten  filaments.  If  desired,  thorium  oxide  or 
boric  acid,  or  both,  may  be  also  incorporated  with 
the  material.  Thus  ammonium  uranate  dissolved  in 
very  dilute  nitric  acid  may  be  added  to  tungstic 
oxide  so  that,  on  reducing  with  hydrogen,  the 
resulting  material  contains  the  equivalent  of  C l"87% 
of  uranium  dioxide.  Alternatively  the  reduced 
material  may  contain  about  0'75%  of  thorium  oxide 
and  075%  of  uranium  oxide.  Filaments  prepared 
from  such  material  retain  their  ductility  after  pro- 
longed heating  at  very  high  temperatures. 

—J.  S.  G.  T. 

Electric  lamp  with  glow-discharge .   J.  Pintsch  A.-G. 
G.P.  355,855,   13.12.17.     Addn.  to  355,288. 

The  lamp  is  filled  with  an  inert  gas  with  a  small 
admixture  of  another  gas  or  vapour,  such  as  hydro- 
gen, nitrogen,  carbon  dioxide,  water  vapour,  or 
metallic  vapours,  in  such  proportion  that  the  illu- 
minating power  is  not  affected  but  the  disintegra- 
tion of  the  electrodes  is  suppressed  and  the  lighting 
of  the  lamp  rendered  easier.  The  additional  gas 
may  be  added  to  the  inert  gas  before  filling  or  it 
may  be  evolved  during  use  from  the  electrodes  or 
from  the  incompletelv  de-gassed  walls  of  the  lamp. 

—A.  R.  P. 

Tungsten  wires.    E.P.  163,014.    See  X. 


Vol.  XIX,  No.  19]    Cl.  III.— TAR  &  TAR  PRODUCTS.     Cl.  IV.— COLOURING  MATTERS  &  DYES.  743  a 


III.-TAB  AND  TAD  PDODUCTS. 

Phosgene;    Reactions   of   with    benzene   and 

m-xylene  in  the  presence  of  aluminium  chloride. 
R.  E.  Wilson  and  E.  W.  Fuller.  J.  Ind.  Eng. 
Chem.,  1922,  14,  406-409. 

Interaction  between  phosgene  and  benzene  in  the 
presence  of  anhydrous  aluminium  chloride  yields 
benzoyl  chloride  and  benzophenone,  but  no  trace  of 
anthraquinone,  the  production  of  which  was  the 
initial  aim  of  the  investigation.  There  are  two 
stages  in  the  reaction :  an  intermediate  compound,  | 
CtHsCOCl,AlCl3  (which  can  be  hydrolysed  to  give 
benzoic  acid)  is  formed  and  this  compound  reacts 
rapidly  with  a  further  quantity  of  benzene,  the 
final  product  being  almost  entirely  benzophenone 
irrespective  of  change  of  temperature,  method  of 
mixing,  ratio  of  reacting  substances,  etc.  If  carbon 
bisulphide  is  used  as  a  diluent,  a  large  part  of  the 
product  can'  bo  obtained  as  benzoic  acid  owing  to 
the  slight  solubility  of  the  intermediate  compound 
(in  the  diluent),  which  is  thus  removed  before  it  can 
react  with  more  benzene.  With  m-xylene  phosgene 
yields  a  dixylyl  ketone  in  which  at  least  two  of  the 
methyl  groups  are  in  the  ortho  position  with  respect 
to  the  carbonyl  group;  attempts  to  convert  this 
ketone  into  an  anthraquinone  derivative  by  oxida- 
tion were  not  successful. — W.  P.  S. 

ay-Quinolines;  Preparation  of .  I.  2A-I)imethyl- 

6-ei hoxyqumoline :  an  improved  method  fur  the 
preparation.  S.  Palkin  and  M.  Harris.  J.  Ind. 
Eng.  Chem.,  1922,  14,  704—705. 

The  method  of  Mikeska,  Haller  and  Adams  (J., 
1921,  75  a)  was  adapted  to  commercial  needs.  The 
reaction  product  is  diluted  with  water  and  a  current 
of  steam  passed  through  for  J  hr.,  and  after  cooling. 
and  pouring  off  the  supernatant  liquid,  the  tarry 
residue  is  washed  several  times  with  dilute  hydro- 
chloric acid,  the  washings  being  added  to  the  main 
liquid.  The  cool  solution  is  treated  with  an  excess 
of  strong  caustic  soda,  and  after  separation  the 
aqueous  layer  is  drawn  off,  and  the  oil  distilled  at 
30 — 70  mm.  pressure.  The  "crude  base  "  distillate 
(up  to  about  225°  C.  at  30  mm.)  is  treated  on  the 
steam  bath  with  an  equal  weight  of  acetic  anhydride 
and  poured  into  water.  After  filtering,  the  solu- 
tion is  neutralised  with  caustic  soda,  the  precipi- 
tated base  separated,  dissolved  in  twice  its  weight 

;  of  concentrated  hydrochloric  acid,   and  diazotised. 

I  After  filtering  the  solution  is  treated  with  steam  to 
decompose    the    diazo    compounds,    cooled,    filtered 

!  through  cotton,  and  neutralised.     After  about  1  hr. 

,  the  precipitated  base  is  filtered  off,  and  purified  by 
vacuum     distillation     and     recrystallisation     from 

)  hydrochloric  acid  solution.     The  pure  base  melts  at 

[  88°— 88-5°  C.     (Of.  J.C.S.,  Oct.)— A.  G.  P. 

Pyridine  recovery.    Gluud  and  Schneider.    See  Ha. 

Patents. 

Tar  and  other  liquids;  Process  and  apparatus  for 

distilling   .     W.    Glossop,   L.    Bradley,    and 

R.  P.  Willsdon.  E.P.  184,242,  2.5.21. 
The  interior  of  a  still  is  provided  with  superposed 
plates  inclined  at  an  angle  to  one  another,  so  that 
liquid  delivered  on  to  the  top  plate  runs  down  and 
is  delivered  on  to  the  higher  part  of  the  next  plate 
which  is  inclined  in  the  reverse  direction.  In  'his 
way  the  liquid  is  caused  to  follow  a  zigzag  course 
in  the  form  of  a  thin  film,  and  when  falling  from 
one  plate  to  the  next  produces  a  curtain  of  liquid 
through  which  ascending  vapours  must  pass.  By 
this  means  the  latter  are  well  scrubbed  and  also 
cause  vaporisation  of  the  light  constituents  of  the 
liquid— F.  G.  P.  R. 


Emulsions  of  tars  and  oils;  Process  for  dehydrating 

.     Badische  Anilin-  und  Soda-Fabrik.     G.P. 

354,202,  20.7.18. 

The  emulsion  is  heated  in  a  closed  vessel  under 
pressure  and  the  water  vapour  removed  by  releasing 
the  pressure,  the  heating  being  continued.  By 
this  means  the  water  can  be  rapidly  removed 
without  danger. — H.  C.  R. 

Amines;  Manufacture  of  from  phenolic  com- 
pounds. W.  L.  Galbraith.  W.  V.  Shannan,  W.  G. 
Adam,  and  N.  E.  Siderfin.    E.P.  184,284,  13.5.21. 

In  the  preparation  of  amines  by  heating  an 
unsubstituted  phenol  with  free  ammonia  and 
ammonium  sulphite,  the  ammonium  sulphite  may 
be  replaced  by  another  ammonium  salt  (ammonium 
chloride)  together  with  a  fixed  alkali  sulphite  such 
as  sodium  sulphite.  In  general,  equimolecular 
quantities  of  phenol.  alkali  sulphite,  and 
ammonium  salt  are  required.  Where  the  phenol  is 
originally  prepared  by  means  of  a  caustic  soda 
fusion  process,  the  crude  fusion  product,  containing 
the  sodium  phenoxide  and  sodium  sulphite,  may  be 
used  directly  and  the  addition  of  an  alkali  sulphite 
omitted.  For  example,  when  4800  g.  of  crude 
sodium-/3-naphtholate  melt.  2953  g.  of  ammonium 
chloride,  2617  c.c.  of  aqueous  ammonia  (sp.  gr. 
0'880)  and  9280  c.c.  of  water  were  heated  under  a 
maximum  pressure  of  180  lb.  per  sq.  inch  for  14  hrs. 
at  170°  C.  there  were  obtained  from  the  product, 
impure  unchanged  /3-naphthol  6'6%  and  crude 
/?-naphthylamine  90'6%,  which  gave  79'7%  of 
/3-naphthylamine  purified  by  distillation.  The 
process  is  especially  suitable  for  the  manufacture 
of  /3-naphthylamine. — A.  J.  H. 

Aromatic    alktjlamino[anthrnquinone']    compounds; 

Manufacture    of    .      W.    N.    Haworth    and 

F.  W.  Atack.    U.S. P.  1.426.380,  22.8.22.    Appl.. 
19.1.20. 

See  E.P.  147,964  of  1919;  J...  1920,  623  a. 


IV.-C0L0UDING  MATTEDS  AND  DYES. 

6.6'-I)i-a-hydroxyisopropylindigo:     Preparation     of 

from  p-cymene.      M.    Phillips.     J.   Amer. 

Chem.  Soc,  1922,  44,  1775—1780. 

The  p-cymene  is  obtaiued  from  spruce  turpentine 
and  is  converted  into  mononitrocymene  by  a 
modification  of  the  method  of  Andrews  (J., 
1918,  486  a).  The  nitro-compound  is  oxidised  by 
potassum  permanganate  in  the  presence  of 
sodium  hydroxide  into  o-nitro-p-a-hydroxyisopropyl- 
benzoic  acid,  m.p.  168°  C.  (corr.),  which  is  re- 
duced by  ferrous  sulphate  and  barium  hydroxide 
to  o-amino-p-a-hydroxyisopropylbenzoic  acid,  m.p. 
158°  C.  (corr.).  Condensation  of  the  latter  with 
chloroacetic  acid  gives  o-aminoacetic-p-a-hydroxy- 
isopropylbenzoic  acid, 

C(CH3)2(OH).C0H,(CO2H).XH.CHI.CO2H, 
m.p.  232'6°  C.  (corr.),  which  is  transformed  by 
fusion  with  potassium  hydroxide  at  180° — 230°  and 
subsequent  oxidation  of  the  aqueous  solution  of 
the  melt  by  air  into  6.6'-di-a  hydroxyisopropyl- 
indigo.  The  new  dye  closely  resembles  indigo  in 
appearance.  It  gives  greenish-blue  shades  on 
cotton  from  a  hydrosulphite  vat  and  compares 
rather  favourably  with  indigo  as  regards  fastness 
to  light,  acid,  washing,  and  rubbing.  It  differs 
from  indigo  notably  in  its  solubility  in  most 
organic  solvents. — 41.  W. 

Glucosides;  Studies  of  .      7.   Constitution  of 

indican.     A.  K.  Macbeth  and  J.  Pryde.     Trans. 
Chem.  Soc.  1922,  121,  1660—1668. 
Indican  was  converted  by  means  of  methyl  iodide 
and    silver   oxide   into  the   tetramethyl-derivative, 


744  a 


Cl.  IV.— COLOURING  MATTERS  AND  DYES. 


[Oct.  16,  1922. 


and  this  was  hydrolysed  by  methyl  alcoholic 
hydrogen  chloride  solution  to  a  mixture  of  the 
a-  and  /J-forms  of  the  tetrainethylmethylglucosides 
possessing  the  ordinary  butylene-oxide  linking, 
together  with  certain  indoxyl  derivatives,  includ- 
ing a  product  closely  resembling  the  Indoxyl 
Brown  of  Perkin.  The  glucosides  when  hydrolysed 
by  aqueous  acid  yielded  a  crystalline  tetraniethyl- 
glucose,  readily  identified  as  the  2.3.5.6  or  butylene 
oxide  compound.  The  molecule  of  d-glucose  with 
which  indoxyl  is  combined  in  indican  is  thus  of  the 
butylene  oxide  type.  The  optical  properties  of  the 
glucoside  and  its  behaviour  towards  enzymes 
indicate  that  it  is  a  derivative  of  ^-glucose. 

—P.  V.  M. 

Pigment   Chlorine    GG   (M.L.B.)   and  Lithol  Fast 

Yellow    GG    (B.A.S.F.);    Constitution    of    . 

F.  M.  Rowe  and  E.  Levin,     J.   Soc.  Dyers  and 
Col.,  1922,  38,  203—204. 

Pigment  Chlorine  GG  and  Lithol  Fast  Yellow  GG 
are  readily  obtained  pure  by  crystallisation  from 
glacial  acetic  acid,  the  former  as  yellow  prisms  of 
m.p.  224°  C.  and  the  latter  as  orange-yellow 
prismatic  needles  of  m.p.  266°  C.  Analysis  shows 
them  to  be  isomerides  having  the  formula 
C,jH,0N4OdCl2,  and  they  are  obtained  by  condensa- 
tion of  2  mols.  of  a  chloronitroaniline  with  1  mol. 
of  formaldehyde.  Such  condensation  products 
of  various  chloronitroanilines  with  formalde- 
hyde were  prepared  and  purified  by  crystal- 
lisation from  glacial  acetic  acid  for  comparison 
with  the  two  dyes.  The  condensation  product 
from  2-chloro-4-nitroaniline  (m.p.  104° — 105°  C.) 
formed  pale  yellow  needles,  m.p.  282°  C. ;  from 
3-chloro-4-nitroaniline  (m.p.  156° — 157°  C.)  a  yellow 
crystalline  powder,  m.p.  239°  C. ;  from  2-chloro-5- 
nitroaniline  (m.p.  117° — 118°  C.)  yellow  leaflets, 
m.p.  207°  C.  ;  from  3-chloro-6-nitroaniline  (m.p. 
125°  C.)  yellow  prisms  m.p.  224°  C. ;  and  from  4- 
chloro-6-nitroaniline  (m.p.  72°  C.)  orange-yellow 
prismatic  crystals,  m.p.  266°  C.  Pigment  Chlorine 
GG  is  thus  derived  from  3-chloro-6-nitroaniline  and 
Lithdl  Fast  Yellow  GG  from  4-chloro-6-nitroaniline. 

—A.  J.  H. 

Substantive  azo  dyestuffs  of  the  naphthalene  series; 

Synthesis  of  .      N.   W.   Woroshtzow.     Ber. 

Poly.    Iwanowo-Wosniessensk,    1921,    4,   95 — 108. 
Chem.  Zentr.,  1922,  93,  III.,  369—370. 

Important  direct  cotton  dyestuffs  containing  a 
naphthalene  nucleus  to  which  azo  groups  are 
attached  in  either  the  1.4,  1.5,  or  2.6  positions  are 
analogous  in  their  substantive  dyeing  properties  to 
naphthaquinone  compounds  having  :CO  groups  in 
the  same  positions  and  this  suggests  that  the  sub- 
stantive dyeing  properties  of  dyestuffs  should  be 
associated  with  molecular  configuration  rather  than 
definite  atomic  groups.  In  these  1.5  and  2.6  azo 
dyestuffs,  two  and  one  azo  groups  are  necessary 
respectively.  One  azo  can  be  replaced  by  NO,. 
1.2-Compounds  also  show  substantive  dyeing 
properties  and  these  are  being  further  investigated. 
Naphthalene  compounds  analogous  to  benzidine 
are  not  naphthidines  but  naphthylenediamine  and 
its  derivatives.  Substantive  1.5  dyestuffs  were 
obtained  by  tetrazotising  1.5-naphthylenediamine- 
3.7-disulphonic  acid  and  coupling  with  either 
naphthionic,  Neville-Winther's,  or  H-acid.  1.5- 
Nitroaminonaphthalene  and  1.5-naphthylenedi- 
amine  also  yielded  substantive  azo  dyestuffs,  but 
azo  dyestuffs  obtained  from  nitronaphthionic  acid 
and  l-amino-5-acetaminonaphthalene-8-sulphonic 
acid  had  feeble  dyeing  properties.  When  coupled 
with  naphthionic,  Neville-Winther's,  and  H-acid, 
2  -  amino  -  6  -  nitronaphthalene  -  8  -  sulphonic  acid 
yielded  good  dyestuffs,  but  those  similarly  obtained 
lrom  2.6-naphthylenediamine-8-sulphonic  acid  were 
even  better.     (With  K.  A.  Gribow).— The  action  of 


1  mol.  of  HN03  on  a  solution  of  2-naphthylamine- 
4.8-disulphonic  acid  in  oleum  (5%  S03)  at  -5°  to 
-6°  C,  yields  a  product  (probably  the  6-nitro 
compound)  which  could  not  be  isolated  in  a  pure 
state,  but  which  on  diazotisation  in  solution  anil 
coupling,  yields  substantive  dyestuffs  with  marked 
affinity  for  vegetable  fibres.  Nitration  of  2- 
nitronaphthalene-4.8-disulphonic  acid  yields  mainly 
2.5-dinitronaphthalene-4.8-disulphonic  acid  to- 
gether with  a  small  amount  of  the  2.6  isomer.  The 
2.5-acid  dyes  wool  in  bright  yellow  shades  which 
are  not  fast  to  washing  but  which  change  to  fast 
dark  brown  under  the  action  of  light.  On 
reduction,  2.5-dinitronaphthalene-4.8-disulphonic 
acid  gives  2.5-naphthylenediamine-4.8-disulphonic 
acid  which  yields,  by  tetrazotisation  and  suitable 
coupling,  fast  dyestuffs  for  wool  and  cotton.  (Witli 
M.  K.  Besszubzew). — p-Nitrodiazobenzene  couples 
with  1.5-naphthylenediamine-3.7-disulphouic  acid 
in  the  2.6  positions,  but  only  the  disazo  dyestuff  has 
an  affinity  for  vegetable  fibres. — A.  J.  H. 

Toluidine     Blue;     Metachromism     of    .       It. 

Schwarz  and  E.  Herrmann.     Kolloid-Zeits,  1922, 
31,  91—94. 

Toluidine  Blue  in  aqueous  solution  constitutes  a 
poly-disperse  system  made  up  of  colloidal  particles 
and  molecular  disperse  particles.  The  different 
colouring  effects  (for  example  a-silicic  acid  gel  is 
coloured  blue  and  /i-silicic  acid  gel  red  by  Toluidine 
Blue)  are  due  in  the  first  place  to  the  difference  in 
the  degree  of  dispersion  of  the  adsorbent  and  in  the 
second  place  to  the  electrical  condition  of  the  adsorb- 
ing surface,  which  is  determined  by  the  nature  of 
the  adsorbed  ions.     (Cf.  J.C.S.,  October.) — J.  F.  S. 

Colouring  matter  of  Lithospcrmum,  Erythrorhizon. 
R.  ilajima  and  C.  Kuroda.  Acta  Phvtochim., 
1922,  1,  43—65. 

The  violet  colouring  matter  of  shikon,  the  dried 
roots  of  Lithospermum  Erythrorhizon,  has  been 
isolated  in  a  crystalline  state  and  is  shown  to  be 
the  monoacetyl  derivative  of  shikonin,  to  which  the 
constitution  y-methylpentenyl-2.5.8-trihydroxy-1.4- 
naphthoquinone  is  assigned.  The  latter  gives  a  tri- 
acetyl,  a  penta-acetyl,  and  a  dibenzoyl  derivative 
and  on  heating  is  decomposed,  giving  shikazarin, 
which  is  identical  with  o-methylquinizarin. — W.  G. 

Patents. 

Ben za n throne   derivatives;   Manufacture    of  . 

British  Dyestuffs  Corp.,  Ltd.,  A.  G.  Perkin,  and 
G.  D.  Spencer.  E.P.  183,351,  12.7.21. 
Hydroxybenzanthrone  is  obtained  by  heating  a 
mixture  of  benzanthrone  (50  parts),  anthraquinoue 
(50  parts),  alkali  hydroxide  (300  parts),  water  (50 
parts),  and  sodium  chlorate  or  sodium  nitrate  (35 
parts),  in  an  autoclave,  slowly  to  250°  C.  and  then 
maintaining  the  temperature  between  250°  and  265° 
C.  for  3  houTS.  The  product  is  digested  with  boiling 
water  and  anthraquinone  is  removed  by  filtration. 
Hydroxybenzanthrone  is  precipitated  from  the  fil- 
trate by  carbonic  acid  or  a  stronger  acid.  Amino- 
benzanthrone  is  prepared  by  gradually  heating  a 
mixture  of  hydroxybenzanthrone  (25  parts)  and 
ammonia  (sp.  gr.  0"880,  500  parts)  in  an  autoclave 
to  200°  C.  and  subsequently  maintaining  the 
temperature  at  220°— 230°  C.  for  7  hours.  The  pro- 
duct is  diluted  with  water  and  filtered,  whereby 
aminobenzanthrone  is  isolated  as  dull  red  crystals; 
unchanged  hydroxybenzanthrone  can  be  recovered 
by  acidification  of  the  filtrate. — H.  W. 

o-[Hydr]oxyazo   dyestuffs.     W.    Herzberg   and  O. 

Scharfenberg,  Assrs.  to  Akt.-Ges.  f.  Anilin-Fain  . 

U.S.P.  (a)  1,426,189,  (b)  1,426,190,  15.8.22.  Appl., 

5.11.21. 
(a)   Claim   is  made  for  the    o-hydroxyazo  dyestuff 


Vol.  XIX,  Xo.  19.] 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


745  a 


C,H<2)0H(3.5.6)CU1)N  :  N.(2)C,0Hi(l)OH(4)S03H, 
a  dark  powder  giving  a  reddish-violet  aqueous  solu- 
tion which  becomes  bluish-red  by  addition  of  6odium 
carbonate,  orange  by  addition  of  sodium  hydroxide, 
and  which  yields  a  red  precipitate  when  treated 
with  acids.  The  dye  is  applied  to  wool  after  mor- 
danting with  chromium  or  by  the  metachrome  or 
after-chroming  processes  and  yields  violet  shades. 
(b)  The  o-hydroxvazo  dvestuff  C0H.(2)OH(3.5.6)C13. 
(l)N:N(7)O,0H3(l)NH2.(2.4)SO3H(8)OH,  is  a  dark 
powder  giving  a  greenish-blue  aqueous  solution 
which  becomes  violet  on  addition  of  sodium  car- 
bonate, red  on  addition  of  sodium  hydroxide,  and 
reddish-violet  when  treated  with  acids.  It  yields 
greenish-blue  shades  on  wool  mordanted  with 
chromium  before  or  after  dyeing. — A.  J.  H. 

Acridine  derivatives.    G.P.  354,400.    See  XX. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPEfi. 

Polysaccharides;  Constitution  of .  V.  Yield  of 

glucose  from,  cotton  cellulose.     J.  C.  Irvine  and 

E.    L.    Hirst.      Trans.    Chem.    Soc,  1922,    121, 
1585—1591. 

By  conducting  the  acetc-lysis  of  cotton  cellulose  by 
Barnett's  method  (J.,  1921,  8  t)  using  sulphuryl 
chloride  as  a  catalyst,  a  99 — 100  %  yield  of  pure  tri- 
acetate containing  no  6oluble  sugars  is  obtained. 
For  the  conversion  of  the  triacetate  into  niethyl- 
glucoside  the  use  of  an  autoclave  is  inadvisable. 
This  stage  is  best  carried  out  by  digesting  small 
quantities  of  the  compound  (1  pt.)  for  60 — 70  hrs. 
at  125°  C.  with  pure  methyl  alcohol  (15  pts.)  con- 
taining 0'75%  of  hydrogen  chloride.  Residual  acid 
is  neutralised  with  silver  carbonate  and  the  filtrate 
decolorised,  if  necessary,  with  charcoal.  The  whole 
of  the  filtrate  is  then  evaporated  to  a  syrup  under 
diminished  pressure,  the  last  traces  of  solvent  being 
removed  at  100°  C.  at  10  mm.  pressure  by  a  current 
of  dry  air.  A  95'5%  yield  of  methylglucoside  is 
obtained.  Complete  crystallisation  is  effected  by 
dissolving  in  hot  alcohol,  standing  for  a  few  hours, 
and  removing  the  solvent  by  distillation  at  60° — 70° 
C.  The  m.p.,  125°— 150°  C.,  and  the  specific  rota- 
tion of  the  product  indicate  that  it  is  the  equi- 
librium mixture  of  pure  a-  and  /3-methylglucosides. 
An  overall  yield  from  polysaccharide  to  hexose  of 
95'1%  of  the  theoretical  amount  is  obtained.  The 
conclusion  is  drawn  that  cotton  cellulose  is  com- 
posed entirely  of  glucose  residues. — -P.  V.  M. 

Asbestos   and   cotton;   Estimation    of   mixtures   of 

.      P.    Heermann   and   H.   Sommer.      Mitt. 

Materialpriif.,  1921,  39,  315—329. 

A  method  in  which  cuprammonium  solution  is  used 

'  as  a  solvent  for  the  cellulose,  has  been  found  satis- 
factory for  the  quantitative  analysis  of  technical 
products  containing  asbestos  and  cellulose.  Micro- 
scopical examination  does  not  yield  accurate  results. 
The  loss  of  weight  which  occurred  when  different 
qualities  of  asbestos  were  ignited  varied  from  1'6  to 

'  15'8%,  so  that  mixtures  of  asbestos  and  cotton  could 
not  be  estimated  by  the  residue  obtained  after 
ignition.    The  well  known  method  for  estimation  of 

'  mixtures  of  wool  and  cotton  based  on  their  different 
resistance  to  the  action  of  concentrated  sulphuric 
acid  cannot  be  applied  to  mixtures  of  asbestos  and 
cotton,  since  raw  asbestos,  when  in  contact  with 
80%   and  1%   sulphuric  acid,  loses  0'9 — 123%   and 

,1'&— 39'6%  in  weight  respectively.  This  loss  of 
weight  is  greater  when  the  asbestos  is  more  finely 
divided.  Since  the  silica  content  of  asbestos  varies 
in  different  qualities,  this  was  fouud  to  be  an  unsat- 
isfactory measure  of  the  asbestos  present  in  its 
technical  products.     Cold  cuprammonium  solution, 


however,  was  found  to  attack  five  qualities  of 
asbestos  only  to  the  extent  of  0/1%  during  24  hrs. 
The  method  of  analysis  finally  adopted  is  as 
follows :  0'2 — 0-5  g.  of  the  air-dry  product  is  dried 
at  110°  C.  until  of  constant  weight  and  the  hygro- 
scopic moisture  (usually  O'o — 2"4%)  thereby  deter- 
mined. The  fat  content  is  then  obtained  by  extrac- 
tion of  the  dried  material  with  ether,  and  after- 
wards the  water-soluble  substances  such  as  6alts, 
starch,  etc.,  are  removed  by  treatment  in  boiling 
water  for  2  hrs.  and  estimated.  The  material  is 
then  immersed  for  12  hrs.,  with  frequent  shaking, 
in  30  c.c.  of  a  cold,  freshly  prepared  cuprammonium 
solution  (about  19  g.  of  Cu  per  1.),  whereby  the 
cellulose  dissolves  (this  is  usually  complete  in 
2  hrs.')  and  the  solution  is  filtered  through  a  Gooch 
crucible,  the  residue  of  asbestos  being  then 
thoroughly  washed  with  dilute  cuprammonium  solu- 
tion, finally  with  dilute  ammonia,  and  then  dried  to 
constant  weight  at  110°  C.  and  weighed  as  pure 
asbestos.  The  filtrate  is  acidified  with  dilute  sul- 
phuric acid  after  the  addition  of  salt  so  that  the 
cellulose  is  precipitated  in  a  form  suitable  for  filtra- 
tion in  a  Gooch  crucible.  After  filtration,  the  resi- 
due of  cellulose  is  dried  at  110°  C.  and  weighed. 
The  method  is  accurate  to  about  1'5%. — A.  J.  H. 

Cellulose;  Saccharification  of  .     P.  P.  Budni- 

kow  aud  P.  W.  Solotarew.  Ber.  Polyt.  Iwanowo- 
Wosniessensk,  1921,  4,  119—128.  Chem.  Zentr., 
1922,  93,  IV.,  324—325. 

In  the  technical  production  of  sugars  from  cellulose, 
the  recovery  of  tli9  sulphuric  acid  used  and  the 
strength  of  the  solutions  of  glucose  obtained  are 
important  factors.  When  the  solution,  obtained  by 
dissolving  1  g.  of  Swedish  filter  paper  in  7 — 8  c.c. 
of  72%  sulphuric  acid  during  3  hrs.,  was  diluted 
with  water  so  that  it  contained  not  more  than  3% 
fLSO.,  and  then  heated  for  2  hrs.  at  120°  C.  in  an 
autoclave,  the  concentration  of  the  glucose  solution 
thereby  obtained  was  not  greater  than  0'6%.  In 
similar  experiments,  except  that  the  concentration 
of  the  acid  in  the  cellulose  solution  was  decreased 
by  the  addition  of  barium  carbonate  instead  of 
water,  it  was  found  that  with  longer  heating,  some 
of  the  glucose  formed  decomposed  into  organic 
acids.  In  the  fermentation  of  glucose,  obtained  by 
the  action  of  an  acid  on  cellulose,  it  is  advantageous 
not  to  neutralise  completely  the  excess  of  acid  before 
addition  of  the  yeast.  By  this  method  85%  of  the 
theoretical  amount  of  alcohol  was  obtained  from 
paper,  but  a  smaller  yield  was  obtained  when 
caustic  soda  instead  of  calcium  carbonate  was  used 
for  neutralising.  The  theoretical  yield  of  alcohol 
cannot  be  obtained  from  the  purest  paper  since,  on 
account  of  hydrolysis,  small  quantities  of  non- 
fermentable  sugars  arc  formed.  The  sulphuric  acid 
is  recoverable  electrolytically.  In  several  experi- 
ments, 360%  to  91'5%  of  the  sulphuric  acid  was  re- 
covered by  means  of  an  electrolytic  apparatus  con- 
sisting of  an  earthenware  vessel,  containing  the 
cathode  and  a  solution  containing  1%  of  glucose  and 
3%  of  sulphuric  acid,  which  was  immersed  in  a  glass 
vessel  containing  the  anode  and  water  acidified  with 
sulphuric  acid.  Using  platinum  electrodes,  the 
total  quantity  of  sulphuric  acid  in  tne  system 
remained  constant,  but  with  carbon  electrodes  a 
small  loss  occurred.  The  total  amount  of  glucose 
also  remained  nearly  constant  but  about  6%  was 
lost  due  to  absorption  by  the  cathode  vessel  and 
carbon  electrodes.  A  disadvantage  of  the  process  is 
that  about  7215  kilowatts  was  required  per  kg.  of 
H„SO<  recovered.— A.  J.  H. 

Wood;  Importance  of  the  degree  of  disintegration 

in  the  digestion  of .     P.  Waentig.     Zellstoff 

u.  Papier,  1922,  2,  152—105. 
In  investigating  Bronnert's  process  (E.P.  170,964, 
U.S.P.  1,392,047;  J.,  1921,  808  a)  for  the  manufac- 


746  a 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


[Oct.  10,  1922. 


ture  of  sulphite  pulp  after  subjecting  the  wood  to  a 
preliminary  treatment  for  2 — 4  hours  with  1%  sul- 
phuric acid  at  115°  C,  it  was  observed  that  when 
the  wood  was  prepared  in  the  form  of  fine  shavings 
a  total  physical  breakdown  of  the  fibre  occurred  and 
the  cellulose  subsequently  obtained  by  the  chlorina- 
tion  process  had  the  brittle  character  of  hydrocellu- 
lose,  but  when  wood-chips  were  subjected  to  a 
similar  acid  treatment  the  cellulose  fibre  obtained 
was  long  and  strong.  The  yields  of  cellulose  were : 
from  raw  shavings  or  chips  50%,  from  chips  pre- 
viously boiled  with  acid,  48%;  from  shavings  boiled 
with  acid  41 — 42%.  The  difference  between  the 
yields  from  chips  and  from  shavings  is  attributed  to 
the  transverse  slicing  of  the  fibres  of  the  shavings 
whereby  the  interior  of  the  cell-substance  is  exposed 
to  the  action  of  the  acid.  In  spite  of  the  above 
physical  and  chemical  differences,  the  yield  of  "  a- 
cellulose  "  was  identical  in  all  cases,  namely  84 — 
85%,  whether  from  shavings  or  chips  and  whether 
the  wood  had  been  boiled  with  acid  or  not.  The 
influence  of  the  acid  treatment,  however,  was  shown 
in  the  viscosity  of  the  viscose  prepared  from  the 
cellulose,  this  being  considerably  lowered  by  the 
acid  treatment  to  a  similar  extent  in  the  strong 
cellulose  fibre  from  the  chips  as  in  the  disintegrated 
fibre  from  the  shavings.  The  above  peculiar  be- 
hayiour  of  wood  is  attributed  to  the  extremely 
heterogeneous  constitution  of  the  raw  fibre,  because 
normal  sulphite-cellulose,  after  boiling  with  acid. 
was  converted  into  brittle  hydrocellulose  and  showed 
only  74"3%  of  "  o-cellulose  "  after  this  treatment. 
Hence  it  is  suggested  that  the  increased  chemical 
reactivity  of  the  acid-treated  wood  is  not  directly 
connected  as  cause  and  effect,  with  the  physical 
breakdown  of  the  fibre  substance. — J.  F.  B. 

Wood  pulp;  Testing  the  degree  of  digestion  of . 

H.     Roschier.       Pappers     och     Triivarutidskril't. 
Zellstoff  u.  Papier,  1922,  2,  184—186. 

The  rate  of  reduction  of  permanganate  under 
standard  conditions  is  proposed  as  a  rapid  approxi- 
mate measure  of  the  degree  of  digestion  of  wood 
pulp  and  is  particularly  applicable  for  purposes  of 
factory  control.  A  A'/ 100  solution  of  potassium 
permanganate  is  most  suitable;  this  is  kept  in  the 
neutral  condition  and  acidified  just  before  use.  2  g. 
of  finely  rasped  wood  pulp,  or  6  g.  of  moist  pulp 
squeezed  out  in  the  hand,  is  weighed  out  and  rolled 
into  a  loose  ball.  80  c.c.  of  A7/100  permanganate  is 
placed  in  a  glass-stoppered  bottle  of  300 — 400  c.c. 
capacity,  T6  c.c.  of  A/1  sulphuric  acid  is  added, 
the  ball  of  pulp  is  dropped  in,  the  stopper  is  in- 
serted, and  a  stop-watch  is  started.  The  bottle  is 
shaken  slowly  and  uniformly  by  hand  and  the  liquid 
is  kept  under  observation  by  slightly  tilting  the 
bottle.  Immediately  the  red  colour  of  the  perman- 
ganate is  discharged  the  time  in  seconds  is  noted. 
A  standard  temperature  of  20°  C.  is  maintained, 
since  the  rate  of  discharge  is  greatly  influenced  by 
differences  in  temperature.  The  following  grades 
have  been  established :  easy  bleaching  pulp,  70 
sees.;  slowly  bleaching,  50—70;  medium  strong, 
35 — 50;  ordinary  strong,  25 — 35;  very  strong  and 
hard,  25  sees.  The  values  have  been  co-ordinated 
with  the  chlorine-absorption  values  determined  by 
Sieber's  method  (J.,  1921,  382  a).— J.  F.  B. 

Straw;   Digestion    of  III  the  Steffen  process. 

T.   E.  Blasweiler.     Papierfabr.,   1922,  20,  1025— 

1028,  1061—1064,  1101—1103. 
In  a  detailed  test  of  the  Steffen  process  for  the 
digestion  of  straw,  630  kg.  of  rye  straw  was  steeped 
in  a  solution  of  63  kg.  of  caustic  soda  in  819  1.  of 
water.  The  liquor  was  completely  absorbed  by  the 
straw,  which  was  then  charged  into  a  vertical  diges- 
ter provided  with  a  perforated  false  bottom  and  cir- 
culation ducts.  Steam  was  admitted  at  the  bottom 
and  the  air  expelled,  then  the  pressure  was  allowed 


to  rise  quickly  to  3  atm.,  which  was  maintained  for 
one  hour.  On  blowing  off  the  steam,  ammonia  was 
evolved ;  only  10  1.  of  condensed  water  had  accumu- 
lated at  the  bottom  of  the  boiler.  The  digested 
straw  was  covered  with  2500  1.  of  boiling  water  and 
boiled  for  30  mins.  under  a  steam  pressure  of  2 — 2\ 
atm.  This  liquor  was  blown  out  and  followed  by 
six  washes  of  1800  1.  of  hot  water,  each  being 
brought  to  the  boil  and  discharged  under  a  Slight 
steam  pressure.  The  washed  pulp  discharged  from 
the  digester  contained  16 — 17%  of  dry  fibre,  which 
was  increased  to  42%  after  pressing.  The  yield  of 
digested  pulp,  calculated  on  dry  substance,  was 
59"25%  ;  it  snowed  on  analysis  60"92%  of  cellulose, 
3000%  of  pentosans,  and  9-08%  of  lignin.  This 
pulp  did  not  give  lignin  reactions  and  was  similar 
in  quality  to  straw  digested  for  fodder  purposes. 
It  was  also  suitable  for  paper  making  and  could  be 
bleached  with  a  consumption  of  12'7%  of  active 
chlorine.  The  Steffen  process  compares  favourably 
with  other  processes,  such  as  the  Oexmann  process, 
in  current  use  for  the  preparation  of  digested  straw 
fodder.  The  treatment  is  complete  in  4 — 4J  hours 
and  the  total  quantity  of  water  used  is  21  times  the 
weight  <nf  the  raw  material  or  40  times  that  of  the 
pulp  obtained,  as  against  63  and  110  times  respec- 
tively in  the  case  of  the  Oexmann  process. — J.  F.  B. 

Kosin  sizing.    R.  Sieber.     Zellstoff  u.  Papier,  1922. 
2,  99—103,  134—139.     (f)f.  J.,  1921,  842  a.) 

With  regard  to  the  influence  of  calcium  and 
magnesium  salts  on  the  composition  of  the 
precipitated  resinates,  the  quantity  of  alkaline- 
earth  in  the  precipitate  is  larger  the  longer  the 
interval  between  the  addition  of  the  earth  salt 
and  that  of  the  aluminium  sulphate.  The  sizing 
efficiency  of  such  mixed  precipitates  is  probably  less 
than  that  of  precipitates  formed  with  aluminium 
sulphate  alone.  In  the  presence  of  free  sulphuric 
acid,  aluminium  sulphate  has  no  precipitating 
value  and  the  acid  resin  precipitates  contain  no 
aluminium.  It  is  not  perfectly  certain  whether 
pure  cellulose  is  capable  of  dissociating  aluminium 
sulphate  and  fixing  aluminium  hydroxide  by 
colloidal  adsorption.  Commercial  paper  pulps, 
however,  always  contain  inorganic  constituents, 
generally  of  a  basic  function,  which  certainly  can 
produce  this  result  by  simple  chemical  decomposi- 
tion. Sulphite  wood  pulp  is  capable  of  fixing  more 
aluminium  hydroxide  in  this  way  than  mechanical 
pulp,  and  beaten  sulphite  pulp  more  than  unbeaten. 
Well-washed  gelatinous  aluminium  hydroxide  will 
adsorb  large  quantities  of  rosin  from  a  fine 
suspension  of  pure  rosin  in  water.  If  pure  filter 
paper  be  treated  with  aluminium  sulphate  for  24 
hours,  then  thoroughly  washed  and  immersed  in  a 
highly  dilute  suspension  of  rosin,  particles  of  rosin 
are  deposited  on  the  fibres,  whereas  with  untreated 
fibres  the  deposition  of  rosin  particles  is  barely 
perceptible.  These  particles  can  be  seen  as  bright 
points  on  the  surface  of  the  fibres  under  the  ultra- 
microscope,  and  in  the  case  of  treated  fibres  they 
are  observed  particularly  on  the  fine  fibrillar.  The 
sizing  process  may  best  be  defined  partly  on  a 
chemical  and  partly  on  an  electro-colloidal 
hypothesis.  The  fibre  and  the  rosin  suspension 
may  be  regarded  as  endowed  with  negative  charges 
and  the  aluminium  hydroxide,  produced  by  the 
chemical  decomposition  of  the  soap  with  aluminium 
sulphate,  is  positively  charged.  There  is  no  direct 
tendency  for  the  fibre  to  adsorb  the  rosin  emulsion 
since  both  carry  the  same  kind  of  charge,  but  the 
rosin  emulsion  and  the  strongly  positive  aluminium 
hvdroxide  have  a  powerful  attraction  to  form  a 
colloid  in  which  the  positive  charge  of  the 
aluminium  is  predominant,  and  this  positive  com- 
plex is  then  discharged  on  the  negative  fibre  to 
produce  the  sized  pulp.  No  doubt  the  absolute  and 
relative  concentrations  of  the  components  play  an 


Vol.  XU.,  No.  19.) 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


747a 


important  part.  This  hypothesis  explains  the 
importance  of  the  trivalent  ion  in  the  sizing 
process.  This  ion  is  so  strongly  positive  that  it  is 
able  to  reverse  the  charge  of  the  rosin  emulsion, 
carrying  it  over  from  the  negative,  through 
neutrality,  to  the  positive  side,  whereas  other 
coagulating  agents,  such  as  acids  and  salts  of 
sodium,  calcium,  and  magnesium,  simply  coagulate 
the  emulsion  and  discharge  it,  without  imparting 
to  it  any  electro-colloidal  affinity  towards  the 
negative  fibre. — J.  F.  B. 

Sulphate    pulp    mills;    Absorption   of    malodorous 

gases  in .  C.G.  Schwalbe.   Zellstoft"  u.  Papier, 

1922,  2,  175—178.     (Cf.  J.,  1921,  807  a.) 

The  principal  sources  of  malodorous  gases  in 
sulphate  (soda)  pulp  mills  are  the  digesters  and  the 
soda-recovery  furnaces.  These  furnaces  discharge 
not  only  mercaptans,  hydrogen  sulphide,  and 
sulphur  dioxide,  but  also  large  quantities  of  solid 
dust  particles,  consisting  largely  of  sodium  sul- 
phide, sulphite  and  other  salts,  in  the  flue  gases. 
It  is  calculated  that  the  losses  of  sodium  salts, 
expressed  as  sulphate,  in  the  furnace  gases  amount 
to  15 — 23%  of  the  cellulose  produced,  and  this  is 
the  principal  source  of  loss  of  alkali  in  the  process. 
Based  on  the  discovery  that  wood  or  straw  is  an 

'  e'ffective  deodoriser  of  malodorous  gases  of  an  acid 
nature,  the  author  proposes  to  pass  the  waste  gases 

1  through  a  rotating  horizontal  or  inclined  cylinder 
filled  with  waste  wood  trimmings  or  other  refuse 
from  the  pulp  mill.  In  the  case  of  straw  pulp 
mills  knotty  refuse  from  the  straw  may  be  used 
for  charging  the  cylinder.  The  same  arrangement 
also  serves  as  a  trap  for  the  solid  salts  in  the  flue 
gases,  and  the  salts  may  be  recovered  subsequently 

;  by  washing  the  wood  refuse.  The  action  of  the 
wood  is  rather  that  of  a  "  contact  "  substance  than 
of  an  absorbent,  and  it  is  presumed  that  the  mer- 
captans etc.  become  concentrated  in  the  pores  of 
the  wood  and  then  oxidised.  The  deodorisation 
may  be  assisted,  if  desired,  by  passing  chlorine 
together  with  the  sulphurised  gases  through  the 
material.  On  similar  lines,  the  gases  discharged 
from  the  digesters  may  be  passed  through  the  wood 
chips  stored  iu  the  silos  ready  for  charging  the 
digesters.  The  steam  which  passes  off  together 
with  the  digester  gases  may  be  condensed  and  the 
hot  water  used  for  washing  the  wood  in  the 
deodorisers  attached  to  the  soda  furnaces. 

—J.  F.  B. 

Effluent   from   straw-board   mills.      Hommon.     See 
XIXb. 


Ion    concentration    measurements.      Keeler.      See 
.XX  HI. 

Patents. 

tWool,  fur,   etc.;    Insecticide,  more  especially  for 

protecting    against    moth.      Chem.    Fabr. 

Griesheim-Elektron.  G.P.  353,682,  30.5.20. 
DicHLOnoETHANE,  either  alone  or  mixed  or  in 
solution  with  other  indifferent  or  insecticidal  sub- 
stances, is  employed.  The  insecticide  may  be 
'either  strewn  in  powder  form  or  dissolved  in 
I  acetone  or  carbon  tetrachloride  and  sprinkled  over 
the  material.  It  does  not  evaporate  so  quickly  as 
dichlorobenzene  and  has  a  more  pleasant  smell. 

—J.  S.  G.  T. 

Fulling;  Method  of  improving  and  shortening  the 

process  of  .      Diamalt  A.-G.      G.P.  355,104, 

.    13.10.16. 

A  mixture  of  organic  colloids  with  inorganic  pro- 
tective colloids  is  added  to  the  fulling  liquid. 
Extracts  of  lichens  and  algse,  gum  tragacanth, 
linseed,  or  fleabane  seed  mucilage  etc.  may  be  used. 
Their  solutions  are  mixed  with  colloidal  silica  and 
'iried  in  vacuo.     Bv  the  addition  of  this  colloidal 


powder  to  the  fulling  liquid  more  rapid  felting  and 
less  shrinkage  result,  together  with  a  marked 
brightening  of  the  material.  An  economy  in  soap 
and  soda  is  also  effected. — H.  C.  R. 

Fire  extinguishing  and  prevention  of  the  ignition 

of   combustible    matter;   Process   for   .      A 

Eichengriin.     G.P.  355,107,  15.2.18. 

Ammonium  bromide  is  used  in  the  solid  state  or 
in  solution.  It  may  be  used  in  conjunction  with 
other  substances  utilised  for  the  prevention  of 
burning.  It  is  considerably  more  effective  than 
ammonium  chloride  and  other  ammonium  salts,  and 
smaller  quantities  suffice  for  impregnating  textile 
fabrics  and  paper. — H.  C.  R. 

Vulcanised  fibre;       Preparation  of  .       J    A 

Sutcliffe.  E.P.  183,497,  27.1.21. 
Vulcanised  fibre,  prepared  by  the  zinc  chloride 
process,  shows  a  tendency  to  absorb  moisture  owing 
to  the  presence  of  zinc  chloride  residues.  This 
defect  is  remedied,  and  a  product  obtained  more 
suitable  for  use  in  the  manufacture  of  machinery 
parts,  insulators,  etc.,  by  saturating  the  material 
immediately  after  the  "  washing  off  "  process,  or 
even  after  it  has  been  dried,  with  strong  ammonia 
solution.  When  completely  saturated,  the  material 
is  removed  from  the  bath,  washed,  and  dried. 

— D.  J.  N. 


Waterproofing    vulcanised  fibre;   Method   of  

.1.  Mcintosh,  Assr.  to  Diamond  State  Fibre  Co. 
U.S.P.  1,425,878,  15.8.22.     Appl.,  27.4.20. 
Wet    vulcanised    fibre    is    immersed    in    a    water- 
proofing   solution    until    thoroughly    impregnated 
and  then  dried.— F.  G.  P.  R. 

Sulphite  liquor;    Process  and  apparatus  for  pre- 
wiring   .      D.   B.   Davies  and  E.  P.  Strong 

U.S.P.  1,424,883,  8.8.22.  Appl.,  1.6.20. 
Liquor  from  a  storage  tauk  is  continuously 
circulated  through  a  pipe  system,  and  sulphur 
dioxide  is  introduced  into  the  stream.  The  liquor 
is  subsequently  returned  to  the  storage  tank  at 
or  near  the  bottom. — D.  J.  N. 

Cellulose;  Piocess  for  the  extraction  of  from 

vegetable  fibres.    B.  Cataldi,  Assr.  to  A.  Pomilio. 
U.S.P.  1,424,620,  1.8.22.    Appl.,  17.5.21. 

Cellulosic  material,  such  as  straw,  esparto  grass, 
jute,  cotton,  and  the  like,  or  wood  freed  from  bark, 
is  leached  in  a  digester  with  alkali  solutions  under 
heavy  pressure,  first  hydraulic  then  steam  pressure, 
and  is  then  disintegrated,  and  transferred  to  an 
acid-resisting  digester,  where  it  is  alternately 
chlorinated  and  washed  with  water  (to  cool  the  mass 
and  remove  hydrochloric  acid).  When  further 
chlorination  ceases  to  cause  any  rise  in  tempera- 
ture, the  material,  after  a  final  wash  with  water, 
is  leached  with  alkali  solution  at  atmospheric  pres- 
sure. The  resulting  product  consists  of  practically 
pure  cellulose. — D.  J.  N. 

[Artificial    silh~\     threads;    Process    of    producing 

lustrous  .      C.    A.   Huttinger,   Assr.   to  The 

Acme     Artificial    Silk    Co.       U.S.P.     1,425,654, 
15.8.22.    Appl.,  12.6.19. 

Wood  pulp  is  saturated  with  caustic  soda  solution 
of  sp.  gr.  1T7,  pressed,  and  treated  with  carbon 
bisulphide;  the  resulting  xanthate  is  dissolved  in 
water,  filtered,  and  spun  into  an  aqueous  solution 
of  a  bisulphate,  containing  no  free  acid,  and  main 
tained  at  a  temperature  of  70°  F.  (21°  C). 

— D.  J.  N. 


748  a 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


(Oct.  10,  1922. 


Cellulose    butyrate;    Process    of    preparing    . 

A.  D.  Little.  Inc.,  Assees.  of  G.  J.  Esselen,  jun., 
and  H.  S.  Mork.  E.P.  167,143,  9.3.21.  Conv., 
26.7.20. 

In  the  preparation  of  cellulose  butyrate,  cellulose, 
100  pts.,  in  any  form  such  as  yarn,  linters,  wood 
pulp,  paper,  etc.,  containing  3 — 8%  of  moisture,  is 
soaked  in  1500 — 1600  pts.  of  an  acetic  acid  solution 
of  sulphuric  acid  (the  latter  acting  as  a  catalyst  in 
the  subsequent  esterification),  having  the  following 
approximate  composition  by  weight,  sulphuric  acid 
(sp.  gr.  P84)  1 — 5%,  water  5 — 8%,  acetic  acid 
94 — 87%  ;  the  impregnated  cellulose  is  then  pressed 
until  it  contains  li  times  its  weight  of  solution,  and 
is  treated  in  a  bath  containing,  for  example,  butyric 
acid  400  pts.,  butyric  anhydride  (90%)  465  pts.  by 
weight,  the  reaction,  which  is  accompanied  by  a 
rise  in  temperature,  being  allowed  to  proceed  until 
a  product  of  the  desired  solubility  is  obtained. 
When  sulphuric  acid  is  used  in  relatively  small 
quantities  it  is  advisable,  when  the  product  shows 
good  solubility  in  chloroform,  to  accelerate  the  re- 
action by  the  addition  of,  e.g.,  5  pts.  of  sulphuric 
acid  (sp.  gr.  T84)  and  3 — 5%  (by  volume)  of  water 
on  the  volume  of  the  butyrating  mixture.  The 
resulting  product  is  soluble  at  room  temperature  in 
methyl  or  ethyl  alcohol  containing  50 — 90%  by 
volume  of  benzol,  and  in  many  other  solvents  and 
solvent  mixtures  such  as  chloroform,  acetone,  90% 
carbolic  acid,  hot  denatured  alcohol,  hot  solvent 
naphtha,  hot  benzol,  etc. — D.  J.  N. 

Cellulose    derivatives    [viscose];    Manufacture     of 
.     H.  Dreyfus.     E.P.  183,882,  9.2.21. 

A  high  molecular  viscose,  which  may  be  used  in  the 
manufacture  of  artificial  filaments  etc.  without 
previous  "  ripening,"  is  made  by  treating  cellulose 
or  a  near  conversion  product  (1  mol.  CcH10Oj)  with 
not  more  than  2  and  preferably  about  1  mol.  of 
alkali  at  concentrations  above  15%,  preferably 
20 — 50%,  and  kneading  the  alkali-cellulose  thus 
obtained  with  not  more  than  5  mol.  (■ — J  mol.) 
of  carbon  bisulphide  per  molecule  of  cellulose 
CcH10O,,  until  all  the  carbon  bisulphide  has  entered 
into  combination.  The  carbon  bisulphide  may  with 
advantage  be  dissolved  in  a  suitable  organic  solvent, 
such  as  benzol,  in  amount  equal  to  3  or  4  times  the 
weight  of  cellulose.  The  solvent  is  subsequently 
recovered  by  any  suitable  method.  By  thus  obvi- 
ating the  usual  "  ripening  "  process,  during  which 
the  cellulose  aggregate  is  exposed  to  the  degrading 
action  of  free  alkali,  a  product  is  obtained,  which  is 
capable  of  giving  stronger  threads  than  can  be 
obtained  from  viscose  prepared  by  the  usual  methods. 

— D.  J.  N. 

Cellulose  compounds   [ethers,   esters,   etc.'];  Manu- 
facture   of   .     Plauson's    (Parent   Co.),    Ltd. 

From  H.  Plauson.     E.P.  183,908,  28.4.21. 

(  'ixlulose  derivatives  are  made  by  treating  cellulose 
in  a  highly  dispersed  condition  with  the  desired 
reaction  components,  with  or  without  condensing 
agents.  The  cellulose  is  dispersed  by  intensive 
mechanical  disintegration  at  high  speeds  until  the 
particles  are  about  0'8  n  in  diameter,  e.g.,  in  the 
colloid  mill  (E.P.  179,124;  J.,  1922,  449  a).  Cellu- 
lose phosphoric  ester  is  made  by  treating  4  pts.  of 
cotton  dispersed  in  water  as  described  above,  with 
2  pts.  of  orthophosphoric  acid  at  a  gradually  in- 
creasing temperature  (30° — 50°  C),  until  esterifica- 
tion takes  place,  as  shown  by  the  appearance  of 
loam.  The  reaction  is  preferably  carried  out  in 
vacuo,  and  0T  pt.  of  concentrated  sulphuric  acid 
may  be  added  as  an  accelerator.  Cellulose  acetate 
is  obtained  by  heating  100  pts.  of  highly  dispersed 
cellulose,  pressed  until  it  contains  only  20 — 30%  of 
water,  with  30  pts.  of  acetic  anhydride  and  120  pts. 
of  acetic  acid,  until  esterification  takes  place  with 
vigorous  foaming.     Cellulose  sulphide  may  be  pre- 


pared by  heating  a  gel  of  highly  dispersed  cellulose 
with  an  equal  weight  of  sulphur,  preferably  with 
addition  of  1—5%  of  alkali  or  alkali  carbonate 
to  150°  C.  until  evolution  of  hydrogen  sulphide 
ceases,  and  a  homogeneous  mass  is  obtained.  Cellu- 
lose sulphide  is  a  yellow-grey  to  brown-grey  mass 
which  evolves  hydrogen  sulphide  on  treatment 
with  water.  In  the  preparation  of  cellulose  methyl 
ethers,  1  pt.  of  cellulose  is  dispersed  in  8 — 15  pts.  of 
water  in  a  colloid  mill,  methyl  alcohol  (3  pts.)  is 
added  during  the  dispersion  process,  and  etherifica- 
tion  is  effected  by  treatment  with  hvdrogen 
chloride  gas. — D.  J.  N. 

( 'ellulose  esters;  Process  for  utilising  [improving  the 

/hieing  properties  of]  .     J.  Duclaux.     £p 

184,197,  1.2.21. 

Cellut.ose  esters  (other  than  the  xanthate)  are  dis- 
solved in  volatile  solvents,  e.g.,  formates  or  acetates 
of  methyl,  ethyl,  butyl,  amyl  alcohol,  etc.,  containing 
small  quantities  (1—5%  on  the  weight  of  solvent) 
of  organic  substances  such  as  acetamide  and  its 
homologues,  chloral  and  chloral  hydrate,  which  are 
non-volatile  or  but  slightly  volatile,  are  solvents  for 
cellulose  esters,  and  are  soluble  in  water.  Threads 
or  films  produced  from  these  solutions  by  evapora- 
tion of  the  volatile  solvent  are  washed  with  water  to 
remove  the  non-volatile  solvent.  Non-granular. 
transparent  products  are  obtained  having  dyeing 
properties  closely  resembling  those  of  natural  fibre! 

— D.  J.  N. 

Cellulose  derivative  and  process  of  preparing  same. 
G.  J.  Esselen,  jun.,  and  H.  S.  Mork,  Assi  <.  to 
A.  D.  Little,  Inc.  U.S.P.  1,425,580,  15.8.22. 
AppL,  10.4.20. 

In  the  preparation  of  a  cellulose  butyrate  soluble 
at  normal  temperatures  in  mixtures  of  benzol  and 
alcohol,  cellulose  is  subjected  to  a  preliminary  im- 
pregnating bath  containing  a  solution  of  butyric 
acid  and  a  catalyst. — H.  H. 

Cellulose  ether  solvent  and  composition.  S.  J. 
Carroll,  Asw.  to  Eastman  Kodak  Co.  U.S.P. 
1,425,173,  8.8.22.     Appl.,  21.1.21. 

An  alkyl  ether  of  cellulose  is  dissolved  in  a  solvent 
containing  82 — 92  pts.  of  ethyl  acetate,  7 — 12  pts.  of 
ethvl  alcohol,  and  1 — 6  pts.  of  water  by  weight. 

— D.  J.  N. 

Paper  filler.   AV.  Hoskins.    U.S.P.  1,424,306,  1.8.22. 

Appl.,  31.3.21. 
Powdered  calcium  sulphate  is  superficially  coated 
with  an  insoluble  soap  by  washing  it  witli^  soap 
solution.  Other  substances,  which  are  slightly 
soluble  in  water,  and  are  capable  of  forming  an  in- 
soluble soap,  may  be  similarly  treated.  The  result- 
ing products  find  application  as  fillers  in  the  paper- 
making  industry. — D.  J.  N. 

Paper;  Method  for  recovering  [remor'in<7  printer's 

ink   from]    trust c   .     T.    Jespersen,    Assr.   to 

Lincoln  Trust  Co.  U.S.P.  1,424,411,  1.8.22. 
Appl.,  15.12.16.     Renewed  22.12.21. 

Printer's  ink  containing  a  mineral  oil  vehicle  is 
removed  from  waste  paper  by  treating  the  paper 
stock  with  sodium  silicate  solution. — D.  J.  N. 

Patterned   textile   fairies;   Process  for   producing 

and  the  resulting  product.   H.  Giesler,  Assr. 

to  Heberlein  u.  Co.,  A.-G.  U.S.P.  1,425,520, 
15.8.22.     Appl.,  10.11.14. 

See  G.P.  282,351  of  1914;  J.,  1915,  713. 

.1 1  tificial  threads;  Method  of  and  apparatus  for  ■pro- 
ducing ■ more  particularly  multiple  filament 

threads  from  cellulose  solution.  E.  Schiilke. 
E.P.  163,312,  13.5.21.    Conv.,  17.5.20. 

See  G.P.  341,833  of  1920;  J.,  1922,  52  a. 


Vol.  XLI.,  Xo.  19.]    Cl.  VI.— BLEACHING  ;    DYEING,  &c.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.  749a 


Artificial  silk:  Manufacture  of .     E.  Broimert 

U.S.P.  1,426,953,  22.8.22.     Appl.,  10.9.20. 
See  E.P.  172,038  of  1920;  J.,  1922,  52  a. 

Molecular  filters.     G.P.  351,084.     See  I. 

Altai:  lyes  contaminated  with  hemicrllulose.    G  P 
355,836.    See  VII. 

pelinting  cottonseed.    U.S. P.  1,425,688.   See  XII. 

^fas-impervious  material.     E.P.  184,012.    See  XV. 


VI. -BLEACHING  ;  DYEING;   PRINTING; 
FINISHING. 

Assistants   used  in  printing  and  finishing   textile 
fabrics;    The  colloidal  nature  and  influence  of 

.     N.   J.    Planowsky.    Ber.   Polyt.   Iwanowo- 

Wosniessensk,  1921,  4,  129—137.     Chem.  Zentr., 
1922,  93,  IV.,  551—552. 

The  pseudo  or  colloidal  solutions  of  starch,  dextrin, 
British,  gum,  etc.  such  as  are  used  for  printing 
textile  fabrics,  are  heterogeneous,  homogeneous, 
or  micellar  according  to  their  degree  of  dispersion, 
but  this  division  is  not  always  possible,  since  the 
states  of  these  substances  when  in  solution  fre- 
quently change.  Starch  forms  a  precipitate  with 
tannic  acid,  so  that  in  printing  pastes  cortaining 
basic  dyestuffs,  colour  lakes  are  formed  which 
adhere  only  to  the  surface  of  the  printed  fabric  and 
therefore  are  not  fast.  Analogous  precipitates  are 
formed  with  British  gum  and  Gommelin,  which  are 
usually  mixed  with  starch.  Of  the  substances 
examined,  starch  had  the  most  and  Gommelin  the 
least  peptising  power.  In  the  presence  of  starch 
or  gum  tragacanth,  dyestuffs  partially  diffuse  into 
the  textile  fibres  immediately  after  printing  and 
this  diffusion  is  hastened  by  steaming.  In  the 
presence  of  homogeneous  substances,  however,  this 
diffusion  is  very  small  and  is  not  assisted  by 
steaming,  so  that  the  shade  of  the  fabric  is  pale 
and  not  fast  to  washing.  Fabrics  printed  with 
Malachite  Green  and  starch  or  gum  tragacanth 
appeared  deeper  than  those  for  which  Gommelin 
or  British  gum  was  used.  Diffusion  experiments 
showed  that  gum  tragacanth  has  the  greatest  and 
British  gum  the  least  power  of  diffusion. — A.  J.  H. 

Calico-printing •    The    possibility    of    using    phos- 
phorescent substances  in .  S.  G.  Schimansky. 

Ber.     Polvt.     Iwanowo  -  Wosniessensk,     1921,    4, 
171—172.     Chem.  Zentr.,  1922,  93,  IV.,  318—319. 

Mixtures  containing  phosphorescent  sulphides 
have  been  used  successfully,  the  fabric  being  printed 
with  a  paste  containing  the  sulphide,  ammonia, 
and  albumin.  During  printing,  the  fabrics  must  be 
protected  from  light,  since  the  small  quantities  of 
acetic  acid  formed  cause  decomposition  of  the 
sulphides.  Unsatisfactory  results  were  obtained 
with  acid  dyestuffs,  e.g.,  Eosin  aud  Fluorescein. 

—A.  J.  H. 

Azo  dyes  of  the  naphthalene  series.     Woroshtzow. 
See  IV. 

Patents. 

Colour  printing;  Double  tone  .     Chem.  Fabr. 

Worms  A.-G.     G.P.  354,081,  8.12.17.     Addn.  to 
347,902  (J.,  1922,  382  a). 

A  colour  base  is  warmed  with  montanic  acid  and 
printers'  ink  added  to  the  solution.  The  printing 
colour  thus  obtained  is  ready  for  use.  The  colour 
salts  of  montanic  acid  yield  in  printing  a  colour 
which  stands  out  in  more  distinct  contrast  than 
that  produced  by  the  corresponding  fatty  acid  salts. 

—J.  B.  F. 


Vat  preparations;  Stable,  dry,  and  readily-soluble 

and  process  of  making  same.     K.  Thiess, 

F.  Maennchen,  A.  Steindorff,  and  F.  Giloy, 
Assrs.  to  Farbwerke  vorm.  Meister,  Lucius,  u. 
Bruning.  U.S. P.  1,426,522, 22.8.22.  Appl.,  23.8.21. 

See  E.P.  171,078  of  1921;  J.,  1922,  705  a. 

Printing  fabrics;  Rotary  offset  machines  for  . 

T.  R.  Johnston.     E.P.  184,128,  18.3.22. 

Cellulose  esters.    E.P.  184,197.    See  V. 

Bleach  solutions.    U.S.P.  1,426,752.    See  VII. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS, 

Sulphuric  acid  from  gypsum.  W.  Dominik. 
Przemysl  Chem.,  1921,  5,  185—191.  Chem. 
Zentr.,  1922,  93,  IV.,  308. 

Gypsum  may  be  converted  into  ammonium  sulphate 
and  the  latter  into  sodium  hydrogen  sulphate, 
from  which  free  sulphuric  acid  may  be  obtained  hv 
(1)  reduction  of  the  free  acid  to  sulphur  dioxide 
and  re-oxidation,  (2)  distillation  with  ballast 
(cf.  Moscicki  and  Dominik,  J.,  1920,  746  a),  (3) 
crystallisation  of  hydrated  sodium  sulphate,  by 
cooling  and  concentration  of  the  mother  liquor. 
Sodium  sulphate  increases  in  solubility  with  addi- 
tion of  free  sulphuric  acid  to  a  maximum  above 
which  the  acid  sulphate  separates.  The  solubilitv 
also  decreases  rapidly  with  the  temperature;  at 
-  11°  C.  the  maximum  solubility  corresponding  to 
32%  free  acid  is  only  about  4%  NajSO.,  by  weight, 
so  that  at  this  temperature  a  fairly  complete 
separation  can  be  obtained  in  one  operation.  A 
calculation  of  the  water  required  and  fuel  con- 
sumption necessary  for  the  decomposition  of  the 
acid  salt  at  a  given  temperature  is  added. — C.  I. 

Calcium     sulphate     land    magnesium     sulphate]; 

lteduction  of  by   carbon  monoxide   [carbon 

and  hydrogen  sulphide].  J.  Zawadzki,  K.  Kossak, 
and  H.  Narbut.  Przemysl  Chem.,  1921,  5,  225— 
236.     Chem.  Zentr.,  1922,  93,  III.,  329. 

At  temperatures  below  900°  C,  calcium  sulphate  is 
reduced  to  calcium  sulphide ;  the  reaction  is  quan- 
titative about  900°  C. ;  the  velocity  of  reaction  is 
sufficient  for  technical  purposes.  The  calcium 
sulphide  yields  hydrogen  sulphide  quantitatively 
on  heating  with  magnesium  chloride  solution. 
Above  900°  C.  calcium  oxide  and  sulphur  dioxide 
are  also  produced  in  quantities  increasing  with  rise 
of  temperature.  Magnesium  sulphate  on  reduction 
witli  carbon  monoxide  is  almost  completely  con- 
verted into  magnesium  oxide,  sulphur  dioxide,  and 
free  sulphur.  Magnesium  sulphate  reduced  with 
hydrogen  sulphide  above  700°  C.  yields  magnesium 
oxide  whilst  calcium  sulphate  under  similar  con- 
ditions is  converted  into  calcium  sulphide.  The 
products  of  the  reduction  of  calcium  sulphate  and 
magnesium  sulphate  by  carbon  are  dependent  on 
the  temperature  and  the  ratio  of  carbon  to 
sulphate;  at  lower  temperatures  and  with  excess 
of  carbon,  magnesium  sulphate  leaves  a  residue  con- 
taining magnesium  sulphide  as  well  as  oxide;  in 
the  case  of  calcium  sulphate  the  residue  is  sulphide 
only.  At  higher  temperatures  and  with  less  carbon 
the  products  are  magnesium  oxide,  sulphur  dioxide, 
and  sulphur,  and  calcium  oxide  and  sulphur 
dioxide  respectively. — J.  B.  F. 

Hypochlorous   acid;   Ionisation   constant   of  . 

Evidence  for  amphoteric  ionisation.  W.  A.  Noyes 
and  T.  A.  Wilson.  J.  Amer.  Chem.  Soc,  1922, 
44,  1630—1637. 

The  ionisation  constant  7c,,,  representing  HCIO  ^1 
H+CIO'  is  6-70xl0-10  at  25°  C.  whilst  the  constant, 


750  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIC  ELEMENTS. 


[Oct.  16,  1922. 


kb,  is  tjo  small  to  affect  the  conductivity  of  O'OOOl.V 
nitric  acid  when  hypochlorous  acid  is  added  to  it. 
When  a  current  of  air  is  passed  through  a  solution 
of  hypochlorous  acid  chlorine  monoxide  and  not  the 
acid  is  lost.  This  indicates  the  presence  of  positive 
chlorine  ions  and  confirms  the  amphoteric  ionisa- 
tion,  i.e.,  in  addition  to  ionisation  represented  by 
the  above  equation,  ionisation  also  occurs  according 
to  the  equation  HCIOsCl-fOH'.— J.  F.  S. 

Causticising  in  the  presence  of  silicate.  R.  H. 
McKee  and  T.  H.  Chilton.  Pulp  and  Paper 
Mag.,  1922,  20,  693—694. 

Experiments  are  described  showing  that  it  is 
possible  to  obtain  satisfactory  causticisation  of  soda 
solutions  containing  silicate  by  allowing  sufficient 
time  (longer  than  with  carbonate  alone)  for  the  com- 
pletion of  the  reaction. — H.  R.  D. 

Potassium  hydroxide;  Application  of  Scheele's  re- 
action  to   preparation   of  .      W.    Dominik 

Przemysl  Chem.,  1922,  6,  25—36.     Chem.  Zentr., 
1922,  93,  III.,  237. 
The  reaction, 

2KCl+4PbO  +  H20  ;±PbC]2+3PbO  +  2KOH 
was  studied,  using  mixtures  containing  not  more 
than  20  g.  of  lead  oxide  per  100  c.c.  of  potassium 
chloride  solution,  filtering  when  the  reaction  was 
complete,  adding  a  further  quantity  of  lead  oxide 
to  the  filtered  liquid,  and  repeating  these  operations 
until  equilibrium  was  attained.  It  was  found  that 
to  obtain  1  g.  of  caustic  potash  about  16  g.  of  load 
oxide  is  necessary.  At  the  ordinary  temperature 
the  equilibrium  between  caustic  potash  and 
potassium  chloride  may  be  expressed  by  the 
equation :  — 

_  KOH 1 

lv  KC1  :~  0-422  +  0-074[OH]~1, 
and  the  maximum  concentration  attainable  is  112  g. 
KOH  per  litre.  Regeneration  of  lead  oxide 
by  treatment  of  the  lead  chloride  formed  with 
milk  of  lime  or  calcium  bicarbonate  is  not 
practicable,  but  may  be  accomplished  by  treatment 
with  ammonium  carbonate  in  presence  of  excess  of 
carbon  dioxide,  whereby  ammonium  chloride  and 
lead  carbonate  are  formed,  and  the  latter  can  be 
converted  into  lead  oxide  by  treatment  with  steam 
at  300°  C.  With  this  method  of  regeneration  the 
process  as  a  whole  becomes  technically  sound. 

— H.  R.  D. 

Chlorates;    Bole    of    chromate    in    the    electrolytic 

preparation    of   .      A.    W.    Pamfilow.      Ber. 

Polytech.    Iwanowo-Wosniessensk,    1921,    4,    113. 
Chem.  Zentr.,  1922,  93,  III.,  327. 

The  addition  of  chromate  in  the  electrolytic 
preparation  of  chlorate  not  only  prevents  the  de- 
composition of  hypochlorite  and  corrosion  of  the 
electrode,  but  also  produces  the  required  adjustment 
of  acidity.  If  the  solution  is  simply  made  acid  or 
alkaline  in  the  absence  of  chromate  there  is  no 
variation  in  the  concentration  of  the  hydrogen  and 
hydroxyl  ions.  To  produce  merely  a  protective  film 
a  trace  of  chromate  would  suffice,  whereas  in  prac- 
tice larger  quantities  are  used.  The  phosphates 
have  similar  properties  but  are  less  suitable,  since 
inly  sodium  dihydrogen  phosphate  has  an  acid  re- 
action and  copper  electrodes  cannot  be  used. 

—J.   B.  F. 

Ammonia;  Presence  of  acetone  in  commercial . 

J.    Bougault   and  R.    Gros.      J.    Pharm.    Cliim.. 

1922,  26,  170—171. 
Examination  of  samples  of  ammonia  from  different 
sources  indicates  the  presence  of  acetone  in 
quantities  varying  from  0-01  to  0"o  g.  per  litre. 
This  may  be  a  source  of  serious  error  in  analytical 
work,  especially  in  the  use  of  ammonia  for  pWio- 
logical  tests.— H.  J.  E. 


Lime;    Fundamental    physical    and    chemical    pro- 
perties  of   commercial  .     /.     The   available 

lime  content.  M.  L.  Holmes  and  G.  J.  Fink 
Chem.  and  Met.  Eng.,  1922,  27,  347—349. 
The  loss  on  ignition  and  available  lime,  calculated 
on  a  non-volatile  basis,  of  a  large  number  of 
American  samples  are  tabulated.  By  available  lime 
is  understood  the  total  CaO,  which  is  easily  soluble 
m  water,  and  it  is  determined  as  follows :  1*4  g. 
of  the  material,  ground  to  pass  100-mesh,  is  boiled 
for  3  min.  with  200  c.c.  of  water,  and  the  solution 
i*  titrated  with  2V/1  hydrochloric  acid  and  phendl- 
phthalein  until  the  pink  colour  disappears  for 
1 — 2  seconds.  The  experiment  is  repeated  in  a 
1  litre  graduated  flask  using  a  quantity  of 
acid  (A  c.c.)  5  c.c.  less  than  before.  Any  lumps 
that  form  are  ground  up,  and  the  solution  is 
diluted  to  1  litre  with  recently  boiled  distilled 
water.  200  c.c.  is  pipetted  off  and  titrated  with 
AT/2  hydrochloric  acid  until  the  solution  remains 
colourless  with  phenolphthalein  for  1  min.  If  B  c.c. 
be  used  in  the  second  titration  then  the  percentage 
of  available  lime  is  2A+5B. — A.  R.  P. 

Copper  hydroxide ;  Solubility  of in  caustic  soda 

solution.  G.  S.  Melbye.  Medd.  Kgl.  Yeten- 
skapsakad.  Nobelinst.,  1921,  4,  [8],  1—11. 
Chem.  Zentr.,  1922,  93,  III.,  480. 

Copper  sulphate  solution  is  run  into  caustic  soda 
solution  until  the  solution  becomes  turbid.  The 
precipitate  is  filtered  off  through  glass  wool,  the 
filtrate  diluted  with  water,  and  the  copper  esti- 
mated iodometrically  with  thiosulphate.  The 
solubility  of  the  copper  hydroxide  varies  with  the 
conditions  and  method  of  experiment,  e.g.,  the 
results  vary  with  the  size  of  the  drops  of  the  copper 
sulphate  solution.  The  solubility  is  a  linear  func- 
tion of  the  concentration  between  2'65  and  6'62V 
caustic  soda,  and  is  expressed  by  the  equation: 
[CurOH),]=0-045[NaOH]- 0-09.5.— J.   B.   F. 

Manganese  dioxide;  Some  properties  of .    A.  de 

Hemptinne.  Bull.  Acad.  roy.  Belg.,  Classe  des 
Sci.,  1922,  8,  71—75.  Chem.  Zentr.,  1922,  93, 
III.,  478—479. 

Manganese  dioxide  is  reduced  by  hydrogen  or  a 
mixture  of  hydrogen  and  hydrogen  sulphide  at 
ordinary  temperatures,  and  at  atmospheric  pres- 
sure. After  5  days  a  rapid  and  progressive  reduc- 
tion in  pressure  due  to  absorption  of  hydrogen  was 
perceptible  (phosphoric  anhydride  was  used  to 
absorb  the  water  formed),  and  after  53  days  about 
one-third  of  the  hydrogen  had  been  used  up.  The 
reduced  product  was  rapidly  re-oxidised  on  exposure 
to  the  air.  When  manganese  dioxide  was  exposed, 
similarly,  to  a  mixture  containing  33%  of  hydrogen 
sulphide  and  67%  of  hydrogen  a  considerable 
diminution  in  volume  took  place  in  3  mins.,  the 
manganese  dioxide  being  converted  into  a  sulphur 
compound,  from  which  hydrogen  sulphide  was 
evolved  on  treatment  with  sulphuric  acid. — J.  B.  F. 

Sulphur  dioxide;  Oxidising  and  reducing  properties 

of .    /.    Mercury  chlorides.     L.  M.  Stewart 

and  W.  Wardlaw.  Trans.  Chem.  Soc.,  1922, 
121,  1481—1489. 
The  type  of  reaction  which  occurs  when  sulphur 
dioxide  reacts  at  95°  C.  with  mercurous  chloride 
in  the  presence  of  hydrochloric  acid  depends  on  the 
concentration  of  the  acid.  With  high  concentra- 
tions of  acid  (8 — 22V)  sulphur  dioxide  acts  as  an 
oxidising  agent,  sulphur  being  precipitated  and 
mercuric  chloride  formed.  At  acid  concentrations 
between  22V  and  OT62V  decomposition  to  mercuric 
chloride  and  mercury  occurs  to  an  extent  decreas- 
ing with  decrease  in  acid  concentration.  An  inert 
period,  extending  over  the  range  of  acid  concentra- 
tion 0-16.V  to  O-072V.  during  which  calomel  is  un- 
affected,     is    followed,    below    a    concentration    of 


vol.  XLI.,  Xo.  19.]      Cl.  VII.— ACIDS  :   ALKALIS  ;  SALTS  ;   NON-METALLIC  ELEMENTS. 


751  A 


OO'iV,    by   reduction   of   the   chloride    to   mercury, 

increasing    with     decreasing    acid    concentration. 

With  a  definite  concentration  of  acid  the  amount 

I    of  reduction  of  mercuric  chloride  to  the  mercurous 

;    state  by  sulphur   dioxide  at  95°  C.   is   dependent 

|    on    the    initial    concentration    of    the     mercuric 

chloride.       Quantitative    reduction     occurs     when 

sulphur  dioxide  reacts  for  12  hours  at  95°  C.  with 

2"6  g.   of   mercuric  chloride   in   120  c.c.   of   water. 

Above  this  concentration  of  mercuric  chloride  the 

reduction   is  incomplete.      For  complete  reduction 

of  either  chloride  a  very  low  acid  concentration  is 

;    necessary.      Incomplete    reduction    occurs    if    the 

concentration   of   acid   exceeds   0022^.      The   small 

degree  of  ionisation  of  mercuric  chloride  in  aqueous 

solution,  and  the  fact  that  it  forms  complexes  with 

hydrochloric  acid,   have  an  important  bearing  on 

the  above  reaction. — P.  V.  M. 

Oxides  of  lead;  Physical  chemistry  of  .     IV. 

Bed  lead  and   lead  sesquioxide.     S.   Glasstone. 
Trans.  Chem.  Soc,  1922,  121,  1456—1469. 

Red  lead  and  hydrated  lead  sesquioxide  are 
plumbous  salts,  giving  plumbous  ions  in  solution. 

'  The  hypochlorite  and  plumbite-plumbate  methods  for 

1  the  preparation  of  lead  sesquioxide  are  uncertain; 

I  in  no  case  was  an  anhydrous  sesquioxide  obtained. 

I  Fairly  pure  hydrated  lead  sesquioxide  can  be  ob- 
tained by  a  method  based  on  the  solubility  of  this 

■  oxide  in  alkali.  A  12%  solution  of  sodium  hydroxide 
(250  c.c.)  saturated  with  lead  monoxide  is  diluted 
to  500  c.c,   and   an   equal  quantity   of   saturated 

,  bromine  water  added.    The  mixture,  after  standing 

I  overnight,  and  washing  free  from  hypobromite  and 
.  I  alkali  by  decantation  with  water  plus  a  little  acetic 
ij  acid,   is  added,   as  an  aqueous  paste,  to  60  g.  of 

sodium  hydroxide  in  300  c.c.   of  water  at  50°  C. 

The  cold  nitrate  from  this  mixture  is  treated,  with 
•  continuous  stirring,  with  40  g.  of  acetic  acid  in 
!  150  c.c.  of  water,  and  the  precipitate  washed  and 

filtered  with  the  aid  of  the  pump.  The  ratio  of 
I  lead  dioxide  to  monoxide  in  the  product  is  deter- 

mined  by  analysis  at  this  stage,  and  the  solution 
i  in  alkali  and  precipitation  with  acid  repeated  if 
i  necessary.  The  various  methods  of  preparation  of 
,the  sesquioxide  are  in  harmony  with  the  view  that 

I I  in  a  solution  of  the  sesquioxide  in  alkali  there 
I  is  equilibrium  between  plumbate,  plumbite,  and 
■  hydroxyl  ions.  At  ordinary  temperatures  the  normal 

plumbate-plumbite  potential  is  0"30  volt.  Con- 
sideration of  the  Pb"-ion  concentrations  produced 
I  by  dissolving  lead  monoxide,  sesquioxide,  and 
dioxide  respectively  in  N /l  caustic  soda  indicate 
that  in  the  presence  of  lead  dioxide  and  monoxide 
there  will  be  a  tendency  for  lead  monoxide  and 
isesquioxide  respectively  to  dissolve  in  alkali  to 
jform  red  lead.  In  agreement  with  this  lead  sesqui- 
ioxide  was  converted  completely  into  red  lead  when 
left  in  contact  with  a  solution  of  lead  monoxide  in 
alkali  for  six  weeks. — P.  V.  JM. 

Oxides   of  lead;  Physical  chemistry  of  .      V. 

Electromotive    behaviour    of    lead    dioxide.      S. 
Glasstone.     Trans.  Chem.  Soc,  1922,  121,  1469— 

1480. 

The  system  lead — lead  dioxide — alkali  is  unstable; 
ead  and  lead  dioxide  combine  directly  in  the 
Presence  of  alkali  to  form  red  lead.  The  value  of 
:he  Pt/(PbO,PbO,)iV/lNaOH  electrode  potential 
s  of  the  order  of  027  volt.  The  high  initial  poten- 
ial  value  of  electrolytically  deposited  lead  dioxide 
from  acid  lead  nitrate  solution)  is  probably  due 
o  the  presence  of  traces  of  a  higher  metastable 
icid  oxide,  possibly  Pb03,  not  capable  of  detection 
>y  analysis.  The  decomposition  of  this  oxide  is 
iccelerated  by  rise  of  temperature  and  by  plumbite 
olutions.  The  existence  of  hydrated  lead  dioxide 
s  doubtful.  The  normal  plumbic-plumbous  poten- 
ial  has  been  redetermined,  and  a  maximum  value 
f  1-75  volts  at  25°  C.  is  indicated.— P.  V.  M. 


Uofer  vapour;  Catalytic  formation  of  from 

hydrogen  and  oxygen  in  the  presence  of  copper 
and  copper  oxide.  R.  N.  Pease  and  H.  S.  Tavlor. 
J.  Amer.  Chem.  Soc,  1922,  44,  1637—1647.  '(Cf. 
J.,  1922,  98  a.) 

The  combination  of  hydrogen  and  oxygen  is  prac- 
tically complete  at  200°  C.  when  mixtures  contain- 
ing up  to  5%  of  oxygen  are  passed  over  copper, 
prepared  by  reducing  copper  oxide  in  hydrogen  at 
150°— 200°  C,  but  is  only  just  measurable  at  100°  C. 
In  nearly  all  cases  copper  oxide  is  produced  simul- 
taneously with  water.  If  the  oxygen  is  shut  off  and 
pure  hydrogen  passed  over  the  catalyst,  the  oxide 
so  produced  is  reduced  at  a  greater  rate  than  that 
of  the  formation  of  water  whilst  the  oxygen  is 
passing.  Between  130°  C.  and  100°  C.  the  rate  of 
oxidation  of  the  copper  and  the  rate  of  the  reduc- 
tion of  the  oxide  so  formed,  as  well  as  the  catalytic 
activity,  suffer  a  marked  reduction.  At  130°  C. 
with  a  supply  of  oxygen  equivalent  to  10  mg.  of 
water  in  5  mins.,  the  rate  of  formation  of  water 
passes  through  a  maximum  to  a  steady  minimum 
value.     {Cf.  J.C.S.,  Oct.)— J.  F.  S. 

Hydrogen  peroxide;  Colorimetric  determination  of 

.    M.  L.  Isaacs.    J.  Amer.  Chem.  Soc,  1922, 

44,  1662—1663. 

Hydrogen  peroxide  may  be  estimated  colori- 
metrically  as  follows:  1  c.c.  of  a  10%  solution  of 
ammonium  molybdate  is  slowly  added  to  a  mixture 
of  about  30  c.c.  of  water,  10  c.c.  of  a  5%  solution 
of  citric  acid,  and  1  c.c.  of  the  hydrogen  peroxide, 
water  is  added  to  make  the  volume  50  c.c.  and  the 
whole  well  shaken.  A  yellow  colour  develops  imme- 
diately and  the  solution  is  then  compared  with  a 
standard  potassium  chromate  solution  (0'4  g.  per 
litre)  in  a  Dubosq  colorimeter.  When  the  standard 
is  set  at  20  the  amount  of  hydrogen  peroxide  is 
given  by  x  =  005.467  /  y,  where  y  is  the  colorimeter 
reading  and  x  the  number  of  grams  of  peroxide  in 
the  50  c.c.  of  solution.  The  results  obtained  by  this 
method  compare  favourably  with  those  obtained  by 
direct  titration  with  potassium  permanganate 
solution. — J.  F.  S. 

Selenium  oxychloride.    V.  Lcnher.    J.  Amer.  Chem. 
Soc,  1922,  44,  1664—1667. 

Selenium  oxychloride  is  extremely  hygroscopic  and 
the  greatest  precautions  are  necessary  to  obtain  the 
anhydrous  material.  The  presence  of  small  quan- 
tities of  water  increases  the  electrical  conductivity 
enormously  and  its  reactivity  towards  carbonates 
is  largely  dependent  on  the  amount  of  water 
present.  To  test  for  the  presence  of  water  in 
selenium  oxychloride  cobalt  carbonate  which  has 
been  dried  at  300°  C.  for  3  hrs.  is  sealed  up  with 
a  sample  of  the  oxychloride ;  in  the  absence  of 
water  no  reaction  occurs,  but  if  the  merest  trace 
of  water  is  present  the  oxychloride  becomes  blue 
and  a  pressure  of  carbon  dioxide  is  set  up.  The 
dry  carbonates  of  calcium,  strontium,  copper, 
nickel,  and  ferrous  iron  are  without  action  on 
the  oxychloride,  whilst  carbonates  of  barium, 
lithium,  and  magnesium  evolve  carbon  dioxide 
slowly  and  that  of  zinc  much  more  rapidly.  Fused 
carbonates  of  sodium  and  potassium  react  readily 
with  anhydrous  selenium  oxychloride  evolving  a 
large  amount  of  heat.  Sulphur  dioxide  has  no 
action  on  the  boiling  anhydrous  oxychloride,  but 
in  the  presence  of  water  selenium  is  precipitated. 
Dry  hydrogen  sulphide  produces  a  red  brown  colour, 
after  which  hydrogen  chloride  is  evolved  and  yellow 
selenium  sulphide  is  produced ;  heat  is  evolved  and 
this  dissociates  the  sulphide  into  sulphur  and  red 
selenium.  Carbon  monoxide  has  no  action  on  the 
oxychloride.  Chlorine  is  evolved  by  iodic  acid, 
iodates,  bromates,  and  persulphates.  Tungsten, 
tantalum,  and  titanium  are  only  slightly  attacked 
after  long  periods  at  elevated  temperatures.    Phos- 


752  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Oct.  16,  1922. 


phorus  reacts  violently  at  0°  C,  producing  selenium 
monochloride  and  tetrachloride  and  phosphorus 
pentoxide.  Carbon  tetrachloride  dissolves  selenium 
oxychloride  but  after  a  time  phosgene  is  evolved 
and  selenium  tetrachloride  formed.- — J.  F.  S. 

Selenium  oxybromide.    V.  Lenher.    J.  Anier.  Chem. 
Soc,  1922,  44,  1668—1673. 

Selenium  oxybromide  is  best  prepared  by  adding 
to  pure  resublimed  selenium  dioxide  the  calculated 
quantity  of  fused  selenium  in  a  flask  fitted  with  a 
rubber  stopper  through  which  passes  a  dropping 
funnel  and  a  safety  tube  filled  with  fused  calcium 
bromide.  The  flask  is  cooled  to  0°  C.  and  the 
amount  of  bromine  necessary  to  convert  the  metal 
into  tetrabromide  is  cautiously  added  in  small 
quantities.  The  mixture  is  then  warmed  until  the 
whole  of  the  oxide  has  dissolved.  Selenium  oxy- 
bromide is  a  reddish-yellow  solid  melting  at  41'5° — 
41-7°  C,  boiling  at  217°  C.  under  740  mm.  with 
considerable  decomposition.  Owing  to  its  decom- 
position on  heating  it  cannot  be  purified  by  distil- 
lation even  under  reducoed  pressure.  It  has  a 
density  of  338  at  50°.  Water  converts  it  into 
selenious  and  hydrobromic  acids.  It  dissolves  in 
carbon  bisulphide,  chloroform,  benzene,  toluene, 
and  xylene  and  the  fused  material  is  miscible  in 
itll  proportions  with  these  solvents.  Carbon  tetra- 
chloride dissolves  it  readily  but  the  fused  material 
mixes  only  to  the  extent  of  6%,  and  on  heating  for 
several  days  the  solution  evolves  phosgene.  It  is 
an  extremely  active  chemical  reagent,  behaving  as 
a  brominating  and  oxidising  agent,  and  it  is  a 
powerful  solvent.     (C/.  J.C.S.,  Oct.)— J.  F.  S. 

Pure  gases.     Heirich.     See  I. 

Iron  oxides  for  gas  purification.   Gemmell.    .See  Ha. 

Patents. 

Sulphuric  and  hydrochloric  acids;  Process  of  manu- 
facture of .    R.  Stolle.    G.P.  353,742,  14.6.14. 

Sulphuric  and  hydrochloric  acids  are  prepared  by 
the  interaction  of  chlorine  and  sulphur  dioxide  in 
the  presence  of  water  at  an  elevated  temperature. 

—J.  S.  G.  T. 

Hydrochloric  acid;  Electrolytic  method  of  manufac- 
turing  .  T.  Blasweiler.  G.P.  355,387,  28.11.20. 

Solutions  of  alkali  chloride  are  electrolysed  in  cells 
in  the  anode  chamber  of  which  lignite  or  peat  is 
suspended. — H.  R.  D. 

Sulphurous  acid;  Process  of  producing by  heat- 
ing sulphates.    M.Trautz.    G.P.  356,414,  23.12.19. 

Sulphate,  briquetted  or  mixed  with  charcoal  or 
iron,  is  heated  in  the  absence  of  hydrogen,  in  a 
stream  of  gas  such  as  carbon  dioxide,  nitrogen,  etc. 
which  is  not  acted  upon  by  sulphur  dioxide,  until 
all  sulphur  is  expelled.  Alternatively,  the  sulphate 
is  initially  heated  in  a  stream  of  gases  containing 
dulphur  vapour  and  gases  not  acted  upon  by  sulphur 
dioxide  (carbon  dioxide,  sulphur  dioxide,  nitrogen, 
etc.)  and  then  distilled  in  a  stream  of  gas  containing 
neither  sulphur  dioxide  nor  sulphur  vapour. 

—J.  S.  G.  T. 

Alkali  lyes  coloured  and  contaminated  with  hemi- 

cellulose;  Process  for  purifying .    F.  Kiittner 

Kunstseidespinnerei,  and  E.  Profeld.  G.P. 
355,836,  22.2.21. 
The  lye  is  treated  in  the  cold  with  an  oxidising 
agent  such  as  hydrogen  peroxide  or  ozone  in  the 
presence  of  metallic  catalysts  6uch  as  copper  and 
lead.  The  oxidation  may  be  carried  out  in  vessels 
made  of  the  metals  which  catalyse  the  reaction. 
The  cellulose  compounds  in  solution  are  precipitated 
on  the  surface  of  the  metal  and  the  solution  is 
"bleached.  The  purification  is  the  more  complete  the 
greater  the  area  of  the  metallic  surface.— H.  C.  R. 


Sodium  carbonate,  caustic  soda  and  sulphur;  Pro- 
duction of  .     Rhenania  Verein  Chem.  Fabr 

A.-G.,  and  F.  Projahn.  G.P.  356,287,  16.2.16. 
Barium  sulphate  is  reduced  to  barium  sulphide  and 
then  treated  with  water.  The  baryta  is  separated 
from  the  resulting  liquor,  which  is  treated  with 
carbon  dioxide  to  form  barium  carbonate  and 
sulphur,  the  barium  carbonate  being  afterwards 
treated  with  sodium  sulphate,  to  form  sodium 
carbonate  and  barium  sulphate.  The  baryta  is 
treated  with  sodium  sulpnate  to  form  barium 
sulphate  and  sodium  hydroxide,  or  it  may  be  used 
to  caustieise  the  sodium  carbonate  previously 
obtained.  The  barium  sulphate  formed  is  again 
reduced  to  barium  sulphide  and  the  process 
repeated. — A.  B.  S. 

Anhydrous  chlorides  of  alkaline-earth  metals;  Pro- 
cess  of   manufacturing   .      Minami    Mansha 

Tetsudo  Kabushiki  Kaishi.    E.P.  163,304,  10.5.21. 
Conv.,  15.5.20. 

An  alkaline-earth  carbonate,  oxide,  oxychloride,  or 
hydroxide  is  heated  with  ammonium  chloride  in 
presence  of  a  halide  of  a  base  electropositive  to  the 
alkaline-earth  metal.  For  example,  a  mixture  of 
5  pts.  of  sodium  chloride  and  5  pts.  of  potassium 
chloride  is  maintained  in  a  melted  state  at  about 
800°  C,  and  a  mixture  of  30  pts.  of  ammonium 
chloride  and  10  pts.  of  magnesium  oxide  is  gradually 
added.  The  product  consists  of  anhydrous  mag- 
nesium chloride  mixed  with  chlorides  of  sodium  and 
potassium,  and  free  from  oxide;  it  is  suitable  for 
the  electrolytic  preparation  of  magnesium.  The  by- 
product ammonia  and  chlorine  generated  by  electro- 
lysis of  anhydrous  magnesium  chloride  are  utilised 
to  make  the  ammonium  chloride  for  the  process. 

— H.  R.  D. 

Barium  chloride;  Process  for  manufacture  of  pure 

■    from    barium    carbonate    and    magnesium 

chloride  lye.      Chem.   Fabr.   Coswig-Anhalt,   and 
W.  von  Dietrich.     G.P.  355,299,  3.11.20. 

A  fluid  mixture  of  barium  carbonate  and  mag- 
nesium chloride  lye  is  caused  to  set  by  addition  of 
a  dehydrating  substance,  e.g.,  calcined  barium 
chloride,  and  heated  above  the  decomposition  tem- 
perature of  magnesium  chloride.  A  portion  of  the 
calcined  product  may  be  used  as  dehydrating  agent 
in  the  first  stage  of  the  process. — H.  R.  D. 

Hyposulphites    [liydrosulphites~\ ;    Process    for   the 

manufacture    of    .       Farbenfabr.    vorm.    F. 

Bayer  und  Co.  E.P.  176,344,  20.2.22.  Conv.,  3.3.21. 

Hydrosulphites  of  high  concentration  are  obtained 
by  treating  a  bisulphite  solution  with  an  amalgam, 
preferably  of  an  alkali  metal  obtained  electro- 
lytically,  and  a  free  acid  (hydrochloric,  sulphuric, 
sulphurous),  which  is  present  in  quantity  equiva- 
lent to  the  non-mercurial  metal  of  the  amalgam. 
The  bisulphite  solution  is  well  cooled  and  stirred, 
whilst  adding  the  amalgam  and  acid.  The  mercury 
formed  is  returned  to  the  electrolytic  cell  for  use 
in  the  production  of  a  further  quantity  of  amalgam. 

— H.  R.  D. 

Soluble  phosphates;  Process  of  manufacturing . 

J.  G.  Williams.  E.P.  184,206,  10.11.21. 
A  water-soluble  sulphate,  such  as  sodium,  potas- 
sium, or  ammonium  sulphate,  is  caused  to  react  With 
calcium  phosphate  in  the  presence  of  water  and 
sulphur  dioxide.  When  mineral  calcium  phosphate 
and  ammonium  sulphate  are  used  the  reaction  gi™ 
calcium  sulphate,  diammonium  hydrogen  phosphate, 
and  ammonium  sulphite.  (Reference  is  directed,  in 
pursuance  of  Sect.  7,  Sub-sect.  4,  of  the  Patents 
and  Designs  Acts,  1907  and  1919,  to  E.P.  26,097  of 
1912.)— H.  B.  D. 


Vol.  XLL,  No.  19.]         Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


753  a 


Dibasic  calcium  phosphate;  Process  of  reducing  the 
amount  of  acid  necessary  in  the  manufacture  of 

.      Bayerische  A.-G.   fiir  chem.   u.   landwirt- 

schaftl.-chem.  Fabrikate,  and  H.  Hackl.  G  P 
354,784,  20.8.20.  Addn.  to  352,782  (J.,  1922,  723  a). 
The  interaction  between  monobasic  calcium  phos- 
phate and  finely  ground  bone  meal  in  accordance 
with  the  previous  patent  is  effected  under  the 
influence  of  heat  and  of  the  pressure  set  up  by  the 
carbon  dioxide  evolved. — J.  S.  G.  T. 

Potassium  bicarbonate ;  Electrolytic  production  of 

from  potassium  chloride  solutions.     Chem. 

Fabr.  Griesheim-Elektron,  and  R.  Suchy.      E.P. 
184,244,  2.5.21. 

A  cathode  solution  containing,  e.g.,  240  g.  of 
potassium  chloride  and  140  g.  of  potassium  bi- 
carbonate per  litre,  is  electrolysed  until  the  potas- 
sium carbonate  content  reaches  about  200  g.  per 
litre.  The  liquor  is  transferred  to  a  carbonating 
apparatus,  about  20  g.  of  potassium  chloride 
per  litre  added,  and  carbon  dioxide  introduced, 
until  complete  saturation  results.  The  product  is 
filtered  off  and  the  mother  liquor,  which  has  the 
same  composition  as  the  original  cathode  solution, 
is  nsed  again. — H.  R.  I). 

Potassium  and  sodium  carbonates;  Preparation  of 

a  non-hygroscopic  mixture  of  .     A.  Welter. 

G.P.  354,575,  21.4.21. 

Sodium  hydrogen  carbonate  and  potassium 
hydroxide  are  allowed  to  interact  in  the  solid 
state  or  in  concentrated  solution.  A  spray  of 
concentrated  caustic  potash  is  blown  into  a  reaction 
vessel  containing  finely  powdered  sodium  hydrogen 
carbonate  and  the  whole  contents  of  the  vessel  are 
agitated  with  a  current  of  air  which  removes  excess 
moisture. — C.  I. 

Sodium  silicate  and  the  like:  Furnace  for  producing 

-.    W.  H.  Stanton.    U.S. P.  1,425,551,  15.8.22. 

Appl.,  9.8.20. 
The  furnace  is  composed  of  a  covered  horizontal 
hearth,  beneath  which  is  a  pair  of  gas  regenerator 
chambers  extending  the  full  length.  Beneath  each 
of  these  chambers  is  an  air  regenerator  chamber. 
A  flue  leading  from  the  outer  extremity  of  each 
regenerator  space  leads  into  the  space  between  the 
superimposed  hearth  and  roof  at  a  point  near  an 
outer  extremity  of  the  hearth.  Separate  air  or 
gas  passages  communicate  with  the  inner  end  of 
each  of  the  chambers  for  introducing  the  gas  or 
air,  and  removing  spent  gases. — H.  R.  D. 

Antimony  trichloride;  Preparation  of  aqueous  solu- 
tions of  .     G.  E.  Williams,  Assr.  to  Hooker 

Electrochemical   Co.     U.S. P.   1,425,5G5,    15.8.22. 
Appl.,  10.8.20. 

Metallic  antimony  is  heated  with  chlorine  in 
presence  of  hydrochloric  acid  sufficiently  concen- 
trated to  prevent  separation  of  oxychloride. 

— H.  R.  D. 

Purified  gas  mixtures;  Process  of  preparing  — ■ — . 

J.    C.    Clancy,    Assr.    to    The    Nitrogen    Corp. 

U.S.P.  1,425,577,  15.8.22.  Appl.,  8.5.20. 
A  mixture  containing  hydrogen,  nitrogen,  and 
carbon  dioxide  is  passed  in  contact  with  ammonia 
free  from  contaminating  impurities  in  order  to 
prepare  a  mixture  consisting  essentially  of 
hydrogen  and  nitrogen. — H.  H. 

\Eydrogen  and  hydrogen-nitrogen  mixtures;  Process 

■    of  generating  .     J.  C.  Clancy,  Assr.  to  The 

Nitrogen  Corp.   U.S.P.  1,425,579,  15.8.22.    Appl., 
25.5.20. 
1  mixture  of  hydrocarbon  vapour,  steam,  and  air 
s  passed  into  contact  with  iron-chromium  surfaces 
it  a  high  temperature. — H.  H. 


Zinc  oxide;  Method  and  means  for  producing . 

J.  Thomson.  U.S.P.  (a)  1,425,917  and  (b)  1,425,918. 
15.8.22.    Appl.,  16.3.  and  5.5.21. 

(a)  "  Zinc  gas,"  produced  by  re-distillation  of 
metallic  zinc  in  an  electric  furnace,  is  passed 
between  impinging  streams  of  "  partially  depoten- 
tiated  "  oxygen,  (b)  Crystalline  zinc  oxide  is  pro- 
duced by  oxidising  superheated  "  zinc  gas  "  by 
preheated  air. — H.  R.  D. 

Zinc  oxide;  Process  of  treating  by-product  . 

J.  E.  Booge,  Assr.  to  E.  I.  du  Pont  de  Nemours 
and  Co.  U.S.P.  1,426,349,22.8.22.  Appl.,  21.10.20. 
The  process  consists  in  calcining  by-product  zinc 
oxide  so  as  to  form  a  product  containing  water- 
soluble  compounds,  which  are  removed  by  washing 
with  water. — G.  F.  M. 

Bleach    [hypochlorite^    solutions;    Preparation    of 

liquid   .      J.    H.    MacMahon,    Assr.    to   The 

Mathieson  Alkali  Works,  Inc.  U.S.P.  1,426,752, 
22.8.22.     Appl.,  4.3.22. 

Liquid  chlorine  is  vaporised  by  indirect  contact  with 
alkaline  solutions,  the  heat  of  vaporisation  of  the 
chlorine  being  utilised  to  cool  the  alkaline  solution, 
into  which  the  gaseous  chlorine  is  introduced. 

— H.  R.  D. 

Lead    arsenate;    Method    of    manufacturing    . 

A.  O.  Allen,  Assr.  to  J.  Lucas  and  Co.,  Inc. 
U.S.P.  1,427,049,  22.8.22.     Appl.,  29.6.21. 

Lead  arsenate  is  precipitated  from  a  basic  solution 
"l  lead  salts,  obtained  by  mixing  70%  acetic  acid, 
40°  B.  nitric  acid,  and  litharge  in  the  proportions 
by  weight  of  10:1 139  respectively  by  means  of 
arsenic  acid  containing  58 — 63%  As3Os. — H.  R.  D. 

Potassium  nitrate  and  ammonium  sulphate;  Process 

of    manufacture    of   .     Chem.    Werke   Loth- 

ringen,  and  T.  AV.  Pfirrmann.  G.P.  353,432, 
4.1.21. 

PoiASSroM  nitrate  and  ammonium  sulphate  or 
ammonium  sulphate-nitrate  are  obtained  by  the 
double  decomposition  of  potassium  sulphate  and 
ammonium  nitrate  in  an  acid  solution  preferably 
acidified  with  nitric  acid. — J.  S.  G.  T. 

Nitrogen   compounds,    e.g.,    cyanides,    cyanamides, 

nitrides,    etc.;   Process   of  producing   from 

metals,  or  metallic  oxides  or  carbonates,  and 
carbon  and  nitrogen.  Chem.  Fabr.  Griesheim- 
Elektron.  G.P.  (a)  305,612  and  (b)  305,613, 
14.3.14. 

(a)  The  gases  evolved  in  the  process  of  manufacture 
are  burned  with  so  much  air  that  essentially  a 
mixture  of  nitrogen  and  carbon  dioxide  is  produced, 
from  which  carbon   dioxide  is   recovered   as  usual. 

(b)  The  reaction  is  carried  out  at  a  lower  tempera- 
ture, and  is  accelerated  by  the  use  of  briquetted  or 
powdered  lignite  or  peat  in  place  of  coke  or  coal 
(anthracite).— J.  S.  G.  T. 

Ammonium  salts;   Process  of  manufacturing  

from  ammonia  produced  catalytically.  Badische 
Anilin  u.  Soda-Fabrik.  G.P.  352,978,  24.4.21. 
Ammonium  salts,  more  especially  ammonium  sul- 
phate and  ammonium  chloride,  are  produced  by 
treating  a  solution  or  suspension  of  an  appropriate 
salt  (sulphate  or  chloride)  with  ammonia  and  subse- 
quently or  simultaneously  with  the  mixture  of 
carbon  dioxide  and  hydrogen  resulting  from  the 
catalytic  interaction  of  water-gas  and  steam,  the 
mixture  of  gase9  being  if  necessary  freed  from 
liydrogen  sulphide.  Carbonate  formation  is  carried 
to  completion  by  employing  the  carbon  dioxide  resi- 
due recovered  from  the  gas  by  water  under  pressure 
and  subsequent  release  of  pressure. — J.  S.  G.  T. 

B  2 


754a 


Cl.  VII.— ACIDS  ;   ALKALIS.";   SALTS  ;   NON-METALLIC  ELEMENTS.         [Oct.  ig,  1922. 


Ammonium  salts  containing  tarry  matter;  Process 

of  purifying  .     L.    Singer.      G.P.    353,744, 

25.7.16. 

A  solution  of  the  ammonium  salt  is  treated  with 
air,  then  slightly  supersaturated  with  ammonia  and 
filtered  through  sand  or  fuller's  earth  etc.  Any 
residual  tarry  matter  contained  in  the  filtrate  may, 
if  necessary,  be  removed  by  treatment  with  steam. 

—J.  S.  G.  T. 

Sal-ammoniac  waste;  Process  of  working  up  . 

Metallbank  u.  Metallurgische  Ges.  A.-G.,  and  W. 

Schopper.  G.P.  353,636,  8.7.20.  Addn.  to  352,505. 
The  process  described  in  the  previous  patent  (cf. 
E.P.  145,085  of  1920;  J.,  1921,  734  a)  is  applied  to 
the  working  up  of  other  residues  containing 
chlorides  of  heavy  metals,  and  more  especially  to  tin 
residues  containing  chloride.  The  material  is  mixed 
with  an  amount  of  dry  slaked  lime  equivalent  to  its 
chlorine  content,  worked  up  with  water  to  a  crumbly 
mass,  which  is  then  treated  with  steam. — J.  S.  G.  T. 

Ammonium  sulphate ;  Saturator  for  producing . 

Berlin-Anhaltische  Maschinenbau-Akt.-Ges.  G.P. 
353,370,  17.10.20. 

One  or  more  sieves  are  inserted  cross-wise  in  the 
gas  distributor  and  acid  is  supplied  from  above. 
This  arrangement  produces  a  salt  of  exceptionally 
low  acidity. — A.  B.  S. 

Ammonium  chloride;  Production  of .     Holzver- 

kohlungs-Industrie  A.-G.     G.P.  354,078,  10.10.17. 

Ammonia  and  hydrochloric  acid,  both  in  gaseous 
form,  and  the  latter  in  slight  excess,  are  passed 
through  methyl  alcohol  or  other  liquid  in  which 
both  the  gases  are  soluble,  but  ammonium  chloride 
is  insoluble.  Pure  ammonium  chloride  is  thus 
obtained  direct  without  evaporation. — A.  B.  S. 

Hydrocyanic  acid;  Process  of  increasing  the  stability 

of  .     Deutsche  Gold-  u.  Silberscheideanstalt 

vorm.  Roessler.     G.P.  352,979,  5.4.19. 

The  stability  of  hydrocyanic  acid  is  increased  by 
the  addition  of  a  little  oxalic  acid. — J.  S.  G.  T. 

Extraction  process;  Continuous  ,  particularly 

for  separating  potassium  chloride  from  crude 
potassium  salts.  Fellner  und  Ziegler,  and  M. 
Konig.     G.P.  355,979,  25.7.19. 

The  solvent  liquor  at  a  low  temperature  is  brought 
into  contact  with  the  salts  in  an  extractor  consist- 
ing of  two  chambers  one  above  the  other  and  con- 
nected so  as  to  allow  the  salt  to  be  separated  from 
the  liquor.  Between  these  chambers  is  a  preheating 
and  settling  chamber  for  treating  the  solvent  liquor 
after  it  has  been  run  off  the  salt. — A.  B.  S. 

Sodium  bisulphate;  Separation  of in  the  solid 

state  from  solutions.  Spinnstoff-fabrik  Zehlendorf 
G.m.b.H.,  and  K.  Leuchs.     G.P.  356,103,  3.2.20. 

The  solution  is  treated  with  concentrated  sulphuric 
acid.— A.  B.  S. 

Aluminium   sulphate;  Process  for  preparing  

from  aluminium  hydroxide.  Vereinigte  Alu- 
miniumwerke  A.-G.,  and  W.  Fulda.  G.P.  354,328, 
15.3.21. 

Aluminium  hydroxide  is  heated  with  ammonium 
sulphate  and  the  ammonia  evolved  re-converted  into 
sulphate  by  means  of  gypsum. — C.  I. 

Aluminium  oxide;  Process  for  production  of  

from  bauxite.  Schweizerische  Sodafabrik.  G.P. 
355,301,  25.6.21. 

Bauxite  is  emulsified  with  soda  lye,  without  the  use 
of  pressure,  in  a  homogenising  apparatus  provided 
with  at  least  one  turbine  wheel. — H.  R.  D. 


Aluminium     oxide:     Manufacture     of    from 

materials  containing  alumina  and  silica.  Metall- 
bank und  Metallurgische  Ges  A.-G.  G.P.  355,302 
12.5.16. 

Furnace  slags,  especially  blast-furnace  slag,  rich 
in  alumina,  either  alone,  or  mixed  with  other  sub- 
j  stances  rich  in  alumina,  are  treated  by  a  process 
whereby  soluble  sodium  aluminate  and  insoluble 
calcium  silicate  are  formed. — H.  R.  D. 

Aluminium  compounds ;  Process  for  separation  ef 
from  other  substances,  especially  iron  com- 
pounds. Rhenania  Ver.  Chem.  Fab.  A.-G.  Zweig- 
niederlassung  Mannheim.     G.P.  355,303,  24.9.18. 

A  solution  (not  too  dilute)  of  the  substances  under 
treatment  is  mixed  with  a  sodium  salt  and  an  alkali 
fluoride,  avoiding  excess  of  the  latter,  and  the 
double  fluoride  which  separates  is  washed  with 
water  or  very  dilute  acid  till  free  from  foreign 
matter.— H.  R.  D. 

Silver  halides;  Process  for  preparing  solid,  colloid- 
ally   soluble  .      J.    D.    Riedel   A.-G.      G.P. 

354,450,    14.5.19.      Addn.    to   350,097    (J.,    1922, 
392  a). 
!   A  colloidally  soluble  silver  halide  preparation  is 
!   obtained  by  addition  of  water  to  the  colloid  solution 
prepared  as  in  the  chief  patent. — C.  I. 

Magnesium  chloride  lyes;  Treatment  of  .     W. 

Esch.     G.P.  355,300,  22.1.20.     Addn.  to  332,153 
(J.,  1921,  302  a). 
About  eight-ninths  of  the  magnesium  is  separated 

i  as  basic  carbonate  by  treating  the  lye  with  magnes- 
ium hydroxide  and  secondary  ammonium  carbonate 
or  its  components  (ammonia  and  carbon  dioxide)  in 
corresponding  proportions.  The  mother  liquor 
instead  of  being  treated  with  lime,  as  in  the  chief 
patent,  is  boiled  with  excess  of  magnesium  oxide  or 
hydroxide,  the  liberated  ammonia  being  recovered 

1  and  used  again  in  the  process.  The  residue,  con- 
sisting of  magnesium  chloride,  together  with  the 
excess  of  magnesium  oxide  or  hydroxide,  is  then 
heated  to  a  higher  temperature  to  obtain  hydro- 
chloric acid,  and  the  residue  from  this  operation, 
which  consists  chiefly  of  magnesia,  is  used  again  in 
the  process,  after  being  leached,  if  necessary,  to 
recover  potassium  salts. — H.  R.  D. 

Minerals  or  oxides;  Process  for  decomposing  or  dis- 
solving refractory  .     Farbenfabr.  vorm.     F. 

Bayer  und  Co.     G.P.  355,738,  12.7.19. 

Refractory   minerals  or  oxides   may   be  dissolved 

after  treatment  with  a  mixture  of  alkali  oxide  and 

hydroxide.— A.  R.  P. 

Hydrogen  peroxide;  Process  for   producing  . 

Deutsche  Gold-  und  Silber-Scheideanstalt  vorm. 

Roessler.  G.P.  355,866,  1.9.16. 
Concentrated  sulphuric  acid  is  allowed  to  flow  into 
a  suspension  of  alkali  perborate  in  water,  the 
quantities  of  acid  and  perborate  being  so  adjusted 
that  a  solution  of  hydrogen  peroxide  is  obtained, 
having  a  concentration  preferably  of  20%,  but  i» 
any  case  more  than  10%. — A.  R.  P. 

Metallic  salts;  Production  of from  ores,  slags, 

residues,  etc.    J.  Leibu.    G.P.  356,293,  13.4.20. 

Metals  or  metallic  oxides  in  the  form  of  vapour, 
or  waste  gases  containing  them,  with  either  oxidis- 
ing or  reducing  gas  as  may  be  required,  are  brought 
into  contact  with  acids  and  the  resulting  salts  arc 
recovered  by  customary  methods. — A.  B.  S. 

Mercury;  Electrolytic  oxidation  of  ■ in  sodium 

carbonate  solution.    Consortium  fiir  Elektrochem. 
Ind.,  G.m.b.H.     G.P.  356,507,  3.5.18. 
The  sodium  carbonate  solution  should  not  contain 
less  than  0"02%  or  more  than  0'08%  of  halogen  salts, 


Vol.  XII..  Xo.  19.) 


Cl.  VIII.— GLASS  ;    CERAMICS. 


preferably  sodium  chloride.  The  process  is  particu- 
larly applicable  to  re-oxidising  the  metallic  mercury 
produced  in  the  preparation  of  acetaldehyde  from 
acetylene,  so  as  to  obtain  a  fresh  supply  of  mercuric 
oxide  used  in  this  process. — A.  B.  S. 

Iodine;  Process  for  recovering  .     O.  V.  Faber. 

E.P.  163,324,  23.8.21.    Conv.,  28.8.20. 

Carbon  or  carbonaceous  material  containing 
absorbed  iodine  {e.g.,  from  mineral  water)  is  heated 
in  presence  of  a  medium  (e.g.,  a  current  of  air  or 
carbon  dioxide)  which  will  carrv  away  the  iodine  as 
evolved—  H.  R.  D. 

Inert  gases,  e.g.,  nitrogen  and  argon;  Process  of 

producing  free  from  oxygen  and  hydrogen. 

Patent-Treuhand  Ges.  fiir  elektrische  Gliihlampen 
m.b.H.    G.P.  353,743,  9.4.20. 

The  inert  gas  is  freed  from  oxygen  by  heating  with 
an  excess  of  hydrogen,  which  is  subsequently  re- 
moved from  the  perfectly  dried  gas  by  liquefaction. 
The  last  traces  of  hydrogen  are  removed  from  the 
liquefied  mixture  of  gases  by  boiling. — J.  S.  G.  T. 

Gas  \_nitrogcn  and  oxygen]   mixtures;  Process  for 

separating .  R.  and  R.  Mewes.   G.P.  354,217, 

12.3.19. 

The  rapours  of  low  oxygen  content  passing  away 
from  the  oxygen  condensing  column  are  forced  by 
means  of  a  jet,  along  with  cooled  and  purified  air, 
into  the  nitrogen  column,  passing  through  the 
liquid  flowing  from  it. — C.  I. 

Sulphur;    Process    of    obtaining    in    a    finely 

powdered  form.  F.Meyer.  G.P.  £56,047,  24.6.21. 
Sulphur  vapour  is  passed  over  or  through  liquids 
such  as  alcohol,  acetone,  benzene,  carbon  bisulphide, 
trichloroethylene,  or  mixtures  thereof,  which  have 
the  property  of  abstracting  the  finely  divided  sul- 
phur present  in  the  vapour  without  causing  it  to 
_glomerate.  On  removal  of  the  liquid  the  sulphur 
is  obtained  in  a  finely  divided  form. — A.  R.  P. 

Sulphuric   acid   chambers;    Construction    of   . 

R.   E.   Dior.     U.S.P.  1,426,261,   15.8.22.     Appl., 

25.3.21. 
See  E.P.  164,572  of  1920;  J.,  1921,  582  a. 

Oxides  of  nitrogen;  Process  for  the  production  of 

from  ammonia   by   catalytic   oxidation.     C. 

Bosch,  Assr.  to  Badische  Anilin  u.  Soda  Fabrik. 
U.S.P.  1,426,952,  22.8.22.     Appl.,  9.7.20. 

See  E.P.  145,059  of  1920;  J.,  1921,  811  a. 

Metal  oxides;   Process   tor  obtaining   vol  at  'disable 

.     F.   D.    S.    Robertson.     U.S.P.    1,426,602, 

22.8.22.    Appl.,  16.12.18. 

See  E.P.  147,470  of  1920;  J.,  1922,  99  a. 

Hydrogen ;  Production  of  .     G.  Claude,  Assr. 

to   L'Air   Liquide    Soc.    Anon,    pour   FEtude   et 

l'Exploit.  des  Proc.   G.  Claude.   U.S.P.  1,426,462, 

22.8.22.    Appl.,  31.5.18. 
See  E.P.  131,091  of  1918;  J.,  1918,  765  a. 

See  also  pages  (a)  736,  Absorption  tower  for  hydro- 
chloric acid  (G.P.  383,553) ;  Drying  substances  con- 
taining free  alkali  (G.P.  *52,343).  737,  Catalyst 
j  (U.S.P.  1,425,576).  738,  Acid-resisting  linings 
(G.P.  355,374).  740,  Sulphur  from  gas  scrubbers 
(G.P.  355,867).  741,  Aluminium  chloride  (U.S.P. 
1 1.426.031).     771,  Oxide  of  iron  (E.P.  183,323). 

VIII.-GLASS;  CEfiAMICS. 

Gilding  glazed  clay  vessels.    P.  P.  Buduikow.    Ber. 

Polyt.  Iwanowo-Wosniessensk.  1922,  6,  211 — 220. 

Chem.  Zentr.,  1922,  93,  IV.,  235. 
'The    author    has    examined    various    methods    of 
gilding    glazed    clay    ware.      A    suitable    gilding 


solution  is  produced  by  precipitating  gold  from 
solution  in  aqua  regia  by  hydrous  ferrous  sulphate. 
The  precipitate  is  ground  with  8—10%  of  a  flux 
consisting  of  6  pts.  of  basic  bismuth  nitrate  and 
0"5  pt.  of  anhydrous  borax,  mixed  with  oxidised 
turpentine  and  lavender  oil,  and  applied  to  the 
wares.  A  bright  gold  film  is  produced  after  baking 
at  650°— 900°  C.  Paler  hues  are  obtained  if  about 
30%  by  weight  of  silver  chloride  is  mixed  with 
the  gold.  "Sulphur  balsam"  may  likewise  be 
employed  for  gilding.  100  g.  of  dry  French 
turpentine  is  mixed  with  20  g.  of  sulphur  and  20  g. 
of  Venetian  turpentine  and  boiled  gently  on  an  oil 
bath.  Acids  must  be  distilled  off  at  intervals,  and 
it  is  best  to  carry  out  the  distillation  in  a  stream 
of  carbon  dioxide,  employing  a  long  glass  tube  as 
a  reflux  condenser.  To  8 — 9  pts.  of  the  balsam  so 
prepared,  a  solution  of  gold  chloride  containing 
I  pt.  of  gold,  4  pts.  of  concentrated  hydrochloric 
acid,  and  4  pts.  of  nitric  acid,  diluted  with  water, 
is  added,  and  the  mixture  heated  on  an  oil  bath 
until  the  gold  dissolves.  Water  is  removed,  and 
7 — 8%  of  lavender  oil  and  12%.  of  French  turpentine 
added,  and  the  mixture  heated  until  completely 
mixed.  The  resulting  mass  is  dissolved  in  carbon 
bisulphide  and  filtered.  The  carbon  bisulphide 
is  evaporated  off,  and  5 — 8%  of  basic  bismuth 
nitrate  added,  and  the  resulting  mass  applied  to 
the  wares,  which  are  then  carefully  baked  at  450° — 
600°  C.  The  reactions  occurring  have  been 
investigated  by  studying  the  interaction  of  sulphur 
and  pinene.  C10H16S  or  C10H1(,S2  is  probably  formed 
by  reaction  between  pinene  and  sulphur.  With 
gold  chloride,  the  compound  C^H^S^uCl,  is 
probably  formed,  and  by  baking,  this  is  probably 
decomposed  into  C10H)0C1,.  Au  and  SCI,.  Gold 
sulphide  gives  only  a  matt  film,  under  the 
conditions  of  the  experiments.  "  Sulphur  balsam  " 
may  be  prepared  by  the  interaction,  at  room 
temperature,  of  sulphur  monochloride  and 
turpentine,  the  evolution  of  hydrogen  sulphide  and 
hydrogen  chloride  being  prevented  by  cooling. 
Used  in  conjunction  with  gold  chloride  this  gives 
even  better  films  than  the  first-mentioned  balsam. 

—J.  S.  G.  T. 

Quartz;  Heat  of  crystallisation  of .    R.  C.  Ray. 

Proc.  Roy.  Soc.,  1922,  A  101,  509—516. 
The  heat  of  crystallisation  of  quartz  has  been 
determined  from  the  respective  values  of  the  heat 
of  solution  in  hydrofluoric  acid  of  silver  sand  and 
silica  glass,  which  were  found  to  be  3029  and 
37'24  kg.-cals.  per  g.-mol.  of  silicon  dioxide 
respectively,  the  difference,  6"95  kg.-cals.  per 
g.-mol.,  representing  the  heat  of  crystallisation  of 
quartz.  The  value  is  considerably  higher  than  the 
values  obtained  by  Wietzel  (232)  and  by  Mulert 
(2-21),  and  the  discrepancy  is  attributed  to  the 
effect  of  prolonged  grinding  in  reducing  part  of  the 
substance  to  the  vitreous  condition.  The  calculated 
value  of  the  heat  of  crystallisation  at  900°  C.  is 
6-50  kg.-cals.  per  g.-mol.  At  the  melting  point, 
the  value  is  verv  nearly  the  same  as  that  at  air 
temperature.     (C/.  J.C.S.,  Oct.)— J.  S.  G.  T. 

Patents. 

Alkali   metal  silicates  [for  gloss-maldng~\;  Process 

of  producing in  blast  furnaces.    S.  Peacock, 

Assr.  to  C.  W.  Waggoner.  U.S.P.  1,425,048, 
8.8.22.  Appl.,  18.12.20. 
A  mixture  of  carbon,  silica,  and  a  colourless  non- 
oxidising  alkali  metal  compound  is  smelted  in  a 
blast  furnace  and  the  slag  is  tapped  and  utilised 
for  glass-making  purposes. — A.  R.  P. 

Mutfle-fiattening  oven  and  leer.  E.  E.  Milner  and 
W  J  Lytle,  Assrs.  to  H.  L.  Dixon  Co.  U.S.P. 
1.426,309,  15.8.22.     Appl.,  12.8.21. 

A  flattening  oven  comprises  a  chamber  containing 


7.", II  A 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[Oct..  ID,  1922. 


a  flattening  stone,  a  number  of  heating  flues  in 
the  top  walls  of  the  chamber,  an  off-take  at  one 
end  of  each  of  the  flues,  another  off-take  between 
the  ends  of  the  flues,  and  means  for  regulating  the 
flow  of  gases  in  the  off-takes. — A.  B.  S. 

Annealing  lehr;  Plate-glass  • .      E.   E.  Milner 

and   W.    J.    Lytle,    Assrs.    to   H.    L.    Dixon   Co. 
U.S. P.  1,426,310,  15.8.22.     Appl.,  16.8.21. 

An  annealing  lehr  for  plate-glass  comprises  several 
muffle  heating  chambers  arranged  zigzag,  a 
number  of  heating  flues  in  the  top  wall  of  each 
chamber,  with  off-takes  in  each  flue,  means  for 
producing  combustion  in  these  flues,  and  connect- 
ing flues  common  to  all  the  chambers  and  to  all 
the  off -takes. — A.  B.  S. 

Lamp-bulbs  and  other  glass  ware;  Melting  together 

of  glass  parts  of by  means  of  soluble  flu. res. 

L.  S.  Velio.  G.P.  355,883,  4.5.19.  Conv.,  22.1.19. 
A  flux  composed  of  phosphoric  acid  and  lime  has 
the  advantage  of  being  more  readily  fusible  and 
more  free  from  colour  than  the  lead  fluxes  generally 
used,  and  of  having  a  coefficient  of  expansion 
similar  to  that  of  the  glasses  used  for  the  purposes 
named. — A.  B.  S. 

Silica;  Production  of  dense,  acid-resisting  articles 

from    .      O.    Biihring.      G.P.    (a)    353,912, 

31.5.19,  (b)  353,913,  27.5.22. 

(a)  Silica  sand  is  mixed  with  plaster  and  moulded; 
the  resulting  articles  are  saturated  with  a  solution 
of  water-glass,  fired,  and  then  soaked  in  sulphuric 
acid  or  other  acid.  They  are  again  treated  with 
water-glass  and  afterwards  with  acid  and  again 
fired,  these  processes  being  repeated  as  often  as  is 
desired,  (b)  The  firing  of  articles  made  as  described 
is  continued  until  the  mass  is  vitrified. — A.  B.  S. 

Mica  sheets;  Process  of  manufacturing  refractory 

from     mica    waste.       P.     Kertesz.       G.P. 

349,849,  6.11.20. 

31ica  waste  is  finely  ground  and  worked  up  with 
silicic  acid,  with  just  sufficient  alkali  and  lime  to 
enable  the  silica  to  set.  The  mixture  is  formed 
into  sheets  and  heated  until  the  silicate  melts. 
Alternatively  an  alkali  silicate  may  be  employed 
as  binding  medium  and  silicic  acid  added  until  no 
free  alkali  is  present.  The  product  is  suitable  for 
insulating  heated  conductors,  e.g.,  resistance  wires, 
or  for  fixing  them  to  supports. — J.  S.  G.  T 

China  clay  or  like  clays;  Treatment  of  .     T. 

Rigby.    E.P.  183,535,  16.4.21. 

China  clay  or  like  clay  suspended  in  water,  is 
concentrated  by  settlement  or  by  mechanical 
means,  such  as  a  rotary  filter,  until  it  contains 
only  about  50%  of  water.  The  product  is  dried  in 
a  continuous  manner,  by  spreading  it  as  a  film  on 
a  surface  heated  by  steam,  in  an  evaporating  plant 
of  the  type  specified  in  E.P.  180,963,  181,035,  or 
149,055  (J.,  1920,  682  a;  1922,  573  a,  574  a),  or  in 
any  other  suitable  plant,  using  steam  at  low 
pressure  as  the  drying  agent.  The  use  of  various 
known  types  of  excavators  in  association  with  the 
evaporating  plant  is  claimed. — A.  B.  S. 

Clay;  Treatment  of  .     "W.  Feldenheimer  and 

W.  W.  Plowman.  E.P.  184,271,  9.5.21. 
Clay  is  purified  by  suspending  it  in  water,  adding 
a  solution  containing  1 — 3  lb.  of  metapbosphoric 
acid  (or  the  equivalent  amount  of  sodium  meta- 
phosphate,  or  a  mixture  of  sodium  carbonate  and 
metapbosphoric  acid)  to  each  ton  of  clay,  allowing 
the  coarser  particles  to  settle,  running  off  the 
supernatant  liquid,  and  flocculating  the  clay 
therein  by  the  addition  of  a  solution  of  alum.  (Cf. 
E.P.  121,191;  J.,  1919,  41  A.)— A.  B.  S. 


Kaolin;  Process  of  producing 
G.P.  350,918,  22.10.20. 


-.     R.  Froelich. 


Native  felspathic  kaolin  rock,  free  from  iron,  lime, 
magnesia  and  mica,  is  decomposed  into  clay| 
quartz,  felspar,  and  other  products  by  drying! 
disintegration,  mechanical  working,  and  winnow- 
ing.— J.  8.  G.  T. 

Tunnel  ovens  or  kilns  for  firing  pottery,  tiles,  and 

the  like.  C.  P.  Bailey.  E.P.  183,708,  23.7.21. 
A  tunnel  oven  may  be  built  shorter  than  usual  if 
its  ends  are  at  a  lower  level  than  the  middle  where 
the  heating  zone  is  situated.  The  trucks  are 
moved  by  means  of  an  endless  chain  fitted  with 
arms  which  connect  it  to  the  cars.  The  chain  and 
arms  may  run  in  an  air-cooled  groove. — A.  B.  S. 

[Tunnel]   kiln.      R.    T.    Kyle.      U.S. P.    1,426,655, 
22.8.22.   Appl.,  10.3.21. 

A  tunnel  kiln  has  a  series  of  heat  inlets  at  hori- 
zontally spaced  points  along  one  vertical  side  and 
a  single  heat  outlet  at  the  opposite  side  to  the  heat 
inlets  and  in  the  same  horizontal  plane,  so  that  the 
heat  is  forced  to  travel  diagonally  across  the  tunnel 
and  through  the  ware  before  passing  to  the  outlet. 

—A.  B.  S. 

Tunnel-kiln    for     baking     ceramic    articles     etc.; 

Gas-fired .    A.  Dahl.     G.P.  350,143,  10.7.20. 

Aie  for  combustion  is  preheated  in  separately 
controlled  channels  in  the  roof  of  the  kiln,  and 
flows  from  these  into  a  longitudinal  channel 
arranged  in  the  combustion  arch  of  the  kiln, 
whence  the  stream  branches  on  both  sides  of  the 
kiln  walls  and  passes  to  common  channels, 
arranged  below  the  kiln  on  either  side  and  com- 
municating with  the  channel  for  supplying  gas  to 
the  combustion  chamber.  The  nostrils  of  the  latter 
channel  are  situated  behind  the  combustion  arch 
and  are  longer  and  narrower  in  the  front  part  of 
the  kiln  used  for  the  preliminary  slow  firing  than 
in  that  part  in  which  the  goods  are  subjected  to  a 
full  heat.— J.  S.  G.  T. 


Kiln;  Method  for  heating  a  periodic  

ducer    gas.     F.    and   K.   Meiser.      G.P. 
17.4.21. 


by  pro- 
352,224, 


> 


Air  is  drawn  in  by  the  action  of  the  producer  gas, 
which  is  introduced  under  pressure,  and  is  heated 
in  the  first  place  either  by  the  flue  gases  or  by  pass- 
ing through  channels  heated  by  the  furnace  wall 
and  secondly  in  channels  surrounding  the  producer 
shaft.  The  suction  action  produced  by  the  inflowing 
gas  under  pressure  allows  much  more  gas  to  bum 
iu  a  narrow  space,  and  a  stable  flame  and  high 
temperature  are  quickly  attained. — J.  B.  P. 

Sagger  furnace;  Annular in  which  the  saggers 

can    be   manipulated   from    above.      F.    and   K. 
Meiser.    G.P.  354,948,  5.12.20. 

A  burner  is  arranged  at  one  external  end  and  the 
chimney  at  the  other  end  of  heating  passages  built 
between  the  saggers,  so  that  the  direction  of  flow 
of  the  hot  gases  is  reversed  in  the  furnace.  The 
furnace  can  be  emptied  from  below,  and  hoods  are 
provided  for  collecting  gases  and  vapours.  The 
furnace  is  suitable  for  baking  electrodes,  clav  ware, 
etc.— J.  S.  G.  T. 

Enamel  coating  to  metallic,  surfaces;  Method  of  pro- 

ducing  and  applying  .     H.  M    Smith,  Assr. 

to    .Stanley    Insulating    Co.      U.S.P.    1,425,612, 
15.8.22.     Appl.,  30.9.18. 
The  enamel  mixture  is  distributed  over  the  surface 
and  an  air  blast  applied  during  the  fusion  process. 

— D.  F.  T. 


Vol.  XXI.,  No.  19.] 


Cl.  IX.— building  materials. 


757  a 


Ceramic  products;  Process  of  manufacturing  porous 

.      Soc.   Anon.    le    Carbone.     G.P.    351,790, 

29.2.20. 

A  powdered  mixture  of  clay,  gypsum,  and  wood 
charcoal  is  mixed  with  water  to  a  paste  which  is 
then  moulded  as  desired  and  baked.  Alternatively, 
;  a  mixture  of  clay,  grog,  and  calcium  carbonate 
(powdered  chalk  or  marble)  is  baked. — J.  S.  G.  T. 

Porcelain    and    the    like;   Firing   .      Siemens- 

Schuckertwerke  G.m.b.H.  G.P.  353,857,  27.5.22. 
In  a  gas-fired  kiln,  the  flames  are  made  to  resemble 
those  from  coal  by  the  addition  of  other  combustible 
matter.  Very  smoky  flames  are  produced  by  means 
of  turpentine,  resin,  etc.  which  are  burned  in  a 
special  furnace  and  then  introduced  into  the  gas 
flames,  or  the  smoke-producing  material  may  be 
introduced  directly  into  the  gas  flames. — A.  B.  S. 

Fluxes  in  ceramic  masses;  Process  for  thoroughly 

distributing  .    L.  Wessel  Akt.-Ges.  fur  Por- 

zellan  u.  ?*eingutfabr.     G.P.  354,9-11,  17.0.22. 

The  flux  is  added  to  the  ceramic  mass  in  the  form 
of  a  solution  of  a  soluble  salt  and,  after  being 
thoroughly  mixed,  is  precipitated  by  the  addition 
of  a  suitable  reagent. — A.  B.  S. 

Carbon  and  articles  containing  carbon;  Process  for 

coaling  with  enamel,   quartz,  or  glass.     N. 

Aleurer.     G.P.  355,467,  23.8.21. 

The  articles  are  first  given  a  thin  coating  of  copper, 
nickel,  iron,  silver,  or  the  like  by  the  spraying  pro- 
cess and  then  a  coating  of  enamel  is  applied  by  any 
suitable  process.  By  this  means  any  desired  por- 
tion of  a  carbon  article  mav  be  electricallv  insulated. 

—A.  R.  P. 

Graphite;   Manufacture  of  shaped  pieces  of  pure 
.     E.  Trutzer.     G.P.  355,484,  23.11.20. 

Finely  powdered  graphite  is  intimately  mixed  with 
a  colloidal  solution  of  graphite,  the  mixture  is 
moulded  into  the  desired  shape,  and  the  dispersion 
medium  removed  by  spontaneous  evaporation,  by 
heat,  or  by  high  pressure,  or  by  a  combination  of 
these  methods. — H.  R.  D. 


IX.— BUILDING  MATERIALS. 

Concrete;  Flexural  strength  of  plain  .      D.  A. 

Abrams.  Amer.  Cone.  Inst.,  1922,  18.  Lewis 
Inst.  Structural  Materials  Research  Laboratory, 
Bull.  11. 

Tests  of  the  flexural  strength  (modulus  of  rupture) 
if  750  plain  concrete  beams  (38  in.  by  10  in.  by  8  in.) 
rere  made  by  applying  loads  at  the  i  points  of  a 
36  in.  span,  a  wide  range  of  mixtures,  consistencies, 
5ize  and  grading  of  aggregate  and  curing  conditions 
(being  employed.  It  was  found  that  there  is  no  uni- 
form relation  between  the  modulus  of  rupture  and 
;he  compressive  strength,  though  for  the  usual  con- 
rete  mixtures  the  modulus  of  rupture  is  about  22% 
)f  the  compressive  strength.  An  increase  either  in 
;he  proportion  of  cement  or  in  the  size  of  the  aggre- 
gate increased  both  the  flexural  and  compressive 
•trengths  of  the  concrete.  An  increase  in  the  pro- 
lortion  of  water  reduced  both  the  flexural  and  com- 
iressive  strengths.  The  advantage  of  curing  in  a 
lamp  state  was  fully  shown  by  the  tests.  Both  the 
lexural  and  the  compressive  strengths  after  curing 
n  a  damp  state  were  proportional  to  the  logarithm 
>f  the  age  of  the  concrete.  No  serious  discrepancy 
letween  the  flexural  and  compressive  strengths  was 
aused  by  using  pebbles,  crushed  slag,  or  crushed 
imestone  as  aggregate,  but  granite  gave  slightly 
swer  values  possibly  because  of  its  low  absorption, 
'here    is   a   definite   relation   between   the   water- 


ratio  (i.e..  volume  of  water  to  volume  of  cement  in 
the  batch)  and  the  flexural  strength,  just  as  there 
is  between  the  water-ratio  and  the  compressive 
strength,  but  the  curve  representing  the  former  is 
of  an  entirely  different  form  from  that  representing 
the  latter ;  with  an  increase  in  the  water-ratio  the 
compressive  strength  drops  rapidly  at  first  and  then 
more  slowly,  whilst  the  flexural  strength  drops  slowly 
at  first  and  then  rapidly.  In  most  of  the  tests  a 
variation  in  any  one  constituent  or  condition  had 
a  much  smaller  effect  on  the  flexural  than  on  the 
compressive  strength,  but  on  the  whole  the  relations 
between  the  two  strengths  are  consistent. — A.  B.  S, 

Plaster;  Setting  and  velocity  of  solution  of  . 

P.  P.  Budnikow  and  J.  K.  Syrkin.  Ber.  Polyt. 
Iwanowo-Wosniessensk,  1922,  6,  235 — 248.  Chem. 
Zentr.,  1922,  93,  III.,  476—477. 

The  velocity  of  solution  of  plaster  prepared 
by  calcining  gypsum  at  various  temperatures 
was  determined  bj"  electrical  conductivity  measure- 
ments. Plaster  prepared  by  calcining  at  115° — 
125°  C.  dissolved  rapidly  at  first  and  then 
more  slowly;  after  24  hrs.  the  solution  was 
feebly  supersaturated  relative  to  CaS04,2H,0. 
The  results  were  similar  for  plaster  pre- 
pared at  temperatures  up  to  400°  C.  The  solu- 
bility-temperature curve  is  regular.  Plaster  pre- 
pared at  500°  O.  and  higher  (up  to  800°  C.)  forms 
no  supersaturated  solution ;  the  amount  passing 
rapidly  into  solution  is  very  small.  Within  this 
range  lies  the  formation  of  so-called  dead-burnt 
plaster.  Dead-burnt  plaster  even  when  produced  at 
800°  C,  contains  a  proportion  of  soluble  anhydrite 
which  passes  into  solution  but  is  mechanically  pre- 
vented from  setting  by  the  insoluble  anhydrite, 
which  prevents  coalescence  of  the  soluble  crystalline 
modification.  The  addition  of  easily  crystallisab'le 
substances,  such  as  alum,  accelerates  the  setting. 
The  setting  of  the  soluble  component  is  invariably 
followed  by  a  Slow  conversion  of  the  insoluble  an- 
hydrite into  the  soluble  modification.  This  also 
takes  place,  though  slowly,  even  after  prolonged 
calcining  at  800°  C— J.  B.  P. 


Patents. 

Wood ;  Process  of  treating  — 
E.P.  165,784,  9.6.21.    Conv. 


1.7 


H. 

.20. 


F.  Amnion. 


Wood,  especially  for  the  manufacture  of  pencils,  is 
rendered  more  durable  and  easier  to  work,  by  being 
submitted  to  the  action  of  air  heated  to  420°— 480° 
C.  nntil  it  has  acquired  a  uniform  brown  colour 
without  appreciable  decomposition. — D.  F.  T. 

Wood-preserving  agent.   Grubenholzimpragnierung 
G.m.b.H.    G.P.  356,132,  14.12.21. 

The  agent  contains  soluble  fluorine  and  arsenic 
compounds.  For  instance,  arsenious  oxide  and 
sodium  fluoride  are  dissolved  in  water,  the  solution 
is  diluted  and  employed  in  the  usual  manner  for 
impregnating  wood,  with  or  without  the  addition 
of  other  antiseptic  salts,  or  salts  reducing  the  com- 
bustibility of  wood.  The  protective  effect  against 
fungi  of  arsenic  and  fluorine  compounds  used  in 
conjunction  is  greater  than  the  additive  effects  of 
the  constituents. — H.  C.  R. 

Cements;     Production    of    aluminate    .      W. 

Mathesius.  G.P.  307,169,  28.2.18. 
Suitable  mixtures  of  bauxite  or  bauxite  residues 
and  lime  are  heated  to  fusion  under  reducing  condi- 
tions so  as  to  separate  the  metallic  iron  produced, 
or  they  may  be  fused  under  oxidising  conditions. 
The  resulting  slags  should  have  one  of  the  following 
percentage  compositions :  — (1)  Alj03  20,  Si02  13, 
CaO  67%  ;  (2)  A1,03  20,  Si02  24,  CaO  56%  ;  (3)  Al2Oa 
76,  CaO  24%  ;  (4)  Al203  42,  CaO  58%.— A.  B.  S. 


758  a  Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.    (Oct. 


16,  1922. 


Building  material;  Process  of  manufacturing  — ■ — . 
A.  Savelsberg.     G.P.  350,363,  23.5.20. 

Combustible  refuse  and  inferior  fuels  in  general, 
are  calcined  together  with  binding  media,  e.g., 
limestone,  dolomite,  gypsum,  etc.,  in  a  converter 
supplied  with  a  blast.  The  combustible  materials 
serve  to  reduce  the  plasticity  of  the  mass  and  supply 
the  heat  necessary  for  the  calcining  process. 

—J.  S.  G.  T. 

Building   materials;   Treatment   of   made   of 

unfiled   loam,    water-glass,    and    sulphite   waste. 

Silonit    Baugesellschaft    m.b.H.      G.P.    351,677, 

16.7.20. 

The  exposed  faces  of  blocks  of  artificial  stone  are 

coated  with  a  mixture  of  magnesia  and  aluminium 

"  fluate  "  so  as  to  render  them  waterproof. 

—A.  B.  S. 

Cement  and  concrete  materials ;  Process  of  manufac- 
turing   .     O.  Roucka.     G.P.  352,175,  18.6.21. 

The  raw  materials  are  heated  in  a  closed  vesseil  in 
which  the  temperature  rises  at  the  rate  of  1° — 
1"5°  C.  per  minute  until  a  temperature  of  60° — 
80°  C.  is  attained.  Thereupon,  by  heating  the 
vessel  from  beneath  and  simultaneously  regulating 
the  admission  of  steam,  the  pressure  in  the  vessel 
is  raised  to  about  8  atmospheres,  to  which  the 
materials  are  subjected  for  about  8—10  hours.  The 
crushing  strength  of  cement  manufactured  in  this 
way  exceeds  600  kg.  per  sq.  cm. — J.  S.  G.  T. 

[IJudraxdic]  powder;  Production  of  a  rapidly  hard- 
ening   from  cement  and  alkali  carbonate.    B. 

Hovermann.    G.P.  353,617,  7.4.21. 

A  mixture  of  100  pts.  of  cement,  2 — 45  pts.  of 
alkali  carbonate,  and  1 — 1'5  pts.  of  aluminium 
sulphate  yields  a  product  which  is  impermeable  to 
water  under  either  low  or  high  pressure. — A.  B.  S. 

Weather-proof    stone;    Production    of    ■ .      B. 

Riedel.     G.P.  353,618,  17.11.20. 

A  dry  mixture  of  granite,  serpentine,  and  cement 
is  sprayed  with  a  solution  of  caustic  soda ;  the  pro- 
duct is  thoroughly  mixed  and  made  into  blocks  of 
the  desired  shapes.  The  resulting  stones  are  very 
durable  and  impermeable. — A.  B.  S. 

Building    materials;    Production   of   unfired  . 

Dr.    Plonnis    und    Co.     G.P.    £54,069,    20.10.19. 
Addn.  to  G.P.  342,403  (J.,  1922,  103  a). 

Loam  or  clay  and  waste  sulphite  liquor  are  mixed 
with  porous  materials  such  as  peat,  turf,  sea-wrack, 
leaves,  pine  needles,  or  fibrous  material. — A.  B.  S. 

Ecfractory  concrete;  Process  for  the  manufacture 

of .    C.  Loeser.    G.P.  355,372,  16.9.16. 

The  refractory  consists  of  a  mixture  of  cement  and 
particles  of  grog  coated  with  corundum  or  similar 
material.— A.  R.  P. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Cast  iron  and  its  chemical  composition.  O.  Smalley. 
Brit.  Foundrymen's  Assoc,  1922.  Engineering, 
1922,  114,  277—281. 

The  remelting  of  chilled  cast  iron  yields  close- 
grained  tough  castings,  and  by  the  addition  of  10 — 
15%  of  mild  steel,  the  grain  may  be  refined  still 
further.  Dirty  castings  and  blowholes  cannot  be 
attributed  directly  to  the  presence  of  oxygen,  as 
even  the  cheapest  grade  of  metal,  whether  melted 
with  or  without  steel,  will  give  a  clean  casting  if 
correctly  melted  and  poured  at  the  proper  tempera- 
ture.    The  effect  of  deoxidisers,  e.g.,  cerium,  uran- 


ium, calcium,  vanadium,  aluminium,  magnesium, 
manganese,  and  zirconium,  was  tried  on  a  working 
scale,  and  no  benefit  was  obtained  by  using  up  to 
0"2%  of  the  alloying  element,  a  quantity  which 
should  be  sufficient  to  counteract  the  effect  of  in- 
correctly melted  iron.  Generally  the  degree  of 
superheat  in  iron  melted  in  cupolas  may  be  taken  as 
corresponding  to  10%  above  the  melting  point  of 
the  particular  mixture  used,  but  other  considera- 
tions of  casting  practice  suggest  that  this  should 
not  be  an  arbitrary  figure.  Solidity  of  the  casting 
should  be  controlled  by  the  aid  of  the  chemical 
composition,  casting  temperature,  and  the  rate  of 
solidification,  as  it  is  a  direct  function  of  the 
quantity  and  form  of  the  graphite  separated.  The 
limitations  of  cast  iron  for  use  in  internal  combus- 
tion engine  parts,  or  other  plant  working  at  high 
temperatures,  are  shown  by  experiments  in  which 
the  tensile  strength  fell  at  200°— 500°  F.  (94°— 260° 
C),  rose  to  a  maximum  between  800°  and  900°  F 
(427°— 482°  C),  and  then  rapidly  fell  to  less  than 
2-5  tons  per  sq.  in.  at  1530°  F.  (832°  C.).— C.  A.  K. 

Cast-iron;  Occurrence  of  ferrite-graphite   euteetie 

in  certain   kinds  of  .     E.   Schuz.     Stahl  u. 

Eisen,  1922,  42,  1135—1136. 

A  cast  iron  of  the  following  composition :  graphite 
3-22%,  combined  carbon  038%,  Si  331%,  Mn 
0-88%,  P  0-89%,  and  S  0T04%,  showed  a  large 
amount  of  graphite-ferrite  euteetie  surrounding 
well-defined  ferrite  polygons  and  pearlite  crystals, 
while  free  graphite  flakes  were  evenly  distributed 
throughout  the  mass.  The  iron  had  a  Brinell  hard- 
ness number  of  150  and  good  mechanical  properties, 
and  could  be  readily  machined.  The  structure  was 
probably  produced  in  the  following  manner:  on 
cooling  from  1240°  to  1152°  C.  mixed  crystals  are 
precipitated  which  become  slowly  enriched  in 
carbon,  viz.,  from  08  to  13%.  At  1152°  C.  the 
ferrite-graphite  euteetie  with  4'5%  C  freezes  out, 
while  at  the  same  time  in  the  regions  of  pure  pearl- 
ite the  mass  cools  according  to  the  metastable  Fe — 
Fe3C  system  in  which  between  1240°  and  1145°  C. 
mixed  crystals  with  0'8 — 1'7%  C  separate,  followed 
by  freezing  of  ledeburite  at  1145°  C.  Eventually 
the  latter  decomposes  between  1145°  and  1090°  C. 
into  free  graphite  and  pearlite. — A.  R.  P. 

[Steel.]  Diminution  of  lag  at  Arl  through  deforma- 
tion. J.  H.  Whiteley.  Iron  and  Steel  Inet., 
Sept.,  1922.  [Advance  proof.]  5  pages. 
Pieces  of  mild  steel  plate  which  had  been  allowed 
to  cool  in  the  centre  of  a  solidifying  slag  ball  wen 
heated  to  900°  C,  allowed  to  cool  to  695°  C.  in  10 
mins.,  and  after  15  mins.  at  this  temperature, 
hammered  to  produce  a  comparatively  small  de- 
formation, then  quenched  in  water.  Micro- 
examination  showed  that  the  pearlite  transforma- 
tion was  nearly  complete,  while  this  transformation 
was  found  to  take  place  very  slowly  in  undisturbed 
specimens.  In  strips  similarly  heat  treated  but 
bent  through  60°  with  light  hammer  blows  peariite 
was  present  at  the  bends,  but  where  the  metal  had 
not  been  distorted  the  structure  consisted  of  ferrite 
and  martensite  only.  A  similar  but  less  pronounced 
effect  was  found  at  700°  C.  Strips  were  also  heated 
to  900°  C,  cooled  a  little  below  Ac3,  and  then  bent, 
but  the  separation  of  free  ferrite  from  solid  solution 
was  not  accelerated. — T.  H.  Bu. 

Iron  and  steel;  Crystal  structure  of .    A.  "R'est- 

gren  and  G.  Phragmen.  Z.  pbysik.  Chem.,  19^-. 
102,  1—25. 
Rontgen  photographs  of  iron  wire  at  800°,  U00°. 
and  1425°  C,  show  that  iron  within  the  so-called 
/3-  and  8-regions  has  a  space-centred  cubic  lattice 
similar  to  that  of  a-iron,  whilst  iron  in  the  y-iron 
region  has  a  face-centred  cubic  lattice.  The  transi- 
tion which  occurs  at  900°  C.  (A3)  is  therefore  re- 


vol.  XIX,  No.  19]    Cl.  X.— METALS  ;    METALLURGY,  INCLUDING   ELECTRO-METALLURGY.     759a 


versed  at  1400°  C.  (A4).  The  -/-iron  lattice  of  aus- 
tenitic  steel  is  extended  by  the  dissolved  carbon.  A 
steel  containing  T98%  of  carbon  possesses  a  larger 
iron  lattice  when  it  is  quenched  at  1100°  C.  than 
when  quenched  at  1000°  C,  also  the  a-iron  lattice 
in  martensite  appears  to  be  somewhat  extended  by 
the  carbon.  The  homogeneous  lattice  region  within 
the  a-iron  range  in  martensite  is  extremely  small. 
A  steel  containing  0'80%  of  carbon  quenched  at 
760°  C.  is  practically  amorphous.  Rontgeu  photo- 
graphs of  cementite  and  spiegeleisen  are  identical. 
Cementite  crystals  belong  to  the  rhombic  system  and 
have  an  axial  ratio  0'670:0"755!l.  The  elementary 
parallelepiped  has  dimensions  453,  5' 11  and  6"77 
AU  and  contains  4  molecules  of  Fe,C,  consequently 
the  specific  gravity  of  cementite  is  762. — J.  F.  S. 

Steel;  Rapid  determination  of  the  elongation  and 

resistance    to    shock    of   ,    6;/    bending    of   a 

notched  bar.     L.  Jannin.     Bull.   Soc.  d'Encour., 
1922,  124,  646—656. 

The  test  piece  is  in  the  form  of  a  bar  10  mm.  square 
I     and  50 — 60  mm.  in  length,  in  the  middle  of  which  a 
!     semicircular  notch  is  cut  having  a  radius  of  5  mm. 
so  that  5  mm.  of  metal  is  left.     One  end  of  the  bar 
is  fixed  and  the  other  is  hammered  by  hand  in  the 
direction  tending  to  open  the  notch.     Bending  of 
the  bar  is  stopped  at  the  first  indication  of  a  crack 
in  the  bottom  of  the  notch.     The  angle  of  bending 
!     is  a  function  of  the   elongation   as  determined  by 
t    ordinary  methods,  as  is  also  the  width  (I)  of  the 
I    metal   at  the   bottom   of  the   notch,   considered   in 
I    relation   to  the   original   length   (L)   of  the  notch 
i    (10  mm.).    The  value  (L-/)/L  multiplied  by  a  factor 
to   give  L  =  100,    is  in  close   agreement  with    that 
|    obtained  by  the  standard  method.     The  resistance 
of  steel  is  nearly  proportional  to  the  Brinell  hard- 
ness, and  the  author  proposes  to  multiply  the  value 
for  the  Brinell  hardness  by  the  supplement  of  the 
angle  of  bending  in  the  notched  bar  test,  divide  the 
i     result  by  1000  and  term  the  number  obtained  the 
'    "coefficient  of  shock"   (coefficient  de   choc)  which 
would  indicate  the  resilience  of  the  steel.     The  co- 
efficient is  of  course  an  abstract  number  from  its 
1    origin. — C.  A.  K. 

I     Carbon  steels;  Effect  of  longitudinal  stress  on  the 

electrical  resistance    of  .      S.   Fukuta.     Sci. 

Rep.  Tohoku  Imp.  Univ.,  1922,  11,  131—137. 

The  increase  in  the  resistance  of  carbon  steel  is 
almost  proportional  to  the  applied  stress.  With 
increase  in  the  carbon  content  of  the  steel  the 
magnitude  of  this  effect  diminishes.  Thus,  with 
iron  the  rate  of  increase  in  resistance  is  less  than 
with  steel.— W.  E.  G. 

Boiler  plate  [steel'];  Effect  of  rate  of  loading  on 

tensile  properties  of .     H.  J.  French.    Chem. 

and  Met,  Eng.,  1922,  27,  309—310. 

!  The  tensile  strength,  elongation,  and  reduction  in 
area  of  steel,  such  as  is  used  in  railway  fireboxes,  are 
independent  of  the  rate  of  loading  at  temperatures 
up  to  and  including  the-  blue-heat  range  (295°  C), 
above  which  the  tensile  strength  alone  appears  to 

.  increase  slowly  with  the  rate  of  loading  while  the 
other  properties  remain  constant.  By  increasing 
the  load  extremely  slowly  the  tensile  strength  is  in- 
creased and  the  ductility  decreased  at  156°  C.,  while 
the  reverse  holds  good  for  temperatures  above 
295°  C.  Only  very  slight  differences  could  be  dis- 
cerned in  the  fracture  of  specimens  broken  under 
different  rates  of  loading. — A.  R.  P. 

Steels;  Flow  of at  a  low  red  heat,  and  scaling 

of  heated  steels.    J.  H.  S.  Dickenson.     Iron  and 
Steel  Inst.,  Sept.,  1922.    [Advance  copy.]    38  pp. 

The  author  carried  out  on  a  number  of  steels,  in- 
cluding carbon,  nickel-chromium,  high  nickel,  high 
chromium,  and  high-speed  steels,  and  on  the  nickel- 


chromium  alloy  (Vikro),  prolonged  tensile  tests  at 
constant  load  and  temperature,  commencing  at 
approximately  525°  C.  and  increasing  by  increments 
of  50°  C,  also  tests  at  constant  load  and  slow  uni- 
form rate  of  heating.  As  a  general  deduction,  the 
temperature  at  which  a  given  load  can  be  supported 
is  higher,  the  shorter  the  duration  of  loading.  The 
reduction  of  area  increases  as  the  test  pieces  are  more 
rapidly  broken  and  is  sometimes  accompanied  by 
increased  elongation.  If  the  temperature  be  plotted 
against  the  logarithm  of  the  duration  of  loading  for 
the  various  steels  almost  straight  lines  are  obtained, 
and  this  suggests  that  the  samples  behaved  in 
accordance  with  the  law  governing  the  change  of 
viscosity  with  temperature.  The  lines  for  nickel- 
chromium  alloy  and  nickel  chromium  steel  are  in- 
clined to  those  of  the  other  steels.  The  first-men- 
tioned (Vikro)  is  much  superior  at  high  tempera- 
tures (950°  C.)  but  at  lower  temperatures  (500°  C.) 
only  6hows  equal  endurance  to  high  speed  steel. 
The  maximum  temperatures  up  to  which  the  metals 
will  support  a  load  of  8o  tons  applied  rapidly  or 
for  a  short  period,  and  the  corresponding  tempera- 
tures when  the  metals  are  expected  to  endure  for 
considerable  periods  witho"ut  sensible  deformation, 
are  :  0'3%  carbon  steel,  775°,  500°;  nickel-chromium 
steel,  805°,  450°;  high  chromium  steel,  800°,  520°; 
high-speed  steel,  955°,  575° ;  nickel-chromium  allov 
(Vikro),  965°,  600°  C.  Scaling  tests  were  made  on 
a  similar  series  of  steels  tip  to  1125°  C,  the  speci- 
mens being  exposed  for  18  periods  of  5£  hrs.  each 
and  being  scraped  after  each  exposure.  With  a 
scaling  rate  fixed  at  0'005  g.  per  6q.  in.  per  hr., 
carbon  steel  and  nickel-chromium  steel  could  be 
used  only  up  to  620°  C,  high-speed  steel  up  to  710° 
C,  14%  chromium  steel  up  to  840°  C,  and  nickel- 
chromium  alloy  up  to  1070°  C.  Plotting  the  tem- 
perature against  the  logarithm  of  the  scaling  rate 
gave  approximately  straight  lines.  Micro-examina- 
tion was  made  of  the  specimens  heated  at  900°  C. 
for  24  hrs.  and  then  heavily  copper  plated  to  hold 
the  scale  in  position  before  sectioning.  In  the  case 
of  25%  nickel  steel  the  strongly  adherent  lower 
laver  of  scale  characteristic  of  steels  containing 
nickel  (Stead,  J.,  1916,  1018)  was  particularly  well 
defined,  and  this  explains  the  stepped  scaling  curve 
of  this  steel.  The  scale  on  the  high  chromium  steel 
was  barely  visible;  that  on  the  nickel-chromium 
alloy  unrecognisable. — T.  H.  Bu. 

Carbon  steels;  Preliminary  magnetic  study  of  some 

heai    treated  .     E.   D.   Campbell  and  E.   R. 

Johnson.  Iron  and  Steel  Inst.,  Sept.,  1922. 
[Advance  proof.]  22  pp. 
A  ttniform  method  of  magnetisation  was  obtained 
by  supporting  a  steel  bar,  15  cm.  long,  vertically  in 
the  axial  centre  of  a  magnetising  coil  consisting  of 
1004  turns  of  wire  wound  over  a  length  of  25  cm. 
The  force  with  which  a  disc  of  annealed  electrolytic 
iron  was  attracted  by  one  pole  of  the  magnetised 
bar  was  measured  by  means  of  a  special  balance. 
Four  straight  carbon  steels  were  used  for  experi- 
ments involving  heat  treatment,  the  constitution  of 
the  steel  being  expressed  in  the  form  of  concentra- 
tion of  alloying  elements  in  mg.-atoms  per  c.c, 
thus  correlating  the  atomic  relations  between  solute 
and  solvent  in  the  steels  with  that  of  solutes  and 
solvents  in  ordinary  solutions.  The  different 
physical  properties  associated  with  magnetic  pro- 
perties are  tabulated.  Specific  resistance  increased 
rapidly  with  the  carbide  concentration  ;  the  perman- 
ent north  field  increased  to  a  maximum  with  in- 
crease in  the  carbon  content  of  the  steel,  but  then 
decreased  in  the  case  of  two  hypereutectoid  steels. 
The  current  required  to  demagnetise  the  bars  indi- 
cated that  the  force  field  of  carbon  ions  resulting 
from  ionic  dissociation  of  dissolved  carbides  will 
produce  not  only  electrical  but  also  magnetic  resis- 
tance.    The  attractive  force  of  the  induced  fields 


760a         Cl.   X.— METALS;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     [Oct.  16,  1922. 


with  electrolytic  iron  increased  much  more  rapidly 
than  the  inducing  current,  approaching  more 
nearly  a  linear  function  of  the  square  of  the  cur- 
rent; in  the  case  of  the  hypereutectoid  hardened 
steel  the  increase  is  more  nearly  a  linear  function 
of  the  current.  The  authors  formulate  a  hypothesis 
for  the  mechanism  of  permanent  magnetism  in  steel. 

— C.  A.  K. 

Iron  and  steel;  Nitrogenisation  of by  sodium 

nitrate.     L.    E.   Benson.      Iron   and   Steel  Inst., 
Sept.,  1922.     [Advance  proof.]    6  pp. 

Evidence  of  the  formation  of  nitride  in  iron  and 
steel  was  observed  repeatedly  when  the  metals  were 
annealed  in  a  salt  bath  (sodium  nitrate  85,  potas- 
sium chloride  15%)  at  500°  C.  Steels  of  different 
composition  were  annealed  in  a  bath  of  sodium 
nitrate  and  the  rate  of  penetration  of  nitrogen  was 
determined.  The  penetration  into  Armco  iron  was 
015  mm.  in  1  hr.,  030  in  5  hrs.,  0"70  in  20  hrs.,  and 
2'0  mm.  in  80  hrs.  The  rate  of  penetration  into 
steel  in  general  was  slower  than  in  pure  iron,  and 
was  retarded  considerably  by  the  presence  of  carbon 
(pearlite).  Manganese  .  appeared  to  exert  even 
more  influence  in  this  direction  than  carbon.  A 
nitrogenised  specimen  or  Armco  iron  showed  no 
sign  of  nitride  structure  after  heating  in  a  muffle  at 
700°  C.  for  90  mins.,  and  the  nitrogen  content  was 
found  to  be  only  0'0025%,  which  confirms  the  in- 
stability of  iron  nitride  as  observed  by  Tschischewski 
(J.,  1915,  1012).— C.  A.  K. 

Highspeed  steel;  Manufacture  and  treatment   of 

.       H.   K.    Ogilvie.       Iron    and    Steel   Inst., 

Sept.,  1922.     [Advance  proof.]     11  pp. 

Although  equally  good  steel  can  be  made  in  the 
crucible  and  in  the  electric  furnace,  the  cost 
per  ton  of  sound  billets  is  less  in  the  elec- 
tric furnace.  In  the  crucible  method,  if 
small  particles  of  tungsten  compounds  are  not 
completely  melted,  hard  spots  form  which 
may  destroy  fine  toothed  cutters;  it  is  pre- 
ferable to  introduce  the  tungsten  as  ferrotungsten 
or  tungsten-chromium  alloy,  rather  than  as  tung- 
sten powder.  In  this  country  it  is  not  commercially 
possible  to  make  good  high-speed  steel  from  turnings 
alone,  but  heavy  clean  scrap  is  used.  The  length 
of  each  heat  should  be  shortened  as  much  as  possible, 
not  exceeding  4J  hrs.  for  a  3-  or  4-ton  furnace. 
Electrode  coolers  should  fit  closely  and  attention 
must  be  paid  to  the  furnace  bottom  and  banks  after 
each  heat.  The  author  recommends  that  no  alu- 
minium or  other  deoxidising  substances  be  added 
in  the  ladle  or  moulds.  When  heating  the  metal 
to  the  temperature  necessary  for  tapping,  the 
steel,  especially  in  smaller  furnaces,  occasionally 
becomes  "  wild,"  and  it  is  useless  to  attempt  to  de- 
oxidise with  additions  of  ferrosilicon  etc.  The 
author's  method  is  to  cool  the  steel  without  any 
addition  until  samples  taken  at  regular  intervals 
show  the  metal  to  be  sound.  The  ingots  should  be 
top  poured  in  octagon  moulds,  the  ingots  being  of 
less  than  8"  diameter  and  10  cwt.  weight.  They  are 
transferred  to  the  reheating  furnace  when  cooled  to 
200°— 300°  C.  Surface  cracks  and  flaws  should  bo 
removed  from  the  billets  by  grinding.  In  correctly 
forged  cutters  the  6teel  should  be  structureless.  If 
towards  the  centre  the  structure  becomes  coarser, 
fracture  is  liable  to  take  place.  Heavy  duty  cutters 
should  be  made  of  the  18%  tungsten  type  of  steel, 
hardened  at  1300°  C,  and  tempered  at  590°— 
610°  C,  as  this  tempering  treatment  increases  the 
toughness  100 — 150%  over  that  produced  by  temper- 
ing at  220°  C.  The  length  of  time  the  steel  remains 
at  the  hardening  temperature  is  most  important; 
a  bar  just  raised  to  1300°  C.  gave  the  best  load  and 
deflection  in  a  bending  test.  In  hardening  screw 
dies  with  fine  teeth  very  little  scale  is  sufficient  to 


clog  the  teeth;  a  gas-fired  carborundum  tube 
furnace  with  a  slightly  reducing  atmosphere  was 
found  to  give  no  scaling  whatever. — T.  H.  Bu. 

[Nickel  chromium]  steel;  Change  in  volume  of  [air 

hardening']    during    heat    treatment.      L. 

Aitchison  and  G.  R.  Woodvine.  Iron  and  Steel 
Inst.,  Sept.,  1922.  [Advance  proof.]  16  pp. 
Specimens  of  steel  containing  464%  Ni  and  T53% 
Cr,  rolled  to  round  bars,  were  heated  in  a  dilato- 
meter  similar  to  that  used  by  Andrew  (</.  J.,  1920, 
452  a)  and  the  change  in  volume  noted.  Following  a 
gradual  expansion,  a  marked  contraction  took  place 
at  685° — 745°  C,  the  steel  expanding  again  at  higher 
temperatures.  The  steel  contracted  in  a  normal 
way  during  cooling  from  850°  to  285°  C,  but  ex- 
panded in  the  interval  285° — 150°  C,  contracting 
again  whilst  cooling  to  atmospheric  temperature. 
The  final  volume  showed,  however,  a  definite  in- 
crease over  the  initial  volume,  and  a  steel  treated 
in  this  way  formed  the  basis  of  subsequent  experi- 
ments and  was  termed  "semi-standard"  steel. 
Repeated  heating  and  cooling  of  the  semi-standard 
steel  showed  that  generally  the  first  heating  caused 
an  expansion  of  the  metal,  followed  by  contractions 
in  the  later  heatings,  and  5 — 6  heatings  at  200° — 
500°  C.  were  necessary  to  secure  a  stable  volume 
which  was  greater  at  200°— 300°  C.  than  when  the 
metal  was  heated  to  400° — 500°  C.  only  once.  Con- 
tinuous heating  at  200°  C.  or  100°  C.  for  6  days 
resulted  in  a  contraction  equal  to  that  produced  by 
repeated  heatings  at  the  higher  temperatures. 

— C.  A.  K. 

Chromium  steels  and  their  recent  applications.     L. 

Guillet.  Rev.  Met.,  1922,  19,  499—504. 
The  heating  curve  of  stainless  steel  containing 
13%  Cr  shows  two  transformation  points  at  710°  C. 
and  at  780°  C. ;  on  cooling  these  transformations 
take  place  at  680°  C.  and  320°  C.  _  The  material  may 
be  made  sufficiently  soft  for  working  either  by  heat- 
ing to  900°  C.  and  cooling  very  slowly,  or  by  anneal- 
ing for  a  long  time  at  "50°  C.  followed  by  either  slow 
or  rapid  cooling.  The  best  temperature  for  forging 
steel  containing  13%  Cr  and  0'35%  C  is  between 
1000°  and  1250°  C.  and  preferably  as  near  the  upper 
limit  as  possible.  The  maximum  tensile  strength 
and  elastic  limit  are  obtained  by  quenching  in  oil 
from  900°  C.  Annealing  at  temperatures  above 
400°  C.  rapidly  reduces  the  figures  obtained  for  these 
properties  and  only  slowly  increases  the  elongation, 
but  the  higher  the  annealing  temperature,  especially 
if  above  600°  C,  the  greater  the  resistance  to  shock. 
13%  Cr  steel  retains  its  hardness  up  to  about 
500°  C,  except  for  a  slight  softening  at  300°  C,  and 
offers  the  greatest  resistance  to  corrosion  after 
quenching  in  oil  from  950° — 1050°  C,  after  which  it 
has  a  hardness  of  500— 600.— A.  R.  P. 

Steel   plates   containing   zirconium   and   other  ele- 
ments;   Manufacture    and    properties    of    . 

G.  K.  Burgess  and  R.  W.  Woodward.  U.S. 
Bureau  of  Standards,  Tech.  Paper  No.  207,  1922. 
49  pp. 
The  authors  have  prepared  and  studied  193  heats  of 
steel  containing  as  principal  variable  elements, 
carbon,  silicon,  nickel,  aluminium,  titanium,  zir- 
conium, cerium,  and  tungsten.  None  of  the  steels 
presented  any  difficulty  in  rolling,  except  those  con- 
taining boron,  which  forms  a  complex  eutectic 
fusible  at  the  ordinary  rolling  temperature.  A  type 
of  steel  recommended  for  structural  work  and 
having  a  tensile  strength  of  about  300,000  lb.  per 
sq.  in.,  contains  0"4— 0'5  C,  1—1-50%  Si,  3—3-25?, 
Ni,  and  0'6— 0"8  Mn.  The  metal  should  be  deoxi- 
dised with  a  simple  deoxidiscr  such  as  aluminium, 
but  the  addition  of  more  costly  alloying  elements 
does  not  lead  to  any  material  advantage.  Zir- 
conium, like  titanium  and  aluminium,  acts  aa  a 
scavenger  and  any  excess  remains  in  the  metal  in 


Vol.  XLI.,  Xo.  19.]     Cl.  X.— METALS;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      761a 


the  form  of  square  bright  yellow  inclusions  which 
may  be  detrimental  to  the  steel  if  segregation 
occurs.  Most  of  the  other  alloying  elements  go  into 
solution  and  produce  a  martensitic  structure  in  the 
air-cooled  specimens,  a  larger  quantity  of  copper 
than  of  the  other  elements  being  required  to  produce 
I  the  effect.  Besides  showing  the  martensitic  struc- 
ture when  air-cooled,  steels  containing  cerium  and 
uranium  exhibit  characteristic  inclusions. — C  A.  K. 

Corrosion  of  iron  and  steel.     R.  Hadfield.     Proc 

Roy.  Soc,  1922,  A  10!,  472 — 186. 
Tests  have  been  carried  out  to  ascertain  the  effect 
of  a  small  percentage  of  copper  upon  the  resistance 
of  steel   to  corrosion.      It   is   shown  that  a  small 
copper  content,   from  0'16  to  0'25%,   is  beneficial 
both  in  the  case  of  bare  metal  and  of  metal  coated 
with    rolling    scale    exposed    to    atmospheric    cor- 
rosion,   especially    in    a    sulphurous    atmosphere. 
Steel    with    the   scale    removed   is    more    resistant 
than   steel   with  the  scale  on.      When   exposed   to 
the    action   of    sea-water,    ordinary   steel    corrodes 
the  more  rapidly  initially.     Subsequently  the  rate 
ti  of  corrosion  of  both  varieties  of  steel   diminishes, 
indicating  a  certain  degree  of  self-protective  action 
I  which  is  rather  more  pronounced  for  the  ordinary 
i  variety.     At  the  end  of   16  weeks,   the   total  cor- 
I  rosion   of  copper  steel  containing  0268%    Cu  was 
still  less  than  that  of  ordinary  steel.     The  compara- 
I  five  behaviour  of  the  material  with  scale  on  and 
I  with  scale  removed  resembled   that   found  in  the 
l  case   of    atmospheric   corrosion       There    was   little 
I  to  choose  between  the  two  varieties  in  the  matter  of 
|  resistance   to  corrosion    by   tap-water.     The   spec- 
imens were  tested  with  their  rolling  scale  removed, 
land  it  was  found  that  tap-water,  though  initially 

■  Jess  corrosive  than  sea  water,  is  more  corrosive  over 
I!  a  long  period.  Both  varieties  were  initially  rapidly 
I  attacked  by  50%  sulphuric  acid  solution,  but  after 

■  3  weeks'   exposure  the  copper  steel  was  only  very 

■  slowly  corroded,  while  the  rate  of  corrosion  of  the 
[ordinary  variety  remained  unaltered.  Tests  with 
120%  sulphuric  acid  solution  confirmed  the  superi- 
Bority  of  the  copper  steel.  The  results  are  in  agre«- 
Iment  with  the  conclusions  of  Buck  (J.,  1921,  262  a) 
land  of  Bauer  (J.,  1921,  393a)  as  to  the  superior 
I  resistance  to  atmospheric  corrosion  of  mild  steel 
•'containing  a  small  percentage  of  copper,  the 
■superiority  amounting  to  about  10%  in  pure  air  and 

■  to  about  25%  in  an  industrial  atmosphere.  No 
■superiority  is  shown  by  copper-steel  when  immersed 
■in  tap  water,  and  it  is  possible  that  the  initial 
■superiority  shown  by  this  variety  when  exposed  to 
■sea  water  may  be  annulled  and  even  reversed  on 
■long  exposure. — J.  S.  G.  T. 

■(Bros.?  and  bronze ;  Development  and  manufacture  of 

high    tensile    .      O.     Smalley.       Inst.    Brit. 

Fonndrymen,     1922.       Engineering,     1922,     114, 
]    187—189,  218—221. 

The  modifications  of  the  mechanical  and  physical 

■properties  of  a  pure  brass  by  the  addition  of  other 

Ilalloying  elements  has  been  studied  in  detail.     The 

l|?xamination    of    brass    containing     TO — 5'8%     Al 

-bowed  that  the  presence  of  1%   Al  is  equivalent 

U'.o    about    5"6%     Zn    in    its    effect   on    the    general 

physical   properties,    so    that    a    brass   containing 

I"0%  Cu,  26'5%  Zn,  and  3"5%  Al  possesses  the  prin- 

Ibipal   features   of   ordinary   Muntz   metal.      Small 

I  broportions  of  aluminium  increase  remarkably  the 

I (rield-point  and  strength  of  both  70/30  and  59/41 

ji brass,    with    a    corresponding    loss    in    ductility. 

tLVIore  than  3'5%   Al  causes  the  ductility  of  a  70% 

■opper  brass  alloy  to  fall  rapidly,  and  in  the  59  ,'41 

lleries  1"35%  Al  appears  to  be  the  limiting  amount 

if  aluminium  for  rapid  increase  of  strength,  though 

he     maximum     strength     is     not    reached     until 

IJS'0%  Al  had  been  added.     All  /8-aluminium  brasses, 

Regardless     of     the     chemical    composition,     suffer 

rom  heat   fragility  over    a   long   interval,   which 


extends  from  315°  to  455°  C.  for  the  Cu-Zn  series, 
and  from  226°  to  558°  C.  for  /3-brasses  of  the 
Cu-Zn-Al  series.  /3-Brasses  of  maximum  tenacity 
are  brittle  alloys  and  slight  overheating  renders 
them  unsafe  in  use  owing  to  the  abnormally  rapid 
crystal  growth  at  temperatures  above  700°  C. 
Manganese  brass  is  prepared  from  cupro-manganese 
in  preference  to  ferro-manganese,  which  is  difficult 
to  alloy  completely.  Considered  as  a  zinc-replacing 
element  1%  Mn  is  equivalent  toO'8%  Zn.  Manganese 
is  of  chief  value  as  a  deoxidiser  and  when  added 
in  excess  of  the  amount  required  for  deoxidation 
trouble  is  experienced  and  defective  castings  result 
from  the  tendency  to  oxidation.  A  better  cohesion 
between  adjacent  grains  is  noticed,  which  suggests 
that  manganese  may  be  of  value  as  a  toughening 
agent.  Tin  improves  the  corrosion-resisting  pro- 
perties of  brass;  in  complex  brasses  of  high 
ductility  0"7%  is  the  maximum  amount  which 
should  be  used.  The  quantity  of  tin  which  brass 
will  take  into  solution  was  found  to  be  determined 
by  the  zinc  content,  i.e.,  in  the  o-series  an  80/20 
brass  dissolves  5%  and  a  70/30  brass  less  than 
1%  Sn.  The  addition  of  0'5%  Sn  increases  the 
yield-point  and  maximum  strength  of  cast  brass 
225  and  1'3  tons  respectively  without  affecting  the 
other  mechanical  properties.  Further  addition  of 
tin  hardens  the  alloy  without  increasing  the 
strength  and  the  alloy  finally  becomes  brittle.  There 
is  no  difficulty  in  forging  tin  brasses,  but  1%  Sn 
is  the  limit  of  practical  utility. — C  A.  K. 

Bed-brass;    Volumetric   determination   of   tin  ami 

antimony  in  .     F.   J.   Muck.     Chem.-Zeit., 

1922,  46,  790. 

Two  grams  of  the  alloy  is  dissolved  in  20  e.c.  of 
nitric  acid,  the  solution  evaporated  to  5  c.c, 
100  c.c.  of  boiling  water  added,  the  liquid  boiled 
for  5  min.  and  the  precipitate  of  antimonic  and 
stannic  acids  filtered  off,  washed  with  hot  5%  nitric 
acid  and  dissolved  in  15  c.c.  of  strong  sulphuric 
acid  and  10  c.c.  of  strong  nitric  acid.  2 — 3  g.  of 
potassium  sulphate  and  0  5  g.  of  tartaric  acid  are 
added  and  the  solution  is  evaporated  to  syrupy 
consistency.  After  cooling,  180  c.c.  of  water  and 
7  c.c.  of  hydrochloric  acid  are  added  and  the  solu- 
tion is  boiled  for  5  mins.,  cooled,  and  titrated  with 
permanganate  for  antimony.  Another  30  c.c.  of 
water  and  60  c.c.  of  hydrochloric  acid  are  added 
and  the  tin  is  reduced  by  boiling  with  2 — 3  g.  of 
antimony  and  titrated  with  iodine  as  usual. 

—A.  R,  P. 

Brass;  Dc-.incification  of [by  solution].    R.  B. 

Abrams.     Trans.  Amer.  Electrochem.  Soc,  1922. 
[Advance  copy.]     12  pages. 

The  dezincification  of  brass  takes  place  in  two 
stages;  in  the  first  the  brass  as  a  whole  is  dissolved, 
in  the  second  the  copper  in  solution  is  re-deposited 
with  solution  of  an  equivalent  amount  of  brass. 
The  second  stage  does  not  take  place  unless  there 
is  a  means  of  holding  the  copper  solution  in  contact 
with  the  brass,  such  as  the  presence  of  a  membrane 
or  of  a  large  excess  of  dissolved  copper.  Under 
natural  conditions  of  weathering  the  membrane 
may  be  supplied  by  a  layer  of  insoluble  zinc  or 
copper  salt  or  by  contact  of  the  metal  with  a  cover 
of  wood  or  metal.  Without  this  protection  the 
soluble  copper  salt  is  washed  away  and  the  brass 
dissolves  as  a  whole;  with  it  the  metal  gradually 
turns  into  a  mass  of  solid  copper  which  is  generally 
deposited  in  two  layers. — -A.  R.   P. 

Aluminium-silicon  alloys;  "  Modification  "  of . 

J.  J.  Curran.     Chem.  and  Met.  Eng.,  1922,  27, 

360—361. 
Alt/minium-silicon  alloys  are  "  modified  "  by  melt- 
ing them  under  a  layer  of  an  alkali  fluoride  which 
according  to   Guillet   simply   fluxes  off   oxide   in- 


762a  Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Oct.  10,  1922. 


elusions  and  gives  a  more  satisfactory  structure. 
The  author  finds  that  a  "  normal  "  aluminium- 
silicon  alloy  shows  a  "  modified  "  structure  after 
melting  with  a  little  sodium,  part  of  which  remains 
in  the  final  alloy,  and  suggests,  therefore,  that  in 
the  use  of  alkali  fluorides  part  of  the  alkali  metal 
is  reduced  by  the  silicon  (which  volatilises  as 
fluoride)  and  its  presence  in  the  final  alloy  is  the 
real  cause  of  the  "  modified  "  structure. — A.  R.  P. 

Tin  alloys  containing  iron;    Analysis  oj  .     N. 

Welwart.     Chem.-Zeit.,  1922,  46,  777. 

A  discussion  of  Meyer's  paper  (J.,  1922,  256a) 
pointing  out  a  number  of  precautions  that  must 
be  taken  to  ensure  accurate  results  and  suggesting 
certain  minor  modifications  that  shorten  the  time 
required  for  an  analysis. — A.  R.  P. 

Nickel,    moncl  metal,   stellite,    stainless   steel  and 

aluminium;  Thermal  expansion  of  .     AV.  H. 

Souder  and  P.  Hidnert.    U.S.  Bureau  Standards, 
Sci.  Paper  426,  1922,  497—519. 

The  average  coefficient  of  thermal  expansion 
between  0°  and  600°  C.  of  commercial  nickel  was 
found  to  be  14'9— 15'7xl(Tc,  of  monel  metal  15"9— 
16-7xl(r%  of  stellite  13-6— 17TxlO"%  of  stainless 
steel  11-2— 12TxlO"6,  of  aluminium  29;3— 29-5x10"'. 
The  expansion  curve  of  nickel  is,  with  the  excep- 
tion of  a  small  break  at  350°  C,  quite  regular,  while 
that  of  stellite  shows  irregularities  between  300°  and 
500°  C.  The  curve  of  monel  metal  is  regular  up  to 
600°  C,  as  is  that  of  stainless  steel  up  to  the 
critical  region  (825° — 850°  C).  The  aluminium 
curve  may  be  expressed  by  the  empirical  equation : 
Lt=L0  [l  +  (21-90£  +  0-012f2)10-6].— A.  R.  P 

Uranium;  Glacial  acetic  acid  method  for  determin- 
ing     in  carnotite.     AV.   W.   Scott.     J.   Ind. 

Eng.  Chem.,  1922,  14,  531—532. 

About  0'5  g.  of  the  ore  is  boiled  with  40  c.c.  of  dilute 
nitric  acid  (1:1)  until  decomposed  completely,  the 
solution  evaporated  to  dryness,  the  residue  baked  for 
a  few  mins.,  and  then  boiled  for  5  mins.  with  25  c.c. 
of  a  mixture  of  glacial  acetic  acid  and  nitric  acid 
(100:5).  The  solution  is  filtered,  the  insoluble 
portion  washed  with  the  acid  mixture,  the  filtrate, 
which  contains  all  the  uranium,  is  evaporated  to 
dryness,  the  residue  heated  over  a  burner  until  it 
turns  black,  and  the  extraction  with  the  acid 
mixture  repeated.  The  filtrate  thus  obtained  is 
evaporated,  the  residue  heated,  dissolved  in  10  c.c. 
of  nitric  acid  and  40  c.c.  of  water,  the  solution 
partly  neutralised  with  ammonia,  and  solid  ammo- 
nium carbonate  added  until  the  uranium  carbonate 
first  precipitated  is  re-dissolved.  After  the  addition 
of  a  further  3  g.  of  ammonium  carbonate  and  5  c.c. 
of  ammonia  the  solution  is  filtered,  the  residue 
cashed  with  hot  water,  the  filtrate  acidified  with 
nitric  acid  and  boiled  to  expel  carbon  dioxide. 
Excess  of  ammonia  is  then  added  and  the  solution 
boiled  until  all  the  uranium  is  precipitated,  as  is 
shown  by  the  yellow-coloured  solution  becoming 
colourless.  The  precipitate  is  collected,  washed 
with  a  small  quantity  of  2%  ammonium  nitrate 
solution,  ignited  and  weighed  as  U30„. — AV.  P.  S. 

Metals;  Beilby's  theory  of  the  amorphous  state  of 
.  C.  Benedicks.  Rev.  Met.,  1922,  19,  SOS- 
SIS. 
The  author  reviews  critically  the  facts  on  which 
Beilby's  theory  of  the  amorphous  state  of  metals 
is  based.  Several  of  the  results  obtained  by  Beilby 
may  be  satisfactorily  explained  without  assuming 
the  presence  of  a  thin,  mobile,  transparent, 
amorphous  film  of  metal.  Thus,  the  surfaces  of 
polished  specimens  of  antimony  and  copper  often 
show  spots  of  considerably  less  reflecting  power 
than,  or  of  a  different  colour  to,  the  rest  of  the 
metal,  which  Beilby  assumes  to  be  due  to  cavities 


covered  with  a  thin  film  of  amorphous  metal, 
whereas  the  author  has  found  that  these  effects  are 
produced  by  inclusions  of  antimony  trioxide  or 
cuprous  oxide.  With  regard  to  the  increase  of  hard- 
ness of  the  polished  surface  it  has  been  shown  by 
Osmond  that  this  is  probably  due  to  particles  of  the 
polishing  medium  becoming  embedded  in  the  metal. 
While  it  is  fair  to  assume  that,  if  the  amorphous 
phase  exists  on  the  surface  of  a  metal,  it  can  also 
exist  in  the  interior,  the  assumption  that  its 
presence  there,  after  subjecting  the  metal  to  a 
hammer-hardening  process,  is  the  cause  of  the 
increased  hardness  observed  does  not  accord  with 
past  experience.  The  following  theory  is  advanced 
to  explain  the  increase  of  hardness  of  metals  on 
hammering:  After  deformation,  an  originally  plane 
surface  may  exhibit  a  "  parallel  translation,"  in 
which  each  particle  slides  over  the  next  in  a  manner 
similar  to  a  pile  of  books  that  has  been  pushed  side- 
ways, or  it  may  undergo  a  "  proportional  transla- 
tion," in  which  the  lamelte  have  a  macled  aspect, 
i.e.,  they  do  not  really  slide  but  a  rotation  of  the 
crystal  element  takes  place.  In  the  former  case,  the 
amount  of  deformation  possible  is  unlimited,  the 
lamella?  simply  sliding  over  one  another,  and  there 
is  no  increase  in  hardness.  In  the  second  case, 
however,  the  amount  of  deformation  possible  is 
strictly  limited  by  the  characteristic  angle  of  the 
macles  and  each  deformation  the  metal  undergoes 
increases  the  resistance  to  further  deformation,  i.e., 
increases  the  hardness  by  making  the  lamellse  grow 
into  each  other,  an  operation  that  becomes  more 
difficult  to  perform  the  further  it  is  carried  out. 

—A.  R.  P. 

Hardness  of  metals;  An  accurate  method  of  deter- 
mining the with  particular  reference  to  those 

of  a  high  degree  of  hardness.  R.  L.  Smith  and 
G.  E.  Sandland.  Proc.  Inst.  Mech.  Eng.,  1922, 
1,  623—641. 

By  a  suitable  modification  of  the  Brinell  formula  it 
is  possible  to  obtain  truly  relative  hardness  figures 
from  which  may  be  calculated  the  load  required  to 
give  a  constant  impression.  The  modified  hard- 
ness numeral  suggested  is  calculated  from  the 
expression  :  Brinell  hardness  number  at  1000  kg. 
x(0'9-r0'4/d:),  where  d  is  the  diameter  of  the  im- 
pression in  mm.  The  figure  arrived  at  is  not 
strictly  accurate  where  the  hardness  exceeds  525 
Brinell,  owing  to  the  deformation  of  the  ball,  and 
the  authors  have  calibrated  natural  pyramidal 
diamonds  to  replace  the  steel  ball  and  so  obtain 
substantially  correct  values  for  hardness  for  the 
higher  ranges.  The  diamonds  have  to  be  calibrated 
individually  owing  to  the  difficulty  in  grinding  true 
hemispherical  surfaces.  The  load  applied  with  the 
diamond  test  is  light  and  the  impression  shallow, 
and  the  test  is  very  sensitive  therefore  to  the 
surface  hardness  of  the  material.  A  more  accurate 
estimate  of  the  maximum  stress  is  possible  with  the 
modified  hardness  numbers,  as  they  lie  on  a  straight 
line  which  passes  through  the  origin,  and  only  one 
conversion  factor  (0'23)  is  required  over  the  range 
30 — 90  tons  for  plain  carbon  steels. — C.  A.  K. 

Brinell  machine  attachment  for  use  with  small 
specimens.  E.  D.  Campbell.  Iron  and  Steel 
Inst.,  Sep.',  1922.  [Advance  proof.]  8  pp. 
The  large  regular  balance  corresponding  to  a 
pressure  of  500  kg.  on  the  ball  of  a  Brinell  machine 
was  replaced  by  a  light  balance  constructed  of  brass 
tubing,  using  also  separate  holders  for  balls  of  c 
and  2  mm.  diam.  The  light  balance  was  adjusted 
so  that  the  impression  produced  when  viewed 
through  a  16-min.  objective  would  appear  of  the  same 
size  as  an  impression  made  with  a  10-mm.  ball  under 
a  3000  kg.  load  viewed  through  the  standard  48-rnni- 
objective.  The  final  weight  of  the  balance  was 
adjusted  by  experimental  comparative  calibration. 


Vol.  xli  ,  No.  19.]    Cl.  X.— METALS  ;    METALLURGY.  INCLUDING   ELECTRO-METALLURGY. 


763  a 


The  instrument  was  adapted  to  the  use  of  softer 
metals  by  calibrating  similarly  a  5-mm.  ball  and 
observing  the  impression  through  a  32-mm.  objec- 
tive. Certain  precautions  are  necessary  in  the 
determination  of  hardness  by  means  of  small  im- 
pressions. The  metal  must  be  polished  almost  to 
the  same  degree  as  for  metallographic  work  and  a 
film  of  oil  applied  to  lessen  friction  during  the  test. 
The  application  of  the  load  should  be  gradual  and 
the  full  load  should  be  maintained  at  least  1J  min. 

— C.  A.  K. 

1  Metals;  Tearing  tests  on  .     H.  L.  Heathecote 

and   C.    G.   Whinfrey.     Chem.    and  Met.   Eng., 
1922,  27,  310-311. 

Structural    metals    which    have    been    tested    to 
withstand  certain  definite  stresses  may  fail  under 
apparently  smaller  stresses  owing  to  the  concentra- 
tion of  the  stress  overstraining  the   piece  at  the 
surface    where   the    section   changes,    and   thereby 
causing    the    metal    to   tear.      The    resistance   to 
tearing  of  a  metal  may  be  found  by  cutting  a  thin 
sheet   in   two   places   and   bending   the   tongue   of 
:j  metal  thus  formed  at  right  angles  to  the  sheet  and 
I  the  two  wings,  which  should  be  of  equal  size,  into 
alinement  with  the  tongue  in  the  opposite  direc- 
tion.    The  specimen  is  then  gripped  in  a  delicate 
testing  machine  by  the  tongue  and  wings  and  load 
is  gradually  applied  until  the  metal  tears  as  viewed 
I  by  a  "  strong  "  glass.  The  average  of  5 — 6  tests  gives 
||  the  pull  required  to  tear  the  metal  in  two  places 
I  and  bend  and  unbend  a  width  equal  to  that  of  the 
;  specimen.     By  carrying  out  tests  on  specimens  of 
u  width  x  in.  and  y  in.,  and  assuming  that  P  and 
!  p  are  the  pulls  required  to  tear,  bend  and  unbend 
.  material  which  is  t  in.  thick,  then  the  actual  tearing 
I  force  F  per  linear  inch  is  given  by  the  equation : 
I  F  =  (px-Py)j2t(x-y).     The  results  obtained  agree 
more  closely  with  those  given  by  the  notched  bar 
I  impact    test    than    with    those    obtained    in    the 
ordinary  tension  test. — A.  R.  P. 

I  Moulding    sands    [for    iron    foundries'] ;    Factors 

influencing  the  grain  and  bond  in .  C.  W.  H. 

Holmes.      Iron    and    Steel    Inst.,    Sept.,    1922. 
[Advance  proof.]     22  pages. 

|  In  judging  the  value  of  sands  for  grey-iron  found- 
ling,  the  mechanical  and  physical  properties 
||  are  of  equal  importance  to  the  chemical 
I  analysis.  The  most  successful  moulding  sands 
l  contain  both  mobile  or  hydrated  bonding  material 

capable  of  transference  from  grain  to  grain  and 
I  static    bonding    material    firmly    attached    to   the 

surface  of  the  grains.     The  bond  absorption  value    j 

obtained  on  raw  sand  is  greatly  modified  by 
I  mechanical  treatment.  Appreciable  degradation  of 
jthe  sand  grains  occurs  during  the  usual  mechanical 
I  preparation,  and  in  view  of  the  fact  that  the 
ij  degradation  may  be  excessive,  the  bond  distribution 
i  factor  is  a  very  important  characteristic  of  sands. 
j  No  single  test  is  sufficient  to  judge  the  practical 

value  of  moulding  sands. — T.  H.  Bu. 

Thermal  conductivity.    Jakob.     Seel. 

■.Granulated    nickel    for    electric    heating.       Dony- 
Henault.     See  XI. 

Isotopes  of  lead.     Dillon  and  others.     See  XXIII. 

Patents. 
Iron  and  steel;  Process  for  the  direct  manufacture 

of .     L.   P.  Basset.     E.P.   159,475,   24.2.21. 

Conv.,  24.2.20. 

Fuel  in  an  extremely  divided  condition,  e.g.,  finely 
pulverised  coal  or  hydrocarbon,  and  superheated 
air  in  suitable  proportions  to  produce  only  carbon 
monoxide,   are  injected   into  the   lower  end  of   an 


inclined  rotary  furnace.  The  ore  is  mixed  with  a 
quantity  of  carbon  insufficient  to  reduce  the  whole 
ot  it,  and  with  basic  fluxes,  and  the  mixture  is 
ted  into  the  upper  end  of  the  furnace.  The 
fraction  of  the  ore  escaping  reduction  serves,  with 
the  help  of  the  basic  slag,  to  prevent  the  reduction 
the  calcium  phosphates,  silicates,  etc.  in  the  ore 
and  thus  avoid  phosphorisation  of  the  metal 

— T.  H.  Bu. 

Iron   and   steel;   Process   of  desulphurising   

H.    Koppers.      E.P.    162,618,    28.4.21.      Conv., 

After  treatment  of  the  molten  iron  in  the  usual 
manner  for  the  removal  of  phosphorus,  manganese 
Simeon,  and  the  like,  the  slag  is  removed  and  a> 
highly  basic  slag  put  on,  in  which  are  immersed! 
blocks  of  dense  carbon  of  about  the  same  sp.  gr. 
as  the  slag,  whereby  calcium  is  liberated  and 
combines  with  the  sulphur  in  the  iron.  The  dense 
carbon  may  consist  of  coke  overheated  in  the 
carbonisation  process,  or  of  perforated  or  im- 
perforated blocks  of  finely  ground  coke  briquetted 
under  high  pressure  with  tar  as  a  binder.  The 
s  ag  layer  is  revivified  by  passing  a  current  of  air 
through  or  over  it. — T.  H.  Bu. 

Silicon  steel  and  other  metals  and  alloys;  Methods 

of  refimng  .     British  Thomson-Houston  Co 

Ltd.     From  General  Electric  Co.     E.P.  183  217 
15.4.21. 

The  molten  metal  is  subjected  to  a  periodically 
varying  magnetic  field  =^  as  electromagnetically  to 
expel  occluded  slag  particles,  which  are  caused  to- 
rise  to  the  surface.  The  metal  is  then  mechanically 
separated  from  the  supernatant  slag.  Silicon  steel 
refined  in  this  way  and  with  the  sulphur  not  greater 
than  0'10%  shows  on  the  average  a  reduction  of 
12/i  in  hysteresis  losses. — T.  H.  Bu. 

Iron  and  steel;  Apparatus  for  the  determination 

of  the  percentage  of  carbon  in  .     C.  J    G 

Malmberg   and  J.   G.   Holstrom.      E.P.    184,215^ 

A  specimen  of  iron  or  steel  is  subjected  to  repeated 
magnetisation  and  demagnetisation  between  two 
chosen  values  of  the  magnetising  force.  The 
difference  between  the  two  magnetic  fluxes  through 
the  specimen  is  taken  as  an  indication  of  the 
carbon  content,  and  is  measured  by  the  induction 
in  a  wire  wound  round  the  specimen  or  on  any 
part  of  the  circuit  of  which  the  specimen  form's 
a  part. — C.  A.  K. 

Steel    alloy;   Non-corrosive   .      W     Belleville 

U.S.P.   1,424,612,   1.8.22.     Appl.,   16.6.21. 
A   steel  alloy  contains   approximately   Ni   15'5% 
C  less  than  1%,  Si  0"3%,  Mn  0"5%,  Cr,  S,  P  each- 
less  than  0-1%.— C.  A.  K. 

Alloy  for  forging  steel  and  method  of  producing- 
same   from   nickel  ore.     L.    P.    Burrows;    L.    B. 
Archer     executrix.       U.S.P.     1,424,710,     1.8.22 
Appl.,  20.1.20. 

Crushed  nickel  ore  is  subjected  to  the  action  of 
reducing  gas  in  a  closed  chamber  until  the  oxygen 
content  of  the  ore  is  removed.  The  refined  ore  is 
smelted,  and  the  metallic  product  broken  up  and 
disintegrated  by  exposing  it  to  the  atmosphere.. 
The  disintegrated  material  is  then  subjected  to  a- 
low  red  heat  without  oxidation  until  its  weight  is- 
reduced  about  20%.— T.  H.  Bu. 

[Iron]  alloy.  W.  H.  Smith,  Assr.  to  The  Cleveland 
Brass  Mfg.  Co.  U.S.P.  1,424,782,  8.8.22. 
Appl.,  23.3.18. 

The  alloy  contains  50—85%  Fe,  1—10%  Ni.  1—3%. 
Si,  and  the  remainder,  chromium. — A.  R.  P. 


7(34 a  Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      [Oct.  16,  1922. 


Iron  ores,  iron  and  steel,  and  coke  used  in  the 
metallurgy    of   iron;   Process   of   desulphurising 

■ .      W.    I.    Estabrooke    and    D.    D.   Jackson, 

Assrs.  to  J.  T.  Pratt,  D.  D.  Jackson,  and  J.  D. 
Sears.    U.S.P.  1,426,054,  15.8.22.    Appl.,  13.7.20. 

A  halogen  (chlorine)  is  introduced  into  the  molten 
or  heated  material,  whereby  a  volatile  sulphur 
halido  is  formed. — C.  A.  K. 

Electrolytic  iron;  [Bath  for  the]  production  of 
.     M.  Schlatter.    G.P.  310,043,  13.12.17. 

Alcohols,  such  as  glycerol  or  glycol,  are  added  to 
the  ordinary  bath  for  the  deposition  of  electrolytic 
iron,  which  is  then  obtained  so  6oft  that  it  may 
be  cut  with  a  knife.  For  example,  the  bath  may 
consist  of  a  solution  of  280  g.  of  ferrous  chloride 
and  2  g.  of  hydrogen  chloride  in  a  litre  of  water 
to  which  400  c.c.  of  pure  glycerol  has  been  added. 

—A.  R.  P. 

Iron  and  steel;  Process  for  covering with  a 

rust-resisting    coating.      W.    Schmidding.      G.P. 
310,756,  11.7.18. 

The  iron  or  steel  articles  are  dipped  in  a  solution 
containing  phosphoric  acid,  zinc,  and  calcium, 
together  with  an  oxidising  substance  which  yields 
oxygen  in  the  nascent  state  or  which,  in  the 
presence  of  acids,  yields  hydrogen  peroxide.  The 
evolved  oxygen  prevents  the  formation  of  slime, 
shortens  the  time  required  and  hastens  the  chemical 
reaction. — A.  R.  P. 

Iron  and  iron  ores;  Removal  of  sulphur  from  . 

O.  Baumann.     G.P.  356,039,  13.3.19. 

The  ores  are  fused  with  barium  sulphate,  and  the 
product  is  used  in  the  ordinary  smelting  operations 
for  removing  sulphur.  Barium  has  a  greater 
affinity  than  calcium  for  sulphur,  and  so  carries  the 
sulphur  into  the  slag. — A.  B.  S. 

Shaft  furnaces  and  the  like.  E.  F.  Chaudiere. 
E.P.  161,971,  19.4.21.  Addn.  to  137,168  (J.,  1920, 
179  a). 

A  central  core  consisting  of  concentric  iron 
columns  protected  by  a  refractory  material  is  fitted 
vertically  in  a  shaft  furnace  in  line  with  the 
chimney.  Suitable  openings  into  the  iron  column 
allow  a  proportion  of  the  air  which  has  passed 
through  the  calcined  material  to  be  admitted  direct 
to  the  chimney  to  assist  the  draught,  or  the  heated 
gases  above  the  combustion  zone  may  be  withdrawn 
for  the  purpose  of  recuperation  of  heat.  The 
direction  and  volume  of  flow  in  the  core  is  regulated 
by  a  reversible  fan  and  by  dampers. — C.  A.  K. 

Furnaces;  Open  hearth .     G.  L.  Danforth,  jun. 

E.P.  183,247,  20.4.21. 

The  ports  of  an  open-hearth  furnace  are  arranged 
so  that  the  air  and  gas  from  separate  ports  meet  in 
a  combustion  chamber  of  diminishing  sectional  area 
towards  the  inlet  to  the  furnace.  In  the  furnace 
the  cross-sectional  area  is  gradually  enlarged,  thus 
allowing  the  gases  to  expand.  The  effect  is  that  of 
a  Venturi  tube,  and  the  minimum  area  of  the  port 
entering  the  furnace  may  be  less  than  the  combined 
areas  of  the  gas  and  air  ports  opening  into  the 
combustion  chamber. — C.  A.  K. 

Crucible   furnaces;   Gas   heated  .     T.    Teisen. 

E.P.  183,394,  16.11.21. 

In  a  crucible  furnace  of  the  type  in  which  gas  is 
admitted  through  a  vertical  burner  passage,  air  is 
directed  into  this  passage  at  right  angles,  either 
tangentially,  or  otherwise,  so  as  to  cause  the  air  to 
swirl  around  the  gas  stream  and  so  protect  the 
lining  from  excessive  heating. — C.  A.  K. 


Furnace;     Hearth     smelting     or     heating     

Faconeisen-Walzwerk  L.  Mannstaedt  iind  Co' 
Akt.-Ges.,  and  H.  Bansen.  E.P.  184,252,  4.5.21. 
The  furnace  is  heated  by  twin  burners  on  either 
side  of  the  furnace,  and  extending  the  full  length 
of  the  furnace  chamber.  After  passing  partially 
across  the  furnace  the  gases  travel  longitudinally 
and  pass  out  of  the  furnace  through  recuperators. 
Each  pair  of  burners  is  provided  with  a  regenerator, 
and  at  any  one  time  one  burner  acts  normally 
whilst  the  second  is  used  as  a  flue  for  part  of  the 
furnace  gases  through  the  regenerator.  The 
burners  situated  opposite  to  one  another  are 
directed  in  slightly  different  directions  in  the 
vertical  plane.  The  combustion  chamber  may  be 
constructed  with  circular  cross-section  so  that  the 
gas  and  air  from  the  burners  enter  the  combustion 
chamber  tangentially. — C.  A.  K. 

Cupola  and  blast  furnaces;  Process  for  impiuoiiuj 

the  operation  of .  Vulkan-Werk  Rheinshagen 

und  Co.  G.P.  354,469,  15.8.20. 
Water,  in  a  liquid  form,  is  introduced  into  the 
furnace  by  the  blast,  whereby  an  economy  is 
effected  in  the  fuel  consumption,  the  iron  is  im- 
proved in  quality,  and  the  lining  of  the  furnace 
is  protected. — A.  R.  P. 

Tungsten     wires;    Manufacture    of    drawn    . 

Pateut-Treuhand-Ges.  fiir  Elektrische  Gliih- 
lampen,  m.b.H.  E.P.  163,014,  6.5.21.  Conv., 
7.5.20. 

Drawn  tungsten  wires  are  produced  from  pressed 
or  sintered  rods  which  contain  in  their  cross- 
sections  zones  which  differ  from  the  main  body  and 
if  necessary  from  one  another  in  their  chemical 
or  physical  properties,  or  in  the  composition, 
nature,  or  relative  proportions  of  the  constituents, 
all  cross-sections  throughout  the  length  being  in 
general  alike.  Thus  filaments  may  be  produced 
from  tungsten  with  various  sizes  of  grain,  or  from 
tungsten  with  various  additions  of  thorium  dioxide, 
or  from  tungsten  containing  molybdenum,  uranium, 
thorium,  tantalum,  vanadium,  chromium,  carbon, 
phosphorus,  etc.  or  mixtures  thereof.  Drawn 
tungsten  wires  of  definite  structure  can  be 
methodically  produced  from  such  material 

—J.  S.  G.  T. 

Precious  metals  [.e.g.,  gold];  Process  for  the  metal- 
lurgical treatment  of  ores  containing [and  a 

volatile  metal,  e.g.,  antimony"].  Blei-  und  Silber- 
lmtte  Braubach  A.-G.  E.P.  167,741,  28.4.21. 
Conv.,  12.8.20. 

Ores  containing  gold  or  other  precious  metal, 
together  with  large  amounts  of  volatile  metals,  such 
as  antimony,  arsenic,  zinc,  and  lead,  are  smelted, 
in  shaft  furnaces  of  the  type  used  in  the  production 
of  pig-iron,  with  suitable  additions  to  give  a  slag 
of  a  higher  melting-point  than  the  volatilisation- 
point  of  the  one  constituent  (e.g.,  antimony  oxide), 
and  a  suitable  concentration  metal  (e.g.,  copper 
or  pig-iron)  in  which  to  collect  the  precious  metal. 

—A.  R.  P. 

Gold;   Recovering    and    apparatus   then  for. 

O.  C.  Knipe.  U.S.P.  1,426,746,  22.8.22.  Appl., 
31.10.21. 

The  interior  of  an  open  hollow  drum  is  lined  with 
a  porous  fabric  coated  with  grease,  which  retains 
the  particles  of  gold  when  a  liquid  containing  gold 
in  suspension  is  rotated  rapidly  within  the  drum. 

Noble  metals;  Recovery  in  a  pure  state  of  the  — — , 

particularly  gold  and  platinum,  by  clilorination. 

C.  Bennejeant.    G.P.  355,886,  14.1.21. 

Alloys  or  ores  of  the  noble  metals  are  strongly 

heated  with  chlorine  compounds  so  as  to  volatilise 


Vol.  xll,  No.  19.]     Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       765  a 


the  chlorides  of  commoner  metals  whilst  the 
chlorides  of  nobler  metals  remain  in  the  residue. 

—A.  B.  S. 

Precious    and     other     metals;     Joining     together 

[welding  or  soldering']  oj .    J.  Maurer.    E.P 

183,188,  18.3.21. 

A  soldering  paste  for  use  in  joining  metals  consists 
of  a  mixture  of  finely  divided  metals  identical  with 
the  metals  to  be  welded,  the  oxides  of  the  same 
metals,  a  reducing  agent,  a  flux,  and  a  binding 
medium,  the  latter  being  preferably  vaseline. 
Powdered  carbon  is  a  suitable  reducing  agent. 

— C    A.  K. 

Copper;  Process  for  the  autogenous  [electric]  weld- 
ing of .    H.  Cauzler.    G.P.  355,906,  7.10.20. 

The  electrode  consists  of  a  copper  rod  containing 
gold,  or  gold  and  silver,  together  with  phosphorus, 
manganese,  silicon,  or  boron.  The  welds  obtained 
have  a  high  tensile  strength,  are  readily  machinable, 
and  have  a  great  resistance  to  attack  by  acids. 

—A.  R.  P. 

Copper;  Process  for  the  extraction  of  ■  from 

its  ores.  P.  W.  Nevill  and  H.  Soanes.  E.P. 
172,926,   20.7.21.     Conv.,   13.12.20. 

Finely  crushed  copper  ore  containing  the  bulk 
of  the  copper  in  an  oxidised  form,  is  treated  with 
water  and  ferrous  sulphate,  either  with  or  without 
the  addition  of  sodium  chloride,  or  with  dilute 
sulphuric  acid,  and  the  resulting  pulp  is  heated 
for  a  short  time  by  means  of  steam  while  finely 
divided  metallic  iron  is  added  to  reduce  all  the 
copper  compounds  to  a  metallic  sponge,  which  is 
then  separated  from  the  gangue  by  elutriation, 
flotation,  or  other  means. — A.  R.  P. 

Nickel  ores;  Process  of  treating  and  product 

resulting  therefrom.  L.  P.  Burrows:  L.  B. 
Archer  executrix.  U.S. P.  1,424,711,  1.8.22. 
Appl.,  4.5.20. 

Steasi  is  suddenly  expanded,  and  without  condensa- 
tion, any  water  vapour  held  in  suspension  is 
separated.  The  resulting  gaseous  product  is  heated 
and  crushed  nickel  ore  is  subjected  to  its  action  at 
red  heat  in  a  closed  chamber  for  about  5  hours. 

— T.  H.  Bu. 

Nickel  or  nickel-rich  alloys;    Process  for  the  pre- 
paration   of    from    low-grade     nickel-iron 

alloys.    M.  Stern.     G.P.  354,219,  23.3.18. 

Iron-nickel  alloys  containing  a  low  percentage  of 
nickel   are   subjected   in   the   form  of   turnings   to 
(oxidation,  either  by  moistening  them  with  a  rust- 
producing  substance,  such  as  magnesium  chloride 
I  solution,   and  heating  the  mass  in  the  air,  or  by 
[passing  air  or  oxygen  over  the  heated  metal,   so 
I  that  the  heat  of  oxidation  of  the  iron  raises  the 
!  temperature  to  such  an  extent  that  the  mass  melts, 
|the  greater  part  of  the   iron   being  oxidised   and 
l  slagged  off  while  the  nickel  is  recovered  in  nearly 
pure  form  or  as  a  high-grade  ferro-nickel  alloy. 

—A.  R.  P. 

Nickel;  Process  for  the  preparation  of  agglomerates 

'    of  pure from  crude  nickel  oxide.    Soc.  Anon. 

"Le  Nickel."  G.P.  355,887,  8.6.21.  Conv.,  21.4.21. 

Ceude  nickel  oxide  is  heated  in  a  closed  vessel  with 
solid,  liquid,  or  gaseous  reducing  agents  to  such  a 
temperature  and  for  such  a  time  that  it  is  reduced 
,to  metal  except  for  a  small  quantity.  The  charge 
is  powdered  and  washed  with  dilute  hydrofluoric 
lacid,  then  dried,  and  pressed  into  the  desired 
shape.  The  shapes  are  heated  in  a  closed  vessel 
iirst  alone,  then  with  the  successive  addition  of 
powdered  carbon  and  lime. — A.  R.  P. 


Zinc-smelting  furnace;   Vertical  retort  .     A 

Jones.  U.S. P.  1,424,825,  8.8.22.  Appl.,  19.2.21. 
The  furnace  consists  of  a  chamber  containing  a 
number  of  vertical  retorts  arranged  in  rows ;  a  fixed 
condenser  placed  between  each  pair  of  rows  com- 
municates with  each  retort  in  these  rows. — A.  R.  P. 

Zinc  and  other  volatile  metals  or  metalloids ;  Pro- 
cess for  the  distillation  of  from  ores.     W. 

Troeller.     G.P.  353,797,  10.10.13. 

The  ore  mass  is  mixed  with  a  solid  fuel  and  the 
mixture  charged  into  a  discontinuously  working 
converter  of  the  Huntington-Heberlein  type,  pro- 
vided with  either  artificial  external  cooling  appli- 
ances or  extra  thick  walls.  The  furnace  is  fired 
with  gaseous  or  liquid  fuel  or  with  coal  dust,  which 
is  burnt  in  such  a  manner  that  the  flame  envelopes 
the  ore  mixture  and  the  reducing  gases  permeate 
the  porous  mass  and  thus  effect  more  complete 
reduction.  The  gases  may  also  be  burnt  inside  the 
ore  mass  after  the  manner  of  flameless  combustion. 
From  time  to  time  the  air  supply  is  interrupted, 
so  that  the  unburnt  gases  permeate  the  mass,  thus 
i  ing  still  more  efficient  reduction,  while  part 
of  the  metal  is  simultaneously  recovered  in  liquid 
form.— A.  R.   P. 

Zinc  oxide  and  similar  material  containing  lead;  . 

Process  for  removing  lead  from  .     H.  Pape. 

G.P.  354,096,  16.1.17. 

The  finely  ground  oxide  is  mixed  with  quicklime  or 
slaked  lime  and  water  to  a  thick  slime,  which  is 
stirred  into  a  large  bulk  of  water  and  the  insoluble 
zinciferous  material  separated  by  filtration.  The 
solution  is  treated  with  just  sufficient  of  a  com- 
pound of  sulphuric,  carbonic,  or  chromic  acid  to 
precipitate  the  lead,  and  the  clear  liquor  is  used 
instead  of  water  for  the  first  part  of  the  process, 
while  the  precipitate  is  treated  in  the  usual  manner 
for  the  recovery  of  its  lead  content.  Coarse 
material,  such  as  roasted  or  sintered  ore,  is  mixed 
with  lime  and  water  before  grinding,  and  the  mix- 
ture is  then  ground  wet  and  treated  as  before. 

—A.   R.   P. 

Zinc    dust;   Process   of   manufacturing    .      T. 

Kato.   U.S. P.  1,425,661,  15.8.22.  Appl.,  26.11.19. 

Metallic  zinc  is  volatilised  in  a  retort  from  which 
air  is  excluded,  and  the  zinc  vapours  are  diluted 
with  a  non-oxidising  gas  and  cooled  quickly. 

— D.  F.  T. 

Separating  process.  [Concentration  of  ores.]  R. 
Ellis.  U.S. P.  (a)  1,425,185,  (b)  1,425,186,  and 
(c)  1,425,187,  8.8.22.  Appl.,  (a)  15.4.18,  (b)  2.4.19, 
(c)  20.8.15.     (c)  Renewed  25.4.21. 

(a)  The  comminuted  ore  is  mixed  with  water  and 
an  oily  liquid,  and  then  with  a  material  which  will 
give  anions  having  a  greater  valency  than  two. 
The  mixture   is  aerated  and  the   froth  separated. 

(b)  After  the  addition  of  oil  and  before  aeration  a 
material  capable  of  making  the  contact  potential 
of  the  oil  more  negative  is  added,  (c)  A  process  for 
the  concentration  of  mixed  ores  includes  the  use  of 
a  solution  having  a  selective  action  for  the  oxidised 
portion  of  the  ore  and  of  a  solution  containing 
anions  having  a  valency  greater  than  two  and 
cations  having  a  valency  greater  than  one. 

— C.  A.  K. 

Flotation  process.  R.  Luckenbach,  Assr.  to 
Luckenbach  Processes,  Inc.  U.S. P.  1,425,327, 
8.8.22.     Appl.,  9.2.20. 

The  tar  product  from  the  distillation  of  "  grease- 
wood  "  is  added  to  the  pulp,  which  is  then  aerated, 
and  the  froth  separated. — C.  A.  K. 


766a  Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTROMETALLURGY.      [Oct.  16,  1922. 


Flotation  process  for  dressing  mineral  mixtures. 
Maschmenbau-Anstalt  Humboldt.  G.P.  353,726, 
17.8.20. 

The  mixture  before  passing  into  the  flotation  vessel 
is  treated  with  a  mixture  of  vaporised  or  gaseous 
wetting  media,  such  as  oils,  hydrocarbons,  etc.,  and 
vaporised  or  gaseous  media  affecting  the  capacity- 
tor  adsorption  and  suspension  of  the  constituents 
of  the  mineral  mixture.  If  desired  the  mineral 
mixture  may  be  separately  submitted  to  the  action 
of  the  two  kinds  of  media.  The  consumption  of 
reagent  for  increasing  the  adsorption  coefficient 
is  in  this  manner  reduced. — J.  S.  G.  T. 

Magnetic,  separator.  W.  E.  F.  Bradlev  U  S  P 
1,425,235,  8.8.22.     Appl.,  21.9.18. 

A  stream  of  material  to  be  treated  is  subjected  to 
the  action  of  a  series  of  electro-magnets  arranged 
in  sequence  with  the  pole  faces  directed  downwards. 
The  magnets  are  energised  in  groups  of  "  relatively 
displaced  cyclic  current  phases,  the  algebraic  sum 
of  the  currents  of  a  group  alternating  cyclically 
from  a  positive  value  to  a  negative  value  and  back 
to  positive." — C.  A.  K. 

Alloy.  S.  Mayer  and  W.  James,  Assrs.  to  Magno 
Storage  Battery  Corp.  U.S. P.  1,425,330,  8.8.22. 
Appl.,  23.6.21. 

An  alloy  of  Sn  50,  Pb  25.  Zn  17,  and  Sb  8%. 

— C.  A.  K. 

Ores;  Method  of  reducing .   E.C.King.   USP 

1,425,336,  8.8.22.     Appl.,  23.10.20. 

A  carbonaceous  material  and  an  oxidising  agent  are 
introduced  below  the  surface  of  a  bath  of  molten 
metal  produced  from  the  ore,  and  further  quantities 
of  the  ore  are  concurrently  fed  on  to  the  surface 
of  the  bath.— A.  R.  P. 

Zirconium  alloy  and  process  of  making  same.  F.  M. 
Becket,  Assr.  to  Electro  Metallurgical  Co.  U.S.P 
1,425,572,  15.8.22.     Appl.,  1.10.20. 

A  low-carbon  ferro-alloy  consisting  essentially  of 
iron,  silicon,  and  zirconium  is  made  by  smelting  in 
the  electric  furnace  a  charge  comprising  silica,  a 
zirconium  ore,  a  carbonaceous  reducing  agent,  and 
a  source  of  iron.  The  charge  is  proportioned  to 
yield  an  alloy  containing  silicon  in  at  least  as  high 
proportion  as  the  zirconium,  thus  preventing  the 
formation  of  zirconium  carbide  in  interfering 
quantities. — H.  H. 

Metals  from  ores;  Process  of  extracting  .     S. 

MeKirahan,  Assr.  to  F.  A.  Fuller.  U.S.P. 
1,425,667,  15.8.22.     Appl.,  14.2.18. 

Finely  comminuted,  oxidised  ore  is  mixed  with 
sodium  chloride  and  heated  to  a  temperature  above 
1000°  C.     The  metal  in  the  ore  sublimes  as  chloride. 

— D.  F.  T. 

Phosphor  metals;  Method  of  producing .     S.  L. 

Nicholson,  Assr.  to  Westinghouse  Electric  and 
Manuf.  Co.  U.S.P.  1,425,679,  15.8.22.  Appl., 
29.11.20. 

Phosphorus  vapour  is  brought  into  contact  with  a 
metal  heated  to  a  temperature  below  its  melting 
point.  The  metal  is  melted  subsequently  and  cast 
into  ingots. — C.  A.  K. 

Metals;  Process  of  freeing from  copper.   M.  O. 

Sem,  Assr.  to  Det  Norske  Aktieselskab  for 
Elektrokemisk  Industri.  U.S.P.  1,425,701,  15.8.22. 
Appl.,  4.4.19. 

Metal  containing  copper  is  melted  and  treated  with 
a  sulphide  of  the  same  metal,  and  the  copper 
sulphide  is  separated  from  the  purified  metal. 

— C.  A.  K. 


Electroplating;    Process   and   apparatus   for  

W.  E.  Belke.     U.S.P.  1,426,141,  15.8.22.    Appl  ' 
15.3.22.  ■  " 

A  bath  for  carrying  out  electroplating  operations  is 
provided  with  an  arrangement  of  pipes  and  valves 
at  the  bottom  whereby  the  electrolyte  may  be  with- 
drawn in  part  to  a  filtering  apparatus  situated  above 
the  tank,  and  means  are  provided  to  discharge  the 
filtered  liquid  on  to  the  surface  of  the  bath  ° 

—A.  R.  P. 
Tin  and  lead;  Electrolytic  production  of  adherent 

deposits  of  .     M.   Schlatter.     G.P.  299.791 

17.2.17. 

The  articles  to  be  plated  are  first  coated  in  an 
alkaline  bath,  the  chief  part  of  the  deposit  being 
afterwards  made  in  an  acid  bath.  This  double 
treatment  avoids  the  drawbacks  of  either  an  acid  or 
alkaline  bath,  when  used  alone. — A.  B.  S. 

Tin;  [Electrolytic}  process  of  depositing free 

from  pores.  M.  Schlatter.  G.P.  299,794,  8.3.17. 
Tin  free  from  pores  is  deposited  by  the  electrolysis 
of  alkaline  stannate  solutions  free  from  acid  radicles 
and  made  up  principally  or  entirely  with  caustic 
potash.— J.  S.  G.  T. 

Tin;  Process  for  recovering  [from  concen- 
trates']. H.  H.  Alexander,  Assr.  to  American 
Smelting  and  Refining  Co.  U.S.P.  1,426,341 
22.8.22.     Appl.,  26.5.17.     Renewed  17.11.21. 

Tin  concentrates  are  mixed  with  carbonaceous 
matter  and  the  mixture  is  sintered  until  approxi- 
mately 70%  of  the  sulphur  contained  in  the  mixture 
has  been  removed.  The  resulting  mass  is  broken  up 
into  suitable-sized  lumps  which  are  mixed  with 
carbonaceous  material  and  smelted  in  a  blast 
furnace  to  obtain  metallic  tin. — A.  R.  P. 

Smelting  and  electrolysing  process.  R.  Rodrian, 
Assr.  to  Rodrian  Electro-Sletallurgical  Co.,  Inc. 
U.S.P.  1,426,507,  22.8.22.     Appl.,  3.3.22. 

A  charge  of  metalliferous  material  is  melted  above 
a  bath  of  molten  metal  and  an  electric  current  is 
passed  through  the  mass,  the  molten  metal  acting 
as  cathode  and  a  carbon  rod  as  anode. — A.  R.  P. 

Brass;  Method  of  making  .     W.  R.  Webster. 

U.S.P.  1,426,623,  22.8.22.     Appl.,  31.3.20. 

A  curve  is  constructed  showing  the  variation  in  the 
value  of  a  physical  characteristic  of  brass  with 
differing  proportions  of  zinc  and  copper.  The  com- 
position of  a  mixture  of  scrap  brass  that  is  being 
melted  is  then  determined  by  determining  the  value 
of  the  same  characteristic  on  a  test  drawn  from  the 
furnace  and  reading  the  corresponding  copper  con- 
tent on  the  curve.  Sufficient  copper  or  zinc  may 
then  be  added  to  the  furnace  charge  to  bring  the 
mixture  to  any  desired  composition. — A.  R.  P. 

Metals   [e.g.   aluminium];  Recovery   of  from 

silicates.   F.M.  McClenahan.    U.S.P.  1,426,890—  1, 
22.8.22.     Appl.,  (a)  22.12.20,  (b)  7.12.21. 

(a)  As  a  step  in  the  recovery  of  metals  from  silicates 
the  latter  are  decomposed  by  an  excess  of 
ammonium  fluoride  solution.  (b)  Aluminium 
hydroxide  is  recovered  from  a  mixture  of  aluminium 
and  ammonium  fluorides  by  heating  in  the  presence 
of  water  and  removing  the  evolved  vapours. 

—A.  R.  P. 

Metals  and  alloys;  Process  for  briquettinq  turn 

and.  scrap  of  .       R.  Walter.       G.P.  352,684, 

5.12.20.     Addn.  to  337,296  (J.,  1921,  582  a). 

In  the  process  described  in  the  chief  patent  reduc- 
ing substances  are  added  to  the  scrap  or  briquettes 
when  they  contain  metallic  oxides,  so  that  it  is  pos- 
sible to  employ  oxidised  scrap  which  could  other- 
wise not  be  used. — A.  J.  H. 


Vol.  XU..  No.  19.] 


Cl.  XI.— ELECTRO-CHEMISTRY. 


TGTa 


Ores;  Process  for  the  treatment  of previous  to 

blast  sintering.  Metallbank  und  Metallurgische 
Ges.  A.-G.  G.P.  a53,867,  12.2.14.  Addn.  to 
340,533  (J.,  1922,  20  a). 

The  ore  is  treated  with  a  fine  spray  of  water  in  the 
form  of  a  mist  instead  of  with  steam,  so  as  to  reduce 
the  cost  of  the  process. — A.  R.  P. 

Magnesium  and   its  alloys;  Process  for  colouring 

.      Chem.  Fabr.  Griesheim-Elektron.      G.P. 

354,281,  30.8.19. 

The  metal  is  treated  with  a  solution  of  chromic  acid 
containing  salts  of  the  heavy  metals  and  small  quan- 
tities of  other  acids.  To  obtain  stable  colours  the 
articles,  after  removal  from  the  pickling  bath,  are 
washed  in  boiling  water  and  then  heated  in  an  air- 
bath  to  100°— 150°  C.  The  shade  of  colour  obtained 
depends  on  the  nature  of  the  heavy  metal  (copper, 
manganese,  zinc,  chromium,  iron  or  cobalt)  in  the 
pickling  bath.  Black  tones  are  obtained  by  using 
a  larger  amount  of  acid  and  no  heavv  metal  salt. 

—A.  R.  P. 

Metallic  articles;  Process  for  coating  with  a 

chemically  inactive  [acid-resisting]  substance. 
W.  Roth.     G.P.  354,693,  1.11.21. 

The  articles  are  coated  with  molten  silver  bromide. 
A  second  layer  may  be  provided  if  desired.  The 
process  is  suitable  for  coating  metallic  articles 
which  are  to  be  used  for  electrochemical  purposes 
in  acid  media. — A.  R.  P. 

Antimony-lead  alloys  [;  Process  for  the  preparation 

of  hard  acid-resisting ].    Soc.  Thoumyre  Fils. 

G.P.  354,978,  19.6.21. 

'  Antimony  is  heated  with  a  ferro-alloy,  such  as 
|  ferro-manganese,  ferro-aluminium.  ferro-nickel, 
1  ferro-vanadium,  or  ferro-tungsten  in  a  finely 
I  divided  form  until  the  mass  melts,  whereupon  the 
I  requisite  quantity  of  molten  lead  is  added.  The 
(resulting  alloys  are  as  hard  as  iron  and  very  re- 
Isistant  to  acids;  they  are  suitable  for  the  manufac- 
ture of  cocks,  pumps,  vessels,  and  the  like  for  acid 
'liquids—  A.   R.   P. 

\\Zirconium  and  similar  metals,  e.g.,  titanium, 
cerium,  thorium,  and  the  like;  Process  for  treat- 
ment of  materials  containing  .     G.  Siebert, 

'     Platin-Affinerie   und   Schmelze,    and   E.    Korten. 
G.P.  355,485,  14.12.20. 

,The  material  is  treated  with  halogens  at  a  high  tern 
perature  in  presence  of  reducing  agents,  e.g..  ear- 
oon.  A  vertical  electric  furnace  is  used,  having  a 
jfunnel-shaped  lower  portion  through  which  one  of 
:he  electrodes  is  introduced.  The  walls  of  the 
urnace  are  protected  by  a  stamped  lining  of  the 
•eaction  mixture.  At  the  beginning  the  reaction  is 
;ffected  under  the  influence  of  an  arc  struck  between 

I  he  electrodes,  but  subsequently  the  ends  of  the  elec- 
. rodes  are  pushed  down  into  the  reaction  mixture 
•r  covered  with  a  further  quantity  of  the  latter  60 
hat  the  charge  acts  as  a  resistance  heater.  Gase- 
us   reacting   substances    are   introduced    into   the 

lurnace  through  one  or  more  of  the  electrodes. 

— H.  R,  D. 

'hosphate    slags;    Utilisation    of    basic    ■ .      H. 

II  Nagell.     G.P.  356,225,  14.5.18. 

|  anadttm  compounds  may  be  recovered  from  basic 
;hosphate  slags  by  heating  a  slightly  acid  solution 
Iff  the  slags.— A.  B.  S. 

'anganese  steel;  Method  of  recovering .  TV.  G. 

Nichols,  Assr.  to  American  Manganese  Steel  Co. 
Reissue    15,434,     22.8.22,    of    U.S. P.    1.291,656, 
I  14.1.19.    Appl.,  17.12.21. 

ji3B  J.,  1919,  261  a. 


Metal  constituents  of  metalliferous  materials;  Pro- 
cess for  dissolving  out  or  recovering  the .    H. 

Bardt.     E.P.  184,402,  10.10.21. 

See  U.S. P.  1,423,069  of  1922;  J.,  1922,  716  a. 

Tin    deposits;    Process    of    producing    dense    and 

firmly-adhering    .       M.     Schlotter.      U.S. P. 

1,426,678,  22.8.22.     Appl.,  21.1.20. 

See  E.P.  148,334  of  1920;  J.,  1921,  853  a. 

Coating   metal    objects    with    a   layer   of   another 

metal;  Process  for .     O.  Stalhane  and  O.  O. 

Kring.   U.S.P.  1,426,683,  22.8.22.   Appl.,  29.4.20. 

See  E.P.  167,262  of  1920;  J.,  1921,  703  a. 

Ores  containing  zinc,  cadmium,  and  copper;  Elec- 
trolytic  treatment   of  .      D.   Avery,    R.    H. 

Stevens,  and  R.  T.  D.  Williams,  Assrs.  to  Elec- 
trolytic Zinc  Co.  of  Australasia  Proprietary,  Ltd. 
U.S.P.  1,426,703,  22.8.22.    Appl.,  16.3.20. 

See  E.P.  141,688  of  1920;  J.,  1921,  589  a. 
Boasting  zinc  blende.     G.P.  352,657.     See   I. 
Electric  lamps.    E.P.  184,291.    See  IIb. 

XI—  ELECTRO-CHEMISTRY. 

Carbon-electrode  industry;  The  technology  of  the 

.     V.    Baking  and  baking  furnaces.     C.  L. 

Mantell.  Chem.  and  Met.  Eng.,  1922,  27,  312— 
318.  (Cf.  J.,  1922,  718  a.) 
Furnaces  for  baking  "  green  "  carbon  electrodes 
may  be  either  electrically  heated,  the  electrodes 
themselves  acting  as  resistors,  or  gas-fired.  In  the 
electric  furnaces  the  electrodes  are  packed  in 
between  two  permanent  end  walls  connected  to 
the  electric  supply,  and  side  walls  of  loose  bricks 
are  built  up  and  strengthened  with  tie  rods.  The 
6pace  between  the  electrodes  is  filled  with  crushed 
petroleum  coke,  and  two  cores  are  provided  to 
start  the  process.  Current  is  supplied  at  30 — 60 
volts,  25  cycles,  and  as  the  cores  heat  up,  the 
volatile  matter  in  the  carbons  is  gradually  distilled 
off  until  eventually  they  become  sufficiently  con- 
ducting to  carry  the  bulk  of  the  current.  The 
baking  process  occupies  12 — 20  days,  and  a  further 
period  of  20  days  is  required  for  cooling;  the 
maximum  temperature  attained  varies  from  1100° 
to  1300°  C,  those  portions  nearest  the  cores  being 
at  the  highest  temperature.  Graphitising  furnaces 
are  constructed  in  a  similar  manner,  but  are 
operated  at  much  higher  temperatures  (2000°  C), 
and  the  baking  takes  only  3 — 6  days.  Gas-fired 
baking  furnaces  generally  consist  of  rectangular 
pits  for  the  carbon  surrounded  on  both  sides  and 
at  the  bottom  by  heating  flues ;  the  pits  form  a 
rectangular  "  ring  "  round  a  central  gas  main, 
and  the  waste  gas  flues  are  disposed  round  the 
outside  of  the  furnace.  Each  furnace  is  divided 
into  a  number  of  sections,  each  of  which  is  inde- 
pendent of  the  others,  so  that  part  of  the  furnace 
is  being  loaded  while  other  parts  are  heating  or 
cooling.  Each  section  is  first  heated  with  waste 
flue  gases  to  about  500°  C.  (120  hrs.),  then  with 
fresh  gas  to  about  1050°  C.  (75  hrs.),  after  which 
it  is  allowed  to  cool.  All  operations  are  controlled 
by  thermocouple  observations.  At  the  present  time 
gas-fired  furnaces  are  gradually  replacing  electric 
ones,  as  the  former  are  not  only  cheaper  to  run 
but  are  far  more  easy  to  control,  and  also  allow 
of  the  recovery  of  the  volatile  by-products  evolved 
by  the  binder  on  coking.  The  heat  economy  of  the 
gas-fired  furnace  is  much  greater  than  that  of  the 
electric  furnace  owing  to  regenerative  working,  but 
the  life  of  the  latter  is  four  times  that  of  the 
former.  The  electrodes  from  the  electric  furnace 
are  more  difficult  to  clean,  and  the  packing  dust  is 
more  difficult  to  grind  for  re-use. — A.  R.  P. 

c 


768  a 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


[Oct.  16,  1922. 


Carbon-electrode  industry;  Technology  of  the . 

VI.  Cleaning,   testing,  machinery  and  shipping. 

C.  L.  Mantell.     Chera.  and  Met.  Eng.,  1922,  27, 

353—359. 
Carbon  electrodes,  after  baking,  are  cleaned 
either  by  tumbling  in  steel  tumbling  barrels  or  by 
brushing,  followed,  if  necessary,  by  grinding  on 
emery  wheels;  they  are  then  tested  for  resistivity 
by  means  of  a  suitable  ohmmeter,  and  for  apparent 
specific  gravity  by  weighing  and  measuring.  The 
resistivity  is  directly  proportional  to  the  propor- 
tion of  volatile  matter  and  inversely  proportional 
to  the  real  density  between  1'98  and  1"88.  The 
cleaned  carbons  are  inspected  for  faults,  and  all 
cracked  and  blistered  rods  are  returned  to  the 
grinding  process.  A  good  electrode  should  have  an 
apparent  density  above  1"54,  not  more  than  2'5% 
of  ash,  a  high  electrical  conductivity,  slow  rate  of 
oxidation,  and  great  mechanical  strength,  combined 
with  a  good  shape,  accurate  dimensions,  and  low 
heat  conductivity.  The  physical  properties  of 
various  electrodes  are  compared,  and  a  complete 
flow-sheet  of  the  process  of  manufacture  is  given. 

—A.  R.  P. 

Nickel;  Use  of  granulated ■  for  electric  heating. 

O.  Dony-Henault.     Bull.  Acad.  roy.  Belg.,  1922, 
8,  67—70.     Chem.  Zentr.,  1922,  93,'  IV.,  418. 

"  Mond  "  nickel  is  suitable  for  use  in  place  of  steel 
in  the  construction  of  resistances  used  in  electric 
furnaces.  The  thin  black  layer  of  oxide  with  which 
the  nickel  becomes  coated  when  heated  is  a  con- 
ductor when  cold.  The  following  results  give  the 
respective  percentage  increases  of  weight  due  to 
oxidation  when  steel  and  "  Mond  "  nickel  spheres 
of  the  same  size  were  maintained  for  long  periods 
at  a  red  or  white  heat.  Percentage  increase  of 
weight  after  20  hours  at  600°— 700°  C,  steel  277%, 
nickel  0-113%  ;  after  a  further  17  hours  at  1000°  C, 
steel  9-40%,  nickel  073%.— J.  S.  G.  T. 

Thermal  conductivity.     Jakob.     See  I. 

Chlorates.     Pamfilow.     See  VII. 

Electromotive   behaviour  of  lead   dioxide.     Glass- 
tone.    See  VII. 

Patents. 
Electric  battery.    R.  C.  Benner  and  H.  F.  French, 

Assrs.  to  National  Carbon  Co.     U.S. P.  1,425,573, 

15.8.22.    Appl.,  16.1.19. 
Mercury  and  lead  material  are  associated  with  the 
active  surface  of  a  negative  zinc  electrode. — H.  H. 

Electrolytic  cell.     A.  V.  Davis.     U.S. P.  1,425,752, 
15.8.22.     Appl.,  7.6.21. 

An  anode  and  a  cathode  are  spaced  to  provide 
between  them  an  anode  chamber  opening  freely  into 
the  cell  at  its  upper  and  lower  ends.  Means  are 
provided  for  supplying  an  electrolyte  solution  to 
the  cell  and  for  automatically  maintaining  its  level 
above  the  upper  end  of  the  chamber  as  electrolytic 
action  takes  place,  thus  producing  a  thermo- 
siphonic  circulation  of  the  electrolyte  upwards  in 
the  chamber  and  downwards  in  the  cell. — H.  H. 

Electric  arc  furnaces;  Apparatus  for  the  treatment 
of  gases  in .    P.  Real.    G.P.  354,527,  167.20. 

In  a  furnace  with  electrodes  in  the  form  of  rotating 
discs,  the  latter  are  fitted  with  wings  which  com- 
municate the  rotary  motion  to  the  entering  gases. 
The  rapid  burning  away  of  the  electrodes  is  thus 
avoided. — C.  I. 

Gases;    Process    of   treating   in   the    electric 

flame  arc.    P.  Real.     G.P.  356,413,  15.1.21. 

Rotating  disc-electrodes  provided  with  wind  vanes 
are  arranged  in  star  formation  in  vertical  planes 


disposed  radially  about  a  common  axis  coinciding 
with  the  direction  in  which  the  gas  to  be  treated 
is  fed  to  the  arc. — J.  S.  G.  T. 

Carbon  electrodes;  Process  of  increasing  the  dura- 
bility and  conductivity  of  .     A.  Bergstrom 

G.P.   354,773,   30.4.19. 

Carbon  electrodes  are  impregnated  with  a  mixture 
of  solutions  of  a  metallic  salt  and  of  carbon  com- 
pounds and  then  heated  to  a  high  temperature. 
In  this  manner  the  reduction  of  the  metallic  salt 
to  metal  is  not  effected  at  the  expense  of  the  elec- 
trode—J.  S.  G.  T. 

Electrolytic  tanks  with   diaphragm,  cells;  Arrange- 

ment  in  - ■.     G.   Haglund.     U.S.P.   1,426,071, 

15.8.22.    Appl.,  10.9.20. 

See  E.P.  151,260  of  1920;  J.,  1921,  121  a. 

See  also  pages  (a)  737,  Discharge  electrode  (U.S.P 
1,425,637);  Electrical  precipitation  (G.P.  349,737, 
352,901,  and  354,783).  741,  Transformer  oil  (U.S.P. 
1.425,645).  752,  Hydrochloric  acid  (G.P.  355,387). 
753,  Potassium  bicarbonate  (E.P.  184,244).  754, 
Mercury  (G.P.  356,507).  764,  Electrolytic  iron 
(G.P.  310,043).  766,  Smelting  and  electrolys- 
ing (U.S.P.  1,-426,507).  Electroplating  (U.S.P. 
1,426,141);  Tin  (G.P.  299,791  and  299,794)  767, 
Coating  metallic  articles  (G.P.  354,693).  770,  Soap 
(G.P.  354,234). 


XIL-FATS;  OILS;  WAXES. 

Oil  seeds;  Certain  tropical .    E.  R.  Bolton  and 

D.  G.  Hewer.     Analyst,  1922,  47,  282—284. 

The  following  seeds  are  described  and  the  percent- 
age of  shell,  kernel,  and  of  oil  in  the  kernel  are 
given,  together  with  full  analytical  characters  of 
the  oils  obtained  from  them: — Bacury  (Platonia 
insignis)  kernels,  Andirobinha  or  Mapia  seeds, 
Bey  beans  (Baillonella  sp.),  Parinarium  seeds,  and 
the  seeds  of  Theobroma  grandifolia  and  bicolor. 

— H.  C.  R. 

Soya  bean  oil;  Composition  of .    W.  B.  Smith. 

j.  Ind.  Eng.  Chem.,  1922,  14,  530—531. 

The  composition  of  the  acids  of  soya  bean  oil  having 
an  iodine  value  of  134  (calculated  as  percentages  of 
the  original  oil)  is  approximately  as  follows:  — 
Linolenic  acid,  2 — 3;  linolic  acid,  55 — 57;  oleic  acid, 
26—27;  saturated  fatty  acids,  9— 10%.— W.  P.  S. 

Beef   bone  fat  and  neat's  foot    oil.      H.   Eckart. 
Z.  Unters.  Nahr.  Genussm.,  1922,  44,  1—29. 

The  bones  are  first  boiled  in  open  kettles,  whereby 
the  adhering  flesh  is  removed  and  the  best  quality 
fat  is  obtained,  but  the  cartilage  is  practically 
unchanged.  The  bones  are  then  transferred  to 
digesters  and  treated  with  hot  water  and  stenm 
at  0'5- — 1'5  atm.  pressure  for  4 — 6  hrs.  The  fat 
thus  obtained  from  fresh  bones  is  of  a  light  yellow 
colour  and  faint  aromatic  odour  and  can  be  used 
without  refining  as  an  edible  fat,  the  free  tatty 
acids  not  amounting  to  more  than  1'5  %  (as  oleic 
acid).  Details  of  the  yields  obtained  in  practice 
are  given,  the  average  yield  of  fat  from  bones  being 
12"6%  and  that  of  oil  from  the  hoofs  being  9'3%.  A 
table  of  analytical  characters  of  bone  fats,  marrow 
fats,  kidney  fats,  and  neat's  foot  oils  as  obtained 
by  the  author  from  a  well-nourished  animal  and 
as  found  in  commerce  is  given.  The  rate  of 
increase  in  free  fatty  acids  shown  by  bone  fat  and 
neat's  foot  oil  on  storage  depends  on  the  con- 
ditions of  storage  and  is  much  more  rapid  if  the 
sample  is  exposed  to  the  action  of  light  and  air 
than  if  it  is  stored  in  the  dark  and  sealed  up.  In 
the  case  of  the  solid  fat  exposed  to  light  and  air 
an  autocatalytic  hydrolysis  appears  to  take  place, 
while  in  the  case  of  the  oil  the  hydrolysis  appears 


Vol.  XIX,  No.  19.] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


769  a 


to  be  a  mononiolecular  reaction.  Measurement  of 
the  surface  tension  of  neat's  foot  oils  by  the  drop- 
pipette  method  gave  values  varying  from  26' 7  to 
297  dynes  per  sq.  cm.  at  50°  C.  The  mixed  ethyl 
esters  of  the  fatty  acids  from  bone  fat  were  pre- 
pared and  their  analytical  constants  recorded. 
The  compositions  of  beef  bone  fat  and  neat's  foot 
oil  are  as  follows  :  — Stearic  acid  19 — 21  % ,  2 — 3  %  ; 
palmitic  acid,  20 — 21%,  17 — 18%;  oleic  acid, 
53—59%,  74-5—76-5%;  glycerol,  5—10%  in  both 
cases;  unsaponifiable  matter,  about  05%  and  0T — 
0'5%  respectively.  The  presence  of  cholesterol  in 
the  unsaponifiable  matter  in  each  case  was  con- 
firmed. Tristearin  was  definitely  identified  as  a 
constituent  of  beef  bone  fat. — H.  C.  R. 

Hardened  fats;  Ability  of  to  hold  water  in 

suspension.     K.    Brauer.     Chem.-Zeit.,  1922,  46, 
793—794. 

Samples  of  hardened  and  other  fats  used  in  the 
manufacture  of  margarine  were  melted  and  agi- 
tated with  water  and  the  percentage  of  water  in 
the  emulsion  determined  both  before  and  after  the 
removal  of  as  much  as  possible  by  pressing.  The  fol- 
ilowing  figures  were  obtained :  Hardened  whale  oil, 
89%,  23%  ;  hardened  soya  bean  oil,  25%,  7%  ;  hard- 
ened herring  oil,  18'6%,  9'9%  ;  hardened  linseed  oil, 
'96%,  5-8%;  coconut  oil,  6'4%,  3'6%  ;  tallow,  15%, 
'10'8%.  The  striking  ability  of  hardened  whale  oil 
,to  take  up  water  and  retain  it  even  after  pressing 
is  suggested  as  a  means  of  distinguishing  between 
it  and  other  hard  fats.— H.  C.  R. 

Tvntchell's  reagent;  Constitution  of .       A.  E. 

'    Sandelin.     Anna].  Acad.  Scient.  Fennicae,  1922, 

[A]  19.    (19  pages.)    Chem.  Zentr.,  1922,  93,  IV., 

508—509. 

Hydroxy  stearic  acid,  hydroxystearosulphuric  acid, 
ind    o-   and   yO-naphthalenesulphonic    acids   possess 
,io  fat-hydrolysing  properties,  but  a  compound  with 
eeble  fat-hydrolysing  properties  is  obtained  when  a 
aixture  of  hydroxystearosulphuric  acid  or  hydroxy- 
tearic    acid    and    o-naphthalenesulphonic    acid    is 
.reated  with  sulphuric   acid.      By   oxidising  Twit- 
hell's  reagent  with  alkaline  potassium  permanga- 
ate,  an  acid  was  obtained  the  lead  salt  of  which 
ad  the  empirical  formula,  C18H8013Pb3.     Analysis 
idicated  a  tricarboxybenzene.     The  free  acid  con- 
sted  of  prisms  of  m.p.   189°— 190°  C,  soluble  in 
ther,  alcohol,  and  acetone,  but  only  slightly  soluble 
l  light  petroleum  spirit,  carbon  tetrachloride,  and 
lloroform.     The  sodium   and   potassium  salts   are 
isily   soluble,   the-  barium  salt  slightly  soluble   in 
ater.      The   silver   salt    is   soluble    in    hot   water. 
nalysis  of  the  free  acid  gave  the  formula  C8H,Os, 
id  it  is  in  all  probability  hemimellitic  acid.     The 
fficultly  soluble  barium  salt  of  another  acid,  ben- 
ne-1.2-dicarboxy-4-sulphonic    acid,    was    also    iso- 
ted.     The  formation  of  these  two  acids  leads  to  the 
nclusion   that  Twitchell's   reagent   is   formed    by 
mbination  of   the   naphthalene   with   the  double 
•nd  of  the  oleic  acid  and  sulphonation  of  the  addi- 
>n    product,    and    that    it    has    the  constitution 
.HjAC.oH.SOaH.      In  all  probability  fat-hydro- 
iing    agents     prepared    from     naphthalene    and 
anoleic   acid,   castor   oil  or   their   hydrogenation 
iiducts     are     of     analogous     constitution.      The 
Kontakt "  fat-hydrolyser  is,  on  the  other  hand, 
1   different  constitution,    for    here   the   sulphonic 
r  d  of  high  molecular  weight  contains  no  carboxyl 
imps— H.  C.  R. 

'  t-hydrolysing  catalysts.    A.  E.  Sandelin.    Annal. 

Vcad.  Scient.  Fennicae,  1922,  [A]  19.    (13  pages.) 

3hem.  Zentr.,  1922,  93,  IV.,  509. 
-  B  reagents  prepared  from  petroleum  (Happach) 
a  1  naphtha  contain  no  carboxyl  groups.     All  these 
i  gents  have  the  following  properties  in  common. 
1  -y  are  of  high  molecular  weight,   are  sulphonic 


acids,  easily  soluble  in  water  and  can  be  precipi- 
tated by  the  addition  of  acids  or  sodium  chloride 
solution ;  they  are  easily  soluble  in  alcohol  and 
slightly  soluble  in  ether.  Their  aqueous  solutions 
foam  strongly,  as  also  do  solutions  of  their  alkali 
salts,  which  are  soluble  in  ailcohol.  Their  alkaline- 
earth  and  metallic  salts  are  amorphous  and  in- 
soluble in  water,  but  are  often  soluble  in  alcohol. 
Their  action  in  the  hydrolysis  of  fats  is  due  first  to 
their  action  as  emulsifiers  of  fat  with  water  and 
secondly  to  the  fact  that  they  are  strong  acids  and 
as  such  accelerate  the  hydrolysis.  Their  action  is 
intensified  by  the  addition  of  sulphuric  acid.  Many 
sulphonic  acids  of  high  molecular  weight  have  been 
prepared,  such  as  those  from  oleic  acid  with  toluene, 
cymene,  terpenes,  alcohols,  and  benzene,  thymol,  or 
naphthalene,  and  their  fat-hydrolysing  action  has 
been  tested.  All  had  considerable  effect  as  fat- 
hydrolysers,  with  the  exception  of  those  prepared 
from  oleic  acid  and  toluene  or  cymene.  The  failure 
of  those  .is  no  doubt  due  to  the  decomposition  of 
the  sulphonic  acids  by  boiling  water. — H.  C.  R. 

Unsaponified  fat   in  soap;  Determination  of  ■. 

O.  Hagen.     Seifensieder-Zeit.,  1922,  49,  359—361. 
Chem.  Zentr.,  1922,  93,  IV.,  330. 

If  petroleum  spirit  is  used  in  this  determination 
very  troublesome  emulsions  are  usually  met  with, 
while  with  ether,  although  with  care  emulsions  can 
be  avoided,  considerable  amounts  of  soap  are  dis- 
solved. The  following  method  is  suggested  as  over- 
coming the  difficulties.  The  soap  is  cut  into 
shavings  and  completely  dried  at  100°  C.  It  is  then 
mixed  with  about  5  times  its  weight  of  sand  and 
extracted  with  petroleum  spirit  (b.p.  below  60°  O.) 
in  a  Dittmar  and  Vierth's  rapid  extractor.  The 
extraction  is  complete  in  1^ — 2  hrs.  and  the  extract 
is  evaporated  to  dryness.  The  determination  can 
be  completed  in  a  day. — H.  C.  R. 

Patents. 

Oils  and  fats;  Process  for  purification  of .     N. 

Goslings.  E.P.  167,462-3,  22.6.21.  Conv.,  3.8.20. 
The  free  fatty  acids  are  neutralised  with  alkaline- 
earth  or  metallic  hydroxides  and  other  bases  which 
form  insoluble  soaps  with  the  fatty  acids,  a  soluble 
salt  being  added  to  the  bases  in  such  quantity  as  is 
necessary  nearly  to  saturate  the  water  used  for 
dissolving  or  suspending  the  bases.  The  quantity 
of  neutral  fat  carried  down  with  the  soap  is  by  this 
means  reduced  to  5 — 12%.  In  the  case  of  liquid 
fats  and  oils  the  soap  produced  is  hardened  by  the 
incorporation  of  a  small  quantity  of  solid  fatty  acids 
with  the  oil  before  neutralising  it. — H.  O.  R. 

Cottonseed;    Method     of    delinting    .      L.    G. 

Polhamus.      TJ.S.P.    1,425,688,    15.8.22.      Appl., 

19.4.22. 
The  cotton  seed  is  exposed  to  the  action  of  gaseous 
hydrochloric  acid  for  about  one  hour  to  render  the 
lint  extremely  brittle,  and  is  then  agitated  to  re- 
move the  lint.  The  seed  is  subsequently  exposed 
to  the  action  of  gaseous  ammonia. — H.  C.  R. 

Fish  oil  and  the  like;  Apparatus  for  treating  

with  ozone.  J.  C.  W.  Stanley,  Assr.  to  The  Title 
Guarantee  and  Trust  Co.  U.S.P.  1,425,803, 
15.8.22.  Appl.  21.3.21. 
The  apparatus  comprises  a  chamber  containing  in 
its  upper  portion  an  oil  receiver  with  a  perforated 
bottom.  A  reservoir  is  provided  for  receiving  the 
oil  discharged  from  a  chamber  and  is  connected 
with  it  by  a  pipe ;  a  pump  is  arranged  to  circulate 
oil  through  the  chamber.  There  are  also  means  for 
passing  air  through  an  ozoniser  and  then  through 
the  chamber,  and  for  passing  heated  air  through  the 
chamber. — H.  C.  R. 

o  2 


770a 


Cd.  xm.— PAINTS  ;    PIGMENTS  ;   VARNISHES  ;   KESINS. 


[Oct.  16,  1922. 


Catalysts;    Non-pyrophoric   and    process    for 

effecting  reactions  [hydrogenation~\  therewith. 
N.  Sulzberger.  U.S.P.  1,426,517,  22.8.22. 
Appl.,  11.9.16. 
The  catalyst  comprises  a  black,  non-pyrophoric, 
magnetic,  catalytically  active  reduction  product 
of  a  reducible  nickel  compound,  reduced  by  a  wet 
process  and  in  the  presence  of  a  metal  of  the  plati- 
num group.  The  product  contains  nickel  and 
the  metal  of  the  platinum  group  in  an  intimate 
state  of  combination. — H.  C.  R. 

Hydrogenation;  Catalyst  for and  the  prepara- 
tion thereof.  C.Ellis.  U.S.P.  1,426,629,  22.8.22. 
Appl.,  23.12.13. 
A  nickel  compound  capable  of  being  converted  into 
a  catalyst  and  an  insoluble  sulphate  capable  of 
acting  as  an  accelerator  are  precipitated  together. 

— H.  C.  R. 

Hydrogcnating    catalyst.        G.    Teicbner.        U.S.P. 

1,427,037,  22.8.22.  Appl.,  29.9.20. 
A  precipitated  non-coherent,  loose,  amorphous  com- 
pound of  nickel  is  reduced  in  a  dry  6tate  at  such  a 
low  temperature  that  cohesion  or  slagging  of  the 
particles  is  avoided,  while  the  interior  of  each  par- 
ticle is  left  unreduced. — H.  0.  R. 

Catalyst  [for  hydrogenation'];  Process  of  manufac- 
turing   .     A.  W.  Arldt.     G.P.  356,614,  23.4.16. 

The  metals  or  reducible  metallic  compounds  em- 
ployed to  produce  the  catalyst  are  impregnated  with 
a  substance  such  as  sugar  or  fatty  oil,  which  is  then 
carbonised  by  means  of  concentrated  sulphuric  acid 
at  ordinary  temperature.  A  similar  treatment  with 
sulphuric  acid  may  be  employed  for  the  revivifica- 
tion of  spent  catalysts  poisoned  with  organic  resi- 
dues, e.g.,  oil. — J.  S.  G.  T. 

Oils  and  fats;  Method  of  and  apparatus  for  crystal- 
lising   .     H.  H.  Doering.     U.S.P.  1,426,555, 

22.8.22.  Appl.,  16.2.20. 
A  stream  of  hot  oil  is  introduced  at  the  bottom  of 
a  body  of  cold  water  and  a  jet  of  compressed  air 
discharged  adjacent  to  the  point  at  which  the  oil 
is  introduced,  so  that  the  oil  is  broken  up  into  small 
particles  prior  to  solidifying  into  crystals. — H.  O.  R. 

Soaps;  Process  for  the   electrolytic  production  of 

.     A.  Sandreczki.     G.P.  354,234,  3.2.20. 

The  electrolyte  is  a  mixture  of  fat  and  salt  solution. 
It  is  caused  to  stream  past  the  cathode  by  heating 
it  or  by  other  means.  The  two  electrodes  are  in 
the  form  of  hollow  cylinders  with  a  common  axis 
and  separated  by  a  diaphragm.  Within  the  inner 
cylinder  is  a  stirring  device  which  causes  the  liquid 
inside  this  electrode  to  be  projected  over  the  edge 
into  the  annular  space  between  the  two  electrodes, 
from  which  space  it  passes  under  the  inner  elec- 
trode and  is  again  carried  up  by  the  stirring  device, 
so  that  it  is  kept  in  circulation  during  the  electro- 
lysis.—H.  C.  R. 

Detergent  with  disinfecting  properties.    E.  Cham- 

berlin.    E.P.  184,248,  3.5.21. 
A  detergent  and  disinfectant  solution  is  prepared 
by  boiling  together  a  mixture  in  water  of  sodium 
carbonate     and      potassium     permanganate     with 
animal  charcoal  and  filtering  the  mixture. 

— H.  C.  R. 

Lime  sludge;  Process  for  completely  removing  the 

soap    from   .      P.    Krebitz.      G.P.    355,492, 

22.4.20. 
Before  treating  the  lime-sludge  with  water  in  the 
usual  manner,  coconut  or  palm-kernel  oil  soap  is 
added  to  the  extent  of  at  least  25%   of  the  total 
soap   content   of   the   sludge.     Alternatively    resin 


soap  may  be  added  to  the  lime-sludge  to  the  extent 
of  at  least  20%  of  its  total  soap  content.  If  the 
original  mixture  of  fats  consists  only  of  animal 
fats,  hardened  oils,  olive  or  palm  oils,  or  any  fats 
or  oils  of  which  the  alkali  soaps  are  strongly  hydro- 
lysed  on  dilution  with  water,  it  is  very  difficult  to 
remove  the  soap  from  the  lime-sludge,  which  can 
neither  be  filtered  nor  centrifuged.  By  following 
this  process  any  mixture  of  fats  can  be  treated 
according  to  Krebitz's  process  (J.,  1904,  490;  1906, 
188,  434).— H.  C.  R. 

Sulphurised  oils.     G.P.  354,172.     See  XIV. 

Converting  organic  acids  into  esters.    E.P.  183,897. 
See  XX. 


XIII.-PAINTS;  PIGMENTS;    VARNISHES; 
RESINS. 

Carbon  black — its  manufacture,  properties  and 
uses.  R.  0.  Neal  and  G.  St.  J.  Perrott.  U.S. 
Bureau  of  Mines,  Bull.  192,  1922.     95  pp. 

Carbon   black,    in  contradistinction   to  lampblack, 
vegetable  black,  etc.,  is  obtained  by  direct  contact 
of  a  flame  of  natural  gas  upon  a  depositing  sur- 
face  under   conditions   of    incomplete   combustion. 
Attempts  to  obtain  carbon  black  by  thermal  decom- 
position   or   cracking   processes   have  hitherto  not 
been   commercially   successful    on    account   of  the 
relative  inferiority  of  the  products  obtained,  whilst 
processes  purporting  to  increase  the  yield  of  carbon 
by  effecting  combustion  in  the  presence  of  chlorine 
have   been   found   to   occasion   undue    depreciation 
of  the  apparatus    involved.       The    production    of 
carbon   black   from    coal   gas   or    other    artificially 
made  combustible  gas,  although  claimed  to  yield  a 
finer  and  blacker  product,  has  not  been  undertaken 
commercially  owing  to  the  prohibitive  price  of  the 
raw   material    in     comparison    with   natural     gas, 
which   latter  yields  a  handsome   profit  in  spite 
the  low  efficiency  of  the  present  combustion 
cesses,  viz.,  2'5%  recovery.     The  methods  of  manu- 
facture  of   carbon   black   from    natural   gas   differ 
mainly  in  the  size  and  shape  of  the  surface  upon 
which  the  carbon  is  collected  and  the  rate  of  travel 
of  the  moving  parts  of  the  apparatus.     Generally 
speaking,  the  combustion  plant  consists  essentially 
of  a  combustion  building  furnished  with  means  for 
regulating  air  supply  and  ventilation  at  both  inlet 
and  outlet,  and  provided  with  -burners  adapted  to 
play   their   flames    upon   collecting   surfaces.      The 
latter  vary  in  design  as  the  names  of  the  several 
processes  denote,  and  in  decreasing  order  of  output 
comprise  (1)   the    channel    process,    (2)   the    small 
rotating  disc  process,   (3)  the  large  plate  process, 
and  (4)  the  roller  process.     In  the  channel  process 
the     flames     from     a    number   of   fishtail-mouthed 
steatite-tipped  burners  are  caused  to  impinge  on 
to   the  under  surface    of    travelling  iron   channel 
girders   arranged   horizontally   side   by   side   alon? 
the  length  of  the  combustion  chambers,  the  depo- 
sited carbon  being  detached  by  stationary  scrapers. 
A  typical  combustion  building  would  contain  about 
38,400  burners.     In  the  small  disc  process  the  col- 
lecting surfaces   consist  of   rotating   discs   of  cast 
iron   36 — 42   in.    in   diameter,    on    the    under  Bide 
of      which     the     flames      impinge.      The     plate; 
used   in  the   large   plate  or  Cabot  process  have  a 
diameter  of   24   ft.,   the   plates   being  made  of  48 
segments.      The   plates   are  fitted   with   ventilator 
holes  to  allow  the  products  of  combustion  to  escape 
and  maintain  a  draught.     The  rotating  plates  arc 
furnished  with  scrapers  and  the  operation  is  some- 
what similar   to  that  of  the  other   processes,  M 
owing  to  relative  lightness  of  the  supporting  con 
struction   and  slow   movement   of   rotation   of  the 


Vol.  XIX,  No.  19.]  Cl.  XIII.— PAINTS  ;    PIGMENTS  ;   VABNISHES  ;    RESINS. 


771a 


plates,  very  little  power  is  consumed  in  operation. 
In  the  roller  or  rotating  cylinder  process  tho  flames 
from  round  burners  impinge  on  horizontally  sup- 
ported rollers  or  cylinders  3 — 8  ft.  in  length  and 
,31  in.  outside  diameter,  disposed  transversely  to  the 
length  of  the  building.     The  scrapers  are  in  con- 
tact with  the  roller  at  or  near  the  top,  whence  the 
[deposited  carbon  falls  into  a  trough-shaped  hopper 
in   the   bottom    of   the   combustion    chamber.        A 
typical   building  contains   10,000  burners   and  196 
jx>  288  rollers.     The  temperature  of  combustion  and 
;he  careful  regulation  of  the  air  supply   play  an 
mportant  part  in  determining  the  yield  and  nature 
■>f  the  black  obtained,  an  insufficiency  of  air  fur- 
lishing  a  carbon  black  containing  absorbed  inter- 
mediate products  of  incomplete  combustion  appear- 
;ng  as   "volatile  matter"     on    analysis.      Such   a 
iroduct  yields    a    "  longer  "   black  of  lower  fixed 
arbon  content,   a  property  in  particular  demand 
lor   certain   purposes.     The   paper   concludes   with 
nalyses    of    typical   blacks    of    proprietary    makes 
nd  specifications  of  material  suitable   for  use   in 
jhe  several  industries  of  printing  ink,  rubber,  etc., 
,ogether    with   a   bibliography  of   the   patent   and 
;echnical  literature  relating  to  carbon  black  manu- 
acture. — A.  de  W. 

i'hellac;  Solubility  of  in  alkalis  or  alkaline 

talts.     H.  Wolff.     Farben-Zeit.,  1922,  27,  3130— 
i;  3131. 

I  he  solution  of  shellac  in  solutions  of  sodium  car- 
ijonate,  borax,  etc.,  is  not  due  to  chemical  com- 
bination of  the  base  with  the  free  aleuritic  acid  or 
Ijie  neutral  saponifiable  compound  present  in  the 
Ijiellac  in  amount  corresponding  to  its  ester  value, 
Hjnce  the  resin  dissolves  in  slightly  warm  sodium 
■fiirbonate  solution  without  a  corresponding  evolu- 
tion of  carbon  dioxide.  Furthermore,  when  shellac 
ILssolved  in  just  a  sufficient  amount  of  sodium 
i Lrbonate  solution  is  completely  dried,  the  residue 

II  no  longer  soluble  in  water  but  merely  swells,  the 
I'grce  of  swelling  diminishing  with  each  successive 

■Tying  operation,  as  with  a  typical  colloid.  The 
lilution  process  is  therefore  in  the  nature  of  a  pep- 
tization. The  author  claims  to  have  obtained  a 
jlater-peptisable  residue  by  evaporation  of  the  sol 
iitained  by  pouring  an  alcoholic  solution  of  shellac 
to  water ;  the  residue,  however,  proved  to  be  in- 
Ijlublo  in  alcohol  until  its  solubility  in  water  was  lost 
■  ageing.  The  loss  of  alcohol-solubility  in  bleached 
■ellac  is  attributed  to  the  coagulating  effect  of 
l|  drogen-ions  from  the  precipitation  by  acid,  the 
Maintenance  of  solubility  by  storage  under  water 
■ing  in  consequence  due  to  a  diminution  of 
Mdrogen-ion  concentration.— A.  de  W. 

■:sins;    Relation    between    the     constitution    of 
mchemical  compounds  and  their  capacity  to  form 

II .     //.  New  method  for  production  of  synthetic 

mresins.  W.  Herzog  and  J.  Kreidl.  Z.  angew. 
■3hem.,  1922,  35,  465—466.     (Cf.  J.,  1921,  478  a.) 

Ihen  heated  at  180°  C.  in  a  stream  of  carbon 
oxide  dibenzylideneacetone  is  gradually  con- 
■"ted  into  a  polymeric  resinous  compound,  which 
I  Its  between  85°  and  95°  0.  and  is  soluble  in  ether, 
"1  lzene,  and  turpentine.  Analogous  compounds, 
*..,  dianisylideneacetone,  dicinnamylideneacetone, 
Mizylidenecinnamylideneacetone,  difurylideneace- 
•  e  and  dipiperonylideneacetone  give  similar  pro- 
ffi.ts.  The  capacity  to  polymerise  in  this  way  with 
f  mation  of  resins  is  attributed  to  the  CH:CH"CO 
t  mping,  which  is  regarded  as  "  resinophoric  "  ; 
t  •  additional  presence  of  ethylenic  linkages  is 
Ijourable  to  the  change.  The  grouping  N:C:N 
t  previously  been  shown  to  possess  resinophoric 
I  racter— D.  F.  T. 

p  lead  and  lead  sesquioxide.  Glasstone.  See  VII. 


Patents. 

Bed   oxide   of  iron;     Manufacture   of .       D. 

Tyrer.     E.P.  183,323,  8.6.21. 

Ferric  oxide  of  good  red  colour  can  be  obtained 
by  exposing  dry  granular  ferrous  chloride  {e.g., 
from  galvaniser's  waste)  in  thin  layers  to  the  action 
of  a  mixture  of  steam  and  air  heated  to  250° — 
300°  C. ;  the  best  mixture  is  obtained  by  passing 
air  at  ordinary  temperature  through  water  at  60°  C. 
The  condensed  liquid  obtained  by  cooling  the  mix- 
ture of  air  and  excess  steam  should  not  attain  a 
greater  concentration  than  30  g.  of  hydrochloric 
acid  per  100  c.c.  The  action  may  be  accelerated 
and  the  colour  of  the  product  enhanced  by  the  addi- 
tion to  the  ferrous  chloride  of  a  considerable  pro- 
portion of  ferric  hydroxide  or  ferrous  carbonate  or 
of  0'1 — 1%  of  salts  of  copper,  magnesium,  tin, 
sodium  or  potassium. — D.  F.  T. 

Inks  and  other  pigmenting  and  like  compositions. 

A  de  Waele.  E.P.  183,513,  19.3.21. 
The  vehicle  for  the  colouring  matter  consists  of  an 
emulsion  or  emulsoid  of  which  the  component  mate- 
rials, e.g.,  Yorkshire  grease  (from  the  waste  liquor 
of  wool  washing)  and  water,  possess  "  yield  values  " 
(cf.  Bingham  and  Green,  J.,  1920,  495  a)  materially 
lower  than  the  yield  value  of  the  vehicle  as  a  whole. 
The  oily  material  normally  forming  the  more  vis- 
cous constituent  may  be  mixed  with  a  mineral  oil 
or  other  organic  solvent.  With  a  vehicle  of  York- 
shire grease  and  water  the  latter  may  amount  to 
50 — 250%  of  the  former,  and  the  pigment  may  be  a 
water-soluble  dyestuff,  such  as  Nigrosine. — D.  F.  T. 

Pigments;  Process  of  preparing from  titanium 

compounds  contaminated  with  sulphuric  acid. 
G.  Carteret  and  M.  Devaux.  E.P.  184,132, 
27.7.21. 
Titanic  oxide  which  has  been  washed  with  sulphuric 
acid,  or  other  titanium  compound  contaminated 
with  sulphuric  acid  is  treated  with  an  alkaline- 
earth  chloride  in  solution,  the  free  hydrochloric 
acid  formed  being  eliminated  by  washing  with 
milk  of  lime  or  milk  of  baryta  and  the  titanic 
oxide  finally  dried. — A.  de  W. 

Pigment  and  method  of  producing  same.  P.  Fire- 
man, Assr.  to  Magnetic  Pigment  Co.  U.S. P. 
1,424,635,  1.8.22.  Appl.,  31.5.19. 
Precipitated  ferrous  hydroxide  is  oxidised  whilst 
suspended  in  its  mother  liquor,  the  oxidation  being 
controlled  by  limiting  the  temperature  during  the 
early  stages  of  oxidation  to  a  point  below  that  at 
which  black  oxides  form. — D.  F.  T. 

Pigment  and  pigment  composition.  K.  B.  Lamb, 
Assr.  to  The  American  Cotton  Oil  Co.  U.S.P. 
1,424,729,  1.8.22.  Appl.,  27.4.21. 
An  intensely  black  pigment  is  produced  by  heating 
spent  fuller's  earth,  with  stirring,  until  the  oil 
present  is  ignited  and  is  finally  consumed. 

—D.  F.  T. 

Paint  composition.  K.  B.  Lamb,  Assr.  to  The 
American  Cotton  Oil  Co.  U.S.P.  1,424,414, 
1.8.22.  Appl.,  2.2.22. 
The  black  pigment  obtained  by  carbonising  spent 
fuller's  earth  under  suitable  conditions  is  mixed 
with  other  black  pigments  and  a  drier  and  in- 
corporated with  a  paint  vehicle. — D.  J.  N. 

Condensation  products  from  phenols  and  aldehydes; 

Manufacture  of  .  Bakelite-Ges.  m.b.H.,  and 

R.  Hessen.     E.P.  159,461,  15.2.21.     Conv.  1.3.20. 

By  treating  the  primary  product  obtained  by  the 
condensation  of  formaldehyde  and  a  phenol  in  the 
presence  of  a  basic  condensation  agent,  with  suffi- 
cient acid  or  acid-forming  substance  approximately 


772  i 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTA-PERCHA. 


(Oct.  16,  1922. 


to  neutralise  the  base,  it  is  possible  to  produce 
"  resoles,"  i.e.,  resins  which  form  infusible  masses 
("  resites  ")  when  heated.  Using  a  higher  propor- 
tion of  acid,  albeit  insufficient  to  effect  direct  con- 
version into  "  resites,"  a  "  novolak,"  i.e.,  a  resin 
which  cannot  be  converted  into  an  infusible  mass 
by  heat,  is  obtainable.— D.  F.  T. 

Oil  and  varnish   colours  miscible   with   water.     F. 

Giinter.  E.P.  183,177,  7.3.21. 
A  watery  paste  of  the  colouring  material  is  emulsi- 
fied together  with  binding  agents  (e.g.,  drying  oils) 
insoluble  in  water,  in  the  presence  of  volatile 
stabilising  agents,  such  as  alcohol,  pyridine,  ace- 
tone, or  naphthenic  acid,  and  which  are  soluble 
both  in  water  and  in  the  binding  agent.  As  an 
alternative,  alkali  salts  of  the  fatty  acids  and  of 
resin  acids  may  be  employed  as  stabilisers,  in  which 
case  an  element  such  as  sulphur,  phosphorus,  or 
selenium,  capable  of  forming  an  acid  by  slow  oxida- 
tion, is  added  to  the  emulsion. — D.  F.  T. 

Besins;    Preparation    of    synthetic    .     D.    G. 

Anderson    and    R.     Maclaurin.      E.P.    183,629, 

17.5.21. 
Synthetic  resins  are  produced  by  the  condensation 
of  formaldehyde  with  the  monohydric  phenolic 
substances,  boiling  between  230°  and  320°  C, 
present  in  tars  obtained  by  the  low  temperature 
distillation  of  coal.— D.  F.  T. 

Rosin;  Means  for  extracting  crude  spirits  aiid ' 

from  yellow  and  green  pine  stumps.  J.  M.  Jor- 
don.  U.S. P.  1,424,248,  1.8.22.  Appl.,  10.1.21. 
The  wood  is  supported  inside  a  vertical  cylindrical 
chamber  which  is  surrounded  by  a  steam  and  water 
space.  The  water  in  the  annular  jacket  is  heated 
by  means  of  a  fire-box  constructed  inside  the 
jacket.  The  extracted  turpentine  collects  in  the 
funnel-shaped  bottom,  which  is  provided  with  an 
outlet  pipe.— D.  F.  T. 

Resinous  condensation  products  of  aldehydes  and 

phenols;  Preparation  of  .     A.  Koch.     G.P. 

354,697,  13.4.20. 
The  condensation  product  of  a  phenol  and  an  alde- 
hyde is  treated,  during  or  after  its  formation,  with 
hydrogen,  preferably  at  elevated  temperatures  and 
under  pressure,  in  the  presence  of  any  of  the  usual 
metallic  catalysts,  e.g.,  reduced  nickel  or  colloidal 
nickel,  platinum,  or  palladium,  in  the  presence  of 
a  protective  colloid.  For  example,  hydrogen  is 
passed  at  80°  C.  and  under  3  atm.  pressure  through 
the  anhydrous  liquid  condensation  product  obtained 
from  phenol  and  a  40%  aqueous  solution  of  formal- 
dehyde, in  the  presence  of  ammonia,  until  no 
further  absorption  of  gas  occurs,  finely  divided 
nickel  being  used  as  a  catalyst.  The  product  is 
filtered,  washed,  and  concentrated.  On  heating  it 
becomes  hard,  and  is  then  soluble  in  alcohol,  ace- 
tone, and  caustic  soda.  It  is  odourless  and  has  a 
higher  melting  point  than  that  of  the  resin 
obtained  under  the  same  conditions  without 
hydrogenation.  Similar  products  may  be  obtained 
by  passing  hydrogen  through  a  solution  of  resins 
(obtained  from  aldehydes  and  phenols)  in  suitable 
organic  solvents  not  containing  double  linkings, 
e.g.,  alcohol,  in  the  presence  of  finely  divided 
nickel.— A.  R.  P. 

Resinous  products  from  phenols  methylated  in  the 

nucleus;    Process    for    preparing    .     Chem. 

Fabr.    vorm.     Weiler-ter    Meer."    G.P.     &55.173, 
3.2.20,  and  355,174,  24.8.20. 

Cresoi,,  chlorocresol,  or  higher  homologues  are 
treated  with  chlorine  at  temperatures  above  100°  C. 
until  nearly  free  fiom  substances  volatile  in  steam, 
and  the  residue,  on  cooling,  solidifies  to  a  hard 
amorphous  mass.      Alternatively  the  cresoi  or  the 


like  may  be  saturated  with  chlorine  at  ordinary  or 
slightly  higher  temperatures,  and  the  resulting 
product  heated  above  100°  C,  under  reduced  pres- 
sure if  necessary.  The  products,  according  to  the 
chlorine  content,  are  soluble  in  alcohol,  acetone, 
ether,  and  alkalis.  When  the  chlorine  content  is 
high  the  products  are  soluble  only  in  benzene  hydro- 
carbons. They  can  be  used  for  the  preparation  of 
dark  or  black  varnishes  and  have  a  strong  bacteri- 
cidal action. — J.  B.  F. 

Resinous   condensation  products  of  phenols;  Pre- 
paration   of    .     Dvnamit    A.-G.     vorm.    A. 

Nobel  und  Co.     G.P.  355,389,  4.1.20. 

Halogenated  aromatic  hydrocarbons  of  the  type 
R.CrlX2  are  heated  with  phenols  in  the  presence 
of  a  small  quantity  of  a  metal  halide.  Thus,  benzal 
chloride  is  heated  with  either  phenol,  in  the 
presence  of  zinc  chloride  at  50° — 100°  C.,  or  with 
m-cresol,  in  the  presence  of  aluminium  chloride  at 
70°  C,  until  hydrogen  chloride  is  no  longer 
evolved,  and  the  excess  phenol  or  cresoi  is  removed 
by  steam  distillation.  An  odourless,  light-coloured 
resin,  which  is  soluble  in  caustic  alkalis,  methyl 
alcohol,  ethyl  alcohol,  benzene,  and  chloroform,  is 
thus  obtained.  Similar  products  are  obtained  from 
homologues  of  benzal  chloride  or  from  derivative* 
containing  halogen  atoms  in  the  nucleus. — A.  R.  P. 


XIV.-INDIA-RUBBEB;  GUTTA-PEGCHA. 

\_Rubber~\  latex;  Application  of  hydrogen  sulphide 

and  sulphur  dioxide  gases  direct  to .     H.  P. 

Stevens.     Bull.  Rubber  Growers'  Assoc,  1922,  4, 
386—387. 

It  is  not  possible  to  vulcanise  the  rubber  globules 
of  latex  with  hydrogen  sulphide  and  sulphur 
dioxide.  The  gases  under  these  conditions  merely 
dissolve  in  the  aqueous  serum,  and  there  react, 
producing  molecular  sulphur. — D.  F.  T. 

Patents. 

Vulcanisation    of   rubber    and   apparatus   for    use 
therein.     B.  Lambert.     E.P.  183,590,  27.4.21. 

Vulcanisation  is  effected  in  a  medium  consisting 
of  the  eutectic  alloy  of  tin  (25  pts.),  lead  (16  pts.), 
and  cadmium  (9  pts.),  which  melts  at  145°  C.  A 
sufficient  proportion  of  the  alloy  to  maintain  the 
temperature  during  the  required  period  of  solidi- 
fication is  melted  by  an  immersed,  insulated, 
electrically  heated  wire.  In  order  to  shorten  the 
time  of  vulcanisation,  an  alloy  containing  the 
metals  in  the  proportions  57:21:22  may  be 
employed,  having  a  solidification  range  of  153° — 
145°  C.— D.  F.  T. 

Caoutchouc    and    caoutchouc-like    substances    and 
compounds    thereof    or    compositions    compi 

same;   Fireproofing   natural  and  artificial  

H.  Frood  and  H.  P.  Alger.    E.P.  183,922,  30.4.21. 

Rubber  materials,  particularly  floor  coverings  con- 
taining rubber,  together  with  inorganic  or  organic 
fibrous  fillers  (the  latter  themselves  also  preferably 
being  treated  with  fireproofing  agents),  are  ren- 
dered less  inflammable  by  the  incorporation  of 
casein  and  hydrated  aluminium  oxide,  together 
with  a  small  proportion  of  antimonv  trichloride. 

— D.  F.  T. 

Rubber;  Process  of  reclaiming .     J.  0.  Navone. 

U.S. P.  1,424,668,  1.8.22.     Appl.,  24.1.20. 
The   rubber    is   dissolved   from   a    rubber   product 
in   a    hydrocarbon,    the   latter   being   subsequently 
removed  by  evaporation  and  the  rubber  precipitated 
in  heated  water.—  D.  F.  T. 


Vol.  XIX,  No.  19.] 


Ct.  XV.— LEATHER  ;  BONE  ;  HORN  ;  GLUE. 


773  a 


Plastic   mass  especially  suited  for  use   as  a  tyre- 
filler;  Process  for  producing  and  using  a  ■ . 

R.  Gollert.    G.P.  (a)  303,924,  15.8.16,  (b)  305,197, 
30.1.17. 

(a)  Starch  powder  is  mixed  with  "  perglycerin  " 
or  "  perkaglycerin  "  (cf.  Neuberg  and  Reinfurth, 
J.,  1920,  801  a)  to  a  homogeneous  paste,  and  if 
necessary  with  the  aid  of  heat.  The  mixture  is 
introduced  into  the  tyre  whilst  fluid,  and  then  sub- 
mitted to  further  heating,  e.g.,  at  60°  C.  (b)  A 
non-fluid  mass,  produced  by  mixing  the  preceding 
product  with  more  starch,  may  be  first  introduced 
into  the  tyre,  followed  by  a  more  fluid  mass.  After 
a  suitable  maturing  period  the  filling  material  is 
subjected  to  heat.— D.  F.  T. 

Sulphurised  oils,  particularly  factice;  Manufacture 

of  .      F.    Balla,   and   Farbenfabr.   vorm.    F. 

Bayer  und  Co.     G.P.  354,172,  10.12.20. 

By  treating  oils  with  sulphur  in  the  presence  of  a 
vulcanisation  accelerator,  products  are  obtained  of 
increased  hardness  and  free  from  residual  sulphur. 

— D.  F.  T. 


XV.-LEATHER;  BONE;  HORN;  GLUE. 

Hide  curing;  Science  of  .     G.  D.  McLaughlin 

and  E.  R.  Theis.   J.  Amer.  Leather  Chem.  Assoc, 
.1922,  17,  376—399. 

Hides  are  dehydrated  by  salting  or  immersion  in 

la  25%    brine    solution.      Of   the   three   layers    the 

;  adipose    tissue    is    most    dehydrated.      The    salt    is 

absorbed  by  the  hide  during  the  process,  and  the 

greater  the  dehydration  the  greater  the  amount  of 

absorbed  salt.     The  epidermis  does  not  absorb  salt 

very  readily,  so  that  only  the  flesh  side  should  be 

I  salted.     If  salting  is  delayed  after  the  animal  has 

been  killed,  the  rate  of  diffusion  of  the  salt  into  the 

'  hide  is  greatly  reduced.     The  salt  content  of  a  hide 

I  containing  blood  which  has  been  allowed  to  remain 

some   time   before   curing    is    less   than    that    of   a 

similar  hide  from  which  the  blood  has  been  removed. 

The    longer    the    delay   between    slaughtering    and 

curing  the  greater  the  difference  between  the  two. 

The  diffusion  of  the  salt  is  affected  by  the  presence 

and  condition   of   blood,   by  post-mortem  changes, 

and  by  the  composition  of  the  salt.     Hides  should 

(be   washed   and   brined   as    soon    as   possible    after 

flaying  to  secure  a  maximum  absorption  of  salt  in 

.a  minimum   of   time,    to   eliminate   salt   and   iron 

jstains,  and  to  minimise  the  effect  of  post-mortem 

changes. — D.   \Y. 

Bide    curing;    Practice    of    heavy    .      G.    D. 

McLaughlin  and  E.  R.  Theis.  J.  Amer.  Leather 
Chem.  Assoc.,  1922,  17,  399—404. 
The  authors  have  compared  curing  by  "salting" 
(jnd  by  "  brining."  When  properly  brined  and 
,;anned,  the  hides  produce  more  leather,  which  is 
thicker,  firmer,  and  has  fewer  salt  and  iron  stains, 
;han  when  the  hides  are  salted.  Brined  stock 
•equires  special  beam-house  treatment,  especially 
l;he  use  of  "  sharp  "  limes. — D.  W. 

Tannins  and  tanning  extracts;  Differentiation  of 

.     T.   Korner   and   J.   A.   Bosshard.     Leder- 

techn.  Runds.,  1922,  14,  57—60,  6.5—66,  75—77. 
;  Chem.  Zentr.,  1922,  93,  IV.,  289—290. 
Juebbacho  tannin  shows  a  higher  carbon  content 
han  any  other  tanning  material  except  ciitch  and 
;ambier".  Quebracho  can  bo  detected  by  dissolving 
.  quantity  of  tanning  extract  in  10  parts  of  water, 
reating  the  solution  with  one-tenth  of  its  weight 
f  sodium  chloride,  filtering,  extracting  the  filtrate 
vith  ethyl  acetate,  fractionally  precipitating  the 
thyl  acetate  solution  with  alcohol,  drying  and 
nalysing  the  last  fraction.    Pure  quebracho  extract 


in  this  way  gives  a  carbon  content  of  60%,  whilst 
with  adulterated  extracts  lower  values  are  obtained. 
Tannins  can  be  separated  and  detected  by  frac- 
tional precipitation  of  the  acetone  solution  of  the 
acetylated  tannin  with  alcohol.  The  acetylated 
tannins  and  the  products  obtained  by  their 
saponification  lend  themselves  to  differentiation. 
The  acetylated  tannins  may  be  hydrolysed  with 
5  c.c.  of  hydrochloric  acid  (sp.  gr.  1'19),  cooled, 
treated  with  25  c.c.  of  Wijs  iodine  solution,  allowed 
to  stand  for  1  hour,  diluted  to  1  litre,  and  titrated 
with  iV/10  thiosulphate  solution.  The  iodine 
absorbed  by  different  tannins  varies,  but  there  is 
little  variation  for  one  and  the  same  tannin. — D.  W. 

Tannin  analysis;  Contributions  to with  special 

reference  to  gambier.  L.  Pollak.  Collegium, 
1922,  125—133. 

Various  samples  of  Asahan  gambier  were  analysed 
by  the  official  shake  method,  by  modifications  of 
this  method,  using  double  and  treble  detannisations, 
a  longer  period  of  shaking,  and  a  larger  amount  of 
hide  powder,  and  by  the  filter  bell  method.  The 
shake  method  with  two  and  three  detannisations 
gave  a  higher  percentage  of  tans  than  the  official 
shake  method.  There  was  no  need  to  detannise 
three  times.  Pieces  of  sheep  pelt  were  coloured  in 
a  known  quantity  of  pine  bark  extract,  and  finished 
in  a  known  amount  of  gambier  liquor.  The  liquors 
were  analysed  by  both  filter  bell  and  shake  methods, 
before  and  after  use,  and  the  dry  leather  analysed. 
The  discrepancies  between  the  calculated  amount  of 
tannin  in  the  leather  and  that  actually  found 
show  that  the  official  shake  method  gives  less  than 
the  true  tannin  content  and  the  filter  belli  method 
more. — D.  W. 

Tannin  analysis.     II.     V.  Kubelka  and  F.  Berka. 

Collegium,  1922,  85—95,  143—155. 
Results  are  given  of  numerous  analyses  of  different 
extracts  and  tanning  materials  made  by  the 
official  shake  method,  by  detannising  twice,  and  by 
the  official  shake  method  substituting  dry  chromed 
Freiburg  hide  powder  for  wet  hide  powder.  The 
dry  chromed  powder  has  a  higher  absorptive  power 
for  materials  which  are  not  absorbed  by  the  freshly 
chromed  hide  powder.  The  dry  powder  is  used  in 
the  filter  bell  method,  and  that  method  yields 
better  results  than  the  shake  method  owing  to  the 
better  absorptive  power  of  the  powder.  The 
authors  advocate  the  adoption  of  the  filter  bell 
method.— D.  W. 

Leather;    Besearches    on    .       L.     Jablonski. 

Collegium,  1922,  53—56,  96—97. 
Portions  from  different  parts  of  hides  tanned  with 
vegetable  tanning  materials  in  pits,  partly  in  pits 
and  partly  in  drums,  and  wholly  in  drums,  and 
weighted,  have  been  analysed  for  hide  substance, 
specific  gravity,  water-soluble  matter  and  fibrous 
structure.  The  results  are  shown  graphically. 
Photomicrographs  prove  that  the  fibre  bundles  in 
the  butt  portions  are  thick  and  interwoven,  whilst 
in  the  belly  the  bundles  are  very  thin,  and  in  some 
•  cases  only  separate  fibres  are  present.  No  portion 
of  a  side  is  an  average  of  the  whole. — D.  W. 

Sole  leather  filled  with  sulphite-cellulose   extract; 

Durability  of .    R.  C.  Bowker.     U.S.  Bureau 

of  Standards,  Tech.  Paper  No.  215.  J.  Franklin 
Inst.,  1922,  194,  241. 

Sole  leather  filled  with  sulphite-cellulose  extract  is 

as  durable  as  leather  filled  with  chestnut  wood  and 

quebracho  extracts. — D.  W. 

Keratin     I.     A.   Heiduschka  and  E.   Komm.     Z. 

physiol.  Chem.,  1922,  121,  221—230. 
Horn  clippings   were   heated   under   a  variety   of 
conditions,  for  example,  at  atmospheric  pressure, 


774a 


Cl.   XV.— LEATHER  ;    BONE  ;    HORN  ;    GLUE. 


[Oct.  16,  1922 


in  a  vacuum,  in  sealed  vessels,  and  with  water  or 
ammonia  in  a  vacuum.  The  temperature  of 
incipient  degradation  varies  with  the  time  of 
heating  and  the  conditions.  Among  the  volatile 
products  are  ammonia,  hydrogen  sulphide,  and 
other  sulphur  compounds. — H.  K. 

Ion  concentration   measurements.       Keeler.       See 
XXIII. 

Patents. 

Tanning    hides;   Process  for  .      Cheni.    Fabr. 

Worms  A.-G.  E. P.  156,670,  6.1.21.  Conv.,  23.9.16. 
Hides  are  tanned  with  the  substances  prepared 
according  to  E.P.  156,254  (J.,  1922,  602  a),  but 
treated  with  compounds  (other  than  permanga- 
nates) of  heavy  metals,  instead  of  with  compounds 
of  aluminium  or  chromium. — D.  W. 

Leathers;    Treating    and    finishing  .       C.   R. 

Reubig.  E.P.  157,864,  10.1.21.  Conv.,  25.7.16. 
Dressed  or  undressed  leathers  are  treated  for  two 
hours  with  a  solution  of  8%  of  sodium  thiosulphate 
and  5%  of  sodium  sulphide  to  which  has  been  added 
a  caustic  alkali,  then  with  acids,  and  washed  with 
water. — D.   W. 

Condensation  products   [tanning   agents];   Method 

for  the  production  of  sulphonated .    Elektro- 

chem.  Werke,  H.  Bosshard,  and  D.  Strauss.  E.P. 
158,521,  10.1.21.  Conv.,  9.8.18. 
Naphthalene  or  other  polycyelic  aromatic  hydro- 
carbon, or  carbazole,  and  sulphuric  acid,  or  a  sul- 
phonic  acid  of  the  hydrocarbon  or  of  carbazole,  is 
condensed  with  glycollic  acid  by  heating  in  the  air 
or  in  vacuo. — D.  W. 

Hides  and  skins;  Tanning  arrangement  for  

M.  Beretta.  E.P.  159,215,  21.2.21.  Conv.,  20.2.20. 
Hides  and  skins  are  tanned  in  an  apparatus  com- 
prising one  or  more  vessels  divided  longitudinally 
into  two  tanks,  each  vessel  having  at  one  end  of  the 
partition  a  port  communicating  with  the  two  tanks, 
and  provided  with  a  sliding  door,  a  filter  chamber 
situated  at  the  other  end,  and  a  propeller  for  circu- 
lating the  liquor  so  that  it  can  pass  through  the 
filter  chamber  if  desired.  The  filter  chamber  may 
be  provided  with  a  sump  to  collect  the  solid  matter. 

— D.  W. 

Tanning    agents;    Manufacture    of   .      R.    B. 

Croad,  G.  E.  Knowles,  and  H.  M.  McArthur  and 

Co.,  Ltd.  E.P.  182,823,  3.1.21. 
At  least  2  mols.  of  an  aromatic  hydroxy  compound 
is  condensed  in  the  open  or  under  pressure  with 
1  mol.  of  formaldehyde,  or  an  equivalent  proportion 
of  a  compound  yielding  formaldehyde,  in  presence 
of  an  oxide,  hydroxide,  carbonate,  or  bicarbonate  of 
an  alkali  or  alkaline-earth  metal,  ammonia,  or  a 
salt  of  a  strong  base  with  a  weak  acid.  The  product 
is  rendered  soluble  by  6uIphonation  and  partially 
neutralised. — D.  W. 

Tanning   agents;    Manufacture    of   .      R.    B. 

Croad,  and  H.  M.  McArthur  and  Co.,  Ltd.     E.P. 

182,824,  3.1.21. 
At  least  2  mols.  of  an  aromatic  hydroxy  compound 
is  condensed  with  1  mol.  of  formaldehyde,  or  the 
equivalent  proportion  of  a  compound  yielding  form- 
aldehyde, in  presence  of  alkali  or  an  alkaline  salt, 
and  the  product  is  rendered  soluble  by  sulphonating 
and  further  condensed  with  a  suphonated  aromatic 
compound  and  an  aldehydic  compound,  or  an  alde- 
hydic  compound  alone.  The  final  product  is 
partially  neutralised. — D.  W. 

Tanning  agent  for  the  chrome  tannage  or  dyeing  of 

leather;  Preparation  of  a  .     D.  Burton  and 

A.  Clover.     E.P.  184,360,  26.7.21. 

A  solution  of  sodium  or  potassium  bichromate  in 


water,  after  treatment  with  sulphuric  or  hydro- 
chloric acid,  is  heated  and  then  reduced  by  the  addi- 
tion of  tea  dust.  Previous  removal  of  the  caffeine 
has  little  or  no  effect  on  the  efficiency  of  the  tea  dust 
for  this  purpose. — D.  P.  T. 

Chrome  leather;  Method  for  the  neutralisation  of 

.     O.  Rohm.     G.P.  353,130,  2.12.19.     Addn 

to  352,285  (J.,  1922,  722  a). 

The  leather  is  neutralised  with  sodium  carbonate  or 
other  alkali  or  alkaline-earth  carbonate,  with  the 
addition  of  formaldehyde  or  a  formate,  acetate  or 
lactate  of  an  alkali  or  alkaline-earth  metal ;  sulphites, 
thiosulphates,  phosphites,  arsenites,  and  arsenates 
of  the  alkali  or  alkaline-earth  metals  show  a  similar 
action  to  the  salts  of  organic  acids.  For  example 
chrome-tanned  pelts  may  be  washed  with  water! 
allowed  to  stand  in  a  bath  containing  a  solution  of 
sodium  sulphite  and  calcium  carbonate,  until 
neutralised,  then  washed  several  times  with  water 

— J.  B.  F.' 

Mineral  tanned  leather;  Method  for  the  neutralisa- 
tion of  .     O.  Rohm.     G.P.  353,131,  2.12  19 

Addn.  to  352,285  (J.,  1922,  722  a). 

Ikon-  or  aluminium-tanned  leather  is  neutralised 
with  alkali  or  alkaline-earth  carbonates,  together 
with  formaldehyde  or  salts  of  lower  fatty  or  hydroxy- 
fatty  acids  or  of  such  weak  inorganic  acids,  as 
carbonic  acid.  Thus  an  iron-tanned  leather  may  be 
neutralised  with  calcium  carbonate  and  sodium 
acetate,  or  sodium  carbonate  and  sodium  acetate,  or 
an  aluminium-tanned  leather  with  sodium  sulphite 
and  sodium  carbonate. — J.  B.  F. 

Gas-impervious  material  {from  animal  membranes]; 
Method  of  making  .  The  British  Thomson- 
Houston  Co.,  Ltd.  From  General  Electric  Co. 
E.P.  184,012,  30.6.21. 
A  material  impervious  to  gas  and  capable  of  retain- 
ing its  flexibility  when  dry  and  at  low  temperatures 
is  obtained  by  treating  animal  membrane,  prefer- 
ably the  lining  of  the  throat  or  bladder,  with  a 
hardening  agent,  such  as  Nigrosine,  and  a  hygro- 
scopic material  having  a  freezing  point  below 
-50°  F.  (-46°  C),  such  as  glycerin  or  ethylene- 
glycol.  The  membranes  are  first  washed  with  dilute 
ammonia  or  similar  detergent,  dried  while  inflated, 
and  preferably  soaked  for  about  4  hrs.  in  a  dilute 
(1%)  solution  of  tannic  or  gallic  acid;  they  are  then 
agitated  in  a  solution  containing,  for  example. 
30  pts.  of  glycerin,  55  pts.  of  ethyleneglycol,  2  pts. 
of  Nigrosine,  70  pts.  of  water  (by  weight  in  each 
case),  and,  after  removal  of  superfluous  solution,  are 
dried,  preferably  while  mechanically  working  to 
increase  their  flexibility. — D.  J.  N. 

Leather;  Process  for  rendering  gas-tight.     A. 

Geiger  and  E.  Brauer.  G.P.  353,444,  14.2.18. 
Leather  is  impregnated  with  halogenated  aliphatic 
hydrocarbons  of  medium  viscosity,  and  substances  oi 
high  viscosity  which  will  not  crystallise  out  at  tow 
temperatures,  e.g.,  with  a  mixture  of  70%  of 
polymerised  chlorinated  spindle  oil  and  30%  of 
coumarone  resin. — D.  W. 

Tanning  oils  and  fat-liquoring  agents;  Manufacture 

of  from   hydroxy-fatty   acids   and   phenol. 

Gerb-  u.  Farbstoffwerke  H.  Renner  und  Co.  A.-G. 
G.P.  354,165,  26.8.19. 
The  resins  obtained  by  distilling  hydroxy-fatty 
acids,  e.g.,  glycollic,  lactic,  or  ricinoleic  acid,  or 
castor  oil  under  ordiniry  or  reduced  pressure  are 
mixed  with  phenols  and  diluted  with  mineral  oil  or 
other  desired  hydrocarbon.  The  insoluble  resins 
yield  with  the  phenol  a  colloidal  solution  which  is 
absorbed  by  the  animal  hide  and  can  serve  as  a 
substitute  for  the  materials  used  in  chamoising  and 
oil  tanning.    Mixed  with  mineral  oils  these  colloidal 


vol.  XIX,  No.  19.]        Cl.  XVI.— SOILS,  &c.     Cl.  XVII.— SUGARS  ;    STARCHES  ;    GUMS. 


775  a 


solutions  yield  emulsions  which  can  be  employed  in 
stuffing  or  fat-liquoring  vegetable-tanned  leather. 

— D.  W. 

Plastic  material  made  from  casein.     R.  H.  Abrey 
E.P.  183,972,  30.5.21. 

Casein  is  soaked  in  water,  dissolved  in  an  alkaline 
solution,  and  precipitated  with  a  mixture  of  zinc 
sulphite,  potassium  or  sodium  metabisulphite,  glacial 
acetic  acid,  and  alcohol,  which  has  been  treated 
with  zinc  and  milk  of  lime.  The  precipitate  is 
worked  into  a  tough  mass,  treated  with  form- 
aldehyde, and  dried. — H.  C.  R. 

Albuminous   matter;   Process  for  separating  

from  glue  solutions  prepared  from,  bones. 
Plauson's  Forschungsinstitut.  G.P.  355,879 
13.9.19. 

The  glue  solution  is  treated  with  ether  or  mixtures 
of  ether  with  alcohol,  acetone,  etc.  The  extracted 
albuminous  matter  has  a  high  food  value,  and  the 
adhesive  power  of  the  glue  is  improved  bv  its  re- 
moval.—H.  C.  R. 

[TTasfp    .tanning}    liquors;    Selective,    removal    of 

organic  matter  from  .     C.  L.  Peck,  Assr.  to 

The  Dow  Co.  U.S. P.  1,426,596,  22.8.22.  Appl., 
1.7.19. 

Tannery  liquors  are  subjected  to  a  flotation  process 

by  which  hair  is  selectively  removed  from  fleshings 

etc.— A.  G.  P. 

Leather;  Process  for  the  treatment  of  with 

indiarubber.  A.  McLennan.  U.S. P.  1,425,530, 
15.8.22.     Appl.,  21.1.22. 

See  E.P.  179,969  of  1920;  J.,  1922,  560  a. 


XVI.-S0ILS ;    FEBTILISEBS. 

Selenium;   Action   of  on   the   metabolism   of 

plants  in  presence  of  the  radioactivity  of  the  air 
and  soil.  J.  Stoklasa,  P.  Kricka,  J.  Penkava, 
J.  Zelenka,  J.  Chmelar,  and  V.  Jansky. 
Biochem.  Zeits.,  1922,  130,  604—643. 

The  authors  have  examined  the  action  of  ions  con- 
taining selenium  in  the  presence  of  and  absence  of 
radium  emanations  on  the  growth  of  azotobacter, 
the  germination  of  seeds,  and  the  development  of 
plants.  Sodium  selenite  inhibits  the  growth  of 
Azotobacter  chroococcus,  but  the  inhibition  is  over- 
come by  radioactivity.  Both  selenite  and  selenate 
are  detrimental  to  the  germination  of  seeds,  the 
selenite  being  the  more  powerful.  Radioactive  air 
accelerates  the  germination  of  seeds  and  inhibits 
the  toxic  action  of  selenites  and  selenates  on  the 
growth  of  plants.  In  water  culture  media  very 
minute  quantities  of  selenates  can  accelerate  the 
growth  of  plants,  but  minute  quantities  of  selenites 
and  laj-ger  quantities  of  selenates  inhibit.  Radio- 
active water  of  weak  activity  stimulates  the  growth 
of  plants,  and  may  completely  inhibit  the  toxic 
action  of  selenite  ions.— H.  K. 

Patents. 

Phosphatic  fertiliser  material  and  process  of 
making  the  same.  L.  R.  Coates.  U.S. P. 
1.425,747,  15.8.22.     Appl.,  1.9.21. 

Material  containing  superphosphate  is  mixed  with 
a  material  containing  an  alkaline  calcium  com- 
pound. The  mixture  is  wetted  and  converted  into 
a  condition  into  which  it  can  be  strewn  as  fertiliser. 

-h:  h. 

Fertilisers;  Process  of  preventing  disintegration  of 

,  more  especially  of  calcium  cyanamide.      W. 

Schwarzenauer.  G.P.  306,237,  4.4.16.  Addn.  to 
304,965. 

Other  oils,  or  fats,  are  used  in  place  of  the  distillate 


derived  from  bituminous  shale  referred  to  in  the 
previous  patent  (J.,  1921,  314  a).— J.  S.  G.  T. 

Seed  corn;  Fungicide  for  treating  .       Farbw. 

vorm.  Meister,  Lucius,  u  Bruning.   G.P.  353,014, 
31.7.20. 

Acetaldehyde  is  employed,  either  alone  or  in  con- 
junction with  other  fungicides  and  substances,  such 
as  water  or  infusorial  earth,  reducing  the  risk  of 
fire.  The  germinating  power  of  the  seeds  is  much 
less  affected  than  is  the  case  when  formaldehyde  is 
used.— J.  S.  G.  T. 

Fertiliser;  Process   of    manufacturing   a   dustless, 

non-corrosive •.     W.  Schrauth.     G.P.  353,493, 

22.1.20. 

Calcium  cyanamide  is  treated  with  naphthenic 
acids,  if  necessary  mixed  with  neutral  oils  such  as 
phenol-free  tar  oil  or  petroleum  distillates. 

—J.  S.  G.  T. 


XVII.-SUGABS ;  STABCHES;  GUMS. 

White    sugar;    Deterioration    of    Mauritius    

during  storage.  H.  A.  Tempany  and  D. 
D'Emmerez  de  Charmoy.  Bulletin  24  (General 
Series),  Dept.  Agric,  Mauritius,  1922. 

Moulds,  bacteria,  and  torulse  are  all  concerned  in 
the  deterioration  of  white  sugar  (containing  about 
99%  of  sucrose  and  0'15 — 0'30%  of  moisture),  the 
most  destructive  of  the  three  being  the  last  men- 
tioned, the  forms  of  which  encountered  by  the 
authors  differ  from  those  described  by  other  investi- 
gators. Mauritius  white  sugars  have  a  ratio  of 
moisture  to  non-sugar  well  below  the  figure  gener- 
ally regarded  as  safe,  and  primarily  the  cause  of 
their  deterioration  is  the  absorption  of  moisture 
from  the  atmosphere  under  unsuitable  conditions  of 
storage.  Individual  samples  exhibited  considerable 
differences  in  their  liability  to  deteriorate,  the 
reason  for  which  may  be  the  variation  in  the  size  of 
grain.  Deterioration  in  Mauritius  warehouses  was 
noticed  to  be  mostly  confined  to  the  layers  of  bags  in 
contact  with  the  floor,  which  effect  appears  to  be 
due  to  the  greater  fluctuations  of  temperature  and 
corresponding  increases  in  the  relative  humidity  of 
the  air  at  these  places,  and  it  was  observed  that 
where  non-conducting  floors  existed  deterioration 
was  practically  absent.  Therefore,  the  authors 
advise  that  warehouses  for  the  storage  of  sugar 
should  be  solidly  constructed,  fitted  with  doors  and 
windows  capable  of  being  tightly  closed,  and  especi- 
ally they  should  be  provided  with  floors  of  non- 
conducting materials.  They  should  be  opened  as 
infrequently  as  possible,  and  if  possible  provided 
with  some  means  of  drying  the  air.  in  which  latter 
connexion  it  may  be  possible  to  utilise  the  hygro- 
scopic property  of  jute,  which  was  observed  to  be 
capable  of  absorbing  35%  of  its  weight  of  moisture 
from  the  air  in  10  days.  Another  practice 
counteracting  the  tendency  to  absorption  of 
moisture  is  to  use  crinkled  paper  linings  for  the  jute 
bags,  direct  contact  with  the  air  being  lessened  in 
this  way.  (Of.  J.,  1918,  275  a;  1919,  549  a;  1920, 
583  a.)— J.  P.  O. 

Beet  juice;  Liming  raw and  the  separation  of 

the  resulting  precipitate  by  subsiding.  V.  Skola. 
Z.  Zuckerind.  Czecho-slov.,  1922,  46,  601—611, 
62.5—629. 
Experiments  carried  out  with  the  object  of  effect- 
ing a  preliminary  separation  of  the  albuminoids 
from  beet  juice  by  the  addition  of  lime  and  subsid- 
ing, showed  that  the  rate  at  which  the  precipitate 
settled  out  was  not  dependent  solely  on  the  amount 
of  lime,  but  largely  upon  the  manner  in  which  the 
addition  was  made.     Generally  the  best  results  in 


776  a 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[Oct.  10,  1922. 


respect  of  rapidity  of  subsiding  were  obtained  by 
running  the  diffusion  juice  into  milk  of  lime  while 
constantly  stirring;  under  these  conditions  when 
using  1  %  CaO  about  02 %  CaO  was  retained  in  the 
sediment.  A  less  favourable  result  was  obtained 
when  about  0"2%  CaO  in  the  form  of  milk  of  lime 
was  added  to  the  juice  and  the  mixture  heated  to 
about  80°  C— J.  P.  O. 

Beet  juice;  Bate  of  decomposition  of  some  nitro- 
genous constituents  of by  lime.     J.  Vondrak. 

Z.  Zuckerind.  Czecho-slov.,  1922,  46,  483—490, 
533—539,  589—597. 
Laboratory  experiments  carried  out  with  aqueous 
solutions  of  various  amides  in  the  presence  of  lime, 
under  conditions  resembling  those  prevailing  in  the 
factory  during  defecation,  showed  glutamine  to  be 
very  readily  decomposed,  asparagine  more  slowly, 
and  choline  and  allantoin  only  inappreciably.  A 
more  rapid  decomposition  of  asparagine  resulted 
when  the  lime  was  added  in  the  cold  and  the  solu- 
tion subsequently  heated,  than  when  the  addition 
was  made  at  a  high  temperature,  and  it  is  there- 
fore suggested  that  in  the  factory  defecation 
should  be  carried  out  in  the  cold.  As  a  means  of 
preventing  the  retrogression  of  the  alkalinity 
during  evaporation  and  boiling,  it  is  advisable  that 
lime  should  be  added  in  the  second  carbonatation, 
the  saturation  at  this  stage  being  carried  out  with 
carbon  dioxide  at  100°  C— J.  P.  0. 

Cane  juice;  Influence  of  the  amino-acids  of -in 

inhibiting  inversion.  J.  W.  L.  van  Ligten. 
Archief  Suikerind.  Nederl.-Indie,  1922,  30,  216— 
221.     Int.  Sugar  J.,  1922,  24,  439. 

Experiments  are  described  demonstrating  that  the 
impurities  which  are  present  in  cane  juice  (pre- 
sumably principally  the  amino-acids)  are  capable  to 
a  marked  extent  of  inhibiting  the  inversion  of  suc- 
rose by  hydrogen-ions  at  high  as  well  as  at  low 
temperatures. — J.  P.  O. 

ilolasses;  Exhaustibility  of  (Java)  cane in  con- 
nexion with  its  composition.  H.  Kalshoven. 
Int.  Sugar  J.,  1922,  24,  416—419. 
In  order  to  obtain  a  nearer  insight  into  the  influ- 
ence which  the  composition  of  a  molasses  may  have 
upon  its  exhaustibility,  determinations  of  sucrose, 
reducing  sugars,  ash,  and  gum  were  made  on  a 
large  number  of  samples  of  this  product,  which  had 
attained  equilibrium  at  room  temperature,  further 
crystallisation  not  being  possible.  These  results 
showed  that  a  high  dry  substance  content  causes  a 
low  purity  under  otherwise  like  conditions;  that  a 
high  content  of  reducing  sugars  gives  ceteris 
paribus  a  low  purity ;  that  the  percentage  of  gums 
usually  occuring  exerts  no  appreciable  influence  on 
the  purity;  and  lastly  that  the  non-sugars  present 
(especially  the  salts)  may  either  increase  or  diminish 
the  purity. — J.  P.  O. 

Fructose  \lcevulose~] ;  Preparation  of .     T.   S. 

Harding.  J.  Arner.  Chem.  Soc,  1922,  44, 
1765—1768. 

A  solution  of  sucrose  (2000  g.)  in  water  (6000  c.c.) 
is  acidified  with  glacial  acetic  acid  (2  c.c.) 
and  treated  with  such  a  quantity  of  invertase 
that  hydrolysis  is  complete  in  about  18  hrs.  at 
20° — 30°  C.  A  few  grams  of  active  decolorising 
carbon  is  added  and  the  solution  is  filtered.  The 
clear,  colourless  filtrate  is  immediately  concentrated 
to  a  syrup  of  about  90 — 95%  total  solids  in  a 
vacuum  at  as  low  a  temperature  as  is  possible  by 
the  use  of  a  good  water  pump.  The  thick  syrup 
is  mixed  with  2  vols,  of  hot  glacial  acetic  acid, 
cooled,  seeded  with  dextrose  and  allowed  to  crys- 
tallise at  15°— 20°  C.  during  3—4  days.  The 
dextrose  is  removed  and  washed  thoroughly  with 
glacial  acetic  acid;  its  weight  should  be  36— 37'5°: 


of  that  of  the  sucrose  taken.  The  filtrate  is  diluted 
with  2  vols,  of  distilled  water  and  concentrated  to 
a  thin  syrup  in  a  vacuum  at  a  low  temperature. 
The  resulting  thin  syrup  is  again  diluted  with 
water  and  subsequently  concentrated  at  a  low 
temperature  until  it  contains  about  90 — 95  %  of 
total  solids.  The  final  syrup  is  mixed  with  an  equal 
volume  of  hot  glacial  acetic  acid,  the  mixture  is 
cooled  somewhat,  seeded  with  lsevulose  and  allowed 
to  remain  at  15° — 20°  C,  crystallisation  being 
usually  complete  in  2 — 3  days.  The  crystals  are 
removed  and  washed  with  glacial  acetic  acid.  The 
yield  of  crude  lsevulose  is  23'5 — 28%  of  the  weight 
of  sucrose  taken.  Further  purification  is  effected 
by  dissolving  the  crude  product  (400  g.)  in  boiling 
ethyl  alcohol  (75%,  200  c.c),  adding  absolute  ethyl 
alcohol  (300  c.c.)  and  decolorising  with  active 
carbon.  The  filtered  solution  is  diluted  further 
with  ethyl  alcohol  (10Q  c.c),  seeded  with  lasvulose 
and  allowed  to  crystallise  in  a  desiccator  at  the 
atmospheric  temperature.  The  yield  is  75 — 80%  of 
the  weight  of  crude  lsevulose  taken.  Generally  a 
second  crystallisation  by  the  same  method  is  neces- 
sary to  obtain  a  pure  product. — H.  W. 

Maltose;  Action  of  ozone  on  pure  solutions  of . 

C.  W.  Schonebaum.     Rec.  Trav.  Chim.,  1922,  41, 
501—502. 

Treatment  of  5%  solutions  of  maltose  with  ozone 
for  3  hrs.  at  ordinary  temperatures  and  at  70°  C. 
effects  no  decomposition  if  the  solution  is  neutral. 
In  N 110  acid  solution  no  decomposition  occurs  in 
the  cold,  but  rapid  inversion  takes  place  at  the 
higher  temperature.  In  N  /10  alkaline  solution 
35%  of  the  sugar  is  decomposed  in  the  cold;  in 
heated  solution  it  is  rapidly  destroyed.  Formic 
acid  is  a  primary  product;  water  and  carbonic  acid 
are  the  final  products. — H.  J.  E. 

Dextrose,   lavulose,  sucrose,   lactose  and  maltose; 
Action  of  hydrogen  peroxide  on  pure  solutions 

of  ■ .     C.  W.  Schonebaum.    Rec.  Trav.  Chim., 

1922,  41,  503—508. 

The  object  of  the  investigations  was  to  ascertain 
whether  hydrogen  peroxide  could  be  used  indus- 
trially for  purifying  sugar  solutions.  The  method 
used  was  to  add  4  c.c  of  a  3%  neutral  solution  of 
hydrogen  peroxide  to  4  g.  of  sugar  dissolved  in 
80  c.c.  of  solvent;  after  3  hrs.  the  solution  was 
diluted  to  100  c.c.  and  analysed.  The  solvents 
used  for  the  sugar  were  water,  iV/10  sulphuric 
acid,  and  iV/10  caustic  soda;  in  each  case  two 
determinations  were  made,  at  ordinary  tempera- 
ture and  at  70°  C.  Control  experiments  were  also 
carried  out.  In  general  under  these  conditions  no 
decomposition  of  the  sugar  occurred  except  in  the 
case  of  sucrose,  which  was  inverted  in  neutral  solu- 
tion to  the  extent  of  about  10%.  The  general  con- 
clusion is  drawn  that  thin  syrups  may  be  purified 
with  hydrogen  peroxide  of  the  strength  indicated, 
provided  that  the  solution  is  feebly  alkaline.  With 
increased  concentration  of  the  peroxide,  a  pro- 
portion of  the  sugar  is  decomposed. — H.  J.  E. 

Invert  sugar:  Eelative  sweetness  of  .     J.  W. 

Sale  and  W.  W.  Skinner.     J.  Ind.  Eng.  Chem., 
1922,   14,  522—525. 

If  sucrose  is  assigned  a  sweetening  value  of  100, 
the  sweetening  value  of  invert  sugar  is  only  85; 
since,  however,  100  units  of  sucrose  when  inverted 
become  105  units  of  invert  sugar,  the  net  loss  of 
sweetening  value  by  the  inversion  of  100  units  of 
sucrose  is  about  11  units.  Invert  sugar  syrup  pre- 
pared with  invertase  and  concentrated  by  boiling 
under  reduced  pressure  is  superior  to  syrups  pre- 
pared with  acid,  being  free  from  "  harsh  "  taste 
though  having  a  slight  "  candy  "   flavour. 

— W.  P.  S. 


Vol.  XLL,  No.  19] 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


777  a 


Maize  starch  syrup  [glucose"];  Researches  on  . 

E.  Parow.     Z.  Spiritusind.,  1922,  45,  229. 

Chemical  examination  reveals  but  little  difference 
between  syrups  prepared  from  maize  starch  and 
potato  starch,  but  the  latter  are  usually  more  satis- 
factory when  subjected  to  the  "  confectioner's 
test  "  (i.e.,  little  or  no  discoloration  on  heating  to 
145°  C).  Complete  analyses  of  a  number  of  starches 
and  syrups  indicated  that  the  discoloration  on 
heating  was  influenced  by  the  fat  and  protein  con- 
tents of  the  syrups.  The  addition  of  fat  to  a  syrup 
increased  the  discoloration.  A  syrup  with  0"06% 
fat  and  0'09%  protein  showed  little  alteration  on 
heating  to  145°  C:  but  others  having  0T4 — 0T9% 
fat  and  0T9 — 0"39%  protein  were  badly  discoloured. 
High  fat  content  may  frequently  be  avoided  by 
limiting  the  amount  of  oil  added  to  prevent  froth- 
ing in  the  vacuum  apparatus  during  the  manu- 
facture of  glucose. — A.  G.  P. 

Starch;  Combination  of  uith  iodine.     H.   v. 

Euler  and  8.  Bergman.     Kolloid-Zeits.,  1922,  3l! 
■  81—89. 

Aqueous  solutions  of  soluble  starch  dissolve  more 
iodine  than  pure  water  and  the  solubility  of  iodine 
in  soluble  starch  solutions  containing  potassium 
iodide  is  greater  than  the  sum  of  the  solubilities  in 
solutions  of  the  two  constituents  separately.  The 
power  of  starch  to  take  up  iodine  is  therefore 
increased  by  the  presence  of  potassium  iodide.  (Cf 
J.C.S.,  Oct.)— J.  F.  S. 

Starch;  Combination  of  icith   iodine.     H.   v. 

Euler  and  S.  Landergren.  Kolloid-Zeits.,  1922, 
31,  89—90. 

The  amount  of  iodine  extracted  from  toluene  solu- 
tions of  iodine  by  soluble  starch  solutions  containing 
a  constant  quantity  of  potassium  iodide  does  not 
increase  with  increasing  concentration  of  starch. 

—J,  F.  S. 

Polysaccharides ;  Constitution  of  .     I.     Xylan 

and  its  acetyl  derivatives.  I.  S.  Komatsu  and 
K.  Kashima.  Mem.  Coll.  Sci.  Kyoto,  1922,  5, 
307—314. 

Xylan  was  prepared  from  maize  cobs  by  extraction 
with  caustic  soda  and  repeated  precipitation  with 
alcohol.  Unlike  xylan  from  wheat  straw,  acetyla- 
tion  of  the  product  was  difficult.  The  monoacetyl 
derivative  was  prepared  by  heating  with  acetyl 
chloride  under  pressure  or  by  the  action  of  acetic 
anhydride  in  acetic  acid  solution  with  chlorine  and 
sulphur  dioxide  as  catalysts  (J.,  1921,  8t).  The 
diacetyl  derivative  resulted  from  treatment  of  xylan 
with  acetyl  chloride  using  pyridine  or  zinc  chloride 
as  a  catalyst,  and  from  further  acetylation  of  the 
monoacetyl  compound  in  the  presence  of  chlorine 
and  sulphur  dioxide.  Xylan  is  rapidly  hydrolysed 
by  dilute  hydrochloric  or  sulphuric  acid,  yielding 
Z-xylose.  The  velocity  constants  of  the  hydrolysis  of 
xylose  and  its  acetvl  derivatives  have  been  worked 
out.— A.  G.  P. 

Glucosides.   Indican.    Macbeth  and  Pryde.    See  IV. 

Glucose  from  cellulose.     Irvine  and  Hirst.    See  V. 

Saccharification      of      cellulose.       Budnikow      and 
Solotarew.    See  V. 

Ion    concentration    measurements.      Keeler.      See 
XXIII. 

Patents. 
Diffusion  apparatus  for   the   extraction   of   sugar 
from   the  beet.     A.  Rak.     E.P.   166,527,   5.7!21. 
Conv.,  13.7.20. 

The  apparatus  comprises  a  continuous  battery  of 
units,  each  consisting  of  an  open-topped  diffuser, 


arranged  vertically  and  enlarged  towards  the 
bottom,  and  a  slice-press  of  the  spiral  type,  the 
bottom  of  the  diffuser  communicating  with  the 
bottom  of  the  slice-press  by  a  conduit  enlarged 
towards  the  slice-press  end,  and  blade  and  shovel 
mechanism  for  feeding  the  slices  through  the  con- 
duit, the  diffusion  of  the  material  taking  place 
successively  in  several  stages  according  to  the  num- 
ber of  units  employed.  In  order  to  compensate 
for  the  diminution  of  the  volume  of  the  slices  at 
the  preliminary  6tage,  two  units  may  be  provided 
for  the  first  stage  communicating  with  a  single 
series  of  unite  for  the  subsequent  stages. — J.  P.  O. 

Sugar  juice;  Treatment  of .    W.  Mauss.     E.P. 

.  182,855,  8.3.21. 

The  mechanical  impurities  (cane  chips,  particles 
of  gum,  wax,  etc.)  are  removed  from  the  juice, 
preferably  by  centrifuging,  the  residue  being 
washed  with  water  while  in  the  machine,  dis- 
charged, mixed  with  more  water,  again  centri- 
fuged,  and  finally  discharged,  while  the  water 
finally  separated  is  used  for  maceration  during  mill- 
ing. The  juice  is  then  treated  for  the  separation 
of  its  chemical  impurities,  e.g.,  by  the  sul- 
phitation  process,  the  precipitate  resulting  being 
removed,  preferably  by  filtration,  and  washed  with 
water,  these  wash-waters  being  also  used  for 
maceration  during  milling. — J.  P.  O. 

[Sugar]   centrifugals;   Method   of  and  means  for 

trashing    .      R.    A.    Steps,    Assr.    to    Sugar 

Machinery  Co.  U.S. P.  1,423,583,  25.7.22.  Appl., 
7.1.20. 
A  vertically  thin,  elongated  spray  of  wash-water 
is  made  to  sweep  substantially  from  the  top  to  the 
bottom  and  from  the  bottom  to  the  top  of  the  centri- 
fugal, a  nozzle  and  means  to  oscillate  it  at  speeds 
varying  at  different  levels  in  proportion  to  the 
thickness  of  the  mass  of  sugar  being  provided. 

—J.  P.  0. 

Refined  massecuite ;  Process  for  the  manufacture  of 

.    A.  Hinze.     G.P.  353,194,  1.4.21. 

A  small  part  of  the  sugar  to  be  worked  up  is  dis- 
solved in  water  at  60° — 80°  C.  to  give  a  saturated 
solution,  in  which  the  remainder  of  the  sugar  in  a 
finely-divided  form  is  stirred  and  the  mixture  is 
then  boiled  for  a  short  time.  The  sugar  does  not 
become  yellow  in  the  process  and  less  heat  is 
required  than  in  the  older  methods. — A.  R.  P. 

Lactose;  Process  for  purifying  - •.     E.  Trutzer. 

G.P.  355,020,  28.11.20. 
Solutions    of  crude   milk-sugar    are   treated   with 
calcium   aluminate   to   adsorb   or   precipitate   non- 
sugars,    thus  avoiding  any  excess  of  free  calcium 
hydroxide  and  ensuring  a  good  yield  of  lactose. 

—A.  R.  P. 

Starch;  Manufacture  of [from  wheaten  flour]. 

F.  H.  Campbell.  E.P.  182,829,  11.1.21. 
In  the  manufacture  of  starch,  wheaten  flour  is  sub- 
jected to  the  action  of  a  single  proteolytic  enzyme, 
e.g.,  pepsin  or  trypsin,  whereby  the  nitrogenous 
constituents  are  converted  into  water-soluble  sub- 
stances, without  the  starch  or  its  envelope  being 
affected.  In  an  experiment  004%  of  pepsin  (on 
the  weight  of  flour)  was  heated  in  slightly  acidified 
water  to  40°— 50°  C.,  the  flour  added,  and  the  tem- 
perature maintained  while  constantly  mixing  for 
1\ — 2-J  hours,  after  which  the  starchy  matter  was 
separated  in  a  centrifuge  and  washed  with  water 
til!  free  from  acid. — J.  P.  O. 

Starch;    Method    and    apparatus    for    separating 

gluten  from  .     Corn  Products  Refining  Co., 

Assees.  of  R.  G.  Brindle.  E.P.  159,838,  3.3.21. 
Conv.,  8.3.20. 

Starch  containing  gluten  is  aerated  to  produce  a 


778  a 


Cl.  xviii.— fermentation  industries. 


[Oct.  16,  1922. 


froth  which  is  maintained  in  a  substantially  stable 
and  quiescent  condition  6o  as  to  keep  the  bubbles 
of  the  froth  from  breaking  until  the  starch  liquor 
has  drained  therefrom,  after  which  it  may  be  sub- 
jected to  a  further  aeration  until  it  has  reached  a 
condition  at  which  a  stable  froth  cannot  be 
obtained.  It  is  then  run  into  a  vessel  in  which  it 
separates  by  stratification  into  a  lower  layeT  of 
refined  starch,  an  upper  of  nearly  clear  water, 
and  an  intermediate  stratum  of  mixed  starch, 
gluten,  and  water.  The  intermediate  layer  is  with- 
drawn from  the  vessel,  and  subjected  to  further 
aeration. — J.  P.  O. 

Dextrin-  Apparatus  for  manufacturing .    J.  J. 

Merrill,    Assr.    to  Corn   Products   Refining   Co. 
U.S. P.  1,425,497,  8.8.22.    Appl.,  2.11.17. 

The  reaction  vessel  contains  a  rotary  agitator  pro- 
vided with  a  number  of  blades.  The  upper  and 
lower  end  portions  of  each  blade  stand  at  an  angle 
to  each  other  and  the  corresponding  end  portions 
of  the  blades  are  substantially  parallel  one  with 
another. — J.  R. 


XVIII— FERMENTATION   INDUSTRIES. 

Yeast;  Fat-coloration  in as  a  criterion  of  age, 

quality,    and   degeneration.      Bernfeld.      Woch. 
Brau.,  1922,  39,  195. 

The  presence  of  fat  in  yeast  cells  may  be  rendered 
evident  by  staining  with  either  alkanna  or  Soudan 
III.  An  aqueous  suspension  of  the  yeast  similar 
in  consistency  to  that  leaving  the  separators  is 
stirred  with  alcoholic  solution  of  Soudan  III., 
saturated  in  the  cold,  this  being  added  drop  by  drop 
until  an  orange-red  coloration  is  obtained ;  the 
action  of  the  colouring  matter  is  continued  for 
30 — 80  minutes.  The  extent  to  which  the  colour  is 
taken  up  increases  with  the  number  of  generations ; 
thus,,  if  the  time  during  which  the  dye  acts  is 
constant,  cells  of  the  first  generation  may  show  no 
colour,  whilst  those  of  the  third  generation  exhibit 
small,  slightly  tinted  points  and  those  of  the  fourth 
larger  and  distinctly  coloured  fat  drops.  Small  cells 
are  usually  richer  in  fat  than  older  ones.  The 
results  obtained  may  be  vitiated  if  the  staining  is 
prolonged,  owing  to  the  toxic  action  of  the  alcohol 
or  dye  coming  into  play.  If  0'005%  of  Methylene 
Blue  is  mixed  with  the  Soudan  III.,  dead  cells  may 
be  detected  at  the  same  time. — T.  H.  P. 

Yeast   fermentation;   Simple    contrivance   for   the 

automatic    registration     of   .       E.    Sieburg. 

Biochem.  Zeits.,  1922,  130,  459—462. 

The  evolution  of  carbon  dioxide  from  a  sugar 
solution  and  yeast  is  recorded  on  a  kymograph  by 
arranging  that  the  fermenting  solution  is  contained 
in  the  closed  limb  of  a  U-tube  with  a  lower  layer  of 
mercury,  on  the  surface  of  which  there  is  a  float 
carrying  a  pointer.  By  arranging  a  series  of  such 
U-tubes  comparative  measurements  of  various 
yeasts  on  the  same  substrate,  and  of  the  same  yeast 
on  various  substrates,  and  the  influence  of 
accelerators  can  be  recorded  continuously  by  the 
tracings. — H.  K. 

Fermentation;  Accelerators  of  .     H.  v.  Euler 

and    S.    Karlsson.      Biochem.    Zeits.,    1922,    130, 
550—555. 

Washed  dry  yeasts,  free  from  co-enzyme,  are  not 
activated  by  juices  and  extracts  containing  much 
vitamin-B;  but  there  is  marked  acceleration  of 
fermentation  by  washed  dry  yeast  on  addition  of 
the  co-enzyme. — H.  K. 


Invertase;  Inactivation  of  - by  small  quantities 

of  silver   salts.     H.    v.   Euler   and   K.  Myrback. 
Z.  physiol.  Chem.,  1922,  121,  177—182. 

Euler  and  Svanberg  had  previously  shown  (cf. 
J.,  1920,  795  a)  that  whilst  invertase  was  in- 
hibited by  silver  salts  proportional  to  their  con- 
centration, mercuric  salts  behaved  differently,  the 
results  falling  on  a  curve.  A  re-examination  of  the 
effect  of  silver  salts  shows,  however,  a  parallelism 
with  the  mercuric  salt  curves,  the  previous  results 
being  due  to  the  fact  that  the  inhibitive  power 
depends  on  the  concentration  of  the  enzyme. — H.  K. 

Invertase  preparations;  Analytical  investigation  of 

.     H.   v.   Euler   and   K.  Josephson.     Svensk 

Kem.  Tidskr.,  1922,  34,  74—81.     Chem.   Zentr., 
1922,  93,  III.,  383. 

The  authors  have  estimated  the  ash,  carbohydrates 
(by  Molisch's  colorimetric  method),  nitrogen,  and 
phosphorus  in  a  number  of  invertase  preparations 
of  known  inverting  powers.  The  poisoning  of  in- 
vertase by  silver  nitrate  observed  by  Myrback  is  dis- 
cussed, and  the  conclusion  is  drawn  that  0T%  of 
the  dry  matter  of  yeast  consists  of  pure  invertase, 
about  0"3  g.  of  the  latter  occurring  in  1  kg.  of 
pressed  yeast. — T.  H.  P. 

Carbohydrates;  Acetone  arid  butyl  alcohol  fermenta- 
tion of  various  .     G.  C.  Robinson.     J.  Biol. 

Chem.,  1922,  53,  125—154. 

The  fermentative  ability  of  an  organism  of  the 
G-ranulobacter  type,  isolated  from  a  sample  of  fresh 
barley,  towards  various  carbohydrates  was  studied. 
The  course  of  fermentation  was  followed  by  making 
periodic  estimations  of  the  titratable  acidity  of 
the  media  and  of  the  amount  and,  where  possible, 
the  composition  of  the  carbohydrates  present.  The 
carbohydrates  studied  fell  into  two  groups  accord- 
ing to  the  type  of  fermentation  which  occurred. 
In  the  first  group,  which  consisted  of  dextrose, 
lrevulose,  mannose,  sucrose,  lactose,  and  starch, 
the  acidity  of  the  media,  after  reaching  a  maximum, 
showed  a  decided  fall,  whilst  the  carbohydrate  was 
completely  consumed.  The  second  group  comprised 
galactose,  xylose,  arabinose,  raffinose,  melezitose, 
inulin,  and  maunitol.  In  these  cases  the  high 
acidity  persisted  and  the  consumption  was  incom- 
plete. Dextrin  fell  into  the  first  or  second  group 
according  as  it  was  prepared  by  the.  hydrolysis  of 
starch  with  malt  amylase  or  with  acid.  Trehalose, 
rhamnose,  melibiose,  and  glycerol  were  not  fer- 
mented. With  mixtures  containing  dextrose  and 
either  sucrose  or  lactose,  dextrose  was  preferen- 
tially consumed.  Maltose,  however,  was  fermented 
concurrently  with  dextrose,  hevulose,  or  mannose. 
Galactose  was  more  completely  consumed  in  the 
presence  than  in  the  absence  of  dextrose.  From  the 
experimental  data  it  is  concluded  that  the  organism 
secretes  the  enzymes  amylase,  inulinase,  and 
maltase,  but  not  invertase,  lactase,  or  raffinase. 
Raffinose  is  hydrolysed  to  melibiose  and  laavulose  by 
sucrase  within  the  cell. — E.  S. 

Hexoses  and  related   compounds ;    Fermentation  of 

by    certain    pentose- fermenting    bacteria. 

W.  H.  Peterson,  E.  B.  Fred,  and  J.  A.  Anderson. 
J.  Biol.  Chem.,  1922,  53,  111—123. 

The  action  on  various  sugars  of  four  cultures  of  the 
group  of  pentose-fermenting  organisms  previously 
described  (J.,  1922,  72  a)  has  been  examined. 
Dextrose,  lrevulose,  lactose,  raffinose,  and  melezitose 
were  converted  almost  quantitatively  into  lactic 
acid,  small  quantities  of  carbon  dioxide,  which  is 
regarded  as  a  product  of  cell  respiration,  also  being 
produced.  With  the  last  three  sugars  the  action 
was  slow,  and,  when  the  cultures  became  old,  a 
secondary  fermentation  began  with  the  production 
of  volatile  acids.     Maunitol  was  fermented  differ- 


Vol.  XLI.,  No.  19.] 


Cl.   XIXa.— FOODS. 


779  a 


ently  from  the  sugars,  thus  showing  the  influence  of 
the  terminal  alcohol  group.  With  one  exception, 
in  which  no  volatile  acids  were  formed,  the  products 
from  this  substance  were  lactic  acid,  ethyl  alcohol, 
formic  acid,  and  acetic  acid.  The  action  of  the 
pentose-fermenting  bacteria  resembles  that  of 
Streptococcus  lactis.  The  lactic  acid  produced  by 
the  former,  however,  is  always  optically  inactive 
whereas  that  produced  by  the  latter  is  active.- — E.  S. 

Action   of   quinine    etc.    on   yeast    etc.     Rona   and 
others.    See  XIXb. 

Action  of  poisons  on  yeast.    Traube  and  Klein.    See 
XIXb. 

Emulsin.    Willstatter  and  Oppenheimer.    See  XX. 

Chymosin  and  pepsin.     Hammarsten.    See  XX. 

Patents. 

Drying  yeast ;  Apparatus  for .    E.Klein.    E.P. 

176,340,  10.2.22.     Conv.,  3.3.21. 

The  apparatus  comprises  a  rotating  tank  with  air 
inlets  and  outlets  and  an  intermediate  floor  perme- 
able to  air  and  provided  with  oblique  air  conduits 
the  direction  of  which  substantially  coincides  with 
that  of  the  movement  of  the  material  on  the  bottom. 
The  floor  is  composed  of  two  superposed  plates 
provided  with  bevelled  portions  arranged  to  form 
nozzle-like  air  passage  spaces  which  extend 
obliquely  to  the  plane  of  the  plate.  The  tank  is 
provided  with  a  stationary  cover  which  carries  a 
stirring  or  disintegrating  device.  When  the  yeast 
reaches  a  certain  degree  of  fineness  it  is  separated 
and  carried  by  air  currents  into  a  series  of  collect- 
ing tanks  where  the  drying  is  completed.  The 
escaping  air  containing  yeast  particles  meets 
numerous  baffle  plates  and  with  the  repeated 
change  in  the  direction  of  the  air  the  yeast 
particles  are  separated. — J.  R. 

Yeast;  Growing  of .     B.  A.  Stagner,  As6r.  to 

National  Retarder  Co.     U.S. P.  1,425,065,  8.8.22. 
Appl.,  6.7.18. 

Suitable  carbohydrate  material  and  the  products 
of  hydrolysis  of  keratin  or  material  containing 
keratin  are  supplied  to  the  seed  yeast  in  order  to 
assist  in  its  growth  and  to  supply  nitrogenous 
material.  The  resulting  yeast  is  of  good  colour, 
odour,  and  keeping  quality,  and  is  suitable  for  use 
in  the  manufacture  of  leavened  bread. — J.  R. 

Malt  preparation ;  Process  for  producing  a for 

brewing    purposes.      P.    Vydra.      E.P.    184,381, 
19.8.21. 

Bruised  or  ground  malt  is  mashed  with  water, 
partly  or  completely  saccharified,  and  kiln-dried  at 
110°  C.  The  product  is  used  in  small  amounts  in 
brewing  beer. — A.  G.  P. 

Diastatic  preparations ;  Process  for  making  stable, 
dry .    Diamalt  A.-G.     G.P.  354,944,  8.7.16. 

Highly  diastatic  malt  extract  is  incorporated  with 
inorganic  colloidal  matter  which  binds  the  diastase 
colloidally;  the  dry  product  forms  a  colloidal  solu- 
tion with  water.  In  order  to  re-activate  the  ad- 
sorbed diastase,  alkali  hydroxide  is  added  either  to 
the  dry  product  or  to  its  solution  in  water.  Col- 
loidal silica  is  specially  suited  for  use  as  the  in- 
organic colloid.  The  product  is  very  stable  to  dry 
heat,  easily  analysed,  keeps  well,  and  forms  solu- 
tions of  high  diastatic  power.- — H.  C.  R. 

Alcohol;  Dehydration  of .    J.  Van  Ruymbeke. 

E.P.  (a)  184,036,  15.7.21,  and  (b)  184,129,  22.3.22. 

(a)  Alcohol  of  92 — 93%  concentration  as  obtained 
in  the  usual  rectifying  process  is  heated  and  the 
vapours  are  brought  in  contact  with  glycerin  in  a 


rectifying  column  through  which  a  counter  current 
of  glycerin  flows.  By  suitably  regulating  the  rates 
of  flow  of  the  glycerin  and  alcohol  vapour,  the 
vapour  leaving  the  column  when  condensed  in  the 
usual  manner  gives  an  alcohol  of  98—99%  concen- 
tration. The  glycerin  which  flows  to  the  bottom  of 
the  column  carries  away  both  alcohol  and  water. 
This  alcohol  may  be  recovered  in  a  second  rectifying 
column  by  injecting  steam  and  passing  the  re- 
covered alcohol  to  the  primary  rectifying  apparatus. 
The  aqueous  glycerin  is  then  concentrated  and  used 
to  dehydrate  further  amounts  of  92 — 93%  alcohol. 
(b)  Instead  of  glycerin  alone,  a  solution  containing 
glycerin  and  an  anhydrous  salt  or  salts  of  a 
hygroscopic  nature  such  as  calcium  chloride,  zino 
chloride,  or  potassium  carbonate,  may  be  employed 
with  increased  efficiency.  .  By  the  use  of  such  a 
mixture  in  the  rectifying  column  an  alcohol  of 
99'8%  concentration  or  even  higher  may  be  ob- 
tained. After  use  the  mixture  of  glycerin  and  salt 
is  distilled  in  a  current  of  steam  to  recover  the 
alcohol  and  the  residue  concentrated  by  heating  in 
vacuo  at  160°  C— J.  R. 

Dealcoholising    beverages.      H.     Heuser.      U.S. P. 
1,426,066,  15.8.22.     Appl.,  4.6.19. 

Beverages  are  heated  under  reduced  pressure  and 
the  vapours  evolved  carried  away  to  a  cooled 
receptacle. — A.  G.  P. 

Distillery    waste;   Process    of   recovering    volatile 

organic  acids  from .     L.  M.  Burghart,  Assr. 

to  U.S.  Industrial  Alcohol  Co.    U.S. P.  1,426,457, 
22.8.22.    Appl.,  24.6.18. 

The  sugary  material  is  mixed  with  a  soluble  caustic 
alkali  and  heated  in  a  furnace.  The  clinker  con- 
taining soluble  oxalates  and  salts  of  other  acids,  is 
extracted  with  acidified  water.  Lime  is  added  to 
precipitate  calcium  oxalate,  after  the  removal  of 
which  the  liquor  is  evaporated,  treated  with  a  non- 
volatile mineral  acid  and  alcohol,  and  the  esters 
formed  collected. — A.  G.  P. 

Glycerin;    Production    of    by    fermentation. 

A.  T.  Cocking  and  C.  H.  Lilly.    U.S. P.  1,425,838, 
15.8.22.    Appl.,  23.8.20. 

See  E.P.  164,034  of  1919;    J.,  1921,  557  a. 


XIXa.-F00DS. 

Self-raising  flour;  Determination  of  carbon  dioxide 

in .   B.  R.  Jacobs.  J.  Ind.  Eng.  Chem.,  1922, 

14,  419—420. 
Five  grams  of  the  flour  is  placed  in  a  flask  con- 
nected with  an  absorption  vessel  containing  a 
definite  volume  of  standardised  barium  hydroxide 
solution,  100  c.c.  of  0"1%  diastase  solution  is  added 
to  the  flask,  and  a  current  of  air  free  from  carbon 
dioxide  is  passed  through  the  apparatus  while  the 
flask  and  its  contents  are  heated,  first  at  70°  C.  for 
10  mins.  and  then  at  100°  C.  for  25  mins.  The 
mixture  is  finally  boiled  for  a  few  seconds,  the 
absorption  vessel  then  disconnected,  and  the  excess 
of  barium  hvdroxide  titrated,  using  phenolphthailein 
as  indicator.  If  it  is  desired  to  determine  the 
residual  carbon  dioxide,  the  operation  is  continued 
after  the  addition  of  hydrochloric  acid  to  the 
contents  of  the  flask.— W.  P.  S. 

Urea;  Value  of for  increasing  the  production 

of  milk  from  cows.  W.  Voltz,  W.  Dietrich,  and 
H.  Jantzon.  Biochem.  Zeits.,  1922,  130,  323—431. 
A  detailed  description  is  given  of  a  large  number 
of  experiments  on  the  value  of  urea,  alone,  and 
mixed  with  feeding  materials  such  as  potatoes  or 
beet  poor  in  protein,  in  comparison  with  earth-nut 
cakes.      The    minimum     maintenance    demand     of 


780  a 


Cl.  XIXa.— FOODS. 


[Oct.  16,  1922 


digestible  protein  was  033  kg.  per  1000  kg.  of  cow 
per  diem.  The  yields  of  milk  and  of  the  consti- 
tuents of  milk  were  invariably  increased  by 
administration  of  urea;  not  more  than  150  grams 
per  day  per  cow  must  be  given. — H.  K. 

Casein;  Products  of  prolonged    tryptic  digestion  of 

.       S.  Frankel  and  P.  Jellinek.       Biochem. 

Zeits.,  1922,  130,  592—603. 
When  casein  is  digested  with  trypsin  until  the 
bromine  reaction  for  tryptophan  is  negative,  the 
filtrate  after  precipitation  with  Hopkins'  reagent 
gives  on  removal  of  mercury  and  addition  of 
alcohol,  raeemic  hydroxyproline  in  0'8%  yield. 
From  the  filtrate  mercuric  chloride  precipitates 
histidine  anhydride  dihydrochloride,  m.p.  285°, 
in  small  quantity.  The  mercuric  chloride  precipi- 
tate in  alkaline  solution  contained  ammonium  and 
methylammonium  chlorides. — H.  K. 

Proteins    and    their    derivatives;    New    combined 

fractionation  method  for  separating .     M.  A 

Rakusin.     Biochem.  Zeits.,  1922,  130,  432—441. 

The  filtrates  from  95%  alcoholic  extracts  of  a  large 
number  of  animal  and  vegetable  proteins  and  of 
enzymes,  were  tested  qualitatively  by  various  colour 
reactions  and  found  to  contain  carbohydrate  and 
nitrogenous  substances  in  most  cases.  Pepsin-fibrin 
peptone  can  be  fractionated  by  extraction  with  95% 
alcohol  and  subsequent  successive  treatment  of  the 
filtrates  with  a  10%  suspension  of  aluminium 
hydroxide  for  periods  of  24  hours  each,  into  a 
number  of  fractions  which  differ  from  one  another 
in  their  colour  reactions  to  various  protein  and 
carbohydrate  reagents. — H.  K. 

Proteins;  Kinetics  of  the  coagulation  of  by 

heat.     H.  Liiers  and  M.   Landauer.     Z.  angew. 
Chem.,  1922,  35,  469—471. 

The  coagulation  of  proteins  by  heat  is  considered  as 
occurring  in  two  stages,  viz.,  a  chemical  process  of 
denaturation,  and  the  subsequent  physical  floccula- 
tion  of  the  denatured  particles.  The  initial  process 
in  the  case  of  the  plant  albumin,  leucosine  (obtained 
from  barley  or  malt  extract)  was  found  to  be  a 
reaction  of  the  first  order.  Working  at  ph  =  6'09 
and  temperatures  between  52'9°  and  57-05°  C,  the 
temperature  coefficient  was  1"47  per  degree. 

—A.  G.  P. 

Proteins;  Proteolysis  in  material  containing  . 

G.   Chabot.     Bull.    Soc.   Chim.   Belg.,    1922,    31, 
193—204. 

Experiments  on  proteolysis  were  made  with  the 
aid  of  green  malt  such  as  is  used  in  the  manufacture 
of  yeast  by  the  aeration  method,  this  material  being 
rich  in  proteolytic  enzymes  and  containing  sufficient 
protein  to  allow  the  course  of  proteolysis  to  be 
easily  followed.  The  malt  was  used  at  a  concentra- 
tion of  20%,  and  changes  due  to  the  action  of  micro- 
organisms were  excluded  by  the  addition  of  sodium 
fluoride  solution.  The  extent  of  peptonisation  was 
measured  by  determinations  of  amino-acid  nitrogen 
by  Sorensen's  method  before  and  after  proteolysis. 
Sodium  fluoride  had  no  appreciable  effect  on  the 
percentage  of  protein  decomposed  at  17°  C. ;  at 
35°  C.  it  appeared  to  exert  a  slight  inhibiting 
action,  whilst  at  50°  C.  it  facilitated  decomposition 
to  a  small  extent.  The  optimum  temperature  for 
peptonisation  over  a  period  of  4  hrs.  was  about 
45°  C,  and  25-17%  of  the  total  nitrogen  was  found 
as  amino-acids  capable  of  titration  with  formalde- 
hyde. In  absence  of  sodium  fluoride,  the  optimum 
temperature  was  35°  C.  Determinations  of  the 
optimum  time  at  45°  C.  in  presence  of  sodium 
fluoride  showed  that  continuance  of  the  action  from 
15  hrs.   to  24  or  even  36  hrs.   gave  but  a  small 


increase  in  %  of  nitrogen  as  amino-acid.  Investiga- 
tion of  the  optimum  reaction  of  the  medium  carried 
out  by  addition  of  different  amounts  of  N/10 
sulphuric  acid  and  A7/ 10  caustic  soda  showed  that 
the  addition  of  0'2  g.  of  sulphuric  acid  per  100  g.  of 
malt  gave  the  greatest  yield  of  amino-acid;  this 
addition  corresponds  to  the  neutralisation  of  about 
three-fourths  of  the  natural  alkalinity  of  the  malt. 
Hydroxyl  ions,  even  in  small  quantity,  exert  an 
inhibiting  action,  which  increases  with  the  concen- 
tration. The  author  discusses  briefly  the  part 
played  in  peptonisation  by  hydrogen  ions. — H.  J.  E. 

Eggs;  Methods  of  minimising  shrinkage  during  the 

storage  of  .     L.  H.   Almy,  H.  I.  Macomber 

and  J.  S.  Hepburn.     J.  Ind.  Eng.  Chem.,  1922, 
14,  525—537. 

Loss  on  weight  during  storage  of  eggs  is  mainly  due 
to  the  escape  of  moisture  through  the  shells,  and  is 
not  prevented  by  preliminary  treatment  with  hot 
air  for  5  ruins.,  or  to  any  appreciable  extent  by 
treating  the  eggs  with  cold  or  hot  solutions  of 
mineral  or  organic  acids,  mineral  salts,  or  soap. 
Experiments  with  vegetable,  animal,  and  mineral 
oils  (used  as  coatings  on  the  eggs)  showed  that 
sealing  properties  are  not  strictly  related  to  drying 
properties  of  the  oils.  Cottonseed  oil  makes  a  very 
good  sealing  agent,  and  the  value  of  mineral  oils 
for  the  purpose  bears  a  definite  relation  to  their 
sp.  gr.,  flash  pt.,  and  viscosity.  Mineral  oils  are 
probably  preferable  to  vegetable  oils  because  they 
are  less  likely  to  impart  odour  to  the  eggs  and  are 
less  subject  to  change  during  storage.  The  addition 
of  1  or  2%  of  6oap  increases  the  sealing  value  of  a 
mineral  oil,  but  nothing  is  to  be  gained  by  the 
addition  of  gums,  waxes,  or  rosin  to  relatively 
heavy  mineral  oils. — W.  P.  S. 

Foods;  Method  of  determining  hydrogen  sulphide 
evolved  by when  cooked  at  various  tempera- 
tures. E.  E.  Kohman.  J.  Ind.  Eng.  Chem., 
1922,  14,  527—529. 

The  food  substance  is  placed  in  a  3-litre  flask  which 
is  fitted  in  an  autoclave  supplied  with  steam  from  a 
boiler ;  the  flask  is  closed  with  a  wooden  stopper 
and  a  tube  extending  from  just  above  this  stopper 
to  the  bottom  of  the  flask  allows  steam  to  enter  the 
latter  from  the  autoclave.  A  delivery  tube  from 
the  flask  passes  through  the  cover  of  the  autoclave 
and  is  connected  with  a  condenser  provided  with  a 
receiver  containing  bromine  solution.  The  delivery 
tube  is  fitted  with  a  tap  to  control  the  rate  of  dis- 
tillation; if  desired,  the  delivery  tube  may  have  a 
branch  capillary  tube,  which  also  enters  the  con- 
denser, this  arrangement  in  conjunction  with  the 
tapped  tube  yielding  a  more  uniform  volume  of  dis- 
tillate. The  distillation  is  made  at  120°  C,  about 
650  c.c.  of  distillate  being  collected  in  45  mins.  The 
oxidised  sulphur  compounds  in  the  distillate  are 
determined  in  the  usual  way  as  barium  sulphate. 
In  the  case  of  green  maize  etc..  reducing  substances 
other  than  sulphides  are  found  in  the  distillate;  as 
measured  by  permanganate  reduction  the  hydrogen 
sulphide  amounts  to  about  one-tenth  of  the  reducing 
substances. — W.  P.  S. 

Water-soluble  B  [vitamin];  Presence  of  the  anti- 

neuritic   substance   ,    in   the   chlorophyll-free 

plants.     O.   R.  Orton,   E.  V.  McCollum,  and  N. 
Simmonds.     J.  Biol.  Chem.,  1922.  53,  1—6. 

Vitamin  B  is  present  in  small  quantities  in  onion 
roots ;  it  is  therefore  concluded  that  this  vitamin 
is  not  associated  with  the  chloroplasts  in  plant 
tissue.  The  mushroom  Agaricus  catnpestris  is  a 
good  source  of  vitamin  B;  experiments  with  Indian- 
pipe,  Monotropa  uniflora,  gave  inconclusive  results. 

— E.  S. 


Vol.  XLL,  No.  19.J 


Cl.  XIXb.— WATER    PURIFICATION  ;    SANITATION. 


781a 


Water-soluble  B  [vitamin] ;  Glacial  acetic  acid  as  a 

solvent  for  the  antineuritic  substance .  V.  E. 

Levine,  E.  V.  McColIum,  and  N.  Simmonds.     J. 
Biol.  Chem.,  1922,  53,  7—11. 

Glacial  acetic  is  a  good  solvent  for  the  extraction 
of  vitamin  B  from  plant  material.  Impurities  can 
be  largely  removed  from  such  extracts  by  precipita- 
tion with  ether. — E.  S. 

Theobromine    and    caffeine;    Apparatus    for    the 

extraction    of    ,     with    bouing     chloroform. 

0.  P.  A.  H.  Schaap.     Pharm.  Weekblad,  1922,  59, 
920—923. 

The  apparatus  is  a  modified  Soxhlet  extractor,  of 
specified  dimensions,  the  siphon  tube  being  com- 
pletely outside  the  extractor  tube.  The  material  to 
be  treated  is  placed  in  a  Schleicher  and  Schiill 
thimble,  which  is  supported  from  below  by  a  wad  of 
cotton  wool  placed  in  the  extraction  tube.  A  bath 
of  hot  water  (70°— 75°  C.)  surrounds  the  latter.  The 
chloroform  must  boil  gently  in  the  extraction  tube 
for  ten  minutes  before  siphoning  over,  and  the  shape 
and  dimensions  of  the  apparatus  and  the  procedure 
are  of  importance  in  securing  this. — S.  I.  L. 

Lye  hominy:  its  discoloration  arid  a  new  process  for 
its  manufacture.  E.  P.  Kohman.  J.  Ind.  Eng. 
Chem.,  1922,  14,  415-^18. 

Lye  hominy  is  usually  prepared  by  boiling  maize 
(2100  g.)  with  sodium  hydroxide  solution  (7  1.  con- 
taining 52  g.  of  sodium  hydroxide),  washing  the 
product  with  cold  water  and  cooking  it ;  the  finished 
product  has  a  dark  or  even  black  colour  due  to  in- 
complete removal  of  the  alkali  by  washing.  The 
degree  of  alkalinity,  and  consequently  the  colour, 
also  depends  to  some  extent  on  the  size,  shape,  and 
age  of  the  grains.  If  the  grains  are  subjected  to  a 
scrubbing  action  directly  after  the  treatment  with 
alkali,  the  outer  layer  of  the  grains  and  the  tips  are 
removed,  the  residual  alkalinity  is  thus  decreased, 
and  the  product  is  white. — W.  P.  8. 

See  also  pages  (a)  746,  Digestion  of  straw  (Blas- 
weiler).  768,  Beef  bone  fat  (Eckart).  769,  Ability 
of  hardened  fats  to  hold  water  in  suspension 
(Brauer).  784,      Creatinine     (Pfizenmaier     and 

Galanos) ;  Chymosin  and  pepsin  (Hammarsten). 
790,  Ion  concentration  measurements  (Keeler). 

Patents. 

Blood;    Processes    for    preserving    the    fluidity    of 

.     F.    W.    V.    Fitzger-ald.       E.P.     183,943, 

5.5.  and  9.11.21. 

The  initial  coagulation  of  blood  is  prevented  if  the 
calcium  salts  in  the  blood  are  removed,  e.g.,  by  pre- 
cipitation with  a  neutral  or  alkaline  solution  of 
a  soluble  oxalate  or  fluoride  or  a  mixture  of  both. 
In  addition  a  preservative  may  be  added. — J.  R. 

Pectin-containing  material;  Process  of  making 

and  resulting  product.      F.  G.  Beylik  and  N.  W. 
Schwartzlose.     E.P.  184,081,  5.9.21. 

Pectous  materials,  such  as  pectic  acid  C,JI1:.01S 
and  pectosic  acid  C32H10O31,  are  prepared  from  plant 
materials  containing  pectin  as  follows :  The 
material  comminuted  by  crushing  or  slicing  is  de- 
hydrated at  a  low  temperature,  ground  to  a  fine 
condition,  and  extracted  with  a  solvent  (such  as 
alcohol)  capable  of  dissolving  substantially  all  the 
substances  present  except  pectous  material  and  cel- 
lular tissue.  The  residue  has  pectin,  pectic  and 
pectosic  acids  uniformly  distributed  throughout  the 
mass.  In  making  jellies,  jam,  etc.  it  is  only  neces- 
sary to  add  a  small  quantity  of  the  pectous  material 
»  the  fruit  juices  which  form  the  basis  of  the  jelly 
)r  jam.  The  cellular  tissue  present  does  not  inter- 
:ere  with  the  making  of  a  clear  jelly. — J.  R. 


Vegetable  albuminoid  and  process  of  producing  it. 
A.  Moffatt,  Assr.  to  E.  H.  Woloott.  U.S. P. 
1,425,033,  8.8.22.     Appl.,  24.8.18. 

Vegetable  material  is  subjected  to  the  action  of  an 
"  amylolytic "  acid  and  then  boiled  until  all  the 
starch  originally  present  is  rendered  soluble.  The 
resulting  mixture  is  drained  free  from  liquor  and 
the  insoluble  residue  of  albuminoids  and  fats 
washed  free  from  the  soluble  products  of  the 
amylolysis. — J.  R. 

Coffee;  Method  of  roasting  and  packing  ground  or 

whole  .     J.  A.  Reynolds.     U.S.P.  1,426,011, 

15.8.22.     Appl.,  4.12.19. 

Green  coffee  is  roasted  in  a  vessel  from  which  air 
is  excluded.  The  volatile  products  are  removed  by 
evacuation,  and  condensed  on  a  cellulose  men- 
struum. The  roasted  coffee  is  stored,  together  with 
a  portion  of  the  impregnated  cellulose,  in  sealed 
containers. — A.  G.   P. 

Preserved    eggs    and    process    therefor.      A.     K 
Epstein.  U.S.P.  1,426,559,  22.8.22.  Appl.,  9.12.20. 
Eggs,  after  removal  from  the  shells,  are  mixed  with 
glycerin,  frozen,  and  stored  in  a  frozen  condition 
till  required  for  use. — A.  G.  P. 

Feeding-stuffs;   Manufacture   of  from  straw 

and  the  like.  E.  Beckmann.  G.P.  354,822,  2.2.19. 
Straw  or  the  like  is  digested  with  alkali  carbonate 
solution.  Great  care  is  not  necessary  in  washing 
out  the  excess  alkali  carbonate,  since  it  is  not 
injurious  to  cattle. — J.  B.  F. 

Dehydrated  milk.    International  Dry-Milk  Co.,  and 

S.  M.  Dick.     E.P.  184,203,  4.2.21. 
See  U.S.P.  1,374,555  of  1921;  J.,  1921,  407  a. 
Crystallising  oils  and  fats.    U.S.P.  1,426,555.    See 

A  XX. 

Albuminous .  matter   from    glue    solutions       GP 
355,879.    See  XV.  '    * 


XIXb.- WATER  PUBLICATION ; 
SANITATION. 

Aeration  of  quiescent  columns  of  distilled  water  and 
of  solutions  of  sodium  chloride.  W.  E.  Adeney, 
A.  G.  G.  Leonard,  and  A.  Richardson.  Sci.  Proc' 
Royal  Dublin  Soc,  1922,  17,  19—28. 

The  aeration  of  quiescent  bodies  of  water,  fresh  and 
salt,  under  natural  conditions  is  effected  by  a  pro- 
cess of  mixing  of  the  exposed  layer  with  the  unex- 
posed portions  of  the  water  to  depths  of  at  least  ten 
feet.  The  mixing  is  caused  by  the  downward 
streaming  of  the  constantly  changing  layer  of  water 
exposed  to  the  air.  This  process  is  more  rapid  and 
more  uniformly  downward  in  salt  water  than  in 
fresh  water.  The  rate  of  streaming  depends  largely 
on  the  rate  of  cooling  of  the  surface  layer  by 
evaporation,  and  it  is  more  rapid  at  temperatures 
above  10°  C.  The  optimum  rate  of  streaming  is 
reached  with  a  1%  salt  solution. — J.  F.  S. 

Effluent  from  strawboard  mills;  Treatment  and  dis- 
posal of  .     H.    B.    Hommon.     Proc.    Amer. 

Soc.  Civil  Eng.,  1922,  48,  1397—1402. 

As  a  result  of  tests  carried  out  at  7  strawboard  mills 
in  America,  it  is  estimated  that  about  38,500  galls, 
of  effluent  is  produced  in  the  manufacture  of  1  ton 
of  strawboard;  on  this  basis  20,000,000,000  galls,  of 
waste  water,  containing  approximately  161,000  tons 
of  dry  suspended  solids,  was  discharged  from  the 
various  plants  in  the  United  States  during  1918. 
Investigation  has  shown  that  this  waste  can  be 
treated  at  reasonable  cost,  so  that  it  may  be  safely 


782  a 


Cl.   XX.— ORGANIC  PRODUCTS ;  MEDICINAL  SUBSTANCES,  &o.  [Oct.  16,  1922. 


discharged  into  a  body  of  water  affording  a  dilution 
factor  of  5  or  6.  For  every  ton  of  strawboard  pro- 
duced per  day  the  following  should  be  provided : 
settling  tanks  of  a  combined  capacity  of  975  cub.  ft., 
filter  bed  (for  drying  sludge)  made  of  unscreened 
cinders,  10  in.  deep  and  875  sq.  ft.  in  area;  filter  for 
settled  effluent  made  of  screened  cinders  (screened 
over  a  J*  screen)  5  ft.  deep  and  4171  sq.  ft.  in  area. 
The  raw  effluent  should  be  allowed  to  settle  for 
2  hrs.  in  the  settling  tanks  and  then  run  on  to  the 
filter  bed.  From  results  already  obtained  it  is 
believed  that  filter  beds,  made  as  described  above, 
with  cinders  screened  over  a  J"  screen,  could  be 
used  for  years  for  treating  strawboard  wastes,  but 
would  probably  require  to  be  flushed  once  a  year, 
preferably  w7ith  fresh  water,  to  remove  clogging 
material.  The  sludge  from  the  settling  tank  could 
be  used  as  a  fertiliser. — D.  J.  N. 

Carbonyl  chloride ;  Sorption  of  by  beechwood 

charcoal.     H.  M.  Bunbury.     Trans.  Chem.  Soc, 
1922,  121,  1525—1528. 

The  sorption  of  oarbonyl  chloride  by  beechwood  char- 
coal at  18°  C.  and  100°  C,  as  measured  by  Travers' 
apparatus  (Proc.  Roy.  Soc,  1904,  74,  126:  1906, 
A  78,  9),  agrees  with  the  formula  x/m  =  kp'/n.  At 
18°  and  100°  C,  the  values  of  1/n  are  0231  and 
0-488  and  of  k  0235  and  0'038  respectively.Approxi- 
mate  equilibrium  is  established  after  a  few  minutes, 
the  velocity  of  sorption  being  extremelv  rapid. 

—P.  V.  M. 

Bacteria,  erythrocytes,  and  yeast;  Use  of  the  ultra- 
microscope    for    examination    of    the    action    of 

poisons  on  the  cells  of  .     I.  Traube  and  P. 

Klein.     Biochem.  Zeits.,  1922,  130,  477—480. 

By  means  of  the  ultramicroscope  it  is  possible  to 
follow  the  adsorption  of  submicrons  present  in 
saturated  aqueous  solutions  of  a  variety  of  toxic  sub- 
stances such  as  xylidine,  octyl  alcohol,  nonylic  acid, 
7/1-cresol,  thymol,  and  vuzin  on  red-blood  corpuscles, 
Soor's  bacilli,  and  yeast  cells.  The  penetration  of 
these  substances  into  the  cells  and  the  subsequent 
break  up  of  the  cells  through  haemolysis,  plasmolysis, 
etc.  can  be  followed. — H.  K. 

Invertasc,  maltase,  and  a-methylglucosidase ;  Action 
of  quinine,  narcotics  and  arsenic  compounds  on 

.        P.   Rona,   Y.   Airilla  and  A.   Lasnitzki. 

Biochem.  Zeits.,  1922,  130,  582—591. 

The  combined  inhibitory  action  of  quinine  and 
narcotics  on  invertase  is  less  than  the  sum  of  their 
individual  actions.  Arsenious  acid,  arsenic  acid, 
and  atoxyl  had  no  action  on  maltase  or  a-methyl- 
glucosidase, but  methyl  arsenious  oxide  was  in- 
hibitory.—H.  K. 

Formaldehyde.     KuM.     See  XXIII. 

Patents. 

Water;  Process  for  softening ■  by  means  of  base- 
exchanging  materials  and  lime.  H.  Reisert  und 
Co.,  Komm-Ges.  auf  Aktien.  G.P.  354,315, 
22.3.21. 

By  treating  with  lime  a  mixture,  in  suitable  pro- 
portions, of  water  which  has  been  softened  by 
treatment  with  base-exchanging  materials  and  of 
unsoftened  water,  a  soft  water  containing  only 
small  quantities  of  sodium  bicarbonate  is  obtained. 

— H.  R.  D. 

Aryl  ethers  of  phenols  and  cresols  for  use  as  insecti- 
cides and  fungicides.  Farbenfabr.  vorm.  F. 
Bayer  und  Co.  G.P.  355,206,  4.7.19.  Addn.  to 
343\S64  (J.,  1922,  193  a). 

The  aryl  ethers  of  phenols  and  cresols,  e.g., 
diphenyl  ether,  cresyl  ether,  chlorophenyl  ether, 
diphenylene  oxide,  may  be  used  in  the  same  way 


as  the  alkoxyalkyl  and  alkyl  ethers  specified  in 
the  previous  patent. 

Water:  Process  for  the  softening  of  .     G    G 

Hepburn.       U.S. P.     1,426,638,     22.8.22.      Appl  ' 
17.8.21.  ™  '' 

See  E.P.  173,255  of  1920;    J.,  1922,  193  a. 

Insecticide.     G.P.  353,682.    See  V. 

Detergent  and  disinfectant.  E.P.  184,248.  .See  XII. 

XX—  0BGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Alkaloids;    Belation  between  constitution  of 

and   Vitali's  reaction.      P.    Hardv.     J.   Pharm 
Chim.,  1922,  26,  172—176. 

It  has  been  shown  that  Vitali's  reaction,  which  was 
considered  to  be  characteristic  of  atropine  and 
hyoscyamine,  is  also  given  by  isoatropylcocaine. 
The  author  shows  that  scopolamine  also  responds 
to  the  test,  which  is  a  general  test  for  esters  formed 
by  the  combination  of  an  alcohol  with  tropic  acid 
and  other  acids  of  analogous  constitution. 

— H.  J.  E. 

Codeine  salts:  the  hydrobromide.  Preparation  of 
solutions  for  injection.  F.  Martin.  J.  Pharm. 
Chim.,  1922,  26,  176—187. 

The  author's  results  on  the  composition  and 
dehydration  of  crystallised  codeine  hydrobromide 
are  in  agreement  with  those  of  Dott  (Pharm.  J., 
1884,  14,  917),  namely  that  the  crystallised  salt 
loses  J  mol.  H,0  when  heated  on  a  boiling  water 
bath  and  the  remaining  li  mols.  at  about  115°  C. 
The  solubility  of  this  salt  is  considerably  increased 
in  presence  of  sodium  benzoate  or  salicylate;  the 
preparation  of  solutions  for  subcutaneous  injection, 
based  on  this  increase  in  solubility,  is  described. 

-H.  J.  E.         . 

Colchicine:  its  assay,  isolation  and  special  pro- 
perties. E.  C.  Davies  and  J.  Grier.  Pharm. 
J.,  1922,  109,  210—211. 

In  preparing  the  alkaloid  in  quantity  by  the  use 
of  phosphotungstic  acid,  satisfactory  precipitation 
is  only  possible  in  presence  of  sodium  chloride.  The 
best  results  were  obtained  by  the  following  method : 
The  powdered  seeds  and  corms  are  treated  with 
methylated  spirit  in  a  Soxhlet  extractor  in  which 
the  boiling  flask,  is  placed  at  the  side  so  that  the 
drug  is  not  exposed  to  heat.  The  alcohol  is  distilled 
off,  the  residue  extracted  with  hot  water,  and  any 
oil  removed  with  ligroin.  The  impure  alkaloid  is 
then  extracted  with  chloroform  and  the  chloroform 
residue  extracted  with  hot  water.  This  extract  is 
filtered  and  the  filtrate  precipitated  by  phospho- 
tungstic acid  in  presence  of  2%  of  sodium  chloride 
and  0-5%  of  hydrochloric  acid.  The  precipitate  is 
collected,  washed  free  from  sodium  chloride  with 
0'1%  hydrochloric  acid,  and  transferred  to  a 
separator  containing  chloroform.  A  slight  excess 
of  ammonia  is  added,  the  chloroform  evaporated 
and  residue  crystallised  from  50%  alcohol.  No 
difference  was  found  in  the  product  from  seed  and 
corm.  The  most  satisfactory  solvents  for  the 
extraction  of  the  powdered  drug  were  chloroform, 
ethyl  alcohol,  methyl  alcohol,  and  methylated  spin:. 
Assay  was  carried  out  volumetrically  with  Mayer's 
and  'Schiebler's  reagents  and  also  by  precipitation 
with  Schiebler's  reagent.  It  was  found  that  1  c.c. 
of  Mayer's  reagent  (A'/20)  is  equivalent  to  O'Oll  S- 
of  colchicine.  The  centrifuge  was  utilised  to  obtain 
more  rapid  separation  of  the  precipitate,  thus  in- 
creasing the  sensitiveness  of  the  method.  The 
results  of  the  above  and  of  gravimetric  estimations 
with   Schiebler's   reagent   established   the   ratio  of 


Vol.  xli.,  No.  19.]      Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &C 


783  a 


1  part  of  colchicine  to  3'3  of  phosphotungstic  acid 
as  the  proportions  in  which  they  combine.  The 
precipitation  was  carried  out  in  the  presence  of 
sodium  chloride  and  hydrochloric  acid,  the  pre- 
cipitate being  washed,  dried  and  ignited;  it  decom- 
posed at  200°  C.  yielding  P2Os,  20Wo03.  Colchicine 
gives  a  green  coloration  with  alkali,  and  may  thus 
be  estimated  colorimetrically  in  dilute  solution. 
An  account  of  the  properties  of  the  alkaloid  and 
also  those  of  colchiceine  is  given  together  with  the 
methods  of  preparation  of  colchicine  salicylate 
and  tannate.  A  list  of  the  usual  tests  for  colchicine 
is  appended.  The  authors  note  that  phenol,  cresol 
and  thymol  give  precipitates  with  the  alkaloid  and 
suggest  that  the  tannate  and  salicylate  are  not  true 
salts  but  addition  products  in  which  the  phenolic 
rather   than   the   carboxylic   group    is   functioning. 

— H.  J.  E. 

Ilyoscyamine  and  its  sulphate.  Preparation  and 
racemisation.  A.  Goris  and  P.  Costy.  Bull. 
Sci.  Pharmacol.,  1922,  29,  113—121.  Chem. 
Zentr.,   1922,  93,   III.,  268—269. 

Htoscyamine  and  atropine  can  be  separated  by 
making  use  of  the  different  solubilities  of  the  free 
bases  in  benzene  or  of  the  sulphates  in  alcohol. 
The  conversion  of  crystalline  hyoscyamine  into 
atropine  is  very  slow  at  100°  C,  but  is  greatly 
increased  if  the  base  has  previously  been  dissolved 
in  chloroform.  At  118°  C.  the  conversion  is  com- 
plete in  2  hours.  In  the  dissolved  state  the 
transformation  occurs  more  readily  in  aqueous  than 
in  alcoholic  solutions,  but  aqueous  solutions  of 
hvoscvamine  sulphate  are  stable  even  on  prolonged 
heating.— D.  F.  T. 

:  Plants;  Chemical  constituents  of  green .    XIX. 

Occurrence  of  lactic  acid  and  succinic  acid  in  the 
leaves    of    the    raspberry   (Rubus    Idceus).      H. 
Franzen  and  E.  Stern.     Z.  physiol.  Chem.,  1922, 
121,  195—220. 
The    aqueous    extract    of    raspberry    leaves    after 
I  removal  of  substances  precipitable  by  lead  acetate, 
contains    chiefly    calcium,    magnesium,    and    man- 
ganese  salts  of  lactic   acid   with   a   little   succinic 
acid.     The  dried  leaves  contain  1%   of  lactic  acid. 
I  The  isolation  and  characterisation  of  these  acids  is 
I  facilitated  by  fractionation  of  the  esters,  conversion 
into    hydrazides,    and    condensation    with    benzal- 
dehyde— H.  K. 

1  Emulsin.    II.    R.  Willstatter  and  G.  Oppenheimer. 
Z.  physiol.  Chem.,  1922,  121,  183—194. 

||  In  continuation  of  previous  work  (J.,  1922,  228  a) 

it    is    found    that    those    enzyme    actions    of    the 

j  emulsin  complex  which  proceed  best  in  a  decidedly 

acid  medium  follow  the  unimolecular  law,   as,  for 

instance,  hydrolysis  of  salicin,  arbutin,  helicin,  and 

.  i  phenylglucoside.     By  comparing  the  times  at  which 

'| 50%   of  the  following  glucosides  have  been  hydro- 

ilysed,    helicin,    salicin,     phenylglucoside,     arbutin, 

methylglucoside,  prunasin,  and  amygdalin,  by  nine 

totally  distinct  preparations  of  emulsin,  it  is  found 

|that  the  ratio  of  the  time  values  for  helicin,  salicin, 

land  phenylglucoside  alone  is  the  same  in  each  case. 

iThis   is  the   first  quantitative   demonstration  that 

r  one    enzyme    of   the    emulsin   complex  can    attack 

[different    substrates.    This   enzyme,    phenylglucosi- 

iase,  is  most  specific  for  helicin. — H.  K. 

Ring-substituted     phenylphosphinic    and    phcnyl- 

arsinic  acids;  Comparative  study  of .    D.  R. 

Nijk.    Rec.  Trav.  Chim.,  1922,  41,  461—500. 

The  following  improved  methods  of  preparation  of 
hese  acids  are  given:  p-Aminophenylarsi.nic  acid. 
iV  mixture  of  30  g.  of  freshlv-distilled  aniline  and 
!2  g.  of  dry  arsenic  acid  is  heated  to  170°— 200°  C. 
'n  an  hour,  and  then  at  200°  C.  for  two  hours;  the 
>roduct  is  cooled  to  100°  C,  added  to  concentrated 


caustic  soda  and  shaken  so  as  to  dissolve  as  much  as 
possible,  then  filtered.  The  filtrate  is  extracted 
three  times  with  ether  to  remove  excess  of  aniline, 
rendered  slightly  acid  with  nitric  acid,  and  evapo- 
rated to  a  small  volume.  The  acid  which  crystallises 
on  cooling  is  dissolved  in  dilute  caustic  soda  and 
the  solution  heated  gently  with  animal  charcoal  and 
filtered  into  absolute  alcohol.  The  sodium  p-amino- 
phenylarsinate  (atoxyl)  separates  in  colourless 
crystals.  The  yield  is  somewhat  increased  with  an 
excess  of  aniline  and  corresponds  to  25 — 30%  of 
the  arsenic  acid  used.  5-Nitro-2-aminophenylarsinic 
(nitranilinarsinic)  acid.  Double  the  usual  yield  is 
obtained  by  the  following  method:  A  mixture  of 
55  g.  of  p-nitianiline  and  10  g.  of  arsenic  acid  is 
heated  to  206°  C.  for  15  min.,  and  at  230°  C.  or 
below  during  the  subsequent  reaction.  Phenyl- 
arsinic  acid.  30  g.  of  aniline  is  dissolved  in  243  g. 
of  50%  nitric  acid  with  580  c.c.  of  water,  the  whole 
being  cooled  on  ice.  The  solution  is  diazotised  with 
21  g.  of  sodium  nitrite  in  a  little  water.  Concen- 
trated caustic  soda  is  then  added,  the  temperature 
being  kept  down  by  a  freezing  mixture,  until  the 
mixture  is  only  feebly  acid;  the  last  traces  of  acidity 
are  removed  by  addition  of  sodium  acetate.  The 
diazonium  nitrate  is  then  added  drop  by  drop 
with  constant  shaking,  to  a  mixture  of  cuprous 
hydroxide  suspended  in  200 — 300  c.c.  of  water, 
33  g.  of  arsenious  oxide,  40  g.  of  caustic  soda, 
previously  dissolved  in  100  c.c.  water,  and  ether 
(about  30  c.c).  The  completion  of  the  action  is 
ascertained  by  testing  with  /3-naphthol.  The 
product  is  filtered,  the  filtrate  acidified  with  hydro- 
chloric acid,  treated  with  animal  charcoal  and 
evaporated  on  the  water  bath  until  the  phenyl- 
arsinic  acid  begins  to  separate  in  colourless  needles. 
The  greater  part  of  the  acid  is  obtained  at  this 
stage;  the  remainder  is  extracted  by  hot  absolute 
alcohol  after  the  mother-liquor  has  been  evaporated 
to  dryness.  The  vield  from  30  g.  of  aniline  was  20  g. 
of  the  acid.— H.  J.  E. 

o-Toluenesulphonamide;  Oxidation  of  .     A.  W. 

Pamfilow.   Ber.  Polvtech.  Iwanowo-Wosniessensk, 

1921,  4,  167—168.   "Chem.  Zentr.,  1922,  93,  III., 
353. 

Oxidation  of  1  mol.  of  the  sodium  salt  of  the  amide 
with  2'4  mols.  of  potassium  permanganate  for 
6  hrs.  at  60°  C.  gives  80%  of  the  theoretical  yield 
of  saccharin.  On  oxidation  of  the  free  amide  by 
similar  means  the  yield  of  saccharin  is  10 — 15% 
lower,  and  the  amount  of  permanganate  used  i 
doubled.— J.  B.  F. 

Hydantoins.  Synthesis  of  the  soporific  4-p/ienyZ-4- 
ethylhydantoin  [nirranoV].  W.  T.  Read.  J. 
Amer.'Chem.  Soc,  1922,  44,  1746—1755 
Phenyl  ethyl  ketone  reacts  with  an  absolute  alco- 
holic solution  of  ammonium  cyanide  to  form  phenyl- 
ethylaminoacetonitrile,  (C„H5)(C2H5)C(CN).NH2 ; 
reaction  does  not  take  place  in  aqueous  solution 
and  even  in  95%  alcohol  the  yields  are  very  low. 
The  nitrile  is  converted  by  potassium  cyanate  in 
the  presence  of  glacial  acetic  acid  into  the 
nitrile  of  phenylethylhydantoic  acid,  (C0HS)(C2H5) 
C(CN).NH.CO.NH.,  in  80%  yield.  When  this  com- 
pound is  boiled  with  hydrochloric  acid  (20%),  it  is 
transformed  into  4-phenyl-4-ethylhydantoin  in  85% 
yield.  The  latter  substance  may  be  prepared  by 
the  procedure  outlined  above  from  phenyl  ethyl 
ketone  without  isolating  and  purifying  the  inter- 
mediate products,  the  yield  being  62%.  (Cf. 
J.C.S.,  Oct.).— H.  W. 

Trihalogen  tertiary  butyl  alcohols;    Derivatives  of 

.     IV.     Benzoyl  ester  of  trior omo-tert. -butyl 

alcohol    or    brometone    benzoyl    ester.      T.     B. 
Aldrich  and  J.  E.  Blanner.    J.  Amer.  Chem.  Soc, 

1922,  44,  1759—1762. 

Tribromo-tert.  -butyl     benzpate     (brometone     ben- 

Ii 


784  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;   MEDICINAL  SUBSTANCES,  &c. 


[Oct.   10,   192l 


zoate),  monoclinic  crystals,  m.p.  90°  C,  is  prepared 
in  excellent  yield  by  heating  molecular  proportions 
of  benzoyl  chloride  and  brometone  on  the  water 
bath  until  hydrogen  chloride  ceases  to  be  evolved. 
Jt  is  not  readily  saponified.  In  contrast  to 
brometone,  the  halogen  atoms  are  not  readily 
removed  by  treatment  with  sodium  hydroxide  solu- 
tion. Its  insolubility  probably  accounts  for  its  lack 
oi  physiological  action.  The  nitrobenzoates  of 
chloretone  and  brometone  are  prepared  similarly 
by  the  use  of  the  nitrobenzoyl  chlorides  or,  in  the 
case  of  the  meta  compounds,  by  nitration  of  the 
parent  esters  with  concentrated  nitric  acid.  They 
axe  not  as  active  physiologically  as  the  alcohols  from 
which  they  are  derived,  possibly  owing  to  their 
insolubility  in  water. — H.  W, 

Oxyhemoglobin;    Preparation    of    crystalline  . 

M.  Heidelberger.  J.  Biol.  Chem.,  1922,  53,  31—40. 
The  method  described  depends  upon  the  fact  that 
the  washed  corpuscles  from  dog's  or  horse's  blood 
crystallise  almost  completely  in  the  presence  of 
toluene  when  saturated  with  a  mixture  containing 
lour  parts  of  carbon  dioxide  to  one  of  oxygen.  The 
oxyhemoglobin  so  obtained  may  be  recrystallised 
by  dissolving  in  sodium  carbonate  solution  and  re- 
precipitating  by  saturation  with  the  above  mixture 
of  gases.  Salts  may  be  removed  from  the  recrystal- 
lised product  by  pressure  dialysis.  It  is  essential  to 
perform  all  operations  in  the  cold  and  in  the 
presence  of  excess  of  carbon  dioxide,  and  to  prevent 
the  oxvhsemoglobin  becoming  dry  at  any  stage. 
Using  this  method,  preparations  with  96 — 100%  of 
the  theoretical  oxygen  capacity  have  been  obtained. 

— E.  S. 

Creatinine;  Determination  of .   K.  Pfizenmaier 

and  S.  Galanos.  Z.  Unters.  Nahr.  Genussm., 
1922,  44,  29 — 11. 
The  method  given  in  the  "  Schweizerisches  Lebens- 
mittelbuch  "  for  the  determination  of  creatinine  is 
rapid  and  simple,  but  can  only  be  successfully  used 
when  light  coloured  solutions  are  available  for  the 
colorimetric  comparison  and  a  colorimeter  of  the 
Duboscq  type  is  used.  If  the  solutions  are  dark 
in  colour  or  contain  sugar  the  method  fails,  as 
animal  charcoal  cannot  be  used  because  it  adsorbs 
creatinine.  Colorimetric  comparison  in  cylinders 
(loc.  cit.)  was  found  to  be  unsatisfactory.  The 
method  of  Sudendorf  and  Lahrmann  (J.,  1915, 
1027)  is  of  general  application  and  is  the  only  one 
available  for  use  with  dark-coloured  solutions.  If 
the  authors'  instructions  are  exactly  followed  and 
too  great  an  excess  of  potassium  permanganate 
— especially  with  very  dark-coloured  solutions — 
is  avoided,  accurate  results  are  always  obtained. 
The  methods  referred  to  are  described  in  detail. 

— H.  C.  R. 

Glyoxalinedicarboxyiie  acid  for  the  recognition  and 
si  nitration  of  organic  bases.  H.  Pauly  and  E. 
Ludwig.  Z.  physiol.  Chem.,  1922,  121,  165—169. 
Gr.yoxALiNEDicARBOXYLic  acid  forms  sparingly 
soluble  and  well  crystallised  acid  salts  with  organic 
bases.  The  salts  of  the  following  are  described: 
Methylamine,  m.p.  240°— 245° ;  dimethylamine. 
238° — 239°;  trimethylamine,  264° — 265°;  ethyl- 
amine,  253°— 2-54° ;  diethylamine,  180°;  propyl- 
amine, 212°;  ii-butvlamine,  225°— 227° ;  pipendine, 
221°— 222°;  d-coniine,  208°— 209° ;  atropine,  93°; 
hydrazine,  above  260°:  guanidine,  241°— 242° ; 
glvoxaline,  245°;  and  Miistidine,  253°— 254°.  The 
solubilities  of  the  last  four  are  very  small,  of  the 
o I  hers  between  2  and  45%  .— H.  K. 

Chymosin  and  pepsin.  177.  Experiments  on  their 
purification.  O.  Hammarsten.  Z.  physiol.  Chem., 
1922,  121,  240—260. 

The  starting  material  was  prepared  by  extraction 


of  the  mucous  membrane  of  the  pig's  stomach  with 
0'2%  hydrochloric  acid  and  precipitation  of  the 
"  crude  pepsin  "  as  a  hyaline  mass  by  half  satura- 
tion with  sodium  chloride.  Preliminary  experi- 
ments are  described  in  which  the  sodium  chloride 
was  dialysed  away  in  0'2%  hydrochloric  acid  and  the 
solution  kept  at  37°  to  denature.  The  solution  was 
then  either  (1)  dialysed  against  water,  (2)  precipi- 
tated by  half  saturation  with  sodium  chloride,  or 
(3)  precipitated  by  saturation  with  ammonium  sul- 
phate. The  present  communication  deals  mainly 
with  the  fractional  extraction  of  the  "  crude 
pepsin  "  by  water  in  a  centrifuge,  dialysis  of  the 
extracts,  and  analysis  of  their  content  in  organic 
matter,  pepsin,  and  chymosin.  The  successive 
extracts,  except  the  later  ones,  compare  favourably 
in  activity  with  Pekelharing's  pepsin  although  the 
qualitative  reactions  are  different.  A  comparison 
of  the  clotting  time  on  milk  and  the  digestive 
power  by  Mett's  test  of  the  author's  preparation 
with  Pekelharing's  preparation  showed  no  paral- 
lelism under  any  conditions.  The  author's  solutions 
are  stable,  very  faintly  acid,  and  inactivated  by 
neutralising. — H.  K. 

Chymosin  and  pepsin.  Till.  Relative  sensitive- 
ness to  alkali  of  the  stomach  enzymes  of  the  calf 
and  iiia.  O.  Hammarsten.  Z.  phvsiol.  Chem., 
1922,   121,  261—282. 

Michaems  and  Rothstein  (Biochem.  Zeits.,  1920, 
105,  60)  found  that  alkali  destroyed  chymosin 
and  pepsin  from  the  pig'6  stomach  at  the  same  rate, 
whilst  the  author  (Z.  physiol.  Chem.,  1915,  94,  291) 
found  that  these  enzymes  when  prepared  from  the 
calf's  stomach  were  acted  upon  by  alkali  at  totally 
different  rates.  This  is  now  ascribed  to  the  use 
of  different  animals.  Chymosin  from  the  pig's 
stomach  is  destroyed  much  more  rapidly  than 
chymosin  from  the  calf's,  and  the  same  probably 
applies  to  the  pepsin  content.  The  experiments, 
moreover,  point  again  to  the  separate  entities  of 
chymosin  and  pepsin  as  the}-  are  destroyed  at" 
different  rates. — H.  K. 

Furfural;  Commercial .  Its  properties  and  uses. 

I.       C.    S.    Miner,    J.    P.    Trickev,    and    H.    J. 

Brownlee.      Chem.    and    Met.     Eng.,    1922,    27, 

299—303. 
The  physical  and  chemical  properties  of  furfural 
are  described  in  some  detail,  together  with  a 
number  of  its  condensation  products  with  other 
organic  compounds.  A  method  of  manufacture  on  a 
large  scale  from  oat-hulls  (which  should  yield  nearly 
20%  of  their  weight  in  furfural)  by  digestion  with 
steam  and  acid  under  pressure  has  been  worked 
out  and  a  production  of  several  tons  per  month 
is  being  made  by  the  process.  The  toxic  effect  of 
furfural  is  about  half  that  of  phenol  for  gold-fish 
and  its  bactericidal  action  is  about  one-quarter 
that  of  phenol.— A.  R.  P. 

Furfural  solutions;  Distillation  of  aqueous .  H. 

Bergstrom.      Svensk      Papperstidning.      ZelNtoff 

u.  Papier,  1922,  2,  139—140. 
The  distillation   constants  of  dilute   aqueous  solu- 
tions  of  furfural  are  as  follows  :  — 
Percentage  of  fnrfural  by  weight — 

In  solution    01     0-2     0-5   1-0   1-5     20     2-5     30     3-5     40    4-5 
In  vapour   0-7     1-3    3-4   6-5   91    11-4    131    14  7    16-2   17-6  190 

The  values  are  very  similar  to  those  found  for  dilute 
solutions  of  methyl  alcohol. — J.  F.  B. 

Furfural;   Commercial   .     Its   properties   ofld 

uses.       II.      C.    S.    Miner.    J.    P.    Trickev.    and 

H.  J.  Brownlee.     Chem.  and  Met.  Eng.,  1922.  27. 

362—366. 

The  use  of  furfural  in  making  resins,  varnish,  dyes 

etc.  is  briefly  discussed  and  a  complete  bibliography 


vol.  XII.,  No.  19.]         Cu  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


785  A 


of  furfural  and  its  chief  derivatives  is  appended. 
Preliminary  tests  show  that  it  may  be  used  as  a 
solvent  for  nitrocellulose,  hydrated  cellulose  ace- 
tates, and  oleic  acid. — A.  R.  P. 

Formic   acid;   Catalytic   decomposition    of   on 

surfaces  of  platinum  and  silver.  H.  C.  Tingey 
and  C.  N.  Hinshehvood.  Trans.  Chem.  Soc, 
1922,  121,  1668—1676. 

The  thermal  decomposition  of  formic  acid  in  con- 
tact with  platinum  yields  carbon  dioxide  and 
hydrogen  exclusively  at  temperatures  from  235°  to 
80°  C.  This  is  not  analogous  to  the  decomposition 
in  contact  with  glass  at  these  temperatures,  as 
carbon  monoxide  and  water  are  never  formed.  The 
temperaturecoeffieient  of  the  reaction  in  contact  with 
platinum  is  approximately  the  same  as  that  of  the 
corresponding  reaction  in  contact  with  glass,  viz., 
1"7 — VS.  The  "  heat  of  activation,"  calculated 
from  the  formula  d.log.k/dT  =  Q/RT2,  is  22,000 
cals.  per  g.-mol.  for  platinum,  and  28,000  cals.  for 
glass.  In  contact  with  silver  the  decomposition 
yields  mainly  carbon  dioxide  and  hydrogen.  The 
temperature  coefficient  for  this  reaction  is  again 
high.  T9 — 2'3,  corresponding  to  a  mean  "  heat  of 
activaticn  "  of  31,000  cals.  Varying  amounts  of 
carbon  monoxide  are  also  formed,  most  of  which 
can  probably  'be  accounted  for  by  the  reaction  in 
contact  with  the  walls  of  the  glass  bulbs  used. 
Platinum  foil  catalyses  only  slightly,  and  silver 
powder  not  at  all,  the  formation  of  carbon  dioxide 
from  carbon  monoxide  and  water.  Platinum  is 
the  most  efficient  catalyst  and  is  associated  with  the 
lowest  heat  of  activation  with  respect  to  one  and 
the  same  mode  of  reaction,  i.e..  decomposition  into 
carbon  dioxide  and  hydrogen. — P.  V.  M. 

Tri methylene;  Preparation  of  ■  in  a  pure  con- 
dition. M.  Trautz  and  K.  Winkler.  J.  prakt. 
Chem.,  1922,  104,  37—43. 

Trimethylene  is  conveniently  prepared  by  the 
reduction  of  trimethylene  bromide  in  amyl  alcohol 
by  zinc  dust  at  100°— 115°  C.  The  gas  evolved 
is  fractionated  at  a  low  temperature  in  an  appa- 
ratus which  is  described,  and  pure  trimethylene 
obtained  with  the  following  constants :  vapour 
density,  1-45 — T49;  sp.  gr.  of  liquid,  0"720;  m.p., 
-127°;  b.p.,   -34-5°  at  750  mm.;  nHe  =1000977. 

— W.  O.  K. 

Propylene;  Preparation  of in  a  pure  condition. 

M.   Trautz  and  K.    Winkler.     J.  prakt.   Chem., 
1922,  104,  44-^52. 

Propylene  is  prepared  in  very  good  yield  by  pass- 
ing propyl  alcohol  or    preferably,  isopropyl  alcohol 
over    aluminium    oxide   or   fragments   of   graphite 
crucibles  at  360°  C,  preferably  under  diminished 
J  pressure.      It    is    purified    by   passing    through    a 
receiver  cooled  in  ice,   then  over  calcium  chloride 
I  and  potassium  hydroxide,  through  a  vessel  cooled 
tin  a  mixture  of  toluene  and  solid  carbon  dioxide, 
i  and  finally  over  calcium  chloride.     Pure  propylene 
has     the     following    constants:     vapour     density, 
|0 — 2%    higher  than   corresponds  to   the   molecular 
jweight;   sp.   gr.   of  liquid,   0'647;   b.p.,    -47"8°  at 
750  mm.;   it  does  not  solidify  in   liquid  air;   nHe  = 
T00102.     The  specific  volumes  of  mixtures  of  tri- 
methylene  and  propvlene   in   the  liquid  condition 
are  additive. — W.  O.  K. 

Aldehydes;  Seduction  of  acid  chlorides  to  by 

means  of  nickel  catalysts.     H.  Schliewiensky.    Z. 
angew.  Chem.,  1922,  35,  483. 

Attempts  to  prepare  benzaldehyde  by  the  reduction 
Df  benzoyl  chloride  with  hydrogen  in  the  presence 
of  a  nickel  catalyst  (cf.  Rosenmund,  J.,  1918,  4-12  a) 
A-ere  unsuccessful.  Reaction  could  not  be  effected 
hn  the  presence  of  catalysts  prepared  from  freshly 


precipitated  basic  nickel  carbonate  which  was  (a) 
ignited  while  moist  in  air  to  the  oxide  and  subse- 
quently reduced  by  hydrogen  in  an  electric  furnace 
at  310°— 320°  C,  (b)  heated  directly  in  the  tube  at 
310° — 320°  C,  and  subsequently  reduced  at  the  same 
temperature,  and  (c)  dried  at  100°  C.  in  air  and 
then  ignited  and  reduced  in  hydrogen  at  310° — 320° 
C.  Failure  cannot  be  attributed  to  inactivity  of 
the  catalyst,  which  rapidly  caused  the  hydrogena- 
tion  of  fats.— H.  W. 

Aldehydes;  Reduction  of  acid  chlorides  to  by 

means  of  nickel  catalysts.       K.  W.  Rosenmund. 
Z.  angew.  Chem.,  1922,  35,  483. 

In  reply  to  Schliewiensky  (cf.  supra)  it  is  pointed 
out  that  attention  has  already  been  drawn  (cf.  J., 
1918,  442  a)  to  the  variability  in  the  behaviour  of 
palladium  and  nickel  as  catalysts  in  the  conversion 
of  acid  chlorides  to  aldehydes  by  hydrogen.  A 
trustworthy  procedure  has  been  given  in  the  case 
of  palladium  (Rosenmund  and  Zetzsehe  J.,  1921, 
•321  a)  ;  a  modified  method  will  be  published  in  the 
case  of  nickel. — H.  W. 

Formaldehyde;   Determination   of  in   impure 

solution.  F.  Kiihl.  Collegium,  1922,  133—142. 
An  investigation  of  the  sulphite  method  (cf. 
Auerbach,  J.,  1905,  1187),  Blank  and  Finkenbeiner's 
method  (J.,  1899.  79),  and  Romijn's  iodine  potassium 
cyanide  methods  (J.,  1897,  366)  shows  that  the 
potassium  cyanide  method  is  the  best. — D.  W. 

Pinene  hydrochloride ;  The  borneol  obtained  from 

the   magnesium   compound   of  .      G.    Vavon 

and  A.   L.  Berton.       Comptes   rend.,   1922,   175, 
369—372. 

I'inene  hydrochloride  was  prepared  by  treatment 
of  French  turpentine  with  gaseous  hydrogen 
chloride,  and  was  treated  with  Grignard's  reagent. 
The  product  on  oxidation  and  subsequent  treat- 
ment with  ice-water,  yielded  an  alcohol  which  was 
found  to  be  a  mixture  of  borneol  and  isoborneol.  If 
oxidation  takes  place  at  a  low  temperature,  the 
proportions  in  which  these  two  substances  are 
obtained  are  about  equal,  but  at  a  higher  tempera- 
ture borneol  free  from  isoborneol  may  be  produced. 
The  determination  of  the  relative  quantities  of  the 
two  substances  depends  on  the  fact  that  the  optical 
rotatory  power  of  borneol  varies  but  little  with  the 
nature  of  the  solvent,  whilst  in  the  case  of  iso- 
borneol the  variations  are  considerable. — H.  J.  E. 

Inchi  grass  (Cymbopogon  ccesius,  Stapf);  Essential 

oil  from .   K.  L.  Moudgill  and  K.  R.  K.  Iyer 

Perf.  and  Ess.  Oil.  Rec,  1922,  13,  292—295. 
The  characters  of  the  oil  (yield  0'8%)  were  :  Soluble 
in  87%  alcohol;  sp.  gr.  at  30°/4°  C,  0-9187; 
uD3°  =  l-484;  [a]D30=  -38-9°;  acid  value,  17;  saponif. 
value,  56;  acetyl  value,  120;  percentage  of  alde- 
hydes (Bennett's  hydroxylamine  method),  4'2.  The 
oil  is  not  identical  with  any  of  the  known  com- 
mercial oils  from  allied  grasses,  and  may  be  used 
as  a  substitute  for  palmarosa  oil,  which  it  re- 
senibles  in  odour.  It  contains  Z-borneol,  !-camphene, 
Mimonene,  2-terpineol,  and  unidentified  sesqui- 
terpene constituents. — H.  C.  R. 

Theobromine  and  caffeine.     Schaap.    See  XIXa. 

Modified  Sch iff' s  solution.    Wertheim.    See  XXIII. 

Hcemoglobin.    Terrill.    See  XXIII. 

Patents. 

Allylarsenic  acid;  Manufacture  of  .  F.  Hoff- 
mann-La Roche  u.  Co.  A.-G.  E.P.  167.157,  29.6.21. 
Conv.,  26.7.20. 

Allyxarsenic    acid,    colourless    needles    or   coarse 
prisms,  m.p.  129° — 130°  C,  is  prepared  by  treating 


7SGA 


Cl.  XX.— ORGAXIC  PRODUCTS  ;   MEDICIXAL  SUBSTAXCES,  &c.  [Oct.  16.  1922 


a  tertiary  alkali  arsenite,  in  aqueous  solution  and 
in  the  presence  of  an  excess  of  alkali,  with  allyl 
halides.— H.  W. 

Acetone ;  Method  of  manufacturing from  acetic 

acid.      Stockholms    Supcrfosfat    Fabriks    Aktie- 
bolag.     E.P.  171,391,  9.11.21.     Conv.,  9.11.20. 

A  catalyst  is  employed  with  metallic  aluminium  as 
a  carrier.  It  is  prepared  by  slowly  cooling  molten 
aluminium,  with  vigorous  stirring,  to  obtain  it  in 
a  porous  and  granular  form.  This  metal  is  then 
placed  in  a  solution  or  suspension  of  the  catalyst 
substance  and  the  liquid  evaporated  off.  The  tube 
containing  such  a  catalytic  preparation  can  be 
uniformly  heated  without  difficulty  and  the  dif- 
ference of  temperature  in  the  catalytic  mass  nearest 
to  the  walls  of  the  tube  and  in  the  central  parts 
is  small  even  if  a  tube  of  considerable  size  is  em- 
ployed. Acetone  is  produced  from  acetic  acid  in 
good  yield  and  of  a  very  high  degree  of  purity 
by  passing  acetic  acid  over  the  heated  catalyst  pre- 
pared as  described. — J.  R. 

llemedy    for    malignant    tumor    [colloidal    metallic 

selenides  and  tellurides};  Manufacture  of  a . 

L.    Lilienfeld.     E.P.    173,507,    22.12.21.     Conv., 
23.12.20. 

Colloidal  selenides  or  tellurides  of  such  metals  as 
gold,  iridium,  platinum,  mercury,  silver,  copper, 
etc.  are  obtained  by  the  action  of  hydrogen  or 
alkali  selenides  and  tellurides  on  dilute  solutions 
of  the  respective  metallic  salts  in  the  presence  or 
absence  of  protective  colloids,  such  as  gelatin, 
casein,  starch,  dextrin,  soaps,  etc.,  or  the  water- 
soluble  alkylpolysaccharides,  such  as  methylcellu- 
lose  or  ethylstarch.  If  the  latter  substances  are 
used  the  colloidal  selenide  or  telluride  may  be 
separated  by  coagulating  the  alkylcellulose  or  alkyl- 
starch  by  heating  to  50° — 80°  C,  and  the  coagulum 
can  be  filtered  off,  and  thoroughly  washed  with  hot 
water,  and  the  product  may,  if  desired,  be  dissolved 
in  alcohol  and  precipitated  with  ether,  before  it  is 
finally  dried.  If  other  protective  colloids,  or  none 
at  all,  arc  used,  coagulation  by  heat  is  not  feasible 
and  other  purifying  methods  such  as  dialysis  must 
be  employed. — G.  F.  M. 

Esters;    Process   of  converting   organic  acids  into 

.      P.    Haddan.      From   E.    Zollinger-Jenny. 

E.P.  183,897,  4.4.21. 

The  conversion  of  organic  acids,  other  than  poly- 
hydroxy-fatty  acids,  into  esters  is  greatly  simplified 
and  accelerated  by  the  use  of  zinc  or  tin  or  other 
metal  of  the  periodic  group  including  tin.  The 
metal  need  not  necessarily  be  in  the  finely-divided 
state;  it  may  be  introduced  into  the  apparatus  in 
the  form  of  a  regulus  or  be  applied  to  the  floor  or 
wall  or  to  a  body  inserted  in  the  vessel.  As  soon 
as  the  temperature  of  reaction  is  reached  and  main- 
tained, the  conversion  sets  in  and  proceeds  with 
considerable  speed  until  the  mixture  is  neutral. 
It  is  not  essential  to  have  an  excess  of  the  alcoholic 
component;  the  mixture  may  be  in  stoichiometrical 
proportions.  Organic  acids  of  the  highest  molecular 
weight,  including  resin  acids,  can  be  converted  into 
esters  in  this  way  and  the  process  can  be  applied 
not  only  to  pure,  free  fatty  acids  but  also  to  fatty 
acids  mixed  with  fat  or  diluted  with  primary  mono- 
hydric  or  other  alcohols.  An  example  is  given  of 
the  esterification  of  a  mixture  of  copra  oil  waste  and 
copra  fat  acids  with  glycerin.  [Reference  is 
directed,  in  pursuance  of  Sect.  7,  Sub-Sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  112,624;  J.,  1919,  427  a.]— H.  W. 

Esters;  Process  for  the  manufacture  of .     A.  A. 

Backhaus,   Assr.   to  U.S.   Industrial   Alcohol  Co. 
U.S.P.  1,425,625,  lo.S.22.     Appl.,  11.10.19. 

The  ester  formed  by  heating  a  mixture  of  an  alcohol 


and  an  organic  acid  in  the  presence  of  a  catalyst  is 
continuously  removed  by  distillation;  the  major 
portion  of  the  other  vapours  accompanying  the 
ester  is  condensed  and  returned  to  the  reaction 
vessel—  D.  F.  T. 

lchthyol   oil,    iclithijol    preparations  and   the   like; 

Manufacture    of  .      Plauson's   (Parent  Co.), 

Ltd.     From  H.  Plauson.     E.P.  184,292,  21.5.21. 

Ichthtol  oil  is  obtained  in  better  yield  and  contain- 
ing a  higher  proportion  of  sulphidic  sulphur  than 
has  hitherto  been  found  possible  by  subjecting 
Seefe'ld  or  other  sulphurised  shales  to  high-speed 
mechanical  disintegration  in  presence  of  water  in  a 
"colloid  mill."  The  oil  in  the  shale  is  thereby 
dispersed  to  form  a  permanent  emulsion  with  the 
water,  whilst  the  mineral  matter  separates  out  on 
standing.  To  obtain  the  oil  from  the  emulsion,  the 
latter  is  heated  to  60°— 70°  C,  if  desired,  with  the 
addition  of  an  electrolyte,  e.g.,  hydrochloric  acid. 
The  oil  can  be  further  purified  by  solution  in  an 
organic  solvent.  The  purified  oil  contains  about 
20%  of  sulphidic  sulphur,  compared  with  about  8% 
in  preparations  hitherto  obtained.  The  emulsions 
of  oil  and  water  obtained  as  above  described  can 
be  themselves  used  to  advantage  for  therapeutic 
purposes,  either  with  or  without  the  addition  of  pro- 
tective colloids,  as  they  are  readily  absorbed  by  the 
skin.  Sulphonation  of  the  ichthyol  to  obtain  a 
water-soluble  product  and  the  concomitant  partial 
decomposition  which  ensues  are  thereby  obviated. 

'— G.  F.  M. 

Acetic   anhydride ;   Manufacture    of  .     H.    W. 

Matheson  and  G.  E.  Grattan,  Assrs.  to  Shawini- 
gan  Laboratories,  Ltd.  U.S.P.  1.425,500,  8.8.22. 
Appl.,  25.4.18. 

Acetylene  is  passed  through  acetic  acid  (96 — 100  ',) 
heated  to  60°— 200°  C.  in  the  presence  of  a  finely- 
divided  salt  of  mercury. — J.  R. 

Chlorine  products  from  unsaturated  hydrocarbons: 

Process  for  producing .     A.  E.  Maze.    U.S.P. 

1,425,669,  15.8.22.     Appl.,  16.8.20. 
Acetylene  is  passed  into  an  alkaline  solution  of  an 
alkali  metal  which  has  been  saturated  with  chlorine. 

— D.  F.  T. 

Bbmeols    and    camphene ;    Manufacture    of    

B.  T.  Brooks.  Assr.  to  The  Viscoloid  Co.  and  The 
Fiberloid  Corp.  U.S.P.  1,426,036,  15.8.22. 
Appl.,  6.4.20. 
The  mother  liquor  obtained  after  the  separation  of 
crystallisable  bornyl  chloride  from  the  product  of 
the  action  of  dry  hydrogen  chloride  on  pinene,  is 
treated  with  a  fatty  acid  in  presence  of  an  alkali 
salt  of  a  fatty  acid,  and  a  bornyl  ester  and 
camphene  are  thereby  obtained. — G.  F.  M. 

Methyl   sulphites   of   secondary   aromatic   aliphatic 
amines  and  iwocess  of  making  same.     M.   Bock- 
miihl  and  K.  "Windisch,  Assrs.  to  Farhw.  yorm. 
Meister,  Lucius,  und  Briining.     U.S.P.  1,421 
22.8.22.     Appl.,  16.7.21. 

Compounds  of  the  general  formula, 
RR'N.CH,.08OsM, 

where  R  and  R'  are  an  aromatic  and  an  aliphatic 
radicle  respectively,  and  M  an  alkali  metal,  or 
ammonium,  are  obtained  by  condensing  secondary 
aromatic  aliphatic  amines  of  the  type  RR'NH 
with   a   formaklehvde-bisulphite  compound. 

— G.  F.  M. 

Pharmaceutical  product.     H.  Weyland,  H.  Hahl, 

and   R.   Berendes,   Assrs.   to   Farbenfabr.   vorm. 

F.    Baver    und    Co.      U.S.P.    1,426,430,    22.8.20. 

Appl.,  8.8.21. 

The   condensation   product   obtained   from   xylene, 

sulphur,    and    aluminium    chloride    is    a   valuable 


Vol.  XII.,  No.  19]        Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


7S7a 


remedy  for  scabies.  It  forms  a  dark  vellow  oil, 
b.p.  150°— 230°  C.  at  3—5  mm.  pressure. 

— G.  F.  M. 

Aldehydes;  Apparatus  for  making and  separat- 
ing them  from  other  products  formed.  A.  A. 
Backhaus  and  F.  B.  Arentz,  Assrs.  to  U.S. 
Industrial  Alcohol  Co.  U.S. P.  1,426,449,  22.8.22. 
Appl.,  24.6.18. 

The  apparatus  consists  of  a  combination  of  a 
catalyser  chamber,  a  means  for  passing  alcohol 
vapours  through  it  to  form  an  aldehyde  and 
hydrogen,  an  alcohol  condenser,  and  a  means  for 
separating  the  resulting  aldehyde  and  hydrogen 
tonsisting  of  a  scrubber,  by  means  of  which  acetic 
acid  is  brought  into  contact  with  the  vapours  on 
the  counter-current  principle. — G.   F.   M. 

Calcium  chloride  preparation;  Process  for  prepar- 
ing a  non-hygroscopic,  easily  soluble .  Calcion 

Ges.  m.b.H.     G.P.  354,247,  12.4.19. 

The  known  process  for  the  preparation  of  digly- 
collic  acid  by  introducing  lime  into  monochloro- 
aeetic  acid  is  modified  by  evaporating  to  dryness 
the  solution  of  calcium  chloride  and  calcium  digly- 
<ollate  obtained.  The  product  obtained  is  stable 
to  changes  of  temperature,  easily  soluble,  contains 
•30  c,0  CaCM2,  and  is  useful  in  therapeutics.  A  product 
■developing  strong  alkalinity  in  the  body  is  often 
required  in  this  connexion.  This  can  be  obtained 
by  replacing  part  of  the  lime  with  an  alkali,  such 
as  sodium  hydroxide.  A  mixture  of  calcium 
chloride,  calcium  diglycollate,  and  sodium  digly- 
collate  is  thus  obtained,  and  the  last-named  com- 
pound changes  to  sodium  carbonate  in  the  body 
and  facilitates  the  absorption  of  the  calcium 
chloride.— H.  C.  R. 

Acridine    derivatives;    Preparation    of    .      L. 

Casella  und  Co.,  G.m.b.H.  G.P.  354,400,  21.12.17. 

Aliphatic  aldehydes  are  allowed  to  react,  pre- 
ferably in  dilute  mineral  acid  solution,  with  3.6- 
diamino-10-alkylacridinium  compounds  or  their  sub- 
stitution products.  With  formaldehyde  at  ordinary 
temperatures  acridinium  compounds  yield  products 
insoluble  in  water  and  useful  for  antiseptic  pur- 
poses as  dusting  powders.  If  the  reaction  is  carried 
out  at  100°  C.  the  resulting  products  are  more 
soluble  and  may  be  used  medicinally  for  certain  skin 
diseases.  With  acetaldehyde  in  JV/1  hydrochloric 
acid  solution  3.6-diamino-10-methylacridinium 
ehloride  gives  at  ordinary  temperatures  a  powdery 
dark  reddish-brown  condensation  product  that  on 
drying  assumes  a  green  metallic  lustre.  It  dissolves 
in  hot  water  to  an  orange-red  solution  which  dyes 
■cotton  mordanted  with  tannin  in  orange-yellow 
shades  which  are  fast  to  soap,  soda,  and  acids.  If 
the  condensation  is  effected  at  100°  C.  under  a 
reflux  condenser,  a  reddish-brown  lustrous  powder 
js  obtained,  which  is  readily  soluble  in  water  and 
dyes  cotton  mordanted  with  tannin  various  shades 
of  red.  Similar  products  may  be  obtained  from 
other  acridinium  derivatives  on  condensation  with 
formaldehyde  or  acetaldehyde ;  they  all  dye  cotton 
in  yellow  to  red  shades. — A.  R.  P. 

Trypsin-hydrochloric     acid    preparations;    Process 

for  making  stable  .   A.-G.   fur  Anilin-Fabr. 

G.P.  354,481,  19.2.18. 

Preparations  containing  trypsin,  such  as  Pan- 
t reatinum  activum  or  absolutum,  or  their  com- 
pounds with  tannic  acid,  are  mixed  in  the  dry  state 
with  betaine  hydrochloride  or  betaine  hydrochloride 
and  pepsin.  The  mixture  retains  the  properties  of 
trypsin  even  after  long  storage.  It  is  useful  in 
the  treatment  of  diseases  of  the  stomach  and 
intestines. — H.  C.  R. 


Tropincmonocarboxylic  acids;    Process  for  the  pre- 
paration of  .     E.  Merck,  O.  Wolfes,  and  H. 

Maeder.     G.P.  354,696,  17.10.20. 

A  mixture  of  acetonedicar  boxy  lie  acid,  methyl- 
amine,  and  succinic  dialdehyde  is  reduced  in  a 
neutral  or  faintly  acid  or  alkaline  solution;  for 
example,  a  mixture  of  calcium  acetonedicarb- 
oxylate,  methylamine,  and  succinic  dialdehyde  is 
acidified  with  acetic  acid  and  reduced  with  3 
sodium  amalgam  with  the  addition  of  acetic  acid 
from  time  to  time  to  keep  the  mixture  just  acid. 
After  acidification  with  sulphuric  acid  and  removal 
of  calcium  sulphate,  the  solution  is  rendered 
alkaline  with  caustic  potash  and  the  tropine  bases 
are  extracted  by  shaking  with  ether.  The  alkaline 
solution  is  neutralised,  concentrated,  and  stirred 
with  methyl  alcohol  to  precipitate  salts  which  are 
filtered  off.  The  methyl  alcohol  solution  contains 
severally  optically  inactive  isomeric  tropinemono- 
carboxylic acids  which  can  be  separated  only  with 
great  difficulty'.  From  one  of  the  isomers,  which 
is  identical  with  ecgonine,  a  methyl  ester,  m.p.  122° 
— 126°  C,  may  be  obtained.  When  treated  with 
benzoic  anhydride  in  benzene  solution,  this  yields 
a  benzoyl  derivative,  which,  after  recrystallisation 
from  light  petroleum  ether,  melts  at  79° — 80°  C. 
and  is  identical  with  optically  inactive  cocaine. 
The  reduction  process  may  be  carried  out  in  alco- 
holic or  alkaline  solution  or  with  metallic  sodium 
in  ethereal  solution  but  not  with  strongly  acid 
reducing  agents,  such  as  tin  and  hydrochloric  acid. 

—A.  R.  P. 

Esters  of  tropinonedicarboxylic  acid;  Preparation 

of  .     E.  Merck,  O.  Wolfes,  and  H.  Maeder. 

G.P.  354,950,  29.6.20. 

Solution's  of  succinic  dialdehyde  in  water,  of  esters 
of  acetonedicarboxylic  acid  in  alcohol,  and  of 
methylamine  and  caustic  potash  in  water  are  care- 
fully mixed  together  and  the  mixture  is  kept  cooled 
for  several  hours,  after  which  the  product  is 
neutralised  with  acid  and  the  alcohol  distilled  off. 
The  residue  is  treated  with  ammonia  and  shaken 
several  times  with  chloroform.  The  chloroform  solu- 
tion is  separated  and  the  solvent  distilled,  whereby 
diethyl  tropinonedicarboxylate  remains  behind  as 
a  viscous  uncrystallisable  oil,  slightly  soluble  in 
water  with  a  weak  alkaline  reaction  and  more 
readily  soluble  in  alcohol,  ether,  chloroform,  and 
ethyl  acetate.  It  gives  a  reddish-violet  colour  with 
ferric  chloride,  instantaneously  decolorises  bromine 
water  and  permanganate  solution,  and  unlike 
tropinouemonocarboxylic  acid  esters,  forms  no  solid 
hydrate  with  water.  Boiling  with  acids  yields 
tropinone,  while  careful  saponification  gives  the 
ethyl  ester  of  the  monocarboxylic  acid. — A.  R.  P. 

Basic  aluminium  salicylate:    Method  for  the  pre- 
paration of  .    Soc.  Chim.  Usines  du  Rhone. 

G.P.  354,698,  29.6.21. 

Aluminium  hydroxide  and  salicylic  acid  are  mixed 
in  molecular  quantities,  in  presence  of  water ; 
warming  facilitates  the  reaction.  The  product  is 
a  colourless,  occasionally  reddish,  powder,  con- 
taining 25'75%  A1203  and  having  the  formula, 
C^H/OHJCOj-AKOH),.  It  is  distinguished  from 
the  normal  salicylate  by  its  stability  when  heated 
with  water  and  dilute  acid.  It  passes  undecom- 
posed  through  the  stomach  and  is  a  remedy  for 
intestinal  catarrh  and  diarrhoea. — J.  B.  F. 

Colloidal  suspensions;  Process  of  producing  stable 

in  organic  medio  immiscible  with  water.    H. 

Karplus.       G.P.     355,109,     31.5.18.       Addn.     to 
293,848. 
Two  colloidal  suspensions  prepared   in  accordance 
with  G.P.  293,848  and  296,637  (cf.  E.P.  8640-1  of 


7>s  v 


Cl.  XXI.— photographic  materials  and  processes. 


[Oct.  16,  1922. 


1915;  J.,  1916,  601,  823)  are  simultaneously  or 
successively  dispersed  in  the  same  organic  medium. 
One  of  the  colloidal  substances  is  a  compound  of  the 
magnesium  or  aluminium  group  prepared  in  accord- 
ance with  the  previous  patents. — J.  S.  G.  T. 

Icoine;  Process  for  making  clear  solutions  of  

in  oils.  G.  Hirsch.  G.P.  355,121,  13.3.18. 
Acoinb  (di-p-anisylmonophenetylguanidine  hydro- 
chloride) is  gradually  added  to  the  oil  heated  to  its 
boiling  point  in  such  a  way  that  the  acoine  does  not 
come  in  contact  with  the  walls  of  the  containing 
vessel.  The  oily  solution  is  used  as  a  dispersing 
medium  for  insoluble  mercury  salts  to  allow  of  the 
painless  incorporation  of  the  latter  in  the  human 
body.— H.  C.  R. 

Serum  and  lymph  preparations;  Process  for  making 

stable .    L.  Cassella  und  Co.,  G.m.b.H.    G.P. 

355,415,  21.11.19. 
TrtE  raw  material  is  treated  with  acridine  dyestuffs. 
For  example,  in  the  preparation  of  small-pox 
vaccine,  the  raw  lymph  is  mixed  with  3 — 5  times 
the  quantity  of  a  sterilised  1  %  solution  of  3.6-di- 
amino-10-methylacridinium  chloride  (Neutra-trypa- 
flavine),  and  is  then  worked  up  in  the  usual  manner. 
The  trypaflavine  lymph  is  distinguished  from 
glycerol  lymph  by  its  green  colour  and  its  fluidity. 
The  preservative  power  of  the  acridine  dyestuffs  is 
greater  than  that  of  glycerol  or  of  the  phenols 
usually  employed.  The  action  of  sera  and  lymphs 
is  not  in  any  way  affected  by  acridine  dyestuffs, 
which,  not  being  poisonous,  are  incapable  of  pro- 
ducing any  harmful  effects. — H.  C.  R. 

Ethyl  alcohol;  Production   of  from  acetylene 

or  ethylene.  AV.  Karo.  G.P.  356,175-6,  16.3.19, 
and  19.9.20. 
Ethylene  or  acetylene,  mixed  with  hydrogen  and 
oxygen  and  sufficient  inert  gas  to  render  the  mixture 
non-explosive,  is  passed  over  a  catalyst  consisting  of 
a  mixture  of  two  or  more  finely  divided  metals  on  a 
suitable  carrier,  one  metal  at  least  being  of  the 
platinum  group  and  one  a  less  noble  metal,  such  'as 
copper,  nickel,  or  iron.  If  the  hydrocarbon  is 
purified  by  passing  it  through  solutions  of  copper 
sulphate  in  sulphuric  acid  and  of  bichromate  in 
sulphuric  acid  no  dilution  with  inert  gas  is  neces- 
sary. By  passing  a  mixture  of  2  vols,  of  ethylene, 
2  vols,  of  hydrogen,  1  vol.  of  oxygen,  and  1  vol.  of 
nitrogen  or  of  2  vols,  of  acetylene,  4  vols,  of  hydro- 
gen, 1  vol.  of  oxygen,  and  1  vol.  of  nitrogen  over  ia 
nickel-palladium' catalyst  at  100°  C,  a  yield  of  12% 
of  alcohol  in  the  former  and  8 — 10%  in  the  latter 
case  is  obtained. — A.  R.  P. 


Acetaldehyde;    Process    of    manufacturing    ■ . 

H.  W.  Matheson.    Reissue  No.  15,434,  22.8.22,  of 
C.S.P.  1,384,842,  19.7.21.     Appl.,  5.5.22. 

See  E.P.  132,557  of  1918;  J.,  1919,  845  a. 

Dinitroglycol  and  its  homologues ;  Process  for  the 

preparation  of  .      H.   Oehme,  Assr.  to  The 

Chemical    Foundation,    Inc.       U.S. P.    1,426,313, 
15.8.22.     Appl.,  27.6.19. 

See  G.P.  338,056  of  1918;  J.,  1921,  640  a. 

Amines.     E.P.  184,284.    Sec  III. 

Mercury.     G.P.  356,507.     See  XII. 

Acids    from    distillery    waste.       U.S.P.    1,426,457. 
See  XVIIL 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Photographic  emulsion;  Theory  of  the  characteristic 

curve  of  a  .     F.  C.  Toy.     Phil.  Mag.,  1922, 

44,  352—371. 
The  relation  between  the  number  of  silver  halide 
grains  made  developable  and  the  light  intensity  has 
been  studied  for  a  number  of  grain  sizes.  The 
curves  obtained  by  plotting  the  percentage  of  grains 
made  developable  against  the  log.  of  the  intensity 
of  light  possess  the  characteristic  S  shape  only  for 
the  grain  size  of  0'98,u2.  Larger  grains  give  curves 
in  which  the  first  point  of  inflexion  is  absent.  A 
theory  of  the  photographic  plate  is  based  bn  these 
results.  The  halide  grains  are  assumed  to  contain 
sensitive  nuclei,  which  are  capable  of  change  under 
the  action  of  light  in  such  a  way  as  to  become 
developable.  These  nuclei  are  produced  during  the 
precipitation  and  ripening  of  the  emulsion  and  are 
not  composed  of  silver  halide.  They  are  distributed 
throughout  the  grains  according  to  the  laws  of 
chance,  some  particles  possessing  several  nuclei. 
Those  in  the  larger  grains  appear  to  be  the  more 
sensitive.  Svedberg's  assumption  regarding  the 
similarity  of  the  light-sensitive  material  in  large 
and  small  grains  is  not  in  agreement  with  the  ex- 
perimental facts  in  the  case  of  a  fast  emulsion. 

— W.  E.  G. 

Photographic  emulsions ;  Mutual   infection  of  con- 
tiguous silver  halide  grains  in  .     A.   P.  H. 

Trivelli,  F.  L.  Righter,  and  S.  E.  Sheppard. 
Phot.  J.,  1922,  46,  407—410. 
The  authors  claim  to  show  that  in  the  case  of  an 
emulsion  containing  flat,  polyhedral  grains,  the 
individual  grain  is  not  the  photographic  unit,  but 
that  the  grains  are  capable  of  mutually  infecting 
each  other.  In  the  case  of  a  clump  of  two  or  more 
grains,  if  one  grain  is  reducible,  the  whole  clump 
develops  completely  as  a  unit.  This  is  in  direct 
conflict  with  the  results  obtained  by  Svedberg  (J., 
1922,  348  a)  with  spherical  grains,  and  it  is  sug- 
gested that  the  spherical  grains  and  the  flat,-  poly- 
hedral grains  represent  two  extreme  cases. 

— W.  C. 

Photochlorides  and  colloidal  silver;  Colour  of . 

K.   Schaum  and  T.   Marx.    Kolloid-Zeits.,   1922, 

31,  64—70.  (Cf.  J.,  1921,  561  a.) 
A  method  of  determining  the  real  colour  of  colloidal 
particles  is  described,  and  using  this  method  it  is 
6hown  that  the  faintly  reflecting  red  particles  of 
colloidal  silver  are  in  reality  yellow,  the  red  colour 
being  due  to  a  colour  contrast  with  the  many  green 
particles  also  present.  The  colour  range  obtained  in 
photographic  intensification  may  be  completely  re- 
versed in  photographic  reduction  as  follows  :  a  blue 
silver  sol  is  mixed  with  an  equal  volume  of  a  10% 
gelatin  solution  and  allowed  to  set,  then  a  concen- 
trated solution  of  ammonia,  potassium  cyanide  or 
sodium  thiosulphate  is  poured  on  it  and  allowed  to 
diffuse.  After  several  days  the  following  range  of 
colours  is  observed  commencing  at  the  top  of  the 
tube:  colourless,  yellow,  orange,  red,  reddish-violet, 
bluish-violet,  and  blue.  Silver  sols  of  various 
colours  may  be  produced  by  the  addition  of  definite 
amounts  of  magnesium  sulphate,  ammonium  chlor- 
ide, sodium  chloride,  or  potassium  sulphate.  Thus 
with  a  yellow  silver  sol,  0'10  c.c.  of  iV/2  magnesium 
sulphate  gives  an  orange  sol,  0"20  c.c.  red;  0'25  c.c. 
purple;  0'30  c.c.  reddish-violet;  0'50  c.c.  bluish- 
violet,  and  1'50  c.c.  blue. — J.  F.  S. 

Patents. 

Photography ;   Process   of  producing    multicoloured 

screens  for  .     I.   Kitsee.      U.S. P.   1,426,995, 

22.8.22.     Appl.,  17.1.19. 

Figurations  are   produced  on  the  gelatinous  sub- 


Vol.  XIX,  No.  19.] 


Cl.  XXII.— EXPLOSIVES  ;    MATCHES. 


789  a 


stratum  of  a  moving  picture  film  by  means  of  a 
coloured  alcoholic  solution  containing  a  dissolved 
resin,  and  the  interspaces  between  these  figurations 
are  coloured  with  the  aid  of  a  dye  insoluble  in 
alcohol.  By  this  means  a  multicoloured  screen  in- 
tegral with  the  moving  picture  film  is  obtained 

— W.  C. 

Ferroprussiate  paper;  Manufacture   of  E 

Bertsch.       G.P.    354,388,     16.10.20.       Addn.    to 
320,981  (J.,  1920,  676  a). 

A  simple  acid  salt  is  added  to  the  emulsion  in 
addition  to  excess  of  normal  alkali  oxalate.  The 
advantages  claimed  are  quicker  printing  and  that 
the  paper  remains  yellow  for  a  longer  time. — W.  C. 


XXII.-EXPLOSIVES;  MATCHES. 

Xitrocellulose;  Some   changes   -undergone    by  . 

A.    Angeli.      Z.    ges.    Schiess-   u.    Sprengstoffw., 
1922,  17,  113—115. 

The  action  of  pyridine  on  collodion-cotton  (12%  N) 
■  was  studied  with  the  object  of  elucidating  the 
(changes  undergone  by  the  basic  organic  stabilisers 
|  usually  added  to  nitrocellulose  and  nitroglycerin 
powders.  The  nitrocotton  was  extraordinarily 
easily  gelatinised  by  the  pyridine,  forming  a  very 
viscous  liquid  which,  however,  rapidly  lost  its 
i  viscosity  and  in  a  few  days  had  the  appearance  of 
ordinary  pyridine.  On  adding  water  to  the  solu- 
tion a  white  resinous  mass  was  precipitated  which 
, tenaciously  retained  the  smell  of  pyridine  even  after 
solution  in  sulphuric  acid.  The  white  powder 
obtained  represented  80%  of  the  weight  of  collodion- 
cotton  used,  was  easily  soluble  in  acetic  acid,  soluble 

llin  allcohol,  but  almost  insoluble  in  ether  and 
benzene.  It  burnt  much  more  slowly  than  the 
!original   nitrocotton.     Its   nitrogen   content   varied 

(between  9%  and  10%.    The  substance  was  similar  to 

r.|that  obtained  by   Berl   and   Fodor   (J.,   1910,   978, 

j'1083)  by  the  action  of  alkali  hydroxides  or  carbon- 
ates on  very  dilute  solutions  of  nitrocellulose  in 
alcohol  and  ether.  Heated  in  a  glass  tube  the 
.substance  began  to  turn  brown  at  165°  C.  and 
became  almost  black  at  250°  C.  An  alcoholic  solu- 
tion of  the  substance  when  poured  into  water  gave 

m   very  stable  opalescent  colloidal   solution,   which 

(was  coagulated  by  sodium  chloride,  ammonium 
sulphate,  or  gelatin,  but  gave  no  precipitate  with 
Aqueous  tannin.  The  substance  reacts  readily  with 
Dhenylhydrazine.  Paper  saturated  in  dimethyl- 
vminoazobenzene  after  a  short  time  becomes 
intensely  red  in  colour  when  subjected  to  the  action 

r bf  the  wet  compound,  showing  the  development  of 
j)n  acid  reaction.  This  is  attributed  to  the  vola- 
tilisation of  the  pyridine  or  the  hydrolysis  of  the 
pyridine  salt  by  water.     The  use  of  weak  organic 

fpases  as  stabilisers  for  nitrocottons  is  considered 
Sbjectionable  on   account   of  the   possibility  of  the 

'production  of  acidic  products  through  hydrolysis. 
)iphenylamine  remains  present  as  such  in  nitro- 
■ottons  much  longer  than  other  organic  bases.  This 
nay  be  due  to  it  being  such  a  weak  base  that  it  is 
>nly  capable  of  reacting  with  nitrous  acid  to  form 

■he  nitrosamine. — H.  C.  R. 

smokeless  powders;   Testing  for  acidity.     A. 

!   Angeli.     Z.  ges.  Schiess-  u.  Sprengstoffw.,  1922, 
17,  115—116. 

'he  propellant  is  finely7  divided,  suspended  in 
rater,  and  treated  with  a  few  drops  of  a  0'2%  solu- 
ion  of  dimethylaminoazobenzene.  If  no  acids  are 
•resent  the  particles  of  propellant  remain  of  a 
?mon-yellow  colour.  In  cases  where  acidity  has 
eveloped  they  are  coloured  a  more  or  less  intense 
ed.  The  liquid  in  which  the  propellant  is  sus- 
ended  remains  in  either  case  entirely  colourless. 

'  — H.  C.  R. 


Mercury    oxycyanide;    Explosibility    of   .      H 

Kast  and  A.  Haid.     Z.  ges.  Schiess-  u.  Spreng- 
stoffw., 1922,  17,  117. 

Mercury  oxycyanide  blackens  and  gives  off  smoke 
without  flame  on  being  strongly  triturated  in  a 
porcelain  mortar.  It  decomposes  when  struck  by  a 
2  kg.  weight  falling  40  cm.,  and  explodes  with  a 
similar  weight  falling  60  cm.  With  a  10  kg.  weight 
the  heights  are  10  cm.  and  16  cm.  respectively.  It 
is  therefore  more  sensitive  than  gunpowder  and 
picric  acid  and  less  so  than  tetryl.  Ignited  by  a 
11  a  me  or  red  hot  substance  it  burns  with  a  pale  red 
flame,  but  cannot  be  ignited  by  the  sparks  from 
pyrophoric  cerium  alloys.  Its  rate  of  burning  in 
the  open  is  greater  than  that  of  tubular  smokeless 
powder  but  much  less  than  that  of  gunpowder.  It 
ignites  at  170°  C.  in  a  bath  of  Wood's  metal. 
Tested  in  the  Trauzl  block  it  gave  an  increase  of 
volume  of  10  c.c.  without  correcting  for  the 
detonator  used.  Assuming  decomposition  accord- 
ing to  the  formula  Hg(CN)2,HgO  =  2Hg+C+CO+ 
N2  +  64'5  cals.,  the  gas  evolved  per  kg.  is  190  1.,  heat 
per  kg.  13S  cals.,  temperature  of  explosion  2620°  C, 
and  specific  energy  2090  kg.-litres,  these  figures 
being  considerably  less  than  those  accepted  for  gun- 
powder.—H.  C.  R. 

Patents. 

Ammonium    perchlorate     explosives;    Process    for 

making  easily  cast  .     Chem.  Fabr.  von  Hey- 

den  A.-G.  G.P.  306,370,  2.9.17. 
Ammonium  perchlorate  is  mixed  with  nitrates  of 
nitrogenous  bases,  especially  ammonium  nitrate, 
and  salts  of  fatty  acids  or  hydroxy-fatty  acids,  free 
hydroxy-fatty  acids,  amides  of  aliphatic  carboxylic 
acids,  sulphuric  esters,  and  where  necessary  dihydr- 
oxybenzenes,  aromatic  hydroxy-acids  and  sulphonic 
acids  or  their  salts.  In  addition  to  being  easily 
cast  these  explosives  are  characterised  by  giving 
little  noxious  vapour  on  explosion  when  the  com- 
pounds mixed  with  the  perchlorate  are  in  the  form 
of  alkali  salts.— H.  C.  R. 

Shells;  Process  for  filling  projectiles  such  as  

with  an   explosive  mixture  consisting  mainly  of 
ammonium  nitrate  and  charcoal.     Verein  Chem 
Fabr.  in  Mannheim.    G.P.  310,130,  9.9.17. 

The  oxidising  agent  is  melted  alone  and  the  char- 
coal is  stirred  into  the  melt,  preferably  in  a  vessel 
other  than  that  used  for  melting  the  first  consti- 
tuent, e.g.,  in  a  measuring  vessel  containing  exactly 
the  charge  for  one  shell,  and  provided  with  heating 
and  stirring  arrangements.  The  charcoal  mixes 
better  if  it  is  previously  briquetted,  the  binding 
material  used  being  ammonium  nitrate.  In  this 
way  shells  may  be  rapidly  and  safely  filled  with  a 
very  effective  explosive. — H.  C.  R. 

Exjilosivc  and  propellant ;  Process  for  preparing  an 
from  ammonium  nitrate  and  nitrates,  oxal- 
ates, and  similar  salts  of  ammonium  and  amines. 
Verein  Chem.  Fabr.  in  Mannheim.  G.P.  334,547, 
8.12.16. 

The  mixture  is  liquefied  and  re-solidified  in  a  homo- 
geneous or  nearly  homogeneous  condition.  For 
example  the  solvent  is  rapidly  evaporated  from  a 
solution  of  the  components  by  allowing  the  concen- 
trated solution  to  flow  over  steam-heated  rolls,  from 
which  the  solidified  mass  may  be  removed  by 
scrapers.  Alternatively  the  constituents  may  be 
melted  together  at  as  low  a  temperature  as  possible 
and  the  melt  rapidly  cooled. — H.  C.  R. 

Match  composition.  M.  Pohl.  G.P.  347,120, 
30.5.20. 

The  addition  of  lignite  to  a  mixture  of  potassium 
chlorate,  sulphur,  ©lay,  binding  materials,  and  fil- 
ling materials,  is  proposed. — H.  C.  R. 


790  a 


Ou  XXIII.— ANALYSIS. 


(Oct.  16,  1922. 


XXIII.— ANALYSIS. 

Stalagmometer  and  stagonometer ;  A  new  .    I 

Traube.     Biochem.  Zeits.,  1922,  130,  476. 

The  stalagmometer  described  previously  (J.,  1922, 
121  a)  is  not  suitable  for  measurements  of  viscosi- 
ties.—H.  K. 

Analysis;  Iiefractometric  and  interferometric  quan- 
titative   .     I.  Becka.  Z.  physiol.  Chem.,  1922, 

121,  288—299. 

The  author  has  extended  the  observations  of  de 
Crinis  on  the  use  of  the  refractometer  for  the 
analysis  of  solutions  so  as  to  make  it  more  generally 
applicable.  He  also  describes  the  use  of  the  inter- 
ferometer for  more  dilute  solutions.  The  experi- 
ments have  special  reference  to  urine  analvsis 

— H.  K. 

Ion    concentration    measurements;    Application    of 

to  the  control  of  industrial  jnocesses.    E.  A 

Keeler.  J.  Ind.  Eng.  Chem.,  1922,  14,  395—398. 
Several  forms  of  electrodes  are  described  which  are 
suitable  for  industrial  work  and  examples  are  given 
of  the  application  of  the  hydrogen-ion  method  to 
the  control  of  neutralisation  processes  in  the  case 
of  such  materials  as  pineapple  juice,  tooth  pastes, 
beet  sugar  juice  (carbonatation  process),  wool  scour- 
ing liquor,  tanning  liquors,  boiler  feed  water,  etc. 

— W.  P.  S. 

Heat  of  combustion  of  benzoic  acid,  sucrose,  and 
naphthalene.  W.  Swietos'lawski  and  H.  Starc- 
zewska.  Bull.  Soc.  Chim.,  1922,  33,  654—667. 
Further  experiments  have  been  made  in  order  to 
obtain  standard  values;  the  results  are  in  accord 
with  those  of  Dickinson  (J.,  1915,  411).  The  most 
probable  value  for  the  heat  of  combustion  of  benzoic 
acid,  which  is  recommended  as  standard,  is  6323 
cals.  per  g.  in  air,  at  15°  C,  or  6318  cals.  per  g. 
in  vacuo.    (Of.  J..  1922,  328  r.)— H.  J.  E. 

Osmium;  Recovery  of from  microscopical  pre- 
parations. 0.  Bosse  and  H.  von  Wartenbero- 
Z.  wiss.  Mikros.,  1922,  28,  346—349.  Chem. 
Zentr.,  1922,  93,  III.,  119. 

The  material  is  saponified  with  caustic  potash, 
evaporated,  and  the  soap  fused  with  potassium 
nitrate  in  a  nickel  crucible.  The  melt  is  treated 
with  water,  and  nickel  sulphate  solution  added.  On 
standing  nickel  hydroxide,  part  of  which  becomes 
oxidised  to  the  hydrated  peroxide,  settles  out  carry- 
ing with  it  the  osmium.  The  precipitate  is  filtered 
off,  and  the  precipitate  and  filter  transferred  to  a 
250  c.c.  flask  fitted  with  a  ground-in  dropping 
funnel  and  provided  with  a  drain  tube.  The  pre^ 
cipitate  is  treated  with  a  mixture  of  chromic  and 
sulphuric  acids  and  kept  warm.  The  contents  of 
the  flask  are  then  steam  distilled,  and  a  solution  of 
pure  osmium  tetroxide  is  obtained.  An  iron  crucible 
cannot  be  used  because  too  much  iron  passes  into 
solution  during  fusion  producing  an  inconvenient 
amount  of  hydroxide.  In  the  authors'  experiments 
70%  of  the  osmium  was  recovered. — J.  B.  F. 

Micro-analysis  of  mixtures  with  special  reference  to 
organic  ultimate  analysis.  A.  Benedetti-Pichler 
Z.  anal.  Chem.,  1922,  61,  305—331. 

The  application  and  advantages  of  microchemical 
methods  of  analysis  are  described ;  the  importance 
of  obtaining  a  representative  sample  for  analysis  is 
emphasised  and  limits  of  error  are  discussed. 

— W.  P.  S. 

Isotopes  of  lead;  Chemical  method  of  separating 
— -.  T.  Dillon,  R,  Clarke,  and  V.  M.  Hinchv. 
Sci.  Proc.  Royal  Dublin  Soc.,  1922,  17,  53—57. 

Lead   chloride    recovered   from    residues    from    the 


manufacture   of    mesothorium    has    been    made  to 
react   with   magnesium  ethiodide  according  to  the 
equation  : 
2Pb013  +  4MgC,HsI  = 

.P,b<(W.+2MBCl.  +  2MgI1+Pb. 

and  the  atomic  weight  of  the  lead  in  the  tetraethyl 
compound  and  the  metal  lead  determined.  The 
values  2071  and  207-4  were  obtained,  indicating 
that  the  isotopes  of  lead  react  differently  with  mag^ 
nesium  ethyl  iodide  and  showing  the  possibility  of 
separating  the  isotopes  by  this  reaction. — J.  F.  S. 

Oxygen  in  organic  compounds;  Determination  of 

.     H.  ter  Meulen.     Rec.  Trav.  Chim.,  1922 

41,  509—514. 

The  substance  to  be  analysed  is  heated  in  a  current 
of  pure  dry  hydrogen  and  the  resulting  gas  passed 
over  reduced  nickel,  the  water  produced  being  col- 
lected and  weighed.  The  resulte  appear  to  be 
accurate  when  proper  precautions  are  taken.  The 
hydrogen  is  washed  in  permanganate  solution, 
dried  in  sulphuric  acid,  freed  from  traces  of  oxygen 
by  passing  over  heated  platinised  asbestos  and  then 
over  calcium  chloride.  It  is  then  brought  into  con- 
tact with  the  material  to  be  analysed  (0T— 02  g. 
heated  in  a  platinum  boat  contained  in  a  quartz 
tube)  and  passed  over  finely  divided  nickel  which  is 
maintained  at  a  bright  red  heat,  afterwards  being 
brought  into  contact  with  nickelised  asbestos  heated 
to  350°— 400°  C.  in  a  spiral  hard  glass  tube.  It  is 
in  the  spiral  tube  that  the  transformation  into 
water  occurs  and  the  product  is  then  passed  through 
calcium  chloride  tubes,  and  finally  through  a  soda- 
lime  tube  to  collect  any  carbon  dioxide  that  ha? 
escaped  reduction.  The'method  is  not  applicable  to 
substances  which  contain  halogens  or  sulphur,  which 
act  as  catalyst  poisons,  nor  is  it  available  in  the 
case  of  nitrogenous  substances,  as  the  ammonia 
formed  on  hydrogenation  is  retained  bv  the  calcium 
chloride.— H.  J.  E. 


Schiff's  solution;  A  modified  [for  detection  of 

aldehydes].     E.  Wertheim.    J.  Amer.  Chem.  Soc  , 
1922,  44,  1834—1835. 

A  solution  of  rosaniline  hydrochloride  (O'OOo  g.)  in 
hot  water  (50 — 100  c.c.)  is  filtered,  if  necessary, 
diluted  to  300  c.c,  and  cooled  with  running  water. 
Sodium  hydrosulpliite  (6  g.)  is  added  to  the  cooled 
solution.  The  salt  dissolves  completely  in  a  few 
minutes,  after  which  the  solution  is  ready  for  use. 
If  it  is  boiled  for  1  min.  (not  longer)  it  first  becomes 
red  and  subsequently  almost  colourless.  It  may  then 
be  heated  in  testing  for  aldehydes  in  order  to  hasten 
the  test.  Used  in  this  manner  the  solution  gives 
the  aldehyde  test  in  about  half  the  time  required 
for  the  ordinary  Schiff's  test,  although  without 
heating  it  usually  requires  a  little  longer  time  than 
the  customary  Schiff's  solution.  Special  precautions 
in  preserving  it  are  unnecessary. — H.  W. 


Hemoglobin;   Colorimetric  determination  of  

with    especial   reference    to    the    production    of 
stable  standards.    E.  H.  Terrill.    J.  Biol.  Chen 
1922,  53,  179—191. 

Two  modified  methods  for  the  preparation  of  acid 
hsematin  standards  are  described.  A  concentrated 
stock  solution  is  prepared  by  removing  the  serum 
from  defibrinated  or  oxalated  blood,  adding  water, 
acidifying,  filtering,  and  concentrating  by  means  of 
an  electric  fan.  The  second  method  yields  an  acid 
hsematin  protein  powder  which  is  quite  stable  in 
the  dry  state  and  forms  clear  solutions  in  water 
and  in  N/10  HC1.  In  estimating  ha-moglobin,  the 
laking  of  the  blood  with  water  prior  to  acidification 
is  recommended.  Direct  acidification  produoes  a 
turbidity  which  leads  to  high  results  when  a  clear 


Vol.  XXL,  Xo.  19.] 


PATENT   LIST. 


791  a 


standard  is  used.  Heat  should  not  be  employed 
to  develop  maximum  colour  as  this  again  produce'; 
a  turbidity. — K.  S. 

Suspended  matter  in  gases;  Determination  of 

by  collection  on  filter  paper.  8.  H.  Katz  and 
G.  W.  Smith.  Gas  World,  1922,  77,  160—161. 
Determinations  were  made  of  the  efficiency  of  filter 
paper  for  the  removal  of  tar  (tobacco  smoke)  from 
air,  the  tests  being  carried  out  in  a  "  tar  camera  " 
(J.,  1918,  475  r),  and  the  determination  of  tar 
present  before  and  after  filtering  made  by  means  of 
the  Tyndall  effect.  The  filtering  efficiencies  of  single 
sheets  of  filter  paper  supplied  with  the  apparatus 

.  ranged  from  63  to  90';.  The  efficiencies  ot  higher 
grade  filter  papers  were  greater  than  90%.  Four 
layers  of  filter  paper  retained  all  tar.     For  quanti- 

.  tative  determinations  the  paper  should  be  dried  and 

I  weighed  between  clipped  watch  glasses.  A  period 
of  two  hours  drying  in  vacuo  should  be  allowed 
before  weighing,  followed  by  a  further  drying  for 

j  one  hour  and  check  weighing.  Quantitative  results 
only  can  be  obtained  by  comparison  of  the  tar  filter 
with  a  colour  chart,  the  average  error,  in  the  present 
experiments,  ranging  from  38  to  57%. — J.  S.  G.  T. 

See  also  pages  (a)  738,  Ultimate  analysis  of  coal 
(Parr);  lusibility  of  coal  ash  (Fieldner  and  others). 
739,  Iron  oxides  for  gas  purification  (Gemmell).    745, 
•Asbestos  and  cotton  (Heermann  and  Sommer).     74ii, 
Degree  of  digestion  of  wood  pulp  (Roschier).     750, 
Acetone    in    ammonia    (Bougault   and  Gros) ;   Lime 
(Holmes     and     Fink).        751,     Hydrogen     peroxide 
ll(Isaacs).       761,    Tin    and    antimony    in    red    brass 
l(Muck).     762,  Tin  alloys  containing  iron  (Welwart): 
VUranium  in  carnotite  (Scott).       769,  Unsaponified 
\\fat  in  soap  (Hagen).       773,   Tannins  (Korner  and 
Bosshardi ;   Tannin   analysis  (Pollak,   also  Kubelka 
and  Berka).       777,  Starch  and  iodine,   (Von   Euler 
.and   Landergren).        779,    Carbon    dioxide    in    self- 
-raising flour  (Jacobs).       780,   Separating  proteins 
I \ete.  (Rakusin);  Hydrogen  sulphide  evolved  by  foods 
'(Kohman).         781,       Theobromine       and      caffeine 
(Schaap).        7S2,    Alkaloids    and    1'itali's    reaction 
(Hardy);  Colchicine  (Davies  and  Grier).     784,  Cre- 
Baiinine   (Pfizenmaier   and  Galanos) ;   Organic   bases 
IkPauly   and  Ludwig).     785,   Formaldehyde   (Kiihl). 
1789,  Acidity  of  smokeless  powders  (Angeli). 

Patents. 
wOalorific  value  of  gas;  Method  of  and  apparatus  for 

measuring  the .    J.  S.  Withers.    From  E.  R. 

i  Lanphier.  E.P.  184,025,  6.7.21. 
(pAS  is  burned  in  a  Bunsen  burner,  previously 
■adjusted  to  burn  completely  a  gas  of  known  calorific 
value.  A  sleeve  threaded  on  the  burner  tube  and 
|:ontrolling  the  admission  of  primary  air  to  the 
■burner  is  adjusted  until  the  luminous  tip  of  the 
lame  just  disappears.  The  calorific  value  is  then 
•ead  by  means  of  a  micrometer  head,  provided  on 
» :he  upper  end  of  the  sleeve  and  moving  over  a 
I  -cale  of  calorific  values  engraved  on  the  burner  tube. 

—J.  S.  G.  T. 

Blnaii/sis  and  recording  [of  the  volumetric  composi- 
tion] of  gases;  Apparatus  for  the  •      A.  G. 

Dale.     E.P.  184.279,  12.5.21. 

»iJas  is  continuously  drawn  through  a  gas  analysis 

ipparatus   by   means   of   a  water   ejector,    and   an 

khscillating  element  moving  in  a  cylinder  traps  a 

Ittefinite  volume  of  gas  from  the  stream  and  forces 

:  jt  through   an   absorbing  liquid   to   the   recording 

essel.  such  as  a  float  chamber  in  which  hangs  an 

il-sealed  metal  float  which  rises  to  a  height  propor- 

ional  to  the  volume  of  gas  passing  into  the  float. 

'he    rise    or    fall    of    the    float    operates    a    pen 

lechanism.    A  TJ-tube  water  gauge  connected  with 

he  main  gas  pipe  serves  to  indicate  the  cleanliness 

f  the  pipe  line  and  soot  filter  employed. 

l  —J.  S.  G.  T. 


Patent  List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given:  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Blair,  and  Blair,  Campbell,  and  McLean.  Concen- 
trating liquors  to  high  densities.     25,421.     Sep.  20. 

Bregeat.  Recovery  of  volatile  solvents.  25  711 
Sep.  22.     (Fr.,  21.7.22.) 

Chemical  Engineering  Co.,  and  Spensley.  Pro- 
ducing intimate  mixtures  of  substances  and  obtain- 
ing chemical  products  therefrom.     24,897.    Sep.  14. 

Dempster  and  Sons,  and  Toogood.  Regenerator 
furnaces.     24,743.     Sep.  13. 

Galloway,  Gibson,  and  Judson.  Pipes  for  use 
when  immersed  in  chemical  liquids.  24,974.  Sep.  15. 

Greaves.  Filtration  or  drainage  of  granular 
material.     24,649.     Sep.  12. 

Johnson  (Badische  Anilin  u.  Soda  Fabr.).  Means 
for  heating  gases  under  pressure.    25,477.    Sep.  20. 

King.  Apparatus  for  removing  suspended  par- 
ticles from  gases.   24.822  and  2-5,0.50.  Sep.  13  and  15. 

Mangiameli.  Mixing  gases  under  pressure. 
24.603.    Sep.  11. 

Parodi.  Purifying  distillation  apparatus.  24,702 
Sep.  12.    (Fr.,  21.9.21.) 

Povey.  Machines  for  disintegrating  or  emulsify- 
ing  materials.     25,436.     Sep.  20. 

Renton.     Filter  presses.     25,577.     Sep.  21. 

Soward.     Furnaces.     24,907.     Sep.  14. 

Complete  Specifications  Accepted. 

10,704(1921).  Reid.  Furnaces.  (185,784.)  Sep.  27. 

12.220(1921).    Jewell.    Stills.    (185,451.)   Sep.  20. 

12.659  (1921).  Greenwood,  and  Carr  and  Co. 
Apparatus  for  baking  and  drying  substances  at 
high  temperatures.     (185,460.)    Sep.  20. 

13,411  (1921).  Pennell.  Filtration  of  turbid 
water  or  liquid.     (185,796.)    Sep.  27. 

15,884  (1921).  Buxton  and  Buxton.  Rotary 
multiple  drying  cvlinder.    (185.823.)    Sep.  27. 

16.394  (1921).     Aktiebol.     Cellulosa.     See  V. 
17,203  (1921).    Blair,  Campbell,  and  McLean,  anil 

Ferguson.     Evaporators  and  distilling  apparatus. 
(185,873.)    Sep.  27. 

17.395  (1921).  Plauson's  (Parent  Co.).  Ltd. 
(Plauson).  High  speed  disintegrators.  (185,878.) 
Sep.  27. 

22,242  (1921).  Hutchins.  Making  emulsions. 
(185,618.)    Sep.  20. 

28,602  (1921).  Monkbridge  Iron  and  Steel  Co., 
Kitson,  and  Brown.    Furnaces.    (185,668.)    Sep.  20. 

31,905  (1921).  Prym.  Filling  bodies  for  absorp- 
tion and  reaction  towers.     (185,681.)     Sep.  20. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;   DESTRUCTIVE   DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Aguillon.  Recovering  benzol  contained  in  gas. 
25,377.    Sep.  19. 

Breisig.  Gasifving  bituminous  fuel.  25,378. 
Sep.  19. 


792  a 


PATENT   LIST. 


[Oct.  16,  \s>2. 


Broadhead,  and  Dempster  and  Sons.  Manu- 
facture of  gas.     24,961.     Sep.  15. 

Day.  Extracting  hydrocarbon  oil  material  from 
oil-bearing  earthy  material.     25,211.     Sep.   18. 

Evans,  and  South  Metropolitan  Gas  Co.  Manu- 
facture of  smokeless  fuel.    25,231.     Sep.  18? 

Johnstone.  Purification  of  lubricating  etc.  oil. 
24,981.    Sep.  15. 

Neath.  Manufacture  of  gas  from  coal  and  oil. 
25,790.    Sep.  23. 

Quick.     25,429.     See  XII. 

Roots.    Gas-generator.    25,140.    Sep.  16. 

Sutcliffe.  Apparatus  for  distilling  carbonaceous 
substances.     24,024.     Sep.  11. 

Sutcliffe.    Briquetting  fuel  etc.    25,731.    Sep.  22. 

Wilson.     Synthetic  coal.     25,649.     Sep.  22. 

Complete  Specifications  Accepted. 

7747  (1921).  Goold  (Universal  Oil  Products  Co.). 
Production  of  cracked  petroleum  oils.  (185,439.) 
Sep.  20. 

8723  (1921).  Low  Temperature  Carbonisation, 
and  Davidson.  Retorts  for  distilling  coal  and  other 
carbonaceous  substances.    (185,778.)    Sep.  27. 

10,084  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Manufacture  of  oily  pastes  or  emulsions 
from  mineral  and  other  oils.    (185,779.)    Sep.  27. 

10,230  (1921).  Cox,  Kerr,  and  Baty.  Gas  purifi- 
cation.    (185,780.)    Sep.  27. 

10,692  (1921).  Meyer  zu  Eissen  and  Kiederich. 
Increasing  the  consistency  of  hydrocarbon  oils  and 
other  oils  and  fats.     (185,782.)     Sep.  27. 

12,675  (1921).  Woodaill,  Duckham,  and  Jones, 
and  Duckham.  Carbonising  fuel  in  vertical  retorts. 
(185,461.)    Sep.  20. 

15,363  (1921).  Piron.  Recuperative  coke-ovens. 
(185,811.)    Sep.  27. 

15,458  (1921).  Klee.  Apparatus  for  determining 
the  flash  point  of  oils  etc.     (185,814.)    Sep.  27. 

17,230  (1921).  Deutsche  Petroleum  A.-G.,  Kacser, 
and  Bauer.  Retorts  for  distillation.  (165,724.) 
Sep.  27. 

17,879  (1921).  Murray.  Manufacture  of  car- 
buretted  water  gas,  blue  water  gas,  methane- 
hydrogen,  and  producer  gas.     (185,887.)     Sep.  27. 

22,803  (1921).  Jensen  (Stone).  Oil-cracking 
process  and  apparatus.     (185,624.)     Sep.  20. 

23,856  (1921).  Niece.  Cracking  hydrocarbons. 
(185,632.)     Sep.  20. 

27,626(1921).  Climie.  Gas-producers.  (185,980.) 
Sep.  27. 

32,546  (1921).  Yeadon.  System  of  low-tempera- 
ture carbonisation.     (185,684.)     Sep.  20. 

32,915  (1921).  Healy.  Gas-producers.  (185,685.) 
Sep.  20. 

III.— TAR  AND  TAR  PRODUCTS. 

Applications. 

Aguillon.     25,377.     See  II. 

Barrett  Co.  Manufacture  of  aromatic  hydro- 
carbons.    24,727.     Sep.  12.    (U.S.,  14,11.21.) 

Pellegrini  and  Poma.  Manufacture  of  acid  h 
(aminonaphtholdisulpbonic  1.3.6.8).  25,351.  Sep.  19. 
(Ital.,  12.12.21.) 

Thompson  (Atack).  Manufacture  of  anthra- 
quinone  and  derivatives  thereof.     24,753.     Sep.  13. 

IV— COLOURING    MATTERS    AND    DYES. 

Applications. 

Carpmael  (Bayer  u  Co.).  Manufacture  of  inter- 
mediate products  and  their  application  for  dveing. 
25,120.     Sep.  16. 

Durand  et  Huguenin  Soc.  Anon.  Manufacture 
of  products  for  dveing  etc.  textile  fabrics.  24.602. 
Sep.  11.     (Fr.,  16.9.21.) 


Imray  (Chem.  Fabr.  Griesheim-Elektron).  Manu- 
iacture  of  monoazo  dyestuffs.     25,232.     Sep.  18. 

Johnson  (Badische  Anilin  u.  Soda  Fabrik). 
Manufacture  of  vat  colouring  matters  25  12l' 
25,209,  and  25,362.     Sep.  16,  18,  and  19. 

Complete  Specifications  Accepted. 

17,630  (1921).  British  Dyestuffs  Corp.,  Baddiley 
Payman,  and  Bainbridge.  Manufacture  of  direct 
dyeing  cotton  colours.     (185,880.)     Sep.  27 

21,852  (1921).  British  Dyestuffs  Corp.,  Green 
Saunders,  and  Bate.  Manufacture  of  triaryl- 
methane  colouring  matters.     (185,612.)     Sep.  20* 


V.— FIBR  ES ; 


TEXTILES ; 
PAPER. 


CELLULOSE; 


Applications. 

Bernini.  Testing  woollen  and  silk  materials 
24,870.     Sep.   14.     (Ital.,  27.5.22.) 

British  Cellulose  and  Chem.  Manuf.  Co.,  and 
Dreyfus.  Manufacture  of  artificial  filaments, 
threads,  etc.     25,694.     Sep.  22. 

Hunt,  and  Hunt,  and  Moscrop.  Boiling  kiers  for 
textile  fabrics.     25,763.     Sep.  23. 

Complete  Specifications  Accepted. 

6897  (1921).  Du  Pont  de  Nemours  and  Co. 
Cellulose  ester  compositions.     (165,439.)     Sep.  27. 

7077  (1921).  Riitgerswerke  A.-G.,  and  Teieh- 
mann.  Dissolution  of  wood  and  other  vegetable 
cellulosic  material.    (160,467.)    Sep.  27. 

7135  (1921).  Cross  (Technochemia  A.-G.).  Pre- 
liminary treatment  of  cellulose  intended  for  the 
manufacture  of  viscose.     (185,433.)     Sep.  20. 

7569  (1921).  Little.  Production  of  cellulose 
esters.     (161,564.)     Sep.  27. 

15,959  (1921).  Maclennan.  Preparation  for 
cleansing  and  sterilising  fabrics  etc.  (185,828.) 
Sep.  27. 

16,394  (1921).  Aktiebol.  Cellulosa.  Apparatus 
for  evaporating  and  dry  distilling  waste  liquors 
from  pulp  mills  and  similar  liquors.  (165,722.) 
Sep.  20. 

16,730  (1921).  Govaerts  and  Dryepondt.  Treat- 
ment of  ramie,  flax,  hemp,  etc.  to  produce  fibre 
ready  for  spinning.     (185,865.)     Sep.  27. 

27,439  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Manufacture  of  indurated 
materials  from  woven  fabrics.     (185,662.)    Sep.  20. 

18,934  (1922).  Little.  Cellulose  derivative  and 
process  of  preparing  same.     (182,820.)     Sep.  27. 


VI.— BLEACHING ;    DYEING;    PRINTING; 
FINISHING. 

Applications. 

Carpmael  (Bayer  u.  Co.).    25,120.    See  IV. 
Durand  et  Huguenin.     24,602.     See  IV. 
Plauson's  (Parent  Co.),  Ltd.  (Plauson).    Dyeing. 
24,746.     Sep.  13. 

Complete  Specification  Accepted. 

16,223  (1921).  Reichelt.  Production  of  a  liquid 
washing  blue  and  bleaching  preparation.  (176,747.) 
Sep.  27. 


VII.— ACIDS;  ALKALIS;  SALTS 
METALLIC   ELEMENTS. 


NON- 


Applications. 
Barron,  Halliwoll,  and  Hindley.    Manufacture  of 
a    highly    concentrated    aqueous    solution    of    alu- 
minium acetate.     25,742.     Sep.  23. 


Vol.  XLI.,  No.  19.) 


PATENT   LIST. 


793  a. 


Garnett,  Greenwood,  and  Reid.  Decalcification 
of  dolomite,  magnesian  limestone,  etc.,  and  produc- 
tion of  magnesia.     25,415.     Sep.  20. 

Howard.  Purification  of  hydrofluoric  acid 
25.221.    Sep.  18.     (U.S.,  29.9.21.)' 

Plauson's  (Parent.  Co.),  Ltd.  (Plauson).  Manu- 
facture of  alkali  carbonates.    24,747.    Sep.  13. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson)!  Manu- 
facture of  alkali  salts.     24,748.    Sep.  13. 

Weyman  and  Weyman.  Treatment  and  trans- 
portation of  ammonium  sulphate.    24.788.    Sep.  13. 

Weyman.  Drying  ammonium  sulphate.  24.94L 
Sep.  14. 

Complete  Specifications  Accepted. 

7408  (1921).  Nitrogen  Corporation.  Production 
of  sodium  bicarbonate.    (159,895.)    Sep.  27. 

10,489  (1921).  Rhenania  Verein  Chem.  Fabr. 
Manufacture  of  sulphurous  acid.  (161.581.) 
Sep.  27. 

21,2.35  (1921).  Riedel.  Treatment  of  ammonium 
chloride.     (107,769.)     Sep.  27. 

27.196  (1921).  Imray  (Aquazone  Laboratories). 
Aqueous  solutions  containing  oxygen  and  process 
of  producing  them.     (185,659.)     Sep.  20. 

31,087  (1921).  Moritz.  Stirring  devices  for 
mechanically  operated  sulphate  furnaces.  (172  006  ) 
Sep.  20. 

13,888  (1922).  Wargons  Akt.,  and  Lidholm. 
Production  of  a  solution  of  cyanamide  from  calcium 
eyanamide.     (186.020.)     Sep.  27. 


VIII.— GLASS;  CERAMICS. 

Applications. 

Grace.  Separation  of  micaceous,  siliceous,  etc. 
material  for  clay.     24,723.     Sep.  12. 

Sutton.  Manufacture  of  imitation  stained  glass. 
24,552.    Sep.  11. 

Tarns.  Manufacture  of  earthenware,  china,  etc. 
25,086.     Sep.  16. 

Complete  Specifications  Accepted. 

7402  (1921).  Marks  (Lava  Crucible  Co.  of  Pitts- 
burgh). Production  of  ceramic  articles.  (185,435.) 
Sep.  20. 

17,135  (1921).  De  Dietrich  et  Cie.  Enamelling 
processes.     (165,785.)     Sep.  20. 

27.644  (1921).  Jones  and  Jones.  Kilns  for  burn- 
ing bricks,  tiles,  terracotta,  etc.    (185,664.)   Sep.  27. 


IX.— BUILDING    MATERIALS. 

Applications. 
Bergsma.     Manufacture  of  stone-like  materials. 
24,600.     Sep.  11.     (Holland,  12.9.21.) 
Rigby.     Cement  manufacture.     25,113.     Sep.  16. 


X.— METALS  ;   METALLURGY.   INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Allgem.  Deuts.  Metalhverk.  Bronze  alloys  and 
their  production.    25,198.    Sep.  18.    (Ger.,  20.9.21.) 

Allgem.  Deuts.  Metallwerk.  Copper  and  zinc 
allovs  and  their  production.  25,199.  Sep.  18. 
(Ger..  21.9.21.) 

Atkinson,  and  Stein  and  Atkinson.  Muffle 
furnaces.     24,695.     Sep.   12. 

Barry.     Aluminium  alloy.     24,562.     Sep.  11. 

Barr'v,  and  Hughes  and  Co.  Aluminium  solder. 
25,781.     Sep.  23. 

Beque  and  Burlet.  Cleansing  and  coating  metals 
by  dipping.     25,285.     Sep.  19.     (Belg.,  19.9.21.) 


Fox  and  Hayes.     Flux.     25,611.     Sep.  21. 

Giesecke.  Agglomerating  mixtures  of  fine  ore 
and  fuel  in  shaft  furnaces.     24,854.     Sep    14 

Goldschmidt  A.-G.  Bearing-metal  alloy'.  24  696 
.Sep.   12.     (Ger,,   15.9.21.) 

MoMorland.  Flux  for  soldering  etc.  24  655 
Sept.   12. 

Mathesius  and  Mathesius.  Lead  alloys.  24,92-5-6 
Sep.   14. 

Mathesius  and  Mathesius.  Making  alloys  of  lead 
with  calcium,  strontium,  and  barium."  25  609 
Sep.   21, 

Mehner.  Production  of  zinc  in  reverberatorv 
furnaces.     25,670.     Sep.   22. 

Minerals  Separation,  Ltd.,  and  Williams.  Con- 
centration by  flotation.    24,836.    Sep.  13. 

Mono!  (Chem.  Fabr.  Griesheim-Elektron).  Treat- 
ment of  chrome-iron  ore.     25,720.     Sep.  22. 

Complete  Specifications  Accepted. 

10,494  (1921).  Isabellen-Hutte.  Treatment  of 
copper  alloys.    (161,537.)    Sep.  27. 

15,047  (1921).  Thompson  (Aikens).  Electrolytic 
refining  of  tin.     (185,808.)     Sep.  27. 

15,840(1921).  Akt.SvenskaKullagerfabr.  Hard- 
ening of  steel  and  hardened  steel  articles.  (164,749  ) 
Sep.  2/ . 

16.148  (1921).  Pearson,  Craig,  and  Durelco,  Ltd. 
Electrolytic  treatment  of  metalliferous  materials 
containing  tungsten  or  molybdenum.  (185,842  ) 
Sep.  27. 

16,489  (1921).  Fairweather  (Hybinette  and  Peek). 
Treatment  of  matte  ond  other  materials  and  solu- 
tions containing  copper  and  nickel.  (185,859  ) 
Sep.  27. 

18,258  (1921).  Dickins.  Case  hardening,  harden- 
ing, tempering,  etc.     (185,564.)     Sep.  20. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

David  and  Dutt.    Electric  cells.    25.307.    Sep.  19. 

Gross.  Accumulator  electrodes.  25,282-3.  Sep.  19 
(Norway,  17.10.21.) 

Teale  and  Whitehead.  Electric  accumulators. 
24,776.     Sep.  13. 

Complete  Specifications  Accepted. 

13,398  (1921).  Garbutt.  Electric  accumulators. 
(185,797.)    Sep.  27. 

15.(147  (1921).     Thompson  (Aikens).    See  X. 

16,148  (1921).     Pearson  and  others.     ,SVe  X. 

23,066  (1921).  Palmer  and  Ashton.  Electric 
accumulators.     (185,946.)     Sep.  27. 


XTI.— FATS;   OILS;   WAXES. 
Application. 

Quick.       Method     of     thickening    oils.       25.429. 
Sep.   20. 

Complete  Specifications  Accepted. 
10,084  (1921).     Plauson.    See  II. 
10,692  (1921).     Mever  zu  Eissen  and   Kiederich 
See  II. 


XIII.— PAINTS;    PIGMENTS;    VARNISHES; 
RESINS. 

Applications. 

Barry.     Aluminium  paint.     24,561.     Sep.   11. 
McDougall.       Linoleum,      floor     coverings,     etc. 
25,623.    Sep.  21. 


794  a 


PATENT   LIST. 


[Oct,  10,  1922. 


Complete  Specification  Accepted. 

19,340  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Coating  materials  and 
methods  of  forming  same.     (185,910.)     Sep.  27. 

XIV.— INDIA-RUBBER  ;    GUTTA-PERCHA. 

Applications. 

Bateman.  Rubber  solutions  or  cements.  25,229. 
Sep.  18. 

Bigger  and  Falls.     Rubber  substitutes.     25,431. 

Sep.   20. 

Schidrowitz.  Manufacture  of  rubber.  24,950. 
Sep.  14. 

XV.— LEATHER;   BONE;    HORN;   GLUE. 
Application. 

Duckworth.  Treatment  of  skins.  25,275.  Sep.  19. 
(Australia,  28.9.21.) 

Complete  Specification  Accepted. 

19,841  (1921).  Collard.  Extraction  of  gelatin. 
(166,896.)    Sep.  20. 

XVI.— SOILS;  FERTILISERS. 
Application. 

Asahi  Glass  Co.,  and  Igawa.  Application  of 
colloidal  magnesium  silicate  as  a  forcing  agent  of 
manure.    25,538.     Sep.  21. 

XVII.— SUGARS ;    STARCHES;    GUMS. 
Complete  Specification  Accepted. 

9151  (1922).  Jacobs  (Jacobs).  System  of  pan 
boiling  in  sugar  manufacture.     (185,707.)    Sep.  20. 


XIX—  FOODS;  WATER  PURIFICATION; 
SANITATION. 

Applications. 

Board  and  Gills.  Rubbing-plate  for  milk-drying 
machines.     25,474.     Sep.  20. 

Carpmael  (Cheni.  Fabr.  Weiler-ter  Meer).  Manu- 
facture of  insecticides.    24,939.     Sep.  14. 

Elrod.     Sewage  disposal  plant.     24,672.     Sep.  12. 

Hartley  and  Hartley.  Purification  of  sewage. 
25,398.    Sep.  20. 

Hoare.  Manufacture  of  milk  products.  24,896. 
Sep.  14. 

Sawada.  Cleaning  rice  grain.  24,924.  Sep.  14. 
(Japan,  27.9.21.) 

Complete  Specifications  Accepted. 
9776  (1921).     Green.     Purification  of  sewage  by 


treatment    in    centrifugal    separators. 
Sep.  20. 

13,411  (1921).     Pennell.     See  I. 


(185,444. } 


XX.— ORGANIC  PRODUCTS:   MEDICINAL 
SUBSTANCES;    ESSENTIAL   OILS. 

Applications. 

Calvert.    Treatment  of  alcohols.    25,803.    Sep.  23. 
Goldschmidt  and  Neuss.    Manufacture  of  conden- 
sation products.    25,489.    Sep.  20. 

Complete  Specifications  Accepted. 

14,986  (1921).  Meister,  Lucius,  u.  Bruning. 
Manufacture  of  methylsulphites  of  secondary 
aromatic-aliphatic  amines.     (164,002.)     Sep.  20. 

19.536  (1921).  Imray  (Soc.  Chem.  Industry  in 
Basle).  Manufacture  of  amino-alcohols  of  the 
quinoline   series.      (185,913.)     Sep.   27. 

21,567  (1921).  Meister,  Lucius,  u.  Briinir.g. 
Manufacture  of  aliphatic  dialkylaminoalkvl  com- 
pounds.    (167,781.)     Sep.  20. 

14.537  (1922).  Meister,  Lucius,  u.  Bruning. 
Manufacture  of  sulphonic  acids  of  the  2.3-oxy- 
naphthoic  acid  arylides.     (183,428.)     Sep.  20. 


Vol.  XLI.,  No.  20.] 


ABSTRACTS 


(Oci.  31,  1922. 


I.-4ENEBAL;  PLANT;  MACHINEBY. 

Maximum     temperatures    [developed    in    chemical 
reactions,    e.g.,    combustion"]     liapid   calculation 

of  .     G.  G.  Brown.     Chem.  and  Met.  Eng., 

1922,  27,  497—500. 

The  maximum  temperature  developed  in  a  chemical 
react  inn  may  be  calculated  by  the  graphical 
method,  by  trial,  or  algebraically.  The  last-named 
method  depends  upon  the  solution  of  a  quadratic 
equation  which  may  be  conveniently  solved  either 
graphically  or  by  use  of  the  slide  rule.  The  various 
methods  are  described. — J.  S.  G.  T. 


Colloids;    Theory   of   the    mechanical   synthesis   of 

.    F.  Sekera.    Kolloid-Zeits.,  1922,  31,  137— 

147. 

The  theory  of  the  production  of  colloids  in 
Plauson's  colloid  mill  is  briefly  as  follows :  The 
mechanical  grinding  process  bursts  the  active 
molecular  compounds  in  the  interior  of  the  6olid 
substance  and  produces  particles  of  colloidal 
dimensions.  The  residual  valencies,  active  at  the 
surface  of  these  particles,  tend  to  cause  an  aggrega- 
tion of  the  particles,  so  that  secondary  to  the  dis- 
persion an  aggregation  process  will  take  place.  To 
retard  or  prevent  the  aggregation  the  residual 
valencies  are  saturated  by  the  addition  of  an  elec- 
trolyte, whereby  salt  complexes  are  produced  and 
the  particles  become  electrically  charged. — J.  F.  S. 

Colloids;    "Fog  process"  for  the  preparation  of 

.    F.  Sekera.     Kolloid-Zeits.,  1922,  31,  148— 

149. 

A  manufacturing  process  by  which  solid  colloids 
may  be  prepared  is  described.  The  principle  of 
the  process  is  best  explained  by  an  example :  to  a 
30%  solution  of  sulphur  in  carbon  bisulphide  5% 
I  of  a  high  molecular  organic  salt  is  added,  in  this 
,  case  sulphonated  naphthenic  acid,  and  the  mixture 
placed  in  a  heating  chamber  at  85°  C.  The  solution 
1  is  then  dispersed  by  a  stream  of  nitrogen,  and  a 
fog  produced ;  the  carbon  bisulphide  is  condensed 
and  runs  away,  whilst  the  colloidal  particles  are 
left  suspended  as  a  fog.  The  fog  is  condensed  on 
two  wire  nets  covered  with  parchment  which  spread 
right  across  the  chamber  and  from  which  point 
electric  discharges  are  passing.  The  colloid,  which 
settles  as  a  light  powder,  is  soluble  in  water. 

—J.  F.  S. 

Patents. 

Transfer    of    heat    between    liquids    and    gases; 

Apparatus    for    effecting .      Atkiebolaget 

Ljungstroms  Angtiirbin.     E.P.   162,250,  21.4.21. 
Conv.,  23.4.20. 

A  cylindrical  tube  is  divided  by  a  diametral  plane 
into  two  equal  flues  of  semicircular  cross-section. 
The  hot  gases  flow  in  one  direction  through  one  of 
these  flues,  and  the  gases  to  be  heated  flow,  usually 
in  the  opposite  direction,  through  the  other  flue.  At 
a  suitable  position  in  the  tube  the  internal  par- 
tition is  removed,  and  in  the  space  thus  provided 
i  is  mounted  a  rotating  disc  together  with  its  driving 
gear.  This  disc  may  be  made  up  of  a  series  of  radial 
plates.  In  the  larger  units  the  disc  is  built  up 
of  a  series  of  concentric  rings,  each  ring  being 
attached  to  the  next  by  a  series  of  short  radial 
plates.  The  chambers  thus  formed  in  the  disc  may 
be  packed  with  materials,  such  as  gravel,  slag,  tiles, 
stc.  This  disc  is  caused  to  rotate  across  the  line  of 
Sow  of  the  hot  gases  in  the  one  flue  and  the  gases 
M  be  heated  in  the  other  and  transfer  heat  from 
me  flue  to  the  other. — S.  G.  U. 


Selective  corrosion;  Prevention  of in  machines 

or  apparatus  of  metallic  parts  made  of  copper 
and  copper-containing  alloys,  and  subject  to  the 
corrosive  action  of  water  containing  ions.  F.  von 
"Wurstemberger.  E.P.  174,059,  29.12.21.  Conv., 
17.1.21. 

The  water  is  prevented  from  becoming  stagnant 
anywhere  in  contact  with  the  vessel,  e.g.,  by  means 
of  a  special  circulating  pump;  in  the  case  of  a  heat 
exchanger,  the  pump  may  have  a  much  reduced 
delivery  when  the  apparatus  is  out  of  use. 

— B.  M.  V. 

"Refrigerating  apparatus.     J.   G.   Derenier.     E  P 
182,528,  24.3.21. 

Two  cylinders,  one  the  compressor,   the  other  the 
evaporator,   are   connected  together  by  a  tube   so 
that  their  axes  lie  on  a  straight  line.     The  com- 
pressor is  fitted  with  a  hollow  plug  which  forms  a 
low-pressure  chamber  at  the  evaporator  end  and  a 
high-pressure  chamber  at  the  other  end  of  the  com- 
pressor cylinder.     These  chambers  are  connected  by 
a  helical  passage,  cut  on  the  outer  surface  of  the 
plug,   and  of  gradually  diminishing  cross-section. 
The  compressor  casing  forms  the  outer  wall  of  this 
passage.    Fixed  to  the  low-pressure  end  and  passing 
through  the  plug  is  a  pipe  which  extends  into  a 
recess  formed  in  the  outer  cover  of  the  compressor 
cylinder.     In  the  annulus  formed  by  this  pipe  and 
the  plug  is  fitted  a  second  helix  having  its  pitch  in 
the  same  direction  as  the  outer.    As  this  helix  does 
not  reach  the  end  of  the  plug  a  second  high-pressure 
chamber  is  formed  which  is  connected  to  a  cooling 
coil    surrounding    the    compressor    cylinder.      The 
compressed  refrigerant  fluid  after  passing  through 
this  coil  enters  a  pipe  placed  inside  tho  connecting 
tube  and  is  discharged  into  a  sealed  tube  forming 
an    extension   of    the   connecting    tube    inside   the 
evaporator.     The  discharge  from  this  sealed  tube 
enters    an    annular    chamber    placed    inside     and 
in    direct    communication    with    the    evaporating 
chamber.      From    this    chamber    the    fluid    passes 
through  a  coil  surrounding  the  evaporator  and  is 
then  returned  to  the  sealed  tube.     On  again  enter- 
ing the  evaporating  chamber  the  liquid  portion  is 
circulated  through  the  surrounding  coils,  whilst  the 
gaseous  portion  enters  the  connecting  tube  and  is 
returned    to    the   compressor.      To    deal    with    the 
accumulation   of   excessive   amounts  of   propelling 
liquid  in  the  evaporator  when  the  machine  is  at 
rest,    an    arrangement   is    provided    for   returning 
this  liquid  direct  to  the  compressor  cylinder  when 
the   plant    is  started.     The    unit   comprising   the 
evaporator    and    compressor    is    supported    at    its 
ends,  so  as  to  be  inclined  at  about  an  angle  of  45° 
to  the  driving  shaft  by  which  the  unit  as  a  whole 
is  rotated.     In  addition  bevel  gearing  is  employed 
to  give  the  unit  rotational  motion  about  its  own 
axis.    The  compressor  cylinder  rotates  in  a  chamber 
provided  with  a  spray  which  plays  upon  the  coils 
and  cylinder.     The  evaporator  rotates  in  another 
insulated    chamber    provided    with    a    circulating 
device  which  brings  the  liquid  to  be  cooled   into 
contact  with  the  coils  on  the  evaporating  cylinder. 
Mercury  and  sulphur  dioxide  are  recommended  as 
the  propelling  and  refrigerant  fluids  respectively. 

— S.  G.  U. 

Steam;  Generation  and  superheating  of  .     F. 

Lamplough.    E.P.  183,261,  21.4.21. 

Exhaust  steam  is  led  through  the  annulus  formed 
by  two  coaxial  pipes,  whilst  live  steam  passes 
through  the  inner  pipe.  The  outer  pipe  is  heated 
by  furnace  gases,  thus  superheating  the  exhaust 
steam  which  in  turn  conveys  heat  to  the  live  steam. 
After  passing  through  this  heater  the  exhaust 
steam  enters  a  chamber  fitted  with  a  series  of  coils, 


790a 


Cl.   I.— GENERAL;    PLANT;    MACHINERY. 


[Oct.  31,  1922. 


one  end  of  which  is  coupled  to  the  inlet  end  of  the 
live  steam  pipe  already  mentioned  and  the  other 
end  to  the  outlet  pipe  from  the  feed  water  heater. 
In  this  chamber  the  live  steam  is  generated.  The 
exhaust  steam  nest  passes  through  a  feed  water 
heater  and  ultimately  through  a  condenser.  A 
pump  forces  the  condensed  water  and  feed  water 
into  a  receiver  which  is  in  direct  communication 
with  the  live  steam  side  of  the  plant.  This  receiver 
also  communicates  with  a  cylinder  containing  two 
spring-loaded  pistons  operated  by  the  pressure  in 
the  receiver.  One  of  these  pistons  actuates  a 
mechanism  for  altering  the  stroke  of  the  feed  pump, 
shortening  the  stroke  as  the  pressure  rises,  and  the 
other  operates  a  valve  whereby  the  pump  delivery 
can  be  by-passed  and  returned  direct  to  the  con- 
denser.— S.  G.   U. 

(Grinding,    refining,     and    mixing     machines.       J. 
Mclntyre.    E.P.  183,399,  10.12.21. 

A  cylinder  jacketed  to  take  either  hot  or  cold  water 
or  steam  is  placed  with  its  axis  horizontal ;  its  ends 
are  fitted  with  covers,  one  of  which  is  provided  with 
a  suitable  opening  for  introduction  of  the  material 
to  be  treated  and  the  other  with  a  long  stuffing-box 
and  gland  which  also  acts  as  the  bearing  for  the 
main  shaft  of  the  machine.  This  shaft  is  hollow 
and  is  driven  at  the  outer  end  through  worm  and 
screw  gearing.  At  the  inner  end  it  is  keyed  to  a 
wheel  which  carries  round  its  circumference  a 
series  of  rockers,  which  can  swing  through  a  limited 
arc.  A  flexible  blade,  as  described  in  E.P.  181,877, 
is  attached  to  each  complete  rocking  unit.  Round 
the  rim  of  the  wheel  is  a  slip  ring,  provided  with 
slots  which  engage  with  these  blades  in  such  a  way 
that  any  movement  given  to  one  blade  is  imme- 
diately communicated  to  all  the  others.  Through 
the  hollow  shaft  passes  a  spindle  carrying  bevel  gear 
at  its  outer  end  and  rigidly  fixed  to  a  disc  crank 
at  its  inner  end.  The  pin  of  this  crank  is  connected 
through  a  link  with  one  of  the  rocking  levers.  The 
hevel  gear  at  the  outer  end  is  so  mounted  that  it 
rotates  with  the  main  shaft,  but  by  the  insertion 
of  a  pin  in  one  or  other  of  two  holes  provided  in 
the  casing  can  be  given  a  motion  relative  to  the 
main  shaft,  thereby  altering  the  pressure  hetween 
the  blades  and  the  casing.  The  outlet  valve  of  the 
machine  is  of  the  pistou  type,  so  arranged  that 
when  closed  the  top  of  the  valve  is  flush  with  the 
inside  of  the  cylinder  and  on  lowering  the  piston 
its  inner  edge  uncovers  a  port  permitting  the 
finished  material  to  flow  out. — S.  G.  U. 

Disintegrating    minerals    and    similar    materials; 

Machines  for  reducing  or .    A.  G.  N.  Burden. 

E.P.  184,609,  28.5.21. 
In  a  rotary  disintegrator,  in  order  to  reduce  wear 
on  the  impellers,  the  material  is  fed  as  nearly  as 
possible  to  the  centre  of  the  runner,  which  is 
shaped  so  as  not  to  be  subject  to  the  impact  of  the 
material,  e.g.,  it  may  take  the  form  of  a  disc  with 
guide  vanes  so  designed  that  there  is  no  relative 
peripheral  motion  between  the  material  and  the 
runner,  centrifugal  force  alone  being  relied  on  to 
provide  the  impact  with  the  stationary  outer  ring 
or  anvil,  which  is  serrated  so  that  its  working  faces 
are  approximately  perpendicular  to  the  flying  par- 
ticles. After  impact  the  crushed  material  is  not 
allowed  to  become  entagled  with  the  runner  again, 
but  it  is  allowed  to  fall  clear,  and  if  desired  may 
be  re-ground  in  a  similar  apparatus.  [Reference 
is  directed,  in  pursuance  Sect.  7,  Sub-sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919,  to 
E.P.  444  of  1876,  533  of  1882,  5837  of  1884,  3654  of 
1901,  25,880  of  1903,  17,990  of  1908,  29,717  of  1910, 
and  160,933.]— B.  M.  V. 

Pulverising  mill.  D.  V.  Sherban.   U.S. P.  1,427,234, 

29.8.22.    Appl.,  23.12.21. 
A  ball  mill  is  provided  with  an  axial  suction  duct 


or  screen  extending  right  through  the  mill  for 
withdrawing  ground  material. — B.  M.  V. 

Dry-pulverising   apparatus.      R.    E.    H.    Pomeroy. 

U.S.P.  1,427,322,  29.8.22.  Appl.,  30.6.20. 
A  rotating  casing  is  provided  with  inlets  for  air 
on  its  periphery.  Other  apertures  are  provided  for 
the  entry  of  uuground  material  and  for  the  dis- 
charge of  the  air  current  carrying  the  ground 
material. — B.  M.  V. 

Cooling  towers;   [Distributing  troughs  for}   water 

.     C.  M.  Bennett,  and  Film  Cooling  Towers, 

Ltd.    E.P.  184,653,  2.7.21. 

In  the  ordinary  distributing  troughs  at  the  top  of 
cooling  towers,  provided  with  short  vertical  pieces 
of  pipe  to  deliver  the  water,  the  upper  ends  of  the 
pipes  are  subject  to  partial  obstruction  by  vortices. 
To  avoid  this  the  upper  ends  of  the  pipes  are  pro- 
vided with  return  bends  lying  within  the  troughs, 
converting  them  into  siphons,  and  causing  a  more 
rapid  and  more  uniform  discharge  of  the  water. 

— B.  M.  V. 

Furnaces;  Begenerative .  H.  Wade.   From  The 

Union  Trust  Co.    E.P.  184,877,  20.5.21. 

At  each  end  of  a  reverberatory  furnace  are  three 
ports,  all  of  which  communicate  via  downtakes 
with  the  usual  regenerator  chambers.  The  down- 
takes  from  the  outer  (auxiliary)  ports  are  provided 
with  dampers  or  valves,  but  the  central  ports  and 
downtakes  are  not  so  provided.  At  the  outlet  end 
of  the  furnace  all  the  ports  are  used  to  carry  away 
the  products  of  combustion,  but  at  the  inlet  end 
the  auxiliary  ports  are  closed  and  the  fuel  (gas,  oil, 
or  powdered  coal)  is  supplied  to  the  central  port 
where  it  mixes  with  the  heated  air,  so  that  the 
flame  enters  only  by  the  central  port,  which  is  not 
enlarged  beyond  the  point  of  entry  of  the  fuel. 

— B.  M.  V. 

Furnaces,  stoves  or  the  like;  Method  of  and  means 
for  raising  and  maintaining  Hie  temperature  in 
.    I.  E.  Robinson.    E.P.  185,217,  31.5.21. 

The  greater  part  of  the  products  of  combustion  con- 
taining partially  consumed  fuel  is  returned  to  the 
combustion  space  or  fireplace  of  a  furnace,  and 
while  circulating  is  expanded  and  contracted  one 
or  more  times.  The  expansion  and  contraction  may 
also  be  applied  to  that  portion  (the  waste  gases) 
that  passes  to  the  exit  flue.  A  self-contained  boiler 
is  described  which  generates  superheated  steam  for 
effecting  the  circulation. — B.  M.  V. 

Evaporators  or  heaters,  heated  by  waste  hot  gases; 

Water  or  other  liguid  .     H.  Hocking.     K.P. 

185,134,  18.2.21. 
The  liquid  to  be  heated  is  contained  in  a  casing, 
into  which  projects  a  nest  of  outer  fire-tubes  or 
"  radiators  "  with  one  end  closed,  which  are 
secured  at  their  open  ends  in  a  tube-plate.  The 
tube-plate  has  a  hollow  cover  provided  with  inlet 
and  outlet  ports  for  hot  gases,  also  with  a  diagonal 
partition  or  tube-plate  carrying  smaller  inner  tubes 
open  at  both  ends  which  are  inserted  into  the  outer 
fire-tubes  and  form  the  only  passage  for  the  hot 
gases  between  the  inlet  and  outlet  ports. 

— B.  M.  V. 

Electrical  precipitation;  Apparatus  for .  C.  Le 

G  Fortescue,  Assr.  to  Westinghouse  Electric  and 
Mfg.  Co.  U.S.P.  1,427,370,  29.8.22.  Appl.,  15.2.19. 
A  pokotjs  ionising  electrode  is  disposed  within  a 
treatment  chamber  in  which  baffles  are  arranged, 
so  that  the  stream  of  fluid  to  be  treated  is  subjected, 
during  its  passage  through  the  chamber,  several 
times  to  the  ionising  action  of  the  electrode. 

— J .  e .  G    1  ■ 


Vol.  XLI.,  Xo.  20.] 


Cl.    Ha.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


797  a 


Electrode    for    precipitating    apparatus;    Ionising 

.    C.  Le  G.  Fortescue,  Assr.  to  Westinghouse 

Electric  and  Mfg.  Co.    U.S. P.  1,428,839,  12.9.22 
Appl.,  25.2.19. 

In  an  electrical  precipitation  system,  a  collecting 
electrode  is  formed  as  a  treating  chamber,  and  the 
reticulated  discharge  electrode  employed  may  be 
charged  to  different  potentials  substantially  simul- 
taneously.— J.  S.  G.  T. 

Electrical  gas-cleansing  apparatus.  Metallbank  u 
Metallurgische  Ges.  A.-G.  G.P.  354,623,  27.7.20. 
Discharge  electrodes  are  carried  by  conducting 
laminae  disposed  in  the  conduit  for  supplying  gas  to 
the  plant  and  supported  by  transverse  insulated 
bars.— J.  S.  G.  T. 

Catalysing  apparatus.  J.  McC.  Selden,  Assr.  to 
The  Selden  Co.  U.S. P.  1,427,554,  29.8.22.  Appl  , 
22.3.18. 

Tub  catalyst  is  contained  in  a  number  of  troughs 
arranged  in  staggered  relation,  one  above  the  other, 
within  a  casing,  a  conduit  for  a  heating  or  cooling 
fluid  being  buried  in  the  catalyst  in  each  trough. 
I  The  reacting  gases  are  admitted  to  the  lower,  and 
removed  from  the  upper,  part  of  the  casing. 

— B.  M.  V. 

Stills.    A.  C.  Jewell.    E.P.  185,451,  28.4.21. 
See  U.S. P.  1,369,438  of  1921;   J.,  1921,  249  a. 

Distilling  and  rectifymg  column,  E.  A.  Barbet. 
U.S. P.  1,427,430,  29.8.22.     Appl.,  22.9.20. 

I  See  E.P.  151,988  of  1920 ;   J.,  1922,  43  a. 

Condenser ;  Air-cooled  or  evaporative  surface . 

J.  MacLeod,  Assr.  to  H.  Reid.    U.S.P.  1,427,159,  ' 
29.8.22.     Appl.,  28.2.21. 
|Seb  E.P.  167,803  of  1920;  J.,  1921,  682  a. 

Absorption  and  reaction  towers;  Filling  bailies  for 

.     H.  Prym.     E.P.  185,681,  29.11.21. 

'See  G.P.  344,139  of  1920;    J.,  1922,  165a. 

\Vecantation     apparatus.       J.      Denobl.        U.S.P. 

1,427,446,  29.8.22.    Appl.,  7.7.20. 
See  E.P.  149,551  of  1919;   J.,  1920,  617  a. 

Atomising   more   or  less  viscid  materials;    Method 

I    and  means  for  .     A.  Sonsthagen  and  E.  H. 

I   Harberd.  U.S.P.  1,427,559,  29.8.22.  Appl.,  25.3.20. 
See  E.P.  143,289  of  1919;   J.,  1920,  475  a. 

Catalytic  material  employed  for  the  promotion  of 
synthetic     chemical    reactions;     Apparatus     for 

I   carrying  out  the  preparation  of  .     H.  Lane. 

|  U.S.P.  1,428,965,  12.9.22.     Appl.,  27.10.19. 
Bee  E.P.  115,924  of  1917;  J.,  1918,  397  a. 

Seat-exchanging     bodies;     Production     of     . 

H.  F.  B.  Jorgensen.     U.S.P.   1,428,638,   12.9.22. 
!  Appl.,   24.7.20. 
,ee  E.P.  165,691  of  1920;    J.,  1921,  591a. 

'ransport  of  loose  materials  by  means  of  gaseous 
mediums;  Process  and  apparatus  for  regulating 

;  the    .  A.-G.    Brown,    Boveri    &    Co.,      E.P. 

181,712,   14.6.22.     Conv.,   14.6.21. 

\egenerators  for  heating  air  or  gas  for  combustion. 
H.  Schulz.     E.P.  184,744,  29.12.21. 

ir  or  other  gases;  Cleansing  and  I  or  humidifying 

apparatus  for .     A.  Welford.     E.P.  184,871, 

,19.5.21. 

[eat  interchanging  devices.     J.  Jeffreys  and  Co., 
I  Ltd.,  J.  W.  Cooliug,  and  H.  A.  Stirzaker.    E.P. 

185,531,  14.6.21. 

'ying  peat  etc.     E.P.  182,157.     See  IIa. 


IIa.— FUEL;  GAS;  MINERAL  OILS  AND 
WAXES. 

Goal    from     the    deeper    workings   of    the    Kenadza 
(Algeria)  mine;  Composition  and  calorific  power 

of  ■     A.   Foix.     Bull.   Soc.   Chini.,   1922,   31, 

813—  816. 

The  samples  examined  were  found  to  contain  about 
7%  of  ash,  3%  of  sulphur,  and  2"5%  of  nitrogen, 
the  corresponding  values  for  coal  from  the  surface 
workings  being  3%,  1%,  and  0"5%  respectively.  A 
detailed  analysis  of  the  ash  is  given,  from  which 
it  is  inferred  that  the  whole  of  the  sulphur  is  in 
the  form  of  iron  pyrites.  This  accounts  for  all  the 
iron  present,  whereas  the  iron  in  the  surface  coal 
exists  chiefly  as  ferric  oxide.  Determinations  of 
the  calorific  value  do  not  agree  so  closely  with  the 
value  calculated  from  Cental's  formula  as  those 
given  by  the  surface  coal.  The  heat  evolved  on 
combustion  varies  from  8240  to  8270  g.-cals.  per 
g.,  being  3 — i%  above  the  calculated  value. 

— H.  J.  E. 

(Hals;  Comparison  between  the  American  and  S. 
African  methods  for  the  determination  of  volatile 

combustible   matter  in  .     J.  A.   McLachlan. 

J.  S.  Afr.  Chem.  Inst.,  1922,  S,  6—11. 

In  the  S.  African  method  1  g.  of  the  sample  is 
boated  in  a  covered  platinum  crucible  over  a 
gradually  increasing  Bunsen  flame  until  the  sample 
ceases  to  give  a  flame  at  the  lid,  and  the  heating 
is  then  continued  tor  exactly  30  sees.  The  American 
method  consists  in  heating  1  g.  of  the  sample  in  a 
covered  platinum  crucible  over  a  full  Bunsen  flame 
for  7  mini.,  the  size  of  the  crucible,  its  height  above 
the  flame,  and  the  size  of  the  latter  being  definitely 
prescribed.  At  present  it  would  seem  that  neither 
method  yields  concordant  results.  Only  one  detail 
as  regards  the  heating  is  specified  in  the  S.  African 
method,  a  fact  which  allows  a  wide  variation  in 
the  results;  the  fuller  specification  in  the  case  of 
the  American  method  enables  consistent  results  to 
be  obtained  when  the  determinations  are  made 
over  one  and  the  same  burner,  but  different 
burners,  having  the  same  length  of  flame,  have 
different  heating  values,  and  in  this  respect  the 
method  is  defective. — W.  P.  S. 

Coal;  Cleaning ,  specially  for  the  pi-oduction  of 

coke  low  in  ash.    A.  Thau.  Stan]  u.  Eisen,  1922, 
42,  1153—1158,  1242—1219. 

The  flotation  process  is  a  valuable  addition  to 
the  mechanical  methods  of  removing  the  ash  com- 
ponents of  coal.  In  some  cases  the  ash  content 
may  be  reduced  70  % .  There  is  also  a  con- 
siderable reduction  of  the  sulphur  content,  which 
is  chiefly  carried  by  the  finest  ash  and  coal 
particles.  The  treated  slime  from  the  flotation 
process  gave  excellent  coke,  and  when  added  to 
coking  coal  had  a  favourable  influence  on  the 
character  of  the  coke  both  from  a  chemical  and 
physical  point  of  view.  Coal  treated  by  the  flota- 
tion process  can  be  brought  to  so  high  a  degree 
of  purity  that  it  is  better  suited  for  chemical  tise 
and  for  the  manufacture  of  electrodes  than  the 
raw  materials  previously  used.  The  waste  from  the 
flotation  process  may  be  used,  according  to  its 
chemical  constitution,  as  raw  material  for  ceramic 
products.  Calculations  are  made  showing  the 
economic  advantages  of  the  flotation  process  and 
of  the  purified  coke  produced. — T.  H.  Bu. 

Coal;  Spontaneous  ignition  of  .     T.  Drescher. 

Chem.-Zeit.,  1922,  46,  802—803. 

The  paint  industry  employs  as  a  black  pigment 
what  is  essentially  coke  (lignit.  -coke,  bone-charcoal, 
etc.)  sold  under  various  trade  names.  The  grinding 
of  this  material  often  extends  over  24  brs.  and  is 

a2 


798  a 


Cl.   II a.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Oct.  31,  1922. 


carried  out  in  edge-runner  mills  or  closed  drums, 
the  powder  being  discharged  warm,  but  notwith- 
standing this  no  case  of  spontaneous  ignition  is 
known.  When,  however,  an  attempt  was  made  to 
use  coal  as  a  substitute,  the  coal  being  of  good 
quality  but  containing  pyrites,  the  powder  took 
fire  while  in  store.  The  material  was  therefore  stored 
in  bags  in  the  open,  the  ground  being  frozen. 
When  after  14  days  the  upper  bags  were  removed 
the  lower  ones  with  a  good  part  of  their  con- 
tents were  found  to  have  been  burnt.  The  material 
was  repacked  in  fresh  bags  and  in  a  few  days  took 
fire  again.  This  case  is  held  to  support  the  view 
that  such  fires  are  due  to  the  oxidation  of  pyrites 
by  air  and  moisture.  There  will  always  be  sufficient 
air  between  the  particles  of  a  dump  of  small  coal 
to  start  the  action. — C.  I. 

Coke;  Dry  cooling  of .    P.  Seblapfer.    Stahl  u. 

Eisen,  1922,  42,  1269—1275. 

The  mean  specific  heat  of  a  coke  containing  10"5% 
of  ash  was  found  to  be  as  follows  for  various  tem- 
perature intervals:  18°— 100°,  0214;  18°— 400°, 
0-273;  18°— 477°,  0"286;  18°— 577°,  0-305;  18°— 
800°  C,  0-333.  In  a  dry  cooling  installation  de- 
scribed, the  coke  is  discharged  from  the  oven  into 
an  enclosed  chamber,  and  air  is  admitted.  A  small 
portion  of  the  coke  is  thus  burnt,  until  all  the 
oxygen  of  the  air  admitted  has  been  utilised,  after 
which  the  inert  gases,  consisting  of  nitrogen,  carbon 
dioxide,  and  carbon  monoxide,  are  circulated 
through  the  cooling  chambers  until  the  tempera- 
ture of  the  coke  has  fallen  to  about  250°  C.  The 
sensible  heat  of  the  circulating  gas  is  utilised  for 
generating  6team  or  for  preheating  boiler  feed 
water.  The  speed  of  circulation  can  be  regulated 
to  suit  the  6team  requirements  of  the  plant.  In 
one  test,  lasting  17  days,  the  weight  of  coke  cooled 
per  day  was  23'6  tons,  and  the  water  heated 
amounted  to  9'4  tons,  converted  from  water  at 
50°  C.  into  steam  at  94'5  lb.  per  sq.  in.  pressure 
(saturated),  i.e.,  0'398  kg.  of  6team  per  kg.  of  coke. 
Over  a  test  period  of  285  days,  the  steam  generated 
amounted  to  0383  kg.  per  kg.  of  coke.  A  complete 
description  is  given  of  the  lav-out  of  the  plant. 

—A.  G. 

Coke;   Volumetric   determination   of   the   true   and 

apparent  specific  gravity  of .    A.  Schmolke. 

Stahl  u.  Eisen,  1922,  42,  1237—1240. 

A  weighed  piece  of  dry  coke  is  introduced  into  a 
volumenometer,  the  volume  of  which  has  previously 
been  determined  'by  displacing  the  contained  air  by 
means  of  carbon  dioxide  into  an  absorption  vessel 
containing  a  solution  of  caustic  potash  and  reading 
off  the  volume  of  the  air  in  a  graduated  glass  tube. 
The  volume  of  air  in  the  glass  vessel  when  contain- 
ing the  coke  is  determined  by  a  similar  procedure, 
the  carbon  dioxide  displacing  the  air  in  the  pores 
of  the  coke.  The  weight  of  the  coke  divided  by  the 
difference  between  the  volume  of  the  vessel  and  the 
volume  of  air  in  the  vessel  when  containing  the 
coke  gives  the  true  density  of  the  coke.  The 
experiment  is  then  repeated,  using  mercury  instead 
of  carbon  dioxide ;  the  mercury  does  not  displace 
the  air  in  the  pores  of  the  coke,  and  consequently 
the  apparent  density  of  the  coke  is  obtained.  The 
method  is  rapid  and  accurate. — T.  H.  Bu. 

Calorific  power;  Calculation  of  the  ■ ■  of  a  com- 

mercial  fuel  in  terms  of  its  content  of  water  and 
mineral  matter.  J.  Fohlen.  Chim.  et  Ind.,  1922, 
8,  275—277. 

The  application  of  nomographs  to  the  determina- 
tion of  calorific  powers  of  fuels  of  known  content 
of  water  and  mineral  matter  is  explained  and  illus- 
trated in  the  cases  of  four  varieties  of  coals,  for 
which  rectilinear  nomographs  are  given. 

—J.  S.  G.  T. 


M etaldehyde  as  a  fuel.     H.   Danneel.     Chem.  and 
Met.  Eng.,  1922,  27,  216—218. 

The  manufacture  of  metaldehyde  on  a  commercial 
scale  has  become  possible  through  the  production 
of  acetaldehyde  from  calcium  carbide.  A  study  of 
the  acetaldehyde-metaldehyde-paraldehyde  equili- 
bria shows  that  at  low  temperatures  the  conversion 
of  acetaldehyde  into  metaldehyde  can  be  acceler- 
ated more  than  that  of  acetaldehyde  into  paralde- 
hyde by  the  use  of  sulphuric  acid  or  certain  other 
catalysts.  As  the  formation  of  paraldehyde  is. 
accompanied  by  the  evolution  of  heat,  careful  con- 
trol of  the  reaction  temperature  is  necessary.  The 
precipitated  metaldehyde  is  removed  when  a  maxi- 
mum quantity  has  been  formed  and  before  equili- 
brium is  reached.  Paraldehyde,  with  small  quanti- 
ties of  acetaldehyde,  is  separated  in  a  hydro- 
extractor  and,  unless  pure  paraldehyde  is  desired 
as  a  product,  is  transformed  into  acetaldehyde  for 
further  use.  Metaldehyde  is  recovered  in  the  form 
of  small  needles  and  is  compressed  before  being  used 
as  a  fuel.  During  combustion  the  heat  radiated 
from  the  flame  converts  the  metaldehyde  into  acet- 
aldehyde, which  itself  feeds  the  flame;  thus  the 
conversion  controls  the  rate  of  combustion.  The 
formation  of  acetaldehyde  and  the  combustible  pro- 
perties of  the  compressed  metaldehyde  are  very 
largely  determined  by  the  presence  of  traces  of 
catalysts. — H.  Hg. 

Hydrocarbons;  Determination  of  in  technical 

gases.     G.   Wollers.     Stahl   u.   Eisen,    1922,   42, 
1449—1455. 

Gases  of  the  acetylene  series  may  be  separated  quan- 
titatively from  those  of  the  ethylene  and  methane 
.  series  by  shaking  with  a  few  c.c.  of  a  solution  of 
25  g.  of  mercuric  iodide  and  30  g.  of  potassium 
iodide  in  100  c.c.  of  water.  Ethylene  and  its  homo- 
logues  may  be  separated  from  the  residual  gases 
by  shaking  them  with  a  solution  of  1  g.  of  vanadic 
acid  in  100  c.c.  of  concentrated  sulphuric  acid,  but 
it  is  impossible  to  effect  a  separation  of  the  ethylene 
homologues  from  each  other  by  agitation  with  sul- 
phuric acid  of  different  strengths.  All  the  un- 
saturated hydrocarbons  on  being  passed  over  palla- 
dium black  saturated  with  hydrogen  are  converted 
quantitatively  into  the  corresponding  saturated 
compounds.  The  various  members  of  the  different 
series  may  be  separated  by  cooling  the  gas  mixture 
in  liquid  air  to  -185°  C,  whereby  oxygen,  hydro- 
gen, carbon  monoxide,  methane,  and  nitrogen 
remain  in  the  gaseous  state  and  are  determined  in 
the  usual  manner.  The  liquid  is  heated  to 
—  115°  C.,  when  ethylene,  ethane,  and  part  of  the 
propylene  and  propane  distil  off,  and  then  to  room 
temperature,  when  the  rest  of  the  propylene  and 
propane,  together  with  a  little  butylene  and  butane 
distil.  Each  fraction  is  analysed  by  the  absorption 
method  described  above  combined  with  combustion 
of  another  portion. — A.  R.  P. 


Hydrogen  and  methane  mixed  with  atmospheric  air; 

Fractional  combustion  of  .       P.  Rischbieth. 

Chem.-Zeit.,  1922,  46,  784—785. 
The  combustion  is  carried  out  in  a  pipette,  or  flask, 
in  which  is  a  spiral  of  platinum  wire  which  may  be 
raised  to  any  desired  temperature  by  an  electric 
current.  The  pipetto  is  connected  by  a  pipe  pro- 
vided with  a  glass  cock  with  a  graduated  burette 
fitted  with  a  levelling  bottle.  For  the  combustion 
of  hydrogen  the  wire  is  boated  to  a  temperature 
below  redness.  Methane  is  only  burned  by  raising 
the  wire  to  a  bright  red  or  white  heat.  The  com- 
bustion takes  place  without  explosion.  After 
combustion  the  gas  is  withdrawn  into  the  burette 
and  the  contraction  in  volume  estimated.  If 
desired  tho  amount  of  methane  may  bo  found  by 


Vol.  XLI.,  No.  20.] 


Cl.  I1a.— FUEL  ;    GAS  ;    MINERAL  OILS  AND  WAXES 


799  a 


estimating  the  residual  oxygen  by  a  phosphorus 
pipette  and  thus  ascertaining  the  volume  of  oxygen 
used. — H.  M. 

Natural  gas;   Composition  of  Japanese  .      T. 

Ohno.     Kogyo-Kwagaku   Zasshi   (J.   Chem     Ind. 
Japan),  1922,  25,  783—788. 

Samples  of  natural  gas  from  Haneda-machi  (Tokyo 
Prefecture),  Mohara-machi  and  Tsuchimutsumura 
(Chiba  Prefecture),  Niitsu  oil-field,  and  Nuttari 
petroleum  refinery  gave  the  following  results  on 
analysis:  C02  1-2—149,  CnH2a  0—01,  O,  02— 0"7, 
CO  0—0-2,  CH4  79-1—92-1,  N,  4-6—11-3%  ;  sp.  gr. 
0-577— 0725,  calorific  value  7023—8444  g.-cals.  per 
litre.  A  sample  from  Nishiyama  oil-field  (Niigata 
Prefecture)  proved  to  be  a  natural  petroleum  gas 
and  gave  the  following  results :  CO,  0'2 — 05, 
CnH2n  0-7—10,  02  0-5—0-6,  CO  04,  CH/228— 44-0, 
C,H,  54'2 — 71"3 1%  (saturated  hydrocarbons  were  cal- 
culated as  CH4  and  C,HG),  sp.  gr.  0807— 0-963, 
calorific  value  13,090—13,293  g.-cals.  per  litre. 

— K.  K. 

Kukkersite,  the  oil  shale  of  Esthonia.      E.  H.  C. 
Craig.     J.  Inst.  Petrol.  Tech.,  1922,  8,  349—375. 

The  Esthonian  oil  shale  is  the  oldest  and  richest 
known,  if  torbanites  be  excluded.  The  oil  shale  is 
found  a  few  yards  above  the  base  of  the  lower 
silurian  limestone,  attains  a  maximum  thickness  of 
8  ft.,  and  is  interbedded  with  limestone  containing 
bituminous  matter.  The  strata  have  never  been 
disturbed  since  their  formation.  The  shale  is  grey 
to  green,  but  red  when  weathered,  and  is  crowded 
with  fossils,  principally  trilobites  and  brachiopods. 
The  sp.  gr.  varies  from  1'2  to  1'4.  and  the  yellow 
colour  of  the  impregnation  is  similar  to  that  of  the 
richest  shales  of  Colorado.  The  material  contains  no 
sand.  Analysis  of  the  mineral  (inorganic)  matter 
shows  49'64%  of  lime.  The  moisture  varies  from 
33"7  to  11*0%,  but  after  six  weeks'  drying  at 
ordinary  temperature  this  is  reduced  to  6'84 — 
2'34%.  The  average  percentage  of  volatile 
matter  is  54 — 56.  The  nitrogen  content  is  low, 
0"30 — 0'68%,  and  the  oxygen  content  high, 
16-24—21-98%;  the  sulphur  content  is  1'60%. 
Kukkersite  may  be  distilled  at  a  temperature  not 
above  500°  C.  and  yields  70 — 80  galls,  per  ton  of  an 
oil  of  0-92—0-93  sp.  gr.  It  is  not  likely  that  the 
shale  originated  from  algae  or  from  peat,  but  it  is 
most  probable  that  it  has  been  formed  from  inspis- 
sated petroleum,  the  underlying  Cambrian  sand- 
6tono  presenting  the  typical  appearance  of  oil 
sands.  The  quantity  of  proved  oil  shale  is  about 
1000  to  1500  million  tons,  extending  over  an  area 
36  miles  long  by  7  miles  broad.  Along  the  outcrop 
and  for  some  miles  to  southward  the  shale  may  be 
worked  by  open  cut. — H.  M. 

Kukkersite;  Chemical  composition  of  the  Esthonian 

Middle     Ordovician     oil-bearing     mineral    . 

P.  N.  Kogerman.    Pamphlet.    Dorpat,  1922.    25 
pages. 
The  available  supplv  of  Esthonian  oil  shale  is  esti- 
mated at  1,500,000,000  tons.     It  is  not  a  true  shale. 
A  review  is  given  of  former  researches  on  kukkersite 
from  its  discovery  in  1789  to  the  present  day.     The 
shale  rarely  contains  more  than  35%   of  moisture. 
When  air-dried  it  contains  about  7%   of  moisture 
and  when  dried  in  a  desiccator  over  sulphuric  acid 
I  about  2'38%.       The  ash  content  varies  from  20  to 
150%,    and    the  yield   of   volatile   matter    is   50'7 — ■ 
I  58'4%.    The  ultimate  composition  of  the  drv  organic 
substance  is  C  71-58%,  H  7"40%,  N  0"48%,  S  1-50%, 
0  1904%.     From  0'27  to  0'77%  of  the  mineral  was 
dissolved   by  eight  different  organic  solvents,   but 
■  tetrachloroethane  dissolved  2'20%,  the  time  of  ex- 
I  traction  varying  from  48  to  124  hours.     By  boiling 
'  in  a  20%  solution  of  potassium  hydroxide,  neutralis- 
ing, and  allowing  to  stand,  a  white  precipitate  not 


exceeding  4%  of  the  weight  of  the  mineral  was 
obtained.  In  one  series  of  tests  10  g.  of  shale  heated 
to  250° — 255°  C.  gave  off  27  c.c.  of  gas  containing 
8"7%  of  carbon  dioxide,  0'6%  of  heavy  hydrocarbons, 
and  13'7%  of  carbon  monoxide.  Distillation  at 
600°  C.  gave  748  galls,  of  oil  and  3000  cub.  ft.  of  gas 
per  ton.  By  steam  distillation  28-5%  of  light  oil  of 
sp.  gr.  0'795  was  obtained,  containing  about  60%  of 
unsaturated  open-chain  compounds.  Heavy  oil 
obtained  by  steam  distillation  contained  77%  of 
such  compounds.  The  kukkersite  is  formed  from  a 
soft  cyanophyeean  alga.  Under  the  action  of 
chloral  hydrato  the  alga?  swell  and  assume  their 
original  form. — H.  M. 

Petroleum;  Origin  of  .     INitrogen  compounds 

of  petroleum,  and  particularly  of  Baku  petro- 
leum.) E.  Pyhalii.  Petroleum,  1922,  18, 
1069—1073. 

Acid  sludge  from  the  refining  of  kerosene  from  Baku 
petroleum  was  diluted  with  water,  when  a  violet 
oil  separated,  leaving  a  yellow  acid  solution,  which 
gave  a  flocculent  precipitate  on  the  addition  of  an 
excess  of  alkali.  The  precipitate,  washed  and  dis- 
solved in  hydrochloric  acid,  was  brown,  but  turned 
carmine-fed  in  a  few  hours.  A  thick  red  oil 
separated  on  the  addition  of  common  salt.  This 
was  dissolved  in  chloroform  and  the  solvent  then 
distilled  off.  On  distilling  this  oil  a  pale  yellow  oil 
passed  over  between  60°  and  80°  C.,  and  afterwards 
some  water,  sulphur  dioxide,  and  turbid  oil  with 
odour  of  pyridine.  Between  250°  and  270°  C.  the 
greater  part  of  the  material  distilled  over  as  a  sub- 
stance similar  to  Canada  balsam.  This  was  dis- 
solved in  water,  filtered,  and  evaporated  at  80°  C. 
A  hygroscopic  brittle  mass  was  obtained,  smelling 
and  tasting  like  quinoline,  with  acid  value  261  and 
possessing  both  acid  and  basic  qualities ;  it  is 
probably  an  amino-acid.  In  the  distillation  of  the 
kerosene  fractions  of  many  kinds  of  petroleum  a 
red  to  violet  fugitive  coloration  is  observed,  and  this 
is  in  proportion  to  the  nitrogen  content  of  the 
petroleum.  The  filtration  of  a  petroleum  from 
Surachany  through  floridine  left  a  red  coloured  oil 
in  the  filtering  medium.  The  yellow  filtrate  was 
shaken  with  sulphuric  acid  and  tho  precipitated 
acid  sludge  diluted  with  water,  rendered  alkaline 
with  sodium  hydroxide  solution,  and  shaken  with 
ether.  The  ether  layer  was  yellow,  but  on  distilling 
off  the  solvent  a  syrupy  carmine-red  product  re- 
mained, with  a  smell  of  quinoline  and  containing 
bases.  The  bases  seemed  to  consist  of  the  hydro- 
genised  derivatives  of  pyridine  and  quinoline,  and 
probably  have  been  taken  up  by  the  petroleum  from 
decomposed  organic  matter. — H.  M. 

Absorption  plant  [for  recovery  of  gasoline  from 
natural  gas] ;  Design  and  operation  of  a  low- 
pressure    .       W.    P.     Dykema    and    A.     A. 

Chenoweth.  U.S.  Bureau  of  Alines,  Tech.  Paper 
263,  1922.  40  pages. 
The  plant  described  deals  with  2,000,000  cub.  ft.  of 
gas  daily,  and  the  yield  of  gasoline  has  ranged  from 
0'52  gall,  per  1000  cub.  ft.  when  the  plant  first 
started  (May,  1917)  to  8'45  galls,  in  Dec.,  1919.  A 
vacuum  of  i9 — 20  in.  of  mercury  is  maintained  on 
the  wells,  with  the  result  of  a  much  increased  pro- 
duction. A  pressure  of  4 — 6  lb.  is  maintained  on 
the  two  absorption  towers,  which  work  in  series. 
The  gas  is  cooled  by  passing  through  pipes  sprayed 
with  water  before  going  to  the  towers,  which  are 
filled  with  wood  strips,  to  effect  the  distribution 
of  the  oil.  The  velocity  of  flow  of  gas  in  the  towers 
varies  in  different  parts  from  7'5  ft.  to  15  ft.  per 
minute.  The  oil  circulation  is  100  galls,  per 
minute.  The  gas,  after  passing  through  tho 
towers,  has  a  gasoline  content  of  only  0'055  gall, 
per  1000  cub.  ft.  Its  heat  value  is  1900—2000 
B.Th.U.      The    results    of    fractionations    of    the 


800  i 


Ci.   IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Oct.  31,  1922. 


gasoline  from  different  points  in  the  system  are 
given.  The  absorbing  oil  is  a  gas  oil  of  35° — 37°  B. 
(sp.  gr.  0-838—0-848).  Graphs  showing  the  heat 
exchange  are  given,  as  also  drawings  illustrating 
details  of  the  plant,  and  tables  showing  results  of 
working. — H.  M. 

Petroleum  products-  Temperature-pressure  curves 

of  .     M.  B.  Cooke.     Cheni.  and  Met.  Eng., 

1922,  27,  504. 

CuEVES  showing  the  relation  of  vapour  pressure  to 
temperature  are  given  for  casinghead  gasoline, 
motor  gasoline,  kerosene,  and  a  transformer  oil,  for 
temperatures  ranging  from  20°  C.  to  260°  C.  The 
respective  distillation  ranges  are  likewise  shown 
graphically.  In  general,  the  pressures  generated  by 
petroleum  products  at  high  temperatures  vary 
inversely  as  the  average  boiling  point  of  the 
product.— J.  S.  G.  T. 

Paraffin  wax;  Composition  of  .     F.    Francis, 

G.  M.  Watkins,  and  R.  W.  Wallington.     Chem. 
Soc.  Trans.,  1922,  121,  1529—1535. 

A  paraffin  wax  of  Scottish  origin,  melting  at  55° — 
56°  C.,  and  showing  a  mol.  wt.  of  366,  and  sp.  gr. 
07628  at  85°/4°  G.,  was  subjected  to  twenty-one 
successive  fractionations  under  a  Young  column  at 
a  pressure  of  about  O'l  mm.  After  seventeen 
fractionations  large  amounts  of  material  were 
obtained  boiling  over  small  ranges  of  temperature, 
and  the  total  boiling  range  had  spread  out  from 
170°— 230°  C.  to  125°— 280°  C.,  though  the  amount 
boiling  above  240°  C.  probably  did  not  amount  to 
more  than  2 — 3%.  Making  allowance  for  the  un- 
avoidable loss  during  the  distillations,  it  is  con- 
sidered that  about  80%  of  the  paraffin  is  composed 
of  seven  substances  of  constant  boiling  point.  Of 
the  remainder  8 — 10%  is  composed  of  material 
boiling  at  220°— 240°  C.  and  containing  probably 
not  more  than  two  such  substances.  It  is  as  yet 
undetermined  whether  these  constant-boiling  sub- 
stances are  pure  hydrocarbons,  or  mixtures  of 
hydrocarbons.  The  physical  properties,  m.pts., 
densities,  solubilities,  etc.,  of  the  constant-boiling 
substances  show  a  perfect  regularity  with  increas- 
ing b.p.,  with  the  sole  exception  of  the  fraction 
boiling  at  217° — 219°  C.,  but  there  is  no  evidence 
that  they  are  normal  paraffins  as  assumed  by 
Krafft  (J.,  1908,  68);  in  fact  the  physical  constants 
of  synthetic  dotriacontane  do  not  fit  into  the  series, 
although  its  mol.  wt.  is  the  same  as  that  of  the 
fraction  boiling  at  196°— 198°  C.— G.  F.  M. 

Paraffin  wax  and  vaseline;  Examination  of  . 

E.  Pyhalii.     Petroleum,  1922,  18,  1164—1165. 

The  sp.  gr.  is  determined  by  the  flotation  of  wax 
or  vaseline  in  an  alcohol-water  solution.     The  sub- 
stance in  a  melted  state  is  dropped  from   a  glass    j 
rod  into  warm   alcohol,   when  it   may  be  observed    j 
whether  any   air   bubbles  are  present.     The  drops    j 
free    from    air    are    transferred    to    a    measuring    | 
cylinder,  and  water  is  added  till  the  aqueous  alcohol 
is  of  the  same  sp.   gr.   as  the  drops,   which  then 
neither  rise  nor  fall  in  tho  liquid.     The  gravity  of 
the  aqueous  alcohol  is  then  determined  by  ordinary 
methods.     The  importance  of  ensuring  the  absence    j 
of   air   bubbles   in  the   determination  of   the  drop    I 
point  by    [Tbbelohde's  apparatus  (J.,   1905,  941)  is    j 
emphasised.      The    effect  of    different   methods    ol 
filling   the   glass   vessel   is   noted.      A   variation   of 
about  3°  ir  the  results  may  be  brought  about  by 
incorrect  methods  of  filling. — H.  M. 

Boring  and  cooling  oils  (soluble  oils);  Examination 

of    .      T.    Kaleta.      Chem.-Zeit.,    1922,    4G, 

783—784. 

Fob  the  estimation  of  soap,  mineral  oil,  and  fatty 
oil,  3 — 5  g.  of  the  sample  is  mixed  with  100  c.e.  of 
cold  water   and   treated   with   solution  of   calcium 


chloride.  The  precipitated  calcium  soap  is  washed 
with  water  and  acetone,  dissolved  in  hot  benzol- 
alcohol  mixture,  and  boiled  with  dilute  hydrochloric 
add.  After  cooling  the  mixture  is  extracted  with 
ether  and  washed  with  water.  To  the  solution  is 
added  50  c.e.  of  neutral  alcohol,  and  it  is  titrated 
with  JV/2  alcoholic  potash  solution,  evaporated, 
dried,  and  the  resulting  soap  weighed.  The  filtrate 
from  the  calcium  soap  is  diluted  with  100  c.e.  of 
water  and  shaken  with  ether.  The  extract,  con- 
taining the  mineral  and  the  fatty  oil,  is  washed 
with  water,  and  the  ether  evaporated  ofF.  The  fatty 
oil  is  saponified  by  boiling  with  50  c.e.  of  alcoholic 
potash  solution,  the  alcohol  is  evaporated,  and 
100  c.e.  of  water  added.  The  mixture  is  warmed 
and  the  fatty  oil  precipitated  as  calcium  soap, 
which  is  filtered  off  and  the  fatty  oil  determined 
as  potash  soap.  The  mineral  oil,  which  remains, 
ii  extracted  by  ether,  washed,  and  filtered. 
The  ether  is  distilled  off  and  the  mineral  oil 
weighed.  Alternatively,  the  saponification  value  of 
the  mixed  mineral  and  fatty  oil  may  be  determined, 
a  correction  made  for  free  alkali  in  the  soluble  oil, 
the  amount  of  fatty  oil  determined,  and  the 
mineral  oil  calculated  by  difference.  The  molecular 
weight  of  the  fatty  acids  may  be  calculated  by  the 
formula:  mol.  wt.  =  (g.  fatty  acidsx56)/g.  KOH 
used. — H.  M. 

Maximum    temperature    of    combustion.      Brown. 
See  1. 

Benzol  in  gas.    Biihr.    Sec  III. 


Butadiene    from    ethylene. 
See  XX. 


Zanetti    and    others. 


Patents. 


Peat;  Treatment  of 
3.1.21. 


T.  Rigby.    E.P.  182,149, 


Peat  is  dehydrated  in  stages  which  comprise,  first, 
mechanical  removal  of  the  bulk  of  water  (after,  if 
necessary,  hydraulic  transportation  in  cases  where 
the  water  content  of  the  original  peat  will  permit), 
and,  secondly,  evaporative  drying  of  the  pulpy 
product  in  a  film  dryer  operating  in  multiple  effect 
(E.P.  181,035;  J.;  1922,  574  a)  or  on  the  vapour 
compression  priuciple  (E.P.  149,055,  150,068,  and 
150,807;  J.,  1920,  682  a,  712  a).— A.  R.  M. 

Peat  and  the  like;  Drying  of .    T.  Rigbv.    E.P. 

182,157,  25.2.21. 

The  material  to  be  dried  is  carried  in  a  compara- 
tively finely  divided  state  in  suspension  in  a  current 
of  hot  gaseous  products  of  combustion  along  a  duct. 
The  carrying  current  is,  for  the  most  part,  com- 
posed of  gaseous  products  which  have  already  once 
passed  along  the  duct  whilst  functioning  as  a  drying 
medium,  only  a  portion  of  the  cooled  current  being 
exhausted,  the  remainder,  after  the  addition  of 
fresh  hot  gases,  being  re-circulated.  The  material 
when  sufficiently  dried  is  separated  from  the 
current  by  a  cyclone  separator.  The  pressure  at 
the  point  or  points  where  fresh  drying  gases  are 
introduced  into  the  system  and  where  the  material 
to  be  dried  is  admitted,  is  kept  below  that  of  the 
atmosphere. — A.  R.  M. 

Peat;  Process  and  means  for  dehydrating  raw . 

C.  Glinka.     G.P.  355,865,  24.7.21. 

Raw  peat  is  continuously  conveyed  through  a 
chamber  in  which  it  is  subjected  at  a  suitable 
temperature  to  high  pressure  by  means  of  rollers. 

—A.  J.  H. 

Coal     briquettes;    P  roil  net  ion     of    .       W.     ra 

Stenning,  W.  H.  Beasley,  and  Minerals  Separa- 
tion, Ltd.     E.P.  185,216,  31.5.21. 

A    mixture    of   crushed   coal    and    about   its   own 


Vol.  XLI.,  No.  20.] 


Cl.    IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


801a 


weight  of  water,  such  as  is  produced  by  the  froth- 
flotation  process,  is  mixed  with  a  binding  agent 
such  as  pitch.  The  pitch  is  preferably  added  in  a 
powdered  or  molten  condition,  while  the  mixture  is 
being  agitated  and  aerated.  Naphthalene  or  coal 
tar  may  be  added  to  facilitate  the  subsequent  dis- 
semination of  the  pitch.  The  mixture  is  heated  to 
about  80°  C.  and  submitted  to  a  rolling  form  of 
agitation  in  a  horizontal  rotary  drum,  so  that  air 
is  eliminated  and  the  coal  is  agglomerated.  Rods 
may  be  placed  in  the  drum  to  knead  the  mass. 
Water  is  drained  away  from  the  agglomerated  coal, 
which  is  briquetted  while  still  hot. — H.  Hg. 

Oven  for  semi-coking  of  fuels.  H.  Lentz.  E.P. 
166,544,  15.7.21.     Conv.,  15.7.20. 

Fttel  is  passed  downwards  over  a  series  of  inclined 
surfaces  arranged  in  stepped  formation  over  heating 
flues.  The  passage  of  fuel  on  to  each  step  is  con- 
trolled by  a  flap  which  is  operated  through  the  end 
wall  of  the  oven  in  such  a  manner  that  the  fuel  is 
turned  over  during  its  passage.  The  flaps  may  be 
operated  by  a  common  drive.  The  gases  evolved 
from  the  fuel  are  withdrawn  through  the  top  of  the 
oven.  The  coked  fuel  passes  from  the  lowest  step 
through  crusher  rollers  into  trucks.  The  gas 
from  the  heating  flues  is  passed  through  the  fuel  in 
a  chamber  above  the  upper  end  of  the  oven  and 
serves  to  prevent  access  of  air  to  the  oven  during 
the  operation  of  the  top  flap.  Several  ovens  may 
be  arranged  in  series,  the  first  being  used  for  a 
preliminary  drying  of  the  fuel. — H.  Hg. 

Coke-oven.  E.  Artzinger.  G.P.  354,153,  1.2.21. 
In  a  vertical  coke-oven  with  vertical  heating  flues, 
a  recuperator  with  vertical  flues  is  provided 
on  either  side  of  the  oven  for  preheating  the 
gaseous  fuel  and  air,  which  pass  through  the  flues 
from  top  to  bottom  in  parallel.  The  recuperators 
are  so  placed  that  the  temperature  of  either  wall 
of  the  oven  can  be  regulated  independently  of  the 
other  and  so  that  the  general  design  of  the  oven 
is  as  simple  and  as  sound  as  possible  with  regard  to 
thermal  expansion. — H.  C.  R. 

Drying  and  carbonising  fuel;  Apparatus  for  . 

A.  Holzhausen.     G.P.  355,386,  6.2.21. 

Two  cylinders,  one  inside  the  other  and  both  re- 
volving on  the  same  axis,  are  connected  by  means  of 
an  interceptor,  through  which  the  fuel  is  trans- 
ferred by  means  of  gravity  or  other  suitable  means 
from  the  inner  to  the  outer  cylinder,  but  the  passage 
of  vapours  or  gases  from  one  cylinder  to  the  other 
is  prevented.  The  transferring  device  is  so  operated 
that  the  fuel  may  be  loosened,  compressed,  or 
briquetted  whilst  being  conveyed  from  one  cylinder 
to  the  other. — A.  J.  H. 

Gas  generators  and/or  retorts.  F.  Umplebv  and 
H.  Powers.     E.P.  184,887,  23.5.21. 

I  Solid  or  liquid  fuel  is  gasified  by  being  passed 
downwards  into  a  cylinder  composed  of  porous  re- 

I  fractory  material  or  of  a  perforated  heat-resisting 

1  metal  which  is  heated  by  surface  combustion.     Gas 

i  and  air  for  combustion  are  supplied  to  an  annular 
space  surrounding  the  cylinder  at  a  pressure  exceed- 

jing  that  within  the  cylinder.  This  annulus, 
together   with   the   upper   and  lower   parts  of   the 

[generator,     is     surrounded     by     a     water     jacket. 

(Metallic  flanges  are  provided  to  conduct  heat  fToni 
the  outer  surface  of  the  cylinder  to  the  water  jacket. 
Solid  fuel  is  introduced  in  powdered  form  through 
'a  rotary  valve,  or  liquid  fuel  through  a  jet,  at  the 
top  of  the  generator,  or  fuel  may  be  injected  by 
means  of  air  or  of  steam  generated  in  the  cool- 
ing jacket.  Lime  or  chalk  may  be  introduced 
'with  the  fuel.  Baffles  may  be  provided  within  the 
'cylinder  to  impede  the  flow  of  the  fuel  and  may  be 
composed   of    catalytic    material.       Surplus   water 


from  the  cooling  jacket  may  flow  into  a  tank  at  the 
base  of  the  generator,  and  ash  may  be  discharged 
into  this  through  a  rotary  valve.  The  steam 
generated,  if  not  used  for  the  injection  of  fuel,  is 
introduced  into  the  top  of  the  cylinder.  The  gases 
resulting  from  the  interaction  of  fuel,  steam,  air, 
and  products  of  combustion  are  withdrawn  from  the 
bottom  of  the  cylinder  under  pressure  or  suction 
and  may  be  supplied  to  internal-combustion  engines. 

— H.  Hg. 

Coal,  hydrocarbons,  and  the  like;  Process  for  de- 

composing    under    high    temperatures    and 

pressures.     S.  Lbffler.     G.P.  306,356,  24.1.15. 

The  temperature  of  the  reaction  chamber  is  con- 
trolled and  the  pressure  on  the  walls  of  the  chamber 
counterbalanced  by  means  of  a  fluid  (e.g..  oil)  bath 
under  pressure,  stable  under  the  necessary  high 
temperatures  employed.  The  pressure  on  the  fluid 
bath  may  be  slightly  greater  than  that  in  the  re- 
action chamber,  and  it  is  advantageous  to  use  for 
the  fluid  bath  hydrocarbons  of  high  b.p.  similar  to 
those  employed  in  the  reaction  chamber,  so  that  in 
the  event  of  the  walls  of  the  latter  becoming 
damaged,  harmful  contamination  of  the  reaction 
mixture  does  not  occur. — A.  J.  H. 

Blast-furnace  and  like  gases;  Pre-heating  in 

ill  ii  iins-purifying  plants.   Dinglersche-Maschinen- 
fabrikA.-G.   E.P.  182,102,  1.6.22.   Conv.,  24.6.21. 

In  preheating  blast-furnace  and  like  gas  by  surface 
radiators  heated  by  gas  burners,  compressed  air  is 
supplied  to  the  gas  burners,  thereby  avoiding  the 
use  of  exhaust  fans  for  drawing  off  the  hot  gases  of 
combustion.  Independent  gas  burners  are  prefer- 
ablv  emploved  for  the  heaters  of  the  individual 
units.— A.  R.  M. 

By-products;  Apparatus  and  process  for  recovering 

from  distillate   gases.      A.   Roberts.      E.P. 

184,507,  12.2.21. 
In  the  recovery  of  by-products  from  distillate  gases, 
e.g.,  coke-oven  gas,  a  suitable  medium  is  injected 
for  the  purpose  of  increasing  the  vapour  tension 
and  lowering  the  temperature  of  the  gas  to  that 
slightly  above  the  den-point  of  the  heaviest  con- 
stituent to  be  removed.  The  gas  is  then  passed 
through  a  series  of  condensers,  which  may  be 
jacketed  if  desired,  and  are  each  maintained  at 
the  dew-point  of  the  constituent  to  be  separated. 
Oils,  emulsions  or  other  by-products,  having  sub- 
stantially the  same  composition  as  the  by-products 
subsequently  removed  at  a  later  stage  of  the  pro- 
cess, are  sprayed  into  the  condensers,  and  are 
evaporated  therein,  serving  at  the  same  time  to  con- 
dense the  heavier  constituent  which  it  is  desired  to 
remove.  An  ammonia  saturator  may  be  located  at 
such  a  point  in  the  system  that  gas  entering  it  has 
its  temperature  above  the  dew-point  of  water 
vapour,  so  as  to  avoid  excessive  condensation  of 
water  in  the  acid.  To  remove  products  the  dew 
points  of  which  are  lower  than  that  of  water-vapour, 
e.g.,  benzol  from  coke-oven  gas,  a  condenser  is 
placed  after  the  ammonia  saturator  and  the  gas 
sprayed  therein  with  a  suitable  liquid,  after  suitable 
preliminary  cooling. — A.  R.  M. 

Alcohol  fuel.    J.  Hawes.    E.P.  184,607,  27.5.21. 
The    fuel    consists   of    96—98%    alcohol,    96   pts.; 
petroleum  naphtha,   2  pts. ;    nitrobenzene,   1  pt. ; 
and  amyl  alcohol,  1  pt. — T.  A.  S. 

[Hydrocarbon']    oils;    Process    and    apparatus    for 

catalysing    and    revivifying    the    catalyst. 

E     V     Owen,   Assr.   to  The  Hoover  Co.     U.S. P. 
1,427,626,  29.8.22.    Appl.,  31.3.22. 
Low-boiling   hydrocarbons   are   produced  by   pass- 
ing high-boiling   hydrocarbons   with    "  aluminium 


I 


802  a 


Cl.  Hb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;    LIGHTING.         [Oct.  31,  1922. 


chloride  hydrocarbon  catalyst"  through  a  catalys- 
ing chamber  maintained  at  a  suitable  temperature. 
After  passing  through  the  catalysing  chamber  the 
oil  is  separated  from  the  catalyst  and  returned  to 
the  chamber.  The  returning  oil  passes  along  the 
outer  wall  of  the  catalysing  chamber  and  is  heated 
to  maintain  the  chamber  at  the  correct  tempera- 
ture. Low-boiling  hydrocarbon  vapours  are  removed 
from  the  chamber. — T.  A.  8. 

Mineral    oils   and    the    like;   Process    for   refining 

.      Plauson's    Forschungsinstitut    G.m.b.H. 

G.P.  352,189,  11.3.20. 
Alkali  bisulphates  or  pyrosulphates  are  used,  at 
temperatures  between  110°  and  2503  C,  if  necessary 
under  pressure,  the  sulphur  dioxide  produced  being 
converted  into  sulphuric  acid,  which  is  used  to 
produce  bisulphates  from  the  alkali  sulphates 
recovered  from  the  residues.  The  saturated  hydro- 
carbons are  scarcely  attacked  and  are  recovered  in 
a  high  degree  of  purity. — A.  G. 

Hydrocarbon  oils;  Process  for  the   purification  of 
.  Deutsche  Erdol-A.-G.  G.P.  352,917,  18.2.21. 

The  oils  are  treated  with  more  than  5%  of  paraffin 
monocarboxylic  acids  or  their  halogen  derivatives  or 
anhydrides  unjil  colourless  and  odourless,  and  free 
from  resin  and  asphalt.  Mineral  oil  is  treated, 
e.g.,  with  acetic  acid  or  concentrated  formic  acid, 
with  stirring,  or,  in  a  continuous  process,  in  a 
packed  washing  column  on  the  counter-current 
principle.  The  process  is  simpler  and  cheaper  than 
that  using  sulphuric  acid. — A.  G. 

.      W. 

Addn.     to 


Paraffin;  Continuous  production  of 
Scheffer.  G.P.  353,780,  23.11.17. 
352,919  (J.,  1922,  661  a). 

The  melting  process  is  employed  in  the  absence  of 
air.  Danger  from  fire  is  minimised  and  an  increased 
yield  is  obtained. — A.  G. 

Sulphonic    acid    [from    mineral    oils'];   Process   of 

cleaning   [removing   inorganic   salts  from]   . 

A.  Wolff,  Assr.  to  The  Chemical  Foundation,  Inc. 
U.S.P.  1,428,197,  5.9.22.  Appl.,  20.4.16. 
Inorganic  salts  are  removed  from  sulphonic  acids 
prepared  by  treating  mineral  oils  with  sulphuric 
acid,  by  washing  at  about  140°  F.  (60°  C.)  with  a 
quantity  of  40 — 50%  sulphuric  acid  approximately 
equal  to  20%  of  the  weight  of  the  sulphonic  acids 
under  treatment. — L.  A.  U. 

Paw  peat  and  the  like;  Process  of  drying  and  com- 
pressing      .       A.     J.     H.     Haddan.       From 

Torfverwertungsges.  Pohl  und  von  Dewitz. 
E.P.  165,445,  10.5.21.  Addn.  to  158,513  and 
159,464. 

See  G.P.  342,337  of  1920;  J.,  1920,  130  a. 

Gasfication  of  coal  or  other  carbonaceous  material. 

A.    McD.    Duckham.      U.S.P.    1,428,421,    5.9.22. 

Appl.,  2.5.21. 
See  E.P.  164,935  of  1920;    J.,  1921,  572  a. 

Methane  and  hydrogen;  Apparatus  and  method  for 

production,   of   a    qaseous    mixture   of  .      L. 

Colson.  U.S.P.  1,428,879,  12.9.22.  Appl.,  12.12.18. 

See  E.P.  121,124  of  1918;   J.,  1919,  620  a. 

Mineral  oils  obtained  from  earth  oil;  Method  of 
refining .   C.  R.  Ehlers.   E.P.  184,991,  29.7.21. 

See  G.P.  348,342  of  1920;   J.,  1922,  362  a. 

Motor   fuel;    Aeroplane   .      W.    T.    Schreiber, 

Assr.  to  U.S.  Industrial  Alcohol  Co.  U.S.P. 
1,428,913,  12.9.22.  Appl.,  25.6.18.  Renewed 
11.8.19. 

See  E.P.  128,915  of  1919;    J.,  1920,  651  a. 


Lubricating  oils.  G.P.  352,726  and  353,497.  See  III. 
Iron  oxide  sludge.     U.S.P.  1,428,521.    See  VII. 
Lubricating  oils  etc.     G.P.  353,222.     See  XII. 

Hb— DESTRUCTIVE  DISTILLATION; 
HEATING;    LIGHTING. 

Thermal  conductivity  at  temperatures  of  incandes- 
cence [e.g.,  of  incandescence  filaments];  Deter- 
mination of .     M.  von  Lane  and  W.  Gordon. 

Sitzungsber.   Preuss.    Akad.   Wiss.   Berlin,   1922, 
112—117.    Cheni.  Zentr.,  1922,  93,  IV.,  689. 

The  thermal  conductivity  of  the  filaments  of  elec- 
tric lamps  in  a  state  of  incandescence  may  be  deter- 
mined by  heating  the  filament  with  alternating 
current  and  measuring  the  difference  in  phase 
between  the  temperature  and  the  heat  liberated, 
or  by  determining  the  variations  in  the  tempera- 
ture of  the  surface  of  the  filament.  The  variations 
in  the  electrical  and  thermal  conductivity,  due  to 
local  or  temporary  variations  in  temperature,  may 
be  neglected.  The  variations  in  temperature  must 
not  be  too  great.  The  filament  must  be  of  such  a 
length  that  the  flow  of  heat  to  its  ends  does  not 
need  to  be  taken  into  consideration. — A.  B.  S. 

Patents. 

Peat  and  the  like;  Dry  distillation  and  coking  of 
raw  — — .  A.  J.  H.  Haddan.  From  Torfverwert- 
ungsges. Pohl  u.  von  Dewitz.  E.P.  169,952. 
10.5.21.  Addition  to  158,513  (<•/.  G.P.  337,097; 
J.,  1921,  618  a). 

A  modification  of  the  original  process  in  which 
the  moisture  of  the  peat  is  liberated  by  heating 
only  a  selected  zone  of  the  charge,  preferably  the 
interior,  or  heating  one  zone  more  powerfully  than 
the  surrounding  zones,  and  allowing  the  steam  thus 
generated  to  penetrate  the  charge  and  expel  the 
moisture  to  an  outlet  or  outlets.  A  water  discharge 
pipe  has  a  stop-cock  which  can  be  kept  closed  until 
the  water  to  be  discharged  has  collected  in  the 
pipe. — A.  R.  M. 

Carbonisation  of  coal,   shale,   peat,   and  the  like: 

Apparatus  for .     H.  P.  Hird.    E.P.  184,525, 

20.12.21. 

Within  the  carbonising  retort  a  shaft  or  shafts  of 
suitable  cross-section  are  caused  to  revolve,  so  that 
a  passage  is  formed  within  the  body  of  the  charge, 
external  to  the  6haft,  thus  permitting  ready 
escape  of  gas  from  the  retort.  A  tapering  shaft 
may  be  used,  and  it  may  have  a  combined  recipro- 
cating and  rotary  motion. — A.  R.  M. 

Pitch    and    the    like;    Carbonisation    of   .     K. 

Kubierschky.     G.P.  354,213,  30.11.20. 

Pitch  is  worked  up  into  solid  briquettes  by  admix- 
ture while  hot  with  coke,  coal,  or  sawdust,  and  the 
product  is  distilled.  The  coke  formed  during  dis- 
tillation can  be  readily  removed  from  the  retorts. 

— L.  A.  C. 

Wood  and  similar  materials;  Method  for  obtaining 

chemical  products  from  .     Chem.  Fabr.  Kali 

G.m.b.H.,  und  H.  Oehme.  G.P.  354,865,  7.4.20. 
A  dry  mixture  of  wood  flour  and  magnesium 
chloride  is  heated  in  a  current  of  dry  steam  and 
the  products  of  decomposition  of  the  wood,  such  as 
acetic  acid,  methyl  alcohol,  acetone,  furfural,  etc., 
are  partly  removed  during  the  process  of  decom- 
position and  finally  by  steam  distillation.  The 
residue  is  used  in  the  preparation  of  artificial  wood 
and  similar  products. — A.  J.  H. 


Vol.  XLI.,  No.  20.] 


Cl.  III.— tar  and  tar  products. 


803  a 


Electric   discharge    tubes    [;    Gas-filled   trith 

independent  discharge'].  Naaml.  Vennoots. 
Philips'  Gloeilampenfabrieken.  E.P.  162,268, 
18.2.21.     Conv.,  20.4.20. 

In  gas-filled  electric  discharge  tubes  in  which  an 
electric  discharge  is  started  by  supplying  current 
to  the  electrodes,  the  starting  potential  is  reduced 
by  combining  magnesium  or  beryllium  or  their 
alloys  with  the  metal,  e.g.,  iron  or  aluminium,  form- 
ing the  electrodes.  Thus  magnesium  or  beryllium 
may  be  mechanically  applied  to  the  electrodes,  and 
material  disintegrated  from  the  electrodes  by  the 
discharge  is  prevented  from  forming  a  deposit  upon 
the  walls  of  the  discharge  tube  by  suitably  shaping 
the  electrodes,  e.g.  by  partly  surrounding  the 
auxiliary  metal  or  alloy  by  the  electrodes. 

—J.  S.  G.  T. 

Distillation  of  material  carrying  a  percentage  of 
volatile  matter  [e.g.,  shale  etc.],  G.  McD.  Johns, 
Assr.  to  The  Industrial  Process  Engineering  Co. 
U.S.P.  1,423,527,  25.7.22.    Appl.,  16.7.20. 

See  E.P.  172,392  of  1920;  J.,  1922,  92  a. 

Carbonaceous  materials;  Heating  of  vertical  retorts 

for  tl.-e  distillation  of  .     W.  Wild,  Assr.   to 

West's  Gas  Improvement  Co.,  Ltd.  U.S.P. 
1,427,426,  29.8.22.    Appl.,  5.6.20. 

See  E.P.  153,139  of  1919;  J.,  1920,  813  a. 

[Incandescence    electric    lamps;']    Hcrmetical    seal 

[for    leadinij-in    wires    of   ].      W.    L.    Van 

Keuren,  Assr.  to  General  Electric  Co.  U.S.P. 
1,427,870,  5.9.22.     Appl.,  15.6.18. 

See  E.P.  130,212  of  1918;  J.,  1919,  675  a. 


III.-TAB  AND  TAB  PRODUCTS. 

Lovo-tcmperature     coal-tar    and     pitch     therefrom 

[;  Composition  of  ].     J.  Marcusson  and  M. 

Picard.     Z.  angew.  Chcm.,  1922,  35,  493—494. 

The  presence  of  carboxylic  acids  in  low-temperature 
tar  previously  reported  by  the  authors  (cf.  J.,  1921, 
462  a)  has  been  confirmed  by  examination  of  two 
other    industrial    samples.      These    acids   are    con- 

,  sidered  to  be  not  phenolcarboxylic  acids  but  acids 
allied  to  humic  acid,  as  are  similar  compounds 
found  in  wood-tar.    Pitch  from  low-temperature  tar 

t    and  ordinary  coal-tar  pitch  of  similar  melting  points 

,  show  wide  differences  in  composition.  Determina- 
tions of  the  degree  of  softness  by  the  Richardson 

I  penetrometer  and  of  the  elasticity  of  different 
qualities  of  pitch  from  low-temperature  tar  and 
pitch  derived  from  ordinary  coal  tar  and   lignite 

|  tar  are  given.  These  properties  are  of  importance 
from  the  point  of  view  of  suitability  for  the  prepara- 

i  tion  of  asphalt.  In  the  case  of  material  derived 
from  coal,  pitch  from  low-temperature  tar  is  far 
inferior  to  a  similar  quality  of  ordinary  pitch  for 
this  purpose.  AVith  lignite  pitch  the  difference  is 
not  quite  so  great. — C.  I. 

Benzol;    Estimation    of   in    gas.       H.    Bahr. 

Chem.-Zeit.,  1922,  46,  S04. 

The  apparatus  consists  of  a  jacketed  metal  cylinder, 
the  inner  portion  of  which  is  filled  with  activated 
charcoal.  This  cylinder  is  placed  in  a  vertical 
position  and  the  gas  is  passed  into  it  after  passing 
through  a  gas  meter.  After  the  absorption  the 
cylinder  is  placed  horizontally,  the  jacket  partly 
filled  with  naphtha  of  b.p.  160°— 170°  C,  and  the 
latter  heated  to  boiling,  while  a  current  of  super- 
heated steam  is  passed  through  the  charcoal.  The 
benzol  is  condensed  and  the  vessel  finally  swept  out 
with  heated  gas.  Tests  with  this  apparatus  showed 
that  at  two  coke-oven  installations  some  20%  of  the 


benzol  was  escaping  absorption.  Part  of  this  loss, 
however,  is  inevitable,  the  charcoal  apparatus 
recording  as  benzol  fractions  of  very  low  boiling 
point  which  could  not  be  retained  by  wash-oil. 

—C.I. 

Coumarone-resin.     Hirano.     See  XIII. 

Patents. 

Tar-  Distillation  of .     Thermal  Industrial  and 

Chemical  (T.I.C.)  Research  Co.,  Ltd.,  J.  S. 
Morgan  and  D.  Rider.  E.P.  1S4,624,  7.6.  and 
20.12.21. 

The  difficulties  of  frothing  in  tar-stills  and  the  re- 
moval of  constituents  of  lower  boiling  point  from 
viscous  pitch  are  overcome  by  feeding  the  crude  pre- 
heated tar  under  the  surface  of  molten  metal  which 
is  kept  at  such  a  temperature  that  hard  pitch  is 
discharged.  The  vapours  from  the  still,  which  is 
kept  at  about  350°  C.,  are  passed  through  a  small 
fractionator,  kept  by  the  incoming  tar  at  about 
120°  C.  The  vapours  leaving  at  this  temperature 
consist  of  water  and  light  oils.  The  condensed 
liquid  from  the  fractionator  is  led  into  a  secondary 
still  also  containing  molten  metal  and  maintained 
at  about  230°  C.  This  removes  the  usual  tar  frac- 
tion boiling  at  170°— 230°  C.  The  residues  pass  on 
to  a  third  still  kept  at  270°  C.  where  the  fraction 
boiling  at  230°— 270°  C.  is  removed.  The  residue 
constitutes  another  well-marked  fraction  boiling 
between  270°  and  350°  C.  A  modification  of  the 
process  consists  in  keeping  the  first  still  at  275° — 
290°  C.  whereby  the  anthracene  remains  in  the 
pitch.  The  pitch  is  then  sprayed  in  a  tower  with 
superheated  steam  which  removes  the  anthracene. 

— T.  A.  S. 

Waste    sulphuric    acid    [from    refining    tar    oils]; 

Process  for  treatment  of [to  recover  resinous 

products'].  S.  Hilpert,  Assr.  to  Deutsch-Luxem- 
buraische  Bergwerks  und  Hiitten  A.-G.  U.S.P. 
1,427,386,  29.8.22.    Appl.,  9.7.21. 

The  waste  sulphuric  acid  obtained  in  the  purifica- 
tion of  light  coal-tar  oils  is  treated  with  an  aromatic 
hydrocarbon  to  recover  resinous  products. — T.  A.  S. 

Lubricating  oils;  Production  of  highly  viscous  

from  coal-tar  oils.  Chem.  Fabr.  Worms  A.-G. 
G.P.  352,726,  8.12.17.  Addn.  to  350,801  (J.,  1922, 
539  a). 

Acid  gases,  particularly  gaseous  hydrogen  chloride, 
are  used  as  condensing  media,  and  are  brought  into 
contact  with  the  oils  at  high  pressures  and  elevated 
temperature.  Anthracene  oil  is  saturated  with 
hydrogen  chloride  in  an  autoclave,  the  charge  being 
stirred  at  about  100°  C.  under  pressure  of  1 — 2  atm. 
until  a  sample  shows  the  desired  viscosity.  The 
viscosity  increases  from  4"52°  Engler  at  40°  C.  to 
12"5°  Engler  at  50°  C.  Sulphur  dioxide  may  be 
used  in  place  of  hydrogen  chloride. — A.  G. 

Thionaphthenesulphonic  acid;  Process  for  preparing 

.     Ges.  fur  Teerverwertung  m.b.H.,  and  R. 

Weissgerber.  G.P.  353,932,  22.2.21. 
The  sulphonation  of  thionaphthene  is  carried  out  in 
the  presence  of  at  least  sufficient  acetic  anhydride 
to  combine  with  the  water  present  in  the  sulphuric 
acid  and  that  produced  during  the  reaction.  The 
free  acid  is  a  difficultly  crystallisable,  syrupy  mass, 
easily  soluble  in  water.  The  potassium  salt  forms 
colourless  easily  soluble  lamina?.  The  acid  is  de- 
composed on  heating  with  dilute  sulphuric  acid  to 
140°  C.  into  thionaphthene  and  sulphuric  acid. 

— H.  C.  R. 

Purification  of  waste  liquid  [containing  hydro- 
carbons]. F.  W.  Wagner.  U.S.P.  1,428,618, 
12.9.22.     Appl.,  24.8.20. 

Hydrocarbon  compounds  are  removed  from  aqueous 


804  a 


Cl.  IV.— COLOURING  MATTERS  AND  DYES. 


[Oct.  31,  1922. 


solutions  by  passing  a  stream  of  a  reducing  gas 
through  and  intimately  mingling  it  with  the  solution 
in  presence  of  a  catalyst. — B.  M.  V. 

Hydrocarbon  oils.     G.P.  352..917.     See  IIa. 

Sidphonic  acids.     U.S.P.  1,428,197.     See  IIa. 

Carbonisation  of  pitch.     G.P.  354,213.     See  IIb. 

IV.— COLOURING  MATTERS  AND  DYES. 

Colour  of  the  azo-dyes  and  related   coloured  sub- 
stances; Calculation  of  the .  J.  Moir.   Chem. 

Soc.  Trans.,  1922,  121,  1555—1562. 

The  method  of  representing  coloured  substances  by 
hydroxylated  formula}  which  may  then  be  dissected 
into  a  fundamental  skeleton  or  parent  substance 
and  a  number  of  subsidiary  groups  or  linkages 
(Ohem.  Soc.  Trans.,  1921,  119,  1655),  has  been 
successfully  applied  to  the  simpler  azo-dyestuffs, 
and  numerical  values  have  been  found  for  the  sub- 
sidiary groups,  so  that,  for  example,  the  colour  ol 
ionised  benzene  azophenol  or  the  wave  length  of  the 
absorption  band  may  be  calculated  from  that  of 
ionised  phenol  as  parent  substance,  by  multiplying 
its  wave  length  (A  =  287)  successively  by  the  respec- 
tive numerical  factors  for  the  subsidiary  groups. 
From  the  values  for  the  hydroxy-eompounds  those 
for  the  aminoazo-  and  dimethylaniinoazo-com- 
pounds  can  be  calculated  by  using  the  factors  for  the 
ratios  NH„/OH  and  (CH3),N/OH,  viz.,  11  and  119 
for  the  lower  bands  and  1*18  and  127  for  the  higher 
bands  respectively.  By  introducing  other  inter- 
position factors  the  values  for  azomethine,  stil- 
bene,  and  higher  azo  dyestuffs  can  be  calculated. 
The  following  are  colour  factors  for  groups  inter- 
posed in  the  chain  :  — CH2—  092,  — NH—  1-09, 
— O—  10  and  P4,  — CHOH—  101,  — NOH—  1-20; 
as  second  linkage  to  two  rings  the  factor  for 
— CH2—  is  0-95,  — NH—  113,  and  — O—  102  and 
1"4.  The  naphthalene /benzene  factor  is  1*15,  and 
the  phenyl  factor  P135. — G.  F.  M. 

Cyanine  dyes.  V.      Virtual  tautomerism  of  the 

thiocyanines.  "VV.    H.    Mills    and    W.    T.    K. 

Braunholtz.  Chem.     Soc.     Trans.,     1922,     121, 
1489—1495. 

The  thiocyanines  produced  by  the  condensation  of 
5-methylbenzothiazole  ethiodide  with  1-methyl- 
benzothiazole  ethiodide  on  the  one  hand,  and 
1.5-dimethylbenzothiazole  ethiodide  with  benzo- 
thiazole  ethiodide  on  the  other  hand,  are  identical 
substances,  whereas  in  the  absence  of  any  intra- 
molecular change,  two  isomeric  thiocyanines  would 
have  been  expected,  differing  in  the  nitrogen  atoms 
to  which  the  acid  radicle  was  attached.  The  facts 
therefore  demonstrate  the  existence  of  virtual 
tautomerism  in  this  class  of  dyestuffs,  involving  the 
transference  of  the  acid  radicle  from  one  of  the 
two  nitrogen  atoms  to  the  other  with  a  correlated 
shift  in  the  conjugated  double  linkings  of  the  con- 
necting chain.  In  view  of  the  close  correspondence 
in  properties  between  the  various  classes  of  cyanine 
dyestuffs,  there  can  be  little  doubt  that  the  other 
classes  of  this  group,  the  cyanines,  carbocyanines 
and  their  isomerides,  are  capable  of  showing  the 
same  phenomenon. — G.  F.  M. 

Pyrylium  salts  of  anthocyanidin  type;  Syntliesis  of 

.    D.  D.  Pratt  and  R.  Robinson.    Chem.  Soc. 

Trans.,  1922,  121,  1577—1585. 

Debivatives  of  3-hydroxybenzopyrylium  salts 
related  to  the  naturally  occurring  anthocyanin 
plant  pigments  have  been  synthesised  by  condensa- 
tion of  o-hydroxyaldehydes  and  i.i-alkyloxy-  or 
o'-aryloxy-acetophenones.  Ihe  direct  condensation 
is  exemplified  by    the   preparation   of   7-hydroxy- 


3  ethoxy-2-phenylbenzopyryIium  chloride  by  passing 
hydrogen  chloride  into  a  glacial  acetic  acid*  solution 
of  /3-resoreylaldehyde  and  w-ethoxyacetophenone. 
It  forms  orange-red  needles  which  decompose  at 
210°  C,  and  gives  a  ferrk-hloride  in  the  usual  way 
crystallising  in  diamond-shaped  prisms,  m.p. 
170°  _  C.  3-Ethoxy-2-phenylbenzopyrylium  ferri- 
chloride  was,  on  the  other  hand,  obtained  by  two 
steps,  first  the  preparation  of  phenyl-2-hydroxy- 
/3-ethoxystyryl  ketone  from  salicylaldehyde  ana 
iu-ethoxyacetophenone,  and  secondly  the  conversion 
of  the  styryl  ketone  into  a  pyrylium  chloride  by 
means  of  hydrogen  chloride  in  dry  ethereal  solution. 
The  ferrichloride  crvstallises  in  bright  golden 
plates,  m.p.  121°  C— G.  F.  M. 

Naphthalene     and     its     derivatives;     Electrolytic 

reactions   of   .     ITI.     Electrolytic   oxidation 

of  a-naphthylamine  and  ar-tetrahydro-a-naphthyl- 
amine.  K.  Ono.  Mem.  Coll.  Sci.  Kyoto  Imp. 
Univ.,  1922,  5,  345—357. 

o-Naphthylamine  is  oxidised  electrolytically  in  a 
divided  cell  in  which  a  small  sheet  lead  cathode  is 
immersed  in  sulphuric  acid  (20%)  and  the  anode 
liquid  is  a  solution  of  a-naphthylamine  in  acetone 
and  dilute  sulphuric  acid.  Platinum,  graphite,  and 
lead  peroxide  respectively  may  be  used  as  anode 
materials,  the  last-named  giving  the  best  results. 
Under  these  conditions,  a-naphthylamine  is  con- 
verted into  a  mixture  of  Naphthylamine  Violet  and 
a-naphthoquinone.  Its  behaviour  thus  differs  from 
that  of  aniline  which,  at  a  platinum  electrode,  is 
transformed  solely  into  Aniline  Black,  but  the 
apparent  stability  of  the  latter  may  be  due  entirely 
tj  its  insolubility  in  the  anode  liquid.  The  current 
yield  diminishes  with  increasing  current  density 
but  attains  its  maximum  at  approximately  1  amp. 
per  100  sq.  cm.  Raising  the  temperature  of  the 
electrolyte  does  not  necessarily  favour  the  yiefld. 
A  suitable  concentration  of  sulphuric  acid  is  10 — 
30%,  the  best  results  being  obtained  with  a  10% 
solution.  Potassium  chromate,  chrome  alum, 
potassium  chlorate,  and  ferric  sulphate  act  effec- 
tively as  oxygen  carriers.  Under  closely  similar  con- 
ditions, ar-tetrahydro-a-naphthylamine  is  oxidised 
to  ar-tetrahydro-a-naphthoquinone.  Platinum,  lead 
peroxide,  and  graphite  may  be  used  as  anode 
material  and,  of  these,  lead  peroxide  gives  the  best 
results.  The  most  suitable  conditions  are  a  current 
density  of  about  1  amp.  per  100  sq.  cm.,  a  tempera- 
ture between  18°  and  23°  C,  and  a  concentration 
of  sulphuric  acid  between  10%  and  30%.  Chrome 
alum,  potassium  chromate,  potassium  chlorate,  and 
potassium  ferrocyanide  are  efficient  oxvgen  carriers. 

— H.  \V. 

Triphen ylpararosaniline  h  ydrochloride ;   Formation 

of -from  diphenylamine  and  chloral-ammonia. 

R,  Horiuchi.  Mem.  Coll.  Sci.  Kyoto,  1921,  5, 
1—7. 
The  small  yield  of  triphenylpararosaniline  hydro- 
chloride obtained  by  heating  diphenylamine  and 
chloral-ammonia  directly  to  130°  C.  is  greatly  in- 
creased by  maintaining  the  temperature  at  100°  C. 
for  some  time  prior  to  heating  to  130°  C.  The 
author  has  investigated  the  reaction  of  diphenyl- 
amine with  various  compounds  containing  the 
CClj  and  CHO  groups  respectively  and  concludes 
that  compounds  containing  the  former  group  are 
alone  concerned  in  the  formation  of  Diphenylamine 
Blue,  the  chlorine  atoms  being  replaced  by  the 
phenyl  group,  and  the  resulting  product  reacting 
with  part  of  the  hydrogen  chloride  produced. 

— J.  S.  G.  T. 

Carhamides   of  anthraquinone.     M.   Battegay  and 

J.  Bernhardt.    Chim.  et  Ind.,  1922,  8,  305—306. 
The     three     isomeric     dianthraquinonylcarbaniides 
show    a    gradation    in    properties    in    which    the 
a,6!'-isomeride     approaches     more     nearly     to     the 


Vol.  XLI.,  No.  20.] 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


805  a 


/3/?'-isomeride  than  to  the  aa'-isomeride.  The  two 
first-named  may  be  used  as  vat  dyes  by  preliminary 
reduction  with  alkaline  sodium  hydrosulphite  at 
30° — 40°  C,  but  under  similar  conditions  the 
aa'-isomeride  undergoes  hydrolysis  unless  the 
temperature  is  kept  below  18° — 20°  C,  and  then 
the  material  is  so  insoluble  as  to  render  it  useless 
as  a  dye.  If,  however,  two  hydroxy,  methoxy,  or 
benzoylamino  groups  are  introduced  in  para  posi- 
tions to  the  carbamide  group,  one  in  each  anthra- 
quinonyl  nucleus,  then  the  products  are  stable  in 
the  reducing  bath  and  may  be  used  as  dyes. — W.  G. 

Uri  thanes  of  anthraquinone.     M.  Battegay  and  J. 

Bernhardt.  Chim.  et  Ind.,  1922,  8,  307. 
The  urethane  group  exercises  a  greater  auxochrome 
effect  when  introduced  into  the  anthraquinone 
molecule  than  does  the  benzoylamino  group,  both  in 
the  a  and  the  /3  derivatives.  The  a-urethanes,  like 
the  aa'-carbamides,  on  reduction  in  alkaline  medium 
give  products  which  are  immediately  hydrolysed, 
and  this  is  not  checked  in  the  case  of  the  urethanes 
by  the  introduction  of  a  nitro,  hydroxy,  methoxy, 
or  benzoylamino  group  into  the  para  position  prior 
to  the  reduction. — W.  G. 

Seduction   of  colouring   matters  by  light.      Ihran. 
See  XXI. 

Brominated    isocyanines.     Moudgill.     See  XXI. 

Patents. 

Anthraquinone    dyestuffs:    Manufacture,    of    . 

F.  W.  Atack  and  C.  W.  Soutar.     E.P.  185.137. 

23.2.21. 
The  dull  shade  of  halogenated  N-dihydro-1.2.2'.l'- 
anthraquinoneazine  dyestuffs,  which  are  obtained 
by  condensation  of  halogenated  aminoanthra- 
quinones  in  the  presence  of  a  copper  salt,  is  due  to 
the  presence  of  traces  of  impurities  which  are 
rendered  soluble  and  therefore  capable  of  easy  re- 
moval, by  halogenation  of  the  crude  dyestuff.  For 
this  purpose,  the  crude  dyestuff  is  treated  in  sus- 
pension or  solution  in  an  inert  liquid  with  chlorine 
or  bromine  or  substances  which  produce  these  in 
situ.  When  purified  by  this  process,  3.3'-dibromo- 
N-dihydro-1.2.2'.l'-anthraquinoneazine  yields  a  dye- 
stuff  having  a  redder  and  purer  blue  shade. 

—A.  J.  H. 


Acridine  series;  Compound  of  the 


and  a  process 


of  making  the  same.  Acridinium  compounds  and 
a  process  of  makinii  the  same.  L.  Benda.  Assr. 
to  L.  Cassella  und  Co.  G.m.b.H.  U.S. P.  (a) 
1,427.431,  and  (b)  1,427,432,  29.S.22.  Appl., 
14.7.21. 

(a)  3.6-DTAMiNO-10-ALKYUCRiDiNirii  compounds  are 
treated  with  formaldehyde  in  the  presence  of  dilute 
mineral  acids  at  the  ordinary  temperature.  (b) 
Readily-soluble  salts  of  3.6-diamino-10-methylacri- 
dinium  are  treated  with  tannin  in  the  presence  of 
acid-binding  agents,  yielding  a  tasteless,  bright 
orange-yellow  powder  suitable  for  use  in  the  manu- 
facture of  lake  colours. — L.  A.  C. 

Itatin-a-arylides ;   Process  for   the    preparation   of 

compounds    of   with    sulphur   dioxide.       C. 

Stephan.  U.S.P.  1,427,863,  5.9.22.  Appl.,  24.8.21. 
The  acid  mixtures  produced  by  interaction  of 
isatin-a-arylides  and  sulphuric  acid  are  treated  with 
basic  sulphites  in  such  a  manner  that  the  sulphuric 
acid  is  neutralised  rapidly  and  completely  before 
decomposition  of  the  sulphites  can  take  place. 

— L.  A.  C. 

[Triphe.nylmcthane~\  dyestuffs;  Manufacture  of 
chlorinated  products  of  toluene  and there- 
from. J.  Schmidlin,  Assr.  to  L.  Cassella  und  Co. 
U.S.P.  1,428,984,  12.9.22.     Appl.,  12.3.15. 

See  E.P.  13,970  of  1915;  J.,  1915,  1243. 


V.-FIBfiES;  TEXTILES;  CELLULOSE; 
PAPEB. 

Pines  and  spruces;  Investigations  on  Swedish  . 

H.  E.  Wahlberg.  Svensk  Pappers-Tidning, 
1922.  Papierfabr.,  1922,  20,  1097—1100,  1133— 
1137,  1178—1181. 

Numbered  discs  and  sectors  were  cut  from  test  stems 
of  spruce  and  pine  and  subjected  to  a  close  sys- 
tematic examination.  In  the  spruce  the  limits 
between  heart  and  sapwood  are  not  very  clearly 
defined  but  could  be  distinguished  after  staining 
with  perosmic  acid.  The  heart  wood  does  not 
extend  equally  in  all  radial  directions,  but  the 
differences  do  not  cover  more  than  one  or  two 
annual  rings.  For  the  estimation  of  moisture  the 
wood  was  exposed  in  vacuo  for  72  hrs.  at  the  ordi- 
nary temperature  over  phosphorus  pentoxide.  In 
a  sector  which  was  closely  studied  the  specific 
gravity  of  the  whole  sector,  dried  in  vacuo,  was 
0345;  that  of  the  spring  wood  was  0'307  (average), 
and  that  of  the  autumn  wood  0-601.  A  cold,  wet 
season  apparently  tends  to  give  rise  to  wood  of 
lower  density.  The  shrinkage  in  volume  of  the 
freshly  felled  wood  in  drying  to  the  air-dry  con- 
dition ranged  from  65  to  11"6%.  The  ash  con- 
stituents were  slightly  concentrated  in  the  outer 
and  higher  portions  of  the  stem.  Estimations  of  fat 
and  resin  vary  greatly  according  to  the  solvent  em- 
ployed ;  the  determinations  were  made  by  extracting 
first  with  benzene  for  8  hrs.  and  then  with  alcohol  for 
the  same  length  of  time.  Storage  for  80  days  made 
no  difference  in  the  resin  values  as  compared  with 
storage  for  10  days;  any  modification  of  the  resin 
after  felling  must  therefore  have  been  complete  in 
the  first  10  days.  Drying  at  105°  C.  considerably 
decreased  the  amount  of  benzene  extract.  The 
distribution  of  resin  in  the  stem  was  irregular,  but 
the  general  tendency  was  for  the  resin  to  increase 
from  the  outside  towards  the  heart;  its  distribution 
was  more  regular  near  the  apex  of  the  stem  where 
no  secondary  processes  had  taken  place.  Cellulose 
was  determined  by  digestion  for  18  hrs.  with  bi- 
sulphite solution  at  125°  C,  followed  by  repeated 
treatments  with  bromine.  The  percentage  of 
cellulose  did  not  show  large  variations,  but  small 
variations  were  observed  which  were  in  the  reverse 
direction  to  the  variations  in  the  resin-content. 

—J.  F.  B. 

^Yood;    Cellulose    value    of    pulp    .      H.     E. 

Wahlberg.    Papierfabr  ,  1922,  20,  1216—1218. 

The  percentage  of  cellulose  in  wood,  calculated  on 
the  resin-free  dry  weight,  shows  only  minor  varia- 
tions round  about  an  average  of  49 — 51%.  The 
yield  of  cellulose  is  lowest  at  the  centre  of  the  stem 
and  this  is  due  either  to  secondary'  changes  which 
render  the  fat  and  resin  insoluble  in  the  extraction 
media  or  to  the  presence  of  increased  quantities  of 
other  non-cellulose  compounds,  such  as  lignin. 
The  apparent  specific  gravity  of  the  wood,  however. 
is  subject  to  large  variations,  and  since  pulp-wood 
is  always  dealt  with  in  terms  of  volume  rather  than 
weight,  the  cellulose  value  at  the  pulp  mill  is  sub- 
ject to  corresponding  variations.  The  cellulose 
value,  kg.  of  pulp  per  cub.  m.  of  solid  wood,  may 
be  expressed  by  the  formula  m  =  K(100— h)S,  where 
K  is  practically  a  constant  depending  on  the 
method  of  digestion,  S  is  the  apparent  specific 
gravity,  when  the  volume  is  measured  on  the  moist 
wood  and  the  weight  is  the  dry  weight,  and  h  is 
the  percentage  of  resin.  In  the  method  employed 
by  the  author  for  the  determination  of  cellulose 
(digestion  with  bisulphite  at  120°  C.  and  repeated 
hromination)  the  value  of  K  could  be  taken  as  5. 
The  area  of  the  disc  of  wood  was  determined  by 
tracing  its  outline  on  a  sheet  of  paper  of  known 
area-weight  and  weighing  the  paper  template.     In 


806  a 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


[Oct.  31,  1922. 


calculating  the  cellulose  value  of  the  whole  stem 
by  the  above  formula  the  stem  was  divided  into 
four  equal  lengths  and  a  sample  disc  was  cut  from 
the  middle  of  each,  the  area  of  the  discs  being 
taken  to  represent  the  quantitative  value  of  the 
portion  of  the  stem  from  which  it  was  cut. 
Examined  in  this  way,  two  stems  of  spruce,  grown 
under  equally  favourable  conditions,  gave  cellulose 
values  of  125  and  263  respectively,  and  a  stem  of 
pine  grown  on  poor  soil  showed  a  cellulose  value  of 
220  kg.  per  solid  cubic  metre.  Hence  it  follows  that 
different  trees  of  the  same  origin  have  very  dif- 
ferent values  for  the  pulp  maker  owing  to  dif- 
ferences in  the  specific  gravity  of  the  wood,  ranging 
from  0-348  to  0551.— J.  F.  B. 

Cellulose;    Viscosity    of   ■    in    cuprammonium 

hydroxide  solution.  I.  Determination  of  the 
viscosity.  R.  A.  Joyner.  Chem.  Soc.  Trans., 
1922,  121,  1511—1525. 
Improvements  have  been  made  in  the  falling-sphere 
viscosimeter  method  of  Gibson,  Spencer,  and 
McCall  (J.,  1920,  541a,  558  a)  for  determining  the 
viscosities  of  cuprammonium  solutions  of  cellulose. 
A  different  method  for  the  preparation  of  the 
Schweitzer  reagent  was  used,  the  solution  being 
made  by  bubbling  air  through  a  mixture  of  copper 
turnings  in  strong  ammonia,  with  the  addition 
of  about  1  g.  of  sucrose  per  litre  to  hasten  the  dis- 
solution of  the  copper.  Solutions  containing  more 
than  30  g.  of  copper  per  litre  can  be  obtained,  and  by 
determining  the  copper  and  ammonia  in  the  usual 
way  solutions  of  any  desired  strength  can  be  prepared 
by  suitable  dilution.  A  modification  of  the  method 
of  preparing  the  cellulose  solutions  and  filling  the 
viscosimeter  tube  was  developed,  in  order  to 
eliminate  errors  due  to  oxidation  and  to  the 
presence  of  air  bubbles  in  the  viscous  solutions. 
The  cotton  was  packed  in  a  glass  tube,  5  cm.  wide 
and  10  cm.  long,  drawn  out  at  each  end  to  a  narrow 
tube  0"7  cm.  wide,  and  connected  below  with  rubber 
tubing  to  the  bottom  of  the  viscosimeter  tube  on  the 
one  hand,  and  above  through  suitable  taps  to  a 
reservoir  containing  the  reagent,  and  sources  of 
vacuum  and  pressure.  The  tube  was  evacuated,  the 
copper  reagent  admitted,  any  residual  air  removed 
by  further  suction,  and  the  tube  was  finally  closed 
and  shaken  to  dissolve  the  cellulose.  Finally  by 
means  of  slight  pressure  (air  is  quite  suitable  pro- 
vided the  top  Livers  of  the  solution  are  rejected) 
the  solution  was  transferred  to  the  viscosimeter  tube. 
An  increase  of  about  12%  on  Gibson,  Spencer,  and 
McCall's  figures  was  observed  by  the  new  method. 
Experiments  were  undertaken  to  determine  the 
effect  of  the  concentration  of  copper  and  ammonia, 
and  small  percentages  of  sucrose  or  salts  on  the 
viscosities.  The  latter  had  no  appreciable  effect. 
The  best  copper  concentration  for  general  use  is 
13  g.  per  litre  with  20  g.  of  cellulose  and  200  g.  of 
ammonia  per  litre.  With  low  viscosity  cotton  a 
4%  solution  of  cellulose  is  necessary;  this  is  pre- 
pared with  a  reagent  containing  20  g.  of  copper 
and  200  g.  NET,  per  litre,  and  the  viscosity  for  a 
2%  solution  is  calculated  by  the  Arrhenius  formula. 

— G.  F.  M. 

Rubber  latex  in  paper  making.     F.  Kaye.     India- 
rubber  J.,  1922,  64,  435—442. 

Rubber  latex  is  introduced  during  the  beating 
process,  a  coagulant  such  as  magnesium  sulphate, 
acetic  acid,  or  alum  being  added  if  necessary.  The 
process  of  hydration  involved  in  beating  is 
accelerated  even  by  small  quantities  of  latex,  while 
the  tensile  strength  and  bursting  strain  of  the 
paper  are  increased  in  a  marked  degree.  The 
rubber,  which  may  conveniently  amount  to  approxi- 
mately 1  %  of  the  paper,  is  as  durable  and  resistant 
to  spontaneous  chemical  change  as  the  paper  itself. 

— D.  F.  T. 


Paper;  Determination  of  mechanical  wood  pulp  in 

printing   .      H.   Krull   and   B.    Mandelkow. 

Papierfabr.,  1922,  20,  1213—1216. 

The  determination  of  the  phloroglucinol  absorption 
value,  carried  out  exactly  according  to  the  method 
of  Cross,  Bevan,  and  Briggs  (J.,  1907,  942),  affords 
a  convenient  and  accurate  measure  of  the  per- 
centage of  mechanical  pulp  in  "  news  "  and  similar 
printing  papers.  In  calculating  the  results,  how- 
ever, the  original  factors  8  for  mechanical  wood  and 
1  for  sulphite  pulp  cannot  be  accepted  as  sufficiently 
accurate.  The  true  average  values  for  these 
factors  are  7'84  for  mechanical  and  1"34  for  un- 
bleached strong  sulphite  pulps.  The  error  iuvolved 
by  using  the  original  factors  is  negligible  for  papers 
containing  between  65  and  75%  of  mechanical  wood 
pulp,  but  becomes  very  considerable  in  the  case  of 
papers  containing  low  percentages  of  that  con- 
stituent. The  corrected  formula  for  calculating 
the  result,  expressed  on  the  dry  substance,  is 
H  =  100(P— 1-34) /(7;84— 134),  where  H  is  the  per- 
centage of  mechanical  pulp  and  P  is  the  phloro- 
glucinol absorption  value  of  the  paper. — J.  F.  B. 

Patents. 

Viscose;    Manufacture    and    treatment    of    . 

Plauson's  (Parent  Co.),  Ltd.     From  H.  Plauson. 
E.P.  184,533,  11.4.21. 

Monosoditjm-  (or  disodium-)viseose  is  made  from 
highly  dispersed  cellulose  (cf.  E.P.  183,908;  J.,  1922, 
748  a);  e.g.,  monosodium-viscose  is  made  by  treat- 
ing a  paste  containing  32  pts.  of  cotton,  8  pts.  of 
caustic  soda,  and  600 — 800  pts.  of  water  in  a  colloid 
mill  for  i — 1  hr.,  and  then  adding  7 — 8  pts.  of  carbon 
bisulphide ;  after  treatment  for  a  further  10  niins. 
in  the  mill  the  reaction  is  complete.  The  viscose 
solution  thus  obtained  may  be  filtered,  and,  if  re- 
quired for  the  manufacture  of  artificial  silk,  con- 
centrated in  vacuo  at  temperatures  not  above 
40°  C.  to  the  required  strength,  or  the  viscose  may 
be  coagulated  by  heating  it  at  80°— 100°  C,  in 
which  case  resin,  rubber,  etc.  may  be  added  during 
the  dispersion  treatment  to  modify  the  properties 
of  the  final  product.  By  adding  to  the  viscose  solu- 
tion a  non-injurious  electrolyte,  e.g.,  salt,  viscose  is 
precipitated  and  after  washing  and  drying  remains 
as  a  fine  water-soluble  powder,  which,  however, 
gradually  changes  into  an  irreversible  colloid 
unless  kept  in  vacuo,  or  in  an  atmosphere  of  an 
inert  gas  such  as  nitrogen  or  hydrogen.  This 
powder  may  be  used  for  the  preparation  of  compact 
masses  by  heating  it  in  moulds  at  120° — 150°  C. 
under  200 — 500  atm.  pressure.  The  advantages 
claimed  for  this  process  are  that  theoretical  quanti- 
ties of  alkali  and  carbon  bisulphide  are  used,  the 
whole  operation  is  rapidly  carried  out,  and  the 
viscose  produced  requires  very  little  "ripening" 
even  when  used  for  the  manufacture  of  artificial  silk. 

— D.  J.  N. 

Hydra-oxy-cellulose,  a  xanthogenated  compound 
obtained  therefrom  and  a  solid  compact  material 
obtained  by  coagulation  of  the  latter;  Manufac- 
ture of  - .    C.  C.  L.  G.  Budde.    E.P.  184,610, 

28.5.21. 
By  treating  cellulosic  material  containing  one  half 
to  twice  its  weight  of  water  first  with  chlorine  gas 
in  sufficient  excess  to  react  with  the  non-eellulofe 
matter  and  convert  the  cellulose  into  oxytellulose, 
and  then  with  strong  hydrochloric  acid,  a  hydra- 
oxy-cellulose  is  obtained.  This  substance  gives  a 
xanthate,  which  readily  mixes  with  water — a  solu- 
tion containing  20%  of  hydra-oxy-cellulose  "ill 
spread  itself  evenly  and  rapidly  over  a  flat  surface 
— and  can  be  used  for  the  manufacture  of  artificial 
silk,  paper  size,  leather  boards,  etc.  The  pn>ccss 
may  be  conducted,  for  example,  as  follows:  'Wood 
pulp  (100  pts.)  reduced  to  the  size  of  email  crumbs 


Vol.  XLI.,  No.  20.] 


Cl.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


807  a 


with  an  equal  weight  of  water;  is  exposed  for  some 
hours  to  the  action  of  chlorine  gas  until  about 
10  pts.  by  weight  of  chlorine  has  been  absorbed. 
Materials  such  as  oit  straw  require  30 — 50%  of 
chlorine  gas.  The  oxycellulose  thus  obtained  is  air- 
dried  to  concentrate  the  hydrochloric  acid  (a  by- 
product in  the  chlorination  process)  and  convert 
the  oxycellulose  into  hydra-oxy-cellulose.  The 
resulting  brittle  product  is  transferred  to  a  mixing 
machine  with  275  pts.  of  an  18%  solution  of  caustic 
soda,  and,  after  mixing  for  about  2  hrs.,  40  pts. 
of  carbon  bisulphide  is  added :  the  reaction  is 
allowed  to  proceed  for  about  4  hrs.,  with  cooling  if 
necessary.  The  solution  obtained  may  be  used  for 
all  purposes  for  which  viscose  is  used,  but  is  par- 
ticularly suitable  for  the  manufacture  of  compact 
solid  bodies,  e.g.,  a  16%  solution  (16%  hydra-oxy- 
cellulose)  with  addition  of  such  fillers  as  zinc  oxide, 
clay,  starchy  matter,  paper  pulp,  esparto  resin, 
waxes,  fats,  resins,  glycerin,  dyes,  etc.,  is  poured 
into  moulds,  and,  when  free  from  air  bubbles, 
heated  to  40°  C.  for  about  12  hrs.  when  a  homo- 
geneous compact  mass  is  obtained.  This  is  dried, 
either  direct  or  after  washing  in  a  current  of  water 
at  50°  C,  and  if  a  waterproof  product  is  required, 
heated  at  or  above  100°  C.  Imitation  leather  may 
be  made  by  mixing  50  pts.  of  zinc  oxide  and  50  pts. 
of  resin  oil  with  the  xanthate  derived  from  100  pts. 
of  hydra-oxy-cellulose,  and  impregnating  the  pro- 
duct with  glycerin.— D.  J.  N. 

Cellulose    derivatives    [acetate];    Manufacture    of 
solutions,   compositions,  preparations  or  articles 

made   with .     H.    Dreyfus.     E.P.    184,671, 

20.7.21. 

Cyclobutanone  (b.p.  99° — 101°  C),  either  alone  or 
in  admixture  with  other  solvents,  such  as  methyl 
or  ethyl  alcohol,  acetone,  methyl  acetate,  etc.,  is 
used  as  a  solvent  for  cellulose  acetates  in  the  manu- 
facture of  varnishes,  plastic  masses,  and  the  like. 
Cellulose  acetate  varnish,  for  example,  may  be  made 
by  dissolving  100  pts.  of  cellulose  acetate  in  1000 
pts.  of  cyclobutanone  or  in  100 — 500  pts.  of  cyclo- 
butanone and  900 — 500  pts.  of  methyl  acetate  or 
acetone;  a  plastic  mass  may  be  made  by  dissolving 
100  pts.  of  cellulose  acetate  and  12 — 15  pts.  of 
triphenyl  phosphate  in  50  pts.  of  cyclobutanone  and 
100  pts.  of  methyl  acetate,  acetone,  or  alcohol. 

— D.  J.  N. 


Spun,  material  resembling  wool,  cotton,  or  chappe; 

Process  for  producing from  viscose  solutions. 

P.  H.  Minck,  Assr.  to  The  Chemical  Foundation, 
Inc.  U.S. P.  1,42S,246,  5.9.22.  Appl.,  16.5.19. 
Cellulose  material  is  treated  with  a  solution  of  a 
caustic  alkali  sufficient  to  produce  incomplete 
hydration  without  an  excess  of  water,  and  is  then 
treated  with  carbon  bisulphide  and  the  cellulose 
xanthate  thereby  formed  is  dissolved  in  a  3—5% 
solution  of  caustic  alkali  and  afterwards  spun  in  a 
bath  containing  a  mineral  acid. — A.  J.  H. 

Cellulose  esters  and  ethers;  Composition  and  film 

containing  mixtures  of .    L.  J.  Malone,  Assr. 

to  Eastman  Kodak  Co.    U.S. P.  1,429,153,  12.9.22. 
Appl.,   7.1.22. 
The  composition  consists  of  1  pt.  of  a  mixture  of  a 
cellulose  ester  and  a  cellulose  ether  dissolved  in  not 
more  than  6  pts.  of  a  liquid  containing  pyridine. 

■ — A.  J.  H. 

Cellulose-ether  composition.  P.  C.  Seel,  Assr.  to 
Eastman  Kodak  Co.  U.S.P.  1,429,169,  12.9.22. 
Appl.,  5.1.22. 

The  composition  contains  a  cellulose  ether  and  di- 

chloropropane. — A.  J.  H. 


Cellulose  ether  solvent  and  composition.  S.  J. 
Carroll,  Assr.  to  Eastman  Kodak  Co.  U.S.P. 
1,429,188,  12.9.22.     Appl.,  5.4.21. 

A  viscous  composition  suitable  for  producing  films 
consists  of  a  solution  of  an  alkyl  ether  of  cellulose 
in  a  mixed  solvent  containing  90  to  40  pts.  of 
ethylene  chloride  and  10  to  60  pts.  by  weight  of  a 
lower  monohydric  aliphatic  alcohol. — A.  J.  H. 

Artificial  sill;  filaments;  Process  for  the  manufac- 
ture of  fine  .     Vereinigte   Glanzstoff-Fabrik 

A.-G.     G.P.  308,427,  7.4.18. 

Regulated  quantities  of  viscose  solution  are 
squirted  into  a  coagulating  bath  under  conditions 
(low  temperature)  such  that  the  coarse  filaments  at 
first  formed  are  incompletely  coagulated  and  are- 
then  stretched  to  form  very  fine  filaments. 

—A.  J.  H. 

Cellulose  threads;  Method  for  quickly  drying  freshly- 
precipitated  ■ .     Vereinigte  Glanzstoff-Fabrik 

A.-G.     G.P.  312,393,  27.11.18. 

The  freshly  precipitated  cellulose  threads  are  sub- 
jected to  a  suitable  counter  current  of  air,  or  other 
gas  inert  towards  cellulose,  at  100°— 130°  C.  The 
threads  do  not  suffer  a  loss  of  strength  if  they  have 
been  well  washed  and  if  the  current  of  air  is 
correctly  adjusted  to  have  a  suitable  thermal 
capacity. — A.  J.  H. 

Cellulose  xanthate  [viscose]  solutions;  Preparation- 

of  suitable  for  the  manufacture  of  threads. 

R.  Linkmeyer.     G.P.  337,672,  31.5.19. 

In  the  preparation  of  viscose  solutions,  the  crude- 
brown  cellulose  pulp  is  boiled  with  acids  before  con- 
version into  xanthate.  Thread  prepared  from  the 
resulting  viscose  solutions  possesses  a  high  break- 
ing strain  and  can  be  satisfactorily  used  as  a 
substitute  for  cotton.  The  breaking  strain  and. 
lustre  of  the  thread  increase  with  the  concentra- 
tion of  the  viscose  solution  employed. — A.  J.  H. 

Fibres;  Process  for  making  artificial  ,  such  as- 
artificial  silk,  from  cellulose  ethers.  Farbenfabr. 
vorm.  F.  Bayer  und  Co.  G.P.  (a)  352,191, 
16.1.19,  and  (b)  352,192,  4.2.19. 

(a)  Saline  solutions  are  used  as  a  precipitating 
bath.  Examples  are  calcium  chloride  solution  of 
sp.  gr.  1"3  at  15°  C.  or  crystallised  calcium  chloride 
(CaCl,,6H20)  in  the  molten  state  at  70°  C,  or  zinc 
chloride  solution  of  sp.  gr.  1"85  at  40°  C.  (b) 
Instead  of  saline  solutions,  substances  may  be  used 
which  are  capable  of  taking  up  the  solvent  of,  but 
do  not  act  as  a  solvent  or  swelling  agent  for,  the 
cellulose  ether.  For  example,  a  75%  aqueous  solu- 
tion of  urea  may  be  used  as  the  precipitating 
liquid.— H.  C.  R. 

Artificial  fibres;  Manufacture  of from  solution » 

of  cellulose  in,  concentrated  salt  solutions.  F. 
Beck.  G.P.  353,662,  20.7.20. 
The  cellulose  threads  are  coagulated  by  means  of 
concentrated  solutions  containing  the  same  6alts 
as  are  used  for  preparing  the  cellulose  solution.  By 
this  process  the  recovery  of  the  salts  is  possible. 

—A.  J.  H. 

Fibre  liberation;  Process  of  — — .     G.  A.  Richter, 
Assr.   to   Brown  Co.     U.S.P.    1,427,125,   29.8.22. 
Appl.,  21.2.21. 
Cellulosic  material  is  digested  with  a  sulphurous 
acid  solution  of  a  soluble  sulphate. — D.  J.  N. 

Fibres  and  cellulose;  Process  for  obtaining  textile, 

from,  plants  containing  much  bast  and  little 

wood,  such  as  flax  straw,  sisal,  and  jute.  G. 
Odrich.     G.P.  327,912,  22.1.18. 

The  raw  material  is  first  treated  with  hot  water  in 


BOS  A 


Cl.  VI.— BLEACHING  ;   DYKING;   PRINTING;    FINISHING. 


[Oct.  31,  1922. 


the  usual  way  and  then  with  a  40 — 50%  solution  of 
sodium,  potassium,  magnesium,  or  magnesium- 
calcium  bisulphite  containing  free  acid  at  such  a 
temperature  that  the  bast  fibres  are  not  damaged. 
During  the  treatment  and  before  the  highest  tem- 
perature is  reached  the  lye  becomes  only  weakly 
acid  owing  to  the  loss  of  sulphur  dioxide  from  the 
boiling  solution. — H.  C.  It. 

Fibres;    Process    for    the    recovery    of    from 

mixtures.    R.  O.  Herzog.    G.P.  350,638,  15.5.20. 

The  disintegrated  material  is  treated  with  a 
mixture  of  liquids  such  that  each  liquid  wets  one 
of  the  kinds  of  fibre.  For  example,  a  mixture  of 
animal  wool  and  vegetable  fibre  (cotton  wool)  is 
shaken  with  a  mixture  of  water  and  an  immiscible 
liquid,  such  as  paraffin,  carbon  tetrachloride,  or 
benzene.  The  animal  wool  collects  at  the  dividing 
line  between  the  two  liquids  and  the  cotton  wool 
is  taken  up  by  the  aqueous  layer. — H.  C.  R. 

Hair;   Process  for  improving  the  textile  qualities 

of  human  and  animal  .     P.   Krais  and  K. 

Biltz.  G.P.  352,961,  28.7.20. 
The  hair  is  treated  first  with  dilute  alkali 
hydroxides,  then  with  soap  or  organic  solvents  or 
with  a  mixture  of  soap  solution  and  organic 
solvents.  It  is  rinsed  and  then  treated  with  solu- 
tions of  calcium  or  magnesium  chlorides  or  their 
mixtures,  the  excess  of  solution  removed,  and  the 
hair  dried  at  the  ordinary  temperature  or  slightly 
above  it.  Hair  so  treated  is  soft,  flexible,  and 
elastic  and  can  be  spun,  without  further  treatment, 
either  alone  or  mixed  with  wool,  giving  a  round 
and  uniform  yarn. — H.  C.  R. 

Felting;    Preparatory  treatment  of  hair  for  . 

Soc.  du  Feutre.     G.P.  353,947,  29.12.20.     Couv., 

12.8.20. 
Hair  is  treated  with  weak  aqueous  or  feebly  alkaline 
solutions  containing  the  sulphide  of  an  alkali  or 
alkaline-earth  metal,  so  that  the  so-called  "  ripen- 
ing" of  the  hair  is  unnecessary  and  the  treated 
hair  can  be  directly  employed  in  the  operation  of 
felting.  Skins  which  have  been  treated  with  the 
hair  on,  may  be  tanned  in  the  usual  manner  after 
the  removal  of  the  hair. — A.  J.  H. 

Typha  and  rush  fibres;  Method  for  improving . 

J.  Elster.    G.P.  355,023,  18.5.18. 
Typha    and    rush    fibres    are    treated   with    strong 
caustic  soda  or  with  caustic  potash  or  sodium  sul- 
phide and  the  like.     The  lower  the  temperature  of 
treatment  the  more  dilute  may  be  the  liquor  used. 

—A.  J.   H. 

Cork  substitute  and  process  of  manufacture.  E.  E. 
Graham.  U.S.P.  1,427,682,  29.8.22.  Appl.,  14.1.20. 
Wood  is  impregnated  with  an  aqueous  solution  of 
sodium  bicarbonate,  and  then  with  wood-ash  lye, 
the  temperature  during  both  operations  being 
maintained  at  180°  F.  (82°  C.).— D.  J.  N. 

Paper;  Process  for  the  chemical  and  mechanical 
disintegration  of  raw  materials  used  in  the  manu- 
facture of .  O.  Herdey.  G.P.  352,693,  9.10.20. 

A  kotary  digester,  a  mixer,  and  a  mechanical  dis- 
integrator, to  which  is  attached  a  grading  arrange- 
ment, are  arranged  so  that  after  leaving  the 
digester,  the  pulp  is  fed  into  the  rotary  mixer  from 
which  it  passes  into  the  disintegrator.  The  dis- 
integration and  grading  of  the  fibrous  material, 
usually  carried  out  in  separate  stages,  are  thus 
effected  in  one  process. — A.  J.  H. 

Paper;  Process  for  loading  in  ihe  Hollander. 

K.  Joost.     G.P.  354,544,  23.12.20. 

During  the  rosin-sizing  of  paper  pulp  in  the  hol- 


lander, sulphates  present  are  precipitated  as 
calcium  sulphate  on  the  fibres  by  means  of  calcium 
chloride.  Suitable  additions  of  soluble  compounds 
to  the  pulp  may  also  be  made,  so  that  an  increased 
amount  of  sulphate  is  precipitated  and  the  paper 
pulp  thereby  loaded  to  a  greater  extent. — A.  J.  H. 

Waste  gases  from  chemical  processes,  especially 
from  cellulose  manufacture ;  Method  of  disposing 

of  by    burning.      Zellstoff-fabrik    Waldhof 

G.P.  353,832,   21.5.19.     Addn.    to  304,999  (E.P. 
115,350;  J.,  1918,  367  a). 

Only  a  part  of  the  waste  gases  is  led  with  the 
primary  air  into  gas-producers  or  similar  plant  and 
burnt  there,  the  remainder  being  used  with  the 
secondary  air  for  the  combustion  of  the  producer 
gas.— H.  C.  R. 

Carrotting  fur  and  hair.  Soc.  du  Feutre.  E.P. 
167,748,  7.7.21.     Conv.,  12.8.20. 

See  G.P.  353,947  of  1920;  preceding. 

Cellulose   ethers;  Process  for  the  manufacture  of 

moulded     articles    from    .       G.     Leysieffer. 

U.S.P.  1,427,690,  29.8.22.     Appl.,  7.1.21. 

See  E.P.  156,752  of  1921;  J.,  1921,  732  a. 

Indurated  materials;  Methods  of  manufacturing 
from  woven  fabrics.  British  Thomson- 
Houston  Co.,  Ltd.  From  General  Electric  Co. 
E.P.  185,662,  15.10.21. 

Aluminium  sulphate.     G.P.  352,289.     See  VII. 


VI.— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Bleaching,   past,   present  and  future.     G.   Braam. 
Z.  angevv.  Chem.,  1922,  35,  501—502. 

After  reviewing  past  and  present  methods  of 
bleaching  the  author  describes  a  new  apparatus  for 
conveniently  preparing  an  aqueous  solution  of 
chlorine  when  and  where  required.  The  apparatus 
is  made  of  earthenware  and  consists  essentially  of 
an  upper  and  lower  chamber,  the  upper  part  of  the 
upper  chamber  communicating  with  the  bottom  of 
the  lower  chamber,  so  that  the  water  which 
initially  fills  the  lower  chamber  is  displaced  into  the 
upper  chamber  by  introducing  chlorine  from  a  gas 
cylinder  into  the  upper  part  of  the  lower  chamber. 
The  apparatus  is  provided  with  a  graduated  level 
gauge  so  that  the  amounts  of  water  and  chlorine 
respectively  can  be  directly  read  off.  After 
charging  the  apparatus  in  the  manner  described, 
the  various  cocks  are  closed  and  solution  is  rapidly 
effected  by  means  of  a  small  vulcanite  propeller  in 
the  bottom  of  the  apparatus  which  whirls  the  water 
on  to  the  walls  of  the  lower  chamber,  and  as  the 
gas  is  absorbed  the  water  displaced  into  the  upper 
container  gradually  flows  back  into  the  lower  one, 
and  the  solution  can  be  run  off  as  required. 

— G.  F.  M. 

Bleaching  of  cotton   with  acid  and  alkaline  liquors. 

E.  Ristenpart.  Textilber.,  1922,  3,  363—364. 
A  critical  investigation  of  the  bleaching  process 
described  in  G.P.  352,845  (J.,  1922,  666a)  in  which 
fibrous  cellulose  material  is  treated  with  acid  and 
then  with  alkaline  bleach  liquors.  When  fabric- 
which  had  been  treated  in  an  acid  bleach  liquor  of 
1°  B.  (sp.  gr.  TOO")  containing  2'5  c.c.  of  sul- 
phuric acid  per  500  c.c,  was  washed  and  then 
further  treated  in  a  similar  but  alkaline  bleach 
liquor  containing  1  c.c.  of  caustic  soda  of  32°  B. 
(sp.  gr.  T285),  it  gained  in  strength  and  whiteness. 
When  these  bleaching  treatments  were  reversed,  the 
samples    of   fabric   were   inferior    in  strength   and 


Vol.  XIX,  Xo.  20.]      Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS.  809  A 


whiteness  to  that  which  had  received  the  acid- 
alkaline  bleach.  Fabric,  after  an  acid-alkaline 
bleach  in  liquors  containing  I  g.  of  available  Cl  per 
1.  was  equal  in  appearance  to  but  6tronger  than 
fabric  which  had  been  bleached  in  a  liquor  contain- 
ing 4  g.  Cl  per  1.  In  another  instance,  a  similar 
result  was  obtained  by  using  bleach  liquors  con- 
,  taining  J  g.  and  2  g.  of  Cl  per  1.  respectively.  The 
process  avoids  the  formation  of  oxyeellulose  and 
enables  a  large  saving  of  bleaching  powder  to  be 
effected. — A.  J.  H. 

Pa'ients. 
Scouring,    dyeing    and    similarly    treating     with 
liquids    fabrics     in    piece    form    in    continuous 

process;   Apparatus    for .      M.    Silbereisen. 

E.P.  176,306,  24.5.21.     Couv.,  2.3.21. 

Fabric  is  continuously  plaited  down  in  open  width, 
chain  or  rope  form  into  one  arm  of  a  U-shaped 
vessel  and  is  then  forced  forward  by  its  own  weight 
into  the  other  arm,  whence  it  is  continuously  with- 
drawn. The  lower  part  of  the  U-bend  in  the  vessel 
contains  a  false  bottom  consisting  of  numerous 
wooden  rollers  arranged  parallel  to  each  other  and 
transversely  to  the  axis  of  the  U-vessel.  The 
scouring  or  dye  liquor,  which  passes  through  the 
apparatus  in  a  direction  opposite  to  that  of  the 
fabric,  is  also  continuously  circulated  upwards 
between  the  rollers,  between  the  folds  of  the  fabric 
and  at  right  angles  to  its  direction  of  advancement 
in  the  U-bend.— A.  J.  H. 

Yat-preparations     for     dyeing;     Manufacture     of 

stable,    dry,   and  readily   soluble .      Farbw. 

vorm.  Aleister,  Lucius,  und  Briining.  E.P. 
177,526,  21.3.22.  Conv.,  26.3.21.  Addn.  to 
171,078  (J.,  1922,  705  a). 

i   An  alkali  salt  of  a  halogenindigo  capable  of  dyeing 

'   wool  from  a  vat  is  used  instead  of  an  alkali  salt  of 

1   leucoindigo     in     the     process     described     in     the 

chief   patent.      For   example,    a   paste   containing 

250   kg.    of    monobromoindigo   white    and    100    kg. 

of   the    reduced    brown    sulphurised    quinone    vat- 

'   dyestuff  prepared   as   described    in   E.P.    19,599  of 

1912  (F.P.  447,592;  J.,  1913,  226),  is  dissolved  in 

300  kg.  of  sodium  hydroxide  solution  of  40°  B.  (sp. 

gr.  1-383)  and  300  kg.  of  water;   150  kg.  of  50% 

molasses  and  10  kg.  of  hydrosulphite  are  added,  and 

:   the   mixture   is   evaporated  to    dryness,  first   with 

agitation  under  high  vacuum,  and  finally  in  shallow 

dishes  in  vacuo.     The  product  is  readily  soluble  in 

water  and  dves  wool  reddish-black  tints  from  a  vat. 

— L.  A.  C. 

)  Vat  dyestuff  preparations  for  use  in  printing  ami 

dyeing;  Manufacture  of .     C.  Bennert.    G.P. 

353,866,  8.1.16. 

Preparations  containing  vat  dyestuffs,  by  means 
of  which  it  is  easy  to  prepare  slightly  alkaline  or 
acidic  dye  vats,  consist  of  a  vat  dyestuff  in  its  leuco- 
form  and  a  hydrolysis  product  of  proteins,  e.g., 
protalbinic  and  lysalbinic  acids  and  the  like;  or  their 
salts  (pure  or  impure)  together  with  acids,  acid 
salts,  or  neutral  salts  of  volatile  alkalis  with  organic 
acids,  with  the  exception  of  organic  hydroxy-  and 
dihydroxy-acids  and  their  anhydrides  and  salts. 

—A.  J.  H. 

Printing  of  textile  fabrics.  The  Calico  Printers' 
Assoc,  Ltd.,  and  G.  Nelson.  E.P.  185,007, 
13.8.21. 
Cotton  fabric,  after  being  mordanted  with  chrome 
and  tannin,  and  dyed  witli  a  suitable  dyestuff,  is 
printed  with  a  discharge  paste  containing  a  caustic 
alkali,  with  or  without  sulphoxylates,  glycerin,  and 
Rcchelle  salt  for  a  white  discharge,  and  together 
with  vat  dyestuffs  for  a  coloured  discharge,  and  is 
then    aged,    washed,     and    soaped    in     the     usual 


manner.  This  process  has  the  advantage  that  the 
dyed  ground  produced  by  mordanting  and  dyeing 
can  be  preserved  indefinitely  and  thus  be  discharged 
whenever  required. — A.  J.  H. 

Printing  process.     A.  Dietz.    G.P.  303,055,  5.10.13, 

and  322,609,  15.2.18. 
The  process  is  designed  for  use  with  a  plate  with  a 
matt  surface  or  with  glass  or  porcelain  rolls,  treated 
only  with  a  liquid  containing  glycerin  and  hydro- 
chloric acid,  to  which  colour  may  be  added 
preparatory  to  the  transfer  of  the  original  and  to 
the  application  of  the  printer's  ink.  A  little  benzoic 
acid  is  added  to  the  above  liquid  and  alcohol  is  used 
in  place  of  part  of  the  glycerin,  and  formic  acid 
in  place  of  part  of  the  hydrochloric  acid.  The 
benzoic  acid  keeps  the  reprint-plate  clean  and  the 
addition  of  alcohol  keeps  the  benzoic  acid  in 
solution  and  transfers  it  to  the  reprint-plate  in  the 
finest  state  of  division.  For  example  16'25%  of 
magnesium  chloride  and  2-25%  of  aluminium 
sulphate  are  dissolved  in  3025%  of  boiling  water 
and  after  cooling  1'80%  of  pure  hydrochloric  acid, 
360%  of  glacial  acetic  acid,  360%  of  formic  acid, 
L-35  of  benzoic  acid,  1380%  of  glycerin,  and 
27TO  ?  of  98%  alcohol  are  added.  The  plates  are 
prepared  with  this  mixture  and  the  original, 
written  with  an  ink  containing  iron  salts  and 
ammonia,  is  lightly  pressed  on  it  and  after  a  short 
time  taken  off  again.  The  already  visible  impres- 
sion is  then  treated  with  cojour  suitable  for  this 
class  of  work.  Only  the  writing  takes  the  colour, 
the  remainder  of  the  plate  being  unaffected.  This 
process  allows  of  the  production  of  a  large  number 
of  reprints  of  great  accuracy  without  the  fresh 
preparation  of  the  plate  after  each  copy.  The  main 
patent  deals  with  the  employment  of  printer's  ink 
containing  glycerin.  If  other  inks,  such  as  litho- 
graphic inks  from  coal  tar  dyes,  are  to  be  used  a 
little  glycol  and  if  necessary  a  small  quantity  of  a 
sodium  salt  such  as  sodium  sulphate,  sodium 
bicarbonate,  or  especially  sodium  benzoate,  must  be 
added.  The  glycol  unites  better  with  the  colour  than 
glycerin,  and  half  the  quantity  is  sufficient.  The 
addition  of  the  sodium  salt  causes  the  colour  to  be 
retained  better  by  the  negative. — H.  C.  B. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Lead   chamber   [sulpliuric   acid]    process;   Physico- 
chemical  study  of  the  .      M.  Forrer.      Bull. 

Soc.  Chim.  Belg.,  1922,  31,  2.54—293. 

In  order  to  investigate  the  reactions  which  take 
place  in  the  lead  chamber  process  and  to  determine 
the  temperature  coefficient,  the  apparatus  used  was 
such  that  the  five  chief  gases  present  during  the 
course  of  the  reaction  (sulphur  dioxide,  nitrogen 
peroxide,  water  vapour,  oxygen,  and  nitrogen) 
were  used  in  mixtures  of  known  composition  which 
could  be  varied  at  will.  These  mixtures  were 
passed  at  a  known  rate  into  a  chamber  of  known 
dimensions  at  a  definite  temperature,  each  of  these 
factors  being  susceptible  of  variation.  Numerous 
experiments  were  carried  out  and  in  each  case  the 
quantity  of  acid  produced  was  measured  and  the 
acid  itself  analysed.  The  author  shows  that  forma- 
tion of  acid  only  takes  place  in  presence  of  a  liquid 
phase,  so  that  the  time  of  formation  is  decreased 
and  the  yield  increased  by  the  preliminary  addi- 
tion of  a  "small  quantity  of  liquid  in  order  to  start 
with  a  heterogeneous  system.  This  liquid  should 
be  sulphuric  acid  itself,  as  water  evaporates  and 
the  presence  of  water  vapour  is  not  sufficient  to 
bring  about  formation  of  acid.  Under  certain  con- 
ditions the  acid  itself  disappears,  this  being  due  to 
reversal    of    the    reaction;    these   conditions,    how- 


810  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-AIETALLIC  ELEMENTS.       [Oct.  31,  1922. 


ever,  are  different  from  those  which  obtain  in 
industry.  For  low  concentrations  of  gas  there 
exists  an  optimum  rate  of  intake  for  water;  this 
gives  the  highest  yield  and,  at  the  same  time,  the 
most  concentrated  acid.  As  the  gas  concentration 
increases  this  optimum  rate  shifts  in  the  direction 
of  diminution  of  water  supply.  When  the  concen- 
tration of  the  liquid  phase  is  constant,  the  relation 
between  the  velocity  of  the  reaction  and  the  con- 
centration of  the  gaseous  phase  is  much  less  com- 
plex than  in  the  case  when  the  liquid  phase  ds  of 
varying  concentration.  The  rate  of  supply  of 
sulphur  dioxide  does  not  appear  to  influence  the 
reaction  velocity ;  on  the  other  hand,  nitrogen  per- 
oxide and  water  both  exert  considerable  influence. 
The  results  point  to  the  formation  of  an  inter- 
mediate substance  of  which  water  is  a  constituent 
but  which  is  decomposed  by  an  excess  of  water. 
Under  industrial  conditions,  i.e.,  in  the  production 
of  chamber  acid,  the  rate  of  intake  of  water  is 
exactly  that  which  corresponds  to  the  optimum 
reaction  velocity. — H.  J.  E. 

Sulphuric  acid;  [Nitre  losses  in\  the  manufacture 

of  in  tower  systems.    S.  Micewicz.     Chem.- 

Zeit.,  1922,  46,  847. 

In  a  particular  tower  system  in  which  the  nitre 
consumption  was  normally  10 — 1'2%  HNOa  on 
monohydrate  acid  made,  this  figure  occasionally 
rose  without  any  evident  reason  to  2 — 3  % ,  and  even 
to  4"4%.  It  was  noticed  that  at  times  of  heavy 
nitre  consumption  the  acid  was  cloudy,  and  a  test 
of  Glover  acid  at  such  a  time  showed  that  after 
driving  off  sulphur  dioxide  the  acid  still  reduced 
iodine  owing  to  the  presence  of  arsenic,  selenium, 
and  ferrous  salts.  The  losses  of  nitre  were  therefore 
attributed  to  reduction  to  nitrous  oxide  or  nitrogen 
by  arsenious  acid  in  the  towers  of  the  "  inner 
ring,"  the  arsenious  acid  being  regenerated  by  the 
action  of  sulphur  dioxide  in  the  Glover  towers.  The 
settling  out  of  arsenic  accumulations  is  suggested 
as  a  remedy. — C.  I. 

Boric  acid:   Determination   of  .     W.   Strecker 

and  E.  Kannappel.  Z.  anal.  Chem.,  1922,  61, 
378—397. 

The  material  in  which  boric  acid  is  to  be  deter- 
mined is  distilled  with  phosphoric  acid  and  methyl 
alcohol,  a  current  of  air  saturated  with  methyl 
alcohol  being  passed  through  the  apparatus  during 
the  distillation ;  the  distillate  is  collected  in  a 
receiver  containing  sodium  hydroxide  solution. 
When  all  the  methyl  borate  has  been  collected  in 
the  receiver,  the  contents  of  the  latter  are  boiled 
to  expel  methyl  alcohol  and  to  saponify  the  ester, 
the  solution  is  then  treated  with  a  very  slight  excess 
of  hydrochloric  acid  (red  coloration  towards  methyl 
orange),  boiled  to  expel  carbon  dioxide,  mannitol  is 
added  in  the  proportion  of  1  g.  for  each  10  c.c.  of 
solution,  and  the  mixture  is  titrated  with  ]V/10 
barium  hydroxide  solution,  using  a-naphthol- 
phthalein  as  indicator. — W.  P.  S. 

Borax;  Alternate  precipitation  of  borax  and  ammon- 
ium chloride  in  the  industrial  preparation  of 

by  the  double  decomposition,  (NHi)„Bi0,+ 
WaCl^L  A*a..B40-+2iVH4C7,  U.  Sborgi  and  C. 
Franco.  Giorn.  Chim.  Ind.  Appl.,  1922,  4, 
245—249. 

The  results  of  further  investigations  of  this  re- 
action (J.,  1921,  693  a)  render  it  possible  to  increase 
the  chemical  yield  of  the  process  to  100%  for  all  the 
substances  used.  For  the  same  volume  of  the 
original  mixture  employed,  the  output  of  borax  per 
cycle  of  operations  is  diminished  by  48%,  that  is, 
the  absolute  production  of  borax  is  lowered  to  this 
extent.  Thus,  using  the  new  modification,  only 
489    g.    of    Na.B4O:,10HsO,    is    obtained    from   the 


volume  previously  yielding  941  g.,  but  13672  g. 
NH.,01  is  also  obtained.  The  number  of  operations 
is  not  notably  increased,  since  the  mother  liquor 
from  the  borax,  if  the  ammonium  chloride  is  not 
crystallised  from  at,  would  be  treated  for  the 
recovery  of  the  ammonia.  The  whole  process  is  as 
follows.  The  composition  of  the  initial  mixture 
(I)  reacting  at  10°  C.  and  the  amount  of  crystallised 
borax  it  yields,  as  well  as  the  composition  of  the 
mother  liquor  (I)  remaining  after  filtration  are  as 
before  Qoc.  citj.  Mother  liquor  I  is  concentrated 
235  times,  yielding  a  distillate  (I)  containing  NH, 
596  g.  and  H20  559-24  g.,  and  a  residual  solution. 
The  latter,  crystallised  at  37c  C,  deposits  136'72  g. 
NH4C1  and  gives  a  mother  liquor  (II)  of  the  compo- 
sition:  NaCl  104-82  g.,  NH4C1  126-86  g.,  H,BO, 
43-42  g.,  and  H,0  425  g.  To  this  mother  liquor  II 
are  added  distillate  I  and  also  NaCl  149"48  g., 
H3BO3  31658  g.,  NH,  4356  g.,  and  H=0  115-76  g. 
The  resulting  mixture  (II)  of  the  composition : 
NaCl  254-30  g.,  H3BO,  36070  g.,  NH,  49'52  g., 
NH,C1  12686  g.,  and  H.O  1100  g.,  is  stirred  for 
some  hours  at  10°  C.  In  this  way  489  g.  of  crystal- 
lised borax  is  precipitated,  and  there  remains 
mother  liquor  I,  with  which  the  cycle  is  recom- 
menced. This  second  batch  of  precipitated  borax 
and  also  the  ammonium  chloride  are  impure  and  are 
washed,  the  accumulated  wash  waters  being  mixed 
and  concentrated,  giving  a  distillate,  which  is 
added  to  distillate  I,  ammonium  chloride,  and 
mother  liquor,  which  is  added  in  suitable  amount  to 
mother  liquor  II.— T.  H.  P. 

Fluorides ;  Detection  and  estimation  of .   N.  K. 

Smitt.      Bull.     Bur.    Bio-Tech.,     1922,     No.    6, 
176—178. 

Greeff's  volumetric  method  for  the  estimation  of 
fluorides  (J.,  1913,  992)  may  be  simplified  as 
follows.  To  5  or  10  c.c.  of  the  neutral  fluoride  solu- 
tion are  added  5  c.c.  of  10%  ammonium  thiocyanate 
solution  and  25  c.c.  of  alcohol,  the  mixture  being 
titrated  directly  with  alcoholic  ferric  chloride  solu- 
tion which  has  been  standardised  against  pure 
potassium  fluoride  under  exactly  similar  conditions. 
It  is  essential  that  the  solution  be  neutral  and  that 
the  same  volumes  of  indicator  and  solution  be 
always  used,  as  the  presence  of  more  water  destroys 
the  final  colour  and  this  gives  high  results.  The 
concentration  of  the  ferric  chloride  is  conveniently 
1 — 3%  according  to  the  strength  of  the  fluoride 
solution  to  be  tested.  Sodium  salicylate  may  be 
used  as  indicator  instead  of  the  thiocyanate.  For 
the  detection  of  a  fluoride  in  a  solution,  the  latter 
is  neutralised  and  treated  with  a  little  thiocyanate 
solution  and  then  with  ferric  chloride  solution,  drop 
by  drop.  In  the  absence  of  interfering  substances, 
the  presence  of  fluoride  is  indicated  by  the  rapid 
disappearance  of  the  colour  of  the  ferric  thiocyan- 
ate. Insoluble  fluorides,  such  as  calcium  fluoride, 
may  be  detected  in  this  way,  if  the  substance  is 
ground  vigorously  in  a  mortar  with  small  quantities 
of  thiocvanate  and  ferric  chloride  solutions.  Traces 
of  fluoride  (0-005—0-0005%)  in  neutral  aqueous 
solution  may  be  estimated  as  follows.  To  10  c.c.  of 
the  solution  are  added  0-5  c.c.  of  10%  ammonium 
thiocyanate  solution  and  next  0'1%  ferric  chloride 
solution,  drop  by  drop,  from  a  micro-burette  until 
a  pale  orange  colour  appears.  To  six  test-tubes  are 
then  added  6uch  different  quantities  of  a  dilute 
standard  potassium  fluoride  solution  that  when  the 
volumes  are  made  up  to  10  c.c.  and  exactly  the  same 
amounts  of  thiocyanate  and  ferric  chloride  solution 
added  to  each,  the  colour  observed  in  the  unknown 
solution  falls  within  this  standard  range;  if  neces 
sary,  intermediate  standards  are  prepared  in  order 
to  obtain  a  more  exact  matching.  If  a  control  test 
is  carried  out  at  the  same  time,  the  fluoride  in  10 
c.c  of  0-0001%  potassium  fluoride  solution  is 
detectable.— T.  H.  P. 


Vol.  XLI.,  No.  20.]      Cl.  VII.— ACIDS  ;   ALKALIS  ;    SALTS ;   NON-METALLIC  ELEMENTS. 


811a 


Ferrous  hydroxide;  lteducing  action  of  — — . 
[Determination  of  nitrites  and  nitrates.']  S. 
Mivamoto.  Nippon  Kwagaku  Kwai  Shi  (J. 
Chem.  Soc.   Japan),  1922,  43,  397—438. 

Nitrites  and  nitrates  may  be  estimated  as 
ammonia  after  reducing  with  ferrous  hydroxide. 
The  nitrite  (0T — 03  g.)  is  boiled  with  ferrous  sul- 
phate (15  g.)  and  saturated  solution  of  caustic 
alkali  (200  c.c.)  and  the  evolved  ammonia  is 
absorbed  by  sulphuric  acid.  Nitrates  are  more  diffi- 
cult to  reduce,  and  it  is  necessary  to  boil  the  mix- 
ture under  a  reflux  condenser  for  3 — 35  hrs., 
during  which  hydrogen,  nitrogen  or  air  is  intro- 
duced into  the  flask.  Nitrobenzene  is  reduced  to 
aniline  at  the  ordinary  temperature  by  ferrous 
hydroxide. — K.  K. 

Sodium,  oxalate;  Transformation  of  sodium  formate 

into  .     C.  Matignon  and  G.  Marchal.     Bull. 

Soc.  Chim.,  1922,  31,  789—796. 

The  yield  of  sodium  oxalate  obtained  on  heating 
pure  sodium  formate  to  440°  C.  varies  from  48  to 
50%.  This  may  be  increased  to  85%  by  adding  as 
catalyst  4%  of  caustic  soda  to  the  formate,  but 
addition  of  greater  quantities  of  caustic  6oda  results 
in  decreased  yield.  Commercial  formate,  which 
normally  contains  about  1'3%  of  caustic  soda  as 
impurity,  gives  a  yield  of  about  70%  ;  addition  of 
a  further  2%  of  soda  increases  this  to  83%.  The 
oxalate  is  easily  separated  from  the  resulting  mix- 
ture by  treatment  with  a  small  quantity  of  cold 
water,  which  dissolves  carbonate  and  unchanged 
formate  whilst  only  a  small  percentage  of  oxalate 
passes  into  solution.  The  oxalate  is  then 
crystallised  from  hot  water. — H.  J.  E. 

Carbon;    Colloidal    solutions    of    in    water. 

P.  C.  L.  Thorne.     Kolloid-Zeits.,  1922,  31,  119 — 
132. 

A  stable  carbon  6ol  may  be  prepared  by  the 
electrolysis  of  a  solution  of  ammonia  for  6  hrs. 
between  carbon  electrodes  with  an  anode  current 
density  of  0'6 — 1*2  amp.  per  sq.  cm.  and  a  voltage 
of  220.  After  filtering,  the  solution  had  an 
ammonia  concentration  of  0'145^  and  gave  a  solid 
residue  of  0034  g.  per  100  c.c.  The  residue  is  in- 
soluble in  water  but  forms  a  colloidal  solution  again 
in  presence  of  a  trace  of  ammonia ;  the  excess  of 
ammonia  may  be  removed  by  boiling  and  the  sol 
is  then  more  stable  than  the  original  sol,  which  on 
dialysis  is  flocculated  when  the  ammonia  concentra- 
tion falls  to  0"039JV.  The  ammonia-free  sol  is  deep 
'  black  in  layers  greater  than  1  cm.  thick  and  brown 
in  thinner  layers  and  is  made  up  of  particles  of 
about  the  same  size  as  those  of  metallic  sols.  The 
number  of  millimols  of  electrolytes  necessary  to 
coagulate  1000  c.c.  of  the  dialysed  6ol  is :  hydro- 
chloric acid,  60  ;  sodium  hydroxide,  290  ;  ammonium 
hydroxide,  >9000 ;  sodium  chloride,  450;  barium 
chloride  0  5;  and  aluminium  chloride,  0'3.  The 
composition  of  the  dry  residue  is  C  6661%, 
H  1'99%,  O  15-25%,  and  incombustible  residue 
16T5%.— J.  F.  S. 

Carbon;  Behaviour  of  at  high   temperatures. 

F.  Sauerwald.     Z.  Elektrochem.,  1922,  28,  183— 
185.    E.  Ryschkewitsch.    Ibid.,  185—186. 

On  heating  rectangular  rods  of  pure  graphite  in 
the  author's  resistance  furnace  (cf.  p.  823  a)  to  the 
temperature  of  the  positive  crater  of  the  arc  in  an 
atmosphere  of  hydrogen,  the  rod  opened  out  in  the 
middle  and  eventually  broke,  the  broken  ends 
having  a  forked  appearance  and  being  quite  smooth 
inside  but  covered  with  small  globules  of  apparently 
iused  material  on  the  outside.  The  rod  itself  con- 
tained 0'08%  of  ash,  while  the  globules  contained 
r£8%.  The  author  suggests  that  the  impurities  in 
.he  carbon  had  distilled  from  the  inner  hot  zone 


and  condensed  on  the  outer  cooler  zone,  lowering  its 
melting  point  and  causing  partial  fusion  of  a  car- 
bide-graphite mixture,  while  the  cause  of  the  rod 
breaking  was  the  development  of  a  high  pressure  of 
carbon  vapour  inside.  If  the  temperature  is  kept 
near  that  of  the  arc  for  a  longer  period  the  carbide 
in  the  globules  volatilises,  leaving  nearly  pure 
graphite,  and  the  author  suggests  that  this  is  an 
explanation  of  Rysehkewitsch's  production  of  drops 
of  apparently  fused  graphite  (J.,  1921,  178  A,  810  a). 
Ryschkewitsch  replies  to  the  above  by  pointing  out 
that  his  conditions  as  regards  atmosphere  and 
current  density  were  different  from  the  above  and 
that  in  his  case  the  whole  cross-section  of  the  rods 
had  apparently  fused  and  was  of  different  hard- 
ness.— A.  R.  P. 

Aluminium.     Clennell.     See  XXIII. 

Ferrocyanides.  Muller  and  Lauterbach.   See  XXIII. 

Patents. 

Nitric  acid;  Process  of  fixing  synthetical .    M. 

Buchner.  U.S.P.  1,427,441,  29.8.22.  Appl.,  6.4.21. 

Synthetic  nitric  acid  is  treated  with  a  sulphide 
of  a  metal  of  which  the  hydroxide  is  alkaline. 

— L.  A.  C. 

Acids;  Process  for  concentrating  volatile  • .     C. 

Uebel.    G.P.  (a)  306,412,  12.2.16,  and  (b)  307,044, 
29.8.16. 

(a)  In  the  concentration  of  volatile  acids  by  means  oi. 
liquid  or  fused  dehydrating  agents,  the  concentrator 
or  evaporator  is  divided  into  compartments  which 
communicate  at  the  bottom  by  openings  in  the  par- 
titions and  at  the  top  by  siphon  overflows,  and 
circulation  of  the  contents  is  brought  about  by  the 
introduction  of  weak  acid  and  by  the  temperature 
and  density  differences  of  the  contents  in  such  a  way 
that  the  entering  weak  acid  meets  the  hottest  and 
most  dehydrated  liquid.  The  vapour  space  in  the 
evaporator  is  divided  into  compartments  corre- 
sponding with  the  divisions  of  the  liquid  space  in 
order  to  allow  of  separate  removal  and  condensa- 
tion of  the  vapours  evolved,  (b)  The  process  is 
carried  out  under  reduced  pressure  in  apparatus 
arranged  60  that  the  chamber  from  which  the  con- 
centrated acid  vapour  is  withdrawn  is  under  higher 
pressure  than  that  in  which  dehydration  of  the 
weak  acid  is  proceeding. — A.  C. 

"Base-exchanging   bodies;  Preparation  of   artificial 

.     American  Zeolite  Corp.,  Assees.  of  O.  W. 

Willcox.     E.P.  159,196,  18.2.21.     Conv.,  19.2.20. 

A  dilute  solution  of  sodium  silicate  is  added  to  a 
dilute  solution  of  aluminium  sulphate  (or  salts  of 
other  amphoteric  metals,  such  as  iron,  tin,  man- 
ganese, lead  and  zinc).  The  composition  of  the 
precipitate  varies  with  the  amount  of  sodium  sili- 
cate added.  At  first  the  composition  of  the  precipi- 
tate approximates  to  15SiO,,2Al,03,9H.O;  when 
the  solution  becomes  neutral  to  phenolphthalein 
(methyl  orange  is  not  a  satisfactory  indicator)  the 
precipitate  approximates  to  24Si02,3Al203,Na30, 
12H20.  Further  addition  of  sodium  silicate  en- 
riches the  precipitate  in  silica  and  sodium  oxide; 
when  40%  excess  sodium  silicate  has  been  added, 
the  composition  of  the  precipitate  is  12Si02,Al203, 
Na,0,6H,0.  Ultimately  a  point  is  reached  beyond 
which  any  additional  amount  of  sodium  silicate  is 
found  undiminished  in  the  mother  liquor.  At  this 
point  the  composition  of  the  precipitate  is  approxi- 
mately 19SiO,,AlA,2Na,0,7H20.  The  product 
may  be  varied  by  using  a  mixture  of  two  or  more 
metal  sulphates  or  a  mixture  of  two  or  more  alkali 
silicates.  The  tendency  of  certain  metal  sulphates, 
such  as  ferric  sulphate,  to  hydrolyse  in  weak  solu- 
tion is  prevented  by  the  addition  of  alkali  sulphates 
or  chlorides,  or  by  the  addition  of  sufficient  acid  to 


812a 


Ci»  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.        [Oct.  31,  1922. 


keep  the  hydroxide  in  solution.  The  precipitate 
is  collected,  washed,  freed  from  excess  of  water  by 
a  blast  uf  air.  dried  in  an  oven  at  60° — 100°  C,  and 
plunged  into  water,  which  causes  it  to  break  up  into 
granules  of  suitable  size.  Considerable  increase  in 
the  density  and  hardness  of  the  product  is  brought 
about  by  the  addition  of  a  neutral  alkali  salt  (e.g., 
sodium  sulphate),  say  5  pts.  of  the  neutral  salt  to 
1  pt.  of  the  base-exchanging  substance.  (Cf.  J., 
1917,  1047;    1918,  415  a.)— J.  B.  F. 

[Silica]    gels   [;  Preparation   of  impregnated 

u-ith    metallic    oxides'].      W.    A.    Patrick.      E.P. 
159,508,  26.2.21.     Com-.,  28.2.20. 

A  hard  highly  porous  silica  gel,  stable  up  to 
700°  C,  prepared  as  in  E.P.  136,543  (c/.  TJ.S.P. 
1,297,724;  J.,  1919.  363  a),  may  be  obtained  impreg- 
nated with  a  metallic  oxide  by  replacing  the  hydro- 
chloric acid  by  a  chloride  which  is  readily  hydro- 
lysed.  For  example  100  c.c.  of  5"2%  ferric  chloride 
solution  is  mixed  with  200  c.c.  of  sodium  silicate 
solution  containing  1'0%  Na,0.  After  the  mixture 
has  set  the  gel  may  be  broken  up  and  washed  free 
from  chlorides  without  loss  of  iron.  The  impreg- 
nated ferric  oxide  may  be  reduced  to  iron  by  the 
action  of  hydrogen.  Owing  to  the  fine  porous  struc- 
ture of  such  a  gel  it  forms  a  suitable  vehicle  for 
metallic  or  metallic  oxide  catalysts. — C.  I. 

Sulphates  [sodium  sulphate];  Process  and  appara- 
tus for  the  continuous  production  of  .     Soc. 

Anon,  de  Prod.  Chim.  Etabl.  Maletra.  E.P. 
163,706,  19.5.21.  Conv.,  25.5.20. 
Sodium  chloride  is  first  converted  quantitatively 
into  the  acid  sulphate,  the  necessary  sodium  chlor- 
ide for  the  formation  of  the  normal  sulphate  is  then 
added  and  is  so  intimately  mixed  that  the  particles 
of  sodium  chloride  become  coated  with  the  acid 
sulphate.  The  mixture  is  passed  to  a  calciner  for 
conversion  into  the  normal  sulphate.  The  process 
is  continuous  and  is  automatically  controlled,  and 
the  three  operations  are  carried  out  in  a  single 
apparatus. — J.  B.  F. 

Aluminium    and    potassium    chlorides;    Method    of 

separation  of in  mixed  solutions  obtained  in 

the  treatment  of  leucite.  G.  A.  Blanc.  E.P. 
176,770,  15.2.22.  Conv.,  7.3.21. 
The  hot  solution  obtained  by  the  treatment  of  leu- 
cite with  hydrochloric  acid  is  cooled,  to  separate 
potassium  chloride.  The  mother  liquor  is  then 
saturated  with  gaseous  hydrogen  chloride  which 
causes  the  complete  separation  of  crystalline  alu- 
minium chloride.  The  residual  liquor  can  then  be 
returned  to  the  process. — C.  I. 

Aluminium  sulphate  for  paper  making;  Process  for 
making .    M.  Miiller.    G.P.  352,289,  11.8.17. 

The  aluminium  sulphate  is  obtained  in  the  wet  way 
by  acting  on  minerals  containing  alumina  with 
sulphuric  acid  or  alkali  bisulphates,  especially 
sodium  bisulphate.  The  liquid  reaction  mixture  is 
neutralised  with  magnesium  hydroxide  or  carbonate 
or  with  minerals  containing  these  compounds  in  one 
operation  and  the  liquid  obtained  used  directly  as 
a  precipitating  agent  in  the  sizing  of  paper. 
Alternatively  the  neutralising  may  be  carried  out 
with  suitable  alkaline-earth  or  aluminium  com- 
pounds, such  as  soluble  aluminium  hydroxide  in 
conjunction  with  magnesium  compounds.  The 
solidification  and  drying  of  the  mass  may  bo  pre- 
vented by  adding  water  and  the  finished  product 
immediately  used  in  the  liquid  state  for  sizing 
paper,  clarifying  water,  etc. — H.  C.  R. 

Hypochlorites  and  chlorates;  Process  for  the  pro- 
duction   of   and    apparatus    therefor.      M. 

WUderman.     E.P.  183,671,  16.6.21. 

The  slow  absorption  of  chlorine  in  milk  of  lime  can 


only  be  accelerated  by  increasing  the  surface  of 
contact  between  the  liquid  and  gas.  This  is  effected 
by  employing  chlorination  towers  filled  with  glass 
balls  strung  on  wire  coated  with  ehlorine-resistino- 
ebonite  (F.P.  395,101  and  addition  thereto;  J., 
1909,  319;  1910,  641).  The  blocking  of  such  appara- 
tus by  the  settling  out  of  lime  is  prevented  by  the 
addition  of  the  latter  in  small  quantities  at  a  time 
to  mixing  vessels  at  the  base  of  the  towers,  the 
initinl  liquor  containing  5%  of  calcium  hydroxide. 
The  temperature  of  the  towers  is  maintained  at 
60° — 70°  C,  just  below  the  point  at  which  calcium 
chlorate  begins  to  decompose.  By  this  means  the 
final  liquor  is  brought  (after  filter-pressing)  in  a 
reasonable  time  to  60°— 64°  Tw.  (sp.  gr.  T3— 
1"32).  Such  a  solution  is  decomposed,  still  at 
60° — 70°  C,  with  2%  excess  of  potassium  chloride, 
yielding  a  solution  which  deposits  the  bulk  of  its 
potassium  chlorate  on  ordinary  crystallisation  and 
a  further  pure  crop  on  cooling  to  -20°  C.  An 
efficiency  of  90 — 92%  is  obtained  as  against  74%  in 
existing  processes  and  all  evaporation  of  chlorate 
mother-liquors  is  avoided.  The  principle  can  also 
be  applied  to  the  manufacture  of  high  strength 
calcium  hypochlorite  solution. — C.  I. 

Copper    sulphate;   Process   of,   and  apparatus  for 

crystallising .    J.  M.  Dossett.    E.P.  184,527, 

31.3.21. 

Copper  sulphate  is  obtained  in  very  small  crystals 
("  snow  "  or  "  sand  "  sulphate)  by  rapidly  cooling 
the  liquor  in  a  vessel  having  a  smooth  surface.  The 
walls  of  the  container  are  preferably  made  of  thin 
copper  or  enamelled  metal  and  the  cooling  surface 
is  increased  by  providing  one  or  more  slightly  in- 
clined tubes  inside  the  vessel.  The  container  is 
enclosed  at  the  sides  and  bottom  in  a  jacket  through 
which  cold  water  circulates,  and  the  copper 
sulphate  solution  is  kept  in  agitation  by  means  of 
compressed  air,  or  a  stirrer. — H.  R.  D. 

Electrolytic  decomposition  of  alkali  salts   [employ- 
ing   mercury   cathodes];    Operation   of   processes 

and  cells  for .    M.  Wilderman.    E.P.  184,938, 

16.6.21. 

In  cells  for  the  electrolysis  of  solutions  of  alkali 
salts,  e.g.,  sodium  chloride,  employing  mercury 
cathodes,  as  in  E.P.  9803  of  1902  (J.,  1903,  703), 
various  means  are  provided  for  working  with  high 
current  densities,  without  the  oxidation  of  the 
mercury  and  without  the  formation  of  solid  amal- 
gam in  the  cells. — J.  S.  G.  T. 

Ammonia;    Apparatus    tor    catalytic    synthesis    of 

.    L.  Casale  and  R.  Leprestre.    E.P.  185,179r 

21.5.21. 
See  U.S. P.  1,408,987  of  1922;  J.,  1922,  294  a.  One 
or  more  additional  partitions  may  be  provided  in 
the  space  between  the  outermost  and  middle  tubes, 
so  that  the  reacting  gases  take  a  tortuous  path 
before  entering  the  innermost  tube. 

Titanium  oxide;  Process   of   producing    crystalline 

.    G.  Carteret  and  M.  Devaux.  E.P.  185,3*4, 

27.6.21. 
Titanium  chloride  free  from  iron  is  precipitated  as 
gelatinous  oxide  by  an  alkali  or  alkaline-earth  oxide 
or  carbonate,  the  oxide  is  dissolved  in  25%  sulphuric 
acid,  and  re-precipitated  in  the  amorphous  state  by 
boiling  in  presence  of  hydrogen.  The  amorphous 
oxide  is  converted  into  the  crystalline  variety  by 
calcining. — C.  I. 

Magnesium  carbonate;  Process  for  producing  —-. 
C  Cramer,  Assr.  to  Chem.  Fabr.  Gnesheim- 
Elektron.  U.S.P.  1,427,444,  29.8.22.  Appl., 
12.6.22. 

Magnesium  carbonates  are  produced  by  the  inter- 


Vol.  XLI.,  No.  20.] 


Cl.  Vni.— GLASS  ;    CERAMICS. 


813  a 


action  of  ammonium  carbonate  and  soluble  magnes- 
ium salts,  the  mixture  being  kept  agitated  during 
tlie  reaction. — H.  It.  D. 

Zinc  sulphate  solutions;  Purification  of [from 

arsenic].  C.  R.  Kuzetl  and  J.  R.  Marston. 
U.S.P.  1,427,826,  5.9.22.  Appl.,  15.8.21. 
Zinc  sulphate  solution  containing  arsenic  as  im- 
purity is  acidified  with  sulphuric  acid,  treated  with 
a  metallic  sulphide,  and  heated  until  the  arsenic 
is  precipitated  as  sulphide. — J.  B.  P. 

Iron-  oxide  and  other  products;  Process  for  recover- 
ing    from  spent  iron  sludge.     0.  V.  Bacon. 

U.S.P.  1,428,521,  12.9.22.     Appl.,  2.1.20. 

Ikon  sludge,  consisting  essentially  of  iron  oxide,  is 
treated  with  sufficient  sulphuric  acid  to  convert  it 
into  a  dry  mixture  containing  mainly  Ferrous  and 
ferric  sulphates,  and  this  is  decomposed  by  heating, 
whereby  sulphur  compounds  volatilise  off,  and  iron 
oxide  is  recovered. — J.  B.  F. 

Barium  chloride ;  Method  of  producing .     J.  H. 

MacMahon,  Assr.  to  The  Mathieson  Alkali 
Works.  Inc.  U.S.P.  1,428,646,  12.9.22.  Appl., 
20.8.20. 

Finely  ground  barium  carbonate  is  treated  with  a 
hot  solution  of  ammonium  chloride,  the  volatile  by- 
products being  removed  as  formed,  by  aspirating 
air  through  the  solution. — J.  B.  F. 

Calcium  arsenate;   Manufacture    of  .     C.   B. 

Dickey,  Assr.  to  Pittsburgh  Plate  Glass  Co. 
U.S.P.  1,428,946,  12.9.22.     Appl.,  7.8.20. 

Calcium  arsenate  practically  free  from  soluble 
arsenic  compounds  is  prepared  by  treating  a  soluble 
arsenic  compound  with  calcium  hydroxide  sus- 
pended in  water  containing  1 — 5%  of  salt. 

—J.  B.  F. 

Nitrogen;   [Electric  arc']  furnace  for  oxidation  of 

atmospheric .  A.  U.  Avera,   U.S.P.  1,429,013, 

12.9.22.    Appl.,  26.3.21. 

The  furnace  consists  of  a  glass,  porcelain,  or  quartz 
tube  containing  a  hollow  iron  core  through  which  the 
ingoing  air  passes  and  which  forms  one  pole  of  a 
high-tension  circuit,  the  other  pole  being  the  tuba 
lining.  The  air  is  subjected  to  a  high-tension  static 
charge  and  to  an  arc  discharge  simultaneously.  The 
furnace  is  placed  in  a  bath  of  oil  of  high  flash  point 
provided  with  water  cooling  coil. — C.  I. 

Litharge ;   Process   for    making   from   molten 

lead.  L.  Kiibler.  G.P.  355,649,  16.11.20. 
The  lead  is  oxidised  with  a  mixture  of  carbon 
monoxide  with  excess  of  air,  to  which,  if  necessary, 
superheated  steam  is  added.  The  cast  iron  oxida- 
tion vessels  arc  not  subject  to  such  heavy  deprecia- 
tion as  in  other  processes. — H.  C.  R. 

Liquid  air;  Process  and  apparatus  for  continuous 

rectification  of  .     E.  Barbet  et  Fils  et  Cie. 

E.P.  159,131,  11.2.21.  Conv.,  11.2.20. 
In  curving  out  the  process  described  in  E.P. 
131,321  (J.,  1919,  766  a)  the  nitrogen  compressor  is 
operated  at  a  higher  pressure,  viz.,  at  14  kg.  per 
sq.  cm.,  which  is  in  excess  of  tliat  necessary  for  the 
operation  of  the  rectification  apparatus.  The  por- 
tion of  the  compressed  nitrogen  remaining  unlique- 
fied  is  then  subjected  to  adiabatic  expansion,  which 
effects  a  lowering  of  temperature,  which  in  turn 
provides  a  reserve  of  cold  units  to  make  good  loss 
of  coJld  by  the  apparatus. — H.  R.  D. 

Bed    phosphorus    and    arsenic;    Method    for    the 

separation  of  a  mixture  of .    W.  Siegel,  and 

J.  Michael  und  Co.     G.P.  356,809,  30.4.21. 

The    mixture,    at    an    increased    temperature,    is 


exposed  to  the  simultaneous  action  of  water  or 
steam,  and  air  or  oxygen,  and  from  the  resulting 
mixture  of  red  phosphorus  and  'arsenic  trioxide  the 
latter  is  removed  by  solution.  The  treatment  may 
be  effected  in  presence  of  oxygen  carriers. — J.  B.  F. 

Alkali    metal    monochromates ;    Process   for   trans- 
forming    info   bichromates  or  chromic  acid. 

G.    N.    Vis.     U.S.P.   1,429,001,   12.9.22.     Appl.. 
10.7.19. 

See  E.P.  131,289  of  1919;  J.,  1920,  516  a. 

Hydrogen;    Process    of    preparing    . 

Clancy,    Assr.    to    The    Nitrogen    Corp. 
1,425,578,  15.8.22.     Appl.,  14.5.20. 

See  E.P.  163,323  of  1921 ;  J.,  1922,  631  a. 

Electric  furnace   for  production   of  carbide. 
185,136.    See  XI. 


J.    C. 
U.S.P. 


E.P. 


Electrolytic 

1,427,236. 


method 
See  XI. 


ind      apparatus.        U.S.P. 


VIII.-GLASS;  CERAMICS. 

Glass;   Effect  of  manganese  in    melted  under 

reduced  pressure.  E.  N.  Bunting.  J.  Amer. 
Ceram.  Soc.,  1922,  5,  594—596. 

The  decolorising  action  of  manganese  is  destroyed 
by  melting  and  fining  glass  at  1400°  C.  under  a 
pressure  of  0'03  atm.  The  decolorising  oxide, 
Mn.03,  is  decomposed  under  these  conditions  into 
Mn.0  and  oxygen. — II.  S.  H. 

Clays;  Composition  and  microscopical  structure  of 

,    their    fusibility    and    behaviour    at    high 

temperatures.  L.  Bertrand  and  A.  Lanquine. 
Ceramique.  1922,  25,  I.,  153—157.  Chem.  Zentr., 
1922,  93,  IV.,  489—490. 

It  is  established  by  the  determination  of  the  alu- 
mina content  and  fusion  points  of  101  samples  of 
clay  that  conclusions  as  to  the  refractory  qualities 
cannot  be  drawn  from  the  content  of  alumina. 
Although  all  clays  containing  more  than  30%  of 
alumina  were  refractory,  some  having  as  little  as 
8T5%  had  a  fusion  temperature  of  1650°  C.  or 
higher.  Four  clays  containing  16'6%  to  21'85%  of 
alumina  melted  between  1270°  and  1120°  C. 

— H.  C.  R. 

Flint  and  chalcedony ;  Products  of  the  calcination 

of  .     E.  W.  Washburn  and  L.  Navias.      J. 

Amer.  Ceram.  Soc,  1922,  5,  565 — 585. 

The  specific  gravity  at  0°,  25°,  and  98°  C,  the  index 
of  refraction,  the  coefficient  of  thermal  expansion 
up  to  300°,  the  inversion  temperature  and  volume 
change  on  inversion,  and  the  X-ray  spectra  of 
quartz,  tridymite,  cristobalite,  silica  glass,  and  raw 
and  calcined  flint  and  chalcedony  were  obtained.  A 
special  vacuum  pyenometer  was  used  for  determin- 
ing the  specific  gravity.  The  immersed  powder  was 
subjected  to  a  pressure  of  1000  atm.  without  any 
appreciable  change  in  the  results  obtained.  The 
specific  gravity  of  calcined  chalcedony  was  raised 
2%  by  fine  grinding.  The  densities  of  raw  flint  and 
chalcedony  were  lower  than,  but  close  to,  that  of 
quartz,  the  difference  being  not  greater  than  that 
which  might  arise  from  the  presence  of  moisture 
and  other  impurities  in  the  raw  materials.  The 
density  of  calcined  flint  was  slightly  lower  than,  but 
close  to,  that  of  tridymite.  The  density  of  the  cal- 
cined chalcedony  was  distinctly  lower  than  that  of 
silica  glass,  the  lightest  known  form  of  silica.  The 
indices  of  refraction  ot  raw  flint  and  chalcedony 
were  substantially  the  same,  and  while  close  to  that 
of  quartz  were  distinctly  lower.  The  refractive 
index  of  calcined  flint  was  dose  to  that  of  cristo- 

b2 


814a 


Cl.  VIII.— GLASS  ;  CERAMICS. 


[Oct.  31,  1022. 


balite,  while  the  refractive  index  of  the  calcined 
chalcedony  was  definitely  lower  than  those  of  cristo- 
balite  and  tridymite,  but  agreed  very  well  with  that 
of  silica  glass.  As  far  as  these  two  properties  were 
concerned,  the  calcined  chalcedony  might  be  con- 
sidered as  a  form  of  silica  glass,  while  the  calcined 
flints  might  be  either  cristobalite  or  tridymite. 
Both  the  calcined  flint  and  the  calcined  chalcedony 
exhibited  a  typical  a-fi  cristobalite  inversion. 
X-ray  crystal  analysis  showed  that  raw  flint  and  raw 
chalcedony  contained  large  quantities  of  quartz 
crystals,  and  that  calcined  flint  and  calcined  chal- 
cedony contained  considerable  quantities  of  cristo- 
balite crystals,  and  no  other  crystals  of  any  kind. 
It  was  concluded  that  flint  and  chalcedony  consist 
of  colloidal  quartz.  When  calcined,  the  colloidal 
quartz  crystals  were,  owing  to  the  large  surface  they 
exposed,  very  rapidly  transformed  into  cristobalite 
crystals.  At  the  same  time  some  of  the  smaller 
original  colloidal  quartz  crystals  probably  "  melt," 
and  the  silica  glass  produced  immediately  proceeds 
to  crystallise  slowly,  with  the  formation  of  colloidal 
cristobalite  crystals.  Since  there  would  be  a  gradual 
gradation  of  properties  from  those  of  isotropic 
silica  glass  to  those  of  macro-crystalline  cristobalite, 
the  low  index  of  refraction  and  low  density  of  cal- 
cined chalcedony  are  explained. — H.  S.  H. 


Vanadium  in  ceramic  materials  and  products,  and 
its  action  on  the  refractoriness  colour  and 
tendency   to   form   scum   on  pure   kaolins   and  a 

typical  brick  clay;  Occurrence  of  .     O.  Kal- 

launer  and  I.  Hruda.     Sprechsaal,  1922,  55,  333— 
335,  345—349.     Chem.  Zentr.,  1922,  93,  IV.,  701. 

Vanadium  pentoxide  reduces  the  refractoriness  of 
kaolin.  The  colouring  power  of  vanadium  pent- 
oxide  or  potassium  vanadate  is  only  noticeable 
when  01%  or  more  is  present.  Barium  salts  tend 
to  prevent  the  formation  of  colour.  Burning  in  a 
reducing  atmosphere  reduces  the  tendency  to  form 
vanadium  scum,  and  the  presence  of  calcium  and 
barium  compounds  has  a  similar  effect. — A.  B.  S. 


Biscuit  losses;  Control  of  .     I.  E.  Sproat.     J. 

Amer.  Ceram.  Soc,  1922,  5,  588—593. 

The  chief  factor  in  the  control  of  the  biscuit  losses 
is  the  transverse  strength  of  the  body  in  the  clay 
state.  Biscuit  losses  decrease  with  every  marked 
increase  in  transverse  strength  up  to  300  lb.  per 
sq.  in.,  but  if  the  transverse  strength  is  further  in- 
creased the  body  has  poor  working  qualities.  It  is 
suggested  that  the  best  results  are  obtained  with  a 
body  having  a  modulus  of  rupture  of  280  lb.  per 
sq.  in.  As  much  moisture  as  possible  should  be 
expelled  from  the  ware  before  it  is  handled. 

— H.  S.  H. 


Ground  coat  enamels;  Fish  scaling  of .     B.  T. 

Sweely.  J.  Amer.  Ceram.  Soc,  1922,  5,  618 — 622. 
The  first  coat  was  dissolved  with  hydrochloric  acid 
from  the  inside  of  an  enamelled  basin,  and  the  cor- 
responding area  outside  the  basin  was  found  to  be 
badly  fish-scaled.  If  the  enamel  were  m  compression, 
the  removal  of  it  from  one  side  of  the  steel  would 
throw  the  entire  stress  taken  by  the  inner  and  outer 
coats  upon  one  coat,  and  so  exaggerate  the  tendency 
to  fish-scale  over  the  area  from  which  the  one  coat 
of  enamel  was  removed.  No  fish-scaling  developed 
with  a  basin  coated  on  the  outside  only  when  the 
same  test  was  made,  showing  that  the  results  could 
not  be  explained  by  hydrogen  penetration.  No  fish- 
scaling  was  produced  when  the  enamel  had  a  greater 
coefficient  of  expansion  than  the  steel,  and  so  was 
in  tension  rather  than  compression. — H.  S.  H. 


Patents. 

Glass;  Production  of  optical almost  free  from 

striae.  J.  Desenberg.  G.P.  (a)  300,095,  2.9.15, 
(b)  302,571,  15.9.15,  (c)  303,263,  15.9.15,  (d) 
303,264,  22.12.15,  (e)  303,993,  27.7.16,  and  (f) 
306,308,  17.2.17. 
(a)  A  finished  melt,  after  thorough  mixing  to  re- 
move layers  of  different  fluidity,  is  cooled  rapidly 
until  the  viscosity  of  the  mass  is  such  that  subse- 
quent separation  into  layers  forming  striae  is  re- 
tarded as  much  as  possible.  The  process  of  melting 
may  bo  continuous  if  the  glass  is  removed  from  the 
furnace  for  chilling,  (b)  The  glass,  in  such  form 
that  it  has  a  large  surface  in  relation  to  its  mass,  is 
cooled  by  gases,  fluids,  or  solids  so  suddenly  and  to 
so  low  a  temperature  that  it  disintegrates,  and  the 
pieces  formed  are  united  into  one  at  a  temperature 
below  that  at  which  stripe  are  formed,  (c)  The 
fused,  well-mixed  glass  is  poured  into  moulds  in 
which  tho  surface  is  relatively  large  compared  with 
the  mass  of  glass,  and  cooled  so  rapidly  that  segre- 
gation is  minimised.  The  strain  produced  by  the 
rapid  cooling  is  removed  by  heating  and  annealing. 
(d)  A  portion  of  the  mixed  finished  glass  is  separated 
from  the  remainder  with  minimum  disturbance  ^id 
mixing,  and  this  is  cooled  rapidly  to  below  the 
temperature  at  which  stria?  form.  For  example, 
a  bell-shaped  receiver  may  be  dipped  just  below 
the  surface  of  the  molten  glass,  and  a  cooling  agent 
led  into  the  bell  to  cool  the  glass  below  the  tempera- 
ture at  which  striae  form.  The  bell,  with  adhering 
solid  or  semi-solid  glass,  may  then  be  removed  and 
the  cooling  completed,  (e)  The  mixing  of  the  glass 
previous  to  the  rapid  cooling  is  effected  by  a  current 
of  gas,  and  this  current  may  be  continued  during 
the  cooling,  (f)  A  separate  agitator  and  cooler  may 
be  used,  into  which  the  molten  glass  overflows  from 
a  continuous  working  tank. — A.  C. 

Porcelain.      British    Thomson-Houston    Co.,    Ltd. 

From     General     Electric     Co.      E.P.     184,090, 

27.9.21. 
Beryl  is  substituted  totally  or  in  part  for  the 
felspar  or  silica  usually  employed  in  manu- 
facturing porcelain,  a  suitable  mixture  for  electric 
insulating  material  being  clay  291  pts.,  silica 
35  pts.,  felspar  144  pts.,  beryl  130  pts.  A  porcelain 
having  the  above  composition  and  fired  to  cone 
10  possesses  greater  dielectric  and  transverse 
strength,  and  resistance  to  impact  and  tempera- 
ture change  than  ordinary  first  quality  electrical 
porcelain. — H.  S.  H. 

Kilns  for  firing  pottery  and  other  ware.     C.  F. 
Bailey.    E.P.  184,716,  20.9.21. 

Three  kilns  are  built  together,  the  outer  kilns  only 
being  provided  with  fire-grates,  and  the  flame  from 
the  fire-grates  is  divided,  the  greater  part  passing 
up,  over,  and  down  the  outer  kilns,  and  then 
uniting  with  the  lesser  part  which  has  passed 
direct  under  the  outer  kilns;  the  flames  from  both 
outer  kilns  are  also  combined,  and  pass  up,  over, 
and  down  the  middle  kiln  and  finally  up  a  side 
passage  to  the  inner  cone  or  conduit  of  the  main 
chimney.  Dampers  are  provided  to  regulate  the 
proportions  of  gases  going  by  the  various  routes, 
also  a  damper  at  the  top  of  the  chimney  cone  to 
conserve  the  heat  while  discharging  and  charging 
the  kilns.  For  cooling  the  ware  after  firing, 
passages  controlled  by  dampers  are  provided 
leading  from  the  interior  of  each  kiln  to  the 
annular  space  in  the  chimney  formed  by  the  outer 
wall  and  the  inner  cone. — B.  M.  V. 

Kiln;    Ping    chamber    for    burning    ceramic 

material,  lime,  dolomite,  etc.  H.  Koppers. 
G.P.  352,043,  28.3.20.  Addn.  to  349,951  (J., 
1922,  711  a). 

The  flues  leading  from  the  roof  of  one  chamber  to 


Vol.  XIX,  No.  20.] 


Cl.  IX.— building  materials. 


815a 


the  sole  of  the  next  are  provided  with  sand-seals 
near  the  sole  of  the  chambers.  Sand  can  be  poured 
through  a  tube  into  a  pit  underneath  the  partition 
between  the  chambers,  and  opening  at  one  side 
into  a  chamber.  The  side  of  the  pit  leading  into 
the  chamber  has  such  a  slope  that  the  sand-seal 
can  be  broken  by  raking  or  shovelling  out  the  sand 
as  in  the  main  patent. — H.  C.  R. 

Clay,   especially  china   clay;   "Refining  .     Plau- 

son's    (Parent    Co.),    Ltd.       From    H.    Plauson. 
E.P.  184,880,  21.5.21. 

China  clay  or  other  clay  is  refined  by  mixing  it 
with  nine  times  its  weight  of  water,  and  subjecting 
it  for  a  short  time  (5 — 10  mins.)  to  intensive  high- 
speed mechanical  disintegration,  preferably  in  the 
colloid  mill  described  in  E.P.  155,836  (J.,  1922, 
357  a).  A  selective  colloidising  effect  occurs, 
the  silicic  acid  and  other  impurities  not  being 
affected,  so  that  they  rapidly  settle  out  of  the  mix- 
ture when  it  is  allowed  to  stand.  The  action  is 
facilitated  if  a  dispersion  accelerator,  such  as 
potassium  silicate,  tannin  or  tanning  agents, 
humus,  or  humic  acid,  saponin  or  other  soap-like 
froth-fcming  substances,  is  present;  05 — 1%  of 
potash  water-glass  appears  to  give  the  best  result. 
The  particles  of  refined  clay  show  the  Brownian 
movement  under  the  ultra-microscope.  They  may 
be  collected  on  an  ultra-filter  press  or  ultra-filter 
centrifuge  (E.P.  155)834  and  181,023;  J.,  1922, 
619  a),  and  the  resulting  paste  may  be  dried  direct 
or  in  vacuo. — A.  B.  S. 

Clay  bodies;  Method  of  producing  .     G.  W. 

Lapp.     U.S.P.  1,424,924,  8.8.22.     Appl.,  27.8.19. 

Elastic  material  for  use  in  the  production  of 
ceramic  ware  is  made  by  forming  a  slip,  filter- 
pressing  the  slip,  enclosing  the  filter-pressed  cakes 
in  a  receptacle,  exhausting  the  receptacle  of  air 
and  other  fluid  and  compressing  the  filter  cakes 
into  a  compact  mass  while  retaining  the  reduced 
pressure  within  the  receptable. — H.  S.  H. 

Artificial  meerschaum ;  Method  of  producing  . 

P.    Deussing.      E.P.    164,319,    25.5.21.      Conv., 

7.6.20. 
See  G.P.  334,749  of  1920;  J.,  1921,  625  a. 

Ceramic   articles;  Production   of  - .      E.    C.   R. 

Marks.     From  Lava  Crucible  Co.     E.P.  185,435, 

8.3.21. 
See  U.S.P.  1,374,909-10  of  1921;  J.,  1921,  434  a. 

Sheet  glass;  Method  of  and  apparatus  for  drawing 

.     Sheet    glass   drawing    apparatus.     W.    J. 

Mellersh-Jackson.       From     The     Libbey     Owens 
Sheet  Glass  Co.     E.P.  184,989-90,  28.7.21. 

Bricks  or  such  like;  Method  and  means  of  utilising 

u-aste  heat  for  effecting  the  drying  of .    C.  F. 

Twigg.     E.P.  184,540,  14.4.21. 


IX— BUILDING  MATERIALS. 

Cement;   Thermochemical    research    on   .      R 

Nacken.  Zement,  1922,  11,  245—247,  257—258. 
Chem.  Zentr.,  1922,  93,  IV.,  366—367. 
The  author  deals  with  the  drying  of  cement  in 
rotary  dryers  at  about  500°  C,  the  expulsion  of 
carbon  dioxide  at  900°  C,  incomplete  burning 
between  1000° — 1250°  C,  in  which  stage  exothermic 
reactions  occur,  burning  at  1250°  C,  and  finally 
strongly  burning  at  1400°  C.  or  higher.  The 
development  of  heat  in  the  burning  of  cement  is 
low  below  the  stage  at  which  carbon  dioxide  is 
expelled.     The  heat  of  reaction  begins  to  increase 


slowly  at  930°  and  rises  from  120  to  500  cals.  per 
grm.,  then  more  slowly  to  600  cals.  per  grm.  The 
maximum  is  at  about  950°  C.  Immediately  the 
carbon  dioxide  is  expelled,  a  vigorous  reaction 
occurs,  i.e.,  the  formation  of  calcium  silicates  and 
aluminates,  this  reaching  a  maximum  at  960°  C, 
after  which  equilibrium  is  very  quickly  reached. 
Different  results  obtained  in  technical  practice  are 
due  to  heterogeneity  of  the  raw  materials  and  the 
fact  that  some  calcium  carbonate  has  escaped  burn- 
ing until  the  end.  It  is  calculated  that  the  quantity 
of  heat  required  to  burn  1  kg.  of  clinker  up  to  a 
temperature  of  1400°  C.  is  about  900  cals. — A.  C. 

Blast-furnace   slags;   Conversion  of  acid  into 

basic  slags  and  cement  by  remclting.  R.  Grtin 
and  C.  Biehl.  Stahl  u.  Eisen,  1922,  42,  1158— 
1167. 

Portland  cement  can  be  produced  from  acid  blast- 
furnace slag  by  the  addition  to  the  fluid  slag  of 
those  oxides  (lime  and  alumina)  which  are  lacking 
in  comparison  with  Portland  cement.  It  is  advisable 
to  add  alumina  first  and  lime  later.  The  process 
is,  however,  difficult  to  carry  out  in  consequence  of 
the  high  temperatures  necessary.  With  increasing 
lime  content  the  molten  slag  is  only  kept  fluid  with 
difficulty,  stoppages  are  frequent,  and  the  cost  of 
working  is  high.  The  production  of  blast-furnace 
slag  cement  is  however,  practicable.  The  trans- 
formation of  poorly  hydraulic  German  slags  into 
products  suitable  for  this  purpose  requires  rela- 
tively little  heat  consumption,  the  high  tempera- 
tures necessary  for  making  Portland  cement  are  not 
necessary,  and  the  troublesome  formation  of  car- 
bides is  avoided.  From  these  enriched  slags  a  good 
blast-furnace  slag  cement  may  be  milled  which  is 
equally  as  good  as  Portland  cement.  The  enrich- 
ment of  blast-furnace  slag  with  lime  alone  is  im- 
practicable even  with  the  most  modern  furnace  con- 
struction. Alumina  should  be  added  before  or  with 
the  lime  to  keep  down  the  melting  point.  By  this 
means  a  large  enrichment  in  lime  is  possible,  and 
a  final  product  is  obtained  capable  of  being  finely 
granulated  and  which  has  the  latent  hydraulic  pro- 
perties desired  for  blast-furnace  slag  cement  manu- 
facture. The  addition  of  lime  in  quantity  equal  to 
that  in  Portland  cement  is  not  necessary.  The  lime 
content  can  be  limited  to  50%,  by  which  means  a 
blast-furnace  slag  may  be  made  similar  to  basic 
German  foundry  slags  and  suitable  for  the  produc- 
tion of  blast-furnace  slag  cement. — T.  H.  Bu. 

Concrete    in    sea-wafer;    Tests    of    .      L.    C. 

Wasou.     Proc.  Amer.  Soc.  Civil  Eng.,  1922,  48, 

1597—1604. 
Test  specimens  of  reinforced  concrete  (of  different 
proportions  and  different  amounts  of  mixing  water) 
were  immersed  for  13J  years  in  sea-water  under 
j  stringent  tidal,  abrasive  and  temperature  condi- 
tions, portions  of  the  specimens  being  permanently 
above  high  water  mark  and  portions  below  low- 
water  mark.  Test  blocks  were  cut  from  the  upper 
and  lower  portions  of  four  poor  specimens,  and 
crushing  tests  made  to  the  point  of  failure.  The 
dry  upper  portions  were  found  to  have  a  consistent 
strength  of  92%  of  that  of  the  wet  lower  ones.  From 
these  tests  and  from  others  described,  the  mechanical 
action  of  the  elements  appears  more  important  than 
the  chemical,  while  dry-casting  of  concrete  work 
and  the  quantity  of  mixing  water,  are  influencing 
factors.  Steel  is  adequately  protected  from 
corrosion,  and  a  rich  concrete  made  of  good  quality 
normal  cement  (or  one  low  in  alumina)  mixed  with 
9 — 10%  of  water  and  dry-placed  with  careful 
spading  gives  durability  below  low  and  above  high 
tides,  enhanced  if  a  protective  coating  is  laid  be- 
tween tidal  limits  should  abrasion  be  great. 

—J.  B.  P. 


8115a  Cl.  X.— METALS;  METALLUBGY,  INCLUDING  ELECTRO-METALLURGY      [Oct.  31,  1922. 


Patents. 

Wood;  Impregnation  of  .     Soc.  de  Recherches 

et  de  Perfectionnements  Industriels.  E.P. 
168,045,  19.7.21.  Conv.,  20.8.20. 
Wood  is  impregnated  with  crude  or  purified  xylenol 
(from  coal  tar),  either  alone  or  mixed  with  other 
substances,  and  suspended  or  emulsified  in  an  inert 
medium  such  as  water;  soap,  preferably  sodium 
resinate,  is  added  to  stabilise  the  emulsion. 

—A.  B.  S. 

Bituminous  compositions;  Manufacture  of  — — 
suitable  for  buildinrj  or  for  forming  road  or  like 
surfaces.  A.  R.  Tabary.  E.P.  183,914,  28.4.21. 
A  product  for  coating  or  paving  roads  etc.  and  for 
manufacturing  building  materials  is  made  by  add- 
ing fine  sand  or  crushed  hard  material  to  a  mixture 
of  mineral  or  vegetable  pitch,  clay,  limestone,  and 
asphalt.  The  product  may  be  incorporated  with 
the  ordinary  materials  used  in  making  a  metalled 
road  or  superficially  distributed  with  tar,  or  cast 
in  the  joints  of  stone  or  wood  paved  roads. 

— H.  S.  H. 

Kilns;  Vertical  gas-fired for  burning  limestone 

or  the  like.  C.  F.  Priest.  E.P.  184,057,  3.8.21. 
The  gas  belt  of  a  vertical  gas-fired  kiln  is  provided 
with  hoppered  cleaning  chambers  placed  between 
the  belt  and  the  gas  ports,  the  chambers  being  pro- 
vided with  manholes,  gas-inlet  and  control  valve, 
and  dust  and  tar  collecting  and  releasing  means. 
A  hopper  is  provided  for  discharging  the  finished 
lime  and  has  one  or  more  adjustable  air  inlets.  A 
large  storage  chamber  is  placed  above  and  distinct 
from  the  preheating  zone  with  a  hopper  between  the 
chamber  and  the  preheating  zone.  The  products 
of  combustion  are  passed  through  the  upper  part 
of  the  kiln  to  dry  and  preheat  the  limestone  without 
passing  through  the  storage  chamber  of  the  kiln. 
The  air  inlets  are  provided  with  protection  plates 
in  order  to  prevent  choking. — H.  S.  H. 

Botary  [cement]  kilns  [;  Heat  insulation  for ]. 

O.  Faber  and  H.  V.  A.  Briscoe.     E.P.  185,327, 

5.9.21. 
Lagging  made  up  in  the  form  of  sectional  plates  of 
non-conducting  material  is  applied  to  the  outside 
of  the  steel  shell  of  a  rotary  cement  kiln  and  is 
fixed  by  set  screws  (or  other  means)  made  of  fusible 
metal,  "melting  at  say  600°  C,  so  that  in  the  event 
of  the  lagging  being  too  effective  and  causing  the 
steel  plates  to  overheat,  the  screws  will  fuse  and  the 
lagging  drop  off  and  thus  call  attention  to  the 
danger  and  also  to  a  certain  extent  automatically 
cure  the  overheating.  The  insulation  may  be  made 
thicker  and  more  effective  at  the  cooler  end  of  the 
kiln.— B.  M.  V. 

Boofing  material  or  tile.  Durato  Asbestos  Flooring 
Co.,  Ltd.,  and  A.  Z.  Nemeth.  E.P.  184,910, 
31.5.21. 
Slabs  or  tiles  are  made  from  sawdust,  saturated 
with  magnesium  chloride  solution  of  sp.  gr.  1"07 
(10°  B.),  and  then  mixed  with  1  pt.  of  magnesite 
and  3 — 4  pts.  (by  vol.)  of  soapstone  (the  60apstone 
being  about  one-tenth  of  the  whole  mass),  and  the 
whole  mixed  with  a  further  quantity  of  magnesium 
chloride  solution  of  sp.  gr.  1T2  (15°  B.),  so  as  to 
form  a  homogeneous  paste.  The  faces  of  the  tile 
are  afterwards  coated  with  a  waterproofing 
material. — A.  B.  S. 

Building  material;  Process  for  the  preparation  of  a 

raw  material  from  peat  for  making  a  .     E. 

Dyckerhoff.     G.P.  356,334,  6.5.16. 

Peat  is  treated,  without  drying,  with  a  chloride 
solution,  such  as  magnesium  chloride  mother  liquors 
from  working  up  carnallite,   the  resulting  mass  is 


mixed   with   cement  or  the  like,   and   the   mixture 
rolled  into  plates  or  shaped  into  bricks. — A.  R.  P. 

Products  from,  wood.    G.P.  354,865.    See  IIb. 

Kilns   for  burning   lime  etc.     G.P.    352,043.     See 
VIII. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Wrought  iron;  Direct  smelting  of from  ore  by 

Basset's  process.     I.  Moscieki.     Przemysl  Chem., 
1922,  6,  73—81.    Chem.  Zentr.,  1922,  93,  IV.,  372. 

Wust's  objections  (J.,  1922,  59  a)  are  regarded  as 
unfounded  in  view  of  the  fact  that  he  did  not  take 
the  dissociation  of  carbon  dioxide  into  account  in 
calculating  the  temperature  of  combustion.  The 
temperature  of  2560°  C.  quoted  by  Wiist  for  open- 
hearth  furnaces  should  be  only  2220°,  which  is  only 
25°  C.  above  the  value  calculated  for  Basset's  pro- 
cess. Further,  with  the  rotary  furnace  a  lower 
flame  temperature  than  that  required  in  the  open- 
hearth  furnace  would  suffice,  and  it  may  be  accepted 
that  combustion  temperatures  quite  sufficient  for 
smelting  iron  can  be  developed  in  Basset's  furnace. 

—A.  C. 

Iron;    Sulphur    in    the    metallurgy    of    .       E. 

Blanchi.     Giorn.  Chim.  Ind.  Appl.,  1922,  4,  254— 
260. 

Experiments  were  made  at  temperatures  up  to 
about  1000°  C,  in  an  apparatus  comprising  two 
tubular  electric  furnaces  with  resistance  heating, 
one  for  the  preliminary  heating  of  the  gas  used  or 
for  the  production  of  carbon  monoxide  and  the 
other  for  the  actual  reaction  to  be  studied.  A  small 
arc  furnace  with  immersion  electrode  and  arrange- 
ments for  sampling  the  gases  and  for  direct  and 
spectroscopic  observations  was  also  employed.  The 
more  important  results  and  conclusions  arrived  at 
are  as  follows: — Calcium  chloride  dissociates  only 
in  presence  of  oxygen  or  in  a  strongly  oxidising 
medium;  carbon  dioxide  has  little  action  on _  it- 
owing  to  the  low  temperature  at  which  the  chloride 
volatilises.  Sulphides  give  up  sulphur  only  in  a 
strongly  oxidising  medium ;  in  presence  of  carbon 
monoxide  or  dioxide  they  remain  fixed  or  at  most 
form  stable  metallic  oxysulphides.  Sulphates  are 
dissociated  in  presence  of  oxygen  giving  sulphur 
trioxide  aud  dioxide  and  oxygen,  and  are  reduced  to 
sulphide  in  a  reducing  medium  containing  carbon 
monoxide.  The  presence  of  lime  has  no  appreciable 
effect  on  compounds  of  iron,  sulphur,  carbon,  and 
oxygen.  Consideration    of   these    and    of   other 

known  reactions  in  which  a  metal,  sulphur,  oxygen, 
chlorine,  and  carbon  take  part  shows  that  the  disso- 
ciation pressures  of  sulphur  united  to  fixed  bases 
are  little  inferior  to  those  of  oxygen.  When  heated 
these  sulphides  or  oxides  may  be  desulphurised  or 
deoxidised,  but  the  temperatures  required  at  the 
ordinary  pressure  are  so  high  as  to  be  unattainable 
by  ordinary  means;  an  intermediate  reaction  thus 
becomes  necessary.  Thus,  in  a  bath  of  sulphurised 
iron,  the  sulphur  may  be  eliminated  as  sulphur 
dioxide,  which  is  not  dissociated  at  1300°  C,  pro- 
vided that  the  quantity  of  oxygen  dissolved  in  the 
bath  is  in  excess  of  the  amount  necessary  to  oxidise 
the  carbon,  phosphorus,  manganese,  and  silicon ;  if 
there  is  a  deficit  of  oxygen  and  an  excess  of  carbon, 
a  fixed  oxysulphide,  undissociable  at  the  tempera- 
ture of  the  molten  bath,  is  formed.  The  pressures 
both  of  the  chlorine  in  chlorides  and  of  the  vapours 
of  the  chlorides  are  generally  so  low  that,  in  contact 
with  the  bath,  these  compounds  are  volatilised  or 
decomposed  before  they  are  able  to  react  with  the 
fused  metal.  The  bases  contained  in  the  slag  are 
not  sufficiently  active  desulphurising  agents  to  have 


Vol.  XLI.,  No.  20]    Cl.  X.— METALS  ;    METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     817a 


any  practical  effect,  and  the  only  reagents  known  to 
act  in  this  way  are  the  oxygen  during  the  oxidising 
period  of  the  refining,  and  the  manganese,  more 
particularly  during  the  reducing  period.  It  is 
possible  that  calcium  and  magnesium  may  be  de- 
sulphurants  even  superior  in  this  respect  to 
manganese,  but  no  practical  proofs  of  this  are  yet 
available.— T.  H.  P. 

Nickel  steel  and  chromium  steel;  "  Characteristic 

curves  "  of .    H.  Jungbluth.     Stahl  u.  Eisen, 

1922,  42,  1392—1396. 

In  the  experiments  of  Portevin  and  Chevenard 
(J.,  1921,  698  a)  on  a  nickel-chrome  steel  soft 
quenchings  (overhardening)  were  not  obtained,  but 
the  possibility  of  obtaining  them  was  indicated  by 
the  fact  that  the  characteristic  curves  did  not  break 
off  at  the  abscissae,  but  bent  and  turned  back  into 
the  region  of  soft  quenchings,  i.e.,  the  austenitic 
region,  where  the  Brinell  hardness  is  lower.  To 
confirm  this  a  nickel  steel  containing  0'5%  C  and 
5'0%  Ni,  and  a  chrome  steel  containing  1'6%  C  and 
1'6%  Cr  was  quenched  from  temperatures  varying 
from  750°  to  1150°  C.  at  varying  velocities,  four  in 
the  case  of  the  nickel  steel  and  seven  with  the 
chromium  steel,  the  speeds  varying  from  that  of  a 
water  quenching  to  that  of  furnace  cooling.  A 
series  of  curves  was  plotted,  all  with  quenching 
temperatures  as  abscissae  and  with  time,  Brinell 
hardness,  or  quenching  velocity,  as  ordinates.  The 
bending  of  the  curves  is  clearly  shown,  also  the 
limiting  curves  for  minimum  and  maximum  hard- 
ness. The  curve  of  maximum  hardness  cuts  the 
family  of  curves  into  two  parts  giving  softness  on 
either  hand  due  in  one  case  to  ferrite-troostite,  and 
in  the  other  to  austenite.  This  was  confirmed  by 
micro-examination,  maximum  hardness  correspond- 
ing with  pure  martensite  being  obtained  for  a  given 
cooling  speed,  whilst  higher  quenching  tempera- 
tures gave  softness  with  austenite  and  lower 
temperatures  softness  with  ferrite-troostite.  From 
these  curves  the  thermal  conditions  necessary  to 
attain  any  desired  grade  of  hardness  can  be  read 
off  directly,  also  whether  the  structure  obtained  will 
be  austenitic  or  sorbitic. — J.  W.  D. 

Steels;   Influence   of   velocity    of   solidification  on 

double-carbide  .      P.    Oberhoffer.     Stahl   u. 

Eisen,  1922,  42,  1240—1242. 
To  determine  the  effect  of  the  velocity  of  solidifica- 
tion on  the  properties  of  a  series  of  chromium  steels, 
steels  of  similar  composition  were  cast  in  iron  chills 
or  allowed  to  cool  down  in  the  crucible  respectively. 
On  primary  etching  the  steels  cooled  in  the  crucible 
showed  a  dendritic  structure,  those  cast  in  chills 
an  extremely  fine  globular  structure.  On  secondary 
etching  with  a  concentrated  solution  of  picric  acid 
in  alcohol  containing  a  few  drops  of  nitric  acid,  a 
typical  steel  containing  1T6%  C  and  6%  Cr 
showed  a  fine  network  of  carbide  when  cast  in  chill, 
and  a  large  network  when  cooled  in  the  crucible. 
On  forging  down  from  45  mm.  to  15  mm.  square  the 
carbide  network  was  elongated  in  the  direction  of 
rolling.  The  steel  cooled  in  the  crucible  showed  the 
eutectic  similar  to  ledeburite  in  typical  form,  but 
in  the  chill  cast  steel  the  characteristics  of  the  eu- 
tectic were  no  longer  visible,  and  the  carbide  was 
very  uniformly  distributed.  Mechanical  tests  on 
the  forged  test  pieces  gave  no  clear  indications 
except  that  the  shock  tests  were  consistently  higher 
for  the  chill  cast  specimens. — T.  H.  Bu. 

Antimonial   gold   ores   of   the   Murchison   Bange; 

Application    of    flotation    to    the    .     H.    R. 

Adam.     J.   Chem.   Met.   Soc.   S.   Afr.,   1922,   23, 

3—9. 
A  number  of  tests  were  carried  out  to  determine 
whether  a  flotation  treatment  of  the  ore  would  re- 
move the  stibnite  in  the  concentrate  and  allow  a 
good  recovery  of  gold  from  the  tailings.     In  every 


case  it  was  found  that  the  concentrate  contained  a 
considerable  proportion  of  the  gold,  so  that  further 
treatment,  e.g.,  by  roasting  or  volatilising  roasting, 
followed  by  cyaniding,  was  necessary.  The  tailings 
from  flotation  yielded  about  50%  of  their  gold  to 
mercury,  but  practically  none  of  the  remainder 
could  be  extracted  by  cyanide.  The  best  results 
were  obtained  by  grinding  the  ore  wet  to  pass  a 
150-mesh  screen,  followed  by  amalgamation  and 
cyaniding  of  the  amalgamation  tailing,  whereby 
87%  of  the  gold  was  extracted.  The  gold  appears 
to  be  associated  intimately  with  tetrahedrite,  and 
only  after  very  fine  grinding  can  it  be  successfully 
dissolved  from  the  ore;  the  application  of  flotation 
in  the  treatment  of  the  ore  would  simply  be  in  place 
of  the  usual  cyaniding  and  as  a  superior  method  of 
concentration  to  gravity  methods. — A.  R.  P. 

Silver-plated  work;  Cause  of  red  stains  on  . 

A.    Jefferson.      Inst,    of    Metals.      Sept.,    1922. 
[Advance  copy.]     4  pages. 

Nickel-silver  discs  were  silver-plated  in  a  single 
vat  under  identical  conditions,  and  finished  by 
widely  varying  processes.  The  results  obtained, 
together  with  those  of  tests  of  the  rouge-finishing 
and  hand-polishing  processes,  showed  that  the  in- 
discriminate application  of  rouge  to  an  over-heated 
surface  is  responsible  for  the  red  stains  sometimes 
observed  on  silver-plated  work. — J.  B.  P. 

Brasses;  Hardness  of  the  and  some  experi- 
ments on  its  measurement  by  means  of  a  strainless 
indentation.  F.  W.  Harris.  Inst,  of  Metals, 
Sept.,  1922.     [Advance  copy.]     27  pages. 

The  hardness-composition  curve  of  the  brasses  after 
sand  casting,  chill  casting,  and  chill  casting  followed 
by  hot  forging  and  annealing  was  determined 
using  the  Brinell  machine.  A  slight  maximum 
occurs  in  the  middle  of  the  a-phase  and  a  small 
depression  in  the  /8-phase.  In  the  range  65 — 54% 
Cu  the  hardness  bears  an  almost  linear  relation  to 
the  percentage  composition.  It  is  shown  that  the 
relation  between  the  hardness  H  and  the  applied 
load  for  70:30  brass  could  be  expressed  by 
H  =  PX  +K,  where  for  zero  load  H  =  K  =  251,  which 
is  the  true  hardness  of  the  material.  The  same  bar 
after  being  indented  with  the  ball  was  annealed  and 
the  ball  replaced  in  the  impression  under  the  same 
load.  This  was  repeated  till  the  area  of  impression 
remained  constant,  viz.,  after  the  tenth  anneal, 
when  the  ball  hardness  was  209.  The  absolute  hard- 
ness number  of  the  brasses  was  then  determined, 
using  this  method  of  strainless  indentation.  The 
curve  agreed  in  general  form  with  the  ordinary  one, 
but  was  somewhat  less  sinuous.  The  relation  be- 
tween the  Brinell  and  absolute  hardness  numbers  is 
shown  to  be  linear  above  an  initial  area  of  indenta- 
tion of  9  sq.  mm.,  but  the  amount  of  strain  is  not 
directly  proportional  to  the  size  of  the  indentation. 
The  significance  of  the  maxima  and  minima  in  the 
hardness  curves  is  considered. — T.  H.  Bu. 

Cast  metals  and  alloys;  New  forms  of  apparatus  for 
determining  the  linear  shrinkage  and  for  bottom- 
pouring    of   accompanied    by   data    on    the 

shrinkage  and  hardness  of  cast  copper-zinc  alloys. 
F.  Johnson  and  W.  G.  Jones.  Inst,  of  Metals, 
Sept.,  1922.  [Advance  copy.]  28  pages. 
In  the  bottom-pouring  method  described,  the  molten 
metal  flows  from  a  heated  crucible  into  the  mould 
and  the  rate  of  flow  is  controlled  by  a  stopper 
operated  by  a  lever.  The  apparatus  facilitates 
control  of  primary  temperature  and  rate  of  pour- 
ing, and  the  exclusion  of  dross,  and  formation  of 
"  zinc-fume  "  or  the  like  is  minimised.  The  shrink- 
age values  of  chill-cast  copper-zinc  alloys  found  by 
the  authors  were  higher  than  those  obtained  for  sand- 
cast  bars  by  Turner  and  Murray  (J.,  1909,  1137), 
but  the  curve  showing  the  relationship  of  shrinkage 


/ 


818a 


Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.    [Oct.  31,  1922. 


to  composition  was  similar  to  that  previously 
obtained,  except  that  no  minimum  at  60%  copper 
was  found.  The  hardness  numbers  were  determined 
by  the  Brinell  and  the  Shore  methods,  both  on  the 
alloys  as  cast  and  after  annealing,  the  annealing 
producing  uniformity.  The  Brinell  hardness- 
composition  curve  showed  an  increase  of  hardness 
over  the  range  100  to  88%  copper,  a  constant  hard- 
ness from  88  to  72%,  with  a  slight  fall  to  63%,  at 
which  point  a  rapid  increase  set  in  with  the  appear- 
ance of  the  beta  constituent,  an  increase  which  was 
maintained  to  45%  copper  with  the  exception  of  a 
small  dip  between  53  and  50%.  The  changes  of  the 
scleroscopic  hardness  with  composition  were  of  a 
similar  character,  but  less  pronounced,  whilst  over 
the  range  60  to  53  %  copper  no  increase  of  hardness 
was  shown,  indicating  a  very  slight  difference, 
scleroscopically,  between  the  beta  and  alpha  phases. 
Tests  on  annealed  bars  cold  rolled  showed  that  the 
hardening  capacity  of  the  alpha  brasses  increases 
rapidly  with  increase  of  zinc  between  100  and  75% 
copper.  Hardness  determinations  on  rolled  strips, 
annealed,  confirmed  in  general  the  results  obtained 
on  the  bars  oast  and  annealed. — J.  W.  D. 

Copper   wires;    X-ray    examination    of    the    inner 

structure  of .     Strained  metals.     I.     A.  Ono. 

Mem.   Coll.   Eng.   Kvushu  Imp.   Univ.,   1922,   2, 
241—260. 

X-bat  interference  figures  of  strained  metals  and  of 
metals  annealed  after  straining  show  that  the 
crystal  lattices  form  a  fibrous  structure  in  the 
strained  state  and  that  this  rearrangement  becomes 
more  pronounced  the  greater  the  strain  to  which 
the  metal  has  been  subjected.  The  inclinations  of 
several  simple  planes  iu  the  face-centred  cubic 
lattice  and  the  relative  intensity  of  the  rays  re- 
flected from  them  have  been  calculated,  and  it  is 
shown  that  a  group  of  these  lattices  with  the 
trigonal  axis  in  the  longitudinal  direction  of  the 
specimen  gives  rise  to  the  pattern  obtained  in  the 
experiment.  It  is  suggested  that  the  changes  in 
the  lattice  arrangement  of  crystals  afford  a  more 
natural  explanation  of  the  changes  of  properties 
that  occur  in  metals  that  have  been  subjected  to 
strain  than  does  the  assumption  that  an  amorphous 
laver  is  formed  at  the  slip  planes  of  the  grains. 

—A.  R.  P. 

Aluminium-copper   alloys;    Copper-rich   .      D. 

iStockdale.     Inst.  Metals,  Sept.,  1922.     [Advance 
copy.]     14  pages. 

The  equilibrium  diagram  of  copper-aluminium 
alloys  containing  up  to  20%  Al  has  been  investi- 
gated by  taking  cooling  curves  and  by  the  micro- 
examination  of  quenched  specimens.  Aluminium 
lowers  the  freezing  point  of  copper  to  an  amount 
proportional  to  the  concentration  up  to  3'5%  Al,  at 
which  point  there  is  a  slight  break  in  the  liquidus, 
which  then  falls  as  a  smooth  curve  to  a  minimum  at 
1031°  C.  and  8"3%  Al,  rises  to  a  maximum  again  at 
1255%  Al  and  1047°  C.,  corresponding  to  the  forma- 
tion of  Cu3Al,  and  falls  away  again  without  another 
break  up  to  20%  Al.  The  solidus  lies  very  close  to 
the  liquidus  for  all  alloys  containing  less  than 
18%  Al,  the  maximum  freezing  range  of  these  alloys 
being  about  10°  C.  The  eutectic  line  at  1031°  C. 
has  been  traced  from  7'5  to  85%  Al  and  a  second 
eutectic  line  has  been  established  at  1017°  C.  in 
alloys  containing  16'5  to  18%  Al.  Between  10  and 
14%  Al  the  liquidus  and  solidus  coincide  and  above 
18%  Al  the  existence  of  a  eutectic  line  at  868°  C. 
has  been  confirmed.  The  a  solid  solution  of  alu- 
minium in  copper  contains  9"8%  Al  at  20°  C.  and 
only  7-4%  at  1030°  C.  Solid  alloys  containing 
10—16%  Al  show  a  change  point,  corresponding  to 
the  disappearance  of  the  fi  phase,  at  537°  C,  and  a 
second  slight  arrest  at  286°  C,  while  those  contain- 
ing 14 — 16%  Al  have  an  additional  arrest  point  at 


774°  C,  corresponding  to  the  disappearance  of  the 
7  phase. — A.  R.  P. 

Alloys  of  aluminium  with  copper,  magnesium,  and 
silicon  in  the  solid  state;  Constitution  and  age- 
hardening  of  .      M.  L.  V.  Gayler.      Inst,  of 

Metals,  Sept.,  1922.  [Advance  copy.]  32  pages. 
The  solubility  of  each  of  the  compounds,  magnesium 
silicide  and  aluminium  cupride,  in  solid  aluminium 
is  affected  by  the  presence  of  the  other;  both  are 
practically  insoluble  at  250°  C,  and  at  500°  C.  tho 
solubility  is  greatly  reduced.  The  age-hardening 
of  alloys  containing  copper  and  magnesium 
silicide  is  greater  than  of  those  containing  either 
constituent  alone  and  is  due  to  the  difference  in 
the  solubilities  of  Al,Cu  and  Mg,Si  in  solid  alu- 
minium at  high  and  low  temperatures.  Of  the  two 
constituents  magnesium  silicide  plays  the  pre- 
dominant part.  If  one  constituent  is  fixed  the 
maximum  age-hardening  is  obtained  when  the 
second  constituent  is  present  to  the  maximum 
amount  which  can  be  held  in  solution  at  high 
temperatures.  Alloys  which  had  been  age-hardened 
at  room  temperature  were  found  on  further  heat 
treatment  to  soften  slightly,  but  subsequently 
showed  increased  hardness  and  tensile  strength  and 
rapid  decrease  of  percentage  elongation.  Derived 
differential  heating  curves  of  quenched  alloys  con- 
taining 0-81%  Mg2Si  with  1-5,  3/7,  and  8%  Cu 
showed  three  critical  points,  the  highest  due  to  the 
precipitation  of  copper,  and  the  second  to  that  of 
magnesium  silicide.- — T.   H.  Bu. 

Aluminium;  Effects  of  over-heating  and  repeated 

melting  on .  W.  Rosenhain  and  J.  D.  Grogan. 

Inst,   of  Metals,  Sept.,    1922.      [Advance  copy.] 
11  pages. 

Aluminium  of  the  highest  obtainable  purity 
(9965%)  and  another  grade  containing  0'77%  Fe 
and  0-72%  Si,  were  cast  at  700°,  800°,  900°,  and 
1000°  C.  respectively,  forged  into  f-in.  slabs  and 
rolled  to  0"1  in.  thickness.  Tensile  tests  on  pieces 
cut  from  the  annealed  sheets  showed  no  evidence  of 
deterioration  in  quality.  The  macrostructures  of 
the  small  ingots  were  similar,  except  for  an  increase 
in  crystal  size  with  higher  casting  temperature. 
The  highest-grade  aluminium  was  melted  and  a 
portion  cast  at  720°  C,  other  portions  being  held 
for  1  hr.  at  900°— 1000°  0.  and  1000°— 1100°  C.  re- 
spectively before  casting.  After  rolling  to  0'5  in. 
thickness,  longitudinal  and  transverse  test-pieces 
were  taken  from  annealed  sheets,  but  no  deteriora- 
tion was  found  due  to  the  above  treatments.  The 
role  supposed  to  be  played  by  oxidation  during  the 
melting  of  aluminium  is  therefore  considerably 
exaggerated.  The  two  grades  were  remelted  and 
re-rolled  to  0'05  in.  thickness  ten  times,  but  no 
systematic  change  in  the  properties  of  the  metal 
was  found  except  a  slight  increase  in  the  ultimate 
stress.  The  results  are  in  contradiction  to  the  views 
current  in  the  industry,  and  it  is  probable  that  the 
deterioration  ascribed  to  re-melting  under  industrial 
conditions  may  be  due  to  a  slight  progressive  con- 
tamination with  other  metals. — T.  H.  Bu. 

Aluminium  utensils;  Cleaning  of .    R.  Seligman 

and    P.    Williams.      Inst.    Metals,    Sept.,    1922. 
[Advance  copy.]     2  pages. 

The  solvent  action  of  sodium  carbonate  solutions 
on  aluminium  may  be  entirely  prevented  by  the 
addition  of  small  amounts  of  sodium  silicate  to  the 
solution;  thus,  a  5%  solution  of  "soda  crystals" 
containing  005%  of  water-glass  is  without  visible 
action  on  aluminium  at  75°  C.  Mixtures  of  sodium 
carbonate  and  silicate,  containing  10 — 12%  of  the 
latter  and  sold  under  the  trade  names  of  "  Car- 
bosil,"  "  Pearl  Dust,"  and  "  Aquamol,"  remove  all 
the  grease  from  aluminium  articles  without  attack- 


Vol.  six,  No.  20.1    Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.       819a 


ing  the  metal  if  sufficient  is  used  to  precipitate  all 
the  lime  in  the  water,  i.e,  in  solutions  containing 
more  than  0"5%  of  the  mixture. — A.  R.  P. 

White  metals.  A.  H.  Mundey,  C.  C.  Bissett,  and 
J.  Cartland.  Inst,  of  Metals,  Sept.,  1922. 
[Advance  copy.]     25  pp. 

Antifriction  alloys  and  other  white  metals  such  as 
the  various  classes  of  printers'  alloys,  die-casting 
alloys,  metals  for  chemical  works  castings,  solders, 
etc.  are  considered  from  the  point  of  view  of 
the  manufacturer  and  user.  Their  composition, 
mechanical  and  physical  properties  are  given,  and 
their  constitution  and  microstructure  dealt  with 
only  so  far  as  the  user  and  the  maker  are  directly 
concerned.  Nine  typical  bearing  metals,  chiefly  of 
the  tin  and  lead  base  varieties,  are  fully  described 
together  with  their  suitability  for  particular  pur- 
poses. The  principal  value  of  these  alloys  is  due 
to  the  way  in  which  they  maintain  the  oil  film,  the 
hard  constituent  standing  up  in  slight  relief  to 
carry  the  load  and  the  softer  matrix  forming 
channels  for  holding  the  oil.  In  the  tin-base  bearing 
metals  the  copper-tin  mixed  crystals  solidify  first 
and  entangle  the  cubes  of  tin-antimony  mixed 
crystals,'  thus  ensuring  their  uniform  distribution. 
The  functions  of  tin-base  and  lead-base  alloys  are 
similar.  In  casting  bearing  metals  the  greatest 
care  and  skill  must  be  exercised,  as  overheating 
causes  the  oxidation  and  segregation  of  the  valuable 
constituents,  whilst  if  the  pouring  temperature  is 
too  low  the  hardening  constituents  are  left  behind 
in  the  ladle  owing  to  liquation. — J.  W.  D. 

Uranium  alloys  [with  nickel,  iron,  and  aluminium]. 
P.  A.  Heller.    Metall  u.  Erz,  1922,  19,  397—399. 

Alloys  of  uranium  with  nickel  or  iron  may  be  pro- 
duced on  a  comparatively  large  scale  by  fusing 
suitable  mixtures  of  uranium  oxide  (UsOs)  and 
nickel  oxide  with  the  requisite  amount  of  carbon 
in  a  carbon  crucible  by  means  of  an  arc.  The  oxide- 
carbon  mixture  is  first  briquetted  by  means  of  tar 
and  the  briquettes  are  heated  in  a  wind  furnace  to 
drive  off  volatile  matter  before  reducing  in  the  arc 
furnace.  Alloys  of  uranium  with  nickel  containing 
67 — 70%  U  and  4'5 — 50%  C  and  with  iron  contain- 
ing 45%  U  and  6'5%  C  have  been  prepared  by  this 
method.  Attemps  to  reduce  the  carbon  content  of 
the  nickel  alloys  by  fusing  them  in  a  magnesia- 
lined  furnace  and  adding  nickel  oxide  resulted  in 
the  production  of  an  alloy  containing  less  than  1% 
C  but  only  26%  U,  the  remainder  of  the  latter 
having  been  slagged  by  the  magnesia.  The  produc- 
tion of  aluminium-uranium  alloys  by  the  thermit 
method  gives  a  very  poor  yield,  but  satisfactory 
results  may  be  obtained  by  reducing  a  mixture  of 
uranyl  fluoride  and  uranium  tetrafluoride  (formed 
by  adding  U,08  to  hydrofluoric  acid)  by  means  of 
metallic  calcium  in  the  presence  of  aluminium,  the 
operation  being  conducted  in  an  iron  bomb.  By 
this  method  an  allov  containing  62"8%  U,  34"8%  Al, 
P4%  Ca,  0-5%  C,  and  0"25%  Si  was  obtained. 

—A.  R.  P. 

Antimony-bismuth  system.  M.  Cook.  Inst,  of 
Metals,  Sept.,  1922.     [Advance  copy.]    16  pages. 

A  complete  equilibrium  diagram  of  antimony- 
bismuth  alloys  is  given  for  the  first  time,  and 
several  doubtful  questions  of  structure  are  eluci- 
dated in  a  full  microscopical  and  thermal  examina- 
tion. The  freezing  points  of  bismuth  and  antimony 
are  270-5°  C.  and  6305°  C.  respectively.  The 
liquidus  is  smooth  and  unbroken,  and  the  solidus  is 
horizontal  at  270°  C.  up  to  60%  of  antimony,  after 
which  it  rises,  at  first  gently,  then  steeply  to  the 
freezing  point  of  antimony,  the  system  being  iso- 
morphous  but  not  eutectiferous  despite  the  hori- 
zontal solidus.     Microscopical  examination  of  chill- 


cast  and  slowly  cooled  specimens  (etched  with  ferric 
chloride  and  hydrochloric  acid  save  near  the  anti- 
mony end  where  copper  ammonium  chloride  was 
used)  revealed  dendritic  duplex  structures  which 
were  rendered  homogeneous  by  prolonged  annealing 
at  275°  C.  Twinning,  ascribed  to  stresses  set  up 
by  expansion  on  cooling,  and  two  kinds  of  banded 
structures  were  noted  in  some  of  the  crystals. 

—J.  B.  P. 

Non-ferrous  metals  used  in  locomotives ;  Effect  of 

superheated  steam  on  .     H.  Fowler.     Inst. 

Metals,  Sept.,  1922.  [Advance  copy.]  4  pages. 
The  most  suitable  alloy  for  piston  tail  rod  bushes 
in  locomotives  to  withstand  the  action  of  super- 
heated steam  at  340°  C.  is  a  phosphor-bronze  con- 
taining 11%  Sn,  1%  P,  and  88%  Cu,  while  for  the 
piston  rod  packing  (the  McNamee  rings)  an  anti- 
monial  lead  containing  30%  Sb  is  more  satisfactory 
than  the  usual  20%  Sb  alloy.  Gun-metal,  phosphor- 
bronze,  and  cast  iron  were  found  unsuitable  for  the 
by-pass  valves  which  are  not  only  subjected  to  high 
temperature  but  also  to  a  good  deal  of  shock.  A 
complex  nickel  brass  containing  small  percentages 
of  tin,  lead,  aluminium,  manganese,  and  iron  was 
found  satisfactory,  but  owing  to  its  high  cost  was 
replaced  by  malleable  iron  or  steel  castings. 

—A.  R.  P. 

Intermetallic  actions.  The  system  thallium-arsenic. 
Q.  A.  Mansuri.  Inst,  of  Metals,  Sept.,  1922. 
[Advance  copy.]     14  pages. 

Thallium  and  arsenic  do  not  interact  chemically, 
nor  do  they  form  mixed  crystals.  The  equilibrium 
diagram  of  the  system  is  a  perfect  case  of  the 
immiscibility  type.  The  freezing  point  of  thallium 
is  depressed  by  increasing  additions  of  arsenic  until 
the  eutectic  point  (8'01%  As,  about  215°  C.)  is 
reached.  After  this  the  freezing  point  gradually 
rises  to  240°  C.  All  alloys  containing  13—40%  As 
begin  to  freeze  at  240°  C,  and  are  made  up  of  two 
layers— an  upper  layer  rich  in  arsenic  and  a  lower 
layer  rich  in  thallium.  The  melting  point  of  alloys 
containing  more  than  55%  As  is  higher  than 
600°  C,  at  which  temperature  the  vapour  pressure 
of  arsenic  becomes  higher  than  3391  mm.,  and 
therefore  the  alloys  have  to  be  prepared  in 
evacuated,  sealed,  hard  glass  tubes. — J.  W.  D. 

Intermetallic  compounds;  Question  of  the  existence 

of in  the  gaseous  state.     A.  Eucken  and  O. 

Neumann.     Z.  Elektrochem.,  1922,  28,  322—324. 

Distillation  tests  on  sodium  amalgam  (Na3Hg)  at 
pressures  between  5  and  10  mm.  showed  that  at 
500°  C.  no  appreciable  quantity  of  any  mercury- 
sodium  compound  could  exist,  although  the  boiling 
point  of  the  liquid,  when  it  had  reached  the  com- 
position, NaHg,  remained  constant  for  a  consider- 
able time. — A.  R.  P. 

Grain-size  and  diffusion  [in  metals].  J.  H. 
Andrew  and  R.  Higgins.  Inst,  of  Metals,  Sept., 
1922.     [Advance  copy.]     10  pages. 

The  relation  between  grain  growth  and  diffusion 
was  studied  by  casting  y-brass  (60%  Zn)  on  to  a 
thick  rod  of  pure  copper.  The  composite  specimen 
was  sectioned  and  examined  under  the  microscope. 
Annealing  for  30  hrs.  at  800°  and  850°  C.  respec- 
tively was  found  sufficient  to  promote  diffusion  and 
rapid  grain  growth  simultaneously.  Annealing  at 
500°  C.  for  12  hrs.  and  at  550°— 575°  C.  for  5  days 
caused  a  breakdown  of  the  ^-crystals  into  smaller 
units  but  did  not  alter  the  o-constituent  so  markedly. 
In  explanation  of  the  breakdown  of  grain  size  by 
diffusion  it  is  suggested  that  whilst  in  the  interior 
of  grains  the  atoms  assume  the  state  of  closest  pack- 
ing, at  the  boundaries  the  atoms  touch  only  at  one 
part  of  the  circumference.  Plastic  deformation 
may  displace  the  equilibrium  of  certain  boundary 


820  a 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      [Oct.  31,  1022. 


atoms  which  upon  reheating  tend  to  revert  to  the 
condition  of  closest  packing,  and  rows  of  atoms  may 
be  brought  into  line  with  unstrained  atoms  of 
adjacent  crystals.  This  may  result  in  the  breaking 
up  of  a  grain  or  its  absorption  by  others.  The 
atoms  lying  along  the  grain  boundaries  have  a 
greater  number  of  free  valencies,  and  this  explains 
the  migration  of  a  separating  phase  to  the  grain 
boundaries.  If  the  suggestions  advanced  are 
justified,  it  is  not  necessary  to  assume  any  amor- 
phous material  at  the  grain  boundaries. — T.  H.  Bu. 

Eutectics;  Structure  of .     F.  L.  Brady.     Inst. 

Metals,  Sept.,  1922.  [Advance  copy.]  45  pages. 
Metallic  eutectics  may  be  divided  into  four  classes : 
globular,  in  which  both  metals  are  of  fairly  high 
surface  tension,  and  the  metal  of  higher  surface 
tension  is  present  in  the  smaller  amount,  e.g., 
cadmium-tin,  cadmium-lead,  copper-silver,  zinc- 
cadmium,  and  zinc-bismuth;  lamellar,  in  which  the 
two  metals  have  nearly  equal  surface  tensions  and 
are  present  in  nearly  equal  proportions  by  volume 
and  so  separate  in  continuous  curvilinear  or  reticu- 
lated sheets  or  plates,  e.g.,  lead-tin;  angular,  in 
which  at  least  one  of  the  metals  has  a  low  surface 
tension  or  a  high  cohesion,  when  the  alloy  solidities 
as  a  mass  of  crystalline  contour  or  arrangement, 
e.g.,  antimony-lead,  lead-bismuth,  tin-bismuth,  cad- 
mium-bismuth, silver-lead,  silver-bismuth,  gold- 
bismuth,  aluminium  -  tin,  copper  -  bismuth,  and 
copper-lead ;  crystalline,  in  which  both  phases  have 
low  surface  tensions,  and,  on  cooling,  form  merely 
a  mass  of  contiguous  crystals  of  the  two  phases,  e.g. 
antimony-copper  antimonide  and  most  non-metallic 
eutectics.  The  structure  of  all  the  above  eutectics 
is  discussed  in  detail  with  reference  to  photo- 
micrographs to  substantiate  the  classification  sug- 
gested. The  eutectic  range  in  the  copper-silver 
series  was  found  to  be  from  71  "6  to  72"3%  Ag  in  the 
silver-rich  alloys  and  from  71-2  to  71'8%  Ag  in  the 
copper-rich  alloys. — A.  R.  P. 

Corrosive    action;    The    nature    of   and    the 

function  of  colloids  in  corrosion,  with  an  appendix 
on  terms  used  in  colloid  chemistry.  Sixth  Report 
to  the  Corrosion  Research  Committee  of  the  Insti- 
tute of  Metals.  G.  D.  Bengough  and  J.  M. 
Stuart.  Inst.  Metals,  Sept.,  1922.  [Advance 
copy.]  80  pages. 
A  general  discussion  of  corrosion  phenomena  based 
on  the  study  of  several  different  metals  is  presented 
and  an  examination  of  the  electrochemical  theory 
of  corrosion  is  made,  which  shows  that  it  is  satis- 
factory only  under  certain  conditions,  while  many 
facts  can  only  be  explained  by  recognising  the  im- 
portant role  of  colloids  in  corrosion  phenomena. 
Corrosion  may  be  produced  by  chemical  means, 
when  the  reacting  bodies  are  in  contact,  or  by 
electrochemical  means  when  they  are  spatially 
separated  and  the  reacting  substances  are  capable 
of  ionisation.  Facts  which  are  difficult  to  explain 
on  a  purely  electrochemical  theory  are  as  follows  : 
certain  depolarisers  do  not  increase  corrosion,  but 
inhibit  it;  the  conductivity  of  electrolytes  is  not 
directly  connected  with  the  amount  of  corrosion ; 
even  exceedingly  pure  metals  are  corroded  by 
neutral  salt  solutions  and  by  dilute  acids,  and  in 
many  cases  the  presence  of  ions  of  the  corroded 
metal  does  not  depress  corrosion  but  actually  in- 
creases it.  Again,  the  order  of  corrodibility  of 
metals  in  distilled  water,  salt  solutions,  and  non- 
electrolytes  is  different  from  that  of  their  electro- 
chemical potentials  and  the  effects  of  strain  and 
impurity  in  setting  up  potential  differences  between 
various  parts  of  the  metal  are  very  small.  It  is 
shown  that  the  amount  of  corrosion  in  commercial 
metals  is  not  proportional  to  the  amount  of  im- 
purity, and  that  the  depolarising  power  of  atmo- 
spheric oxygen  at  ordinary  temperatures  is 
practically  negligible,  the  main  function  of  oxygen 


in  corrosion  being  to  oxidise  the  metal  directly.  The 
following  theory  is  developed  to  explain  the  part 
played  by  colloids  in  corrosion.  When  a  metal  is 
immersed  in  water  it  becomes  negatively  charged 
and  sends  positively  charged  ions  into  the  water, 
at  the  same  time  becoming  superficially  oxidised,  if 
dissolved  oxygen  is  present.  The  hydroxide  so 
formed  takes  up  the  positively  charged  ions  and 
becomes  a  positively  charged  colloid,  which  diffuses 
away  in  part,  allowing  further  oxidation  and  a  new 
formation  of  film,  which  is  not  further  attacked 
until  that  portion  of  diffused  colloid  first  formed  has 
been  removed  from  the  solution  by  precipitation  on 
coming  into  contact  with  an  electrolyte,  the  action 
of  which  neutralises  its  positive  charge.  In  this 
way  the  metal  is  gradually  coroded  unless  the  con- 
ditions cause  precipitation  of  the  gel  on  the  surface 
of  the  metal  itself,  thus  forming  a  protective  coat- 
ing which  stops  further  action.  The  authors  con- 
clude that  no  one  "theory  of  corrosion"  can  be 
proposed  to  account  for  all  the  observed  phenomena, 
and  that  the  final  condition  of  a  corroded  metal  is 
the  result  of  a  series  of  complicated  actions,  of 
which  the  initial  action  is  either  chemical  or  electro- 
chemical, but  is  not  dependent  solely  or  mainly  on 
the  hydrogen  ion  concentration,  but  on  the  specific 
nature  of  all  the  ions  in  solution  as  well  as  on  the 
presence  of  undissociated  substances  of  which 
oxygen  is  the  most  important.  The  chemical 
actions  which  take  place  may  be  either  ionic,  mole- 
cular, or  colloidal,  and  all  may  be  influenced  by  the 
presence  of  gels  and  by  the  physical  changes  which 
take  place  in  these  gels. — A.  R.  P. 

[Lead  sulphide   ores;']   Technical  working   of  raw 

materials  containing  lead  [such  as  complex ] 

by  conversion  of  the  lead  into  tetrachloride.  A. 
Nathansohn  and  F.  Leyser.  Z.  Elektrochein., 
1922,  28,  310—313. 

By  passing  a  current  of  chlorine  into  a  suspension 
in  water  of  finely  divided  ore  containing  galena, 
blende,  and  copper  pyrites  until  an  excess  is  present, 
the  sulphur  is  converted  into  sulphuric  acid,  the 
zinc  and  copper  to  chlorides,  and  the  lead  to  chloro- 
plumbic  acid,  a  solution  containing  8%  of  lead  being 
readily  obtained.  After  separating  the  gangue  and 
unattacked  ore  and  passing  a  current  of  air 
through  the  clear  liquor,  the  bulk  of  the  lead 
is  re-precipitated  as  lead  chloride  or  sulphate. 
Wulfenite  may  be  dissolved  in  a  similar  manner, 
but  not  zinc-lead  products  containing  the  metak 
as  such  or  as  oxides  unless  there  is  a  predominating 
amount  of  sulphide  present.  The  author  suggests 
that  the  method  would  be  useful  for  working  up 
zinc-lead  ores  which  do  not  admit  of  separation  by 
flotation  or  gravity  processes. — A.  R.  P. 

Blast-furnace  slags.     Grtin  and  Biehl.     See  IX. 

Aluminium.     Clennell.    See  XXIII. 

Patents. 
Welding  of  cast  iron;  Electrical .     La  Soudure 

Autogene    Franchise.      E.P.    173,486,    28.11.21. 

Conv.,  24.12.20. 
An  electrode  of  grey  cast  iron  is  employed  in  weld- 
ing cast  iron,  and  carbon  is  added  during  the  weld- 
ing operation.  A  convenient  method  of  introducing 
the  carbon  in  a  regular  manner  is  to  coat  the 
electrode  with  powdered  charcoal  or  graphite 
together  with  a  binding  agent,  or  to  use  a  hollow 
electrode  packed  with  carbon.— C.  A.  K. 

Ferrotungstenandferromolybdenum;  Manufacture 
of  .  J.  M.  Skelley,  J.  Merson,  and  Con- 
tinuous Reaction  Co.,  Ltd.  E.P.  184,843,  23.4.21. 
FERnoTiTNGSTEN  or  ferromolybdenum  is  made, 
without  the  aid  of  aluminium,  by  the  sMicn-therniic 
reduction  of  iron  oxide  and  tungsten  oxide  or  iron 


Voi.XLi.Xo.20.]      Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      821a 


oxide  and  molybdenum  oxide  in  the  presence  of  an 
oxidising  agent. — J.  W.  D. 

Ferrous    alloys;     Manufacture    of    .        H.    A. 

Skelley,  A.   B.   Smith,  and  Continuous  Reaction 
Co.,  Ltd.     E.P.  184, 844,  23.4.21. 

Allots  containing  iron  and  chromium,  such  as 
stainless  steel,  high-speed  steel,  and  rustless  iron, 
are  made  by  the  silico-thermic  reduction  of  iron 
oxide  in  the  presence  of  an  oxidising  agent  and  the 
incorporation  of  chromium  and  other  metal  or 
metals  with  the  iron  produced. — J.  \Y.  D. 

Ferro-molybdenum;     Manufacture    of    carbon-free 
■ .     W.  L.  Turner.     E.P.  184,912,  1.6.21. 

In  the  alumino-thermic  process  for  the  manufacture 
of  ferro-molybdenum  from  molybdenite  or  molyb- 
denum sulphide,  a  quantity  of  pyrolusite  or  man- 
ganese dioxide  and  aluminium  is  added  to  the 
mixture  of  molybdenum  sulphide,  aluminium,  and 
iron  oxide.  The  elimination  of  the  sulphur  content 
of  the  molybdenum  sulphide  is  assisted  by  the  rela- 
tively high  temperature  produced  by  the  interaction 
of  the  aluminium  and  manganese  dioxide  and  by  the 
high  affinity  of  the  manganese  and  manganese 
compounds  for  sulphur  and  sulphur  compounds. 
The  molten  alloy  is  subsequently  treated  with  a  slag 
containing  a  desulphurising  agent,  e.g.,  a  mixture 
of  equal  parts  of  lime  and  fluorspar. — T.  H.  Bu. 

Iron,  steel  and  ferrous  alloys;  Cementation  of . 

Cammell,  Laird  and  Co.,  Ltd.,  J.  M.  Allan,  A.  P. 

Hague,  and  T.  Middleton.  E.P.  184,920,  7.6.21. 
The  article  to  be  carburised  is  immersed  in  a 
fused  salt  bath  containing  70  %  or  more  of 
sodium  carbonate  which  may  be  mixed  with 
barium  carbonate  or  other  alkali  or  alkaline-earth 
carbonate  up  to  25%  and/or  up  to  5%  of  sodium 
nitrite  or  other  fusible  nitrogen-yielding  salts. 
The  temperature  of  the  bath  is  kept  above  thecarbon 
change  point  of  the  material  being  treated.  The 
article  is  made  the  cathode  of  an  electric  circuit, 
the  current  density  being  05 — 2  amp.  per  sq.  in.  of 
cathode  surface.  The  time  taken  to  obtain  a  given 
depth  of  carbon  penetration  is  from  one-third  to 
one-sixth  of  that  required  by  the  ordinary  process. 
Articles  it  is  required  to  soften  may  be  decarburised 
by  immersing  in  a  bath  which  has  recently  been  used 
for  the  cementation  process. — T.   H.  Bu. 

Steel;   Production  of   basic  .      Usines    Metafl- 

lurgiques  de  la  Basse-Loire  (Soc.  Anon.).  E.P. 
184,957,  2.7.21.  Addn.  to  163,693  (J.,  1922,  714  a). 
Grey  pig  iron  is  treated  by  a  one-stage  blowing 
process  for  the  production  of  hard  or  semi-hard 
steels  with  a  high  carbon  content  and  practically 
dephosphorised,  additions  of  recarburising  agents 
being  dispensed  with  by  regulating  the  quantities 
of  pig  iron  introduced  into  the  bath  according  to 
its  carbon  and  phosphorus  contents. — J.  W.  D. 

Manganese  steel;  Heat  treatment  of .     W.  G. 

Nichols,  Assr.  to  American  Manganese  Steel  Co. 
U.S. P.  1,427,121,  29.8.22.     Appl.,  18.9.20. 

The  maximum  temperature  during  the  heat  treat- 
ment of  manganese  steel  castings  is  not  allowed  to 
exceed  the  critical  temperature  for  such  castings. 

— C.  A.  K. 

Ferro-alloys;  Production   of  low-carbon  .     N. 

Petinot.   U.S.P.  1,428,057,  5.9.22.   Appl.,  26.9.19. 

IFerro-chroile  is  mixed  with  a  quantity  of  chromite 
ore  containing  oxygen   in  excess  of  that   required 
to  combine  with  the  carbon  of  the  alloy,  and  melted 
in  an  electric  furnace  with  an  acid  lining. 
— T.  H.  Bu. 


Steel  and  iron  alloy.     P.  de  Clameey,  Assr.  to  B  F 
Sturtevant  Co.    U.S.P.  1,428,534,  12.9.22.   Appl., 

An  iron  alloy  containing  1-25— 6'0%  Co,  0"5— 6*0% 
Cr,  0-75— 7-5%  Ni,  and  0-.3— 3"0%  Si.— J.  W.  D. 

Metallic  electrolytic  deposits;  Process  of  obtaining 

easily   detachable    from   the   cathode.     Soc. 

d'Electro-Chimie  et  d'Electro-Metallurgie      E  P 
165,082,  13.5.21.     Conv.,  18.6.20. 

A  cathode  of  cast  iron  or  steel  is  coated  with  an 
easily  detachable  film  of  copper  by  electrolysis  or 
by  immersion  in  an  acid  solution  of  a  copper  salt, 
either  with  or  without  the  addition  of  alcohol,  and 
the  resulting  electrode  is  used  for  the  electrolytic 
deposition  of  metals,  the  deposited  metal  being 
readily  peeled  off  together  with  the  copper  coating. 

—A.  R.  P. 

Argentiferous  lead-zinc   svlphide   ores;   Treatment 

of  ■     F.  E.  Elmore,   and  The  Chemical  and 

Metallurgical  Corp.  E.P.  184,628,  8.6.21. 
When  treated  by  the  hot  brine  process,  roasted  ores 
give  a  more  complete  extraction  of  silver  if  hydrogen 
sulphide  is  removed  from  the  hot  liquor.  The  use 
of  sulphur  dioxide  is  preferred  for  this  purpose. 
Lead  and  silver  may  be  recovered  from  solution  by 
known  methods  and  the  zinc  residue  may  be  treated 
with  other  solvents,  e.g.,  more  strongly  acid  brine, 
for  the  further  recovery  of  silver. — C.  A.  K. 

Befining  metals;  Apparatus  for .     H    Harris 

E.P.  184,639,  20.6.21. 

Metals  of  low  melting  point  (e.g.,  lead)  are  refined 
by  passing  them  through  a  suitable  molten  reagent. 
An  apparatus  for  this  purpose  consists  of  a  pump 
which  delivers  into  the  upper  part  of  a  heated 
melting  pot,  a  metal  stirring  gear,  and  a  motor. 
These  parts  are  carried  on  a  framework,  which 
can  be  lowered  into  a  metal  melting  pot.  The  re- 
agent may  be  heated  by  passing  part  of  the  flue 
gases  from  the  metal  melter  through  a  jacket  sur- 
rounding the  pot  containing  the  reagent. 

— C.  A.  K. 

Alloys;  Metallic .    F.  H.  Rogers.    From  Calor- 

izing  Corp.  of  America.  E.P.  184,840,  19.4.21. 
Castings  resistant  to  oxidation  at  a  high  tempera- 
ture are  made  from  an  alloy  of  iron  and  19'5%  of 
aluminium,  which  has  a  higher  tensile  strength 
than  any  other  alloy  of  these  two  metals.  The 
grain  may  be  refined  by  the  addition  of  1  to  5% 
of  titanium  or  of  other  elements.  The  alloying  pro- 
cess is  carried  out  in  a  neutral  atmosphere,  and  to 
prevent  oxidation  the  mould  is  filled  with  carbon 
dioxide,  a  blast  of  which  is  also  directed  on  the 
stream  of  molten  metal. — T.  H.  Bu. 

Titanium  ores  containing  iron;  Treating .     G. 

Carteret  and  M.  Devaux.    E.P.  184,948,  27.6.21. 

Titantctm  ore  is  heated  in  a  reducing  atmosphere, 
and  is  then  treated  with  successive  currents  of 
chlorine  gas  passed  in  opposite  directions  and  at 
different  temperatures,  viz.,  350°  and  550° — 600°  C. 
respectively,  to  volatilise  and  separate  the  iron 
and  titanium  chlorides.  The  titanium  chloride  is 
re-distilled  to  separate  traces  of  other  chlorides, 
then  treated  with  sulphuric  acid  to  produce 
titanium  sulphate  and  hydrochloric  acid  and  the 
titanium  sulphate  treated  to  produce  titanium 
oxide  and  sulphuric  acid.  The  ferric  chloride  ob- 
tained is  reduced  to  ferrous  chloride  and  the  latter 
electrolysed  to  produce  metallic  iron  and  free 
chlorine.  The  regenerated  chlorine  and  that  pro- 
duced from  the  hydrochloric  acid  are  used  again  in 
the  first  chlorination. — J.  W.  D. 


822a         Cl.   X.— METALS;    METALLURGY.   INCLUDING   ELECTRO-METALLURGY.     [Oct.  31,  1922. 


Furnaces  [for  melting  metals'].  W.  Oehm.  E.P. 
185,320,  27.8.21. 

The  combustion  of  gases  from,  e.g.,  inferior  fuel  on 
a  grate,  is  promoted  by  a  small  quantity  of  high- 
pressure  air  issuing  through  a  small  hole  or  jet  at 
the  back  of  one  or  more  hollow  burners  of  refrac- 
tory material  formed  with  flat  converging  slots  or 
channels.  The  gases  after  complete  combustion 
may  be  used  for  heating  metal  melting  furnaces  or, 
while  still  under  pressure,  for  drying  moulds.  The 
high-pressure  air  may  be  preheated  by  being  led  in 
a  serpentine  course  through  passages  adjacent  to 
the  burner  device. — B.  M.  V. 

Electric-furnace  construction  [for  reducing  ores']. 
W.  E.  F.  Bradley.  U.S.P.  1,427,436,  29.8.22. 
Appl.,  22.7.18.    Renewed  25.1.22. 

The  charge  from  a  rotary  furnace  is  fed  through 
an  inlet  into  an  electric  furnace  of  the  tilting  type 
provided  with  an  outlet  for  removing  the  slag  and 
reduced  charge,  the  inlet  also  serving  for  conveying 
gases  from  the  electric  to  the  rotary  furnace.  A 
reducing  gas  is  passed  into  the  electric  furnace 
through  a  carbon  tuyere  so  situated  that  it  is 
independent  of  the  electrodes  of  the  furnace  and 
is  covered  by  the  molten  charge  while  the  furnace 
is  in  the  receiving  and  reducing  position,  but  is 
removed  from  the  charge  while  the  latter  is  being 
poured  out  of  the  furnace. — L.  A.  C. 


—  for  pyrites  etc. 
Walmrath.      G.P. 


Boasting  furnace;  Mechanical 
Erzrost  Ges.m.b.H.,  and  J 
351,351,  11.9.20. 

The  material  slides  on  and  under  open  oblique 
partitions  in  the  centre  of  the  oven  without  the 
use  of  poking  or  stirring  devices.  The  partitions 
are  so  built  that  the  gases  evolved  do  not  come  in 
contact  with  the  incoming  ore,  thus  minimising 
production  of  flue  dust. — A.  C. 

Tungsten    metal;    Process    of    reducing    tungstic 

oxide   to  .     W.   F.   Bleecker,   Assr.   to  The 

Tungsten  Products  Co.    U.S.P.  1,427,187,  29  8.22. 
Appl.,  8.7.20. 

Heat  is  applied  to  the  interior  of  a  charge  com- 
posed of  a  mixture  of  tungstic  oxides  and  a  suit- 
able reducing  agent,  the  mass  of  material  being 
provided  with  passages  for  the  circulation  of  gases. 

— C.  A.  K. 

Concentration  of  ores  [by  flotation].  G.  E. 
Sheridan  and  G.  G.  Gnswnld,  jun.  U.S.P. 
1,427,235,  29.8.22.     Appl.,   10.1.22. 

An  ore  containing  sulphides  of  iron  and  of  one  or 
more  other  metals  is  treated  with  a  cyanide  and  an 
alkaline  salt  and  then  subjected  to  flotation  under 
conditions  unfavourable  to  floating  the  iron  sul- 
phide.—B.  M.  V. 

Ores;   Method   of  treating  6?/  volatilisation. 

H.  R.  Layng.    U.S.P.  1,427,765, '29.8.22.    Appl., 
4.11.19. 

The  ore  charge  is  heated  so  rapidly  that  the  volatile 
elements  in  the  ore  are  removed  without  any 
harmful  reaction  occurring. — A.  R.  P. 

Zirconium  ores;  Treatment  of .    O.  Hutchins, 

Assr.  to  The  Carborundum  Co.    U.S.P.  1,427,816, 
5.9.22.     Appl.,  22.9.20. 

Pure  zirconia  is  produced  from  zirconium  ores  by 
heating  a  mixture  of  ore  and  reducing  agent  so 
that  part  of  the  impurities  in  the  ore  is  reduced  to 
metal,  and  then  separating  the  impurities  from 
the  zirconia. — J    S.  G.  T. 


Beryllium;  Process  for  electrohjtically  manufac- 
turing compact  metallic  .     A.  Stock  and  H. 

Goldschmidt.     U.S.P.   1,427,919,   5.9.22.     Appl., 
12.5.22. 

Compact  metallic  beryllium  is  produced  by  elec- 
trolysing a  fused  bath  of  alkaline-earth  fluoride 
containing  a  beryllium  compound. — A.  R.  P. 

Metals  from  metal  alloys ;  Process  for  the  separat ion 

and    recovery    of    .     G.    J.    Kroll.     U.S.P. 

1,428,041,  5.9.22.     Appl.,  21.9.20. 

An  alkaline-earth  metal  or  magnesium  is  introduced 
into  the  metallic  alloy  or  impure  metal,  so  that  the 
metallic  constituent  to  be  separated  combines  with 
the  alkaline-earth  metal  to  form  a  compound  having 
a  different  melting  point  from  and  a  specific  gravity 
not  more  than  that  of  the  main  metal.  This  com- 
pound is  then  separated  from  the  remaining  part  of 
the  alloy  under  treatment. — J.  W.  D. 

Metals;  Cleaner  for  and  method  of  cleaning  . 

J.  H.  Gravell.     U.S.P.  1,428,084,  5.9.22.     Appl., 
4.6.21. 

A  mixture  for  cleaning  metals  consists  of  colloidal 
clay  suspended  in  a  suitable  dilute  acid  together 
with  a  filler,  acetone,  and  an  alcohol  of  higher  boil- 
ing point  than  ethyl  alcohol. — A.  R.  P. 

Metals;  Composition  for  and  method  of  preventing 
from  rusting.  Paint  for  and  method  of  pre- 
venting heated  [metal]  surfaces  from  rusting. 
Bust-resisting  steel  and  method  of  producing 
same.  J.  H.  Gravell.  U.S.P.  1,428,085-7,  5.9.22. 
Appl.,  (a)  (b),  4.6.21,  (c)  22.6.21. 

(a)  A  rust-preventing  coating  for  metals  consists  of 
castor  oil,  ethyl  alcohol,  and  an  alcohol  having  a 
higher  boiling  point  than  ethyl  alcohol,  (b)  A  paint 
for  preventing  heated  metal  surfaces  from  rusting 
contains  at  least  15%  of  a  phosphate  which  on 
heating  liberates  enough  phosphoric  acid  to  form  a 
substantial  coating  of  the  phosphate  of  the  metal  on 
its  surface,  (c)  A  rust-resisting  steel  consists  of 
a  body  of  metal  into  the  surface  of  which  a  coating 
of  phosphate  has  been  pressed. — A.  R.  P. 

Soldering  solution.  J.  H.  Giavell.  U.S.P. 
1,428,088,  5.9.22.     Appl.,  20.12.21. 

A  solution  of  zinc  and  ammonium  chlorides  con- 
taining fusel  oil. — A.  R.  P. 

Vanadium;   Process   of   recovering   .      W.    E. 

Stokes,    Assr.   to  United   States   Processes,   Inc. 
U.S.P.  1,428,616,  12.9.22.    Appl.,  19.1.21. 

A  vanadium  ore  is  mixed  with  an  alkali  nitrate  and 
heated.— B.  M.  V. 

Condenser  [for  zinc  furnaces].  C.  A.  Wettengel, 
Assr.  to  American  Zinc,  Lead,  and  Smelting  Co. 
U.S.P.  1,429,214,   12.9.22.     Appl.,   4.3.18. 

A  tapering  condenser  has  a.  fixed  head  with  two 
openings  at  its  larger  end,  one  for  introducing  the 
zinc  bars  into  the  retort  and  the  other  for  with- 
drawing the  molten  metal. — T.  H.  Bu. 

Sulphide  ores;  Process  for  the  treatment  of  slimy 

preparatory  to  roasting.     Metallbank  und 

Metallurgische  Ges.  A.-G.    G.P.  355,885,  29.10.13. 

The  ore  is  subjected  to  a  sulphatising  roast,  then 
moistened,  and  rendered  granular  before  carrying 
out  the  roast  proper.  In  this  way  the  ore  is  not 
diluted  with  a  binder  which  may  cause  trouble 
later.— A.  R.  P. 

Iron   and  steel;  Manufacture  of  ■ .     T.  Rouse. 

U.S.P.  1,428,061,  5.9.22.    Appl.,  23.11.20. 
See  E.P.  152,073  of  1919;  J.,  1920,  787  a. 


Vol.XLI.,No.  20.] 


Cl.  XL— ELECTRO-CHEMISTRY. 


823  a 


[Zinc]  solutions;  Purification  of  metallic  .     S. 

Field,    Assr.    to   Metals   Extraction    Corp.,    Ltd. 
U.S. P.  1,429,131,  12.9.22.     Appl.,  26.6.19. 

See  E.P.  138,950  of  1918;  J.,  1920,  371a. 

Furnaces  [for  heating  metal  to  be  forged  or  steel 
to  be  hardened].  J.  A.  Innocent.  E.P.  185,623, 
27.8.21. 

Preheating  blast-furnace  gas  in  purifying  plants. 
E.P.  182,102.    See  1L\. 


XL-ELECTRO-CHEMISTRY. 

[Electric  furnace  and]  apparatus  for  direct  heating 
to  high  temperatures  by  resistance  with  simul- 
taneous    application     of     mechanical     pressure. 
F.  Sauerwald.     Z.  Elektrochem.,  1922,  28,  181— 
183. 
An*  apparatus  for  heating  rods  of  carbon,  tungsten, 
or  other  material  of  high  melting  point  to   very 
high  temperatures  by  the  passage  of  an  alternating 
current  through  the  rod  is  described  and  illustrated 
in  detail.      It  consists  essentially   of   a  horizontal 
fireclay  tube  with  an  outer  sheet-iron  casing,  pro- 
vided at  each  end  with  a  water-cooled  bronze  elec- 
trode in  which  the  rod   is  secured  by  two  copper 
wedges.     One  electrode  is  fixed  while  the  other  is 
free  to  move  on  ball  bearings  inside  a  steel  cylinder 
which  prolongs  the  length  of  the  furnace  in  this 
direction ;   in   this  way  allowance   is   made  for  ex- 
pansion and  contraction  of  the  rod  during  heating. 
Through  the  middle  of  the  furnace,  perpendicular 
to  the  axis,  an  arrangement,  consisting  of  an  upper 
and  lower  pestle  which  can  be  screwed  tight  against 
the  bar  or  used  for  hammering  it,  is  provided  and 
a    sight-hole    closed    with    a    mica    window    allows 
I  observation   of   the   rod   at  this   spot.      The   whole 
,  apparatus  is  made  reasonably  air-tight  so  that  the 
I  heating  operation  may  be  carried  out  in  a  stream 
of  suitable  gas,  such  as  hydrogen. — A.  R.  P. 

Electrolytic  oxidation  of  a-naphthylamine  and  ar- 
tetrahydro-a-naphthylamine.     Ono.     See  TV. 

'  Carbon  at  high  temperatures.     Sauerwald.     Rysch- 
kewitsch.     See  VII. 

Action    of    brush    discharge    on    fatty    acids    and 
glycerides.    Eichwald.    See  XII. 

Electrolytic  oxidation  of  isoamyl  alcohol.    Koizumi. 
See  XX. 

Patents. 

Furnace  for  electric  heating.    A.  H.  Pehrson.    E.P. 
162,285,  25.4.21.     Conv.,  26.4.20. 

Pairs  of  electrodes  making  contact  at  their  inner 
ends,  and  covered  with  material  protecting  them 
from  damage  by  gases  or  furnace  charge,  are  intro- 
duced through  the  end  walls,  and  at  a  suitable 
distance  from  the  axis  of  a  revolving  or  oscillating 
electric  furnace. — J.  S.  G.  T. 

Electric    furnaces.     I.    J.    Moltke-Hansen.       E.P. 
171,096,  2.11.21.     Conv.,  3.11.20. 

i  An  electric  furnace  is  heated  by  current  applied  to 
a  resistance  element  consisting  of  granular  material, 

\e-9;  granulated  electrode  carbon,  contained  in 
channels  arranged  about  the  furnace  chamber  and 

'communicating  in  pairs  at  the  top  through  a 
reservoir  into  which  granular  material  is  supplied 
to  compensate  for  the  consumption  of  this  material 
during  the  operation  of  the  furnace.  Current  is 
supplied  only  at  the  bottom  of  the  respective 
lnuinels.— J.  S.  G.  T. 


Electric  furnace  [for  production  of  calcium  carbide]. 
A.  E.  Reid.     E.P.  185,136,  22.2.21. 

An  electric  furnace  for  the  production  of  calcium 
carbide  comprises  a  hearth,  a  delivery  outlet  or 
outlets,  electrodes  projecting  downwards  and  con- 
verging so  that  they  may  be  adjusted  towards  and 
from  the  hearth  and  one  another,  and  an  additional 
electrode  or  electrodes,  each  located  within  a  de- 
livery outlet,  for  maintaining  the  carbide  in  a 
molten  condition.  Preferably,  current  is  supplied 
to  the  additional  electrodes  at  a  lower  voltage  than 
to  the  downwardly  projecting  electrodes.  The 
hearth  of  the  furnace  comprises  a  flat  bottom 
portion  and  upwardly  inclined  sides  in  which  the 
delivery  outlets  are  placed. — J.  S.  G.  T. 

Electric  furnace.  E.  H.  Hurstkotte,  Assr.  to 
General  Electric  Co.  U.S. P.  1,427,814,  5.9.22. 
Appl.,  3.5.20. 

A  resistance  heater  composed  of  a  number  of 
dished  discs  in  electrical  contact  at  their  peripheries 
but  out  of  contact  in  their  central  regions,  is 
arranged  within  a  container,  and  a  refractory  shield 
is  disposed  between  the  heater  and  the  charge  in 
the  furnace.— J.  S.  G.  T. 

(a,  b)  Electric  furnace,  (c)  Method  of  operating 
electric  furnaces.  I.  Rennerfelt.  U.S. P. 
(a)  1,428,908,  (b)  1,428,909,  and  (c)  1,428,910, 
12.9.22.    Appl.,  (a)  3.3.21,  (b,  c)  12.8.21. 

(a)  In  an  electric  furnace,  an  elongated  crucible 
is  heated  by  current  supplied  to  strings  of 
carbonaceous  resistance  material  disposed  length- 
wise along  the  crucible  and  separated  from  one 
another  by  electrically  insulating  material,  (b)  An 
electric  furnace  comprises  an  upper  chamber 
separated  by  a  conducting  partition  from  a  lower 
chamber,  the  walls  of  which  are  poor  conductors 
of  heat.  At  least  two  electrodes  project  into  the 
lower  chamber  for  generating  an  electric  arc 
therein,  (c)  The  charge  in  an  electric  furnace  is 
heated  first  by  free-burning  arcs  supplied  with  two- 
phase  current,  and  then  by  means  of  arcs  in  con- 
tact with  the  surface  of  the  charge  and  supplied 
with  three-phase  current,  the  relative  distance 
between  the  arcs  being  changed. — J.  S.  G.  T. 

Electric  batteries.  Soc.  Anon.  "  Le  Carbone." 
E.P.  178,804,   10.2.22.     Conv.,  19.4.21. 

The  carbon  or  positive  pole  of  a  battery  is  immersed 
in  an  agglomerate  of  active  material  and  de- 
polariser,  the  former  comprising  a  salt  of  cerium 
which  acts  as  a  catalyst  during  the  discharge  of 
the  cell  The  agglomerate  is  contained  in  a  calico 
or  other  bag,  surrounded  by  a  paste  composed  of 
gum  tragacanth  40%,  glucose  40%,  sodium  fluoride 
2 — 3%,  powdered  pumice  stone  17 — 18%.  The 
agglomerate  and  paste  are  covered  by  anhydrous 
calcium  chloride.  The  battery  is  put  into  opera- 
tion by  addition  of  water,  and  is  characterised  by 
the  prevention  of  motion  of  the  electrolyte  and  of 
the  formation  of  local  couples. — J.  S.  G.  T. 

Secondary  cells  or  batteries  for  electricity  storage 
[;  Means  of  preventing  buckling  of  the  plates  of 

].    C.  G.  Smith.    E.P.  184,649,  30.6.21. 

In  storage  cells  employing  lead  plates,  gypsum  or 
plaster  of  Paris  is  employed  to  absorb  the  electrolyte 
and  to  separate  and  support  the  electrodes,  which 
are  inserted  in  a  series  of  slots  or  pockets  in  the 
gjpsum  or  plaster  of  Paris.  The  positive  and 
negative  plates  are  composed  respectively  of  red 
lead  and  litharge,  to  which  about  2%  of  powdered 
aluminium  sulphate  is  preferably  added. 

— J.  S.  G.  T. 


824  a 


Cl.  XII.— FATS  ;   OILS  ;   WAXES. 


[Oct.  31,  1022. 


Electric    accumulators    [;    Method    of    drying    the 

negative  plates  of ].  A.  Dinin.  E. P.  184,658, 

8.7.21.  Addn.  to  14,119  of  1914  (J.,  1914,  928). 
Lead  electrodes  used  in  accumulators  are  dried  in 
a  closed  vessel  in  a  heated  stream  of  nitrogen, 
carbon  monoxide,  hydrogen,  or  other  non-oxidising 
gas,  the  water  vapour  carried  off  by  the  stream 
being  condensed  and  the  gas  kept  in  continuous 
circulation. — J.  S.  G.  T. 

Electrolytic  apparatus  [for  decomposition  of  water; 

Electrodes  used  in ].    A.  W.  Smith.    U.S. P. 

1,427,171,  29.8.22.  Appl.,  8.11.20. 
Electrodes  employed  in  the  electrolysis  of  water 
consist  of  metals  of  the  nickel  group  having  their 
faces  covered  with  spongy  coatings  of  metals,  such 
as  nickel  or  platinum,  which  are  unaffected  by  the 
electrolysis. — J.  S.  G.  T. 

Electrolytic  method  and  apparatus.  J.  J.  Sherwood, 
Assr.  to  Hooker  Electrochemical  Co.  U.S. P. 
1,427,236,  29.8.22.  Appl.,  20.3.20. 
The  gaseous  product  of  an  electrolysis  (e.g.,  elec- 
trolysis of  common  salt  for  production  of  hydrogen, 
chlorine,  and  caustic  soda)  is  diverted  from,  and 
a  supply  of  fresh  electrolyte  supplied  to,  the  active 
electrode  face  at  a  point  or  points  between  the  top 
and  bottom  of  the  electrode.  The  apparatus  may 
consist  of  a  cylindrical  outer  wall  forming  the 
cathode  within'  which  is  a  cylindrical  diaphragm 
enclosing  a  hollow  anode,  provided  with  a  number  of 
annular  projections,  at  different  levels,  which  make  a 
tight  joint  with  the  diaphragm  without  and  project 
also  into  the  hollow  centre  of  the  anode.  Diagonal 
passages  are  formed  in  the  annuli  which  serve  to 
lead  the  evolved  gases  from  the  tops  of  the  annular 
compartments  to  the  central  anode  space  and  lead 
fresh  electrolyte  from  the  central  space  to  the 
lower  part  of  each  annular  outer  space. — B.  M.  V. 

Electrolytic  apparatus  and  method  of  depolarising 
the  same.    W.  D.  Nickum.     U.S. P.  (a)  1,428,049 
and    (b)    1,428,050,    5.9.22.      Appl.,    (a)    8.2.19, 
(c)  21.4.20.     Renewed  5.11.21. 
(a)  The  polarisation  of  an  electrolytic  circuit  is  re- 
duced by  the  use  of  a  transformer  consisting  of  a 
low-tension  primary  coil  energised  by  direct  current, 
and  a  high-tension  secondary  coil  connected  with 
electrodes  immersed  in  the  electrolyte,     (b)  In  an 
electrolytic  apparatus  as  described   under   (a)   the 
primary  and  secondary  coils  are  inductively  related 
so  as  to  reduce  the  electrolytic  polarisation  when 
the  current  in  the  primary  coil  is  varied  owing  to 
polarisation. — J.  S.  G.  T. 

Electrical  etching;  Apparatus  for  — ■ — .       Process 

and   apparatus   for   electrical    etching.        B.    M. 

Weeks,    Assr.    to    Weeks    Photo-Engraving    Co. 

U.S. P.    (a)   1,427,876,   and   (b)   1,427,877,   5.9.22. 

Appl.,  (a)  2.4.21,  (b)  25.4.21. 
(a)  The  plate  to  be  etched  is  supported  and  em- 
ployed as  anode  in  an  electrolytic  bath  and  the 
cathode  used  is  composed  of  material  which  is  resis- 
tant to  the  action  of  the  electrolyte  and  reduces 
the  formation  of  hydrogen,  (b)  During  the  etching 
process  the  plate  to  be  etched  is  moved  in  the  plane 
of  its  face.— J.  S.  G.  T. 

Storage  batteries.    H.  E.  Smith,  Assee.  of  W.  H. 
Wood.     E.P.  160,821,  30.3.21.     Com-.,  31.3.20. 

See  U.S. P.  1,405,702  of  1922;  J.,  1922,  222  a. 

Electrolytic       cell.         Elektrizitats-A.-G.       vorm. 

Schuckert  und  Co.    E.P.  165,071,  14.3.21.    Conv., 

14.6.20. 
See  G.P.  349,538  of  1920;  J.,  1922,  380  a. 


Electrical 
1,428,839. 


precipitation . 
G.P.  354,623. 


U.S. P. 
See  I. 


1,427,370, 


Oxidation  of  nitrogen.    U.S. P.  1,429,013.    See  VII 
Electric  furnace.     U.S.P.  1,427,436.     See  X. 
Acetaldehyde  from  acetylene.  E.P.  165,085.  See  XX. 

XII— FATS;    OILS;    WAXES. 

Fatty   acids   and   their  glyceiides;   Action   of   the 

brush    discharge    on    .       E.    Eichwald.       Z. 

angew  Chem.,  1922,  35,  505—506. 

If  oleic  acid  is  subjected  to  the  action  of  the  brush 
discharge  the  iodine  value  steadily  falls,  the  mean 
molecular  weight  steadily  rises,  and  stearic  acid 
is  produced.  The  increase  in  molecular  weight  per 
unit  fall  in  iodine  value  increases  from  6'3  at  the 
beginning  of  the  treatment  to  43'5  after  treatment 
for  22  hrs.  About  11  %  of  the  oleic  acid  is  converted 
into  stearic  acid,  and  this  conversion  occurs  in  an 
atmosphere  of  air  or  nitrogen  as  well  as  in  an 
atmosphere  of  hydrogen,  though  working  under 
the  latter  conditions  gives  the  slightly  higher 
maximum  yield  of  15%  of  stearic  acid.  It  is  con- 
sidered that  the  bombardment  of  the  molecules 
causes  hydrogen  atoms  to  become  detached  in  a 
highly  active  state,  and  that  they  immediately 
saturate  the  double  bonds  of  other  molecules  of  oleic 
acid,  leaving  some  highly  unsaturated  molecules 
which  polymerise  and  cause  the  increase  in  molecular 
weight.  Glycerides  show  similar  effects  under  the 
brush  discharge,  the  glyceryl  part  of  the  molecule 
being  unaffected.  The  resulting  polymerised  oils 
have  high  viscosities  and  flat  viscosity-temperature 
curves  and  are  of  value  as  lubricants.  Owing  to 
the  possibility  of  infra-molecular  saturation  of 
double  bonds  in  the  case  of  glycerides,  the  increase 
of  molecular  weight  in  tins  case  becomes  even  more 
marked  in  the  later  stages  of  treatment  than  in  the 
case  of  the  free  fatty  acids. — H.  C.  R. 

Coconut  oil;   Oleic  acid   content   of  the  free  fatty 
acids  from   the  soap  stock  obtained  on  refining, 

.     F.   Wittka.     Z.   Deuts.  Oel-  u.  Fettiud., 

1922,  42,  377—378.  Chem.  Zcntr.,  1922,  93,  IT., 
598—599. 
A  comparison  of  the  iodine  values  of  crude  and 
neutralised  coconut  oils  obtained  from  the  rind  and 
from  the  kernel  showed  that  the  hydrolysis  of  the 
glycerides  begins  in  the  rind  of  the  copra  and  pro- 
ceeds faster  there  than  in  the  inner  layers.  The  oil 
from  the  rind  has  acid  value  7'5  and  iodine  value 
38'7,  but  bears  only  a  small  proportion  to  the  total 
oil  content.  The  further  the  hydrolysis  proceeds, 
the  more  free  fatty  acids  will  be  formed  in  the 
white  inner  layers  of  the  copra  and  the  smaller  pro- 
portion will  the  free  fatty  acids  formed  in  the  rind 
bear  to  the  whole.  The  characters  of  the  acid  oils 
obtained  from  such  copra  will  therefore  approach 
those  of  normal  coconut  oil.  Strongly  acid  coconut 
oil  will  therefore  give  an  acid  oil  with  normal 
(low)  iodine  values.  Good  quality  coconut  oil, 
however,  will  give  an  acid  oil  with  a  high  iodine 
value,  and  this  will  be  the  higher,  the  better  the 
refining  process  has  been,  i.e.,  the  smaller  the 
quantity  of  neutral  fat  hydrolysed  during  the  pro- 
cess. Commercial  acid  coconut  oils  showing  high 
iodine  values  cannot  on  this  account  alone  be  safely 
condemned  as  adulterated. — H.  C.  R. 

Hydrogenation  of  oils;  Promoters  of  the  .     I- 

S.  Ueno  Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind., 
Japan),  1922/25,  777—783.  (C/.  J.,  1919,  20  A.) 
Experiments  with  herring  and  cottonseed  oils 
showed  that  the  hydrogenation  of  oils  is  accelerated 
by  the  presence  of  small  quantities  of  fatty  or 
aromatic  acids.  The  results  obtained  with  2 — 3% 
of  palmitic,  oleic,  butyric,  stearic,  and  benzoic 
acids,  using  nickel  or  nickel  sulphate  (0'3— 05/ 
as  Ni)  as  catalyst  are  given  in  tables. — K.  K. 


Vol.  XU,  No.  20.] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


825  a 


Brassidic  anhydride,  and  preparation  of  anhydrides 
by  means  of  phosgene.  D.  Holde  and  K.  Schmidt 
Z.  angew.  Cheui.,  1922,  35,  502—503. 
Bisassidic  anhydride,  brassidic  acid,  and  ethyl 
toraasidate  were  prepared  from  erucic  acid  and  its 
corresponding  derivatives  by  isomerisation  by 
means  of  nitrous  acid.  Brassidic  anhydride  crystal- 
lised from  alcohol  in  small  needles,  m.p.  64°  C, 
had  the  theoretical  iodine  value,  and  sp.  gr.  0'835 
at  7U°/4°  C.  Ethyl  brassidatc  formed  leaflets, 
m.p.  30°— 30-5°  C,  nM=P4587.  The  anhydrides  of 
the  fatty  acids  of  cod  liver  oil  were  obtained  in  an 
impure  condition,  containing  chlorine,  by  the  action 
of  carbonyl  chloride  on  their  alkali  salts.  They 
formed  pasty  products  of  higher  melting  point 
than  the  corresponding  glycerides  and  acids.  The 
difference  frequently  observed  between  the  acid  and 
saponification  values  of  the  acids  of  fatty  oils  may 
possibly  be  due  to  the  presence  in  the  acids  of  a 
proportion  of  anhydrides,  which  do  not  react 
normally  with  cold  alcoholic  hvdroxide  solutions. 

— G.  F.  M. 

Saponification  of  oils  and  fats;  Studies  in  the . 

H.  M.  Langton.    J.  Oil  and  Colour  Chem.  Assoc, 
1922,  5,  41—75. 

The  theory  of  the  hydrolysis  of  oils  and  fats  is 
reviewed  and  the  technical  methods  of  hydrolysis 
are  enumerated  and  described.  A  summary  is  given 
of  previous  work  on  the  rate  and  extent  of  the 
hydrolysis  of  different  oils  and  fats  and  an  account 
is  given  of  the  author's  large-scale  experiments  on 
the  rate  and  extent  of  the  hydrolysis  of  tallow, 
palm  oil,  linseed  oil,  palm  kernel  acid  oil,  No.  1., 
No.  2  and  No.  3  whale  oils,  using  lime  and  magnesia 
as  catalysts  in  the  autoclave  process.  In  all  cases 
a  constant  steam  pressure  of  8  atm.,  a  charge  of 
3  tons  of  oil  or  fat,  an  amount  of  catalyst  equal  to 
2£%  of  the  weight  of  oil,  and  a  period  of  treatment 
of  10  hrs.  were  employed.  The  results  obtained  are 
shown  in  a  series  of  curves  which  are  of  the 
exponential  type,  the  greater  part  of  the  fat  being 
hydrolysed  after  about  4  hrs.  and  the  rate  of  hydro- 
lysis after  that  period  being  exceedingly  slow. 
Magnesia  was  the  more  effective  catalyst  in  the  case 
of  tallows,  palm  kernel  acid  oil.  and  the  whale  oils, 
whereas  lime  was  superior  in  the  case  of  palm  oil. 
In  the  case  of  linseed  oil  the  rate  and  extent  of 
hydrolysis  were  the  same  with  each  catalyst.  Using 
magnesia  as  catalyst  the  tallows  were  hydrolysed 
most  quickly  in  the  first  few  hours  and  in 
decreasing  order  of  speed  whale  oils,  linseed  oil, 
palm  oil  and  palm  kernel  oil.  Beef  tallow  hydro- 
lyses  much  more  quickly  with  lime  than  does 
mutton  tallow  under  the  same  conditions.  In  the 
case  of  whale  oils  the  rate  of  hydrolysis  is  in  the 
order  No.  1,  No.  2,  No.  3,  No.  1  "giving  the  highest 
value.  The  practice  of  blowing  the  glycerin 
solution  from  the  autoclave  after  about  4 — 5  hrs. 
and  re-starting  the  hydrolysis  was  found  to  offer 
no  practical  advantage.  A  table  of  average  extents 
of  hydrolysis  after  treatment  of  various  fats  with 
lime  and  magnesia  for  8  hrs.  under  the  conditions 
outlined  above  is  given.  These  are  the  averages  of 
625  3-ton  charges.  In  general  magnesia  was  found 
to  be  more  effective  than  lime. — H.  C.  R. 

Total  fat  in  soaps;  Simplification  of  Goldschmidt' s 

titration  method  for  determining  the  .     M. 

Jakes.  Seifensieder  Zeit.,  1922.  49,  431—432. 
Chem.  Zentr.,  1922,  93,  IV.,  449. 
The  determination  of  total  fat  in  curd  soaps  from 
coconut  or  palm-kernel  oils  and  resins  according 
to  the  standard  methods  often  offers  difficulties. 
The  petroleum  spirit  does  not  completely  dissolve 
the  resin  and  in  drying  the  fatty  acids  a  tempera- 
ture of  50° — 55°  C.  is  not  high  enough  to  remove  the 
petroleum  spirit.  The  following  methods  are 
suggested :  (a)  7 — 10  g.  of  soap  is  dissolved  in  water, 


decomposed  with  excess  of  acid,  and  extracted  with 
ether,  washed  with  water  or  salt  solution,  the 
ethereal  solution  poured  off,  the  separating  funnel 
washed  out  with  alcohol,  and  the  solution 
titrated,  (b)  50  g.  of  soap  is  dissolved  in  water, 
decomposed  with  excess  of  acid  and  allowed  to 
settle.  The  fatty  acid  layer  is  poured  into  hot 
water  two  or  three  times,  and  5  c.c.  of  the  clear 
washed  acids  is  filtered,  dissolved  in  alcohol  and 
titrated.  The  errors  introduced  by  the  solubility  oi 
the  fatty  acids  in  water  and  of  water  in  the  fatty 
acids  are  very  small. — H.  C.  R. 

0(7   emulsions;  Preparation   of  61/   mains   of 

colloidal  silicic  acid  and  the  relationship  to  tin- 
processes  of  tuberculosis.  S.  P.  Kramer. 
Kolloid-Zeits.,  1922,  31,  149—150. 

When  animal  or  vegetable  oils  are  added  to  a 
solution  of  sodium  silicate  (2  per  1000)  a  fine  and 
very  stable  emulsion  is  formed  at  once.  The  oil 
drops  are  so  small  that  many  of  them  exhibit  the 
Brownian  movement.  The  formation  of  the 
emulsion  takes  place  as  follows :  the  fatty  acid  of 
the  oil  combines  with  the  sodium  to  form  a  soap 
and  liberates  colloidal  silicic  acid  which  then  acts 
as  a  protecting  colloid.  The  addition  of  acid 
produces  a  silicic  acid  gel  emulsion  and  the 
addition  of  lime  water  causes  coagulation,  forming  a 
cheese-like  coagulum  and  a  thin  liquid.  The  above 
changes  are  shown  to  be  similar  to  the  processes 
occurring  in  the  development  of  tuberculosis. 

—J.  F.  S. 

Boring  and  cooling  oils.     Kaleta.     See  IIa. 

Patents. 

Regenerating  fuller's  earth,  charcoal  and  the  like 
purifiers  of  fats  and  fatty  oils  and  of  catalysts 
used  in  hydrogenating  fats  and  fatty  oils;  Method 

for  .     E.'R.  Bolton  and  E.  J.  Lush.     E.P. 

185,174,  24.5.21. 
The  material  to  be  regenerated  is  subjected  to  the 
action  of  superheated  steam  until  the  mass  is  raised 
to  a  temperature  of  230°— 300°  C,  whereby  the  oil 
content  is  hydrolysed  and  recovered  as  distilled 
fatty  acids  and  glycerol.  A  vacuum  may  be 
employed  to  expedite  the  distillation  of  the  hydro- 
lysed oil.— H.  O.  R. 

Fish    and    other   oils;   Method  and   apparatus  for 

treating    .      V.     F.     Feeny.      From    Title 

Guarantee  and  Trust  Co.  E.P.  185,247,  13.6.21. 
The  oil  is  deodorised  and  sterilised  by  circulating 
it  through  a  chamber  in  which  it  is  exposed  to  the 
action  of  ozonised  air  and  preferably  to  the  action 
of  sunlight.  It  is  delivered  at  the  top  ol  the 
chamber  so  as  to  fall  in  the  form  of  rain  through 
the  upward  air  current,  is  continuously  withdrawn 
from  the  base  of  the  chamber  for  agitation  and 
heating,  and  is  thereafter  returned  to  the  top  of 
the  chamber  or  passed  on  for  subsequent  treat- 
ment. The  oil  may  also  pass  in  a  thin  film  over  the 
walls  of  the  chamber,  and  be  subsequently  treated 
with  pulverulent  material  and  filtered.  Heated  air 
may  be  passed  through  the  chamber,  which  may  also 
be  provided  with  means  for  raising  the  pressure 
inside  it. — H.  C.  R. 

Fatty     matter;     Recovery     of     from     raw 

materials  of  organic  origin.  F.  Bergms.  0..1  . 
350,634,  4.8.17. 
The  raw  material,  e.g.,  peat,  lignite,  etc.,  is  mixed 
with  water,  to  which  may  be  added  a  basic 
material,  e.g.,  soda,  and  is  heated  to  a  temperature 
not  exceeding  300°  C.  under  high  pressure.  The 
liquid  containing  fatty  matter  is  separated  from 
the  residue.  Raw  lignite,  for  example,  containing 
50%  of  water,  may  be  heated  with  about  double  the 
quantity  of   a  10%    soda    solution   to    275°   C.   at 


826a 


Cl.  Xni.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    KESINS. 


[Oct.  31,  1922. 


90  atm.  pressure  for  6  hours.  After  cooling,  the 
mass  is  filtered  and  the  filtrate  is  acidified  with 
sulphuric  acid,  causing  separation  of  fatty  acids 

—A.  G. 

Lubricating  oils,  leather  grease,  artificial  vaseline, 
lanolin-like  materials  and  the  like;  Production  of 

highly  viscous  from  mineral,  vegetable  and 

animal  oils.  Plauson's  Forschungsinstitut 
G.m.b.H.  G.P.  353,222,  20.4.21.  Addn.  to 
347,084  (J.,  1922,  300  a). 

Vegetable  waxes  are  used  in  place  of  bitumen  or 
crude  or  bleached  montan  wax.  The  products 
obtained  from  Japan  wax,  carnauba  wax,  or  bees- 
wax, by  treatment  with  aldehydes  in  the  presence 
of  alkalis,  if  necessary  with  the  addition  of  poly- 
hydric  alcohols,  give,  on  melting  with  oils,  highly 
viscous,  vaseline-like  products,  which  can  be 
incorporated  with  water  by  intimate  trituration. 

—A.  G. 

Fatty  acids  with  several  double  linkages  or  of  their 

glycerides-  Conversion  of into  oleic  acid-like 

fatty  acids  or  their  soaps.  C.  Stiepel,  Assr.  to 
Persapol  Ges.  U.S. P.  1,429,114.  12.9.22.  Appl., 
14.9.20. 

See  E.P.  141,720  of  1920;  J.,  1921,  630  a. 

■Oil  bearing  material;  Art  of  forming  and  wrapping 

prior  to   the    expression  of  oil   therefrom. 

W.  J.  Mellersch-Jackson.    From  The  Murray  Co 
E.P.  184,621,  3.6.21. 


A.  W.  French.     E.P. 


Presses;  Oil  and  like  — 
185,532,  14.6.21. 

Slubber  substitute.     G.P.  356,165.     See  XIV. 

XIII.-PAINTS ;     PIGMENTS;    VARNISHES; 
RESINS. 

■Graphites    and    other    pencil    pigments       C     A 

Mitchell.  Analyst,  1922,  47,  379—387. 
The  author  gives  a  further  account,  illustrated  by 
photomicrographs,  of  the  differences  in  the 
markings  made  by  various  graphites  (c/.  J.,  1919, 
381  t),  lead-antimony  alloys,  etc.,  and  a  correlation 
of  the  microscopic  appearances  of  these  markings 
with  the  chemical  composition  of  the  pencil 
pigment.  The  materials  used  included  a  number 
of  old  graphite  or  compressed  graphite  pencils, 
samples  of  old  Borrowdale  graphite,  and  modern 
graphites  and  graphite  pencils,  and  the  conclusions 
•previously  drawn  were  confirmed.  The  pigments  in 
a  number  of  coloured  pencils  were  examined  both 
chemically,  and  by  microscopical  observation  of  their 
markings  on  paper.  The  pigment  in  blue  pencils  is 
•either  an  aniline  dye,  Prussian  blue  or  other 
mineral  pigment,  or  a  mixture  of  both.  In  red 
pencils  the  pigment  is  mostly  red  lead.  Chemically 
the  markings  may  often  be  differentiated  by  their 
behaviour  with  2V/1  potassium  hydroxide,  or  with 
hydrochloric  acid,  and  differences  may  also  be  noted 
in  the  reactions  given  by  them  for  iron.  Micro- 
scopically differences  may  be  noted  in  the  colour, 
and  the  disposal  of  the  pigment  on  the  paper 

— G.  F.  M. 

Coumarone-resin ;  Preparation  of  — — .  S.  Hirano. 
Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan). 
1922,  25,  827—833. 

On  slowly  adding  5  e.c.  of  concentrated  sulphuric 
acid  to  100  c.c.  of  purified  coal  tar  naphtha,  b.p. 
155° — 185°  C,  with  constant  stirring,  coumarone- 
resin  is  produced,  with  a  yield  of  9'53%  of  the 
naphtha.  The  naphtha  should  be  previously  washed 
with  soda  lye  (sp.  gr.  122)  and  dilute  sulphuric  acid 


(sp.  gr.  1-20)  to  remove  tar  acids  and  bases,  and 
treed  from  water.  If  the  alkali  washing  be  omitted 
the  same  yield  as  obtained,  but  the  product  is 
darker  m  colour.  The  initial  temperature  of  the  oil 
should  be  as  low  as  possible  and  rise  of  temperature 
during  the  reaction  avoided.  When  more  oil  is 
used  at  a  time,  the  quantity  of  the  acid  should  be 
decreased  to  avoid  oxidation.  A  paler  resin  is 
obtained  by  washing  the  reaction  product  with 
alkali.  As  polymerisation  reagents,  stannic  chlor- 
ide (5  c.c.)  gives  a  hard  and  pale  resin  (m.p.  85°  C  ) 
the  yield  being  6-06  g.  from  100  c.c.  of  oil,  while 
aluminium  chloride  (10  g.)  gives  a  soft  and  dark 
resin  (m.p.  38°  C.)  with  a  yield  of  32'5  g.— K.  K. 

Sedimentation  analysis.     Von  Hahn.     See  XXIII. 

Patents. 
Condensation  products  of  phenolic  bodies  with  alde- 

hydic  compounds;  Manufacture  of  ■ .     Lorival 

Mfg.    Co.,    Ltd.,    and   A.   A.    Drummond.      E.P. 
184,961,  7.7.21. 

To  the  initial  condensation  product  obtained  by 
the  interaction  of  phenols  with  formaldehyde  is 
added  a  proportion  of  glycerin  (e.g.,  70%  aqueous 
glycerin)  such  that  the  proportion  of  mineral  acid 
used  as  accelerator  is  1  g.-equiv.  to  at  least  900  g. 
of  glycerin. — A.  de  W. 

Artificial  [phenol-formaldehyde^  resins;  Production 

°f •     A.  Heinemann.     E.P.  184,984,  27.7.21. 

An  alkali  glycerate  is  added  to  artificial  resins 
obtained  from  phenols  and  formaldehyde  after  the 
elimination  of  water  therefrom,  for  the  purposes  of 
minimising  brittleness  and  increasing  toughness,  or 
if  desired,  raising  the  melting-point  and  reducing 
solubility. — A.  de  W. 

Bosin;  Compound  for  hardening  and  method 

of  using  same.    W.  H.  Scheel.    U.S.P.  1,428,120 
5.9.22.     Appl.,  25.3.22. 

Coral  lime  (about  1%)  is  compounded  with  rosin 
whilst  in  the  state  of  fusion,  and  the  fused  mass 
diluted  with  a  liquid  solvent  to  the  proper  consis- 
tency of  a  rosin  varnish. — A.  de  W. 

Coating  composition  and  process  of  producing  the 
same.  Paint  vehicle.  W.  A.  Collings.  U  S  P 
(a)  1,428,272  and  (b)  1,428,273,  5.9.22.  Appl., 
5.11.21  and  28.2.22. 

(a)  Hot  raw  linseed  oil  is  gelatinised  by  the  incor- 
poration of  a  water-insoluble  soap,  e.g.,  aluminium 
stearate,  the  jelly  allowed  to  age,  and  Portland 
cement  added  thereto  in  sufficient  proportion  to 
form  a.  stiff  paste,  (b)  A  petroleum  distillate  of 
high  iodine  value  is  subjected  to  distillation  or 
blown  with  air  to  free  it  from  its  contained  pitchy 
or  waxy  matter  and  a  water-insoluble  metal  soap 
incorporated  therein. — A.  de  W. 

Inks  and  water-colours  •  Manufacture  of .  Plau- 
son's Forschungsinstitut  G.m.b.H.  G.P.  355,117, 
22.6.21. 

Aqueous  colloidal  dispersions  of  substances  such  as 
clay,  kaolin,  phosphates,  zirconium  earths,  metallic 
oxides,  lime  and  iron  compounds,  or  of  other  in- 
soluble coloured  mineral  substances  are  ground  with 
soluble  organic  dyestuffs  and  a  protective  colloid  in 
a  Plauson  colloid  mill.  By  this  method,  only  about 
one-tenth  of  the  usual  amount  of  organic  dyestutf 
is  required. — A.  J.  H. 

Pcsinous  products  from  waste  sulphuric  acid. 
U.S.P.  1,427,386.    See  III. 

Cellulose  acetate  compositions.  E.P.  184,671.  See  V. 

Rust-preventing  coatings.  U.S.P.  1,428,085-6. 
See  X. 


Vol. XIX, No* 20.]      Cl.  XIV.— INDIA-RUBBER,  &c.     Cl.  XV.— LEATHER  ;    BOXE,  &c. 


827  a 


XIV.-INDIA-RUBBER;  GUTTA-PERCHA. 

Latex  and  rubber  from  individual  trees.  III. 
Difference  in  properties  of  rubber  from  different 
trees.  Arc  the  properties  of  rubber  from  one  tree 
constant?  O.  de  Vries.  Comm.  Central  Rubber 
Stat.  Buitenzorg,  1922,  No.  29,  146—162. 

Twelve  good  yielding  trees,  on  one  estate,  gave 
from  96  to  684  g.  of  rubber  per  day.  The  rubber 
content  of  the  latex  varied  from  25  to  46%,  and 
although  often  very  constant  over  long  periods  for 
one  tree,  sometimes  underwent  change  from  altera- 
tion in  tapping  system  and  other  causes.  For  some 
trees  the  tensile  strength  of  the  rubber  was  consis- 
tently low.  The  rate  of  vulcanisation  was  fairly 
constant  for  each  tree  and  the  "Slope  "  in  almost 
all  cases  fell  between  35  and  38.  Wide  variations, 
however,  were  found  in  the  viscosity,  which  was  not 
alwavs  constant  for  the  same  tree.  (Cf.  J.,  1920, 
665  a.)— D.  F.  T. 

Later  and  rubber  from  young  trees.  O.  de  Vries. 
Comm.  Central  Rubber  Stat.  Buitenzorg,  1922, 
No.  31,  296—309. 

In  the  rubber  from  trees  between  6  and  15  years  old 
the  differences  in  properties  are  small.  With  trees 
3  to  4J-  years  old,  however,  the  rubber  content 
of  the  latex  was  low  and  the  specific  gravity  tended 
to  be  high.  The  rubber,  especially  in  the  form  of 
Bheet,  showed  marked  "shortness,"  and  the  vis- 
cosity was  very  low,  particularly  for  crepe.  The 
rate  of  vulcanisation  proved  exceptionally  high, 
whilst  in  "slope"  and  tensile  strength  the  vulcan- 
ised rubber  was  inferior  to  the  product  from  older 
trees.— D.  F.  T. 

Latex  and  rubber ;  Influence  of  soil  upkeep  on . 

O.  dc  Vries.     Comm.  Central  Rubber  Stat.  Bui- 
tenzorg, 1922,  No.  31,  289—295. 

No  improvement  was  observable  in  the  rubber  from 
trees  over  a  period  of  three  months  during  which 
the  ground  was  kept  in  good  condition  and  free 
from  weeds,  after  having  been  neglected  for  twelve 
months.— D.  F.  T. 

Ilevea  latex;  Presence  of  quebrachitol  and  sugar  in 

under  different  circumstances.     W.   Spoon. 

Comm.   Central   Rubber   Stat.   Buitenzorg,   1922, 
No.  30,  269—287. 

Making  the  assumption  that  the  sugar  present  in 
latex  is  sucrose,  comparative  estimation  of  the  pro- 
portion of  quebrachitol  is  possible  by  measurement 
of  the  optical  rotation  of  the  protein-free  serum 
before  and  after  inversion  of  the  sucrose.  The  re- 
moval of  protein  from  the  serum  can  be  effected  by 
ecipitation  with  alcohol.  Tapping  the  trees  on 
Iternate  days  instead  of  daily  causes  an  increase 
in  the  proportion  of  rubber  and  sugar  in  the  latex 
and  a  decrease  in  the  mineral  substances  and  in  the 
quebrachitol.  During  the  first  few  months  after  the 
change  the  yield  of  latex  per  tree  decreases  by  about 
40%,  but  subsequently  rises  gradually. — D.  F.  T. 


mc 


'.[Rubber  latex;]  'Experiments  [on ]  with  Boeh- 

ringer's  coagulating  powder  [aluminium  lactate']. 
W.  Spoon.  Comm.  Central  Rubber  Stat.  Bui- 
tenzorg, 1922,  No.  29,  140—145. 
The  coagulant,  which  consists  chiefly  of  aluminium 
lactate,  gives  a  rubber  inferior  to  that  obtained 
with  acetic  acid  in  tensile  strength,  rate  of  vul- 
canisation, and  viscosity.  The  use  of  lactic  acid  as 
i-  coagulant  does  not  harm  the  rubber,  but  alum 
nelds  a  poor  grade  of  rubber,  similar  to  that  ob- 
,  ained  with  the  aluminium  lactate. — D.  F.  T. 

lubber  latex  in  paper  making.     Kaye.     See  V. 


Patents. 
Rubberised  fabric  and  rubber  goods;  Preparation  of 

.     P.   Britton,   and   Griffiths  Bros,  and  Co., 

London,  Ltd.     E.P.  184,578,  17.5.21. 

Rubberised  fabrics  are  prepared  by  applying 
rubber  latex,  with  or  without  added  ingredients, 
to  the  material  to  be  treated.  After  drying  and 
before  vulcanisation,  the  treated  material  may  be 
washed  to  remove  albuminous  matters  natural  to 
the  latex.— D.  F.  T. 

[Rubber']   compounds;   Method  of  working   quick- 
curing  [quick-vulcanising]  .     W.  A.  Gibbons, 

Assr.  to  American  Rubber  Co.  U.S. P.  1,427,283, 
29.8.22.     Appl.,  31.3.21. 

In  order  to  prevent  premature  vulcanisation  of 
rubber  mixtures  containing  accelerators,  the  rubber 
is  maintained  in  a  softened  condition  during  the 
period  of  mechanical  working. — D.  F.  T. 

[Rubber]  latex;  Process  and  apparatus  for  treating 

.     C.  E.  Bradley  and  J.  G.  Coffin,  Assrs.  to 

General  Rubber  Co.  U.S. P.  1,428,526,  12.9.22. 
Appl.,  7.12.21. 

Latex  is  fed  on  to  a  moving  surface,  whence  it  is 
discharged  as  a  series  of  particles,  from  which  the 
moisture  is  subsequently  removed. — L.  A.  C. 

Rubber  substitute;  Preparation  of  coloured  . 

Dubois  und  Kaufmann  Chem.  Fabr.  G.P. 
356,165,  6.6.14. 

Finely  divided  factice  is  dyed  in  level  shades,  which 
are  not  changed  during  vulcanisation,  by  means  of 
organic  dyestuffs,  especially  those  of  the  Indigo 
series. — A.  J.  H. 

Rubber-containing  latex;  Process  for  treating . 

Product  obtained  from  rubber-containing  latex. 
E.  Hopkinson,  Assr.  to  General  Rubber  Co. 
U.S. P.  1,423,525-6,  25.7.22.    Appl.,  16.1.20. 

See  E.P.  157,975  of  1921;  J.,  1922,  677  a. 


XV.-LEATHER;  BONE;   HORN;   GLUE. 

Hide  snaking  experiments.    B.  S.  Levine.    J.  Amer. 
Leather  Chem.  Assoc,  1922,  17,  417—430. 

Pieces  of  hide  were  soaked  in  tap  water  under 
normal,  aerobic,  and  anaerobic  conditions.  The 
hair  became  loose  in  the  shortest  time,  viz.,  10  days, 
by  the  action  of  anaerobic  bacteria.  The  quantity 
of  water  compared  to  hide  should  not  be  greater 
than  10:4,  preferably  less.  The  soak  liquor  from 
experiments  under  aerobic  conditions  (with  a  cur- 
rent of  air  passing  during  the  experiment)  were 
thick  and  difficult  to  filter,  whilst  that  from  experi- 
ments under  anaerobic  conditions  (atmosphere  of 
carbon  dioxide)  was  clear  and  easily  filtered.  The 
number  of  bacteria  per  c.c.  was  less  in  the  anaer- 
obic method  than  in  any  of  the  others.  Soaking  and 
hair  loosening  can  be  effected  in  one  operation. 

— D.  W. 

[Hides;]    Versatility   of   a   plumping    method    [for 

].     H.    C.   Reed.     J.   Amer.  Leather  Chem. 

Assoc.,  1922,  17,  460—482. 
Two  grms.  of  dry  hide  powder  was  weighed  into  a 
wide-mouthed  6-oz.  bottle  fitted  with  a  rubber 
stopper.  100  c.c.  of  the  solution  to  be  tested  was 
added,  the  contents  shaken  and  allowed  to  6tand 
for  20  hrs.  The  solution  not  retained  by  the  hide 
powder  was  filtered  off  through  a  cotton  plug  into 
a  measuring  cvlinder.  The  plumping  action  was 
expressed  in  ratio  to  the  plumping  action  of  dis- 
tilled water  as  unity.  Curves  are  given  showing 
the  plumping  action  of  different  acids  at  different 
concentrations.      Sulphuric    acid    is    differentiated 

o 


828  a 


Cl.    XV.— LEATHER;    BONE;    HORN;    GLUE. 


[Oct.  31,  1922. 


from  hydrochloric  acid  and  both  from  organic  acids. 
The  plumping  ratio  of  caustic  soda,  the  repressive 
action  of  salts  on  plumping  by  lactic  acid,  sulphuric 
acid,  and  caustic  soda,  and  on  hide  powder  swollen 
by  water,  are  shown  graphically.  Experiments 
have  been  carried  out  on  the  plumping  ratios  of 
tanning  materials,  the  effect  of  tannin  on  hide 
powder  plumped  with  acid,  and  the  effect  of  mix- 
tures of  tannin  and  acid  on  hide  powder  swollen  by 
water. — D.  W. 

Goran     (Ceriops     Roxburgh  iana)     bark:     optimum 

temperature  and  state  of  sub-division  for  maxi- 

mum  extraction.    J.  A.  Pilgrim.    J.  Soc.  Leather 

Trades'  Chem.,  1922,  6,  255—260. 

In  Dhavale  and  Das's  work  (J.,   1921,   709  a)  the 

ground    bark   was    sifted   whereas   in    practice   the 

coarsely  ground  material  contains  some  fine  powder 

which  is  very  rich  in  tannin.  The  solutions  analysed 

by     Dhavale     and     Das     were    not     of     analytical 

strength.     The  author  has  made  certain  corrections 

which    indicate   that    the   60-mesh   material   yields 

most  tannin. — D.  W. 

Tannin  analysis.  III.  V.  Kubelka  and  B.  Kohler. 
Collegium,  1922,  167—176.  (Cf.  J.,  1921,  312  a; 
1922,  773  a.) 

Experiments  show  that  the  results  given  by  the 
official  method  of  tannin  analysis  vary  considerably 
according  to  the  concentration  of  tannin  in  solution, 
whereas  those  obtained  by  the  filter  bell  method  are 
almost  independent  of  that  factor.  The  differences 
between  the  results  of  the  two  methods  are  not 
caused  by  the  stronger  chroming  of  the  hide 
powder.  The  official  shake  method  depends  on  an 
equilibrium  condition  which  cannot  give  the  best 
results.     The  authors  favour  the  filter  bell  method. 

— D.  W. 

Synthetic  tans;  Comparative  observations  of  the 
tanning  properties  of  vegetable  tanning  materials, 
synthetic  tans,  and  mixtures  of  vegetable  tannin,/ 

materials  with  .     S.   Kohn,  j.   Breedis,   and 

E.  Crede.  J.  Amer.  Leather  Chem.  Assoc,  1922, 
17,  450—460. 
Hide  substance  will  absorb  much  smaller  quantities 
of  "  syntans  "  than  of  vegetable  tanning  materials, 
but  if  mixed  in  certain  proportions  both  act  cumu- 
latively. The  active  principles  of  syntans  are  acids 
having  a  higher  degree  of  ionisation  than  the  acids 
in  vegetable  tannins  and  approaching  that  of 
sulphuric  acid.  Syntans  can  be  produced  which  do 
not  manifest  the  disadvantages  of  sulphuric  acid. 
The  different  syntans  can  be  distinguished  by  eva- 
porating a  sample  to  dryness  in  a  drying  oven  at 
80°  C.  Unstable  syntans  decompose  under  such 
conditions  and  the  residue  will  contain  some  organic 
base  insoluble  in  water.  The  acidity  will  also  have 
increased.  Leathers  tanned  with  syntans  show  free 
mineral  acid  by  the  Procter-Searle  method  of  deter- 
mination. To  determine  free  mineral  acid  the 
leather  should  be  extracted  with  water  to  leach  out 
the  acids  and  Immerheiser's  ether  method  applied 
to  distinguish  between  sulphonic  and  sulphuric 
acids.  Another  useful  test  is  to  soak  a  piece  of 
muslin  in  a  solution  of  the  syntan  and  dry  it  out. 
Free  sulphuric  acid  will  rot  the  muslin,  whilst  a 
stable  syntan  will  not  affect  its  strength. — D.  W. 

Chrome  tannage;  One-bath  - ■  with  chrome  alum. 

P.   Chambard  and  L.   Meunier.     Chim.   et  Ind., 

1922,  8,  325—329. 
Experiments  with  basic  chrome  alum  liquors  show 
that  for  a  given  basicity  the  amount  of  chromic 
oxide  fixed  in  the  skin  when  it  is  saturated  is  inde- 
pendent of  the  concentration  provided  that  the 
liquor  is  renewed  several  times  and  sufficient  time  is 
allowed.  "With  normal  chromium  compounds  the 
amount  of  chromic  oxide  fixed  by  the  skin  when  it 
is  saturated  diminishes  with  the  concentration. 

— D.  W. 


Vegetable-tanned       leathers;       Determination      of 

water-soluble  matter  in .     W.  J.  Chater  and 

D.  Woodroffe.  J.  Soc.  Leather  Trades'  Chem., 
1922,  6,  247—255. 
Experiments  with  the  official  method  of  deter- 
mining water-soluble  matter  in  vegetable-tanned 
leathers  show  that  it  is  in  error  to  the  extent  of 
10 — 30%.  An  additional  litre  of  percolate  should 
be  collected,  the  water-soluble  matter  determined 
in  an  aliquot  portion  thereof  and  added  to  that 
determined  in  the  official  method.  The  yield  ot 
soluble  matter  from  leathers  plotted  against  time  of 
extraction  gives  curves  of  the  same  type  for 
different  leathers,  all  of  which  appear  to  follow 
closely  laws  of  an  exponential  type. — D.  W. 

Gelatin   and    glue;   Evaluation    of   .      R.    H. 

Bogue.    J.  Ind.  Eng.  Chem.,  1922,  14,  435 — 441. 

Commercial  gelatin  and  glue  should  be  evaluated 
in  terms  of  proportion  of  pure  and  unhydrolysed 
gelatin  which  is  contained  in  the  material.  Glue 
as  an  adhesive  should  be  evaluated  in  terms  of 
the  strength  of  the  joint  made  with  the  material. 
The  glue  with  the  largest  amount  of  unhydrolysed 
gelatin  produces  the  strongest  joint.  If  the 
viscosity  is  kept  constant  the  jelly  content  and  joint 
strength  vary  as  the  jelly  consistency,  whilst  if  the 
latter  is  constant  these  properties  vary  as  the 
viscosity.  The  jelly  consistency  and  the  viscosity 
bear  the  same  relation  to  the  melting  point,  and 
the  latter  appears  to  indicate  the  gelatin  content 
and  the  joint  strength.  Most  melting  point  deter- 
minations are  inexact,  but  a  value  for  the  melting 
point  may  be  obtained  by  plotting  the  curve  of 
viscosity  at  decreasing  temperatures  and  extra- 
polating to  the  temperature  where  the  viscous  flow 
would  be  zero.  The  same  order  of  differentiation 
may,  however,  be  obtained  by  a  single  deter- 
mination of  the  viscosity  at  35°  C,  using  the 
equivalent  of  18  g.  of  dry  glue  made  up  to  100  g. 
with  water.  The  hydrogen  ion  concentration  of  a 
1  %  solution  should  be  measured.  The  viscosity  at 
60°  C,  the  jelly  consistency,  the  foam  test,  the 
grease  test,  appearance,  and  odour  should  also  be 
determined.  The  grade  designation  of  the  product 
may  be  expressed  by  consecutive  numbers,  1  being 
the  lowest,  and  corresponding  to  a  viscosity  of  the 
18%  solution  (dry  basis)  at  35°  C  of  less  than  20 
centipoises  and  each  succeeding  numerical  increase 
in  the  designation  corresponding  to  an  increase  of 
10  centipoises. — D.  W. 

Patents. 
Tanning  of  hides  and  skins.     P.  J.  C.  Margotton. 

E.P.  184,955,  30.6.21. 
Hides  and  skins  which  have  been  worked  in  a 
stream  and  tawed  and  have  been  fleshed  and 
pressed,  especially  hides  intended  for  use  in  the 
manufacture  of  gloves,  are  worked  in  a  solution 
containing,  e.g.,  2  g.  of  chromic  acid  and  2  c.c.  of 
sulphuric  acid  per  50  g.  of  hides,  in  3  1.  of  water. 
The  solution  is  contained  in  a  "  fulling  prism " 
consisting  of  a  prismatic  box  of  polygonal  section 
rotating  about  a  vertical  shaft  parallel  to  its  axis. 
The  box  is  separated  into  two  compartments  by  a 
grating  inclined  to  the  axis  of  the  prism  at  an  angle 
of  about  60°.  Another  grating  parallel  to  and  near 
the  base  of  the  prism  prevents  the  hides  from 
blocking  the  end  of  an  aerating  pipe  leading  into 
the  space  between  the  base  and  the  grating.  When 
the  hides  are  completely  impregnated  with  the 
solution,  they  are  allowed  to  drain,  treated 
successively  with  sulphur  dioxide  and  ammonia, 
washed  to  remove  ammonia  and  ammonium  salts, 
treated  with  hot  air  charged  with  alcohol  vapour, 
impregnated  with  oil,  heated  to  45° — 50°  C,  de- 
greased  and  dried.  Means  are  previded  for 
recovering  sulphur  dioxide,  ammonia,  and  alcohol 
vapour. — L.  A.  C. 


Vol.  XLL,  No.  20.]        Cl.  XVI— SOILS,  &o.     Cl.  XVII.-SUGARS  ;    STARCHES  ;    GUMS. 


829  a 


Tanning  hides  and  skins.  E.  W.  Merry,  As8r  to 
Pyrotan  Leather  Corp.  U.S. P.  1,427,221,  29  8  22 
Appl.,  11.2.19.    Renewed  16.5.22. 

Hides  are  agitated  in  contact  with  a  solution 
containing  a  soluble  aluminium  salt  and  a  soluble 
pyrophosphate.  The  temperature  is  not  allowed  to 
exceed  107°  F.  (42°  C.).— D.  W. 

Leather  grease.     G.P.  353,222.     See  XII. 

XVI.-S0ILS ;  FERTILISERS. 

Soil-reaction;  Change  of by  manuring.     I.     S. 

Osugi  and  N.  Soyama.     Ber.  Ohara  Inst.  Landw. 
Forsch.,  1921,  2,  79—93. 

A  number  of  plots  were  treated  with  different 
fertiliser  mixtures,  and  periodic  observations  of  the 
H-ion  concentration  of  the  soil  were  made  by  means 
of  1:10  water-extracts.  No  regularity  was  observed 
in  the  changes  of  pn  values  due  to  the  fertilisers 
used,  nor  was  there  any  correlation  between  pH 
values  and  crop  yields.  The  only  distinct  effects 
were  those  due  to  the  alkalinity  of  lime,  lime- 
nitrogen  (crude  calcium  cyanamide),  and  potassium 
carbonate.  Continuous  application  of  the  same 
fertiliser  .mixture  to  the  same  soil  does  not  cause 
an  accumulation  of  reaction  changes  due  to  the 
fertiliser.  The  reaction  of  irrigation  water  may 
modify  or  obliterate  that  produced  by  added 
fertilisers. — A.  G.  P. 

Colloidal   clay    [in  soils'];   Quantitative   determina- 
tion of  .     R.  Sokol.     Internat.  Mitt.  Boden- 

kunde,  1921,  11,  184—211.  Chem.  Zentr.,  1922, 
93,  IV.,  704. 

The  clay,  suspended  in  water,  is  flocculated  with 
,  ilf/10  sodium  chloride,  and  the  volume  of  the  sedi- 
ment is  measured,  immediately,  and  also  after  24 
hrs.  The  ratio  of  the  two  values  gives  the  "  colloid 
number."  The  addition  of  the  salt  produces  a  floc- 
culent  precipitate,  which  contains  in  addition  to 
colloidal  matter  all  the  dust  and  other  coarse  sus- 
pended matter;  the  volume  of  the  latter  may  be 
'  determined  in  a  similar  manner  without  the  use  of 
salt.  Clays  were  graded  by  Atterberg's  method, 
and  the  proportions  of  coarse  and  fine  particles  in 
grade  A  (less  than  0'002  mm.  diam.)  estimated  from 
the  amount  of  deposit  after  3  and  17  days  respec- 
tively. Microscopical  examination  showed  that  the 
former  had  an  average  diameter  of  0'0007  mm.,  and 
the  latter  00003  mm.,  which  values  agree  well  with 
Stokes'  formula.  The  flocculation  method  enables 
the  diameters  of  the  various  particles  to  be  esti- 
mated, whilst  the  determination  of  the  hygros- 
copicity,  as  recommended  by  Mitscherlich,  only 
gives  a  rough  idea  as  to  whether  few  or  many  small 
particles  are  present,  and  gives  no  evidence  as  to 
their  dimensions. — A.  B.  S. 

Lime-sulphur  mixture.    Harukawa.     See  XIXb. 

Patents. 

Acid  phosphate  or  superphosphate;  Apparatus  for 

manufacturing  .     T.  J.  Sturtevant,  Assr.  to 

Sturtevant  Mill  Co.  U.S. P.  (a)  1,428,920,  (b) 
1,428,921,  and  (c)  1,428,922,  12.9.22.  Appl.,  (a) 
19.4.21,  (b)  26.4.21,  (c)  24.5.21. 

(a)  A  semi-liquid  mixture  of  ground  phosphate  rock 
and  acid  is  delivered  to  a  series  of  containers  which 
are  advanced  continuously  for  a  sufficient  distance 
to  allow  the  mixture  to  solidify,  the  solidified  mix- 
ture being  discharged  from  the  container  during 
transit,  (b)  A  mixture  of  ground  phosphate  rock 
and  acid  is  delivered  into  the  upper  end  of  a  den, 
and  passes,  on  becoming  spongy,  into  a  disinteg- 
rator disposed  below.  Means  are  provided  for  sup- 
porting the  materials  above  the  disintegrator,  (c) 
An   apparatus   for   manufacturing  superphosphate 


comprises  a  den  having  a  fixed  floor  and  rear  walls, 
and  roof  and  side  walls  which  may  be  moved  so  as 
fco  expose  the  block  of  superphosphate  formed  in 
the  den.  The  phosphate  is  fed  toward  the  rear  wall 
of  the  den  to  a  disintegrator. — J.  S.  G.  T. 

Nitrogenous  manures;  Manufacture  of D   Lo 

Monaco.  E.P.  184,833,  7.4.21. 
See  U.S.P.  1  402,638  of  1922;  J.,  1922,  151  a.  In 
addition  to  humus,  organic  refuse  of  alll  kinds 
(manure,  oil-seed  cakes,  lemon  refuse,  ground  horns 
and  nails,  dried  blood,  chrysalides,  bones,  leather 
scrap,  cloth  refuse)  may  be  treated  by  the  process 
described.  [Reference  is  directed,  in  pursuance  of 
Sect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
Acts,  1907  and  1919,  to  E.P.  2662  of  1873  and  4103 
of  1875.] 

Nitrolim;  Process  for  making  granular  from 

nitrolim  and  sulphite-cellulose  pitch.  A.  Mann 
G.P.  313,129,  24.1.18. 
Pulverised  nitrolim  and  pulverised  sulphite-cellu- 
lose pitch  are  mixed  and  cellulose  waste  lye  is 
added,  in  one  or  more  operations,  until  a  plastic 
mass  is  obtained,  which  is  then  heated  on  rippling 
rolls  or  plates  until  dry.  The  product  is  free  from 
dust.  Short-fibred  refuse  from  cellulose  and  paper 
manufacture  may  be  added  and  increase  the  fertilis- 
ing value  of  the  mass. — H.  O.  R. 

Liquid  manure;   Process  for  making   an   artificial 

.    G.  Cyliax.     G.P.  355,038,  25.7.19. 

Natural  liquid  manure  or  a  pure  culture  of  the  bac- 
teria contained  in  it  is  mixed  with  water,  meal  from 
leguminous  plants,  especially  lupins,  straw-meal, 
earth  and  sodium  bicarbonate,  and  kept  for  about 
48  hrs.  at  44° — 48°  C.  This  manure  encourages  the 
development  of  useful  soil-bacteria.  An  application 
of  3  cubic  metres  per  quarter  hectare  every  four  or 
five  years  is  specified. — H.  C.  R. 

Artificial  liquid   manure;  Production  of  an  ■ •. 

G.  Cyliax.  G.P.  355,991,  3.7.21.   Addn.  to  355,038 

(c/.  supra). 
Instead  of  using  natural  liquid  manure,  the  pro- 
duct obtained  as  described  in  the  chief  patent  is 
employed  to  inoculate  fresh  material. — A.  B.  S. 

Phosphatic  fertiliser;  Process  for  making  a  . 

A.-G.    fur    Anilin-Fabrikation.      G.P.    355,180, 

12.10.20. 
Low-grade  phosphate  rock  is  decomposed  with 
nitric  acid,  and  the  solution  and  residue  are  worked 
up  separately  and  afterwards  united.  Whereas 
phosphate  rocks  rich  in  iron  and  aluminium  when 
decomposed  with  nitric  acid  in  the  usual  manner 
and  neutralised,  only  contain  30 — 40%  of  the  total 
phosphate  soluble  in  citric  acid,  a  product  is 
obtained  by  this  process  containing  85 — 90%  of  its 
phosphate  soluble  in  citric  acid. — H.  C.  R. 

Seeds;   Treatment   of  .     A.    W.    Beer.      G.P. 

354,658,  18.4.20. 
A  solution  of  the  complex  salt,  acetamide-mercury 
chloride,  containing  005%  Hg,  renders  spores  of 
mildew  etc.  inactive.  The  solution  is  less  harmful 
to  the  germ  centre  of  the  seed  than  mercury  chlor- 
ide itself  and  can  be  applied  to  oi'1-seeds  not  easily 
treated  by  other  means. — A.  C. 

Fungicide  and  insecticide.  G.P.  355,829.  See  XIXb. 


XVII.-SUGARS ;    STARCHES;  GUMS. 

Extraction  of  sugar  from  beet  molasses  by  a  modi- 
fication of  the  baryta  process.  H.  Manourv. 
Bull.  Assoc.  Chim.  Sucr.,  1922,  39,  413—421. 

Barium  sulphide  (obtained  by  the  reduction  of  the 
sulphate  bv  heating  with  charcoal  to  1000°— 1200° 

c  2 


: 


830  a 


Cl.  xviii.— fermentation  industries. 


[Oct.  31,  1922. 


C.)  is  treated  with  hot  water,  and  the  resulting 
liquor,  after  filtration,  mixed  with  zinc  oxide  and 
heated,  the  solution  of  barium  hydroxide  thus 
obtained  being  used  for  the  preparation  of  barium 
monosaccharate,  which  is  filtered  off  in  presses.  In 
order  to  decompose  this  saccharate  cake,  it  is  heated 
with  a  solution  of  zinc  sulphate,  the  solution  of 
pure  sugar  obtained  being  worked  up  as  "  refined." 
Regarding  the  by-products  resulting  from  this 
method  of  operating,  the  zinc  sulphide  is  treated 
with  sulphuric  acid  to  produce  the  zinc  sulphate 
used  for  the  decomposition  of  the  saccharate  cake; 
while  the  mixture  of  barium  sulphate  and  zinc  hydr- 
oxide resulting  from  the  decomposition  of  the  sac- 
charate cake  is  mixed  with  the  wash-waters  from 
the  process  of  leaching  out  the  barium  sulphide,  the 
barium  hydroxide  filtered  off,  and  the  residue  (con- 
sisting of  zinc  sulphide  and  barium  sulphate) 
treated  with  sulphuric  acid  for  the  recovery  of  more 
zinc  sulphate.  It  is  stated  that  this  process  is  in 
routine  operation  in  a  sugar  factory  in  Spain. 

—J.  P.  O. 

Explosion  of  sugar  dust,  its  causes,  and  prevention. 
P.  Beversdorfer.  Z.  Ver.  deuts.  Zuckerind.,  1922, 
475—533. 

Experiments  are  described  showing  that  the  tem- 
perature necessary  for  the  ignition  of  sugar  dust  is 
410°  C.  in  air,  and  371°  C.  in  oxygen,  and  that 
these  results  are  influenced  considerably  by  the 
presence  of  relatively  inert  gases,  carbon  dioxide 
having  a  considerably  stronger  depressing  effect 
than  nitrogen.  Dust  clouds  having  a  concentration 
less  than  17'5  g.  or  more  than  13'5  kg.  of  sugar  per 
cub.  m.  of  air  will  not  explode.  The  ignition  of 
sugar  dust  in  air  may  also  be  due  to  an  electrical 
cause,  experiments  being  described  demonstrating 
that  when  sugar  dust  is  whirled  with  rapidity 
through  air  it  gives  rise  to  electrical  charges  upon 
both  dust  and  air  to  the  extent  of  several  thousand 
Tolts.  An  "  aerosol  "  is  then  formed,  and  when  the 
maximum  capacity  is  reached  a  discharge  with 
flashing  occurs,  the  stages  concerned  being  the 
formation  of  ozone  and  nitrogen  pentoxide,  reaction 
of  these  gases  with  the  extremely  fine  dust,  and 
lastly  the  explosion.  Triboluminescence  may  arise 
during  the  disintegration  of  the  sugar  in  the  crush- 
ing machines,  but  the  occurrence  of  this  pheno- 
menon cannot  give  rise  to  dust  explosions.  As  pre- 
cautionary measures  to  be  observed  in  practice,  it 
is  advised  that  dust  formation  should  be  reduced  to 
the  minimum  by  effecting  disintegration  in  three 
stages,  the  machines  recommended  being  jaw 
crushers  for  the  preliminary  reduction,  roller  mills 
for  the  coarse  grinding,  and  stamping  mills  for  the 
finest  comminution.  Bucket  elevators,  steel  (not 
balata)  belts,  and  dust-tight  screw  elevators  are  the 
most  suitable  means  for  the  removal  of  the  ground 
material  from  the  disintegrating  machines ;  while 
for  the  withdrawal  of  the  dust  a  system  of  wet 
separation  combined  with  a  "cyclone"  is  the  only 
permissible  one,  this  portion  of  the  plant  being  de- 
centralised. Wires  should  be  run  to  earth  from  all 
parts  of  the  machines  where  static  electricity  is 
likely  to  be  generated.  A  certain  means  of  protec- 
tion against  any  danger  of  explosion,  whether  from 
thermal  or  electrical  causes,  is  the  gas-tight  en- 
closure of  the  disintegrating  and  conveying 
machines  and  the  displacement  of  the  air  within  by 
a  relatively  inert  gas,  preferably  oarbon  dioxide,  or 
possibly  washed  and  filtered  flue  gases. — J.  P.  O. 

Sucrose;    Inversion    of    by    alkaline    copper 

solution.     L.  Maquenne.     Bull.  Soc.  Chim.,  1922, 
31,  799—806. 

The  author  has  previously  pointed  out  that  the 
reducing  power  of  sucrose  towards  alkaline  copper 
solution  is  not  constant  but  is  dependent  on  the 
quantity  of  invert  sugar  present  and  on  the  concen- 


tration of  the  solution  (cf.  J.,  1915,  1263;  1916, 
268).  Canals'  results  (J.,  1922,  603  a)  are  criticised 
on  the  ground  that  necessary  precautions  were 
omitted.  Details  of  the  author's  method  for  the 
determination  of  reducing  sugars  in  presence  ol 
sucrose  (J.,  1916,  320,  373)  are  repeated  with 
examples,  and  tables  for  calculating  the  results  are 
given. — H.  J.  E. 

Patent. 

Dextrin;  Method  and  apparatus  for  manufacturing 

.      J.    J.    Merrill,    Assr.    to    Corn    Products 

Refining  Co.     U.S. P.   1,428,604,   12.9.22.     Appl., 
23.4.17. 

In  the  preparation  of  dextrin,  heating  is  carried 
out  in  a  cylindrical  vessel  having  a  door  in  its  side- 
wall  and  heated  by  steam  pipes  arranged  adjacent 
to  the  side  wall,  surrounding  the  major  part  of 
the  vessel  and  connected  to  the  source  of  heat 
supply  by  means  of  headers  arranged  on  opposite 
sides  of  the  door. — W.  H.  (J, 


XVIII.-FERMENTATI0N  INDUSTRIES. 

Malt;  Speckled .     F.  A.  Mason  and  F.  Brown. 

Bull.  Bur.  Bio-Tech.,  1922,  No.  6,  188—191. 

A  sample  of  high-dried  malt  containing  10%  oH 
speckled  grains  or  "  magpies  "  has  been  examined. 
Contrary  to  the  view  expressed  by  Frew  (J.,  1898, 
330),  the  speckling  of  the  corns  appears  to  be  due 
to  the  production  of  one  or  more  melanoidins  in 
the  outer  cells  of  the  husks,  owing  to  certain 
conditions  of  moisture  content  and  to  the  nature 
of  the  kiln  gases,  these  being  determined  by  the 
ventilation  and  temperature.  The  yields  of  extract 
and  the  specific  rotations  of  the  wort  obtained  from 
the  speckled  and  from  normal  grains  agree  so  closely 
that  differences  between  the  endosperm  contents  in 
the  two  cases  seem  unlikely;  the  only  variable 
feature  is  the  deeper  colour  of  the  wort  given  by  the 
speckled  malt.  Except  for  this  increase  in  tint, 
the  brewing  value  of  a  malt  is  not  impaired  by  the 
presence  of  speckled  corns. — T.  H.  P. 

Malt;   Proteolytic   enzymes  of .     H.  Lundin. 

Biochem.  Zeits.,  1922,  131,  193—218. 

The  optimum  pK  for  malt  peptase  in  malt  is  3'7 — 
4'3  and  in  green  malt  3'2.  There  is  no  malt  peptase 
in  malt  germ.  The  malt  tryptase  of  green  malt  and 
of  malt  germ  acts  best  at  pB  63.  At  the  optimum 
pB  neutral  salts  have  little  action.  The  autolytie 
process  in  malt  is  conditioned  by  the  various 
enzymes  present,  each  having  an  optimum  pa;  the 
optimum  value  however  for  autolysis  is  43 — -50  in 
malt,  4'4  in  green  malt,  and  6'3  in  malt  germ. 

— H.  K. 

Yeast;  Influence  of  mineral  spring  water  on  the 

carbohydrate   interchange  in  .       P.   Mayer. 

Biochem.  Zeits,  1922,  131,  1—5. 

The  use  of  Karlsbad  water  as  a  solvent  for  the 
sucrose  in  yeast  fermentation  leads  to  an 
increased  production  of  glycerol  and  a  diminished 
production  of  alcohol.  Solutions  made  up  from 
Karlsbad  salts  (powdered  form)  show  this  action  to 
a  greater  degree. — H.  K. 

Carboligase.  V.  Union  of  carbon  to  carbon  biosyn* 
thetically  in  the  aliphatic  series.  3.  Hirsch. 
Biochem.  Zeits.,  1922,  131,  178—187. 
Yteast  fermentation  in  the  presence  of  pyruvic  acid 
leads  to  the  production  of  optically  active  methyl- 
acetylcarbinol.  This  "  acyloin  "  condensation  is 
brought  about  by  the  carboligase  present  in  yeast. 

— H.  K. 


Vol.  XLI.,  No.  20.] 


Cl.  XVIII.— fermentation  industries. 


831a 


Fermentation;  Production  of  the  second  and  third 

forms     of     with      Saeeharomyces     Sake, 

Zygosaccharomyces     major,     and    Zygosaccharo- 
myces  salsus.     H.  Kumagawa.     Biochem.  Zeits 
1922,  131,  148—156. 

The  Japanese  yeasts  named  can  decompose  sugar 
according  to  the  second  and  third  modes  of  fermen- 
tation. Saeeharomyces  Sake  can  withstand  a 
greater  proportion  of  sodium  bisulphite  than 
German  yeasts,  thus  giving  rise  to  increased  yields, 
196  I  of  acetaldehyde  and  392%  of  glycerol  the 
alcohol  production  being  only  10%  — H.  K. 

"  Ropiness  "  in  worts  and  beers;  Causation  of . 

P.  Hampshire.  Bull.  Bur.  Bio-Tech.,  1922  No  6 
179—187.  '       '    ' 

Application  of  the  method  previously  described  for 
the  isolation  of  bacteria  from  beer  deposits  (J., 
1922,  340  a)  to  a  pitching  yeast  found  to  produce  a 
ropy  and  highly  acid  wort  after  incubation  for  five 
days  has  resulted  in  the  separation  of  an  organism 
termed  Bacterium.  11,  which  differs  in  cultural  and 
physiological  behaviour  from  that  described  by 
previous  workers  for  organisms  connected  with 
ropiness.  The  character  of  the  mucilage  formed  by 
Bacterium  R  in  sterile  beer  is  influenced  greatly  by 
the  amount  of  oxygen  available.  In  flasks  from 
which  the  air  had  been  expelled  by  means  of  either 
hydrogen  or  carbon  dioxide,  no  surface  film  was 
formed  on  the  beer,  which  retained  its  original 
slight  turbidity  but  became  permanently  ropy.  On 
the  other  hand,  in  presence  of  air  a'  dense  film 
appeared  at  the  surface  and  a  heavy  slime  at  the 
bottom  of  the  liquid,  which  also  developed  pro- 
nounced turbidity.  A  condition  essential  to  the 
production  of  a  typical  clear  ropiness  is  the 
presence  of  only  a  very  limited  amount  of  oxygen, 
the  fact  that  the  organism  is  able  to  induce  this 
phenomenon  when  grown  together  with  a  yeast  in 
the  ordinary  way  being  explained  by  the  displace- 
ment of  the  air  by  the  carbon  dioxide  resulting  from 
the  fermentation.  A  description  is  given  of  the 
morphological  and  physiological  features  of  Bacter- 
ium R,  which  is  compared  with  the  members  of  the 
acetic  acid  group  of  bacteria  or  Aeetobacter.  The 
author  is  unable  to  confirm  the  obligate  aerobic 
character  of  the  latter  organisms,  which  grow  well 
in  absence  of  oxygen,  although  the  production  of 
film  is  essentially  an  aerobic  process. — T.  H.  P. 

■Citric  and  oxalic  acids;  Formation  of in  Citro- 

myces  cultures  on  sugar  and  a  process  for  the 
quantitative  estimation  of  these  acids.  W.  But- 
kewitsch.     Biochem.  Zeits.,  1922,  131,  327—337. 

Various  kinds  of  citromyces  were  cultivated  in  10% 
sucrose  solutions  deficient  in  nitrogen  content,  and 
calcium  carbonate  added.  The  citric  and  oxalic 
acids  formed  were  estimated.  In  each  case  a  large 
yield  of  citric  acid  was  accompanied  by  a  low  yield 
of  oxalic  acid  and  vice  versa.  This  is  attributed  to 
the  formation  of  oxalic  acid  at  the  expense  of  the 
citric  acid.  These  two  acids  may  be  estimated  in  the 
presence  of  each  other  in  an  approximately  quanti- 
tative manner  either  by  extraction  of  the  mixed 
calcium  salts  with  dilute  hydrochloric  acid  or  by 
dissolving  the  salts  in  hydrochloric  acid  and  pre- 
cipitation of  the  calcium  oxalate  alone  by  addition 
of  sodium  acetate  solution.  The  main  error  falls 
on  the  citrate. — H.  K. 

Citric  acid;  Utilisation  and  formation  of  in 

culture*  of  Citromyces  glaber  on  sugar.  W. 
Butkewitsch.  Biochem.  Zeits.,  1922,  131,  338— 
350. 
Citric  acid  is  formed  by  Citromyces  glaber  when 
grown  either  on  normal  or  abnormal  media.  If 
citric  acid  be  added  to  the  nutrient  media,  oxalic 
acid  appears  directly.  In  dilute  solutions  the 
"  economic   coefficient  "    of   the  use  of   citric   acid 


approaches  that  of  dextrose,  but  in  concentrated 
solutions  it  falls  off.  The  combination  of  dextrose 
with  citric  acid  is  stimulative  of  the  productive 
metabolism. — H.  K. 

Beer  casks;  American  oak  wood  used  in  the  con- 
struction of .     P.  Groom.     J.  Inst.  Brewing, 

1922,  28,  645—677. 

Beer  casks  made  from  American  oak  are  classified 
as  satisfactory  or  unsatisfactory  according  as  they 
do  not,  or  do,  cause  rapid  deterioration,  as  regards 
taste  and  odour,  of  the  beer  contained  in  them. 
V\  ith  casks  of  both  classes  investigations  have  been 
made,  dealing  with  fungi  and  bacteria  in  the  wood 
and  beer,  the  presence  or  absence  of  sapwood,  the 
mode  in  which  the  staves  and  end-pieces  were  cut, 
and  the  structure  of  the  wood:  its  identification, 
porosity,  and  chemical  constituents  in  so  far  as  these 
are  identifiable  microchemically.  The  wood  used 
was  that  described  commercially  as  heartwood, 
although  in  many  instances  it  was  wood  transitional 
between  typical  heartwood  and  sapwood,  as  it  con- 
tained a  considerable  proportion  of  starch.  All  the 
wood  used  belonged  to  the  most  suitable  class,  that 
of  the  "  white  oaks."  Three  types  agreeing  largely 
with  the  wood  of  Quercus  alba  occurred  regularly  in 
both  satisfactory  and  unsatisfactory  casks;  the 
latter  contained  a  higher  percentage  of  one  of  the 
three  types  and  low  percentage  of  doubtful  pieces 
which  could  not  be  referred  to  any  type.  Tannin 
was  always  present  in  the  walls  of  "the  constituents 
of  the  wood,  which  thus  agreed  with  the  heartwood 
of  the  two  common  European  oaks.  Starch  was 
generally  more  abundant  in  unsatisfactory  casks, 
but  did  not  aid  in  the  identification  of  the  species 
and  did  not  lead  to  deterioration  of  the  beer  by  pro- 
viding food  material  for  fungi  and  bacteria  in  the 
wood,  as  such  organisms  were  not  found  in  staves  or 
end-pieces.  It  is  possible  that  wood  may  be  unsatis- 
factory because  it  is  from  either  an  inappropriate 
species,  or  a  tree  felled  at  the  wrong  season,  or 
heartwood  that  is  too  young.  Generally  the  amount 
of  calcium  oxalate  in  the  wood  varied  inversely  a» 
that  of  the  starch.  The  bacteria  found,  termed 
tentatively  Clostridium,  Streptothrix  and  Bacillus 
aceti,  occurred  in  the  good  and  the  bad  beer  in 
approximately  equal  numbers.  Differences  either 
in  the  artificial  or  natural  seasoning  in  the  country 
of  origin,  or  in  the  pickling  in  this  country,  may 
possibly  play  a  part  in  determining  the  satisfactory 
or  unsatisfactory  nature  of  the  wood  or  cask. 

— T.  H.  P. 

Beer  casks;  Chemical  examination  of  oaks  used  in 

the   construction   of  .     S.    B.   Schryver.     J. 

Inst.  Brewing,  1922,  28,  678—696. 

The  proportions  of  extractives  yielded  to  benzene, 
alcohol,  and  water  by  various  timbers  differ  widely, 
but  no  correlation  with  the  suitability  of  the  timber 
for  making  beer  casks  is  apparent.  Beer  is  able  to 
remove  appreciable  quantities  of  these  extractives 
from  the  wood,  especially  during  the  first  fortnight 
of  contact;  this  removal  occurs  more  readily  with 
timbers  satisfactory  for  making  beer  casks,  than 
with  those  unsatisfactory.  The  various  oaks 
examined  showed  wide  variations  (17  to  30%)  in  the 
amounts  of  matter  removable  by  treatment  with  4% 
sodium  hydroxide  solution,  and  there  are  distinct 
indications  that  the  more  satisfactory  timbers  yieW 
more  to  this  reagent  than  the  unsatisfactory  ones, 
do.  The  differences  between  the  various  timbers  as 
regards  their  value  for  cask-making  appear  to  be 
due,  not  to  any  specific  extractive  imparting  a  dele- 
terious flavour  to  the  beer,  but  rather  to  funda- 
mental differences  in  the  physical  and  chemical  pro- 
perties of  the  timbers.  The  chief  product  extracted 
by  alkali  from  American  white  oak  is  soluble  in  hot 
water  to  a  solution  which  gelatinises  on  cooling,  and 
has  the  properties  of  the  hemicelluloses. — T.  H.  P. 


832  a 


Cl.   XIXa.— FOODS. 


[Oct.  31,  192i. 


Fusel  oil  from  sweet-potato  brandy.  1.  E.  Yoshi- 
tomi,  R.  Soejirna,  and  M.  Imoto.  Yakugakuzasshi 
(J.  Pharni.  Soc.  Japan),  1922,  No.  486,  661—666. 

A  sample  of  fusel  oil  from  sweet-potato  brandy, 
light  brownish-yellow  in  colour,  was  fractionally  dis- 
tilled. The  part  distilling  below  145°  C.  was  com- 
posed of  46'5%  of  alcohol  (or  10'5%  of  the  original 
oil),  197%  of  water  (4'45%),  and  33'4%  of  amyl 
alcohol  (7"79%).  The  residue  boiling  above  145°  C. 
(10'6%)  was  saponified,  and  the  presence  of  palmitic 
acid  (5%  of  the  oil)  and  lower  fatty  acids  (1'77%) 
was  detected.  The  acids  are  present  as  amyl  esters 
in  the  oil. — K.  K. 

Patents. 

Aeration  of  brewers'  wort  and  o@Mr  liquors;  Process 

and  apparatus  for  the  .     F.   Bryant.     E.P. 

184,860,  18.5.21. 

In  the  normal  methods  of  aeration,  air  is  introduced 
at  the  bottom  of  the  fermenting  liquor  and  bubbles 
through  and  escapes  freely  at  the  top,  resulting  in 
considerable  losses  of  the  spirit  produced.  The 
modified  process  consists  in  introducing  the  air  in 
the  form  of  extremely  minute  bubbles,  which  are 
practioally  completely  absorbed  during  their  pas- 
sage through  the  liquid.  The  apparatus  consists  of 
channels  or  chambers  of  porous  stone  or  other 
foraminous  material  situated  at  the  bottom  of  the 
fermenting  vessel  and  into  which  air  is  led  at  a 
pressure  above  atmospheric,  passing  through  the 
porous  material  into  the  surrounding  liquor. 

— W.  H.  G. 

Butyl  alcohol  and  acetone;  Process  for  producing 

■ 61/  fermentation.     G.  D.   Horton,   Assr.   to 

E.    I.    du    Pont    de    Nemours    and    Co.      U.S. P. 
1,427,595,  29.8.22.    Appl.,  6.9.19. 

Acetone  and  butyl  alcohol  are  produced  by  ferment- 
ing a  sterilised  grain  mash  with  Bacillus  aceto- 
butylicum  without  positively  excluding  sterilised 
air  from  the  mash. — L.  A.  C. 

Distilling  process.  Distilling  apparatus.  Apparatus 
for  distilling.  Process  for  distilling.  E.  J. 
Winter,  Assr.  to  U.S.  Industrial  Alcohol  Co. 
U.S.P.  (a)  1,427,885,  (b)  1,427,886,  (c)  1,427,887, 
and  (d)  1,427,888,  5.9.22.     Appl.,  13.6.18. 

(a)  Aqueous  alcohol  is  distilled,  the  vapours  being 
passed  through  a  rectifier  maintained  under 
reduced  pressure  and  at  a  temperature  lower  than 
the  boiling  point  of  absolute  alcohol  corresponding 
to  the  pressure  used.  The  alcohol  issuing  from  the 
top  of  the  rectifying  column  is  condensed.  (b) 
Apparatus  for  working  the  above  process,  consisting 
of  a  still,  and  a  long  tubular  rectifier  with  means  for 
maintaining  it  at  a  predetermined  temperature  and 
under  reduced  pressure.  (d)  Aqueous  alcohol  of 
strength  20%  or  lower  is  distilled,  the  vapours  being 
caused  to  come  into  contact  with  relatively  moving 
bodies  of  mixed  alcohol  and  aqueous  condensate. 
The  products  from  this  separation  are  treated  in  a 
column  rectifier,  (c)  A  reduced  pressure  separator, 
in  which  vapours  are  constrained  to  follow  a 
tortuous  path,  an  unobstructed  passage  being 
provided  for  condensate.  External  means  for 
refractionating  the  products  in  interconnected 
regions  of  a  column  rectifier  maintained  under 
reduced  pressure  are  provided. — W.  H.  G. 

Yeast;  Process  for  making  pressed from  beet 

juice.    F.  Sailer.     G.P.  355,596,  4.9.19. 

The  juice  is  obtained  by  extracting  the  sliced  beets 
in  a  diffusion  battery.  The  juice  coming  from  the 
first  battery  is  passed  through  a  second  battery  also 
filled  with  sliced  beets.  This  has  the  effect  of  further 
enriching  it  with  nutritive  material  which  still 
remains  in  the  raw  material  after  the  first  diffusion 


and  is  of  value  for  the  preparation  of  yeast.  The 
juice  obtained  is  only  slightly  coloured.  It  contains, 
in  addition  to  the  sugar,  the  proteins  and  nutritive 
salts  of  the  beet.  The  juice  is  subjected  to  the 
usual  lactic  fermentation  after  the  addition  of  malt 
or  malt-germs  and  is  then  sterilised.  In  addition 
to  alcohol  a  pressed  yeast  of  good  quality  can  be 
obtained  from  it. — H.  C.  R. 

[Fermentable]   sugars  from  substances  containing 

cellulose;  Process  for  obtaining .    A.  Classen, 

Assr.  to  The  Chemical  Foundation,  Inc.     U.S.P. 
1,428,217,  5.9.22.    Appl.,  21.6.19. 

See  E.P.  142,480  of  1920;  J.,  1921,  405  a. 
Alcohol  fuel.    E.P.  184,607.    See  IIa. 


XIXa-FOODS. 

Flour;  Decomposition  of  hydrogen  peroxide  as  a 
means  of  determining  the  degree  of  extraction  of 

.     D.    Marotta  and    R.    Kaminka.     Giorn. 

Chim.  Ind.  Appl.,  1922,  4,  249—251. 

The  hydrogen  peroxide  test  (c/.  Marion,  J.,  1920, 
796  a)  has  been  applied  to  a  number  of  flours  of 
different  origins  and  of  100,  90,  80,  70,  and  60% 
extractions.  The  results  show  that,  taken  alone, 
this  test  gives  no  indication  of  the  degree  of 
extraction  of  a  flour.  Such  an  indication  is,  how- 
ever obtainable  when  the  original  grain  is  also 
available,  since  flours  of  various  percentage 
extractions  may  then  be  prepared  and  the  test 
applied  to  these  also.  In  contact  with  hydrogen 
peroxide,  flour  from  old  or  damaged  grain  yields 
little,  if  any,  oxygen.  Since  such  flour  is  also 
unsuitable  for  panification,  it  is  possible  that  the 
catalase  of  flour  exerts  some  function  during  this 
process. — T.  H.  P. 

Flour;  Determination  of  the  acidity  of .     SL 

Arpin  and  M.  T.  Pecaud.     Ann.  Chim.  Analyt., 
1922,  4,  262—266. 

Maceration  of  the  flour  with  90%  alcohol  gives  more 
regular  results  than  maceration  with  water,  as  the  - 
alcohol  prevents  any  further  fermentation  and 
gives  the  actual  acidity  at  the  time  of  sampling. 
The  only  two  indicators  found  suitable  were 
turmeric  and  phenolphthalein,  of  which  the  former 
gave  the  best  results.  Three  series  of  experiments 
were  carried  out  with  three  different  kinds  of  flour 
to  compare  the  results  obtained.  In  each  case  both 
aqueous  and  alcoholic  extraction  were  employed  and 
the  two  indicators  mentioned.  The  titrations  were 
made  with  TV/50  aqueous-alcoholic  potassium 
hydroxide  in  the  case  of  the  alcoholic  extract  and 
aqueous  potassium  hydroxide  in  the  case  of  the 
aqueous  extracts.  The  maceration  was  continued 
for  19  days  and  tests  carried  out  at  intervals  during 
this  period.  When  aJlcoholic  extraction  was  em- 
ployed with  turmeric  as  indioator,  the  acidity 
remained  almost  constant  over  the  whole  period. 
With  phenolphthalein  a  slight  increase  in  the  values 
occurred.  With  aqueous  extraction  a  very  marked 
increase  of  acidity  with  the  period  of  maceration 
occurred  in  all  cases  and  the  results  obtained  were 
much  higher  than  in  the  case  of  alcoholic  extraction. 
Carbon  dioxide  was  evolved  during  the  course  of 
maceration  with  water. — H.  C.  R. 

Corn  [maize];  Characteristic  proteins  in  high-  and 

low-protein  .     M.   F.    Showalter  and  R.  H. 

Carr.      J.    Amer.    Chem.   Soc.,    1922,   44,    2019— 
2023. 
A    considerably    larger    part    of    the    protein    is 
present  as  zein  and  globulins  in  maize  of  high  nitro- 
gen content  than  in  that  of  low  nitrogen  content; 


Yol.  XLI.,  Xo.  20.] 


d..   XIXa.— FOODS. 


833  a 


the  zein  and  globulins  have  been  formed  at  the 
expense  of  the  amides,  albumin,  and  glutelin.  The 
embryo  constitutes  about  15  %  of  the  total  weight  of 
maize  corns  of  high  nitrogen  content,  whereas 
Yellow  Dent  maize  (low  in  nitrogen)  of  the  usual 
composition  has  only  about  11%  of  embryo.  Zein 
is  the  protein  present  in  most  variable  amount, 
averaging  5028%  in  maize  of  high  nitrogen  content 
and  only  31-85%  in  that  of  low  nitrogen  content. 
The  protein  of  popcorn  of  high  nitrogen  content  is 
particularly  rich  in  zein,  averaging  57"24%.  The 
total  nitrogen  content  appears  to  determine  the 
amounts  of  the  various  proteins.  The  amino- 
nitrogen  in  the  filtrate  from  the  bases  is  higher  in 
the  maize  of  high  nitrogen  content  than  in  that  of 
low  nitrogen  content.  The  diamino  acids  con- 
stitute approximately  twice  as  great  a  percentage 
of  the  total  nitrogen  in  maize  of  high  nitrogen 
content  as  in  that  of  low  nitrogen  content. — H.  W. 


Milk;  Physical  and  chemical  changes  of during 

pasteurisation.  A.  F.  Weinlig.  Forsch.  Geb. 
Milchwirtsch.  u.  Molkereiwes.,  1922,  2,  127 — 169 
175—205.  Chem.  Zentr.,  1922,  93,  IV.,  593—594! 
Equal  quantities  of  milk  were  heated  in  round- 
bottomed  flasks  of  3  I.  capacity,  so  that  800  c.c.  of 
milk  finally  remained.  The  heating  was  carried  out 
on  the  water-bath  with  occasional  careful  shaking. 
The  time  taken  to  warm  up  and  cool  down  was  not 
reckoned  in  the  time  of  pasteurisation.  The 
temperatures  used  were  between  60°  and  80°  C. 
Oareful  pasteurisation  accelerates  the  separation  of 
oream,  but  if  a  certain  temperature  is  exceeded  the 
separation  is  delayed.  This  critical  temperature 
depends  on  duration  of  heating.  If  the  milk  is  only 
heated  for  a  few  seconds  the  critical  temperature 
may  be  above  75°  C,  but  if  the  duration  of  heating 
is  J  hr.  the  critical  temperature  is  63° — 64°  C.  In 
judging  the  rate  of  separation  in  addition  to  the 
amount  of  cream  separating  in  24  hrs.,  the  fat 
aontent  of  the  cream  should  also  be  determined. 
The  fat  content  of  the  cream  separating  in  24  hrs. 
is  at  first  decreased  by  increasing  the  temperature 
«f  pasteurisation,  but  does  not  usually  fall  as  low 
as  the  value  for  raw  milk.  By  further  increase  in 
the  temperature  of  pasteurisation  it  is  again 
markedly  increased.  These  changes  in  the  cream- 
ing of  the  milk  are  primarily  caused  by  changes  in 
the  composition  of  the  skin  of  albuminous  colloid 
•round  the  fat  globules ;  the  concentration  and 
tenacity  of  this  skin  are  increased  by  careful 
pasteurisation,  but  considerably  diminished  at 
higher  temperatures.  The  viscosity  of  milk  is  de- 
creased by  pasteurisation  at  60° — 65°  C,  but  less  so 
by  treatment  at  higher  temperatures,  and  after 
treatment  at  80°  C.  the  viscosity  usually  exceeds 
the  value  for  raw  milk.  The  decrease  is  probably 
caused  by  changes  in  the  casein,  and  the  in- 
crease at  higher  temperatures  by  vaporisation  of 
water,  coupled  perhaps  with  changes  in  the  albumin. 
A  definite  influence  on  the  sp.  gr.  of  milk  could  not 
be  ascribed  to  pasteurisation.  The  acidity  of  milk  is 
reduced  by  pasteurisation,  but  to  different  degrees 
in  different  samples.  The  albumin  content  of  the 
milk  is  strongly  influenced  by  the  temperature  and 
duration  of  pasteurisation.  By  treatment  at  60°  C. 
for  J  hr.  on  an  average  8'5%  of  the  soluble  albumin 
becomes  insoluble,  but  the  amount  varies  greatly 
from  sample  to  sample.  By  treatment  at  80°  C.  for 
1  min.  40%  of  the  soluble  albumin  became  insoluble. 
The  decomposition  of  the  casein  is  illustrated  by  the 
altered  behaviour  of  milk  on  the  addition  of  rennet. 
Milk  treated  at  60°  C.  for  h  hr.  has  its  coagulation 
by  rennet  delayed  by  10"2%,  while  the  time  of 
coagulation  of  milk  treated  at  80°  C.  for  1  min.  is 
increased  by  326%.  The  changes  in  the  casein  are 
partly  due  to  the  precipitation  of  calcium  and  mag- 
nesium salts. — H.  C.  It. 


Rennet;  Chemical  action  of  .     G    8    Inichoff 

Biochem.  Zeits.,  1922,  131,  97—108. 
On  addition  of  rennet  to  milk  or  casein  solutions 
under  various  conditions,  there  is  no  appreciable 
increase  of  acidity.  Peptonisation  does  not  there- 
fore occur.  The  action  of  rennet  is  purely  physical, 
the  formation  of  paracasein  being  due  to  a  change 
in  the  degree  of  dispersity  of  the  solution  under  the 
influence  of  the  enzyme  and  in  presence  of  divalent 
ions  and  hydrogen  ions. — H.  K. 

Margarine;   Water-content   of  .     K.    Brauer 

Chem.-Zeit.,  1922,  46,  834. 

The  determination  of  the  water-content  of  samples 
of  margarine  taken  from  different  parts  of  the  same 
packets  shows  that  enormous  variations  occur. 
Samples  taken  from  the  outside  of  the  packet  often 
contain  as  much  as  7%  less  water  than  samples 
taken  from  the  middle  of  the  same  packet.  It 
follows  that  only  analyses  based  on  average  samples 
taken  from  a  whole  packet  can  be  of  any  value.  The 
low  water-content  of  the  outer  layers  is  ascribed  to 
evaporation  and  absorption  of  water  by  the  paper 
wrappings. — H.  C.  R. 

Antineuritic  vitamin;  Further  experiments  on  the 

isolation   of   the    .     A.    Seidell.      J.    Amer. 

Chem.   Soc.,   1922,  44,  2042—2051.     (Cf.  Seidell, 
J.,  1922,  191  a.) 

The  preparation  of  the  vitamin  solution  is  modified 
in  that,  instead  of  subjecting  the  fresh  yeast  to 
autolysis  and  filtering  the  thick,  slimy  liquid  thus 
obtained,  the  yeast  is  treated  for  a  few  minutes  with 
boiling  water  and  the  mixture  is  then  centrifuged. 
The  aqueous  solution  thus  obtained  contains  a 
greater  proportion  of  the  total  vitamin  than  is 
present  in  the  filtrate  from  autolysed  yeast  and,  in 
addition,  is  free  from  adenine  and  other  products 
of  autolytic  decomposition.  The  vitamin  is  ad- 
sorbed from  its  acid  solution  by  fuller's  earth  {cf. 
Seidell,  U.S.  Pub.  Health  Repts.,  1922,  37,  801) 
thus  giving  an  activated  solid  which  is  extracted 
with  barium  hydroxide  solution  and  the  barium 
eliminated  by  addition  of  sulphuric  acid.  The 
extract  is  treated  with  saturated  lead  acetate  solu- 
tion and  filtered.  The  filtrate  is  freed  from  excess 
of  lead  by  means  of  hydrogen  sulphide  and  concen- 
trated by  distillation  under  diminished  pressure  (the 
treatment  with  lead  acetate  prevents  the  otherwise 
excessive  foaming  during  distillation).  The  residue 
is  precipitated  successively  with  silver  nitrate  and 
ammoniacal  silver  nitrate.  Approximately  one-third 
of  the  solids  of  the  extract  is  precipitated  as  silver 
compounds  and  these  contain  somewhat  more  than 
one-half  of  the  antineuritic  vitamin.  The  incom- 
plete precipitation  of  the  vitamin  is  attributed  to 
the  considerable  solubility  of  its  silver  compound. 
The  vitamin  fractions  are  quite  stable  both  in  solu- 
tion and  in  the  dried  condition.  They  dialyse 
almost  completely  through  a  collodion  membrane 
and  physiologioal  tests  show  that  all  of  the  vitamin 
is  in  the  diffusate,  thus  indicating  that  the  vitamin 
molecule  is  of  relatively  simple  constitution.  Using 
nitrogen  estimations  as  a  criterion  of  purity,  the 
conclusion  is  drawn  that  the  highly  active  fractions 
contain  vitamin  and  one  or  more  analogous  nitro- 
genous bases  and  that  these  cannot  be  separated 
advantageously  from  one  another  by  silver  precipi- 
tation.—H.  W. 

Vitamin  B;  Preparation  and  properties  of  . 

S.  Tsukiye.  Biochem.  Zeits.,  1922,  131,  124—139. 
The  author  has  prepared  an  active  vitamin  B 
preparation  from  an  S0%  alcoholic  extract  of  30  kg. 
of  rice  polishings  and  from  an  aqueous  extract  of 
4  kg.  After  purifying  with  basic  lead  acetate,  the 
vitamin  is  precipitated  by  phosphotungstic  acid, 
the  precipitate  decomposed  by  baryta,  and  the  silver 


834a 


Cl.  XIXb.— WATER    PURIFICATION  ;    SANITATION. 


[Oct.  31,  1922. 


precipitate  obtained  in  acid  solution  removed. 
Baryta  is  added  till  the  solution  is  weakly  alkaline 
and  the  precipitate  containing  the  vitamin  collected 
and  freed  from  silver.  The  vitamin  is  precipitated 
by  tannin  and  picric  acid  and  the  picrate  is  soluble 
in  alcohol  and  hot  water.  The  vitamin  is  not 
soluble  in  the  neutral  state  in  alcohol  above  80% 
strength,  but  is  easily  soluble  in  acidified  alcohol  or 
water.— H.  K. 

Amino-acid  nitrogen.     Riffart.     See  XXIII. 

Patents. 

Fat-containing  granular  products;  Process  for 
rendering  — —  impalpable.  J.  Eppenberger. 
E.P.  176,305,  14.4.21.     Conv.,  1.3.21. 

Granular  products  containing  fat,  such  as  almonds, 
coffee  beans,  cocoa  beans,  and  the  like,  are  fed  from 
a  hopper  into  a  disintegrator  consisting  of  two 
rotating  rollers  of  which  one  can  move  away 
resiliently  from  the  other  to  allow  large  pieces  of 
material  to  be  drawn  between.  The  material  then 
falls  by  gravity  through  a  series  of  smooth  rollers 
in  pairs  so  driven  that  the  two  rollers  in  each  pair 
rotate  at  different  velocities.  To  reduce  the  number 
of  rollers  required,  these  may  be  vertically  staggered 
and  so  arranged  that  each  roller,  except  the  highest 
and  lowest,  by  contact  with  the  rollers  immediately 
above  and  below  it,  provides  two  grinding  passes. 
The  rollers  have  a  surface  which  is  either  fluted  or 
sufficiently  porous  to  grip  the  material  and  draw  it 
between  them.  The  temperature  of  the  rollers  is 
raised  by  the  friction  between  their  surfaces,  and 
can  be  adjusted  as  desired  by  admitting  steam  or 
water  into  the  rollers  through  the  hollow  axes.  Ad- 
hering particles  are  removed  from  the  rollers  by 
scrapers,  and  means  are  provided  for  adjusting  the 
pressure  between  each  pair  of  rollers. — L.  A.  C. 

Milling    flour;    Method   for   use    in   .      A.    W. 

Woolcott.     E.P.  184,837,  18.4.21. 

The  stock  during  its  reduction  from  wheat  to  flour 
is  subjected  to  moistened  air  supplied  in  separate 
streams  to  individual  machines  used  in  the  milling 
operation,  the  moisture  content  of  the  air  being 
independently  regulated  in  the  various  streams. 
The  air  may  be  first  purified  and  its  temperature 
may  be  regulated.  Nitrogen  peroxide,  chlorine,  or 
the  like  may  be  added  to  the  air. — H.  C.  R. 

Whey;  Process  for  the  extraction  of  proteids  and 

lactose      from      .        D.      Thomson.        U.S. P. 

1,428,820,  12.9.22.     Appl.,   12.12.21. 

See  E.P.  173,831  of  1920;  J.,  1922,  192  a.  After 
neutralising  the  whey  as  described,  more  alkali  is 
added  till  an  alkalinity  corresponding  to  pB  105  is 
attained,  after  which  the  solution  is  evaporated,  the 
remaining  protein  coagulated  and  separated,  and 
lactose  recovered  by  crystallisation. 

Vegetable  proteid  substances;  Process  of  manufac- 
turing     .       S.     Satow.       U.S. P.     1,427,645, 

29.8.22.     Appl.,  20.8.18. 

See  E.P.  121,141  of  1917;  J.,  1919,  263  a. 

Sterilising  and  filling  of  receptacles  with  substances 
such  as  will;  or  alimentary  liquids;  Method  of  and 

apparatus    for   .      Sterilising    milk.      N.    J. 

Nielsen.      E.P.    185,185,    26.5.21,    and    185,221, 
31.5.21. 

Margarine ;  Manufacture  [consolidating  and  blend- 
ing] of  - .     Maypole  Margarine  Works,  Ltd., 

and  O.  Michelsen.     E.P.  185,241,  8.6.21  and  7.1.22. 


XIXb.  -WATER  PURIFICATION;  SANITATION. 

Lime-sulphur    [insecticidal]    mixture;   Studies   on 

.     C.  Harukawa.     Ber.  Ohara  Inst.  Landw 

Forsch.,  1921,  2,  1—20. 

Mixtures  containing  lime  and  sulphur  in  the  pro- 
portions of  1:1  and  1:2  respectively  were  compared. 
Spraying  experiments  against  scale  insects  showed 
no  difference  in  effectiveness  where  quantities  of 
the  sprays  containing  equal  amounts  of  sulphur 
were  used.  The  reducing  power  towards  per- 
manganate  solutions  was  the  same  with  both  sprays. 
It  was  noted  that  in  aill  cases  the  amount  of  per- 
manganate reduced  at  ordinary  temperature  was 
one  half  that  reduced  in  boiling  solutions.  Lime- 
sulphur  mixture  does  not  possess  the  power  of 
dissolving  the  wax  of  the  scale  insect.  After  death 
of  the  insect  the  activity  of  the  oxidase  and  catalase 
of  the  tissue  gradually  decreases.  Living  as  well  as 
dead  scale  insects  fafll  from  infected  trees  after 
spraying  with  lime-sulphur.  The  death  of  the 
insect  may  be  judged  by  the  change  of  colour  of  the 
insect  within  a  definite  time  after  spraying. 

—A.  G.  P. 

Pyrethrum  [insecticide]  powder.    D.  Costa.    Giom. 
Chim.  Ind.  Appl.,  1922,  4,  251—253. 

For  the  determination  of  the  water-soluble  extract 
in  finely  ground  commercial  insecticide  powder  from 
Chrysanthemum  cinerariaefolium,  the  author  uses  a 
cylindrical  separating  funnel,  in  which  are  placed, 
in  order,  layers  of  cotton-wool,  powdered  pumice, 
powdered  pumice  mixed  with  the  insecticide, 
pumice,  and  cotton-wool.  Two  hundred  c.c.  of 
water  is  poured  slowly  into  the  funnel,  100  c.c.  of 
extract  being  drawn  off  and  replaced  by  water  after 
12  hours ;  the  extraction  is  complete  after  two 
repetitions  of  this  treatment.  The  percentage  of 
water-soluble  extract,  calculated  on  material  dried 
at  100°  C,  is  22—25,  12—14,  and  9—11  for  closed 
flowers,  open  flowers  and  stems  of  pyrethrum  re- 
spectively.—T.  H.  P. 

Patents. 

Sewage;  Treatment  of in  underdrained  settling 

basins.    K.  Imhoff.     E.P.  184,742,  19.12.21. 

Sewage  sediment  deposited  in  basins  with  an 
underdrained  bottom  is  dried  rapidly  and  without 
odour  by  using  only  a  shallow  depth  of  liquid,  e.g., 
about  the  same  as  the  thickness  of  the  final  layer  of 
the  sludge,  i.e.,  4 — 12  ins.  Preferably  a  number 
of  basins  are  so  arranged  that  sewage  can  be  run 
into  one  at  a  time,  the  one  in  use  being  baffled  to 
hold  back  the  sediment.  Sufficient  sewage  to 
deposit  the  desired  depth  of  sludge  is  run  through 
the  basin  with  the  drain  pipe  closed,  and  the  over- 
flow passes  through  another  basin.  As  soon  as 
sufficient  sludge  is  deposited  in  the  first  basin,  the 
drain  pipe  is  opened  and  the  sludge  is  allowed  to 
drain  and  dry,  the  supply  of  water  being  diverted 
to  the  basin  which  previously  received  the  overflow. 

— L.  A.  C. 

Removing  oxygen  from  liquids;  Process  anil  appa- 
ratus for .     Union  Thermique.     E.P.  181,309, 

7.9.21.     Conv.,  8.6.21. 

A  tank  is  provided  with  a  horizontal  perforated 
diaphragm  on  which  is  placed  deoxidising  material 
{e.g.,  iron  filings)  and  is  also  provided  with  vertical 
non-perforated  diaphragms  which  extend  from  the 
horizontal  diaphragm  alternately  to  the  bottom  and 
top  of  the  tank,  so  that  when  water  is  admitted  to 
one  side  of  the  tank  and  exhausted  at  the  other,  it 
will  pass  through  the  deoxidant  several  times.  The 
spaces  above  the  horizontal  diaphragm  are  left  quite 
large  so  as  to  form  storage  chambers  for  a  reserve 
of  partly  treated  water,  and  the  top  of  the  tank  is 


Vol.   XLI 


No.  20]      OL.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &C. 


835  a 


covered  and  provided  with  removable  water-sealed 
caps  for  access  to  the  interior.  Cleaning  jets  may 
be  provided  within  the  tank  for  cleaning  the  de- 
oxidant  and  removing  sediment. — B.  M.  V. 

Fungicide  and  insecticide.  Farbenfabr  vorm  F 
Bayer  und  Co.  G.P.  355,829,  16.4.15.  Addn  to 
349,870  (J.,  1922,  516  a). 

Etheks  of  hydroaromatic  alcohols,  such  as  cyclo- 
hexyl  methyl  ether,  with  or  without  other  additions 
(cf.  G.P.  349,871;  J.,  1922,  516  a)  are  used.  These 
ethers  can  be  used  either  in  the  liquid  state  or  in 
the  form  of  vapour,  or  in  the  same  way  as  the  hydro- 
aromatic  ketones,  such  as  oyclohexanone,  specified 
in  the  main  patent. — H.  C.  R. 

Sterilising  air;  Method  of .    A.Wolff.     USP 

1,42;(.7U4,  25.7.22.     Appl.,  3.11.20. 

See  G.P.  346,201  of  1921;  J.,  1922,  230  a. 


Refuse  destructor  furnaces. 
Stein  and  Atkinson,  Ltd. 
20.7.21,  2.3.22. 

Base-exchanging  bodies.     E.P.  159,196 


J.   S.   Atkinson,    and 
E.P.  185,492,  2.6.21, 


See  VII. 


XX.— ORGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES;    ESSENTIAL  OILS. 

Meeonic  acid;  Estimation  of in  opium.    H.  E. 

Annett    and    M.    N.    Bose.     Analyst,    1922,    47, 
387—391. 

Five  grms.  of  opium  is  triturated  with  50  c.c.  of 
water,  and  after  standing  overnight,  40 — 45  c.c. 
of  the  filtered  liquid  is  treated  with  6  c.c.  of  50% 
calcium  chloride  solution  and  allowed  to  stand  for  a 
further  24  hours.  The  precipitate,  consisting  of 
calcium  meconate  and  sulphate,  is  filtered  off, 
washed  till  the  washings  are  colourless,  and  dissolved 
in  15  c.c.  of  1'25  N  hydrochloric  acid.  After  standing 
for  24  hours  pure  meeonic  acid  will  have  separated 
in  white  scales.  It  is  filtered  off,  washed  twice  with 
0'5  c.c.  of  distilled  water  dried  over  sulphuric  acid, 
•and  weighed  as  CjU^O^SHjO.  To  the  weight 
found  00213  g.  is  added  to  correct  for  the  solubility 
of  meeonic  acid  in  15  c.c.  of  125  N  hydrochloric 
acid,  and  the  figure  obtained  is  multiplied  by  the 
factor  depending  on  the  amount  of  the  aliquot 
portion  of  the  solution  taken  for  analysis,  and  then 
by  the  factor  10/9,  to  correct  for  the  amount  of 
meeonic  acid  unprecipitated  by  calcium  chloride. 

— G.  F.  M. 

Cevadine.     I.     A.   K.   Macbeth   and  R.   Robinson. 
Chem.  Soc.  Trans.,  1922,  121,  1571—1577. 

Cevadine,  C3,H190,N,  has  already  been  shown  to 
be  the  tiglate  of  an  alcohol,  cevine,  C,,H<30,,N. 
The  presence  of  a  second  hydroxyl  group  in  cevine 
has  now  been  demonstrated  by  the  preparation  of 
o-nitrobenzoylcevadine  and  di-o-nitrobenzoylcevine. 
In  the  hydrolysis  of  cevadine  with  potassium 
hydroxide  the  cevine  is  obtained  as  a  potassium 
salt,  from  which  cevine  was  isolated  by  passing 
•carbon  dioxide  through  the  aqueous  solution.  The 
formation  of  this  salt  probably  points  to  the 
presence  of  a  lactone  ring  in  cevine,  as  this  sub- 
stance exhibits  no  phenolic  character.  Cevine  is 
Isevo-rotatory  [a]D17=  - 15"36  (in  methyl  alcohol). 
By  distillation  with  soda-lime  in  a  stream  of 
hydrogen  a  small  yield  of  a  base  which  appeared  to 
be  identical  with  i-coniine  was  obtained. — G.  F.  M. 

Elsholtzic  acid;  Constitution  of  .     Y.  Asahina 

and    S.    Kuwada.      Yakugakuzasshi    (J.    Pharm. 
Soc.  Japan),  1922,  No.  485,  565—579. 

Ftjrane-2- methyl  3-CAKBOXYLic  acid,  prepared  by 
the  method  of  Benary  (Ber  1911,  44,  493),  was 
oxidised  by  the  method  of  Hill  and  Sawyer  (Ber., 


1894,  27,  1569)  to  furane-2.3-dicarboxylic  acid, 
colourless  prisms,  m.p.  221°  C.  The  latter  gave  a 
dimethyl  ester,  white  crystals,  m.p.  34°  C,  and  a 
monoanihde,  light  yellowish  brown  needles,  m.p. 
169°— 170°  C.,  and  was  identical  with  the  acid 
obtained  from  elsholtzic  acid,  the  constitution  of 
which  is  therefore  furane-3-methyl-2-carboxylic 
acid. — K.  K. 

Heliotropin;  Preparation  of  — —  from  isosafrol 
by  means  of  ozone.  S.  Nagai.  Kogyo-Kwa'gaku 
Zasshi  (J.  Chem.  Ind.  Japan),  1922,  25,  631—652. 
The  author  has  studied  the  ozonisation  of  isosafrol 
by  ozonised  air  containing  2— 3"5%  of  ozone,  the 
decomposition  of  isosafrolozonide,  and  the  prepara- 
tion of  heliotropin.  The  ozonide  is  easily  prepared 
by  passing  ozonised  air  into  a  solution  of  isosafrol 
(10  g.)  in  a  perfectly  dry  solvent  (100—150  g.),  such 
as  carbon  tetrachloride,  tetrachloroethane,  chloro- 
form, glacial  acetic  acid,  toluene,  or  xylene.  The 
product  is  separated  by  distilling  off  the  solvent 
m  vacuo,  or  by  diluting  with  2—3  vols,  of  petroleum 
ether  having  nearly  the  same  boiling  point  as  the 
solvent.  When  a  mixture  of  1  vol.  of  the  solvent 
and  2 — 3  vols,  of  petroleum  ether  is  used,  the 
ozonide  produced  is  precipitated  and  th->  process 
may  be  made  nearly  continuous  by  adding  isosafrol 
from  time  to  time.  The  ozonide,  a  deep  reddish- 
brown,  viscous  oily  substance  having  a  charac- 
teristic odour,  is  easily  decomposed  at  the  ordinary 
temperature  and  by  warming  its  solution  at  40° — 
50°  C,  or  stirring  it  with  water,  the  products  being 
acetaldehyde,  heliotropin,  piperonylic  acid,  and  a 
dark  brown  resinous  substance.  When  the  ozonide 
solution  is  stirred  with  excess  of  35—36%  sodium 
bisulphite  solution,  the  ozonide  is  decomposed  by 
water,  the  freed  oxygen  is  reduced  by  the  reagent, 
and  the  heliotropin  produced  separates  as  a  crys- 
talline addition  product,  the  yield  being  85%. 

— K.  K. 

Silver-albumose;  Estimation  of  silver  in  G 

Maue.  Pharm.  Zeit.,  1922,  67,  751—752. 
The  method  previously  given  (J.,  1918,  782  a)  is  not 
always  applicable  owing  to  variations  in  the  quality 
of  commercial  silver-albumose  preparations.  The 
following  process  is  now  recommended.  1  g.  of 
silver-albumose  is  dissolved  in  5  c.c.  of  water  and 
5  c.c.  of  nitric  acid  (sp.  gr.  1*4)  and  heated  to  boiling 
until  a  clear  solution  is  obtained.  After  cooling 
35  c.c.  of  potassium  permanganate  solution  (1:20) 
is  added  in  small  portions  and  the  solution  again 
boiled  over  a  small  flame.  After  boiling  for  15  mins. 
the  solution  is  decolorised  by  sufficient  powdered 
oxalic  acid,  diluted  with  50 — 100  c.c.  of  water  and 
titrated  with  2V/10  ammonium  thiocyanate  solution, 
using  ferric  ammonium  sulphate  solution  as  indi- 
cator.— H.  K. 

Silver-albumose ;  Estimation  of  silver  in  .     J 

Herzog.     Pharm.  Zeit.,  1922,  67,  802—803.     (Cf. 
supra.) 

One  grm.  of  the  silver-protein  complex  is  dissolved 
in  10  c.c.  of  water  and  10  c.c.  of  strong  sulphuric 
acid  added  in  a  thin  stream.  2  g.  of  finely  divided 
potassium  permanganate  is  then  added  gradually 
with  vigorous  shaking.  After  keeping  for  15  mins., 
the  solution  is  diluted  with  50  c.c.  of  water  and 
the  excess  of  permanganate  or  peroxides  of  man- 
ganese removed  by  addition  of  small  portions  of 
ferrous  sulphate.  Ferric  ion  is  thus  formed  which 
acts  as  indicator  in  the  subsequent  titration  with 
iY/10  ammonium  thiocyanate  solution. — H.  K. 

Hexamethylenetetramir.e;    Catalytic    synthesis    of 

.    L.  E.  Rombaut  and  J.  A.  Nieuwland.     J. 

Amer.  Chem.  Soc,  1922,  44,  2061. 

Hexamethylenetetramine  is  formed  in  small 
amount    when     a    mixture    of    carbon    monoxide, 


836  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;   MEDICINAL  SUBSTANCES,  &o. 


[Oct.  31,  1922. 


hydrogen,  and  ammonia  at  atmospheric  pressure 
is  passed  over  a  mixture  of  equal  parts  of  reduced, 
finely-divided  nickel  and  very  pure  diatomaceous 
earth  heated  to  250° — 280°  C.  A  trace  of  ammonium 
cyanide  and  a  relatively  large  quantity  of 
ammonium  carbonate  are  also  produced,  the  latter 
resulting  from  the  reaction,  2CO+C+C02,  since  a 
deposition  of  carbon  is  noticed  in  the  reaction 
chamber.  The  effectiveness  of  a  catalyst  in  this 
synthesis  depends  on  its  ability  to  form  an  unstable 
carbonyl,  for  reaction  does  not  occur  when  the 
nickel  catalyst  is  replaced  by  platinised  asbestos. 

— H.  W. 

Butadiene;    Formation    of    from    ethylene. 

J.  E.  Zanetti,  J.  R.  Suydam,  jun.,  and  M.  Offner. 
J.  Amer.  Chem.  Soc,  1922,  44,  2036—2041. 

The  formation  of  butadiene  from  ethylene  has  been 
studied  at  temperatures  varying  from  550°  C.  to 
850°  O.  The  temperature  of  maximum  formation 
is  750°  C,  above  which  the  decomposition  of 
ethylene  into  methane,  hydrogen,  and  carbon  occurs 
very  rapidly.  The  maximum  quantity  of  ethylene 
transformed  into  butadiene  is  00096  litre  per  litre 
of  ethylene.  It  is  suggested  that  the  formation  of 
aromatic  hydrocarbons  from  ethylene  takes  place, 
in  part  at  least,  through  the  intermediate  produc- 
tion of  butadiene.  Attention  is  directed  to  the 
formation  of  an  aliphatic  hydrocarbon  of  higher 
boiling  point  from  one  of  a  lower  boiling  point  and 
to  the  possible  role  of  similar  reactions  in  the 
cracking  of  oils. — H.  W. 

Alcohols;  Electrolytic  oxidation  of  .     I.    Iso- 

amyl    alcohol.      S.    Koizumi.      Mem.    Coll.    Sci. 
Kyoto  Imp.  Univ.,  1922,  5,  359—382. 

The  material  used  in  the  investigation  had  b.p. 
130°— 132°  C,  sp.  gr.  0811,  and  was  obtained  by 
the  fractional  distillation  of  technical  isoamyl 
alcohol ;  it  possibly  contained  a  small  quantity  of 
optically  active  amyl  alcohol.  The  experiments 
were  made  in  a  divided  cell,  the  cathode  being  of 
nickel  gauze  or  sheet  lead  and  the  cathode  solution 
being  sulphuric  acid  or  dilute  aqueous  sodium 
hydroxide.  Lead  peroxide  acted  most  effectively  as 
anode  material.  The  products  of  the  oxidation  were 
isovaleric  acid,  isovaleraldehyde,  and  carbon  di- 
oxide. In  alkaline  solution  the  acid  formed  was 
always  accompanied  by  the  aldehyde ;  the  current 
efficiency  increased  with  decreasing  current  density. 
In  sulphuric  acid  solution,  aldehyde  was  produced 
only  when  the  current  density  fell  below  1  amp.  per 
100  sq.  cm.  For  the  electrolytic  preparation  of  iso- 
valeric acid  the  most  suitable  current  density  was 
1 — 1'4  amp.  per  sq.  dcm.  if  the  solution  remained 
stationary  and  about  2  amp.  per  sq.  dcm.  when  it 
was  stirred.  The  most  favourable  concentration  of 
sulphuric  acid  was  10 — 20%.  The  temperature 
should  be  maintained  below  30°  C.  Vanadium  pent- 
oxide,  cerium  sulphate,  potassium  bichromate,  and 
ferrous  sulphate  were  found  to  be  effective  oxygen 
carriers.  A  convenient  and  rapid  electrolytic 
method  for  preparing  isovaleric  acid  without  involv- 
ing the  use  of  a  diaphragm  is  described  in  detail. 

— H.  W. 

Formic  acid;  Catalytic  decomposition  of .     E. 

Miiller.    Z.  Elektrochem.,  1922,  28,  307—310. 

The  catalytic  decomposition  of  formic  acid  in  solu- 
tion into  carbon  dioxide  and  hydrogen  by  finely- 
divided  rhodium  as  observed  by  Deville  and  Debray 
in  1874  was  found  to  be  due  to  impurities  in  the 
rhodium,  most  probably  osmium.  The  decompo- 
sition takes  place  rapidly  with  osmium  reduced  from 
the  hydrated  dioxide  by  hydrogen  at  150°  C. ;  thus, 
0'3  g.  of  the  metal  in  10%  formic  acid  solution  con- 
taining 34%  of  sodium  formate  causes  the  evolution 
of  2  c.c.  of  gas  per  second,  the  liquid  eventually 
becoming  alkaline  due  to  the  decomposition  of  the 


sodium  formate  into  sodium  carbonate  and 
hydrogen.  Any  conditions  that  tend  to  cause  the 
osmium  to  become  colloidal  increase  its  activity, 
while  the  higher  the  metal  has  been  heated  the  less 
active  it  becomes.  Neither  pure  rhodium  nor  pure 
platinum  have  any  action,  but  the  addition  of  very 
small  quantities  of  osmium  to  either  metal  imparts 
a  considerable  catalytic  activity. — A.  R.  P. 

Piperitone ;  Position  of  the  double  linkage  in . 

//.     A.  R.  Penfdld.     Perf.  Essent.  Oil  Rec.,  1922, 
13,  322—323. 

From  the  products  of  the  oxidation  of  piperitone 
with  neutral  potassium  permanganate,  in  addition 
to  diosphenol,  the  following  acids  were  isolated: 
o-hydroxy-o-methyl-a-isopropyladipic  acid,  m.p. 
143"5°'C,  a-isopropyl-y-acetylbutyric  acid,  identified 
by  its  semicarbazone,  m.p.  158°  C.,  and  a-isopropyl- 
glutaric  acid,  m.p.  94° — 95°  0.  The  formation  of 
these  substances  confirms  the  constitution  of  piperi- 
tone previously  put  forward,  viz.,  A,-menthenone-3. 
The  best  method  for  the  preparation  of  piperitone 
hydroxylamino-oxime  consists  in  treating  a  cold 
alcoholic  solution  of  the  ketone  with  hydroxylamine 
hydrochloride  in  presence  of  potassium  hydroxide. 
After  keeping  for  a  few  hours  the  whole  solidifies  to 
a  crystalline  mass  of  the  oxime  in  quantitative 
yield.— G.  F.  M. 

Geraniol  content  of  citronella  oil;  Determination  of 

the  so-called  total .     A.  W.  K.  de  Jong  and 

A.   Reclaire.     Perf.  Essent.    Oil  Rec,    1922,   13, 
319—321. 

Numerous  samples  of  citronella  oil  were  analysed 
by  slightly  varying  methods  in  order  to  ascertain 
the  reason  for  the  different  results  often  obtained  by 
different  operators.  The  maximum  difference 
observed  was  2'8%,  the  average  difference  0'7%. 
The  influence  of  acetic  anhydride  of  higher  concen- 
tration than  usual  (80%)  was  negligible,  and  sodium 
acetate  dried  over  sulphuric  acid  did  not  give  better 
results  than  the  usual  re-fused  material.  The  method 
recommended  is  to  heat  10  g.  of  the  oil,  10  c.c.  of 
80%  acetic  anhydride,  and  2  g.  of  sodium  acetate 
for  2  hrs.  After  cooling,  50  c.c.  of  water  is  added, 
and  the  excess  of  anhydride  is  decomposed  by  warm- 
ing and  shaking.  The  acetylated  oil  is  separated, 
washed  with  brine  until  neutral,  and  dried.  About 
1"5  g.  is  then  saponified  with  ]V/2  alcoholic 
potassium  hydroxide,  after  neutralising  any  residual 
acidity.  After  boiling  for  2  hrs.  under  a  reflux 
condenser  the  excess  of  alkali  is  titrated  back  with 
2V/2  sulphuric  acid.— G.  F.  M. 

Sandahoood    oil;    Properties    and   preparation   of 

Dutch    East    Indies    .      A.    Rojdestwensky. 

Perf.  Essent.  Oil  Rec,  1922,  13,  331—332. 
The  amount  of  oil  obtainable  from  Dutch  East 
Indian  sandalwood  varies  from  3'8  to  5"8% .  The  oil 
has  the  following  characters: — Sp.  gr.  at  15° 
0-9745— 09842,  aD2B= -16'4°— 18-4°,  santalol  con- 
tent 93-7—98%,  soluble  in  3—4  vols,  of  70%  alcohol, 
n„28  =  1-5000— 1-5013.  The  quantity  of  oil  obtain- 
able from  a  sample  of  the  wood  may  be  ascertained 
by  distilling  not  more  than  0'5  kg.  of  shavings  with 
water  after  soaking  for  48  hours.  After  10 — 15  hrs. 
the  colour  of  the  oil  begins  to  darken,  and  after 
20  hrs.  the  distillation  is  finished.  The  earlier  and 
later  runnings  of  oil  do  not  differ  greatly  in  proper- 
ties. For  the  distillation  of  larger  quantities  the 
wood  is  cut  into  pieces  about  the  size  of  oats,  and  a 
steam-jacketed  stirring  apparatus  is  employed, 
saturated  steam  being  blown  slowly  through  the 
wood. — G.  F.  M. 

Essential  oil  from  Cinnamomum  alandulifervm. 
V.  Massera.  Riv.  It.  Essenze  e  Profumi.,  1922, 
4,  41—42.    Chem.  Zentr.,  1922,  93,  III.,  502. 

From  30  kg.  of  leaves  and  twigs  there  was  obtained 


Vol.  xli.,  No.  20.]      Cl.  XX.— ORGANIC  PRODUCTS  ;   MEDICINAL  SUBSTANCES,  &c. 


837  a 


180  g.  of  oil,  which  was  yellow  in  colour  and  had 
a  camphor-like  odour.  The  oil  had  sp.  gr.  at  15°  C, 
0-9024;  <zD30=-23°  20';  nD"  =  l-4685;  saponif.  value, 
11*16;  acetyl  value,  39*76;  soluble  in  4*5  times  its 
weight  of  80%  alcohol.  Its  constituents  are  pinene 
and  camphene  (which,  however,  could  not  be  con- 
firmed by  the  preparation  of  derivatives),  cineol 
(34*2%),  and  Z-a-terpineol  (about  10%).— H.  C.  R. 

Preparation  of  oil  emulsions,   and  relationship  to 
tuberculosis.     Kramer.     See  XII. 

Citric  and  oxalic  acids.    Butkewitsch.    See  XVIII. 

Citric  acid.     Butkewitsch.     See  XVIII. 

Patents. 

Acetaldehyde ;  Production  of  from  acetylene. 

Soc.  Anon,  de  Prod.  Chim.  Etabl.  Maletra.    E.P. 

165,085,  19.5.21.  Conv.,  15.6.20.  Addn.  to  140,784 

(J.,  1921,  716  a). 
In  the  synthetic  production  of  acetaldehyde  from 
acetylene  in  the  presence  of  a  mercury  catalyst  in 
an  acid  medium,  and  of  a  ferric  salt  to  maintain 
the  catalytic  action  of  the  mercury  as  described  in 
the  main  patent,  the  exhausted  reaction  liquid  is 
regenerated  by  anodic  oxidation  after  the  removal 
of  dissolved  acetaldehyde  and  mercury  salts,  which 
would  otherwise  cause  inconvenience  owing  to 
amalgamation  and  disintegration  of  the  lead 
anodes.  The  mercury  salts  are  removed  from  the 
reaction  liquor  by  means  of  iron  filings,  preferably 
at  a  temperature  not  exceeding  70°  C.  The 
mercury  is  deposited  at  the  bottom  of  the  receptacle 
and  the  liquid  is  decanted.  The  aldehyde  is  re- 
moved by  distillation  in  a  vacuum  at  a  temperature 
not  exceeding  50°  C,  in  order  to  avoid  polymerisa- 
tion to  tarry  products. — G.  F.  M. 

Compositions  of  oils  or  other  organic  substances; 

Manufacture   of   .     Plauson's   (Parent   Co.), 

Ltd.     From  H.  Plauson.     E.P.  184,534,  11.4.21. 

Transparent,  colloidal  dispersions  of  essential  oils 
in  non-solvents,  such  as  water  or  glycerin,  for  use, 
e.g.,  as  perfumes  or  flavouring  essences,  are  pre- 
pared by  treating  a  mixture  of  an  oil  and  a  large 
quantity  of  the  non-solvent  for  several  minutes  in 
a  colloid  mill,  such  as  that  described  in  E.P.  155,836 
(J.,    1922,  357  a),   in   the  presence  of  a  substance 
capable  of  accelerating  dispersion.     Suitable  sub- 
stances are  oil  solvents  which  are  wholly  or  par- 
tially miscible  with  water,  such  as  ketones,  alcohols, 
or  esters   (e.g.,    acetin),   or   substances   containing 
one  or  more  sulphonic  groups,  such  as  Turkey-red 
I  oil,   sulphonaphthenic   acids,    or   purified   sulphite- 
cellulose  waste  liquor.     In  preparing  perfumes,  the 
i  odour  is  improved  by  the  addition  of  a  small  quan- 
I  tity   of    ambergris   before    treatment   in    the   mill. 
!  The  dispersions  may  be  converted  into  concentrated 
emulsions  or  gels  by  ultra-filtration  by  the  process 
described    in    E.P.    155,834    (J.,    1922,    619a),    or 
i  similar  concentrated  products  can  be  obtained  by 
i  treating  a  relatively  large  quantity  of  oil  with  the 
non-solvent. — L.  A.  C. 

[Oxalic  acid;  Manufacture  of .     J.  Y.  Johnson. 

From    Badische    Anilin-    und    Soda-Fabr.      E.P. 
184,627,  7.6.21. 

Oxalic  acid  is  prepared  by  treating  wood  or  other 
cellulosic  material  with  nitric  acid,  or  nitrous  gases 
and  water  in  the  presence  of  compounds,  e.g., 
nitrates,  of  iron,  or  of  the  rare  earths,  or  of  magne- 
sium. For  example,  wood  is  steeped  in  nitric  acid 
of  up  to  about  65%  strength  containing,  e.g.,  2  to 
4%  of  iron  as  iron  nitrate,  or  didymium  or  didy- 
mium-lanthanum  salts,  and  is  treated  below  70°  C. 
with  a  stream  of  nitrous  gases  such  as  those 
obtained  by  the  catalytic  oxidation  of  ammonia. 
The  product  is  filtered  and  cooled,  crystals  of  oxalic 


acid  are  separated,  and  the  mother  liquor  is  used 
for  treating  a  fresh  quantity  of  wood.  If  mag- 
nesium compounds  are  employed,  the  reaction  is 
effected  at  a  higher  temperature,  e.g.,  finely 
divided  wood  is  added  gradually  with  vigorous 
agitation  to  fused  crystalline  magnesium  nitrate  at 
160°— 170°  C,  the  nitric  acid  liberated  from  the 
magnesium  nitrate  effecting  oxidation  of  the  wood. 
Alternatively,  the  wood  may  be  added  to  other  fused 
magnesium  salts,  such  as  the  chloride,  maintained 
at  about  170°— 190°  C,  sufficient  nitric  acid  to 
oxidise  the  wood  being  added  subsequently.  The 
melt  is  dissolved  in  dilute  nitric  acid,  and  the  solu- 
tion is  either  cooled  to  effect  crystallisation  of  the 
oxalic  acid,  or  the  oxalic  acid  is  precipitated  as  its 
calcium  Bait. — L.  A.  C. 

Pharmaceutical     compounds.       H.     Weyland,     H. 

Hahl,    and   R.   Berendes,   Assrs.   to  Farbenfabr. 

vorm.     F.    Bayer    und    Co.     U.S. P.     1,427,182, 

29.8.22.     Appl.,  8.8.21.     (Cf.  J.,  1922,  786  a.) 

A    pharmaceutical    product,    useful   as    a    remedy 

against  scabies,   is  obtained  by  the  interaction  of 

toluene,  sulphur,  and  aluminium  chloride.     It  is  a 

yellowish  oil,  b.p.  150°— 230°  C.  at  3  mm.  pressure, 

and  it  contains  23 — 25%  of  sulphur. — G.  F.  M. 

Salicylaldehyde ;  Process  of  producing  .     C.  C. 

Loomis,     Assr.     to     Semet-Solvay    Co.       U.S. P. 
1,427,400,  29.8.22.     Appl.,  23.6.21. 

Salicylaldehyde  is  formed  in  presence  of  an  alkalli 
sulphite  or  bisulphite  in  such  excess  as  to  convert 
the  aldehyde,  as  it  is  formed,  into  a  bisulphite  addi- 
tion product,  from  which,  after  completion  of  the 
reaction,  it  is  regenerated  by  distillation. — G.  F.  M. 

Hydrocarbons  of  the   terpene  series;    Process  for 

preparing    polycyclic    .      Chem.    Fabr.    auf 

Actien  (vorm.  E.  Schering).  G.P.  353,933, 12.8.20. 
Hydrazones  of  terpene  ketones  are  heated  with 
mercuric  oxide  in  indifferent  solvents.  Alterna- 
tively the  double  salts  of  the  hydrazones  with 
mercuric  chloride  are  heated  in  indifferent  solvents 
after  the  addition  of  the  equivalent  quantity  of 
alkali  hydroxide.  The  action  of  mercuric  oxide  on 
the  hydrazones  produces  basic  mercury  ccmpounds, 
soluble  in  water,  which  on  heating  in  indifferent 
solvents  decompose  according  to  the  equation 

C10H18:N.NH.Hg.OH  =  C10H16  +  N2  +  Hg+H2O. 
Tricyclene,  obtained  from  camphor-hydrazone  and 
mercuric  oxide  in  alcohol  by  boiling  for  8  hrs., 
distilling  off  the  alcohol  and  precipitating  with 
water,  has  b.p.  153*5°  C,  m.p.  63*5°  C.  d-Cyclo- 
fenchene,  from  a-fenchone-hvdrazone,  has  b.p. 
142*5°— 143*5°  C,  sp,  gr.  at  20° /4°  C.  0*8588. 
nD2°  =  1*45134,  [o]D20  =  +0*45°.  Apocyclene,  from 
camphenilone-hydrazone,  has  b.p.  (17  mm.) 
120*5°  C,  b.p.  138°— 139°  C,  m.p.  40*1°  C,  sp.  gr. 
at  45°  /4°  C.  0*8694,  nD20  =  1*44914.— H.  C.  R. 

Hydrocoumarins  and  their  derivatives;  Process  for 

preparing     .       Tetralin     Ges.m.b.H.       G.P. 

355,650,  9.5.20. 

o-Couharic  acid  or  a  substitution  product,  salt, 
ester  or  lactone  thereof  is  treated  with  hydrogen 
under  pressure  and  at  temperatures  not  exceeding 
200°  C  in  the  presence  of  nickel  catalysts.  The 
usual  nickel  catalysts  activated  with  small  quan- 
tities of  copper  are  suitable,  or  combinations  ot 
nickel  catalysts  with  another  metal  or  metallic- 
oxide  of  the  iron  group  in  conjunction  with  a  heavy 
metal  or  metallic  oxide  not  belonging  to  this  group, 
may  be  used.  Examples  are  given  of  the  hydro- 
genation  of  1.2-coumaiin  to  o-hydrocoumarin,  of 
o-coumaric  acid  to  o-hydrocoumaric  acid,  which  can 
be  converted  by  distillation  into  hydrocoumarin, 
and  of  the  hydrogenation  of  o-methoxycinnamic 
methyl   ester    to   o-methoxyhydrocinnamic   methyl 


838  a         Cl.  XXI.— PHOTOGRAPHIC  MATERIALS,  &c.     Cl.  XXII.—  EXPLOSIVES,  &c.     [Oct.  31,1922. 


ester.  The  products  can  be  utilised  as  perfumes 
and  as  intermediates  in  the  manufacture  of  dye- 
stuffs  and  medicines. — H.  C.  R. 

Nitroamines;   Preparation   of   aromatic   .      L. 

Haas,  Assr.  to  Soc.  Chim.  de  la  Grande  Paroisse. 
U.S. P.  1,423,494,  18.7.22.     Appl.,  2.9.21. 

See  E.P.  169,688  of  1921;    J.,  1922,  647  a. 

Dialkyl  sulphates;  Process  of  manufacture  of . 

L.  Lilienfeld.  U.S. P.  1,427,215,  29.8.22  Appl., 
10.1.21. 

See  E.P.  143,260  of  1920;    J.,  1921,  322  a. 

Acetaldehyde ;  Production  of  from  acetylene. 

L.  E.  M.  Trevoux,  Assr.  to  Soc.  Anon.  Prod. 
Chim.  Etabl.  Maletra.  U.S. P.  1,428,668,  12.9.22. 
Appl.,  31.5.21. 

See  E.P.  165,085  of  1921 ;  preceding. 


XXI.-PH0T0GRAPHIC  MATERIALS  AND 
PROCESSES. 

Colouring  matters;  Formation  of by  oxidation 

with  exposed  silver  halides.  R.  Fischer  and  H. 
Siegrist.  Phot.  Korr.,  Jan.,  1914.  Bull.  Soc 
Franc.  Phot.  1922,  9,  247—249. 

By  employing  paraphenylenediamine  and  its  de- 
rivatives as  developers  in  the  presence  of  phenols  as 
combining  substances,  colour  images  are  obtained 
on  dissolving  away  the  reduced  silver.  With 
dichloronaphthol  the  colours  obtained  are: — On 
development  with  paraphenylenediamine — bluish- 
pink;  with  paratoluylenediamine — blue;  with  di- 
methylparaphenylenediamine — bluish-green.  Phenol 
itself  and  its  halogen  derivatives  give  colours 
varying  from  blue  to  green,  but  which  are  not  fast. 
Combinations  of  aromatic  nitroso  compounds  with 
substances  containing  an  acid  methyl  group  give  a 
large  variety  of  tones  by  forming  azomethines. 
Non-cyclic  organic  compounds  containing  the 
double  carbon  linkage,  such  as  allyl  alcohol  and 
cinnamic  acid,  give  with  sulphite  very  rapid 
coloration.  Essential  oils  of  lavender,  bergamot, 
geranium,  orange,  etc.  act  similarly.  On  the  other 
hand^,  some  substances,  such  as  phenol,  catechol, 
tannic  acid,  picric  acid,  naphthol,  etc.,  containing 
hydroxyl  groups  in  the  benzene  nucleus,  act  by 
diminishing  the  sensitiveness. — W.  C. 

Colouring  matters;  Seduction  of by  light     R. 

Ihran.  Phot.  Korr.,  Dec,  1913.  Bull.  'Soc. 
Franc.  Phot.,  1922,  9,  249—250. 

A  resume  of  work  on  the  action  of  light  on  colour- 
ing matters  in  presence  of  sodium  sulphite  and  an 
organic  compound  such  as  thiosinamine  or  anethol. 
The  action  of  sulphite  is  variable.  Some  colours 
like  Fuchsin,  Malachite  Green,  Alkaline  Blue,  etc. 
are  immediately  decolorised ;  others,  like  Methylene 
Blue,  are  very  slowly  decolorised  and  exposure  to 
light  has  no  marked  effect.  The  presence  of 
organic  materials  modifies  the  action,  and  contact 
with  paper  is  sufficient  to  render  the  treated  colour 
very  slowly  sensitive  to  light.  Colouring  matters 
like  Erythrosine  and  Rose  Bengal  do  not  change  in 
the  dark  in  the  presence  of  sulphite,  but  are  de- 
colorised in  light  in  the  presence  of  organic  com- 
pounds. A  fourth  group  of  colours,  such  as  nitro- 
and  azo-dyes,  arc  not  changed  by  sulphite  in  the 
dark  nor  in  the  light.  Colours  which  bleach  rapidly 
in  light  under  the  action  of  an  organic-sulphite 
compound  belong  to  two  groups,  i.e.,  thiazines, 
such  as  Methylene  Blue,  and  Toluidine  Blue, 
and  Eosines,  such  as  Eosine,  Erythrosin,  Rose 
Bengal,  and  Fluorescein.  The  colours  obtained 
with  p-nitrobenzyl  cyanide  with  various  developers 
are  :     With    p-phenylenediamine — yellowish  ;    with 


dimethyl-p-phenylenediamine — reddish-blue ;  with 
diethyl-p-phenylenediamine — bluish-red.  The  colours 
obtained  are  not  very  fast  to  light,  but  are  fairly 
stable  in  diffused  light  if  the  reduced  silver  is  not 
removed. — W.  C. 

Isocyanines;  Brominated   .      K.   L.   Moudgill 

Chem.  Soc.  Trans.,  1922,  121,  1509—1511. 

Comparison  by  the  photographic  method  of  Pina- 
cyanol  (l.l'-diethy'lazurine  iodide)  and  its  6.6'-  and 
5.5'  (or  7.7')-dibromo-derivatives  shows  that  the 
introduction  of  the  halogen  into  the  quinaldine 
nucleus  considerably  depresses  the  sensitiveness, 
which  at  the  same  time  is  shifted  towards  the  red 
end  of  the  spectrum. — G.  F.  M. 

Cyaninc  dyes.     Mills  and  Braunholtz.     See  IV. 


Cinematograph 
surface  of  — 
10.3.21. 


Patents. 
films;     Process    for    coating     the 
-.     A.   F.   M.   Ott.     E.P.   184,495, 


The  film  surface  is  coated  with  a  mixture  of 
collodion,  ether,  methylated  spirit,  and  formic  acid, 
and  then  dried.  A  suitable  proportion  for  the  in- 
gredients is  100  c.c.  of  collodion  (4%  in  ether- 
alcohol),  500  c.c.  of  ether  (sp.  gr.  0'72),  500  c.c.  of 
methylated  spirit  (90 — 96%),  and  30  c.c.  of  formic 
acid  (80%).  Formic  acid  may  be  replaced  by  glacial 
acetic  acid  or  ethyl  acetate.  This  treatment  in- 
creases the  life  of  the  film  and  protects  the  surface 
from  scratching.  It  also  increases  the  pliability  of 
the  film  and  strengthens  it  against  wear  at  the 
sprocket  holes. — W.  C. 

X-ray    photography ;    Sensitive    film    supports    for 
.     N.  E.  Luboshey.     E.P.  184,519,  2.3.21. 

The  sensitive  emulsion  is  coated  on  one  or  both 
sides  of  a  support  prepared  by  incorporating  a 
material  such  as  gelatin,  glue,  gum,  celluloid,  or 
collodion  with  substances  such  as  calcium  tungstate, 
barium  platinocyanide,  etc.,  which  are  used  in 
making  intensifying  screens  for  X-rays. — W.  C. 

Photographic   emulsions;   Process  for  intensifying 

the  action  of  X-rays  on  .       C.  Schleussner. 

G.P.  356,378,  28.12.20. 

Secondary  rays  are  produced  by  using  salts  of  those 
organic  or  inorganic  residues  which  are  capable  of 
dyeing  silver  bromide  either  by  bathing  or  addition 
to  the  emulsion  in  the  silver  bromide  complex,  their 
"  atomic  weights  "  depending  on  the  object  to  be 
attained.  For  example,  an  emulsion  can  be  treated 
with  a  1  %  solution  of  the  strontium  salt  of  Tetra- 
bromofluerescein,  or  the  finished  plates  may  be 
bathed  in  aO'2%  solution  of  this  salt. — W.  C. 

Photographic  print-out  images;  Toning  process  for 

.       Graphikus^Ges.    m.b.H.       G.P.    356,380, 

29.5.19. 

Sulphide  toning  baths  are  used  after  previous  use 
of  two  fixing  baths.  Selenium  toning  baths  may 
be  applied  after  the  sulphide  toning.  By  using  the 
selenium  toning  baths,  platinum  tones  are  obtained. 

— W.  C. 


XXII.-EXPLOSIVES ;  MATCHES. 

Patents. 

Smoke;  Production  of  coloured .  V.  M.  L.  Ex- 
perimental, Ltd.,  and  O.  D.  Lucas.  E.P.  185,339, 
6.10.21. 

A  smoke-producing  unit  comprises  a  mass  of  self- 
combustible  composition.  6table  at  normal  tempera- 
tures, and  containing  volatilisable  colouring  matter. 
The  composition   is  packed   in  a  container  having 


Vol.  XLI.,  No.  20.] 


Cl.  XXIII.— analysis. 


839  a 


orifices  so  arranged  that  on  ignition  the  tempera- 
ture produced  is  sufficient  to  volatilise  the  colouring 
matter  but  not  high  enough  substantially  to  decom- 
pose it.  The  composition  is  in  the  form  of  pellets 
which  may  be  ignited  by  quickmatch  and  gun- 
powder. The  colouring  matter  comprises  about  half 
the  composition,  the  remainder  consisting  of  sugar 
or  flour  as  a  fuel  and  potassium  chlorate. — H.  C.  It. 

Explosive  compositions;  Process  for  increasing;  the 

sensitiveness  and  power  of  .     W.  M.  Dehn 

U.S.P.  1,428,011,  5.9.22.     Appl.,  20.8.20. 

Diazodinitrophenol  is  mixed  with  other  explosive 

matter  under  water  and  the  mixture  is  subsequently 

dried— H.  C.  R. 

Priming    compositions;    Manufacture    of   for 

percussion  and  friction  fuses,  detonators,  cart- 
ridges and  the  like.  E.  R.  von  Herz.  G.P. 
289,016,  25.7.13. 

Complex  compounds  of  metallic  hypophosphites 
with  the  metallic  salts  of  inorganic  acids  yielding 
oxygen  are  used.  For  example,  a  mixture  of  95% 
of  lead  nitrate-hypophosphite  and  5%  of  antimony 
sulphide  can  be  used,  or  60%  of  lead  nitrate-hypo- 
phosphite, 25%  of  barium  nitrate,  and  15%  of 
'  antimony  sulphide,  with  or  without  the  addition  of 
glass  powder.  These  compounds  may  be  used  as 
substitutes  for  mercury  fulminate. — A.  G. 

Priming  compositions;  Manufacture  of for  the 

percussion  caps  of  small  arms,  ordnance  and  pro- 
jectiles, and  similar  percussion  and  friction  fuses. 
E.  R.  von  Herz.     G.P.  289,017,  30.7.13. 

The  normal  lead  compound  of  trinitroresorcinol  is 
■  used  as  the  primer,  to  which,  as  damping  medium, 
paraffin,  vaseline  oil,  ceresin,  etc.  may  be  added 
and  if  necessary  other  explosives  which  are  not 
detonators.  Primers  are  thus  obtained  which  are 
safe  against  dangers  from  handling,  proof  against 
I  moisture,  and  which  do  not  attack  metals. — A.  G. 

I   Incendiary  and  explosive  compositions.    B.Benedix. 
G.P.  300,020,  16.10.15. 

I  An  explosive  or  incendiary  composition  consists  of 
a  combustible  organic  substance  and  a  sodium 
peroxide  compound  out  of  direct  contact  with  the 

I  organic  substance.  The  fuse  consists  of  an  inflam- 
mable alcohol  of  low  b.p.,  particularly  methyl 
alcohol  and  mixtures  containing  it,  and  methyl 
salicylate  is  employed  as  the  organic  substance. 

—A.  J.  H. 

Explosives;   Production   of   gelatinous    proof 

against  firedamp.  Dynamit-A.-G.  vorni.  A.  Nobel 
u.  Co.,  and  P.  Naoum.     G.P.  353,200,  15.10.20. 

Concentrated  sulphite-cellulose  waste  liquor  is 
added  to  the  explosive  in  moderate  quantity.  The  I 
plasticity  and  flexibility  of  the  explosive  are  in- 
creased and  in  consequence  the  ease  with  which  it 
'can  be  incorporated  in  cartridges,  and  its  stability 
and  ease  of  detonation  are  unimpaired. — A.  G. 


XXIII.— ANALYSIS. 

Extraction     of     liquids     by     immiscible     liquids; 

Apparatus  for  .     Fayolle  and  C.  Lormand. 

Chim.  et  Ind.,  1922,  8,  273—274. 

Two  robust  forms  of  extraction  apparatus,  for  use 
respectively  according  as  the  extracting  liquid  is 
heavier  or  lighter  than  the  liquid  to  be  extracted, 
and  in  which  the  former  liquid  passes  through  the 
latter  in  a  succession  of  drops,  are  described.  A 
comparatively  small  volume,  trom  50  to  100  c.c, 
if  extracting  liquid  is  required.  The  apparatus  is 
suitable  for  the  extraction  of  aqueous  solutions  of 


caffeine,  digitalin,  and  morphine  by  chloroform, 
extraction  of  fats  from  soap  solutions  by  ether  etc 

—J.  S.  G.  T. 

Turbidity  standard.  H.  Becbhold  and  F  Hebler 
Kolloid-Zeits.,   1922,  31,  132—137. 

A  turbidity  standard,  for  use  in  nephelometric 
work,  may  be  prepared  by  mixing  1/500  g.-mol  of 
hydroxylamine  sulphate  in  glycerol  with  1/500 
g.-mol.  of  barium  chloride  also  in  glycerol.  The 
product  contains  1/1000  g.-mol.  of  "barium  sul- 
phate consisting  of  particles  25  p  diam.  and  is 
stable  for  eight  days.  A  standard  sol  is  prepared 
by  mixing  barium  nitrate  and  magnesium  sulphate 
both  dissolved  in  a  mixture  of  glycerol  (85  pts.)  and 
isobutyl  alcohol  (15  pts.)  The  sol  contains  1/200 
g.-mol.  of  barium  sulphate  and  on  mixing  with 
glycerol  containing  15%  of  isobutyl  alcohol  can  be 
brought  to  the  same  turbidity  as  the  first-men- 
tioned standard.  It  is  normally  three  times  as 
turbid  as  the  standard  turbidity  and  its  particles 
have  a  diameter  not  greater  than  90  pp.  It  is 
stable  for  at  least  six  months. — J.  F.  S. 

Coagulation  of  colloids;  Apparatus  for  measuring 

the  rate  of  .     Wo.  Ostwald  and  F.  V    von 

Hahn.  Kolloid  Zeits.,  1922,  30,  62—70. 
Two  forms  of  apparatus  for  determining  the  rate  of 
coagulation  of  colloidal  suspensions  are  described. 
In  the  one,  the  colloid  is  contained  in  one  limb  of  a 
U-tube  about  130  cm.  long  and  6  mm.  diameter,  and 
is  balanced  hydrostatically  against  a  liquid,  such 
as  distilled  water,  contained  in  the  other  limb, 
which  is  about  37  mm.  in  diameter.  The  rate  of 
coagulation  is  determined  by  observing  the  respec- 
tive heights  of  the  two  liquids  in  the  two  limbs. 
In  the  second  form,  the  colloid  is  sucked  up  into  a 
vertical  tube  about  2  m.  long,  connected  at  the 
upper  end  with  a  closed  vessel  containing  gas  and 
immersed  in  a  bath  at  constant  temperature.  The 
rate  of  coagulation  is  determined  by  observing  the 
rise  of  level  of  the  top  of  the  column' of  liquid.  The 
use  of  the  instruments  is  illustrated  in  the  cases 
of  the  coagulation  of  suspensions  of  silver  sulphide, 
mercury  sulphide,  gum  mastic,  and  colloidal  gold. 

—J.  S.  G.  T. 

Sedimentation  analysis;  Technical .    F.  V.  and 

D.  von  Hahn.     Kolloid-Zeits.,  1922,  31,  96—101. 

A  slightly  enlarged  form  of  the  Ostwald  and  Hahn 
U-tube  coagulation  measurer  (r/.  supra)  may  be 
used  to  determine  the  relative  size  of  the  particles 
of  commercial  preparations.  A  description  of  the 
use  of  the  instrument  to  differentiate  varieties  of 
lampblack  is  given. — J.  F.  S. 

Potassium  binoxalate  and  the  standardisation  of 
alkali  solutions.  Y.  Osaka  and  K.  Ando.  Mem. 
Coll.  Sci.  Kyoto,  1921,  4,  371—375. 

The  use  of  anhydrous  potassium  binoxalate  for  the 
standardisation  of  alkali  solutions  is  recommended, 
and  a  method  of  preparation  of  the  salt  from  oxalic 
acid  and  potassium  oxalate  described. — J.  S.  G.  T. 

Qualitative   chemical    anali/sis.     V.    Maori.      Boll. 

Chim.  Farm.,  1922,  61,  417—418. 
The  following  scheme  dispenses  with  the  use  of 
sulphur  compounds.  The  hydrochloric  acid  solution 
of  the  substance  to  be  analysed  is  placed,  together 
with  a  stick  of  zinc,  in  a  flask  fitted  with  a  gas- 
delivery  tube,  which  is  heated  at  one  part  as  with  a 
Marsh  apparatus ;  the  flask  also  is  eventually  heated. 
The  precipitate  thus  formed  may  contain  silver, 
mercury,  lead,  bismuth,  copper,  cadmium, platinum, 
gold,  tin,  antimony,  and  arsenic,  and  is  separated 
by  filtration,  the  filtrate  being  heated  to  boiling 
with  zinc  acetate.  The  precipitate  thus  obtained 
may  contain  aluminium,  iron,  and  chromium,  and 


840  a 


Ou  XXIII.— ANALYSIS. 


[Oct.  31,  1922. 


the  filtrate  from  this  is  heated  with  hydrogen  per- 
oxide, which  precipitates  manganese.  The  latter  is 
filtered  off  and  the  filtrate  heated,  and  treated  with 
zinc  oxide  in  presence  of  chlorine,  nickel  and  cobalt 
being  thus  precipitated.  This  subdivision  into 
groups  does  not  hold  exactly.  Antimony  and 
arsenic  may  be  volatilised,  at  leaet  partially,  as 
hydrides.  Chromium  may  remain  in  solution  if 
aluminium  and  iron  are  not  also  present,  and  in 
such  case  may  be  detected  by  the  yellow  coloration 
obtained  when  the  liquid  from  the  manganese  pre- 
cipitate is  rendered  alkaline.  The  last  two  groups 
may  be  combined,  since  treatment  with  zinc  oxide 
and  chlorine  precipitates  also  the  manganese.  The 
separations  of  the  metals  in  the  different  groups  is 
not  described,  but  it  is  pointed  out  that  the  first 
group  precipitate  is  best  treated  successively  with 
hydrochloric  acid,  nitric  acid,  and  aqua  regia;  the 
nitric  acid  may  give  a  residue  of  antimonic  an- 
hydride, which  is  readily  dissolved  by  hydrochloric 
or  tartaric  acid.  The  presence  of  mercury  may 
lead  to  difficulty  as  the  mercury  may  be  deposited 
on  the  zinc  and  thus  prevent  its  further  attack.  If 
oxalates,  fluorides,  silicofluorides,  phosphates, 
borates,  or  silicates  are  present  together  with 
alkaline-earth  metals,  the  latter  may  be  precipi- 
tated completely  or  partially  as  oxalates,  fluorides, 
or  silicofluorides ;  the  borates  and  phosphates  re- 
main in  solution  in  an  acid  medium,  whilst  the  sili- 
cates are  decomposed.  The  precipitate  should  be 
separated,  dried,  calcined  in  presence  of  a  few  drops 
of  sulphuric  acid,  redissolved,  and  again  treated 
with  zinc  oxide. — T.  H.  P. 

Barium;    Approximate    volumetric    estimation    of 

.  M.  Polonovski.    Bull.  >Soc.  Chim.,  1922,  31, 

810—813. 
To  a  measured  volume  of  the  solution  containing 
barium  an  equal  volume  of  80%  alcohol  is  added, 
followed  by  excess  of  a  standardised  solution  of 
sodium  thiosulphate  in  30%  alcohol.  The  separa- 
tion of  barium  thiosulphate  is  facilitated  by  shaking 
and  is  complete  in  about  24 — 36  hrs.  The  tempera- 
ture and  alcoholic  content  of  the  solution  are  then 
noted,  the  precipitate  filtered  off,  and  the  excess  of 
sodium  thiosulphate  in  the  filtrate  determined,  the 
barium  being  thus  estimated  by  difference.  A  cor- 
rection is  necessary  on  account  of  the  small 
solubility  of  barium  thiosulphate;  the  author  gives 
a  formula  for  applying  the  correction  in  which 
temperature  and  alcoholic  content  of  the  solution 
are  factors.  The  method  is  applicable  in  presence 
of  other  alkaline-earth  metals  and  may  be  used  for 
estimation  of  sulphates ;  in  this  case  excess  of 
barium  is  added  and  the  amount  remaining  in  solu- 
tion is  determined. — H.  J.  E. 

Alkaline-earth     metals;     Method     of     qualitative 

separation  of  .     M.  Polonovski.     Bull.   Soc. 

Chim.,  1922,  31,  806—810. 

The  precipitate  of  alkaline-earth  carbonates  is  dis- 
solved in  a  few  c.c.  of  dilute  acetic  acid,  the  solution 
boiled  to  eliminate  all  traces  of  carbon  dioxide  and 
neutralised  with  ammonia.  An  equal  volume  of 
60%  alcohol  and  the  same  volume  of  a  saturated 
solution  of  sodium  thiosulphate  in  30%  alcohol  are 
added ;  barium  thiosulphate  is  at  once  precipitated 
and  the  solution  should  be  well  shaken  and  allowed 
to  stand  for  10  mins.  After  filtering,  the  filtrate 
is  freed  from  traces  of  barium  by  addition  of  1/10 
of  its  volume  of  a  solution  of  potassium  sulphate 
(7  g.  per  litre).  A  second  filtration  removes  the 
barium  sulphate,  and  strontium  is  detected  by  add- 
ing to  the  filtrate  half  its  volume  of  a  solution  of 
1  pt.  of  sodium  sulphite  in  300  pts.  of  30%  alcohol. 
Complete  precipitation  of  strontium  is  effected  by 
excess  of  concentrated  solution  of  sodium  sulphite 
or  of  potassium  sulphate.     The  filtrate  containing 


calcium  is  acidified  with  very  dilute  acetic  acid  and 
the  metal  precipitated  with  ammonium  oxalate 

— H.  J.  E. 

Arsenite;  Effect  of  iron  on  the  iodine  titration  of 

.     P.  L.   Melvill.     J.   S.   Afr.   Chem.   Inst., 

1922,  5,  3—5. 

The  slightly  acid  arsenite  solution,  containing  not 
more  than  0-l%  of  iron,  is  treated  with  about  one- 
half  the  volume  of  standardised  iodine  solution 
required  to  oxidise  all  the  arsenite,  and  10  c.c.  of 
saturated  sodium  bicarbonate  solution  is  then 
added.  The  iron  is  thus  precipitated  completely  as 
ferric  arsenate  and  no  longer  interferes  when  the 
titration  with  the  iodine  solution  is  continued  to 
completion. — W.  P.  S. 

Lead   nitrate;   Electrometric   titrations  with  . 

I.  M.  Kolthoff,     Z.  anal.  Chem.,  1922,  61,  369— 
377. 

Iodides  in  solutions  of  not  too  low  concentration 
may  be  titrated  with  lead  nitrate  solution,  and 
chlorides  and  bromides  do  not  interfere  if  the  end- 
point  is  determined  electrometrically.  The  method 
is  also  suitable  for  the  determination  of  ferrocyan- 
ides,  oxalates,  tartrates,  and  succinates,  and  of 
sulphates,  but  in  the  latter  case  mineral  acids, 
ferric  salts,  and  aluminium  salts  must  not  be  pre- 
sent. Electrometric  titration  of  pyrophosphates 
with  lead  nitrate  solution  is,  however,  untrust- 
worthy.—W.  P.  S. 

Ferrocyanides;  Electrometric  titration  of .    E. 

Miiller  and  H.  Lauterbach.    Z.  anal.  Chem.,  1922, 
61,  398—403. 

The  end-point  of  the  titration  of  ferrocyanides  in 
sulphuric  acid  solution  by  potassium  permanganate 
solution  may  be  determined  electrometrically. 

— W.  P.  S. 

Aluminium-  Experiments  on  the  oxide  method  of 

determining    .      J.    E.    Clennell.      Inst,    of 

Metals,  Sept.,  1922.     [Advance  copy.]     16  pages. 

Rescxts     of     experiments     show     that     for     the 
hydrolysis  of  aluminium  salts  to  hydroxide  alkali 
thiosulphate     is    more    satisfactory    than    phenyl- 
hydrazine   or   iodide-iodate   mixture    (cf.    Ibbotson 
and  Aitchison,  "  Analysis  of  Non-Ferrous  Alloys," 
137,    1915).     An   acid  solution   of   the    aluminium 
alloy     or     salt     (containing     about     100     mg.     of 
aluminium)  is  made  faintly  ammoniacal  after  the 
usual  elimination  of  silica  and  metals  of  the  copper 
group,  then  diluted  to  300  c.c,  cooled  somewhat, 
and  sulphur  dioxide  passed  through  until  the  pre- 
cipitate  is   dissolved   and   the   solution   colourless. 
Dilute  ammonia  in  slight  excess  is  added  and  5  g. 
of  sodium  thiosulphate  (if  iron  or  manganese  be 
present,  10 — 20  c.c.  of  1:3  acetic  acid  is  also  added), 
and  the  solution  is  boiled  for  30  mins.,  diluted  to 
500  c.c.  with  hot  1%   ammonium  chloride  solution, 
and,  after  settling,  decanted,  similar  decantations 
being  repeated    twice.      The    precipitate    is   then 
collected  in  the  usual  way.     Re-treatment  of  the 
filtrate  by  thiosulphate  usually  yields  further  small 
amounts  of  alumina.     For  large  amounts  of  iron  or 
zinc,  double  precipitation  is  necessary ;  magnesium 
does  not  affect  the  process.     Results  are  generally 
high,  due  to  adsorbed  salts,  undissociated  aluminium 
sulphate,  and  the  hygroscopic  nature  of  the  ignited 
alumina,     but     with     suitable     blank     assays     an 
accuracy,  for  small  amounts  of  impurities,  within 
+  02%  is  claimed  in  the  case  of  alums  and  of  about 
±0-5%   for  alloys.     The  precipitated  hydroxide  is 
flocculent   and  easily  filtered,   and  the  method   is 
applicable  to  basic  corrosion  products  of  aluminium 
oxidation,  e.g.,  those  from  the  action  of  water  on 
aluminium  amalgam,  for  which  the  older  methods 
had  proved  unsatisfactory. — J.  R.  P. 


Vol.  XLI.,  No.  20.] 


PATENT   LIST. 


841a 


Cation  dioxide  in  air;  New  apparatus  for  deter- 
mination  of   .     H.    Lundegardh.     Biochem. 

Zeits.,  1922,  131,  109—115. 
The  author  has  modified  Pettenkofer's  method  by 
replacing  the  flask  by  an  open  zinc  vessel  in  the 
form  of  a  beaker  with  a  detachable  cover  and  fitted 
with  three  tubes  to  facilitate  withdrawal  and  intro- 
duction of  solutions.  A  larger  apparatus  on  similar 
lines,  suitable  for  use  in  the  open,  is  described  and 
illustrated. — H.  K. 

\  Nitrogen;  A  new  accelerator  for  the  destruction  of 
organic   matter  in  the  Kjeldahl  method  for  thi 

determination   of  .      M.   and   I.    Sborowsky. 

Ann.  Chiui.  Analyt.,  1922,  4,  266—267. 

MERcrRous  iodide  accelerates  the  destruction  of 
organic  matter  in  the  digestion  with  sulphuric  acid 
much  more  effectively  than  metallic  mercury  or 
other  mercury  salts.  In  two  experiments  carried 
out  with  10  c.c.  of  sulphuric  acid  with  mercurous 
iodide  07  g.  of  sugar  was  destroyed  in  the  time 
required  for  the  destruction  of  only  0"1  g.  with 
metallic  mercury.  A  digestion  was  completed  in 
50 — 60  min.,  which  with  metallic  mercury  took 
4—8  hrs.— H.  C.  R. 

1  Incineration  by  Kjeldahl's  method;  Apparatus  for 

■  on  the   micro  scale.     H.   Winkler.     Chem.- 

Zeit.,  1922,  46,  785. 
The  incineration  mixture  consists  of  300  c.c.  of 
phosphoric  acid  and  100  c.c.  of  concentrated  sulph- 
uric acid,  and  to  each  100  c.c.  of  this  mixture  are 
added  10  c.c.  of  a  6%  solution  of  copper  sulphate 
and  10  c.c.  of  water.  2  c.c.  of  the  mixture  is  used 
for  an  incineration,  which  is  carried  out  in  a  Jena 
glass  test-tube  of  special  shape,  in  the  upper  part 
of  which  is  a  tube,  ending  underneath  in  a  funnel 
and  above  in  a  bulb,  by  which  arrangement  the 
ejection  of  liquid  at  the  moment  of  reaction  is 
avoided.  The  test-tube  is  heated  by  a  strong  flame, 
and  the  process  only  requires  a  few  minutes  for  its 
completion.  The  resulting  small  quantities  of 
ammonia  are  best  distilled  in  a  current  of  steam. 

— H.  M. 

Amino-acid    nitrogen;   Triketohydrindene   (ninhyd- 
rin)    reaction    as    a    quantitative     colorimetric 

method  for  estimation  of .     H.  Riffart.    Bic- 

Chem.  Zeits.,  1922,  131,  78—96. 
The  ninhydrin  reaction  is  suitable  for  the  quantita- 
tive estimation   of  amino-acid    nitrogen  if  certain 
precautions     are     taken.       All     the     amino-acids 
examined,  with  free  amino-groups,  with  the  excep- 
tion of  histidine,  give  at  pH  6'976  the  same  standard 
:dlour    if    the    solutions    be    equal    in    amino-acid 
litrogen  content,  say  10  nig.  or  less  of  amino-acid 
litrogen  per  litre.    This  result  is  obtained  by  taking 
lli  c.c.  of  such  a  solution,  neutralising  with  .\  /400 
dkali   to  pH   6"976  by  comparison   with   phosphate 
tandards  and  methyl   red,   adding  2  c.c.  of  phos- 
ihate  solution  of  the  same  pH  and  1  c.c.   of  1  %    J 
linhydrin  solution,  and  heating  for  half  an  hour  in 
he  water  bath.     The  solutions  are  then  diluted  to 
00  c.c.   and  compared  colorimetrically.     Histidine 
;ives  the  standard  colour  at  pH  6'24,  thus  involving   : 
small  error  where  mixtures  of  amino-acids  con- 
i  :aining  histidine  are  estimated.     Some  amines  and 
mmonium  salts  also  give  the  colour  reaction  but   I 
nly  in   much  higher  concentrations  than   15   mg. 
►er  litre.— H.  K. 

See  also  pages  (a)  797,  Volatile  matter  in  coal 
McLachlan).  798,  Specific  gravity  of  coke 
ichmolke) ;  Hydrocarbons  in  gases  (Wollers) ; 
lydrogen  and  methane  (Rischbieth).  800,  Paraffin 
ax  and  vaseline  (Pyhala) ;  Boring  and  cooling  oils 
valeta).  803,  Benzol  in  gas  (Biihr).  806, 
lechanical  wood  pxdp  in  paper  (Krull  and  Mandel- 
ow).  810,  Boric  acid  (Stocker  and  Kan- 
appel);    Fluorides    (Smitt).      811,    Nitrites    and 


nitrates  (Miyamoto).  825,  Total  fat  in  soaps 
(Jakes).  828,  Tannin  analysis  (Kubelka  and 
Kohler);  Water-soluble  matter  in  leather  (Chater 
and  Woodroffe);  Gelatin  and  glue  (Bogue).  829, 
Colloidal  clay  in  soils  (Sokol).  830,  Inversion  of 
sucrose  (Maquenne).  831,  Citric  and  oxalic  acids 
{ Butkewitsch).  832,  Flour  (Marotta  and  Kaminka)  ; 
Acidity  of  flour  (Arpin  and  Pecaud).  832,  Water 
content  of  margarine  (Brauer).  834,  Pyrethrum 
powder  (Costa).  835,  Meconic  acid  in  opium 
(Annett  and  Bose);  Silver-albumose  (Maue,  also 
Herzog).  836,  Geraniol  in  citronella  oil  (De  Jong 
and  Reclaire). 

Patents. 
Photometric  devices.    E.P.  184,853,  17.5.21. 

Metal;  Means  for  testing   the  physical  properties 

lelasticity  or  hardness]  of  .     F.   S.  J.  Pile. 

E.P.  185,253,  18.6.21. 


Patent  List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given :  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


1.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Benoit.     26,652.      See  XIX. 

Blow,  and  Renshaw  Engineering  Works.  Extrac- 
ting and  segregating  soft  penetrable  substances 
from  an  aggregation  of  such  substances  and  hard 
impenetrable  substances.     26,117.     Sep.  27. 

Bowater  and  Lynin.  Preventing  formation  of 
scale  in  boilers,  evaporators,  etc.     26,867.     Oct.  4. 

Drev  and  Hammersley.  Refrigeration.  26,623. 
Oct.  3. 

Dried  Milk  Dairy  Products,  Ltd.,  Lampitt,  and 
Palmer.  Apparatus  for  separating  and  collecting 
solid  particles  from  air.    26,712.    Oct.  3. 

Hargraves,  Minchin,  and  Werpe.  Means  for 
filtering  liquids.     25,899.     Sep.  25. 

Kemp,  and  Wellman  Seaver  Morgan  Co.  Rever- 
sible regenerative  furnaces.     27,104.     Oct.  6. 

Kennedy.     Crushing  apparatus.     26,533.     Oct.  3. 

Plausons  (Parent  Co.),  Ltd.  (Plauson).  Dis- 
integrators.    26,650.     Oct.  3. 

Rigbv.  Drying  process  and  apparatus.  26,378. 
Sep.  30. 

Rushen  (Fitch).  Continuous  heating  furnaces. 
25.974.    Sep.  26. 

Sharpies  Specialtv  Co.  Continuously  separating 
substances.     27,184.'    Oct.  7. 

Smidth  <fe  Co.  Apparatus  for  separating  solid 
particles  from  fluids.  26,583.  Oct.  2.  (Denmark, 
3.10.21.) 

Stone.  Process  and  apparatus  for  subliming. 
26,881.     Oct.  5. 

Thornton.    26,052.    See  XIX. 

Complete  Specifications  Accepted. 

12,497,  13,303  and  16,186  (1921).  Buxton.  Drying- 
appaiatus.     (186,370.)     Oct.  11. 

17"i20  (1921).  Adler.  Absorption  and  purification 
of  gases  and  vapours.     (165.451.)    Oct.  11. 

18,028  (1921).  Adler.  Method  and  apparatus  for 
lixiviation.     (166.525.)     Oct.  11. 

19,299  (1921),  5322  and  10,607  (1922).  Spensley. 
Grinding  or  disintegrating  and  mixing  machines. 
(188,462.)     Oct,  11. 


i 


842  a 


PATENT   LIST. 


[Oct.  31,  1922. 


19,742  (1921).  Marks  (National  Air  Dryers,  Inc.). 
Drying  apparatus.  (186,207.)    Oct.  4. 

34,874  (1921).  Scrive.  Drying  apparatus. 
(186,548.)    Oct.  11. 


II.— FUEL;       GAS;       MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE   DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 


Fuel  briquettes.     26,607. 
coke    from    small    coal. 


etc.    of 
26,330. 


Ardern  and  Sheppard. 
Oct.  2. 

Barrs.      Production    of 
26,948.     Oct.  5. 

Etorre.      Preventing    fusion 
combustion  of  powdered  fuel. 
(Fr.,  29.12.21.) 

Fonblanque    and    Moeller.      Drying 
peat  etc.     26,897.     Oct.  5. 

Grieve,  Livens,  and  Ruston  and  Hornsby. 
producer  plants.    26,783.     Oct.  4. 

Jackson    (Koppers   Co.).      Removal   of   hydrogen 
sulphide  from  gases.     26,715.     Oct.  3. 

Koppers  Co.     Removing  hvdrogen  sulphide  from 
gases  etc.     26,701—2.     Oct.  3.     (U.S.,  8.12.21.) 

Koppers     Co.       Purifying     gases.       26,708     and 
26,730.     Oct.  3.     (U.S.,  8.12.21.) 

Lewis.      Molecular    conversion    of    hydrocarbons 


ash    from 
Sep.  29. 

and    use    of 


Gas- 


and    separation 
Sep.  27. 

Masson. 

Pickard. 
25,835—7. 

Plausons 


of    resultant    products.        26,114. 


27,170.     See  XII. 

Production     of 

Sep.  25. 

(Parent   Co.),    Ltd. 


combustible     gases. 


Manu- 


(Plauson). 
facture  of  lubricants.     26,276.     Sep.  29. 

Plausons  (Parent  Co.),  Ltd.  (Plauson).  26,189. 
See  IX. 

Powers  and  Umpleby.  Gas  generators.  26,016. 
Sep.  26. 

Robinson.  Treatment  of  asphaltic  base  oils, 
bituminous  products,  and  tar.     25,870.     Sep.  25. 

Schauerman.     Candles.     26,455.     Sep.  30. 

Schauerman.  Substitute  for  petrol.  26,456. 
Sep.  30. 

Smallwood.    26,805.  See  XIX. 

Soc.  Lyonnaise  des  Eaux  et  do  l'Eclairage.  Gasi- 
fying and  carbonising  coal  etc.  26,833.  Oct.  4. 
(Fr.,  7.10.21.) 

Ward.    Desulphurisation  of  oils.     26,861.    Oct.  4. 

Complete  Specifications  Accepted. 
9129  (1921).     Illingworth.     Production  of  smoke- 
less fuels  and  coke.     (186,085.)     Oct.  4. 

14,472  (1921).  Marshall.  Retorts  for  treating 
carbonaceous  and  other  materials.  (186,375.) 
Oct.  11. 

14,676  (1921).  Illingworth.  Coking  of  coal. 
(186,384.)    Oct.  11. 

16,874  (1921).  Testrup,  and  Techno  Chemical 
Laboratories,  Ltd.  Utilising  surplus  power  from 
hydro-electric  plant  for  preparing  peat  or  similar 
fuel.    (186,137.)    Oct.  4. 

and  Minerals  Separation, 
(186,143.)    Oct.  4. 
Gas  producers.    (186,262.) 


16,913.  (1921).  Price, 
Ltd.     Treatment  of  coal. 

27,625  (1921).  Climie. 
Oct.  4. 


III.— TAR  AND  TAR  PRODUCTS. 

Applications. 

Dodd,  Sprent,  and  United  Alkali  Co.  Manufac- 
ture of  p-dichlorobenzene  and  chloroanthraquinone. 
26,343.    Sep.  29. 

Masters.  Manufacture  of  /3-naphthoI  2.3.6-  and 
2.6.8-disulphonic  acids.     26,021.     Sep.  27. 

Masters.  Separation  of  isomeric  naphthylamine 
sulpho  acids.     26,022.     Sep.  27. 


Masters.  Manufacture  of  a-  and  /3-naphthols 
26,023.    Sep.  27. 

Robinson.     25,870.     ,S'ee  II. 

Complete  Specification  Accepted. 
24,139  (1921).    British  Dyestuffs  Corp.,  Baddilev, 
Payman,      and      Bainbridge.         Manufacture      of 
1.4-naphtholsulphonic  acid.     (186,515.)     Oct.  11. 

IV.—  COLOURING  MATTERS  AND  DYES. 

Applications. 

Bloxam  (Akt.-Ges.  f.  Anilinfabr.).  Manufacture 
of  tetrakisazo  dyestuffs.     26,116.     Sep.  27. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Manufacture  of  azo  dyestuffs.     25,989.     Sep.  26. 

Complete  Specifications  Accepted. 

18,732  (1921).  Durand  et  Huguenin  Soc.  Anon. 
Manufacture  of  mordant  dyeing  colouring  matters. 
(166,530.)    Oct.  4. 

21,454  (1921).  Soc.  Chim.  de  la  Grande  Paroisse. 
Brown  dyestuffs.     (169,687.)     Oct.  4. 

24,456  (1921).  British  Dyestuffs  Corp.,  Baddiley, 
Rodd,  and  Stocks.  Manufacture  of  basic  dyestuffs 
possessing  affinity  for  unmordanted  vegetable  fibres. 
(186,517.)     Oct.  11. 

V.— FIBRES;   TEXTILES;   CELLULOSE; 
PAPER. 

Applications. 

Dreyfus.  Manufacture  of  products  from  cellulose 
derivatives.    27,083.    Oct.  6. 

Ironside.     Treatment  of  jute.     27,163.     Oct.  7. 

Marshall.  Manufacture  of  fabrics  containing 
artificial  silk.     26,880.     Oct.  5: 

Milne.     Manufacture  of  paper.     27,017.     Oct.  6. 


Treatment   of   fibrous    materials.      26,953. 


Ros. 
Oct.  5. 

Complete  Specifications  Accepted. 

8492  (1921).  Acree.  Converting  wood  into  sugar 
and  other  products.     (160,776.)     Oct.  4. 

8493  (1921).  Acree.  Converting  wood  into  mucic 
acid  and  other  products.     (160,777.)    Oct.  4. 

13,850  (1921).  Eyrich  and  Schreiber.  Removal 
of  ink  from  print-paper.     (186,372.)     Oct.  11. 

16,886  (1921).  Terrisse  and  Levy.  Obtaining 
glucose  and  dextrin  from  wood.     (186,139.)     Oct.  4. 

16,975  (1921).  Steinhilber.  Production  of  cellu- 
lose from  reeds  and  similar  plants.  (179,885.) 
Oct.  4. 

VI.— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Beck.     Colouring  cotton.     26,158.     Sept.  28. 
Schauerman.      Composition   for  fireproofing   and 
waterproofing  materials.     26,457.     Sept.  30. 

Complete  Specifications  Accepted. 

9192  (1921).  Aris.  Fixing  colours  on  textile 
fibres.     (186,086.)     Oct.  4. 

3272  (1922).  Imrav  (Gebr.  Schmid).  Dveing  silk 
black.     (174,947.)     Oct.  11. 

VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Coke  and  Gas  Ovens,  Ltd.,  and  Smith.  Produc- 
tion of  white  commercial  pure  ammonium  chloride. 
26,967.     Oct.  5. 

Drevfus.  Production  of  products  from  alkali  com- 
pounds.    26,959.     Oct.  5. 

Hovey  and  Hovey.  Nitrate  of  lime.  26.883. 
Oct.  5. 


Vol.  m,  No.  20.] 


PATENT   LIST. 


843  a 


Howard.  Production  of  hydrogen  sulphide. 
26,739.     Oct.  3.     (U.S.,  20.10.21.) 

Jackson  (Koppers  Co.).    26,715.    See  II. 

Jackson  (Koppers  Co.).  Manufacture  of  hydro- 
gen sulphide.     26,722.     Oct.  3. 

Koppers  Co.    26,701—2.    See  II. 

Koppers  Co.  Manufacture  of  hydrogen  sulphide. 
26,721.     Oct.  3.     (U.S.,  8.12.21.) 

Nitrogen  Corp.  Synthesishig  ammonia.  26,000. 
Sep.  26.    (U.S.,  5.10.21.) 

Rawson.  Treatment  of  hydromagnesite.  25,983. 
Sep.  26. 

Complete  Specification  Accepted. 

19,113  (1921).  Plausons  (Parent  Co.),  Ltd. 
(Plauson).  Extraction  of  alkali  from  felspar  and 
other  minerals.     (186,199.)     Oct.  4. 

VIII.— GLASS;  CERAMICS. 

Complete   Specification   Accepted. 

17,049  and  30,326  (1921).  Hilger,  Ltd.,  and  Twy- 
man.  Annealing  and  apparatus  used  therein. 
(186,160.)    Oct.  4. 

IX—  BUILDING  MATERIALS. 

Applications. 

Avis  and  Jennings.  Material  for  structural  pur- 
poses.    25,877.     Sep.  25. 

Dunstan.  Cementitious  composition.  26,869. 
Oct,  4. 

Plausons  (Parent  Co.),  Ltd.  (Plauson).  Produc- 
tion of  cement  from  oil  shale  and  simultaneous 
recovery  of  shale  oil.     26,189.     Sep.  28. 

Complete  Specifications  Accepted. 

35,073(1920).  Hamon.  Compositions  for  making 
i  building  blocks,  slabs,  tiles,  etc.    (186,355.)    Oct.  11. 

14,234  (1921).  Rowse.  Manufacture  of  roofing 
and  building  material.     (186,105.)     Oct.  4. 

17,026  (1921).  Imperial  Trust, _  and  Schryver. 
Manufacture  of  plastic  material  for  flooring  etc. 
[  (186,157.)    Oct.  4. 

20,006  and  20,198  (1921).  Soc.  do  Recherches  et 
de  Perfect.  Industriels.  Impregnation  of  wood. 
(168,048  and  179,129.)    Oct.  4. 

21,843  (1921).  Arquint.  Insulating  material 
against  loss  or  gain  of  heat.     (186,492.)     Oct.  11. 

I    X.— METALS;   METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Brewer  (Krupp  A.-G.).  Electrolytic  separation 
of  pure  chromium  in  thick  layers.     26,206.    Sep.  28. 

Campbell.  Reduction  of  metallic  oxides  and  ores 
in  melting  furnaces.     26,470.     Sep.  30. 

Classen.  Production  of  glossv  metallic  coatings 
on  metals.     26,014.     Sep.  26. 

Freson.  Siemens  etc.  furnaces.  26,962.  Oct.  5. 
l(Belg.,  11.10.21.) 

Green  and  Hatfield.  AIlov  steels.  26,296—9. 
Sep.  29. 

I     Jones.     Distillation    of    zinc    etc.    by    electrical 
toeans.     27,006.     Oct.  6. 

'     Meehan.     Manufacture     of    grey     iron.     25,973. 
•Sep.  26. 

Miles.  Froth  flotation  machines  etc.  27,086. 
i  Oct.  6. 

i     Smallwood.      Process     for     making    ore    or     fuel 
briquettes.    26,805.    Oct.  4. 

Smidth  <fe  Co.  Agglomeration  of  ore.  27,191. 
Oct.   7.     (Sweden,   11.10.21.) 

Ward.     Melting  metals.    27,156.    Oct.  7. 

Complete  Specifications  Accepted. 
14,603  (1921).     Jones,  and  Sylvette,  Ltd.     Nickel 
dloys.     (186,381.)     Oct.  11. 


16,456  (1921).  Thompson  (Thoumvre  Fils).  Lead 
alloys.     (186,118.)     Oct.  4. 

17,049  and  30,326  (1921).  Hilger  and  Twyman. 
See  VIII. 

19,074-5  (1921).  Fierz  and  Prager.  Manufac- 
ture of  nickel  from  nickel  carbonyl.  (186,457 — 8.) 
Oct.  11. 

19,090  (1921).  Classen.  Production  of  glossy 
metallic  coatings  on  metals.     (186,459.)    Oct.  11. 

22,381  (1921).  General  Electric  Co.,  and 
Smithells.  Manufacture  of  tungsten.  (186,497.) 
Oct.  11. 

24,843  (1921).  Boehm.  Manufacture  of  magne- 
sium foil.     (186,253.)     Oct.  4. 

25,480  (1921).  Hibbard.  Art  of  puddling. 
(179,888.)     Oct.  4. 

XL— ELECTRO-CHEMISTRY. 

Applications. 

Brewer  (Krupp  A.-G.).     26,206.     See  X. 

Dutt.    Electric  primarv  batteries.    26,927.  Oct.  5. 

Dutt  and  Godfrey.  Storage  batteries.  26,928. 
Oct.  5. 

Dutt  and  Godfrey.  Electric  batteries.  26,929. 
Oct.  5. 

Dutt  and  Godfrey.  Lcclanche  batteries.  27,106. 
Oct.  6. 

Fischer  and  Porscke.  Galvanic  cells  and  batteries. 
26,843—4.    Oct.  4. 

Hancock  and  Hancock.  Electric  furnaces. 
27,068.     Oct.  6. 

Jones.    27,006.    See  X. 

McMullen  and  Rickets.  Electrical  systems  and 
apparatus  for  chemical  treatment  of  non-conduct- 
ing liquids.     26,692.     Oct.  3. 

Metropolitan-Vickers  Electrical  Co.,  and  North. 
Insulating  materials.     26,838.     Oct.   4. 

Reynolds.  Composition  for  screening  X-ray 
emanations  and  for  electrical  insulation.  26,254. 
Sep.  28. 

Stobie.     Electric  arc  furnaces.    26,905.    Oct.  5. 

XII.— FATS;   OILS;   WAXES. 
Applications. 


Ashwell.     26,621.    See  XIII. 
Bannister.     26,319.     See  XIII. 
Masson.     Purification  of  oils.     27,170. 


Oct 


Complete  Specifications  Accepted. 

8040  and  25,857  (1921).  Macpherson  and  Heys. 
See  XIX. 

16,749  (1921).  Macllwaine.  Preservation  and 
preparation  for  transportation  of  oil-bearing  rawr 
material,  such  as  nuts,  seeds,  and  copra.  (186,133.) 
Oct.  4. 

17,239  (1921).  Goslings.  Purification  of  oils  and 
fats.     (172,923.)    Oct.  11. 


XIII  —PAINTS  ;      PIGMENTS  ;      VARNISHES ; 
RESINS. 

Applications. 

Ashwell.  Apparatus  for  drawing  off,  condensing, 
and  collecting  vapours  and  fumes  from  gums,  oils, 
etc.    26,621.    Oct.  3. 

Bain,  and  Barry,  Ostlere,  and  Shepherd.  Manu- 
facture of  linoleum  etc.     26,493.     Oct.  2. 

Bannister  and  Bannister.  Manufacture  of 
French-polishing  oil.     26,319.     Sep.  29. 

Calwell.     Writing  inks.     25,826.     Sep.  25. 

New  Jersey  Zinc  Co.  Manufacture  of  lithopone. 
25.909.     Sep.   25.     (U.S.,  2.11.21.) 

Peters.     Paint  or  coating  composition.     26,608. 

Plausons  (Parent  Co.),  Ltd.  (Plauson).  Paints. 
25,813.    Sep.  25. 


J 


844  a 


PATENT   LIST. 


[Oct.  31,  192 


Complete  Specifications  Accepted. 

15,942  (1921).  Imrav  (Soc.  Chem.  Industry  in 
Basle).     Manufacture  of  resins.     (186,107.)    Oct.  4. 

16,404  (1921).  White  (National  Lead  Co.). 
Manufacture  of  white  lead.     (186,114.)     Oct.  4. 

17,025  (1921).  Imperial  Trust,  and  Schryver. 
Manufacture  of  coating  compositions.  (186,156.) 
Oct.  4. 

17,151  (1921).  Pummerer.  Production  of  artifi- 
cial resins.     (165,408.)     Oct.  4. 

XIV.— INDIA-RUBBER;    GUTTA-PERCHA. 

Applications. 

Bourne  and  Whitehead.  Rubber  compositions. 
26,443.     Sep.  30. 

Clarke,  Roberts,  and  Skellon.  Vulcanisation  of 
rubber.     27,114.     Oct.  6. 

Rushe-n  (Naugatuck  Chemical  Co.).  Vulcanisa- 
tion of  rubber.    25,972.    Sep.  26. 

Schauerman.  Substitute  for  rubber,  vulcanite, 
etc.    26,458.     Sep.  30. 

XV.— LEATHER;  BONE;  HORN;   GLUE. 

Applications. 

Astrom.  Manufacture  of  waterproof  leather. 
26,099.     Sep.  27. 

Comp.  Gen.  d'Electricite.  Moulding  casein  into 
plates  having  polished  surface.  25,908.  Sep.  25. 
(Ger.,  26.9.21.) 

Hoare.    26,340.    See  XIX. 

XVI.— SOILS;  FERTILISERS. 
Complete  Specifications  Accepted. 
21,170     (1921).       James     (Eisenwerkges.     Maxi- 
milianshiitte).       Treatment     of     phosphorus     com- 
pounds suitable  for  manurial  purposes.     (186,223.) 
Oct.  4. 

22,272  (1921).  Stockholms  Superfosfat  Fabriks 
Aktiebolag.  Granulation  of  calcium  cyanamide. 
(168,070.)    Oct.  11. 

XVII.- SUGARS;  STARCHES;  GUMS. 

Application. 

Harding  and  Whetham.  Manufacture  of  lactose 
and/or  lactalbumen.    26,879.    Oct.  5. 

Complete  Specifications  Accepted. 
8492  (1921).    Acree.    See  V. 
16,886  (1921).     Terrisse  and  Levy.     See  V. 

XVIII— FERMENTATION  INDUSTRIES. 
Application. 

Sobotka  and  Willstatter.  Production  of  yeast 
preparations  for  food.     25,895.     Sep.  25. 

Complete  Specification  Accepted. 

17,077  (1921).  Hyde.  Brewing  malt  liquors. 
(186,161.)     Oct,  4. 


XIX. 


-FOODS;  WATER  PURIFICATION; 
SANITATION. 


Applications. 

Adams.  Sewage  purification  tanks  etc.  27,015. 
Oct,  6. 

Benoit.     Purification  of  liquids.     26,652.     Oct.  3. 

Comp.  Indus,  de  Travaux  d'Edilite.  Furnace  for 
incinerating  refuse.  25,891.  Sep.  25.  (Fr., 
24.8.22.) 

Dried  Milk  Dairy  Products,  Ltd.,  and  others. 
26.712.     See  I. 

Hampshire,  Hobbs,  and  Co.,  and  Jones.  Drying 
fish  and  vegetable  substances  etc.     26,644.     Oct.  3. 


Harding  and  Whetham.     26,879.     See  XVII. 

Harrington.  Deodorisers  or  disinfectants. 
26,801.  •  Oct,  4. 

Hoare.  Manufacture  of  vegetable  casein  or 
albumin.     26,340.     Sep.  29. 

Linley.  Treatment  and  storage  of  meat.  26,589. 
Oct.  2. 

Seligman.  Sterilising  and  preserving  liquids. 
26,974—6.    Oct.  5. 

Sobotka  and  Willstatter.     25,895.    See  XVIII. 

Thornton.  Composition  for  preventing  rust  etc. 
in  containers  for  water  and  for  keeping  water  fluid 
below  freezing  point.     26.052.     Sep.  27. 

Ward     Baking     Co.       Manufacture     of     bread. 

26.616,  26,749,  and  26,750.     Oct.  2  and  3.     (US., 
1.  and  3.10.21.) 

Ward  Baking  Co.     Production  of  food  products. 

26.617.  Oct.  2.    (U.S.,  1.10.21.) 

Ward  Baking  Co.  Production  of  enzymes  for 
manufacture  of  bread.  26,751.  Oct.  3.  (U.S., 
3.10.21.) 

Ward  Baking  Co.  Coagulating  and  curdling 
milk.     26,752.     Oct.  3.   (U.S.,  3.10.21.) 

Complete  Specification  Accepted. 

8010  (1921).  Macpherson  and  Heys.  Antiseptic 
and  insecticidal  soap  or  compound.  (186,078.) 
Oct.  4. 


XX— ORGANIC  PRODUCTS ;  MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Applications. 

Engelhardt,  and  Farbenfabr.  vorm.  F.  Bayer 
u.  Co.  Separating  or  isolating  organic  gases  or 
vapours  of  organic  products.     26,841.     Oct.  4. 

Holzverkohlungs-Industrie  A.-G.  Chlorination  of 
methane.     27,107.     Oct.  6.     (Ger.,  27.3.22.) 

Lewis.     26,114.     See  II. 


Complete  Specifications  Accepted. 
8493  (1921).     Acree.    See  V. 


17,527(1921).  Elektrizitatswerk  Lonza.  Produc- 
tion of  crotonic  acid  from  crotonaldehyde. 
(165,728.)     Oct.  4. 

19.376  (1921).  Johnson  (Badische  Anilin  u.  Soda 
Fabrik).  Manufacture  of  thymol.  (186,202.) 
Oct.  4. 

31,276  (1921).  Holzverkohlungs-Industrie  A.-G., 
and  Roka.  Chlorination  of  methane.  (186,270.) 
Oct.  4. 

XXI.— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Application. 

Marks  (Daylight  Film  Corp.).  Photographic 
developers.     27,200.     Oct.  7. 

Complete  Specification  Accepted. 

11,556  (1921).  Wolff.  Negative  material  for 
colour    photography.      (168,035.)      Oct.    11. 

XXII.— EXPLOSIVES;    MATCHES. 
Applications. 

De  Wendel  et  Cie.  Explosive.  26,989.  Oct.  5. 
(Fr.,  21.1.22.) 

Friederich.  Process  for  making  charges  for  fuse 
cords  etc.     26,577.     Oct.  2. 

XXIII.— ANALYSIS. 

Application. 
Bellingham      and      Stanley.      Polarimeters     etc. 
26,725.     Oct,  3. 


Vol.  XL1..  No.  21.] 


ABSTRACTS 


[Nov.  15,  1922. 


I.-GENEBAL;  PLANT;    MACHINERY. 

Patents. 

Boilers  and  the  like;  Compositions  for  preventing 
corrosion  and  removing  incrustation  in  — ■ — .  The 
Zynkara  Co.,  Ltd.,  and  W.  A.  Cross.  E.P. 
185,035,  7.10.21. 

Alkaline  solid  material  of  the  kind  usual  in  hoiler 
compositions,  e.g.,  powdered  caustic  soda,  is  mixed 
with  finely-divided  zinc  or  other  metal  electro- 
positive to  the  metal  of  the  boiler ;  the  mixture  is 
incorporated  with  a  melted  wax  or  other  material 
of  comparatively  low  melting-point  not  attacked  by 
alkalis,  and  allowed  to  solidify. — H.  H. 

Electrolytic  corrosion  in  surface  condensers  and  like 
heat  exchange  apparatus;  Prevention  of  — - — . 
F.  von  Wurstemberger.     E.P.  185,436,  8.3.21. 

When  iron  parts  (such  as  longitudinal  stays)  are 
used  in  conjunction  with  copper  or  copper  alloys  in 
condensers,  precautions  are  taken  to  prevent  contact 
of  the  iron  parts  with  the  copper  (or  alloy)  tube- 
plates,  the  iron  parts  being  provided  with  copper 
ends.  In  the  case  of  intermediate  copper  tube- 
supporting  plates,  holes  with  a  large  clearance,  and 
preferably  bevelled  to  prevent  water  settling  in 
them,  may  be  used  where  the  stavs  pass  through. 

— B.  M.  V. 

Pulverising,   mi.ring,   and   grading;  Apparatus  for 

.     W.  Clark,  G.   and  W.  A.   Dawson.     E.P. 

185,037,  10.10.21. 

In  an  apparatus .  for  pulverising  wet  or  dry 
materials,  with  or  without  mixing,  and  for  grading, 
assisted  by  induction  of  hot  or  cold  fluids,  a  rotor 
or  a  travelling  member  co-acts  with  a  casing.  Wire 
or  wire  carding  is  used  to  form  the  grinding 
surfaces  or  parts  thereof  on  the  casing  and  on  the 
rotor  or  travelling  member.  Other  grinding  parts 
may  be  formed  as  blades  on  the  rotor  etc.  or  as  rotor 
arms,  or  as  adjustable  segmental  blocks  on  the 
inner  face  of  the  casing.  The  grinding  parts  are 
arranged  to  be  not  actually  in  contact.  Air  or 
other  fluids  are  inducted  or  injected  through  inlets 
provided  in  the  casing  and  in  some  cases  also  in  the 
revolving  members.  A  grading  attachment  may  be 
provided  in  which  an  intermittent  blast  co-operates 
.vith  a  duct,  the  cross-section  of  which  increases 
ibruptly.— H.  H. 

tube  mill.  J.  Ferencz.  U.S.P.  1,428,687,  12.9.22. 
Appl.,  30.4.21. 

iIollow  trunnions  at  the  ends  of  a  drum  are 
upported  in  journal  bearings  on  a  pair  of  pedestals. 
|1rom  a  standard  secured  to  one  pedestal  an  arm 
xtends  through  the  adjacent  trunnion  and  carries 
bar  disposed  longitudinally  within  the  drum. 
Irinding  rollers  suspended  from  the  bar  co-operate 
ith  the  inner  surface  of  the  drum  to  grind 
laterial  fed  into  the  drum. — H.  H. 

'aking  or  drying  substances  at  high  temperatures; 

Apparatus  for and  subsequently  cooling  sum,-. 

B.   Greenwood,    and  Carr    and   Co.,    Ltd.      E.P. 
185,460,  3.5.21. 

IE    goods    {e.g.,    biscuits)    are    caused    to   ascend 

irough  a  tower  divided  into  a  number  of  sections, 

ch  of   which  can   be   independently   heated,   pre- 

rably  by  means  of  hot  air.     On  arrival  at  the  top 

the  tower  the  goods  pass  through  an  air  lock  and 

scend  another  tower  in  which  they  meet  a  current 

cool  air,  which  'leaves  the  tower  at  a  point  below 

e  air  lock  for  transfer  of  the  goods.     The  speed  of 

nt  may  be  slower  than  the  speed  of  ascent. 

— B.  M.  V. 


Pulveriser;  Rotary  .     W.  H.  Fulcher.     U.S.P. 

1,429,333,  19.9.22.     Appl.,  14.11.21. 

A  conical  shell  rotates  about  a  fixed  conical  body, 
the  material  being  crushed  in  the  space  between  the 
two.  As  the  shell  rotates  it  is  lifted  and  allowed  to 
drop  by  means  of  cams,  fixed  to  the  shell,  which 
engage  with  rollers  running  on  a  circular  track 
below  the  shell,  the  rollers  being  mounted  on  a 
spider  to  keep  them  a  fixed  distance  apart  from 
each  other. — B.  M.  V. 

Heater  and  heat  insulation.     W.  S.  Hadaway,  jun. 

U.S.P.  1,389,192,  30.8.21.  Appl.,  26.7.17. 
A  heated  vessel  or  chamber  is  insulated  by  means 
of  a  porous  body  through  which  a  fluid  is  caused  to 
flow  in  opposition  to  the  flow  which  the  heat  losses 
tend  to  produce.  For  example,  a  furnace  chamber 
may  be  made  with  walls  composed  of  a  large  number 
of  capillary  tubes,  the  ends  of  the  tubes  on  the 
bottom  extending  downwards  into  water  contained 
in  a  tank  enclosed  by  an  outer  insulating  wall.  The 
spaces  above  the  water  and  surrounding  the  tubes  of 
the  side  walls  of  the  furnace  chamber  are  filled  with 
asbestos  wool  or  like  material  constituting  a  wick. 
The  flow  of  heat  outwards  from  the  furnace  chamber 
is  counteracted  by  water  flowing  inwards  through 
the  wick  and  tubes,  the  water  being  gradually  con- 
verted into  steam,  with  absorption  of  heat.  Various 
other  forms  of  apparatus  based  on  the  same  prin- 
ciple are  described. 

Tunnel-kiln  air-heater.  L.  Wilputte,  Assr.  to 
American  Dressier  Tunnel  Kilns,  Inc.  U.S.P. 
1,389,408,  30.8.21.     Appl.,  20.11.19. 

A  tunnel  kiln  for  delivering  large  volumes  of  hot 
air  for  drying  or  the  like  comprises  a  housing  of 
refractory  material  provided  with  a  number  of 
parallel  combustion  chambers,  similar  to  those  of 
Dressier  tunnel  kilns,  and  with  spaced  pipes  extend- 
ing longitudinally  and  forming  extensions  of  the 
combustion  chambers.  A  mixture  of  preheated  air 
and  fuel  is  burnt  in  the  combustion  chambers  and 
the  air  to  be  heated  flows  in  a  tortuous  path  between 
and  in  contact  with  the  pipes  and  in  a  general  direc- 
tion opposite  to  the  flow  of  products  of  combustion 
through  the  combustion  chambers  and  pipes. 

Drying  apparatus;  Process  of  heating by  means 

of  furnace  gases.  C.  Loeser.  G.P.  355,845, 
8.12.16. 
Hot  furnace  gases  are  delivered  to  a  tube,  disposed 
within  the  drying  chamber  and  surrounded  by  a 
jacket  through  which  a  regulated  supply  of  air  flows, 
the  hot  gases  imparting  heat  to  the  air,  which  then 
passes  through  orifices  in  the  furnace  gas  tube  into 
a  mixing  header.  The  mixture  is  then  immediately 
used  for  drying  purposes.  The  plant  can  be 
operated  with  just  the  amount  of  air  required  for 
the  combustion  of  the  combustible  constituents  of 
the  furnace  gases,  and  the  material  to  be  dried 
treated  at  the  highest  permissible  temperature. 

—J.  S.  G.  T. 

Condensation  of  steam  or  other  vapours.  [Evapo- 
rative condenser.]  D.  McN.  Ramsey.  E.P. 
185,462,  3.5.21. 
The  evaporating  surface  of  an  evaporative  con- 
denser with  a  rotating  cage  of  tubes  is  smooth  and 
clean  and  is  dipped  periodically  into  a  liquid  of 
which  the  surface  tension  is  less  than  that  of  water 
(e.g.,  dilute  caustic  soda  solution).  The  liquid 
is  also  maintained  cooler  at  the  steam  outlet  end 
than  at  the  inlet,  for  example,  by  hindering  circu- 
lation in  the  dipping  trough  by  one  or  more  inter- 
mediate baffles  and  by  sloping  the  tube  towards  the 
outlet,  so  that  drops  of  liquid  cooled  by  evaporation 
fall  back  into  the  cold  end.     Steam  may  be  cut  off 


846  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[Xov.  15,  1922. 


from  the  tubes  that  are  actually  being  dipped  in  the 
cooling  liquid. — B.  M.  V. 

Refrigeration;  Process  and  machine  for  .     W. 

Stewart.     E.P.  185,607,  11.8.21. 

A  liquid  (e.g.,  water)  to  be  solidified  by  refrigera- 
tion is  sprayed  upwards  into  a  container  (or  set  of 
containers)  the  walls  of  which  are  cooled  and  in 
which  a  vacuum  may  be  maintained,  ice  being 
built  up  on  the  walls  until  a  sufficiently  thick  block 
is  formed;  any  uncongealed  liquid  falls  into  the 
source  of  supply  and  the  vapour  is  removed  by 
an  exhauster  and  condensed  and  the  condensed  pro- 
duct used  for  cooling  the  external  refrigerant.  The 
rate  of  refrigeration  is  adjusted  so  that  solid  ice  and 
not  snow  is  formed,  and  when  the  blocks  are  thick 
enough  heat  instead  of  cold  may  be  applied  to  the 
outside  of  the  container  and  the  blocks  allowed  to 
drop  upon  a  rising  and  falling  platform.  The  latter 
may  be  constituted  by  the  supply  tank  or  tanks,  and 
air-tight  joints  are  formed  by  means  of  inflatable 
tubular  rubber  rings  between  it  and  the  bottoms  of 
the  ice  containers.  The  apparatus  is  suitable  also 
for  the  recovery  of  paraffin  wax  from  oils. — B.  M.  V. 

Emulsions;  Method  and  apparatus  for  making . 

G.  B.  Hutchings.     E.P.  185,618,  22.8.21. 

The  apparatus  consists  of  a  hollow  truncated  cone 
with  ducts  in  the  walls.  The  ducte  extend  from  the 
base  to  the  top  and  are  also  connected  with  the 
interior  of  the  cone.  When  the  cone  is  rotated  at 
high  speed  in  the  material  to  be  emulsified,  liquid 
is  drawn  up  into  the  interior  of  the  cone  and  passes 
out  by  the  ducte,  an  emulsion  being  formed.  The 
vortex  formed  in  the  liquid  causes  the  top  of  the 
cone  to  be  always  uncovered  and  by  this  means  a 
certain  amount  of  air  is  drawn  in.  If  this  is  un- 
desirable, the  operation  is  carried  out  in  a  vacuum. 

— T.  A.  S. 

Filters  or  strainers  and  sifting  surfaces.  G.  C. 
Hurrell.  E.P.  185,638,  13.9.21.  Addn.  to 
174,116  (c/.  U.S.P.  1,414,132;  J.,  1922,  449  a). 
The  wire  for  the  filtering  or  straining  surface  de- 
scribed in  the  earlier  patent  (convolutions  of  wire 
wound  on  a  squirrel  cage)  is  of  cruciform,  oblong, 
oval,  or  other  non-circular  cross-section,  and  is 
twisted.  A  similar  effect  may  be  produced  by 
cutting  a  spiral  on  the  wire  or  by  winding  a  finer 
wire  in  an  open  spiral  on  the  main  wire.  Either 
form  of  the  special  wire  may  be  used  alone  or  alter- 
nating with  plain  wire. — B.  M.  V. 

Filter-presses;  Process  for  removing  solid  residues 

fTOn  .       H.    Jung.       G.P.    355,483,    2.4.19. 

Addn.  to  339,005  (J.,  1921,  800  a). 
Solid   press-cake   contained   in   the    apparatus   de- 
scribed in  the  chief  patent  is  loosened  by  contact 
with  a  stationary  bar,  and  blown  by  air  out  of  the 
chambers. — L.  A.  C. 

Vacuum  [evaporating]  apparatus.       T.  and  J.  R. 

Ray,  Assrs.  to  Rav  Bros.  Corp.    U.S.P.  1,428,557, 

12.9.22.  Appl.,  3.12.17. 
The  heating  drum  of  a  vacuum  evaporator  is  pro- 
vided with  end  plates  each  formed  with  a  series  of 
openings.  The  peripheral  outer  edge  of  each  open- 
ing is  inclined,  and  tubes  connecting  the  plates 
terminate  within  the  openings  below  the  inclined 
portions.  The  outer  ends  of  the  tubes  are  bevelled 
to  fit  these  inclined  portions. — H.  H. 

Liquids;    Process    for    evaporating    .       A.-G. 

Kummler    und    Matter.      G.P.    355,602,    14.4.20. 

Addn.    to    347,070    (c/.    E.P.    123,716;    J.,    1920, 

287  a). 
In  the  process  described  in  the  chief  patent,   the 
vapour   introduced  directly   into  the   apparatus   is 


only  compressed  to  such  a  degree  that  it  is  able  to 
overcome  the  pressure  prevailing  at  the  exit. 

— L.  A.  C. 

Cleaning  air  and  other  gases;  Apparatus  for . 

H.  N.  Edens.     U.S.P.  1,428,950,  12.9.22.     Appl., 
20.10.19. 

A  closed  casing  contains  a  liquid  reservoir,  and  the 
space  above  the  liquid  is  connected  with  a  device 
for  creating  a  vacuum.  The  gas  is  drawn  through 
a  passageway  provided  with  a  return  bend  below  the 
liquid  level,  and  a  liquid  inlet  port  is  disposed  in 
the  outer  wall  of  the  bend.  The  discharge  end  of 
the  passagewav  is  disposed  above  the  liquid  level. 

— H.  H. 

Lye  solution;  Means  for  regulating  and  controlling 

the  strength  of  .       S.  J.  Dunkley,  Assr.  to 

Dunkley  Co.     U.S.P.  1,429,129,   12.9.22.     Appl., 
8.8.21. 

The  apparatus  consists  of  a  main  tank  connected 
by  delivery  and  return  pipes  with  a  mixing  tank. 
The  delivery  pipe  is  provided  with  a  regulating 
valve,  controlled  electrically  by  a  hydrometer  which 
responds  to  changes  in  density  of  the  liquid  in  the 
main  tank. — D.  J.  N. 

Contact  material;  Process  for  cleaning .     T.  L. 

Briggs,   Assr.  to  General  Chemical  Co.     U.S.P. 
1,429,222,  19.9.22.     Appl.,  15.9.20. 

A  catalyst  mounted  on  fibrous  material  is  washed 
with  water  without  disarranging  it. — B.  M.  V. 

Gaseous  mixtures;  Separation  of [by  liquefac- 
tion']. P.  E.  Haynes,  Assr.  to  The  Linde  Air 
Products  Co.  U.S.P.  1,429,242,  19.9.22.  Appl., 
12.4.19. 

In  a  process  in  which  a  compressed  gas  mixture  is 
expanded  with  partial  liquefaction,  the  mixture, 
before  expansion,  is  cooled  by  heat  interchange  with 
the  liquefied  portion  and  with  gases  which  have 
passed  through  the  expansion  stage. — B.  M.  V. 

Adsorption  apparatus  for  solvent  recovery  etc. 
R.  R.  Etter,  Assr.  to  General  Electric  Co. 
U.S.P.  1,429,856,  19.9.22.     Appl.,  7.1.21. 

An  annular  chamber  with  both  concentric  walls 
perforated  is  filled  with  solid  adsorbent  material, 
and  the  vapour-laden  gases  together  with  a  heating 
medium  are  passed  through  radially  in  either 
direction. — B.  M.  V. 

Washing  salts;  Apparatus  for  .     F.  Hornung. 

G.P.  357,594,  22.8.20. 

An  inciined  drum  is  divided  by  partitions  into  com- 
partments to  which  salt  and  washing  fluid  are 
delivered,  and  in  which  an  agitator,  comprising 
mixing  and  conveying  vanes,  is  arranged.  The 
latter  are  so  shaped  that  the  whole  of  the  salt  is  not 
withdrawn  from  the  first  compartment,  a  little  re- 
maining behind  and  serving  as  a  filter  for  the  finer 
particles  of  salt.  Washed  salt  is  delivered  to  a 
bucket  conveyor,  provided  with  a  partition,  so  that 
the  washing  fluid  can  be  supplied  to  the  washing 
plant  in  counter  current  to  the  solution  of  salt 
delivered  from  the  apparatus.  A  heating  device 
arranged  below  the  drum  enables  the  apparatus  to 
be  employed  also  for  dissolving  the  crude  salt. 

-J.  S.  G.  T. 

Filter.      A.  M.  Capro.      U.S.P.  1,429,488,  19.9.22. 

Appl.,  19.6.20. 
See  E.P.  172,491  of  1920;  J.,  1922,  116  a. 

Filtering    apparatus.     E.    W.    W.   Keene.     U.S.P. 

1,429,913,  19.9.22.     Appl.,  20.4.22. 
See  E.P.  179,494  of  1921 ;  J.,  1922,  490  a. 


Vol.  XLI.,  No.  21.]  Cl.    IIa.— FUEL  i    GAS  ;    MINERAL   OILS   AND   WAXES. 


S47a 


Fluids;  Apparatus  for  measuring,  mixing  or  sepa- 
rating    .      H.  Lie.se.      E.P.   163,015,   6.5.21. 

Conv.,  6.5.20. 

Separating    or   sorting   fragmentary   materials    by 

electric      conductivity;      Apparatus     for     

H.    L.    A.    Schweitzer.      E.P.    165.09S,    20.6.21 
Conv.,  18.6.20. 

Furnaces;  Sealimi  device  for  travelling  grate 

Zellstoff-fabrik  Waldhof,  and  A.  Schneider.    E.P 
185,974,  8.10.21. 

Ore  crusher.    B.  A.  Mitchell.    E.p.  186,162,  22.6.21 

Separating  constituents  of  gaseous  E.P 

1-4,104.     See  VII. 

Separating  mixed  gases.    G.P.  347,601  and  354,630 
See  VII. 


IIA.-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

Coals;  Origin  of  .     E.  Donath  and  A.  Lissner. 

Brennstoff-Chem.,  1922,  3,  231—237. 

The  current  chemical  and  geological  theories  of  coal 
formation  are  critically  reviewed.  The  theory  of 
the  transformation  of  wood  and  peat  through 
lignites  to  coal  and  anthracite  is  being  modified. 
Coal  is  not  to  he  regarded  as  necessarily  derived 
from  peat  as  found  in  recent  deposits  and  from 
brown  coals  such  as  exist  now.  That  the  brown 
coals  and  coal  result  from  different  kinds  of 
vegetable  matter  is  a  view  supported  by  the  authors. 
They  accept  the  Fischer-Schrader  theory  of  the 
formation  of  coal  from  lignin  (J.,  1921,  172  a;  1922, 
207a,  317  a),  the  cellulose  being  destroyed  by  bac- 
terial action,  but  the  theory  is  regarded  as  incom- 
plete in  ignoring  the  vegetable  and  animal  proteins. 
The  proportion  of  nitrogen  in  coal  is  such  as  to 
imply  the  existence  of  considerable  quantities  of 
these.  There  is  some  evidence  of  the  possibility  of 
union  of  protein  with  cellulcsic  matter,  which  would 
then  be  preserved.  The  true  coals  and  harder 
lignites  have  probably  passed  through  a  pressure 
distillation  process  as  imitated  bv  Bergius  {cf.  J., 
1913,  462).— H.  J.  H. 

Peat;    Artificial    drying    of   .       G.    Keppeler. 

Brennstoff-Chem.,    1922,    3,    237—239,    249—254, 
262—269. 

Evaporation  of  the  water  from  peat  by  artificial 
heat  is  impracticable,  because  the  fuel  requirement 
exceeds  the  calorific  value  of  the  product.  It  is 
conceivable  that  the  evaporation  might  be  effected 
in  closed  vessels  with  the  production  of  steam  from 
which  an  equivalent  of  power  might  be  obtained, 
but  this  has  not  proved  feasible  in  practice.  The 
expression  of  the  water  is  extremely  difficult  owing 
to  the  colloidal  character  of  the  peat,  and  the  diffi- 
culty seems  to  increase  as  the  peat  ages  owing  to_  the 
breaking  down  of  the  cell  structure  which  provided 
channels  of  egress  for  the  water.  The  author  and 
Raapke  have  shown  that,  given  time,  which  is  the 
dominating  factor,  most  of  the  water  can  be  removed 
from  the  newer  raw  peat  by  pressure,  but  with  an 
older  specimen  not  even  by  prolonged  application 
of  the  highest  pressure  could  the  water  content 
be  reduced  below  75%.  It  is  improbable  that 
mechanical  expression  or  centrifuging  of  raw  peat 
will  prove  effective.  The  removal  of  water  is 
facilitated  by  admixture  of  dry,  powdery  materials. 
The  further  dewatering  is  rendered  much  easier  by 
admixture  of  peat  dried  to  10—20%  of  water.  By 
this  means  the  bulk  of  the  water  can  be  removed 
from  the  peat  by  machines  described  in  the  paper. 
This  "  wet  pressing  "  is  regarded  as  the  most  promis- 


ing process.  Unsuccessful  attempts  have  been  made 
to  facilitate  the  removal  of  water  by  addition  of 
electrolytes  or  liquids  which  have  a  greater  wetting 
power  than  water.  Freezing  is  effective  if  moss 
litter  is  required  but  the  product  is  insufficiently 
coherent  for  fuel  purposes.  Similarly  the  prelimin- 
ary application  of  heat  facilitates  subsequent 
removal  of  water  as  in  the  "  wet  carbonising"  pro- 
cess, though  this  has  not  established  itself  in  prac- 
tice. Electro-osmose  is  effective,  but  owing  to  the 
small  output  per  unit,  has  not  proved  commercially 
feasible.  After  surveying  the  whole  field  of  artificial 
methods  the  author  concludes  that  there  is  no 
immediate  prospect  that  any  will  be  successful  and 
he  concludes  that  the  most  promising  field  is  the 
development  of  mechanical  appliances  to  facilitate 
the  winning  of  peat  to  be  dried  in  the  normal  Way. 

— H.  J.  H. 

Distillation  gases  of  solid  fuels;  Composition  of 
■ .  M.  Dolch  and  G.  Gerstendorfer.  Brenn- 
stoff-Chem., 1922,  3,  225—231. 

An  attempt  is  made  to  correlate  the  composition 
of  the  gas  obtained  in  carbonisation  with  the 
geological  character  and  age  of  the  coal  taken.  The 
authors  have  made  a  large  number  of  carbonisation 
tests  on  coals  from  Ostrau  (German  Austria).  The 
results  are  shown  graphically.  The  oxides  of 
carbon,  hydrogen,  heavy  hydrocarbons  and  tar 
yields  fall  off  as  the  geological  age  increases,  whilst 
the  methane  yield  increases.  The  hydrogen  contenu 
of  the  gas  varies  inversely  with  methane  content, 
the  sum  of  the  two  being  practically  constant.  It 
is  inferred  that  the  former  is  a  secondarv  product. 

— H.  J.  H. 

Carbon  monoxide;  Catalytic  reduction  of .    G. 

Fester.     Brennstoff-Chem.,  1922,  3,  244—245 

An  observation  by  Orlow  has  been  confirmed  (cf.  o., 
1909,  301),  viz.,  that  carbon  monoxide  when  reduced 
at  100°  C.  by  hydrogen  in  presence  of  a  catalyst  of 
nickel  and  palladium  asbestos  yields  unsaturated 
hydrocarbons  and  not  methane.  The-  catalyst 
rapidly  loses  its  activity. — H.  J.  H. 

Petrols  for  road,  vehicles  and  aircraft.  Effect,  of 
fuel  composition  upon  engine  performance.  O. 
Thornvcroft.      J.    Inst     Petrol.    Tech.,    1922,    8, 

376—396. 

In  internal  combustion  engines  operating  on  the 
constant-volume  cycle,  when  the  air :  fuel  ratio  is 
that  giving  complete  combustion,  with  a  5:1  com- 
pression, the  maximum  temperature  is  about 
2600°  C,  instead  of  3000°  C.  as  calculated,  on 
account  of  dissociation  and  the  increase  in  the 
specific  heat  of  the  gases  at  high  temperatures. 
This  loss  may  be  reduced  by  working  with  a  weaker 
mixture  of  fuel  to  air.  An  infinitely  weak  mixture 
would  give  theoretical  efficiency.  The  mixture 
strength  cannot  be  reduced  below  80%  of  normal 
because  of  difficulties  in  attaining  combustion. 
Maximum  efficiency  is  attained  with  85%  of  normal, 
with  benzene  vapour  as  fuel.  The  ratio  between 
experimental  efficiency  and  the  air  cycle  efficiency 
is  increased  with  increased  compression  ratio, 
because  the  extent  of  dissociation  is  lessened.  The 
efficiency  of  the  cycle  is  practically  independent  of 
the  variation  in  carbon  and  hydrogen  contents  of 
hydrocarbons,  for  while  for  carbon  dioxide  the  dis- 
sociation is  great  at  high  temperatures,  the  in- 
crease in  specific  heat  is  small,  and  for  water  the 
dissociation  is  small  but  the  increase  in  specific 
heat  great.  These  effects  balance  each  other. 
There  is  steady  increase  in  efficiency  witli  increased 
compression.  The  rate  of  increase  of  efficiency  witli 
increased  compression  is  actually  greater  than  that 
of  the  air  cycle  efficiency.  All  hydrocarbon  fuels 
give  the  same  efficiency  at  the  same  compression. 
Power  output  increases  with  compression  ratio,  but 

a  2 


848  a 


Cl.   IIa  —  FUEL  i    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Nov.  15,   1922. 


less  rapidly  than  fuel  efficiency  and  slightly  less 
rapidly  than  the  air  cycle  efficiency.  All  hydro- 
carbons give  practically  the  same  mean  effective 
pressure  or  maximum  power  at  the  same  compres- 
sion. Detonation  and  pre-ignition,  however, 
prevent  the  increase  of  the  compression  ratio.  The 
detonation  point  of  heptane  corresponds  to  a  com- 
pression of  3'75:1,  and  that  of  benzol  to  a  compres- 
sion of  7'1:1.  The  facility  of  starting  with  a 
given  petrol  is  a  function  of  the  volatility  of  the 
first  10  to  20%  of  distillate.  To  avoid  troubles  in 
lubrication  the  final  boiling  point  of  the  petrol 
should  not  be  above  220°  C— H.  M. 

Ozonides  from  petroleum.  R.  Koetschau.  Z. 
angew.  Chem.,  1922,  35,  509—513. 

Experiments  were  made  on  the  action  of  ozone  on 
American  petroleum  oils.  A  transformer  oil  of  sp. 
gr.  0'915  and  molecular  weight  (by  the  freezing 
point  method  in  benzene)  293,  yielded  25%  of  an 
ozonide  having  a  molecular  weight  of  663.  When 
a  solution  of  the  ozonide  in  benzene  was  left  for  a 
few  hours  the  molecular  weight  fell  to  606,  and 
after  two  days,  to  479.  The  value  663  corresponds 
closely  to  the  calculated  molecular  weight  of  a 
dimeric  diozonide,  (O^HjoOJj,  viz.,  688.  Many 
American  crude  oils  and  lubricating  oils  contain 
hydrocarbons  very  rich  in  carbon,  possessing  high 
sp.  gr.  and  high  refractive  indices,  probably 
saturated  polycyclic  paraffins.  The  molecular 
weights  of  mineral  oils  determined  by  the  freezing 
point  method  in  camphor  are  generally  lower  than 
those  determined  in  benzene.  The  ozonides  from 
Texas  and  Pennsylvanian  spindle  oils  have  a 
characteristic  pungent  odour.  When  these  oils  are 
ozonised  the  ozonides  separate  as  a  flocculent 
whitish  precipitate,  which  gradually  changes  to  a 
red  resin  at  a  temperature  of  20°  C.  or  over.  Oils 
poor  in  sulphur  give  more  stable  ozonides  of  a 
lighter  colour.  The  curves  of  ozone  absorption  are 
very  steep  at  their  commencement.  The  maximum 
increase  in  weight  by  absorption  of  ozone  is 
16 — 17%.  The  "  white  oils  "  show  no  separation  of 
ozonides,  but  a  considerable  increase  in  viscosity 
when  ozonised.  On  ozonising  a  Russian  petroleum 
jelly  a  strong  odour  of  vanilla  was  developed. 
Tables  are  given  showing  the  properties  of  several 
ozonised  oils  and  the  distillation  tests  in  vacuo,  and 
graphs  show  the  relation  of  quantity  of  ozone 
absorbed  to  time  of  reaction.  A  "  splitting 
number  "  determined  by  measuring  the  acidity  of 
an  ozonised  oil  after  boiling  for  half-an-hour  with 
water,  has  been  found  of  utility  for  the  examination 
of  transformer  oils.  Sludge  values  may  be  deter- 
mined more  rapidly  and  conveniently  with  ozone 
than  with  oxygen.  The  value  is  four  to  five  times 
greater  than  with  the  old  method.  A  table  is  given 
showing  the  amount  of  ozone  absorbed,  the  sludge 
value,  and  the  "  splitting  number  "  for  a  trans- 
former oil  for  periods  of  reaction  from  40  mins.  to 
5  hrs.  A  standard  method  of  determination  of 
sludge  value  is  proposed,  and  details  of  the  cost  of 
ozone  production  are  given. — H.  M. 

Acetylene  and  nitrogen.  Garner  and  Matsuno. 
See  Vll. 

Ichthyol.     Pepin  and  Reaubourg.     See  XX. 

Patents. 

Fuel  for  briquetting  purposes;  Method  of  treating 
.  G.  Komarek,  Assr.  to  Malcdlmson  Engineer- 
ing and  Machine  Corp.  U.S.P.  1,430,386,  26.9.22. 
Appl.,  31.12.20. 

Coal  dust  is  mixed  with  a  binder,  heated  in  a 
vertical  column,  and  kneaded  in  the  lower  part  of 
the  column. — H.  Hg. 


Peat;  Process  and  apparatus  for  dewatering . 

Nederlandsche     Veenverwerking     Maatschappij 
G.P.  356,823,  20.1.21.    Conv.,  10.1.21. 

Peat  is  passed  continually  downwards  through  a 
vertical  shaft  furnace  so  that  the  hot  gases  and 
vapours  evolved  in  the  lower  zone,  where  the  com- 
bined water  is  liberated,  pass  upwards  through  the 
still  wet  peat  and  assist  in  drying  it  in  the  upper 
zone  of  the  furnace,  thus  economising  fuel. 

—A.  R.  P. 

Pulverulent  fuels;  Method  of  and  means  for  burning 

.     R.  S.  Walker,  Assee.  of  E.  B.  Worthing- 

ton.     E.P.  166,124,  24.6.21.     Conv.,  9.7.20. 

A  stream  of  pulverised  fuel  with  a  partial  6upply  of 
air  is  directed  downwards  at  a  low  velocity  into  a 
combustion  chamber.  Additional  air  is  admitted  to 
the  lower  part  of  the  chamber,  and  the  flame  reverts 
in  an  upward  direction  over  an  inclined  surface  on 
which  fused  ash  is  deposited.  If  slag  accumulates 
on  tho  lower  part  of  the  surface,  the  flame  is  tempo- 
rarily deflected  in  a  downward  direction  by  a  jet  of 
steam  or  air,  so  that  the  slag  flows  off  the  surface. 
The  slag  is  then  washed  away  by  a  stream  of  water 
and  escapes  from  the  bottom  of  the  furnace  under 
a  pivoted  door  provided  with  fixed  side  wings  for 
the  exclusion  of  air  and  sealed  with  water  along  its 
bottom  edge. — H.  Hg. 

Furnaces  for  fuel  in  dust  or  powdered  form. 
F.  Oertel.    E.P.  171,118,  7.11.21.    Conv.,  6.11.20. 

A  jet  of  pulverised  fuel  and  air  enters  a  combus- 
tion chamber  in  a  vertical  direction  and  tangen- 
tially  to  the  curved  roof  of  the  chamber.  Due  to 
the  curvature  of  the  roof  and  wall  of  the  chamber 
the  flame  is  reverted  in  a  backward  direction,  and 
ash  is  separated  by  centrifugal  force.  There  is  an 
opening  for  the  reception  of  ash  at  the  base  of  the 
chamber,  and  the  burning  gases  are  directed  over 
this  opening  and  then  across  the  stream  of  fuel  and 
air  issuing  from  the  jet. — H.  Hg. 

Coke  ovens;  Recuperative .      E.  Piron.      E.P. 

185,811,  2.6.21. 
Gas  is  admitted  in  a  downward  direction  to  each 
vertical  heating  flue  of  a  coke  oven  through  a 
carborundum  nozzle  at  a  point  below  the  air  inlet. 
Alternating  with  the  heating  flues  are  vertical  flues 
up  which  air  passes  from  the  recuperators.  The 
tops  of  all  the  adjacent  heating  and  air  flues  are 
interconnected  by  a  horizontal  passage.  The  gas 
nozzles  and  all  the  passages  for  air  and  products  of 
combustion  are  of  large  cross-sectional  area  so  that 
increased  supplies  of  gas  and  air  may  be  drawn 
automatically  into  any  relatively  cold  flue.  The 
recuperator  is  composed  of  vertical  flues  arranged 
in  blocks  separated  by  continuous  vertical  joints 
Each  block  is  constructed  of  L-shaped  bricks  laid  in 
opposite  directions  in  alternate  courses. — H.  Hg. 

Carbonising  fuel  in  vertical  retorts.  Woodall, 
Duckham  and  Jones  (1920),  Ltd.,  and  A.  McD. 
Duckham.     E.P.  185,461,  3.5.21. 

The  temperature  of  the  coke  in  the  lower  part  of  a 
vertical  retort  to  which  steam  is  admitted  is  main- 
tained by  the  admission  of  oxygen  together  or 
alternately  with  the  steam.  The  oxygen  may  be 
diluted  with  a  proportion  of  nitrogen  determined 
by  the  quality  of  the  gas  required. — H.  Hg. 

Retort  for  gas  furnaces.   G.Horn.    U.S.P.  1,429,346, 

19.9.22.  Appl.,  1.9.21. 
A  retort  for  manufacturing  gas  comprises  stepped 
overlapping  trough-shaped  floor  pieces  of  the 
breadth  of  the  whole  retort  in  combination  with 
narrow  ceiling  pieces,  each  provided  at  each  lateral 
surface  with  a  groove  and  placed  side  by  side,  abw  ■ 
tho  floor,  60  as  to  form  an  arched  ceiling.  The 
groups  of  the  ceiling  pieces  are  placed  end  to  end, 


Vol.  XLI.,  No.  21.] 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


849  a 


the  ends  of  the  individual  pieces  being  displaced  to 
the  extent  to  which  the  floor  pieces  overlap.  The 
grooves  in  the  lateral  surfaces  register  with  each 
other,  and  the  channel  so  formed  is  filled  with 
refractory  mortar. — A.  R.  M. 

Gas  producers  {and  retorts!.       J.   Healy.       E.P. 
185,685,  8.12.21. 

Tab    is    eliminated    from    the    gas    produced     in 
generators    or    retorts    by    withdrawing    the    gas 
through  conduits  which  are  subjected  to  the  highest 
temperature     of    the    fuel.     Gas    produced     in     a 
generator  enters  the  open  end  of  a  vertical  conduit 
just  above  the  fuel  level,  passes  into  a  horizontal 
conduit  which  encircles  the  hot  zone  of  the  fuel  bed, 
and  then  into  an  off-take.     TI19  conduits  are  con- 
structed   of    refractory    material,     provided    with 
I    cleaning  doors  and  sealed  pipes  for  the  removal  of 
'.    carbon,  and  so  arranged  as  not  to  interfere  with  the 
■    passage  of  the  fuel. — H.  Hg. 

I   Water  gas;  Apparatus  and   process   primarily   in- 
tended for  manufacture  of  carburetted  but 

which  may  be  used  for  manufacture  of  other  gases 
such  as  "  blue  "  water  gas,  methane-hydrogen, 
and  producer-gas.  E.  F.  Murray.  E.P.  185,887, 
1.7.21. 

|j  In  a  gas  producer  of  the  type  in  which  a  retort  is 
|i  mounted  above  a  water-gas  generator,  operated  on 

il  the  usual  "  blow  "  and  "  run  "  system,  the  gases 
'  produced  during  the  blow  are  burnt  in  flues  around 
the  retort,  and  those  produced  during  the  run  are 
I  passed  through  the  fuel  contained  in  the  retort. 
A  space  is  formed  at  the  top  of  the  retort  for  the 
purpose  of  drying  the  fuel  and  distilling  off  the 
lighter  volatile  constituents  by  means  of  the  sensible 
heat  of  the  "  run  "  gas.  Such  volatile  portions  are 
passed  into  carburetting  chambers  situated  so  as  to 
receive  heat  from  the  generator,  which  serves  to 
crack  them  into  permanent  gases.  If  desired, 
additional  carburetting  material  may  be  introduced 
into  the  vaporising  space  at  the  top  of  the  retort. 
The  gases  thus  fixed  pass  up  through  the  retort 
together  with  the  "  run  "  gases  and  thence  into  an 
annular  space  around  the  retort,  which  is  exposed 
to  the  heat  of  combustion  of  the  "  blow  "  gas.  In 
this  manner  all  the  hydrocarbon  vapours  of  the 
run  "  gas  are  converted  into  permanent  gases. 
Provision  is  made  for  alternate  up-runs  and  down- 
runs. — A.  R.  M. 


Gas  producer.     A.  L.  Galusha.     U.S. P.  1,429,578, 

19.9.22.  Appl.,  28.5.20. 
The  fuel  is  deposited  on  the  end  of  a  travelling  con- 
veyor which  traverses  an  elongated  combustion 
'chamber  from  end  to  end.  The  gases  which  are 
driven  off  by  the  heat  of  combustion  of  a  portion  of 
,the  fuel  at  the  delivery  end  are  led  off  through  an 
.Mitlet— A.  R.  M. 

|3as  purification ;  Process  and  apparatus  for  . 

K.   Cox,   R.   P.    Kerr,   and  E.    J.    Baty.      E.P. 

185,780,  7.4.21. 
|Iln  a  modification  of  the  Klaus  process  for  removing 

SUydrogen    sulphide    from    gases    with    recovery    of 
ulphur,   the    temperature   of   the    reaction  in   the 
rontact    material    is   controlled    by    suitable    heat- 
l|.xchanging  devices,  e.g.,  zigzag  pipes  or  members 
,'f  cellular  or  honeycomb  form  through  which  steam 
|r  other  fluid  at   suitable   temperature   is   passed. 
?he  mass  of  contact  material  is  divided  by  the  heat- 
xchanging  devices   into  comparatively   small   sec- 
ions,     but     the     aggregate     cross-sectional     area 
f  the  material  normal  to  the  direction  of  the  flow 
;f  the  gas  is  considerable.       Thus,  the  transfer  of 
|eat,  in  conjunction  with  the  heat  of  reaction,  niain- 
lins  a  uniform  temperature  throughout,  sufficiently 
igh  to   ensure   that   the   free   sulphur    is  carried 


forward  to  condensers  or  receptacles.  The  gas 
outlet  passage  may  be  kept  at  such  a  temperature 
as  to  prevent  the  deposition  of  sulphur  therein  by 
jacketing  it  with  the  fluid  used  to  maintain  the 
temperature  of  the  reaction.  A  great  reduction  in 
the  size  of  plant  required  for  purification  of  a  given 
volume  of  gas  as  compared  with  the  usual  method 
is  claimed. — A.  R.  JI . 

Natural  gas;  Process  of  treating  and  product 

thereof.     H.  E.  Thompson,  Assr.  to  Carbide  and 
Carbon     Chemicals     Corp.       U.S. P.     1,429,175, 

100  00         A  ~~l       on  Q  Ol 


12.9.22.     Appl.,  29.8.21. 


A  liquid  of  predetermined  vapour  pressure  is 
obtained  from  a  mixture  of  natural  gas  hydro- 
carbons by  first  separating  from  the  mixture  a  frac- 
tion having  a  higher  vapour  pressure  than  that 
desired  and  then  rectifying  this  fraction  to  produce 
vaporous  and  liquid  portions,  the  rectification  being 
so  conducted  that  not  more  than  one  hydrocarbon 
of  the  fraction  will  occur  in  substantial  quantity 
in  both  the  liquid  and  the  vaporous  portions. 
Gasoline  having  a  density  not  less  than  87°  B.  (sp. 
gr.  0'645)  and  a  vapour  tension  not  substantially 
greater  than  12  lb.  at  100°  F.  (38°  C.)  can  thus  be 
recovered. — T.  A.  S. 

Hydrocarbons  or  other  oils;  Apparatus  for  cracking 
' .     A.  A.  F.  M.  Seigle.     E.P.  185,140,  24.2.21. 

Hydrocarbon  oil  is  vaporised  at  650°  C.  and  a 
pressure  of  12  hectogrammes  per  sq.  cm.  (about 
17  lb.  per  sq.  in.)  in  a  tube.  This  tube  is  packed 
with  aluminium  and  iron  turnings,  the  portions 
packed  with  aluminium  being  heated  only  to  450°  C. 
The  vapours  are  then  expanded  and  cooled  in 
chambers  packed  with  metal  turnings.  Iron  turn- 
ings are  active  at  650°  C,  aluminium  at  450°  C, 
copper  at  300°— 500°  C,  and  ferronackel  at  200°— 
350°  C.  The  expansion  chambers  are  maintained 
at  the  desired  temperatures  by  jacketing  with  water 
boiling  under  the  necessary  pressure.  Two  expan- 
sion chambers  are  used,  one  working  at  260°  C.  and 
the  other  at  160°  C.  Some  heavy  oil  condenses  in 
the  expansion  vessels  and  is  withdrawn  from  the 
bottom.  The  vapours  enter  the  first  expansion 
chamber  at  the  temperature  and  pressure  at  which 
they  leave  the  vaporising  tube  and  leave  the 
chamber  at  about  260°  C.  and  4  hg.  per  sq.  cm. 
(about  57  lb.  per  sq.  in.).  They  are  then  again  com- 
pressed and  enter  the  second  chamber  at  300°  C.  and 
9  hg.  per  sq.  cm.  (about  12'7  lb.  per  sq.  in.),  leaving 
at  160°  C.  and  2  or  3  hg.  per  sq.  cm.  (2"8— 4'3  lb. 
per  sq.  in.).  The  products  of  the  apparatus  are  rich 
gas,  light  hydrocarbons,  and  heavy  oils  suitable  for 
use  as  lubricants.  The  quantity  of  light  hydro- 
carbon can  be  increased  by  using  suitable  catalysts 
in  the  second  expansion  chamber  and  re-passing 
through  it  some  of  the  rich  gas  along  with  hydro- 
gen. The  apparatus  is  designed  to  work  on  oil 
Sot  boiling  below  200°— 250°  C— T.  A.  ' 


S. 


Cracked  petroleum,  oils  and  process  and  apparatus 
for  producing  same.  L.  W.  Goold.  From  Uni- 
versal Oil  Products  Co.  E.P.  185,439,  11.3.21. 
Oil  is  cracked  at  a  temperature  lower  than  875°  F. 
(470°  C.)  and  a  pressure  of  135  lb.  per  sq.  in.  by 
being  circulated  in  a  system  consisting  of  a  heating 
coil  about  400  ft.  long,  built  up  from  20-ft.  sections 
of  4-in.  pipe,  and  an  expansion  chamber  made  up  of 
four  20-ft.  sections  of  10-in.  pipe.  Any  deposition  of 
carbon  takes  place  in  the  expansion  chamber,  which 
is  readily  accessible  for  cleaning.  The  vapours 
from  the  expansion  chamber  are  led  off  to  a  de- 
phlegmator  and  any  reflux  condensate  is  taken 
back  to  the  heating  coil.  Working  on  crude  oil 
residues,  a  pressure  distillate  is  obtained  having  a 
lower  percentage  of  unsaturated  hydrocarbons  than 
the  charging  stock  and  containing  not  less  than  15% 
each  of  gasoline  and  kerosene. — T.  A.  S. 


i 


830  A 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


[Nov.  15,  1922 


Oil-cracking  process  and  apparatus  therefor.  C.  A. 
Jensen.  From  J.  A.  Stone.  E.P.  185,624,  27.8.21. 
The  apparatus  consists  of  two  concentric  cylinders 
packed  witli  catalytic  absorbent  or  spreading 
material.  Oil  is  cracked  in  the  inner  cylinder,  the 
outer  cylinder  being  gas-fired  for  heating  purposes. 
When  the  inner  cylinder  ceases  to  operate  owing  to 
deposition  of  carbon  etc.,  the  oil  to  be  cracked  is 
introduced  into  the  outer  cylinder  and  the  inner 
cylinder  is  fired  for  heating  purposes.  The  appa- 
ratus can  be  made  to  work  with  or  without  pressure. 
Suitable  catalytic  materials  are  cast-iron  or  nickel 
or  porous  fireclay  or  fuller's  earth.  Efficient  double- 
phase  cracking  is  claimed. — T.  A.  S. 

Cracking  hydrocarbons ;  Process  of  and  apparatus 

for .     F.  O.  Niece.     E.P.  185,632,  7.9.21. 

Heavy  oil  is  cracked  by  passing  it  through  molten 
metal  under  pressure.  The  metal,  e.g.,  lead,  is 
contained  in  a  long  vertical  tube,  and  preheated  oil 
is  introduced  at  the  bottom.  The  vapours  from  the 
apparatus  are  condensed  under  pressure  and  any 
uncondensable  gases  are  returned  to  the  lower  por- 
tion of  the  cracking  apparatus  and  passed  through 
the  molten  metal  along  with  the  oil  under  treat- 
ment. Distribution  of  the  oil  and  vapours  in  the 
molten  metal  is  brought  about  by  means  of  baffles. 

— T.  A.  S. 

Oil-topiring      plant.        B.      Gallsworthy.        U.S. P. 
1,428,159,  5.9.22.     Appl.,  14.7.19. 

Hot  flue  gases  are  passed  through  coils  arranged  in 
a  still.  Oil  is  sprayed  on  to  the  upper  ooils  and 
caused  to  drip  on  to  the  lower  ones  by  means  of 
baffles.  The  outlet  for  unvaporised  oil  is  arranged 
so  that  the  bottom  coil  is  continually  immersed. 

— T.  A.  S. 

Dehydrator  [■   Electrical  for  oil  emulsions^. 

W.  Meredith,  Assr.  to  Petroleum  Rectifying  Co. 

U.S.P.  1,428,178,  5.9.22.  Appl.,  28.10.20. 
An  emulsion  is  treated  in  a  vessel  divided  into  upper 
and  lower  compartments  by  a  dielectric  diaphragm 
through  which  an  electrode  passes.  The  electrode 
is  insulated  in  the  upper  compartment  by  an  ordi- 
nary insulator  and  also  by  dehydrated  oil.  The 
emulsion  is  dehydrated  in  the  lower  compartment 
by  a  high-potential  discharge  between  the  electrode 
and  the  walls  of  the  vessel. — T.  A.  S. 

Emulsions   of  petroleum;   Apparatus  for  treating 

natural .   W.  S.  Bamickel.    U.S.P.  1,428,204, 

5.9.22.    Appl.,  5.8.18. 

The  emulsion  and  a  treating  fluid  are  pumped 
together  through  a  steam-heated  conduit  to  a 
settling  tank.  The  mixture  is  agitated  during  it6 
passage  through  the  conduit. — T.  A.  S. 

Oils;    Oil-converting    frocess    and    apparatus    for 

conversion   and    transformation   of  .     J.   H. 

Adams,     Assr.     to     The     Texas     Co.       U.S.P. 
1,428,311-2,  5.9.22.     Appl.,  25.6.18. 

(a)  Hot  high-boiling  hydrocarbons  are  sprayed  by 
means  of  superheated  steam  into  a  chamber,  the 
steam  being  heated  to  a  temperature  sufficient  to 
crack  the  oil.  The  heavy  residues  are  collected  in 
the  bottom  of  the  chamber  and  the  evolved  lighter 
vapours   are   withdrawn   from  the  upper   portion. 

(b)  Hot  oil  is  sprayed  along  with  superheated  steam 
into  an  expansion  device  consisting  of  spaced 
chambers  with  a  communicating  passage,  the 
passage  being  heated.  The  cracked  vapours  are 
removed  through  a  condenser.  The  apparatus  is 
maintained  at  a  pressure  higher  than  atmospheric. 

— T.  A.  S. 


Hydrocarbon   oils;   Apparatus   for  and   method  of 

cracking .    F.  T.  Manley,  Assr.  to  The  Texas 

Co.  U.S.P.  1,428,338-9,  5.9.22.  Appl.,  10.10.17. 
(a)  Oil  is  cracked  by  heating  in  a  vertical  still 
under  pressure.  Fresh  oil  is  introduced  into  the 
bottom  portion  of  the  still,  which  is  kept  cold.  The 
vapours  evolved  are  passed  through  a  dephlegmator, 
the  heavy  portions  being  returned  to  the  bottom 
of  the  still  with  the  fresh  oil.  (b)  Hydrocarbon 
oils  of  comparatively  low  boiling  point  are  brought 
in  contact  with  a  body  of  hydrocarbon  oil  of  higher 
boiling  point,  of  considerable  length  relative  to  its 
I  width  and  heated  to  a  temperature  sufficiently  high 
to  crack  the  lower-boiling  oil.  The  vapours  of  the 
lower-boiling  oil  are  caused  to  pass  along  the  sur- 
face of  the  higher-boiling  oil,  and  overheating  is 
prevented. — T.  A.  8. 

Hydrocarbons  from  oil  shale;  Process  and  apparatus 

for  recovery  of  .     C.  W.  Thompson.     U.S.P. 

1,428,458,  5.9.22.  Appl.,  15.9.19. 
The  shale  is  heated  by  external  means  to 
remove  gasoline  and  light  oils,  which  are  collected 
separately.  It  is  then  further  heated  to  vaporise 
the  heavy  hydrocarbons,  and  the  vapours  evolved 
are  used  to  preheat  cold  shale  prior  to  the  first 
heat  treatment. — T.  A.  S. 

Compounds  preferably  of  a  hydrocarbon  nature; 
Method  and  apparatus  for  treating  or  convert- 
ing   .     W.  J.  Knox,  Assr.  to  E.  D.  Warren. 

U.S.P.  1,428,641,  12.9.22.    Appl.,  24.3.19. 
Hydrocarbon  vapours  are  cracked  by  heating  to  a 
high  temperature.     The   hot  cracked   gases  before 
condensation  are  passed  over  the  surface  of  oil  to 
preheat  it  and  remove  low-boiling  constituents. 

— T.   A.  S. 

Liquid  fuel;  Method  of  forming  a  — — .  A.  Hayes, 
Assr.  to  U.S.  Industrial  Alcohol  Co.  U.S.P. 
1,428,885,  12.9.22.     Appl.,  5.6.19. 

A  mixture  consisting  mainly  of  heavy  hydrocarbon 
oil  and  alcohol  and  containing  small  proportions  of 
light  hydrocarbon  and  ether  is  converted  into  a 
fuel  of  a  non-stratifying  character  by  vaporising 
it  and  passing  the  vapours  through  a  finely  divided 
zinc  or  nickel  catalvst  maintained  at  a  temperature 
below  about  300°  C— T.  A.  S. 

Hydrocarbons  and  their  derivatives;  Process  for 
making  — ■ —  by  heating  coal  or  hydrocarbons  with 
hydrogen.     S.  Loffler.     G.P    303,332,  1.4.15. 

Before  being  introduced  into  the  reaction  vessel 
the  hydrogen  and  the  substances  to  be  hydrogenated 
are  both  heated  in  heat-interchangers  to  a  tem- 
perature just  below  that  required  for  the  reaction, 
solid  substances  being  finely  powdered  and  mixed 
with  liquid  reagents.  The  overheating  of  the 
reacting  substances  and  of  the  wTalls  of  the  reaction 
vessel  is  in  this  way  avoided.— H.  C.  R. 

Naphthasulphonic  acids;  Extraction  of  pro- 
duced in  the  refining  of  mineral  oils  with  acids. 
Oelwerke  Stern-Sonneborn  A.-G.  G.P.  310,701, 
13.2.14. 

Mineral  oils  or  petroleum  distillates,  after  purifica- 
tion by  treatment  with  concentrated  or  fuming 
sulphuric  acid  and  subsequent  removal  of  the  acid 
tar,  are  washed  with  a  mixture  of  alcohol  and 
aqueous  sodium  hydroxide.  A  volatile  liquid  soluble 
in  water,  such  as  methyl  alcohol,  ethyl  alcohol,  or 
acetone,  is  added  to  the  lower  layer  of  wash-liquor, 
and,  after  removing  the  mineral  oil  precipitated 
from  the  solution,  the  volatile  liquid  is  separated 
by  distillation,  and  naphthasulphonic  acids  are 
precipitated  from  the  residue  by  the  addition  ot 
acids. — L.  A.  C. 


Vol.  XLI.,  No.  21]     Cl.  IIb.— DESTRUCTIVE  DISTILLATION  ;    HEATING  ;   LIGHTING. 


851 


Sludge  acids  [from,  oil  refining];  Method  of  treat- 
ing   .     I.   Hechenbleikner  and  T.  C.  Oliver, 

Assrs.  to  Chemical  Construction  Co.  USP 
1,429,140,   12.9.22.     Appl.,  7.1.22. 

Sludge  acids  or  separated  sludge  acids  are  pre- 
heated, without  concentration,  to  drive  off  the 
volatile  impurities  and  then  concentrated  by 
further  heating. — T.  A.  S. 

Coke;  Plant  for  separating  from  waste  fuel 

ana  residues.  W.  Weber,  Assr.  to  Weber  u.  Co., 
Ges.  fur  Bergbau,  Industrie  und  Bahnbau. 
U.S.P.  1,429,987,  26.9.22.    Appl.,  27.12.20. 

See  E.P.  155,269  of  1920;    J.,  1921,  837  a. 

Coke-oven;  By-product with  sole  firing.  Sole- 
heated  coke  oven.  B.  Zwillinger.  USP 
1,428,621-2,  12.9.22.    Appl.,  22.3.19,  and  24.2. 2o! 

See  E.P.  172,739  of  1920;   J.,  1922,  130  a. 

Coke-oven  wall.  O.  Piette,  Assr.  to  Belgian 
American  Coke  Ovens  Corp.  U.S.P.  1,429,252, 
19.9.22.     Appl.,  6.11.18. 

See  E.P.  120,201  of  1918;   J.,  1919,  808  a. 

Gas    generator   and   retort   apparatus;     Combined 

.    Combined  vertical  retort  and  gas-generator 

apparatus.  G.  P.  Lewis.  U.S.P.  1,430,452-3, 
26.9.22.    Appl.,  13.2.22. 

See  E.P.  177,556  and  177,559  of  1920;  J.,  1922, 
362  a. 

Dehydrator  [for  petroleum  emulsions'].  F.  W. 
Harris,  Assr.  to  Petroleum  Rectifying  Co.  U.S.P. 
1,430,300,  26.9.22.    Appl.,  7.9.20. 

See  E.P.  175,352  of  1920;   J.,  1922,  244  a. 

Gas  producers  [;  Fuel  rakes  of ].    W.  Climie. 

E.P.  185,980,  15.6.21. 

Refrigeration  process  and  machine.  E.P.  185,607. 
See  I. 

Sulphur  from  spent  gas-purifying  material.  G.P. 
357,033.    See  VII. 

Hb.-DESTBUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Activated  carbon;  Suitability  of  different  coals 
and    vegetable    matter    for    the    preparation    of 

.     P.  Fischer,  H.  Schrader,   and  K.  Zerbe. 

Brennstoff-Chem.,  1922,  3,  241—244. 

The  wash  oil  process  in  practice  may  still  leave 
one-third  of  the  benzol  in  the  gas,  but  the  use  of 
activated  carbon,  though  more  effective,  is  too 
costly  and  the  working  life  too  short.  Various  raw 
materials  have  been  examined  to  see  if  supplies 
can  be  obtained  so  cheaply  as  to  permit  the  dis- 
carding of  the  carbon  after  the  activity  has  been 
impaired,  e.g.,  by  deposition  of  tar.  A  variety 
of  vegetable  substances  and  coals  were  examined 
but  only  the  lignites  yielded  a  product  comparable 
with  that  obtained  from  cellulose.  The  activity  of 
the  lignite  coke  could  be  improved  by  pressure 
extraction  of  the  raw  material  with  benzene. 
Alexandria  lignite  carbonised  at  800°  C.  in  steam 
yielded  a  coke  capable  of  absorbing  from  air 
saturated  with  benzene  22'1%  of  its  weight  as  com- 
pared with  253%  for  charcoal  from  cellulose. 

— H.  J.  H. 

Patents. 

Dissolution  of  wood  and  other  cellulose-containing 
materials   of   vegetable    origin;   Process   for   the 

.     Riitgerswerke  A.-G.,   and  H.  Teichmann. 

E.P.  160,467,  4.3.21.     Conv.,  17.3.20. 

Wood  in  the  form  of  dust  or  shavings  is  mixed  with 


about  5  times  its  weight  of  anthracene  or  similar 
coal  tar  oil  and  heated  to  about  300°  C.  An  alkali 
may  be  added  to  combine  with  the  acids  produced, 
or  a  mineral  acid  may  be  used  if  the  raw  material 
contains  nitrogen.  The  mixture  is  stirred  and  the 
volatile  products  are  passed  into  a  condenser.  The 
insoluble  residue  is  separated  from  the  tar  by 
filtration.  Acetic  acid,  methyl  alcohol,  creosote, 
etc.,  are  recovered  from  the  filtrate,  and  there  re- 
mains a  pitch-like  residue  soluble  in  tar  oils. 

— H.  Hg. 

Retorts  for  the  distillation  of  coal  and  other  car- 
bonaceous substances.  Low  Temperature  Carboni- 
sation, Ltd.,  Low  Temperature  Construction, 
Ltd.,  and  T.  M.  Davidson.  E.P.  185,778, 
21.3.21. 

The  plates  mounted  centrally  within  a  vertical  re- 
tort as  described  in  E.P.  161,608  (J.,  1921,  380  a) 
are  pivoted  on  a  spindle  at  the  top  of  the  retort. 
There  are  transverse  flanges  on  the  inner  faces  of 
the  plates  which  abut  one  against  the  other  and 
keep  the  plates  spaced  apart  during  the  carbonisa- 
tion period.  Upon  rotation  of  the  spindle  through 
90°  the  plates  movo  away  from  the  carbonised 
charge,  one  in  an  upward  direction  and  one  in  a 
downward  direction.  The  spindle  may  take  the 
form  of  a  pivoted  beam  so  shaped  as  to  prevent  the 
entry  of  fuel  to  the  space  between  the  plates  while 
the  retort  is  being  charged. — H.  Hg. 

Low  temperature  carbonisation;  System  of  — — . 
J.  A.  Yeadon.     E.P.  185,684,  5.12.21. 

Powdered  coal  is  fed  into,  and  coke  discharged 
from,  a  vertical  retort  through  horizontal  cylinders 
as  described  in  E.P.  114,971  (J.,  1918,  295  a).  The 
charging  cylinder  is  heated  on  its  underside  by 
steam  or  by  waste  heat  from  the  retort  setting, 
and  at  its  outlet  end  a  rotary  distributor  is  fitted  to 
cause  the  coal  to  descend  the  retort  in  a  fine  spray. 
The  coal  is  heated  to  400°— 700°  C.  in  the  retort, 
which  is  of  oblong  cross-section  and  provided  with 
internal  corrugations  as  described  in  E.P.  127,986 
(J.,  1919,  565  a).  The  discharge  cylinder  is  water- 
jacketed. — H.  Hg. 

Carbon  for  hardening  steel  and  iron;  Process  for 

obtaining    extracts   and   from    nitrogenous 

organic  matter.  M.  Lindner.  G.P.  357,226, 
11.9.20.  Addn.  to  287,665  (J.,  1916,  258). 
The  process  of  heating  the  organic  matter  in  an 
autoclave  under  pressure  is  carried  out  in  the 
presence  of  oxygen  and  carbon  dioxide.  The  yield 
of  extract  is  in  this  way  considerably  increased,  the 
ratio  of  extract  to  carbon  being  60:40  instead  of 
20:80  as  in  the  earlier  process. — H.  C.  R. 

Gas-tight    seals    or    closures    between    metals    and 

vitreous  materials  [quartz]  ;  Production  of  . 

The  Silica  Syndicate,  Ltd.,  and  F.  Reynolds. 
E.P.  185,952,  7.9.21. 
Two  or  more  wires  are  passed  through  separate 
holes  in  a  cylinder  or  plug  of  vitreous  material, 
such  as  quartz  or  silica  glass,  the  cylinder  or  plug 
is  fused  into  an  enveloping  tube  of  quartz  or  silica 
glass,  and  the  seal  completed  with  lead  in  accord- 
ance with  E.P.  23,854  of  1913  (J.,  1914,  571) 

— J.  S.  G.  T. 

Incandescence  bodies;  Production  of  — —  from 
tungsten.  Bergmann-Elektrizitats-Werke  A.-G. 
G.P.  355,335,  14.11.12. 
In  manufacturing  incandescence  bodies  by  com- 
pressing and  heating  coarse  tungsten  powder,  finely 
crystalline  tungsten  powder  is  added  in  place  of 
the  usual  organic  binders,  thereby  facilitating  the 
sintering  of  the  compressed  mass. — L.  A.  O. 


852A 


Ch.  III.— TAR  &  TAB  PRODUCTS.     Cl.  IV.— COLOURING  MATTERS  &  DYES.        [Nov.  15,  192 


Retorts  for  distillation  [of  bituminous  materials]. 

Deutsche   Petroleum  A.-G.,    S.    Kacser,    and   E. 

Bauer.     E.P.  165,724,  23.6.21.     Conv.,  3.7.20. 
See  G.P.  350,572  of  1920;  J.,  1922,  456  a. 

III.-TAH  AND  TAD  PDODUCTS. 

Phenols    of    low-temperature    tars.       A.    Weindel. 

Brennstoff-Chem.,    1922,    3,   245—249.        (67.    J., 

1920,  150  a,  151  a.) 
The  tar  acids  from  low-temperature  tar  produced 
in  the  Dellwik-Fleischer  "  Trigas  "  process  have 
been  examined  with  a  view  to  their  identification. 
The  tar  acids  were  separated  and  fractionated  with- 
in close  limits.  The  carbon  and  hydrogen  contents 
of  these  fractions  were  compared  with  the  figures 
for  known  phenols.  The  low  hydrogen  contents 
point  to  the  presence  of  unsaturated  and  polyhydric 
phenols.  An  alternative  method  was  the  deter- 
mination of  the  molecular  weights  of  the  phenol 
acetic  esters,  which  gave  confirmatory  results. 
/3-NaphthoI  was  identified. — H.  J.  H. 

Pyridine;  Test  for .     F.  Lehner.     Chem.-Zeit., 

1922,  46,  877. 
If  a  few  drops  of  aniline  are  added  to  a  solution  of 
pyridine  containing  water  and  a  trace  of  freshly 
prepared  cvanogen  bromide,  a  red  colour  is  imme- 
diately obtained  and  crystals  of  a-anilidophenyl- 
dihydropvridine  bromide  separate.  Pyridine  can  be 
thus  detected  at  a  dilution  of  1:350,000.— H.  C.  P.. 

Active  carbon.     Fischer  and  others.     See  IIb. 
Aniline  arsenates.     Paternb.     .See  XX. 
Pyridine.     Spacu.     See  XXIII. 

Patents. 
Anthraquinone  ;  Purification  of .     H.  F.  Lewis, 

Assr.  to  National  Aniline  and  Chemical  Co.,  Inc. 

U.S. P.   1,429,514,  19.9.22.     Appl.,  22.12.20. 
Crude  anthraquinone  is  purified  by  crystallisation 
from  comercial  o-dichlorobenzene. — L.  A.  C. 

Phenols   and   the   like;   Method  of  manufacturing 

.      R.    Pocius.      U.S.P.    1,430,184,    26.9.22. 

Appl.,  17.7.20. 
In  the  manufacture  of  compounds  containing  the 
bydroxyl  group,  e.g..  phenols,  by  fusing  other  com- 
pounds with  a  quantity  of  a  hydroxide  in  excess  of 
that  required  for  the  reaction,  the  liquor  contain- 
ing the  excess  hydroxide  is  concentrated  for  use  in 
further  fusions. — L.  A.  C. 


IV—  COLOURING  MATTEDS  AND  DYES. 

Phenanthraquinone ;    Dyes  derived  from  .     I. 

Phenanthranaphthazines.     A.   C.   Sircar  and  S. 
Dutt.    Trans.  Chem.  Soc,  1922,  121,  1944—1951. 

Nitro-  and  bromo-substituted  phenanthraquinones, 
condensed  with  1.2-naphthylenediamine  and  its 
•j-sulphonic  acid  in  glacial  acetic  acid  solution,  give 
a  series  of  azine  dyes  which  dye  yellow  shades  on 
wool,  light  in  the  case  of  the  bromo-  and  deeper 
in  that  of  the  nitro-derivatives.  Condensation  of 
1.2-naphthylenediamine  with  amino-  and  hydroxy- 
substituted  phenanthraquinones  gives  azines,  in- 
soluble in  water,  but  soluble  in  organic  solvents, 
which  dye  wool  from  acid  baths  in  shades  varying 
from  light  yellow  to  dark  brown.  They  are  charac- 
terised by  high  melting  point,  sparing  solubility  in 
organic  solvents,  well-developed  tinctorial  pro- 
perties, and  stability  to  oxidising  agents.  The 
dyeing  properties  of  dihydroxydihydrophenanthra- 
naphthazines  are  unsatisfactory.  Ullmann's 
reaction  for  the  replacement  of  bromine  atoms  by 


anilino  groups  (Ber.,  1901,  34,  2174)  can  be  applied 
in  the  phenanthraquinone  series.  The  anilino 
derivatives  so  obtained  in  general  dye  blue  shades, 
while  the  corresponding  azines  without  the  anilino 
group  dye  redder  shades.  2.7-Dianilinophenanthra- 
naphthazine, 


(NH.C,H6)2.CUH6 


Xn/c10h, 


and  the  4-nitro-5-anilino-,  dinitroanilino-  and  nitro- 
dianilino-phenanthranaphthazines  prepared  in  this 
way  dye  wool  in  full  shades  ranging  from  olive 
green  to  bottle  green.  They  are  insoluble  in  water 
and  nearly  so  in  organic  solvents.  The  intro- 
duction of  sulphonic  grcups  into  the  azine  molecule 
gives  sodium  salts,  soluble  in  water,  which  dye  wool 
from  an  alkaline  bath  in  brown  to  maroon  shades, 
the  shade  being  deeper  than  is  obtained  with  the 
unsulphonated  compound. — P.  V.  M. 

Phenanthraquinone ;    Dyes  derived  from  — ■ — .    II. 

Naphthaflavindulines.     S.  Dutt.     Trans.  Chem. 

Soc.,  1922,  121,  1951—1955. 
2.7-Dibromonaphthaflavlnduline  (see  formula) 


and  the  2.7-dianilino-,  3-bromo-,  3-anilino-,  2.7-di- 
nitro-,  4.5-dinitro-,  2-nitro-,  4-nitro-,  2.7-diamino-, 
4.5-diamino-,  2-amino,  4-amino-,  2.7-dihydroxy-, 
4.5-dihydroxy-,  2-hydroxy-,  4-hydroxy-,  dibromo- 
nitro-  and  bromodinitro-naphthaflavindulines,  pre- 
pared in  most  cases  by  condensing  the  corresponding 
phenanthraquinone  derivatives  in  acetic  acid  and 
nitric  acid  solution  with  phenyl-l-amino-/3-naphthyl- 
aniine,  exhibit  dyeing  properties  in  general  much 
better  than  those  of  the  corresponding  phenanthra- 
naphthazines (cf.  supra).  Freshly  prepared,  they 
dye  wool  evenly  from  an  acid  bath.  They  are  diffi- 
cultly crystalline,  and  are  decomposed  with  diffi- 
culty by  fuming  nitric  acid;  they  dissolve  in  con- 
centrated sulphuric  acid  with  a  brown  colour. 

—P.  V.  M. 

Bed    sulphide    dyes-    Attempts    to    prepare   . 

E.  R.  Watson  and  S.  Dutt.     Trans.  Chem.  Soc, 

1922,  121,  1939—1943. 
Attempts  to  prepare  red  sulphide  dyes  of  the  azine, 
oxazine,    phthalein,    nitroso,    and    acridine    series 
failed.     2  -  Amino  -  8  -  thiol  - 10  -  phenylpher.azonium 
hydroxide, 

NH2.C6H3/  >C„H3.SH, 

\N(C6H6)(OH)/ 

gives  dull  violet  shades  sensitive  to  acids  and 
alkalis ;  9-dimethylamino-2-thiol-3-phenoxazone, 

(CH3)2N.C,H3/    Vi6Ht(SH):0, 

gives  light  indigo-blue  shades,  and  a  product 
(2.8-diamino-3.7-dithiolacridine?),  prepared  by 
boiling  2.2'.4.4'-tetra-amino-5.5'-dithioldiphenyl- 
methane,  CH2[C6H2(NH2)2.SH]2,  with  ferric 
chloride  and  hydrochloric  acid,  gave  light  brown 
shades  on  cotton.  Dithiolfluorescein,  obtained  by 
condensation  of  thiofluorescein  and  phthalic  anhy- 
dride, and  possiblv  identical  with  the  compound 
previously  prepared  by  Maki  (J.,  1921,  143  a)  from 
fluorescein  and  sodium  sulphide,  and  dinitrosothiol- 
resorciuol  are  soluble  in  sodium  sulphide  but  have 
no  affinity  for  cotton. — P.  V.  M. 


Vol.  XLI.,  No.  21.1 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


853  a 


Cobaltammine  salts  of  the  nitro-dyes.  Researches 
on  residual  affinity  and  co-ordination.  IX. 
G.  T.  Morgan  and  H.  J.  S.  King.  Chem.  Soc. 
Trans.,  1922,  121,  1723—1729. 

Unlike  the  mordant  dyestuffs  of  the  quinoneoxime, 
alizarin,  and  hydroxyazo  series,  the  substantive 
nitro-dyestuffs  do  not  furnish  chelate  groups,  each 
capable  of  reacting  as  two  associating  units  in  the 
co-ordination  sphere  of  the  cobaltic  atom.  This 
behaviour  of  the  nitro-dyestuffs  may  be  assigned  to 
a  lack  of  residual  affinity  in  the  nitro  groups  as 
regards  cobalt,  or  it  may  be  taken  as  corroborative 
evidence  of  the  p-quinonoid  configuration  of 
these  substances,  hexammino-cobaltic  picrate,  for 
example,  being  formulated 


-[Co(NH3)6] 


A  number  of  cobaltammine  compounds  of  picric 
acid,  dipicrylamine,  2.4  -  dinitro  -  a  -  naphthol 
(Naphthol  Yellow  N),  and  2.4-dinitro-a-naphthol-7- 
sulphonic  acid  (Naphthol  Yellow  S)  were  prepared 
and  are  described.  The  cobaltammine  picrates  were 
crystalline  compounds,  sparingly  soluble  in  cold 
water  to  yellow  solutions,  undergoing  partial  hydro- 
lysis on  warming.  The  dipicrylamine  salts  were  red 
non-erysta'llisable  solids,  somewhat  more  soluble  in 
water  than  the  cobaltammine  salts  of  other  nitro- 
dyestuffs.  The  cobaltammine  salts  of  Naphthol 
Yellow  N  were  formed  as  pasty  non-crystalline  pre- 
cipitates, brick  red  in  colour  when  dry.  Only 
dicobnltnmmine  salts  of  Naphthoil  Yellow  S  could 
be  obtained.  They  were  orange,  crystalline 
hydrated  compounds,  sparingly  soluble  in  water. 

— G.  F.  M. 

Saffron.     Guerbet.     See  XX. 

Reductions  with  cadmium  in  analysis.     Treadwell 
and  others.     .S'ee  XXIII. 

Patents. 

2.3-Ilydroxynaphthoic  acid  arylides;  Manufacture 

of  sulphonic  acids  of .     Farbw.  vorm.  Meister, 

Lucius,    und    Bruning.       E.P.    183,428,    23.5.22. 
Conv.,  19.7.21. 

By  heating  with  sulphuric  acid  monohydrate  for  a 
short  time  to  90°  C.  the  arylamides  of  2.3-hydroxy- 
naphthoic  acid  are  converted  into  sulphonic  acids 
which  are  valuable  as  dyestutf  intermediates.  The 
acids  are  light  grey  powders ;  the  solutions  in  hot 
water  sometimes  solidify  to  a  jelly  on  cooling.  The 
alkali  salts  are  soluble  in  water  to  a  faint  yellow 
solution. — G.  F.  M. 

Triarylmethane  colouring  matters;  Manufacture  of 

new  .     British  Dyestuffs  Corp.,  Ltd.,  A.  G. 

Green,  K.  S.  Saunders,  and  S.  C.  Bate.     E.P. 
185,612,  17.8.21. 

New  triarylmethane  dyestuffs  containing  an  oxy- 
alkyl  group  attached  to  nitrogen  are  obtained  by 
condensing  Michler's  ketone  or  Michler's  hydrol 
with  a  hydroxyalkylarylamine,  a  dihydroxyalkjl- 
arylamine,  a  hydroxyalkyilalkylarylamine,  or  a  hydr- 
oxyalkylaralkylarylamine,  and  in  the  case  of  the 
hydrol  oxidising  the  leuco  compound  first  produced 
to  tho  dyestuff  in  the  usual  way.  Example.  The 
hydrochloride  of  hydroxyethyl  -  tetraniethyl  -  tri- 
aminonaphthyldiphenylcarbinol, 

[(CH3)JN.C6H4]2:C:C10H0:NHC1C2HJOH 
is  obtained  by  adding  23  pts.  of  oxyethyl-a-naphthyl- 
amine  to  the  product  of  the  action  of  20  pts.  of 
phosphorus  oxychloride  on  30  pts.  of  tetramethyl- 
idiaminodiphenyl  ketone  (Michler's  ketone)  in 
ipresence  of  toluene  as  diluent.  The  dyestuff 
crystallises  on  cooling  in  green  crystals  which  have 
the  same  properties  as  Victoria  Blue  R,  except  that 


the  solubility  is  much  greater.  The  hydrochloride 
of  tetraniethyl  -  dihydroxvethvltriaminotriphenyl- 
carbinol,  [(Clij=N.c;HJ2C:CA:N(G1)(C2H,.Oli)2, 
prepared  from  Michler's  hydrol  and  dihydroxyethyl- 
aniline,  and  oxidation  of  the  leuco  compound  with 
lead  peroxide,  is  a  coppery  powder  which  dyes 
tannin-mordanted  cotton  bright  purple  shades. 
Other  shades  of  purple  are  obtained  by  substituting 
monohydroxyethylaniline,  dihydroxyethyl-o-toluid- 
ine,  etc.,  for  the  dihydroxyethylaniline  above. 

— G.  F.  M. 

Direct    cotton    dyestuffs;    Manufacture    of    . 

British  Dyestuffs  Corp.,  Ltd.,  J.  Baddiley,  J.  B. 
Payman,  and  E.  G.  Bainbridge.  E.P.  185,880, 
28.6.21. 

Pyrazolone  dyestuffs  containing  two  arylbenzo- 
thiazole  residues  and  capable  of  dyeing  unmor- 
danted  cotton  in  shades  fast  to  light,  washing,  and 
ironing,  are  produced  by  interaction  between 
2  mols.  of  a  thiazolehydrazine  and  1  mol.  of  dioxy- 
tartaric  acid  or  alternatively  by  reaction  between 
1  mol.  of  a  thiazolehydrazine  and  1  mol.  of  ethyl 
acetoacetate  or  oxalacetate,  the  pyrazolone  thus 
formed  being  subsequently  coupled  with  a  diazotiscd 
thiazole.     For  example,  a  dyestuff  of  the  formula 


is  formed  by  the  following  method.  To  335  pts.  of 
the  hydrazine  compound  obtained  from  dehydro- 
thiotoluidinemonosulphonic  acid  suspended  in 
water  and  neutralised  with  soda  ash  are  added 
160  pts.  of  sodium  acetate  and  140  pts.  of  aceto- 
acetic  ester,  the  mixture  is  boiled  under  a  reflux 
condenser  for  8  hrs.,  and  acidified;  the  pyrazolone 
thus  obtained  (401  pts.)  is  coupled  with  the  diazo 
compound  from  343  pts.  of  dehydrothiotoluidine- 
sulphonic  acid  and  the  dye  salted  out. — A.  J.  H. 

Safranines  ;  Preparation  of  anthraquinonyl  deriva- 
tives of .      Akt.-Ges.  fur  Aniln-Fabr.      G.P. 

355,491,  13.8.19. 
Aposafhanine  derivatives  are  treated  with  amino- 
anthraquinones  in  the  presence  of  alkalis,  and,  if 
necessary,  the  dyestuffs  produced  thereby  are 
sulphonated,  yielding  acid  dyestuffs  which  dye  wool 
from  a  hydrosulphite  vat.  The  condensation  pro- 
duct obtained  by  heating  dimethylisorosinduline 
chloride,  prepared  from  nitrosodimethylaniline  and 
2-phenylaminonaphthalene,  with  2-aminoanthra- 
quinone  and  sodium  hydroxide  in  the  presence  of 
nitrobenzene,  is  treated  with  fuming  sulphuric  acid, 
yielding  a  dyestuff  which  gives  blue  shades  on  wool 
from  a  vat.  A  similar  dyestuff  is  obtained  by  con- 
densing 2-aminoanthraquinone  with  isorosinduline, 
which  is  prepared  from  2-phenylaminonaphthalene 
and  1- amino -4 -diethylaminobenzene -2 -sulphonic 
acid. — L.  A.  O. 

Vat  dyestuff  of  the  anthraquinone  series;  Prepara- 
tion   of    a    blue    .       E.    Kopetschni.       G.P. 

356,922,  1.5.14. 
I-Mebcapto-2-aminoanthhaquinone  or  the  corre- 
sponding disulphide  is  heated  with  a  substance 
capable  of  removing  sulphur,  e.g.,  with  copper 
powder  in  the  presence  of  naphthalene,  yielding 
N-dihydro-1.2.2'.l'-anthraquinoneazine. — L.   A.   C. 

V.-FIBRES;  TEXTILES;  CELLULOSE; 
PAPE8. 

Flax  and  kindred  fibres.  Method  for  distinguish- 
ing flax  from  hemp.  O.  R.  Nodder.  J.  Textile 
Inst.,  1922,  13,  161—171. 
The  fibrillar  structure  of  the  fibres  is  brought  into 
prominence  by  mounting  in  a  strong  solution  of 
calcium  chloride  which  has  been  slightly  tinted  with 


854  a 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


[Nov.  15,  1922. 


iodine.  The  fibre  thus  softened  is  then  squeezed  by 
pressing  the  cover  glass  carefully  with  a  scalpel 
while  under  observation  under  the  microscope.  The 
various  growth-layers  of  the  cell  wall  thus  become 
widely  separated  and  distinctly  visible.  The  fibrils 
of  the  outer  layers  of  the  flax  and  ramie  fibres  are 
observed  to  form  a  left-handed  spiral,  while  the 
fibrils  of  the  hemp  and  jute  fibres  are  arranged  in 
right-handed  spirals.  Based  on  this  difference  a 
method  for  distinguishing  between  flax  and  hemp 
fibres,  at  any  stage  of  manufacture  or  purification, 
is  proposed.  The  material  is  cut  up  into  short 
pieces  and  eteeped  for  some  minutes  in  warm  water. 
Single  fibres  are  picked  out  with  a  pair  of  forceps 
and  held  over  a  hot-plate  against  a  dark  back- 
ground. During  the  wetting  the  fibres  have  under- 
gone a  rapid  twisting  movement  in  accordance  with 
their  characteristic  fibrillar  arrangement,  and  when 
they  are  held  at  one  end  while  drying  this  twisting 
movement  is  reversed.  If  the  wet  fibre  be  held  with 
the  free  end  pointing  towards  the  observer,  flax  and 
ramie  fibres  describe  a  clockwise  twisting  movement 
when  drying,  whereas  hemp  and  jute  fibres  always 
move  in  the  anti-clockwise  direction.  This  spiral 
structure  of  the  component  fibres  may  be  assumed 
to  have  an  important  influence  on  the  properties  of 
twisted  yarns  in  textile  practice. — J.  F.  B. 

Cellulose;  Aerobic  decomposition  of by  mould 

fungi.  N.  I.  Kosin.  Nachr.  Phys.-Chem. 
Lomonossow-Ges.  Moskau,  1921,  2,  57 — 98.  Chem. 
Zentr.,  1922,  93,  III.,  874. 

Mould  fungi,  particularly  Cladosporium,  are 
capable  of  attacking  cellulose  in  the  presence  of  air 
and  mineral  nutrient  salts,  with  the  primary  forma- 
tion of  a  hexose  which  is  subsequently  converted  into 
carbon  dioxide.  In  the  course  of  256  days,  25%  of 
the  cellulose  was  thus  destroyed.  Saccharification 
takes  place  under  the  agency  of  an  enzyme  which 
has  been  isolated.  A  similar  destruction  of  cellu- 
lose takes  place  in  nature  during  the  summer 
months  and  sugar  is  produced. — J.  F.  B. 

Pine  oil.     Sandqvist.     See  XIII. 

Patents. 

Impregnation  of  textile  fabric,  paper,  etc.  L. 
Ubbelohde.  G.P.  316,099,  11.8.17.  Addn.  to 
303,324  (J.,  1922,  704a). 

The  fabric  is  soaked  in  solutions  of  humic  acid  and 
other  substances  extracted  from  peat  or  lignite  by 
means  of  alkalis,  and  is  then  treated  with  a  pre- 
cipitating agent  such  as  alum  or  ferric  sulphate. 

— H.  C.  R. 

Mixed  fibre  textile  goods;  Production  of .  A.  G. 

Bloxam.  From  Technochemia  A.-G.  E.P. 
185,238,  4.6.21. 

A  mixed  textile  material  which  appears  to  contain 
one  kind  of  fibre  only,  even  when  dyed,  is  made  by 
spinning  a  mixture  of  animal  fibres,  e.g.,  wool 
slivers,  treated  as  described  in  E.P.  183,249  and 
183,270  (c/.  U.S. P.  1,389,274-5-  J.,  1921,  765  a) 
with  combed  artificial  cellulose  fibres  of  any  degree 
of  fineness  in  the  ratio,  for  example,  of  1:2. 

— D.  J.  N. 

Fur  and  wool;   Process  for  protecting  from 

moth  and  other  insects.  Vereinigte  Chem.  Fabr. 
J.  Norden  und  Co.     G.P.  357,063,  25.10.21. 

Animal  fibres  are  protected  from  moth  etc.  by 
treatment  with  the  vapour  of  a-tetralon  (o-tetra- 
hydronaphthaleneketone)  or  mixtures  of  this  with 
other  suitable  substances.  The  protective  effect  of 
a-tetralon  is  more  lasting  than  that  of  chlorinated 
aromatic  compounds,  since  it  is  less  volatile. 
a-Tetralon  is  obtainable  as  an  emulsion  in  soft  soap 
or    in   the   form   of    a   powder,    pellets   or   tablets. 


Paper  and  fabrics  may  be  treated  with  solutions  of 
a-tetralon  in  petroleum  spirit  of  high  boiling  point 

—A.  J.  H. 

Viscose;  Preliminary  treatment  of  cellulose  intended 

for  the  manufacture  of .      W.  Cross.      From 

Technochernia  A.-G.  E.P.  185,433,  4.3.21. 
Bleached  or  unbleached  sulphite  or  soda  wood  pulp 
is  treated  with  0"5%  hydrochloric  acid  at  100°  C. 
or  with  2%  hydrochloric  acid  at  80°  C,  or  8%* 
hydrochloric  acid  at  40°— 50°  C,  or  with  0-2% 
sulphuric  acid  in  a  closed  vessel  under  a  steam 
pressure  of  0-5  atm.  for  several  hours.  The  digested 
cellulose  is  washed  free  from  acid  and  transformed 
into  viscose  by  treatment  with  only  30 — 10%  of  the 
quantities  of  sodium  hydroxide  and  carbon  bi- 
sulphide usually  required.  Under  the  conditions 
specified,  if  no  drying  of  the  cellulose  be  permitted, 
there  is  no  formation  of  hydrocellulose  as  measured 
by  solubility  of  the  treated  cellulose  in  boiling 
barium  hydroxide  solution. — J.  F.  B. 

Nitrocellulose  composition  [for  films'].  A.  F.  Sulzer, 
Assr.  to  Eastman  Kodak  Co.  U.S.P.  1,429,174, 
12.9.22.  Appl.,  23.2.21. 
A  liquid  composition  for  forming  film  by  flowing 
and  drying  consists  of  nitrocellulose  100  pts.,  a 
monohydric  aliphatic  alcohol  having  4  to  5  carbon 
atoms  10  to  100  pts.,  ethyl  butyrate  1  to  100  pts., 
and  sufficient  common  solvent  to  make  a  viscous 
solution.— T.  A.  S. 

[Cellulose  ether]  films;  Process  of  treating  . 

W.    R.    Webb,    Assr.    to    Eastman    Kodak    Co. 

U.S.P.  1,429,179,  12.9.22.     Appl.,  4.11.21. 
The  curling  tendency  of  a  film  containing  cellulose 
ether  is  lessened  by  applying  a  solvent  to  the  face  of 
the  film   and  stopping   the   application   before   the 
body  of  the  film  is  attacked. — T.  A.  S. 

Pyroxylin  composition  and  process  of  making  the 
same.  W.  G.  Lindsay,  Assr.  to  The  Celluloid  Co. 
U.S.P.  1,430,020,  26.9.22.  Appl.,  16.2.20. 
A  pyroxylin  composition  having  a  high  degree  of 
flexibility  consists  of  100  pts.  of  nitrocellulose  and 
more  than  60  pts.  of  an  aromatic  phosphate. 

—A.  J.  H. 

Ethers  of  carbohydrates;  Production  of  .     G. 

Young.  E.P.  184,825,  12.9.21. 
Aleyl  ethers  of  carbohydrates  of  the  general 
formula  (C,Hj0Os)n,  e.g.,  cellulose,  starch,  and 
dextrin,  are  made  by  heating  the  carbohydrate 
(1  mol.  C0H10Os)  in  admixture  with  approximately 
1 — lj  times  its  weight  of  a  metallic  hydroxide,  pre- 
ferably sodium  hydroxide,  and  0'5 — 0'75  times  its 
weight  of  water,  with  about  20  mols.  of  an  alky! 
chloride,  e.g.,  methyl,  ethyl,  propyl,  or  amyl 
chloride,  in  a  revolving  autoclave  for  6 — 8  hrs.  at 
100°— 150°  C.  (preferably  not  above  130°  C).  _  A 
convenient  method  of  mixing  the  carbohydrate  with 
alkali  is  to  soak  the  carbohydrate  for  30  niins.  in 
a  40%  solution  of  alkali,  and  then  gently  squeeze 
out  the  excess  of  solution.  When  methyl  or  ethyl 
chloride  is  used  as  the  alkylating  agent,  it  is  intro- 
duced into  the  autoclave  by  means  of  a  pressure 
pump  and  the  reaction  proceeds  sufficiently  rapidly 
at  100°  C.  Inert  diluents  such  as  benzene,  and 
catalysts,  such  as  finely  divided  copper,  may  also 
be  used.  When  etherifioation  is  complete,  the  un- 
changed alkyl  chloride  is  removed  by  distillation, 
excess  of  alkali  is  removed  by  washing  with  water, 
and  the  product  purified  by  solution  in  glacial 
acetic  aoid  and  precipitation  by  water.  Good  yields 
are  obtained  and  the  ethers  produced  are  insoluble 
in  benzene,  methyl  or  ethyl  alcohol,  but  soluble  in 
glacial  acetic  acid;  they  may  be  used  for  the  manu- 
facture of  artificial  threads,  films,  plastic  masses, 
etc.— D.  J.  N. 


Vol.  XIX,  No.  21.]    Cl.  VI.— BLEACHING;    DYEING,  &o.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c.  855a 


ISulphit e]  pulp  boilers;  Recovery  of  sulphurous  acid 

and  heat  from  the  waste  gases  from .     Process 

of  filling  pulp  boilers  with  heated  sulphite  lye. 
(a)  Zellstoff-fabr.  Waldhof,  C.  Hangleiter,  aud 
H.  Clemm,  (d)  Zellstoff-fabr.  Waldhof,  and  H. 
Clemm.  E.P.  (a)  167,171  and  (b)  163,866,  25.7.21. 
Conv.  (a)  2.8.20,  (b)  4.9.20. 

(a)  Waste  gases  etc.,  from  sulphite  pulp  boilers  are 
passed  without  cooling  into  raw  sulphite  liquor  con- 
tained in  a  closed  lead-lined  tank  capable  of  with- 
standing pressure.  The  liquor,  when  sufficiently 
enriched  with  sulphurous  acid  and  heated  to  a 
temperature  of  90°  C.  or  above,  is  transferred 
directly  to  a  boiler,  freshly  charged  with  wood,  (b) 
Wood  pulp  boilers  are  filled  with  hot  sulphite  liquor 
by  means  of  a  pressure  pump  or  similar  device,  the 
digester  being  closed  by  an  excess  pressure  valve 
which  can  be  adjusted  so  that  for  any  given 
temperature  the  desired  quantity  of  sulphur  dioxide 
is  retained  in  the  acid  liquor. — D.  J.  N. 

Sulphite  pulp  digesters;  Blowing  off  of  with 

recovery  of  sulphur  dioxide  and  heat.  Zellstoff- 
fabrik  Waldhof.     G.P.  350,471,  28.4.21. 

The  gases  and  steam  discharged  from  the  digesters 
are  condensed  in  the  immediate  neighbourhood  of 
the  digesters  by  means  of  fresh  liquor  and  are 
absorbed  by  this  liquor. — J.  F.  B. 

Printed  papers;  Recovery  of  paper  fibres  or  pulp 

from  .     S.    Kumagae   and   T.   Chiba.      G.P. 

356,742,  5.10.21. 

The  waste  paper  is  boiled  with  a  mixture  of  the 
residual  liquor  from  the  manufacture  of  "  Tofu," 
with  soap  and  6odium  thiosulphate,  and  the 
printers'  ink  is  removed  in  the  usual  way  by  wash- 
ing the  pulp.  "  Tofu  "  is  a  Japanese  foodstuff  pre- 
pared from  the  soy  bean. — J.  F.  B. 

Animal  and  vegetable  fibres;  Method  of  rendering 

active.    J.  Korselt,  Assrs.  to  The  Chemical 

Foundation,  Inc.  TJ.S.P.  1,426,298,  15.8.22. 
Appl.,  24.10.17. 

See  E.P.  108,489  of  1917;  J.,  1920,  482  a. 

Textile  materials;  Degumming .    G.  Jenny  and 

O.  Jaeck,  Assrs.  to  Swiss  Ferment  Co.,  Ltd. 
U.S.P.  1,430,523,  26.9.22.    Appl.,  16.6.20. 

See  E.P.  145,583  of  1920;  J.,  1921,  383  a. 

Graphitised  vulcanised  fibre;  Methods  of  preparing 

.    E.  G.  Acheson,  jun.     E.P.  174.899,  7.7.21. 

Conv.,  31.1.21. 

See  U.S.P.  1,379,156  of  1921;  J.,  1921,  540  a. 

Cellulose  esters;  Production  of .     A.  D.  Little, 

Inc.,  Assees.  of  G.  J.  Esselen,  jun.,  and  H.  S. 
Mork.     E.P.  161,564,  9.3.21.     Conv.,  10.4.20. 

See  U.S.P.  1,425,5S0  of  1922;  J.,  1922,  748  a. 

Cellulose  ester  compositions.  E.  I.  Du  Pont  de 
Nemours  and  Co.,  Assees.  of  J.  M.  Kessler.  E.P. 
165,439,  2.3.21.     Conv.,  19.6.20. 

See  U.S.P.  1,360,759  of  1920;  J.,  1921,  42  a. 

Cellulose  esters;  Manufacture  of .  J.  Koetschet 

and  M.  Beudet,  Assrs.  to  Soc.  Chim.  Usines  du 
Rhone.   U.S.P.  1,389,250,  30.8.21.  Appl.,  12.1.21. 

See  E.P.  146,092  of  1920;  J.,  1921,  765  a. 

Cellulose;  Process  for  the  recuperation  of  the 
sulphurous  acid  and  heat  from  waste  gases  coming 

from  boilers  for  .     H.  Clemm  and  C.  Hang- 

leiter,  Assrs.  to  Zellstoff-fabr.  Waldhof.  U.S.P. 
1,429,128,  12.9.22.    Appl.,  2.3.21. 

See  E.P.  167,171  of  1921 ;  preceding. 


Cellulose;   Process  for  producing  from  reeds 

and  similar  hinds  of  plants  [by  mechanical  grind- 
ing^. H.  Steinhilber.  E.P.  179,885,  21.6.21. 
Conv.,  13.5.21. 

Regulating  the  strength  of  lye.     U.S.P.  1,429,129. 
See  I. 

Friction  facing.    E.P.  185,809.    See  XIII. 

Floor  coverings.    E.P.  185,816.    See  XIII. 

Tanning  preparation.     U.S.P.  1,430,477.     See  XV. 


VI.-BLEACHING ;  DYEING;   PRINTING; 
FINISHING. 

Patents. 

Liquid  washing  blue  and  bleaching  preparation  and 
process  for  making  the  same.  J.  J.  Reichelt. 
E.P.  176,747,  13.6.21.     Conv.,  8.3.21. 

A  liquid  preparation  containing  ultramarine  and 
which  exerts  simultaneously  a  purifying,  bleaching, 
and  disinfecting  action  is  made  by  heating  a  mix- 
ture containing  borax,  turpentine  oil,  alcohol, 
water-glass,  sodium  tungstate,  formaldehyde,  and 
ultramarine.  This  preparation  is  not  affected  by 
hard  water. — A.  J.  H. 

Cleansing  and  sterilising  textile  fabrics  and  other 

materials;  Preparations  for .    A.  Maclennan. 

E.P.  185,828,  9.6.21. 

A  powder  suitable  for  cleansing  lace  curtains,  silks, 
tapestries,  carpets,  linoleum,  etc.,  and  also,  in 
conjunction  with  a  5%  solution  of  hydrogen 
peroxide,  suitable  for  removing  ink,  iodine,  and 
paint  stains  from  fabrics,  consists  of  53£  pts.  of 
a  mixture  of  equal  parts  of  palm  and  cokernut 
(coconut)  oils,  31J  pts.  of  anhydrous  sodium 
carbonate,  and  15  pts.  of  water,  together  with  a 
further  addition  of  about  2%  of  ultramarine  for 
the  purpose  of  correcting  yellow  coloration.  In 
the  preparation  of  this  powder,  60  pts.  of  the 
mixture  of  oils  is  saponified  at  38° — 45°  C.  with 
a  strong  solution  containing  35  pts.  of  anhydrous 
sodium  carbonate,  and  the  product  is  allowed  to 
cool  and  solidify. — A.  J.  H. 

Bleaching  and  dyeing  vegetable  and  animal  fibres; 

Process  of  — — .    A.  S.  Roberts,  Assr.  to  Surpass 

Chemical    Co.,    Inc.     U.S.P.    1,429,775,    19.9.22. 

Appl.,  30.3.21. 

Textile  material  is  bleached  and  dyed  at  the  same 

time  in  a  bath  containing  a  dyestuff,  an  alkaline 

oxidising  agent,   and  a  neutralising  agent. 

Printing;  Multicolour  .     F.   Kunert  and   E. 

Acker, 'Assrs.  to  The  Chemical  Foundation,  Inc. 

U.S.P.  1,426,299,  15.8.22.    Appl.,  2.11.16. 
See  E.P.  104,108  of  1916;   J.,  1917,  384. 

Cotton;  Process  for  imparting  transparent  effects 

to .    H.  Forster,  Assr.  to  C.  Forster.    U.S.P. 

1,430,163,  26.9.22.     Appl.,  21.9.20. 

See  E.P.  162,627  of  1921;    J.,  1922,  291a. 

VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitrogen  oxides;    Reactions  between  gaseous  

and  alkaline  solutions.    A.  Sanfourche.    Comptes 

rend.,  1922,  175,  469—472. 

In  estimating  gaseous  oxides  of  nitrogen,  sulphuric 

acid  is  to  be  preferred  to  alkali  as  an  absorbent,  as 

the  latter,  in  presence  of  oxygen,  gives  too  high  a 


856  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Nov.  15,  1922. 


figure  unless  alkali  is  iu  excess  at  all  points  of 
contact.  If  this  condition  is  not  fulfilled  the  forma- 
tion of  nitrite  and  nitrate  is  affected  by  the  reaction 
with  water  to  form  nitric  acid  and  nitric  oxide,  the 
latter  combining  with  more  oxygen.  Further,  if 
absorption  of  the  vapour  in  alkali  is  incomplete, 
volatilisation  of  water  causes  the  reaction  to  taKe 
place  in  the  gaseous  phase  and  free  nitric  acid  is 
formed  as  a  mist  even  in  presence  of  alkaline 
solution.— H.  J.  E. 

Ammonia;  Limits  for  the  propagation  of  flame  at 

various  temperatures  in  mixtures  of  with, 

air  and  oxygen.     A.  G.   White.     Trans.  Chem. 
Soc,  1922,  121,  1688—1695. 

Propagation  of  flame  downwards  in  mixtures  of 
ammonia  with  air,  determined  in  tubes  of  5  cm. 
diam.  at  temperatures  from  0°  to  450°  C,  begins 
when  the  temperature  approaches  70°  C,  the 
optimum  mixture  containing  about  22'5%  of 
ammonia  by  volume,  while  the  mixture  for  complete 
combustion  contains  just  under  22%.  Up  to 
140°  C.  the  interval  between  the  upper  and  lower 
limits  increases  very  rapidly.  Above  this  point  the 
upper  limit  increases  at  the  same  rate  for  downward 
propagation  as  for  propagation  in  other  directions, 
but  the  lower  limit  decreases  more  rapidly  for 
downward — 10%  per  100°  C. — than  for  upward  or 
horizontal  propagation ;  for  the  last-named  the 
decrease  appears  to  be  7%  per  100°  C.  The  limits 
with  air  determined  in  tubes  of  7"5  cm.  diam.  are 
approximately  the  same  for  upward  as  for  hori- 
zontal propagation.  The  upper  and  lower  limits  for 
mixtures  of  ammonium  and  air  at  any  one  tempera- 
ture are  nearly  symmetrically  situated  about  the 
mixture  for  complete  combustion  for  all  directions 
of  propagation.  The  lower  limit  for  horizontal 
propagation  for  ammonia-air  mixtures  at  18°  C.  in 
a  tube  of  7'5  cm.  diam.  is  17'4%  and  for  ammonia- 
oxygen  mixtures  156%.  In  determining  the  upper 
limit  mixtures  with  oxygen  great  care  had  to  be 
taken,  as  using  slightly  too  little  ammonia  was  apt 
to  cause  a  violent  explosion.  Calculation  shows 
that  to  ensure  propagation  at  the  lower  limits  the 
flame  temperature  must  be  approximately  the  same 
— about  1620°  C. — whatever  the  initial  temperature 
of  the  mixture.  Undried  air  was  used  in  the 
experiments,  since  moisture  up  to  2'5%  is  without 
effect  on  the  limit  values. — P.  V.  M. 

Sulphurous  acid;  Autoreduction  of  .      G.   M. 

Bennett.     Trans.  Chem.  Soc,  1922,   121,  1794— 
1795. 

Sulphurous  acid,  liberated  in  solution  at  100° — 
120°  C.  and  lower  temperatures,  by  dropping 
powdered  sodium  sulphite  or  metabisulphite,  or 
saturated  solutions  of  these  salts  into  hot  aqueous 
60 — 70%  sulphuric  acid,  to  which  a  small  quantity 
of  antimonious  oxide  has  been  added,  undergoes 
instantaneous  autoreduction  with  formation  of 
hj'drogen  sulphide.  Gaseous  sulphur  dioxide,  the 
solid  hydrate,  or  saturated  solutions  of  sulphur 
dioxide  gave  negative  results. — P.  V.  M. 

Carbon   dioxide;   Hate   of   absorption   of  by 

ammoniacal  solutions.     P.  Riou.     Comptes  rend., 
1922,  175,  472—474. 

The  author  has  investigated  the  rate  of  absorption 
of  carbon  dioxide  by  solutions  of  ammonium 
carbonate  containing  different  proportions  of 
bicarbonate,  and  expresses  his  results  by  diagrams 
showing  velocity  as  a  function  of  concentration 
and  also  of  temperature.  In  the  former,  the  rate  of 
absorption  reaches  a  maximum  and  then  falls  off; 
the  presence  of  bicarbonate  renders  the  action 
considerably  slower.  In  the  latter  increasing 
concentration  of  bicarbonate  in  proportion  to 
carbonate  lowers  the  temperature  at  which  the 
maximum  is  reached. — H.  J.  E. 


Alkali    metal    bisulphites' ;    Equilibria   in    aqueous 

solutions  of .    E.  C.  C.  Baly  and  R.  A.  Bailey. 

Trans.  Chem.  Soc,  1922,  121,  1813—1821. 

The  equilibrium  mixtures  of  air-free  solutions  of 
metabisulphites  or  of  bisulphites  contain  K2S,Os, 
K,  KHS03,  HS03,  and  possibly  S205,  hence  these 
solutions  show  the  absorption  band,  A  =  257^u  of 
metabisulphite.  Such  solutions  are  stable  to  light 
in  absence  of  oxygen,  but  in  the  presence  of  oxygen, 
photo-oxidation  of  the  HS03  ion  occurs,  followed  by 
an  ionic  rearrangement  whereby  normal  sulphate, 
sulphurous  acid  and  hydrated  sulphur  dioxide  are 
produced.  The  solution  then  shows  the  absorption 
band  at  A  =  276^/i  characteristic  of  hydrated  sulphur 
dioxide.  No  isomerism  of  sulphite  molecules  has 
been  detected. — P.  V.  M. 

Nitrites;  Detection  of  .      P.  Falciola.      Gazz. 

China.  Ital.,  1922,  52,  II.,  87—89. 

The  following  reactions  serve  for  the  detection  of 
nitrites.  (1)  Addition  of  sodium  thiosulphate 
solution,  of  about  0'5  N  concentration,  drop  by  drop 
to  an  alkali  nitrite  solution  acidified  with  sulphuric 
acid  yields  a  transitory  yellow  coloration,  more  or 
less  intense  according  to  the  proportion  of  nitrite 
present;  this  reaction  is  perceptible  with  0'0001  N 
nitrite  solution.  With  moderately  concentrated 
nitrite  solution,  use  may  be  made  of  sodium  thio- 
sulphate test-paper,  which  is  dipped  first  into  the 
nitrite  solution  and  then  into  dilute  sulphuric  or 
acetic  acid.  (2)  If  a  litre  of  water  containing 
0'0001%  of  sodium  nitrite  is  treated  with  about 
2  c.c  of  sulphuric  acid  and  then  with  excess  of 
thiocyanate  and  about  0'1  g.  of  ferrous  sulphate,  an 
orange  coloration  is  readily  developed;  if  only 
0'00001  %  of  the  nitrite  is  present,  the  colour 
appears  more  slowly.  Should  pure  ferrous  sulphate 
be  unavailable,  the  water  to  be  tested  may  be 
treated  with  a  pinch  of  thiocyanate,  and  a  small 
glass  tube  containing  a  small  piece  of  iron,  such  as 
a  nail  and  a  little  dilute  sulphuric  acid,  added 
immediately  afterwards ;  the  characteristic  colora- 
tion appears  in  the  neighbourhood  of  the  glass  tube 
df  nitrite  is  present  (cf.  Horst,  J.,  1921,  507  a).  (3) 
Excess  of  aniline  phosphate,  either  solid  or  in 
freshly  prepared  solution  gives  a  yellow  coloration, 
turning  to  reddish,  with  a  0'I%  sodium  nitrite 
solution  and  a  faint  yellow  coloration  with  a  0'01% 
solution ;  the  reaction  is  not  detectable  with  a 
nitrite  solution  of  greater  dilution  than  0'001%. 
Benzene  removes  the  colouring  matter  from  the 
liquid,  and  the  coloration  may  be  distinguished 
from  that  given  by  hydrogen  peroxide  by  means  of 
sulphuric  acid,  which  turns  it  red  or  pink. 

— T.  H.  P. 

Perchlorates ;    Preparation    of    by    heating 

chlorates.  F.  C.  Mathers  and  J.  W.  H.  Aldred. 
Trans.  Amer.  Electrochem.  Soc,  1922,  57—63. 
[Advance  copy.J 

A  yield  of  about  55%  of  potassium  perchlorate  is 
obtained  by  heating  potassium  chlorate  at  480° — 
550°  C,  for  from  30  min.  to  4  hours.  The  actual 
period  of  heating  necessary  is  determined  by  the 
temperature  and  the  quantity  of  chlorate  used. 
No  catalytic  agents  have  been  found  which  will 
increase  the  yield  of  perchlorate;  silver  oxide,  red 
lead,  mercuric  oxide,  and  glass  materially  reduce 
the  yield.  Sodium  chlorate  behaves  similarly,  but 
gives  smaller  yields  throughout. — J.  B.  F. 

Alkali  iodides;  Analysis  of  ■ .     L.  W.  Winkler. 

Pharm.  Zentralh.,  1922,  63,  386—387. 
Commerclal  samples  of  potassium  iodide  were  found 
to  contain  98'6— 996%  of  the  salt,  whilst  the^  purity 
of  samples  of  sodium  iodide  was  97'0 — 99'9%. 

— W.  P.  S. 


Vol.  XIX,  No.  21.] 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


857  a 


Alkali  formates  and  acetates-  Solubilities  of  

in  water.  N  V.  Sidgwick  and  J.  A.  H.  R. 
Gentle.  Trans.  Chem.  Soc,  1922,  121,  1837 — 
1843. 

The  solubility  of  the  formates  and  acetates  of  the 
alkali  metals,  like  that  of  most  salts  of  weak  acids, 
increases  with  the  atomic  weight  of  the  alkali 
metal,  though  the  lithium  salt  is  more  soluble 
than  the  sodium  salt  below  120°  C.  in  the  case  of 
the  formates,  and  at  all  temperatures  in  the  case 
of  the  acetates.  Both  the  sodium  and  lithium 
salts  are  markedly  less  soluble  than  are  those  of 
the  other  alkali  metals.  The  solubilities  of  the 
anhydrous  salts  at  100°  C.  (that  of  potassium 
acetate  is  of  the  hydrated  salt  C2H3OK,iH20),  in 
molecular  percentages,  are: — lithium  formate  317, 
lithium  acetate  34'9,  sodium  formate  29'8,  sodium 
acetate  27'2,  potassium  formate  621,  potassium 
acetate  430,  rubidium  formate  67'4,  rubidium 
acetate  512,  caesium  formate  677,  csesium  acetate 
583.  Hydrates  of  the  formates  and  acetates  of 
lithium,  sodium,  rubidium  and  csesium  and  of 
potassium  acetate  are  described. — P.  V.  M. 

Chromium   trioxide — sulphur  trioxide— water  ;   The 

system  .     L.  F.  Gilbert,  H.  Buckley,  and  I. 

Masson.  Trans.  Chem.  Soc,  1922,  121,  1934— 
1938. 

Bt  measurement  of  the  solubilities  of  chromium  tri- 
oxide at  25°  and  45°  C.  in  sulphuric  acid  of  varying 
concentrations  the  isothermal  diagram  of  the  con- 
densed ternary  system,  chromium  trioxide,  sulphur 
trioxide,  water,  is  shown  to  have  three  distinct 
regions,  each  with  a  minimum  of  solubility.  In  the 
first  region  the  solid  phase  is  chromium  trioxide, 
the  minimum  solubility  0'3%  by  weight,  occurring 
in  70%  aqueous  sulphuric  acid.  In  the  second 
region,  between  85  and  95%  sulphuric  acid,  the 
solid  phase  is  Cr03,S03,  which  above  95%  sulphuric 
acid  passes  into  the  compound,  CrO,,,SOj,H:,0 
characteristic  of  the  third  region.  Both  complex 
compounds  have  small  solubilities,  are  very  hygro- 
scopic and  liberate  scarlet  chromic  oxide  on 
exposure.  They  tend  to  become  amorphous  when 
deposited  from  sulphuric  acid  of  high  concentration 
or  from  fuming  sulphuric  acid.  Equilibrium  is 
attained  slowly,  at  least  several  days  being 
required. — P.  V.  M. 

Chromate  electrolysis  with  diaphragms.  A.  Lotter- 
moser  and  K.  Falk.  Z.  Elektrochem.,  1922,  28, 
366—376. 

Extending  the  work  of  Midler  and  Sauer  (J.,  1912, 
982)  the  authors  have  investigated  the  current 
yields  obtainable  in  the  electrolysis  of  sodium 
chromate  in  diaphragm  cells  of  the  following  types  : 

(1)  With  two  compartments,  (a)  catholyte  NaOH, 
anolyte    Na2CrO, ;    (b)    both   electrolytes   Na2Cr04 ; 

(2)  with  three  compartments,  (a)  catholyte 
NaOH,  in  the  other  two  compartments  Na,Cr04, 
(b)  in  all  compartments  Na2Cr04.  The  yields 
obtained  confirmed  theoretical  considerations.  In 
the  two-compartment  cell,  case  (a),  the  yields  of  bi- 
chromate and  of  sodium  hydroxide  approximated  to 
the  theoretical  18%.  To  some  extent  the  diaphragm 
acts  as  a  third  compartment,  causing  the  yield  of 
bichromate  for  the  first  half  hour  to  be  much 
higher.  In  case  (b)  the  yields  of  both  bichromate 
and  sodium  hydroxide  are  nearly  100%  for  a  time, 
but  soon  fall  off  as  the  migration  velocity  of  the 
OH  ion  comes  more  and  more  into  play.  With  a 
three-compartment  cell  the  best  yield  is  obtained  in 
case  (b)  and  this  is  the  most  favourable  type  for  the 
electrolysis.  Technically,  however,  the  difficulty 
would  arise  of  working  up  the  solution  in  the  middle 
compartment,  in  which  most  of  the  sodium  hydr- 
oxide accumulates  and  from  which  sodium  chromate 
would  have  to  be  separated.     The  paper  concludes 


with  a  mathematical  investigation  of  the  yields 
possible  under  different  conditions. — E.  H.  R. 

Potassium  permanganate;  Properties  of  .     G 

Fester  and  G.  Brude.     Z.  angew.   Chem.,  1922J 

Crystals  of  pure  potassium  permanganate  pre- 
pared in  the  dark  and  in  air  free  from  carbon 
dioxide  and  organic  matter  are  brown  and  have  a 
bronze  metallic  lustre.  The  finely  powdered 
crystals  however  show  a  dark  violet  colour.  When 
exposed  to  subdued  daylight  and  ordinary  air,  the 
surfaces  of  crystals  develop  a  violet  colour  in  a  few 
hours  and  a  steel-blue  lustre  after  two  days.  This 
change  is  confined  to  the  surface  layer,  which  acts 
as  a  filter  protecting  the  remainder  of  the  crystal. 
The  change  is  particularly  rapid  in  an  atmosphere 
containing  mineral  acid.  Potassium  permanganate 
oxidises  paper  and  most  other  organic  substances, 
so  that  the  statement  that  it  is  without  action  on 
litmus  paper  is  untrue. — H.  C  R. 

Hydrogen   peroxide;    Catalysis   of  by    finely 

divided  platinum.  Influence  of  inhibitants 
E.  B.  Maxted.  Trans.  Chem.  Soc,  1922,  121, 
1760—1765. 

The  activity  of  finely-divided  platinum  in  the 
catalysis  of  the  decomposition  of  hydrogen  peroxide 
in  the  presence  of  the  inhibitants,  mercuric  chlor- 
ide, mercuric  nitrate,  and  lead  acetate,  is,  over  a 
wide  range,  a  linear  function  of  the  concentration 
of  the  poison ;  the  curve  is  of  the  same  type  as  that 
representing  the  inhibition  of  the  activity  of  cata- 
lysts for  the  hydrogenation  of  an  ethylene  linkage. 
With  higher  concentrations  of  the  poison  the  inhibi- 
tion of  activity  is  less  abrupt,  the  deviation  from 
the  linear  curve  occuring  when  slightly  less  than 
75%  of  the  original  activity  has  been  suppressed; 
this  corresponds  to  the  presence  of  about  3%  of 
mercuric  chloride,  1%  of  mercuric  nitrate,  and  8— 
9%  of  lead  acetate.  With  the  materials  employed 
the  decomposition  proceeds  approximately  accord- 
ing to  the  unimolecular  reaction  law. — P.  V.  M. 

Arsenic  trichloride;  Solubility  of  in  concen- 
trated hydrochloric  acid  at  100°  C.  W.  D.  Tread- 
well  and  C.  Mussler.  Helv.  Chim.  Acta,  1922, 
5,  818—821. 
The  solubility  of  arsenic  trichloride  in  concentrated 
hydrochloric  acid  at  100°  C.  was  determined  by  an 
indirect  method  consisting  in  measuring  the  rate 
of  volatilisation  of  the  trichloride  in  a  current  of 
gaseous  hydrogen  chloride  from  the  solution  at  100° 
C.  The  solubility  found  was  1003  g.  per  litre.  To 
volatilise  99%  of  the  AsCl3  present  in  100  c.c.  of 
saturated  solution  at  100°  C.  requires  19"8  litres  of 
hydrogen  chloride  gas;  to  complete  the  volatilisa- 
tion to  1  pt.  in  1000  requires  297  litres  of  gas.  {Cf. 
J.C.S.,  Nov.)— E.  H.  R. 

Acetylene    and   nitrogen;    Explosion   of  .    II. 

W.   E.   Garner  and  K.   Matsuno.     Trans.  Chem. 

Soc,  1922,  121,  1729—1736. 
Explosion  experiments  on  mixtures  of  acetylene 
and  nitrogen  with  hydrogen  and  helium  and  of 
acetylene  with  cyanogen  show  that  substitution  of 
hydrogen  or  helium  for  nitrogen  causes  a  marked 
increase  in  the  rate  of  cooling,  while  the  tempera- 
ture of  explosion  is  higher  in  the  presence  of  helium 
than  when  equal  amounts  of  either  nitrogen  or 
hydrogen  are  present.  The  yield  of  hydrocyanic 
acid  is  given  by  the  relation 

[HCN]=K1"[C][N:]0-" 
where  [C]  represents  the  atomic  concentration  of 
carbon  per  litre  of  bomb  volume.  K,"=0079  is 
found  to  hold  for  experiments  previously  reported 
(J.,  1922,  90  a)  and  for  mixtures  containing  hydro- 
gen and  helium.  This  indicates  that  the  yield  of 
hydrocyanic  acid  is  practically  independent  of  the 


853  a 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.        [Nov.  15,  1922. 


partial  pressure  of  the  hydrogen,  being  a  function 
only  of  the  area  of  carbon  surface  and  the  concen- 
tration of  nitrogen.  The  expression  [NH,]  = 
Ka[HCN][H,]  approximately  represents  the  con- 
centration of  ammonia  in  the  explosion  mixture, 
K2  being  decreased  by  the  addition  of  helium  and 
increased  by  the  addition  of  hydrogen  to  the  mix- 
ture. Helium  thus  acts  as  a  negative  catalyst.  The 
acetylene  which  escapes  decomposition  varies  be- 
tween 8%  and  4%  in  the  final  gases.  In  the  experi- 
ments with  mixtures  containing  cyanogen  larger 
amounts  of  hydrocyanic  acid  and  ammonia  were 
formed.— P.  V.  M. 


— .     G.   A. 

Soc.,  1922, 


Carbon  bisulphide;  Manufacture  of  — 
Richter.  Trans.  Amer.  Electrochem. 
219—232.     [Advance  copy.] 

The  furnace  described  consists  of  a  cast  iron  shell 
lined  with  refractory  material  and  fitted  with  water- 
cooled  electrodes  to  which  power  is  supplied  by  a 
2-phase  440-volt  A.C.  line  with  transformers  in  10- 
volt  stages.  The  resistance  bed  consists  of  broken 
arc  light  carbons.  The  sulphur  is  melted  externally 
by  steam  and  fed  into  the  hottest  part  of  the 
furnace  through  a  liquid  seal.  The  charcoal  (willow 
or  birch)  must  be  well  burnt  and  as  dry  as  possible. 
The  carbon  bisulphide  is  condensed  and  washed  with 
water.  This  unit  has  a  capacity  of  1  ton  of  carbon 
bisulphide  per  24  hrs.  with  a  power  consumption  of 
0.5 — 0'7  kw.-hr.  per  lb.  of  washed  material  re- 
covered, and  works  with  an  80%  efficiency  on 
sulphur.  The  thermal  efficiency  is  discussed  in  de- 
tail. The  thermal  balances  for  some  steps  in  the 
complicated  transformation  from  solid  rhombic 
sulphur  to  sulphur  vapour  at  1000°  C.  are 
unknown,  but  making  approximations,  Thomsen's 
value  of  -26,000  cals.  for  the  heat  of  formation  of 
gaseous  carbon  bisulphide  appears  to  be  about  cor- 
rect. Taking  this  figure  the  thermal  efficiency  of 
the  furnace  is  about  31%,  loss  by  radiation  account- 
ing for  another  60%.  This  loss  can  be  reduced  by 
increasing  the  size  of  the  unit,  but  such  increase 
also  raises  the  loss  of  sulphur  by  sublimation. — C.  I. 

Thiocyanates.     Chlorides  and  bromides  in  presence 
of  thiocyanates.    Spacu.    See  XXIII. 

Badioactive  indicators.    Paneth.    See  XXIII. 

Patents. 

Sulphuric  acid;  Process  for  producing  the  effect  of 

the   Glover   tower  in   the   manufacture    of  , 

without  the  use  of  Glover  towers.  T.  Schmiedel. 
E.P.  184,966,  12.7.21. 
In  the  lead  chamber  process,  the  Glover  tower  is 
replaced  by  a  mechanical  apparatus  of  the  type  de- 
scribed in  E.P.  149,647  (J.,  1921,  613  a).  The  gases 
are  cooled  and  freed  from  dust,  the  nitrosylsulphuric 
acid  is  denitrated,  the  chamber  acid  introduced  is 
concentrated,  and  a  greater  part  of  the  sulphurous 
acid  is  converted  into  sulphuric  acid  by  the  direct 
action  of  nitrosylsulphuric  acid  (c/.  E.P.  149,648; 
J.,  1921,  693  a).— J.  B.  F. 

Nitric  acid  purification;  Apparatus  for .   G.  H. 

Tozier,    Assr.    to   Eastman    Kodak    Co.      U.S. P. 
1,429,177,  12.9.22.     Appl.,  24.5.21. 

Ax  apparatus  for  obtaining  pure  concentrated 
nitric  acid  consists  of  a  still,  a  partially  refluxing 
condenser  resistant  to  the  concentrated  acid,  and 
a  complementary  condenser  connected  in  series. 

— T.  A.  S. 

Acids;    Manufacture    of    ■ — — .      W.    0.    SneHling. 
U.S.P.  1,430,035,  26.9.22.     Appl.,  17.7.20. 

A  mixture  of  halogen  gas  or  vapour  and  sulphur 
dioxide  is  exposed  to  actinic  rays  whilst  being 
sprayed  with  an  aqueous  fluid.— D.  F.  T. 


Sulphurous  acid  [sulphur  dioxide"] ;  Process  for  the 

manufacture  of  .     Rhenania  Verein  Cheni. 

Fabr.    A.-G.,    formerly   Verein    Chem.    Fabr    in 
Mannheim.    E.P.  161  581,  9.4.21.    Conv.,  14.4.20. 

A  mixture  of  ferric  oxide  (pyrites  cinder  etc.)  with 
iron  pyrites  or  similar  sulphide  in  the  proportion 
of  1"5 — 3-0  mols.  of  Fe20,  to  1  atom  of  sulphide 
sulphur  is  calcined  at  900° — '50°  C.  with  an  alka- 
line-earth sulphate.  The  excess  of  ferric  oxide 
prevents  loss  of  sulphur  by  sublimation  almost 
completely. — C.  I. 

Ammonium  chloride  [solution];  Treatment  of . 

A.  Riedel.    E.P.  167,769,  10.8.21.    Conv.,  13.8.20. 

Ammonium  chloride  solution  is  rendered  exactly 
neutral  by  allowing  it  to  trickle  over  lumps  of 
calcium  carbonate.  It  can  then  be  handled  in  iron 
vessels  without  corrosion.  If  the  solution  contains 
iron  the  limestone  treatment  causes  precipitation 
of  this  in  a  form  capable  of  removal  bv  filtration. 

— C.  I. 

Sulphate  furnaces;  Mechanically  operated  stirring 

devices    for    .     R.     Moritz.     E.P.     172,006, 

21.11.21.    Conv.,  23.11.20. 
The  teeth  of  the  stirring  device  are  made  of  ferro- 
silicon  containing  12 — 16%  Si.     Such  material  can 
be  cast  into  any  desired  shape,  is  very  hard,  and 
is  refractory  to  acids. — J.  B.  F. 

Compound  and  method  of  producing  same  [by 
means  of  selenium  oxychloridc.  V.  Lenher. 
U.S.P.  1,385,081,  19.7.21.    Appl.,  4.8.20. 

The  patent  covers  the  general  application  of 
selenium  oxychloride,  alone  or  mixed  with  a 
modifying  agent,  e.g.,  sulphur  trioxide,  as  a 
solvent.  Examples  mentioned  are  its  use  for  dissolv- 
ing oxides  of  molybdenum,  selenium,  arsenic,  and 
vanadium ;  for  attacking  or  dissolving  metals  and 
non-metals;  for  reacting  with  or  dissolving  un- 
saturated hydrocarbons  and  separating  them  from 
aliphatic  saturated  hydrocarbons;  for  dissolving 
rubber,  plenol-aldehyde  condensation  products,  etc. 
(C/.  J.,  1922,  158  a,  159  a,  751a). 

Treating  air  and  gases  electrically ;  Method  of  and 

apparatus   for   .     [Oxidation   of    nitrogen.] 

W.  T.  Hoofnagle,  Assr.  to  Electro  Chemical  Pro- 
ducts Co.  U.S.P.  1,388,112,  16.8.21.  Appl.,  6.3.20. 

Air  is  passed  through  a  non-disruptive  electric 
field  and  a  catalyst,  e.g.,  water  vapour,  is  intro- 
duced into  the  reaction  chamber  to  facilitate 
combination  of  nitrogen  and  oxygen.  The 
products  are  passed  through  an  oxidising  chamber, 
and  the  nitrogen  oxides  subsequently  absorbed.  In 
order  to  maintain  a  non-disruptive  discharge  at 
relatively  high  air  pressures,  the  electrodes,  which 
may  be  of  nickel,  are  heated  before  supplying  them 
with  a  high-tension  current,  or  the  discharge  is 
first  produced  between  the  cold  electrodes  in  a 
partially  exhausted  chamber,  and  the  air  pressure 
is  gradually  increased  as  the  electrodes  become 
heated. — J.  S.  G.  T. 

Calcium    cyanamide;    Preparation    of    ammonium 

sulphate    from    crude   .      Bambach    mid  Co. 

G.P.  299,131,  7.2.13. 
Calcium  cyanamido  is  heated  with  sodium 
bisulphate  and  water,  the  residue  filtered  off,  and 
the  liquor  evaporated.  The  proportions  of  the 
reacting  substances  are  so  adjusted  that  the 
solution  contains  more  than  13  pts.  (preferably 
3  pts.)  of  N'a.SO,  to  1  pt.  of  (NHJ,SO.;  on 
evaporation  the  whole  of  the  sodium  sulphate 
crystallises  out,  and  by  further  evaporation  of  the 
mother  liquor,  technically  pure  ammonium 
sulphate  is  recovered  direct.  If  necessary,  sodium 
sulphate  is  added  to  the  solution  before  evapora- 
tion.— C.  1 


Vol.  XU.,  No.  21.1      Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


859  a 


Nitrogen-containing  compounds  [calcium  cyanide}- 

Process   for    making   metal   augmented    by 

gaseous  catalysts.     J.   H.   Reid,  Assr.  to  Inter- 
national Nitrogen  Co.     U.S. P.  1,388,603    23  8  21 
Appl.,  12.9.17. 

A  metal  carbide  associated  with  a  gaseous  catalyst 
(e.g.,  hydrogen  chloride,  carbon  tetrachloride)  is 
exposed  to  the  action  of  nitrogen  and  heat,  the 
temperature  being  maintained  below  that  at  which 
a  metal  cyanamide  is  formed. — H.  R.  D. 

Aluminium  chloride  crystals;  Method  of  preparing 

.       H.     Howard,     Assr.     to     The     Grasselli 

Chemical  Co.     U.S. P.  1,430,449,  26.9.22.     Appl 
6.3.22.  tl    ' 

A  concentrated  solution  of  aluminium  chloride  is 
treated  with  gaseous  hydrogen  chloride,  and  the 
crystals  which  separate  are  freed  from  adhering 
acid  by  washing  with  basic  aluminium  chloride 
solution. 

Insoluble  _     precipitates       [e.g.       of      aluminium 

hydroxide}  ;  Process  for  the  separation  of  

from    solutions.      M.    Buchner.      G.P.    301,332, 
5.6.14. 

Two  solutions  which  on  interaction  yield  an 
insoluble  precipitate,  e.g.  aluminium  sulphate 
and  ammonia,  are  separated  by  a  porous  partition. 
The  precipitated  aluminium  hydroxide  is  thus 
deposited  on  the  partition,  whilst  the  ammonium 
sulphate  diffuses  through.  By  continuous  addition 
of  ammonia  to  the  solution  this  may  be  concen- 
trated until  solid  ammonium  sulphate  separates, 
and  the  process  rendered  continuous.  Metallic 
hydroxides  deposited  in  this  way  are  in  a  granular 
form.— C.  1. 

Separation  of  the  elementary  constituents  of  air 

or  other  gaseous  mixtures;  Process  for  the  . 

[Extraction     of     argon.}     L'Air     Liquide     Soc. 

Anon,   pour  l'Etude  et  l'Exploit.   des  Proc.     G. 

Claude.  E.P.  184,454,  22.7.22.  Conv.,  12.8.21. 
In  the  separation,  e.g.,  of  argon  from  air,  by 
liquefaction  and  rectification,  a  gaseous  mixture 
containing  a  considerable  proportion  of  an 
element  (e.g.,  argon)  of  boiling-point  intermediate 
between  those  of  the  two  main  constituents  of  the 
mixture,  is  withdrawn  from  the  usual  rectifying 
column,  and  a  quantity  of  gas  is  introduced  into 
the  column  substantially  equal  to  that  removed 
and  of  the  same  composition  minus  the  amount, 
extracted  outside  of  the  column,  of  the  element  of 
intermediate  boiling-point  (e.g.,  argon)  or  of  gas 
rich  in  that  element.  The  gases  obtained  by 
vaporising  the  liquid  produced  during  the 
rectification  of  the  gases  removed  from  the  main 
column  may  be  returned  to  the  main  column  and 
the  vaporisation  may  be  utilised  to  effect  the 
rectification.  Alternatively  the  liquid  may  itself 
be  returned  to  the  main  column  at  a  point  below 
that  at  which  the  gases  are  removed. — H.  H. 

Gases;  Process  for  separating  mixed by  centri- 
fugal diffusion.  Process  for  separating  oxygen 
and  nitrogen  from  the  air  by  centrifugal 
diffusion.  R.  F.  Heinrich.  G.P.  (a)  347,601, 
20.12.19,  (b)  354,630,  28.11.20. 

(a)  A  mixture  of  gases  flows  at  high  velocity  and 
under  high  pressure  through  a  stationary  or 
rotating  spiral  system  which  is  provided  with 
porous  walls,  constructed  of,  e.g.,  earthenware,  on 
the  side  having  the  smaller  radius  of  curvature. 
For  example,  if  air  is  passed  through  the 
apparatus,  the  heavier  oxygen  molecules  are 
thrown  by  centrifugal  force  against  the  imper- 
meable wall,  while  the  lighter  nitrogen  molecules 
collect  against  the  permeable  wall,  through  which 
they  diffuse  into  the  atmosphere  or  into  a  collecting 
tube.       (b)     The     diaphragm     in     the     apparatus 


described  in  (a)  is  constructed  of  layers  of  fine  wire 
gauze  with  porous  material,  such  as  kieselguhr  or 
charcoal,  embedded  therein,  the  upper  layer  of  the 
gauze  being  in  the  form  of  a  wire  brush  with  a 
large  number  of  fine  points.  The  diaphragm  is 
connected  with  a  source  of  high-tension  electric 
current  and  the  remainder  of  the  apparatus  is 
earthed.  In  treating  air  in  the  apparatus,  the 
oxygen  of  density  P1056  (air  =  l)  is  converted  into 
ozone  of  density  17,  while  the  nitrogen  is  unaltered, 
the  greater  difference  in  density  increasing  the 
efficiency  of  the  separation.  In  addition,  particles 
of  charcoal  in  the  diaphragm  absorb  a  large 
quantity  of  ozone,  and  this  aids  in  preventing  the 
remainder  of  the  ozone  from  diffusing  through  the 
diaphragm. — L.  A.  C. 

Oxygen;   Aqueous   solutions   containing    a7id 

methods  of  producing  same.  O.  Y.  Imray.  From 
Aquazone  Laboratories,  Inc.  E.P.  185,659, 
13.10.21. 

Compressed  air  under  a  pressure  of  130 — 140  lb. 
per  sq.  in.,  preferably  in  the  form  of  a  jet,  is 
continuously  forced  through  water,  which  is 
agitated,  for  30 — 40  min  the  temperature  being 
kept  about  54°  F.  (12d  C).  The  oxygen  is 
preferentially  dissolved  and  the  product  contains 
more  than  35  c.c.  of  oxygen  per  litre  of  water. 
Containers  are  filled  with  the  product  under 
pressure,  and  hermetically  sealed.  When  the 
pressure  is  released  several  days  elapse  before  the 
whole  of  the  excess  of  oxygen  has  been  evolved. 
The  solution  has  a  powerful  oxidising  action  and 
has  valuable  therapeutic  properties. — J.  B.  F. 

Iodine;  Tablet  for  producing .    L.  Davis,  Assr. 

to  Brewer  and  Co.,  Inc.  U.S. P.  1,429,276, 
19.9.22.     Appl.,  26.11.21. 

A  solid  tablet  which  will  liberate  iodine  on  contact 
with  water  is  compounded  of  potassium  iodide, 
potassium  bromide  and  bromate,  and  urea  nitrate 
or  analogous  compound. — C.  I. 

Hydrogen;     Drying     ■ by     compression     and 

cooling.  Berlin-Anhiltische  Maschinenbau  A.-G. 
G.P.  300,711,  30.8.16. 

Hydrogen  is  compressed,  cooled,  and  dried  prior  to 
storage  in  low-pressure  holders,  the  compressed  gas 
before  cooling  being  passed  through  a  tubular 
heat  exchanger,  through  which,  in  the  opposite 
direction  is  passing  the  compressed  dried  gas 
on  its  way  to  the  expansion  device.  The  holders 
may  be  sealed  with  oil,  glycerin  or  other  liquid 
instead  of  water.  Alternatively  the  gas  may  be 
dried  by  reducing  its  pressure  whilst  it  passes 
through  a  cooling  device  and  before  it  reaches  the 
high-pressure  containers. — A.  B.  S. 

Sulphur;  Recovery  of from  material  contain- 
ing the  same,  especially  spent  gas-purifying 
material.  Badische  Anilin-  und  Soda-Fabr.  G.P. 
357,033,  25.3.19. 

Hot  inert  gases,  such  as  the  products  of  combustion 
of  producer  gas,  are  led  through  a  mass  containing 
sulphur,  e.g.,  spent  gas-purifying  material,  and 
the  issuing  stream  of  gas  is  cooled  to  a  point  above 
the  melting  point  of  sulphur,  whereby  liquid 
sulphur  is  deposited.  A  portion  of  the  gas  is 
subsequently  withdrawn  and  the  remainder  is 
mixed  with  a  fresh  supply  of  hot  gas  and  again 
passed  through  the  material,  or  a  portion  of  the  gas. 
may  be  circulated  repeatedly  through  the  mass 
before  it  is  cooled. — L.  A.  C. 

Sodium  bicarbonate ;  Production  of  — — .  Nitrogen 
Corp.,  Assecs.  of  E.  E.  Arnold  and  P.  St.  Clair, 
jun.    E.P.  159,895,  8.3.21.     Conv.,  11.3.20. 

See  U.S. P.  1,423,510  of  1922;  J.,  1922,  669  a. 


860  a 


Cl.  VIII.— GLASS  ;    CERAMICS.     Cl.  IX.— BUILDING  MATERIALS.       [Nov.  15,  1922. 


Separating     constituents     of     gaseous     mixtures, 

Method  of  .     [Recovery  of  argon  from  air.] 

G.  Claude,  Assr.  to  L'Air  Liquide,  Soc.  Anon, 
pour  l'Etude  et  {'Exploit,  des  Proc.  G.  Claude. 
U.S. P.  1,426,461,  22.8.22.     Appl.,  6.12.17. 

See  E.P.  114,817  of  1917;  J.,  1918,  416  a. 

Sulphur;  Manufacture  of  finely  divided  .     A. 

Mittasch  and  F.  Winkler,  Assrs.  to  Badische 
Anilin-  und  Soda-Fabrik.  U.S. P.  1,429,522, 
19.9.22.     Appl.,  19.8.21. 

See  E.P.  177,103  of  1921;  J.,  1922,  373  a. 

Regulating  the  strength  of  lye.     U.S. P.  1,429,129. 
See  1. 

Gas  purification.    E.P.  185,780.    See  Ha. 

Sludge  acids.    U.S.P.  1,429,140.     See  ILv. 

Concentrating  graphite.     G.P.  356,503.     See  X. 

VIII.— GLASS;  CERAMICS. 

Patents. 

Glass;  Materials  or  receptacles  for  the  handling  of 

molten  .     Naaml.   Vennoots.   Philips'   Gloei- 

lampen  Fabrieken.  E.P.  172,610,  9.11.21.  Conv., 
4.12.20. 

Surfaces  which  come  into  contact  with  molten  glass 
after  its  removal  from  the  furnace  are  constructed 
of  chromium  or  of  alloys  of  chromium  or  aluminium 
with  iron,  cobalt,  or  nickel,  or  other  metals  or  alloys 
characterised  by  high  melting  points,  by  the  absence 
of  the  evolution  of  gas  when  heated,  and  by  the  pro- 
duction of  a  firmly  adhering  coating  of  oxide  or 
oxides  insoluble  in  the  molten  glass.  Thus  an  alloy 
consisting  of  60%  of  iron  and  40%  of  chromium 
may  be  employed. — J.  S.  G.  T. 

Enamelling  processes.  De  Dietrich  et  Die.  E.P. 
165,785,  22.6.21.     Conv.,  5.7.20. 

Economy  of  fuel  is  obtained  by  causing  the  ignition 
of  a  current  of  hot  air  and  purified  producer  gas  as 
the  mixture  enters  the  enamelling  kiln,  combustion 
of  the  gases  being  completed  in  direct  contact  with 
the  articles  to  be  enamelled. — C.  A.  K. 

Mineral  product  for  use  as  an  abrasive,  polish,  and 
the  like.  W.  G.  W.  Sandison.  E.P.  185,578, 
16.7.21. 

A  mineral  (serpentine)  consisting  of  hydrated  mag- 
nesium silicates  and  containing  3 — 5%  of  iron  is 
crushed  and  calcined  until  partial  fusion  occurs. 
The  cooled  material  is  then  crushed  to  the  desired 
degree  for  use  as  an  abrasive.  [Reference  is 
directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of  the 
Patents  and  Designs  Acts,  1907  and  1919,  to  E.P. 
2321  of  1883.]— C.  A.  K. 

Kilns  for  burning  bricks,  tiles,  terracotta  and  the 

like;   Construction  of  .     J.   B.    and   A.    H. 

Jones.     E.P.  185,664,  18.10.21. 

A  group  of  intermittent  kilns  is  connected  by  suit- 
able flues  and  dampers,  so  that  the  hot  gases  from 
the  bottom  of  any  one  kiln  are  conveyed  through  a 
common  interconnecting  flue  to  another  kiln  ready 
for  burning.  The  gases  enter  the  second  kiln  from 
a  peripheral  flue  outside  the  kiln  or  under  the  line 
of  fireboxes;  vertical  flues  placed  between  the  fire- 
places then  convey  the  gases  to  the  upper  part  of 
the  kiln  chamber.  Each  kiln  is  provided  with  a 
direct  flue  to  a  separate  chimney,  so  that  an  alter- 
native method  of  firing  is  possible. — C.  A.  K. 


Sheet  glass;  Method  of  and  apparatus  for  drawing 

.      W.    J.    Mellersh-Jackson.      From    Libbey 

Owens  Sheet  Glass  Co.     E.P.  185,921,  28.7.21. 

Gas-tight     seals     between     metals     and    vitreous 
materials.    E.P.  185,952.     See  IIb. 

IX.— BUILDING  MATERIALS. 

Cements  of  high  strength.     J.  Hendrickx.     Chim 
et  Ind.,  1922,  8,  296—304. 

In  a  study  of  factors  influencing  the  quality  of 
Portland  cement,  viz.,  chemico-physical  composi- 
tion, calcining  and  quenching,  and  fineness  of 
grinding  of  the  calcined  product,  the  author  re- 
commends for  general  practice  a  standard  chemical 
formula  xSiO2,2-5CaO  +  yAl3O„3CaO+Fe2Oa,3Ca0, 
the  silica  modulus  lying  between  2-5  and  T8. 
Physical  structure  can  be  controlled,  less  empiric- 
ally than  heretofore,  by  a  determination  of  "  cal- 
cining capacity  "  :  1  g.  of  raw  mix,  after  partial 
calcining  under  standard  conditions,  should  leave 
a  residue  of  6 — 7"5%  after  treatment  with  acid  and 
alkali  (Le  Ciment,  1920).  A  spectrographical  study 
of  cements  of  high  strength  does  not  show  that  the 
presence  of  small  amounts  of  rare  elements  (e.<7., 
beryllium)  influences  the  strength  as  in  the  case  of 
steels.  Experiments  on  variations  in  the  speed  of 
calcining  and  of  cooling,  and  a  microscopical  study 
of  the  resulting  products,  show  that  greater 
strength  is  obtained  the  larger  the  crystals  in  the 
clinker.  Two  kinds  of  crystals  are  observed,  one 
with  strong  double  refraction ;  the  hydraulic  pro- 
perties of  Portland  cement  are  attributed,  however, 
entirely  to  the  non-birefringent  kind.  Soft  alu- 
minous cement  was  found  to  be  a  mixture  of  two 
crystalline  components — aluminates  and  silicates  in 
a  vitreous  base  of  iron — and  not  aluminates  in  iron 
silicate  as  hitherto  supposed.  Here  the  non-bire- 
fringent crystals  are  identical  with  the  alite  of 
Portland  cement.  A  study  of  tensile  strengths 
under  varying  "  fineness  moduli  "  (i.e.,  sp.  gr.H-wt. 
per  litre  of  crushed  cement)  while  again  emphasis- 
ing the  importance  of  large  crystals,  shows  that  fine 
grinding  of  the  clinker  will  correct  faults  in  the 
less  easily  regulated  processes  of  calcining  and  cool- 
ing. "  Calcining  capacity  "  can  be  improved  in  its 
turn,  thus  increasing  the  output  of  the  kiln  and 
quickening  the  speed  of  calcining. — J.  B.  P. 

Wood;  Impregnation  of  with  mercuric  chlor- 
ide. R.  Nowotny.  Oesterr.  Chem.-Zeit.,  1922, 
25,  102—104. 
In  Kyan's  process  for  impregnating  wood  with  mer- 
curic chloride,  the  wood  absorbs  the  salt  more 
rapidly  than  the  water,  with  a  consequent  fall  in 
the  concentration  of  the  solution.  The  wood  may  be 
steeped  in  a  §%  solution  of  mercuric  chloride, 
and  more  of  the  salt  may  be  added  from  time  to 
time  to  maintain  the  solution  at  this  strength,  but 
equally  good  results  may  be  attained  by  starting 
with  a  0'7%  solution  without  any  further  addition 
of  the  salt.  Absorption  both  of  solution  and  of 
mercuric  chloride  proceeds  rapidly  at  first  and 
later  at  a  diminishing  rate,  but  a  maximum  absorp- 
tion is  not  attained  even  after  a  considerable 
period ;  the  quantities  absorbed,  both  of  solution 
and  of  mercuric  chloride,  are  parabolic  functions  of 
time.  Data  obtained  during  the  treatment  of  pine 
and  fir  wood  are  tabulated.  It  is  desirable  in  prac- 
tice that  all  wood  destined  for  use  for  the  same 
purpose  should  be  impregnated  to  the  same  extent, 
and  thus  it  is  essential  to  take  into  consideration 
not  only  the  initial  concentration  of  the  solution 
and  the  time  of  treatment,  but  also  the  variations 
in  rate  of  absorption  by  different  species  of  wood, 
a  series  of  experiments  showing,  e.g.,  that  fir  and 
pine  must  be  treated  for  10  days  and  7  days  respec- 
tively for  equal  absorption. — L.  A.  C. 


Vol.XLI.,No.2i.]     Cl.  X.-METALS  ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      S61  a 


Patents. 
Composition  for  hard  tennis  courts,  skating  rinks, 
paths,    and   the    like;   Method    of   production   of 

.   A.   D.  Thompson   and  H.   A.    Bird      E  P 

185,838,  10.6.21,  and  2.3.22. 

A  mixture  of  sand,  York  stone  or  other  stone  chip- 
pings  or  cement,  granulated  cork,  shredded  rubber, 
"chromium  oxide  viride,"  and  copper  dust  or 
filings. 

Wooden,  poles  and  the  like;  Process  for  impregnat- 
ing    icith  fluorides,   and   copper,   zinc,   and 

mercury  salts.  H.  Marten.  G.P.  356,902,  14.10.20. 
Wooden  poles,  such  as  telegraph  poles,  are  treated 
with  solutions  of  fluorides,  or  copper  sulphate  or 
zinc  chloride,  until  the  salts  have  penetrated  nearly 
to  the  tops  of  the  poles.  The  poles  are  then,  dn  the 
same  apparatus,  treated  at  the  base  with  mercuric 
chloride  solution  until  it  has  penetrated  through  a 
length  of  about  2  m.  The  portion  of  the  poles  to  be 
embedded  in  the  earth  is  thereby  impregnated  with 
mercuric  chloride,  while  the  portion  exposed  to  the 
air  contains  fluorides  or  copper  or  zinc  salts  as 
preservatives. — L.  A.  C. 

Lime   kilns,  cement   kilns,  and   the.   like;  Furnace- 
drawing  apparatus  for .    C.  Candlot.    U.S. P. 

1,429,925,  26.9.22.    Appl.,  9.S.21. 

See  E.P.  150,994  of  1920 ;  J.,  1921,  697  a. 

prying  apparatus  [for  timber].     E.  C.  R.  Marks. 

Prom    Natural   Air   Dryers,    Inc.      E.P.    186,207, 
22.7.21. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Grey  cast  iron;  Soft  annealing  of  .     E.  Piwo- 

warsky.     Stahl  u.  Eisen,  1922,  42,  1481—1483. 

"A  number  of  annealing  experiments  were  carried 
out  at  various  temperatures  and  for  different 
periods  of  time  on  a  pearlitic  grey  iron  (carbon 
3T8%,  graphite  2'49%,  silicon  2'95%,  sulphur 
0'068%,  phosphorus  0T02%,  manganese  0'63%)  and 
on  this  material  alloyed  with  1%  of  nickel  and  20% 
of  steel  respectively.  Annealing  below  Arl  did  not 
produce  decomposition  of  the  pearlite  in  the  case  of 
the  iron  alloyed  with  20%  of  steel  and  the  rate  of 
decomposition  for  the  other  two  materials  was  not 
sufficient  for  practical  purposes.  In  the  tempera- 
ture interval  between  Arl  and  Acl  the  softening  is 
at  a  rate  sufficiently  high  for  practical  purposes  if 
the  silicon  content  is  high  enough.  Quick  heating 
to  a  little  above  the  Acl  point  with  a  final  cooling 
through  the  Arl  interval  at  a  rate  less  than  1°  to  2° 
per  min.  is  the  surest  means  of  obtaining  quick 
annealing. — T.  H.  Bu. 

Grey     cast    iron;    Determination    of    the    critical 

temperature  for  annealing .    E.  Schiiz.   Stahl 

u.  Eisen,  1922,  42,  1484—1488. 
L\"  pearlitic  grey  cast  iron,  the  phosphide  eutectic, 
unless  segregated,  has  no  practical  influence  on  the 
hardness.  The  influence  of  graphite  on  the  hard- 
ness has  also  been  exaggerated,  the  size  of  the 
graphite  flakes  having  very  little  effect.  On  anneal- 
ing thick  grey  iron  castings  the  separation  of 
ferrite  is  frequently  propagated  from  the  edges  to 
the  centre.  In  experiments  made  to  determine  the 
temperature  at  which  pearlitic  grey  iron  is  decom- 
posed into  ferrite  and  temper  carbon,  the  critical 
range  was  found  to  be  lower  than  is  usually 
accepted.  With  an  annealing  period  of  24  hrs.  the 
decomposition  of  the  carbide  commences  at  500°  C. 
and  is  complete  at  600°  C. ;  for  a  6-hrs.  anneal  the 
action  commences  at  550°  C.   and  is  complete   at 


650°  C. ;  whilst  with  an  annealing  period  of  3  hrs 
the  decomposition  begins  at  575°  C.  and  is  complete 
at  6o0  C.  The  bearing  of  the  results  obtained  on 
the  iron-carbon  diagram  is  considered. — T.  H.  Bu. 

Iron;    Itecrystallisation    of    technical    .       P 

Oberhoffer  and  H.  Jungbluth.     Stahl  u.  Eisen! 
1922,  42,  1513—1519. 

The  relation  between  the  grain  size,  amount  of 
deformation  the  metal  has  undergone,  and  subse- 
quent temperature  of  annealing  has  been 
determined  for  four  samples  of  technical  iron 
containing  up  to  018%  C,  and  the  results  are 
reproduced  on  space  diagrams.  For  all  annealing 
temperatures  above  600°  C.  the  maximum  grain 
size  is  obtained  after  the  metal  has  been  subjected 
to  compression  sufficient  to  reduce  its  height  10%, 
and  the  individual  grains  are  largest  when  such 
metal  has  been  annealed  at  800°  C,  an  average 
grain  size  of  15,000—20,000/^  being  then  obtained 
compared  with  an  original  value  of  less  than  1000/x2. 
The  presence  of  silicon  and  manganese  in  the  metai 
tends  to  decrease  the  maximum  grain  size,  whereas 
ageing  increases  it.  No  relation  between  recrystal- 
hsation  and  pearlite  formation  could  be  found 

—A.  R.  P. 

Iron;  Effect  of  heat  treatment  on  the  hardness  and 

microstructure  of  electrolytically  deposited . 

N.  B.  Pilling.     Trans.  Amer.  Electrochem.  Soc. 
1922,  35—43.     [Advance  copy.] 

The  effect  of  annealing  electro-deposited  iron  was 
observed  at  intervals  of  100°  C.  up  to  950°  C.  The 
original  hardness  of  the  iron  was  unaffected  by 
annealing  up  to  200°  C.  An  increase  in  hardness  of 
more  than  70%  occurred  at  300°  C,  the  maximum 
value  being  reached  between  300°  and  400°  C.  At 
this  stage  the  hardness  (45,  scleroscope)  was 
equivalent  to  that  of  a  P2%  carbon  steel  in  the 
annealed  condition.  Annealing  at  temperatures 
above  400°  C.  produced  progressive  softening, 
interrupted  by  a  slight  hardening  at  900°  C, 
following  the  A3  transformation.  The  needle-like 
striations  in  normal  electrolytically  deposited  iron 
coalesced  into  larger  elongated  grains  at  600° — 
700°  C.  A  considerable  quantity  of  hydrogen  was 
evolved  during  the  annealing  operations  and  was 
assumed  to  be  due  to  an  unstable  compound  of  iron 
and  hydrogen.  Active  evolution  of  hydrogen 
occurred  at  90° C,  but  complete  decomposition  of 
the  iron-hydrogen  compound  was  not  effected  until 
the  A3  transition  point  was  exceeded. — C.  A.  K. 

High-speed  steel;  Shrinkage  and  expansion  of ■ 

due  to  heat  treatment.   M.  A.  Grossmann.    Chem. 
and  Met.  Eng.,  1922,  27,  541—544. 

When  high-speed  steel  (0-65%  C,  18'0%  W,  4"0% 
Cr,  1'0%  V)  was  heated,  quenched,  and  drawn  ;it 
varying  temperatures  there  was  a  regular  trend  of 
the  contractions  and  expansions  (measured  at  room 
temperature)  irrespective  of  the  quenching  tem- 
perature. Increasing  values  for  contraction  were 
observed  when  the  steel  was  reheated  to  1000°  F. 
(540°  C),  followed  by  an  expansion  when  heated 
at  1000°— 1100°  F.  (540°— 590°  C),  above  which 
temperature  contraction  again  set  in.  When  the 
steel  was  drawn  some  change  took  place  up  to 
1000°  F.  (540°  C.),  which  decreased  the  hardness 
due  to  quenching  from  higher  temperatures;  the 
increasing  hardness  after  annealing  at  above 
1100°  F.  (590°  C.)  is  attributed  to  the  appearance 
of  a  new  constituent.  Microscopical  examination 
supports  the  evidence  for  the  existence  of  a  new 
constituent.  By  correlating  the  evidence  it  is 
considered  that  a  secondary  martensite  is  formed 
when  the  steel  is  annealed  at  590°  C,  probably  from 
a  secondary  stable  austenite.  Martensite  II  is  more 
stable  than  the  primary  martensite  formed  on 
cooling  steel,  and  is  decomposed  only  by  subsequent 


SG2  A 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLURGY.     [Nov.  15,  1922. 


heating  at  temperatures  higher  than  1100°  F. 
(590°  C),  which  causes  the  final  contraction  of  the 
.steel  and  its  return  ultimately  to  the  dimensions 
nf  the  annealed  condition. — C.  A.  K. 

Copper;  Electrolytic  refining  of  -.     Separation, 

of  silver  from  argentiferous  slimes.  J.  M. 
Fernandez  Ladreda.  Anal  Fi's.  Qufm.,  1922, 
20,  199—206. 
Argentiferous  slime  from  the  electrolytic  refining 
of  copper,  containing  sulphates  of  iron  and  copper, 
is  roasted  at  such  a  temperature  that  the  copper 
and  iron  sulphates  are  decomposed  and  the  silver 
is  converted  into  silver  sulphate,  which  is  separated 
by  leaching.  The  recovery  of  silver  may  be  made 
more  complete  by  addition  of  potassium  bisulphate, 
copper  sulphate,  and  sulphuric  acid.  The  roasting 
must  be  carried  out  in  an  oxidising  atmosphere  to 
avoid  the  formation  of  cuprous  oxide. — G.  W.  K. 

Zinc;  Effect  of  single  impurities  on  the  electro-de- 
position of  from  sulphate  solutions.     J.  T. 

Ellsworth.  Trans.  Amer.  Electrochem.  Soc, 
1922,  187—202.  [Advance  copy.] 
The  effect  of  6mall  quantities  of  each  of  the  follow- 
ing metals  as  a  single  impurity  in  zinc  sulphate 
cells  was  investigated:  copper,  manganese,  cad- 
mium, iron,  cobalt,  antimony,  and  calcium.  Tests 
on  pure  zinc  sulphate  solutions  showed  that  with 
sufficient  zinc  ions  present,  fairly  high  acidity,  and 
not  too  low  current  density,  an  efficiency  of  90 — 
100%  could  be  reasonably  expected  during  the  first 
24  hrs.  and  of  80—90%  for  the  next  24  hrs.  Anti- 
mony, copper,  and  cobalt  seriously  reduce  this 
efficiency,  and  the  recommended  maxima  for  these 
impurities  are,  07  mg.  per  1.,  10  mg.  per  1.,  and 
12  mg.  per  1.  respectively.  Iron  does  not  affect  the 
efficiency  if  less  than  50  mg.  per  1.  is  present,  while 
cadmium  actually  improves  it,  but  should  not  ex- 
ceed 0-5  g.  per  1.  or  the  deposit  becomes  rough  and 
black.  Manganese  has  no  effect  unless  more  than 
1  g.  per  1.  is  present,  when  it  causes  pitting  and 
eventuallv  the  formation  of  large  holes.  Lime  is 
objectionable  only  when  the  solution  is  nearly 
saturated  with  calcium  sulphate,  which  then  may 
crystallise  on  the  cathode  and  contaminate  the 
deposit. — A.  R.  P. 

Zinc;    Electroplated    and    the    diffusion    of 

electro-deposits  into  zinc.  W.  G.  Traub.  Trans. 
Amer.  Electrochem.  Soc.,  1922,  13—17.  [Advance 
copy.] 
When  copper,  brass,  gold,  or  silver  coatings  are 
deposited  on  zinc  the  coatings  disappear  after  a 
|.»  months.  Experiments  show  that  this  is  due  to 
diffusion  of  the  surface  metal  into  the  zinc  and  may 
be  prevented  by  first  coating  the  zinc  with  nickel 
which  does  not  diffuse  into  it.— A.  R.  P. 

Aluminium;  Simple   crucible  furnace  for  melting 

A.  G.  Lobley.    Trans.  Amer.  Electrochem. 

Soc,  1922,  169—172.  [Advance  copy.] 
A  furnace  suitable  for  melting  and  keeping  molten 
aluminium  for  the  manufacture  of  small  die  cast- 
ings consists  of  a  nichrome  ribbon  resistor  wound 
in  a  helix  and  supported  on  thin  firebrick  shelves 
around,  but  not  touching,  a  fireclay  crucible.  The 
crucible  is  removable  for  renewals  without  disturb- 
ing the  resistor,  and  the  whole  is  insulated  in  a 
brickwork  container  with  kieselguhr.  The  capacity 
of  a  crucible  is  35 — 40  lb.  of  aluminium,  which  is 
melted  by  a  current  of  20  amps,  at  200  volts,  the 
energy  consumed  being  078  kw.-hr.  per  lb.  of 
metal.  This  furnace  showed  a  saving  of  15%  in 
running  expenses  compared  with  a  gas-fired 
crucible  furnace,  and  the  metal  losses  are  con- 
siderably reduced. — A.  R.  P. 


Nickel   deposition;   Application  of    the    contracto- 

■meter  to  the  study  of  .     E.  A.  Vuilleumier. 

Trans.  Amer.  Electrochem.  Soc.,  1922,  159—168. 
[Advance  copy.] 

The  primary  cause  of  the  peeling  of  electro- 
deposited  nickel  seems  to  be  a  tendency  of  the 
deposited  metal  to  undergo  a  contraction  which 
causes  the  deposit  to  bend  towards  the  anode. 
This  may  be  measured  by  depositing  the  nickel  on 
a  thin  platinum  sheet  cathode  and  ascertaining  by 
means  of  the  contractometer  (Kohlschiitter  and 
Vuilleumier,  Z.  Elektrockeni.,  1918,  24,  300)  the 
amount  of  bending.  While  an  increase  in  the  ps 
of  the  solution  causes  at  first  a  more  rapid  bending, 
still  greater  acidity  reduces  it  at  the  same  time  as 
the  cathode  efficiency.  Iron  salts  increase  the 
bending  50%,  but  a  trace  of  zinc  causes  a  marked 
decrease  and  the  deposit  becomes  more  velvety. 
At  times  there  are  delays  and  spurts  in  the  con- 
traction, especially  when  very  little  hydrogen  is 
evolved  at  the  cathode ;  when  much  hydrogen 
is  evolved  the  nickel  expands,  possibly  owing  to 
the  formation  of  nickel-hydrogen  analogous  to 
palladium-hydrogen. — A.   R.  P. 

[Nickel;]  Effect  of  impurities  in  nickel  salts  used 

for  electrodeposition  [of ].     M.  R.  Thompson 

and  C.   T.  Thomas.     Trans.   Amer.   Electrochem. 
Soc.,  1922,  123—138.     [Advance  copy.] 

Small  amounts  of  zinc  in  nickel  sulphate  and  nickel 
ammonium  sulphate  used  for  making  up  plating 
baths  tend  to  cause  the  deposits  to  have  bright 
edges  and  smooth  surfaces,  while  larger  amounts 
cause  the  formation  of  bright  spots  and  tend  to 
increase  pitting,  the  effect  in  each  case  becoming 
more  marked  the  longer  the  deposition  is  continued. 
The  effect  of  zinc  may  be  counteracted  to  a  great 
extent  by  neutralising  the  solution  with  nickel 
carbonate  to  pn  6'7,  filtering,  and  re-acidifying  to 
pn  5'8,  the  electrolysis  being  then  conducted  at  a 
high  current  density  for  some  hours.  Copper,  even 
in  small  amounts,  causes  the  deposits  to  become 
rough  and  somewhat  burred,  and  the  effect  is  more 
marked  the  longer  the  deposition  is  continued. 
The  solution  may  be  purified  in  the  same  manner 
as  in  the  case  of  zinc.  Iron  does  not  seem 
to  have  a  deleterious  effect  on  the  deposits  even 
when  they  contain  as  much  as  7%  Fe.  On  the 
contrary,  the  presence  of  iron  in  deposited  nickel 
makes  the  metal  whiter,  more  finely  crystalline  and 
harder.  The  authors  recommend  that  the  impurities 
in  nickel  salts  used  for  electroplating  should  not 
exceed  005%  Zn,  0"02%  Cu,  0'1%  Fe,  and  0T%  of 
free  sulphuric  acid. — A.  R.  P. 

Current  distribution  and  cathodic  electrodeposition 
upon  surface  cavities  of  bodies  in  electrolytic 
baths.  K.  Arndt  and  O.  Clemens.  Chem.-Zeit., 
1922,  46,  925—926. 
The  distribution  of  current  along  numerous  paths 
from  anode  to  cathode  in  an  electrolytic  bath  is  of 
consequence  in  electrodeposition  upon  uneven 
surfaces,  and  is  especially  marked  in  the  case  of 
electrodeposition  from  solutions  of  gold  and 
potassium  cyanides,  the  deposition  of  gold  upon 
the  side  of  the  cathode  remote  from  the  anode  being 
almost  equal  to  that  upon  the  nearer  side.  The 
authors  have  investigated  the  distribution  of  the 
deposited  metal  upon  the  respective  plates  of  a 
composite  cathode  consisting  of  two  plates  electri- 
cally connected  and  disposed  at  different  distances 
from  a  single  anode,  more  especially  in  the  case  ot 
the  electrodeposition  of  nickel.  The  proportional 
electrodeposition  upon  more  remote  parts  of  the 
cathode  increases  as  the  concentration  of  metallic 
ions  in  the  electrolvte  decreases,  the  resistance  ot 
the  bath  being  unaltered.  A  similar  increase 
accompanies  an  increase  of  specific  conductivity  ot 


Vol.  XLI.,  Ho.  21.]   Cl.  X.— METALS  ;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     863  a 


the  electrolyte,  the  total  content  of  electrolyte  being 
maintained  constant.  The  effect  is  pronounced  in 
cyanide  baths,  as  the  ionic  concentration  of  the 
metal  is  small  owing  to  the  formation  of  complex 
anions.— J.  S.  G.  T. 

Nickel  alloys  which  maintain  their  rigidity  over  a 
wide  range  of  temperature.  P.  Chevenard. 
Comptes  rend.,  1922,  175,  486— 489.  (Cf.  J.,  1920, 
26  a.) 

Alloys  of  nickel  were  6tudied  from  the  standpoint 
of  their  rigidity  at  temperatures  ranging  up  to 
650°  C,  and  a  diagram  is  given  in  which  their 
behaviour  under  test  conditions  is  shown  in  com- 
parison with  that  of  electrolytic  iron  and  of  chrome- 
nickel  steel.  An  addition  of  15%  of  chromium  to 
nickel  raises  by  150°  the  upper  temperature  limit 
of  the  range  within  which  the  metal  remains  rigid, 
but  raising  the  chromium  content  to  226%  gives 
only  a  slight  further  increase.  The  former  propor- 
tion is  found  to  be  more  advantageous,  as  difficulties 
of  manufacture  and  forging  increase  considerably 
with  chromium  content.  The  best  results  were 
obtained  with  nickel  containing  9%  of  chromium 
and  5'8%  of  tungsten;  in  this  alloy  the  nickel  may 
be  replaced  by  ferro-nickeil  of  60%  nickel  content 
without  detriment  to  the  rigidity,  and  the  manu- 
facture of  the  alloy  is  thus  facilitated  and  the  cost 
is  decreased.  The  method  of  determining  rigidity 
was  based  on  measurements  of  a  wire  from  which  a 
weight  was  suspended,  the  wire  being  placed  in  a 
furnace  of  constant  temperature.  Photographic 
records  of  the  stretching  of  the  wire  were  made  and 
the  increase  in  length  was  plotted  as  a  function  of 

)  time.  The  quaternary  alloys  of  iron,  nickel, 
chromium,  and  tungsten  are  tough,  highly  resistant 
to  chemical  action,  and  considerably  more  rigid  at 

I  high  temperatures  than  the  usual  types  of  steel. 

— H.  J.  E. 

Patents. 

[Jrore  and  steel;  Composition  for  use  in  the~\  case 

hardening,  hardening,  and  tempering   [of  ]. 

E.  J.  Dickins.     E.P.  185,564,  6.7.21. 

I A  composition  for  application  to  portions  of  iron 
I  and  steel  articles  which  it  is  desired  should  remain 
I  soft  when  the  article  is  subjected  to  a  hardening  or 
case-hardening  process,  consists  of  a  mixture  con- 
Itaining  56%  of  kaolin,  19%  of  barium  sulphate,  19% 
lof  powdered  silica,  and  6%  of  a  solution  of  sodium 
lUilicateof  sp.  gr.  T2.— A.  R.  P. 

tllron  and  steel  wire;  Solution  for  use  in  drawing 
.    O.  Vogel.    G.P.  299,031,  21.6.16. 

HA.  slightly  acid  solution  of  copper  sulphate  is 
mixed  with  one  or  more  chlorides,  e.g.,  sodium 
:hloride  and  ferric  chloride.    The  iron  or  steel  wire 

lr iis  coated  with  copper  by  immersion  in  this  solution, 
md  after  drawing,  the  copper  coating  is  removed 
py  treatment  with  an  ammoniacal  solution  of 
:opper  sulphate.  By  using  the  mixture  of  salts 
•opper  separates  more  easily  than  from  copper 
.ulphate  alone,  and  the  copper  adheres  better  to 
;  he  wire,  so  that  a  thinner  coating  can  be  used 
han  hitherto. — T.  H.  Bu. 

Aran  and   steel    wires:    Solution   for   use    in    wet 

drawing    of  ,    also   for  pickling.     O.    Vogel. 

i  G.P.  299,032,  31.5.16. 
he  medium  consists  of  two  or  more  suitable 
hlorides,  including  preferably  ferric  chloride,  with 
he  addition  of  sufficient  ammonia  to  produce  a 
ertain  quantity  of  colloidal  ferric  hydroxide.  By 
he  addition  of  ammonia  the  solution  adheres  better 
~>  the  wire  and  its  lubricating  action  is  increased, 
he  composition  of  the  solution  remains  unchanged 
•nd  the  wire  keeps  clean  till  the  end.  When  the 
ilution  is  to  be  used  for  pickling  the  ammonia 
:  omitted.— T.  H.  Bu. 


Ferro-tungsten;    Method  of  purifying  tin-bearing 

.     F.  M.  Becket,     U.S. P.  1,429,272,  19.9.22. 

Appl.,  26.5.20. 

The  comminuted  alloy  is  treated  with  an  aoid 
solvent  for  tin. — C.  1. 

Calorising  metals;    Furnace  apparatus  more  par- 
ticularly adapted  for .    F.H.Rogers.    From 

Calorizing  Corp.  of  America.  E.P.  184,839, 19.4.21. 

In  apparatus  specially  adapted  for  calorising  metals 
(by  heating  with  aluminium  powder  or  the  like  in 
an  atmosphere  of  non-oxidising  gas),  gas  is  de- 
livered to  a  rotary  retort  through  a  pipe  consisting 
of  a  portion  rotating  with  the  retort  and  a 
stationary  portion  connected  with  the  former  by 
means  of  a  gas-tight  joint.  The  non-rotating  part 
is  pivoted  to  the  upper  end  of  a  vertical  support 
so  as  to  permit  of  slight  eccentric  motion  of  the 
retort.  Close  connexion  between  the  non-rotary 
and  rotary  parts  of  the  delivery  pipe  is  maintained 
by  means  of  a  coiled  spring.  The  closing  plates  on 
the  retort  are  arranged  so  as  not  to  be  subjected 
to  any  weight,  this  being  carried  by  flanges  on  the 
retort  resting  on  bearing  rollers. — C.  A.  K. 

Metallurgical    furnace.      C.    C.     Roller.      U.S. P. 
1,429,777,  19.9.22     Appl.,  30.10.20. 

The  down  flue  of  a  metallurgical  furnace  communi- 
cates with  a  tunnel  in  which  are  rails  capable  or" 
being  raised  or  lowered  and  which  support  a  car 
having  a  detachable  body.  By  raising  or  lowering 
the  rails,  the  car  may  be  moved  into  and  out  of 
engagement  with  the  flue,  making  a  joint  therewith. 

—A.  J.  H. 

Furnace ;  Ore-treating  - — — .    C.C.Grimes.    U.S. P. 
1,430,445,  26.9.22.    Appl.,  26.3.19. 

An  inclined  retort  is  heated  by  a  vertical  flue  com- 
municating with  the  bottom  of  the  retort  chamber. 
Within  the  upper  part  of  the  retort  pipe  is  a  per- 
forated fume-collecting  pipe. — C.  I. 

Alloys;  Readily  fusible  .    A.  de  W.  Mulligan. 

E.P.  185,012,  23.8.21. 

Fusible  alloys  possessing  physical  properties  which 
render  them  suitable  for  temperature  indicators  for 
bearings  contain  Sb  0-8—2-5%,  Sn  12—29-6%, 
Pb  12—61  % ,  Cd  6-6—18  % ,  Bi  3—50  % .  The  ratio  of 
the  content  of  tin  to  that  of  antimony  is  12  to  1. 

— C.  A.  K. 

Ores  containing  copper  silicate;  Treatment  of . 

H.  L.  Sulman,  T.  J.  Taplin,  run.,  W.  G.  Perkins, 
and  H.  F.  K.  Picard.  E.P.  185,242,  9.6.,  16.7., 
6.8.,  and  9.12.21. 
Ores  containing  copper  silicate  (chrysocolla)  and 
copper  carbonate  (malachite  and  azurite)  are 
heated,  after  crushing,  at  150° — 400°  C.  and  treated 
with  an  ammoniacal  solvent.  The  heating  process 
reduces  the  copper  without  any  fritting  and  the 
reduced  material  is  obtained  as  a  porous  mass.  The 
reduced  material  may  be  re-oxidised  before 
leaching. — C.  A.  K.. 

Annealing  and/or  other  heat  treatment  of  metals. 
W.  and  C.  A.  Barron.    E.P.  185,277,  8.7.21. 

An  annealing  pot  is  provided  with  a  double  lid 
forming  a  chamber  through  which  a  stream  of  non- 
oxidising  gas  is  passed  during  the  heating  and 
cooling  periods. — C.  A.  K. 

Tungsten  carbides;  Process  for  the  manufacture  of 

without   free   carbon  for   use   as   tools  and 

implements  of  all  kinds.      P.  C.  Rushen.      From 

Akt  -Ges.     B.     Felder-Clement.       E.P.     185,313, 

15.8.21. 

Tungsten  carbides  are  made  best  at  a  temperature 

higher  than  the  temperature  of  formation  of  the 

carbides,    but    this    results    in    the    separation    of 

b2 


8C4  a         Cl.  X.— METALS  ;    METALLURGY,   INCLUDING   ELECTRO-METALLURGY.     [Nov.  15,  1922. 


graphite  during  cooling  (G.P.  289,066  and  286,184; 
J.,  1916,  423;  1915,  1250).  The  free  carbon  is  re- 
moved and  a  coarse  crystalline  structure  prevented 
by  the  addition  of  molybdenum,  molybdic  acid, 
molybdenum  oxide  or  carbide,  to  the  fused  crude 
tungsten  carbide.  The  molybdenum  compound 
volatilises  completely  and  enables  free  carbon  to  be 
removed  with  it,  so  that  it  is  not  necessary  to 
oxidise  all  the  free  carbon  to  its  oxides.  7 — 8%  of 
molybdenum  is  used  for  effective  decarburisation. 
The  fused  tungsten  carbide  is  suitable  for  casting, 
particularly  in  moulds  with  the  use  of  centrifugal 
force  (E.P.  157,756).— C.  A.  K. 

Tin;  Process  for  the  electrolytic  refining  of  . 

W.    P.    Thompson.     From  W.    J.    Aikens.     E.P. 
185,808,  31.5.21. 

A  bath,  suitable  for  the  electrolytic  refining  of  crude 
tin  containing  lead,  is  formed  by  dissolving  tin  in 
a  15'5%  solution  of  hydrofluosilicic  acid  until  4'5% 
of  the  weight  of  solution  in  tin  is  dissolved,  and 
adding  to  the  solution  thus  obtained  0T  to  0'3%  of 
phosphoric  acid  to  precipitate  lead,  and  0'1%  of 
cresylic  acid  to  prevent  the  formation  of  crystalline 
or  hair  growths  on  the  cathode.  Addition  of  0'05 — 
0"01  %  of  glue  to  the  bath  renders  the  deposit  harder 
and  more  compact.  Crude  tin  is  used  as  anode  and 
pure  tin  sheets  as  cathodes. — A.  R.  P. 


Tungsten  or  molybdenum ;  Electrolytic  treatment  of 

metalliferous   materials   containing  .     R.   E. 

Pearson,  E.  N.  Craig,  and  Durelco,  Ltd.  E.P. 
185,842,  11.6.21. 

Tungsten  or  molybdenum  ores  or  waste  products 
are  ground  and  mixed  to  a  paste  with  sulphuric 
acid,  and  the  mixture  is  placed  on  a  lead  plate 
which  forms  the  anode  of  an  electrolytic  cell  con- 
taining dilute  sulphuric  acid.  On  passing  a  current 
through  the  cell  the  basic  impurities,  e.g.,  iron, 
manganese,  calcium  or  sodium  oxides,  in  the 
material  on  the  anode  pass  into  solution,  leaving  a 
residue  of  tungsten  or  molybdenum  oxides.  Alterna- 
tively the  anode  may  consist  of  nickel  or  a  nickel 
alloy,  and  the  electrolyte  of  caustic  soda,  whereby 
soluble  sodium  tungstate  or  molybdate  is  formed 
and  the  foreign  metals  are  left  as  anode  slime.  The 
process  is  applicable  to  the  utilisation  of  scrap 
molybdenum  or  tungsten  metal. — A.  R.  P. 

Copper;  Process  for  colouring .    F.  Laist,  F.  F. 

Frick,  E.  Klepetko,  and  L.  P.  Davidson,  Assrs. 
to  Anaconda  Copper  Mining  Co.  U.S. P.  1,423,170, 
5.9.22.    AppL,  29.11.21. 

Copper  or  bodies  containing  copper  are  subjected 
to  the  action  of  a  concentrated  solution  of  a  copper 
salt.— C.  A.  K. 

Zinc  from  complex  ores;  Process  for  recovering . 

J.  T.  Ellsworth.  U.S. P.  1,429,330,  19.9.22. 
AppL,  12.7.21. 

In  a  cyclic  process  for  extraction  of  zinc  by  a 
solvent  and  deposition  of  the  metal  by  electrolysis, 
the  solution  prior  to  electrolysis  is  concentrated, 
separated  from  the  crystals  formed,  and  diluted 
to  such  an  extent  that  the  concentration  of  the 
soluble  salts  therein  will  be  insufficient  to  produce 
supersaturation  at  any  subsequent  stage  in  the 
cycle.— B.  M.  V. 

Flotation    process;   Differential  .     B.   Stevens. 

U.S. P.  1,429,544,  19.9.22.     Appl.,  8.3.20. 

The  ore  pulp  is  treated  with  a  selective  flotation 
agent  consisting  of  a  substance  which  dissolves  one 
of  tin1  metals  that  is  capable  of  being  floated  and 
which  is  saturated  with  that  metal. — A.  R.  P. 


Ore   concentration,    more    especially    for   purifying 

graphite;  [Flotation]   process  of  .     Elektro- 

Osmose  A.-G.  (Graf  Schwerin  Ges.).   G.P.  356,503 
22.7.19. 

Crushed  ores  are  subjected  to  a  flotation  pro- 
cess in  a  medium  composed  of  a  molten  substance 
of  greater  density  than  water,  and  from  which  gases 
are  evolved,  at  or  above  its  melting  point,  owing  to 
decomposition  or  dehydration.  The  ores  may,  if 
desired,  be  mixed  with  oil  or  be  subjected  to  a  pre- 
liminary oil-flotation  purification  process.  Ga6es 
or  steam  may  be  blown  into  the  molten  material 

—J.  S.  G.  T. 

Ores;  Concentration  of by  flotation.     Elektro- 

Osmose  A.-G.  (Graf  Schwerin  Ges.).  G.P.  356,815, 
6.2.19. 

Ore  pulp  is  agitated  by  means  of  air  in  the  lower 
part  of  a  vessel,  the  upper  part  of  which  is 
covered,  partly  or  wholly,  with  a  sieve  through 
which  the  gangue  particles  are  dispersed,  while  the 
froth  is  withdrawn  over  an  open  rim.  The  level  of 
the  liquor  in  the  vessel  is  maintained  automatically 
so  that  contamination  of  the  froth  with  gangue 
particles  does  not  occur. — A.  J.  H. 

Lead  and  zinc;  Extraction  of .    W.  G.  Waring, 

Assr.  to  G.  Battella.  U.S.P.  1,430,270,  26.9.22. 
Appl.,  17.8.21. 

Ores  containing  lead  and  zinc  are  extracted  with 
a  hot  ammonium  sulphate  solution  to  remove  the 
zinc,  and  the  residue  containing  the  lead  is  treated 
with  an  ammonium  carbonate  solution  containing 
ammonia  equivalent  to  the  sulphur  trioxide  present 
in  the  residues.  Lead  carbonates  are  formed,  and 
an  ammonium  sulphate  solution  containing  zinc. 
The  ammonium  sulphate  solution  can  be  used  again 
for  the  extraction  of  the  zinc. — H.  C.  R. 

Pure  nickel;  Process  for  the  preparation  of  

from  impure  nickel  sulphate.  E.  Giinther.  G.P. 
356,531,  10.4.21. 

A  solution  of  crude  nickel  sulphate  is  treated  with 
sodium  chloride  sufficient  to  convert  all  the  metals 
present  into  chlorides,  and  the  resulting  sodium 
sulphate  is  crystallised  out  by  strongly  cooling  the 
solution.  The  chloride  liquor  so  obtained  is  treated 
with  hydrogen  sulphide  to  remove  the  metals  of 
group  2,  and  the  filtrate  is  oxidised  and  treated  with 
limestone  to  precipitate  iron  and  manganese.  The 
remaining  sulphuric  acid  is  precipitated  with 
barium  chloride  and  from  the  clear  liquor  nickel 
hydroxide  is  precipitated  and  reduced  to  metal, 
which  is  pure  except  for  a  trace  of  cobalt. 

—A.  R.  P. 

Metals;  Treatment  of .    Th.  Goldschmidt  A.-G.. 

und  L.  Schertel.     G.P.  356,532,  16.2.17. 

Materials  containing  volatile  metals  or  metals 
yielding  volatile  oxides  are  subjected  while  in  the 
molten  condition  to  a  blast  of  burning  gas.  Oxida- 
tion of  the  metals  occurs,  the  metallic  oxides  are 
volatilised  and  are  separated,  and  subsequently  con- 
verted into  metal. — A.  J.  H. 

Ores;  Process  for  treating  .     W.  J.  Mellersh- 

Jackson.  From  Soc.  Metalurgica  Chileiia 
"  Cuprum."     E.P.   184,501,   10.2.21. 

See  U.S.P.  1,303,701  of  1919;  J.,  1919,  511a. 
[Reference  is  directed,  in  pursuance  of  Sect.  8,  Sub- 
sect.  2,  of  the  Patents  and  Designs  Acts,  1907  and 
1919,  to  E.P.  172,356.J 

Matte  and  other  materials  and  solutions  containing 

copper  and  nickel;   Treatment   of  .     H.  G. 

Fairweather.  From  N.  V.  Hybinette.  E.P. 
185,859,  15.6.21. 

See  U.S.P.  1,382,361  of  1921;    J.,  1921,  628  a. 


Vol.  XLI.,  No.  21.] 


Cu  XI.— ELECTRO-CHEMISTRY. 


865; 


Lead    alloys.       W.     P.     Thompson.       From     Soc 

Thoumyre  Fils.    E.P.  186,118,  15.6.21. 
See  G.P.  354,978  of  1921 ;  J.,  1922,  767  a. 

Steel   ingot,   and    method   of   and   mould   for  pro- 
ducing same.    Method  and  apparatus  for  casting 
steel    ingots.      E.    C.   R.    Marks.      From    Valley 
Mould    and    Iron   Corp.      E.P.    186,080,    18.3.21 
and  186,093,  20.4.21. 

Carbon  for  hardening  steel  and  iron.     G.P.  357,226. 
See  11b. 

Materials  for  handling  molten  glass.     E.P.  172,610. 
See  Vlll. 

Electrode  for  welding.     E.P.  185,580  and  185,813. 
See  XI. 


XL-ELECTRO-CHEMISTRY . 

Anode  carbons;  Stability  of  .     K.  Arndt  and 

W.  Fehse.     Z.  Elektrochem.,  1922,  28,  376—381. 

A  method  of  estimating  the  graphite  content  of  a 
specimen  of  carbon  consists  in  determining  the 
electrical  resistance  of  the  material,  powdered  and 
carefully  graded,  under  a  definite  mechanical 
pressure,  and  comparing  the  result  with  a  standard 
curve  obtained  from  carbons  of  known  graphite 
content.  The  chemical  resistance  of  the  carbons 
was  determined  by  using  them  as  anodes  in  the 
electrolysis  of  a  solution  of  sodium  chloride  and 
chromate,  and  determining  the  loss  in  weight.  The 
resistance  increases  generally  with  the  graphite 
content,  but  the  highest  resistance  was  shown  by 
a  carbon  containing  75%  of  graphite.  Microscopical 
examination  showed  that  the  structure  of  the 
carbon  must  be  fairly  coarse  and  free  from  cavities, 
and  that  this  condition  is  best  fulfilled  in  specimens 
graphitised  up  to  about  75%. — E.  H.  R. 

Besistor    carbons;    Bcsistivities    of   some    granular 

.     C.  E.  Williams  and  G.  R.  Shuck.     Trans. 

Amer.  Electrochem.  Soc,   1922,  109—121.     [Ad- 
vance copy.] 

Tiie  electrical  resistances  of  granular  varieties  of 
graphite,  carbon,  coal-tar  residue,  coke,  coal,  and 
charcoal  have  been  determined  at  various  tempera- 
tures up  to  1600°  C.  The  samples  were  heated  for 
several  hours  at  1000°  C.  prior  to  being  tested. 
The  difference  of  resistivities  of  the  various  samples 
was  not  large  at  1000° — 1200°  O.  The  temperature- 
coefficient  of  resistance  was  in  all  cases  negative  up 
to  1000°— 1200°  C,  approaching  zero  at  that 
temperature,  and  becoming  positive  at  still  higher 
temperatures.  This  change  was  more  pronounced 
in  graphite  than  in  the  other  forms  of  carbon.  The 
resistivity  increased  as  the  size  of  granule  de- 
creased. High  resistivity  accompanied  the  presence 
of  volatile  matter.  Ash  contained  in  the  granules 
increased  the  contact  resistivity  and  temperature- 
coefficient  only  slightly,  while  the  effect  of  ex- 
traneous ash  or  foreign  matter  of  high  resistivity 
was  very  marked  in  this  connexion. — J.  S.  G.  T. 

Alloys  [used  as  heating  elements'];  Electrical  pro- 
perties of  at  high  temperatures.      M.   A. 

Hunter  and  A.  Jones.  Trans.  Amer.  Electro- 
chem. Soc,  1922,  139 — 158.  [Advance  copy.] 
Materials  used  as  heating  elements  are  divided 
into  two  classes.  The  first,  including  nickel,  copper- 
nickel  and  iron-nickel  alloys,  have  high  specific 
resistances  at  the  operating  temperature  and  are 
suitable  for  use  up  to  500°  C.  The  second,  including 
nickel-chromium,  nickel-iron-chromium,  and  iron- 
chromium  alloys,  in  addition  withstand  oxidation, 
and  are  more  or  less  suitable  for  use  up  to  1100°  C. 
Tables  are  given  of  the  comparative  values  of  the 
specific  resistances  of  the  various  alloys  at  intervals 


of  100°  C.  for  the  range  20°  C— 1000°  C,  and  of 
the  respective  values  of  the  specific  resistances  in 
ohms /mil  foot  at  room  temperature.  The  life  of  a 
nickel-chromium  alloy  is  related  to  its  chromium 
content.  For  temperatures  in  excess  of  1000°  C. 
the  chromium  content  of  the  wire  should  be  as  high 
as  possible.  An  alloy  containing  20%  Cr  is  recom- 
mended as  possessing  the  best  manufacturing  and 
operating  characteristics.  The  resistance  of  a 
bright  wire  increases  on  oxidation  by  3 — 4-5%. 

—J.  S.  G.  T. 

Insulating  compounds ;  Arc  action  on  some  liquid 

.    C.  J.  Rodman.    Trans.  Amer.  Electrochem. 

Soc,  1922,  45 — 56.     [Advance  copy.] 

Restjlts  are  given  of  tests  of  the  electrical  dis- 
ruption of  insulating  liquids  of  low  viscosity  and 
high  fire  and  flash  points,  between  ball  electrodes, 
at  and  below  the  liquid  surface,  the  maximum  dif- 
ference of  potential  employed  being  100,000  volts. 
Among  the  liquids  tested  were  gasoline  (68°), 
various  transformer  oils,  benzol,  monochlorobenzol, 
orthodichlorobenzol,  dichloromethane,  chloroform, 
and  carbon  tetrachloride,  and  mixtures  of  halogen 
compounds  with  mineral  oils.  The  products  ob- 
tained on  disruption  were :  finely  divided,  non- 
conducting amorphous  carbon,  saturated  and 
unsaturated  hydrocarbons  lower  in  the  series, 
hydrogen,  unsaturated  hydrocarbons,  carbon 
monoxide,  methane,  and  ethane,  and  hydrochloric 
acid  in  the  case  of  chlorinated  compounds. 
Increase  of  molecular  weight  in  the  paraffin  series 
was  accompanied  by  a  decrease  of  gas  evolved  per 
kilowatt-sec.  of  arc  rupture.  A  similar  decrease  like- 
wise accompanied  increased  halogenation  of  the  oils. 
The  average  yield  of  gas  from  a  mineral  oil  was 
about  97  c.c,  and  from  a  highly  chlorinated  oil  was 
as  low  as  4'2  c.c.  per  kilowatt-sec,  the  gas  in  the 
latter  case  being  non-explosive  when  mixed  with 
air  in  any  proportion.  Liquid  dielectrics  are 
apparently  broken  down  by  a  temperature-pressure 
effect  of  very  short  duration  rather  than  by  the 
effect  of  high  frequency  alone. — J.  S.  G.  T. 

Corona  effect;  Chemical  reactions  induced  by  the 

in  circuits  traversed  by  continuous  currents. 

C.  Montemartini.     Gazz.   Chim.   Ital.,   1922,   52, 
II.,  96—97. 

Since  the  corona  effect  is  due  to  the  emission  of 
electrons,  the  ga,s  surrounding  the  conductor  pro- 
ducing the  effect  should  be  ionised,  and  the  effect 
should  be  capable  of  inducing  those  chemical 
reactions  which  are  caused  by  discharges  in  rarefied 
gases  or  by  the  dark  discharge.  As  far  as  a  number 
of  these  reactions  (formation  of  ozone,  decomposi- 
tion of  carbon  dioxide,  formation  of  ammonia  from 
nitrogen  and  hydrogen,  etc)  are  concerned,  this 
is  found  to  be  the  case.     {Cf.  J.C.S.,  Nov.) 

— T.  H.  P. 

Chromate     electrolysis.       Lottermoser     and     Falk. 
See  VII. 

Insulating  varnishes.     Weber.     See  XIII. 

Current     distribution     and     cathodic     electro-de- 
position.    Arndt  and  Clemens.     See  X. 

Electrolytic    oxidation    of   isoeugenol.     Lowy    and 
Moore.     See  XX. 

Patents. 
Galvanic  cell.  A.  Heil.  E.P.  173,515,  28.12.21. 
The  carbon  pole  of  a  galvanic  cell  is  surrounded  by 
a  depolariser  consisting  of  manganese  dioxide  or 
hydrated  manganese  dioxide  mixed  with  carbon  or 
graphite.  The  negative  pole  is  of  copper  gauze, 
copper-plated  lead,  or  copper-plated  carbon, 
surrounding  the  depolariser  and  immersed  in  the 
electrolyte,  which  consists  of  dilute  sulphuric  acid 


S66a 


Cl.  XII.— FATS  ;   OILS  ;  WAXES. 


[Nov.  15,  1922. 


together  with  copper  sulphate  and  manganese  sul- 
phate. The  whole  is  contained  within  an  airtight 
lead  oasing.  The  cell  is  free  from  "  gassing"  and 
can  be  used  as  an  accumulator. — J.  S.  G.  T. 

Galvanic  cell  with  electrodes  composed  of  manganese 
dioxide  and  acetylene  soot.  P.  Burger.  G.P. 
357,090,  17.6.21. 

About  5 — 20%  of  graphite  is  mixed  with  the  soot 
incorporated  in  the  electrodes.  The  mixture  can 
be  pressed  into  solid  blocks  sufficiently  porous  to 
soak  up  electrolyte,  and  the  graphite  confers  a 
greater  conductivity  upon  electrodes  made  from  the 
mixture.— J.  S.  G.  T. 

Oxyhydrogen   gas   cell,    employing    fused   alkali  as 

electrolyte.  E.  Baur.  G.P.  357,290,  20.2.21. 
Bell-shaped  metal  vessels  are  used  as  electrodes, 
and  are  closed  below  by  a  mass  of  the  same  metal 
of  large  superficial  area,  in  the  form  of  a  brush  or 
wire  net.  The  gas  flows  over  this  brush  or  net  into 
the  electrolyte.  Gas  leaking  from  the  bell  is  de- 
livered to  a  second  bell  surrounding  the  first,  and  is 
brought  into  heai^exchanging  relation  with  a 
further  supply  of  gas. — J.  S.  G.  T. 

Electric  accumulators  [  ,•  Desulphating ].    W.  O. 

Garbutt.     E.P.  185,797,  11.5.21. 

Sulphated  lend  electrodes  are  desulphated,  after 
removal  of  sulphuric  acid  by  passing  a  current  of 
the  customary  density  and  voltage  between  them 
when  immersed  in  a  solution  of  an  alkali  hydroxide 
or  peroxide  of  sp.  gr.  1T00  or  above,  e.g.,  a  10% 
solution  of  sodium  hydroxide  or  peroxide. 

—J.  S.  G.  T. 

Electrodes  for  arc  welding  and  metal  cutting  and 
process  for  making  the  same.  W.  H.  Boorne.  E.P. 
185,580,  19.7.21. 

The  electrode  consists  of  a  metal  rod  or  core  wound 
transversely  with  a  carbonaceous  fibre  saturated 
with  a  solution  of  sodium  borate  and  covered  by 
means  of  an  extrusion  machine  with  a  coating  of  a 
mixture  of  magnesite,  aluminium,  and  sodium 
silicate  while  the  fibre  is  wet.  The  coating  may 
include  graphite  (not  less  than  98%  of  carbon)  and 
crocidolite  asbestos  or  amosite,  with  or  without 
granulated  magnesium. — T.  H.  Bu. 

[Iron]    welding    rods    or    electrodes   and   soldering  \ 

sticks  [;  Composition  for  coating  — ].     E.  H.  i 

Jones,  and  Alloy  Welding  Processee,  Ltd.      E.P.  ! 
185,813,  3.6.21. 

A  suitable  proportion  of  "  ferro-carbon  alloy  "  con- 
taining 50%  C  and  50%  Pe,  or  of  "  silicon-carbon  " 
alloy  (60%  Si,  35%  C,  and  1;5%  Pe),  or  of  both,  is 
added  to  the  paste  with  which  the  welding  rod  is 
coated,  so  that  the  weld  metal  has  sufficient  carbon 
and /or  silicon  to  give  it  the  characteristics  of  cast- 
iron. — A.  R.  P. 

Electric  furnace.  M.  S.  Clawson.  TJ.S.P.  1,428,489, 
19.9.22.     Appl.,  13.7.20. 

An  electric  furnace  comprises  a  main  supporting 
member  carrying  a  central  member,  and  side  mem- 
bers movable  towards  or  from  the  central  member 
and  mounted  on  pivots.  Resistance  members, 
adapted  to  hold  the  material  to  be  treated,  are 
engaged  between  rotary  heads  mounted  in  the 
central  and  side  members  respectively. — J.  S.  G.  T. 

Electric  conductors;  Method  of  making  [alu- 
minium]     .      J.    Lind.      U.S. P.     1,429,441, 

19.9.22.    Appl.,  26.4.21. 

Aluminium  conductors  are  insulated  by  heating  and 
then  quenching  in  an  aqueous  solution  of  soda. 

—J.  S.  G.  T. 


Electric  resistance   heater  for   high    temperatures. 
B.   Bauer  and  A.   von  Zeerleder,   Assrs.   to  Soc. 


U.S. P. 


and  the 
U.S.P. 


Anon,      des      Ateliers     de      Secheron. 
1,426,245,  15.8.22.     Appl.,  10.12.19. 

See  E.P.  133,706  of  1919;  J.,  1921,  629  a. 

Negative  plate  for  electric  accumulators 
manufacture  thereof.  A.  Pouchain. 
1,429,300,  19.9.22.     Appl.,  22.6.20. 

See  E.P.  161,434  of  1920;  J.,  1921,  550  a. 

Insulating   material;    Treating   peat   for   manufac- 
turing an  .     R.   Graeffe.     U.S.P.  1,429,503, 

19.9.22.     Appl.,  6.1.21. 

See  E.P.  166,856  of  1920;  J.,  1921,  626  a. 

Electrical  dehydrator.    U.S.P.  1,428,178.     See  IL\. 

Ti rating  air  electrically.      U.S.P.  1,388,112.      See 
VII. 


XII.-FATS;  OILS;  WAXES. 

Copra  cake;  Extraction  of  - .     A.  P.  West  and 

J.   M.   Feliciano.     Philippine  J.   Sci.,   1922,   20, 
509—517. 

Copra  cake  was  extracted  with  different  solvents  for 
various  intervals  of  time  in  a  Soxhlet  apparatus. 
Ether,  carbon  tetrachloride,  and  benzene  gave 
approximately  the  same  percentage  extraction. 
Chloroform,  acetone,  and  petroleum  ether  dissolve 
not  only  the  oil  but  also  small  quantities  of  non-fatty 
substances,  while  ethyl  and  methyl  alcohols  dissolve 
a  considerable  quantity  of  the  latter.  By  extract- 
ing copra  cake  with  carbon  tetrachloride  and  after- 
wards extracting  the  oil-free  cake  with  methyl 
alcohol  the  non-fatty  material  was  obtained.  It 
had  a  high  acid  and  saponification  value  and  con- 
tained a  small  percentage  of  nitrogen,  which  is 
possibly  mainly  in  the  form  of  amino-acids. 

— H.  C.  R. 

Fatty  oils;  Polymerisation  of  .     J.  Marcusson. 

Z.   angew.   Chem.,   1922,   35,  543—544.      (Cf.  J., 
1920,  755  a.) 

The  action  of  light  on  tung  oil  in  the  absence  of  air 
causes  the  oil  to  change  into  a  solid  the  melting 
point  of  which  varies  with  the  nature  and  intensity 
of  the  illumination.  The  mass  can  be  separated  by 
treatment  with  acetone  into  a  soluble  fraction,  con- 
sisting mainly  of  unchanged  oil,  and  an  insoluble 
fraction,  which  can  be  purified  by  recrystallisation 
from  hot  acetone,  and  consists  of  /3-elseostearin  (m.p. 
61°  C).  A  small  quantity  of  an  infusible  substance 
which  is  insoluble  in  hot  acetone  and  in  all 
usual  fat-solvents  remains  behind.  The  forma- 
tion of  /3-elaeostearin  by  the  action  of  light  on 
a-elseostearin  is  a  case  of  stereoisomeric  rearrange- 
ment from  the  cis  to  the  trans  form.  If  the 
glyceride  is  exposed  to  the  air  or  illuminated  in  a 
sealed  glass  tube  polymerisation  takes  place,  with 
the  formation  of  the  product  insoluble  in  fat- 
solvents  mentioned  above.  An  acid  can  be  prepared 
from  the  polymerised  substance  having  an  iodine 
value  only  one  fourth  that  of  elseostearic  acid  and  a 
molecular  weight  twice  as  great.  The  formation 
of  /3-elseostearin  causes  the  film  of  dried  tung  oil  to 
be  lacking  in  durability.  This  may  be  overcome  by 
heating  the  oil  to  a  high  temperature  before  using 
it  as  an  ingredient  of  paints  and  varnishes,  as  by 
this  means  it  is  converted  into  polymerised  products 
which  no  longer  give  /3-ela?ostearin  on  exposure  to 
light,  and  a  uniform  and  elastic  film  is  obtained. 
The  films  formed  by  the  drying  of  fatty  oils  contain 
unchanged  oil,  free  fatty  acids  and  oxy  acids,  and 
neutral  polymerisation  and  oxidation  products  both 
in  the  sol  and  gel  form. — H.  C.  R. 


Vol.  XLI.,  No.  21.] 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


867  a 


Pine.  oil.    Sandqvist.     See  XIII. 

Iodine  value.    Liihrig.     See  XIXa. 

Vitamin     which     promotes     calcium     deposition. 
McCollum  and  others.    See  XIXa. 

Patents. 

Vulcanised  oil  product.  W.  O.  Snelling.  U.S. P. 
1,430,034,  26.9.22.     Appl.,  8.8.19. 

A  vulcanised  oil  product  is  obtained  by  treating  a 
fatty  oil  with,  excess  of  sulphur  chloride  and  sub- 
sequently bringing  the  material  into  intimate  con- 
tact with  water. — D.  F.  T. 

Furfural;  Process  for  making  soaps  containing 
.     Aschkenasi.     G.P.  356,437,  27.5.20. 

Furfural  is  dissolved  in  hot  or  cold  solutions  of 
sodium,  potassium,  or  resin  soaps,  or  is  incorporated 
with  soap  shavings.  The  products  do  not  change 
on  keeping,  although  furfural  alone  is  very  easily 
attacked  by  alkalis. — H.  C.  It. 

.Soap  contained  in  the  sludge  of  carbonate  of  lime; 

Process  for  the  removal  of  .      P.    Kxebitz. 

U.S. P.  1,430,017,  26.9.22.     Appl.,  15.6.21. 

See  G.P.  355,492  of  1920;    J.,  1922,  770  a. 

Oil-bearing  materials,  such  as  nuts,  seeds  and 
copra;  Preservation  and  preparation  for  trans- 
portation of ■  [by  compression  in  bulk].  Pre- 
servation and  preparation  for  transportation  of 
cotton  seed.  A.  W.  Mncllwaine.  E.P.  186,133 
and  186,277,   17.6.21. 


XIII.-PAINTS;  PIGMENTS;    VARNISHES; 
8ESINS. 

Varnishes ;  Changes  in  the  electrical  conductivity  of 
[insulating]  — — ■  during  drying.  H.  C.  P.  Weber. 
Trans.  Amer.  Electrochem.  Soc,  1922,  89—96. 
[Advance  copy. J 

Certain  varnishes  used  for  insulating  purposes 
decompose  during  drying  owing  to  oxidation,  with 
the  formation  of  acidic  substances  which  are 
slightly  volatile  and  of  low  electrical  resistance. 
These  may  accumulate  in  certain  parts  of  the 
insulation  and  cause  an  electrical  breakdown.  If 
they  are  allowed  to  volatilise  by  heating  the 
material  during  drying,  the  resistance  increases 
appreciably  and  the  resulting  insulation  is  satis- 
factory.—A.  R.  P. 

Pine  oil  ["  liquid  resin,"  "  polyterpene,"  "  sulphate 
resin  "].  H.  Sandqvist.  Z.  angew.  Chem.,  1922, 
35,  531—533. 

The  oil  is  obtained  as  a  by-product  in  the  manu- 
facture of  wood  pulp  by  the  sulphate  process  from 
pine  wood.  From  pure  pine  wood  45  kg.  of  oil  is 
obtained  per  1000  kg.  of  sulphate-cellulose.  It  is 
of  use  in  the  manufacture  of  detergents  and  for  this 
purpose  is  purified  by  boiling  with  very  dilute 
sulphuric  acid,  drying,  and  distilling  under  slightly 
reduced  pressure  at  260°  C.  with  steam  superheated 
to  360°  C.  About  75%  distils  over  and  16%  of  pitch 
remains  behind  and  can  be  used  as  a  substitute  for 
montan  wax.  The  analysis  of  various  samples 
taken  from  Swedish  factories'  gave  the  following 
results.  Crude  oil  :  Viscosity  (18°  C,  water  =  l) 
717—8,000,000;  sp.  gr.  at  15°/4°  C,  0'977— 1'026; 
water,  0'69— 7'2%  ;  ash,  0'07 — 4'62%,  acid  value, 
107—160;  insoluble  in  ether,  <0T— 4"2%.  Refined 
oil:  Viscosity,  334—4000;  sp.  gr.  at  15°/4°  C,  0'967 
1-001;  acid  value,  146—158-5;  "indifferent 
matter,"  12—19%;  resin  acids,  34—53%,  of  acid 
value  166-5—176;  fattv  acids,  29—51%,  of  acid  value 
189—193.     The  "indifferent  matter"  is  not  quite 


neutral  and  contains  a  substance  of  m.p.  136° — 137° 
C,  similar  to  phytosterol.  The  resin  acids  have 
sp.  gr.  1*104  and  are  coloured  dark  brown.  They 
are  liquid  at  130°  C.  The  fatty  acids  have  a  mean 
sp.  gr.  0'968.  The  liquid  portion  gave  some  stearic 
acid  on  hydrogenation.  The  technical  application  of 
pine  oil  depends  largely  on  the  possibility  of 
separating  the  resinous  and  fatty  acids. — H.  C.  R. 

d-Pimaric   acid   of    m.p.    212°   C;   Preparation    of 

.     E.  Knecht  and  E.  Hibbert.    J.  Soc.  Dyers 

and  Col.,  1922,  38,  221—222. 

J-Piiiario  acid,  of  m.p.  161°  C,  aD=-80°,  when 
exposed  to  the  air  for  prolonged  periods,  or  when 
subjected  to  alkaline  oxidation  is  partially  con- 
verted into  the  d-pimaric  acid,  C-0H30O,  of  m.p. 
212°  C,  aD  =  +62-5°,  described  by  Laurent  Vester- 
berg  and  others.  The  reaction  may  conveniently  be 
carried  out  by  allowing  a  dilute  solution  of  the 
sodium  salt  to  stand  overnight  with  sodium  hypo- 
chlorite solution.  The  crystalline  precipitate  is 
filtered  oif,  dissolved  in  boiling  water,  and  decom- 
posed with  sulphuric  acid.  By  recrystallising  the 
liberated  acid  from  alcohol,  it  is  obtained  in  a  pure 
condition  in  about  10%  yield.— G.  F.  M. 

Polymerisation  of  fatty  oils.    Marcusson.    .See  XII. 

Patents. 

Friction  facing  and  process  of  making  same.     L. 
Kirschbraun.    E.P.  185,809,  1.6.21. 

Friction  facings  are  produced  from  a  mixture  of 
an  incombustible  fibrous  pulp  and  a  phenol  resin, 
which  is  saturated  with  a  binder  and  baked  at  a 
suitable  temperature  for  producing  the  necessary 
strength  and  hardness.  For  example,  asbestos 
pulp  is  mixed  with  about  5%  of  a  comminuted 
soluble  phenol  resin  and  is  then  formed  into  sheets. 
Friction  facings  are  cut  from  these  and  are  calen- 
dered and  sized  in  the  usual  way,  afterwards 
saturated  with  bitumen  of  low  melting  point  (100° 
F.  or  less)  and  then  baked  at  400°— 500°  F.  (204° 
—260°  C.)  for  about  24  hrs.  The  product  has  a 
tensile  strength  greater  than  2000  lb.  per  sq.  in. 
and  a  Brinell  hardness  greater  than  15.  The  hard- 
ness is  dependent  on  the  phenol  resin  used. 

— A.  J.  H. 

Floor  coverings  and  process  of  making  same.     L. 

Kirschbraun.     E.P.  185,816,  6.6.21.    (Of.  U.S.P. 

1,302,810  of  1919;  J.,  1919,  494  a.) 
Floor  covering  is  made  by  passing  a  mixture  cf 
fibrous  stock  and  a  non-adhesive  emulsified  matrix 
over  the  inner  cylinders  of  a  multi-cylinder  paper 
machine,  simultaneously  forming  a  felted  ply  ot 
fibrous  stock  on  an  outer  cylinder  of  the  machine, 
then  drying  and  coalescing  the  pitch  binding 
materiafin  the  inner  plies;  the  pitch  binder  forms 
an  ingredient  of  the  matrix,  which  also  contains 
water,  clay,  sodium  silicate,  and  aluminium  sul- 
phate The  outer  top  ply  is  substantially  devoid 
of  the  pitchy  medium  and  is  coated  with  a  drying 
oil  of  a  different  colour,  providing  a  surface  on 
which  a  design  may  be  printed.— D.  F.  T. 

Coating  materials  and  methods  of  forming  the  same 
British  Thomson-Houston  Co.  From  General 
Electric  Co.  E.P.  185,910,  18.7.21. 
For  the  production  of  a  comparatively  permanent 
coating  resistant  to  ordinary  abrasion,  high  tem- 
perature, water,  and  weak  acid,  e.g.,  for  lamp 
shades  and  reflectors,  kaolin  or  similar  material  is 
peptised  by  means  of  sodium  hydroxide,  an  alkali 
silicate  being  then  added  as  a  binding  agent 
together  with  any  desired  opacifying  or  colouring 
ingredients.  The  mixture  is  applied  to  the  surface 
and  is  then  treated  with  a  fixing  solution  contain- 
ing, for  example,  zinc  chloride  and  aluminium  sul- 


868  a 


Cl.  XIV.— INDIA-RUBBER  ;  GUTTA-PERCHA. 


[Nov.  15,  1922. 


phate,  which  reacts  with  the  alkali  silicate  and 
prevents  subsequent  chemical  action  between  this 
and  atmospheric  carbon  dioxide. — D.  F.  T. 

Coating  composition  and  process  of  making  Ihe 
same.  M.  I.  Strauss.  U.S. P.  1,386,380,  2.8.21. 
Appl.,  18.5.17. 

Shellac  is  dissolved  in  caustic  soda,  the  solution 
filtered,  acidified  with  sulphuric  acid,  and  the  re- 
sulting precipitate  washed,  dried,  and  dissolved  in 
alcohol,  to  yield  a  coating  composition  which,  after 
drying,  is  impervious  to,  and  unaffected  by,  gaso- 
line and  the  like.  Solid  pigments,  such  as  Venetian 
red  or  the  like,  may  be  added  to  the  composition. 

Condensation  product  of  phenol  and  formaldehyde 
unit,  method  of  making  same.  Phenolic  condensa- 
tion product  and  method  of  making  same.  W. 
Achtmeyer.  U.S.P.  (a)  1,429,265  and  (b) 
1,429,267,  19.9.22.     Appl.,  10.3.21. 

(a)  100  pts.  of  phenol  is  condensed  with  100  pts.  of 
40%  formaldehyde  solution  in  30 — 40  pts.  of  hot 
water  containing  3 — 5  pts.  of  sodium  tungstate  and 
9 — 12  pts.  of  sodium  phosphate  in  solution,  and  the 
resinous  product  is  separated  from  the  watery  layer. 

(b)  A  phenolic  substance  is  condensed  with  methyl- 
Miediphenyldiamine. — A.  R.  P. 

Japanese    lacquer;    Process    of    drying    .     Y. 

Shibata   and   Y.    Nishizawa.      U.S.P.    1,429,542, 
19.9.22.     Appl.,  29.3.20. 

A  Japanese  lacquer  preparation  containing  5 — 30% 
of  a  complex  salt  of  metals  and  ammonium  is 
claimed.— A.  R.  P. 

Titanium  complex  [pigment]  and  method  of  pro- 
ducing  same.  H.  H.  Buckman.  U.S.P.  1,429,841, 
19.9.22.     Appl.,  20.12.20. 

Fine  white  titanium  pigments  are  obtained  by  heat- 
ing under  pressure  with  sulphuric  acid  and  water, 
finely  divided  ilmenite  and  barium  sulphate;  after 
the  addition  of  more  water  and  re-heating,  the  solid 
product  is  dried  and  calcined. — D.  F.  T. 

Plastic  product.  W.  O.  Snelling.  U.S.P.  1,430,036, 
26.9.22.     Appl.,  20.10.20. 

A  rosin  ester  is  applied  as  a  substitute  for  chicle. 

— D.  F.  T. 

Zinc-lead  fume;  Treatment  of .    W.  G.  Waring, 

Assr.  to  W.  G.  Battelle.  U.S.P.  1,430,271, 
26.9.22.  Appl.,  17.8.21. 
Zinc-lead  fume  intended  for  use  as  a  pigment  and 
containing  sulphur  is  roasted  at  a  low  temperature 
to  remove  volatile  impurities  and  to  convert  the 
cadmium  into  the  soluble  sulphate,  which  can  be 
removed  by  leaching  with  water. — H.  C.  R. 

Painter's  size ;  Process  for  the  preparation  of . 

F.  Sichel,  Kommanditges.,  and  E.  Stern.     G.P. 
(a)  349,2S0,  7.11.20,  and  (b)  353,568,  29.12.20. 

(a)  The  size  is  made  by  digesting  a  mixture  of 
starch  with  wholly  or  partly  saponified  fats,  resins, 
or  waxes,  with  an  alkaline-earth  hydroxide  and  a 
salt  of  an  alkali  metal  which  reacts  to  form  alkali 
hydroxide.     The  product  is  dried  or  concentrated. 

(b)  Part  of  this  prepared  product  is  added  to  further 
batches  of  raw  material,  and  the  mixture  is  sub- 
jected to  the  above  treatment. — A.  R.  P. 

Plastic  compositions;  Production  of from  solid 

or  semi-solid    acid   tars    or    the    like.     Plauson's 
Forschungsinst.  G.m.b.H.     G.P.  354,539,  6.12.19. 

Acid  tars  or  the  like  are  treated  at  80°— 160°  C., 
under  atmospheric  or  increased  pressure,  with 
aldehydes  in  the  presence  or  absence  of  phenols 
and /or  condensation  accelerators,  such  as  sulphuric 
or  hydrochloric  acid,  or  starch.     The  products  are 


either  treated  with  organic  solvents  to  extract  con- 
stituents suitable  for  use  in  the  manufacture  of 
lacquers,  or  are  used  as  plastic  compositions.  In 
the  manufacture  of  the  latter,  sawdust  is  either 
added  to  the  acid  tar  or  mixed  with  the  condensa- 
tion product,  or  sawdust  may  be  impregnated  v/ith 
extracts  of  the  condensation  product,  and  subse- 
quently mixed  with  the  insoluble  residue  remaining 
after  extraction. — L.  A.  C. 


XIV.-INDIA-RUBBER;  GUTTA-PEBCHA. 

Caoutchouc ;  Hydrogcnation  of and  its  consti- 
tution. H.  Staudinger  and  J.  Fritschi.  Helv. 
Chirn.  Acta,  1922,  5,  785—806. 

Purified  plantation  rubber  was  completely  hydro- 
genised  by  treatment  with  hydrogen  in  presence  of 
platinum  at  270°  C.  and  about  100  atm.  With  a 
nickel  catalyst  complete  hydrogenation  could  not 
be  obtained  under  these  and  even  more  severe  con- 
ditions. The  hydrogenated  rubber  has  the  compo- 
sition (C3H10)n'and  behaves  towards  bromine  as  a 
saturated  compound.  It  forms  a  colourless 
amorphous  mass,  without  the  elastic  properties  of 
rubber  but  retaining  its  colloidal  properties;  it 
forms  colloidal  solutions  in  benzene,  ether,  and 
chloroform,  but  is  insoluble  in  alcohol  and  acetone. 
It  is  attacked  by  bromine  in  sunlight,  forming  a 
brominated  compound  resembling  rubber.  The 
hydro-caoutchouc  must  be  regarded  as  a  high- 
molecular  paraffin  hydrocarbon  with  so  large  a 
molecule  that  CnH2n+2  is  practically  equivalent  to 
C„H2n.  It  is  unattacked  by  vulcanising  agents. 
This  supports  the  view  that  the  vulcanisation  of 
rubber  is  a  purely  chemical  process  due  to  combina- 
tion of  the  vulcanising  substance  with  the  rubber 
at  the  double  bonds,  and  not  an  adsorption  phe- 
nomenon. The  distillation  of  both  rubber  and 
hydro-caoutchouc  in  a  high  vacuum,  0T  to  0'3  mm., 
was  studied.  The  latter,  being  a  saturated  sub- 
stance, needs  a  higher  temperature  than  rubber. 
The  products  obtained  from  rubber  were  isopreue, 
dipentene,  a  hydrocarbon,  C15Ha4,  containing  two 
double  bonds,  probably  a  hydrogenated  naphthalene 
derivative,  and  hydrocarbons  C2aH32  and  C25H40. 
The  decomposition  products  from  hydro-caoutchouc 
had  the  composition  (CsH}0)n,  the  lowest  obtained 
being  a  pentene  and  the  highest  C50H100.  All  these 
observations  are  in  agreement  with  the  theory  that 
the  rubber  molecule  consists  of  isoprene  molecules 
condensed  in  a  chain  of  the  following  type  :  — 
CH3  CH3 

. .  •CH!iCHa.C=CH.CH! CH2.C  =  CH.CH2CHS..  .etc. 

The  vertical  dotted  lines  indicate  where  splitting 
of  the  molecule  may  occur.  Rubber  separated  from 
latex  by  means  of  acetone,  then  extracted  with  a 
mixture  of  chloroform  and  acetone,  and  hydro- 
genated gave  the  same  results  as  plantation  rubber. 
(C/.  J.C.S.,  Nov.)— E.  H.  R. 

Bubber  latex;  Experiments  to  preserve .  H.  P. 

Stevens.     Bull.  Rubber  Growers'  Assoc,  1922,  4, 

457—458. 
Ammonia,  sodium  fluoride,  sodium  silicofluoride. 
"Agrisol  A"  and  "  Agrisol  B"  (cresol  prepara- 
tions) were  found  to  be  satisfactory  preservatives; 
the  three  last-named,  however,  were  used  in  con- 
junction with  caustic  soda,  which  itself  exerts  a 
marked  effect.  Ammonium  carbonate,  pyridine, 
sodium  carbonate,  formalin,  sodium  sulphite,  Izal, 
carbolic  acid,  and  cresylic  acid  (the  three  last  with 
alkali)  were  unsatisfactory.  Ammonia  is  effective 
when  added  in  the  proportion  of  J  oz.  of  concen- 
trated solution  to  one  quart  of  latex,  but  it  is 
advisable  to  use  twice  this  quantity;  the  proportion 


Vol.  XII,  Ko.  21.]    Cl.  XV.— LEATHER  ;    BONE,  &c.     Cl.  XVI.— SOILS  ;    FERTILISERS. 


S69a 


of  caustic  soda  used  was  2£  pts.  of  "  saturated 
solution"  to  100  pts.  of  latex,  but  a  much  smaller 
proportion  would  probably  suffice.  For  some  manu- 
factures preservation  with  the  volatile  ammonia 
may  be  advantageous,  but  for  the  majority  of 
purposes  latex  preserved  with  caustic  soda  would  be 
just  as  good.— D.  F.  T. 

Patents. 

Cellular  [rufcber]    material;  Process   of  producing 
.    K.  H.  Fulton.     E.P.  185,477,  25.5.21. 

A  mixture  of  raw  rubber,  sulphur  or  other  vulcan- 
ising agents,  and  finely  divided  charcoal  is  shaped 
into  the  desired  form  and  treated  under  high 
pressure  in  a  jacketed  vessel  with  an  inert  gas 
such  as  nitrogen,  whereby  the  gas  is  occluded  in  the 
particles  of  charcoal  without  changing  the  size  of 
the  mass.  While  still  under  pressure,  the  material 
is  vulcanised  and  subsequently  cooled  by  the  admis- 
sion first  of  steam  or  hot  water,  and  then  of  a 
cooling  medium  into  the  outer  jacket.  The  pres- 
sure is  then  reduced  to  1  atm.,  and  the  material  is 
again  heated,  whereby  the  occluded  gas  is  liberated 
from  the  particles  of  charcoal,  causing  the  mass  to 
swell  and  assume  a  cellular  structure.  A  hard 
cellular  material  is  prepared  by  using  Para  rubber 
and  an  excess  of  sulphur,  and  only  carrying  the 
vulcanisation  at  first  to  the  stage  at  which  a  soft, 
cellular  rubber  is  formed,  this  being  subsequently 
hardened  by  further  heating,  e.g.,  in  a  press  if 
smooth  boards  suitable,  e.g.,  for  lining  refrig- 
erators are  required.  In  the  manufacture  of  tyre 
fillers  and  the  like,  the  original  mixture  contains 
balata  in  addition  to  Para  rubber,  and  fibrous 
filaments  run  through  the  material  from  end  to 
end  to  facilitate  contact  between  the  gas  and  the 
charcoal.  The  final  heating  is  performed  with  tin- 
tyre  mounted  on  a  rim. — L.  A.  C. 

Vulcanised  oil  product.   U.S. P.  1,430,034.  See  XII. 


XV.-LEATHER ;  BONE;  HORN;  GLUE. 

Formaldehyde-tanned  leather:    Chroming  of  . 

E.  Griliches.  Collegium,  1922,  199—201. 

The  adsorption  of  chromium  by  hide  is  not  appreci- 
ably affected  by  a  preliminary  treatment  with 
formaldehyde.  It  was  much  higher  with  normal 
chromium  sulphate  than  with  basic  chromium  solu- 
tions. The  acidity  of  chrome  tanning  liquors  was 
much  higher  after  chroming  formaldehyde-treated 
leather  than  after  direct  chrome  tannage.  The 
amount  of  acid  taken  up  by  the  formaldehyde- 
tanned  leather  as  compared  with  pelt  showed  a 
decrease  of  19 — 31%.  The  results  confirm  the 
results  of  Stiasny  and  Gerngross  (cf.  J.,  1920,  730  a) 
on  the  diminution  in  the  absorption  of  acid  by 
formaldehyde-treated  hide  powder. — D.  W. 

Patents. 

Tanning  preparation.    J.  K.  Tullis,  Assr.  to  Fulcra 
Tan  Co.    U.S. P.  1,430,477,  26.9.22.  Appl.,  25.3.20. 

A  tanning  material  consists  of  a  solution  of  com- 
mercial quebracho  extract  in  the  acidulated  light 
liquor  from  the  sulphite  digesters  used  in  paper 
pulp  manufacture,  the  acidity  being  produced  by 
a  sulphonic  acid. — W.  C. 

Tanning  process.     F.  Wayland.     U.S.P.  1,430,479, 
26.9.22.    Appl.,  22.11.20. 

The  grain  is  separated  from  the  nerve  layer  of  a 
raw  hide  and  held  in  a  taut  condition  while  being 
subjected  to  the  action  of  a  tanning  reagent  for 
converting  it  into  leather. — W.  C. 


Gelatin;    Extraction,    of  .      C.    Collard.     E  P 

166,896,  23.7.21.  Conv.,  24.7.20. 
Gelatin-  is  extracted  from  osseine  by  heating  it  with 
water  in  a  number  of  digesters  connected  in  series 
with  one  another  at  their  upper  ends  by  pipe  con- 
nexions each  having  two  taps;  a  heater  is  con- 
nected with  the  bottom  of  each  digester  and  with 
the  upper  connecting  pipe  at  a  point  between  the 
taps.  The  osseine  is  extracted  in  each  digester  by 
thermo-siphon  action  until  a  certain  degree  of  con- 
centration is  attained  and  the  liquor  is  then  trans- 
ferred to  the  next  digester. — D.  W. 

Tanning    process.      L.    and    G.    Dufour.      U.S.P. 
1,429,851,   19.9.22.     Appl.,  28.3.21. 

See  E.P.  125,362  of  1919;  J.,  1920,  165  a. 


XVI.    SOILS;    FERTILISERS. 

Kaolin;    Decomposition    of    by     organisms. 

W.    J.    Vornadsky.      Comptes    rend.,    1922,    175, 
450—452. 

Silicious  diatoms  accompanied  by  a  large  number 
of  bacteria  were  placed  in  contact  with  clay  in  a 
nutritive  medium  (free  from  silicon)  contained  in 
-  vessel  the  interior  of  which  was  lined  with 
paraffin  wax.  It  was  found  that  the  development 
of  the  organisms  was  associated  with  the  forma- 
tion of  hydrated  aluminium  oxide,  whereas  in  the 
control  experiment  no  chemical  change  in  the  clay 
could  be  detected.  The  author  suggests  that  this 
decomposition  of  silicate  plays  a  considerable  part 
in  natural  processes. — H.  J.   E. 

Microbiological  analysis  of  soil  as  an  index  of  soil 
fertility.  I.  The  mathematical  interpretation 
of  numbers  of  micro-organism.-,  in  the  soil.  S.  A. 
Waksman.     Soil  Sci.,   1922,    14,  81—101. 

The  reliability  of  bacterial  counts  when  only  2  or  3 
plates  are  used  is  small.  Large  numbers  of  plates 
should  be  used  and  the  limit  of  error  calculated. 
The  dilutions  used  for  counting  bacteria  are  too 
high  for  the  counting  of  fungi.  About  1/ 100th 
dilution  should  be  used  for  the  latter  and  a  special 
acid  medium  is  necessary.  More  than  one  sample 
of  soil  should  be  taken  and  a  composite  sample 
drawn  from  among  the  field  samples.  A  scale  of 
relative  reliability  based  on  the  number  of  samples 
drawn  and  the  number  of  plates  made  is  suggested. 

—A.  G.  P. 

Micro-organisms  in   soil;  Tentative  outline   of   the 

plate  method  for  determining  the  number  of . 

S    A.  Waksman  and  E.  B.  Fred.    Soil  Sci.,  1922, 
14,  27—28. 

The  standard  method  of  enumerating  soil  micro- 
organisms suggested  by  the  Society  of  American 
Bacteriologists  is  outlined.  The  media  included 
are  albuminate-agar,  caseinate-agar,  and  soil  ex- 
tract-agar-gelatin.  The  reaction  of  the  medium  is 
to  be  adjusted  to  about  pH  6'8  or  6'5  after  sterilisa- 
tion. From  5  to  10  plates  for  each  dilution  per 
sample  are  recommended,  and  the  number  of 
colonies  per  plate  counted  should  be  between  50  and 
150.  The  incubation  temperature  is  28°— 30°  C, 
except  for  gelatin;  and  the  period,  8 — 10  days  for 
bacteria,  14  days  for  actinomycetes,  and  2 — 3  days 
for  fungi  on  synthetic  media. — A.  G.  P. 

Legume  bacteria;  Movement  of in  soil.    W.  C. 

Frazier   and  E.   B.   Fred.     Soil   Sci.,    1922,    14, 

29—36. 
From  a  study   of  soya  beans   inoculated   and  un- 
inoculated  with  the  legume  bacteria,  and  grown  in 
close  proximity,  it  is  concluded  that  the  organisms 
move  extremely  slowly  or  not  at  all  in  soil. 

—A.  G.  P. 


870  a 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[Nov.  15,  1922. 


Soil  colloids;  Influence  of  on  availability  of 

salts.  N.  B.  Gordon  and  E.  B.  Starkey.  Soil 
Sci.,  1922,  14,  1—7. 
The  adsorption  of  calcium  and  potassium  salts  by 
silica,  iron,  and  alumina  gels  was  investigated.  The 
amount  adsorbed  increased,  within  limits,  with  the 
concentration  of  the  salt  solution.  Iron  and 
alumina  gels  have  a  considerably  greater  adsorp- 
tive  power  than  silica  gels.  Adsorbed  salts  are  very 
slowly  removed  from  the  gels  by  washing.  The 
adsorption  of  calcium  and  potassium  ions  increases 
with  increasing  pH  values  of  the  solutions.  With 
the  phosphate  ion  the  reverse  in  the  case.  Change 
of  ps  value  produces  considerably  greater  adsorp- 
tion changes  with  potassium  salts  than  with 
calcium  salts. — A.  G.  P. 

Nitrate  nitrogen  and  pn  values  of  soils;  Variation 

of    from    the    nitrogen    availability    plots. 

A.  W.  Blair  and  A.  L.  Prince.  Soil  Sci.,  1922, 
14,  9—17. 
Plots  which  had  received  various  fertiliser  treat- 
ments were  examined  periodically  for  nitrates  and 
pK  values.  The  variation  of  ps  value  due  to  fer- 
tilisers was  very  small  on  limed  plots,  but  consider- 
able where  lime  was  lacking.  Limed  plots  gave 
consistently  higher  pK  values  than  the  unlimed. 
Ammonium  sulphate  produced  the  lowest  pK 
values  in  both  series.  The  plot  having  the  lowest 
pK  value  showed  the  greatest  lime  requirement  by 
the  Veitch  method,  whilst  6oils  with  pH  7  showed 
no  lime  requirement.  Nitrate  figures  were  at  their 
lowest  immediately  after  the  removal  of  crops,  and 
were  always  higher  on  the  unlimed  plots,  but  there 
was  no  correlation  between  the  nitrate  figures  and 
the  crop  yields.  Soils  sufficiently  acid  to  inhibit 
the  growth  of  ordinary  farm  crops  had  very  con- 
siderable nitrate  contents.  Nitrification  decreased 
with  temperature.  Excess  of  available  nitrate 
caused  "  lodging  "  of  grain  crops. — A.  G.  P. 

Fertility  of  rice  soils;  Possible  correlation  between 

the and  their  titration  curves.   O.  Arrhemus. 

Soil  Sci.,  1922,  14,  21—26. 

Attempts  to  correlate  the  productivity  of  rice  soils 
and  their  hydrogen  ion  concentrations  were  unsuc- 
cessful. Titration  of  soil  extracts,  however,  showed 
that  those  soils  which  possessed  the  greater  buffer 
capacity  were  the  more  productive.  Buffer  capa- 
city was  measured  directly  by  the  amounts  of  acid 
or  alkali  which  a  soil  could  take  up  without  appre- 
ciable alteration  in  pa  value. — A.  G.  P. 

Pock  jihosphate ;  Composting  with  sulphur  in 

slightly  alkaline  calcareous  soils.      W.  Rudolfs. 
Soil  Sci.,  1922,  14,  37—59. 

The  conditions  governing  the  oxidation  of  sulphur 
in  soils  and  the  subsequent  solution  of  added  rock 
phosphate  have  been  examined  with  a  view  to  the 
commercial  utilisation  of  the  process.  In  a  cal- 
careous soil  the  oxidation  of  sulphur  proceeded 
normally,  and  the  solution  of  the  phosphate  was 
not  retarded.  Increased  temperature  of  incubation 
increased  the  rate  of  oxidation  and  solution  of 
phosphate,  and  in  a  calcareous  soil  the  influence  of 
temperature  was  much  more  evident  when  large 
amounts  of  soil  were  used.  Light  was  slightly 
detrimental  to  the  sulphur-oxidising  organisms; 
bacterial  activity  was  stimulated  by  small  amounts 
of  sulphuric  acid,  and  by  sodium  carbonate  in  a 
calcareous  soil  poor  in  organic  matter.  In  a  richly 
organic  soil  sodium  carbonate  had  no  stimulating 
effect.  Sodium  bisulphate  solution,  acetic  acid, 
ferrous  sulphate,  and  aluminium  sulphate  failed  to 
act  as  stimulants  to  the  organisms;  and  sodium 
chloride,  and,  to  a  less  extent,  hydrochloric  acid 
retarded  their  activity.  Partial  sterilisation  of  the 
soil  had  no  beneficial  effect.  The  amount  of  soil 
used  may  be  reduced  to  1*6 — 1*7%,  and  ammonium 


sulphate  may  be  used  to  replace  the  bulk  of  cal- 
careous soil  poor  in  nitrogen.  The  use  of  sulphur 
in  quantities  comparable  to  the  amount  required 
in  the  commercial  manufacture  of  superphosphate 
gave  good  results.  The  addition  of  sulphurous  acid 
to  produce  an  acid  reaction  at  the  commencement 
of  the  process  considerably  increased  the  rate  of 
oxidation.  Aeration  of  the  mixture  increased  the 
rate  of  reaction,  but  too  much  air  caused  it  to 
cease  almost  entirely.  The  hydrogen  ion  concen- 
tration at  the  completion  of  the  process  reached 
pn  3'1— 2'9,  but  the  titratable  acidity  increased 
after  this  point  was  reached.  The  mixtures  tended 
to  form  aggregates  which  varied  in  acidity  and  in 
available  phosphate  content  according  to  their 
size.— A.  G.  P. 

Potato  scab;    Influence  of  soil  reaction  upon  the 

growth    of  actinomycetes   causing   .      S.    A. 

Waksman.    Soil  Sci.,  1922,  14,  61—79. 

Actinomyces  scabies  will  grow  in  acid  soils  up  to 
pp  values  of  5'0 — 5'2,  with  occasional  strains  sur- 
viving at  pH  4/8.  The  saprophytic  soil  aetino- 
mycetes are  more  resistant  than  strains  of  A. 
scabies.  It  is  possible,  by  treating  soil  with  sulphur 
inoculated  with  Thiobacillus  thiooxidans.  to  increase 
the  acidity  sufficiently  to  control  the  growth  of 
A.  scabies. — A.  G.  P. 

Cobalt  and  nickel  in  plants.  Bertrand  and 
Mokragnatz.     See  XLXa. 

Patents. 

Lime-nitrogen  [crude  calcium  cyanamide~\  process 
and  product.  J.  M.  A.  Stillesen.  U.S.P. 
1,386,445,2.8.21.  Appl.,  8.8.11.  Renewed  30.11.17. 

Crude  calcium  cyanamide  is  treated  with  water  and 
then  with  carbon  dioxide  to  convert  the  free  lime 
into  basic  or  normal  calcium  carbonate.  To  avoid 
risk  of  decomposition  of  the  calcium  cyanamide  by 
the  heat  of  the  reaction,  solid  or  liquid  carbon  di- 
oxide is  preferably  used,  the  heat  evolved  in  the 
union  of  lime  and  carbon  dioxide  being  thus  counter- 
acted by  the  heat  absorbed  in  the  vaporisation  and 
expansion  of  the  carbon  dioxide. 

Fertiliser  material  and  process  of  producing  same. 
A.  P.  Hoffman.  U.S.P  1,428,633,  12.9.22.  Appl., 
23.4.18. 

A  fertiliser  material  containing  basic  ferric 
sulphate  and  organic  matter  is  precipitated  from 
acid  coal  mine  water  by  partial  neutralisation. 

— T.  A.  S. 

Fertiliser;    Treatment    of    calcium    cyanamide   for 

production  of  a  .     Bambach  und  Co.  Chem. 

Ges.m.b.H.  G.P.  300,022,  30.12.13.  Addn.  to 
299,131. 
A  solution  of  sodium  ammonium  sulphate,  pre- 
pared as  described  in  the  original  patent  (cf. 
p.  858  a),  is  treated  with  superphosphate,  so  as  to 
produce  a  solution  of  sodium  ammonium  phosphate, 
which,  on  evaporation,  yields  a  fertiliser. 

—A.  B.  S. 


XVII.-SUGA8S ;  STARCHES;  GUMS. 

Beet  juice;  Action  of  lime  on  the  protein  substanc.s 

separated    during    the   defecation   of   .     V. 

Stanek.  Z.  Zuckerind.  Czechoslov.,  1922,  16, 
663—669,  671—676. 
Raw  beet  juice  was  limed  and  heated,  and  the 
effect  of  this  treatment  on  the  proteins  thus  prj- 
cipitated  was  studied.  It  was  found  that  under 
the  conditions  of  liming  in  practice,  about  11%  of 
the  precipitate  may  pass  into  solution,  but  part 
will     be     re-precipitated     on     carbonating.       This 


Vol.  XLI.,  No.  21.] 


Cl.  XVIII.— FERMENTATION  INDUSTRIES. 


871. 


hydrolytio  action  of  lime  was  found  to  result  in  the 
formation  of  albumoses,  peptones,  and  polypep- 
tides, but  it  was  not  possible  to  isolate  amino- 
aeids.  Decomposition  products  of  lecithin,  e.g., 
glycerophosphoric  acid  and  choline,  were  detected. 
Betaine  could  not  be  identified. — J.  P.  O. 

Sucrose;  Correction  for  the  volume  of  the  lead  pre- 
cipitate when  using  basic  lead  nitrate  as  clarify- 
ing agent  in  determination  of .    C.  Sijlmans. 

Archief  Suikerind.  Nederl.-Indie,  1922,  30,  517— 
520.     Int.  Sugar  J.,  1922,  24,  496. 

In  the  method  of  operating  the  double  polarisation 
method  recently  described  (J.,  1921,  863  a),  in 
which  lead  nitrate  followed  by  sodium  hydroxide  is 
employed  for  clarification,  a  considerable  precipitate 
is  produced,  for  which  it  is  necessary  to  make  an 
allowance.  This  is  done  by  making  two  polarisa- 
tions, the  new  method  of  clarification  being  applied 
in  both,  but  a  determined  amount  of  sucrose  added 
in  the  second.  In  this  way  the  volume  of  the  lead 
precipitate  was  found  to  amount  to  3'2  c.c.  per 
100  c.c,  causing  the  result  in  the  case  of  molasses 
to  average  about  1'26%  too  high. — J.  P.  O. 

Sucrose;  Estimation  of  in  presence  of  other 

sugars  by  means  of  the  hydroxides  of  the  alkaline 
earths.  A.  Behre  and  A.  During.  Z.  Unters. 
Nahr.  Genussm.,  1922,  44,  65—70. 

Sucrose  is  estimated  by  heating  the  material  (20  g.) 
with  12  g.  of  lime  and  50  c.c.  of  water  for  1  hr.  at 
60° — 80°  C.  Other  sugars  are  thus  destroyed  and 
the  sucrose  is  determined  poilarimetrically.  Barium 
hydroxide  (4  g.)  may  be  substituted  for  the  lime, 
but  in  this  case  heating  for  2  hrs.  under  a  reflux 
condenser  is  necessary.  With  a  200-mm.  polari- 
meter  tube  the  sucrose  content  is  given  by  the 
formula  Px 075x5.— A.  G.  P. 

Sucrose,  dextrose,  lazvulose,  and  invert  sugar;  Rela- 
tive sweetness  of .    N.  Deerr.    Int.  Sugar  J., 

1922,  24,  481. 

'     Solutions  of  various  sugars  were  diluted  until  they 

had  the  same  sweetness  as  that  of  a  10  %  solution  of 

'     dextrose.     The  following  results  for  relative  sweet- 

I    ness   were  thus  obtained :    sucrose,    100 ;   dextrose, 

60;    laevulose,    120;    and    invert     sugar,  95.       The 

'    difference  between  this  result  for  invert  sugar  and 

,    that  obtained  by  Sale  and  Skinner  (J.,  1922,  776  a) 

i     may  be  due  to  the  different  concentration  at  which 

the  liquids  were  tasted. — J.  P.  O. 

Glucose-ammonia  and   iso-glucosamine;   Crystalline 

.     A.  R.  Ling  and  D.  R.  Nanji.     Chem.  Soc. 

Trans.,  1922,  121,  1682—1688.  (Cf.  J.,  1922, 
151  T.) 

The  crystalline  compound  obtained  by  the  action  of 

I'    ammonia  on  dextrose  in  methyl  alcoholic  solution  is 

|j    glucose-ammonia,  and  is  identical  with  the  product 

i    obtained  in  aqueous  solution  (loc.  cit.).     It  melts  at 

123°— 124°  C,  and  has  [o]D  =  +20-3°.     It  gives  all 

the  reactions   of   an   aldehyde-ammonia,    including 

the  formation  of   a   primary   amine   on    reduction, 

glucamine  being  produced  when  a  solution  in  95% 

methyl  alcohol  is  subjected  to  cathodic   reduction. 

Further  confirmation   of  the  structure  of  glucose- 

I    ammonia    was    obtained     by    condensing    it    with 

formaldehyde  sodium  bisulphite,  when  an  w-sodium 

sulphonate, 

HO.CH2.[CTI(OH)]1.CH(OH).NH.CH2S03Na, 
was   formed.      On    recrystallising    glucose-ammonia 
1  from  methyl  alcohol  it  loses  1  mdl.  of  water  with  the 
formation  of  isoglucosamine,  m.p.  127° — 128°  C. 

— G.  F.  M. 

Starch;  New  depolymerisatinn  product  of .    A. 

Pictet  and  R.  Jahn.     Helv.  Chim.  Acta,  1922,  5, 

640— C44. 
Wi 

1 


When  potato  starch  is  heated  in  glycerin  at  200° — 


210  C,  until  a  sample  no  longer  gives  a  colour  with 
iodine,  a  new  compound  is  formed  which  can  be 
isolated  by  distilling  off  the  glycerin  under  2—4 
mm.  pressure,  dissolving  the  residue  in  water,  and 
precipitating  with  alcohol.  The  product,  to  which 
the  name  trihexosan  is  given,  has  the  formula 
(C,H10O5)3,  and  forms  a  white,  amorphous,  slightly 
hygroscopic  powder,  [a]D  =  +162-2°  in  water.  It 
does  not  reduce  boiling  Fehling'e  solution,  is 
hydrolysed  by  hot  dilute  sulphuric  acid  to  glucose, 
and  forms  a  nonoacetyl  derivative, 
[C.HA^H.O),],, 
m.p.  153°— 154°  C.  It  is  not  identical  with  either 
of  Pnngsheim's  triamyloses  (J.,  1913,  985).  The 
existence  of  this  compound  supports  the  view  that 
the  starch  molecule  contains  C0H,„Os  units  com- 
bined in  groups  of  three. — E.  H.  R. 

Patents. 
Sugar  manufacture;  System  of  pan  boiling  in  

by  using  an  auxiliary  storage  tank.   T.  C.  Jacobs. 

In  part  from  H.  M.  Jacobs.  E.P.  185,707,  30.3.22. 
An  auxiliary  tank  is  connected  with  the  vacuum 
pan  system  in  a  sugar  factory  and  means  are  pro- 
vided for  the  automatic  transfer  of  the  whole  or 
part  of  the  contents  of  any  vacuum  pan  to  the 
auxiliary  tank  for  treatment  by  stirring  or  other- 
wise keeping  it  in  motion  while  it  is  gradually  cool- 
ing and  for  the  automatic  transfer  of  the  virgin 
grain  in  the  tank  to  any  vacuum  pan  requiring 
"  footing  "  for  massecuites.  This  enables  vacuum 
pans  to  be  supplied  with  virgin  grain  which  would 
otherwise  be  idle. — H.  C.  R. 

Sugar  juices;  Process  for  purifying  by  filtra- 
tion and  il Plantation.  F.  Tiemann.  U.S. P. 
1,430,200,  26.9.22.     Appl.,  6.7.21. 

See  E.P.  161,987  of  1921;  J.,  1921,  633  a. 


XVIII.-FERMENTATI0N    INDUSTRIES. 

Amylases  of  the  cereal  grains.  The  "  insoluble  " 
amylase  of  barley.  J.  L.  Baker  and  H.  F.  E. 
Hulton.  Chem.  Soc.  Trans.,  1922,  121,  1929—1934. 

The  water-insoluble  amylase  of  barley  which  is 
liberated  by  proteolytic  action  is  associated  with 
the  alcohol-soluble  group  of  proteins  (hordein), 
since  papain  liberated  amylase  from  the  water- 
extracted  residue,  and  from  the  residue  after  salt 
extraction  (globulin-free  material),  but  not  from 
the  residue  from  which  hordein  had  been  removed 
by  alcohol.  Since  no  amylase  could  be  obtained  ty 
the  action  of  papain  on  isolated  hordein,  nor  from 
barley  which  had  been  boiled  or  heated  to  120°  C, 
it  is  concluded  that  the  enzyme  was  p  re-existent 
in  the  barley  as  an  insoluble  enzyme  complex,  and 
is  not  a  cleavage  product  of  some  non-amylolytic 
protein.  Amylase  liberated  by  papain  invariably 
exhibits  only  the  characteristic  properties  of  the 
soluble  amylase  of  barley,  and  no  light  is  there- 
fore thrown  on  the  appearance  of  the  charac- 
teristic malt  amylase  during  the  germination  of 
barley.— G.  F.  M. 

Methyl    alcohol;    Detection   of   in    alcoholic 

drinks.      J.    F.    A.    Pool.       Pharm.    Weekblad, 
1922,  59,  973—979. 

The  method  of  Trillat  and  Wolff  (J.,  1900,  565), 
namely  oxidation  with  bichromate,  shaking  with 
dimethylaniline,  and  oxidation  of  the  aldehyde- 
aniline  condensation  product  with  lead  peroxide,  is 
capable  of  detecting  1  pt.  of  methyl  alcohol  added  to 
2000  pts.  of  various  wines  and  spirits;  about  the 
simc  sensitiveness  is  obtained  by  the  method  of 
P'endler  and  Mannich  (J.,  1905,  1128),  viz,  oxidation 
with  permanganate  after  distillation,  and  addition 
of  morphene  hydrochloride  in  strong  sulphuric  acid 


872  j 


Cl.  XIXa.— FOODS. 


[Nov.  15,  1922. 


solution.  Of  200  samples  tested  by  these  two 
methods,  none  showed  methyl  alcohol  except  in 
those  cases  in  which  it  was  added  purposely.  Methyl 
alcohol  does  not  reduce  permanganate  more  quickly 
than  ethyl  alcohol,  as  generally  stated;  this  is  true 
only  of  wood  spirit,  which  contains  aldehydes  anil 
other  reducing  agents. — S.  I.  L. 

Yeasts  from  butter.    Sandelin.    Sec  XIXa. 


XIXa.— FOODS. 

Wheat    gluten.      J.    Gerum   and    C.    Metzer.      Z. 
Unters.  Nahr.  Genussm.,  1922,  44,  86—89. 

Experiments  are  described  which  throw  doubt  on 
the  existence  of  a  stable  insoluble  compound  of 
protein  and  phosphoric  acid  in  wheat  gluten.  (C/. 
Levy,  Z.  Unters.  Nahr.  Genussm.,  1910,  19,  120.) 
In  the  preparation  of  gluten  from  flour,  tempera- 
ture and  amount  of  washing  have  little  influence 
on  the  yield  or  physical  properties  of  the  protein. 
The  greater  part  of  the  phosphorus  in  flour  is 
washed  out  during  the  separation  of  the  gluten. 
The  maximum  amount  of  phosphorus  retained  by 
the  gluten  was  22%  of  the  total.  By  mixing  rye 
with  wheat  flour  the  phosphorus  in  the  gluten 
prepared  from  it  was  decreased.  Fineness  of 
milling  also  causes  a  reduction  in  the  phosphorus 
content  of  the  gluten.  In  mixed  rye  and  wkoat 
flours  the  yield  of  gluten  decreases  parallel  with  its 
phosphorus  content.  The  ratio  of  phosphorus  to 
nitrogen  in  gluten  from  pure  wheat  flour  varies 
within  certain  limits  and  decreases  proportionally 
to  the  amount  of  added  rye  flour.  If,  instead  of 
rye,  neutral  indifferent  substances  are  added  to 
wheat  flour,  the  yield  of  gluten  and  its  phosphorus 
content  appear  to  depend  on  the  physical  properties 
of  the  added  material. — A.  G.  P. 

Wheat  gliadin;  Bate  of  hydrolysis  of .    H.  B. 

Vickery.    J.  Biol.  Chem.,  1922,  S3,  495—511. 

Results  are  given  of  a  large  number  of  experiments 
in  which  measurements  were  made  of  the  rate  of 
hydrolysis  of  gliadin  by  acids  of  various  concen- 
trations and  also  by  alkalis.  Hydrolysis  both  of  the 
amide  nitrogen  and  of  the  peptide  linkages  proceeds 
more  rapidly  the  higher  the  concentration  of  acid. 
In  the  early  stages,  alkalis  are  more  effective  than 
acids.  Owing  to  secondary  decompositions,  how- 
ever, considerably  larger  quantities  of  ammonia  are 
liberated  by  alkalis  than  by  acids.  Hydrolysis  is 
more  rapid  with  barium  hydroxide  than  with 
sodium  hydroxide  of  equivalent  concentration. 

— E.  S. 

Maize  flour;  Biochemical  reaction  of  stale .    J. 

Vintilesco   and  M.   Haimann.     Bui.   Soc.   Chim. 

Romania,  1922,  4,  17—20.     Chem.  Zentr.,   1922, 

93,  TV.,  765—766. 
Commercial  maize  flour  always  has  a  slightly  rancid 
taste  and  its  behaviour  on  testing  by  Vintilesco  and 
Popesco's  reaction  with  haemoglobin  and  guaiacum 
tincture  (J.  Pharm.  Chim.,  1910,  12,  318)  for  rancid 
fats  indicates  that  the  rancidity  is  due  to  oxidation 
of  the  unsaturated  fatty  acids,  which  are  present 
to  a  greater  extent  in  maize  than  in  wheat.  Freshly 
milled  maize  flour  and  samples  that  have  been  kept 
in  the  dark  in  well-sealed  vessels  give  a  negative 
result  with  this  test.  If,  however,  the  flour  is 
exposed  to  the  air,  whether  in  sunlight  or  in  the 
dark,  the  reaction  becomes  positive  after  a  few 
days.  The  oil  extracted  from  the  flour  with  petro- 
leum spirit  reacts  in  the  same  way  as  the  flour 
itself.  That  from  the  fresh  flour  had  an  iodine 
value  of  119,  while  that  from  the  flour  after  several 
days'  exposure  to  the  air  had  an  iodine  value  of  102. 
Wheaten  flour  contains  an  oxidase  which  colours 


guaiacum  tincture  in  the  absence  of  haemoglobin, 
and  the  test  is  therefore  inapplicable. — H.  C.  R. 

Water  in  meat  sausages;  Detection  of  added . 

S.  Holzmann  and  J.  Deininger.  Z.  Unters.  Nahr 
Genussm.,  1922,  44,  81—86. 

The  method  of  Feder  (Z.  Unters.  Nahr.  Genussm., 
1913,  25,  577)  for  the  determination  of  added  water 
in  meat  products  was  examined,  and  attempts  were 
made  to  curtail  the  routine  estimation  of  water,  fat, 
and  ash,  and  the  subsequent  calculation  of  added 
water.  The  meat  ash  (free  from  eodiuni  chloride) 
was  found  to  be  uniformly  4 — 5%  of  tho  non-fatty 
organic  matter.  Sodium  chloride  may  be  estimated 
by  extracting  the  shredded  meat  (5  g.)  with  50  c.c. 
of  distilled  water  for  J  hr.  on  a  water  bath  and  for 
5  mins.  over  a  free  flame.  The  extract  is  neutralised 
and  chlorides  estimated  volumetrically.  A  reliable 
figure  for  total  mineral  matter  may  be  obtained  ly 
adding  to  the  sodium  chloride  thus  obtained,  4 — 5% 
of  the  non  fatty  (protein)  nitrogen.  In  a  series  of 
tests  the  non-fatty  organic  matter  of  meats  was 
found  to  approximate  fairly  closely  to  the  protein 
figures  as  determined  by  the  Kjeldabl  method. 
Cases  of  divergence  may  be  due  to  changes  in  the 
character  of  the  protein  during  digestion  and  the 
consequent  invalidation  of  the  protein  factor  6'25. 
Added  water  in  meat  preparations  cannot  be 
estimated  with  very  great  accuracy  by  calculation 
based  merely  on  an  estimation  of  water  and 
nitrogen,  and  in  cases  of  dispute  it  is  advisable  to 
carry  out  the  Feder  method  in  its  entirety. 

—A.  G.  P. 

Butter  and  other  edible  fats;  Semi-microcltemical 
determination  of  water,  fat,  and  sodium  chloride 

in  .     H.  Liihrig.      Pharm.   Zentralh.,   1922, 

63,  505—508. 

For  the  determination  of  water  the  Perplex  method 
is  employed,  using  an  ordinary  analytical  balance 
and  small  aluminium  beakers  with  lip  and  handle 
or  small  porcelain  casseroles.  About  1  g.  of  butter 
or  margarine  is  used  for  each  test.  In  the  case 
of  margarine  the  danger  of  spirting  is  reduced  by 
adding  a  little  coarse  pumice  powder.  The  whole 
determination  only  takes  5 — 6  min.,  and  very  close 
agreement  is  obtained  between  the  tests  and  in 
comparison  with  other  methods.  The  fat  is  deter- 
mined by  extracting  the  residue  in  the  beaker  after 
the  water  has  been  boiled  off,  with  anhydrous  ether 
and  filtering  the  extract  into  a  weighed  50  c.c. 
conical  flask,  distilling  olf  the  ether,  and  heating  to 
constant  weight  in  a  current  of  air  in  an  oven. 
The  residue  after  extraction  of  the  fat  is 
extracted  w-ith  lukewarm  water  and  washed  on  the 
same  filter  as  that  used  for  the  ether  extract.  The 
sodium  chloride  is  determined  in  an  aliquot  part 
of  the  filtrate  by  titration  with  silver  nitrate  m 
the  usual  way,  the  concentration  of  the  silver 
nitrate  being  such  that  1  c.c.  =1  mg.  Cl.  All  three 
determinations  can  be  carried  out  in  about  1  hr. 

— H.  OP. 

Yeast  types  isolated  from  butter;  Action  of on 

the  constituents  of  mil!;.  A.  E.  Sandelin.  Ann. 
Acad.  Sci.  Fennicae,  1922,  A  19,  [3].  Chem. 
Zentr.,  1922,  93,  III.,  838. 

Various  types  of  yeast  isolated  from  butter  (cf. 
Ann.  Acad.  Sci.  Fennicae,  Series  A,  12,  No.  6)  were 
examined  with  regard  to  their  action  on  the  various 
constituents  of  milk  both  when  grown  alone  and  in 
mixed  cultures  with  Streptococcus  lactis.  All  the 
yeasts  used  were  Torulce  according  to  Hansen's 
classification  with  one  exception,  which  was  a 
Mycoderma.  The  yeasts  could  be  divided  into 
groups  according  to  their  aetion  on  tho  constitu- 
ents of  milk.  No  type  was  found  to  act  on  all  the 
constituents  of  milk — fat,  sugar,  and  casein. 

— W.  H.  G. 


Vol.  XLI.,  No.  21.] 


Cl.   XIXa.— FOODS. 


873  a 


"Cyclon";  Absorption  of  by  different  food- 
stuffs. [Detection  of  hydrocyanic  acid.']  J.  D. 
Jausen,  W.  Schut,  and  M.  Wagenaar.  Chem. 
Weekblad,  1922,  19,  373—375. 

Various  foodstuffs  left  exposed  during  the  fumiga- 
tion of  a  liner  were  found  to  contain  up  to  700  mg. 
HCN  per  kg.,  the  greatest  absorption  being 
found  for  meat  and  water,  and  nothing  detectable 
in  coffee  and  mustard.  The  analyses  were  based 
on  colorimetric  determinations  by  means  of  phenol- 
phthalein,  which  is  regenerated  from  the  colourless 
reduction  product  by  hydrocyanic  acid  in  presence 
of  copper  acetate.  The  reaction  will  detect  O'OOl 
mg.  HCN.— S.  I.  L. 

Boric  acid  in  shrimps;  Estimation  of .     W.  M. 

Deems.     Chem.  Weekblad,  1922,  19,  397—400. 

Ik  the  estimation  of  boric  acid  in  foodstuffs  by  the 
usual  method  the  presence  of  phosphates  causes 
incorrect  results.  To  estimate  the  error  arising 
through  the  presence  of  phosphates,  shrimps  were 
mixed  with  a  known  quantity  of  boric  acid  and 
sodium  bicarbonate,  dried,  and  ignited  in  a  muffle. 
The  ash  was  lixiviated  with  water.  The  solution 
was  acidified  with  a  few  drops  of  hydrochloric  acid 
and  boiled  in  a  flask  fitted  with  a  reflux  condenser 
for  20  mins.  The  solution  was  neutralised  with 
baryta  and  the  last  traces  of  acid  removed  by  a 
solution  of  potassium  iodide  and  iodate.  The  boric 
acid  was  then  titrated  with  potassium  hydroxide 
free  from  carbon  dioxide  in  presence  of  mannitol. 
In  a  series  of  experiments  too  much  boric  acid  to 
the  extent  of  0'40— 0"53%  was  indicated.  The 
amount  of  phosphates  in  shrimps  is  0"4 — 0'6%.  The 
analysis  of  shrimps  to  which  no  boric  acid  had  been 
added  gave  an  indication  of  the  presence  of  0'59 — 
0*57%  of  boric  acid.  To  avoid  the  error  due  to  phos- 
phates, after  ignition  and  treatment  with  hydro- 
chloric acid,  a  solution  of  ferric  chloride  was  added 
and  the  liquid  neutralised  with  chalk  and  filtered. 
200  c.c.  of  the  solution  was  drawn  off  by  a  pipette 
and  the  test  continued  as  described.  The  results 
obtained  were  correct  to  within  1  %  . — H.  M. 

Cobalt  anil  nickel;  Presence  of  in  plants.     G. 

Bertrand  and  Sf.   Mokragnatz.     Comptes  rend., 
1922,  175,  458—460. 

An  examination  of  various  food  products  of  vege- 
table origin  for  traces  of  nickel  and  cobalt  showed 
that  the  former  is  present  in  every  case,  whilst  the 
latter  is  absent  only  from  carrot  and  oats ;  further 
investigation  may  reverse  the  negative  result 
obtained  in  these  two  cases.  The.  substances 
examined  consisted  of  carrot  (root),  onion  (bulb), 
potato  (tuber),  spinach  (leaf),  lettuce  (leaf),  cress 
(stem  with  leaf),  tomato  (fruit),  apricot  (fleshy  part 
of  fruit),  bean  (whole  green  pod,  also  dried  seed), 
lentil  (grain),  buckwheat  (grain),  wheat  (grain,  also 
husk),  oats  (grain),  maize  (grain),  rice  (polished 
grain),  mushroom  (whole).  The  quantity  of  metal 
per  kg.  of  fresh  substance  varies  in  the  case  of 
nickel  from  O'Ol  mg.  to  2  mg.  and  in  the  case  of 
cobalt  from  0'005  mg.  to  0'3  mg. — H.  J.  E. 

Alfalfa  [lucerne]  plant;  Water-soluble  constituents 

of  the .    T.  B.  Osborne,  A.  J.  Wakeman,  and 

C.    S.   Leavenworth.      J.   Biol.    Chem.,    1922,   53, 
411—429. 

The  investigation  of  the  press-juice  previously 
obtained  (J.,  1922,  74  a)  has  been  continued.  After 
removal  of  the  colloid  obtained  by  addition  of  20% 
of  alcohol,  a  second  precipitate  may  be  obtained  by 
raising  the  alcohol  content  of  the  filtrate  to  53%. 
This  precipitate  contains  8%  of  the  original  nitro- 
gen, which  is  probably  present  as  protein.  The  dis- 
tribution of  nitrogen,  both  before  and  after  hydro- 
lysis, has  been  determined  in  the  two  precipitates 
and   also   in  the  filtrate,    and   analyses   have  been 


made  of  the  inorganic  constituents  of  the  three 
fractions.  The  filtrate  appears  to  be  suitable  for 
investigating  the  water-soluble  constituents  of  the 
juice;  the  present  paper  records  preliminary  experi- 
ments in  this  direction. — E.  S. 

Proteins  of  the  lima  bean,  Phaseolus  lunatus.  D.  B 
Jones,  C.  E.  F.  Gersdorff,  C.  O.  Johns,  and  A.  J. 
Finks.     J.  Biol.  Chem.,  1922,  53,  231—240. 

The  lima  bean  contains  2M7%  of  protein  (Nx6"25). 
By  extraction  with  sodium  chloride  solution,  an  a- 
and  a  ^-globulin  were  obtained,  which  were 
separated  by  fractional  precipitation  with  ammon- 
ium sulphate.  An  albumin  was  also  isolated. 
Analyses  by  Van  Slyke's  method  gave  the  following 
values  for  basic  amino-acids :  a-globulin — cystine 
1'60,  arginine  5-67,  histidine  371,  lysine  7"84%  ; 
/3-globulin— cystine  0'84,  arginine  507,  histidine 
2'62,  lysine  8"53%  ;  albumin— cystine  T07,  arginine 
574,  histidine  2'54,  lysine  5-97%.  Positive  tests 
were  obtained  for  tryptophan  in  each  case.  The 
proteins  of  the  lima  bean  are,  in  general,  similar 
to  those  of  other  beans  of  the  genus  Phaseolus  (cf. 
J.,  1922,  342a).— E.  S. 

Vitamin  which  promotes  calcium  deposition;  Ex- 
perimental demonstration  of  the  existence  of  a 
— .  E.  V.  McCollum,  N.  Simmonds  and  J.  E. 
Becker.  J.  Biol.  Chem.,  1922,  53,  293—312. 
When  heated  for  12  to  20  hrs.  in  the  presence  of 
oxygen,  cod  liver  oil  no  longer  cures  xerophthalmia 
in  rats ;  its  property  of  initiating  healing  in  rickets, 
however,  is  not  appreciably  reduced.  This  treat- 
ment apparently  destroys  vitamin  A  but  leaves  in- 
tact the  anti-raohitic  factor,  which  must  conse- 
quently be  regarded  as  a  fourth  vitamin.  Cod  liver 
oil,  shark  liver  oil,  turbot  liver  oil,  and  butter  cure 
xerophthalmia  and  also  stimulate  the  deposition  of 
calcium;  coconut  oil  is  deficient  in  vitamin  A,  but 
initiates  healing  in  rickets;  whilst  cottonseed  oil, 
maize  oil,  sesame  oil,  and  olive  oil  are  deficient  in 
both  vitamin  A  and  the  anti-rachitic  factor. — E.  S. 

Acids  present  in  the  cherry.  Franzen  and  Helwert. 
See  XX. 

Protein  precipitants.  Hiller  and  Van  Slyke.  See 
XXIII. 

Reaction  of  amino  nitrogen  with  nitrous  acid. 
Dunn  and  Schmidt.     See  XXIII. 

Patents. 

Food;  Manufacture  of  ice  and  the  use  thereof  for 

preserving .     W.   E.   Gibbs.     E.P.   185,986, 

28.10.21. 

SoDruM  hypochlorite  in  small  concentration  (e.g., 
0'025%.)  is  added  to  water  which  is  then  converted 
into  ice.  Such  ice  is  especially  suitable  for  the  pre- 
servation of  fish.  Other  soluble  hypochlorites  may 
be  used  provided  that  they  possess  sufficient  germi- 
cidal properties  to  exert  a  sterilising  action  on  the 
fish  when  the  ice  melts  and  that  they  do  not  affect 
the  appearance  of  the  fish  or  impart  an  unpleasant 
flavour  to  it.  Dilute  chlorine  water  may  also  be 
frozen  and  used  in  a  similar  manner,  but  to  prevent 
corrosion  of  iron  containers  from  any  acids  formed 
the  water  should  be  made  alkaline. — J.  R. 

Wheatcn  [flour];  Method  of  blending  .     C.  G. 

Harrel,  Assr.  to  The  Campbell  Baking  Co.   U.S. P. 

1,429,504,  19.9.22.  Appl.,  6.9.21. 
Tin:  fermentation  of  dough  for  baking  purposes  is 
controlled  by  determining  the  hydrogen  ion  concen- 
tration of  the  flour  and  permitting  the  dough  in 
which  the  flour  is  incorporated  to  stand  for  a  period 
of  time  having  a  definite  relation  to  the  hydrogen 
ion  concentration. — J.  R. 


874  a     Cl.XIXb.— WATER  PURIFICATION,  &o.     Cl.  XX.— ORGANIC  PRODUCTS,  &o.     [Nov.  15, 1922. 


Dough;  Method  of  determining  condition  of  

for  baking  products  during  fermentation  process. 
C.  J.  Patterson,  Assr.  to  The  Campbell  Baking 
Co.    U.S.P.  1,429,526,  19.9.22.    Appl.,  29.8.21. 

The  condition  of  dough  for  baking  products  is  ascer- 
tained by  determining  the  hydrogen  ion  concentra- 
tion of  the  mixed  dough  after  fermentation  has 
proceeded  for  a  suitable  time. — J.  R. 

Milk;  Process  and  apparatus  for  acting  upon . 

F.  A.  Plummer,  Assr.  to  A.  D.  Gray.  U.S.P. 
1,430,403,  26.9.22.    Appl.,  28.4.20. 

An  apparatus  for  producing  dried  products  from 
liquids,  such  as  milk,  consists  of  a  vertical  casing, 
the  lower  part  of  which  is  surrounded  by  a  second 
casing.  Air  is  introduced  in  tangentially  oblique 
currents  at  the  top  of  the  cell,  and  meets  the  finely 
divided  liquid  under  treatment,  which  is  also  intro- 
duced at  trie  top.  The  current  of  air  and  suspended 
matter  moves  rapidly  downwards  in  a  cyclone  and 
is  discharged  through  numerous  fine  openings  into 
the  second  chamber,  which  is  provided  with  means 
whereby  the  air  continues  its  cyclonic  movement, 
with  the  result  that  the  solids  produced  by  evapora- 
tion of  the  particles  of  liquid  are  acted  upon  by 
centrifugal  force  and  gravity  and  are  separated 
from  the  air. — J.  R. 

Baking  powder.  B.  Bleyer.  G.P.  356,168,  1.4.20. 
The  powder  comprises  a  mixture  of  a  salt,  such  as 
sodium  bicarbonate,  which  evolves  gas  on  heating, 
and  a  compound  of  casein  and  lactic  acid  (cf.  G.P. 
344,707;  J.,  1922,  432a).  The  product  has  a 
pleasant  taste,  is  not  hygroscopic,  and  evolves  large 
quantities  of  carbon  dioxide. — H.  C.  R. 

Baking  or  drying  substances.    E.P.  185,460.    See  I. 

XIXb.-WATER  PURIFICATION ; 
SANITATION. 

Disinfectants;  Standardisation  of .     K.  Riilke. 

Chem.-Zeit.,  1922,  46,  897—898. 
Attention  is  drawn  to  the  greatly  differing  figures 
for  the  disinfecting  power,  or  carbolic  acid  co- 
efficient, of  a  disinfectant  given  by  the  Rideal- 
Walker  test  using  an  ordinary  sterilised  broth  on 
the  one  hand,  and  milk  or  similar  emulsion  on  the 
other.  Where,  for  example,  in  the  former  case  0T  % 
of  a  solution  of  higher  phenols  had  the  same  effect 
as  1%  of  carbolic  acid,  in  the  latter  case  a  1'25% 
solution  of  carbolic  acid  and  1'4%  solution  of  the 
higher  phenols  was  required.  The  same  discrepancy 
is  found  in  the  case  of  determinations  of  the  anti- 
septic power.  Robert's  method  of  determining  the 
antiseptic  power  in  milk  to  which  colloidal  sulphur 
has  been  added,  using  bacteria  which  produce 
hydrogen  sulphide,  and  finding  the  amount  of 
disinfectant  required  to  prevent  the  formation  of 
this  gas  within  a  certain  time  as  indicated  by  lead 
acetate  paper,  is  recommended  for  use  where  a 
bacteriological  laboratory  is  not  available.  A 
disinfectant  can  be  sufficiently  characterised  by 
means  of  a  curve  for  the  disinfecting  or  germicidal 
power  at  175°  C,  and  a  second  curve  for  the 
antiseptic  power  under  the  usual  conditions,  but 
one  curve  alone  is  not  sufficient.  Further,  a 
disinfectant  should  be  standardised  in  respect  to 
the  particular  bacteria  for  the  destruction  of  which 
it  is  to  be  used  in  practice. — G.  F.  M. 

Patents. 

I'u ibid  water  or  liquid;  Filtration  of .  R.  H.  L. 

Pennell.    E.P.  185,798,  11.5.21. 
In  a  water  purification  plant  especially  suitable  for 
small  towns,  pre-filtration  is  effected  in  stages  by 
passing  the  liquid  through  a  number  of  chambers 


containing  graded  filtering  medium.  The  rate  of 
flow  of  the  liquid  through  each  successive  chamber 
is  decreased  by  successively  increasing  the  area  of 
the  respective  chambers.  The  water  to  be  filtered 
is  led  into  a  well  which  it  leaves  at  or  near  the 
bottom  and  passes  upwards  through  a  catch  pit 
wherein  coarse  foreign  matter  is  deposited  and 
from  which  the  liquid  traverses  in  succession  a 
number  of  scrubbing  and  straining  vessels,  the 
liquid  in  each  case  percolating  upwards  before 
finally  percolating  downwards  through  one  or  more 
sand  filters.  The  last  filtering  stage  consists  of  sand 
filtration  tanks  working  in  parallel.  The  water  is 
admitted  from  the  last  of  the  strainers  to  the  upper 
surface  of  the  sand  constituting  the  filtering 
medium  and  passes  downwards  to  outlet  wells  in 
conununication  with  the  bottom  of  the  tanks. 

— J.  R. 


Sewage ;  Purification  of  — 
fugal  separators.  E. 
2.4.21. 


—  by  treatment  in  centri- 
Green.      E.P.    185,444, 


The  perforated  basket  of  a  centrifugal  machine  is 
lined  with  segmental  bags  filled  with  porous 
material  {e.g.,  charcoal  in  asbestos  bags)  to  form  a 
filtering  medium.  When  the  layer  of  sediment  is 
of  a  certain  thickness,  the  admission  of  sewage  is 
stopped  automatically  and  the  machine  allowed  to 
run  to  dry  the  cake,  which  when  dry  is  broken  up 
by  a  squeegee  or  scraper  and  discharged  through  a 
suction  pipe  without  stopping  the  machine.  The 
filtering  medium  is  easily  removable ;  when  clogged 
it  is  removed  and  rendered  permeable  again  by 
heating  to  a  high  temperature. — B.  M.  V. 

[Sewage]     sludge;    Dehydrating    activated    . 

C.    L.    Peck,    Assr.    to    The    Dorr    Co.      U.S.P. 
1,430,182,  26.9.22.     Appl.,  17.3.21. 

The  sludge  is  made  slightly  acid  to  methyl  orange 
under  conditions  which  result  in  gas  evolution.  The 
solid  material  in  the  sludge  thereby  gradually  rises 
to  the  surface  and  forms  a  floating  mass,  of  which  a 
considerable  part  is  above  the  liquid  level  of  the 
sludge.  Solid  matter  is  then  withdrawn  from  this 
portion  of  the  floating  mass  to  any  desired  extent. 

—J.  R. 

Disinfecting  and  preserving ;  Process  for [with 

colloidal  aluminium  hydroxide].  E.  de  Haen, 
Chem.  Fabr.  "  List  "  G.m.b.H.,  and  M.  Buchner. 
G.P.  356,833,  30.3.19. 
Colloidal  aluminium  hydroxide  containing  a  high 
percentage  of  water  is  prepared  by  adding  concen- 
trated ammonia  solution  to  a  cold  2%  solution  of 
an  aluminium  salt,  and  subsequently  heating  the 
mixture.  The  product  on  application  to  open 
wounds  builds  a  thick  scab  without  formation  of 
pus,  and  exerts  a  bactericidal  action  due  to 
adsorption. — L.  A.  C. 


XX— 0BGANIC  PRODUCTS ;   MEDICINAL 
SUBSTANCES;  ESSENTIAL  OILS. 

Morphine  content  of  powdered  opium;  Loss  in 

on  storage.  H.  E.  Annett  and  H.  D.  Singh. 
Pharm.  J.,  1922,  109,  304—305. 
Samples  of  dry  powdered  opium  stored  for  Imir 
years  lost  about  3%  of  morphine  calculated  on  tlio 
dry  weight  of  the  opium,  the  amount  of  the  loss 
being  irrespective  of  the  original  morphine  content. 
The  destruction  of  the  morphine  may  possibly  be 
due  to  the  action  of  oxidising  enzymes,  which  have 
been  shown  to  be  present.  There  is  considerable 
evidence  that  moist  opium  does  not  undergo  any 
change  on  storage. — G.  F.  M. 


Vol.  XXI.,  So.  21.]       Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


875  a 


Atropine;  Volatilisation  and  hydrolysis  of in 

toxicology.     P.  Hardy.     J.  Pharni.  Chim.,  1922, 
26,  220—226. 

Considerable  losses  of  atropine  take  place  in 
aqueous  solution  in  consequence  of  hydrolysis  and 
also  by  reason  of  the  fact  that  the  alkaloid  is  vola- 
tile in  steam.  With  suitable  methods  of  extraction, 
however,  these  losses  may  be  obviated  and  accurate 
estimations  of  atropine  may  be  made  if  proper 
precautions  are  taken. — H.  J.  E. 

Yohimbine;  Determination  of in  yohimbe  bark 

A.  Schomer.     Pharm.  Zentralh.,  1922,  63,  385— 
3S6. 

A  method  described  previously  (J.,  1921,  320  a) 
yields  better  results,  especially  in  the  case  of  barks 
of  low  yohimbine  content,  when  the  yohimbine 
hydrochloride  is  crystallised  from  a  cold*  solution. 
The  brown  residue  containing  the  hydrochloride 
(obtained  as  described)  is  treated  with  5  c.c.  of 
ether,  the  latter  is  evaporated,  the  residue  then 
dissolved  in  3  c.c.  of  cold  absolute  alcohol  and  the 
solution  kept  at  0°  0.  for  18  hrs.  The  crystals 
which  form  are  collected,  washed  with  chloroform, 
then  with  ether,  dried  at  100°  0.,  and  weighed. 

— AV.  P.  S. 


Amygdalin;  The  biose  of .    Constitution  of  the 

disaccharides.  VI.  AV.  N.  Haworth  and  G.  C. 
Leitch.  Chem.  Soc.  Trans.,  1922,  121,  1921—1929. 
The  methylation  of  amygdalin  by  means  of  methyl 
sulphate  in  presence  of  sodium  hydroxide  resulted 
in  the  formation  of  the  methyl  ester  of  hepta- 
methylamvgdalinic  acid,  a  crvstalline  compound, 
m.p.  91°  O.,  [o]lsD=-51-7°  in  ethyl  alcohol.  Graded 
scission  of  this  compound  by  dilute  acid  gave  three 
cleavage  products,  namely,  (ft-mandelic  acid,  tetra- 
methylglucose  of  the  usual  butylene  oxide  form, 
and  a  trimethylglucoso  which  was  readily  con- 
verted on  the  one  hand  into  tetramethylglucose, 
and,  on  the  other  hand,  by  oxidation  with 
dilute  nitric  acid  into  the  lactone  of  trimethyl- 
saccharic  acid,  indicating  that  both  terminal 
positions  in  the  hexose  chain  were  unoccupied 
by  methyl  groups,  and  were  therefore  the  positions 
of  attachment  of  the  aromatic  complex  and  the 
other  hexose  residue.  This  evidence  shows  that 
the  amygdalin  biose  is,  apart  from  stereochemical 
reservations,  structurally  identical  with  maltose 
and  quite  definitely  cannot  be  cellobiose.  As 
regards  the  stereochemical  formulation  of  the  biose, 
the  results  based  on  ths  selective  action  of  enzymes 
are  somewhat  anomalous,  but  favour  the  view  that 
maltose  is  actually  a  glucose-a-gflucoside,  and  amyg- 
dalin itself  would  then  be  mandelonitrile-/3-maltos- 
ide.  Should  it  ultimately  be  found,  however,  that 
the  biose  is  a  /J-glucoside,  this  would  not,  of  course, 
affect  the  structural  formula  above  ascribed  to  the 
sugar,  but  it  might  point  to  its  identity  with  iso- 
maltose  or  gentiobiose. — G.  F.  M. 


Saffron;  Detection  of  colouring  matter  of  ,  in 

investigations   relating   to   laudanum  poisoning. 
M.  Guerbet.  J.  Pharm.  Chim.,  1922,  26,  218—220. 

,  The  facts  that  crocin,  the  colouring  matter  of 
saffron,  gives  an  insoluble  substance,  crocetin,  when 
hydrolysed  by  heating  with  acid,  e.g.,  dilute  hydro- 
chloric acid,  and  that  crocetin  gives  with  concen- 
trated sulphuric  acid  an  intense  blue  coloration 
changing  to  violet  and  brown,  may  be  utilised  for 

| detecting  poisoning  by  preparations  of  laudanum 
containing   saffron.        The   method   admits   of   the 

I  subsequent  detection  and  estimation  of  meconic 
acid  and  the  opium  alkaloids  in  the  solution  from 
which  the  crocetin  has  been  separated  bv  filtration. 

— H.  J.  E. 


Chemical  constituents  of  green  plants.  XX.  Acids 
present  in  the  cherry  (Primus  avium).  H. 
Franzen  and  F.  Helwert.  Z.  physiol.  Chem., 
1922,  122,  46—85. 

Malio  acid  is  much  the  most  important  acid  of  the 
cherry.  There  are  present  also  traces  of  oxalic 
acid,  and  small  quantities  of  succinic  acid,  citric 
acid,   lactic  acid,   and  of  unsaturated  acids. 

— AV.  O.  K. 

Muscarine;  Isolation  of ,  the  potent  principle  of 

Amanita    muscaria.      H.     King.       Chem.     Soc 
Trans.,  1922,  121,  1743—1753. 

About  012  g.  of  pure  muscarine  aurichloride  was 
isolated  from  255  kg.  of  fresh  A.  muscaria  after 
a  long  and  tedious  process  which  consisted  essen- 
tially of  several  precipitations  of  the  clarified 
alcoholic  extract  first  with  aqueous,  and  then  with 
alcoholic  mercuric  chloride,  and  finally  with  phos- 
photungstic  acid.  The  precipitated  bases  consisted 
chiefly  of  choline  and  muscarine  in  the  proportion 
of  about  20:1,  and  the  former  was  largely  removed 
by  fractionation  of  the  d-hydrogen  tartrates. 
Fractionation  was  continued  by  means  of  the 
aurichlorides,  and  finally  large  delicate  leaflets  of 
pure  muscarine  aurichloride  were  isolated.  The 
whole  operation  was  controlled  physiologically  by 
following  the  distribution  of  activity  by  observa- 
tions of  the  effects  produced  on  an  isolated  loop  of 
rabbit's  intestine.  Pure  muscarine  chloride  was 
found  to  be  about  seven  times  as  active  as  arecoline, 
and  five  times  as  active  as  acetylcholine.  Physio- 
logical assay  assigns  a  content  of  0'4  g.  of  muscarine 
chloride  to  the  extract  from  25'5  kg.  of  fresh  fungus. 
Muscarine  chloride  has  a  molecular  weight  of  about 
210;  it  is  quite  stable  towards  alkali  and  cannot 
therefore  be  an  ester  of  choline,  nor  is  there  any 
evidence  for  the  accepted  formula  with  one  oxygen 
atom  more  than  choline,  or  that  it  is  a  quaternary 
base.  It  appears  to  be  an  alkaloidal  base  of 
considerable  complexity. — G.  F.  M. 


Animal  nucleic  acid;  Preparation  and  analysis  of 

.     P.  A.  Levene.     J.  Biol.  Chem.,  1922,  53, 

441—447. 

The  author's  method  for  the  preparation  of  animal 
nucleic  acid  has  been  improved.  The  ground 
glands  (10  lb.)  are  boiled  for  35  mins.  with  5  I.  of 
water  containing  250  g.  of  sodium  hydroxide.  The 
mixture  is  then  neutralised  with  acetic  acid, 
treated  with  a  colloidal  solution  of  iron  (50  c.c), 
filtered,  and  left  overnight.  Addition  of  2  vols,  of 
methyl  alcohol  containing  2%  of  hydrochloric  acid 
to  the  solution  precipitates  the  nucleic  acid.  The 
method  has  been  applied  to  thymus  gland,  spleen, 
kidney,  pancreas,  and  liver.  In  the  case  of  liver  the 
product  contains  considerable  amounts  of  glycogen 
and  must  be  further  purified.  Nucleic  acids  from 
the  above  organs  have  the  same  elementary  com- 
position, which  corresponds  with  that  of  a  hexose 
tetranucleotide.  Estimations  of  the  purine  bases 
also  agree  with  the  tetranucleotide  theory. — E.  S. 

Mercuration  in  the  aromatic  series.     II.     Thymol- 
mercuriacctates     and     their     derivatives.       E. 
Mameli  and  A.  Mameli-Mannessier.  Gazz.  Chim. 
Ital.,  1922,  52,  II.,  1—16.    (Cf.  J.,  1922,  518a.) 
The  action  of  mercuric  acetate  on  thymol  under 
various    conditions    yields,    besides    the    thymoldi- 
mercuriacetate  already  known,  also  two  new  com- 
pounds,     thymol-o-     and      thymol-p-monomercuri- 

acetates, 

C3H7.C.H:(OH)(CHs).Hg.O.CO.CH 
A  number  of  the  corresponding  salts  in  which  the 
acetoxy  group  is  replaced  by  another  acid  radicle, 
are  also  described.    (C/.  J.C.S.,  Nov.)— T.  H.  P. 


870  a 


Cl.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  4c. 


[Nov.  15,  1922. 


Mercuration  in  the  aromatic  series.  III. 
Mercurated  derivatives  of  p-iodothymol.  E. 
Mameili.     Gazz.  Chim.  Ital.,  1922,  52,  II.,  18—23. 

The  action  of  mercuric  acetate  on  p-iodothymol, 
which  has  only  one  free  ortho-position  with  respect 
to  the  hydroxy],  readily  yields  the  monomercuri- 
derivative,  p-iodothymol-o-mercuriacetate, 

C3H, 

HO 


CH3.CO.OHgl      il 
CH3 
from    which     the    corresponding    mercurichloride, 
mercuribromide,     inercurihydroxide    and     internal 
oxide  are  obtainable.     (Cf.  J.C.S.,  Nov.). 

— T.  H.  P. 

Mercuration,  in  the  aromatic  series.  IV. 
J  li  mercurated  derivatives  of  guaiacol.  E. 
Mameli.    Gazz.  Chim.  Ital.,  1922,  52,  II.,  23—27. 

The  action  of  mercuric  acetate  on  guaiacol  yields 
mono-  and  di-mercuriacetates  in  proportions  vary- 
ing with  the  experimental  conditions.  Guaiacol- 
.o.p-dimercuriacetate, 

OCH3 

MOH 
cH3.co.oHgllHgo.co.cH3 

•and  the  corresponding  chloride,  nitrate,  and 
internal  oxide  are  described.     (Cf.  J.C.S.,  Nov.) 

— T.  H.  P. 

Aniline  arsenates.  E.  Paternb.  Gazz.  Chim.  Ital., 
1922,  52,  II.,  28—31. 

When  aniline  is  treated  cold  with  aqueous  arsenic 
acid  it  always  yields  dianiline  arsenate,  and  this, 
when  distilled  either  in  a  vacuum  at  60°  C.  or  in  a 
current  of  steam  or  when  left  in  a  desiccator  over 
sulphuric  acid,  loses  aniline  to  form  the  monoaniline 
salt,  m.p.  154°  C.  The  melting  point  of  the  di- 
aniline salt  varies,  for  different  samples  and  differ- 
ent methods  of  heating,  from  about  140°  C.  to  about 
150°  C,  and  cannot  be  ascertained  exactly,  the  salt 
readily  undergoing  change.  In  aqueous  solution 
the  monoaniline  and  dianiline  salts  are  hydrolysed 
to  two  and  three  molecules  respectively.  The 
maximum  solubility  of  aniline  in  water  is  about 
3"7%  at  -0"6°  C,  and  that  of  water  in  aniline  about 
28%  at  -5-4°  C— T.  H.  P. 

Veronal    and    hypnotics    derived    from    barbituric 

acid;  Reaction  of  .     R.   Fabre.     J.   Pharm. 

Chim.,  1922,  26,  241—249. 
Veronal,   and  the  malonylureas  generally,  readily 
condense     with    xanthydrol     to     form     crystalline 
dixanthyl  derivatives,  e.g., 

/C6H1X  /CjHjk 

0(  >CH.N CO N.CH(  >o 

\C6H/  I  XC6H  / 

CO.C(C2H6)2.CO 

when  boiled  therewith  for  a  few  minutes  in  acetic 
acid  solution.  Similar  derivatives  are  not  formed 
by  other  hypnotics,  and  the  reaction  is  therefore 
valuable  for  the  characterisation  and  identification 
of  the  malonylureas.  It  can  easily  be  carried  out 
with  as  little  as  (V01  g.  of  the  hypnotic,  or  with  the 
crude  product  as  isolated  by  the  usual  methods  from 
■the  viscera  in  toxicological  investigations.  The 
dixanthyl  derivatives  are  easily  characterised  by 
their  melting  points,  which  may  be  directly  deter- 
mined on  the  crystals  deposited  from  the  acetic  acid 
solution,  after  washing  them  with  small  quantities 
of  boiling  alcohol,  recrystallisation  being  unneces- 
sary. The  melting  points  of  the  dixanthyl  deri- 
vatives    of     the     principal     malonylureas     are    ae 


follows : —veronal  245°— 246°  C,  phenylethyl- 
malonylurea  (gardenal)  218°— 219°  C,  diallyl- 
malonylurea  (dial)  242° — 243°  C— G.  F.  M. 

Methylguanidine  and  fl/3-dimethylguanidine ;  Pre- 
paration of by  the  interaction  of  dicyanodi- 
amide and  mrthylammonium  and  dimeihylam- 
monium  chlorides  respectively.  E.  A.  Werner 
and  J.  Bell.  Chem.  Soc.  Trans.,  1922,  121, 
1790—1794. 

The  reaction  for  the  preparation  of  guanidine  salts 
by  heating  dicyanodiamide  with  an  ammonium  salt 
(J.,  1920,  801  a)  has  been  extended  to  the  prepara- 
tion of  methyl-  and  dimethyl  guanidine  hydro- 
chlorides. Thus,  fusion  of  an  intimate  mixture  of 
dicyanodiamide  and  dimethylammonium  chloride 
for  3  hrs.  at  180°  C.,  and  extraction  of  the  product 
with  alcohol  gave  a  nearly  quantitative  yield  of 
dimethylguanidine  hydrochloride.  Methylguani- 
dine  hydrochloride  prepared  in  a  similar  way  is  a 
very  hygroscopic  salt.  If  the  fusion  is  carried  out 
at  lower  temperatures  considerable  quantities  of 
dimethyldiguanide  hydrochloride  are  present  in  the 
reaction  product.  This  substance  is  not  to  be 
regarded  as  an  intermediate  product  of  the 
reaction;  it  is,  on  the  contrary,  produced  by  a 
reversible  change  from  guanidine,  and  the 
mechanism  of  the  formation  cf  guanidine  from 
dicyanodiamide  previously  put  forward  (loc.  lit.) 
is  still  in  the  authors'  opinion  the  correct  one. 

— G.  F.  M. 

Piperitonc.  IX7.  Interaction  of  dl-piperttone  and 
semicarbazide,  and  the  isolation  of  pure  dl-pipcri- 
tone.  J.  Read  and  H.  G.  Smith.  Chem.  Soc. 
Trans.,  1922,  121,  1863—1872. 

A  specimen  of  piperitone  prepared  by  fractional 
distillation  from  the  oil  of  Eucalyptus  dives  was 
converted  into  the  semicarbazone  by  interaction 
with  semicarbazide  hydrochloride  (a)  in  cold 
aqueous  alcoholic  solution  for  2  days,  (b)  in  cold 
aqueous  alcoholic  solution  in  presence  of  sodium 
acetate,  and  (c)  in  boiling  aqueous  alcoholic  solution 
in  presence  of  sodium  acetate.  From  preparation 
(a)  a  yield  of  36%  of  the  a-semicarbazone,  m.p. 
226°— 227°  C,  was  obtained  and  a  further  34%  yield 
of  the  more  strongly  basic  ^-semicarbazone,  m.p. 
174° — 176°  C.  on  Hie  addition  of  ammonia  to  the 
mother  liquor.  Preparation  (b)  gave  a  mixture  of 
the  two  semicarbazones,  and  (c)  a  62%  yield  of  the 
a-semicarbazone  and  only  a  very  small  amount  of 
the  /J-compound.  A  semicarbazide-<n-piperitone  of 
the  constitution  C,Hlo:C(OH).NH.NH.CO.NH, 
was  the  product  of  the  reaction  of  (M-piperitone  and 
semicarbazide  hydrochloride  in  alkaline  medium. 
This  substance  forms  glistening  leaflets,  m.p.  186°— 
187°  C,  yields  a  stable  hydrochloride,  and  repre- 
sents a  definite  intermediate  additive  stage  in  the 
semicarbazone  formation.  From  the  semicarb- 
azones the  ketone  was  regenerated  by  steam  distilla- 
tion in  presence  of  20%  of  oxalic  acid.  For  the  pre- 
paration of  pure  d7-piperitone  by  this  method  a 
preliminary  purification  of  the  fractionation  pro- 
duct by  means  of  sodium  bisulphite  was  necessary. 
A  colourless,  optically  inactive  product  was  then 
obtained  having  the  following  characters :  — J-P- 
113°  C.  at  18  mm.,  sp.  gr.  at  20°/4°  C.  0;9331, 
nD=°  =  1-4845,  mol.  refractivity  46-70.— G.  F.  Si. 

Isoeugenol;  Electrolytic  oxidation  of .    A.  Lowy 

and  C.  M.  Moore.  Trans.  Amer.  Electrocnem. 
Soc,  1922,  65—76.  [Advance  copy.] 
Attempts  to  convert  isoeugenol  into  vanillin  by 
electrolytic  oxidation  (cf.  E.P.  1624  of  1895;  J., 
1896  49),  using  both  aqueous  sodium  hydroxide  ana 
dilute  sulphuric  acid  in  the  cathode  chamber,  failed 
in  all  cases  to  vield  more  than  traces  of  vanillin- 
resinous  products  of  indefinite  composition  being 
the  main  products. — L.  A.  C. 


Vol.  XLI.,  No.  21.] 


Cl.  XX— ORGANIC  PRODUCTS ;    MEDICINAL  SUBSTANCES,  Ac. 


877a 


.    H. 
Helv. 


Isoprene;  Addition  of  hydrogen  halide  to  - 
Staudinger,  W.  Kreis,  and  W  Schilt 
Chim.  Acta,  1922,  5,  743—756. 
When  isoprene  combines  with  1  mol.  of  hydrogen 
bromide,  addition  takes  place  at  the  o  and  8  posi- 
/r^r^'i  Ru^101^,^  dimethylallyl  bromide, 
((.H3),CCH.CH.,Br.  This  condenses  readily  with 
sodium  malonic  ester  to  form  ethyl  dimethylallyl- 
malonate  from  which  by  hydrolysis,  dimethylall'yl- 
malonie  acid  (CH^ClCH.CH^CHXCOOH),  is 
obtained,  m.p.  955°— 96°  C.  The  halogen  of 
dimethylallyl  bromide  is  exceedingly  reactive,  and 
the  compound  reacts  readily  with  giiaiacol  forming 
an  ether  which  on  heating  isomerises  to  p-dimethyH 
allylguaiacol,  an  oil,  b.p.  140°  C.  at  10  mm.  With 
magnesium,  dimethylallyl  bromide  reacts  to  form, 
as  principal  product,  the  hydrocarbon  tetramethvl- 
diallyl,  (OH3)20:OH.CH,.CH,.CH:C(CH3)„  b'p 
45°— 50°  C.  at  11  mm.    (6*/.  J.C.S.,  Nov.) 

— E.  H.  R. 

Isoprene  dibromide.  H.  Staudinger,  O.  Muntwyler, 
and  O.  Kupfer.  Helv.  Chim.  Acta,  1922,  5, 
756—767. 

By  the  action  of  bromine  on  isoprene  in  carbon 
bisulphide  solution  a  dibromide  is  formed  having 
the  constitution  CH!Br.C(CH3):CH.CH.,Br.  When 
treated  with  alcoholic  sodium  methoxide  this  loses 
hydrogen  bromide  forming  a  mixture  of  mono- 
bromoisoprenes  which  could  not  be  separated.  The 
nionobromoisoprenes  and  also  dibromoisoprene, 
obtained  by  removal  of  2  mols.  of  hydrogen  bromide 
from  isoprene  tetrabromide,  gave  no  rubber-like 
polymerisation  product.     (Cf.  J.C.S.,  Nov.) 

— E.  H.  R. 

Terpin;  Melting  point  of  commercial  .     J    M 

Clavera.    Anal.  Fis.  Quim.,  1922,  20,  243—246. 
The   melting   point   of    freshly   crystallised   terpin 
hydrate,    with    rapid    heating,    is    11S"2°    C.      An- 
hydrous terpin   has   m.p.    1047°   C.     (Cf.   J.C.S  . 
Nov.)— G.  W.  R. 

Sulphurised  hydrocarbons  [ichthyol];  Sulphonated 

derivatives  of  the  naturally  occurring  .     C. 

Pepin   and  G.    Reaubourg.     J.    Pharm.    Chirn., 
1922,  26,  258—261. 

As  the  therapeutic  value  of  ichthyol  is  largely 
dependent  on  the  amount  of  "  sulphidic  "  sulphur 
it  contains,  as  distinguished  from  total  sulphur, 
which  comprises  in  addition  sulphonic  and  sulphatic 
6ulphur,  it  is  desirable  that  more  precise  standards 
should  be  laid  down  for  commercial  ichthyol  prepara- 
tions, and  the  following  are  suggested.  Colour, 
brownish  red ;  completely  soluble  in  water,  and  the 
solution  after  evaporation  at  100°  C.  to  constant 
weight  should  give  an  extract  weighing  at  least 
50%  of  the  weight  of  the  original  product.  On  igni- 
tion there  should  be  no  residue.  After  precipitation 
by  albumin  and  hydrochloric  acid,  the  addition  of 
barium  chloride  to  the  filtrate  should  only  produce 
a  slight  opalescence,  indicating  almost  complete 
absence  of  ammonium  sulphate.  The  sulphidic 
sulphur,  which  can  only  be  estimated  indirectly  by 
subtracting  from  the  total  sulphur  the  suilphonic 
plus  sulphatic  sulphur,  should  be  at  least  15%  of 
the  dry  residue.  Lastly  the  presence  of  unsaturated 
compounds  should  be  indicated  by  deeolorisation  of 
bromine  water. — G.  P.  M. 

Beaction    of    amino    nitrogen    with    nitrous    acid. 
Dunn  and  Schmidt.    See  XXIII. 

Patents. 

Dialkylaminoalkyl  compounds;  Manufacture  of  ali- 
phatic   .     Farbw.  vorm.  Meister,  Lucius,  und 

Bruning.     E.P.  167,781,  13.8.21.     Conv.,  13.8.20. 

Aliphatic    dialkylaminoalkyl    compounds    are    ob- 
tained by  the  interaction  of  halogeno-alkyl-dialkyl- 


amines  and  the  alkali  salts  of  /3-ketonic  acids  and 
like  compounds  of  the  type  R-COCHR^X,  where 
11  and  B,  are  hydrogen  atoms  or  any  other  radicles, 
and  X  is  an  electro-negative  group.  For  example, 
ethyl  a-diethylaminoethvlacetoacetate 


CH3CO.CH<§H5N(aHi)3 


a  colourless  strongly  alkaline  liquid,  b.p.  130°— 132° 
C.  at  10  mm.,  is  obtained  by  boiling  chloroethvld'i- 
ethylamme  with  an  alcoholic  solution  of  the  sodium 
compound  of  ethyl  acetoacetate.  The  same  com- 
pound can  also  be  obtained  by  the  action  of  diethvl- 
amine  on  ethyl  a-bromoethylacetoacetate.  The  pre- 
paration of  the  following  compounds  is  also  des- 
cribed:  diethylaminoethylmalonic  diethyl  ester 
b.p.  145°— 150°  C.  at  10  mm.  pressure;  ethyl  di- 
othylaminoethylcyanoacetate,  b.p.  135°  C.  at  12 
mm.  pressure ;  fcis-diethylaminoethyldiketohexa- 
methylene-diethylearboxylate,  diethylaminoethvl- 
acetonediethylcarboxylate,  diethylaminoethylcam- 
phorcarboxyhc  acid  methyl  ester  hydrochloride, 
m.p.  184°— 185°  C,  and  diethvlaminoethylacetvl- 
acetone,  b.p.  137°— 139°  C.  at  20  mm.  pressure. 

— G.  F.  M. 

Nicdtinie  acid;  Manufacture  of  dialkylamides  of 
— — .  O.  Y.  Imray.  From  Society  of  Chemical 
Industry  in  Basle.  E.P.  184,625,  7.6.21. 
Dialkylamides  of  nicotinic  acid  are  prepared  by 
treating  a  halide  or  ester  of  the  acid  with  a  dialkyl- 
amine.  Example.  Nicotinic  acid  chloride  is  heated 
with  an  equivalent  quantity  of  diethylamine 
hydrochloride  for  2  hrs.  at  160°  C.  The  mass  is  dis- 
solved in  water,  mixed  with  concentrated  potassium 
hydroxide  solution,  and  extracted  with  ether.  The 
ether  is  distilled  off,  and  the  crude  diethylamide 
distilled  in  a  vacuum.  It  is  a  yellowish  oil,  b.p. 
280°  C,  readily  soluble  in  water  and  organic 
solvents,  and  is  precipitated  from  aqueous  solution 
by  concentrated  alkali  hydroxide.  The  dipropyl- 
amide  of  nicotinic  acid  is  a  yellow  oil,  b.p.  184°  C. 
at  17  mm.,  and  the  piperidide  a  thick  oil  boiling  at 
310°  C— G.  F.  M. 

Cyanamide;     Method     of     and     apparatus     for 

producing    a    solution,    of    from    calcium 

cyanamide.  Wargons  Aktiebolag,  and  J.  H. 
Lidholm.  E.P.  186,020,  17.5.22.  Conv.,  1.12.21. 
In  the  ordinary  method  of  preparing  a  solution  of 
cyanamide  by  the  continuous  addition  of  calcium 
cyanamide  to  water  or  to  a  dilute  solution  of 
calcium  cyanamide  and  treatment  with  carbon 
dioxide,  the  bulk  of  the  solution  increases  during 
the  operation  and  the  formation  of  dicyanodiamide 
may  commence  in  the  storage  tank  before  the 
alkaline  liquor  passes  on  to  the  carbon  dioxide 
treatment.  This  is  avoided  by  adding  the 
cyanamide  to  the  circulating  liquor  in  a  relatively 
small  vessel,  whence  it  passes  immediately  to  the 
combined  pump  and  agitator  in  which  it  is  treated 
with  carbon  dioxide.  After  cooling,  the  solution 
passes  to  a  large  storage  tank  in  which  it 
accumulates. — C.  I. 

Anaesthetic    compound.      O.    Kamm    and    E.    H. 
Volwiler.  U.S.P.  1,388,573,  23.8.21.  Appl.,  14.6.20. 

Diallylaminoalkyl  esters  of  benzoic  acid  or  its 
substitution  products  are  prepared  by  the  inter- 
action of  benzoyl  chloride  or  its  substitution 
products  with  a  diallylaminoalkyl  alcohol.  The 
y-diallylaminopropyl  ester  of  p-aminobenzoic  acid 
is  obtained  from  y-diallylaminopropyl  alcohol  (b.p. 
215° — 217°  C.  at  755  mm. ;  prepared  by  condensing 
trimethylenechlorhydrin  and  diallylamine)  and 
forms  a  hydrochloride  of  m.p.  138°  C.  The 
/3-diallylaminoethyl  ester  of  p-aminobenzoic  acid 
forms  a  hydrochloride  of  m.p.  158°— 160°  C.  The 
products  possess  anesthetic  properties. 


878a 


Ct.  XX.— ORGANIC  PRODUCTS  ;   MEDICINAL  SUBSTANCES,  &c. 


[Nov.  15,  1922. 


Ili/droxylamines;    Salts     of    aromatic    .      N. 

Sulzberger.     U.S.P.     1,390,260,     6.9.21.       Appl., 

18.12.18. 
An   aromatic   h.ydroxylamine    is   treated   with    an 
organic   acid.      Phenylhydroxylainine   oxalate   pre- 
pared in  this  way  is  of  value  as  a  photographic 
developer. 

Aromatic    aminoalcohols;    Process    of    preparing 

optically-active  .     A.  Gams  and  E.  Wybert, 

Assrs.  to  Soc.  of  Chem.   Ind.   in  Basle.     U.S.P. 
1,423,101,  18.7.22.    Appl.,  14.10.21. 

OpTiCALLT-active  salts  of  aminoketones  are  reduced 
to  the  salts  of  the  corresponding  optically-active 
aminoalcohols,  and  these  are  subsequently 
separated  from  each  other  and  converted  into  the 
free  bases. — L.  A.  C. 

Urea;  Process  of  manufacturing  .     C.   Bosch 

and  W.  Meiser,  Assrs.  to  Badische  Anilin  u.  Soda 
Fabrik.    U.S.P.  1,429,483,  19.9.22.   Appl.,  9.7.20. 

A  mixture  of  ammonia  and  carbon  dioxide  in  suit- 
able proportions  is  heated  under  pressure  so  as  to 
prevent  the  separation  of  ammonium  salts,  and  the 
compressed  gaseous  mixture  is  transferred  at  the 
same  temperature  to  a  reaction  vessel,  in  which  the 
temperature  is  reduced  so  as  to  form  a  melt,  which 
is  kept  at  a  temperature  suitable  for  the  production 
of  urea. — J.  S.  G.  T. 

Urea;  Manufacture   of  from   ammonia  and 

carbon  dioxide.    N.  W.  Krase.    U.S.P.  1,429,953, 
26.9.22.    Appl.,  3.3.21. 

Ammonium  carbamate  is  heated  to  140° — 165°  C. 
under  pressure  in  the  presence  of  an  aqueous  liquid. 
{fit.  J.,  1922,  610  a.)— L.  A.  C. 

Aldehydes  and   anhydrides;   Process   of  manufac- 
turing   from  di-esters.    F.  W.  Skirrow,  Assr. 

to     >Shawinigan     Laboratories,     Ltd.        U.S.P. 
1,429,650,  19.9.22.    Appl.,  8.11.20. 

An  oxide  of  sulphur  is  used  as  a  catalytic  or  decom- 
posing agent  in  the  decomposition  of  di-esters  to 
form  aldehydes  and  anhydrides. — L.  A.  C. 

Amines;  Process  of  making  substituted .    C.  B. 

Chatfield.  U.S.P.  1,429,714,  19.9.22.  Appl.,  5.3.19. 

Substituted  amines  are  prepared  by  gradual 
reaction  under  atmospheric  pressure  between  a 
bromide  of  the  substituting  radicle  and  the  amine 
in  the  presence  of  an  alkali  hydroxide,  which 
neutralises  the  hydrogen  halide  liberated  by  the 
reaction. — L.  A.  C. 

Esters;  Process  of  making .    W.  H.  Rodebush, 

Assr.    to   U.S.    Industrial    Alcohol    Co.      U.S.P. 
1,430,324,  26.9.22.     Appl.,  8.5.19. 

Esters  are  prepared  by  heating  a  mixture  of 
ethylene  dichloride,  a  salt  of  a  fatty  acid,  and  ethyl 
alcohol  to  160° — 180°  C.  under  a  pressure  of  about 
150  lb.  per  sq.  in. — L.  A.  C. 

Powdered  sulphur;  Process  for  making  an  exceed- 
ingly fine  - incorporated  with  charred  sugar. 

P.   Mochalle.     G.P.  355,120,  22.9.20. 

An  aqueous  suspension  of  "  sulphur^ugar  "  (pre- 
pared by  heating  a  mixture  of  1  pt.  of  sulphur 
and  3  pts.  of  sugar,  and  treating  the  product  with 
20  times  its  weight  of  water)  is  subjected  to  the 
action  of  a  current  of  air  at  40°  C.  for  a  long  time, 
whereby  the  solution  becomes  acid  and  gradual 
decomposition  takes  place.  The  charred  sugar 
adheres  to  the  surface  of  the  sulphur  particles, 
which  are  then  separated  and  dried.  The  dry 
sulphur  forms  a  fine,  floury,  yellowish-grey  powder, 
can  easily  be  suspended  in  water,  and  is  in  conse- 


quence better  suited  for  use  in  medicine  and  skin- 
therapeutics  than  the  usual  sulphur  suspensions. 

— H.  C.  R. 
[Organic]   silver   compounds;  Preparation  of  com- 
plex ■ -.     F.  Hoffman-La  Roche  und  Co.  A.-G. 

G.P.  356,912,  14.12.20.     Conv.,  1.12.20. 

Silver  compounds  readily  soluble  in  water  and  of 
therapeutic  value  are  prepared  by  heating  thioacyl 
derivatives  of  aromatic  amines  with  organic  or 
inorganic  silver  salts.  Silver  nitrate  solution  is 
added,  drop  by  drop,  to  a  solution  of  thioglycol- 
aminophenol  in  aqueous  sodium  hydroxide,  and 
silver  thioglycolaminophenol  containing  37'2%  Ag 
is  precipitated  by  subsequent  addition  of  alcohol. 
Thioglycolaminophenol,  m.p.  105°  C,  is  prepared 
by  reaction  between  chloroacetylaminophenol  and 
aqueous  sodium  disulphide.  Chloroacetylamino- 
salicylic  acid,  prepared  by  treating  aminosalicylic 
acid  with  chloroacetyl  chloride,  on  treatment  in 
alkaline  solution  with  sodium  disulphide  and  subse- 
quent acidification  yields  thioglycolaminosalicylic 
acid,  m.p.  223°  C.  The  acid  is  converted  into  the 
sodium  salt  by  the  action  of  sodium  in  alcoholic 
solution,  and  is  then  treated  with  silver  nitrate  or 
acetate,  yielding  silver  thioglycolamino-sodium- 
salicylate.  Similar  products,  containing  6'1%  Ag, 
are  prepared  from  thioisovaleryl-  and  thiopro- 
pionylaminosalicylic  acids.  The  products  in  aqueous 
solution  yield  no  precipitate  on  the  addition  of 
sodium  chloride,  hydrogen  sulphide,  or  ammonium 
sulphide. — L.  A.  C* 

Squills  (Scilla  or  Urginea  maritima);  Process  for 

extracting  a  therapeutic  drug  from .    0.  W. 

Rose  and  L.  Rosenthaler.     G.P.  357,043,  14.3.14. 

The  plant  is  first  extracted  with  ethyl  or  methyl 
alcohol,  acetone,  or  ethyl  acetate,  the  solvent 
evaporated,  and  the  extract  dissolved  in  an  aqueous 
solution  of  an  alkali  carbonate  or  bicarbonate. 
The  solution  is  filtered,  evaporated  to  dryness,  and 
the  residue  again  extracted  with  ethyl  or  methyl 
alcohol,  acetone,  or  ethyl  acetate,  and  the  solvent 
removed  under  vacuum.  The  residue  is  soluble  in 
water  to  a  clear  solution,  and  is  valuable  as  a  drug 
in  cases  of  heart  failure.  It  can  be  taken  internally 
or  injected,  and  is  sometimes  even  more  effective 
than  digitalis  preparations. — H.  C.  R. 

ar-Tetrahydro-P-naphtholcarboxylic    acid    and    its 

esters  and  aci/l  derivatives ;  Preparation  of . 

Tetralin  Ges.m.b.H.    G.P.  357,663,  23.5.17. 

Potassium  ar-tetrahydro-/3-naphthoxide,  after  dry- 
ing by  heating  in  a  current  of  hydrogen  at  150° — 
160°  C.,  is  treated  with  carbon  dioxide  under  pres- 
sure at  160° — 170°  C.  After  absorption  of  1  niol. 
of  carbon  dioxide  the  product  is  dissolved  in  water, 
rnd  tetrahydro-/3-naphthol-o-carboxylic  acid,  m.p. 
177° — 178°  C,  after  crystallisation  from  dilute 
alcohol,  is  precipitated  by  the  addition  of  hydro- 
chloric acid.  The  product  can  be  employed  as  a 
drug  or  as  an  intermediate  in  the  manufacture  of 
dyestuffs,  while  its  esters  and  acyl  derivatives  can 
be  used  as  solvents  and  drugs  or  in  the  manufacture 
of  perfumes.  The  methyl  ester  has  b.p.  184° — 
185°  C.  at  20  mm.,  and  the  acetyl-derivative, 
prepared  by  the  action  of  acetic  anhydride  in  the 
presence  of  sulphuric  acid  on  the  acid  at  100°  C, 
melts  at  142°— 143°  C— L.  A.  C. 

Methylsulphites     of     secondary     aromatic-aliphatic 

amines;    Manufacture    of    .     Farbw.    vorm. 

Meister,  Lucius,  und  Briining.  E.P.  164,002, 
30.5.21.  Conv.,  31.5.20. 
See  U.S.P.  1,426,348  of  1922;  J.,  1922.  786  a. 
[Reference  is  directed,  in  pursuance  of  Sect.  7, 
Sub-sect.  4,  of  the  Patents  and  Designs  Act*, 
1907  and  1919,  to  E.P.  16,713  of  1897  and  6991 
of  1909.] 


Vol.  XIX,  No.  21.]    Cl.  XXI.— PHOTOGRAPHIC  MATERIALS,  4c.     Cl.  XXII.— EXPLOSIVES.  4o.        879a 


Thymol;   Manufacture   of  .    J.   Y.   Johnson. 

From  Badischo  Anilin  und  Soda  Fabrik.  E.P. 
186,202,  18.7.21. 

See  U.S.P.  1,412,937  of  1922;  J.,  1922,  438  a. 

Alcohol;  Process  for  the  production  of  - ■  from 

gas  containing  ethylene.  C.  A.  Basore.  Reissue 
15,211,  25.10.21,  of  U.S.P.  1,385,515,  26.7.21. 
Appl.,  2.9.21. 

See  J.,  1922,  33  A. 


Solutions  containing  oxygen.     E.P.   185,659 
VII. 


See 


XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

Silver  bromide  emulsions ;  Effect  of  colloids  on . 

R.  Schwarz  and  H.  Stock.     Z.  wiss.  Phot.,  1922, 
22,  26—32. 

The  influence  of  catalysts  on  the  photochemical 
decomposition  of  pure  silver  bromide  has  been 
investigated,  the  amount  of  decomposition  being 
determined  by  the  method  previously  described 
<J.,  1921,  791  a).  Platinum  sol  delays  the  inver- 
sion point  and  solarisation  ;  silver  sol  and  silioic  acid 
sol  act  as  positive  catalysts,  and  aluminium 
hydroxide  as  a  negative  catalyst.  Ferric  hydroxide 
and  stannic  acid  coagulated  the  emulsion. — W.  T. 

[Potassium]    sulphite-quinol    [developer'];    Ageing 

and  decay  of  .     J.  Pinuow.     Z.  wiss.  Phot., 

1922,  22,  72—80. 

A  brief  review  is  given  of  the  changes  which 
potassium  sulphite-quinol  undergoes  by  the  action 
of  the  oxygen  of  the  air.  Potassium  quinolmono- 
sulphonate  is  a  slow  and  comparatively  weak 
developer.  No  evidence  was  obtained  of  the 
formation  of  the  sulphonic  acid  in  the  sulphite- 
quinol  mixture  at  room  temperatures. — W.  T. 


Adinometers;  Chemistry  of  — 
A.  Obladen.     Z.  wiss.  Phot. 


— .     A.  Benrath  and 
1922,  22,  47—64. 

The  mercuric  chloride-ammonium  oxalate  actino- 
meter  was  found  to  be  reliable  only  within  harrow 
limits.  The  ferrio  chloride  and  oxalic  acid-uranyl 
acetate  actinometers  gave  results  in  good  agree- 
ment. Electrolytes  retard  the  reduction  of  ferric 
chloride  and  the  decomposition  of  oxalic  acid.  The 
authors  argue  that  this  is  caused  by  a  reduction  in 
the  ionisation  and  that  the  ferric  and  oxalate  ions 
are  the  photochemically  active  parts. — W.  T. 

Ultra-violet    absorption;   Simple    method   for    the 

■measurement  of .  C.  Winther,  B.  Rasmussen, 

and  E.  Schreiner.  Z.  wiss.  Phot.,  1922,  22,  33— 
46. 
The  photographic  method  of  Merton  (Trans.  Chem. 
Soc,  1913,  103,  124)  has  been  adapted  for  the 
quantitative  measurement  of  ultra-violet  absorp- 
tion. An  improved  fluorometer  has  been 
•constructed  for  extinction  measurements  of  certain 
wave  lengths  and  the  accuracy  of  the  instrument 
has  been  tested  by  thermo-electric  controls. — W.  T. 

Patents. 

Colour  photography.      H.   C.   J.   Deeks,   Assr.   to 

American    Raylo    Corp.      U.S.P.    1,430,059—61, 

26.9.22.       Appl.    (a)    25.6.14,    (b)    11.10.16,    (c) 

17.11.16.    Renewed  (a)  9.11.20,  (b,c)  9.4.21. 

<A)    A   coloured    photographic    print    is    made    by 

dyeing    a   film    containing    a    volatile    solvent    by 

"bringing    it    into    contact    with     a    photographic 

element  bearing  a  dye  insoluble  in  water  but  soluble 

in   the  volatile    solvent,      (b)   A    colour    sheet   for 

making  coloured  photographic  positives  for  transfer 

by  a  suitable  agent  consists  of  a  base  carrying  a 


medium  which  can  be  sensitised.  This  medium 
contains  a  dye  soluble  in  the  agent,  and  with  the 
dye  a  protective  material  also  soluble  in  the  agent, 
but  inert  to  the  treatment  to  which  the  colour 
sheet  is  submitted  to  prepare  it  for  transfer;  so  that 
the  pigment  resulting  from  the  combined  dyestuft 
and  protective  material  will  not  affect  nor  be 
affected  by  the  treatment,  but  will  yield  to  the 
transfer  agent,  (c)  The  pigment  used  in  making 
coloured  photographs  is  a  combination  of  a  dyestuff 
soluble  in  water  and  alcohol,  together  with  a 
material  soluble  in  alcohol  but  insoluble  in  water. 
The  pigment  will  thus  retain  its  colour  in  aqueous 
solutions  but  will  give  it  up  in  alcohol  or  alcohol- 
containing  solutions. — W.  C. 

Printing  plates;  [Photographic]  process  for  pro- 
ducing     .      E.     Albert.       U.S.P,    1,430,347, 

26.9.22.     Appl.,  19.5.14. 

A  plate  which  has  an  etching  ground  and  overlying 
sensitive  bichromated  colloid  layer  is  treated,  after 
exposure,  with  a  solvent,  which  permeates  only  the 
unexposed  portions  of  the  coating,  removing  these 
portions  and  their  underlying  etching  grounds,  but 
not  affecting  the  exposed  parts  of  the  sensitive  film 
nor  the  etching  ground  beneath  those  parts. — W.  C. 

[Photographic]  coating  composition  and  process. 
L.  D.  Wood.  U.S.P.  1,430,484,  26.9.22.  Appl., 
1.7.22. 

For  the  reproduction  of  sound  waves  which  have 
been  photographically  recorded,  a  sensitive  com- 
pound is  used,  consisting  of  20  pts.  of  potassium 
platinum-barium-cyanide  crystals,  10  pts.  of 
sodium  tungstate,  70  pts.  of  selenium  crystals,  34 
pts.  of  salt,  33  pts.  of  sulphur,  and  33  pts.  of  phos- 
phorus. It  is  prepared  by  melting  a  mixlure 
of  potassium  platinum-barium-cyanide  crystals, 
sodium  tungstate,  and  selenium  crystals,  adding  a 
mixture  of  salt,  sulphur,  and  phosphorus,  heating 
the  molten  mass  for  about  30  mins.,  or  until  the 
flame  colour  of  both  barium  and  potassium  rises 
from  the  mass,  and  then  crvstallising  by  immersing 
the  mass  in  water  at  about  40°  F.  (4°  C.).— W.  C. 

Films.     U.S.P.  1,429,174  and  1,429,179.     See  V. 

Salts  of  aromatic  hydroxylamines.  U.S.P. 
1,390,260.    See  XX. 

XXII.-EXPL0SIVES;  MATCHES. 

Primers;  Microscopy  of  small  arms  .     E.  M. 

Chamot.     Pamphlet.     Ithaca,    New  York,    1922. 

61  pp. 
The  most  important  causes  of  the  defective 
functioning  of  American  military  primers  during 
the  war  are  enumerated,  and  photomicrographs  of 
typical  primers  of  this  class  and  also  of  sections  of 
early  primers  and  cartridge  cases  are  given.  The 
method  of  manufacture  of  primers  is  outlined  and 
the  instruments  used  in  their  routine  microscopical 
inspection  are  fully  described  and  illustrated.  A 
binocular  dissecting  microscope  of  the  Greenough 
type  was  used  for  the  inspection  of  primers,  and  a 
comparison  eye-piece  attached  to  two  chemical 
microscopes  was  found  useful  for  comparing 
different  lots  of  the  constituents  of  primer  com- 
positions. The  apparatus  used  for  making  photo- 
micrographs of  primers  is  also  illustrated,  as  also 
are  all  the  various  tools  used  in  the  dissection  of 
primers.  Full  details  are  given  of  methods  for 
removing  the  primers  from  the  cartridge  cases, 
removing  the  anvils,  and  sectioning  the  primers, 
which  can  be  accomplished  without  much  risk  of 
igniting  them.  Many  photomicrographs  of  sectioned 
primers  (chiefly  of  the  loose  anvil  type)  are  given, 
illustrating  common  defects  likely  to  cause  miss- 
fires.    The  microscopy  of  the  components  of  primer 


880A 


Oi~  XXIII.— ANALYSIS. 


[Nov.  15,  1922. 


compositions  is  touched  on  and  photomicrographs 
of  samples  of  the  commoner  ingredients  shown. 
The  defects  brought  to  light  by  microscopical 
inspection  of  primers  during  the  war  are  analysed. 
Of  these  28'5%  were  defects  in  assembly  and  other 
mechanical  imperfections;  25%  poorly  compressed 
or  with  thick  pellets  of  composition,  and  12'6%  due 
to  the  flame  produced  not  being  hot  enough. 

— H.  C.  R, 

Patents. 

Initial  primers  and  a  process  for  their  manufacture. 
H.  Rathsburg.     E.P.  185,555,  27.6.21. 

An  initial  priming  composition  for  detonators  or 
percussion  caps  is  afforded  by  one  or  more  explosive 
salts  of  tetrazol  or  triazol  compounds  or  their  deri- 
vatives mechanically  mixed  or  crystallised  with 
another  explosive  constituent.  The  most  important 
salts  are  those  of  lead  and  cadmium.  An  example 
of  a  filling  for  a  blasting  detonator  is  1  g.  of  tetryl, 
0'15  g.  of  the  lead  or  cadmium  salt  of  tetrazylazo- 
imide, 

N.XHX 

N.N  = 
and  0'15  g.  of  the  lead  salt  of  azotetrazol, 

N 


XN 


N.NH.  ,N   : 

).C.N2.N< 


X 


-H.  C.  R. 


Jin  ruing  compositions;  Binder  for .  Torch  fuse- 
lighter.  E.P.  Aurand,  Assr.  to  Atlas  Powder  Co. 
U.S. P.  (a)  1,383,501  and  (b)  1,388,502,  23.8.21. 
Appl.,  5.5.21. 

Xitrostarch  gelatinised  with  acetone,  amyl  ace- 
tate, butyl  acetate,  or  other  solvent,  is  used  as  a 
binder  for  (a)  black  powder  or  other  compositions 
for  rockets,  flares,  signals,  etc.,  or  (b)  mealed  black 
powder  or  similar  mixtures  for  fuse-lighters. 

Explosive  composition  and  the  manufacture  thereof. 
E.  M.  Werner,  Assr.  to  The  Hoynesite  Explosives 
Co.     U.S. P.  1,430,272,  26.9.22.     Appl.,  15.11.21. 

A  composition  which  includes  in  its  ingredients  on 
alkali  chlorate  mixed  with  a  solution  of  nitrobenzol 
and  resin. — H.  C.  R. 

Explosive;  Preparation  of  an from  ammonium 

nitrate  and  carbonaceous  material.  Verein 
Chem.  Fabr.  in  Mannheim.  G.P.  346,224, 
19.12.16.     Addn.  to  334,547  (J.,  1922,  789  a). 

In  addition  to,  or  in  place  of,  ammonium  nitrate 
and  oxalate  and  the  amino-bases  specified  in  the 
chief  patent,  ammonium  perchlorate  is  added  to  the 
mixture.  The  resulting  product  is  safer  to  handle 
and  more  easily  detonated. — A.  R.  P. 

Fuse  for  hlasting  with  liquefied  gas  and  method  of 
producing  the.  same.  A.  Kowastch.  U.S. P. 
1,424,487,  1.8.22.     Appl.,  19.7.20. 

See  E.P.  148,534  of  1920;  J.,  1921,  872  a. 

XXIII— ANALYSIS. 

Shaking    machine    for    large    quantities    of    fluid 

[:  Laboratory  ].     H.  Franzen.     Z.  physiol. 

Chem.,  1922,  122,  86—87. 

An  apparatus  is  described  suitable  for  stirring  up 
large  amounts  of  lead  precipitates  in  aqueous  sus- 
pension, whilst  treating  them  with  carbon  dioxide 
or  hydrogen  sulphide. — W.  O.  K. 

Ciilorimetric  determinations.  P.  E.  Verkade. 
Chem.  Weekblad,  1922,  19,  389—393. 

The  special  benzoic  acid  obtainable  from  the  Insti- 
tut  International  d'Etalons  2>hysico-chimiques,  The 


University,  Rue  des  Sols,  Brussels,  should  always  be 
used  for  standardising  bombs.  The  heat  of  combus- 
tion accepted  for  this  material  is  6324  cals.  per  g. 
weighed  in  air.    {Cf.  J.C.S.,  Nov.)— S.  I.  L. 

Ferrocyanide ;  Influence  of  the  alkalis  on  the  titra- 
tion of  some  metals  with .     W.  D.  Treadwell 

and    D.    Chervet.     Helv.    Chim.    Acta.,    1922,   5, 
633—639. 

The  electrometric  titration  of  zinc  with  potassium 
ferrocyanide  was  described  by  Treadwell  and  Weiss 
(J.,  1920,  137  a).  It  is  now  found  that  when 
cadmium  or  zinc  salts  are  titrated  with  potassium 
ferrocyanide  in  neutral  or  weakly  acid  solution,  the 
sharpness  of  the  end  point  can  be  greatly  increased 
by  having  present  a  small  amount  of  a  rubidium  or 
preferably  a  caesium  salt.  The  caesium  salt 
replaces  potassium  in  the  precipitate.  Thus 
a  zinc  salt  with  potassium  ferrocyanide  gives 
Zn3K2[Fe(CN)c].,,  but  in  presence  of  a  caesium  salt 
the  precipitate  has  the  composition  ZnCs,Fe(CN)0. 
With  sodium  ferrocyanide  in  neutral  solution  the 
precipitate  is  the  simple  zinc  salt  Zn,Fe(CN)6.  Lead 
nitrate  can  be  titrated  electrometrically  with 
potassium  ferrocyanide  in  neutral  solution,  but  the 
precipitate,  Pb2Fe(CN)0,  is  sensitive  to  acid. 
Consequently  it  is  possible  to  titrate  zinc  in 
presence  of  lead  in  hot  acid  solution.  In  presence 
of  a  caesium  salt  the  lead  is  precipitated  by  ferro- 
cvanide  in  the  form  of  the  double  salt 
Pb3CS2[Fe(CN)0]2.    (Cf.  J.C.S.,  Nov.)— E.  H.  R. 

Arsenic;     Microchemical    detection     of    .     A. 

Piutti  and  E.  Boggio-Lera.     Gazz.  Chim.  Ital., 
1922,  52,  II.,  48—55. 

For  the  detection  of  traces  of  arsenic  the  most 
suitable  reagent  is  molybdic  acid.  With  solutions 
containing  0'02 — 0'004  mg.  of  arsenic  per  c.c.  a 
mixture  of  1  c.c.  of  3%  ammonium  molybdate  solu- 
tion, 10  c.c.  of  3'4%  ammonium  nitrate  solution, 
.and  39  c.c.  of  40%  nitric  acid  (29°  B.,  sp.  gr.  1-251) 
is  used,  whilst  with  smaller  concentrations  of 
arsenic  this  mixture  is  diluted  five  times  with  40 'J 
nitric  acid.  A  drop  of  the  arsenical  solution  is 
placed  on  a  warm  microscope  slide,  evaporated  to 
one-third  of  its  volume  over  a  very  small  flame, 
treated  with  a  drop  of  the  molybdic  reagent,  and 
evaporated  either  on  a  water-bath  or  with  great 
caro  over  a  small  flame.  When  the  drop  is 
diminished  to  one-half  its  volume,  the  slide  is  tilted, 
the  tilting  being  gradually  increased;  the  evapora- 
tion should  occupy  at  least  6 — 7  minutes.  The  cold 
residue  is  treated  with  a  drop  of  a  solution  contain- 
ing 5  g.  of  ammonium  nitrate  and  4  c.c.  of  nitric 
acid  per  100  c.c.  of  water,  covered  with  a  cover- 
glass  and  examined  under  a  magnification  of  at  least 
250  diameters.  In  presence  of  arsenic  acid  the 
edge  of  the  drop  is  seen  as  a  thin  yellow  line  com- 
posed of  characteristic,  sulphur-yellow  crystals. 
With  practice,  0001  mg.  of  arsenic  per  c.c,  that  is 
O'OOOOS  mg.  per  drop,  is  detectable  in  this  way.  If 
animal  organs  are  to  be  examined,  these  should  be 
destroyed  in  the  usual  way  and  the  arsenic  precipi- 
tated as  sulphide,  the  latter  being  purified  and  then 
oxidised  by  means  of  nitric  acid,  which  must  be 
subsequently  eliminated  completely. — T.  H.  P. 

Copper,     thiocyanates.     and    pyridine;    Sensitive 

reaction  for .     G.  Spacu.     Bui.  Soc.  Stiinte 

Cluj,  1922,   1,  284—291.  Chem.  Zentr.,  1922,  93. 
IV.,  737. 

A  compound  insoluble  in  water  and  having  the 
formula  CuPy2(CNS)2  (Py  =  pyridine)  is  formed 
on  adding  a  neutral  solution  of  a  thiocyanate  and 
a  few  drops  of  pyridine  to  a  neutral  solution  of  a 
copper  salt.  The  pyridine  should  be  added  before 
the  thiocyanate  solution,  as  otherwise  a  dark  pre- 
cipitate of  copper  thiocyanate  is  thrown  down  in 
concentrated  solutions.     In  employing  the  reaction 


Vol.  XII.,  Xo.  21.] 


PATENT   LIST. 


31  A 


to  detect  copper,  strongly  acid  solutions  must  be 
evaporated  and  feebly  acid  solutions  neutralised  bv 
the  addition  of  pyridine,  care  being  taken  to  avoid 
the  addition  of  excess,  as  the  precipitate  is  soluble 
in  pyridine.  The  reaction  is  sensitive  to  1:300,000 
as  a  test  for  copper,  to  1:2000  for  pyridine,  and 
1:50,000  for  thiocyanates.  The  sensitiveness  can 
be  increased  to  1:800,000  for  copper  by  shaking  the 
mixed  solutions  with  several  drops  of  chloroform, 
which  assumes   an  emerald  green  coloration. 

— L.  A.   C. 

Chlorides  and  bromides;  Detection  of  - in  the 

presence  of  thiocyanates.  G.  Spacu.  Bui.  Soc. 
Stiinte  Cluj,  1922,  1,  302—305.  Chem.  Zentr., 
1922,  93,  IV.,  735. 

Pyridine  (8-10  drops)  and  excess  of  a  neutral  copper 
sulphate  solution  are  added  to  a  neutral  solution 
containing  thiocyanates,  and  after  separating 
the  precipitate  of  CuPy,(CNS)2  (cf.  preceding 
abstract),  the  solution  can  be  tested  for  chlorides 
and  bromides  by  the  usual  methods. — L.  A.  C. 

Phosphoric  acid:  Separation  of in  qualitative 

analysis.  N.  Tarugi.  Boll.  Chim.  Farm.,  1922, 
61,  545—552. 

Gattebmann  and  Schindhelsi's  method  for  the 
elimination  of  phosphoric  acid  by  treatment  with 
stannic  chloride  (J..  1917,  165)  is  unsatisfactory, 
since  an  appreciable  proportion  of  the  phosphoric 
acid  remains  unprecipitated  and  the  precipitate 
contains  portions  of  the  iron,  chromium,  calcium, 
barium,  etc.  Further,  a  definite  ratio  between 
phosphate  and  stannic  chloride  is  unattainable  when 
the  amount  of  the  former  is  unknown. — T.  H.  P. 

Radioactive   indicators.      F.    Paneth.      Z.    angew. 
Chem.,  1922,  35,  549—552. 

Fse  has  been  made  of  radioactive  isotopes  of  metals 
such  as  lead  and  bismuth  for  indicating  the 
presence  of  minute  and  unweighable  quantities  of 
these  elements  or  their  compounds.  Quantities  of 
the  radioactive  isotopes  of  the  order  of  a  millionth 
of  a  milligram  are  easily  detected  by  the  electro- 
scope. Once  mixed  with  the  inactive  isotope,  ttiey 
cannot  be  separated  by  chemical  means,  so  that 
the  presence  of  the  radioactive  isotope  indicates 
the  presence  of  the  inactive  one  also.  Practical 
applications  have  been  made  in  analytical  chemistry 
in  determining  the  solubility  of  very  sparingly 
soluble  substances  (cf.  J.,  1913,  866,  1131)  and  the 
study  of  adsorption  phenomena.  In  electro- 
chemistry it  has  been  established  by  this  method 
that  an  interchange  of  metallic  ions  occurs  in 
solution  on  mixing  two  salts  of  the  same  metal,  but 
that  no  such  interchange  occurs  when  one  or  both 
of  the  compounds  are  unionised.  The  actual 
deposition  of  an  unweighable  quantity  of  metal  on 
the  electrode  before  the  minimum  potential  of 
electrolysis  is  reached  has  also  been  established. 
In  colloid  chemistry  the  active  surface  of  powders 
has  been  measured  for  the  first  time  by  the  use  of 
a  radioactive  indicator  (cf.  J.,  1922,  48-5  a),  and  the 
distinction  between  crystalloid  and  colloid  in 
diffusion  through  parchment  membranes  has  been 
studied  down  to  a  dilution  of  10""  g.-mol.  per  litre. 
In  inorganic  chemistry  the  conditions  for  the  pre- 
paration of  bismuth  and  lead  hydrides  (cf.  J.,  1920, 
747  a)  were  studied  by  this  means  and  the  method 
was  successfully  applied  to  the  measurement  of 
the  gas-tightness  of  rubber  fabrics  for  gas  masks. 

— H.  C.  R. 

Protein  precipitants.     A.   Hiller  and  D.   D.   van 
Slyke.     J.  Biol.  Chem.,  1922,  53,  253—267. 

With  the  object  of  ascertaining  the  extent  to  which 
proteins  and  protein  products  are  precipitated  by 
different  protein  precipitants,  the  action  of  a 
number    of   these   substances    both    on   blood    and 


Witte's  peptone  has  been  studied.  The  results  with 
the  latter  substance  indicate  that  tungstic  acid  and 
picric  acid  precipitate  protein  intermediate  pro- 
ducts relatively  completely  without  precipitating 
the  amino-acids;  trichloroacetic  acid  removes 
proteins  only,  nearly  all  the  protein  products 
passing  into  the  filtrate;  whilst  metaphosphoric 
acid,  colloidal  iron,  and  mercuric  chloride  occupy 
an  intermediate  position  with  regard  to  their 
action  on  protein  products.  Using  blood,  all  the 
substances  studied  removed  proteins  completely, 
and  all,  with  the  exception  of  alcohol,  allowed 
similar  amounts  of  amino-acids  to  pass  into  the 
filtrates.  The  recovery  of  added,  mixed  monoamino- 
acids  was,  however,  incomplete  in  the  cases  of 
metaphosphoric  acid  and  alcohol .— E.  S. 

Aliphatic  amino  nitrogen;    Influence   of  position 

and  of  temperature  upon  the  reaction  of  

vith  nitrous  acid.     M.   S.  Dunn  and  C.  L.   A. 
Schmidt.    J.  Biol.  Chem.,  1922,  53,  401—410. 

The  rate  at  which  nitrous  acid  deaminises  aliphatic 
amino-acids  depends  on  the  position  of  the  amino 
group;  the  greater  the  distance  of  this  from  the 
carboxyl  the  more  slowly  the  reaction  proceeds.  In 
all  cases  a  decrease  in  temperature  causes  a  diminu- 
tion in  the  rate,  but,  contrary  to  the  statement  of 
Sure  and  Hart  (J.  Biol.  Chem.,  1917,  31,  527)  the 
deamination  of  the  e-amino  group  of  lysine  is  not 
completely  inhibited  at  1°  C.  Casein  is  deaminisetl 
more  slowly  than  lysine  at  ordinary  temperatures. 

— E.  S. 

See  also  pages  (a)  852,  Pyridine  (Lehner).  855, 
Nitrogen  oxides  (Sanfourche).  856,  Nitrites  (Fal- 
ciola).  857,  Potassium  permanganate  (Fester  and 
Brude) ;  Solubility  of  arsenic  trichloride  in  hydro- 
chloric acid  (Treadwell  and  Mussler).  869,  Micro- 
organisms in  soil  (Waksman  and  Fred).  871,  Sucrose 
(Behre  and  During,  also  Sijlmans);  Methyl  alcohol 
(Pool).  872,  Water  in  sausages  (Holzmann  and 
Deininger) ;  Butter  etc.  (Liihrig).  873,  Hydro- 
cyanic acid  (Jansen  and  others);  Boric  acid  in 
shrimps  (Deems).  874,.  Disinfectants  (Rulke).  875, 
Atropine  (Hardy);  Yohimbine  (Schomer) ;  Saffron 
(Guerhet).  876,  Veronal  etc.  (Fabre).  877,  Jc/i- 
thxjol  (Pepin  and  Reaubourg). 


Patent    List 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given :  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court,  Chancery  Lane,  London,  W.C.  2,  15  days  after  the 
date  given. 


I.— GENERAL;    PLANT;    MACHINERY. 
Applications. 

Eley.     Furnaces.     28,665.     Oct.  21. 

Farbw.  vorm.  Meister,  Lucius,  u.  Bruning.  Appa- 
ratus for  absorbing  gases  etc.  bv  charcoal.  27,311. 
Oct,  9.     (Ger.,  25.11.21.) 

Fothergill.     Evaporators.     27,288.     Oct.  9. 

Grbnqvist.     28,039.     See  X. 

Holmes.  Preparation  of  a  solution.  27,915. 
Oct.  14. 

Lawrence  Patent  Water  Softener  and  Sterilizer 
Co.,  and  Stevens.  Heating  liquids  and  softening 
or  sterilising  water.     2-8,254.     Oct.  18. 

Leigh.     Crates  for  acid  carboys.    23,255.    Oct.  18. 

Macconochie.    28,424.    See  II. 

Marks  (Kohlenscheidungs  Ges.).     Method  of  heat- 


8S2A 


PATENT   LIST. 


[Nov.  15,  1922 


and  Lang.     Treat- 
or  gaseous   mixtures. 


ing  at  moderate  temperatures.     28,082.     Oct.  16. 

Neil  and  Neil.     Furnaces.     28,443.     Oct.  19. 

Newby.  Separation  of  moisture  from  pulveru- 
lent, granular,  etc.  materials.     28,355.     Oct.  18. 

Pellissier.  Pulverisers.  28,199.  Oct.  17.  (Fr  , 
27.10.21.) 

Petitpierre.  Storing  gases  or  inflammable  liquids. 
27,852.     Oct.  13.     (Belg.,  20.10.21.) 

Reynard,  Tapping,  and  Thornley.  Clarification 
and  filtration  of  slimes  etc. 

Sinkinson.    Filter  washers.    27,707.    Oct.  12. 

Technical  Research  Works,  and  Lush.  Method 
of  activating  and  re-activating  metallic  catalysts. 
28,600.     Oct.  20. 

Complete  Specifications  Accepted. 

9356  (1921).  Cannon.  Furnaces.  (186,639.) 
Oct.  18. 

96.53  (1921).     Ward,  Nielsen, 
ment  of  gases,   oil  vapours, 
(186,945.)     Oct.  25. 

13,564  (1921).  Miller  and  Lloyd.  Grinding  or 
crushing  machines.     (186,956.)     Oct.  25. 

16,279(1921).  Marshall.  Discharging  or  charging 
devices  for  rotary  dryers,  kilns,  furnaces,  retorts, 
etc.     (186,974.)     Oct.  25. 

17,951  (1921)  and  3617  (1922).  Bleloch  and  Stock- 
man.    See  X. 

18,100  (1921).  A.-G.  Kummler  u.  Matter.  Pre- 
venting corrosion  in  evaporating  and  distilling 
apparatus.     (166,129.)     Oct.  18. 

18,653(1921).    Bologa.    StiUs.    (187,007.)    Oct.  25. 

22,885  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Chemical  apparatus  for  pre- 
cipitation purposes.     (187,090.)     Oct.  25. 

29,020  (1921).  Mather.  Settings  for  stills  etc. 
(186,849.)     Oct.  18. 

34,284  (1921).  Lilienfeld.  Manufacture  of 
colloidailly-soluble  substances  and  of  suspensions  or 
emulsions.     (173,230.)     Oct.  25. 

34,350  (1921).  Maschenenfabr.  Haas  Ges.  Neu- 
werk.  Tunnel  dryer  with  air  circulation.  (173,234.) 
Oct    25 

19,192  (1922).  Hall.  Centrifugal  separators. 
(183,133.)     Oct.  25. 

II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE   DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Accioly.  Apparatus  for  treating  mineral  oil. 
28,438.     Oct.  18. 

Appleby  and  Bentley.  Gas-producers,  retorts, 
etc.     27,821.     Oct.  13. 

Berg  (Berg).     Gas  production.     27,425.     Oct.  10. 

Carpenter,  and  South  Metropolitan  Gas  Co. 
Purification  of  coal  gas.     28,605.     Oct.  20. 

Cureton  and  Rowlson.  Combined  press  and 
retort  for  the  manufacture  of  coke.  28,167. 
Oct.  17. 

Danner. 
Oct.  17. 

Gronqvist.  Production  of  incandescent  heating 
conductors.     28,038.     Oct.  16. 

Johnson  and  Lucas.  Gas-producers.  27,676. 
Oct.  12. 

Macconochie.  Dry  centrifugal  gas-cleaner.  28,424. 
Oct.  19. 

Neath.  Manufacture  of  gas  from  coal  and  oil. 
28,459.     Oct.  19. 

Petitpierre.     27,852.     See  I. 

Plauson's  (Parent  Co.),  Ltd.   (Plauson). 
ing  and  refining  oils.     28,323.     Oct.  18. 

Reynard,       Tapping,       and       Thornley. 
briquettes  etc.     27,314.     Oct.  9. 

Soc.  Ricard,  Allenet  et  Cie.     Rendering 
liquid  fuel  mixtures  of  petrol  and  alcohol. 
Oct.  13.     (Belg.,  23.12.21.) 


Emulsified  liquified  petrolatum.    2S,134. 


Crack- 
Fuel 

soluble 
27,800. 


gas. 


Spencer.    Grids  for  gas-purifiers.    27,970.    Oct.  16. 
Wilputte.     Coke-oven     decarbonisation.     27,273 
Oct.  9. 

Complete  Specifications  Accepted. 

9653  (1921).     Ward  and  others.     See  I. 

10,132     (1921).       Biddison.       Combustible 
(162,646.)     Oct.  25. 

13,174  (1921).  Dunstan  and  Thole.  Treatment 
of  petroleum  and  petroleum  distillates.  (186,955.) 
Oct.  25. 

17,918  (1921).  Clewlow.  Apparatus  for  dewater- 
ing  and  compressing  peat.     (186,690.)     Oct.  18. 

18,116  (1921).  Hennebutte.  Dry  distillation 
process.     (165,794.)    Oct.  18. 

18,405  (1921).  Brodsky.  Distillation  of  carbon- 
aceous materials  and  utilising  the  gases  for  heating. 
(186,724.)     Oct.  18. 

18,493  (1921).  Fuller-Lehigh  Co.  Manufacture 
of  carburetted  water-gas.     (171,079.)     Oct.  25. 

19,289  (1921).  Walkey  and  Bargate.  Desulphur- 
ising petroleum  and  similar  oil.     (186,738.)   Oct.  18. 

19,537  (1921).  Woodall,  Duckham,  and  Jones, 
Duckham,  and  Kent.  Total  gasification  of  fuel. 
(186,742.)     Oct.  18. 

21,597  (1921).  Foster.  Gasification  of  coal  and 
other  carbonaceous  material.     (187,076.)     Oct.  25. 


III.— TAR   AND   TAR   PRODUCTS. 


Barnard. 
Oct.  9. 


Application. 
Manufacture  of  benzidine. 


27,305. 


IV.— COLOURING    MATTERS    AND   DYES. 

Applications. 

Scottish  Dyes,  Ltd.,  Thomas,  and  Thomson. 
Colouring-matters.     27,328.     Oct.  9. 

Scottish  Dyes,  Ltd.,  and  Thomas.  Dyestuffs. 
28,596.     Oct.  20. 

Complete  Specifications  Accepted. 

8516  (1921).  Soc.  Chem.  Industry  in  Basle,  and 
Straub.  Manufacture  of  chromium  compounds  of 
azo  dyestuffs.     (186,635.)     Oct.  18. 

32,234  (1921).  Imray  (Soc.  Chem.  Industry  in 
Basle).  Manufacture      of      /8-thionaphthisatin. 

(186,859.)     Oct.  18. 

15,081  (1922).  British  Dyestuffs  Corp.,  Green, 
and  Saunders.  Manufacture  of  intermediates  for 
the  production  of  colouring-matters.  (186,878.) 
Oct.  18. 

V.— FIBRES;      TEXTILES;      CELLULOSE; 
PAPER. 

Applications. 

Clavel.  Treatment  of  cellulose  derivatives. 
28,457.     Oct.  19.     (Fr.,  27.10.21.) 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Produc- 
tion of  paper  from  peat.     28,327.     Oct  18. 

Riechers  and  Riechers.  Treatment  of  threads  of 
artificial  silk,  etc.     28,615.     Oct.  20. 

Complete  Specifications  Accepted. 

18,497  (1921).  Acheson.  Graphitised  vulcanised 
fibre  and  methods  in  preparing  same.  (172,924.) 
Oct.  18. 

34,257  (1921).  Claessen.  Manufacture  of  elastic 
flexible  sheet  material  from  nitrocellulose.  (174,331.) 
Oct.  25. 

VI.— BLEACHING;   DYEING;   PRINTING; 
FINISHING. 

Applications. 
Broomfield  and  Russell.    Waterproofing. 
Oct.  17. 


28,139. 


Vol.  XLI.,  Xo.  21.] 


PATENT  LIST. 


883  a 


Johnson  (Badische  Anilin  u.  Soda  Fabrik). 
Treatment  of  cellulose  esters  for  dyeing.  28  691 
Oct.  21. 

Scholefield,  and  Yorkshire  Dyeware  and  Chemical 
Co.     Manufacture  and  use  of  a  colloidal  substance 
for  dyeing  and  scouring  animal  fibres  etc.     27,984 
Oct.  16. 


Complete  Specifications  Accepted. 

24,573  (1921).  Linnemann.  Apparatus  for  treat- 
ing with  liquid  fibrous  or  artificial  filamentary 
materials.     (169,695.)     Oct.  18. 

32,885  (1921).  La  Fayette.  Apparatus  for  treat- 
ing yarns  with  dyes  or  other  liquids.  (182,758.) 
Oct.  25. 

VII.— ACIDS;  ALKALIS;  SALTS:  NON- 
METALLIC  ELEMENTS. 

Applications. 

Brewster.  Recovering  and  concentrating  acetic 
acid  from  pyroligneous  acid.  28,093.  Oct.  16. 
(U.S.,  19.10.21.) 

Chem.  Fabr.  in  Billwarder,  and  Hasenclever. 
Production  of  chrome-alum.  27,717-8.  Oct.  12. 
(,Ger.,  12.10.21.) 

Hartman.    28,032.    See  XL 

Howies  and  McDougall.  Manufacture  of  lead 
arsenate.     27,828.     Oct.  13. 

Mourgeon.  Ammonia  manufacture.  27,696. 
Oct.  12. 

Williams.  Manufacture  of  salts  derived  pyro- 
geneously  from  metallic  orthophosphates.  28,381. 
Oct.  18. 

Complete  Specifications  Accepted. 

15,428  (1921).     Krebitz.     See  XII. 

17,514  (1921).  Manuf.  de  Prod.  Cliim.  du  Nord 
Etabl.  Kiihlmann.  Mechanically-operated  fur- 
naces for  roasting  pyrites  or  like  ores.  (167,464.) 
Oct.  18. 

18,806  (1921).  Schmiedel  and  Klencke.  Produc- 
tion of  sulphuric  acid.     (187,016.)     Oct.  25. 

19,217  (1921).  Holmes  and  Co.,  Adam,  and 
Cooper.  Manufacture  of  sulphate  of  ammonia. 
(187,035.)    Oct.  25. 

22,170  (1921).  Langheinrich.  Purification  of 
graphite.     (187,080.)     Oct.  25. 

27,114  (1921).  Woodlands  (Patek).  Production 
of  hydrogen  peroxide.     (186,840.)     Oct.  18. 

34,281  (1921).  Clerc  and  Nihoul.  Manufacture 
of  magnesia  from  dolomite.    (173,502.)     Oct.  25. 

4610  (1922).  Deuts.  Gold-  u.  Silber-Scheidean- 
stalt,  and  Liebknecht.  Production  of  solutions 
containing  hydrogen  peroxide.     (186,871.)    Oct.  18. 

VIII.— GLASS;  CERAMICS. 
Application. 
Gronqvist.     28,039.     See  X. 

Complete  Specifications  Accepted. 

16,048  (1921).  Frohman.  Refractory  material. 
(186,968.)    Oct.  25. 

30,884  (1921).  Deussing.  Production  of  artificial 
meerschaum.     (172,004.)    Oct.  25. 

31,099  (1921).  Feldenheimer  and  Plowman. 
Treatment  of  clay.     (186,855.)     Oct.  18. 

IX— BUILDING   MATERIALS. 

Application. 
Woodroffe.     Wood  substitute.     28,527.     Oct.  20. 

Complete  Specifications  Accepted. 
18,844  (1921).     Dehn  (Studebaker  Corp.).    Treat- 
ment of  wood.     (187,018.)     Oct.  25. 

32,671  (1921).  Young,  and  Robertson  Co.  Fire- 
resisting  asphalt  or  like  hydrocarbonaceous 
material.     (186,861.)     Oct.  18. 


X.— METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Barron,  Halliwell,  and  Hindley.  Hardening 
surfaces  of  tools.     28,528.     Oct.  20. 

Cremer  Apparatus  for  electrolysis  of  metals. 
28  242.     Oct.  17.     (Belg.,  18.10.21.) 

Gronqvist  Production  of  metallic  conducting 
and,  as  catalysts,  metallic-acting  surface  layers  on 
refractory  stone.     28,039.     Oct.   16. 

Gronqvist.  Production  of  scale-proof  surface 
layers  on  metals.     28,040.     Oct.  16. 

Hanciau.  Recovery  or  extraction  of  gold,  plati- 
num, etc.     27,342.     Oct.  9. 

me?aa.rsHS28,37A0PP  OcttU18f°r  *****  "  "*■"*■« 

27452n,ne27,45^9PaOcri0°f  °~  ^  f"  ^^ 
Keet.  Concentrator  for  ores  etc.  28,208.  Oct  17 
McBride.    Drying  ores,  concentrates,  etc.    28J250. 

Cct.  1  / . 

Metals  Production,  Ltd.,  and  Perkins.  Recovery 
of  lead  from  lead  sulphate.     27,608.     Oct   11 

Metals  Production,  Ltd.,  Perkins,  and  Taplin 
Leaching  copper  etc.     27,609.     Oct.  11. 

Mordey.  Electromagnetic  separation  or  concen- 
tration of  minerals.     28,499.     Oct.  19. 

Motte.  Electric  depositing,  welding,  and  cutting 
27,593.     Oct.  11.     (Belg.,  13.1.22.) 

Rees.  Recovery  of  metal  from  dross.  28,046. 
Oct.  16. 

Roper.     Foundry  cupolas.     27,935.     Oct.  14 

Saltrick.     Iron  and  steel  alloys.     27,553.    Oct   11 

Saltrick.     Alloy  steels.     27,554.     Oct.  11. 

Saltrick.     Nickel  alloys.     27,555.     Oct.  11. 

Smidth  &  Co.  Agglomeration  of  ore  etc.  27,934 
Oct.  14.    (Sweden,  20.10.21.) 

Soc.  Anon.  Cockerill.  Furnaces  for  direct  reduc- 
tion of  ores.     28,584.     Oct.  20.     (Belg.,  30.3.22.) 

Soc.  Anon.  Cockerill.  Treatment  of  ores  contain- 
ing iron  etc.     28,618.     Oct.  20.     (Belg.,  18.5.22.) 

Soc.  Ferrosilite.  Solder  for  cast  iron.  28,051. 
Oct.  16,     (Fr.,  20.4.22.) 

Technical  Research  Works,  and  Lush.  28,600. 
See  I. 

Complete  Specifications  Accepted. 

17,514  (1921).  Manuf.  de  Prod.  Chim.  du  Nord. 
See  VII. 

17,951  (1921)  and  3617  (1922).  Bleloch  and  Stock- 
man. Apparatus  for  crushing  or  reducing  minerals, 
ores,  etc.     (186,693.)     Oct.  18. 

18,263  (1921).  Gillott.  Alloy  iron.  (186,962.) 
Oct.  25. 

18,748  (1921).  Smith.  Treatment  and  concen- 
tration of  ores  etc.     (166,888.)     Oct.  25. 

20,857  (1921).  Vivian.  Flotation  processes  for 
concentrating  ores  etc.     (186,760.)     Oct.  18. 

22,884     (1921).       British    Thomson-Houston    Co. 
(General      Electric      Co.).        Aluminium      alloys. 
(187,089.)     Oct.  25. 

24,658  (1921).  Jones  (Soc.  Anon.  Le  NickeJl). 
Manufacture  of  pure  nickel.     (187,111.)     Oct.  25. 

25,545  (1921).  Goldschmidt  A.-G.  Bearing  metal 
ailloy.     (169,703.)     Oct.  18. 

34,406  (1921).  Westinghouse  Lamp  Co.  Prepara- 
tion of  rare  metals.     (173,236.)     Oct.  25. 


XL— ELECTRO-CHEMISTRY. 

Applications. 

Cremer.    28,242.    See  X. 

Dutt  and  Godfrey.    Leelanche  batteries.     28,684. 
Oct.  21. 

Hartman.     Ozone  generators.     28,032.     Oct.  16. 
Hill.     Electric  accumulators.    27,575.     Oct.  11. 
Motte.     27,593.     See  X. 


8S4A 


PATENT   LIST. 


[Nov.  15,  1922. 


Complete  Specification  Accepted. 

18,363  (1921).  Kohlmever.  Electric  storage 
batteries.     (186,987.)     Oct.  25. 

XII— FATS;    OILS;    WAXES. 

Applications. 

Burrows.  Mixing  ingredients  for  manufacture 
of  soap.    27,539.     Oct.  11. 

Kammermann.  Apparatus  for  extracting  oils 
and  greases  from  vegetable  substances.  27,560. 
Oct.  11.     (Belg.,  9.8.22.) 

Complete  Specifications  Accepted. 

9652  (1921).  Schicht  A.-G.,  and  Griin.  Manufac- 
ture of  nutritious  fats.     (160,840.)    Oct.  18. 

9704  (1921).  Reavell,  and  Kestner  Evaporator 
and  Eng.  Co.  Extraction  of  oils,  fats,  waxes,  etc. 
(186,642.)    Oct,  18. 

10,852  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Manufacture  of  viscous  oil  composi- 
tions.    (186,950.)     Oct.  25. 

15,428  (1921).  Krebitz.  Separation  of  sapon- 
aceous matter  from  lime-sludge.   (186,960.)   Oct.  25. 

XIII.— PAINTS ;      PIGMENTS ;      VARNISHES ; 

RKSLNS. 

Applications. 

Consort,   f.    Elektrochem.  Ind.     Manufacture  of 
resins  from  aldebvdes.     28,505.     Oct.   19      (Ger 
20.10.21.) 

Schmidt.  Waterproof  coating  substances.  28,023 
Oct.  16.     (Fr.,  16.11.21.) 

Torrance.  Mills  for  reducing  paints  and  pig- 
ments.    28,243.     Oct.  17. 

Warmund.  Composition  for  producing  coatings 
seals,  etc.     28,337.     Oct.  18.     (Ger.,  18.10.21.) 

White  (Dick  Co.).    Ink.    27,473.    Oct.  10. 

XIV.— INDLi-RUBBER  ;    GUTTA-PERCHA. 
Application. 

Broomfield  and  Russell.  Method  in  mixing 
rubber  compounds.     27,991.     Oct.  16. 

Complete  Specification  Accepted. 
18,230   (1921).      Frost,   and   Harvey,    Frost,   and 
Co.    Vulcanisable  compositions.    (186,709.)   Oct.  IS. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Applications. 

Broomfield  and  Russell.  Treatment  of  leather 
and  leather  waste.     27,992.     Oct.  16. 

Morin.  Process  for  tanning  hides  etc.  27,937. 
Oct.  14.     (Fr.,  15.10.21.) 

Complete  Specification  Accepted. 

18,552  (1921).  Claessen.  Manufacture  of  artificial 
leather.     (171,360.)     Oct.  25. 

XVI.— SOILS ;    FERTILISERS. 
Application. 
Thompson  (Visser).     27,377.    ,S'ee  XIX. 

Complete  Specification  Accepted. 

13,057  (1922).  Ercole.  Manufacture  of  fertilisers. 
(179,934.)     Oct.  25. 

XIX.— FOODS;    WATER    PURIFICATION; 
SANITATION. 

Applications. 

Adams.  Sewage  purification  machinery.  28  116 
Oct.  19. 

Daw.    Treatment  of  sewage  etc.    27,997.    Oct.  1G. 


Dunham,  Nette,  and  Nette.  Preserving  liciuid 
eggs.     27,241.     Oct,  9. 

Howies  and  McDougall.  Preparation  of  insec- 
ticides.    27,827.     Oct.  13. 

Howies  and  McDougall.     27.828.     See  VII. 

Lawrence  Patent  Water  Softener  and  Sterilizer 
Co.,  and  Stevens.    28,254.    See  I. 

Linley.  Treatment  and  storage  of  beef.  27,940 
Oct,  14. 

Naaml.  Vennoots.  Internat.  Oxygenium-Maatsch. 
Novadel.  Treatment  of  meal,  milling  and  meal 
products.     27,331.     Oct.  9.     (Holland,  8.10.21.) 

Stacey.  Manufacture  of  gaseous  medium  for 
treating  flour.     27,660  and  27,895.     Oct.  13  and  14. 

Thompson  (Visser).  Dewatering  activated  sludge 
and  producing  a  fertiliser  therefrom.  27, 37r7 
Oct.  10. 

Complete  Specifications  Accepted. 

9652  (1921).     Schicht  A.-G.  and  Grim.    See  XII. 

20,452  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Manufacture  of  fruit  juices,  conserves, 
etc.  from  fruits,  vegetables,  etc.    (186,756.)   Oct.  18. 

20,978  (1921).  Schloesser.  Utilising  town  refuse 
or  similar  waste  material.     (187,066.)     Oct    25 

3604  (1922).  American  Cotton  Oil  Co.  Manu- 
facture of  a  food  for  animals.     (178,073.)    Oct.  25. 

XX.— ORGANIC       PRODUCTS;       MEDICINAL 
SUBSTANCES;    ESSENTIAL    OILS. 

Applications. 

Farbw.  vorm.  Meister,  Lucius,  u.  Briining.  Manu- 
facture of  formaldehyde.  27,311.  Oct.  9.  (Ger.. 
25.11.21.) 

Goldschmidt  and  Neuss.  Manufacture  of  pro- 
ducts from  urea.    28,212.    Oct.  17.    (Ger.,  17.10.21.) 

Howies  and  MacDougall.  Obtaining  alkaloids  or 
their  salts.     27,826.     Oct.  13. 

Complete  Specifications  Accepted. 

20,208  and  20,210  (1921).  Wade  (Lichtenthaeler). 
Manufacture  of  alcohol-ether  mixtures.  (187,051-2.) 
Oct,  25. 

21,649  (1921).  Meister,  Lucius,  u.  Briining. 
Preparation  of  aliphatic  dialkylaminoalkyl  com- 
pounds.    (169,185.)     Oct.  25. 

26,247  (19211.  Imray  (Soc.  Chem.  Industry  in 
Basle).  Manufacture  of  opticallv-active  aromatic 
aniino-alcohols.     (187,129.)     Oct.  25. 

XXI.— PHOTOGRAPHIC      MATERIALS      AND 

PROCESSES. 

Applications. 

Landau  and  Landau.  Photographic  processes. 
27,590.     Oct.  11. 

Shawcross.  Production  of  sensitive  ferric  film 
photo  papers  or  bearers.     28,430.     Oct.  19. 

Wadsworth  Watch  Case  Co.  Light-sensitive 
coating.     27,332.     Oct.  9.     (U.S.,  21.11.21.) 

Wadsworth  Watch  Case  Co.  Photographic  pro- 
cesses.    27,333.     Oct.  9.     (U.S.,  8.3.22.) 

XXII.— EXPLOSIVES ;   MATCHES. 

Complete  Specification  Accepted. 
18,747  (1921).    Herz.  Manufacture  of  detonating- 
compositions  for  detonators  or  primers.     (187.012.) 
Oct.  25. 

XXIII.— ANALYSIS. 

Application. 

Bratby  and  Hinchliffe,  Ltd.,  and  Smith.  Appa- 
ratus for  ascertaining  percentage  of  air  present  in 
carbon  dioxide.     27,875.     Oct.  14. 

Complete  Specification  Accepted. 

11, 359  (1921).  Svenska  Aktiebolaget  Mono.  Gas- 
analysing  apparatus.     (162,249.)     Oct.  25. 


Vol.  XLI..  No.  22.] 


ABSTRACTS 


[Nov.  30.  1922. 


I.-GENEBAL;  PLANT;  MACHINERY. 

Evaporation  of  a  liquid  into  a  gas.    W.  K.  Lewis. 
Chem.  and  Met.  Eng.,  1922,  27,  112—114. 

The    author,    in    developing    the    theory    of    the 
evaporation  of  a  liquid  into  a  gas,  assumes  a  long 
tunnel  having  non-conducting  walls,  through  which 
flows   unsaturated   air   at   a   such   a  low,  constant 
mass  velocity  thut  the  heat  generated  by  friction 
may  be  neglected.     The  bottom  of  the  tunnel  con- 
tains a  mat  or  wick  kept  constantly  wet  by  water 
from  below.      The  water  is  furnished  to  the  wick 
at    every    point    at    a    temperature    equal    to    the 
temperature  of  the  water  on  the  upper  surface  of 
the  wick  at  that  point      Humidification  of  the  air 
takes  place  during  its  passage  through  the  tunnel 
and  if  this  is  sufficiently  long  a  state  of  equilibrium 
will  be  reached  between  the  water  and  the  air.     At 
any  point  in  the  tunnel  a  constant  set  of  conditions 
exists,  namely,  what  is  equivalent  to  a  stationary 
film  of  air  insulating  the  water  from  the  main  body 
of  air  and  through  which  heat  is  diffused  from  the 
air  to  the  water.     At  the  same  time  water  vapour 
is  diffusing  in  the  opposite  direction  through  this 
film  into  tbe  air.     The  heat  necessary  for  evapora- 
tion  can   only  be   supplied   by   diffusion   from   the 
air.      These   considerations    are   expressed   mathe- 
matically in  the  following  equations  : 
-d\V/Ad0  =  k'(pw-p),       dQ/Ad0  =  h(t-tw),       and 
dQ=-rndW,  whence  (pw-p)  =  h(t-tw)/k'r„,   where 
TV=wt.  of  liquid  evaporated,  A  =  area  of  liquid  in 
contact  with  gas,   0  =  time,   p  =  partial   pressure  of 
vapour,  t=  temperature,  r  =  latent  heat  of  vaporisa- 
tion,   k'  =  coefficient    of    diffusion,     h  =  surface    co- 
efficient of  conductivity  of  heat  between  gas  and 
liquid.     If  P  be  the  total  pressure  of  vapour  and 
vapour-free  gas  (i.e.,  the  barometric  pressure)  and 
H  be  the  absolute  humidity  of  the  gas,   then  by 
expressing  p  in  terms  of  P,   and  neglecting  small 
quantities  a  close  approximation  to  the  last  equa- 
tion is   (t— t„)  =  Kr„(Hw— H),h,  where  K  =  29k'P/18. 
In  considering  the  changes  in  humidity  and  tem- 
perature of  the  air  as   it  moves  along  the  tunnel, 
it  is  pointed  out  that  for  any  movement  of  the  air 
I  from  the  point  under   consideration   there  will  be 
a  drop  in   temperature  of  say  dt  and  an  increase 
in   humidity   of   dH.     The  heat    given   up   by   the 
I  cooling   must   correspond   to  the  heat  of   evapora- 
tion of  the  water  taken  up,   that  is  — Sdt  =  rTCdH, 
|S   being    the    number   of   heat   units   necessary    to 
change    by   one   degree   the    temperature   of    unit 
Iweight  of  vapour-free  gas  plus  the  vapour  it  con- 
tains.    If  S  and  tw  are  constants  integration  of  this 
equation  gives  H  =  St/r    -(-constant.     If  the  tunnel 
is  sufficiently  long  saturation  will  occur  at  a  certain 
point,    and   if   at  this  point  the   temperature   and 
humidity   be  denoted  by  te  and   He    respectively, 
i  then    insertion     of    these    limits    gives    (He — H)  = 
S(t — te)  /rw    and    for    this    to    be    identical    with 
'  !HW — H)  =  h(t — tw)/krw,  He  must  equal  Hw»  te  =  W, 
and   S  =  h/k;   i.e.,  the   coefficient  of  heat  transfer 
divided    by    the     coefficient    of     vapour     diffusion 
through  the  gas  fi'm  is  constant  and  equal  to  the 
lumid  heat  of  the  gas.     From  the  formula  S  =  h/k 
jit  is  possible  to  predict  the  performance  of  a  given 
apparatus,  such  as  a  humidifier,  water  cooler,  gas 
scrubber,  air  dryer,  or  a  light  oil  stripping  column, 
:or  heat  transfer  or  for  diffusion. — S.  G.  U. 

Welting  point;  Belation  of  to  boiling  point. 

E.  Lorenz  and  W.  Herz.     Z.  anorg.  Chem.,  1922, 

122,  51—60. 
The  ratio   of  the    absolute   melting  point    to  the 


The  illustrations  in  the  abstracts  marked*  are  reproduced  from 
ho  Illustrated  Official  Journal  (Patents),  by  kind  permission  of 
he  Controller  of  H.M.  Stationery  Office. 


normal  boiling  point  has  been  calculated  for  a  large 
number  of  elements  and  compounds  (inorganic  and 
organic).  The  mean  of  all  the  results  was  found  to 
be  062.— W.  T. 

Hardness  of  solid  substances  and  its  relationship  to 
chemical  constitution.  A.  Reis  and  L.  Zimmer- 
mann.     Z.  physik.  Chem.,  1922,  102,  298—358. 

The  hardness  and  the  resistance  to  erosion  (by  a  fine 
stream  of  mercury)  of  crystalline  substances  run 
parallel,  but  the  erosion  time  (time  required  to  pro- 
duce a  given  effect)  increases  more  rapidly  than  the 
hardness.  The  hardness  depends  on  the  face 
examined  and  on  the  direction  of  the  scratch.  In 
the  case  of  salts  which  have  lattices  maintained  by 
the  electrostatic  attractions  of  the  ions,  the  hardness 
is  determined  by  the  charges  and  the  distances 
between  the  ions.  In  compounds  which  have  not  a 
salt-like  structure  the  hardness  varies  with  the 
strength  of  the  residual  affinity  of  the  molecules 
exerted  outwardly.  In  mixed  crystals  the  hardness 
is  greater  than  the  mean  of  the  components  and  in 
some  cases  it  is  greater  than  that  of  the  harder  con- 
stituent. The  hardness  of  compressed  pastilles 
approaches  that  of  the  crystals  of  the  substance. 
The  tendency  of  a  substance  to  form  large  crystals 
is  to  a  certain  extent  a  function  of  the  chemical 
constitution  and  is  often  parallel  with  the  hardness. 
(Cf.  J.C.S.,  Nov.)— J.  F.  S. 

Patents. 

Centrifugal  separators ;  Apparatus  for  cleaning  the 

boicls  of .      Aktiebolaget   Separator.       E.P. 

181,686,  13.4.22.     Conv.,  17.6.21. 

The  bowl  is  inverted  in  a  tank  or  vessel  and  the 
slime  or  other  adherent  dirt  removed  by  jets  of  steam 
or  pressure  water. — B.  M.  V. 

Drying   matter  containing  moisture;   Rotary  mul- 
tiple cylinder  for .    J.  and  S.  Buxton.     E.P. 

185,823,  9.6.21.* 

Inside  a  large  cylindrical  tube  (see  fig.),  which 
is  mounted  on  roller  bearings  and  can  be  rotated 
by   worm  gearing,   are  a  number  of  smaller  tubes 


FIG. 


(drying  compartments),  2.  Each  of  these  may 
be  fitted  with  a  screw  conveyor  to  move  the 
material  from  the  charging  to  the  discharging 
end  of  the  plant.  Completely  surrounding  the 
drying  compartments  are  narrow  passages  through 
which  flow  hot  gases  or  steam.  In  the  case 
of  cylindrical  drying  tubes  these  passages  may  be 
formed  by  other  tubes,  through  which  air  is 
drawn.  In  one  type  of  plant  steam  is  blown  into 
the  heating  passages ;  the  material  is  fed  into  the 
plant  at  one  end  and  the  cold  air  enters  the  air 
tubes  at  the  same  end  of  the  plant.  Both  material 
and  air  pass  along  their  respective  tubes  and  are 
discharged  into  a  chamber  at  the  other  end,  where 
the  material  is  removed  by  a  worm  conveyor  whilst 
the  warm  air  is  drawn  back  through  the  drying 
tubes   by  means  of  a  fan  placed  in   the  chimney, 


880. 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


INov.  30, 1922. 


which  is  erected  at  the  changing  end  of  the  plant. 
Any  moisture  formed  by  the  condensation  of  the 
steam  in  the  heating  passages  is  automatically  re- 
moved by  a  device  placed  at  the  lower  end  of  the 
casing.  In  another  type  of  plant  the  front  por- 
tion of  a  central  tube  is  used  as  a  furnace,  the  hot 
gases  from  which  are  delivered  at  the  other  end  of 
this  tube  direct  to  a  chimney.  In  the  portion  of 
this  tube  between  the  furnace  and  the  chimney  are 
one  or  more  tubes,  42,  providing  a  means  of  com- 
munication between  the  atmosphere  and  the 
chamber  into  which  the  dried  material  is  dis- 
charged from  the  drying  compartments.  A  fan 
situated  at  the  charging  end  of  the  plant  and  dis- 
charging into  the  chimney  draws  air  through  these 
tubes  and  causes  the  hot  air  to  flow  as  a  counter 
current  over  the  material  passing  through  the  dry- 
ing compartments,  2. — S.  G.  U. 

Drying  machine.  P.  J.  Shampay.  U.S. P.  1,429,976 

26.9.22.  Appl.,  18.3.20.  Renewed  27.2.22. 
Round  a  tube  termed  the  heater  element  rotates  a 
vertical  hollow  shaft  fitted  with  blades,  forming  a 
fan.  This  is  housed  centrally  within  a  cylindrical 
casing,  at  the  bottom  of  which  is  a  series  of  fixed 
holders  to  which  the  goods  to  be  dried  are  attached 
at  one  end.  At  the  upper  end  of  the  casing  is  a 
horizontal  disc  capable  of  being  moved  along  the 
axis  of  the  casing.  The  goods  to  be  dried  are 
attached  at  the  other  end  to  the  periphery  of  this 
disc. — S.  G.  U. 


Blair,  Camp- 
L.    Ferguson. 


Evaporators  and  distilling  apparatus 
bell  and  McLean,  Ltd.,  and  J. 
E.P.  185,873,  23.6.21.* 

A  calandria,  a,  of  the  short  vertical  tube  type,  is 
connected  in  the  usual  manner  with  a  separator,  b. 
The  steam  in  the  separator  passes  down  a  vertical 


internal  pipe,  which  after  leaving  the  separator 
is  fitted  with  two  branches',  one  connected  with  the 
exhaust  and  the  other  with  a  pump,  fan,  or  in- 
jector, which  compresses  a  portion  of  the  steam  and 
returns  it  to  the  heating  space  of  the  calandria. 
Two  outlets  are  provided  at  the  bottom  of  the 
separator.  One  of  these,  h,  is  connected  either 
direct  or  through  a  heat  exchanger  with  the  concen- 
trated liquor  tank,  d.  The  other,  i,  is  coupled  to  a 
nozzle  placed  in  the  weak  liquor  inlet  pipe,  so  that 
some  of  the  hot  concentrated  liquor  can  be  mixed 
with  the  weak  liquor  entering  the  calandria.  In 
another  type  of  plant  the  weak  liquor  on  leaving 
the  heat  exchanger  mentioned  above  enters  a  second 
heat  exchanger  placed  below  the  calandria,  wherein 
it  is  further  heated  by  the  condensed  steam  from 
the  calandria  before  passing  to  the  mixing  nozzle 

— S.  G.  U. ' 

Disintegrators;  High-speed .   Plauson's  (Parent 

•256  21  *  m   H'    Plauson-      EP-    185,878, 

By  fitting  a  pair  of  curved  apertured  plates  26 
which  form  part  of  a  cylindrical  surface,  concentric 
with  the  beater  shaft,  2,  and  close  up  to  the  tips  of 


the  beaters  of  the  disintegrator  described  in  E  P 
176,002  (J.,  1922,  357  a;  ef.  J.,  1921,  169  a)  it  has 


FIG.f 


been  found  possible  to  diminish  the  formation  of 
eddy  currents  and  so  reduce  the  power  required  to 
drive  the  mill  by  about  25%.— S.  G.  U. 

Grinding   or  crushing  machine.     J.   W.   Spensley. 
E.P.  186,462,  18.7.21,  23.2.22,  and  13.4.22. 

In  a  high-speed  centrifugal  disc  mill  or  disintegrator 
with  horizontal  discs,  one  fixed,  the  other  rotating, 
and  each  provided  with  intercalating  rings  of  verti- 
cal pins,  the  horizontal  discharge  takes  place  sub- 
stantially all  round  the  circumference,  the  outlet 
being  obstructed  only  by  the  small  bosses  or  pillars 
necessary  to  secure  the  upper  portion  of  the  mill; 
the  outer  wall  of  the  casing  is  at  such  a  distance 
from  the  discs  that  6ticky  substances  cannot  accu- 
mulate sufficiently  to  obstruct  the  outlet.  The  fixed 
disc  is  preferably  the  upper  one. — B.  M.  V. 

Liquids;   Apparatus  for   heating   or   cooling   . 

G.  L.  Lebeau.    E.P.  186,218,  5.8.21. 

The  apparatus  consists  of  two  cylinders,  one  inside 
the  other,  with  an  annular  space  between.  Liquid 
is  passed  into  the  top  of  the  outer  cylinder  through 
a  pipe  connected  with  a  spraying  device  that  distri- 
butes it  in  even  films  over  the  inner  surface  of  the 
outer  and  the  outer  surface  of  the  inner  cylinder. 
The  inside  of  the  inner  and  the  outside  of  the  outer 
vessel  are  heated  or  cooled  by  means  of  a  suitable 
liquid,  so  that  the  films  of  liquid  in  the  annular 
space  between  them  are  rapidly  brought  to  the 
desired  temperature. — A.  R.  P. 

Insulating  material  against  loss  or  gain  of  heat.    H. 
Arquint.     E.P.  186,492,  17.8.21. 

An  organic  substance  which  may  be  used  as  ropes 
or  plaited  work  or  as  powder,  is  covered  or  mixed 
with  clay,  mortar,  or  the  like,  and  after  application 
to  the  article  to  be  insulated  is  incinerated  by  heat, 
by  treatment  with  acids  or  the  like,  or  electrically. 

— B.  M.  V. 

Melting  pot.     J.  B.   McClain,  Assr.  to  R.  Meier. 
U.S. P.  1,423,501,  18.7.22.     Appl.,  25.10.20. 

A  pot  of  parabolic  formation  is  provided  with  a 
flange  for  supporting  it  in  a  furnace.  A  horizontal 
outlet  spout  is  provided  at  the  bottom  of  the  pot 
and  there  is  a  space  around  the  spout  for  the  circu- 
lation of  heat  so  that  the  spout  and  the  wall  of  the 
pot  above  it  may  be  heated.  A  detachable  nozzle  can 
be  inserted  in  the  spout,  and  an  internal  valve 
operated  by  a  wheel  above  the  pot,  is  provided  for 
closing  the  nozzle. — T.  A.  S. 

Gaseous  mixtures;  Apparatus  for  separation  of • 

P.  E.  Havnes,  Assr.  to  The  Linde  Air  Products 

Co.    U.S. P.  1,429,903,  19.9.22.    Appl.,  12.4.19. 

An  apparatus  for  fractionating  gaseous  mixtures  by 

a  process  involving  liquefaction  of  at  least  a  part 

of  the  mixture,  comprises  a  gas  compressor,  an  ex- 


Vol.  XLI.,  No.  22.] 


Cl.    IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


887  a 


pansion  nozzle,  a  receptacle  for  collecting  liquid 
issuing  from  or  formed  at  the  expansion  nozzle,  and 
a  heater  for  the  receptacle.  The  heater  is  connected 
with  the  compressor  and  with  the  expansion  nozzle 
by  conduits,  in  each  of  which  is  a  cooler,  both  of 
these  coolers  being  refrigerated  by  gases  which  have 
passed  the  expansion  nozzle. 

Filter.  J.  S.  Kleithline.  U.S.P.  1,430,234,  26.9.22. 
AppL,  18.8.21. 

Inside  a  cylindrical  shell  having  removable  ends  is 

placed  a  second  perforated  cylindrical  shell  having 

.  only  one  end  removable.     The  cylinders   are  fixed 

together  at  the  mid  points  of  their  lengtlis  in  such 

a  manner  that  a  liquid  in  passing  from  one  end  to 

the  other  of  the  outer  shell  must  flow  through  the 

1  perforated  cylinder,  which  is  filled  with  a  filtering 

I  material.     An   inlet  valve  is  provided  at  one  end 

.of  the  outer  shell  and  an  outlet  valve  at  the  other. 

— S.  G.  U. 

Wire-extinguishing  composition.  E.  A.  Louder, 
Assr.  to  Boyce  and  Veeder.  U.S.P.  1,430,745, 
3.10.22.    AppL,  20.11.19. 

The   composition   consists   of   carbon   tetrachloride 
'mixed  with  about  10%  of  carbon  bisulphide. 

— B.  M.  V. 

\Crystals;  Apparatus  for  the   production   of  . 

C.  C.  Haferkamp,  Assr.  to  The  Diamond  Match 
Co.    U.S.P.  1,430,900,  3.10.22.    AppL,  28.10.20. 

An  apparatus  for  producing  crystals  from  hot 
liquors  consists  of  a  number  of  superposed,  spaced 
annular  units  encircling  a  shaft  capable  of  rotation. 
Two  sets  of  vanes  are  mounted  on  the  shaft,  those 
of  one  set  rotating  in  the  spaces  between  the  ex- 
ternal flat  surfaces  of  adjacent  units,  and  those  of 
the  other  set  within  the  circular  openings  of  the 
units.  A  cooling  agent  is  circulated  through  the 
units. — A.  J.  H. 

Furnaces;  Babble  stones  for  mechanical  roasting 
and  calcining .    Rheiniseh-Nassauische  Berg- 

i  werks-  und  Hiitten-A.-G.,  W.  Hocks,  and  G. 
Stohn.  E.P.  178,059,  6.7.21.  Conv.,  7.4.21. 
Addn.  to  163,023. 

Furnaces.    H.  B.  Cannon.    E.P.  186,639,  29.3.21. 
3ee  U.S.P.  1,371,774  of  1921;  J.,  1921,  288  a. 


Ha.— FUEL;  GAS;  MINERAL  OILS  AND 
WAXES. 

■itone  dusting  of  [coal]  mines.  (Part  II.)  F.  S. 
Sinnatt,  A.  McCulloch,  and  J.  R.  Lomax.  Lanes, 
and  Cheshire  Coal  Research  Assoc,  Bull.  11,  1922, 
27  pages  and  3  plates. 

teE  tendency  of  a  coal  dust  to  explode  is  propor- 
ional  to  the  fineness  of  division  of  the  dust.  Thus 
coal  dust  of  1/100  to  1/150-mesh  ignited  at 
350°  C,  whilst  the  same  coal  ground  to  pass 
hrough  a  220-mesh  sieve  ignited  at  850°  C.  The 
ensitiveness  to  inflammation  is  also  inversely  pro- 
portional to  the  percentage  of  volatile  organic 
latter  present  in  the  coal,  and  there  is  a  gradual 
ransition  from  lignite  to  anthracite  in  this  respect, 
'he  current  required  to  ignite  a  sample  of  raw  coal 
l/200-mesh)  was  11'5  amperes,  whilst  to  ignite  the 
yridine  extract  a  current  of  only  10"5  amperes  was 
equired,  as  contrasted  with  15'0  amperes  for  the 
^sidue  from  the  extraction.  It  is  a  fallacy  to  believe 
lat  carbonate  minerals  such  as  limestone  possess  a 
reater  effect  in  preventing  explosions  than  other 
linerals  of  the  nature  of  shale  on  account  of  their 
irbon  dioxide  content.  The  temperature  at  which 
le  carbon  dioxide  is  given  off  is  too  high  for  this 
rtion    to   take    place    sufficiently    rapidly.       The 


presence  of  moisture  tends  to  prevent  explosions  of 
dusts,  and  experiments  carried  out  in  America  have 
proved  that  the  presence  of  30%  of  water  in  any 
bituminous  coal  dust  renders  it  practically  non- 
explosive.  It  is,  however,  very  difficult  thoroughly 
to  wet  fusain,  which  may  constitute  20—50%  of 
mine  dusts.  Fusain  and  ash  have  a  retarding 
action  on  the  liability  of  coal  du6t  to  explode.  A 
quantity  of  3  oz.  of  coal  dust  per  cubic  yard  of  air 
space  is  sufficient  to  cause  a  dust  explosion.  The 
least  percentage  of  inert  matter  in  mixtures  with 
coal  which  will  inhibit  explosions  is  given  as 
follows:  for  boiler  ashes,  57;  quicklime,  50;  ground 
shale,  43;  Chance  mud,  38—40;  gypsum,  33—35; 
magnesia,  28—30;  anhydrous  sodium  carbonate, 
12 — 13;  soda  crystals  (5H20),  10;  sodium  bi- 
carbonate, 9—10;  and  Glauber  salts,  8.  Fine 
grinding  of  the  inert  material  produces  the  most 
effective  results  as  regards  retarding  explosions. 
The  analyses  of  seven  shales  are  quoted,  together 
with  photomicrographs  of  inferior  shale,  niudstone, 
dust  from  inferior  shale,  shale  suitable  for  stone 
dust,  and  dust  prepared  from  the  latter  shale. 
Results  (unpublished)  obtained  by  Sinnatt  and 
Grounds  on  the  weathering  of  shale  are  also  quoted, 
in  which  it  is  shown  that  weathering  facilitates  the 
grinding  of  shale,  and  that  artificial  weathering, 
i.e.,  alternate  heating  and  cooling,  accelerates  the 
breaking  down  of  the  shale  to  a  greater  degree  than 
natural  weathering. — A.  G. 

Spontaneous  combustion  of  coals  and  lignites.  E. 
Erdmann.  Brennstoff-Chem.,  1922,  3,  257—262, 
278—283,  293—299. 

A  historical  survey  of  the  subject  is  given.  An 
attempt  to  test  the  liability  to  spontaneous  com- 
bustion by  treatment  with  ozonised  air  was  unsuc- 
cessful. An  apparatus  was  devised  to  measure 
relative  initial  combustion  temperatures  (cf.  Denn- 
stedt  and  Schaper,  J.,  1913,  11).  The  sample 
(2 — 4  g.),  in  which  was  inserted  the  bulb  of  a  ther- 
mometer, was  placed  in  a  glass  vessel  immersed  in 
an  oil  bath,  and  a  current  of  air  or  oxygen  preheated 
to  the  same  temperature  was  passed  through  the 
sample.  The  bath  was  gradually  heated  until  the 
temperature  of  the  coal  began  to  exceed  that  of  the 
bath.  The  lowest  (constant)  temperature  at  which 
the  coal  must  be  heated  in  order  that,  when  sub- 
jected to  the  action  of  a  current  of  air  or  oxygen,  it 
should  heat  up  ultimately  to  inflammation  was  taken 
as  the  initial  ignition  temperature.  Various  factors 
governing  spontaneous  combustion  of  brown  coals 
were  studied  by  tests  in  this  apparatus.  Increase 
in  concentration  of  ozone  and  oxygen  accelerated 
the  ignition  of  the  specimen.  The  inflammability 
was  considerably  increased  when  the  size  of  the 
grains  was  diminished.  When  the  moisture  content 
of  a  coal  was  increased,  its  inflammability  decreased. 
Wetting  may,  however,  promote  ignition  in  practice, 
by  removing  the  carbon  dioxide  which  has  collected 
in  a  pile  and  facilitating  fresh  access  of  oxygen. 
Weathering  was  shown  to  diminish  the  tendency  to 
ignition,  especially  of  finely  divided  brown  coal, 
which  after  8  days  would  no  longer  ignite  in  cold 
ozonised  oxygen,  while  the  ignition  temperature  in 
oxygen  was  also  raised.  This  effect  of  weathering 
is  in  contrast  to  that  found  by  Dennstedt  and 
Schaper.  The  inflammability  was  also  reduced  by 
maintaining  the  coal  for  some  time  a  little  below; 
its  ignition  temperature.  The  inflammability  of 
various  lignites  and  vegetable  products  was  studied 
to  identify,  if  possible,  the  active  component.  No 
connexion  with  the  percentage  of  carbon,  hydrogen, 
or  oxygen  could  be  traced.  It  is  a  question  rather 
of  the  "kind  of  grouping.  Unsaturated  compounds 
are  a  doubtful  cause;  polyhydric  phenols  are  more 
probable  active  ingredients.  The  residue,  after 
extraction  of  bitumen  from  lignites,  is  exceedingly 
prone  to  ignition.  The  practical  conclusions  arrived 
a2 


888  A 


Cl.   IIa.— FUEL ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Nov.  30,  19M 


at  are  that  excess  of  air  and  external  sources  of  heat 
should  be  avoided,  while  provision  of  means  of  con- 
ducting heat  away  from  storage  heaps  is  beneficial. 
Wetting  is  not  helpful,  but  a  covering  of  wet  fine 
coal  which  seals  off  the  air  is  beneficial.  Carbon 
dioxide  and  flue  gases  may  also  be  used  for  excluding 
air.  The  application  of  these  ideas  to  lignite 
briquettes  is  considered. — H.  J.  H. 

Sulphur  compounds  of  coal,  their  behaviour  on  dis- 
tillation, and  the  sulphur  compounds  of  coke. 
J.  P.  Wibaut.  Brennstoff-Chem.,  1922,  3,  273— 
278.     (Cf.  J.,  1922,  13  a,  281  a.) 

The  work  of  the  author  and  others  on  this  subject 
is  critically  reviewed.  A  method  has  been  elabo- 
rated for  distinguishing  between  pyritic  sulphur 
and  organic  sulphur  in  coal  and  coke.  When  coal 
containing  both  mineral  and  organic  sulphur  was 
carbonised,  the  former  was  diminished,  while  the 
organic  sulphur  content  increased.  The  carbon 
apparently  fixed  some  of  the  sulphur  given  up  by 
heated  pyrites.  The  formation  of  carbon  sulphides 
was  confirmed  by  synthetic  experiments  starting 
from  sugar  charcoal  and  sulphur,  and  they  are 
regarded  as  similar  to  the  "  physico-chemical  com- 
plexes "  of  carbon  and  oxygen  visualised  by  Rhead 
and  Wheeler  {cf.  J.,  1913,  276)  in  their  study  of  the 
absorption  of  oxygen  by  carbon.  The  compounds 
are  thermally  very  stable,  and  it  seems  improbable 
therefore  that  coke  can  be  desulphurised  on  a  manu- 
facturing scale. — H.  J.  H. 

Lignite;  Gasification  of  .      E.   Dubois  and  G. 

Muller.     Z.  Ver.  Deuts.  Ing.,  1922,  66,  821—824. 

Chem.  Zentr.,  1922,  93,  IV.,  854—855. 
The  high  water  content  of  lignite  causes  difficulties 
in  using  it  in  gas-producers^  and  it  is  necessary  to 
dry  it  before  use.  In  carrying  out  the  drying  care 
must  be  taken  not  to  reduce  the  lignite  to  powder 
as  its  subsequent  behaviour  in  the  producer  is 
influenced  by  the  size  of  the  lumps,  and  for  this 
reason  they  must  be  subjected  to  as  little  movement 
as  possible.  High  temperatures  cannot  be  em- 
ployed, and  hence  a  large  heating  surface  is  neces- 
sary to  secure  efficient  drying;  this  is  best  obtained 
by  leading  a  warm  mixture  of  gases  directly  through 
the  mass  of  lignite.  A  lignite  dryer  and  gas- 
producer  plant  designed  on  these  lines  and  the 
results  obtained  with  it  are  described.  The  lignite 
used  gave  the  following  results  on  analysis :  — 
Water,  58"7%  ;  ash,  2"23%  ;  carbon,  24"4% 
hvdrogen,  1'92%  ;  nitrogen,  025%  ;  oxygen,  12"2% 
sulphur,  028%;  calorific  value,  1945—2400  cals. 
tar,  2-05%.  The  efficiency  of  gasification  was  73'9%, 
or,  with  tar  recovery,  76-7%.  The  efficiency  of  the 
whole  plant,  deducting  the  heat  equivalent  of  the 
power  consumed,  was  68'7%. — H.  C.  R. 

Methane;  Use  of in  steel  cylinders  as  a  fuel  and 

starting-gas  for  internal  combustion  engines.  J. 
Bronn.  Autotechn.,  1922,  11,  6—8.  Chem.  Zentr., 
1922,  93,  IV.,  855. 
The  chief  advantages  to  be  obtained  in  using 
methane  as  a  motor  fuel  are  that  it  is  always  ready 
for  use  even  in  the  most  severe  cold  weather,  as  it 
remains  gaseous  even  at  the  pressure  (150  atm.)  of 
the  steel  cylinders,  and  its  cheapness.  Near  where 
it  is  produced  it  is  6 — 7  times  cheaper  to  use  than 
petrol  or  benzol,  and  it  can  be  obtained  in  sufficient 
quantity,  since  one  ton  of  coal  gives  55  cub.  m.  of 
methane  as  against  8  kg.  of  benzol,  and  1  cub.  m. 
of  methane  is  the  equivalent  of  4"5  kg.  of  benzol. 

— H.  C.  R. 

Gas  engines;  Gas  requirements  of,  and  composition 

of  exhaust  gases  from,  large  .     D.  Rauert. 

Stahl  u.  Eisen,  1922,  42,  1545—1553. 
The  efficiencies  of  two-stroke  and  four-stroke  cycle 
gas  engines  are  compared  with  reference  to  the  loss 


of  fuel  in  the  exhaust  gases.  The  importance  of 
correct  sampling  of  the  exhaust  gases  so  as  to  pre- 
vent any  admixture  with  the  external  atmosphere, 
sucked  back  into  the  exhaust  tube,  is  emphasised. 
The  loss  of  fuel  in  the  exhaust  gases  with  the  two- 
stroke  cycle  is  mainly  due  to  inefficient  scavenging 
of  the  cylinder.  The  percentage  loss  decreases  with 
increasing  load  until  the  latter  is  about  75%  of  the 
full  load,  though  the  absolute  loss  remains  approxi- 
mately constant.  With  the  gas  engines  examined 
the  loss  under  a  75%  load  was  about  10%,  but  this 
increased  as  the  load  was  further  increased  until 
as  much  as  30%  was  lost  when  the  engine  was  oper- 
ating on  a  slight  overload.  The  loss  due  to  incom- 
plete combustion  during  the  working  stroke  de- 
creases continuously  as  the  load  increases,  varying 
from  30%  at  quarter  load  to  1  or  2%  at  full  load. 
Only  the  latter  loss  is  operative  with  four-stroke 
engines  which  are  in  consequence  more  efficient  from 
this  point  of  view.— W.  P. 

Paraffin  wax;   Oxidation  of  ■ -.     H.  Siebeneck. 

Petroleum,   1922,  18,  1193—1196. 

A  paraffin  wax  from  lignite  produoer  tar,  of  m.p. 
54°  C.,  was  exposed  to  the  action  of  oxygen  for  a 
period  of  55  hrs.,  as  described  previously  (J.,  1922, 
282  a).  The  paraffin  wax  used  (150  g.)  contained 
no  acids  or  esters,  and  its  saponification  value  was 
nil.  Its  ultimate  analysis  was  85"23%  C,  14-62%  H, 
and  015%  O.  The  temperature  of  the  experiment 
was  135°  C.  Products  of  cracking  were  found  early 
in  the  experiment.  The  absorption  of  oxygen  after 
12  hrs.  was  9'39%,  the  acid  value  of  the  product 
6-19  and  the  ester  value  1664.  After  the  12th  hour 
carbon  dioxide  was  evolved,  the  oxygen  content  fell 
to  2'94%,  the  acid  value  was  doubled,  and  the  ester 
value  and  the  saponification  value  increased.  After 
33  hrs.  the  ester  value  fell,  the  acid  value  increased, 
while  the  saponification  value  remained  approxi- 
mately constant  at  about  102.  At  the  conclusion  of 
the  experiment  the  ester  value  had  fallen  to  49'16 
and  the  acid  value  had  again  risen  a  little.  The 
rapidity  of  the  reaction  diminished  towards  the 
close  of  the  experiment  owing  to  the  increase  in 
the  viscosity  of  the  material  to  five  times  the 
original  value.  The  products  of  oxidation  most 
likely  to  find  commercial  use  are  the  wax-like  sub- 
stances formed  in  the  second  phase  of  the  process, 
between  12  hrs.  and  33  hrs. — H.  M. 

Patents. 

Coal;  Treatment  of [by  flotation].   F.  G.  Price, 

and    Minerals   Separation,    Ltd.     E.P.    186,143, 
20.6.21. 

In  the  froth-flotation  treatment  of  coal,  the  addi- 
tion of  various  substances  aids  the  separation  of  the 
constituents  of  bituminous  coal.  Starch  solutions, 
tannic  acid,  gelatin,  glue,  albumins,  caramel,  and 
dextrin  inhibit  the  flotation  of  fusain,  which  may 
thus  be  separated  from  clarain  and  vitrain.  The 
use  of  starch  is  preferred  and  many  varieties  have 
been  found  to  be  efficacious.  A  solution  containing 
2%  of  starch  and  2%  of  caustic  soda  may  be  used, 
not  more  than  Jib.  of  starch  being  necessary  per 
ton  of  coal.  Good  results  have  also  been  obtained 
with  i  lb.  of  glue,  1  lb.  of  tannic  acid,  or  }  lb.  of  egg 
albumin  per  ton  of  coal.  Ordinary  frothing  agents, 
such  as  cresol,  may  be  added,  but  may  not  ajwajD 
be  necessary.  In  treating  dirty  coals  it  is  advisable 
to  carry  out  a  preliminary  concentration  to  remove 
ash  and  shale.  A  large-scale  test  was  carried  out 
on  dross,  which  gave  an  exceedingly  friable  coke 
useless  for  metallurgical  purposes.  The  dross  con- 
tained 21-5%  of  ash,  26-0%  of  volatile  matter,  and 
47-0%  of  fixed  carbon.  120  tons  of  the  dross  was 
treated  by  flotation,  the  reagents  used  being  0'4  lb. 
of  cresol,  06  lb.  of  paraffin  oil,  and  025  lb.  of  starch 
per  ton.     The  concentrates  weighed  80  tons  and 


Vol.  XLI.,  No.  22.] 


Cl.  11a.— FUEL;    GAS;    MINERAL  OILS  AND  WAXES. 


SS1IA 


contained  6'2%  of  ash,  266%  of  volatile  matter, 
and  53'2%  of  carbon,  and  were  substantially  free 
from  fusain.  On  coking,  an  excellent  metallurgical 
coke  was  produced. — W.  P. 

Smokeless  fuels  and  eoke;  Production  of .  S.  R. 

I'llingworth.     E.P.  186,085,  24.3.21. 

Smokeless  fuel  is  manufactured  by  blending  two 
coals,  so  that  the  mixture  has  a  content  of  resinic 
matter  (soluble  in  boiling  phenol  or  boiling  pyridine 
and  also  in  chloroform)  not  less  than  5%  but  pre- 
ferably not  less  than  8%  of  its  weight.  The  mixture 
is  heated  to  a  temperature  not  exceeding  500°  C, 
I  or  to  a  temperature  50° — 100°  above  the  minimum 
temperature  at  which  the  resinic  matter  in  the  blend 
is  destroyed.  Coal  may  be  blended  with  coke,  semi- 
coke,  or  an  ore  such  as  iron  ore.  The  smokeless 
fuels  produced  may  be  further  carbonised  and  con- 
verted into  a  true  coke. — W.  P. 

Peat  or  similar  fuel;  Utilisation  of  surplus  power 
from  hydro-electric  plant  for  the  preparation  of 
.  N.  Testrup,  and  Techno-Chemical  Labora- 
tories, Ltd.     E.P.   186,137,  20.6.21. 

The  peat  is  made  into  a  paste  on  preheating  rollers 
and  then  dried  in  a  thin  uniform  film  on  heated 
drums.  Vapours  given  off  are  compressed  and 
heated  and  passed  into  the  drums  to  be  used  as  the 
heating  medium.  Surplus  electric  power  is  used  for 
compressing  the  vapour,  and  peat  fuel  appliances 
.are  installed  for  use  when  this  surplus  power  is  not 
available. — W.  P. 

tGas  producers.     W.  Climie.     E.P.  186,262,  15.6.21. 

The  producer  consists  of  two  concentric  casings 
separated  by  a  water  and  steam  space,  to  which  are 
connected  headers,  adjacent  to  the  producer,  these 
headers  being  also  connected  with  each  other  by 
means  of  pipes,  surrounded  by  casings.  On  leaving 
the  producer,  the  gas  is  passed  through  these 
•  casings  (and  if  necessary  through  other  similar 
tubes  or  passages),  the  walls  of  which  are  swept  by 
brushes  in  order  to  filter  out  suspended  matter  from 
,the  gas.  The  brush  sweepings  are  discharged 
through  a  valve-controlled  outlet. — A.  G. 

I \9as-producing  apparatus.      W.  E.  Elliott.      U.S. P. 
|    1.430,633,  3.10.22.     Appl.,  17.1.20. 

1,4.  betoiit  is  situated  lengthwise  above  a  number  of 

:oal-burning  compartments,  and  means  are  provided 

":or  conducting  the  gases  from  the  compartments  to 

me  end  of  the  retort,  for  introducing  air  at  certain 

Ipoints    inside    the    retort,    and    for    retarding   the 

■passage  of  gas  therethrough.     A  suction  pipe  com- 

nunicates  with  the  retort. — A.  R.  M. 

Has  purification.     H.  P.   Smith,  Assr.  to  Gas  Re- 
search  Co.      U.S. P.   1,430,696,    3.10.22.      Appl.. 

I   9.11.18. 
j  krLPHTJR  dust  is  eliminated  from  gas  generated  in  a 

>roducer  using  anthracite  or  similar  fuel,  by  spray- 
ing water  into  the  gas  before  it  passes  out  of  the 

;enerating  chamber. — A.  R.  M. 

Exhaust    gases    of    internal    combustion    engines; 

Utilisation    of    the    .      A.    Scherhag.       E.P. 

167,155,  17.6.21.  Conv.,  28.7.20. 
'he  exhaust  gases  are  taken  up  by  a  centrifugal 
an  at  a  point  near  the  outlet  of  the  engine  and  are 
nixed  with  fresh  air  (up  to  400  times  the  volume  of 
he  combustion  gases).  The  fan  produces  a  separa- 
ion  of  oily  and  sooty  matter,  and  the  hot  mixture 
i  used  for  the  production  of  hot  water  supplies,  air 
eating,  evaporation  or  other  industrial  purpose, 
'he  temperature  of  the  mixture  is  regulated  solely 
y  the  amount  of  fresh  air  sucked  into  the  system, 
'or  the  purpose  of  evaporation  or  for  heating  water 
be  exhaust  gases  are  blown  directly  through  the 

quid,  whilst  for  heating  rooms  or  drying  chambers 


the  hot  gas  is  blown  directly  into  the  room  or 
chamber. — A.  G. 

Oily  pastes  or  emulsions  [lubricants']  from  mineral 

and  other  oils;  Manufacture  of  .     Plauson's 

(Parent  Co.),    Ltd.      Prom   H.    Plauson.       E.P. 
185,779,  6.4.21. 

Emulsions  of  oil  and  water  are  prepared  with  the 
aid  of  a  colloid  mill  (E.P.  155,836;  J.,  1922,  357  a). 
These  emulsions  are  of  pasty  nature  and  can  be  used 
in  the  same  way  as  Stauffer  fat.  The  water  content 
can  be  increased  to  4  to  8  times  that  of  the  oil  if 
1 — 3%  of  a  finely  powdered  solid,  e.g.,  magnesium 
or  barium  carbonate  or  oxide,  be  added.  Graphite 
or  talc  or  other  solid  lubricants  can  be  incorporated. 
If  it  is  desired  to  incorporate  a  large  amount  of 
water,  as  for  making  boring  pastes  and  soap-like 
lubricants,  suitable  protective  colloids  or  agents  as 
paraffin  wax,  glycerin,  etc.  can  be  used.  The 
advantage  of  the  process  consists  in  the  fact  that  all 
the  materials  used  are  neutral. — T.  A.  S. 

Hydrocarbon  oils  and  other  oils  and  fats;  Process  of 

increasing     the     consistency    of    .       H.     M. 

Frentrup    and     P.     Kiederich.       E.P.     185,782, 
12.4.21. 

A  salve-like  mass  is  made  from  pale  spindle  oil  by 
adding  to  it  castor  oil  and  fish  oil  which  have  been 
partially  hydrolysed  by  means  of  sulpho-aromatic 
acid.  The  hydrolysis  of  the  vegetable  and  animal  oil 
must  not  be  carried  beyond  50% .  A  salve  melting 
at  72°  C.  is  made  bv  adding  100  kg.  of  pale  spindle 
oil  (sp.  gr.  0-890— 0910)  to  5"75  kg.  of  castor  oil 
which  has  been  partially  hydrolysed  by  Twitchell 
reagent  and  to  which  1'75  kg.  of  fish  oil  has  been 
added.  To  the  mixture  8  kg.  of  caustic  lye  (40%) 
is  added  and  the  mass  stirred  with  a  spatula. 

— T.  A.  S. 

Petroleum  oil;  Process  of  treating  [cracking'] . 

R    Cross,  Assr.  to  Gasoline  Products  Co.     U.S. P. 

1,423,500,  18.7.22.  Appl.,  2.5.21. 
Oil  is  heated  to  cracking  temperature  by  passing  it 
through  a  tube  heated  in  a  furnace.  After  leaving 
the  tube  the  oil  is  maintained  at  cracking  tempera- 
ture, under  the  pressure  of  the  evolved  gases,  in  an 
insulated  "  reacting  chamber."  The  process  is  con- 
tinuous, oil  and  gas  being  continuously  removed 
from  the  reacting  chamber.  Cracking  takes  place 
in  the  liquid  phase. — T.  A.  S. 

■  Oils;    Apparatus    for   cracking   .       W.    B.    D. 

Penniman.   U.S.P.  (a)  1,429.622  and  (b)  1,429,623, 
19.9.22.     Appl.,  25.4.  and  5.5.17. 

(a)  Stills  in  series  are  internally  heated  by  means 
of  a  hot  fluid,  the  fluid  supply  being  thermostatically 
controlled.  Oil  is  passed  through  the  system  in  the 
opposite    direction    to   the    flow    of    heating    fluid 

(b)  Oil  is  heated  in  a  still  by  means  of  a  steam  coil. 
The  vapours  from  the  still  pass  through  two 
chambers  containing  steam  coils.  The  supply  of 
steam  to  the  various  parts  of  the  apparatus  is 
thermostatically  controlled. — T.  A.  S. 

Hydrocarbons;  Process  for  the  constrictive  con- 
version of  — .  H.  R.  Berry.  U.S.P.  1,429,910, 
19.9.22.  Appl.,  10.8.22. 
Heated  gas  containing  hydrogen  and  carrying 
hydrocarbon  vapours  is  caused  to  flow  in  counter 
current  to  films  of  relatively  cool  oil.  The  pressure 
and  temperature  are  so  controlled  that  lower-boiling 
hydrocarbons  are  produced  without  the  formation  of 
carbon  deposits. — T.  A.  S. 

Hydrocarbons;  Process  and  apparatus  for  producing 
lighter  hydrocarbons  from  heavier  —-.  O.  V. 
Woegerer,  Assr.  to  J.  R.  and  W.  H.  Clarke. 
U.S.P.  1,429,992,  26.9.22.     Appl.,  8.5.20. 

Hydrocarbons  are  cracked  by  atomising  them  with 


S90a 


Cl.  Hb.— DESTRUCTIVE  DISTILLATION  j    HEATING  ;    LIGHTING. 


[Nov.  30. 1922. 


water  and  lime  and  then  with  steam  under  pressure 
and  at  a  temperature  below  500°  F.  (260°  C).  They 
are  then  allowed  to  settle  under  pressure  to  allow 
unconverted  oil  and  lime  to  separate,  and  finally 
condensed  under  pressure. — T.  A.  S. 

[Paraffin]  wax-sweating  apparatus.  C.  S.  Dickens, 
T.  E.  Schley,  and  J.  W.  Newton,  Assrs.  to  Mag- 
nolia Petroleum  Co.  U.S. P.  1,429,721,  19.9.22. 
Appl.,  13.11.20. 

Wax  is  carried  by  an  endless  foraminous  belt 
through  a  series  of  chambers  heated  to  sweating 
temperature.  Each  chamber  may  be  heated  to  any 
desired  temperature. — T.  A.  S. 


Hydrocarbon;    Method 
alum  iniurn  chloride. 
Hoover    Co.     U.S.P. 
21.1.22. 


of    separating    from 

E.  V.  Owen,  Assr.  to  The 
1,430,109,    26.9.22.     Appl., 


Material  containing  aluminium  chloride  and  hydro- 
carbon is  delivered  to  a  bath  of  liquid  material  main- 
tained at  a  temperature  sufficiently  high  to  vaporise 
the  aluminium  chloride  but  not  the  hydrocarbon. 

— T.  A.  S. 

Dehydrator;  Central  circulating for  petroleum 

oils.  Stratifying  dehydrator.  W.  Meredith, 
Assr.  to  Petroleum  Rectifying  Co.  U.S.P.  (a) 
1,430,245  and  (b)  1,430,246,  26.9.22.  Appl.,  14.3. 
and  30.4.21. 

(a)  A  hollow  cylindrical  electrode  is  disposed 
centrally  in  a  cylindrical  container  which  is  also  an 
electrode.  Means  are  provided  to  cause  emulsion  to 
enter  the  bottom  of  the  inner  electrode  and  pass 
outwards  over  the  top  into  the  space  between  the 
electrodes.  A  potential  difference  is  maintained 
between  the  electrodes,  (b)  A  charged  electrode  is 
supported  in  and  surrounded  by  the  emulsion  to  be 
treated.  Means  are  provided  for  surrounding  the 
electrode  with  a  fluid  envelope  of  higher  dielectric 
strength  than  the  emulsion  to  be  treated. — T.  A.  S. 

Dehydrator  [for  petroleum  emulsions].  Adjustable 
field  dehydrator.  Double  field  dehydrator. 
(a)  H.  C.  Eddy  and  J.  T.  Worthington,  (b,  c)  H.  C. 
Eddv,  Assrs.  to  Petroleum  Rectifying  Co.  U.S.P. 
(a)  1,430,294,  (u)  1,430,295,  and  (c)  1,430,296, 
26.9.22.     Appl.,  (a)  2.3.21,  (b,  c)  25.6.21. 

(a)  Emulsions  are  treated  in  a  tank  fitted  with  a 
cylindrical  electrode  concentric  with  the  tank,  and 
means  are  provided  for  imparting  a  rotary  move- 
ment to  the  body  of  emulsion,  (b)  A  flat  electrode 
moving  in  its  own  plane  is  suspended  in  a  tank 
which  is  also  an  electrode,  (c)  A  hollow  electrode 
is  suspended  centrally  in  a  tank  which  is  also  an 
electrode  and  has  a  member  projecting  centrally  into 
the  inner  hollow  electrode. — T.  A.  S. 

Electrical  dehydrators  [for  petroleum  emulsions]; 
Starter  for .  Method  of  automatic  dehydra- 
tion. P.  W.  Harris,  Assr.  to  Petroleum  Recti- 
fying Co.  U.S.P.  (a)  1,430,301  and  (b)  1,430,302, 
26.9.22.     Appl.,  1.11.20  and  31.5.21. 

(a)  An  emulsion  is  drawn  from  a  bulk  supply  and 
passed  through  an  electric  field  at  such  a  rate  that 
a  permanent  short  circuit  in  the  field  is  prevented. 
The  coarse  emulsion  so  formed  is  then  submitted  to 
the  action  of  a  second  electric  field  in  which  the  dis- 
ruption of  the  current  paths  occurs  automatically 
without  mechanical  agitation,  (b)  The  dehydrator 
consists  of  a  tank  fitted  with  electrodes  and  means 
for  closing  the  oil  inlet  valve  to  the  tank  on  failure 
of  the  current  supply. — T.  A.  S. 

Fuel  briquettes;  Artificial .     W.  W.  Strafford. 

U.S.P.  1,430,767,  3.10.22.     Appl.,  11.4.22. 
See  E.P.  176,822  of  1920;  J.,  1922,  361  a. 


Fuel  product  and  method  of  making  same.  C.  J. 
Greenstreet.  U.S.P.  1,431,225,  10.10.22.  Appl., 
9.5.22. 

See  E.P.  179,567  of  1920;  J.,  1922,  493  a. 


C.  Tommasi,  Assr. 
U.S.P.  1,431,549, 


Metaldehyde;  Burner  for . 

to  Elektrizitatswerk  Lonza. 
10.10.22.     Appl.,  19.7.21. 

See  E.P.  168,868  of  1921 ;  J.,  1922,  403  a. 

Gases;  Desulphurising  .     A.  Mittasch  and  M. 

Schumann,  Assrs.  to  Badische  Anilin  und  Soda 
Fabrik.   U.S.P.  1,430,920,  3.10.22.   Appl.,  20.8.20. 

See  E.P.  170,152  of  1920;  J.,  1922,  167  a. 

Oils;  Process  and  apparatus  for  the  treatment  of 

petroleum .  S.  L.  Gartilan.  U.S.P.  1,430,977-8, 

3.10.22.     Appl.,  17.3.19. 

See  E.P.  179,644-5  of  1921 ;  J.,  1922,  536  a. 

Fuel  burners;  Liquid .  L.  Hall  and  S.  H.  Flood. 

E.P.  186,652,  1.6.21. 

Betorts,  gas-producers  and  like  apparatus ;  Charg- 
ing means  for .     Merz  and  McLellan,  E.  G. 

Weeks,  and  A.  W.  Statters.  E.P.  186,834,  7.10.21. 


Chlorinating  montan  wax. 
XX. 


U.S.P.  1,429,932.    See 


Flash-point  of  oils.     E.P.  185,814.     See  XXIII. 

Hb—  DESTRUCTIVE  DISTILLATION; 
HEATING;    LIGHTING. 

Adsorption  by  sugar  charcoal.     Bartell  and  Miller. 
See  IV. 

Artificial  daylight.    Groom.  Singleton.    See  XXIH. 

Patents. 
Low-temperature  tar  and  semi-coke;  Production  of 

by  distilling   bituminous  material,   such  at 

coal    or   lignite.       Deutsche    Erdol-A.-G.       G.P. 
356,591,  7.2.19. 

The  mixture  of  steam,  gas,  and  tar  obtained  by 
passing  a  mixture  of  superheated  steam  and  coal  gas 
over  coal,  lignite,  or  the  like,  is  cooled  to  a  tempera- 
ture sufficiently  low  to  condense  the  tar,  but  high 
enough  to  prevent  condensation  of  the  steam.  The 
residual  gases  are  raised  to  their  original  tempera- 
ture, and  again  circulated  through  the  distillation 
apparatus. — L.  A.  C. 

Coal,  shale,  and  other  bituminous  material;  Procest 

for  distilling  .     K.  Prinz  zu  Lowenstein,  A. 

Irinyi,  and  T.  Kayser.     G.P.  356,820,  4.8.20. 

In  distilling  bituminous  material  in  apparatus  pro- 
vided with  an  internally  heated  screw-conveyor,  the 
adhesion  of  the  material  to  the  conveyor  is  pre- 
vented by  scrapers  moving  up  and  down  indepen- 
dently of  one  another,  the  supports  for  the  scrapers 
being  in  a  chamber,  situated  on  the  upper  side  of 
the  conveyor,  in  which  the  products  of  distillation 
are  collected. — L.  A.  C. 

[Gas-filled]  electric  incandescence  lamps  [;  Prevent- 
ing   blackening    of    the    bulbs   of  ].      N.   V. 

Philips'  Gloeilampenfabrieken.  E.P.  168,598, 
27.8.21.  Conv.,  2.9.20. 
Blackening  of  the  bulbs  of  gas-filled  electric  incan- 
descence lamps,  having  a  filament  not  less  than 
O'l  mm.  in  diam.,  is  prevented  by  placing  a  sub- 
stance capable  of  generating  a  small  amount  of 
oxygen  during  the  operation  of  the  lamp,  more 
especially  an  alkali  nitrate  or  nitrite,  on  the  small 
plate  of  mica  customarily  employed  in  these  lamps. 
The   quantity   of   oxygen   generated   must    be   just 


Vol  XU,  No.  22.]    Cl.  III.— TAR  &  TAR  PRODU0T&     Cl.  IV.— COLOURING  MATTERS  &  DYES.      891  a 


sufficient  for  the  oxidation  of  the  tungsten  sputtered 
from  the  filament.  A  small  quantity  of  phosphorus 
may  likewise  be  present  in  the  lamp.  [Reference  is 
directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of 
the  Patents  and  Designs  Acts,  1907  and  1919  to 
E.P.  102,141;  J.,  1917,  1000.]— J.  S.  G.  T. 

Tungsten;  Manufacture  of  [for  lamp  fila- 
ments]. The  General  Electric  Co.,  Ltd.,  and  C  J 
Smithells.     E.P.  186,497,  23.8.21. 

Tungstio  acid  is  mixed  with  a  substance  which  will 
introduce  into  the  resulting  metaJl  an  oxide  (e.g., 
thoria)  that  is  not  reduced  by  hydrogen,  and  with  a 
compound  of  an  alkali  metal,  the  proportions  of 
each  being  so  adjusted  that  the  tungsten  oxide 
before  reduction  contains  1 — 0'5%  of  thoria  and 
0-3— 0"03%  of  sodium  chloride  or  0"5— 005%  of 
ctesium  chloride.  The  resulting  filament  when  burnt 
in  the  form  of  a  closely  wound  spiral  in  an  inert 
gas  develops  crystals  of  tungsten  that  extend  for 
several  coils,  thereby  increasing  the  strength  of  the 
filament. — A.  R.  P. 


III.-TAB  AND  TAB  PB0DUCTS. 

Benzene  from  phenols;  Experimental  plant  for  pro- 
ducing   .     F.  Fischer,  H.  Schrader,  and  K. 

Zerbe.     Brennstoff-Chem.,  1922,  3,  289—292. 

The  apparatus  was  constructed  to  study  on  a  larger 
scale  the  reduction  of  phenols  by  hydrogen  to 
benzene  and  homologues  (cf.  J.,  1920,  511a,  740  a). 
The  gas  was  saturated  with  vapour  in  passing 
through  a  vessel  containing  heated  phenols  and 
thence  passed  into  an  iron  tube  coated  internally 
with  tin.  This  tube  was  3  m.  long,  28  cm.  diam., 
and  could  be  heated  in  a  special  gas  furnace  to  800°  C. 
The  gas  and  vapour  leaving  the  tube  traversed  two 
condensers  cooled  by  water  and  a  freezing  mixture 
respectively  and  afterwards  two  vessels  charged 
with  activated  carbon.  The  gas  was  metered  before 
and  after  passing  the  apparatus,  which  was  capable 
of  dealing  with  12  kg.  of  phenol  per  hour.  The 
volatile  reaction  products  were  recovered  from  the 
carbon  by  a  current  of  superheated  steam.  The 
results  obtained  are  to  be  published  separately. 

— H.  J.  H. 

Phenol;  Action  of  sodium  carbonate  in  promoting 

the  hydroijenation  of  .     Catalytic  action  at 

solid  surfaces.  E.  F.  Armstrong  and  T.  P. 
Hilditch.  Proc.  Roy.  Soc,  1922,  A  102,  21—27. 
Treatment  of  phenol  at  180°  C.  with  hydrogen 
under  a  pressure  of. 80  lb.  per  sq.  in.,  in  the  presence 
of  finely-powdered  nickel  and  sodium  carbonate 
gives  a  yield  of  95"  of  cyclohexanol  and  some  cyclo- 
hexanone.  Sodium  carbonate  has  an  accelerating 
action  on  the  change,  which  is  dependent  on  the 
amount  present,  until  an  optimum  quantity  is 
reached  amounting  to  about  25%  of  the  weight 
of  nickel  used ;  an  excess  above  the  optimum 
retards  the  hydrogenatTon.  This  optimum  quan- 
tity depends  only  on  the  relationship  with  the 
nickel  catalyst.  It  is  suggested  that  the  stimulation 
of  the  reaction  by  sodium  carbonate  is  not  a  true 
catalysis  but  the  restoration  of  the  nickel  to  its 
normal  function  by  the  suppression  of  a  retardation 
which  is  probably  of  the  nature  of  a  poisoning  of  the 
nickel  catalyst  by  the  phenol.— J.  F.  S. 

Nitration  of  hydrocarbons  [anthracene  and  naph- 
thalene"] in  a  basic  or  neutral  medium.  M. 
Battegav  and  P.  Brandt.  Bull.  Soc.  Chim.,  1922, 
31,  910—915. 

A  mixture  of  25  g.  of  pyridine  and  100  c.c.  of  nitro- 
benzene is  treated  with  12  g.  of  nitric  acid  (sp.  gr. 
1'52)  which  has  been  freed  from  nitrous  acid,  the 
whole  being  cooled  in  ice.  To  this  mixture  20  g.  of 
finely  divided  anthracene  is  added  and  nitration  is 


effected  by  heating  to  125°  C.  for  4—5  hrs.  The 
product  is  poured  into  500  c.c.  of  water,  which 
should  remain  neutral.  After  addition  of  alkali  the 
pyridine  and  nitrobenzene  are  removed  by  steam- 
distillation,  the  liquid  is  filtered,  and  the  residue 
freed  from  alkali  by  washing,  then  dried,  and 
extracted  with  alcohol.  On  evaporation  of  the  alco- 
holic extract,  9-nitroanthracene  crystallises  and  is 
purified  by  recrystallisation.  The  filtrate  contains 
nitroanthrone, 


C6H4 


/ 


CO 


"\ 


C6H4 


^CHJNO,)/ 

The  nitration  of  naphthalene  may  be  effected  in  a 
somewhat  simiiar  manner,  zinc  chloride  being  used 
as  a  dehydrating  agent,  with  production  of  o-nitro- 
naphthalene  and  also  of  nitrophthalic  acid. 

— H.  J.  E. 
Patent. 

Naphthalene;  Process  of  purifying  .      D.   F. 

Gould,  Assr.  to  Barrett  Co.       U.S.P.  1,431,394, 
10.10.22.     Appl.,  15.12.20. 

See  E.P.  172,937  of  1921 ;  J.,  1922,  662  a. 


IV.-C0L0UHING  MATTERS  AND  DYES. 

Dyestuffs;  Methods  of  determining  the  fastness  of 
.   B.  Setlik.  Chim.  et  Ind.,  i922,  8,  541—543. 

A  resume  of  the  tests  which  are  necessary  and  the 
methods  to  be  followed  in  order  to  obtain  a  correct 
estimate  of  the  fastness  of  a  dyestuff  under  the  con- 
ditions to  which  it  is  likely  to  be  subjected.  Accord- 
ing to  the  material  on  which  the  dyestuff  is  used 
and  the  purpose  for  which  the  article  is  to  be  used, 
tests  must  be  made  (a)  for  wool,  for  fastness  to  light, 
to  acids,  to  water,  to  washing,  to  fulling,  to  sulphur 
dioxide,  to  friction,  to  ironing,  to  hot  water,  to  per- 
spiration, and  to  nyid  and  dust;  (b)  for  cotton,  for 
fastness  to  light  and  air,  to  washing,  to  chlorine 
and  peroxides,  to  perspiration,  to  mercerisation, 
to  ironing,  and  to  dressing ;  (c)  for  silk  goods,  for 
fastness  to  light,  water,  washing,  perspiration,  and 
mud  and  dust.  To  test  fastness  to  light,  bands  or 
skeins  of  material  dyed  different  shades  with  the 
same  dyestuff  are  exposed  to  sunlight  with  free 
access  of  air  on  both  sides,  one  half  being  protected 
for  comparison.  Fastness  to  acid  is  tested  by  impreg- 
nating the  material,  alone  or  plaited  with  white 
material,  with  sulphuric  acid  of  5°  B.  (sp.  gr.  1'036), 
drying  at  80°  C,  rinsing  with  dilute  soda  and 
water  and  again  drying ;  fastness  to  water  by  soak- 
ing for  3  hrs.,  or  boiling  for  10  mins..  preferably  in 
contact  with  white  material ;  to  washing  by  warm- 
ing for  J  hr.  in  a  solution  of  10  g.  of  neutral  soap 
and  1  g.  of  soda  per  litre ;  to  perspiration  by  warm- 
ing for  24  hrs.  at  40°  C,  steeping  in  5%  acetic  acid 
several  times  during  this  period,  and  wringing  out 
the  excess  of  acid  each  time  before  replacing  in  the 
warm  water.  Mud  and  dust  are  often  alkaline,  and 
their  effect  is  simulated  by  making  a  splash  on  the 
material  with  milk  of  lime,  drying,  and  brushing 
off.— G.  F.  M. 

Sugar  charcoal;  Adsorption  [of  Methylene  Blue] 

by  activated  - .    F.  E.  Bartell  and  E.  J.  Miller. 

J.  Amer.  Chem.  Soc,  1922,  44,  1866—1880. 
Ash-free  sugar  charcoal  will  completely  adsorb  a 
certain  maximum  amount  of  Methylene  Blue  and 
still  leave  the  solution  neutral.  During  this  process 
of  adsorption  a  considerable  quantity  of  hydro- 
chloric acid  is  set  free  but  is  readily  and  completely 
adsorbed  by  the  charcoal.  Adsorption  of  quantities 
of  Methylene  Blue  greater  than  the  above-men- 
tioned maximum  results  in  the  liberation  of  more 
hydrochloric  acid  than  can  be  removed  from  solu- 
tion by  adsorption. — J.  F.  S. 


892  a 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


[Nov.  30, 1922. 


Patents. 

Mordant-dyeing  colouring  matters;  Manufacture  of 

new  .      Durand   &    Huguenin,    S.A.      E.P. 

166,530,    11.7.21.      Conv.,    15.7.20.     (Cf.    U.S. P. 
1,403,888;   J.,  1922,  170  a.) 

New     mordant     dyestuffs,     having     the     probable 
general  formula 


HO 


\ 


Rj.CRj 


/ 


OH 


RaNH.Co/    '  |     'Vco 


NH.E, 


HO.R2.COOH 
(R,  and  R3  are  benzene  nuclei  which  may  be 
substituted  by  a  CH,  group,  and  R,  is  a  benzene 
nucleus  which  may  be  substituted  by  NO.,, 
halogens,  or  CH,  groups  and  is  also  in  every  case 
preferably  substituted  by  a  sulpho  group)  are 
prepared  by  oxidising  1  mol.  of  a  methylene-di-o- 
hydroxycarboxylic  acid  of  the  benzene  series,  sub- 
stituted in  each  of  its  carboxyl  groups  by  an 
arylamine  or  substituted  arylamine  containing 
nitro,  halogen  or  methyl  groups,  with  1  mol.  of  the 
same  or  another  o-hydroxycarboxylic  acid.  The 
methylenediarylido-o-hydroxycarboxylic  acid  is 
formed  by  condensing  an  o-hydroxycarboxylic  acid 
with  an  arylamine  eitner  before  or  after  condensa- 
tion with  formaldehyde.  Oxidation  is  effected  by 
means  of  nitrous  acid,  and  anilidosalicylic  acid, 
anilido-o-cresotinic  acid,  and  p-nitroanilidosalicylic 
acid  are  suitable  intermediates.  The  dyestuffs  are 
suitable  for  dyeing  chromed  wcol  in  red  shades,  but 
give  dull  and  weak  tints  when  used  in  printing.  On 
sulphonation,  however,  the  dyestuffs  are  improved 
in  strength  and  fastness  so  that  they  are  then 
suitable  for  printing  together  with  a  chromium 
mordant.  A  red  dyestuff  is  prepared  by  the 
following  method  :  1065  pts.  of  anilidosalicylic  acid 
dissolved  at  20°— 25°  C.  in  700  pts.  of  sulphuric 
acid  of  66°  B.  (sp.  gr.  184)  is  stirred  with 
7'5  pts.  of  paraformaldehyde  for  several  hours. 
34'5  pts.  of  salicylic  acid  is  added  and  the  mixture 
is  afterwards  oxidised  by  the  gradual  addition,  at 
30°— 50°  C,  of  30  pts.  of  sodium  nitrite.  The  mass 
is  then  cooled,  poured  into  ice  water,  and  the  dye- 
stuff  is  filtered  off,  washed,  and  dried  (yield  135 — 
140  pts.).  Sulphonation  is  effected  by  beating  at 
90°— 95°  C.  for  1—2  hrs.  a  solution  of  the  dyestuff 
in  five  times  its  weight  of  sulphuric  acid  of  66°  B. 

—A.  J.  H. 

Brown  [sulphur]  dyestuffs.  Soc.  Chim.  de  la  Grande 
Paroisse.  E.P.  169,637,  12.8.21.  Conv.,  30.9.20. 
Brown  dyestuffs  having  a  reddish  tinge  are  pre- 
pared by  treating  with  alkali  polysulphides  the  2.4.8- 
and  2.4.5-trinitro-o-naphthols  obtained  by  successive 
treatment  of  the  corresponding  isomeric  dinitro- 
naphthalene  compounds  with  fuming  sulphuric  acid 
and  dilute  nitric  acid.  For  example,  10  kg.  of 
either  or  both  of  these  trinitronaphthels,  40  kg.  of 
crystalline  sodium  6U'lphide,  4  kg.  of  sulphur,  and 
8  I.  of  water  are  heated  at  150°  C.  until  the  water 
has  evaporated,  whereby  the  mass  thickens  and  a 
considerable  amount  of  ammonia  is  evolved.  The 
temperature  is  then  raised  to  170°  C.  and  when 
evolution  of  hydrogen  sulphide  ceases,  the  product  is 
dissolved  in  300  I.  of  water  and  the  dyestuff  pre- 
cipitated by  addition  of  an  acid.  The  dyestuff 
obtained  from  2.4.8-trinitro-a-naphthol  is  redder 
than  that  produced  from  the  2.4.5-trinitro-deriva- 
tive.  The  sulphur  dyestuffs  thus  produced  are  fast 
to  light  and  do  not  bleed. — A.  J.  H. 

Yellow  colouring  matters  for  dyeing  animal  fibres; 

Manufacturing     .       F.     Giinther,     Assr.     to 

Badische     Anilin     und     Soda     Fabrik.       U.S. P. 
1,430,899,  3.10.22.     Appl.,  9.7.20. 

Yellow  water-soluble  dyestuffs,  capable  of  dyeing 
wool  in  even  shades  of  excellent  fastness,  are  made 
from    an    aromatic    aldehyde   and   a  compound    of 


o-nitraniline.  The  dyestuff  molecule  has  the  posi- 
tion para  to  the  NH,  group  unoccupied  and  is 
substituted,  in  the  aldehyde  residue,  by  at  least 
one  sulphonic  acid  group. — A.  J.  H. 

Brominated  indigoes;  Method  of  making .  C.  J. 

Strosacker  and  H.  J.  Rupright,  Assrs.  to  The 
Dow  Chemical  Co.  U.S. P.  1,431,606,  10.10.22. 
Appl.,  1.9.20. 

Dry  indigo  is  treated,  at  50°— 90°  C.  and  under 
approximately  atmospheric  pressure,  in  the  absence 
of  any  diluent  or  any  other  reagent,  with  from  15 
to  25%  excess  of  bromine  above  that  theoretically 
necessary  to  form  the  desired  substitution  product. 

—J.  S.  G.  T. 

lo-Hydroxy-']azo  dye.  W.  Herzberg  and  O.  Scharfen- 
berg,  Assrs.  to  Akt.-Ges.  fur  Anilin  Fabrik. 
U.S. P.   1,431,655,   10.10.22.     Appl.,  30.8.21. 

o-Htdroxtazo    dyestuffs    of    the    general    formula 

OH         OH  Cl 

=000 

X  SO,H 

capable  of  dyeing  chrome-mordanted  wool  in  blue 
shades  of  very  good  fastness  and  which  by  reduction 
yield  8  -  chloro  -  2  -  amino-l-hydroxynaphthalene-5- 
sulphonic  acid,  and  2-aminc~3.4.5-trihalogenated-l- 
hydroxybenzene  are  claimed.  The  alkali  salts  of 
these  dyestuffs  are  dark  powders  soluble  in  water  to 
form  blue  solutions,  which  become  violet  and  red  by 
addition  of  sodium  carbonate  and  caustic  soda  res- 
pectively and  which  yield  a  brownish-orange  precipi- 
tate by  addition  of  an  organic  or  inorganic  acid. 

—A.  J.  H. 

[Faf]  dye.  W.  Herzberg  and  G.  Hoppe,  Assrs.  to 
Akt.-Ges.  fur  Anilin-Fabrik.  U.S.P.  1,431,656, 
10.10.22.    Appl.,  30.8.21. 

New  dyestuffs,  obtained  by  condensation  of 
naphthosultam-3.4-phenazine  with  a  halogenated 
quinone  derivative,  are  capable  of  dyeing  fibrous 
material  in  yellow  to  orange  shades,  fast  to  chlorine 
and  soap,  from  an  alkaline  hydrosulphite  vat.  The 
dyestuffs  are  yellow  to  orange  crystals  or  powders, 
slightly  soluble  in  organic  solvents  but  soluble  in 
concentrated  sulphuric  acid  with  an  orange-red 
colour. — A.  J.  H. 

Colour  lake.     U.S.P.  1,431,081.     See  XIII. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPEfi. 

Clothes-moth  (Tineola  biselliella,  Hum.);  Besearches 

on  .      E.   Titschack.     Z.   techn.   Biol.,   1922, 

10,  1—168.   Chem.  Zentr.,  1922,  93,  III.,  945—947. 

A  zoological  study  was  carried  out  for  F.  Bayer  u. 
Co.  (cf.  G.P.  347,723-  J.,  1922,  541  a)  concerning 
the  behaviour  of  moth  toward  fifty-two  materials. 
and  also  the  influence  of  chemical  reagents  in 
gaseous,  liquid  and  solid  form,  temperature,  light, 
moisture,  reduced  pressure  and  shaking  on  the 
eggs,  larvse  and  moth.  The  results  obtained  with 
various  chemical  reagents  are  tabulated. — A.  J.  H. 

Cellulose.     VII.     Cellulose  copper  compounds.    K. 

Hess,    E.    Mesmer,   and   E.   Jagla.     Ber.,   1922, 

55,  2432—2443. 
It  is  shown  by  interpretation  of  the  effects  of  copper 
hydroxide  and  ammonia  on  the  specific  rotation  of 
cellulose  in  the  light  of  the  law  of  mass  action  that 
the  soluble  complex  copper  compounds  of  cellulose 
probably  contain  the  metal  and  carbohydrate  in  the 
ratio,  lCu:2C,H„0„  but  that  a  different  multiple 


Vol.  XIX,  No.  22.]. 


Cl.    V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


893  a 


of  the  C6H10Os  group  is  also  possible.  The  isolation 
of  the  compound  Na2[C12H„O10Cu],  formed  by  the 
action  of  caustic  soda  on  a  cuprammonium  solution 
of  the  biose-anhydride  from  cellulose  (cf.  Hess,  J., 
1922,  9  a)  or  by  the  action  of  caustic  soda  and 
copper  hydroxide  on  cellulose  (cf.  Normann,  J., 
1906,  652),  considerably  strengthens  the  first  con- 
ception.   (Cf.  J.C.S.,  Nov.)— H.  W. 

Lignin;  Reduction   of  and   of  carbohydrates 

with  hydriodic  acid  and  phosphorus.  R.  Will- 
statter,  L.  Kalb,  and  G.  von  Miller.  Ber.,  1922, 
55,  2637—2652. 

Lignin  obtained  from  pine  or  red  beech  by  treat- 
ment with  hydrochloric  acid  (sp.  gr.  121)  in  accord- 
ance with  the  method  of  Willstatter  and  Zeeh- 
meister  (J.,  1913,  822),  is  converted  by  hydriodic 
acid  (sp.  gr.  1"7)  and  red  phosphorus  under  pressure 
at  250°  C.  into  a  product  which  is  separated  by 
ether  into  a  non-homogeneous,  insoluble  portion  of 
high  melting  point  and  a  soluble  portion  which  is 
further  separated  by  means  of  alkali  into  a  feebly 
acidic  product  (C  76-50,  H  10-39%)  and  a  mixture 
of  hydrocarbons.  The  latter  is  separated  by  succes- 
sive treatment  with  acetone  and  glacial  acetic  acid 
into  a  solid  and  a  liquid  hydrocarbon  fraction,  each 
of  which  is  free  from  oxygen.  The  composition  of 
the  mixture  approximates  to  a  mean  value  corres- 
ponding with  the  formula,  CH,.S;  the  liquid  por- 
tion is  somewhat  richer,  the  solid  somewhat  poorer 
in  hydrogen.  The  liquid  hydrocarbons  have  sp.  gr. 
0'9  and  10  respectively  for  the  fractions  of  lowest 
and  highest  boiling  point.  The  lowest  observed 
molecular  weight  is  167,  the  highest  842  (for  the 
solid  portion).  The  two  mixtures  are  an  inter- 
related analogous  (not  homologous)  series,  the  pro- 
perties of  which  are  reminiscent  of  hydroaromatic 
hydrocarbons.  Further  treatment  of  the  residue 
insoluble  in  ether  (see  above)  with  hydriodic  acid 
and  phosphorus  yields  almost  exclusively  solid 
hydrocarbons.  The  latter  together  with  liquid 
hydrocarbons  in  the  approximate  ratio  3:1  are 
similarly  derived  from  the  acidic  substance.  The 
hydrocarbons  are  themselves  practically  unchanged 
by  further  treatment  with  hydriodic  acid  and 
phosphorus.  Hexitol,  dextrose,  xylose,  cellulose, 
and  the  humus-like  substance  obtained  by  the  action 
of  hydrochloric  acid  on  dextrose,  give  mixtures 
similar  to  those  obtained  from  lignin  when  treated 
with  hydriodic  acid  and  phosphorus  under  like 
conditions.  n-Hexyl  iodide  is  not  an  intermediate 
product  of  the  change.  It  appears  therefore  that 
the  constitution  of  lignin  must  be  closelv  related  to 
that  of  the  carbohydrates.     (Cf.  J.C.S.,  Nov.) 

— H.  W. 

Sulphite  liquors;  Analytical  methods  for  .     R. 

Sieber.     Zellstoff  u.   Papier,    1922,   2,   199—201. 

(Cf.  J.,  1921,382  a). 
Good  results  for  the  free  acidity  are  obtained  by 
Hohn's  method  when  methyl  red  is  used  instead  of 
phenolphthalein  as  indicator.  The  combined 
sulphurous  acid  cannot  accurately  be  calculated 
from  a  determination  of  the  total  calcium,  because 
the  suggested  correction  for  SO,  of  0'16%  is  not  a 
reliable  constant.  The  estimation  of  the  sulphate 
cannot  be  omitted  when  carrying  out  Sander's 
method  (J.,  1921,  256  a),  and  it  is  necessary  to  work 
in  an  atmosphere  of  carbon  dioxide.  This  can  be 
generated  in  the  reaction  flask  from  sodium 
carbonate  solution,  the  corked  flask  being  provided 
with  a  small  dropping  funnel  and  a  delivery  tube 
dipping  into  a  beaker  of  water.  Hydrochloric  acid 
is  first  introduced  through  the  dropping  funnel  into 
the  sodium  carbonate,  and  when  all  the  air  has  been 
expelled  the  sulphite  liquor  is  introduced  through 
the  funnel.  Oxidation  of  the  sulphurous  acid  might 
be  inhibited  by  a  negative  catalyst,  such  as  stannic 


chloride,  and  the  necessity  of  a  carbon  dioxide 
atmosphere  might  thus  be  avoided.  The  author  has 
devised  a  method  for  the  rapid  filtration  of  barium 
sulphite  by  means  of  a  filter-pump  funnel.  For  this 
purpose  the  filter  plate  is  covered  with  a  thick  paper 
filter  and  a  measured  quantity  of  a  suspension  of 
kieselguhr  of  exactly  known  concentration  is  first 
distributed  over  the  filter  with  very  gentle  suction. 
This  kieselguhr  forms  a  filter  bed  which  retains  the 
barium  sulphate  completely  even  when  freshly  pre- 
cipitated, and  filters  very  rapidly.  A  correction  is 
made  for  the  weight  of  the  dry  ignited  kieselguhr. 
In  the  spent  liquors  the  completely  free  sulphurous 
acid  is  determined  by  distillation  without  acidifica- 
tion ;  this  is  better  than  the  direct  titration  with 
iodine.  Total  sulphur  in  spent  liquors  is  determined 
by  a  sodium  peroxide  method  :  5  c.c.  of  the  liquor  is 
treated  with  concentrated  sodium  hydroxide  solu- 
tion in  a  nickel  crucible  and  the  alkaline  liquid 
evaporated  to  dryness  on  an  electric  hot-plate.  A 
mixture  of  3  g.  each  of  sodium  carbonate  and 
peroxide  is  mixed  with  the  powdered  residue  and 
the  whole  is  carefully  heated  over  a  small  flame, 
combustion  being  avoided.  Afterwards  a  further 
0"5  g.  of  peroxide  is  added  and  the  mass  brought 
to  fusion.  Sulphate  is  then  determined  in  the  melt 
after  dissolving  in  water  and  treating  with  bromine. 

—J.  F.  B. 


Sulphite  icood  pulp;  Beddening  of and  its  cure. 

E.  Heuser  and  S.  Samuelsen.     Papierfabr.,  1922, 
20,  1249—1254,  1285—1288,  1321—1326. 

The  red  coloration  is  liable  to  develop  not  only  in 
underboiled  sulphite  pulps  but  also  in  easy-bleaching 
varieties.  The  presence  of  a  certain  amount  of 
moisture  is  necessary  for  the  development  of  the  red 
colour,  which  then  appears  under  the  influence  of 
light  and  air  or  other  mild  oxidising  agents.  It  is 
destroyed  by  excess  of  oxidising  agents  and  perman- 
ently disappears  in  the  operation  of  bleaching.  The 
action  of  reducing  agents  such  as  hydrosulphite,  dis- 
charges the  red  colour,  but  this  reappears  on 
subsequent  oxidation  ;  similarly,  the  discharge  which 
is  effected  by  dilute  mineral  acids  and  by  alkalis  is 
only  temporary  and  the  red  colour  returns  after  the 
pulp  is  washed.  It  would  seem  that  the  substance 
which  produces  the  red  coloration  is  fixed  on  the 
original  cellulose  in  the  reduced  form ;  none  of  the 
attempts  to  separate  it  by  extraction  were  success- 
ful. Very  similar  reactions  are  shown  by  vanillin  and 
protocatechuic  aldehyde ;  these  substances  are  allied 
to  lignin,  and  the  conclusion  arrived  at  is  that  the 
chromogenic  substance  is  derived  from  the  lignin  or 
lignosulphonic  acid,  possibly  modified  by  the 
digestion  process  and  fixed  on  the  cellulose  either 
by  aldol  condensation  or  after  the  manner  of  a  dye- 
stuff.  The  problem  of  destroying  the  tendency  to 
reddening  without  having  recourse  to  a  definite 
bleaching  of  the  pulp  has  been  solved,  by  the 
observation  that,  whereas  with  the  majority  of 
oxidising  agents  a  substantial  quantity  is  required 
for  the  permanent  destruction  of  the  colouring 
matter,  in  the  case  of  potassium  persulphate  in  acid 
solution,  0-5%  is  sufficient.  The  pulp  is  treated  with 
0'5%  of  its  air-dry  weight  of  the  persulphate  and 
0'5%  of  aluminium  sulphate  and  left  in  the  stuff- 
chest  for  9  hrs.  It  is  then  ready  for  use  by  simple 
draining  without  washing.  The  treated  pulp  is  in 
no  sense  bleached,  but  the  lignin  residues  are  so  far 
changed  that  the  tendency  to  subsequent  reddening 
is  completely  eliminated. — J.  F.  B. 

Solubility  of  sulphur  dioxide  in  suspensions  of 
calcium  and  magnesium  hydroxides.  Smith  and 
Parkhurst.    See  VII. 

Polysaccharides.    Karrer  and  Fioroni.    See  XVII. 


894  a 


Cl.   VI.— BLEACHING ;    DYEING;     PRINTING ;     FINISHING. 


[Nov.  30,  1922. 


Patents. 

Cellulose  derivative  [butyrate]  and  process  of  pre- 
paring same.  A.  D.  Little,  Inc.,  Assees.  of  G.  J. 
Esselen  and  H.  S.  Mork.  E.P.  182,820,  9.3.21. 
Conv.,  10.4.20. 
When  butyric  acid  containing  small  quantities  of 
water  is  used  as  the  catalyst  carrier  (c/.  U.S. P. 
1,425,580;  J.,  1922,  748  a), 'the  mixture  separates 
into  two  layers,  the  lower  of  which  contains 
practically  the  whole  of  the  catalyst.  This  separa- 
tion is  prevented  by  the  addition  of  small  quantities 
of  such  substances  as  methyl,  ethyl,  or  butyl  alcohol, 
acetone  or  the  like.  A  suitable  impregnating  bath 
has  the  following  composition  :  sulphuric  acid  (sp. 
gr.  184)  0o— 06%,  alcohol  5—7-5%,  butyric  acid 
945 — 91'9%.  The  cellulose  is  soaked  for  90  mins.  in 
this  solution,  pressed  until  it  contains  1J  times  its 
weight  of  solution,  and  esterified  as  described  in 
E.P.  167,143  (J.,  1922,  748  a).— D.  J.  N. 

Cellulose  ether  solvent  and  composition.     Composi- 
tion   containing    cellulose    nitrate    and    cellulose 
ether  and  solvent  used   therein.     S.   J.   Carroll, 
Assr.  to  Eastman  Kodak  Co.    U.S.P.  (a)  1,431,905 
and    (b)    1,431,906,   10.10.22.     Appl.,   1.4.21    and 
25.4.21. 
(a)  A  viscous  composition  consists  of  an  alkyl  ether 
of  cellulose  dissolved  in  a  solvent  containing  90 — 10 
pts.   of  xvlene  and   10 — 90  pts.   of  a  lower   mono- 
hydroxy  aliphatic  alcohol  (c/.  U.S.P.  1,429,188;  J., 
1922,  807  a),     (b)  The  composition  consists  of  nitro- 
cellulose and  cellulose  ether  dissolved  in  a  mixture 
containing  methyl  alcohol,  ethyl  acetate,  and  chloro- 
form.— A.  J.  H. 

Asbestos  paper,  sheets  and  the  like,  and  articles 
made  therewith.  N.  Sulzberger.  E.P.  186,409, 
24.6.21. 

Pure  asbestos  paper  (containing  no  organic  binders) 
is  made  by  drying  a  pulp  containing  50  pts.  of  long- 
fibre  asbestos  and  6  pts.  of  a  colloidal  solution  of 
aluminium  silicate  prepared  with  the  aid  of  tannic 
acid  and  ammonia.  Alternatively,  asbestos  sheets 
containing  an  organic  binder  and  preferably  an 
oxidising  agent  such  as  sodium  nitrate  or  nitrocellu- 
lose, are  heated  at  a  temperature  sufficient  to 
destroy  the  organic  binder.  Asbestos  material  pre- 
pared by  this  process  is  suitable  for  cigarette 
wrappers,  insulating  materials,  and  carriers  for 
catalysts. — A.  J.  H. 

Parchment  paper  or  vulcanised  fibre  and  process  for 
making  some  [from  nitrocellulose].  B.  Herstein. 
U.S.P.  1,429,427,  19.9.22.    Appl.,  6.4.20. 

Sheets  of  nitrocellulose  paper  containing  not  more 
than  4'5%  of  nitrogen  are  superimposed,  and 
cemented  together  by  the  gelatinising  action  of  an 
alkali.— D.  J.  N. 

Flax  fibre;  Process  for  recovering  [making  high- 
grade  paper  pulp  from] .    R.  E.  Rindfusz  and 

V.  Voorhees,  Assrs.  to  American  Writing  Paper 
Co.    U.S.P.  1,430,115,  26.9.22.    Appl.,  15.11.19. 

Flax  tow  is  digested  with  alkaline  solutions  under 
pressure,  washed,  treated  at  the  ordinary  tempera- 
ture with  a  solution  containing  an  oxy-acid  of 
nitrogen,  and  again  subjected  to  an  alkaline  treat- 
ment to  complete  the  removal  of  ligneous  shive 
material. — D.  J.  N. 

Metallised  paper  [for  making  electric  cables'].  M. 
Hochstadter.    E.P.  186,363,  29.3.21. 

Metallised  paper,  more  especially  for  use  in  the 
manufacture  of  electric  cables  in  accordance  with 
E.P.  7766  of  1914,  is  prepared  by  spraying  a  con- 
tinuous conducting  layer  of  molten  metal  upon 
paper.  The  nozzles  of  the  spraying  apparatus  are 
capable  of  oscillation  transversely  to  the  direction 


of  motion  of  the  paper  during  the  spraying  process. 
Preferably  spelter  is  used  as  the  sprayed  metal,  and 
after  leaving  the  spraying  apparatus  the  paper  is 
passed  between  rollers  to  be  smoothed  and  per- 
forated. The  resulting  material  is  highly  porous  and 
cables  constructed  therefrom  can  be  impregnated 
with  liquids  in  the  usual  manner. — J.  S.  G.  T. 

Paper;  Method  of  removing  ink  from  print  . 

H.  R.  Eyrich  and  J.  A.  Schreiber.    E.P.  186,372, 
17.5.21. 

See  U.S.P.  1,421,195  of  1922;  J.,  1922,  628a. 
Bentonite  is  a  very  fine-grained  clay  and  its  action 
is  apparently  that  of  a  protective  colloid,  which 
forms  a  fine  suspension  in  the  alkaline  liquid  and 
renders  the  particles  of  pigment  capable  of  removal 
through  the  matted  fibres  on  the  surface  of  the 
drum  washer. 

Graphitised  vulcanised  fibre  and  methods  in  pre- 
paring the  same.  E.  G.  Acheson,  jun.  E.P. 
172,924,  7.7.21.     Conv.,  14.12.20. 

See  U.S.P.  1,379,155  of  1921 ;  J.,  1921,  540  a. 

[Paper;]  Beater  sizing  [of ].  H.  M.  Wheel- 
wright. U.S.P.  1,430,045,  26.9.22.  Appl.,  6.5.19. 
Renewed  3.3.22. 

See  E.P.  175,034  of  1920;  J.,  1922,  248  a. 

Waterproofing  and  gasproofing  composition.  J.  D. 
See,  Assr.  to  Soc.  Anon,  des  Etabl.  Hutchinson 
U.S.P.  1,431,845,  10.10.22.     Appl.,  25.6.19. 

See  E.P.  129,630  of  1919;  J.,  1920,  482  a. 

Sugar  etc.  from  wood.     E.P.  160,776.     See  XVI 

Glucose  and  dextrin  from  wood.  E.P.  186,139. 
See  XVII. 

Mucic  acid  from  wood.     E.P.  160,777.     gee  XX. 


VI—  BLEACHING;   DYEING;  PBINTING; 
FINISHING. 

Cotton  mercerised  by  means  of  sodium  hydroxide  or 
sodium  chromite  (alkaline  chrome  mordant); 
Some    important    but    overlooked    properties    of 

•.    J.  Pokoruy.    J.  Soc.  Dyers  and  Col.,  1922, 

38,  248—250. 

Mercerisation  imparts  to  cotton  slightly  basic  pro- 
perties whereby  it  attracts  acid  dyestuffs  (including 
direct  cotton  dyes)  containing  sulphonic  or 
carboxylic  groups,  from  cold  or  hot  acidified 
solutions.  Hanks  of  mercerised  cotton  dyed  in  acid 
and  alkaline  solutions  of  Benzopurpurine  4B 
acquired  the  same  brightness  and  depth  of  shade. 
This  property  of  mercerised  cotton  is  diminished  by 
treatment  with  hot  dilute  acids,  so  that  it  is 
probably  due  to  the  formation  of  an  active  but 
labile  basic  compound.  The  formation  of  this  basic 
compound  increases  with  the  strength  of  caustic 
soda  used  in  mercerisation.  Cotton  also  obtains 
stronger  basic  properties  when  simultaneously  mor- 
danted and  mercerised  by  means  of  Koechlin's 
alkaline  chrome  mordant,  and  is  then  capable  of  fix- 
ing from  cold  or  hot  dilute,  neutral  or  slightly  acid 
dye-baths,  all  kinds  of  acid  colours  in  much  deeper 
shades  than  those  obtained  by  the  usual  direct 
dyeing  methods.  The  more  sulphonated  the  dye- 
stuff,  the  easier  is  the  dyeing,  e.g.,  dark  indigo 
shades  are  obtained  by  dyeing  a'lkaline  chrome- 
mordanted  cotton  in  cold  or  hot  dilute  solutions  of 
Diamine  Sky  Blue.  Under  these  conditions,  Erio- 
chrome  Azurol  B  and  Alizarin  Saphirol  B  yield 
dyeings  very  fast  to  hot  soaping,  but  the  fastness  of 
other  dyestuffs  varies  considerably.  In  most 
instances,  the  dye-liquor,  even  in  the  cold,  is  easily 
exhausted.      The    shade    of    alkaline    chrome-mor- 


Vol.  XLI.,  No.  22.]         Cr..  VII.-ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


895  a 


danted  cotton  dyed  in  the  cold  with  dyestuffs  con- 
taining hydroxyl  groups  in  special  positions  (e.g., 
Enochrome  Azurol  B)  is  altered  in  tone  and  becomes 
much  faster  to  soap  when  steamed  without  pressure. 
The  mordanted  cotton  may  be  further  mordanted 
by  steeping  it  in  solutions  containing  suitable 
metallic  salts.  Technically  valuable  shades  have 
been  obtained  by  impregnating  alkaline  chrome- 
mordanted  cotton  with  diazo  or  tetrazo  solutions 
and  subsequently  treating  it  with  solutions  (not 
alkaline)  containing  suitable  naphthoic  compounds 
Alternatively  the  mordanted  cotton  may  first  be 
impregnated  with  intermediates  such  as  H-acid, 
J-acid,  and  chromotropic  acid  and  then  treated  with 
suitable  diazo  or  tetrazo  solutions.  For  example, 
an  orange  shade,  fast  to  soap  (faster  after  steam- 
ing), is  produced  on  alkaline  chrome-mordanted 
cotton  when  it  is  steeped  in  50  c.c.  of  a  solution 
(not  alkaline)  containing  P38  g.  of  salicylic  acid  and 
0-85  c.c.  of  caustic  soda  of  76°  Tw.  (sp.  gr.  P38), 
afterwards  rinsed  and  then  immersed  in  a  solution 
of  diazotised  p-nitranilino  and  subsequently  soaped. 
Under  the  same  conditions,  the  colour  is  not 
retained  by  unmordsmted  cotton. — A.  J.  H. 

Dyeing    of  woollen  piece   goods;  New  process  for 

obtaining  special   effects  in   *he  ■.     F.  Miinz 

and  R.  Haynn.     Chem.-Zeit.,  1922,  46,  945—946. 

When  wool  is  treated  with  acetic  anhydride  in  the 
presence  of  a  catalyst,  such  as  hydrochloric  acid, 
phosphoric  acid,  organic  sulphonic  acids,  and 
particularly  sulphuric  acid,  it  retains  its  physical 
properties  (except  that  it  can  be  more  easily 
"  milled  ")  but  permanently  resists  acid  dyestuffs, 
so  that  the  production  of  white  effects  in  dyed  piece 
goods  is  possible.  The  treated  wool  contains  no 
sulphuric  acid  and  when  heated  with  50%  sulphuric 
acid  yields  no  acetic  acid  by  hydrolysis.  The 
injurious  action  of  the  sulphuric  acid  on  the  wool 
may  be  diminished  without  reducing  its  catalytic 
action  by  neutralising  a  part  of  it  with  a  weak 
organic  base  such  as  pyridine  or  dimethylaniline. 
The  wool  may  also  be  padded  with  sulphate  of 
aluminium  or  chromium,  or  other  easily  dissociated 
salts  of  sulphuric  acid.  Previously  dyed  wool  may 
also  be  treated  (only  shades  obtained  by  means  of 
acid  alizarin  dyestuffs  are  considerably  changed), 
but  the  consequent  decrease  in  fastness  to  washing, 
milling,  etc.,  must  be  corrected  by  an  after-chrom- 
ing treatment.  The  process  is  carried  out  in 
rotating  water-jacketed  closed  aluminium  drums. 
For  1  kg.  of  wool,  1  1.  of  acetic  anhydride,  4  1.  of 
acetic  acid,  140  g.  of  sulphuric  acid  (monohydrate), 
and  77  g.  of  dimethylaniline  are  used,  but  for  1  kg. 
of  dyed  wool,  the  sulphuric  acid  and  dimethylaniline 
are  replaced  by  60  g.  of  sulphuric  acid  (mono- 
hydrate).  The  wool  is  treated  for  1$  hrs.  at  57° — 
58°  C,  and  is  then  washed  and  dried,  but  dyed  wool, 
after  washing,  is  treated  with  a  solution  containing 
20%  of  chromium  acetate  of  20°  B.  (sp.  gr.  116) 
and  4%  of  formic  acid  (85%)  for  J  hr.  at  75°  C.  and 
is  then  washed  and  dried.  Acetic  acid  used  in  the 
treatment  is  recovered  as  a  30%  solution  and  is 
suitable  for  use  in  the  mordanting  and  dyeing  of 
wool. — A.  J.  H. 

Dyed  fabrics;  Influence  of  gases  on  the  fastness  of 

.    E.  Ristenpart  and  P.  Wieland.    Textilber., 

1922,  3,  397.     (Of.  Ristenpart,  J.,  1921,  505a.) 

Althodoh  Schiff's  reagent  is  admitted  to  be  suit- 
able for  use  in  the  determination  of  formaldehyde 
in  the  distillate  obtained  by  steam  distillation  of 
fibrous  materials  containing  formaldehyde,  the 
statement  of  Heermann  (J.,  1922,  290  a)  that  this 
reagent  is  at  least  as  sensitive  as  Colin 's  reagent  (a 
mixture  of  sulphuric  acid  and  resorcinol)  is  dis- 
puted. Moreover,  in  the  testing  of  materials  for 
formaldehyde,  unreliable  results  may  be  obtained  if 
the     material     is    directly     immersed     in     Schiff's 


reagent.  The  difficulty  of  producing  dyed  fabrics 
fast  to  formaldehyde  is  increased  by  the  discovery 
that  compound  shades  are  not  necessarily  fast  even 
when  produced  by  means  of  dvestuffs  which  are 
individually  fast  to  formaldehyde.  In  explanation 
of  this  fact,  it  is  suggested  that  the  formaldehyde 
moleculo    suffers   internal    rearrangement   to    form 


>C< 


o 


and  is  thereby  able  to  unite  with  two  molecules  of 
dyestuff.  It  is  recommended  that  all  packing 
materials  for  dyed  goods  should  be  free  from 
formaldehyde. — A.  J.  H. 

Fastness  of  dyestuffs.    Setlik.    See  TV. 

Patents. 
Dyeing   silk   black.      O.    Y.   Imray.      From  Gebr 

Schmid.  E.P.  174,947,  3.2.22. 
In  a  rapid  process  for  weighting  silk  which  is  to  be 
dyed  black,  the  silk  is  weighted  by  the  usual  tin- 
phosphate  process  and  is  then  treated  in  a  boiling 
foam  bath  containing  hiematein  and  silkworm 
chrysalides.  For  example,  100  kg.  of  tin-weighted 
silk  is  immersed  for  15—30  mins.  in  a  boiling  foam 
bath  containing  2000  1.  of  water,  70  kg.  of  htema- 
tein,  and  20  kg.  of  silkworm  chrvsalides  previously 
boiled  in  50  1.  of  water.  Alkaline  substances 
such  as  soap,  sodium  carbonate,  alkali  silicate,  soda- 
lye  or  potash-lye  may  be  added,  and  the  exhausted 
bath  may  also  be  used,  after  addition  of  an  aniline 
dyestuff,  for  dyeing  the  treated  silk. — A.  J.  H. 

Fixing  of  [ice-]  colours  upon  textile  fibres.  G.  Aris 
E.P.  186,086,  24.3.21. 

In  the  fixing  of  ice  colours  (e.g.,  Para  Red)  on 
fabrics  prepared  with  a  phenolic  salt  (e.g.,  sodium 
/J-naphtholate),  the  addition  to  the  diazo  solution 
of  O'o — 5%  of  a  diazotisable  azo  derivative  of  the 
amine  used  as  the  diazo  component,  increases  the 
affinity  of  the  fibres  for  the  ice  colour  subsequently 
formed.  Hence,  printing  pastes  to  which  this  addi- 
tion is  made,  can  be  diluted  16%  and  a  correspond- 
ing reduction  can  also  be  made  in  the  strength  of 
the  /3-naphthol  solution.  For  a  developing  solution 
containing  diazotised  aniline,  aminoazobenzene  is 
a  suitable  azo  derivative  to  add. — A.  J.  H. 

Dyeing;    Fast    .      V.    Villiger    and    H.    Von 

Krannichfeldt,  Assrs.  to  Badische  Anilin-  und 
Soda-Fabrik.  U.S. P.  1,431,136,  3.10.22.  Appl., 
9.9.20. 

See  E.P.  168,447  of  1920;  J.,  1921,  730  a. 

VII— ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Nitric  acid;  Air-bleaching  of  .  W.  G.  Whit- 
man and  L.  Evans.  Chem.  and  Met.  Eng.,  1922, 
27,  686—688. 

The  rate  of  removal  of  lower  oxides  of  nitrogen 
existing  in  a  concentration,  N,  in  nitric  acid  solu- 
tion, is  given  by  the  equation  -dN/d0  =  /3N,  where 
/8  is  a  constant  for  a  given  temperature  and  rate  of 
flow  of  air.  The  results  of  laboratory  experiments 
are  given  confirming  this  equation  and  establishing 
that  /3  varies  directly  with  the  rate  of  flow  of  air 
and  with  tho  temperature,  being  doubled  with  each 
rise  of  5°  C.  The  advantage  of  bleaching  at  a  high 
temperature  is  thus  very  great,  and  there  is  also  a 
saving  of  nitric  acid,  the  vapour  pressure  of  which 
rises  much  more  slowly  than  does  the  partial  pres- 
sure of  the  lower  oxides  existing  in  a  IX  solution. 
Values  for  /8,  the  "  bleaching  coefficient,  for  given 
conditions  obtained  in  laboratory  experiments  were 
found  to  be  within  10%  of  the  resulte  of  plant 
practice. — C.  I. 


896a 


Cl.  VII.— ACIDS  ;   ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS.        [Nov.  30, 1922. 


Ammonia;   Oxidation   of  .      The    work   of   the 

Sheffield  [U.S.A.]  experiment  station.  H.  A. 
Curtis.  Chem.  and  Met.  Eng.,  1922,  27,  699 — 
703. 
An  account  is  given  of  data  obtained  in  1918  on  an 
experimental  plant  with  a  capacity  of  500  lb.  of 
nitric  acid  per  day.  The  conclusions  reached 
include  the  following: — An  alloy  of  platinum  with 
1%  of  iridium  is  as  efficient  a  catalyst  as  pure 
platinum.  The  optimum  temperature  for  the  re- 
action is  higher  than  usually  believed  and,  in  the 
absence  of  heat  exchangers,  electrical  heating  of  the 
gauze  is  indispensable.  The  highest  oxidation 
efficiencies  (above  90%)  were  obtained  with  a  gauze 
temperature  of  about  800°— 880°  C.  The  improved 
efficiency  obtained  by  using  two  gauzes  electrically 
insulated  from  each  other,  of  which  the  first  only 
is  heated,  is  partly  but  not  entirely  due  to  heat 
conservation.  Ammonium  nitrate  solution  cannot 
be  substituted  for  water  in  the  absorption  towers, 
as  it  is  decomposed.  An  activated  charcoal  catalyst 
placed  in  the  absorption  system  after  the  first  or 
second  tower  and  maintained  at  a  temperature 
above  the  dew  point  of  the  gas  passing,  increased 
the  rate  of  oxidation  of  tho  nitric  oxide  fourteen 
times.  This  catalyst  cannot  be  placed  earlier  in  the 
system,  as  in  concentrated  nitric  oxide  (10%)  it 
burns.  A  survey  of  future  lines  of  advance  in  this 
process  is  given. — C  I. 

Nitric  oxide;  Comparison  of  methods  for  the  esti- 
mation of  .     A.  Klemenc  and  C.  Bunzl.     Z. 

anorg.  Chem.,  1922,  122,  315—331. 
Nitric  oxide  was  prepared  according  to  the  method 
of  Emich  (Monatsh.,  1892,  13,  73);  the  product  con- 
tained about  l%of  impurity  and  was  purified  by 
fractionation,  using  liquid  air.  The  estimation  of 
the  gas  by  passing  it  over  heated  copper  was  found 
to  give  reliable  results.  Unreliable  values  were 
obtained  by  combustion  with  hydrogen  in  the 
Drehschmidt  platinum  capillary  (Von  Knorre  and 
Arndt,  J.,  1899,  1156),  by  the  method  of  Baudisch 
and  Klinger  (J.,  1912,  1178),  and  by  absorption 
with  ferrous  sulphate.  Good  results  were  obtained 
by  absorption  of  the  gas  with  acid  bromate  or  2V/ 5 
permanganate  and  estimation  of  the  excess  of 
absorbent.  The  last-named  method  can  also  be  used 
in  the  presence  of  carbon  dioxide  and  other  gases. 

— W.  T. 

Liquid  sulphur  dioxide;  New  system  of  making 

in  South  America.     H.  J.   Paoli.     Giorn.  Chim. 
Ind.  Appl.,  1922,  4,  349—352. 

Large  quantities  of  liquid  sulphur  dioxide  are  used 
in  South  America,  especially  in  Argentina,  for 
making  ice,  for  refrigerating  machinery  in  the 
frozen  meat  industry,  in  the  manufacture  of  wine, 
and  for  the  disinfection  and  preservation  of  fruit. 
The  method  of  manufacture  used  in  the  Sarandi 
(Buenos  Ayres)  works  of  Sociedad  de  Productos 
Quimicos  "  La  Sulfurica,"  started  in  1914,  is  des- 
cribed. Sulphuric  acid  being  ruled  out  by  its  high 
price  and  pyrites  by  its  inaccessibility,  6ulphur  is 
used  as  raw  material.  The  products  of  combustion 
of  the  sulphur  are  passed  from  the  burners  through 
a  leaden  pipe  to  the  base  of  a  packed  tower,  down 
which  falls  a  fine  water  spray.  The  acid  solution 
obtained  passes  into  a  coil  enclosed  in  a  heater 
through  which  steam  circulates  under  pressure,  and 
overflows  into  a  gasifying  tank  heated  by  the 
furnace  U6ed  for  the  sulphur  burners,  part  of  the 
sulphur  dioxide  being  thus  liberated.  The  liquid 
is  then  heated  in  a  fire-heated  boiler,  into  which  the 
heater  also  may  be  discharged ;  here  the  last  traces 
of  sulphur  dioxide  are  expelled.  If  the  pressure 
in  the  heater  is  increased,  the  quantity  of  heat  also 
increases,  so  that  the  spray  descending  the  tower 
may  be  increased  until  the  whole  of  the  sulphur 
dioxide  is  absorbed  and   the   liquid  delivered  into 


the  gasifier  almost  at  the  boiling  point.  The  rest 
of  the  plant  consists  of  cooling  coils  for  the  gas,  a 
coke  tower,  a  sulphuric  acid  filter  for  drying  the 
gas,  and  a  compressor.  With  normal  working  150 
pts.  of  sulphur  yields  270  pts.  of  the  liquid  anhyd- 
ride.    Details  of  the  plant  are  given. — T.  H.  P. 

Sulplmr  dioxide;  Solubility  of in  suspensions  of 

calcium  and  magnesium  hydroxides.  W.  T 
Smith  and  R.  B.  Parkhurst.  J.  Amer.  Chem' 
Soc.,  1922,  44,  1918—1927. 

The  solubility  of  sulphur  dioxide  in  water,  milk  of 
lime,  and  milk  of  magnesia  has  been  determined  at 
partial  pressures  of  sulphur  dioxide  up  to  760  mm. 
and  temperatures  from  5°  C.  to  60°  C.  Varying 
proportions  of  calcium  and  magnesium  hydroxide 
were  used  in  suspensions  of  a  total  alkalinity  of 
1  g.-equiv.  per  1.  The  concentration  of  sulphur 
dioxide  as  sulphurous  acid  is  proportional  to  its 
partial  pressure.  With  solutions  of  the  same  alkali 
concentration  the  percentage  salting-out  effect  (i.e., 
100  times  the  ratio  of  the  difference  between  the 
solubility  of  sulphur  dioxide  in  water  and  as  free 
sulphurous  acid  in  the  solution  under  examination 
to  the  solubility  of  sulphur  dioxide  in  water  under 
the  same  conditions  of  tempemture  and  pressure) 
increases  with,  but  more  than  in  proportion  to,  the 
temperature.  With  solutions  of  constant  tempera- 
ture the  percentage  salting-out  effect  increases  with 
the  alkali  concentration  but  is  less  than  proportional 
to  it.  Varying  proportions  of  calcium  and  magnes- 
ium hydroxide  have  no  effect  on  the  equilibrium 
concentration  of  sulphur  dioxide  as  sulphurous  acid. 

—J.  F.  S. 

Sulphur  tetroxide;  Existence  of  .     F.  Meyer, 

G.  Bailleul,  and  G.  Henkel.  Ber.,  1922,  55, 
2923—2929. 
When  sufficient  energy  is  imparted,  the  action  of 
the  silent  electric  discharge  on  a  mixture  of  sulphur 
dioxide  and  oxygen  leads  to  the  formation  of  more 
highly  oxidised  substances  than  sulphur  heptoxide. 
It  is  essential  that  a  relatively  large  excess  of 
oxygen  or  ozone  should  be  present  and  that  the 
temperature  should  be  kept  low.  The  most  fully 
oxidised  product  yet  obtained  corresponds  with  the 
formula,  SO,,2S04!  but  it  is  improbable  that  the 
limits  of  oxidation  have  yet  been  reached. 
Borthelot's  sulphur  heptoxide  (Comptes  rend.,  1878, 
86,  20,  288)  is  probably  a  mixture  of  sulphur 
trioxide  and  sulphur  tetroxide  in  equimolecular 
proportions.    (Cf.  J.C.S.,  Dec.)— H.  W. 

Ammonium   carbonate-carbamatc   equilibrium.     C. 
Faurholt.     Z.  anorg.  Chem.,  1922,  122,  132—134. 

A  reply  to  Wegscheider's  theoretical  paper  (Z. 
anorg.  Chem.,  1921,  121,  110).  The  author  shows 
that  his  results  for  the  above  equilibrium  (cf.  J., 
1922,  292  a)  are  in  fair  agreement  with  those  ob- 
tained by  Burrows  and  Lewis  and  Fenton.  The 
disagreement  between  Wegscheider's  conclusions 
and  those  of  the  present  author  is  largely  due  to 
different  values  for  the  ionisation-constant  of 
carbamic  acid.  According  to  Wegscheider  this 
acid  is  so  weak  that  its  ammonium  salt  is  com- 
pletely hydrolysed  in  aqueous  solution,  whereas  the 
author  found  by  colorimetric  estimation  of 
hydrogen  ions  that  the  ammonium  salt  is  not 
hydrolysed  to  any  appreciable  extent. — W.  T. 

Calcite  and  aragonite;  Solubilities  of .  H.  L.J. 

Backstrom.   Med.  K.  Vetenskapsakad.  Nobelinst., 

1922,  4,  [11],  1—11. 
The  solubilities  of  calcite  in  the  form  of  Iceland 
spar  and  of  synthetic  aragonite  in  water  in  presence 
of  carbon  dioxide  were  determined  at  9°,  25°  and 
35°  C.  As  the  point  of  equilibrium  is  approached, 
either  from  the  supersaturated  or  from  the  under- 
saturated   side,    the   reaction    becomes    very   slow, 


Vol.  XLI.,  No.  22.] 


Cl.  VIII.— GLASS;  CERAMICS. 


897  a 


especially  in  the  case  of  calcite,  but  the  following 
figures  in  g.  p.  I.  are  probably  accurate  to  01  %  : 
calcite,  130  at  9°,  0943  at  25°,  and  0765  at  35°  C  ; 
aragonite,  P46  at  9°,  1066  at  25°,  and  0-876  at 
35°  C.  The  most  probable  value  of  the  transition 
temperature,  calculated  from  these  figures,  is 
-43°  C.    (C/.  J.C.S.,  1921,  ii.,  317).— E.  H.  R. 

Basic  lead  salts;  Constitution  of .   R   Weinland 

and  R.  Stroh.     Ber.,  1922,  55,  2706—2718. 
The    presence    of    polynuclear    cations    in    several 
forms  has  been  established  by  preparative  substitu- 
tion in  the  case  of  lead  salts.     Thus,  in  the  basic 
perchlorates 

Vbl  (CIO,),,  1-5H,0      and 


X)H- 


[p<C>pb),]<c'° 


the  perchlorate  residues  could  be  replaced  by  other 
acid  radicles  by  double  decomposition.  The 
stability  of  the  metal-ol  cations  in  aqueous  solution 
is  not  comparable  with  that  of  the  typical  metallic 
ammines,  since  the  above  basic  perchlorates  are  to 
some  extent  decomposed  into  new  basic  salts  when 
their  solutions  are  diluted.  The  presence  of  such 
lead-ol  complexes  in  basic  lead  acetates  has  also 
been  established  by  the  substitution  method  in  the 
case  of  the  basic  lead  acetate  of  the  German 
Pharmacopoeia  V. ;  one  such  ion  is  identical  with 
that  contained  in  the  first  perchlorate  mentioned 
above.  Lead  acetate  may  be  regarded  as  the  acetate 
of  a  polynuclear  lead  acetato  cation.  In  aqueous 
solution  more  than  one  such  cation  is  undoubtedly 
present  since  the  action  of  perchloric  acid  on  lead 
acetate  in  neutral  or  acetic  acid  solution  yields  the 
perchlorates  of  four  different  acetato  cations. 

— H.  W. 

Bare  earths;  Separation  of by  basic  precipita- 
tion. III.  Quantitative  separation  of  cerium 
from  the  other  earths.  W.  Prandtl  and  J.  Loschl. 
Z.  anorg.  Chem.,  1922,  122,  159—166. 

The  separation  is  based  on  the  fact  that  the  eerie 
hydroxide  is  a  weak  base  and  its  salts  are  largely 
hydrolysed.  Cerous  nitrate  mixed  with  the  nitrates 
of  the  other  rare  earths  was  oxidised  by  triammino- 
trinitrato-cobalt  in  acid  solution  and  a  quantitative 
precipitation  of  eerie  hydroxide  was  obtained, 
Ce(NO,)3  +  [Co(N03)j(NH;)J  +  4H20  =  Ce(OH),+ 
Co(N03)2  +  3NH4N03  +  HN03.  The  formation  of 
free  acid  prevents  the  precipitation  of  the  other 
rare  earths. — W.  T. 

Rare  earths;  Separation  of by  basic  precipita- 
tion. IV.  \V.  Prandtl  and  J.  Rauchenberger. 
Z.  anorg.  Chem.,  1922,  122,  311—314. 

The  influence  of  cadmium  nitrate  on  the  equi- 
libria between  the  nitiates  of  the  rare  earths  and 
ammonia  in  ammonium  nitrate  solutions  of  various 
concentrations  has  been  investigated.  The  con- 
ditions were  the  same  as  in  previous  investigations 
(J.,  1922,  292  a).  The  presence  of  cadmium  nitrate 
increased  considerably  the  amount  of  rare  earths, 
especially  lanthanum,  kept  in  solution,  this  in- 
crease being  much  more  marked  than  in  presence  of 
zinc  nitrate. — W.  T. 

Hydrogen     gas;     Spontaneous     incandescence     of 

substances  in  atomic  .     R.  W.  Wood.     Proc. 

Roy.  Soc,  1922,  A  102,  1—9. 

Metals,  certain  oxides,  and  other  substances  when 
introduced  into  a  stream  of  atomic  hydrogen  are 
raised  to  incandescence,  owing  to  the  surface  of  the 
substance  acting  as  a  catalyst  in  bringing  about  the 
re-combination  of  the  atoms.  Fire-polished  glass 
surfaces    have    a    comparatively    feeble    catalysing 


power  but  fractured  surfaces  cause  the  re  combina- 
tion of  the  atoms,  and  are  strongly  heated.— J.  F.  S. 

Sulphite  liquors.     Sieber.     See  V. 

Decomposition   of  potassium   ferricyanide   in    day- 
light.   Baudisch  and  Bass.    See  XXI. 

Sulphuric  acid  in  presence  of  aluminium.      Moser 
and  Kohn.jSee  XXIII. 

Patents. 

Green    chrome    oxide;    Process    of    making    

A.  L.  D.  d'Adrian.  U.S. P.  1,429,912,  19.9.22 
Appl.,  5.11.21. 

Alkali  chromate  (100  pts.)  is  heated  with 
ammonium  sulphate  (50  pts.)  to  400°  C.  for  from 
15  mins.  to  2  hrs.  The  product  is  lixiviated  with 
water  to  remove  the  soluble  constituents. — T.  A.  S. 

Lithium  and  potassium  [salts];  Process  for  extract- 

ln0 from   lithium-potassium   ores  and  also 

forming  potassium  alum  from  such  ores  G  E 
Bailey  and  A.  E.  Sedgwick.  U.S. P.  1,430,877' 
3.10.22.     Appl.,  14.2.21. 

Lithium-potassium  ore  is  mixed  with  potassium 
sulphate  and  heated  to  a  temperature  not  exceeding 
1500°  F.  (about  815°  C.).— L.  A.  C. 

Hydrogen  peroxide;  Method  of  producing  solutions 

containing   .      Deutsche    Gold-    uud    Silber- 

Scheideanstalt  vorm.  Roessler,  and  O  Lieb- 
knecht.     E.P.  186,871,  16.2.22. 

See  G.P.  355,866  of  1916;  J.,  1922,  754  a. 

Separating  hydrocarbon  from  aluminium  chloride 
U.S.P.  1,430,109.     See  IIa. 


VIII.-GLASS;  CERAMICS. 

Silica;  Influence  of  heat  on  the  microscopic  proper- 
ties of in  its  different  mineral  forms.     J.  T. 

Robson.  J.  Amer.  Ceram.  Soc,  1922,  5,  670 — 674. 
The  refractive  indices  of  sand,  quartz  rock,  chal- 
cedony and  flint  alone  and  when  used  in  a  porcelain 
body  of  the  composition  felspar  20%,  kaolin  45%, 
silica  35%,  were  determined  before  and  after  firing 
to  cone  13  and  14.  Flint  and  chalcedony  were 
transformed  into  cristobalite  before  sand  and  quartz 
rock,  which  appeared  to  alter  at  about  the  same 
temperature. — H.  S.  H. 

Porcelains;  Talc  as   a  flux  for  high-tension  insulator 

.     R.   Twells,   jun.     J.   Amer.   Ceram.   Soc, 

1922,  5,  675—684. 

A  typical  high-tension  insulator  bodv  of  the  general 
formula  021  K20,  10  A1203,  4'45  SiO,  was  used  as 
a  standard,  the  K20  being  partially  replaced  by 
MgO  and  the  RO  content  being  varied  between  0'14 
and  0'30  equivalent,  talc  being  used  as  the  source 
of  magnesia.  The  bodies  were  fired  to  temperatures 
below  cones  9  and  13  and  were  tested  for  absorption 
and  transverse  strength.  The  results  at  cone  10^ 
showed  that  a  small  addition  of  talc  greatly 
decreased  the  percentage  of  felspar  necessary  for 
vitrification,  but  additional  small  amounts  of  talc 
had  much  less  effect  than  the  first  small  addition. 
About  016  equivalent  of  RO  was  needed  for  vitri- 
fication at  this  temperature  when  small  percentages 
of  talc  were  used.  The  transverse  strength  in 
properly  vitrified  bodies  was  increased  by  the 
addition  of  MgO  at  the  expense  of  K20.  Vitrified 
bodies  of  this  general  type  showed  little  improve- 
ment, if  any,  over  regular  triaxial  porcelain.  It  is 
suggested  that  the  effect  of  replacing  the  felspar 
entirely,  or  almost  entirely,  by  talc,  and  the  use  of 
higher  temperatures  to  obtain  vitrification  should 
be  tried.— H.  S.  H. 


898  a 


Cl.  VIII.— GLASS;  CERAMICS. 


[Nov.  30, 1922. 


Terra  cotta;  Data  on  viscosity  of  Indiana  day  slip 

with  electrolytes  in  regard  to  the  casting  of . 

H.  E.  Davis.  J.  Anier.  Ceram.  Soc,  1922,  5, 
702—712. 
Slips  were  prepared  with  Indiana  clay,  using  as 
electrolytes  sodium  carbonate,  sodium  silicate,  a 
mixture  of  sodium  carbonate  and  silicate  in  equal 
proportions,  gallic  acid  and  tannic  acid.  The  relative 
viscosities  were  determined  with  a  flow  viscometer 
and  by  measuring  the  thickness  of  wall  cast  in  a 
given  time.  Sodium  carbonate  proved  the  most 
suitable  electrolyte.  It  produced  maximum  fluidity 
in  the  slip,  which  did  not  settle  out  heavily,  and  on 
casting  produced  a  uniformly  thicker  wall  than  that 
obtained  by  using  other  electrolytes.  Tannic  acid 
was  very  satisfactory,  but  so  much  was  required 
that  its  "use  was  not  commercially  practicable. 

— H.  S.  H. 


Enamels;  Wet  process  for  cast  iron.     R.  R. 

Danielson    and    H.     P.    Reinecker.      J.    Amer. 

Ceram.  Soc,  1922,  5,  647—669. 
The  effect  of  varying  composition  and  treatment 
on  wet  process  enamels  for  cast  iron  has  been 
studied,  compositions  used  in  dry  process  enamel- 
ling having  served  as  the  basis  for  the  work. 
Sintering  of  most  ground  coat  frits  was  found 
desirable  in  order  to  obtain  the  best  adherence  to 
the  castings.  Clay  gave  the  best  results  as  a  mill 
addition  for  the  ground  coats,  flint  and  felspar 
being  less  satisfactory.  Excessive  additions  of  clay 
or  flint  produced  flaking,  while  felspar  tended  to 
develop  blistering.  About  15%  of  clay  or  10%  each 
of  clay  and  flint  are  recommended  for  mill  additions 
for  the  ground  coats.  Excessive  additions  of  any 
one  flux  were  not  desirable  and  the  best  results 
were  obtained  when  sodium,  lead  and  boric  oxides 
were  combined  in  more  or  less  definite  proportions. 
Sodium  oxide  in  excess  of  about  10%  gave  rise  to 
blistering.  Boric  oxide  increased  the  firing  range 
of  the  ground  coats  and  was  preferable  to  lead  oxide 
on  that  account,  although  it  tended  to  promote 
crawling  of  ground  coats  high  in  boric  oxide  if  they 
were  applied  somewhat  heavily.  The  composition 
of  the  best  ground  coats  developed  are  given. 
Cover  enamels  were  smelted  in  the  usual  way.  The 
mill  additions  consisted  of  5%  of  clay,  8%  of  tin 
oxide,  45  %  of  water,  all  based  on  the  weight  of  the 
dry  frit.  For  the  best  results  the  cover  enamel 
must  be  adapted  to  the  ground  coat  in  refractori- 
ness. Boric  acid  increased  the  firing  range  of  the 
enamels  but  tended  to  promote  crawling,  although 
this  was  less  pronounced  in  the  case  of  the  more 
fusible  compositions.  Boric  oxide  improved  the 
opacity  when  substituted  for  such  fluxes  as  sodium 
and  lead  oxides.  Cryolite  increased  the  opacity  but 
additions  above  10%,  based  on  the  melted  weight, 
tended  to  promote  crawling.  The  compositions  of 
the  best  cover  enamels  developed  are  given. 

— H.  S.  H. 

Patents. 

Annealing  [glass,  porcelain,  metals],  and  apparatus 
used  therein.  A.  Hilger,  Ltd.,  and  F.  Twyman. 
E.P.  186,160,  21.6.  and  14.11.21. 
A  process  of  annealing  depending  on  the  deforma- 
tion of  a  rod  of  the  substance  to  be  annealed  when 
maintained  under  stress  has  been  described  (E.P. 
114,183;  J.,  1918,  242  a).  The  time  of  relaxation 
of  a  substance  is  determined  by  subjecting  a  piece 
of  the  same  substance  as  that  to  be  annealed  to 
heat,  maintaining  the  piece  under  sufficient  stress 
to  deform  it  a  determined  amount,  and  either 
periodically  removing  the  stress  or  applying  a 
further  stress  tending  to  increase  the  deformation 
so  that  the  piece  ceases  to  support  the  stress  at  any 
desired  degree  of  annealing  before  the   annealing 


process  is  completed.  An  apparatus  is  described 
for  ascertaining  the  time  of  relaxation  of  a  sub- 
stance maintained  under  stress  a  definite  amount, 
means  being  provided  for  adding  additional  stress. 
(C/.  J.,  1921,  468  e.)— H.  S.  H. 

Glass-tank     furnace.       J.     E.     Hurley.       U.S. P. 
1,390,614,  13.9.21.    Appl.,  15.6.20. 

The  walls  of  a  glass-tank  furnace  are  composed  of 
tanks  containing  water.  The  inner  walls  of  the 
tank  are  lined  with  fibrous  material  (wood) 
spaced  from  the  walls  by  means  of  corrugated  wire 
mesh  .>r  the  like,  and  the  space  so  formed  between 
the  linvng  and  the  wall  communicates  by  suitable 
openings  with  the  interior  of  the  tank.  With  this 
arrangeme.lt  there  is  a  continuous  circulation  of 
water  from  the  interior  of  the  tank  through  the 
space  between  the  walls  and  the  wooden  lining,  and 
the  latter  is  protected  against  the  action  of  the 
heat  of  the  furnace. — A.  C. 


mixture  for  making  •. 

U.S.P.   1,430,725,  3.10.22. 


Glass;  Process  of,  and 
A.  L.  D.  d'Adrian. 
Appl.,  21.7.21. 

A  bromine  salt  is  added  to  the  mixture  usually 
employed  for  making  glass. — J.  S.  G.  T. 

Plastic  moulding  material  [clay];  Process  of  pre- 
paring   .    O.  Gerlach  and  C.  B.  Lihme,  Assrs. 

to  The  Industrial  Research  Laboratories.  U.S.P. 
1,390,435,   13.9.21.     Appl.,  15.12.17. 

The  necessity  for  ageing  clay  mixtures,  in  order 
to  attain  the  requisite  plasticity,  prior  to  moulding, 
is  obviated  by  addition  of  sulphite-cellulose  waste 
liquor  to  the  mixture.  The  tendency  of  the  plastic 
mixture  to  tear  or  break  when  being  forced  into  the 
mould,  owing  to  adhesion  to  parts  of  the  moulding 
apparatus,  is  overcome  by  addition  of  a  small  quan- 
tity of  ground  petroleum  coke  to  the  clay  mixture. 

Metallic  [zirconium]  oxide;  Article  of  fused  

and  process  of  producing  the  same.  A.  L.  D. 
d'Adrian,  Assr.  to  A.  L.  Duval  d'Adrian  Chemical 
Co.     U.S.P.  1,430,724,  3.10.22.     Appl.,  25.2.21. 

Fused  zirconium  oxide  is  ground,  mixed  with  a 
suitable  binder,  and  moulded  to  shape.  The 
moulded  article  is  heated  to  a  dull  red  heat  between 
spaced  carbon  electrodes,  and  finally  to  a  tempera- 
ture of  about  2500°  C.  by  passing  current  through 
it,  wherebv  the  particles  of  oxide  become  fused 
together.— J.  S.  G.  T. 

Kiln    for    burning    refractory    bricks    (silica    etc.), 
particularly  those  with  a  lime  bond.    H.  Koppere. 
G.P.  356,037,  6.7.21.     Addn.  to  347,672. 
In  a  kiln   of  the  tvpe  described  in   the  principal 
patent    (J.,    1922,    548  a),    the    firing    chamber    is 
operated  on  the  intermittent  principle  and  the  pre- 
heating and  cooling  chambers  continuously.      The 
preheating     and     cooling     chambers     slope     down 
towards    the   cool   ends    so   that  by    means   of   the 
natural  upward  draught  the  air  and  the  waste  gases 
form   layers  of  uniformly  decreasing  temperature. 
The  heating   and  cooling  processes   are   thus  com- 
pletely under  control  and  a  high  degree  of  efficiency 
!    is  obtained. — G.  F.  M. 

I    Sheet  glass;  Apparatus  for  drawing  .     W.  J. 

Mellersh-Jackson.  From  Libbey-Owens  Sheet 
Glass  Co.     E.P.  186,479,  28.7.21. 

Tank  furnaces  principally  for  use  in  glass  manu- 
facture:   Bridge    tcalls    for    .       R.    Haddan. 

From  Corning  Glass  Works.  E.P.  186,54*, 
24.12.21. 


VoLXLL.No.22.)        Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS ;    METALLURGY,  &c.     899  a 


IX—  BUILDING  MATERIALS. 

Patents. 

Impregnation  of  wood.  Soc.  de  Recherches  et  de 
Perfectionnements  Industries.  E.P.  (a)  168,048, 
26.7.21,  and  (b)  179,129,  27.7.21.  Conv.,  20.8.20 
and  19.4.21. 

(a)  Bt  mixing  an  ionised  non-colloidal  solution  with 
the  emulsion  to  be  injected  into  wood  for  its  pre- 
servation, a  state  of  deferred  precipitation  of  the 
antiseptic  from  the  emulsion  is  obtained,  (b)  The 
degree  to  which  precipitation  of  the  antiseptic  is 
retarded  is  regulated  by  varying  the  quantity  and 
concentration  of  the  ionised  solution. — J.  B.  P. 

Bricks;  Process  for  making and  their  products. 

G.   B.  y  Hernandez.     U.S. P.   1,430,991,  3.10.22. 
Appl.,  27.9.20. 

Cement,  fine  gravel  or  sand,  and  coal  scoria  are 
added  to  a  pasty  mixture  of  quicklime  and  an 
astringent  solution,  and  the  mixture  finely 
pulverised,  moulded  to  shape,  and  dried. 

—J.  S.  G.  T. 

Asphalt  or  like  hydrocarbonaceous  material;  Fire- 
resisting    .      J.     H.    Young,     and    H.    H. 

Robertson  Co.     E.P.  186,861,  6.12.21. 

See  U.S.P.  1,398,991  of  1921;  J.,  1922,  48  a. 

Insulating  and  building  material,  and  method  of 
producing  same.  T.  A.  Eklund  and  C.  G.  Lofve- 
berg.     U.S. P.  1,392,127,  27.9.21.     Appl.,  11.3.20. 

See  E.P.  140,431  and  142,111  of  1920 ;  J.,  1921, 149  a. 

Paint  for  use  with  magnesium  oxychloride  cements. 
E.P.  186,231.     See  XIU. 


X.— METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Iron-bearing    materials;    Sintering    .      R.    L. 

Lloyd.    Min.  and  Met.,  Oct.,  1922,  17—19. 

Ikon  blast-furnace  flue  dust,  owing  to  its  carbon 
content,  on  sintering  in  a  Dwight-Lloyd  furnace 
usually  gives  sinter  of  a  very  good  quality,  but  it 
the  carbon  (coke)  content  is  too  high  the  sinter 
becomes  very  friable.  The  furnace  works  at  its 
maximum  capacity  and  the  product  is  strongest 
and  most  massive  when  the  fines  contain  8%  of 
coke;  dust  containing  larger  percentages  should  be 
mixed  with  pyrites  cinders  or  fine  ores  to  reduce 
the  carbon  to  8%  For  fine  iron-ore  concentrates 
from  8  to  3%  of  coke  fines  is  sufficient  according 
to  whether  the  ore  is  magnetic  or  non-magnetic. 
The  product  iu  all  cases  is  a  coke-like  mass  of 
ferrosoferric  oxide,  Fe304,  which  is  exceedingly 
porous  and  eminently  suitable  for  blast-furnace 
work,  being  very  quickly  and  smoothly  reduced  by 
the  gases;  in  addition  practically  all  the  sulphur 
in  the  ore  is  removed  in  the  process. — A.  R.  P. 

Cast-iron;  Modification  of by  heat  treatment . 

J.  Durand.     Comptes  rend.,  1922,  175,  522—524. 

An  attempt  to  determine  the  conditions  which  cause 
the  increase  in  volume  of  castings  and  to  estimate 
the  degree  of  importance  of  the  various  factors 
affecting  it.  The  experiments  were  carried  out  by 
means  of  a  dilatometer  and  the  samples  used 
measured  50  mm.  in  length  and  8  mm.  in  diameter. 
A  diagram  is  given  which  shows  the  growth  of  a 
specimen  of  known  composition  which  was  sub- 
mitted to  5  cycles  of  temperature  change  (between 
600°  and  900°  C),  and  the  author  points  out  its 
agreement  with  the  results  obtained  by  Charpy 
(Soc.  Chim.  de  France,  May  16,  1908).  The  increase 
becomes  smaller  on  each  successive  heating,  as  the 
amount  of  free   graphite  deposited,    which   is  the 


cause  of  the  increase  in  volume,  has  increased  at 
each  stage.  As  the  growth  varies  inversely  with 
the  rate  of  heating  and  directly  as  the  silicon 
content,  it  is  only  of  importance  "when  the  silicon 
is  high  and  the  casting  is  heated  slowly.  It  follows 
that  stresses  will  be  set  up  in  the  material  if  the 
temperature  varies  from  one  point  to  another 
during  heating. — H.  J.  E. 

Graphitisation  in  a  carbon  tool  steel  H  S 
Rawdon  and  S.  Epstein.  Chem.  and  Met.  Eng., 
1922,  27,  650—651.  &  ' 

A  peculiab  type  of  black  fracture  in  an  annealed 
tool  steel  {ct.  Green,  J..  1922,  713  a)  was  examined, 
inree  distinct  zones,  a  light-coloured  casing,  a  black 
interior,  and  a  light-coloured  pencil  of  material 
at  the  axis  were  evident  even  in  the  sawn  face  of 
the  bar.  Under  progressive  hardening  treatments, 
tne  'light-coloured  layer  showed  a  martensitic  struc- 
ture and  globular  cementite,  which  later  dissolved 
in  the  matrix.  In  the  dark-coloured  area,  each 
black  spot  acted  as  the  centre  for  the  formation 
of  martensite  in  the  ferrite  matrix,  and  after  severe 
treatment  the  black  nuclei  (graphite  ?)  persisted 
A  troostitic  structure  was  shown  in  the  centre 
portion  after  mild  hardening,  changing  to  martens- 
ite under  more  severe  conditions.  In  the  initial 
state  ot  the  material  all  the  carbon  in  the  black 
zone  was  in  the  graphitic  form,  and  no  other 
feature  of  composition  pointed  to  the  unusual 
behaviour  of  the  specimen. — C.  A.  K. 

Alloys  of  electrolytic  iron  with  carbon  and  man- 
ganese; Preparation  and  mechanical  properties 
of  yacuxun-fused  .     R.  P.  Neville  and  J    R 

onolno,c ,??■*  Amer-    Eiectrochem.    Soc,    1922, 
M6 — ^18.     LAdvance  copy. J 

Allots  containing  0—1-6%  C  and  0—1-6  %  Mn 
were  prepared  from  electrolytic  iron  by  melting  in 
a  magnesia  crucible  in  vacuo.  The  ultimate 
strength  was  increased  by  carbon  up  to  1  %  but  not 
uniformly  with  the  carbon  content.  The  presence 
of  manganese  in  the  carbon  steels  increased  the 
strength.  The  addition  of  carbon  rapidly  and  pro- 
gressively decreased  the  reduction  in  '  area  and 
elongation  to  a  value  little  above  zero  when  the 
carbon  content  was  1%,  but  the  value  of  the  pro- 
portional limit  was  influenced  to  a  less  deoree 
Manganese  had  only  a  slight  effect  on  the  "pro- 
perties of  iron  in  the  absence  of  carbon,  but  the 
effects  of  manganese  and  carbon  were  each  in- 
fluenced by  the  presence  of  the  other.  The  first 
addition  of  manganese  served  to  deoxidise  the 
metal,  forming  oxides  which  separated  the  grains 
and  tended  to  decrease  the  strength. — C.  A.  K. 

Blister  copper  bars  and  pigs;  IVater  in .    A.  R 

Ledoux.  Min.  and  Met.,  Oct.,  1922,  7 — 9. 
The  upper  surface  of  pigs  of  Mister  copper  is 
generally  very  porous,  and  attention  is  drawn  to 
the  possibility  of  shipments  that  have  been  exposed 
to  rain  containing  considerable  quantities  of  water 
which  does  not  dry  out  after  exposure  to  sun.  In 
some  shipments  examined,  the  water  content 
amounted  to  between  4  and  16  lb.  per  ton.  The 
moisture  content  of  a  shipment  is  determined  by 
drying  a  selected  number  of  bars  at  300° — 600°  P. 
(150° — 315°  C),  in  a  small  gas-  or  oil-fired  furnace. 

—A.  R.  P. 

Copper-nickel  ores  of  the,  Bustenburg  district 
(South  Africa).  J.  A.  Ortlepp.  J.  Chem.  Met. 
Soc.,  S.  Afr.,  1922,  23,  23—31. 

Microscopical  examination  and  photomicrographs 
of  polished  specimens  showed  the  ore  to  have  been 
formed  by  magmatic  differentiation,  and  to  be  com- 
posed of  pyrrhotite,  pentlandite,  ehalcopyrite, 
maueherite,  an  unidentified  mineral,  and  a 
pyroxene  gangue.     Tests  on  ore  containing  3'7%  of 


900  a 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO-METALLUKGY.       [Nov.  30, 1922. 


nickel,  0-48%  of  copper,  26%  of  sulphur,  and  39% 
of  iron,  showed  that  physical  methods  of  concentra- 
tion, including  magnetic  concentration  and  flota- 
tion' are  unsuitable,  but  concentration  of  nickel  in 
the  form  of  matte  is  economically  possible. — J.  B.  P. 

Lead   blast-furnace;   Powdered   coal  in   the  . 

E    H.   Hamilton.      Min.   and  Met.,   Oct.,   1922, 

25—27. 
The  working  of  a  lead  blast-furnace  fired  by  means 
of  powdered  coal  fed  through  the  tuyeres  has  been 
examined,  and  tables  are  given  showing  the  heat 
distribution  and  output  of  metal  and  matte  com- 
pared with  the  ordinary  method  of  working.  While 
the  new  process  of  firing  slows  down  the  output  by 
about  6%,  a  greater  recovery  of  metal  is  effected, 
together  with  a  slight  saving  of  fuel. — A.  R.  P. 

Metals;   Action   of   nitric    acid    on   ,    and    an 

example  of  a  periodic  reaction.  Catalysis.  XIV. 
B.  C.  Banerji  and  N.  R.  Dhar.  Z.  anorg.  Chem., 
1922,  122,  73—80. 
The  rate  of  solution  of  copper,  silver,  lead,  nickel, 
brass,  mint  silver,  and  of  copper-nickel  alloy  in 
nitric  acid  in  the  presence  of  various  salts  was 
studied.  The  rate  was  found  by  direct  weighing  of 
the  strip  of  metal  or  alloy  before  and  after  immer- 
sion in  the  acid.  Ferrous  salts  acted  as  catalysts 
in  all  cases;  this  is  explained  by  the  fact  that 
nitrous  acid  is  formed  by  the  action  of  nitric  acid 
on  ferrous  salts,  and  the  solution  of  metals  is 
accelerated  by  nitrous  acid.  Ferric  salts  also  act  as 
catalysts,  as  a  result  of  reduction  to  ferrous  salts 
by  the  action  of  such  metals  as  copper,. silver,  etc. 
Oxidising  agents,  such  as  potassium  permanganate 
and  chlorate,  act  as  negative  catalysts,  because  they 
prevent  the  formation  of  nitrous  acid.  The  action 
of  nitric  acid  on  a  50%  alloy  of  nickel  and  copper 
takes  place  in  reaction  periods  of  diminishing 
lengths,  each  followed  by  a  period  of  no  reaction. 

— W.  T. 

Metallic  bodies  formed  from  powdery  material  by 
pressure  or  sintering  and  not  previously  subjected 

to     cold     work;     Grain     growth     in    .       F. 

Sauerwald.  Z.  anorg.  Chem.,  1922,  122,  277—294. 
The  application  of  pressure  did  not  increase  the 
size  of  the  grains,  but  with  increasing  temperature 
an  increase  in  the  size  of  the  grains  was  observed  in 
the  cases  of  iron,  nickel,  cobalt,  tungsten,  and 
copper.  There  was  a  limit  of  temperature,  which 
could  be  determined  within  100°  C,  beyond  which 
further  increase  in  temperature  resulted  in  a  rapid 
increase  in  the  size  of  the  grains.  This  limiting 
temperature  is  independent  of  the  pressure  applied 
in  compressing  the  metal  and  has  a  characteristic 
value  for  each  metal.  Increase  in  the  size  of  grains 
was  not  observed  in  the  case  of  zinc  and  aluminium. 
These  results  are  discussed  in  the  light  of 
Tammann's  theory  of  crystallisation  (Z.  anorg. 
Chem.,  1920,  113,  163).— W.  T. 

Gold  solidified  from  the  melt;  Becrystallisation  of 

pure,  mechanically  unworked .    W.  Fraenkel. 

Z.  anorg.  Chem.,  1922,  122,  295—298. 
Pure  mechanically  unworked  gold  showed  no  change 
in  size  or  form  of  crystals  on  heating  to  1000° — 
1045°  C.  The  purity  of  the  metal,  however,  was  not 
of  such  a  high  degree  that  the  possibility  of  the 
crystallites  being  surrounded  by  thin  films  of  im- 
purity is  excluded  (</.  Tammann,  Z.  anorg.  Chem., 
1920,  113,  163).— W.  T. 

Silicon;  Modifications  of .     Silicon  from  copper 

silicide.     W.  Manchot  and  H.  Funk.     Z.  anorg. 
Chem.,  1922,  122,  22—26. 
Specimens  of  silicon  obtained  from  a  copper  silicide 
regains   were   similar  to  those  obtained   from  alu- 
minium and  silver  reguli  (c/.  J.,  1922,  251  a).     Con- 


ditions which  favour  the  formation  of  crystalline 
silicon  gave  a  form  which  reacted  but  Slowly  with 
hydrofluoric  acid.  Crystalline  silicon  very  soluble 
in  this  acid  could  not  be  obtained. — W.  T. 

Tungsten;    Attempts    to   decompose    at    high 

temperatures.      G.   L.   Wendt   and   C.    E.   Irion. 
J.  Amer.  Chem.  Soc,  1922,  44,  1887—1894. 

When  tungsten  wires,  4  cm.  long  and  0035  mm. 
diam.,  are  exploded  at  a  temperature  of  20,000°  C. 
by  discharging  a  condenser  at  30,000 — 45,000  volts 
through  them  (cf.  Anderson,  Astrophys.  J.,  1920, 
51,  37 — 48),  either  in  a  vacuum  or  in  an  atmosphere 
of  carbon  dioxide,  the  metal  is  entirely  dissipated, 
no  smoke,  dust,  or  residue  being  found  after  the 
explosion.  Abundant  quantities  of  gas  are  pro- 
duced, and  this  gives  a  spectrum  showing  the  yellow 
helium  line  and  several  other  unidentified  lines  but 
no  hydrogen  lines.  The  volume  of  gas  unabsorbable 
by  potassium  hydroxide  produced  from  0'713  mg. 
of  tungsten  varied  between  3'62  and  0'30  c.c.  Had 
the  tungsten  been  converted  entirely  into  helium 
the  volume  of  gas  would  have  been  4'0  c.c. — J.  F.  S. 

Hardness  of  solid  substances.       Reis  and  Zimnier- 
mann.     See  I. 

Patents. 

Puddling  [iron;  Furnace  for  and]  art  of .   H.  D. 

Hibbard.     E.P.  179,888,  26.9.21.     Conv.,  11.5.21. 

A  puddling  furnace  consists  of  a  cylindrical  re- 
action vessel,  lined  with  neutral  or  basic  bricks, 
mounted  on  hollow  trunnions,  and  provided  with 
an  interior  longitudinal  dam,  a  movable  block, 
having  a  passage  through  which  fuel  is  charged  to 
the  furnace,  near  to  one  trunnion,  and  a  smoke 
stack  near  the  other.  The  furnace  is  coupled  to  a 
reversible  motor  for  imparting  an  oscillatory  move- 
ment by  devices  that  allow  of  exact  control.  The 
furnace  is  charged  with  pig  iron  and  an  oxidising 
agent,  e.g.,  ferric  oxide,  and  the  molten  charge  is 
vigorously  oscillated  so  that  it  flows  back  and  forth 
over  the  dam,  thereby  ensuring  efficient  mixing. 
When  the  iron  has  balled  together,  the  first  slag  is 
tapped  and  a  second  charge  of  oxidising  agent 
together  with  fluxes,  e.g.,  silica  or  fluorspar,  is 
introduced.  After  tapping  the  second  slag  the 
ball  is  worked  into  a  symmetrical  form  by  dis- 
engaging the  reversing  gear  of  the  motor  and 
operating  control  levers  in  such  a  way  that  the 
ball  is  rolled  between  the  dam  and  the  discharging 
door.— A.  R.  P. 

Iron  deposits;  Process  for  the  production  of  electro- 
lytic   .     M.  Schlatter.     G.P.  305,156,  4.8.17. 

By  using  ferrous  perchlorate  instead  of  ferrous 
chloride  as  electrolyte,  a  deposit  of  iron  is  obtained 
which,  even  under  strong  magnification,  shows  no 
crystalline  structure,  and  is  therefore  suitable  for 
galvano-plastic  reproductions. — A.  R.  P. 

Steel;    Method    of    manufacturing    .       J.    C. 

Beneker,   Assr.   to   F.    F.    Mcintosh  and   W.    B. 
Skinkle.  U.S. P.  1,431,621,  10.10.22.  Appl.,  1.3.21. 

Steel  containing  not  more  than  0-35%  C  and  not 
less  than  1%  Mn  is  prepared  by  adding  to  a  bath 
of  molten  steel  covered  with  a  slag  high  in  man- 
ganese oxide,  sufficient  of  a  silico-manganese  alloy 
to  reduce  the  desired  quantity  of  manganese  from 
the  slag  while,  at  the  same  time,  oxidising  and 
slagging  the  silicon. — A.  R.  P. 

Metals  [e.g.,  iron];  Production  of  glossy  metallic 

coatings    [e.g.,    of    zinc}    on    .     A.    Classen. 

E.P.  186,459,  14.7.21. 
Glossy    metallic   coatings,    which   do    not   require 
polishing,     may    be    electrolytically    deposited    on 
metals   from    plating   baths  containing   organic  or 


Vol.  XLL.No.22.]      Cl. 


X.-METALS;    METALLURGY.   INCLUDING  ELECTRO-METALLURGY. 


901  a 


inorganic  colloids  or  substances  producing  them 
together  with  hydrogen  peroxide  or  its  derivatives' 
such  as  per-acids,  per-saits,  or  organic  substitution 
products,  capable  of  preventing  the  generation  of 
hydrogen  from  the  cathode,  and  not  powerful 
enough  to  decompose  the  colloids.  Thus  a  bath  for 
galvanising  iron  consists  of  10  kg.  of  zinc  sulphate, 

■j  g-,™am™onlum  suIPhate>  120  c.c.  of  sulphuric 
acid  100-120  g.  of  alum,  starch,  albumin,  or 
gelatin,  and  120  g.  of  potassium  persulphate  per 
100  I.,  and  is  operated  at  a  current  density  of 
5  amps,  per  sq.  dm.  at  3  volts.  Deposits  from  this 
bath  are  characterised  by  a  high  density,  brilliant 
lustre,  and  great  durability. — A.  R.  P. 

Copper  alloys;  Treatment  of .     Isabellen-Hiitte 

Ges.m.b.H.  E.P.  161,537,  9.4.21.  Conv.,  10.4.20. 
The  mechanical  properties  of  copper  alloys  contain- 
ing manganese,  aluminium,  zinc,  tin,  or  silicon 
may  be  improved  by  annealing  the  alloy  below  red 
heat.  The  hardness  and  elastic  limit  of  most  copper 
aMoys  are  increased  by  this  treatment.  In  certain 
oases  the  alloys  are  heated  to  a  temperature  above 
450°  C,  depending  on  the  particular  composition, 
cooled,  and  reheated.  The  presence  of  other  metals 
in  the  alloy  affects  only  the  temperature  of  treat- 
ment.— C.  A.  K. 

Copper;  Process  of  and  apparatus  for  precipitating 

from    solutions.       F.    S.    Adams.       U.S. P. 

1,430,140,  26.9.22.     Appl.,  20.7.20. 

{  Sulphur  dioxide  is  passed  repeatedly  through  the 
solution  to  precipitate  the  copper. — C.  A.  K. 

Magnesium   foil;   Method   of  manufacturing   . 

W.  Boehm.     E.P.  186,253,  19.9.21. 

The  metal  is  heated  to  a  temperature  just  below  ite 
melting  point  previous  to  rolling. — A.  R.  P. 

Platinum  and  similar  metals;  Extraction  of  

from  their  sands  and  ores.     R.  Thayer.     U.S. P. 
1,429,378,   19.9.22.     Appl.,  23.1.20. 

Superheated  steam  is  passed  through  a  mass  of 
finely-divided  ore  maintained  at  a  temperature 
below  the  melting  point  of  the  constituent  metals, 
which  are  recovered  from  the  collected  fume. 

— C.  A.  K. 

Alloy  for  repair  purposes.     P.  O.  Melton.     U.S. P. 
1,429,959,  26.9.22.     Appl.,  6.9.21. 

'  An  alloy  for  repair  work  contains  Zn  11  oz., 
Pb  li  lb.,  Sn  11  lb.,  and  Cu  1  oz.— C.  A.  K. 

Zinc;  Extraction  of [from  materials  contain- 

I  ing  lead  and  zinc].  W.  G.  Waring,  Assr.  to 
!  G.  BatteWe.  U.S. P.  1,430,269,  26-9.22.  Appl., 
J    17.8.21. 

The  process  of  separating  zinc  from  materials  con- 
taining lead  and  zinc  by  extraction  with  a  hot 
solution  of  ammonium  sulphate,  with  subsequent 
Tystallisation  of  zinc  sulphate,  is  supplemented  by 
.reating  the  separated  zinc  salt  with  ammonium 
:arbonate,  whereby  zinc  carbonate  and  ammonium 
ulphate  are  formed. — C.  A.   K. 

Ihloridising  process  and  apparatus.     F.   S.  Low, 
Assr.   to  Niagara  Alkali   Co.     U.S. P.   1,430,454, 
:   26.9.22.     Appl.,  27.12.20. 

Iydrogen  and  chlorine  are  burned  together  in 
'roximity  to  the  heated  material  to  be  chloridised. 

— C.  A.  K. 

'recious  metals;  Cyanide  process  for  treating  ores 

of  .     D.   L.    H.   Forbes.     U.S.P.   1,430,635, 

3.10.22.     Appl.,  3.4.22. 

mall  quantities  of  dry  sodium  peroxide  are  in- 
cted  below  the  surface  of  a  mixture  of  comminuted 
re  and  cyanide  solution. — A.  R.  M. 


Vanadium;  Process    of    recovering  K     B 

!  ,?nS^ssr-  t0  Cdl°n>do  Vanadium  Corp.    U.S  P' 
1,430,864,  3.10.22.     Appl.,  29.10.20. 

Vanadium  is  precipitated  as  calcium  vanadate  by 
the  addition  of  a  soluble  calcium  salt  to  an  acid 
solution  of  soluble  vanadates  contaminated  with 
iron  or  aluminium  compounds. — A.  R.  P. 

Ores;    Electric    furnace    for    treating    .      A 

Counas.  U.S.P.  1,430,948,  3.10.22.  Appl.,  21.8.20! 
An  electric  furnace  for  treating  ores  consists  of  a 
rectangular  chamber  provided  with  a  central 
hopper  and  a  series  of  inclined  electrodes  on  either 
side  thereof  together  with  a  return  electrode 
terming  part  of  the  hearth  of  the  furnace  and 
ai ranged  directly  below  the  hopper— A.  R.  P. 

Ores;    Method    and   means   for   reducing    in 

electric  blast  furnaces.  E  Fornander  TT  q  P 
1,430,971,  3.10.22.  Appl.,  14.4  22 
The  furnace  consists  of  a  reducing  shaft  opening  out 
Utl  £ i°m  1Dt°  T flmelting  chamber  with  a  conical 
hearth.  The  pre  and  fluxes  are  charged  into  the  shaft 
and  gradually,  descend  into  the  chamber,  where  a 
supply  of  reducing  material  is  introduced  in  such  a 
Wan  ti'1  f°rn]s  a  cove»ng  layer  on  the  sloping 
walte  of  the  chamber  and  leaves  a  free  space  between 
itself  and  the  roof.  A  portion  of  the  gases  evolved 
from  the  reduction  is  removed  from  the  shaft  and 
pumped  back  through  the  reducing  laver  into  the 
heart  of  the  charge,  which  is  maintained  at  a 
suitable  temperature  by  means  of  an  arc. — A.  R.  P. 

Tungsten  ores;  Method  of  treating  tin-bearing 

F.  M.  Becket,  Assr.  to  Electro  Metallurgical  Co 
U.S.P.  1,431,559,  10.10.22.     Appl.,  26.5.20. 
Tin-bearing  wolframite  ores  are  ground  and  roasted, 
and  treated  with  an  alkaline  solvent  to  extract  the 
tungsten  as  alkali  tungstate. — A.  R.  P. 

Alloy.  J.  O.  AVhiteley,  Assr.  to  The  Dentists' 
Supply  Co.  U.S.P.  1,431,713,  10.10.22.  Appl., 
29.6.20.  H   ' 

A  cold-platinum  alloy  containing  20—35%    Au   is 
claimed. — A.  R.  P. 

Metals;  Process  for  the  separation  and  purification 

°f by  treatment  with  gases.    L.  Schertel  and 

H.  Arnold.  G.P.  357,448,  31.5.19. 
The  molten  metal  mixture  is  treated  with  gases  or 
vapours  that  form  salt4ike  compounds  with  one  of 
the  metals,  the  quantity  of  gas  or  vapour  used  being 
in  stoichiometric  relation  to  the  amount  of  that 
metal  present.  The  charge  is  kept  at  a  sufficiently 
high  temperature  to  melt  the  salt  formed,  which 
then  acts  as  a  protective  coating  to  the  metal  from 
the  excess  of  gas.  In  this  way  a  very  complete  puri- 
fication is  effected  without  serious  loss  of  metal. 

—A.  R.  P. 

Ferrochromium  alloys;  Manufacture  of .   W.  B. 

Ballantine.      U.S.P.    1,430,878,  3.10.22.      Appl., 

2.2.22. 
See  E.P.  179,992  of  1921 ;  J.,  1922,  554  a. 

Copper;  Process  for  obtaining   the  • from  lyes 

resulting  from  the  treatment  of  cupriferous 
pyrites.  H.  P.  Soulie-Cottineau.  U.S.P. 
1,431, 130,  3.10.22.     Appl.,  5.4.20. 

See  E.P.  141,290  of  1919;  J.,  1920,  414  a. 

Metals;   Coating   of  ■   with   metals   of  a   lower 

fusing  point.  H.  G.  Grinlinton.  U.S.P.  1,431,395, 
10.10.22.     Appl.,  14.6.20. 

See  E.P.  146,830  of  1920;  J.,  1921,  776  a. 

Ores  or   the   like;   Smelting  .      L.    H     Diehl. 

U.S.P.  1,431,877,  10.10.22.     Appl.,  6.8.20. 
See  E.P.  170,100  of  1920;  J.,  1921,  854  a. 


902  a 


Cl.  XI.— ELECTRO-CHEMISTRY.     Cl.  XII.— FATS  ;  OILS;  WAXES. 


[Nov.  30, 1922. 


Steel  ingots  and  method  of  and  apparatus  for  pro- 
ducing [casting}  same.  Valley  Mould  and  Iron 
Corp.,  Assees.  of  J.  E.  Perry.  E.P.  171,352, 
18.3.21.     Conv.,  11.11.20. 

Melting  pot.     U.S.P.  1,423,501.     See  I. 

Tungsten.     E.P.  186,497.     See  IIb. 

Annealing.     E.P.  186,160.     See  VIII. 

XI.-ELECTB0-CHEMISTBY. 

Patents. 
Electric  gas-generator.  R.Rosner.  U.S.P.  1,390,646, 

13.9.21.  Appl.,  28.1.21. 

The  patent  relates  principally  to  means  for  regu- 
lating the  admission  of  air  to  the  apparatus 
described  in  U.S.P.  1,374,237  (J.,  1922,  380  a). 

Promoting     chemical     reactions     between     gases; 

Method  of  and  apparatus  for  .     S.  Ruben. 

U.S.P.  1,431,047,  3.10.22.     Appl.,  16.4.20. 

A  high-frequency  current  is  passed  through  a  con- 
ducting liquid  in  which  the  reacting  gases  are 
brought  into  contact  with  one  another. — J.  S.  G.  T. 

[Electric  induction']   furnace   linings;    Method  of 

preparing    .      M.    Unger,    Assr.    to   General 

Electric  Co.      U.S.P.  1,429,909,  19.9.22.      Appl., 
13.10.20. 

An  induction  furnace  is  started  by  placing  in  the 
heating  space  a  number  of  closed  conductors, 
melting  respectively  at  different  temperatures. 
A  heating  current  is  then  induced  therein  of  suffi- 
cient power  to  melt  the  conductors  successively. 

— T.  A.  S. 

Electric  furnace.  E.  A.  Hauff,  Assr.  to  Pittsburgh 
Engineering  Works.  U.S.P.  1,430,987,  3.10.22. 
Appl.,  27.3.20. 

The  electrically-conducting  bottom  of  an  electric 
furnace  is  connected  with  one  end  of  the  secondary 
winding  of  a  transformer.  A  switch  is  arranged 
to  connect  selectively  any  one  of  a  number  of 
tappings  on  the  secondary  winding  with  an  arcing 
electrode  in  circuit  with  an  adjustable  reactance. 

—J.  S.  G.  T. 

Electric  furnace.  I.  Rennerfelt.  U.S.P.  1,431,424, 
10.10.22.     Appl.,  10.8.21. 

An  electrode  projects  downwards  from  the  furnace 
roof  so  that  its  end  is  close  to  a  mass  of  carbonaceous 
powder  placed  upon  a  central  hearth,  which  is  sur- 
rounded by  a  rotary  annular  hearth. — J.  S.  G.  T. 

Electric  resistance  heater.  H.  G.  Lemoine.  U.S.P. 
1,431,825,  10.10.22.     Appl.,  18.7.21. 

A  metal  of  the  tungsten  group  is  embedded  in  a 
refractory  mass  consisting  of  a  mixture  of  an  oxide 
of  the  zirconium  group  and  magnesia. — J.  S.  G.  T. 

Dry  cells;  Manufacture   of  .     H.  de  Olaneta, 

Assr.  to  Winchester  Repeating  Arms  Co. 
U.S.P.  1,430,726,  3.10.22.  Appl.,  24.2.20. 
Recovered  manganese  dioxide  employed  as  the 
depolariser  in  a  primary  cell  is  leached  with  a 
neutral  solution  of  the  electrolyte  used  in  the  cell, 
prior  to  assembling  the  cell. — J.  S.  G.  T. 

Electrolytic  cell.  E.  A.  Le  Sueur.    U.S.P.  1,431,014, 

3.10.22.  Appl.,  23.10.20. 

The  bottom  of  an  electrolytic  cell,  serving  as 
cathode,  is  provided  with  one  or  more  conducting 
projections  which  may  take  the  form  of  annuli 
surrounding  the  anode. — B.  M.  V. 


Agitating  apparatus  for  tanks  [for  electrolytic 
'cells].  T.  H.  Mumford,  jun.  U.S.P.  1,431,022, 
3.10.22.     Appl.,  2.3.21. 

The  electrolyte  is  delivered  under  pressure  through 

openings  or  jets  in  pipes  which  can  be  reciprocated 

within  the  tank  or  cell. — B.  M.  V. 

Electrolytic  apparatus.  H.  Y.  Eagle.  U.S.P. 
1,431,574,  10.10.22.     Appl.,  12.11.20. 

Electrolyte  flows  continuously  through  a  tank  in 
which  a  number  of  groups  of  electrodes,  each  com- 
prising anodes  and  cathodes,  is  arranged,  each 
group  of  anodes  receiving  current  from  a  different 
conductor.— J.  S.  G.  T. 

Electrolysis ;  Art  of .     C  G.  Spencer.     U.S.P. 

1,431,602,    10.10.22.     Appl.,   15.1.21. 

The  intake  of  a  gas  washer  is  connected  with  an 
electrolyser,  and  porous  mineral  matter  is  inter- 
posed between  the  intake  and  outlet  of  the  washer. 

—J.  S.  G.  T. 

Induction  [electric]  furnace.  W.  Rohn.  U.S.P. 
1,431,686,  10.10.22.     Appl.,  21.12.20. 

See  E.P.  163,276  of  1920;    J.,  1922,  179  a. 

Utilising  surplus  electric  power  for  preparing  peat 
fuel.    E.P.  186,137.    See  IIa. 

Electrical  dehydration  of  emulsions.  U.S.P. 
1,430,245-6,  1,430,294-6,  and  1,430,301-2.  See 
IIa. 

Metallised  paper.    E.P.  186,363.    See  V. 


XII.— FATS;    OILS;    WAXES. 

Oils  and  fats  from  the  seeds  of  Indian  forest  trees. 
M.  G.  Rau  and  J.  L.  Simonsen.  Indian  Forest 
Records,  1922,  9.     Part  III.     15  pages. 

The  seeds  of  Chloroxylon  Swietenia  yield  16%  of  a 
non-drying  oil  consisting  of  glycerides  of  stearic, 
palmitic,  myristic,  oleic,  and  linolenic  acids.  The 
seeds  of  Calophyllum  Wightianum  yield  34%  of  an 
oil  closely  resembling  that  obtained  from  the  seeds 
of  C.  inophyllum  and  containing  about  10%  of 
resin,  and  glycerides  of  stearic,  palmitic,  oleic,  and 
linolic  acids.  The  seeds  of  Mimusops  Elengi  yielded 
16%  of  oil  consisting  of  glycerides  of  stearic, 
palmitic,  and  oleic  acids,  and  of  an  unidentified 
saturated  acid  which  was  possibly  behenic  acid. 
The  seeds  of  Shorea  robusta  yield  16'4%  of  a  fat 
resembling  Borneo  tallow  and  consisting  of 
glycerides  of  stearic  and  oleic  acids.  Garcinia 
Cambogia  seeds  yield  31%  of  a  fat  resembling  the 
fats  from  the  other  species  of  Garcinia,  which  should 
prove  an  excellent  edible  fat.  It  consists  of 
glycerides  of  stearic  and  oleic  acids. — H.  C  R. 

Liver  oil;  Sulphuric  acid  reaction  for  ■ — — .  H.  D. 
Richmond  and  E.  H.  England.  Analyst,  1922, 
47,  431. 

Constant  results  were  obtained  in  testing  cod  liver 
oil  by  the  dilution  method  (Drummond  and  Watson, 
J.,  1922,  718  a)  by  adding  1  c.c.  of  the  cod  liver  oil 
to  10  c.c.  of  liquid  paraffin  B.P.,  mixing,  and  trans- 
ferring 10  drops  of  this  to  a  white  porcelain  basin, 
adding  1  drop  of  sulphuric  acid  (B.P.)  and  stirring 
with  a  glass  rod.  If  a  transient  purplish  colour 
developed,  liquid  paraffin  was  added  in  successive 
quantities  of  5  c.c.  until  no  purple  colour  was  given, 
and  the  dilution  at  which  a  faint  transient  purple 
colour  was  seen  was  recorded.  If  no  purple  was 
seen,  successive  additions  of  1  c.c,  1  c.c,  2  c.c, 
and  5  c.c.  of  cod  liver  oil  were  made.  The  authors 
were  unable  to  obtain  good  results  when  instead  of 
liquid  paraffin  petroleum  spirit  was  used,  as  recom- 
mended by  Drummond  and  Watson. — H.  C  R- 


I 


Vol.  XLI.,  No.  22.) 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


903  a 


Copper;  Action  of  ■ in  promoting  the  activity  of 

nickel  catalyst  [in  hydrogenaiion  of  oils'].  E.  F. 
Armstrong  and  T.  P.  Hilditch.  Proc.  Roy.  Soc, 
1922,  A  102,  27—32. 

A  copper-nickel  catalyst  may  be  produced  in 
hydrogen  when  mixed  compounds  of  copper  and 
nickel  distributed  on  suitable  carriers  are  heated  to 
180°  C,  whereas  nickel  compounds  alone  under  such 
conditions  are  not  reduced  by  hydrogen  bellow 
300°  C.  and  not  rapidly  below  350°-400°  C.  For  the 
reduction  of  nickel  at  this  low  temperature  an 
intimate  mixture  of  the  copper  and  nickel  com- 
pounds must  be  used,  which  must  be  more  intimate 
than  can  be  obtained  by  mechanical  mixing.  Co- 
precipitation  is  not  always  sufficient  to  obtain  the 
desired  degree  of  intimacy,  for  a  comparison  of  the 
activity  of  the  catalysts  with  the  nature  of  the 
nickel  cupric  carbonates  from  which  they  are  pro- 
duced shows  that  both  the  nickel  and  the  copper 
must  be  in  the  same  complex  molecule  to  obtain  any 
marked  degree  of  catalytic  activity.  It  is  suggested 
that  the  necessary  local  heat  to  provide  a  sufficiently 
high  temperature  for  the  reduction  of  the  nickel  is 
furnished  by  the  reduction  of  the  copper,  provided 
the  latter  is  in  sufficiently  close  proximity  to  the 
nickel.— J.  F.  S. 

Japanese  tung  oil.    Gardner  and  Rei'lly.    See  XIII. 

Drying  of  fatty  oils.     Slansky.     See  XIII. 

Butter.    Fascetti.    See  XIXa. 

Patents. 

i  Coconut  butter;  Process  for  the  extraction  of . 

E.  E.  R.  Gaudart.  U.S. P.  1,431,519,  10.10.22. 
Appl.,  10.9.18. 

See  E.P.  117,819  of  1918;  J.,  1919,  155  a. 

| Soap;  Apparatus    for    moulding    .       American 

Cotton  Oil  Co.,  Assees.  of  C.  O.  Phillips.  E.P. 
164,341,  6.6.21.     Conv.,  5.6.20. 

■  Increasing   the   consistency   of  oils.     E.P.   185,782. 
See  IIa. 

Antiseptic  soap.     E.P.  186,078.     See  XIXb. 


XIII.-PAINTS  ;    PIGMENTS  ;    VABNISHES  ; 
RESINS. 

"Reflection  factors  of  industrial  paints  and  pig- 
ments. H.  A.  Gardner.  Circ.  133,  U.S.  Paint 
Manufacturers'  Assoc,  Sept.,  1921.  8  pp.  (Cf. 
J.,  1916,  263.) 

The  previously  recorded  figure  of  0'88  for  the 
effecting  power  of  the  magnesium  carbonate 
idopted  as  a  standard  has  been  found  to  be  low, 
ecent  measurement  having  given  a  value  of  0'98. 
Examination  of  some  panels  of  tinted  and  shaded 
lat  waill  lithopone  paints  after  storage  for  five  years 
n  the  dark  showed  no  falling  off  in  reflecting  power 
u  the  case  of  light  green,  yellow,  and  terra-cotta 
ints,  and  an  increase  in  the  case  of  light  buff; 
ight  cream,  light  pink,  and  light  blue  had  suffered 
%  loss,  but  dark  blue  and  dark  green  had  lost 
0%  of  their  original  values.  Very  little  loss  also 
as  recorded  on  certain  industrial  white  paints, 
ny  loss  being  attributed  to  the  well-known  yellow- 
lg  which  develops  on  storage  in  the  dark.  Light 
nd  medium  grey  paints  showed  an  increase  in 
affecting  value  attributed  to  slight  fading  of  the 
ints.  Among  modern  industrial  white  paints 
laniined  in  May,  1921,  one  specimen  showed  a 
ifleeting  value  of  82%,  calculated  on  the  corrected 
xsisj  thus  showing  a  marked  improvement  on  com- 
ercial  paints  of  earlier  manufacture.  A  laboratory 
ethod  of  obtaining  comparative  reflecting  powers 


consists  in  applying  two  coats  of  constant  weight 
ot  flat  paint  of  uniform  composition  to  white  bond 
paper,  the  medium  used  being  an  ethyl  acetate 
solution  of  nitrocellulose  plasticised  with  castor 
oil.  When  such  paints  are  applied  to  glass  plates 
in  place  of  paper  and  the  coatings  are  viewed  on 
black  and  white  backgrounds  respectively,  figures 
are  obtained  showing  both  reflecting  values  and 
relative  opacities.  The  coefficient  of  reflection 
modified  by  the  relative  opacity  is  obtained  by 
applying  flat  oil  paints  to  iron  panels  previously 
coated  with  a  flat  black  having  a  very  low  reflecting 
power.  Such  examination  shows  transparent  pig- 
ments to  possess  very  low  coefficients  of  reflection. 
Very  small  differences  in  reflecting  power  between 
various  pigments  are  shown  when  the  dry  com- 
pressed powders  are  examined.  When  various  com- 
mercial pigments  are  examined  for  brightness  by 
the  Pfund  colorimeter,  zinc  oxide  heads  the  scale 
with  a  relative  brightness  of  925  as  compared  with 
two  grades  of  white  lead  having  values  of  807  and 
605  respectively. — A.  de  W. 

Fire-resisting  paints  and  varnishes.  H.  A. 
Gardner.  Circ.  121,  U.S.  Paint  Manufacturers' 
Assoc,  April,  1921.    2  pp. 

The  use  of  ammonium  phosphate  in  large  pro- 
portion as  a  constituent  of  fire-resisting  paints  for 
exterior  work  is  not  recommended  on  account  of 
its  solubility  in  water.  Addition  of  5%  of 
ammonium  phosphate  to  varnishes,  although  pro- 
ductive of  a  somewhat  sandy  film,  is  suggested  in 
view  of  the  transparency  of  this  material  in 
varnish.  Zinc  borate,  which  fuses  to  a  glass-like 
sealing  film  under  the  action  of  heat,  is  likely  to 
prove  of  use  as  a  constituent  of  fire-resisting  paint. 

—A.  de  W. 

Paint  and  varnish;  Physical  testing  of .    H   A 

Gardner.     Circ.  122,  U.S.  Paint  Manufacturers' 
Assoc,  April,  1922.    13  pp. 

The  behaviour  of  varnish  and  paint  films  on 
bending  and  exposure  to  the  weather  may  be  con- 
veniently determined  by  applying  the  coating  under 
test  to  a  sheet  of  high-grade  bond  paper  previously 
rendered  impermeable,  if  necessary,  by  coating 
with  paraffin  or  parchmentising.  Other  tests 
include  the  determination  of  the  bursting  strain, 
tensile  strength,  resistance  to  bending,  elongation, 
etc.,  before  and  after  exposure,  the  figure  for  the 
uncoated  paper  being  also  determined.  The  hiding 
power  of  liquid  paints  is  most  conveniently  deter- 
mined by  the  Pfund  eryptometer  (J.,  1920,  34  a), 
but  the  author  has  devised  a  simpler  form  of  the 
apparatus  in  which  the  critical  thickness  of  com- 
plete obscuration  is  read  on  a  broad  longitudinal 
band  etched  on  the  upper  surface  of  the  base  plate. 
Rough  comparisons  of  hiding  power  of  liquid  or  dry 
paint  films  can  be  made  by  applying  these  over  a 
sheet  of  bond  paper  on  which  are  printed  squares 
of  black,  dark  grey,  light  grey,  etc.,  and  comparing 
with  a  standard.  The  behaviour  of  varnishes  under 
different  conditions  of  application  on  ageing  can  be 
observed  by  coating  on  paper  sheets  printed  with 
square  blocks  of  red,  yellow,  etc.,  exposures  being 
made  in  the  open  or  in  the  rays  of  a  mercury  arc 
lamp. — A.  de  W. 

Pfund  paint  gauge;  Discussion  of  the  .     H.  A. 

Gardner  and  P.  C.  Holdt.  Circ  132,  U.S.  Paint 
Manufacturers'  Assoc,  Aug.,  1921.  4  pp. 
The  spreading  rate  of  paints  as  determined  from 
the  figure  obtained  for  the  thickness  of  wet  paint 
films  measured  by  the  Pfund  paint  gauge  (J.,  1921, 
356  a)  agreed  to  within  35%  with  that  obtained  by 
weighing  the  paint  coating  in  a  test  when  finely- 
ground  paint  was  applied  to  a  smooth  surface 
(glass).    In  spreading  tests  (both  hand  brushing  and 


904  a 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS. 


[Nov.  30, 1922. 


spraying)  on  clean  black  iron  and  on  dressed  timber 
that  had  been  primed,  and  measurements  by  the 
Pfund  instrument,  although  fairly  close  agreement 
was  obtained  in  the  repeat  determinations  of  thick- 
ness by  the  gauge,  the  agreement  between  the 
spreading  rate  thus  determined  and  that  deter- 
mined by  weighing  the  paint  leaves  the  value  of  the 
instrument  as  a  check  on  actual  practice  open  to 
considerable  criticism. — A.  de  W. 


White  and  tinted  paints;  Storage  conditions  in 

ivith  reference  to  soap  formation.  H.  A.  Gardner. 
Circ.  143,  U.S.  Paint  Manufacturers'  Assoc, 
Jan.,  1922.     19  pp. 

The  formation  of  granular  or  flaky  soap  in  lead- 
zinc  paints  which  have  been  stored  for  3 — 5  years 
manifests  itself  as  the  separation  of  a  soft,  granular, 
or  sometimes  firm,  shelMike  mass  at  the  junction  of 
settled  pigment  and  medium,  or  sometimes  distri- 
buted throughout  the  settled  pigment  or  adhering 
to  the  sides  of  the  can.  The  soap  usually  contains 
88%  of  organic  matter,  the  metal  consisting  of 
about  85%  of  zinc  and  15%  of  lead.  The  effect  upon 
the  paint  is  to  give  a  gritty  appearance  to  the  coat- 
ing after  application.  The  formation  of  such  soaps 
appears  to  be  entirely  due  to  interaction  between 
basic  lead  or  zinc  pigments  and  an  acid  constituent 
of  the  medium,  zinc  pigments  being  more  fruitful 
in  forming  separated  soaps  owing  to  their  'lesser 
solubility.  Whilst  raw  linseed  oil  with  an  acid  value 
not  exceeding  5  does  not  promote  any  marked  soap 
formation,  the  hydrolysing  effect  of  "  foots,"  caus- 
ing as  it  does  development  of  free  fatty  acid, 
stimulates  the  reaction,  as  also  does  water  contain- 
ing an  ionisable  salt  or  emulsifying  liquid.  Acid 
refined  linseed  oil  (acid  value  8 — 10),  and  media  con- 
taining small  amounts  of  rosin  are  very  productive 
of  the  formation  of  soap  granules  with  basic  pig- 
ments, but  high  percentages  of  free  fatty  acids  or 
large  proportions  of  rosin,  although  liable  to 
"  liver  "  basic  pigmente,  exert  such  a  powerful 
solvent  action  on  heavy  metal  soaps  that  precipita- 
tion does  not  take  place.  Similarly,  while  petrol- 
eum spirit  as  a  thinner  favours  the  separation  of 
granular  soap  on  account  of  its  poor  solvent  power, 
pine  oil  and  coal  tar  solvents  prevent  precipitation. 
Paints  showing  soap  formation  may  sometimes  be 
made  satisfactory  by  straining  out  the  separated 
soap  or  re-grinding.  Tables  are  appended  showing 
the  results  of  examination  of  stored  paints  for  soap 
formation  together  with  their  composition. 

—A.  de  W. 


Paint  and  varnish  films;  Speed  of  evaporation  of 

thinners  from .    H.  A.  Gardner,  P.  C.  Holdt, 

and   E.   Bielouss.     Circ.   141,   U.S.   Paint  Manu- 
facturers' Assoc,  Dec,  1921.     16  pp. 

From  a  series  of  experiments  in  which  two  types  of 
varnish  ("  short  "  and  "  long  ")  and  both  gloss  and 
flat  paints  were  thinned  with  different  varieties  of 
volatile  solvents,  e.g.,  turpentine,  mineral  hydro- 
carbons of  varying  boiling-points,  coal-tar  naphtha, 
etc.,  and  films  therefrom  weighed  every  15  mins., 
it  is  shown  that  the  rate  of  evaporation  is  inversely 
proportional  to  boiling-point  and  independent  of 
the  type  of  hydrocarbon.  The  hygrometric  state  of 
the  surrounding  atmosphere  has  no  influence  on  the 
rate  of  evaporation  from  either  paint  or  varnish 
films,  excepting  in  the  extreme  case  of  a  possible 
deposition  of  dew  on  the  film.  The  highest  viscosity 
of  the  finished  product  is  obtained  by  the  use  of 
turpentine,  petroleum  hydrocarbons  giving  the 
lowest  values,  roughly  proportional  to  their  boiling- 
points.  This  is  attributed  to  turpentine  and  solvent 
naphtha  merely  acting  as  diluents  without  effecting 
any  changes  in  dispersity  of  the  varnish  medium, 
whilst  petroleum  hydrocarbons  produce  an  altera- 
tion in  structure  by  causing  coalescence. — A.  de  W. 


Japanese  tung  oil.  H.  A.  Gardner  and  A.  Reilly 
Circ.  138,  U.S.  Paint  Manufacturers'  Assoc  ' 
Nov.,  1921.     7  pp. 

The  seed  of  the  Japanese  tung  tree  {Aleurites 
cordai a)  is  smaller  than  that  of  the  Chinese  variety 
(A.  fordii)  and  is  claimed  in  Japan  to  yield  an  oil 
which  does  not  gelatinise  on  heating.  The  seed 
when  shelled  yielded  63%  of  pulp,  from  which 
51%  of  a  light  golden  yellow  oil  was  obtained  by 
extraction,  the  residue  being  a  dry  white  powder  of 
high  nitrogen  content.  The  oil  had  the  following 
characters :  iodine  value  (Wijs)  150-2,  (Hiibl)  1544  • 
saponif.  value  1932 ;  acid  value  09;  sp.  gr.  at 
15-5°/15-5°  C,  0-9342;  n„"  =  l-49Sl.  Under  the 
A.S.T.M.  standardised  heat  test  for  tung  oil,  the 
oil  yielded  a  viscous  liquid  in  one  hour.  The  vis- 
cosity was  intermediate  between  that  of  Chinese 
tung  oil  and  raw  linseed  oil.  On  exposure  to  the 
air,  the  oil  yielded  an  opaque  soft  film  in  43  hrs., 
whilst  with  10%  of  lead-manganese  drier,  it  dried 
in  10  hrs.  Oils  which  had  been  blown  at  150°  C. 
and  at  200°  C.  for  5  hrs.,  and  then  thinned  with  an 
equal  volume  of  mineral  spirit,  dried  in  34  and  81 
hrs.  respectively,  an  opaque  film  being  formed  in 
each  case.  On  heating  the  oil  for  one  hr.  to  315-5° 
C,  the  colour  of  the  oil  became  pale  yellow,  the  acid 
value  0-8,  the  sp.  gr.  0-964,  and  the  viscosity  78 
poises  (original  oil  P25  poises),  whilst  drying  took 
80  hrs.  On  heating  another  sample  to  the  same 
temperature  for  20  mins.  and  thereafter  maintain- 
ing at  250°  C.  for  a  further  2  hrs.,  the  colour  was 
observed  to  darken  after  one  hour,  whilst  after  2 
hours  the  oil  was  slightly  darker  than  the  original 
oil,  had  a  viscosity  exceeding  78  poises,  acid  value 
06,  and  sp.  gr.  0975.  Without  a  drier  the  oil  dried 
to  a  clear  film  in  43  hrs.,  whilst  with  the  addition  of 
10%  of  lead-manganese  drier  it  dried  hard  and  clear 
in  10  hrs.  This  latter  heat  treatment  is  interesting 
in  that  it  was  the  only  one  of  the  series  yielding  an 
oil  which  gave  a  clear  film  without  driers  and  that 
the  time  of  drying  compared  favourably  with  that 
of  heavy  bodied  linseed  oil  (58  hrs.).- — A.  de  W. 

Fatty  oils;  Drying  of .    P.  Slansky.    Z.  angew. 

Chem.,  1922,  35,  389—391. 

The  drying  of  linseed  oil  is  due  to  oxidation  and 
gelatinisation  (cf.  J.,  1921,  817  a),  the  latter  being 
accelerated  by  increase  of  temperature.  Linseed  oil 
fatty  acids  absorb  oxygen  more  rapidly  than  does 
linseed  oil  itself,  and  the  rate  of  oxidation  of  the 
oil  is  increased  by  the  addition  of  linolic  or  linolenic 
acid;  gelatinisation,  which  is  caused  by  coagulation 
of  the  oxidised  glycerides,  is  increased  by  the  addi- 
tion of  oleic  acid  to  the  oil.  Linoxyn,  the  solid 
substance  produced  by  the  drying  of  linseed  oil,  is 
capable  of  absorbing  15%    of  its  weight  of  water. 

— W.  P.  S. 

Dekalin;  Properties  and  composition  of .    J.  B. 

Coleman   and  P.   Bilham.     Chem.  Age,   1922,  7, 
554—555. 

An  investigation  of  the  physical  and  chemical  pro- 
perties of  dekalin  was  undertaken  in  order  to  deter- 
mine its  suitability  as  a  turpentine  substitute. 
Dekalin  has  the  following  physical  characters:—  »p. 
gr.  at  20°  C.  0-8947,  7iD20  =  T4815,  flash  point  51-6° 
C,  viscosity  at  40°  C.  (100>j)  =  0-675,  b.p.  180°— 197° 
C,  relative  rate  of  evaporation  compared  with 
American  turpentine  l.'2'89,  percentage  residue  on 
evaporation  0001935,  compared  with  01516  for 
turpentine.  Chemically  dekalin  consists  primarily 
of  a  mixture  of  tetrahydronaphthalene  20%,  and 
decahydronaphthalene  80%.  On  treatment  with 
fuming  sulphuric  acid  the  tetrahydronaphthalene  is 
absorbed,  and  the  residual  oil  is  almost  pure  deca- 
hydro-compound.  On  oxidation  of  dekalin  with 
permanganate  the  deca-compound  was  unattacked 
and  the  presence  of  the  tetrahydro-compound  was 
proved  by  the  formation  and  isolation  of  o-carboxy- 


Vol.XLI.,No.22]  Cl.  XIII.— PAINTS  ;    PIGMENTS;    VARNISHES;    RESINS. 


905  a 


hydrocinnamic  acid.  The  presence  of  the  tetra- 
hydro-compound  accounts  for  the  oxygen-carrying 
properties  of  dekalin,  which  may  be  demonstrated 
by  shaking  a  dekalin-water  emulsion  with  an  acidi- 
fied solution  of  potassium  iodide,  iodine  being 
immediately  liberated.  The  high  flash  point  of 
dekalin  as  compared  with  turpentine  enables  higher 
temperatures  to  be  employed  in  varnish  making; 
the  viscosity  indicates  a  superior  thinning  power. 
The  high  boiling  point  prohibits  its  use  for  quick- 
drying  varnishes,  but  for  paints  and  slow-drying 
varnishes  it  is  no  disadvantage,  as  the  drying  action 
continues  all  the  time  the  dekalin  is  evaporating 
owing  to  its  oxygen-carrying  properties. — G.  F.  M. 

Varnish;  Measurement  of  the  consistency  of  . 

H.  A.  Gardner  and  P.  C.  Holdt.     Circ.  127,  U.S. 
Paint  Manufacturers'  Assoc,  June,  1921.    51  pp. 

A  general  introduction  to  the  principles  underlying 
viscometry  is  given,  and  the  development  of  the 
measurement  of  plasticity  of  plastic  solids  as  in- 
vestigated by  Bingham  and  his  co-workers  (J.,  1920, 
292  R,  495  a)  is  described.  The  various  types  of 
viscometers,  i.e.,  air-bubble,  falling  sphere, 
torsional,  and  efflux,  are  described,  and  the 
accuracy  of  the  results  therefrom  is  discussed.  A 
very  full  resume  of  the  subject  matter  of  Bingham's 
papers  on  the  use  of  the  plastometer  is  given  and 
its  applicability  to  the  study  of  possible  plasticity 
in  varnishes  is  considered.  An  investigation  under- 
taken to  show  a  possible  connexion  between  vis- 
cosity and  durability  of  varnishes  gave  a  negative 
result.  The  authors  conclude  that  the  plastometer 
and  the  MacMichael  and  Doolittle  torsional  visco- 
meters are  the  only  reliable  instruments  for  deter- 
mining viscosities  of  varnishes,  the  first-mentioned 
i  instrument  possessing  the  advantage  of  higher 
•  accuracy  and  greater  ease  in  furnishing  absolute 
,  results.— A.  de  W. 

Varnish;  Standardised  apparatus  for  determining 

the   consistency   of  by   the   air-bubble    test. 

H.  A.  Gardner  and  P.  C.  Holdt.     Circ.  128,  U.S. 
Paint  Manufacturers'  Assoc,  June,  1921.     7  pp. 

]  Twenty   tubes  (110  mm.    long  by   13'3  +  005   mm. 

i  diam.)  are  filled  with  various  mixtures  of  mineral 
oils  free  from  fatty  oils  giving  a  range  of  absolute 
viscosities  from  0'50  to  5'50  poises  at  25°  C,  care 
being  taken  that  an  air  bubble  of  uniform  size  is 
left  in  each  tube.     The  dosed  tubes  are  mounted  in 

i  a  case  and  serve  as  standards  to  give  a  fairly  rough 
but  rapid  determination  of  viscosity  of  any  varnish 
which  is  similarly  filled  into  a  tube  of  the  same 
dimensions  as  the  standard  tubes. — A.  de  W. 


Bordeaux  turpentine.     Dupont 

Patents. 

White  lead;  Manufacture  of 


See  XX. 


From  National  Lead  Co. 


.     A.   E.  White. 

E.P.  186,114,  14.6.21. 


An  apparatus  for  the  continuous  manufacture  of 
white  lead  from  granular  metallic  lead  comprises 
a  rotary  horizontal  chamber,  about  96  ft.  long  and 
6  ft.  in  diam.,  constructed  of  heat-insulating 
material,  e.g.,  wooden  staves  lined  with  stout  paper 
and  faced  internally  with  match-boards.  The 
chamber  is  fitted  at  one  end  with  an  inlet  pipe  and 
hopper  for  granular  lead  and  an  inlet  for  a  gaseous 
reagent,  and  at  the  other  end  with  an  extension  of 
reduced  diameter,  to  which  the  corroded  lead  is 
transferred  by  means  of  vanes.  This  extension  is 
provided  with  a  reticulate  or  lattice-work  end 
portion  to  prevent  the  discharge  of  lumps  there- 
from. A  conveyor  is  provided  under  the  extension, 
the  latter  being  housed  in  an  enclosure  connected 
to  devices  for  maintaining  a  reduced  pressure 
within  the  chamber.  The  granular  lead  is  fed 
into  the  chamber  at  a  rate  controlled  by  the  rotation 
of  the  latter,  and  the  inlet  pipe  for  the  metallic 


lead  is  so  constructed  that  its  surface  temperature 
is  maintained  above  the  dew  point  of  the  gases  in 
the  chamber  in  order  to  avoid  collection  of  masses 
of  wet  metallic  lead.  The  corroding  mass  in  its 
passage  through  the  chamber  is  maintained  at  a 
moisture  content  between  2%  and  5%  by  spraying 
with  regulated  quantities  of  a  liquid  reagent  (acetic 
acid  and  water)  at  intervals  along  the  chamber  by 
non-axial  nozzles  projecting  inwards  from  the 
chamber  wall  to  a  degree  exceeding  the  depth  of  the 
tumbling  mass  of  material  and  so  arranged  that  the 
lead  is  sprayed  without  wetting  the  chamber  wall; 
the  spraying  nozzles  are  automatically  supplied  by 
the  rotation  of  the  chamber  and  their  surface 
temperature  is  maintained  above  the  dew  point  of 
the  gases  in  the  chamber. — A.  de  W. 

Magnesium  oxychloride  cements;  [Paint  for  use  in] 

laying  of on  metallic  surfaces.    J.  Davies  and 

W.  H.  Miles.    E.P.  186,231,  24.8.21. 

A  paint  for  coating  metallic  surfaces  before  the 
application  of  magnesium  oxychloride  cement  is 
prepared  by  mixing  equal  parts  of  powdered  fluor- 
spar, whiting,  and  china  day,  with  1*8  times  (by 
weight)  of  a  solution  of  sodium  silicate  of  33°  B. 
(sp.  gr.  1'296).  A  hard  coating  is  formed  which  is 
quick-drying  and  not  liable  to  crack. — J.  B.  P. 

Resins;   Production    of   artificial   .     R.    Pum- 

merer.     E.P.  165,408,  22.6.21.     Conv.,  25.6.20. 

By  moderated  oxidation  of  phenol  or  its  homologues 
with  alkaline  potassium  ferricyanide  solution,  with 
glacial  acetic  acid  and  lead  dioxide,  or  with  ferric 
chloride,  substances  of  higher  molecular  weight  are 
obtained  exhibiting  the  properties  of  artificial 
resins.  Treatment  with  alkalis  or  acids,  or  heating 
causes  polymerisation  of  these  primary  products 
and  makes  them  partially  soluble  in  alkalis.  The 
colour  of  the  products  can  be  improved  by  reduction 
and  also  by  acylation.  Acylation  or  alkylation  also 
renders  them  insoluble  in  alkali. — D.  F.  T. 

Resins;  Manufacture  of .    O.  Y.  Imray.    From 

Soc  of  Chem.  Ind.  in  Basle.  E.P.  186,107,  9-6.21. 
An  aromatic  hydroxy-compound,  such  as  phenol, 
resorcinol,  cresol,  or  naphthol,  is  heated  with 
sulphur  in  the  presence  of  a  basic  substance  in  a 
proportion  of  not  more  than  one-fifth  of  that  neces- 
sary for  the  neutralisation  of  the  hydroxy-com- 
pound. The  end  of  the  reaction  is  indicated  by  the 
cessation  of  evolution  of  hydrogen  sulphide.  A 
suitable  proportion  of  sulphur  is  2 — 3  atoms  per 
molecule  of  phenolic  compound.  As  catalyst  a  halo- 
gen, e.g.,  iodine,  may  be  employed.  The  addition 
of  a  small  proportion  of  formaldehyde  or  of  some 
compound  yielding  this  substance  is  advantageous. 
The  products  are  light-coloured  resinous  substances, 
obtainable  in  a  fusible  and  soluble  condition  but 
convertible,  by  heat  under  pressure,  into  a  hard 
infusible  condition. — D.  F-  T. 

Coating     compositions;     Manufacture      of     . 

Manufacture  of  plastic  material  for  flooring  and 
other    purposes.      Imperial    Trust    for    the    En- 
couragement     of      Scientific      and      Industrial 
Research,  and  S.  B.  Schryver.     E.P.  (a)  186,158 
and  (b)  186,157,  21.6.21. 
(a)   The   proteins  separated   from  castor    beans  or 
other  oil  seeds  (c/.   E.P.   140,911;  J.,  1920,  419a) 
when   mixed   with   alkalis   or   alkali  carbonates,   or 
with  combinations  generating  these,  together  with 
slaked    lime    or    magnesia,     yield    cement-forming 
materials.     These  on  admixture  with  alkali-resist- 
ant   pigments   form    powders   which    on   treatment 
with  water  become  successively  gelatinous  and  semi- 
fluid.    In  the  'latter  condition  the  products  can  be 
applied  as  distemper,     (b)  The  isolated  proteins  or 
the  whole  residues  of  the  oleaginous  seeds  are  mixed 
with  an  alkali  and  alkaline  earth  as   in  (a),   but 


906  a 


Cl.  XIV.— INDIA-RUBBER,  &c.     Cl.  XV.— LEATHER;    BONE,  &c. 


filling  material  is  then  introduced,  e.g.,  powdered 
slate,  sawdust,  or  asbestos  powder.  Plastic  products 
are  obtained  from  this  dry  material  by  mixing  with 
water  to  a  paste  and  allowing  to  dry  slowly  or  by 
moistening  with  water  and  subjecting  to  pressure 

— D.  F.  T. 

Paint  composition.  Mineral  oil  [composition]. 
W.  N.  Blakeman.  U.S.P.  (a)  1,430,881,  and  (b) 
1,430,882,  3.10.22.     Appl.,  16.4.21. 

(a)  A  paint  composition  comprises  tung  oil,  a  non- 
drying  fatty  oil,  a  mineral  oil  of  the  Pennsylvania 
type,   hydrogenated  and  oxidised,   and  a  pigment. 

(b)  An  oil  vehicle  comprises  tung  oil,  a  non-drying 
oil,  and  a  hydrogenated  and  oxidised  mineral  oil  of 
the  Pennsylvania  type. — L.  A.  C. 

Pigment  oil  composition;  Method  of  preparing . 

Method  of  preparing  varnishes.  [Colour]  lake 
and  method  of  preparing  same-  G.  W.  Acheson, 
Assr.  to  Acheson  Corp.  U.S.P.  (a)  1,431,079,  (b) 
1,431,080,  and  (c)  1,431,081,  3.10.22.  Appl.,  7.8.22. 
(a)  An  emulsion  of  an  oil  and  dilute  ammonia  solu- 
tion containing  a  deflocculated  pigment  in  suspen- 
sion is  treated  with  an  electrolyte  to  precipitate  the 
oil  and  pigment  together  as  a  curd,  which  is 
separated  from  the  aqueous  liquor  and  dried,  (b) 
Varnish  stock  containing  pigment  material  is  pre- 
pared by  precipitating  simultaneously  resinous, 
oily,  and  pigment  components  by  the  addition  of  an 
electrolyte  to  a  mixture  containing  a  colloidal  sus- 
pension of  a  resin,  an  emulsified  oil,  and  a  defloccu- 
lated pigment,  and  separating  the  precipitate  from 
excess  water,  (c)  A  lake  comprising  reflocculated 
clay  particles  carrying  an  adsorbed  dyestuff  is  pre- 
pared by  deflocculating  clay  material,  separating 
the  finer  particles,  and  subsequently  reflocculating 
the  material  in  the  presence  of  a  dyestuff. — L.  A.  C. 


INov.  30, 1922. 

Plastic  


Green    chromium    oxide 
VII. 


U.S.P.    1,429,912.     See 


XIV.-INDIA-BUBBEB;  GUTTA-PEBCHA. 

Lampblack  in  rubber  mixings.  E.  Marckwald  and 
F.  Frank.  Gummi-Zeit..  1922,  36,  1459—1462, 
37,  5—8. 

A  comparison  of  several  grades  of  German  lamp- 
black with  a  sample  of  gas  black  from  America, 
showed  that  the  latter  gave  vulcanised  mixings  with 
higher  breaking  strength  and  elongation,  but  that 
the  former  yielded  products  with  a  higher  degree 
of  elasticity  or  resilience.  A  mixture  of  rubber  (55), 
lampblack  or  gas  black  (25),  sulphur  (5),  litharge 
(5),  and  zinc  oxide  (10)  was  found  particularly  use- 
ful for  revealing  the  differences ;  comparative 
experiments  with  this  type  of  mixture  also 
demonstrated  the  greater  resistance  to  tearing  and 
Jower  resistance  to  destruction  by  repeated  applica- 
tion of  a  load,  imparted  by  gas  black.  Microscopical 
examination  of  the  samples  of  lampblack  and  gas 
black  revealed  their  very  fine  state  of  division  but 
did  not  supply  any  satisfactory  explanation  of  the 
difference  in  their  specific  characteristics  when 
embodied  in  vulcanised  rubber. — D.  F.  T. 


Patents. 

Hydrocarbon  [vulcanisable]  product  and  process  of 
making  same.  H.  H.  Culmer.  U.S.P.  1,430,538, 
3.10.22.    Appl.,  1.3.17. 

Olefine  hydrocarbons  are  treated  with  ozone  at  a 
temperature  below  that  at  which  the  hydrocarbons 
distil,  until  a  solid  or  semi-solid,  elastic  product 
capable  of  vulcanisation  is  obtained. — L.  A.  C. 


Binding  and  waterproofing  7naterial;  Plastic  

and  process  of  making  the  same.     H.  E.  Brown 
and  J.  H.  Stover,  Assrs.  to  Sona  Corp.     U  S  P 
1,431,455,  10.10.22.     Appl.,  24.6-21. 

A  binding  and  waterproofing  material  comprises  a 
natural  vulcanisable  gum  combined  with  sufficient 
cellulose  xanthate  to  furnish  the  necessary  sulphur 
to  secure  the  desired  degree  of  vulcanisation  in  the 
finished  product,  and  inorganic  or  organic  filling 
material. — L.  A.  C. 

Bubber  articles;    Process  for   the    manufacture   of 

[by   moulding    rubber   gel].      F.    C.    Jones 

E.P.  186,691,  1.7.21,  17.8.21,  and  7.11.21. 


XV.-LEATHEfi;  BONE;   HORN;   GLUE. 

Tannins  and  similar  compounds.  X.  Tannin  of  the 
German  oak.  K.  Freudenberg  and  E.  Vollbrecht 
Ber.,  1922,  55,  2420—2423. 

The  tannin  of  the  oak,  isolated  from  the  fresh  leaves 
by  means  of  the  lead  salt,  is  purified  from  free 
ellagic  acid  and  admixed  qUercetin  glucosides  by 
vacuum  extraction  with  ethyl  acetate;  it  is  accom- 
panied by  its  own  condensation  products  from  which 
it  is  freed  by  fractional  precipitation  from  its  alco- 
holic solution  with  ether.  It  is  an  amorphous, 
reddish-yellow,  acidic  material,  [a]D  about  -35°, 
freely  soluble  in  water,  alcohol,  and  acetone.  It 
contains  23 — 25%  of  combined  ellagic  acid  and  5% 
of  conibined  dextrose ;  the  remainder  of  the  mole- 
cule in  an  amorphous  acid,  designated  quercussic 
acid.  Hydrolysis  of  the  tannin  by  acids  and  alkalis 
indicates  that  it  is  a  glucoside  of  quercussic  acid 
which  is  esterified  to  a  depside  with  ellagic  acid. 
Hydrolysis  in  acid  or  alkaline  solution  is  accompan- 
ied by  considerable  destruction  of  quercussic  acid, 
but  the  latter  can  be  liberated  slowly  but  uniformly 
from  the  tannin  by  means  of  tannase.  It  resembles 
the  original  material  closely  in  its  physical  proper- 
ties but  is  optically  inactive  and  not  hydrolysed  by 
acid  or  alkali.  It  appears  to  be  a  dibasic  acid  of 
molecular  weight  about  800.  The  preparation  of  the 
acid  is  rendered  comparatively  easy  by  the  observa- 
tions that  under  definite  conditions  Aspergillus 
niger  grows  on  the  tannin  solutions  and  thereby 
completes  the  degradation  without  destroying  the 
quercussic  acid  and  thai  the  galls  of  Quercus  pedun- 
culata  contain  the  same  tannin  as  the  leaves. 
Fusion  of  the  acid  with  potassium  hydroxide  has  not 
led  to  the  isolation  of  definite  products.  Phloro- 
glucinol  is  not  formed;  its  isolation  by  earlier 
workers  from  oak  tannin  is  probably  attributable  to 
the  presence  of  quercetin. — H.  W. 

Tannins  and  similar  substances.  XI.  Chinese 
tannin.  K.  Freudenberg  and  W.  Scilasi.  Ber., 
1922,  55,  2813—2816. 

Doubts  as  to  the  homogeneity  of  Chinese  tannin 
have  been  strengthened  by  the  observation  of  Iljin 
(J.,  1914,  431)  that  it  can  be  separated  by  repeated 
precipitation  with  zinc  acetate  into  fractions 
having  [a]D=  +137"85°  and  +5-16°  in  aqueous  solu- 
tion. A  repetition  of  Iljin's  experiments  with  com- 
mercial tannin  and  with  a  specimen  isolated  by  the 
authors  from  Chinese  galls  has  confirmed  the 
accuracy  of  his  observations  but  has  also  shown  that 
the  specific  rotations  of  the  various  fractions, 
although  differing  60  widely  in  aqueous  solution,  are 
identical  when  the  products  are  dissolved  in  form- 
amide,  acetone,  alcohol,  glacial  acetic  acid,  or 
pyridine.  The  apparent  anomaly  is  due  to  the  fact 
that  tannin  forms  a  colloidal  solution  only  in  water, 
in  which  therefore  the  magnitude  of  the  specific 
rotation  depends  greatly  on  the  degree  of  dis- 
persion of  the  particles;  this  is  greatly  influenced 
by  the  presence  of  minute  quantities  of  impurity 


Vol.  XLI.,  No.  22.] 


Cl.  XV.— LEATHER;  BONE;  HORN;  GLUE. 


907  a 


which  are  gradually  removed  by  precipitation  in 
Iljin's  experiments  and  can  also  be  coagulated  and 
rendered  insoluble  in  ethyl  acetate  by  heating  the 
tannin  at  100°  C.  Chinese  tannin  may  be  regarded 
as  fundamentally  homogeneous.  Highly  active 
specimens  of  the  tannin  are  prepared  by  extracting 
the  galls  with  cold  water,  neutralising  the  extract 
with  sodium  carbonate,  and  treating  it  with  ethyl 
acetate.  The  product  obtained  after  removal  of  the 
solvent  has  [<z]D=+90°  in  aqueous  solution  and  the 
specific  rotation  is  nearly  independent  of  the  con- 
centration. A  more  active  product  cannot  be 
obtained  by  means  of  inorganic  adsorbents  (kaolin 
etc.)  or  organic  precipitants  (starch,  albumin, 
casein).  If,  however,  the  substance  is  dried  in  a 
vacuum  at  100°  C.  and  treated  subsequently  with 
anhydrous  ethyl  acetate,  a  small  amount  of  highly 
coloured  impurity  remains  undissolved  and  the 
activity  of  the  dissolved  tannin  is  increased  to 
+  116°  in  aqueous  solution  (1%).  Two  further  treat- 
ments in  the  same  manner  give  a  pioduct  which  is 
completely  soluble  in  ethyl  acetate  and  has  the 
constant  specific  rotation,  [a]D=+138°,  in  aqueous 
solution  (1-5%).— H.  W. 

Tannase;  A  new  - from  Aspergillus  Luchuensis, 

Inui.     M.    Nierenstein.      Biochem.   J.,   1922,    16, 
514—515. 

Paullinia  tannin  (from  the  seeds  of  Paullinia 
cupana,  H.B.  and  K. ;  cf.  J.,  1922,  184  a)  is  not 
hydrolysed  by  tannase  prepared  by  growing  Asper- 
gillus Luchuensis  in  a  solution  of  gallotannin, 
although  the  latter  is  hydrolysed  by  this  enzyme. 
Apparently  the  hydrolysing  properties  of  tannase 
depend  on  the  medium  in  which  the  fungus  by 
which  it  is  produced  is  grown,  for  when  Aspergillus 
Luchuensis  is  grown  in  a  medium  containing 
catechutannin  from  cube-gambia  (Ourouporia 
Gambier,  Baill)  a  new  tannase  is  obtained  which 
hydrolyses  paullinia  tannin  but  not  gallotannin. 
The  two  tannases  are  named  gallotannase  and 
catechutannase  respectively. — E.  S. 

I  Sundri  bark;  Determination  of  optimum  tempera- 
ture for  maximum  extraction  of  tannin  from . 

B.  B.  Dhavale  and  S.  R.  Das.     J.  Soc.  Leather 
Trades'  Chem.,  1922,  6,  311—315. 

The  optimum  temperature  for  the  maximum  extrac- 
tion of  tannin  from  sundri  (Heritiera  minor)  bark 
"  of  official  size  "  is  65°— 70°  C— D.  W. 

Tannin  test;  A  qualitative  .     E.  Atkinson  and 

E.  O.  Hazleton.    Biochem.  J.,  1922,  16,  516—517. 

','  A  piece  of  gold-beater's  skin  is  pinned  on  a  surface 
It  of  paraffin  wax,  soaked  in  water,  and  then  covered 

with  an  aqueous  extract  of  the  material  to  be  tested. 

After  about  15  mins.  it  is  washed,  treated  with  a 
i\l°/„   solution  of  ferric  chloride,   and  again  washed. 

If  the  skin  is  stained,   the  presence  of  tannin  is 

indicated. — E.  S. 

Synthetic  tannins;  Notes  on  .       TJ.  J.  Thuau 

and    A.    T.    Hough.      J.    Soc.    Leather    Trades' 
Chem.,  1922,  6,  308—311. 

Synthetic  tannins  act  as  accelerators  of  tanning 
by  vegetable  tannins;  they  produce  a  softer  grain, 
tan  the  pelt  and  thus  economise  vegetable  tannins. 
They  may  be  used  to  clarify  vegetable  tanning 
materials,  exerting  a  decolorising  action  and  pre- 
i  'venting  fermentation  and  mould  formation.  They 
may  also  be  used  for  preliminary  tanning  before 
tanning  with  vegetable  tannins,  chrome,  alum,  etc. 
Their  properties  are  due  to  the  colloidal  nature 
and  to  their  power  of  peptising.  They  peptise 
insoluble  tannins,  they  transform  non-tans  and 
phlobaphenes  into  tannins,  and  they  combine  with 
the  tannin  in  tanning  extracts  forming  a  more 
soluble  tannin  complex. — D.  W. 


Chrome  tanning.  Properties  of  the  common 
chrome  \tanning~]  liquors.  D.  Burton,  R.  P. 
Wood,  and  A.  Glover.  J.  Soc.  Leather  Trades' 
Chem.,  1922,  6,  281—287. 
Chrome  tanning  liquors  prepared  by  the  reduction 
of  bichromate  with  glucose,  sulphur  dioxide,  and 
sawdust,  give  no  precipitate  on  dilution ;  a  liquor 
reduced  with  spent  tan  is  not  so  bright;  bichromate 
reduced  with  whey  does  not  remain  clear  and  bright 
when  diluted,  and  it  gives  precipitates  after  stand- 
ing overnight.  A  neutralised  chrome  alum  liquor 
remains  bright  on  dilution,  but  it  is  the  least  stable 
on  boiling.  The  amount  of  alkali  required  to  give  a 
precipitate  with  a  measured  quantity  of  each 
liquor  increases  with  the  age  of  a  solution  of  bi- 
chromate reduced  with  sulphur  dioxide  and  cf 
neutralised  chrome  alum  liquors,  and  decreases  with 
the  age  in  the  case  of  liquors  reduced  with  glucose, 
sawdust,  spent  tan,  and  whey.  The  amount  of 
alkali  required  to  produce  a  precipitate  with  the 
liquors  at  equilibrium  falls  in  the  following  order : 
Reduced  with  glucose,  with  sulphur  dioxide,  with 
6awdust,  with  spent  tan,  with  whey;  neutralised 
chrome  alum.  Probably  more  of  the  chromium 
exists  in  a  negatively  charged  form  in  the  glucose 
and  sulphur  dioxide  liquors  than  in  the  other 
liquors.  Applying  the  law  of  mass  action  to  the 
equilibrium,  the  amount  of  negatively  charged 
chromium  compound  will  be  decreased  if  the 
hydrion  concentration  of  the  solution  be  increased 
by  the  addition  of  acid  and  increased  if  the  hydrion 
concentration  be  decreased  by  the  addition  of 
alkali.— D.  W. 

Leather  analysis;  Simple  apparatus  for  the  extrac- 
tion of  water-soluble   matter  from  leather,   and 

notes  on  .     A.  T.  Hough.     J.  Soc.  Leather 

Trades'  Chem.,  1922,  6,  302—307. 
Five  grams  of  the  leather  is  placed  in  a  Gooch 
crucible,  closed  by  a  porous  plate  and  suspended  in 
the  bottom  of  a  cvlinder  containing  250  c.c.  of  dis- 
tilled water  at  15°— 25°  C.  After  £  hr.  the  leather 
is  raised  3 — 4  cm.,  and  again  three  times  in  1$  hrs. 
It  is  finally  raised  to  just  below  the  surface  of  the 
water,  left" overnight,  and  50 — 100  c.c.  of  the  liquid 
is  evaporated  to  dryness  and  the  residue  weighed 
to  obtain  the  water-soluble  matter.  In  determining 
the  soluble  ash  the  dry  water-soluble  matter  should 
be  treated  with  sulphuric  acid,  the  excess  driven 
off  by  ignition,  and  the  sulphated  residue  weighed 
and  reported  as  such.  The  figure  obtained  is  larger 
than  the  soluble  ash,  and  more  correctly  represents 
the  soluble  mineral  matter. — D.  W. 
Leather;  Influence  of  atmospheric  humidity  on  the 

strength    and    stretch    of   .      F.    P.   Veitch, 

R  W  Frey,  and  L.  R.  Leinbach.  J.  Amer. 
Leather  Chem.  Assoc.,  1922,  17,  492—508. 
The  tensile  strength  and  stretch  of  lightly  tanned, 
unloaded,  and  unstuffed  leather  was  determined  on 
a  series  of  test  pieces  under  conditions  of  different 
atmospheric  humidity.  An  increase  of  relative 
humidity  from  35%  to  55%  caused  an  increase  of 
12'9%  in  the  tensile  strength,  15"7%  in  the  stretch, 
and  V9%  in  the  moisture  content.  An  increase  from 
35%  to  75%  relative  humidity  caused  an  increase  of 
423%  in  tensile  strength,  53' 1  %  in  stretch,  and  8'2% 
in  the  moisture  content.  The  increase  in  strength 
is  not  proportional  to  the  increase  in  relative 
humidity  but  would  seem  to  be  directly  related  to 
the  moisture  content  of  the  leather.  This  confirms 
the  results  of  Rudeloff  (J.,  1904,  992)  and  Roys 
(Hide  and  Leather,  Jan.  1,  1921,  21),  who  found 
that  the  effect  of  a  change  in  the  relative  humidity 
is  greater  at  high  than  at  low  humidities.— D.  \V  . 

Gelatin;  Some  properties  of  dialysed  .     D.  J. 

Lloyd.    Biochem.  J.,  1922,  16,  530—540. 
The      influence     of      hydrochloric      acid,      6odium 


I 


90S  A 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


[Nov.  30, 1922. 


: 


hydroxide,  and  sodium  chloride  on  the  gelling  power 
of  gelatin  purified  by  dialysis  at  the  isoelectric 
point  has  been  followed.  For  comparative  purposes, 
the  minimum  concentration  of  gelatin  necessary  to 
produce  a  gel  after  standing  for  48  hrs.  at  15°  C. 
has  been  taken  as  an  inverse  measure  of  the  gelling 
power.  Under  these  conditions,  pure  gelatin 
requires  a  minimum  concentration  of  0"8%  to  form 
a  gel.  Hydrochloric  acid  decreases  the  gelling 
power,  the  diminution  passing  through  a  maximum 
at  pH  2 — 3  and  again  beyond  pH  0'7.  Sodium 
hydroxide  slightly  decreases  the  gelling  power 
between  pH  10 — 12  and  completely  prevents  gelation 
above  p„  12.  Neutral  salts  diminish  the  influence 
of  hydrogen  ions  on  gelling  power ;  no  other  simple 
relationship  between  sodium  chloride  content  and 
gelling  power  appears  to  exist.  The  influence  of 
hydrochloric  acid,  sodium  hydroxide,  and  sodium 
chloride  on  the  production  of  turbid  gels,  and  the 
effect  of  temperature  on  the  optical  rotation  of 
gelatin  have  also  been  studied.  The  theory  of 
gelation  is  discussed. — E.  S. 

Gelatin   jellies;   Elasticity    of   purified    ■ as   a 

function  of  the  hydrogen  ion  concentration.  S.  E. 
Sheppard,  S.  S.  Sweet,  and  A.  J.  Benedict. 
J.  Amer.  Chem.  Soc,  1922,  44,  1857—1866. 

The  rigidity  of  demineralised  gelatin  jellies,  which 
have  been  purified  from  the  products  of  hydrolysis, 
is  not  much  affected  by  changes  of  the  hydrogen 
ion  concentration  except  at  very  high  (>pH  2)  and 
very  low  (<pH  H)  hydrogen  ion  concentrations. 
The  addition  of  quantities  of  potassium-alum 
equivalent  to  O'Ol— 0"1%  A1,03  based  on  the  dry 
gelatin  brings  about  considerable  changes  in  the 
rigidity-pH  curve,  and  markedly  increases  the 
rigidity.  This  may  account  for  the  somewhat 
anomalous  effects  observed  when  the  rigidity  of 
jellies  prepared  from  commercial  gelatins  and  con- 
taining different  concentrations  of  acid  and  alkali 
was  determined  (cf.  J.,  1921,  313  a).— J.  F.  S. 

Patent. 

Gelatin;  Treatment  of  ossein  for  the  production  of 

.     C.    Collard.      U.S.P.    1,431,217,    10.10.22. 

Appl.,  23.8.21. 

See  E.P.  166,896  of  1921;  J.,  1922,  869  a. 


XVI.-S0ILS ;  FERTILISERS. 

Sulphate    reduction;    Occurrence    of   in    the 

deeper  layers  of  the  earth.  C.  A.  H.  van 
Wolzogen  Kiihr.  Proc.  K.  Akad.  Wetensch., 
1922,  25,  188—198. 
The  reduction  of  sulphate  which  occurs  in  the 
deeper  clay  strata  and  sand  is  brought  about  by 
Microspira  desulfuricans.  The  life  of  this 
organism,  which  is  adapted  to  anaerobic  conditions, 
accounts  for  the  common  occurrence  of  sulphate 
reduction  in  the  deeper  layers  of  the  earth  and 
especially  in  the  clay,  which  generally  has  a  higher 
content  of  organic  matter. — J.  F.  S. 

'Nitrogen-fixing  bacillus;  A  new  .     G.  Truffaut 

and  N.  Bezssonoff.  Comptes  rend.,  1922,  175, 
544—546. 
The  bacillus,  which  is  found  in  the  soil,  fixes 
nitrogen  at  the  expense  of  various  sugars.  Measure- 
ments of  the  increase  of  nitrogen  content  of  the 
nutritive  medium  show  that  the  gain  varies  from 
1'8  mg.  per  g.  of  dextrose  consumed  to  4"7  mg.  in 
the  case  of  lactose,  when  the  carbohydrate  concen- 
tration is  10  g.  per  litre  this  ratio  is  considerably 
increased  with  lower  concentrations  of  the  carbo- 
hydrate. Ethyl  alcohol  and  acetic  acid  are  also 
formed  and,  in  addition,  the  bacillus  reduces 
nitrates  to  ammonia  derivatives.      In  appearance 


the  organism  somewhat  resembles  Proteus  vulgaris 
but  may  readily  be  distinguished  by  characteristics 
which  the  authors  describe.  The  name  proposed  is 
Bacillus  Truffauti. — H.  J.  E. 

Manganese  content  and  proportion  of  ash  in  old  and 

young  leaves;  Belation  between  ■ .     F.  Jadin 

and  A.  Astruc.     Bull.  Soc.  Chim.,  1922,  31,  917— 
921. 

When  the  quantity  of  manganese  present  in  leaves 
is  considered  with  reference  to  the  fresh  material, 
young  leaves  contain  less  manganese  than  old,  and 
the  same  result  is  obtained  if  the  dry  material  is 
considered,  but  in  this  case  the  variation  is  not  so 
great.  When  manganese  content  is  compared  with 
weight  of  ash,  however,  the  ash  from  young  leaves 
yields  the  higher  percentage. — H.  J.  E. 

Plant  growth;  Effect  of  the  reaction  of  a  nutritive 
solution  on   germination  and  the  first  stages  of 

.     R.  M.  Hixon.     Med.  K.  Vetenskapsakad. 

Nobelinst.,  1922,  4,  [9],  1—28. 

The  germination  of  seeds  and  growth  of  young 
plants  as  water  cultures  are  considerably  influenced 
by  the  hydrogen  ion  concentration  of  the  nutritive 
solution.  Experiments  were  made  in  which  seeds 
were  germinated  in  Tollens'  solution,  the  ptt  value 
of  which  was  modified  by  addition  of  hydrochloric 
acid  or  sodium  hydroxide,  in  tap  water,  and  in 
sterilised  agar  with  similarly  adjusted  pa  values. 
Germination  took  place  over  the  wide  range  of  p„  4 
to  7'6  with  only  slight  variation  at  the  two  extremes, 
but  in  the  middle  part  of  the  range  there  was  a 
point  where  the  rate  of  germination  was  a  mini- 
mum. This  point  was  at  pa  5  for  two  varieties  of 
pea,  pH  6  for  maize,  wheat,  and  oats,  and  pu  5'5  for 
carrots.  On  the  other  hand,  the  root  growth  of 
carrots  was  a  maximum  at  this  point  on  the  tenth 
day.  The  critical  point  is  probably  the  point  of 
greatest  efficiency  and  of  normal  growth.  The 
greater  rate  of  germination  on  either  side  of  the 
critical  point  is  probably  due  to  the  stimulating 
effect,  in  small  concentration,  of  the  toxic  H' 
and  OH  "  ions.  There  is  always  a  tendency  for  the 
pH  value,  when  this  lies  towards  one  or  other 
extreme  of  the  range  in  which  a  plant  will  grow,  to 
become  modified  by  the  growing  plant  towards  a 
value  lying  between  pa  5  and  6"8.  When  carrot 
plants  39  days  old,  grown  in  soil,  were  suspended  in 
solutions  of  different  pH  values,  root  excretions  of 
a  gelatinous  nature  (not  protein)  were  observed,  the 
quantity  being  greatest  at  extreme  p„  values  and 
least  at  the  critical  value  pH  5"5.  These  and  other 
observations  by  different  authors  indicate  an  ionic 
equilibrium  between  the  roots  of  the  plant  and  the 
salts  in  solution. — E.  H.  R. 

Fertilisers    containing   nitrites;    Determination   of 

total  nitrogen  in  and  of  nitrite  nitrogen  in 

the  presence  of  nitrates.  F.  Mach  and  F- 
Sindlinger.  Z.  angew.  Chem.,  1922,  35,  473—474. 
Total  nitrogen:  25  c.c.  of  an  aqueous  solution  of  the 
sample  (the  25  c.c.  should  contain  not  more  than 
005  g.  of  nitrogen)  is  added  slowly  to  a  boiling 
mixture  of  30  c.c.  of  saturated  potassium  per- 
manganate solution  and  5  c.c.  of  dilute  sulphuric 
acid  (1:2) ;  after  the  addition  of  a  further  10  c.c.  of 
the  sulphuric  acid  the  mixture  is  cooled,  treated 
with  10  g.  of  ferrum  reduetum,  boiled  gently  tor 
about  10  mins.,  and  the  resulting  ammonia  deter- 
mined by  distillation  in  the  usual  way.  A  it  rate 
nitrogen:  25  c.c.  of  the  solution  of  the  sample  is 
boiled  for  10  mins.  with  30  c.c.  of  N 13  sulphuric 
acid  and  10  c.c.  of  methyl  alcohol.  The  nitrous  acid 
is  thus  expelled  in  the  form  of  ite  volatile  methyl 
ester.  After  cooling,  the  mixture  is  neutralised 
and  the  residual  nitrate  determined  as  described  by 
reduction  with  ferrum  reduetum.  Nitrite  nitrogen: 
The  difference  between  the  total  nitrogen  and  toe 


Vol.  XLI.,  No.  22.] 


Cl.  XVII.—SUGARS  ;  STARCHES  :  GUMS. 


909  a 


nitrate     nitrogen     gives     the  amount     of     nitrite 

nitrogen    present.     Allowance  must    be    made    for 

ammonia  nitrogen  if  the  fertiliser  contains 
ammonium  salts. — W.  P.  S. 

Patents. 

Phosphorus   compounds;   Process  for  treatment   of 

suitable    for    manurial    purposes.       R.    W. 

James.     From    Eisenwerkges.    Maximilianshiitte. 
E.P.  186,223,  9.8.21. 

Insoluble  phosphates,  such  as  Florida  phosphate, 
bone  meal,  or  phosphatic  slag,  are  intimately  ground 
with  salts  of  the  alkalis,  alkaline-earths,  or  mag- 
nesium, without  heating.  This  treatment  renders 
the  phosphoric  acid  present  soluble  in  citric  acid 
and  partly  soluble  in  citrates.  [Reference  is 
directed,  in  pursuance  of  Sect.  7,  Sub-sect.  4,  of  the 
Patents  and  Designs  Acts,  1907  and  1919,  to  E.P. 
6429  of  1906  and  151,024;  J.,  1906,  647;  1920,  759  a.] 

— C.  I. 

Superphosphate  masses;  Process  of  and  apparatus 

for  ageing  and  disintegrating  .     A.   Bruhn, 

Assr.  to  F.  Krupp  A.-G.  U.S. P.  1,430,621, 3.10.22. 
Appl.,  19.11.20. 

See  E.P.  147,134  of  1920;  J.,  1921,  863  a. 


XVII.    SUGARS;    STARCHES;    GUMS. 

White  sugar  manufacture ;  Process  of employed 

at  the  Oxnard  beet  sugar  factory,  California.  A. 
Vasseux.  Bull.  Assoc.  Chini.  Sucr.,  1921,  38, 
409—435. 

In  spite  of  the  purity  of  the  juice  being  as  low  as 
80°,  an  extraction  of  97%  of  the  sugar  present  in  the 
beets  is  realised  at  the  Oxnard  factory,  the  pro- 
cedure being  as  follows :  Diffusion  juice  is  limed 
with  the  calcium  saccharate  from  the  Steffen  process 
of  desaccharifying  molasses,  using  5'25%  CaO 
(calculated  on  the  roots),  carbonated  to  0'93,  heated 
to  92°  C,  filtered  twice,  treated  with  sodium 
carbonate,  carbonated  (without  further  addition  of 
lime)  to  0'26,  heated  to  boiling,  and  the  alkalinity 
lowered  by  sulphitation  to  016  before  passing  to  the 
multiple-effect  supply  tanks.  The  evaporator  syrup 
(to  which  the  second  sugar  has  been  added)  is 
heated,  sulphited  to  an  alkalinity  of  0'23,  mixed 
with  kieselguhr,  and  pumped  successively  through 
filter-presses  and  Danek  filters,  thus  giving  a  "  first 
liquor,"  which  is  very  light  in  colour  and  low  in 
viscous  substances.  This  liquor  serves  for  the 
boiling  of  the  first  crop  of  crystals,  a  small  amount 
of  white  sugar  grain  of  uniform  size  being  added 
just  at  the  moment  when  the  grain  is  about  to  form, 
which  addition  not  only  facilitates  boiling,  but 
obviates  the  formation  of  false  grain,  gives  a  sugar 
of  better  colour,  and  improves  the  extraction  (cf. 
J.,  1919,  4S  a).  The  molasses  from  the  first  sugar  is 
sulphited,  treated  with  kieselguhr,  and  filtered 
before  being  boiled  for  the  production  of  the  second 
sugar,  the  molasses  from  which  is  sent  to  the 
Steffen  plant  for  the  extraction  of  the  sugar  still 
remaining  in  it.  In  the  1919  season  the  total  sugar 
in  the  roots  was  1871 ;  that  actually  recovered  was 
18-21  (or  9735%);  that  remaining  in  the  pulp  was 
O'll;  in  the  diffusion  waste  waters,  003;  in  the 
scums,  008,  and  in  the  Steffen  waste  waters,  0T7%. 
Altogether  about  40,000  tons  of  white  granulated 
sugar  was  produced  at  the  Oxnard  factory  during 
1920.— J.  P.  O. 

Cane  juice;  Influence  of  the  non-sugars  of in 

inhibiting     inversion.       C.      Lourens.       Archief 

Suikerind.     Nederl.-Indie,     1922,    30,    562—564. 

Int.  Sugar  J.,  1922,  24.  552. 

The  author  agrees  with  van  Ligten  (J.;  1922,  776  a) 

that  amino-acids  are  capable  of  exerting  an  influ- 


ence in  retarding  the  inversion  of  sugar  solutions, 
but  suggests  that  a  more  likely  explanation  of  the 
slow  rate  of  inversion  observed  when  sulphiting  cane 
factory  syrups  and  molasses  (as  compared  with 
pure  solutions  of  the  same  density  treated  under  the 
same  conditions)  is  that  salts  forming  part  of  the 
non-sugars  are  decomposed,  the  sulphur  dioxide 
combining  with  the  alkalis  and  liberating  organic 
acids.  These  organic  acids  have  an  inversion 
constant  which  is  only  about  0'5,  as  compared  with 
one  of  40  for  sulphur  dioxide. — J.  P.  O. 

[Sugar  factories;]  Significance  of  the  presence  of 

oxalates    in  evaporator   incrustations    [in  ]. 

[Detection    of   oxalic   acid.~\       C.    Miiller.       Int. 
Sugar  J.,  1922,  24,  523—524. 

Analyses  of  the  incrustations  scraped  from  the 
heating  surfaces  of  a  quadruple  effect  evaporator 
used  for  the  concentration  of  cane  juice  showed, 
when  operation  was  normal,  the  presence  of  a  com- 
paratively considerable  amount  of  oxalic  acid  in 
that  taken  from  the  first  vessel,  traces  only  in  that 
from  the  second,  and  none  in  that  from  the  third 
and  fourth.  On  the  other  hand,  in  the  case  of  a 
similar  apparatus,  the  operation  of  which  was  less 
efficient  (the  second  vessel  hardly  operating  at  all), 
the  presence  of  much  oxalic  acid  was  established  in 
the  incrustation  taken  from  both  the  first  and  the 
second  vessels,  while  there  was  also  a  trace  in  that 
from  the  third.  The  presence  of  oxalic  acid  in  the 
second  or  subsequent  vessels  of  the  evaporator  may 
be  taken  as  an  indication  of  the  irregular  operation 
of  the  apparatus,  the  concentration  of  the  syrup  in 
these  vessels  being  insufficient  to  cause  the  complete 
precipitation  of  the  calcium  oxalate  in  the  juice, 
this  substance  being  almost  insoluble  in  concen- 
trated syrup.  In  testing  for  the  presence  of  oxalic 
acid,  100  g.  of  the  incrustation  (freed  from  traces 
of  sugar  by  repeated  washing  with  water)  is  treated 
with  300  c.c.  of  dilute  sulphuric  acid  (1:10),  and  the 
liquid  filtered  and  evaporated  to  about  50  c.c. ;  then 
10  c.c.  is  further  concentrated  in  a  test-tube,  a  little 
resorcinol  added,  and  2  c.c.  of  concentrated 
sulphuric  acid  poured  down  the  side  of  the  tube. 
On  agitation,  a  fine  azure  blue  colour  turning  violet 
on  heating  is  formed.  Tests  with  fourteen  other 
organic  acids  showed  that  the  reaction  is  character- 
istic of  oxalic  acid. — J.  P.  O. 

Decolorising  carbon  [for  use  in  the  sugar  industry]; 

Essential  qualities  of  an  efficient  .      W.  H. 

Dunstone,    jun.      Facts    about   Sugar,    1922,    14, 

416. 
An  efficient  decolorising  carbon  after  having  been 
used  for  the  adsorption  of  impurities  from  sugar 
liquors  must  be  capable  of  readily  being  separated 
by  filtration.  The  optimum  size  of  particle  depends 
on  the  porosity  and  adsorbing  quality  of  the  carbon. 
Frequently  extremely  fine  carbon  becomes  so 
"  slimed  "  by  the  accumulation  of  organic  colloidal 
impurities  that  it  cannot  be  filtered  off.  Another 
important  quality  is  a  sufficiently  hard  structure, 
otherwise  the  attrition  occurring  in  revivifying 
results  in  the  formation  of  such  a  quantity  of  very 
fine  grain  as  seriously  to  impede  filtration. 

Decolorising    carbons;    Experiments   with    various 

E    Saillard.     Suppl.   Circ.  Syndic.  Sucre 

de  France,  Nos.  1724,  1726,  1728,  1730,  and  1734 
of  1922. 
To  50-c.c.  portions  of  a  20%  solution  of  beet 
molasses,  0'5  g.  of  decolorising  carbon,  or  0-5  g.  of 
finely  ground  animal  charcoal,  was  added,  the 
temperature  being  maintained  at  78° — 80°  C.  dur- 
ing 20  mins.  After  cooling,  and  filtering,  the  colour 
removed,  expressed  as  percentage  of  original  colour, 
was  found  to  be  as  follows :    Animal  charcoal,  27 ; 


910a 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[Not.  30, 1922. 


"  Norit,"  43;  "  Darco,"  44;  and  "  Carboraffin,"  75. 
Practically  the  same  results  were  obtained  when  the 
treatment  was  carried  out  at  the  ordinary  tempera- 
ture. Other  experiments  led  to  the  following  con- 
clusions :  A  better  decolorisation  results  when  the 
treatment  is  effected  under  pressure  at  110°  C.  than 
at  78° — 80°  C. ;  the  finer  the  state  of  division  of  the 
carbon  the  better  its  action  in  adsorbing  colour ; 
animal  charcoal  adsorbs  about  twice  the  amount  of 
calcium  salts  from  solution  in  comparison  with 
"  Carboraffin,"  and  three  times  that  retained  by 
"  Darco."  On  the  other  hand,  animal  charcoal 
takes  up  less  free  alkali  than  "  Darco." — J.  P.  O. 

Decolorising  carbon  ("Norit  ");  Technical  applica- 
tion of .    W.  H.  Dunstone,  jun.    La.  Planter, 

1922,  68,  254—256. 

Washed  white  sugar  of  99°  purity  was  melted  to 
a  syrup  of  56°  Brix,  strained,  heated  to  200°  F. 
(93°  C),  and  discharged  into  mixing  tanks  in  which 
a  determined  amount  of  "Norit"  (about  1"5%  of 
the  weight  of  melted  sugar)  had  been  placed  in  the 
form  of  a  paste.  After  filtration  through  plate- 
and-frame  presses,  a  practically  colourless  liquor 
was  obtained  from  which  a  "  standard  granulated, 
the  equal  in  every  way  of  the  best  boneblack 
sugar,"  could  be  boiled.  After  being  used  in  this 
manner  three  times  in  succession,  the  "Norit" 
was  washed  with  water  in  filter-presses  to  eliminate 
its  sugar  content,  dried,  and  heated  in  the  "  Norit  " 
kiln  to  about  1100°  F.  (660°  C),  after  which  it  was 
used  again  three  times.  When  the  ash  content 
of  the  carbon  had  reached  such  a  degree  as  to 
hinder  filtration,  it  was  reduced  by  boiling  with  a 
2%  solution  of  hydrochloric  acid,  this  treatment  at 
intervals  being  followed  by  boiling  with  a  5%  solu- 
tion of  sodium  hydroxide.  It  is  stated  that  a 
recovery  of  93  lb.  of  standard  granulated  sugar  per 
100  lb.  of  96°  raw  sugar  can  be  obtained,  and  that 
the  process  can  be  conducted  on  a  commercially 
profitable  scale. — J.  P.  O. 

Decolorising  carbon  ("Norit'');  Cost  of  revivifica- 
tion of .     R.  G.  Tillery.    La.  Planter,  1921, 

66,  411—414;  1921,  67,  9—14. 
Revivification  by  acid  treatment  was  found  to  cost 
0'8  cent  per  lb.  of  decolorising  carbon ;  by  caustic 
alkali  treatment,  1'75  cent;  and  by  re-burning, 
0'61  cent.  Not  only  is  re-burning  cheaper  (its  cost 
amounting  to  $001  per  100  lb.  of  granulated  sugar 
produced),  but  it  gives  a  material  which  decolorises 
better,  and  filters  faster,  the  loss  during  the  process 
of  revivification  also  being  less.  Re-burning,  how- 
ever, should  be  combined  with  an  occasional  acid 
and  alkali  treatment. — J.  P.  O. 

Sugars;  Chemistry  of  the .     H.  Kiliani.     Ber., 

1922,  55,  2817—2826.  (Cf.  J.,  1921,  315  a;  1922, 
188  a.) 
The  technique  of  the  oxidation  of  sugars  and  poly- 
hydroxy  acids  by  nitric  acid  at  the  atmospheric 
temperature  is  further  improved  by  removing  any 
excess  of  nitric  acid  by  shaking  the  solution,  after 
dilution  if  necessary,  with  five  or  six  portions  of 
ether  (each  one  and  a-half  times  the  volume  of  the 
solution).  The  sixth  extract  is  generally  free  from 
nitric  acid.  The  aqueous  solution  may  still  contain 
nitric  esters.  It  is  allowed  to  remain  exposed  to 
the  air  for  12 — 24  hrs.  to  permit  the  dissolved  ether 
to  evaporate  and  is  then  concentrated  if  necessary 
in  a  vacuum  over  sulphuric  acid.  During  this 
period  the  nitric  esters  become  hydrolysed  gradually 
and  the  liberated  nitric  acid  causes  a  fresh  oxida- 
tion. For  reasons  of  safety,  the  ethereal  extracts 
are  immediately  brought  into  contact  with  sodium 
hydroxide  solution  (1  in  3).  The  efficiency  of  the 
process  is  illustrated  by  the  identification  of  J-tri- 
hydroxyglutaric  acid  as  a  by-product  of  the  prepara- 
tion of  ketorhamnonlactone  and  by  the  preparation 


of  r-pentahydroxypimelic  acid  from  o-glucoheptonic 
acid.  The  strongly  reducing  acid  obtained  by  the 
oxidation  of  dextrose  or  rf-gluconic  acid  with  nitric 
acid  is  identified  as  5-keto-d-gluconic  acid.  The 
ketorhamnonic  acid  described  previously  as  the 
2-keto-  is  shown  to  be  the  5-keto-compouud.  (Cf. 
J.C.S.,  Dec.)— H.  W. 

Carbohydrates.  II.  A  new  anhydride  (1.2)  of 
dextrose.  P.  Brigl.  Z.  physiol.  Chem.,  1922, 
122,  245—262. 
By  the  elimination  of  hydrogen  chloride  from  1- 
chloro-3.5.6-triacetylglucose,  the  1.2  anhydride  has 
been  prepared  and  its  properties  examined.  1- 
Chloro-3.5.6-triacetylglucose  is  treated  in  benzene 
solution  with  ammonia  whereby  3.5.6-triacetyl- 
glucose-1.2-anhydride,  white  prisms  m.p.  595°  C., 
[a]'8D  +  106'5°,  is  obtained.  This  substance  reacts 
with  great  ease  with  acetic  anhydride,  water, 
or  methyl  alcohol.    (Cf.  J.C.S.,  Nov.")— W.  O.  K. 

Polysaccharides.    XVI.    P.  Karrer  and  W.  Fioroni. 
Ber.,  1922,  55,  2854—2863. 

Re-determination  of  the  heats  of  combustion  of  the 
amyloses  gives  results  which  indicate  that  polymer- 
isation proceeds  exothermally  from  diamylose  to 
a-tetra-amylose  and  then  strongly  endothermally 
to  octa-amylose.  The  observed  values  for  the  heats 
of  combustion  of  a  sugar  of  the  general  formula, 
(C8HiaOB)n-(n-l)H20,  agree  excellently  with  the 
calculated  values.  The  heats  of  combustion  of  a 
number  of  polysaccharides  and  their  derivatives  are 
given.  The  close  agreement  between  the  observed 
values  for  the  acetyl  compounds  of  cellulose,  starch, 
and  inulin,  and  those  calculated  on  the  hypothesis 
that  the  heat  of  acetylation  (known  to  be  small)  is 
relatively  negligible  indicates  that  acetylation 
is  not  accompanied  by  depolymerisation,  since  in 
the  case  of  the  amyiloses  it  has  been  shown  that  the 
heat  of  combustion  varies  considerably  with  the 
degree  of  polymerisation.  In  reply  to  the  recent 
criticism  of  Pringsheim  (J.,  1922,  513  a)  the  author 
maintains  that  triamylose  and  /?-hexa-amylose  are 
identical.— H.  W. 

Adsorption  by  sugar  charcoal.     Bartell  and  Miller. 
See  IV. 

Reduction  of  carbohydrates.   Willstatter  and  others. 
See  V. 

Patents. 
Sugar  and  other  products;  Method  of  converting 

wood   into   .     S.    F.    Acree.      E.P.    160,776, 

18.3.21.  Conv.,  25.3.20. 
Celltjlosic  material  containing  galactan,  such  as 
Western  larch,  is  subjected  to  hydrolysis,  a  hydro- 
lysing  agent,  such  as  nitric  acid,  nitrous  acid, 
or  a  mixture  of  both,  or  sulphurous  acid,  or  various 
acidic  liquors  recovered  in  subsequent  manipula- 
tions, being  used.  The  quantity  of  hydrolytic 
agent  is  preferably  less  than  6%  of  the  dry  weight 
of  the  raw  material  employed.  The  wood,  pre- 
ferably as  chips  or  sawdust,  is  mixed  with  three 
times  its  weight  of  water,  the  acid  added,  and  the 
whole  heated  either  at  ordinary  pressure  to  70° — 
100°  C,  or  under  increased  pressure  to  110° — 
140°  C,  until  hydrolysis  is  complete.  The  resulting 
sugar  solution  is  removed  and  may  be  treated  for 
the  separation  of  galactose  and  other  sugars  as 
such,  or  may  be  fermented  by  means  of  special 
yeasts  to  give  alcohol.  The  process  is  rendered 
continuous  by  the  use  of  batteries  of  hydrolysing 
and  extraction  vessels. — W.  H.  G. 

Glucose  and  dextrin;    Process  of,   and  apparatus 

for  obtaining  from  wood.     H.  Terrisse  and 

M.  Levy.  E.P.  186,139,  20.6.21.  Addn.  to 
143,212. 

The  process  described   in  the  former  patent  (J., 


VoL  XLI.,  No.  22.] 


Cl.  XVIII.— fermentation  industries. 


911a 


1921,  405  a)  has  been  simplified  to  allow  of  con- 
tinuous working.  Cellulosic  material,  such  as  wood 
shavings,  sawdust,  etc.  is  dried  to  a  moisture  con- 
tent of  not  more  than  5%.  Ten  parts  of  the  dried 
material  is  mixed  with  about  7 — 11  pts.  of  40% 
hydrochloric  acid  and  simultaneously  treated  with 
about  2  pts.  by  weight  of  gaseous  hydrogen 
chloride,  the  temperature  being  kept  low  through- 
out. The  mass  is  then  digested  in  thin  layers  at 
12°— 50°  C.  under  slight  pressure.  When  con- 
version is  complete  the  hydrochloric  acid  is  re- 
moved and  recovered  and  the  product  boiled  with 
water  to  convert  dextrin  into  glucose,  which  may 
be  separated  as  such  or  fermented.  Apparatus, 
consisting  of  a  mixing  vessel,  a  digesting  installa- 
tion, and  a  plant  for  the  recovery  of  the  acid, 
arranged  to  allow  of  the  continuous  working  of  the 
process,  is  described. — W.  H.  G. 

Sugar  solutions;  Purification  of  by  filtration 

and  decantation.  P.  Tiemann.  G.P  355  231 
17.12.20.  Addn.  to  354,076  (cf.  E.P.  161  987 : 
J.,  1921,633  a). 

In  the  process  described  in  the  chief  patent,  the 
loose,  granular  filter  medium  is  supported  on  a 
sieve  constructed  of  elastic  material,  and  by  setting 
the  sieve  in  motion,  fine  sand  is  readily  separated 
from  coarser  particles  and  can  be  washed  away 

— L.  A.  C. 


XVIII —FERMENTATION  INDUSTRIES. 

Malt  analysis;  Standard  methods  of  .  Report 

of   Standing  Committee   on   Analysis.     J.   Inst. 
Brewing,  1922,  28,  775—786. 

The  revised  methods  of  analysis  of  malts  and 
caramel  differ  in  details  from  those  recommended 
in  the  reports  of  1906  and  1910  (cf.  J.,  1906,  236; 
1910,  1323).  The  methods  being  entirely  empirical, 
uniform  results  can  be  obtained  only  by  strict 
observance  of  the  details  laid  down.  In  addition 
to  the  Seek  laboratory  mill,  a  mill  made  by  Messrs. 
E.  Boby,  Ltd.,  of  Bury  St.  Edmund's,  is  now 
accepted  as  standard,  and  for  grinding  the  grist  a 
roller  setting  of  0'5  mm. — as  determined  by  a  feeler 
gauge — is  prescribed.  In  determining  the  extract 
of  pale  malts,  the  mash  is  kept  at  150°  F.  (65'5°  C.) 
for  1  hr.,  the  practice  of  heating  to  158°  F. 
(70°  C.)  for  the  last  5  mins.  being  abandoned. 
The  conditions  of  fibration  of  the  worts  are 
standardised;  the  first  50  c.c.  is  to  be  returned  to 
the  funnel  and  250  c.c.  finally  collected.  For 
reading  the  tint  of  worts  any  recognised  "  day- 
light "  lamp  may  be  used.  Covered  dishes  are 
prescribed  for  moisture  determinations,  and  various 
precautions  to  be  observed  are  enumerated.  The 
"  tube  "  method  of  estimating  diastatic  activity 
has  been  re-introduced  as  an  official  method,  in 
addition  to  that  previously  given ;  and  more  exact 
details  for  the  preparation  of  soluble  Btarch  are 
laid  down.  No  alterations  have  been  made  in  the 
methods  of  analysis  of  coloured  malts  and  caramel. 

— W.  H.  G. 

Hop   bitters;   Nomenclature   and  analysis   of  . 

P.  Kolbach.     Woch.  Brau.,  1922,  39,  233—235. 

The  lack  of  uniformity  in  the  nomenclature  of  hop 
constituents  is  emphasised  and  the  question  of  the 
possibility  of  valuing  hops  on  the  basis  of  a  chemical 
analysis  is  discussed. — W.  H.  G. 

Physico-chemical  methods  in  brewery  laboratories. 
W.  Dietrich.     Woch.  Brau.,  1922,  39,  232—233. 

The  limitations  of  purely  chemical  methods  are 
pointed  out,  and  stress  is  laid  on  the  value  of  the 
information  given  by  modern  methods  of  physical 
chemistry.  The  determination  of  pH  values, 
nephelometric   experiments,   determination   of   vis- 


cosity and  surface  tension  and  studies  of  colloidal 
state,  ultrafiltration,  and  the  use  of  the  ultramicro- 
scope  and  microchemical  methods  are  instanced  as 
examples  of  physical  methods  of  value  for  supple- 
menting chemical  methods  of  examination 

— W.  H.  G. 

Colour  in  beers  and  worts;  Standard  solution  for  the 

estimation  of .       B.  Lampe.       Woch.  Brau., 

1922,  39,  235—236. 

A  mixture  of  solutions  of  cobalt  nitrate  and 
potassium  bichromate  is  suggested  as  a  standard. 
It  has  the  advantage  over  the  standards  now  in  use 
—ferric  alum,  iodine,  and  aniline  dye  solutions — 
that  it  is  stable  for  a  considerable  period  and  that 
the  salts  required  can  be  obtained  readily  in  a  pure 
condition.— W.  H.  G. 

Saccharase    [invertase];    Inactivation    of by 

iodine.     H.  von  Euler  and  S.  Landergren      Bio- 
chem.  Zeits.,  1922,  131,  386—389. 

Addition  of  iodine  in  potassium  iodide  to  two 
invertase  preparations  of  different  activity  reduced 
the  activity  in  each  case  to  one  half.  Sodium  thio- 
sulphate  cannot  re-activate  the  invertase. — H.  K. 

Saccharase  \invertase~\ ;  A  silver  compound  of . 

H.  von  Euler  and  K.  Josephson.     Ber.,  1922,  55, 
2416—2420. 

A  brown  compound  of  silver  and  invertase  is  pre- 
cipitated by  the  addition  of  alcohol  to  a  solution  of 
invertase  (1%)  which  has  been  treated  with  silver 
nitrate.  The  compound  still  contains  approxi- 
mately 50%  of  carbohydrates  which  are  derived 
mainly  from  the  original  yeast.  The  atomic  ratio 
of  phosphorus  to  silver  in  the  compound  is  1:1. 
(Cf.  J.C.S.,  Nov.)— H.  W. 

Lactic  acid  fermentation  of  dextrose  by  peptone. 
G.  Schlatter.  Biochem.  Zeits.,  1922,  131,  362— 
381. 

Dextrose  is  converted  quantitatively  into  inactive 
lactic  acid  by  peptone  at  37°  C,  sodium  bicarbonate 
being  used  as  buffer.  This  buffer  substance  may 
be  replaced  by  sodium  acetate,  but  not  by  phosphate 
mixtures  owing  to  flocculation  of  the  peptone. 
During  the  fermentation  amino-acids  appear  and 
fermentation  ceases  with  flocculation  of  the  pep- 
tone. Peptones  free  from  phosphates,  as,  for 
example,  Witte  peptone,  give  no  fermentation ; 
most  of  the  observations  recorded  were  made  with 
Siegfried's  peptone.  The  solutions  were  not  com- 
pletely sterile,  although  no  known  bacteria  capable 
of  forming  lactic  acid  were  found. — H.  K. 

Peptone  fermentation.     E.  Baur  and  E.  Herzfeld. 

Biochem.  Zeits.,  1922,  131,  382—385. 
The  authors  draw  an  analogy  between  the  glycolytic 
action  of  plant  and  animal  juices  and  the  fermenta- 
tion of  dextrose  by  peptone  as  revealed  by  their  own 
experiments  and  those  of  Schlatter  (cf.  supra).  The 
latter  are  moreover  an  effective  reply  to  Bau's 
criticism  (J.,  1922,  189  a)  of  their  own  experiments 
on  fermentation  without  yeast  (J.,  1921,  900  a). 

— H.  K. 

Wines  containing  sulphurous  acid;  Determination 

of  the  volatile  acidity  of .    R.  Marcille.    Ann. 

Falsif.,  1922,  15,  269—274. 
When  an  aqueous  solution  of  sulphurous  acid  is 
treated  with  iodine,  the  increase  in  the  acidity  is 
a  measure  of  the  quantity  of  sulphurous  acid 
present:  S02  +  2H20+2I  =  H2S04  +  2HI.  In  the  case 
of  wines  containing  sulphurous  acid,  combination  of 
the  latter  with  aldehydic  substances  takes  place 
and  the  sulphurous  acid  thus  combined  is  not  oxi- 
dised by  iodine;  its  acidity  is  also  reduced.     Based 


912a 


Cl.  XlXi FOODS. 


(Nov.  30, 1922. 


on  these  facts,  the  following  method  of  correcting 
the  volatile  acidity  of  wines  in  order  to  ascertain 
the  quantity  of  volatile  organic  acids  is  suggested. 
From  the  total  volatile  acidity  is  deducted  a  quan- 
tity equal  to  the  sum  of  the  amount  of  the  sul- 
phurous acid  oxidisable  by  iodine  plus  70%  of  the 
vombined  sulphurous  acid.  The  combined  sul- 
phurous acid  is  the  difference  between  the  total 
sulphurous  acid  and  that  portion  which  is  oxidisa- 
able  by  iodine.— W.  P.  S. 

Citric  acid;  Detection  of  in  wine  and  musts. 

C.  von  der  Heide  and  H.  Straube.   Festschr.  Jubi- 

liium  hoheren  staatl.  Lehranst.  Wein-,  Obst-,  u. 

Gartenbau,  336—369.   Chem.  Zentr.,  1922,  93,  IV., 

803. 
Methods  depending  on  the  separation  of  citric  acid 
in  the  form  of  its  salts  are  unreliable  on  account 
of  possible  contamination  with  malic  acid.  Stahre's 
reaction  (J.,  1896,  53)  or  the  modifications  of  it  pro- 
posed by  Kunz  (J.,  1915,  974;  1919,  435  a),  and  Krug 
and  Rettinger  (Arbb.  Kais.  Gesundh.-Amt,  49,  28), 
are  recommended.  The  authors  precipitate  the 
barium  salts  of  the  acids  in  wines  and  musts  by  means 
of  alcohol,  and  examine  the  precipitate  for  citric 
acid.  Contrary  to  Kunz'  assumption,  it  has  been 
shown  that  natural!  wines  and  musts  may  contain 
citric  acid.  In  nine  Rhenish  natural  wines  of  the 
1921  vintage,  citric  acid  was  found  in  quantities 
of  85 — 164  mg.  per  1.  Whether  citric  acid  is  a 
normal  constituent  of  German  wines  is  uncertain. 

— W.  H.  G. 

Hum;    Testing    by   the    odour   developed    on 

treatment  with  sulphuric  acid.  E.  Schaffer. 
Chem.-Zeit.,  1922,  46,  934. 
If  10  pts.  of  rum  is  mixed  with  4  pts.  of  sulphuric 
acid  (sp.  gr.  1'84)  an  aroma  is  at  first  developed 
which  differs  with  different  samples,  but  when  this 
has  disappeared  it  is  followed  by  a  characteristic 
odour  somewhat  resembling  that  of  petroleum. 
The  same  odour  was  obtained  with  15  different 
samples  of  genuine  rum  from  Jamaica,  Cuba,  Mar- 
tinique, and  Guadeloupe,  even  when  adulterated 
to  the  extent  of  1  part  in  10.  The  odour  lasted  at 
least  24  hrs.  The  so-called  German  rum  (cf.  J., 
1922,  73  a)  and  an  artificial  rum  prepared  from 
essences  did  not  give  this  characteristic  odour.  The 
test  would  therefore  be  useful  for  distinguishing 
these.  Genuine  rum  containing  a  large  amount  of 
ethyl  acetate  only  gives  the  characteristic  odour 
after  removal  of  the  ethyl  acetate  by  distillation. 

— H.  C.  R. 

Tannase.     Nierenstein.    See  XV. 


Truffaut  and  Bezssonoff. 


Nitrogen-fixing  bacillus. 
See  XVI. 

Patents. 

Breiving  of  malt  liquors.  C.  F.  Hyde.  E.P.  186,161, 

22.6.21. 
In  nearly  all  malt  samples  the  growth  is  somewhat 
uneven  and  there  is  in  consequence  a  proportion  of 
unmodified  or  poorly  modified  corns.  These  "  ricey- 
ended  "  corns  in  the  usual  mashing  operation  yield 
little  or  no  extract  and  are  thus  waste.  A  modified 
process  consists  in  separating  the  unmodified  grits 
from  the  remainder  of  the  grist  by  mechanical 
means,  and  treating  these  separately  by  suitable 
methods  to  render  this  unaltered  starch  soluble,  or, 
by  a  further  crushing,  to  expose  a  greater  surface  to 
the  action  of  the  malt  enzymes.  The  whole  or 
nearly  the  whole  of  the  available  extract  is  thus 
obtained.  In  one  modification  the  solution  obtained 
by  converting  the  grits  is  diluted  and  used  as  mash- 
ing liquor.  [Reference  is  directed,  in  pursuance  of 
Sect.  7,  Sub-sect.  4,  of  the  Patents  and  Designs 
Acts,  1907  and  1919,  to  E.P.  13,838  of  1906;  J., 
1907,  162.]— W.  H.  G. 


Beverage-making  material  and  process  of  producing 
the  same.  G.  K.  Mayer,  W.  C.  Andrews,  and 
A.  V.  Colby.  U.S. P.  1,391,557,  20.9.21.  Appl., 
14.7.20. 

Malt,  corn  (maize)  or  other  cereal  is  moistened  and 
heated  to  120°  F.  (49°  C.)  in  a  steam-heated 
cylinder,  then  stored  for  J  hr.,  and  treated  with  live 
steam  for  1—5  mins.  in  a  cylinder,  which  it  leaves 
at  a  temperature  of  200°  F.  (93°  C).  The  material 
is  then  cooled,  crushed  between  flaking  rolls,  passed 
through  a  jacketed  heater  wherein  it  is  heated  to 
140°  F.  (60°  C),  cooled,  and  then  passed  through 
several  dryers  of  progressively  rising  temperature, 
the  final  temperature  being  190°  F.  (88°  C).  By 
suitably  regulating  the  time  and  temperature  it  is 
possible  to  obtain  products  giving  beverages  of  any 
desired  low  alcohol  content  (down  to  zero)  on 
subsequent  brewing  by  the  usual  lager  beer  process. 

Sugar  etc.  from  wood.     E.P.  160,776.     See  XVII. 

Glucose  and  dextrin  from  wood.  E.P.  186,139. 
See  XVII. 


Food  product  from  yeast. 
XIXa. 


U.S. P.  1,391,561-2.    See 


Yeast  food.    U.S. P.  1,431,448.    See  XIXa. 
Yeast-tannin  compounds.    G.P.  357,140.    See  XX. 


XIXa.- FOODS. 

Meats;  Pickling  — —  in  solutions  containing 
potassium  nitrate  and  sodium  nitrite.  L.  Pollak. 
Z.  angew.  Chem.,  1922,  35,  392.  (Cf.  J.,  1922, 
606  a.) 

A  itEriA*  to  Auerbach  and  Reiss  (loc.  cit.) ;  the  differ- 
ences between  the  results  found  by  these  observers 
and  those  obtained  by  the  author  appear  to  be  due 
to  differences  in  the  pickling  operations. — W.  P.  S. 

Butter;   Acetic   index  [improved   Valenta  test]  in 

detecting    adulteration    of    ■ .      G.    Fascetti. 

Giorn.  Chim.  Ind.  Appl.,  1922,  4,  352—355. 

Butter,  margarine,  and  coconut  butter  are  readily 
differentiated  by  means  of  the  acetic  index,  deter- 
mined as  follows.  Through  the  stopper  of  a  stout 
test-tube  18  cm.  long  and  18  cm.  bore,  a  thermo- 
meter, 8  mm.  in  diameter,  reaches  to  0'5  cm.  from 
the  bottom  of  the  tube.  The  test-tube  is  fitted,  by 
means  of  a  rubber  ring,  in  a  second  tube  of  the  same 
length  and  3  cm.  in  diameter,  this  being  filled  to 
the  extent  of  one-half  either  with  water  or,  for 
temperatures  above  100°  C,  with  glycerin.  A  large 
beaker  standing  on  an  asbestos  gauze  and  half  filled 
with  water  or  glycerin,  serves  as  the  heating  bath. 
The  butter  or  fat  is  melted  in  a  small  beaker  and 
filtered  through  a  dry  filter,  the  oily  layer  being 
then  accurately  decanted  from  the  lower  milky 
layer.  Exactly  1  c.c.  of  the  fat  is  then  introduced 
from  a  slightly  heated  pipette  on  to  the  bottom  of 
the  small  test-tube,  this  being  followed  by  exactly 
4  c.c.  of  pure  acetic  acid  (as  sold  for  molecular 
weight  estimations)  which  has  been  diluted  to  the 
specific  gravity  1'062,  corresponding  with  98'5%  of 
acetic  acid.  The  thermometer  is  fixed  in  position 
and  the  tube  fitted  to  the  larger  one,  the  whole 
being  swung  gently  to  and  fro  in  the  heated  bath 
until  the  turbid  mixture  becomes  clear.  The  tubes 
are  then  withdrawn  from  the  bath  and  the  agitation 
continued  until  the  solution  turns  cloudy,  the 
temperature  (c°  C.)  being  then  read.  If  the  butter 
is  not  quite  fresh  or  exhibits  a  rancid  taste,  2  g. 
of  the  fat,  separated  as  above,  is  dissolved  in  a 
mixture  of  ether  and  alcohol  and  the  solution 
titrated  with  JV/20  aqueous  alcoholic  sodium  hydr- 
oxide solution  in  presence  of  phenolphthalein.  The 
number  of  c.c.   of  the   alkali   solution   required  is 


Vol.  XLI.,  No.  22.) 


Cl.  XIXb— WATER    PURIFICATION;    SANITATION. 


913a 


added  to  the  temperature  t  to  obtain  the  "  acetic 
index  "  of  the  fat.  For  fresh  butter  this  was  found 
to  have  the  value  64 — 68,  for  rancid  butter  63-4 — 65, 
for  coconut  fat  29 — 34,  and  for  margarine  113'5 — 
118.  Addition  to  fresh  butter  of  5%  of  coconut  fat 
lowers  the  index  by  3 — 4,  whilst  the  same  proportion 
of  margarine  raises  it  by  4 — 5.  In  the  rare  cases  in 
which  butter  is  adulterated  with  both  coconut  fat 
and  margarine,  the  test  loses  its  value. — T.  H.  P. 

Manjarine;  Water-content  of  .     A.  Gronover 

and  F.  Bolm.    Chem.-Zeit.,  1922,  46,  933—934. 

Tests  with  samples  taken  out  of  a  margarine 
mixing  machine  and  from  packages  containing  from 
30  to  130  lb.  showed  that  the  margarine  was  in  all 
cases  perfectly  homogeneous  as  regards  water 
content  throughout  the  mass.  It  is  therefore 
considered  reasonable  to  expect  manufacturers 
to  guarantee  each  package  of  margarine  to 
contain  less  water  than  the  percentage  allowed 
by  law.  In  the  case  of  pound  packets  the  outer 
layers  lose  some  water  by  evaporation,  but  in  the 
cases  examined  the  outer  layers  did  not  show  more 
than  about  1  %  less  water  than  the  centre  of  the 
packets. — H.  O.  It. 

Vitamin  A;  Synthesis  of  by  a  marine  diatom 

(Nitzschia  closterium,  W.  8m.)  growing  in  pure 
culture.  H.  L.  Jameson,  J.  C.  Drummond,  and 
K.  H.  Coward.     Biochem.  J.,  1922,  16,  482—485. 

The  marine  diatom,  Nitzschia  closterium,  is  able  to 
synthesise  large  amounts  of  vitamin  A  when  grown 
iu  Miquel's  solution  or  in  sterilised  sea  water. 

— E.  S. 

Vitamin  A;  Origin  of  the in  fish  oils  and  fish 

liver  oils.  J.  C.  Drummond,  S.  S.  Zilva,  and 
K.  H.  Coward.     Biochem.  J.,  1922,  16,  518—522. 

The  vitamin  A  contained  in  the  liver  oils  from  the 
cod  and  other  fishes  is  probably  derived  through 
the  smaller  fishes  and  the  plankton  from  marine 
algae,  which  have  been  shown  to  be  capable  of 
synthesising  this  vitamin  (<•/.  supra). — E.  S. 

Lemon-juice;    Growth-promoting   factor   [vitamin] 

of .      B.  Leichtentritt  and  M.  Zielaskowski. 

Biochem.  Zeits.,  1922,  131,  499—512. 

The  growth-promoting  factor  of  lemon-juice  has 
been  submitted  to  a  variety  of  conditions.  Lemon- 
juice  heated  to  100°  C,  either  in  aoid  or  alkaline 
solution,  is  practically  unaltered  in  its  growth- 
promoting  factor  for  bacteria.  Even  hydrolysis 
with  2 — 3%  hydrochloric  acid  is  without  influence, 
although  sodium  hydroxide  is  inimical.  Exposure 
to  ultraviolet  light  or  Rontgen  rays  is  without 
action  whatever  the  reaction  of  the  media,  and 
aeration  iu  boiling  solution  is  also  without  action. 
Adsorbents  weaken  the  activity,  and  the  bacterial 
growth-promoting  principle  is  dialysable,  independ- 
ently of  the  reaction  of  the  medium. — H.  K. 

Lemon-juice ;  Groivth-promoting  factor  of .    B. 

Leichtentritt  and  M.  Zielaskowski.  Biochem. 
Zeits.,  1922,  121,  513—524. 

There  is  little  parallelism  between  the  effect  of 
external  conditions  and  reagents  on  the  bacterial 
growth-promoting  factor  and  the  anti-scorbutic 
factor  C  of  lemon-juice  as  tested  on  guinea  pigs 
and  children.  Lemon-juice  contains  an  anti- 
scorbutic factor  C  and  a  factor  which  promotes 
growth  of  bacteria.  This  latter  factor  is  termed 
vitamin  D.  Further  experiments  are  necessary  to 
determine  whether  D  is  not  identical  with  vitamin 
B  —  H.  K. 

Pepper  substances.     Ott  and  others.  See  XX. 


Patents. 
Food  product  obtained  from  brewers'  yeast.    J.  C. 
Miller,    Assr.    to   The   Evaporating   and   Drying 
Machinery    Co.      U.S. P.    1,391,561—2,    20.9.21. 
Appl.,  19.3.18. 

Waste  brewers'  yeast  is  supplied  to  a  rapidly 
rotating  cylinder  from  the  end  of  which  it  is  dis- 
charged by  centrifugal  force  as  an  annulus  of  fine 
spray,  in  which  form  it  is  rapidly  dried  by  means 
of  a  current  of  heated  air  blown  across  it.  (a)  If  the 
air  be  heated  to  155°  F.  (68°  C.)  or  above,  the 
peptones  present  in  the  protoplasm  of  the  yeast  cells 
are  liberated  and  the  product,  in  the  form  of  a  dry 
flour,  is  suitable  as  a  partial  or  complete  substitute 
for  wheat  flour  for  human  consumption,  (b)  If  the 
temperature  of  the  air  be  kept  at  110° — 120°  F. 
(43° — 49°  C),  the  yeast  cells  are  not  disintegrated, 
and  the  product  is  practically  free  from  peptones, 
contains  the  active  ferments  of  the  yeast  present  as 
in  the  original  material,  and  forms  a  valuable  force 
feed  for  animals. 

Teast  food;  Production  of .     A.  H.  Gallagher, 

Assr.  to  National  Retarder  Co.  U.S. P.  1,431,448 
10.10.22.    Appl.,  15.5.20. 

The  protein  of  chrome-tanned  leather  is  hydrolysed 
by  treatment  with  lime  at  a  high  temperature.  The 
product  contains  amino-acids  and  proteoses,  and  is 
suitable  for  use  as  a  yeast  nutrient  in  growing 
bakers'  yeast,  yielding  a  yeast  of  good  colour,  odour, 
and  keeping  qualities,  and  which  has  good  baking 
strength  in  the  manufacture  of  leavened  bread. 

— L.  A.  C. 

Bread ;  Manufacture  of  leavened .    C.  Hoffman, 

H.  D.  Grigsby,  and  N.  M.  Cregor,  Assrs.  to  Ward 
Baking  Co.  U.S. P.  1,431,525,  10.10.22.  Appl., 
1.10.21. 

A  dread  loaf  equal  in  colour  and  texture  to  that 
made  from  highly  milled  bolted  flour  contains  added 
water-soluble  B  vitamin  and  soluble  nitrogen  com- 
pounds extracted  from  vegetable  material,  in 
addition  to  the  usual  constituents. — L.  A.  C. 

Yeast;     Composition     of    matter     for     increasing 

growth  of  when  mixed  with  dough.     W.  A. 

and  E.  W.  Geere.  U.S. P.  1,431,156,  10.10.22. 
Appl.,  23.2.21. 

See  E.P.  143,938  of  1917;  J.,  1920,  556  a 

Fish  and  the  like;  Cooling  and  freezing  of  . 

J.  J.  Pique.  U.S. P.  1,431,328,  10.10.22.  Appl., 
21.5.20. 

See  E.P.  154,250  of  1919;  J.,  1921,  94  a. 


XIXb.-WATER  PURIFICATION ;  SANITATION. 

Water     supplies;     Chlorine     treatment     of    . 

Vollmar.     Gas  und  Wasserfach,   1922,  65,  649 — 
654. 

For  the  disinfection  of  town  water  supplies  the 
author  recommends  the  preparation  of  a  concen- 
trated chlorine  solution  which  is  allowed  to  flow 
into  the  water  main  at  a  point  just  before  the  pump 
intake.  The  amount  of  chlorine  which  flows  into 
the  mixing  chamber  is  determined  by  means  of  a 
differential  manometer,  and  can  be  accurately 
controlled  in  conformity  with  the  character  of  the 
water  under  treatment.  The  amount  required  per 
litre  of  Elbe  water  at  Dresden  varied  from  about 
016  to  0'34  mg.,  with  which  quantity  the  bacterial 
content  of  the  water  was  reduced  from  several 
thousand  to  an  average  of  4 — 20  per  c.c,  consisting 
mostly  of  harmless  spore-forming  bacteria.  The 
quantity  of  chlorine  was  daily  so  adjusted  that 
directly  behind  the  pumps  chlorine  could  not  be 
detected  chemically  in  the  water.     At  this  point  it 


914a 


OL.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  &o. 


[Nov.  30, 1922. 


was  usually  perceptible  to  the  taste,  but  at  the 
outflow  of  the  reservoir  the  water  had  no  undesir- 
able taste  whatever.  The  addition  of  a  sufficiently 
effective  quantity  of  chlorine  was  assured  by 
bacteriological  control. — G.  F.  M. 


X-rays;  Action  of  secondary  radiation  of  on 

microbes.    J.  Cluzet,  A.  Rochaix,  and  T.  Kofman. 
Comptes  rend.,  1922,  175,  546—548. 

Numerous  experiments  showed  that  neither  hard 
nor  soft  X-rays  destroy  bacteria  or  even  retard  their 
growth,  but  when  cultures  are  exposed  to  the 
secondary  radiation  development  ceases.  The  latter 
result  was  obtained  by  using  radiators  of  heavy 
metals  of  low  atomic  weight,  but  very  penetrating 
primary  radiation  apparently  excites  the  radiating 
material  unsuitably,  so  that  bacteria  remain 
unaffected.— H.  J.  E. 

Patent. 

Soap  or  compound ;  Antiseptic  and  insecticidal . 

R.  Macpherson  and  W.  E.  Heys.     E.P.  186,078, 
15.3.  and  30.9.21. 

The  compound  comprises  a  mixture  of  sodium  or 
potassium  soap,  an  alkali  benzoate,  and  tar.  Birch 
tar  is  preferred,  but  any  other  vegetable  or  mineral 
tar  may  be  used.  The  ingredients  may  be 
thoroughly  incorporated  by  mixing,  or  the  com- 
pound produced  by  saponifying  a  mixture  of  fatty 
acids,  benzoic  acid,  and  tar. — H.  C.  R. 


XX.— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;    ESSENTIAL  OILS. 

Paniculatine,  the  alkaloid  of  Aconitum  pani- 
culatum,  Lam.  G.  E.  Brunner.  Schweiz.  Apoth.- 
Zeit.,  1922,  60,  357—358.  Chem.  Zentr.,  1922, 
93,  III.,  1007. 

The  alkaloid  isolated  from  the  tubers  of  the  panicu- 
lated  aconite  is  not  identical  with  aconitine.  It  has 
the  molecular  formula,  C2„H350,N,  and  crystallises 
from  methyl  alcohol  in  small  rhombic  prisms,  m.p. 
263°  C— G.  P.  M. 

Digitalis  leaves;  Extraction  of  the  active  principles 

from    .      E.     Mameli.      Giorn.    Chim.    Ind. 

Appl.,  1922,  4,  355—358. 

Prolonged  extraction  of  dried  digitalis  leaves  with 
absolute  alcohol  in  a  Soxhlet  apparatus,  followed  by 
concentration  and  purification  of  the  united 
extracts  and  separation  of  the  different  active 
principles  by  means  of  various  solvents,  yields  a 
total  quantity  of  these  principles  greater  than  is 
obtained  when  the  water  and  alcohol  are  used 
under  other  conditions.  Details  of  the  method  of 
extraction  and  separation  are  given. — T.  H.  P. 

Ergot.  A.  Stoll.  Schweiz.  Apoth.-Zeit.,  1922,  60, 
341—346,  358—364,  374—383.  Chem.  Zentr., 
1922,  93,  III.,  1007. 

The  improbable  assumption  that  simple  amines  of 
the  tyramine  type  are  the  active  principles  of  ergot 
is  refuted  by  the  fact  that  even  by  the  most  careful 
manipulation  only  the  merest  traces  of  such  sub- 
stances can  be  isolated  from  the  fungus.  A  hitherto 
unknown  amine  of  high  molecular  weight  having  the 
characteristic  therapeutic  action  of  ergot  was  how- 
ever isolated  from  the  drug.  After  the  addition  of 
acid  reagents,  such  as  aluminium  sulphate,  to  the 
powdered  ergot,  about  350 — 400  g.  of  ergot  oil  free 
from  alkaloid  was  obtained  from  1  kg.  of  material 
by  exhaustive  extraction  with  ether  and  benzene. 
From  the  acidified  cell  material  a  crystalline  alkal- 
oid, ergotamine,  C„H,s05N5,  crystallising  from 
acetone  with  2  mols.  (CH,)200  and  2  mols.  of  water, 
was  obtained  in  a  yield  of  O'l — 2"0  g.   per  kg.  of 


ergot.  The  crystals  effloresce  when  exposed  to  the 
air  and  soon  decomposition  sets  in  accompanied  by 
discoloration.  On  standing,  or  more  rapidly  on  boil- 
ing a  methyl  alcoholic  solution,  ergotamine  is  con- 
verted into  an  isomeride  of  feebly  basic  properties, 
termed  ergotaminine,  which  crystallises  in  leaflets 
from  the  solution.  Both  ergotamine  and  ergot- 
aminine give  in  acetic  acid  solution  in  presence  of 
ethyl  acetate  a  blue  coloration  with  sulphuric  acid. 
Therapeutically  ergotamine  exhibits  the  typical 
action  of  ergot  up  to  dilutions  of  1  in  10  million. 
Ergotamine  is  a  very  unstable  mon-acid  base, 
having  [a]„2°  =  - 155°  in  0-6°',  chloroform  solution. 
Ergotaminine  under  similar  conditions  has  [a]D2°  = 
+381°.— G.  F.  M. 

Artemisia  Afra,  Jaeq.;  Constituents  of  the  flower- 
ing tops  of  .     J.  A.  Goodson.     Biochem.  J., 

1922,  16,  489—493. 

The  following  substances  have  been  isolated : 
camphor,  a  wax-like  ester,  probably  ceryl  cerotate, 
tricontane,  scopoletin,  and  quebrachitol.  The 
camphor  had  [a]D2S  = +97°  and  was  evidently  a 
mixture  of  the  two  enantiomorphs.  No  compounds 
were  found  which  could  be  regarded  as  related  to 
santonin. — E.  S. 

Pepper  substances ;  Natural  and  artificial II. 

Chavicine  from  pepper-resin,  the  primarily  active 
constituent  of  black  pepper.  E.  Ott,  F.  Eichler, 
O.  Lademann,  and  H.  Heimann.  Ber.,  1922,  55, 
2653—2663. 

The  isolation  of  pepper-resin  from  Piper  nigrum, 
Singapore,  is  described  in  detail,  the  product  ulti- 
mately consisting  of  chavicine  containing  appreci- 
able quantities  of  wax.  The  former  is  shown  to  be 
a  piperidide  of  chavicinic  acid,  I., 


R.C.H 

II 
H.C.C.H 

H.C.C02H 
I. 


R.C.H 

II 
H.C.C.H 

C02H.C.H 
II. 


it  is  very  resistant  to  hydrolysis  by  alcoholic  sodium 
hydroxide  solution  and  its  acid  constituent  becomes 
isomerised  during  the  process  to  isochavicinic  acid, 
II.,  a  yellow  amorphous  solid,  m.p.  200°— 202°  C, 
which  resembles  piperic  acid  very  closely.  It  is  cata- 
lytically  hydrogenated  in  alcoholic  solution  in  the 
presence  of  palladinised  animal  charcoal  to  tetra- 
hydropiperic  acid.     (Cf.  J.C.S.,  Nov.)— H.  W. 


Betulin.     H.  Schulze  and  K.  Pieroh. 
55,  2332—2346. 


Ber.,  1922, 


Betulin,  isolated  from  birch  bark,  crystallises  from 
alcohol  with  1  or  05  molecule  of  solvent  which  has 
been  overlooked  by  previous  investigators.  It  has 
the  composition,  C32Hs.02  or  C33H5<02,  as  estab- 
lished by  the  analyses  of  the  compound  itself,  its 
hydrogen  phthalate  and  succinate,  and  its  di- 
acetate.  It  is  converted  by  boiling  formic  acid 
(90%)  into  an  isomeric  substance,  allobetulin,  which 
contains  one  hydroxy  group,  the  other  oxygen  atom 
being  contained  in  an  ether-like  group.  Allobetulin 
and  its  derivatives  have  higher  melting  points  and 
are  less  soluble  than  betulin  and  its  compounds  and 
are  more  stable  towards  chemical  reagents. 
Apparently  betulin  and  allobetulin  belong  to  the 
dextrorotatory  phytosterols.     (Cf.  J.C.S.,  Nov.) 

— H.  W. 

Aromatic  arsenious  acids;  Synthesis  of  .     H. 

Bart.  Annalen,  1922,  429,  55—103. 
Details  are  given  for  the  preparation  of  the  follow- 
ing arsenious  acids  by  the  interaction  of  a  diazon- 
ium  solution  with  acid  or  alkaline  arsenite 
solution: — phenylarsenious  acid,  o-,  »»-,  and  p- 
tolylarsenious  acids,  p-ethoxyphenylarsemous  acid, 


Vol.  XLL,  No.  22.] 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  Ac. 


915  a 


p-acetylaminophenylarsenious  acid,  o-,  to-,  and 
p-cMorophenylarsenious  acids,  o-,  m-,  and  p- 
carboxyphenylarsenious  acids,  p-phenylenediarsen- 
ious  acid,  o-  and  p-hydroxyphenylarsenious  acids, 
o-,  m-,  and  p-nitrophenylarsenious  acids,  op-dinitro- 
phenylarsenious  acid,  5-nitro-2-hydroxyphenylar- 
senious  acid,  o-nitro  -  p  -  hydroxyphenylarseiiious 
acid,  and  m-nitro-p-hydroxyphenylarsenious  acid. 
Diplienylhypoarsenious  acid  is  obtained  from 
benzenediazonium  chloride  and  phenylarsine  oxide, 
p-nitrophenylhypoarsenious  acid  by  reduction  of 
p-nitrophenylarsenious  acid,  and  di-p-nitrophenyl- 
hypoarsenious  acid  by  treatment  of  the  preceding 
compound  with  diazotised  p-nitroaniline. — C.  K.  I. 

Aromatic  arsenious  acids;  Synthesis  of  — —  by  the 
interaction  of  isodiazo-compounds  with  the  arsen- 
ite  ion.     H.  Bart.     Annalen,  1922,  429,  103—113. 

The  same  end  product  is  obtained  if  in  the  general 
reaction  referred  to  in  the  preceding  abstract  the 
diazonium  solution  is  replaced  by  alkaline  isodiazo- 
tates.  Details  are  given  for  the  preparation  by  this 
method  of  the  following  substances :  o-,  m-,  and 
p-nitrophenylarsenious  acids,  phenylarsenious  acid, 
o-carboxyphenylarsenious  acid,  and  p-carboxy- 
phenylarsenious  acid. — C.  K.  I. 

Salvarsan   base   {mml-diamino-pp'-dihydroxyarseno- 

benzene);  Two  new  syntheses  of  — .     H.  Bart. 

Annalen,  1922,  429,  li3— 122. 

The  first  synthesis  consists  in  converting  3-amino- 
6-hydroxyazobenzene  into  4-hydroxy-3-phenylazo- 
phenylarsenious  acid,  which  on  reduction  yields  the 
required  substance.  The  second  synthesis  starts 
with  p-nitro-o-aminophenol,  which  is  condensed 
with  chlorocarbonic  ester,  and  the  urethane  so 
obtained  reduced  to  give  p-amino-o-carbethoxy- 
aminophenol.  This  is  readily  converted  into  m- 
carbethoxyamino-p-hydroxy  phenylarsenious  acid, 
which  on  reduction  gives  the  urethane  of  the 
required  base. — C.  K.  I. 

Gallaldehyde  and  its  derivatives.  K.  W.  Rosen- 
mund  and  E.  Pfannkuch.  Ber.,  1922,  55,  2357— 
2372. 

Reduction  of  gallaldehyde  by  hydrogen  in  the 
presence  of  spongy  platinum  or  palladium  gives  an 
amorphous  product  of  high  molecular  weight 
instead  of  gallyl  alcohol.  Gallaldoxime  is  reduced 
mainly  to  digallylamine  NH[CHa.C0H2(OH)3]3. 
Triacetylgallaldoxime  acetate,  on  the  other  hand, 
gives  triacetylgallylamine  from  which  gallylamine 
is  obtained  by  hydrolysis.  Unexpectedly,  the  bases 
and  their  acetyl  derivatives  excite  a  powerful  con- 
tractile action  on  the  isolated  uterus  of  the  guinea- 
pig.     (Cf.  J.C.S.,  Nov.)— H.  W. 

Dulcin;     Derivatives     of     .       P.     Herrmann. 

Annalen,  1922,  429,  163—174. 
The   preparation   of   a   number   of   derivatives   and 
analogues   of   dulcin   is  described.      None   of   them 
however  possess  sweetening  properties.    (Of.  J.C.S., 
Dee.)— C.  K.  I. 

Diethylrhodanine  C.  S.  Leonard.  Med.  K.  Veten- 
skapsakad.    Nobelinst.,  1922,  4,  [14],  1—13. 

Diethylrhodanine  was  prepared  with  the  object  of 
determining  the  effect  of  ring  sulphur  on  a 
substance  which  might  be  expected  to  have  nar- 
cotic properties.  It  was  obtained  by  condensing 
a-bromodiethylacetic  acid,  (C„H5)2CBr.CO!H,  with 
ammonium  dithiocarbamate  in  alcohol.  Diethyl- 
rhodanine (5-diethyl-2-thioketo-4-thiazolidone) 

OC-C^H^ 

HN— CS 
crystallises    in    needles,    m.p.     1075°    C      When 


injected  into  a  rabbit  intramuscularly  dissolved  in 
oil  or  intravenously  dissolved  in  sodium  bicarbonate 
solution  it  had  a  narcotic  effect  slightly  greater 
than  that  of  veronal,  with  a  quicker  recovery  ;  given 
by  the  mouth  it  was  inactive  but  when  injected 
intravenously  as  an  emulsion  with  gum  arabic  it 
immediately  caused  death  from  respiratory  failure. 
On  account  of  its  low  solubility  in  water  it  can  have 
no  practical  therapeutic  value. — E.  H.  R. 

Ketones;    Decomposition    of    aliphatic    .      A 

Mailhe.  Bull.  Soc.  Chim.,  1922,  31,  863—867. 
The  decomposition  of  mixed  ketones  in  contact  with 
copper-aluminium  at  600°  C.  (cf.  J.,  1922,  727  a) 
was  studied,  the  substances  dealt  with  being  methyl 
isopropyl  ketone,  methyl  isobutyl  ketone,  methyl 
butyl  ketone,  methyl  isoamyl  ketone,  isobutyrone, 
isopropyl  isobutyl  ketone,  and  cenanthone, 

C„H13.CO.C6H13. 
In  each  case  the  CO  group  is  liberated  almost 
entirely  as  carbon  monoxide  and  the  residues  trans- 
formed into  ethylenic  or  saturated  hydrocarbons  by 
loss  or  gain  of  hydrogen.  In  the  case  of  butyl,  iso- 
butyl and  heavier  residues  further  decomposition 
occurs,  wholly  or  in  part,  into  simpler  groups. 
Analyses  of  the  products  are  given  in  each  oase  and 
show  that  the  substances  obtained  on  decomposition 
are  mainly  gaseous;  small  changes  in  temperature 
are  sufficient  to  affect  considerably  the  nature  of  the 
products. — H.  J.  E. 

Bornylene;  Preparation  of .    H.  Meerwein  and 

J.  Joussen.    Ber.,  1922,  55,  2529—2533. 

Nearly  pure  bornylene,  solidifying  point  108° — 
107°  C.  instead  of  113°  C.  as  recorded  in  the  litera- 
ture for  the  homogeneous  substance,  is  prepared  by 
the  action  of  a  10%  solution  of  potassium  amyl  oxide 
in  amyl  alcohol  on  bornyl  chloride  at  230°  C.  or  on 
bornyl  bromide  at  about  190°  C.     (C/.  J. OS.,  Nov.) 

— H.  W. 

Oil  of  maritime  pine  [Bordeaux  turpentine'};  Con- 
stituents of  .      G.  Dupont.      Chim.  et  Ind., 

1922,  8,  549—554. 
By  slow  fractionation  of  Bordeaux  turpentine  in  a 
vacuum  through  a  specially  constructed  column, 
2  m.  high,  a  very  considerable  separation  into  o-  and 
/3-pinene  was  effected.  The  column  was  provided 
with  numerous  cups  of  nickel  gauze,  each  carrying 
a  glass  overflow  tube  of  sufficiently  large  diameter 
to  allow  a  plentiful  reflux.  By  one  fractionation  a 
separation  of  50%  of  a-pinene  of  90%  purity  was 
achieved,  and  the  same  amount  of  almost  pure 
a-pinene  having  a=-39'5°  compared  with  -40'1° 
for  the  pure  substance  was  isolated  by  a  second  dis- 
tillation of  the  fractions  first  obtained  by  operating 
in  such  a  way  that  a  new  fraction  was  added  as  soon 
as  the  calculated  rotation  of  the  residue  was  equal 
to  that  of  the  fraction  about  to  be  added.  Although 
no  break  whatever  was  observed  in  the  boiling  point 
curve,  a  notable  inflexion  was  obtained  in  the  curve 
for  the  rotation  when  about  55%  had  passed  over, 
and  a  fairly  constant  value  at  a=-21°  was  given 
between  the  approximate  limits  of  73  to  80%,  the 
distillate  then  consisting  mainly  of  /3-pinene  (no- 
pinene).  From  the  values  obtained  it  was  calcu- 
lated that  the  original  entire  fresh  turpentine  con- 
tained 63%  of  a-pinene  and  26'5%  of  /3-pinene.  The 
remaining  10%  was  represented  by  the  last  frac- 
tions boiling  above  60°  C.  at  15  mm.  pressure.  The 
presence  of  these  higher  fractions  cannot  be 
attributed  entirely  to  oxidation  of  the  turpentine, 
and  they  must  be  regarded  as  normal  constituents 
of  the  oil.  By  fractionation  three  main  fractions 
were  isolated.  The  fraction  boiling  at  77°— 80°  C. 
at  15  mm.  was  strcngly  dextrorotatory,  and 
dipentene,  sobrerol,  and  an  at  present  unidenti- 
fied strongly  dextrorotatory  hydrocarbon  were 
detected  in  it.     The  fractions  boiling  at  about  100° 


916a 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES.  Ac.  [Nov.  30, 1922. 


— 120°  C.  at  15  mm.  appeared  to  consist  of  oxidation 
products,  among  which  were  a  ketone,  pinol,  and 
traces  of  an  alcohol  and  ester.  The  highest  fraction 
consisted  of  a  new  dextrorotatory  sesquiterpene, 
giving  a  crystalline  nitrosite,  m.p.  109° — 110°  C. 

— G.  F.  M. 

Turpentine;  Bole  of  the  various  constituents  of 

in   industrial  syntheses.     G.   Dupont.     Chim.  et 
Ind.,  1922,  8,  555—558. 

In  the  syntheses  of  terpin,  terpineol,  and  horneol 
from  pinene  the  presence  of  nopinene  (/3-pinene)  is 
actually  an  advantage,  as  it  gives  exactly  the  same 
products  in  these  cases  as  does  o-pinene,  and  in 
general  in  better  yield  and  with  a  greater  reaction 
velocity.  The  presence  of  the  last  runnings  in  the 
pinene  used,  is,  on  the  other  hand,  very  disadvan- 
tageous, and  all  fractions  boiling  higher  than  no- 
pinene should  therefore  be  eliminated.  The  presence 
of  fenchol  in  crude  synthetic  terpineol  and  borneol 
is  probably  to  be  ascribed  to  the  higher  boiling  con- 
stituents of  the  turpentine  used  in  the  synthesis, 
as  it  is  nearly  or  entirely  absent  when  rectified 
pinene  is  used.  The  formation  of  fenchol  is 
certainly  not  due  to  the  presence  of  nopinene  in  the 
starting  material,  as  was  asserted  bv  Barbier  and 
Grignard  (J.,  1909,  672).  The  identity  of  the  pro- 
ducts obtained  from  a-  and  /3-pinene  depends,  how- 
ever, on  one  of  the  two  atoms  or  groups  which  are 
added  on  to  the  pinene  molecule  being  a  hydrogen 
atom ;  in  all  other  cases  the  products  would  be 
different,  and  a  separation  of  the  two  isomerides 
would  be  necessary  in  order  to  obtain  satisfactory 
yields  of  an  individual  product. — G.  F.  M. 

Silver;  Oligodynamic  effect  of  .     R.  Doerr  and 

W.  Berger.     Biochem.  Zeits.,  1922,  131,  351—361. 

The  active  agent  in  all  oligodynamic  effects  is  the 
silver  ion.  Silver  surfaces  lose  their  activity  by 
treatment  with  potassium  cyanide,  and  water 
activated  by  silver  is  inactivated  by  potassium  cyan- 
ide. The  inactivation  is  due  to  conversion  of  the 
active  silver  ion  into  inactive  Ag(CN)2  ions. 
Carbon  dioxide  and  oxygen  are  the  constituents  of 
the  air  which  activate  silver  surfaces,  each  being 
more  potent  in  developing  activity  than  air  itself. 

— H.  K. 
Patents. 

Methane;  Chlorination  of  .     Holzverkohlungs- 

Ind.  A.-G.,  and  K.  Roka.    E.P.  186,270,  22.11.21. 

The  chlorine  used  in  the  chlorination  of  methane 
at  400°— 500°  C.  is  diluted  with  2—5  vols,  of  steam. 
The  degree  of  chlorination  can  be  very  largely  con- 
trolled by  varying  the  proportions  of  the  reacting 
gases  and  of  the  steam,  and  catalysts,  such  as  the 
chlorides  of  copper,  iron,  calcium,  or  magnesium  can 
be  advantageously  employed.  Using  a  quartz  tube 
70  cm.  long  and  40  mm.  diam.,  filled  with  pieces  of 
firebrick,  and  passing  25  1.  of  methane,  38  1.  of 
chlorine,  and  100  g.  of  steam  per  hour  the  chlorine 
is  distributed  in  the  reaction  products  as  follows : 
53%  as  HC1,  8%  as  CH,C1,  13%  as  CH2C12,  20%  as 
CHC1,,  and  5%  as  CCld.  The  same  amount  of  steam 
and  37  1.  of  both  methane  and  chlorine  give  52%  as 
HC1,  12%  as  CH,C1,  21%  as  CH„C12,  14%  as  CHOI,, 
and  1%  as  CC1,.  41  1.  of  methane,  20  1.  of  chlorine, 
and  70  g.  of  steam  give  51%  as  HC1,  26%  as  CH3C1, 
20%  as  CH2C12,  1%  as  CHC13,  and  no  CC1.. 

— G.  F.  M. 

Mucic  acid  and  other  products;  Method  of  convert- 
ing wood  into .     S.  F.  Acree.     E.P.  160,777, 

18.3.21.  Conv.,  25.3.20. 
Mucic  acid  is  produced  by  the  oxidation  of  galact- 
ose, obtained  from  larch  wood  or  other  cellulosic 
material  containing  galactan  by  hvdrolvsis  as  des- 
cribed in  E.P.  160,776  (p.  910  a).  The  oxidation 
is  carried  out  at  50° — 85°  C.  by  means  of  nitric  acid 
containing  nitrogen   oxides.     Suitable   proportions 


are  10%  of  galactose  and  25%  of  nitric  acid 
oxidation  mixture.  The  crude  mucic  acid  is  purified 
by  dissolving  in  ammonia  to  form  the  di-ammonium 
salt,  clarifying  the  solution  with  animal  charcoal, 
and  re-precipitating  with  acid.  The  mother  liquors 
from  the  crude  acid  can  be  used  to  oxidise  further 
quantities  of  galactose  or  to  hydrolyse  more  wood 
to  galactose,  or  may  be  worked  for  other  by- 
products such  as  oxalic,  gluconic,  and  saccharic 
acids.— W.  H.  G. 

Alkali  salts  of  oxidised  protalbinic  acid  and  of 
oxidised  lysalbinic  acid  as  stable  protective 
colloids  for  mercury  compounds.  M.  E.  Woflve- 
kamp.    U.S. P.  1,391,154,  20.9.21.    Appl.,  27.3.20. 

The  action  of  the  alkali  salts  of  protalbinic  and 
lysalbinic  acids  (Paal,  J.,  1909,  996)  as  protective 
colloids  is  considerably  improved  by  oxidising  them 
with  a  mixture  of  alkali  hydroxide  and  mercuric 
oxide.  For  the  oxidised  acids  the  names  protoxal- 
binic  acid  and  lysoxalbinic  acid  (or  oxalbinic  acid 
for  a  mixture  of  both  oxidised  acids)  are  proposed. 
Stable  colloidal  preparations  of  mercuric  oxide, 
sulphide,  and  salicylate  can  be  prepared  with  the  aid 
of  the  alkali  salts  of  the  oxidised  acids;  these 
preparations  can  be  evaporated  to  dryness,  and  the 
residues  on  treatment  with  water  yield  colloidal 
solutions  which  may  be  boiled  without  precipitation 
of  free  mercury. 

Montan  wax:  Chlorination  of .     A.  Deschauer. 

U.S. P.  1,429,932,  26.9.22.     Appl.,  22.5.22. 
Chlorination  is  effected  in  an  aqueous  medium. 

— T.  A.  S. 

Acetic  anhydride ;  Manufacture  of .  H.  Dreyfus. 

U.S.P.  1.430.304,  26.9.22.     Appl.,  24.5.21. 
Acetic  anhydride  is  prepared  by  treating  an  acetate 
with  a  pyrosulphate. — T.  A.  S. 

Arsenobenzene  derivatives;  Stable and  process 

of  making  same.  W.  Kolle  and  A.  Binz,  Assrs. 
to  Farbw.  vorm.  Meister,  Lucius,  und  Briining. 
U.S.P.  1,431,671,  10.10.22.  Appl.,  20.10.21. 
Arsenical  preparations  which  are  stable  in  solution 
are  prepared  by  mixing  water-soluble  arsenobenzene 
compounds  of  the  type,  R.NHR,,  where  R  is  an 
arsenobenzene  residue  and  R,  a  sulphoxylate  or 
oarbamate  residue,  with  other  water-soluble  arseno- 
benzene compounds. — G.  F.  M. 

Acetyl  salicylic    acid;    Process    for    obtaining    the 

calcium  salt  of  .     J.   Altwegg,   Assr.  to  Soc. 

Chim.  des  Usines  du  Rhone.  U.S.P.  1,431,863, 
10.10.22.  Appl.,  11.1.22. 
Calcium  acetylsalicylate  is  prepared  by  neutralising 
acetylsalicylic  acid  with  the  calculated  amount  of 
calcium  hydroxide  in  presence  of  a  solution  of 
sodium  chloride. — G.  F.  M. 

Lecithin;  Becovery  of  from  organs  of  cold- 
blooded animals.  J.  Grossfeld.  G.P.  357,081, 
6.7.18. 
Dried,  finely-powdered  fish  roe  or  the  like  is  treated 
with  organic  solvents  capable  of  extracting  fat  and 
cholesterol,  e.g.,  ether,  and  the  residue  is  treated 
for  about  3  hrs.  with  boiling  methyl  alcohol.  The 
solution  is  evaporated  to  dryness,  yielding  a  brown, 
highly  viscous,  colloidal  product  which  is  soluble  in 
fats  and  oils,  and  in  ethyl  acetate  and  acetone,  and 
which,  either  alone  or  dissolved  in  oils,  readily  forms 
emulsions  with  water.  The  product  absorbs  up  to 
150%  I,  and  is  suitable  for  the  preparation  of 
solutions  of  lecithin  in  cod-liver  oil,  for  injection, 
and  for  use  as  an  ointment  base. — L.  A.  C. 

Yeast  and  tannin;  Production  of  compounds  of  — — . 

Farbenfabr.     vorm.    F.    Bayer    und    Co.      G.P. 

357,140,  4.1.21. 
Pressed  beer-yeast  mixed  with  water  or  liquefied 
with  sodium  chloride  is  digested  with  tannin  or  on 


Vol.XLl.,No.22.]    Cl.  XXI.— PHOTOGRAPHIC  MATERIALS,  &o.     Cl.  XXII.— EXPLOSIVES  Ac,    917  a 


aqueous  tannin  solution  for  several  hours  at  40° — 
50°  C.  After  neutralisation  with  sodium  hydroxide, 
the  product  is  filtered,  and  the  residue  is  washed, 
dried,  ground,  and  heated  to  110°— 125°  C.  for 
several  hours.  The  astringent  properties  of  the 
product  render  it  of  therapeutic  value. — L.  A.  C. 

Material  for  the  serodiagnosis  of  syphilis;  Purifica- 
tion of .    A.  von  Wasserniann.    G.P.  357,244, 

27.4.20. 
Antigens  such  as  alcoholic  or  aqueous  extracts  of 
syphilitic  organs  and  normal  organs,  or  lipoids,  are 
added  to  human  or  animal  blood  serum  which  has 
been  rendered  inactive  by  heating  to  55°  C,  and 
which  shows  a  positive  Was-ermann  reaction. 
After  interaction  between  the  antigens  and  material 
present  in  the  serum,  the  product  is  subjected  to 
ultra-filtration,  the  filtered  liquid  being  practically 
free  from  impurities.  A  normal  solution  for  Was- 
sermann's  reaction  is  prepared  by  adding  the  de- 
sired quantity  of  the  liquid  antigens  to  a  measured 
quantity  of  the  liquid  obtained  as  above,  the 
Smallest  quantity  which  gives  a  complete  Wasser- 
gnann's  reaction  being  a  normal  solution.  A  quan- 
titative estimation  of  antigens,  i.e.,  a  quantitative 
control  of  the  Wassermann  reaction,  is  thus  pos- 
sible.— L.  A.  C. 

4-Ainino-l-phcn  yl-2.3-dialkyl-5-pyrazolone ;         Pre- 
paration of  N-aminoacetyl  compounds  of  . 

Farbw.  vorm.  Meister,  Lucius,  und  Briining. 
G.P.  357,752,  1.3.18. 
These  compounds  are  obtained  by  the  action  of 
aqueous  ammonia  on  chloroacetyI-4-amino-2.3- 
dialkyl-l-phenyl-pyrazolones,  or  by  the  action  of 
acids  on  the  addition  compounds  of  these  sub- 
stances with  hexamethylenetetramine.  For  example 
4-chloroacety  la  mi  no-2. 3-d  imethyl-1-pheny  1-5-  pyraz- 
olone, m.p.  187°  C,  obtained  by  the  action  of  chloro- 
acetyl  chloride  on  4-amino-2.3-dimethyl-l-pheiiyl-5- 
pyrazolone  in  aqueous  solution  in  presence  of  an 
acid-fixing  substance,  is  mixed  in  chloroform  solu- 
tion with  hexamethylenetetramine,  and  the  addi- 
tion compound  which  is  precipitated  after  standing 
for  several  days  is  dissolved  in  alcohol  and  the 
solution  mixed  with  concentrated  hydrochloric 
acid.  4-Aminoacetylamino-2.3-dimethyl-l-phenyl-5- 
pyrazolone 


C,H6.N 


/ 


CO- 


-C.NH.CO.CHj.NH, 


\n(Ch3).c(Ch3) 


is  thereby  obtained  as  its  dihydrochloride,  an  acid 
reacting  substance  which  Is  converted  into  the 
neutral  monohydroehloride  by  treatment  with 
sodium  ethoxide.  This  substance  decomposes 
without  melting  at  260°— 265°  C.  The  correspond- 
ing 2-ethyl-3-methyl  compound  may  be  similarly 
obtained,  or  by  the  action  of  ammonia  on  4-chloio- 
acetylamino-2-ethyI-3-methyl-l-phenyl-5-pyrazolone. 
m.p.  186°  C.  The  free  bases  are  move  soluble  in 
water  than  pyiamidone  (dimethylaminoantipyrine). 
They  are  useful  therapeutically  as  febrifuges. 

— G.  F.  M. 

Mercury  compounds;  Process  of  extending  the  cata- 

hjtic  activity  of [in  oxidation  of  acetylene], 

N.  Grunstein  and  P.  Berge.  U.S. P.  1,431,301, 
10.10.22.     Appl.,  21.5.19. 

See  E.P.  143,891  of  1920;  J.,  1921,  368  a. 


XXI.    PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Won  as  a  photochemical  catalyst.  I.  Decomposition 
of  potassium  ferroci/anide  in  daylight.  O.  Baudisch 
and  L.  W.  Bass.     Ber.,  1922,  55,  2698—2706. 

J  ["he  photochemical  decomposition  of  alkaline  6olu- 
.ious  of  potassium  ferrocyanide  on  exposure  to  light 


may  be  considered  to  occur  in  two  phases.  The 
first  is  the  change  in  colour  from  pale  yellow  to 
lemon  yellow,  which  is  reversed  in  the  dark  and 
which  occurs  in  a  vacuum;  it  is  accompanied  by 
development  (reversible)  of  alkalinity  in  the  solution 
in  which  the  presence  of  active  oxygen  cannot  be 
detected.  The  change,  if  protracted,  leads  to  the 
separation  of  small  quantities  of  colourless  ferrous 
hydroxide.  The  change  is  represented  by  the 
scheme :  — 

Tfg    NC    1K     +H,0+light     ["_      NC.HlK.OH 

The  second  phase  is  the  hydrolytic  elimination  of  the 
potassium  cyanide  group,  which  is  enormously 
accelerated  by  oxygen. 

[FeS]£OH-^[FeS5]K3+  HCN  +KOH. 
(Cf.  J.C.S.,  Nov.)— H.  W. 

Patents. 

Photographic     film;      Antistatic     .        A.      S. 

McDanie'l,  Assr.  to  Eastman  Kodak  Co.  U.S. P. 
1,431,894,  10.10.22.     Appl.,  26.3.21. 

The  photographic  film  consists  of  a  support,  e.g.,  of 
nitrocellulose,  carrying  a  layer  of  sensitive  material 
and  a  layer  of  material,  e.g.,  cellulose  acetate, 
which  is  not  softened  by  photographic  baths  and 
which  contains  a  hygroscopic  material. — W.  C. 

[Photographic]  antistatic  films;  Base  for  and 

compositions  for  making  the  same.  P.  C.  Seel, 
Assr.  to  Eastman  Kodak  Co.  U.S. P.  1,431,900, 
10.10.22.     Appl.,  16.4.21. 

A  flexible  transparent  support  which  is  suitable 
for  the  production  of  antistatic  film  when  coated 
with  a  photographic  emulsion,  consists  of  molccularly 
intact  nitrocellulose  together  with  an  inert  metallic 
salt,  an  inert  hygroscopic  organic  compound  of  low 
volatility,  and  water. — \V.  C. 

Film  for  the  cpiscopic  projection  of  photographs  and 
cinematographs.  Akt.-Ges.  fiir  Anilin-Fabr. 
G.P.  357,010,  7.11.20. 
A  film  for  episcopic  projection  consists  of  cellulose 
ethers  or  esters  with  particles  of  finely  divided 
metals  embedded  therein  as  image  carriers. 

— L.  A.  C. 

Photographic  transfer  film.     Farbenfabr.  vorm.  F. 

Bayer  und  Co.     G.P.  357,011,  19.10.20. 
A    film    consisting    of    cellulosic    compounds    and 
gelatin  is  formed,  without  an  intermediate  layer,  on 
a  suitably   prepared  carrier,   and  can   be   stripped 
from  the  carrier  when  dry. — L.  A.  C. 

Colour  photography ;  Negative  material   for  . 

E.  Wolff.     E.P.  168,035,  21.4.21.     Conv.,  14.8.20. 

See  G.P.  345,734  of  1920 ;  J.,  1922,  567  a. 

XXII.-EXPLOSIVES ;  MATCHES 

Patents. 
Explosive    and   process   of   making    same.    E.    Ott, 

Assr.  to  E.  H.  Faust,     U.S. P.  1,390,378,  13.9.21. 

Appl.,  25.5.20. 
Cyanuric  triazide, 

N\  /N 

II    >N.C:N.C.N<    II 

If/      I        |      XN 

N:C.lSr 

A 

N  =  N 
prepared    by   the    action    of    aqueous    solutions   of 
sodium  azide  on  cyanuric  halides,  is  claimed  as  an, 

q 


918a 


Ol.  xxiii.— analysis. 


[Nov.  30, 1922. 


explosive.  It  forms  colourless  crystals,  m.p.  94°  C, 
is  not  volatile,  not  changed  by  cold  water,  but 
slowly  decomposed  by  hot  water,  explodes  when 
subjected  to  violent  concussion,  when  heated  to 
170°  C,  or  when  heated  suddenly.  It  is  not 
poisonous,  does  not  attack  metals,  is  superior  as 
a  priming  agent  to  mercury  fulminate,  lead  azide, 
and  silver  azide;  is  suitable  for  the  preparation 
of  Flobert  ammunition  and  ammunition  for  other 
small  fire-arms;  and  in  the  molten  state  is  a  good 
solvent  for  most  of  the  organic  substances  usually 
employed  as  explosives  for  grenade  loadings,  tor- 
pedoes, etc. — H.  O.  R. 

Nitrating  a2>paratus.     G.  Juer.     U.S.P.  1,431,161 
10.10.22.     Appl.,  1.7.20. 

The  apparatus  consists  of  a  series  of  16  or  more 
nitrating  pots  arranged  around  the  periphery  of 
a  rotary  table  to  which  regular  increments  of  move- 
ment can  be  imparted.  A  centrifuge  is  placed 
adjacent  to  the  table  so  as  to  receive  the  contents 
of  the  nitrating  pot  opposite  to  it  when  the  table 
is  at  rest.  An  acid  filling  tank  is  also  situated 
adjacent  to  the  path  of  movement  of  the  pots  and 
at  a  distance  from  the  centrifuge  equal  to  the 
increment  of  movement  of  the  table.  A  mechanical 
agitator  is  arranged  above  the  path  of  movement 
of  the  pots  with  the  table  at  a  distance  from  the 
acid  tank  equal  to  a  multiple  of  the  increment  of 
movement  of  the  table. — G.  F.  M. 

Explosive  having  liquid  air  as  a  base.    G.  Weber 

Assr.   to  Soc.   Les  Petits  Fils   de  F.  de  Wendel 

et  Cie.  U.S.P.  1,431,711,  10.10.22.  Appl.,  25.8.21. 

An  explosive   is   composed   of  liquid    air,   calcium 

silicide,    and    a    combustible    organic    substance 

—A.  R.  P. 

XXIII— ANALYSIS. 

Specific  gravity  of  small  amounts  of  liquid;  Appa- 
ratus for  the  rapid  determination  of  the E 

Wiedbrauch.     Z.  anorg.  Chem.,  1922,  122,  167— 

Water  and  the  liquid  in  question  are  contained  in 
two  U-tubes  which  are  in  communication  with  one 
another  and  with  a  manometer,  the  heights  of 
the  liquids  which  balance  various  pressures  are 
measured,  and  the  specific  gravity  then  calculated 

— W.  T. 

Artificial  daylight   (Sheringham  system) -Applica- 
tion of to  laboratory  purposes.   S.  H.  Groom 

Analyst,  1922,  47,  419—423. 

The  correction  of  the  light  given  by  a  gas-filled 
electric  lamp  to  that  of  north  sky  light  involves  the 
elimination  of  progressively  more  energy  from  the 
blue  to  the  red  end  of  the 'spectrum.  This  may  be 
accomplished  either  by  passing  the  light  through  a 
suitably  coloured  glass  screen,  or  by  reflecting  the 
light  from  a  suitably  coloured  reflector.  The  latter 
method  has  been  employed  for  the  first  time  in  the 
Sheringham  Daylight  lamp.  The  change  produced 
in  the  appearance  of  coloured  objects  under  different 
illuminants  varies  widely  in  different  cases.  If  the 
object  is  one  which  transmits  or  reflects  only  a  small 
portion  of  the  spectrum,  the  change  in  colour  is 
comparatively  small.  The  greatest  change  is  shown 
in  the  case  of  an  object  which  reflects  two  widely 
different  portions  of  the  spectrum  more  strongly 
than  the  intervening  portions,  as  in  the  case  of  a 
purple  pigment. — H.  C.  R. 

Daylight  lamp;  Use  of  the  in  volumetric  and 

colonmetric    analysis.     W.    Singleton.     Analyst, 
1922,  47,  424—426. 

Titrations  were  carried  out  using  N/50  solutions 
and  a  large  number  of  the  more  common  indicators 


by  natural  daylight,  artificial  daylight  from  an 
Osram  "  daylight  "  glass  lamp,  and  the  light  of  an 
ordinary  vacuum  electric  lamp.  In  most  cases  the 
degree  of  accuracy  possible  in  the  determination  of 
the  end-point  was  at  least  as  great  with  artificial 
daylight  as  with  natural  daylight.  Ordinary 
artificial  light  gave  uniformly  less  accurate  titra- 
tions except  when  thymol  blue  was  used  as  the 
indicator.  The  use  of  the  daylight  lamp  also  greatly 
increased  the  ease  with  which  great  accuracy  could 
be  obtained.— H.  C.  R. 

Mixed  indicators;   Use   of   .      A.   Cohen.      J 

Amer.  Chem.  Soc.,  1922,  44,  1851—1857. 
The  differences  of  subjective  colour  are  enhanced 
when  two  indicators  are  partially  transformed  at 
the  same  hydrogen  ion  concentration.  The  colori- 
metric  estimation  of  hydrogen  ion  concentration 
may,  therefore,  be  rendered  more  precise  by  the  use 
of  suitable  mixed  indicators  and  in  certain  titrations 
sharper  end  points  may  be  obtained,  particularly  in 
coloured  liquids.  Thus  with  bromothymol  blue  as 
indicator  the  value  p„  6'8  is  indicated  by  a  pure 
green  colour,  but  in  a  yellow  medium  the  colour  is 
yellowish-green  and  difficult  to  observe ;  if,  however, 
an  indicator  is  added  which  is  violet  at  this  con- 
centration, then  the  total  effect  of  the  mixed  indi- 
cators will  be  a  green  end  point.  This  may  be 
achieved  by  adding  equal  quantities  of  bromothymol 
blue  and  bromocresol  purple.  Several  examples  of 
the  use  of  mixed  indicators  are  described. — J.  F.  S. 

Sulphuric    acid;    Estimation    of    as    barium 

sulphate  in  the  presence  of  aluminium.  L.  Moser 
and  P.  Kohn.  Z.  anorg.  Chem.,  1922,  122,  299— 
310. 

The  results  of  the  estimation  of  sulphuric  acid  as 
barium  sulphate  in  the  presence  of  aluminium  are 
too  low,  owing  to  the  adsorption  of  aluminium 
sulphate  by  the  barium  sulphate.  The  amount 
adsorbed  increases  at  first  with  the  concentration  of 
the  aluminium  salt  but  soon  reaches  a  limit.  The 
error  is  only  one-tenth  of  that  observed  in  corre- 
sponding determinations  in  the  presence  of  ferric 
salts.  The  best  results  were  obtained  in  hydro- 
chloric acid  solutions,  where  the  maximum  error 
was  found  to  be  -0'15%.— W.  T. 

Calcium;  Estimation   of  small   quantities   of  . 

P.  P.  Laidlaw  and  W.  W.  Pavne.     Biochem.  J., 
1922,   16,  494—498. 

The  method  described  is  suitable  for  estimating 
calcium  in  amounts  of  the  order  of  0T  mg.,  and 
gives  results  accurate  to  about  0002  mg.  The 
calcium  is  precipitated  as  oxalate  (in  the  case  of 
blood  serum,  this  may  be  done  directly  from  the 
serum  without  previous  incineration).  After 
separation,  the  precipitate  is  dissolved  in  hydro- 
chloric acid  and  the  calcium  re-precipitated  in  the 
form  of  calcium  alizarinate  by  the  addition  of 
excess  of  alizarin  in  alcoholic  solution,  and,  after 
warming,  of  a  few  drops  of  strong  ammonia.  When 
crystalline,  the  precipitate  is  collected  in  a  Gooch 
crucible,  washed  with  dilute  ammonia,  and  decom- 
posed with  a  solution  of  oxalic  acid  in  50%  alcohol. 
The  liberated  alizarin  is  dissolved  in  95%  alcohol, 
made  just  alkaline  with  ammonia,  and  estimated 
colorimetrically  by  comparison  with  a  standard 
solution  of  ammonium  alizarinate. — E.  S. 

Copper;    Microchemical    estimation    of   .      G. 

Spacu.    Bui.  Soc.  Stiinte  Cluj,  1922,  1,  296—301. 

Chem.  Zentr.,  1922,  93,  IV.,  737—738. 
The  green  compound  described  previously  (J.,  1922, 
881  a)  is  precipitated  in  a  double  separating  funnel 
in  which  the  upper  and  lower  compartments  hold 
35  c.c.  and  5  c.c.  respectively.  After  precipita- 
tion, the  solution  is  shaken  three  times  with  2  c.c. 


Vol.  XXI.,  No  22] 


Cl.  xxiii.— analysis. 


919  a 


of  chloroform  in  the  upper  compartment,  and  the 
chloroform,  after  settling,  is  run  into  the  lower 
compartment,  whence  it  is  drained  into  a  porcelain 
crucible.  The  chloroform  is  evaporated  in  vacuo  in 
a  desiccator.and  the  precipitate  is  either  weighed 
as  CuPy,(CNS),,  or  is  converted  into  cupric  oxide 
or  sulphide  before  weighing. — L.  A.  C. 

Seductions  with   cadmium   in   volumetric  analysis 
II.  W.  D.  Treadweil,  M.  Blumenthal,  M.  Starkle, 
M.    Hooft,    M.    Dreifuss,    and    A.    Bossi.      Helv 
Chim.  Acta,  1922,  S,  732—743. 
Continuing   previous   work   (J.,    1921,   605  a)   it   is 
shown    that   when   uranyl   salts    are    reduced   with 
finely  divided  zinc  or  cadmium,  reduction  is  inclined 
t<>  go  beyond  the  uranous  stage  to  the  U'"  stage. 
This  may  be  corrected  by  allowing  the  solution  from 
the  reduction  tube  to  fall  drop  by  drop  into  a  vessel 
exposed  to  the  air,  when  the  trivalent  uranium  is 
oxidised    to    the   uranous   stage.      It    can   then    be 
titrated   accurately  with   permanganate.      To  pre- 
vent oxidation   of  the  uranous  salt  to  the  uranyl 
stage  by  air,  the  solution  should  be  fairly  strongly 
acid,  about  30  N  sulphuric  acid  being  convenient. 
If   the  electrometric   method   of   titration   is   used, 
over-reduction  can   be  ignored,  since  the   distance 
between  the  two  breaks  in  the  curve  gives  the  titre. 
For    technical    purposes   the    over-reduction    is    so 
slight  when  cadmium  is  used  that,  for  estimating 
small  quantities  of  uranium  in  very  dilute  solution, 
it  can  be  ignored.     Titanium  and  uranium  can  be 
estimated  together  in  dilute  solution  by  reduction 
with  cadmium  and  electrometric  titration  with  per- 
manganate in  an  atmosphere  of  carbon  dioxide.   By 
the  same  method  small  quantities  of  titanium  can 
be  determined   in   presence   of   large  quantities   of 
iron,  using  potassium  bichromate  for  the  titration. 
Vanadic  acid  is  reduced  quantitatively  to  the  V" 
stage  if  air  is  carefully  excluded,  and  the  reduced 
sdlution  can  be  titrated  with  permanganate.     It  is 
best   to   run   the   reduced  solution   direct   into  the 
acidified  permanganate  (a  quantity  within  0'5  c.c. 
of    that     necessary)     previously     freed     from     air. 
Indigo  can  be  estimated  by  dissolving  in  sulphuric 
acid  monohydrate  at  70°  C,   cooling  and  diluting 
with  water  to  give  a  solution  0'05  to  001IV  with 
respect  to  indigo  and  0"2  to  0'52V  with  respect  to 
sulphuric  acid.     The  solution  is  then  reduced  to  the 
leuco     stage     by     running     through     a     reduction 
tube    (about    7—8    cm.    by    V8    cm.)    filled    with 
finely   divided  cadmium.     The  reduced   solution   is 
collected   in  an  atmosphere  of  carbon  dioxide  and 
titrated  with  ferric  chloride  electrometrically.     The 
degree  of  accuracy  is  very  high.     Thioindigo  and 
Methylene  Blue  can  be  estimated  in  a  similar  man- 
ner.    (Cf.  J.O.S.,  Nov.)— E.  H.  R. 

Seductions  icith  cadmium  and  lead  in  volumetric 
analysis.  III.  W.  D.  Treadwell,  P.  Hristie,  L. 
Egger,  P.  Sturzenegger,  A.  Freuler,  A.  Weber, 
and  U.  F.  Edelmann.  Helv.  Chim.  Acta,  1922, 
5,  806—818. 

The  cadmium  reduction  tube  previously  described 
(J.,  1921,  605  a)  can  be  used  for  the  reduction  of 
chlorate  in  dilute  sulphuric  acid  solution.  The 
resulting  solution  of  chloride  is  then  titrated  with 
silver  nitrate  by  the  Volhard  method.  Perchlorate 
is  not  reduced  under  these  conditions,  consequently 
chlorate  can  be  determined  in  presence  of  per- 
chlorate. Tho  latter  can  be  reduced  to  chloride  by 
boiling  in  sulphuric  acid  solution  (about  10  c.c.  of 
concentrated  acid  to  50  c.c.  of  ]V/10  perchlorate  solu- 
tion) in  presence  of  titanium  sulphate  with  finely 
divided  cadmium  for  i  to  1  hr.  A  small  amount 
of  cadmium  sulphide  which  is  formed  does  not 
interfere.  After  cooling,  tho  solution  is  diluted 
and  the  titanous  sulphate  present  is  oxidised  with 
permanganate.  The  chloride  is  then  titrated  with 
silver    nitrate    either    electrometrically    or    by    the 


\olhard  process.  For  the  reduction  of  niobic  acid, 
followed  by  titration  with  permanganate,  Metzger 
and  Taylor  reduced  with  amalgamated  zinc  a 
sulphuric  acid  solution  of  niobic  acid  stabilised  with 
succinic  acid  (cf.  Taylor,  J.,  1909,  818).  It  is  shown 
that  this  solution  is  far  from  stable;  it  gradually 
becomes  opalescent  and  in  course  of  time  its 
reducibility  diminishes.  The  reducibility  of  a 
niobic  acid  solution  depends  on  the  degree  of 
dispersity  of  the  colloidal  particles  of  the  acid.  The 
most  consistent  results  were  obtained  with  a  solu- 
tion of  the  fluoride  in  concentrated  hydrochloric 
acid.  After  removal  of  hydrofluoric  acid  the 
solution  was  passed  through  a  cadmium  reduction 
tube,  and  then  titrated  electrometrically  with 
ferric  chloride.  Although  the  results  were  consis- 
tent, it  does  not  appear  that  reduction  was  carried 
completely  to  the  Nb'"  stage.  Molybdate  can  be 
reduced  quantitatively  to  the  Mo'"  stage  in  hvdro- 
chloric  acid  solution,  and  stannic  chloride  to  the 
stanous  stage,  by  finely  divided  lead.  The  reduced 
solutions  were  titrated  with  permanganate  after 
addition  of  manganous  sulphate.  The  lead  was 
prepared  by  immersing  a  zinc  rod  in  acidified  lead 
acetate  solution,  washing  the  lead  crystals  formed 
with  alcohol  and  ether  and  drying  in  a  vacuum. 
Tho  material  so  obtained  was  used  in  a  reduction 
tube.— E.  H.  R. 

Manganese;  New  method  for  the  estimation  of -. 

S.  Minovici  and  C.  Kollo.     Chim.  et  Ind.,  1922, 
8,  499—500. 

Manganese  may  he  accurately  estimated,  even 
when  present  in  very  small  quantities,  by  pre- 
cipitation as  iodate  by  means  of  iodic  acid,  accord- 
ing to  the  equation 

MnS04  +  2HI03  =  Mn(IO  ,)2+HaS04. 
A  solution  of  about  twice  the  theoretical  quantity 
of  iodic  acid  is  added  to  the  manganese  solution, 
and  after  warming  for  10  mins.  on  a  water  bath, 
twice  the  volume  of  alcohol  is  added.  After  a 
short  time  the  precipitate  settles  down,  and  is 
collected  on  a  filter  or  Gooch  crucible  and  washed 
with  70%  alcohol,  preferably  saturated  with  man- 
ganous iodate.  The  washed  precipitate  is  dried 
at  100°  C,  and  weighed.  The  mother  liquors  con- 
tain no  trace  of  manganese,  as  the  iodate  is  in- 
soluble in  70%  alcohol  in  presence  of  excess  of  iodic 
acid.  In  water  at  ordinary  temperatures  the 
solubility  of  the  iodate  is  0-195%,  and  in  70% 
alcohol  0'005%.  The  absolute  percentage  error  in 
the  examples  given  varied  from  0'16  to  0'63%  when 
quantities  of  the  order  of  0T — 03  g.  of  the 
hvdrated  sulphate  were  taken  for  estimation. 

— G.  F.  M. 

Precipitations  with  hydrogen  sulphide;  Hindrance 

of  by  neutral  chlorides.     L.  Dedc  and  P. 

Bonin.  Ber.,  1922,  55,  2327—2331. 
Tue  precipitation  of  lead  sulphide  from  1/1000 
molar  solutions  of  lead  chloride  in  water  by 
hydrogen  sulphide  at  20°  C.  is  completely  inhibited 
by  the  presence  of  hydrochloric  acid  in  a  concen- 
tion  of  1'42V.  In  the  presence  of  increasing  con- 
centrations of  calcium,  ammonium,  or  potassium 
chloride,  decreasing  concentrations  or  hydro- 
chloric acid  are  sufficient  to  suppress  precipitation 
entirely.  Incomplete  precipitation  of  lead  sulphide 
is  observed  with  considerably  lower  concentrations 
of  hydrochloric  acid.  At  higher  temperatures,  the 
effect  of  hydrochloric  acid  in  the  presence  of  neutral 
chlorides  is  still  more  marked.  Similar  results  to 
those  obtained  with  lead  choride  are  also  obtained 
with  cadmium  salts  and  apparently  with  tin  salts. 
The  precipitation  of  lead  sulphide  is  hampered  to 
a  less  degree  by  the  presence  of  perchloric  acid. 
In  this  case  the  addition  of  sodium  perchlorate 
favours  precipitation  presumably  by  depressing 
the  dissociation  of  the  acid.     The  precipitation  of 


920  a 


PATENT   LIST. 


[Nov.  30, 1922. 


lead  chromate  from  acetic  acid  solution  is  in- 
complete, in  the  presence  of  much  chloride;  in 
ammoniacal  solution  this  is  not  the  case.— H.  W. 

Iodometric  method;  New  based  on  the  forma- 
tion and  the  estimation  of  cyanogen  iodide.  R. 
Lang.     Z.  anorg.   Chem.,  1922,  122,  332—348. 

A  volumetric  method  for  the  estimation  of  iodides 
is  given  based  on  the  fact  that  an  iodide  will  react 
with  an  oxidising  agent  (KMnOJ  and  hydro- 
cyanic acid  in  the  presence  of  hydrochloric  and 
sulphuric  acids  to  give  cyanogen  iodide,  the  end 
point  being  indicated  by  starch  solution.  This 
can  bo  controlled  by  estimating  the  cyanogen 
iodide  with  thiosulphate 

ICN-rS2(V+H-+r-rSA\ 
The  method  is  applicable  in  the  presence  of 
bromides  and  nitrates  and  can  also  be  employed 
for  the  determination  of  the  different  stages  of 
oxidation  of  iodine  in  mixtures.  The  reactions  of 
hydrocyanic  acid  with  iodine  mono-chloride  and 
hvpoiodous  acid  have  also  been  investigated. 

— W.    T. 

See  also  pages  (a)  885,  Relation  of  melting  point 
to  boiling  point  (Lorenz  and  Herz).  891,  Fastness 
of  dyestu-ffs  (Setlik).  893,  Sulphite  liquors  (Sieber). 
896,  Nitric  oxide  (Klemenc  and  Bunzl).  897, 
Separation  of  cerium  (Prandtl  and  Lbschl).  902, 
Liver  oil  (Richmond  and  England).  907,  Tannin 
(Atkinson  and  Hazleton);  Water-soluble  matter  in 
leather  (Hough).  908,  Nitrate  fertilisers  (Mach  and 
Sindlinger).  909,  Oxalic  acid  (Muller).  911,  Malt 
analysis;  Standard  fur  estimation  of  colour  in  beers 
and  worts  (Lampe);  Volatile  acidity  of  icines  con- 
taining sulphurous  acid  (Marcille).  912,  Citric  acid 
in  xrinr  and  musts  (Von  der  Heide  and  Straube); 
Bum  (Schiiffer) ;  Butter  (Fascetti). 

Patent. 
Flash    point    of    oils;    Apjmratus    for   determining 
.    F.  H.  M.  Klee.    E.P.  185,814,  3.6.21. 

The  oil  to  be  tested  is  contained  in  a  vessel  sur- 
rounded by  an  electrically  heated  water  jacket.  A 
stirrer  is  provided  for  the  oil  and  the  vapours  above 
it.  Ignition  is  effected  by  a  spark  or  a  coil  heated 
to  rednes6.  The  top  of  the  vessel  can  be  removed 
for  open  cup  tests.  A  modification  consists  of  an 
electrically  heated  vessel  into  which  high-boiling 
oils  of  high  flash-point  may  be  dropped  to  determine 
their  ignition  temperature  in  the  presence  of 
heated  air  or  oxygen. — T.  A.  S. 


Patent  List. 

The  datea  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised,  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given:  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branoh.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;    PLANT;    MACHINERY. 

Applications. 

Algem.  Norit  Maatsch.  Compression,  storage, 
and  treatment  of  gases.  30,724.  Nov.  10.  (Hol- 
land, 14.11.21.) 

Algem.  Norit  Maatsch.  Drying  gases.  30,725. 
Nov.  10.     (Holland,  14.11.21.) 

Algem.  Norit  Maatsch.  Treating  liquids.  30,726. 
Nov.  10.     (Holland,  14.11.21.) 


Arbuckle.  Means  for  separating  liquid  and  solid 
components  of  mixtures.     30,318.     Nov.  6. 

linker.    Regenerative  furnaces.    29,409.    Oct.  27. 

Barnes  and  Fleming.  Grinding  mills.  28,846. 
Oct.  24. 

Boberg,  Sbderlund,  Testrup,  and  Techno- 
Chemioal  Laboratories.  Separating  solids  from 
liquids.     30,014  and  30,700.     Nov.  2  and  9. 

Brauer.     Cooling  fluids.     30,233.     Nov.  4. 

Brinjes  and  Goodwin,  and  Seaman.  Grinding, 
mixing,  etc.  mills.     28,977.     Oct.  24. 

Broadbent  and  Sons,  and  Sturgeon.  Centrifugal 
separators.     30,509.     Nov.  8. 

Chemical  Engineering  Co.,  and  Spensley.  Pro- 
ducing intimate  mixtures  of  substances  and  obtain- 
ing chemical  products.     29,728.     Oct.  31. 

Griffiths  and  Passburg.  Obtaining  large  crystals 
from  solutions.     29,064.     Oct.  25. 

Heenan.    Drying  air  and  ga-scs.    29,767.    Oct.  31. 

Henshaw,  Whittell,  and  Holmes  and  Co.  Appa- 
ratus for  bringing  liquids  and  gases  into  intimate 
contact.     30,346.     Nov.   7. 

Kirke.     30,689.     See  XIX. 

Lehane  and  Ruck.     30,764.     See  II. 

Nitrogen  Corp.  Drying  gases.  29,792.  Oct  31. 
(U.S.,  9.11.21.) 

Porteus.  Mixing-machines  for  granular  or 
pulverulent  substances.     30,168.     Nov.  4. 

Raper.     Drying-machines.     28,869.     Oct.   24. 

Sklenar.    Reverberatory  furnace.   30,649.    Nov.  9. 

Smidth  and  Co.  (Smidth  &  Co.).  Ball  and  tube 
mills.     30,538.     Nov.  8. 

Soc.  des  Condenseurs  Delas.  Evaporating,  con- 
centrating, distilling,  etc.  apparatus.  28,971. 
Oct.  24.     (Fr.,  21.7.21.) 

Techno-Chemieal  Laboratories,  and  Testrup. 
Rotatable  heat-transmitting  appliances.  29,239. 
Oct.  26. 

Tooth.  Treatment  of  smoke  and  fumes.  28,842. 
Oct.  24. 

Vallez.    Coating  filtering-frames.   29,168.   Oct.  26. 

Wade  (Standard  Development  Co.).  Manufacture 
of  foam-forming  liquids.     30,487.     Nov.  7. 

Weston.     Gyratory  crushers.     30,486.     Nov.  7. 

Complete  Specifications  Accepted. 

11,972  (1921).  Paterson.  Filtering  apparatus. 
(187,259.)     Nov.  1. 

12,048  (1921).  Thompson  (Sharpies  Specialty  Co.). 
Centrifugal  emulsifiers.     (187,642.)     Nov.  8. 

13,206  (1921)  and  6593  (1922).  Rigby.  Heating 
or  cooling  liquids  or  admixed  solids  and  liquids  in 
evaporative  or  like  treatment.     (1S7.260.)     Nov.  1. 

14,147  (1921).  Weddingen.  Removing  incrusta- 
tions from  boilers  and  softening  feed-water. 
(187,647.)     Nov.  8. 

17,017  (1921)  and  8186  (1922).  Meek.  Furnaces. 
(187,657.)     Nov.  8. 

19,220  (1921)  and  11,748  (1922).  Marr,  and  Coke 
Oven  Construction  Co.  Continuous  drying  of 
pulverulent  materials,  applicable  to  the  manufac- 
ture of  neutral  ammonium  sulphate.  (187,320.) 
Nov.  1. 

19,848  (1921).  Paterson.  Filtering  apparatus. 
(187,708.)     Nov.  8. 

20,147  (1921).  Thatcher.  Manufacture  of  semi- 
permeable separators  such  as  diaphragms,  diffusion 
walls,  etc.    (187,728.)    Nov.  8. 

20,158  (1921).  Kestner.  Washing  and  displace- 
ment of  gases.     (168,867.)     Nov.  15. 

20,414  (1921).  Davis.  Filters.     (188,059.)  Nov.  15. 

21,659(1921).  Roth.  Separation  of  fine  material. 
(187,381.)     Nov.  1. 

25,393  (1921).  Chem.  Fabr.  Griesheim-Elektron, 
and  Sander.  Apparatus  for  washing  material  which 
has  been  separated  by  centrifugal  act  ion.  (187,429.) 
Nov.  1. 

27,176  (1921).  Pomeroy.  Pulverising-appnratU6. 
(188,173.)     Nov.  15. 


Vol.  XLL,  No.  22.] 


PATENT   LIST. 


921  a 


30,096  (1921).  Silver  Springs  Bleaching  and 
Dyeing  Co.,  and  Hall.  Treating  certain  waste 
liquors.     (188,208.)     Nov.  15. 

33,507  (1921).  Bamburg.  Grinding  or  crushing 
machines.     (187,884.)     Nov.  8. 

33,810  (1921).  Schnetzer.  Preventing  formation 
of  scale  in  boilers,  evaporators,  etc.  (174,905.) 
Nov.  1. 

33,93S  (1921).  Harvey  and  Buckley.  Centrifugal 
drying-machines.     (188,243.)     Nov.  15. 

II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE    DISTILLATION; 

HEATLNG;    LIGHTING. 

Applications. 

Beilby.  Hydrogenation  of  hydrocarbon  oils  and 
residues.    30,655.    Nov.  9. 

Boocock,  Laing,  and  Nielsen.  Manufacture  of 
fuel  briquettes  etc.     29,384.     Oct.  27. 

Butler.  Manufacture  of  liquid  fuel.  29,789. 
Oct.  31. 

Capon  (Wells).  Gas-producers.  30,550  and 
30,552.    Nov.  8. 

Capon  (Wells).  Apparatus  for  cooling  and  clean- 
ing gas.    30,551.    Nov.  8. 

Coley.     Gas  manufacture.     30,773.     Nov.  10. 

Diehl.  Recovery  of  coal  from  waste  by  flotation. 
29,522.    Oct.  28.    "(Ger.,  3.11.21.) 

Edison  Swan  Electric  Co.,  and  Percival.  Manu- 
facture of  metallic  filaments  for  incandescent 
electric  lamps  etc.    28,805.    Oct.  23. 

Ferguson.  Feldspar  tanks  for  coal-washing. 
30,374.     Nov.  7. 

Gas  Research  Co.  Gas  generators.  30,678. 
Nov.  9.     (U.S.,  20.6.22.) 

Hollinshead.     Briquette  fuel.     28,719.     Oct.  23. 

Kirke.     Water-gas  plants.     29,068.     Oct.  25. 

Lamplough.  Treatment  of  hydrocarbon-bearing 
substances.     30,746.     Nov.  10. 

Lehane  and  Ruck.  Manufacture  of  retorts  etc. 
30,764.    Nov.  10. 

Lewis.  Burning  blast-furnace  gas  in  steam 
boilers.    29,464.     Oct.  28. 

Lockwood.     Treating  coal  etc.     29,111.     Oct.  25. 

Loriette.  Production  of  liquid-fuel  mixtures  with 
alcohol  as  basis.    30,106.    Nov.  3.    (Fr.,  3.11.21.) 

Mann.     Suction-gas  producers.     30,453.     Nov.  7. 

Merz.    Fuels.    28,963.    Oct.  24. 

Monnot.     Cracking  oils.     29,383.    Oct.  27. 

Oddv.  Distilling  coal,  peat,  wood,  etc.  29,469. 
Oct.  28. 

Oddv.  Purifying  etc.  hydrocarbons  etc.  29,470 
and  29,472.    Oct.  28. 

Oddy.  Light  hydrocarbons  etc.  for  motors  and 
lighting.    29,471.    Oct.  28. 

Peebles.  Instrument  for  indicating  heating 
quality  of  gas.    30,182.     Nov.  4. 

Rideal.  Elimination  of  sulphur  from  oil.  30,837. 
Nov.  10. 

Southgate.  Apparatus  for  distilling  and  testing 
carbonaceous  matter.    28,768.    Oct.  23. 

Sumner.    Manufacture  of  gas.    29,368.    Oct.  27. 

Wellman  Seaver  Morgan  Co.  Gas-producers. 
30,899.    Nov.  11.     (U.S.,  12.11.21.) 

White.  Treatment  of  petroleum  etc.  29,240. 
Oct.  26. 

White.  Low-temperature  carbonisation  of  carbon- 
aceous material  etc.  29,241.  Oct.  26.  (India, 
18.1.22.) 

Wood.  Gas  retorts.  30,919.  Oct.  11.  (Australia, 
30.11.21.) 

Complete  Specifications  Accepted. 

32,120  (1920).  Parker  and  Bamber.  Gas-scrubbers. 
(187,999.)    Nov.  10. 

11,419  (1921).  Accioly.  Manufacture  of  an  alco- 
holic liquid  for  use  as  combustible.  (187,640.)  Nov.  8. 


13,633  (1921).  West,  Madden,  Boardman,  and 
West's  Gas  Improvement  Co.  Destructive  distilla- 
tion of  coal  and  like  carbonaceous  materials. 
(187,263.)    Nov/1. 

16,554  (1921).  Turner.  Gas-generators.  (187,277.) 
Nov.  1. 

16,826  (1921).  Marlow.  Gas-producers.  (187,282.) 
Nov.  1. 

17,352  (1921).  Meguin  A.-G.  Butzbach,  and 
Mailer.  Apparatus  for  carbonising  bituminous 
substances,  such  as  coal  or  shale,  at  low  tempera- 
ture.   (168,859.)    Nov.  8. 

17,587  (1921).  Markham,  and  Staveley  Coal  and 
Iron  Co.  Distillation  of  solid  carboniferous  matter. 
(188,019.)     Nov.  15. 

17,873  and  20,740  (1921).  Reid.  Manufacture  of 
gaseous  fuel  from  lime-kiln  gases.  (188,022.) 
Nov.  15. 

19,327  (1921).  Giles  (Field).  Fuel  for  internal 
combustion  engines.     (187,326.)     Nov.  1. 

19,355  (1921).  Ulingworth.  Production  of  smoke- 
less fuel  and  coke.     (187,32,8.)     Nov.  1. 

19,463  (1921).  Blake.  Alcohol  fuels.  (187,335.) 
Nov.  1. 

19,525  (1921).  Roberts.  Carbonisation  of  coal. 
(187,336.)    Nov.  1. 

20,412  (1921).  Tinker.  Production  of  petrol. 
(188,058.)     Nov.  15. 

20,444  (1921).  Franklin  and  PettingaW.  Fuel. 
(187,351.)    Nov.  1. 

20,612  (1921).  Young.  Manufacture  of  gas. 
(188,073.)    Nov.  15. 

26,482  (1921).  Koppers  Co.  Purification  of  gases. 
(170,572.)    Nov.  8. 

28,399  (1921).  Dempster,  Ltd.,  and  Broadhead. 
Gas  purifiers.    (188,193.)    Nov.  15. 

33,441  (1921).  Scheib  and  Koch.  Manufacture  of 
pure  nitrogen-carbonic-acid  mixtures  from  combus- 
tion gases.     (172,958.)    Nov.  1. 

III.— TAR  AND  TAR  PRODUCTS. 

Applications. 

Chem.  Engineering  and  Wilton's  Patent  Furnace 
Co.,  and  Shadbolt.  Distillation  of  tar.  29,110. 
Oct.  25. 

Humphrey  and  Humphrey.  Boilers  for  pitch,  tar, 
etc.    28,745.    Oct.  23. 

IV.— COLOURING  MATTERS  AND  DYES. 

Applications. 

Burt,  Boulton,  and  Haywood,  and  Miles.  Manu- 
facture of  indophenolic  bodies.     29,258.    Oct.  26. 

Imray  (Soc.  Chem.  Industry  in  Basle).  Manufac- 
ture of  azo  dvestuffs  and  chromium  compounds 
thereof.     30,923.     Nov.  11. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Dyes 
etc.     29,321.     Oct.  27. 

Complete  Specification  Accepted. 
23,286  (1921).    Ransford  (CasseUla  u.  Co.).    Manu- 
facture of  salts  of  acridinium  compounds.    (188,127.) 
Nov.  15. 

V.— FIBRES;   TEXTILES;   CELLULOSE; 
PAPER. 

Applications. 

Brooke,  Brooke,  and  Stapleton.  Manufacture  of 
paper  etc.    29,481.     Oct.  28. 

Carbone,  and  Instituto  Sierioterapico  Milanese. 
Preparing  cultures  of  Bacillus  jelsineus.  30,912. 
Nov.  11.    (Ital.,  12.11.21.) 

Davies  and  Haig.     30,482.     See  VI. 

Dreaper.  Manufacture  of  viscose  silk  etc. 
30,214.    Nov.  4. 

Fries.  Manufacture  of  water-resisting  paper, 
29,491.     Oct.  28.     (Jugo-Slavia,  29.10.21.) 


922  a 


PATENT   LIST. 


[Nov.  30, 1922. 


Hydroloid,  Ltd.  (Exportingenieure  f.  Papier  u. 
Zellstofftechnik  Ges).  Washable  printing  papers. 
29,054.    Oct.  25. 

Jlydroloid,  Ltd.  (Exportingenieure  f.  Papier  u. 
Zellstoiftechnik  Ges).  Treatment  of  asbestos 
materials.     29,059.     Oct.  2-5. 

Hydroloid,  Ltd.  (Exportingenieure  f.  Papier  u. 
Zellstofftechnik  Ges).  Water-  and  fire-proof  paper. 
29,060.    Oct.  25. 

Lew.  Production  of  artificial  filaments.  29,254. 
Oct.  26. 

Lew.  Manufacture  of  cellulose  acetate.  30,136. 
Nov.  3. 

Medhurst.    -Manufacture  of  paper.  29,245.  Oct.  26. 

Moriondi.  Manufacture  of  viscose  silk.  29,965. 
Nov.  2. 

N.  V.  Nederlandsche  Kunstzijde  Maatsch.  Puri- 
fying solutions  of  viscose  etc.  30,577.  Nov.  8. 
(Holland,  18.11.21.) 

Nobel  Industries,  Ltd.     29,092.     See  XXII. 

Ros,  and  Volos  Manufacture,  Ltd.  Treating 
fibrous  materials.     28,932.    Oct.  24. 

Schidrowitz.  Manufacture  of  paper  etc.  29,885. 
Nov.  1. 

Schmitt.  Cleaning  cotton  fibre  etc.  29,460. 
Oct.  28. 

Complete  Specifications  Accepted. 

11,293(1921).  Dreyfus.  Manufacture  of  cellulose 
derivatives.     (187,639.)    Nov.  8. 

20,116(1921).  Ishizu.  Treatment  of  ramie,  china 
grass,  etc.  in  the  production  of  yarn  or  thread. 
(188,037.)    Nov.  15. 

20,195  (1921).  McGill,  and  Volos  Manufacture, 
Ltd.  Treatment  of  fibrous  materials.  (187,346.) 
Nov.  1. 

22,609  (1921).  Wade  (Internat.  Cotton  Protecting 
Co.).    Impregnated  cotton  bales.    (187,394.)    Nov.  1. 

25,435(1921).  Kumagae  and  Chiba.  Recovery  of 
material  for  the  manufacture  of  paper.  (187,805.) 
Nov.  8. 

VI.— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Davies  and  Haig.  Scouring,  bleaching,  dyeing, 
etc.  wool  etc.    30,482.     Nov.  7. 

Grant.  Waterproofing  textile  fabrics.  30,460. 
Nov.  7. 

Lew.    Dyeing  artificial  filaments.  30,135.   Nov.  3. 

Marsden'.  Treatment  of  fabrics.  29,242.  Oct.  26. 
(U.S.,  27.2.22.) 

Newell.  Dveing  animal  and  vegetable  fibre. 
29,462.    Oct.  28. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Dveing. 
28,881.    Oct.  24. 

Soc.  Anon,  dite  Progil.  Mordant  for  dveing 
animal  fibres.    30,027.    Nov.  2.    (Fr.,  30.8.22.) 

Complete  Specifications  Accepted. 

18,817  (1921).  Gott  and  Wallis.  Apparatus  for 
dveing  or  bleaching  textiles.     (187,669.)    Nov.  8. 

29,044  (1921).  Akt.-Ges.  f.  Anilinfabr.  Dyeing 
animal  or  mixed  fibres.     (171,981.)     Nov.  1. 

VII.— ACIDS;   ALKALIS;   SALTS;    NON- 
METALLIC      ELEMENTS. 
Applications. 

Appareils  et  Evaporateurs  Kestner.  Extracting 
sodaic  salts  from  bicarbonated  mineral  waters. 
30,103.    Nov.  3.    (Belg.,  5.11.21.) 

Carmiohael  and  Co.,  and  Guillaume.  Apparatus 
for  manufacture  of  sulphuric  acid.    30,632.    Nov.  9. 

Charity.  Utilisation  of  waste  lime  from  chemical 
works.    30,407.     Nov.  7. 

Chem.  Fabr.  Griesheim-Elektron.  Production  of 
stable  compounds  of  calcium  hvpochlorite.  30,593. 
Nov.  8.    (Ger.,  8.11.21.) 


Fowler  and  Subrahmaniam.  Production  of  acetic 
acid  from  alcohol.    29,625.    Oct.  30. 

Freundler.  Treatment  of  seaweed.  28,970. 
Oct.  24.     (Fr.,  25.10.21.) 

Gerber.  Dissociation  of  aluminiferous  substances 
in  combination  with  fixation  of  nitrogen.  30,133. 
Nov.  3. 

Haynes  and  Williams.  Fixation  of  nitrogen. 
30,000.    Nov.  2. 

J.aques  and  West.  Manufacture  of  ammonium 
compounds.    29,532.    Oct.  28. 

Kinzlberger  u.  Co.  Production  of  iron-free 
chromium  compounds.  30,132.  Nov.  3.  (Czecho- 
Slov.,  4.11.21.) 

Nitrogen  Corp.  Ammonia  synthesis  autoclave. 
29,791.     Oct.  31.     (U.S.,  9.11.21.) 

Roberts.    Manufacture  of  lime.    29,040.    Oct.  25. 

Sanders.    29,015.    See  X. 

St  addon.  Manufacture  of  products  from  magnes- 
ium-containing substances.     30,795.     Nov.  10. 

Thompson.    29,624.    See  X. 

Complete  Specifications  Accepted. 

6690  (1921).  Potter  and  Robinson.  Manufacture 
of  chromium  compounds.     (187,636.)     Nov.  8. 

17,873  (1921).    Reid.    See  II. 

18,976  (1921).  Deuts.  Gliihfadenfabr.  Kurtz  u. 
Schwarzkopf  Ges.  Apparatus  for  purifying  hydro- 
gen.    (166,541.)     Nov.  1. 

19,220  (1921).     Marr  and  others.    See  I. 

20,583  (1921).  Rheinisch-Nassauische  Bergwerks- 
u.  Hiitten  A.-G.,  and  Schuphaus.  Production  of 
chemically  pure  hydrochloric  acid.  (167,752.)  Nov.  8. 

29,658  (1921).  Manuf.  de  Prod.  Chim.  du  Nord 
Etabl.  Kuhlmann.  Mechanically  operated  furnaces 
for  roasting  pyrites.     (181,313.)     Nov.  8. 

33,441  (1921).     Scheib  and  Koch.    See  II. 

VIII.— GLASS ;  CERAMICS. 

Applications. 

Allen.   Method  of  glazing  bricks.    29,562.  Oct.  30. 

Allport  and  Shenton.  Kilns  for  firing  pottery  etc. 
30,277.    Nov.  6. 

Bennett.  Ovens  or  kilns  for  firing  pottery  etc. 
29,826.    Nov.  1. 

Marks  (Buffalo  Refractory  Corp.).  Refractory 
compositions.    28,948.    Oct.  24. 

Niewenberg.  Preparation  of  thermo-resistant 
glassware.    29,884.    Nov.  1. 

White  (National  Lead  Co.).  Abrasive  sheet 
material.     29,898.     Nov.  1. 

Complete  Specifications  Accepted. 

14,992  (1921).  Testrup,  and  Techno-Chemical 
Laboratories.  Manufacture  of  china  clay.  (188,010.) 
Nov.  15. 

17,238  (1921).  Lott.  Production  of  charges  of 
molten  glass.     (187,661.)     Nov.  8. 

IX.— BUILDING  MATERIALS. 

Applications. 

Arnot.  Compositions  for  conditioning  wood  etc. 
29,906.     Nov.  1. 

Avis  and  Jennings.  Compound  for  weatherproof- 
ing  pavements  etc.     29,291.     Oct.  27. 

Avis  and  Jennings.  Weatherproofing  paving- 
blocks  etc.    29,293.    Oct.  27. 

Forssman.  Preservation  of  wood  etc.  28,799. 
Oct.  23.     (Ger.,  22.10.21.) 

Marshall.     Structural  material.     30,131.     Nov.  3. 

Pittman.     30,597.     See  XI. 

Roberts.     Portland  cement.     29,041.     Oct.  25. 

Complete  Specifications  Accepted. 
20,979(1921).    Schloesser.    Manufacture  of  mater- 
ial for  making  mortar  from  town  refuse.     (187,362.) 
Nov.  1. 


Vol.  XLI„  No.  22.] 


PATENT   LIST. 


923  a 


20,944  (1921).  Kambach.  Heat-,  cold-,  and 
water-proof  material.    (167,757.)    Nov   8 

852  (1922)  Douglas  and  Pliibbs.  Preservation  of 
wood.    (18/,o27.)    Nov.  1. 

X.-METALS;    METALLURGY,    INCLUDING 
ELECTRO-METALLURGY 
Applications. 
Barron,     Halliwell,     and     Hindley.      Hardening 
articles  ol  iron  or  steel  etc.    29,301.    Oct.  27 

British  Aluminium  Co.,  and  Gwyer.  Aluminium 
alloys.    29,785.    Oct.  31. 

^  British  Thomson-Houston    Co.   (General    Electric 
Co.).     Protecting  metals   from  corrosion.     28,835. 

Coley.  Reduction  of  ores,  oxides,  etc.  30  772  and 
30,775.    Nov.  10.  ' 

Continuous  Reaction  Co.,  and  Skelley.  Manufac- 
ture of  ferrous  alloys  and  weatherproof  articles 
therefrom.     30,023.     Nov.  2. 

Demel  and  Leighton.  Manufacture  of  gold  leaf. 
29,256-7.    Oct.  25. 

Duffield.  Basic  open-hearth  furnaces  etc.  30,925. 
Nov.  11. 

Durant  and  Sulman.  Treatment  of  ores  contain- 
ing oxide  of  copper  or  zinc.    29,516.    Oct.  28. 

Edison  Swan  Electric  Co.,  and  Percival.  28,805. 
See  II. 

Evans  and  Hamilton.  Methods  of  reducing  metals 
and  making  alloys.   30,604.   Nov.  9.   (U.S.,  23.5.22.) 

Fink.    High-temperature  alloys.    29,616.    Oct,  30. 

Gronqvist.  Cementation  of  steel  and  iron 
30,562.     Nov.  8. 

Harris.  Electrode  position  of  metal.  29,343. 
Oct.  27. 

Lijnden  and  Yermaes.  Chloridising  volatilisation 
of  metals.     30,300.     Nov.   6.      (Holland,   12.11.21.) 

Lijnden  and  Vermaes.  Obtaining  metals  from 
their  chloride  vapours.  30,301.  Nov.  6.  (Holland, 
14.11.21.) 

Moxham.  Treatment  of  siliceous  metal-bearing 
minerals.     28,919.     Oct.  24. 

Otto.  Liquid  flux  solder  for  aluminium.  30,580. 
Nov.  8. 

Reis.  Hardening  and  rustproofing  metals. 
29,272.    Oct,  26. 

Saltrick.     Iron  and  steel  alloys.    28,769.    Oct.  23. 

Sailtrick.     Nickel  alloys.     28,770.     Oct.  23. 

Saltrick.     Alloy  steels.     28,771.     Oct.  23. 

Saltrick.     Alloys.     29,193.     Oct.  26. 

Sanders.  Treatment  of  galvanisers'  waste  flux 
etc.     29,015.     Oct.  25. 

Shepperd.  Manufacture  or  treatment  of  iron  and 
steel  and  their  alloys.     30,892.     Nov.  11. 

Thompson.  Treatment  of  flux  skimmings  from 
galvanising.     29,624.    Oct.  30. 

Torrance.     Flux  for  soldering.     29,854.     Nov.  1. 

Tullis.    Recovery  of  aluminium.    29,309.   Oct.  27. 

Complete  Specifications  Accepted. 

19,052  (1921).  Aitchison.  Manufacture  of 
unstainable  steel  and  iron  or  alloys  thereof. 
(187,310.)    Nov.  1. 

19,082  (1921).  Elmore,  and  Chemical  and  Metal- 
lurgical Corp.  Production  of  lead  from  load 
sulphate.     (187,313.)     Nov.  1. 

20.320  (1921).  Greiner.  Manufacture  of  iron 
alloys  containing  silicon.     (188,049.)     Nov.   15. 

20.321  (1921).  Greiner.  Manufacture  of  alloys 
of  iron.     (187,729.)     Nov.  8. 

21,368  (1921).  Soc.  Chim.  Usines  du  Rhone. 
Coating  wires  etc.     (168,872.)    Nov.  1. 

21,568  (1921).  Rushen  (A.-G.  Felder-Clernent). 
Reduction  of  metal  oxides  by  means  of  aluminium. 
(1*7,375.)    Nov.  1. 

25,751  (1921).  Naito.  Treatment  of  magnetic 
sand  or  finelv-divided  iron  ore.     (187,810.)    Nov.  8. 

28,776  (1921).  Victoria  Iron  Rolling  Co.  Treat- 
ment of  tin-plate  scrap.     (170,861.)    Nov.  1. 


XL— ELECTRO-CHEMISTRY. 
Applications. 

British    Thomson-Houston   Co.   (General  Electric 
Co.).     Insulating  composition.     30,576.     Nov.  8 

Godfrey.     Leelanche  cells.     28,904.     Oct    24 

Haddan    (Graphitwerke    A.-G.).      Electrodes    for 
electric  furnaces.     29,378.     Oct    27 

Harris.     29,343.    See  X. 

Long.  Insulating  material.  28,889—28,891 
Oct.  24. 

Pittman.  Insulating  and  waterproofing  mater- 
ials.   30,597.    Nov.  8. 

Scott.     Electrolytic  apparatus.     28,947.     Oct.  24 

Voigt.   Electric  accumulators.    29,295-6.    Oct.  27. 

Complete  Specifications  Accepted. 

19,665  (1921).  Pouchain.  Electric  accumulators. 
(188,027.)    Nov.  15. 

_    20,254  (1921).    Thatcher.     Electrolytic-ally  oxidis- 
ing or  reducing  substances.     (188,042.)     Nov    15 

20,395  (1921).  Thatcher.  Electrolvtic'  cell. 
(188,056.)    Nov.  15. 

34,286  (1921).  Fuller's  United  Electric  Works, 
and  Welch.    Galvanic  batteries.     (187,892.)    Nov  8 

34,405  (1921).  British  Thomson-Houston  Co.' 
(General  Electric  Co.).  Electric  insulators.  (187,S93.) 
Nov.  8. 

XII.— FATS;  OILS;  WAXES. 

Applications. 

Aische.  Production  of  organic  sulphonated  oils 
of  animal  origin  etc.     28,995.     Oct    25 

Hamburg.     30,556.     See  XX. 

Boburg,  Soderlund,  Testrup,  and  Techno- 
Chemical  Laboratories.  Rendering  oils  etc.  30,917. 
Nov.  11. 

Knapp  and  Levin.     29,972.     See  XVII. 

Wilhelm  and  Wilhelm.  Oil  etc.  extractors. 
28,790.    Oct.  23. 

Complete  Specifications  Accepted. 

17,137  (1921).  Khorassany.  Manufacture  of 
soap.     (187,660.)    Nov.  8. 

18,877  (1921).  Schou.  Oleaginous  emulsifying 
materials,  and  the  manufacture  of  edible  substances. 
(187,298.)     Nov.  1. 

18,882  (1921).  Schou.  Manufacture  of  emulsions 
or  emulsifying  ingredients.     (187,299.)     Nov.  1. 

23,003  and  23,284  (1921).  Mclamid.  Manufac- 
ture of  substances  of  the  fatty  acid  type.  (169,962 
and  170,562.)    Nov.  15. 

430  (1922).  Hull  and  Steer.  Saponaceous  clean- 
ing composition.     (187,526.)     Nov.   1. 

XIII.— PAINTS;  PIGMENTS;  VARNISHES; 
RESINS. 

Applications. 

Assante.     Submarine  paint,     29,177.     Oct.  28. 
Pittman.     30,597.     See  XI. 

Complete  Specifications  Accepted. 

13,160  (1921).  Lefebvre.  Production  of  an  oil 
having  the  properties  of  oil  of  turpentine.  (188,008.) 
Nov.  15. 

20,458  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).  Inks,  water-colour  paints,  etc.  (187,732.) 
Nov.  8. 

4196  (1922).  Smidt  and  Jaeger.  Production  of 
printer's  ink.     (187,537.)     Nov.  1. 

XIV.— INDIA-RUBBER ;   GUTTA-PERCHA. 
Applications. 

Davis  and  Hester.  Treatment  of  rubber  latex. 
29,373.    Oct.  27. 

Gare.  Utilisation  of  rubber  latex.  30,874. 
Nov.  11. 


924  a 


PATENT   LIST. 


[Nov.  80, 1)22. 


Hydroloid,  Ltd.  (Exportingenieure  f.  Papier  u. 
Zellstofftechnik  Ges.).  Imitation  guttapercha  and 
leather.     29,056.    Oct.  25. 

Plauson's  (Parent  Co.),  Ltd.  (Plauson).  Colour- 
ing rubber  etc.     29,202.     Oct.  26. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Applications. 
Hydroloid,  Ltd.     29,056.    See  XIV. 
Robinson.    Process  for  plumping  leather.    29,252. 
Oct.  26. 

Complete  Specification  Accepted. 

25,705  (1921).  Renner  and  Moeller.  Manufac- 
ture of  bates  and  the  operation  of  bating.  (179,135.) 
Nov.  8. 

XVI—  SOILS;  FERTILISERS. 

Application. 

Jorgensen.  Manufacture  of  a  nitrogen-assimilat- 
ing manure.    30,569.     Nov.  8. 

Complete  Specifications  Accepted. 

11,039(1921).  Pease.  Manufacture  of  fertilising- 
material.    (187,251.)    Nov.  1. 

24,472  (1921).  Sams.  Fertiliser.  (187,423.) 
Nov.  1. 

1987  and  4966  (1922).  Rhenania  Verein  Chem. 
Fabr.,  and  Rusberg.  Rendering  soluble  crude 
phosphates.    (174,370  and  177,496.)    Nov.  8. 

XVII.— SUGARS;  STARCHES;  GUMS. 

Applications. 

Boberg,  Spiers,  and  Techno-Chemical  Laborator- 
ies.  Treatment  of  starch-containing  materials. 
30,916.    Nov.  11. 

Knapp  and  Levin.  Obtaining  high-grade  carbo- 
hydrates from  waste  fats  etc.    29,972.    Nov.  2. 

Singer.  Manufacture  of  starch.  30,337.  Nov.  6. 
(Austria,  5.11.21.) 

XVIII.— FERMENTATION  INDUSTRIES. 

Applications. 

Distillers  Co.,  and  Meyer.  Dehydrating  alcohol. 
30,143.    Nov.  3. 

Ledoga  Soc.  Anon.  Manufacture  of  enzymatic 
preparations  from  pancreas  gland.  30,481.  Nov.  7. 
(Ital.,  12.11.21.) 

Mcessen.  Manufacture  of  malt  wine.  29,223. 
Oct.  26. 

Ward  Baking  Co.  Manufacture  of  veast.  30,815. 
Nov.  10.    (U.S.,  22.3.22.) 


XIX. 


-FOODS ;  WATER  PURIFICATION  ; 
SANITATION. 


Applications. 

Aluminium  Plant  and  Vessel  Co.,  and  Tarbet. 
Sterilising  and  preserving  liquids.   30,824.   Nov.  10. 

Birch,  Simpson,  and  Simon,  Ltd.  Treatment  of 
cereals.     29,901.     Nov.  1. 

Buffa.  Preparation  of  chocolate.  29,222.  Oct.  26. 
(Fr.,  26.10.21.) 

Clayton,  and  Comp.  du  Gaz  Clayton.  Disinfect- 
ing.   30,811.    Nov.  10. 

Kirke.  Purification  of  boiler  feed  water.  30,689. 
Nov.  9. 

Complete  Specifications  Accepted. 

18,877  (1921).    Schou.    See  XII. 

19,140  (1921).  Activated  'Sludge,  Ltd.,  and 
Coombs.  Treatment  of  sewage  and  other  impure 
liquids.     (187,315.)     Nov.  1. 


19,989  (1921).  Dorr  Co.  Sewage  treatment. 
(171,361.)    Nov.  8. 

20,276  (1921).  Paterson.  Apparatus  for  chlorin- 
ating water  or  other  liquid.     (188,045.)     Nov    15. 

29,866  (1921).  Boidin  and  Effront.  Simultaneous 
production  of  demineralised  amylaceous  substances 
and  lower  nitrogenous  matter  for  food  purposes,  by 
the  use  of  tubers  or  cereals  in  whole  or  broken 
grains.     (171,991.)     Nov.  1. 

30,096  (1921).  Silver  Springs  Bleaching  and 
Dyeing  Co.  Treatment  of  certain  waste  liquors. 
(188,208.)    Nov.  15. 

XX.— ORGANIC     PRODUCTS ;     MEDICINAL 
SUBSTANCES;  ESSENTIAL  OIXS. 

Applications. 

Bamburg.    Hydrolysis.    30,556.    Nov.  8. 

Barrett  Co.  Manufacture  of  aromatic  aldehydes. 
28,836.    Oct.  23.    (U.S.,  18.11.21.) 

Fowler  and  Subrahmaniam.     29,625.    See  VII. 

Napp  (Chem.  Werke  Altstetten  A.-G.).  Manufac- 
ture of  l-phenvl-2.3-dimethyl-4-dimethylamino-5- 
pyrazolone.     29,374.     Oct.  27. 

Ricard,  Allenet,  et  Cie.  Manufacture  of  butyl 
chlorides.     30,021.     Nov.  2.     (Fr.,  28.12.21.) 

Complete  Specifications  Accepted. 

20,209  (1921).  Wade  (Lichtenthaeler).  Apparatus 
for  making  ether.     (187,347.)     Nov.  1. 

21,632  (1921).  Badische  Anilin  u.  Soda  Fabrik. 
Manufacture  of  alcohols.     (175.238.)     Nov.  15. 

29,034  (1921).  Schatzkes.  Purification  of  lactic 
acid.    (173,479.)    Nov.  15. 


XXI. 


PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 


Applications. 

Camiller  and  Hay.  Manufacture  of  multicolour 
screens,  plates,  and  films  for  colour  kineniatography. 
29,629.    Oct.  30. 

Counsell  Film  Process  and  Chemical  Co.  Treat- 
ment of  photographic  films.  30,841.  Nov.  10. 
(Australia,  22.11.21.) 

Hydroloid,  Ltd.  (Exportingenieure  f.  Papier  u. 
Zellstofftechnik  Ges.).  Sensitised  papers.  29,053. 
Oct.  25. 

Sokal  (Kalle  u.  Co.).  Light-sensitive  film  or 
layer.     30,451.     Nov.  7. 

Wadsworth  Watch  Case  Co.  Photographic 
mediums.    28,821.    Oct,  23.    (U.S.,  31.8.22.) 

Complete  Specifications  Accepted. 

27,200  (1922).  Marks  (Daylight  Film  Corp.). 
Photographic  developers.     (187,932.)     Nov.  8. 

27,334  (1922).  Marks  (Daylight  Film  Corp.). 
Production  of  cinematograph  films  etc.  (187,933.) 
Nov.  8. 

XXII.— EXPLOSIVES;  MATCHES. 

Applications. 

Barnes.  Manufacture  of  fulminate  of  mercury. 
28,788.    Oct.  23. 

Lisse.     Explosives.     29,908.     Nov.  1. 

Nobel  Industries,  Ltd.  (Du  Pont  de  Nemours  and 
Co.).     Nitration  of  cellulose.     29,092.     Oct.  25. 

XXIII.— ANALYSIS. 

Application. 
Baker,    and    Tintometer,    Ltd.      Apparatus    for 
testing  colour  of  translucent  liquids.  30,473.  Nov.  i. 

Complete  Specification  Accepted. 
23  743    (1921).      Schofield.      Optical    pyrometers. 
(188,132.)    Nov.  15. 


Vol.  XLI..  No.  23.] 


ABSTRACTS* 


[Dec.  15.  1922. 


I.-GENERAL;  PLANT;   MACHINERY. 

Humidity  equilibria  of  various  common  substances. 
R.  E.  Wilson  and  T.  Fuwa.  J.  Ind.  Eng.  Chem., 
1922,  14,  913—918. 

Data,  expressed  in  the  form  of  curves,  concerning 
the  humidity  equilibria  of  various  common  sub- 
stances are  discussed.  In  the  determination  of 
these  data,  each  substance,  in  a  finely  divided 
state,  was  brought  to  equilibrium  by  successively 
exposing  for  18  to  96  hrs.  to  a  current  of  air  of 
15,  30,  50,  70,  90,  and  100%,  and  then  of  90,  70, 
50,  30,  and  15%  relative  humidity  at  25°  C. 
Equilibrium  in  each  case  was  thus  approached 
from  both  the  saturated  and  unsaturated  state  of 
the  substance.  In  most  cases,  the  dry  weight, 
found  by  passing  air,  previously  dried  by  means 
of  phosphorus  pentoxide,  over  the  substance  heated 
to  50°  C,  agreed  closely  with  the  weight  found 
after  drying  in  an  ovon  at  105° — 110°  C.  All  the 
curves  have  the  same  general  shape,  the  water 
content  of  each  substance  rising  rapidly  in  air 
having  a  high  or  low  humidity,  and  slowly  in  air 
of  20  to  60%  relative  humidity.  Wool,  jute,  and 
silk  have  a  greater  affinity  for  moisture  than 
cotton  and  linen.  Absorbent  cotton  has  a  very 
high  affinity  for  moisture.  Cellulose  acetate  silk 
retains  less  moisture  than  viscose,  nitrocellulose, 
and  natural  silks,  which  have  similar  affinities  for 
moisture.  The  moisture  content  of  paper  increases 
with  an  increase  of  lignin  content.  Foodstuffs 
have  a  high  affinity  for  moisture,  and  tobacco  and 
leather  retain  more  moisture  than  any  other  sub- 
stance examined.  Carbon  black  and  lampblack 
have  similar  affinities  for  moisture  but  are  much 
inferior  to  activated  charcoal  and  unheated 
gelatinous  silica  as  absorbents  for  moisture.  Finely 
divided  inorganic  substances  such  as  kieselguhr, 
kaolin,  asbestos,  and  glasswool,  have  characteristic 
low  absorptive  capacities  for  moisture.  The 
increased  drying  effect  of  warm  air  is  chiefly  due  to 
the  resulting  decrease  of  its  relative  humidity,  and 
the  moisture  contents  of  substances,  exposed  over 
the  ordinary  range  of  indoor  and  outdoor  tempera- 
tures, changes  but  slightly  provided  that  the 
relative  humidity  of  the  surrounding  air  is 
constant. — A.  J.  H. 

Materials      of      low     thermal     conductivity.       E. 

Griffiths.       Faraday    Soc,     16.10.22.      [Advance 

proof.] 
The  ideal  material  for  use  as  an  insulator  from  a 
cold-storage  engineer's  point  of  view  is  stated  to 
consist  of  a  light  substance,  having  an  assemblage 
of  minute  cells  enclosed  in  a  framework  which  is 
impervious    to   moisture,    since   water    has  a  very 
high  thermal  conductivity  and  is  liable  to  set  up 
decomposition  in  substances  of  organic  origin.   The 
paper  gives  the  results  of  a  series  of  investigations 
carried  out  on  expanded  rubber  (a  rubber  converted 
into  a  highly  cellular  form  and  having  an  exceed- 
ingly low  density),  balsa  wood  (a  very  light  wood 
obtained  from  Ecuador),  the  fibrous  waste  from  a 
tree    known    as    "  Kingia   Australis,"    mats    made 
from  cured  eel  grass  sewn  between  sheets  of  strong 
paper,  and  compressed  peat,  with  a  view  to  ascer- 
tain if  these  materials  would  be  suitable  for  cold- 
storage    insulation.       The    values    found    for    the 
thermal   conductivity,    expressed    in    B.Th.U.    per 
sq.  ft.  per  hr.  for  1  in.  thickness  and  1°  F.  differ- 
ence    in     temperature,     were: — expanded     rubber 
clippings,  0342  and  0308  for  packing  densities  of 
26  and  4'0  lb.  respectively  per  cub.  ft. ;  balsa  wood, 
0'329  and  0377  for  2-in.  boards  weighing  575  and 

*  The  illustrations  in  the  abstracts  marked  *  are  reproduced 
from  the  Illustrated  Official  Journal  (Patents),  by  kind 
permission  of  the  Controller  of  H.M.  Stationery  Office. 


86  lb.  respectively  per  cub.  ft. ;  Kingia  wood  waste, 
0-339  for  a  packing  density  of  84  lb.  per  cub.  ft.; 
eel  grass  mats,  0316  and  0'341  for  packing  densi- 
ties of  94  lb.  and  134  lb.  respectively  per  cub.  ft. ; 
compressed  peat,  0512  and  0'502  for  specimens 
weighing  20  lb.  and  29'5  lb.  respectively  per  cub.  ft. 
Before  an  opinion  can  be  expressed  on  the  merits 
of  expanded  rubber  or  eel  grass  mats  the  author 
considers  that  a  long  period  test  under  service 
conditions  will  be  required,  and  points  out  that  the 
thermal  conductivities  of  insulating  materials  in 
general  are  not  invariable  physical  constants. 

— S.  G.  U. 
Pseudo-extraction;   IVinkelblech's   phenomenon   or 

.       New   methods   of   extracting   solids.      K. 

Charitschkov.     J.  Russ.  Phys.-Chem.  Soc,  1920, 

52,  96—107. 

When  certain  pseudo-solutions,  such  as  those  of 
gelatin,  agar-agar,  and  sodium  oleate,  are  treated 
with  various  non-aqueous  solvents  insoluble  in 
water,  the  solid  disperse  phase  passes,  partially  or 
completely,  into  the  liquid,  non-aqueous  phase  in 
the  form  of  a  gel.  It  is  suggested  that  this 
phenomenon,  to  which  is  given  the  name  "  pseudo- 
extraction,"  may  find  technical  application  in  such 
operations  as  soap  boiling  and  the  extraction  of 
gelatin  and  glue  from  jellies.     (67.  J.C.S.,  Dec.) 

— T.  H.  P. 

Liquid    films    formed     on     solid     surfaces     under 
dynamic    conditions;    Thickness    of    ■.     Re- 
search   Staff   of    General    Electric    Co.,    London 
(F.  S.  Goucher  and  H.  Ward).    Phil.  Mag.,  1922, 
44,  1002—1014. 
The  thickness  of  the  film  is  dependent  on  the  shape 
of  the   solid  on   which   it   is   formed.     For   a   flat 
slab  of  infinite  thickness  the  relationship  between 
the   thickness   (t),    gravity    (g),    the    viscosity   (tj), 
density     (/>),     and     velocity     of     drawing     (v„)     is 
t2  =  2v07j/   p  g.      If   the   solid  is   in  the   form  of  a 
fine    wire    of    radius,    r,    the    surface    tension    is 
dominant,    and   gravity   negligible.     In   this  case, 
t/r  =  4'8i;v0/y,    where    y    is    the    surface    tension. 
These     equations     apply     to    suspensions     if     the 
diameter  of  the  particles  does  not  exceed  the  thick- 
ness of  the  film.    If  the  liquid  wets  the  surface,  the 
solid  does  not  exert  any  specific  action. — W.  E.  G. 

Discharge     of    air     through     small     orifices,     and 
entrainment  of  air  by  the  issuing  jet.     J.  S.  G. 
Thomas.     Phil.  Mag.,  1922,  44,  969—988. 
An  investigation  into  the  effect  of  variation  in  the 
diameter  of  orifice  and  length  of  channel  of  down- 
wardly directed  jets,  on  the  rate  of  flow  and  on  the 
entrainment  of  air.     The  variation  in  the  rate  of 
discharge  with  the  gas  pressure  can  be  represented 
by  the  equation  Q  =  A'e«,  where  A'  and  a  are  con- 
stants.    In  the  case  of  thin  discs,  with  orifices  of 
diameter  not  less   than   three  times  the  thickness 
of  the  plate,  the  discharge  of  air  is  given  by  the 
formula,  v,1='"",d'-,M  e°-»2.       With   thick  discs,   as 
the  diameter  of  the  channel   decreases,   the   value 
of  o  increases.     For  low  pressures,  the  volume  of  air 
entrained  increases  linearly  with  the  gas  pressure, 
followed   by   a   subsequent   increase   at   a  continu- 
ously  decreasing   rate.       Anomalous   behaviour    is 
observed  with  thick  discs.    The  jet  becomes  unstable 
over    a   certain    range    of   pressures,    the    volume- 
pressure    curve    showing    an    inflexion.      This    in- 
stability is  clearly  demonstrated  when  the  volume 
of  air  entrained  per  unit  of  air  of  the  issuing  jet 
is   plotted   against   the   pressure   of   the    gas.       A 
diminution    in    the   size   of   the    orifice    is    accom- 
panied by  a  greater  air  entrainment  up  to  a  critical 
value  of  the  diameter,   at  which  point  turbulence 
is   impressed   on   the   gas  on  entering   the   orifice. 
With  decreasing  diameter  and  constant  length  of 
channel     the     disturbance     increases,     but     with 


920  a 


Cl.  I.— GENERAL;    PLANT;    MACHINERY. 


[Dec.  15,  1922. 


constant     diameter     and     increasing     length     of 
channel  the  anomaly  becomes  less  marked. 

— W.  E.  G. 

Evaporation     of     solvents.       Wolff     and     Dorn. 

See  XIII. 
Measurement      of     loiv     temperatures.      Darling. 

See  XXIII. 
Thermometric  lag.  Griffiths  and  Awbery.  See  XXIII. 

Patents. 

Absorption  and  purification  of  gases  and  vapours. 
R.  Adler.  E.P.  165,451,  27.6.21.  Conv.,  28.6.20. 
The  gaseous  substances  on  entering  the  absorption 
or  purifying  chamber,  instead  of  coming  in  contact 
with  atomised  sprays  of  liquid,  are  made  to  flow 
between  sheets  of  liquid  arranged  at  convenient 
distances  apart.  These  sheets  are  broken  at  suit- 
able places  to  permit  the  gas  to  flow  from  the 
space  below  to  the  space  above  the  sheet.  With 
chambers  of  square  or  rectangular  cross-section  the 
liquid  issues  as  thin  continuous  sheets  from  a  set  of 
horizontal  parallel  pipes  fixed  on  or  near  the  side 
walls  of  the  chamber.  The  issuing  pressure  is  such 
that  each  sheet  can  completely  span  the  chamber. 
Passages  for  the  gas  across  the  sheets  are  made  by 
suitably  placed  projections  fixed  a  short  distance 
from  the  opposite  wall.  Sometimes  a  second  set  of 
pipes  is  mounted  on  the  opposite  wall,  in  such  a 
manner  that  sheets  of  liquid  from  them  flow  in  the 
opposite  direction  to,  and  between  the  sheets 
issuing  from,  the  first  set.  In  this  case  each  pipe 
is  fitted  with  a  guard  placed  between  the  pipe  and 
the  wall  and  so  arranged  that  the  sheet  of  liquid 
issuing  from  the  opposite  pipe  immediately  above 
meets  the  outer  surface  of  this  guard  tangentially 
sind  then  falls  as  a  continuous  sheet  to  the  bottom 
of  the  chamber.  The  space  between  the  guard  and 
the  pipe  forms  the  passage  through  which  the  gas 
flows  in  passing  from  the  lower  to  the  upper  gas 
space.  In  the  cylindrical  type  of  chamber  the 
liquid  is  introduced  through  a  central  pipe  which  is 
fitted  with  a  number  of  annular  slotted  nozzles 
which  produce  a  series  of  parallel  sheets  of  liquid. 
Adjustable  pins  can  be  fixed  so  that  each  sheet  can 
be  broken  at  a  suitable  point  and  communication 
thus  provided  between  the  spaces  above  and  below 
the  sheet.— S.  G.  U. 

Corrosion  in  evaporating  and  distilling  apparatus; 

Method    of    and    means    for    preventing    . 

Akt.-Ges.   Kummler  und  Matter.     E.P.   166,129, 

4.7.21.  Conv.,  7.7.20. 
The  presence  of  minute  traces  of  acids  in  the 
vapours  from  evaporators  produces  a  large  amount 
of  corrosion,  especially  in  pumps,  compressors,  etc., 
and  it  is  proposed  to  make  these  vapours  alkaline, 
not,  as  hitherto  suggested,  by  neutralising  the 
solutions  to  be  concentrated,  but  by  neutralising 
the  vapours  given  off  by  the  acid  solutions. 
This  is  done  by  introducing  the  alkali  in 
an  atomised  state  either  into  the  steam 
space  of  the  evaporators,  or  at  an  intermediate 
point  between  the  evaporator  and  the  pump,  or 
at  the  pump  or  compressor.  For  thorough  mixing 
baffle  plates  are  usually  provided  in  the  mixing 
chamber  and  provision  is  made  for  the  return  of 
the  excess  of  alkali  to  the  alkali  feed  tank.  When 
it  is  known  that  a  salt  solution  of  a  certain  concen- 
tration produces  vapours  of  an  acid  reaction  and 
at  another  degree  of  concentration  vapours  of  an 
alkaline,  nature,  the  invention  provides  for  a 
thorough  mixing  of  these  vapours,  without  the 
further  addition  of  alkaline  substances. — S.  G.  U. 

Lixiviation;  Method  of  and  apparatus  for  . 

R.  Adler.  E.P.  166,525,  2.7.21.  Conv.,  13.7.20.* 
The  material  to  be  lixiviated  by  solvents,  with  the 
addition    of    gases    if    desired,    is    fed    into    the 


charging  hopper,  a,  from  which  it  passes  by  a  small 
worm  conveyor  into  the  container,  1  which  is 
provided  with  an  outlet,  o,  to  permit  of  the  escape 
of  the  displaced  air  or  unabsorbed  gases.  The 
bottom  of  this  container  is  connected  to  the  upper 
end  of  the  highest  of  three  inclined  tubes,  b,  which 


are  connected  at  their  adjacent  ends  by  trunks,  c, 
and  are  provided  with  worm  conveyors  which  can 
be  adapted  to  permit  of  heating  the  material  as  it 
passes  through  the  tubes  if  desired.  The  material 
after  passing  in  turn  through  each  of  these  three 
reaction  tubes  is  discharged  at  the  lowest  point  of 
the  third  tube  into  the  lowest  point  of  a  fourth 
inclined  tube,  f,  also  fitted  with  a  worm  conveyor, 
which  finally  ejects  the  lixiviated  material  at  g. 
The  solvent  is  fed  into  the  top  of  the  tube,  f, 
through  h,  and  the  gases  are  introduced  into  the 
lowest  tube,  b,  by  the  pipe,  k.  The  final  separation 
of  the  gas  from  the  solvent  is  effected  in  j.  Any 
gas  which  is  not  absorbed  by  the  solvent  or  is 
produced  during  lixiviation  ultimately  enters  1  and 
is  carried  off  through  o. — S.  G.  U. 

Drying  systems.     S.  Buxton.     E.P.  186,370,  2.5., 
11.5.  and  13.6.21. 

Hot  gases  from  boilers  are  delivered  by  a  special 
flue  into  the  first  of  a  series  of  chambers  in  which 
the  dryers  are  erected.  Through  these  they  may 
flow  in  turn  either  parallel  to  or  across  the  axes  of 
the  drying  tubes.  With  stationary  dryers  these 
chambers  are  usually  provided  with  tubes  to  heat 
the  air  admitted  to  the  dryers.  With  the  rotary 
type  the  gases  after  leaving  the  chambers  enter 
another  chamber  containing  pipes  through  which 
the  air  is  circulated,  and  then  pass  through  another 
chamber  containing  an  economiser  before  entering 
the  chimney.  When  the  material  to  be  dried  gives 
off  obnoxious  vapours,  the  air  and  vapours  after 
leaving  the  dryers,  pass  to  a  condenser,  and  after 
the  condensation  of  the  moisture  the  air  is  dis- 
charged into  the  boiler  furnace.  If  deodorisation 
is  unnecessary  the  hot  air  and  vapours  can  lie 
discharged  directly  into  the  atmosphere.  The 
drying  chambers  may  be  either  stationary  or 
rotary.  In  both  cases  each  chamber  consists  of 
two  coaxial  shells  forming  a  closed  annular  space 
which  is  itself  totally  surrounded  by  the  chamber 
through  which  the  flue  gases  pass.  Boiler  steam 
is  admitted  to  this  annular  space,  any  condensed 
steam  being  removed  by  suitable  devices  at  the 
lower  end  of  the  drying  tubes.  The  stationary  type 
of  dryer  is  fitted  with  a  worm  conveyor,  and  the  inner 
surface  of  the  rotary  tube  type  with  a  series  of 
blades,  to  convey  the  material  from  the  higher  (the 
charging)  to  the  lower  (the  discharging)  end  of  the 
dryer.  A  centrally  placed  steam  pipe  provided 
with  radial  branches  conveys  steam  to  the  annular 
space  in  the  rotary  type  of  dryer.  The  dryers  are 
given  a  slight  inclination  and  provided  at  each  end 
with  covers  to  which  are  attached  the  gears  tor 
admitting  the  wet  and  removing  the  dried 
material,   and  the  pipes  for  admitting  and  with- 


Vol.  XLI.,  No.  23.] 


Cl.  IIa.— FUEL;    GAS,    MINERAL  OILS  AND  WAXES. 


927  a 


drawing  the  air  used.  This  hot  air  passes  through 
the  dryer  in  the  opposite  direction  to  the  material. 

— S.  G.  U. 

Drying    apparatus.       P.     Scrive.       E.P.     186,548, 
28.13.21.' 

A  rotary  drying  apparatus  is  constructed  of 
plates,  o,  p,  which  form  the  walls  and  buckets  of 
a  rotating  prism,  one  form  of  which  is  shown  in 


sectional    view    in    the    figure.     The    drying   gases 
are  withdrawn  through  the  hollow  shaft. — B.  M.  V. 

Drying  apparatus.  J.  E.  Boiling,  Assr.  to  Drying 
Systems,  Inc.  TJ.S.P  (a)  1,431,145  and  (b) 
1,431,146,  10.10.22.  Appl.,  20.4.18  and  6.6.19. 
(a)  A  fan  is  arranged  to  blow  a  current  of  air 
through  a  heater  into  the  drying  chamber,  from 
which  it  enters  a  pipe  communicating  with  the 
suction  of  the  fan.  This  pipe  is  provided  with  an 
inlet  and  an  outlet  branch,  each  of  these  branches 
and  the  pipe  itself  being  fitted  with  dampers, 
coupled  together  so  that  they  can  be  operated 
simultaneously.  The  pipe  damper  is  placed 
between  the  inlet  and  the  outlet  branches  and 
operates  in  the  opposite  direction  from  the 
dampers  in  these  branches.  A  thermostatic  control 
placed  between  the  drying  chamber  and  the  pipe 
damper  adjusts  the  positions  of  the  dampers  in 
accordance  with  the  fall  in  temperature  in  the 
drying  chamber,  (b)  In  a  similar  plant  to  that 
described  above,  the  thermostatic  motor  is  placed 
between  the  inlet  pipe  and  the  fan,  and  has  con- 
nexions for  adjusting  the  dampers  according  to 
the  temperature  changes  in  the  conduit  near  the 
motor. — S.  G.   U. 

Crushing   or   reducing    minerals,    ores,    and    other 

materials ;    Machines   for   .     W.    E.    Bleloch 

and  H.  A.  Stockman.  E.P.  186,693,  1.7.21  and 
7.2.22. 
At  each  end  of  a  strong  rectangular  frame  are 
mounted  two  anvils  capable  of  being  adjusted  by 
wedge  bolts.  The  frame  itself  is  supported  near 
these  ends,  the  bottom  of  the  supports  being 
designed  as  pivot  points  for  four  bars  attached  to 
the  four  pitmen  operating  on  the  anvils.  Two 
cylinders  having  their  axes  parallel  to  the  side  of 
the  frame  are  placed,  one  between  each  pair  of  pit- 
men, and  are  rigidly  bolted  to  the  frame.  Each 
cylinder  is  provided  with  a  hammer  piston,  suitably 
grooved  to  prevent  leakage  and  retain  lubricant. 
At  either  end  of  each  cylinder  is  fitted  an  impact 
block,  enlarged  and  rounded  at  its  outer  end  where 
it  strikes  the  pitman,  but  reduced  at  the  inner  end 
where  it  receives  the  blows  of  the  hammer  piston. 
A  valve  casing  having  suitably  arranged  ports  and 
passages  forms  part  of  the  cylinder  casting.  The 
valve  controlling  the  admission  and  release  of  the 
driving  fluid  to  the  cylinders  is  fixed  to  a  vertical 
spindle,  and  is  given  a  rocking  motion  by  an 
eccentric  mounted  on  a  belt-driven  horizontal  shaft 


carried  on  the  frame  of  the  machine.  The  upper 
ends  of  the  pitmen  at  the  ends  of  each  cylinder  are 
connected  together  by  a  rod  provided  with  a 
resilient  coupling,  which  absorbs  shock  or  stress 
between  the  pitmen  during  the  operation  of  the 
machine  and  also  permits  of  adjustments. — S.  G.  U. 

Pulverising  apparatus.  Pulverising  material. 
R,  E.  H.  Pomeroy.  U.S. P.  1,431,251—2,  10.10.22. 
Appl.,  (a)  19.11.21,  and  (b)  16.1.22. 

(a)  A  perforated  rotating  shell  is  partly  filled  with 
balls.  An  exhaust  fan  maintains  a  current  of  air 
through  the  shell,  the  air  entering  and  leaving 
through  the  peripheral  perforations,  (b)  Sets  of 
the  apparatus  described  in  (a)  are  arranged  in  series, 
the  air  passing  from  one  mill  to  the  next. — T.  A.  S. 

iinguishing  liquid  and  method  of  using 
same.  S.  H.  Hamilton.  U.S. P.  1,431,789, 
10.10.22.     Appl.,  1.9.21. 

A  liquid  containing  a  soluble  silicate  and  a  froth- 
ing material  is  injected  below  the  surface  of  the 
burning  liquid.  An  inert  gas  under  pressure 
causes  the  quenching  liquid  to  rise  to  the  surface 
of  the  burning  liquid  and  there  form  an  incom- 
bustible foam. — S.  G.  U. 

Drying   materials  carrying  a  volatile  inflammable 

solvent;  Apparatus  for  and  for  recovering 

such  solvent.  Dunlop  Rubber  Co.,  Ltd.  From 
W.  K.  Lewis  and  W.  Green.  E.P.  181,100, 
4.3.21. 

See  U.S.P.  1,371,914  of  1921;  J.,  1921,  289  a. 

Centrifugal  separators.  S.  H.  Hall.  E.P.  183,133, 
12.7.22.     Conv.,  15.7.21. 

See  U.S.P.  1,411,782  of  1922;  J.,  1922,  358  a. 

Stills.     N.  Bologa.    E.P.  187,007,  9.7.21. 

See  U.S.P.  1,377,520  of  1921 ;  J.,  1921,  535  a 

'Rotary    dryers,    kilns,    furnaces,    retorts,    and    the 

hie;   ])iseltar<iiiuj   or  charging  devices  for  . 

F.  D.  Marshall.    E.P.  186,974,  13.6.21. 

Mixing  and  other  purposes;  Apparatus  for 
regulating  the  feed  of  finely  divided  substances 
for .     E.  Whitehead.    E.P.  187,029,  13.7.21. 

Separating  fine  material;  [Pneumatic]   method  of 

mid     apparatus     for    .       G.     Roth.       E.P. 

187,381,  15.8.21. 

Fire  -  extinguishing  materials.  G.P.  358,572. 
See  XII. 

Optical  pyrometer.     G.P.  357,975.    See  XXIU. 


IIA.-FUEL;    GAS;    MINERAL  OILS  AND 
WAXES. 

Coal-  Classification  of .     S.  W.  Parr.     J.  Ind 

Eng.  Cheni.,  1922,  14,  919—923. 

A  trsEFtn.  summary  of  the  properties  of  any  coal  i> 
given  by  the  calorific  value  and  the  ratio  of  volatile 
matter  to  fixed  carbon,  if  these  are  calculated  on 
the  pure  coal  substance  ("  unit-coal  ")  with  ash, 
moisture,  and  pyrites  deducted.  The  formula: 
Heat  value  for  "  unit-coal  "  = 

indicated  B.Th.U.  -5000S 

1-00- (1-08  ash+22/4US) 

("  ash  "  is  weight  of  ash  from  1  gram  of  coal; 

S  is  per  cent,  of  sulphur) 

has  been  confirmed  by  comparison  of  results 
from  coals  of  similar  origin  but  of  different  ash 
and  sulphur  contents.  In  this  the  factor  1'08  is  a 
correction  for  the  volatile  matter  driven  off  from 

a2 


923  a 


Cl.   IIa.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


(Dec.  15,  1922. 


the  ash  on  ignition.  5000  S  is  the  heat  derived 
from  combustion  of  sulphur,  and  the  quantity 
22/40  S  includes  an  arbitrary  correction  for  non- 
pyritic  sulphur.  The  quantities  are  determined  on 
the  dried  coal.  Similarly  the  "  unit  fixed  carbon  " 
is  given  by  the  formula, 

fixed  carbon  as  determined 
1-00- (1-08  ash  +  22/40~S) 

the  factors  requiring  correction  affecting  only  the 
volatile  matter.  The  classification  of  coals  as 
regards  these  two  quantities  can  be  conveniently 
shown  by  points  on  a  two-dimension  diagram. 

— C.  I. 

Coke;  Shatter  and  tumbler  tests  for  metallurgical 

.      S.  P.  Kinney  and  G.  St.  J.  Perrot.      J. 

Ind.  Eng.  Chem.,  1922,  14,  926—931. 

The  shatter  test  for  hlast-furnace  coke  in  which 
50  lb.  of  the  material  is  dropped  6  ft.  on  to  a  steel 
plate,  and  the  percentage  remaining  on  a  2-in. 
screen  ascertained,  gives  results  concordant  to 
1 — 3%.  The  sample  should  be  composed  of  pieces 
of  a  standard  size,  and  large  pieces  about  halt  the 
width  of  the  oven  are  suggested.  More  reliable 
results  are  given  by  using  four  screens  of  dimen- 
sions 2  in.  down  to  J  in.  The  tumbler  test, 
in  which  the  sample  is  placed  in  a  revolving  drum 
and  rotated  a  given  number  of  times,  was  designed 
to  measure  the  resistance  of  coke  to  abrasion  in 
passing  down  the  blast  furnace.  This  it  fails  to  do, 
as  the  proportion  of  the  coke  remaining  on  a  J-in. 
screen  is  largely  determined  by  the  size  of  the 
pieces  in  the  tumbler  after  a  few  rotations,  i.e., 
their  resistance  to  impact.  If  small  coke  (pieces 
025 — 0'75  in.)  be  used  different  cokes  give  very 
similar  results,  and  this  test  appears  to  be  of  no 
value. — C.  1. 

Woods;  Calorific  values  of  American  .     S.  W. 

Parr  and  C.  N.  Davidson.     J.  Ind.  Eng.  Chem., 
1922,    14,   935—936. 

Samples  of  wood  can  be  dried  in  air  at  105°  C. 
without  appreciable  loss  of  constituents  other  than 
water,  the  weights  being  constant  after  3  hrs. 
Samples  of  dried,  well-seasoned  woods  contained 
8'8 — 10"7%  of  moisture  as  determined  by  this 
method,  and  the  calorific  values  of  the  dried 
samples  ranged  from  8448  B.Th.TJ.  (hickory)  to 
8836  B.Th.TJ.  (pine).— C.  I. 

Acetylene     and     ammonia;     Formation     of     

during  incomplete  combustion.  K.  A.  Hofmann 
and  E.  Will.  Ber.,  1922,  55,  3228—3233. 
The  gaseous  products  of  an  inverted  air  flame 
burning  in  the  vapours  of  various  organic  sub- 
stances have  been  investigated  by  means  of  an 
apparatus  in  which  the  air  supply  is  so  adjusted  that 
the  flame  just  burns  continuously.  The  following 
quantities  of  acetylene  (in  grams)  are  obtained  by 
the  decomposition  of  100  g.  of  the  organic  com- 
pound :  benzene,  5;  phenol,  44;  aniline,  2-5; 
diphenylamine,  2"7;  carbazole,  2"4;  pyridine,  17; 
anthracene,  P6;  anthracene  residues,  024;  coal 
tar,  4;  middle  oil  from  Rositz  lignite  tar,  1; 
benzoquinone,  1;  hexane,  2.  The  formation  of 
acetylene  is  partly  due  to  thermal  action,  but 
oxidative  degradation  also  plays  a  part,  as  is 
proved  by  the  production  of  the  gas  from  hexane. 
Hydrocyanic  acid  is  also  present  in  the  gases 
(100  g.  of  aniline,  carbazole.  diphenylamine,"  and 
pyridine  yield  respectively  iip  to  3,  15,  15  g., 
and  a  trace  of  hydrocyanic  acid).  Ammonia  is 
formed  to  a  slight  extent  during  the  combustion 
ot  air  charged  with  a  number  of  catalysts  in 
hydrogen,  coal  gas,  or  benzene  vapour.  Hydrogen 
arsenide,  chromyl  chloride,  and  silicon  tetra- 
chloride   impede    its    production,    which    is   facili- 


tated by  osmium  tetroxide  and  the  osmium  formed 
therefrom  and,  in  particular,  by  nickel  carbonyl. 
The  action  of  the  carbonyl  (from  which  metallic 
nickel  is  produced)  appears  to  indicate  that 
the  effect  is  due  to  catalytic  hydrogenation 
of  the  nitrogen  and  not  to  an  influence  of  the 
flame  ions.  The  carbon  liberated  from  benzene 
or  coal  gas  favours  the  production  of  ammonia, 
possibly  owing  to  the  intermediate  formation  of 
hydrogen  cyanide.  The  yields  of  ammonia  are  not 
improved  noticeably  by  bringing  volatile  salts, 
such  as  sodium  or  lithium  carbonates,  into  the 
flame,  by  spreading  the  flame  over  a  porous  clay 
surface  impregnated  with  various  salts,  or  by 
placing  an  inverted  mantle  over  the  orifice  of  the 
burner. — H.  W. 

Sulphur  •  Recovery  of from  spent  gas-purifying 

material  by  means  of  tetralin.      R.  Kattwiukel. 
Brennstoff-Chem.,  1922,  3,  310—311. 

Many  solvents  which  have  been  proposed  from  time 
to  time  for  the  recovery  of  sulphur  from  spent  oxide 
either  have  been  too  dear  or  have  given  a  dirty 
sulphur  due  to  their  solvent  action  on  tarry 
substances.  Tetralin  (tetrahydronaphthalene), 
b.p.  203°— 205°  C,  flash  point  79°  C,  dissolves  3% 
of  its  weight  of  sulphur  at  normal  temperatures  and 
40%  at  100°  C.  On  this  account,  by  careful  cooling, 
the  sulphur  can  be  produced  in  the  form  of  fine 
crystals,  all  tarry  matter  being  left  in  the  mother 
liquor.  The  sulphur  recovered  is  clear  yellow  and 
crystalline,  burning  without  residue,  and  melting  in 
an  open  tube  at  119°  C.  After  extraction,  the  mass 
is  treated  with  hot  air  in  order  to  vaporise  any 
tetralin,  and  is  then  ready  for  further  use.— A.  G. 

Petroleum  oils;  Sulphur  compounds  and  oxidation 

of  .     C.   E.   Waters.     J.   Ind.   Eng.  Chem., 

1922,  14,  725—727. 

In  a  carbonisation  test  oils  were  heated  to  250°  C. 
in  contact  with  air  for  2£  hrs.,  diluted  with 
petroleum  ether,  and  the  precipitate  filtered  off  and 
weighed.  Oils  of  low  6ulphur  content  had  usually 
low  carbonisation  values  and  vice  versa.  Sulphur 
compounds  are  contributory  to  rapid  oxidation.  A 
considerable  part  of  the  sulphur  is  found  in  the 
asphaltic  matter  precipitated  by  the  addition  of 
petroleum  ether  to  the  oxidised  oil.  A  steam 
turbine  sludge  was  found  to  contain  0'33%  of 
sulphur,  or  0'65%  on  an  oil-free  basis.  The  oil-free 
deposit  from  a  transformer  contained  0'57%  of 
sulphur.  Oil-free  samples  of  carbon  from  an 
internal-combustion  engine  contained  0'52%  to 
3'08%  of  sulphur.  The  carbon  residue  from  a  coke 
test  contained  a  higher  percentage  of  sulphur  than 
the  unheated  oil.  Precipitates  from  oils  exposed 
for  100  hrs.  to  sunlight  and  air  contained  consider- 
able percentages  of  sulphur,  roughly  proportional  to 
the  sulphur  content  of  the  original  oil. — H.  M. 

Petroleum    [and    other']     oils;     Determination    of 

absolute  viscosity  of .     W.  H.  Fulweiler  and 

C.  W.  Jordan.      J.  Ind.  Eng.   Chem.,  1922,   14, 
723—724. 

Petroleum,  animal  and  vegetable  oils  show  changes* 
in  viscosity  after  standing  in  glass  viscosimeters  for 
24  hrs.,  but  further  standing  for  several  weeks  does 
not  effect  any  considerable  further  change.  Experi- 
ments were  made  on  viscosimeters  of  the  Bingham 
and  Green  type,  in  one  of  which  the  capillary  was 
24  cm.  long  and  0'416  mm.  in  diam.,  and  in  another 
10  cm.  long  and  0918  mm.  in  diam.  Temperatures 
constant  within  0005°  were  obtained.  A  highly 
refined  white  oil  showed  a  decrease  in  viscosity  of 
0'54%  after  standing  for  24  hrs.,  and  after  two 
months,  a  decrease  of  0'43%.  A  reddish  filtered 
petroleum  oil  showed  an  increase  of  0'42%  in 
24  hrs.,  and  the  same  increase  after  standing  for 
5  weeks.     A  sample  of  an  unfiltered  oil  exposed  to* 


Vol.  XLI.,  No.  23.] 


Cl.    Ha.— FUEL;    GAS;    MINERAL   OILS   AND   WAXES. 


929  a 


•  with  the  tempera- 
Ind.   Eng.   Chem., 


light    showed    an    increase   of    1  %    over    a   similar 
sample   kept   in   the   dark.      Castor  oil   showed   an 
increase  of  033%   after  standing  for  24  hrs.,  lard 
oil  a  decrease  of  0'3%. — H.  M. 
Viscosity  of  oils;  Change  in 

ture.      W.   H.   Herschel. 

1922,  14,  715—723. 
For  petroleum  products  with  a  viscosity  less  than 
that  of  water,  fluidity  =  l  /^  =  A  +  Bt  (cf.  Dean  and 
Lane,  J.,  1921,  726  a).  This  equation  indicates  a 
straight  line  relation.  The  fluidity-temperature 
graphs  for  some  of  the  aliphatic  hydrocarbons  and 
other  very  fluid  liquids  have  a  curvature  which 
decreases  as  the  viscosity  decreases.  The  straight 
line  graph  are  more  convenient  for  extrapolation. 
Fluidity-temperature  equations  are  applicable  to 
definite  chemical  compounds  of  low  viscosity.  There 
is  considerable  doubt  as  to  what  form  of  equation 
best  applies  to  oils  of  high  viscosity.  Slotte's 
formula  (Beibl.  Ann.  Physik.,  1892,  16,  182),  if  it 
be  assumed  that  the  temperature  coefficient  is  small, 
may  be  simplified  to  /i  =  AI  (1  +  at  +  bt2).  The  log- 
arithmic viscosity-temperature  diagram,  using 
Fahrenheit  degrees,  gives  practically  straight-line 
curves  for  oils  of  medium  viscosity,  and  these  curves 
meet  approximately  at  a  point.  In  such  a  diagram 
for  naphthene  base  oils  most  of  the  graphs  are  fairly 
straight,  with  the  exception  of  those  for  fuel  oils 
from  Mexico  and  Persia,  the  former  showing  marked 
viscosity  hysteresis,  a  phenomenon  characteristic  of 
colloids,  the  presence  of  which  is  probably  the  cause 
of  the  curvature  of  graphs  for  fuel  oils.  Most 
mineral  oils,  especially  refined  lubricating  oils,  show 
approximately  straight  line  graphs.  Narrowness  of 
cut  does  not  influence  the  slope  of  the  graphs. 
Graphs  of  fatty  oils  are  generally  more  curved  but 
less  steep  than  those  of  mineral  oils.  The  viscosities 
of  different  samples  of  castor  oil  and  rape-seed  oil 
vary  considerably. — H.  M. 

Lubrication;    Mechanism    of    .      Methods    of 

measuring  the  property  of  oiliness.  R.  E.  Wilson 
and  D.  P.  Barnard.  J.  Ind.  Eng.  Chem.,  1922, 
14,  682—695. 
The  coefficient  of  friction,  /,  of  a  journal  bearing  is 
a  function  of  at  least  nine  variables,  and  can  only 
be  a  function  of  the  combination  of  these  variables  in 
such  forms  that  all  dimensions  are  cancelled  out. 
Therefore  the  following  formula  may  be  used : 
f  =  $  (znjpxc/dxlldxSxMxO),  where  z  is  the 
viscosity  of  the  lubricant,  n  the  revolutions  per 
minute,  p  the  pressure  on  bearing,  c  diametrical 
clearance  on  bearing,  d  diameter  of  journal,  I  length 
of  bearing,  S  surface  condition  of  bearing,  M 
method  of  oiling,  and  O  the  "  oiliness  "  factor  of 
the  lubricant.  The  first  factor,  znjp,  includes  the 
only  three  important  variables  involved  in  making 
tests  on  a  given  bearing  under  varying  conditions. 
In  curves  obtained  by  plotting  observed  values  of 
/  against  znjp  for  two  different  bearings  there  can 
be  distinguished  a  region  of  perfect  fluid  film  lubri- 
cation, in  which  the  friction  coefficient  is  roughly 
proportional  to  znjp;  a  critical  point  of  minimum 
friction  where  the  speed  or  viscosity  becomes  so  low, 
or  the  pressure  so  high,  that  the  fluid  film  begins 
to  rupture;  and  a  region  of  partial  lubrication  in 
which  there  is  increasing  friction  as  znjp  decreases 
below  its  critical  value.  The  safe  average  operating 
value  of  znjp  should  be  obtained  by  multiplying  its 
value  at  the  critical  point  by  a  factor  of  safety  of 
about  5.  In  the  region  of  fluid  film  lubrication  /  is 
a  function  of  znjp;  the  oiliness  of  the  lubricant  and 
the  nature  of  the  bearing  metal  have  no  effect,  nor 
has  the  method  of  oiling,  so  long  as  the  bearing  is 
filled.  In  the  region  of  partial  lubrication  the 
oiliness  of  the  lubricant  is  more  important  than  its 
viscosity,  the  nature  of  the  metal  plays  an  important 
part,  and  /  is  not  necessarily  a  function  of  znjp. 
The  "  oiliness  "  of  a  lubricant  is  the  property  which 


causes  one  fluid  to  give  lower  coefficients  of  friction 
(generally  at  slow  speeds  or  high  loads)  than  another 
fluid  of  the  same  viscosity.  The  property  of  oiliness 
plays  no  part  in  perfect  fluid  film  lubrication,  but 
becomes  important  in  the  cases  of  starting  and 
stopping,  imperfect  supply  of  oil,  reciprocating 
motion,  and  some  irregular  conditions.  The  con- 
dition of  oiliness  lowers  the  critical  value  and 
enables  a  lower  factor  of  safety  to  be  employed.  A 
friction  machine  of  the  Deeley  type  was  used  to 
investigate  the  coefficient  of  friction.  Using 
surfaces  of  glass  it  was  found  that  oils  containing 
5%  of  neutral  lard  oil  and  1%  of  stearic  acid  gave 
much  lower  values  for  the  coefficient  than  did 
straight  mineral  oil.  Using  cast  iron  and  steel 
surfaces,  the  presence  of  0'5%  of  stearic  acid  lowered 
the  coefficient  to  less  than  one  half.  Attempts  were 
made  to  determine  the  static  coefficient  between 
perfectly  smooth,  flat  surfaces.  Experiments  were 
made  on  the  interfacial  tension  of  liquids  and  metal 
surfaces.  The  lowering  of  interfacial  energy  is  a 
measure  of  the  tendency  of  some  constituent  to 
concentrate  at  the  metal  surface ;  a  lowering  of  the 
friction  coefficient  depends  on  the  nature  and 
structure  of  the  adsorbed  film.  Measurements  of 
the  electrical  resistance  of  adsorbed  films  were  made, 
and  a  study  was  made  of  the  clogging  of  capillaries, 
of  the  adsorption  of  stearic  acid  by  iron  reduced  in 
hydrogen,  and  of  cutting  lubricants. — H.  M. 

Lubricating    oils;    Bearing    friction    and    friction 

experiments    with    .      Duffing.      Z.    angew. 

Chem.,  1922,  35,  605—607. 

A  certain  force,  K,  is  required  to  produce  deforma- 
tion of  the  ultimate  particles  of  a  lubricant  in 
flowing  motion,  and  K  =  /idV/(Z„,  where  K  is  the 
force  per  unit  of  surface  in  dynes/cm.2,  V  is  the 
velocity  in  cm. /sec,  d„  the  distance  between  the 
nearest  layers,  and  /»  units  of  absolute  viscosity. 
In  cases  of  laminar  flow  the  following  formulae 
accord  with  the  results  of  practice :  5p/5x  =  nAu; 
8pldy=/u.Av;  Su/bx^f  Svjoy  =  0.  In  these  formulae 
A  =  d2/Sx-  +  5-/5y*  is  equivalent  to  Laplace's 
operator.  These  formula?  may  be  made  easier  to 
deal  with  by  the  introduction  of  the  function  of 
flow,  \if,  but  are  still  subject  to  difficulties  caused 
by  the  edge  conditions.  It  has  been  supposed  that 
the  lubricant  is  between  two  flat  surfaces,  under 
constant  pressure,  and  that  the  surfaces  move  with 
a  constant  velocity.  The  conditions  are  much  more 
complicated  in  the  case  of  a  bearing,  in  which  the 
viscosity,  /<,  can  be  calculated  from  the  moment  of 
friction  by  the  formula  Mr  =  4n-/jo)R12R22/(R1:r-R2-). 
The  case  is;  however,  quite  different  if  the  journal 
lies  eccentric  to  the  bearing.  This  produces  a  great 
increase  in  pressure,  which  may  reach  60 — 70  atm. 
A  machine  has  been  constructed  for  the  measure- 
ment of  friction  under  such  conditions;  the  bearing 
is  suspended  in  a  stirrup,  and  any  desired  pressure 
may  be  put  upon  it.  The  velocity  may  be  varied 
from  3000  to  16,000  revs,  per  min.  and  the  pressure 
may  be  raised  to  8000  kg.— H.  M. 

See  also  pages  (a)  932,  Products  of  coal  carbonisa- 
tion (Bradley  and  Parr).  952,  Alcohol  (Mariller 
and  van  Ruymbeke).  957,  Absorption  of  ethylene 
In/  sulphuric  arid  (Damiens).  963,  Analysis  of  gases 
(Strache  and  Kling).  96J,  Gas  analysis  (SchaHer 
and  Berndt);  Bingham  viscosimeter  (Herschel). 

Patents. 

Peat;  Apparatus  for  deioatcring  and  compressing 
— .    C.  W.  G.  Clewlow.    E.P.  186,690,  1.7.21. 

The  apparatus  deals  with  peat  which  has  received 
preliminary  treatment,  e.g.,  by  heat  and  pressure, 
in  order  to  render  the  moisture  mechanically 
separable.  A  conical  feed  hopper  is  connected  at 
its  base  to  a  chamber  containing  a  perforated  cage, 
so  that  an  annular  space  is  left  for  drainage.     The 


930  a 


Cl.   IIa.— FUEL  ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Dec.  15,  1922. 


cage  is  removable  and  is  in  the  form  of  an  inverted 
truncated  cone.  From  this  basket  the  material  falls 
to  a  compacting,  compressing  and  delivering  device 
consisting  of  a  screw  conveyor  working  in  a  per- 
forated liner,  leaving  an  annular  drainage  space 
in  the  conveyor  chamber,  and  a  ram  extrusion  press 
fed  by  the  screw  conveyor.  The  shaft  of  the  con- 
veyor is  hollow  and  a  steam  injector  supplies 
petroleum  or  hot  tar  through  the  hollow  shaft  and 
discharges  the  hot  oil  through  a  hole  in  the  side 
of  the  shaft  into  the  peat  passing  through  the 
conveyor  chamber. — A.  G. 

Coal;  Process  of  recovering held  in  suspension 

from  coal-bearing  water  and  streams.  C  E 
Holland.  U.S.P.  1,397,735,  22.11.21.  Appl., 
13.11.20. 

In  a  process  for  the  treatment  of  water  from 
streams  draining  coal-mining  districts,  the  coal  and 
organic  matter  in  the  liquid  are  coagulated  and 
precipitated  by  passing  an  electric  current  through 
the  liquid  as  it  flows  continuously  through  a  tank, 
and  the  coagulum  and  precipitate  separated  from 
the  liquid  by  sedimentation  and  filter-pressing 

— H.  Hg. 

Coking  of  coal.     8.  R.  Illingworth.     E.P.  186,384 

26.5.21.  Addn.  to  164,104. 
Tiie  coking  process  described  in  the  earlier  patent 
(J.,  1921,  501  a)  may  be  carried  out  under  reduced 
pressure,  this  being  particularly  advantageous 
when  the  higher  temperatures  are  employed.  The 
vacuum  used  would  depend  upon  circumstances, 
but  at  temperatures  above  450°  C.  a  vacuum  of  at 
least  20  inches  of  mercury  would  be  necessary,  and 
above  600°  C.  endeavours  would  be  made  to  attain 
28  inches. — W.  P. 

Coke  oven.    A.  Roberts,  Assr.  to  Chicago  Trust  Co 

U.S.P.  1,430,588,  3.10.22.    Appl.,  8.3.20. 
The  heating  wall  has  a  number  of  vertical  flame 
flues  communicating  with  a  transfer  flue,  the  latter 
being  reinforced  by  tie  blocks  which  allow  of  free 
passage  of  the  gas. — W.  P. 

Retorts    [;    Eotary   ]    for   treatment    of   car- 
bonaceous  or   other   material.     F.   D.    Marshall 
E.P.  186,375,  24.5.21.* 
In  rotary  retorts  which  are  heated  by  the  passage 
of    hot    gases    through    their    interior,    baffles    or 
internal     shelves,     G     (see     fig.),     are     provided, 


FIG. I. 


or  constructed  as  grids,  and  instead  of  being 
arranged  in  lines  parallel  to  the  sides  of  the  retort 
they  may  follow  the  curvature  of  the  sides,  so  as  to 
form  portions  of  a  spiral,  thus  imparting  a  swirling 
motion  to  the  gases.  Propellers  or  the  like,  H,  I, 
may  also  be  arranged  between  the  sets  of  shelves  and 
at  the  inlet  end  of  the  retort  to  break  up  and  to 
impart  a  whirling  motion  to  the  heating  gases,  as 
shown  by  the  arrows. — A.  R.  M. 

Coal  or  the  like;  Manufacture  of  liquid  or  soluble 

organic     compounds    from    .       F      Bero-ius 

G.P.  (a)  303,272,  25.12.14,  (b)  307,671,'  18.7.1°5. 
About  88%  of  the  constituents  of  coal  are  converted 
into  liquid  or  soluble  products  by  heating  the  coal 
with  hydrogen  under  pressure  in  the  presence  of 
(a)  a  liquid  dispersoid  which  is  capable  of  restricting 
the  reaction,  e.g.}  high-boiling  mineral  oil  or  tar, 
or  their  high-boiling  distillates  or  distillation  resi- 
dues, or  (b)  a  liquid  product  which  has  been  obtained 
by  hydrogenating  coal,  and  is  capable  of  further 
hydrogenation  at  the  temperature  of  the  reaction. 

— L.  A.  C. 
Burning  hydrocarbon  oils;  Method  and  apparatus 

for  .     C.   E.    Chapman   and  J.    Goodfellow. 

E.P.  186,446,  6.7.21.* 


FIG. 3. 


having  one  end  attached  to  the  inner  face  of  the 
retort  chamber,  the  other  end  projecting  towards 
the  interior.  The  shelves  are  bent  or  corrugated  so 
as  to  form  pockets  for  collecting  the  material  from 
the  bottom  of  the  retort  as  the  latter  revolves,  and 
showering  it  upon  the  surface  of  the  shelf  im- 
mediately in  advance.  To  stiffen  the  shelves  the 
inner  ends  may  be  connected  together  or  fixed  to  a 
circular  plate.     The  shelves  may  also  be  perforated 


Complete  combustion  of  heavy  hydrocarbon  oil  is 
attained  by  atomising  it  with  superheated  steam 
into  a  retort-like  device,  10,  provided  with  a  cooling 
jacket,  12.  The  retort  is  fitted  with  a  discharge 
horn,  21,  having  a  bell  mouth  from 
which  the  flame  enters  the  furnace, 
first  impinging  on  the  superheater, 
52,  supplying  steam  to  the  atomiser, 
30.  Part  of  the  products  of  com- 
bustion is  drawn  in  through  the 
opening,  31,  and  circulated  through 
the  retort  along  with  the  incoming 
atomised  oil.  The  retort  and  horn 
are  lined  with  refractory  material. 
— T.  A.  S. 

Gas  scrubber  with  rotating  drum.  Berlin-Anhalt- 
lfiche  Maschinenbau  A.-G.  G.P.  356,434,  23.5.20. 
A  rotating  drum  containing  liquor  for  scrubbing 
the  gas  is  provided  with  an  annular  partition  con- 
structed of  two  perforated  cylinders,  containing 
filling  material,  and  with  one  or  more  baffles, 
parallel  to  the  ends  of  the  drum,  with  openings 
alternately  in  the  middle  and  at  the  circumference 
for  the  passage  of  the  gas. — L.  A.  C. 

Tar  and  the  like;  Process  for  increasing  the  yield 

of  in  jnirifying  hot  producer  gas.      Facon- 

eisen-Walzwerk  L.  Mannstaedt  und  Co.  A.-G., 
and  H.  Bansen.  G.P.  358,592,  12.5.18. 
Tab  or  an  emulsion  of  tar-oil  and  water  produced  by 
injecting  water  into  hot  producer  gas,  or  by  partially 
cooling  producer  gas  having  a  high  water  content, 
is   again    brought   in    contact    with   the    hot    gas, 


Vol.  xix,  No.  23]        Cl.  IIb.— DESTRUCTIVE  DISTILLATION,  &o.        Cl.   III.— TAR,  &c. 


U31a 


whereby  water  is  evaporated  from  the  tar  or  emul- 
sion, and  condensed  on  further  cooling  the  gas 

— L.  A.  C. 

Desulphurising  petroleum  and  similar  oil.  W.  R. 
Walkey  and  A.  F.  Bargate.  E.P.  186,738, 18.7.21. 
The  oil  to  be  desulphurised  is  vaporised  in  the 
presence  of  steam  and  a  gaseous  dissociating  agent, 
e.g.,  chlorine  or  sulphur  dioxide,  to  decompose  the 
hydrogen  sulphide  formed.  The  reaction  is  rendered 
more  effective  by  passing  the  gaseous  products 
through  a  chamber,  packed  with  porous  material 
and  surrounded  with  an  electric  coil  to  produce  a 
magnetic  field.  A  convenient  chamber  can  be  made 
out  of  5  feet  of  6"  pipe  round  which  is  coiled  3£  miles 
of  copper  wire  of  3^°  diameter,  carrying  a  current 
of  20  amperes. — T.  A.  S. 

Hydrocarbons ;  Process  and  apparatus  for  treating 

.       W.     Munder,     Assr.     to     The     Chemical 

Foundation,    Inc.       U.S.P.    1,431,246,    10.10.22. 
Appl.,  31.12.15. 

Light  hydrocarbons  free  from  asphalt  and  sulphur 
are  produced  by  subjecting  heavy  hydrocarbons  to 
distillation  under  ordinary  pressure.  The  distillate 
is  then  heated  under  pressure,  with  continuous 
distillation,  in  an  autoclave. — T.  A.  S. 

Hydrocarbons;  Process  and  apparatus  for  treating 

to  produce  those  of  lower  boiling  point.   3.  C. 

Black.    U.S.P.  1,431,772,  10.10.22.   Appl.,  15.8.21. 

Oil  is  cracked  by  passing  it  through  a  coil,  heated 
to  cracking  temperature,  and  maintaining  it  at 
this  temperature  for  some  time  in  a  "  digester  "  of 
larger  cross-sectional  area  than  the  cracking  coil. 
The  oil  is  then  passed  through  chambers  where  the 
pressure  is  successively  diminished  to  cause  the 
vaporisation  of  the  various  fractions. — T.  A.  S. 

Petroleum  refining  ;  Recovery  of  by-products  of . 

C.  I.  Robinson,  Assr.  to  Standard  Oil  Co.     U.S.P. 
1,431,259,  10.10.22.     Appl.,  3.10.19. 

The  unsaturated  portions  of  light  hydrocarbons  pro- 
duced in  the  heat  treatment  of  petroleum  are 
recovered  bv  treating  the  oils  with  90%  sulphuric 
acid  at  55°— 75°  F.  (13°— 24°  C).  The  resulting 
sludge  is  separated  and  diluted,  whereby  the  oily 
constituents  are  separated.  The  aqueous  acid  is 
distilled,  the  distillate  consisting  of  an  oily  layer 
and  aqueous  alcohols. — T.  A.  S. 

Hydrocarbon      oils;      Treating      {jrefiningl      . 

Deutsche  Erdol  A.-G.,  Assees.  of  F.  Schick.    G.P. 
357,763,  19.3.21. 

Hydrocarbon  oils  are  treated  with  alcohols  to  which 
an  appropriate  small  amount  of  water,  acids,  or 
alkalis  is  added,  so  as  to  cause  the  separation  of  a 
layer  containing  the  colouring,  odorous,  resinous, 
and  asphaltic  matter  from  the  hydrocarbon  oils, 
which  are  subsequently  treated  with  alcoholic  solu- 
tions of  acids  and  alkalis.  A  solution  of  hydro- 
chloric acid  in  ethyl  alcohol,  or  sulphuric  acid  in 
amyl  alcohol,  alcoholates,  or  an  alcoholic  solution  of 
pyridine  may  be  so  employed. — J.  S.  G.  T. 


Coal;  Process  for  reclaiming  and  recovery  of  

from  water  or  other  liquids.   C   E.  Holland.   E.P. 
171,670,  7.9.21.     Conv.,  13.11.20. 

See  U.S.P.  1,397,735  of  1921;  preceding. 

Fuel  feeding  and  drying  apparatus.     W.  R.  Wood. 
U.S.P.  1,432,509,  17.10.22.     Appl.,  16.12.19. 

See  E.P.  124,314  of  1918;  J.,  1919,  312  a. 


Carbonaceous  material;  Apparatus  and  piocess  for 

treating    for   the    recovery   of   the    volatile 

hydrocarbon  constituents  thereof.  C.  C.  Bussey, 
Assr.  to  S.  E.  Darby.  U.S.P.  1,432,275-6, 17.10.22. 
Appl.,    10.4.18. 

See  E.P.  154,658  of  1919;  J.,  1921,  39  a. 

Combustion  process.  R.  J.  Anderson,  Assr.  to 
International  Fuel  Conservation  Co.  U.S.P. 
1,433,059,  24.10.22.     Appl.,  6.3.19. 

See  E.P.  150,761  of  1919;  J.,  1920,  714  a. 

Incandescent   coke;  Apparatus  for  conveying  and 

discharging  into  cooling  chambers.     Sulzer 

Freres  Soc.  Anon.  E.P.  173,761,  3.1  22. 
Conv.,  3.1.21. 

Liquid  fuel  burner.  W.  B.  Wattson.  E.P.  187,324, 
18.7.21. 

Paraffin  wax.     G.P.  357,303.     See  III. 

Gas  and  calcium  carbide.     E.P.  185,135.     See  VII. 

Fatty  acids  from  montan  wax.  G.P.  358,402.  See 
XII. 

Gas  analysing  apparatus.  E.P.  162,249.  See  XXIII. 


IIb -DESTRUCTIVE  DISTILLATION ; 
HEATING;  LIGHTING. 

Discharge  of  air  through  small  orifices.  Thomas. 
See  I. 

Wood  of  eucalyptus  and  western  white  pine. 
Mahood  and  Cable.     See  V. 

Patents. 

Lamp  wiclcs;  Process  for  treating .     J.  Feeney. 

E.P.  173,208,  6.8.21.     Conv.,  18.12.20. 

Lamp  wicks  are  immersed  in  milk  of  lime  of  sp.  gr. 
1'100,  and  the  solution  boiled  until  its  sp.  gr. 
becomes  1150.  The  wicks  are  then  removed  and 
dried.  Wicks  so  prepared  burn  without  smoking 
and  are  more  durable. — J.  S.  G.  T. 

Incandescence  mantles  and  process  of  manufacture. 
Aktiebolaget  Keros.  G.P.  358,514,  18.12.21. 
Conv.,  15.1.21. 

Fibres  impregnated  with  solutions  of  salts  of  the 
rare  earths  are  assembled  parallel  to  one.  another 
and  after  the  addition  of  an  agglutinant  are 
subjected  to  pressure.  The  resulting  fibres,  either 
prior  to  or  subsequent  to  ignition,  are  woven  into 
the  form  of  mantles,  so  that  their  longer  axes  are 
essentially  normal  to  the  contour  of  the  luminous 
surface  of  the  mantle.  Mantles  so  prepared  possess 
increased  rigidity  and  elasticity,  and  a  considerably 
higher  lighting  efficiency. — J.  S.  G.  T. 


III.-TAH  AND  TAB  PRODUCTS. 

Phenols  of  coke-oven  tar  and  low-temperature  tar; 
Conversion   of  into    benzene   in  an    experi- 
mental installation.       F.   Fischer,   H.   Schrader, 
and  K.  Zerbe.     Brennstoff-Chem.,  1922,  3,  305— 
307. 
The  semi-industrial  plant  previously  described  (J., 
1922,  891  a)  was  used  in  order  to  investigate  whether 
results  obtained  on  such   a   scale  were  comparable 
with  those  obtained  in  a   laboratory  apparatus,  in 
which   a    90%    yield   of    benzene    was    obtained   by 
reduction  of  phenols  with  hydrogen  in  a  tinned  iron 
tube.     The    quantity    of    phenol    put    through    the 
plant  varied  from  220  to  12,300  g.  per  hr.,  and  the 


932  a 


Cl.  III.— tar  and  tar  products. 


[Dec.  15, 1922. 


velocity  of  the  hydrogen  varied  from  8  to  99  1. 
per  hr.  correspondingly.  The  crude  benzol  obtained, 
of  b.p.  80°— 100°  C,  varied  from  50-9%  of  the 
theoretical  yield,  using  815  g.  of  cresol  mixture 
per  hr.,  to  8T7%  with  3100  g.  per  hr.  Coal  gas 
was  used  in  one  experiment  in  place  of  hydrogen, 
the  yield  obtained  being  730%  of  the  theoretical, 
but  there  was  a  slight  separation  of  carbon. — A.  G. 

Benzene  from  lignite.    F.  Fischer  and  H.  Schrader. 

Brennstoff-Chem.,  1922,  3,  307—310. 
The  authors,  continuing  the  work  described  in  the 
preceding  abstract,  find  that  almost  50%  of  the 
weight  of  phenols  from  lignite  tars  can  be  reduced 
to  benzol  by  means  of  hydrogen.  The  benzol  is 
mixed  with  other  substances  boiling  at  temperatures 
up  to  180°  C.  The  calorific  value  of  benzene  is 
about  10,000  cals. /g.,  whilst  that  of  phenol  is  only 
7800  cals./g.,  so  that  for  equivalent  calorific  values 
78  g.  of  benzol  corresponds  to  100  g.  of  phenol.  The 
phenols  are  derived  from  the  humus  portion  of  the 
coal,  and  whilst  in  gasworks  benzene  is  formed 
direct  in  the  retorts,  in  low-temperature  operations 
it  must  be  produced  by  reduction  of  the  phenols 
occurring  in  the  tar. — A.  G. 

Creosote  oils;   Coke  residue  test  for  .     C.   S. 

Reeve  and  F.  W.  Yeager.     J.  Ind.  Eng.  Chem., 

1922,  14,  966—967. 
Wide  variations  in  results  are  obtained  when  the 
coke  residue  of  creosote  oil  is  determined  by  coking 
in  a  glass  bulb.  This  is  due  to  the  tendency  of  the 
glass  to  fuse  at  the  full  temperature  required  for 
coking.  Very  concordant  results,  slightly  lower 
than  the  average  results  with  glass  bulbs,  are 
obtained  by  distilling  to  355°  C.  in  a  retort  and 
coking  the  residue  in  a  platinum  crucible. — C.  I. 

Products  of  coal  carbonisation  [xylol'];  Decompo- 
sition processes  applicable  to  certain .    M.  J. 

Bradley  and  S.  W.  Parr.     Chem.  and  Met.  Eng., 
1922,  27,  737—744. 

Tar  oils  consisting  mainly  of  xylol  could  be  obtained 
in  large  quantities  by  the  low-temperature  carbon- 
isation of  coal  if  the  demand  for  them  justified  it. 
In  order  to  find  further  uses  a  research  was  carried 
out  on  the  decomposition  products  of  xylol  in  an 
electric  furnace  at  temperatures  between  250°  and 
900°  C.  and  in  presence  of  different  gases  and 
contact  surfaces.  Amongst  the  results  were  the 
following.  In  an  atmosphere  of  hydrogen  and 
methane  the  decomposition  products  are  benzene 
and  methane  in  theoretical  proportions.  In  presence 
of  ethylene  the  main  products  are  high-boiling 
compounds,  chiefly  solid.  Iron  or  metallic  oxide 
surfaces  cause  a  complete  decomposition  into  carbon 
and  gaseous  products.  Surfaces  of  carbon,  pumice, 
etc.  favour  the  production  of  unsaturated  high- 
boiling  compounds.  Carbon  dioxide  and  steam 
render  liquid  hydrocarbons  more  stable.  The  effect 
of  increased  pressure  depends  entirely  on  the  gas 
present.  Amongst  the  products  identified  were 
n-hexane,  cyclohexane,  diphenyl,  ditolyl,  stilbene, 
phenanthrene,  naphthalene,  anthracene,  methyl 
derivatives  of  the  two  last,  pyrene,  and  chrysene. 

— C  I. 

Pernitric  acid  as  an  analytical  reagent.  [Detection 
of  anUine,  benzene,  hydrogen  peroxide,  and 
nitrites.]  I.  Trifonow.  Z.  anorg.  Chem.,  1922, 
124,  136—139. 

Pernitric  acid  reacts  with  aniline,  yielding  an 
intensely  yellow  product.  The  per-acid  is  formed  by 
the  action  of  hydrogen  peroxide  on  an  acidified 
solution  of  a  nitrite  (c/.  page  936  a).  The  above 
reaction  with  aniline  can  therefore  be  employed  for 
the  detection  of  hydrogen  peroxide  or  nitrite. 
Benzene  gives  with  pernitric  acid  a  yellow  colour 
which   changes   into   dark   red  on   the   addition  of 


alkali.  Toluene  and  xylene  gave  a  fainter  yellow 
colour,  which,  however,  does  not  change  on  the 
addition  of  alkali.  Thus  benzene  can  be  detected 
in  the  presence  of  toluene,  xylene,  and  the  aliphatic 
hydrocarbons;  the  aliphatic  members  are  not 
coloured.  Similarly  benzene  can  be  detected  in 
methylated  spirits. — AV.  T. 

Anthraquinone ;  Quantitative  determination  of . 

O.  A.  Nelson  and  C.  E.  Senseman.     J.  Ind.  Eng. 
Chem.,  1922,  14,  956—957. 

The  method  for  estimating  anthraquinone  described 
by  Lewis  (J.,  1918,  459  a)  has  been  modified  so  that 
a  determination  can  be  completed  in  about  I  hour. 
To  about  05  g.  of  the  sample  of  anthraquinone 
thoroughly  ground  with  3 — 4  g.  of  zinc  dust,  is 
added  100  c.c.  of  a  boiling  5%  solution  of  caustic 
soda.  After  standing  for  5  mins.,  the  red  product 
is  filtered  into  a  suction  flask,  through  a  layer  of 
asbestos  fitted  within  a  filter  consisting  of  a  glass 
tube,  24  cm.  long  and  3'5  cm.  diam.  and  suitably 
tapered  at  one  end.  This  filtering  tube  contains  a 
mechanical  stirrer  and  is  heated  electrically  to 
90° — 95°  C.  The  residue  is  washed  with  hot  caustic 
soda  solution  until  it  contains  no  anthraquinone. 
The  red  solution  of  oxanthranol  is  titrated  in  the 
suction  flask  with  a  standardised  solution  of 
potassium  permanganate  (3'8  g.  per  1.)  until  it  is 
colourless.  Beyond  this  end  point,  the  addition  of 
permanganate  produces  a  dark  green  colour,  or 
bluish-green  when  phenanthraquinone  is  also 
present.  The  potassium  permanganate  solution  is 
standardised  by  means  of  pure  anthraquinone  under 
the  same  conditions,  and  provided  that  oxidation 
by  air  is  prevented,  the  method  gives  accurate 
results  even  in  instances  where  the  anthraquinone 
contains  phenanthraquinone,  anthracene,  phenan- 
threne, phthalic  anhydride,  phthalic  acid,  or  other 
oxidation  products  of  anthracene  and  phenanthrene. 

—A.  J.  H. 

/3-Naphthylamine ;  Analysis  of .     H.  R.  Lee  and 

D.  O.  Jones.     J.  Ind.  Eng.  Chem.,  1922,  14,  961— 
963. 

Methods  for  the  estimation  of  /3-naphthylamine  in 
the  presence  of  /S-naphthol,  /3/3-dinaphthylamine, 
and  a-naphthylamine  have  been  tested  by  means  of 
specially  purified  samples  of  these  substances.  In 
the  usual  direct  nitrite  titration  method,  high 
results  are  obtained  when  /8-naphthol  is  present, 
6ince  this  is  converted  into  nitroso-/3-naphthol. 
Direct  titration  with  A'/ 10  sodium  nitrite  at  20°  C. 
gives  results  higher  than  theory  even  when  /!- 
naphthol  is  absent,  and  it  is  better  to  use  N/2 
nitrite  at  0° — 5°  C.  /3-Naphthol-l-sulphonic  acid  is 
not  affected  by  nitrous  acid  and  on  this  fact  is  based 
the  following  accurate  method  :  0'65  g.  of  the  sample 
of  /3-naphthylamine  is  sulphonated,  initially  at 
0° — 5°  C.  and  finally  at  15°  C.  when  necessary,  with 
20  c.c.  of  25%  oleum.  The  product  is  diluted  with 
ice  and  boiled  to  remove  sulphur  dioxide,  then 
diluted  to  200  c.c,  cooled  to  20°  C,  and,  after  the 
addition  of  15  c.c.  of  concentrated  hydrochloric  acid, 
is  titrated  with  N 1 10  sodium  nitrite,  the  end  point 
being  reached  when  a  distinct  blue  colour  develops 
with  starch-iodide  5  mins.  after  the  last  addition  of 
nitrite.  If  3'5  g.  of  the  sample  is  used,  titration  is 
carried  out  with  N/  2  nitrite  at  0°— 5°  C.  If  in 
this  method  an  amine  content  of  96%  and  a  m.p. 
of  109°  C.  or  higher  is  obtained,  the  absence  of  any 
appreciable  amount  of  impurities  is  assured.  The 
following  method  is  suitable  for  the  accurate  deter- 
mination of  both  /3-naphthylamine  and  /S-naphthol. 
Dry  hydrogen  chloride  is  passed  through  a  solution 
of  3"5  g.  of  the  sample  in  300  c.c.  of  dry  benzene  for 
1 — 2  hrs.,  the  precipitated  /3-naphthylamine  hydro- 
chloride is  filtered  off,  washed  with  dry  benzene 
saturated  with  hydrogen  chloride,  and  dried  at 
60°  C.  in  vacuo.     It  is  then  dissolved  in  not  more 


Vol.  XLL,  No.  23.] 


Cl.  IV.— colouring  matters  and  dyes. 


933  a 


than  200  c.c.  of  water,  and  after  the  addition  of 
25  c.c.  of  20%  hydrochloric  acid,  the  /3-naphthyl- 
amine  is  determined  by  titrating  with  iV/2  sodium 
nitrite  at  0° — 5°  C.  The  benzene  filtrate  is  evapo- 
rated to  dryness  (loss  of  ^-naphthol  by  sublimation 
must  be  avoided),  the  residue  dissolved  in  200  c.c. 
of  1%  caustic  soda,  and  /J-naphthol  determined, 
after  acidifying  with  hydrochloric  acid  and  adding 
an  excess  of  6odium  bicarbonate,  by  titrating  with 
2V/2  diazotised  p-nitraniline  solution.  A  modified 
Kjeldahl-Gunning  method  is  also  described.  Acid- 
insoluble  impurities  are  estimated  by  dissolving  5  g. 
of  the  sample  in  150  c.c.  of  boiling  1'5%  hydrochloric 
acid,  filtering  the  solution  through  a  Gooch  crucible, 
washing  the  residue  with  hot  water,  and  drying  to 
constant  weight  at  100°  C.  At  least  10%  of  the 
/?-naphthol  present  passes  into  the  filtrate,  whereas 
only  01 — 0'2%  of  /3^-dinaphthylamine  is  soluble. 
Hence  the  latter  can  be  isolated  from  the  residue  by 
solvent  extraction  and  then  weighed  or  analysed  for 
nitrogen.  Melting  point  curves  for  the  binary 
systems,  /3-naphthylamine+/3-naphthol,  /3-naphthyl- 
amine  +  /3/3-dinaphthylamine,  and  /3-naphthylamine  + 
a-naphthylamine  are  given,  and  by  means  of  the 
last-named  the  amount  of  a-naphthylamine  in 
/i-naphthylamine  not  containing  large  amounts  of 
/3-naphthol  and  /3/3-dinaphthyIamine  may  be  esti- 
mated. The  following  specifications  are  suggested 
for  technical  /3-naphthylamine :  m.p.  not  below 
1090°  C.  (corr.) ;  content  of  /3-naphthylamine  not 
less  than  96'0%,  /?-naphthol,  insoluble  matter,  and 
moisture  not  more  than  30%,  0'5%,  and  0'5% 
respectively.     (Cf.  J.C.S.,  Dec.)— A.  J.  H. 

Formation  of  acetylene  and  ammonia  during  in- 
complete combustion.  Hofmann  and  Will.  See 
IIa. 

Patents. 

Aromatic  hydrocarbons ;  Process  of  producing . 

A.  S.  Ramage,  Assr.  to  Bostaph  Engineering 
Corp.  U.S. P.  1,430,585,  3.10.22.  Appl.,  24.6.18. 
Renewed  23.2.22. 

Phenols  are  converted  into  aromatic  hydrocarbons 
by  treating  with  hydrogen  at  about  700°  C.  in  the 
presence  of  a  catalyst  consisting  of  a  lower  oxide  of 
iron.— W.  P. 

Paraffin-wax;    Production    of    [from    lignite 

tars,  producer  gas  tars,  etc.].  T.  Helvey.  G.P. 
357,303,  2.7.21. 

Paraffins  of  various  degrees  of  purity,  e.g., 
ceresin,  stearin,  montan  wax,  or  oils  containing 
paraffin  wax,  are  added  to  the  tar  heated  to  about 
80°  C,  and  the  whole  stirred.  The  mixture  is  then 
treated  with  water,  salt  solutions,  lyes,  or  acids, 
the  layer  richer  in  paraffin  separated,  and  the 
paraffin-wax  recovered  therefrom. — J.  S.  G.  T. 

1.4^-Naphtholsulphonic  acid;  Manufacture  of  . 

British  Dyestuffs  Corp.,  Ltd.,  J.  Baddiley,  J.  B. 
Payman,  and  E.  G.  Bainbridge.  E.P.  186,515, 
10.9.21. 

1.4-NAPHTHOLsr/LPHONio  acid  is  obtained  in  good 
yield  and  quality  by  the  action  of  chlorosulphonic 
acid  on  a-naphthol  in  presence  of  a  suitable  solvent, 
preferably  tetrachloroethane.  Example.  144  pts. 
of  a-naphthol  is  suspended  in  600  pts.  of  tetra- 
chloroethane, and  127  pts.  of  distilled  chloro- 
sulphonic acid  is  added,  the  temperature  being 
maintained  below  30°  C.  The  mixture  is  then 
heated  at  50°  C.  for  24  hrs.  After  dilution  with 
water,  and  separation  of  the  tetrachloroethane,  the 
liquor  is  neutralised  with  either  lime  or  sodium 
carbonate.  The  isomeric  acids  present  should  not 
amount  to  more  than  1 — 2%,  and  if  desired  they 
can  be  removed  by  adding  barium  chloride  solution 
until  a  precipitate  ceases  to  form. — G.  F.  M. 
Dec.)— A.  J.  H. 


Pitch;    Treating    — — .      F.    J.    Commin. 
1,432,742,  24.10.22.     Appl.,  27.12.20. 

See  E.P.  162,727  of  1920;  J.,  1921,  462  a. 


U.S.P. 


IV.— COLOURING  MATTERS  AND  DYES. 

Aniline;    Oxidation    of    .      Amine    oxidation. 

VII.       S..  Goldschmidt     and     B.     Wurzschmitt. 
Ber.,  1922,  55,  3220—3227. 

Benzoquinonephenyldi-imine,  N(CsH5)  :  CvH, :  NH 
is  polymerised  by  glacial  acetic  acid  or  a  small 
quantity  of  hydrochloric  acid  in  the  presence  of 
ether  almost  quantitatively  to  the  trimeride, 
N(C6H5):CGH2(NH.C.H4.NH.C6H5)2:NH  (cf.  Will- 
stiitter  and  Kubli,  J.,  1909,  1244).  It  depends 
essentially  on  the  nature  and  quantity  of  the  added 
acid  (and  therefore  on  the  hydrogen  ion  concen- 
tration) whether  the  di-imine  is  polymerised  to 
Emeraldine  or  to  Willstatter's  compound.  The 
substance, 

/CH:C(NHC6H.k 
C„H6.N:C/  >C:NH    or 


\ 


/v 


C(NHC„H5):CH' 

/C(:NC6H6)— CHV 
C6H6.N:C<  )C.NHa 

X!H:C(NHC6H5K 
w'hich  has  been  isolated  by  oxidising  aniline  salts 
with  lead  peroxide  by  Bornstein  (c/.  Majima  and 
Aoki,  J.,  1911,  1369)  is  obtained  under  comparable 
conditions  when  benzoquinonephenyldi-imine  is 
condensed  with  aniline.     Azophenine, 


C8H5.N:C 


,c/ 


C(NHC6H6):CHX 


>C:N.C„H5 


\CH:C(NHC6H5K 
obtained  according  to  Bornstein  (J.,  1901,  701)  by 
the  further  oxidation  of  aniline,  is  produced  when 
aniline  is  mixed  with  dianilinobenzoquinone- 
phenyldi-imine  in  ethereal  solution  in  the  presence 
of  a  little  glacial  acetic  acid.  Dianilinobenzo- 
quinoneanil, 


C6H5.N:C 


/ 


C(NHC6H6);CH 


\n. 


C:Q 


'^CH-.CtNHCjILj/ 

formed  by  the  oxidation  of  aniline  in  acid  solution 
by  hydrogen  peroxide,  owes  its  production  to 
the  hydrolysis  of  benzoquinonephenyldi-imine  to 
ammonia  and  benzoquinonephenylimine, 

cbh5n:c0h.:o 

and  condensation  of  the  latter  with  aniline.  The 
complex  products  of  the  oxidation  of  aniline  appear 
therefore  to  be  largely  due  to  the  intermediate 
formation  of  benzoquinonephenyldi-imine  and  its 
subsequent  decomposition  in  various  directions. 
(67-  J.C.S.,  Dec.)— H.  W. 

H-acid     and     its     intermediates     obtained     from 
naphthalene-2.7-disulphonic    acid;     Method    for 

identifying .     D.  F.  J.  Lynch.    J.  Ind.  Eng. 

Chem.,  1922,  14,  964—965. 

A  method  for  identifying  1.8-dinitro-3.6-naphtha- 
lenedisulphonic,  1.8  -  diamino  -  3.6  -  naphthalene- 
disulphonic,  1.8  -  aminonaphthol  -  3.6  -  disulphonic 
(H-acid),  and  1.8 -dihydroxynaphthalene -3.6 - 
disulphonic  (chromotropic)  acids  in  the  presence  of 
each  other  by  means  of  their  reactions  with 
solutions  containing  benzidine  hydrochloride,  2- 
cymidine  sulphate,  a-naphthylamine-hydrochloric 
acid,  pseudocumidine-hydrochloric  acid,  tolidine- 
hydrochloric  acid,  p-nitrotoluidine-hydrochloric 
acid,  cobalt  chloride,  and  zinc  sulphate  is 
developed.  Except  those  in  which  cobalt  chloride 
and  zinc  sulphate  are  used  (neutral  solution  is  then 
necessary),  the  tests  are  carried  out  with  3 — 5  c.c. 
of  5 — 10%   hydrochloric  acid  containing  not  more 


93tA 


Cl.   V.— FIBRES  ;    TEXTILES  ;    CELLULOSE  ;    PAPER. 


[Dec.  15,  1922. 


than  0"1  mol.  of  the  sulphonic  acid  per  1.  The 
physical  properties  of  several  organic  salts  of  these 
four  sulphonic  acids  are  described.  (Cf.  J.C.S., 
Dec.)— A.  J.  H. 

1-JIydroxylaminoanthraquinone  and  some  of  its 
derivatives.  W.  H.  Beisler  and  L.  W.  Jones.  J. 
Amer.  Chem.  Soc,  1922,  44,  2296—2306. 
1-NiTitOANTHRAQtiiNONE  is  best  prepared  by 
warming  anthraquinone  with  fuming*  nitric  acid 
(sp.  gr.  1"60),  and  crystallising  the  crude  product 
successively  from  glacial  acetic  acid,  toluene,  and 
acetone.  It  has  m.p.  232'5°— 233'50  C.  and  the 
amino  compound  obtained  by  reduction  with 
potassium  sulphide  has  m.p.  252° — 253°  C.  When 
the  nitro  compound  is  reduced  in  pyridine 
solution  with  hydrogen  sulphide  it  yields  1- 
hydroxylaminoanthraquinone,  the  sulphonic  acid 
derivative  of  which  dyes  wool  and  silk  reddish- 
brown  without  a  mordant.  When  air  is  bubbled 
through  the  aqueous  solution  of  the  hydroxylamino 
compound  1-nitrosoanthraquinone  is  obtained. 

— W.  G. 

Pinacyanols;  Constitution  of  the  ,  a  contribu- 
tion to  the  chemistry  of  the  quinocyanines.     W. 
Konig.     Ber.,  1922,  55,  3293—3313. 
The  structure  assigned  to  Pinacvanol  by  Mills  and 
Hamer   (J.,    1921,    41a)   has  been   confirmed  by   a 
comparison  of  the  absorption  spectra  of  Pinacyanol 
and  i/--isocyanine  and  estimation  of  the  persistence 
and  maxima,  and  by  the  synthesis  of  Pinacyanols 
by  the  condensation  of  quinaldinium  salts  with  ethyl 
orthoformate  in  the  presence  of  suitable  agents  such 
as  acetic  anhydride  or  zinc  chloride  : 
Alkx 
x^>N.C,Ha.CH3 + (C.H.O), :  CH(OC2H5)  + 

XA  Ik 
CH3.C8H0N<  =3C2H6OH+HX+ 

\X 
Alk 

y  N.C,Ha.CH:OH.CH:C,H„NAlk. 

Since  the  constitution  of  the  cyanines  has  been 
largely  elucidated,  it  appears  desirable  to  delete  the 
common  names  of  the  substances  (e.g.,  cyanines,  iso- 
cyanines,  i^-isocyanines,  etc.)  from  the  scientific 
literature  and  to  replace  them  by  the  general  term 
quinocyanines,  by  which  is  understood  the  salts  of 
quinolyldihydroquinolylenemethanes  which  are  not 
methylated  at  the  nitrogen  atom.  The  three  classes, 
2.2',  2.4'  and  4.4'-quinocyanine  salts,  are  thus  suit- 
ably distinguished.  The  further  derivatives  are 
termed  _  benzothioazolocyanines  (thiocyanines)  and 
indoleninocyanines  (indocyanines).  Further  types 
are  produced  by  the  streptostatic  introduction  of 
vinylene  groups  between  the  quinoline  residues  and 
are  designated  mono-  (di-,  tri-  etc.)  vinylene-2.2'  or 
2.4'  or  4.4'-quinocyanine  salts.  As  examples  may  be 
quoted  :  dimethyl-iWsocyanine  iodide  =  1.1'  -  di- 
nK'thyl-2.2'-quinocyanine  iodide;  Pinaverdol  =  1.6.1'- 
trimethyl-2.4'-quinocyanine  iodide;  ^-dicyanine 
bromide  =  l.l'-diethyl-4.6.4'.6'  -  tetramethylstrepto- 
monovinylene-2.2'-quinoeyanine  bromide;  dicvan- 
ine  =  l.l'  -  diethyl-4.6.2'.6'  -  tetramethylstreptomono- 
vinylene-2.4'-quinocyanine  iodide.  (Cf.  J.C.S., 
Dec.)— H.  W. 

Patents. 
Basic  dyestuffs  [triarylmethane  derivatives  contain- 
ing a  thiazole  ring];  Manufacture  of  new  

possessing  affinity  far  unmordanted  vegetable 
fibre.  British  Dyestuffs  Corp.,  Ltd.,  J.  Baddilev, 
E.  H.  Rodd,  and  H.  H.  Stocks.  E.P.  186,517, 
14.9.21. 

A  new  series  of  basic  dyeBtuffs  are  obtained  by  con- 
densing Michler's  hydrol  or  its  homologues  with  a 
suitable    arylbenzthiazole    by    means   of    sulphuric 


acid  and  oxidising  the  resulting  leuco  compound. 
As  instances  of  the  benzthiazoles  which  can  be  used 
l-phenyl-5-methylbenzthiazole,  prepared  by  treating 
benzyl-p-toluidine  with  sulphur,  and  4'-amino-l- 
phenyl-5-methylbenzthiazole  (dehydrothiotoluidine) 
are  mentioned.  The  new  dyestuffs  are  green,  and 
dye  wool  and  tannin-mordanted  cotton  in  bright 
shades  of  a  fastness  exceeding  that  of  known  basic 
greens.  They  have  in  addition  the  property  of  dye- 
ing unmordanted  cotton,  giving  shades  of  a  bright- 
ness hitherto  unapproached  by  a  substantive  cotton 
green.  They  are  also  useful  in  dyeing  paper,  yield- 
ing a  clean  "  back-water."  Example.  27  pte.  of 
Michler's  hydrol  (tetramethyldiaminobenzhydrol) 
and  22'5  pts.  of  l-phenyl-5-methylbenzthiazoIe  are 
mixed  together,  charged  into  250  pts.  of  sulphuric 
acid  monohydrate,  and  heated  on  a  water  bath  for 
5  hrs.  The  mixture  is  then  diluted,  and  the  ieuco 
base  precipitated  by  neutralising  with  sodium  hydr- 
oxide. It  is  collected,  dissolved  in  hydrochloric 
acid,  and  oxidised  with  lead  peroxide.  The  lead  is 
finally  removed  as  sulphate,  and  the  dye  precipi- 
tated hy  the  addition  of  common  salt. — G.  F.  M. 

Azo-dye stuffs;  Manufacture  of  chromium  compounds 

of  .     Soc.  of   Chem.   Ind.   in   Basle,   and   F. 

Straub.  E.P.  186,635,  18.3.21.  Addn.  to  104,045 
(cf.  U.S. P.  1,221,849;  J.,  1917,  542). 
Azo  dyestuffs  capable  of  being  chromed  are  treated 
in  alkaline  solution  with  the  complex  chromium 
compounds  formed  by  the  action  of  alkaline  suspen- 
sions of  chromium  hydroxide  on  organic  compounds 
containing  more  than  one  hydroxyl  group,  e.g., 
polyhydric  alcohols  and  phenols,  tanning  agents, 
sugars,  and  organic  by-products  from  the  manufac- 
ture of  sulphite-cellulose.  For  example,  20'8  pts.  of 
glycerin  is  added  to  a  solution  of  46'8  pts.  of  potas- 
sium hydroxide  in  an  aqueous  paste  of  chromium 
hydroxide  containing  14  pts.  of  chromic  oxide,  and 
the  mixture  is  boiled  until  the  chromium  hydroxide 
has  dissolved.  The  solution  is  made  up  to  200  pts., 
7P2  pts.  of  the  dyestuff  from  diazotised  l-amino-2- 
hydroxynaphthalene-4-sulphonic  acid  and  o-naph- 
thol  is  added,  the  solution  is  boiled  for  10  hrs.  under 
a  reflux  condenser,  diluted  with  600  pts.  of  cold 
water,  and,  after  neutralisation  of  the  alkali  with 
mineral  acid,  the  dyestuff  is  salted  out,  filtered,  and 
dried.  The  product  dyes  wool  in  an  acid  bath  deep 
blue  shades  fast  to  light  and  fulling. — L.  A.  C. 

Safranines;  Preparation  of  anthraquinonyl  deriva- 
tives of .    Akt.-Ges.  fur  Anilin-Fabr.,  Assees. 

of  W.  Herzberg  and  W.  Bruck.  G.P.  357,236, 
31.3.20.  Addn.  to  355,491  (J.,  1922,  853  a). 
In  the  process  described  in  the  chief  patent,  anthra- 
quinone derivatives  are  employed  in  which  the 
primary  amino  group  is  attached  to  the  anthra- 
quinone nucleus  by  means  of  an  intermediate  group. 
For  example,  1-p-aminophenylaminoanthraquinone 
is  treated  with  dimethylisorosinduline  chloride 
(Neutral  Blue)  and  sodium  hydroxide  in  the  pre- 
sence of  nitrobenzene  at  50°  C.  until  a  test  portion 
gives  a  grass-green  solution  in  concentrated  sul- 
phuric acid.  The  crystalline  product  on  treatment 
with  25%  oleum  yields  a  water-soluble  sulphonic  acid 
which  dyes  wool  indigo-blue  shades  from  a  vat. 

— L.  A.  C. 

Colour  lakes.    G.P.  358,047.    See  XIII. 


V— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Wood  of  eucalyptus  (Eucalyptus  globulus)  and 
western  ichite  pine  (Pinus  monticola);  Analysis 

of .    S.  A.  Mahood  and  D.  E.  Cable.    J.  Ind. 

Eng.  Chem.,  1922,   14,  933—934. 

A  continuation  of  work  previously  described  (cf. 

Sehorger,  J.,  1917,  867  a).     The  solubility  of  wood 


Vol.  XLI,  Xo.  23.] 


Cr,.    V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


935a 


in  various  solvents  is  considerably  influenced  by 
its  state  of  division ;  in  these  investigations  all 
samples  were  reduced  to  sawdust  which  passed 
through  an  80-mesh  and  was  retained  by  a  100-inesh 
sieve.  The  composition  of  western  white  pine  is 
similar  to  that  of  longleaf  pine,  although  the  latter 
yields  more  soluble  matter  to  cold  and  hot  water 
and  alkali.  Although,  on  destructive  distillation, 
eucalyptus  yields  nearly  as  much  acetic  acid  as  a 
hardwood,  the  yield  of  acetic  acid  on  hydrolysis  is 
much  less  than  that  similarly  obtained  from  hard- 
woods previously  analysed  {loc.  cit).  Eucalyptus 
resembles  conifers  in  its  low  ash  content.  The 
cellulose  isolated  from  western  white  pine  and 
eucalyptus  contains  approximately  the  same 
amount  of  o-cellulose,  but  the  remaining  cellulose  is 
almost  entirely  7-celluIose  in  the  case  of  eucalyptus 
and  an  equal  mixture  of  /3-  and  y-cellulose  in 
the  case  of  western  white  pine.  The  lignin  con- 
tent was  determined  by  extracting  2  g.  of  the 
air-dried  material  for  4  hrs.  with  a  mixture  of 
alcohol  and  benzene  of  minimum  b.p.,  afterwards 
disintegrating  it  by  treatment  for  16  hrs.  at  room 
temperature  with  ten  times  its  weight  of  72  : 
sulphuric  acid,  then  boiling  the  product,  after 
dilution,  till  its  acid  content  was  3%,  for  2  hrs. 
under  a  reflux  condenser,  and  filtering  through  a 
tared  alundum  crucible.  The  residue  was  washed 
free  from  acid  with  hot  water,  dried  at  105°  C,  and 
weighed  as  Lignin. — A.  J.  H. 

Wood;  Removal  of  resin  from  prior  to  the 

manufacture  of  cellulose.     H.  Wenzl.     Zellstoff 
u.  Papier,  1922,  2,  228—232. 

Methods  depending  on  the  use  of  petroleum  hydro- 
carbons in  which  90%  of  the  total  resin  is  extracted 
have  been  worked  out,  some  of  them  depending  on 
the  use  of  high  pressures  and  moderate  tempera- 
tures. Chlorinated  hydrocarbons  are  hardly 
suitable,  but  "  tetralin  "  (tetrahydronaphthalene) 
appears  particularly  promising.  The  process  of 
Benson  and  Bennett  with  the  use  of  70%  alcohol 
(J.,  1922,  380  a),  is  of  interest  as  a  subsidiary  of 
the  sulphite  spirit  scheme,  since  much  of  the 
requisite  plant  is  common  to  both.  When  the 
size  of  the  wood  particles  is  reduced  to  25x45  mm. 
the  extraction  of  71%  of  the  resin  content  has 
been  effected.  Methods  depending  on  the  use  of 
emulsified  organic  solvents  have  not  been  very 
successful  in  spite  of  the  low  cost,  owing  to  the 
defective  penetrating  power  of  such  emulsions.  In 
one  process  molten  resin  or  pitch  has  been  employed 
at  200°  C.  for  the  treatment  of  very  resinous  wood 
waste,  but  the  residual  wood  is  rendered  useless 
for  cellulose  manufacture.  A  process  of  extraction 
with  dilute  ammonia  solution  at  70°  C.  has  given 
high  yields  of  resin,  but  it  is  necessary  to  extract 
the  resin  from  the  ammoniacal  solution  by  means 
of  gasoline,  and  the  double  process  is  not 
economical.  Many  processes  are  based  on  the  use 
of  caustic  soda  and  sodium  carbonate  for  the 
extraction  of  resin  as  a  preliminary  stage  in  the 
digestion  of  the  wood  for  the  manufacture  of  kraft 
cellulose.  By  these  methods,  however,  the  chemical 
properties  of  the  resin  are  profoundly  modified. 
Sometimes  very  high  pressures  and  moderate 
temperatures  are  recommended  on  this  account ; 
the  use  of  reducing  agents  such  as  hydrosulphite, 
and  of  an  indifferent  atmosphere  such  as  hydrogen 
gas,  have  also  been  proposed. — J.  F.  B. 

Sugar  formation  in  a  sulphite  digester.  E.  C. 
Sherrard  and  C.  F.  Suhm.  J.  Ind.  Eng.  Chem., 
1922,  14.  931—932. 

In  experimental  digestions  of  white  spruce  by  the 
Mitscherlich  process,  the  total,  free,  and  combined 
sulphur  dioxide  in  the  liquor  being  3'80%,  2'39%, 
and  T41%  respectively,  little  sugar  was  formed 
at  temperatures  below  100°  C.     Sugar  was  most 


rapidly  formed  during  the  stage  at  which  the  wood 
chips  suffered  disintegration,  and  the  total  amount 
of  sugar  produced  in  the  production  of  a  good 
quality  pulp  was  11%  on  the  weight  of  the  dry  wood 
used.  During  the  early  part  of  the  digestion,  the 
rate  of  formation  of  sugar  closely  followed  the  rate 
of  removal  of  lignin.  In  a  digestion  in  which  the 
values  for  total,  free,  and  combined  sulphur  dioxide 
were  5'60%,  4'46%,  and  1'14%  respectively,  there 
was  formed  16%  of  sugar,  but  the  loss  of  cellulose 
was  2%  greater. — A.  J.  H. 

Cellulose    [a-cellulose~\;    Determination    of    alkali- 
resistant  .    P.  Waentig.     Zellstoff  u.  Papier, 

1922,  2,  225—228.    (C/.  J.,  1922,  408  a). 

In  the  standard  method  for  the  determination  of 
resistant  or  o-cellulose  in  wood  pulp  the  principal 
source  of  discrepancies  is  the  re-precipitation  of 
colloidal  cellulose  when  the  paste  is  diluted  with 
water  before  filtration.  A  modified  procedure  is 
recommended  as  follows :  3'5  g.  of  the  pulp  is  dried 
at  105°  C,  weighed,  and  steeped  in  a  porcelain 
mortar  with  50  c.c.  of  17"5%  sodium  hydroxide 
solution  for  45  mins.  at  the  ordinary  temperature, 
the  mass  being  worked  up  with  a  pestle  to  a 
uniform  paste.  50  c.c.  of  water  is  then  stirred 
in  and  the  paste  is  transferred  to  a  Buchner  funnel, 
8 — 10  cm.  in  diam.,  covered  with  a  fine  cotton  cloth 
filter.  It  is  washed  on  the  filter  with  200  c.c.  of 
8%  sodium  hydroxide  solution  and  sucked  as  dry 
as  possible.  The  cake  of  cellulose  is  treated  with 
50  c.c.  of  5%  acetic  acid,  sucked  dry  again,  trans- 
ferred back  to  the  mortar,  broken  up,  and  stirred 
again  with  a  further  50  c.c.  of  5%  acetic  acid.  The 
cellulose  is  collected  on  the  filter,  washed  until 
neutral  to  litmus  paper,  and  dried  at  first  on  a 
clock  glass,  and  then  at  105°  C.  in  a  stoppered  weigh- 
ing bottle  until  the  weight  is  constant.  The  results 
are  expressed  in  terms  of  dry  substance.  This 
method  generally  yields  values  2—3%  lower  than 
the  older  method,  presumably  because  of  the  longer 
contact  with  alkali  and  the  more  complete  washing 
out  of  the  colloidal  cellulose  with  the  8%  caustic 
soda,  but  it  is  contended  that  the  results  are  more 
uniform  and  are  obtained  under  conditions  corre- 
sponding more  closely  with  those  of  practical 
mercerisation  in  the  viscose  industry. — J.  F.  B. 

Paper;  Application  of  direct  dyes  in  colouring . 

W.   C.   Holmes.     J.  Ind.   Eng.  Chem.,  1922,    14, 
958—960. 

Except  for  the  production  of  light  shades,  direct 
dyes  are  particularly  suitable  for  dyeing  paper  in 
the  Hollander.  A  direct  dyestuff,  absorbed  as  such 
by  paper,  produces  deeper  and  brighter  shades  than 
when  absorbed  as  a  metallic  lake.  The  formation  of 
aluminium  lakes  in  the  hollander  should  especially 
be  avoided,  since  for  most  colours,  these  are  inferior 
in  strength  and  brilliance  to  the  corresponding 
calcium,  barium,  and  even  iron  lakes.  Where  lake 
formation  cannot  be  avoided,  the  calcium  lakes 
should  be  produced  by  addition  of  calcium  chloride. 
High  temperatures  are  not  desirable,  but  it  is 
advantageous  to  add  salt,  since  brighter  effects  are 
thereby  obtained  with  a  saving  of  dyestuff.  In 
colouring  ground  wood  furnishes,  lake  formation  is 
desirable,  since  in  this  case  a  dyestuff,  absorbed  as 
such,  produces  shades  of  inferior  depth  and  bright- 
ness than  when  absorbed  as  a  metallic  lake.  When 
Pontamine  Sky  Blue  5BX  is  dyed  upon  bleached 
6ulphite  and  ground  wood  furnishes,  the  depth  of 
shade  developed  on  the  former  is  several  times 
greater  than  that  on  the  latter,  although  there  is  no 
material  difference  in  the  amounts  of  dye  actually 
absorbed.  Hence,  in  colouring  ground  wood 
furnishes  calcium  chloride  should  be  added  to  the 
hollander  before  the  introduction  of  the  dyestuff. 
The  fastness  of  shade,  in  the  case  of  some  direct  dye- 
stuffs,    is    improved    by    the    addition    of    copper 


936  a         Cl.  VI.— BLEACHING  ;    DYEING,  &c.     Cl.  VII.— ACIDS  ;    ALKALIS,  &c. 


[Dec.  13,  1922. 


sulphate  to  the  hollander,  and  this  addition  should 
be  made  after  the  colour  has  been  allowed  "  to  run  " 
for  a  short  period. — A.  J.  H. 

Piezo-micrometer  and  its  applications  [to  testing 
paper  etc.].  J.  Strachan.  Proc.  lech.  Sect. 
Papermakers'  Assoc.,  1922,  3,  20—32. 

The  author  describes  a  device  for  determining  the 
thickness  of  a  sheet  of  paper  submitted  to  a  definite 
known  pressure.  The  paper  is  placed  between  pres- 
sure plates  between  which  a  known  pressure  is  pro- 
duced by  a  lever  system.  A  micrometer  is  adjusted 
so  that  a  platinum  needle  carried  on  the  end  of  the 
micrometer  screw  makes  contact,  without  sensible 
mechanical  pressure,  with  the  upper  of  the  two 
pressure  plates.  The  contact  is  determined  electric- 
ally by  the  closing  of  an  electric  circuit  and  is  accu- 
rate to  within  1/20,000  inch.  The  thickness  of  the 
sheet  of  paper  is  obtained  from  the  micrometer 
reading  in  the  usual  manner.  Graphs  are  given  of 
the  relation  of  the  volume,  V,  of  samples  of  various 
materials — untanned  kid  skin,  rubber,  varieties  of 
paper — to  the  pressure,  P.  There  is  a  time  lag 
between  the  application  of  the  pressure  and  the 
attainment  of  the  maximum  appropriate  compres- 
sion. Between  the  limits  of  compression,  P  and  V 
are  related  by  the  equation  PVn  =  constant.  Air 
space  in  paper  comprises  interstitial  air-space  and 
porosity  air-space,  the  former  consisting  of  space 
between  the  fibrous  and  mineral  constituents  of 
the  paper,  the  latter  consisting  of  the  capillary 
pores  in  the  material,  and  the  author  contends  that 
the  calculation  of  air-space  by  the  method  adopted  in 
the  "  C.B.S.  Units  "  is  liable  to  error.— J.  S.  G.  T. 

Humidity  equilibria.     Wilson  and  Euwa.     See  I. 

Patents. 

Fibrous  or  artificial  filamentary  materials;  Appar- 
atus for  treating  with   liquids  .     F.  Linne- 

mann.     E.P.  169,695,  15.9.21.     Conv.,  1.10.20. 

Hanks  of  fibrous  material  or,  e.g.,  artificial  silk, 
are  supported  on  hank  rods  attached  to  a  vertically 
reciprocating  frame  extending  over  a  series  of  tanks 
containing  liquor  for  treating  the  material.  The 
movement  of  the  frame  alternately  submerges  the 
hanks  and  raises  them  out  of  the  liquor,  and,  while 
the  hanks  are  hanging  out  of  the  liquor,  moves  them 
along  the  series.  The  liquid  may  flow  continuously 
through  the  tanks  in  the  opposite  direction  to  that 
of  the  hanks,  or  means  may  be  provided  for  admit- 
ting a  fresh  supply  of  liquid  to  the  tanks  each  time 
the  hanks  are  raised. — L.  A.  C. 

Textile  fabric;  Artificial  and  process  for  its 

manufacture.      J.     E.     Brandenberger.      U.S. P. 
1,394,270,  18.10.21.     Appl.,  18.5.20. 

A  viscous  solution  such  as  is  used  for  the  manufac- 
ture of  artificial  silk  is  emulsified  with  air  or  other 
inert  gas,  the  emulsion  is  allowed  to  stand  for  a  time 
to  allow  large  bubbles  to  rise  and  break,  and  is  then 
spun  into  threads  in  the  usual  way.  The  threads 
thus  obtained  contain  numerous  minute  bubbles  and 
are  therefore  very  light,  opaque,  and  warm  to  the 
touch.  By  suitable  regulation  of  the  quantity  of 
bubbles  thus  introduced,  a  material  having  the 
appearance  and  feel  of  wool  can  be  obtained. 

Vulcanised   fibre;   Separating    chlorine    compounds 

from  ■ .    Elektro-Osmose  A.-G.  (Graf  Schwerin 

Ges.).    G.P.  357,057,  23.3.20. 

Vulcanised  fibre  disposed  between  diaphragms  con- 
structed of  fibrous  vegetable  material  so  arranged 
that  the  cations  migrate  more  rapidly  than  the 
anions,  is  subjected  to  the  electro-osmotic  action  of 
a  continuous  electric  current,  and  is  thereby  de- 
chlorinated  and  improved  in  durability  and  insulat- 
ing properties. — L.  A.  O. 


Cellulosic  material;  Manufacture  of  sheets  of  

xcith  a  compact  surface.  M.  Mangold.  G.P. 
357,098,  12.12.18.  Conv.,  23.10.18. 
Cellulosic  material  which  has  been  compressed  and 
subsequently  loosened  on  the  surface  to  hinder  im- 
pregnation with  liquid  beyond  a  desired  depth,  is 
converted  superficially  into  sodium-cellulose  by 
treatment  with  sodium  hydroxide,  and  subsequently 
into  viscose.  The  surface  is  hardened  by  drying, 
yielding  material  possessing  properties  similar  to 
those  of  viscose.  In  the  case  of  material  prepared 
from  wood-pulp,  substances  such  as  carbohydrates, 
lignin,  resins,  and  albumins,  which  hinder  the 
formation  of  sodium-cellulose  are  removed  by 
previous  treatment  under  pressure  with  sodium 
hydroxide  in  excess. — L.  A.  O. 

Cellulosic    material;    Jtendering    resistant   to 

water.    P.  Beck.    G.P.  357,972,  14.12.19. 

Cellulose  precipitated  by  diluting  solutions  of  it  in 
concentrated  solutions  of  salts,  such  as  calcium  thio- 
cyanate,  is  moulded  into  shape,  washed  with  water, 
dried,  and  steeped  in  a  concentrated  solution  of  an 
alkali  or  alkaline-earth  salt,  e.g.,  calcium  thiocyan- 
ate,  and  again  washed  and  dried.  The  treatment 
improves  the  tensile  strength  of  the  material,  and 
renders  it  resistant  to  water. — L.  A.  C. 

Cellulose  butyrate ;  Process  of  preparing .   G.  J. 

Esselen,  jun.,  and  H.  S.  Mork,  Assrs.  to  A.  D. 
Little,  Inc.  U.S.P.  1,425,581,  15.8.22.  Appl., 
26.7.20. 

See  E.P.  167,143  of  1921 ;  J.,  1922,  748  a. 

Waste  liquors  from  pulp  mills  and  similar  liquors; 
Apparatus  for  evaporation  and  dry  distillation  of 

.      Aktiebolaget    Cellulosa.      E.P.    165,722, 

14.6.21.     Conv.,  29.6.20. 

See  G.P.  349,438  of  1921;  J.,  1922,  450  a. 

Turpentine  oil  obtained  in  manufacture  of  sulphate- 
cellulose.     G.P.  358,050.     See  XIII. 


VI.- BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Patents. 

Textile  fibres  in  the  loose  state;  Process  and  appar- 
atus for  dyeing  and  other  treatment  of .    J., 

T.,     and    J.    Brandwood.      U.S.P.    1,432,318-9, 
17.10.22.    Appl.,  14.5.21. 

See  E.P.  182,575  of  1921 ;  J.,  1922,  666  a. 
Bleaching  agent.    G.P.  357,956-7.    See  XII. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Pernitric  acid;  Properties  and  structure  of  . 

I.  Trifonow.     Z.  anirg.  Cheni.,  1922,   124,  123 

135. 

Pernitric  acid  is  formed  by  the  action  of  hydroge 
peroxide  on  an  acidified  nitrite  solution;  low 
temperature  and  low  concentration  are  not 
essential  for  its  formation.  Above  70°  C.  it 
decomposes  rapidly.  The  per-acid  can  be  estimated 
by  the  addition  of  potassium  bromide  in  dilute 
solution,  and  the  determination  of  the  liberated 
bromine  by  means  of  potassium  iodide  solution. 
The  reaction  of  formation  is  represented  by  the 
equation 

2HNO,+3H202  +  (n  -  1)H,0  =  N206,nH30+3H,0 
and  not  "as  given  by  Rasehig  (J.,  1904,  934;  1907, 


Vol.  XIX,  No.  23.]       Cl.  VTI.— ACIDS  ;   ALKALIS ;   SALTS ;   NON-METALLIC  ELEMENTS. 


937  a 


1276)   or  Schmidlin   and   Massini    (J.,    1910,   693). 
Pernitric  acid  thus  receives  the  formula 

N02.O.O.N02,nH20. 
The  reactions  of  pernitric  acid  with  some  organic 
compounds  are  given  (c/.  p.  932  a). — W.  T. 

Phosphoric  acid,  sodium  phosphate,  and  pyrophos- 
phates; Volumetric  determination  of .    F.  X. 

Moerk.  Amer.  J.  Pharm.,  1922,  94,  641—650. 
Phosphoric  acid  and  disodium  phosphate  can  he 
determined  volumetrically  by  titration  with  sodium 
hydroxide  and  hydrochloric  acid  respectively,  using 
a  mixture  of  methyl  orange  and  indigo-carmine 
as  indicator.  To  obtain  results  by  this  method 
in  consistent  agreement  with  the  silver  phos- 
phate precipitation  method  followed  by  titration 
of  the  liberated  acid  with  alkali  hydroxide  up 
to  the  permanent  formation  of  brown  silver 
oxide,  the  dilution  of  the  reacting  solutions 
must  be  specified  and  a  definite  quantity  of 
sodium  chloride,  depending  on  the  dilution,  must 
be  added ;  the  silver  phosphate  method  is  not 
apparently  affected  by  these  factors.  For  the 
neutralisation  method  using  the  indicator  the 
procedure  is  as  follows.  To  100  c.c.  of  water 
or  salt  solution,  02  c.c.  each  of  0T%  methyl 
orange  solution  and  0"3%  indigo-carmine  solu- 
tion are  added,  followed  by  dilute  hydrochloric 
acid  until  the  green  colour  changes  without  pro- 
ducing a  violet  colour.  The  indicator  solution  thus 
prepared  is  divided  into  two  equal  parts,  one  being 
reserved,  and  the  other  added  to  the  phosphoric  acid 
solution  to  be  estimated,  and  the  mixture  titrated 
with  N 12  sodium  hydroxide  or  hydrochloric  acid, 
as  the  case  may  be,  to  match  the  tint  of  the 
reserved  solution.  The  end  point  corresponds  In 
each  case  to  the  formation  of  NaH2P04.  Under 
these  conditions  results  in  agreement  with  the 
silver  phosphate  method  were  obtained  by  titrating 
in  presence  of  7'5%  sodium  chloride  for  phosphoric 
acid  and  2'5%  for  the  phosphate.  Under  similar 
conditions  sodium  pyrophosphate  can  be  titrated 
with  acid  as  a  di-acid  base. — G.  F.  M. 

Phosphoric  acid  and  sodium  phosphate;  Methyl  red 

m   the  assay   of  .     F.   X.   Moerk   and  E.   J. 

Hughes.  Amer.  J.  Pharm.,  1922,  94,  650—655. 
The  U.S.P.  (IX)  method  for  the  volumetric 
determination  of  phosphoric  acid  and  phosphates 
always  gives  lower  results  than  either  of  the 
two  methods  described  in  the  preceding  abstract. 
The  mixed  indicator  method  is  the  most  rapid, 
but  is  influenced  by  the  weight  of  substance 
taken,  by  the  amount  of  sodium  chloride  present, 
and  by  the  strength  of  the  volumetric  solutions.  The 
best  results  when  working  with  unknown  quantities 
are  obtained  by  the  silver  phosphate  method, 
titrating  back  the  liberated  acid  with  alkali  hydr- 
oxide, using  methyl  red  as  indicator.  The  pro- 
cedure is  as  follows:  To  50  c.c.  of  standard 
silver  nitrate  solution  one  drop  of  methyl  red  and 
a  trace  of  alkali  to  produce  a  yellow  colour  are 
added,  followed  by  10  c.c.  of  the  solution  to  be 
assayed.  The  liberated  nitric  acid  (3  mols.  per  mol. 
of  HjPO,,  or  1  mol.  per  mol.  of  Na.HPO,)  is  titrated 
with  alkali  hydroxide  until  the  supernatant  liquid 
is  again  yellow.  During  the  titration  the  pink 
colour  may  fade,  in  which  case  one  or  two  drops  more 
of  methyl  red  must  be  added. — G.  F.  M. 

Calcium  carbide.    E.  Botolfsen.     Ann.  Chim.,  1922, 
18,  5-^8. 

Cardide  was  prepared  by  direct  combination  of 
commercial  calcium,  from  which  the  coating  of 
oxide  had  been  removed,  and  lampblack,  previously 
purified  by  heating  to  redness  in  a  current  of 
chlorine.  An  excess  of  calcium  was  used  and  con- 
tact between  the  elements  was  effected  by  piercing 
holes  in  the  metal  and  placing  the  carbon  therein. 


The  mixture  was  then  heated  in  vacuo,  but  no 
appreciable  reaction  took  place  at  temperatures 
below  the  melting-point  of  the  metal,  even  when 
heating  to  700°  C.  was  continued  for  50  hrs. 
Carbide  was  formed  when  the  metal  fused,  but 
distillation  of  the  metal  proceeded  faster  than  the 
reaction,  so  that  carbon  containing  only  traces  of 
carbide  remained.  On  heating  in  an  atmosphere 
of  argon  at  normal  pressure  for  6  hrs.  at  800° — 
850°  C,  no  volatilisation  of  calcium  occurred,  but 
no  increase  in  the  formation  of  calcium  carbide  was 
observed.  Further  attempts  made  with  calcium 
vapour  were  successful,  and  on  heating  5  g.  of 
calcium  and  2  g.  of  carbon  at  850° — 875°  C.  for 
17  hrs.  only  1%  of  the  carbon  remained  uncombined, 
whilst  in  the  case  of  11  g.  of  calcium  heated  with 
5  g.  of  carbon  at  1025°— 1050°  C.  for  10  hrs.,  only 
1'5%  of  free  carbon  remained.  Finally  when  14  g. 
of  calcium  was  heated  with  4  g.  of  carbon  at  925° — 
975°  C.  for  45  hrs.,  all  the  carbon  was  converted 
into  carbide.  The  excess  of  calcium  was  found  as  a 
metallic  deposit  in  the  upper  part  of  the  tube. 
Pure  carbide,  as  described  by  the  author,  is  white, 
but  the  substance  prepared  by  the  above  method  is 
black.  It  rapidly  decomposes  in  air,  yielding 
acetylene;  the  resulting  lime  is  whiter  than  that 
obtained  from  industrial  carbide,  so  that  the  colour 
is  not  due  to  the  presence  of  free  carbon ;  moreover 
industrial  carbide  containing  up  to  6%  of  carbon 
is  grey.  Experiment  showed  that  the  colour  was 
due  to  iron  from  the  containing  vessel,  but  further 
specimens  made  in  an  alundum  tube  were  also 
black.  In  the  latter  case,  analysis  showed  the 
presence  of  metallic  aluminium  formed  by  the 
action  of  calcium  on  alumina.  The  dissociation  of 
commercial  carbide  was  effected  by  heating  3  g.  to 
1050°  C.  for  18  hrs.,  when  a  deposit  of  several 
centigrams  of  metallic  calcium  was  obtained  in  a 
finely  divided  condition.  When  an  iron  vessel  is 
used  for  the  purpose,  the  carbon  liberated  attacks 
the  vessel  with  the  formation  of  Fe3C.  No  trace 
of  a  sub-carbide  of  calcium  was  found.  The 
presence  of  certain  substances,  e.g.,  iron  and  iron 
oxide,  affects  the  progress  of  the  dissociation. 

— H.  J.  E. 

Magnesium  sulphate;  The  ocfahydrate  of S 

Takegami.    Mem.  Coll.  Sci.  Kyoto,  1921,  5,  191— 

When  magnesium  sulphate  crystallises  from 
aqueous  solutions  containing  sodium  sulphate  at 
25°  C.  it  separates  as  the  octahydrate,  which  has 
not  previously  been  recognised.  If  the  proportion 
of  sodium  sulphate  is  increased,  astrakanite 
MgS01,Na2SO„4H20,  is  eventually  formed.  At 
30°  C,  however,  when  the  proportion  of  sodium 
sulphate  is  increased  to  about  32  mols  %,  the  octa- 
hydrate is  transformed  into  heptahydrate.  The 
octahydrate  changes  into  heptahydrate  when  air- 
dried.  In  a  magnesium  sulphate — sodium  sulphate 
— water  system  containing  7 — 9%  of  sodium 
sulphate  in  solution,  the  octahydrate  of  magnesium 
sulphate  is  stable  below  45"5°  C.  and  the  hepta- 
hydrate from  this  temperature  to  at  least  77"2°  C. 
The  number  of  solid  phases  to  be  taken  into  account 
in  the  equilibrium  of  the  reciprocal  salt  pair 

MgSO.-^NaCl^  MgOl.  +  Na^O, 
thus  becomes,   with  the   addition  of  MgSO   8H  O 
ten.— E.  H.  K.  "       '    ' 

Calcium  carbonate;  Solubility  of  in.  water  in 

equilibrium  with  a  gaseous  phase  containing 
carbon  dioxide.  Y.  Osaka.  Mem.  Coll  Sci 
Kyoto,  1921,  5,  131—141. 

A  theoretical  paper,   in  which,   assuming  for  the 
first  and  second  apparent  dissociation  constants  of 
carbonic   acid  the  values  3"5xl0"'  and  4-91xl0~" 
but  allowing  for  the  fact  that  carbon  dioxide  dis- 
solved in  water  is  combined  only  to  a  small  extent 


933  a 


Cl.  VH.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Dec.  15.  192 


and  that  carbonic  acid  is  in  reality  a  much  stronger 
acid  than  acetic  acid,  the  solubility  product  of 
calcium  carbonate  (calcite  form)  at  25°  C.  is  calcu- 
lated to  be  7"24xl0"8.  A  formula  is  given  from 
which  the  solubility  of  calcium  carbonate  at  any 
partial  pressure  of  carbon  dioxide  can  be  calculated, 
assuming  the  degree  of  dissociation  of  calcium  bi- 
carbonate to  be  the  same  as  that  of  calcium  acetate 
nt  the  same  concentration. — E.  H.  R. 

Hare  earths;  A  new  mineral  which  contains  the 

as  its  main  component.    F.  Henrich  and  G.  Hiller. 
Ber.,  1922,  55,  3013—3021. 

A  hydrated  phosphate  of  yttrium  and  erbium, 
P04(ErY  etc.),  2H20,  termed  weinschenkite,  occurs 
in  very  small  quantity  in  the  Bavarian  Oberpfalz 
in  white,  matted,  globular  deposits  and  in  radiating 
needles  on  brown  haematite  from  which  it  is  readily 
detached.  An  accurate  quantitative  analysis  of  the 
mineral  has  not  vet  been  possible  owing  to  the  small 
quantity  available.     (Cf.  J.C.S.,  Dec.)— H.  W. 

Radium  solutions;  Durability  of  .     A.  Becker. 

Z.  anorg.  Chem.,  1922,  124,  143—152. 

The  permanency  of  the  solution  is  defined  as  its 
constancy  of  emitting  emanation.  The  author  found 
that  solutions  containing  0"02  to  0'0000005  mg.  of 
radium  per  grm.  of  solvent  did  not  show  any  decay 
in  eight  years.  The  possible  experimental  error  was 
1%.— W.  T. 

Gels  of  inorganic  salts;  General  method  for  obtain- 
ing   ,  and  its  relation  to  theories  of  the  col- 
loidal state.  K.  Charitschkov.  J.  Russ.  Phys.- 
Chem.  Soc,  1920,  52,  91—96. 

The  action  of  hydrogen  chloride  or  carbon  dioxide 
on  a  solution  of  sodium  (potassium  etc.)  naphthenate 
in  a  hydrocarbon  containing  excess  of  naphthenic 
acid  yields  colloidal  sodium  chloride  or  carbonate ; 
oleic  acid  may  be  used  in  place  of  naphthenic  acid. 
The  products  thus  obtained,  including  colloidal 
cupric  and  mercuric  chlorides,  etc.,  exhibit  Brown- 
ian  movement  and  the  corresponding  ultramicro- 
scopic  appearance.  When  ferric  naphthenate  is 
treated  with  hydrogen  chloride,  the  latter  exerts  a 
reducing  action,  the  product  being  ferrous  chloride. 
(Cf.  J.C.S.,  Dec.)— T.  H.  P. 

Salts;  Adsorption  of on  metal  surfaces.   H.  von 

Euler   and   G.    Zimmerhmd.      Arch.    Kem.    Min. 
Geol.,  1922,  8,  [14],  1—23. 

Measurements  have  been  made  of  the  silver  nitrate 
and  potassium  chloride  adsorbed  from  aqueous  solu- 
tion by  finely  divided  gold  particles  and  by  gold- 
leaf.  The  amount  adsorbed  increases  with  the 
amount  of  salt  in  solution,  at  first  linearly  and  then 
tending  to  a  maximum.  At  the  maximum  there  is 
more  adsorbed  than  would  correspond  to  a  uni- 
molecular  layer  on  the  gold.  Experiments  are  also 
described  with  mercury  dropping  through  a  calomel 
solution,  in  which  the  amount  of  mercury  in  solu- 
tion was  determined  by  measuring  its  effect  as  an 
enzyme  poison.— W.  O.  K. 

Phosphorus.  W.  Marckwald  and  K.  Helmholz. 
Z.  anorg.  Chem.,  1922,  124,  81—104. 

The  authors  found  the  melting  point  of  scarlet  phos- 
phorus to  be  592-5° +  0'5°  C,  and  the  critical 
temperature  of  the  yellow  modification  7206°  C. 
By  rapid  cooling  of  phosphorus  vapour  a  mixture  of 
the  yellow  and  scarlet  modifications  is  deposited, 
whilst  slow  cooling  gives  the  pure  yellow  form. 
A  hypothesis  is  advanced  to  explain  this  and  also 
the  phenomenon  observed  on  cooling  liquid  scarlet 
phosphorus  (cf.  J.C.S.,  Dec.).  The  authors  show 
that  the  crystals  isolated  from  the  melt  of  the 
scarlet  variety  are  identical  with  Hittorf's  phos- 
phorus. Black  phosphorus  changes  into  the  scarlet 
form  on  being  heated  to  575°  C— W.  T. 


Naturally   occurring    gases;   Examination  of  . 

//.     F.   Henrich  and  G.  Prell.      Ber.,   1922,  55, 

3021—3025. 
The  method  for  the  collection  and  examination  of 
naturally  occurring  gases  (cf.  J.,  1920,  748  a)  has 
been  simplified  and  extended.  The  gases  from  three 
springs  near  Leopoldsdorf,  Bavaria,  contained  res- 
pectively oxygen  13%,  with  nitrogen  and  rare  gases, 
oxygen  18-8%,  with  nitrogen  and  rare  gases,  and 
oxygen  18'2%,  nitrogen  81'8%,  argon  and  neon 
1*1%.  Since  the  ratio,  nitrogen:  rare  gases  in  the 
gases  is  approximately  the  same  as  in  air,  it  appears 
that  air  ha6  in  some  manner  been  enclosed 
below  the  water  in  the  spring.  The  low  oxygen 
content  of  the  gases  in  comparison  with  that  of  air 
is  explained  by  the  greater  solubility  of  oxygen  than 
of  nitrogen  in  water.    (Cf.  J.C.S.,  Dec.)— H.  W. 

Naturally   occurring   gases;  Examination  of  . 

///.     F.  Henrich  and  G.  Prell.     Ber.,  1922,  55. 

3026—3030. 
The  gases  from  a  number  of  pools  on  the  Luisenburg 
near  Wunsiedel  and  Alexanderstad  (Fichtelgebirge) 
consisted  mainly  of  nitrogen  (and  rare  gases)  and 
methane,  with  small  quantities  of  oxygen  and  carbon 
dioxide  and  traces  of  hydrogen  sulphide.  The 
methane,  carbon  dioxide  and  hydrogen  sulphide 
appear  to  owe  their  origin  to  a  bacterium  which  is 
similar  to  but  not  identical  with  B.  methanigenes. 
Nitrogen  and  the  rare  gases  must  be  derived 
initially  from  the  air.  The  ratio  of  rare  gas  to 
nitrogen  is,  however,  in  two  instances  rather  more 
than  50%  greater  than  in  air.  It  is  suggested  that 
the  air  was  imprisoned  beneath  the  water  and  a 
portion  of  its  nitrogen  was  assimilated  by 
bacteria. — H.  W. 

See  also  pages  (a)  928,  Sulphur  from  spent  gas- 
purifying  material  (Kattwinkel).  932,  Hydrogen 
peroxide  and  nitrites  (Trifonow).  942,  Formation 
of  nitrides  (Tammann).  963,  Sulphuric  acid 
(Balarew);  Phosphoric  acid  (Feigil);  Boric  acid 
(Kolthoff) ;  Nitrous  and  arsenious  acids  (Klemenc 
and  Pollak). 

Patents. 
Gas  and  carbonaceous  materials  [calcium  carbide]; 

Production  of .    J.  H.  Reid.     E.P.  185,135, 

22.2.21. 
Coal  ground  to  pass  through  an  S-mesh  sieve  and 
calcium  carbonate  ground  to  pass  a  40-mesh  sieve 
are  intimately  mixed  and  carbonised  in  a  retort  at 
2600°— 2800°  F.  (1400°— 1550°  C).  The  tarry  dis- 
tillate produced  at  lower  temperatures  is  not 
formed,  the  sole  products  from  4000  lb.  of  limestone 
and  4000  lb.  of  coal  being  27,000  cub.  ft.  of  gas  of 
high  calorific  value  and  6520  lb.  of  coked  residue. 
The  latter  is  passed  at  a  high  temperature  to  an 
electric  furnace,  where  it  yields  3000  lb.  of  calcium 
carbide  and  90,000  cub.  ft.  of  carbon  monoxide.  An 
improved  current  efficiency  in  the  carbide  furnace 
is  obtained  due  to  the  uniformity  of  the  charge.  If 
desired  the  molten  carbide  may  be  run  into  water 
and  the  resulting  acetylene  and  hydrogen  led  bacK 
through  the  furnace  chamber,  wherein  the  mixture 
is  converted  into  hydrocarbons  such  as  methane, 
ethylacetyleue,  and  methylallene. — C.  I. 

Alkali  from  felspar  and  other  minerals;  Process  for 

the  extraction  of  .     Plauson's  (Parent  Co.), 

Ltd.  From  H.  Plauson.  E.P.  186,199,  15. 7. 21. 
Ten  pts.  of  finely  ground  felspar  is  allowed  to  stand 
for  some  time  with  10  pts.  of  a  10%  solution  of 
hydrochloric  acid.  The  mixture  is  then  diluted  Willi 
40  pts.  of  water  and  submitted  to  a  treatment  in  a 
colloid  mill.  The  colloidal  dispersion  so  obtained  is 
heated  to  about  225°  C.  at  25  atm.  pressure  in  an 
autoclave,  whereupon  a  large  proportion  of  the 
potash  in  the  felspar  goes  into  true  solution.  The 
solution  is  filtered  and  concentrated  by  evaporation. 


Vol.  XLI.,  So.  23]     Cl.  VIII.— GLASS.     Cl.  IX.— BUILDING  MATERIALS.     Cl.  X.— METALS. 


939  a 


A  more  refractory  mineral  requires  treatment  at 
high  pressure  with  superheated  steam  at  125°— 350° 
C.  Extraction  of  the  potash  is  facilitated  if  the 
felspar  is  heated  in  a  "  revolver  "  furnace  with 
carbonaceous  material  or  heated  with  reducing  gases 
before  being  subjected  to  the  process. — H.  R.  D. 

Hydrogen  peroxide;  Production  of  .  Wood- 
lands, Ltd.  From  J.  Patek.  E.P.  186,840,  12.10.21. 
Solutions  of  hydrogen  peroxide,  or  solutions 
(persulphates)  which  yield  it  on  heating,  are  sprayed 
or  atomised  on  to  a  surface  of  sulphuric  acid  or 
fused  sodium  bisulphate  heated -to  a  temperature 
above  the  boiling  point  of  the  solution.  The  hydro- 
gen peroxide  evaporates  immediately  and  escapee 
with  the  steam  to  a  condenser,  in  which  it  is 
rapidly  condensed. — H.  R.  D. 

Ferrous  sulphate;  Method  of  oxidising  .     C.  J. 

Herrlv,  Assr.  to  Union  Carbide  Co.  U.S. P. 
1,430,551,  3.10.22.    Appl.,  13.7.20. 

Ferrous  sulphate  is  subjected  to  the  action  of 
oxygen  with  an  oxide  of  nitrogen  as  catalyst,  in 
presence  of  water  and  sufficient  sulphuric  acid. 

— C.  I. 

Dicalcium   phosphate;  Manufacture   of  — — .     M. 

Helbig.  G.P.  357,763,  3.7.20. 
Raw  materials  containing  tricalcium  phosphate  are 
dissolved  in  mineral  acid  and  the  solution  is  heated 
in  the  presence  of  a  quantity  of  magnesium  chloride 
sufficient  to  provide  chlorine  ions  equivalent  to  at 
least  half  of  the  calcium  present. — L.  A.  C. 

Aluminium  compounds ;  Preparation  of nearly 

free  from  iron  from  solutions  of  ferruginous 
alumina.  Chem.  Fabr.  Griesheim-Elektron.  G.P. 
357,900,  1.8.19. 

Ferric  salts  present  in  aluminium  solutions  are 
reduced  to  ferrous  salts  and  the  aluminium  salts  in 
solution  are  converted  into  insoluble  compounds  by 
evaporation  and  thermal  decomposition  in  the 
absence  of  air. — L.  A.  C. 

Copper  sulphate;  Production  of  from  waste 

material  containing  copper  or  its  alloys.  S.  Hiller. 
G.P.  35S,611,  2.9.20.     Conv.,  24.8.20. 

An  intimate  mixture  of  waste  material  containing 
copper  or  its  alloys  and  not  more  than  10%  of  its 
weight  of  sodium  chloride  is  roasted  as  in  the 
chloridising  roasting  of  copper  sulphide  ores,  and  is 
subsequently  treated  with  sulphuric  acid.  If  the 
material  contains  tin,  a  small  proportion  of  calcium 
oxide,  silica,  or  alumina  is  added  before  roasting. 

— L.  A.  C. 

Graphite;    Purification    of   by    means    of   an 

electric  current.  Graphitwerk  Kropfmuhl  A.-G. 
G.P.  a58,520,  13.3.19. 

A  srrxTrjRE  of  graphite  and  coal  is  heated  above 
2200°  C,  whereby  impurities  combined  with  the 
graphite  are  sublimed.  By  allowing  the  sublimed 
vapour  to  condense  at  different  temperatures,  the 
various  impurities  may  be  recovered  separately. 

— l.  a:  c 


VIII.-GLASS;  CERAMICS. 

Quartz;  Elasticity  and  symmetry  of  at  high 

temperatures.     A.    Perrier  and  B.  de   Mandrot. 
Comptes  rend.,  1922,  175,  622—624. 

A  study  of  the  variation  in  the  elasticity  of  quartz 
with  change  of  temperature  showed  that  decreasing 
values  are  obtained  up  to  575°  C,  whilst  beyond  that 
point  the  values  increase  at  first  very  greatly  for 
small  increments  of  temperature,  then  to  a  gradually 
diminishing  extent.     At  the  inversion  point  (trans- 


ition from  a-  to  /3-quartz)  the  crystal  passes  from  the 
rhombohedral  to  the  hexagonal  system. — H.  J.  E. 

Patents. 

Glass  furnaces;    Feed   troughs   for  .      W.    G. 

Clark.  E.P.  163,995,  27.5.21.  Conv.,  27.5.20. 
The  feed  trough  of  a  glass  furnace  is  provided 
internally  with  an  electric  heating  element  which 
enables  chilled  glass  in  the  trough  to  be  melted 
whilst  the  batch  in  the  furnace  is  being  heated. 
As  soon  as  the  glass  is  melted  the  current  may  be 
directed  through  the  molten  glass. — C.  A.  K. 

Clay;   Treatment  of  .     W.   Feldenheimer  and 

W.  W.  Plowman.    E.P.  186,S55,  21.11.21.    Addn. 
to  184,271  (J.,  1922,  756  a). 

The    clay     is    deflocculated    in    a    dilute    aqueous 
solution  of  sodium  or  potassium  pvrophosphate. 

— H.  R.  D. 

Artificial  meerschaum;  Method  of  producing  . 

P.    Deussing.      E.P.    172,004,    18.11.21.      Conv.. 

23.11.20.     Addn.  to  164,319. 
See  G.P.  340,533  of  1920;  J.,  1921,  892  a. 

Refractory     material.       E.     D.     Frohman.       E.P. 
186,968,  10.6.21. 

See  U.S. P.  1,372,016  of  1921 ;  J. 


1921,  348  a. 


Clays;    Treatment    of  and   manufacture    of 

articles  and  materials  therefrom.  W.  Smith. 
U.S.P.  1,432,629,  17.10.20.     Appl.,  1.9.21. 

See  E.P.  149,440  of  1919;  J.,  1920,  658  a. 

Glass;  Apparatus  for  feeding  .     W.  J.  Miller. 

E.P.  172,634,  6.12.21.     Conv.,  6.12.20. 


IX.— BUILDING  MATEDIALS. 

Patents. 

TFood;   Method   of    treating    .      F.    B.    Dehn. 

From  The  Studebaker  Corp.  E.P.  187,018,  12.7.21. 
Wood  is  treated  with  a  liquid  mixture  such  as  that 
made  by  mixing  30  lb.  of  Manila  gum.  3  galls,  of 
Baltic  linseed  oil,  and  7  galls,  of  turpentine  and 
adding  zinc  oxide  ground  in  varnish  in  the  propor- 
tion of  8  lb.  per  gallon  of  the  first  mixture.  The 
treated  wood  is  gradually  heated  for  3  hrs.  to  a 
temperature  above  its  critical  point  or  for  4  hrs. 
to  200°  F.  (93°  C).  _  After  this  treatment  the 
strength  of  the  wood  is  greatly  increased  and  its 
critical  temperature  raised. — A.  R.  P. 

Slag;   Method   for   obtaining   highly   porous   . 

C.    H.    Schol.      E.P.    145,032,    14.6.20.      Conv., 
29.8.14. 

See  U.S.P.  1,163,605  of  1915;  J.,  1916,  118. 


X.-METALS;  METALLURGY,  INCLUDING 
ELECTRO-METALLURGY. 

Iron-boron-carbon;   The   ternary   system  .     R. 

Vogel  and  G.  Taminann.    Z.  anorg.  Chem.,  1922 
123,  225—275. 

The  authors  discuss  the  results  of  Hannesen  (J., 
1915.  84)  and  Tschischewsky  and  Herdt  (J.,  1917,' 
650)  who  investigated  the  system  iron-boron.  The 
disagreement  of  their  results  is  found  to  be  due  to 
differences  in  the  rate  of  cooling.  Rapid  coding 
results  in  the  separation  of  supersaturated  mixed 
crystals.  Hannesen  ivorked  with  small  quantities 
and  the  cooling  was  much  more  rapid  than  in  the 
work  of  Tschischewsky  and  Herdt.  The  authors 
have  carried  out  a  systematic  study  of  the  ternary 


940  a 


Cl.  X.— METALS;  METALLURGY,  INCLUDING  ELECTRO-MET ALLUBGY.    [Dec.  15. 1922. 


system  iron-boron-carbon  and  their  results  are  given 
in  detail.  Equilibrium  sets  in  so  slowly  in  the 
system  that  the  structure  and  properties  of  the 
ternary  alloys  depend  to  a  large  extent  on  the  pre- 
liminary heating.  The  limiting  proportion  of  boron 
having  an  influence  on  the  structure  was  found  to 
beO-02%.— W.  T. 

Steels;  Honda's  conception  of  the  41  transformation 

and  the  quenching  of  .     M.  Chikashige.     Z 

anorg.  Chem.,  1922,  124,  59—60. 

A  theoretical  paper  in  which  the  author  criticises 
the  views  of  Honda  (J.,  1919,  821  a),  and  claims  that 
a  better  interpretation  is  given  by  the  following 
scheme :  — 


Pearlite- 


Austenite 


*stable 


below  721° 


-^Martensite  - 


— ^unstable. 
— W.  T. 


Steels;    Influence    of    velocity    of    cooling    on    the 
position  of  the  critical  points  and  the  structure  of 

.     W.   Schneider.     Stahl  u.   Eisen,  1922,  42, 

1577—1584. 

Three  carbon  steels,  A,  B,  and  C,  containing  0'30, 
0"89,  and  P25%  carbon  and  0T4%  manganese,  were 
used.      Ball  specimens  10  mm.  diameter  were  pre- 
pared from  rods  of  these  steels,   and  the  Portevin 
water  resistance  was  used  to  regulate  the  cooling 
velocities.      The  Acl  and  Arl   points  of  the  steels 
were  726°,  725°,   725°  C.   and  715°,   716°,  716°  C. 
respectively.     The  effect  of   increasing  the  cooling 
velocity  on  the  Arl  points  is  to  produce  a  distinct 
lowering,   whilst    increasing   heating   velocity    pro- 
duces a  not  inconsiderable  raising  of  the  Acl  points. 
The    pearlite    point   is    lowered   by   increasing    the 
initial    temperatures.       It    is   suggested   that    this 
change  is  due  to  "crystal  nuclei  "   which  remain 
in  the  solid  solution.     The  higher  the  temperature 
as  primary  cause  and  the  longer  the  time  of  cooling 
as    secondary    cause,    the   smaller    the    number    of 
"  crystal  nuclei  "  which  remain  to  initiate  decompo- 
sition  of   the   solid    solution    on    cooling.      Micro- 
scopical examination  shows  that  the  grain  size  de- 
creases with  increasing  cooling  velocities.     Quench- 
ing   tests    with    water    at    different    temperatures 
showed   that   steel    A    is   troostitic   even   with   the 
quenching  bath  as  low  as  20°  C,  the  cooling  curve 
showing  the  upper  critical  point.     In  steel  B  the 
change    point   is    lowered   and   martensite    appears 
after  quenching  in  water  at  50°  C.     Steel  C  shows 
the  evolution  of  heat  in  the  low  temperature  regions 
with  quenching  in  water  at  50°  C.     For  the  reten- 
tion of  martensite  in  hypoeutectoid  steels,  the  lower 
the  carbon,  the  lower  must  be  the  temperature  of 
the  quenching  bath,  but  with  steels  containing  0"9% 
carbon  and  over,  such  differences  no  longer  exist. 
It  is  indicated  by  all  the  tests  that  martensite  is 
formed  with  evolution  of  heat,   and  it  is  accepted 
that  in  the  formation  of  troostite  and  martensite,  of 
the  whole  of  the  heat  absorbed  at  the  Acl  point,  does 
not  become  free   on  cooling,  the  remainder  being 
retained  latent  by  the  structural  constituents. 

—J.  W.  D. 

Titanium;  Estimation  of  - •  in  ferrous  products. 

L.  Losana  and  E.  Carozzi.       Giorn.  Chim.  Ind. 
Appl.,  1922,  4,  394—396. 

The  method  is  based  on  the  oxidation  of 
titanous  to  titanic  compounds  by  methylene  blue 
(c/.  Ferrari,  J.,  1920,  837  a),  which  is  found 
to     be     without     action     on     other     usual     con- 


stituents   of    irons    and    steels.      Solutions    of    39 
and  1"95  g.   per  1.  respectively  of  methylene  blue 
corresponding   with   about  0001   g.    and  00005  g 
of   titanium    per    c.c,    are    convenient,    the   exact 
titres  being  determined  experimentally.     (1)  Steels 
and  cast  irons:   Of  these,  which  seldom  contain  as 
much  as  1%  of  titanium,  2—5  g.  of  the  sample  is 
evaporated  gently  to  dryness  with  hydrochloric  acid 
diluted  with  its  own  volume  of  water,  the  dry  residue 
being  heated  on  a  water-bath  for  15  mins.  with  con- 
centrated hydrochloric  acid  to  dissolve  the  whole  of 
the  titanium.     The  liquid  is  diluted  to  200—300  c  c 
and  treated  for  30  mins.  at  60°  C.  with  25  c.c.  of 
concentrated  hydrochloric  acid  and  a  few  grams  of 
zinc  dust.     As  the  titanium  reacts  only  after  the 
iron,   the   liquid   is  tested   to  ensure   the  complete 
reduction  of  the  iron,  and  is  then  filtered  rapidly, 
through  a  glass  wool  plug  on  which  is  placed  a  little 
granulated    zinc,    into    a   flask    filled    with    carbon 
dioxide,  the  filtrate  being  titrated  immediately  with 
the  methylene  blue  solution  until  a  distinct  colora- 
ion  appears.     (2)  Ferro-titaniums :    Since  these  are 
insoluble  in  acids,  0'5  g.  of  the  finely-divided  metal 
is  fused  with  potassium  bisulphate,  the  mass  being 
then  digested  with  50%  hydrochloric  acid  on  a  water" 
bath    for  20   mins.   and    the   liquid   made  up  to  a 
definite  volume.      The  reduction   and  titration,   as 
described  above,  are  then  carried  out  with  an  aliquot 
part.     The  method  yields  satisfactory   results  pro- 
vided that  the  reduction,  filtration,  and  titration  are 
effected  rapidly.— T.  H.  P. 

Ferrosilicon-  Toxic  properties  of  commercial  . 

N.  Kurnakow  and  G.  Urasow.     Z.  anorg.  Chem., 
1922,  123,  89—131. 

Commercial  ferrosilicon  has  been  found  to  evolve 
poisonous  and  explosive  gases.  The  alloy  contain- 
ing about  50%  Si  is  sensitive  to  water  and  is  very 
dangerous.  The  authors  found  that  in  iron-silicon 
alloys  with  33'4  to  100%  by  weight  of  silicon,  a  solid 
phase  of  variable  composition  (55'18 — 61'5%  Si)  was 
formed,  which  solidified  at  1245°  C.  This  phase 
(lebeauite)  can  form  ternary  and  quaternary  solid 
solutions  with  phosphorus  and  aluminium.  The 
ternary  solid  solutions  (Fe-Si-P  and  Fe-Si-Al)  of 
lebeauito  are  stable  towards  water.  The  quaternary 
solution  of  lebeauite  (Fe-Si-P-Al)  is  attacked  by 
water,  phosphine  being  evolved.  Ferrosilicon  with 
less  than  33"4%  Si  and  containing  y-iron  will  dis- 
solve phosphorus  and  aluminium  to  the  extent  of 
1"7%  and  3%  respectively.  These  ternary  and 
quaternary  solutions  resist  the  action  of  water. 
Calcium  phosphide  will  dissolve  neither  in  solid  nor 
in  liquid  ferrosilicon. — TV.  T. 


Non-ferrous  alloys;    Use  of  ■ under  superheat. 

H.  C.  Dews.     Engineering,  1922,  114,  541—542. 

The  behaviour  of  copper  and  its  principal  com- 
mercial alloys  at  high  temperatures  is  discussed 
with  especial  reference  to  their  tensile  strength  and 
ductility,  and  a  number  of  curves  showing  the 
alteration  of  these  properties  with  the  temperature 
are  given.  The  tensile  strength  of  copper  falls 
rapidly  with  increasing  temperature  up  to  700°  C, 
then  much  more  slowly,  while  its  ductility  decreases 
slowly  to  the  same  temperature,  then  very  rapidly 
increases.  Similar  curves  are  obtained  for  70:30 
brass  with  the  bend  in  the  tensile  strength  curve 
at  550°  C.  and  the  minimum  ductility  at  400°  C, 
while  in  60:40  brasses  the  tensile  strength  curve 
bends  much  more  sharply  at  475°  C.  Probably  the 
most  suitable  alloys  for  engineering  materials  at 
high  temperatures  are  those  of  copper  and  nickel, 
some  of  which,  e.g.,  the  80%  Cu,  20%  Ni  alloy,  have 
a  tensile  strength  and  ductility  at  500°  C.  equal  to 
that  of  gun  metal  at  ordinary  temperatures. 

—A.  R.  P. 


Vol.  XLL,  No.  23.  J    Cl.    X.— METALS;    METALLURGY,    INCLUDING   ELECTRO-METALLURGY.    941  a 


Binary  alloys;    Relation  between  the  equilibrium 

diagram  and  hardness  in .     T.  Isihara.     Sci. 

Rep.  Tohoku  Imp.  Univ.,  1922,  11,  207—222. 
The  maximum  hardness  of  copper-nickel  alloys 
occurs  when  the  alloy  consists  of  atomic  pro- 
portions of  nickel  and  copper  and  is  not  affected 
by  annealing  or  ageing.  This  agrees  with 
Tammann's  theory  of  the  hardness  of  binary  alloys 
forming  continuous  solid  solutions.  Quenching  of 
iron-copper  alloys  containing  less  than  20%  Cu 
increases  the  hardness  to  a  degree  depending  on,  Jhe 
temperature  at  which  quenching  takes  place,  and 
the  curve  showing  the  relation  between  quenching 
temperature  and  hardness  shows  breaks  at  the  Ar  2 
and  Ar  3  points,  the  Ar  3  point  being  very  marked. 
On  ageing,  the  hardness  first  increases  slightly,  then 
decreases.  In  the  aluminium-zinc  series  the  hard- 
ness-quenching temperature  curve  shows  a  break 
at  262°  C.  in  alloys  containing  5 — 68%  Al,  corre- 
sponding to  the  transformation  of  the  /?  phase  into 
a  +  y.  Quenching  of  these  alloys  from  above  the 
eutectoid  point  results  in  a  considerable  increase  in 
hardness,  while  ageing  increases  the  hardness  only 
of  alloys  in  the  /8+y  region.  The  hardness  of  the 
copper-tin  alloys  substantiates  Heycock  and 
Neville's  diagram  of  their  constitution  (Phil. 
Trans.,  1904,  A  202);  ageing  has  little  effect  on 
the  hardness.  In  the  copper-aluminium  series 
quenching  from  a  temperature  above  the  eutectoid 
point  considerably  decreases  the  hardness  instead 
of,  as  in  the  case  of  steels,  increasing  it,  thus  show- 
ing the  incorrectness  of  the  interference  theory  of 
hardness  (Jeffries  and  Archer,  J.,  1921,  515  a).  It 
is  shown  that  Hayward's  theory  (Chem.  Met.  Eng., 
1921,  65,  695)  that  the  central  portion  of  an 
annealed  steel  bar  is  harder  than  the  outer  portion 
owing  to  variation  of  thermal  stress  from  the  centre 
towards  the  periphery,  is  improbable  and  that  the 
results  observed  are  due  to  the  edge  effect,  the 
portion  of  metal  near  the  edge  having  a  smaller 
resistance  to  deformation  than  the  central  part  of 
the  bar.— A.  R.  P. 

Metal;  Effect  of  temperature,  pressure,  ajid  struc- 
ture on  the  mechanical  properties  of  .     Z. 

Jeffries    and   R.    S.    Archer.      Chem.    and   Met. 
Eng.,  1922,  27,  747—751. 

The  temperature  scale  of  a  solid  metal  can  be 
divided  roughly  into  a  region,  below  atmospheric 
temperature,  in  which  the  metal  is  brittle,  an  inter- 
mediate region  extending  up  to  the  temperature  of 
recrystallisation,  and  a  zone  of  hot  working  lying 
above  the  temperature  of  recrystallisation.  Pressure 
applied  uniformly  on  a  metal  does  not  effect  any 
permanent  change  in  structure  or  properties,  as 
metals  are  perfectly  elastic.  Hardness  increases 
with  the  pressure  especially  for  soft  materials.  It 
is  difficult  to  describe  the  structure  of  a  metal  with 
reference  to  the  orientation  of  its  grains.  Ordinarily 
the  grains  possess  varied  orientations,  but  a  certain 
uniformity  of  orientation  occurs  in  cold-worked 
metals  which  persists  to  some  extent  after  anneal- 
ing. Fine  grain  is  held  generally  to  promote  tough- 
ness, strength,  and  ductility,  but  at  high  tempera- 
tures it  leads  to  flow  at  the  grain  boundaries 
especially  under  prolonged  application  of  a  load. 
Cold  deformation  produces  refinement  of  grain  in 
the  sense  that  one  original  grain  exhibits  a  mixture 
of  orientations  after  severe'  cold  work,  but  the 
directional  properties  of  the  metals  are  never 
obliterated.  Failure  of  crystals  under  load  always 
takes  place  on  crystallographic  planes  and  the  only 
strength  property"  of  a  single  crystal  is  its 
elastic  limit  in  shear,  which  has  a  different  value  in 
different  crystallographic  directions.  The  pro- 
perties of  crystals  depend  on  the  characteristics  of 
the  constituent  atoms  and  on  the  type  of  space 
lattice  arrangement.  All  metals  crystallising  with 
the    face-centred    cubic    arrangement    are    ductile 


throughout  a  wide  range  of  temperature.  Ductile 
metals  possess  the  property  of  limiting  the  extent 
of  slip  on  any  one  plane  and  transferring  the 
successive  movement  to  another  slip  plane  without 
actual  rupture  of  the  first. — C.  A.  K. 

Metals;  Mechanical  properties  of  as  affected 

by  grain  size.  Z.  Jeffries  and  R.  S.  Archer. 
Chem.  and  Met.  Eng.,  1922,  27,  789—792. 
Below  the  recrystallisation  temperature  grain 
boundaries  of  metal  crystals  retard  plane  slip  due 
to  variation  of  orientation  of  the  adjacent  crystals 
and  the  presence  of  amorphous  metal.  Decrease 
in  size  of  grain  would  therefore  tend  to  increase 
the  strength  and  hardness  of  a  metal.  The  quan- 
titative relation  of  strength  to  grain  size  is 
dependent  on  the  number  of  grains  on  the  cross- 
section,  though  when  this  number  becomes  rela- 
tively large  (1000  or  more)  the  absolute  grain  size 
is  more  important.  Fracture  takes  place  normally 
through  the  grains  when  a  ductile  metal  is  broken 
"  cold,"  but  at  temperatures  just  below  the  melting 
point  grain  boundaries  are  sources  of  weakness  and 
the  fracture  is  intergranular.  The  grain  size  con- 
ducive to  maximum  elongation  is  neither  very  fine 
nor  extremely  coarse,  this  property  being  influenced 
by  the  size  and  shape  of  the  test-piece,  temperature 
conditions,  and  rate  of  loading.  Lower  values  for 
elongation  are  observed  generally  in  test-pieces  of 
small  section.  Brittleness  may  be  due  to  the  hard- 
ness of  amorphous  metal  at  the  grain  boundaries, 
although  the  individual  crystals  are  plastic,  e.g., 
in  tungsten,  or  may  be  due  primarily  to  the  brittle 
character  of  the  crystal  itself,  e.g.,  in  zinc.  Under 
tensile  strain  for  reduction  of  area  metals  at  high 
temperatures  somewhat  resemble  soft  glass,  since 
the  hardening  effect  of  the  deformation  is  removed 
by  spontaneous  annealing.  The  reduction  of  area 
of  single  crystals  is  very  high,  and  extremely  small 
grain  size,  such  as  probably  occurs  in  hardened 
steel,  is  unfavourable  to  plasticity  of  any  kind; 
ordinarily  the  reduction  in  area  is  greater  the 
smaller  the  grain  size. — C.  A.  K. 

Metals;  Behaviour  of  two towards  one  another 

when  dissolved  in  mercury.  G.  Tanimann  and  W. 
Jander.  Z.  anorg.  Chem.,  1922,  124,  105—122. 
The  authors  investigated  the  affinity  of  one  metal 
tor  another  when  dissolved  in  mercury  by  measur- 
ing the  freezing  point  depression  of  the  compound 
crystals  and  comparing  this  with  that  of  the  com- 
ponents, and  by  measuring  the  influence  of  the  one 
metal  on  the  e.m.f.-concentration  curve  of  the  other 
dissolved  in  a  third,  more  noble  liquid  metal.  Thus 
the  addition  of  small  amounts  of  a  more  noble  to 
a  less  noble  metal  has  but  a  very  small  effect  on  the 
e.m.f.  if  the  compound  of  the  two  metals  is  very 
highly  dissociated,  whereas  if  a  stable  compound 
is  formed,  then  a  sudden  change  in  the  e.m.f.  is 
caused  when  the  concentrations  of  the  metals  corre- 
spond to  the  composition  of  this  compound.  The 
following  intermetallic  compounds  were  found  to 
be  very  stable:  AnZn.  Mg.Sn,  CeSn2  and  Ce„Bi3. 
Others  were  very  highly  dissociated  in  solution  in 
mercury,  for  example,  compounds  of  gold  with 
cadmium  and  lead,  of  silver  with  zinc  and  cadmium, 
of  copper  with  zinc  and  cadmium. — W.  T. 

Metals;  Yclocit}/  of  the  action  of  oxygen,  hydrogen 

sulphide,  and  the  halogens  on .     G.  Tammann 

and   W.    Koster.      Z.    anorg.    Chem.,    1922,    123, 
196—224. 

When  iodine,  chlorine,  or  air  acts  on  a  metal, 
various  surface  colours  are  formed  and  these  colours 
can  be  employed  as  a  means  of  determining  the 
rate  of  thickening  of  the  film  of  compound  formed 
(cf.  J.,  1920,  519  a).  The  rate  of  chemical  action  is 
assumed  to  be  high,  but  diffusion  through  the  film 
of  compound  formed  is  slow.     The  rate  in  the  case 


942  a 


Cl.  X.— METALS  ;  METALLURGY,  INCLUDING  ELECTRO -METALLURGY.       [Dec.  15, 1922. 


of  iodine  is  inversely  proportional  to  the  thickness 
of  the  film  and  is  independent  of  the  temperature. 
Silver  iodide  exists  in  two  forms ;  at  the  transition 
point.  145°  C,  there  is  a  change  in  the  rate  of 
reaction.  In  the  case  of  the  action  of  moist  air 
containing  chlorine  and  bromine  on  copper,  silver, 
and  lead,  there  is  a  parabolic  relationship  between 
time  of  action  and  thickness  of  the  film.  Colours 
due  to  the  formation  of  films  of  oxides  are  formed  by 
heating  several  metals  in  the  air,  the  rate  of  forma- 
tion being  independent  of  the  rate  of  flow  of  gas. 
The  rate  of  increase  of  thickness  of  film  with  time 
follows  an  exponential  law.  At  higher  temperatures 
oxidisable  metals  are  immediately  covered  with  a 
thin  film  of  oxide  which  protects  the  metal  from 
further  action.  The  oxidation  is  much  more  rapid 
in  moist  air.  Hydrogen  sulphide  reacts  rapidly  with 
copper  and  manganese,  more  slowly  with  silver,  and 
still  more  slowly  with  lead.  Iron,  cobalt,  nickel, 
chromium,  antimony,  bismuth,  tin,  aluminium,  zinc, 
and  cadmium  show  no  change  after  contact  with  the 
gas  for  several  days.  The  action  of  air  on  copper- 
zinc  alloys  was  also  investigated. — W.  T. 

Nitrides  [of  metals];  Bate  of  formation  of  some . 

G.  Tammann.    Z.  anorg.  Chem.,  1922,  124,  25—35. 

The  rate  of  increase  in  thickness  of  the  film  of 
nitride  formed  on  heating  metals  in  nitrogen  was 
measured  by  the  change  in  colour  of  the  films.  In 
the  case  of  cerium,  lanthanum,  and  a  mixture  of 
the  two  the  rate  of  increase  of  the  film  thickness 
plotted  against  the  logarithm  of  the  time  gave  two 
straight  lines  cutting  in  each  case  at  a  definite 
temperature  (r/.  Tammann  and  Koster,  supra).  The 
same  applies  to  metals  in  oxygen.  The  presence  of 
moisture  in  the  gases  greatly  accelerates  their 
action.  The  film  of  nitride  on  iron  protects  the 
metal.  Cobalt,  nickel,  molybdenum,  tungsten, 
tantalum,  and  silicon  do  not  change  in  an  atmo- 
sphere of  nitrogen  at  700°  C.  Magnesium  and 
calcium  are  converted  into  their  grey  nitrides. 

— W.  T. 

Metallurgical  coke.    Kinney  and  Perrott.    See  IIa. 

Adsorption    on    metal    surfaces.       Von    Euler    and 
Zimmerlund.     See  VII. 

Copper.     Hahn  and  Leimbach.     See  XXIII. 
Bismuth.     Kurtenacker  and  Werner.     See  XXIII. 

Patents. 

[Chromium-"]  iron  alloys  [;  Production  of  — — ■  of 
low  carbon  content].  J.  C.  Gillott.  E.P.  186,982, 
6.7.21. 
Chromium-iron  alloys  of  low  carbon  content,  in 
which  the  chromium  is  the  minor  constituent,  are 
prepared  by  melting  separately  ferrochromium  of 
high  chromium  content  and  pig-iron  or  steel  scrap 
or  a  mixture  of  these,  and  tapping  each  batch  of 
molten  metal  into  a  converter  where,  if  not  already 
present,  an  alloy  of  silicon  and  manganese  is  added 
so  that  at  least  2%  Si  is  present  in  the  charge.  The 
mixture  is  blown  until  the  carbon  and  silicon 
contents  have  been  sufficiently  reduced  to  allow  of 
the  resulting  metal  being  worked,  and  towards  the 
end  of  the  operation  a  certain  amount  of  manganese 
is  added. — A.  R.  P. 

Ores   [especially  oxidised  copper  ores];   Treatment 

and    concentration    of    [by    the    flotatmn 

process].     H.  H.  Smith.     E.P.  166,888,  11.7.21. 
Conv.,  26.7.20. 

A  mixture  of  steam  and  air  is  blown  through  a 
mixture  of  carbon  and  a  sulphur-bearing  material, 
e.g.,  iron  pyrites,  contained,  under  a  layer  of  lime. 
in  a  retort  heated  to  about  700°  C.  The  evolved 
gases,  consisting  chiefly  of  hydrogen  sulphide  and 
carbon  dioxide,  together  with  smaller  amounts  of 


hydrogen  and  carbon  monoxide,  are  passed  through 
a  thick  pulp  of  ground  ore  and  water  until  the  liquid 
just  shows  a  sulphide  reaction.  The  pulp  is  diluted, 
a  frothing  and  stabilising  agent  added,  and  the 
mixture  subjected  to  a  flotation  process. — A.  R.  P. 

Flotation  processes  for  concentrating  ores  and  the 
like.    A.  C.  Vivian.    E.P.  186,760,  5.8.21. 

In  the  separation  of  the  more  valuable  constituents 
of  ores,  concentrates,  metal  products,  and  like 
heterogeneous  materials,  organic  substances  are 
added  which  act  chemically  upon  the  metal  or 
metal  compound  to  be  separated,  forming  tarry  or 
resinous  complexes  or  decomposition  products  which 
facilitate  separation  of  the  metal  or  metal  com- 
pounds by  flotation.  Suitable  substances  are  oximes 
(phenylglyoxime),  isonitroso-compounds  (cupferron 
or  nitrosophenylhydroxylamine-amnionium,  di- 
nitrosoresorcinol),  and  amino-acids  (taurocholic 
acid),  and  they  may  he  used  alone  or  in  conjunction 
with  known  oiling  or  frothing  agents. — J.  W.  D. 

Furnace    for    roasting     pyrites    and    like     ores; 

Mechanically   operated  .     Manuf.   de   Prod. 

Chim.  du  Nord  Etabl.  Kuhlmann.     E.P.  167,464, 

27.6.21.  Conv.,  5.8.20. 
In  a  roasting  furnace  of  the  shelf  type  the  rabble 
arms  are  fitted  with  a  series  of  teeth  arranged 
parallel  to  one  another  and  obliquely  to  the  axis 
of  the  rake,  so  that  the  end  of  one  tooth  touches 
the  same  circle  of  travel  as  the  adjoining  tooth. 
The  individual  teeth  have  the  shape  of  the  mould- 
board  of  a  plough  and  meet  the  material  substan- 
tially in  a  vertical  direction,  the  off-take  angle  of 
the  teeth  being  approximately  45°,  the  natural 
piling  angle  of  the  material  treated.  In  order  to 
compensate  for  the  increase  in  resistance  against 
the  rakes  when  they  act  centrifugally,  the  teeth 
are  given  a  slight  curvature. — C.  A.  K. 

Bearing  metal  alloy.  T.  Goldschmidt  A.-G.  E.P. 
169,703,  27.9.21.     Conv.,  1.10.20. 

An  alloy  containing  70—75%  Pb,  15—25%  Sb, 
3—6%  Sn,  1—3%  Ni,  and  06— 1"5%  Cu,  the  copper 
being  introduced  in  the  form  of  08— 22%  of  copper 
phosphide. — J.  W.  D. 

Bare  metals  [e.g.,  zirconium];  Process  for  the  pre- 
paration of  ■ — ■ — .  Westinghouse  Lamp  Co., 
Assees.  of  J.  W.  Marden.  E.P.  173,236,  21.12.21. 
Conv.,  21.12.20. 

A  salt  of  the  rare  metal  which  does  not  volatilise 
at  the  temperature  of  the  reaction,  or  a  double  salt 
with  another  metal,  is  reduced  by  heating  with 
aluminium,  iron,  or  othqr  suitable  metal  in  quantity 
slightly  less  than  the  stoichiometric  amount,  and 
the  heating  is  continued  in  vacuo,  after  the 
reaction  has  taken  place,  until  all  the  salts  present 
are  volatilised,  leaving  a  residue  of  the  pure  rare 
metal.  For  example,  potassium  zirconofluoride  is 
mixed  with  a  little  less  than  the  theoretical  quan- 
tity of  aluminium  and  the  mixture  is  heated  in  an 
evacuated  vessel  in  an  induction  furnace.  After 
the  vigorous  reaction  has  taken  place  the  tempera- 
ture is  raised  until  the  aluminium,  potassium,  and 
excess  zirconium  fluorides  have  volatilised,  leaving 
a  grevish  spongy  mass  of  pure  zirconium. 

—A.  R.  P. 

Xickel  alloys.  W.  Jones,  and  Sylvette,  Ltd.  E.P. 
186,381,  26.5.21. 

A  nickel  silver  alloy  containing  Al  1 — 3%,  Fe 
2 — 4%,  and  to  which  a  small  quantity  of  a  deoxidis- 
ing agent,  e.g.,  manganese  or  magnesium,  has  been 
added,  may  be  cast  into  the  form  of  such  articles 
as  forks,  spoons,  etc.  The  complete  composition 
of  such  an  alloy  may  be  Cu  55%,  Zn  17%,  Ni  22%, 
Al  2-25%,  Fe  3%,  and  Mb  0-75%.— C.  A.  K. 


Vol.  XLI.,  No.  23.] 


Cl.  XI.— electro-chemistry. 


943  a 


Nickel;    Production  of  from  nickel  carbonyl. 

H.  E.  Fierz  and  H.  A.  Prager.    E.P.  (a)  186.457 
and  (b)  186,458,  14.7.21. 

(a)  An  apparatus  for  the  decomposition  of  nickel 
carbonyl  consists  of  a  double-walled  rectangular 
chamber,  the  sides  of  which  are  heated  to  about 
300°  C.  by  the  passage  of  hot  gases  through  the 
space  between  the  walls.  The  top  and  bottom  of 
the  chamber  are  cooled  by  water  and  the  interior 
is  cooled  by  a  cooling  liquid  flowing  through  a  series 
of  pipes.  Nickel  carbonyl  is  passed  through  the 
chamber  and  is  in  contact  with  cooling  surfaces 
except  at  the  side  walls  where  decomposition  is 
effected.  By  this  means  a  pure  compact  deposit  of 
nickel  forms  on  the  side  walls  of  the  reaction 
chamber  which  can  be  detached  readily  for  removal 
of  the  nickel,  (b)  The  reaction  chamber  contains  a 
series  of  parallel  hollow  iron  plates,  spaced  apart 
(J"),  which  may  be  heated  internally  by  the  passage 
of  hot  gases.  Practically  all  the  nickel  separates 
on  these  plates  as  a  compact  coherent  deposit. 

— C.  A.  K. 

Nickel;    Manufacture    of   pure    .      H.    Sefton- 

Jones.     From   Soc.   Anon.    "  Le  Nickel."      E.P. 
187,111,  16.9.21. 

The  process  is  the  same  as  that  described  in  G.P. 
355,887  (J.,  1922,  765  a)  except  that  the  use  of  hydro- 
chloric acid  instead  of,  or  as  well  as,  hydrofluoric 
acid  for  washing  the  metal  after  the  first  reduction 
is  claimed.  The  final  reduction  process  may  be 
carried  out  with  the  addition  of  magnesia  or  of 
alkali  or  alkaline-earth  carbonates  instead  of  with 
lime,  the  object  of  these  additions  being  to  assist 
in  the  removal  of  sulphur  compounds. — A.  R.  P. 

Aluminium  alloys.  The  British  Thomson-Houston 
Co.,  Ltd.  From  General  Electric  Co.  E.P. 
187,089,  29.8.21. 

Alloys  of  aluminiurn,  copper,  and  silicon  containing 
at  least  50%  Al,  25%  Si,  and  15%  Cu  are  claimed, 
especially  those  containing  70%  Al,  27'5 — 15%  Cu, 
and  2"5 — 15%  Si.  Within  these  limits  alloys  having 
a  scleroscope  hardness  of  45  and  a  tensile  strength 
of  21,000 — 24,000  lb.  per  sq.  in.  may  be  produced, 
which  are  suitable  for  die  casting  and  for  the 
preparation  of  moulds  and  cores  for  the  manufac- 
ture of  rubber  goods. — A.  R.  P. 

(a)  [Smelting]  furnace.  (b,  d,  e>  Ore-smelting 
furnace.  (c)  Smelting  of  ores.  H.  L.  Charles. 
U.S. P.  1,394,470-4,  18.10.21.     Appl.,  23.1.20. 

(a)  In  an  ore-smelting  furnace  a  monolithic  arch  of 
highly  refractory  material,  e.g.,  silica,  lime,  fire- 
clay, magnesite,  chromite,  is  moulded  above  the 
usual  firebrick  arch,  allowed  to  set,  and  then  baked 
by  means  of  the  furnace  gases,  (b)  An  abutment  is 
built  up  between  the  side  walls  of  adjacent  re- 
verberatory smelting  furnaces  and  is  cut  away 
adjacent  to  the  ends  of  the  arch  roofs  of  the 
furnaces.  In  the  spaces  thus  formed  are  abutment 
plates  fitted  with  screws  and  bolts,  so  that  the 
width  of  the  spaces  may  be  varied  as  desired  accord- 
ing to  the  expansion  or  contraction  of  the 
arch  roofs  of  the  furnaces.  (c)  The  hearth  of  a 
reverberatory  furnace  is  provided  with  a  dam  of 
refractory  material  over  which  the  slag  flows  into 
a  chamber  forming  an  extension  of  the  hearth.  In 
this  chamber  the  slag  comes  in  contact  and  reacts 
with  lime  rock,  whereby  its  specific  gravity  is 
reduced  and  separation  of  metal  from  the  slag  is 
facilitated,  (d)  The  ore  inlet  of  a  reverberatory 
furnace  is  surrounded  by  a  water-box  closed  by  a 
water-jacketed  sliding  cover.  The  ore-inlet  nozzle  is 
water-jacketed  and  is  mounted  so  that  it  can  be 
moved  through  an  arc  in  order  to  regulate  the 
distribution  of  ore  in  the  furnace,  (e)  Means  are 
provided  for  water-cooling  the  refractory  material 


of  the  furnace  flue  and  of  the  throttle-ledge  over 
which  the  hot  gases  pass  from  the  furnace  to  the 
flue. 

Thermit  mixture.  G.  "W.  Merrefield.  TJ.S.P. 
1,430,667,  3.10.22.     Appl.,  25.10.21. 

A  mixture  of  11 — 13%  of  aluminium,  70 — 72%  of 
iron  oxide,  10 — 12%  of  low  carbon  steel,  and  6—9% 
of  ferromanganese  is  used  as  a  thermit  mixture  for 
manganese-steel. — C.  A.  K. 

White  metal.  C.  E.  Hansen.  U.S. P.  1,431,113, 
3.10.22.     Appl.,  5.4.22. 

A  white  metal  alloy  containing  copper,  nickel,  zinc, 
tin,  and  cobalt. — C.  A.  K. 

Bearing  metals  and  the  like  containing  embedded 
material  which  does  not  form  an  alloy  with  the 

metal;  Manufacture  of  .     G.  Ising  and  H. 

Borofski.     G.P.  357,447,  7.12.20. 

A  mass  of  large  diameter  of  a  metal  containing 
embedded  non-metallic  material  is  reduced  by" 
drawing  or  pressing  to  a  small  diameter,  and  is  then 
cast  at  a  relatively  low  temperature  into  the 
desired  shape. — L.  A.  C. 

Titanium  alloy.  A.  W.  Clement,  Assr.  to  The 
Cleveland  Brass  Mfg.  Co.  U.S.P.  1,431,725, 
10.10.22.     Appl.,  13.12.17. 

An  alloy  containing  5 — 25%  of  titanium  and  an 
appreciable  quantity,  but  not  more  than  30%,  of 
chromium,  together  with  iron  and  an  appreciable 
quantity  of  molybdenum. — C.  A.  K. 

Acid-proof  casting.  H.  Terrisse  and  M.  Levy. 
U.S.P.  1,432,923,  24.10.22.     Appl.,  8.7.20. 

See  E.P.  151,974  of  1920;  J.,  1921,  895  a. 

Furnace  for  hardening  or  tempering  steel  tools  or 
for  heating  or  annealing  metals,  glass,  pottery,  or 
the  like.  3.  R.  C.  August.  U.S.P.  1,432,946, 
24.10.22.     Appl.,  2.6.20. 

See  E.P.  139,276  of  1919;  J.,  1920,  302  a. 
Copper  sulphate.     G.P.  358,611.     See  VII. 
Aluminium  coils.     U.S.P.  1,431,237.     See  XI. 


XL— ELECTBO-CHEMISTBY. 

Patents. 

Electric  battery  [electrode].  R.  C.  Benner  and  H.  F. 
French,  Assrs.  to  National  Carbon  Co.  U.S.P. 
1,393,739,  18.10.21.     Appl.,  16.1.19. 

In  order  to  increase  the  useful  life  of  the  cells  and 
to  decrease  corrosion  of  the  zinc  electrode  in  electric 
cells,  especially  dry  cells,  the  zinc  is  plated  with 
bismuth,  or  a  bismuth  compound  is  mixed  with  the 
usual  paste  placed  in  contact  with  the  zinc,  or,  in 
non-paste  cells,  bismuth  chloride  is  applied  to  the 
surface  of  the  lining  of  bibulous  material  in  contact 
with  the  zinc. 

Lead  accumulators ;  Viscid  electrolyte  for .    P. 

Weber.     G.P.  358,409,  21.4.21. 
A  viscid   mixture  of  sulphuric   acid  with   a  non- 
setting  mass  of  plaster  of  Paris  and  fine  charcoal, 
kieselguhr  or  other  inert  substance  is  employed  as 
electrolyte  in  lead  accumulators. — J.  S.  G.  T. 

Aluminium;  Manufacturing  electric  coils  of  . 

E    W.  Kuttner,  Assr.  to  The  Chemical  Founda- 
tion,   Inc.      U.S.P.    1,431,237,   10.10.22.      Appl., 
5.9.18. 
In  the  manufacture  of  electric  coils  from  wires  or 
bands  of  aluminium  or  aluminium  alloys,  the  metal 

b2 


944  A 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


[Dec.  15,  1922. 


is  treated  with  an  oxidising  agent  both  prior  and 
subsequent  to  winding  into  coil  form. — T.  A.  S. 

Purifying    liquids;   Method   of  and   apparatus   for 

[electrically]   .     F.   W.    Mitchell   and   J.    E. 

Pfeffer.   U.S.P.  1,431,245,  10.10.22.   Appl.,  2.8.18. 

Liquid  is  forced  by  means  of  compressed  air  through 

a  cylindrical   vessel   fitted   with  spaced   perforated 

electrodes. — T.  A.  S. 

Electric  furnace  with  suction  device  for  gases.  A. 
Helfenstein.  G.P.  (a)  356,424,  17.3.17,  (b)  356,425, 
12.4.17,  and  (c)  356,426,  13.6.17. 

(a)  The  furnace  shaft  is  provided  with  gas  outlets  to 
which  are  attached  gas^lischarge  tubes,  the  latter 
being  so  arranged  that  they  serve  as  the  fire-tubes 
of  a  boiler  for  generating  steam.  The  infiltration  of 
air  and  the  consequent  splintering  of  parts  of  the 
furnace  and  the  formation  of  explosive  mixtures 
are  thus  prevented,  (b)  The  gas  conduits  and  the 
steam  boiler  are  disposed  approximately  vertically. 
In  like  manner  the  socket  for  connecting  the  gas 
conduit  is  arranged  vertically  within  the  furnace 
shaft  and  the  boiler  connected  thereto  axially.  Dust 
reaching  the  gas  conduit  is  in  this  manner  pre- 
vented from  remaining  there,  and  heat  interchange 
is  not  reduced  owing  to  this  cause.  (c)  The  gas 
conduits  are  built  into  the  masonry  of  the  furnace, 
and  the  steam  boilers  are  built  into  the  gas  conduits 
near  the  walls  of  the  furnace  shaft  and  of  the  shaft 
for  charging  the  furnace.  Gas  conduits  provided 
on  both  sides  of  the  furnace  are  joined  together  at 
the  end  of  the  furnace,  and  vertical  fire-tube  boilers 
are  arranged  at  the  junction  so  as  more  efficiently 
to  utilise  the  heat  of  the  furnace  gases  prior  to  their 
discharge.     Cylindrical  boilers  may  be  employed. 

—J.  S.  G.  T. 

Insulating  material  for  luting  electrical  conductors 
and  cables.  Felten  u.  Guilleaume  Carlswerk  A.-G. 
G.P.  357,665,  8.5.19. 
Partially  polymerised  synthetic  rubbers,  or  natural 
rubbers,  gutta  percha,  balata  or  mixtures  of  these, 
depolymerised  in  each  case  so  as  to  afford  a  thick 
viscid  mass,  are  employed. — J.  S.  G.  T. 

Ozone    generating    apparatus.      H.    B.    Hartman. 

E.P.  187,558,  23.5.22. 
See  U.S.P.  1,423,658  of  1922;  J.,  1922,  718  a. 

Storage-battery  plates;  Paste  for  ■ .     A.  Willard, 

Assr.  to  Willard  Storage  Battery  Co.  U.S.P. 
1,432,508,  17.10.22.     Appl.,  2.6.17. 

See  E.P.  155,944  of  1919 ;  J.,  1921,  121  a. 

Recovering  coal  suspended  in  water.  U.S.P. 
1,397,735.     See  IIa. 

Vulcanised  fibre.     G.P.  357,057.     See  V. 

Preserving  vegetable  material.  G.P.  357,409.  See 
XIXa. 


XII.-FATS;  OILS;  WAXES. 

Fat    constants;    Relationships    between    .      J. 

Lund.      Z.    Unters.    Nahr.    Genussm.,    1922,    44, 

113—187. 
The  temperature  coefficients  of  the  sp.  gr.  and 
refractive  indices  of  a  number  of  representative  oils 
and  fats  and  of  their  insoluble  fatty  acids  were 
found  to  average  000066,  0-00036,  and  0-00068, 
000037  per  1°  C.  respectively.  The  presence  of  tree 
fatty  acids  increases  the  saponif.  and  iodine  values 
of  fats  and  decreases  the  sp.  gr.  and  refractive 
indices.  Non-fatty  matter  and  higher  alcohols  de- 
crease the  saponif.  and  iodine  values  and  increase 
the  sp.  gr.  and  refractive  indices.  The  difference 
between   the  constants  of   fats   and  those  of  their 


insoluble  fatty  acids  is  accurately  expressed  by  the 
following  formulas  in  which  S  =  saponif.  value,  N  = 
neutralisation  value,  Ig,  If,  Dg,  Df)  Rg,  Rt,  repre- 
sent the  iodine  values,  sp.  gr.  xlOOO  and  refractive 
indices  X 1000  of  the  glycerides  and  free  fatty  acids 
respectively,  while  Ks,  Kd,  and  Kr  are  constants 
usually  0000236,  0-1132,  and  0'051  respectively: 
N— S  =  KSS2,  If—  Ig  =  KsIgS;  Dg— Df  =  KdS;  Rg— 
Rf  =  KrS.  The  equations  for  the  chemical  con- 
stants apply  to  fats  and  oils  of  mean  molecular 
weight  (saponif.  value  181—198)  without  reference 
to  their  constitution.  The  equations  for  the 
physical  constants  apply  to  ordinary  aliphatic  fats 
and  oils  of  average  molecular  weight,  but  are  not 
entirely  independent  of  their  constitution.  The 
differences  remain  almost  unaffected  by  hydrogen- 
ating  the  oils  or  fats.  If  the  constants  of  a  fat  are 
known,  those  of  its  fatty  acids  can  be  accurately 
calculated  by  means  of  these  formulae  except  in 
certain  cases  in  which  soluble,  cyclic  or  oxyacids  are 
present.  The  formula}  apply  to  polymerised  oils 
and  fats,  but  these  show  certain  irregularities.  In 
the  case  of  waxes  the  relationships  are  different, 
particularly  in  the  case  of  the  sp.  gr.,  a  fact  which 
can  be  made  use  of  in  analysis.  TJie  constants  of 
the  aliphatic  glycerides  and  fatty  acids  are  related 
by  the  following  equations  : 

Dg=  847-5 +  0-3S  +  bIg 

Rg  =  1468-5— 008S  +  C  Jg 
where  b  =  014  to  016  and  c  =  010  to  011. 

L>£=   847-5  +  0-lSN  +  bJf 

Rf  =  1468-8— 0-125N  +  c1If 
where  b,  =  0-135  to  0155  and  c,  =  0-095  to  0-105 
Tables  are  given  showing  the  exact  values  of  these 
factors  for  the  whole  range  of  saponif.  and  iodine 
values.  The  constants  of  fats  containing  glycerides 
of  oxyacids,  and  those  of  their  free  fatty  acids,  are 
connected  by  the  equations : 

Du=   847 -5 +  0-3S +  014I  +  e  Ac. 
R40=  1468-8— 008S  +  011I  +  f  Ac. 
where  e  =  about  0-32  and  f  =  about  006,  and 
Ac = acetyl  value. 

Those  for  fats  containing  glycerides  of  cyclic 
acids  by 

Di5  =  847-5+0-3S   +  0-14I+g[a]n 
R10=  1468-8— 0-08S  +  0-10I  +  h[a]„ 
where  g  =  about  0-50  and  h  =  about  0-16. 

Constants  for  polymerised  oils  are  related  by  the 
equations 

Du  =  847-5+0-3S   +0-14Ig  +0-44  (Ig— Ip) 
R40=  1468-8— 0-08S  +  0-105Ig  +  0-ll  (lg— Ip) 

where  Ip  is  the  iodine  value  after  polymerisation. 
By  using  these  equations,  if  any  two  of  the  four  con- 
stants are  determined  experimentally  the  other  two 
can  be  accurately  calculated.  Ordinary  glycerides 
can  be  distinguished  from  those  oxy-fatty  acids, 
cyclic  fatty  acids  or  from  polymerised  oils,  but  the 
use  of  the  equations  throws  no  light  on  cases  of 
adulteration.  The  melting  points  of  fats  and  their 
free  fatty  acids  cannot  be  co-ordinated  with  the 
above-mentioned  constants  owing  to  the  complica- 
tions caused  by  the  presence  of  mixed  glvcerides. 

— H.  C.  R. 

Solid  and  liquid  fatty  acids;    Separation   of  . 

W.  Meigeir  and  A.  Neuberger.     Chem.  Umschau, 
1922,  29,  337—342. 

Various  published  methods  were  tested  on  known 
mixtures  of  solid  and  liquid  fatty  acids,  but  by 
none  was  a  true  quantitative  separation  obtained. 
Bv  the  methods  of  Bull  and  Fjellanger  (Apoth.- 
Zeit.,  1916,  31,  55),  Fachini  and  Dorta  (J.,  1912. 
397),  and  David  (J.,  1910,  1395)  only  about  one-half 
of  the  liquid  acids  was  recovered  in  a  nearly  pure 
state.  By  precipitating  the  aqueous  solution  of  the 
potassium  salts  with  excess  of  thallous  sulphate, 
however,     an    almost    quantitative    separation    of 


Vol.  XU.,  Ho.  23.1 


Cl.  XII.— FATS  ;   OILS  ;  WAXES. 


945  a 


stearic,  palmitic,  and  elaldic  acids  from  oleic  acid 
was  attained,  and  no  recrystallisation  was  neces- 
sary. A  mixture  of  0"502  g.  of  oleic  acid  with 
0'505  g.  of  stearic  acid  gave  0509  g.  of  solid  acids 
of  iodine  value  0'3  and  m.p.  68°  C,  while  a  mixture 
of  0'200  g.  of  oleic  acid  and  0'502  g.  of  stearic  acid 
gave  0'529  g.  of  solid  acids  of  iodine  value  0'9  and 
m.p.  67o°  C— H.  C.  K. 

Rancidity  [in  oils  and  fats];  Influence  of  air,  light, 

and  metals  on  the  development  of  .     J.  A. 

Emery  and  It.  R.  Henley.     J.  Ind.  Eng.  Chem., 
1922,  14,  937—940. 

Metals  accelerate  the  production  of  rancidity  in 
lard,  corn  (maize)  oil,  and  cottonseed  oil  in  the 
presence  of  air  or  oxygen,  but  the  action  of  the 
metal  is  independent  of  the  corrosive  action  of  the 
fat  upon  it.  Light  is  necessary  for  the  development 
of  rancidity  in  fats  exposed  to  air  and  not  in  contact 
with  metals,  but  not  when  the  fat  is  in  contact 
with  metals.  When  air  is  excluded,  e.g.,  by  rilling 
the  containing  vessel  completely  with  the  oil  or  fat, 
there  is  no  development  of  rancidity,  even  when  fats 
are  in  contact  with  metals,  but  rancidity  develops 
in  an  atmosphere  of  carbon  dioxide.  One  experi- 
ment indicated  that  moisture  has  little  influence. 
Fats  stored,  with  and  without  contact  with  metals, 
in  an  atmosphere  of  oxygen  developed  rancidity 
earlier,  and  the  development  of  rancidity  pro- 
gressed more  rapidly  than  when  stored  in  air.  The 
catalytic  action  of  metals  can  be  prevented  by 
coating  them  with  bakelite,  and  a  copper  strip  so 
treated  remained  unattacked  at  the  end  of  several 
weeks  when  immersed  in  lard  exposed  to  the  air  at 
70°  C— A.  J.  H. 

See  also  pages  (a)  925,  Pseudo-extraction 
(Charitschkov).  928,  Absolute  viscosity  of  oils 
(Fulweiler  and  Jordan).  929,  Change  in  viscosity  of 
oils  with  temperature  (Herschel).  955,  Phytosterols 
of  ragweed  pollen  (Heyl).  964,  Bingham  viscosi- 
meter  (Herschel). 


Patents. 


Schicht 
31.3.21. 


Fats;  Manufacture  of  nutritious  .     G. 

A.-G.,    and    A.    Griin.      E.P.    160,840, 

Conv.,  1.4.20. 
Neutral  fats,  alone  or  mixed  with  free  fatty  acids, 
are  converted  into  mono-  and  di-glycerides  by 
heating  with  glycerol  and  are  then  converted  into 
mixed  glycerides  by  esterification  with  free  fatty 
acids.  They  are  finally  refined  in  the  manner 
customary  for  edible  fats.  The  process  may  be 
expedited  by  using  catalysts  such  as  metallic  tin 
or  zinc.  Mixed  glycerides  containing  butyric  and 
caproic  acids,  such  as  occur  in  butter,  can  be  manu- 
factured in  this  way  and  cholesterol,  lecithin, 
natural  colouring  matters,  and  vitamins  may  be 
added.— H.  C.  R. 

Fat  resembling  butter;  Manufacture  of .    Oel- 

werke  Germania  G.m.b.H.  G.P.  357,877,  27.4.20. 
A  MrxTtTHE  of  fatty  acids  of  similar  constitution  to 
those  present  in  butter  is  treated  with  glycerin,  and 
the  mixture  of  glycerides  obtained  is  purified.  For 
example,  a  stream  of  a  non-reacting  gas  is  passed  for 
several  hours  through  a  mixture  of  193  pts.  of  fatty 
acids  from  tallow,  7  pts.  of  crude  butyric  acid, 
13j  pts.  of  glycerin,  and  a  catalyst,  agitated  on  a 
water-bath. — L.  A.  C. 

Oils  and  fats;  Process  for  the  purification  of . 

N.    Goslings.      E.P.    172,923,    23.6.21.      Conv., 
14.12.20.     Addn.  to  167,462-3  (J.,  1922,  769  a). 

Lime  or  other  insoluble  soaps  of  solid  fatty  acids,  as 
well  as  soluble  salts,  and  bases,  such  as  alkaline- 
earth  or  other  metal  oxides  or  hydroxides,  which 
form  insoluble  soaps  with  fatty  acids,  are  added  to 
oils  and  fats  in  the  process  described  in  the  chief 
patent.     For  example,  85  kg.  of  a  suspension  of  lime 


in  water,  containing  70%  of  calcium  oxide,  and 
25  kg.  of  sodium  chloride  are  added  gradually,  at  the 
ordinary  temperature,  to  10,000  kg.  of  raw  rapeseed 
oil  containing  5%  of  free  fatty  acids.  The  mixture 
is  agitated  until  the  free  fatty  acids  are  neutralised, 
and  then  heated,  under  reduced  pressure  if  desired, 
to  expel  the  water.  The  temperature  is  then  raised 
slowly  to  90°  C,  500  kg.  of  powdered  lime-coconut 
oil  soap  is  added,  and  solid  material  is  separated 
by  filtration  or  centrifuging. — L.  A.  C. 

Extraction  of  oils,  fats,  waxes,  and  the  like;  Method 

uf  and  plant  for .     J.  A.  Reavell,  and  Kestner 

Evaporator    and    Engineering    Co.,    Ltd.       E.P. 
186,642,  1.4.21. 

The  solvent  is  heated,  passed  to  the  extractor,  and 
then  circulated  through  the  heater  and  extractor 
until  the  whole  mass  reaches  the  desired  tempera- 
ture. The  effluent  (oil,  moisture,  and  solvent)  is 
then  passed  through  a  vaporiser  and  the  vapours 
and  oil  particles  from  this  are  passed  through  a 
separator,  the  effluent  being  afterwards  passed 
through  a  distiller  and  through  another  separator 
where  the  final  separation  of  the  oil  takes  place. 
The  vapours  from  the  latter  separator  are  passed 
through  a  condenser  and  the  condensed  liquid,  after 
passing  through  a  separator  to  remove  the  water, 
is  passed  back  to  the  solvent  storage  tank.  The 
Kestner  horizontal  tubular  evaporator  (E.P. 
122,500;  J.,  1919,  163  a)  can  function  as  heater, 
circulator,  vaporiser,  and  distiller. — H.  C.  R. 

Extraction    of    oil    from    oil-containing    material; 

Apparatus  for .    Schlotterhose  und  Co.    G.P. 

357,693,  18.7.20.  Addn.  to  347,394  (J.,  1922,  261  a). 

In  the  apparatus  described  in  the  chief  patent,  a 
larger  filtering  surface  is  provided,  and  stoppage  of 
the  process  owing  to  defects  in  the  filtering  surface 
is  avoided  by  separating  the  suction  and  filtering 
apparatus  into  a  number  of  separate  chambers, 
which  can  be  operated  together  or  independently  of 
one  another. — L.  A.  C. 

Triglycerides;    Process   for    hydrolysing    into 

fatty  acids  and  glycerin.    R.  Tern.    G.P.  357,695, 
8.2.21. 

Triglycerides  are  hydrolysed  by  subjecting  them, 
in  the  presence  of  water,  to  the  action  of  ultra-violet 
rays  at  the  ordinary  temperature  and  pressure. 

— L.  A.  C. 

Fatty  acids;  Process  of  manufacturing  [from 

montan    wax],     W.    Mathesius.      G.P.    358,402, 
31.1.18.    Addn.  to  3.50,621  (J.,  1922,  728  a). 

Montan  wax  is  substituted  for  the  hydrocarbons 
specified  in  the  previous  patent.  The  resulting  fatty 
acids  may  be  employed  in  soap  manufacture. 

—J.  S.  G.  T. 

Wax   and  resin   colloids;    Preparation    of   neutral, 

solid  .     Chem.  Werkstiitten  G.m.b.H.     G.P. 

357,378,  8.2.21. 
Heated  wax  or  resin  is  agitated,  with  or  without 
application  of  pressure,  with  concentrated  solutions 
of,  e.g.,  alkali  lactates,  until  a  homogeneous  mix- 
ture is  obtained.  The  product  is  stirred  or  kneaded 
while  hot  with  oils  and  fats,  such  as  marine  animal 
oil  or  rape-seed  oil,  and  other  organic  solvents,  while 
other  organic  material,  such  as  pitch,  anthracene 
residues,  or  paraffins,  is  subsequently  added  to  the 
mixture.  The  products  are  suitable  for  use  as 
lubricants,  pastes,  and  ointments. — L.  A.  C. 

Detergent  and  bleaching  agent;  Manufacture  of  a 

.     Deutsche  Gold-  und  Silber-Scheideanstalt 

vorm.    Roessler.     G.P.    (a)    357,956,    13.3.19,    (b) 
357,957,  17.6.19. 
(a)  A  detergent  and  bleaching  agent  is  prepared  by 
mixing  sodium  peroxide  and  a  little  more  than  the 


946  a 


Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VABNISHES  ;    RESINS. 


[Dec.  15,  1922. 


equivalent  weight  of  sodium  bicarbonate  with  water- 
glass  of,  e.g.,  30°  B.  (sp.  gr.  P263),  with  or  without 
the  addition  of  protective  agents,  such  as  magnes- 
ium or  calcium  silicate.  After  setting,  the  mixture 
is  ground  and  dried,  (b)  The  oxygen  content  of  the 
above  product  is  increased  by  the  addition  of  hydro- 
gen peroxide  during  any  stage  of  the  process  of 
manufacture. ^L.  A.  C. 

Fire-extinguishing  and  washing  materials;  Process 

for  manufacturing  .     Plauson's  Forschungs- 

institut  G.m.b.H.  G.P.  358,572,  27.10.21. 
Chlorinated  hydrocarbons  are  dispersed  in  water 
in  a  Plauson  colloid  mill  or  other  high-speed  impact 
mill,  with  the  addition,  if  desired,  of  a  small 
amount  of  protein,  glue,  gum,  soap,  or  other  pro- 
tective colloid,  and  organic  substances  affecting  the 
mutual  solubility  of  the  chlorinated  hydrocarbon 
and  water.  Thus,  a  colloidal  suspension  of  1  pt. 
of  chlorinated  hydrocarbon  in  3  pts.  of  water 
is  equally  effective  as  a  detergent  as  the  pure 
chlorinated  substance,  and  is  moreover  less  volatile. 

—J.  S.  G.  T. 

Viscous  oily  compositions ;  Manufacture  of and 

treatment  of  waxes  for  use  therein.  Plauson's 
(Parent  Co.),  Ltd.  From  H.  Plauson.  E.P. 
186,950,  13.4.21. 

See  G.P.  347,084  of  1920;  J.,  1922,  300  a. 

Lime   sludge;   Process    of  separating   saponaceous 

matter  from  .     P.   Krebitz.     E.P.   186,960, 

3.6.21. 

See  G.P.  355,492  of  1920;   J.,  1922,  770  a. 

Pea-nuts,  ground  nuts,  etc.;  Preservation  [by  com- 
pression in  bulk}  and  I  or  transportation  of . 

A.  W.  Macllwaine.     E.P.  187,257,  22.4.21. 


XIII.— PAINTS;  PIGMENTS;    VARNISHES 
RESINS. 

Lithopone ;  Present  knowledge  on .     E.  Maass 

and  R.  Kempf.  Z.  angew.  Chem.,  1922,  35, 
609—611. 
The  faults  to  which  lithopone  are  subject  when  used 
as  a  pigment  in  exterior  coatings  are  examined  and 
the  various  hypotheses  usually  advanced  in  ex- 
planation criticised.  All  of  the  hypotheses  pur- 
porting to  account  for  the  inferior  behaviour  of 
this  pigment  on  weathering  appear  to  be  open  to 
criticism.  In  certain  patented  processes  designed 
to  render  lithopone  fast  to  light,  the  photosensi- 
tiveness  is  attributed  to  the  presence  of  chlorides 
from  the  materials  employed  in  its  manufacture. 

—A.  de  W. 

Scheele's  green;  Composition  of  .     G.  Borne- 

mann.     Z.  anorg.  Chem.,  1922,   124,  36—38. 

The  author  finds  that  Scheele's  green  is  not  acid 
copper  ortho-arsenite,  CuHAs03,  but  a  neutral 
arsenite,  3CuAs203,xH20.  The  composition  was 
found  to  vary  with  the  method  of  preparation,  the 
product  being  richer  in  copper  oxide  the  larger  the 
excess  of  alkali  employed. — W.  T. 

Fineness  and  bulk  of  pigments.  H.  A.  Gardner, 
H.  Parks,  and  N.  Pihlblad.  Circ.  143,  Paint 
Manufacturers'  Assoc.  U.S.,  April,  1922.     72  pp. 

A  standardised  procedure  for  the  determination  of 
the  proportion  of  particles  of  a  pigment  or  paint 
retained  on  a  standard  screen  of  325  meshes  to  the 
inch  has  been  worked  out.  The  wire  screen,  which 
is  conveniently  of  3  in.  diam.,  is  tared  to  the  nearest 
mg.,  wetted  on  both  sides  with  a  liquid  which 
"wets"  the  pigment  under  examination,  and  a 
weighed  quantity   of  the  sample  (2 — 10  g.)  trans- 


ferred to  the  screen.  If  the  pigment  is  wetted  with 
difficulty  by  water,  it  may  be  previously  wetted  with 
a  liquid  with  which  water  is  miscible,  e.g.,  alcohol, 
or  alternatively  other  washing  liquids,  e.g.,  turpen- 
tine etc.,  may  be  used.  The  screen  containing  the 
pigment  is  then  held  under  a  tap  delivering  300 — 
500  c.c.  of  liquid  per  min.,  a  soft  camel-hair  brush 
being  used  to  assist  the  operation  of  screening. 
After  the  majority  of  the  finely-divided  portion  of 
the  pigment  has  passed  through  the  screen,  the 
latter  is  immersed  to  a  depth  of  0'5-in.  in  an  8-in. 
porcelain  dish  containing  250  c.c.  of  the  washing 
liquid,  the  pigment  remaining  on  the  screen  being 
then  brushed  with  a  soft  1-in.  camel-hair  brush  at 
the  rate  of  two  strokes  per  sec.  during  two  periods  of 
10  sees.  each.  The  screen  is  then  raised  from  the 
dish  after  each  10-sec.  period  to  let  the  liquid  run 
through,  and  the  liquid  in  the  dish  changed  after 
every  two  brushing  periods.  This  is  continued  until 
typewritten  letters  can  be  read  through  an  8  cm. 
layer  of  the  wash  liquid.  Finally  the  pigment 
adhering  to  the  brush  is  transferred  to  the  screen, 
and  the  latter  and  its  contents  washed  with,  e.g., 
alcohol  and  ether,  dried,  and  weighed.  Notes  are 
appended  as  to  methods  of  guarding  against  possible 
sources  of  error,  e.g.,  distinguishing  between 
secondary  aggregates  and  coarse  primary  particles. 
Photomicrographs  of  screened  coarse  particles  from 
typical  pigments  mounted  on  a  talking  machine  disc 
(J.,  1920,  342  a)  are  given.  The  method  previously 
published  (J.,  1920,  356  r)  is  elaborated  in  extenso, 
and  sketches  are  given  of  the  apparatus  recom- 
mended for  the  determination  of  specific  gravities 
of  pigments  under  diminished  pressure.  The  paper 
includes  tables  giving  relationships  between  sp.  gr., 
weights  per  6olid  gallon,  and  gallons  (U.S.  standard 
gallon  =0833  Imp.  gallon)  per  unit  lb.  of  various 
paint  media,  solvents,  and  dry  pigments,  and  a 
chart  correlating  these  figures  with  specific  gravities 
from  0'7  to  9'7.  These  data,  together  with  the  pro- 
portion of  residue  left  on  a  325-mesh  screen,  using 
a  specific  washing  liquid,  are  given  for  a  very  large 
number  of  pigments  and  fillers  of  U.S.  proprietary 
manufacture,  together  with  such  information  re- 
garding the  sample  as  was  voluntarily  submitted 
by  the  maker.- — A.  de  W. 

Paints;  Miscellaneous  exposure  tests  on .    H.  A. 

Gardner.    Circ.  153,  Paint  Manufacturers'  Assoc. 
U.S.,  June,  1922.    32  pp. 

Examination  of  both  sprayed  and  hand-brushed 
paint  work  on  the  walls  and  roof  of  a  building  after 
exposure  for  32  months  pointed  to  slightly  more  uni- 
formity of  application  in  the  case  of  the  hand- 
brushed  work  in  places  where  the  surface  was  rough 
or  sunken.  Examination  of  various  wood  and  metal 
test  panels  after  exposure  for  3  years  on  Young's 
Pier  at  Atlantic  City  showed  the  remarkable  pro- 
tective qualities  of  paints  made  on  a  basis  of 
American  vermilion  (basic  lead  chromate),  no 
fading,  chalking,  or  carbonation  being  apparent. 
As  a  medium  for  metallic  aluminium  and  metallic 
zinc  paints  boiled  linseed  oil  is  to  be  preferred  to 
spar  varnish,  which  in  turn  is  superior  to  collodion 
solutions.  In  paints  containing  red  lead,  a  protect- 
ive covering  coat  or  addition  of  a  pigment  fast  to 
light,  e.g.,  iron  oxide,  is  advisable  on  account  of 
the  bleaching  which  red  lead  suffers  on  exposure. 
An  inspection,  after  exposure  for  11  months,  of 
white  paints  having  a  basis  of  antimony  oxide,  alone 
and  mixed  with  white  lead,  zinc  oxide,  or  barium 
sulphate,  together  with  titanium  oxide  mixed  with 
zinc  oxide,  and  also  other  mixed  pigments,  showed 
the  superiority  of  zinc  oxide  over  white  lead  as  an 
ingredient  of  both  antimony  oxide  and  titanium 
oxide  paints.  Titanium  oxide,  when  present  in  pro- 
portions of  10%  and  15%  in  a  pigment  consisting 
otherwise  of  inert  fillers,  showed  poor  results  after 
weathering  for  20  months,  but  when  present  in  pro- 


Vol.  XLI.,  No.  23.]  Cl.  XIII.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    RESINS.  947  A 


portions  of  6%  and  9%,  together  with  40%  of  zinc 
oxide,  withstood  exposure  well  under  the  same  con- 
ditions; the  addition  of  whiting  as  a  constituent  of 
the  inert  fillers  was,  however,  inadvisable.  In  a 
series  of  tests  in  which  white  pine  panels  covered 
with  three  coats  of  paints  consisting  of  antimony 
oxide  alone  and  with  various  other  pigments  were 
exposed  for  16  months,  an  optimum  result  was 
secured  when  the  antimony  oxide  was  present  in 
about  equal  amount  to  both  barytes  and  zinc  oxide, 
the  chalking  tendency  and  slow  drying  of  the  anti- 
mony oxide  being  partly  counterbalanced  by  the 
zinc  oxide.  The  same  mixture  also  showed  the  best 
behaviour  on  storage,  antimony  oxide  alone  having 
a  tendency  to  become  stringy.  Discoloration  of 
antimony  oxide  paints  to  a  salmon-pink  cast  occurs 
when  they  are  exposed  to  hydrogen  sulphide.  A 
preliminary  exposure  test  in  a  sulphur-producing 
region  in  Texas  of  three  paints  in  two  of  which  the 
pigment  consisted  of  leaded  zinc  oxide  and  lithopone 
and  in  the  third  "  titanox  "  (titanium  oxide  and 
barium  sulphate)  and  zinc  oxide,  showed  the  great 
superiority  of  the  last-named  paint  in  maintaining 
ite  purity  of  colour. — A.  dc  AY. 


Vanadium  as  a  drier  for  linseed  oil;  Experiments 

with  .     H.    A.    Gardner.      Circ.    149,    Paint 

Manufacturers'  Assoc.,  U.S.,  April,  1922.     7  pp. 

Confirming  the  results  obtained  by  Rhodes  and 
Chen  (J.,  1922,  334  a),  the  author  finds  that  linseed 
oil  siccatised  with  vanadium  becomes  dark  brown  in 
colour.  Whilst  the  cost  of  vanadium  drier  is  greater 
than  that  of  cobalt  drier,  the  latter  is  more  effica- 
cious and  gives  products  paler  in  colour.  Although 
vanadium  rosinate  cannot  be  prepared  by  heating 
ammonium  metavanadate  with  rosin,  the  fused 
linoleate  can  be  obtained  by  heating  ammonium 
matavanadate  to  300°  C.  with  raw  linseed  oil  to 
which  has  been  added  10%  of  linseed  oil  fatty  acids. 
The  time  of  drying  of  linseed  oil  siccatised  with 
vanadium  is  not  markedly  different  from  that  of 
oil  siccatised  with  other  known  driers. — A.  de  W. 


Fossil  resins;  Esterification  of and  production 

of  neutral  varnishes  therefrom.  H.  A.  Gardner 
and  P.  C.  Holdt.  Circ.  151,  Paint  Manufacturers' 
Assoc.  U.S.,  May,  1922.     10  pp. 

Experiments  carried  out  on  a  laboratory  scale  to 
determine  the  conditions  for  esterification  of  the 
highly  acid  gum-resins,  Congo,  Pontianak,  and 
Manila  to  substantially  neutral  esters,  showed  that 
care  should  be  taken  completely  to  "crack"  or 
"  run  "  the  resin  before  addition  of  glycerin  for 
esterification,  or  polymerisation  of  the  product  to  an 
infusible  mass  results.  Copper  and  aluminium  act 
as  catalysts  in  the  polymerisation,  which,  however, 
is  entirely  inhibited  when  "running"  has  been 
thorough.  The  authors  have  determined  tne  times 
and  temperatures  necessary  to  accomplish  complete 
"running"  on  100-g.  batches  of  the  three  gum- 
resins  named  and  recommend  the  use  of  6" — 
glycerin  on  the  weight  of  the  "  run  "  gum-resin,  a 
temperature  of  292° — 295°  C.  being  maintained  for 
such  time  as  may  be  necessary  to  secure  the  desired 
degree  of  neutralisation  compatible  with  mainten- 
ance of  colour.  Addition  of  about  0'3  of  zinc  dust 
either  before  or  after  "  running  '"  reduces  the  time 
necessary  for  subsequent  esterification.  Compara- 
tive trials  of  varnishes  made  with  normally  "  run  " 
gum-resin  and  with  an  esterified  gum  resin  showed 
the  absence  of  any  tendency  of  the  latter  to  cause 
"  livering  "  with  zinc  oxide  over  a  period  of  8 
months  in  storage,  whilst  tests  of  the  esterified 
product  against  caustic  soda  solutions  indicated  a 
great  degree  of  resistance  to  alkali. — A.  de  W. 


Besin  acids  of  the  coniferce.  V.  Nitrosochloride, 
a  it  ro  site  and  nitrosate  of  pinabietic  acid  and 
abietic  acid  (Levy).  Constitution  of  abietic  acid 
and  abietene.  O.  Aschan.  Ber.,  1922,  55,  2944 — 
2959. 

Pinabietic  acid  obtained  from  pine  oil  bears  a  very 
close  resemblance  to  Levy's  abietic  acid  obtained 
from  American  colophony.  The  nitrosochlorides, 
nitrosites,  and  nitrosates  of  the  two  compounds 
appear  to  be  identical,  so  that  they  are  to  be 
regarded  as  structurally  identical  but  possibly 
stereoisomeric  with  one  another,  since  certain  (un- 
published) differences  are  exhibited  in  their  optical 
behaviour.  The  tetrahvdroxy  acid  described  bv 
Levy  (J.,  1906,  1057;  1907,  1151;  1910,  33)  and 
eharacteristised  by  its  well  defined  individuality  and 
high  melting  point,  appears  to  be  derived  from 
associated  silvinic  acid  since  the  authors  have  not 
obtained  it  from  either  abietic  or  pinabietic  acids. 
Levy's  abietene  and  Virtanen's  pinabietene  (c/.  J., 
1921,  594  a)  must  be  regarded  as  structurally 
identical  7. 13-dimethyl-2-isopropyl-5.6.7.8.9. 10.13.14- 
octahvdrophenanthrenes.     (Cf.  J.C.S.,  Dec.) 

— H.  W. 

Solvents;  Evaporation  of  .     H.  Wolff  and  C. 

Dorn.     Farben-Zeit.,  1922,  28,  31—33. 

The  losses  in  weight  sustained  by  weighed  quanti- 
ties of  various  solvents  contained  in  Petri  dishes  or 
spotted  on  filter  papers,  when  exposed  to  the  air  at 
ordinary  temperatures,  showed  that  no  connexion 
exists  between  the  rate  of  evaporation  and  the  boil- 
ing-point. Petroleum  hydrocarbons  appear  in 
general  to  volatilise  more  rapidly  than  benzene 
hydrocarbons  of  the  same  boiling-points.  The 
presence  of  dissolved  oil  or  resin  in  a  solvent 
retards  the  volatilisation  of  the  latter;  two  bends 
indicating  retardation  appear  in  the  curve  showing 
loss  in  weight  with  time,  one  at  the  commencement 
of  the  process  and  one  towards  the  end.  For  one 
and  the  same  solvent,  the  rate  of  evaporation  varies 
with  the  different  resins  present  as  solutes. 

—A.  de  W. 

Humidity  equilibria.    Wilson  and  Fuwa.     See  I. 
Abietic  acid.     Madinaveitia.     See  XX. 
Patents. 

Pigment    and    method    of    producing    same.       P. 

Fireman,      Assr.      to     Magnetic     Pigment     Co. 

U.S.P.  1,392,925-7,  11.10.21.  Appl.,  22.6.20. 
The  pigments  are  prepared  by  oxidation  of  freshly 
precipitated  ferrous  hydroxide  under  varying  con- 
ditions. Examples:  (a)  A  solution  of  ferrous 
chloride  of  sp.  gr.  T06 — 1*09  is  treated  with  a  quan- 
tity of  calcium  hydroxide  sufficient  to  precipitate 
75 — §5%  of  the  iron,  and  the  mixture  is  treated 
with  air  and  steam  at  a  temperature  not  above 
100°  F.  (38°  C.)  until  the  ratio  of  ferrous  to  ferric 
iron  is  about  l:0'5.  The  mixture  is  then  heated 
to  boiling  by  increasing  the  amount  of  steam,  and 
oxidation  continued  until  a  lemon-yellow  product  is 
obtained,  (b)  Ferrous  chloride  solution  of  sp.  gr.  1"07 — 
T105  is  rendered  alkaline  with  sodium  carbonate 
and  treated  with  air  and  steam  at  a  temperature 
not  exceeding  110°  F.  (43°  C.)  at  first,  but  gradually 
rising  to  the  boiling  point.  The  product,  on  drying, 
is  a  bright  brown  pigment,  (c)  Ferrous  chloride 
solution  of  sp.  gr.  1"05  is  treated  with  insufficient 
calcium  hydroxide  to  precipitate  the  whole  of  the 
iron,  and  air  and  steam  are  introduced,  oxidation 
being  effected  at  a  temperature  rising  gradually 
from  105°  F.  (40'5°  C.)  to  130°  F.  (54°  C). 
Pigments  of  varying  shades  of  tan  are  obtained  by 
varying  the  temperature  between  the  limits 
specified. 


943  a 


Cl.  XIV—  INDIA-RUBBER  ;  GUTTA-PERCHA. 


[Dec.  15,  1922. 


Colour  lakes;  Preparation  of  .     P.  Krais  and 

H.  AVislicenus.  G.P.  358,047,  8.8.20. 
"  Sprouted  "  alumina,  prepared  by  exposing 
aluminium  which  has  been  treated  with  mercury 
salts  to  the  action  of  moist  air,  is  employed  for  the 
preparation  of  colour  lakes,  the  alumina,  e.g.,  being 
agitated  with  solutions  of  dyestuffs. — L.  A.  C. 

Chambers    for    collecting    lampblack;    Process    for 
transferring   heat   for   preventing   deposition   of 

oil  and  water  in .     F.  und  K.  Meiser.     G.P. 

358,048,  2.7.21. 
A  limited  circulation  of  gas  is  maintained  by  means 
of  fans  or  natural  draught  through  a  series  of 
chambers  for  the  deposition  of  lampblack,  the  hot 
gases  from  the  first  chamber  being  led  into  the  last 
chamber  to  expel  water  and  oil  deposited  therein. 
The  gases  leaving  the  last  chamber  pass  into  a  cooler 
in  which  oil  and  water  vapour  are  condensed. 

— L.  A.  0. 

Condensation    products    of    cresols    and   xylenols; 

Manufacture    of  resinous  .     Chem.    Werke 

Grenzach  A.-G.  G.P.  357,756,  8.2.20. 
Compounds  such  as  o-cresol,  crude  cresol  containing 
phenol,  or  m-xylenol,  are  treated  with  air  or  oxygen 
in  the  presence  or  absence  of  catalysts,  e.g.,  with 
moist  air  at  150°— 170°  C.  for  10—12  hrs.  in  the 
presence  of  manganese  dioxide  or  ferric  chloride. 
Unchanged  phenols  are  separated  by  distillation  in 
a  current  of  steam.  The  products  are  either  soft, 
or  hard  and  brittle,  and  of  a  dark  brown  or  black 
colour,  according  to  the  time  and  temperature  of 
treatment,  and  soft  products  can  be  hardened  and 
rendered  brittle  by  further  heating. — L.  A.  C. 

Condensation  products  of  phenolcarboxylic  acids  or 
their  derivatives  and  aldehydes;  Manufacture  of 

.       Farbw.     vorm.     Meister,     Lucius,     und 

Briining.  G.P.  357,757,  24.1.20,  357,758  and 
358,401,  5.3.20.  Addns.  to  339,495  (J.,  1922, 
639  a). 
Aromatic  hydroxycarboxylic  acids  in  alkaline 
solution,  or  aromatic  alkoxycarboxylic  acids,  are 
treated  with  formaldehyde,  or  substances  capable 
of  yielding  it,  at  atmospheric  or  moderately  high 
temperatures,  or  are  treated  with  aldehydes  at  high 
temperatures  under  pressure.  Examples  are  given 
of  the  preparation  of  resinous  products  by  the 
action  of  formaldehyde  on  a  mixture  of  o-  and 
jj-hydroxybenzoic  acids  in  alkaline  solution  at  the 
usual  temperature,  on  m-cresotinic  acid  in  alkaline 
solution  at  30°  C,  on  o-methoxybenzoic  acid  in  the 
presence  of  concentrated  sulphuric  acid  at  100  °  C, 
on  o-ethoxybenzoic  acid  at  140° — 150°  C.  under 
pressure,  and  on  salicylic  acid  at  130°  C.  under 
pressure ;  by  the  action  of  paraformaldehyde  on 
2-ethoxynaphthalene-3-carboxylic  acid  at  100°  C.  in 
the  presence  of  acetic  acid  and  concentrated 
hydrochloric  acid;  by  the  action  of  ethylnl  on  a 
mixture  of  o-,  m-,  and  p-cresotinic  acids  at  130°  C. 
under  pressure;  and  by  the  action  of  benzaldehyde 
on  2-hydroxynaphthalene-3-earboxylic  acid  at  130° — 
140°  C.  under  pressure  in  the  presence  of  zinc 
chloride. — L.  A.  C 

Condensation  products  of  phenols  and  aldehydes; 

Manufacture    of  .     Felten   und   Guilleaume 

Carlswerk  A.-G.    G.P.  358,195,  3.8.19. 

Insoluble  and  infusible  condensation  products, 
especially  suitable  for  the  manufacture  of  electrical 
insulators,  are  prepared  by  the  action  of  aldehydes, 
e.g.,  formaldehyde  or  its  polymerisation  products, 
or  furfural,  on  phenols  in  the  presence  of  phenols 
which  contain  one  or  more  basic  groups  in  addition 
to  the  hydroxyl  group  or  groups,  e.g.,  amino- 
phenols,  methylamino  or  ethylamino  derivatives  of 
phenol,  cresol,  or  naphthol,  hydroxyquinoline,  or 
iiydroxydiphenylamine. — L.  A.  C. 


Condensation  products  of  phenol  alkyl  ethers  and 

formaldehyde;    Manufacture    of   resinous    . 

Akt.-Ges.  fur  Anilin-Fabr.,  Assees.  of  (a)  C.  Marx, 
O.  Siebert,  and  H.  Wesche,  (b)  C.  Marx  and  H. 
Wesche.  G.P.  (a)  358,399,  25.11.20,  (b)  358,400, 
8.12.20. 

Resinous  products  suitable,  e.g.,  for  the  manu- 
facture of  varnishes,  are  prepared  by  treating  (a) 
phenol  alkyl  ethers  substituted  in  the  meta  position 
to  the  alkoxy  group  by  an  alkyl  or  alkoxy  group 
e.g.,  m-cresol  methyl  ether  or  resorcinol  diethyl 
ether,  or  (b)  cn-tetrahydronaphthol  alkyl  ethers, 
with  formaldehyde,  or  compounds  capable  of 
yielding  the  same,  in  the  presence  of  acids,  ar- 
Tetrahydronaphthol  alkyl  ethers  are  prepared  by 
sulphonating  tetrahydronaphthalene,  fusing  the 
product  with  alkalis,  and  treating  the  product  with 
alkylating  agents. — L.  A.  C. 

Oil  of  turpentine;  Improving  the  odour  of  

obtained,  e.g.,  in  the  manufacture  of  sulphate- 
cellulose.    A.  W.  Arldt.    G.P.  358,050,  7.3.17. 

Mercaptans  are  removed  from  crude  oil  of  turpen- 
tine, obtained,  e.g.,  in  the  manufacture  of  sulphate- 
cellulose,  by  treating  the  oil  with  hydrogen  art  100° — 
120°  C,  under  normal  or  increased  pressure,  in  the 
presence  of  alkaline  solutions  of  lead  oxide,  zinc 
oxide,  or  other  metal  oxides,  or  iron  or  other  metals. 

— L.  A.  C. 

Pencil  drawings  on  paper;  Firing  and  blackening 

.    A.  Griinert.    G.P.  358,584,  13.10.21.   Addn. 

to  317,444  (J.,  1920,  377  a). 

In  the  process  described  in  the  chief  patent,  the 
upper  roller  or  plate  is  removed  slightly  from  the 
surface  of  the  paper,  the  intermediate  space  being 
filled  with  the  electrolyte. — L.  A.  C. 

Vispersoids,    colloid   powder   and   [plastic']    masses 

therefrom;  Manufacture   of  .     H.   Plauson, 

Assr.  to  D.  R.  Rotman.  U.S.P.  1,392,849,  4.10.21. 
Appl.,  8.2.21. 

See  E.P.  156,142  of  1920;  J.,  1922,  381  a. 
Resin  colloids.    G.P.  357,378.     See  XII. 


XIV.-INDIA-RUBBEH;  GUTTA-PEBCHA. 

Latex  of  Hevca  Brasilicnsis;  Function  of  calcium 

chloride    in    coagulation    of    ■ .      G.    Vernet. 

Comptes  rend.,  1922,  175,  719—721. 

The  addition  of  calcium  chloride  solution  to  latex 
of  H.  Brasilicnsis  accelerates  the  coagulation  and 
increases  the  yield  of  rubber,  the  latter  depending 
to  some  extent  on  the  amount  of  added  chloride. 
The  rubber  thus  obtained  contains  calcium,  phos- 
phate, and  chloride  in  percentages  which  vary  as 
the  amount  of  solution  added.  The  author  concludes 
that  the  calcium  reacts  with  the  soluble  phosphates 
of  the  latex  forming  calcium  phosphate  which  is 
incorporated  in  the  rubber  and  the  resulting  chloride 
causes  protein  coagulation ;  further,  the  normal  co- 
agulation is  more  complete.  The  increase  in  weight 
of  product  is  due  to  all  three  factors. — H.  J.  E. 

Stearic  acid  in  latex  from  Ficus  fuvla,  Beinw.  A.  J. 
Ultee.  Bull.  Jardin  Botan.  Buitenzorg,  1922,  5, 
105—106.     Chem.  Zcntr.,  1922,  93,  III.,  1055. 

Of  the  coagulated  latex  only  7'7%  was  insoluble  in 
alcohol,  and  extraction  of  this  residue  with  benzene 
yielded  l'l  %  of  rubber  (calculated  on  the  original 
weight).  The  alcoholic  extract  from  12  g.  when 
cooled  deposited  835  g.  of  wax,  m.p.  52°— 58°  C, 
which  on  saponification  gave  potassium  stearate  and 
a  phytosterol.  The  wax  is  not  identical  with  that 
from  Ficus  elastica. — D.  F.  T. 


Vol.  XLI.,  No.  23.]     Cl.  XV.— LEATHER  ;    BONE,  &c.     Cl.  XVI.— SOILS  ;    FERTILISERS. 


949  a 


It ubber  vulcanisation;  Studies   in  .     Belation 

between  chemical  and  physical  state  of  cure  of 
rubber  vulcanised  in  the  presence  of  certain 
organic  accelerators.  N.  A.  Shepard  and  S. 
Krall.    J.  Ind.  Eng.  Chem.,  1922,  14,  951—956. 

As  was  already  realised  by  Weber  in  1902,  products 
obtained  by  the  vulcanisation  of  one  and  the  same 
batch  of  crude  rubber  to  the  same  coefficient  may 
possess  different  physical  constants.  The  physical 
state  of  the  vulcanised  rubber  is  now  recognised  as 
of  main  significance  from  the  point  of  view  of  per- 
formance in  service,  whereas  the  chemical  degree 
of  vulcanisation  has  the  more  important  bearing  on 
the  stability  of  the  physical  condition.  "When 
organic  accelerators  are  used  the  relationship  be- 
tween the  physical  properties  and  the  vulcanisation 
coefficient  becomes  strikingly  irregular  {cf.  Cranor, 
J.,  1920,  73  a).  Mixtures  containing  rubber  (48 
pte.),  zinc  oxide  (48),  and  sulphur  (3)  with  hexa- 
methylenetetramine  (0"5  pt.),  aldehyde-ammonia 
(0'75),  thiocarbanilide  (1'5),  and  p-nitrosodi methyl- 
aniline  (0'25)  respectively  as  accelerator,  when  vul- 
canised for  60  mins.  at  141-7°  C.  (287°  F.)  gave 
almost  identical  stress-strain  curves  (elongation 
about  400%  at  1070  lb.  per  sq.  inch).  In  determin- 
ing the  corresponding  coefficients  of  vulcanisation, 
disturbing  factors  were  eliminated  as  far  as  possible 
(cf.  Kelly,  J.,  1922,  301  a)  ;  the  resulting  values 
were  087,  098,  1-38,  T03  respectively.— D.  F.  T. 

Patents. 

Yulcanisable  compositions.    W.  Frost,  and  H.  Frost 
and  Co.    E.P.  186,709,  5.7.21. 

An  adhesive  and  plastic  rubber  mixture  for  repair 
purposes  consists  of  an  ordinary  vulcanisable  mix- 
ture softened  by  the  addition  of  about  30 — 40%  of 
carbon  tetrachloride  or  other  suitable  solvent. 

— D.  F.  T. 

Rubber;  Conversion  of  natural  or  artificial into 

other  varieties  of  rubber  or  into  material  resembl- 
ing gutta-percha.  Siemens  und  Halske  A.-G. 
G.P.  354,344,  23.1.20. 

Dispersions  of  hydrohalides  or  halogen  derivatives 
of  rubber  in  chloroform  or  ethylene  chloride  are 
reduced  by  treatment  with  zinc  or  other  metals,  and 
the  product  is  washed  with  water  or  dilute  acid. 
The  product  is  more  or  less  viscous  according  to  the 
method  of  treatment,  and  resembles  gutta-percha  if 
ethylene  chloride  is  used  as  dispersion  agent. 

— L.  A.  C. 

Insulating  material.    G.P.  357,665.    See  XI. 


XV. -LEATHER;  BONE;  H0BN;  GLUE. 

Humidity  equilibria.    Wilson  and  Fuwa.     See  I. 
Pseudo-extraction.    Charitschkov.    See  I. 

Patents. 

Tannery  ivastc  liquor  containing  sulphides ;  Purifi- 
cation    of     .       Adler     und     Oppenheimer, 

Lederfabr.,  A.-G.    G.P.  358,105,  3.2.14. 

Hydrogen  sulphide  liberated  by  treating  tannery 
waste  liquors  with  acids  is  burnt  and  the  sulphur 
dioxide  liberated  thereby  is  led  into  the  liquor  to 
decompose  residual  hydrogen  sulphide  with  precipi- 
tation of  sulphur.  Dissolved  or  emulsified  material 
derived  from  the  hides  is  precipitated  simultane- 
ously, and  a  clear  liquor  free  from  objectionable 
odour  is  obtained. — L.  A.  C. 

Products  insoluble  in  water;  Manufacture  of  

from  glycerin  and  albumins.  G.  Diesser.  G.P. 
358,540,  1.8.15. 

Egg-   or   blood-albumin   is    ground    with   glycerin, 


yielding  liquid  products  which  rapidly  harden  either 
alone  or  on  treatment  with  formaldehyde  or  potas- 
sium bichromate.  The  products  are  suitable  for 
making  moulded  articles,  for  use  as  an  adhesive  for 
cellulose,  waste  leather,  or  cork,  or  for  adding  to 
rubber. — L.  A.  C. 


XVI.-S0ILS ;    FERTILISERS. 

Soils;  Field  moisture  capacity  and  wilting  point  of 
.  W.  L.  Powers.  Soil  Sci.,  1922,  14,  159—165. 

The  wilting  point  of  different  crops  varies  more 
than  is  usually  suspected.  The  variation  among 
different  crops  is  greater  on  a  heavy  than  on  a  light 
soil.  From  irrigation  studies  it  is  shown  that  a 
heavy  6oil  may  retain  as  much  as  two  inches  of 
utilisable  water  per  acre-foot  depth,  peat  can  retain 
3 — 4  in.,  and  a  coarse  sand  only  i  in.  The  bearing 
of  these  points  on  the  practice  of  irrigation  is  dis- 
cussed.— A.  G.  P. 


Sulphides;   Occurrence  of  in  Minnesota  peat 

soils.    C.  0.  Rost.    Soil  Sci.,  1922,  14,  167—174. 

Examination  of  a  large  number  of  Minnesota  peat 
soils  showed  that  the  presence  of  sulphides  at  all 
depths  is  general.  Usually  there  was  more  sulphide 
in  the  lower  layer  of  peat  than  in  the  muck  sub- 
stratum. The  reaction  of  both  peat  and  muck 
depended  more  on  the  conditions  permitting  the 
j  oxidation  of  sulphides  to  sulphuric  acid  than  on  the 
actual  amount  of  sulphide  present.  The  lower  peat 
layers  contained  sulphide  equivalent  to  0"06 — 0T6% 
H,S  and  the  muck  substrata  0-002— 0-013%. 

—A.  G.  P. 

Iron  pyrites;  Oxidation  of by  sulphur-oxidising 

[sort]  organisms,  and  their  use  for  making  mineral 
phosphates  available.  W.  Rudolf.  Soil  Sci., 
1922,  14,  135—146. 
From  studies  of  pyrites-soil  composts  inoculated 
with  sulphur-oxidising  organisms,  it  was  shown  that 
the  pyrites  can  be  oxidised  to  sulphate.  In  the 
presence  of  small  quantities  of  sulphur  the  process 
was  considerably  accelerated.  The  solution  of  rock 
phosphates  in  soil-sulphur-phosphate  composts  pro- 
ceeded normally  in  the  presence  of  pyrites; 
when  ammonium  sulphate  was  added,  the  production 
of  available  phosphoric  acid  was  considerably  in- 
creased by  pyrites,  which  appeared  to  have  some 
catalytic  action.  Composts  of  pyrites-sulphur- 
phosphate  were  not  benefited  by  aeration  unless 
ammonium  sulphate  was  present.  The  addition  of 
sulphurous  acid  to  the  composts  produced  merely  a 
sterilising  action. — A.  G.  P. 

Fungi  in  soil;  Growth  of .     S.  A.  Waksman. 

Soil  Sci.,  1922,  14,  153—157. 
The  gelatin  plate  method  of  studying  fungi  in  soil 
is  inadequate,  since  it  does  not  give  a  true  repre- 
sentation in  species  or  in  numbers  of  the  soil  flora. 
Two  acid  media  are  described  in  which  fungi  but 
not  bacteria  or  actinomyctes  will  develop.  (1)  25  g. 
of  agar  is  dissolved  in  a  solution  prepared  by 
beating  60  g.  of  raisins  with  1000  c.c.  of  tap  water 
for  1  hr.,  the  reaction  is  adjusted  to  pH  40,  and  the 
liquid  filtered  and  sterilised.  (2)  Sufficient  2V/1 
sulphuric  or  phosphoric  acid  is  added  to  a  mixture 
of  10  g.  of  dextrose,  5  g.  of  peptone,  1  g.  KH2P04, 
0'5  g.  MgSO,  and  1000  c.c.  of  water  to  give  a  p„ 
value  36 — 3-8.  25  g.  of  agar  is  dissolved  in  the 
solution,  which  is  then  filtered  and  sterilised.  A 
definite  correlation  between  the  number  of  fungi 
present  in  a  soil,  and  its  treatment  and  reaction 
has  been  established. — A.  G.  P. 


950  A 


Cl.  XVII.— SUGARS  ;  STARCHES  ;  GUMS. 


[Dec.  15,  1922. 


Fungi    and  actinomycetes   in    soil;   Microscopical 

method  for   demonstrating   .     H.   J.    Conn. 

Soil  Sci.,  1922,  14,  149—151. 
A  small  portion  of  soil  (10  mg.  or  less)  is  placed  on 
a  microscope  slide,  and  moistened  with  a  few  drops 
of  water.  One  drop  of  methylene  blue  solution  is 
added  and  the  whole  covered  with  a  slip,  sand 
grains  being  removed.  The  mount  should  appear 
distinctly  blue  to  the  naked  eye.  By  thus  obviating 
the  drying  of  the  mount,  actinomycete  filaments 
and  mycelium  are  not  destroyed  and  can  be  easily 
observed.  By  this  technique  fragments  of  mycelium 
were  found  in  many  soils,  though  not  in  great 
quantity;  their  presence  was  more  frequent  in  soils 
containing  large  quantities  of  undecomposed 
organic  matter. — A.  G.  P. 

Denitrification  with  formates.  Influence  of  the 
cation.  J.  Groenewege.  Biedermann's  Zentr., 
1922,  51,  219—220. 
Denitrification  with  Bact.  denitroformicicum  (n. 
sp.)  does  not  take  place  where  calcium  formate  is 
the  exclusive  source  of  carbon  in  culture  solutions 
containing  potassium  monohydrogen  phosphate 
owing  to  the  formation  of  calcium  phosphate  and 
free  formic  acid.  If  the  culture  solution  is  main- 
tained neutral  or  slightly  alkaline,  denitrification 
only  takes  place  on  aeration.  If,  however,  the 
calcium  formate  is  replaced  by  potassium  or  sodium 
formate,  denitrification  takes  place  even  under 
anaerobic  conditions. — G.  W.  R. 

Arsenic;  Some  relations  of  to  plant  growth. 

J.  Stewart.    Soil  Sci.,  1922,  14,  111—118. 

The  solubility  of  lead  arsenate  in  water  is 
considerably  increased  by  the  addition  of  salts 
commonly  found  in  the  soil  solution.  The  most 
effective  are  acid  salts  and  those  producing  an 
alkaline  solution.  The  solubility  in  soils  of  lead 
arsenate  is  roughly  proportional  to  the  amount  of 
soluble  salts  in  the  soil.     (Cf.  J.C.S.,  Dec.) 

—A.  G.  P. 

Arsenic;  Some  relations  of  to  plant  growth. 

II.    J.  Stewart  and  E.  S.  Smith.    Soil  Sci.,  1922, 
14,  119—136. 

Distinct  stimulative  effects  were  observed  in  plants 
grown  in  soil  treated  with  sodium  arsenate.  The 
accumulation  in  soils  of  arsenic  from  sprays,  may 
be  beneficial  rather  than  injurious,  since  the  amount 
of  soluble  arsenic  is  limited  by  the  solubility  of  lead 
arsenate,  which  is  normally  below  the  toxic  point. 

—A.  G.  P. 

Protein  content  of  grain;  Differences  effected  in 

the   by  applications   of   nitrogen   made   at 

different  growing  periods  of  the  plant.  W.  F. 
Gericke.  Soil  Sci.,  1922,  14,  103—109. 
The  protein  content  of  wheat  and  other  grains  and 
the  hardness  of  the  grain  are  not  entirely  hereditary 
characteristics,  but  to  a  large  extent  affected  by 
environment.  The  addition  of  sodium  nitrate  to 
soils  carrying  spring  wheat,  increased  the  protein 
content  of  the  matured  grain  to  an  extent  varying 
according  to  the  period  elapsing  between  the  sowing 
of  the  seed  and  the  time  of  adding  the  fertiliser. 
(Cf.,  J.C.S.,  Dec.)— A.  G.  P. 

Urea  and  hippuric  acid  as  nutrient  materials  for 

plants.    T.  Bokorny.    Biochem.  Zeits.,  1922,  132, 

197—209. 
In   higher  strengths  than  0'09%    hippuric   acid   is 
toxic  to  plant  cells,  urea  at  1'0%  being  harmless. 

— H.  K. 
Patent. 
Calcium  cyanamide;  Method  of  granulating  . 

Stockliolms     Superfosfat      Fabriks     Aktiebolag. 

E.P.  168,070,  22.8.21.     Conv.,  21.8.20 
Calcium  cyanamide  is  ground  and  kneaded  in   a 


steam-jacketed  worm  conveyor  under  the  action  of 
a  spray  of  warm  dilute  nitric  acid,  25%  of  5 — 20% 
acid  being  used  on  the  weight  of  calcium  cyanamide. 
The  mass  is  then  fed  into  steam-jacketed  rotating 
cylinders  wherein  it  meets  a  counter  current  of  hot 
air.  The  granules  so  produced  do  not  disintegrate 
on  storage. — C.  1. 


XVII.-SUGARS ;  STAfiCHES;  GUMS. 

Sugarhouse      [evaporator]      syrups;      Precipitate 

formed    in    [after    clarification'].      3.    F. 

Brewster  and  W.  G.  Raines,  jun.  J.  Ind.  Eng. 
Chem.,  1922,  14,  946—947. 
Juice  clarified  by  treatment  with  kieselguhr  and 
decolorising  carbon  (cf.  Zerban,  J.,  1921,  21  a)  and 
then  concentrated  to  a  density  of  about  30°  B. 
(sp  gr.  T262)  was  found  to  contain  a  precipitate 
consisting  of  about  75%  of  mineral  matter,  mainly 
Si02,  CaO,  and  SOa.  Small-scale  experiments,  using 
different  methods  of  clarification,  indicated  that 
the  precipitate  is  due  to  a  greater  or  less  extent  to 
the  use  of  juice  derived  from  cane  to  which  a 
considerable  amount  of  soil  still  adhered,  the 
amount  of  precipitate  obtained  from  the  juice  of 
washed  cane  being  often  much  less.  In  the  case 
of  juice  clarified  by  the  defecation  or  sulphitation 
processes,  in  addition  to  the  cause  suggested,  the 
formation  of  the  precipitate  may  be  due  to  the 
chemicals  used,  which  partly  enter  into  solution ; 
and  to  substances  originally  present  in  the  juice, 
which  are  precipitated  on  concentration. — J.  P.  O. 

Sugar  purity  determinations.     W.  D.-Horne.     J. 
Ind.  Eng.  Chem.,  1922,  14,  944—945. 

The  apparent  purity  may  be  rapidly  ascertained  by 
determining  the  sucrose  by  direct  polarisation  after 
clarifying  with  Home's  dry  lead  subacetate,  and 
the  dry  substance  from  a  density  reading,  using 
a  special  Brix  hydrometer  provided  with  a 
thermometer,  against  the  scale  of  which  is  placed 
a  table  giving  temperature  correction  readings. 
Having  these  two  data,  the  purity  may  then  be 
immediately  read  from  a  table  mounted  on  movable 
rolls  easily  exposing  the  desired  portion. — J.  P.  O. 

Glucose;  Determination  of  the  pH  value  as  a  sub- 
stitute  for   the   candy   test   as   an   indication   of 

commercial  .  O.  A.  Sjostrom.     J.  Ind.  Eng. 

Chem.,  1922,  14,  941—943. 

Determination  of  the  pH  value  by  the  colorimetric 
method  using  methyl  red  gives  a  more  reliable  indi- 
cation of  the  acidity  available  for  inversion  of 
commercial  glucose  destined  for  use  in  confectionery 
manufacture  than  the  results  given  by  the  "  candy 
test,"  in  which  the  amount  of  invert  sugar  formed 
on  heating  the  samples  with  sucrose  and  water 
under  certain  conditions  is  determined.  Using 
samples  of  commercial  glucose  diluted  to  22°  B. 
(sp.  gr.  ITS),  it  was  found  that  the  extreme  limit  of 
safety  is  represented  by  pa  4'3. — J.  P.  O. 

Tetralo;voglucosan  and  tetraglutosan.     H.  Prings- 
heim  and  K.  Schmalz.    Ber.,  1922,  55,  3001—3007. 

Tetral. i:\oglvcosan  is  readily  converted  by  acetic 
anhydride  in  the  presence  of  zinc  chloride  into  the 
dodeca-acetate,  an  amorphous  hygroscopic  sub- 
stance, [a]I):c'  =  +69"59°  in  glacial  acetic  acid  solu- 
tion ;  it  is  completely  methylated  by  two  treatments 
with  sodium  hydroxide  and  methyl  sulphate  at  70° 
C,  yielding  dodecamethyl-laevoglucosan,  which  is 
hydrolysed  by  boiling  dilute  sulphuric  acid  (5%)  to 
tctramethylglueose  and  a  dimethylglucose.  Under 
similar  conditions,  tetraglucosan  yields  a  dodeca- 
acetate,  [o]D20  =  +70-82°  when  dissolved  in  glacial 
acetic  acid,  and  dodecamethyltetraglucosan.  The 
behaviour  of  the  polymerised  anhydro-sugars  is  thus 
sharply  differentiated  from  that  of  the  polyamyloses 


Vol.  XLI.,  No.  23.] 


Cl.  XVIII.— fermentation  industries* 


951a 


which  cannot  be  completely  methylated  and  suffer 
depolymerisation  when  acetylated  with  acetic  an- 
hydride in  the  presence  of  zinc  chloride.  (67.  J.C.S., 
Dec.)— H.  W. 

Arnylodextrin;  Oxidation  of  .     W.  Syniewski. 

Roczniki  Chem.,  1922,  2,  83—94. 

Dextkin  (from  starch)  when  oxidised  by  means  of 
bromine  in  the  presence  of  barium  carbonate  (to 
prevent  the  hydrolysis  of  the  molecule)  yielded  a 
white  non-crystalline  product  with  an  acid  reaction 
and  rotatory  power  [a]D20  =  191'09°.  Its  reducing 
power  was23'24  ::  of  that  of  maltose.  A  solution  of  the 
product  reduced  alkaline  silver  solution  and  gave 
the  "  Molisch  "  reaction  with  a-naphthol,  but  the 
colour  was  not  violet,  as  with  starch  and  the  sugars, 
but  carmine-red.  A  concentrated  solution  of  the 
substance  gave  a  beautiful  reddish  colour  on  warm- 
ing with  hydroxylamine  hydrochloride  and  potas- 
sium hydroxide.  Analysis  gave  C  42'71%,  H  5'33%. 
The  product  is  an  acid,  the  barium  salt  containing 
15"06%  BaO;  the  author  calls  it  amylodextrinic 
acid.  Arnylodextrin  is  considered  to  have  the 
formula  C,10Hjr,O180  and  to  be  composed  of  twelve 
maltose  residues  connected  together  by  the  carbonyl 
groups,  leaving  only  the  CH,OH  groups  free.  The 
CBLOH  groups  are  converted  into  carboxyl  groups 
by  oxidation,  so  that  the  acid  oxidation  product 
will  have  the  formula,  C216H3J80„a,  which  is  in  good 
agreement  with  the  results  of  analysis. — W.  T. 

Patent. 
Extraction  of  sugar.    E.P.  186,756.    See  XIXa. 


XVIII.— FERMENTATION    INDUSTRIES. 

Diastatic  power;  Determination  of .    W.  Wind- 

isch,  W.  Dietrich,  and  P.  Kolbach.    Woch.  Brau., 
1922,  39,  213—214,  219—222,  225—226. 

The  divergent  values  for  the  diastatic  power  of  a 
malt  obtained  by  the  iodometric  method  when 
different  starches  are  used  depend  to  some  extent 
on  variations  in  the  hydrogen-ion  concentration  and 
degree  of  dispersion  of  the  starch  solutions.  Since 
the  malt  extracts  obtained  from  different  malts  vary 
but  slightly  in  acidity  and  since  also  but  little  of 
the  extract  is  used  in  determining  the  diastatic 
power,  the  value  of  p„  for  the  mixture  of  starch 
solution  and  malt  extract  depends  almost  entirely  on 
the  acidity  of  the  starch.  Samples  of  soluble  starch 
supplied  by  different  makers  gave  2%  (on  dry 
matter)  solutions  varying  in  pH  from  3'7  to  6'2,  the 
values  after  addition  of  one  and  the  same  cold-water 
malt  extract  ranging  from  41  to  61  and  the 
numbers  obtained  for  the  diastatic  power  from  126 
to  95  (or  for  a  second  malt,  from  133  to  95) ;  when, 
however,  the  values  of  ps  were  made  equal  in  all 
the  cases  to  4'9  by  addition  of  a  buffer  solution,  the 
diastatic  powers  found  varied  only  from  124  to  113 
(131  to  121).  That  one  of  the  starches  gave  lower 
values  for  the  diastatic  power  after  addition  of  the 
buffer  solution  is  due  to  the  fact  that  the  optimum 
value  of  pK  for  diastatic  action  is  not  4'9,  as  stated 
by  Adler,  but  4'26.  Although  the  activity  of  dias- 
tase is  not  appreciably  less  for  pH  5'8,  which  is  the 
average  value  for  unboiled  wort,  than  it  is  for  pH 
4'3,  yet  adjustment  of  the  hydrogen-ion  concentra- 
tion may  result  in  increase  of  the  yield  of  extract 
in  the  brewery  by  as  much  as  2%.  This  increase  is 
due  to  the  fact  that  increase  of  the  acidity  (to  pH  5) 
favours  the  action  of  the  proteolytic  enzymes  and 
hence  not  only  renders  a  greater  proportion  of  the 
proteins  permanently  soluble  but  also  renders  the 
starch  granules  more  readily  accessible  to  the  action 
of  the  diastase.  The  increased  acidity  also  lowers 
the  danger  of  subsequent  protein-turbidity,  pro- 
duces a  better  "  break  "  of  the  wort,  and  improves 
the   flavour   of   the    resulting  beer.      A  method   of 


determining  diastatic  power,  in  which  the  iodine 
used  by  the  starch  and  the  pB  value  of  the  starch 
solution  are  taken  into  account,  is  described.  The 
same  starch  must  be  employed  in  all  cases,  Kahl- 
baum's  soluble  starch  being  recommended ;  the 
starch  solution  must  be  prepared  in  a  definite  way 
and,  since  the  course  of  the  conversion  depends  on 
the  degree  of  dispersion,  must  be  used  fresh.  By 
addition  of  a  suitable  quantity  of  a  buffer  solution 
containing  sodium  acetate  and  acetic  acid,  the  pH 
of  the  solution  is  brought  to  43  +  01.  Details  of 
the  procedure  and  of  the  method  of  calculation  of 
the  results  are  given. — T.  H.  P. 

Hydrogen-ion  concentration  in  the  brewery.  IV. 
W.  Windisch,  W.  Dietrich,  and  P.  Kolbach. 
Woch.  Brau.,  1922,  39,  145—148,  151—153,  157— 
162,  165—166,  171—172,  177—179,  183—186. 

Details  are  given  of  a  number  of  investigations,  by 
both  the  electrometric  and  the  graphic  titrimetric 
methods,  of  the  titration  acidity,  hydrogen-ion  con- 
centration, and  buffer  effect  in  worts  and  beers  of 
various  types.  The  essential  result  achieved  is  a 
proof  that  indications  of  sufficient  accuracy  for 
practical  purposes  are  obtained  if  the  rectilinear 
colorimetric  titration  curve  is  used  in  place  of  the 
pH  curve.— T.  H.  P. 

Yeas*  and  bacteria;  Influence  of  hydrogen-ion  con- 
centration on  the  development  of and  on  tlic 

stability  of  beer.  M.  H.  van  Laer.  Petit  J. 
Brasseur,  1922,  Nos.  1193  and  1194.  Woch.  Brau., 
1922,  39,  226—227. 

In  Pasteur's  solution,  containing  its  nitrogenous 
nutriment  in  the  form  of  ammonia,  which  is  assimil- 
able with  difficulty  by  yeast,  the  latter  exhibits  its 
greatest  multiplication  at  pH  6'8,  that  is,  in  the 
neighbourhood  of  absolute  neutrality;  in  unhopped 
and  hopped  worts  prepared  from  50%  of  malt  and 
50%  of  raw  grain,  however,  the  optimum  values  of 
pK  are  4'6  and  6'0  respectively.  Hence,  the  richer 
the  liquid  is  in  nutriment,  the  higher  is  the  acidity 
which  the  yeast  is  able  to  withstand.  If  the  culture 
solution  is  not  perfectly  suited  to  the  food  require- 
ments of  the  yeast,  the  latter  is  more  sensitive 
towards  increase  of  the  alkalinity  than  towards 
increase  of  the  acidity.  For  Frohberg  and  for  dis- 
tillery yeast  the  optimum  value  of  pH  is  also  46, 
whereas,  as  might  be  expected,  for  Iambic  yeast  it 
is  not  higher  than  3'8.  For  two  of  the  most  common 
disease  organisms  of  Belgian  beers,  namely  Bacillus 
viscosus  bruxeUiensis  and  Saccharobacillus,  the  opti- 
mum values  of  pH  are  respectively  5'5  and  6'8.  It 
is,  therefore,  evident,  that,  with  unhopped  wort, 
the  optimum  pH  for  the  disease  organisms  is  nearer 
to  the  natural  reaction  of  the  wort  than  is  that  for 
yeast,  whilst  with  hopped  wort  the  reverse  is  the 
case.  The  importance  of  hopping  for  the  stability 
of  the  beer  is  thus  emphasised.  Moreover,  when 
Frohberg  yeast  and  Saccharobacillus  are  sown  to- 
gether in  hopped  wort,  the  bacteria  do  not  develop 
appreciably  if  the  pH  of  the  liquid  is  below  54. 
Thus,  the  actual  acidity  of  wort  and  beer  constitutes 
an  important  factor  in  the  stability,  the  highest 
infection  being  without  results  in  a  sufficiently  acid 
wort.— T.  H.  P. 

Fermentation  and  yeast;  Action  of  ultraviolet  rays 

on  .     P.   Lindner.     Woch.   Brau.,   1922,   39, 

166—167. 
Using  a  bottom-fermentation  brewery  yeast,  the 
author  finds  that  the  velocity  of  fermentation  of 
dextrose  is  increased  by  the  influence  of  ultraviolet 
light  to  even  greater  extents  than  were  observed  by 
R.  and  R.  de  Fazi  (J.,  1916,  191)  in  the  case  of  top- 
fermentation  beer  yeast.  Thus,  fermentation  of  a 
solution  of  30  g.  of  dextrose  in  300  c.c.  of  water  for 
24  hrs.  yielded  119  c.c.  of  carbon  dioxide,  whereas 
when  the  fermenting  liquid  was  exposed  to  the  light 


952  a 


Cl.  XVIII.— FERMENTATION  INDUSTRIES. 


[Dec.  15,  1922. 


of  a  mercury  vapour  lamp  2743  c.c.  of  gas  was 
evolved.  The  original  yeast  and  that  obtained  from 
the  latter  solution  contained  little  glycogen,  which 
was,  however,  present  in  large  proportion  in  the 
yeast  from  the  solution  not  exposed  to  the  ultraviolet 
light.  Most  of  the  yeast  cells  from  the  radiated 
solution  were  in  active  condition,  about  20 — 30% 
being  dead.  Fermentation  experiments  with  wort 
furnished  similar  results.  Although  exposure  of 
yeast  to  ultraviolet  light  in  a  liquid  fermenting 
under  ordinary  conditions  favours  the  fermentation, 
exposure  of  the  cells  in  a  shallow  layer  of  liquid  to 
the  light  for  any  length  of  time  produces  fatal 
results.— T.  H.  P. 

Yeast;  Destruction  of  lactic  acid  by .    O.  Fiirth 

and  F.  Lieben.  Biochem.  Zeits.,  1922,  132,  165— 
179. 
The  disappearance  of  lactic  acid  observed  on 
shaking  yeast  suspensions  in  a  current  of  oxygen 
could  not  be  attributed  to  formation  of  simple 
derivatives,  such  as  acetaldehyde,  /3-hydroxybutyric 
acid,  etc.  One  half  of  the  carbon  of  the  lost  lactic 
acid  does,  however,  appear  as  carbon  dioxide,  the 
other  half  possibly  being  utilised  in  the  building  up 
of  tissue. — H.  K. 

Yeast;    Behaviour    of   some    amino-acids    towards 

oxygenated  .     F.  Lieben.     Biochem.  Zeits., 

1922,  132,  180—187. 

Unlike   lactic   acid,    amino-acids    are    not   quickly 

destroyed    by    oxygenation    of    their    solution     in 

presence  of  yeast  cells. — H.  K. 

Fermentation;  Activators  of  .     E.  Lindberg. 

Biochem.  Zeits.,  1922,  132,  110—134. 
The  activating  influence  of  yeast  water,  yeast  co- 
enzyme, and  milk  has  been  determined  on  washed 
and  unwashed  dried  yeast  and  also  the  influence  of 
abietic  acid,  amyrin,  and  cholesterol.  The  former 
group  accelerate,  but  the  latter  group  are  without 
action.  Pyruvic  acid  was  fermented  more  rapidly 
than  dextrose,  but  lactic  acid  was  practically 
unaffected. — H.  K. 

Invertase.    III.    R.  AVillstatter,  J.  Graser,  and  R. 
Kuhn.    Z.  physiol.  Chem.,  1922,  123,  1—78. 

Preparations  of  autolysed  yeast  change  with  age  in 
such  a  way  that  the  invertase  becomes  practically 
completely  precipitable  by  lead  acetate.  This  in 
combination  with  the  methods  previously  used — 
particularly  adsorption  with  aluminium  hydroxide, 
and  dialysis — gives  a  means  of  obtaining  extremely 
reactive  invertase  preparations.  The  precipitation 
by  lead  acetate  is  affected  also  by  other  factors,  such 
as  substances  present  in  the  invertase  solution, 
particularly  phosphates.  The  phosphorus  content 
of  these  very  highly  active  invertase  preparations  is 
very  low.  The  activity  of  invertase  appears  to  be 
independent  of  the  other  compounds  which  accom- 
pany it,  and  also  independent  of  the  state  of 
aggregation.  Incidental  impurities  are,  however, 
of  importance,  the  very  pure  preparations  being 
much  less  stable.  Invertase  preparations  can  be 
protected  by  the  addition  of,  for  example,  calcium 
chloride  or  yeast  gum.  Purified  invertase  has  an 
optimum  activity  at  pB  46. — W.  O.  K. 

Saccharose    [invertase]    preparations;    Phosphorus 

content  of  purified  .     H.  von  Euler  and  O. 

Svanberg.  Ark.  Kern.  Min.  Geol.,  1922,  8,  [12], 
1—13. 
By  estimating  the  concentration  of  '-ilver  ions 
electrometrically,  the  dissociation  constants  of  the 
silver  salts  of  various  nucleic  acids  and  related  acids 
have  been  determined,  and  it  is  concluded  that  the 
presence  in  the  invertase  molecule  of  components  of 
the  nature  of  nucleic  acids  may  explain  the 
poisoning  of  the  enzyme  by  silver  salts,   as  these 


acids  have  a  strong  affinity  for  silver  ions.  Purified 
invertase  solutions  after  dialysis  leave  an  ash  which 
can  be  completely  accounted  for  by  the  phosphoric 
acid  present,  indicating  the  absence  of  any 
corresponding  metal  as  base.     (Cf.  J.C.S.,  Dec.) 

— W.  O.  K. 

Reductases.  I.  Some  conditions  of  the  activity  of 
starch  reductase.  I.  A.  Smorodincev.  Z.  physiol. 
Chem.,  1922,  123,  130—144. 

Estimations  made  of  the  amount  of  nitrite 
produced  from  nitrate  by  an  extract  of  potatoes  in 
presence  of  acetaldehyde,  indicate  an  increase  in 
the  reaction  with  increase  of  the  amount  of 
enzyme  used,  but  not  nearly  so  marked  an  increase 
with  increasing  amount  of  aldehyde.  Neither 
formaldehyde  nor  vanillin  is  as  efficient  as 
acetaldehyde.  With  acetaldehyde,  the  reaction 
ceases  after  30 — 60  mins.  Atmospheric  oxygen  does 
not  appear  to  be  harmful,  and  very  dilute  acid  is 
favourable,  although  greater  concentrations 
markedly  retard  the  reaction. — W.  O.  K. 

Ethyl  alcohol  from  western  larch  (Larix 
occidentalis,  Nut  tall).  E.  C.  Sherrard.  J.  Ind. 
Eng.  Chem.,  1922.  14,  948—949. 

The  western  larch  contains  8T7%  of  water-soluble 
galactan  which  on  hydrolysis  with  dilute  acid  gives 
galactose.  This  sugar  was  successfully  fermented 
by  a  Hungarian  beer  yeast,  Saccharomyces 
cerevisioe;  of  the  total  of  29%  of  reducing  6Ugar 
available,  70 — 80%  was  fermented  with  a  yield 
corresponding  to  33  galls,  of  95%  alcohol  per  ton 
of  dry  wood.  The  wood  was  digested  in  an  autoclave 
for  15  min.  at  115  lb.  steam  pressure  with  18 — 
2'5%  of  its  weight  of  sulphuric  acid,  moistened, 
extracted  with  water,  and-  the  sugar  solution 
neutralised  and  evaporated.  The  temperature  of 
fermentation  should  be  85°— 90°  F.  (30°— 32°  C.) 
and  the  initial  acidity  not  more  than  "  5°." — C.  I. 

Alcohol;   Preparation   of   industrial   absolute   ■ j 

and  its  application  to  the  preparation  of  liquid 
fuel.  C.  Mariller  and  Van  Ruymbeke.  Comptes 
rend.,  1922,  175,  588—590. 

Alcohol  of  98"5 — 99  %  strength  may  be  prepared  by 
distillation  of  alcohol-water  mixtures,  the  vapours 
passing  upwards  through  a  column  which  is 
traversed  in  the  opposite  direction  by  anhydrous 
glycerol.  Distillation  may  by  this  method  be 
carried  out  more  rapidly  than  in  the  ordinary 
processes  of  preparation  of  96%  alcohol.  The 
mixture  of  glycerol  and  water  which  is  obtained 
may  readily  be  dehydrated  for  further  use  by 
heating  first  in  air,  then  in  vacuo.  To  obtain 
alcohol  of  a  purity  greater  than  99%,  a 
dehydrating  salt — such  as  potassium  carbonate, 
zinc  chloride,  calcium  chloride — is  dissolved  in  the 
glycerol,  the  regeneration  of  which  is  unaffected 
by  the  solute.  The  difficulty  of  direct  solution  of 
the  salt  in  the  glycerol  is  obviated  by  adding  it 
in  aqueous  solution  and  obtaining  a  clear  anhydrous 
solution  by  vacuum  evaporation.  It  is  stated  that 
anhydrous  glycerin  containing  30%  of  potassium 
carbonate  yields  alcohol  of  99'9%  purity. — H.  J.  E. 

Decomposition  of  citric  acid  by  bacteria. 
Kickinger.    See  XIXa. 

Vitamin  B.    Blohm  and  others.    See  XIXa 

Proteolytic  enzymes.     Pincussen.    See  XXIII. 

Patents. 

Lactic    acid;    Production    of    from    rotten 

potatoes.  Byk-Guldenwerke  Chem.  Fabr.  A.-G. 
G.P.  358,110,  18.12.19. 

Rotten  potatoes  are  washed  with  water,  and  the 
liquor,  after  agitation,  is  allowed  to  settle.      The 


Vol.  XLI.,  No.  23.] 


Cl.   XIXa.— FOODS. 


953  a 


upper  and  lower  portions  of  the  liquor,  containing 
respectively  light  and  heavy  impurities,  are  with- 
drawn, and  the  middle  layer  alone  is  employed  for 
the  production  of  starch  for  conversion  into  lactic 
acid  by  fermentation. — L.  A.  C. 

Fermentation     residues;     Process     for     utilising 
nitrogenous  material  in  — — .     Reichsausschuss 
fiir    pflanzliche    und    tierische    Oele    und    Fette 
G.m.b.H.    G.P.  358,118,  7.6.17. 
Residues,   e.g.,  vinasse  and  yeast,  obtained  after 
distilling    off    alcohol    produced    by    fermentation 
processes,    are    employed    together    with    material 
containing     carbohydrates     for     cultivating      fat- 
forming  fungi,  and,  after  separation  of  the  fat,  are 
again   fermented    with  yeast.     Yeast   residues  are 
autolysed    before   use   as    above.        Vinasses   from 
cellulose  waste  liquors  may  be  employed  either  alone 
or  mixed  with  material  containing  carbohydrates 
for  cultivating  the  fungi. — L.  A.  C. 


XIXa.-F00DS. 

Flours;  A  new  method  of  determining  and  identify- 
ing    in  bakery  products  and  foods  by  examin- 
ing the  crude  fibre.  A.  Fornet.  Chem.-Zeit., 
1922,  46,  969—970. 

The  degree  of  milling  and  the  value  of  flours  can  be 
judged  by  a  comparison  of  their  colours  with  those 
of  standard  samples  according  to  Pekar's  method, 
but  this  method  cannot  be  applied  to  bakery  or  food 
products  prepared  from  flours.  The  only  component 
of  flours  unchanged  by  the  baking  process  is  the 
crude  fibre,  which  can  be  isolated  and  compared  with 
standard  samples  under  the  microscope.  Samples  of 
crude  fibre  obtained  from  bakery  products  agree 
exceedingly  well  with  those  obtained  from  the 
original  flours,  and  it  is  possible  to  judge  from  their 
appearance  what  kind  of  flour  was  used  in  the 
preparation  of  a  given  food.  Photographs  are  6hown 
of  standard  samples  of  crude  fibre  from  94%,  85%, 
and  30%  wheat  flour,  isolated  from  the  flour  and 
bread  respectively.  The  method  can  be  extended  to 
the  examination  of  spice,  starch,  and  chocolate 
powders. — H.  C.  R. 

Citric  acid  of  cow's  mill; ;  Decomposition  of by 

some  bacteria.     H.  Kickinger.     Biochem.  Zeits., 
1922,  132,  210—219. 

The  citric  acid  content  of  milk  is  unchanged  when 
the  milk  is  boiled  or  pasteurised,  but  falls  off  on  long 
standing.  In  fractionally  sterilised  milk  the  citric 
acid  content  falls  during  the  first  day  but  remains 
constant  after  the  third  sterilisation.  This  is 
not  due  to  bacteria  forming  lactic  acid,  but  to 
peptonising  bacteria  (B.  subtilis,  Proteus  vulgaris). 

— H.  K. 

Organic  bases  of  the  flesh  of  swine.  Materials 
extracted  from  muscles.  XXI.  I.  A.  Smorodincev. 
Z.  physiol.  Chem.,  1922,  123,  116—129. 

Using  over  2  kg.  of  pig's  flesh,  the  following  approxi- 
mate figures  were  found  for  the  content  of  organic 
bases:  creatine,  0228%;  purines,  0086%;  carno- 
sine,  0'289%;  methylguanidine,  0-032%  ;  carnitine, 
0'032%.  As  compared  with  other  animals  investi- 
gated, the  flesh  of  the  pig  is  particularly  rich  in 
creatine  and  carnosine. — -W.  O.  K. 

Silage;     Determination     of    acids    in    .       W. 

Zielstorff  and  F.  Benirschke.     Chem.-Zeit.,  1922, 
46,  939. 

100  g.  of  the  finely  chopped  silage  is  boiled  with 
distilled  water  for  3  hrs.  under  a  reflux  condenser 
in  a  2-1.  flask  in  order  to  destroy  any  moulds,  and 
afterwards  made  up  to  the  mark.  100  c.c.  of  the 
filtrate,   after   filtering  through   a  cloth,   is  heated 


with  kieselguhr  for  a  few  minutes  under  a  reflux 
condenser  and  filtered  through  a  pleated  paper.  In 
most  cases  a  colourless  filtrate  is  obtained  and  is 
made  up  to  200  c.c.  and  an  aliquot  part  titrated 
boiling  with  iV/50  sodium  hydroxide  using  phenol- 
phthalein  as  indicator  to  obtain  the  total  acids.  If 
the  filtrate  is  dark  coloured  it  is  diluted  until  the 
colour  change  can  be  observed.  The  free  volatile 
acids  are  obtained  by  distilling  in  steam  until  a  drop 
of  the  distillate,  tested  with  Congo  red,  is  free  from 
acid.  The  combined  volatile  acids  are  sometimes 
not  completely  distilled  over  even  when  S00— 900  c.c. 
of  distillate  has  been  collected.  They  are  liberated 
equally  well  by  sulphuric  acid  and  'by  phosphoric 
acid. — H.  C.  R. 

Vitamin  A  from,  carrots;  Besearches  with H 

von  Euler.    Ark.  Kern.  Mill.  Geol.,  1922,  8,  [18], 

The  residue  of  the  benzene  extract  of  carrots  is  very 
effective  in  increasing  the  growth  of  mice  fed  on  a 
diet  lacking  vitamin  A.  A  mixture  of  the  phos- 
phatides, phytosterol,  and  daucosterol  from  carrots 
is  also  effective. — W.  O.  K. 

Vitamin  A;  Conditions  of  activity  of .     H   von 

Euler.  Ark.  Kem.  Min.  Geol.,  1922,  8,  [19], 
1—10.  >      ■    L     J, 

A  MixTiniE  of  the  dry  residues  from  the  benzene 
extracts  of  carrots  and  of  butter  is  more  efficient  as 
a  source  of  vitamin  A  than  either  residue  separately. 
The  efficiency  of  vitamin  A  is  increased  by  discon- 
tinuous additions  of  vitamin  B. — W.  0.  K. 

Vitamin  li ;  Physiological  researches  on  and 

water-soluble  biocatalysts.  G.  J.  Blohm,  C.  G. 
Santesson,  and  H.  von  Euler.  Ark.  Kem.  Min. 
Geol.,  1922,  8,  [13],  1—27. 

Various  preparations  from  yeast  and  malt  which 
accelerate  the  growth  of  yeast  lower  the  blood- 
pressure  if  injected  into  rabbits,  reduce  the  pulse 
rate,  and  also  affect  the  breathing.  However,  they 
are  only  very  slightly  less  active  after  inactivation 
as  biocatalysts  by  heating,  except  in  the  case  of 
specially  pure  preparations,  where  the  difference  is 
more  marked. — W.  O.  K. 

Humidity  equilibria.     Wilson  and  Fuwa.     See  I. 

Measurement  of  low  temperatures.  Darling.  See 
XXIII. 

Thermometric  lag.  Griffiths  and  Awberv.  See 
XXIII. 

Proteolytic  enzymes.     Pincussen.     See  XXIII. 

Patents. 

Fruit  juices,  conserves  or  other  products  [sugar'] 
from  fruits,  vegetables,  and  the  like ;  Manufacture 
of  — .  Plauson's  (Parent  Co.),  Ltd.  From  H. 
Plauson.     E.P.  186,756,  30.7.22. 

Fruits  and  vegetables,  in  the  presence  of  either 
natural  or  added  water  are  passed  through  a  colloid 
mill  (E.P.  155,836;  J.,  1922,  357  a).  By  varying  the 
concentration,  the  degree  of  dispersion,  and  the  pre- 
cipitating agent  it  is  possible  to  favour  selectively 
the  retention  or  removal  of  desired  substances. 
Afterwards  the  purified  solution  can  be  concen- 
trated, preserved,  or  dried  by  suitable  processes.  It 
is  claimed  that  with  this  treatment  a  maturing  or 
ripening  is  effected,  due  to  the  high  degree  of  disper- 
sion causing  chemical  reactions  between  the  various 
constituents  of  the  fruit,  and  that  the  aroma  of  the 
juices  is  uninjured  and  sometimes  even  improved. 
The  specification  gives  examples  of  the  application 
of  this  process  in  the  production  of  a  clear  wine  from 
grapes,  cider  free  from  alcohol,  apple  conserve  or 
apple  butter  from  apples,  a  practically  quantitative 


954  a  Cl.  XIXb.— WATER  PURIFICATION,  &c.     Cl.  XX.— ORGANIC  PRODUCTS,  &c.  [Dec.  15, 1922. 


yield  of  sugar  from  beetroot,  and  a  valuable  cocoa 
powder  free  from  the  valueless  cellulose  and  lignin 
substances  from  the  cacao  bean. — S.  G.  U. 

Desiccator  [for  milk  powder}.  W.  O.  Rew,  Assr.  to 
California  Central  Creameries.  U.S. P.  1,392,656, 
4.10.21.  Appl.,  17.4.18. 
The  apparatus  comprises  a  helical  pipe  built  up  of 
short  cylindrical  sections  connected  together  so  that 
sharp  edges  are  formed  inside  the  pipe  at  the 
joints.  Sticky  particles  of  partially  dried  milk  from 
a  desiccator  of  the  usual  type  are  fed  into  the 
helical  pipe  and  are  circulated  therein,  together 
with  hot  air  drawn  in  through  a  separate  inlet,  by 
means  of  a  centrifugal  fan.  The  milk  particles  are 
dried  by  the  hot  air  and  are  pulverised  by  repeated 
contact  with  the  sharp  edges  of  the  joints  of  the 
pipe.  The  outlet  opening  is  in  the  inner  wall  of  the 
helix,  and  particles  not  sufficiently  finely  ground 
are  driven  by  the  centrifugal  force  towards  the 
outer  wall  and  past  the  outlet,  through  which  finely 
ground  milk  powder  is  discharged. 

Vegetable    material,     especially    green,    foodstuffs; 

Process  for  preserving  .     R.  Aurich.     G.P. 

357,409,  28.10.20. 

Vegetable  material  is  subjected  to  the  action  of  an 
electric  current  while  maintained  under  a  high  and 
gradually  increasing  pressure,  whereby  the  mois- 
ture is  distributed  uniformly  throughout  the  mass, 
and  the  electrical  conductivity  of  the  material  is 
increased. — L.  A.  C. 

Food     for    animals;     Manufacture     of     a     . 

American  Cotton  Oil  Co.,  Assees.  of  C.  O.  Phillips. 
E.P.    178,073,    7.2.22.     Conv.,   5.4.21. 

See  U.S. P.  1,410,345  of  1922;    J.,  1922,  343  a. 

Pectous  material  and  process  of  making  the  same. 
P.  G.  Beylik,  Assr.  to  N.  W.  Schwartzlose. 
U.S. P.  1,393,660,  11.10.21.    Appl.,  23.9.20. 

See  E.P.  184,081  of  1921;    J.,  1922,  781  a. 

Casein-oil  composition  atid  process  of  making  same. 
H.  V.  Dunham,  Assr  to  Drv  Oil  Products,  Ltd. 
U.S. P.  1,431,937,  17.10.22.  Appl.,  20.9.19. 
Renewed  4.3.22. 

See  E.P.  169,276  of  1920;    J.,  1921,  787  a. 

Pulverulent  shortening  agent  and  process  of 
making  same.  H.  V.  Dunham,  Assr.  to  Dry  Oil 
Products  Co.,  Ltd.  U.S. P.  1.431,938,  17.10.22. 
Appl.,  27.10.19.    Renewed  4.3.22. 

See  E.P.  169,493  of  1920;    J.,  1921,  867  a 

Odourless  and  colourless  oil  and  flour;    Process  of 

preparing from  [soya]  bean.    Y.  yamamoto, 

Assr.    to    I.    Mizusawa    and    T.    Kano.      U.S. P. 
1,433,168,  24.10.22.     Appl.,  26.11.19. 

See  E.P.  179,776  of  1921 ;  J.,  1922,  509  a. 

Nutritious  fats.     E.P.  160,840.     See  XII. 

Fat  resembling  butter.     G.P.  357,877.     See  XII. 


XIXb.-  WATER   PURIFICATION ; 
SANITATION. 

Solubility  of  calcium  carbonate.    Osaka.    See  VII. 

Fumes  from  chlorate  explosives.     Kast  ant1  Haid. 
See  XXli. 

Analysis  by  measuring  degree  of  supersaturation. 
Hbppler.     See  XXIII. 


Patents. 

Feed-icater  for  boilers;  Process  of  and  device  for 
separating  air  and  gases  from  liquids,  particularly 

.  C.  Hiilsmeyer.  E.P.  157,790, 10.1.21.  Conv., 

11.10.15.     Addn.  to  157,789. 

The  treatment  with  metal  turnings  or  shavings  or 
fibrous  material  described  in  the  previous  patent 
(cf.  G.P.  288,158;  J.,  1916,  435)  is  carried  out  in  a 
tank  interposed  in  the  suction  conduit  of  the  device 
(pump,  injector,  pulsometer)  for  feeding  the  boiler 
or  the  like. 

Sludge;  Process  of  withdrawing  from  septic 

tanks.     K.  Imhoff  and  H.  Blunk.     G.P.  358,106, 
18.11.21. 

Before  sludge  is  withdrawn  from  a  septic  tank,  it 
is  stored  for  a  time  in  a  heated  compartment  of  the 
chamber  under  water.  Admixture  of  the  sludge 
with  fresh  sludge  is  thereby  prevented,  and  putre- 
faction is  complete  before  the  sludge  is  blown  out 
of  the  chamber,  e.g.,  by  means  of  the  gases  liberated 
therein. — L.  A.  C. 

Lead  arsenate  [insecticides];  Manufacture  of 

R.    E.   Wilson,   Assr.   to   Pittsburgh   Plate   Glass 
Co.     U.S.P.  1,393,474,  11.10.21.     Appl.,  1.3.19. 

Lead  arsenate  precipitated  from  a  solution  to  which 
a  small  quantity  of  chemically  inert  organic  colloid, 
e.g.,  0"02 — 0'5%  of  glue,  has  been  added,  will 
remain  suspended  in  water  for  a  very  much  longer 
period  than  ordinary  lead  arsenate.  Alternatively, 
precipitated  lead  arsenate  may  be  treated  with  a.. 
solution  or  emulsion  of  the  colloid. 


— ■.     J.  D.  Riedel 
Addn.  to  301,686 


Arsenical  spray ;  Production  of  ■ 
A.-G.      Gr.P.  357,874,  7.6.19. 
(J.,  1922,  726  a). 

Metals  such  as  magnesium,  or  mixtures  of,  e.g., 
zinc  and  sulphur  or  ferrosilicon  and  barium  per- 
oxide, are  used  instead  of  aluminium  for  volatilising 
arsenic  in  the  process  described  in  the  chief  patent. 
The  arsenic  compounds  may  be  separated  from  the 
heating  mixture  by  a  covering  of  alumina  or  metal. 

— L.  a.  c 

Feed  water  for  boilers;  Process  of  and  device  for 
separating  air  and  gases  from  liquids,  particularly 

.      C.    Hiilsmever.      E.P.    157,789,    10.1.21. 

Conv.,  11.11.13. 

See  G.P.  288,158  of  1913;  J.,  1916,  435. 
Purifying  liquids.     U.S.P.  1,431,245.     See  XI. 
Tannery  waste  liquor.     G.P.  358,105.     See  XV. 


XX— ORGANIC  PRODUCTS;   MEDICINAL 
SUBSTANCES;   ESSENTIAL  OILS. 

Strychnos  alkaloids.  XXXIV.  Preparation  of  iso- 
stri/chnine.  H.  Leuchs  and  R.  Nitschke.  Ber., 
1922,  55,  3171—3174. 

Isostrychnine,  C:!,H.!.,0,N.!,3H.,0  (cf.  Pictet  and 
Bacovescu,  J.,  1905,  1123),  is  conveniently  obtained 
by  the  action  of  methvl  alcoholic  ammonia  on 
strvchnine  at  140°— 160°  C.  It  has  m.p.  223°— 
224°  C,  [>].>= +24T°  to  +  25T°  in  alcohol,  -3947° 
to  -41'9°  in  glacial  acetic  acid.  It  dissolves  in  water 
at  100°  C.  to  the  extent  of  1  in  130—140  parts.  It 
gives  a  well-crystallised  methiodide,  colourless 
leaflets,  m.p.  about  223°  C.  (decomp.)  after  soften- 
ing at  215°  C,  but  its  other  derivatives  are  generally 
ill-defined.     (Cf.  J.C.S.,  Dec.)— H.  W. 

Alkaloids  of  the  Colombo  roots;  Constitution  of  the 

.     E.  Spath  and  K.  Bohm.     Ber.,  1922,  55, 

2985—2995. 

Colombamine  and  jatrorrhizine  have  been  isolated 


VoL  XLI.,  No.  23.]        Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


955  a 


from  the  Colombo  root  according  to  the  methods  of 
Giinzel  (J.,  1906,  906)  and  Feist  (J.,  1907,  1159), 
but  doubts  are  expressed  as  to  the  homogeneity  of 
the  fractions  which  are  soluble  in  '  potassium 
carbonate  and  potassium  hydroxide  respectively. 
Complete  methylation  of  the  fractions  gives  iden- 
tical completely  methylated  ethers,  which  on  re- 
duction yield  the  same  hydro-derivative,  the  pro- 
perties of  which  are  in  complete  harmony  with 
those  of  the  compounds  described  by  Feist.  Some- 
what unexpectedly  it  is  found  that  the  methyl 
ether  and  its  tetrahydro-derivative  are  identical 
with  palmatine  (see  annexed  formula) 

'  I     II     In 

CH30\/\/\ 


k 


f\ocn3 

IJI.OCH, 

and  tetrahydropalmatine,  the  constitution  of  which 
has  been  established  by  Spath  and  Lang  (J.,  1922, 
117  a).  The  relationships  of  the  various  alkaloids 
of  the  Colombo  root  appear  therefore  to  he  simpler 
than  was  expected.  There  are  present,  in  addition 
to  the  completely  methylated  palmatine,  phenolic 
bases  in  which  probably  one  or  more  of  the  methoxy 
groups  of  palmatine  are  replaced  by  hydroxy 
groups  or  by  phenolic  oxygen  united  to  a  complex 
capable  of  being  readily  eliminated.  (Cf.  J.C.S., 
Dec.)— H.  W. 

Greasewood  (Sarcobatus  vermiculatus);  Toxic  con- 
stituent of .    J.  F.  Couch.    Amer.  J.  Pharm., 

1922,  94,  631—641. 

The  common  greasewood  of  the  mountain  States, 
collected  in  Utah,  was  investigated  for  toxic  con- 
stituents. Toxic  alkaloids,  glucosides,  and  saponins 
were  not  found  in  any  of  the  extracts  of  the  plant, 
and  tests  for  hydrocyanic  acid  or  its  compounds 
were  all  negative.  Large  quantities  of  potassium 
and  sodium  oxalates  were  found,  total  oxalate 
calculated  as  anhydrous  oxalic  acid  amounting  to 
11"54%  of  the  weight  of  the  dried  plant.  These 
compounds  are  responsible  for  the  cases  of  poisoning 
which  have  occurred  amongst  sheep  that  had  been 
grazing  on  the  plant. — G.  F.  M. 

Rhinanthin  and  aucubin:  rhinanthin  is  impure 
aucubin.  M.  Bridel  and  M.  Braecke.  Comptes 
rend.,  1922,  175,  640—643. 

The  substance  obtained  in  1870  by  Ludwig  from 
6eed  of  Rhinanthus  Crista-galli  and  known  as 
"  rhinanthin  "  is  not  a  pure  product  but  a  mixture 
of  sucrose  and  aucubin  in  different  proportions 
according  to  its  origin.  The  name  "  rhinanthin  " 
therefore  does  not  designate  a  well-defined  substance 
and  should  no  longer  be  used. — H.  J.  E. 

Saponins.  VIII.  Saponins  from  the  haves  of 
Aralia  montana,  Bl.  (Galacturonoid  saponins  and 
their  magnesium  and  calcium  salts).  A.  W. 
van  der  Haar.     Ber.,  1922,  55,  3041—3069. 

The  powdered  leaves  and  stems  of  Aralia  montana, 
Bl.  contain  about  1*6%  of  saponins,  which  are 
members  of  at  least  three  groups.  Free  saponins 
are  present  in  addition  to  their  calcium  and  mag- 
nesium salts;  these  are  precipitated  by  basic  but  not 
by  normal  lead  acetate.  The  amount  of  saponins 
appears  to  be  variable.  In  the  isolation  of  the 
saponins  it  is  necessary  that  the  extraction  with 
methyl  alcohol  (95%)  should  be  followed  by  treat- 
ment with  ethyl  alcohol  (45%),  since  otherwise  the 
salts  of  the  saponins  remain  undissolved.  The 
saponins  are  poisonous  to  fishes  and  exhibit 
haemolytic  action ;  the  magnesium  salt  is  about  three 
times  as  potent  as  the  free  saponin.  Proximate 
analyses    and     quantitative    hydrolysis    show     the 


saponin  to  contain:  water,  4-8;  ash,  18;  d- 
galacturonic  acid,  18;  Z-arabinose,  13-3;  methvl- 
pentoses,  2,1;  <i-glucose,  16-15;  (f-galactose,  2; 
sapqgenin,  50%.  Analysis  of  the  magnesium  and 
calcium  salts  of  the  saponin  gives  water,  72 ;  ash,  5'3 ; 
rf-galacturonic  acid,  7-39;  arabinose,  8'64;  methyl- 
pentose,  6"24;  d-glucose,  5-6;  d-galactose,  3;  sapo- 
genins,  31*2%.  Other  saccharides  or  acids  are  not 
present.  The  crude  mixture  of  sapogenins  readily 
yields  araligenin,  C25H40(OH).CO2H,  which  sepa- 
rates from  ethyl  alcohol  with  varying  amounts  of 
solvent  of  crystallisation,  causing  the  melting  point 
of  the  product  to  vary.  A  uniform  material,  having 
[■«]d  =  -(-710  in  a  mixture  of  alcohol  and  pyridine, 
is  obtained  when  the  crystals  are  heated  at  150°  C. 
Distillation  of  araligenin  with  zinc  dust  in  an 
atmosphere  of  hydrogen  gives  carbon  dioxide,  water 
and  a  mixture  of  terpene  hydrocarbons  which  is 
separable  by  distillation  with  steam  into  a  volatile 
and  a  non-volatile  fraction;  the  reaction  may  be 
represented  bv  the  scheme: 

C,5H<„(bH).C0,H  =  (C5Ha)s+C0,-!-H20. 
(Cf.,  J.C.S.,  Dec.)— H.  W. 

Phytosterols  of  ragweed  pollen.     F.  TV.  Heyl.     J. 
Amer.  Chem.  Soc.,  1922,  44,  2283—2286. 

The  unsaponifiable  fraction  of  the  ether  extract  of 
ragweed  pollen  contains  a  new  phytosterol,  ambro- 
sterol,  C,0rl34O,H2O,  m.p.  147°— 149°  C,  a  phyto- 
sterol, C2;H460,  m.p.  147-5°— 148°  C,  considerable 
amounts  of  a  more  highly  oxygenated  substance, 
probably  an  oxyphytosterol,  traces  of  a  hydrocarbon, 
and  appreciable  quantities  of  the  higher  homologues 
of  the  methyl  alcohol  series,  of  which  cetyl  and 
octadecyl  alcohols  were  identified. — W.  G. 

Xanthosterol;  Identity  of  with  lupeol.     A.  J. 

Ultee.     Bull.  Jardin  Botan.  Buitenzorg,  1922,  4, 
315—316.     Chem.  Zentr.,  1922,  93,  III.,  1050. 

The  identitv  of  lupeol  (Cohen,  Arch.  Pharm.,  1907, 
245,  236)  with  xanthosterol  (Dieterle,  J.,  1920,  81  a) 
has  been  demonstrated  by  chemical  and  physical 
tests  with  the  substances  themselves  and  with  their 
acetyl  and  benzoyl  derivatives.  The  new  phytosterol 
described  by  Oestling  (Ber.  deuts.  Pharm.  Ges., 
1914,  24,  308)  is  also  probably  identical  with  lupeol. 

— D.  F.  T. 

Toxins  and  antitoxins;   Chemical   nature   of  . 

E.  Salkowski.     Biochem.  Zeits.,  1922,  132,  84—88. 

The  author  records  some  unpublished  experiments 
made  in  1896  on  the  preparation  of  diphtheria  anti- 
toxin free  from  protein.  The  diphtheria  antitoxin 
serum  was  saturated  with  sodium  chloride,  treated 
with  two  volumes  of  saturated  sodium  chloride 
solution,  and  trichloroacetic  acid  added  so  long  as 
a  precipitate  was  formed.  The  protein  precipitate 
carries  the  antitoxin  down  with  it.  The  product  is 
filtered  off  and  triturated  with  water,  which  dis- 
solves the  antitoxin.  The  solution  is  free  or  practi- 
cally free  from  protein.  The  same  process  was  used 
by  Blumenthal  (Z.  klin.  Med.,  1S96,  30)  for  preparing 
protein-free  toxin  from  the  spinal  marrow  of  a  case 
of  tetanus. — H.  K. 

Thyroid;  Xew  constituent  of  the .    U.  Sammar- 

tino.  Biochem.-Zeits.,  1922,  132,  293—294. 
Fresh  thyroids  (400  g.)  were  extracted  with  hot 
dilute  acetic  acid,  the  solution  concentrated  and 
precipitated  with  basic  lead  acetate.  The  filtrate, 
freed  from  lead,  was  concentrated  and  precipitated 
with  alcohol.  The  filtrate,  on  fractional  crystallisa- 
tion with  picric  acid,  gave  potassium  picrate,  then 
a  red  picrate  which  did  not  melt  at  300°,  and  a 
picrate  of  m.p.  255° — 295°  C.  After  removal  of 
picric  acid  from  the  mother  liquors  addition  of 
alcohol  precipitated  a  crystalline  substance,  m.p. 
225° — 228°  C,  containing  calcium,  carbon,  nitrogen, 
and  a  high  percentage  of  oxygen. — H.  K. 


956  a 


01.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  Ao. 


[Dec.  15,  1922. 


Melanin;  Formation  of  from  organic  sub- 
stances. O.  Adler  and  W.  Wicchowski.  Ber., 
1922,  55,  3030—3038. 

The  ability  of  a  very  large  number  of  organic  sub- 
stances to  form  melanin  acids  has  been  examined 
by  dissolving  or  suspending  the  substance  (O'l — 0'2 
g.)  in  water  (10 — 12  c.c.)  and  adding  3 — 4  drops  of 
jV/1  ferric  chloride  solution.  The  solution  is  divided 
into  two  parts,  one  of  which  serves  as  a  control. 
Hydrogen  peroxide  (3%,  0"2 — 0'5  c.c.)  is  added  to 
the  other  portion.  If  the  substance  is  capable  of 
producing  melanin  acids,  a  dark,  sometimes  almost 
black,  coloration  is  developed  after  short  heating  or 
sometimes  even  at  the  atmospheric  temperature. 
Protracted  heating  is  to  be  avoided  as  the  melanin 
acids  are  readily  oxidised  further  to  colourless  sub- 
stances. The  dark  mixture  is  subsequently  rendered 
alkaline  with  sodium  hydroxide,  when  the  melanin 
acid  dissolves  or  remains  dissolved  as  the  case  may 
be.  The  test  itself  must  be  performed  in  neutral  or 
faintly  acid  solution.  Under  the  prescribed  condi- 
tions melanin  acids  are  produced  only  from  cyclic 
substances.  Compounds  belonging  to  the  terpene, 
triphenylmethane,  phenanthrene,  anthracene,  and 
pyridine  series  exhibit  little  or  no  tendency  towards 
the  formation  of  melanin  acids.  Very  marked 
ability  is  shown  by  the  aniline  group,  phenylhydr- 
aaine  and  its  substituted  derivatives,  phenols,  quin- 
one,  aromatic  monoaldehydes  and  ketones,  aromatic 
monocarboxylic,  and  phenolmonocarboxylic  acids, 
and  aromatic  amino-acids.  A  positive  reaction  is 
given  by  p-diphenol,  benzidine,  and  tolidine,  but 
scarcely  by  dianisidine.  The  naphthols  and  naphthyl- 
amines  give  melanin  acids,  whereas  naphthalene 
itself  does  not.  Among  heterocyclic  compounds, 
thiophenic  acid,  pyrrole,  eoumarone,  indole,  and 
tryptophan  give  melanin  acids.  Quinoline  hydro- 
chloride and  the  hydroxyquino'lines  give  a  faintly 
and  strongly  positive  action  respectively.  Positive 
results  are  also  given  by  isoquinoline,  acridine,  and 
compounds  of  the  trophic,  cinchonine,  and  morphine 
groups.  The  entrance  of  halogen  or  the  arsinic  resi- 
due into  the  aromatic  nucleus  diminishes  or  destroys 
the  tendency  towards  the  formation  of  melanin 
acids,  whereas  the  sulphonic  and  nitio  groups  have 
no  restrictive  action.  The  production  of  melanin 
acids  is  facilitated  by  the  presence  of  amino  groups 
but  impeded  by  the  'introduction  of  methyl  groups. 
Positive  results  are  obtained  with  the  methyl  or 
ethyl  esters  or  methyl  ethers  of  substances  which 
themselves  give  the  melanin  reaction,  whereas  a 
negative  result  is  produced  if  a  cyclic  group  is  in- 
volved in  the  formation  of  the  ester  or  ether  or  if  an 
inorganic  component  is  present. — H.  W. 

Arsphenamine  \_salvarsan~] ;  Sulphur  content  of- 

and  its  relation  to  the  mode  of  synthesis  and 
toxicity.  III.  W.  G.  Christiansen.  J.  Amer. 
Chem.  Soc.,  1922,  44,  2334—2342. 
In  reducing  3-nitro-4-hydroxyphenylarsonic  acid, 
C„H,(N02)(OH)As03H:!,  to  salvarsan  the  formation 
of  relatively  toxic  products  with  a  high  sulphur 
content  is  not  due  to  impurities  in  commercial 
sodium  hydrosulphite.  The  salvarsan  base  is  fairly 
uniform  in  regard  to  toxicity  and  sulphur  content 
irrespective  of  the  period  of  formation  during  the 
reduction.  Aminohydroxyarseno  compounds  in 
general  contain  the  fewest  sulphur  atoms  when  pre- 
pared from  the  amino-acids.  The  hydroxyl  hydro- 
gen atom  ortho  to  the  nitro  group  seems  to  play  an 
important  part  in  the  formation  of  arseno  com- 
pounds of  the  type  under  consideration,  and  fixation 
of  the  hydroxyl  hydrogen  atom  in  the  nitrohydroxy- 
arsonic  acids  tends  to  make  the  hydrosulphite  reduc- 
tion abnormal,  and  the  products,  when  they  can  be 
isolated,  contain  more  sulphur  than  analogous  sub- 
stances prepared  without  fixation  of  this  hydrogen 
atom.  A  number  of  new  arsonic  acids  are  described. 
(C/.  J.C.S.,  Dec.)— W.  G. 


Botanical  chemical  notes.     E.    0.    von  Lippmann. 

Ber.,  1922,  55,  3038—3041. 
During  an  exceptionally  warm  summer  drops  of 
nectar  fell  from  the  garden  foxglove ;  these  solidified 
readily  and  contained  large  quantities  of  sucrose. 
Trehalose  has  been  isolated  from  a  sample  of  mater- 
ial similar  to  ergot,  found  on  wild  oats  grown  near 
Kessingen  (cf.  Tanret,  J.,  1922,  345  a).  An  exuda- 
tion from  the  stems  of  a  quince  tree  which  had  been 
damaged  by  smoke  and  was  nearly  dead  consisted 
of  a  viscous  white  gum  which  was  very  rapidly  and 
almost  completely  hydrolysed  by  dilute  acid  to 
i-galactose.  Malic,  citric,  tartaric,  and  succinic 
acids  have  been  isolated  from  the  berries  of  the 
mountain  ash ;  the  nature  and  relative  amounts  of 
the  acids  appear  to  depend  on  the  ripeness  of  the 
berry  and  the  particular  variety. — H.  W. 

Guanidine  formation  in  fused  mixtures  of  dicyano- 
diamide   and    ammonium    salts;      Mechanism   of 

■ .     J.  S.  Blair  and  J.  M.  Braham.     J.  Amer. 

Chem.  Soc.,  1922,  44,  2342—2352. 
When  dicyanodiamide  (H,CN,),,  is  fused  with 
ammonium  thiocyanate  the  amount  of  diguanide 
thiocyanate,  H2NC(:NH)NHC(:NrT)NKL,HCNS, 
in  the  fused  mass  increases  at  first  with  the  time  of 
fusion  and  then  reaches  a  maximum  and  slowly 
diminishes.  On  the  other  hand  guanidine  thio- 
cyanate H2NC(:NH)NH3,HCNS,  does  not  make  its 
appearance  until  the  diguanide  thiocyanate  has 
nearly  reached  its  maximum  concentration.  Further 
when"  diguanide  nitrate  is  fused  with  ammonium 
nitrate  the  greater  part  of  it  is  converted  into 
guanidine  nitrate.  These  results  support  the  view 
as  to  the  cyanoguanidine  structure  for  dicyanodi- 
amide, H2NC(:NH)NHCN,  and  also  for  the  forma- 
tion of  the  diguanide  salt  as  a  necessary  inter- 
mediate compound  in  the  formation  of  guanidine 
salts  from  dicyanodiamide  by  fusion  with  an 
ammonium  salt. — W.  G. 

Cyclohcxanol;   Preparation   of  .     A.    Brochet. 

Comptes  rend.,  1922,  175,  583—585. 
The  preparation  of  cyclohexanol  by  hydrogenation 
of  phenol  in  presence  of  nickel  must  be  carried  out 
under  pressure,  with  constant  shaking.  The 
theoretical  vield  is  obtained  by  working  at  tempera- 
tures between  100°  and  150°  C.  under  a  pressure  of 
10 — 15  atm.  The  product  is  filtered  to  remove 
nickel  and  washed  first  with  dilute  caustic  soda, 
then  with  water.  It  may  be  distilled  without  pre- 
liminary dehydration ;  water  comes  over  first  with 
onlv  a  little  hexanol.  and  almost  the  whole  of  the 
latter  then  distils  at  160°— 161°  C.  The  activity  of 
the  catalyst  diminishes  with  repeated  use  and  it  is 
preferable  to  use  a  considerable  quantity  to  avoid 
constant  renewal. — H.  J.  E. 

Tartaric  acid;  Neutralisation  of ,  by  potash  in 

presence  of  alkaline-earth  chlorides.  L.  J.  Simon 
and  L.  Zivy.  Comptes  rend.,  1922,  175,  620—622. 
A  mixture  of  tartaric  acid  and  a  strong  acid  may 
be  estimated  by  two  titrations  with  standard  alkali 
using  phenolphthalein  for  one  determination  and 
methyl  orange  for  the  other.  The  former  gives  an 
end-point  when  the  normal  tartrate  is  formed,  the 
latter  on  formation  of  the  acid  tartrate.  Chlorides 
of  alkaline-earth  metals  interfere  with  the  estima- 
tion when  methyl  orange  is  used  but  not  with 
phenolphthalein.  In  the  case  of  excess  of  calcium 
chloride,  each  molecule  of  tartaric  acid  behaves  as 
if  it  were  replaced  by  two  molecules  of  hydrochloric 
acid;  when  the  chloride  is  less  than  equivalent  to 
the  tartaric  acid  each  molecule  acts  quantitatively. 

■ — H.  J.  E. 

Isopropyl  alcohol;  Oxidation  of with  potassium 

permanganate.  W.  L.  Evans  and  L.  B.  feefton. 
J.  Amer.  Chem.  Soc.,  1922,  44,  2271-22/6. 

In  the  presence  of  potassium  hydroxide  isopropyl 


ToLXIX.Ko.28.]       Cl.  XX.— ORGANIC  PRODUCTS;    MEDICINAL  SUBSTANCES,  Ac. 


957  a 


alcohol  is  oxidised  by  potassium  permanganate  to 
give  carbon  dioxide,  and  oxalic  and  acetic  acids. 
No  acetone  is  obtained  unless  the  temperature  does 
not  exceed  25°  C.  and  the  concentration  of  the  alkali 
212  g.  per  litre.  The  amounts  of  oxalic  and  acetic 
acids  produced  increase  and  decrease  respectively  as 
the  initial  concentration  of  the  alkali  increases  from 
zero  to  01 — 02  N.  The  general  effect  of  rise  in 
temperature  is  to  increase  the  amount  of  carbon 
oxidised  to  carbon  dioxide  to  slightly  more  than  one 
atom  per  molecule  of  alcohol. — W.  G. 

Acetone;  Oxidation  of with  potassium  perman- 
ganate. W.  L.  Evans  and  L.  B.  Sefton.  J.  Amer. 
Cliem.  Soc.,  1922,  44,  2276—2283.     (07.  supra.) 

By  the  oxidation  of  acetone  with  potassium  perman- 
ganate in  neutral  or  alkaline  solution  at  25°,  50°, 
or  75°  C,  the  sole  products  are  oxalic  and  acetic 
acids  and  carbon  dioxide.  The  yield  of  oxalic  acid 
increases  with  rise  in  temperature  and  the  concen- 
tration of  the  alkali,  while  that  of  acetic  acid 
diminishes  with  decrease  in  temperature  and  with 
rise  in  the  concentration  of  the  alkali.  The  pro- 
duction of  carbon  dioxide  increases  with  rise  in 
temperature. — W.  G. 

Amines;  Decomposition  of in  the  vapour  stage. 

F.  W.  Upson  and  L.  Sands.  J.  Amer.  Chem.  Soc., 
1922,  44,  2306—2310. 

When  ethylamine  vapour  is  passed  over  kaolin  at 
700°  C.  the  chief  products  are  ammonia,  hydrogen 
cyanide,  and  a  substance  which  is  probably  acetoni- 
trile,  together  with  smaller  quantities  of  hydrogen 
and  nitrogen.  At  500°  C.  no  hydrogen  cyanide  is 
produced,  a  larger  amount  of  ammonia  is  formed, 
and  the  gaseous  products  contain  relatively  large 
amounts  of  unsaturated  hydrocarbons.  At  1000°  C. 
the  nitrogen  appears  exclusively  as  free  nitrogen 
and  much  of  the  hydrogen  as  free  hydrogen.  The 
hydrocarbons  are  almost  entirely  saturated  and  to 
a  large  extent  consist  of  butane.  The  decomposition 
of  propylamine  under  similar  conditions  at  700°  C. 
proceeds  in  a  similar  manner  to  that  of  ethylamine. 

— W.  G. 

Ethylene;   Absorption  of  by  sulphuric   acid. 

Production  of  ethyl  alcohol,  diethyl  sulphate,  and 
liquid  hydrocarbons.  A.  Damiens.  Comptes 
rend.,  1922,  175,  585—588. 

Absorption  of  ethylene  by  sulphuric  acid  in  presence 
of  cuprous  sulphate  gives  lise  to  diethyl  sulphate, 
ethylsulphuric  acid,  and  a  mixture  of  saturated 
hydrocarbons  of  the  nature  of  petrol,  the  products 
depending  on  the  conditions.  In  both  cases  the 
first  stage  of  the  reaction,  formation  of  the  complex 
CUjSO^nCjH,,  is  identical,  but  the  decomposition 
of  the  complex  may  take  place  in  two  directions. 
Absorption  in  the  cold  with  1 — 5%  of  catalyst 
present  results  in  an  almost  theoretical  yield  of 
ethylsulphuric  acid,  but  if  the  acid  is  below  97% 
concentration,  diethyl  sulphate  is  formed  in 
addition.  If  the  catalyst  is  heated  with  the  acid 
and  the  ethylene  subsequently  absorbed  cold  in 
presence  of  mercury  or  mercurous  sulphate,  a 
mixture  of  hydrocarbons  of  sp.  gr.  0'77  and  b.p. 
110°  C.  and  upwards  is  obtained. — H.  J.  E. 

Nitro-compounds;  Detection  of .     H.  J.  Prins. 

Perf.  Essent.  Oil  Rec.,  1922,  13,  355. 

The  accelerating  effect  of  nitrobenzene  on  the  re- 

B  action  velocity  of  metals  with  weak  acids  is  applied 
to  the  detection  of  this  substance  in  benzaldehyde. 
The  reaction  is  not  exclusively  specific  for  nitro- 
compounds, as  organic  peroxides  have  the  same 
property,  but  only  oils  rich  in  terpenes  which 
contain  peroxides  through  exposure  to  air  6how  the 
reaction,  and  then  only  feebly.  Wormseed  oil 
contains  the  peroxide,  caridol,  which  shows  the  re- 
action in  a  marked  degree,  but  this  can  hardly  give 


rise  to  confusion,  as  5%  of  nitrobenzene  in  benz- 
aldehyde reacts  more  rapidly  then  pure  wormseed 
oil.  Benzaldehyde  peroxide  does  not  show  the  nitro- 
benzene reaction  at  all.  The  reaction  is  carried  out 
as  follows  :  A  solution  of  2  c.c.  of  the  oil  in  6  c.c. 
of  80%  acetic  acid  is  heated  for  1  ruin,  with  a  small 
piece  of  tinfoil.  In  presence  of  5%  of  nitro- 
benzene the  tin  disappears  immediately  on  boiling, 
with  1%  the  tin  turns  dark  and  disappears  about 
10  mins.  after  the  mixture  is  heated,  with  0T%  the 
tin  turns  black  after  about  10  mins.,  with  0'01% 
the  tin  becomes  grey  black  after  standing  over 
night,  and  with  pure  benzaldehyde  the  tin  retains 
its  bright  surface.  In  a  similar  manner  the 
presence  of  01%  of  artificial  musk  in  perfumes  can 
be  detected.— G.  F.  M. 

Nitrobenzene  (mirbane  oil);  Detection  of  [in 

benzaldehyde].     A.   Reclaire.     Perf.   Essent.   Oil 
Rec,  1922,  13,  356. 

The  pink  to  red  coloration  with  a  very  dilute  alco- 
holic solution  of  caustic  soda  described  by  Pickering 
(Chem.  Trade  J.,  1922,  70,  144)  as  characteristic  of 
nitrobenzene  is  not  a  reaction  of  this  substance  at 
all,  but  of  dinitrothiophene,  which  is  often  present 
in  commercial  nitrobenzene.  The  detection  of 
nitrobenzene  by  its  odour  after  dissolving  the  benz- 
aldehyde as  its  bisulphite  compound  is  possible,  but 
a  determination  by  this  method  is  only  fairly 
correct  if  10%  or  more  is  present  in  the  aldehyde, 
as  nitrobenzene  dissolves  in  aqueous  aldehyde 
bisulphite  solution  to  a  certain  extent,  and  if  less 
than  5%  is  present  it  does  not  appear  as  a  second 
layer  at  all.  The  method  of  Pinoff  (Pharm. 
Zentralh.,  1921,  62,  610)  depending  on  the  formation 
by  formaldehyde-ammonia  of  an  emulsion  with 
benzaldehyde  but  not  with  nitrobenzene,  does  not 
appear  satisfactory,  as  no  difference  could  be 
observed  with  mixtures  containing  1 — 10%  of 
nitrobenzene. — G.  F.  M. 

Abie  tic  acid.    A.  Madinaveitia.     Anal.  Fis.  Quim., 
1922,  20,  185—189. 

Analyses  of  abietic  acid  were  in  agreement  with 
the  formula  C19H2s02  (c/.  Sureda  Blanes,  J.,  1915, 
878).  The  results  of  the  hydrogenation  of  the 
ethylenic  linkages  by  Willstatter's  method  indicate 
that  the  carboxyl  group  is  attached  to  a  tertiary 
carbon  atom,  and  since  the  nucleus  of  the  molecule 
must  be  retene,  which  is  formed  by  the  catalytic 
dehydrogenation  of  abietene,  the  following  formula 
for  abietic  acid  is  suggested : 


(CHS),CH.C-  CH2  -CH.CH:CH.CH.CH2.CH(CH3k 


CH.CHij.CH- 


-C(C02H) CH2 


/ 


CH2 


— G.  W.  R. 

d-Camphor;   Catalytic   reduction   of  .      I.      S. 

Komatsu   and   B.    Masumoto.      Mem.    Coll.    Sci. 

Kyoto,  1921,  5,  225—232. 
When  camphor  was  passed  with  hydrogen  over 
reduced  nickel  heated  to  175°— 185°  C,  and  the 
product  fractionated,  a  hydrocarbon,  C10Hla,  was 
obtained,  which  seems  to  be  identical  with  the  iso- 
camphane  obtained  by  Lipp  (Annalen,  1911,  382, 
279)  by  the  catalytic  hydrogenation  of  camphene. 
In  addition  to  this  substance,  some  rf-borneol  was 
obtained.  The  same  Wsocamphane  was  obtained 
by  catalytic  reduction  in  the  same  manner  of  both 
d-  and  Z-borneol. — E.  H.  R. 

Sandalwood  oil;  Solubility  of  Wr.it  Australian . 

II.  V.   Marr.      Perf.   Essent.  Oil  Rec,   1922,   13, 

366. 
In  reference  to  the  statements  made  by  Somerville 
regarding  the  solubility  of  West  Australian  sandal- 
wood oil  (J.,  1922,  647  a),  it  is  pointed  out  that  the 
opalescence  which  is  produced  on  diluting  solutions 

o 


958A 


Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


(Dec.  15,  1922. 


in  70%  alcohol  is  not  a  peculiar  feature  of  the  oil 
from  Santalum  cygnorum  but  is  typical  also  of  the 
oil  from  S.  album.  In  fact  in  all  cases  where  the 
solubility  of  the  two  oils  in  70%  alcohol  has  been 
compared,  that  of  the  West  Australian  variety  has 
always  proved  superior,  and  it  has  remained 
miscible  on  the  addition  of  a  greater  number  of 
volumes  of  70%  alcohol  before  opalescence  occurred 
than  any  samples  of  iS.  album  oil  examined,  the 
range  of  solubility  in  the  former  cases  being  about 
4'5  to  11  vols,  and  in  the  latter  about  6 — 10  vols. 

— G.  F.  M. 

Citronella  oil;    [Determination   of]    total   geraniol 

content  of .     M.  S.  Salamon.     Perf.  Essent. 

Oil  Rec,  1922,  13,  357—358. 

A  criticism  of  the  paper  by  De  Jong  and  Reclaire 
(J.,  1922,  836  a).  It  is  pointed  out  that  the  equiva- 
lent of  0-1  c.c.  of  2V/2  KOH  is  00075  g.  of  geraniol 
and  not  0'075  g.  as  stated.  The  importance  of 
accurately  measuring  the  volumetric  solution  is 
emphasised,  as  a  difference  of  0"1  c.c.  of  2V/2  KOH 
represents  a  difference  of  0'8%  in  geraniol  content. 
As  the  acetylated  oil  is  somewhat  dark  it  is  not 
considered  possible  to  neutralise  it  accurately  with 
Nj2  KOH  by  dissolving  1*5  g.  in  only  2  c.c.  of 
alcohol,  and  20  c.c.  of  2V/2  KOH  is  not  considered 
sufficient  to  provide  an  adequate  excess  in  the 
saponification  of  1'5  g.  of  acetylated  oil.  Attention 
is  drawn  to  the  influence  of  chlorides  in  the  acetic 
anhydride  used  for  acetylation,  experiments  indi- 
cating that  an  anhydride  containing  chloride  may 
increase  the  so-called  geraniol  content  by  as  much 
as  2-5%.— G.  F.  M. 

Citronella   oil;    [Determination   of]   total'  geraniol 

content  of .    De  Jong  and  A.  Reclaire.    Perf. 

Essent.  Oil  Rec.,  1922,  13,  358. 

If  the  acetylated  oil  is  accurately  washed  out  and 


the  whole  of  the  carbonyl  compounds  present, 
calculated  as  citral  j  to  this  figure  the  author  gives 
the  name  "  analytical  citral."  Certain  of  these 
carbonyl  compounds  (citral)  react  with  dilute 
sodium  sulphite  solution  to  form  sulphonic  com- 
pounds, whereas  others  (citronellal,  methyl- 
heptenone)  do  not  thus  react.  Lemon  oil  adulterated 
by  added  citral  and  terpenes  will  show  a  higher 
content  of  niethyflheptenone  than  the  corresponding 
genuine  oil,  so  that  treatment  with  sodium  sulphite 
will  reveal  differences  between  the  genuine  and  the 
adulterated  oil.  Experiment  shows,  indeed,  that 
the  first  distillates  of  an  oil  of  lemon  adulterated  in 
the  above  way  give,  for  the  content  of  "  analytical 
citral,"  figures  higher  than  those  yielded  by  the 
corresponding  genuine  products,  whilst  the  last 
distillates,  in  which  more  especially  the  citral  and 
citronellal  are  collected,  are  greatly  impoverished 
by  treatment  with  the  sulphite.  These  conclusions 
are  confirmed  by  the  numerical  and  graphical 
results  given. — T.  H.  P. 

Urea.     Pincussen.     See  XXIII. 

Patents. 

Aminoalcohols  of  the  quinoline  series;  Manufacture 

of .    O.  Y.  Imrav.    From  Soc.  Chem.  Ind.  in 

Basle.     E.P.   185,913,  20.7.21. 

Aminoalcohols  derived  from  2-phenylquinoline-4- 
carboxylic  acid  are  obtained  by  converting  the  acid, 
its  ester,  or  nitrile,  into  a  2-phenylquinolyl-4-alkyl- 
ketone,  and  either  reducing  the  latter  through  its 
isonitroso-compound  to  the  2-pkenylquinolyI-4- 
aminoalcohol,  or  causing  the  ketone  halogenised  in 
the  alkyl  group  to  react  with  an  amine,  and  reducing 
the  2-phenylquinolyl-4-alkylaminoketone  thus  pro- 
duced to  the  corresponding  amino-alcohol.  The  series 
of  reactions  is  represented  by  the  following  scheme : 


CO- 

N 


COOH 


COOC2H6 
/\/\  CH3COOC2Hs 

/    \/\/C(lH|i       NaOC,H5 

N 


CN 


CC[ 


C.H, 


N 


CH3MgI 


CO.CH„.COOC,H5 

AA 

kA  Jc-H< 


N 


COCH, 

KM 

N 


CO.CH:NOH 


\A, 

N 


CH(OH).CH,NH2 
C6H5 


COCH2.N(CH3)a  CH(OH).CHrN(CH3)2 

i      Ih.tt.       ' ■*    (     I      W 


\ 


C6H5 


N 


N 


if  pure  sodium  acetate  free  from  carbon  and  tarry 
matter  is  used  for  the  acetylation  the  oil  is  not  dark 
and  the  neutralising  gives  no  trouble.  As  saponi- 
fication often  darkens  the  oil,  50  c.c.  of  water  is 
added  as  a  medium  for  the  titration.  The  use  of 
20  c.c.  of  N/2  KOH  for  the  saponification  is  an 
excess  of  45%  above  the  theoretical  amount,  and 
there  is  no  object  in  using  more. — G.  F.  M. 

0(7  of  lemon;  Adulteration  of  ■ — —  with  terpenes. 
G.  Ajon.  Giorn.  Chim.  Ind.  Appl.,  1922,  4,  389— 
391. 

The  methods  ordinarily  used  for  the  estimation  of 
citral  in  lemon  oil  yield,  not  the  citral  alone,  but 


2- Phenyl -4 -quinolylmethylketone  forms  yellow 
crystals,  m.p.  75°  C,  and  the  preparation  and  pro- 
perties of  its  hydrobromide,  m.p.  240°  C,  its  iso- 
nitroso-compound, m.p.  182°.,  and  the  bromo-deriva- 
tive,  m.p.  91°  C,  are  described  in  detail.  By  the 
reduction  of  the  isonitroso-compound  with  zinc  dust 
and  formic  acid  2-phenylquinolyl-4-aminoethanoI 
dihydrochloride  is  obtained  in  yellowish  crystals, 
m.p.  145°  C.  The  free  base  is  somewhat  unstable. 
Substituted  aminoethanol  derivatives  are  obtain- 
able only  from  the  bromo-ketone,  which  reacts  for 
example  with  dimcthylamine  in  benzene  solution 
give  the  hydrobromide  of  2-phenylquinolyl-4-di- 
nicthylaminoethanone,  m.p.  260°  C,  and  this  sub 


Vol.  xli.,  No.  23.]        Ol.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &c. 


959  a 


stance  on  reduction  with  hydrogen  in  presence  of 
platinum  black  is  converted  into  the  corresponding 
2-phenyl-4-quinolyldimethylaminoethanol.  the  di- 
hydrochloride  of  which  is  a  feebly  yellowish  powder 
soluble  in  water,  m.p.  175°  C.  (with  decomp.).  The 
dihydrochloride  of  the  corresponding  diethylamino- 
compound  melts  at  180°  C.,  and  of  the  piperidido- 
ethanol  at  199°  C.  These  compounds  are  all  stated 
to  be  of  therapeutic  value.     (Cf.  J.  S.C.,  Dec  ) 

— G.  F.  M. 

Crotonic    acid;   Production   of  from   croton- 

aldehyde.  ElcktrizitatswerkLonza.    E. P.  165,728 
27.6.21.     Conv.,  2.7.20. 

The  oxidation  of  crotonaldehyde  to  crotonic  acid  by 
means  of  oxygen  is  greatly  accelerated  by  using  a 
manganic  salt,  preferably  manganic  acetate  in 
solution  in  glacial  acetic  acid,  as  catalyst.  A 
manganous  salt  can  be  used  initially  if  desired,  but 
it  is  preferable  to  oxidise  it  to  the  manganic  state, 
as  it  is  only  under  those  conditions  immediately 
operative.  Example:  T5%  of  potassium  perman- 
ganate is  gradually  added  to  a  10%  solution  of 
manganous  acetate  in  glacial  acetic  acid  at  115°  C. 
The  solution  is  then  diluted  with  acetic  acid  to  a 
manganese  content  of  O'l — 0'2%,  and  20  litres  is 
stirred  with  15  kg.  of  crotonaldehyde  whilst  oxygen 
is  led  through  the  mixture.  When  no  more  oxygen 
is  absorbed  the  acetic  acid  is  distilled  off  and  a 
residue  of  crotonic  acid  in  98 — 99%  yield  remains 
and  can  be  purified  by  recrystallisatiou. — G.  F.  M. 

Ethylene    and    other    unsaturated    hydrocarbons; 

Process  of  preparing .     W.  H.  Ross,  Assr.  to 

W.  L.  Evans.     U.S.P.  1,392,852,  4.10.21.    Appl., 
1.6.20. 

A  nickel  catalyst  prepared  from  nickel  nitrate 
(preferably  with  addition  of  an  alkaline-earth  com- 
pound or  other  impurity  which  minimises  sintering 
of  the  nickel  during  reduction)  by  distribution  on 
pumice,  heating,  and  reduction  in  hydrogen,  is 
treated  repeatedly  with  acetylene,  followed  by 
exhaustion  of  the  reaction  products,  until  all  the 
adsorbed  hydrogen  is  removed  from  the  catalyst. 
A  mixture  of  equal  parts  of  acetylene  and  hydrogen 
is  then  passed  over  the  catalyst,  at  a  temperature 
below  150°  C,  whereby  a  product  containing  80 — 
90%  of  ethylene  is  obtained. 

Aldehydes  and  other  oxidation  products;  Process  of 

making  .     C.  H.  Bibb,  Assr.  to  J.  T.  Bibb, 

sen.     U.S.P.  1,392,886,  4.10.21.     Appl.,  27.10.19. 

Hydrocarbons  are  converted  into  alcohols,  alde- 
hydes, alcohols,  and  other  oxidation  products  by 
heating  with  oxygen  and  a  small  quantity  of  a 
gaseous  catalyst  containing  oxygen  (e.g.,  nitrogen 
oxides).  The  process  is  described  as  applied  to  the 
preparation  of  formaldehyde  from  methane  (natural 
gas). 

4-Dimethylamino  -  l-phenyl-2.3-dimethyl-5-pyrazol- 

one;  Preparation  of  a  derivative  of  readily 

soluble    in   water.      Akt.-Ges.    fiir   Anilin-Fabr., 
Assees.  of  M.  Bachstez.    G.P.  357,751,  25.9.20. 

An  aqueous  solution  containing  the  sodium  or  other 
water-soluble  salt  of  4-ethoxyphenylmalonamic  acid 
and  4-dimethyIamino-l-phenyl-2.3-dimethyl-5-pyr- 
azolone  in  equimolecular  proportions  is  evaporated 
to  dryness  at  100°  C,  yielding  an  oily  product  which 
crystallises  on  rubbing.  The  product  possesses 
therapeutic  value  as  a  febrifuge  and  sedative,  aud 
can  be  applied  as  subcutaneous  injections. 

— L.  A.  C. 

Quinine;    Preparation    of    a    derivative    of    . 

Akt.-Ges.  fur  Anilin-Fabr.  G.P. 357,753,  19.10.20. 
The  4-ethoxvphenylmalonamic  acid  salt  of  quinine, 
m.p.  72° — 73°  C,  which  has  therapeutic  value  as 
an  analgesic  and  febrifuge,   is  prepared  either  by 


melting  together  equimolecular  proportions  of 
quinine  and  4-ethoxyphenyllmalonamic  acid  and 
crystallising  the  product  from  hydrolysing  solvents, 
or  by  reaction  between  equimolecular  proportions  of 
the  component  compounds  or  their  salts  in  the 
presence  of  hydrolysing  solvents. — L.  A.  C. 

Condensation  products  of  a, ^-unsaturated  ketones 

and  phenols;  Preparation  of .     Chem.  Fabr. 

vorm.  Weiler-ter  Meer.     G.P.  357,755,  27.3.20. 

(^-Unsaturated  ketones,  or  their  acid  addition 
products,  condense  with  phenols  in  the  presence  of 
acid  condensing  agents  in  accordance  with  the 
equations  :  — 

/\  R.CO.C&CH.R! 

|  +  or  -* 

\/\0H       R.CO.CHa.CHCl.R, 


C.R 


+ 


H,0 

or 

H20+HC1 


If  highly  reactive  phenols,  such  as  resorcinol  or 
N-substituted  «i-aminophenol,  are  employed,  the 
reaction  is  nearly  quantitative,  yielding  coloured 
products  suitable  for  the  preparation  of  dyestuffs 
and  for  use  in  medicine.  Examples  are  given  of 
the  preparation  of  products  from  phenols  such  as 
phenol,  resorcinol,  pyrogallol,  and  m-dimethyl- 
aminophenol,  and  ketones  such  as  benzalacetone, 
benzalacetophenone,   m-hydroxybenzalacetone,   etc. 

— L.  A.  C. 

[Carbamic]  ester  of  trichloroethyl  alcohol;  Produc- 
tion of  a .    Farbenfabr.  vorm.  F.  Bayer  und 

Co.     G.P.  358,125,  14.9.20. 

Caruamic  acid  trichloroethyl  ester,  m.p.  64°— 65° C, 
a  soporific  of  which  the  toxic  dose  is  much  greater 
than  the  effective  dose,  is  prepared  either  by  pro- 
longed reaction  between  ethereal  solutions  of  tri- 
chloroethyl alcohol  and  urea  chloride,  with  subse- 
quent separation  of  the  ester  by  evaporation  and 
crystallisation  of  the  product  from  petroleum  ether, 
or  by  the  action  of  carbonyl  chloride  on  a  solution 
of  trichloroethyl  alcohol  in  benzene  in  the  presence 
of  quinoline,  and  subsequent  treatment  of  the  tri- 
chloroethyl alcohol  chlorocarbonate  thus  produced 
with  ammonia. — L.  A.  C. 

Thyroid  gland;  Preparation  of  a  serum  for  treating 

diseases  of  the .     J.  Dreising.     G.P.  358,148, 

24.9.13. 
Antithyroid  serum  (e.g.,  the  antithyreoidin  of 
Mobius)  is  mixed  with  dilute  sodium  chloride  solu- 
tion and  a  solution  of  paranephrin  (Merck)  in 
0'1%  hydrochloric  acid,  a  small  quantity  of  phenol 
is  added,  and  the  mixture  is  concentrated  at  a  low 
temperature  under  such  conditions  that  no  pre- 
cipitate is  formed.  An  anaesthetic,  e.g.,  novo- 
caine,  is  added  to  the  solution,  which  is  then 
filtered  through  a  bacteria  filter,  and  preserved  in 
bottles.  Sterilisation  of  all  materials  which  come 
in  contact  with  the  serum  is  essential.  The  product 
is  considerably  more  active  than  ordinary  anti- 
thyroid serum. 

Depilatory.      P.    Froschel    and    R.     Weiss.      G.P. 

358,149,  1.8.18.  Conv.,  26.7.18. 
Metallic  salts  which  yield  insoluble  or  sparingly 
soluble  hydroxides  are  added  to  depilating  agents 
containing  alkali  or  alkaline-earth  sulphides.  For 
example  barium  sulphate,  strontium  sulphide, 
pulverised  dry  vegetable  mucilage,  and  crystallised 
aluminium  sulphate  are  triturated  so  as  to  form  a 
uniform  mixture,  which  is  mixed  to  a  creamy  mass 
with  water  when  required  for  use.  The  mixture 
does  not  injure  the  skin. 

o2 


960  a 


Cl.  XXI.— photographic  materials  and  processes. 


[Dec.  15,  1922. 


Aminopyridines  ;    Preparation     of    Chem. 

Fabr  auf  Actien  (vorm.  E.  Schermg),  H.  Emde, 
and  H.  Horsters.  G.P.  358,397,  4.8.20. 
AinNorYHiDiNES  are  prepared  by  the  action  of 
ammonia  on  pyridine  or  its  homologues  in  the 
presence  of  alkali  metals.  For  example,  anhydrous 
pyridine  is  added  slowly  to  toluene  at  80°  C.  con- 
taining finely  divided  sodium  in  suspension,  and 
ammonia  is  simultaneously  passed  into  the  solution. 
"When  the  sodium  has  been  used  up,  the  solution  is 
maintained  at  130°  C.  until  no  more  ammonia  is 
absorbed;  the  bases  are  then  extracted  with  ether, 
and,  after  separating  the  solvent,  the  product  is 
distilled  in  vacuo.  2-Aminopvridine  distils  at 
103°— 110°  C,  and  4.4'-dipyridyi  at  170°— 180°  C., 
both  under  20  mm.,  while  4-aminopyridine 
separates  from  the  residue.  6-Amino-2-methyl- 
pyridine  (a'-amino-a-picoline),  b.p.  120° — 130°  C, 
under  20  mm.,  is  prepared  in  a  similar  manner  from 
2-methylpyridine  (a-picoline). — L.  A.  C. 

Diaminodi-p-xylylmethane  ;    Preparation    of    

from  commercial  xyhdine.  Farbw.  vorm. 
Meister,  Lucius,  und  Briining.  G.P.  358,398, 
4.7.20.    Addn.  to  270,663  (J.,  1914,  474). 

Sufficient  formaldehyde  is  added  to  a  solution  of 
commercial  xylidine  hydrochloride  to  convert  the 
p-xylidine  present  into  diaminodi-p-xylylmethane, 
the  product  is  neutralised  with  alkali,  distilled  in 
a  current  of  steam,  and  then  treated  as  described 
in  the  chief  patent. — L.  A.  C. 

Optically  active  aromatic  amino  alcohols;    Manu- 
facture of  .     O.  Y.  Imrav.     From  Society  of 

Chemical  Industry  in  Basle.    E.P.  187,129,  4.10.21. 

See  U.S.P.  1,423,101  of  1922;  J.,  1922,  878  a. 

XXI.  —  PHOTOGRAPHIC     MATERIALS    AND 
PROCESSES. 

I'liotographic  sensitivity;  Studies  in .  7.  Dis- 
tribution of  sensitivity  and  size  of  grain  in  photo- 
graphic emulsions.  E.  P.  Wightman,  A.  P.  H. 
Trivelli,  and  S.  E.  Sheppard.  J.  Franklin  Inst., 
1922,  194,  485—520. 
The  sensitivity  of  the  halide  grains  of  a  photo- 
graphic emulsion  is  discussed  from  the  points  of 
view  of  distribution  of  a  photocatalyst  among  the 
grains,  and  of  a  discrete  structure  of  the  radiation 
energy.  The  work  of  Slade  and  Higson  is  criticised 
(cf.  J.,  1921,  324  a).  An  approximate  theory  of 
the  density-exposure  function  for  certain  limited 
conditions  is  developed.  It  is  shown  that  under 
certain  conditions  the  first  derivative  of  the 
density  exposure  function  may  correspond  with  the 
intensity-variation  function.  The  results  of  deter- 
minations of  grain  size-frequency  curves  for  various 
emulsions  are  given  {cf.  J.,  1922,  119  a)  and  com- 
pared with  the  sensitometric  characteristics  of  the 
emulsions.  The  relation  of  grain  size  to  sensitivity 
is  considered  from  the  points  of  view  of  the 
"  quantum  "  theory  of  sensitiveness  and  of  the 
"  emulsification-nucleus  "  hypothesis.  So  far,  a 
crucial  distinction  cannot  be  made  between  these 
two  theories. — W.  C. 

Photographic  emulsions ;  Sensitometry  of and 

a   survey    of    the    characteristics    of   plates   and 

films  of  American  manufacture.     R.   Davis  and 

F.  M.  Walters,  jun.     U.S.  Bureau  of  Standards, 

Sci.  Paper  439,  1922.     120  pages. 

About  90  different  brands  of  sensitive  plates  and 

films    were    investigated    for    speed,    development 

factors,    colour   sensitiveness,    filter   factors,    scale, 

and   resolving  power,   and  the  curves  and  figures 

tor  each  of  these  factors  are  given  for  86  different 

brands  of  sensitive  material.     The  paper  includes 

n  review  and  description  of  the  various  properties 


of  plates  and  films  and  their  measurement;  a 
detailed  description  of  the  apparatus  and  methods 
employed  in  the  standard  systems  of  measurement; 
and  a  full  account  of  the  experimental  results  of 
the  tests. — W.  O. 

Photographic  plates;  Study  of  the  "  threshold- 
value  "  of  — —  by  counting  the  grains.  W. 
Noddack,  F.  Streuber,  and  H.  Scheffers. 
Sitzungsber.  Preuss.  Akad.  Wiss.  Berlin,  1922, 
210—213.      Chem.   Zentr.,    1922,   93,   IV.,   980. 

The  source  of  light  used  was  of  wave-length  436  /«/», 
the  brightness  being  444x10"'  Hefner  candles. 
Plates  were  exposed  for  varying  times,  the  longest 
exposure  being  that  required  to  produce  just 
visible  blackening  on  development  (50—100  sees,  at 

1  m.),  the  other  exposures  being  less  by  a  factor  of 

2  in  each  case.  After  development  and  fixing,  the 
grains  were  counted  in  the  microscope  or  on 
photomicrographs,  and  the  "  fog  "  grains  in  un- 
exposed parts  of  the  piates  were  subtracted.  The 
"  threshold  value  "  can  be  easily  ascertained  by  this 
method.  The  increase  in  number  of  developed 
grains  is  not  proportional  to  the  intensity  of  the 
light,  but  is  less  than  required  by  direct  pro- 
portionality with  increasing  exposure.  This  is 
explained  by  the  fact  that  with  increasing  exposure 
a  greater  number  of  grains  would  be  hit  by  several 
quanta,  and  the  probability  of  one  grain  being  hit 
by  several  quanta  will  increase  with  its  size.  This 
accounts  for  the  fact  that  very  sensitive  (coarse- 
grained) plates  give  a  flatter  curve  than  small- 
grained  emulsions. — W.  C. 

Photographic  exposure;  Quantum  theory  of  ■ — ■ — . 
L.  Silberstein  and  A.  P.  H.  Trivelli.  Phil.  Mag., 
1922,  44,  956—968. 

Additional  experiments  on  the  authors'  light 
quatum  theory  of  photographic  exposure  (cf. 
Phil.  Mag.,  1922,  44,  257).  This  theory  assumes  the 
distribution  of  active  centres  in  the  halide  crystals 
according  to  the  laws  of  chance,  and  the  occurrence 
of  light  "darts"  of  definite  cross-section,  a  grain 
being  made  developable  only  when  fully  struck  by  a 
light  dart.  A  clump  of  silver  halide  grains  behaves 
as  a  photographic  unit,  since  if  one  of  the  com- 
ponent grains  is  made  developable,  the  whole  clump 
may  be  reduced  by  a  sufficiently  long  development. 
In  a  number  of  observations  the  targets  were 
classified,  according  to  the  number  of  grains  in  the 
clump,  but  in  the  later  experiments  a  new  method 
of  division  of  the  targets  into  broad  classes  accord- 
ing to  area  was  adopted.  The  effect  of  length  of 
exposure  to  a  constant  light  source,  and  the  number 
of  clumps  made  developable  is  in  agreement  with 
the  authors'  theory. — W.  E.  G. 

Photographic  print-out    images;   Colour  change  of 

on   fixing.      F.    Formstecher.      Phot.    Ind., 

1921,  590.    Chem.  Zentr.,  1922,  93,  TV.,  999. 

The  reversible  colour  change  produced  on  immers- 
ing a  print  in  distilled  water  is  probably  due  to  an 
alteration  in  the  distance  between  the  grains  as  a 
result  of  swelling  of  the  film.  Irreversible  colour 
changes  are  produced  by  the  action  of  ions  on  the 
film,  causing  a  coagulation  of  colloidal  silver  to 
coarse-grained  yellow-brown  silver.  The  medium 
exerts  an  important  influence  on  this  change. 
Since  the  colour  of  a  print  varies  between  red  and 
blue  according  to  the  composition  and  degree  of 
ripening  of  the  emulsion,  the  fixed  image  also  takes 
on  different  tints.  The  bluer  the  copy  the  greater 
is  the  deviation  from  the  normal  yellow-brown 
colour  of  coagulated  silver,  and  the  redder  are  the 
tones  obtained  on  fixing.  The  colours  of  Poitevin 
photochromes  depend  on  the  optical  resonance  of 
the  silver  ultramicrons,  and  each  contact  with 
solutions  brings  about  coagulation  and  so  alters 
the  colours. — W.  C. 


Vol.  xli.,  No.  23.1      Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cc.  XXIII.— ANALYSIS. 


961a 


Pinacyanols.    Konig.    See  TV. 

Patent. 

Celluloid     [photographic']     films;     Reducing     the 

inflammability  of .  E.  Grimpe.    G. P.  357,484, 

11.12.19. 


Celluloid  photographic  films  are  steeped  in  a  bath 
containing  e.g.,  85  pts.  by  volume  of  water-glass, 
10 — 13  pts.  of  glycerin,  and  2-5  pts.  of  gum  arable, 
with  or  without  the  addition  of  powdered  mica. 

— L.  A.  C. 

XXII.-EXPLOSIVES;  MATCHES. 

Sand  test  for  detonators;  Modifications  of  the  . 

W.   M.   Dehn.     Chem.   and  Met.   Eng.,  1922,  27, 
784—787. 

A  modified  apparatus  was  employed  for  carrying  out 
this  test.  500  g.  of  standard  sand  was  used  so  that 
enough  should  be  present  to  enable  the  detonator 
to  exert  its  maximum  crushing  effect.  The  sand 
used  was  rounded  and  sand  recovered  from  one  test 
was  not  used  again.  The  confinement  of  the  sa/id 
was  effected  by  a  heavy  weight  of  special  design, 
and  the  whole  was  tamped  down  to  a  maximum  com- 
pression, the  detonator  being  in  the  centre  of  a 
ball-like  mass  of  sand.  Only  sand  passing  a  30-mesh 
and  remaining  on  a  100-mesh  sieve  was  weighed, 
that  passing  100-mesh  being  calculated  by 
difference.  Different  weights  of  the  same  detonat- 
ing substance,  or  indeed  equal  volumes  of  the  same 
substance  differing  in  density  of  packing  did  not 
exert  crushing  effects  on  sand  directly  proportional 
to  the  weights  used.  Comparison  of  the  strengths 
of  different  detonators  as  determined  by  the  sand 
test  are  therefore  only  approximate. — H.  C.  R. 

Chlorate   explosives;    Toxicity   of   the   fumes  from 

■ ■.     H.  Kast  and  A.  Haid.    Z.  ges.  Schiess-  u. 

Sprengstoftw.,  1922,  17,  145—149. 

A  small  quantity  of  carbon  monoxide  is  produced 
in  the  detonation  of  chlorate  explosives  even  when 
sufficient  oxygen  is  present  for  complete  oxidation. 
This  behaviour  is  shared  by  ammonium  nitrate 
explosives.  If  the  fumes  are  collected,  they  may  be 
found  to  contain  0"1%  of  carbon  monoxide,  which 
might  under  unfavourable  circumstances  exercise 
a  toxic  action.  Oxides  of  nitrogen  are  formed  in 
small  quantity  during  the  combustion  of  chlorate 
explosives  containing  nitro-compounds,  and  the 
powerful  toxic  action  of  these  gases  might  affect  the 
respiratory  organs  in  localities  where  a  local  con- 
centration of  the  fumes  had  occurred.  The  effect 
would  be  intensified  by  the  irritating  action  of  the 
alkali  chlorides  and  soot  in  suspension  in  the  fumes. 
The  fumes  of  burning  ammonium  nitrate  explosives 
and  of  nitro-compounds  are  very  much  more  toxic 
than  those  of  chlorate  explosives  owing  to  the  pre- 
sence of  greater  quantities  of  nitric  oxide,  but 
chlorate  explosives  are  much  more  prone  to  burn 
instead  of  detonate  than  either  ammonium  nitrate 
or  nitro-compounds. — H.  C.  R. 

Patents. 

Detonating  compositions  for  detonators  or  primers; 

Manufacture  of .   E.  von  Herz.  E. P.  187,012, 

11.7.21. 

A  detonating  mixture  is  composed  of  lead  azide  and 
lead  trinitroresorcinate,  the  two  substances  being 
precipitated  together,  from  solution,  or  either  salt 
being  separately  precipitated  in  the  presence  of  the 
other.  Thus  the  mixture  may  be  precipitated  by 
causing  a  solution  of  sodium  azide  and  magnesium 
trinitroresorcinate  to  flow  slowly  into  a  solution  of 
lead  nitrate  slightly  acidified  with  acetic  acid  at  a 
temperature  not  below  60°  C.  Preferably  lead 
trinitroresorcinate  is  suspended  id.  an  aqueous  solu- 


tion of  lead  acetate  and  a  dilute  solution  of  sodium 
azide  added  at  atmospheric  temperature.  The  pro- 
portions employed  are  preferably  such  as  to  yield  a 
mixture  containing  about  40 — 50%  of  lead  azide. 

—J.  S.  G.  T. 

Explosive.  W.  Rintoul,  T.  J.  Nolan,  and  O.  W. 
Stickland,  Assrs.  to  Nobel's  Explosives  Co.,  Ltd. 
U.S. P.  1,392,851,  4.10.21.     Appl.,  19.10.20. 

See  E.P.  166,277  and  166,502  of  1919 ;  J.,  1921,  639a. 


XXIH.-ANALYSIS. 

Brass  weights;  Protection  of .     J.  J.  Manley. 

Phil.  Mag.,  1922,  44,  948—950. 

The  method  introduced  by  Faraday  for  the  protec- 
tion of  iron  from  rust,  has  been  employed  for  pro- 
tecting brass  weights.  A  satisfactory  method  of 
procedure  is  to  cover  the  weight  with  a  thin  film  of 
linseed  oil,  and  heat  in  a  "  vitreosil  "  crucible  or  a 
muffle  furnace  until  the  weight  assumes  a  golden 
tint.  The  protecting  film  which  is  formed  is  tough 
and  may  be  polished.  The  weight  of  1  sq.  cm.  of 
normal  film  is  O'OOOOS  g—  W.  E.  G. 

Cold;  Generation  and  utilisation  of .  [Measure- 
ment of  low  temperatures.']  C.  R.  Darling.  Fara- 
day Soc,  16.10.22.     [Advance  proof.] 

The  thermal  junction  method  of  low  temperature 
measurement  is  advocated  because  of  the  quick 
response  such  instruments  give  to  temperature 
changes  and  their  adaptability  for  use  in  confined 
spaces.  The  recent  checking  of  an  old  instrument 
made  of  a  flexible  couple  of  Hoskins'  alloy  and 
capable  of  reading  to  -200°  C.  has  shown  that  such 
instruments  maintain  their  accuracy.  Resistance 
thermometers  are  recommended  as  the  best  available 
method  of  temperature  recording  in  a  cold  storage 
installation,  since  several  instruments  can  be  placed 
at  different  points  in  a  factory  and  coupled  through 
a  switchboard  with  a  common  indicator. — S.  G.  TJ. 

Thermometric  lag  with  especial  reference  to  cold 
storage  practice.  E.  Griffiths  and  J.  H.  Awbery. 
Faraday  Soc,  16.10.22.  [Advance  proof.] 
Experiments  were  carried  out  with  a  mercury  glass 
themometer  with  wooden  sheath  and  lagging,  a 
spirit  thermometer,  a  mercury  in  steel  ther- 
mometer, and  a  resistance  thermometer,  in  order  to 
determine  the  magnitude  of  some  possible  sources 
of  error,  when  mercury  or  spirit  thermometers  are 
removed  from  the  hold  to  the  deck  of  a  ship  for 
reading,  and  to  obtain  information  regarding  the 
error  introduced  by  the  time  lag  when  the  cold 
storage  temperature  is  rapidly  changing.  After 
calibration  the  time  lag  was  determined  by  insert- 
ing the  thermometers  in  a  carefully  insulated 
cubical  box  (2  ft.  edge)  within  which  was  a 
rectangular  spiral  of  iron  piping  through  which 
circulated  expanded  ammonia  to  maintain  a  con- 
stant temperature,  recorded  by  a  freely  suspended 
thermo-junction.  From  observations  taken  curves 
connecting  temperature  above  surroundings  and 
time  were  plotted.  From  these  a  second  set  of 
curves,  connecting  the  logarithm  of  temperature 
excess  above  that  of  the  enclosure  and  time  were 
derived.  These  proved  to  be  straight  lines  and  the 
slopes  denoted  by  -1/L  gave  the  relative  time  lags 
of  the  thermometers.  L  is  a  convenient  constant, 
the  value  of  which,  if  known  for  a  particular 
thermometer  is  sufficient  to  determine  the 
behaviour  of  that  instrument  under  any  circum- 
stance as  regards  time  lag.  When  the  ther- 
mometer is  introduced  into  an  enclosure  the 
temperature  of  which  is  changing  uniformly  this 


962A 


Ol.  XXIII.— ANALYSIS. 


[Dec.  15,  1922. 


thermometer  records  the  temperature  which 
existed  in  the  chamber  L  minutes  previously. 

— S.  G.  U. 

Colorimetric   researches;    Application   of   coloured 

glasses  instead  of  liquids  in  .      K.   Sonden. 

Ark.  Kem.  Min.  Geol.,  1922,  8,  [7],  1—10. 
Combinations  of  coloured  glasses  may  be  con- 
veniently used  as  standards  in  colorimetry.  The 
coloured  glasses  are  suitably  prepared  by  dyeing 
the  gelatin  film  on  a  photographic  plate  from  which 
the  silver  has  been  removed  by  treatment  with 
thiosulphate. — W.  0.  K. 

Super  saturation;        Quantitative       analysis       by 

measurement    of    the    degree    of   .      E.    F. 

Hoppler.     Chem.-Zeit.,   1922,  46,  957—958. 

The  time  elapsing  between  the  addition  of  a 
reagent  and  the  formation  of  a  precipitate  or 
coloration  can  be  utilised  as  an  approximate  quan- 
titative measure  of  traces  of  substances  in  solution. 
The  method  is  particularly  applicable  to  water 
analysis.  S03  and  CaO  can  be  estimated  in  this 
way  between  the  dilutions  of  2'3  and  100  mg.  per 
litre,  N,03  can  also  be  estimated  by  this  means 
when  in  not  greater  concentration  than  0'5  mg.  per 
litre.— H.  C.  R. 

Precipitation   analysis;   Application    of   conducto- 

metric    methods    to   .      V.      Titrations    ivith 

barium  salts.     I.  M.  Kolthoff.     Z.  anal.  Chem., 
1922,  61,  433—448. 

Sulphates  may  be  titrated  conductometrically  with 
barium  chloride  rapidly  and  exactly  if  some  alcohol 
is  added  to  the  sojution.  Mineral  acids  and  iron, 
aluminium,  and  calcium  salts  interfere  but  nitrates 
do  not.  The  method  is  inapplicable  to  the 
determination  of  sulphates  in  drinking  water. 
Carbonates,  chromates,  oxalates,  tartrates,  citrates, 
and  malates  in  the  presence  of  sufficient  alcohol,  are 
capable  of  exact  conductometric  titration  with 
barium  chloride  but  not  phosphates,  pyrophos- 
phates, succinates,  benzoates  or  salicylates.  (Cf. 
J.C.S.,  Dec.)— A.  R.  P. 

Calcium;     Volumetric     estimation     of    .       A. 

Vurtheim    and    G.     H.    C.    Van    Bers.      Chem. 
"Weekblad.,  1922,  19,  450—452. 

After  addition  of  excess  of  ammonium  oxalate  and 
ammonia,  the  solution  is  filtered  and  an  aliquot  part 
titrated  with  permanganate;  blank  titrations  must 
be  carried  out,  as  ammonium  oxalate  solutions  vary 
rapidlv.  The  results  agree  well  with  gravimetric 
estimations.     (Cf.  J.C.S.,  Dec.)— S.  I.  L. 

Magnesia;  Separation  of  ferric  oxide  and  alumina 

from  by  the  nitrate  method.     A.  Charriou. 

Comptes    rend.,    1922,    175,    693—695.      (Cf.    J., 
1922,  81  a,  351   a.) 

Febric  oxide  or  alumina  may  be  quantitatively 
separated  from  magnesia  by  precipitation  with 
ammonia  solution  in  presence  cf  ammonium  nitrate. 
The  precipitate  is  dried  at  a  temperature  below 
150°  C,  so  that  the  nitrate  is  not  decomposed,  then 
boiled  with  ammonium  nitrate  solution,  and  finally 
treated  with  boiling  water.  The  author  states  that 
no  trace  of  aluminium  or  iron  is  found  in  the 
solution  after  treating  with  the  nitrate.  It  is  diffi- 
cult to  remove  the  oxides  from  the  crucible  for 
weighing  and  a  tared  crucible  should  therefore  be 
used.  The  magnesium  may  be  estimated  in  the 
solution  and  washings. — H.  J.  E. 

Nickel;  Gravimetric  determination  of as  nickel 

dioxide.    W.  Vaubol.    Chem.-Zeit.,  1922,  46,  978. 

Nickelous  hydroxide  is  precipitated  from  the  solu- 
tion with  sodium  hydroxide,  collected,  washed,  and 


ignited.  The  ignited  precipitate  is  further  washed 
until  free  from  alkali  metals,  dried,  and  dissolved  in 
nitric  acid.  The  excess  of  nitric  acid  is  evaporated 
and  the  crucible  heated  for  30  mins.  in  an  air  bath 
at  280°— 330°  C.  Pure  black  nickel  dioxide  is  left. 
The  oxide,  Ni203,  does  not  exist,  the  known  oxides 
of  nickel  being  NiO,  Ni304  and  Ni02.— H.  C.  R. 

Nickel;  Electrometric  determination  of  with 

silver  nitrate.    E.  Miiller  and  H.  Lauterbach.    Z. 
anal.  Chem.,  1922,  61,  457—464. 

Nickel  may  be  determined  by  adding  a  known 
amount  of  standard  potassium  cyanide  solution 
to  the  neutral  nickel  solution  and  determining  the 
excess  by  conductometric  titration  with  silver 
nitrate  whilst  vigorously  agitating  the  solution.  The 
results  agree  closelv  with  those  obtained  by  Moore's 
method  (Chem.  News,  1895,  72,  92;  Z.  anal. 
Chem.,  1909,  48,  778).    (Cf.  J.C.S.,  Dec.)— A.  R.  P. 

Arsenic,    antimony   and   tin;   Separation   of    — — . 

F.  L.  Hahn.    Z.  anorg.  Chem.,  1922,  123,  276. 

The  separation  of  antimony  by  oxidation  to  pyro- 
antimonate  (cf.  Hampe,  J.,  1895,  302)  can  be  em- 
ployed for  the  estimation  of  antimony  in  the  pre- 
sence of  arsenic  and  tin. — W.  T. 

Analytical  chemistry;  Contradictions  and  errors  in 
.  /.  Precipitation  of  aluminium  by  thiosul- 
phate and  its  separation  from  iron.  11.  Ageing  of 
volumetric  thiosulphate  solutions.     F.  L.   Hahn, 

G.  Leimbach,  and  H.  Windisch.     Ber.,  1922,  55, 
3161—3165. 

The  precipitation  of  aluminium  by  thiosulphate 
under  the  customary  conditions  is  far  from  com- 
plete; it  is  almost  quantitative  when  the  solutions 
are  boiled  for  a  short  time,  and  the  aluminium  still 
in  solution  is  precipitated  by  bases.  An  almost  com- 
plete separation  of  aluminium  from  iron  can  be 
effected  if  a  very  weak  base,  preferably7  phenyl- 
hydrazine,  is  used.  The  addition  of  a  very  small 
amount  of  alkali  enables  thiosulphate  solutions  to 
be  preserved  without  alteration  in  strength  from 
the  first  day.  The  change  which  they  otherwise 
suffer  appears  to  be  caused  by  the  faintly  acid 
reaction  of  distilled  water;  it  certainly  does  not 
involve  the  formation  of  sulphite  or  sulphide. 

— H.  W. 

Copper;  Catalytic  reaction  for  the  detection  and  a 
method  for  the  estimation  of  the  smallest  traces 

of  .     F.  L.   Hahn  and  G.  Leimbach.     Ber., 

1922,  55,  3070—3074. 

When  a  solution  of  a  ferric  salt  is  added  to  a 
solution  of  sodium  thiosulphate  a  dark  violet 
coloration  is  developed  which  gradually  disappears 
as  the  ferric  salt  becomes  reduced  and  the  sodium 
thiosulphate  is  converted  into  tetrathionate.  The 
reaction  is  greatly  accelerated  by  the  presence  of 
copper  salts  and  its  completion  can  be  made  more 
obvious  by  the  addition  of  ammonium  thiocyanate 
to  the  mixture;  the  latter  substance  has  also  the 
advantage  of  retarding  the  action.  The  following 
solutions  are  required :  copper  sulphate  solution 
(3'9  g.  of  the  pentahydrate  per  litre,  of  which  1  c.c. 
is  diluted  to  1  litre  before  use) ;  ferric  solution  (5  g. 
of  iron  alum  and  25  c.c.  of  2  N  hydrochloric  acid 
per  litre);  5  M  ammonium  thiocyanate  solution; 
M 115  sodium  thiosulphate  solution.  For  the  recog- 
nition of  the  minutest  traces  of  copper,  two  litres  of 
the  iron  solution  should  be  mixed  with  10 — 20  c.c. 
of  thiocyanate  solution  ;  for  the  estimation  of  larger 
amounts,  more  thiocyanate  (up  to  200  c.c.)  may 
be  used.  For  the  estimation  a  solution  of  the 
substance  under  investigation  (as  neutral  as  is 
possible)     is  placed  in   a  beaker  of  about  500  c.c. 


Vol.  XLI.,  No.  23.) 


Cl.  xxiii.— analysis. 


963  a 


capacity  and  known  quantities  of  the  copper  solu- 
tion are  brought  into  a  series  of  similar  beakers. 
The  solutions  are  made  up  to  a  fixed  volume  with 
distilled  water  and  to  each  is  added  100  c.c.  of  the 
iron  thiocyanate  solution.  Simultaneously  (by 
means  of  a  row  of  test  tubes  fastened  to  a  rod  which 
can  be  rotated  horizontally)  25  c.c.  of  sodium  thio- 
sulphate  solution  is  added  to  each  beaker  and  the 
contents  are  well  mixed.  The  times  required  for 
decolorisation  (conveniently  10 — 20  mins.)  are  then 
compared.  The  velocity  of  the  reaction  depends  so 
largely  on  the  ratio  of  the  concentrations,  iron : 
thiocyanate:  thiosulphate,  on  the  degree  of  acidity 
and  the  temperature  that  it  is  scarcely  possible  at 
present  to  indicate  definite  intervals  of  time  for 
definite  quantities  of  copper.  It  is  necessary  to 
observe  the  progressive  decolorisation  in  the  solution 
under  investigation  and  in  solutions  of  known 
copper  content  simultaneously  and  to  use  a 
sufficient  volume  of  solution  (about  100  c.c.)  to 
avoid  the  effect  of  local  variations  in  temperature. 
The  smallest  amount  of  copper  which  can  be 
detected  with  certainty  under  these  conditions  is 
0'2  fig.  A  similar  effect  on  the  course  of  the  re- 
action has  not  been  observed  with  any  other 
substance  yet  investigated.  Acceleration  is  caused 
by  relatively  large  amounts  of  platinum,  but  the 
effect  is  so  little  marked  that  a  confusion  with 
copper  is  impossible.  Aluminium,  zinc,  nickel,  and 
arsenic,  in  particular,  retard  the  action  especially 
in  strongly  acid  solution.  If  such  metals  are  to  be 
investigated  with  regard  to  their  copper  content,  it 
is  essential  that  an  equal  weight  of  "  foreign  " 
metal  should  be  added  to  the  comparison  solutions ; 
in  this  manner,  the  presence  of  0'001%  of  copper 
in  nickel  can  be  detected  with  rapidity  and 
certainty. — H.  W. 

Bismuth;     Estimation     of     as     metal.       A. 

Kurtenacker  and  F.  Werner.     Z.  anorg.  Chem., 

1922,  123,  166—170. 
The  authors  found  that  dissolving  in  ferric  salt  and 
titrating  the  ferrous  salt  produced  by  potassium 
permanganate  was  a  reliable  method  for  the  estima- 
tion of  metallic  bismuth,  the  reaction  being 
3Fe"*  +  Bi  =  Bi"'  +  3Fe".  Ferric  chloride  is  more 
suitable  than  the  sulphate.  Reduction  of  bismuth 
nitrate  by  formaldehyde,  hypophosphorous  acid,  and 
alkali  stannite  gave  results  5%  too  low.  The  weight 
of  precipitate  (Bi)  was  a  fraction  of  1%  too 
high.  The  low  result  by  titration  is  due  to  a  small 
amount  of  bismuthous  oxide  being  found  in  the 
precipitate  (Bi'"+Fe"- =Bi""+Fe"),  this  requiring 
only  one-third  of  the  amount  of  iron  required  by 
the  metal.  Conditions  for  complete  reduction  to 
the  metal  could  not  be  found. — W.  T. 

Sulphuric  acid;  Determination  of  - ■  as  barium 

sulphate.  Evidence  of  the  existence  of  a  complex 
barium  sulphuric  acid.  D.  Balarew.  Z.  anorg. 
Chem.,  1922,  123,  69—82. 
The  sources  of  error  in  the  estimation  of  sulphuric 
acid  as  barium  sulphate  are  given  as  occlusion  of 
salts,  e.g.  barium  chloride,  by  the  precipitate,  occlu- 
sion of  mother  liquor,  and  the  formation  of  the  com- 
plex ion  [Ba5(SOj)r,],  the  last-named  being  the  chief 
source  of  error.  The  author  isolated  the  potassium 
salt  of  this  complex  anion  [Ba5(SOJ)r.]K2.  Error  due 
to  this  cause  is  reduced  to  a  minimum  by  precipi- 
tating slowly  from  a  dilute,  boiling  solution  acidified 
with  hydrochloric  acid.  Crystals  of  precipitated 
barium  sulphate  have  various  forms ;  the  prismatic 
form  corresponds  to  the  simple  salt.  The  chlorine 
content  of  barium  sulphate  is  not  caused  by  the  salt, 
BaClS04,BaCL— W.  T. 

Phosphoric  acid;  Use  of  benzidine  in  the  detection 

of  .     F.   Feigl.     Z.   anal.   Chem.,   1922,   61, 

448—454. 

The  solution  is  treated  with  ammonium  molybdate 


solution  and,  whether  a  precipitate  forms  or  not, 
filtered  through  a  close-textured  ashless  filter  paper. 
The  paper  is  treated  with  a  solution  of  benzidine 
hydrochloride  containing  acetic  acid  and  then  held 
over  an  ammonia  bottle.  If  phosphoric  acid  is 
present  a  blue  to  almost  black  colour  is  produced 
which  is  apparent  even  when  the  original  solution 
contains  only  1  part  of  P.O_,  in  300,000  of  water. 
The  method  serves  to  distinguish  phosphomolybdates 
from  arsenomolybdates  and  from  molybdic  acid,  both 
of  which  may  be  co-precipitated  under  certain  con- 
ditions.    (C'f.  J.C.S.,  Dec.)— A.  R.  P. 

Phosphoric    acid;    Iodometric    micro-estimation    of 

,  and  of  phosphorus  in  organic  compounds. 

O.   Svanberg,    K.   Sjbberg,   and   G.    Zimmerlund. 
Ark.  Kem.  Min.  Ge'ol.,  1922,  8,  [10],  1—17. 

An  improvement  on  Neumann's  method  for  the 
micro-estimation  of  phosphorus  is  described,  in 
which  the  phosphorus  is  precipitated  as  ammonium 
phosphomolybdate,  and  the  nitrogen  in  the  precipi- 
tate is  determined  by  Bang's  micro-Kjeldahl 
method,  the  excess  of  acid  remaining  after  absorp- 
tion of  the  ammonia  being  estimated  by  adding 
excess  of  potassium  iodide  and  potassium  iodate, 
and  titrating  the  liberated  iodine  with  thiosulphate. 
0'05 — l'OO  mg.  of  phosphorus  may  be  estimated  to 
within  2— 3%.— W.  O.  K. 

Boric  acid;  Titration  of  ,  in  presence  of  phos- 
phoric acid.  I.  M.  Kolthoff.  Chem.  Weekblad, 
1922,  19,  449—450. 

The  phosphoric  acid  is  titrated  first  with  sodium 
hydroxide  in  presence  of  excess  of  sodium  citrate, 
using  phenolphthalein  as  indicator.  Mannitol  is 
then  added,  and  the  boric  acid  titrated  in  the  usual 
way  ;  the  pink  coloration  must  persist  for  3  minutes. 
Calcium  and  magnesium  do  not  interfere.  (0/. 
J.C.S.,  Dec.)— S.  I.  L. 

Nitrous  acid;  Titration  of  alone  and  in  the 

presence  of  arsenious  acid.  A.  Klemenc  and  F. 
Pollak.  Z.  anal.  Chem.,  1922,  61,  448—454. 
An  excess  of  potassium  permanganate  solution  and 
sulphuric  acid  is  placed  in  a  stoppered  flask  carry- 
ing two  tubes  with  stopcocks,  one  tube  leading  below 
the  surface  of  the  liquid.  The  flask  is  filled  with 
carbon  dioxide,  then  partially  exhausted,  and  cooled 
in  ice.  The  neutral  nitrite  solution  is  run  in  and 
the  contents  of  the  flask  are  shaken  and  slowly 
heated  to  40°  C.  The  excess  of  permanganate  is 
determined  by  titration  with  oxalic  acid.  Under 
these  conditions  arsenious  acid  is  quantitatively 
oxidised  to  arsenic  acid.  If  present  in  the  solution 
it  may  be  determined  in  another  portion  by  titra- 
tion with  iodine  in  the  presence  of  excess  of  sodium 
bicarbonate.  Nitrous  acid  is  then  found  by 
difference.    (C/.  J.C.S.,  Dec.)— A.  R.  P. 

Gases;    Portable    apparatus   for    the    analysis    of 

[determination    of   carbon   dioxide    in]    ■   by 

the    dry   method.      H.    Strache    and    K.    Kling. 
Feuerungstech.,  1922,   11,  13—15. 

A  double-acting  pump  is  arranged  to  deliver  a  fixed 
quantity  of  gas  for  analysis  into  an  absorption 
flask  of  constant  volume,  after  removing  an  equal 
volume  of  gas  free  from  carbon  dioxide.  The  carbon 
dioxide  is  removed  from  the  sample  by  means  of 
solid  potash,  and  the  fall  in  pressure  gives  a 
measure  of  the  amount  present.  The  walls  of  the 
flask  are  kept  moist  to  prevent  reduction  of  pressure 
due  to  absorption  of  moisture.  The  apparatus  is 
enclosed  in  a  small  box  which  is  quite  portable. 
Only  one  tap  is  used,  this  having  three  sets  of 
borings,  controlling  the  flow  of  gas  through  nine 
leading  tubes.  Each  analysis  takes  from  10  to 
20  sees.— W.  P. 


964  a 


PATENT   LIST. 


[Dec.  15,  1922. 


Gas  analysis;    Apparatus  for  exact  .     K.   A. 

Schaller  and  W.  Berndt.     Chem.-Zeit.,  1922,  46, 

972—973. 
The  apparatus  consists  of  a  manometer,  a 
measuring  tube  immersed  in  a  water  jacket  with 
air  agitation,  and  a  detachable  absorption  vessel 
with  its  own  adjustable  mercury  reservoir.  The 
passage  of  the  mercury  from  the  manometer  into 
the  measuring  tube  is  prevented  by  a  special 
U-tube  containing  at  its  lowest  point  either  a  con- 
striction or  a  throttle-cock.  All  the  operations  of 
gas  analysis  can  be  carried  out  in  this  apparatus 
except  explosions,  for  which  the  absorption  vessel 
is  replaced  by  a  eudiometer.  The  procedure  for 
determining  carbon  dioxide,  heavy  hydrocarbons, 
oxygen,  carbon  monoxide,  and  the  combustion  of 
hydrogen,  methane,  and  ethane  is  described. 

— H.  C.  R. 

Analytical  notes.  III.  [Defection  of  urea,  and 
determination  of  proteolytic  enzymes.]  L. 
Pincussen.     Biochem.  Zeits.,  1922,  132,  242—244. 

Urea  is  best  detected  in  a  fluid  free  from  ammonia 
by  addition  of  urease  at  pa  7'0— 7'2,  keeping  at 
55°  C.  for  15  minutes,  then  adding  two  drops  of 
saturated  sodium  carbonate  solution  and  detecting 
the  liberated  ammonia  by  litmus  paper.  If  the 
liquor  contains  ammonia  originally  it  is  removed  by 
shaking  with  permutite  (0'2  g.  per  c.c).  A  quan- 
titative method  for  estimating  proteolytic  enzymes 
is  described  which  depends  on  the  micro-Kjeldahl 
estimation  of  the  non-protein  nitrogen  formed  by 
digestion.  Unchanged  protein  is  removed  by 
colloidal  iron.— H.  K. 

Bingham  viscosimeter;  Drainage  error  in  the . 

W.  H.  Herschel.     J.  Ind.  Eng.  Chem.,  1922,  14, 
724. 

An  instrument  similar  to  the  Bingham  viscosimeter 
was  so  arranged  that  the  drainage  error  could  be 
measured  by  calibration  with  liquids  of  various 
viscosities,  and  the  results  are  embodied  in  a  graph, 
from  which  correction  factors  may  be  taken  to 
correct  the  results  obtained  with  liquids  having 
higher  viscosities  than  the  calibrating  liquid.  The 
time  of  flow  to  render  the  drainage  error  negligible 
is  also  shown. — H.  M. 

See  also  pages  (a)  928,  Metallurgical  coke  (Kenney 
and  Perrott).  932,  Coke  residue  of  creosote  oils 
(Reeve  and  Yeager) ;  Pernitric  acid  as  analytical 
reagent  (Trif onow) ;  Anthraquinone  (Nelson  and 
Senseman) ;  /3-2V 'aphthylamine  (Lee  and  Jones). 
933,  H-Acid  and  intermediates  (Lynch).  934,  Wood 
(Mahood  and  Cable).  935,  Alkali-resistant  cellulose 
(Waentig).  936,  Piezo-micrometer  (Strachan).  937, 
Phosphoric  acid  and  phosphates  (Moerk,  also  Moerk 
and  Hughes).  940,  Titanium  in  ferrous  products. 
944,  Fat-constants  (Lund);  Separating  solid  and 
liquid  fatty  acids  (Meigen  and  Neuberger).  946, 
Fineness  and  bulk  of  pigments  (Gardner  and  others). 
950,  Fungi  and  actinomycetes  in  soil  (Conn) ;  Sugar 
purity  (Home).  951,  Diastatic  power  (Windisch 
and  others).  953,  Flours  (Fornet) ;  Acids  in  silage 
(Zielstorff  and  Benirschke).  956,  Tartaric  acid 
(Simon  and  Zivy).  957,  Nitro-compounds  (Prins) ; 
Nitrobenzene  in  bcnzaldehyde  (Reclaire).  958, 
Citronella  oil  (Salamon);  Lemon  oil  (Ajon). 

Patents. 
Gas  analysing   apparatus.      Svenska   Aktiebolaget 

Mono.  E.P.  162,249,  19.4.21.  Conv.,  23.4.20. 
In  a  gas  analysing  apparatus  of  the  type  described 
in  E.P.  103,812  (J.,  1918,  447  a),  wherein  two  or 
more  series  of  analyses  are  carried  out  and  a  deter- 
mination of  one  or  more  constituents  of  the  mixture 
included  in  all  the  analyses,  means  are  provided  for 
obtaining  a  single  common  record  of  the  successive 
alternate    analyses,    the    record    consisting    of    a 


number  of  adjacent  lines  extending  in  the  same 
direction.  Thus  the  device  may  be  applied  to  the 
analysis  of  smoke  in  such  manner  that  in  every 
alternate  analysis  the  percentage  of  carbon 
dioxide  is  recorded,  while  in  the  others,  the  per- 
centage of  carbon  dioxide,  carbonic  oxide,  hydro- 
carbons and  hydrogen  is  recorded. — J.  S.  G.  T. 

Pyrometer;     Optical    for    measuring     high 

temperatures.      M.    Lockhoven.      G.P.    357,975, 
5.12.20. 

Rays  of  light  from  a  sheet  of  refractory  material 
suspended  at  a  place  at  which  it  is  desired  to 
measure  the  temperature  are  transmitted  through 
a  long  tube  to  a  polariser  and  thence  through  a 
plate  of  quartz  or  other  optically-active  material 
to  an  analyser.  The  degree  of  rotation  of  the  plane 
of  polarisation  of  the  transmitted  light  affords  a 
means  of  estimating  the  temperature  of  the  sheet 
of  refractory  material.- — L.  A.  C. 

Calorific   value   of   gases;    Method  and   apparatus 

for    determining    the    .       C.    H.    Lanphier. 

U.S. P.  1,432,472,  17.10.22.  Appl.,  23.6.19. 

See  E.P.  184,025  of  1921 ;  J.,  1922,  791  a 


Patent    List. 

The  dates  given  in  this  list  are.  in  the  oase  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given :  they  are  on 
sale  at  Is.  each  at  the  Patent  Office.  Sale  Branch.  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.-^GENERAL;    PLANT;    MACHINERY. 
Applications. 

Barbet  et  Fils  et  Cie.  Distillation  and  rectifica- 
tion.    31,846.     Nov.  21.     (Fr.,  21.11.21.) 

Bewsher.    Valves  for  acids  etc.    31,329.    Nov.  16. 

Bradley  Pulverizer  Co.  Grinding-mills.  30,975-6. 
Nov.  16.     (U.S.,  16.11.21.) 

Braithwaite  and  Co.,  and  Smith.  Crystallisation 
of  matter  in  solution  from  liquids.  31,877-8. 
Nov.  22. 

Farbw.  vorm.  Meister,  Lucius,  u.  Briining. 
Apparatus  for  absorbing  gases  etc.  by  means  of 
charcoal.     31,373.     Nov.   16.     (Ger.,   30.12.21.) 

Fraisse.  Concentrating  liquids  by  evaporation. 
31,372.     Nov.  16.     (Fr.,  5.12.21.) 

Ful'lerton,  Hodgart,  and  Barclay,  and  Holmes. 
Evaporators  etc.     31,320.     Nov.  16. 

Gas  Light  and  Coke  Co.,  Shannan,  and  Sidcrfin. 
Conduct  of  chemical  reactions  involving  use  of 
gases  etc.  under  pressure.     31,596.     Nov.  18. 

Gas  Light  and  Coke  Co.,  Shannan,  and  Siderfin. 
Crystallisation.     31,597.     Nov.  18. 

Harper  and  Lamplough.  Retorts  or  stills. 
31,156-7.     Nov.  14. 

Jung.  Filter  etc.  press.  32,160.  Nov.  24. 
(Ger.,  19.5.22.) 

Kilner  and  Stevens.  Separation  and  storage, 
conveyance  of  solids  and  liquids,  and  production  of 
composite  fad.     31,126.     Nov.  14. 

Lacy.  Apparatus  for  recovering  solvents  by 
distillation.     31,901.     Nov.  22. 

Laing  and  Nielsen.     31,807.     See  II. 

Lancaster,  Langford,  and  Winget,  Ltd.  Machine 
for  mixing  or  washing  viscous,  plastic,  etc.  sub- 
stances.    31,719.     Nov:  20. 

Lockhart.  Centrifugal  separators.  32,111.  Nov.  23. 

Lockhart.   Hydraulic  separators.  32,112.  Nov.  23. 

Monson.  Treatment  of  liquid  and  fatty  sub- 
stances.    31,458.     Nov.  17. 


Vol.  XLI.,  No.  23.) 


PATENT  LIST. 


965  a 


Morgan,  and  Thermal  Industrial  and  Chemical 
Research  Co.  Method  of  distillation.  31,012 
Nov.  13. 

Ward.     Filtering  liquids  etc.     31,933.     Nov.  22. 

Wood.     Drying-apparatus.     31,785.     Nov.  21. 

Complete  Specifications  Accepted. 

13,161  (1921).  Nitrogen  Corp.  Production  of 
catalysts.     (163,046.)     Nov.  22. 

16,547  (1921).  Rigby.  Heating  or  cooling 
liquids  or  admixed  solids  and  liquids  in  evaporative 
or  like  treatment.     (188,703.)     Nov.  29. 

18,395  (1921).  Plauson's  (Parent  Co.),  Ltd. 
(Plauson).     Filter  press.     (188,362.)     Nov.  22. 

19,240  (1921).  Sutcliffe  and  Raper.  Recovery  of 
gasps  or  vapour  from  charcoal  etc.  (188,723.) 
Nov.  29. 

21,926  (1921).  Lambert.  Manufacture  of  ab- 
sorbents or  adsorbents  of  condensible  gases  and 
vapours.     (188,786.)     Nov.  29. 

22,703  (1921).  Stehmann.  Rotary  calcining 
furnaces.     (188,424.)     Nov.  29. 

26,347  (1921).  Seedorff,  Barfred,  and  George. 
Tunnel  furnaces  or  kilns.     (188,488.)     Nov.  22. 

30,874  (1921).  Timm.  Filtering  apparatus. 
(188,539.)     Nov.  22. 

301  (1922).  Frankeniberger.  Dry  grinding 
cylinders.     (188,581.)     Nov.  22. 

23,911  (1922).  Rigbv.  Preheaters  for  evapo- 
rators etc.     (188,623.)     Nov.  22. 


II.— FUEL;      GAS;      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE    DISTILLATION; 

HEATING;    LIGHTING. 

Applications. 

Algem.  Norit  Maatsch.  and  General  Norit  Co. 
Production  of  decolorising-carbon.  31,686.  Nov.  20. 
(Holland,  19.11.21.) 

Amato.  Treatment  of  petroleum  etc.  32,059. 
Nov.  23. 

Appleby  and  Bentley.  Gas  producers,  retorts, 
etc.     31,122.     Nov.  14.' 

Davidson.     Gas  purification.     32,317.     Nov.  25. 

Dunstan  and  Thole.  Utilisation  of  alcohol  in 
production  of  liquid  fuel.     31,314.     Nov.  16. 

General  Norit  Co.  and  N.  V.  Algem.  Norit 
Maatsch.  Apparatus  for  revivifying  finely-divided 
decolorising-carbon  etc.  31,008.  Nov.  13.  (Holland, 
14.11.21.) 

Goldman.  Producing  carbon-black  etc.  31,004. 
Nov.  13. 

Haller  and  McLaren.  Utilising  waste  gases  from 
furnaces.     31,940.     Nov.  22. 

Harper  and  Lamplough.     31,156-7.     See  I. 

Kilmer  and  Stevens.     31,126.     See  I. 

Koppers.  Apparatus  for  degasifying  or  distilling 
gas  from  non-coking  bituminous  materials  at  low 
temperatures.     31,962.     Nov.  22. 

Laing  and  Nielsen.  Rotary  retorts,  kilns,  etc. 
31,807.     Nov.  21. 

Levy.     31,235.     See  XXIII. 

Loriette.  Production  of  liquid  fuel  mixtures  with 
alcohol  as  basis.    31,786.    Nov.  21.     (Fr.,  21.11.21.) 

Lucas,  and  V.  L.  Processes,  Ltd.  Treatment  of 
hydrocarbons  and  their  derivatives.  32,219. 
Nov.  24. 

McLaren,  Thomas,  and  Powdered  Fuel  Plant  Co. 
Drying  pulverulent  fuel.     31,231.     Nov.  15. 

Masterman  and  Weygang.     31,172.     See  XII. 

Robertson  (Power  Specialty  Co.).  Distilling  oil. 
32,108-9.     Nov.  23. 

Simmance.     31,235  and  31,450.     See  XXIII. 

Wilkinson.  Chemical  process  for  facilitating  com- 
bustion of  coal  dust  in  furnaces  etc.  32,120. 
Nov.  24. 


Complete  Specifications  Accepted. 

13,758  and  20,968  (1921).  Plauson's  (Parent  Co.), 
Ltd.  (Plauson).  Extraction  of  hydrocarbons  from 
shale,  wood,   etc.     (188,686.)     Nov.  29. 

1  1,153  (1921).  Rergh  and  Larsson.  Furnaces  for 
utilising  bituminous  shale  by  distillation  and  subse- 
quent combustion.     (188,693.)     Nov.  29. 

16,806  (1921).  Siemens  Bros,  and  Co.,  and  Le 
Marc'chal.     See  X. 

18,092  (1921).  Burnie  (Bitumul-Matita  Soc. 
Anon.  Romana).  Manufacture  and  treatment  of 
bitumen.     (188,354.)     Nov.  22. 

18,441  (1921).  Technical  Research  Works,  and 
Pelly.     Lubricants.     (188,364.)     Nov.   22. 

21,321  (1921).  Walker.  Fractional  distillation  of 
crude  naphtha.     (188,402.)     Nov.  22. 

22,460  (1921).  Hart.  Production  of  carbon. 
(188,807.)     Nov.  29. 

25,181  (1921).  Nicholls  and  Brown.  Manufacture 
of  liquid  fuel  from  peat.     (188,469.)     Nov.  22. 

28,900  (1921).  Hovey.  Obtaining  light  hydro- 
carbon distillates  from  heavier  hydrocarbons. 
(188,923.)     Nov.  29. 

34,846  (1921).     China  and  others.     See  III. 

4745  (1922).  Egeling.  Saturators  for  use  in  re- 
covering salts  from  gases  of  dry  distillation. 
(175,649.)     Nov.  22. 

5118  (1922).  Beswick  and  Rambush.  Manufac- 
ture of  producer-gas  and  recovery  of  high  yields  of 
by-products.     (188,607.)     Nov.  22. 

19,703(1922).    Elektrizitiitswerk  Lonza.    See  XX. 


III.— TAR    AND    TAR    PRODUCTS. 

Applications. 

Lucas  and  others.     32,219.     See  II. 

Vivian.     Treatment  of  tar  etc.    32,174.    Nov.  24. 

Complete  Specification  Accepted. 

34,846  (1921).  China,  and  Burt,  Boulton,  and 
Haywood.  Apparatus  for  distilling  coal  tar, 
petroleum,  etc.     (188,575.)     Nov.  22. 


P7.— COLOURING    MATTERS    AND    DYES. 

Applications. 

Bloxam  (Chem.  Fabr.  Griesheim-Elektron). 
Manufacture  of  azo  dyestuffs.     32,080.     Nov.  23. 

Gas  Light  and  Coke  Co.,  Lewcock,  and  Voss. 
Manufacture  of  sulphurised  dyes.    31,595.    Nov.  18. 

Hollidav  and  Co.,  and  Clayton.  Colouring- 
matters.  '31,413  and  31,427.    Nov.  17 

Holliday  and  Co.,  and  Stokes.  Colouring-matters. 
31,406.    Nov.  17. 

Imray  (Soc.  Chem.  Industry  in  Basle).  Manu- 
facture of  azo  dyestuffs.     31,254.     Nov.  15. 

Complete  Specification  Accepted. 

29,289  (1921).  British  Dyestuffs  Corp.,  and 
Wyler.  Manufacture  of  phenylglycine  compounds. 
(188,933.)     Nov.   29. 


V.— FD3RES;    TEXT^ES;    CELLULOSE; 
PAPER. 

Applications. 

Bacon  and  Sindall.     Sizing  and  hardening  paper 
etc.     31,469.     Nov.  17. 

Goransson.     31,331.     See,  XV. 


966  a 


PATENT   LIST. 


[Dec.  15,  1922. 


Complete  Specifications  Accepted. 

18,501  (1921).  Wade  (Barrett  Co.).  Manufacture 
of  fibrous  material.     (166,886.)     Nov.  29. 

23,354  (1921).  Steinhilber.  Recovery  of  cellulose 
from  reeds  etc.     (188,828.)     Nov.  29. 


VI.— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Applications. 

Ashworth.  Machines  for  dyeing  etc.  yarns  in 
hanks  etc.     31,198.     Nov.  15. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Dyeing  artificial  silk  etc.     31,3S2.     Nov.  16. 

British  Dyestuffs  Corp.,  Green,  and  Saunders. 
Printing  fabrics  containing  fibres  of  acetate  silk 
31,383.     Nov.  16. 

Moseley.  Agents  for  scouring,  bleaching,  dyeing 
etc.    31,078.    Nov.  14. 

Complete  Specifications  Accepted. 

22,512  (1921).  Deutsche  Gold-  u.  Silber-Scheide- 
anstalt,  and  Schaidhauf.  Bleaching  textile  fibres 
(188,811.)     Nov.  29. 

7884  (1922).  Bloxam  (A.-G.  f.  Anilinfabr.). 
Dyeing  furs,  hairs,  etc.     (189,046.)    Nov.  29 

10,913  (1922).  Bloxam  (A.-G.  f.  Anilinfabr.). 
Dyeing  furs,  skins,  hairs,  feathers,  etc.  (189,054.) 
Nov.  29. 


VII.— ACIDS;    ALKALIS;    SALTS;    NON- 
METALLIC    ELEMENTS. 

Applications. 

Blattner  (Grouchkine).  Manufacture  of  caustic 
alkali.     31,370.     Nov.  16. 

British   Cyanides   Co.,    and   Rossiter.     Manufac- 
ture of  caustic  alkali  and  metallic  chlorides     32  294 
Nov.  25. 

Cocksedge.  Production  of  a  sodium  compound 
31,184.     Nov.  15. 

Daniels  Manufacture  of  crystallised  carbonate 
of  soda.     30,964.     Nov.  13. 

Fairweather  (Federal  Phosphorus  Co.).     Produc- 

o1,0^-^0'     Phosphoric     acid     and     ferrophosphorus 
31,9(3.     Nov.  22. 

Jackson  (Koppers  Co.).  Treatment  of  alkali 
salt  solutions.     31,848.     Nov.  21. 

Lever  Bros.,  Tainsh,  and  Thomas.  Manufacture 
of  caustic  soda.     31,516.     Nov.  17. 

Lever  Bros.,  Thomas,  and  Williams.  Manufac- 
ture of  caustic  soda.     31,517.     Nov.  17. 

Llewellyn,  Spence,  and  Spence  and  Sons.  Pro- 
duction of  aluminous  compounds.     31,211.    Nov.  15. 

Nicholson.  Neutralising  ammonium  sulphate 
32,134.     Nov.  24. 

Thompson  (Atack  and  Jacobson).  Manufacture 
of  aluminium  chloride.     30,933.     Nov.  13. 

Complete  Specifications  Accepted. 

13,162  (1921).  Nitrogen  Corp.  Preparation  of 
mixtures  of  nitrogen  and  hydrogen  suitable  for  the 
production  of  ammonia.     (163,047.)     Nov   29 

13,813  (1921).  Nitrogen  Corp.  Production  of 
y/io^ol  °r  mixtures  of  nitrogen  and  hydrogen, 
(.lo.i,  /(k>.)     Nov.  29. 

16,743  (1921).  Mau.  Manufacture  of  concen- 
xt  ™  hydrogen  peroxide  solution.  (167,156  ) 
■Nov.  29. 

22,393  (1921).  L'Air  Liquide  Soc.  Anon.  Syn- 
thesis of  ammonia.     (171,970.)     Nov.  22. 


Syn- 


23,740  (1921).  L'Air  Liquide  Soc.  Anon, 
thesis  of  ammonia.  (171,972  )  Nov  29 
,24,586  (1921).  Plauson's  (Parent  Co.),  Ltd 
(Plausonj.  Obtaining  alkali  salts  from  felspar  and 
like  minerals.     (188,454.)     Nov    22 

25,219  (1921).  Plauson's  (Parent  Co.),  Ltd 
(Plauson).  Manufacture  of  colloidal  sulphur 
(188,854.)     Nov.  29. 

.  25,937  (1921).  Wetzlar  (Pauling).  Converting 
into  sulphates  by  means  of  nitric  acid,  metals  and 
alloys  insoluble  or  only  gradually  soluble  in 
sulphuric  acid.     (188,868.)     Nov.  29 

27,188  (1921).     West,  Jaques,  and  Tully.     Manu- 
facture   of   hydrogen    or   gases    rich    in   hydrogen 
(188,494.)     Nov.  22. 

31,941   (1921).      Aktieselskabet   Labrador.      Pre- 
cipitation of  iron  in  mineral  acid  alumina  solutions 
(172,944.)     Nov.  29. 

32,859  (1921).  Bichowsky  and  Harthan.  Pro- 
duction of  titanium  nitrogen  compounds.  (188,558.) 
Nov.  22. 

712  (1922).  Royston.  Apparatus  for  neutral- 
ising sulphate  of  ammonia  in  wet  state.  (188,587.) 
Nov.  22.  ' 

4745  (1922).    Egeling.    See  II. 

21,997  (1922).  Ephraim.  Production  of  sulphides 
and  hydrosulphides  of  the  alkali  metals.  (184,795.) 
Nov.  29. 


VIII.— GLASS;    CERAMICS. 

Applications. 

Heathcote  and  Mawson.  Enamel.  32,261.  Nov.  25. 
Salerni.     Abrading  materials.     32,310.     Nov.  25. 

Complete  Specifications  Accepted. 

19,149  and  19,851  (1921).  Parsons,  Peddle,  and 
Duncan.  Manuiacture  of  optical  glass.  (188,721  ) 
Nov.  29. 

24,466  (1921).  British  Thomson-Houston  Co. 
(General  Electric  Co.).  Manufacture  of  silica  glass. 
(188,451.)     Nov.  22. 


IN.— BUILDING    MATERIALS. 
Applications. 


Asbestos    compositions. 


Cloke.   Compound  for  surfacing  roads  etc.  31,970 
Nov.  22. 

Commin    and    Hughes. 
31,020.     Nov.  13. 

Pearlman.     Composition  for  coating  stonework. 
31,217.    Nov.  15. 

Spence  and  Wake.     Binding-material   for  road- 
making  etc.     31,819.     Nov.  21. 


X.— METALS;     METALLURGY,    INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Barron,  Halliwell,  and  Hindley.  Cementation  of 
iron  or  steel  etc.  articles.    31,180.     Nov.  15. 

Blower.     Brazing  flux.     31,553.     Nov.  18. 

Campbell.  Production  of  steel  alloys  having  low 
content  of  carbon.     31,011.     Nov.  13. 

Carbonex,  Ltd.,  and  Rodwell.  Materials  for 
hardening  iron  or  steel.     31,939.     Nov.  22. 

Coley.     Apparatus  for  reducing  ores  or  oxides. 

31.321.  Nov.   16. 

Coley.     Apparatus  for  manufacture  of  zinc  etc. 

31.322.  Nov.  16. 


Vol.  XIX,  No.  23.] 


PATENT   LIST. 


907  a 


Corning  Glass  Works.  Steel  for  mould  materials. 
31,146.    Nov.  14.    (U.S.,  17.11.21.) 

Diehl.  Preparation  and  smelting  of  ores,  slags, 
etc.     31,127.     Nov.  14. 

Edwards.  Treatment  of  oxidised  ores  etc. 
31,685.     Nov.  20. 

Eureka  Metallurgical  Co.  Flotation  processes. 
31,843.     Nov.  21.     (U.S.,  4.3.22.) 

Eustis.     Electrolytic  iron.     31,93.5-6.     Nov.  22. 

Evans  and  Hamilton.  Manufacture  of  iron  and 
steel  alloys.     31,052.     Nov.  14. 

Fairweather.     31,973.     See  VII. 

Foxley.     Alloys.    31,990.     Nov.  22. 

Golby  (Luckenbach  Processes,  Inc.).  Concentra- 
tion of  ores.     30,968.     Nov.  13. 

Hall  and  Ransford.  Rustproofing  metals.  31,599. 
Nov.  18. 

Hall  and  Ransford.  Colouring  metal  sheets  etc. 
31.600.     Nov.  18. 

Sunderland  and  Suteliffe.  Annealing  or  heating 
furnaces  etc.     31,539.     Nov.  18. 

Wagner.  Extraction  of  metals  from  ores  etc. 
31,791.     Nov.  21. 

Complete  Specifications  Accepted. 

16,263  (1921).  Bloxam  (Aluminium  Co.  of 
America).     Aluminium  alloys.     (188,699.)     Nov.  29. 

16,806  (1921).  Siemens  Bros,  and  Co.,  and  Le 
Marechal.  Production  of  tungsten  and  tungsten 
filaments.     (188.706.)     Nov.  29. 

18,857  (1921).  British  and  Foreign  Chemical 
Producers  (Vogel).  Pickling  iron  or  iron  allovs. 
(188,713.)     Nov.   29. 

20,533  (1921).  Lenegre.  Manufacture  of  pig 
iron.     (167,475.)     Nov.  22. 

25,818  (1921).  "Wetzlar  (Pauling).  Extraction  of 
metals  from  ores  with  nitric  acid.  (188,865.) 
Nov.  29. 

26,351  (1921).  Dubreul.  Treatment  of  compound 
minerals.     (169,990.)    Nov.  22. 

28,288  (1921).  Hess.  Recovery  of  light  metals 
from  chippings,  residues,  and  ashes.  (175,242.) 
Nov.  22. 

32,002  (1921).  Vulkan-Werk  Reinshagen  u.  Co. 
Blast  and  cupola  smelting  furnaces.  (183,11s.) 
Nov.  22. 

1600  (1922).  Harris.  Refining  lead.  (189.013.) 
Nov.  29. 


XI.— ELECTRO-CHEMISTRY. 

Applications. 

Baumgartner.  Electrodes.  31,430.  Nov.  1". 
(Ger.,  12.5.22.) 

Bianco.  Zinc  electrolytes.  31,376.  Nov.  16. 
(Austria,  17.1.22.) 

Eustis.     31,935-0.     See  X. 

Jacobacci.  Lead  storage  batteries.  31.357. 
Nov.  16. 

Rennerfelt.  Method  of  heating  materials,  and 
electric  furnace  therefor*.     31,6*9.     Nov.  20. 

Complete  Specification  Accepted. 

20,437  (1921).  Vesme.  Increasing  the  output  of 
gas  trom  electrolytic  apparatus.  (188,370.)  Nov.  22. 


XII— FATS;    OILS;    WAXES. 

Applications. 

Dujardin.     31.632.     See  XIX. 
Hughes.     Soaps  etc.     31,988.     Nov.  22. 


Masterman  and  Weygang.     Treatment  of  oils  and 
fats  for  fuel,  soap,  etc.     31,172.     Nov.  14. 
Monson.     31,458.     See  I. 

Complete  Specifications  Accepted. 

20.707  (1921).  Lobell.  Expression  of  vegetable 
oils  from  natural  products.     (167,487.)     Nov.  22. 

28,548  (1921).  Rocca,  Tassv,  et  de  Roux.  Extrac- 
tion of  palm  kernel  oil.     (17*1,680.)     Nov.  29. 


XIII— PAINTS;    PIGMENTS;    VARNISHES; 
RESIX>. 

Applications. 

Behr  and  Co.,  and  Crupi.  Waterproof,  flexible, 
abrasive-holding  composition  etc.     30,984.    Nov.  13. 

Goldman.  31,004.     See  II. 

Goldschmidt  A.-G.  Production  of  amorphous 
finely-divided  litharge.  31.248.  Nov.  15.  (Ger., 
15.11.21.) 


XIV.— INDIA-RUBBER  ;    GUTTA-PERCHA. 

Applications. 

Bolton  and  Cuthbe.  Manufacture  of  rubber  com- 
pounds.    31,837.     Nov.  21. 

Tanner  and  Tarver.  Products  obtained  from 
rubber-containing  latex.     31,301.     Nov.  16. 

Tanner  ■  and  Tarver.  India-rubber  products. 
32,147.     Nov.  24. 

Compete  Specification  Accepted. 

25,263  (1921).  Hubbard  and  Crouch.  Preparing 
rubber  goods  for  vulcanisation.    (188,856.)    Nov.  29. 


XV.- LEATHER;  BONE;  HORN;  GLUE. 

Application. 

Gbransson.    Manufacture  of  impregnated  leather, 
pasteboard,  etc.     31,031.     Nov.  16. 

Complete  Specifications  Accepted. 

21,296  (1921).       Peradotto.       Tanning-apparatus. 
(167,771.)     Nov.  22. 

10,913  (1922).     Bloxam.     See  VI. 


XVII.— SUGARS;     STARCHES;     GUMS. 
Complete  Specification  Accepted. 

33,719  (1921).  Reychler.  Preparation  of  solu- 
tions of  starch.     (188,992.)     Nov.  29. 

XVIII.— FERMENTATION     INDUSTRIES. 

Applications. 

Barbet  et  Fils  et  Cie.  Production  of  alcohol. 
31.258.     Nov.  15.     (Fr.,  15.11.21.) 

Bexon  and  Church.     Brewing.     31,695.    Nov.  20. 

Lazarus.  Extraction  of  malt  for  brewing. 
31,445.     Nov.  17. 

Marmite  Food  Extract  Co.  (Sevang).  Manufac- 
ture of  yeast.     31,609.     Nov.  18. 

Marmite  Food  Extract  Co.  (Sevang).  32,212. 
See  XIX. 


968  a 


PATENT   LIST. 


IDec.  15,  1922. 


XIX.— FOODS;    WATER    PURIFICATION; 
SANITATION. 

Applications. 

Becco  Engineering  and  Chemical  Co.,  and  Grant. 
Treatment  of  waters  containing  alkaline  bi- 
carbonates  etc.     31,977.     Nov.  22. 

Boby,  Boby,  and  Froude.  Water-softener.  32,172. 
Nov.  24. 

Broadbent.     Mustard.     31,069.     Nov.  14. 

Brogdex  Co.  Treatment  of  fruit  etc.  31,297. 
Nov.  16.     (U.S.,  16.11.21.) 

Dietrich,  Ruppel,  and  Ekktro-Osmose  A.-G. 
Purification  of  water.     31,698.     Nov.  20. 

Dujardin.  Manufacture  of  cattle-feeding  cakes 
and  oil.     31,632.     Nov.  20. 

Fairrie.  Manufacture  of  fish  meal  etc.  31,781-3. 
Nov.  21. 

Gerstenberger.     Food  product.    31,103.     Nov.  14. 

Marmite  Food  Extract  Co.  (Savang).  Manufac- 
ture of  foodstuffs  from  yeast.     32,212.     Nov.  24. 

Munton  and  Baker,  and  Townsend.  Production 
of  cereal  foods.     31,716.     Nov.  20. 

Complete  Specifications  Accepted. 

13,276  (1921).  Mills.  Blood  coagulation  media. 
(171,959.)     Nov.  22. 

19,265  (1921).  Henneberg.  Separation  of  micro- 
organisms from  liquids.     (188,724.)     Nov.  29. 

21,013  (1921).  Leo.  Production  of  a  jelly  base 
containing  pectin.     (18S,337.)     Nov.  22. 

21,828  (1921).  Jones  and  Smith.  Antifouling 
and  non-corroding  mixtures  for  treatment  of  water. 
(188,778.)     Nov.  29. 

23,530  (1921).  Threlfall  and  King.  Manufacture 
of  products  useful  as  food  or  medicine.  (188,437.) 
Nov.  22. 

31,164  (1921).  Activated  Sludge,  Ltd.,  and 
Coombs.  Treatment  of  sewage  and  like  liquid. 
(188,958.)    Nov.  29. 


XX— ORGANIC   PRODUCTS;   MEDICINAL 
SUBSTANCES;    ESSENTIAL    OILS. 

Applications. 

Nobel  Lidustries,  Ltd.  (Du  Pont  de  Nemours  and 
Co.).  Production  of  urea  derivatives.  32,095. 
Nov.  23. 

Pereira.  Manufacture  of  dioxvperylene.  31,257. 
Nov.  15.     (Austria,  7.1.22.) 


Soc.  Chim.  Usines  du  Rhone.  Manufacture  of 
calcium  salt  of  acetylsalicylic  acid.  31,384.  Nov.  16. 
(Ger.,  6.12.21.) 

Complete  Specifications  Accepted. 

20,758  (1921).     Klages,  and  Saccharinfabr.  A.-G. 

vorm.  Fahlberg,  List  u.  Co.    Production  of  aromatic 

cvan-mercury  compounds.     (188,376.)     Nov.  22. 

'  21,763  (1921).       Wolvekamp.       Salts  of  oxidised 

protalbinic  and  lysalbinic  acids.    (188,772.)   Nov.  29. 

23,530  (1921).     Threlfall  and  King.     See  XIX. 

29,042  (1921).  Napp  (Hoffmann-La  Roche  &  Co.). 
Manufacture  of  a  compound  of  CC-isopropylallyl- 
barbituric  acid.     (188,521.)     Nov.  22. 

19,703  (1922).  Elektrizitatswerk  Lonza.  Manu- 
facture of  metaldehvde  and  obtaining  fuel  bodies 
therefrom.     (189,074'.)     Nov.  ^9. 


XXI.— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Application. 
Cohen.     Phoographic  films.     31,262.     Nov.  15. 

Complete  Specification  Accepted. 

14,031  (1921).  Lage.  Production  of  coloured 
photographs  on  paper  etc.     (188,692.)     Nov.  29. 

XXII.— EXPLOSIVES ;     MATCHES. 

Application. 

Pickett.  Freeing  metal  casings  of  ammunition 
from  gas  fillings,  and  treatment  of  such  fillings. 
32,083.     Nov.  23. 

XXIII.— ANALYSIS. 

Applications. 

Lew  and  Simmanoe.  Gas  analysis.  31,235. 
Nov.  15. 

Scott,  Ltd.,  and  Woodroffe.  Apparatus  for  deter- 
mining volumetric  proportion  of  gases  in  mixtures. 
32,136.     Nov.  24. 

Simmance  and  Wood.  Indicating  or  recording 
apparatus  for  gas  analysis.     31,450.     Nov.  17. 


Vol.  XLI..  No.  24.] 


ABSTRACTS 


[Dec.  30,  1922. 


I.— GENERAL;  PLANT;  MACHINERY. 

Colloids;  Bole  of  the  hydrogen  ion  concentration  in 

the    precipitation  of  .      H.   V.   Tartar  and 

Z.   J.   Gailey.      J.   Amer.   Chem.    Soc,   1922,   44, 
2212—2218. 

Acids  cause  the  precipitation  of  mastic  and  gamboge   i 
sols  at  the  same  hydrogen  ion  concentration  irre- 
spective of  the  concentration  of  the  colloid;   and    | 
negative    ion    is    without    effect.      Potassium    and 
ammonium  salts  precipitate  the  sols   at   the   same 
concentration  provided  that  the  hydrogen  ion  con-   ' 
centration   is   kept   approximately   constant.      The 
precipitating  values  of  the  salts  vary  directly  as  the    i 
concentration  of  the  colloid  at  the  same  hydrogen 
ion    concentration.      The   stabilising    or    peptising 
effect  of  the  ion  bearing  a  charge  similar  to  that  of 
the  colloidal  particle  is  shown  to  be  very  limited  if  it 
exists  at  all. — J.  F.  S. 

Volatile     substances     in     air.        Fritzmann     and 
Macjulevitsch.     See  XrV. 

Patents. 

Acids  or  other  liquids;  Apparatus  for   delivering 

measured    quantities    by    volume    of   .      R. 

Moritz.    E.P.  172,011,  22.11.21.    Conv.,  23.11.20. 

An  apparatus  for  measuring  and  delivering  liquids 
comprises  a  main  measuring  vessel  within  which  is 
a  series  of  smaller  measuring  vessels  of  known 
capacity,  open  at  the  top,  each  fitted  with  a  draw-off 
tap.  The  liquid  flows  from  a  supply  tank  through 
a  three-way  valve  into  the  bottom  of  the  main 
measuring  vessel  and  fills  the  latter  and  the 
smaller  measuring  vessels.  The  capacity  of  the  main 
vessel  may  be  adjusted  by  introducing  resistant 
filling  material.  By  emptying  the  main  measuring 
vessel  through  the  three-way  valve  and  the  desired 
number  of  the  smaller  vessels  by  means  of  their 
respective  taps,  the  required  volume  of  liquid  can 
be  run  off.— H.  R.  D. 

Tunnel  dryer  with  air  circulation.  Maschinenfabrik 
F.  Haas  Ges.  Neuwerk,  Assees.  of  A.  Schussler. 
E.P.  173,234,  21.12.21.  Conv.,  23.12.20. 
The  dryer  consists  of  a  tunnel  of  rectangular  cross- 
section  provided  with  double  vertical  walls.  The 
spaces  between  the  inner  and  outer  walls  on  either 
side  of  the  tunnel  are  fitted  with  heating  tubes  and 
subdivided  by  vertical  partitions  into  a  number  of 
heating  chambers.  On  the  inner  wall  of  each 
chamber,  near  the  roof  of  the  tunnel,  is  fixed  a  fan, 
and  outlet  openings  are  cut  in  these  walls  near  the 
floor  of  the  tunnel.  The  fans  and  the  outlet 
openings  are  so  arranged  that  the  drying  air  is 
admitted  at  one  bottom  corner  of  the  drying 
chamber  and  is  withdrawn  by  the  fan  at  the  opposite 
top  corner.  This  fan  is  situated  in  the  next  heating 
chamber  and  forces  the  air  through  its  outlet  into 
the  next  drying  chamber.  These  chambers  are 
formed  by  a  number  of  trucks  which  can  pass 
between  the  inner  walls  of  the  tunnel  and  carry  the 
articles  to  be  dried  either  on  shelves  or  rods. 
Tunnels  are  made  to  contain  from  two  to  five  trucks, 
and  the  larger  the  number  of  trucks  the  greater  is 
the  overlap  of  the  heating  chamber  over  the  drying 
chamber.  Air  is  admitted  at  the  discharging  end 
of  the  plant  and  passes  through  heating  and  drying 
chambers  alternately  until  it  is  discharged  at  the 
charging  end  of  the  plant.— S.  G.  U. 

Dry  kiln.     J.  F.  Hirt.     U.S.P.  1,432,248,  17.10.22. 

Appl.,  29.10.21. 
A  dry  kiln  has  a  separate  drying  chamber  and  heat- 

*  The  illustrations  in  the  abstracts  marked  *  are  reproduced 
from  the  Illustrated  Official  Journal  (Patents),  by  kind 
permission  of  the  Controller  of  H.M.  Stationery  Office. 


ing  chamber,  and  separate  condensing  chambers, 
heating  units,  intake  ducts  for  fresh  air,  humidi- 
fiers, and  exhaust  stacks,  the  four  last  mentioned 
being  capable  of  control  from  outside  the  apparatus. 
The  heat  given  off  from  the  top  of  the  drying 
chamber  is  transmitted  to  the  main  stream  of  the 
circulating  drying  medium,  which  is  then  passed 
over  the  goods  and  downwards  to  the  condensing 
and  heating  chambers. — B.  M.  V. 

Dryer.      J.    H.    Walsh,    Assr.    to   Johns-Manville, 
Inc.     TJ.S.P.  1,432,270,  17.10.22.     Appl.,  27.5.21. 

An  air-heating  chamber  and  a  drying  chamber  are 
combined  with  a  heat  regenerator  which  is  arranged 
above  the  drying  chamber  with  the  interposition  of 
a  removable  screen.  The  regenerator  communicates 
through  passages  with  an  outlet  from  the  drying 
chamber.  Fresh  air  is  drawn  into  contact  with 
walls  of  the  regenerator  outlet  passages  to  preheat 
it,  passes  thence  to  the  heating  chamber,  and  is 
circulated  through  the  chambers,  passages,  and 
connexions. — H.  H. 

Scale   in  steam   boilers,   evaporators,   economisers, 
and  the  like;  Method  of  preventing  the  formation 

of  .     K.  Schnetzer.     E.P.  174,905,  15.12.21. 

Conv.,  29.1.21. 
The  negative  pole  of  a  source  of  direct  current  is 
connected  to  the  boiler  or  other  apparatus  at  one 
or  more  points,  and  the  positive  pole  of  the  source 
of  current  is  left  insulated,  so  that  the  electrical 
circuit  is  never  closed. — B.  M.  V. 

Settings  for  stills  and  similar  purposes.    P.  Mather. 

E.P.  186,849,  1.11.21.* 
The  setting  particularly  relates  to  tall  vertical  stills 
that  it  is  desired  to  heat  uniformly  and  in  adjust- 
able zones  (c/.  E.P.  175,666;  J.,  1922,  284  a).    The 


brickwork  setting  for  a  vertical  cylindrical  still, 
shown  in  cross-section  in  the  figure,  is  of  substan- 
tially the  same  form  as  the  still  and  is  divided  to 
form  a  series  of  annular  flues,  b,  within  the  still 
casing,  a.  A  series  of  liquid  fuel  or  gas  burners,  k, 
are  arranged  on  one  side  of  the  setting  and  a 
vertical  flue,  s,  connected  with  the  annular  flues  on 
the  other.  A  layer  of  non-conducting  material,  f,  is 
placed  between  the  firebrick  lining,  g,  of  the  annular 
flues  and  the  ordinary  brickwork  backing  of  the 
setting,  h.  The  casing  of  the  still  opposite  the 
burners  is  protected  by  firebrick,  o. — T.  A.  S. 

Gases,  oil  vapours,  or  gaseous  mixtures;  Method  and 

apparatus  for  treatment  of .     J.  F.  Ward,  H. 

Neilsen,  and  B.  Laing.  E.P.  186,945,  31.3.21.* 
The  gas  or  vapour  as  introduced  tangentially  and  at 
high  velocity  by  the  pipe,  c,  into  the  jacketed 
chamber,  a,  fitted  with  a  bottom  valve.  The  cover  of 
the  chamber  carries  a  conical  deflector,  e,  a  baffle 
plate,  and  an  outlet  pipe,  d.    Bevel  gearing  drives 


970  a 


Cl.    I.— GENERAL;    PLANT;    MACHINERY. 


[Dec.  30,  1922. 


a  hollow  shaft,  /,  bell-mouthed  at  its  lower  end, 
which  passes  through  the  centre  of  the  cover.  This 
shaft  carries  a  number  of  vanes,  g,  and  nozzles,  j, 


r   "I. 

-p3$m 

~f 

a 

'  r, 

and  a  perforated  basket,  h.  Below  the  bell-mouth 
is  a  nozzle,  m,  coupled  to  a  compressor,  n,  which 
forces  a  portion  of  the  gas  or  other  vapour  into  /, 
thus  raising  the  liquid  medium,  which  may  contain 
solids  in  mechanical  or  colloidal  suspension, 
catalysts,  or  oxidising  agents,  from  the  bottom  of 
the  chamber,  a,  through  the  nozzles,  j.  This  finely 
divided  liquid  having  been  thrown  by  centrifugal 
force  against  the  basket,  ultimately  falls  to  the 
bottom  of  the  chamber  and  can  be  again  circulated 
through  the  nozzles.  The  gas  entering  the  chamber 
by  c  is  gradually  forced  downwards  until  it  meets 
the  vanes,  h,  which  give  it  an  upward  motion 
through  the  finely  divided  liquid  in  the  mixing 
basket.  It  then  flows  into  the  space  above  the 
deflector,  where  any  particles  of  liquid  carried  over 
are  caught  on  the  baffle  plate,  the  gas  itself  entering 
the  outlet  pipe.  The  plant  can  be  used  for  the 
hydrogenation  of  oils  or  for  the  desulphurisation, 
hvdrogenation  and  oxidation  of  gases  or  oil  vapours. 

— S.  G.  TJ. 

Chemical  apparatus  for  precipitation  purposes. 
The  British  Thomson-Houston  Co.,  Ltd.  From 
General  Electric  Co.     E.P.  187,090,  29.8.21.* 

The  invention  relates  to  a  kettle  which  can  be 
evenly  heated  and  readily  kept  at  a  constant 
temperature,  and  into  which  the  chemicals  required 
for  the  reaction  can  be  admitted  continuously  and 
from  which  the  precipitate  and  the  mother  liquor 
formed  can  be  withdrawn.  Inside  a  carefully  lagged 
vessel,  fitted  with  a  steam  coil,  pipes  for  admission 
and  withdrawal  of  the  heating  liquid,  and  a  ther- 
mometer, is  placed  a  stoneware  kettle,  15,  having 
a  wooden  cover,  28.  This  cover  has  a  number  of 
openings  for  the  following  connexions :  a  pipe,  29, 
terminating  in  a  6praying  nozzle,  through  which 
enters  one  of  the  solutions,  a  pipe  (not  shown  in  the 
figure)  through  which  enters  the  other  solution 
required  for  the  reaction,  a  pipe,  33,  to  admit  steam 
or  air  for  agitating  the  contents  of  the  kettle,  an 
air-lift,  42,  for  removing  the  precipitate  and  the 
mother  liquor,  a  fume  ejector  (not  shown),  a 
thermometer  pocket,  and  a  device,  47  and  48, 
for  indicating  the  level  of  the  contents  of  the  kettle. 


In  working  the  plant  a  liquid,  preferably  one  which 
will  permit  recovery  of  the  contents  of  the  kettle 
if  broken,  is  introduced  into  the  space  between  the 
kettle  and  the  outer  vessel  and  heated  by  the  steam 


FlC.l. 


coil.  A  solution  containing,  e.g.,  a  soluble  tungsten 
compound  is  sprayed  into  the  kettle  through  31,  and 
the  precipitating  solution  (in  this  case  hydrochloric 
acid)  is  admitted  by  the  other  pipe,  the  mixture 
being  agitated  by  air  or  heated  as  found  necessary. 
The  precipitate  formed  and  the  mother  liquor  are 
removed  from  the  bottom  of  the  kettle  by  the  air- 
lift, the  delivery  pipe  of  which  is  fitted  with  an  air 
vent,  whilst  the  air,  steam,  and  gases  formed  during 
the  reaction  are  removed  by  the  fume  ejector. 

— S.  G.  U. 

Heating  and  cooling  of  liquids  or  admixed  solids  and 
liquids  in  evaporative  or  like  treatment  thereof; 

Method  of  and  apparatus  for  the .     T.  Rigby. 

E.P.  187,260,  10  and  26.5.21. 

In  the  evaporation  of  such  liquors  as  brine  for 
the  recovery  of  salt,  two  or  more  multiple-effect 
evaporators  are  used,  the  initial  and  final  tempera- 
tures in  each  6et  being  about  the  same,  but  the 
number  of  stages  in  the  second  being  less  than  in 
the  first,  so  that  the  temperature  range  per  stage  is 
greater  in  the  second  set  than  in  the  first ;  this  is  to 
compensate  for  the  raising  of  the  boiling  point  of 
the  liquor,  which  is  subdivided  and  passed  through 
the  effects  of  one  set  in  parallel,  then,  if  desired, 
cooled  for  crystallising  by  flashing  off  vapour,  and 
re-evaporated  in  the  second  multiple  effect,  the 
liquor  again  passing  through  the  effects  in  parallel. 
The  flashing  off  may  be  done  in  stages  so  as  to 
provide  vapour  at  different  temperatures,  which  is 
passed  to  evaporating  effects  at  similar  tempera- 
tures. The  liquors  for  crystallisation  may  be  re- 
moved from  the  plant  to  a  more  suitable  location  in 
containers  on  wheels. — B.  M.  V. 

Evaporating  Uauids;  Method  of  continuously . 

E.     S.     Sandberg.      U.S. P.    1,433,040,    24.10.22. 

Appl.,  5.9.18. 
The  iiquid  to  be  evaporated  is  forced  under  pressure 
into  a  heating  element  where  it  is  heated  but  where 
ebullition  is  prevented  by  the  pressure.  It  then 
passes  through  a  throttled  outlet  to  a  low-pressure 
evaporating  chamber,  the  vapour  from  which  is 
compressed  and  used  as  the  heating  agent. 

V  — B.  M.  V. 


Vol.  XXI.,  No.  21.] 


Cl.    I.— GENERAL;    PLANT;    MACHINERY. 


971  A 


Evaporation  of  liquids  and  drying  of  substances; 

Device    for   the    .      C.    R.    Mabee.      U.S. P. 

1,433,141,    24.10.22.     Appl.,    15.12.13.     Renewed 
1.3.19. 

An  evaporating  and  drying  apparatus  comprises  a 
substantially  hemispherical  heated  container,  with 
rotary  conveyor  members  arranged  adjacent  to  the 
interior  wall  thereof  and  having  a  continuous 
yieldable  surface  of  contact  with  the  wall.  The 
wall  of  the  container  may  be  maintained  at  a 
temperature  different  from  that  of  the  material  to 
be  treated. — J.  S.  G.  T. 

Heat-interchanging  apparatus.    E.  L.  Pease.    E.P. 

187,353,  30.7.21. 
In  a  heat  exchanger  embodying  plates  eccentrically 
mounted  on  one  or  more  tubular  elements,  the 
plates  are  so  arranged  that  the  longer  plate  sur- 
faces are  encountered  by  the  fluid  to  be  heated 
before  the  latter  comes  in  contact  with  the  tubular 
elements  conveying  the  heating  fluid.  The  object 
is  to  maintain  a  constant  difference  of  temperature 
between  the  plates  and  the  fluid  being  heated. 

— H.  H. 

Washing   material    which    has   been  separated   by 

centrifugal  action-  Apparatus  for  .     Chem. 

Fabr.  Griesheim-Elektron,  and  F.  Sander.  E.P. 
187,429,  24.9.21. 
The  washing  liquid,  which  is  specifically  lighter 
than  the  mother-lye,  is  supplied  through  radial 
pipes  to  an  annular  space  within  the  outer 
wall  of  the  drum  and  bounded  on  its  Inner  side  by 
filtering  material  carried  by  ribs  on  the  drum  wall. 
The  lengths  of  the  pipes  are  so  much  greater  than 
the  thickness  of  the  layer  of  solids  to  be  washed 
that  the  centrifugal  force  of  the  washing  liquid 
overcomes  that  of  the  mother-lye,  and  the  washing 
liquid  passes  therefore  through  the  solids  from  the 
periphery  to  the  axis  of  the  drum.  Instead  of  the 
annular  space  a  series  of  connected  annular  pipes 
with  outlets  for  the  washing  liquid  may  be  used, 
and  these  pipes  may  be  so  spaced  that  on  removing 
the  outer  wall  of  the  drum  the  washed  solids  may 
be  removed  outwardly  by  centrifugal  action.  The 
cover  of  the  drum  may  be  provided  with  openings 
arranged  in  concentric  circles,  any  one  of  which  can 
be  opened  or  closed  as  desired  to  enable  the  distance 
at  which  the  separated  liquid  is  discharged  and  the 
thickness  of  the  layer  of  solids  to  be  regulated. 

— H.  H. 

Centrifugal  separator.  A.  Gorneau,  Assr.  to  O.  and 
S.  Gorneau.  U.S. P.  1,432,242,  17.10.22.  Appl., 
21.1.20. 

The  basket  or  separating  element  of  a  centrifugal 
machine  is  provided  with  a  bearing  between  its 
bottom  and  the  bottom  of  a  surrounding  container, 
and  with  driving  means  situated  entirely  outside 
and  above  the  basket,  the  driving  means  being  con- 
nected to  the  basket  by  curved  arms  forming  an 
arch,  like  the  handle  of  an  ordinary  basket. 

— B.  M.  V. 

Crushing  and  grinding  mill.  F.  Wriedt,  Assr.  to 
Milo  Machinery  Co.  Proprietary,  Ltd.  U.S. P. 
1,432,046,  17.10.22.  Appl.,  7.6.22. 
A  stationary  casing  or  support  is  provided  with 
a  concave  cylindrical  grinding  surface  against 
which  work  convex  grinding  elements  which  are 
provided  with  means  for  drawing  in  the  material 
between,  and  for  displacing  it  transversely  to  the 
motion  of,  the  grinding  elements. — B.  M.  V. 

Grinding  mill.     J.  B.  Sedberry.  U.S. P.  1,433,042, 

24.10.22.    Appl.,  4.5.20. 
A  shaft  is  journaled  within  a  drum  and  has  one 
set  of  grinding  elements  or  beaters  fixed  to  it,  while 
another  set  of  beaters  are  pivoted  on  the  fixed  set. 


The  rigidly  fixed  and  swinging  beaters  are  inter- 
changeable.— B.  M.  V. 

Filter.  E.  J.  Sweetland.  U.S. P.  1,432,134,  17.10.22 
Appl.,  30.4.19. 

A  movable  filter  element,  mounted  within  a  tank, 
is  provided  with  means  for  advancing  it  step  by 
step.— H.  H. 

Feeding  material  to  [airtight]  treating  chambers; 

System  of .    J.  T.  Fenton.    U.S. P.  1,432,170, 

17.10.22.    Appl.,  29.3.21. 

Entrained  air  is  displaced  from  finely-divided  solid 
material  by  means  of  an  inert  elastic  fluid,  and  the 
solid  is  then  injected  into  an  apparatus  for  sub- 
sequent treatment  by  means  of  a  high-piessure  jet 
of  elastic  fluid.— B.  M.  V. 

Absorption  and  cooling  apparatus.  A.  B.  Jones, 
Assr.  to  Clark,  MacMullen,  and  Riley.  U.S.P. 
1,432,698,  17.10.22.    Appl.,  18.2.21. 

The  apparatus  is  built  up  of  sections  each  in  the 
form  of  a  hollow  body  with  upper  and  lower  walls 
inclined  downwards.  Gas  inlet  and  outlet  con- 
nexions to  the  interior  of  the  body  are  provided; 
and  each  section  is  provided  with  means  for  dis- 
tributing a  liquid  over  its  exterior  surfaces. 

— H.  H. 

Abstracting  heat  from  fluids;  Apparatus  for  . 

P.    R.    McCrary.      U.S.P.    1,432,705,    17.10.22. 
Appl.,  14.5.19. 

A  cap  is  mounted  on  a  shell  which  is  mounted  on 
a  base  and  the  parts  are  held  together  by  a  stand- 
pipe.  The  shell  is  provided  with  adjustable  air 
inlet  orifices,  and  the  stand-pipe  with  adjustable 
liquid-ejecting  orifices.  Means  are  provided  for 
forcing  liquid  into  the  stand-pipe,  for  withdrawing 
liquid  from  the  base,  and  for  withdrawing  air  from 
the  shell  and  a  coiled  pipe  surrounding  the  stand- 
pipe  within  the  shell. — H.  H. 

Acid  or  alkaline  reductions;  Process  for  carrying 

out  .     W.   0.    Mitscherling,    Assr.   to  Atlas 

Powder  Co.     U.S.P.  1,432,775,  24.10.22.     Appl., 
21.3.22. 

A  reducing  metallic  medium  is  introduced  into  a 
rapidly  rotating  tube  through  which  is  passed  the 
solution  to  be  reduced.  The  rate  of  rotation  is 
such  as  to  place  the  solution  under  pressure  due 
to  centrifugal  force. — H.  H. 

Electric  precipitator ;  Self-cleaning   .      H.    F. 

Fisher,  Assr.  to  Research  Corp.   U.S.P.  1,433,266, 
24.10.22.    Appl.,  26.11.19. 

An  electrical  precipitator  comprises  a  discharge 
electrode,  a  collecting  electrode  movable  in  the 
direction  of  its  length,  an  abutment  in  the  path 
of  movement,  and  means  for  moving  the  collecting 
electrode  against  and  away  from  the  abutment. 

—J.  S.  G.  T. 

Drying    apparatus.     P.    Fleury,    Assr.    to    D,    L. 

Robertson.     U.S.P.   1,433,608,   31.10.22.     Appl., 

21.11.19. 
See  E.P.  151,488  of  1919;   J.,  1920,  761a. 

Steam,  compressed  air  and  gases;  Separating 
apparatus  for  [removing  water,  dust,  etc.  from] 

.    O.  Loss,  and  D.  Grove  A.-G.    E.P   187,791 

8.9.21. 

Sorting,  xuashing  or  classfying  mixed  materials  of 
different  specific  gravities  or  volumes;    Process 

and  plant  for •.     M.  Croquet.     E.P    187,874, 

1.12.21. 

Crusher  rolls  [;  Sectional  ].     J.  Y.  Johnson. 

From  Pennsylvania  Crusher  Co.     E.P.   187,904, 
15.2.22. 

a2 


972  a 


Cl.   IIa.— FUEL ;    GAS  ;    MINERAL   OILS   AND   WAXES. 


[Dec.  30,  192 


Palnrising  apparatus.     R.  E.  H.  Pomeroy.     E.P. 
188,173,  13.10.21. 

See  U.S. P.  1,427,322  of  1922;   J.,  1922,  796  a. 

Drying     pulverulent     material.        E.P.      187.320. 
See  Vll. 


Ha.— FUEL;  GAS;  MINEfiAL  OILS  AND 
WAXES. 

Carbon  and  coal;  Oxidation  of  different  varieties  of 

■ by  chromic  acid.     D.  Plorcntin.     Bull.  Soc 

Chim.,  1922,  31,  1068—1072. 

An  attempt  to  replace  the  older  methods  of  analysis 
by  oxidation  by  means  of  a  mixture  of  sulphuric 
and  chromic  acids  in  the  case  of  determinations  of 
carbon  in  fuel,  leads  to  the  conclusion  that  the 
method  is  not  sufficiently  trustworthy  without  some 
modification.  Experiments  were  made  on  oxalic 
acid,  tartaric  acid,  lampblack,  graphite,  coke, 
anthracite,  hard  coal,  and  bituminous  coal;  with 
the  exception  of  the  two  first-named  substances, 
the  carbon  dioxide  obtained  corresponded  to  a 
deficiency  in  the  carbon  content  varying  from 
0-60%  to  27-50%.  In  each  case  the  carbon  deficiency 
represented  carbon  which  had  been  oxidised  to 
carbon  monoxide;  this  was  converted  into  dioxide 
by  being  passed  over  copper  oxide  heated  to  red- 
ness and  a  value  for  carbon  in  accordance  with  the 
true  carbon  content  thus  obtained.  The  suggestion 
is  made  that  the  precaution  of  oxidising  carbon 
monoxide  should  be  taken  in  all  sulpho-chromic 
oxidations,  particularly  in  the  case  of  estimations 
of  carbon  in  iron   and  steel. — H.   J.  E. 

Peat;  Bemoval  of  water  from  below  100°  C 

Wo.  Ostwald  and  A.  Wolf.    Kolloid-Zeits.,  1922, 
31,  197—200. 

Heating  peat  to  100°  C.  for  several  hours  leads  to 
the  separation  of  water  and  changes  in  the  degree 
of  dispersion  and  other  colloid-chemical  properties. 
The  changes  are  similar  to  those  observed  in  the 
ten  Bosch  process  which  is  carried  out  under 
pressure  and  at  high  temperatures  Icf.  J.,  1922, 
318  a,  319  a).— J.  F.  S. 

Producer-gas  equilibrium  at  high  pressures.  K. 
Jellinek  and  A.  Diethelm.  Z.  anorg.  Chem., 
1922,  124,  203—229. 

The  electric  oven  employed  was  a  modification  of  that 
used  by  Nernst  (Z.  Elektrochem.,  1907,  13,  52);  it 
allowed  measurements  to  be  carried  out  at  1300°  C. 
and  at  150  atm.  The  reaction  C+C02^2CO  was 
investigated  between  800°  and  1000°  C.  at  pressures 
up  to  50  atm.  Various  forms  of  charcoal  were 
employed,  and  the  equilibrium,  which  was  well 
defined,  was  practically  the  same  in  each  case,  and 
again  the  6ame  in  the  case  of  graphite;  the  law  of 
mass  action  was  obeyed  at  all  pressures.  The  inte- 
gration constant  of  the  reaction  isochore  of  producer 
gas  equilibrium  was  found  to  be  3'876 ;  this  agrees 
well  with  the  value  (3'80)  calculated  by  means  of 
Nernst's  heat  theorem.  The  authors  show  that  the 
maximum  work  of  this  important  reaction  is  equal 
to  the  heat  effect  if  the  reaction  is  carried  out  iso- 
thermally  and  reversibly  and  if  the  excess  of  oxygen 
has  the  same  pressure  as  the  carbon  dioxide  formed. 

— W.  T. 

Moisture  content  of  producer  gas;  Estimation  of 
.  E.  Maase.   Feuerungstech.,  1922,  11,  27—28. 

The  apparatus  used  consists  of  a  vessel  provided 
with  stopcocks  above  and  below  and  fitted  with  a 
thermometer  and  manometer.  This  vessel  is 
surrounded  by  a  water  jacket  which  can  be  heated 
by  means  of  a  steam  coil.  The  temperature  is  raised 
above    the    dew    point  of    the    moist    gas,    and    a 


sufficient  quantity  of  the  gas  passed  through  the 
inner  vessel  to  ensure  all  air  being  expelled  The 
stopcocks  are  then  closed  and  the  pressure  and 
temperature  read  off.  Cold  water  is  then  passed 
through  the  water  jacket  and  the  temperature  and 
pressure  again  read;  from  the  difference  between 
these  and  the  first  values  the  moisture  content  of 
the  gas  can  be  calculated. — W.  P. 

Benzol   in   coal   gas;  Determination    of  A. 

Thau.     Chem.  Age,  1922,  7,  636—638. 

Naphthalene  and  water  vapour  are  removed  from 
coal  gas  by  passage  at  a  rate  of  50  1.  per  hour 
through  a  solution  of  picric  acid  and  through 
previously  heated  calcium  chloride  contained  in  a 


series  of  U-tubes  immersed  in  a  mixture  of  ice 
and  salt.  Benzol  is  then  absorbed  in  medicinal 
petroleum  oil  contained  in  a  wash-bottle,  cooled  to 
-15°  C,  or  -20°  C.,  and  determined  by  the  gain  in 
weight.  The  gas  leaving  the  bottle  is  passed  through 
a  meter.  If  a  commercial  oil  is  used  as  an  absorbent 
it  should  be  heated  to  120°  C.  in  open  dishes  before 
use  and  then  it  should  retain  a  constant  weight 
while  passing  dry  air  through  it.  The  wash-bottle 
(see  fig.)  contains  a  series  of  coiled  tubes  and  bells 
and  is  filled  with  oil  to  the  top  of  the  bell,  d,  before 
starting  a  test.  The  gas  bubbles  through  the  oil 
from  the  open  ends  of  the  coils,  c,  g,  i,  and  m, 
successively. — H.  Hg. 

Methane;  Concentration  of in  mine-damp.     E. 

Bert  and  O.  Schmidt.     Z.  angew.  Chem.,  1922,  35, 
633. 

The  quantity  of  methane  discharged  daily  into  the 
air  from  a  mine  rich  in  firedamp  may  amount  to 
as  much  as  250,000  cub.  m.  The  concentration 
of  methane  can  be  increased  from  its  initial  value 
of  1 — 2%  to  over  10%,  and  a  gas  capable  of 
being  utilised  for  the  production  of  heat,  mechanical 
or  electrical  energy,  obtained,  by  absorption  of  the 
gas  mixture  in  active  charcoal,  followed  by  frac- 
tional expulsion  of  the  adsorbed  gas,  e.g.,  by  heat- 
ing first  to  100°  C,  then  to  175°  C.  and  treating 
with  steam. — H.  C.  R. 

Ignition  of  gases.  II.  Ignition  by  a  heated  surface. 
Mixtures  of  methane  and  air.  W.  Mason  and 
R.  V.  Wheeler.  Trans.  Chem.  Soc.,  1922,  121, 
2079—2091. 

In  order  to  determine  the  most  readily  ignited 
mixtures  of  methane  and  air,  mixtures  of  known 


Vol.  3X1.,  No.  24.] 


Cl.   IIa.— FUELj    GAS;    MINERAL   OILS   AND   WAXES. 


973  a 


composition,  varying  from  2  to  14%  of  methane, 
were  admitted  rapidly  to  an  evacuated  cylindrical 
quartz  vessel  of  81  c.c.  capacity,  which  was  heated 
in  an  electrical  tube  furnace.  The  lowest  tempera- 
ture to  which  the  walls  of  the  vessel  had  to  be 
heated  in  order  that  a  given  mixture  should  ignite 
when  admitted  to  it  was  taken  as  the  ignition 
temperature.  The  mixtures  most  readily  ignited 
contained  5 — 6%  of  methane,  the  relative  tempera- 
ture of  ignition  being  695°  C.  The  most  explosive 
mixture,  containing  9'5 — 10%  of  methane,  is  more 
difficult  to  ignite  in  this  manner.  Mixtures  con- 
taining proportions  of  methane  outside  the  limits  of 
inflammability  at  atmospheric  temperatures  can 
propagate  flame  at  much  higher  temperatures  near 
their  ignition  temperatures.  The  value  for  the 
ignition  temperature  is  not  identical  with  the 
temperature  existing  in  the  mixture  the  moment 
flame  appears ;  there  must  be  a  p re-flame  period 
during  which  the  rate  of  reaction  is  rapidly  increas- 
ing. The  "lag"  or  pre-flame  period  diminishes 
with  rise  of  temperature  and  is  of  the  shortest 
duration  in  mixtures  containing  the  lowest  per- 
centage of  methane.  At  temperatures  above  about 
1200°  C,  the  ignition  of  any  of  the  mixtures  would 
lie  nearly  instantaneous.  In  order  to  ignite  a  given 
mixture  the  source  of  heat  must  be  maintained  in 
contact  with  the  mixture  during  the  pre-flame 
period,  otherwise  acceleration  will  be  retarded.  The 
"  incendivity  "  of  a  heated  surface  depends  on  its 
temperature,  its  duration  of  contact  with  the 
mixture,  and  the  catalysing  power  of  the  surface  to 
induce  flameless  -oombustion. — J.  B.  F. 


Naphthenic  acids.  I.  Isolation  of  petroleum  acids 
and  pure  naphthenic  acids  from  waste  lyes  of 
neutral  distillate  refining.  Y.  Tanaka  and  S. 
Nagai.  Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind., 
Japan),  1922,  25,  1031—1044.  (Of.  T.  Yoshimura, 
Petroleum  Times,  March,  1921.) 
A  crude  mixture  of  petroleum  acids  was  obtained 
by  acidifying  the  waste  lyes  produced  in  the  refining 
of  a  petroleum  distillate  from  Kurokawa,  Akita 
Prefecture.  (The  authors  have  specially  used  the 
term  petroleum  acids  for  the  crude  mixed  acid.) 
It  was  a  thick,  dark  liquid,  sp.  gr.  0'9853  at 
I50/40  O.,  acid  value  68-8,  having  an  offensive 
odour,  and  formed  a  stable  emulsion  with  water, 
mainly  owing  to  the  presence  of  alkylsulphuric 
acids.  It  also  contained  naphthenic  acids,  hydro- 
carbons, esters  of  alkylsulphuric  acids,  phenols,  etc. 
The  neutral  impurities  were  removed  by  converting 
the  crude  petroleum  acids  into  potassium  soap, 
repeatedly  shaking  with  petroleum  ether  (b.p. 
below  55°  C),  and  decomposing  the  soap  with  dilute 
hydrochloric  acid.  To  facilitate  the  extraction,  it 
is  necessary  to  add  alcohol  (15 — 40%  of  the  total 
volume  of  the  soap  solution)  to  the  soap  solution. 
The  alkylsulphuric  acids  were  decomposed  and  the 
decomposition  product  removed,  by  adding  a 
quantity  of  copper  oxide  almost  equivalent  to  the 
combined  sulphuric  acid  and  then  distilling  under 
8 — 9  mm.  pressure.  The  distillate  was  again  con- 
verted into  potassium  soap,  the  neutral  substances 
wrere  extracted  with  petroleum  ether,  and  the  soap 
solution  was  decomposed  with  dilute  hydrochloric 
acid.  The  resulting  crude  naphthenic  acid  had 
sp.  gr.  0-9936  at  15°/4°  C,  nD,5  =  T4875,  and  acid 
value  230'4.  It  did  not  form  an  emulsion  with 
water.  It  was  fractionally  distilled  under  reduced 
pressure,  about  84%  distilling  at  170°— 220°  C.  at 
8'9—9  mm.  The  lower-boiling  distillates  (110°— 
170°  C.)  contained  phenolic  substances.  The  crude 
naphthenic  acids  were  converted  into  their  methyl 
esters,  and  pure  naphthenic  acids  were  obtained  by 
saponifying  the  esters.  The  product  was  a  colour- 
less viscid  liquid,  having  a  very  slight  peculiar  but 
not  offensive  smell,   and  the  following  characters  : 


sp.  gr.  09918  at  15°  C,  nDls  =  P4824,  acid  value 
254'3,  iodine  value  0,  mean  molecular  weight  220'9. 

— K.  K. 

Alcohol;  Manufacture  of  industrial and  alcohol 

motor  fuel  in  the  Philippine  Islands.    H.  I.  Cole. 
Philippine  J.  Sci.,  1922,  21,  17—48. 

The  nipa  palm  and  molasses  offer  cheap  and  easily 
manipulated  sources  of  alcohol  for  use  as  a  motor 
fuel.  Alcohol  alone  cannot  be  used  successfully 
with  the  present  type  of  petrol  engine,  but  in 
admixture  with  benzene  or  ether  it  forms  an 
advantageous  and  efficient  substitute  for  petrol, 
only  minor  alterations  of  the  carburettor  and  spark 
being  required.  In  the  Philippines,  where  benzol 
is  not  available,  the  alcohdl-ether  mixture  would 
be  the  most  economical  to  produce.  A  satisfactory 
mixture  for  motor  purposes  should  contain  40 — 45% 
of  ether,  together  with  0'5 — 1%  of  pyridine,  which 
acts  both  as  a  denaturant  and  as  a  means  of 
neutralising  the  traces  of  acid  produced  by  combus- 
tion. A  summary  of  previous  papers  on  the 
utilisation  of  nipa  sap  as  a  source  of  alcohol  is 
appended. — <G.  F.  M. 

Boring  and  cooling  oils.     Braun.     See  XII. 

Drainage  error  in  Bingham  viscosimeter.    Herschel. 
See  XXIII. 


Patents. 


S.  R. 


Smokeless  fuel  and  coke;  Production  of  — 

Illingworth.  E.P.  187,328,  18.7.21. 
Coal  containing  14 — 20%  of  volatile  matter  and  in 
which  most  of  the  resinic  matter  decomposes  at  or 
above  400°  C  without  the  evolution  of  a  large  pro- 
portion of  volatile  matter,  is  heated  to  600°  C. 
Coal  containing  12 — 14%  of  volatile  matter  and  with 
a  coking  index  of  not  less  than  4  may  be  heated 
similarly  in  layers  2 — 3  in.  thick.  The  smokeless 
fuel  thus  formed  may  be  heated  to  higher  tempera- 
tures for  the  production  of  coke. — H.  Hg. 

Fuel.      H.  J.   Franklin  and  J.   Pettingall.      E.P. 
187,351,  30.7.21. 

Ten  parts  of  asphalt  or  pitch  is  dissolved  in  800  pts. 
of  heated  fuel  oil  and  incorporated  with  25  pts.  of 
shale  and  45  pts.  of  coal  or  coke,  previously  pulver- 
ised and  mixed  in  the  presence  of  steam ;  160  pts. 
of  tar  and  20  pts.  of  peat  impregnated  with  fuel  oil 
may  also  be  added.  The  mixture  is  moulded  into 
blocks—  H.  Hg. 

Artificial  fuel  and  method  of  making  same.    C.  J. 

Greenstreet.     U.S. P.  1,432,178,  17.10.22.     Appl., 

23.7.19. 
Finely-divided  6olid  fuel  is  temporarily  suspended 
in    liquid    fuel,    the    viscosity    of    which    is    then 
increased  by  oxygenation  so  as  to  keep  the  solid  fuel 
in  permanent  suspension. — B.  M.  V. 

Destructive  distillation  of  coal  and  like  carbonaceous 
materials.    F.  J.  and  F.  West  (Legal  representa- 
tives of  J.  West),  H.  D.  Madden,  F.  Boardman, 
and   West's    Gas    Improvement   Co.,  Ltd.     E.P. 
187,263,  10.2.22. 
Steam    and    air    are    supplied    simultaneously    or 
alternately  to  the  lower  part  of  a  vertical  retort  in 
which    coal    is    being    distilled,    being    introduced 
through  the  centre  of  the  worm  extractor  shaft  and 
the  barrel  of  the  worm.     The  air  may  be  induced 
by  the  steam,  or  each  may  be  admitted  through  a 
three-way  cock  controlled  by  the  rod  which  actuates 
the  extractor. — H.  Hg. 

Carbonisation  of  coal.     J.  Roberts.     E.P.  187,336, 

20.7.21. 
Caking  coal  is  mixed  with  non-caking  coal  contain- 
ing 20 — 45%  of  volatile  matter  in  such  proportion 


974  a 


Cl.    IIa.—  FUEL      GAS;    MINERAL   OILS   AND   WAXES. 


[Dec.  30,  1922. 


that  the  non-caking  coal  utilises  the  excess  of  bind- 
ing material  in  the  caking  coal  during  carbonisa- 
tion, thus  preventing  expansion  and  securing  a 
product  with  a  bright  and  hard  outer  layer.  The 
mixture  is  crushed  to  pass  a  0'1-in.  screen  and  is 
carbonised  at  600° — 760°  C.  The  non-caking  coal 
may  be  prepared  from  caking  coal  by  heating  it  to 
100° — 350°  C.  in  the  presence  of  air.  Coke  breeze 
may  be  substituted  for  part  of  the  non-caking  coal. 

-H.  Hg. 

Carbonaceous  char; Method  of  making  finely-divided 

.     H.   Rodman,   Assr.   to  Rodman   Chemical 

Co.     U.S.P.  1,433,039,  24.10.22.    Appl.,  9.9.18. 
Coking  coal  is   powdered   and   heated  slowly  to  a 
coking  temperature  while  exposed  to  the  air,   and 
with  sufficient  agitation  to  maintain  the  mass  of 
coal  in  powdered  form. — B.  M.  V. 

Combustible  gas  and  method  and  apparatus  for 
generating  and  burning  the  same.  S.  Biddison. 
E.P.  162,646,  6.4.21.     Conv.,  29.4.20. 

Oil  and  steam  are  passed  into  a  tubular  super- 
heater, each  element  of  which  contains  a  longi- 
tudinal partition  terminating  short  of  its  rear  end. 
The  steam  boiler  and  the  superheater  are  arranged 
above  a  pan  in  which  oil  is  burnt  to  start  the 
process  and  above  burners  in  which  part  of  the  gas 
produced  is  subsequently  burnt.  The  superheater 
is  thus  heated  to  1000°— 2500°  F.  (about  540°— 1370° 
C).  When  using  crude  oil  this  is  mixed  with  the 
steam  before  entering  the  superheater.  Water  is 
supplied  to  the  boiler  from  a  float  chamber  through 
a  non-return  valve  which  is  provided  with  a  by-pass 
tube  arranged  below  it,  so  that  a  constant  water 
level  is  maintained  within  the  boiler. — H.  Hg. 

Carburetted     water-gas;     Manufacture     of     . 

Fuller-Lehigh  Co.,  Assees.  of  G.  H.  Kaemmerling 
and  H.  W.  Benner.  E.P.  171,079,  7.7.21.  Conv., 
2.11.20. 

During  the  early  part  of  the  steam-blasting  stage 
of  water-gas  manufacture,  powdered  bituminous 
coal  is  introduced  into  the  upper  part  of  the 
generator.  Part  of  the  water-gas  is  compressed  into 
a  vessel  from  which  it  is  admitted  intermittently 
into  a  coal  container  which  communicates  with  the 
generator,  so  that  the  coal  dust  is  carried  forward 
in  a  series  of  puffs.  During  the  introduction  of  coal 
the  steam  supply  is  restricted  so  as  not  to  carry  the 
coal  out  of  the  generator ;  steam  is  then  supplied 
at  the  normal  rate  during  the  remainder  of  the 
blasting  period,  and  the  water-gas  produced  may 
or  may  not  be  mixed  with  the  carburetted  gas  pro- 
duced during  the  introduction  of  coal.  The  water- 
gas  may  be  produced  entirely  from  the  coke  derived 
from  the  coal  or  partly  from  other  non-volatile  fuel 
fed  to  the  generator. — H.  Hg. 

Suction  gas  producer  plants  xcith  special  reference 
to  vehicle  driving.  J.  I.  Thornycroft  and  Co., 
Ltd.,  and  J.  E.  Thornvcroft.  E.P.  187,022, 
12.7.21. 

In  order  to  allow  gas  to  escape  directly  to  the 
atmosphere  and  to  maintain  the  suction  at  low 
load,  an  exhauster  is  fitted  which  does  not  influence 
the  producer  at  full  load  but  only  acts  at  low  load. 

— W.  P. 

Gasification     of     coal     and     other     carbonaceous 

material;  Methods  and  means  for  the .    A.  S. 

Poster.     E.P.  187,076,  15.8.21. 

The  plant  comprises  a  retort  chamber  above  a 
producer.  The  retort  is  heated  by  external  gas 
flues,  and  the  bottom  of  the  retort  can  be  steamed. 
A  steam  superheater  and  distributor  is  arranged  in 
conjunction  with  or  adjacent  to  the  producer  grate, 
so  that  two  parts  of  the  grate  may  be  steamed 
alternately,  enabling  one  part  to  be  steamed  for  the 


production  of  water-gas  whilst  the  other  is  subjected 
to  the  air  blast,  thus  allowing  continuous  working. 

— W.  P. 

Gas  generators.  E.  Turner.  E.P.  187,277,  16.6.21. 
A  stream  of  liquid  or  powdered  6c4id  fuel  is 
directed  downwards  on  to  the  apex  of  a  cone.  Air 
is  admitted  separately  for  the  combustion  of  any 
non-volatile  deposit  upon  the  cone,  whereby  the  cone 
is  heated.  Steam  may  be  mixed  with  the  air.  The 
gases  thus  formed  pass  downwards  through  an 
annulus  formed  by  the  cone  and  the  inner  wall  of 
an  outer  chamber,  and  then  upwards  through  the 
chamber.  There  may  be  a  water-seal  at  the  bottom 
of  the  annulus  for  the  reception  of  ash  and  the 
generation  of  steam.  The  cone  may  be  heated 
internally  by  waste  gases  from  a  furnace  or  engine 
or  by  the  combustion  of  oil  or  gas ;  in  the  latter  case 
the  products  of  combustion  pass  through  perfora- 
tions into  the  lower  part  of  the  annulus.  The  cone 
may  be  heated  externally  also  by  a  burner  provided 
around  its  base  or  by  electrical  means.  The  gases 
may  be  enriched  with  oil  in  the  outer  chamber.  The 
admission  of  fuel,  air,  steam,  and  water  to  the  pro- 
ducer may  be  controlled  by  the  pressure  in  the  gas 
delivery  main. — H.  Hg. 

Gas  producer  for  firing  or  heating  purposes.     J.  H. 
Marlow.     E.P.  187,282,  20.6.21. 

Air  and  6team  are  admitted  under  the  grate  of  a 
producer  through  a  T-piece  the  branches  of  which 
are  so  shaped  as  to  direct  the  air  and  steam  towards 
the  fuel  bed.  Secondary  air  is  preheated  by  passage 
through  conduits  arranged  in  the  brickwork  of  ths 
producer. — H.  Hg. 

AlcohoVether  mixtures  [motor  fuels'];  Manufacture 

of .    H.  Wade.    From  F.  E.  Liehtenthaeler. 

E.P.  (a)  187,051  and  (b)  187,052,  27.7.21. 

(a)  The  difficulty  of  preparing  alcohol-ether  mix- 
tures when  the  ether  is  separately  prepared  is 
considerable  owing  to  the  high  volatility  of  the 
ether.  The  necessity  for  the  provision  of  special 
condensing  and  refrigerating  plant  has  been  over- 
come by  passing  the  vapours  obtained  in  the 
manufacture  of  ether  from  alcohol  and  sulphuric 
acid  through  a  scrubber  containing  alkali  and 
thence  through  an  absorbing  tower  within  which  a 
stream  of  alcohol  is  flowing  in  the  opposite  direc- 
tion. A  certain  amount  of  the  ether  is  condensed 
before  the  vapours  enter  the  absorbing  tower  and 
this  is  added  to  the  weak  alcohol-ether  mixture, 
obtained  in  the  tower,  to  produce  a  mixture  suitable 
for  motor  fuel.  By  thi6  means  the  handling  of  the 
ether  as  such  is  avoided  and  the  alcohol-ether  mix- 
ture has  no  more  fire  risks  than  ordinary  petrol. 

(b)  Alcohol-ether  mixtures  are  prepared  direct  from 
raw  material  containing  sugars  or  starches,  alcohol 
never  being  stored  as  such  in  bulk.  Fermented 
mash  is  distilled  and  the  alcohol  concentrated  in  a 
continuous  still  up  to  approximately  95%.  A 
portion  of  the  alcohol  so  obtained  is  led  off  to  an 
ether  apparatus  and  converted  into  ether.  The 
remainder  of  the  alcohol  from  the  continuous  still 
is  taken  to  an  absorbing  tower  to  absorb  the  puri- 
fied ether  vapours. — T.  A.  S. 

Fuel  for  internal-combustion  engines.     H.  R.  Giles. 
From  D.  F.  Field.    E.P.  187,326,  18.7.21. 

Alcohol-ether  fuels,  owing  to  the  formation  of 
acetic  acid  and  other  causes,  are  unsatisfactory.  The 
difficulties  are  overcome  by  the  addition  of  rosin  oil 
and  a  small  proportion  of  caustic  soda  dissolved  in 
alcohol.  A  mixture  consisting  of  alcohol  (66  over 
proof)  36'75%,  ether  62%,  rosin  oil  1%,  saturated 
solution  of  caustic  soda  in  alcohol  0'25%,  is  satis- 
factory when  used  in  a  carburettor  normally 
adjusted  to  use  petrol. — T.  A.  S. 


Vol.  xil.,  No.  24.]     Cl.  IIb— DESTRUCTIVE  DISTILLATION,  &c.     Cl.  in.— TAB,  &o. 


975  a 


Alcohol  fuels.  S.  W.  Blake.  E.P.  187,335,  19.7.21. 
In  the  process  described  in  E.P.  178,498  (J  1922 
454  a)  for  the  preparation  of  a  fuel  of  high  volatility 
and  calorific  value  by  treating  a  mixture  of  com- 
mercial alcohol  and  acetone  in  a  pressure  vessel  with 
calcium  carbide,  the  acetylene  formed  being 
absorbed,  other  monohydric  alcohols,  e.g.,  amyl, 
butyl,  and  propyl  alcohols,  may  be  used  instead  of 
ethyl  alcohol  and  yield  satisfactory  fuels.  It  is 
advantageous  to  retain  approximately  10%  of  water 
in  the  fuel  and  to  remove  all  lime.  The  alcohol  used 
should  be  of  low  strength,  e.g  90 — 92%.  The 
presence  of  water  in  the  fuel  keeps  the  engine 
cooler  and  prevents  carbonisation  and  consequent 
knocking.  When  preparing  the  fuel  from  the 
heavier  alcohols,  the  water  should  be  added  to  the 
acetone  and  the  acetone-water  mixture  then  added 
to  the  alcohol.  The  proportion  of  acetone  is  from 
5  to  40%  and  the  proportion  of  calcium  carbide  used 
from  J  to  i  lb.  per  gall.  The  removal  of  lime  is 
effected  by  adding  ammonia  and  then  passing  carbon 
dioxide  through  the  solution. — T.  A.  S. 

Petroleum  and  petroleum  distillates;  Treatment  of 

.     A.   E.   Dunstan  and  F.   B.   Thole.     E.P. 

186,955,  9.5.21. 

Substances  having  a  highly  adsorptive  surface  are 
prepared  by  the  dehydration  of  natural  or  artificial 
inorganic  gels.  Many  natural  hydrated  silicates  and 
hydroxides  come  within  this  category  but  only  few 
possess  the  necessary  surface  energy  for  effective 
employment.  Varieties  of  fullers'  earth,  such  as 
floridin,  and  bauxite  are  particularly  useful,  and 
suitable  artificial  gels  may  be  prepared  from  gelatin- 
ous colloidal  metallic  hydroxides,  such  as  iron  and 
aluminium  hydroxides.  When  petroleum  distillates 
are  filtered  through  the  dehydrated  gels  the  sulphur 
compounds  are  removed  by  adsorption.  The  amount 
of  material  required  for  desulphurisation  of  benzine 
may  be  readily  determined,  4  lb.  of  floridin  or  9  lb. 
of  bauxite  per  gallon  having  been  found  sufficient 
in  certain  cases. — T.  A.  S. 

[Oil']  still.  E.  W.  Isom  and  J.  E.  Bell,  Assrs.  to 
Sinclair  Refining  Co.  U.S. P.  1,432,067,  17.10.22. 
Appl.,  12.5.21. 

The  still  consists  of  a  heating  unit  through  which 
oil  is  pumped  and  a  larger  receptacle.  The  support 
for  the  pump  is  flexible  to  permit  movement  with 
expansion  and  contraction  of  the  pipework. 

— T.  A.  S. 

Oil  shales;  Method  for  distilling  .     P.  Danck- 

wardt.  U.S.P.  1,432,101,  17.10.22.  Appl.,  8.3.20. 
Highly  heated  waste  shale  and  raw  shale  are 
continuously  fed  into  a  still.  The  heat  derived  from 
the  waste  6hale  distils  off  the  volatile  matter  from 
the  raw  shale. — T.  A.  S. 

[Oil]  vapours;  Process  of  filtering .    W.  C.  and 

F.  E.  Wells.     U.S.P.  1,433,050,  24.10.22.     Appl., 
15.2.19. 

On.  is  heated  in  a  still,  permanent  neutral  gas  being 
passed  through  it.  The  resulting  vaporous  mixture 
is  passed  upwards  through  a  filtering  material,  such 
as  fuller's  earth,  which  removes  colour  and  bitumin- 
ous material.  The  filtering  material  is  maintained 
at  a  lower  temperature  than  the  oil  and  after  pass- 
ing through  it  the  vapours  are  condensed. — T.  A.  S. 

Oils,  pitch,  and  the  like;  Process  of  obtaining 

from  shales,  coal,  wood,  etc.      W.  C.  and  F.  E. 
Wells.    U.S.P.  1,433,051,  24.10.22.    Appl.,  30.8.19. 

The  shale  or  other  material  is  continuously  fed  into 
an  annular  retort,  both  surfaces  of  which  are  heated. 
A  neutral  heated  gas  is  passed  into  the  bottom  of  the 
retort  and  carries  away  the  vapours. — T.  A.  S. 


Petroleum,  shale  oil,  coal  tar,  and  the  like, 
commonly    classed    as   hydrocarbons;    Process    of 

refining  .     W.  C.  and  F.  E.  Wells.     U.S.P. 

1,433,052,  24.10.22.     Appl.,  27.10.19. 

The  oil  is  heated  in  a  still  the  bottom  of  which  is 
covered  with  an  inert  fusible  material.  Permanent 
neutral  gas  is  passed  through,  and  the  resulting 
mixed  vapours  are  passed  upwards  through  fuller's 
earth,  which  is  maintained  at  a  lower  temperature 
than  the  oil  in  the  still.  The  vapours  are  then 
condensed.  The  apparatus  can  be  made  to  work 
continuously  and  the  inert  gas  can  be  used 
repeatedly. — T.  A.  S. 

[Hydrocarbon]  liquids,  fluids  and  oils;  Process  for 
the  conversion  of  Mo  lower-boiling  pro- 
ducts]. J.  H.  Adams,  Assr.  to  The  Texas  Co. 
U.S.P.  1,433,519,  24.10.22.    Appl.,  5.12.17. 

Lower-boiling  hydrocarbons  are  obtained  by  pass- 
ing oil  through  a  succession  of  heating  chambers. 
Pressure  is  maintained  in  each  chamber,  and  the 
vapours  formed  are  removed. — T.  A.  S. 

Briquetting  or  drying  press.  H.  Horst,  Assr.  to 
Ges.  fur  Maschinelle  Druckentwasserung  m.b.H. 
U.S.P.  1,433,619,  31.10.22.     Appl.,  2.8.20. 

See  E.  P.  174,657  of  1920;  J.,  1922,  243  a. 

[Fuel]  gases;  Purification  of  .     Koppers  Co., 

Assees.  of  P.  L.  Jacobson.    E.P.  170,572,  6.10.21. 
Conv.,  22.10.20. 

See  U.S.P.  1,390,037  of  1921 ;  J.,  1921,  762  a. 

Burners  for  fluid  fuel.  J.  Bliss.  E.P.  188,025, 
1.7.21. 

Extracting  coke  from  vertical  retorts  or  chambers; 

Means  for .     R.  and  J.  Dempster,  Ltd.,  and 

W.  F.  Rodger.     E.P.  187,911,  10.3.22. 

Charging  and  discharging  gas  retorts;  Apparatus 

for  .       J.  G.  W.  Aldridge.       E.P.   188,036, 

26.7.  and  22.9.21. 

Generators,  gas  producers,  shaft  furnaces,  and  the 

like;    lievolving    grate    for   .       H.    Goehtz. 

E.P.  188,256,  30.12.21. 

Gas  purifiers  [;  Mechanism  for  holding  down  covers 

of  ].      R.   and   J.    Dempster,  Ltd.,   and  R. 

Broadhead.     E.P.  188,193,  26.10.21. 

Fertilising  material.     E.P.  187,251.     See  XVI. 


IIb— DESTRUCTIVE  DISTILLATION; 
HEATING;   LIGHTING. 

Seduction  of  thorium  oxide  by  tungsten.   Smithells. 
See  VII. 


III.-TAD  AND  TAB  PRODUCTS. 


—  in  various  organic 
Chem.   Soc.   Trans., 


Phenanthrene  ;  Solubility  of 
solvents.  H.  Henstock. 
1922,  121,  2124—2128. 

The  solubility  of  phenanthrene  in  purified  organio 
solvents  was  determined  at  temperatures  between 
-10°  C.  and  +30°  C.  by  evaporating  the  solvent 
from  a  weighed  amount  of  saturated  solution  and 
weighing  the  solid  residue.  The  results  are  ex- 
pressed in  curves  and  tables  from  which  the  follow- 
ing typical  figures  for  the  solubility  in  grams  of 
phenanthrene  in  100  g.  of  solvent  at  0°  and  20°  C. 
respectively  are  selected: — methvl  alcohol  T20, 
3-60,  light  petroleum  (b.p.  60°— 85°  C.)  2"40,  6-60, 
ethyl    alcohol   2'75,    4'80,    glacial    acetic    acid   — , 


976a 


Cl.  IV.— colouring  matters  and  dyes. 


(Dec.  30,  1922. 


5-80,  carbon  tetrachloride  7-60,  1900,  ether  17-44, 
3678,  acetone  25-5,  51-94,  chloroform  25"50,  46-60, 
benzene  — ,  51'70,  and  carbon  bisulphide  37"32, 
7208.  The  curves  for  carbon  tetrachloride,  ether, 
and  acetone  show  marked  breaks  at  0°,  10°,  and 
15°  C.  respectively,  which  point  to  some  change  in 
the  molecular  association  of  the  solvent  or  solute, 
probably  of  the  latter,  at  those  temperatures.  At 
- 10°  C.  phenanthrene  is  insoluble  in  methyl  alcohol. 

— G.  F.  M. 

Collidine;  Condensation  of with  acetaldehyde . 

H.   Kondo  and  T.  Takahashi.       Yakugakuzasshi 
(J.  Pharm.  Soc.  Japan),  1922,  No.  487,  775—780. 

By  heating  a  mixture  of  collidine  (10  g.)  and  par- 
aldehyde (363  g.)  in  a  sealed  tube  at  210°  C.  for 
14  hrs.,  oy-dimethyl-a'-propenylpyridine  (2  g.), 
colourless  oil,  b.p.  110° — 111°  C.  at  12  mm.,  was 
obtained.  It  gave  ay-dimethylpyridine-a'-carboxylic 
acid  when  oxidised  with  25%  nitric  acid.  On 
reducing  with  sodium  and  hot  absolute  alcohol,  the 
base  was  converted  into  oy-dimethyl-a'-propylpiperi- 
dine,  colourless  liquid,  b.p.  184°  C,  having  a  slight 
nicotine-like  odour. — K.  K. 

Catalytic  activity  of  copper  [in  preparation  of 
aniline'].  O.  W.  Brown  and  C.  O.  Henke.  J. 
Phys.  Chem.,  1922,  26,  715—727. 

In  continuation  of  previous  work  (J.,  1922,  322  a, 
406  a)  the  authors  have  investigated  the  catalytic 
reduction  of  nitrobenzene  to  aniline  by  hydrogen 
in  the  presence  of  copper  catalysts  prepared  by  the 
reduction  of  the  precipitated  oxide.  Sabatier's 
conclusion  that  a  catalyst  so  prepared  is  more 
efficient  than  one  prepared  from  an  ignited  nitrate 
was  confirmed.  By  the  use  of  the  former  catalyst, 
much  lower  rates  of  supply  of  hydrogen  may  be 
used  without  reduction  in  yield,  and  the  reaction 
may  be  carried  out  at  a  much  greater  rate.  The 
best  temperature  for  carrying  out  the  reduction  was 
found  to  be  about  260°  C.  A  small  amount  of  iron 
in  a  copper  catalyst  prepared  from  an  ignited  oxide 
prevents  the  rapid  decrease  in  activity  of  the 
catalyst.  Copper  deposited  on  asbestos  was  found 
to  be  capable  of  effecting  the  reduction  at  a  much 
greater  rate  per  grm.  of  copper  than  copper  alone, 
but  with  high  rates  of  supply  of  nitrobenzene,  it 
quickly  lost  its  activity.  Copper  on  asbestos  is  a 
better  catalyst  than  an  equal  volume  of  copper  on 
pumice.— J.  S.  G.  T. 

Chlorophenols ;  Solubility  of  .     N.  V.  Sidgwick 

and   S.    L.    Turner.      Trans.    Chem.    Soc.,    1922, 
121,  2256—2263. 

The  influence  of  the  position  of  the  substituents  on 
the  properties  of  the  isomeric  chlorophenols  is 
distinctly  abnormal,  the  abnormality  being 
more  marked  in  those  properties  measured  at 
high  temperature  (boiling  points,  critical  solution 
temperature  in  water)  than  in  those  measured  at 
low  (solubility  in  benzene).  The  differences  in  the 
critical  solution  temperatures  in  water  are  con- 
siderable and  of  the  usual  kind,  the  value  for  the 
ortho  compound  (173-0°  C.)  being  by  far  the  highest, 
while  those  of  the  meta  and  para  compounds  (130'8° 
and  129'0°  C.  respectively)  come  close  together. 
Unexpectedly  small  differences,  though  of  the  usual 
kind,  are  observed  for  the  heat  of  solution  in 
benzene.  From  the  curves  representing  solubility 
in  water  and  benzene,  the  relative  lowering  of 
vapour  pressure  of  the  solvent  can  be  calculated. 
The  freezing  point  and  vapour  pressure  of  water  are 
more  depressed  by  the  meta-compound,  whilst  for 
benzene  the  ortho-compound  has  the  greatest  effect. 

—P.  V.  M. 

Benzol  in  (jas.     Thau.     See  IIa. 

Catalytic    preparation     of    aniline.       Henke     and 
Brown.     .See  IV. 


Patent. 
Befining  coal  tar.     U.S.P.  1,433,052.     See  IIa. 

IV— COLOURING  MATTERS  AND  DYES. 

Azobenzene  and  aniline;  Catalytic  preparation  of 

.     C.  O.  Henke  and  O.  W.  Brown.     J.  Phys. 

Chem.,  1922,  26,  631—638.     (67.  J.,  1922,  406  a.) 

Thallium  prepared  by  the  reduction  of  thallic 
oxide  at  260°  C.  is  an  excellent  catalyst  for  the 
reduction  of  nitrobenzene  to  azobenzene;  with  a 
rate  of  flow  of  4'1  g.  of  nitrobenzene  per  hr.  and  a 
13%  excess  of  hydrogen,  a  yield  of  902%  of  azo- 
benzene and  43%  of  aniline  is  obtained.  The 
activity  of  the  catalyst  decreases  very  rapidly  with 
use.  Gold  has  a  high  catalytic  activity  for  pro- 
ducing aniline  which  decreases  with  use.  Using  this 
metal  as  catalyst  the  yield  of  aniline  at  355°  O.  is 
almost  quantitative. — J.  F.  S. 

Arylazoglyoxalines ;  Some  .     F.  L.  Pyman  and 

L.  B.  Timmis.     J.  Soc.  Dyers  and  Col.,  1922,  38, 

269—272. 

The  arylazoglyoxalines  of  the  type 

CH— NH, 
ii  \ 


OH- 


-N' 


.N:NR 


where  R  is  an  aryl  group,  formed  by  coupling 
glyoxaline  with  diazonium  salts  in  alkaline  solution, 
are  produced  in  widely  varying  yield  according  to 
whether  the  diazonium  compound  contains  an  ortho- 
substituent  or  not.  Thus  the  percentage  of  the 
theoretical  yield  of  2-benzeneazoglyoxaIine  is  74%, 
of  2-p-bromobenzeneazoglyoxaline  85%,  of  2-p- 
tolueneazoglyoxaline  84%,  of  2-p-ethoxybenzeneazo- 
glyoxaline  64%,  and  of  2-p-sulphobenzeneazogly- 
oxaline  52%,  as  against  26%  for  2-o-tolueneazo- 
glyoxaline,  and  10%  for  2-o-methoxybenzeneazo- 
glyoxailine.  On  reduction  with  stannous  chloride 
the  arylazoglyoxalines  having  para  substituents  in 
the  benzene  ring  undergo  fission  with  formation  of 
2-aminoglyoxaline,  but  here  also  very  varying  yields 
were  obtained  ranging  from  15%  only  from  2-p- 
tolueneazoglyoxaline  to  26%  from  the  p-ethoxy- 
compound,  43%  from  the  p-sulpho-coinpound,  and 
56%  from  the  p-bromo-eompound.  The  compounds 
not  containing  a  p-substituent  give  65 — 75%  yields 
of  diaminophenylglyoxalines  on  reduction  with 
stannous  chloride  (benzidine  transformation).  These 
diamines  cannot  be  tetrazotised,  the  glyoxaline 
amino  group  apparently  not  reacting  normally. 
2-Benzeneazoglyoxaline,  2-p-sulphobenzenazogly- 
oxaline,  and  2-p-sulphobenzeneazoglyoxaline-4.5- 
dicarboxylic  acid  dye  wool  brownish-yellow  shades, 
but  the  colour  is  not  fast  to  sunlight  or  washing. 
After-chroming  rendered  the  colour  with  the  latter 
compound  fairly  fast.  2-o-Methoxybenzeneazogly- 
oxaline  gives  brighter  yellow  shades  than  the  other 
azoglyoxalines. — G.  F.  M. 

Colouring  matter  of  the  fruit  of  Gardenia  florida, 
L.  T.  Munesada.  Yakugakuzasshi  (J.  Pharm. 
Soc.,  Japan),  1922,  No.  486,  666—671. 
The  colouring  matter  of  the  fruit  of  Gardenia 
florida,  L.,  grown  in  China,  was  extracted  with 
water  according  to  Kayser's  method  (J.,  1884,  628) 
and  decomposed  with  dilute  hydrochloric  acid  in 
a  current  of  carbon  dioxide.  The  product  was  an 
amorphous  powder,  identical  with  crocetin  from 
saffron  (Decker,  Arch.  Pharm.,  1914,  252,  139).  It 
gave  a  potassium  salt,  C10HlsO.,K,  orange-yellow 
crystals,  which  changed,  without  melting,  to  a  dark 
red  substance  between  270°  and  290°  C.  A  sodium 
salt,  short  yellowish-red  needles,  and  an  ammonium 
salt,   reddish-yellow  needles,   were   also  obtained. 

— K.  K. 

Cyanine  dyes.     Braunholtz  and  Mills.     See  XXI. 


V  I.  XLI..  Xo.  24.] 


Ol.   V.— FIBRES;    TEXTILES;    CELLULOSE;    PAPER. 


977  a 


Patents. 

P-Thionaphthisatin ;  Manufacture  of  .      O.  Y. 

Imray.  From  Society  of  Chem.  Ind.  in  Basle. 
E.P.  186,859,  1.12.21. 

/3-Thionaphthisatin  is  obtained  by  the  interaction 
of  oxalyl  chloride  and  /2-thionaphthol  in  presence  or 
absence  of  a  diluent  or  a  condensing  agent.  It 
forms  a  red  crystalline  powder,  m.p.  153°  C,  and  is 
a  valuable  dyestuff  intermediate.  Example. 
160  pts.  of  /3-thionaphthol  is  mixed  with  635  pts.  of 
oxalyl  chloride,  and  after  stirring  for  some  hours 
at  the  ordinary  temperature  the  mixture  is  heated 
to  the  boiling  point.  The  excess  of  oxalyl  chloride 
is  distilled  off,  and  the  /3-thionaphthisatin  ex- 
tracted from  the  residue  with  aqueous  sodium  car- 
bonate, and  precipitated  with  hydrochloric  acid. 
Some  of  the  oxalyl  chloride  may,  if  desired,  be  re- 
placed by  carbon  bisulphide,  and  aluminium 
chloride  or  sulphuric  acid  may  be  added  as 
condensing  agents. — G.  F.  M. 

Intermediates    for    the    production    of    colon/ring 

matters;    Manufacture   of  new   .      [Nitroso- 

o  i  yall  ', '.'  rylam  incs,  oxyalkylated  tli  iosul  phonic 
acids,  etc."]  British  Dyestuffs  Corp.,  Ltd.,  A.  G. 
Green,  K.  H.  Saunders,  and  E.  B.  Adams.  E.P. 
186,878,  30.8.21. 

The  oxvalkvlaniino  compound  previously  described 
(E.P.  181.750;  J.,  1922,  625  a)  may  be  used  not 
only  for  the  preparation  of  the  "sulphato"  dye- 
stuff  intermediates,  but  also  for  the  manufacture  of 
nitroso-derivatives  by  treating  them  with  nitrous 
acid,  and  in  the  case  of  secondary  amines  trans- 
forming the  nitrosamine  with  hydrochloric  acid. 
These  nitroso-compounds  are  also  valuable  inter- 
mediates, as  they  can  be  condensed  with  hydroxy- 
compounds  to  oxazines,  or  with  another  amino- 
compound  to  give  an  intermediate  indamine'  which 
can  be  converted  into  an  azine  in  the  usual  way. 
Further,  for  the  manufacture  of  thiazines  the  new 
nitroso-derivatives  of  oxyalkylarylamines  etc. 
can  be  reduced  and  treated  with  sodium  thiosul- 
phate  to  vield  oxvalkvlated  thiosulphonic  acids. 

— G.  F.  M. 

[Blue]    anthraquinone    vat   dyestuff;   Manufacture 
- — .    E.  Kopetschin.    G.P.  357,767,  28.7.14. 
Addn.  to  356,922  (J.,  1922,  853  a). 

1-Meecapto-2-aminoanthbaqutnonb  is  treated  with 
condensing  agents  capable  of  reacting  with  the 
mercapto  group,  or  it  is  heated  to  a  high  tempera- 
ture, or  its  salts  are  condensed  with  l-chloro-2- 
aminoanthraquinone,  whereby  hydrogen  sulphide  is 
evolved  and  X-dihydro-1.2.2'.l'-anthraquinone- 
azine  (Indanthrene)  is  produced. — A.  J.  H. 


V.-FIBP.ES;  TEXTILES;  CELLULOSE; 
PAPER. 

Cellulose;  Studies  on .  7/7.  Viscosity  deter- 
mination of  cellulose  [solutions].  M.  Nakano. 
Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind.,  Japan), 
1922,  25,  899—910. 

Special  precautions  which  must  be  taken  in  the 
preparation  of  cuprammonium  solutions  are  given. 
The  viscosity  of  cuprammonium  solutions  of  cellu- 
lose decreases  with  time  until  it  attains  a  constant 
value.  A  dilute  solution  attains  a  constant  value 
quicker  than  a  concentrated  one ;  the  viscosity  of  a 
very  dilute  solution  is  constant  from  the  beginning. 
With  solutions  of  the  same  concentration,  the 
lower  the  viscosity  the  less  is  the  difference  between 
the  final  and  the  initial  values.  The  viscosity  in- 
creases much  more  quickly  than  the  concentration. 
The  relative  viscosity  increases  with  the  tempera- 
ture. Xo  appreciable  decrease  of  viscosity  due  to  loss 


of  ammonia  can  be  observed.  Oxygen  and  light  have 
the  greatest  effect  on  the  viscosity.  The  ammonium 
complex  of  copper  has  a  6trong  oxidase-like  action 
on  cellulose.  Depolymerisation  of  the  molecular 
aggregate  of  cellulose  is  due  to  the  light.  Of  vari- 
ous previous  treatments  to  which  the  cellulose  was 
subjected,  the  most  important  in  its  effect  on  the 
viscosity  was  thermal  treatment. — K.  K. 

Cellulose;  Reactions  of  with  sodium  chloride 

and  other  neutral  sail  solutions.    I.    H.  Masters. 
Chem.  Soc.  Trans.,  1922,  121,  2026—2034. 

When  pure  cellulose,  in  the  form  of  cotton  wool  free 
from  acidity  or  alkalinity,  is  extracted  with  sodium 
chloride  solution,  an  acid  extract  is  obtained,  and 
an  alkaline  extract  containing  an  equivalent 
amount  of  alkali  when  the  cotton  is  subsequently 
extracted  with  water.  The  amount  of  acid  ex- 
tracted by  a  20%  sodium  chloride  solution  was  on 
the  average  the  same  as  that  extracted  by  a  N 110 
solution  (39  mg.  of  HC1  from  10  g.  of  cotton),  the 
extract  eventually  becoming  quite  neutral,  but  the 
phenomenon  cannot  be  attributed  to  the  washing  or 
salting  out  of  acid  originally  present  in  the  cellu- 
lose, as  after  washing  with  water  until  the  washings 
were  free  from  chloride  and  alkalinity,  and  again 
passing  sodium  chloride  through  the  cellulose,  an 
acid  extract  was  once  more  obtained.  Temperature 
had  no  effect  on  the  amount  of  acid  and  alkali 
extracted,  nor  did  the  use  of  boiling  water 
accelerate  the  removal  of  alkali  from  the  cotton 
which  had  been  previously  extracted  with  sodium 
chloride  solution.  Other  salt  solutions  behaved  in 
a  similar  way,  the  least  quantity  of  acid  obtained 
being  1'2  mg.  in  the  case  of  the  very  slightly  dis- 
sociated cadmium  iodide. — G.  F.  M. 

Uydrocellulose.     E.    Heuser  and   W.    von   Neuen- 

stein.  Cellulosechem.,  1922,  3,  89—96. 
The  hydrocellulose  prepared  from  viscose  cellulose 
by  the  method  of  Knoevenagel  and  Busch  (J.,  1922, 
458  a)  behaves  as  a  uniform  substance.  It  is  com- 
pletely soluble  in  caustic  alkali  solution,  and  is  pre- 
cipitated again  without  loss.  On  repeated  methyl- 
ation  it  forms  dimethylhydrocellulose  in  quantita- 
tive yield,  which  also  behaves  as  a  uniform  sub- 
stance, being  completely  soluble  in  cold  water  and 
in  many  organic  solvents.  On  acetylation  dimethyl- 
hydrocellulose yields  a  monoacetyl  derivative  which 
is  also  substantially  homogeneous.  Hence  it  is 
concluded  that  the  hydrocellulose  of  Knoevenagel 
and  Busch  is  the  "  true  hydrocellulose  "  in  a  pure 
condition.  In  this  sense  it  differs  from  ordinary 
crude  hydrocellulose  prepared  from  cotton  by 
Girard's  method,  which  behaves,  both  towards 
alkali  and  on  methylation,  as  a  mixture  of  true 
hydrocellulose  and  cellulose.  According  to  recent 
theories  (rf.  J.,  1922,  8  a,  170  a)  fibrous  cellulose 
consists  of  an  aggregate  of  double  anbydrocellobiose 
molecules  arranged  in  crystal  symmetry  and  held 
together  by  "crystal  valencies."  It  is  assumed 
that  the  crystal  valencies  may  be  resolved  by  any 
process  which  destroys  the  fibrous  structure  with- 
out affecting  the  dimeric  anbydrocellobiose  units 
from  which  the  crystal  fibre  substance  was  built  up. 
Thus  viscose  cellulose  would  consist  entirely  of 
such  amorphous  cellulose  without  crystal  valencies 
and  of  relatively  low  molecular  dimensions  (4  C,). 
As  such  it  would  be  susceptible  to  hydrolytic 
attack  as  a  uniform  substance,  and  the  authors 
suggest  that  the  "  true  hydrocellulose  "  is  pro- 
duced from  the  double  anbydrocellobiose  molecule 
by  simple  opening  up  of  an  anhydride  position  in 
one  of  the  cellobiose  residues,  with  the  formation 
of  a  free  carbonyl  group  but  without  depolymerisa- 
tion of  the  dimeric  molecule.  Further  chemical 
hydrolysis  would  involve  depolymerisation,  but  the 
true  hydrocellulose  is  presumed  to  have  the  same 
molecular  dimensions  as  the  amorphous  cellulose 
from  which  it  is  derived. — J.  F.  B. 


978  a 


Cl.   VI.— BLEACHING ;    DYEING;     PRINTING;     FINISHING. 


[Dec.  30,  1922. 


Patents. 

Cotton     bales;     Impregnated     .       H.     Wade. 

From  International  Cotton  Protecting  Co.     E.P. 
187,394,  25.8.21. 

Cotton  bales  are  rendered  permanently  proof 
against  fire  and  bacterial  deterioration  by  im- 
pregnating them  to  a  depth  of  J — 5  ins.  with  an 
aqueous  paste  containing  boric  acid  and  a  small 
quantity  (025 — 1"50%  of  the  total  weight  of  the 
paste)  of  a  non-colouring  fixing  agent  such  as  a 
soluble  salt  of  zinc,  tin,  aluminium,  or  other  suit- 
able metal.  The  behaviour  of  cotton  in  bleaching 
and  dyeing  is  not  affected  by  this  treatment.  A 
suitable  paste  contains,  per  100  galls.,  5$  lb.  of 
boric  acid  (prepared  by  treating  borax  with  sul- 
phuric acid  and  afterwards  washing  the  product  so 
that  it  contains  a  trace  but  not  more  than  0T% 
of  mineral  acid)  and  -„\  lb.  of  a  mixture  of  equal 
parts  of  zinc  and  stannous  sulphates. — A.  J.  H. 

Silk  fibres;  Process  for  treating  [degumming~] . 

S.    A.     Waksman.     U.S.P.    1,432,312,     17.10.22. 
Appl.,  3.2.21. 

Raw  silk  is  degummed  by  subjecting  it  to  the  action 
of  strongly  proteolytic  bacteria. — A.   J.  H. 

Cellulose-ether  solvent  and  composition.  R.  L. 
Stinchfield,  Assr,  to  Eastman  Kodak  Co.  U.S.P. 
1,432,364-5,  17.10.22.     Appl.,  19.3.21. 

A  viscous  composition  for  films  is  made  by  dissolv- 
ing a  cellulose  alkyl  ether  in  a  mixture  of  97 — 20 
parts  by  weight  of  tetrachloroethane  with  3 — 80 
parts  by  weight  of  (a)  a  lower  monohydroxy  aliphatic 
alcohol,  or  (b)  an  ester  of  a  lower  monocarboxylic 
fatty  acid  and  a  lower  monohydroxy  aliphatic 
alcohol.— W.  C. 

Cellulose-ether   solvent   and   composition.      W.    R. 

Webb,    Assr.    to    Eastman    Kodak    Co.      U.S.P. 

1,432,373-1,     17.10.22.       Appl.,     (a)     5.4.21,     (b) 

16.11.21. 
A  viscoxts  fluid  composition  suitable  for  films 
consists  of  (a)  an  alkyl  ether  of  cellulose  dissolved  in 
a  solvent  containing  90 — 10  parts  by  weight  of 
ethylene  chlorobromide  and  10 — 90  parts  of  a  lower 
monohydroxy  aliphatic  alcohol;  or  (b)  a  water- 
insoluble  ethylcellulose  dissolved  in  a  mixture  of 
10 — 90  parts  of  methyl  acetate  and  90 — 10  parts 
of  methyl  alcohol. — W.  0. 

Composite  material  formed  with  condensation  pro- 
ducts;    Manufacture     of    .       Metropolitan- 

Vickers  Electrical  Co.,  Ltd.,  Assees  of  H.  C.  P. 
Weber.  E.P.  169,451,  22.9.21.  Conv.,  24.9.20. 
Cellulosic  material,  such  as  paper,  is  parchment- 
ised  by  treatment  with  caustic  soda,  sodium  zincate, 
or  other  suitable  substance,  and  is  then  impregnated 
successively  or  simultaneously,  and  before  or  after 
removal  of  the  parchmentising  agent,  with  a  phenol 
and  formaldehyde  and  subjected  to  heat  and  pres- 
sure, whereby  a  condensation  product  intimately 
incorporated  with  the  fibres  is  obtained.  Alterna- 
tively, the  fibrous  material  is  parchmentised  and 
impregnated  at  the  same  time  with  a  mixture  con- 
taining the  parchmentising  substance,  phenol,  and 
formaldehyde.  For  example,  paper  is  continuously 
passed  through  a  parchmentising  bath  containing 
20%  caustic  soda  (10—15%  of  sodium  chloride  is 
added  to  prevent  excessive  shrinkage),  then  in  suc- 
cession through  a  bath  containing  phenol  and  a 
chamber  containing  formaldehyde  vapour  and  be- 
tween hot  rollers  under  pressure.  It  is  afterwards 
washed  and  dried. — A.  J.  H. 

Ttosin  material  for  sizing.     J.  A.  De  Cew,  Assr.  to 

Process     Engineers,     Inc.       U.S.P.     1,433,124, 

24.10.22.    Appl.,  28.9.20. 

A    rosin    having    superior     sizing    properties     is 

produced  by  dissolving  rosin  and  a  rubber  product 


in  a  suitable  solvent  and  afterwards  removing  the 
solvent  by  distillation. — A.  J.  H. 

Paper ;  Process  for  recovery  of  material  for  manu- 
facture   of  .       S.   Kumagae  and   T.    China. 

E.P.  187,805,  26.9.21. 

See  G.P.  356,742  of  1921 ;  J„  1922,  855  a. 
Spinning  nozzles.     E.P.  166,533.    See  VIII. 
Ore  concentrator  tables.     E.P.  187,296.    See  X. 
Printers'  ink.    E.P.  187,537.    See  XIII. 
Artificial  leather.     E.P.  171,360.    See  XV. 


VI— BLEACHING;  DYEING;  PRINTING; 
FINISHING. 

Mordants.     III.     Chrome.     W.   D.   Bancroft.     J. 
Phys.  Chem.,  1922,  26,  736—772. 

The  author  reviews  critically  a  part  of  the  litera- 
ture, more  especially  the  work  of  Liechti  and 
Hummel  (J.,  1893,  241)  concerned  with  the  use  of 
chromic  oxide  as  a  mordant  in  dyeing  wool,  cotton, 
and  silk,  and  bases  thereupon  a  number  of 
conclusions  as  to  the  modus  operandi  of  the  process, 
the  chief  being  that  the  mordanting  is  due  to 
adsorption,  there  being  no  evidence  of  the  forma- 
tion of  a  definite  compound.  (Of.  J.  Chem.  Soc, 
Jan.,  1923.)— J.  S.  G.  T. 

Mordanting   of   wool   with   potash   alum.     W.   W. 
Paddon.     J.  Phys.  Chem.,  1922,  26,  790—793. 

Experiments  are  described  from  which  it  is 
concluded  that,  contrary  to  the  opinion  of  Knecht 
(Knecht,  Rawson,  and  Lowenthal,  "Manual  of 
Dyeing,"  1910,  237),  the  mordanting  of,  wool  with 
potash  alum  does  not  lead  to  the  formation  of 
definite  chemical  compounds  on  the  fibre,  but  is 
strictly  an  adsorption  phenomenon,  in  which  both 
alumina  and  sulphuric  acid  are  involved. 

—J.  S.  G.  T. 

Hypochlorite    solutions.       Dienert    and     Wanden- 
bulcke.    See  Vll. 

Patents. 

Dyeing  animal  or  mixed  fibres;  Process  for  . 

Akt.-Ges.  f.  Anilin-Fabrik.    E.P.  171,981,  1.11.21. 
Conv.,  26.11.20. 

Dyestuffs  which  are  precipitated  by  acids  and 
have  therefore  hitherto  been  considered  unsuitable 
for  dyeing  animal  fibres  in  acid  baths,  may  be 
satisfactorily  used  for  this  purpose  provided  that 
sulphite-cellulose  waste  liquor  or  the  active  sub- 
stances contained  therein  (sodium  ligninsulphonate, 
cell  pitch,  sugars)  are  added  to  the  dye  liquor.  This 
addition  also  allows  the  conjoint  use  of  dyes  belong- 
ing to  different  classes,  e.g.,  substantive  and  acid 
dyes,  and  moreover,  the  elasticity,  gloss,  and  handle 
of  the  animal  fibre  are  preserved  during  dyeing. 
For  example,  wool  is  dyed  in  a  bath  containing  3% 
of  Alkali  Blue  4B,  10%  of  sodium  sulphate  crystals, 
5%  of  sulphite-cellulose  waste  liquor  of  28°  B.  (sp. 
gr.  1"24),  and  2%  of  concentrated  sulphuric  acid. 
A  similar  proportion  of  sulphite-cellulose  waste 
liquor  is  also  used  in  a  metachrome  process  of 
dyeing. — A.  J.  H. 

Tarns;  Apparatus  for  the  treatment  of  with 

dyes  or  other  liquids.  L.  N.  La  Fayette.  E.P. 
182,758,  7.12.21.  Conv.,  2.7.21. 
The  apparatus  consists  of  a  vat  having  a  false 
bottom  perforated  with  holes  over  which  are 
mounted  vertical  telescopic  perforated  tubes. 
Bundles  of  yarn,  wound  on  hollow  compressible 
cores,  are  piled  one  above  the  other  on  these  tubes 


Vol.  xxi..  Ho.  24.]      Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIC  ELEMENTS. 


979  a 


and  by  means  of  a  spring  contained  therein  are 
subjected  to  suitable  pressure.  By  means  of  a 
pump,  dye  or  other  liquid  is  forced  from  the  vat, 
through  the  bundles  of  yarn,  downwards  through 
the  perforated  telescopic  tubes  and  through  the 
false  bottom.  Alternatively,  the  liquor  is  circulated 
in  the  opposite  direction. — A.  J.  H. 

Dyeing  apparatus.    J.  D.  Henon.    U.S. P.  1,433,276, 
24.10.22.    Appl.,  3.9.21. 

A  dyelng  apparatus  consists  of  a  vat  divided,  by 
means  of  a  partition,  into  two  compartments  in  one 
of  which  is  a  means  for  circulating  the  dye  liquor 
through  the  vat.  A  deflector  or  baffle,  semi-oval  in 
cross-section,  is  fixed  to  the  inner  faces  of  the  walls 
of  the  vat  and  the  partition  for  the  purpose  of 
deflecting  the  dye  liquor  out  of  the  lines  of  flow 
of  least  resistance. — A.  J.  H. 

Indigo    fermentation    vat;    Manufacture    of   stable 

concentrated  preparations  suitable  for  the  . 

Farbw.  vorm.  Meister,  Lucius,  und  Briining. 
G.P.  (a)  356,411,  25.12.13,  (b)  357,087,  14.1.14, 
and  (c)  357,680,  15.2.14.  Addns.  to  354,946 
(cf.  E.P.  22,148  of  1914;  J.,  1915,  1245  a). 

(a)  In  preparations  described  in  the  chief  patent, 
maltose  or  maltodextrins  instead  of  other  water- 
soluble  carbohydrates,  are  mixed  with  albuminous 
substances;  before  concentration  of  the  product, 
indigo  or  indigo-white  or  further  quantities  of 
water-soluble  carbohydrates  may  be  incorporated 
with  it.  (b)  To  the  preparations  described  above 
and  during  or  after  their  manufacture,  invertase  or 
yeast  is  added,  since  these  substances  improve  the 
subsequent  working  of  the  vat  and  also  invert  sugars 
which  are  present,  (c)  In  preparations  as  described 
above,  invertase  or  materials  containing  invertase, 
6uch  as  yeast,  sterilised  yeast  and  the  like,  are 
incorporated  with  either  or  both  of  indigo  or  indigo- 
white  and  water-soluble  carbohydrates  or  their 
related  products.  In  this  case  the  addition  of 
albumin  is  not  necessary. — A.  J.  H. 

Textile  materials;  Apparatus  for  dyeing  or  bleach- 
ing   .     J.  Gott  and  F.  Wallis.     E.P.  187,669, 

12.7.21. 


VII.-ACIDS;  ALKALIS;  SALTS;  NON- 
METALLIC  ELEMENTS. 

Hydrocyanic  acid;  Preparation   of  in   large 

quantities    in    the    laboratory.      E.    Fritzmann. 
J.  Russ.  Phys.-Chem.  Soc.,  1920,  52,  227—234. 

The  amounts  of  sulphuric  acid  and  water  with  which 
potassium  ferrocyanide  is  usually  heated  for  the 
preparation  of  hydrocyanic  acid  are  greater  than  is 
necessary  and  equally  good  yields  of  the  acid  are 
obtained  with  the  same  rapidity  with  10  pts.  of 
the  ferrocyanide,  5  of  sulphuric  acid,  and  8  pts.  of 
water.  The  apparatus  used  for  preparing,  puri- 
fying, and  condensing  the  acid  is  described. 

— T.  H.  P. 

Nitrogen,  carbon  and  sodium  carbonate;  Reversi- 
bility of  reaction  between .    C.  K.  Ingold  and 

D.  Wilson.     Trans.  Chem.  Soc,  1922,  121,  2278— 
2286. 

The  behaviour  of  the  system  nitrogen,  carbon,  and 
6odium  carbonate  can,  for  a  wide  range  of  tempera- 
ture be  represented  by  the  equation, 

x2/(l-x)x(l-p)3/p  =  K', 
where  x  is  the  proportion  of  combined  sodium 
present  in  the  liquid  phase  as  sodium  cyanide  (i.e., 
the  yield  of  sodium  cyanide  reckoned  as  a  fraction  of 
the  theoretical),  and  p  is  the  partial  pressure  of 
the  nitrogen  calculated  as  a  fraction  of  the  total 
pressure  of  nitrogen  and  carbon  monoxide,  assumed 
to   be  constant   at   1   atm.,    and   K1   is   a   derived 


constant  (K1  =K.pNa,co,.  p4c/p2NaCN).  The  heat  of 
reaction  and  the  latent  heats  of  vaporisation  of 
sodium  carbonate,  carbon,  and  sodium  cyanide  can 
be  considered  constant,  hence  loge  K1  is  equal  to 
o+/3/T,  and,  by  combining  this  with  the  equation 
given  above, 

log10(x2/(l-x)x(l-p)'/px„2)  =  a+/3/T 

where  a  =  23'91,  j8=-3118°,  ir=the  total  pressure 
of  nitrogen  and  carbon  monoxide.  This  formula 
represents  the  behaviour  of  the  system  to  a  degree 
of  approximation  of  1%  in  x  or  p,  equivalent  to 
about  2°  C.  in  T.  The  form  of  the  function  is 
shown  by  a  diagram,  where  x  is  plotted  against  p 
for  the  temperatures  850°,  900°,  and  950°  C.  A 
table  of  values  of  100  x  is  given  for  temperatures 
from  850°  to  950°  C— P.  V.  M. 

Sodium    chloride;    Melting   and   freezing    point    of 

.     J.   B.   Ferguson.      J.   Phys.  Chem.,   1922, 

26,  626—630. 

The  melting  point  of  sodium  chloride  is  803"4°  C. 
and  the  freezing  point  803-1°  C— J.  F.  S. 

Hypochlorite  solutions;  Determination  of  available 

chlorine   in  .     F.   Dienert  and  F.   Wanden- 

bulcke.    Ann.  FaUsif.,  1922,  15,  338—339. 

One  c.c.  of  the  hypochlorite  solution  is  diluted  with 
1  1.  of  water,  2  g.  of  ammonium  sulphate  (to  prevent 
formation  of  iodate)  and  a  few  crystals  of  potassium 
iodide  are  added,  and  the  liberated  iodine  is  titrated 
with  arsenious  acid  solution,  using  starch  as  indi- 
cator. The  results  obtained  agree  with  those  yielded 
by  Penot's  and  Gay-Lussac's  methods.  Poncius' 
method,  in  which  the  hypochlorite  solution  is 
titrated  directly  with  alkaline  potassium  iodide 
solution,  tends  to  yield  high  results  owing  to  the 
fact  that  the  iodate  first  formed  reacts  compara- 
tively slowly  with  the  alkaline  iodide  solution  added 
subsequently. — W.  P.  S. 

Magnesium  perchlorate;  Preparation  and  proper- 
tics  of ■  and  its  use  as  a  drying  agent.    H.  H. 

Willard  and  G.  F.  Smith.     J.  Amer.  Chem.  Soc., 
1922,  44,  2255—2259. 

The  hexahydrate  of  magnesium  perchlorate  may 
be  prepared  by  dissolving  magnesia  in  perchloric 
acid,  and  evaporating  the  solution  until  fumes  of 
perchloric  acid  are  evolved  and  crystallisation 
commences  at  the  surface.  The  solution  is  then 
cooled  to  ordinary  temperature  with  the  addition 
of  sufficient  water  to  keep  the  mass  semi-fluid.  The 
crystals  are  separated  by  centrifuging,  redissolved 
in  water  and  crystallised.  The  hexahydrate  melts 
at  145°— 147°  C,  has  sp.  gr.  1970  at  25°  C,  and 
is  non-deliquescent.  The  trihydrate  is  prepared  by 
keeping  the  hexahydrate  over  phosphoric  oxide 
at  20° — 23°  C.  for  a  month.  The  product  has 
sp.  gr.  2-044  at  25°  C,  and  the  same  melting  point 
as  the  hexahydrate.  The  anhydrous  compound  is 
obtained  by  heating  either  the  trihydrate  or  the 
hexahvdrate  at  170°  C,  in  a  current  of  air  for 
some  time  and  then  at  250°  C.  for  a  short  time. 
Magnesium  perchlorate  decomposes  at  400°  C., 
without  melting,  forming  a  mixture  of  the  oxide 
and  chloride.  When  moist  gas  is  passed  over 
anhydrous  magnesium  perchlorate  the  moisture  is 
removed  as  efficiently  as  by  phosphorus  pentoxide. 

— J.  F.  S. 

Hydrous  oxides.  IV.  Hydrous  stannic  oxide. 
H.  B.  Weiser.  J.  Phys.  Chem.,  1922,  26,  654-686. 
The  so-called  stannic  and  metastannic  acids  are 
not  acids  but  hydrated  oxides  of  compositions 
which  vary  with  the  method  of  formation.  There 
are  no  definite  hydrates  of  stannic  oxide  and  oxy- 
salts,  complex  stannates,  and  metastannates  are 
not  definite  compounds,  but  adsorption  products, 
the  composition  of  which  is  determined  by  the  age 
of  the  oxide  and  the  concentration  of  acid  or  alkali 


980  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;   NON-METALLIC  ELEMENTS. 


[Dec.  30,  1922. 


used  in  the  preparation.  Hydrated  stannic  oxide 
adsorbs  colloidal  gold,  silver,  and  platinum,  form- 
ing purple  masses,  the  most  common  of  which  is 
purple  of  Cassius.  These  masses  are  colloidal  in 
character  and  of  varying  composition.  A  mixture 
of  the  hydrated  oxides  of  iron  and  tin  in  suitable 
proportions  is  soluble  in  dilute  solutions  of 
ammonia,  the  reason  being,  that  hydrated  stannic 
oxide  is  peptised  by  ammonia  and  the  colloidal 
stannic  oxide  adsorbs  ferric  oxide.  Stannic  oxide 
does  not  precipitate  in  the  usual  way  from  a 
solution  of  tin  in  nitric  acid  which  contains  a  suit- 
able amount  of  iron.  This  is  due  to  the  fact  that 
ferric  nitrate  peptises  hydrated  stannic  oxide  when 
the  latter  is  either  freshly  precipitated  or  when  it  is 
aged.  Stannic  oxide  jellies  may  be  prepared  by 
coagulating  colloidal  solutions  of  hydrated  stannic 
oxide  with  small  quantities  of  barium,  strontium, 
calcium,  and  sodium  chlorides  or  hydrochloric  acid. 

—J.  P.  S. 

Stannous  oxide  and  stannous  hydroxides;  Prepara- 
tion and  reactions  of  .       F.   W.   Bury   and 

J.  R.  Partington.  Trans.  Chem.  Soc,  1922,  121, 
1998—2004. 
Six  specimens  of  stannous  hydroxide  (hydrated 
stannous  oxide)  were  prepared  from  stannous 
chloride  by  the  methods  of  previous  investigators. 
Analysis  showed  the  six  samples  to  be  essentially 
the  same  and  support  the  formula,  3SnO,2H20. 
No  sample  was  entirely  free  from  chlorine, 
although  in  most  cases  the  amount  was  exceedingly 
small.  Stannous  hydroxide  is  stable  up  to  110°  C. ; 
it  does  not  lose  the  whole  of  the  water  at  160°  C, 
some  of  the  water  being  probably  constitutional ; 
on  standing  under  water  it  is  slowly  converted  into 
stannous  oxide.  Several  modifications  of  stannous 
oxide,  differing  in  appearance,  colour,  and  density 
have  been  described  by  Ditte  (Ann.  Chim.  Phys., 
1882,  27,  145)  and  others,  but  the  authors  have 
found  it  impossible  to  confirm  their  statements  in 
most  cases. — J.  B.  F. 

Nickel _  and  cobalt  hydroxides;  Preparation  of 
colloidal  solutions  of  and  some  other  com- 
pounds of  these  metals.  O.  F.  Tower  and  M.  C. 
Cooke.  J.  Phys.  Chem.,  1922,  26,  728—735. 
Two  methods  are  described  for  preparing  colloidal 
suspensions  of  nickel  hydroxide,  one  by  dialysing 
nickel  tartrate  in  presence  of  an  alkaline  solution 
of  potassium  tartrate,  and  the  other  by  precipitat- 
ing and  washing  nickel  hydroxide  under  special 
conditions.  Only  very  weak  suspensions  of 
cobaltous  hydroxide  could  be  obtained  by  these 
methods.  The  characteristics  of  these  colloidal  sus- 
pensions are  discussed.  Colloidal  solutions  of  nickel 
sulphide  are  readily  formed  in  presence  of  an 
alkaline  tartrate  solution.  (Cf.  J.  Chem.  Soc., 
Jan.,  1923.)— J.  S.  G.  T. 

Isomerism  of  metallic  oxides.  Part  I.  Lead  mon- 
oxide. M.  P.  Applebey  and  R.  D.  Reid.  Trans. 
Chem.  Soc.,  1922,  121,  2129—2136. 
If  pure  lead  hydroxide  is  dissolved  in  strong 
potassium  hydroxide  solution  at  a  temperature  near 
the  boiling  point,  then  on  slowly  cooling,  the  oxide 
is  deposited  in  a  well  crystallised  form.  High  alkali 
concentrations  give  rise  to  the  red  variety,  moderate 
concentrations  the  yellow,  and  low  concentrations 
yield  a  black  or  steel-grey  variety  of  similar  form  to 
the  yellow  oxide.  The  red  form  crystallises  in 
square  plates,  whereas  the  yellow  gives  needle-like 
rhombic  crystals.  The  densities  of  the  red  and 
yellow  varieties  are  9'27  and  8'7  respectively.  The 
solubilities  of  the  two  forms  in  Njl  sodium  hydr- 
oxide were  determined  both  gravimetrically  and 
electrometrically ;  at  20°  C,  the  solubility  of  the 
yellow  form  is  about  1"8  times  that  of  the  red  form. 
Evidence  from  solubility  and  from  examination  of 
crystalline  structure  shows  that  the  yellow  and  red 


forms  are  polymorphic  modifications.  It  is  shown 
that  the  standard  alkali  electrode  Hg/HgO  in 
N /I  NaOH  is  easily  reproduced  and  constant  over 
long  periods. — J.  B.  F. 

Thorium    oxide;    Seduction    of    by    metallic 

tungsten.  Research  Staff  of  the  General  Electric 
Co.,  Ltd.,  London  (C.  J.  Smithells).  Trans. 
Chem.  Soc,  1922,   121,  2236—2238. 

"When  a  filament  containing  thoria  is  heated  in  a 
gas-filled  lamp  to  a  temperature  of  about  2700°  K. 
the  thoria  is  reduced  to  metallic  thorium  by  the 
tungsten.  As  the  heating  is  continued  the  thoria 
is  converted  into  a  grey,  metallic,  crystalline  mass. 
These  grey  crystals  are  very  stable  towards  acids 
and  alkalis.  On  grinding  the  material  and  remov- 
ing the  unchanged  thoria,  the  residue  was  not 
homogeneous,  but  contained  transparent  crystals 
varying  in  colom-  from  yellow  to  blue,  in  addition 
to  the  grey  metallic  crystals.  This  mixture  was  not 
attacked  by  hydrofluoric  and  nitric  acids,  and  on 
analysis  gave  Th  =  57%  and  W  =  26%.  There  is  con- 
siderable evidence  that  the  grey  material  is  a 
thorium-tungsten  bronze  possibly  of  the  form 
Th(WO,)n  where  n  may  have  a  value  from  about 
3  to  10.  The  coloured  crystals  are  probably  thoria 
containing  small  amounts  of  tungsten  oxides  in 
solution. — J.  B.  F. 

Silica;  Determination  of in  filtered  sea  water 

R.  C.  Wells.  J.  Amer.  Chem.  Soc,  1922,  44, 
2187—2193. 
The  most  effective  method  of  determining  small 
quantities  of  dissolved  silica  in  water  consists  in 
adding  an  aluminium  salt,  if  such  is  not  already 
present,  and  precipitating  by  ammonia  in  such 
quantity  that  the  solution  will  give  a  pink  colour 
with  rosolic  acid.  The  silica  in  the  aluminium 
hydroxide  precipitate  is  then  estimated  in  the  usual 
way.  Silica  cannot  be  estimated  by  the  loss  on 
evaporation  with  hydrofluoric  acid  in  the  presence 
of  calcium  sulphate.  In  rock  analysis  a  single 
evaporation  with  hydrochloric  acid  is  sufficient, 
provided  silica  is  also  determined  in  the  ammonia 
precipitate.     (Cf.  J.C.S.,  Dec)— J.  F.  S. 

Silicates    of    strontium   and    barium.      P.    Eskola. 
Amer.  J.  Sci.,  1922,  4,  331—375. 

The  attempt  was  made  to  explore  the  systems 
SrO-SiO,,  BaO-Si02,  and  to  synthesise  strontium 
and  barium  compounds  analogous  to  diopside  and 
anorthite  by  quenching  mixtures  of  the  oxides  from 
various  temperatures  and  studying  the  crystallo- 
graphic  and  physical  properties  of  the  separated 
phases.  In  the  SrO-Si02  system,  the  compounds 
formed  are  SrO;  2SrO,Si02  (m.p.  above  range  of 
electric  furnace) ;  SrO,Si02  (m.p.  1578°) ;  and  Si03. 
The  eutectics  2SrO,Si02-SrO,Si02  and  SrO,Si02- 
SiO.  melt  at  1545°  and  1358°  respectively.  In  the 
similar  barium  system  the  main  points  are 
BaO,  2BaO,SiO„,  eutectic  2BaO,SiO„-BaO,Si02  at 
1557°,  BaO,Si02"  (m.p.  1604°),  eutectic  BaO,Si03- 
2BaO,3SiO„  at "  1437°,  2BaO,3Si02  (m.p.  1450°), 
eutectic  2BaO,3Si03-BaO,2Si02  none,  the  two 
forming  a  complete  series  of  solid  solutions, 
BaO,2SiO,  (m.p.  1420°),  eutectic  BaO,2Si02-tndy- 
mite  at  1374°,  SiO,.  The  dibarium  trisilicate  and  the 
barium  disilicate  had  a  melting  point  diagram  of 
Bakhuis  Roozeboom's  type  I.  without  maximum  or 
minimum,  were  isomorphous  and  of  orthorhombic 
symmetry,  and  their  refractive  indices  showed  a 
continuous  but  not  linear  variation  with  composi- 
tion. Attempts  in  both  series  to  produce  different 
modifications,  e.g.,  of  SrO,Si02,  which  was  iso- 
morphous with  and  optically  very  similar  to 
o-CaO,Si02,  failed  although  both  heating  at  varying 
temperatures  for  different  lengths  of  time  and 
crystallising  from  the  corresponding  vanadate  were 
tried.      The    strontium    and   calcium    metasilicates 


Vol.  XLI.,  No.  24.] 


Ci~  VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON-METALLIC  ELEMENTS. 


9S1A 


formed  a  continuous  series  of  solid  solutions,  with 
a  minimum  at  1474° +  3,  corresponding  to  44°/ 
CaO,Si02,  56%  SrO,Si02.  The  crystals  were  pseudo- 
hexagonal  and  really  monoclinic.  The  refractive 
indices  showed  a  continuous  variation  with  compo- 
sition. Barium  metasilicate,  on  the  other  hand,  did 
not  mix  at  all  with  calcium  metasilicate,  but  gave 
a  compound  2CaO,BaO,3SiO,  having  no  true  melt- 
ing point  and  breaking  up  on  heating  to  a-CaO,Si02 
and  liquid.  This  compound  was  optically  unlike  all 
the  other  metasilicates.  Points  on  the  curve  were  the 
invariant  point  CaO,Si02-2CaO,BaO,3Si02-nielt 
at  52%  BaO.SiO,  (1320°±4),  and  eutectic 

2CaO,BaO,3SiO„  -  BaO,Si02 
at  73%  BaO,Si02  (1267°),  the  liquidus"of  BaO,Si02 
having  a  steep  course  toward  the  high  melting  point 
of  BaO,SiO..  Neither  the  strontium  nor  barium 
metasilicates  gave  with  magnesium  metasilicates 
compounds  analogous  to  diopside,  CaO,MgO,2Si02. 
This  was  regarded  as  a  special  case  of  the  more 
general  rule  that  in  compounds  in  which  the 
calcium  is  replaceable  by  magnesium  or  ferrous  iron, 
it  cannot  be  replaced  by  strontium  or  barium,  while 
the  isomorphous  series  including  the  latter  may 
have  isomorphous  and  miscible  analogues  among  the 
sodium,  potassium,  or  lead  compounds.  Both 
strontium  and  barium  metasilicates  with  aluminium 
silicate  gave  felspars  with  very  high  melting  points 
(much  above  1700°  C).  The  crystals  obtained  were 
from  melts  at  1400°  with  three  times  the  amount  of 
the  corresponding  vanadate.  The  artificial  stront- 
ium felspar  was  exactly  like  the  calcium  compound, 
anorthite,  in  optical  properties,  but  the  crystals 
were  too  poor  to  admit  of  investigation.  The 
barium  compound  in  optica1!  properties  resembled 
the  natural  celsian,  no  evidence  being  found  of  the 
existence  of  a  nephelite  analogue  described  by 
Ginsberg  (Ann.  Inst.  Polvt.  Pierre  le  Grand  a 
Petrograde,  1915,  23).— A.  C. 

Copper  sulphate;   Technical  preparation  of  . 

T.  Matsuno.     Kogyo-Kwagaku  Zasshi  (J.  Chem. 

Ind.,  Japan),  1922,  25,  926—930. 
Copper  sulphate  was  prepared  on  a  large  scale  from 
roasted  cement  copper  containing :  soluble  copper 
(expressed  as  CuO)  59'06,  insoluble  copper  (Cu20) 
2'58,  soluble  iron  (FeO)  1105,  insoluble  iron  (Fe=03) 
3"40,  silicic  acid  2'41,  and  oxygen  etc.  2150%. 
About  100  cub.  ft.  of  warm  water  is  poured  into  a 
dissolving  tank  (about  200  cub.  ft.  capacity),  8  lb. 
of  sulphuric  acid  of  50°  B.  (sp.  gr.  T53)  is  added, 
and  after  agitation  for  10  min.,  the  calculated 
quantity  of  copper  is  introduced,  the  tempera- 
ture of  the  bath  being  maintained  at  60° — 80°  C. 
After  10  min.,  further  quantities  of  the  acid  and 
copper  are  added,  and  the  process  is  repeated  until 
about  1500  kg.  of  copper  has  been  added.  The  solu- 
tion is  then  transferred  to  an  evaporating  bath  by 
means  of  siphons  and  concentrated  to  34'5°  B.  (sp. 
gr.  1'314),  then  transferred  to  a  crystallising  tank, 
in  which  many  lead  plates  are  suspended  for 
supporting  the  crystals.  The  crystallisation  is 
completed  in  about  1  week.  The  product  is 
collected,  crushed,  washed  with  water  and  dried  at 
about  50°  C.,  the  yield  being  about  1  ton.  The 
extraction  of  copper  is  more  than  92%,  and  the 
product  contains  only  005%  Fe  and  no  other 
impurities. — K.  K. 

Thiosulphate  of  bismuth  and  sodium;  Double  , 

its  preparation  and  use  in  estimations  of  potas- 
sium salts.  V.  Cuisinier.  Bull.  Soc.  Chim., 
1922,  31,  1064—1068. 

Methods  of  preparation  of  this  reagent  as  given 
by  other  authors  are  criticised  and  the  following 
procedure  recommended :  Bismuth  chloride  solu- 
tion is  prepared  by  dissolving  10  g.  of  bismuth 
subnitrate  in  10  c.c.  of  pure  hydrochloric  acid 
under  the  influence  of  heat.   On  cooling,  the  volume 


is  made  up  to  100  c.c.  with  95%  alcohol  and 
sufficient  additional  hydrochloric  acid  to  maintain 
the  clearness  of  the  solution.  To  this  is  added  an 
equal  volume  of  sodium  thiosulphate  solution  made 
by  dissolving  20  g.  of  the  crystalline  salt  in 
distilled  water  and  making  up  to  100  c.c.  After 
mixing,  five  times  the  volume  of  95%  alcohol  is 
added  and  if  the  whole  does  not  remain  clear,  any 
opacity  is  removed  by  the  addition  of  hydrochloric 
acid,  drop  by  drop,  and  shaking.  After  standing 
for  15  min.  a  crystalline  precipitate  of  sodium 
bismuth  thiosulphate  is  formed,  which  is  washed 
with  alcohol  and  dried  in  a  vacuum  over  sulphuric 
acid.  On  exposure  to  air  the  crystals  rapidly  turn 
brown.  In  using  this  substance' for  estimations  of 
potassium,  the  author  finds  that  the  results 
obtained  are  invariably  too  high  and  that  the 
weight  of  the  precipitate  depends  on  the  concen- 
tration of  the  reacting  solutions.  The  iodine  value 
of  the  precipitate  is  not  proportional  to  the  potas- 
sium in  the  solution  under  examination  and  the 
results  appear  to  vary  with  the  volume  of  alcohol 
used  as  precipitating  agent. — H.  J.  E. 

Calcium     hydroxide;     Colloidal    .        M.     von 

Glasenapp.  Kolloid-Zeits.,  1922,  31,  195—196. 
Two  varieties  of  colloidal  calcium  hydroxide  have 
been  obtained  from  a  marly  dolomite  of  the  com- 
position, CaO  2275%,  MgO,  1550%,  ALO,  7-68%, 
Fe203  1-87%,  Si02  15-27%,  C02  3483%,  ELO  T81%! 
The  dolomite  was  burnt  at  720° — 780°  C.  until  the 
magnesium  carbonate  was  entirely  decomposed  and 
the  calcium  carbonate  half  decomposed.  After  the 
burnt  product  had  been  kept  for  12  hrs.  in  water 
the  two  colloidal  varieties  of  calcium  hydroxide 
were  microscopically  visible.  The  primary  product 
separates  first  from  solution  as  small  drops  which 
grow  speedily  and  pass  into  the  secondary  product, 
which  forms  agglomerates  of  drops  having  the 
appearance  of  a  network  of  cells.  Both  colloids  are 
optically  isotropic  but  strongly  refracting;  in 
reflected  light  the  primary  colloid  is  light  blue  and 
the  secondary  colloid  bright  orange  in  colour.  The 
secondary  colloid  does  not  maintain  the  colloidal 
state  very  long  but  passes  into  crystalline  calcium 
hydroxide. — J.  F.  S. 

Fuller's   earth;   Adsorption  and  catalysis  in  . 

E.    K.    Rideal   and   W.    Thomas.     Trans.    Chem. 
Soc.,  1922,  121,  2119—2123. 

The  specific  surface,  adsorption,  and  catalytic 
activities  of  three  typical  varieties  of  fuller's  earth 
(Florida,  Surrey,  and  Somerset)  are  widely  differ- 
ent. Adsorption  of  Methylene  Blue  in  aqueous 
solution  is  proportional  to  the  specific  surfaces  of 
the  three  varieties.  The  catalytic  decomposition  of 
hydrogen  peroxide  is  not  dependent  on  the  adsorp- 
tive  power,  but  is  probably  determined  by  the  iron 
content. — J.  B.  F. 

Hydrogen  peroxide;  Catalysis  of by  ferric  salts. 

J.  Duclaux.    Bull.  Soc.  Chim.,  1922,  31,  961—966. 

The  author  has  investigated  the  velocity  of  the 
reaction  between  hydrogen  peroxide  and  ferric 
chloride  in  presence  of  hydrochloric  acid  at  25°  C, 
measuring  the  undecomposed  peroxide  with  per- 
manganate. His  experimental  results  confirm  those 
of  Bohnson  (J.  Phys.  Chem.,  1921,  15,  18)  and  von 
Bertalan  (J.,  1920,  656  a).  In  addition,  he  finds 
that  the  hydrogen  ion  concentration  must  be 
sufficient  to  eliminate  hydrolysis  of  the  ferric  salt, 
otherwise  inconsistent  results  are  obtained.  The 
theoretical  side  of  the  reaction  is  discussed  (c/. 
J.C.S.,  Jan.,  1923)  and  the  general  conclusion 
drawn  that  the  action  takes  place  between  ferric 
ions  and  the  H02  ions  derived  from  the  peroxide 
which  behaves  as  a  weak  acid. — H.  J.  E. 


982  a 


Cl.  VII.— ACIDS  ;  ALKALIS  ;   SALTS  ;  NON-METALLIO  ELEMENTS.       [Dec  30,  1922. 


Diffusion     of     hydrogen     and     helium     through 
glasses.    Williams  and  Ferguson.     See  VIII. 

Alkali      carbonate      and      hydroxide.        Bonnier. 
See  XXIII. 

Estimation  of  sulphates  etc.      Jellinek   and   Ens. 
See  XXIII. 

Boric  acid.     Deems.     See  XXIII. 

Patents. 

Sulphuric  acid;  Process  for  the  production  of . 

T.  Schmiedel  and  H.  Klencke.  E.P.  187,016, 
12.7.21.  Addn.  to  149,648  (J.,  1921,  693a). 
The  process  described  in  the  previous  patent  is 
modified  by  supplying  the  plant  with  nitrosyl- 
sulphuric  acid  of  above  58°  B.  (sp.  gr.  T67),  which 
may  be  maintained  at  an  elevated  temperature 
(about  50°— 90°  C.)  if  desired.  The  middle  part  of 
the  plant  may  be  sprayed  with  a  solution  of 
nitrosylsulphuric  acid  of  lower  strength  than  that 
used  in  the  fore  and  rear  parts  of  the  plant,  but 
above  54°  B.  (sp.  gr.  1-598).  Preferably  the  first 
units  of  the  plant  are  supplied  with  nitrosyl- 
sulphuric acid  of  above  54°  B.,  and  in  the  following 
unit  the  nitrosylsulphuric  acid  is  diluted  with 
water  to  such  extent  (to  below  50°  B.,  i.e.  sp.  gr. 
1'53)  that  its  solvent  power  for  nitrogen  oxides  is 
diminished,  whereby  large  volumes  of  nitrous  gases 
are  suddenly  evolved  into  the  gas  mixture  and 
rapidly  oxidise  the  remaining  sulphur  dioxide.  The 
gas  mixture  is  finally  led  through  a  chamber 
supplied  with  acid  of  above  54°  B.  for  the  absorp- 
tion of  the  nitrogen  compounds. — H.  R.  D. 

Nitric  acid;  Process  for  recovering  nitrous  vapours 

in  the  form  of  aqueous  .     P.  A.  Guye,  Assr. 

to     L'Azote     Francais,      Soc.      Anon.        U.S. P. 
1,433,004,  24.10.22.     Appl.,  6.10.20. 

Fibrous  material  resistant  to  nitric  acid  is 
impregnated  with  water,  and  brought  into  contact 
with  nitrous  vapours  diluted  with  an  excess  of 
nitrogen  and  oxygen. — H,  R.  D. 

Magnesia;  Manufacture  of from  dolomite.     C. 

Clerc  and  A.  Nihoul.        E.P.  173,502,   20.12.21. 

Conv.,  24.12.20. 
Dolomite  is  calcined  at  such  a  high  temperature 
(1000°— 1200°  C.)  that  the  resulting  magnesia  can 
be  hydrated  only  with  difficulty  whilst  the  lime  is 
easily  hydrated.  The  product  is  slaked  with  a 
quantity  of  water  equal  to  about  20%  of  the  lime 
present,  sifted,  and  added  gradually  to,  and  mixed 
with,  a  solution  containing  magnesium  chloride  in 
excess,  whereby  the  lime  is  converted  into  calcium 
chloride,  and  partially  hydrated  magnesia  is 
obtained  in  a  granular  form  which  can  be  rapidly 
filtered  and  washed.  The  solution  of  magnesium 
chloride  is  made  from  the  waste  liquor  of  the 
ammonia-soda  process  by  conversion  of  the  calcium 
chloride  in  the  liquor  into  magnesium  chloride  by 
reaction  with  the  mixture  of  lime  and  magnesia 
in  the  presence  of  carbon  dioxide. — H.  R.  D. 

Sulphate   of  ammonia;  Manufacture   of   [neutral] 

.    W.  C.  Holmes  and  Co.,  Ltd.,  W.  G.  Adam, 

and  C.  Cooper.  E.P.  187,035,  16.7.21. 
An  improvement  of  the  process  described  in  E.P. 
108,098  (J.,  1917,  1007)  consisting  in  mechanically 
conveying  the  crude  damp  and  acid  salt  through  a 
chamber  through  which  is  passed  iu  the  reverse 
direction  a  current  of  ammonia  gas  and  heated  air 
to  effect  the  simultaneous  neutralisation  and 
drying  of  the  salt.  The  apparatus  comprises  an 
inclined  chamber  of  rectangular  cross-section  in 
which  are  located  twin  spiral  conveyors  partially 
overlapping,  which  convey  the  salt  from  the  lower 
to  the  upper  end  of  the  chamber.     The  air  is  heated 


by  passing  it  through  a  jacket  surrounding  the 
chamber  and  is  then  passed  together  with  ammonia 
gas  through  the  chamber. — H.  R.  D. 

Ammonium      sulphate;      Continuous      drying      of 
pulverulent  or  granular  materials,  applicable  to 

the  manufacture  of  neutral  .     J.  Marr,  and 

The  Coke  Oven  Construction  Co.,     Ltd.       E.P. 
187,320,  16.7.21  and  26.4.22. 

The  material  is  led  continuously  by  pneumatic 
action  and  mechanical  means  through  a  rotary 
dryer,  and  exposed  therein  to  a  current  of  hot 
gases.  The  material  is  introduced  into  the  feed 
conduit  and  conveyed  to  and  from  the  dryer  solely 
by  pneumatic  action,  but  in  the  dryer  it  is  conveyed 
solely  by  mechanical  means,  for  example  by  means 
of  shelves.  In  the  treatment  of  ammonium 
sulphate,  the  temperature  of  the  gases  should  be 
such  that  the  salt  is  not  heated  above  80°  C.  and 
ammonia  is  introduced  into  the  feed  conduit  to 
neutralise  any  free  acid  and  liberate  any  pyridine 
present. — H.  R.  D. 

Potassium    chloride;    Method   of   recovering  

from   brine.     J.   L.    Silsbee.       U.S.P.    1,432,796, 
24.10.22.     Appl.,    12.4.20.     Renewed  22.3.22. 

A  mixture  of  salts  containing  chlorides  of  potas- 
sium and  magnesium,  separated  from  brine,  is 
washed  at  approximately  ordinary  temperature 
with  a  solution  of  potassium  chloride,  whereby 
magnesium  chloride  is  dissolved  and  part  of  the 
dissolved  potassium  chloride  is  separated.  The 
washed  material  is  separated,  and  the  potassium 
chloride  dissolved  to  form  a  hot  saturated 
solution,  which  on  cooling  will  deposit  potassium 
chloride  without  precipitation  of  sodium  chloride. 
The  hot  solution  is  separated  from  undissolved 
solids,  cooled,  and  the  potassium  chloride  which 
separates   is  removed   from  the  mother  liquor. 

— H.  R.  D. 

Saltpetre  manufacture ;  Process  for  .      T.  C. 

Meadows,  M.  Hauber,  jun.,  and  H.  W.  Charlton. 
U.S.P.  1,433,290,  24.10.22.     Appl.,  28.8.20. 

Greensand,  lime,  caustic  alkali,  and  sodium  nitrate 
are  digested  at  elevated  temperatures  and  under 
superatmospheric  pressure. — H.  R.  D. 

Hydrogen;   Process   and   apparatus   for   purifying 

.     Deutsche  Gltihfadenfabrik  R.   Kurtz  und 

P.  Schwarzkopf  G.m.b.H.,  Assees.  of  P.  Schwarz- 
kopf.   E.P.  166,541,  13.7.21.     Conv.,  13.7.20. 

Hydrogen  freed  as  far  as  possible  from  carbon 
monoxide  and  dioxide,  oxygen,  sulphur,  and 
arsenic  and  phosphorus  compounds  by  suitable 
successive  treatments,  is  conducted  over  finely 
divided  molybdenum  or  other  similar  metal  of 
high  melting  point  heated  to  incandescence  (e.g., 
800° — 850°  C.  for  molybdenum  powder),  whereby 
the  remaining  impurities  are  removed.  The  gas 
after  passing  through  the  furnace  is  led  by  means 
of  pipes  over  caustic  soda  to  free  it  from  any 
carbon  dioxide  formed,  and  is  then  dried.  When 
the  molybdenum  becomes  exhausted  of  ite  efficiency, 
it  may  be  revivified  by  oxidation,  dissolving, 
precipitation,  and  reduction. — H.  R.  D. 

Nitrogen-carbonic     acid     mixture;     Process     and 

aparatus  for  the  manufacture  of  pure  from 

combustion  gases.  G.  Scheib  and  M.  Koch. 
E.P.  172,958,  13.12.21.  Conv.,  14.12.20. 
Combustion  gases  are  passed  over  a  contact  sub- 
stance consisting  of  a  metal  and  its  oxide,  e.g., 
copper  and  copper  protoxide.  A  relatively  large 
quantity  of  contact  material  is  used  and  is  kept 
in  active  condition  by  reducing  the  oxide  formed 
by  oxidation  of  the  metal  by  means  of  reducing 
gases  generated  by  passing  an  auxiliary  current  of 
combustion     gases,     separated     from     the     main 


Vol.  XLI.,  No.  24.] 


Cl.  VIII.— GLASS;  CERAMICS. 


983  a 


current,  over  charcoal,  benzol,  petroleum,  or  the 
like,  and  then  mixing  this  auxiliary  current  with 
the  main  current  of  combustion  gases  prior  to 
entering  the  contact  chamber.  The  apparatus 
comprises  a  furnace  for  generating  the  combustion 
gases,  two  conduits  for  the  main  current  and 
auxiliary  current  of  combustion  gases,  respectively, 
and  a  common  channel  into  which  these  two 
conduits  open  and  which  leads  to  the  tower 
containing  the  contact  material.  The  conduit  for 
the  auxiliary  current  of  combustion  gases  contains 
a  support  for  the  charcoal  or  the  like  used  to 
generate  reducing  gases,  and  is  connected  with  the 
combustion  chamber  by  means  of  an  adjustable 
flap.  The  process  may  be  controlled  automatically 
by  regulating  the  supply  of  air  for  combustion 
according  to  the  percentage  of  carbon  dioxide  in 
the  combustion  gases  or  by  adjusting  the  position 
of  the  flap  mentioned  above  according  to  the  per- 
centage of  oxygen  in  a  sample  of  gas  taken  from 
the  middle  of  the  mass  of  contact  material. 

— H.   R.  D. 

Graphite;  Purification  of .     M.  Langheinrich. 

E.P.  187,080,  20.8.21. 

Natural  graphite  is  mixed  with  coal  and  heated 
by  an  electric  current  to  a  temperature  of  2200°  C. 
or  higher,  whereby  the  impurities  (silica,  alumina, 
pyrites,  etc.)  are  reduced  and  sublimed.  The 
volatilised  impurities  may  be  collected  separately  at 
different  temperatures.  The  purified  graphite 
retains  its  original  flaky  structure. — H.  R.  D. 

Delivering    measured    quantities    of    acids.     E.P. 
172,011.    See  I. 


VIII.-GLASS;  CERAMICS. 

Silica     glass     and     other     glasses;     Diffusion     of 

hydrogen    and    helium    through    .       G.    A. 

Williams  and  J.  B.  Ferguson.     J.  Amer.  Cliem. 
Soc,  1922,  44,  2160—2167. 

Silica  glass  is  permeable  to  hydrogen  at  high  tem- 
peratures and  pressures.  The  permeability  is 
proportional  to  the  gas  pressure  and  is  an 
exponential  function  of  the  temperature.  It 
becomes  appreciable  at  300°  C.  Silica  glass  is 
similarly  permeable  to  helium  and  the  permeability 
is  easily  measured  at  182°  C.  At  500°  C.  the  per- 
meability for  helium  is  22  times  that  for  hydrogen. 
Neither  pyrex  glass  nor  Jena  combustion  tubing  are 
permeable  for  hydrogen,  but  apparently  hydrogen 
reacts  with  pyrex  glass  causing  blackening.  At 
610°  C.  pyrex  glass  is  permeable  for  helium. 

—J.  F.  S. 

Clays;  Studies  on  -.  I.  Their  chemical  com- 
position. O.  Boudouard  and  J.  Lefranc.  Bull. 
Soc.  Chim.,  1922,  31,  976—982. 

A  general  discussion  of  the  composition  of  clays 
taken  from  various  sources.  Analyses  are  quoted ; 
the  proportion  of  alkalis  varies  considerably  in 
different  samples  of  kaolin,  and  one  specimen  of 
halloysite  is  notable  for  its  high  calcium  content. 
A  stoichiometrical  representation  of  the  analytical 
results  is  given  as  a  basis  for  comparison  with  the 
theoretical  values  for  kaolin. — H.  J.  E. 

Terracotta    body;   Effect    of    some    fluxes    on    the 

absorption   and    transverse   strength   of    a   . 

E.    C.    Hill.      J.    Amer.    Ceram.    Soc,   1922,    5, 
832—834. 

A  table  is  given  of  average  results  of  shrinkage, 
absorption,  and  transverse  strength  tests  on  terra- 
cotta bodies  of  2  clay  :  1  porous  grog,  to  which  were 
added  various  amounts  of  fluxing  materials,  viz., 
felspar,  Albany  slip,  powdered  glass,  white  lead, 
cryolite,    whiting    and    fluorspar,    magnesium    car- 


bonate, and  furnace  slags.  Insoluble  materials, 
with  considerable  alkali  content,  such  as  felspars, 
powdered  glass,  and  cryolite,  appear  to  be  the  best 
fluxes.  Depending  on  local  economic  conditions, 
most  of  the  above  fluxes,  if  free  from  discolouring 
impurities,  can  advantageously  be  used  in  place  of 
vitrified  grog. — J.  B.  P. 

Enamelling  of  cast  iron;  Effect  of  sources  of  pig- 
iron  on .    M.  E.  Manson.     J.  Amer.  Ceram. 

Soc.,  1922,  5,  806—810. 

An  analytical  investigation  of  enamelled  cast  iron 
made  from  two  different  sources  of  pig-iron 
showed  that  although  blistering  occurred  con- 
tinuously in  one  pig-iron,  the  only  difference  in  the 
two  irons  was  in  combined  carbon  content.  The 
silicon  content  of  the  unsatisfactory  iron  was  then 
artificially  reduced  from  28%  to  23%,  and  a  metal 
with  about  03%  of  combined  carbon  resulted,  on 
which  fairly  successful  enamelling  was  done.  When- 
ever blistering  occurred  the  combined  carbon  was 
found  to  have  dropped  to  below  0-15%.  However, 
from  photomicrographs  of  blistered  specimens,  the 
direct  effect  of  combined  carbon  on  enamelling  is 
doubted.  These  specimens  showed  characteristic 
dark  blotches,  which  proved  to  be  entirely  surface 
phenomena.  Tests  did  not  show  that  enamelling 
lowered  the  initial  combined  carbon  content,  nor 
was  evidence  discovered  that  the  blotches  of  the 
micrographs  were  developed  during  enamelling. 

—J.  B.  P. 

Heat-resisting   alloys   for    enamel   burning    racks; 

Relative  merits  of  .     E.  P.  Poste.     J.  Amer. 

Ceram.  Soc,  1922,  5,  811—816. 

The  results  of  oxidation  and  warpage  tests,  carried 
out  at  1700°— 1800°  F.  (about  910°— 970°  C),  on 
samples  of  the  same  size  of  basic  open-hearth  steel, 
cast  steel,  cast  iron,  calorised  steel,  "  thermalloy," 
"  misco,"  "  nichrome,"  "  rezistal,"  nickel,  monel- 
metal,  "calite,"  and  "  hardite,"  are  given  in 
comparative  tables  and  graphs.  Steels  and  cast 
iron  are  worst  as  regards  warpage,  while  towards 
heat  (i.e.,  oxidation)  "  thermalloy  "  and  "  misco  " 
showed  fair,  and  the  steels  and  cast  irons  poor, 
resistance. — J.  B.  P. 

Silicates  of  barium  and  strontium.  Eskola.  See  VII. 

Patents. 

Glass  furnaces  and  the  like;  Recuperator  for . 

W.  McLaughlin,  Assr.  to  C.  E.  Norton.     U.S.P. 

1,432,706,  17.10.22.  Appl.,  20.4.20. 
The  melting  tank  is  provided  with  gas  outlet  flues 
along  ite  walls,  terminating  in  horizontal  flues 
which  converge  into  a  chimney.  Air  inlet  passages 
extending  through  the  horizontal  flues  are  spaced 
from  the  flue  walls  and  are  provided  with  burners 
near  their  inner  ends.  The  inlet  passages  and  the 
outlet  flues  are  disposed  in  the  same  horizontal 
plane. — H.  H. 

Spinning  nozzles  from  ceramic  materials;  Manufac- 
ture of .     A.  Kiimpf,  Assee.  of  G.  Neumann. 

E.P.  166,533,  12.7.21.    Conv.,  12.7.20. 

Fine  metal  wires  of  the  thickness  of  the  nozzle- 
openings  are  set  parallel,  in  a  mud  of  suitable 
ceramic  material  produced  by  the  electro-osmotic 
process,  in  a  cylindrical  mould.  The  ceramic  core 
is  then  dried,  burnt  (the  process  of  hardening  being 
regulated),  and  cut  into  discs  of  the  desired  thick- 
ness, the  wires  being  removed  by  usual  chemical 
methods. — J.  B.  P. 

Waterproofing  tile  and  the  like.  J.  T.  Pokorny, 
Assr.  to  A.  T.  Eddingston.  U.S.P.  1,432,120, 
17.10.22.     Appl.,  18.9.20. 

Tn.ES  are  burnt  in  a  high-domed  furnace,  into 
which  coal-tar  is  then  poured  through  hoppers  which 


984  a      Cl.  IX.— BUILDING  MATERIALS.     Cl.     X.— METALS  ;    METALLURGY,  &c.     (Dec.  30,  1922. 


can  be  closed.  Moisture  is  thus  excluded,  and  the 
vaporised  tar  products  are  deposited  on  and 
absorbed  by  the  tile. — J.  B.  P. 

Molten  glass;  Method  of  and  means  for  producing 

charges    of   .     C.    R.    Lott.     E.P.    187,661, 

23.6.21. 

Glass  blowing ;  Method  of  and  means  for  .     V. 

Lorentz.     E.P.  187,839,  21.10.21. 

Glass  making  machines  [for  producing  pressed  cups, 
etc.].    E.  A.  Hailwood.    E.P.  188,102,  20.8.21. 

IX.-BUILDING  MATERIALS. 

Dolomite;  Caustic  calcination  of  and  its  use 

in  Sorel  cements.     G.  A.  Bole  and  J.  B.  Shaw. 
J.  Amer.  Ceram.  Soc.,  1922,  5,  817—822. 

In  order  to  prevent  the  decomposition  of  calcium 
carbonate  to  the  free  lime  so  detrimental  to  an 
oxychloride  cement,  dolomites  were  calcined  in 
special  retorts  having  wrought  iron  or  fireclay 
bodies,  with  a  gas-tight  chamber  so  constructed 
that  the  pressure  of  carbon  dioxide  inside  the 
furnace  could  be  kept  constantly  at  1  atm.  With 
this  furnace  the  material  could  be  satisfactorily 
calcined  at  700°— 800°  C,  despite  the  fact  (cf. 
Johnston,  J.,  1910,  1054)  that  calcium  carbonate 
dissociates,  under  ordinary  pressure,  below  650°  C. 
Data  from  tests  showed  that  better  cement  is  given 
and  that  calcination  is  generally  quicker  if  burning 
can  be  done  at  725° — 750°  C.  Tests  on  floors  and 
stuccos  made  from  this  calcined  material  showed 
satisfactory  strength  and  good  weathering  resist- 
ance. There  appeared  to  be  no  overburning,  and 
only  ores  containing  more  than  4%  of  silica  gave 
inferior  cement. — J.  B.  P. 

Patent. 

Heat    insulator.      H.    Mock.      U.S.P.    1,433,088, 
24.10.22.     Appl.,  23.5.21. 

Insulating  bricks  are  made  with  a  core  of  powdered 
sulphur  and  an  outer  coating  of  asphalt  or  vulcan- 
isable  material. — J.  B.  P. 

X— METALS;  METALLURGY,  INCLUDING 
ELECTB0-METALLU8GY. 

Aluminium;  Treatment  of  before  nickel- 
plating.  E.  Tassilly.  Bull.  Soc.  Chim.,  1922,  31, 
973—976. 
The  methods  recommended  for  preparing  the 
surface  of  aluminium  for  nickel-plating  (Mazuir, 
J.,  1921,  13  a;  Canac  and  Tassilly,  J.,  1914,  142; 
Tassilly,  J.,  1914,  697)  include  immersion  in  a  bath 
of  aqueous  hydrochloric  acid  to  which  a  small 
amount  of  iron  or  manganese  has  been  added.  The 
author  has  investigated  the  part  played  by  the 
metal  in  the  solution,  also  the  relative  advantages 
of  iron  and  manganese,  and  finds  that  in  the  case  of 
aluminium  containing  iron  as  impurity  no  such 
addition  to  the  acid  is  necessary.  In  the  case  of 
aluminium  which  is  practically  pure,  the  effect  of 
pure  hydrochloric  acid  is  so  slight  that  some  such 
addition  is  necessary  to  obtain  the  effect  required  in 
the  acid  bath.  In  default  of  an  analysis  of  the 
metal  to  be  plated,  the  addition  is  advisable  in 
order  to  obtain  a  suitable  surface,  though  possibly 
unnecessary.  As  the  action  is,  in  its  results,  of  a 
mechanical  nature,  there  is  no  advantage  obtained 
by  substituting  manganese  for  iron. — H.  J.  E. 

Aluminium-arsenic;  The  system  .     Q.  A.  Man- 

suri.     Trans.  Chem.  Soc,  1922,  121,  2272—2277. 

Aluminium  combines  with  arsenic  at  about  750°  C, 
under  low  pressures,  to  form  the  compound,  Al3As2. 
Yellow  arsenic  is  first  formed  and  then  reacts  with 


the  aluminium.  The  compound  is  a  brown  amorph- 
ous powder  and  does  not  melt  at  temperatures  up  to 
1600°  C.  It  is  stable  at  high  temperatures  but 
begins  to  decompose  at  lower  temperatures,  yellow 
arsenic  being  first  formed.  When  exposed  to 
moisture  it  is  highly  reactive,  evolving  arsine 
freely.  On  heating  in  air  it  is  oxidised  to  alumina 
and  arsenious  oxide.  The  solid  compound  does  not 
appear  to  dissolve  in  molten  aluminium,  but 
separates  out  almost  completely  at  its  freezing 
point.  It  forms  a  strong  and  hard  envelope  round 
the  aluminium.  Attempts  were  made  to  prepare 
alloys  of  higher  arsenic  content,  but  without  success. 
The  brown  compound  did  not  form  a  eutectic  with 
arsenic  nor  was  a  compound  containing  a  higher 
proportion  of  arsenic  obtained;  the  excess  of 
arsenic  separated  out  again  as  free  arsenic. 

—J.  B.  F. 

Tungsten  alloys;  Analysis  of  high-percentage  . 

K.  Seel.  Z.  angew.  Chem.,  1922,  35,  643—644. 
The  serious  loss  of  platinum  involved  in  the  custom- 
ary fusions  of  tungsten  alloys  with  sodium  and 
potassium  carbonates  and  nitrates  in  platinum 
crucibles  may  be  avoided  by  fusing  the  finely  divided 
alloy  with  sodium  hydroxide  and  nitrate  in  silver 
crucibles.  The  fusion  takes  about  1  hr.  and  the 
crucibles  are  not  seriously  attacked.  0'5  g.  of  the 
finely  divided  alloy  is  fused  with  6  g.  of  sodium 
hydroxide  and  3  g.  of  sodium  nitrate.  The  melt  is 
dissolved  in  water  and  filtered,  the  iron  oxide 
remaining  on  the  filter  being  dissolved  in  hydro- 
chloric acid  containing  a  little  potassium  chlorate, 
filtered,  and  the  two  filtrates  united.  The  iron  is 
determined  as  Fe203  as  usual.  The  aluminium  and 
the  greater  part  of  the  silica  are  removed  from  the 
filtrate  with  ammonia,  filtered  off,  and  the  tungsten 
in  the  filtrate  precipitated  with  mercurous  nitrate 
after  acidifying,  boiling  off  the  carbon  dioxide,  and 
concentrating  to  about  150  c.c.  The  tungstic  acid 
obtained  by  ignition  of  the  precipitate  is  strongly 
contaminated  with  alkali,  which  is  removed  by 
repeated  extractions  with  7%  hydrochloric  acid,  and 
traces  of  silica  are  finally  removed  by  treatment 
with  hydrofluoric  acid.  In  the  case  of  alloys  rich  in 
iron,  a  residue  containing  iron  and  tungsten 
remains  after  the  original  fusion.  This  is  fused  with 
pyrosulphate  and  the  tungsten  precipitated  with 
nitric  acid,  determined  as  tungstic  acid,  and  added 
to  the  figure  obtained  above.  The  iron  in  the 
filtrate  is  determined  in  the  usual  way  and  added  to 
the  figure  obtained  above. — H.  C.  R. 

Lead;   Determination   of   in   lead    amalgam. 

M.  G.  Mellon.     J.  Amer.   Chem.  Soc.,  1922,  44, 
2167—2174. 

Quantities  of  lead  amounting  to  0'4  g.  in  30 — 50  g. 
of  mercury  may  be  rapidly  determined  with  an 
accuracy  of  005%  as  follows:  the  sample  of  amal- 
gam is  covered  with  water  containing  one  drop  of 
10%  acetic  acid,  treated  with  10  c.c.  of  W  copper 
nitrate,  and  stirred  continuously  for  30  mins.  The 
solution  is  filtered  from  metallic  copper,  which  has 
not  dissolved  in  the  mercury,  acidified  with  one 
drop  of  10%  acetic  acid,  and  the  lead  precipitated 
as  chromate  by  the  usual  method. — J.  F.  S. 

Metals;  Properties  of  cold-worked .     Z.  Jeffries 

and  R.  S.  Archer.  Chem.  and  Met.  Eng.,  1922, 
27,  882—889. 
While  the  general  effects  of  cold  working  are  an 
increase  in  hardness  and  loss  of  plasticity,  other 
specific  properties  are  affected  in  somewhat  different 
ways,  the  yield  point  being  affected  probably  more 
than  any  other  property  belonging  to  the  hardness 
group.  The  effects  of  cold  working  are  directional 
in  the  sense  that  the  mechanical  properties  are 
influenced  to  a  greater  extent  in  the  direction  of 
working.    Important  changes  may  take  place  on  the 


Vol.  XLI.,  No.  24.]     Cl.  X.— METALS ;   METALLURGY,  INCLUDING  ELECTRO-METALLURGY.      985  A 


surfaces  of  slip  during  and  after  deformation. 
Immediately  after  slip  commences,  the  Slip  plane 
strength,  i.e.,  the  resistance  to  motion  along  the 
slip,  is  less  than  the  strength  of  the  crystals  along 
parallel  planes,  but  as  the  slip  continues  a  reversal 
of  these  conditions  occurs,  otherwise  fracture  would 
occur  quickly.  Retardation  of  the  original  slip 
takes  place  partly  by  the  interference  of  adjacent 
grains  and  partly  by  the  resistance  on  the  Slip  plane 
itself,  leaving  in  a  worked  metal  slip  planes  in  all 
stages  of  deformation.  Slip  causes  rupture  of  the 
atomic  bonds  on  the  slip  plane,  and  after  motion  has 
ceased  a  partial  re-establishment  of  cohesion  obtains 
by  fragments  of  the  ruptured  crystals  joining  into 
larger  crystalline  units  which  is  attended  with  vary- 
ing degrees  of  disorganisation  owing  to  differing 
orientation.  This  disorganised  metal  simulates 
amorphous  metal  in  its  mechanical  properties. 
Atomic  rearrangement  on  slip  planes  takes  place  at 
much  lower  temperatures  than  are  usually  asso- 
ciated with  recrystallisation  as  is  exemplified  by  the 
spontaneous  ageing  of  iron  at  atmospheric  tempera- 
ture. The  excess  of  slip  plane  strength  over  crystal 
strength  at  low  temperatures  is  the  fundamental 
cause  of  the  general  increase  in  elongation  with 
decrease  in  temperature.  Since  strain-hardness  is 
to  be  attributed  chiefly  to  the  slip  interference 
created  by  the  relative  displacement  of  crystal  frag- 
ments, this  hardening  will  be  greater,  in  general, 
the  larger  the  number  of  planes  on  which  slip  takes 
place,  and  accordingly  deformation  produces  hard- 
ness more  rapidly  as  the  temperature  is  lowered,  as 
the  initial  grain  6ize  is  smaller,  and  finally  when 
spontaneous  union  of  the  crystal  fragments  takes 
place  during  deformation  as  in  the  blue  heat  range 
in  iron.     (('/.  J.,  1922,  941  A.)— C.  A.  K. 

See  also  pages  (a)  972,  Oxidation  of  carbon  by 
chromic  mid  (Florentin).  980,  Reduction  of 
thorium  oxide  by  tungsten  (Smithells).  983, 
Enamelling  of  cast  iron  (Manson) ;  Heat-resisting 
alloys,  for  enamel  burning  racks  (Poste).  999, 
Cobalt  in  alloy  steels  (Willard  and  Hall).  1000, 
Carbon  in  steel  (Bonnier). 

Patents. 
Unstainable  steel  and  iron  or  alloys  thereof;  Manu- 
facture  of   .     L.    Aitchison.     E.P.    187,310, 

14.7.21. 
Articles  are  formed  (e.g.,  by  casting)  from  metal 
having  the  composition  of  unstainable  metal,  but 
containing  carbon  in  excess  of  the  quantity  desirable 
in  the  finished  product.  The  article  is  then  de- 
carbonised superficially  by  heating  in  a  current  of 
hydrogen  or  in  contact  with  a  suitable  decarbonising 
agent.  Cooling  may  take  place  in  contact  with  the 
reducing  agent  to  prevent  partial  re-carbonisation 
from  the  interior  of  the  metal. — C.  A.  K. 

Iron;  Art  of  making  electrolytic .    F.  A.  Eustis, 

C.  R.  Hayward,  H.  M.  Schleicher,  and  D. 
Belcher,  Assrs.  to  F.  A.  Eustis  and  C.  P.  Perin. 
U.S. P.  1,432,543-^1,  17.10.22.  Appl.,  (a)  7.7.21 
and  (b)  17.1.22. 

(a)  A  solution  of  a  ferric  salt  is  reduced  by  means 
of  hydrogen  sulphide,  and  the  reduced  solution  is 
used  for  leaching  sulphide  ore,  whereby  the  iron 
therein  is  dissolved  and  hydrogen  sulphide  liberated 
and  utilised  in  reducing  further  quantities  of  ferric 
solution.     The  leach  liquor  is  electrolysed  for  iron. 

(b)  A  solution  of  a  ferrous  salt  for  use  in  the  electro- 
deposition  of  iron  is  made  by  dissolving  iron  oxide 
in  a  dilute  acid  solution  containing  a  ferrous  salt. 

—A.  R.  P. 

Magnetic   sand  or  finely  divided  iron  ore;   Treat- 
ment of .    A.  Naito.    E.P.  187,810,  29.9.21. 

The  sand  or  ore  is  mixed  with  powdered  coal  and 
heated  to  produce  a  coke  containing  iron  ore,  which 
is  heaped  in  the  open  air,  and  either  sulphur  dioxide 
or  chlorine  gas  passed  through,  or  sea  water  or  a 
solution    of    caustic    alkali    poured   upon    it.     The 


product  is  exposed  to  the  atmosphere  till  large 
lumps  or  masses  are  obtained,  which  are  charged 
with  a  suitable  flux  into  a  smelting  furnace. 

— T.  H.  Bu. 

Metals  [iron];  Process  and  apparatus  for  pickling 

.  E.  H.  Hinckley.  U.S.P.  1,434,011,  31.10.22. 

Appl.,  20.5.18. 

Iron  is  immersed  in  an  aqueous  solution  of  sul- 
phuric acid  of  such  concentration  and  temperature 
that  the  efficiency  of  ionisation  and  capacity  for 
absorbing  ferrous  sulphate  are  at  a  maximum. 

— T.  H.  Bu. 

(a)  Ferro-uranium;  Process  of  making  .     (n) 

Electric  furnace.  F.  F.  Mueller  and  R.  W. 
Harris,  Assrs.  to  Standard  Chemical  Co.  U.S.P. 
(a)  1,433,403  and  (b)  1,433,404,  24.10.22.  Appl., 
20.10.20. 

(a)  Uranium  oxide  is  reduced  with  a  carbonaceous 
reducing  material  in  an  electric  furnace  provided 
with  a  lining  composed  principally  of  non- 
carbonaceous  material.  The  temperature  in  the 
furnace  is  raised  sufficiently  to  eliminate  most  of 
the  carbon  in  the  bath;  iron  is  added  to  the  bath, 
and  ferro-uranium  of  low  carbon  and  silicon  con- 
tent recovered  therefrom,  (b)  The  furnace  chamber 
consists  of  a  shell  lined  with  uranium  oxide.  A 
bottom  electrode  is  partly  embedded  in  the  lining 
and  an  upper  electrode  enters  the  furnace 
chamber.— J.  S.  G.  T. 

Rust;  Process  and  composition  for  preventing . 

C.  W.  Porter.  U.S.P.  1,433,226,  24.10.22.  Appl., 
8.4.20. 

An  aqueous  solution  of  a  volatile  aliphatic  amine 
is  used  as  a  rust  inhibitor.  Iron,  for  example,  is 
treated  with  an  aliphatic  amine  and  a  metallic 
hydroxide  in  aqueous  solution. — C.  A.  K. 

Tinplate  scrap;  Treatment  of .     Victoria  Iron 

Rolling  Co.  Proprietary,  Ltd.  E.P.  170,861, 
29.10.21.    Conv.,  30.10.20. 

Detinning  operations  are  carried  out  by  forming 
a  galvanic  cell,  using  the  tinned  scrap  as  anode, 
a  copper  container  as  cathode,  and  a  solution  of 
sodium  hydroxide  as  electrolyte.  Copper  troughs 
containing  copper  oxide,  which  acts  as  a  depolar- 
iser,  are  attached  to  the  copper  vat,  a  permeable 
material  being  used  to  retain  the  copper  oxide  in 
the  trough. — C.  A.  K. 

Ore  concentrator  tables.  E.  C.  R.  Marks.  From 
E.  I.  du  Pont  de  Nemours  and  Co.  E.P.  187,296, 
12.7.21. 

The  surface  of  an  ore  concentration  table  iff 
covered  with  a  fabric,  both  sides  of  whfch  are 
coated  with  a  cellulose  ester,  such  as  pyroxylin. 
The  ester  before  use  is  mixed  with  a  white  pig- 
ment so  as  to  allow  the  lines  of  demarcation  of 
the  ore  pulp  to  be  easily  seen,  and,  for  the  same 
purpose,  the  fabric  extends  over  the  sides  of  the 
table.— A.  R.  P. 

Lead;  Process  for  the  production  of  metallic  

from  lead  sulphate.  F.  E.  Elmore,  and  The 
Chemical  and  Metallurgical  Corp.,  Ltd.  E.P. 
187,313,  14.7.21. 

Lead  sulphate  produced  in  chemical  processes  is 
reduced  to  metallic  lead  by  mixing  it  with  4—8% 
of  carbon,  preferably  about  5%,  and  heating  the 
mixture  to  800° — 1000°  C.  in  a  vessel  to  which  access 
of  oxidising  gases  is  prevented. — A.  R.  P. 

Metal  oxides;  Process  for  the  reduction  of by 

means  of  aluminium  in  the  furnace.  P.  C. 
Rushen.  From  Akt.-Ges.  B.  Felder-CIement. 
E.P.  187,375,  13.8.21. 

A  metallic  oxide  is  heated  with  aluminium  in  a 

B 


986a 


Cl.  XI.— ELECTRO-CHEMISTRY. 


(Dec.  30,  1922. 


crucible,  it  being  immaterial  whether  the  alu- 
minium is  iu  powder  or  in  compact  form;  the  oxide 
and  aluminium  are  not  mixed  but  are  placed  side 
by  side  or  one  above  the  other;  or  the  oxide  may 
be  placed  in  a  tube  or  the  like  made  of  aluminium. 
Tho  intensity  of  the  reducing  action  is  such  that 
there  is  a  complete  separation  of  metal  from  the 
aluminium  oxide  produced,  the  resultant  metal 
being  free  from  aluminium  compounds.  The  pro- 
cess is  particularly  applicable  to  the  reduction  of 
the  oxides  of  tungsten,  molybdenum,  chromium, 
titanium,  and  similar  metals  of  high  melting  point. 

— C.  A.  K. 

Alloy.  F.  Milliken.  U.S. P.  1,432,607,  17.10.22. 
Appl.,  8.10.19. 

The  alloy  consists  of  60—70%  Cu,  9—12%  Ni, 
19—24%  Zn,  1— 21%  Fe,  and  a  trace  of  man- 
ganese.— A.  It.  P. 

Alloy  [suitable  for  exposure  to  hot  conditions]. 
A.  H.  Coplan.  U.S. P.  1,433,180,  24.10.22.  Appl., 
7.3.21. 

An  iron  alloy,  which  is  to  be  exposed  to  combustion 
conditions  in  use,  contains  Cr  1%,  Ni  2%,  Mn  not 
less  than  0'60%,  C  not  less  than  0'1%,  and  small 
quantities  of  sulphur  and  phosphorus. — C.  A.  K. 

Alloy  metal.  A.  S.  Hatfield.  U.S. P.  1,434,246, 
31.10.22.    Appl.,  9.2.21. 

An  alloy  containing  principally  cobalt,  together 
with  tin  and  molybdenum,  the  percentage  of  the 
latter  being  more  than  twice  that  of  the  tin. 

— T.  H.  Bu. 


Metallurgical  apparatus.  [Zinc  furnace.']  A. 
Donaldson.  U.S. P.  1,432,842,  24.10.22.  Appl., 
19.3.21. 

The  retort  of  a  zinc  smelting  furnace  is  connected 
to  an  external  portable  fume  condenser,  in  which 
the  condensing  area  can  be  varied. — C.  A.  K. 

Lead    and    silver;    Recovery    of    from    ores 

and  metallurgical  products.       H.  Hey.       U.S. P. 

•  1,432,858-9,  24.10.22.  Appl.,  (a)  24.2.20  and 
(b)  16.9.20. 

(a)  Ores  and  metallurgical  products  containing 
silver  and  lead  as  chloride  are  leached  with  a  hot 
brine  solution,  containing  a  chloridising  agent, 
such  as  ferric  chloride,  in  such  a  manner  that  any 
sulphide  present  does  not  react  with  the  silver  an 
solution,  (b)  Sulphide  ores  containing  lead  and 
silver  which  have,  by  a  preferential  chloridising 
roast,  been  converted  into  chlorides,  are  leached 
with  a  cold  acid  brine  to  extract  the  silver.  The 
residue  is  then  treated  with  a  solution  which 
extracts  practically  the  whole  of  the  remaining  lead. 

—A.  R.  P. 

Metals;    Treatment   of  .      F.   and  F.   Palmer. 

U.S.P.  1,433,408,  24.10.22.     Appl.,  29.4.21. 

Metals  are  treated  with  an  aqueous  solution  of 
sodium  sulphate,  sodium  chloride,  and  potassium 
ferrocyanide. — C.  A.  K. 

Extraction  of  metals  from  their  compounds;  Method 

of .     P.  Freedman  and  E.  Greetbam.     U.S. P. 

1,433,541,  31.10.22.     Appl.,  10.4.22. 

See  E.P.  180,384  of  1921 ;  J.,  1922,  596  a. 

Pickling  metals.  O.  Vogel.  U.S. P.  1,433,579, 
31.10.22.      Appl.,  13.8.19. 

See  G.P.  309,264  of  1918;  J.,  1921,  853  a. 


Coating  wires  and  the  lihe;  Method  of  and  appa- 

ratus  for .     Soc.  Chim.  des  Usines  du  Rhone 

E.P.  168,872,  11.8.21.     Conv.,  4.9.20. 


XI.-ELECTRO-CHEMISTRY. 

Tungsten  [electric]  furnace  for  experiments  on 
dissociation  and  ionization.  K.  T.  Comptou.  J. 
Opt.  Soc.  Amer.,  1922,  6,  910—912. 

Tungsten  sheet  is  bent  into  the  form  of  a  cylindrical 
tube  and  clamped  by  end  pieces,  each  consisting  of 
a  steel  ring  fitting  in  a  split  rectangular  steel  block. 
The  blocks  are  mounted  on  water-cooled  brass  tubes 
serving  as  leads  for  the  heating  current.  Short 
glass  tubes  surround  the  leads  for  purposes  of 
insulation.  Loops  of  fine  tungsten  wire,  drawn 
tightly  round  the  cylindrical  tube,  prevent  bulging 
of  the  furnace.  The  central  eleetrcde  consists  of 
a  straight  length  of  20-mil  tungsten  wire  welded  to 
heavier  molybdenum  leads.  A  furnace  60  mm. 
overall  length  and  about  5  mm.  diam.,  was  raised 
to  a  white  heat  by  100  amps,  at  6  volts,  and  reached 
its  melting  point  when  a  current  of  about  200  amps, 
was  employed. — J.  S.  G.  T. 

Electrolysis  with  drops  of  mercury  as  the  electrode. 
J.  Heyrovsky.     Chem.  Listy,  1922,  16,  256—264. 

To  study  the  electrolysis  of  aqueous  solutions  of 
alkali  and  alkaline-earth  salts,  the  author  employed 
drops  of  mercury  as  the  electrode,  whereby  it  was 
possible  to  determine  the  exact  course  of  the  electro- 
lysis. Electrolysis  is  produced  when  a  certain  e.m.f. 
is  applied,  the  value  of  which  is  characteristic 
of  each  salt  and  which  is  a  function  of  the  logarithm 
of  the  concentration.  The  rapid  increase  of  the 
current  is  explained  by  a  diffusion  of  very  dilute 
amalgams  towards  the  interior  of  the  drop  of 
mercury.  The  author  calculated  the  following 
potentials  at  which  the  cations  deposit  from  Nil 
solutions  on  a  mercury  cathode: — Lithium,  -2023; 
sodium,  -LS60;  potassium,  -T883;  rubidium, 
-P796;  caesium,  -1"837.  The  affinity  of  the  metals 
for  mercury  is  given  by  the  difference  between  the 
characteristic  potentials  of  polarised  drops  and  the 
normal  electrolytic  potentials  of  the  pure  alkali 
metals,  the  following  values  being  found  :  — Lithium, 
1"281;  sodium,  1T38;  potassium  1325;  rubidium, 
1-409;  caesium  (V50).— W.  T. 

Ozoniser;  New  form  of .     H.  Nemecek.     Chem. 

Listy,  1922,  16,  276. 

Two  stout  copper  wires  serve  as  electrodes  in  a 
horizontal  glass  cylinder,  the  arrangement  being 
such  that  the  distance  between  the  electrodes  can 
be  varied.  The  energy  can  be  obtained  by  means 
of  a  Ruhmkorff's  coil  or  an  electric  machine. 

— W.  T. 

Oxides   of   lead;   Physical  chemistry   of   the   — — . 

17      Anodic  behaviour  of  lead  and  lead  dioxide. 

S.    Gladstone.      Trans.    Chem.   Soc.,    1922,    121, 

2091—2098. 
Oxygen  is  evolved  at  a  lead  or  lead  dioxide  anode 
at  almost  identical  potentials,  e.g.,  118  and  P17 
volts  respectively,  for  a  current  density  of  003  amp. 
per  sq.  cm.  The  appearance  of  a  dark  film,  which 
completely  covers  the  anode  in  the  case  of  lead, 
corresponds  with  a  sudden  increase  of  anodic 
potential  and  the  evolution  of  oxygen.  The  evolu- 
tion of  oxygen  at  the  lead  and  lead  dioxide  .anode 
appears  to  be  due  to  the  formation  of  an  inter- 
mediate unstable  higher  oxide,  present  in  extremely 
small  amount  in  solid  solution  in  the  dioxide.  The 
initial  high  e.m.f.  of  a  lead  accumulator  obtained 
soon  after  charging  is  probably  due  to  the  presence 
of  this  unstable  higher  oxide. — J.  B.  F. 

Platinum  resistance  coils.    Roebuck.    See  XXIII. 


Vol.  3X1.,  Xo.  24.] 


Cl.  XII.— FATS  ;  OILS  ;  WAXES. 


987  a 


Patents, 
(a)     Arc     shield.       (b)     Moulded    insulation     and 
method  of  making  same.    W.  H.  Kempton,  Assr. 
to  Westinghouse  Electric  and  Mfg.  Co.      U  S  P 
(a)  1,431,961  and  (b)  1,431,962,  17~.10.22.     Appl., 
(a)  25.7.18,  (b)  8.1.19. 

(a)  A  mixture  of  Portland  cement,  asbestos,  and 
water  is  placed  in  a  mould,  a  space  being  left 
■which  is  subsequently  filled  with  a  mixture  of 
carborundum,  Portland  cement,  and  asbestos.  The 
whole  is  compressed  so  as  to  form  a  solid  piece, 
which  is  then  removed  and  submitted  to  curing, 
heating,  and  drying  processes,  (b)  Shaped  pieces 
are  formed  by  moulding  a  mixture  containing  a 
filler,  such  as  asbestos,  a  binder,  such  as  Portland 
cement,  and  an  oxidising  agent  (siccative).  The 
pieces  are  cured  and  impregnated  with  an  oxidis- 
able  oil,  e.g.  linseed  oil,  which  is  then  oxidised  by 
the  oxidising  agent. — J.  S.  G.  T. 

Electric  furnace  [heater].  E.  F.  Collins,  Assr.  to 
General  Electric  Co.  U.S. P.  1,432,442,  17.10.22. 
Appl.,  1.3.21. 

A  bibbon-shaped  resistance  for  use  as  an  electric 
furnace  heater  is  constituted  of  a  number  of  edge- 
wise convolutions,  forming  a  self-supporting  unit, 
and  spaced  so  as  to  permit  heat  diffusion. 

—J.  S.  G.  T. 

Electric  furnace.  T.  S.  Curtis,  Assr.  to  Universal 
Optical  Corp.  U.S.P.  1,433,448,  24.10.22.  Appl., 
7.8.19. 

Horizontal  electrodes  enter  the  furnace  chamber 
through  opposite  walls  at  the  same  height  and  are 
supported  so  that  their  distance  apart  may  be 
varied  and  their  relative  positions  determined  by 
means  of  a  graduated  scale. — J.  S.  G.  T. 

Storage  battery  [platc~\.  W.  H.  Wood.  U.S.P. 
1,432,937,  24.10.22.     Appl.,  22.1.20. 

The  lead  oxide  paste  employed  is  incorporated, 
prior  to  setting,  with  finely  granulated  material 
consisting  essentially  of  cellulose,  which  is  after- 
wards graduallv  removed  by  means  of  sulphuric 
acid.— J.  S.'G.'T. 

Battery  separator.  W.  H.  Wood  and  H.  E.  Smith. 
U.S.P.  1,432,938,  24.10.22.     Appl.,  9.2.20. 

A  battery  separator  consists  of  an  insoluble  sup- 
porting medium  interspersed  with  threads  consist- 
ing of  a  mixture  of  mammalian  hair,  e.g.,  wool, 
which  is  insoluble  in  sulphuric  acid,  and  a  porous 
vegetable  fibre,  e.g.,  cotton,  soluble  in  sulphuric 
acid.— J.  S.  G.  T. 

Separator  for  storage  batteries.  W.  H.  Wood. 
U.S.P.   1,432,939,   24.10.22.     Appl.,    17.4.20. 

A  storage  battery  separator  is  made  of  rubber  com- 
position traversed  by  strands  of  mammalian  hair 
from  which  the  scaly  exterior  portions  have  been 
removed.— J.  S.  G.  T. 

Electric  battery  [electrodes;  Material  for  use  in  the 

manufacture  of  ].     F.  M.  Holmes,  Assr.  to 

W.    L.    Valentine   and   G.    D.    Rigsby.      U.S.P. 
1,433,136,  24.10.22.     Appl.,  19.6.22. 

Bone  meal  is  treated  with  sulphuric  acid,  and  after 
removal  of  substantially  all  traces  of  uncombined 
sulphuric  acid,  the  resulting  product,  consisting 
of  calcium  sulphate  and  phosphoric  acid,  is  dried 
in  a  finely  divided  condition.  In  like  manner  the 
finely  divided  product  of  the  reaction  between  lead 
carbonate  and  sulphuric  acid,  consisting  of  lead 
sulphate  and  hydrated  lead  oxide,  is  dried  after 
removal  of  substantially  all  traces  of  uncombined 
acid.  The  two  products  are  thoroughly  mixed  with 
silica  flour  and  a  finely  divided  absorbent  earth 
filler,  and  acid  added  to  the  mass. — J.  S.  G.  T. 


Electric  precipitator.     U.S.P.  1,433,266.     See  I. 

Electric  furnace.     U.S.P.  1,433,404.     See  X. 

Chlorine  for  water  purification.     U.S.P.   1,430,785. 
See  XIXb. 

XII.-FATS;    OILS;    WAXES. 

Copra    drying;    Use    of    sulphur    fumes    in    . 

AH.  Wells  and  G.   A.   Perkins.     Philippine  J. 
Sci.,  1922,  21,  49—55. 

The  main  cause  of  colour  and  rancidity  of  coconut 
oil  is  the  action  of  moulds  on  the  copra  during 
drying.  Where  steam  drying  is  impracticable, 
sulphuring  the  copra  is  very  satisfactory  for  the 
prevention  of  mould  during  air  drying;  1  kg.  of 
sulphur  per  charge  of  3000  nuts  is  usually  sufficient, 
and  this  is  burnt  in  a  pan  on  the  floor  of  the  sul- 
phuring chamber,  which  may  be  about  4  ft.  wide, 
8  ft.  long,  7  ft.  high,  the  nuts  being  placed  on  trays 
piled  one  above  the  other  on  a  trolley  to  facilitate 
removal.  A  preliminary  sunning  for  an  hour  or  so 
after  opening  the  nuts  is  desirable,  as  the  "  meat  " 
can  then  be  separated  more  readily  from  the  shells. 
The  sulphured  copra  can  be  dried  in  two  to  three 
weeks  in  a  shed  without  sunshine,  if  necessary,  or 
more  rapidly  by  sun-drying  either  on  a  floor  or  in 
light  trays  which  can  be  stacked  and  covered  up 
in  case  of  rain.  The  direct  protection  against 
mould  afforded  by  sulphur  dioxide  lasts  about  a 
month,  but  the  copra  is  not  susceptible  to  mould  if 
once  thoroughly  dried  and  stored  in  a  dry  place 

— G.'F.  M. 

Illipe    fat;    Unsaponifiable    matter    (a   highly    un- 
saturated hydrocarbon  and  alcohols)  in  commercial 

.    8.  Kobayashi.    Kogyo-Kwagaku  Zasshi  (J. 

Chem.  Ind.,  Japan),  1922,  25,  1188—1196. 

A  highly  unsaturated  hydrocarbon  and  a  few  higher 
alcohols  have  been  isolated  from  the  unsaponifiable 
matter    of    commercial     illipe    fat    imported    from 
India.      The    fat    had    the    following    characters : 
sp.  gr.  0-9021  at  40°/4°  C,  m.p.  39°— 40°  C,  acid 
value  17"2,  saponif.  value  181'0,  iodine  value  54'8, 
unsaponifiable  matter  8'55%.     100  g.  was  saponified 
and  the  unsaponifiable  matter  was  extracted  with 
ether.     It  was  a  light  yellow  solid  with  an  aromatic 
odour   and   the   following   characters :    m.p.   148° — 
154°   C,   iodine   value   178'5,   saponif.    value   after 
acetylation  83'7,  ether-insoluble  bromide  about  71%, 
bromine   content   67'30%.      It    gave    a   white   pre- 
cipitate of  digitonide  with  an  alcoholic  solution  or 
digitonin  and  the  bromide  became  blackish  brown 
at  150°  C.    and  turned   black  at  165°  C.    without 
melting.     The    unsaponifiable   matter    was   treated 
with  hot  95%  alcohol,  and  from  the  insoluble  matter 
a  highly  unsaturated  hydrocarbon  was  isolated  by 
repeated  recrystallisation  from  ether.     This  hydro- 
carbon, illipene,  C32HS(,,  has  m.p.  645°  C,  iodine 
value    3825,    and    gives   312'2%    of   ether-insoluble 
bromide  (67'46%   Br).     It  is  optically  inactive  and 
boils  above  315°  C.  at  2'5  mm.  pressure.     The  higher 
alcohols   in    the  unsaponifiable   matter   were   freed 
from  sterols  by  means  of  digitonin  and  when  frac- 
tionated by  repeated  recrystallisation  from  acetone 
gave    the    following   compounds :     C21H3S0,    micro- 
scopical  silky  needles,   m.p.   196° — 197°   C,   iodine 
value    1149   and   saponif.    value    after    acetylation 
150-7;    C31HS60,   silver-white   crystals,    m.p.   186°— 
1865°  C,  iodine  value  1002;  C„,HlaO,  silver-white 
grains,    m.p.    159°— 160°    C,     iodine    value    82"3; 
C.H^O,  light  yellow  needles,  m.p.  125°— 135°  C, 
iodine  value  100'2,  saponif.  value  after  acetylation 
132'5.     The  solid  fatty   acid  in  the  fat  is  mainly 
composed  of  stearic  acid. — K.  K. 

b2 


988  a 


Cl.  xm.— PAINTS  ;    PIGMENTS  ;    VARNISHES  ;    KESINS. 


[Dec.  30,  1922. 


Rape  oil;  Composition  of  the  fatty  acids  of .    Y. 

Toyama.       Kogyo-Kwagaku     Zasshi     (J.     Chem. 

Ind.,  Japan),  1922,  25,  1044—1053.     (C/.  J.  Tokyo 

Chem.  Soc,  1895,  16,  187.) 
Rape  oil  obtained  from  the  seeds  of  Brassica 
campestris,  L.  (B.  chinensis,  L.)  grown  in  the  Shiga 
Prefecture  had  the  following  characters :  sp.  gr. 
09147  at  15°/4°  C,  n2°  =  r4734,  acid  value  P6, 
IteicherVNVollny  value  0"17,  saponif.  value  1728, 
acetyl  value  149,  iodine  value  (Wijs)  102'8,  and 
unsaponifiable  matter  0'93%.  The  oil  was  saponified 
and  the  fatty  acids  separated  and  examined. 
Neither  the  lead-salt  ether  method  nor  the  lead-salt 
alcohol  method  was  suitable  for  separation  of  the 
saturated  and  unsaturated  acids.  The  main  con- 
stituent of  the  fatty  acids  of  the  oil  was  erucic  acid, 
its  quantity  being  about  65  % .  The  quantity  of 
saturated  acids  was  less  than  2%  ;  palmitic  acid  was 
isolated  and  stearic,  behenic,  lignoceric,  and 
arachidic  acids  were  also  probably  present.  After 
bromination  of  the  liquid  acids,  freed  from  erucic 
acid,  hexa-  and  tetra-bromostearic  acids  were 
isolated,  and  from  the  oxidation  products  by 
Hazura's  method,  6ativic  and  isosativic  acids  were 
isolated,  which  proves  the  presence  of  linolenic  and 
linolic  acids  in  the  oil.  Methyl  esters  of  the  liquid 
acids,  freed  from  erucic  acid,  when  oxidised,  yielded 
dihydroxystearic  acid,  indicating  the  presence  of 
oleic  acid.  It  was  not  found  possible  to  separate  the 
oleic  acid  by  Reimer  and  Will's  method  (J.,  1887, 
732).— K.  K. 

Behenic  and  eracic  acids;  Derivatives  of .     Y. 

Toyama.   Kogyo-Kwagaku  Zasshi  (J.  Chem.  Ind., 

Japan),  1922,  25,  1053—1055. 
Erucio  acid  isolated  from  the  fatty  acids  of  rape  oil 
crystallised  from  90%  alcohol  in  fine  long  needles, 
m. p.  33'5°- — 34°  C.  Behenic  acid  prepared  by  puri- 
fying hydrogenated  erucic  acid  crystallised  from 
95%  alcohol  in  thin  scales  with  pearly  lustre,  m.p. 
81° — 82°  C.  A  number  of  derivatives  which  may 
be  of  use  for  identifying  the  acids  have  been  pre- 
pared. Methyl  behenate,  lustrous  scales  from  95% 
alcohol,  has  m.p.  54°— 54'5°  C,  b.p.  224°— 225°  C. 
at  5  mm.;  ethyl  behenate,  fine  granules  from  95% 
alcohol  (irregular  prismatic  aggregates  by  micro- 
scopical examination),  has  m.p.  50° — 505°  C,  b.p. 
230° — 231°  C.  at  5  mm. :  behenic  amide,  fine  needles 
from  95%  alcohol,  m.p.  111°— 112°  C. ;  behenic 
anilide,  fine  needles  from  95%  alcohol,  m.p.  101° — 
102°  C.  Methyl  erucate  is  a  nearly  colourless 
liquid,  sp.  gr.  0"8735  at  15°  C,  0-8702  at  20°  C, 
n15  =  1-4577,  n">  =  1-4558,  b.p.  221°— 222°  C.  at  5  mm. ; 
ethyl  erucate,  nearly  colourless  liquid,  sp.  gr. 
0-8676  at  15°  C,  0-8648  at  20°  C,  n15  =  r4562, 
n20  =  l-4543,  b.p.  229°— 230°  C.  at  5  mm.; 
erucic  amide,  fine  needles  from  95%  alcohol 
m.p.  82-5° — 83°  C. ;  erucic  anilide,  lustrous  scales 
from  95%  alcohol  (short  prismatic  aggregates  by 
microscopical  examination),  m.p.  65'5° — 66°  C. 

■ — K.  K. 

Boring   and   cooling   oils;   Examination   of  water- 
soluble  .     K.  Braun.     Chem.-Zeit.,  1922,  46, 

1016—1017. 
The  oil  is  weighed  into  a  separating  funnel,  100  c.c. 
of  60%  alcohol  added,  the  solution  made  alkaline 
and  extracted  with  petroleum  spirit  (b.p.  30° — 
50°  C).  The  fatty  oils  and  unsaponifiable  matter 
are  thus  separated,  and  are  weighed  after  drying  at 
as  low  a  temperature  as  possible.  The  weighed 
residue  is  saponified  and  again  extracted  with 
petroleum  spirit.  The  residue  gives  the  unsaponi- 
fiable matter  and  the  difference  the  fatty  oils.  The 
alcohol  is  removed  from  the  alcoholic  soap  solution 
alter  extraction  with  petroleum  spirit  and  the 
residue  dissolved  in  water,  treated  with  excess  of 
hydrochloric  acid,  and  extracted  with  ether.  The 
ethereal  solution  is  washed  with  water  saturated 
with  ether  until  the  washings   are   neutral,   dried 


over  anhydrous  sodium  sulphate,  filtered,  and  the 
residue  of  fatty  acids  weighed  after  distilling  off  the 
ether.  The  free  alkali  cannot  be  determined  by 
igniting  the  soap  and  titrating  the  ash  with  2V/10 
sulphuric  acid  and  phenolphthalein  owing  to  the 
presence  of  carbonates  in  the  ash. — H.  C.  R. 

Soap  solutions;  Constitution  of .    Hcxadecane- 

sulphonic  (cetylsvlphonic  acid  and  other 
sulphonates.  M.  H.  Norris.  Trans.  Chem. 
Soc,  1922,  121,  2161—2168. 

Hexadecanesulphonic  acid  is  prepared  by  oxidation 
of  hexadecylmercaptan  with  potassium  perman- 
ganate. Manganese  dioxide  and  a  trace  of  oily 
dihexadecylsulphone  are  removed  by  filtration,  and 
the  lead  salt  of  the  acid  is  precipitated  by  lead 
acetate  in  hot  slightly  alkaline  solution,  washed  with 
hot  water  and  hot  alcohol,  and  the  acid  liberated  by 
treating  a  suspension  of  the  lead  salt  in  hot  alcohol 
with  hydrogen  sulphide.  Filtration  and  evapora- 
tion of  the  alcohol  leaves  a  semi-solid  mass,  white  at 
first,  but  turning  brown.  The  acid  is  a  hydrogen 
soap  showing  the  typical  behaviour  of  a  colloidal 
electrolyte  in  conductivity,  osmotic  activity,  and 
high  temperature  coefficient  of  solubility.  It  ranks 
among  the  highest  soaps  between  sodium  stearate 
and  behenate.  The  length  of  the  molecule  is  an 
important  factor  in  producing  a  colloidal  electrolyte. 
Sodium  o-naphthalenesulphonate  is  less  colloidal 
than  the  /3-form,  and  ring  compounds  are  far  less 
colloidal  than  open-chain  compounds  with  the  same 
number  of  carbon  atoms. — P.  V.  M. 

Fat-liquor  from  Indian  Oils.  Das  and  Das.  See  XV. 

Chaulmoogra  esters  etc.     Perkins.     See  XX. 

Drainage  error  in  Bingham  viscosimeter.    Herschel. 
See  XXIII. 

Patents. 

Cotton  seeds;  Method  and  means  for  cleaning . 

F.  O.  Partington.     E.P.  186,943,  30.11.21. 

The  fibres  adhering  to  cotton  seeds,  used  for  the 
manufacture  of  oil  and  oil  meal  or  cake,  are  removed 
by  the  following  method.  The  seeds  are  passed 
through  a  beater,  where  dirt  is  partly  removed,  and 
then  through  a  revolving  gauze  cage  in  which  the 
remaining  dirt  is  removed.  Afterwards  the  seeds 
are  conveyed  through  a  carbonising  chamber  in 
which  they  are  immersed  in  sulphuric  acid  of  80°  Tw. 
(sp.  gr.  1'40)  or  caustic  soda,  and  are  then  centri- 
fuged,  dried,  and  cleaned  in  another  revolving  gauze 
cage. — A.  J.  H. 

Catalyst ;  Method  of  restoring  the  activity  of  a 

G.  A.  Richter  and  W.  B.  Van  Arsdel,  Assrs.  to- 
Brown  Co.  U.S. P.  1,431,982,  17.10.22.  App'l., 
14.9.21. 

The  oil  is  extracted  from  a  nickel  catalyst  with  a 
solvent  and  the  catalyst  is  then  subjected  to  the 
action  of  an  agent  capable  of  dissolving  the  oxide 
film  on  it.  The  catalyst  is  washed  to  remove  this 
agent  and  is  sealed  against  the  access  of  air. 

— H.  C.  R. 

Emulsifying  materials.    E.P.  187,298-9.    See  XIXa. 


XIII.— PAINTS  ;    PIGMENTS  ;     VARNISHES  ; 
RESINS. 

Resins;  Relation  between  ability  to  form  ana 

chemical  constitution.  HI.  New  method  for 
producing  synthetic  resins.  W.  Herzog  and  J. 
Kreidl.     Z.  angew.  Chem.,  1922,  35,  641—643. 

The  preparation  of  a  number  of  synthetic  resins  is 

described   in   which   organic  substances  containing. 

the  group  .CO.CH:CH.,  are  heated  to  200°— 250°  C. 


Vol  XLI.,  No.  24.] 


Cl.  XIV.— INDIA-RUBBER,  &o.     Cl.  XV.— LEATHER  ;    BONE,  &c. 


989  a 


in  a  stream  of  carbon  dioxide  for  periods  of  2 — 
12  hrs.  Resins  may  be  obtained  in  this  way  from 
benzylideneacetone,  C„H5CH:CH.CO.CHa,  anisyli- 
deneacetone,  CH,O.C6H,.CH:CH.CO.CH„  vanillal- 
acetone,  (HOXC^C-H^.CHiCH.CO.CH;,,  einn- 
amylideneaeetone,  C6H5.CH:CH.CH:CH.CO.CH3, 
cinnamylideneacetophenone,  CGHS.CH:CH.CH: 

CH.CO.CgHj,  and  from  the  condensation  product 
of  terephthalaldehvde  and  acetone,  CH3.CO.CH: 
CH.CcH1.CH:CH.CO.CH3.  Resins  can  also  be 
obtained  from  substances  containing  the  "  resin- 
ophorous  "  group,  CO.CHiCH.,  as  part  of  a  cyclic 
group,  in  which  form  it  occurs  in  the  arylidene  com- 
pounds of  a-ketotetrahydronaphthalene(a-tetralone), 
j.CO.C:CH.R 

XCH2.CH2 
Attempts  are  made  to  ascribe  all  polymerisations  of 
organic  substances  to  resins  to  the  presence  of  this 
"  resinophorous  "  group.  Modifications  of  Raschig's 
formulae  for  phenol-formaldehyde  condensation 
products  (Z.  angew.  Chem.,  1912,  25,  1946)  are  pro- 
posed by  which  the  formation  of  these  products  also 
is  brought  into  line  with  this  theory. — H.  C.  R. 

Patents. 

Printers'  ink  [from   sulphite-cellulose  waste  lyes']; 

Production  of .      K.  J.  Smidt  and  R.  Jaeger. 

E.P.  187,537,  13.2.22. 

The  waste  lyes  from  the  manufacture  of  sulphite- 
cellulose  are  treated  with  nitric  acid  and  a  small 
quantity  of  metallic  copper  or  zinc  as  catalyst  ;  the 
reaction  is  moderated  by  external  cooling.  Sul- 
phuric acid  in  suitable  quantity  may  be  added 
before  the  reaction  is  complete.  The  black  product 
is  of  syrupy  consistency,  and  is  ready  for  use. 

— D.  F.  T. 

Varnish;  Method  of  making  .     J.  H.  Young, 

Assr.  to  H.  H.  Robertson  Co.     U.S. P.  1,432,511, 
17.10.22.     Appl.,  22.4.20. 

Resin  is  heated  uniformly  in  a  closed  vessel  by  a 
hot  liquid  circulating  outside,  which  simultaneously 
serves  to  heat  the  oil  to  be  mixed  with  the  resin. 
The  hot  oil  is  introduced  into  the  melted  resin  and 
the  heating  is  continued ;  later  the  temperature  of 
the  circulating  liquid  is  reduced  so  as  to  cool  the 
mixture  prior  to  the  introduction  of  a  liquid 
thinner.  Rapid  cooling  is  then  effected  by  further 
reduction  of  the  temperature  of  the  liquid  in  the 
jacket— D.  F.  T. 

Inks,  water  colour  paints,  and  like  compositions. 
Plauson's  (Parent  Co.),  Ltd.  From  H.  Plauson. 
E.P.  187,732,  30.7.21. 

See  G.P.  355,117  of  1921;  J.,  1922,  826  a. 

Bosin  material  for  sizing.    U.S. P.  1,433,124.    SeeV. 


XIV.-INDIA-RUBBER ;  GUTTA-PERCHA. 

Bubber  compounded   with   sulphur  and    litharge; 

Comparative    tests    ivith   .     H.    P.    Stevens. 

Bull.  Rubber  Growers'  Assoc.,  1922,  4,  520—522. 

Comparative  tests  on  the  rate  of  vulcanisation  of 
mixtures  of  rubber  with  sulphur,  with  or  without 
the  presence  of  litharge,  the  rubber  having  been 
prepared  or  packed  under  different  conditions, 
showed  that  litharge  obliterates  irregularities  n 
the  rate  of  vulcanisation  due  to  the  use  of  varying 
proportions  of  sodium  silicottuoride,  but  increases 
the  differences  arising  from  the  effect  of  moisture 
and  mould.  The  latter  influence  is  probably  related 
to  the  known  connexion  between  the  activity  of 
litharge  and  the  acetone-soluble  constituents  of 
rubber.— D.  F.  T. 


[Rubber;]    Experiments   on   tearability   [of  ]. 

B.  B.  Evans.  Indiarubber  J.,  1922,  64,  815— 
819. 

Mixtures  of  rubber  and  excess  of  sulphur  were 
made  containing  also  zinc  oxide,  refined  china  clay, 
or  light  magnesium  carbonate,  one  set  of  batches 
including  these  ingredients  in  equal  proportions  by 
weight  and  another  set  in  equal  volume  propor- 
tions. "  Accelerated  "  mixings  of  the  latter  type 
were  also  prepared.  From  each  mixing  strips  were 
formed  and  united  by  vulcanisation.  Measurement 
was  then  made  of  the  load  necessary  to  effect  the 
separation  of  the  joined  surfaces.  The  mixings 
containing  zinc  oxide  showed  greatest  resistance  to 
tearing,  and  the  clay  mixings  least.  The  direction 
of  the  "  grain  "  in  the  test  pieces  had  no  appreci- 
able influence  on  the  results.  Under-vulcanisation 
increased  the  ease  of  separation  or  tearing.  The 
effect  of  the  organic  accelerator  was  to  make  separa- 
tion more  difficult. — D.  F.  T. 

Air   [of  rubber  factories   etc.];  Nexo   method  for 

estimating  volatile  substances  in .     E.  Fritz- 

mann  and  K.  Macjulevitsch.  J.  Rues.  Plus  - 
Chem.  Soc,  1920,  52,  212—226. 

The  method  elaborated  by  the  authors  for  deter- 
mining the  proportion  of  light  petroleum  vapour 
contained  in  the  air  of  rubber  factories  etc.,  con- 
sists essentially  in  freezing  out  the  light  petroleum 
in  two  weighed  U-tubes,  each  cooled  by  immersion 
in  liquid  air.  In  order  to  prevent  choking  of  the 
tubes  by  the  frozen  petroleum,  the  tube8  are  packed 
with  magnesium  turnings.  Before  being  passed 
i  through  these  tubes,  the  air  is  freed  from  dust, 
'  moisture,  and  carbon  dioxide  by  passage  through 
tubes  containing,  in  order,  soda-lime,  calcium 
chloride,  phosphoric  anhydride,  and  cotton  wool. 

— T.  H.  P. 

Patents. 

Bubber;  Process  for  vulcanising  and  products 

obtained  thereby.  I.  Ostromislensky,  Assr.  to 
New  York  Belting  and  Packing  Co.  U.S. P. 
1,433,093,  24.10.22.     Appl.,  8.10.17. 

Rubber  or  similar  material  is  vulcanised  by  the 
action  of  an  oxygen  derivative  of  rubber  added  for 
the  purpose. — D.  F.  T. 

Bosin  material  for  sizing.   U.S. P.  1,433,124.   SeeV. 


XV.-LEATHER;   BONE;    HORN;   GLUE. 

Tanning      materials     and      extracts;      Qualitative 

analysis  of  different  and  the   detection   of 

adulterants  in  mixtures.       M.  Jamet.       J.  Soc. 
Leather  Trades'  Chem.,  1922,  6,  336—350. 

A  summary  of  all  the  different  methods  used  in  the 
qualitative  analysis  of  tanning  materials,  including 
the  following  tests  :  — bromine,  ammonium  sulphide, 
lead  acetate-acetic  acid,  formaldehyde-l^-drochloric 
acid,  and  coloration  of  Mulhouse  (mordanted) 
strips.  1  %  iron  alum  solution  gives  characteristic 
colours  or  precipitates  with  the  individual  tannins. 
Nitrous  acid  is  used  to  show  the  presence  of  ellagi- 
tannic  acid.  If  1  %  copper  sulphate  solution  is 
added  to  a  solution  of  the  tannin  a  precipitate 
usually  forms.  When  excess  of  ammonia  is  added 
the  precipitate  dissolves  if  gambier,  hemlockj  or 
pine  bark  tannins  are  present.  Tannins  derived 
from  gallotannic  acid  and  others  containing  proto- 
catechuic  acid  give  copper  tannates  which  do  not 
dissolve  readily  in  ammonia.  10  e.c.  of  a  strong 
solution  of  stannous  chloride  in  hydrochloric  acid 
is  added  to  2  c.c.  of  a  0'4%  solution  of  the  tannin 
in  a  porcelain  crucible  and  allowed  to  stand  for 
10  mins.     A  pink  colour  is  obtained  with  barks  of 


990  a 


Cl.  XVI.— SOILS  ;  FERTILISERS. 


[Dec.  30,   19-22. 


conifers  and  mimosas.  A  splinter  of  pinewood, 
5  em.xl  cm.  is  soaked  in  a  5%  tannin  solution, 
left  to  dry,  then  damped  with  hydrochloric  acid. 
The  splinter  becomes  a  deep  reddish-violet  with 
tannins  containing  phloroglucinol,  e.g.,  cutch  and 
gambier.  The  pinewood  shaving  becomes  feebly 
coloured  after  a  fe"w  hours  with  tannins  containing 
traces  of  phloroglucinol.  Sodium  sulphite  crystals 
moistened  with  a  solution  of  valonia  acquire  a  vivid 
red  colour.  If  a  test-tube  is  rinsed  out  with  a 
tannin  solution,  the  drops  allowed  to  collect  at  the 
bottom,  and  1  c.c.  of  strong  sulphuric  acid  poured 
down  the  side,  characteristic  colorations  are 
obtained  with  different  tannins.  Lime  water  also 
gives  characteristic  colorations  with  tannin  solu- 
tions. If  5  c.c.  of  a  10%  solution  of  normal  lead 
acetate  is  added  to  5  c.c.  of  tannin  solution,  the 
mixture  filtered,  and  excess  of  10%  solution  of 
oaustic  soda  added  to  a  portion  of  the  filtrate, 
quebracho  and  ulmo  give  a  faint  yellow  colour, 
lentiscus  and  sumach  a  bright  yellow,  and  wood 
pulp  a  dull  yellow,  whilst  other  tanning  materials 
give  no  coloration.  The  colour  obtained  on  chromed 
wool  is  characteristic,  sumach,  galls,  and  chestnut 
giving  a  green  colour,  cutch,  mimosa,  mangrove, 
and  quebracho  a  dull  brown,  and  myrobalans  a 
yellow.  The  author  reviews  the  usual  quantitative 
tests  with  ethyl  acetate,  ammonium  molybdate,  etc. 

— D.  W. 


Leather  analysis^  "Report  of  a  committee  [of  the  Soc. 
of  Leather  Trades  Chemists']  on .  M.  Cham- 
bard.  J.  Soc.  Leather  Trades'  Chein.,  1922.  6, 
358—362.     (Cf.  J.,  1921,  859  a.) 

Samples  of  the  same  leather  were  analysed  in  three 
different  laboratories,  and  the  results  showed  wide 
variation  in  the  hide  substance,  grease  content,  and 
mineral  matter.  Greater  care  is  necessary  in  speci- 
fying the  portion  of  the  leather  from  which  samples 
should  be  taken.— D.  W. 


Fat-liquor  [for  leather']-  Manufacture  of  ready-made 

stable  from.  Indian  oils.     B.   M.  and  S.  R. 

Das.     J.   Soc.   Leather   Trades'   Chem.,   1922,   6, 
328—335. 

The  authors  have  demonstrated  the  possibility  of 
sulphonating  Indian  castor  oil  and  sardine  oil  and 
blending  the  products  with  mineral  oils,  neutral 
oils,  and  soap  so  as  to  form  an  emulsifiable  mixture 
suitable  for  fat-liquoring  chrome  leathers. — D.  W. 


Gelatin  gels;  Thermal  expansion  of .    A  Taffel. 

Trans.  Chem.  Soc,  1922,  121,  1971—1984. 

The  coefficient  of  expansion  and  the  specific  volumes 
of  gelatin  gels  for  a  given  temperature  are  a  linear 
function  of  the  concentration  of  the  gel.  With 
increase  of  temperature,  the  gels  expand  regularly. 
One  gram  of  gelatin  is  always  associated  with  the 
same  contraction  in  a  gel  at  any  one  temperature, 
irrespective  of  the  amount  of  water  contained  in  the 
gel ;  this  contraction,  per  1  g.  of  gelatin,  is  0'073  c.c, 
and  01)65  c.c  at  15°  and  32°  respectively.  The  con- 
traction of  a  gel  is  not  due  to  the  filling  up  of  the 
pores  in  the  solid  gelatin  by  water ;  only  a  fraction 
of  the  water  in  a  gel  is  contracted,  the  weight  per 
gram  of  gelatin  undergoing  contraction  being  the 
same  for  gels  up  to  25%  concentration  by  weight. 
The  temperature  of  maximum  density  of  water  is 
lowered  by  gelatin  by  an  amount  proportional  to  the 
concentration  (determined  up  to  13%  concentra- 
tion). This  is  due  to  the  thermal  contraction  of  the 
gelatin  content  of  the  gel  and  the  increase  in  the 
contraction  on  imbibition  of  the  £'el  with  falling 
temperature. — J.  B.  F. 


Patents. 

Artificial  leather;  Process  for  the  manufacture  of 

.     C.  Claessen.    E.P.  171,360,  8.7.21.    Couv., 

6.11.20.     Addn.  to  155,778  (J.,  1922,  459  a). 

Artificial  leather,  which  is  waterproof,  is  made  by 
coating  material,  prepared  as  described  in  the  chief 
patent,  with  a  mixture  containing  cellulose  esters, 
resin  or  similar  substances  dissolved  in  an  excess  of 
a  volatile  solvent.  A  suitable  mixture  consists  of 
10  pts.  of  nitrocellulose,  15  pts.  of  alcohol,  55  pts. 
of  acetone,  15  pts.  of  benzol,  and  5  pts.  of  castor  oil 
(cf.  also  E.P.  174,317  and  174,588;  J.,  1922,  627  a). 

—A.  J.  H. 

Skin;  Prepared for  diaphragms,  sound  plates 

and  amplifiers  of  gramophones.     J.  W.  Barstow. 
E.P.  187,049,  26.7.21. 

A  substitute  for  mica,  wood,  and  metal  used  in  the 
manufacture  of  diaphragms  etc.,  consists  of  raw 
animal  skin  which  is  steeped  in  water  until  supple, 
then  immersed  for  albout  10  hrs.  in  a  solution  com- 
posed of  1  pt.  of  alum  and  2  pts.  of  water  or  1  pt. 
of  formalin  and  3  pts.  of  water,  and  afterwards 
dried  under  tension,  sand-papered,  and  coated  with 
French  polish,  or  amyl  acetate,  copal  gum,  or 
varnish. — A.  J.  H. 


XVI.-S0ILS ;  FERTILISERS. 

II  minis  soils;  Mechanical  anidi/sis  of  .     G.  W. 

Robinson.  J.  Agric.  Sci.,  1922,  12,  287—291. 
To  destroy  the  organic  matter,  10  g.  of  soil  is  mixed 
with  30  c.c  of  hydrogen  peroxide  (20  vol.)  and 
heated  for  30  mins.  on  a  steam  bath.  After  repeat- 
ing the  process  with  25  c.c.  of  hydrogen  peroxide, 
a  peaty  soil  is  usually  sufficiently  oxidised  to  cause 
complete  dispersion  of  the  particles.  The  mechani- 
cal analysis  of  the  treated  soil  is  carried  out  as 
usual,  and  microscopical  examination  of  the  frac- 
tions shows  them  to  consist  of  mineral  particles 
only.  The  larger  aggregates,  cemented  together  by 
organic  matter,  are  entirely  destroyed.  The  clay 
fraction  has  a  very  different  appearance  from  that 
obtained  by  the  ordinary  process  without  oxida- 
tion, and  the  coagulum  is  much  smaller. 

—A.  G  P. 


Mechanical  analysis  of  soils  and  other  dispersions; 

Neiv  method  for  the  .     G.  W.  Robinson.     J. 

Agric.  Sci.,  1922,  12,  306—321. 

A  2 — 2"5%  suspension  of  soil  is  prepared  in  a  tall 
cylinder,  and  samples  are  withdrawn  with  a  pipette 
at  measured  depths  and  after  measured  periods  of 
settling.  It  is  then  possible  to  represent  graphic- 
ally the  relationship  between  percentage  of  soil 
and  settling  velocity.  It  is  suggested  that  the 
most  suitable  method  of  representing  the  mechani- 
cal composition  of  soils  is  by  means  of  a  graphical 
relationship  between  the  summation  percentage  and 
the  logarithm  of  the  settling  velocity.  By  suitable 
choice  of  times  and  depths  of  sampling,  the  method 
is  readily  adapted  to  any  of  the  existing  systems 
of  fractionation.  A  weak  solution  of  sodium  car- 
bonate (0'025%)  is  recommended  for  the  suspension 
medium.  Cylinders  should  be  not  less  than  If  in. 
in  diameter.  Errors  of  a  few  millimetres  in  the 
depth  of  sampling  have  little  significance.  Close 
agreement  with  the  older  methods  of  analysis  is 
obtained,  and  the  time  required  for  the  fractiona- 
tion is  very  considerably  shortened.  The  coarser 
fractions  are  removed  by  sieves,  and  the  fine  sand 
bv  one  sedimentation  of  75  sees.,  as  bv  the  usual 
method—  A.  G.  P. 


Vol.  XLI.,  No.  24.] 


Cl.  XVII.— SUGARS  ;  STARCHES  :  GUMS. 


991  a 


Soil  77ioisture  determination;  Electrical  method  of 

.    T.  Beighton.    J.  Agric.  Sci.,  1922,  12,  207— 

230. 

The  moisture  content  of  soils  is  calculated  from  a 
determination  of  the  resistance  between  two  carbon 
electrodes  pressed  into  the  soil.  The  most  satis- 
factory experimental  conditions — e.g.,  size  and 
nature  of  electrode,  distance  between  electrodes, 
etc. — are  indicated.  A  consideration  of  soil  mois- 
ture-resistance curves  showed  that  the  resistance 
varied  with  the  square  of  the  moisture  content 
when  the  latter  was  above  10%  ;  but  below  this 
figure  irregularities  occurred  due  to  alteration  in 
the  physical  condition  of  the  clay  colloids. — A.  G.  P. 

Soil  colloids;  Absorption  of  icater  by .     W.  O. 

Robinson.    J.  Phys.  Chem.,  1922,  26,  647—653. 

Clay,  loam,  and  silt  soils  and  subsoils  absorb  a  rela- 
tively constant  quantity  of  water,  which  lies 
between  0'240  g.  and  0.34S  g..  with  a  mean  value 
0-298  g.  per  g.  of  colloid  present.— J.  F.  S. 

Soils;  Action  of  neutral  suits  on .    [Determina- 

of  soil  acidity.']  J.  van  der  Spek.  Vers. 
Landbouwk.  Onderz.  Rijkslandbouwproef-t.il.. 
1922,  162—202.  Chem.  Zentr.,  1922.  9;f,  IV., 
1009—1010. 

A  ntmber  of  acid  and  alkaline  soils  were  treated 
with  various  neutral  salt  solutions  and  the  resulting 
hydrogen-ion  concentrations  determined  electro- 
metrically.  Great  differences  in  the  effects  of 
different  salts  were  observed.  That  these  effects  are 
the  outcome  of  adsorption  phenomena  is  indicated 
by  the  different  action  of  salts  with  the  same  anion 
or  cation,  and  by  the  fact  that  the  course  of  the 
reactions  leading  to  the  equilibrium  position  follows 
an  adsorption  isotherm.  On  the  other  hand,  the 
equivalent  interchange  of  cations  and  the  course 
of  reactions  leading  to  the  formation  of  substances 
of  increased  or  decreased  dissociation  in  solution 
favour  the  view  that  chemical  reactions  only  are 
involved.  Reactions  occur  between  free  ions  in 
solution  and  adsorbed  ions.  The  different  concep- 
tions of  the  nature  of  chemical  reactions  in  soils 
become  simplified  if  it  be  assumed  that  adsorption 
of  ions  occurs  on  the  surface  of  colloidal  particles, 
and  that  adsorbed  ions  are  not  washed  out  by  water 
but  can  still  take  part  in  reactions,  and  are  inter- 
changeable with  ions  bearing  similar  charges.  In 
nature,  acid  solutions,  particularly  carbonic  acid 
and  humic  acid,  withdraw  adsorbed  basic  ions  from 
the  soil  leaving  the  free  H-ions.  The  estimation  of 
soil  acidity  by  spotting  out  soil  extracts  on  litmus 
paper  is  therefore  inaccurate,  since  all  the  free  H- 
ions  are  not  extractable  by  water.  The  colorimetric 
estimation  of  soil  acidity  is  best  carried  out  with  a 
salt-solution  soil  extract,  although  results  are  unre- 
liable unless  standard  conditions  of  concentration 
and  quantity  of  soil  and  of  extracting  solution  are 
observed.  Correct  results  can  only  be  obtained  by 
potentiometric  methods. — A.  G.  P. 

Fungicidal     sprays.       Horton     and     Salmon.       See 
XIXb. 

Patents. 

Fertilisers;  Process  for  the  manufacture  of .    A. 

d'Ercole.    E.P.  179,934,  9.5.22.     Conv.,  14.5.21. 

TniCAicrra  phosphate  (45  pts.)  is  treated  with  sul- 
phuric acid  of  48°  B.  (84  pts.)  in  a  superphosphate 
mixer.  When  the  reaction  is  nearly  complete  17 
pts.  of  calcium  cyanamide  (19  %  N)  is  stirred  into 
the  mixture,  which  is  immediately  transferred  to  a 
vat  and  allowed  to  react  for  about  20  mins.  before 
removal. — A.  G.  P. 


Fertilising  material;  Manufacture  of  material  suit- 
able for  use  as .    E.  L.  Pease.     E.P.  187,251, 

15.4.21. 

Basic  material  containing  substances  utilisable  as 
fertilisers,  e.g.  potash-bearing  clays,  shales,  rock 
phosphates,  etc.,  are  treated  with  acid  (sulphuric, 
hydrochloric,  phosphoric)  to  produce  a  semi-dry 
absorbent  mass.  This  is  used  as  a  scrubbing 
material  to  remove  ammonia  from  coal  gas,  producer 
gas,  etc.  The  product  may  be  used  directly  as  a 
fertiliser,  or  may  be  heated  in  a  retort  to  remove 
the  bulk  of  the  ammonia  and  the  residue  again 
used  for  gas  purification,  or  it  may  be  leached  with 
water  to  remove  soluble  fertiliser  salts.  In  the 
latter  i  ase  sufficient  ammonia  must  be  present  to 
precipitate  the  iron  and  aluminium. — A.  G.  P. 

and  process  of  making  same.   E.  H.  Sams. 
E.P.  187,423,  14.9.21. 

II".  -rnoLD  refuse,  sewage  sludge,  etc.,  is  dried, 
ground,  and  screened  to  remove  metal,  glass,  etc., 
and  sprayed  with  ammonia  liquor  from  gas  works 
in  the  proportion  of  1  gall,  to  10  lb.  of  refuse.  The 
whole  material  is  re-ground  and  can  be  used  directly 
on  the  land.— A.  G.  P. 


XVII.-SUGARS ;    STAfiCHES;    GUMS. 

>::ia>-  juice;  New  method  of  purifying  . 

B.  J.  W.  Kreulen.     Chem.  Weekblad,  1922,   19, 
458—461. 

In  the  treatment  with  lime  after  the  ordinary 
sulphitation  process,  there  is  always  a  large  zone 
in  which  lime  is  in  excess,  causing  formation  of 
dextrose  and  tending  to  affect  the  subsequent 
crystallisation.  An  .apparatus  is  described  by  means 
of  which  the  milk  of  lime  can  be  forced  into  the 
vat  by  compressed  air,  which  serves  to  divide  it 
and  to  distribute  it  rapidly  and  uniformly  through 
the  liquor,  w'hich  is  by  tliis  means  also  kept  well 
agitated. — S.  I.  L. 

Sugars;    Iodometric    determination    of    .      F. 

Auerbarh  and  E.  Bodlander.     Z.  angew.  Chem., 
1922,  35,  631—632. 

In  the  iodometric  determination  of  the  excess  of 
cupric  salt  remaining  when  a  reducing  6ugar  is 
boiled  with  Fehling's  solution,  the  quantity  of  thio- 
sulphate  solution  required  to  titrate  the  liberated 
iodine  is  not  a  direct  measure  of  the  amount  of 
sugar  present.  For  instance,  each  0T  c.c.  of  2V/1 
thiosulphate  solution  is  equivalent  to  0"34  mg.  of 
invert  sugar  when  10  c.c.  of  the  solution  is  required 
for  the  titration,  and  to  0'41  mg.  when  23  c.c.  is 
used.  The  use  of  potassium  thiocyanate  in  place  of 
a  portion  of  the  potassium  iodide,  as  recommended 
by  Bruhns  (J.,  1920,  829  a),  is  untrustworthy. 

— W.  P.  s. 

Carbohydrates;  Oxidation  of with  nitric  acid. 

P.    Haa6    and    B.    Russell-Wells.      Biochem.    J., 
1922,  16,  572—573. 

Sucrose,  lactose,  dextrose,  laevulose,  and  the  carbo- 
hydrates of  Ghondrus  crispus  (carrageen),  on 
oxidation  with  nitric  acid  yield  a  substance  similar 
to  glvcuronic  acid,  which  reduces  cold  Fehling's 
solution.— S.  S.  Z. 

Xylose;   Methylation   of  .     A.   Carruthers  and 

E.    L.    Hirst.      Chem.    Soc.    Trans.,    1922,    121, 
2299—2308. 

Two  series  of  methylations  were  carried  out  with 
the  object  of  obtaining  the  two  stereoisomeric  forms 
of  trimethylmethylxyloside.  Methylation  of  xylose 
witli  methyl  sulphate  followed  by  treatment  with 
methyl  iodide  and  silver  oxide  gave  crystalline  tri- 
methyl-/3-methylxyloside.      As   obtained  by  distilla- 


992  a 


Cl.  xviii.— fermentation  industries. 


[Dec.  30,  1922 


tion  the  product  was  a  mixture  of  the  a-  and  /3- 
forms,  from  which  the  latter  was  obtained  by 
crystallisation  from  light  petroleum.  It  had  the 
following  constants  :  m.p.  46°— 48°  C,  nD2S  =  V4350, 
[a]„  =  -67°  (in  water).  In  acidified  methyl  alcoholic 
solution  the  equilibrium  value  of  [a],,  was  +49'5°. 
With  the  object  of  obtaining  the  trimethyl-a-methyl- 
xyloside  the  equilibrium  mixture  of  a-  and  /3-methyl- 
xylosides  obtained  by  heating  xylose  with  acidified 
methyl  'alcohol  at  100°  C.  for  20  hrs.,  was  separated 
as  far  as  possible,  and  the  a-form  methylated  by  the 
silver  oxide  method.  The  product  was  a  mobile 
syrup,  b.p.  115°— 118°  C.  at  12  mm.,  nE"  =  1-4410, 
and  it  contained  about  66%  of  the  a-isomeride.  The 
behaviour  of  both  the  a-  and  /3-forms  on  hydrolysis 
was  distinctly  anomalous.  The  /3-form  only  gave 
about  a  50%  yield  of  trimethylxylose,  together  with 
furfurail  derivatives  and  other  decomposition  pro- 
ducts. Trimethylxylose  crystallised  from  ether  in 
large  prisms,  m.p.  87° — 90°  C.  Mutarotation  in 
aqueous  solution  was  so  rapid  that  the  maximum 
value  of  [a]„  could  not  be  obtained.  In  absolute 
alcohol  [a]D  =  +74°.  From  trimethyl-a-methylxylos- 
ide  no  trace  of  trimethylxylose  could  be  obtained 
by  hydrolysis,  a  viscous  acidic  syrup  only  being 
isolated.  The  rate  of  condensation  of  trimethyl- 
xylose with  acidified  methyl  alcohol  is  very  slow  as 
compared  with  the  hexoses.  With  0-25%  acid  no 
change  in  rotation  was  observed  after  60  hrs.  at 
15°  C,  but  at  70°  C.  equilibrium  was  attained  in 
8  hrs.— G.  F.  M. 

Fucose;  Structure  of .     E.P.Clark.     J.Biol. 

Chem.,  1922,  54,  65—73. 
The  method  for  the  preparation  of  fucose  from 
6eaweed  has  been  improved.  On  the  basis  of  the 
relationship  which  exists  between  the  configuration 
and  rotation  of  lactones  of  sugar  acids  (Hudson, 
J.,  1910,  366),  it  i6  concluded  from  the  rotation  of 
the  methyl  tetronolactone  obtained  from  fucose  that 
the  configuration  assigned  to  fucose  by  Mayer  and 
Tollens  (Ber.,  1907,  40,  2440)  is  correct.— E.  S. 

y-M ethyl fructoside.     R.   C.   Menzies.     Chem.   Soc. 

Trans.,  1922,  121,  2238—2247. 
Dilute  solutions  of  fructose  (Iasvulose)  in  pure 
methyl  aloohol  are  rapidly  converted,  in  presence  of 
0'5%  of  hydrogen  chloride,  into  solutions  of  methyl- 
fructosides,  a  change  which  is  accompanied  by  a 
change  of  sign  in  the  optical  rotation.  The  change 
is  the  most  rapid  of  its  kind  hitherto  encountered  in 
the  sugar  group,  5%  and  2'5%  solutions  giving  the 
maximum  positive  rotation  in  less  than  30  mins.  _  At 
this  point  the  solution  was  neutralised  with  sodium 
jnethoxide,  the  solvent  removed,  and  the  resulting 
salt  extracted  with  dry  ethyl  acetate,  whereby  an 
insoluble  lsevorotatory  syrup  ([a]D=+27°)  and  a 
soluble  hygroscopic  syrup  having  [a]D=+25"2°  (in 
ethyl  acetate)  were  separated.  That  the  latter  was 
7-methylfructoside  was  evident  from  its  similarity 
in  behaviour  to  other  substances  of  the  y-type, 
being  completely  hydrolysed  by  cold,  0'033%  hydro- 
chloric acid  and  decolorising  iV/500  permanganate 
in  30  mins.,  the  same  time  as  is  required  by  y-niethyl- 
glucoside,  whilst  a-methylglucoside  and  /i-methyl- 
fructoside  require  30  hrs.  under  similar  conditions. 
The  complete  methylation  of  y-methylfructoside  by 
the  silver  oxide  method  gives  a  tetramethyl  deriva- 
tive identical  with  that  obtained  from  sucrose  and 
inulin,  and  the  ketose  residue  in  all  three  substances 
is  therefore  identical. — G.  F.  M. 

Inulin;    Identification    of   by    a   mycological 

method.       A.     Castellani     and     F.     E.     Taylor. 
Biochem.  J.,  1922,  16,  655—658. 

Monilia  maccdoniensis,  Castellani,  ferments  inulin 
with  the  production  of  gas.  It  also  ferments 
dextrose,  lrevulose,  galactose,  and  sucrose.     Inulin 


can  be  identified  by  utilisation  of  the  above  mould 
in  conjunction  with  other  fungi. — S.  S.  Z. 

Patent. 

Sugar  residues  [e.g.,  those  resulting  from  the 
polarisation  of  sugar  products'];  Process  of  re- 
covering litharge  from .   A.  S.  Ramage,  Assr. 

to    The    Sugar    Research    Svnd.,    Ltd.      U.S. P. 
1,433,034,  24.10.22.     Appl.,  29.1.21. 

Litharge  is  recovered  from  sugar  residues  con- 
taining lead  carbonate  and  organic  lead  salts  by 
subjecting  the  mixture  in  continuous  flow  to  a 
gradually  increasing  temperature,  and  to  the 
action  of  air  flowing  in  the  contrary  direction,  the 
oxygen  content  of  the  air  being  gradually  dimi- 
nished, so  that  the  lead  content  is  reduced  first  to 
metallic  lead,  which  is  gradually  oxidised  to 
litharge.— J.  P.  O. 


XVIII.-FERMENTATIQN  INDUSTRIES. 

Saccharomyces    cerevisice;    Action    of    ultraviolet 

rays  on .     R.  and  R.  de  Fazi.     Giorn.  Chim. 

Ind.  Appl.,  1922,  4,  463—464. 

Tests  on  an  industrial  scale  have  shown  that  yeast 
previously  exposed  for  12  hrs.  to  the  light  from  a 
quartz  mercury  vapour  lamp  ferments  brewery  wort 
more  rapidly  and  develops  less  acidity  than  the 
same  yeast  not  subjected  to  this  treatment.  (0/. 
E.P.  143,121;  J.,  1920,  499  a.)— T.  H.  P. 

Pentoses;  Fermentation  of by  moulds.     W.  H. 

Peterson,  E.  B.  Fred,  and  E.  G.  Schmidt.       J. 
Biol.  Chem.,  1922,  54,  19—34. 

Out  of  25  species  of  moulds  investigated,  16  were 
found  rapidly  to  ferment  both  xylose  and  arabinose; 
the  destruction  of  the  pentoses  was,  however,  some- 
what less  rapid  than  that  of  dextrose.  Aspergillus 
niger  and  other  species  of  Aspergillus  were  espe- 
cially active  in  fermenting  the  pentoses ;  Penicil- 
lium  glaucum  was  also  active,  but  with  other  Peni- 
cillia  the  fermentation  proceeded  slowly.  In  agree- 
ment with  results  obtained  by  others,  it  was  found 
that  over  90%  of  the  carbon  of  the  pentose  con- 
sumed could  be  accounted  for  as  carbon  dioxide 
and  mycelium.  No  volatile  acid  or  alcohol  was  pro- 
duced, but  a  small  quantity  of  non-volatile  acid 
appeared  to  be  formed. — E.  S. 

Wines;  Determination  of  free  and  combined  volatile 

acids  in .     P.  Malvezin.     Ann.  Falsif.,  1922, 

15,  360—362. 
The  author  maintains,  in  answer  to  criticism,  that 
the  ether-extraction  method  (J.,  1909,  435)  is 
reliable;  the  acidity  of  the  ethereal  solution  varies 
with  the  concentration  of  the  volatile  acids,  and  is 
independent  of  the  concentration  of  the  fixed  acids. 
Tartaric  and  lactic  acids  do  not  interfere  under  the 
conditions  prescribed. — W.  P.  S. 

Wines  containing  sulphurous  acid;  Action  of  

on  metals.       P.   Grelot.     Ann.   Falsif.,   1922,   15, 
326—330. 

Wines  containing  sulphurous  acid  or  bisulphite  act 
readily  on  certain  metals.  In  the  case  of  iron,  zinc, 
tin,  and  aluminium,  hydrogen  sulphide  is  evolved 
and  the  wine  becomes  turbid  owing  to  the  libera- 
tion of  sulphur  in  a  finely-divided  state.  With 
lead,  copper,  and  nickel  the  wine  remains  clear  and 
there  is  no  evolution  of  hydrogen  sulphide,  but  the 
metals  are  blackened  owing  to  the  formation  of  a 
layer  of  sulphide  on  their  surface. — W.  P.  S. 

Industrial  alcohol.     Cole.     See  Ha. 

Identification   of  inulin.      Castellani   and    Taylor. 
Sec  XVII. 

Alkalinity  of  culture  media.     Noll.     See  XIXb. 


Vol.  XII.,  No.  24.] 


Cl.  XIXa.— FOODS. 


993  a 


Patents. 
Fuel  for  internal  combustion  engines.    E.P   187  326 
See  IIa. 

Alcohol  fuels.     E.P.  187,335.     See  IIa. 


XIXA.-F00DS. 

Wheat  flour;  Chemistry  of  strength  of .    H.  E. 

Woodman.     J.  Agric.  Sci.,  1922,  12,  231—243. 

The  possibility  of  the  difference  between  strong  and 
weak  flours  depending  on  differences  in  the  proteins 
of  the  gluten  were  investigated.  Proteins  were 
considered  identical  if  they  exhibited  identically  the 
following  three  properties: — Optical  behaviour 
when  racemised  by  dilute  alkali  at  37°  C.  at  three 
different  dilutions;  specific  rotation  in  70%  alcohol; 
combining  capacity  for  alkali  as  determined  by 
titration  in  S0%  alcoholic  solution  with  2V/10  sodium 
hydroxide,  using  phenolphthalein  as  indicator.  The 
gliadins  from  weak  and  strong  flours  showed  no 
differences,  but  the  glutenins  showed  different  be- 
haviour during  racemisation  with  alkali,  indicating 
the  possibility  of  two  or  more  glutenins.  The  physical 
condition  of  the  gluten,  and  consequently  the  shape 
of  the  loaf,  also  depends  to  a  certain  extent  on  the 
content  of  soluble  salts  in  the  flour.  The  proteins 
can  be  extracted  with  a  cold  0'2%  potassium 
hydroxide  solution  without  alteration  of  their 
optical  properties.  The  combining  weight  of  gliadin 
is  about  5000,  and  it  is  concluded  that  the  molecule 
contains  three  or  a  multiple  of  three  free  carboxyl 
groups. — A.  G.  P. 

'Beef    and    mutton;    Autolysis    of    .      W.    It. 

Fearon  and  D.  L.  Foster.     Biochem.  J.,  1922,  16, 
564—571. 

The  processes  of  the  post-mortem  autolysis  of  beef 
and  mutton  are  exactly  parallel  both  at  incubator 
temperature  and  at  low  temperatures.  In  the  case 
of  mutton  both  the  initial  soluble  nitrogen  and  the 
soluble  nitrogen  when  the  equilibrium  of  the 
autolysis  has  been  reached,  are  higher  than  in  beef. 
This  difference  in  the  two  kinds  of  muscle  is  probably 
due  to  the  difference  in  structure  and  physical 
properties  of  the  muscle  and  not  to  their  chemical 
constitution.  The  above  results  do  not  throw  any 
light  on  the  different  behaviour  of  beef  and  mutton 
after  being  frozen.  After  being  frozen  the  course 
and  degree  of  autolysis  are  greatly  altered.  The 
method  of  freezing  and  the  rate  of  freezing  are  of 
great  significance. — S.  S.  Z. 

Goat    milk;    Non-protein    nitrogen    in   .       \V. 

Taylor.     Biochem.  J.,  1922,  16,  611—612. 

There  was  a  found  a  correlation  in  a  lactating  goat 
between  the  output  of  nitrogen  in  the  urine  and  the 
percentage  of  non-protein  nitrogen  in  the  milk. 
Both  were  determined  by  the  amount  of  protein  in 
the  food.— S.  S.  Z. 

Proteins:     Heat     coagulation     of    .       W.     W. 

Lepeschkin.     Biochem.  J.,  1922,  16,  678—701. 

A  study  of  the  processes  of  denaturation  and  coagu- 
lation of  protein.  The  author  comes  to  the  conclusion 
that  denaturation  is  a  weak  hydrolysis  of  the  protein 
and  that  coagulation  is  not  simply  a  process  of 
electrical  discharge  of  protein  particles  by  the  ions 
but  is  also  dependent  on  the  chemical  properties  of 
the  salts  present. — S.  S.  Z. 

Tryptophan-estimation   in    protein;    Nitrogen-dis- 
tribution   in    Bence-Jones'    protein    and    eolori- 

metric  method  for  .     E.  Liischer.     Biochem. 

J.,  1922,  16,  556—563. 

Bence  Jones'  protein  differs  from  all  other  proteins 
analysed  up  to  the  present  time,   not  only  in  its 


physical  behaviour  but  also  in  ite  nitrogen  distribu- 
tion as  determined  'by  Van  Slyke's  method.  The 
author  proposes  to  use  benzaldehyde  instead  of  form- 
aldehyde in  Von  Fiirth's  oolorimetric  method  for 
the  estimation  of  tryptophan  (c/.  J.,  1921,  787  a). 

— S.  S.  Z. 

Nitrogeneous  metabolism  of  higher  plants.  III. 
Effect  of  loiv-temperature  drying  on  the  distribu- 
tion of  nitrogen  in  the.  leaves  of  the  runner  bean. 
A.  C.  Chibnall.     Biochem.  J.,  1922,  16,  599—607. 

On  drying  the  leaves  of  the  runner  bean  at  low 
temperature  some  of  the  protein  is  autolysed  with 
the  production  of  water-soluble  nitrogen  compounds 
which  chiefly  consist  of  ammonium  salts,  asparagine, 
and  ammo-acids.  The  residual  protein  is,  however, 
not  appreciably  changed  in  character.  The  dried 
leaves  contain  enzymes  which  are  activated  by 
water.  The  presence  of  an  asparaginase  which  is 
activated  by  the  addition  of  water  and  which  under 
specified  conditions  manifests  marked  synthetio 
activity,  is  indicated. — S.  S.  Z. 

Nitrogenous  metabolism  of  the  higher  plants.  IV. 
Distribution  of  nitrogen  in  the  dead  leaves  of  the 
mi, nrr  l>ean.  A.  C.  Chibnall.  Biochem.  J.,  1922, 
16,  608—610. 

The  nitrogen  content  of,  and  its  distribution  in,  the 
dead  leaves  of  the  runner  bean  killed  by  a  frost  in 
the  twenty-fourth  week  of  ite  life  are  given. 

— S.  S.  Z. 

Oat  straw;  Sugars  and  albuminoids  of .    S.  H. 

Collins  and  B.  Thomas.     J.  Agric.  Sci.,  1922,  12, 
280—286. 

Oat  straws,  grown  under  various  conditions,  were 
examined  for  their  sugar  and  protein  content,  with 
a  view  to  correlating  feeding  value  and  conditions 
of  growth.  ^Good  weather  conditions  at  harvest  are 
necessary  to  obtain  high  sugar  content.  The  sugar 
gradually  disappears  after  harvesting,  particularly 
if  the  straw  becomes  damp.  Exceptional  care  in 
storage  is  necessary  to  retain  a  high  sugar  content 
for  six  months.  The  protein  content  of  the  straw 
varied  from  1T2  to  8'05%  and  was  roughly  propor- 
tional to  the  amount  of  nitrogen  in  the  soil.  Organio 
nitrogenous  manures  produced  a  greater  variation 
in  the  protein  content  of  oat  straw  than  did  arti- 
ficial fertilisers.  The  amount  of  protein  depended 
to  a  certain  extent  on  the  amount  of  grain  pro- 
duced.   (Cf.  J.,  1920,  66  t,  82  t.)— A.  G.  P. 

Vitamin  A;  Significance  of in  the  nutrition  of 

fish.    K.  H.  Coward  and  J.  C.  Drummond.     Bio- 
chem. J.,  1922,  16,  631—636. 

During  the  development  of  the  larval  brown  trout 
the  high  vitamin  A  content  of  the  ova  is  utilised 
so  that  the  supplies  are  almost  exhausted.  On 
giving  food  rich  in  vitamin  A  to  the  fish  in  their 
poi-it-larval  period  they  develop  satisfactorily  and 
are  capable  of  storing  the  vitamin.  On  a  diet  con- 
taining adequate  protein  but  deficient  in  the  vita- 
min no  such  storage  occurs  and  growth  is  sub- 
normal.— S.  S.  Z. 

Fruit ;  Changes  which  occur  in  the  pectic  constitu- 
ents of  stored .    M.  H.  Carre.    Biochem.  J., 

1922,  16,  704—712. 

The  pectin  content  reaches  a  maximum  during  the 
process  of  ripening  of  apples  and  then  gradually 
falls  as  the  fruit  becomes  over-ripe.  The  date  of 
picking  of  the  fruit  has  no  effect  on  the  development 
of  the  pectin  in  either  cold  or  ordinary  storage. 
Protopectin — the  precursor  of  soluble  pectin — can  be 
estimated  by  hydrolysing  the  residue  with  N/20 
hydrochloric  acid  and  then  applying  the  calcium 
pectate  method.  Preliminary  work  suggests  the 
existence   of   a   definite    relationship    between    the 


994  a 


Cl.  XIXb.— WATER    PURIFICATION  ;    SANITATION. 


[Dec.  30,  1922. 


quantities  of  soluble  pectin  and  protopeetin  consti- 
tuents  and  that  the  production  of  soluble  pectin 
is  due  to  enzyme  action.  There  is  a  possibility  of 
the  existence  of  a  third  soluble  pectin. — S.  S.  Z. 

Alanine.    Jaitschnikov.     See  XX. 

Patents. 
Oleaginous  emulsifying  materials,  and  manufacture 
of  edible  substances.  Manufacture  of  emulsions 
or  emulsifying  ingredients  or  materials.  E.  V. 
Schou.  E.P.  (a)  187,298  and  (b)  187,299,  12.1.21. 
(a)  An  oil-soluble  gelatinised  oil  with  pronounced 
viscous,  tough,  and  elastic  properties  is  produced 
from  oils  containing  linolic  or  linolenic  acid  by 
heating  or  polymerisation,  with  or  without  previous 
or  simultaneous  oxidation.  Fresh  oil  of  a  suitable 
kind  is  added  to  the  gelatinised  oil  and  the  whole 
stirred  at  a  temperature  of  100°— 120°  C.  until  the 
gelatinised  oil  is  completely  dissolved,  when  the 
blend  is  cooled  to  atmospheric  temperature.  _  The 
substances  distilling  over  during  the  preparation  of 
the  gelatinised  oil  may  be  recovered.  The  product 
is  suitable  as  a  substitute  for  butter  and  lard,  or 
may  be  added  to  oils  or  fats  to  increase  their  vis- 
cosity, (b)  A  sticky  and  elastic  oleaginous  material, 
which  may  be  prepared  as  described  under  (a),  is 
used  as  the  oleaginous  portion  of  an  emulsion, 
either  alone  or  dissolved  in  or  diluted  with  a 
quantity  of  untreated  oil.  An  aqueous  liquid,  which 
may  or  may  not  contain  a  small  proportion  of  solid 
matter  of  a  viscous  or  sticky  character,  is  vigorously 
stirred  into  the  oleaginous  portion,  and  an  emul- 
sion is  produced  which  is  soluble  in  oil  and  in  which 
the  oily  portion  constitutes  the  external  phase  and 
the  watery  portion  the  internal  phase. — H.  C.  R. 

Milk   product  and  process  of  making  it.       P.  G. 

Kinzer    Assr.   to   Carnation   Milk  Products   Co. 

U.S. P.  1,432,699,  17.10.22.  Appl.,  6.3.18. 
The  cream  is  separated  from  fresh  milk  and  churned 
to  separate  the  butter.  The  skim  milk  from  the 
first  separation  and  the  buttermilk  from  the  second 
separation  are  combined  with  an  edible  vegetable 
fat  to  form  a  stable  emulsion. — H.  H. 

Coffee    substitutes;    Manufacture     of    from 

cereals  and   the   malt   of   cereals.     K.   Lendrich. 
U.S. P.  1,434,297,  31.10.22.     Appl.,  7.1.20. 

See  E.P.  131,304  and  153,971  of  1919;  J.,  1921,  58  a, 
94  a. 


XIXb.— WATER  PURIFICATION;  SANITATION. 

Water;  Statistical  record  of  Toronto ,  1912—21. 

N    J.  Howard.     Canadian  Eng.,  1922,  42,  468— 

476. 
A  review  is  given  of  the  laboratory  work  in  con- 
nexion with  the  filtration  of  the  water  supply  of 
the  City  of  Toronto,  which  is  derived  from  Lake 
Ontario.  The  water  is  treated  by  slow  sand  and 
drifting  sand  filtration  and  by  subsequent  sterilisa- 
tion. Aluminium  sulphate  was  used  also  to  remove 
the  large  bacterial  pollution  of  the  raw  water.  The 
number  of  bacteria  was  reduced  99%  by  slow  sand 
filtration  and  95%  by  drifting  sand  filtration.  The 
numbers  of  B.  coli  in  the  raw  water  have  much 
increased  during  late  years,  and  now  12%  of  the 
water  samples  treated  by  slow  sand  filtration  con- 
tain B.  coli  in  1  c.c.  This  is  not  regarded  as  a 
serious  matter,  because  the  water  is  afterwards 
treated  with  chlorine.  The  view  is  expressd  that 
modern  practice  in  America  regards  the  purification 
of  a  water  supply  as  more  practical  and  economical 
than  the  purification  of  sewage  before  its  discharge 
into  a  stream.  Along  with  the  increase  in  B.  coli, 
the  chlorine  increased  from  8  to  10  parts  per  million. 
The  average  amount  of  aluminium  sulphate  added 


increased  from  1  grain  to  13  grain  per  gal.  during 
the  last  four  years,  more  being  required  in  summer 
than  in  winter.  The  slow  sand  filters  were  more 
efficient  in  summer,  on  account  of  their  greater 
porosity  in  winter  weather.  The  dose  of  chlorine 
required  varied  from  0'2  part  per  million  in  winter 
to  0'375  part  in  summer.  No  definite  reason  could 
be  given  for  the  occasional  occurrences  of  taste 
in  the  water.  The  mortality  from  typhoid  fever 
decreased  from  12  to  3  per  100,000  during  the 
period. — J.  H.  J. 

Chlorination  \_of  water]  prior  to  filtration.  N.  J. 
Howard.  J.  American  Water  Works  Assoc, 
1922,  9,  606—611.     [Reprint.] 

During  1921  the  Toronto  water  supply  was  treated 
with  chlorine  instead  of  with  aluminium  sulphate 
before  filtration  in  drifting  sand  filters.  This  was 
done  because  of  the  large  amount  of  aluminium 
sulphate  required  as  a  result  of  the  rapid  increase 
in  the  pollution  of  the  raw  water  from  Lake 
Ontario.  The  chlorine  was  applied  at  the  rate  of 
0'15 — 0'3  part  per  million,  any  excess  being 
absorbed  by  the  sand  filter.  The  purification 
effected  in  the  summer  was  much  better  than  with 
aluminium  sulphate,  but  not  so  good  in  winter. 
The  use  of  chlorine  considerably  increased  the 
volume  of  water  which  it  was  possible  to  filter 
daily.  An  iodoform  taste  developed  in  the  treated 
water  rather  more  frequently  than  w-hen  aluminium 
sulphate  alone  was  employed,  but  no  connexion 
could  be  found  between  the  addition  of  the  chlorine 
and  the  development  of  the  taste.  The  total  cost 
of  the  chlorine  treatment  was  much  less  than  that 
of  the  aluminium  sulphate  method. — J.  H.  J. 

Taste  and  odour  [from  xva,ter~\;  Modern  practice  in 

the  removal  of  .     N.  J.  Howard.     J.  Amer. 

Water      Works      Assoc,      1922,      9,      766—782. 
[Reprint.] 

Taste  in  water  arising  from  the  presence  of  gases 
and  iron  in  solution  may  be  removed  by  aeration 
and  filtration  processes.  Crenothrix  may  be 
removed  by  aeration  and  filtration  or  by 
filtration  alone.  Algse  may  be  removed  by 
chlorine  or  more  successfully  by  copper  sul- 
phate ;  they  flourish  best  in  water  of  high  alka- 
linity, and  experiments  showed  that  a  sufficient 
reduction  of  the  alkalinity  led  to  their  death.  The 
cause  of  taste  following  chlorination  is  not  definitely 
established.  There  are  two  kinds  of  taste  in  waters 
treated  with  chlorine :  a  chlorine  taste  and  an  iodo- 
form taste,  which  never  occur  together,  but  odour 
may  occur  at  the  same  time,  particularly  when  the 
water  temperature  is  above  50°  F.  (10°  C).  In 
water  which  contains  chlorine  in  excess  of  the 
amount  necessary  for  sterilisation  both  taste  and 
odour  exist.  An  application  of  0"175 — 0'225  part  of 
chlorine  per  million  at  a  temperature  of  35° — 45°  F. 
(2° — 7°  C.)  does  not  usually  lead  to  complaint  of 
taste,  but  as  the  temperature  rises  more  chlorine 
must  lie  added  to  get  the  same  sterilisation  effect. 
Standard  solutions  of  aniline  dyes  were  made  up  to 
match  the  blue  colour  of  starch  iodide,  and  were 
used  at  Toronto  Water  Works  as  useful  indicators 
as  to  the  correctness  of  the  amount  of  chlorine  being 
added.  The  iodoform  taste  appears  to  be  due  to 
the  presence  of  phenols  and  organic  matter  in  the 
water  before  treatment,  but  in  certain  cases  there 
appear  to  be  other  causes.  Experiments  with  Lake 
Ontario  water  showed  that  in  presence  of  small 
amounts  of  phenol,  up  to  0'017  part  per  million,  an 
iodoform  taste  developed  when  0'175  part  of  chlorine 
per  million  was  added,  and  persisted  up  to  a  dose  of 
0'65  part,  when  the  taste  disappeared.  The  reverse 
process  of  adding  excess  of  phenol  to  water  con- 
taining chlorine  was  not  successful  in  removing  the 
taste.  Treatment  by  the  excess  lime  method  reduced 
but  did  not  remove  the  iodoform  taste. — J.  H.  J. 


Vol.  Shi.,  No.  24.]     Cl.  XX.— ORGANIC  PRODUCTS  ;    MEDICINAL  SUBSTANCES,  &o. 


995  a 


Alkalinity  of  water  and  culture  media;  Estimation 

of  .    H.   Noll.    Z.   Hvz.  u.  Infkt.   Krankh., 

1922,  9C,  172—190.     Chem.  Zentr.,  1922,  93,  IV., 
1003—1004. 

The  estimation  of  alkalinity  by  direct  and  indirect 
titration,  using  methyl  orange,  gives  good  results. 
The  indirect  method  after  expelling  carbon  dioxide 
by  boiling  is  more  accurate,  although  the  cause  of 
the  difference  in  the  methods  has  not  been  ascer- 
tained. The  limiting  sensitiveness  is  about  N 1 1000 
solutions.  In  titrating  ferruginous  waters  immedi- 
ately after  sampling,  the  carbonates  of  iron  cause  too 
high  a  figure  for  the  alkalinity,  and  the  estimation 
should  be  delayed  until  the  iron  has  separated  out. 
Humates  and  silicates  are  estimated  as  carbonates. 
In  using  phenolphthalein  in  the  indirect  method, 
the  titre  of  the  phenolphthalein  should  be  deter- 
mined and  the  same  quantity  of  it  used  in  each 
titration.  Good  alkalinity  figures  are  obtained  with 
ferruginous  waters  if  the  iron  is  wholly  or  partially 
precipitated.  Humates  do  not  affect  the  alkalinity 
when  phenolphthalein  is  used  ;  silicates  are  recorded 
;i^  carbonates.  Azolitmiu  gives  similar  results  to 
phenolphthalein  but  the  colour  change  is  inferior. 
The  alkalinity  of  culture  media  is  best  determined 
by  spotting  out  on  litmus  paper.  Phenolphthalein 
is  only  suitable  for  clear  liquids.  The  difference 
between  the  neutral  points  of  litmus  and  phenol- 
phthalein is  due  to  carbonates  and  not  to 
phosphates.  The  estimation  of  phosphate  in  peptone 
extracts  and  nutrient  media  is  most  satisfactorily 
carried  out  by  the  molybdate  method.  The  phos- 
phate in  nutrient  media  is  partially  removed  by 
neutralisation  and  filtration. — A.  G.  P. 

Fungicidal  properties  "f  certain  spray  fluids.  E. 
Horton  and  E.  S.  Salmon.  J.  Agric.  Sci.,  1922, 
12,  269—279. 

The  fungicidal  properties  of  a  number  of  solutions 
towards  the  conidial  stage  of  Sphaerotheca  Humuli 
on  young  hop  leaves,  were  determined.  Disodium 
arsenate  solution  (0'096% As20,)  was  fungicidal  but 
killed  patches  of  leaf  cells  beneath  the  mildew 
patches;  with  a  solution  containing  0'02%  As205  the 
latter  injury  was  not  observed.  Trisodium  arsenate 
with  0'77%  As,Os  was  fungicidal.  Dicalcium 
arsenate  containing  above  0'024%  As:0,  and  tri- 
calcium  arsenate  containing  above  0'02%  AsaOs  were 
fungicidal.  Calcium  polysulphide  (O'll  %  of  poly- 
sulphide  sulphur)  was  fungicidal,  but  the  following 
among  its  constituents  were  harmless :  calcium 
sulphate,  sulphite,  thiosulphate,  and  hydroxvhvdro- 
sulphide.— A.  G.  P. 

Patents. 

Filtering  apparatus  \Jor  water}.  W.  Paterson. 
E.P.  187,259,  26.4.21. 

A  manifold  pipe  system  for  the  collection  of  filtered 
liquid  and  for  the  distribution  of  compressed  air  and 
wash  water  for  cleansing  the  filter  bed  is  superposed 
on  a  channel  or  tube,  constituting  the  main  collect- 
ing or  distributing  header,  of  which  the  upper 
surface  is  substantially  flush  with  the  bottom  of  the 
filter  bed.  The  pipes  are  each  connected  with  the 
header  by  a  T-piece  and  are  clamped  in  position. 

— H.  H. 

Cldorine  gas  [for  water  purification};  Method  of 

producing     .       G.     N.     Blanchard.       U.S. P. 

1,430,785,    3.10.22.      Appl.,     21.7.20.      Renewed 
31.5.22. 

A  current  from  a  transformer  is  conducted  through 
cells  containing  salt  water.  The  strength  of  the 
current  is  co-ordinated  with  the  flow  of  water  to  be 
purified,  so  that  the  chlorine  is  produced  in  a  fixed 
proportion  to  the  flowing  water. — J.  H.  J. 


Sewage   treatment.     Dorr  Co.,    Assees.   of  H.   W. 
-Morgan.     E.P.  171,361,  26.7.21.     Conv.,  10.11.20. 

See  U.S. P.  1,392,197  of  1921;  J.,  1921,  868  a. 

XX.-0RGANIC   PRODUCTS;    MEDICINAL 
SUBSTANCES;    ESSENTIAL  OILS. 

Nicotine;   Determination    of  in   tobacco  and 

tobacco  smoke.    M.  Popp  and  J.  Contzen.    Chem.- 
Zeit.,  1922,  46,  1001—1002. 

The  nicotine  was  determined  in  eight  kinds  of 
cigar  and  pipe  tobacco  and  in  their  smoke.  The 
nicotine  in  the  tobaccos  was  determined  by 
Rasmussen's  extraction  method  (J.,  1915,  300)  and 
by  Mach's  distillation  method  (Landw.  Vers. -Stat., 
45,  40).  The  results  obtained  by  the  two  methods 
agreed  well  with  one  another.  To  determine  the 
nicotine  in  the  smoke,  weighed  quantities  of  the 
tobacco  were  smoked  in  a  holder  or  pipe  and  the 
smoke  passed  through  five  wash-bottles  filled  with 
10%  hydrochloric  acid,  which  after  absorption  was 
completed  was  made  up  to  1000  c.c.  An  aliquot 
part  of  this  solution  was  made  alkaline  with  sodium 
hydroxide  and  steam-distilled.  The  distillate  was 
precipitated  with  silicotungstic  acid.  Other  bases 
such  as  pyridine  are  also  precipitated,  but  if  acetic 
acid  is  present  small  quantities  of  pyridine  are  not 
precipitated.  The  total  nicotine  in  the  cigars  and 
pipe  tobaccos  examined  varied  from  0'31  %  to  2'21%. 
The  smoke  from  these  tobaccos  contained  from  0'20% 
to  1-05%  of  nicotine.— H.  C.  R. 

Alkaloids;  Use  of  the  newer  indicators  in  titrations 

of  .     W.   J.   McGil'l.     J.  Amer.  Chem.  Soc., 

1922,  44,  2156—2160. 

The  indicators  generally  used  in  the  titration  of 
morphine,  atropine,  and  quinine  give  results  which 
are  not  nearly  so  accurate  as  should  be  obtained. 
In  the  case  of  morphine  the  average  error  using 
methyl  red  is  1"4%,  whereas  bromophenol  blue  gives 
an  average  error  of  only  0'5%,  and  in  some  cases 
this  is  as  low  as  0'1%.  The  best  indicator  for 
quinine  is  bromocresol  purple,  whilst  for  cinchona 
residues,  either  cochineal,  methyl  red,  or  bromo- 
cresol purple  may  be  used.  Cochineal  and  methyl 
red  give  low  results  with  morphine,  atropine,  and 
mydriatic  alkaloid  residues,  whilst  bromophenol  blue 
gives  satisfactory  results  in  all  these  cases.  Methyl 
red  is  the  most  satisfactory  indicator  for  strvchnine. 

— J.'E.  s. 

Liquorice  extract;  Detection  of  extract  of  Atractylis 

gummifera  in .       U.  Giuffre.       Giorn.  Chim. 

Ind.  Appl.,  1922,  4,  460—461. 
Adulteration  of  liquorice  extract  with  extract  of 
Atractylis  gummifera,  which  contains  the  poisonous 
glucoside,  potassium  atractylate,  may  be  detected 
as  follows.  Fifty  grms.  of  the  extract  is  dissolved 
in  a  little  water  and  the  dense  solution  mixed  with 
about  500  c.c.  of  alcohol,  treated  with  animal 
charcoal,  allowed  to  stand,  filtered,  and  reduced  by 
distillation  to  a  small  volume.  After  diluting  with 
a  little  water,  the  liquid  is  made  distinctly  alkaline 
with  sodium  hydroxide,  boiled  for  half  an  hour  in  a 
reflux  apparatus,  cooled,  acidified  with  dilute 
sulphuric  acid,  and  distilled  to  small  volume  in  a 
current  of  steam.  The  presence  in  the  distillate  of 
valeric  acid,  one  of  the  products  of  the  alkaline 
hydrolysis  of  potassium  atractylate,  is  indicated  by 
the  odour.  The  residue  from  the  distilling  flask  is 
saturated  with  ammonium  sulphate,  boiled  for 
15  mins.  with  alcohol  and  animal  charcoal,  and 
filtered.  Concentration  of  the  filtrate  and  subse- 
quent dilution  with  water  result  in  the  precipitation 
of  another  hydrolytic  product,  atraetyligenin,  which 
is  purified  by  further  treatment  with  alcohol  and 
charcoal.     The  cold  residue  formed  on  evaporation 


096  a 


Cl.  XX.— ORGANIC  PRODUCTS  ;   MEDICINAL  SUBSTANCES,  &o.  [Dec.  30,  1922. 


of  a  drop  of  the  filtered  liquid  on  a  watch-glass  is 
treated  with  a  few  drops  of  concentrated  sulphuric 
acid,  which  gives  a  yellowish  coloration  changing  to 
carmine  on  addition  of  a  little  piperonaldehyde, 
vanillin,  or  other  aromatic  hydroxyaldehyde  in 
aqueous  solution. — T.  H.  P. 

Carrageen  (Chondrus  crispus).  III.  Constitution 
of  the  cell  wall.  B.  Russell-Wells.  Biochem.  J., 
1922,  16,  578—586. 
The  chemistry  of  hot  and  cold  extracts  of  carrageen 
was  studied.  Both  extracts  contain  pentose  radicles 
and  calcium  and  ammonium  ethereal  sulphates.  The 
ash  also  contains  calcium,  magnesium,  sodium, 
potassium  and  traces  of  iron.  Pectic  radicles  are 
not  present  in  either  extract.  The  cold  extract  con- 
tains a  dialysable  organic  substance.  On  oxidation 
the  cold  and  hot  extracts  yield  mucic,  oxalic,  and 
tartaric  acids;  more  mucic  but  less  oxalic  acid  is 
obtained  from  the  cold  than  from  the  hot  extract. 
The  extracted  residue  of  carrageen  contains  cellu- 
lose. There  are  indications  that  Ceramium  rubrum 
also  contains  ethereal  sulphates. — S.  S.  Z. 

System  o-  and  p-toluenesulphamides.  A.  F.  Dobr- 
janski.  J.  Russ.  Phys.-Chem.  Soc.,  1920,  52, 
139—144. 
During  the  manufacture  of  saccharin  treatment 
of  the  mixed  o-  and  p-toluenesulphonic  chlorides 
with  ammonia  yields  a  mixture  of  the  corresponding 
sulphamides  of  which  a  portion,  melting  at  108°  C, 
remains  non-separable.  This  portion  agrees  in 
composition  with  the  eutectic  mixture  of  the  two 
sulphamides,  so  that  separation  by  fractional  pre- 
cipitation should  be  impossible.  The  acicular 
crystals,  m.p.  120°  C,  described  by  Fahlberg, 
represent  a  mixture  of  the  two  isomerides  in  equal 
proportions,  but  the  melting  point  curve  shows  no 
distectic  point  and  gives  no  indication  of  the  forma- 
tion of  a  molecular  compound ;  the  crystals  of  the 
two  components  are  readily  distinguished  in  the 
mixture  under  the  microscope. — T.  H.  P. 

Alanine;  Identification  of by  crystallo-chemical 

analysis.  I.  S.  Jaitschnikov.  J.  Russ.  Phys.- 
Chem.  Soc,  1920,  52,  145—147. 
Since  optically-active  alanine  often  yields  opales- 
cent solutions  incapable  of  polarimetric  investiga- 
tion, the  author  has  made  crystallographic  measure- 
ments which  may  be  used  to  identify  this  substance. 

— T.  H.  P. 

[Chaulmoogra  esters,  etc.']  Manufacture  of  certain 
drugs  for  the  treatment  of  leprosy.  G.  A. 
Perkins.  Philippine  J.  Sci.,  1922,  21,  1—16. 
The  use  and  method  of  administration  of  chaul- 
moogra  and  other  oils  and  their  derivatives  in  the 
treatment  of  leprosy  is  discussed.  A  new  method 
for  the  preparation  of  the  ethyl  esters  of  the  fatty 
acids  of  chaulmoogra  oil  is  described.  10  kg.  of 
crude  oil  is  mixed  with  13  1.  of  95%  ethyl  alcohol 
and  750  c.c.  of  93%  sulphuric  acid,  and  heated 
under  a  reflux  condenser  for  20  hours.  The  reaction 
product  is  washed  with  an  equal  volume  of  water 
and  then  with  dilute  soda  till  neutral.  The  sepa- 
rated oil  is  dried  and  distilled  in  small  quantities 
in  a  continuous  still  under  reduced  pressure.  The 
distillate  is  vigorously  agitated  with  a  current  of 
steam  for  2  hrs.  to  remove  irritating  volatile 
impurities,  and  then  dried,  filled  into  bottles,  and 
sterilised.  The  yield  amounts  to  90 — 95%  of  the 
original  weight  of  the  oil  taken.  Hydrogen 
chloride  can  be  used  instead  of  sulphuric  acid  as  a 
catalyst,  but  no  advantage  is  apparently  gained. 
The  preparation  of  sodium  "  gynocardate ''  by 
neutralisation  of  a  fraction  of  the  fatty  acids  of 
chaulmoogra  oil  melting  at  48°  C,  of  sodium 
"  morrhuate,"  a  similar  preparation  made  from  cod- 
liver  oil,  and  of  the  cod-liver  oil  esters  is  also  des- 
cribed.—G.  F.  M. 


PfS'-Dichlorodiethyl    sulphide;   Hydrolysis    of   . 

Synthesis  of  divinyl  sulphide  and  the  preparation 
of  a  non-vesicant  isomeride  of  Pfi'-dichlorodiethyl 
sulphide.   S.  H.  Bates  and  S.  A.  Nickelson.  Chem 
Soc.  Trans.,  1922,  121,  2137—2139. 
/3/3'-Dichxorodiethtl  sulphide  when  hydrolysed  with 
20%  alcoholic  potassium  hydroxide  gives  about  26% 
of  its  weight  of  a  light  oil  having  a  garlic-like  odour 
and  boiling  at  85°— 86°  C.     Although  this  b.p.  does 
not  agree  with  that  given  by  Beilstein  for  divinyl 
sulphide  there  is  no  doubt  that  this  is  the  substance 
actually  formed,  according  to  the  equation 
S(CHSCH2C1)2  +  2KOH  -  -+ 

2KC1+2H30  +  S(CH:CH!)2, 
and  the  b.p.  given  in  the  literature  is  incorrect.  The 
oil  has  sp.  gr.  at  15°  C.  09174,  and  when  freshly 
distilled  the  vapour  density  is  practically  normal, 
but  when  kept  for  48  hrs.  the  substances  polymerises 
to  an  opaque  jelly.  Treated  with  dry  hydrogen 
chloride  in  the  cold,  2  mols.  are  added  on  with 
formation  of  aa'-dichlorodiethyl  sulphide,  a  colour- 
less liquid  with  a  pungent  and  objectionable  odour, 
but  devoid  of  vesicant  properties.  It  boils  at  58"5° — 
59'5°  C.  at  15  mm.,  but  when  distilled  under  atmo- 
spheric pressure,  decomposes  with  liberation  of 
hydrogen  chloride.  Like  divinyl  sulphide  it  reacts 
violently  with  nitric  acid. — G.  F.  M. 

Urea;  Decomposition  of by  sodium  hypobromite 

in  alkaline  solution,  and  improved  procedure  for 
the  estimation  of  urea  by  this  means.  E.  A. 
Werner.  Trans.  Chem.  Soc,  1922,  121,  2318—2325. 
An  estimation  of  urea,  based  on  the  evolution  of 
total  nitrogen  by  hypobromite,  including  that  fixed 
during  the  reaction  as  alkali  cyanate,  consists  in 
the  addition  of  the  urea  solution  to  a  small  excess 
of  alkali  hypobromite  contained  in  a  nitrometer. 
After  20  mins.  the  volume  of  gas  evolved  is  recorded 
and  the  gas  is  then  expelled  from  the  nitrometer. 
Sulphuric  acid  (1  in  5  pts.  of  water)  is  added  to 
the  residual  liquid  until,  after  mixing,  the  perman- 
ent presence  of  free  bromine  is  shown.  Carbon 
dioxide  is  liberated  which  is  not  expelled.  After 
15  mins.  30%  sodium  hydroxide  is  added  in  excess, 
together  with  a  small  additional  quantity  of  hypo- 
bromite. After  complete  absorption  of  the  carbon 
dioxide,  the  volume  of  nitrogen  produced  is  added  to 
that  recorded  in  the  first  stage.  An  error  of  about 
0'5%  on  the  total  nitrogen,  owing  to  the  fixation  of 
a  trace  of  the  nitrogen  as  nitrate,  results.  Suppres- 
sion of  the  formation  of  cyanate  by  the  generation 
of  the  hypobromite  in  situ  results  in  a  violent 
reaction,  in  which  traces  of  carbon  monoxide,  in- 
creasing with  the  alkalinity  of  the  reagent,  appear 
in  the  evolved  gas.  Other  conditions  being  equal, 
the  addition  of  dextrose  leads  to  the  formation  of 
carbon  monoxide  and  markedly  increases  the  pro- 
portion of  nitrogen  fixed  as  cyanate.  This  is  also 
the  case  when  the  reaction  is  slowed  down  by  the 
use  of  neutral  hypobromite. — P.  V.  M. 

Aqueous   alcohol;   Selective    solvent   action    by   the 

constituents  of  .     R.  AVright.     Trans.  Chem. 

Soc,  1922,  121,  2251—2256. 
The  effect  of  the  three  solutes,  sucrose,  benzyl 
alcohol,  and  glycerol  on  the  partial  vapour  pressures 
of  38%  aqueous  alcohol  has  been  investigated. 
Sucrose,  soluble  only  in  water,  and  glycerol,  soluble 
both  in  water  and  alcohol,  raise  the  vapour  pressure 
of  the  alcohol  and  lower  that  of  the  water.  Benzyl 
alcohol,  soluble  only  in  alcohol,  lowers  the  vapour 
pressure  of  each  component  of  the  solvent.  Thus 
solids,  soluble  in  one  component  only,  lower  the 
vapour  pressure  of  that  constituent  of  the  solvent 
in  which  they  are  soluble  in  the  pure  state.  These 
conclusions  are  supported  by  freezing-point  deter- 
minations which  show,  further,  that  glycerol,  mis- 
cible  with  both  components,  has  probably  a  greater 
attraction  for  water  than  for  alcohol. — P.  V.  M. 


Vol.  XLI  ,  Xo.  24.] 


Cl.  XXI.— photographic  materials  and  processes. 


997  a 


Terpene  present  in  the  essential  oil  of  Andropogon 

iwarancusa,  Jones;  Constitution,  of  the .  J.  L. 

Simonsen.     Trans.  Chem.  Soc,  1922,  121,  2292 — 
2299. 

The  terpene,  obtained  by  steam  distillation  of  the 
grass,  had  the  following  constants :  b.p.  165'5° — 
167°  C.  at  707  mm.,  sp.  gr.  at  30°  C.  0-8552,  nDJ°  = 
1-474,  [o]D"  =  +62-2°.  On  oxidation  in  neutral 
acetone  solution  with  permanganate  it  gives  a 
saturated  liquid  keto-acid,  C10HlaO3,  isomeric  with 
pinonic  acid.  Since  sodium  hypobromite  converts 
this  acid  into  a  dibasic  acid,  C9H„04,  which  on 
treatment  with  aqueous  hydrobromic  acid  at  100°  C. 
is  further  converted  into  homoterpenylic  acid,  and 
6ince  the  original  terpene  on  saturation  with  hydro- 
gen chloride  at  0°  C.  yields  a  mixture  of  dipentene 
and  sylvestrene  derivatives,  it  is  considered  to  be 
(/-A'-carene.  A'-Carene  has  already  been  identified 
in  the  oleo-resin  of  I'inus  longifolia  (J.,  1920,  581  a), 
and  as  would  be  expected  it  has  a  normal  molecular 
refractivity,  whilst  the  terpene  in  question  shows  n 
considerable  exaltation. — G.  F.  M. 

Patents. 

Dialkylaminoalkyl  compounds;  Process  of  preparing 

aliphatic   .      Farbw.   vorm.   Meister,  Lucius, 

und    Briining.      E.P.    169,185,    15.8.21.      Conv., 

17.9.20.  Addn.  to  167,781  (J.,  1922,  877  a). 
The  condensation  described  in  the  main  patent  can 
be  carried  out  by  causing  an  alkali  hydroxide  to  act 
on  a  mixture,  in  molecular  proportions,  of  a  halo- 
genalkyldialkylamine  and  a  substance  of  the  general 
formula,  R.CO.CHR'X,  such  as  ethyl  acetoacetate. 
Further,  a  purer  product  is  obtained  if  the  reaction 
mixture  is  mixed  with  benzene  and  extracted  with 
ammonia,  before  drying  and  distilling.  Example. 
57 — 58  pts.  of  powdered  potassium  hydroxide  is 
gradually  added  to  a  mixture  of  136  pts.  of  chloro- 
ethyldiethylamine  and  130  pts.  of  ethyl  acetoacetate. 
After  cooling  the  product  is  stirred  with  benzene, 
the  benzene  solution  shaken  with  ammonia,  dried, 
and  fractionallv  distilled.  The  ethyl  diethylamino- 
ethyl  acetoacetate  thus  obtained  boils  at  130° — 132° 
C.  at  10  mm.— G.  F.  M. 

Colloidally    soluble    substances   and   suspensions   or 

emulsions ;  Manufacture  of .      L.  Lilienfeld. 

E.P.  173,230,  20.12.21.  Conv.,  21.12.20.  Addn. 
to  156,725  (J.,  1922,  686  a). 
By  heating  a  solution  of  a  water-soluble  alkyl  or 
aralkyl  derivative  of  a  carbohydrate  of  the  form, 
n(C,H10Os),  containing  another  colloidal  substance 
in  solution,  suspension,  or  emulsion,  a  precipitate  is 
formed,  which,  after  removing  the  impurities  or  by- 
products by  washing  with  hot  water,  can  be  either 
re-dissolved  in  cold  water  or  dried.  This  method 
gives  a  simple  and  effective  means  of  preparing 
colloidal  solutions,  suspensions  or  emulsions  of 
certain  metals  and  non-metals,  either  through  their 
salts  or  by  reducing  their  oxides,  or  of  metal  com- 
pounds by  the  interaction  of  the  respective  com- 
ponents in  on  aqueous  solution  of  a  water-soluble 
alkyl  derivative  of  a  carbohydrate. — S.  G.  U. 

Alcohols;  Manufacture  of .    Badische  Aiiilin-  u. 

Soda-Fabrik.       E.P.     175,238,     15.8.21.       Conv., 

10.2.21.  Addn.  to  158,906. 

See  U.S. P.  1,410,223  of  1922;  J.,  1922,  347  a. 
Copper  catalysts  are  used  which  are  prepared,  at 
low  reduction  temperatures,  from  copper  salts  or 
compounds  which  have  been  formed  at  temperatures 
below  that  of  red  heat  by  methods  other  than  pre- 
cipitation. 

Thymol;     Manufacture     of    synthetic     .       M. 

Phillips;  dedicated  to  the  people  of  the  United 

States.   U.S.P.  1,432,298,  17.10.22.  Appl.,  25.2.22. 

CrMiDrNEsuLPHONic    acid   is  diazotised,   the  diazo- 

compound  being  then  reduced  with  sodium  bisulph- 


ite to  cymylhydrazine-3-  or  5-sulphonic  acid;  by 
oxidation  with  copper  sulphate  or  ferric  chloride 
cymeue-3-sulphonic  acid  is  obtained,  the  sodium  salt 
of  which  on  fusion  with  sodium  hydroxide  or  potas- 
sium hydroxide  yields  thymol. — D.  F.  T. 

Chlorinated  derivatives  of  hydrocarbons;  Manufac- 
ture  of  .     G.   T.   Koch,   Assr.   to  Ohio  Fuel 

Supply  Co.  U.S.P.  1,432,761,  24.10.22.  Appl., 
4.5.20. 

Liquid    paraffin    hydrocarbons    are    treated    with 

chlorine    gas    in    the    presence    of    finely-divided, 

activated  carbon. — D.  F.  T. 

Esters  and  materials  containing  esters;  Process  for 

the  production  of from  olefines.    S.  B.  Hunt. 

E.P.  173,786,  30.6.20. 

See  U.S.P.  1,365,052  of  1921;  J.,  1921,  162  a. 

p-Cymol;    Manufacture    of    .       G.    Stalmann. 

U.S.P.  1,433,666,  31.10.22.    Appl.,  4.9.19. 
See  E.P.  142,738  of  1919;  J.,  1920,  501  a. 

Aromatic    derivatives     [alkylamides     of    sulphonic 

acids];   Manufacture    of   .      W.    Bader    and 

D.  A.  Nightingale.  U.S.P.  1,433,925,  31.10.22. 
Appl.,  18.6.21. 

See  E.P.  167,941  of  1920;  J.,  1921,  749  a. 

Alcohol-ether  mixtures.    E.P.  187,051-2.    See  IIa. 


XXL- PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 

Cyanine  Dyes.  VI.  Dyes  containing  a  quinoline 
and  a  benzothiazole  nucleus.  Thioisocyanines. 
W.  T.  K.  Braunholtz  and  W.  H.  Mills.  Chem. 
Soc.  Trans.,  1922,  121,  2004—2008. 

A  series  of  photosensitising  dyestuffs  is  described 
intermediate  between  the  thiocyanines  (J.,  1922, 
365  a)  and  the  isocyanines  in  that  they  contain  one 
quinoline  and  one  benzothiazole  nucleus.  They  are 
obtained  by  the  action  of  alcoholic  sodium  hydroxide 
on  a  mixture  of  a  quinoline  alkyliodide  and  a  1- 
methylbenzothiazole  alkyliodide.  This  method  of 
preparation  corresponds  exactly  with  that  of  the 
isocyanines,  with  which  substances  they  show  a  close 
relationship  in  properties,  and  their  constitution  is 
therefore  considered  to  be  represented  by  the 
formula 


Xr-CH  :C_S 


v1 


XRX 


NR \ 


These  compounds,  to  which  the  name  thioisocyanines 
is  given,  form  bright  red  iodides  and  their  alcoholic 
solutions  show  a  pair  of  overlapping  absorption 
bands  in  the  green  and  bluish-green  at  A  5000—5100 
and  about  a  120 — 150  shorter.  They  are  powerful 
photosensitisers  for  the  green,  giving  an  extra 
sensitisation  to  the  gelatinobromide  plate  extending 
to  about  A  5800.  The  detailed  preparation  of 
2.1'-diethylthioisocyanine  iodide  from  quinoline 
ethiodide  and  1-methylbenzothiazole  ethiodide,  of  5- 
methyl-2.1'-diethylthioisocyanine  iodide,  of  5.6'.l'- 
trimethyl  -  2  -  ethylthioisosyanine  iodide,  and  of 
several  other  derivatives  is  described. — G.  F.  M. 

Patents. 

Photographic  film;  Antistatic  .     A.  F.  Sulzer, 

Assr.  to  Eastman  Kodak  Co.  U.S.P.  1,432,366-7, 
17.10.22.  Appl.,  21.2.21. 
A  film  support  carries  on  one  side  a  photographic- 
ally sensitive  layer  and  on  the  other  a  layer 
comprising  (a)  an  ether  of  cellulose  or  (b)  a  cellulose 
ether  and  cellulose  acetate. — W.  C. 


998  a 


Cl.  XXII.— EXPLOSIVES  ;    MATCHES.     Cl.  XXIII.— ANALYSIS. 


[Dec.  30,  1922 


Photographic  film.  A.  F.  Sulzer,  Assr.  to  Eastman 
Kodak  Go.     U.S.P.   1,432,368,   17.10.22.     Appl., 

21.2.21. 
The  film  consists  of  a  sensitive  coating  on  an  anti- 
static    hygroscopic     nitrocellulose     support     which 
carries,  on  the  opposite  side  to  the  sensitive  layer, 
a  non-sweating  insoluble  antistatic  coating. — W.  C. 

Photographic    developer.      W.    Dieterle.      U.S.P. 

1,432,512,  17.10.22.     Appl.,  25.3.21. 
A  photographic  developer  consists  of  a  sulpho-acid 
of  a  derivative  of  aminophenol  dissolved  in  a  solu- 
tion of  caustic  alkali. — A.  R.  P. 

[Photographic]  transparencies  on  glass,  transfer 
imm/es  etc.  Farbenfabr.  vorm.  F.  Bayer  und  Co., 
Assees.  of  A.  von  Biehler.  G.P.  357,720,  8.2.21. 
Sensitive  transferable  material  prepared  as  des- 
cribed in  G.P.  357,011  (J.,  1922,  917  a),  is  rolled  in 
the  wet  state  with  gelatin  on  to  a  plate  of  glass  or 
other  suitable  material  coated  with  hardened  gelatin 
in  the  usual  way,  and  after  drying  has  commenced  is 
separated  from  the  support.  The  product  possesses 
a  protective  film  which  renders  it  proof  against 
damp  and  mechanical  action. — W.  C. 

[Photographic]  transfer  films.  Farbenfabr  vorm. 
F.  Bayer  und  Co.,  Assees.  of  A.  von  Biehler. 
G.P.  358,2S5,  16.12.20.  Addu.  to  357,011  (J., 
1922,  917  a). 

Softening  materials,  e.g.,  triphenyl  phosphate, 
triacetin,  etc.,  are  added  to  the  substratum  or  to 
the  film  of  cellulose  compounds  carried  by  it,  and 
as  an  intermediate  support  is  used  a  material  having 
a  definite  structure,  e.g.,  stamped  paper. — W.  C. 

XXII.-EXPLOSIVES ;  MATCHES. 

Sporting  cartridges;  Use.  of  petards  of  black  powder 

in    charged    with    smokeless    poivder.      N. 

Bagajoli    and    G.    De    Florentiy.      Giorn.    Chim. 

Ind.  Appl.,  1922,  4,  457—458. 
With  the  object  of  diminishing  the  pressures 
developed  in  sporting  guns  by  cartridges  of  smoke- 
less powder  without  lowering  appreciably  the 
velocity  generated,  it  is  suggested  that  very  small 
petards,  containing  a  few  centigrams  of  fine  grained 
black  powder,  be  introduced  into  the  cartridge  case 
in  immediate  contact  with  the  cap.  The  results  of 
experiments  made  with  various  commercial  powders 
6how  that,  in  some  cases,  the  pressure  may  be 
reduced  in  this  way  by  more  than  220  kg.  per  sq. 
cm.— T.  H.  P. 

Patents. 
Explosive.  T.  L.  Davies.  U.S.P.  1,432,321,  17.10.22. 

Appl.,  25.4.22. 
An  explosive  composition  including  the  tetranitrate, 
tetrabenzoate,  and  cinnamate  of  pentaerythritol  as 
ingredients. — H.  C.  R. 

Nitrocellulose    powder    grains;    Coating   for  . 

T.  L.  Davis.     U.S.P.  1,432,322,  17.10.22.    Appl., 

25.4.22. 
The  grains  are  coated  with  a  heterocyclic  nitrogen 
compound. — H.  C.  R. 

Propellants ;  Process  for  making  from  ammon- 
ium nitrate  and  carbonaceous  matter.  Ver.  Chem. 
Fabr.  Mannheim.     G.P.  334,546,  8.12.16. 

Carbonaceous  matter  is  used  which  forms  homogen- 
eous melts  with  ammonium  nitrate.  The  melts  are 
allowed  to  cool  in  thin  sheets  so  as  to  obtain  the 
propeMant  in  a  foliated  form  or  as  powder.  The 
grinding  of  the  charcoal  and  incorporation  with 
ammonium  nitrate  under  edge-runners  are  thus 
avoided  and  the  manufacture  of  the  propellant 
simplified.— H.  C  R. 


Propellants;  Process  for  making  from  ammon- 
ium nitrate  and  carbonaceous  matter.  Rhenania, 
Ver.  Chem.  Fabr.  A.-G.  Zweigniederlassung 
Mannheim.  G.P.  351,206,  13.6.17.  Addn.  to 
334,546  (cf.  supra). 

The  mixture  of  ammonium  nitrate  and  carbonaceous 
matter  is  melted  continuously  in  a  vertical  or 
inclined,  steam-heated,  jacketed  vessel  of  small 
capacity,  and  is  then  cooled  by  means  of  a  revolving 
chilled  drum  which  dips  into  the  homogeneous 
molten  mass  and  from  which  the  cooled  propellant  is 
removed  in  the  form  of  thin  leaves  by  means  of  a 
scraper.  The  decomposition  of  the  mixture  is  thus 
avoided.— H.  C.  R. 


XXIII.— ANALYSIS. 

Platinum,  thermometers  and  resistance  coils;  Con- 
struction of .    J.  R.  Roebuck.    J.  Opt.  Soc. 

Amer.,  1922,  6,  865—874. 

In  order  to  eliminate  as  completely  as  possible  the 
zero  shift  in  platinum  thermometers,  more  especially 
such  as  are  used  at  temperatures  not  exceeding  300° 
C,  the  platinum  resistance  wire  is  wound  non- 
inductively  in  a  helical  groove  cut  in  a  cylinder  of 
beeswax  and  resin,  in  which  four  radial  arms  of 
mica  carried  on  a  metal  spool  are  embedded.  Before 
winding,  the  wire  is  annealed  at  a  dull  red  heat. 
After  winding  is  completed  the  ends  of  the  wire  are 
joined  to  their  respective  leads  by  silver  solder,  and 
the  cylinder  of  wax  and  resin  removed  by  means  of 
hot  turpentine,  which  is  then  removed  by  a  volatile 
solvent  such  as  carbon  tetrachloride.  The 
cylindrical  helix  of  wire  is  heated  gradually  within 
a  hard  glass  tube  and  the  annealing  completed  by 
passing  a  small  current  through  the  wire.  Conduc- 
tion along  the  leads  is  reduced  by  threading  the 
wire  through  holes  in  short  metal  cylinders  separ- 
ated from  each  other  by  non-conductors.  The  leads 
are  insulated  from  the  cylinders  by  thin  glass  tubes. 
In  the  construction  of  resistance  coils  for  use  with 
the  thermometer,  manganin  wire  is  wound  non- 
inductively  on  a  cylinder  of  paraffin  wax,  in  which 
is  embedded  a  brass  cross,  extending  the  length  of 
the  cylinder  and  each  arm  of  which  carries  a  strip 
of  mica  bent  so  as  to  form  part  of  the  cylindrical 
surface.  The  edges  of  the  strips  do  not  meet,  so  that 
the  wire  may  spring  in  and  out  as  required  by 
temperature  conditions.  The  coil  is  annealed  by 
heating  at  135°  C.  and  is  then  mounted  in  a  con- 
tainer with  acid-free  dry  kerosene. — J.  S.  G.  T. 

Colorimeter.      E.    Moreau    and    A.    Bonis.      Ann. 

Falsif.,  1922,  15,  357—360. 
The  apparatus  consists  of  two  similar  graduated 
cylinders  mounted  side  by  side  on  a  suitable  stand ; 
one  of  these  contains  the  coloured  solution  under 
examination  and  the  other  the  standard  or  com- 
parison solution,  which  is  admitted  from  a  tapped 
funnel  attached  to  a  side  tube  at  the  bottom  of  the 
cylinder.— W.  P.  S. 

Gases;    New    apparatus    for    trashing    .       A. 

Ernesta.    Chem.  Listy,  1922,  16,  274—276. 

The  tube  leading  the  gas  to  be  purified  into  the 
washing  vessel  is  surrounded  by  a  long  spiral ;  this 
increases  the  contact  of  the  gas  with  the  liquid  and 
ensures  efficient  washing.  The  tube  leading  in  the 
gas  and  the  spiral  are  easily  removed  from  the 
vessel.— W.  T. 

Filtration;     Quantitative     determination     of     the 

velocity  of .  A.  Steiner.    Kolloid-Zeits.,  1922, 

31,  204—209. 

The  velocity  of  filtration  of  suspensions  and  colloid 
solutions  may  be  measured  as  follows :  The  top  of 
a  burette  is  widened  so  that  it  will  take  a  cork 
through  which  the  stem  of  a  filter  funnel  passes,  and 


VoL   XLI.,  Xo.  24.] 


Cl.  xxiii.— analysis. 


999  a 


a  side  tube  is  attached  near  to  the  top  but  just 
above  the  graduations.  The  side  tube  is  connected 
through  a  manometer  and  a  safety  flask  with  a 
water  pump.  The  volume  of  liquid  collected  in  the 
burette  is  read  at  intervals  and  a  filtration  curve 
plotted.  For  comparative  measurements  the  pres- 
sure of  the  filtration  must  be  kept  constant.  The 
velocity  of  filtration  may  be  used  in  the  investigation 
of  changes  of  hydration  and  of  the  effect  of  the  addi- 
tion of  electrolytes. — J.  F.  S. 

Cobalt ;  Separation  of by  means  of  phenylthio- 
hydantoic acid.  H.  H.  Willard  and  D.  Hall.  J. 
Amer.  Chem.  Soc,  1922,  44,  2219—2226. 

Cobalt  may  be  quantitatively  separated  from 
arsenic,  uranium,  vanadium,  titanium,  tungsten, 
molybdenum,  zinc,  manganese,  chromium,  alumin- 
ium, magnesium,  and  calcium  by  precipitation  with 
phenylthiohydantoic  acid  in  sllightly  ammoniaeal 
solution.  In  the  presence  of  iron  the  precipitate  is 
rarely  free  from  this  impurity,  and  usually  contains 
1 — 5  nig.  regardless  of  the  amount  originally  pre- 
sent. This  does  not,  however,  interfere  with  the 
volumetric  estimation  of  cobalt.  Nickel  is  always 
partially  precipitated.  The  cobalt  precipitate  has 
not  a  definite  composition  and  is  probably  mixed 
with  some  cobalt  sulphide,  thus  making  it  necessary 
to  convert  the  cobalt  into  some  other  more  definite 
form.  To  separate  cobalt  from  iron  the  procedure 
is  as  follows:  a  solution  containing  1  g.  of  iron  and 
25  mg.  of  cobalt  in  300  c.c.  is  treated  with  8  g.  of 
citric  acid  in  a  500  c.c.  Erlenmeyer  flask,  neutralised 
with  ammonia  (sp.  gr.  0'90)  and  5  c.c.  excess  added. 
The  solution  is  heated  to  35°  C.  07— TO  g.  of 
phenylthiohydantoic  acid  dissolved  in  30  c.c.  of 
water  or  alcohol  added,  and  the  mixture  shaken 
vigorously  for  several  minutes.  The  cobalt  is  pre- 
cipitated and  after  boiling  for  several  minutes  the 
precipitate  may  be  filtered.  Manganese  may  be 
separated  in  the  same  way  as  iron.  The  other 
metals  including  zinc  are  separated  as  above  but  a 
10  c.c.  excess  of  ammonia  is  used,  and  the  solution 
boiled  and  stirred  for  some  time  to  complete  the  pre- 
cipitation. For  the  preparation  of  phenylthiohyd- 
antoic acid,  C0HS.N:C(NH2).S.CH,.COOH,  a  mix- 
ture of  189  g.  of  monochloroacetic  acid  and  152  g. 
of  ammonium  thiocyanate  is  treated  with  186  g.  of 
aniline  and  930  c.c.  of  methyl  or  ethyl  alcohol, 
and  the  mixture  is  boiled  for  several  hours  under 
a  reflux  condenser.  After  allowing  to  settle,  the 
clear  liquid  is  separated  and  allowed  to  crystallise. 
The  crystals  are  washed  with  water,  dried,  and 
recrystallised  from  alcohol  and  from  water.  The 
yield,  including  a  second  crop  of  crystals  obtained 
after  heating  the  mother  liquor  and  insoluble  matter 
for  a  further  period  under  a  reflux  condenser,  is 
60— 70%.— J.  F.  S. 

Cobalt ;  Gravimetric  determination  of .     H.  H. 

Willard  and  D.  Hall.    J.  Amer.  Chem.  Soc,  1922, 

44,  2226—2231. 
Although  pure  cobalt  nitrate  may  be  accurately 
ignited  to  the  oxide,  Co,Od,  and  the  latter  reduced 
by  hydrogen  to  the  metal,  the  oxide  obtained  by  the 
ignition  of  the  phenylthiohydantoic  acid  precipitate 
(cf.  supra)  contains  a  little  sulphate.  If  the  oxide 
obtained  in  this  ignition  is  empirically  assumed  to  be 
Co20,  the  results  for  cobalt  are  fairly  good.  The 
ignition  of  cobalt  sulphate  at  550°  C.  is  the  most 
accurate  method  for  the  determination  of  cobalt, 
but  when  this  method  is  applied  to  the  phenylthio- 
hydantoic acid  precipitate  the  results  are  usually 
slightly  high  and  the  sulphate  is  not  completely 
soluble  in  water.  The  electrolytic  estimation  of 
cobalt  is  very  satisfactory  when  the  proper  condi- 
tions and  precautions  are  observed.  Precipitation 
as  cobalt  ammonium  phosphate  followed  by  ignition 
to  cobalt  pyrophosphate  is  less  accurate  than  the 
preceding  methods. — J.  F.  S. 


Cobalt;  Volumetric  determination  of .  [Deter- 
mination of  cobalt  in  alloy  steels.]  H.  H.  Willard 
and  D.  Hall.  J.  Amer.  Chem.  Soc,  1922,  44, 
2237—2253. 

Volumetric  methods  are  the  most  reliable  for  the 
determination  of  cobalt.  The  most  accurate  method 
involves  the  oxidation  of  cobalt  to  cobaltic  hydroxide 
in  strongly  alkaline  solution  by  means  of  a  perborate 
or  hydrogen  peroxide,  followed  by  its  reduction  to 
a  cobaltous  salt.  The  reduction  may  be  accom- 
plished by  the  following  methods :  (1)  addition  of 
potassium  iodide  in  acid  solution,  the  iodine 
liberated  being  titrated  with  sodium  thiosulphate ; 
in  this  method  iron  must  be  absent ;  (2)  adding  the 
cobaltic  hydroxide  to  an  acid  solution  of  ferrous 
sulphate,  the  excess  of  which  is  titrated  with 
potassium  permanganate;  an  empirical  factor  must 
be  used  in  the  calculation  here;  (3)  addition  of  a 
strongly  acid  solution  of  stannous  chloride,  the 
excess  of  which  is  titrated  with  iodine,  iodate, 
bromate,  or  bichromate  solution;  the  last  solution, 
titrated  electrometrically,  is  especially  recom- 
mended; if  iron  is  present  iodine  will  oxidise  it 
quantitatively  only  in  neutral  solution ;  (4)  addition 
of  titanous  sulphate,  the  excess  of  which  is  titrated 
with  permanganate;  since  titanium  hydroxide  de- 
composes water  with  the  liberation  of  hydrogen,  the 
alkaline  solution  must  be  first  almost  completely 
neutralised.  The  presence  of  nickel  does  not 
interfere  with  these  titrations,  but  the  oxidation  is 
incomplete  if  more  than  7  mg.  of  iron  is  present. 
In  the  presence  of  a  large  excess  of  potassium  bi- 
carbonate, cobalt  is  oxidised  by  hydrogen  peroxide 
to  a  green  trivalent  compound,  which  is  reduced  in 
the  presence  of  pyrophosphate  by  ferrous  sulphate, 
the  excess  of  which  is  titrated  with  permanganate 
after  acidifying  with  sulphuric  acid.  Iron  and 
manganese  in  small  amounts  do  not  interfere  with 
this  method,  but  the  principal  source  of  error  is  in 
the  removal  of  excess  peroxide,  without  decomposing 
the  cobalt  compound.  The  methods  described  in 
this  and  preceding  papers  (cf.  supra)  were  applied 
to  the  analysis  of  steels  containing  chromium,  tung- 
sten, vanadium,  and  cobalt.  The  procedure  was  as 
follows:  A  sample  (0-7  g.)  was  treated  with  40  c.c. 
of  hydrochloric  acid  (sp.  gr.  l'l)  and  the  tungsten 
separated  as  a  black  powder,  1 — 2  c.c.  of  85% 
phosphoric  acid  and  3  c.c.  of  nitric  acid  were  added 
cautiously,  and  the  solution  kept  hot  until  every- 
thing had  dissolved.  Seven  grams  of  citric  acid  was 
added,  and  the.  solution  neutralised  with  ammonia 
(sp.  gr.  0'91)  and  an  excess  of  6  c.c.  added.  To  the 
hot  alkaline  solution  1  g.  of  phenylthiohydantoic 
acid  in  30  c.c.  of  hot  water  was  added  with  constant 
stirring.  The  cobalt  precipitated  at  once  and  the 
solution  was  boiled  for  a  few  minutes  with  vigorous 
stirring.  The  precipitate  was  filtered,  washed, 
dried,  ignited  with  potassium  pyrosulphate,  and 
dissolved  in  water.  The  cobalt  was  oxidised  with 
perborate  and  reduced  with  standard  stannous 
chloride,  the  excess  of  which  was  titrated  with 
bichromate.  Four  independent  determinations  gave 
377,  375,  3-74,  and  3'75%,  whilst  the  cobalt  content 
found  by  the  nitroso-/J-naphthol  method,  after  the 
removal  of  tungsten  and  iron,  was  3"84%. — J.  F.  S. 

Copper;  Separation  of ■  by  means  of  phenylthio- 
hydantoic acid.  H.  H.  Willard  and  D.  Hall. 
J.  Amer.  Chem.  Soc,  1922,  44,  2253—2254. 

In  solutions  sllightly  acidified  with  acetic  acid, 
phenylthiohydantoic  acid  precipitates  quantitatively 
copper,  lead,  rnerrary,  cadmium,  bismuth,  and 
antimony,  whikt  arsenic,  tin,  and  metals  not  pre- 
cipitated by  hydrogen  sulphide  are  not  precipitated. 
The  copper  precipitate  when  ignited  to  oxide  con- 
tains sulphate,  and  ordinarily  is  too  unstable  to  be 
weighed  directly.  The  estimation  of  the  copper  in 
the  precipitate  is  best  carried  out  by  fusing  with 
potassium   pyrosulphate,   dissolving  in   water,   and 


1000  a 


Cl.  xxiii.— analysis. 


[Dec.  30,  1922. 


electrolysing  the  solution.  The  bismuth  and 
antimony  compounds  are  soluble  in  alcohol.  Copper 
is  separated  from  the  metals  of  the  iron  and  zinc 
groups  by  adding  7  g.  of  citric  acid  for  each  gram 
of  metal  precipitable  by  ammonia  present,  neutral- 
ising with  ammonia  and  adding  5  g.  of  glacial  acetic 
acid.  The  solution  is  made  up  to  300 — 400  c.c, 
heated  to  the  boiling  point,  and  treated  with  0'5  g. 
of  phenylthiohydantoic  acid  dissolved  in  a  little  hot 
water,  then  dilute  ammonia  is  added  until  a  yellow 
precipitate  commences  to  form.  The  solution  is 
boiled,  and  if  the  copper  is  entirely  precipitated  the 
precipitate  rises  to  the  top  and  leaves  a  clear  solu- 
tion below.  If  this  does  not  happen,  a  little  more 
ammonia  is  added,  but  the  precipitate  may  then 
turn  brown  due  to  the  formation  of  sulphide.  The 
precipitate  is  filtered  hot,  washed  with  hot  water, 
and  treated  as  above.  The  method  is  excellent  for 
small  quantities  of  copper. — J.  F.  S. 

Copper;  Volumetric  determination  of by  means 

of  sodium  nitroprusside.     G.  Joret.     Ann.  Falsif., 
1922,  15,  354—356. 

The  dilute  nitric  acid  solution  of  the  copper  salt 
(containing  not  more  than  0T  g.  of  copper)  is  diluted 
to  100  c.c,  neutralised  with  ammonia,  then  acidified 
slightly  with  nitric  acid,  treated  with  10  c.c.  of  2V/10 
sodium  nitroprusside  solution  (14"895  g.  per  1.), 
diluted  to  200  c.c,  and  filtered-  100  c.c  of  the 
filtrate  is  treated  with  20  c.c.  of  N /10  silver  nitrate 
solution,  the  mixture  is  filtered  after  a  few  mins., 
and  100  c.c.  of  this  filtrate  is  titrated  with  JV/ 10 
thiocyanate  solution,  using  iron  alum  as  indicator. 
The  number  of  c.c.  of  the  thiocyanate  solution  used 
is  multiplied  by  126  to  obtain  the  percentage  of 
copper  present.  Silver,  nickel,  cobalt,  and  halogens 
must  not  be  present  in  the  copper  solution. 

— W.  P.  S. 

Selenium;    Determination    of    .      L.    Losana. 

Giorn.  Ind.  Appl.,  1922,  4,  464—466. 

Selenium  may  be  determined  by  the  method  given 
for  estimating  sulphur  (J.,  1922,  614  A,  691  a)  if  a 
somewhat  larger  excess  of  iron  is  used  and  air  is 
excluded  as  completely  as  possible  during  the  reduc- 
tion. The  decomposition  of  the  selenide  is  effected 
with  hydrochloric  acid  of  at  least  40 — 50%  strength 
and  best  in  a  stream  of  hydrogen  purified  by  per- 
manganate, although  carbon  dioxide  may  be  used. 
The  substance  taken  should  contain  not  more  than 
005  g.  of  selenium.  Should  both  sulphur  and 
selenium  be  present,  the  gases  obtained  on  decom- 
posing the  mixed  sulphide  and  selenide  are  passed 
in  a  slow  current  of  hydrogen  through  the  absorption 
tubes,  the  first  containing  zinc  chloride  solution 
acidified  with  just  enough  hydrochloric  acid  to 
prevent  precipitation  of  zinc  sulphide,  and  the 
second  zinc  acetate  solution.  Any  hydrogen  sulphide 
fixed  by  the  first  tube  may  be  expelled  by  immersing 
this  tube  in  a  bath  at  40°— 50°  C.  and  passing  a 
rapid  stream  of  gas  through  the  apparatus.  When 
the  proportion  of  sulphur  is  small  compared  with 
that  of  selenium,  a  second  small  tube  filled  with 
zinc  chloride  should  be  placed  between  the  other 
two  tubes.  The  chloride  and  acetate  solutions  are 
treated  separately  with  excess  of  iodine  solution  and 
titrated  with  thiosulphate.  Penetration  of  selenium 
to  the  zinc  acetate  solution  will  be  rendered  evident 
by  the  precipitation  of  red  selenium  by  the  iodine 
solution.— T.  H.  P. 

Volumetric  methods;  New  .       [Determination 

of  sulphate,  lead,  acids,  and  ammonia,'}  K. 
Jellinek  and  H.  Ens.  Z.  anorg.  Chem.,  1922, 
124,  185—202. 
The  known  volumetric  methods  of  determining 
sulphate  are  unsuitable  on  account  of  the  nitrations 
involved.  The  authors  have  worked  out  the  follow- 
ing method.     Excess  of  barium  nitrate  is  added  to 


I 


a  sulphate  solution,  then  excess  of  potassium 
chromate  is  added,  and  this  excess  determined  by 
running  in  a  barium  solution  until  the  disappear- 
ance of  the  yellow  colour.  The  error  by  this  method 
is  0'3%.  The  use  of  silver  salt  as  an  indicator  is 
not  possible  because  the  solubilities  of  silver  and 
barium  chromates  are  very  near.  The  following 
is  given  as  a  volumetric  method  of  estimating  lead; 
excess  of  chromate  is  added  to  a  lead  salt,  a  little 
silver  nitrate  is  then  added,  and  the  excess  of 
chromate  is  determined  by  titrating  against  a  lead 
salt  until  the  disappearance  of  the  reddish-brown 
silver  chromate.  This  latter  method  can  also  be 
employed  for  the  indirect  estimation  of  sulphate. 
Titration  of  metals  against  arsenates  and  arsenites 
gave  no  positive  results.  The  authors  suggest  the 
use  of  a  copper  solution  as  an  indicator  in  acidi- 
metry,  the  alkali  being  added  until  the  precipi- 
tated  hydroxide   makes   its   appearance. — W.    T. 

Alkali  carbonates  [and  hydroxide'];  Estimation  of 
— —  in  presence  of  phenolphthalein.  [Deter- 
mination of  carbon  in  steel.]  M.  Bonnier. 
Coniptes  rend.,  1922,  175,  765—767. 

Errors  in  titrating  alkali  hydroxide  in  presence  of 
alkali  carbonates  due  to  the  instability  of  the 
bicarbonate,  on  the  formation  of  which  the  end- 
point  depends,  may  be  eliminated  by  dilution  of  the 
hydroxide  solution  to  2V/100.  Six  drop6  of  phenol- 
phtlialein indicator  should  be  used  and  the  acid 
added  1  c.c.  at  a  time,  the  solution  being  stirred 
after  each  addition.  When  the  colour  begins  to 
disappear,  the  acid  should  be  added  drop  by  drop. 
In  estimations  of  carbon  in  steel  by  conversion  into 
carbon  dioxide  which  is  absorbed  by  standard 
sodium  hydroxide,  this  method  is  stated  to  give 
results  which  are  accurate  to  0'1  mg.  In  a  steel 
containing  01%  of  carbon,  for  the  analysis  of 
which  a  sample  of  1  g.  of  the  metal  is  taken,  this 
corresponds  to  an  error  of  +1  in  the  second  decimal 
place.— H.  J.  E. 

Magnesium;     Volumetric    estimation    of    in 

presence     of     potassium    salts.       A.     Viirtheim. 
Chem.  Weekblad,  1922,  19,  461—462. 

Precht's  method  (Z.  anal.  Chem.,  1879,  18,  438)  of 
addition  of  excess  of  alkali  free  from  carbonate, 
filtration,  and  titration  of  the  excess  of  alkali,  gives 
satisfactory  results.     (Cf.  J.C.S.,  Dec.)— S.  I.  L. 

lodimetry ;  Potassium  bichromate  as  a  standard  in 

and  the  determination  of  chromates  by  the 

iodide    method.      W.    C.    Vosburgh.      J.    Amer. 
Chem.  Soc,  1922,  44,  2120—2130. 

Titration  of  iodine  with  thiosulphate  in  dilute 
acid  solutions  gives  results  which  are  01 — 0'3% 
higher  and  more  concordant  than  the  results  of 
titration  in  a  neutral  solution.  The  presence  of  air 
affects  the  titration  of  iodine  with  thiosulphate 
when  the  acidity  of  the  solution  is  equivalent  to 
0'3iV  hydrochloric  acid  or  greater,  causing  too  much 
thiosulphate  to  be  required.  An  apparent  excess  of 
oxidising  action  of  bichromate  is  caused  by  the 
titration  of  the  iodine  in  a  solution  of  too  high  an 
acid  concentration.  This  can  be  corrected  by  the 
exclusion  of  air,  but  more  easily  by  dilution  to  such 
a  hydrogen  ion  concentration  that  the  presence  of 
air  will  not  interfere.  Chromates  may  be  determined 
to  within  0"1%  by  the  iodide  method  under  the 
proper  conditions.  Potassium  bichromate  as  a 
standard  for  thiosulphate  solutions  agrees  with  pure 
iodine  to  within  0'1%,  but  gives  a  Slightly  lower 
value.  Errors  in  the  iodine  standardisation  leading 
to  such  a  difference  appear  to  be  about  as  probable 
as  errors  in  the  bichromate  standardisation.  A 
standard  solution  of  permanganate  is  not  trust- 
worthy as  a  standard  for  thiosulphate  solutions. 

—J.  F.  S. 


Vol.  XLI.,  No.  24.] 


Ci~  xxiii.— analysis. 


1001  A 


Bichromate ;   Electrometric   titration   of  with 

ferrous  sulphate.  M.  Epplev  and  W.  C.  Vos- 
burgh.  J.  Amer.  Chem.  Soc,  1922,  44,  2148—2156. 

The  amount  of  ferrous  sulphate  required  to  titrate 
a  given  amount  of  bichromate  varies  with  the  con- 
centration of  the  latter.  Dissolved  air  has  a  negligi- 
ble effect  on  the  titration.  Hydrofluoric  acid  in 
sufficient  concentration  reduces  the  amount  of 
ferrous  sulphate  required  by  about  0'1%.  When 
ferrous  sulphate,  standardised  by  means  of  a 
standard  solution  of  permanganate,  is  used  to 
standardise  a  known  amount  of  bichromate  in 
JV/100  solution,  the  value  found  for  the  latter  is 
about  4  pts.  per  1000  higher  than  the  calculated 
value;  when  the  bichromate  was  0'003iV  the  amount 
of  ferrous  sulphate  required  was  about  1%  higher 
than  the  calculated  quantity.  The  titration  of  the 
ferrous  ion  with  a  potassium  bichromate  solution 
gives  results  which  agree  with  those  obtained  by  the 
reverse  titration. — J.  F.  S. 

Boric  acid;  Estimation  of  .     W.  W.  Deems. 

Chem.  Weekblad,  1922,  19,  480—181. 

The  citrate  method  proposed  by  Kolthoff  (J.,  1922, 
963  a)  for  the  estimation  of  boric  acid  in  presence  of 
phosphoric  acid  is  criticised.     (CI.  J.C.S.,  Dec.) 

— S.  I.  L. 

Chlorine;  Rapid  estimation  of in  organic  com- 
pounds. E.  Votocek.  Chem.  Listv,  1922,  16, 
248— 249. 

The  author  combines  the  method  of  Marcusson  and 
Droscher  (J.,  1911,  510)  with  his  own  method  of 
titrating  chlorides  with  a  mercuric  salt,  using 
sodium  nitroprusside  as  indicated  (cf.  J.,  1918, 
444  a).  Combustion  of  the  substance  in  an  atmo- 
sphere of  oxygen  in  the  presence  of  sodium 
hydroxide  solution  is  effected  in  a  funnel-shaped 
vessel  of  several  litres  capacity  fitted  with  a  stop- 
cock. Since  sufficient  hydrogen  is  present  in  the 
molecule  to  convert  all  the  chlorine  into  hydrogen 
chloride,  the  products  of  combustion  are  absorbed 
by  water  and  titrated  directly  with  mercuric 
nitrate.     The  estimation  takes  about  1J  hrs. 

— W.   T. 

Chromic  oxide;  Function  of  in  oxidation  by 

means  of  mixtures  of  sulphuric  and  chromic 
acids.  L.  J.  Simon.  Comptes  rend.,  1922,  175, 
768—770.     (67-  J-,  1922,  614  a,  646  a.) 

In  oxidations  by  this  method  it  is  important  that 
the  details  as  to  amounts  of  reagents  to  be  used 
should  be  noted.  The  organic  substance  is  heated 
to  100°  C.  for  4  min.  with  a  mixture  of  12 — 15  c.c. 
of  concentrated  sulphuric  acid  and  4  g.  of  chromic 
anhydride ;  the  latter  may  be  replaced  by  12  g.  of 
silver  chromate.  The  reagent  itself  may  be  simi- 
larly heated  without  loss  of  oxygen,  but,  on  adding 
chromium  alum,  oxygen  is  evolved,  the  quantity 
depending  on  the  amount  of  alum  added.  The 
latter  may  be  replaced  by  the  equivalent  quantity 
of  chromic  oxide  with  similar  results.  In  the 
presence  of  a  sufficient  quantity  of  chromic  oxide, 
chromic  anhydride  is  completely  decomposed  by 
sulphuric  acid  at  100°  C. ;  the  quantity  added  is 
limited  in  practice  by  the  fact  that  the  material 
becomes  pasty.  The  increase  in  oxidising  activity 
shown  in  presence  of  chromic  salts  may  be  utilised 
in  oxidising  substances  such  as  homologues  of  acetic 
acid  which  are  otherwise  only  partlv  decomposed. 

— H.  J.  E. 

Molecular  weight  of  substances  in  alcoholic  solu- 
tion: Determination  of from  the  elevation  of 

the  flash-point.  It.  Wright.  Trans.  Chem.  Soc, 
1922,  121,  2247—2250. 

An  apparatus  for  the  determination  of  the  mole- 
cular weight  of  substances  in  alcoholic  solution  by 
elevation  of  the   flash-point   consists   of   a  tinned 


copper  cylinder,  55  mm.  diam.,  75  mm.  high,  fitted 
with  a  tube  carrying  a  thermometer  graduated  in 
0'1°  C,  and  a  second  tube,  22  mm.  long  and  4  mm. 
bore,  connected  by  rubber  to  a  short  silica  jet.  A 
second  copper  tube,  serving  as  an  air  heater,  con- 
nected through  a  calcium  chloride  tube  to  a  gas 
holder  filled  with  air,  is  wound  spirally  round  the 
cylinder,  finally  entering  the  latter,  at  the  bottom 
of  which  it  forms  a  ring,  closed  at  one  end  and 
pierced  with  fine  holes,  these  serving  as  an  inlet 
for  the  air  which  thus  acts  as  a  stirrer.  The  whole 
is  immersed  in  a  2-litre  bath  up  to  the  rubber 
connexion  of  the  silica  jet,  the  rate  of  heating  of 
the  bath  being  about  1°  C.  in  15  mins.  For  each 
determination  a  fixed  constant  quantity  of  liquid 
is  placed  in  the  vessel,  which  is  heated  for  about 
2  mins.,  the  flame  removed,  and  a  series  of  short 
gusts  of  air  admitted  through  the  spiral  by  regula- 
tion of  a  clip  until  constant  temperature  is  reached. 
The  flame  is  held  close  to  the  silica  jet  while  air  is 
being  passed  through,  the  heating  and  aerating 
being  continued  alternately  until,  at  the  flash- 
point, the  flame  strikes  back  into  the  vessel  with  a 
slight  explosion.  The  products  of  combustion  are 
swept  out  by  air,  the  bath  cooled  1°  C,  and  the 
process  repeated  with  smaller  temperature  intervals 
between  the  tests.  Of  at  least  four  flash-points 
thus  obtained  the  lowest  is  taken  as  the  correct 
value,  an  accuracy  of  0'05°  C  being  reached.  Con- 
stancy of  temperature  before  the  application  of  the 
flash  test,  sufficient  aeration  at  each  application  of 
the  flame  to  the  jet,  immediate  removal  of  the  pro- 
ducts of  combustion,  and  dryness  of  the  jet  are 
essential.  The  flash-point  of  pure  alcohol  in  this 
apparatus  is  17'4°  C,  and  the  flash-point  constant 
7'7,  from  which  data  and  the  observed  flash-points 
of  solutions  of  known  composition  the  molecular 
weight  can  be  determined  as  in  the  boiling-point 
method,  the  results  for  the  substances  examined 
being  comparable  in  accuracy  with  those  obtained 
by  the  latter  process.  The  method  is,  however, 
tedious,  and  requires  high  concentrations  of  solute, 
viz.,  from  2  to  8%.— P.  V.  M. 

Bingham  viscosimeter ;  Drainage  error  in  the  . 

W.  H.   Herschel.     J.  Opt.  Sec.  Amer.,  1922,  6, 

873—898. 
Drainage  error  in  viscosimeters  arises  owing  to  the 
variation  with  viscosity  of  the  volume  of  liquid  dis- 
charged from  the  bulb  of  the  viscosimeter.  Indica- 
tions of  the  existence  of  drainage  error  in  the  case 
of  the  Bingham  viscosimeter  are  obtained  by  com- 
parison of  results  afforded  by  that  instrument  with 
those  given  by  viscosimeters  of  the  Saybolt  and 
Redwood  types.  Graphs  permitting  the  drainage 
error  in  any  test  may  be  determined,  or  indicating  a 
time  of  flow  such  that  the  drainage  error  is 
negligible,  are  given.  It  is  concluded  that  drain- 
age error  in  the  case  of  a  Bingham  viscosimeter 
having  a  bulb  of  volume  4  c.c.  is  negligible  for  com- 
paratively light  oils  only  when  a  sufficiently  long 
time  is  taken  for  the  discharge,  and  may  be  avoided 
by  having  the  trap  on  the  opposite  limb  from  the 
bulb  which  measures  the  volume  discharged.  An 
appendix  is  devoted  to  a  comparison  of  viscosities 
as  determined  by  the  Scott  viscosimeter  and  by 
Basseches's  plummet  method.  In  the  latter  method 
a  cylindrical  plummet  with  a  conical  base  is  sus- 
pended from  one  arm  of  the  beam  of  a  balance  and 
is  immersed  to  the  junction  of  the  cone  and  cylinder 
in  the  liquid  under  test.  The  times  taken  for  the 
pointer  of  the  balance  to  traverse  a  definite  number 
of  scale  divisions  when  one  or  other  of  two  definite 
weights  is  placed  in  turn  in  the  balance  pan  are 
determined.  The  instrument  is  calibrated  by  means 
of  a  liquid  of  known  viscosity.  Results  obtained 
are  in  fair  agreement  with  one  another,  but  differ 
considerablv  from  values  of  viscosity  determined  by 
the  falling'ball  method.     (Cf.  J.,  1922   964  a.) 

—J.  S.  G.  T. 


1002  a 


PATENT   LIST. 


[Dec.  30,  1922 


See  also  pages  (a)  972,  Oxidation  of  carbon 
(Florentin);  Moisture  content  of  producer  gas 
(Maase);  Benzol  in  gas  (Thau).  979,  Hypochlorite 
solutions  (Dienert  and  Wandenbulcke) ;  Magnesium 
perchlomte  as  drying  agent  (Willard  and  Smith). 
980,  Sdica  in  sea  water  (Wells).  981,  Potassium 
salts  (Cuisinier).  983,  Diffusion  of  hydrogen  and 
helium  through  glasses  (Williams  and  Ferguson). 
984,  Tungsten  alloys  (Seel);  Lead  in  lead  amalgam 
(Mellon).      988,    Boring   and   cooling    oils   (Braun). 

989,  Volatile  substances  in  air  (Fritzmann  and 
Macjulevitsch);        Tanning       materials       (Jamet). 

990,  Leather  analysis  (Chambard);  Humus  soils 
(Robinson);  Soils  (Robinson).  991,  Soil  moisture 
(Deighton) ;  Soil  acidity  (Van  der  Spek) ;  Iodometric 
determination  of  sugars  (Auerbach  and  Bodliinder). 
992,  Inuhn  (Castellani  and  Taylor) :  Volatile  acids 
m  wines  (Malvezin).  993,  Tryptophan  in  proteins 
(Liiseher).  995,  Alkalinity  of  water  and  culture 
media  (Noll);  Nicotine  in  tobacco  (Popp  and 
Contzen);  Alkaloids  (McGill):  Liquorice  extract 
(Giuffre).  996,  Alanine  (Jaitschnikov) ;  Urea 
(Werner). 


Patent    List. 

The  dates  given  in  this  list  are.  in  the  case  of  Applica- 
tions for  Patents,  those  of  application,  and  in  the  case  of 
Complete  Specifications  accepted,  those  of  the  Official 
Journals  in  which  the  acceptance  is  announced.  Complete 
Specifications  thus  advertised  as  accepted  are  open  to 
inspection  at  the  Patent  Office  immediately,  and  to  opposi- 
tion within  two  months  of  the  date  given:  they  are  on 
sale  at  Is.  eaoh  at  the  Patent  Office.  Sale  Branch,  Quality 
Court  Chancery  Lane.  London.  W.C.  2.  15  days  after  the 
date  given. 


I.— GENERAL;  PLANT;  MACHINERY. 

Applications. 

Caldwell.  Production  of  vapour  from  distillable 
liquids  or  solids.     32,428.     Nov.  27. 

Cashman.     Furnaces.     32,734.     Nov    30 

Gill.     33,341.     See  II. 

Goldschmidt  A.-G.,  Liity,  and  Schertel.  Produc- 
tion of  finely-divided  solid  substances.  33.365 
Dec.  6.     (Ger.,  8.12.21.) 

Heller.  Production  of  extracts  from  organic  raw 
substances.     33,198.     Dec.  5.     (Switz.,  5.12.21  ) 

Holmes.     Pulverising-machine.     33,380      Dec    7 

Kennedy.     Crushers.     32,517.     Nov.   28. 

Kernohan,  Lochhead,  and  Trink.  Furnaces 
33,472.     Dec.  7.     (U.S.,  8.12.21.) 

Lewis.  Production  of  catalvtic  agents.  32,977 
Dec.  2. 

Lloyd,  Meldrums,  Ltd.,  and  Simon-Carves,  Ltd. 
Apparatus  for  effecting  intimate  contact  of  gases 
and  liquids.     33,532.     Dec.  8. 

Lumiere.      Capillary    process    for    exchange    of 
liquids  in  chemical  processes,  dyeing,  etc      33  331 
Dec.  6.     (Fr.,  7.12.21.) 

Pickford.  Recovery  of  volatile  liquids,  solvents, 
etc.     32,700.     Nov.  30. 

Russell.     33,252.     See  XVII. 

Soc.  Gen  d'Evaporation  Proc.  Prache  et  Bouillon. 
Apparatus  for  separating  solids  from  liquids 
33,362  and  33,496.  Dec.  6  and  7.  (Fr.,  20  12  21 
and  24.1.22.) 

Complete  Specifications  Accepted 
.    22,062  (1921).     Wake.    Rotary  apparatus  for  dry- 
ing,   calcining    ores,    low-temperature    distillation, 
etc.     (189,193.)     Dec.  6. 

sJi'SSH19^-   Bellis  Heat  Treating  Co.  Crucibles. 
(163,887.)    Dec.  13. 

32,360  (1921).  Allis-Chalmers  Manufacturing  Co 
Crushers.     (173,739.)     Dec.  13. 

33,282  (1921)  and  10,575  (1922).  Blvth.  Apparatus 
tor  separating  air  or  gas  from  material  suspended 
therein.    (189,657.)    Dec.  13. 


3603  (1922).  Ferolite,  Ltd.,  and  Clapp.  Crucibles, 
retorts,  etc.     (189,692.)     Dec.  13 

(1891  ron^Dec  T'111'8'    Clarifying  solv«nts  and  oils. 

5322  (1922).'  Goldschmidt  A.-G.,  and  Kohl- 
schutter.  Production  of  finely-divided  solid  sub- 
stances.    (189,706.)    Dec.  13. 

6172  (1922).     Dorner,  and  Deutsche  Werke  A  -G 
Filters.     (189,389.)    Dec.  6. 

16,859  (1922).    Dickson  and  Mann,  and  Thornton 
Apparatus  for  wet  separation  of  granular  materials'. 
(189,407.)    Dec.  6. 

25,050  (1922).  Klug.  Apparatus  for  separating 
suspended  particles  from  gases.     (188,310.)    Dec.  6. 

U™fSE?>  ~GAS'      MINERAL      OILS      AND 

WAXES;    DESTRUCTIVE   DISTILLATION- 

HEATING;  LIGHTING. 

Applications. 

Asiatic    Petroleum   Co.,    and    Marshall       32  961 
See  XII. 

Atkinson.     Combustion  of  fuel.     33,039.     Dec.  4. 

Calder  and  Lennox.  Treatment  of  oil-gas  resi- 
duals.    32,414.     Nov.  27. 

Caldwell.    32,428.    See  I. 

Coley.     Gas  manufacture.     33,432.     Dec.  7. 

Coppee  et  Cie.  Coal-washing  apparatus.  33  704 
Dec.  9.     (Belg.,  9.12.21.) 

Dobson,  and  Sugden  and  Co.  Regenerative 
furnaces  for  gas  production  etc.    32,926.    Dec.  2. 

Dubois,  Du  Boistesselin,  Hertenbein,  Tabb.  and 
Varmer.  Agglomeration  of  powdered  fuel  etc 
33,335.     Dec.  6.     (Fr.,  12.5.22.) 

Gill.   Furnaces,  gas-producers,  etc.  33,341.  Dec.  6 

Heyl.    Oil  shale.    33,572.    Dec.  8. 

Heyl.     Desulphurising  oils.     33,573.     Dec.  8. 

Hirchberg.  Treatment  of  hvdrocarbon  oils. 
33,074.     Dec.  4. 

Hutchins.  Retorts  for  distilling  carbonaceous 
materials  etc.    32,525.    Nov.  28. 

Jorgensen  and  others.     33,113.    See  TX. 

Koppers  Co.  Purification  of  gases.  32,337. 
Nov.  27.    (U.S.,  8.12.21.) 

Liljenroth.  Production  of  gas.  32,612.  Nov.  29. 
(Sweden,  3.12.21.) 

Loy.  Pulverising-apparatus  for  solid  fuel.  32,404 
Nov.  27.     (Fr.,  6.12.21.) 

Lymn.  Utilising  coking  fuel  in  gas-producers. 
33,563.    Dec.  8. 

Moore.    32,887.    See  VII. 

Reynard,  Tapping,  and  Thornley.  Distillation  of 
coal.     32,989  and  33,579.     Dec.  2  and  8. 

Soc.  de  Recherches  et  de  Perfect.  Industriels. 
Purifying  ground  combustible.  33,607.  Dec.  8. 
(Fr.,  28.1.22.) 

Complete  Specifications  Accepted. 

14,605  and  14,725  (1921).  Helps.  Manufacture 
of  gas.     (189,475.)     Dec.  13. 

20,590  (1921).  Redfern  (Stuart).  Gas-producers. 
(189,491.)     Dec.  13. 

20,596  (1921).  Terrell,  and  Monarch  Mantles, 
Ltd.  Light-giving  bodies  for  incandescent  lighting. 
(189,492.)     Dec.  13. 

22,062  (1921).     Wake.     See  I. 

22,271  (1921).  Marks  (Hoover  Co.).  Conversion 
of  high  boiling  point  hydrocarbon  oils  into  low  boil- 
ing point  oils.     (189,200.)    Dec.  6. 

22,507-3  (1921).  Broadbridge,  Edser,  and  Beas- 
ley.  Production  of  coal  briquettes.  (1S9, 220-1.) 
Dec.  6. 

22,524  (1921).  Broadbridge,  Edser,  and  Beaslev. 
Production  of  coke.     (189,506.)     Dec.  13. 

22,830  (1921).   Bradlev.   Fuel.   (189,515.)   Dec.  13. 

22,880  (1921).  Straus.  Fractionation  of  petrol- 
eum.    (189,239.)     Dec.  6. 

23,263  and  27,761  (1921),  941.  2729,  and  4969 
(1922).  Ironside.  Distillation  of  shales,  coal,  etc. 
(189,542.)    Dec.  13. 


Vol.  XLI.,  No.  24.] 


PATENT   LIST. 


1003  a 


3603  (1922).     Ferolite,  Ltd.,  and  Clnpp.    See  I. 

4154  (1922).     Willis.     See  I. 

10,011  (1922).  Schmaltz.  Preventing  spontane- 
ous combustion  of  coals.     (183.109.)     Dec.  6. 

11,365  (1922).  Morgan.  Fuel  for  internal-com- 
bustion engines.     (189,715.)     Dec.  13. 

III.— TAR  AND  TAR  PRODUCTS. 

Application. 

Vermeire.  Production  of  creosote.  32.615. 
Nov.  29.    (Belg.,  10.10.22.) 

IV.— COLOURING  MATTERS  AND  DYES. 
Applications. 

Johnson  (Badische  Anilin  u.  Soda  Fabr.).  Manu- 
fa<  ture  of  vat  colouring-matters.    32.423.     Nov.  27. 

Soc  pour  l'lndustrie  Chimique  a  Rale.  Manufac- 
ture of  indigoid  dvestuffs.  32,433.  Nov.  27.  (Fr., 
30.11.21.) 

Complete  Specifications  Accepted. 

26,324  (1921).  British  Dyestuffs  Corp.,  Baddiley. 
and  Rodd.  Manufacture  of  dyestuffs  of  the  triaryl- 
methane  series.     (189,295.)     Dec.  6. 

34.955  (1921).  Ra.nsford  (Caesella  u.  Co.).  Vat 
dyestuffs.     (189,367.)     Dec.  6. 

V.— FIBRES;  TEXTILES;  CELLULOSE; 
PAPER. 

Applications. 

Brownlow.     Celluloid.     33,019.     Dec  4. 

Dehn  (Cotono  Corp.).  Cleaning  and  conditioning 
cotton.     33,043.     Dec.  4. 

Doble  (United  Paper  Co.).  Material  for  wrap- 
ping, cartons,  etc.     32,752.     Nov.  30. 

Dreyfus.  Manufacture  of  artificial  textile  pro- 
ducts.   32,456.     Nov.  28. 

Milne.  Manufacture  of  paper.  32,925.  Dec.  2. 
Complete  Specifications  Accepted. 

14,256  (1921).  Dreaper.  Spinning  and  twisting 
strands  of  filaments  of  artificial  silk  etc.  (189,155.) 
Dec.  6. 

23,637  (1921).  Vains.  Dissolving  organic  pro- 
ducts obtained  bv  chlorination  of  cellulose  materials. 
(189,561.)    Dec.'l3. 

23,724  (1921).  Baker,  Sons,  and  Perkins,  and 
Thomas.  Manufacture  of  paper  for  filtering  pur- 
poses.    (189,562.)    Dec.  13. 

24.231  (1921).  Marr.  Recovery  of  used  paper. 
(189,271.)    Dec.  6. 

VI.—  BLEACHING;  DYEING;  PRINTING; 

FINISHING. 

Applications. 

Brandwood  and  Brandwood.  Apparatus  for  dye- 
ing etc.  textile  materials.     33,153.     Dec.  5. 

Lees,  Shaw,  and  Shaw.  Means  for  treating 
fibrous  etc.  materials  with  liquids.    33,524.     Dec.  8. 

Lumiere.     33,331.    Sec  I. 

Morton  Sundour  Fabrics,  Ltd.,  and  Thomas. 
Dyeing  animal  fibres.    32,911.    Dec.  2. 

Complete  Specification  Accepted. 

17,080  (1921).  CaMebaut  and  Blicquv.  Dve  vats 
or  machines.     (1S9,164.)     Dec.  6. 

VII.— ACIDS  ;  ALKALIS  ;  SALTS  ;  NON- 
METALLIC  ELEMENTS. 

Applications. 

Hirchberg.  Extraction  of  sulphur  and  sulphur 
compounds.    33,075.    Dec.  4. 

Millar  and  Williams.  Manufacture  of  low  rela- 
tive densitv  oxides  and  carbonates  of  magnesium. 
33.605.    Dec.  8. 

Moore.     Recovery  of  ammonia.     32,887.     Dec.  1. 

Seydel  Manuf.   Co.     32,613.     See  XX. 


Complete  Specifications  Accepted. 

15,078  (1921).  Gitsham  and  Evershed.  Manu- 
facture of  sulphate  of  lead.     (189,160.)     Dec.  6. 

3875  (1922).  Soc.  Miniere  et  Indus.  Bresilienne. 
Treatment  of  monazite  and  other  phosphate  ores. 
(189,698.)     Dec.  13. 

3962  (1922).  Dutt.  Extraction  of  titanium 
dioxide  and  vanadium  salts  from  bausite.  (189,700.) 
Deo.  13. 

14,208  (1922).  Poma  and  Andreani.  Plant  for 
the  synthetic  manufacture  of  hvdrochloric  acid. 
(189,723.)    Dec.  13. 

16,086  (1922).  Akt.  de  Norske  Saltverker.  Pro- 
duction of  anhydrous  magnesium  chloride.  (181,375.) 
Dee.  6. 

17,381  (1922).  Chem.  Fabr.  Weissenstein.  Manu- 
facture Of  hydrogen  peroxide.     (184,153.)     Dec.  13. 


ri8  (1922).      Chem.  Fabr.   in  Bil 


and 


ll:i  lenclever.    Production  of  chrome-alum.  (187,232.) 
Dee.  13. 

VIII.— GLASS;  CERAMICS. 

Applications. 

Hodson.  Manufacture  of  basic  bricks  etc. 
32,524.     Nov.  28. 

Rhodes.  Manufacture  of  artificial  scouring- 
stones.     33,013.     Dec.  4. 

Soc.  Anon.  Quartz  et  Silice.  Manufacture  of 
fu>ed  quartz  by  electric  furnace.  33,587-8.  Dec.  8. 
(Fr.,  16.12.21.) 

Complete  Specifications  Accepted. 

20,693,  20,695-7  (1921).  Marks  (Libbey-Owens 
She  t  Glass  Co.).  Manufacture  of  sheet  glass. 
(189,493-6.)     Dec.  13. 

3  1. 190  (1921).  Herrmann.  Manufacture  of  niiea- 
nite.     (173,216.)     Dec.  6. 

IX.— BUILDING  MATERIALS. 
Applications. 

Coleman.  Manufacture  of  road-making  materials. 
33,661.    Dec.  9. 

Holzveredelung  Ges.,  and  Trenkler.  Hardening 
wood.     33,343.     Dec.  6. 

Jorgensen,  Midd'Ieboe,  and  Ronne.  Utilisation  of 
<    mbustion  gases  from  cement  kilns.  33,113.   Dec.  4. 

Kitchen,  Lefebure,  and  Powell  Wood  Process 
Synd.     Treatment  of  timber.     33,340.     Dec.  6. 

Robertson  Co.  Building-material.  33,036.  Dec.  4. 
M.S.,  19.12.21.) 

Complete  Specification  Accepted. 

2.1,936  (1921).  Sparkes.  Treatment  of  wood. 
(189,268.)    Dec.  6. 

X.— METALS ;     METALLURGY,      INCLUDING 
ELECTRO-METALLURGY. 

Applications. 

Carroll.  Extraction  of  titanium  from  ilmenite 
etc.    32.954.    Dec.  2. 

Durant  and  Edwards.  Treatment  of  minerals. 
33,703.     Dec.  9. 

Harris.  Separation  of  arsenic  or  tin  in  presence 
or  absence  of  antimony.     33,109.     Dec.  4. 

Reynard,  Tapping,  and  Thornley.  Preparation 
of  ores  for  smelting.     33,483.     Dec.  7. 

Saltrick.     Iron  alloys.     32,825.     Dec.   1. 

Saltrick.     Ferro-alloys.     32,826.     Dec.  1. 

Simaika.  Recovery  and  purification  of  white 
metal  from  scrap  etc.     33,617.     Dec.  8. 

Complete  Specifications  Accepted. 

22,062  (1921).     Wake.     See  I. 

22,346  (1921).  Dyson  (Newton).  Separation  of 
gold  from  auriferous  gravel  or  other  ore.  (189,206.) 
Dec.  6. 

28,251  (1921).  Hibbard.  Production  of  wrought 
iron.     (189,622.)     Dec.  13. 


1004  a 


PATENT   LIST. 


[Dec.  30,  1922. 


3S75  (1922).  Soc.  Miniere  et  Indus.  Bresilienne. 
S<  e  VII. 

20,818  (1922).  'Western  Electric  Co.  Treatment 
of  magnetic  materials.     (189,410.)     Dec.  6. 

XI.— ELECTRO-CHEMISTRY. 

Applications. 

Anglo-American  Battery  Co.,  and  Rutter.  Gal- 
vanic batteries  or  accumulators.     32,373.     Nov.  27. 

Antonoff.     Electric  batteries.     32,470.     Nov.  28. 

Crowther  and  Russell.  Treatment  of  electro- 
conductive  and  moisture-bearing  materials.  33,440. 
Dec.  7. 

Goolden,  Macnaughton,  and  Moore.  Primary 
cells.     33,614.     Dec.  8. 

Hardway  and  Waller.  Primary  batteries.  32,672. 
Nov.  29. 

Quain.     Ozone  apparatus.     33,194.     Dec.  5. 

Scott.  Electrolvsers  and  electrodes  therefor. 
32.527.    Nov.  28. 

Soc.  Anon.  Quartz  et  Silice.  33,587-8.  See 
VIII. 

Complete  Specifications  Accepted. 

25,719  (1921)  and  17,734  (1922).  Oldham  and 
Oldham.     Galvanic  batteries.     (189,589.)     Dec.  13. 

NIL— FATS;  OILS;  WAXES. 

Applications. 

Asiatic  Petroleum  Co.,  and  Marshall.  Solutions 
of  non-mineral  oils  with  mineral  oils.  32,961.  Dec.  2. 

Clark,  and  Pearson  and  Co.  Removing  odour 
and /or  flavour  of  cod-liver  oil.     32,379.     Nov.  27. 

Legradi.  Manufacture  of  soaps.  33,226.  Dec.  5. 
(Ger.,  8.8.22.) 

Legradi.  Manufacture  of  shaving  powder. 
33,227.     Dec.  5.     (Ger.,  7.3.22.) 

XIII.— PAINTS;    PIGMENTS;    VARNISHES; 
RESLNS. 

Applications. 

Craven,  and  Yorkshire  Dyew-are  and  Chemical 
Co.  Ingredient  for  linoleum  cement.  32,328. 
Nov.  27. 

Kirkpatrick.  Antifouling  composition.  32,805. 
Dec.  1. 

William?.  Preparation  for  removing  paints, 
stains,  etc.     33,404.     Dec.  7. 

Complete  Specifications  Accepted. 

23,010-2  (1921).  Fairweather  (New  Jersey  Zinc 
Co.).  Manufacture  of  lithopone.  (189,523-5.) 
Dec.  13. 

22,222  (1922).  Consort,  f.  Elektroehem.  Industrie. 
Manufacture  of  resins  resembling  shellac.  (185,107.) 
Dec.  6. 

XIV.— INDIA-RUBBER ;  GUTTA-PERCHA. 

Application. 

Lefebure.  Vulcanisation  of  rubber  etc.  32,641. 
Nov.  29. 

XV.— LEATHER;  BONE;  HORN;  GLUE. 

Application. 

Massin  and  Thuau.  Process  for  uuhairing  hides 
etc.     32,908.     Dec.  2. 

Complete  Specification  Accepted. 

21,981  (1921).  Johnson  (Badische  Anilin  u.  Soda 
Fabr.).     Tanning.     (189,190.)     Dec.  6. 

XVI.— SOLLS;  FERTILISERS. 

Complete  Specification  Accepted. 
22.246  (1921).     Gaud.     Direct  treatment  of  seeds, 
grain,  etc.,  to  increase  the  productivity.     (168,317.) 
Dec.  6. 


XVII.— SUGARS;  STARCHES;  GUMS. 
Application. 
Russell.       Filters     for     decolorising     sugar     etc. 
liquors.     33,252.     Dec.  6. 

Complete  Specification  Accepted. 

22,775  (1921).  Howroyd  and  Turnbull.  Starch 
preparations.     (189,236.)    Dec.  6. 

XVIH.— FERMENTATION  INDUSTRIES. 
Applications. 
Duclaux.       Clarification    of    beverages.      33,204. 
Dec.  5.     (Fr.,  6.12.21.) 

Internal.  Takamine  Ferment  Co.  Yeast  stimu- 
lant,   32,361.     Nov.  27.     (U.S.,  25.7.22.) 

XIX—  FOODS  ;  WATER  PURIFICATION  ; 
SANITATION. 

Applications. 

Bellamy,  and  Bellamy  and  Co.  Preserving  fruits, 
roots,  etc.    32,952.    Dec.  2. 

Duclaux.    33,204.    See  XVIII. 

Hoveman  and  Hoveman.  Filtering,  purifying, 
and  softening  water.    32,542.    Nov.  28. 

Marsan.  Manufacture  of  substitutes  for  meat 
extract  etc.    33,324.     Dec.  6.     (Fr.,  6.12.21.) 

Melhuish.  Artificial  milk  from  legumes  other 
than  soya.     32,605.     Nov.  29. 

Complete  Specifications  Accepted. 

19,673  (1921).  Hottinger.  Sterilising  liquids  and 
solids.     (180,973.)     Dec.  6. 

27,606  and  31,462  (1921),  and  1330  (1922).  Hartley 
and  Hartley.  Purification  of  sewage.  (189,611.) 
Dec.  13. 

XX.— ORGANIC  PRODUCTS;   MEDICINAL 

SUBSTANCES;   ESSENTIAL  OILS. 

Applications. 

Gas  Light  and  Coke  Co.,  and  Lewcock.  Manu- 
facture of  p-nitrophenetole  from  p-chlorobenzene. 
32,969.    Dec.  2. 

Heller.     33,198.     Seel. 

Hirchberg.  Compositions  containing  formalde- 
hyde.   32,520.    Nov.  28. 

Layraud.  Manufacture  of  asymmetrical  dialkyl- 
barbituric  acids  and  products  therefrom.  32,647. 
Nov.  29.     (Fr.,  31.12.21.) 

Seydel  Manuf.  Co.  Mercurial  composition. 
32,613.     Nov.  29.     (U.S.,  29.11.21.) 

Soc.  des  Produits  Azotes.  Isolation  of  urea. 
32,545.    Nov.  2S.     (Fr.,  29.11.21.) 

XXL— PHOTOGRAPHIC  MATERIALS  AND 
PROCESSES. 
Applications. 
Bercegol.    Production  of  screens  for  colour  photo- 
graphy.    33,228.     Dec.  5.     (Fr.,  5.12.21.) 

Olark.  Production  of  photographic  negatives. 
32,988.    Dec.  2. 

Dinsdale  and  Kean.  Natural-colour  photography. 
33,656.    Dec.  9. 

XXII.— EXPLOSIVES ;  MATCHES. 

Application. 

Dynaniit  A.-G.  vorm.  Nobel  u.  Co.,  and  Naourn. 

Manufacture  of  gelatinous  nitroglycerin  explosives 

proof  against  firedamp.     32,409.     Nov.  27.     (Ger., 

1.12.21.) 

Complete  Specification  Accepted. 
22,802  (1921).    Lundsgaard.    Explosive  materials. 
(168,333.)     Dec.  6. 

XXIIL— ANALYSIS. 

Complete  Specification  Accepted. 

1587  (1922).  Tintometer,  Ltd.,  and  Baker. 
Apparatus  for  testing  or  estimating  the  colour  of 
very  small  quantities  of  liquid.     (189,375.)     Dec.  6. 


&> 


* 


I 

" 

S     ■        -.  -  r 

TP      Society  of  Chemical  Industry, 

1       London 
S59 

cop.  2 


Jour 


EngineetUjg 


PLEASE  DO  NOT  REMOVE 
CARDS  OR  SLIPS  FROM  THIS  POCKET 

UNIVERSITY  OF  TORONTO  LIBRARY 


ENGtN 


STORAGE 


:  mm 


■■■•■!■